-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_stage2.py
373 lines (328 loc) · 14.5 KB
/
train_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
''' Script to train Stage 2
'''
import torch
import torch.nn.functional as F
import torch.optim as t_optim
import argparse
import random
import json
from os import path as osp
from torch.utils.data import DataLoader
from toolz import partition
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from modules.autoregressive import AutoRegressiveModel, EnvContextCrossAttModel
from modules.quantizers import VectorQuantizer
from modules.optim import ScheduledOptim
from data_loader import get_quant_padded_sequence, QuantPathMixedDataLoader
from data_loader import QuantManipulationDataLoader, get_quant_manipulation_sequence
def calculate_loss(context_output, ar_model, batch_data, seq_batch_size, device):
''' Calculates loss for each trajectory by training the auto-regressive model to maximize
the likelihood for each trajectory.
:param context_output: output from cross-attention model.
:param ar_model: autoregressive model
:param batch_data: dictionary with a single batch data.
:param seq_batch_size: maximum length of the sequences used to train AR model.
:param device: 'cpu' or 'cuda'
:returns torch.tensor: the avg loss for given trajectories.mas
'''
loss = 0
total_num_trajectories = batch_data['target_seq_id'].shape[0]
for i in range(total_num_trajectories):
offset = max(int((batch_data['length'][i])/seq_batch_size), 1)
total_length = min(seq_batch_size*offset, int(batch_data['length'][i]))
label = batch_data['target_seq_id'][i, :total_length:offset]
seq_batch_size_i = label.shape[0]
ar_model_input_i = torch.cat([context_output[i, :, :], batch_data['input_seq'][i, :total_length, :].to(device)])
mask = torch.tril(torch.ones(total_length, total_length+2), diagonal=2)
mask = mask[::offset, :].to(device)
target_value_index = (mask.sum(dim=1)-1).to(dtype=torch.int64)
tmp_output = ar_model(ar_model_input_i.repeat((seq_batch_size_i, 1, 1)), mask)
tmp_prob_output = -1*F.log_softmax(tmp_output, dim=-1)
loss +=tmp_prob_output[torch.arange(seq_batch_size_i, device=device), target_value_index, label].sum()
return loss/total_num_trajectories
def train_epoch(context_env_encoder, ar_model, train_dataset, batch_size, optimizer, device):
''' Train the model for an epoch
:param context_env_encoder: model for encoding environment w/ start & goal pairs.
:param ar_model: model for autoregressive models.
:param batch_size: number of chunks each trajectory should be split to.
:param optimizer: the schedule optimizer object.
:param device: The device on which to train the model
'''
for model_i in [context_env_encoder, ar_model]:
model_i.train()
total_loss = 0
for batch_data in tqdm(train_dataset, mininterval=2):
optimizer.zero_grad()
context_output = context_env_encoder(batch_data['map'].to(device), batch_data['start_n_goal'].to(device))
loss = calculate_loss(context_output, ar_model, batch_data, batch_size, device)
loss.backward()
optimizer.step_and_update_lr()
total_loss += loss.item()
return total_loss
# Evaluate the model once.
def eval_epoch(context_env_encoder, ar_model, eval_dataset, batch_size, device):
''' Evaluate the model for an epoch
:param context_env_encoder: model for encoding environment w/ start & goal pairs.
:param ar_model: model for autoregressive models.
:param batch_size: number of chunks each trajectory should be split to.
:param device: The device on which to train the model
'''
for model_i in [context_env_encoder, ar_model]:
model_i.eval()
total_loss = 0
for batch_data in tqdm(eval_dataset, mininterval=2):
with torch.no_grad():
context_output = context_env_encoder(batch_data['map'].to(device), batch_data['start_n_goal'].to(device))
loss = calculate_loss(context_output, ar_model, batch_data, batch_size, device)
total_loss += loss.item()
return total_loss
def get_torch_dataloader(dataset, batch_size, num_workers):
''' Returns an object of type torch.data.DataLoader for the given dataset
which will be accessed by the given number of workers.
:param dataset: an object of type torch.data.Dataset
:param batch_size: partition the dataset wrt the given batch size.
:param num_workers: int, specifying number of workers.
:return torch.data.DataLoader object.
'''
data_index = dataset.indexDictForest+dataset.indexDictMaze
random.shuffle(data_index)
batch_sampler_data = list(partition(batch_size, data_index))
return DataLoader(dataset, num_workers=num_workers,
batch_sampler=batch_sampler_data, collate_fn=get_quant_padded_sequence)
# define main training routine
def main(args):
''' Main training routine for statge 2
'''
dictionary_model_folder = args.dict_model_folder
train_model_folder = args.log_dir
batch_size = args.batch_size
# Load the qunatizer model
d_model=512
num_keys = 2048
quantizer_model = VectorQuantizer(n_e=num_keys, e_dim=8, latent_dim=d_model)
checkpoint = torch.load(osp.join(dictionary_model_folder, 'best_model.pkl'))
# NOTE: Quantizer model is NOT loaded to GPU because model is used ony to get
# embedding and transformation vector.
quantizer_model.load_state_dict(checkpoint['quantizer_state'])
# Define Cross attention model
if args.robot == '2D':
env_params = {
'd_model': d_model,
'dropout': 0.1,
'n_position': 40*40
}
context_params = dict(
d_context=2,
n_layers=3,
n_heads=3,
d_k=512,
d_v=256,
d_model=d_model,
d_inner=1024,
dropout=0.1
)
if args.robot == '6D':
env_params = dict(d_model=d_model)
context_params = dict(
d_context=6,
n_layers=3,
n_heads=3,
d_k=512,
d_v=256,
d_model=d_model,
d_inner=1024,
dropout=0.1
)
if args.robot == '7D':
env_params = dict(d_model=d_model)
context_params = dict(
d_context=7,
n_layers=3,
n_heads=3,
d_k=512,
d_v=256,
d_model=d_model,
d_inner=1024,
dropout=0.1
)
if args.robot == '14D':
env_params = dict(d_model=d_model)
context_params = dict(
d_context=14,
n_layers=3,
n_heads=3,
d_k=512,
d_v=256,
d_model=d_model,
d_inner=1024,
dropout=0.1
)
context_env_encoder = EnvContextCrossAttModel(env_params, context_params, robot=args.robot)
# Save the parameters used to define AR model.
with open(osp.join(train_model_folder, 'cross_attn.json'), 'w') as f:
json.dump(context_params, f, sort_keys=True, indent=4)
ar_params = dict(
d_k = 512,
d_v = 256,
d_model = d_model,
d_inner = 1024,
dropout = 0.1,
n_heads = 3,
n_layers = 3,
num_keys=num_keys+2 # +2 for encoding start and goal keys
)
ar_model = AutoRegressiveModel(**ar_params)
# Save the parameters used to define AR model.
with open(osp.join(train_model_folder, 'ar_params.json'), 'w') as f:
json.dump(ar_params, f, sort_keys=True, indent=4)
device = torch.device('cuda') if torch.cuda.is_available() else 'cpu'
context_env_encoder.to(device)
ar_model.to(device)
optimizer = ScheduledOptim(
t_optim.Adam(list(context_env_encoder.parameters()) + list(ar_model.parameters()), betas=(0.9, 0.98), eps=1e-9),
lr_mul=0.15,
d_model=512,
n_warmup_steps=2400
)
if args.robot=='2D':
# Define the train dataloader
train_dataset = QuantPathMixedDataLoader(
quantizer_model,
list(range(750))+list(range(1000, 1750)),
'/root/data2d/maze4/train',
osp.join(dictionary_model_folder, 'quant_key/maze4/train'),
list(range(1500)),
'/root/data2d/forest/train',
osp.join(dictionary_model_folder, 'quant_key/forest/train')
)
train_data_loader = get_torch_dataloader(train_dataset, batch_size, num_workers=20)
# Define the eval dataloader
val_dataset = QuantPathMixedDataLoader(
quantizer_model,
list(range(500)),
'/root/data2d/maze4/val',
osp.join(dictionary_model_folder, 'quant_key/maze4/val'),
list(range(500)),
'/root/data2d/forest/val',
osp.join(dictionary_model_folder, 'quant_key/forest/val')
)
val_data_loader = get_torch_dataloader(val_dataset, batch_size, num_workers=10)
if args.robot == '6D':
if args.shelf:
train_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(1000)),
'/root/data/panda_shelf/train',
osp.join(dictionary_model_folder, 'quant_key/panda_shelf/train/'),
robot=args.robot
)
val_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(2000, 2500)),
'/root/data/panda_shelf/val',
osp.join(dictionary_model_folder, 'quant_key/panda_shelf/val'),
robot=args.robot
)
else:
train_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(1000)),
'/root/data/pandav3/train/',
osp.join(dictionary_model_folder, 'quant_key/pandav3/train/'),
robot=args.robot
)
val_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(2000, 2500)),
'/root/data/pandav3/val',
osp.join(dictionary_model_folder, 'quant_key/pandav3/val'),
robot=args.robot
)
train_data_loader = DataLoader(train_dataset, num_workers=15, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
val_data_loader = DataLoader(val_dataset, num_workers=10, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
if args.robot == '7D':
train_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(1, 2001)),
'/root/data/pandav4/train/',
osp.join(dictionary_model_folder, 'quant_key/train/'),
robot=args.robot
)
val_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(2001, 2501)),
'/root/data/pandav4/val',
osp.join(dictionary_model_folder, 'quant_key/val'),
robot=args.robot
)
train_data_loader = DataLoader(train_dataset, num_workers=15, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
val_data_loader = DataLoader(val_dataset, num_workers=10, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
if args.robot == '14D':
train_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(1, 2000)),
'/root/data/bi_panda/train',
osp.join(dictionary_model_folder, 'quant_key/train'),
robot=args.robot
)
val_dataset = QuantManipulationDataLoader(
quantizer_model,
list(range(2001, 2500)),
'/root/data/bi_panda/val',
osp.join(dictionary_model_folder, 'quant_key/val'),
robot=args.robot
)
train_data_loader = DataLoader(train_dataset, num_workers=15, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
val_data_loader = DataLoader(val_dataset, num_workers=10, batch_size=batch_size, collate_fn=get_quant_manipulation_sequence)
writer = SummaryWriter(log_dir=train_model_folder)
best_eval_loss = None
start_epoch = 0
if args.cont:
checkpoint = torch.load(osp.join(train_model_folder, 'best_model.pkl'))
ar_model.load_state_dict(checkpoint['ar_model_state'])
context_env_encoder.load_state_dict(checkpoint['context_state'])
optimizer._optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
optimizer.n_steps = checkpoint['n_steps']
for n in range(start_epoch, args.num_epochs):
# One valing pass of the model.
print(f"Epoch: .......{n}")
train_loss = train_epoch(context_env_encoder, ar_model, train_data_loader, 40, optimizer, device)
eval_loss = eval_epoch(context_env_encoder, ar_model, val_data_loader, 40, device)
if best_eval_loss is None:
best_eval_loss = eval_loss
# Periodically save trainiend model
if (n+1) % 10 == 0:
states = {
'context_state': context_env_encoder.state_dict(),
'ar_model_state': ar_model.state_dict(),
'optimizer': optimizer._optimizer.state_dict(),
'epoch': n,
'n_steps': optimizer.n_steps
}
torch.save(states, osp.join(train_model_folder, f'model_{n}.pkl'))
if eval_loss < best_eval_loss:
best_eval_loss = eval_loss
print(best_eval_loss)
states = {
'context_state': context_env_encoder.state_dict(),
'ar_model_state': ar_model.state_dict(),
'optimizer': optimizer._optimizer.state_dict(),
'epoch': n,
'n_steps': optimizer.n_steps
}
torch.save(states, osp.join(train_model_folder, 'best_model.pkl'))
writer.add_scalar('Loss/train', train_loss, n)
writer.add_scalar('Loss/test', eval_loss, n)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dict_model_folder', help="Folder to find the dictionary model parameters")
parser.add_argument('--num_epochs', help="Number of epochs to train the model", type=int)
parser.add_argument('--log_dir', help="Directory to save data related to training")
parser.add_argument('--batch_size', help="Number of trajectories to load in each batch", type=int)
parser.add_argument('--cont', help="Continue training the model", action='store_true')
parser.add_argument('--robot', help="Choose the robot model to train", choices=['2D', '6D', '7D', '14D'])
parser.add_argument('--shelf', help="If true, train for shelf environment", action='store_true')
args = parser.parse_args()
main(args)