From dddcd036f93be1abf518f5057a3b75d126b76e7c Mon Sep 17 00:00:00 2001 From: zhengyao jiang Date: Sun, 29 Sep 2024 21:34:44 +0100 Subject: [PATCH] update build --- index.html | 6 +- papers.json | 2 +- poster_samvelyan2024rainbow.html | 339 ++++++++++++++++++ serve_news.json | 2 +- serve_papers.json | 2 +- static/images/papers/samvelyan2024rainbow.png | Bin 0 -> 878269 bytes 6 files changed, 345 insertions(+), 6 deletions(-) create mode 100644 poster_samvelyan2024rainbow.html create mode 100644 static/images/papers/samvelyan2024rainbow.png diff --git a/index.html b/index.html index 0e44d56364b1..fc463bfa396c 100644 --- a/index.html +++ b/index.html @@ -185,6 +185,9 @@

News

diff --git a/papers.json b/papers.json index 2242868b2922..297a481c20d9 100644 --- a/papers.json +++ b/papers.json @@ -1 +1 @@ -[{"content":{"TLDR":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","abstract":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","authors":["Zhengyao Jiang","Yingchen Xu","Nolan Wagener","Yicheng Luo","Michael Janner","Edward Grefenstette","Tim Rockt\u00e4schel","Yuandong Tian"],"blog":"","keywords":["generative model","model-based reinforcement learning","humanoids"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"H-GAP: Humanoid Control with a Generalist Planner","url":"https://arxiv.org/abs/2312.02682","year":2024},"forum":"jiang2023hgap","id":"jiang2023hgap","image":"./static/images/papers/jiang2023hgap.jpg"},{"content":{"TLDR":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","abstract":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","authors":["Rohan Chitnis","Yingchen Xu","Bobak Hashemi","Lucas Lehnert","Urun Dogan","Zheqing Zhu","Olivier Delalleau"],"blog":"","keywords":["hierarchical reinforcement learning","model-based reinforcement learning","offline reinforcement learning"],"proceedings":["ICRA"],"recs":[],"session":[""],"title":"IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control","url":"https://arxiv.org/abs/2306.00867","year":2024},"forum":"chitnis2023iqltdmpc","id":"chitnis2023iqltdmpc","image":"./static/images/papers/chitnis2023iqltdmpc.jpg"},{"content":{"TLDR":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","abstract":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","authors":["Sharath Chandra Raparthy","Eric Hambro","Robert Kirk","Mikael Henaff","Roberta Raileanu"],"blog":"","keywords":["generalisation","in-context learning","transformers","reinforcement learning"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Generalization to New Sequential Decision Making Tasks with In-Context Learning","url":"https://arxiv.org/abs/2312.03801","year":2023},"forum":"raparthy2023generalization","id":"raparthy2023generalization","image":"./static/images/papers/raparthy2023generalization.jpg"},{"content":{"TLDR":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","abstract":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","authors":["Thomas Coste","Usman Anwar","Robert Kirk","David Krueger"],"blog":"","keywords":["large language models","fine-tuning","overoptimisation","alignment"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Reward Model Ensembles Help Mitigate Overoptimization","url":"https://arxiv.org/abs/2310.02743","year":2024},"forum":"coste2023reward","id":"coste2023reward","image":"./static/images/papers/coste2023reward.jpg"},{"content":{"TLDR":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","abstract":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","authors":["Samyak Jain","Robert Kirk","Ekdeep Singh Lubana","Robert P. Dick","Hidenori Tanaka","Edward Grefenstette","Tim Rockt\u00e4schel","David Scott Krueger"],"blog":"","keywords":["large language models","fine-tuning","generalisation","interpretability"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks","url":"https://arxiv.org/abs/2311.12786","year":2024},"forum":"jain2023mechanistically","id":"jain2023mechanistically","image":"./static/images/papers/jain2023mechanistically.jpg"},{"content":{"TLDR":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","abstract":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","authors":["Robert Kirk","Ishita Mediratta","Christoforos Nalmpantis","Jelena Luketina","Eric Hambro","Edward Grefenstette","Roberta Raileanu"],"blog":"","keywords":["large language models","rlhf","generalisation","diversity"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Understanding the Effects of RLHF on LLM Generalisation and Diversity","url":"https://arxiv.org/abs/2310.06452","year":2024},"forum":"kirk2023understanding","id":"kirk2023understanding","image":"./static/images/papers/kirk2023understanding.jpg"},{"content":{"TLDR":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","abstract":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","authors":["Mikayel Samvelyan","Davide Paglieri","Minqi Jiang","Jack Parker-Holder","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","multi-agent","open-endedness","environment design"],"proceedings":["AAMAS"],"recs":[],"session":[""],"title":"Multi-Agent Diagnostics for Robustness via Illuminated Diversity","url":"https://arxiv.org/abs/2401.13460","year":2024},"forum":"samvelyan2024multiagent","id":"samvelyan2024multiagent","image":"./static/images/papers/samvelyan2024multiagent.png"},{"content":{"TLDR":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","abstract":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","authors":["Mikayel Samvelyan","Akbir Khan","Michael Dennis","Minqi Jiang","Jack Parker-Holder","Jakob Foerster","Roberta Raileanu","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","multi-agent","open-endedness","environment design"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2303.03376","year":2023},"forum":"samvelyan2023maestro","id":"samvelyan2023maestro","image":"./static/images/papers/samvelyan2023maestro.png"},{"content":{"TLDR":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","abstract":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","authors":["Benjamin Ellis","Jonathan Cook","Skander Moalla","Mikayel Samvelyan","Mingfei Sun","Anuj Mahajan","Jakob Foerster","Shimon Whiteson"],"blog":"","keywords":["reinforcement learning","multi-agent","generalization","benchmark"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2212.07489","year":2023},"forum":"ellis2022smacv2","id":"ellis2022smacv2","image":"./static/images/papers/ellis2022smacv2.png"},{"content":{"TLDR":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","abstract":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","authors":["Minqi Jiang","Michael Dennis","Jack Parker-Holder","Andrei Lupu","Heinrich K\u00fcttler","Edward Grefenstette","Tim Rockt\u00e4schel","Jakob Foerster"],"blog":"","keywords":["reinforcement learning","generalization","environment design","curriculum learning","procedural content generation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Grounding Aleatoric Uncertainty for Unsupervised Environment Design","url":"https://arxiv.org/abs/2207.05219","year":2022},"forum":"jiang2022grounding","id":"jiang2022grounding","image":"./static/images/papers/jiang2022grounding.png"},{"content":{"TLDR":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","abstract":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","authors":["Mikael Henaff","Minqi Jiang","Roberta Raileanu"],"blog":"","keywords":["reinforcement learning","exploration"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Exploration via Elliptical Episodic Bonuses","url":"https://e3bagent.github.io/","year":2022},"forum":"henaff2022exploration","id":"henaff2022exploration","image":"./static/images/papers/henaff2022exploration.png"},{"content":{"TLDR":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","abstract":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","authors":["Jesse Mu","Victor Zhong","Roberta Raileanu","Minqi Jiang","Noah Goodman","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","exploration","language"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Improving Intrinsic Exploration with Language Abstractions","url":"https://arxiv.org/abs/2202.08938","year":2022},"forum":"mu2022improving","id":"mu2022improving","image":"./static/images/papers/mu2022improving.png"},{"content":{"TLDR":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","abstract":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","authors":["Victor Zhong","Jesse Mu","Luke Zettlemoyer","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","language","transfer learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Improving Policy Learning via Language Dynamics Distillation","url":"https://arxiv.org/abs/2210.00066","year":2022},"forum":"zhong2022improving","id":"zhong2022improving","image":"./static/images/papers/zhong2022improving.png"},{"content":{"TLDR":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","abstract":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","authors":["Eric Hambro","Roberta Raileanu","Danielle Rothermel","Vegard Mella","Tim Rockt\u00e4schel","Heinrich K\u00fcttler","Naila Murray"],"blog":"","keywords":["reinforcement learning","offline learning","environments","dataset"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Dungeons and Data: A Large-Scale NetHack Dataset","url":"https://arxiv.org/abs/2211.00539","year":2022},"forum":"hambro2022dungeons","id":"hambro2022dungeons","image":"./static/images/papers/hambro2022dungeons.png"},{"content":{"TLDR":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","abstract":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","authors":["Yingchen Xu","Jack Parker-Holder","Aldo Pacchiano","Philip J. Ball","Oleh Rybkin","Stephen J. Roberts","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","world model","generalist agent","exploration","model-based","reward-free","unsupervised learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Learning General World Models in a Handful of Reward-Free Deployments","url":"https://arxiv.org/abs/2210.12719","year":2022},"forum":"xu2022cascade","id":"xu2022cascade","image":"./static/images/papers/xu2022cascade.jpg"},{"content":{"TLDR":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","abstract":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","authors":["Laura Ruis","Akbir Khan","Stella Biderman","Sara Hooker","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["natural language processing","pragmatics","implicature","large language models"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Large language models are not zero-shot communicators","url":"https://arxiv.org/abs/2210.14986","year":2023},"forum":"ruis2022implicature","id":"ruis2022implicature","image":"./static/images/papers/ruis2022implicature.png"},{"content":{"TLDR":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","abstract":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","authors":["Christopher Bamford","Minqi Jiang","Mikayel Samvelyan","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","open-endedness","environment design","environment"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"GriddlyJS: A Web IDE for Reinforcement Learning","url":"https://arxiv.org/abs/2207.06105","year":2022},"forum":"bamford2022griddlyjs","id":"bamford2022griddlyjs","image":"./static/images/papers/bamford2022griddlyjs.png"},{"content":{"TLDR":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","abstract":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","authors":["Yihong Chen","Pushkar Mishra","Luca Franceschi","Pasquale Minervini","Pontus Stenetorp","Sebastian Riedel"],"blog":"","keywords":["reinforcement learning","offline RL","sequence modelling RL","continuous control"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","url":"https://arxiv.org/abs/2207.09980","year":2022},"forum":"chen2022refactor","id":"chen2022refactor","image":"./static/images/papers/chen2022refactor.png"},{"content":{"TLDR":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","abstract":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","authors":["Zhengyao Jiang","Tianjun Zhang","Micheal Janner","Yueying Li","Tim Rockt\u00e4schel","Edward Grefenstette","Yuandong Tian"],"blog":"","keywords":["reinforcement learning","offline RL","sequence modelling RL","continuous control"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Efficient Planning in a Compact Latent Action Space","url":"https://arxiv.org/abs/2208.10291","year":2022},"forum":"jiang2022tap","id":"jiang2022tap","image":"./static/images/papers/jiang2022tap.png"},{"content":{"TLDR":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","abstract":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","authors":["Michael Matthews","Mikayel Samvelyan","Jack Parker-Holder","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","transfer learning","environment"],"proceedings":["CoLLAs"],"recs":[],"session":[""],"title":"Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning","url":"https://arxiv.org/pdf/2207.11584.pdf","year":2022},"forum":"matthews2022hierarchical","id":"matthews2022hierarchical","image":"./static/images/papers/matthews2022hierarchical.png"},{"content":{"TLDR":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","abstract":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","authors":["Zhengyao Jiang","Tianjun Zhang","Robert Kirk","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","graph structure","data-efficient RL"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Graph Backup: Data Efficient Backup Exploiting Markovian Transitions","url":"https://arxiv.org/abs/2205.15824","year":2022},"forum":"jiang2022gb","id":"jiang2022gb","image":"./static/images/papers/jiang2022gb.png"},{"content":{"TLDR":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","abstract":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","authors":["Jack Parker-Holder","Minqi Jiang","Michael Dennis","Mikayel Samvelyan","Jakob Foerster","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","generalization","open-endedness","environment design","curriculum learning","procedural content generation"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Evolving Curricula with Regret-Based Environment Design","url":"https://arxiv.org/abs/2203.01302","year":2022},"forum":"parker-holder2022evolving","id":"parker-holder2022evolving","image":"./static/images/papers/parker-holder2022evolving.jpg"},{"content":{"TLDR":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","abstract":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","authors":["Anuj Mahajan","Mikayel Samvelyan","Tarun Gupta","Benjamin Ellis","Mingfei Sun","Tim Rockt\u00e4schel","Shimon Whiteson"],"blog":"","keywords":["reinforcement learning","multi-agent","generalization"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Generalization in Cooperative Multi-Agent Systems","url":"https://arxiv.org/abs/2202.00104","year":2022},"forum":"mahajan2022generalization","id":"mahajan2022generalization","image":"./static/images/papers/mahajan2022generalization.jpg"},{"content":{"TLDR":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","abstract":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","authors":["Robert Kirk","Amy Zhang","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"# Generalisation in Reinforcement Learning\n\nReinforcement Learning (RL) could be used in a range of applications such as autonomous vehicles and robotics, but to fulfil this potential we need RL algorithms that can be used in the real world. Reality is varied, non-stationarity and open-ended, and to handle this algorithms need to be robust to variation in their environments, and be able to transfer and adapt to unseen (but similar) environments during their deployment. Generalisation in RL is all about creating methods that can tackle these difficulties, challenging a common assumption in previous RL research that the training and testing environments are identical.\n\nHowever, reading RL generalisation research can be challenging, as there is confusion about the exact problem being tackled and the use of terminology. This is because generalisation refers to a *class* of problems within RL, rather than a specific problem. Claiming to improve \"generalisation\" without being more specific about the type of generalisation that is being improved is underspecified. In fact, it seems unlikely we could improve all types of generalisation with a single method, as an analogy of the [No Free Lunch theorem](https://ieeexplore.ieee.org/document/585893) may apply.\n\nTo address this confusion, we've written a [survey and critical review of the field of generalisation in RL](https://arxiv.org/abs/2111.09794). We formally describe the class of generalisation problems and use this formalism to discuss benchmarks for generalisation as well as methods. Given the field is so young, there's also a lot of future directions to explore, and we highlight ones we think are important.\n\n![Figure 1: A visualisation of three types of environment (columns) with respect to their graphical model, training and testing distribution and example benchmarks (rows). Classical RL has focused on environments where training and testing are identical (singleton environments, first column) but in the real world training and testing environments will be different, either from the same distribution (IID Generalisation Environments, second column) or from different distributions (OOD Generalisation Environments, third column).](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Group_61.png)\n\nFigure 1: A visualisation of three types of environment (columns) with respect to their graphical model, training and testing distribution and example benchmarks (rows). Classical RL has focused on environments where training and testing are identical (singleton environments, first column) but in the real world training and testing environments will be different, either from the same distribution (IID Generalisation Environments, second column) or from different distributions (OOD Generalisation Environments, third column).\n\n### Formalising Generalisation\n\nSo what exactly do we mean when we say generalisation in RL? All research in this area works in a setting where we have a collection of tasks, levels or environments, and generalisation is measured by training and testing on different subsets of this collection. In the paper, we describe a formal object, the Contextual Markov Decision Process (CMDP), which can capture all of these different settings. This formalism builds on and combines previous works formalising generalisation. Each task, level or environment is determined by a *context*, which for example could be a random seed for a procedural content generation process (as in [OpenAI Procgen](https://openai.com/blog/procgen-benchmark/)), a task id (as in [Meta-World](https://meta-world.github.io/)) or a parameter vector for a controllable simulation and rendering process (as in [Distracting Control Suite](https://arxiv.org/abs/2101.02722)).\n\nTo test for generalisation, we then split the set of contexts into training and testing sets. The policy trains on the training set, and is then evaluated on the testing set, which generally contains unseen contexts, and hence unseen levels, tasks or environments. A generalisation problem is hence specified by a CMDP and a choice of training and testing context sets. As generalisation can be a vague term, we call this problem *zero-shot policy transfer*, again building on terminology from previous works.\n\n![Figure2: Visualising a CMDP. The state is split into an underlying state s' and a context c, and this context stays the same within episodes but varies between them. Often the policy only observes the underlying state and not the context.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Group_45CMDP.png)\n\nFigure2: Visualising a CMDP. The state is split into an underlying state s' and a context c, and this context stays the same within episodes but varies between them. Often the policy only observes the underlying state and not the context.\n\nThe set of assumptions we make here is very general. This makes it impossible to guarantee generalisation performance given only these assumptions, and also makes it unlikely that a method can improve generalisation across the whole space of problems. This reinforces the point that generalisation is a class of problems, and researchers in this field should make clear the additional assumptions they're making when developing methods and benchmarks. We describe a collection of possible additional assumptions that can be made in the paper.\n\n### Benchmarking Generalisation\n\nNow we have a formal way of specifying a generalisation problem, we can talk about the range of benchmarks for generalisation. Thinking hard about the benchmarks in the field is important, as they define what progress looks like and which problems get solved, especially in RL where we normally can't test our algorithms on real-world problems. We describe benchmarks as a combination of an environment (a CMDP) and an evaluation protocol (a choice of training and testing context sets).\n\n![There are a lot of different environments which enable testing generalisation in RL, and we categorise them all in the paper according to **style**, **context set**, and **variation**. See Table 1 in the paper for more details.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Untitled.png)\n\nThere are a lot of different environments which enable testing generalisation in RL, and we categorise them all in the paper according to **style**, **context set**, and **variation**. See Table 1 in the paper for more details.\n\nThe key attribute of interest in environments is the structure of the context set. Environments with a purely black-box procedural content generation (PCG) approach to creating new levels (such as [OpenAI Procgen](https://openai.com/blog/procgen-benchmark/) or [NLE](https://ai.facebook.com/blog/nethack-learning-environment-to-advance-deep-reinforcement-learning/)) have just the set of all seeds as the context set. This set has no additional structure which we can use, which limits the range of possible evaluation protocols. In fact, the only choice between protocols is the size of the training set (see Figure 3). \n\n![Figure 3: Visualisation of Evaluation Protocols for PCG Environments. **A** uses a single training context, and the entire set for testing. **B** uses a small collection of random training contexts, and the entire set for testing. **C** reverses this, using the entire set for training apart from random held out contexts that are used for testing.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/evaluation_protocols_pcg.png)\n\nFigure 3: Visualisation of Evaluation Protocols for PCG Environments. **A** uses a single training context, and the entire set for testing. **B** uses a small collection of random training contexts, and the entire set for testing. **C** reverses this, using the entire set for training apart from random held out contexts that are used for testing.\n\nIn contrast to purely PCG approaches, many environments have a structured, *controllable* context set (such as Distracting Control Suite or Meta-World). These context sets are generally a product of multiple factors of variation such as gravity or friction coefficients, visual distractions or object colour and quantity. In this setting, we have a lot more options when it comes to choosing an evaluation protocol, which enables us to test for a variety of different kinds of generalisation, from fully interpolating within the context set, through combinatorially interpolating to unseen combinations of seen factors, to extrapolating out of distribution on single or multiple factors (see Figure 4). \n\n![Figure 4: Visualisation of Evaluation Protocols for Controllable Environments. Each diagram visualises one training set and multiple testing sets. **A** chooses the range for each factor independently in training, resulting in a convex shape. Testing distributions ca be interpolation (red), extrapolation along a single factor (either green square) or extrapolation along both factors (blue). In **B** and **C**, the ranges for each factor are linked, resulting in a non-convex shape for the training distribution. This enables testing combinatorial interpolation (yellow), where factors take values seen during training independently but not in combination. The difference from **B** to **C** is width of the training distribution on the axes we expect the agent to generalise along. In **C** the policy can't learn that the two factors can vary independently, making generalisation harder. In realistic settings settings this space will normally be higher than two dimensions and contain non-continuous and non-ordinal axes.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/evaluation_protocols_control.png)\n\nFigure 4: Visualisation of Evaluation Protocols for Controllable Environments. Each diagram visualises one training set and multiple testing sets. **A** chooses the range for each factor independently in training, resulting in a convex shape. Testing distributions ca be interpolation (red), extrapolation along a single factor (either green square) or extrapolation along both factors (blue). In **B** and **C**, the ranges for each factor are linked, resulting in a non-convex shape for the training distribution. This enables testing combinatorial interpolation (yellow), where factors take values seen during training independently but not in combination. The difference from **B** to **C** is width of the training distribution on the axes we expect the agent to generalise along. In **C** the policy can't learn that the two factors can vary independently, making generalisation harder. In realistic settings settings this space will normally be higher than two dimensions and contain non-continuous and non-ordinal axes.\n\nOne of the key takeaways from the survey is that purely PCG environments aren't useful for making progress in generalisation research, as they only test a \"general\" kind of generalisation without disentangling why methods succeed and fail. We recommend a combination of controllable and PCG context sets: using controllable factors of variation at a high level to enable precise scientific experimentation to understand how methods perform, and using PCG at a lower level to generate the sufficient diversity required for policies to generalise without hand-crafting each level separately.\n\n### Methods for Generalisation\n\nOf course, as well as thinking about the problems, we want to understand how we can solve them. This leads us to our categorisation of methods for improving generalisation in RL. A generalisation problem occurs when the training and testing context sets are different, and the policy then learns to rely on features of the training environments which may change at test time. Conceptualising generalisation this way leads us to classify generalisation methods into three categories: Those that try and increase the similarity between the training and testing data and objectives, those that explicitly handle the difference in features between training and testing, and those that handle RL-specific generalisation problems or optimisation improvements (see Figure 5).\n\n![Figure 5: Categorisation of methods for tackling generalisation in reinforcement learning](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/methods.png)\n\nFigure 5: Categorisation of methods for tackling generalisation in reinforcement learning\n\nYou can see the paper for the full breakdown of these categories and the methods within them, but for now we'll highlight a few key areas where we believe exciting future work could be done.\n\nThe first is environment generation. This research direction aims to produce methods for actively sampling from context sets so to enable efficient training in this space and generalisation across the full range of levels in the context set. Environment generation methods aiming to maximize the regret of the student agent hold promise in generating curricula that cover the full space of challenges in the context space. When this context space is unbounded, such methods can lead to an [open-ended learning process](https://arxiv.org/abs/1905.10985). Early examples include [POET](https://arxiv.org/abs/1901.01753) and [PAIRED](https://arxiv.org/abs/2012.02096), and there is exciting work happening in our lab improving on these methods by [understanding how PAIRED and curriculum methods like PLR can be understood as two sides of the same coin](https://arxiv.org/abs/2110.02439), as well as improvements to the generation process, such as adding an [editing capability to the environment generator](https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=35781) and [preventing potentially harmful selective-sampling bias due to the curriculum](https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=35741).\n\nThe next area we want to highlight is fast online adaptation. While there's lots of work on Meta-RL, much of it assumes access to multiple training episodes before evaluation, which isn't the setting we're interested in. However, several methods do adapt online within a single episode, using either a [hard-coded](https://nicklashansen.github.io/PAD/) or [learned](https://arxiv.org/abs/1910.08348) update rule. This work will be especially useful in more challenging settings where adaptation will be necessary to get good performance (for example in reward-function or dynamics variation settings).\n\nFinally, there's very little work tackling RL-specific issues for generalisation. [Recent work](https://arxiv.org/abs/2006.05826) showed that the non-stationarity of the data distribution for RL negatively affects generalisation performance, but more investigation into problems of generalisation which arise in the RL setting specifically will be beneficial. For example, the use of bootstrapping and TD learning, the exploration-exploitation tradeoff and the high variance of data collection and learning could all interact with generalisation performance in ways we don't yet understand.\n\n![A table capturing all the methods we discuss in the paper. Looking at the primary adjustment made by each method, green normal-text methods adjust the training environment, red monospace-text methods adjust the architecture, and blue italic-text methods adjust the loss function.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Untitled 1.png)\n\nA table capturing all the methods we discuss in the paper. Looking at the primary adjustment made by each method, green normal-text methods adjust the training environment, red monospace-text methods adjust the architecture, and blue italic-text methods adjust the loss function.\n\n### What's Next for Generalisation?\n\nSo that's where the field is at right now. But what next? There are many different research paths to be explored, and we highlight a few crucial avenues here.\n\nFirstly, offline RL seems particularly useful in applying RL to the real world, but almost all work in this area tackles tasks where the offline data is collected from the same environment that's used for evaluation. Jointly tackling generalisation and offline RL will be important in applying these methods to a diverse set of real-world scenarios.\n\nThinking further about realistic problem settings and deployment scenarios, continual RL is another extension of the generalisation problem which is particularly relevant. Policies will be deployed in a setting where they continue to see more data and where the tasks and environments change, and developing methods that can thrive in this setting is needed.\n\nFinally, more research on handling generalisation to novel rewards or goals is necessary to have systems that can do a variety of tasks in a variety of environments, rather than just a single task in a variety of environments. This will involve understanding the best way to specify goals to an agent, trading off between approaches that make RL optimisation easier and those that are usable for humans to specify goals.\n\n---\n\nThis was just a quick peek of everything we cover in the survey, but there's lots more useful information in the paper such as a discussion of compositional generalisation, context-efficient learning, inductive biases, and further structural assumptions for improved generalisation. [Check it out](https://arxiv.org/abs/2111.09794) for all the gory details of generalisation in RL!\n\n*Thanks to Amy Zhang, Minqi Jiang and Tim Rockt\u00e4schel for comments on drafts of this post. This post is based on [A Survey Of Generalisation In Deep Reinforcement Learning](https://arxiv.org/abs/2111.09794), which was joint work with Amy Zhang, Edward Grefenstette, and Tim Rockt\u00e4schel.*\n","keywords":["reinforcement learning","generalization","survey","review"],"proceedings":["Journal of Artificial Intelligence Research"],"recs":[],"session":[""],"title":"A Survey of Zero-shot Generalisation in Deep Reinforcement Learning","url":"https://arxiv.org/abs/2111.09794","year":2023},"forum":"kirk2021survey","id":"kirk2021survey","image":"./static/images/papers/kirk2021survey.jpg"},{"content":{"TLDR":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","abstract":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","authors":["Mikayel Samvelyan","Robert Kirk","Vitaly Kurin","Jack Parker-Holder","Minqi Jiang","Eric Hambro","Fabio Petroni","Heinrich K\u00fcttler","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","open-endedness","environment design","environment"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research","url":"https://arxiv.org/abs/2109.13202","year":2021},"forum":"samvelyan2021minihack","id":"samvelyan2021minihack","image":"./static/images/papers/samvelyan2021minihack.jpg"},{"content":{"TLDR":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","abstract":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","authors":["Minqi Jiang","Michael Dennis","Jack Parker-Holder","Jakob Foerster","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","generalization","curriculum learning","environment design","procedural content generation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Replay-Guided Adversarial Environment Design","url":"https://arxiv.org/abs/2110.02439","year":2021},"forum":"jiang2021replay","id":"jiang2021replay","image":"./static/images/papers/jiang2021replay.jpg"},{"content":{"TLDR":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","abstract":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","authors":["Minqi Jiang","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","curriculum learning","generalization","procedural content generation"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Prioritized Level Replay","url":"https://arxiv.org/abs/2010.03934","year":2021},"forum":"jiang2020prioritized","id":"jiang2020prioritized","image":"./static/images/papers/jiang2020prioritized.jpg"},{"content":{"TLDR":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","abstract":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","authors":["Zhengyao Jiang","Pasquale Minervini","Minqi Jiang","Tim Rocktaschel"],"blog":"","keywords":["Relational Inductive Bias","Reinforcement Learning","Graph Neural Network"],"proceedings":["AAMAS"],"recs":[],"session":[""],"title":"Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning","url":"https://arxiv.org/abs/2102.04220","year":2021},"forum":"jiang2021gtg","id":"jiang2021gtg","image":"./static/images/papers/jiang2021gtg.jpg"},{"content":{"TLDR":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","abstract":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","authors":["Anuj Mahajan","Mikayel Samvelyan","Lei Mao","Viktor Makoviychuk","Animesh Garg","Jean Kossaifi","Shimon Whiteson","Yuke Zhu","Animashree Anandkumar"],"blog":"","keywords":["reinforcement learning","multi-agent learning"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2106.00136","year":2021},"forum":"mahajan2021tesseract","id":"mahajan2021tesseract","image":"./static/images/papers/mahajan2021tesseract.jpg"},{"content":{"TLDR":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","abstract":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","authors":["Mathias Niepert","Pasquale Minervini","Luca Franceschi"],"blog":"","keywords":["reasoning","planning","gradient estimation","discrete distributions","backpropagation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Implicit MLE: Backpropagating Through Discrete Exponential Family Distribution","url":"https://arxiv.org/abs/2106.01798","year":2021},"forum":"niepert2021imle","id":"niepert2021imle","image":"./static/images/papers/niepert2021imle.png"},{"content":{"TLDR":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","abstract":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","authors":["Andres Campero","Roberta Raileanu","Heinrich K\u00fcttler","Joshua B. Tenenbaum","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["exploration","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Learning with AMIGo: Adversarially Motivated Intrinsic Goals","url":"https://arxiv.org/abs/2006.12122","year":2021},"forum":"campero2021amigo","id":"campero2021amigo","image":"./static/images/papers/campero2021amigo.jpg"},{"content":{"TLDR":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","abstract":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","authors":["Erik Arakelyan","Daniel Daza","Pasquale Minervini","Michael Cochez"],"blog":"","keywords":["complex query answering","Knowledge Graphs"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Complex Query Answering with Neural Link Predictors","url":"https://arxiv.org/abs/2011.03459","year":["2021 (Outstanding Paper Award)"]},"forum":"arakelyan2021cqd","id":"arakelyan2021cqd","image":"./static/images/papers/arakelyan2021cqd.png"},{"content":{"TLDR":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","abstract":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","authors":["Heinrich K\u00fcttler","Nantas Nardelli","Alexander H. Miller","Roberta Raileanu","Marco Selvatici","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["environment","reinforcement learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"The NetHack Learning Environment","url":"https://arxiv.org/abs/2006.13760","year":2020},"forum":"kuettler2020nethack","id":"kuettler2020nethack","image":"./static/images/papers/kuettler2020nethack.jpg"},{"content":{"TLDR":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","abstract":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","authors":["Minqi Jiang","Jelena Luketina","Nantas Nardelli","Pasquale Minervini","Philip H.S. Torr","Shimon Whiteson","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","commonsense reasoning","natural language processing","procedural content generation"],"proceedings":["Workshop on Language in Reinforcement Learning at ICML"],"recs":[],"session":[""],"title":"WordCraft: An Environment for Benchmarking Commonsense Agents","url":"https://arxiv.org/abs/2007.09185","year":2020},"forum":"jiang2020wordcraft","id":"jiang2020wordcraft","image":"./static/images/papers/jiang2020wordcraft.jpg"},{"content":{"TLDR":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","abstract":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","authors":["Roberta Raileanu","Tim Rockt\u00e4schel"],"blog":"","keywords":["exploration","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments","url":"https://arxiv.org/abs/2002.12292.abs","year":2020},"forum":"raileanu2020ride","id":"raileanu2020ride","image":"./static/images/papers/raileanu2020ride.jpg"},{"content":{"TLDR":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","abstract":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","authors":["Victor Zhong","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["natural language processing","reasoning","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"RTFM: Generalising to New Environment Dynamics via Reading","url":"https://arxiv.org/abs/1910.08210","year":2020},"forum":"zhong2020rtfm","id":"zhong2020rtfm","image":"./static/images/papers/zhong2020rtfm.jpg"}] +[{"content":{"TLDR":"As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to adversarial attacks is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel black-box approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. Focusing on the safety domain, we use Rainbow Teaming to target various state-of-the-art LLMs, including the Llama 2 and Llama 3 models. Our approach reveals hundreds of effective adversarial prompts, with an attack success rate exceeding 90% across all tested models. Furthermore, we demonstrate that prompts generated by Rainbow Teaming are highly transferable and that fine-tuning models with synthetic data generated by our method significantly enhances their safety without sacrificing general performance or helpfulness. We additionally explore the versatility of Rainbow Teaming by applying it to question answering and cybersecurity, showcasing its potential to drive robust open-ended self-improvement in a wide range of applications.","abstract":"As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to adversarial attacks is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel black-box approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. Focusing on the safety domain, we use Rainbow Teaming to target various state-of-the-art LLMs, including the Llama 2 and Llama 3 models. Our approach reveals hundreds of effective adversarial prompts, with an attack success rate exceeding 90% across all tested models. Furthermore, we demonstrate that prompts generated by Rainbow Teaming are highly transferable and that fine-tuning models with synthetic data generated by our method significantly enhances their safety without sacrificing general performance or helpfulness. We additionally explore the versatility of Rainbow Teaming by applying it to question answering and cybersecurity, showcasing its potential to drive robust open-ended self-improvement in a wide range of applications.","authors":["Mikayel Samvelyan","Sharath Chandra Raparthy","Andrei Lupu","Eric Hambro","Aram H. Markosyan","Manish Bhatt","Yuning Mao","Minqi Jiang","Jack Parker-Holder","Jakob Foerster","Tim Rockt\u00e4schel","Roberta Raileanu"],"blog":"","keywords":["open-endednes","large language models","safety","diversity"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts","url":"https://arxiv.org/abs/2402.16822","year":2024},"forum":"samvelyan2024rainbow","id":"samvelyan2024rainbow","image":"./static/images/papers/samvelyan2024rainbow.png"},{"content":{"TLDR":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","abstract":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","authors":["Zhengyao Jiang","Yingchen Xu","Nolan Wagener","Yicheng Luo","Michael Janner","Edward Grefenstette","Tim Rockt\u00e4schel","Yuandong Tian"],"blog":"","keywords":["generative model","model-based reinforcement learning","humanoids"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"H-GAP: Humanoid Control with a Generalist Planner","url":"https://arxiv.org/abs/2312.02682","year":2024},"forum":"jiang2023hgap","id":"jiang2023hgap","image":"./static/images/papers/jiang2023hgap.jpg"},{"content":{"TLDR":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","abstract":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","authors":["Rohan Chitnis","Yingchen Xu","Bobak Hashemi","Lucas Lehnert","Urun Dogan","Zheqing Zhu","Olivier Delalleau"],"blog":"","keywords":["hierarchical reinforcement learning","model-based reinforcement learning","offline reinforcement learning"],"proceedings":["ICRA"],"recs":[],"session":[""],"title":"IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control","url":"https://arxiv.org/abs/2306.00867","year":2024},"forum":"chitnis2023iqltdmpc","id":"chitnis2023iqltdmpc","image":"./static/images/papers/chitnis2023iqltdmpc.jpg"},{"content":{"TLDR":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","abstract":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","authors":["Sharath Chandra Raparthy","Eric Hambro","Robert Kirk","Mikael Henaff","Roberta Raileanu"],"blog":"","keywords":["generalisation","in-context learning","transformers","reinforcement learning"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Generalization to New Sequential Decision Making Tasks with In-Context Learning","url":"https://arxiv.org/abs/2312.03801","year":2023},"forum":"raparthy2023generalization","id":"raparthy2023generalization","image":"./static/images/papers/raparthy2023generalization.jpg"},{"content":{"TLDR":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","abstract":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","authors":["Thomas Coste","Usman Anwar","Robert Kirk","David Krueger"],"blog":"","keywords":["large language models","fine-tuning","overoptimisation","alignment"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Reward Model Ensembles Help Mitigate Overoptimization","url":"https://arxiv.org/abs/2310.02743","year":2024},"forum":"coste2023reward","id":"coste2023reward","image":"./static/images/papers/coste2023reward.jpg"},{"content":{"TLDR":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","abstract":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","authors":["Samyak Jain","Robert Kirk","Ekdeep Singh Lubana","Robert P. Dick","Hidenori Tanaka","Edward Grefenstette","Tim Rockt\u00e4schel","David Scott Krueger"],"blog":"","keywords":["large language models","fine-tuning","generalisation","interpretability"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks","url":"https://arxiv.org/abs/2311.12786","year":2024},"forum":"jain2023mechanistically","id":"jain2023mechanistically","image":"./static/images/papers/jain2023mechanistically.jpg"},{"content":{"TLDR":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","abstract":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","authors":["Robert Kirk","Ishita Mediratta","Christoforos Nalmpantis","Jelena Luketina","Eric Hambro","Edward Grefenstette","Roberta Raileanu"],"blog":"","keywords":["large language models","rlhf","generalisation","diversity"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Understanding the Effects of RLHF on LLM Generalisation and Diversity","url":"https://arxiv.org/abs/2310.06452","year":2024},"forum":"kirk2023understanding","id":"kirk2023understanding","image":"./static/images/papers/kirk2023understanding.jpg"},{"content":{"TLDR":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","abstract":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","authors":["Mikayel Samvelyan","Davide Paglieri","Minqi Jiang","Jack Parker-Holder","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","multi-agent","open-endedness","environment design"],"proceedings":["AAMAS"],"recs":[],"session":[""],"title":"Multi-Agent Diagnostics for Robustness via Illuminated Diversity","url":"https://arxiv.org/abs/2401.13460","year":2024},"forum":"samvelyan2024multiagent","id":"samvelyan2024multiagent","image":"./static/images/papers/samvelyan2024multiagent.png"},{"content":{"TLDR":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","abstract":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","authors":["Mikayel Samvelyan","Akbir Khan","Michael Dennis","Minqi Jiang","Jack Parker-Holder","Jakob Foerster","Roberta Raileanu","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","multi-agent","open-endedness","environment design"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2303.03376","year":2023},"forum":"samvelyan2023maestro","id":"samvelyan2023maestro","image":"./static/images/papers/samvelyan2023maestro.png"},{"content":{"TLDR":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","abstract":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","authors":["Benjamin Ellis","Jonathan Cook","Skander Moalla","Mikayel Samvelyan","Mingfei Sun","Anuj Mahajan","Jakob Foerster","Shimon Whiteson"],"blog":"","keywords":["reinforcement learning","multi-agent","generalization","benchmark"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2212.07489","year":2023},"forum":"ellis2022smacv2","id":"ellis2022smacv2","image":"./static/images/papers/ellis2022smacv2.png"},{"content":{"TLDR":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","abstract":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","authors":["Minqi Jiang","Michael Dennis","Jack Parker-Holder","Andrei Lupu","Heinrich K\u00fcttler","Edward Grefenstette","Tim Rockt\u00e4schel","Jakob Foerster"],"blog":"","keywords":["reinforcement learning","generalization","environment design","curriculum learning","procedural content generation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Grounding Aleatoric Uncertainty for Unsupervised Environment Design","url":"https://arxiv.org/abs/2207.05219","year":2022},"forum":"jiang2022grounding","id":"jiang2022grounding","image":"./static/images/papers/jiang2022grounding.png"},{"content":{"TLDR":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","abstract":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","authors":["Mikael Henaff","Minqi Jiang","Roberta Raileanu"],"blog":"","keywords":["reinforcement learning","exploration"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Exploration via Elliptical Episodic Bonuses","url":"https://e3bagent.github.io/","year":2022},"forum":"henaff2022exploration","id":"henaff2022exploration","image":"./static/images/papers/henaff2022exploration.png"},{"content":{"TLDR":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","abstract":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","authors":["Jesse Mu","Victor Zhong","Roberta Raileanu","Minqi Jiang","Noah Goodman","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","exploration","language"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Improving Intrinsic Exploration with Language Abstractions","url":"https://arxiv.org/abs/2202.08938","year":2022},"forum":"mu2022improving","id":"mu2022improving","image":"./static/images/papers/mu2022improving.png"},{"content":{"TLDR":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","abstract":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","authors":["Victor Zhong","Jesse Mu","Luke Zettlemoyer","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","language","transfer learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Improving Policy Learning via Language Dynamics Distillation","url":"https://arxiv.org/abs/2210.00066","year":2022},"forum":"zhong2022improving","id":"zhong2022improving","image":"./static/images/papers/zhong2022improving.png"},{"content":{"TLDR":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","abstract":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","authors":["Eric Hambro","Roberta Raileanu","Danielle Rothermel","Vegard Mella","Tim Rockt\u00e4schel","Heinrich K\u00fcttler","Naila Murray"],"blog":"","keywords":["reinforcement learning","offline learning","environments","dataset"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Dungeons and Data: A Large-Scale NetHack Dataset","url":"https://arxiv.org/abs/2211.00539","year":2022},"forum":"hambro2022dungeons","id":"hambro2022dungeons","image":"./static/images/papers/hambro2022dungeons.png"},{"content":{"TLDR":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","abstract":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","authors":["Yingchen Xu","Jack Parker-Holder","Aldo Pacchiano","Philip J. Ball","Oleh Rybkin","Stephen J. Roberts","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","world model","generalist agent","exploration","model-based","reward-free","unsupervised learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Learning General World Models in a Handful of Reward-Free Deployments","url":"https://arxiv.org/abs/2210.12719","year":2022},"forum":"xu2022cascade","id":"xu2022cascade","image":"./static/images/papers/xu2022cascade.jpg"},{"content":{"TLDR":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","abstract":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","authors":["Laura Ruis","Akbir Khan","Stella Biderman","Sara Hooker","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["natural language processing","pragmatics","implicature","large language models"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Large language models are not zero-shot communicators","url":"https://arxiv.org/abs/2210.14986","year":2023},"forum":"ruis2022implicature","id":"ruis2022implicature","image":"./static/images/papers/ruis2022implicature.png"},{"content":{"TLDR":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","abstract":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","authors":["Christopher Bamford","Minqi Jiang","Mikayel Samvelyan","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","open-endedness","environment design","environment"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"GriddlyJS: A Web IDE for Reinforcement Learning","url":"https://arxiv.org/abs/2207.06105","year":2022},"forum":"bamford2022griddlyjs","id":"bamford2022griddlyjs","image":"./static/images/papers/bamford2022griddlyjs.png"},{"content":{"TLDR":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","abstract":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","authors":["Yihong Chen","Pushkar Mishra","Luca Franceschi","Pasquale Minervini","Pontus Stenetorp","Sebastian Riedel"],"blog":"","keywords":["reinforcement learning","offline RL","sequence modelling RL","continuous control"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","url":"https://arxiv.org/abs/2207.09980","year":2022},"forum":"chen2022refactor","id":"chen2022refactor","image":"./static/images/papers/chen2022refactor.png"},{"content":{"TLDR":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","abstract":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","authors":["Zhengyao Jiang","Tianjun Zhang","Micheal Janner","Yueying Li","Tim Rockt\u00e4schel","Edward Grefenstette","Yuandong Tian"],"blog":"","keywords":["reinforcement learning","offline RL","sequence modelling RL","continuous control"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Efficient Planning in a Compact Latent Action Space","url":"https://arxiv.org/abs/2208.10291","year":2022},"forum":"jiang2022tap","id":"jiang2022tap","image":"./static/images/papers/jiang2022tap.png"},{"content":{"TLDR":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","abstract":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","authors":["Michael Matthews","Mikayel Samvelyan","Jack Parker-Holder","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","transfer learning","environment"],"proceedings":["CoLLAs"],"recs":[],"session":[""],"title":"Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning","url":"https://arxiv.org/pdf/2207.11584.pdf","year":2022},"forum":"matthews2022hierarchical","id":"matthews2022hierarchical","image":"./static/images/papers/matthews2022hierarchical.png"},{"content":{"TLDR":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","abstract":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","authors":["Zhengyao Jiang","Tianjun Zhang","Robert Kirk","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["reinforcement learning","graph structure","data-efficient RL"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Graph Backup: Data Efficient Backup Exploiting Markovian Transitions","url":"https://arxiv.org/abs/2205.15824","year":2022},"forum":"jiang2022gb","id":"jiang2022gb","image":"./static/images/papers/jiang2022gb.png"},{"content":{"TLDR":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","abstract":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","authors":["Jack Parker-Holder","Minqi Jiang","Michael Dennis","Mikayel Samvelyan","Jakob Foerster","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","generalization","open-endedness","environment design","curriculum learning","procedural content generation"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Evolving Curricula with Regret-Based Environment Design","url":"https://arxiv.org/abs/2203.01302","year":2022},"forum":"parker-holder2022evolving","id":"parker-holder2022evolving","image":"./static/images/papers/parker-holder2022evolving.jpg"},{"content":{"TLDR":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","abstract":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","authors":["Anuj Mahajan","Mikayel Samvelyan","Tarun Gupta","Benjamin Ellis","Mingfei Sun","Tim Rockt\u00e4schel","Shimon Whiteson"],"blog":"","keywords":["reinforcement learning","multi-agent","generalization"],"proceedings":["arXiv"],"recs":[],"session":[""],"title":"Generalization in Cooperative Multi-Agent Systems","url":"https://arxiv.org/abs/2202.00104","year":2022},"forum":"mahajan2022generalization","id":"mahajan2022generalization","image":"./static/images/papers/mahajan2022generalization.jpg"},{"content":{"TLDR":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","abstract":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","authors":["Robert Kirk","Amy Zhang","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"# Generalisation in Reinforcement Learning\n\nReinforcement Learning (RL) could be used in a range of applications such as autonomous vehicles and robotics, but to fulfil this potential we need RL algorithms that can be used in the real world. Reality is varied, non-stationarity and open-ended, and to handle this algorithms need to be robust to variation in their environments, and be able to transfer and adapt to unseen (but similar) environments during their deployment. Generalisation in RL is all about creating methods that can tackle these difficulties, challenging a common assumption in previous RL research that the training and testing environments are identical.\n\nHowever, reading RL generalisation research can be challenging, as there is confusion about the exact problem being tackled and the use of terminology. This is because generalisation refers to a *class* of problems within RL, rather than a specific problem. Claiming to improve \"generalisation\" without being more specific about the type of generalisation that is being improved is underspecified. In fact, it seems unlikely we could improve all types of generalisation with a single method, as an analogy of the [No Free Lunch theorem](https://ieeexplore.ieee.org/document/585893) may apply.\n\nTo address this confusion, we've written a [survey and critical review of the field of generalisation in RL](https://arxiv.org/abs/2111.09794). We formally describe the class of generalisation problems and use this formalism to discuss benchmarks for generalisation as well as methods. Given the field is so young, there's also a lot of future directions to explore, and we highlight ones we think are important.\n\n![Figure 1: A visualisation of three types of environment (columns) with respect to their graphical model, training and testing distribution and example benchmarks (rows). Classical RL has focused on environments where training and testing are identical (singleton environments, first column) but in the real world training and testing environments will be different, either from the same distribution (IID Generalisation Environments, second column) or from different distributions (OOD Generalisation Environments, third column).](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Group_61.png)\n\nFigure 1: A visualisation of three types of environment (columns) with respect to their graphical model, training and testing distribution and example benchmarks (rows). Classical RL has focused on environments where training and testing are identical (singleton environments, first column) but in the real world training and testing environments will be different, either from the same distribution (IID Generalisation Environments, second column) or from different distributions (OOD Generalisation Environments, third column).\n\n### Formalising Generalisation\n\nSo what exactly do we mean when we say generalisation in RL? All research in this area works in a setting where we have a collection of tasks, levels or environments, and generalisation is measured by training and testing on different subsets of this collection. In the paper, we describe a formal object, the Contextual Markov Decision Process (CMDP), which can capture all of these different settings. This formalism builds on and combines previous works formalising generalisation. Each task, level or environment is determined by a *context*, which for example could be a random seed for a procedural content generation process (as in [OpenAI Procgen](https://openai.com/blog/procgen-benchmark/)), a task id (as in [Meta-World](https://meta-world.github.io/)) or a parameter vector for a controllable simulation and rendering process (as in [Distracting Control Suite](https://arxiv.org/abs/2101.02722)).\n\nTo test for generalisation, we then split the set of contexts into training and testing sets. The policy trains on the training set, and is then evaluated on the testing set, which generally contains unseen contexts, and hence unseen levels, tasks or environments. A generalisation problem is hence specified by a CMDP and a choice of training and testing context sets. As generalisation can be a vague term, we call this problem *zero-shot policy transfer*, again building on terminology from previous works.\n\n![Figure2: Visualising a CMDP. The state is split into an underlying state s' and a context c, and this context stays the same within episodes but varies between them. Often the policy only observes the underlying state and not the context.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Group_45CMDP.png)\n\nFigure2: Visualising a CMDP. The state is split into an underlying state s' and a context c, and this context stays the same within episodes but varies between them. Often the policy only observes the underlying state and not the context.\n\nThe set of assumptions we make here is very general. This makes it impossible to guarantee generalisation performance given only these assumptions, and also makes it unlikely that a method can improve generalisation across the whole space of problems. This reinforces the point that generalisation is a class of problems, and researchers in this field should make clear the additional assumptions they're making when developing methods and benchmarks. We describe a collection of possible additional assumptions that can be made in the paper.\n\n### Benchmarking Generalisation\n\nNow we have a formal way of specifying a generalisation problem, we can talk about the range of benchmarks for generalisation. Thinking hard about the benchmarks in the field is important, as they define what progress looks like and which problems get solved, especially in RL where we normally can't test our algorithms on real-world problems. We describe benchmarks as a combination of an environment (a CMDP) and an evaluation protocol (a choice of training and testing context sets).\n\n![There are a lot of different environments which enable testing generalisation in RL, and we categorise them all in the paper according to **style**, **context set**, and **variation**. See Table 1 in the paper for more details.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Untitled.png)\n\nThere are a lot of different environments which enable testing generalisation in RL, and we categorise them all in the paper according to **style**, **context set**, and **variation**. See Table 1 in the paper for more details.\n\nThe key attribute of interest in environments is the structure of the context set. Environments with a purely black-box procedural content generation (PCG) approach to creating new levels (such as [OpenAI Procgen](https://openai.com/blog/procgen-benchmark/) or [NLE](https://ai.facebook.com/blog/nethack-learning-environment-to-advance-deep-reinforcement-learning/)) have just the set of all seeds as the context set. This set has no additional structure which we can use, which limits the range of possible evaluation protocols. In fact, the only choice between protocols is the size of the training set (see Figure 3). \n\n![Figure 3: Visualisation of Evaluation Protocols for PCG Environments. **A** uses a single training context, and the entire set for testing. **B** uses a small collection of random training contexts, and the entire set for testing. **C** reverses this, using the entire set for training apart from random held out contexts that are used for testing.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/evaluation_protocols_pcg.png)\n\nFigure 3: Visualisation of Evaluation Protocols for PCG Environments. **A** uses a single training context, and the entire set for testing. **B** uses a small collection of random training contexts, and the entire set for testing. **C** reverses this, using the entire set for training apart from random held out contexts that are used for testing.\n\nIn contrast to purely PCG approaches, many environments have a structured, *controllable* context set (such as Distracting Control Suite or Meta-World). These context sets are generally a product of multiple factors of variation such as gravity or friction coefficients, visual distractions or object colour and quantity. In this setting, we have a lot more options when it comes to choosing an evaluation protocol, which enables us to test for a variety of different kinds of generalisation, from fully interpolating within the context set, through combinatorially interpolating to unseen combinations of seen factors, to extrapolating out of distribution on single or multiple factors (see Figure 4). \n\n![Figure 4: Visualisation of Evaluation Protocols for Controllable Environments. Each diagram visualises one training set and multiple testing sets. **A** chooses the range for each factor independently in training, resulting in a convex shape. Testing distributions ca be interpolation (red), extrapolation along a single factor (either green square) or extrapolation along both factors (blue). In **B** and **C**, the ranges for each factor are linked, resulting in a non-convex shape for the training distribution. This enables testing combinatorial interpolation (yellow), where factors take values seen during training independently but not in combination. The difference from **B** to **C** is width of the training distribution on the axes we expect the agent to generalise along. In **C** the policy can't learn that the two factors can vary independently, making generalisation harder. In realistic settings settings this space will normally be higher than two dimensions and contain non-continuous and non-ordinal axes.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/evaluation_protocols_control.png)\n\nFigure 4: Visualisation of Evaluation Protocols for Controllable Environments. Each diagram visualises one training set and multiple testing sets. **A** chooses the range for each factor independently in training, resulting in a convex shape. Testing distributions ca be interpolation (red), extrapolation along a single factor (either green square) or extrapolation along both factors (blue). In **B** and **C**, the ranges for each factor are linked, resulting in a non-convex shape for the training distribution. This enables testing combinatorial interpolation (yellow), where factors take values seen during training independently but not in combination. The difference from **B** to **C** is width of the training distribution on the axes we expect the agent to generalise along. In **C** the policy can't learn that the two factors can vary independently, making generalisation harder. In realistic settings settings this space will normally be higher than two dimensions and contain non-continuous and non-ordinal axes.\n\nOne of the key takeaways from the survey is that purely PCG environments aren't useful for making progress in generalisation research, as they only test a \"general\" kind of generalisation without disentangling why methods succeed and fail. We recommend a combination of controllable and PCG context sets: using controllable factors of variation at a high level to enable precise scientific experimentation to understand how methods perform, and using PCG at a lower level to generate the sufficient diversity required for policies to generalise without hand-crafting each level separately.\n\n### Methods for Generalisation\n\nOf course, as well as thinking about the problems, we want to understand how we can solve them. This leads us to our categorisation of methods for improving generalisation in RL. A generalisation problem occurs when the training and testing context sets are different, and the policy then learns to rely on features of the training environments which may change at test time. Conceptualising generalisation this way leads us to classify generalisation methods into three categories: Those that try and increase the similarity between the training and testing data and objectives, those that explicitly handle the difference in features between training and testing, and those that handle RL-specific generalisation problems or optimisation improvements (see Figure 5).\n\n![Figure 5: Categorisation of methods for tackling generalisation in reinforcement learning](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/methods.png)\n\nFigure 5: Categorisation of methods for tackling generalisation in reinforcement learning\n\nYou can see the paper for the full breakdown of these categories and the methods within them, but for now we'll highlight a few key areas where we believe exciting future work could be done.\n\nThe first is environment generation. This research direction aims to produce methods for actively sampling from context sets so to enable efficient training in this space and generalisation across the full range of levels in the context set. Environment generation methods aiming to maximize the regret of the student agent hold promise in generating curricula that cover the full space of challenges in the context space. When this context space is unbounded, such methods can lead to an [open-ended learning process](https://arxiv.org/abs/1905.10985). Early examples include [POET](https://arxiv.org/abs/1901.01753) and [PAIRED](https://arxiv.org/abs/2012.02096), and there is exciting work happening in our lab improving on these methods by [understanding how PAIRED and curriculum methods like PLR can be understood as two sides of the same coin](https://arxiv.org/abs/2110.02439), as well as improvements to the generation process, such as adding an [editing capability to the environment generator](https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=35781) and [preventing potentially harmful selective-sampling bias due to the curriculum](https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=35741).\n\nThe next area we want to highlight is fast online adaptation. While there's lots of work on Meta-RL, much of it assumes access to multiple training episodes before evaluation, which isn't the setting we're interested in. However, several methods do adapt online within a single episode, using either a [hard-coded](https://nicklashansen.github.io/PAD/) or [learned](https://arxiv.org/abs/1910.08348) update rule. This work will be especially useful in more challenging settings where adaptation will be necessary to get good performance (for example in reward-function or dynamics variation settings).\n\nFinally, there's very little work tackling RL-specific issues for generalisation. [Recent work](https://arxiv.org/abs/2006.05826) showed that the non-stationarity of the data distribution for RL negatively affects generalisation performance, but more investigation into problems of generalisation which arise in the RL setting specifically will be beneficial. For example, the use of bootstrapping and TD learning, the exploration-exploitation tradeoff and the high variance of data collection and learning could all interact with generalisation performance in ways we don't yet understand.\n\n![A table capturing all the methods we discuss in the paper. Looking at the primary adjustment made by each method, green normal-text methods adjust the training environment, red monospace-text methods adjust the architecture, and blue italic-text methods adjust the loss function.](./static/blogs/Blog Post Generalisation in Reinforcement Learning 7012f1b00bbe434bb6de126e22b6bfd3/Untitled 1.png)\n\nA table capturing all the methods we discuss in the paper. Looking at the primary adjustment made by each method, green normal-text methods adjust the training environment, red monospace-text methods adjust the architecture, and blue italic-text methods adjust the loss function.\n\n### What's Next for Generalisation?\n\nSo that's where the field is at right now. But what next? There are many different research paths to be explored, and we highlight a few crucial avenues here.\n\nFirstly, offline RL seems particularly useful in applying RL to the real world, but almost all work in this area tackles tasks where the offline data is collected from the same environment that's used for evaluation. Jointly tackling generalisation and offline RL will be important in applying these methods to a diverse set of real-world scenarios.\n\nThinking further about realistic problem settings and deployment scenarios, continual RL is another extension of the generalisation problem which is particularly relevant. Policies will be deployed in a setting where they continue to see more data and where the tasks and environments change, and developing methods that can thrive in this setting is needed.\n\nFinally, more research on handling generalisation to novel rewards or goals is necessary to have systems that can do a variety of tasks in a variety of environments, rather than just a single task in a variety of environments. This will involve understanding the best way to specify goals to an agent, trading off between approaches that make RL optimisation easier and those that are usable for humans to specify goals.\n\n---\n\nThis was just a quick peek of everything we cover in the survey, but there's lots more useful information in the paper such as a discussion of compositional generalisation, context-efficient learning, inductive biases, and further structural assumptions for improved generalisation. [Check it out](https://arxiv.org/abs/2111.09794) for all the gory details of generalisation in RL!\n\n*Thanks to Amy Zhang, Minqi Jiang and Tim Rockt\u00e4schel for comments on drafts of this post. This post is based on [A Survey Of Generalisation In Deep Reinforcement Learning](https://arxiv.org/abs/2111.09794), which was joint work with Amy Zhang, Edward Grefenstette, and Tim Rockt\u00e4schel.*\n","keywords":["reinforcement learning","generalization","survey","review"],"proceedings":["Journal of Artificial Intelligence Research"],"recs":[],"session":[""],"title":"A Survey of Zero-shot Generalisation in Deep Reinforcement Learning","url":"https://arxiv.org/abs/2111.09794","year":2023},"forum":"kirk2021survey","id":"kirk2021survey","image":"./static/images/papers/kirk2021survey.jpg"},{"content":{"TLDR":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","abstract":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","authors":["Mikayel Samvelyan","Robert Kirk","Vitaly Kurin","Jack Parker-Holder","Minqi Jiang","Eric Hambro","Fabio Petroni","Heinrich K\u00fcttler","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","open-endedness","environment design","environment"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research","url":"https://arxiv.org/abs/2109.13202","year":2021},"forum":"samvelyan2021minihack","id":"samvelyan2021minihack","image":"./static/images/papers/samvelyan2021minihack.jpg"},{"content":{"TLDR":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","abstract":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","authors":["Minqi Jiang","Michael Dennis","Jack Parker-Holder","Jakob Foerster","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","generalization","curriculum learning","environment design","procedural content generation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Replay-Guided Adversarial Environment Design","url":"https://arxiv.org/abs/2110.02439","year":2021},"forum":"jiang2021replay","id":"jiang2021replay","image":"./static/images/papers/jiang2021replay.jpg"},{"content":{"TLDR":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","abstract":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","authors":["Minqi Jiang","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","curriculum learning","generalization","procedural content generation"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Prioritized Level Replay","url":"https://arxiv.org/abs/2010.03934","year":2021},"forum":"jiang2020prioritized","id":"jiang2020prioritized","image":"./static/images/papers/jiang2020prioritized.jpg"},{"content":{"TLDR":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","abstract":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","authors":["Zhengyao Jiang","Pasquale Minervini","Minqi Jiang","Tim Rocktaschel"],"blog":"","keywords":["Relational Inductive Bias","Reinforcement Learning","Graph Neural Network"],"proceedings":["AAMAS"],"recs":[],"session":[""],"title":"Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning","url":"https://arxiv.org/abs/2102.04220","year":2021},"forum":"jiang2021gtg","id":"jiang2021gtg","image":"./static/images/papers/jiang2021gtg.jpg"},{"content":{"TLDR":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","abstract":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","authors":["Anuj Mahajan","Mikayel Samvelyan","Lei Mao","Viktor Makoviychuk","Animesh Garg","Jean Kossaifi","Shimon Whiteson","Yuke Zhu","Animashree Anandkumar"],"blog":"","keywords":["reinforcement learning","multi-agent learning"],"proceedings":["ICML"],"recs":[],"session":[""],"title":"Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning","url":"https://arxiv.org/abs/2106.00136","year":2021},"forum":"mahajan2021tesseract","id":"mahajan2021tesseract","image":"./static/images/papers/mahajan2021tesseract.jpg"},{"content":{"TLDR":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","abstract":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","authors":["Mathias Niepert","Pasquale Minervini","Luca Franceschi"],"blog":"","keywords":["reasoning","planning","gradient estimation","discrete distributions","backpropagation"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"Implicit MLE: Backpropagating Through Discrete Exponential Family Distribution","url":"https://arxiv.org/abs/2106.01798","year":2021},"forum":"niepert2021imle","id":"niepert2021imle","image":"./static/images/papers/niepert2021imle.png"},{"content":{"TLDR":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","abstract":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","authors":["Andres Campero","Roberta Raileanu","Heinrich K\u00fcttler","Joshua B. Tenenbaum","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["exploration","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Learning with AMIGo: Adversarially Motivated Intrinsic Goals","url":"https://arxiv.org/abs/2006.12122","year":2021},"forum":"campero2021amigo","id":"campero2021amigo","image":"./static/images/papers/campero2021amigo.jpg"},{"content":{"TLDR":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","abstract":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","authors":["Erik Arakelyan","Daniel Daza","Pasquale Minervini","Michael Cochez"],"blog":"","keywords":["complex query answering","Knowledge Graphs"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"Complex Query Answering with Neural Link Predictors","url":"https://arxiv.org/abs/2011.03459","year":["2021 (Outstanding Paper Award)"]},"forum":"arakelyan2021cqd","id":"arakelyan2021cqd","image":"./static/images/papers/arakelyan2021cqd.png"},{"content":{"TLDR":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","abstract":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","authors":["Heinrich K\u00fcttler","Nantas Nardelli","Alexander H. Miller","Roberta Raileanu","Marco Selvatici","Edward Grefenstette","Tim Rockt\u00e4schel"],"blog":"","keywords":["environment","reinforcement learning"],"proceedings":["NeurIPS"],"recs":[],"session":[""],"title":"The NetHack Learning Environment","url":"https://arxiv.org/abs/2006.13760","year":2020},"forum":"kuettler2020nethack","id":"kuettler2020nethack","image":"./static/images/papers/kuettler2020nethack.jpg"},{"content":{"TLDR":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","abstract":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","authors":["Minqi Jiang","Jelena Luketina","Nantas Nardelli","Pasquale Minervini","Philip H.S. Torr","Shimon Whiteson","Tim Rockt\u00e4schel"],"blog":"","keywords":["reinforcement learning","commonsense reasoning","natural language processing","procedural content generation"],"proceedings":["Workshop on Language in Reinforcement Learning at ICML"],"recs":[],"session":[""],"title":"WordCraft: An Environment for Benchmarking Commonsense Agents","url":"https://arxiv.org/abs/2007.09185","year":2020},"forum":"jiang2020wordcraft","id":"jiang2020wordcraft","image":"./static/images/papers/jiang2020wordcraft.jpg"},{"content":{"TLDR":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","abstract":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","authors":["Roberta Raileanu","Tim Rockt\u00e4schel"],"blog":"","keywords":["exploration","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments","url":"https://arxiv.org/abs/2002.12292.abs","year":2020},"forum":"raileanu2020ride","id":"raileanu2020ride","image":"./static/images/papers/raileanu2020ride.jpg"},{"content":{"TLDR":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","abstract":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","authors":["Victor Zhong","Tim Rockt\u00e4schel","Edward Grefenstette"],"blog":"","keywords":["natural language processing","reasoning","reinforcement learning"],"proceedings":["ICLR"],"recs":[],"session":[""],"title":"RTFM: Generalising to New Environment Dynamics via Reading","url":"https://arxiv.org/abs/1910.08210","year":2020},"forum":"zhong2020rtfm","id":"zhong2020rtfm","image":"./static/images/papers/zhong2020rtfm.jpg"}] diff --git a/poster_samvelyan2024rainbow.html b/poster_samvelyan2024rainbow.html new file mode 100644 index 000000000000..15f5e0318a5d --- /dev/null +++ b/poster_samvelyan2024rainbow.html @@ -0,0 +1,339 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + UCL DARK Lab: Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ +
+ +
+ + + +
+
+

+ Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts +

+

+ + Mikayel Samvelyan, + + Sharath Chandra Raparthy, + + Andrei Lupu, + + Eric Hambro, + + Aram H. Markosyan, + + Manish Bhatt, + + Yuning Mao, + + Minqi Jiang, + + Jack Parker-Holder, + + Jakob Foerster, + + Tim Rocktäschel, + + Roberta Raileanu + +

+

+ Keywords: + + open-endednes, + + large language models, + + safety, + + diversity + +

+ +
+
+ +
+
+
+
+ Abstract: + As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to adversarial attacks is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel black-box approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. Focusing on the safety domain, we use Rainbow Teaming to target various state-of-the-art LLMs, including the Llama 2 and Llama 3 models. Our approach reveals hundreds of effective adversarial prompts, with an attack success rate exceeding 90% across all tested models. Furthermore, we demonstrate that prompts generated by Rainbow Teaming are highly transferable and that fine-tuning models with synthetic data generated by our method significantly enhances their safety without sacrificing general performance or helpfulness. We additionally explore the versatility of Rainbow Teaming by applying it to question answering and cybersecurity, showcasing its potential to drive robust open-ended self-improvement in a wide range of applications. +
+
+

+
+
+ + + +
+
+ + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/serve_news.json b/serve_news.json index 814b29b2ebea..ba8a20260ac0 100644 --- a/serve_news.json +++ b/serve_news.json @@ -1 +1 @@ -[{"date":"19/02/2024","message":"[IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control](https://arxiv.org/abs/2306.00867) has been accepted to ICRA 2024 (oral)."},{"date":"19/02/2024","message":"[H-GAP: Humanoid Control with a Generalist Planner](https://arxiv.org/abs/2312.02682) has been accepted to ICLR 2024 (spotlight)."},{"date":"19/02/2024","message":"[Understanding the Effects of RLHF on LLM Generalisation and Diversity](https://arxiv.org/abs/2310.06452), [Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks](https://arxiv.org/abs/2311.12786) and [Reward Model Ensembles Help Mitigate Overoptimization](https://arxiv.org/abs/2310.02743) have been accepted to ICLR 2024."},{"date":"18/02/2024","message":"[Multi-Agent Diagnostics for Robustness via Illuminated Diversity](https://arxiv.org/abs/2401.13460) has been accepted to AAMAS 2024 (oral)."},{"date":"25/09/2023","message":"[Large language models are not zero-shot communicators](https://arxiv.org/abs/2210.14986) has been accepted to NeurIPS 2023 (spotlight)."},{"date":"25/09/2023","message":"[SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2212.07489) has been accepted to NeurIPS 2023."},{"date":"24/01/2023","message":"[MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2303.03376) has been accepted to ICLR 2023."},{"date":"24/01/2023","message":"[Efficient Planning in a Compact Latent Action Space](https://arxiv.org/abs/2208.10291) has been accepted to ICLR 2023."},{"date":"09/01/2023","message":"[A Survey of Zero-shot Generalisation in Deep Reinforcement Learning](https://arxiv.org/abs/2111.09794) has been published in JAIR."},{"date":"8/11/2022","message":"[Grounding Aleatoric Uncertainty for Unsupervised Environment Design](https://arxiv.org/abs/2207.05219) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Learning General World Models in a Handful of Reward-Free Deployments](https://arxiv.org/abs/2210.12719) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Exploration via Elliptical Episodic Bonuses](https://arxiv.org/abs/2210.05805) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Improving Intrinsic Exploration with Language Abstractions](https://arxiv.org/abs/2202.08938) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[GriddlyJS: A Web IDE for Reinforcement Learning](https://arxiv.org/abs/2207.06105) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Dungeons and Data: A Large-Scale NetHack Dataset](https://arxiv.org/abs/2211.00539) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Improving Policy Learning via Language Dynamics Distillation](https://arxiv.org/abs/2210.00066) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective](https://arxiv.org/abs/2207.09980) has been accepted to NeurIPS 2022."},{"date":"12/08/2022","message":"[Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning](https://arxiv.org/abs/2207.11584) has been accepted to CoLLAs 2022."},{"date":"15/05/2022","message":"[Evolving Curricula with Regret-Based Environment Design](https://arxiv.org/abs/2203.01302) has been accepted to ICML 2022."},{"date":"1/12/2021","message":"[Pasquale Minervini](https://www.neuralnoise.com/) is joining [the School of Informatics](https://www.ed.ac.uk/informatics) at [the University of Edinburgh](https://www.ed.ac.uk/) as a faculty member in 2022, and [he is currently recruiting PhD students!](https://www.neuralnoise.com/2021/call-for-phd-students/)"},{"date":"10/10/2021","message":"[Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions](https://arxiv.org/abs/2110.02439) has been accepted to NeurIPS2021 -- check out [our video](https://www.youtube.com/watch?v=hb2b0K2PTxI) and [Yannic Kilcher's explanation video](https://www.youtube.com/watch?v=W2UT8NjUqrk)!"},{"date":"08/10/2021","message":"[Replay-Guided Adversarial Environment Design](https://arxiv.org/abs/2110.02439) has been accepted to NeurIPS2021."},{"date":"01/10/2021","message":"[MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research](https://arxiv.org/abs/2109.13202) has been accepted to NeurIPS2021."},{"date":"08/07/2021","message":"Tim Rockt\u00e4schel has been promoted to Associate Professor."},{"date":"12/05/2021","message":"[Prioritized Level Replay](https://arxiv.org/abs/2010.03934) has been accepted to ICML2021."},{"date":"12/05/2021","message":"[Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2106.00136) has been accepted to ICML2021."},{"date":"01/04/2021","message":"Our paper [Complex Query Answering with Neural Link Predictors](https://arxiv.org/abs/2011.03459) (based on Erik's MSc thesis and supervised by Pasquale) won an [Outstanding Paper Award](https://iclr-conf.medium.com/announcing-iclr-2021-outstanding-paper-awards-9ae0514734ab) at [ICLR 2021](https://iclr.cc/)."},{"date":"19/03/2021","message":"Ed Grefenstette has been promoted to Honorary Professor of UCL."},{"date":"04/03/2021","message":"Tim Rockt\u00e4schel [appeared on the W&B Podcast](https://www.youtube.com/watch?v=oYSNXTkeCtw) to promote [recent work in designing challenging environemnts](https://github.com/facebookresearch/nle) for research in Reinforcement Learning."},{"date":"10/03/2021","message":"[How to Motivate Your Dragon: Teaching Goal-Driven Agents to Speak and Act in Fantasy Worlds](https://arxiv.org/abs/2010.00685) has been accepted to NAACL2021."},{"date":"12/01/2021","message":"[Complex Query Answering with Neural Link Predictors](https://arxiv.org/abs/2011.03459), our state-of-the-art approach for answering complex queries on large and incomplete Knowledge Graphs, will appear at ICLR 2021 as an Oral -- top 2% of all publications!"},{"date":"12/01/2021","message":"[Learning with AMIGo: Adversarially Motivated Intrinsic Goals](https://openreview.net/forum?id=ETBc_MIMgoX) has been accepted to ICLR2021."},{"date":"12/01/2021","message":"[My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control](https://openreview.net/forum?id=N3zUDGN5lO) has been accepted to ICLR2021."},{"date":"12/01/2021","message":"[Complex Query Answering with Neural Link Predictors](https://openreview.net/forum?id=Mos9F9kDwkz) has been accepted to ICLR2021."},{"date":"18/12/2020","message":"[Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning](arxiv.org/abs/2102.04220) has been accepted to AAMAS2021."},{"date":"25/09/2020","message":"[The NetHack Learning Environment](https://arxiv.org/abs/2006.13760) has been accepted to NeurIPS2020."},{"date":"14/06/2020","message":"[WordCraft: An Environment for Benchmarking Commonsense Agents](https://arxiv.org/abs/2007.09185) has been accepted to 1st Workshop on Language in Reinforcement Learning, ICML2020."},{"date":"15/11/2019","message":"[RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments](https://arxiv.org/abs/2002.12292) has been accepted to ICLR2020."},{"date":"15/11/2019","message":"[RTFM: Generalising to Novel Environment Dynamics via Reading](https://arxiv.org/abs/1910.08210) has been accepted to ICLR2020."}] +[{"date":"25/09/2024","message":"[Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts](https://arxiv.org/abs/2402.16822) has been accepted to NeurIPS 2024."},{"date":"19/02/2024","message":"[IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control](https://arxiv.org/abs/2306.00867) has been accepted to ICRA 2024 (oral)."},{"date":"19/02/2024","message":"[H-GAP: Humanoid Control with a Generalist Planner](https://arxiv.org/abs/2312.02682) has been accepted to ICLR 2024 (spotlight)."},{"date":"19/02/2024","message":"[Understanding the Effects of RLHF on LLM Generalisation and Diversity](https://arxiv.org/abs/2310.06452), [Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks](https://arxiv.org/abs/2311.12786) and [Reward Model Ensembles Help Mitigate Overoptimization](https://arxiv.org/abs/2310.02743) have been accepted to ICLR 2024."},{"date":"18/02/2024","message":"[Multi-Agent Diagnostics for Robustness via Illuminated Diversity](https://arxiv.org/abs/2401.13460) has been accepted to AAMAS 2024 (oral)."},{"date":"25/09/2023","message":"[Large language models are not zero-shot communicators](https://arxiv.org/abs/2210.14986) has been accepted to NeurIPS 2023 (spotlight)."},{"date":"25/09/2023","message":"[SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2212.07489) has been accepted to NeurIPS 2023."},{"date":"24/01/2023","message":"[MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2303.03376) has been accepted to ICLR 2023."},{"date":"24/01/2023","message":"[Efficient Planning in a Compact Latent Action Space](https://arxiv.org/abs/2208.10291) has been accepted to ICLR 2023."},{"date":"09/01/2023","message":"[A Survey of Zero-shot Generalisation in Deep Reinforcement Learning](https://arxiv.org/abs/2111.09794) has been published in JAIR."},{"date":"8/11/2022","message":"[Grounding Aleatoric Uncertainty for Unsupervised Environment Design](https://arxiv.org/abs/2207.05219) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Learning General World Models in a Handful of Reward-Free Deployments](https://arxiv.org/abs/2210.12719) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Exploration via Elliptical Episodic Bonuses](https://arxiv.org/abs/2210.05805) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Improving Intrinsic Exploration with Language Abstractions](https://arxiv.org/abs/2202.08938) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[GriddlyJS: A Web IDE for Reinforcement Learning](https://arxiv.org/abs/2207.06105) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Dungeons and Data: A Large-Scale NetHack Dataset](https://arxiv.org/abs/2211.00539) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[Improving Policy Learning via Language Dynamics Distillation](https://arxiv.org/abs/2210.00066) has been accepted to NeurIPS 2022."},{"date":"8/11/2022","message":"[ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective](https://arxiv.org/abs/2207.09980) has been accepted to NeurIPS 2022."},{"date":"12/08/2022","message":"[Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning](https://arxiv.org/abs/2207.11584) has been accepted to CoLLAs 2022."},{"date":"15/05/2022","message":"[Evolving Curricula with Regret-Based Environment Design](https://arxiv.org/abs/2203.01302) has been accepted to ICML 2022."},{"date":"1/12/2021","message":"[Pasquale Minervini](https://www.neuralnoise.com/) is joining [the School of Informatics](https://www.ed.ac.uk/informatics) at [the University of Edinburgh](https://www.ed.ac.uk/) as a faculty member in 2022, and [he is currently recruiting PhD students!](https://www.neuralnoise.com/2021/call-for-phd-students/)"},{"date":"10/10/2021","message":"[Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions](https://arxiv.org/abs/2110.02439) has been accepted to NeurIPS2021 -- check out [our video](https://www.youtube.com/watch?v=hb2b0K2PTxI) and [Yannic Kilcher's explanation video](https://www.youtube.com/watch?v=W2UT8NjUqrk)!"},{"date":"08/10/2021","message":"[Replay-Guided Adversarial Environment Design](https://arxiv.org/abs/2110.02439) has been accepted to NeurIPS2021."},{"date":"01/10/2021","message":"[MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research](https://arxiv.org/abs/2109.13202) has been accepted to NeurIPS2021."},{"date":"08/07/2021","message":"Tim Rockt\u00e4schel has been promoted to Associate Professor."},{"date":"12/05/2021","message":"[Prioritized Level Replay](https://arxiv.org/abs/2010.03934) has been accepted to ICML2021."},{"date":"12/05/2021","message":"[Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning](https://arxiv.org/abs/2106.00136) has been accepted to ICML2021."},{"date":"01/04/2021","message":"Our paper [Complex Query Answering with Neural Link Predictors](https://arxiv.org/abs/2011.03459) (based on Erik's MSc thesis and supervised by Pasquale) won an [Outstanding Paper Award](https://iclr-conf.medium.com/announcing-iclr-2021-outstanding-paper-awards-9ae0514734ab) at [ICLR 2021](https://iclr.cc/)."},{"date":"19/03/2021","message":"Ed Grefenstette has been promoted to Honorary Professor of UCL."},{"date":"04/03/2021","message":"Tim Rockt\u00e4schel [appeared on the W&B Podcast](https://www.youtube.com/watch?v=oYSNXTkeCtw) to promote [recent work in designing challenging environemnts](https://github.com/facebookresearch/nle) for research in Reinforcement Learning."},{"date":"10/03/2021","message":"[How to Motivate Your Dragon: Teaching Goal-Driven Agents to Speak and Act in Fantasy Worlds](https://arxiv.org/abs/2010.00685) has been accepted to NAACL2021."},{"date":"12/01/2021","message":"[Complex Query Answering with Neural Link Predictors](https://arxiv.org/abs/2011.03459), our state-of-the-art approach for answering complex queries on large and incomplete Knowledge Graphs, will appear at ICLR 2021 as an Oral -- top 2% of all publications!"},{"date":"12/01/2021","message":"[Learning with AMIGo: Adversarially Motivated Intrinsic Goals](https://openreview.net/forum?id=ETBc_MIMgoX) has been accepted to ICLR2021."},{"date":"12/01/2021","message":"[My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control](https://openreview.net/forum?id=N3zUDGN5lO) has been accepted to ICLR2021."},{"date":"12/01/2021","message":"[Complex Query Answering with Neural Link Predictors](https://openreview.net/forum?id=Mos9F9kDwkz) has been accepted to ICLR2021."},{"date":"18/12/2020","message":"[Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning](arxiv.org/abs/2102.04220) has been accepted to AAMAS2021."},{"date":"25/09/2020","message":"[The NetHack Learning Environment](https://arxiv.org/abs/2006.13760) has been accepted to NeurIPS2020."},{"date":"14/06/2020","message":"[WordCraft: An Environment for Benchmarking Commonsense Agents](https://arxiv.org/abs/2007.09185) has been accepted to 1st Workshop on Language in Reinforcement Learning, ICML2020."},{"date":"15/11/2019","message":"[RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments](https://arxiv.org/abs/2002.12292) has been accepted to ICLR2020."},{"date":"15/11/2019","message":"[RTFM: Generalising to Novel Environment Dynamics via Reading](https://arxiv.org/abs/1910.08210) has been accepted to ICLR2020."}] diff --git a/serve_papers.json b/serve_papers.json index 56f3428449fa..ef598e44459e 100644 --- a/serve_papers.json +++ b/serve_papers.json @@ -1 +1 @@ -[{"UID":"jiang2023hgap","abstract":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","authors":"Zhengyao Jiang|Yingchen Xu|Nolan Wagener|Yicheng Luo|Michael Janner|Edward Grefenstette|Tim Rockt\u00e4schel|Yuandong Tian","keywords":"generative model|model-based reinforcement learning|humanoids","proceedings":"ICLR","title":"H-GAP: Humanoid Control with a Generalist Planner","type":"Conference","url":"https://arxiv.org/abs/2312.02682","year":2024},{"UID":"chitnis2023iqltdmpc","abstract":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","authors":"Rohan Chitnis|Yingchen Xu|Bobak Hashemi|Lucas Lehnert|Urun Dogan|Zheqing Zhu|Olivier Delalleau","keywords":"hierarchical reinforcement learning|model-based reinforcement learning|offline reinforcement learning","proceedings":"ICRA","title":"IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control","type":"Conference","url":"https://arxiv.org/abs/2306.00867","year":2024},{"UID":"raparthy2023generalization","abstract":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","authors":"Sharath Chandra Raparthy|Eric Hambro|Robert Kirk|Mikael Henaff|Roberta Raileanu","keywords":"generalisation|in-context learning|transformers|reinforcement learning","proceedings":"arXiv","title":"Generalization to New Sequential Decision Making Tasks with In-Context Learning","type":"Preprint","url":"https://arxiv.org/abs/2312.03801","year":2023},{"UID":"coste2023reward","abstract":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","authors":"Thomas Coste|Usman Anwar|Robert Kirk|David Krueger","keywords":"large language models|fine-tuning|overoptimisation|alignment","proceedings":"ICLR","title":"Reward Model Ensembles Help Mitigate Overoptimization","type":"Conference","url":"https://arxiv.org/abs/2310.02743","year":2024},{"UID":"jain2023mechanistically","abstract":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","authors":"Samyak Jain|Robert Kirk|Ekdeep Singh Lubana|Robert P. Dick|Hidenori Tanaka|Edward Grefenstette|Tim Rockt\u00e4schel|David Scott Krueger","keywords":"large language models|fine-tuning|generalisation|interpretability","proceedings":"ICLR","title":"Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks","type":"Conference","url":"https://arxiv.org/abs/2311.12786","year":2024},{"UID":"kirk2023understanding","abstract":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","authors":"Robert Kirk|Ishita Mediratta|Christoforos Nalmpantis|Jelena Luketina|Eric Hambro|Edward Grefenstette|Roberta Raileanu","keywords":"large language models|rlhf|generalisation|diversity","proceedings":"ICLR","title":"Understanding the Effects of RLHF on LLM Generalisation and Diversity","type":"Conference","url":"https://arxiv.org/abs/2310.06452","year":2024},{"UID":"samvelyan2024multiagent","abstract":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","authors":"Mikayel Samvelyan|Davide Paglieri|Minqi Jiang|Jack Parker-Holder|Tim Rockt\u00e4schel","keywords":"reinforcement learning|multi-agent|open-endedness|environment design","proceedings":"AAMAS","title":"Multi-Agent Diagnostics for Robustness via Illuminated Diversity","type":"Conference","url":"https://arxiv.org/abs/2401.13460","year":2024},{"UID":"samvelyan2023maestro","abstract":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","authors":"Mikayel Samvelyan|Akbir Khan|Michael Dennis|Minqi Jiang|Jack Parker-Holder|Jakob Foerster|Roberta Raileanu|Tim Rockt\u00e4schel","keywords":"reinforcement learning|multi-agent|open-endedness|environment design","proceedings":"ICLR","title":"MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2303.03376","year":2023},{"UID":"ellis2022smacv2","abstract":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","authors":"Benjamin Ellis|Jonathan Cook|Skander Moalla|Mikayel Samvelyan|Mingfei Sun|Anuj Mahajan|Jakob Foerster|Shimon Whiteson","keywords":"reinforcement learning|multi-agent|generalization|benchmark","proceedings":"NeurIPS","title":"SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2212.07489","year":2023},{"UID":"jiang2022grounding","abstract":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","authors":"Minqi Jiang|Michael Dennis|Jack Parker-Holder|Andrei Lupu|Heinrich K\u00fcttler|Edward Grefenstette|Tim Rockt\u00e4schel|Jakob Foerster","keywords":"reinforcement learning|generalization|environment design|curriculum learning|procedural content generation","proceedings":"NeurIPS","title":"Grounding Aleatoric Uncertainty for Unsupervised Environment Design","type":"Conference","url":"https://arxiv.org/abs/2207.05219","year":2022},{"UID":"henaff2022exploration","abstract":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","authors":"Mikael Henaff|Minqi Jiang|Roberta Raileanu","keywords":"reinforcement learning|exploration","proceedings":"NeurIPS","title":"Exploration via Elliptical Episodic Bonuses","type":"Conference","url":"https://e3bagent.github.io/","year":2022},{"UID":"mu2022improving","abstract":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","authors":"Jesse Mu|Victor Zhong|Roberta Raileanu|Minqi Jiang|Noah Goodman|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|exploration|language","proceedings":"NeurIPS","title":"Improving Intrinsic Exploration with Language Abstractions","type":"Conference","url":"https://arxiv.org/abs/2202.08938","year":2022},{"UID":"zhong2022improving","abstract":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","authors":"Victor Zhong|Jesse Mu|Luke Zettlemoyer|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|language|transfer learning","proceedings":"NeurIPS","title":"Improving Policy Learning via Language Dynamics Distillation","type":"Conference","url":"https://arxiv.org/abs/2210.00066","year":2022},{"UID":"hambro2022dungeons","abstract":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","authors":"Eric Hambro|Roberta Raileanu|Danielle Rothermel|Vegard Mella|Tim Rockt\u00e4schel|Heinrich K\u00fcttler|Naila Murray","keywords":"reinforcement learning|offline learning|environments|dataset","proceedings":"NeurIPS","title":"Dungeons and Data: A Large-Scale NetHack Dataset","type":"Conference","url":"https://arxiv.org/abs/2211.00539","year":2022},{"UID":"xu2022cascade","abstract":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","authors":"Yingchen Xu|Jack Parker-Holder|Aldo Pacchiano|Philip J. Ball|Oleh Rybkin|Stephen J. Roberts|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|world model|generalist agent|exploration|model-based|reward-free|unsupervised learning","proceedings":"NeurIPS","title":"Learning General World Models in a Handful of Reward-Free Deployments","type":"Conference","url":"https://arxiv.org/abs/2210.12719","year":2022},{"UID":"ruis2022implicature","abstract":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","authors":"Laura Ruis|Akbir Khan|Stella Biderman|Sara Hooker|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"natural language processing|pragmatics|implicature|large language models","proceedings":"NeurIPS","title":"Large language models are not zero-shot communicators","type":"Conference","url":"https://arxiv.org/abs/2210.14986","year":2023},{"UID":"bamford2022griddlyjs","abstract":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","authors":"Christopher Bamford|Minqi Jiang|Mikayel Samvelyan|Tim Rockt\u00e4schel","keywords":"reinforcement learning|open-endedness|environment design|environment","proceedings":"NeurIPS","title":"GriddlyJS: A Web IDE for Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2207.06105","year":2022},{"UID":"chen2022refactor","abstract":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","authors":"Yihong Chen|Pushkar Mishra|Luca Franceschi|Pasquale Minervini|Pontus Stenetorp|Sebastian Riedel","keywords":"reinforcement learning|offline RL|sequence modelling RL|continuous control","proceedings":"NeurIPS","title":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","type":"Conference","url":"https://arxiv.org/abs/2207.09980","year":2022},{"UID":"jiang2022tap","abstract":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","authors":"Zhengyao Jiang|Tianjun Zhang|Micheal Janner|Yueying Li|Tim Rockt\u00e4schel|Edward Grefenstette|Yuandong Tian","keywords":"reinforcement learning|offline RL|sequence modelling RL|continuous control","proceedings":"arXiv","title":"Efficient Planning in a Compact Latent Action Space","type":"Preprint","url":"https://arxiv.org/abs/2208.10291","year":2022},{"UID":"matthews2022hierarchical","abstract":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","authors":"Michael Matthews|Mikayel Samvelyan|Jack Parker-Holder|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|transfer learning|environment","proceedings":"CoLLAs","title":"Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning","type":"Conference","url":"https://arxiv.org/pdf/2207.11584.pdf","year":2022},{"UID":"jiang2022gb","abstract":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","authors":"Zhengyao Jiang|Tianjun Zhang|Robert Kirk|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|graph structure|data-efficient RL","proceedings":"arXiv","title":"Graph Backup: Data Efficient Backup Exploiting Markovian Transitions","type":"Preprint","url":"https://arxiv.org/abs/2205.15824","year":2022},{"UID":"parker-holder2022evolving","abstract":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","authors":"Jack Parker-Holder|Minqi Jiang|Michael Dennis|Mikayel Samvelyan|Jakob Foerster|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|generalization|open-endedness|environment design|curriculum learning|procedural content generation","proceedings":"ICML","title":"Evolving Curricula with Regret-Based Environment Design","type":"Conference","url":"https://arxiv.org/abs/2203.01302","year":2022},{"UID":"mahajan2022generalization","abstract":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","authors":"Anuj Mahajan|Mikayel Samvelyan|Tarun Gupta|Benjamin Ellis|Mingfei Sun|Tim Rockt\u00e4schel|Shimon Whiteson","keywords":"reinforcement learning|multi-agent|generalization","proceedings":"arXiv","title":"Generalization in Cooperative Multi-Agent Systems","type":"Preprint","url":"https://arxiv.org/abs/2202.00104","year":2022},{"UID":"kirk2021survey","abstract":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","authors":"Robert Kirk|Amy Zhang|Edward Grefenstette|Tim Rockt\u00e4schel","blog":"generalization_survey.md","keywords":"reinforcement learning|generalization|survey|review","proceedings":"Journal of Artificial Intelligence Research","title":"A Survey of Zero-shot Generalisation in Deep Reinforcement Learning","type":"Journal","url":"https://arxiv.org/abs/2111.09794","year":2023},{"UID":"samvelyan2021minihack","abstract":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","authors":"Mikayel Samvelyan|Robert Kirk|Vitaly Kurin|Jack Parker-Holder|Minqi Jiang|Eric Hambro|Fabio Petroni|Heinrich K\u00fcttler|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|open-endedness|environment design|environment","proceedings":"NeurIPS","title":"MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research","type":"Conference","url":"https://arxiv.org/abs/2109.13202","year":2021},{"UID":"jiang2021replay","abstract":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","authors":"Minqi Jiang|Michael Dennis|Jack Parker-Holder|Jakob Foerster|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|generalization|curriculum learning|environment design|procedural content generation","proceedings":"NeurIPS","title":"Replay-Guided Adversarial Environment Design","type":"Conference","url":"https://arxiv.org/abs/2110.02439","year":2021},{"UID":"jiang2020prioritized","abstract":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","authors":"Minqi Jiang|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|curriculum learning|generalization|procedural content generation","proceedings":"ICML","title":"Prioritized Level Replay","type":"Conference","url":"https://arxiv.org/abs/2010.03934","year":2021},{"UID":"jiang2021gtg","abstract":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","authors":"Zhengyao Jiang|Pasquale Minervini|Minqi Jiang|Tim Rocktaschel","keywords":"Relational Inductive Bias|Reinforcement Learning|Graph Neural Network","proceedings":"AAMAS","title":"Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2102.04220","year":2021},{"UID":"mahajan2021tesseract","abstract":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","authors":"Anuj Mahajan|Mikayel Samvelyan|Lei Mao|Viktor Makoviychuk|Animesh Garg|Jean Kossaifi|Shimon Whiteson|Yuke Zhu|Animashree Anandkumar","keywords":"reinforcement learning|multi-agent learning","proceedings":"ICML","title":"Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2106.00136","year":2021},{"UID":"niepert2021imle","abstract":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","authors":"Mathias Niepert|Pasquale Minervini|Luca Franceschi","keywords":"reasoning|planning|gradient estimation|discrete distributions|backpropagation","proceedings":"NeurIPS","title":"Implicit MLE: Backpropagating Through Discrete Exponential Family Distribution","type":"Conference","url":"https://arxiv.org/abs/2106.01798","year":2021},{"UID":"campero2021amigo","abstract":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","authors":"Andres Campero|Roberta Raileanu|Heinrich K\u00fcttler|Joshua B. Tenenbaum|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"exploration|reinforcement learning","proceedings":"ICLR","title":"Learning with AMIGo: Adversarially Motivated Intrinsic Goals","type":"Conference","url":"https://arxiv.org/abs/2006.12122","year":2021},{"UID":"arakelyan2021cqd","abstract":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","authors":"Erik Arakelyan|Daniel Daza|Pasquale Minervini|Michael Cochez","keywords":"complex query answering|Knowledge Graphs","proceedings":"ICLR","title":"Complex Query Answering with Neural Link Predictors","type":"Conference","url":"https://arxiv.org/abs/2011.03459","year":"2021 (Outstanding Paper Award)"},{"UID":"kuettler2020nethack","abstract":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","authors":"Heinrich K\u00fcttler|Nantas Nardelli|Alexander H. Miller|Roberta Raileanu|Marco Selvatici|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"environment|reinforcement learning","proceedings":"NeurIPS","title":"The NetHack Learning Environment","type":"Conference","url":"https://arxiv.org/abs/2006.13760","year":2020},{"UID":"jiang2020wordcraft","abstract":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","authors":"Minqi Jiang|Jelena Luketina|Nantas Nardelli|Pasquale Minervini|Philip H.S. Torr|Shimon Whiteson|Tim Rockt\u00e4schel","keywords":"reinforcement learning|commonsense reasoning|natural language processing|procedural content generation","proceedings":"Workshop on Language in Reinforcement Learning at ICML","title":"WordCraft: An Environment for Benchmarking Commonsense Agents","type":"Conference","url":"https://arxiv.org/abs/2007.09185","year":2020},{"UID":"raileanu2020ride","abstract":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","authors":"Roberta Raileanu|Tim Rockt\u00e4schel","keywords":"exploration|reinforcement learning","proceedings":"ICLR","title":"RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments","type":"Conference","url":"https://arxiv.org/abs/2002.12292.abs","year":2020},{"UID":"zhong2020rtfm","abstract":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","authors":"Victor Zhong|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"natural language processing|reasoning|reinforcement learning","proceedings":"ICLR","title":"RTFM: Generalising to New Environment Dynamics via Reading","type":"Conference","url":"https://arxiv.org/abs/1910.08210","year":2020}] +[{"UID":"samvelyan2024rainbow","abstract":"As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to adversarial attacks is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel black-box approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. Focusing on the safety domain, we use Rainbow Teaming to target various state-of-the-art LLMs, including the Llama 2 and Llama 3 models. Our approach reveals hundreds of effective adversarial prompts, with an attack success rate exceeding 90% across all tested models. Furthermore, we demonstrate that prompts generated by Rainbow Teaming are highly transferable and that fine-tuning models with synthetic data generated by our method significantly enhances their safety without sacrificing general performance or helpfulness. We additionally explore the versatility of Rainbow Teaming by applying it to question answering and cybersecurity, showcasing its potential to drive robust open-ended self-improvement in a wide range of applications.","authors":"Mikayel Samvelyan|Sharath Chandra Raparthy|Andrei Lupu|Eric Hambro|Aram H. Markosyan|Manish Bhatt|Yuning Mao|Minqi Jiang|Jack Parker-Holder|Jakob Foerster|Tim Rockt\u00e4schel|Roberta Raileanu","keywords":"open-endednes|large language models|safety|diversity","proceedings":"NeurIPS","title":"Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts","type":"Conference","url":"https://arxiv.org/abs/2402.16822","year":2024},{"UID":"jiang2023hgap","abstract":"Humanoid control is an important research challenge offering avenues for integration into human-centric infrastructures and enabling physics-driven humanoid animations. The daunting challenges in this field stem from the difficulty of optimizing in high-dimensional action spaces and the instability introduced by the bipedal morphology of humanoids. However, the extensive collection of human motion-captured data and the derived datasets of humanoid trajectories, such as MoCapAct, paves the way to tackle these challenges. In this context, we present Humanoid Generalist Autoencoding Planner (H-GAP), a state-action trajectory generative model trained on humanoid trajectories derived from human motion-captured data, capable of adeptly handling downstream control tasks with Model Predictive Control (MPC). For 56 degrees of freedom humanoid, we empirically demonstrate that H-GAP learns to represent and generate a wide range of motor behaviours. Further, without any learning from online interactions, it can also flexibly transfer these behaviors to solve novel downstream control tasks via planning. Notably, H-GAP excels established MPC baselines that have access to the ground truth dynamics model, and is superior or comparable to offline RL methods trained for individual tasks. Finally, we do a series of empirical studies on the scaling properties of H-GAP, showing the potential for performance gains via additional data but not computing.","authors":"Zhengyao Jiang|Yingchen Xu|Nolan Wagener|Yicheng Luo|Michael Janner|Edward Grefenstette|Tim Rockt\u00e4schel|Yuandong Tian","keywords":"generative model|model-based reinforcement learning|humanoids","proceedings":"ICLR","title":"H-GAP: Humanoid Control with a Generalist Planner","type":"Conference","url":"https://arxiv.org/abs/2312.02682","year":2024},{"UID":"chitnis2023iqltdmpc","abstract":"Model-based reinforcement learning (RL) has shown great promise due to its sample efficiency, but still struggles with long-horizon sparse-reward tasks, especially in offline settings where the agent learns from a fixed dataset. We hypothesize that model-based RL agents struggle in these environments due to a lack of long-term planning capabilities, and that planning in a temporally abstract model of the environment can alleviate this issue. In this paper, we make two key contributions\":\" 1) we introduce an offline model-based RL algorithm, IQL-TD-MPC, that extends the state-of-the-art Temporal Difference Learning for Model Predictive Control (TD-MPC) with Implicit Q-Learning (IQL); 2) we propose to use IQL-TD-MPC as a Manager in a hierarchical setting with any off-the-shelf offline RL algorithm as a Worker. More specifically, we pre-train a temporally abstract IQL-TD-MPC Manager to predict \"intent embeddings\", which roughly correspond to subgoals, via planning. We empirically show that augmenting state representations with intent embeddings generated by an IQL-TD-MPC manager significantly improves off-the-shelf offline RL agents' performance on some of the most challenging D4RL benchmark tasks. For instance, the offline RL algorithms AWAC, TD3-BC, DT, and CQL all get zero or near-zero normalized evaluation scores on the medium and large antmaze tasks, while our modification gives an average score over 40.","authors":"Rohan Chitnis|Yingchen Xu|Bobak Hashemi|Lucas Lehnert|Urun Dogan|Zheqing Zhu|Olivier Delalleau","keywords":"hierarchical reinforcement learning|model-based reinforcement learning|offline reinforcement learning","proceedings":"ICRA","title":"IQL-TD-MPC: Implicit Q-Learning for Hierarchical Model Predictive Control","type":"Conference","url":"https://arxiv.org/abs/2306.00867","year":2024},{"UID":"raparthy2023generalization","abstract":"Training autonomous agents that can learn new tasks from only a handful of demonstrations is a long-standing problem in machine learning. Recently, transformers have been shown to learn new language or vision tasks without any weight updates from only a few examples, also referred to as in-context learning. However, the sequential decision making setting poses additional challenges having a lower tolerance for errors since the environment's stochasticity or the agent's actions can lead to unseen, and sometimes unrecoverable, states. In this paper, we use an illustrative example to show that naively applying transformers to sequential decision making problems does not enable in-context learning of new tasks. We then demonstrate how training on sequences of trajectories with certain distributional properties leads to in-context learning of new sequential decision making tasks. We investigate different design choices and find that larger model and dataset sizes, as well as more task diversity, environment stochasticity, and trajectory burstiness, all result in better in-context learning of new out-of-distribution tasks. By training on large diverse offline datasets, our model is able to learn new MiniHack and Procgen tasks without any weight updates from just a handful of demonstrations.","authors":"Sharath Chandra Raparthy|Eric Hambro|Robert Kirk|Mikael Henaff|Roberta Raileanu","keywords":"generalisation|in-context learning|transformers|reinforcement learning","proceedings":"arXiv","title":"Generalization to New Sequential Decision Making Tasks with In-Context Learning","type":"Preprint","url":"https://arxiv.org/abs/2312.03801","year":2023},{"UID":"coste2023reward","abstract":"Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the \"true\" reward, these learned reward models are susceptible to \\textit{overoptimization}. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger \"gold\" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods\":\" (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.","authors":"Thomas Coste|Usman Anwar|Robert Kirk|David Krueger","keywords":"large language models|fine-tuning|overoptimisation|alignment","proceedings":"ICLR","title":"Reward Model Ensembles Help Mitigate Overoptimization","type":"Conference","url":"https://arxiv.org/abs/2310.02743","year":2024},{"UID":"jain2023mechanistically","abstract":"Fine-tuning large pre-trained models has become the de facto strategy for developing both task-specific and general-purpose machine learning systems, including developing models that are safe to deploy. Despite its clear importance, there has been minimal work that explains how fine-tuning alters the underlying capabilities learned by a model during pretraining\":\" does fine-tuning yield entirely novel capabilities or does it just modulate existing ones? We address this question empirically in synthetic, controlled settings where we can use mechanistic interpretability tools (e.g., network pruning and probing) to understand how the model's underlying capabilities are changing. We perform an extensive analysis of the effects of fine-tuning in these settings, and show that\":\" (i) fine-tuning rarely alters the underlying model capabilities; (ii) a minimal transformation, which we call a 'wrapper', is typically learned on top of the underlying model capabilities, creating the illusion that they have been modified; and (iii) further fine-tuning on a task where such hidden capabilities are relevant leads to sample-efficient 'revival' of the capability, i.e., the model begins reusing these capability after only a few gradient steps. This indicates that practitioners can unintentionally remove a model's safety wrapper merely by fine-tuning it on a, e.g., superficially unrelated, downstream task. We additionally perform analysis on language models trained on the TinyStories dataset to support our claims in a more realistic setup.","authors":"Samyak Jain|Robert Kirk|Ekdeep Singh Lubana|Robert P. Dick|Hidenori Tanaka|Edward Grefenstette|Tim Rockt\u00e4schel|David Scott Krueger","keywords":"large language models|fine-tuning|generalisation|interpretability","proceedings":"ICLR","title":"Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks","type":"Conference","url":"https://arxiv.org/abs/2311.12786","year":2024},{"UID":"kirk2023understanding","abstract":"Large language models (LLMs) fine-tuned with reinforcement learning from human feedback (RLHF) have been used in some of the most widely deployed AI models to date, such as OpenAI's ChatGPT or Anthropic's Claude. While there has been significant work developing these methods, our understanding of the benefits and downsides of each stage in RLHF is still limited. To fill this gap, we present an extensive analysis of how each stage of the process (i.e.~supervised fine-tuning (SFT), reward modelling, and RLHF) affects two key properties\":\" out-of-distribution (OOD) generalisation and output diversity. OOD generalisation is crucial given the wide range of real-world scenarios in which these models are being used, while output diversity refers to the model's ability to generate varied outputs and is important for a variety of use cases. We perform our analysis across two base models on both summarisation and instruction following tasks, the latter being highly relevant for current LLM use cases. We find that RLHF generalises better than SFT to new inputs, particularly as the distribution shift between train and test becomes larger. However, RLHF significantly reduces output diversity compared to SFT across a variety of measures, implying a tradeoff in current LLM fine-tuning methods between generalisation and diversity. Our results provide guidance on which fine-tuning method should be used depending on the application, and show that more research is needed to improve the tradeoff between generalisation and diversity.","authors":"Robert Kirk|Ishita Mediratta|Christoforos Nalmpantis|Jelena Luketina|Eric Hambro|Edward Grefenstette|Roberta Raileanu","keywords":"large language models|rlhf|generalisation|diversity","proceedings":"ICLR","title":"Understanding the Effects of RLHF on LLM Generalisation and Diversity","type":"Conference","url":"https://arxiv.org/abs/2310.06452","year":2024},{"UID":"samvelyan2024multiagent","abstract":"In the rapidly advancing field of multi-agent systems, ensuring robustness in unfamiliar and adversarial settings is crucial. Notwithstanding their outstanding performance in familiar environments, these systems often falter in new situations due to overfitting during the training phase. This is especially pronounced in settings where both cooperative and competitive behaviours are present, encapsulating a dual nature of overfitting and generalisation challenges. To address this issue, we present Multi-Agent Diagnostics for Robustness via Illuminated Diversity (MADRID), a novel approach for generating diverse adversarial scenarios that expose strategic vulnerabilities in pre-trained multi-agent policies. Leveraging the concepts from open-ended learning, MADRID navigates the vast space of adversarial settings, employing a target policy's regret to gauge the vulnerabilities of these settings. We evaluate the effectiveness of MADRID on the 11vs11 version of Google Research Football, one of the most complex environments for multi-agent reinforcement learning. Specifically, we employ MADRID for generating a diverse array of adversarial settings for TiZero, the state-of-the-art approach which \"masters\" the game through 45 days of training on a large-scale distributed infrastructure. We expose key shortcomings in TiZero's tactical decision-making, underlining the crucial importance of rigorous evaluation in multi-agent systems.","authors":"Mikayel Samvelyan|Davide Paglieri|Minqi Jiang|Jack Parker-Holder|Tim Rockt\u00e4schel","keywords":"reinforcement learning|multi-agent|open-endedness|environment design","proceedings":"AAMAS","title":"Multi-Agent Diagnostics for Robustness via Illuminated Diversity","type":"Conference","url":"https://arxiv.org/abs/2401.13460","year":2024},{"UID":"samvelyan2023maestro","abstract":"Open-ended learning methods that automatically generate a curriculum of increasingly challenging tasks serve as a promising avenue toward generally capable reinforcement learning agents. Existing methods adapt curricula independently over either environment parameters (in single-agent settings) or co-player policies (in multi-agent settings). However, the strengths and weaknesses of co-players can manifest themselves differently depending on environmental features. It is thus crucial to consider the dependency between the environment and co-player when shaping a curriculum in multi-agent domains. In this work, we use this insight and extend Unsupervised Environment Design (UED) to multi-agent environments. We then introduce Multi-Agent Environment Design Strategist for Open-Ended Learning (MAESTRO), the first multi-agent UED approach for two-player zero-sum settings. MAESTRO efficiently produces adversarial, joint curricula over both environments and co-players and attains minimax-regret guarantees at Nash equilibrium. Our experiments show that MAESTRO outperforms a number of strong baselines on competitive two-player games, spanning discrete and continuous control settings.","authors":"Mikayel Samvelyan|Akbir Khan|Michael Dennis|Minqi Jiang|Jack Parker-Holder|Jakob Foerster|Roberta Raileanu|Tim Rockt\u00e4schel","keywords":"reinforcement learning|multi-agent|open-endedness|environment design","proceedings":"ICLR","title":"MAESTRO: Open-Ended Environment Design for Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2303.03376","year":2023},{"UID":"ellis2022smacv2","abstract":"The availability of challenging benchmarks has played a key role in the recent progress of machine learning. In cooperative multi-agent reinforcement learning, the StarCraft Multi-Agent Challenge (SMAC) has become a popular testbed for centralised training with decentralised execution. However, after years of sustained improvement on SMAC, algorithms now achieve near-perfect performance. In this work, we conduct new analysis demonstrating that SMAC is not sufficiently stochastic to require complex closed-loop policies. In particular, we show that an open-loop policy conditioned only on the timestep can achieve non-trivial win rates for many SMAC scenarios. To address this limitation, we introduce SMACv2, a new version of the benchmark where scenarios are procedurally generated and require agents to generalise to previously unseen settings (from the same distribution) during evaluation. We show that these changes ensure the benchmark requires the use of closed-loop policies. We evaluate state-of-the-art algorithms on SMACv2 and show that it presents significant challenges not present in the original benchmark. Our analysis illustrates that SMACv2 addresses the discovered deficiencies of SMAC and can help benchmark the next generation of MARL methods. Videos of training are available at https://sites.google.com/view/smacv2.","authors":"Benjamin Ellis|Jonathan Cook|Skander Moalla|Mikayel Samvelyan|Mingfei Sun|Anuj Mahajan|Jakob Foerster|Shimon Whiteson","keywords":"reinforcement learning|multi-agent|generalization|benchmark","proceedings":"NeurIPS","title":"SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2212.07489","year":2023},{"UID":"jiang2022grounding","abstract":"Adaptive curricula in reinforcement learning (RL) have proven effective for producing policies robust to discrepancies between the train and test environment. Recently, the Unsupervised Environment Design (UED) framework generalized RL curricula to generating sequences of entire environments, leading to new methods with robust minimax regret properties. Problematically, in partially-observable or stochastic settings, optimal policies may depend on the ground-truth distribution over aleatoric parameters of the environment in the intended deployment setting, while curriculum learning necessarily shifts the training distribution. We formalize this phenomenon as curriculum-induced covariate shift (CICS), and describe how its occurrence in aleatoric parameters can lead to suboptimal policies. Directly sampling these parameters from the ground-truth distribution avoids the issue, but thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method that optimizes the ground-truth utility function, even when the underlying training data is biased due to CICS. We prove, and validate on challenging domains, that our approach preserves optimality under the ground-truth distribution, while promoting robustness across the full range of environment settings.","authors":"Minqi Jiang|Michael Dennis|Jack Parker-Holder|Andrei Lupu|Heinrich K\u00fcttler|Edward Grefenstette|Tim Rockt\u00e4schel|Jakob Foerster","keywords":"reinforcement learning|generalization|environment design|curriculum learning|procedural content generation","proceedings":"NeurIPS","title":"Grounding Aleatoric Uncertainty for Unsupervised Environment Design","type":"Conference","url":"https://arxiv.org/abs/2207.05219","year":2022},{"UID":"henaff2022exploration","abstract":"In recent years, a number of reinforcement learning (RL) methods have been proposed to explore complex environments which differ across episodes. In this work, we show that the effectiveness of these methods critically relies on a count-based episodic term in their exploration bonus. As a result, despite their success in relatively simple, noise-free settings, these methods fall short in more realistic scenarios where the state space is vast and prone to noise. To address this limitation, we introduce Exploration via Elliptical Episodic Bonuses (E3B), a new method which extends count-based episodic bonuses to continuous state spaces and encourages an agent to explore states that are diverse under a learned embedding within each episode. The embedding is learned using an inverse dynamics model in order to capture controllable aspects of the environment. Our method sets a new state-of-the-art across 16 challenging tasks from the MiniHack suite, without requiring task-specific inductive biases. E3B also matches existing methods on sparse reward, pixel-based VizDoom environments, and outperforms existing methods in reward-free exploration on Habitat, demonstrating that it can scale to high-dimensional pixel-based observations and realistic environments.","authors":"Mikael Henaff|Minqi Jiang|Roberta Raileanu","keywords":"reinforcement learning|exploration","proceedings":"NeurIPS","title":"Exploration via Elliptical Episodic Bonuses","type":"Conference","url":"https://e3bagent.github.io/","year":2022},{"UID":"mu2022improving","abstract":"Reinforcement learning (RL) agents are particularly hard to train when rewards are sparse. One common solution is to use intrinsic rewards to encourage agents to explore their environment. However, recent intrinsic exploration methods often use state-based novelty measures which reward low-level exploration and may not scale to domains requiring more abstract skills. Instead, we explore natural language as a general medium for highlighting relevant abstractions in an environment. Unlike previous work, we evaluate whether language can improve over existing exploration methods by directly extending (and comparing to) competitive intrinsic exploration baselines: AMIGo (Campero et al., 2021) and NovelD (Zhang et al., 2021). These language-based variants outperform their non-linguistic forms by 45-85% across 13 challenging tasks from the MiniGrid and MiniHack environment suites.","authors":"Jesse Mu|Victor Zhong|Roberta Raileanu|Minqi Jiang|Noah Goodman|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|exploration|language","proceedings":"NeurIPS","title":"Improving Intrinsic Exploration with Language Abstractions","type":"Conference","url":"https://arxiv.org/abs/2202.08938","year":2022},{"UID":"zhong2022improving","abstract":"Recent work has shown that augmenting environments with language descriptions improves policy learning. However, for environments with complex language abstractions, learning how to ground language to observations is difficult due to sparse, delayed rewards. We propose Language Dynamics Distillation (LDD), which pretrains a model to predict environment dynamics given demonstrations with language descriptions, and then fine-tunes these language-aware pretrained representations via reinforcement learning (RL). In this way, the model is trained to both maximize expected reward and retain knowledge about how language relates to environment dynamics. On SILG, a benchmark of five tasks with language descriptions that evaluate distinct generalization challenges on unseen environments (NetHack, ALFWorld, RTFM, Messenger, and Touchdown), LDD outperforms tabula-rasa RL, VAE pretraining, and methods that learn from unlabeled demonstrations in inverse RL and reward shaping with pretrained experts. In our analyses, we show that language descriptions in demonstrations improve sample-efficiency and generalization across environments, and that dynamics modelling with expert demonstrations is more effective than with non-experts.","authors":"Victor Zhong|Jesse Mu|Luke Zettlemoyer|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|language|transfer learning","proceedings":"NeurIPS","title":"Improving Policy Learning via Language Dynamics Distillation","type":"Conference","url":"https://arxiv.org/abs/2210.00066","year":2022},{"UID":"hambro2022dungeons","abstract":"Recent breakthroughs in the development of agents to solve challenging sequential decision making problems such as Go, StarCraft, or DOTA, have relied on both simulated environments and large-scale datasets. However, progress on this research has been hindered by the scarcity of open-sourced datasets and the prohibitive computational cost to work with them. Here we present the NetHack Learning Dataset (NLD), a large and highly-scalable dataset of trajectories from the popular game of NetHack, which is both extremely challenging for current methods and very fast to run. NLD consists of three parts: 10 billion state transitions from 1.5 million human trajectories collected on the NAO public NetHack server from 2009 to 2020; 3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021; and, accompanying code for users to record, load and stream any collection of such trajectories in a highly compressed form. We evaluate a wide range of existing algorithms including online and offline RL, as well as learning from demonstrations, showing that significant research advances are needed to fully leverage large-scale datasets for challenging sequential decision making tasks.","authors":"Eric Hambro|Roberta Raileanu|Danielle Rothermel|Vegard Mella|Tim Rockt\u00e4schel|Heinrich K\u00fcttler|Naila Murray","keywords":"reinforcement learning|offline learning|environments|dataset","proceedings":"NeurIPS","title":"Dungeons and Data: A Large-Scale NetHack Dataset","type":"Conference","url":"https://arxiv.org/abs/2211.00539","year":2022},{"UID":"xu2022cascade","abstract":"Building generally capable agents is a grand challenge for deep reinforcement learning (RL). To approach this challenge practically, we outline two key desiderata: 1) to facilitate generalization, exploration should be task agnostic; 2) to facilitate scalability, exploration policies should collect large quantities of data without costly centralized retraining. Combining these two properties, we introduce the reward-free deployment efficiency setting, a new paradigm for RL research. We then present CASCADE, a novel approach for self-supervised exploration in this new setting. CASCADE seeks to learn a world model by collecting data with a population of agents, using an information theoretic objective inspired by Bayesian Active Learning. CASCADE achieves this by specifically maximizing the diversity of trajectories sampled by the population through a novel cascading objective. We provide theoretical intuition for CASCADE which we show in a tabular setting improves upon na\u00efve approaches that do not account for population diversity. We then demonstrate that CASCADE collects diverse task-agnostic datasets and learns agents that generalize zero-shot to novel, unseen downstream tasks on Atari, MiniGrid, Crafter and the DM Control Suite.","authors":"Yingchen Xu|Jack Parker-Holder|Aldo Pacchiano|Philip J. Ball|Oleh Rybkin|Stephen J. Roberts|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|world model|generalist agent|exploration|model-based|reward-free|unsupervised learning","proceedings":"NeurIPS","title":"Learning General World Models in a Handful of Reward-Free Deployments","type":"Conference","url":"https://arxiv.org/abs/2210.12719","year":2022},{"UID":"ruis2022implicature","abstract":"Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response \"I wore gloves\" to the question \"Did you leave fingerprints?\" as meaning \"No\". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), most perform close to random. Models adapted to be \"aligned with human intent\" perform much better, but still show a significant gap with human performance. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.","authors":"Laura Ruis|Akbir Khan|Stella Biderman|Sara Hooker|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"natural language processing|pragmatics|implicature|large language models","proceedings":"NeurIPS","title":"Large language models are not zero-shot communicators","type":"Conference","url":"https://arxiv.org/abs/2210.14986","year":2023},{"UID":"bamford2022griddlyjs","abstract":"Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments\u2014a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to easily design and debug arbitrary, complex PCG grid-world environments, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in a automatic curriculum learning and offline RL context. The GriddlyJS IDE is open source and freely available at https://griddly.ai.","authors":"Christopher Bamford|Minqi Jiang|Mikayel Samvelyan|Tim Rockt\u00e4schel","keywords":"reinforcement learning|open-endedness|environment design|environment","proceedings":"NeurIPS","title":"GriddlyJS: A Web IDE for Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2207.06105","year":2022},{"UID":"chen2022refactor","abstract":"Factorisation-based Models (FMs), such as DistMult, have enjoyed enduring success for Knowledge Graph Completion (KGC) tasks, often outperforming Graph Neural Networks (GNNs). However, unlike GNNs, FMs struggle to incorporate node features and generalise to unseen nodes in inductive settings. Our work bridges the gap between FMs and GNNs by proposing ReFactor GNNs. This new architecture draws upon both modelling paradigms, which previously were largely thought of as disjoint. Concretely, using a message-passing formalism, we show how FMs can be cast as GNNs by reformulating the gradient descent procedure as message-passing operations, which forms the basis of our ReFactor GNNs. Across a multitude of well-established KGC benchmarks, our ReFactor GNNs achieve comparable transductive performance to FMs, and state-of-the-art inductive performance while using an order of magnitude fewer parameters.","authors":"Yihong Chen|Pushkar Mishra|Luca Franceschi|Pasquale Minervini|Pontus Stenetorp|Sebastian Riedel","keywords":"reinforcement learning|offline RL|sequence modelling RL|continuous control","proceedings":"NeurIPS","title":"ReFactor GNNs: Revisiting Factorisation-based Models from a Message-Passing Perspective","type":"Conference","url":"https://arxiv.org/abs/2207.09980","year":2022},{"UID":"jiang2022tap","abstract":"While planning-based sequence modelling methods have shown great potential in continuous control, scaling them to high-dimensional state-action sequences remains an open challenge due to the high computational complexity and innate difficulty of planning in high-dimensional spaces. We propose the Trajectory Autoencoding Planner (TAP), a planning-based sequence modelling RL method that scales to high state-action dimensionalities. Using a state-conditional Vector-Quantized Variational Autoencoder (VQ-VAE), TAP models the conditional distribution of the trajectories given the current state. When deployed as an RL agent, TAP avoids planning step-by-step in a high-dimensional continuous action space but instead looks for the optimal latent code sequences by beam search. Unlike O(D^3) complexity of Trajectory Transformer, TAP enjoys constant O(C) planning computational complexity regarding state-action dimensionality D. Our empirical evaluation also shows the increasingly strong performance of TAP with the growing dimensionality. For Adroit robotic hand manipulation tasks with high state and action dimensionality, TAP surpasses existing model-based methods, including TT, with a large margin and also beats strong model-free actor-critic baselines.","authors":"Zhengyao Jiang|Tianjun Zhang|Micheal Janner|Yueying Li|Tim Rockt\u00e4schel|Edward Grefenstette|Yuandong Tian","keywords":"reinforcement learning|offline RL|sequence modelling RL|continuous control","proceedings":"arXiv","title":"Efficient Planning in a Compact Latent Action Space","type":"Preprint","url":"https://arxiv.org/abs/2208.10291","year":2022},{"UID":"matthews2022hierarchical","abstract":"Practising and honing skills forms a fundamental component of how humans learn, yet artificial agents are rarely specifically trained to perform them. Instead, they are usually trained end-to-end, with the hope being that useful skills will be implicitly learned in order to maximise discounted return of some extrinsic reward function. In this paper, we investigate how skills can be incorporated into the training of reinforcement learning (RL) agents in complex environments with large state-action spaces and sparse rewards. To this end, we created SkillHack, a benchmark of tasks and associated skills based on the game of NetHack. We evaluate a number of baselines on this benchmark, as well as our own novel skill-based method Hierarchical Kickstarting (HKS), which is shown to outperform all other evaluated methods. Our experiments show that learning with a prior knowledge of useful skills can significantly improve the performance of agents on complex problems. We ultimately argue that utilising predefined skills provides a useful inductive bias for RL problems, especially those with large state-action spaces and sparse rewards.","authors":"Michael Matthews|Mikayel Samvelyan|Jack Parker-Holder|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|transfer learning|environment","proceedings":"CoLLAs","title":"Hierarchical Kickstarting for Skill Transfer in Reinforcement Learning","type":"Conference","url":"https://arxiv.org/pdf/2207.11584.pdf","year":2022},{"UID":"jiang2022gb","abstract":"The successes of deep Reinforcement Learning (RL) are limited to settings where we have a large stream of online experiences, but applying RL in the data-efficient setting with limited access to online interactions is still challenging. A key to data-efficient RL is good value estimation, but current methods in this space fail to fully utilise the structure of the trajectory data gathered from the environment. In this paper, we treat the transition data of the MDP as a graph, and define a novel backup operator, Graph Backup, which exploits this graph structure for better value estimation. Compared to multi-step backup methods such as n-step Q-Learning and TD(\u03bb), Graph Backup can perform counterfactual credit assignment and gives stable value estimates for a state regardless of which trajectory the state is sampled from. Our method, when combined with popular value-based methods, provides improved performance over one-step and multi-step methods on a suite of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We further analyse the reasons for this performance boost through a novel visualisation of the transition graphs of Atari games.","authors":"Zhengyao Jiang|Tianjun Zhang|Robert Kirk|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"reinforcement learning|graph structure|data-efficient RL","proceedings":"arXiv","title":"Graph Backup: Data Efficient Backup Exploiting Markovian Transitions","type":"Preprint","url":"https://arxiv.org/abs/2205.15824","year":2022},{"UID":"parker-holder2022evolving","abstract":"It remains a significant challenge to train generally capable agents with reinforcement learning (RL). A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from their generality, with theoretical guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces. By contrast, evolutionary approaches seek to incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. In this paper we propose to harness the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of the paper is available at accelagent.github.io.","authors":"Jack Parker-Holder|Minqi Jiang|Michael Dennis|Mikayel Samvelyan|Jakob Foerster|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|generalization|open-endedness|environment design|curriculum learning|procedural content generation","proceedings":"ICML","title":"Evolving Curricula with Regret-Based Environment Design","type":"Conference","url":"https://arxiv.org/abs/2203.01302","year":2022},{"UID":"mahajan2022generalization","abstract":"Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.","authors":"Anuj Mahajan|Mikayel Samvelyan|Tarun Gupta|Benjamin Ellis|Mingfei Sun|Tim Rockt\u00e4schel|Shimon Whiteson","keywords":"reinforcement learning|multi-agent|generalization","proceedings":"arXiv","title":"Generalization in Cooperative Multi-Agent Systems","type":"Preprint","url":"https://arxiv.org/abs/2202.00104","year":2022},{"UID":"kirk2021survey","abstract":"The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation.","authors":"Robert Kirk|Amy Zhang|Edward Grefenstette|Tim Rockt\u00e4schel","blog":"generalization_survey.md","keywords":"reinforcement learning|generalization|survey|review","proceedings":"Journal of Artificial Intelligence Research","title":"A Survey of Zero-shot Generalisation in Deep Reinforcement Learning","type":"Journal","url":"https://arxiv.org/abs/2111.09794","year":2023},{"UID":"samvelyan2021minihack","abstract":"The progress in deep reinforcement learning (RL) is heavily driven by the availability of challenging benchmarks used for training agents. However, benchmarks that are widely adopted by the community are not explicitly designed for evaluating specific capabilities of RL methods. While there exist environments for assessing particular open problems in RL (such as exploration, transfer learning, unsupervised environment design, or even language-assisted RL), it is generally difficult to extend these to richer, more complex environments once research goes beyond proof-of-concept results. We present MiniHack, a powerful sandbox framework for easily designing novel RL environments. MiniHack is a one-stop shop for RL experiments with environments ranging from small rooms to complex, procedurally generated worlds. By leveraging the full set of entities and environment dynamics from NetHack, one of the richest grid-based video games, MiniHack allows designing custom RL testbeds that are fast and convenient to use. With this sandbox framework, novel environments can be designed easily, either using a human-readable description language or a simple Python interface. In addition to a variety of RL tasks and baselines, MiniHack can wrap existing RL benchmarks and provide ways to seamlessly add additional complexity.","authors":"Mikayel Samvelyan|Robert Kirk|Vitaly Kurin|Jack Parker-Holder|Minqi Jiang|Eric Hambro|Fabio Petroni|Heinrich K\u00fcttler|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|open-endedness|environment design|environment","proceedings":"NeurIPS","title":"MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research","type":"Conference","url":"https://arxiv.org/abs/2109.13202","year":2021},{"UID":"jiang2021replay","abstract":"Deep reinforcement learning (RL) agents may successfully generalize to new settings if trained on an appropriately diverse set of environment and task configurations. Unsupervised Environment Design (UED) is a promising self-supervised RL paradigm, wherein the free parameters of an underspecified environment are automatically adapted during training to the agent's capabilities, leading to the emergence of diverse training environments. Here, we cast Prioritized Level Replay (PLR), an empirically successful but theoretically unmotivated method that selectively samples randomly-generated training levels, as UED. We argue that by curating completely random levels, PLR, too, can generate novel and complex levels for effective training. This insight reveals a natural class of UED methods we call Dual Curriculum Design (DCD). Crucially, DCD includes both PLR and a popular UED algorithm, PAIRED, as special cases and inherits similar theoretical guarantees. This connection allows us to develop novel theory for PLR, providing a version with a robustness guarantee at Nash equilibria. Furthermore, our theory suggests a highly counterintuitive improvement to PLR: by stopping the agent from updating its policy on uncurated levels (training on less data), we can improve the convergence to Nash equilibria. Indeed, our experiments confirm that our new method, PLR\u22a5, obtains better results on a suite of out-of-distribution, zero-shot transfer tasks, in addition to demonstrating that PLR\u22a5 improves the performance of PAIRED, from which it inherited its theoretical framework.","authors":"Minqi Jiang|Michael Dennis|Jack Parker-Holder|Jakob Foerster|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|generalization|curriculum learning|environment design|procedural content generation","proceedings":"NeurIPS","title":"Replay-Guided Adversarial Environment Design","type":"Conference","url":"https://arxiv.org/abs/2110.02439","year":2021},{"UID":"jiang2020prioritized","abstract":"Simulated environments with procedurally generated content have become popular benchmarks for testing systematic generalization of reinforcement learning agents. Every level in such an environment is algorithmically created, thereby exhibiting a unique configuration of underlying factors of variation, such as layout, positions of entities, asset appearances, or even the rules governing environment transitions. Fixed sets of training levels can be determined to aid comparison and reproducibility, and test levels can be held out to evaluate the generalization and robustness of agents. While prior work samples training levels in a direct way (e.g. uniformly) for the agent to learn from, we investigate the hypothesis that different levels provide different learning progress for an agent at specific times during training. We introduce Prioritized Level Replay, a general framework for estimating the future learning potential of a level given the current state of the agent's policy. We find that temporal-difference (TD) errors, while previously used to selectively sample past transitions, also prove effective for scoring a level's future learning potential when the agent replays (that is, revisits) that level to generate entirely new episodes of experiences from it. We report significantly improved sample-efficiency and generalization on the majority of Procgen Benchmark environments as well as two challenging MiniGrid environments. Lastly, we present a qualitative analysis showing that Prioritized Level Replay induces an implicit curriculum, taking the agent gradually from easier to harder levels","authors":"Minqi Jiang|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"reinforcement learning|curriculum learning|generalization|procedural content generation","proceedings":"ICML","title":"Prioritized Level Replay","type":"Conference","url":"https://arxiv.org/abs/2010.03934","year":2021},{"UID":"jiang2021gtg","abstract":"Although reinforcement learning has been successfully applied in many domains in recent years, we still lack agents that can systematically generalize. While relational inductive biases that fit a task can improve generalization of RL agents, these biases are commonly hard-coded directly in the agent's neural architecture. In this work, we show that we can incorporate relational inductive biases, encoded in the form of relational graphs, into agents. Based on this insight, we propose Grid-to-Graph (GTG), a mapping from grid structures to relational graphs that carry useful spatial relational inductive biases when processed through a Relational Graph Convolution Network (R-GCN). We show that, with GTG, R-GCNs generalize better both in terms of in-distribution and out-of-distribution compared to baselines based on Convolutional Neural Networks and Neural Logic Machines on challenging procedurally generated environments and MinAtar. Furthermore, we show that GTG produces agents that can jointly reason over observations and environment dynamics encoded in knowledge bases.","authors":"Zhengyao Jiang|Pasquale Minervini|Minqi Jiang|Tim Rocktaschel","keywords":"Relational Inductive Bias|Reinforcement Learning|Graph Neural Network","proceedings":"AAMAS","title":"Grid-to-Graph: Flexible Spatial Relational Inductive Biases for Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2102.04220","year":2021},{"UID":"mahajan2021tesseract","abstract":"Reinforcement Learning in large action spaces is a challenging problem. Cooperative multi-agent reinforcement learning (MARL) exacerbates matters by imposing various constraints on communication and observability. In this work, we consider the fundamental hurdle affecting both value-based and policy-gradient approaches: an exponential blowup of the action space with the number of agents. For value-based methods, it poses challenges in accurately representing the optimal value function. For policy gradient methods, it makes training the critic difficult and exacerbates the problem of the lagging critic. We show that from a learning theory perspective, both problems can be addressed by accurately representing the associated action-value function with a low-complexity hypothesis class. This requires accurately modelling the agent interactions in a sample efficient way. To this end, we propose a novel tensorised formulation of the Bellman equation. This gives rise to our method Tesseract, which views the Q-function as a tensor whose modes correspond to the action spaces of different agents. Algorithms derived from Tesseract decompose the Q-tensor across agents and utilise low-rank tensor approximations to model agent interactions relevant to the task. We provide PAC analysis for Tesseract-based algorithms and highlight their relevance to the class of rich observation MDPs. Empirical results in different domains confirm Tesseract's gains in sample efficiency predicted by the theory.","authors":"Anuj Mahajan|Mikayel Samvelyan|Lei Mao|Viktor Makoviychuk|Animesh Garg|Jean Kossaifi|Shimon Whiteson|Yuke Zhu|Animashree Anandkumar","keywords":"reinforcement learning|multi-agent learning","proceedings":"ICML","title":"Tesseract: Tensorised Actors for Multi-Agent Reinforcement Learning","type":"Conference","url":"https://arxiv.org/abs/2106.00136","year":2021},{"UID":"niepert2021imle","abstract":"Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.","authors":"Mathias Niepert|Pasquale Minervini|Luca Franceschi","keywords":"reasoning|planning|gradient estimation|discrete distributions|backpropagation","proceedings":"NeurIPS","title":"Implicit MLE: Backpropagating Through Discrete Exponential Family Distribution","type":"Conference","url":"https://arxiv.org/abs/2106.01798","year":2021},{"UID":"campero2021amigo","abstract":"A key challenge for reinforcement learning (RL) consists of learning in environments with sparse extrinsic rewards. In contrast to current RL methods, humans are able to learn new skills with little or no reward by using various forms of intrinsic motivation. We propose AMIGo, a novel agent incorporating a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals to train a goal-conditioned 'student' policy in the absence of (or alongside) environment reward. Specifically, through a simple but effective 'constructively adversarial' objective, the teacher learns to propose increasingly challenging\u2014yet achievable\u2014goals that allow the student to learn general skills for acting in a new environment, independent of the task to be solved. We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks where other forms of intrinsic motivation and state-of-the-art RL methods fail.","authors":"Andres Campero|Roberta Raileanu|Heinrich K\u00fcttler|Joshua B. Tenenbaum|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"exploration|reinforcement learning","proceedings":"ICLR","title":"Learning with AMIGo: Adversarially Motivated Intrinsic Goals","type":"Conference","url":"https://arxiv.org/abs/2006.12122","year":2021},{"UID":"arakelyan2021cqd","abstract":"Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions (\u2227), disjunctions (\u2228) and existential quantifiers (\u2203), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online.","authors":"Erik Arakelyan|Daniel Daza|Pasquale Minervini|Michael Cochez","keywords":"complex query answering|Knowledge Graphs","proceedings":"ICLR","title":"Complex Query Answering with Neural Link Predictors","type":"Conference","url":"https://arxiv.org/abs/2011.03459","year":"2021 (Outstanding Paper Award)"},{"UID":"kuettler2020nethack","abstract":"Progress in Reinforcement Learning (RL) algorithms goes hand-in-hand with the development of challenging environments that test the limits of current methods. While existing RL environments are either sufficiently complex or based on fast simulation, they are rarely both. Here, we present the NetHack Learning Environment (NLE), a scalable, procedurally generated, stochastic, rich, and challenging environment for RL research based on the popular single-player terminal-based roguelike game, NetHack. We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL, while dramatically reducing the computational resources required to gather a large amount of experience. We compare NLE and its task suite to existing alternatives, and discuss why it is an ideal medium for testing the robustness and systematic generalization of RL agents. We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration, alongside qualitative analysis of various agents trained in the environment. NLE is open source at https://github.com/facebookresearch/nle.","authors":"Heinrich K\u00fcttler|Nantas Nardelli|Alexander H. Miller|Roberta Raileanu|Marco Selvatici|Edward Grefenstette|Tim Rockt\u00e4schel","keywords":"environment|reinforcement learning","proceedings":"NeurIPS","title":"The NetHack Learning Environment","type":"Conference","url":"https://arxiv.org/abs/2006.13760","year":2020},{"UID":"jiang2020wordcraft","abstract":"The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.","authors":"Minqi Jiang|Jelena Luketina|Nantas Nardelli|Pasquale Minervini|Philip H.S. Torr|Shimon Whiteson|Tim Rockt\u00e4schel","keywords":"reinforcement learning|commonsense reasoning|natural language processing|procedural content generation","proceedings":"Workshop on Language in Reinforcement Learning at ICML","title":"WordCraft: An Environment for Benchmarking Commonsense Agents","type":"Conference","url":"https://arxiv.org/abs/2007.09185","year":2020},{"UID":"raileanu2020ride","abstract":"Exploration in sparse reward environments remains one of the key challenges of model-free reinforcement learning. Instead of solely relying on extrinsic rewards provided by the environment, many state-of-the-art methods use intrinsic rewards to encourage exploration. However, we show that existing methods fall short in procedurally-generated environments where an agent is unlikely to visit a state more than once. We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation. We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid, as well as on tasks with high-dimensional observations used in prior work. Our experiments demonstrate that this approach is more sample efficient than existing exploration methods, particularly for procedurally-generated MiniGrid environments. Furthermore, we analyze the learned behavior as well as the intrinsic reward received by our agent. In contrast to previous approaches, our intrinsic reward does not diminish during the course of training and it rewards the agent substantially more for interacting with objects that it can control.","authors":"Roberta Raileanu|Tim Rockt\u00e4schel","keywords":"exploration|reinforcement learning","proceedings":"ICLR","title":"RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated Environments","type":"Conference","url":"https://arxiv.org/abs/2002.12292.abs","year":2020},{"UID":"zhong2020rtfm","abstract":"Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2\u03c0, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2\u03c0 generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2\u03c0 produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.","authors":"Victor Zhong|Tim Rockt\u00e4schel|Edward Grefenstette","keywords":"natural language processing|reasoning|reinforcement learning","proceedings":"ICLR","title":"RTFM: Generalising to New Environment Dynamics via Reading","type":"Conference","url":"https://arxiv.org/abs/1910.08210","year":2020}] diff --git a/static/images/papers/samvelyan2024rainbow.png b/static/images/papers/samvelyan2024rainbow.png new file mode 100644 index 0000000000000000000000000000000000000000..5f28845472fae99a3cec78df3f3867eb9963ac30 GIT binary patch literal 878269 zcmeFac{r5s`#)^WP#D=GOR|(~$-WFDWFI2RT8ixZz7B&TR1%S`1tF5`Ygwiwlzo@U zzGdIdbD_oiozM6C{65d|`{z08I578I_kCa2xxcRSJny^P2z5nLl4B$|I5?zA7tU*e zKX4qJLm7}m;G0~cui`j3B+o76ydwhA{wg$ zNTXMXf(QHJSNh8my1E9emwW71;<1g^I4mDu2fe$lN8?W=8_d=DF`9{#r5aR?Rw&lbHTYrqv=}> zo5uxSNIY?oH|{$)DnUz2s~D0b(}{Ci*8AD`=AF*j`5G*bdDcnJ_~U$EyNt{TW*aqV zIr4P3lA7i!+1W2kx`i-3c}8&0jsM!I_wh^Y&)1dppp(q}Xzv--%_E$*%Bx3Wqh@HN z&;|viIp3^bR}L_u=cF#*m!!{X78`l)g=)y<64GwLC`4h z{SeZh>>ZNOgr%K?rO*8PYr#|o2Nmk@V^AzVLf~cS4@`aE;H2; zd07F35;Yv(!M0g3Kg^dQITQE$qb;Ek^_-w8;PpCL%N)E*FrA|2%jlb>ih za8Xzu&w%O#WWd{=UeP?B?v?J_N;g4yEG+fO_)W?;_}vW0gGZ8EnkSp}n{SL+I#ZS$ z_aT?^XHxX5zAKPHXL?5}IOujwjp=KC!q}q?6sl|^B&iI7D38e6Yt*mS_4Knugh}FW z8HV=-^hMfK8P&L6CCa4~WmG3NzvEOxIM`Wq!~oZpZ-#CLZ-&WZ)KR5BC^h%l z9oHAXg1|To7Fij_T&HpLI&les7aRwvq9@;}AgX$ky_e$%1;=g2^FB}51Rlg*XkdGI zbn>?Dt;pMU&!0Ve^K9x_z_V4YVy)*|oX@hANH6%D(7d2}7LogX;gTl8Oi zsLC;U&+z@{Z%5`YIg+lOT|2e*^qfw&b{zYsXd^yD-oBGQy6e$LWEFISPvyZm6jRTS zJZP|aByc$(D={nnjJ|7vb@3E^mr)n7SjOXG1Al|iUYg=7#gmR~RE+YGL$Y7B=1+xi z#heP%rqYR@P#8vtXpvvcL4@4Yi<1tQS9wPLIif|}0y9tL!M$d`X1(UP<}|-W!bK=W z_z?d3op4YTi4;i^Z90z$?;uZSS+eijK0;`m%izFgLXOR{BSJm^NSXbbQPc_9Ah(|r<=Eu({gB23YBs$ z+nqPoOnRR5)Hn^>>2Ez~eb)?e!+rp2^`2k#Y_FX=8Y28!SegH{NQuo6h90_w@D&C( zo|-dn^ttr(@?UkJuD?6?;oJ*BdVU@LCBZ(EZtHc+dyP-VrxqI6}U-)<@;_^R!{lk2D`UF4bL<%*4Os)2=*?r4; z!bZWy#oE+*rEB@@%{wx6G<8A}cM>xDJWKOjlcsE@1gA8*vBM@qcfTPf`Cse#3E0hj ztqqL05@C&2M*DJ>T)fjFo91h-W?tYFy&ybH5>Bk%U0G{!5%D~+g@t>I|{=0(~=^D^^<(W03A4$GXdemXnj+2j4?XM|`%bgGZ7 zGw}0Ro}c7?pnEb$v{1{8-D~&-ovP}2 zRhtG{SDeyNDTBFe7y+dnonaOk~IX1dw9`k7!9bsr^A z!BBYzEB;v`_r#o>mduyW&t81H^(~mnTUoW99#{VE$(tHF8lTjsj~+XG7`0`wY*E@$ zCtvY|Z5**azxeRTvDb8cM;UJULCLR+-*{;5+d$GJ9?cWO^S&a#{$|^VPPJH~7%WF2 zXC%v3|7kIY-KVN6Bi;2b%_W^KHk0`sqdCm=OZ6`s*+$rhw+h}`%gqJ5F|Y|2jARav zj*xE;F3A}possFuZc){#q0FCQ^L|sk*2NyPBX&W(?-=CGa-DL0yPSBuQ6eL3IMgYW$c?wF>rGfirhP|gAGez^U+(D_opQZw{Vm25 zy4|mJ&1aX(jq8urmwYt*$guokrl)MS+IMEVl*oXrRX1ISO2=FJJ*-oAT&GL>xvq{Q z#EWa8d7=7ih=i}%rh(J>wF{r`xtG9wW2zHS5_7)6f8}zQntRyuqYEtDXwJCcs_Zj z=~2O@koG!bH9slOOAFR(Vrx!4jg(EJNl7Jlovsc&`99S7d{rgThP#K!Frv)6QYyWC zA#^s{N>?h!XvW0VplHN>ddg*E(%hEc_T0dm;x6Zp>z6Qg?Uh2V-Oj>&1?7E?=oxjZ zj-l)Yw}e@vl2PB;37__@_`dBvL#eA$KII=hH#UlV*vRiQm-)u7+0Sdvm^NVEalY12 zPRx*gx!(7ECD=E9+X;ULzc4XK((BxNdha#Gb!Ow>`J||%m?Kt4I_~J*d3=0{v3%j$ zcvwozyO=0bLcjX0;@Rl8nJs?Bn=V$8j^1PWV@s{^Ja*CjOg`pI*)}KahsHM^tVA)B zz)t&QZP%=}&WQ~ze81jK+Z*#GC)ilOa?RIEGWx6#`}MF+!Au+yO;KJle-TAo7DZf{ za(o1C&zPQDC*8Y0*=kX13ATGGCoN@a9 z%IC_PXZNT)-jCo&ZED3G-e%2{*mQHjw%{qXS9bZ~mVLo<^lb5p2e>u#hMtm{ni|e& z@EL+bfO`yw5PZS~Khn4izdkGAa^c|bevgNP6Jmiw@Z%hH@OS6mUGTGW&E8-9`@uLw z;OHp$aZkqkc{V9L8UN?!Lm6NUNA{wek`nlP(bVzA4O^$1cFv1>obuocV*3l1op5ky z*mr(#m9$QN2lwx^(AIO-Q&SZ;wX@;9dfo2Y4PJK}`@ zyGxzeJwqIP-uasE1k3Iz&Q?+<^wbb6a(0e4ScG}`dHGLBld!O`NIG6O6W2Pg@Z)lD zBz5AZv$MT8AD^3>8?T!nubrbgpMaQ{7$5&xzO!d}z!^MF9=6U`-Fa-C*!FJn^FHTq zIGH+H*gIR;*|O~1_v$q}7iXyxCw31&TH{30L&t&WLgDgNG-_8i1053n^uX}?_ zC3n6RM_9Puu)ciW!UpgR%polx!Y?ejd%+(=zo*=Hsow8P1qH>|G`F=@Fn&jqs4g*ZSWVU z+0H+F9q@~5?=SdF7(wTWLkE;X21n_jy9sMzM+<&`ekfSq_-hyrE*=2{ z$|B?cfBJ!xh7JlBa+gqG`#-;ScSe(^{?K|NHoqMpL z=IQ^-OJ$Ph@ZjlnIq&`dJJu0EASvF5{wuD732&D9Lo?>M&$9ftl7n+4{kNAA9OGj_ zS#E|Nxp0uaAp1!qv6~AH3!g;Llp2zsdt?oKl=0-`?#jy-US^_Ta-3x zWk9N}6uQq1>AktBX?Mt>?G*8yDZ6i2SKH24tW$Q%C@G)M-@kva!)_G&ZmoxJFm$El zh~u$sFsyCZ^_93VVC_cVZy!2zXrk9&Nra>!UW9MC*Qu$~JjrLO$vofyokE7=!MT_T z4p#OHgbLfkvsO9f!inDV9~Q;Pe#@reSye8Yi6Mm1@x7|iJ1@!uR0eTg2BLFav+m?U zh9JX7FjKzLzdB_O>j_gS<@m*Uu%N>)3CiEYwBQ1wBLD z#%s!+Grt8PBSO%>Tu|tOIh!r}``cfeR5F~vfN0a<~!``}ftx)Srjvz;fCB3mLrhN-dwgR!0*a8-dZ}Z<=^f)%hqpX{07v*QmJ5bh}v<$>%e!;($Kx zW-Z(sP^({?lJ>ZAZ(w7lNQkM-YhjDWs7$nf{$b%cCzFdd9QHeQpeEAyrpwf6q%lm# z+^B5te4^Q6!I{#n$#_x`QBgWwLzgzQ$Tc}ZLMG3#l+`gsSV^rtJe}u)g{@&9(@L9<_Sdy0Ydr3T`i9O)DJa}0db4TZw< zk*$Mi!2Omz7FMAAUyi<=I)L%(dO#@Xk8YC(j6tBW7l7*BL*z9DAwKmtoo^vd;W%o! zTnx?V+IVzRoVE2l{F5{-T*wPXsm6(lyYOD@&xQW4Itqn{e{5NmW7Wp!o}2N9r#pBY z^W)laZFR>H5FuU-40#YD-1u`5K1oX5u)_iFE_rrG5?BhH1El1SgEWwVME7WmQowaO zwWOayPZz$hKY_}4_1s&5RonLB*Ygmat14@E;OV_}#DA_H7morsX}tgBtWbzkYPa!O zwQmbOmm^8hiaSaKPd{p<96|+uevX|Cg&)e;%9{CVNbo42f8fG? zazqbuwaM%N3kV!E0^|t1;D6@Aesbz?50WDfF6)EH14jrT&j5({k6ieNQ1`{7--5eI z3?jsl1D&}H3ozk->cW05>=&xTegXcZKt@FdGHiO#2#5|Z{Qsp3`?;`RsNwhrDe#q@ zIDFs;1bP9O)L+%!FVerN{Zl7@;*!6r{co%K>$U$K7XEte{XS&ZkN@@B{|@kf0m;7u z{9i!wZ|wRPko*k0KRNRkko*NCJK^^4HuB$k@OK;e2QdA+jr|0e%_!mpp4`J4RvH!%GRNd5wneZ`8udF{U?n}Z5h`->HSOE&+m!~HGU z{H;bFRFnN%jr{*jp*`>(bfO@>l4-!#nLp8;^_qLp5_uibp`q{9WZVLNmE>y;f*NSI znKCQ3>P<0lXZXWDR&Z7{64s>t&5~yYh>_r zqX`XcH#~iuVR`;I3Q^vgw4EP>Xc3uelPJT;iPR4GZY3HS_Pdzt4d(DlaI{y9B-2-f z7IOXs+xs?X$sa(`p2H4p{qK^~F8CVDtl^!ip3l7z0R`TGwphtmO6}? z-TFPuNBf&4D1OXuc407~upzuB@mOq%+e(2N#cE_Gc?5Rl%hUL?5n>04VeB<%R{S`~ ztN8B?%+4K=%6KBZ_Hy1BhJo~RuP+nt(uvTeyIhxH)mEe{KcM>t`5MUh zb*7-`zXA0w4Q56xhf^A*H>Ms{7ICZU4@OAL-13?!HV<1_+q|e~GZ#w~$7w(IuJl?+ zF|6;}tLPl*8)0b4W=SNoAGT+%hK<}-pmWd&ZM}OU|KgYwg@$!8%nvJMryH-ns4~0e z*}L5`D(v&VDGvek`*6&}!vh$r3I}7vXEfLkB3q`C_zpFk$GAe0w`efH_bHc0W#NFY zm-pI7<9_R9((1rDkx1e$VL6L2<_P1(PkP1QiQ?4?P3A5+jGY>_TaJaDyEs@OVH-{~ zTVcBJb%giM+d!kdHPh|Z3&^h_Gk3l+`;{(HPFE8>>OuEI!XvBtbJu`x7eSpcySs z`g~xl+HU0%F8Lo&hz%b7))yZ=lgNm@SLV!nJULml^;Hwk|EXgp?VvTtY}&Gq?m$_l zf^OEhimQABvXC~Ft#M<0h>%aUQAHp$BWAs&vH)ti9$fAo;wqP(1hcJl->@Q|t-X~k z7Eu+A-EwkR2-LWsfE1;I1zU7|z&lz_GM-1lSOwOFRnLPE$7L32 z4j^P*2FQg-#Wn1JG0?4-0m#g7{N$bh&7k*+ouGoJzo-|&xWLoRrmkjOgruaN?&#?t zPVt9| z3Wr_$GhIkZ+?((ZO(#%sWtS<9SW%YmXi}vEp_UV_MoNEbTyhf7@U1sCE6RV40e_?f z^pS(O{Z-oGlw$>Vl_J7Xa;Lo><}Fw@|_3$pPGx5 zrUV_DUGMsM{~QC~aIgUm+_|)n$c?h>SLYDC2emwV<&ziCArFa14d(%oH-$!v;prn& z*G@+P);$>!I)Lfx8bBa^5^m@N#z5b!J{T3&VM_u%li#j%Gb#Uh^fVESwTg2{-GN$u zxo&iTqx%2e%sRc(=xTG_aRG33bhzt)rLOCMh33S&4ID5A$k@@kLt24JCs3B(9lPm( zLz#qk`Ty{ z!f4<^-m;W;K=Ue2`d2hOJ(%xiz#Ixei6gYA2We}reIxb|nxV#}aX`Fl9tBz|jm0VQ z`NQCm{luG-#|OeoXM9+U-0J28>}GoVNr&nQ>OhDL54<>d0it7~gt^0oI!2UM1uUuR zejU9gM2Jj1FcNfz8>urqB~IymIo`$`W~e&_)iv_A zohoRFkcz9hLHrFYwKw(MZD_{3hx7D7h+?%MN>=S4o?$_f6vuduBw$%(3AfED;cC|3 z=ns+)3R)lX2TwtpY7T*dT>8C9ax${IptK}tj@VZn2EUm$)ohi)VK8S*SnGNoG^4%3 zNctsoV)#V<_8C-0eol-AH_Eg4LOASjisjU)c+lSZ!Ts@{E)@rl%S+~HvK}4=pZ9KfQaer45B$1mfg6v1m1f6+nmC1h!^ew?6TYf3 z0JQAl_9A3nezbAiU&)A_vBf6m&# zfxHb*zvpFGa$U1*$;G_(D$%q^ylr1O73f~3zS2(j6trc_oLamK&1imIN2dc3I;5Nu zfR%MPgmn7+2%r>E;`3{z^r3Pz%8ON-UFPs$@%02sHOGw30&hkKj)Fbqzx1g4FH%sU1;OW`?O`Y;6grGuCv4xUxKuw5R==KA<{iOuu0{g9Vk9_21 zpwMwTlg@&FnpiYJDg!*ce{$Pvn#s!8&(*qe`pf4KZ_Z``fJx9?Uh@j@^u$+gQ%?YN z)?EG;jzUOXo$Ztd=Jj-Hf&rLUecxOdF<9dS>7UL4(xAMbG-&+DJU(@)2D zd#kgyjxe=tpG0L82rT?*sL-)+U`--3*$2c$7IAubxFeIp_j>n9D`QH1p39Q!cV`Jw zcbG(D++=(PHL*sLDg>16ino+sE;M75JGLDMo^CO>G*t_@@!9R$JHQQoPs#%VQXbgG z2~Fxw9r}|Sai{qycU`58Ji?0C;CKk*D~*eGeFi}QnFT!*ssj!}06`*k5_S4bmVg2^ zJRGSt#>%Rla>M3q2Go-BP5|(eB)p&A|0zTQPw?2_1a67S0gRxdhy{GsUa8SNP7{+Q zEk?r|3)>-gZ!>@SsS$W^?iU&g_XN*AXimm1^25`WqJ)MB;pqxlSL@{f8dDt&I$+{; zW#EByCtdUY98)_QJHBg7y|$MP=GL9A4M@4!e0drF{4S8pzr5o=iB|)}+XQHSS7gA8wcy3D#I(7*n3 z99RMBe7J7_G~@H+BYV*Uj=aIxJu3?@E>`Ux?Zktg>&XGD_bK-k(b#ii&dP(uqsF(; zN#3WKyoSb;eC)P**B1^?cA%S^5!Q5TR@I0j_xnSBGSGwuvblIWZK!mmf1pj` zk%+l^*>*$JP^;;s+QIiZq4VYT#OolMP#o=5J&tgST)YQDjL9(@2%ZCIFE z9fhDSxUTT~X1}CY4mP7pzC;{9JpM5*{&VLT$zkg)MWfr778k3T(d92IeZN-|VS-#H z8AM;+`yDn^)l5DItj&!qG~RkjCc$;+(57qpi&Kr;y2L4#vw9F6FF$yC_XZ`rtsi6s zMz&E1p%r2Ad|+_z+zwa>K^@p3g{NWe?1^NI8%f*#GEAbv%dU5RdbUoaa;w~Z{*n2{ z#CG4ApMG2hOTxGox`p}DQNdAgr7Yc#qSxbpd>+bT5g73=Jxlz<^8zmX<3XCm{HlvD zJICV(wzun6$CpcIB52z;!Zm!hkoF5dScsIS(JN@XU$ptIZ7y_cWyX}SP#Qc`WqBrA zJd!wNV#+d03ApMPtsbfn9dlh%wbQ6$D$m!zP+aBHISy+PRJUm+VQz=3N}U(C`7f~$ zK&Yr=1^JDq^P9=S_TJaXIWW}QT~JwCi!!!GMh&JBO0sa5Ye z6EXaD9aVQUU{1omQ@z&np1-+cl1v zBBLV3C3&SMzv=P&88LGgEvW(9innatxD3&;Gmlq4gX-3P+TR3E_mt>yzQ)>`dd$U_ z2Hw`yrWaKJqUF++$o(+NT@Sxl@dGs+!$U{WAb-9K z0G@u#>n!`;s`%xRqzu7B@dIl{-WAj`J{udb*r8JQ-zfp)HYFV$-7P0|agIibrPx?O zb9F3k5r!79nNRD%rYuCq(T0zV2jzM1$v1L%`h6=ehnuXeVN}n3!DD?_I%uj%QVLk+ ze)_E)hi7<{ZjD_NJ@s0RvABuMp{8G==Ih1`lxVuZ@QiiPuQiW=htJ{)DJg%*=Qz}T zy=!zx#dxEmXuD1y^BJ8qRVCrMFT1^U>eVPO_m#@y6OTJR)|R)32eaiMIva8fGF#hkL#6VY*<#Y zpF+0-q?a$bx$HTG;oW5M!D_2W$n11xE=S?+cVY*c0|Mj`*6q2j4IroGodZy{bK6gwY(1R zWF^qH61HuvnxEu%gUCNKfyiwNx?{&ef$b=IPc0ZPGbFE@PtQE~DTU;Zctq2s<_5lB zCpulb+6^mSe_YymhWS4wD7}ex9^6jzwP9^-osRpi%&JXUU~*`mQ{-T?cjrcl=Tj>r ze9sfLMBfPGSa59mkvUG~0%+{S3_chn8jG9E8& zn8mw}RDqpBPNXK zx^ek2?5KSHwz&7~aZ`JHlXo5Nczdg8P6XjoinHkl06%u}mG4&Y>NnVyiubyTarnIf z$nd^846+|$owu~(=kqXw(Oyet{$$23TOm22)OPM}lH%u}P7j%nnpb?~$u*nS$Gp># zkcWwA!qdt8noBla;px1AZmW*qFwk{v8tlUl&3+$7A&wuK{?Y?B3ItMeF%2bWdj(o;CTp5G=)cEC zhcEEzW}4{K>Q%lEdo1r_4^C7@apC6|L5QbEEB5W@ zoB8lYkH0$6@BYr$VO!Iy7F78*h70;Qcexr{03vxes{hAoV=a)(1-=_CUefd9MJpk& z#Bmi5zu$&Nkjl!>&kr38O z_8C!+mXE*89hnzF7ZcggF3l8x{kitWB{lC(4fiX@oW7xsc7vl%qwOC9jaI*^&AlM^=FeXHK7e*H-td(akfjphFA{YX zU*2^8sNYf3Es{u2#FOdPL^%yoJOA^W03^Yi0G#-y)!9*&y7ddc0VOo{6CUSGg-zMC z5K--9WFIFD-(!(@ySDOOPlr4OHvGT$T2-nfS;m#D{n!uKNwie_tw^ycT)hEFTCEpnKx)N~|Wr)Q+-h)Yb} zjTmF5n8cE^1x!=R4T4TmtgQ`2u9JpAh`#%Yk0wE7sxDuD_B3kZ;bMb|@_orhWFq7U+4(H#xmeNJR#TO2j`X?D!9yP;D(U?EmWYPp zBE2QI=i*_ZqiCBaBQ@`QG;W3Q`dDQdE(D9Z%)Wf;NXd>mhHd%0c#&1RMdaMJH#~jL zC(idY3KYxgk~APf6&e>cf)Hwbs$NbYo$NG!W}i;4YYcu0nWnLmm>d)xk1nmLl9^Do+Sk1<~su`<5}WMz*Z#BteA zPP^5X!WLh+`}VDKM3{5zV?-TPbi6I3w$?m>@i1)zGsd|9wg{JWUN9f(CO4q$@cq^@ z*EHaFu02h&Ri>fK6)QSER9Hi;`!ZZ5qFacD>MI4D`m*-fROo5ssrgs`PW~>v2AN(kY?o`CT=k=pO2-BU<-qR^a8P|?s zCv6RN46$KXpVKlg;O}!0pJ?<-t~+EE+q*D2R!M(idSlfh#X#;o95wfr+=zjBeWR(S zW5(~S@O91BswbUai&TbU{4fLP9HZ~`dhPl2X|AjQuJp#upJvs*C@hdKhC*C)vZ~KS zA=J8RT1TL8wNEcQa*pn+g&OU9!S!O$rY5H6p?%;W$;Hu_}4o$Q$ znpte7Tb)EdHsAdu_me{-=+_wDuz`)7N?JRZr~J94$}UhtF+~S40sL@qG8zez(S#4r zHQoYm7O`ji$1a8uscT&*>bnt8jS1&`d8gPZZe4?+t{7Kw*JqmC2Z2~Az(ahG*Ue(M z6xyR_$|--b9%&0XbA=z)?>s~Au=tgzwyH`-g!l6IV+=$0^kEdUYk6+9#=hT~F^%XB z`Q@+_qq5?)(i(xvwb3~wc675d4~c!N0JZ?}r`JH4`&+jW;}yu#3HcAq;I$zg%R|lZ zblOwOTRVCAY@T3{9+DmUHS^8~Rpr64gqS+N^p_W<(;U2H|)rmbQ_LEQm6?MZ7&n5M*X1FiaQ|mwW*o(&vhd}bk zy7P(Go`Td8oJZ8sm>K-ES!4xGEJ)-SxYylw=yp)78#KwoOX%lIUFu2NUMgAbajO*R zUwJz@^e`k*1q5}OBQu`bo4q}LY`z<`e0Su8y}7g30$@pHT4{5;DL-oBZ%vf7hXsG>;!gYGPRRj;G7`;wkjDlu-DJXcX z1Id4WTXA2gW8puJ{21BGwkJQKh12F zNcszRq*AW~;dp80LO#qI=Uuc0}aBYM{GW!@zcH$@?mk zhJlqgMVq=E6{cdQ}xoc!XMd!%CtGSOFV}}Eup5l1` zwOlCI*#K+rt`knuh2$42=EI0nGHk3DJc1DMUfOG5s6MqW@ghX1AWU)JzG{c8Vto8L ztF#&BN~gJuPS?qx77y;6JzN_Os+vM()Q9$P$QG-8AFL0`ytNs#fidg*v4P$}womZb zDp$v|C?g^kG$eRO8f}y#T1*>gnL_=xz7Y-C4Pf6EjkFktZzOiz-CRyxd(>v`QO~ySBEey*trU{t$qp-@BuPmf?U>X(oZ?xI+p#aGn+OA7(H5}E_i})2 zsV?eL-Qar|WPWecNCFTF318FLt_3B>RjCbZs+Ud1X=pR_l>M?Qf^}sRv`tKHcUa@? zt>xbQoEfi%_~V|ZXV!+$Llc=WDD&oq-yJ*2O#>!ac-h;sY0Th4M@^649PQA2%W@dI zX~j4lx$g?!wWSQ>TTRl%UkAuWr;gf{%w)S`ABCaa9aor-!d(W+qI5xFL@RG&mK`-w z;lY^$id@gkRt8icZ9WU?2AYsI;@bZ55NL+ma`wKesSFm9)oiyOwz~wW^$aQ*?WbF9)Q=a_mO@Q}@*|Sk%4SQXD=^T)g%*U~Mb& zb7<1c_7EBqX9YXTytZnNnIxB_W(Y=O=x)88CW~mZ+BV#*=QCt7pUzuy*HCXvyzN(H zsq=ViX11pCIbz{j+CaI$%tj@7Sn&t$k~I)JxLkU2z2sgE#h65J9u4(d(7QWSJMHV_xa#P2;yeJa;2m#|AkODgb zlZW6Xe`X&}^c~tG@pTnOLz)^pkhEp9`DUq)cArc7L3T%m6EY9Q$OW@mzcegfm7UCQl zg&k`upDfekf9W>e5VlVN2Oa?h6vuRCx>3NFlq&=~sNpVkxjnO>Fk9emp2LZn$VzkD z-)m5H9&dwBpRUqx{IkPb0WWlwOlHIntqcWZg`TO8-P6j9suGt;OeA(9&|zf@mf?AL zlw}%B|`M^Ar>e&6?HUj}K^|POZ zQ3?01`vnIFo61e*jJDg{N=wqG)p)b*Id47y8j%boJJ*X{rZNNZVwftt$}sg9(>38R z@zw19&|N&$@EGjoMy$*CvJhil$a~nP+biDRT0nNOaHX6O=eMS)QR<2M8I{fTwqQEh zjJ{URujCD1XKk$-9MW@Wu)@5~*R5%)9AE6T`>+T&qL&nu!nf_p=-$m-W5^(v-fo9l z57MY}@+&DZO=;8XuwD^h)h^Zg$Bk4Bt*5df;=ci3I_>q#-Fl!&?waM*v(-rA?=iY_Z zg}iSOrA`c`e26EC-L-7|4fZ?K~>H*$ukYHiCG$&4=*1XVco&HbI}eX@$KNXdoOPv zChKCo;_>B<59xr9Pub|jfjem;z9$cvmOkZ+5ILTILOjVpZJP##h!U~-!VQpPcilI0 z3b;y0UVlv(tC{-7ge;GY)`d3kCu5U5>`G>!_6ngx~#`vN4YTtDwxwjptEHsiTbNp(z{bE=~qajfrl%v?rTp1`(4TQbv4a_ zqESwU>U4eKI!)MZyZnGt#(cz6J)z0{9<>e*%lEu07L${9k%LSiz!9WZf;IPWgf)d; zp{>tme^NQ0@8b8TdBYD2iXszSJ9&+Y9cMee3KL9o4BbMH7wFUY_O#HbGW`PGu`8kn!@{ByBz{vtgpDQ_Qww$Zkna#oUT-3^QF9aQ5f{u)pMi@hd?bYZPh%Y zp&6&*W4jqaYhkg_unuVYvcBf%wA1v}_Qw2hN?ZZOzRlqnGcttPPk4K2CT1u-r@(i+ zpR#F*T*fiY4rZGaUU}SdvUVZL+&y+z4;B?b3W>o@cMntKT^W>1T7!GfB-uT7St)9o zDXpO(nxPFj{>FIf4aPNZX1jMUWC4O?RtQU|;R!D9H0QcoBEvkKMqRNShPgX$XI&-< zLgcT29MP}T_RLOd+wSSb!zl{v-unPRatB^@b@klScDvi_UkZKclGfMBhcE-)EKJ6Q zDIKOu-_{k+44mFx*HsUbTkfsk>~PcE^(*|lRiR(G)QdE$Gv(wp%-h3l7kzzNjEbB; zJQ1DK2|+96NS`Y(EO2S56Wr6(orOCfACaZFcA8ma`G8&%$JxG675d7U9USu?`s9Zt z0FHS9Te1S}o3H5w&VN{tMZz1BKdlkWehq(pGdoY^qC7xOJtt3$Xm{3 zcRGYgh+(3RNpdhba^y%u_lC3Sjx$Cmf|miB>vH^nbF}W;K`wKpe)Ao3%}*nReA{my z>NPJ+z`OxvQ;HnD@ya+D#Y3l`UKJ#88m>cJHZ$agNX?UuhJkYXytmKNyA(x?eg{^? z8#|stYv*NBijR4K(XG40C;cS}1_9P#xX(KN$5LY4nODBmh+gLoxw-L6R7@%M4f;m@Z31#?3WH=Kv$FAd4hwI6N_ttRizDN>I?`>mVKjZo9pwrSX{ zb_MBU<*Pf&xtX@cbaHKC6fL?zx>v2|{kIX|?HV&Jnm|9H4O>(^NFj;kq)O>S+TMh} z5s3u(=(JR60MS}M#qQ5NtD3mGi&iXDna+*J&xC9AZ3eCmxWVpAxwK3A*37>gDzEgm zWGv|*%Nt4Th3vSuR!~fB>v?p0Z%4sKI8(M!v5Ki&H(@ikGEYBVs82(i=%B^8R=>4H zGU{3-`Ku6~%!ZdhmO>_FGEg)Xu+u!IB7WA`xcq}gKkev@vxh<9)m8ICDb68UY5JzE z@rkjOffwwkj4d}%qu)uh{xYFYJJq2X8)r+ zMP4coCmuCAYtG;AF|O&bMo+Z9lEu+Fzx(FjSYoipQ%(2O*wvzDbMS8B>bWHBl#jze zAbCvb!kW`)9ijPSx->=~_lAU?b=u=TzqjsVPh`^I=|KylwG55YJQ1+@=xt<+_R0#_ zL@f0fAM>lU9W$Th2YUvrKq3|sWxB0B;PkLe9q8M=|F`L5grUhd5&1rMpmQ-vrEJ^l zbzVb3?UnjM43)mq-=gO>Vwf2gwj^}(9Li^I1NRjUUc@WpDHXhj-Gm5ii-wn1Gb0Uj zO*_?6d)*=pF*^l*;D`IZY3?t~CdzQa)3>f*OI@es&CwA(HZA3E%`wqNt5-Hh-lo+s z`^&~SSX-%@%TW6QZQbF`)wHIXfz6ge44*VMp=e=l^cZaRI+3IsmU^z= zSWL)Oui)luz9sKH_jUsa>cM!~-Mw4T?S&gOc5cRfagOt&e?z>WImQktzEz|nAlkVe z!?0gY_o|#h?;w`P>#YSE{fM)o8=F1-emgOe5Bnu^s1;Vs(;itdfW#_#e`Ub(sK<${ z%lP@yg2sZ<|3T|&uuc6w{)(4Vtr#mgrB2F>mD9fX66WuJfr3DrKo*xeEAyKEWQLV~ zq~4{D{L)Tb?qn)WL`Gwi?80Z)CMuON@rL#(ABO4VTU>*79W)<@lO&eaXJ07t+ zHGO2mgRuDH{P;!iL`F+F!)&uyA7f_Ms?pf@1aCaeV~xva%bri@#oHK7A}!;~hr!7v zX1Dw9;4S6!pX_e0yr#_e|9~aljGNBwmKXqkW~`8pvwhCogIq#?B#S6 zHJ|vLf{g-o7T))dqw+B@cDf|x9ve7SE2)@51_ze_y7#Lp3D3&ycnfEq@I(~Ml}osG zrs;)`ux{~psLxtqc4K8;>wFjEkvqG@`>Xh~JWvTx{BbSUD;WdtfJ9%6U#QB3GvCV< zdYfOllJ-ei`#*WAOeY}abmAA!SnkRt^UJ0iC3K6siB3OhZobQiaY#XePQ&xNtmA)1>I_U7}<(2_SH4 z`ADxlu5gXuMfqM%Hug0(BM!=*zH(Eql8JH6km(U>mHprEJ}8!qqSBd`kN|@eRf@Kwru;+ zLq?@CXz**oQ%_{wNExKhmovm%yt<5WL}}}6SczvA)Naoxf}D5dm0&U%Xgy;4goZje zME&dN2pEI9=BOz{>#ZIfLH(q2$Ixh~FI-UmjLs9WoN5*72LJ!elguK-^7n^Ai{|2f(6D4?3)gd@?v+;g(s&O}|Pf4bEOhIZ+6y9&0 z4^5Ntl}#Ue4+$?zjl3dcgOEgSmQ6fRD$M*s$~=kcQ>0WRYeu8fES;Z4)~$SgMUdi6 zFqw9h7`{f_t=IxZ%~ND01+znjId3wn$wBKCUr94PWO)#Y^pTX51#iw3l>CPtDh#%E zo!>&!2YdRoE7U$;pNOQX7%eKfDj)8bo_6iY+7sA-l_36(PJyHmoI1xh?}tRnPTaj4 z`wVToAv4#gD2RmyoONgQH?KMLP_x5GtB65vIyUgRR)TT9;I2IG<|l&M(DiL=DAk4mJdLVn%SUbD&&dRp?_ zd6C8G6keP7k7jvShZTWWoXI7I7rW)wYX%@LjX&5B|MN&-1B{u?BKnsoQ1v|_dHWnN z3&NXFcuFjVw&F^*UB_(UNw}an#Bv_v)0(Voq0+ALdH38AN*2hCibMp(o;Xrz>_r(p zx2H8+2FHk7+Pj{bT9KBPgjh^I<=azvy z1(RLRI(XEcFeM<+`k1@C`BFuh)a(sIQ3Xkk+VS&KV$ZvM&UqkE%F)~}?3qbtGk5e? zxgCZ9K_W6Q$BY#+%zYVqM+I6BYpjS1VtJ5r-A95~mTO>r-P1V$Q9)zoy`KUI0d8qu z3Uka%>%stUN1Um{!z)_D?-8He%L=b_WZryHa*Afx76Cd)Y3QIl4c`qgRjqil8k?G# z!nQ&;!lNG##9?a;tEs8!uhy?~k^ItR9OM+9g={*ruVMPTG^>=|*Z2_bO${(uwIGW&ct)eD>e zg#3`;rda?YxG)((2t}Qyinp*m0l5)(2?6OFj~$$8h9xYxp=dldW(=vilg9@Y0nLEx85 z{RmRB`d|Tw_8DebF0188mIp!`BN@O!{0`xJ7$DgM&m0rAw5j`XalMy^u=I0PCb1m- zt)^B$w+s#hiX!pnculaU51Xum_M(f6@fhdDZx(*4y2)a3?Kw|3?3hl*f4Y>sQAD?2 z1W*|kKVa=^43E}GcA${@c0RD?f%gr%KweI6^Eu%x+S>|dWdSS?=u3w@)Cf`}3x|~V zE1pbMLe-|rhD%e?z*5I;ry2G58M>=nE%~T`9j<%?YkRGl$wjp{sVU(yvv|hnz*cYP ziQWb#dZyITx;t8rzOeT_9)|8`IUq|DNR3*jxpRXUPCsef+C}{5QS8nbX6EH(Vz`IO zeTN@_X_wQbvfGA*#q?rGqyr?)9k zuU)Y}W!kkP)2aAO%K!u~G1KqB1{R2Xa=5`LUvb5!?1H{JCzTIBb0k7g+@NxM!BQw) zs~asSup6CZl6QpqK>an@9E7g}^6DMMA1Tq2HU4ZhdPFvvt66SjN$(QB#2C2&1mzN;DU zlgUUJG5k@n#9D^}^t2zFpfSKg4SgRfh4(AR%#L#O)sdJ3LQ_;)Z~Y1*z}a0oDoP)p z?B`vq&Agdgy?8@}M<1St?K0M>mw!}oiRAo_RQQbmJe`wD#@i!GmCt^tm0oIYHd0l0 zw7RfASz*aCE}NHRzri47C@!?k)h3PCnj3eRJBds>XH*9UiB+bjT(@yy+D8ptWB6V<*$#+c05Mb0_d&G*{|%tLv=pDdvG3_fum;- zx_|i)DjAdYq|$REQMKJJ!nrtZYuGR9ZP(6W#(hH_W}vm?d)n!-1Kd#hp$W) ztW>m0h@880ez}FlQw>@V|Kxb_v@Dkh7mfJ&y`zbK(#-1{HU+1rq?5lF5uBRFCUgc+ zQR&ouYGXVb@6R^=m{DnN^rJE<>E}nvH=N7VUD}u(V!D){C#vEl9!mLQJ3hE+PYoM6 zs#k)2phzgyjyYO>HX};0!|_Md{khUALZpvkljW+PZ%cp_r>feQ99elEtUI%Oa7b*4 zdZ^s4_$~qQ@v=uouGepQNpG>w?{jFd!b)nyWElR58_$yMuo?=Sn(ID8WK)x zA37~4XHS^VAfe;LG@d@zfaY0z%<>>8Za7st0AY*xe@J`pXgIqsZ1^FBkSNg-2_r=? zf<%qpf)Jh2YjlF>(R&0@f+4!mjoy1n1c}~9uhCm{M*Hqj^5pq_-}=^i*Za>b#~I^3 zXYaGiwXc2VsqIJ92%6iUbPbE-^f)kJ%;E9qT`e_DDz^ijCVYyAm{{trbZDyXf?l#{ zH)JJAMF`+uSYr(S%40k{5STN!!|W!paCe3Sc(p*IvDfe{RfQ9IhlC$|6`Z&qS$J+I z&|i5_DgMJ2o_3KpPT_jmY~DZ~4LLwfnc6v$j*=f{8O&ab+=kb>PpBcx#^IgRd2KCq>eH4_ZkxYzIWpyHV??9A9{>Hp1nK`^}+OP+xy}X8@Xps<_zM?{MbX>BM~gvdRy;lCe92kZ%oTJ6pSG4yBsl5{6{4)N`c^;Tc{YNi&G0|vfk z8D){Y0T<3<>q&m$JDwFblyJHmkBo_=XBC+G7CG6s)7GsuvQoeZ6ma84k~a+BcIzUr z-kDFE+KO22=8(TxE~3M`a38>jNm5zVHM7=AY^+NEpnZ@I-NyGM+F1{627k6<-7xa6 zW;^+*Zri4gYx~gEL32S%Hl?n|UnWmEx@LoYe0Z)c%51I`nw}ka?m3HbN)jqxk=Wm7 zHgoKsqxQU|TsBxIYFEQb-uNDs<(EJ1;KdW9wb}Pu{@d?0aGj$C-5hQM>EZL^nui%! z&Y706YJ-Al^5<5!9&jvMxGdopYOkZ|>Ci0GGtx0CRqQc+;tW^Es#|Jgy|romfX+x} zN%n1+MkU3t7o_MdXOoYkUb22XkF|smiz`DtLrnxcGDy}!dvPO3HRyh$)%z?hHwTz~ zrGUBI@{1YvAd5v3*+)^$V^<>akiqDbypvVM5rVKnM1e$Edl?kwm&3EcWHY?8bSI~; zw09l#{5vZrLZJ2^a@eI2wU9U%E$&HsG>h11nR&5nQv}Ll-=Xhb+fF358ms|PK3Af7 zXE@nY_qnXhjQj;IPAIgd^5M(a&ca8E9wjUY1D?_Htc2<;*SrNz&vTpg=Vhw0VLE)l zc3a(s)$B;F%W`WLI`>VuWNP@-RKC$vn`J@laXQKk1;G9h%zQIs8+n1R2nb?Oy3V=A z^W9SpRd=yBf2oqG<+^GafKBs#nnhn2t8C@>nB~q`+=+zUfG&M*UW&!QM=n_2BVTvP z;oKXRlD)?&hzvDqu@s=|;~*`7_Bb=W4#)trMun{|w@HV~^MzDpq5pOFS~0ST=Ufgw zHI`MKHREE`xawx#5}k^6Nt_Jy#(WFv8PuZO%QSH<@>GThZ&ij+z;5aq0U|Ca5ZIT= zpg-0~_Ei>GO2A%y>)>BjVmbdaO=DKflZgXkWuM3sSt{n{!+NNwu)daV#y!a92#xqR zCq!i~Dq>U*=pZ33MXxp(nY*G4j0VlL_#|u+L7CQR=(|LG(aLQ$=jtQ_qaMwJRqc@&oheL{&c*YzEGABrZoZMWl`P`QPk&p-JD>WERtae_Z zI^+5j;h>sK&ap5P2SY2_^HkG~m6QIdLRAT#din?(noMVR`ET5{Bo+_acUKT*n=?(M z@GtTxBcX?i?N>JPf$;F~b(PNcTTb1+dX5*@){Zf91Qg$emYq5mz#{^2hS-Y!P9p(S z0vpY*5$0f&gZN?@dGEPvoy}f-YSeqo%N-^y-~U%yNU`zkF?SLxj17#G<9~H z&7CY~@GG^a7FZl^F6G-tv2ShXNG|ZBR#;XBL{E?v_xt&qo%r_?&)&Wx2fih1=hrO; z;>M_brz2&r&CA0|#pGE*N3Nt>Q0HG?;cZ;&ytAUcvD}*cE2(#0eXoXb?Ko~QEw#2l z{A3bQXyTBiG4eX_xB^#5L^MiiR=W0Sk=Kmo{Ab?LQp-O0Q*3tiP_V$hI$Bh}T| zY&MULi`1dW_?lI@2_|1{T8hQm@KDLF+?`7waA_{=JcqOQj1Pc7hIR88#4cGH=U2_v zy;5!$*)f0YjLUzn22E;!Yb~_k4-`Y0SOF?aPmtkRULxt!pGOb*<8R^M^v23eWdFdX zceSiae1~pG4(yyo8k?6ao!a4mA95-`kelfR;r-I;C1}r@Vx)Wd)?Plw>}6UlpoK2R zr%(@1VPn~S!&BW?Ut%(?P?efFz3L6hb_n8T9c8mXD3`dd>%rCgt+v$yqq-`AZG$pq zJc)O9c6{<-+qVJOw-V=*MAZ*vn3&mX5DtCLW?UPbRjqOju|10pd5tXjG{6B8KA#M9 z<@E#a0=U7pU2`=_M@>m$oiY1RwKsE&GKTzGmIT*vh7yQ>7P@)o`+f8tLA=^`nr6K3 zrEvLv8wN+pV*b5%7zGW9>iA|2*~PXmzPjjU%2=!eUi850(?6%XdM3cWd58h2InSG! zOMoFDqd`4UruT!nYQ5bMt^boD_TfccLHavt@FKkAf(iRTWl8?fl> z%4_JI(?m{2A zXWlahA7IOQ@?=kgikeO?BY2hDUASPoEv!{Uf`NWyx7*dhi4R-(@6ZW2Q^ev8Il7sd zQ&bFY>!zA&)h?e0TRP6wW{?!X6V^`UcrUh%kL3O8z`h-L@KE^;(ec<&zF%HNPU#IW z3nt@(mSM* zRuu5*j}QFEq%%M?*idQRRvG{aVVApC)NhE3W4-?I1#8=LtuG2wt68%n74MaTXVz=N zsTA>u@h%R`ISK^4@DV>Vy90+b8Fx5ul0(6S^Nj;6tf)u#hz2YSkazWeIQLB+p6K?~ zn)^Ka&4-q)tOcKTvd*j!*aLZ5oF{BD=%{$Eyc&RGN0UEY*=sb0&=)fMgDWZfdo-FV zhCj1+Cd!tO>P^Yiu$d08;xEvz+8ceg~XG;=Fa`@pY@@pQ zqE+zQRXFsD=mmwdQb--rlkS;U++_dZ9?L#G>*MdlyRts{D7T>wpt9v6ckwU(09~!Y z?d2?zwI{xwGU|~ztcsU@Cv+B>ycFpv3d*0ct%N<+lB~ zy!RI5I5W;IG&%&ZVM+Fpb{A$x_NC|e5&lXVe%;d<+KI|qr2z@2Wy?pkEO%1As5Br2 zX`M}r!sOrL;NpMYu0C}=(vyL_DbfVK5gn()fH@HZwo13KP>SgXe)@ghmo43RP8qc9 zT|d*;V%@)y$KiHJn?4J3ep`8(*>LD`O*<)Z^6j)% zxZ3V=)lP5vvaL9^$ii)m>Li&A`b+V}8`nC;es3Y<5YkR}fDT)rvtEaSZ?3CX=7`mVR{D~NQ!MV(36i)ogA z?{%mZxy6>P^1`oWbb=@DQoSDi{DAhcMp_%dwo#v#N3{m zplt18ZZ?+n<5Q{5Iqu2tntKI?l8&k;V3J?)UYZ&6Ap>^a2?I4mbYyqq={EAtGV15~ zV9g?~mWvC`fT?4th{||`J!c@xk1s~h+BKyW6HFBmMRkk(1673JZ>9A%zjK?(4w!zrXhzP!3Mr(K9Dpr)E{S4%OJLK&^7ynrv=V&nfgk6304b7Ig2ZhKr zCd6+oDF{Qq-Ls<58kIjfdc4-#08q1k^IWihzsX-H)X~vDlB&9MvYN~M02)40%PiuM8Bg{YHUuf=s{nwh5-Hbh3WSM@?HULo zA7*8Ko?JjM8S?WrfS5Rs?{=x)sckL4QHHb;@}{}lxQ$PwT#Fgj(x8O;j)bSTY!+9Q zVIE&xm8f$VPC-MUh%aI_$yv-+F6Gq%)(4y813GL2neJd;mffDXH7>b-%1f-xpWCth zNUCM%^XQVJ{NZj1;8ic;BJOErx+qdp0N& zMHYc`a_4>SB+Xca>ESodnCCXIvIOZ)d&^9(jbmx7iF#3z@meY7N9!>jB3%0-5&;PDg*c-y7J2^Q0*Pg3I|_58t~i># zkM(t^(pfS``rGc$pJ0qimI}uDCEJa4)Wn2u6s%oxg5y6a%uC^E&XofH$Gjj9(@R=KeCfY`&ao-%Wc&VPevARG$UE*bDqu%m6yPjz~7pS(?7`{vZ`GWST-VcS-(n?@rzygwu zj%zVspEd+_!9Ydk4%_w^P*dfprIi5C)IXDGB!A+A^Z#;qBh?p{=VlNY{3QLCLzZ?Y zf}R9spqH;O97gCC9U^|N*Plp$fG>x?_|bWkq@(6pULTiZr*8ixxz3&6DnvpQ`b>m@ zc=|QkHWsYc9u4T(SQeW2k^T`LG_W6FzdVxUmCS5lc;7#x#GnJ*@ugfe_D%7rcgVrR zNbRe;08;c_gX+wZ80je@XbfBH_;;3D0!!(s&0=UuG&FZtC$uzU6cv06B*jxwRm`>P z)%ZI!v+Od$xwDg0R7F!`!NKeJnj6wlEwyB@iE$N8$x!Kb7y%fi zH`020>6;%cZX>W2-%YizWjr4*jk(sL_zsyMZ6MoI^-2s_k*CTkHEOi_1{mcGb0`mB zz%*_Tx;_3=+sHhxD=*~+@>hx`Y$w68XJk3zk?a*kkvjf4ye9++OTOOX%YL+RzsH;t1eIQw2K zDRXwN_w?WBW3|zCNuLUlN*mS6CdMg^$LS$1qPRNFNZ|1>}bG$dCYt95r=+F-ku<0KMSX2!wn zn{znpnWAXB1R60x}@doW#1mZJSJi)lisazqx24syn8ik$Px3cKO7Hi zpy%6+?Q~ddCj{SpV4_`j(-4?s1@46ySj zjv8ynZKYbOv?#*Ao}aq^Eo47FiT^hllDX#~rZ2Qec+W#_wUg$$ z^J^+S0n_eH`BE`{hUwur7&o37&$J+n&kpGQ^6>uO6RF;0O)d8Lx9VS#`Q;4&k?PzL%vd1v!O_a`<;X z`eA29xTnH!Wa`B?40xPd16)g$)m&LIP5c$BrbK@X-g{4!@mE~>2(+YcaqlXg!BXtHerUnTsP2v4_K~nGx(tzf1D~L>zAPFbQX0s+-*g*D zaNhj928@Qwc9L%hr78TrI&c@R`dO_<<8-$x=xMiepu?BsL2@}=H9q@LaPu$Z?)UV} z@Q3Gb3wQ#QqK)0gg3gmZfd-tKoztih*QtW(m28c=Pg?J%*c(@p{&B}v0hEBYPeX5g zDdqJe9yY7Roh=h5i{;2q;~$7~$ZJIxv+_vBFl^;Z+2ErCf(;s(y3X`LWdOs?Psbs!*GF=eKT> z0E&nLa2PDMrM3K>HvdlzswycHNJLN+II2c9*!Kkk_=$VsIC- zjcYS^C*azpdm$)5w{HRs=iOR4?JaX{u?4eB(|!FMz^JJ;u*@M}Y#5a(absWCfj%6_ zI;{5}|9@4#zm0_aTNxj?a1R%mw7@12Ks*{?JL6C&E(5VO&4`u2VN8@&^6d8}UCaVL z$YKCzVd@%y#qkLkTvT~6&;_TO9QY9v!p&zPeQ=VtrOM|i=$;X5zvy*<%#lGuD!*1l zPc3Te1(mJauy{4=X~$2sckGW+Q>v7WS98s+*TK*t?a7+mAUAHPRc?wC4X?Wq4TPb) zzAM!f(M7b=n*2z@ZrJ(0kM+2$M@yeOS^zqkHZlO@qojO$+O)WkU{RWT&I=dlo zXCoIq%$(FqxPtGb_1tRY)%H1waHH6dt{acF-b|nxShWdESeNhIeqM3=Dv!n%0G2ao z0Tc$!_RlE-fJKOLwSfRJ54G-^*wqH^hb;eH2TppAbDz&qdOR^6E=4mdh4yT2!lJ57 zPg9{^i11ue6J!7z$yGu0BKoJI!bosmU|HjLY5!fSn6IdHR>o_|v^j<>qE5y6@GFQjM z;5z)l-tLQO`(!2|W>2-R!{kGZmz{~&PCnAV)K@sn6W$fdU&i@a{MHf!cAsnW$iWF2 z#cSQM{?Ryzo3d7P4YxmA(LC|gS4-Q8hnI)6e+TUPEJrnge(Ld+)gxF0+)d87?$t*8 z&7=7L(GFq=qt0*Abwo{|RCh3uN;ANLxEAorlT8qA z>&1;vnaqjdSw zq(0R`&276@y)EVW+cxoulhsSCe^m$w;N~=CL@yA1DjfjS!IY$DC?Tj0Za)$2>Ksm_ z6#AT7QWabUd9+OY!ZE^ToUWQ}I!HVQ6uX(r5-jSvv-f*G;D=-B_DA6iGMV0R7KgMA zW_>1G0tpFKUQK+NkyM{R8&0n`woQxbb_%&UN7U5$2XgqQ1(2Uh2q+|<+j8*MK#|r$ z*{`=)f%koY#?-oT=hBmg=MgmiJ%E$cuN4D`(@FQSTDIfxHd5TSh?V5 z_+1w5*%qpZlbm^1W@#da41LB1`YsA;@)dU(tu<)joj=~K01iBMw*9)$_?2m1Jtr-7 zK-dInqkKw1SBf>x55K_uuVTg3PRpU%wR#&=IsSv*j+v}nU&4Au5>@PU=>>t-V;_YE zc7=VuaG}_=fW1Q-kZybW#Oe^=>7d1YsrrF9%+#uJysF&seGekEKyD-CL_Ax*FZ@-2 zg>$Y}WqN`QsRRGSEumqK;~cR%)%@b6z9`!dHKInij-15h`T>;jg^ygx;3ZW31N(T0 zQj!xwABllYyY1btA=xF|J&;W9dosa?EZ8I&hl!^$MD~vS*w8ZEp^A*_PDMI-=cQtl z@X%2Vh*EVF?dRkXwm}Dq_G37y0U-hqF_j~L@m6{S80V3b6sIc{I^P6<3d;CE)m8fo z%-30l9B*rYLX$Pe>>A3vp1*Gc1!yNwKe_HMm=W^Y-q_FIOVBsU>IZM1~xc5 zp?oq2#wJwsl-6K?mG_0CP5Me}X3L_wtzK>p!l05aiVSmbdm+lj-k$Hpr&O=|YvO1&dM-m;yGV?~=F_fs44z5@RMiiSo1~I9MF0i9srfSj~l*OK%oPz#{)I;SZ|^OMudG0u)pR$ zKe*7F^V0>q5Mi%!J1Iq-*}(1NI}UjK2n_~;@epuCp7N*d&mh!>do}>nMUp$N`Xm=N z{kPm$SKKGAOep87ZSz-l5Se}&ongWqwBy3yBhHXs0FY|2x9^4$3Jt|uQv2T zmn9!PJL%FS|2;~sxrJ0mH%^YH z$zog@NYX#APTR3=eHC0LU2_9H3?VfP8Sv`j>pO_QJNZlxKR;WYk}|c;=AfD7^%4Bm%Dmo=-6>(${--ZS#|u|>2J4MXgq`lRr}t9i zBhEB6xzC=-m%-#6G;TsF?O6*%vSvSyvR3JK{#IU|*WL};%!bxIsANzx_Y3M@lS;N8 zeojBCzZV{}+p~altIu{2!4<0IsfurP9<%oAWIPg-ksM8+w6(#2_CU+WlXcl}>%x`F zpqp2*S-@wHNpD%k(WEdq=N3fDae=XvvGqs`@m>qaoc{uB6HtJy;0Y@Vq7^(c1`3{h zUc1`>asBw_`rHzr?sp@m|Et8_nCos1349twecfQ8x9sNko#U648O)6-B+uDbQxt%W zoUqa-zK{*NG*GQ*DD8iUTeQ+0m%saM?3#6xNvaN{^39ioB{>n_ppw+}Q%xqUp4#sCB1u=(}&kO|m`K%(=N?3_iXnv)WP3hh$6Q|^W`sJga-Ny$<5?d4id^>s{RAnn!}160E)B zAv?&io^aZc337F= zv#&^xk}}}FH5lk>Mv|kv1o@L+1*CZB3TCptjb(W-Im^j#I!&i(SoDk-h>Fk3fjIu$ z^2VH7<+@5ZP`(N)*n4ytG6QqF7bpD^r4q3BR4^hMnD+lUV$Jp7h_1ela-b}d&oRkQ zdqJQ1d`~A)JeeT+OXio3Be36*mM}ZAcc$^ccltyQK1ruhOZ^S6+6#WLto*Z4QF?xW zhGOuOOx-}p5sSTdSZ*rgJ-1>}&D+t3t#7*kvR7P`k8+=#1D@PuKtg($eCbM*ztir1 zpzu$q_y6W_x)l2d+rl({?y92=opSqze9~IO4 z2x|Mw4f)W@6i?U=^-dfHqIaCvo<}WDV>xI0)7VrmTdhA~UrAw#=a#3g4*o%?s@}L! zDLt--!z_zjJLTAg*}4&Tuu^(DAbc5u)|Li0@&u}g#3WbNTR>CCSLUZz z>A(e;m~@3t-OQQ#*6+?YDr3H)%v^(a5rfgj0JNUuLo1HU7>phjgQ=T&`lcDTwEH`` zZhrnW6k$~C^zo@oycTkv~r1AqVn@|Do_ z>QcWLkvYx=#}%LW`jtuTrvvK|pI(Ng=o5`^3-FiXbfr;Vn;Y^wNQ=MCV_o$4Gs%>?R{i1GDl9TiOfEE$&l+fl4W&mZz}MXon)upOyLM3xRq3@A=|*4pk;8$?V_$cl@Vn>6=N zvYIKsb!wPD)-kDmJ-$As3Ac88^o!C*;vP+ogiTP*G>#oDC^D`26PbPdMA6H$BRBuD z??!l!eKVC3r=5yk`{sarIx2b&pUT~P5`q}bmQLRYi?AP2N>8x3Ga{y}NdLL57O!bd zEvu_uJ!!y*+4ajHn|+=j?b28PX!kq5I*V`g+W?au85xa96$6{Ya!^ZUBl0988fno{ zD7l{|Gd~?HE5G$2arZmN3P~)b4vu`ZJz_EO+RD#L2d@SGtQNMFS%0LPW%_u1oO~MN zQck_*q}J|38`Y0CA0oo5S)E7nW9oJz!i3tg+Co>@imb9U;&_?-=`Vwa1}F5wdOld^ ziFRMr%LV5b3wTn3!upv9ORXil^%efr8ZPPOXRba zo1ZUA^LKYk0;;>k*Oi+O)!o9(_1}XW(XdqU*v`eeh&}!j2i#|S`}DXQy4+Wl4r6=9 ziF&I*4-jmSbc9r2tOr{Kl|78AwLN`0HziSfl4awN@bp1)$(FEUm8h$ov6ga>sgnG_ z7g{K`oyC553{Wh|u+uqnGao4tZ(|4b(jkn*HM8-+X@lM$7CT7|c(5ye-4x;!qR-Td zRv58*e0cn^tl$ot>3~pt?4Z&(4mAmdsX}X|3I$hzvYB#z-!}#^;wa8*P$k#hww)pK zcnEiW2L^zhZUfk9&(hm#7-Ct{+w;r)CBfv1Pjh?abc?8)mwtRbQLDGlowt0E)JKM( zkY`pSH0m;34UG^ZkT4otiZ3@bF_(8D|EX$T(ArpMm~pQ8|#%=Ij#z!CW3y!Y2EKc(edE1Ocf=Y1-jbZ_OL{blAXr6#h%Y;B_S zT&zc*82)eC_s#-FNE4w0%9$?3y_t*of^tpSM&fh>US1d3C4ZG z`4(I>esPxUF=N@P?#Ift5|xg#pC`YCbo9rY=k-h3!#@mu{dN9E zUjP|{yysrOM8=W;h7P8!GedEOPi@<7&v#!ncXsFGtf|-Ud?MsV(GbSAD_e)_PwaGe z;s74VOX2b7MKPqVoHDV@e)c>J8MdzDJn;Ieh&ConD0`CdCihvlI?-u&@LL#VNP1vS z-U`-We}E;KSrq+bxH5sn&k=UL1+(V8uauT%0U8!& zc)b;(Rr%2BqS?jMgQ#HTJK3Xwcl|FZWN;s2Lghlb5N3NH;gmj$D@J z_H{S&;1Bq7`pQq*=4)QeF`Z;o#F8k@qp^h~9>uTnPrdu3?krG!Ou8@KYJb zf~`Bf^@v&3OvbM}6^^x8Rf0O-f{~CfHS5+6q`gsDC!2dQ+dWLt#=2hJgv|a&_nErw ztz8h8fU;O#-;e{D(;Xjc=>%Jq`ryQz4Tt8RrFR8`!-^;hpqc3j2<_aJd!ox-Op}Nf zUmPJ$EUBUVtVHP^8LZn|@!T6!ifW$HxNtfs)gxXqoCL|G_u;SGg*U9Jtk;;cI$fJyIUMWE6^>(o36U=|0I z#Odfjubv!mi8s&%*cX_rDD>B)EZTo8@6>D0;?1ASTOo96HcvaF`hIcR7hB7z9U^sn zKm5k5bQH2eWkLVj0|!t)BYG%wPIJ)dxXKK24H?vO4XULV~Ts(@=C3qwo zvBH#0=sc+pd8R!~K7b{O?P$R_rgZ7!%vNR#shUJo$wtoC@z_kmm(zSN&G?IzZH$<@ z+wHLIp5%8FdcDpR-7X^^D-I%$!i${!Enlk@k(% zFn&XZMK1R|8Q(?j`QUo9I=>85u1jx=+n^~vOO>osfP6TXY3Zytw>s@v3#JP=GfsL~ zq;1?_<|TVQ$=OQ6OIGVUs}9h|1dMc1BLUWTKx^go8D}e?k?hYL3-y1+WaKI0PN5hT z<-WI_qndHF9Lz{QSSmQ^U31<>Rp0}_cCSnPA6|IJ-}S)oES4q32%WA_tki0Sa*fMY z5=$m-pfXjT`f)}p>Fwm-1@AN0(*fyy8eN8DOUX;mXpN_!H zv4U5OHIl>P?h*KY@S_K(=a}|q!bqi-Go4Z$>Uf{bwLi!mFVIxq1NBW0y{CT6iJ&02 z*XP=EGPiDqqdrr zgvhUlbqmKbh{6%}eXD`(9bUicw2b34ve7aGKSJYJw6REdcfd2Bt-Yf&d~fm$_GDap zaDMx%!$Rt#I{D)$4!|-mv=*WRp(mIiYKid)wn0_odqo04+K?}j&V)c{Tb3^1OZeBM z?0=dIsiufLGwM{5&thwPX!M+!jYlP@OMeXr;^2W>LEb#k{$}Tvu!aFJeSa9B0vZEVwF^b}59gfEw`kRkHEtR)PL@Fys2f1_E6uQt!?4)0(> z3^8ny4U)6Tf}NvFH02H12D17J~qCT0I~&jZ!eBhQ2H#F~5G^>aDxH*x1&SY@;tr7O#0 z^VU>2@?XC=C$a)xJmV$%M1q7;d9T*xeqO;urGP70{cf&u3^6}Gm)?U|@DpdRA znbxr(OHW*@^}Ier&~DD`3OU6(CvpGnseU$8cGu%VB!vxM{C>c8cCe+FR*#m*M>qIVR@t&1_Hq^P`6Y zP`cn#hGQ3vC<2850ttCK(*AIpmWS>DgfdKCIo?eIN~-Fv%A`OZWfh2k@d!I8>8*VpZN4 ztM-0QyxdYY_7ohM=qB^tyta^7wGSO#-_M;lCMr^T$FhEb6eg(vst6`EH~j1fXiICj zU-*@W7f8A>guj%c)nU6IH)|cI9lITSR#lS(u}M&ByZ@CMpVZx=GGWCwO-se*iC&E$ zXk{o>4jgr|_uas$#?hg+itY4Ubocctvk7w7?w=ila>EBVX;oY>6h76``UOsf{#o!w0A4_weV|lYt8%;jrzk_>S5o3i zV_8I;64^?nronpm|AIRk!q6XlE#f>&nF`$wDGMdQjAF>0!kJ?{&TtvgQ^n*4nfJ&Q z4G(2ChqVW^6rR6uzW6833xS zv`$&-EC#qrhx>OiFBOQOAV2`VSH~$3bjqi&!1x&USUnXyev%ehYg21Vs&AH_s)<}L zLnG(Zt-amX0#1{jWjCH)TpqS}lo;4M)5tD!Ps~%ui%(e|OVeg|OPZLTF91pu!FG5wY#ES-_rrK_&;6tQ%s(Z_)UMM3A3KQvu^%W_6)jo;!t}w zuSeed;)(i4y4fP!u2rt$dG6YssaYqRQw!>9Az2fel~02q*)1kIS?!Z!CJ2A+vn)PD zUCx{pnSyMYY!gqdte^H`Qo(BDy&Zu64KQV6P)yk?-mFO6U?!E~k3#MKl9G*+2&tplf) zES#fO0Cgg3WV=4Le|p{0?nfzixLGdjIUG@%cwJ*yWGzNJd8Cv7S=1-&utyJ+TJTnT z=S%5J77=%23XKD$)AXeUII*y^(obi}R$5?eESOm{I|v&5mF6Scmr;o}uJWMxT_Caz+2VD7p$E&JF1XW9$RjsfqoCmD(n5mlwhl!W*ai zIs-W>%o~9hmzwC{07oI+_?pPY>UH>l;rz-Cl0$XiWYjlBUo{30JoEK9$uyimD0}m( zz-)%MBz@sbv}&c4@u^UzeWl^{SV21R*i+tD@t{~3QC>IX)va51>IL|3=El=KgJi1K zIsvd!zBSVI8DKJK_LqGyU^T5vF2BY$)pT7Zjmh%AfsUMXh+E+gKopz9+@QLmPk}k6M&> ze$QGi`!UcMFukH|CC&N$8fyuZUk9ggLMSCTTgJuZi#Y}Lq|2T49XNA;VZ?xn0wfrw z`geS>01vy%_=NeHAZ`6KXV=@s*I~@09;Xc-@XfJ@PXIhl&wVvFU8?$FBU z^V=*MY=Ctns9Rlz<4qE%rZ-cLK#{AuHz0SLp-Ax~Hq~o;d8dvz^{b<@) zueN^33O&;F_m5FlC!N<&{8sbsoR+mLdrVB{_f~`ICtE-pi}n{+_8S14(StP50W?>4 z5Bc~5CQO=1sW^&H>5wJMx|~qA(|067zRok)b_q5fKf3f*ybhDA0{~MyCy9gqca>!V zDl1RGY;Th!b`~G18yo8|MGmM6O~o&*u+GQMedr%4HB{|5LI@1MO*p}geIUY2hcZka z*g~7Y7aCmHC<`Dysx+9Uy0TcP-xC{oM)ZwrBd(v6+GXIyzepK6Q1pE%nx$U}hmU4v z#c0cGdLG=h21pdAX+ZRNepiO!*(V&KG!x7wkfLu|eb&e~enortI6qI?pM+XkG~BiT zLqK`ac)%FoTV|n>A20nom%;j#mu|a(q5M(q=T~KVBr=;s0~R;8oH5lv2(ZKCV#R2d z@`)C1s`mF9A>po#tsmMuQqN6n0;vZzK<}Wfs6%o-jAc`{VCXS^{*Ky}%fxcx4 z_Kgp|j!dc8M!=0FXd&wVV@A-0sb0LIMr!2A3uA$EL=^0sZ+yyAvmnuC8iL_u_1h$=zra$qnJdtdzCzzl5z@q$Kq(Dj ziGM|!yplNfD_yB&@ceo#Nl)n`Pg=JJ$KcQ~Q|0V>_k7^ewqq{K5&h>d!I6{BATZ=% z`-Tn6gL9?%zj|h3pVm(##P!-FWM}E7^-PdxZ!5~{$&bYpNhnrqefR9w;IkwTnep$2 zb^#PseRWmh|H#infDrTBC_5zDZ(a6%akI#M|4~BVhP5>lGrO~LdY<~Pfy&aCXF2c@ z^ZDO;Z~%Jks1ROwp%~ayz|ltQmyGnf+FjI9njm_`nJqk8ZrtKY#6@v0+eRD@YS||< zzKpSs)d&Dv8;F*VpMd}ewqDB#47++0A4Ria&oLJacV+c|z=ZR;Cx9(pq!Re8NKS;% z?dBoI#ISz3%KZ~ZjZN~8l>UvYDC6>f@)6PYR2RQ#{-k8wvCJ3i?Me9VM%+g!*|np3 zxwir1c0Vjbt}$k%X36YtkGe>n`xV(|z;k16&zN3nN)Sp@`b*4x`G%2zI5kZ8C~Jq}5wS*|0W-{Y=jrF*nE~Nt076l%W_0k+ua;9Ne;wmnv=OU zpQs}2oaXZ6ft%SB+uhqu1!-f$NGe_ZP1_SwTIn6YPn&9=1Gk_t-v8VEp!PJW0vAIW zoNe93m-C}@Er1(yW&d*nq)P_DG#ZRF-Wl^VSIIkC(^>3XQ zMicvsHee7BonQL?t)ak$DerUL%_{PcNBAR&F{6yK(F=A!Qx0gLOAl%C`>2h?!3}!> z^kal4PXt$6DdR``zS=Ahf0*sim4j~x%{|czngvv=Cu0?&2Hc?Znlp`=egTd=#)KD~ z=+|+R0dkr!(fXVFdoCCOL(j#pu8Mop)p6CrA_jczHW&dB9jh@rBmtjuk1{)Sy+xu?F>|vz zkSaoVM=SaZRfO`LTlavlM0ZCdW@uF~Gju2(zH^ihKRrqWJMxGpxF+UGiFf#!o!0UO z>g)N&R`cx^d<#h|5X$=R#Y(_)dMsfG!Ifky7tZoN?&V4<-@{Z@rlO;UNP!NNMmrxL zxDv|jyiJX=tZd)dW# z^HQ3WG4>N&04Fu4kKO@#+s8WNO}rjzl-&-Ed5&!mu1R>LlsR%dsW{iwfg|(o{T&Y+ zh)|>b2qHIXuRJH^adw&`3rBO~0^s0$W-f>q7q;u%5N{FCIx4tB@7h$qrGB_w5ukwm zp7HncKK<@Nh#6qVUn{eNiL!2;-GwJnb=67#c-_Z*6JSn>lZ={s+AY)yiwN z#&Z)BEKfiq-x93HE97HnzT>eiDaNydB9W?MUyXZwU0Xaet4pK(J7GdL~rk21Ll z>%O80N+=ctX5pf;X|mJi?UixQ6%VpUp- zjZ`ATRrb5AqMa zscr7ypm|^08QnYG@@t%{GBJ~j{1Nzlxw?5%%bdsgU+QRj2-2>wj|pFV!jFFRn?eT5 zOAAd3z)qa6ADE!pzVXts>7%^)Z{b(%#b#YS*C!LTgAm)!F{&?a`=IY|PlzJ2#d_aFK#4A)mYU9xR#iP@djqe!F2>jjpw(AL}}0o!l(gJkP#8kU2%%fZ9~ajWh>o_4h@G5}K8xjVlr z_m>ndO zH};jPe;m_Ty?}r44$_?G#zJ{*U@z$j91$x>yW1JW3kA$vNSITIE`da?jb1i$IVNm9 zU$`SAs)4^#$xgt_@*m26^I)@%*y;a=x4(?4D~Z}g;e_Ds?gV!T?gR;t0KwfQxCYnY z4#9(N2*KUm-Q7L7yTe_iJKgCs-tT<(+&jkoNA0!Qt7OjkJX5O5BQkD^s={4!Xs(|) zru_9R(tmX6xo<6Ug7Lt`HrkC)%Uz%89n1W{9H0j@Jz-yAJs5XK4e|X9ApFd9-`O{G z5YzZ;S_HpA0D=XS)_#9h)0eOY<}U%q_wxR9_fItye97t!6*9t5!l;A?CWXM?*_%R? zo*}B!3k=QgXyp4n-i*oiRV{T*nGIdAjVM()%!<4+3={MQjjG|TA+jWnv2jGk5OEBm z%}w8m^mts&R1SOUt?E70&@BA7g9st2L1_ZG?7w>Ow|D`sM}Yb1Y(`wxJO;s?;;%(F z9cd-T!1nV|9^K;%sgv=fv+SmHx4kMjqW{+#$qH%#TIh^bCHJ>{Ha^SeBPQ{GewHO( zaH83%a79Yxn8^eujPzB>ZX15Xw#Cqj3Nnq$tStHw3tIJsoWL4Vou+43bXH^3VuLz{ zz*ev&>i z|Gf~%fK@qR|7}kG9%QWGJ;ZxUS+w;l0cVF!WqGW0pO|K^YuhxwHN6T6jQpFkbErG$d$(muJdM{w*?1Yd=wh8GF~o z3TBNw3li#C&6Lz8AsHYQp-k72|C+PEb!tWLW!mlr3e$zY)8^p8TGWiY7-~Y@JyX}? zXOR;rwM!RP`vPsbe{BdX6SSd88|LrH@dehX0pa%ue~rz1fE+o*$7)jifjZ#W`~wwI z`l7wYy)ma`Z~%4E18}NyV_JsIaW^M&%K4?;@Y;6u&g)GMRwU)D^P(GOccw;x zSSpvaM_`ZEX|sQC%x1>93x)IZ0|`xIwZ;h?E}jOaJmecWHx0yhzwALAurjLOO8kD$ z4#~3sy!t)HU!x-)hrz!A`@HMs^~y#9$X9qOJbvP;azhVwIiSw&a}aNt37uOKmhw@uUahdmgrG29v|7c1j;j-MGW7uPSIBRGz^=i zO^lOTGO$ZXkTiOpZ>FCa=NMarqAYO>ExKQ$Rbpt)xO2Knry7NYTZXjvc8~Q!oqbgVA`5>pg3;y;l?*-rM?X#Q*oyG0p3d@Nr)ii7!q|tYLNc zvj^4E9V^}S^4=%R*W?LuFv6XS?cO(N%%_Wq*Nku2slmym&w6}*lq2a#J)ttG>hv*% z2RE}oXRY;?X1;+0?F-7CkN`s9WNRL?SwtKY_O+(}MqVV1 z``+uU-#?>bN=|kS7Tb61@(LV~om2rx5O78zys(Mg61*ZSv|;4Pr84jl-}6VVk1Bls zqKelZ`1vSvV52n*bM{ckQ;O)s5?Nrq^YG_abs%GZ(1KUdD9KfFt)G8dv0}sRG9;VW z)el2-qWD+8Y_L}@pkF@--Nb$=33|HV*Jo|V_+PZ0I=y?{LOb0e0A}Wb(^)geUUu8- z8(E3%Ajc=H?Zj}81xFem*~4?(L|%I{+*Ecjuu4#0oCw3!V(X!?ah%3V^L- zMPHnTdj9TK&mWXz4)xu;cY^!1A%P2Jcqr;uyz0!7>hZ+t^zE``bmni+0@3m_V{uRL ziul6V=hx@5i#cfgjsn;}9}w@S01FZx^TPA@SpY8}3P^&hXztFJy8JpQ% z5a0i`GP2dc!tACJDT)8RQhz~ajTZ6hkk){c6+Q*ST-bam3?e+$<8^F4Dt99f#B#$d zWM>(tbsj7d0Pud%Yl0HM`gmovy#=6U_4~|6R3BLf;@oRwNRR?A7h+5oam*_f8r~Qo zDhz2@sf>R?c_dj-qlcdNMjs>fu@UoDT!u}#S;1Nl+w{@^fRw`CTh)p^h$;Mr;HqUy zhX+9;GL36(;~1J1tEs;1U(1~S9q7HJsU6*4`sC#g4v6}QL8-!j3~-Adn2T@PqOYhO zrp`{@hZ*-vh77a<-;A>BOqBzjhLKthf5h!T)7r{<*cfIiAK5P4IoAQ=n9I$98a)8} z*ecEvgs2V%Vl}b=I-2{b7$BzygNZhs@WMD|$ISn#%nOJy%1C4kzvD{vV}o9SKrTBj z_mtXI^JkRgG-Kg)YglCB4p68UG_c2qg}=jy&|Al#|9s*l=0sjokfCqO^sCoQfSmPB z_zeHnm3OE*$idZMf4&BIWcQMf^iZRv7cJZ7q|4ox4@SHoo3U(bz$g8y;m2G#2=u{3 z<~ErwWq^5=`d<tHSy)Cf;a|G>{YDdV}qjn|*egBpk;e5AAGKZzh_l6xy>TXw9qPh-$K zYn+uOEHp>`AC3j~9iU1kclKkYu+2D`$_Qa4NjlR9pAsk;@E@r4dki6$77;snWs6Lnlcm#0}M;r}D zI(F~0d_X|Cwx0~9jA-|U&aa+Ck^+u(Fa*(WCr9Ts@IDksqQ6=2@Avd{JWsFdDGq=F z_sq~)gEs(`4LSp~5{;QvS^4={)30ZxE`O+v1Wpfu6!Tu9e?PeNGQUcnp;Xd3jOopZe-ev)zt_{ z{cJra#UuOkocmmOVQQAE97vvVC z{tNno^I)Tt(q!j8y@8GR8FO$axylGPp2^@T@$sf+2D*K)?{Dsqm(&~-Muo&VsKczF zI6m6HNBj$2se$FqQaMKXZ6U;fHjeHw$?x`GvO*2M_J|vJzqq;PtyQOS0yS}xgz}(> z_MNf{{c4yA{gC&SBkJ9`Sf`1xwVOhay1^))IKd{1mue7-kJKaL{2Wwu|P8HH^9&An7A%7qAk zZsqC|j;TTT$eP5iJO8Oy*5QJ}3g~SfDqh_JjCRri4BOJyDR+H>VO)2IkmK8s+)ZDj0E>gr9tSXJ2`B zuRXRG-EZrcihKpYYOU~ZI+5;G06-bQO8yriEb)^1BFnLr{&}=@CKB5h)f2<)?$u!- zp}!lhtpT#++h}rmfFrR`;hO3_w+t14mKZj!TMuyzB;|)629O{F**6m%#4-L9Az6PI z1_R(&lVj)wG~Jw@uzE$uLM_qL%$2dk5yLY@O$)kr&fb!lp53`nD8Yzs`{jr^a&*Q2 z76J0(X;P}X@ zB{AQ);P`%Z9F?R6T8Y$C68}x{r(GTidgU&PzDCb#*F{r(o{Q zv%YCan)3E5hQ%CjyKjMQ712JwtYQl*ARbPXzqu1JEnp$(;PC#8-2eefx|OfQ6OTbT zbJk$t-Q=xoX`%f|U7#8jd`VisO9r}f!~JK+#(@^g#mF2hpvLU_rxz^HA^86Kwdd**X22*%ckK*B8$rUvUS4$%zi(7_1owUhvi@_2TUo zpS{?Y0hHE%EbB_*GtEc)jXaS6m643|3;W&aU&|l}iD?a-KS1a><@rTglTvqh{rYt! z-Lb1DPaA(e5+ec^;L?G5zfuE1KOA%fHo%I4dRb_I78yJOKOpix(G>D5e~5gi+#jpS zk|lWmAiLnI50(*;raX9Id^85>EP$W+%|#{f6bva%gk<=bJQ#7IK}E~_vB2m5NT$;b zy|2}0npTkT-y>2aYK1=jBuZeiLTW=(wmKE5iX&q#wfN|iKxnkC3U)ra>SVpgBK=s6 zk#wouD(|jmJUnzl=ih`Uqbp?1j_00Zg$2;=Bs6gvy+1gAM`|#(Z<)A6V>duCmTGOj zvp|CIN9C4F0n2G6t@4kBf1b|)h;y0LwZpw5lG|<7GfhiZ!t3_zV+)OGi*-AlE4T^# zJ1E3u_dFF6XZHqcD+jA>d+yGzpMt-Z;`seDvw``&EImMEhP=P+zd>Tbey~xV6S3O3 z1P8V`1Z9#(Xr-&S_;U|1rcQOb*Y@zez*(Tj3f6$Rp-J$yj{%qn_wj-g(6sDuY#RX} zC-Ldz^tR_ z=vPaRc?5{l(^Pr%lwX?s-w2qX5-aHcESrxkB#eb8 zfK9)+an)ADF0sl)jKajnuyX>b6Hy~h@bVKn)Ih26%?Z|omMX)5@_Vf#P^%&)U zxPk^s@YO&5ml6O#Wnk?_f3QASS;2ZR=6dF$v9kmZdbLMf)HM`5tO#FllWIglEv@6z zkzOL&={&S8C#O~(b%vj`3h;*clW(o-54Xp231JPQc!cmQfO*zWEl}(QZY097r~q7# zFlUzHufTN!C>DIchH>>X!$LJkP(kmf%oG4n2hj5W#5}K3LBIi=;R)pTSgM(&kFc}1 z3gJBpbLgMJpJ)Wbvf>loIq{@b>%bz&TT3abME`B+pA8SxZ^KgpFyj~uZ1z893Roo^ zCE~+k@1A7~2Ey$usdKO{E3tFs4=X9U#WPKC04L_BtR(Ctj!`r2YN`WfW>~^P9I!rB zI5q`@fF7R7?TrF@_}OSbKLm&|COe`3iFgwf$ese|)mk_~*Ylu5`oZ>B5b?vpaeAT) z>QLg!8pJHzh_jFka`p?OA0*f3TR;4t^&61(n_NHymPBa_f!Q_u@pBK5nI+K!pq1+jnQ?})mrh#76XbWnu zpd2FvM?uXiE;Y7S+SPr2$9MCEi*}{>u>g(}g|i*e*Lj*D8k^Cxu@!Bi;RFKyxeEn4B3RVkykQ^0+0~i2 z-pc6d-cl7eDGXkC_UEeff25B1)w2x}02uVY`JTVBKRJzn>8~7)Jh%mx!CY#=sJ7Wns0@;3^mNar%HK$?!EDfuUVMWcEt^)G7yxLuCo^V%f>37-GwYZnJj z_)zgemo=`Y(jZL@Bg*qo0kG!PQ?0GB7~5>luj26QK{M%{<##KmGL7hX5wCtzA7K0J zWpZN>+O+Vv#s0>QH@+T31gbaJN0w#*TjSwxhy1MaPy$wbeob~&V9YiS+U!8wM*gJb zJ%#o08UcQt{q&|HN1+1t2JB{)^LrNuF_G@I_yc2ehbYEuM(#;ki?f8#x@aM)tzkMK z>CIsn@#ku!d(}a#Reul;xKbvg6UrM$ds+OxJFPvxRcg_&zJdGM72Y3v3FL37i~D(u zk^43}7;u28iZ7v=0^$0d4gjV0dPFGZ6Dk7t5K_)fX4T{;6!iptmVsKWSEC zyScO6sUsJl4KKT)J{X&qd3eS00TBUjUArGx*FUcsudj>U*$KYTVzzC2hMIDp64JLq`C6}iW-~%>MyZ&j|0BuYc1*lvFrx`UHD|DAAqUtd-Xrr|lJ% z7bDfqqVH(MZKP0YobFI0BQ)VVy0YKQ-2kBq9*~pD53~|WXmU`2Yw;^JWyVAMv;djR zNaGG+V$wOIWq9F~$cr5!jhA)-)n6C0{lzq^kIdtuO6+3>AByGxv!8D;%lM~p1XRu9 zIcidP!%`ggCl2HQEgxU@XAmBAW-SIF`5%nvH2njOsdS`>Z+mPO4ta*ANEnu}Dy(7M z@|10EIPnDuz?!WDA_&VJY19TDVJv{SkjL*B1WUb_k&mo@P`(BoQCyfw$QXnz&Nr5a z>3GWGw&gpoqE|=a5%P^~Y>M-1TYZ{xfPJYE2ju>$hQ~|+5|m8d>+u`JWZw%C`K>2S>CY3i zL&fi{C^lgFvomC^bQYAPs9i$bH9qfVz5&m zoK3a*;#JIVJ%5d_qU!yd6Cl>PoZEd;uTS{ReG@eW&xCS1U~x{w1@+RF>H$_p+Dxd1{wlBjN*?{7Qv4=3fU1Fs$i-JMbL$i~i+c z1L_ zTXV&Uk21=YDM=~P5k&E>pZ=S>f)vWQs*(ySL z66-{N8WuO@b!AM77iIVK>Y0G_iqPpiNn>QQjd8>B52~`ftoKtB;gy(Fury6%pBEOyhbx$EcWBC{1oaaU79fbgnT&p54>mhVOT9wv z=cw>$jW_}pkx17GSA)bc4f0Pbun9a3v0U+{se5(q#^rIoS()aCj+4@WMJ4a|_)}?~ zwQd{5`GM2nh$}EUzGz)~MqWg$J7}0h^0B{uF+TIE$XA)4$k#HAdTF|-}*o};lMAp&oUcq2MWvvrvp@mPrMq4<|m zkf_x{FGQvNWPV(N(h=n`7!-{0M1*5uXGnH7yC+wT9v5zrl>3(7YG6Lt#4I9loY$2> zX(%|6?S*PXY9Sc8C$c&)2(IS|AG=w;vhtr!E2fx^eQPl$X<@jmVsJGq3<&}NY8z5& zL+8)5-QT>5SRZb?-FmIsB;kz(;Ukwd0Sdd4PBmUzHQ%Oxk)Wq`{jhAOx2+IWZV4|$ zaBc=armp%*uTOnoSa=0z&bv-EObc__w3fwwV`Ksx%a1C+y)kriGwFohsAx?AThY)L z=pB+8q}Jb+=p1?&sd38z_g7N47O~qT+-uZrM1E@UZ2!$$roVjY z{-%g%A=qzEdQGi@{{X^uL$KC=aCED-3|e-6ei>N9yM{S#)<*`V`)gXI#Sf|`Qrx_) zNW-^wTGvz#~2#6fH!pfjT{L-c6rE9o$#=3Ar2-e1VT z#_Og!au9bsn{zTm?S7>&aIvhVkau^6+gIY*E+Y8C!a};6;Hpb6j}`BoS6GHLs@+P* z7oM7j>oY79!8QjIH*e0;=)3Fmrwxi7--SpfFn{;k=YRI?svz(Ygq^nr{6}`&BNsW` zn>jD;jSxKM?Uo#D#9VQF0pEGs;oa3+;I6_CJ&3>U=3kkBLRj7zAL_=t6`x8hL8>A)*TQbb5sZa0K_k)157Z zVIO;CL`kqAL3Eb>*W*ddHWyqX+WwW<)l{$CSSmbk)lqhY$RiZ(!J`4|1tp-A5)jN|cj?p}Ct zXvJy&@sTKK`NAwX$|B#G8%>J|BAI066S5@k*|_D!iBNo<3E|`MhHK8vC2GJB;Iut9 zqdfS~>Ks~MJXQ-mv);4h{|(-!n|f#8ojC7dos6csQg~`ON)F;82p=rgV|9nCs`@Qa zGwu66+x{*fw?(5rm|d9ml}NR*qwmz$=mSP=TnX8 zf#iVkeX57KT7F1V7rV;ULKK3tXqM@x_p_1BhKnJ(!5i|&@c`p$bPYjVwooOEzGW}@ zWc=zE?WvI#WEG+c5>zWXUe9{cUDLiR2yt>Had|{`GVV>bdCFUlU%8HTE#qf}V((s= zQZ%?KjRHe2p^uCsMlW+&KRj=OKEA44tc`7~QgSM{1@ia6DCQcY;v4`;&*-xIucTYR z@pe{y{4jERM;2ImJ)ug_PzIH5Jt_>{v*Sa#g|uS+2_Lm1ZQd@f(68^NOc2WsDLY)F zrM>2R^k;r5SxW56GXZsG?xlLfrTdGw74Mh9#)8qTX3HS9hUc60D%T)v1)p6t8njQh z{c6|#e)$D7aqH&ZyBvEEQba$5$O*If*x!NhVNHy zY3Sw%v@PLhiX%iWnJ(N^fVo~O!~+K7!e`lh%B?4@X)84$4ns`o1VlLqd1z?+Zeyoi5AV7z_+R^FE{EL13*AR zcv$yr5)ujy8l3hK9aZcyk%wwI=a}ee=~$i;)*-L3hytBnhrSh~%=L{+X2te+|2S83 z)GVywD~}*5#D@n`hbkM_$I0Gtwca)~%TKWWetj5K2h6 zgD%~#sgPKncfK#nux{EP+0k%Z#wpr9%!FP*6;S_vlI5y(n;Pd~)VFxnZe-CF8diiL zyog!3;EtcTA2mn`2fKOswkg>Jt{$f-npPO+_0MKZ7}%D8;;Y!@UZwwd`(9u}=$vN+ z-xNL3<}<@QjxPIr`WD6Y7DkjuONFSfDLo$LUVFIaa=H}O&;lnF=5U?CULr9NlYVsJ z<-djE_dFwTtG@__mJeD^d9|m1-j;QJd($?uE6zc{Wea|HIeTqQV?6Zo?m52~`4Zf; zU^c8ps+y%G_88S1=Kji-)fZx;9PktYxs?XUXJ2pn{@<)}Me?QlYsCAi7eEdQuW<9H zA6OW-p4;BqvE6Z@?MIRT=BMdG&U;S&TGI%PtkH5S*EjvyUz8UCG)={7e`O2_f_FbP z>p}^fb47OaZ`g{1>s!h~IQ8J{qSv>R-2hknpb``oe@M%|VpbWVyR^OakF)Lt=_5P# z9U-+8rJN(JjN4O6tWqeVYlH4`8O2H`t?4pHw0=TX#h2E8#_>KOR zl$I)*et9C^8cq@#({O;#Y&fY`whE!HZ^31w8EU6_896l>oMF=07IgQ$rHgTXSf}ep z^vq`^PCWO>9y~^cc8=m%ERm>NKmsABh#G@0*6I*7>&(XDL6O4Vk4_SyPr@H;EG9$R z$6JZ#2|upyzEy@_OmwqQDS9zCMHjU|;g{xte02b8bMJ{|sXj$^m^Ks(tNZ>A_mfId zx_lcohsX<)+8V3sG}u;wY^%Oy`L%CJar9nFioxl24`VqhoHDk9Cho+Vdws9g?nDRf z1lC+PSADYMG=rGllQCPWuP%cusTCO3l1DN(1b@(10av<-Fi{fMBOz*{UxnOI2umqv zUkHtQC2zVG@W&sv*Bvo-dc!%=g`WU11co-Z(V=q8yYK$zkf87B!_8}2(M?y6C}&S1 zyz%qj)BFx-F~sa_jw%Zk!MrmVj4ddO1J;W9uuASn4DsWdpawZm#P*4sWV$Nyy^S&; z+c$%W6=I-Q3%Q+elKi@HZDh1i1jaY2aLHe#Ek;*Lr319dHekja2w74fJx9gb8~+=5 zDFesR1$Mpg+?i@b9K0g>9^Gz{W$GI$8G2{4nfH4v~tcr3%Y|K<%@YjX1UU? zbfD>R-D3Dgr|<@2{!>eQ)XK)jaV@V9j&~2`Y4O(CRyNDy4ne1KLzIdo z5NVh8v-rEav9Kb^tpml%>*=Fqd$$XU$6bN!Ip(**NsCy>o>!bkgUep+GJKK6a&H@^ zK!|+?b`Js9bBe@3<>vcel^U(@SB8!qkt_E~RP*=JTz(D(wIzA@46$BZ_0~1vhOf|g z4@FPu&6;fR=j2FbeYsvwVK1t~|2sm*0`^TEMY7I+*)ip9go&9U!WJQCV@bAdZJ&w0ECpbA8HR2ZSTzEse1ZUt_q$m_SAqzS;QR|SER`;V1(d; z$R;_1sE?!FYwUU09w2pv%Rw&iSZ4gTVKJBe`(zH}V+BgTh?kgUIR|v5x^J`?;{pjD zf7IUeh*GTz{{TLAGPW>FMb_o#+h%bl(^iMs_9gVz!d!{g!se%XFT(O_Vx@sn@t8^5`r~yk9sEXHBv#RF8B5lCy6Ac1{131o_scEMgtEhg$;lrDsfqb4l8B{orMU=m$76WfDN0tOeoWpCRuT5Xt1oo;dP&%H1=K5os4WXJSoP)hoBz z2)Z|=qPgIp?}X>oB@Nne_Udl9rDFk?;ElescaLo?q;q%cc^b$xOiaiGJPvL~olnY@ zEt`W$HmhwAA-HE)w8o=dkQXou&CWO{rOXt5$yJtB0Gd|aWPA3tR9 z0eYy%0-PpItm~5~IFNW&GwJTDn$IHRgDLGTb3xMw-}P~UbYv^(gNpt3H$DAodbGev zqQ;yVC;Y$aCf?MMPMDT*i`N$`siibWXcdLXh$Qs5l>;$Azw|DKITH`lQ#;o$vOy&N zI7#@3_OFph2`dUTz@@qyycYB}&}s(>gmMyQoErFz;Wo`nn{eYb3Mnk~*wRegzv(E< z?@|m-rGCfs{i-BnO5H{|FB71$2bK!~S`&rdDok@+!9(egIHTa#_*q_bakA9^d0#E6 zHGN4^{FG8agZk$8#siSEm)?Bw~NrgWHLn}{S(xF;o zeS;_B_>{x!r}86^hx#$7T_9bd?s$a3Y%5D;W&tJzwJM&mFZZTyEl_j1Sy^xne&pkrlKb#0b!bb{xdOZe< z>=e=(p&}4|%L+DmXNLl0Zxh2Q|IW24kRf{-U@Tql!DmF%o(ir`xgQHfyXC1fYZ77k zB!Dv-46a3K6t*L20Fe_(cL!}*ur+->lsyvOhOt$Wu5n>xNg}Ke>_)_;C9S^Y_*+hq zAeoWVfv*rdwHN!TYO#b)M=8T7rAGB@lN)XahCe;@OV-wH1vkJUJ)1GgpXv){yeuT4 zbPjwS{>kA80&cybUTpG^_LJG?M+%3+0Hn^Rf$E7bvf3A>UU6wb7@FT@K2?@wVfsqK z3w^+-+_A9N%d$G#+@itgn!C~##$@d0P^TjB{o01p*rXXE;M>Sr<=3vBA!FUCP%jC{ z&EBf~dv#i+lG0Lu^6zx=BBa*B*o~tdvf#R^HUDt%YmkEzo}@wv8WG!P9m+s+!5GyA3U;BE3qgm zRxtE4cn}bLkd))cy_98x04wEkPNk-CA%`@ZbzvLEOElW#UW?|y$dAPo8_Ws|B&KX-n6o6sFZs?=X(je*00y<7Q?B|^T8bwkuz zjd!mMb(YV#u7M3{HU}i>%Anxn2b`Z^5Nh!s4<{jY2FD5x;>OC>TO&Hns^^w}kuAy_ zp8G5ku(}^K&S@=n|7gd9?$`nKNu0cqe|I$n;RX!sqhx`5@Q8*_r*dQpy)^tb8kT2$-e0qPR;*H+QS<$@YOJwjzTRC5 z7Lk(6k_Oy(+os@Fc8adt)|StB?v^=4jPWhN!pWq%ra*h#7+r}+UZ)f*B(mhFXQ2n* za5-dm@jCJ|{*z{F}8#Owbn-k$tAT?#oV`d0GLX#a~v!fo-z~js#0sOJH zH6jg3fH9Yhq~qW*TkV-7u_GR!dos;k>WaT9RGHZ{0eE=IUQ7p&t(oQ3o-?6`CSSZ= z?{GKR)A~?pclN5|$Rxk38n~5DGU15X*^(Ce0`Oy0Tu)uue5E!g>SR28=DXr(l^e!yd_p;a+bRuACVqn$oA7UE z?9yf%M>D;2ju}e)B6e%WPWG;-z3_~Yj2*j6F1OH6=P^&wi~dm>L#Bte*uLg zczqyc<#xK$oGIJzV80N#^Z|4xI+!-3^AwrU=h>Dc@es}jgjJXsD+z!U!kke@>GPSS z15y^^QbIZRqtoyE`r_#ET&@l+er<-~wBJTX#OKtJOU_otoG@SP{2nGV@w_38d#iIP z59pn8aQCka^9zUxT4YaMR(=&HXpk8BuH>8c?BYqG^jQ4RQ4oVuPIq*_`0>@Z#u-;y zu-qmo$*r(^jNNqQdY2p>nH7pfAu6nCV}?AW?%KuqldW*p8q}yff0ccHykMo`h}1%} zbOrWA7&mKZ`KHBCJEf&+eg1}pGw^0uYzBU}dVlBJ{gaRHA6&?WUVAb%BIR9Shpxt& zgO|UD4D3A6cRktq(aw27Ou>9^RHnWeG{l2NGiBz>(2613qrUkf{vJVRHvou>Rb@K-z&g3R?@l~f{j2xG3CR=;9T zS_%!9U;2$mrFz$%cOk~2I6Y)rT-!MA9x*y7vHewAp6e;wRNkd8@XJi4w_W1|@Bdv!<=Et}i+=+zBE#jUk*TuQN z?Sd;?#KA>7${ZDVYj66g>{hYv3XU8iRC)nTC?znaGv81K^~}{%jp%1A47tQ|_ptjZ zM^!3p6yM~?Or7aR`y5TMM^Y6uGNpWOhYP|V7AW4lc+18qrXgO*(7If%fV=eh(E+=! zsq~$L2W||lmnK@h3OF7@rAPTLQ`db%`|-rjyM7aBfqyXugC9eZ<8z%~{+-%dqXrNisr={3zXX zN?A@X!rf-cPK*O9^#P@#I4c0Eq2~D){#!r7DY0^bYTq}H*N;GJG@a?{i&IMDscg^3h6Vo(j51Ng8rKAu94+*1ApK zV;~@PHL3FXMq<~SDf8@mz*q6DL&o$Ey5(1|a@n9U@PZp@m2`VYT?60LVGJ_#@5&#w z1aHq~V&Fo2zXUx^eUUwo-Mm+Fd)m^~2&t@oLEt9E-a51N`Qw{P-9n|JLIN4(0@3Y& zWhyQE!;kJ!c7lx0n`!%?Lla5~1oq_^bfybb2+be%$qgC8GoLGZ(gicTHkEwmJXhIw zo2n-^&leNB4Q^Kr5;>>@=0D%u|xYy7FN! zA-kEZ9lWWcs6$$17Z2$O`fH_}Qrx(nO&>)v^$;&Hn-FX929=!+z|kEQFQD-IDPzDy zu=5~Yd7?V(|07In7#~(Rs6@73Qgoz1kHi2?m%*gy&{yvPMt)y5ZSVUW9l<~yy zR687LMU}k@T!Th)sHl^W8j0C#6Wlh7d*h^Hj95j{mz`HhNueh99f!b0pjb_AwG6j` zOiJFo!@@>#0$3u~dTnFCCZB1pb;}P#A$R1qkH`iX?ke+QL$hCwrirSncuF;4$v$kW zVIlNmyys_NXCNGtlw0>$49kq)II2$fO1@UUjX_LQ^nRRimtHtCi@sy^l$G*@h!3^& zVIlR>Z}JPObu~Vb9$2s+b5lM&YfN(#354h z?A0K{>hmAN4Sq2xo%te`^^0tkQjuiA2RDJnxg7kZT@^gV;7vB_tCEB>#`uHou|}-- zbAxH{7OFS`2p&TXTsJrRr5)u@dvIRXctX4=EBJJWPo)H=Aan1SI})`5ovO!eMYrQ_ zPfnu^!uN#lc;C@OS03HdPq;oIt;@eB#DYEV4rXRdH|iCPcG!^s_HX?t;0%lqp`WVK z7OxZwnYmlrSQN?JcASOjjObeZ79#?E+X^AfJtXXT6qp z_luSAb@w==Uu0EfUHV{>anv!(ikE_7e`q1oekf!scr&@_x}bH&eHyadSXlLpZ;GrAHp+S1EqrgkU%CU!naU;GWW!X)L2tYz$y3!;Vyq3% zV4>!}GhaluKpLh`6(46YLhrd z_=5Z+xyVw>=}mvhp;E<8!@E1avK9eHh7*!bt&tu5lb^cSgd$z4gj?#+1h@8L^=)EA z9z|Wm3j6NnPX|_XTvs!;(xT{$W{95PKL=o~G{N*p+ijj!(M0+nHf&=ABRmL>HPQGOMjtg0Z zC?%!RvM~2j?jPqCriMr5oAadB3Ua;)q(q`Ugw;+Wv<+hwU-tRe#f+gqT_KYu6d{VH z1{^3Avsb_yJ{M1NjURz5x~Lp0Fw*NQlxt%kX>LaJyYbOU$VXfp`xdpwaVU|dx! zP(YNaNo)AiXIu6hNSn_;N*KS%l~r+g8XU={dZYJ}7|d*{>gblOv!`mZ@IWjSI`dur zHXS>nL6F(gcGjGeIQXXlWvpoKue%H!M$8N4O z3hMo7w#7|;GOa$OiP0BDJW&X>O2sMZ`%MIU*o{{EHKX)>F(ofwC#4{s1zN`g=f{P3 z+xej&#>|g5K(*%>o-a2|+tdW~{Ez=||pw!0(=DVQ7s?*6c675-khW^^GdaBTm<`S(Mr z*Gm57m0_AC2=Y&SG_HXaG!vu6E-DXJu)tOu^WHFcVRHH7m;b3$Taom>?oXJj;qE&8 zptibD&(gKe6vlC>M8+hztER<*!n*_Ec^T5055KE z;fVEs#624YBWgm;suv3RN+_RcV#TuBYNH0lx~LAYqP-|7*;n$jx~-?L8|k&UWUHjz zE6ijG4ejo*3#Bn4D61KC@8UF7JU5$qVTJk0lU5g-KFf~GnYoz23RA13`Q~_jd1z*A zZICx=B~Ihb8OB$o36H zHlMd4yb4|Rzg&T>g6&pm2M@+*?VDx@AyqAK6ONJbcmrSLCA`@c5uvv`jb|g)puIo4 z>9flRsqaLNheA@?H~NF72uya}*G2ZK203@%~Lg z(gH&?JCG%8%hZc_ zlABxeA#B0=ll25&BVq}^b3jiz-g4j5DVdd5J&Xuox2MHFahZAyDfc6;q>$GSCPk-7 z<*$CgAQ7!CJgw0#DDtHwNSmXP^yklFQpk*W>}U;fg#Uo4Z2*r+`lO1Xfdp zK=4&^#GOCK%ZhLQk)JbVN1EcxALm|rje7bbaGVX3$?3luc0hkY>4y$7gUmOQtC>9ir)B*Tp@&@M$-6mO7NV9ar@lA{Q_7aPJNv2JNR zB%JxNz40~YY55tT?4M5pD&p9Le&#_7^eb`16R%NHPfp4%i@A5w{9pougSs;VKbiBp zk8dW;hrQ&pyLH*%(g^A==qQb-Chxo)Sf^P z+_5sMgR&nO%)CqUr#l!R`;> zz$JxJHI1z@{-9me&KZudkAHM=d`^ z9{K?u`F9rqobYD1EfmS7TIfJlmy^B{dACXo-&>ml<_3PN{LxWrq^#Py2Y2oIwt_L$ zb*v!8bEUrGjH_m?uw$ieHR=>RJ|OW0{dSY&c{`x_@9o^r&fNz##!L8t^x-3U9%AAvK3N^Oba8jy8dH0~kpXX=>6ESsXw#qCbS zAEzHhel|##+^&Lt@a3!l8&vZW{NG@;5-WV$QLrKX|KEhf6#C1)Sbz0`UeVwR)s8>v zXdS`M)CmeZ{H)cJ$bsA$j453Ewew?^1`2x5u8xyfsJ(0d(Y3wZyS`vSLavY1u8il! z35zb!eX?;Xd?w3ZwV96oFV@~VEb49V8#YitB@_{*4NyTqkr0qBC1jA225Cl07;5NL z5l~6#lI|L67!?8OngPiXkeZ>J0fuL>-RB(keeP%P_j=#=A1~Iv+_-+<_4#(S_x*~a zIm7?0S(-lW-H5I=Bc;@BJ;Ocy{JlA?{JORI>nRy+O3Us3)1K~WT8~A>SlAy@-r1*c z?0mIF&Tkv0<==MgZWIDv%|-Uf`&GxxuOS z`RJE&wsbEF*q=Z6@=-FI=U^<{#e3LfcIX!rLHM+?8(Yb4QE5V39Y!*st-%Xf!y{bgPA5A@8ai)x|vX*WF1w z(=lySDi#!nl`^)VbwiZ%t2Z#$J@UPu2RUR_YTkhAq*7PDrtNGOL_XvAu~zZXCzh_d zK)X@u2ccxj?Pas@Q2$T=Pe0&`mGf31^5tJSl{vpJMnLtrr67qimlbT`y7^5TpPogv zX~(An^M9mBi}71kW38!T>`)f@*bA+bua74QUTP_PfvHv1zC*uX*SIrBE~Q_$PxeXv zwNG@^LIn55vZ~;&lxq<8i@@Ow6RF0oFAs&3uwxbbXbL_W&PMIwdK`v&Ql!7KQnwO0 zfPfa8Zn+J5f-qmv6Wx%;+Rm0F3#bNvHO-4tTsHe7pu6nJ{ZFBP8I$lQU)@PT`R**> zjenv9BgTHRj$t6%r}mbT4OcXk%kH8ZP(67vE_d8+Al)Pw>ChKVP|0CiBAUMIh~@0O z;d@)7?_GBhCUVJ)_z-LHgfFSavTELCfgwDY_lrO|$|!m^1E;oL$RXp}(biYS9MG2{ zUygPGjYj|Jnq~eoRM!1UqFtI1yT(Esg`cKNRw&9EM9tOhL8@My;p6% zE)#u&@be!&-1M_+oViy5H~WFQ97QI;^z5~YWXFRvE`-8WbQ6uui=I%#MZ?mjrx z>(~}V;+&*xb=N&I zn)+3NQCG*6lMvSMsiF{ovW-@f*WJ2;>A5e&_na}tbvtX6gZ|c0t>GsPoe)1k4wMjWD@-v7x%MUas-m7cHGr-&=D<>FV(zPbJOmI7)j`3m{#NQD;p0 z0y+gconL6__(9(HINahRSUmJtM!&p!-t}z!7+v}|1sUF|_@)7Si0X8%}NWOuMx^!kbe`q~vtE65-yw`qE)rjELaop+zgIfD;Y+ z-zG|`n1No)^o%hOV1BwZQq23ivP1%O=6!Y8XxE+>hn>&j!ODE^`|+z=9_MKxS-)D* zU0@@s-en^~`3Y4?Lo+kqsNAqC=rpK`+Jep+_WR1b7CXl6^;A5Gwk% zI#l-;*2vP0#>t7?Lic0JR3)DGJd*r$3ysYu>8cNX0okQ%D`?V8d}x`0)g_nOERufAioekQ%! z=XayW3!>;EwC*V`lSvGZBYSS6R`9)-qReB1s&rkbS3Ou7i?WKJiFV#s;XVui7ak5% zs;K{CoR<$h39k$_ZZyVv+_A*{k+p9uh#8y@32GQ1YE@O>%t>z|UPEQi1IX~%zN%Q-*Ey&~oTYot9ILk^XC@k4YB3bG9u%5#?UHdbJ zmVAv=moKa0D(HT(%HN4sNjrF}T-xBAqkG2tjYh$*%JG8SpTUwHQ_fdGrm^H~r7;er z8BKl3_}li5^fyH1Nk>+Wx35EkRSZ|G7&TAWCd2Z=w`$S+)zM$>3q0SPR%5qmQTaA9 zH$$PYVd1{I@|ddkLcp1`;c~WCFg|E}`c?)yJTw_b6<9RF;R_1!;(aU@0M0hY4gON) z3#tZIs!Cj`ONvFDZVG?l%gfz9P{jspC_gU8nddG14ecR_ z=&8b>l62ivzlH(&@V>TbL ztNz)ynv1a>FGr1vTdn@<11#%~I7YB>tL7n|e znuo!Mg>ES+KAHZIM*o-NwPK+?hc!jt_09*-BkV=$4LrXUuJpmX+n!oJ9|;ktbpSID z22=u0UQ4qHo5@e?KOqgq;Y_jAA9Go1Da7s%6Dq*w$LtICNJ3UY`DJUyH zojM_NOYRI-ziOvjXCQiE%%F-*GvrLGO?6zXlf65L+@E+Pd0fZ=AM6#q@uO!#)L!5@ zi+n5dj&pF_cBzX=glDCuIp@XMa0cuaztC9HO)GM#Ku|I>ZoD=>H+H*OkG5Vmuxtm2 zz3NwUV5F9k==R&+&hnq5bRfWykMX_|8YXQ%`7FK2-UD-4J$hf)@u4mEm7t$qj`m`5 z0h#$WHFuURciA@g@13sjC}7GM1HBdhFXgFE-YH_&nCGzv8lP+!y+6#Iy6hgsE;~sDaDBL>Y~z@$YLA8l$sDrlu4s$P;^%W8Ki-IFABi6k z*|CU8{1xpuwhNEYHvb+$lY0mA)oqQ>X8O*)fK8B>Zh56GEWzDz#%X|fld13|TvkEg z)H*&d949Vbm~*x`U}(KRsbTkaiHmfgx&Yn+xx1TNg9-E#4f;sMTXeu28&`ATj1*gS zeXh1UVN+{;XNUrYTDPkSUlewCoa&dZ*pgK6gJ8-w-d6W_DF}EN!J9JS_|0?##OpqH z(R%HG(@Ok(b!~Vdt&;E{Nd$p^&&(l!Reg~)(QU<-erUOSsN|Xl1=qI1f%`INM}bY$ z&bvb6=0s~v-jMZ&;ddoCf0Vn=-`9aH^*u&@NOKI+s_hF`#3d+A*Bt|mm3+UcokOab&F<8+DlHYep^ z7~5Bu`m;x|BSkDkUU|6QfxDxM%68owivyKG?G^9vSNxKW{*eCIBG296rV-+k{Bit3 z?Vb@dsx}dCbJn{XG?PExsxP`J9#1c(H@Z(09fCILHxGzD`Sm2LjCo*ns`0$a&hBi1 zQ*+C8{DKIsbH#leKethd5xZ=JiyeC_97huX7I0OZPS`SCK!K}02#-szMACtq#bPDBFFp+eN4^a*8g{>_TMX}d}>df&=IxB6(ejjcy2eh zQW!^W$nMrqU>YsL&`qIUFs;<0WDiLAfvVZ=)Tv>cRC!{F%cKL%AIK`jI$=8|`Guav z6sqnfQVvk0!}HGTPjW&xqa(q1f9O7Vqvcf%&1^am`VVh!k?~)OT+eyJueHNDE#um+v**49; zLWflK7wbAJS1x~NIzf^;(nFeixJV@7;-kmZxhBm5t;;)cb%i5Js5h&neBbkvN*oZ* z^u1;Nn}apsHFDZ)pK^{Tf+~RRZ&@{yi7m>?Hf=;CV!pto=;4EDFkK+^i3fxuZ}*{p z>{_MMOvubqdV>o++VV0$q<*KDo?;A0d-HLm1Tr)w-BZX~=y4VLrB0d}2a5BCMsHd| zw!Vp-WMj_l%4+X3EcD_}lC}}bT%Rk8iZSU5pXUP7P3r1`>y#qFmXMZNl*g*Y*TPj(Q;{AJ`1#NvF?&s-bH+2wzrpQA*|`nDX(_J#~VU zei#rD*o)+euN ziqKu(=6tjMeGhsL=Td>Kr}56Po2Uu$OcgHAKK))4QN z7k`l*rVFSUBuO>z@0?LYu|{r))t(|v$i`KNFkBYdx|{9@-$+=l^Khuk8m#8HJZK9x zusDbCGJ`!3KgE0jSQV0l6;D;S95j1_r`8g+i@xr;u=_ocs~sa5zy7MO=!z}^4>npb z)tj{62PP10TvSBAoVJjaqMD*Ojb$0$xyN_daz@!*fWGrJD>?-wo<6sx#TVB$bk{UJ zj2>N~|IM>waN8Shmnw?D_06IIY7F*pE=+C%wV}A&(d9;1u-v@-0&&`F-+20hjmw;O zdXm@>2~!!(vnei|1m2}?d8?<@;maF{rcg3bSf$or*okcZQrQKxthsFVGek5=Dz_KG zaa4G*`Fq2RX%6o7{iu(sO9RsH!zqS!G*t`sB9!cTi;cDCibrc!vd3#)w0AEn3&ZE- z-HpB;;B4~X?_vsY&7BZAKN#OlvWm1SJth^;DqCETi=6F{n(R)Gv=v3T9c~4g^;W&; zNhr$YLckj?d1{VID)?VlS7m`6NkUxn^V=k;2^%nXCqKxOvmzp5Ao=Q<$ehR;+4r?G zOoh5t+b~Q1CfQW^-O1m}TYk#=o>6w2bQ@jU=RNhcwQIzQWz>CrnuBaO^QVp{Vf&e= zNE?w={jSS9=IV*h%Y*%+D!0g@ei8cj@mve}cL!^$`3Zjng`IWlK8# zWnz8&;mYW=A)^oH89chL)Y$L3cRg5RWF^CF%l7PXwH?5+6b#-F$C{?Y8TZ=_Xp%JK zVxII+8HLY)-8OE8W)~0FXWh6XLCx_tUnsA+&h!MEybO7ylYpJG;md;-fHx|Mx#Yvy%~1tJG9T}Rn22DeFxkd% z9qrJ(pGBHM?}q%jzNp{@YM8g9OQfcH&SxE~{6$hc;rjmaQhG%w`C#=*{|DMs>mrMF z3cK0SmNF=d06_<$p2Bt@B)P->?jpV)sHd}r#KQE&Frxo+M=ATI{RfJ>BkShq4_MSh zik$D~-Lb@cN9J8VoDhxOLn&!er;r-)-mqyPr5%L#HtrSZsa~*pg!K4g$t3*3=$ogr z?F}+o-3V6o7c86C{-cz@Pfx%~!k0Qf23N?Xgz)(FS@6o2oSi*DXpbN)DlB;`D=?8M z87wZSe-i$Ly4A|K>Gv*~&*>-HZqD_?#d_9@x0nKjZL$=*29+5GbceDPXp-F^;YxYg zwcQX^Z>GCxD4o5PAKJ3?)i&4~2mIoV3jt3*;PYa0N$uQq#YwFD9*R{A8o#v_OG$o? zlFnJg#ldc}aY}uJdd^NG_;cJFDlRSBzan}{9GL4vjaqkWe(fYTXkKgU@0U-^DHDWl zr?!%$#%N42Yr`7FaH;^@JsSH8ggymM@La|>!*P|QtSD;?_fGs5P{8tVxP`3Lok*))>b z@Me|%>Tr2VqjR%827QYUo_L{nCSb!A_b`&#DLa7@O}EWy6M8AcmxB$5m%of|U^aq- z?MfGjn=#0g$M>)C=))V{H#qI2Zju(y-x>>JMgP)Ptk`JmlINNk?{n#!gWH~mc`t+k z-k*+N(ndb_=&BjXmxK9hM{&F#b_@5)Kd9SMM5}3vdSwpLq7P1eM)c8H|DffO70nVd zZfgL+$ReeL^A7E5&P-|YU1Rqr>eH1TtOnj1|Nd-7mNEY$1DMPnbe)WLI2d`6- zFIadxQ4Cf1?2I>^lvX@}7x+0wfC~ z@q;RsEv5X%*KMlcd#}E@2>bo^}?pj$DJctU~hr+&;PoKT%ia(xZR4AVJEHp>8pl8N;jB!q#Jx_ z<;;tUA6*WvYic(9(@+U@iRB^+xal}zA9H+%;SiMPvqGWiOkhveHK=UnCul2u$K3sC zi}{l3QeM2LjB@&9J_WEhv}as|b{)9%HD8R{IN|LAk1PA!zkj_xnaG)Y0_QfSrc?iL z)ir)=F2m4PG_&WS87-z&e8o3A&)>#M^YrfAbovCPE|J%wy0UJ&I(xG53}2(WXzPRa z{jS$IGtF(sRXHI4xxroovH8F5DN48mwhWdRmra7#?;n`!0kYz6HNxBQ-&?y%N&Ix~ zTNG+K&!vl13$$w^9~F&m)iv>)MN?dQQC3ZK9v2%*8ymKf;`q2-!_6cp9fc1+w=)dg zQd2>zBICX6)JA{49(nwSV(|M!m}rq-N4M)x&M29cO>2(h7C*Xs^ zy|SdR;#=9wAD`;bWuKis*KI||ly4l`bd8L5^xleSYA#2|6|Z7-4F*X?kGC>i-?8uj zVeCtdv@D0Z5TF>VtArvCx8nY|0W`|F(rU?UwZ-_9X7R)e0#ASF)7WlzMEn>8##2`%dkp;sr`*$;?Ok4 z_RS8z=JNAq-_i9@Z5z(9VG|Z&t{MyB?!X+)ktBo0m}8D z%I}t)a$HUW3*i}0vXH{=$F=99O`hUvq+_d^XldJfzy&bXWK;OHxlw+KUaU&~TGkDZ ze0|C6fSY0VQi}c%3(>vz%zHn*&&wGg=9p(-*0*4s-VnXR&rf>iV3qeMPDv zO+hA+w6V$|QfVGV z$8s>o>7~?=upx!f3+*VrxVk-;P^3*leI6NR;fym&CX^^Fg`^L&@mg|O^A^Lj*GPNf ziu;Ufyqs8sR#)1|Po*mDJTBnLmSx%38t|(7oF7#|oaXHAPFLxjlb(PV=`L8k_Mq6~ zHK42C&QlmjzPRdwk(^;n-xs;L9r7c<4SYTB%3c1)2WX7&MAC)y`$oAk;|LlDY}NVcihbAzJpV%;ZkYV0FbH3D-^SYIADD zy(|*s9b@SZ?WR=4KbF&#D*-(kYX}@`@sG4Ym9I;_Lc+OiHa0LO=vv3&;=yYmbo9I+ zta?V@lh-lFi#RYol;+a>om6hn8qA4{o7ig>>ls}lGMWjL@rII>OHJ+$x75oC&kJ z(i1wgEfkX3Ynxx6HV%ZgB=y<;soaX{=OKJu+`&G(5j)q)D7eD%=1QWA{WKxc!ce+1=qu^8v6S$ z29)~2{SP+Pm7-#JE*D4#Q@nL+S4-Z@q**#(CEWYy#Z|TSE1NT<@yrV5ob^|pCH+#= z=1`3tS}30yecmN3yuN0TaNp!qYQD6b{#vdW(Z&GnHsR@|UG#bvyQ@9(aHpDBKX9pL z^4ELS=5yHbepYqY(2*lM`+!5N6C)uJf<-;Pne@_sOjkYQq(MUdK(o{1d6uu~zIWV| zn{6BdlDM!k&0^bW%%bkE=shJY%N_M=fPt>aKx3gzk~$Iaa?Y3}Rc|QvK^u^6HzO6P zfM?j-^iBJcWcGtpJ@?CChMz!C>2F}a(n@(zBIY^Cgj~n3ZgBFNWj92_XZP;uX6yQ0 ziKS4B(}?tPm)AlG%QnKs*>8K-`a89KIf%z)_eDetBgsGPAZe0;;hI-TZnxZsK2FcG(@7m z*=|~pTd`V!;l7!eKe^lN;kSJ+O@=LICUoSNH|V%qSdY3+(1FOXfkLng_Pd!ycpF=(|k99w~3y zTO}#%IN!8wY&WBDEJZ3G6#5I)(e=`)UdWa2*;oC7OrC`=P)ceqGr+d3RXsJQI$R*JXq{pcGgA zYmUb$WKKChz9JW05xkJ%A8f1Vq7QA$Tc1Mj)Zi0a&Y!&HSxY_|*D>aRn&o(Z)F|+ZEy=Lm#nUZh`70$p8PNe7 z5Lbm3e5uxFn;DX7-?!%vY|@%k4sc7m_aik6Qo4ds?HGz8uPha>c$T^H8XHY2yL+is zmWZb`NqE;qH4eiHfuXDX!&HOyC~i?xk%ha(aL`5GuQ}VXWImg#g&IhZg`s$JhOx^} z06};%+XuL{P`%6L?%^uTLNYUP#iRY6A{aL`vr)B&snmNxl)z(_*rE!A>q&KzRO`m= zzbwHeyCIz-)yFKVzni@OmY7{myf?BZ2Az$HTc3gr34HPPx6`wU@~U~Mwct9bm3u`v zFIaADC1^~{0`BIP2+AEoMHW7Bfi?2zf~JZK0oE@j{^s=c((f=z-3^Gqg30Lm2$jyo zOEvFbhh5wpesVKxP+OPQjNMBJO6-mZf7=(siSOs*MfG!{izlD--u8ca{VmS~7G!ukcm+OgpU!L#t5owg?4(OPKZam#)dod&fmZ^Ao8j7xEB*htI z8rcliGgAE6CENF$DRjvHpz*0X8JSaCe+$!3I-i$bIs4<6P^v6;wrLmDJueJ)nl8XV zjO~+S0IRBv>iK$h`hcg^US2y^qvCEGK~RlM_xYEvxX1FsSFbCndaFG$yN~K#P*FiA z6yMb-9yJ%<8tECzUC|Zqm?KHWF;woUw!|-4?`S;MOTEphhD5>hdf;Dmyx88p;{Z{b zoDUWTfH16Xz~%UwuX`aN4rv-nFj!V<{|xC+HxG>5S1QhgtJc3P<5hogf=#?jHLpAN8;xx?G5vaoc z#yo|M#^kng)4{mq2HYanWBp0ZHgUi^l-Zr{md zH^cT){wYFhK$= zX$?)E{4pNRYkGx3#1LrHA7P^*t3bK@?v@xeI=-O+`vzwQ7tAH(P~P2}ic!=2tIcT` z!uRdG^0e{Pr_Pz|aYE^*is_T752E`o1(X^ji*kE_2w`dFc_l17?wG~*JqyX#4&kO) zql@_6FZm*2YQq~?D*E|C`1a3TaeThKSPq>g{xTyNNJvrUs=(bt<+|yEXB~MSSHr8eT`~;Xd7?5k%bp1DM zf2#qB&qBUF(_)@+a!IQh#B;myFLr7zu`}MiRo827ZiX*YoYh~hqa5BNL6(-fHzdt_ z(XY)1yU!JSaWTLfUOh&EfYRKr$|qo(v1Vrm6>u;9{-pHk55K{u;{+ydYY<;E>94&Z z^@u;>mvirC?R@^e^W~JJ>QHg}T8FEWQSC|jbOyUhSZ-`_O$1EOeCd461lkyP#YQ&$ z^GoExtfRY|?Kb@Fp0$XpMIvmLa_9jMVGqM;VfD3&YQ2A5BexxweLk2acQUvrw z@P|yF_@JHqk-N%1&DL|ug5ZA{n^eGK+W$3-G9)3cz2M+LpUTD%sUfD9HRr4B1 zOYaQbbrqo;nJtU?WjD|tmU_A26yPAeZW4vVcsV0*&}dJOd;o*H+XGt4Dh5!^k1@vH z+Ka2f0k}RY8>kf2%F*T;Wn$spt3c$jw4+``=Wvc9J?*2cO1zMB^UopvR;4Rw|_x7n`bDL zRh{ojK-m3&MdI%`a9&izn-nB3=qGN&L&fh73DcEoS$MToy<4c6sej2 zR_3&8;iyi#X*Z9n3SQivX4?0Z2#HB}Q$`I3rjS{YMXCICvZxmh@R@%)-AupwM-c5D zy{|$C!6{*Je_5q~{6KV&@O-aYmi}%rN?^Dui{OOMD4gCGa~srdg-Arvn(0(L|8(h2 zY*CI{7QR`VQ+>$(ZJhzVBQA9)3p$TQoVv81Qp>XQOpOyq^^Sd}gzO03 zzhoY)UX%HZGnyM+gnEKOs7+gG|KQn{(oQTNz9&DMeSGJ=xA%_(P$T_F$CH2Yc*pL# z#wc<8ML|LH`f|58!^wYAh=ACae_j~XJM zf}DkU6K%v;KguvUldz<;b{nDSy-+vGK9uWCwP6{P#pn%*f`(MskLf8BcPu=2c1urp z2_~Nr#OlVdlvE4Lc66Q(DBayvGTJ%Q!2l~CZD?XF+U2C;fJ>lan~VEI0M6_BI5`eO z5^z4Uh$blfW;JVN7)XfYXM>FWK9d>g4mk|6m&&|!J{b!?NEMv)~JMv#|0WY#B``~Oy=EJl_!900ofxMSC zgIQ{5Y5K)m{Ep#wIRo||I6iLBUlAAJtkg#w2oPozv2qV@g5n$4L|m`JfH_2$Df|&jq((^n)D~=}T>H@8+`H%!PIO&6D0e7V$qp5=v<8U*g#vFy zi<@Mar(e)XD%2bmM6Sd{R&~WwYH%^hY%~Gkmbo- z@m@oP!;^B8`~^_)KF4Qac#FC_0rVg&H5BZ!!5xDh&n6U7jiro?58rg6B(2o~{s9~= zZ3e#2NB_`#xv>Bo)du8RL$dI^FO^1R4d09PZ%ekNs`8><)3+!XE{a0>?A5aX5+7<{ zj_a?ZXKHpwlNp}GFHhcg#wrQM`)KWc9f_S0W&&Nr2+fRY9LjL6NzmKU!DnInygzLC zb#1m{?OyD_6p)`9^9c5H{L{esHEM~Atq`nOyFfEkyAqo?h0vUNJt^Q~RT3s}wU#G~ z`_<&^<=|iDc;89q-Yf7I=eI`g$wABWDu8T1TjB1#j-*+i`Kl3GDDs{nK7P5cjQv>5 zBeGoQy+F=>oR2QHH{(hORIqWMACWDA)$>ZpY}ZXqUvlG_a9aVtAwsL5p!@NbayJ9} zkD)Z(Ov3>tUUfQ_I^@gJ=La~j@06&rmdZtsbT zuB@EnB1aQfdG~x~xAtZC%MW6a6?Ukv52P&nA4J8i5IJjRLUtIuROoG7hk

qoMO) zjz(0NXwhL+%<-(87gwo^#5!j@8Fo?JuwI>$qt5N@XcAf56l=s{KTxmiuehl@XNlWnwRa61>-`Vq<99<96Q?I`Vcs&s#?g6^bOV|#T*fH zgfe_C(*!KHzszZjVH)`vMk@!OF1uYb+xS|i^v)MnP3KG^Ax61<&6;#$_Sp|3(_Q9D z(0KYu-9WpbRtd{fcEXo@b4=&d0_EDCIJk3U)Zm^=m`2=ElpvCjSm-th&k?T2dMwx& zI8r6vQ}C=Q$9SV+%@wJ0H?>U)mR(xb456(fB;F|kS3jEsQGq!L3n^DcMbMOVYn))9 z)x&w2f8*~Ei8|a68!v1LhP!4QQGwU;=S?0Fp0HN-I7p_C8(1B`9tI)$7h=t*^!N8$ zHyq=rLWO=F@9>^f+IY3JW^#=({!J(lZK<}{1d`PGGNr~x|8(k1_$>qa#*^8u6Yo7UiD#(#uQfPB+LZ3RyYdZmrzJ&iWs8476ryo?bJ{ z9hLL1*ez_}vo?bBfAr1$=*Oy_(T{K%PMhq~XzW5EoMNlG?7YWbTf=ep99X)17Y~yG zi$n+$;4`COpX-v@Dqe|sEau#yI@s!Tgmq8+R66Czx3EunZR_Rax-zvwssk6wIM4wt zj_Wz(6w2E+zUEwSiYMM^x0q*%F;(bep9tH}HVxU78MJ=498-D0N9@2JzaC;sK2Dui75pkwLm28Qpx zbAYZPjmPD(Ngpz}PUT#TP}|1)>OvLo#H@jQjW-JPJR~E9(y4N>_#p=gEvCx8&s7bS z6;YTU`*yYq4eo}u2%hd9bF&;*J53}FyF8^G%ql)>QjYSqOLonqW;`o)*SsB6gbc{5 zU7FRpFQ2Y!P`SzL$#k!(b`x8Vs+=3B?z#Hfw%G4(|5iAlOi_5p2zIZeYK23e-Sl~& zVo=;bTj8{jjVS35?F|Brb6V76LlxbWB5%WsE8jNFi4pQPmmHF57{s^T!t#F_WauK& zJebPb*xx%hR@f+8nJH7{&!9F$@iE%(Q89LA1Z2z#7Pe+UZzW}as#=-Ydb4n+z<-*D zr-uRCfz~yLAy@kG8IrfG(+d~MMO2g#Ro^I-5q^2YIN!Kixn3ThQO8A=9*)@~e&$ws?Js zTQ}zuR6#>in+@+NEs4U`*>NlGoZ8{A#u|v$zy>}Ok?6d;ef2LnL-kn?TFy#;z z)C#l-K^N$1QC#7Lc%Dhvy_f?TJfj>htcL0`w01}J>){DwGp3xV;_nZ!HP$~!QFvbFaIym(7cFIE>? ze1aVW`mDW-zVnG!O_^H&E5c((xvHTJA;FqG#eUbcfJ4nn>MY2R#R}{UawteiG(HyO zBq^zL9ffJAlSU@aX)(|ovo@Tak2g)I%bb3z|5P()q7>FOd@fnVZQ526`m-43e}RwXil6AGEE`!hR>}SKX;P#6=L5k*qiuSTPoF_D zJ2P~|g9OmVC2MX7)Unz8n!XMaYSkjj1HkyPx-Q5fN!{8pnksPQ-~VtOvNzAEjr#kMzb;wF!Cre%M zVv>G|?H+eC?vqg0Y%!xnCX^4?4(EUQ(~WTFS=o)q@?EAlk?|#*8Lz5A_4$BRg{*4> zpxm-FM62?`Kb^8^j?is}Rac?z}@6c1Q>(2k1IM z2SPO{TKT`0;r#3NJ_95iV!hg)^7t>ZQFx9ec+gnl=DW?#C%u7p+@y9lAIMIg#QQ^P zM>6J;^>U9BZ*olMD&koqAvWN-CBK^1WTC+MuRO?l22A!U}$-&`&viIVs78JJDV!j0CjqB{ta5sKyafUqKTWQPK?mjBuc`m`S;$yzJ@Ir;zXMAvwPNc;phvn@Jn^@!kXO=d?<>(;%ku7+NKb+3_{!1SMKe73gf&oj>lomFsJdc$uiVv5e1ZpjBw=4O9zm%bVSeLZ( zk?{zKj$E6OmaM%uvG&EMv-JjLwsG?|PAwUBPHWRG+81(HH&D4^~-Em_X$zh%b z&}5;fJ7EUpNPn7u(t-Pf>E{C!DyxudAhhzgr-+^-Pq~~1q!^ELhbTWN^ibi+COK3q z3V^t3rEmYL>i^AW+|=3K+Ytg7qDm*a=FZc?pplg_FCp&~UdEzA1#E)2dhLj)HiqBP zEN7A*YuSSt=IC3gUWf<3(=$5f@@rOg4)j8N#6O+h{;qERgRnkYpzy-2!f`P>o;6a0 zAVCXW-6sOPdIH+)#S!uy`L0JL5|B0)VI|v=&0GJP1>o7~t_+pdybY>EYx-L7*wI^%+nKmkIJL;bgVHLD++C(85Vgcc?&KYAxbZqZ5lEx!tzh2D-=gw zl?RC2)#n2vYGAv>*1Dg<;oY(T7YMPnRsDligw- z0<{c(e@at7LNmq-K&Dc^h&!i9&7n-+VRp?&LI)HGD&RLASN_*~X820jzfKY}Wk_6~ zK2Z=Z^*GUGfGatyPgZ)B@pv|2j(dTBm4#rcY_z}aH5YJTJrxn0_x=5qM21K(#H_OA z@<-5S7nvCE|4*m4hjp8Og3d?l&@KL?wwMoaBeE-{aR`7!0DyV4>764Va|8hPpCqPc zv@G$ef>sK!g;gc+=)Urn^Ht5TAtQJL1k;y1aCD2%Ns>V49f2g>Qkn{I9vW}8OD|c6mu%zvJ88TdY`oV)JwITNNz^Q}QyYHTKEvJZa zOiKSAp>h#5E<8%;y;1PvT{-XdkH6GVChH?wD!5r&cIv4w43f8~1i11|{UBiIRGlJq ztH1JDPJoNcL8MDS0UPywRbVHh4I2MaOOpEV2cN=`yL>hW8ASpA%t3pS)ZYAYJ#HXV zKY_eS`3n)c(7zJ)w;3tnenwr{3qraCOKRfD$)yX*?OC46ZV-Uab)Veo&DNK})vkcq9^|$-sH8wKAO}h_E16d>G>1jVH z`9V~T9+rOmr<3f*Bk%s;7Er8`BYc-Zvj;ujM@5-qzU9C=h}u*+e(b-fefR>8czjD) zn9(Jq`Y8i5QT&wBfvVek+O10?YDnP$q_{*q%-JRR>--c=z z5E$()WDb05?zZ=W0F@UT+0>WJz$hh9v)176LN4W2Y-P+w6L6+s`KP`gg!zTevlbBE zy!+5K=HGhtU)1~oYNuPxyZIQxz&r*1gf>}l=ZoOZ(Ka(_M{MT*aKR%x-=7IvP93i; zaMVVv+y5qR+R1tgOesOqGYZ94pyN4UTxNB2{O{~NT2 zWVBacty02@dK3^H_Du*Ll2+}Q)CumZMF?lHUBjBCtBTYLzu~2cqXEo{BW(9nQ=FAY}>fLRr)pe`6)H?a2wcX@+^D;iaATw^USr5i9s8H z{^6Rqui&+6y$>%Y{=Zx--TlZH&jSP5EciJgOp=7Q| zJ-ipS8f(hLN1BZ$QRz&ZPnVOfC~SoisIvF|Sr4fS$&}qpHh(5b_9z z6Gz^?;0chXc~GmTJg->QpH_c7cgWGNCGtR}k<`^w{?jU~>i(8s1>Ii|0=^eYy}aYW zd!QkgiS^)jsrobZXbME% z%hl4z_?Vph`EycFljg1k9=_ff4bYp&q(ChoYV;c5TL8R87UQ%))C??-d4k8nYr8fA zQNv&70-6lA+~pdN0Q1Ko7u)u%(}%OFyKltj0a3Gl(H=(Ksxy^SUiFj>+6w)uq7mi0 zK7T>$e@c6abH|ghS~RaXEaUUORtoWd$-W$1cJ>cm^$h@Q%Jyxl#ve346|#}j0)zZ2 z_W+X;bt{bPaW*S>H;3v)BTy0weJphfn9;97{EqHzD)1d&dF;4m>h#2G(GN0ei;+ke{R{!|jIhgW)< zv$S6g=!**0I}Uznccc##B%Z8Q@}gs`JKpeW8{e`$LfhX=-~G~e@9UikJjBRPb#QgZ zgNx7D<@(eF%s+m%p5F5Guhvmfs4k)(ZS?{Ye%$YIx!TaD+n|8H{ST`6m1 z#R+t&Y$J!Z{(G^Z{}#iyFMV&{%rhAfuw6>DY==|l5s2n7d zs;CTmDSCJj6WQAU5<=G}8&AW&cnm}pGu(-G1?9%qCD zJWfI4>mqJH$cj+)#w|aH?ShgA?0mqRu9gD%^8qiR787|Ptm+<5Y(?L&M(T=4>mPys z4HY1USMzlzl>i@`XjQWVDyP)@OiE_ww)$LZ*U14Roc2Gu9q~B-6v%}aW=D{rL$LOU zu4Wvh(E42C;cah&bV$_1>GHz{c`g#A6;K5Cbj0V<6BX**K%d)UAW{B?q5JC`pg;B9 z#w?lu1&5QdM~w!$!w8%t%|kt)RHy{Qdx5C&eQ>xwGb&o$dOShn%xNiy=mz5>AMl$- z?-YD17uL|#@(ers0jW<1NvGwG`D$`Nv~ybLUzow?R{;a%8&kBhkztN~Gob>K;qOn8 zM;v^glK^y#63XdU$)!H2mQ@26@saNFWj~co&tJnzTR6$;o*= zb?w0+UoDqPV77H(s)MODHcH-RLvB|&>w77J84Ed4!%xDwz16Zn5v^KGNgS}DFeLBV zTtGm?%|GrIP(?Hn+*oC>_ME~x?V%q;`B=4wAgG)ce6@NM?tTF7H&_u9w*lNIre9it zn|yXZ4pPDaDXzBvBe2cdEliS6o9e!?#L9WG@i1)gh}0LS^+au8QoJv_d91%oow@uhXD$;BCT5X_{r%$lm8c6{IosPu{Pxn zq&xTb7P%vF;8lDtok5>U^)pWyIWD~ZdWEp`{$%7}f&)WPO8z|%iIo4~r~~Yw|0}!d zJOIO3E}h8S2EDJhZIAUGLH^GZK)!NY`UNWji9bHADh$9!o#n$Nnce$Aq2s{OEJ5w% z<^KYtt8z+;O=Zm%_lK^THJv&1A?JPLg7A=;B}SoMhq-O)i^A+#%)W`f5$X;|>AcS= zIjUQGLA|4TdezM1eTAc}I37yb`vZyi--x3!H+cee;49n#W`bZ%hN-3^ig(y4^B z(v56NN+ zHOSdk5v3|`m*sYX_W3SpMX|>MKXL@DInO<*2yn_R&Rwq!!2QWCk%srWOk|`2xqbt~ z@3Jz=)2Jh>xzeN=sH*augAwRK=w&pSmj2(a3UvN4gDe6tgILGrSS5T`W8on$Fau%u z4C+0lYIN8+Rc$5S!|Qzinlbn-BmZ{(4}2`}HrTloKmlTC=a>9wl}-F;|c@<(nt_ht?V*@ZEJ_E1con z3$n_qmMT?C9&BJy3mgcJ)-cK^mwApSCmGdTqj^gwvuN>~>v8wPGX{cwB1LVNd(3CD zAAzSo3Uqv!oAO(#Z1FS`aE+1&)=1--w~-JW z?NT6t89r;2tOJ{`jw1Vne!eX)t36e{x7)5z_7te(HeofQy1r1L^_tbF|Ipx}E4suK zAI8$38n_^hz(%ZXOvNLCgsiP?euFVOt2;*-V669q;ZbmKA)>K>LrH^d)87{5fD&qO zI&3|CwLf$G)ZUqOHas)Z^qu;Ahe;5N(H#qONR!`2c!1~jQAcUn?w;K0$DMCKGF|8L zk(&KPkgZPuogUfp8b4Q?{bH6l%;9jl@ zK5b>PH+EyS^#{XUa7O}Ad&Pp5OCU%I^9P-d zz_kP*SKwi+i@=h3crHZTFFmu_WNE0t@g?U2zSB38XnZ~4U5+l|b@xXJEcuq2l1EM1 zPBwb3?C(U{bri$!M+J#Or#nc(^C}z}L1W8_$&D$XJ9lQAn}J~egL3$Tx;goWvQ7dh zF@W21Och20y*$lflLyHqfr22qbtNL-)tNQs*iCofrI{NbN&ts5o+*qqZNpN<^|Q6c zpWv<8&F&StTFP+QjU7TG`+b3aKajbq$KbnE~aMfIO^3HvLD$RxkzP0!f(2d(aO| z6&(w&M}0J;S)>^)Xe!rkEt{RwmGuHkA<2tUF_w!tZ9P_TyL?0t?7&D@@&`02YLd(o zwnEexGiZ6InSX-CR3wD)HeRxvr22MX_Dcn3YU-TdukCq<%$|rx!ID@gO2;=RmLDeg zh(6SMn==Q!;kg+r;|V&`f6hBkjFy|X_A5w6{*1p|uD$?py{-a)wf_$u?cb?o*+0Sy zcy2p5*Ms@p9{C?;X9N_lC|*)p3Km_WX?U@aUn*Xzy@>vWF7S0D*FRQcqWP@z{}STa;6GoUPU zS}Bsc0&PA>%@%i{a%S3K7Zh&1nf|XT1y7LwchU`PdN&Y!k*YKfEsDq01>Jm=CY`zF zh>)GSRNb^kI>8PnJFAF)j9QZ(A3YpeTRTuesGVAXnMMlE!XaJfg%#F%7))$3sbzAD zBcl62^A4Yjx%Zh|ZkS!B$cX;s5w25Xsj*%OwaZoHq>8U4+(9~S1h zwX9usVW`?gD!f#W;b->k{o#vUi{ET%|H#&eOpQT~>EXTw2$tFD^z%&sV{(%X;{h2k zKKxmi4CI(uf|&n~gdyV~@RadApSW-YNT-#X7w%w7NneVf*E?yv(%~@9-1JL-2tIFD z6FlF_R%%@GV1;!5)d_pA)xAH%DIqaB>Qh#eu1yF=t(zd?d$RqjfK7p-x{9hx``FQ6sG;5|ZL`MvsC15^_Q69nOP*1y7fhzOzki2godTrgl32*KwKop)eDW0O)Gxkh zV7*V*`b+li>rz4E1b z?|!8-U$pffE3TWw@c}I$ncx38y0{3o`D1VI?}Jnj)!PSb%)mtw5d~Gys1Pb@(3IZY ziHipgela(T{HMjjGe^yos1zL!4WRy1NC;h4w>()$iY1tKDaWm z@~}x=oTprlJ_*+UbKrI~5N(3d=$;k-1!*KQYFdz0X0@uEP=EhXzM=)lvJVDukMIF( zMWKo=r3Aivb9*NZR9*i2)gLbKFW?v42&a}>f=b`#&_K&XIzBd*?aB)KU-Ads6P)&(xl#5y0pFfOScR`{7MUH- zA4t|?Kr>=c7amuG$xx<0eA6)}c*M+k`a0u}5sp0VyiB)@Ac^E*lW_wG#1+eP_g8Pl zr;NRwm^@G#u(O66x*a$JN`zQT05I;OQ#0J4B>ms7{(w1uqfS>aKT!A3GzK{l^m*_F z{Qs_@WME5IvcLZxs$ZT}6;1)yWi(`TDWTwj1Ta$IV+3g=$p;Xikuo$Wh!+w1n^RR! zF>P#=;EK>JX?=iM$$=*$L6iRCy2)XtCeA%cs07CYbS@xpM?3|2>Z5iXEzs5QU#}7$ z{cSlRsayAf# zsUn#6!0K4dY(|6q#`25(BES}=_@n<>vD5+j+u;6g&J0Af_bWzRAfn~N2R7Bgsbw9Z zEY8h`L;0BjlxmKU-LZH^+m&68)K(uO-$y5Yo3j3GD&}}AR`xProVJpMCG{H<$?BSe zWUkA!yBXfe)|{&IG%>$mauoUp+>qZENB7g}6gpH)VH>NCZi-Wv6OuWoCtL5>Q9X4{ zxA-7^j(J|5qV>8O#w4RWM3I;%T83x<^hq9}_#LxrN>Nr-dW~Fft-w<(8Y;j~`?h=q zSmgh=>I59s&aH;nKk{5}Kx)-K7siCHYbP z(2@Omo;P^-rriDZIeZdQ(hp`jYOpt2CnwLfj(=QEbZ%mn7EHII){dj7hK;SP z^5JW?_;*C&I+f2gZWmHD&dEfeTJ{#1Md)L&B6GDnUn89c2>d$ZN z8gNviqif5$j#V~|93H@ktgS(nB>iZ`#+sQJmXO+X^tD7fNb+j$yFA*Suma`T)>!D2 z5J|`=*5J8E&aZRN=3f`y4dci><87#eTJvucjnD4)eLZ9&ht2Na??YeDqq^EyNJJWI zbp1AJicI2TV79Z#TB)zGvEi8K1B(4{R>JStKKK3GZ(i`QQ>h7`{tUpG|4&r_@KA-7 zT1|FCy{x~dp9k}JeTc~`7DQzv>3|ZL&7);$dZRHv#5(R^nllifKY*K>Uah4N81$wr zR5Nm36ceS$tXTS1MLTn;cJQVFBsT)A-|f*{iz^!*q)cO(dn0GC>>qLdEo%9BdO%I79=be~HK#(FgRjSHg_($`AvV1h)k%9mhzc7HNooidx-#?iT9qj#tx z_$R&|Q?ec2E_c5g~2?6y|@w zn*0Z)Dk%&vy+(0}JdXpNN_Ey&z^*#k5xK)4F>94SGE%KwN>hb_3kyj@Y`UNTFnhmb6#v1W2%Q%ty3c`=J`mm}#b8<7*ZgeG=+`y@5vo`SVpvA?)uPo@)* z-vC!SQ%CBHB-b0t!%9va4pu8F%ij?3j*B}L50y7U?OgcZxm#Q+lD{}rwTdG84Q-*@ zG8pDnR2apBa|YCd1dSc*c%ds*4&#nAB5BqpNK)C=UudX;_8SI<`V~)$xlGvz^;+I3 zIlejKRb+Eud7H$D*oNi_RWtGL3VHHqk%vIC(*rRz<95_n__$YA*l{*S*wM`Um<^p{ zjI8li)pqVUDbU#1IWQ2rB^{5XZ+aX5=4e;Ma|0H)Jhm4L3a5UXf40SZs7?aMQJVYg zbNt`BX;7aNC}@Q|Tq7yjNcEWdBP@Gkda}eGyf7AFvUn_yEWOuS)!DJ^-~eZw5g1M=mc)pQ}-0cur@4>nrU9``cx`MdmHzvHrFmZ0VtE=U0d! zdUv6@vli)aj_oCVf_YML_KTG!TI2hr;tjq}^J;4~8zrvtP3|0ObS`H=)XA^a&Nm_o zA1EErlGQ2Jzvy?uLIr2l8Y_I9w$+K_`I>kUn!cLmq;31AT$DGD)%3lzcA(d&0o9X= zx?u_LltXuYk^#zZ;m4J=A1YKD#g6iS<$Qd+%?Ek!Ph>YxHmsfQi*sJkj#@kDNTWQa zZ_QfwDY!lBq$-4vO1Plq*8A9HV0bn8&B)o**dbdLGmc%)@548EpFy`=!jljVF>n%G zR4crP9S+{I5kqo!zqE)84jpI1#c#Y)aIrd_ez=GQ5=TYmA)068@Ua8xM)I*+W zHS$08nqtb`>~(HCyGf*hY7Kdv1%evXuDaG3LAZlb-`o{w2WXK{)t1LEV|ny^545oC z-agT$0v+t(lkt*UMCcLHtflC78`G?n97{-M_b#Rha3Q?T)rc*RlEOa@W8MEuiXcw|WM} ztk%p6cp23x`VR-L3&dwC2veQMV;wT7zAusOl>egiLZU#>#Tv|Mft1V%o0PNNu;N)~ zNapJA0HGx87@pl1JPoFL;`B9;@7qyTP)6z6e0ov(*K)dcRCj2l_mq@aKu^f#cztqt zRqpRuPI!RSujJ2pPTq270K*UQ#9yDRhfp;W7j+lA$APYcX=KDYKJR(+%dM-JLG_R= zSCproqjXi92Zj6^ZSfzO?=;Dr+M{+eG+Y7^E85a?AI13DSL;($Sqys)=@GPlD}tTg z#M`uaHC)Q*8I^e>3&8un{%2*G;TAmRt;cnxmkx-mhV5VibZ`W+2~Y!^7H6E#h@3@$ zo^}Qv%~Z*c08>iU9lN359kh!5JDB9adt6Jso8IfeTRbpO0ELx-ZUtEMQW`@lRc6+o zv(FDn!GmpKxDKl+#cIPtlYdAHg{N-F0U~x}D2j_jv%h*}x)rJWu57mAeEHj8^2rPD z+;6RlL#>%Z4>9eQPW78le@l9*g|tqDdr%3GpBJKRHs)y4i$`#c3|>PHoi{13ls76jEt`=Jn#TobLgjFU5Ul_sL+o2=0TOGKQcVFyhC%ao4|vK$R6Y%A zDHvn0Q9J18{z@t1i#|zX7ErzXn@`)oNYnh*c`Oov0`V^=X^;&Ht2z@SMJD)Cup)O} z3INQ$D|ALndO0LlQm@9(x5iJuG90CW*88HJ=V}24BV;%Y>{HB@Y*7;$aP4-0oW6Ru zr*I~I+uR#iBb`3w%Zio8l_H@mPPE!rEv;%(nb|?b4@KMKo%FvvGq6UU9!1VUr0B6( zfg!f>E#l3c&btn3=rdwl>-;#lBEi8-mf}B_Vj;@#PO!-9HbEi(T zOx$*b}P#Y?~Ls0+3bre zM;zq*zVs#8?9RT}^{^S-RrvP63-{y71E1Ryua8$34BX!kaUO#EO;jb0KF{z_m$W|p>AdY8U4LA#>F!s<12XXDtJ zK3k@bD^_OV{fnI5WYdd<}&&loN>))#t3)9DY!o!5dDhY@&noXfwQbok=#b_$s#-i*=OMm>S@EKcCn zE;P8B5bJ&IP{@-&Hn`t5X}YtiPB!}%S-~tAoj4ku?@ub_45L)>j=j6#sc7?3g03**@ZlM~j;C+T9+rPw1Xaw5cyid=-_#7;uPU z)Xq-{a&jTczjfR4S9xfNovBZRAw$ffzxQ^+B$vYR`4bcd{HD4_b!@R*a!t~ysWq=| z#@bPopO4QEhD_CYEwa>_3C>UEb3WIx`Ma;Z5DHv*urHU5gf|;V%^24gHAK4>{NOCZ zU(dSsd~s~>+(C=V<+5A(Sz|6zf=4H@Aezkj7Y4K$X6fP?gyez?7@p#pvunsT(O?9! zg5(-d!wpd>?094a8h(Ve%#Svc={_I%_3$uB-Y!hB$1h#)W2)ziJr{eaB{v`ZywzDE zZ4&SE+1tlm4{>ANvVVUywd}3PHPhdJjnG+ombZE0n)i70EkcgvD+ud$YpW=d%s2eZ zj0|C^XUk;f)7&NA2H!|7>F|}qH8q-5Te~A!CaUBC88X}heng0MC5*{rdxdk^j8ZTr*W2$Ic=%#yr zBDis>nCG8{q|-91n2v=(AKcj%-yR!9Ix59$xG?&8mP;RzHbrq)-sb3q+X{=8TTcXU zf~8AnfA&Mz+rlZz?*(9Y3t9W8u&SzHw1x&&joKDycTNAI{SVQPzxQeVugWekUM3kQ zNFJik-s~&;cpd}_p;fr!_HjR63%(@d_rx^{y7V;i-wk<|mSN^i)<-Jge=7Ik-2GtB zw*7PAUd1b6G=IpQOeP=ady!^j0V8jl!%*9A6ta2wy>Y9k>T*Nr$qWc|gn8)JpDVa+ zz|^0JzPey|``fySMba$&MC-BXvBv}0ZW2Mgk7*MI-P(MZSpJ?IUJE9tvmg0UUBUgb z#un<%{z8||miC6;FE`YgzdCR%aXb~5%B$Kx{qBjeRC!$VRXT~dfA%P3l*o?c!v3ijmUM?pi8!s?pDqvlG(!f)6q~?s)2l$B z)X`*a1xzPhRkA%huBI55Sg_&-RSK9C`V<02f+Q=tUeVxi-l9+`d4}aXmXL_t%1_UC zP0@!eA||X-udtQIn3AtKb<0Hbi;op#-#l!b^`U*8W`G+te;+^JK*hzsp#k;z%@WnN zN2ayJ2|Isj5*=R5ONfrw7wKHGpw?6L2QSV)JYo1^UyK!kM_SqGjK?0S4xFtpnoM}K zAlmkQmzE8y2mHm@Lbny2bI{Di-U4my^Pe|+`6DD-5B5K8A1&-s#(yHaB~E|y@4Q%2`8_(R&hE=T_eJaEoJpCY2H*XcQ@yL>pB)8 z>l?Z^O4}had`0Qq5l9pXV{81Oywc$|{k{A^4mNKY7=!ch7JmtcUYcF6`d+zi)$1IJ z`Q&>T3IBR^1_PP%<$V+)$Dj|t#{dgAvtok#DDX;1ga;X`X(E36Xb8sB{?~9h(Xb%P zy|pS7{4!qE&LVw+_3$|(0-*v)$gDIarqXul{hXzDk3xXO&hCGisIDJJddq^f$#zP5 zftV@F+g+yU#he_;6NSb!OdXZ}vzK`uLs{3k>nhh-#=0CwyaUCgPMw}m6`6oWnVvPX z5v6cN@aD^zTF*js?USNjmSUn1u@~k0l^w0GoV|WEcy!W#X;TOQp+xodj%JkZa7c~d zaqxoB{#3N8Pf)+jsL;;-xomiCpAgNO(v{GHeOH>h$nMoG1v5Ll8k13$GA73P%DtJ! zHk98m_eUT&a)U(|R>OTthd}sJJ@3>lOK9D_^*-Snn>%b%_GY4=A{fe72f1}jOCxu? z+8y@?ES}z~i_7hB;yoR_(s8~Od7b@?SA2Y$RXY1xciV5v20M;HwI`mV*iig(ovy;L zk)xRV*|UFp72sI%(0eR{kz-|p2~%ngd+gwD1-v9(;ck_kt~WZ0_V4>V$(?D0XwmK# zfuDZS(GchRg};gepFNh#^Hkv9o+53F=<&f;>0CQnJeVL`%y~Ou-qD1vR!26adB8H` zNSfb|&?vim#9olB$SPJEt?qy^9>~*0PngnU8#OTXLd#B~ntM2E7VD`#_D3CD5^N4?@8b`$UokE1?z~?>^wNrd z_>3#?*IoB`a3A~W&xrVfjSb~Q%DQ@S-S>Jmh%uz>Beu_C|8y&VE+~y9@Y@4vP>%w8 z$zVe0efmVLKf^Ok2r*F}XkSGp_xFj0psLe!1K`(3j<}>m#r*7e=V}ZLbCqjRMv*1} zT_K+e8aoi8*tQ^zh(TZN-K}$d-i|UkYbKQ}8#cE6#sQ*9B9DyM@xXPHz)@pNaj-zv zSLV%OsYrzKm8dVb@V6*aqab?RG*SL>7bAJZX1Z#NA-U`05ZTEQD_M_@VT6_}B*xgG zv&D&dK~y4e3e=ntMM4e62Yz1-)3MVYOH1{LAIXx_Kxa}LN>@HB(6nKkk1saX+5A4` z%nUvH5ckDvkG=cmiwui$u2L$jFz|KiBTkVsnQQAM!}H+9KWDAj^V>ECdMjM!E!!sB^R6AI4dR*6QZ13n zCCnQFSVe`5mzP&bC$qGd^d}PfJY__a(hsdRro65B1AWc0Nm7Y_`=j;jd$P=JwhHqH z8sQ_)1Iel2t|}ZI_Kk}PZ$P#|HQ=K8IhHK!*MWs2FeEDcYTHZ=;m`SD3gptw1Q6}~ zUl%g%=ckh;u(z9h)OC!9$jyB6JbLSiN^1s8o znYx{JZ}3XF(S9ot+R-g|Il`vLl&FE%6lRnpQ2NquZU=rh#(!qnr5a^6ELM*1nYFy8 zSGxS+bS#sbWm(W(+h?Pe?%8b+e|>#oZesj3icY{akxJZ&Wz`kd_40z{K_=f&*Yu}V zi>%8*o7O-R4KlZNSFOhcWxa;sy7%KpOsivIL?NZ8&S}{#Jnn7%u^3U*L`|>vJQefY zw@|mMeo+w^>ZnoUW_j3r7H?tof zC+V(SNpxi>@^zsZ>kY!c#h3xaXj~$H)&;~E5KT@47vl$_z8XWWn%N&)h%ChU(*%bo z7zx1|=*y&&5Qsz36(eQD<0UBa{rmS1s@5dF@IG{vjv0DQ+GN;h)6l(p_KEO%+JFfn zp7=D&hH@|iOK5~+V(F8w{OhifaxMh+6A5SogZ z2pY|rWcz&BgLq0ZDqd>cYylz^lncKc4ohBUgcGUFc4zhkCJwmp7=Z9fUYYBG-{%PT zZ}y@D7sBT)jbYQt{UP~Bu3dZW0gSkPrClTPK`{^KI_~kgKi}%K80Za`@DJf@>{I0u zK6!6`2B<120nsprCUZ$M7ICUOqa)K<$d4wkk~yyrp|mNllYT@&EM7qv>ri;tj3=Xh zef%m(G}-Xm1G+nj&;3{yhW?;A@F{`P#Ks1{Abf5fL)wGfT(A_Bp*Q2(4+X+-)w zEkxNB{b$SiUiYcGmCz8!_`G~phqQezZ%*uLmJ1YlyDUzWWnte1CTMLp-qvck7M>+zh$o#S0qY#kz(s;2 zD#5;UmxQ_yqCi^*=df$A#$(jnu&54yQeB+g$NWui?x>E`&m~&5DVwnxQevCWxuFtn z+_9%Kw6ZW*E9Ex3EOQvcV^*VRh=wHg=^NUVE<#cg4p|s84eASJf&nv(7|ge{P-6Uc z281yD{qrXkQxn*}zrmvXjWTb50Rs@p+YHv6B0Eqm2U(#r7+HnzXgS)*YG#@Dgqj0H zU-al9c=Uam=ah!T|Ki(S{!jJg*v|^c1_lN-{x{UuI|mVy8hdhuJsjF@!a+5vL;V#O z3;ROcMV--m#(vl~DiqPP526y^ebrOUBMMnvC4Fqzh!&LUVWu8da^=xE6P+*XJ?lQj zE$B0Xzr6oo{c{Q%p|V*}Jtccw&S&p|U*Mk;$^n6Xg4EIxf+&W+U)hXjJAA?atK#%? zDb_4$N)tZX-G$}ji($`Fh6n9-u)Ad!Bkx7LgJ~CC`G-@y&&E6&QvN;*VCGZA`AzKh zes83YD!~B0eKaM#EbOBlc1;Lv%A*lt0flIY+YfRJBw6OCMJz4}#QDDqxId#tLn0N3 z!stWL5d%9OW;$lsJ&SZfC9Fwzg=3gMUwIR7RDYl1IXYax*r=vSKqZ5v(3dCK)AV)| zC{Nkg%dR45p=Ys^p#b;TBD2b^b~+ZK~0DRIb&1yd$~u6h23jK0J4z)3h}%5N)-&&Q#H@6YtL=CNuuXUdlxs6MbttI z7uEER^Ktu{bnND_Wi4JyPBVcAM-V!tn6tLFDlYVT!OQ7<=fQH+nPtKRpmvgAg64qQ zLF%O`2ho~wocEMg8iHbruI$un~0 zNPNMw7kCzy%G;K%Ryw>UH(T`-(zFLZN1xzO$D@hoqN*Mh)|8^mcxxBbHdEuUv)kFb zeOhtvW}3MURHaUcdT3)EP=2Rkqc_NCWj$3)sLOxo?het=3D@XGeI%j&S#ipyCe6HV zYT2vAm6xw2>z#&DlE2g=AOd#?5i@A&HXj;J|7_ z{@$88;)ayuOx?Y^^QkJgd8~(KUaE%HOvyM+MDg7W^LHqL0Ye1LF##Re2n(O4TRI|% z+Rse4e-t(E>)+vh&AlbX9pqu8jE3|M8ZtXXLmmg;*hfYFkK4|-&Z*gx9 zGFG?Oq71p1+B{v@{tHzDi%|j=Bkg8mWcvpvlf?zxV+MY;Vtxt|>e?xc21OS3L{Ydz z3Nc-}(}K_Z`^zkqbdI%BI>fbrJp?Da{uqiMunNZ3!-*{mm!$z*L?sgkujtWb&%!cq ziFTtpiWWA<;0oG`DV?yndg@W3;SDsr_91?7Cgx10JqRn!@xqwG_uBSqs;(=g}F zdV{?Q|7r!gsJU>$3noiDH_~^ptda9m!TDiI&-PPlm^oR3=Un7p(`AN2ra`9^DpnI%C|tmM>KdY@iAp#;*vjq0Pp9Sf*mQ1C`R+07I9RVAphgPvq?!>3`n>V z{m|f63@vnZC5soH96m&}RHkC~)N9GcmxZ|y)PVFHXz%2NuWB$jHX0@9wck7r%&%6Of2ketNR2vxGAIQjz8vNlsn>GI0AE@PppBfHD*b0?b6V1klCdhlSrn5dmcjb3V2D^;yXB z?}RU;2oBw$t@iUmvak>8+)N4}#qLEutg9q99dBa;{xJ>@Q7sO6Br%v>Sq7FrcenKB zwZ~ePrZUjlZ|4(Zd-AHrMB;``80C!u7L^K^EsmLs$1e}8YPy+1lfG0r@TISq6K*JK z`y49DGEVKDy*w{6VcY1ZO-g}=M^iV{9TCq-pQgSqk{GKZth~pjV&j-6@uR}34H~EE zY}L}gmpUPCzbM-<6x$^Wp3yFdl^kic^pYYOVq!pJ0W~k-=5YfCqB7XrzP9ZagI*s) zo6=tQd7UTy9=JO!zNQAI^BPE!LZtlPYaz>QxfTzW>WYDh%JlSMqNdd6E>=%SMv@PLb*9 z%M~C6(u&%QEiWNu?kR-Hqw$XyeF8K zj*w*)yLeKH%`gTNwNOmA_U|CfAMDa$Z*5Y7i-iNng%(vQHUCe+FtCdm2s5-{eN{TeAI=yHh zd0jPMzM8C9q%;FkhMCf*9$1RYfLDsg@QpN0_RV2tQ9<$)k-c0*1U~aIv5RVivsQpX zK!apQ#!EFug6!*rP4$tIOaW(=a_K^|SFnRjNF&}EX+3`wA8IH&e zO@fi+Q-8zk!?^6PpQXGZMSI?#(7_^Ytx$mTL=`0DN~BMR6yRI|&ra48pbYmxP_f=# z2E~&9u)2R~+Lv|Sn9k{dA-hz{w{C#e`8(5>fd?eJg7mS6varDc0b6CDuYt&qHTBIe z6GSh5xwdj*mRH?I4m_3_n%_Dw|2n-1tM>;V0`xpc3s~!~d3`;jA?Q$->1um2alK}0 zQ>XWz2gEo=&yN=0ZYnZ%Fp{Lm*c|$r6HFQNw&U#JpH_TeVA&>qkr)>^M2%k_TAvrnlaiFBqSWqCjz}`A?^WQZ zWr<3bn^bL8A3a1H`ermSRG-m8`*#YoX`udz+2Qxc4}{IRUZ->8CNsr`YqP2rUr7Tf z&Fj>90o2H3nB2{V0L)we0+?AR7qWjP%ys`!l_2LcN969$m0^-B(i=1wH|Qa>P>F>N zGhIM{DM(95=b?|``3O&@(x%`heUHZn?incu*Si?KIE$%L><2gBy>z#DTp%)Gy?qjRWTlyLhDr5Ii`00r z7y~)EqTKJ%%{*BB&92uz6KAZ(X>?c@A^S6-e3Uk~?1NRvJH;^u<;-k)(uQ~Rw27~Z zUO{~|36lt4r<@k$ge5^UGl)}?M|JEeA;m?nWVJRmCh@qPjmrbH@pfpT)gtx6)yz|h zyjRO!k~NyYk};)7H`u?AbF!<1NR;8G8bD>sUh9ZcXzx5U`p|GYqXZu3l z+;g%@_-2pqLJUMt@g=L*K;P0mljj9wVavQ~tH2v3DGFQ!X#MA#tLXFz=!ioc565-u z=?mCSrT&d1vq9Y23=e1XlLF)8G^=5OOJhByb3Mt4cy02xoIC+5$9)%I9pC8yWbhkQ zviY3yiWaJ^&Hn4!is9Fty8yrLi<)_c!^9qHNcfY)&_T^P7G-LLN`*2h-)r&2WSOT) zQJ2Gc+N`qrseSY|$$k$LGGwSRMPq`NYkd||HwYstHN*FJL9t!vF)D%s1#HU{eD z{`F}xr*MY(NtyVl03JhNdRS5kqFTx^TV3#%ieKe=GxQwxl>2#zr>PmH)qbg)Qe*7{ zHIC#0eXoh|9>n^}t8_0!YfdGZfB^bhDn2;`-NIEuZQ zL<>b_$kYO0PQef{>~Nc0CxzsBAUx?>LW0%0q&`t~5JFj|If;|3Nm%a4W2LW6XeA(1oPFf0LuvH`>dRE8pmsRTK%1z% z{AkERR>zzFfshc_ipT2rI1@NwZ{E+ltprkl&!d^NzZ zX1Td*r+gGE8bTmAJr4rm1Ibx>!)YFibbTS$GI%Re#qh;9X0juk9?gr{#DROV6KF_PdDs zH(5U|W&+e*b5*N)K8A`&c}ujW2GW`hbvwBU2S(AuM3DKn`0^&%ximWVyn| zek*Z;Ffb3V1=&`kAVoCggVm|B7jt@AV=+m4FXPAir-k|Na4S{W`%XV!39RDwg)4_i&l9TPP*6~>Iy z2AC($%Ml*HqT8qIsIkVumATN$ot56q2a%)I`@$;gWK!oOIpB-MKu=A)OSk-6IUTTv za4dxRnnV`%?0)YH0IGe2u;SBbp@KL|Z6L>M&5Dp$Az;mlJTL(%w8`)%I*{?Hg;gm^ zb|8;$J4gPcJeX++46}xp0snkOg5-JN8Ou-YPLQOe;-Wr<-w&Y8Yyb3O;k)R?X7we9 z>l&aNY#EKfTX~ki{5`X>p5U=(%fbK$BYJiD#mB9m!|4|%Vq(uD+GIW&0{cLw?Zc&$M;(%Np);=(5$) z^Ox$Plxi`sr(zdVGwSt3Yl<#Mm72x!5Reoq8?gC)bsA4_JT&tpcs8CN=GHY!S9GcU z-iaIR5*$eLRbGREl*hwcsL_)K#2hM6D@%~P#JBT1v3cM>JYSV zKA(y6KiTi|VXP+yGv>y#&yN*-TOj`f8^FDvqyawgouu|EQ}h7FVvC`Hl#wPRoG?vT zkW63a1ZQy=cRcmZ_=v?j@C}tR?bVW z-0$z^MAWP<(E8ptUesm)mCz}DSM-Y|Q9;a57|K*E*;PCs)L*b%&>7GD0}(oUb?QCx z>yc*irLg6?<7@E^sWx1lEJV=(vn0O!hw;#r((jJtv36&^=094WjgOh{?Hb!vmLnJ# zB8@;_E12_}7b;on6Jy!$rDh{(zYkY_qoOw!scAGz7_RM6_2&-Z^zG6!mfJ?n~jrnS`~yS#hBw{!Ia)HKaf;1G=6ci1Q0xk#C6s z_9?+q9T4W3Sxm%~Cnb1W5s0^~B&!*k#HgJ)%__x`-_Jgf^wUDNTr^9EGFn-Q%V{05 zOib48{7pJ$ESfRV|GupIfMx*8E2S*Da?#Ov+D-jvMHE&RzR7D^rT$EBr%Gk}CT@$rx><(@HMWal};bon|1aC&4q<$_&u8@u&)V@qCfNJI| z(I!MqbCe_P@x5X*v?>w3IJImi{4~q)VRYQ$8%JV6nPcM80gdwbOtEmvNDi{GWaMG= zgVe1vrE^-T^zg(!GZzXb<>`wE$B=u1{%KV6g0_sfX-^nk`qfD4egOgaeMMi&|D*bQ ztO}w_`%(8gJl=pFE&#UQq_t0Lg^%cp`%&V6Vi)00-51f2%K>@U!hG~GLyJoXbpj>R zi*@HGfWK6Z-BC1K!0=h-{gC=111-?(HAwmXbckGL$SNmSiFcXv-Lq-57fq!UtJ60~ z{H7gqsCNs82$Y$huc+AbjstjjP-W?V43@%9*XobQ&AEP*~kQ^{0tBTQmo{Nf7Ns7Q-hsX zSeI|k$+&#Sc9NUuV}iE^o9x;b4ZPOYtZ)+DZZzTSg2yKyE_)?2|8%5_seD%|d9@^x zd|KaqP&o}A1|l8t4IL2_EsTLEeb)bA#ZC=M_&VDj1sbfxO+8O)&s8*U6#M1eyQJxv z>#oHs!x`TyDrzcCb9WW8(puZTI)=Xdl;6DwBgc*xLmL_yX6XpdEQ(7?eXQA~m@ZNF zI$5#7zCh+8b%;KOFis_8Q$3_HsJRGoRF5l5E!X7wFYBB;7yFx)icqZiN59@F!{TfvIv`2nYrnVBOaM^MI;G8u`i zsoc3jK;Qt#g;AT3LV0|?@J_U!gIqtn?0so>vMYO!N3N56*aT)( zKV~_)FeyQnzvfvVoAhh-qCzt(lx8 zC}n~X8cs(!!s8zy#Kl)GGN9(WGYmd(Hdo{qhf zu9TU={9I8crXL~K0F7}U)3(e-*T5OmCZ8U~Y*EmqPNvMzHbBdWktx;>Zz1dv-G9Zr zN-{OLeOB;&vkR1SKlgax$@=Om+L6xz`fS8liAS6URN{ir@&8t5a%%X@kCVX6O%Q+T zdjQTtS%I?~xJG3&VMjFrC0mRQYeC=|F;r}a0Ahdqs0|x1Uz{N|LKsEhOqm$S?KtbU zNe8A#qpQ4^D$ae%%*6wrg;YEoc7743DU`nCZ>lj-uY2|nw73drO~vn)k{l4s^si0XG$odZiQoyzS~EXezj~L`mVSQ*)WVMAf|n%JyAD2k1k9wr=wVo(5+KCs zxFShNCTheHIF18TYVlydMlPh8^Yw>QO~IH`qLPNv zL&8$|>5NqTQBK3sTt&sH-N2^($J1#ROxW9peFPK(i${5~tWULH;n#OG6AHPIJwO=l z8qjvpc2WK~MPi%3M@pbX@F9jPwU}=yp@!k(X%W)1$$Tv>{<`<5@6g9cs9cm$0L4(6 zH_WY=2X7fY$s#fQqY_8}(gYsqH^09q5U`3<(mCa$TZcdHiBANTYJRy%08!EPqaV`A z!p@yyt0QPr2x>o*^JYr|@Mkb5S8=&)T%p%Qfung)W*bBD+WaTi#Y-Z${gg-U<%%4o zw4jcLb*TODch8k+PkRpacy=>Sx6Tvf6*?x1!4KVB_D1Rca>JmBm1YUO@44~e?fhJI z$C+ENs+c~}xKhmb{gQbpHcsVne2O_vSy-%^1QY1XOOOMjFV^4@A|dSa1Tx^cL06c& zj$@Rr{~&zu>27=>cdtTTD~8CW^kDf^nUATXOd45xPqB>RV&MZbg3_<6lvyjea#+v8 zhNc8viY4>cr1>o@{2|J6LAv_Sc8?`$b~_nxahnsfnS;Q|@3?IiLxH>yF&?5VBZ3ZG z&%a7qky!YjEd++>`Ep#k8{q;k9*puq{#CsGDPOFAuf zF+d~@7vcXAAR587c$WQ`GOVDX$VdHOQP(S6+tMqkkKytqUKDX0hOF8_}85@2P?(P71^ciSdn!s6}0~RB`t3OJBEEp(t}7D@U73Xg#{0nD_~f z@2I^tA=E8aSF=E_#YTVq!s*JO1NVQDGB)EyMFIfPz8*3S_$Vr1SJ&)%)wowck!E9e z#dpaGds%7ll~~8!O@aL2k3HStdyj?MQP!@ z1)xyKjI)!Bcxjl~!}1CsI|02VbsoPa056M#!VAoG7-MmNt&;fVwNKCAfmcA;Z`2*< zbxX_u6X}UA^aL3{_4Tdn=b7#BD6Vk!~hP8NDGRI)>=w~`9<%ME`IZOcL^W8gOstIXe+pyT}#ObZE+wExbmxS@VyIYN z*sNv|BUDUDGKD0tbe$utKZ(+mduzxz(^pYi>+qTR8}jrRBt9(3eK?o7HxPo|XJaIn zt4GxNh$TRw@=k`dP8xe{VXDYzhCI>KZ<-Z5M>QKx3PTn+c`EdFN|;|SL{(!H8wqe3 zbMRipIu}&O&DS7-=PQcx66+9UZ&>`#3fx<$!mp$=T*xc$`rkL5{t)$!%hj2?I?z82 zBz=GxuPE_ny;l%WKj)Av#xNE_M*{9XT)+nlU~{4z!2-;F>OU=?1wa9s5aJ@jSBUhU zEH#lENwPRU#}q;p#|FDkA$Hr)5ssVfhW=;e6a|(zl?konK%kh&J%;I%f>4t-!NdYM zvZbZ4L0OxBAw0XBf#!N#MEL}R5c;c^r!ArsfK(uLz8Jc`7TMuXDP`iy&dY-z zAhPZ0w(idZ#-|a3L5pfxL(AZs{~AWmHsDWfuu@ML-1vZ0*uUdX%&RD6)x0jpJI+U` zXqLBX0e~&ruXy{*i#`7Of6`G|}JQ9J=Nfro;=;(D#$6o1PpM7M{& zerz82V+87w&L`18Db@ACG?uQ2*E7{UM1MVbYcK)ps0nX!+)d-e36h9lax!!!y(KO9gV z7V);uBN+BayRNTx{DMW?>9@eDU#Q!*d079ZecJk5DV8^L)tU%|NNk#R;#WX;LwMzY z849?AL=)V^d&y!Lzl>gTfNusJzj9IpS-v8pwMU8o%LWZs%94q~Pl^U{Sk!;Iy~&0` zxy@-Ab|&HMPNC;)-jf)-eBKg8UApzi+M3=m$?_>VwbX8KLorI_1N?`UI&MP}VA8!G z35S|M=|V;XaBW>2SMV8jdtseLtC?3>M_pw53<*37Nknr)j%PHN$Xm^v(iY2Y8gWC@4Z|~K}O72VQ zq3OPUfiwmRz%@pF=aEu`rNRgVegY5NWGRBQrxj%B%m-as%-+m#ZTvA=Fil0T%Ay)A zd8|{oMWDzsh8RrU5eCNLt>EUGBf|S&Mr7R++Vyt;xm=Tn?_6H~xBHe+(I?*0()c#b zs?jsBSdu;!y`ltz;++ZwcqalZ2Zv%0`q({&ONP5u(17r%o;dTPVbL+BxodrQoiQ!< z*9AX{D*1f+*u!^ibom~f^5JwHGFC!XIBDC%sV<4Qfptqw2RHUj1}lbkysEA|%z%fU zDWf9pzkr-yetm^haj?LJslLh-e}Q-zeqOhm5Y_E{*KEy_RWFbBffF&_9mvgEhj33u zE=&9J`bzlq^97vOuB)=KMquePK?6AGO<-3FoFvfS6^U0G1F&pDkMj?Y0;Kog{6tPP zpetlYT&xE~czWZ_$#7pw1aC-Rc(x*T*fpS9(Cu{qwq_$ivrL#C6{ z6M?|@OuTclZx==IFmkko764+NQr7=;rlbIt5x{gtQNZIDd_ic^sdIG5@D~hX@42`( zPR3a}8RcEO3QW7qRW-r`jAB|Az9t`tZOqD;(v|3#)aDLa2NpPCgv4aO)iz`=Jv1x! zHAOKsuJqIqlH_q$M6MEm8D%IoE8@?Da=u;JP{gO^SLHW-1PKo&}9X z*;RZ8z#oX8=SonOPNCt45VG=N0wPj+a-im-p8N0x7q}VDFrn!(Krs(MDl+7^K$ifR zi8_%Iu-idyf{qd&b?oRz_2LRe_;FixN~$fTU#n3xuOIx z=`UToe@P+!+g8%Qz8r3sC1Zba|1%cfx6eNA&0g)e?VrFNXBE6BryQ3ct5}@GDx7pZ zccha_2gAL=l+CSq%J@Hdg7b7Q6CTc@b%3huhq*5tx8S{ITkBWfEk)n0d$S-OS>Yc~3ak61fVb(_+&Ba-$i zqK)=cEijVB5?H3bk3f6Bv;)3b7?~;sIO(l3(-Xivy{XrF#(ed{0>65|)aQ^c!RZd3 zfZcoSCfKFdCuH+f;?0ArYThi)`1r>PKVi0h&MoEpK5RdkCl8&Wrd;sN7CT31yE(Vr z$i#(OvRQV5K zHef@Xtb)7ejTwSo%c>bkqW>>(9?T2NsU*iJge5y1T^OAX9Kz@<@hS!T~s6LZ|bQZFQ8t|R}CM9Xny@_ zF+3#sbr9n%0XtE!7V<;y%#>d#Ga*>3jqka;{HB8a$nZDayidP>#Tt z`Bvilt7GvzuWx_9HGi%p8el0Gxjj{(8$PLYQPl~m?Lsu)1_oK`5m8HRn{x_BRs6ci zH`%N|u?I+Jgna8mUxT`GOAw``IltNQdL~df`g3JnO-KNO^61CIxfZNTCDeutSnOCKjGo9=UW~<4%dyYXhYR6pX&$_~ESIva8JuXm z5e#5%CwRH@yEmmaetWdPvUvQBEg4--mY5+)oSj`P5OtrvFK>xIh8(VJ0omDU=C+*& ze#=wN{rTkU-0FQ3kEf}+cEwL5RNp(|pJ%mEX|AQT@*svk_-i*WX)X>A$Of1_@xK7p zV$Tl{{18)-i;GXBBWY;phOP>cq(n!!N?G7Cgyw19hF24OD7 zi5$Fi?T9^N6ab3hwf{HeQ{O4&ZhdZkegZ8y`!z+^^{#B)7%l3|jxXy~IuX*xH{9*l zYev&0=?d^Tx6}un+BJLUtDAP|>i(adguk|5xd_yJ_7VQO*ZixZ#Ds6Gd3*O})OEZ+ zKSK%iZ4ID=|L?WMYD;85@hNE>h6)s)@iYkE*I$C1<+s({Y&Tcq>60^@q|ry1v2@+Z zCwD7V)gxQc%ZS%EmixPNwPiT$CndQE4LCoXCas&@hlv!J#*ZnmQOCB&*OP-6DRwql zg^7wXJm1Pq_$^23b#+VX=d}EpEg@BVqEiq!wkBdXhNqCSSP0P|ZHr*lv=&t>THY#T z?b~F(?5$(>l#^Vt6e$d0g?6c(80pVF`N)5u$#%s@WBJ;jrM%j?(KlROH8@4j(!5CP zAVm_i4;k(A&x@3B4ez*+4&wO0SmQhx`lJGm&{Y^QICY`m>=9XasP*nK# z;ETjv1}NzP$|6Dl@*;-d1-?L*9zye!5mBa4cXk#$_HrX%Sy-UZ$W)-aZid74Rs_gw z-DC}lqzB@r0bNGi(9!KccAqm7w{wTJp9^c}Wf3Ykw|S-LfH)KgodRz#Clq>VoHwa8 z@P}yeYlrT2Mo~P~D7h=NP^x59Bz;^LgB?|}OrRKm)J+?Dygq zz^DIb8wn2;xtGGg3nV90rTvIa;{D`!`@n2TpBbLW+KRDx=BcJcT^h@>a%c6?2s%7& z+&9*bWKj~SyVjU&c(^od{}7d9lN^|i%_(1dWJsCqz8cQw!gg{&_CrB znxD|s;b{6m`VOKKr55wuZ;3bC20|dM!0|7BRqW(VdNjiI)$5znZJwIuG2({y$P`TZ zTM+JA(g(HQN94JG3>Oz;*8{16_Ys=^7Ee86+iM!O3pmmhz)F_>r5?oLKC`*$D-f0( zor7Z1CHv(AC)+iDih)im_EaC#Z4leq^T3d4{tu=kSv!)c!%^2lV|Ewqu&WGpMe*`R zdp(7DH*%`uoh%+ckBV;Z_l0MgXWe{yEEnkp$Ai${dNAZR7+pPc{>N1@S#$P+-5J9_OvwJZQ%RHbaQ4+cfsH zIoj&C%CtUC3u`F~-@^#hnHMZCMX`}bfTad7jj3L`;m1JHbdUwo1`-G!P-@WyQZbBXh_`cotcANC9vBU>FX(S0BC{aIXzJQG+Ugo zu9Kmr>lolM+ZvFpv7T4f9Rq3#JH+y##L}BBOi-x?FdRDkt@*6I^T@wvU+S{o`O8v0 zK2C?SP%rp>>+~P__(F9d(`-M9?eRBAs?t%z-K}{rX|ogB(F05p_Dm0)!1NwNe!b}sJp1zC zX7Q`#If&`ZQ^N;sNl}s5RSEUTqBd`DuMC5~)bW?Pu@O9tog+pS zb*u0qWk8Vxy3-Qf|J7H<)8B#3+7fhXJ(z7iz-AL*!3NvAsQ&z(9fO4ndb;6g6{UjM z{VPqMh{or0*aohCM)N62h=X{F%6Uh4^OT&Cj#U_?lR8m2C8BL_(J*6c{EvXmJH=V8SMjOt+dS-LxywNo*)j^EgX&=sGIHyUOL+e2-!5`mdBM$s9Qq!h91k@RLqn=7b__uqNo0yfA1{eSyYMg)Aw zM+F|VMWS4fq69jiA9QB^>U$&3w7`UG^r(uD6z#A-!>k(J5}2%xo-iD&7jH(eJ?UCD z>d#II$#EKiKWsG3ldSyvUMpWNX^C831A7R18&8c35je{NNJ^3z8;T@tllqVDHxgfK z`Q>tvkORrLUdxsu)ZfB#xxzN2IhoWNo^J3z$l0E`dgDplfqAW)J%j zn{35Qw;TW~3L~Jzs~-D8)PQKXDg2XOWU(9=}yzPkF+u?I)T@fF6Lkk!xp$L6pHqN zz`ze~G&wiW(~wBpKmZ1QSO~eJy0nFH!y3=5+;e5DtI96+UY?YP2i zJCoG#>gqled5ViK#^ZxE6_@&9bVK)+VKh?fwzyTidut&=`PrMaz4&d_DTU`CUN9xC z!QPtaz%WP8qE2+_s8w}YL%o{L=M|?6yJgeV3|waCUK~Dy`W}XC;nFlEA5Z!arK|vQ zYInBQ1Mn}y*9{ttP6Tk`W`-@^?><_id^}{|Mu+UlVu2HAaU>n7T`INwy%m3J3)@EL4Fql7%zWh*)(DxOkZz^Cc@qOt)UxB zcC6Eg$+NMlF}4+d3mpqsnx9<@XvTv3v!V_#z!X|%x<<(VllEG?^-?&LxjPKwbZWYC7WpRD;i9^EM5zJsiM!YKrZaMKEOQk?Qr2zn#?~ z3U_+`C0I*{TzBcfMe9&wslDH>%~CaeIF+j}GAn`A$j%I9$12PPvkaA8D>h~7(%%^gB#MZtXwv;kB4G)S1vhIVGjDhX=62o79qdKwh1z=xJ0 z;#BmWi?1EhS1FklDH=>8WlWPVl``1KaXXrK;IZHBght2TqyV+cc#_~%ED+b9pqndH zan^w2Cn%;q0y3bBG?DY+ru+?^hoa`Ap4r@6w=ctyO)bT^9T-PGNJTNtB(^QaUfMmX zVX`SJ;fTj~I5GIsw?Mp)(KP1=h*B*v4}5^m`hRTWz72&p!jM4+$kY`=?1)5(CBdX#?FI3{^2?1lY<~N&n;nhZM?A}ys^{7FRM#DLy!_)~{Lfcay`iy!A@$Dj`gXImMQcsAdVz2b;;4b+ zHLnZSxI1hx`mNNF-w?>kV zdam62tm?+V(ecx`98OthFK1;hJ7SV_@22fi*m$-#w!G`>?dl1o&+7^!t;be)gvmmQ zR+Kmbr>{Orum@axcH4WM>U#DTdr|DyKwZZ>jmYeN?UO1AwWwjG7L1&S%ekA8)zjm< zM??Rz6q-46o#5fIREE{hNX)v#v8B=Y^OWWro#JTyr{vTF4Fj$uX@u*;gyEu+ImYVZ ze`_JoLq>h_gqB0WFE}xRC)Nrq!*5XW+^%@OcGW%$#f&#dXcE-r?#*knx_-+eKj1xElv&it$W#6Osqesj&oX{w z_rEyDTMqC>shkt?X%RGa<=1Ze+0t9#%pB#cXFblFr3VeRtg#5Z!B1@)FH&#RO zxf-Bo>nP_2LkCTgQ8sC^2e`OXxi}Bg+HmIwP1$?CXHvSJrLo}FN#_n_Q2)t&7)T!O zdEu56^4d3w23HU6lACxBPKqP9EQwQ0K;R`w|2OJxwRe&Mmczly48pfb12iYhXGJ;= z2aBz!t+SPWJ@aqV59wxosk2?0wW5k`DY~`1bCquo6Qofg#GfPdb?m9m9P%n_Y3(Qg z*F#FwrG8=8|JlnD$MxcRA>W8!Trauv%6B8bX0_K-m6)fR=+4;dcE8Hb&Q>VY$v0%N zaIA}zyFNscyyH_e|2yHfd)ub-pEVAM3l};-?BTEacOzQBTO}xx@`v?15F+*62=tFE zEmL4UvLsPz8E6cb$RQhX_?z*wfq&o9Xi_&Yd7)+>5k%#Ur!c%wJC z(!!!9isnVd)o0<6jl%HXKp}n#*ynwcE1}T9s}VP#dai7QE_JL*DF!`YyzLfvz|QdA zr^lN%Z2T!n8!$8}eY*9x45K7=+wf4baWg4=-7Lh5`*Y)~=U=nCKq zX#9_nc(XhZVjx-jm0Aln*D-{_A*;`C?5Ixe`7IEcWq~=DWUA`JZ!e8ngjB#3VGzdF zUz)bkK;QFhu6DN)IbSZw(#CmX3~{xGk@3I~t420lo~9Y8bPG3el>t58f(t#ZoSSQB z$8b7nzdA+ZhYEwJ`zVeDV=f?dKXAx;@5E2)UQwwZ%pei0e~|b`CqahHX&J2Hue#Ld z{f0@XnWORy)O4M$9#Jd%u2^6c#r#swTKgAfAG6}XrTdTXHWZz=63GdnTPv)%5gHow zDLPWZ-X847Z95WMTS59JN=qg{*DQwGQ|>L`{^9EbdNO2MKnkXgWV(MDndS6<*8wTV z7w+CA2OV5^syrS<(;X>>E}$)WA3AyMCN}V|rfo-(Xf6lSKD#lSz3Y2AleBG_b<_rA zoMTGYH9%(1iqF#iM^n}k8~rlQez645TUm8e-qt`*%{+e>2Po1ri2J2rMPc`;#9o`_ zzc&~!sxtnaYg%j_gH7l0%`sjMfjCTDIWsm;8Yf7WU2u`#g^{#$^_DS9zl~pPVzL&! zdvNvFTP%wFR5vkcZU&`CmYs2?Nc!v4w#DkbcF*c^Zq)g^wuE zGhw~X%CO}TIw2^Ij+2RGuM^-6G^vnLh@?J0Uko<(q1fUn?5l5DBmcPzAj`{xoS;W& z_hVz`NSZq{i?Fk*gmd=XW-li2_VL>@T{jzdU8>nhW47nJTfCX(8^uL0fw}v;Z0Kr% z2I&44k`+D7B1GVRM5B(vEpVyb)=2&!#dk*EVTy;=e6`5Sq#jQjpn4iT*h(n>e97b0 zFpE|5UW+2h^unIkrN25A5~BZgWZ!Bf_VK>K5YmrYY!U9QcN3ZwbzYSgc^1Y>+{;g5 z`dM7LyIFHY92XDP@!HmnL|Nb$k|L;?CvPp)cGJpHsyFHbl477|U!vPt0W0V`3?V}1 z9b5)y9o^wW6t4Nfc)A-!(l>9Ojy%?snW~H(cEvxPNq+nb^501 zGl*)fjWG7El_0`yzx%>o!n!utcjb4SKhUV}{N96LQrM>%BY$%H9sZlM1#*t0`bq@; z_B+@Qqo@Noq6~HwnhRehrG9Y^l4g&G>aZ_Y3VGmF{@VNWsiLM*?+P8zCBC4yaG)E< z09BZ$1lomwD@#n8=mRVjGWltPE;*0(yGGo zj$a7?x6OE_z*detlL&h=4*#E6IbwrOvxX-Jtks6gmWN9XSogZ1LgiwOCG!q%44Tmn z5{NQd3iAf{iA$jCJmt+SBjXllS4^KReq@hr3y70q=uICEAJ<+lS11vM|L)7h`337WM^-4q_(gkwoDns;h#$bA-6UGgfUN%ZZP*z@4KH zMSmfD?BALXdwsnU`%XnH)b}*JX)R4n1qVmJ%|0Z{k#;O?#-36((UlSB@m!Co45i3Y z>KL@z*+&~49#@vT39a%)ixvKbH)=@81@Y&--5F-j8O7&xpIOiA5DxmIxNf~ww`}ML zt!Gr0lKnJdxcu|i^u*6op@-dHibvTOWvGLo9KP6<#rIF;>%2D`g!a9sXzg7>Mx?PK zLQ?v6j5~_Q#}OIm_bU&adY@}qZ|2>!4Sa^}h#WEpOty7b;|30Of?c1XNHdKRJFgO1 zyOVK8#H4@LY)<#MV`&DZ*}+skEf^X)h9$ozy=uEcYS8|k6OMGr0NC0BhqzkHwxM$1CE~C%en{KsTN=x1!z?F}5+P!W)H4-&{sDy^bCMx% z3e<_w&FaFyKFwBXUht~c_8Z#f#9`;V#NSSDRfFVsRbA$k0dKoQj%!U6NdTNpj>Ev^ zWrdz6th`TnV9W!3`8uGDV1^HS*Uwc7WZ4-{>m&kj(0zkrFMIGNKLRr^1s{Gl znG;?eE%=vu^Q-)FMK3M0Tz{jHj%G`EwU8}{Q&-i77W&QAcN1IRiuvG5!^qc|Q-H)a z=mB%j;RKUOr$s~P6@bhU#(Z6jo(>zlc6c;ifi(_6Bt z|LkvZ#r!lrJMJvHekRtR4jPuAnKRP~wi-(%_^qk@x*#lbVfCj`Phv;ECt>E1)iesT z_Ez3Wgcmk=WgU)XgJY z1(donv@5%&=YsqB!tM!ccA%?kc@-+jHE+-pBcyP9E5A(FG%nfwgefC^WPWNCwDc{x zbG|}7XaD&)9sW;TZlajZuUcO~G0)`>T45#a>d@B(L2X050^upgTj7cnN8c2^^HKzr za$;4=68VQnVJ~~|kMLhpRVrs*=07z~IPIdZeSa@+9&hRbh$cArpECpj9nRg0q)e!J zO99Y&0tPa4BTi=e3gL5*$I0gQ&Cxky%{cRWU#|Ec3lg{mTox4VZrcvInpv6i?sURy z7+c>^#p-0hqrg~)qC@nXT(mnkM?q2tYJ11wpmlnaa2gX z;tq43Ihrl}t?6&BPuqUr_c=*)yI3k?wr7T6%K@aB!l<+)j$l%XunvH8yRmMfe*eb3M89wA6XDhymB<3XrWXF=Uit{txUmpgY1-*D>Zkzs)8 zS#ZsFS(y5^E#r9-O(=|`JhxKP9G#cOBO;DjQD^J61&%)oXrSk$c{D+cNZT$=mio^8zuGeRl~bpFNAC2g>k+ zA-?Fi#DcsbT-ZWCKoWE)wbCQ~hwep&2WxHx{dWv_ueDOW_@VP~zL3eVP5E|Ob}y24 zmp<8L^*^fKZZ(g6t816ZsOxsdNKW3-oVUA*zLIp-9w23bTVw*t7;%)L-AAO|QHF>$ zOgErq@?uGJFz3h1bZy%%sRR_yzKIi}s&iVy(VAWEJNxuee&P^7r~<72tpwIWlEG{O zv>`B=$ZiDC@-I^ZeK0+LWNF#rD5hJY7om}%-wfO<(Ybe?o4(=()kYwU; zL?dz<q4TBpW7tUiCJOFujuJ3KzT09O3BaypKwRo#EM4gTIdR`HdtXrrW7 z#Qk>j$&RO?+>>-ngfoJId}TlU3=0wtsE{1>;cwNf4|rR2Am~-uk>Q)tR|YuH^f2Is zbdf}(#4w;72Z){&4(u{H8HKtloh&gq8GNmrh(vLcT_m95Y|r4q0Ws{7%UHlth!q5} z?nX-n4Y?z!rul_|>DPzdje+Ay0+MKegXM1WYcK}h_zN+L)fX&Q6PMu%2J!HG>@zu0 z(NMUi%D5@`%QosOF|7irC{1>IghHxa^c|z-^2VGSFW!R=dY&H;o;_Uk-?9#~zi||L zmK>=R$XGyJ#>r_A4EB9^{F7R)v}{V+p@-bBYmcIoJ&}+{`}G;^f`3!H$w^PxCv8=0 zP!lu+N}csC%nyw#Xwmo>o@&T?ZrlV_9pA1?j?Y+&R(>7^d;(U@z6Q~J&&R-k6$92K z0*8gmFd)H@gX!QUf*6uyF5BJB)AlDNs0V|jHrsXQ+I*OY;G$2{8F)T9=?8r$ADPgZpdg4CAydjagt%4;;y*GB zPr}Md6#q0xQks+jo;+7~Qe}_`0#X=KGEDJg0dN5&APhhw<@4_?z+vT+L~%waSphO| zFs6_N6MU^0@QZY2%xx(0$B(3Kjlx93x{Q!s<&`Kkh(sOyJZ(Dn#%RZKq=v@P!2<33 zy@!X{O_$yXj(9V!*G3&|E3*>C-p^0eSvnq_Pa{9y)o$ZO-s;~8#L)AfX}L8@7H2;9 zQ(iyf{$US5s?&0RwBy&7mf28Y>>ogB4@rbH^zwau#s(|>0;PDHfJsb)Hqs#3F;hEH zQOl0Z^0RL0u6#BuecO-V4MhYc<=1(8YoASMS8mTwYRXG52{C?e?u0p>hAU^kS;6`l ziP<$q>l-3jW@&uzJuAh9v25V8uIUf@V8h4AxQ7SCG2JctJY3V4#her=-a>8l`$z}=MXi_!Sipb zRSbv1U=`)MO@HE2jZk&Zp7!*X3sdQP8s)}WESucE_j6&sO-6?w`6gRj4rYk^jdWIN z?^QVVJ<0-qyQu$2yV|#hK>f4_9hWh!yttPhaTTQ@V~MkTbMu}_a|}PA%J+bZ_m;-F zR8pc?9a-+)2@5caWr+e|@;JSh;E+;uK?5HoLhxcYm=d5I)$Ww@ehRT|0eE`Fmw0lz z-BuF@{(vqj_i`Y$*9TiB3iUDZxJket*W!g+7E7a>J|lSLE3ZJ-6b7LeH!LyD8O#Ze?e6ugsvE9c2*%9B4(8 zo6G$AxVbTc!cJe8=4r2>va!CxGoP2EZKsBLOrx#e_oh~Bv!Gn0_ve;6-cMXUD;dX= zYF)*qBp=^@Ty>?@Tg7KYO-m;2dY#>Y*VB4|N>H*6b|!zuFqIywa{L|bAevlJ#pzT2L9gtj{w6V)p>oIcPe=LrT=dHBP1T0 z2X=+T!susMF=!{o+4E5Y5x2-~>p#Ma!HdPPFVYU&LpYi$%U-JYP`#nl!aisgj9ZSs**cYdAp?YR~z7Sy@6llX2USedWM==p@1x45mI!-`QHJ9wm@K5M)v1=v4c^O z0)8OnsM5Yx8IU@vzZcjc;D?Bhoy7t^5 z?umW4`a0{4x$FnEC+mlUUt7gT=c1{7+X+vIt<#rf1FaTl?YAX4Ri-^$dtG|ct)4|e zmKG=2IV^WDEW9n}tg&SyA}3GV*PlG9b#*F)Tq2>D4{Y)qYBl)mR*r z^O@~$Y~=GMsrTwf>P&RaCJDA3iN4v%L?K#fCcOviytD`-y3%qb2;nGw5WyyZZ7ok^!YX;#92*i|7sk6r3bGv8l?c^GP=4rAS_|IsH)D)K z{c~q8lP_GCQ6xJ4yFTY+4MEz+0bgcajP`<8A+M(*jTT7UL7kOFK7o>qWk#k55IZ8z z9!<7JUqX~H#xGv?tZt{lie4`HsY+%_E#co2H{8&FfBrshjinEsT+8x#SJ`HVkX)lQ zl(h>T_so{oSd?V{7?UR)T*jJ4LK)ag8XCpgj*6>bW!3cFXsX9`tw3><9WGr`&HiAw zvfsp)0~)(eao1hivw(QqS+=-nO6j27DJ|qHXqMzW*`XEfjQ)sFWo?rJQ#KwB7BLwW zK3&_C2N6=^B4j{Obp&iX*H5H+!(WXkqCjJ%SH!#*hoiGIG`%heo2B$Z+u#Wy_INM8e*2rvO)Yhe5tFN;tM4O3cup&> z_E2_eDBCbQc^rYi9Uk>+D{FEP?Wu~BU{Vc?{5LiOvs^j4)y~c z?5#ZTydR>YM-%`vrFsDzRBR<#z?-zOa|j61PnU%S0-t@rvDH23%hhyZC5?+3IKUWc zi$AdSRI#8Gt8v3^CiGljv{P6F&D=E}OUcc}rMq+CeqJ?pb|*QraUx}H4D9?qX`m;0V;*;lvopgcto($J^tq>NICos5 zEN~noYqJ4mxqV?TUASIml%P9x9Pv**3uoQjVn>!>dn1|t?2fB92lj;j{#cGj$$E=3 z_MPCq+5B3P4y!8}eS=iFLV~Q&9P!~?C{lhr)vsYeUE$qjt_ABAx4OYVr$l{{&bg+* zMYq(>drNI6?9pa4Qei9AfG0(+j%PL;q2{-!HjT)wd!G0?ub8XRsvh?B%5Ad$lmyJq z)RRKya&K1SCMfP}&bn4NM~Q3RByW?1-tu^%LDYZRXu45g3qOYX9y>Q(jD&|@|1J$Z z9jDbK`&g7G!h0#F<2+d2be6Ny_ICW~igb>^qV<-`E#?=RW+o>-vhGlWwoVp`zX|g6 zpS*|kMzPg;p80Pd%50(hI;g@oINgprTh?eCcGrLf{qg>&s)huB^tf^0fer2M4J-xu zVaP-PDNA-eVaNh_YY%8BckXO$s%rh%T=>V~miUAn_zU~@?ZLJ5V;o>7z+_^`=U8+# zv#}7Z53ihC(#@TC=f9Pr)V(UO&zaQF!?rS6ED*+BL zjW34|1nPg%Dm~1*{~K8S_vuvDm^|(s>}ysrVmHKb!D@^}0%KLw`s%6mV__2GB1K3s zyD_^R*cZDsW&q2qn54c{xby0d?Z%^q_U{@L;=Xg?P~{AvnCxw-ND{rsl;b->ZmvdR ziXqY0Vgo^n+qZ<^uTU|%~u|VaQ)-Q>m+F4aT{BxFjcr#QRT5+xDx#yur zx2yWmBNJ*l(PYT_1EEj|=x8MBI1>Co^}Y?&_IW$@)5;3R)DYWYRGIzVQoKDC7S{T& zVdxd7vVr0wc%=P-V1xumm^t=i2kiLsExGkqOG4YqPmF!1oK-#ejv;*}bsMD^a}NSp z+Bf=#C=FIUX5K168_dQk=XZi`)=-?@o%b8NTbpBD%_$iHT}QfHc?65ut+=dAi&K@+ zXeZ@Xc74s#^^sQOz>XDfu8RvRyZ*MT`y^jiYft3o+g+47tgvP2Zy&=4HJ5=G<#{yz@A-+#rr=ktvbohKjj%A7Tbd#U;YhkRhaPvBVy@%zKxiRzeD*a% zv0WC~&6rpZHY?5sE_s*eE8!`P{X1l^w$`5nTv!Sfi9^pQXh-_tc&km{aaXK@q^l!h z=F=tU>M4f*p!b-K^aZH|s%+&CsMH~P&aia#XTG=Ry=Q+2sM=V*Y3-im!>=*?!F_`q9Rr{hr2j z@x6IcE_o(PHK_s?ZyDshN4(Ud1GT>yKOR(k*<-`i=%|VSw_S*}R$usgo*rk-9V$hH z=NS?8D`&?T!VRylyE4Ltx)|-=pBSD$%`w@QvbZVw{Cs?Gkxd5%4P~_w`W)xctM%vU zhe!Ils&7s-B!B8KL*ctiOoGtphs5gh;Zh&561B2k4tM(R`UV07F+>~Mk5l2s+fU-i zB!yNIl(MSEmS(AnUXNDmUw2oKky?+Gv&?<6zVfza}zSa zO#QYlgsHoPnULxMlr~E>NAlg<-i3RD1zs)oJo2rN8H||2rt)0Z|{`Y`!!3m-AA48 zlv<#O#!QJngx4G2`_dOziodto?`~C*BY9%!SY|&RKj-s|?-zVMk5d)v(*5sbhPP7ZX>DldQoWv>l|aAo42CW*RdaFY zB#4rqx{EWypvdb^P9Z{3aJJ?wrxAM6ArwPwUz^}ue)z9~y?31LPfa@!2sRVTuH%8> zq2oq(H`&3BTfi6R!1mX7oWi9NzEDFMk1qhUlcGTdq8tXSyDX5|+TKPg$N`p;g#lnI z+Ua~nKBRo@pjtXMLFh(n(|I^*G5UD}e^OTWj|-FUcG`xYuyqLNL|+fz8DEq)PeeR^ z*=i0O=6;UcD+vJAoIsF z_+t#o6Vb9l-{*#TTOF=I6_*C z6Va)n5b3U-lfWIVj7VY|Fc^-UYdI*^b~@=W9h4X@SSJ-Nj8B{8$k(6bd{%H%X!Gf5 z?$OQFQ$b7?h`dNh5B1Q_jnxG_E6H`6MyNcNliZf@F>#Y7Ji?%Hyg;w`$V#Lay&1HT2cKD z3l>N+TOq&`XkKT@dtu37fWp-DRjJcFGweQ2&edUAx8{jnRP=kpl_$pDw_t)koOanE zo-(43@Z=FHh?znPY3%5Vfgxa@-|I%iksOg8>eu|LBuS#nl6h|_3r;Y=*^YF?N~UmX z$iR#VO2rqveiC0HoDuw0`qiv(u*zvX z`YI$sQ@?uwwRHkpnCW*!8e$)1q0wZU8oM#Dl~9`bcXw#@<7g4|ihtzrokF#YG(7@| zCz_IgDfiup2Q0cE6@_}bJjLB~ao5VVUbp87Q%}~ykGs#3-MR13`-+W)BR-s)|IjZI zWsm?JywQ1ve*g0MoJh}m9rdts_gZn|-7mc4DW$%E*et*Gr^+WI%SHe2LguQqQCz+L zZ|H>lx1L~$;)dxh_cWwaezvF871Zmxq$6)af}&-q)LWPTmM# z9b~CQKj;d$U=GnLiPpCc;AFK4>~bl}v8jOMOyN0h6ZdQwwG&iqVHi~81dG$W)Gsx- z$&!^&QDi2eqEAe zt2~oFD?j7nCp93v!QR3WoJ5_jrw7owQcT`#he>Z<2ZK11$+xng7FUtUl!WcipgBU) zk;cQk>Z_9^Ca~q=ArVj;RDkT6N5S0}9s4HWzJS_(iRDsW65M^gsM=6Y_q?Ih&RDx; zB&854*ze1!J^GeL)uoB-e)<|O+oVg|i38v-8b9_b0;PTu3gk<$bkT=rI>W&-!I7P+ z|MkTaFxpRsz!eaf62Trg(Ds>+$8T9TH^ROBG+d03E1hEWm@jogqB2LHV7Xr(p_o*B zM2L_jxzFyWsnb=&BK&2&EBC15a|9pOk2U z{WLkNarHGOwFDL79lDyD8=uK3!of--kf7+I!7sU0UL}_o2!i;asmU9?5D-s&Cpwj&DY_#|P5i zA&cK0&sT9oyvDk4)Q+JPxy-5v^ogWMUs4BpH?^7yLqB=g1iDr8fUV}55Jc*K_hf%2 z<3;tfeN#y6V9|4Y&8jMH^&&KyEVa(IHfmsScSV|pLU!OX0BN?QPRJ-}>pbg_SmFbh zyWQvx-E#m`04*hbO1kI>fPtUH04sb=gqI4hfr-KSxwvupZUXc?^l{5u$gD_XwPjm#AvFJ;^RW@x0o002Lh;nbCe1z}ua8 zZLRXY`q*VqYXF>rlGuy+7Mp?78WJA~ zRo*1ujgA`-JZGDcW4adVrU^bbz*%W<56lQEW<&zA3lJ_4D+pg_;VY_37a_gH_*n%I zb@)X{lLUAy2q{m608%0liKUYlh~ZBPB(bB=G-(18tS_vew&?}$O=c_IZnV&Y^ZlT^ zP&5MJz{7B8NV{z6H{93KSrt@UtF44L6>SkVW_OLv*UsJc0`#Ij?tT3U2;6e;;$(GF z=HJrQ{0rdT_^pSufjDLc0~U(3mo>u!Ok+R?8;DkDSUM-kT-1nTjPe-bO8RNGz#R>l zl_tbMSUI-+InHB@MHz?)vq|UutWjT(Nsu%zZ;pdeZImPg>N;-oeV1zN={Y)PrxD+W zGDRUA9)x;9udRiMlm;D66@)FA*3|6<*-tGc4$w>`UK5$5y?MDeKKfNAJ7$lx)?3wb zgK}N8m0tfbFbFzcDM10t+4C%H%qmd#b*1|*(%+=P$XxGMVyDMGpX=Qf=+z4nM!4^i z`sL$cdV4#RN(hn3ygw0OLT2iJQv(~q*gTMDXxy|Vb`vQ8@Zt-W|5Nb-EzlRfSmHAD z*G+&^7OnNQq5b!lueRxsHsCH@oLFcf9(ah9so(Kve=q>Mpjr9_p|=2lu?+!?{fu`7 zO^`T$_t`9+(~3|NiEf`FJv@;>Q*Xxqn@GSZHlbjSSI>Y%;$KYGjNj8;{OlF|8X|$^ zTgDQQlu*ijzrr}EEF>E^19f=ec~((Q97!O;q(zppYxi1Q0XNFHseJQ~0Oy*3Kypl?VGS@l z;{@gl8RrqqoCF`6KZ8kC?ti4?jcE?D?Btq8Y`s8MT$?E?;gI0tecQNxXIDlKTM+Pc zLgZP@;SWqFnEe%cAQe2nM*Wc&0XPaUO&mN!>F?a_n*#O>N}gy19i0XhY9YD$bG#Dr zk0*_h;ZQG%bO%Kx=^_Wo!A%x`;B$5|vjJy?03TRG*bFbq!V@5H78dZ37dk!``X#-$ z{Vjaucu)Jas+ryC0&SYfCJlIEhcuJR0 zakfkv_$~r!^f1lixf`U5A?wgchZ6a#6)D|VwX+I*B#7n7EJdj9E!?<;sPShW(c?wOA=VxbEJNdxWk2!WN=h9c zhk+$2|21KJwjHK(fD8jDGY4}k=et>aZq4jfnzP2;lq-sKZt%}6Ts}`UmcCe-IipbT z!w^}BvvS{nS;5QccBYLqb8FcCyFtz93_|JoY!=_ELwo|Rl~8(2b)L0|#__jJ#$IVz zs;$EIOEh;61w0!S#rIOc6M7y$+XQ#d74$Tl&jLr`wI3mBA%JZGToo_eRq6Ja?63mo zRmXvSfHXN^r5IJ_K;lvM;>a) zeo7YtOQNf2#A8!e9kZZEhD4;U@$m6Zyu(ON%2~ZacfuiywD7P9!faid^V6FgX>Ho)J#10LN9S3VN-4 zec2B{eg$bY+9CLl<#r-fMtcDVo-YFB-TtPCaAe0ahB(!G2JD5W(9AD@6z1PuzLQ&@pT`UG-I^v@|b@Q$N3ev_$SPd zlyG|wtBt0Eul#p7_sOlKeM1avNn7~sk=c+IQ3k#XhYBoR3qG_kM5Bcef1}Dd%7KwG zC8DKTnG|Gg*I+1$x{H%V0<6aLvJCGa^b-VaIu}z45(!{-wvBg|6O!OI4(dhnJ5JIfe>62rCc?X_2Od* z+WD%$r;SCNiVoUxeBBrC@yq9DVm=o$dtq9jnV^7Bd8CqJ(!xKk=V9k|XNf+aQEId< zFOm>r7N>td;q)X8m~?0MXb78+jFm_4&wGa`m`WLr9*ke$zqi{cmTK#0oqHnH3+v|4 zbmw@6F!DZ(TLX`eC#br-F#RVLF9}eJmuo9Ti^0a(jQ4GwZp6FzWBdhs!JcI?SuZZj z|5TP_U!Y^;tErMQV(%MDC3X%5!ML{m!C_ASxKXzruxvG2+zXJ$qmWO zm-dGcU}eHP^p<~HqvLM|Zx!;1sHw{*Zq z+?Y)H)LZ-``8;<9?D+f`i)QGLwNgqfuFeI$@?JJdzB=vbItkwQPZ zGYBQ?>lDtHSu6ufu}l%QtLCvJ{(UBa#HG)Ov{Tc3Zyz5J=e}0r#o)!He$#MgMBN-( z(lxV4$dJ-uE>rh4A*Sm7TI&ZK=vh3hpEWu!W8mh;wraByy+`iEqL1aG{IwS<1XFz_taC&x}ni01>BlKSkIWEFE zMQ?is&}4z;F~Bt6;2UuDIDY;wWJrK-oSL4K(slqj5XPBV(*OI*yms90aJ@jySSwU+ z>a&MQx6i)n>^A)yD{PpOFy3<%;b(3-+>W##jh`Y=XkRnd&yv~qtrI`Fp$^fJ!>aqH zGO-;jO8C?-NYX%T@S7X!S%%MKy%JOoEirBv-@aMMFapILwU5A}XE`oPlCbkqbt30Z%5e(6GZKp+YK8=348=6jfdC7* zu3dcu`K%Z}pV)xg6dXDgV@C=p95z#v6z=&_m*#G=TT+2zOub*xOkqP(;@1CuG`Q5j}A@=+G#+HsD5V}}6y6F<}pN0V@;zkl8 z`j1_T0Z&NWfw7(}2UihjnsdiMR#>&kM5kfguOeO475fE%LzEJ!eyi|;%4&FRnHrqK zq5;Y+;&?wU4`k+J8YDMk-cPE2Zg*mTx|5L@Tagzh3P(d!C^7{v;Gypq0$@(wPn15x zY1l7tUp3Zv7NV0+2fjZWi#nQ{VBu92J#H4`3^Mj))(4&Eq^d!bww@@a@evy*O-IIflf6+(alGltl=W7 z=f)~9H#YOtDiGn&fTEhX4VP)yjdQ1U|5~2c^YO9%R&X{-?4X@oJxlI* z3uTL6+@wqlK-fh!{xz&)#rE=*y>?J?0>P=mxONVwOlQP+)#mImajledgETKCN^MYa zSNZ#m*Ju?^JTotShzT`OLG{Np0c^@kn=Z7t*e34 zWkLge!xJhL~Ma#sLv_@#C5#up!4X!=|;`Rplc~$AKirq4TI5Mz~L7i zw~Ib}wV)}$LuVOotQ*ypE_#C>at#8Ox3Ao7h7Mep02-FV%f{ewD6b{LD@l?z7LP>J zOmR-sxnzgC{c_JCo4>IH@aR9EA{YAlR7+{Yf_IlD69^l*M zUT*`3HvlV61*~{;zq}3Lg`iL1U;duve1h5iC75qxw?&-XV{6g5gdPA9*5l2`E1a4 zC;h1B*n({Y@8%3+B(|l(Y_)DN3%aP&b3FxbC3!k5I!%=3UoXMx zM9w|8hO)dYkqaVipUOn9E{HmBv*92$p0dAv5|3rO9t~~Cf$hANLl8$b2etQr4nrQV zZ+1!eOq_;1t8sP$&MW7rSYpNIPHe!ch(r%JH;p?dzq5LKGcPw~JnI6jyr1 zbiVWX{LRmX@S(ju)~wsA}L^&AZsR;eW8tY{1ea zFnlsP2V~!so-ahm|NSN7d5Gi%Jh1p}bLYUp1d!4p(Bd+z`JeM$1^8>lIS0q3#oXw% z5Bv$0cH~~#jLkDPgr{JY-SmlnOZ)HA0I$9*%RmU&(svJdGT;Mrdfa)lfbaj%b8M<` z{02*2(wKy<6{xTCTW3Jit=*e(nVI{tgq|H7ND$?x(!{Y!^-9&snqTfhf+L|np})Ie z$-ZCBASw4uH6Bd$mAVmuunG<3LR=nR5H1H#3E!>3=bU~Ul2kaI zyIDs)Y*N^hSR-fE+~$-S^B-V-raLdy=rqo*<6kq)xWrEF+K<`o7n`dBIkv6_gLq+5 zK^m0{_xFla31gEfT>kXoo}Zm1F}KIJVTPSE%bI9MZr^iaWv}I(r(gh`% z9nOYRoiM2ay~S~AjFJbpdj&>%Voqc@2#6^K1y3rzZ8DdMX9W{XeloS|jG%)J&H?AQ zmaNWIAE}69oGarHS58G)!MDBxXp2TQzIv=KJ<tE-83bHTj{*?cxa~X=7 zjGyg!nSjl>R&1PcSn_-t8-@Z)CGma_`=_=b4WlLd zi+0u8aM|x*)feHRF}6RdyjWSfAV0Xr%W7cNp^IzJm5mo@)&d-x-v7Du6p8+!CtWmc zJGuk}&S% zE2HPO zkFIs z^2Xa@X858Cp$lLbYQn_O9G=kNwRv%)k`aqY)(bi$WdJj_0sCs4%TMBmST6rGmCn6=d0tp%6sI+poi|tMe$VV z)ccTchn`qp%M&@qR*h=0pB=8+L_v3AFE)(?GKvX6$|?rvL@ytLVPlqW(-r>*@M^*5cj6zUCZ5a;tKE!K{W)a!>k(jv={9SNaiC57J)U;?jC6r8Hz8((iBlO z8n~0PZ`Niw48qq5g+<@Al?QMp!`OfSs^`q_q2wcvRJ}8Gdg~t0_#>)jhb&2U3LWwW zJ!-G8PG-pUJfXCj`l`%+6}?6N6#eDc%W-qn_v?wj4yN$gnWcuFV`p3RvIx5Wc^{?IK{jos6G@L9 zsfAtgCZ^HXg4E&qj^P5)3vBYQSpdiN-$rxM>gWT}_<&(to5=Lw^8VvX`)aQ*!ewXz zMxMMEZ>F7#$wJRgH+NJj`T{%z@F-aC1$}kEjTB;O#m1qz)Fq6{RQt0idFm> z4v*NYQn~8}hmdwx$F5@CyG*5S`&C)bi)!@!?-46-qGW|w zT_+y+8oxxq%KUf^YiwwLu)txgE+$94@bdHVGO^!GqEp0OxeZ2<6A2sL zg%=0&acKd!m~Up1pur~{wrXX-gnCt3F6KrJkw{Lv8?GN=Sess`OXU_n)~Qk`i$+d+ z=wPz>7$jEwrmMGqvLil3O|Bs*HSmDPf4?W4S>H@l%~xtXKix6ip2O3Kr+cqHKz*QN z&ZZV1$iWcg6v+k&n$RA?3M0y+nH<()Di_HzlAoqq8d|ng<&IYDo7q&WDJhy1L#1SqA zjI9JIAI$P+dRGUF)!0aVWHiiICfFdV@%a4Crq`&8$CDCbA(U7Q!}xtxf~3SKE9E9q zyUgIMcH?fYpTC5zpyshA)DbCebw(*?=*@V6wqsNWMs-iy(Q?0g6?^Rgzn~ON2DVl3 zX=Z)YQU87RE0mIf#r%qPJnF{>)455-mY2$;>iC^O4Stvp8##iOr~5x{ZD%%vZ~1u` zg-vaNGsAfcT3{<&vcD1{&G;7(zK#Hl z;Q!NW`2RyU4WyJn)fyKbvTBpJT}m|0;erj z$n|tm;Z_GH$NgAWYIJFTl)|m9v^&is$~JH5bV9H6_@|Fvm5U`BEqy!MR?d>k87I!@ z7ZLnIYJm}=oQKm@52t>5)~X@4knY`(H2jb3QmSU?YG2WASh*ZV^`~xzaI>kO8*%KC zMaakX_7C$hoTFBG&F?!22&mes>U@4Da;wpkqixy*FzLTTCXWVOEjx3inP<2tN-74W z2_;GsWull&tek}DV4)zXW3OQD(Gw-=4I_@$2=jf9Y{ni%Ff3egP~SLFjmVswso&+e zaG0{QY=GWrAoUri=>gDttaK2iQvh0){ys5aCyky!?$&lhU{h44WP^<@*8H-rk8`%p zWeDMJ|GJ^--LkR#*n)@o93 zw%|enA>qa~TSg^j?`~5mH~z$V$iWacAIDoHs2b(Ny20L+GT-l7iJ4W_APjv69g zu(r`UNVX5m(iL%<*6bXaEfFEy|9BXJhyJ$FFifvP5XCZ`n;7!mJ8-sx=g(nJ$udGP z^GGkN!(n_X{ZgaTs9?Hq083<)-*L%SZ*|Dnx7e|E?N`o9Su6rT|^x@gFb;ur*0;B>nxF&VV7D?2v1*VtxkC<0h-S z1Iq=9_(DH8OXkNgQKJl4rMCz?B>DuK`+>7?;3^CpWRZS_;q7oP zP!Gr)WT34&AlmfHip(06~0&HvY|jx zP7S?3(8_=7&WfJP6cUs?5o$9BoQ*MCDJ^tcrNK{Y@pU|PT-KaWt+{`yv$t_mBssfl z853vB_ESP~SN(0gl|dHT29yrl2dz6u7owtaXNjEYc_=oeMu6cW#%Nx^*{^02ZxO{X zT=mL&u+!P?l_hIdm+g9j>-NTn$%5RTe3w5^H;QE^K!v*^IlU$p`m_A z{}(^v=@Awl{Mr1T%8PxIix;Q?XW@Nr)}Ygr#;f7^#$Us!AUAR+E*@B7>7JdzfzGv3 zbWD^p4t-BGHnP~&g$i}|XFn{vAv;ZqS!_&J8;Z)%XXM;oD0jJqS;{(4u_ad8i$beQ z9`KdZGTGFhxeq3Not>K+6Dg-dc|VW|xLW3R)o<3-Eyw!4WEw_zh!;uab`sjg2fr${ zGbX!bne^4>tj8447pF9p#oBd$U88v%!@zo6-S3gBgYLhCx|bmCr-;l@;j$Q}TV0F7 z;XvJRhRz>@z{0VdU`^9v}h zut|=t;R37=t^-jsKrKD{$RijGXaR!LLMi~b{q!d$Hc+xhS%=JmX_SEU8S?z~uIzsR ztJmZRm!*}RkEbozm&D=@{CkeqjDH9-g8nd4W`>9kz`FolWDNWMrssLdfZ6SCF}J~q z)mLypjq6WM=6$^vbG1cZTIC!kgA75;AjFWN{e_N1AmW;^l`qms0UnO#`8pL+07a`q zh?L#K=_QJpPk4v%8d4#&=3+cp?P{!voi_*WjC6@gQ1wFrJmP5mbQc zw1>@loTnX^dDmvK?!KvfiRK}S4wAE76QzK?S-Q*il^GA!+$4^qQ!XV%C`Zzy6*%1Khd8`X!ln1e>f5YPD;BsI>I{i7H045A1z#v6nVavgJZf28{nZlZ-|Ni9J+8{mt; zk|E`(I#xeSW;UdL95yyL{>crQPXb$}^=c^BaieK=RqjAOT|cU5?U& zYz06QR&VHiD>z3*4?(_%C!6D|lzZL=EW=BvM93h8XUD}6xRB!mTXN^w`>63OlR|Y- zb)Qh5F8S-C)LQOatj-=&;;e;ri#IR3eoJNdnMFZmWN~$;{q6MI3GN$J3}7>ghlo+O zJiq;{a)$T8@ryCbb+mo6y=)pU4-2i{)OxeNg1lV(IqV?IQoBZ>j}0ltT?#>yP*M2Cda!NQb{$d{F6* z637gnn3zZ()3zz7;wu0*Z)!ZelS&g8yu9mmJW>oK?dzgCz^#K9ad+q7oiK|5kE7V*Cryhbxi< zHGf$i7126vkypEU0hrv4*_`<}@V+y6tKfN8)?h-gq!GNtU=-tfG1F#yiQv0m>9}_9 zS4WVNvK(dt2~J2{d=s@X1c7A!U=ASJ`|7aMmwoV5ka?of^JSMS%W1T-7vsUZP04C% zo>&P4&Ch8k;e+hb#`4psLT#kINRsdmZde%n?MXP`#T*55{*Rn zZAzl#H8SKeq-7KY`Z;tOAF4I`C@wS{KW#idoD)49Z@BQ28o3Za^w*W{hB9zAn%csv2+l*Oa>83%cH?JOV(*f7Sefs<4PZoE*6OPehP7 ze~AS*gBZafmVcFn2`CW!`+GeegU~X4_=g|vF&u8V*Z*mo`AmOZfAb1xzp7__#xi&)bH|$aj zUwHly^p?KCV|gl2`{;WzynA)Bb-Iorz&(jK`)XIli{qt*BzMwvr=sL>Ety`BzHkNAD`jJ5n+A`nmO|}|A(O;s>ocQ()sa|=0Yt4t5u zEWim`#85-A;j&$*>>9-^2o}UpDcjiQKt-;unv7eOxZ$Vr_9y%>Tt={c#X=7YtAWWo zmxel%2b@)NhQ++{!;t~i33NqE1?vp42tB?k)uKP^w79C{{6Nt^a4L)}B%()1U(79S zO;GnPbF*NZ2WPV=XQ{gAv+*HA!<+64$O_BO_VH$oPSVw=<#zY}`8zw<7QN-&8ELEL z=9(}TTdM=rsF;P|=65y=_W3N`!dz)k)a(QgtNZ4}H{dr71a1y0i3aR9m23XwQi1yu zrofNZXn{!ZnD#^#8_-?RAYs5|aL8nhpR57J-T#4C`fFp{x9xD^Vrrwz;cGEv$%py? zi7H2quc0W~tq6>Cck4pT|8P@4u!U#+#dud^3GCV}zu($qycll|@Zu78yP0~S`&#p_ zt%*Dp{+71;Gv@BvR8ymiOb~5mt@Hi27l8J7@%#s?Q6wC4vP9wk2NIpvJy&on>k{~* z7eZD_qAZ7NSRPM@!?Ua{9tl;QXIjxuc?_Q}nmtmo4)dP;9FVd(@PMvf!^v#ec(uv5 zZ1t9?2*K4d*Z9X^8D-XEH;QS@og`FusT{9D&MOM!1SDIm6 za>4!J#?8KGRd4l~Tk(Ptl$bv#GblRyDc+j8_`8D(1rbAqH>zD92dJZ-rVu*k!qlenjD`L0mQ~(9$!E#8 zGjAz!qs)6>FjMDW7$_TQ`stN9H^w49EMK}P#Z3mea>lJ#QR`;ijY~wmCkTIrS^~)J z8Y`q6Sl64U_*Fk>zu)aD66$>J-WBD2h>YdvP|{ug%^+CVBHV^Bd&z2PsaGkvugwU3LYT4ght zG0HV6>`hZ4{KpJ?cDrZ&Q^c1doG2>K6GG7jcZr?(!*1I11l%vBs!c7t(HFwiH?dJ` zt|jM1`Mt6E3#E)B#)y*+Uigbo@ni>kcDIJH%}dyp%G{gbev0;;=bSwbwNCTqHLjSr?Gx!$3 zEWaxSR9z3fFH%W?nEP)o*^60`T;M9AL+1u?E7#8(w~omCAD=i-XB?jJ9|dV`zH-kJ zH%R=e9r{7Mt`c=P`mb-$I3YpSyz%`Os`wEn}LH5 zW!P-5oh06gvznTGP$}q3tsg%;SVrtuUtBqW*n|ki=PE) zMbohgQ1}Q@>J90ACC-AV`H?Ozw^agVR0NrCG}BzG2G-Hrc1#<>AyF$D<6zVGNy{im z0NT%{Y8>eRv2b-!6sb&QZ!D%~p~pXsowrpZ?b$Fwgb-~~G{yYpU&2ADd_o-3;%bT6 z6;~mKOr@f+*8G!6Wi7-T@;X$+VwLrGWEy5N7WUdqRBY!J7ri}-!TrKla}ocW9*AiD zY;T)N<=BSs``R*4U5kRp@U1bCA)~hZPL~A{tH}SB0f}rcNoUf;Q||QIia;WkdcU*M;o(Jo9?cR3 zsH+SrY@hUtI%zcw7%?4i$IBHojdN%aot$h(Lma8d{vj!YBkWneR!G%im~cQqFzN)q zhx)s0==O~hF@zkagAk*m+dDm}O*V`y?9?fK+WJ|+hL2Xp6Ap%AyW}UcZnub)>mdy@ zG$v5HTv~8K;Co&f$zP#pHm7went->0LJ2VIunPnX>t(%E2+$)kNEltrG5*ODl)OZuP zX`u*~kr5iBU=AxOJ)Viga%apBIGhJlx!{Rt%e{#<&ruy2Qx#8XpgoI%eFhGwPSiLmicBj@oR;A~F+KDd8>?A%X(v zSCj!ZK`Ta>;$L|FksC;s)nrp9u>tW4^8*YOAWh7Jg?uA1iRU8^>k6>mks3+s=x8azr*yiZdCt$ZVY!13s^wDjHB zJ1}liPT~$PpIZ^>yUV5NRbi?&&B~;jMjc={Ew4RT4y5RSDuHoZa z7v9y}e1B6YH|vqr{Ug=#O!kYk=Kd&roDbwHlj2Yx72b=jKmlNIas# z!M?JAfPEDHn8xg)cv-)ygg-Xks7GUe$Sns|=kda!mQVLu%(>5TRFd%&Nwc3{@$j3y zJr;A{ej@9OR?U&1K-_wM+ae1wO$|n&#MDMeQ)pU&i1P%@cs&2>-G#Sk3b(art!MA( zm;>84JHYD?$o{_+j`YUGeBubXnDu#Im}&B)Cg8OHK+Zsx;GgA(|7|k_cG3L6xtb_6 z_TS^_;KWcv)(5cX+Sy8dD@pw6w}(^HtHl~l%pf5n3XNnKbc!ydsG+A760Hi3pXd`Lwg_TbZO6X< zjID~U+MmlECKE5cC4M4;#dg!HS#-oelFrVpS(3(x=xT`}bE6(- zm>RJZLEaEOxr#uVN(98|MSl7!?<6IK^HuNruZAkK!!GOO0{SJ&Zo2%wRmdKXK4Mh! z&!ygzPR+%Cn4FL;r}=E4C{}MMA%562bme$nnIT5_ygyEU?osQ|A0uF~_=W6qqYMd* zZx281M1npykMbq4N6Hji@5Lq5wI5$zI$eq^dTI3Y(bF~FvhFOpZ27x|&LI~LV4 zI$r{O7y^okL}yI*X`s>I85Aq*k9=p5w6$bxeu^M3ptl=dDBFU$~EWaR6n^ z=RgS1w}pswQ-WrGybZfifBbOKFM&v1HvB|q_g~`2|KhxX;Z#R0U4`k$`jOzCC; zM%)HsmZj8yhE_(m50F{XY{G9za6??AW6b{%=gze5@eh$yh~|%Yr%ppDf*Q5Fb_!>IBJy<(b7st~bgS z`lF$bAwfFtC?FL%9pi6;Z#F{YHWyAUIMLNpauoIjA;BgFEd}`5b|QstO<~lR({fIS z4OC!Uf(+2^FPK}=pwl)ao4cyo1&wphDl_-2yILnO7X3EI2^m6lQ?E&)Rr|$szNx73 zP11Gv2@dhWo2*TFZ z#x5?o)_<(f@6%z)Cb+RTHdV+-JR+eazrfF)^460Eaci*6k%T5>ze9bv7-qQ}n=HkN zf?~vs-V-X-Gg3RKDUXMDmNGW6X7?0V^?`pVy6gM zR@Y18YKd1F!)Fr*eiQ{(j#dKV8jr4KgeaV4l^B_MV zCB~S(D4>CtD2SrkdiS?)JUTZ0`O_viGj(W6!}Ax~<-tku-MrNMcEC);Pv6A?`b=SK zi*Foo6}D&wJuqWJ`SbiApb`CmM`b4*u;9dkGX^B?S6P)2P{@0iJC0h3WoLmvszFSR zUCsaC6aF{Y2o!xWGoLIy_>ovTO zG6O$;!+aS@9Q)~j3q>Z3GeC6YT=46a5QJuM=9e}F0qbWs;;!yclex20G-1CpK@ffM z1%WZ!MY3et?wn2w{phRP@uN`_3^9T@(8OG-Cn%~YU1{%fXEZHxfAmY|F{~pmwj^g% z+O5D!76c)4j>OM?*?3LMt49zDE1INp0g*x?pdy2)^n#y5qvWf@_H!c$`Meb^l))t8 z7_Yi*ajM+ku_;7Aee)l#-Z6mvge~c&QU%05IvKPKqGaiy8$#&_c)-j;;c7Vc++fbN z`F1jT+Y1J5Ei{!&$zbj#)RZ91OYt`R0R6B0z>Jq{)eq$QFJYr1r0atSd(epxjAZt< zrp8MRlotvD>s(Lgnp}i@eJ;9`@E{@FhN`oY41X|j&ysrDP?oUjiu}*7gJ&gc=%z}h z_no@#spn3XbQoxt{O;wT>Ux$c<*j7|Mt7&Ip4sgwm6V>hJh@zMgL$5lhfW7A0Xo4g z{4%u=FVZ1bM(i$2WvZ}TIW-qEuYi8qrQ1QGJD+>;qfItF-J1o^XA+Ka{n$O73ai*j|q)Ix>n5rM)5UYX85AiXck9{nx}P+3T}Gs3_SD%&D+ z8rmPGPyJ+qYo=lzseF(Ylq6_N+r+jRu>J=O2dIUS19L69Z`SRrwmH5>?Y`qf2PDD3 z5KG|AAQB+MAXF^EaLCDsgiiSns)&-uCvXcgixlfaN~AqS!BRcb+HreYL<}%ViqKHm zNbpK7W4D+)8!`b$YkUy_fsb%o^7hFU4> zH%PIc?06v&HY1eN37Cc5SJX4)jRzu+lI(4adf6uYY%S0=wQ}1fe+n{jJP>Z5Er8`V;=vk0@B7`ive;< zoDa==jTJ%NOil*F{$@@FHp{}Z`K4~tIWDuZFeYuSCcSQn02c<7PcJwl4+KkTI1h)N z%uK5pc#<;+_i*CcLcX_j_^Ci9cN(I^D>M~Ap*xK@+VxvUp>+1A1 zilMgqQ2l^Nh4YRDteO7qWmhkQeFcI=iAmfZnbXW{&i1tBxWJ}D#gL_??e04E&s8l--oRNf9_Xy z+L|aDZc|sYFMT7w45cze`Phzb`Hko5&HfIHzFGK#vo=^L(YgOk_0aS{oK@PKnH$IL zgPy(G;h(C6weJtn$_S#)1J&OLRDY+vRQOch@xIXC?A0?LXB@@b{nsL_pM=%Rx5h7H zy9M$Oj84~DqHeQ1#tus$kPq-`Gj4i1BhrL4fW&wMKN*ZHJ* zIT?eO*`k#1mqohvmhf~74Fc=!y%d+T;{Uwajn~tY6;Y4<+h+4$v0TTfyd;AN6dkW4 zx<~t4>?6@V`$=8+Saqh6o`k|@f~R2==%*JVf#N=l`7Ii5Kr?R1cgQ!Oz>=2%>{V;I z6%!OYNH7bPI7W6C-JmRls@ioQngu0IdFN@5XG4*XG03eNxj3b&Tx~L&jhdTd@ADwM zA%h?TikS$<&xVD^7olnDk0^@rFw$zPkNBtVhQ3L>Q9-BMyLG-_SgTi1`C3cbL@Gj( zi~mJKZ_=Uk9WKN6fi?v3rT%f8^OaZXpuhC_fXNC=W_K{yeU~IKb;NrCHOd;49jOLLkr)D?GWP4)qj~?Sr%E3D2pw?8>EZ8;vd6K*xQ@c&Giq@4yL0FEIf>m~&or?>c1o@lnNCTE@x6qgu0quN? z8+7UBzoGCSCQ1?fI? z|GkRD>y)vX=U%mKZI_7H3)C|Y_w+_>-lt;1@fr2p36}qbQu)Wl4-$l^FE}$hV~FjK z*b7U4-dAoj?iNtqEp72VqHYeBX7?VG4)>WTxo3n!2N+rI;nD*x;7-jk@0BH-)BzPY z8X<_Krnc8gBUz&wBz#2f!cs~$g0@w_`BmpKXD2=^m$x$fCH@w3rX@>ifieN)qtoJB zK7KBGjjGn*ffS8US_}o)8(2x6y6E1bRJXcEtW<^00GC^^V7>f4WHMz8()7Zv@@Iin zuZq|H@#VKJpUrluj=`Yq6FS8RdGlda;glTQDLy1oWRT+|)zQhJc_2+BM1W2}1HB;| zjd?3HaZB1Ql1W$a$rr;I9u=x!h1lOX)G(5S75uf<%$qCn*6VdPBq5HWB*dW9!1@fW zl;T>OsaD-OL|>TZ2U-IAl_%6YTlsAoj)uPZsZv*8ZPLB(q#8GR0>2|nTFI~yIPz9J zOAf?bR^-j^911}@(T>TCQ*gW&@Xu>?EO9e-K5mqu?ayP|G7T-^55j&GAyCb$3%OBk zWARcLa2({CSYnJU9jtmcNbnT{*=|Q6ro|7Pn<@!!&V^RC`s!DA3cohaeS6> zZKlcir<47iM%l%HdMb>Kt?bQHIsuM`-}m>-bs1bHw@&1K_nWQABqtLlH9y8%IzsM+ z2~51?3CG5Nl)H)h>ubfzB*A(F`_4|i)q)pF#~J$2>&=h{b$==!otAnn zyE01oe{&5Gs34;>T3U>wubjr>RJ7CXC2&*&+@2F$Awbc@h7SV@vS1oxz#15$NAZ{< z(YC_PUkjoEgF9q*!k^0oyYz6spa7&W=((;v5p-Z76HpBlviP|PE|t_{zn>wCKZX_?)}BQ=i4QwAB-x-VPX@#-Go=(FI^a&D5Qe*o6)Ig>2WP!u7ht%luQ%uHh<|p6U8HS0* zKDR(KwjeTDVX)yxS@2R4b?q1WWuOtH-z|fcOXBYsUdQKdLBpW*zv%kvu&V!MYw48k zZZ=4Fi!_@~>F$z78YCqZHUiR(bax}&A+2;bNJ+il?YZZ<_uTt?{}U{pJ)fCbGqYyR zH!0<*s08B zhtxvUPN*i$&Kg8^S;ld`Po8|&j#;wwOhUCS9qQ*q8*Kpw#$lbm?oj!(@Ts>p(lC8~ zeDP*tVBn_b#Xx@mXg6f`o@mX*f)f=_-Yk2Z!v3mriLWCjz6@HvDtV{IzyUqeQQIP$4+WL z;B>~5j*mQI<%cF&Ynp8*C#tC$DeJQSu~PNTIW`^WnTS!HimGhGODj^bIU^xzXLp{# z&&$hLTH{Q@KZq(~SgWsZX(wQgPEELm5Lww8#r)z8Vq|}fNP&saCNK=d+Ct=d2ni&7 zvjufa#VNi?x>ywyI+8^ZKdBW=mIAD(%YL210EjcM zPVzAsXf&rk7uHJxg;A97eh7et-Scga0WGS!jW6ARRyMpRANDZwtB}Jv(%_q4a*;@% zkkUO6%Vx%d7N4nxZXs0Cf=d5TeQhwB+&wxgWuUkHrr~gucpzV}K66W%pR$@F}w+P8a?mIplV4-e|*P2OT2IQ^A7*<7!g zU=+rrEn8eU-4cdH@C!99bd9V+E^?CydN?DF!WG6TgK0)4DBhcWjsE&pQ2J|;QA&`C zby?)7!fqR=d=I>kn`!C5&0f#LJlx`K%S@~Jvu#0pw=IfEjNHSS(cr1b{8nUgt&N5T zB8?rzg{glBqV*mn2^BH&Plv#?%Q7c5tFs%XVTAAA8sNUj&6A0>e_EtNvN2W;J=i>qvW0wN{06=DmJ;o&9|1@eKH7@8Vf0o36y z+=T3Hunc|zEgC-Ck9l;0eP0LHvs5xoisbL$jMg^ z*%G?#Y8~JY_6DTxK3CH|GC##(c{rw(%0v;vLVqx_q8pOs~AJV%YB zm`b|6IdKz}ji|j+%^5 zN9t7k>^b#ap)nJX<(B;`FbA?tUGL zpZ?qwW=ALoq9lwav;`VG3MIgDujuy_f5Xd>XhAE#ULw@K`Gw3)tHD;w_d_-GV#az1 zQ@nwwXxC3^?H(Kgq-<0Fz2QLGWUp|d^AFomMN zZ3~km=L=L(2a0-kA=oX{SmG3Xiz#7~mAC#yL8U9m$Wd*r#H^o*Hvm!H#?{El*C;Hd-Wm7Ae+RD2 z+Ad#eXIuO70)`*Z&DTdv9-jE)cWP-w%`BE? ze2x;#TVNYRC>eUyZv+>fOVb!c+&;(}oGS(5^-EgLM@Bf2)sGp2BYnqCbo9tN%wM+bSc?u$tdD~*c;@=6d1!6P zS{3t^mYm+>#J`dEitpV*rAIDF(QEZvzO=v%0TaF6lxkBxSnH zD4Nj3g9TNnH|yD2kO6Xvr>z;PBEa?G5N!AysTybaH3b%EdNU}-InvQU%##@kyQD&+ zP!f4?V2SBJ9n(O3*axm=H@o~B2L?F3_;oNee1i#5 zIFavxaFYIPTyyHkhn*9>LKk~FDsu9|&^UW4hrt#;sb_=ZtFu**oKWiWuQbXO4;2!Af?m9te&@Jl ztSA8gPbX$^@^Mt>J4jGA12*1P{j6HT`SSFMjW$`=53;BAkyG(b6KG}x> zaH=x>C2XHJHd-zNi#`HB;pAA2KEcqg8jXEI zcfTwdd&z>?+}s#)`+JmvXd!UbW}VN6g`8&g?dnrx-Y?KXe2amq2v)l!XiHFOKuv<@P5kz6%}D~yTH*FBK0ve2Fkgc^E>iW|`qv60 z!0QS3XJY{65WA+r(zgIMk{06K1bT@i71O0yaty%^1UW1r{2^^S6J4#9eZh2?bLD|y z-cLj}M(@aWOJPt|dE@>@Iz=$@rj9e=(eYYAI{bjPDZtpQ1pI$&D*FJA3Py** zw2(8eiyRGRiRQLFq4xsAOLZaLEb`?{AOujBW-E_XsOz$>54z!^)Hz|Ix>j(4{TyrW z#c8KR@bI)|T8{j#z?Xzn(0rZwb$8F9hsfZmt^;*ZdTF^G!A*!@1g$E(yi{uuZ$Hvj4I&ZosRv><#^{S(Cxkt~BS6 zBS#+2ZoP5kb<@_7`Ba`c%QkG(}qJ+<;+=&Wfwe=M!&C zQcz#m7}bPUY7OMKf?@CbhbY`!spZ=o zK#3|aV1xF-x?p(4ay?u$H6vD|$yaQ1jwOA0@q6OieoC*+TD#PGKr~|1BU#rP6Noi6 z*5!2SPz#H*0FNmuEWvF#5_x;2{v$mX5QuWNR``HG7iNY!z}G#wfs z5D|cq!L_G45%W2HR%;VhKvAMMI1{PWYH%N~1xUGjeWg7=kK z{0X9!Ovgsa!ZKqu5EA7>nGB&_30>eVTYh;S7x4jtjcX%jE2R)D=_MLAsy<#0i`5e+ zsM`jjCZZ{%X;lC(4ML@%_=DdH53W8+V>kJdG+D2zo{(S(ku#?uyUym7j*+}!?NTD7 zjF3nksNi2oawy>9J0CGJ2zVPO?^vxv$Y`$JTgHkMg2>f+l4Eew4l?`&sw4ZjKk>Q`;#~cR8^zWrEA}w*}R@nx$QYgzxJ^p z54fV+DVo}<{q;5?+*+N z0*F=`F}a5`I^w_uqyw`Kw`&Sh7txbEk_0A&oFrz&xoI4DSDKOSEt;KrkynleU zu^Xd_Q;)7x?YrHYRDN&F?FFo%DkA09w=Y21z7ws}uTXU}z=X zS{}fos$&Z}*`Iy3PQ}X6F4v6?jt?ApEX*UnOi*ezdoe%UwN?}$j(_w1Rn6U>5}1Yh zO}6ET<-J4AXjS__{rKScfLNTFSigRO%jpitygS+TcQS`i!ty3KtEcT3?)!E2c`jhf z8Q?M5ef?YqEMq};nHly+7XB7)TTlYbo#M|kWsHF=08pCX z$qHfqB^$cM?UIcnyk09x{F>eA0-p@hak_h*j{0uPC&A@xKv}IPwuXeAxkW z(@D$A_jjw+D!WT*rbZryN5_e?P}mg=ae_j65h$eZL=?7%2jI`JtA5VzB(3W46-O-& zApVF&Z3WB4R8Y(!+M;gZpvw@@@>@40SYA^9Rb)-y>%6Vxtk0xobJWRks9+)n?x*)D zVZ$R8(O2N~o7QdtkMD0rZSaByw7%gSch#*lpclLfj+#c1td*vqKM76!DObdjuMgH! z7mQgE*~$6TTPEK^O3IH=?a)V}sWlIJH{g_*l@&qJ>LHOf2Z>Ed8a5ASvPW1ig#R8Y z&*Saq=U&Z9p9No#c`NTI+Pjs{I{u>|Y)DK;m_6xym^2j-sc~E)>rv;eEIBB@93GMO z8ZUL!A0I*HJjAbc{MNj9sUEIwVMGB;-K2(oX(2MOaZ$e1|1kX{#h{K#8bqJeeziaU z{=8Qg#EXWl>1Sxs!;SWG*w)nQ<)xb0avo-s?{TaW$tLXRkzU-Y6f}kW#kGBQpNYiB=M~QsN6(^;|C-?-1WK;wub?MwvI1VgICub zYzDm!=I0RLU14&XFOk0vJrecwVT60`ICwAIra(a+@%-3-n3TL5>(6TtI9`1o%IcU0 zg{`P~f^_g?z`y{6#2Oy@x3MG#3m7!v1!ssMkk;PZ$`b*bTy)~2CWJr~!3w|$2R6A- zu(%h(pqpG-p*cW?f|c5rK+aDQZ}_O{qM&;0+v|6zmHqY=oZHg^ z4rHVJm9L!W((2}O;T8dX|N9s!z57>HcH<6PUy{^#P;;h>Xianm^J?;3$n11%vh3HQ z+~WE_BY8zE7jNA%lj3Q>E{2g;XUKGiVqYj&LUPOSzir)=Pc)E$1un`(E#|rFjg~EZ zmvH<-V+(FS>xbeeF4khMrlan3Z=d?&_K4OgVtdb>(=HPm!EavHQABiy4^ zd3giSJ8!sIkS}UXcSt-k3cbH^lOL$5IwcPReBc)7$VuLMi$6Ri&8Vofaul!cE-^Z z5MKDy_EnJSvc&m5svbNF&;NJ}d#dUXRY2xS7h|0jp>05>U~fzN4|TW%l`jg55&R>B zJ9tdN>}!a}DQ(rb*z3ZEAsb-i$^`;b0ufCB%36uj3D4k)1gy^M=qWuAf)Tu~tqb9S zzZ>v0ECO}QYT+bh&o+ZwQ8>obDGUp>i*D#n|E&c8+#g9AIa_Ya`b3JswTxMd*}O9A zIjci*d605OqO~`@6c(K#Z9VxUs*1JaBCM~rFs^68rT=NzEFa)UWDO|TTI=J3V|6=u z82|hcwVWs&Y?0phdEG40@1Qc;BW?3QIaI6nR<|=H7|i`cuW8Lo_x9r6^8NL;i;fls z{BMJuFY3F+9fN7=32DTQb|5j2B`@P9ufsTXtF#Ml!Gws^4w_sov$_V50XSU!{*$p7 zKJCrq(xNey*X2?%d69mokNpE-(-}9afBJEbw5i|w%k$6n;Zww0+y|M}DQfaz@%Mki z@|M@O@*<>Sg_pX4&*)U?0f$hLC9J!iOx?t6Wo)3k58b>ZrSRh>@y%~ndJ4Vw>w{(w z0bA6b8GZ^ez^D7sC9yX2zs|=^bH)8_Q;P!W1&q0?8T)tmR#*gOLi7r1OHI@AzK0I)kqK zAG3)CJ4|UEUPW{YvE9xV5ySe2tA5|AaP-(5$4lT|?+?H5=@8%t!T>ZWA(8}UjOesU zG@3Ta6*gX7R74LU&2LsM^|4EuNj?uF7toQ!_Qy`3=PE74C%qn(wmG)LQzudjh)vL; zN&T2&IDo3=bdhJ+5$-lFKrlcti+fk`f<;v7ZPa2Eq}$y4Hfe-CBSBM1s%?E;ZawG< z>}IW6S$p)}lvY)I7B}FBm9KhtsqiqdHcY&lAdRpMby}8Hv-e<#U2gQB98#u-AF0LCy{56RHvUZ9XKhZ@mY}SJeJ&4q zf8U>Y@Pq%FCJCSy-L%J_(~l}kH=k7pH{Wg!$lV z^gCtO07kVJ-G~L|!|y-J`%-@jfL)}K*iU45L3lPk$BB1Xfn=I7fEgeUP`UmmVfSBO zO!gq_JhW9GhT8}68^xLKl$!>e6Hk`=qC2L|OGy>)oF~=-DZv>F2s~tUM8dit05eqC z^W$BU%3*_LBcEb$)F5IOfoc+J#3?werco@4NxerZqXbgajH~F~Z`GpuR{dh<0Op2_ z1=T2vrYTsdj{DY_Qc{q6{Neduai6mvk!7J2j0 zrS|LuVyxB|i?zml_Et6tE(+%>PC5jj!_}j0BS`OgPj;UX;^l#Foc(z#*af*uKk3IN z%9*Z!o4IIAWqbhM&43p$)9br2hOtkUJr>NMnN4rLbiOTp1zJzt>k$oM( zQ`gpxdxNRiTf#9PEK->9gB-M&3ZtY3`TYii;E-q^A z;>@pJao+x#sHWLk_jqS^u}2|b^W1(||Cz8F3JyKBr`3@ypkXyNo6Q_JBmx{Fh3b#Y zRx8O)01h4Ede9I2F%O5Csahb&XQ#Jt0I2$71h7LipYUmB zdyKOwy?KfZ7PsokeJR2{#u1bn5)uF58BhT;ELdjjpu;buLCKl#e4@y2f;hct>OS-o zF7xF9&|xfyu?YBi)>wer1bA+qg*NI;61o|_*~Oma$)n9X2Cq4=MYiLseHWb!ZcKfLPPF7 zWUJGN^G08Y;FY*P?ap6<{-{ppC>G$6$6m+)H`*Mj#NOH|p}pF|X2PbHx13UcP8}_g zVtgqWo|Ud-wQ)g}eW&X5p5s2k^8IdJWtFoB3Nw>5)8Y_8_EFpd+%hR-&K;E}2`|f2 zIQ#YQI72lI{(H0jO1*2LFwm8;M3`ym4|RY)-S@?R@UA#Ub^G;bc!Q7aY{d+dgyH3u zj!5GN(-bFzPA{THBWHuzl&9+l#`j0_azCU+(M8@5ovST726AZ8%zCJBpI8bt>oxgc zzVwO_^t{hGp7-kDz`$eyUZY-HaoWcS_Gs3V;*9#U5TF!2dr39p1qI|}ol-d2f5ST) z@Co;Yjko}Z&0SX#zTZQ=2agXXy%&PV{?;|dS+hgfUGFP$!Hywg2os;?uwwn! zgU^*H!&HHZi=E)opvq3;xbvBg0Tl)Qybr0lO*jsAs+J{&ehrwU2Co~_dcFpK8VQN> zzYea{S8;IPb}lzKQwx|*Eq_%O(PX?L@-~(*P;IC!C3|=rS&LC(aj_u9a=3R>3ooZk zOCi@YoekUW=bx7Xd!HAJ)lx@6L1WDp#=lRdSnU+i05y^B=daeM+YJ>QR)*a0t#$86 z>yI0dG^i!YSF5n$DDOzpQk@j!?TwA=_^Y8 zhXdU$^R&230Lvq7&&C3(30|ZsjozxwNJ0ocF>{W0s7v}z~y$CpztF1UY$o#+*kF!+6mo{=Z46Vv(s1nZv zB&X|8Dn%ZbM~BPXHq0Q+8zls}aO)W~<@@F-Ee0mbmB#3q2DXyeeE~jefa0qZ@Mj8R83U%-4L*Ik) zQ1Xz)ox!_!zeuk+@Auz({2vXQ9%4Q(&&mXTMa4cC;_u(=f7i_3#8>2wyxC_@I&txP zAkZ(SF<=w6>M`RU?(HMB&vo%0_oqA$;6pB zkLWU@(DdP4J*9E=r@OE%^*=%U>@e&qiMHcsrcSt>aR;*6 zmJU>QL2yt=(j~npF99w`{y{1@ij1Evp1+kyHVkU{mT7->IC?6H-Jd}vTM$!xBr&Ws zeaBK}G?h37(!VPntHZcgYjMDyW6=xUP{lGDF+pSkvpe8s!*7-+nQNkpI1rYI`sEAs z!Fem1Y*{wYWPC^(*Eu$O4a$>AYN@5E)a$=#X`Ua?Vppoq#QXAL9jj!&_lzle_+@@R zz3_9Qka#Le@zz@kZ$jo#2cld$t)1&^w+SQANwqLI1%-LAzPjo4teG@~7p!?ef3Gge zpxz@Qf80#gUoyA6<@0B;Xc%vMv;X(AKpJqDyx6cvG87dtMBpeB<#wtP)?>XLcWJZO z6iGU^=wvPQoALUr3#ntX!>I_`%sXOR>-mz>`0Er0Z01o#`-oqn6tA^h+J`PP)Q&ke zCPVUGwr?-w@4Go)43IYSN&spOy^u87u0t)MT*!OCxA8GqZC}Aps{j%9H+M4j->Ul? zv{}TwU)b>uNa7O$NwmNd0JnTQ1%wr6xs|t(fe?`3bZ`%ZfU6h{K|ucUTmCD5wBRi) zXMpRUk9c3Iaj!sTR?Zk9p#Fp>r5D+rFcfu=plpKVE7{+B-rXqGba zRG1ag<=maV=vj|t-^vJr7u6})!G=ypbJmo29{V3$lQ9FVK5e`Um5;!-%4&!laM22{ z!jdi~A#oqQ3^N$k*IErku)j(u-Yk?1{o_21p3Ykh(bpL0>cJ9g-(O%TV4$Za_qbua zEnGsNr0*n*cZ}b}c>B(Y*C2saBKF>oVEm6eTqPqRMt%(Mex=fg4l~+3r&nO8t`;P# ziQt)Z3Xze5w`o1QfPooE&ADcuLnOL5q5e6lE=Tp(Kl8C70Xg3|C656_rZ~pz`H`bG zr6#7^#$CSlkr@kYo4t23H3363=}Q45I|7Q|xNbL9%tS74YC88+|9gVtfA{>d z!*C~eCPMgJ>6kS6!96XzraHR@lQwBm%zz7reocoK_q0$K9<*F!`T#T{EIsz3v>%ax zD}>l|tnnAdx2BxYlv1c1?ePh*E5jM`u4*U|v&m^@$~nXzv}&+NcAj6nvt{ZdgcE$| ziW!zG2xZZV(eo~1KGq3Ay`G8Mp1ljsA3mr#Odah-FK3jjLI@sUPaiXX=4 zkVf#YR{kmFl7DQSA;UP@kfSGXpFa=`4Q{D%-SeRy3T)}QE zKDAI+#|Kusz;6UO0Vy|V7~b9}?h*%U+-E;{C8t_EN{g!<0-a}eaL|2h2DlhLHwWeIz_o1J70^?)T2D-b+6xD;S9%?Z@LLw37A`^6%URAgMc&%s5X?t= z5EcO%$waAmdAB{&-jFZg8ngn^pYCd&xj-v?{Uf05P8G!@rE5vAQ~#cGboyo0hk*WU zJtmY0GjvKNE97Ypa#Mg7Uv|&KT7i4>s8M z{-w=Zl<3=gKPZBel)&u?)5>Q_ccSk2~=M(^hQMo(Ito4Yz=`^@b;fVZ|(P8tsDAm!Y zyc)Iw8l+FdV)-@CRnIRB(S&KS`brIk`HW~IVGFv?k`rU?war8+u~Df23$0Ue%c-q! zG7Z~MfQ5eZfZoX4ri;^&LR|GEAcKSHE9m^vj8PU0+~OWKGZ@E09>Ko~MIYD*?c6b$ zl`t>vV7v?BNTVc6q!9DCl(gE4{mS|{Nd?|9MTQR$^=^baNr0vUy(JMjy4BG5Y zZx>r6GX%zuWNHy1Y15FA zT&#h&pVL*3s1W+p7YCY7*rHSsx&0B23(%p%Y^@rU5v#zk>%w8vdUL>jSEKs4XMt`K z=t{jGTVFi4vUQY!J*G0B)&_1Z;F2V+FDFgd*+jOBTS|Q5hj4N-eXVgSo=f`25qV28 z0NHF6mb95gO#e_!zT!jU0ZF80m-Ey33c|`Z8|aeM%i7N*)N4>KmY^v<9pYcRT_E$& zNnGvm3wVdfsW8!2nfB3WesNgHdG5u0?H6J0+T{)3@%-fL@T+a}=hc_(7{HFL@5VafkDXi{kkLS>pK5 zR_#uAJwCxDqz#7e*Tb&jhR}eYfD1T(O#^xQjoT#}XiwHZ=GE2qJF0(KuKYip|KE{d z5(IPn;Fj&r*D%F5H;~nP&={EKXjTpo#I)7_o}M3odhoddq#lNkSwc88=DvlOV-VDb-Og#zRkXO{j8w_AHCRR2O_`o;D4}itSKMv z&98Cb9Q(rcL#K&=1c46V>xJ>g8V}8H%!2I3m?YHja%;j!tV%ANvvZwa@;wPr@+uIj zMX8(pij)4RT8>E`X7VQ3u=$a9jfq`yzwZ3Z)oE&Y&p$Y=f~Z|G=?(U2m2bbflXU(; ztePX|0S7n)1%k;q)}@Q9AgD%;L>R`gUa01LzO>vyCmE{l65n*A;b)jrLAh3s-6!x= zOudYWKXX`}*x8?&#X(C72!^g*rU58RxNuxghZay?U-&TMUK2BAj8{x`e^c98X zX-bU;*a!njc$ z8ny__49*0l#f-0PVC-}03Ier8nAyl?ZhE1_=^Q|nYs`nl}e&+f@Qla6bv8UMaX zfYnb#C65a{-{Ebo0#6%oc)MW6|=hfsC}d; zQofwK8Pr?7l32+?ho=kE#H1Pu8Y<3(Ptt@O*W+RQbgr(ImM&>*P*5^>iB!!!E0y0M zbbXzdkV(Si;i#2Zencur9n7o`98vMPMJw)h=G*tHjezsQ)H1s|VwwaF{<0_#gv z>NJqfY>oroHP%Y;MV{dx&PdfCKX_Aw4)x*Ts9BbE!t?_)6Q?GZ3f4cHdXIkU%ij3q zNg`1g{(PSco2E#(Yr1wFAmnME7Hv?8*^5LeF3&n&_yt(GlEijiDmz`}DKFe8W3as%ED1@X>7J^xk&w7aOHm7E%PpL3~@A+=}Pf zMLATH?_m8Cp+uJpv{+h6kQ4t~ELlOdWOZ-30&0K}wDAWk1fb5XJ+pkU0C)%;@MEYz z5p1E;zQwE4N(A965WjW|&^Zx-K z{{00ODa_-aQtz8vLQ+QuI1Xak2qq;>=p$1hqh(tFnirZ<#MIR zd{6}Ocd!{=PKD0~+=FjH#Q3L#a7`&NPIR$}ka?}~g`7y=)(Xuo=O%GhO36D4SI(<1 z-3#nT6g{-b875w-#mFAViRR~(+d|xSsT}T}!-blJ(jTwN5V6Zg{D~&Cs0Ef@Bjsh0cKAYOuyl2fgje2U=6&ycIU%!w z5YWlJ!?<9)Ikp`-gkY})Xnaj{4cAoWE;zwc$15@DKqe&|m9EAv6wc?{iK8#xxA7;k z>}u;No)2ox#VeTUAAn%neP3PeQGCsv_w6up<5Su^L|%7@AnNEmZ=lLtQ$M~b1!mYJ zhJ=#$xvpsenW~Z&D?I@{xc^Y?{D~@<41-Qu` z-_BdHkjaGgISb))hrqL5_2H)#J3pUg+iH&)SbgA-AS|I_VY(LdMV4$QnEb6Cm7td| z|4GsjWRkAj|uBe?x%{Jf<1W(FodqpWyWn0Hs`%3U0q3SXWRh} zwi0&&0pM5`C{O@skyFDlDug{;Q#(89lD($+7IHLecdLe%v&7Mh4&rP+E~&z|vLfoz z(2~K9!jU^}_Skj2*HL;yvr3AjV`@B+hRg3Xyrg{o<`UuIKSFUMqYh zvz(FTwWnTsb*e(&WN0ecmFGB?8N^8$seyriW2rj$>;hRfN&91d{w zoAAS%|M!8{i@8f_5aX)Y$@$wHxI{_TCl|IVSA>;ewvXy8s1qdI5`W3=N$^LH@=V`82>&Rz-@_{DZlSc!v-*L$rBgCjRgh!Dxlm&? zf3o1;8KBenlea3m1rfRpYv=J&D$4e&vj#(1YbF~>di=I4Y3`m6+!YHhgNpHKv%b|v5I#&pxSgq8UAPE;^HCDNTw7V)NIEDr zd+7=~LGm$AjMg>X6RqQvDAsF3wohgWWhcvani8*eN2L+^p#5Uo+k0U{iB?tv~<9c#*f5DvvG*}YjanDBpqy_V=n9o4p8L@Bl3YbamEHIh_7%$-sr<*^} zX%)O4A_B&l7OD_2C}GgTAhcz}Y%QdbBy(%;(nRbmKK!uY|A*HJV6Ft!=3$WF(g^q$ z;{U})>+Jqh$PB!Ys86%dOXY z$+Kd!a8fUqS6dCX_7fAvHN-OVD1HpJvT8J(yis%yuHW2P3FB2^b3$|4O2~eMIprvN z%;mglxe_KSfXFMpmCCE)#d=cDrbwOXAIGwER!!V&@djULq6xd-HQ?d^Hw{zn!OhmD+bnjO{3KC@6d$u@^Ugebn8dt*OUA2v@E6x}|QY`xSqjM5(rP z$=sLfxaM8lQBd^vyH?3-+0J&KMNS#zhBW%$tTZO6x2C_$+PE)~JgwKyXy7QHuD-KA z(lZ0wTq+hT8pDDLPp7lpkCR@M{bQxI%3oKw4H0LM21WCKal2Xw$yOi@b!-eSHr&T54Dk5TCPwOUv9s^-Pc+*ir% zQ!NMjs@-fAn(vBbHE}{g5}zFPS_QxUrw@1Y>&4~ z31%AH%^2h886hzJ`62655m#!pVWh|GNz*+|4dh_S{-8`lHy8cH^jf(&o^RDNPsT{5 z0+&DRo9eO0MovsYxA~Wi^xjr3-|0vniHTB5mEOLYS51{3bz@g%qu*qy*#~3^k_dvv8@m7(n{~r07|AB&;kLH^hw}v2pxi+ znsybiDgnlUT+(8Kn*c4HEH3pxTB=y_v&wiAP#{E@7y1A|USlhfy8_TuSO>Ku2W#RC z<|7x3-NG&r>%aTZxGA#SrE`tO^J|MM4XmWg#PbWH@zccZ9>>Bk#lw5~?VvsNnmFv& zPI&vb75)7+sG%!iHtqKO?kB3q@o?rzpMW1ljxtzvh`G$D7NbCmx(Rjpf?`^Zm<%zV9ZKxUqTA&gQ^tfv=WH`vvjg2kk~gokpt+e4nw#z0Ygm`G9*}Ob zDDQC4_@>Z@^56@S)Ia2QSm4RR7a&T3=-+tneS~LHLAaBUr*3HbzRB?1L9s(CTpNbl zqEtL*P|Ri*W(0tz;wmDo7Bpu2_;;k(U=*@&yHVNLMW5V5#uB3_tVk?XoJ8BxsX?RK z8PsY(2r2+o(Fv@C0G!|}XX(v71(pCUnOqg46t0bCbSO8(+bEO8|+YmJ%1=)hdNGSi*{W!nn?VW6%VY?bfg@+Y54@OB*8$t`6 zmwi4VciH$H;+@LF*os5XHq*24(ReK_>F`(;iI9tQ_9gB5l}}^LDj7C25&A|x5`&qQ zAcz+h$>T6mO_m(Cv4Tze{=-i$K+T3fyvtDp={UgW#5ug zv;*MU(FUHW?gY^L4bcP&68}QU(A{q$D#0dz6og@vP9y=KE<`yDCtx)?gpe_O5-AcgT=KJb;^-qJNp=ETyY!4~tX>T&;`mz?X7e!R!xFB&WVVw=# z*w?oDH6@Yj9v(>PecQ!cd7rFtY^jXrJMFA7QC+mh57jrX!vqTsa1kHUyDMZjdrFlh zlJfx(S#YN>=4pIJ7_Xl7@7Ip#ar+vxE0c+?9a`6Dg`F34zuuo}_}v`7dk`7s`+0CT z_&jodd-OHfc{m=C71)rW3?Sp?lbUCY=}+L;vZ8n~Q9hRJ_Xvc%d?Da!EjpU4*K_9_dv Zf1bPOE786p&@7!l|O3f2%I9_ z@|Q_}#?JLCsu4Y>Y+0#vvZ9Ae1T~A`<*clrs`d?{q9J+gG zIi@b3{TC3W0AUm#mtlYp2Ya|$0awEWXg`GxRmTFL>1g^p9w6GlY3k|#G+4=6c{mXO z(FVno{Lff}px~G&Ra)5>m%BV7&%4h^Zd=ta=Y@-9*fT<&jXc>hQEWvzRcZXft{ zD}DaFPn4GaUSA^Z`}h7`mEPiI#vd1>y<+iCp~)(a$*S*$gyi)f-x;_M@}@Y>KGBKo zFewI{IN&kbzXj^I4CX~azwSU*gM`f zo~T5Z`uOd+()%$6rs=sfO0E%MV573uXy9AlxnBoUDz>~aV2z_P_^)lILzL`c-uFLI zl#Bt%mZ~9n;5P(516@XCgQSdCh2m6^fgRU^ztY<&v>@3%)Z|7#l{%@B6Bpgx^-zaR zw59WYo2XNqHyKo=Tr;h?YA~D5ktYYcA$j%HTqUK51j6;Ou|H2$a0yFGfjm|}1?^Zd zfcSlW?}epj`l}wCF9de+Ep-05sm00GM9hjrmhPrw>z0saEGWR9Y-UgGj1iWV{FIv1 zq<@$0`_XrH%(}c6W|rj+VdM*oLEMBH4;fnw}ms zc1AtF^*YFqIyB{t-MziIAtv}a4;=Qw@>S)sgji+rD&-1xa+bG1EeWsRX{M|(X}oYJ z8fSQ9lZR@2oPg`zo58D#aastRIg_2=Yi?eDK7Wi3qn7X@si*3I)i+KC0Yah%P18_9ub z{`d;#Ny;AwQ{dg(nWC}Hj0r)#*IzG@0c!RiAc}#vfY#0}y&aD@kg5ANZ^3|D zbV|h{0xNNO@5zjrXds)(#ZxZ;Ps5AXM1_&X8iW$L86XuDt)GKCVK69&I@vk=cGJawI<^kH*>?K}Z=d%uuoB8(?%R^E24`q!a#8 zukT#`sNlJKd%!R@6@U5H-efdJ<3#tuYtP2jL{9-46n0W%hs^MSaS=53Cxbb;I=|JM zi}MtZ&F;9NKhttmwxwLwzoIn8{m@@Ev`ZoVio02DB5Ccr*7ja98;c8uy}c-bJKy!v zKC@j8PwUT&bt8;`9^E&Y(?ozzxLW#2#{r<2`uhlrj3$JSeg z#nnXHqQQc@J2dVz?%Fs6ceen+o#4UU3GNVFgS)%CdvFczr}N*tAMQQ-ZGBzqrEArc z8e_~k>j@oqR}_t-iMd$%BZYb^bVEm{s%(EUttjrT{bwx`U~4(%#Jqm^QM?zJApMj5 zwu9v3WgF)#xs()jBr_A-k2A=>0M3%V)8B0{9C@hz!zh(B+P1kf9$aNW@Pp$2lR|N> zrV|K*L4ePj?{(0BjERlq%zKS}vvlBP!%-Svm0v8CwdxRmi#A+q^SFCxW^#T*`&p$I zTAuv`XX=CaiE{K3$LY>nKmvpMKNSzW!ttbK$H@R#ObC0fS3p#Z%2ow<%1$ zYFOh4!~F){hC&Rcxk>)3m5Pa)(4QiKQKcdV+ya{&0j)eT_AG6z*XFjzk_6sTVxs!L zHM+iNu?B3PI^0f!G=IvPNp)b>Z`QmU@aO3giNlGd?A%R@1wE5D*5kQhYC5)xy zs|Iv4Mkw2XJ&!f$Xzi)ot%_D2(9={qI}r|aWYMleP{n&Vk=?|Nerw@`O1T^9(Z?mi z=DcVX+IM6CXRnQQaTa3T;s0*myJgby|Cv!g*o=~S_-Qi1mV&84evJp#iDqVDPGX^t z!k5Q+Ac3>=$w_z%u#p9+OACAk>qISRED(OUpo8tGXd(yJcE2X1c%_YWd?b;u%3WRo z`C!Wra!}x!ll|x_v82lng;dyso^R!^IGkJ#56t1FFt+;1#;z&pK$~J#?1iJZkvbyF zkQZ)Lcb00BS%W_Bg<hAGul)~{%YV7iX7Nl*zG&t3;tBchj=uV zYs@7v#H(sdl!3XMZvdJmVa$h#S6s;wEUyV#ojZWHpd&Nas?Sx&N6ee!d^ZU&LjLnl zA#bEfkK6Lqski!p>BGaFYxEJhg~Cb?96thI!Oqe#o}%3|PY9BaS0K{FwB)Ss3tCeY zAE_z#{D$6Q;JWDH?k>>6X!+eMSN{v1I-!Q~ajyz^bTizo-2nlo>Gvl7g>HNB968L( zG!-xX1JkV`-(I=m`i-irc6sU_9`{!$OW)hrJ+g#D(eYPLNA{{Lw-c zF`1Fv#~qW;wCeNDR8pnu{4JhvFRo03_@ORC=zSd# zm!VyulNT+bZ$jI6SVw&#<|~;0Q_C(SUU<g>JNOGbyjtZ4;(a7nfqF`2D%4=kmeSSq5LD+93A3oQ8>l1hPdL`PQz0D~sJ0 zY4h`VJn|@L1T7EChe}-V`5AhhYpJl_GN5a8ZOOX0SC9XKS>H`GLnDfx<}YrF2pPtM z?4V$dV>NyC!PKX!-~dI(6Z@CrX1CiJU0=5nU?Io9sqlkOU^T-q2lz9vbwILp{=+fI zTEGS>%RJ@s08Z^%!)e?FzzEnF`$h*C7qQzNAqE4{`+w!#?ZIl^3=gLv@HMGLpop71 z4gnG$Gta;afA!AK%0t$VhxFhrmP79{Dcvw+NP5N3-(Phak=N zFb1i27(Jp7`K z6;5FQnTOxBeLE9t`hCNK*efgA%fN?d$R*<3XV+tBZDkdfMlTwZ`IVb%{`%B|(az(= zkEbBxO3tiOzsP>?1j6*HrRyGcE6(d`##%Gic|!^f<2dP1YyGfmPsq@!8k7HJ4>tAt zOJ3NylqJ4UN3O74c0D;;t2-QXju4J1V9`1NeL+~EIx}o7H0#F$*P^Uc70QwO2aU&j z)aEO+IJGSD!KNoP^XsL6Z-Oi~3u}7aWe3gDXlGg&cY?{D zZ`CG+_EVclbb)z8qy_4wN7mNF>FelM!^1Dso9#KGA``lYdq>ur5)FbfsO*8h6ltP+ zdRGTkqM3a%&g5|m(6^%E{tJi%nSs2nTwu*u;2p9$I59!P=LHwsiY)%S;-3B-N73?` z_EY$d7RfztbUpa(wY4WUIHT+wiMg!jo%qJ#vLu^!(s`5Ah0Bhr;Dk0X;0 znv+;h}j?Uq-2L}vMGKM+T18=q!h6& zmeyN?$OX*3L9M6*55lNjh@IgNeq|F0yDPXBJ_0aH7sQIyKvWiFU8El>-fkmCdctlE zZ=FEB4dCBDrOobICYRVvcs6Ta<{1Y9+_MMU*nd(~)FEZLGKaXVgwLhh@IPP)G=2Rq zx2(_@-0@9Bh+iea-8+^+H8E20d;NPb=DgKAW-mYZ&80tkNZ)@h#4S>JJ_5sq9koSPs2^E; zYM}T}LyqsUBLvCIBM_a-=?T#hF%!s?kE~6}Oo&Ve5MxW#kP}8(pOFu_)sd(l;-kwqm`{uo>5o@f1`u_9_ zRXXm?Y!KMR?GPltSv`$%E`xxw=8-BA=IvH;#|1BTS%ee2bsj6<^d73UwHiy2K7+Y4 z`S-xyzkd~%d>?P=Uq}fd-k+$pN5oUW7qs~X*wGFl8@Co^h4B19^pHqxXP2*=@aZ@& zO1vdW(s^_+{qMU?tAz>aS;Ry8){#zO{3!9G*-74Gv=9xydy~A9qzi5ml=Cw&e%RQC zC?-o5Xw%=s&H5$T^tstoI|-Dw9alJiPs1M(BfLnWEX{b_h>Nzt z)a5HcwGQ(kS7W3}vuvhPfkD7!M&$NnCT*x7Ww7dpoj$+q2nP1s*>a4AhWbvj;@9ng zC(&0u8Dr_J!PJFu3Y?_X;g9aSU{!1|a-{BM6 zY?=SXwSj+e4Y-Zv&H}bCh~nm#4~t9s?hLKgBbnKsVtE5}7w--}T8^|A7Z)n~I~R5X z8>l+B-AeDu-LPr5B0|1DQ|g!sdtNppbjh#}pAh6PMYnJows zI{?XtwO$m*VSM?jd7RK=icEisS@q+vDvF^3@wD3-#I6wD1wzvYSi1AyfzHAANBcks zL3;CpO`(D2Ff&6(V+W=vzGun1i{)Cp)l0z;f;Q{Ctr*-gTP%_s(?w#Uqs)m4Hq(kE z;wvct8N5IU(9gYhge?2)YKhiHm=9fI{B87xec$^ za(t&Ht0gXEvcfNT<45px4%+a-+)~P?PRzj3htQ^^2hBgcJhjfB^d@*A*6LJ!3D+t( zCvEX_Jtjr#VwX1>i4F`VCRwmR zW`U6Cicbk7ouJ9Cr5fOb!lV=lKMRyPU4{4U^)01NPxq09jSa)MiF9W)G1lW%A>t!= zZO@`atu)~$b1+mLRbsw}q?Z~~CN{PlZm?i9rZcVr0NfR~)WN|_zgH?)U}kjMy9Ynh zgBYZX)x1c>9f8ecV>c5gTh#1(2&@wDjeRjJ@=$d9Aj9VUlE+|+;I;3VlrJp_tHzXy z@0UV{01JCV5|?hQh=)~5k1dlQ-T^9{Bz<}O%@VFh6veAn39AXRF?r^ zkN;+J$1@VT&-m<5+~6(Bdds#TO{N{DiCO$eX3zZRu_wzd558==E}Y>@xh+U`W_vLx ziv@l$Ra-<}e#mpL%090@CxG z9)9J46z7R3imhoCRjBYCWjHCakL2wx?pCTa3JK)qH-YKOa4RzQ8g zCfB$t8h#P~un|eo`;g3WSzEqp`g7>p6XMuzLG9iZG*;ueoOyTL@ zh?(e9v<3%m1Jy*0IIk+s|HUfkcYLU$6ZVMFvo~KUdofG-JE(i-2y^3Ly)<}+Yyq{tbI2PVJ?bouW5@tewp zLlTK7kv^dT1>_4eD<*~chMR#R5cY0!ExRZN8<-=0HAH*>g*>i~=*n#KST@5cEmPU4 zP@+nt%5=&OoG*iPn0ca2?WO4=vFe#!C!|0nTPe9|^I4N%iQq=y`1=+ygk;e3hT!<> z5cnX!TKzlNv-dm{VpO&tz<-aV|NG6|yC5E@t=w9~qywF{y$RhN0~U@f#E)jJ4aYc85)B--GF z)1G)Hs70#AS(I9%T2kKwC84M<3isBvcCo;yW8LAb>8f}4>XOs9t8jLEZ0XB@d?Z7r z%F_!*81LHemu5qkR{>dNOlKb;scxM;ff>TDz5b6AqH0%rFh}!71SAaAA8MdSYfun( z;+R!$ov?*wyU*33$bil$niBcdj$l8wLVw=RO30@kidxA?Fs+7+KlaaqEYm|q!I=wA zft-ShKLL2qXTm82JD$;hXuc;=2h+%5WFs|nj~GM|7k*9#E?ic|0BF>UnL?{gpGIg3 zUqOc1%G0EZK^U0m5fm(rT5?uQ4ZlN^)a>dkreaEnV2ln^^`0Dp_P8CtDJo~~Vs?e? zn*fF#5T#;N(9N3-iL62>+=e-0{xtp`a6?C%LnN9^A+ieBEzzW%>$MNodV1o58*-dA z0q{QQ%NLf^C@puqp1HCNEKNLkyfVnjFrKDy5*@2L%(K7uP-FKSXYmFieoJDCve9Nkl=$rmAnOJ<-TA~< zof2tAtD$eV4s}epD3R?9HvCwEd$vGUWVrx2?_^qG-M`a4S4te z@8$5c$03S1T2M*1i1hoYEz!#>6?vCK&!aEl3TA6L=C^1ev1cj*M4voAexE$ykLyiP z(BD~Vu|I@CuEiF4Q6rki=pKAcFJKQL`9F5L$WzoP|R|*AdDuuqui_~fi*5d3f-`aad*Q@ zve6luQY{Q1qf8P4q#@DGeie<$$5#3UVlI>)Uds84=H2OqjB409kTSJ}4v>ve!*>Q4 z9*@$dv2+B_8}7q>KZe~pb-#YsWi=a_0~l^hI*ehnPyY39^6>oN%Ko^7f`kl2`=Z5L zH0dw@B$o#o$sfkEuKlT`N1#MN5#y`YA<@9{W3rgp$m2(I`DKuwXONWpNX}&^fR>Ud z0&6~{4o7kZ;rdvP4Z5o%HuQmH_xvyi4gn=_og7BReE5gnz=ve1SlVu(5fz0%&IW}* z=_SnPcR&#*EKjSM$bokexb9rJFm{Cs2M@ojQ82%;;e4`w&V{<=9FesF1ct^nQkGEq|@-59Y|vbE>NBpYAsiLFiDdJX1!NVSzoC&*;UDD(TY8j2Ah9xsbTY|^@?2X9i>SKUWWKJ zN3L;SY~KxC!bK=`Z}MW+y{Y44kNpXBUN`34B!lu|Kn`y3bFOM?7erBB947~rGY++w>n`Wx{QyE1s29u=vvtwRwyF1L+df|e%(EV>Y+Y&#p@L8 z3=T!j*`^q1fRTzwT0*aa8O@K9sHWJ5^Yemjx_Ap!%n=Ic{bBV!7RDGnR$!ABAdR`y z!W(}HQD0ksTOHKVSyzA8sFV$0!$@ea8dMlbBK@1O6n)8E7mA)2^{J1G9U2c(1{EB7 zBD$t}i=5guF|vD;3Ta{-IDIQ7ZE`lnw($_sV*->;EsM-t3pqoa~c=Fkmo zcy7{32KmG!`*C<@^usnlSjfut1Zand_#2+mGG&7~^Lb7dV=)}~`s8vyA<03e@QFNR zVXDyidzn}&%Z_F=07p1PcNY4Crh%JIHQIzq%uf)1@F=@RMp9b$fD!A2Rg}{ZrIytc z=vgW%s5P;00}u9wS21u(lZBAxiv6@-IHPX(H9t%3?!dXA@sdTT4fW@vEze#0a^4hJ zB(ga;guOr=L;F)|s5_YTnHwAeFFUbBIe7XDeFx|&mG_>UEGy-mOeGo=K%W|rQp?iv z12vEv#NR!5Jvp=d+hj35bsUwkA-*)Bg6xDg4JcobsvFILhtDkPZpxC)wwc7lMbHH&D9LO@E&EvmPusdH#BYxynY+h zlFxhea3pNB-3)OSdJx^};cO1m|C^^a)`Q1Uh$vgQ#~(Er4_I-}d@AN#+=SoRN*_hL zeW&US{_CTagn)lzE+M;csu{fw2udOh)_2w+Zx~!WDjX+eiK!eonBaGOnq&xa=s|6b z6qnq$VuLOiL=p*>Kae_@d>Sp+IL5Jo4SnUDF5J>WvQ)>R%*5#f z3~=X6EZ5s1elcu8^()=!8(@Y}`ZZyMgg1*%C6D!Od=ZCw(1PGl;b_4 z@iUSueD&uNa`bbw_y^aYxXGwSLG4)x)tFA@!JJ_#US<1Zlv}2=PfxgpL|Sa9{3!Z^ zgyK-l=0ZuN&1iG5^CBU5r#r~?y*wI^UqF#=a@QfG1xMfEd{x)SDH-9rN3NV)HKW#E zaxh@+%4v@<-yi7WE*}7tV@bH$`nNB}N#gh}YmJZ-9K%JsVW(P3zsVcB{v3|1`_!JS zd#gFb^=#R*FEZ(en|4m2S1eu9{i3jka>;3cdt+!x&*TQr*R9QaF(UfNKZ)DnynSQ+<(?kgrs8W7@f@sJErgL4Qq8Q6vp-THjK~lckZSQLI&N+OGt928xl?EwsXQRe)B1d!D$I}TIOj!=8rtrDxO0lmIhd_(kv&;hh0;I0t1Hsd!y(4_# zc0@LgJQ<^$CTbm|jDYuvs2sWIyPo{`DMz~<9>y(S9Q$Brn57K<^Pck+*MbS)&n+cV zF0RQ$7{R_LWVs#JZ9Ka!gfNn>ndJVzdPG^Va$1%ZmdRGPq2`BV&q(|iie(Ym86@Sb zwPVqP21~$(_5#;~d*~rKTxq!|e7P5qHOZC_@yxAeq_+F4Zm3qf`Hc5t2jyQXB@6C+ zlJ_McQ9yZ|!9hjkYefOU8Vp^xv)~8Y*3Mm)rTIlA?{5bYCER9wk}kBd9AC4$FfT|% zP(C`ufkt<(Cj(_v09AJR4FQxQ1z$X|4Kc@Mrix2mXqv~Hf?j6a6Xw;3P6=eilf~vv z45`;h&a9AKjt}yPu=OlfzdJOnh-0D&&br#8RFvwz{duuiz_l4DwpvKO_VA56SQjg$b705sc5+d`YasjL+ifonw%7 zMo@&WEmW|J%`8wwA_jmqP5hk0R&^Zq(Qw9|# zpaI1}k91+pJsT>KVe>ulUz<<0MhV73`7^O?WEi2FrHq_TKCKIe5LaR&@RoWz3Q>Jv z^vFoYf++jHIVH&$lM+NtSCd}7?dgVz1sF-K5qXGZ840)K%*Uv8VMWj`GrR-}KDQi7 z(x?Q~HE|!F=+I8wFGad%^%Q#D8p(>Hy2G>3?G(jLmyqc-zliTpt4Je0M6J6S6E4Y; zS2h`f5cJsipTA`w#jj^lMfA>N#9Ucc`zrPQv5@QimlMMWvX=*wqiO!jiK~Wdy}=pr zC-H7BbR!V$+HGWu1`v?cBE53p2+oBwe1S{!;LXRSTN8)@0~B*C2RZ{`N(TV*j3MxA zw$H)Z18CErf0w=da!s;tTk>;A=PsdkaZ~z*9TSp%!Ef#aQi>arMx(E^bGhiUZDoOf z0S5Zr*LzFX8$fQ^1^Wo6l_+$5wP;L$|13_P;)j{GeL}}{n z@?)5v;aAw}VTLQ>=ai>!5`RSmR@ev<55Dgd<=&%XcB1eq+pT_KywGCY{NaVJ_+YXk zj9K$=Peaj!Ipe8e*qR$$>zy9r|{V}XMZ0_F}Xcb_jr`^m>W4{%{!s;awa&XiRw9!V`)ep znomA1cH$ZgbG4qXb&&1w*>$iVFI&a(5+X#nTH@C;h3c?9cgFI?EI%4x1PQIh{xKcw zIsKLPKE8l~*;p+Rnfa?k%qeJdBWi_2)nWJhCq;u9)*+)=h~1FiwLXsaShGZI=|i8_ zdpfV7YR`_up`BT_C$!Z)nd6viUtQ(n6Qn58)9|);;L`?tY3N1YOnkC& zNkjTiZ408YYiDtWW<}m1Sova+agT30MY54s#G(Aj14(0pknVRkAp4OSOa^8~Nh)Mc z)|ukyBULLNJBJ?rbrnA<=E@RT$~fQD&K1~qK5-q_xWNxPx%|FHQ#@^r9BE1-s^=OA zA9}Ct5c!fmOxz{ckVpsr9}QGP*{^?vE!V$e3#IWhLwlY5%^x8#l&32edVp_Ztc~$> z#2b^0>aSWe%r^x^{bZQ*4^Txh(cKHhQ|=UQhf(<-7*zoc8bm(j@GS-w$L1lV+mK5K zwTVL8PA#no6;XGe+vlR;F|(jimgp8v>MP0+28-}(l$E9P3h0Z&MGfSdMLmcMYDXgE zc{>>1s>Zk*?X2}fKa?yJspVjO=toRi0Ww?CmIEml$0VtdM2ui6mp31CC#R_a$EhBX zEde91#(WWhqP926ELD%LqurrS^0bE)xm6y})QYsk7HQxVY7Xf0th4^atmHNCb*GAg z#%UPw7Rd)l`Qb=IWN-PZmwFbV-xq3!p2E4z-cdTzf)eh4O4h{+d9ksy zlOeJzYXJMPz8u=f?2T6VDWInTDTljBDnq9D@sw+H?;;$toFCt^_^zt@$`jkO`7N+b zjBs6ZZ*~>st52b*XFcgR)b(((KTiuNZUyZ-{DmcK*)v9owl)RLCRE#fss$P&*?vL8 zK)0n&U_XHMr7;kUW=ekpLqJKZrbNeoG@Fq~A^Wb$$r2XP>kpE$0M{|I5a_@S&hoJc zMf%_@ycN9!3Pkj5Jyl)+VSIL7YoWg?+g-Ajh$Zx|%6Gp3G-oEro(v~OQ55n9fJcazXxN6M>jf-4w`YXW{J_kx4v!8$nf>v2&i8@e7$(7=D8vR3nB7>#$$G%Pw*)#g zQ+*g5;aH(7BEU=9*aqdeU?ff>bh!*0yzA;a4W2vTPvII?sRQx9Et?0kLo)`5n4snL z)5Kzy=KpqlfsOWm&AA?Y`1t9y563f4Y8!g73k7pb>=XOe%+~PP<(M(Atu6PyM0~q} z+5fY(gO!5U?*Q;_uV*Zw1ZqB7Vv3$+#xYyF70OA>eC$9x-oF#S_BCv(&B~3omo&X2 zeO(+z8+uq|^XBJ-?-LZb)>4{Lc~01bZ*2ys{;HQ|MhN`~<$lDez|^B334YcM?^m6` zVj}w$gAS2nY|d)-p^IHR*vXoH&k(_1IDe;6GRcfRYcUn#@&y9~?cH09DvXwQy=kZ| zo}P~9>p{wQs4=8$xm2M$Wq8C|#b!5d5P2Bi8mv4SAYOaj?~*kC%+^WtLlf8JHjcOX zT7mV8dL*s(w?cPUiF7r$xX-@Sgk9oG>cb1!ySN&?`kDdT3$nK*LXyP8rMAuChF@q~ zli-AyX03=Q`eNBtcYxmbB(Jk)3>ZAWrXu8zRr{3DBXTYc_cE&LWLw~uJH0p}EE}}- zT}m$XkdAavuL=U z_%}TGmb^}B(m0O7EiqzMi|Pya;$?qtGu`QtD2bPR=xDF1jx3l9kG!HaOWhx!bJ{Ri zNBrTP~T(xBTdx?@1W5; zcz_*6e7jR7Q$K!ylcIyLxc2@XyYq;Cn6f&olSVPu-oW&2EqzZ5cgp0*V;4gbuSa#m zv|e@hsytOZsB0sqVJPNaS<-hwC*XI6mq>YW4oQe-2lsBV)8i_6UoPj-wF?1GwpSl) z@fx|rugu|0Au7rp;j8NjFQ4Q#1l5|QF{tmZZD{r(XSYgarm8N)SIt4EeUXIZD_Wjs zBUe`D>>OD>D^W&X#Oq)@6}n5`a>u5W2gUU%k2}TK?2_(kj)d`+%H;XV<$zK8&?Z#+ z1NHF=NTy>2O*fi<*{s6D=SVC>|0d!8AOtC_G6!Va5V<}^`gwm5YWvV>J%PN7bsSIU zOwGejkM{mXEaVM8J4j>x{g%gpC=kKA=3xGykIy-#402$tAa%(L?Ox!1sSf|%1!XJ~ z+e%di?de8vGZ7(uQ4LC}5YGv&SW11Cg8$^chf%ONFa1IO?41Qvpzb|eMW#c1JJ_6X zf+xE1I`~p^!SjK5PCeiK_T*wqHvWXei|gE|<5_VeZfqG@bVz1rmm}uH1dUziO z0E{^E!-R}Tuh0>ZhHu}JlM!8p-`-wmQf{g|YZe{^lApHD zj~IxZe2Ed*2@g|bj&Y#+oA|q+L#1+1?flfoaCZy!-81x-;WC2x_JM{)(@wDO^)2@5 zLW*ZYHax5w#QnV9A@pP*29I8e?PTH>Df1>HimG?ClO#r2Ak4cDN`h~2_V*j*7(O}+ z;J7^$kyXZkl?ppM7F&s7-ljC+)3}j+R+L=3Ut2kvmgA@$by7~|Sp7$y!zO9#Vp|6;5~t8(g1+;ef${Z7)B4L$3j zZY1*^-m|g7I-EcYzxE$AZ32PApF|!9_m6M^_)nIZfp-)SQsW zpzb#C^WU9<=*th}hcGA>(?%}_kB&&ChRFurUs>y6lE=uPiLJC?u8G6#;48s}*TCBM zdHJLmV75|>A&ua4-j<{{RxjpkvS?pV!Ay}k@xEduwNRLt@XmX!x)!G&=c^E65<|ku zaR-zp^}-^B#lRT`uNbqU=#+unwIR>PB)_%>mNh?|K3^j!8BhhXQ)U7jy9@BL;<6W4 z^%Yq5Vs%iu7>3_i^8*ydlko+_D19OtqBm+z;`vJECz%m$vt-FsB{)tlMS12WJ1vR8 zu%izQEN;}$Cpo!EMu4IKvGAUcYEHNiBP(>gPRNDI9=A43fEZzDlXsaMCPF z9T`IE#5~sCbE_4t?FjlAJ1msfRA1oH{oL9IPwo&fT8Pv{X)K#B2o7 zi+mT_wqDfo46|8^h49Xt-ue(?$14g&llVgMO)d&xjV8YubKI9eJdBV_ZWPnQUi{^q z8x4gZ+GSKZ)CqBQ@|WM1ZK`W|OKJska~A{?#^0hTFq*c0STHkYZ@luQWeWXsH?Gf(se5fGt_$m*%xy32C|-9h}8xbpF*;bB81J;FK_dLK5I7Jdu=FpH~fe1LSFpY5Xnz z;tZbtQ127IXm@tY%WVV=% zl!us?-}iC5l#$wYE2o{Ojp{43A&-MGF_X{yoN)z)6#IKD|Dr?8dN55^Sw_0>?Srf* zcr)Yk6=_%tY!%P^ibR!0_3)WKM^oCAQP_XWdl*H#+9qq1Cy71h7P@vO#opHXyb+tz zvkjT<-0_8UUx@N7A!0}w`i1C^a*LDp{=^w%+c25;M?6WxFBGW(%R9lWSL)}QO`atI zDFS}nuGXNp8ycg9+EBP?lBQo%1A3sihDlX#3t(&A84+kfKsyY~(^m2{IV;Erv^TFZ z34Ucfhnf`XDy`hEJ?8Rh%rsO<5y|SLn69kkN3aOXW+Z!Yf*LxA?(OYpS~z^URRBJ{ ze&tYLh*Hc$v#VtHwTvY8F%phw6KNO=6SEC1P@K9i$rQG|<%|P7BHNv%2E#;lTme8l zEy{xxSz(237@W7@f3*c_g+-HkH1UldT)vL!D#2*U?M!1tS)+?y>w)^Er!8Ao;l*8cG3EdLJ~iCzSSg=aZD>PPP!b zc|;h~Ix>t@c0$54X4BdiQD_1k=lK+A&*^^KLtn=TF&h~II9jZAkL_XpObgyDmW7RG z>6Wa$o{^*2VaMC9Zy7;6&Y3wQH|u$B=wXGteaZ=tP5?ET{@dY@MsWVJ)xUv$$01NC#t9M|~}Aba3XX#jL$MQFXcT1Pw&60^H$# z-CCQM(rfX4{YOiDg&aUJg`>m(^V`YN-M_#6$IkjEqy39(VExMg8#t~(*cN>Q$2Hk* zYNcB6Ya$}Lr3B!(hEW5r#t3FS(55xYLcn1WnvvlrxsfO|Mj#v&pUbEGo{p#{lX>Xj zP!GJVkG1pg?ztA^Y1;v0_1v6c{FY+<{%pIa0;p5Y3`TgqAZ7Em-6%BV%=XWcdi?$| zA=0V@_ye;vT5E;W8bbSl#rkErTb&(8s>3pSwC9Dp8^-c>bBIHbH@S;J$*Id#NSS*C zI9GqzH15yCk()Zj;*0SGG#Dj{O(fxnZw+2ws;VsCri`HxM5k7~jGhLlN-APF7r3}W z3={l)@C>SGnBhQ-f388YCGV&jOawm=@R885nzz^OuShoFNW8$h2hQ1sZlucz%Q)FC zmA<=a{_TLu9iTnVYRaVLboC5X$93<~!JFd+;m4iV32N2GPveOooMF49vwOq`3r?vn zb?$jtW9ADycPknl{BvC6X0{TJQe7XV&g_s5E6xJT7ur0J7UVu%q@Ls)fxW?F77o33 zWX$y&Nz7c1*u!0N-;2x0dlG~8UHtRPCP<4Vw;6J@;j1o*3(Kx$MG2ey#zP`MNd9M> zB^1vET0KgiSZ5Li;Qf_Fp_L#qBDJd&5I5_~vn4qncXou7tR41K{$I1R<^3PMGor5q zF!YIR-hv!>9U(E9#gFf~bmCSQVRY-0ICEHqV^aw@IpL zj~<*T_bF2~axtQ#&_A|1CVhKkn<8}`?@pQ8b1=tuC!fHKrZ{md)V39b3X>v_svhZA#NuP4zje>d)eX6qE}FjYZW)Abem)eLqGi6v}8;L)Z0=b_*IAJEi` zCqWdwJk+aZBgu-jwY9(9ct;J@q}9}C~-yaOp+yZ4wQ;U19$ov z2y6)=ec)Y$Tp{`zq=n1g0LOAfXDeuPEWTsxC6o>f#Xu7!??k|YG zuBEY#Deigde8h&@R+H!w0s~c((X3l3lLez+(MXadd*_@P-?;?3$x%9D6^Jv8R}@s* z0e=m4Q1)0oLAXiNy(-112xxrRViVV6tc~IlM_kH0poYZ}`+U^XXlHYXgUraT-O;cR zyxNa6?Ze$5Jcd;~ybtUy-mr|dwz>7rtukk?{5|s`AcY5&uTb1hUt`q~-#c9Os?_0b z{sz!_f~fhBqu=|WidcBh@d+cnRZHI62j?+7b zg2V831d-z8b|6?pNP|lkc3iLp!BqwGeJ1j*y83oleuUn%W(w%S9XQ@kmpDM+WfZR?JJv3Bg0eqr4JzdeVT06#7wYiOjU!)iez225qqiXhbFOie=+b4N zk~lcN9|=e=OSy1GpxYEfkOv@`=F7@4G97;~0$U9H5w-fo+@d~8ixWRRvjTdbSZc;#AcMJvI_g@=*QKoRT z=+Z=hd2r{FJFbf#e$=8umZ{foT`MF5e&sVw*TT(oXc-Z)y$4X3%Inf(T)5-Szm#1o zJjc7*a4jUVh?{^-5y~2&2(?m()3rMs0?MD|W-~_J_#Iq*#rw=)k)y<=U5AE>a87W- z{N(+49wF|>*HDXnF}Je^T+})!*{Lfkoc}=$e`eWQYut>Ah+4CEAL=Bi+n|;INt0O14?TceuIw57EQK@gpN{?0I88U=DCp; zd9l`WSm&T2rgir98?89M3cF5ZtK@T5oFdlU=a;tmLHSD-dct$3yyr4iEhXW|leZ>^ z+({kA4%n$y*P08MYSy1Eh&W!=;Pys7o<97}QsZ6i2n{AjtGoV$JjaJYWp|NyM^m6G z9VOKBpYP=e*|-(~YlHk+dJMnbiNd_3SSTbasfX?N3qDpmf4$Eq!f~mV9b?*TUUXl5 zhH}(~J8)%;`b8LPWTGw(F|*n&p@$dzb7OJ4AmZ**p`COergO1NlV8tDw9Lq~ z(dbg&6OeuGd4?)NdFFY4H-5jBtBzUssX1APRGWrRYCKq;V>{^)sJ9n@no2rENbg#; z>1zm9u;h{rlZe1A{4|?}B?3rVP=3Q6G@AQaOKY6@yPWUum}pe#5>&AtEwUzlMy=q% zQ-!Fl;GX$odlAK|fn;8Ym#VxRY~m~2~Mlk7nQ|yXETqs zU)X#T0@WI6bU>_fH+d--+gd)sJ?vNkpvfk`+S?&12UEV{$^2=c9{i;Fv|XP;R7L9M z{`w?wS<03)=|Ri_$>I7>t;|T_%ifxkH%D!yZlDwMmzvt%G}1kcE?zh+PRsKa!Rza~ z#Z>f6OhwZ6&43={kX|XJ!%9jv@9()DVeAO*O zhB;_B=k9&(20ns}^Gt|6S=S9S7N->IB+3L>S$;6Os|WMhu^8LWvNB)GW}yuXA5TvO z-fEuD1d^5@wQO57PVVS$U0z__p*Nr&7MklD1Apq2FJ5y!iq98OfN&KF8ssmWVTa?v zvX%dzORkXsB*|BGPodGFX91Eai>pP~b&}uZPf_ayc~p4VsRYhS!8dOL3QowB;S*GsRYe5`Q>^e+{ll2_;!U6MAmIbSv;!5=WChNDo;XhF-;x-) zZI&n4#qu>%tCfQDZzXBn;(wJLC{^(4^x)UAW*1Arx~+;pYq8`}Ff0|!Q65T;=Khac zzF5`<6ieU3(7dP(J+imc$MW!hv%MdDC9qP!B8|B5ku{nhVR;4K4|6*a(YmGxch$aHIfL8+VA+}Vfft(i^IW{bvzmWX8Cttag6bD1_ z+&u_&%-I!QcV&_J1(BGZZTfM^8H@HUZ8rHK2JQkLTMArLq+j{V1U{d==dj&>x>eRd z5{x{h7(;^*_ltjBkM8;Nyemujk=;1UsKQQQCNd$-Z+|pGZn*gLOIKct z%AJ&c^h_Gq?r8rTXNnxv?h8jeTUJ0u*#o<+T*p5tb;b4PB68vIAOqK?%=Xt{HCpDe zGLq?}ucj?K22XW-&v;=~wQBDFQ+U$xGFa?oTQrk`^m$&0F zWGtW6Frnm-y^t$q8yS@5O5VueJGP8Wd)~jj;s8h2t*bcHS2vMP7{%J+O1qETCyAz* z=j`U@s^28a4xl3fdj%QW!q*05GNJ#^2S$|)_x8Kr!2 z-ai!B-gFiehUFt$S`X!!?or>PJss!GzYGOdX>ey^B|Rpjh&J^VvlcpJeu*HsCpZe+ zMWSulCR%Kmv|WU4n>g>w3{YsF9H_hGksf86Ylrf9LC%T9{8nN4!}3;2;4l|Dbq$l0 zWylWfqcv`8NJ-Zn##ePtc{a@@8R(v?o78)EYofaI#x){*l(bae@brvpw<=FM!S6bqEn{?NGmM@&Q!$6|<-&Pc@9kg<|SZxl*8 z?uE+bNX(ux$K@Ie(fAVWrYz0kRZ}Jq631mRagYjoN}0)jaT2BB@|H>jlFCr^7b?Lc zU=Vt9N|=a9c`A&66=q zq~Yr0f&5+CfWX84-ygs|L;vhB*lq~SG5@7_29W;wQAzdLTmkWi)l^|a3pl_yio}4; zoe8kTOc2(w06@?XGBpYpAlb4V#j2(92aZh&*_IUzHA~> zVJ^1tx4uwf14{|f$E`!YYaFz5dV=p92-NtzoZxhU*ikT#b8BUZP%Tn0CckufWpN7j zzWUyn+5v81_3TfZ?a`cq#I61>XqI#b!A<&hJb!whpl$ioj*l~Smdl+mcqxICO>=rh z=5%WS1OiJ=4Q1I>7<_emBeXl&M0V7o<1(coj}r|Rl-Zs%XOjm5%+&tW!?V;CTs0)- z_`xX`VbDK0BT#sB707WxQ><+MNBFA)OZG@L)xi-Lt59j*3WQ+9XDH9&9o1Wpz;B4*>^cG(OlDykpU6d6EB!}g-B%hPEk!=9kaklxS+RqG{|Ta*GurEhz*BU# zm<2-E;$v;x)l8l?Ud8FmBA7ePr$Cf(r*6iVTofDzFQkC%U$v-yy~W}}4GHK)HeJ0?+pz1?3-+ItGv8SYy6_$H%|vtx-Ub7cj(S|~Q79SgwJ?~x@h zxDFpJQ~7Xz@B)jw!V9uxb*$}&fay#N-;fbik;O^Y*hj(MQ5(&)&P#bKPI)yJtnp-S zEy+cIWSu~o^=XSnF#)!!(7BxAEWr` z*oMP?-P!XcO>h70Ls1qTG+)(}O6NS#NY)-1T2LuYm=-{sfru$4vtFhLz1(F;B;_Dy z%;^ZB6%Y0kCokA3MG7cfYhI3sdGtV`wxvNBg4Yiv?2@o}8;NTw`y3I9bB>EMS0*~q zT!9vTEO`VzY+!;MS`rwImYUZMuRqmGoBkMYXw8!Q^c3~gOx6Jr%+1m6?MXY5J!UdkA`($(aHzdE$czT!_>e4^Bvw(a%mc39?fsVy`)}1 zo+hM|)Y4RhLOM6q-2^Zm?ioy5nnI*T04B$@h{VGfWO1IMc2k#~R|W}{)_*QOZ?ygh zj8LeBGCo5;_yw%y7(Rv(dcWzyov~ie-lRU;!#7Y+!X@00zlxp?n4Jz2;st<$L|<|fJmXj)jpyrc2L!raL&a&5jUl2J zaz)_?EERr>PS^cyYG(C(EVPPR?ZTFq%V;pH1-WbZ?w<4g+W zY9gsbiU^{ju{`6`y%AGa@*>YLff=fFfgW@!hhVGQa0-=nmhfbn5JQu(0(n<-=AT+B zuaDj~wSd7l8qB!;R#`3?;_T-1App?T0f5cZqvgEhOpu zPlOPHmkbq(=HS?kr-4tShNI3Qzk;T+_A>(Yd0M~Wdk}!|G|bEuG1bHKq01KP&TI$P zY>9R*?f3#pUS6#3Uo(<3ZYYSbEKa<_xNgCwWgRNBuPj>jG!8O0ncZK& zgc&P|NUKW+EWqWQ=@ab(G3?|hI#TzV&^Di_3JZQKD+93O_%}8(swl9-4}xVVXKf?u zuw$3s+<~Z8^aKJPR4xKn9&)waK44Ka$vI9Ub0zB1$F(Xk?m{`AdMEY|NMdM0;BCHN{%>t?r#pkOlMq=}@4$r^CGgs3`(#oZo!Hq4rL3yPB1;gns7R7@KHTITUiXYge#=m~DqV4xB zWpgdp9mU{J*0av94Y;l;xq((&pZuhyMt;Q;z`6QGrTMEaU$?l zcKh@h{xAn++dLz&+q5=`%#ZsU$yaJc zv33E&E7NQV1(AFt#A(#i@i0sht2hfcWoKbZE_#U-xMK&$~7QEJ7Q|dMVKC1HcUg$$$hy(C3 z(#U9&m&to`3)E%^_pqBmwyEtvxNL6~w*2{I73l@Z?Ydi~g4^UOU~r3i$249THI#ck z-C(C(>&)8|bUx)iOFOPXgfy{c6KPV5UF7#dauj5&uSa0U)|UIt0VbdKTX@e7gD1Z% zy)5gihH(nT1ux!)XSDvIYqWslZwM07NwQdTwqHoK@OX!wd)^#+l9eL}+LC##Gc6!u z**p9M)Kig~>sN-ptTs@wy1ZgtUo{pPRJ8r#MCUBT_0d!!iB@(O5X>9HWX@IO0JdBH`j?cA@-tE^!XIx37pccxCT_R7wh4{yqW z>V=l;(?=Vf5gOj;$zG*pFel$}pP>Sc_e1v@oHrcK*u?4LR8>Bu6l@9O;yDr1x8gP9 zZ}vAm&fi<6BL|_xwni44o+}Uhx{xGJYBaaH(UzW0jk36fiEOcnbDowIMGi*XghP1C z5|Ss9k@U-W!@jq-*n{Fm$Geaeg`1lT2pUX}j-2g_STXNXO!%nUhA|2&6`U~WO4d-Gt3po4aWxi4#Lg12ZnPR@(UP+t1?VU!er zKk{O%vTbme#W$Hlu!sBeX9E>T&wZYy<2?rL6M$B-pQ8eLmi4~@O{A0E*9k#?vu)G$ zrv4>W;jh0k{JtyR&O&{2Q)QrNi-)LK6q8X-;Y)8bx4n%ZF>Vky@cwYd6p+TmcWUc{ zz1;%V0ccW^^X{Alytmo%Vq1>HhSv|ou6_HG`c%g>a?r4b{Hf^mR4vhWE=@oP`kiaJ zr?O&O`QH6Z^M<1iJ*(bI&K1(dr^u{D*aW8C6NZ;*_yV6-bfV+4?rB0hu?fVF^$C|@ ziW9H|P0iFr0#?wT>q!4hCA;uM!a!NIa1=w*-qVu!9T8)4O+P?%8J|$mo7{1p9$Uel z=>T4w=!c2KuD>&7JfV&wxUq!j834ABKZ~5CG>yrHFOi$8o;-f9=eTP)84y<;vyKE& zc{Fz07S?5uP6`kZ5h2m*cJ@a+^V^@_f_vwZx7zszQV$D&0Q&DyToEEjYRQ?R?i^)F zhz}{UO1e!K`r#x=Kt}AKJk`f21t}#J9_*!P$P_aupiULnh~==vjivGgMg!6mNYum* zCKF&sab2?S$l^~cHG>6&hyl0*8O2c%Lx{lrZ{u@yuPgYUpk4LvR`V6%{1YHEVc~7< zLl4*?+e2j50dc(I+q%b20C=6_G1&m(^l3xGOV3P1iB(>qtHTIC03YMv`Fr3Srg*_7 zJRS@s40>u^k1ODT^G^! zCX%-#YJ{uz&(sB6tkKU#Ho>WaILm$7&-*njdD#wSwJUL_6ca7sJDE zErNYC9(dfqfL%hv#)xP+j?LGtBTo=of=?cMwL8n;=|n`C-#FC@bbbH$sGDec54UAA zC2zHH01bz0*bf6DzlH7$ZCIWNtFoLVgUQ+JHZb(i(U?tMdso0=-*_7uu3Tzw7DgFz#Qo1o30UoB`D?~k@Pa&fy5OGLl zVF#%J#04)+FoF-3jIT zH>C!7O=<+imh1zH`V+$DmMQ&uYugfzJutLo$Khmlp51^h4*r)lM(1hc&`85p4u=6+ znldf?3{X%kqDJ=@9Dx#;HxmiptDzl79|uu$xgrgYb}NMXvsXc#lxB8cyu0DI6yqV;^k zJ%`f+$w&43?$#gj7c|30`CNTHnst776>VpuKh8c`KZDBTE@w`a!u?8eMbAZf+Cpwh zdBDkC;ruHgGhGyvHZp^kXwi54gmP6LK{+~$;F-)53FCc&)z<4%owC$A9Lq!MmY;K* zvNzj{l(wO}Lr?u$2EMMnW9@qLR@@D_q%0q8#>^HSDr3yzMByi}xZh~!Hju!sdrcTF zX1tQ>12x9X&OY+xuxCpENA8C14f|{!w$|oRPlVmY>R~`WUs>J$BG7~50qtf)eHe<+ z#eL*)aPTo}EuEan!LQ_a3UG4~+ME@4Ulf2U&GCdD_Bxn@E?s7r7LugIOJLGa6HJRV z4fck{Gm=|RJ(lbJG5VZ^p`3kW@!MO~gDv_JCzJ-uD2OJIX#%uqAyTHXc>?<)yB~~t;F~MKj##_jbnV+w)u3k_oHbbb=FyC!zb4Z4xL=? zPoqO74N5*sY2yo1@tJnXc~s6Di|>*}4ls*WK?d4r*Stc;swD_f0`ew zd_rw)Bg2MVi^ejg#^sZ7UH3L=xVR`Q672{-!h}^H(>wF{LJ~s_;~3CG@&?xxaqo#h z$hF$rhL^Q8=Q&vSFZRScVA?vXSd@X=jMXlvDDiOt0ravDQzcath^}Z#RE@oaep|1i;)d^ak`#tggwmz& zgG|mc~1JlZ0J8G0q;hLUV+0`|0=E z#UZP>kZdnR_oh~)PC7sN7s0149SiD~U1VtSGr}aWA@BWyb`86cFdRM_s3ItUH`w@l z_R^1H&|Z@m&F3tNJax}~Kzs`mi+O7Rs=;VbupstWp|$O&Iay=^wKC{*RCL{SFSU!82`{x^gei+}ROe2-RrxPry5(P?bVUp9kIG zker;nMAO&(G|g;VSUVO*EDHBnOc!4F_kmC2_)1yr+5O;3tRmFQ!^*1|vgf#`-L?B3 zcL$rMfQFoa<8#0n>K)-TVUMmU>s|ZfrN`wbFDNI|pMR_+NATH*eUAz6l7nQX;DFZ% z8^!8*tcr<@^777l9{4VP25=x#Ro(=f8L4HR)2pNbwir_0Eqs@^>mK@D9Nr5a9q>e^ zetzdqwiY(7%GRQGxLhaA#b5BXjmfXaEH)2F*XaK-q?M+@J$4cP0-8`Mqj?|1Kb1fb zQ(K)uid5FkbHviu@xxws{IDl328jwC8bcxqbQ;qW$Yv>F z5pxweKE5nvZ(T~CBWhM$pR05kZNiKDYq3@z0e%Aj1pPBe^&o^&|8q>K9jNmK3;cft zy8l&0k)ZtJaR09weWS~nfe6Li1A{FJG)jyA4}dzCE4$-Q+D64bi=B@c!|~p&$sp z>>}L@6e^Z=lK(^KQYbgA7Eu;&Zv+RMHj9#Y#dKzs8!Rnemw)VCly;wknX1genJ!e2 z`(RJp>cq60E)YZVLd0~p?{*;Iq}MZ&ZLj_=Ha!4T^Mq#@ZOqsWGk56~30!ITuB@-d z#z)}jsr|?Adc=cK8q*R6RVEjs){_vvGjy2CX~*93jjkeRAEWQv6-ZH}>()AJhTEZ= z8XfqHx)VImDtJOM`C!x#D6NJ-tFN|zvu(eR#!$=F>625Uu`CdEp1!x!zItY5*A#)b z_uHKK>gt3rn76{IskN|XK#;=S4rQ)Q*1q$~xjQ@d*WQQBkXB5+c+?|gZItZQF{x%- z+qQwKrLZtpWQPiODwx%x zX`-N9K`to4A*tBi$G$i7h667AflM^iW!`}?Pq0GDhj56YHohXpw*#|9y!ZMOk1rUo zqa~B#)1^4Lq-Fk|yY@8~l7$uI(XF_04G)@D%=~)p|F>(BIdSlTAoMX9A@f8P1bOPc z!ZBP&!DyV9rqVWhj8L41Q3jOW&J{_6Arf9y71cm%B`p}D$5HF{^AN%C7UxrqU zti$bx#a3p&fl_KMM!TrgFX}eN*r`N|J59{ec1-rVx zIw}*LbT6{s+L`i3gB*BkUVH4|3L2__O$CzNd zv73_b2O=6EIVcL{T26tYZDfpGmkay?~IF7D9X#WDzO#gnbf;TEyv zod4t>29U4+PjQf!;(rBc0V%0b|DjHg_dnIhyVCkr0zjsU)}-1Y1E`9aBw9RxoYs7T zdT#?DQSa;O2Z;e?mS~-ZUB3Wh6QAmZM6iG%;Xhg=@?*c~WX&B3Pvou+zs*zsw2ZVA zi<^^zNi*2Y$uhs;7?R1-?dw;oBDTeern0~`8bFkh)+cH`GPWL@ix6Kf>*gJ3(|ShVON#}tuq(h@GA zG!myFQ3QmGHXh>GDt5Qd_8&Yv>)vt|UB*_HdaxlJcY2!;k^mU5wXYm9J{$hq7kYDE z?+Tg#Oe-xpvOvv3nn12ALvHSejW^nZd z2?Z3xR|jhfIg|CrYf`;;+$=A;;q}D2@t4Q-2&;QdjMh-zpXA^w{e|L{@pHlU?8J%~qJ@wLld2#9H@=ej6FRyzFFsg{{CJQSKVVuFE zte*R&JemeYkT1tO%1v#uYZOl3F+tb0;V+Lb=o-DN@`ks>AM5?|x#978cD*NX1rD4- zYzpftruSa0KhesQQRZh0?tet*_z#M67mfp)62Ee4srg7pr_u6 z`yTSR`h4u8@$wX(*}^P+@6SMgzlQQ~mW2YYR<-|iF@7v>l{<2a@(}zA@Ak=j>uvWL zmGaO@KFD7(HAAt2eIDd(E0dlj0DK0x{No1+0V16!`B*-B-7^MS8-*&; zZD{AP#GKNT1_`mG2=S^znS?~VT4FriC_1g*Pe^`7W6X+%RfyePim)x?6e7p?hz!L* zS*V}n=wzPt265RZNsJ&*TV4@L^oRI#^Jh5Axj))f883uQ*EAYMK|+5Z68sbqU%X(Sy{UkWfWqw$1mM~X!N z!3g9&kurr=qPGuL*L5AuuMrXrEQW~4X zGBPHG>X0xxFx-Krv?y349f@q5?lL9ek4O2TaNcqL=|*Y}CS|`u27?9OmxrrJ)@Ngd zNDw@VL9~Rc6E&fIA`b(i2+R3mPVa2VL)M#%upl*`8AZ7VN`pP&O3Tfk=fK7^Ae{0( zi?nDqq1X{cldIvv%sptUz&O*CiqnSc60)MKroiLF)%rH=kvVNYcN$x~9CV+PhQ`YH>b0 z{X%j&=*=oZ@TYNl8R$QMw!Hj}xK+C5Y^BHlgEz_WG@|>U#LbTAJCAKJQ!LKJsASN% z>I3a`ZmuUlW7i_^0Q&x>Je*05I7c#EjN#|P|3)EVJs$cGVcIr>yM{mJ!6$vWGwB42 z7{0)gS?oe=e%FH@=?d4bxlx{#hNUf3A$o6xBf5z1rStS@C6ID7nNT>EJ$xr}rPpyC zM65)>n7Ggg;wD8Kzt)jk^#i!?MF+aRZJjy7%{bA8(Gw}j!0*T*jMiDb zwHQ)FK`y(#S5%#cnDrTI_0_-VY`pQ}GKP=tPloqvTmX210D{gaxE}jkZ$(~FvhVp) zeP$cmDoBIY;2|>@M>Waxok`p`|N3jz@A0$o+^2!x!TMhRV9^GOZCuuV{BhL-f*DlWnOaPat-}mF@LaDsYyG6*}76K^M%~#qC3PBA_Xq$!Q;ehF&*-_wZubZT-NDDkh>=rvqT<3JJJ!_*4Q)cp2r7T4 zBqmJZCDa|fF|khC1W`kU>|Lb5Be!lP*ywB1+rMGAMYjq6N);`=z{DN_9afEG`OKR3 z5vKL5!+Dr)4Bbw}FjR^9;Xo#P=NsG$eQ$E`FKZodhIky72Lb{pPnZx=4%+2 z(RWJl(F#Rrk_gNjz>a<1POKA{D6cN!5W=~;2&6fL1dv!MGeuKhu`&W{TL%)KXIcvr zpKERcdt?saJ5uu=eY?0nXEikX#&DT*3%4KcE~&#GxJF#0AT)l zD_;I3L@|%4*#Lqhq>;e4_zMJv7yw!Q9BITUFHblR7jNJz>BgrOEAo|GT_7%5b877; z0~BaBN7s$!%&%_-r$s8}`St!94{r#`pG;uf_`$*(F1T>CXTbqnE*M1KTWj#V#dv~+ zGBAeRUp&>3WyUkeXNOe^5sryfh(p?(pu$!aMLb zuMGojFT&ZFr)o(Dp=zuTXHC`-Wy%ti2o*e-U-vaC-yA5|wqcW@Y)HoO)~ot<7k%Uf zY*qs;d7~*>7Vy{qViF<6FJy$4IB5jdG}WJI#25b5VLYDkY+M|RIE4HgWYhiOkBYus z6b7D7Gmt&WpWljxzaDtiHY3hMBigWV4VZ4jn+C@71SZUcRwGx&PLAhqccj0oCoxKhVzrpx~dLIq+Y zeAY&6H=f7y*CFJJgFe+*aWgj%KHOwap`_Igz7j-~Do$TMoT&4Yf#96h#djX(k@gD> zvRYj!)3Ca78dG?4>DyY^>zZ6aP0;Q0jhdC6wKrh|49ThRw%tG&|6hU@)h$DjP0b)l z{;8fM`g+~*0so>Sy#8iilf?`4P(A~<7%X*rV#PC>W7SmeeLd$zN{&QR)S;~Yi*}t_ zdJ(b`8eXi7=t(hDP{QcLVaENoGVC=Oep>8;H4myMvCnlHqW*H(7u#OZRU!wrYZ%VJ z^LgxY$R(B}(wA1u{`08bNfHeX@arUwzjgdPEGDXw$T_$%Y{1LJ9Hfr070<`Wt$cOO znwKpOPv*C+%f=al_*k0kq;&q^BTh_nZmCwvWyc@3eZUpG7pt};fH~Q1Q zqx*9nm0B#f3$!xA?dR8OP_5=VaJ}>?)))};AKLrxI8+6z^RSKE6=C-W)iZ z`Ch0pN=!`7Q-+h2MW7MMM9L&aENEPh!moOAWKdrC?l$LO?So}E3mJrAS{nj@~skiLY?tjlU z&B65TI^#%5G8+Ma8fPUI8%D-;5QaVNRBBy*TCin#m=i+A`uC*<@O_Pzscnj;m5pvP zHuKz5+7Yn9g~^272IODrYI>Z|?Ij)A4ElT5o`pYJw?4jyZKIkwK+596XI~MhFL{H? zJc-b@-0%8IUriXzXVDLum#c`~_}c+fSjQ_1im4Fuch742OlRxJ=R3o=^v2JfG92r@ z;9V77=7>|_h`ttxzMmdISAnDa7n0V^K{tNr4mQr9Of$|%Vuo|X7KSyce zmDD>RdKtqYOo&Qm)XCfpiO9odC`ImuMP&6>9bP|EL1l7@CPjKiRVk2}BnPBj%ZSL# zxXCP~5IIJ-ZC1OqcZ{WfVlv;hxH4AI^ACT@)t7WqU^F!PC@fIsU!qA965IR-XaArs z{s&}UB#78*m;e|u0iiM&aLL(!0~i_^0JETho9%A_Qxk(eG`igX{jzv3%pVg1Fs#8K zz)}biK=u9p9mRN_DWl(;ERUAqh57d#eIBEz*PkfP+YPSW?F*Rx5ZVDpYiC*OeMVa0 z$E_#!kT*LNy6_?N-9>CwFQ6}JouaWKUd_kAcS37pg$Wos`KmvIW0lHb8qQi_Pqi}w zNyP?jD7$xpYx73Wa`UP7x&`vx)L8@wG!JyeX_tSS!=JYzS^v20#{d*g+$0~GgX5*d ztbw|ZX`N;w%HkW#_3-{#>KR7cb(J+x6Yj+YQXGZGe0l*|`;=Cg!sQqRtvTv|-|z3= zs4rG^@V373qWtkFy52v~t~7#^v&SN2iXO`sjMRX9qO*rz>ZM?lOc$T{^;yAMvI4zs z?-pOJdrg9TQ|ryixYS0<8e>&sF~X0Bm-H9&Ray}+l2i>xfz)fAFgsjm2vGI11EV|D zMn!&9(u#!&$6rqg$6TWqhP|p^qb}h834$If5Jfbp3m`Zm{*bdBTnSDP!K4y#xsU6qy{F5eq1^kdVQH3~P-Y-*! zAHISeM>N;_qt2ZtpbOjH+g3bkkJ8}6f-LwX8u-pZbyv-r|ATw12&!+cJ>)D|QzR%F z+rdJGorBuA@q>dcxFo>9lYJ0EV;j}REGrH&Zv`@_-S8-z6_765{4O61lZ_HQC(O8E zHQ``NHJaWVYNZ0BF+|(lyn8ySe+jSDWmneu3>6(#(z7el9p+ROH;HmlH@u*1;RJdn zTkM~?1e$X&*8(I_w|gcu(}f2~Uu*hPzm)7*)zKIuMDwW|Zit#6sp7A!(toW0^8Fk5 z;;87c$5zpT5h(@|#PmfY$^k3zt=(>%$@H6{?}UzV0Ue^&y4YhPcJnL|TO`mYYR$Gm zu=FTL&pfa*W?yi;VS}iE+vM&u14%WKn9N6F1ctK23nUkpYa1BA$&~{)L*>?dz27TfFElzq(sl(!^49kSOMCn3i$$gJevzkt9NWXM zgL7(_rcj}09cXvX}` ze#ofF3fE;J2wM)MQ|`(PsX9k7bU5{Ozb{>ajHD~lItqKvU z#x1jdhhJG2^uC>eMnv<=d(;IPzZ|5yXs3|A)PpoSO6pYvu<#hwq*A$w#51j*AE+zq zM|~GG*Tmf~BO5IcSoF)jkLtt3YSg`0aE?w}G*v+NOU&()y+Qd-sl;l>;FSWl?cMMl z8WpaXQ$I(Fln}*KTObS*I8fLQWg=ucpLc|rAEZ0^YlM`5zA{h#p&SK+xTrE7DtWKGkq$i{v8mt-!U z0;`OB8XBNfCD8N zL!sbA{J)L7qmxBL;#Q2bFkn@2`s?9>k^(t`Q>hSqda}138Lll;g=q)#2C~X{%rG8ov;$@KX#quxRGI5Da_0%Rs8DL_C?tIS!EjM^ zX9|%I>ebf_jgwB+TTc>XinT#Tv*o3V#SAA5Rnit z!q`;|3_@gr!pw;!$Hc3U)r@bEze3@&5rw2BpJuaNOTIC1PSc}n*O7PQAGKA|)r~Y< z%^>**+UYY;`(HlUWOQ){EiU4{Qi}@t`g9y*!vuTdUL76>F}V~$T?218nshzgeEsr5 zl7;<5Y}S|4BGMuA`5B|u2<={Z#;^4hsq?UKeIf&5!2~C#z#T6blo9?(ikvehxY0D1 z#W;&+tPvQCVWN>x3DkMUK}=frNfn_;L3gzwBG7Rt$iHjdVr~ysy+p=`OGvDCZBv_; z!7uMAp|>L+n;71}RDGX$*?2z5m<8U*?5ARolBoN~=TVy>;~>6YkmT@q#RCnOkvaN{ zp7mB3OQ@kJ8I>r`Mv)$Dn2}?Ytj#`i&sDX*8WQGy>I7{_W!!=X=N^vu5hf+9_Ib>y zWa2A`Spd}+4cFE2Bw^*6iF@y|JD;?G;UBIEN%|fKP-qoU0mNHlWO)`M;Vt5x0`8^P zNRc{awFp2o#mZUFRd{V$L!{ah`=fSF%R;n0d9A?S)Lcb|<5t6SqZ$nCJ-csOR0Y>u z8#fu#%i>q8i17MW6zm-&D0V>hVWj%1XxCwLS zHAX)6jCAX$A^xD}7&K~xs`q41tALs$g&L62iE*2EeRIc`0ZeS-lx-|=~<+#^4I+t%-7B^kLp3Bzcjq63!LV1lHWK3V~sZ(bS-P; z9W-2~g|sZA;PFI4vWBwnT`S*$)l(_S)Xwz5^(td|`mW?8!``CiGfq4{cW4UX`}1t{ zR1>r|I$bEc8?F zK2vlE7cyJGsXddGkkX_p8;{I>P?G-o-gmIk{`FCR95r@~l-#nRZq37itODEN*8K9B zH1L65!7$>*bVW|JCBf0tX-%t4nFcRA>Ja+&fD?nqXOa#jiO0R-ni5K(&-e{mlp z>=W7H2mR|# zE~ETg+=#IadBW>XyG2C@vzVw5f20bu#k_2!xoU(lXUmpdoY_ABY&6|KL7ButL$s(W zui5_Vg)g##6{4%I9yHSBc<*G5>ZQd?&f24xMn;lb+986H*b;8I@33K3F{DSLGy8v9 z0~Pp(0*(59Gr<>Wbo6!5DtL~N$7t2i#hl1*Y)7{*Txe4`QPd;|;WM+ry}s#1hN~HH z3%$h9<7nnvZHpw(&olDkVu*q(gYg|*bqCgwo3F%4XcfOVU}isyKLM7A*(-)R4is0k zxS_Yy(}Ii`GL}VaY#?+aTTYBi(^pZ3QnMN)Awdb@Wu8|u+v6Fbd##xTI$U|)}ba&w6L$Z-V`pj ze&68zg`bPRj5T|+!NFBr__1q9gg0p!fWP!E`B`f7rO&46h*NPdv%NAKsEFYPU%}lR zG>xpYk=E^XHLxgZgGvM^x^s|gnd;1?u372B8`FP{9c4nhzH_}? zkC(YxZVMqJ)hJcFfIV6&KUG3EiEJn5kCK9zO7|e# z>Hyv_;7mq)k!>eBRTD)e&NnRpQMS5HF4wsf`1v zLzLRWL>TQ7VNblHTTdyJW-98CZeEpkjOG!o&x%jJlS{XxM&yy4io;Jd&HEPdZvoi~ z5;bbRMrM8IPMQ3zmw~P-T>|nyrVt=U5CI^?DX!2l)ZgUa>dT~Eru^@of78D!&4WoL zdcZ8$KdV{v|HoySE|ES5fP2K8qUz*Cu8}dA&HWO}{YdM7^)&2FbGdO<(k?ReKJ8nX zPt~p9h6^57b1)NbGXYxJ8WgT#5ZvI_*5OCD`r3m3ruRg{UH8gYKNrN{vt`jlV<-6; zuIT~=S?AvA^pk9IE85@AksB3Gnhp0Z-+6fV#bE-1h3+CWbrX2z&hJ~2IG|R7=23$r zxf>>YAYYMg{Z|(s?Dn%dnbGtD$sf4Aw~3+JcW1~9@&@wh97um{;v#Q0Ev>|EI?Znm z%u$>7HOtR^l&O@qPzSn(f>0A~kBgBZB4_v1T*GHN zNy;0qr-^D{#O8_K-V}fG<>>rLl3v<*=qETa=cHc6n@U>CTR$1a*wfK814%Dz=~}5X z=lkOHMeg-nF!?z>X1;K(7KyWkIGCBZPO~lDQuD`dXZuyD?yCpZTP5<1gkJrL&Ym({ zDl5d`B(%3wO+Lp6X_vhd5zNMu1ew_*@A4`mRZ0BUZLT7;7Bcx;K&MZ+(G}`ye>`r6 z;m6|VNrH63%CO@;$0pCBW+A8GgE#!q_Xjl`52Ohb>Mwe)gA6D95O5S3)ELNpJAKJ} z*A+C1^B~b+!^bqzQllP!H1DkdfJ(8O&f_Wae^iRl)j6#YlOeqQJ9|P;m&^z=%KkK+ zjCQ->MN(Xr@N|$cK);v~bLB(I5K@9-Q_!bfio;=wBN?POsR^WE&i+Jz!;8^7D2P=W zM4;`U!t1-<&HV{b>FyUwg;s+HZO@7aEgrrsO>cf%g~RKw!sM@BnEHExulDV{`yGXo z#mc~`S24rxwqqR0G>aM#kgOME>7$yyAhlgC>nX^ZBcIvpl(-XR&K9wp!WQ^38^$AV zoBa*88;&K}^ibRsT`NRi3^&^3buy2Z6?KKm0sqT~2|)p|$x92^S~B|aXiNehJ_#e@ zRVi;D7;ICS;pqEmgo0PYKF3u;t*|%qSt}5*N1G@j%`0M(Lkk@KE@^qS7t9vb=;4h; zaRiKtBBGEFie(cNv1r`zHIGN=)v9MqfjPy;l%09i4{bk^YO;|6nmQ}l^KQU7pMHlU z*=Hq|vUMY$Dw-+*D`p%_9uR0(e*P3ubag?(uTLl3zeNKqRZ&*ADtmW^x_7gA>@rw6 zuIIsREky4u0c>4|quLS^8x0>MeV-vB0#-8Mmy z9`64DW`_y@2M&wO#^{K#NCbo^kN*LWz<;RY`<@Ue|M3LSKVL5S0W-_GA7B7$`Idkf zwEG53G}~Xq=M7+hx0}H7k84qe!uO72AKTw&^Z(rT5fO2wL5g4bW-dijl$({D&n?-1aW-AAFB$9BeI5vXWdEw`r2D8%j}oN-#R z8gDo{4tbdTX5hsxcWRJ~b>s%sWmdg2nn55^pH#&*bv2?}iz2mb8BO*$-Yc9yCgR#$ zv<>2*cXQAOc|^_M@%n(OFk6WlO=mx)@k6($B3HAZxHNHlb-L(T)m1Kz|n@-S0By3!L3} zV){F@8vpRe^n9_?4b6O-(i93wNhsg&zbSNkyYoLld;r3L^-qzX&F+h|;Es$rDV0kQ zF8>c>Zy6Rxn01Q=4HBercXx*bcXxLU1h)V|8iKn!1PJa9!Ciwxa0sr!-N`AKnQ!iy z=eu|A&+6`~uG+Hp+VZ|-o$N2(oZ}}gokhG>a^lYC^+;gYO$Lgm`Px>>%XgkAbQb2K z+@LJKHCJh>Lc_YrRn8tYIw7EpV~`;j5zbAtCa(mS6F1*8ug|}h*761+sVo9dJ}ozHGkO()Mltx*juA|Q5qc9^O%nX z-2*FQt5JDBN>;SOD1SFW=djj5bRShu^9>YdgYa^G4VBKbPslY?%;5%wqZ?4HIfi=uea@Pvd+sFNWVx|M z2M8#Nidzgyu$cJuV&y7Lb&?h;IO0Gbg0*!8XE{OA#kL;Jg8MS~Q5ja+@X=xWmeqCj z5v>b!*sjgi&cD!x*`io9mjmBoj_c!ZRX+X(VN_uOgQBfBX$-0Au$@6CS62U>;1}o~ z*?nx6;-vgW`-KO3Q1?^R=4J8lA$yOcSU+V?64-oDyOEEM<5Q#rXISU^_#px*xcvFy zPfJ$NVjE_y(K1Fkg<53^v3fUIUbP<`EQlz+0U;BeXR6rG{NbXS2 zN~ZwGCyM0OC9I%dMixjCfjmJ)`P9iDK!?w|C6g2ZGU8psNPufj*%nL0qtao*FmnU$ zDcg{bCofW@hEXRB%_9r66u-G3;hMAge$gY;B_zLT7awBZJ)+AQpLE7CoNXmzjvvi~ ze61g~l9Nbm`ShIq-un%gELW9CZS>$6nOwrktwRl!%CWSJ_#`^vi*nvQC4GCyF0o)sd4^f~2mdSdIUsN%;p>gA_G` zraSz!G2xRU#NiVyx6Enl5~S=E^y0( zz0fa+wHx<}Sfm&oPm&@u-Vf3L0c~dB*%x7#t?!o2%e+ileEt-m{>(bHv-{_@LbRl( zELKCNX2t%ZiLW43iPi2f1;VO*+;l^j%%bXZgjv@SL=Of57nB!Z{VD)S2K~GM`#Z@% zQicazSYdi;EjV$7>0V*$$Yzhbf0g`AG`! zK>GPAhY|Ugjxv?ZHVEPZK=cH6cNNRm@2r9TOF})rkiTdtA*>1)FhIF3?7(ph4(-yvCbBIEQOs0u zrAhk@1FU4GmJTRvJ>=&W|H9U%{+S81#^)=~ZLogdqQuGTc17#oy|Aw=Wo1O;`%g(J z0FpA7lz~BmsC|)?wxf#itE5U_BsHUN6bI;o4L)l|5s=h>I~0ONg=l+`6gKGN8m;dZ z{;xCejUXtcW-+cf>mQ>v>z%)@V;26Y3sj%>Fv586{-IyYu{5j&Uj!NE+aOom*=``c zt(^;BMv(^jpaaghtLxl#ZIBXR_-NTMO2-+5GvvJd(=M+uW+U%l((S=eVLW!4%NGQf{@wNHdDz;C)#&`uGX8D{P#az?;Jlk^Kl z-1$RK4=wt5K>=j$MW_%J#VIWt>@S64Nq;L4hF(w~26p zd^vzgCmB;=-IvdOM}z<=K3)U0jsG{6@al837D&KZLwMd}9_1M1pH;c*QoVJWwTPo= zYNv_+e!dv-pegEm{i9k`)b;JS*}b+y*mTW>?q5z&EEYXzb&O^fNmIqBFWx1jK|=EH z4tB4~KReiL(wi{V#HgqjMQAJk+6w?R%q*QptlcLp7#n%x6v7Z%A~cT?qp{Pp7x^%2 z0)q%6Kk>qVniOMKzt;lj6!{ zAX66GXu_&aaQ9xP&(_ERcsiT3HgnbhlDnd^En6TVB!SfS1>pVm=;Qy&wEm4-W#f2& znI&>Qe!J4ajkY$mUQ2HCmC`o1dTA4W8@P44T)r!t!+sTJO88g#dD@XZ7TD-C`M!u% zkKBmbCYb`KSFqRi|GIanRfpROBBkXn`q4RG+sImhz!sjT=Jk>7!<9}b3R^~UoF9)-S=NY4!6D`6z~LC?bl;`VD_A4|r$4epoe>CFGNB4W3Ya!Sj%7+)yM z1qWRxBap$f&p{Tm59f7<6>dpQTs+FY()XJ+S6+Fnf%`od?05&2Pywc9&D{GId<0&L zA1#!ukjPn*J*I}B+-aR3@f{dUip3E_spUUQjyRUu;S4*()@A+f2^%{5kps`)_r$Hv zP)JCue>97`M0D%psN4O+ZqJ4rf1K&>yvx{+4c!$#s0$-^&`rVMeiYJ3N&ZSg`v(65 zM>n0%Lgm5x7SpaPq|<`kt~6|pLT@6@o%U2cQCIJum;4hHhb!LhiTO3`% zk4Iv$qazkGvn+E&`43!s0hBk<@FAzqTOYoCIcKE&B3vU+q;@ca!s)zl+9)4ZFt9OI zgoksn%BwA=fwEPp^>!xhMy&EVLur=0wobKrG}SXbKq+;pgQ}iM`dh@?uF1y7XZ(uV zA`JLNEQ*67@j*Y{L}R}~1ovenfh^wh=JzVS)P${jsDRH~Li^=zoIXhVR256@&$Jft znm25EbI^nW)K0~LP&`28Yqk%NgnbB5suKQnlD^TAw6Ku0&+N;C{1&W`yXwzVzvo<> z|HAylHCBMf*0>g^&p>&x;kV4Ok$}`tA$ne>TOBm?Mx;e(m^}I%(t#l|9(tx7iWf9D zX_N;-+&4^YXMi4s8?Y`@y%dMSoX{X%Tq2=}Sj-FfC~iWHA&#-E2+AQH&M z!E7D5MF4ujz&$$eB8_z*D_id;5#=jS#Xn4brwEEimFWVeZ2$S}%>hagS(2oOsXF-O z8L1nKy_y@cK6MWl@D-Nfu#~h}0ZLRVV+4hO44iLcbzsq?GEQ9Z*>!9qGH(IIPi&R9-TqhT zc%`92ynuUHTJ!{y1H$)Du3M54p*ga-bqEMh@;Z%k#Rs|%8A!xY04qi@n6e`WE>)XN zF7}oF#Xc|qcHHW%cuV8Wg+rtn|SB~`d|JcJsVd`EEx5CR!F??_-+M( zl3)r+GiT!}k)fFSDzRp`Zyx6$Phzmra80qUG?wLJJF0~yQcSw84hj5Zn~BpDI5#Lj6Zo@@#Fps@O40;8G#L`eZ!h`A zOOyVe{N?{?!a!w2{bgF4&ig=(2rWHC)xO*D+?FCI1!pKl^Cy8qkvb1`3HA^K_FFVT z+@7d&V4BGY2g1>bt$^^RCpiT=AKePeq3e8%GGVH*T~vey1|=3%1|sNL9`GKL0KYfe zIvl-sOzvw%#Kk(uzB~x&Ntyjc$)4&L4eh>vc6=0zG<3k=W2wa~Upur*c8QQdo{t)PtQ=o~w^iNKr`^eh`5If-#WByrs;{CLK zfe;;k^#BDx${UrPaSD8Qh-v4*lj&94CZ|&JEH?A8Z8@4*2(`OrcA{_vj1C)fXrUT9$wwtdTRV@v-pPD z@*P1Sd1cQT4a3+PUdEA)Qo1;}M4jht*v@BPArh8by&<~vcv73~|%CoNTHI5Ch`(*!p9YN*Pu z&vr4WGSr!6PB8&W+I_#K7202-mm$BTD>?*lvm7s}ggKL!G$rsMU;YB%{+2u4$!Y)& z^{J*E0bcQ+Uy2lqeU*LjP)hq4#{X32tB01o%nZ-o_=+=xNMmevx4;pA(W9cPrD11` zd+HR_FWmD&vgoSZbTi?R-&s+7e6jyu(Crcf##4?yocO`hgOS26=cW11{G=D~*>SNk zF#%%pos$M|F4}205W(ZQ>(!MZ$}Ul%A~cRFXcWopZ#{MAOEk-L(o=8ZLBz?>v5}15 z4%sAdji0gt`v^u~=#ql1Os7NvXdKG+P1q{ye)E12``C#O@EP(d`FD>|1KZ#7x|FcXM1$?Qf>5>I(#!GEBX{$kl6YM6Wet> zh^o&i*Q$%a!L>?#T!{AN629-q9Oh5>kp&;})Y8Q+YJ7y=Z@JcM%Ix+icmyhi8g^`K zv}hIemw@I!WINpv43=w#llKQFXPxe)Yr({SwUluBE^REC_}RAQXUG@qfVR1nF77q@ zW1px#-c*_1{uQF_3vHwJtxW1p(_72m6&~EmSQ-&d}Il zM7GA)!~XPLHqJ`2p* z_trDr8N{tIzupKUqKQ_2d44}~Tf`W zL;?38GU^;MX53a{16*IMlK?ud*F;X>9(Da}Nck`g!?CCJx^F~TJSaKVfK+X( zkDjKD9ZtCfs|Bn7*}Z;JCE8q_Bx<0dBg$k@Rh5Trhhc4JhPxm%S$CHDtb^{(s9=9tHqugNgTR0PJes zn_wmDe96%_f`|tZUUAkC9&V%i^z8TB05LDooO1e_-3t+4z6zET8I<-Z(w2X4B@%Y@ z@76}<*G%<5wBkE~ii1<~%<>Lo4%ads9A1(53Tx0bQ72}%<;c!K7D7s?O7wE+ua?lq ztxsVt+=iu?=N7>xMMv8ONn^p#?FiXu9j!feGY!?}wKX*I)Xu*At-P~+C-BdoTpsC7 z)Yx~K1BX@Va%(7hlarE31R$5V47w`4C;yPKFz)72cw+U=5+kk;Z5-@liGV$?2s-R8 zd!m%UCCo@cJRU}$|2C&+_rb(9YVCXhf@v*k$-~-p3c4Hq=-<1qZZaZNo!Kg!e2>*U z=LZw6h#P*a*2m(Hpd2z6r?Fu9jyZ`;DC$XHpt`o#om%tmwalWD%LW20`XiZzit1}D zig?k&ZzMpl|7w!_e`YD{t2(KVmxc_hpFy#Qg#%{Svell$)i}ROLQ>O7yC0w~s_)LJ zHQtsEP*In>OAk}%W3TiQjk$d%iCxiuIF0w7JbvGk&rizl7AcjSmn%zT}^Ov041fTQV=(Mk9sL zl`FdB@aNc*0`t>Xg{Kd>dErzjzzEhjgH6jB=SRIT+l%aD=8kN2VK9o_j2c!x2!hr( zBK4t>)119vbh@X845DZELQZaA(3(V08b_cI*L&6OOX{Op(p?#V=89mvF0ujwBhdG# zj!2=LArT{a`5~ZTB2Z@0U^3A^XQDHA(6pf zMJ`?#B9xNey_b}8r@P6Y;rs%kK5bL>-px&hXdWqe1Sml|zPo<-)-&;z_0MieQoivj zkn_?72X3ZW^}&h-++&?WL(K_vOV4~#!TU3rX0{uq+=FNA3PZg&;bFP%KfVxk|$RFZq3EUw0$Rz16>k_2j8Pvioeb*8>C|I*%nByIhHYA`{~w1y^>PpgxZV)Xm|8e1 zbT8b(1TdnU>3eyWqd?O!LcG+x#a4jY<_-hb)z!|)vMEx;QTfklsS7g$^_aCDiFc)f z$PHpOFplM#>&y4v4s){MY-S7)T(HOyy=&D=rwY#zzeNPs#@Xp7=4nkCC$)4>Ic=Vf zEXv+Li9FyXP{}%24J&P#g!4h?kbJ{k0>wWg#zb0j_1_D+5_ACn>Itc@) zyPsVt??)#dTuq0zsOv{QaRO|9XC{S$HL3%l2jUu={BLJrE|NGu!DOo$ks5sh)DID7 zhS6DNT*6mEpBLXb5P~Bo_@s4osO)l)YjL$~weKapmX0bz64jS|Wik2JJK`{$&}E9N z!tRqM-P^F1g)S~uqLbC2wUHJa=mYfaKNupRXXhgy>sJ5bp42CrCLanXN`y+Ki`@@9dB6kJlT6Dtjg7@YuG+g zm14AoC{J&j`+BD4ZH^}oSs)t|DT?GgM0Gu&(y{Rle>3x}(v0>fkt_j1T4hGa5j2_l zMt@7Mw@q>5H_us*yx0`t7z>1I53c;5FTIRrNYEM=fG&3AQAhhI4=} z>prv0;sFVVY=rI|K%N+VaIBGlwHB29<&OY}CkaN>2L&kgqvbw|k!%7ai*7SjHS!*= zcXJ3>kWhbOD+_pL!~ggR%sJ)&t8Q zW3DH{wN`3Te(;4(2*<)_cngFcpj!*Gee0d`9=PF8-Ynmkid|%PG`i8k(3m7dFjX}5 zI6CIRq4Ml>$Ol$iInWL1G%b9&D}`B{nRSmE)h;H$kz(Wk$jpW5zW zj!XB%R0vGtk!)K_jir|$Y4WzvSOxguI}^&IPwg9{4&sqX)tqj1AK7-Pen?oCXnjS) z95zuuVJq6remqh!(PDXi-sLK|lN5fRlp>-zMH+w>vgt6m`|e&KBrt8etSw`)n)GC-p6*ZJSQGWh zC|(?f!pwQC9T~~d!ft_UVg2#{26>(n*DaNGxn~JDu&=4B&5<#)s*+Qih# zcuv!ez!b;ARVLR-M1SPYL$Sx)5_>}Oz8zi?*L42kB8Peb$*s6*QQc0#d>t^}Ix~^u zs=NZ<25moQER_r2n0rfdBLY>uap=UM^wcB(#ZQ3>_B|QgNpav|u_csRx!>b^l&rJY zLF{vSPqMEIC(z~)7TwE9AL5EJTjcs3K7)vMTZ?ta zAt#ufp5rA47iq~WuNqeitSoD1Q*-;QAFk=#`ru>hs&$aYm(qT6S)cM{{MsaY=X=Y^ z)JICAEiWc(8n=`1hzqg%3g7;juEgd35zC;J27J|mZ&3PB+Z1ItzwlzFuchQosFGw$ zQDq_ugU7PZ&Xjrw5mmp8t5zdKq0ooM$(ZETy@OPKhiu0eEqs&18O%OM8W84r|EByI zp;LdmVxZl+PPFs{-&iu7VB(SAh0V|Yw@AyV@0XlKy`{qx-X>a!ZB;DWd~KU~EP#F@ zW>a9~60HQ@EGD0-UJ1uKH9lFpCupGNQcAWDq%6!;)5=gfBQq1E0He{Wb}xlVt&@@F zCZN{k0#;<)eG6FES&yO_j41;({o^V&Ny8r6;)=y%}VT@92JWs>oG;hOus!@2tw@tX-$d45F1lF5_ zcv!3OsIuUb{AwzLvzUqc)*uU>p6v)+hIbU&KVYt2>G-(KYFh}i+I?fLif?#=m$TafR#yim?`_wwmFZg}C@u`NB$#szZ0yzqq4$`(qu=Z9@*XQTq z(XUy%ivsJE2d3&K=8iiF^qc;&?IjxnVr5G&QUE!bY|)beqs+}*vHtE@??B$b>YSE+ zbJU+eTPQRq^dA18Egp5q>5sUN8MK zJz~PsZPNRR-o-dxe(6D&BW{g$ztl)F)ikUBmvGO1z;7 zvH&y^h~T*lv8)G2OGSvdh9)idWkN$_N*6VHP}Gr@BVJEdu|Y0O(R>N(n9pu1nt;AR zUiAr(S}_ACn_F$Wfcto<*Y_6k?IqDPq_q{#&-PCkT_+vRpB(Ar#BD4PPmV`V?N!|t zu&V(Z`;lc{4@A%*E26^d^T-!Ezr$LS{F+pyza&)`>-Wk)O#Us}d<0~*b^>~Wz-pih zPpJl=W<50;d>{z~V;7YDA3)2x`EEiP*gW(FYyGeXVZ|YT{v-Ge_hQ*(->>;M3gpI0 zcYx@Df?XW)}FvbUL`&->7GQ9ilte^5H7XFX6Z0?ebVY(|I%!abZv+v z7DpkYne_||C^BMU&{Km@3ORe%Mx*mZL^LE@eC$nJ8Rgw6XUwUxth-YdmI{kUcNA5# z9)e6qQ^kvHXPcsRO}R`LZM+SYL-|OIP67Kve6>H@ZqA9uFrK)j)AysN53W7K2_oOE zNw7aa0TqKa7)<=`jrgjC6T}LyD2?|y?Ybj9pbUB}v3zmS zttIr)$-JjOGoKVy>u)%hD(bl;Tw;Wx1ylB)_VF0-OzNzSFF$%>U3W9yVtbwPARXu} zqs7MeH<-p@6ybmg-u9?|&fEp|^Wl(t|7W&q^EvRl;l}V`hXYKc8(2&!?fn#^tw>SI z4bJ=R4_w1p6Nw&~gw4+r2>8~#R$!fIzJrE?Ic4hu-d0U`wt()B4i^n!G^L_al+2<_ zyztqV01O^(KoaE~g;_Kvo)@vfq?L8(e^bL%U+77V6J0gB{kAlZTe?xS+~?pV<1#J# zv;iz1K!CPXg#rN3@~eon*jLe)go4x}=CxV{!Tz#b3ztNv8V;zXfZB0Ofcb>~cBldp z>+F8PLgP-g*4Y0^D5NoK6aM}J(up0m8iL;oKsu2Pq!Uj-I+6RYbRq?dw3liJx&YYl zz6Vr8tWEzMb`=G8ymmfRB zy3^@dtTa$Tc2B?`eD+b*r|w6Tc50qRdI))nRs(aCPduYgap(QD@x`^RFAZFa$8>Ku z{%YQ|-XaU>IuoHt_sH?Z$Vz(zE`gP^;lT_~Lpw9uMc7)|{7%HayjplQbfcG{nVc@$ z2HvL#{^g(6KObD1VV%0hUtP|Oi-MYZv-?5H#+$&ehysbe8`Ea=z$W^H4nru>?>)&@ zlaf%jcAYdp0kOzY(FlWo4m{21@E1D@e=hp8!VEt{_wy_CGhDV9Pwg2_^YSbz;ZIUx zu2Ji+cCh?vG7(>Ub|+8gH4_JU-~GTMRlBUWE^58v7bv~!L2iR>@Kr>5TTh;b7H1$R zveXytD1UWcEDo1=c`JZd;f3sjY5VTb$#ir%Xz!rJurGn&9_`7yBiz5lWpTSJ=niSJ z2S~#NfEY*hLKLg)M`_<(Mr%eLQdaf2fpv^zpKKaym#}TeB*_e_H}i*&7%8b$8=3tFMVddOt~bWx{$Ta)s5g?JUl$Td}kD}SVAK_hNbp_ueO0X zHz;~>nfsW}E}}faaz{X(pw=Xv)A2h8GV0nXIF|ME|JY8`tL^j*1GW=Hd`ig$Iw1D$ z`i;6>L{qW@^e}To7aogr8L({v@3AdQGZi0RvwJ4cDfk+`PNNeY=H%M@W9ivoj$ii;T6u|7CCcbW)30k-oCs7T?+rlj)3 zHTV4Ej(`t@Ejc(!;iStQ)(?!{0pTUe*?i&ay(}nY+P%G2CBj1(WD@zt)TC;7h>KHV zfFYz6DdBk9Kbe%e`Qz%FYtgIHcJo87tWg6N2LKK@!t;BU_n(3z*V%9m=o;? zAcQwmZ$E#E;EZNqFn9kK@y|N@7x5p{t6!dMxzFCNd<#l;>IL?5S?QV-7RMkWDRz~C zr3^XskhZ?mauvn1l#M~Z;<`1?Z;*wZvA?sj>2@_$i!^SGA@MY^Zgb~py}-s``NSWz zeYEL@MCN6%giE-SnJjMQEOGbIdw#ZW1jX396$iXD)@=$E7?ApVH?<9n%T6`D+YXCQ zWE{wiy;Yn<7K6EDLz|>lQ4HPa31G-D+a7=+(ggp)kRG72T2n*Z%YZPw&%Hi>eMoPz zZ4Bm|-!h{YJ5X_-tWzW6nJ@4$t`Ewg4SfknMx2o0V*>pbN*^IU#go~k%(bV?*sxjj zwSq(_!F`X~yR6(=&qyVZf#>RH$H{20L229?aFpHU`h{y?QkiS<1d+BM3~aw1CH4+X zwA3g!1C&ho<~?CY!Q=_K(6nmyQw5z6{ytXzA2EOZ)qA18OaL^XJD6NpUbYhEPDKaM zr1xZwvN{g!j|jHG{^(pxQ=l{40oYugcNUBS6{#AQ0~=@T+)F62zKK11wceLJP(`%6 z6xd7VY)Id#A81JG>YTlw2bY4 z%@3@k>+h&22+H)OKG9|sYLQ2EwxsVmE}dYu_lFp#=aQveo=SiS3F&Ar-xK`?e@(Xc zLnR{g7voy}uss;vy=|TAu}#MErEzFYs{mXL=k4|O`B@Pa11+iu8ltAjlgz#tugD;m z&q>?Fp@e5?`I}mp=7M_GgLnI94F8M5QLrQN@#b;4=NEJgKl`(vRnEiyewcr96-Ln< zWLs>C60FV$a2ESCZT={*GQYR&$w_3jGJ{TAeHyEhLzc~}&K_D9- zpjrQo5*eP--T!zao>cI?$?L)Zijn^g0sK{(*vKN{hio&}E*txY6BtnGJhvVm@`(~*}po@e$fCr@On#!^b`hFC8E@8C=)%h#B5Uw)q z(*ixwAb?rY^a(@kwXZ=alt}DO^)@+Z>t!iHZ2xL!kJ~0AO`y_CNO~Ebuw?iY4(AXH zq%Vzom^H6x74tG|AS1}j^zCIZ=nLr+7f>U7I&5^HdLiI}mrKAr*=6l!cj_yXnz9FY z`P6vS7zHHmOMA6H9;<(~bFtmjfsTXH2ELaoaKh=Q!lN4NQ-|@Nx{YltxkpP*gFHTH zov+Z9nJFEv3`5rCOt8YcKa7`FmmGG6M7<*C^qMEypi5kFLk%UaB)7j=37!^zOMv^^ z_nYP5i&EI2WUrWjt)|Vu#MJ$qE_~d|MrTp`q44Y!rye}hD699J7su?WsQY>S>KS-^ z8%|CcjWr#Xxbq4(@+w4I46dUMU00*BEBnG5?$>2Yfh?=qgYk!gh~tQy1u;0Sc>=KJ zO5$@8(_mmw`eSu#pd&~mAT+w#c2DW?hN-+8=X&W+ALDrY(&vO@YzWa5|7sg9b`v-Vx?MKEjHcNw~*ETD`9Q^>@o_l>uY|N6xu^k zNhVr-KY}(rS#2(a$gVdnQx>dNl9+6L6rg$gEp9*q>7Fh z4x0Ya6c2xHjhAG+l4UiIl5j+2kS3bRBRaw(p(HoWvRG*fS1>46@6bEs zmP5yD&Nik@8D~*S-+BH}*nW-@KV7Io{{3|C4$h?LJOqW+#@D0_Gfu8Nfj6Vj75|f-?v#*e{R8~ zMQc^)BiGg5!$l|3>?Uw#2=%asY5#g>!hJ87!KZq!w?WC6>qlLIT9*SJdf*2}+fnmp z2rbt$W)2lX_6>(tz8Z+7h7-S&@;73Zf3D>qjSpr}2?xe{ikL9##WLC59#q;gYDkeU zf=>!C=bLVD9#zWp+heq6-CB$mWP{#x zDWr?m3CzsVAfv-+_)q%FxXNz_jOW9KV@5W9I*9cB3}(q~y5GtI*=pDX?=OYIwV!iy zRj&HQV-s7o2i3|19Oo;wJxE31%%CLla~SZ=$b$mc`#{8xPd9>%4kw&BGmj$*)#H&S zgp%uXq2x-u(LtdaZPU{jzBCx)3%9F3T&Tx>gNxlCml{dkHlJ}=9U(s?T}kn4x|91K zSJ&yW$7K=sF5=dnp5*U_#4_7s?1*02-c%PUFOH_Q-!1Fii2EsevVuE_Pm@OrO^ksR zoQ>F~B|m{7(aY(Zjk7P>h9e21CpOs>dY)z7i^l3mXeQ|wcqvxteY-*+vITyvp|;K9 zgD-_=E0eIUed+5Dtn8=1+!iauZOU++iA~nPEzfMD&PW&`?Q8S5$MbvCC`4Tq9fW^- zXD3~*ypp7@Fyic(`%~r|hi-q*1m`6no=xj3&$P zMy9g%sTcr7sz%v0y-tfmuUmzmLcG_wYlGjz97YSCDT7obG7qH!loGjM$)rXNAari5 z{C`J&;~aB~#jgB*IYuH@oVlxm^RPS9|97F~&sUmEn#bP|GV?|zZf+#7RDLNmu&zeb zu5Q?_ZYK18NH}owz8Ujc0eRE*NlR_>zx_Ai)^`ty-SFA%SG?@0U2nh_I#g$J)Ws=kAtK>vwp0jyvO0m zqtsBx^gPWIqxo30*NzGy6M$wSGOh&8h6b4cml#_n?2-+q1Wf};EBO^ITP13JH9;s; z$p`%@Az40DiFV-BUgo=4QAeov&~SlRQG)3$H>DEU^s1QP_D5ARwIS9#G#W_D$TyTC zl*GoC)BI)iHNDrG3_VghZ{*zsJHx0DER)LlLL-_hOz4%;xIe9)$NCuT*bh%W8LEepy5^WG5}f z9C|jeqF}D&&MlWD*n(sZyuxLGK-$N77M|Ciw%)Tlk{nJw>)mcVuu5LZzQ*YCdaNoF z49}MAAgZRb9o&{7AMl~pf&x_OU^ywpu)G;4v`+11Ah5wPX$FC8cNB(=T+cduk$mVe z3yZVw0{e81h_SJ)$v=JP_=fxsa$kKf!L(X!m84j-0QDMwM{y^qCffZw3+%|gFermt zTA89XM2g$F&%Hsv*^QDyOdGd`k>9ZqhwHK)j#@M!A1`?h|D^LOc0AFm^4gQ)d3Z7j zCFzaLxs$VT#tTd%+m`Ci+*~%1WLR~RXK$-b66(p9tnU61p`qMJaqFwfZ*6*wIUDqd zK;f$Q`OR!orC$?X@NAuxXlQYsm;AXUFD$1+Z#nb^d6P*!5s|JZX`xe2z!T5o{48$y zuAa#gg0!dOdC!=RfEKR@1M)HwDrHMiNU;EsF3PAFBY9$NjD$f?x5Sa-ZK(uzwu<>w z5NuPYg@owrx|WzEr>zd!1Ll~%wQ03|h@1hJwcOSFfU)-XsfH| z=LLqkVSJ@;O|FRy1FF6;yKkqJbq4-MrrYW(vXHDYpZZMD^dQc@ssK+a7O{w8A&I!P zb;hI8;_cKX?N#nJuxq^1%Gh`#8eo$vHF*5dH*eF5Kz9MEFa9(O%}m{yjMGs?HDK|V zU;DTf6yF?Y_iu4g7W-t_O^F|Ws#ZN=H?0xjCH1n?8nl@t;WAHB!xqAC*6-|}Bm47} z@5h&*d#;ZqBHI{QzWkNd?iFqu+H>qj-=sqT7f$7l$t>pEaPJXCDd0zOGI_&cI+mhi zD(o<9HrV@u-y00{$v*Dhv6f}gx)mp7_GiFmDpBCshT$8q*7Rh>p)$h82V1z|C=X@$Z5)9>dD<| zG(0bsC`GdaJ?d$#p9Gv>aE24yvW3YWc)Hw@fn&#ywX)p$s~7gy*pVnT(yn_kH|&s_ z?16yN{R684GY%rP1@Yqs33^Tr4>_v{@`KAfcLzE`_~k{~jb+;SQhZ#hhv^#eZB(iM zdhqJdy-dL@<7_9`!m!@i0EQ(1RW8#l>e4Dme6C}7rvuGYP1gl!i5C;=N>pR)!RL3O zSkdPnhb?O~HeYTrD@EsL=*5PT~n79cs{6@!|~vYB_t&v9`w z8B5r4m}VIPpOcC7txtvyfAS!ex;5d~HIS>O_1mDu^QL4eS0cc2ug4Y%Rr*OO65Dd} zfL}8;s!tFtw>2udKh(IZ1(7d)Vj&ZtV&(f;6WVuAa4Y|3AzUo|CC1C`gHQqRi!g#I zfdY<%KvMkBG$6XGsz>}d8qgp6@0lJSRmjx-7~gSICe2~Si8Hhu~pNyk?OH&sudU}PK!ehm12iA0P zO*R{aiHC%V;ca2c@$c9eE+h`wdN7Ee8N()6dSlILECg*G)l3ulM-3 zZU7S@c5H~o2ewg1}iVlv;VcR?MHoCoa34*raa9&DTe>>CNm`ttR zt5nI`i9lrm)h*63__iX$+xs(e?_vF)@05ldiL8jeMUWe6*-yraR_$-7Ok>{1BbMZN zksbfRs5@vP%0j;jDEVekT^Y?bOw`?^3(-eggZ+1(Km&=u@5$*r_K?lAqcsqLEZG-Y zSx|68RS0f;KP^V_o@euqmuyjPO2tqde+;)rW&dnyhLRX`?kzKR)uJ)nwZLt5V?*d46;bpp<`m-hmz$uwO{mHA2GlP< zn)iH`G0EwQj46u0=X#Jtwnp^@6glse{%Na7lNnWZrq)}YA@27Zwp2%aC*WV_{ZSH99&nT&t!jTeo(?-+S$6cHX`!#>F(}ZFA`9#8aVGN*6kj% z5vk(4Oqo{;#8bLlKiFF^Tf(Bxl3YzkelYw8L9-WOX-;AKTLSULI*tu8^SJ}Rc!J#O zA?QOvekja&0jhf2u>|h$1h+8y%5x*RvSa_52O>DIKF;T$EdTK>4~8y!tkv<+Uaf(v zFF7J+v1GDikb_x*DDNm@;U2f5PqJG*)e3pau2FNeP1UV*t>&VuLn(IXTd`sWEtlFr zIm?RsIHYc*swrC&l3urNUU#Q3B@oLIF>dGY8{bh+_F?qTm@r>C%2c2|wlklEjPCul zVbah$w^;IHdUt^>DjaV!5&9T9{!ARG4E{6P53-OK`8ko=!dpK*EZ>as_`;RIQU1GirI4vkqcH2Y13|= z@XGxBFCtx{M>SmD&k^U@LfKw}3PC|MF3w3RPgNVeG906f<_TJltt@Y&Oy|~O5ptE^ z-cuC}+Q%W@pRM0soe{Q|uG|V`?9aP>A``p)C^Hk@*TAmIV&09#w;959sGf1y8w3+_ z9DyYLfTAQPU`G3{B&xooH^Yw=A3mTlLt;1D6SZYuE3q8?kKl3`xo zyoZbFG;C=TD2GN}Muv0a&}xbtbP2NPkMk!8`@k^{16=FpKt7tP1TvWd(q;-^s1F_7ar$ z)&4w_b_L#aEOqGO)H9LXnuv}QdMDEZHbSu`}x#awhJUb;%4BLg)rlzu32>A_GCS`jfnN=1n53zYCE(Dd?h;Und?eBhwUh}}GAWvH z#_){@1WvRxjb{0FVhE$k^lZd#K}tU(NKHRe`j?2<$A|WicWl76nUhpiIdaULcW|;WI6Zt%!3mdZFMh<5zLz4~5(;~$D4w`N~ z8`g=2R(5!N<;a;~+}oX{$EvY7#dL(e1AbFh?_=Xz$!hK(Z`$dsCMa2t8B}U*u-m{8 zQCsy1?QR)Epxw+E4vPuJ2hLJh^rn?bxK=RgLE&g8d{ZscWc?AAp57d0|Ig2)F%o?J zf%?1a;}VT=5`3NeSJdm{AUBx?f6+p`L9&hxZ7oU_9JPA!x&A)2P{A!GnF}roClq+a zz757|bKzNuX7rLzTVP)sfX9Duf-z1G z;nL$ocGJFOEEj!RdbqKEh>Prav`-@su5NMWxN#iUS#!bV2Q?%<|ou zZD5b74x`>HLM;Vgp@mh6sjEo}HuuoeA?cBI--4)_que0uKTG6Tw9+*h-+wz)HtNS369l0(@>}ygY3Bnv)BYc+2AF-o!e$R z`WrZm$B@y0?6wsf8Iq9p%VBSxLY>ULd8GP_X%NR-Co@EGI8iKekl*>N9qa|(cC27J zlZg+ypV{+u%7=N8mABSYS%oXDGhXWa=DrQtG5$H5x{&(dj044XGgpv}oPee{H(zN=NU zr>x!^qu1X z7;d-j5AfXDmeZy-#}jDyPxFCHH3^ctJ;y0J;ev)5Zo7|y<3Qoy!#pP&74rXK?5%>@ z0K2Zy7Ax-V1b26L*W&J0C{A&T6WpP=ySux)yF+nz=cMoZeRD3(KmVM&Wb!04nPm2Q z_Fl4ehZvgz!y42NZ1%PzVOIN70cBXd_@T>@vMx~@3&p;!AX( zpr+kTj9+E6SF3Fp?|5$Wl~)E`t1pt2I7ieNyQ0Cfpz!@E4U^&u>)VUJuyhqrk`kj< z#at><6J^g#d77FsYTG7ZfDrl7l%1#g?Mm7gm3mbQi#3>#Mx+cCz*2jp;NF2>33padgoi7_3GuIu1#w|MCTe zm~f#dch=F-qV^OCZLu%&ZK$*PN7HFQ6N2L4Nbu}xAjlm#ir5Q12!$-rCLL7#5VFQq z4LAAIk7>zRsU7V-eeEqAy+MmSRe}?LQr8RaMrr}JB3%5VdTS=X=pGD1-eYaw<-`J_ zHg~RcW)TAxH&l=GvvHt)E(epi$cfo@)4gHaJ43%jI}KtbUM{!BfaK+uGhU83MO}rT zzV^P_qVVgta_Wj!%=MrU*4tC72itTYs-u&Ypxn9}LXVbgkJkYQ-I~uOOmgF7p>_9s2 z|Cs^t2c?-OmtrvUh3vHJZeG%5cS$)r?-{HaA0Os>rX5^7)TLLZ)x`-wRgK=ew$e<4opS7->DS4Pt0bd+prw)gul;!b&_u#$%Q3R$4xfTd!n{18-LTV7qRqD=!LR?{6O`OzT%n*UBC+RhjXUcn$0y9Xsl zq!l1FlX_?BogI7Ao8p3LCJ#0xZ{z71+g1awB{4yE zq}yiXc*=}hg@X~6e;Pa~UKjngy|vC^x0*BzCPY-rVL$nJNcWqz;a~w{?X`?GY`E=G zb!h>RPyXgtJrVevV|k1ie_xNjZS{CsgeXiRfHQ#`=W|I>*gMvpFJ27y1DV&;xjS`@ z%%74ZK)pIE47lf!mwGcXd`B{p5@N|=x1>v9k(ChP$J2#qEOt)PJXoQct$`H4KWS`V zBR1$#$jCKMltD=-iOiXN){1p8wg$i|niqUg1S(nCJlXBckd5D2v>${ZtI{-;*PsBw z)Zif;Y2LS*!2#~R{yX8_@WXN+jbhF+2 z$9RP~RSLYRn^dts`qwa_IA|_C_bAFOwUHbISc{=r#Dci-Gy#}lYv!!3?e2lYWeEy( z#lN)r(n`60IF+kd5)1_+ohb@&)r#1xYj|rSElm(ICAAnmv5@A~aUtevtrD&aanAV? z*u0CVPO_97$0X11S-E{Ig1S3|a*6%nXgR;P1O$rPUcm)u3KGv{X6nB?rCY|*&V;~F zRFIueV$xmp1D@BY$c;eXC~jG(JmoS<%bOEwYBrvah1#q+oryBfTX=4k(WhW^zSC0mTj zHg*jA8H5-n%fdSJR46h!`z#Uypkvss)9P>_biizhh>b?gVF@OvU+@RDSK?6zdC>Vp zAX=dSVX?-oAs_N=X~W3darhUDq~cRl1x>U_KHz>t=8gif%V+)MZhb&ZN_f1fC7Tp{ z+F_k}(Om$}c~CzvnH1>Q_m}cBE(M8;I~($#wN4?6Od@`>8{9r^Mx^39L$cn>8u)G6 zuihEPb;(!!;+hYX#-=^qJ62N)RuOX#@p?eoPw9G>ho1D-UBvrzuLA?rJ!9braA2_17t@U{E-iktsV$ zj?5^NX&zi(s&Vbww}D3mAPnxsRbMJ5^(}3DzfZq#TdSr=xSqHG9?8=aS6Q9*Q*if5GYec*BivaWM+kn|zgvI(i`+7%e@8Z2{+#IvzGE8dys6zWMB zLVxfWtqZ&LU~<$tw?*QqcI( z)l&>rQrbHucUGdkjsug>HfqMm9QxW(9;1<&6UD3gDe?UTy}HZ| zu1L)+3eV$73t%SR3c1NVL&rx$%a$APX<2n*5$zjN`Hl3|s=s~==Tp3uo($Jpi72IQ zXci#FlSdEs{fT5UJVevVht1fncIX7UTLS~B>$tmVqm})E3`*1eHbxKHL$S9;7=xrTT5=a{ z!D0T8yPt#j;WH5tIP61)eU(~F-${Ch>kmGyH?zhZ3!U}ReSZlYMyE) z{ifh+qdI*)d{K2iuZhZ#jC;}I=`s5usC-l5*xCP3K#dKK(_%IEZE*MfVDhMCyB5%@ z+c2}->`QoZ9gu%bgZ1ggKS=-nTOyt!$6K7_kJ5BV@$npXO|Pd2s5!v@!{YLt14;%I z<}FVvd*(KA-}F3V`Y2j%lj~DSjd0(qQue^rO)n7JhVjRQNJIk#z=JgV`A!15&E^1! zypRIsI;x<72Oc~Ny|r;ylo>Qw5__|zYOo^)ca7?5w0|T)^-@c&#?p(FZAP|TKW>@H zE#skkKBQ{}c|~SGgFVDz$e22{m_|CU?O)x865jr0$~KtcPCRX{JqM^RF{R`BSJN!Hb3pujLir|28Cykc0An*D$dARus$ym5d4rMqLS_z;kQ4hNS{7-LS z8U1gJ6|E;R3}P&BdSF*iLF2JilVlV}5W^u+?f<}|1W0&THVXs|&=OI~vpWz$WuD)a zjZ&Pr14NQg*~UbP4qyDVWPZngB~atH`Uc&*pd7j5woCBrK`Z{Cey+UuPIkdmmLThx z_t99?|5f9uMiciPA`PVQ9UR(Wfs|$|cE@V$qlhjg_3VFUt|q7l|GNI|>;$dmbl6!{ z?bNVJcT2FDJBJ~dz@yLSlY%Hp(tvEH(z*n>6?IrH1NzS~gRJ@JChi=}pAn9b)aV-- zacC*51po~oW(julrXS5oZMa-!Lv)7IQ#y0CR2(fKLk+SH!zDD z4s2I4eK5nnG!PgWki@}p2((#{R%irJ*0Obno?1+IWebs1N=1IS^iCOhY+TsGm}{t3 zuzY=0m=Y3a-`ZtIO|{Imd_sxS>^k>h*$pM5Jo)JpEWaq>uN%k6%QWmo_j8~cZbG{< z==DLsH0V|E$;+IfP(eRBBz=>tRUGCUC6~NSmJ}N^h4HA?xXmVbQFACY`HRUt4ka5Z zTuSd8)kPd>`8OMrJUdh2YjPj1p9a5^X}CjBnmKAQ2h&YSE05KLku;DZ%7}XjQBl$e zZKd)xXTF2!XjOy^E$Sn`u-~r1p=gxzViIiqR+o;^%U5oK-s#3|<%yi`u1T-TBcX}q=ty2F#34?hBK#jJ7(SWoUpa5d<{R`J z@IX+oJ3}ZCvSQIw+0nptL8DD;8YD!#UC*fAUR2O5b2(C!e)qSxbvB9MpN!x(oumI+ z#-FLV9I9xKp)QB(j^lK?w)2Fvm{U3;qr1+FeEioo$tyk3MM;3vQjtg8sOA}P%C$T)R&tpmZwr0TTd`Ll`UXE_{8a%l=)5?zV)VInz>2frc^h>Qw1Zoq=^6*lMV9uFr)vs9;}L933;9Kn-*U zcDT}4-?(PWLH6++`M%&wB+Tup&Yl>&GBZ67Sgn4O@k#HUKk#-)3imQsg7a3)=qrY` z{)Q2mh;m1g>y1mQ;HDTlvGyk+b<9+SRYzt}h{6|pJ!HNcLgPWpk8fc=OCIouh#b8> z_SE9DY#II&j(=HT^@}@&LGQ|rnrdbU_Q>b11nAmr=t8kOQ?lf@{Q6d;eO%y(XZ%}B zItAP6PPIyXa;qzb1)%Ex(No3bv_Y@C&-;c|5r*bXlOqI(FG<Mofe}k;lDGb;Iy4=Fyq6Kzl znv~umNEqX4adItp{4F&bxK92q^*`%3jHgTst&?l6KYRvp`t3l6g^5R~VsY2v<+yzX zO+Yo!5yC7ePfy4?2R;$|JElhazrfTUut;F27d?d{uRnSQ&@%e&cuQe}nV6a-Fz7=^ zmZFQ^^Q9t;mxQo)3DiKp+~F)`dG&5gkvtLN0%N$SYjJRL?R`vC88z@DWe);l51Jsm zzIddIKvZ^p1oJ;`mPr|nI~4kw?X%3A?v}=}Papy^`H82T8SN!YaK_-~WMM zl(t7v=TUQpoge#Hopo=ZF95N1F=fOYQRN|-LGzDRam|9wo;#TMy5PzMvfwrVMl%%w zy=3YvDwNS~2-emlk)VV-6I5#0WQIUoz#~cxw0?YY<$;9{tV7~aZ>t)@-R!=6NG*Ze zs|N*zrB<)fow)DY;o(s;NS5RlGt&qETL_v&I0%IWed8ZB6#)d{m6=?dQpLZ1CG2-2 z2+k53hs`3qK={ObmR*4f!Y6u198x0CF?e3fGSHaJDqMGP7}Oo%^dYWV3xnVdAbG0{ zF^lwX)P;Du?38E7ZHWbj)~OSJxtj5~Jy`l6(iMw!I$RTx4LMCV!>=h!YJq=Z4Wx)ktmn~EvlFsm`;{GaeAZ){`@UL^H>}AClVzyX=LfE zS+GU1CjVPaDvOX|uOU~mAgY}F{}S?b+-z^RI#911w^tEmMH~9M1}jn1Ewk37TXRJz zCexi*bSpXVHqq`z9`Yo}HGyr zdF`W)&ECOm%_D`>9QmqKw<#aiY(5AzUA;+D%X(-pUeN2C45AfbY(~4ra4k&e}E9bDcN$F$a|LpB5kLsK zGvABbwppXhb}}_|ESjgpMgGB>ZjbO0AO2khptgoq5_s;atGhrwVhMz2KKN%PZhmYj z_f6an8km#}6rwttQ5z$EjFw7El-L^Lk(IUC10XVsQJ}6^dXckpeyK8!OL<&gY9Um& zkHv^QuO7DG)dtpUsd=lkO*(`|0)_E8&9ClMe^JfM1XV`e$fJijy_XuEkWaowjU$Xp z7#-J2TPpLF6f5l(FnK@wRYumFna9uxBhD6XM0X2x6_XMwO0f}6)d+3b($%CO{|wf1 z84&s|t{-e#H`EBDzVS*wMoSMh=AEziqxa));-KIgtrML{CPUW~?!zh;);;~+DRd2Y zYU+n>CMSr>ksjCaZ{hAqC*P5U%lZ4^sX41eSBgYZnn8%z7W=y5&T17Npt$>TH%Ofs zVkHPQ8awSKStk$^2CfmcZs3Z|(Ml)5Z8mIx-=jcGcTTu1)4DP5xQodHj@H3Uns1-aDXXWjlG`Q zINQ}9`TQ5S>(CntaaA=$a0A|6y1c;Km1p3Bg~4_hOOI@3)Y%bku5tiR%6c>MO>qxz zLybCv00Y?<%BiiM%%UD>!>q)Fs<8+1VYOl|iTX;!A9MR?lYuu!fA#^@2Pbe(-XqpjXslOEf^#?-?hy20R%M|-U;N>@IvVn1tZ$4dB)Yn#LyHErKN1%cf zw+q|5A_z-LV)|!MMD)8zDryQ#uORh70Qi=l8Xd^^SDeE&=UmystOJ<=h^1SpAKbah&MQF_V2 zTTC275bY~>o*@=pdozZ5dnkQeQQ34EI|-!2mPp7`u zVI#nlf+Q*Dn@6`}9Gq;*h`-3~<&JX}0L+(I`p(J5_J<#WE(D!2i!7Z!V}saZLzCvv zAlK~LXT>I+GYvS$k5{QF~z?o*)KAUg3)sPE?KX&-P6d8x-bG1 zb2%Z4i0GT5pH{AyuWQMy6jD6pc8id zNq->pszr6LSQD%_-BT#9^mCq{V!`=R;w@J+lU$O*xnx9sum?THXpX3e@NqRcv;Tyu zBQTv)v)^JBs>n2EQE_Bw;Ud?^?Bf6Hx1ug+V_5)$Ny4?%#Z%~r5`K4L95ciXPd)fc zVlSCw(|pfvDoC&BuUlUvuep=M?ld+!nypi>Ho2I3`5bs<`e)S&U%D$Hy@=A@X?&|o z)MEzZ8bjIk)PiVn>C+zxS%=4N( z$2%MTjZ41Q}LIe`3aDn2bsU?<+?$e=tmOk?dcO?r78MG~#dtM4U9FGREY=(J2!-u#Yp zDWYZ0r^wNFc&wZu_Luq(7Ai0pNu3V|=aLD8Emq6C;|AvlSOPZW*4uJZH(#TbE)P?|(I8k1))BpbWOSD5r$RIHf?-{F?GGW`W@@mYIl=Mcx{TL*qYBHMF!M z!I7ayDgD6>k=Yg$uzrHP8#kf_fON7?{}f#n=w zXtnYs{uDP{A-_LVX~mkodvLvq`Thp$8k!UKSjt)?4VoPFh#f(%+;!Jxj}f8ORxDq2b3R#aG&PVx zb6zOys2Z9NCQLoX9Xe;WR~4)Z3FRytoB>U%dn^K3X;@b0njSM+uPW#L&!vp1l#k4; zpxK-x5ML{X`~Ye5GosrzCM^YYfJC@J>k|(UH>e)PaZapg&x?+g{W?@r+67^(?u%;GorJD%Zqo z^;V~g5z`8sMu>*e^*!{89a7ndg(eG{gIIzyC0O7eNU%T^+3Blfjy;8(s@oN zyTQ|U^W0v1mvnplK=XlmmzXC)^&`#vB%lW~xY!C5Jj6C|2YYB47ZUgT?#kqFR3(l7 z(p5KbBqT|RS+maRz5!OuXHAe4RWJ5cSl?_S;bH5i&}U)1Lsoo_GxbUvstMcrHTDl} z%dRsYd@DwR)~bOah)}6CTpeK&VwF-GMb5^w=rphn)p;5p*>x)a~j$a)odYm z1t989RCdUu+yGIOj7+%~syG_8uw%lE9Cmb$g+|M{+ho1d6(KrPV5o?33mG5RPf%`e zmt8};Uy`r&7B$DFE1>2gzpApbacid02Oj8ZN9k1FUM4X7CB%L9v%jeJ)JMd_HV@^P zo!Q+g=)18QSo=f121td_3Q{555YsaVG|M;ja)~uq&Z8!~zqNgP(3iV|X-F&Le0bgZo z1zhcYr&gT{Xy2&08#J$vLD~VB3>?8-5g6#$;w{!wQEY7eF(GGM)p2}r(%SfLp`Ray zz}#u6nxzSGRvWT0URNuSB-TdLbOrlxPglZ{EFUG0Zq+~pj=?g#&dNR%)3n6(rV`e0Qnm%4?PI<`MQ;|jlj!}`f1h-fIbk<&bg5(D?x zhdZ@kIeavzE0ef94)I)Z#!+gx%dWd-8klU>1b6WsJOvKGxdc%>ETyz5Hf;nYP z{~j(b4ItO4P#MMXC(4Xd8LP+yh7FdDWn#O$e_JMAwizHBwp&D()c&i16M+Mmpidr4 zaW;^@Lv*P|c2sZ?nREc`<1hFC2)l^3`ln6ouC&*kPsm0mEf|9f0w$)Vs8yhygh4XY zk+2(X=>#kh_3f9Z{-F3HT6R3+HhH6c)HGtq7n6mbMED2lTvECzCu%@})cT)cEe%d3 z+hb&?s5!rN2e}RLvHh1)sS!=-e;NpcWbFC+_7-O7FUOPhL`YZEo3Rgu zZpzQ(Da|5v$+R5(ghjscxh3Gee1RiNKh}V8j{s$!@A~-k-ZgY;;>GlGng*uN7f71e zuq`E!p@kn>RP`J<8|RaKP1p}av}P*{f4+`3Izni;TM9Y!-#J~$P(Wx>%3Sfe) zkx>hLAr*l*QIrz8&^Ne>+A5+D4m1vw$@SekVqlEucunJ^C}xaniK{ZkNVmiYzb?z_ zPTNvEPTTEPajKW!e+YZOhGAXW>QAi##^j)C2)ibV1)WUKz~iN+5f|j~lZz+=5-6JR z<>P&z`{R%Tx1dqNe*PnY2E{?cB$i6sVsp^5FXBRYAVHK2-aLx}A*e`mHBL*QfhIvv z4H5Anpkq<=^)rDWT3eWYZy(e=Mwr0avgLq?4y8PIDzM}5e{@MmlS04yc<~%UQNW7b z#$O4OkTpKlHkBlWloB`cPwyW_FMo+@VWs}JjqdyVj^=oc&j&+2 zkS><3RfOtyfK(EK19fSkvA;y`*ErdklJ|8)67`nw^=x=|v}t8nnA?V_@AV7M0rCBT z?X>`_(b@u#+!tl&_$wvMp8=5|;zBgH6tNEnC9w}`W@tP{dP#on1HK&pKFxN`S$O`X znzBw=IcS(6MsYIyLTKqTN&Nb<@Pa1I8)1+G?3O!F0W1v$T_qjb>r2zUY|Yv;zCP+! z(Y`Ij)TF1qx0~6XKGIs9pmnmsxw^Q~RZj0t2}p zh0Crf<1TNB)u}sHvF(q+f|KVL1CqslEYHH&9_X19Y_mseLhN$K3fM}O@Af)HR3xG4 zobTC)UtA*We{i6+bnSImbT_V9H+IB){43H1h(NHWHePLcLAVuySd0NIL9+dE|J;5F zt9l|1ZO);CLz{hIJ7~?+AZC368pP8L#!x9wSd*33i6vj^0`@x$3Byk3Jc*cyg$P-B zQDscRaym6LE)vYMbN3`=?M?o`bZP?UmK?}mkC=lLWq5e9z_qgzlD*&B8~RWOyN;S` zZ{@DY>b<|*ifDfbT`+1K-%%BA^ZjSHiKaXK2!vJS_gxIsJMRG~6#=suiv2QD1AVN4 z>x^?tcW!?Mw}zvU73e)wn3FraOg*P?y9Lq&$r)r~ngpHTM?`!A zj={K9d;`&xG$|{OV|H|1uWIxy1t7%`6bh;;Vu0#Vi;D2pJVs71bb$u)T=2XE|7>)L zjp==KN(#1^*oUx^J#;3&cTk^V0CM-Qlw@7EHKH(bW6QF z?3059NtUf=Y7`S5WR70gq-8|8X4DkI9Nh$Vb5rQ-`KJH zu|{3jCj*|%PatcngtT&_gVUL%buLQ|Cb+0_?ED14#KoE6~8g$X?` zGx?%tkVM=g++iYautXkdf|SOI5d{UkexH)&(q1+S?Tm6QH-Q$P(Rl$2ia9rA=^+|l z+k-D9)mBZ;MI}HsH4I|mC_~M0!My^PD>Kg%x%xRUN=h_y!V;qBN_Jns^<_!wOs6e(q z-(SyCQDe! zs=cE>8YH5qdy0UFlvrp|xo05^si#8$F&KJYxli2oH8 z&#D(0Lqh;SR@zRZ7TP5bSaIG3ti;GpX!Ln&2=1#$7kmi$6LD?SahU5plgo-R;W@m+ zzhJ4(Yk2>>*KqzHf_z8HL5*^^yX2UPvA8HDf-7)iCGfbl<@zv4a@0&&NU1PjVFJd9nIfuN6Px0~3dE9k2EQy74h5^jkzhb0Cu#rImncx)Z+6 zi#i5!Ng%FdUo`Uki|wPyh$@+}BtvaVN$F`KQ(7u(jysRx$R9Jy{Dvtjh|0+FAZALz z(e&GUwrI@+5XB(B09gdtXbo~ouX&IZ5tDayU}wL{2;y%yUPlg=8?Ks*)$OSd!TT1{kwhC#>Z~8taDcYUk zW3On_+ZG3n4LDfjIB4bW9V9Fo#6-?*C(#+Gra}`A(=^>>XoetnMv`_?n&%<2)Skjn zk8qI%#YuM+sk$i$V|%ucN7*${jZCnCckD`Jv&rRTpy`mW6Nk;YdMyO^Y(0V_X>?K~ zYi11Dgoa*Ex`cKN|12aWd0Xfi>}vd9?Pj~nycsu?Ljl6Y_r`5c|7dg^qW>BOY5H{w zrG#++AdS=ems5Hj<5Sv3U&_g+zEIW=Aq2qpky3Fl&Z3y%u-E0`Fc58i=?J+;3&X4D zCs3k&XbG|26_)JhHN=c^m8d8UuUswRouHz1Wx)NFB%H4+0*=9AXYVxNTXg2GC-&A? zHEQpc9!)13YFwIoB>&EII=0L{uC{J{85Pu(#9fWH`>WIi5d~D#;i*;Rybj%IN}OAI z7s!tc?xe4OOrBv5G*6sOq4`rE4$~tNCc?R>`(=63>3EbhtY*HVR{VegE*22)4es8T zE*`ba>KycyXuxv3@-au#aP$1Io6#srl;Zq7 zdgmm)5SI}?TYK~KF%*=SV5xICMWX4>C?q9e^p}J24^~DgmS3eRQ-GY&2o8B0E($5+Y+ z4XMo%i1yC#vYkl&Qtk`7xtv24dU*AG6QGVTbVxGH!N;K4eWr(Z^$ALDujdh`H4f0j zP@O1*z;}nd{aBPA=XoTYdb(}jU9hj$5KjydY!IU=A)(XZ?A_OP-+v;P0}wvPO+FDQ zV!_ld+60E%%Kt?vnuR@mvYTRZKjqg|<6tKn*6PG;bf$^Sb!_V=eR|fD<9z}9l`tm* zKV6c>KA5c5C<$w4n5u{F=Oz-E?tJjoKQ{s4O9V4xAOm|)nNTR~a~Y*H)pkf#^-eD> zz9(8Gj_@!s-s&QK(9B|i5@V4oBL#VlX%KBwTZ+Rm>qYfth`7;kCZ6bO90m_=N(@t* zL-Q{&Pe6j454`@9Ko1~!iR&Xium+1hfm<5zgh3xM;<_+hRsVJOVoNxKeibdJ*?6~C zWP9fo@u$z0!=o(KW{AWdp8Iu47CRiUG6lS06kV(>nB34Rm3=43WBm4;Wh*EF{Psm0 zJGnn-r9sJnSfOYx43tLu?g4VbdBhaUU}OL`i3+&Of{d)@hNR=|cWMXq8Xi;}t@OhDlPDo0 zlRtTOESL(+k(!ysXwAoF2%Rp@#C0450_YGvHL7Pnbkn)mpav2Ix+r7*Sfj9fr+QUu zn{_+mXGKe7d-i#?r*3UZi#~)AnCQPOI{mt?`I9u-r$C7kmUD2vci7}oi$xaW&i=l; z8MZWPbA};c#%o#lL5DSV>74i{-4A+zB8ir}BCb0@IBrwOE!IPu>IliQvjg=>DP~@} zc%65bS+yN2(p0mD>q-b7?W%RY#(JGCwiPGgrZ8QnR(Q5Y^v=;t4f}~ILlk~4*U;`c zEUmN4P2z?qP^=!^uIg@XM~ zsolir-$OCh*oQA_u3D5ONBp}gDyQXaFEAV{Yy*WwBmaeyxz@q|@u$mB#~D=Db~-E-WoNv5cqvQ+ zo#DY1dqTwQWLihAT+r?2hrC-pOb@lc6RrHB< z^vzTO~}TIlfAh8uagj))0sj5x91N!4n~m~ z#2#t2zS23 zpm)XI_dq_bM1Q>Pmm=iyPDTa)*?5`hG706BL?yjvQpf?b>2fQfz)>AoTF(WE_p?z` z!djK#~a}uw_j%#wQ>Dmqqa}CxwMSQO8+^vnF&<@3GCGHL*WjZ3;C@3w{d~&O0 zym9^G@VZeecv$0BQPJgnOo0k1Kxg-JxnQRStJo%f@Nm`~w7ZjqB+zTcFgw3e8;~GI zv`9eD+!3Z^Ag#;Ahm*AGI*1b1UZ7jx=M%6@(Pw)ngt#5y zC15)gJ20LiyR0n0CisOao$(t@@??m_-`nnlb32t%_kY&)&Rd+NEr=bxD(j@BNiw!q z)~MSsa}1eW-YHK#2&~x7I=csst%bum1Ox%Y`OsdVb$i$hw38hhp>LdvCD{k>L&$bVzYJl6aEo(|x3FG0N4L`tMT8Ro zg}ej9nUbBR0+;lW-MEDMVU`n!!N5>h4NEBXj7w>anjEyo1G`EFcE{ZR zoPSHGYp|ei>s*_#tebYT@8a1;AX+ih!x?eELo0|}hR6^gj;b)n;}^o*7zMuG;#t4I z(`W7T$EKE_q+I~|JAJf`N2m&bg zM4E~cJsE1DzrW7FEcwpbr28+(0qTEwI?C9GZETxF@-hMFZ~Kma9R;Lt4iG~drCdFN zIFafk>}@U--JXn%ojBMflznUW4wYWf}mO`ekcHo%?4qZ_x7 zRVPxPfd%6dI&eEMG5zD6-xVLwPb4C@o+Km(KlF|>!ECu?veJ+q$vk>b_7dmrc4DI) z2yw5Y_VVqO9dd4(mtf;IgJpak9jWb+J2 zqh@{(hQ?<*o}L<~xLcu*<&E@<$wIQoHL8+{NZ%toLV!GOfYgeKGqTQ$# zUDz^pM#x#b`2;-w@ZKp!O%MvBnb0vZ>C^RB+Pgs&d9N{jM@Ux%s?htDxU=Hh{88*o z{SBg2#pF+H>;fDLv4D;L;%PFO1sl zFMOKv!LEBp`AM^ZIjjYXCpj zv}Lpq{!b#F=p+r1l@QpV{PlzT>spPSJ8!F8s?3XjOzbB(gmLcP)jMh1%fe^2Ks_wF z-zP2Ta(wUGKv#hU%J{gd`cLM^+6@Sb|Nj}F7bo}ehLRMj|NPQ=AW&-}TjhB*RM4Z& zq_d3bOe2iB?JvojL)3Mx75`aayxU%wBl_6zH2hSxUrQbf>DnW4iKq3ay~fz=<|MxQ zvY)L%S=kxDU}(Nk$%WDH@p!F1qCunJ%=vN5!&RRa+!kAo7HOqO*H-;?!kzYM&|N_+ zO(5+m@fO^w3w&wGMO{{98#dgx4KHskYVh8WBM)SQ{x2nKgOHJJVqZQ-l+3Mn!q|N* zN~)Z458N@8$Z{rzV6h0Y`yRevzqO)BpYwZc=uI|vYgcniUDG}>vJq16D56aSpsW`A zdPh~XE&Fb7q$e096P#t?teInD2-b8 z@x&lR^jhHd5z>&c3eD5QwbeyYsQboHrhw@L-*yt_S6H64*c7g5vji8iRSm&Lq1K6s z?R53UBN<~=nj#PjC5$dy*L8pt|0GV)l{>>1G{es}XRYR77v9u6VtSdB4{ zfwpB&U$*{YK}$~J|6t64RFokJw;Ha3`TX2>#8QnlP5Ov64$r+}66VZX9sS=o$*WViJdAqOhnwcnXUt}MfMv1C&Khdc#J&ZHxR zBB`w04Yz+~i^`CJ3gtRvy!D-`Sm10~G>L{TbFtJY45zO}6noZqjf54OITMGxf-ghc zxB4tB;D+c7S*_U*cT?Hf;BQ%eQ+H6qH`ZuS4Vi&!FrCL*Ih+r4l{|~;teHS*g_Cp+ z6GQDsKNNdPl$^maQjz0cw*&fgC#r(YD*h7d(W={5B?vRoEABSNDu{(4u4^Q zs{l|~)Cl9!vc_)I*Nj-5)mYvtfK1wYA(z#50dpnD@+U<3(frC*t_@}mi7@Z%R@3a+3rR{O zQ7j=#qn#KSTOJ73js?epZQ}6S3@0I|GD#|oFt(_vBPc1t9oH=7#?@xL8ZKDs`2R5W z&GB`u-MVdT+i2`2Y0%iVZQHhOHFnatv28ZCZ9BOu-FtuMJKw$M{?303bFTTWfoJf2 zN8%~LtYEc=t4w*7s9$ECcxrYG?^e829SAOx>tMV9p4>dXDDk@fB_&TwA)Jo>#ynj1T>K<8lt3R5c>>=~rCE3!gm6b`ub{+VP84Ec(vzS2#F^RU4IJwX0B zE=^};(C8ptT*8YQFUz(k<~s)v-{leO>QA7n8an`HiryHP**1p(Yp6^Fu$L^Q{3N}f z*imgeqJ*Q2Uq>p(PmX^pLh;RLx88X5#Z6b$jSM#$*m5e6qfFa-&mz1aV@FfH>3zb! z3=@0v7)WnYu0A1q_EXE0K+kZC4}R~ct%=uwZRQ6wCK{N5@cr2$HoQYEKOamfjrh>< z0hjN}Bfs7Lz$@jSzC{|q_U!-h;E2C~_3ysL(^DLGr!Umt=SCU!LzK5aGWFa~uQAp= z2xu8W2wu|;-1mrtE<=Fh(9JLK-Hkt^_uchfu2WMO`ex_q4E*|DjoR`(Gmz`n+S!@& zdU4|HE;VI=JY_-8ABvJ-wQA&@wgvh-cGZlWF&F-7YRi45``P{I3g*V!9*h|$I9=Z` zrax)Qfg9K>XHuSYbO(tw4LXY8_3C|9bKsNUoyH0H$=M19w)UU^bx>8hGdwy@ocE6= zf*IK5XU9Gz7SkY5TKr+!HeY^VajJ5vt?1atWe4VpQ*2*9%6TMF6(}Hl9r1Uqg-ary zv@YMoAN2z`^F0Sfg{|~#VrdxD3fqYrYhzaCMh5L4zB7G?tyK+cu+?>Xgt4nXc^u( zw}uX(qO>VnPz3BhIUO|h3qJA5@h50Lg9*En##`<$V~!s0`arK6(kU2m%o)9IGn|1BpG3S0i_tGm*9uGj=_7pQGkQg8~?Tx5|q*+7G<=RSFr?aT3)b%*uw9@+TEkK_f zRDjiVjs7$IVU-8On|O;Yt_1u?I)cP zuBUJB{S|iZXqqx>A)iZWB*Vyaa?$kVit;CB7H+*%QW_?k_>6lZr!}fx<@OwcJESF^1Eekf#bPFX^@!rH=pa^+hmrr)&uu%JK8cR6VwR7zTZRNUpvF2iN}GB~;?zDQ&D}%H zV%S4;np4I|;E5vBdjh^R(v`(qTx-)LJ%Z_{%QqRJ?XE_1f=X( z9k2culwZEt+QmnTO<>Sq&-FG63F_qJy>+Qm=Qi10;Ou$Fa)OG(qR<8gI?~LvK7N5~ zuhi1n9)M`_VoRB`0vd1%L|zhbZ|_X-ue=oD#s6Y2dniATFe`@2zs$ZnS(slkj9p zEPVyS$?XU;Z2G~o(GHYf(|^aMs{T=IbDg11Rxk}#v;aY@fgVlL(ogBB^yFvtPl5oX zmejK{elFd&r{G4)`xZDM#6ytEQ6TvMOx5{E9`paLeqq<$RipDLL7MDj5& z$N&Z~<--t0*;18+Fri+=Sc3aw8g0c=4Pe@tW$bv07hp^ugGQZUVgO)2RR+T=V0wUl zW1J#UOeSE!NTOR>`ZGIBRaW%;<%s2tjLRl}*`9kw-FvJV`eBmYL8@0rDrajR^GkHNh~9g2uISjiqS}C8RbiTt8itVE@Vs+kiQ7u>1~esMi~vHR)K zLf6yS5&GCO{qkI!zj}L0`b|9kr_{g{<1bmI5_rTH=X-(W$N7{me65%{TT98T3-Yd? ze@RWUN&IAiQ06oAR{t7s*bCjrR1&oWqo@&qenx{GmfE6$K!okzi2WM$kaZ0TLz50d zW!q-(jrI=u&e`0@(MmTit(io{s0y5#F~yBAIA0GXoouG_L4G}7kHHf~{SK!Hyi{8S z_stAHDJm^W98ZoxsFm;*)1eXHoxY|EgaakZc&mJjbY+1}WYYtM@L>rC2CoSg4^mue zp~<`h?cEX=O1;3PS`ozADEr!n<|65m=>?b*PP4y^-Ie6E_=Ovb8wXvte{TJt#T@x0 z-UG8v444us@M3KRQ&VXrwqjPV8pjK+;u@PO^gw~hNN}ksNa22rZrAIiKLiYU@u@jq zkHo5{B3YAj(#bde#%;*|%3OQ1D(pCL-T#3c3!ZeoKV@6{%Y2~~+YPHH`mfRwE@j7; zXg!P5SODm7%-OKf;^6rc4bdXX-pIZ(k3o8Gxn!xSoMBPh&iCT|(umFpR`Zoz(xW{) zS2anYWjwebtm1Q5I8^}4uWD$;e}X#B%vLb z`TH9eZvbNw%VC5*w*mUE&o{#F;6Cy}(i1JlrVYY1dn!O3e>waer|vc0--If5DY_mZA&8f+cIPBCaL!9OloO-afBBZ+~^2p;PTRcM^9aESpO((!}Hm3G_fRMl7A3 z9Qe=)TM@Md%eJps!-8c?!~vBq-&GZ?*W+MH@NU`Gn`n! zN}cw#Y~rSG(Faxdy7vxJAO)dV(!^QMJYJ*)K?2nsnvq<+7yQDCnZ+(?lVhp7mk6QN zkUsf-cisywU0rEJQe|qPIg=2Us?b8`cYk_(;5-t&J~s$vPBtU#X-yLc|HU? zrBdKYs?q3%>aPj(2wzVLnCaBT=T;MSZ9i~RZq-N?Eq=QZPciH787-Akxkbp48gx?^ z1meL@O#ggkUa-{SmcR>2rC(r2Ip_(}m?FcP>Ec5%{`Nrn)~1^2fwA5JXEZzd^A5dx zi>+_l7dr_5$q$@z?>rawczf!TxyaSwE>|Iw9suuuOA)Y(g{-gDH0D)V-_G-(Zm6GSr_ez$%RB+pPG?6cAR>K>* z3{7OMXZw1_x;vm`0~MAt5&`E@ZAZlwjw%VJIC>?h ze80mh_<%BufN7I~m_`Kt%7k@)5UTpd6)}*Tkt-ntTwFztuGcMB!1K@VJg&RSC}+~e zq18q0V(4sSiLw+3EW#|E3D@fdTZG?W?yfc|ky-SHLguRWFr)n{j}cE)t8vJ(UN$P5 z5To0BwHNkoSdPdm$)pYPy70(u`eWDXF7N#jOfBpCOO~C|)n}pSM3ka~84+ zza6_{yN;RK3fX$AE5DQyEkk&7J17&Q`6-EMJIIB+pPYUZWn984yH-XUVK+$f&T^+l zzv?I{a?<-zD8fupOc$09!!opcH@f5C@TXx5`Ft3)0TV!zc4{tj7#7`AIRS+ zJRNCUy$l>Jb0I7W3T9SqwwpP>-nxlS4vFgRRu1x&Zl!xCOf=Ktl9R%)b9f#T8Xt#8 zxanABoFpXOI9I-7Os-2^Ou#5jd)hC=+~U%SE*)_qb*ubJ0f&PH9aRzH;tT3;H2Z=# z%Iddqve~SBW!?Z}w7KKZ>95?W)I#1HR_SV!kbxN8xbEmGV1 z5b6Xe>u~x~>Ah8UtwRcHU0?3&1}H>XvOPFgb?mj7QSGyGaS7XBr$4VMug8y57!|kg zGLL{2QeP>Y@vpuN&+R>B45TZ0cguQANH4(1`f!3fR9i<}^+9#h(;^XauWct@3$m_y z0BK*c>FfFHfvsPjHrzasPXdoi=!d;o%IS(5j?d$39@iPy7TAYAmt?W>rs4zm2HxPz8WX5xFElR z*v}`0I;+E?CVFG=A}}o#73b=a<=^Qxf1Es)i5QP^)q$^;KgR#K%c@@B?1^1vj2ly< z!0z}69|Vs8;R6~9xBf+#VHH-*b)rBgU6o(CBr8V;h&$dih;1|w@nHAtV z25_j{Odb9o^$V|}R^^F?$S+Ms$U@($H#v>%5xFmqwxleyTQHqFhC!YMWsGl0EY7t2 z8pgF;;bd8gOueK`tmM&}YFD=nm3Fwd@n{9^GtD;;xz8a01LnUFwR;GpJS;BM5(;H; zM{ky{fe>1MNj{H95bHti9AZRJ*M2N5(;O7RM^+&vx8I)O)G1*~vxH(suN`p5fhxtaX{ruERV$Y6!-UbkLF*1mriebhC^R_?jhdvMY8ZwDwsjalEqf<%Pebw^>8i0}Os{S*cqV#a zT^Fc4=JH^OH-)soQAV#*fJ!vr47qqML(&sXUhjC( z2p}y^<$QWUImuf=h=Bfp?EU_XK*f=ZD?-xjrn)NlofZ_KVx}l?+ zkD1%4A|LSpL{>BDpLpQYM?COJfhO$>VFH@2F^@7J9{5zO#snB2M$f|fT(MUugO&=lfiEh5iP76F0RYY8u%mK zlZLqZTb`!r{`f9mR|R@o=z5EQh0?F&QRUB9i!jRB;e7#=X%%P1x#=RQx`gH1h#jJ^LVm7#lr}+iPA#(h4k%p^@q-? zeCnj|Ra=yxphBfA9@iS|>K+DQZ`CQYie&1%EeG1YsqL6LG6k zA|vB{@}{Hfz2Wd#?HLxIXAa$HDPm!tXz7mD#G^{6kOd}z`r5~*K=8t`w)HAZ7tr@S zHXa=$&oF#KP_KCvSEclWH@NM=A(GRr+?&8q1_9Qoy|-}g1$489A@r9OYm`N>t8xcv z6n`a%+KW3XmAWcrZ=_*tGY97D`w}P}=7bA>^Pqe#R%y~NUauZjfrsaf`J!Z(bJQ=Y zt<=Y(rOc$bY<`~$X0x1YN{2kdtfY-GN9sw9sF7Ld>xBZZ64>4edoPaN5p)ofyz`ojnC!*mkM9t(BllF;9CdxOa6Q3P4%7cQ?*Ypsry)a~U;8-Ss4 z|%+u1iK8W{g#LC?#d&0!(|IR{gbMgBau44 zmca3z=XBKf1oPy#zzudC_*&~@z$=GrJt?5?0!sew1b^!pS9`s+cV6eQVf`0!)tpM% zyYuH07fe{@EPf_#GNuL!{0ydb;N8e-&uUgnS^vz3iD>X}&mNQ^eYy>-<1`vM5Dh%bhG??js+ItL*emNg6^VSpP%65XQio2Un zM3#t|1K0_F*&cQ{wMMGSfcJ zr$|gG{@M36y1g@1Q~FAs-(0@zNKULhmo>t*}bTJ&}P!G#X%(Ft+Nz7?Q?)rkTC#V zA|(jc<(dNMS50Y|iNhinSQvo?5C>Z;Cru^v+F zM=J`Ca{Yo|4X1QM0J|RpW^hVGHW(870!MP&K`5af(c?!VKQ+qksZ~fF;?R>Mbz1dW z&NS^ie75LT$t7&#t@u4LT(iy=w#0!dM}|#FU!^RlBt&tzGC4pB;obz%?M5Y%?((>E z0rcAjt430T(yx9xpoW2&&U|~ht_&?ym_`TW_+b({E%`fJik8BG($+#^DLCHa&?17+ zOg!p+?x5`pB+&{*3Gq?+>8yxs7rc{!y{^ikasRSFRgzk*M&N5ojoyp9@J+n+AWeQ` z>*`Sf#kh3m-(R^>D`llwbi1ouT{=g2zC0_96-k=IsI`LS{a6f14lZ(=MkBk0qtuoj z8uygb_bVPySudrz^NJn!4Ser?YQfemV$!6z&pAtzykP{=hLh?{=o`2oNpHYltQLF8 z{CvfP5r!$gpTqw^dUINfa=tx*?=%L-35}kFDLjNr{v7|NuVllh7)%tfqV7MGm%Lrw zLCRvIN@f8^w~l|UV$?-Tl9)woPzRD@wZKwF_ig2VFWlM?RlyT$Df_9oqx!Y4rXyRO|U zp-mj5>vo611mi2*=AM|OHXeaBL(}WbI&d8$c+l2qAumSD5+r0OR6KTE1)CVGTGTG1 zTOJel2&8!lM{x0v>4XVL$BEOlM_=luzj9`faS>Cl2GRFIsf1Ysrp$-P+yR3a;MvvfSkXB6>?;5+$?n)2 zb`-a$d9WGO0oS;l_(DNJ-_^-`hhdrb7R)Av686iTPVbQ=)AsHzeW`J&h)JSgp_U?G zOOO(^tSJS5;by`TN5RF%WU7uaNnvPgo+R3$5WlytPj|ck{lf6Nx796mg59l2aeE5MA81BEjBqls#)Z+_;XKry zCk;r9)Zl%fU0X_w@EJWk85=Omq22Sp!mA9XoH*`ckxvJerd$b{k|@d z?v385{VQ=JfKbBBsqfRbC|*giPSy=p(mAKjNb>4~uuB8g!t{A3IW--c5H}xYnx$=@ zq8pDY$4;~&=Hld0yR49BXa<7~wN_~a$7(Jtx~}RreOVzm^!?>Hl$SPb$l;f?p%G>^2P;{lZWEMDs2r1HT0xUS&qf4KH0bez zt=jzERwMCX#90JJ+VdD3d^jzp4aH{g$lgLogejUbQI_pH?sOeqZEZqh!_P2^AXA;|#O0jS zjYZy4R!fqs}WXcxx>V_MvL^H4{4!`+x4~_QMgsMW|YG(R+4mOurN}C}j8iU&zo8eV4KK zH?mfv9=gSgNVUUPGoY3D{MYgrJOuC+Xo|_d?9HQcPaBjQmkGQxWlbP2i`>b*Yvh}V zdW=GPE&l7 zmg&7vd<)fG*!KzMWnIOgLQP~>{9OKPu!$SsPyJT0PRNF=lz1rJ=XRPo5i2t{i#8Zs9012B#}-zJiGTojy3?P zVT;I1Z@=RELdj7gwyU^KIX~{qzTr)%f5$P+P3skMoWZIdm4!ZqEK78SKi1Q5N61D% zSL6PPZ>5{7PV7ASn|6)|X%+pHcsg|;1B5|Ii{}D&N4Cuam@q+^j_u7Gv9=zrsPyIg zfZ)UCpfC2q1OFyrzJsL3p*EV)?`E?=8HqY}R|WeU^3L}H-?H!!Wm=4zEb#V`4j;i7 zbmE}8{urV-a5&yxma-)qcrw@2QdX4GX^?^C(g_FD{q3m3?<+RRWJ>7SPCx2ZlqaZl zTQNxif&5%LISx9!Mkf*cql*oFxnc12X?XEVV9MY=wp1&WpKr-ddexvgO!$k?U}Ysc zY0bi<@e$-hpkPgKv$7aiy)#{;SRk{vjPh3=P`0Q~=-9sB(X;gK9IYEE*4^UqD^)*B z9H~P8GTT*jeI>K@F#~`t56BmgfRp`CS?4G7ZC4WpAi;n%1hpg}=b*~Yv4aC}KLrT- zK44SNK(!Qrvo#8=awjm5IdT!yfW4uF3Q17HVHt#k3SqH^C18MDgxsb`H6vi8Im1^o z9*|lo!0)IDXX@hG#hwWEHqdS7EQ`CmyhKjY*L$!>Lq;E++~xf+qZz zd3wgNJ)+ zqDIAH8P^hSMKn?+j`ZOT+W{RmZZe$I&DZK%C92q?jh-lNqxR!iqbl0Y9BuC4bSvvU z&&k}~M7e}J4!WIlMXBn^f~iEmv;Y5MiH*2WxkMQ? zn@|aRE7)VLn-CoKgxstvL2j;SrSiP=VJO>U-8>oO{%Y_hcgDR-qV@w=6$qYgo~rTq z2_>ujozI5coon83V*f;=p+p7T@y9pbKt2i%OnI)A8|zrwd!7>YtZ%v^*QzeG;!$$e zpQCV71HNLun54bQd>tTy%$c!4H>O|Qxr1)-3Lu{)j}eAv{GrUV#&LKfQ#`}(L@APi zAjZ)hGBH7ac%jY_KVQ`gpW$yf*3UYbLr(WYIDJB0V)+eb{OXp?lgV@)O5B_j%GKaT zuf0)sl-Id6K@x6@j+OZ4XdMk%JX9Y&@_7K4;g;ryieY4L7O0r+amZ4!Q8sl25_Csq z^{9eA3ZuMYarlomG17c8C8_{DYj%bT1^9uMrCc9Bq^xk*-osZZl}Aa!Yo2zwg>Qx5 zN{@zLLjA6*!&A;GHX6KmBi?>tf}zQdL-j%O+g=AC@6|NuTsX*pC8cndQn2qxI*{rI z$YA!V1>ied>2ykJxAV|S1CG5liMV@2#V^ypyxT&Ja6uW}@9cH{Av7;2iR#DxDDQtK zFTCL!jPJyGx54~va?@tkx4>pzlH=Y5^?*PbIpposADM+~b73355tn*rVv2GwWrxlu z6IM*uMIKv$A$Ba0l2Q)w10;C(fqYNuxDaz%i%4PB<(L7$@-_Supn4U~aVri2h+_va zfc_V)3uYsffRI&?UH=JyDg8DiKLrRlApsRKPSZFVz)${(hXFode&nb9_Rrq+S>foH zi;oLx<@M^emg?Ln`2{|vz~bel|4sW;~c^R2%)r27E z<{gPKwI^PL4jvTTH`pKBJR^J@hBl+dED>BgQOX>k=;kJ7q3@0*{#+!INFJf#7s1nl z=w)677A+7XM2<0rv2nJ@&KV4R}YY z&OIydYuk{Ow846?Y1=YXT>4rV2LzHJa9nSG-|>DoaEs8))_v=0rY)E@NXFU+0?Ji! z@xJXNjwbN9g7vp{p(fJbCYYQKl*I!^p)d%8st=Tz?+;;#-Ua%~B=8|IF+36p5MFE4 z*eI4CNe-$Hkx|+tG7kO7gA9EnD{4Y&96$kX|KY`#V;snwIKhMhDu8^52a~Dp1FRHv zF14obAKNv=F3eYKfG7(}6m$4tzYYlr!2b~+1YaC+0w^x6E^6px!S1x_{GegTHd|W( z=+UMl5=75~B%YR@aTU3BrV^tYT*Sc~5TMQaVygZV7eA3p2w1Azflc!i#UB;HI9L}B zxJr%Jd@$IpXy>`TX&}H5LRtM8sgXQi$;TJ~1rpGo4IMoU6SLxmU}0U%7L(cefniEb zb>uXB|lX4=%F;*B&l`T~lK7lUi>D__EgRV=1{(Kos`E!bZwYuyco{9`GX|!*;B{ zx!h6VbfAuQXCo9wTZGZtEe6M-@QG&pW*&<+>KlvUriIe(g?{DVmDd!d!bI=OMU0#r zme{M#Pe&H)z8z(jaK#*+u=w(pHqFaG1wB(W2)sHd)B1i?G|Hz@sY79bp$1(S`B2X& z29YRR)&b-RK4F8@<(}ZxLDG%`9M#%mvOswDdc; zb48r)f{HrL_@t6u38VLIO6YIpCZIw@Fb=%E*284dN5OxniA&yr1~9)AP$w5dMWrPE zQw7of5RCR}WOpgP;uBnMfIOT(08(D=1JMC8i{HHfU#?ve6Dr(A;k#yi|ERD#_ofPo z{tG@#Qhna_(=}KTz1M&B*V=;2A_+&Y^z0$$2lc6zf zKs`M#K=6zRF)-i_u0K;V@_^exy9fbFn$^<;=_oQ7_v%;T7@ep67B1>^Fb zb%>UwV})S$n2UY1HCpw-}SV>2-@n+VmpC6E_Pu>mqiiw42g05!(V72w))`e6U5@u$eFk9@%&vml}kL`m4_a*vVpC8n+ihvda3E_HU>yi0*H zJSdqN_T3;2I`u_Wm?}C~RYnK8vE=Cc0-G)leVF3-ul>@IwcVW2z$6Rr6XD=ZkQ z146Ua7M69TPJ!qps1=vO!!P`|*_178;ioh(jCB1UIn8?7V`?D8R(OS=aysL33R%oC zQDn2x@9>-fgTANIAjcdcCYvRRM~gKPzGNrLO1w|Nb9JdW?sHC5J=ob|se%T%L7~G{ zqT&8S|4CZk19CzycdB=sY)!gi764b|!~x!a35oFOAJ|om2Y3TDMjA}FVF5B}al>i1 z0B$mG=av8}n7y_g&hhV`Q9XtJ&{G8X z<)LG-MLbwwsHeAJ=l%kd;Sik@_wXBAE-2{d?ZPIlK2ez8O2V{Sr1aH*?bF2NyHW#W z>?ZG8uev}d2%3-_l1!reuSDcHX(&3rED=GU<#%GC9Eh& zqU;o5i)yeB!EaEiA5NW!l^Cc})pZNA@4>e%XkAjYo55jW3JFvIMPDon!tmP2P+%(h zL}(3rvtWn9cv2<;Qs5&r&5y(0}zfX9DD{2z|~Zx98*LBcn%vN^iP z)Tb z$VLU|AtV42MVu6XNK|ltih|fd0eWBY3Z8E#Y~6$@k%fSR4Z9dV_?y}xJVuBRH<5e- zCKg7H(tju|_2J4&5e&h62s}YJf(%K(Fi}M;_CE~z1GP;70K~Kt%{EP04Eg|F$>Kp- z0BHW@{Ssg!g*@&>T!Y_jFG(7=zU>4~rU-Ne6G-!_B$oS@MlNS7-e*=(Wn_I#Ht4~K zA1NV2us5YX5kBMhd8paA(J_!moyA(nd(G;ZY}V`g5^t8@u56Zy3~>;k-L=B*X+tYQ z&gDulXdZs$crsc11Nf=7yc?-)CqUNd3_}E>@8P>E7~sq!uYM$36*JT!@ZhHcf;SQ} zO929skH3bbrocjmoZ|F`36%E`K7w9P9i_Ajy|be`z3}()e;`2IMGL9Kl+Mg98hqOM za3mlWQqECHT$^YImgz&Hb`PV~YKp}VB2xrF8J8TZstK>}F z6zhdX?3BcI6?j0H2zmI(CCOzo(xo=yts#`wyo#7cv59|n%0w$%is=;pEts`JAFJe- z#6|pE4$!cKIT`ssm6^}w2oMkuoh9-`1W1?KS_O&YCCL90yg&DLLL`vO0+p-P5upKA zV}STU6(U~(mcN+$kKBJmdw+f1qy}+IL60VLC(0m&kSwWtJ2){}cm(!Nu16EY~ajP1T zi3;`U2Z&+;17&H7KV-TAQSna+7?O@fRFpd4FTl({nh3u>I03lNr1N2H-!WRd0#};?}!Paez5*b zj*61Hv(My+A|pV7qVQUL(8zu;+}>cA2fY67Rb5>@IXgSH=0DiC7M`Vfb9-yg@EMC8 zaWL&eJD9imwEjyc{*o1*4?+x512ri@+;+3TK;yen*;blo;P)IQ%25^p5yc<@rIRDw z)2;RlX@QQ3#;t zLQW77fi_`GV_qctkIgTCi2r{}2BtKCd6*L^ZhwU2KQD^OfY?zZoFPg+cR9oF3QzQf z3l6lT%<+l+T$v8{*N+kGf*5JIz`YM*X!W?#gmty^@&22<43Y!c=CXo34-jw!cykXI zzYWqN0(43k@X*wOOt(L6c>np(KXf7h!u-gaV@jr+ApeKX{Y6JD5W50|BV1&jF+D!= zzH&`fafcE)i4URpBk%-)AVj(P3~wup1xhV$NxY!qA1&wq{K=R#kY3enzn5HshyrSv z!?C0jMBlQH-au6b${l3D3jd8`|Lu(kK0s>3@S_X@{}n9#+xI+DgfUcsGE{i3+p*FZ zbU|)Fa3jk~L8^G3T5Nx-5YI5A$0M%aF3UOvvx8kR3^6e7zpqORutt+SKMB#d0{QTcsEC8{~Kp3WC!rHcSr?fRw{SDM+wm_aJ|9AA6pYC%E zXxjAZ&N7Goaj-SBAx6O>MDve0negyX`#?d5@d}uffz_2j0SL$z`C&QK1WY;pf2)oK zT!f^$6TwLcv?{e7kw?|qlv_Ndk8v`RYPc}jnBr`s(F7U|9C+yo0o~x&6EI#?=-g<8 zVJ``@pU`Mi?d9Tm_NjvFHEJO@a?({tIe}p+;M1&VTxSvE!b>Hx*FeX!+^4+$JoZ?!XRKbDhR$i_skf6H17DUhwLZ3q-P z5j88=RBXa$N=f<>2E@U=55|rGi=6#G)!;AT^Zf!y%Vf{l`~Pzm03{^r;u#g<%Xmaz zRVes{l5aW!y3_$| zQD_GJ^^LoTlyPANwhPMm$P$6S)V@Sm(p?KI*9`m}BQ3$#c5_b^8mFGXu0DdvcB&bD zIMU88cw_LHZolQXI9V*F-UWAb`rfb1Vv9B$8LK$nr{2UF@V%tBI$YR2&qpPOn9Kko$${D ztlTGnK<jCiA)KL;&(KfA$%nvQQEY!Tj3{NBhcKs$zz%gWq#F#=QvI}00 zBxZ+29twVg&ni>-#8GbImVG~T?$bjXE?gw2>uXK@SF>_=V19|}J*YO0H}F$7$N%DQ z`A6;S=zKLu0^FXcP{i@yWy0=u`VD2qLMa;J!cv|lLc4VO}Xuvrt*CYygA66s8hZ4XT zIl;i;e?a>GA?ZBh1OT@<9Z~p_93*GHs>;?n{VqHaMr;5{QCX{de61jd-B$`GbIcSZ z*wY%3ZUk{5d-cyA_UIrPKO0vO*ipNy#F=?(9|mV!hO&^OH72ICyq}P{8dasL!Z>k; zr!{}|y%@)2_KaiNhPJaK;^I1WDU;?_nE_7QhRC}$%t*p2>H{gBD4%Ut?}7@vfv!dBOD$a`5BfIIyq1>rb3>N6qb9ho4gjw6Qb*P zgs&fk^TyY9IZ8n-K9{WYh{KVnjdJS%f!3eO!2A{Lx)!EzTv7H6`fpmT217Vo=f=&3 zQ>WahEYjDh3_2Bq1GW+)Q{ zaDMj%9qsh={++>UGeK}stPxHcvnpwWh^ElU>Nks1CmnLjxbw!ixI89LsDhm#|m z71eKbJZFZW8V?5l4HIn`wrS5^L z8Z};S$?MrV{yl0eRNQz+0(VzCScO+-tP*lh^+Ugtl*P24$DV2J73#fKLcPB;1zUd7 zbejFfT&EoysmF_^fTdNB%`~(RRVp6tZ;cRm7dJDD!W$A3z*r<|{6e z5N*4;gfI9+`>PVf9{K6B03;0RAG!U_qw^GK3=xvh-X&^g>;_9ULt&8y_H!oTzZ1Ba z6cBRFY83y+$Nx?AcR)Vq4k;_Kis8^rr!SS!&Wevx8S;rzy06RLURJhelsXdJc-h@VHk?iSc(Bd#_$oIuy8Yt zrV6G98}9{a?&!gX*yA3vYHV5Vy~`F@o83Yuh-O_%+S9A`a{dC)Uv}tmcWl zG>wG5*y;nu5OMAg)d*td9dx&_GAd|(6NvQVPy9#Ycie!Qgdpmk3*d1&z%GHbMn@6s z)s?sYC9e6AJQ^DRhpunnu5?|t?%1}Ij-3^BY^P(Z!;Wp+?vCwr>~w6~wrxA#>V3}M z=Zt&5`v)>c*7H`?tXZ>W;fsAd0QY1_hs)@TZK7ZySY_lGEkv{aE+7AXAGbdrbSBE& z|Ne~s^V=>Z{NYC|cBi{8l1e8Vb_`nMjDnBcK8;&&3(j~Fbkpuk_3I`ZWtnZ@%L8;+#C}_Kw-J=4i7Ll5N<8s24lS-r|5O$L zwUk_3|K)c=QG$6?67;)CzuxAf@FNMIo5fgvm*I>8U_BFBQ0uQp^#_tI_=GD)b^EzMV|D zNRg+BR;H@DU@tSJ!P~3qj`p4_L+Jbq6A(vf`IdUN@FUa265O(aq!&t_S9gm&=roL3KOrIub;mvPj6x_k+iP-v2eEyvh1_3%q%Y3h_+)s_WuX4^R-3y3 zKPeJftC)z?D=q=XwmOqzGLLYc4<@eBY?;tO8!0a><(CEgjECc&T(WX-TU&@`3%_F? z)p>U4%0@k@hciy}L=Rxe+hr3yg(UU42qSd+`jbq({(NO;oqEYgU+l^_Dxr=rAI5BdsM(AlD=29REv>p&##~tRsMQYdYlK z)uOrTVhZQxgLq3UbyIOiTfCE!4Ah~bRTcLkGm%{1_(x_3zS8k$HH^T(kgnN54z;Kh z$bVOzzkbQ)gl;OS)Lh9 zEU`ABCRlC7lT@=B$#K}NdvIaQ>gLv2$d4k9!xW9~W<}xI(r>uNW*Uc#@ZB*<)~;vo zARVt@D7a%fG*;8eldWEe|{V%*(2gI9_8)V-M$m+Suh1MLuaTN$^x3_E^ z-MBn%okeX}(kBV73jrHUMDsa1AVXfvorbC<+W9bs*6MzTx$eEaXv;Ke0YY1kSZ-X- zuV?*3T}jJByAex=-`4MC-~t*tDsZq99>TIT*SP1oYAo#;4e-2x*Xnr<6fHdwbMQc> zD|ja-l?A6Fn0GC6+&L@t1Vvo;B$*&Bv0Xv5`;mms4}mF-C{n2nAkJBiqV`5{=|?B4 zl=9;X7g&J*ZHBSaSZL$Pa-16adWBn=#TyeNBcV>V9eJH2Fa`UVXU!X5D{&%;jqu?T zv&4BGebEjA9fd5k(D(^9p(6VDt|YJM=YBO7=Y+_CciI+4M}BPi6RtOA#m(7|dTJ6c z!+cl1{^zyVqur9#PwXvA0=2p_z1wdpl#%u@0*$Suz`1Lo;EM?H2=e18 zmOnd-wDpt_pF>jKlA%`D|?KnRQ&)Btq7<4y0o9?&cN z7kJ>mtFgczfdP%mV$ok}rvKd#{PkZ9V*crDubE(S3H4TdVH%GaBW>uWse@H5qV<&b z>gaXVPKFA-k^$y$e6W2MAsiwrw_Vp(Xe1x!`hv4cr?||R(H&%;(9g?CPql%3W9tuF-_v;zcuO&)=G%#nN!|&V2-WhdBWVDiO6#M9-N+GXns0bQ zmk{wT8N4I$b5rTNt2wQRu0ba)?3;r_5w1_X$$O>>>l`D;rT}}uFZkcWIp5cB@E*PsytD5>d-v7O_(@(^ zEdp{&U{OTj*DEeUAP#tUUeJ#gv&Z;Dm}-C*20FAaH=aA}4o9tAgNMsY|h zy0)jr^m49T^Dal+`0uTkq9YhCkaN4~q`&6PZ#E?Z>S?9+u0m#J&lm4m;kT;>cFp|l z22^uIx!RJ{c5k4u>dSk!l+>=)b=~QQ`zhbilRI07Y^61s(C*1^K24}*%Ox4PGV+>C zy&#`gp8q(-?YRxN3D!aD{^Z$OMd0y3*l*Rq2(9FVdWD;X%0vgG6!R9jH$lfhN`lx}`wWwvHj%QtlmuCCp_PxpeAolb0u5=gH3#=C^M^Ei_Ba z8nzWbOhqCAlku55e6d;PX=~PE^8Md+3)wFpdKZ>twtbs7xeeiXSEuGY~XO`8O_iX!ueVwi_oVPES#C)R)fG5>8A;&Ys0ekqR?lHCvk zIGYu3mG^w4BvC#F6)O)FfJAfM!tj-0$Z~Dlox##mD^&!Jm?e1q8gzMW*Y6mDS6qZZ zScWZ=-D78&OOb8epOM|*5vHmP63Vtwp9KGvftDiwfIW@Q!EgWMr2ie~KS2M$Mi4qP z6~TDCFUt-66)_62sD2o!XCBdPGAWb9VKTS(Wc68&0jJ*vyFu?JEtJL4)jH}kG$Ohq z+++Zj6Bb9?PdrpS7hlGKcd21aIV!(lPuZdp_C*w^v%HJ}p*it)pR4&R?#PchoS+r} zGlnc`^mV%d>`#8V9wSMX!2^Y@e;NN=QK_0wc*9v+nMW3md~|QOJs@W{B8Hj75hN=M zcYt9r6(q)L3RF`x7F9OBOenv;U66aK<=n}e6EiSX31&b*RXYpJf$PT(yAx^w>V_P7 z;^`bQkaz2`5jwqPpSVA_94B91M!S&1V9&&+_`0 z>kGV2To6Z16XbaPsec}SfhCPhU)PNT8hCgs1vOV_cS9{4z-Rpn&yAdQ*!N!9hM>8D`5?_ojhl89;jD(Rh{(m4%M{3}S@TdpG-%KBgj%APtfctd_ z_-g5Et&)^!>DX0kg=VK-*sKL%S)wuA2Qs4BN>Z8mS|RKzX~44gLMZ!bbWRzx1{t z{mHC*Y!#j>LCyL24{D*!mIHOyWrB(l?_qKhbRsMQ6hAtl&36;sQ{W}xoBnwbB#YF= z>)}JxHa|K3R{2UH@PwI(tG{o4708_wXPnFoygihjWT zfr@^of95AkjK;eFl>ZM({5R&Gj0Z+2D|v!?44QXO4xv-^vmJ1A3!SaL$P&0{! z$`;TTey0lRT~Ps%Vy!zMOa+zsF!X#>q!1)+D?^b0eFQ_vcn%K#q-R2wtd-gCu7Nv; zKjPypBIi7!s((m{Mr6_mCdN{JaTT2FXUEpr5Hkt&G21aiXP9B!A}-Yum9ppadQbFJ zPgT!c8lx>Tc6Yu!iaI(|kd7mi*-zvPRn~#dF>BP0#*bPTOj`v@D{LQU7zK0%fxh!@0YDX#JU9j% z28MJmqGg-2i;IiiH#m53r6W6Sp zpy$LX?-%<`gUsJTl0AF^Qn)lT34c{HbHimZ;8!s#ubu@j~ zwyIZKfTa8z@W8*1;h>2)MIV0A1X(U9y9Ur6Tw+c<-@7var2ks0MOanyPyG8ZP zzx&n&vWI$OMoqvP+CbOB6xta`I2Ap}e--)>f)PyQO=DK8!`8@*Ri%KTVz?C;#+R(x z02h5V+)_fQzKI@WR2#E}p;j2JK!VPo{3)1A7x{$;wsI$-myWX>uo=$|89!At3aXRU zbItcwb#m{qbVqw$AwU!i5uTkbnR)B>e!K)X7``ArG*0mIWzajY5Dsj~)p&MpycR>h`_(6Rivsp< z{pW8x@)~bs(v%Dm-jE%|ya1~S74oYzLU_3Ffi)_x)x4!fAH`JFqA##%h|(b#g;i+Y zFukv0XWw%mP!`6l*T{#lkV5`L(<1{VLQ6ZWWIW$R%^q_%6nzuZ0+o zcy)MvqFsw6*eHi1Q-e}pC^q$2T~HDUL+|+D6ez*w!`WsC{|U8ATI9!_AbB%0vqPtQ z6c2R;PvT?U7IgCj`S+tcTKJ)hc}Ns%!kg|%yeuQ6o4Mm1&k)pU71egJ!0eT+ff_6f zPFTZx3B1Mq$yX*ii8uejA0z6n@0_182wC?YJ>^K0%|XvaTD#$b+&+u=#r7%C>x$X1 z>@EwZ0b@TOjROxSN*IL^-Bg)HOdZfCX%HDDt@ijaq#71XThoa=AlBN+@ySw}z(sa=LXS)3QfNeo zxVG1WaZPYfa6at{jN83)@JnkHkqXVCdT=lz?TBzvm{vV~QC-?g#7sc7gZFqN@@Ef} zYHuRa8eiS)n*QFkeaP zz_B_JMGT8J1^9y#fXmi)0f5oyC4s0dP6=9^i(Fy7|r_YSc8e8E-|j{wP=T3G@~82w&PpSzG`XTPOR$LT6V zK>@G|F>7C$V(2iZgcx$Eo~j1Si`tT>aT$6KQY;qFoUCfVFQ~HEg`k1Mz+r|AwG_I> z<%Xos^8!o{1?sHSLBzD#{2424txim(H64X$;z83oAa_8KnWXpk`&=Yn=_5NL@7A~s zdt^9Klr!y%7EI8exwv!1>`03z8SZ*`!L73bj7np+!fHAr71-0l?KP7w<6K9=3Q?6L($qHqAGhWYpwxcN2hzOJm7L*}uN;Y1a4v3e=H}3AdbsxM4ssJ_GRq+9{v(okwFLEPMW&$u-~_x9mfB`c z_OhTWO-p+L$qX-YFqxvHQoRpok-)&$ zW7G;atD<~Iy+MbP(;c`k0w<%I{Z)5E5F{@}KJ!O`u_3T|8CA$}!z7jyC>CVj(=)8S zg?;utrZWNR=VgnxXlj!M8aFzlynM49p2(&PsV&_j=sB-X>bm6!^Pawm%7e=Z=L_BO&Z~BWz_mIUD$FM_&`k z7wm&OZHhw_wNf=WYr1n22{WCh>_tp{18B?!+un1^bk|>cK*xv%i1NsUK2kf5wL*$_ z&Id6?UvDpXm`i^x{XIv|CtW*3Md8~OH??VReV95fTb$aH5~b8jx7`j6FE0%*K5ehp zV$i5bi#t{Lay5Apy)6E6w38_6`U;NsV6}j~;JxLR#p9w9MbvzrpaoymWcPdOf#fi@ zk|zD}W;a_Z2DByMBK}4giNj>&fRM=bXLO49qMBXUdKZR#<}Wk`zwi;5=nl!ACHka2 zi%T{PT$0?roNeNaEp^7@M9P>P^hgElgk64x#{6Ox&^FO@OTJb;?*dcCmakT>kVcBz zUm&m4SiT(UH-9_;5qTM+L^@?L`GsePAQ=2f!R5`V%pyTfrtfp>;v8HX1;GJ+*W#l3 zZC5(N&6d2-8$N2N&emx5{^J2Uf2Nzf+Y#I8X&H^s)RQeVsYOfI1zaI?F+UXLJ%TU_ zTeWQ%lt*4)5otKUmdlvxq8g$!gw3yb`71FdRtS54kq?oBLxfZHm@#<8N$&P6nS@u& zW*8!NHM?ScsGAw3^kO6GHyTrW->;&lDR#C*btoT0E#NQ_JzY1<`|71A_$4`I=knJD zPlr3qNG`5lnx$PijA>O7%|kuSA45kZJnW%A9C3YFDtGaEWR;0x-oz<$T8GaL2BH}^ zDs9>*rU}ow2cvuJu6Wta5K6P}YQ80(%8SwXZlA<@7H+?7fgFArMzeX8A5ARXs;#D! zR$e6Ex$3Vtv z1;vY+H9ISrs5;E?VtW{K_-i{7S@MH?d9C}rq++$Y1btVV;PogTKE=j9LQFjFY4&E! z%!n7Kb4eJ};y2!!hTg9Z;}l=$ZeIpL<43qgh`$P3h%vS2AxoVKU|`%K0;HnlpJ1_s zns{jBP_;`JOAsn^QP7`IQ5gBR-8?^U$B9T7^B3GX9QO25v4^Lmb(a{}%`#6=f72(< zV=!`-{gE0P60^>-UQ>Vp&bb)ia@ET8eGHwfZ)gAPW7Fk>KC_pc_=_l%TU3;M6TSzD zavoJUb(5`ERFq)n9Thl#L{CJF?xl)2kuk-Se7ONNhk7zehqY=23d(jaP7F6A$~!aS z#C8W0?H()iokJ&U7RoRt&>sP_Po6ES1fkBp18u#3bG)UpCdBQ_%rz!mD6FOAkKKo< zOW4*4RnVu5$uuI?J=#>7li-OM zQr*Am0yFIKO!;5H@3q|`;bJyu&^P7j7@t*Wvuz`tYsB>mW3Y7k+LMecR7>biEf(U= zXCP4?GoU@6o-r(~IFhFY7{zt!(8FqsJ%mmmUK@4=6SrU4$�IoIaE;P|uO_+Mc0^0^SGWYgC)lBZ=1$0UbxG z2%DnRvG-@wGk7#c9c*9+guwj>6?hH{$M+2 z{^-f#DCK=T!i&x-RZ?X138!{tmr>q2$a@H8oV1gh$$}mp9_bh@LqBzfOz4yiMbWxg zOlAmzmWs`Ed-W7+X=3IzvEKxA;is4uSu6G2>9sfkgWBH1GMs@{=c+Wh6mGpklu$W+ zo4m|FzwU@~v^ac{PUv22hm;XhOG=Pfz=$Z8f*odXIhZb{!<&o~wg!TIKJVG7hl%-tdOBW{wAm^%6}uq4nZf zB&y^gh{@5=Q(>=YcuAWcusN~127T8Ni%G;@sRjv$-R)?#ob~cv9zSqDa6jC?bw$5O zYm;V)7Mz{>3Sbq`Dt9-|Cn)eX^cO-oajHba#AWK8Z|mXjU}d5dGL`$Dfzj#XVubzH zLAi`p+U`w?t%Rm9XJ)`nWDhy1%PDG0d5C|^^3b8d)VpUzkDLrGT+NqE`WKht`Dp+rb* znFO@slV4g4;pXU^d{AOtf>0u$>nieNs!L~lAqA4-=ch}?$pb`sNThv--x@7px z(BN0Q^r&NioJj}b0eh1vI*TN&9$vT*?zh8e1c5DGTJ_wC~?4+1Zy3JycL@jrqnM`!A&^p3*%H_Bo%mTO4Ll=i!Q}=ads`^Gz*0Qf= zxx)A3o)2~*Qr&WAX$=B$>_X`=&1RAI-RJ~XqB~3SEocT0r!7)`B zsHp3G`#6kyN53G_UA%S3WXpYU+WYC2EA*x|&BE@?TXe8U6WjR*u=SGxP@GaVA0*Km zGayrQKjL(nrX!6bmR5*GQl7}o*Q25^jlvR&b0!J2mDpZg4;)IB*u|IZy)Ob#BT`zQ z*?Qw0D#;8e1PRg8&Lc>@Xw6$Yh8h3~FgO|cLSoKh9U#GwnIgIl^b{qYf_49eogDx4 zKEp2^>Xu>3jug~M{8;^8N?&KTKCBTQsfDQg2ul_k#3~sV0O!Y)DM6Lk>wmnvz1+j- zxdW<1%>&B!BrxehRCvvE6BnDQ(};juB-iT8#5h`VVkGH4OmoWKnYqbx1F#e%AjytT zZMah@iek0)>I1-o+wr{8)W7t;)Gsg??jKRDD%w-3N*C6dXoI6=luy7|{a0l~|&cR>u7YVnn-A)$dVZ%vgZ@HviaQ}+6VM=*xr)1z^RK{j+ zx*}O7ec2>oW+O)fIrDXDtWDPDlGuJbtLlEcav7uQ6Qej7`9jhz8rYPV)WEsYZIO%*02JG7po1f4zn9DgUB_rBEubV|rywcOUv!9+C zsSOwdL1Bo=9E`p&6U@$Vu?b1;`k?q8WulJHJO%?+nA@Wje&M;fMNx+v{?#(us7nk% z5A)ts@kfgh1W^@wZVphEKIvq|b?cV+8~pg97}pdegFUc4Nc;(*Oue8e7dP176zW}B zHVpK0k$x?l`R7$@3naNw0&S^b%9))Iz!U@C1zW63uRgcoo#GxgV|7Jn(&}_9956$b zKBWg>lqSHWI0H!Hf@-p(ZGK!o#NFA};tVteS97I16Wh9ZlvlDmZG#UzRQ>*jR@VHc zVXxkR&xH@$iB9`uA}fn+wAuyKi>f!bFrQ=evZ8OuGMPQc+{(x(Y(i> z24EDbW&f#wm{dQZah zms!8jE09@H4{$SkG$2?k(duD?Vc)AOroofO%v3@#{eUjtR>~1OVb+3svxU&Yo`mblA^bjCkfk=D&rZt#qr=!Sa_)wkjKB*s+|)q?yb)8UIWp_~Ff zU*XC&Fnht3G(oqtl6$~~J-!5e)t|#c^F)1~kM5kW`aph`R)C(Xjt6Mdl(u8fRftHD zQ~XFw3`Wqg+)D?yW~1k%Ga8NPELLD?BCV4I_x1uM;_EZadr(LSh7A&eH)1e>e3r6# zQc;}#C$gD=)Jkl1_J7;8{LiqzEc`>yei6TY=HYNj4uSG~6p2vb==hx!OFAUJ&o`ai z6vJcCO@ukx4KDl+N84R1!&25ki|D%`8hzyljjyReVl9Gy*imU=NC&@TP&3-1S201c zcwl4zn-BvXleCyOa?MmO`X%e(A#iOm??>R~NzUeN>7_kw@h*IxB8rPZQ~PVxI(qbP z`rjybp1nuyiH`#zT8>(kh|e!s{hg>aiUCd4b*ANDCxS}p2j8($DF7eg0((Z)rjtQqk^pOaA=jeExR!|_hgfZfoBRZ zMhQi#yFS!+f7h+pkoE+Sb;4N(?e$`%+FE#NyJ^=j)Jq|J-_Aa78Q^`jm`%)GV(2CsF9_X+TE&|+=-DT z4Hwqtp~l{97q`L~C{ZzHcSYKsF3ceu{iV}S{V)yeAfzB@La~-OONTgYUGay_IfHu7 zRa>|;43AXKn}=s$duP=LE6<%RSp2i|lAC46IQR$IGm{G#!M zTR$!0>TSvA9N3x&-3_0rf12PkCF5>`K@z?um+|ycyx2C@gQcHmVM_92R=zN`hpRgC zvS^Lyy*0b)9Y1}M9bS|<%I$T^FrQ4`kWk%?LOXB+x$i@~_$c-i*09D{Je}&nEd{B!ONS8SPVIJd%23tLycY#878F+LFlVm6AY~%$bfp2l#-*tB>ok~C6_9@D4T<1feDtKt z=wHUt*^tUGV0vQEX`@Fcz~zcCfS?*~Y@r(3od=-8*+q9JRJW-+0ywv7ndx0k0_u@tNi$+iy*5#eskwWoOybUI=L*%30vOzT+KM~}3c@hH z1WGPcbytwrzYTDLraW|C`>Is^)a?O;H&wHygyMN3d(BlZdU?XqjMOQ@8kMY|tbT)3 zdoc^$+=(%l?av|Ik=LvU18waCENCWs`=PNMv3E{(#vPW5j{dy-ioDNm9r4B(M?RN? z6BuQJm7VxXJj^EjNDdB{R^PRLpzTgEsyPs-;l!4oG?E%5Q(!j~yh!t;?z4!v79)4` zn^`pY1SD{@7L1?Az;B(Q@LAnmCiXL2lu}%LA2a8L;N|ugSO#e>B1C;DWDMCw=BS*l|;GRw=RFvR{WyKhZd0;JTa_Waw&s_63GQ zxM>ksRneqtNvl>PKYr4w3$I_*ae|{&={Q!GVl0Pgu#!VTj@| zj06V|)lml&{b99Qm%nD+@@e zd}V*TU!Kbgnf2jQpi8+%5pXja^jNroAUk|1*?@o1M3)~C&@2l^7!#uUrffBd440PD zquzYot+vW#hbdgqSL#+Z9VFTYslM7;#o9)E$1;A#A5e@G`@NgZj{7!3Z#`MeG?$W5 z6%{U8mZj@wEDI(Y`CN^euf~_4{Jro9WHPVLB||I#!Q6`dmF$!_CF7q4Lq>@+rJz>-$Yd0^5NTwQ0`ISDDj zuR0{rD~$Tfa9Iakghvk!eCB3A{M|cf$e2tD6H$BENYF*gCDBI=ItBN-QVKBs7W$JT z5#6q^g%x82FcT6tpH*4gXs1RehSMJ`nV^lEtvh z5ESMCRhoVU>zL-Z?-wMdoVHke`D#7bE`LcMh%fHQUQt8c5LUY5Vz_D8KAlX^3lSVW z7SpD1-+$+QUW)8t(<$4lB0OMsRtvM*{))`A0{$RoXd8qzwp1DPL7}$0hvpe#lVCUW zov=u?_%x8z8MdW6y;~~G#O7I?^8S<9yj=(pqoN``8JxJ|PY(m8S17gk2s48#JrbqK z>JwO5a4O7Dd?V1G{pR4GhZ_691FcuiCGgW~h*?oX*Eg#yWJVDqCcs;m*yLQ;eP_HeX(ML2tkZV z2q#n7ch#quZ!IF5AGQ8A?MX*rlZUoEdc9|W=+I^0#({=oO!!bR&1aUfv?SjK*|+C0 zYkZUGQZig)szmq65^`a#btaP<*BW79c>mgEX*f?q;p=rlY$Qoe6oLPZm54B6!iU#$xetvNd%eR^kfKI6WR0~@#Sm^&sgGlX45C@$H z>XtmBPLuhRAsplD5^hkcEz0B|FI+cBzwmxrqGWq9t8v?cUPy&rs!8Nc@Kr*4}2K~?sD4||E-cf`Sc83659R>WDpOM@wY1s?E zR!~8p(7>Kf?V&!fd=wTP9qn|&i*7GtR;jplK;O@_WMx`o@-+o-Rc|Z#QInJ!A9E5d zHanU^#C}G}cAH68%pg#@f~c|W!#hY%;fN{LJo~5|*J?p@(6{N8@ilc%DR%&D4{K3u zrgtop55EtZ14yB~%9eot?iml^dJfnE} zMD1C;kL?fBn2|ob-4KszUQH|AJe)pzY9wpUnP#}U*K=4Rs{6Fff9~Y>_K5Zv>n(t^ z&r-Q1l7$Mp&>KUf+s<~%kUVA~l zuT4{@Z0s8hx7lWb3`-r-XQbl_N&RnjG3#q@h5KCcN^*y)wc+sD%ld-ea)QR;X&v;( zRrQa0+RcWx7}WEvLZz~*3@!A>SpfS+zC;Ez-qGhbtRU_ zYMEV}>vu0(G!DiHx=*EMG>OF6=uK8gtR~7$^jmS@HCRvEeeD^b1vxyw6Ov@=n@0G4 zw5v*_a4LzrZ3CJ2P+jOc)V3nU&o~;e-lk@mjs^DIuaYJu1zUkPBJkNFOB1F zWqP6h2%MPHiGoQ>HcWc8fNB3`#>m#i0{Ghtpl7Rk?+e4w1G^1Q8J;FyqM|-#R%-ii z@~SVFAl9vl=t546Nkp=HPYb!ri6Td?pg-k^c0^1+b(CJMjJ4BCN46iNO5>L1qKRy# zK|gA@1fC#W7^#baMVOoFDe(5NI>!FJg864Ri3jHSZ=Ul1$4&bDb$h@?dS`R3l#Ak} zEeZWcE%|$sJ95VK!e{B;vEs2w8?C@tym$_32e73{6f5HwNzBCG>Ch8-XbRCmFVG^D zb~U=B(!38+sKmO?$n$QD0^ghjakOhiO?W1!y=d2OKBxVBhsIO+Ry#=HiPGGV64Y|E zMMU@hYs4Cy(Jr1#(XP+@6*c3|*Q=x4bztFOE2L^FG4&)ak*xbB!D`Y@0l6W&0>!*6 zsuNTEsiTXs+eh9hlJ6;eBq6P!X<*v4qce|*6W`*@s``qLQl6zK#P6VWvLi4Tlzhno zSrdLaAZFV8vBrCLvV;f;i&gw#PL2ExIXPzvs2J5R9l8<;6o)&Tw3;(wXoJDE4(lAo zOr8GfXJjU9q+LT*kJ`!^Iu(_?GGoFpSSVpb$KQeag_!_7Hs&GZ?8n<<{5ta&eYR#c zqv9j`usGyh{h+OoEPK$Oe^c-VwEtlq@zKz5&y0oghQoX4)aqCFdlC-kJejR;NaU>= zi1lPlu!qSd?+6e=+S53u2)U;WFc_@Qf>!O#m{*l;5eye_9K7MakJ~KaIAsLJCCkr1 z6h8J%!!_&KZE~^3;ibW^_*af*R1iX*x^Qt-e|Ld;H6ldJU-&@ zC5)Aax5_Rc*{jFxO5_q%>$c)V*oEe*ZMx4-7kv*TuRRxwA!f7hVT zmn<-^S3*=y(ehR)q{?{qfzSPJ4;UaXvU;mt>!=bck#V-X$lszzn&9^6$G|C^YDk!# zoC4)TeIlDIgls=cvhWE;r&rNg!bWWWDpIXsGRI{1-*VA(5^O`33Wc=7uU?cI%QJl? zmDcixG1&{^vn-G7w^}jqMwn}mH=9DiZhFG(-kpKF(Le0Ov;`Od)0+sA}CX2C+it1iDRi=zhHg9ISMy z(LG_3b@UGJVO6sW>KKs=Ahf8et4v6=xrXm)RG)snCm-HJNi|?~=sf;j)=t=`X$Eu< zRRMXhdtqzHMM%nqatJV=(9SuG;{^=?d%dK37X6h{POIW4Gl!e`(*zYcOhnyd z8yU6Zx`Sl4p?{HyeKmzPUf|NOx9`}ZAn#wL`?3W%L!7%N5R?s4|%cmxxuk^G<-w-@#6FIck|vR9T!2!LS4Q# z8I9FiWkEWt8?+iuqk5nvBQTdzAr} zknSnsTC)n0krXJ^2;fh)|9a6~>#z?u39Cq`SE!^!*V5l-wQK6DFGx96nEi_*`CruJ zMnf#c347;{&N$l{M zn8JeG;p^7lCMkOQ&S%PhuG{M%#2r_hWVhTFDMWyiM8aKqb41Kjav#8d@oc;f_7!YC zTM|(tHL@O@`XMEG60)?1v%*bNU-6KS1BbdF_Vw^8;WyxAA#nUa7~5;nMW^`7%>FO--bgv5J`gTb35_8ld+L`BAtwx9pC zaBGdAK6UU7{M;{{oJJlt?gT5IZ?XW!KHJgFA)Zy<({u|q{^c1st1n}J@B)&}kGv06 z)C0kg^-+^1 z8XFv(djnxhj%Ex#1KfKM0tXA#P=#O=(KdhIkQwuCWkENJX{q;gC{YJt!4I#Y>3fyW0xFQY`p2(fmLB>2asGnaj z1ar^2%Ql<<2d3#lwiOD==lHlle7V`j@`~rEQ`+CiS}TsC#8N)3`1xPq|JVW)HyvLP z`W*BA^9=v9*mq|Aaqn6p*idd=It-kz^(3$6R!qVmIUlVSy|`mvvcr@(ufu2`;r^VZ z%~lNL3)@#{!qf*ENsV>aqvzcLm(C4c-?NfX+3`oN7T+%NrSYw|ZGYLwNZ-1VQh)2< z3)a5%*FurWP5-`{J`Md=zo9Rya!N`Ux!+Q0s82fA=e?Io+fb~n%M0JUiSUq{dK_nj zLGi86p4-FnBSwp0sTC^`s?0yi-3$W~)Ehe$KbGQvg{8e`cTh9+B za+I|E;9g;`NrPSeu;d?i(~&SyvQ0^tx^^j^v34fLO1I075iO9g{~{0-S|O)}3Ul*r z?0L3?t6(2`Yv4+!)HA5Q7WdZ`d0`*0g16f=CX@yB>2-X-?$0Zg2~(%_f6EBm!B%U7 z8o$)GukUOe37KT848~>*ik%%@I^L;zIQ*`>+k@P6%kS>_Wb8Gq;|x`02XRBIa1<_6kRH=q2c4HX|C{)7hElZYR zc_DwNg~>^lrPw2VjrrEwdg)3vUMB5(xF>eg@5I!sBZzJCu3TEr1cdisj;HgGh9kwW zE`cx#$z7@;SNlZneFe-pF|`)7uJNiejF>`EMnXlzPq#EeMI896p15Cg_t0Q|^pv1@ zE~5`!b_x7=MhU4;@7_+jcGE~JVHc2i+1ActgU*Q@(R=%`TvSo|-or;Km)T zX05IDG$=XjWw%gyt%49xvPf#n3Y2g2`;@47B^nL)jF(iXno<9IH~V!B$ob#7#PHu` z{te{+S5$9K{1H8###A28GA$x3`Yk%H1*4c(#PlX=nlSa(6M62a`vwWh-0~d-Y)Sc} zcD*GWnz7?F^qJ@5M*)~`sk8|vgcoGtuH-$X)xpQ=A@!@R`r&e6%I4PuUWIZ zciC58Raa~5tme<&9fHd>srA;u6Ot9)l=SqE66Vr;#_WyN%c3higH_iL^Bx7>ziFX5jus)k-5Z!U$i+iT&GX=A0qB1bb43lER=WSwKXCA<1P zUcU2`tMu>hWYrDzX+#u+O>C2d!O}w|c)j$e@j}bOj3%uJVn&-G3!E6tUb}M8_7*Y- zapCNo7R%iZlRM@|DCYvaZ~HF)r@$cf5sc#|xA1q-NK+_k(s4v$VN$N)M>Ab8WbGyo zPwmLdwq7Q4@EKDcPt1A={-A0@)3ubCij(~<@0RfBlkauC*H=8#YPiT!mefi?JqY*I z;V~M!UNOYZ;>JZ26DF&fW&s`Aq?}C34xH|K19(ScLE>941g_OR$Jv}rpq{kqFx)yja+=QX^&IxnXv-SJFn&hL z`7S=l;Xrahfqr(jCMMN9LYeK@8JoB9D!X{(Z?-LOUm-0M#Xdu5m|J3wg*vqVyt!bo z$m)DtBlGbct5eVMmG-n0s8+U2U@P+NfnZ_JrMv1T*`&JCI+J}B#V?W0k&2@5zvBxx zIEdd0le}jg{eBXw)Htizvy77wLWm>JA4RT@SmQyH#EoMg&|`YfwgiWKIIpM`Z^1R` z!InBSZIrr^-B{C5=Ipm0!PB+erX#!YpNQ?eJ@JGrhbG2Nsi8{Tzg^ zG+Hm^D?BxrQ!?F9XzgfG2G#AJoWb-vJ{sO!h#c=`Y`sFWveAZQ@(0(QKjSAnD&|t14r1pxpX%YZ2j!=*o{8w2>f;CVVd7s(_SXo#k=$B~t5taZ2R2v=>)^@2 zhhq&dZPtas1)3MR8(hQ?{_p1>pXF1J&*DYoNS%ds(PO2T>$zk?tKP)`1->w=7d}`$ zSJk)}j+3O#Y6Mo|hE7MwZAPi&{X`=OLCP`5o&(}nlg=i>&SN$06Ys@=^S)Fm9p>bn3)YB(8X0`eu zb9z`Oj4N9J2s0sT9T-WXrbLj{7akjd%x8dvv5Yy*7%lUuCLa~AAS)p6TBoS(n%&h+ z4ZR6OYi#`1fxqf)B5y#{-pZ;1KgbIbi93%FFq?Dg*=*EVl?_5(JmiBs>Vo|bdDuh;VD&c5 z!l+%#$2fZzVK0QmE8kXE&1Q_=>X#|&*?lKru^cN|p1LfbSX6?V zqq22}Ksl>CM}`E_kH6mf5>N+M2g^LR#wffeu!tsy;yKw$KClj_LJTtiSQ{BW+QP>E zlIWwGxAV>MqnKXMxzPi2o%FVU0MM^``cH}{PA@jY)5_L*`F*;dg8EN9JNJ4c2#Qz~ zs~6q(%fafI?;Q=>Y)pfU>*C+C*J5L`oDS9al*(lQYHZ7qyctnfL0=`8!)y<#d=8ky zxEUsNuphIm2;7dUyTB)?euW8*R?K+n)YmQWGyVa?(cjyeB-xdv$@F;BKl7o_Y5j8h zUNONqURq;n)q84G)E^(B6gw;~Xm@k^{$}xapay{1b&kE+|4xzdg?Vy;SUl`6EI{aM zSy?TaIo55E+nzqhv&mIuoY5aVYCK?sSL0)X_u|k^Y=O<&v-OSl7<|PjFBJdxyeQD; zt-<*A^AVZ5;g3Z4wx0n5E(%@!;7Maa`^O$1lcqPI$SY)pB8h2(Z&8;w=KWoO@@3V- ziip2rfCe&bQE%aE;mqCDwr2By^KI}o2fH&|cF)vqia-;h6s6&(@DBegj|GF#B%ce$Oh~-l+U{=w zAscE!x}MS~{(NPO$LGpnixl9E%x|Qhwp+L2h0Dhm6+?P$iaMtylvU6G`Ne`ytBZYK zR&0g3(k3jos+BG-fBK_Bn<*1$zu)_&`c7P*aAIld+m+PDDPbv48`;w$FSzbAvBibO%6MC9#^#4p&mQ6E1Y@d$a$=?dEv!t!J#`sTHjCtPd#wT2|rLy zv4?Mc;4&8Lg4ZMfC80NGd3FH!%fy+tp{IXMitmp*Vf-kg>3)(3R{I3?HD$e^rH5&G zI9>2EV-#!eG5lG_6iJD2i5l4vi3BP*m@-l1!UsrYiMM@rKv4*ifUBGZ1s2|iOJ_bXX}5R7Ua z^@qD+{~kDoNE0@gxZLWm{gB5=zz`=2XM>d-d^7c*dqOg57&fL^f;wC3kvA>*N?i|T zeUod>qzc zB?2j#e@@c*5P}@?vzM_P-+$`~%oN`+?hxEE+n_rEU%!6v1Bmz2ds!h59Xl zB+#2)1Z$5?YZvlS1&@fGENdR2IpTJYhWy$R54&p8xg7JoxALISLELFDKH({uzV<)tX~uQUQmuAj28_D9tV;IjOEim!mT{aLT13Uqz20RdD^4}%@b1~LM?ms~KIT2B!Bg{& z*>NF`-IS^T`Qxu{3<{63mSKTf$Nd}71u|b{6WAt0@IHqD&uLMRk&!N#eyK&&7fMO6 zz8(fS-Em#$WvZp1)gZ~Gt=4)^0Y~okv@2o#4(PxJ>ideokOn@R;l1PFT4bmqj&)Z)0T9-t@S0-fDzc+-t`eDyo#Ig7;rBDXuI` z0)e+&r?_t2!BM>mTKBh?0fUruo?H*k>A~7zmxvI~m&qcgqf(ScCcd+MZlN7+_^~m~ zFSQ<8&8`hyVcYIq`n0!Jo1Md|zh6zqimjzF>#|NsQ7gi`cP#uB4PSfaM4M}Q+5X3* zyrJHx8}xgA8%2bpUXW2S61zv2sVeu~z#0iwY;n%!@fhkQ8ZHBMyQSzYa(uq@xD!*b@ zS;=^tqa<5N0VU_6#G)dD4H_yeN37n6#Ax5#d9W&8`Mag>_hEBD*Pw; zC^Rsqa2@y5FoUPkYM`w7`;Xjfq%%-{*I&B1u7`nB?gLp2d%os^!a{f@PqTFiIix%a zMUnE{#7(7QImUvA5F--J+iZ}e{**;Lwg?~N`EWR(+$>O687(;5>OOYWS?Fll>4n|0 zU!pJ!6x7nfVNd7vj|q#zoWU+sQ|A5TA-X|<3OuJGz-^B)YepCL^KDLd z5ud<2Jl)Zxk7fq^=^gJPlzK}654w~Z|62~XBl;E^A#&K|YSU!Y6~S3neD=Q2_BYJ7 z9c4z%3j|na6bOn|g1Z`Yx2Z0EIb~m?g0L~`iVC~FmSzjAU9peEJq@JB?jJBy7&~(T z-8ONl5acA zHmE+VG_*IhgNe&$YbWPjR0=s-D(uuTt=#LOcTsyuCLro*20B;(#Du*F|xe7w0oRX+;; z7Fs;0eOJ#KbeV^Fj_!uZnSFOS%Iw!sXV4raOs|1g^vx-%Sa1T4xZg8U6%^oFRq1FazU-P*M_=hjT*wbSelwgt>*)uIbHWg0r@Pq z;crjQNJW>2o@7k@+3x|{k0CilY3IEl8rOj1l99hKxgx~>XGK@3J{8>nFE%o$0peutIUXv-=;FyxDRJoMGRe(REwwUvnW)=5^ zoYqe*GnsKk%L#u(?DMjGdn;nD&cK#YBs*phL7?n_K`$>nUi}d)Lp5nKP}vLbmLMZC z97j}ei%h`CvwwGlf8ARaMnHG)L!+$*_LGuyEKcdKYzRvPtx#+cd}f!fM@JWQ@fKN; zl<@qdGR$!8mZ|bN=y=Qt(G|zw@WO=KK>Z41n-#T1EUMIQslsO6k48r=NT5S6Ox1aZ zpp*WJ%$e3_Q7OZcw9bu6o+`J;C17E=hTp9^slg?S|@$z>v#$1_#ju z*aIV;A~4>=&Dln_mygYbw?R-%r(4MI$Iz#_S%+w<*1n7a)scl^1qAy2=ejw6botB1 z{J>b8&ZQnXstv){q3ER#<}e)5`#^G=&1y%!J+350T;G($8Sj%i&_Iy-!4NHp ze_qy!0(zO(s6{BCzKA?sT`vyxXVtqXgw<@a`eJw}4&Tj`+H-uv;<+?@`&WCs0r?d_kBiHQ&CC6zMj??%7+ya;M>&b5${5&Ay|XS5 zA&lGufB*d-J~(lpW@wJ?myFnIez^vh6S3T?C;6ayn(xY#pWZN3)fpeoX@#sJ>(7_b zOL&yC%^iW~s*NGp^CQ*KiSS0}*xnzAI)h9UMP~U1=kEBcI5C4R{H%k9_!D-{ez8U$ z6ZyK6q0cjCk*+@IE+`<4&e*?iyF-|1@~xK2S$!|Nt%M}+U^x7VcJ=EA2K4m$9jOsT zti+69*Wy(+hJ1ZtaC&A&`g(4pZ$Vz*Jj)Thc$+1G`i@r4f&I6LO0lrYW#0MtHfq-M7jvpSeMFMQ8GCp$<(z**u=o#XXePTM4ZJANNs`N1 zuWLj8M<}^#>Jr6`JL5r0SoxUozT;F}2XgW0XW3;fT~ajbDadwlIYDz8RMGLqMA&z! zB8I(m$Qnz+_dhT<@4r%TPF@5oA~8K1D?p8_Wp)Wek9+OL|8FYyO8!P5_eJ9v5vv@l z_Y=l@l}TmmQPsXOoCxGK1RnVvI6i?oIiH8sF>s+4gxPe%>_tfs z3?;gOCjl2>y76Sq9DZ$=Pazb6W)F$boPQm9Duv1E5*MZ=!RZqfePWazkoJAbr(YWb=yL-5^s=qyv=yfXy0>L< zIf!NAlesEPdJA6UieijPw3SD;W|UTuYDHYbFcm&BFbATqbC5lYJ6K~6E-^zM8I`4J zaoL=LW|#O+cI?;rc5mKGoL_3gP-I{0llT@#E}aK-uucwX`QKdr8!X60nSvc4@nzt6U=kO~ZCV1s+q?;5Oz=gpaBxX| zHfJbR^NDfTOAw5kIWw|CHfh$@ulxJ6N1N`};rsf12Gn!jJ7TA18>EgDDHLKKYGVXA zHnrcLpl|k`D4%oTh7Ju*1BVE%oe{5k@|qw^SnEP$%i|cI=s<_!v1P})&ZWziOc9K zV8|dO1VDd(*VPVv+J0B&GPi75o?9`mc4TQ&zFac*;jYl-to=@Hl~Ykv%w%Zo+qrJw zH$fDbZ-TxQJ_$PmJllGv}aH$cmMo>;WQAnii= zp6za9AY>3RbvGcXhY!&3p~pe5l1+=XIM@h#%r`MrDDqBKhtug|o9Ts^7Nr`6G-YKm z*CZ&d=PcCKLT6l2%z$BANuUBfWMj8EpvnH3K(8HM*yIN>Z8(}3a>$H*i3a?Qc0F=O zR_gQR^a)m&k*CA!j-gKb^E*4R9sntGNR)_Vf_-^ZFh0+Z2IF}`B08z-!IN>C>em4) zGPKgjU~qnsJFO2|ufGbrVeC=i6nw$Zvfn{6BU7FWQGR~KTs!YC?_zc8%hu)cKqxwj zgGExOfe*a^o-0N+qZ1>MtA6%H1*ggWG%~Qoad&Y8C4c`@Oh(FZZ3n}`uAn=SdKWH; z`~f8p#h=|fhRN$$S4RppGnQQo;>f7MLS+W7UlsvCh#JM=O=!=3@>9{r+a{>=mpN`5D_yW`w%R`{+>MUzzbTJ>|J&nKRsQI0nB(!P9A#e6YY^axplC1vRJpjHArDHD(o`z%g`X|@@K>LWse+X>@ZWJKny-q4u3Su ztH|FK3;GICB7SRvg`^bplY#6z*IdH~_h}7u|J^`>JFDXgfAlrkV2D(i$M)|QLCQjz zZ3h-a0#kqE0B~(bkTljGoWn-0nG)`6IdjDbau#K$TQM7 z-@UH56O^u*GYJ|Q_?>z!Z)tPTyf{=^4zX%{Od>Pf>R1WI^rr6UDBll-imoZj+rsHk zr#K%P#0{y?S8CMS-pz73e9vQr8`ZcUj5d|nHN3LmFnFXH9d381hI(pS@2CRhRsi}4 zpoyV0T|_F~_}aITe{2Z!qzvxUx#6~g3Qj$Gcg;^=(s;FnENU5H3rtKu)ovKAqSZaV zdt_ybqpd*c&8J3l(3mC5r8Nn=0ELUDD-kQ!=Xg#xJ9KL*kiyN-8 z6n12R)0P;RrD~df=Bkj#l3LEkAYA5_njRvRh8Wt@Pyfhr2=h%JBMgm5sRaFWFaZ6) zO`8NhDa^@(O7btcq8&Vp<)fIK=;@A**~b=TybWlwH3GV+ZT20xZ`=9jKe7es;nBj0 zX6M{CH9Q9e5X)KPuRLP78Cmv}A%1q5Ty_)P(qX(hAoFZ1v7@EtoNd^qXiamP`eEJO z5)J@c6)#i29kLGI6UZ?R=ULyB-cZ4i*D0aIm?u{nt=+r16SrEFbzEGsVe~T<*s&lm zn8%)EM|D7gT1RsLHxJlq$E`8X#A#45kqS9x_+v*}1g43?3Q85}kU9KGfWrtxo(jWu z{kA90gqXlf9uauwgM(;0+(qIe)GcaEb&cdUgzzqg{Y+|?*UI?{`>Jox(F$7Qkkk;M z-him&v-M()_kd!1gNTqWpCl=xt`ta zSzll)*eV$$VV$@w=7Gv_WY^GK)z%MCc+bOBH3B$RXcIS3MAgUVirS@%Fu(Zv3G4KU zAE&+GY~ZLb0ooR}Rx0&YJDO)@AlvfLT4}@;L73{h{hN(~q?Anr%Lt?TO+4N!=N+UY zJ&{o0AQWvX6B6{u_+WRZfY@(@7rnT7bASusEAAXpr~a2L&kjM85S-48{uaLqE_Xqx z36CC>{|Fqk!Ed^L!pMPe(XxH}h3$!v0~}N_Y55UUbo*d8U?4Zo`X)}kjigx3By3^A5f?WzQI>e2SF)g`t+5eN z;dM}%79#B=xv{jeu;{kire=vdQ$U&?&SQ~Jiy{2SCLpDKg^K*yGLI4ewUQ;wZ#t<# zhjbW2=HAS-0o@V=M$*tU5Ea;gQu@cDMaP~EIjB$sUqfv&YIt%v0~D4Bi>;4~3x$f# zqeM1%9cg-$Cb64>o=u%L(9k#fn%emD^~)*32WpO~CGaZ&gqi)SkBAJt(jq zBTy*YuZHA9wk|~e z)YNQ?>K{d0T3~E=SiU14%V%ui<-hdsuznoBjFy|nQZ5xuGkyA2-BoTLNku)gc$zV|3j6Esh+kBooFHZP?~8~Ddg;ga43C_q~AF5&*W z+Zq}`bZ_rb&i-rL4hQ>OTJ#Y?XLimtnhQ|TQ>__u-m6VnN-N~tx34e$n*9Wuw!uf!u010ByAc-R5BG*l#3%R z8w04JS637NaTni^Ag}^Qpac3oD*1vnlL4YUoOm{_*zV8?RBRw3wD_hf<<)0P^*($M zllca~c;{2e)8zC5h|cJU+JMl!3PgR!HfXr?ijm!{OWd3#JMZ%H$1DBguqhS5fQ((f+7Qho6PF=KX^8Lfn1G zF|?J2V>+7a6i}eK8u49OkO!>#!U1^IMgNJcMnZPKOh?%m)pIVFFcRU5FuQr&>UYql z1iMiU03{nyR34)L#tn9eH5>8D5z;CF=KK2zKx)pVUE?NKK6Tt{T=d{v7~-_iJ>UJf zQqn2#_Y3wIZE}W$#_knS0w;mu^hHl^8?AvMNnnrja~v57H#bJ`o*Lu$L@{DJf^ffq z#90ki-6UZ#s&Fc6-*HGXW22F4bn!6~Sb)Ok6EX+IP&wwH#8ky)^rydz87h1Wgg^a^ zYeB#)0|raPzmt++b311OY z(xM$j6V6)tL`6k1c1ZYq^0^fATg7NPx}5xrk!f|1<6TAI|kSeyAv zaF&Ig4)+&Kze_OU<_@@Cj0_YoJgO+B;^=S5*0G$z~U%Uozgk+cvn6~6QDsIL-JJ!kJy)t{)urO2Zf@u zwOn)eD`GfUB{y(m4bG+?mcI%t7K{Pn2q&O>19b{UJ_D#lQ^H<)Py?ylMNHnS-?SBzn^})vZX+`^Mu+JeeUB1Ej%+D28YE+GXbz`Rj zlIW>MT1V2YPCScLdI32uU&+-<39-=Wb*K`(*J>asH@*!*JeoEE)M$2J%v zn?6Ik9TEvSvECVVB+tvTMu}_H%H}A+mRz&67~iTuWDfS4!3DLR-Ib0WXL}Z&Kbq}U ztM)tTlJt)vp}D??%7J@C?s`%FCo1>&YCwxeV4#YlDo{6(^!LN>+&6l7v0p5SP- z7JB<4;5NyV6&KH%G5DAfwnH!W8tEwoo*_`sMn`8na%4%}h|P5EQY7y@?kTj?(tY7) z7?oW0qqB_eN?&tgiXXs?2u}Lte|mR?Z^s~Kp5nxgw9826Oshv!nY~aH+2%M#AYguM zZ}k;08|z|NsU#&LuI&gTqF#EJHTHln-C+$E5(%cu1uG0X1?_L!ezA@2^W~eYN%)W6 zg&yN^3d-bPcnN^@X2u5g<)>$?;#k61u98;=BsU6`v9G?ABAP*oEu5|dw8FhD>zigj zgq6ykG}1lm;7)43#&48%PFGy2bK*15NMkLY`gFU!Vp1lWMLOXGqL7}iQjevy0KVHj z694QS@4_*Clo?zfHP052d&`M&>O2gKa!=JSIO-+U4#MlYW_URFnMcB;QQjFCFg9zn~pvwZ3p} z;${wvjr0K`TIT&@iC=TFpn?hCynqGe1|~rip**kB@>gpYk2)u+5|GnYfhQv;-#ioX z03gS+D-?V^Dx;%QuR(iYv-@73(ZmMnND08f_VbB39yO#IX~hi{1xlstj;*o=@T4cW zZKM3z2;~N7Bk1Sv&F=nq8<1)YsSw>xxvLyDqu7}=!;4@d@LasZUCGN@`sANoAE4+k z_91YjfvrkxkS@l-I$H$lW@nH{g;&q|9_qORi0ekGY|M>)t!S9|smW~T1z+yudqhJ+ zT0tNg4F4lMlovBn;nUVmtqB!c>23KCgc_gEKo}xuDx7RuUZiL8F;tE)=+wjHT8hiG zJpW3pLRLSZ+w}R93Tu*jY=)a5E>y4SEPG)7nl(k;dNU!r&Z__B1UKBu0SQb#HJQah zIC3Fhb%&`MibIc^>1Pg=w68M!Jm1gpkE(89qmioQCDH?k638IbeX#w6oIY&16u?sU zTLxV?oCNoKy!Iw6|Mn4}v>m+rYpTyE1^}tffq-%lu)bC%V&cZi$x#fIXT~t&rw=w# zD;Q>BJ~DS&qW%|6ynVr)PuU8PIhhcH8;_-SiCqKi)FIra)`>|@@Bdh#34PVw8ZMsK zX_lD?Dme0d9Syv+v8)}+r&^Dkr}L3@B%X<^8Oe1qVS5vuyN)VWmIcXs+61r?2zrmT zUen3P6181-&Bw2ZiiMuLc*(tBe}tC30Rzea><8lbKnwlzgop=>cyXx{1M1`}Y1YZ0 z4IKTtW@JH$Fg@|(#pfXJMZEMBrBp!V!6n5S9u71G8#W%y)$>jzc23}}?F(MHgiTk( zH8FB5@tC!At~EBa#`llJ>_B`y_fCntr|KmtdSR@R$1L{-J6dY92UTQ;=jYJ3gb$h0)ldHojKOo2h_TQg1^xC434)QY#zO>uSv$&a;C_uq z)Ag4YcwusqqM?zBj;DxinX0%Y``cjyVUvg1qb=sbZB)CaYiL(z8NEoBh0t+C$4{La z?o;rWEPh7rgnCi!@;`R`kdhmKHTpIhBO|g`phO?4m&wiGX2%s$f1pI{@mz`6H(|#G zj0TBUFr7BkNCT>T5J6Cv4fT=?y*MIP072-+dD0kVT|d}$yl_Lu-4f~j&lwA5OXdPE zCJ0^2L>W|T$@A8rU!(h5t@$Ar)Ou>oQ|{m%&WoPV641#LK&oYa9>%8O!o^cehDN|G zqvKJ~*`8;F10PP;wCH=%9{9p}y8h#=g-tEro@2$H#m!n9_g6c@gil#PBbI=XS6;Il z9N(-;NXo$MF@@`&oesw1=XjG4l`lBHP}_Gzl)9AA!aikIZv9m`0aKmo(5!Uo zGUH5C46?ayE!?jB#{(O10abJ=-U+#X!v@+QL#{Z#z8}Wi$4#Rj2qK)E6nG+IHLi@x z%M3h1l*Co_R(NR$FPIEyAYO$A{EorgXd+O^LbZW%M?cIRVvQ@(2jeMp{gzL#sZ4W* zwB?tbyZbS2(=dmcB{Ak-`CW^F$Tu%+*oOaC$Fd2*f~aB0$=CPMBW2|UD1T4ds-w$^ zsp_XGFQ>r&vH6YMuEb=&Mf(*ANn_hwr6RrbPUS>{S=vvZWcsq8U4?zBb1RjWf($|}e7wcqxA~?Ppc2-7>Wx0- zbI0=qSa@U9#?1#w|67C?=a$ub#eNa#KFd>_pmqS42!eMNt{D=T1Yt**F?}7o|`|m6O47!jCKXuD4(Z$9kPj@{a!QAXP964;y zi=ph)odCm^Dj5@q0Nc*3<)mSYY*zShcp}H`gs5MmyY!KS;}H>U6b$>6j&<4K=6*uk z)u04^^@2e4@C+9?gQN+}rd4pf*3x;f0*shODX$s0oRPh7a(D1Nyn3N3)@(CAH}o*6 z_4Om(;IImAi$_fteP*dEQpaxi{g~=4fGA+KzZljt9qTgX)$4Sxfzx8tR~(|TE){?E ztLM(aP@>7pM~h&Or6L?Q+0IxKd>0EXaQZ@j9)BV}nn-V6e&yv8s6ccpd2c=>8Cm`d z|FumGW@?GOdk3HALK{>qe_!O>DkW_1aw_PoZI9Aj!}< z8{CNn3GfTVq~*VC^uHN}FW6UVg#&+u?&>h$R$b#$kNij%t0Q&rBu?_ePeY^HH*Gq| z^3{k7|8IT;jBV&&+$oUdR6m|odJKOdD$XkY)skx{5cCIe3cetNJm_mAy0+9`-wC4IP|mgnmrqm9sJC?N^)EL}2jYcI zo`1|!F#3&CKqmZ$i~etL0?87M(@z*PFfMvS-)((6!7gydVB+i`7)5OCKd6Kfe)aO+ z*T?QFO*wF8oZv(kyFt-^*r0m?zHsyTMHfoj!dx|%+SWp|w!#(8m=HfH0QE>O{|ncChxYD>ZkAHnNqIj80%aomT$OiAajTUA@*k-2HQev z>~p4WnR~1EFTP$kj6qB}G2tv^`W=N)Dbt6IZ8lufpURfx?Ey!P0Msu~1?pBo>w0~8 zzHqzKf5% z?Bj4es3K2G1Lz-vJv~iuQV{q>`}+)byLGXxbJ|ts_b`AzvLf*KIqCN4c#-zaQl*0GQFxXViwlv4U2d_BaATQ11s%6r#*notKr}B zw*qm-M{@^9_!hZq%=T)rcboh^!+&z$_X}8QFrJK!=k&QD_RK}y-7Ks7PVG}u5-Rr- zV|x;tPeHF2d!!B{5T!%562ncX{x=1H6do35F?X$hQ~n+m4=s1`uVQ8uM{*o&WFI9LOQ;R7!aYlU08uz}7W*Bn(U;*AI`wK6VH00Q| zhF6i+5_@XPR5LDtKLQuj@+)2Q(>Tk)qr}(j|L|+X+?k2fhU*Dp)$V5WhcwP@aYALru)^LV@Bo0rk6)VT4NME2zei7`JWw}<`zW07*%Q&2g2LH&j! z`3q8)i6^udvZd7NbRv?$e=r-!5(X)ZZmXd|!-;hvS9CP{&zFn8QPQ9^Bt5q zH0F38J#MKgWX=O!k55A@qwTm$;BYiJOm`Aod$sifw@i^~d{nrjF($0hnn3qByt%`} z4lEwGJ(wGq(XL_-@hoJU$6E`DfPS|!X9&)hj8v>pe04c+UtYhnJCG#j_4M-vAA zMs+8G!_&zk^;hWCq@XPXylIb0iredx z@VHwO3X#W;EKfmk4tp^X%$rH`c)MY@x33DK=%QEnId7O1inp`W8bm7Luytoum-D9> zVBp~UTehK{=DHV$V77xcLa!09kG)U8aJi>yq*&H z#>6}^nIZiP*gjDZ!S=m=o$m`3IosVt24VX3eB_a$;m>(A#P`N|m=hV^zJPv!Y-|2G zKND<4YB0^EB7pjq?^K^RhNh8kb9XzW>zh4D#RQWy73+|RF&G#!`+gBE$!H%2C?JxxC8{Dg!zo)1aJBp)37P-FX&s!4CmxAx{AuAV<#%$djp!y zS}BzS8BzHl*ZPgluQ5ka!~T$I=6PB4GdwBn=S?u<-mxsy@8#j}2Xgyo>jO6wnayjh zwo$8!e}9kS0!kbE zE+yPJ<@x>HQxha*WttsOBdk(~K<$HtN&qRbX%bY8Tg^y#+)i;_Y4oETFU4~g+QW4u zmdOrTT&3D0zqw2g#+JZ`BiH2*!o<_4SGcSLF(3ji8kZRRpyOT4#H8rlbzwK^*~XyO zIMZ3|@n(dupv{10-^*47YlOx!@sKb;3hOnoywvb1XsS-kVmrQ9f$ZLHMqHBiZwi{t z0@|mu_^AKCI{Dv7b+44I0G*RZ+VHppZT*FyjMW{VhBMpF#yo#l=S@u6Rd67B(r~z$ z!u?jrl}VkRsZ>aE*0m~*VWU+Bk_-j*g{uu3nTaXYw)6yXgeyt76T_xnmv)q92aFhb zQ^U*Ir-BCSU(Rxtb>YY?=$~LE@D{8lHLCuJU7%O(1p8uDCOeBIejY?7{T}w|`&@XW zqU8%6&{H23dy*<|Qm6<5Xq^?_VXU_0+Qj+&JtcO@1CdJCB>^SNMU^mM1TnsHZD6LQ z895L|Xts{<0g|Ah%o`%9=#Y ze{ZwjL-nX1pZf}cGiuYF2UiWu)=oI~FjE3w*J%wRcbSPgi)t>Kw*Ejc@)4P(H~^bq z;avL0d4;N;pGK(Y4p=Iy8p%@$;w4Ysk$Ejv%yQHJ{l*9JAkBYZ#j%F}ht&HYz(;fj z3Fif%)}!s_*!SANByHu6<)wt`3HW8!SQ@Ovj`2l6%K8uC$OmY;poX!sZCA3CM1_`? zu~Crv%!O$}`b@=tzGc%?m!B(}{Luo&JMNr|sHW^>hSh@mmp;4KL zZ_%XsvxtL`w>2?+u!j71P0eIP-eLKtE=)ICDZG?F=1PL#$!h{bbQjw`EDV5CT%5_p3noDL=5wao zYCK;zL0P=TnKYL@Enf?V#Z%KR{@s!EA5S2t_Xdd7FUykuUs#s~7Q_#Nbr?vmpPoEN z_YIWX0(V6`czzn(d5T3kLr!C`?Z*9`aRmX@2Gkt9!4s(!%j zXny1WkoApmmA!4-GuiEI+itQZW3pY7ZF^^9vaLyz-HsC{bK+#zgo*F&kNbX}=l$0D z(EhD;T_=w7I5iw+mUx&wV?y#YT}VxB2(O5yN&-aB%M6YpN(1R~V~Q z2nW|+^QEguIphan+$|IF0oy!;N zxb=|qc|j})X{*(mWYQGCZO4WB$431dR;pi=bK2%Sw*m(7>#1~yMfX|hTMOvXohC^H zlnvs~J;d7&I5qf$kbfbDZB4gn?=NMnn(Cuf14<`X>%i_mOvltV!U5pK{F||9AO(l8 z*mbRc3;#cH)?XkY9{}dusgN3e@BK6kC7qiHq%9$H&|M&gJZ__Xi?}eU-z)o4+HZIV z7sapdh$>MU48v=xAjc}LfiO!>q6#xztXwViu)j>;#nML%OB4cpAD^Ev1W@BNj@A>R znh$ipfBH*N6B5!Rgi%j`zby>9WHG-DUfk+mS9&k#_Cl@0KpTx^?0BtI{auT=;I#sy z@#!z8=|uy6?e*nv=Kr}|U6B}z>(#=C`2F1=oE-#Qms_D1t5oo;jDb{R$7ffJVAT+s zp}MCR2r(Sa)XBl3y%Ku38-h+n#ZVh=i*jWwbM5;R#%`t}uK|Y35vY{oZU~3Zer$}P z>m6rCnk=x$!E|Dpg9i6sW%T8H@DgVnZbWJCzkak>oN{6`(8zF%^ZoTnyyh5Ej>~%4 zAX^zAt7Ez5VoN+tkmqnGUTuOqT0qsk@eSiT6Kk>hb=fMP=bh$Mm&AOtn=&W=W7(>d zvm3WHXI{KiMI?#wQ_oWTQcp)Ea)Z^*lFVYvulTzFiGFVmCsk|#PTDZ;*Xx1rin9K{ zQ}i+;t-oS#S5$v>7p%X%w2x_6{FOc-3y=*)4Y&)vZuN^ujjeT}is^Dht->GMFH>2D zW&Vdd!+Zx;4}@OQ2E>2S^MCK2=`Cyv{v$+BoILqB!a_(-8jl{V6dNjnX^2T110hr3 zP;b7a(}qG*RF+X_PO6|^vGAqlFcMAwvxk1cU%yl z${NQOxVjuFI8I|ayyCJ=3ZAUrYgZ5^21nuCTb$jNPeYI8j3X`c>n^R_I zwENe~C3t}S;ckwg&A$OSX&Ur^;-y^wL%J6~yIC_u!ONAY)73P63HTJW7vl_ zl)f`*?aYr$1$(Y~9nTE-6%#H4M(6oa2OU2(*HeeCFD|YaTg|RBv@iK33kLFU;J!c$ z%Hta?JddSoYR}>whUPDIE{G|ekfVS0bH@!Ps(twwfb3$D#E&>#zJ=OKh1e}!WVDej zzLun+M21l77m9i1gCnw>6jHy(aN&=q4OJfQ25XotUMo}f015a$fwF?EU&HTXwpj0Ad@U9= zbloT8iMURaI)}r~+%A{VdQxmCL9NZ&znoqWY*kk8qVV3hfYqRwl)243!ZTPMy+{#9D?~bbN*ix z>Pp{BngVgYg+r!wM=5PAbERtviPmkW4{a7@_58}%5cFl(8URqL{LvEkqpKHN#CBf|Rm zGv|^@OBQG4c33Lc@li8+s=+2S`k)Co21Im%zw}yJEKJq7@04SS5Pu3#&P9P@D0@S_ zQg4ERCQ$VTf!|)4^bT48r^x9PuQeBcMkbezMlzj_M#=>w4G~%=g&f1T&4S96(Q14( zzpAC9N%xXGbMBdqyBo%Q+?9ZzM}J54N#F(XbpA9cGX4I-v-P(Yyx}sGTo^O1{}CE@ z9Fe#KlmmK!hBror~-FgF=}s^gL7b;l2BZm>v-CB@+0|r}8FkLNZ;L zNexmJ(6kF4l5AQzmKE$QX#_v2XuX4wCsZOYs!OE?*ZB5r-|_IZp~8IajB?B#T%bNbxt3ye394`P6Y)b@ ze%29!fr&c^xWIFFr7Lv5%O>Hsj+Q*xs#Pu-&bvtT%AD){py^;7xvC&vGlLS)8Ktnk zT!$1!cry@iI^V)!$E1xU7MX|m?F(0LOqTK0d4)br^#xDFB{Rrr6zA`=&3^|j+))pN zP1FCM)w6#e{O6D0ybg3@aWN%h$1^d`h7>)cg8#9Raq#(yMo0-A3nlHAqi7#iglDAJ zSnZCb3AMhfO$^8LD0z`hV@68vyf^IyH6=n%wqGz*DN`vrxNZ+nRz7d}(O>DcR71TT+79~ml^rDnlqFmZ_+L7GU&;j77Tyx?Xge4FcaBg+=g8W;9ih-N>7 zvN0fA%4DO+?I2_N8o|Z)q}Wa-Q!x^?K3`OIygLj1K8ZNi6qU649B=Nh4vNL>eFc58 zdUfnS5I0Bw9pGau^UWJv{;VfN5Yta; z>sJpQQr*b<@hVz)x?xmYPddj=_Mi+P+wSN0{-``djMjb%H|4MgKd3<|44{YZ*9IF@ z)!xUC&`+qmn~=@w zGfMXhyXst4gbmv^nhlnw=M1OXCyqEAXW}x`oknVOYNUqu4U(*(6ze?fk|=kpmT4-)#zF@Dxd9q5Vt-9 zf1w33O(>PG9Jq-g;lK+S(!*y*|7cLRpjI+2ovVVXUCY{ew_$Sy^H*+UD8m8+i{Nm7 zpks-ByAGbIKZgalNAT&3Bd1>7)&Ln4FwC;G>Fh(*nGUf&KKHzzM0J4(!oa|w@orEK zD3&?uwP>WHCKHdqR4@L8m0c~MUuwN6j_WVi8psT;XqYKs9{U%{h&VtQREt;9V>k+N zl~Y1lc-M+<<|@%a4;H4#R0YHUK=?ti*G+G5hBts$5`1l zNLwOS9RQCwd8yOi#0c}0J@cUYBDGRb@IiFCRu^Qd&oDI$CUGXMV2tWibOu-7+T%W3 zM`7l9l$i2W%QBo8JU`94ZqO$tnjP145aVZ1Jq5io&a+hfK;R^kQcE^Qlr9z7$xniN zf%d4P4iBT_7sQJ=%rQu{R4!KYbE~KMb)o&?piWg^slS{R=8woX4$#=F;QvG8LB3!| zmXcY}aU%qQD7apw$6w>bJLj(Q3MKr7--!(Rsz3x3!f?H!YJV79f{~RUS??&C zS_?r}_xhqs=wJHuI5ndLG+fJ39;KgUn1r5@AjpwL2a&%g>szKjs=0Gn^SRVJ?fz;# z9~#|Nv~qK#fr}87xXmpw|8>t9;WO<8XbMM@Kr!mNHq#pao9aRq@oMVp&ATbO|MY= z8@7_dswG?%h}$eLf$etwVHSlj(D+M*`|FEKi~a0w0i+0N)J-C*yDez7qG$;G5UKXK zO{Oe5U#+8z!$VXwtN_3y`$Hcn3_jGsJXEo{>`Q6YJQo^ko(oU@yQ;!4LznYn)(3N@`Glc}V${s@$4$unt-~}ge;$+1rftKGh?^Tje zWnkh3cXTUDD_O>l^g`^8t%A5Gm}TH@d{Ap0>p{r`u||eN@6DKs38=~VE(Dp^Zu%xX zwl1P0K6WO8TOF_@zRFHop6*2?QD+z)qDPu;JwGAWctdY{DN(LV4U+MR22+xy7+En3 z9JzN@9Lyyf)+~QMpMCk zs@7&ovl_fVk}!#)U>(RWFEhd%@{AX#0*W(mMyjE@&$QvORN86TnS!k+xs|v?)e0|C zrgU>>ntgkZBXEHORDB|rAw_n|YD}8=U)N+o-x-m+K?fIh25@T^@Sx1BS~ZPleL<-? z55_`gBAg?G%?1E>+tWqvN|ZO3U8L-%N$W)yXz1SxoAH9HfV}ei05dPdXdNA6`Nj1s z=zo=VL>!!ek`HXn{1+rVv5=0Re5;W|ju9dzMO{wk?5%!GW2+{X~_`0$5pEWrC?O4T*pY#) zxh2R%6;&F|dg=9}&5w6W^$+}wZb}#r-|fNNgj6A_d(1(wVvB$*0Sd!9`nUL#;WZfU zhSXo176Jw&+Hn~hOrTrXpdXaOrOoW7QghGNY}_xu;VX5^f65LbFcI?8%PQz&`od9E z-tWM*dCHeSkr`ri^AqzCS=pkFN4M*Ej`{g0%R8iI+aFMX^szzlx>u0JR(5Jg{_ z8#uWKe(hmx+1ive#vwY3l5Ru$KkdMLqBVfxssq(+<*+Vj-$-l>NG-BDrhQna3o9ER zHJbh~@k3zZL^86qdFLIqa9pwncwN9=Z-GABG99+&l-@AO2gt1=trlOo-cqQcTT5WU zF5|r3MH1=nU5qEcdo&bSnvuNf3azkh9}EUp$J%(A3E4ueune-T!o?lf`<(;T?6@DB z@PT1_mMi5brOob=G8BJ8nJ>py?|rXT1vFe$Y!x5wZokwU%M+<-(0-(h910ops6UEA zJ@b`UE7_pi{U*Wo+d&_-=y;`{ufMxuIWM}2o)lU1D~6a-CCcf0aId4$mu;P|@u6l4 zVA-qoat4iaxumiW?8-oH?}P zNOgO;5@zd>wOBsD7FjU|1EKCH5X(S{wHufj7}r?3nRRb7<2kaQj8E1STA#@b{6;>48SItP1B<1b{>Ai%MY{U|`c|1mx^8(QWt$(Aj5@6FMA^lv z>Jr8-?jcGu&Qt}St*0L2+V?mpo-pPDs;MKm3r!tcV|XsCE=CHUaivCOz`s}1N~86& z7IBE^Rs)U>ei262Z6L{%|55>&N&g%jcB^ka_TJ}|`h@T9T~KhBc^ZK@E29pv!XwhK zX7X@BfSWGYqE>Ov_sx=6Qz>vct>>gwsP{FqsOMSM(=HD{H`jL1h~Q5X_Mg$1^<7H1 zFDmvIL{BY_#Qr*dxQZZj_Ga$JFqf>pbk1wt7@OTFBx>`q@@c()JoE?#m@vBn=6w10 zWdBQ%{MLB017XzU1~KQ%U15eXAc>w7KgL*O*6A*Ez0*clC)(s@$EIKrVyFTbROj&H zrs(?#e(vjwqza-TRGSb**^<2Pbnsh>4yJqH?2GhWuSn>6g{KWLDmK%^D}08wlASdL zm=OMf)o(*iV2%`$s#XN*5kI!BSyOwdEF}vZAkwlC?%x{r28W|Xq-Ykujhu|n_3Ji80!q25PesbJd;Xjt8kpuv4=yKF~Pc*<+!Hc@PqV`ymJpE0~uWo4d}Xg0!)Witp|uW~gM`jTPU?Ghl}YCA$+TK78te zniR@-+6j=M0~+ds#8PUY;o$G+EC%s$LnE8LN{Y>!Xk|r@|*iFdQd~^Qw>giyL=Uc%+5^VR${= zFXE|;fKmM{K@PEKee-B5gvVtEBPO~dMQWZ;;YYKa1t*J5PFJ8d zvs=jgKV<40I8##cNpd5VhJ5>vy62i-)Fv*ZR!Vi)kpcneJA0ZvOr&Svbq5Qn$X0g- z!w(f2iF6`F_m49;00S;) zh1Qw8q!1~{kf_Fy)E8aEseDuo2O|w+=shs%IOy1<{*xZ%h||5 zohm1Em<-N%NTWw*!77>#>2E<~wLhpa;d~O9x1YxkXr!H_0aRX1UpD+z9JE!`keak7 zsdaD`Lr#6fUkr{}KNK+~(~ z`73CfmmW@0kd_%}`uTM(p3wk}AzWR`t3Y8|(cb7}62~*u9JWA-gTS?7CphfZ91soz zuLyb5w;aJ~kqdNDbWdk(XM*AXwLp>|6{6(1Vd#Yyf!v}Vo=-TA#8xJQmr|ENjOV-C z1U@V;L5OO@Rj?>q>89+yDJ$*Tn_Qn=TAcsS5{3kR2&Y!ABC5=1ccM#@+HY`+);iC@ z7G-5cg(oUXXPm&Me{2*&4){kiQQM@SP%Lodhm6lXCp=_ZN=Bqx0|wj3N9QeL_|BM= zz8koQOSdCq3E>Z{4K!QzY?^<5Ado~do_(fy`q9z=T4?vG+7P8>D>O6!wL$tgKKI#( zmvxv)=0pT3@U}LQ1b#Xt=p(x}R?BT#CNXFlG86~`Ro8P>3tO&2{q{|qS)jz1M@_% z7ZawTyd~o12kSi;<{ApGzcMJryIP|&R&zJQwtFIxql|uy#NqBxGGG9x?sv|Gr;J0y z9tg#L=6E;vp*B?)-0z3G4wcGv#2G*Aq&IGrjv_mnCtP60xPoWSZz6b~U-rQc?xxn< z`a%&)&!k;DpP0t^8?r*-DgoF}BrwpAKD@?bwKA~~RY@OG+Uz=4UtF383ed9ah zndz6QAc~s5?z)9y?t<%mJ?qra&MyMEKi1b{5aI@_946x+;sHky-4-g|z<_JTSi_r) zVG4mC5H`}k4gZS_-ehUSE(o|9{iE`aM=N=jeqSBu!)aG^&d=z5cU3Kte{u*v-W=ke z1RDyt5-r`NM5b(A6v^}MQ>7s>Cx!OAzTwOBxqu73!}qfwMy82Ulj(hh+0*>zcyNUU z`ryO%`s9}-k6SkKnf(Dy6F^^`8iy;MAk5ir)Mu+yKy1{$B<2sBAaTkyo{&3!0YDLE z<6QNYjJbQ=(JWEiS&4CZQMguwnElQK>M$_DbmiUjFgEvDh%7~=^}>?CPkQ(yj@8Yk zof2mTpbr{THz8`7&Xo`Kmk*->a;|8kGm-#VWpyFCycD zWf%SoOQ~<2FS^9}ni27r1VHv4*01(G5nGY$Ln|QR_Zb;=jbC7v)h8|7eDzubEiJiQ z@kpNR^-dCD+Q~j9cF{5BQ?{P&o8jg38NPv?buZNHNY2o%CaM!V#!aO;^b$EttlX=@ z3(X8l;+L0#3*N^CPZL#64jF<56!7g&3D{C{k}HTCCvcTFld&tt_@GJ-uAIiIZ|#cQ0om_wgGZ2%=2~HZ5Y}XX&3(Kd8ZY4vw=bj;L0$n zMMfy6(Z>GXNK+-LEwa|Aujo_)!-?7(JL8W~gM%O+4j#XDOpMi3`4+uLk{fn7tlM`q z8jO8(wRI^0QhWIuduG!Y(dW}G%{eoIJiN4Ah#gUA{&pC*20m$fTVp2I)|QXjEGb`v zNq7;>oK+D%ladN#3*7eF-xCKEaeh>W@u@JNTI)AoYloG+t3tvcdP1g=z4*8p91C}= zD6IR1O&%sT%!WaC{&ePBNnzUlX4gH!_H3w5^0=PTQ+Qt;L(RRkyP%CPcVz~6O)2{z#4 zFbjEba*Sc+NU0rVO{pk=!^l(@mw*i`Xb`RX!|a6yq*uXa=(Yzw9GZ(Iaj%e`fhXJe zqw!-=`y_p`TP>IS@HE}aUSepnw&wRPnRuv_m+W048hvYuedjj=lRdRFv_pX+QVTbgb(GJt7?yFyEX5s$_<`7Ka_~ z%OXYZLlYBNWSS+kiQhy91b$H4A`ZCC{fBe;OJv$HrGKx)S3pXc4xWZwDZ}E8$CfI0k3S+ur0A*_of2|;znj=X;@9x7Q5=aB?TuHc}zY!^h?5Mi4 zO4Sebvze$#rHqEIiu`7Rql)qlPL2*3fn*ZxfAqXy;FNRHz}|)VemkD^h2=T2jMa(UDyTT zM0{KeI`wq<%|t0fZ?2tmyRn2mWJYLYVh58L1SK<_DD8<8aetArAu205#Cpd0Zn8_y z&C$UCJt^0)zoQ8UfR)J}9RuiQxBY=#BK#Hc+tbx^!T|Z%lF&V|SLDFJ=Q~Oley!W% z5S0nSD_UR$XM&DyK3Kl&!AT%y#9@cUAjiYALQa(SgYbofYa3Bz2ebxvl3?QRA>-sy zAC_Vd5mwjkr4;<#Ogr9;*slgKPFRKtpa&LU!x_`6&t_!eMzA(?GaT`*ntgLUORW$w zfGU_9&!n`gqGfycTEi3VwiQJ~j`X8WRg=+%lK)Qv@M1NM_2h@{ebt{wd0KdhYCENt z7@|u4G?CM*xN>WY%vj;>BmfR^ltpdG#nK&QZr5|*<9Yw3q*wFg=c6S1C2FVwJs@e` zw%j#o3U13C@xbDp=}h*C(uY|!XCjle6&C;o3GEq$SPqJQU16jf_e1rPbGIfHsUVx< zz%>zyz@=&vehE`Chv=7}96XZQB6QmLH!&NA>^*8?28-E(j5g_Cmg!B*3W)vP|CgBQ zU`SuIg;aH4vSQ>45Z~{i+2^jsPw-D}nx$y@Usqlzeb^_7+nVm&OAtg*v_UrdyNMNi zbmidqT9zt$H1r5ugrDVoAkau83wOs!*F%{wFi1+jgmZ4NHk=&J0!Yn28p5W)JZ2-A zeNaQQAJ({*g$wDqlk<&W3zYbN<>+3g(r&Cfk;`jP4Tc~xaKtbC7+E!4iasP0!v^@h z10}pVcSj-AP1(j7X9a^Y)90IRhwtJ@_>l7)cM1F`2X&1Osw2xylkJBI5zRHg_n86j z)YS}?M0&{+qiJ(a!S-`pdQLeYr6mh9d6PO{6Q_Y&uBY`q2-H}kc~1!akSiiJcOgg zT`h_@&m%c#Kkjq}06o_qPr|i&M^Vg~2aU8?dk`Lk0JeVtizcw?t0?*IJNPX@i?Q_u zTiHZC;0ZE^K2>B2{}br->1s#Vg5x|O*FF(PwEPV}DM6Qe*TvGZ!4bUh#rA}7fHU%J zW%nYs20qvUFvWQ=nz5xL@8aU(4zxPRz2}+XrIKUfOYVQX%f9mrx>j7@X}>_Nlb#PR zbv7$07A?e<10NUq5`H%AU(y9Wj`IucL$#>Ws%SU`xnrMhiAV z*4cJUOR~OIw&zQ;q`nBaorIi>ER5}cRj9dJNA&o;?t_y^Px=5)OP>!1N2?EYsDk+( z4GT&fQ%ywF8?E@mVHb&q-i~+ecd9?snjRmr^qkj}H=Yk!bj`~II69UIuTQc{M*3Gc z3R*Ff>AiyUzVeo~Tu{KvCQZ)PCySSt6_J!*YS&+#LVo-L#Duc*okm{{r4lB?j+>yD~!~ zw%g`07~$2gG!bEetG?z%sP#1-L|fgL0Dk>F#KC;M}^%qFW!XrkHGoR(XTj+=#J|w{1e3raL z)UsY78W>-VX~cXH=!8JQujRWSoF@8|TcRgY$@%%Y32!=_VfMf{)nH*j@X~Rp_TkK>arsiOEba=v%!_N719_3jpaMtm(M2 zp1bm}zxRiTK&7W$o~>@8oK8oJ`E8Q}0OfbBb3yd>3w4VaO2FAViKAkH5`=;l^kNjj z`Ny-;Uq*2nVf0AQ^fk6bs6I$m#7O*ODtSf&Wi!oW5N3dal*Lb50a^Wkv8lyT62n-V z*ycUoK3deW4|c;#S#3`#A~~r%SKd@waCdtSPF|6Wop}dLQ1x5g_AkMK&$6$xUwbrytq);w-z^|s{xmbgVst(JhbM-YZ;;NiR&KFVQXRM zxDnAD`d9DHICljI86Z0XIhA)aTzNu=858jnMvq#asPEAWMuT>`eDUZJ@VsWwBRXPv!&<5#0xVXYX=58kXh`YA zmQ6N0ezLMB+@%cnmvlNq)IJl%iLVQ#lZ(yUgi_Q(A7K?NaG)LWQ;5^rU1pwqCgk@b z3NVZsIz&>&r1F0rIMyIeXKjTvxZ8Y{5DzU^9cDFu{U|PL9Tu7~GOoNlh84@map_^n z$AW;tf2N5OfLsH)Q6>tk93po>PKfKI8WLSC!Ds~}M&wO}l4&abY8T;mkvC1u&z1?M zC)&gKBnrOSvv>5}Yw!th>Sxk)AKz5G7f}IhFL2r)D=z=lg}?U{Z%YY_=%sUbigCa`mC*RoY&qM7sUg+2ZgGF-uF&zNMKFBjaO;#Xy~My=6r1Qa35O(29h9g9IY9+jo~T zRwI+jB6jxh3Jn!OWW>;jtYfc%vp`f4Z^>)?aezs&ZI@W_%$6pN6^-3)$ zJBV7DFk1ulXXqxRlC=l&=xU)7BRww=ru{n$pvOFpb+-vq&z)y`?=|jo3F?V~HGEpL zy0O^_G^HgahUzwXq8mScTL%8f$%(N+5#Pxg{Z+}V*NCYp-J_^L3Z88FE;g%+Q>fXE z?8&-izMeWZrUwZr13mQ7iGbx2Zc3Y1Z@c8XYTGflUPQRVpGG@sPUr8P$&(X?k5uPS zs;s{l?S9TD^5*yq3-0_N=R{~@qf;`Y%Qu;1wy=Wdu)xuRs`n|bDpB4kCWk7#LMzbn zNl}i-yJkq*25x}x+iu{^mwA|`NavJj!mxf`S@Nv%R0T$Ywf&9Q-*CBjK9+`{Rqa9h&Dwn zdt7iBj!{aS+x-=GW}rd+d?~l13XQSqtqOjL7p9#u*{^-KRf$V3ngB?J1l^CCHoj{= z2vAa~gkzxKEq5x&!PZ%Io=7djne^@3MT!~!QP%W#kxGNKmZAS=b8L_lX@Z|MviXxU z1REX#H`(C(v-j#sErVkR3l+>z=jA>?_5-zlJ-v9ZE7;uQO;taM(~9_=@sGc}7}oK= zc1plhrIi^!^uhopCzUC#mz=BDT(aoYsG^4oQQAK}1KdI*qcO@=?RVC4dz`N3pv6nD zBn0V&^jbj!uKT2F4$D|X?VUhUsY6~AGmL@;K=%!Stq=j^)}xsjYt;ijO!p$Oed#!b zM%nh$%=D5Yul^hy2Y6sN74>hFFxOLw@8C@Wl?r0=*o3}oRQrsV$$Pa`v&)EIJhl!B zKDPP`qu3fW{x&&-$dk4KqjQXDJo-*Xu(2F za`3BHRMmo%x_e%2UwRsanE_!D^(nS!_!AkYkR0VttkR@!Pd3dGs|F7F>Rg%__hw|b zzqwCV+i(^sW+|`sjP{gaV|}_q?CmN+dy~{ptuH+6o}F{KM3)QYi<_FVWlm90Yr@?` zQYb{jrxBmG#ww!m$Aoxo6rniJfXzSK3%YBG&LajY`S5Twrv`hB5!OX{2@Q$E?+mZZ zOuh>*J&ZZD;wCDuaW`ob{eJMqUg5U_v{;}mkVG>IX(UAA>9x!E=HCjHjPI&Y9RHH7 zUU7pQmtipAbf%fZ|IO>I#(Ze!_C!Uv(S`b9sk4QUL#kE7A@=qsA9=n!C>ACYLl@9+ zmRi1k;*Yrm6O_EtPwBzZvxi@9f>Ge?#6gPB`u*^?J@6GnU0~r_@y7byIcjDfJwJX0 z!5!&~9^;&?kVYQ}*#4eExuWaiR&%bvIOHZ@0Ry4K;URL2ciB za>&sh9(7T!m=4gW)Kpa4yt&SHnV8s*0F+5G9|d2+D}_qoKc)V;>}b+>UW>1<-A~H1 zQwLF_@Bx!MIA~J*p_U*4Fj`uhOKOz4Gph}JVAtK`&Vv3FQ`QpP63sT_Jn?yprDBCQ z61|ddiPNUY2com!`(RhpjE!A*(gF5{^bi;!-R2Z1&v_qF{#w!sNxLkvJ(*BR#Z!rzxY2e0d~E9(2a9PyPbZN=rqfhZCWCJSb4 zZXKMuits7^BU(mw_G|xzxj014H7F>B!!ikVrfLkQ!cA% zss7&Ym+}b=P-gIy5&mPR{t06K3q!~+s?kZ&M(=YO6wzc|tf2Rpe}=2|J?Y?$^ZSNr zhh!c^C|UWK8?O&BK%mKj$45PPX9e%2ZgZC>I31!^KUxu-l^uUt!YN~3Z?26pKlhCh zns^f5{U$SZ*-`I%MGu7AJI|ubr8INgT}!C}tYpH$%$igt*BO z$FPcGAnzg{69{tK!P!xXWBu4<#`HUzACZWG(;F$v3)2VRN8{_jw9j`w@<`X%_pv1( zjyk#EAy+ifyBf8E7&f}&-Ei1{=ja^ytIx*Qdw!ORbhXCDGR1j$I{cs)ixsJkUUBWg z20vW8D&4u*0xx@v{Ru77#Rl7C?9fsA0H+Y0acj*UO32m`V=V3TBfdjtRi}^f@9aJ} zc0i*fo6wb2^qyfq;paXFqx&)kvT|CYo=ccTm&E!jA8|uKB#BYt_ye+pkrYl* z;S(;S*cB;;?d@w^!h~^f(NW+69KJqY#)gBKm{!~-ZaO+8c0uvgk95t@{lX7qDAv?e zHI~0}9barov(Hb(21-{)k`oA^zQEZ-ZzvNPj|oUJ)1Xw?Xa^X|GMf>O_RgOpy%s1K zQE}B|jAt}>LT{g4KBoNC#s4kdv~}YqPFulU^{hjFF*~H>@PsivY${iQ+5zje7_vAl zxOHG_gp$P$ouTVNx~Bvz{!O;2(rJw1^(}3SqYkZFVqI1ly~6)pmYo&vXGVyu41vJw zZ%o2yvY{t83;-vAlJa)wylgJpu=rrZ=OoE5B}AF6tI|(qEJ3z5Fi7w(@G2dfo$!djDL$b?5y-IhVpdUjREvax0KsN;{Sg=4`lD46I8X5l8c zi)Hn47p4kfw_QG_qL6gQ0;v1VCj&H^-$I3dlT^VC`VUxqCKIB9bgIynmY$IG&1G6? zK@kts+ZHwW+WRvAb*Csf5+GpTKq5Fh>>>Wa=9HISj~O!oN?15O&@~WVx|xqcGWH_m z@$#&mvH);9Lar8+a3f6p8Gila7H-VBuyvRucKhj$niY?e0Mgdpf}=;{_t%a7?~+$ zt9J`b4`_=}Dp5`umcMGsxm<~1nl3gK>}zS!qGG>}9fQ|^a*IcZ=g!!S6_-rzuvv?! z9w3qyVMQ=A=EWhe90-Tnr9B9%YXMlSo0idoQ5n>*0kLqeKqXqG_)gX9ZMa_j{ic66)V*>OpHc0E;p(boxo z`h!iFT#fkCYa5ZN!^Or+Uj)nt&}2(hzxwZ;z_Hk27Ga`+E6*)d$@}?1!;s@%&6M@~ z2&EXOH3fN{?;xV@qW?`pyajsu@nC2$bZ6xisiXtH^9$s(`X9;i<3JBwqbGk`R=ws zFW+bit(+nXqtFUCrys%7gJsub_wVRz1hU?pX*Ho)tKWo&gu=AJ-#I;QQwfX%I`Q%G zC*kLXv;t8nDU!+)S{;~E?OSO9nFv4Fod%0wtQWpc8Z6i%GcyoRFM@~th)30os4n5a zNR+qsYkfH9*PBLz=SlC-kht;Y+S;{+%^=5;DM)kL(ST~Wcd5J@s|%LOv%>vZhCNXG zoQhq*qqV#&mY7JUZP5(}ZsB(aHCx?3oM(Y9N0y6*Ms_`WBK>7#oE`|qA1~q9y{_ju z&0j3}-PpWwq)?T&7e>*v`VB57J)kjiX8fxmjJ$c#bdmkQ zmrXdxGQ8-*^yN6+lh7vxH2+vf zDS4j{i-^;?(Zd7-yNnt20sr$5(D-y?zh3B5AqjC29MxFVz&1&oDaEU1VYAodOZr1k z>A~5AKh#BL)nvr*0@H9kZOU{0_G!4HovmjNF~l`Sm7~idv9Bky{yhwF29x*AVIaI4 zQPgWh5(Y_R&t3L#e1SH|QfZ~L%X+&7^@u_XGh-AJEy`3l_qJvuB%^?QGWFBJMiG@z z^)aw;pTkXu)BoWVYGELfxcq0O@kE_uxfQj)^d4ls8(R=ChVaRsjBs&#W*|JOC98GS zNDY!@N%u!rDefpovl#gt$AYoiPn9>~lb&4mA16-@0LKhaS}7_2hcx*Q%l&qarf&>q zcmJpa(BxW}+?{biQI`c#9L|nuZjWo)Z{60_`2&Xfs3$n=@DS|I?ZJC$`-z{yZ;hH2 z8#K`swcmz`l`n(ZUvgSizq4^HtvP0_`pSfazW^)B{iMxp8|?UG&zRSVKnAfqK-kys z-xrZ8!J+YPx9h9c^#tGA7+`!TXs8*+0G|W;XVnT0mff}maUr+-K#Na5@Y;6?iF)cq zj;*Gu*2o|sG9xWX0QS=2WhhR#Wy`$NeTEA*dQ^Yf;zHN*hz9Aof0t@=$l<#F?1vwm z#eI6;b8IbJfrXKiAQqm?$f%i#r2ip)@yRO!!)+McN?EgA*sH?pyZOP7V!DWOusq9O zI;%Aq?y~=wqrY@!(kEDOYP`4PyjSg9&zAVQ*}}O?f6J^N5hDL<^O%HwF^$#o)^ZL* zj6GO-M(@+yDOe9qQH*ALJ);paKD2D#?SflrGV4g2Bv|=AWyI%x0iul*OOz)uayeT- zH68{nOdR!1{d{j;N%*;x&X_f=dYQ?h@SHJ?OW|y>EVR=FNQnaX7Mf_g+=Ks(N*mCxh=Of->Pk`1vS_e27tT zuDQ8(S*Mk{ToY9M@>%wn!0r#HU~Y;?b7R;t!ETfZA;)$)WKe09(Bear*93T_C85cn zv;c;3k-A8l(+5Y=MN`~cqr0PrA8YTBZAi@6!b%+~*4?KUes@&sxio#aL2pgY5FKuI z{40h(L%5Q2O3#)DLe>-0kR@da5bCk=b9N3 z-cl^xJGVgzy{j~9@(*LEbACbH?J4IiX}>lGv}awK>F0`DsJX6c;-Nd?M=y*t?H!5Hl%1^N0|77hrO*umUvTRfyDP9IFEvJ|(3jMjlNL!c4-xvku%{`Jt~+8w>L(Hm0zyxu#JB;?W~F zCJ#S_hNcNKBM@f8<{(y+6KX3+VRS;CoH&J4$c#^^h(IM5OY!+ z;9TvlV}`Z*__ihE4#gc(Y6|pv&5`aB4f%T$D;ph%brQgWkpLe0j{^k!8_Ius;bZca zNA7dc{Uut=Yt%1Jd^kp-&DDTxV$*v#)^9MKVJsu|c}P4%9-qCq$sFKML*4MqUr)S! zpX$2?i@E$jBT34kS96urAa7f)29ftYN8pQHGNc(Sr17jqcyp|z+T*VBQr)}YIbs2PJUzZu0pXa!# z&^y0T(*liWsrBU6-y^3-#bi8*DheAgRzFsMxrJLE+0HTw_$IifZv-u;>s=CEa|iEP zzY!~O9^3ijMm^lSJ));+HZdk>K}T;rsGX54>_LROVx-Zu^Ggq0APCy6H3$1u z@#o?#++Kat3tEaB}V0^58P7x_~ zk(XKpV|ugJUmVra{RtUb(AX7kxxN+V_Y2r%&!+f_buo8M%=P_xhTg4;@aF)W?GyLz zc5g)W^9S)p`U75R%p7$i@}thP&hII463hllNAWBY$?cdSlfLib^)Mn5n6&#^A@BZ* zvFnYrA4~#qSzxjDI^1Zs`p}-KV%?Sy<_NE3QT=TNZ~85T!0Lpn zm{cKjEMt&QQZGz!?>U(!>OWmj_KYO2%Nx+NvcXJr&duv9+9i8IL%aP_4~2}>gK;)l zX*%+>&TUA%EP_=eSrbMq{)`vJC{*2$$rT*bo+TdHG`>*04upS0XE2Wy^e5}~s4>-N z#G67Z8!YAEmN&#Z==8ob+L$S{iQaPhYz7pNq6bIB?Z`t`(!7zZ3r-;qo z@bNi3Uz+^Gg41iEQ<`&`vQ)p;MRp&6x^Lkglu3Odv2g~c>VMhGZDsUgNf)|?}+rSV_S|p_d{I&eOL)8x>Anq zQC2s$3$23M?WRe2?O11lHGKJrlH@p%lB2Bah6}IsaMy!_K~oy}lOZHgIAYlOjUBig z`wePqt6x^|To%sT#y*>lD8~C(z~aSxbB+FX2Kwm02*bNXLjGqOgc$6_WTdDKbJCG?In$6vg`$x0I%N5xBW{}JKDRNZ?rmIE^a6cy-N#yHn=K4MN9+VQ zrRzs)xYR2!i|r>KEVlU!w0xzd58|)QaTD=2zUV4r1LIR7)W!qOo(2>X z8H8Zpyit>+AXM>JTpv4}RR5|?9a{2JuXo^=u)M~ZBNt?s7eUYtbRL95g|ZW0$F<$Z zb!E<3NxJ8BZBAS*>yT}@Van&T;=sZ+>4~l@(Ox+@8}?}^8$iz`xS<+>t1h6@RQqxlDp|3RVFnY zy2*Y2ugai4(*BWmr|%bYR9f6^S-uJCRWuK`*xK|OufTB9E6Tseq$&1~Y{MV=vGz?} zq2&Ejzst9X)e8;fLPx^FQ2A8N@7Ytuh3>g}EQ5RFS?B9(_qjsw{2D!_jMAQ-3<9a3 zFt~&t+t59$J93ytq@Q+>irL%hnWYq)gXO<4pYgyX=z_%IX-hf6oE>e!g*aBQw4rgE zKWG=WLc1s-{>Zh2=cgbGtH!EZLLflopBx<}|0Sv%*(URqG`^1#h0%s%X1bAnNZp!4 z*{*t^4dgpQeUJ^03(v$UhYx}5y-}|YI-xepf(vEfCp*qsh}E%_F;qg+g@5Q$u*HjM zL;7}!52QxJf!*i2snTH+@QqW3u-3ap!X_VV}4DByQ?Ki42sm>tak0W^zuB&?CGpjWS~DdirgxT+{E&_ z-|D9qGCL|9lux|2^N4`{5`jCgXJc$1!kR*mxQ-eNL>Aqi&(e za3)P=!|j+z8h)dFwilo2<}{KE(Gr3`SQ;y5L6{i6+s%2+ZscQHFt*>bqOt-GuQ_|i zCf}_5uUJw{428+N5=D!u*E!*1{a3nQKiViJ#_+fB9y{h`&n<-Y>=$1VfZ*m3XP>+@ zSMn`_fyJVr{A0mBia%(tqy9J?%| ziTl=+`9$XN3pXAj`Tl18(TrD1h3ul{?XS|m1sMkfvI*cpRl)Knw0xxTEcNtKdAtu8 zh2Oa-f=3EC$^tU=#>B+cN+g$}D1ks+Yk|cWH?rqyk8V(Z{wq@9PYw7$UbLHDjO4o$ zzWmF+@Wlpj$7XCQd<{B}imtdUPNfg)K!}a3H#j$AhW29#f{4lg>kK{T@uIfp? zP9MPn7ooo{s%1Zle$Q;f*dg^dYI}LwqxP@>feq9OjGuO zW~A}>iD!{w`gB^Yy=IZtU9D?paF0Q)f328ZqPT``C&x-F59qdof%=uCoU7m0iyPj{ zoxy3fK`S5uHpdHddbR2smUHL4_5^*`{*h|m0&(xJAi2QqmcX1ApKRDzyqa>0;Pg5I z9Ji-1X{azSGWn9cxb<{E8+9Eb@9R5UXYlSS^BHA9NzJt^*cqnOb(3jX$3=_tbmVD+ zV~?PT`)beQumx$z;cclM68Be}KL{Pl!woyF^{k=YetIG6ilV%75jvSe@nZYoC-X|L z9Y3JmilDG}KY3RdGxoH>9VW`n_5=ydxXbT9{(|-EXLBJskPKvaO9q~o1F6zOmOFiO zYr;9*u>Q$p1V4%o*Umj!5nvmpGN^un^5&32V|rb8;zD+zLG=9Hv3yl6@>J+aP!;Xo898zWc*)b{f)V2zOCap zYbqEdLW9eAInUWq6ZH*c?=%KnL7@OyKE;`~Jph$c8& z+Bux#%3-U(njvQf8bS~xXc4?xWArzMg~Z{U?WfD5%62g3$@n?cK!zOS9o}E_bptE~ zD!O}XlmdHgW$mx_ngr8*dKGv2&!l8A@v)JX0j%C&JbLi!gim2s&^EQ4suW?1<#62N zDN&WHo@}}M_jw`m62GC#`o4D%2yU~mxz-c;&vgdw^$#jCZB5LfNvu2NEYf3VeDMxB z<%4wE$!+}nt4{A+Kt);aqzGXyqsVY^=>}0+WWG>|#0e|R^mb20a7|LoKh`n`A(828 zB+eNJeE~j)3B4JUs`NeR&edviZn|>GQu;ux<=zumglZF=A+%Iju1%ncllya@e> zqIl6I5NN-vu^fhx!0bBJt6naS8P(@`YDClu&l(J$8^GrXd{&;Mq}&ujB5|Cgp>~bC zsn?JYV`OEq=^nfZ!BAPRt|Cg0@U38qDm~Y}rc4(R{#m{W=VFbA#`qn!uS9Gt7edBZ z!Phe%Ldq^z|P%!6YwPv z*@l)JM3{H3^G7D=p<;DFPqjeX(r9+IzOu~egs=F@9feO}L)FqZqU%A_slyA=oKQ~$ zkrK>7E8@RNuRm8w_4F|7AJF62A#N2!Ne06gJX_bH|3Z*n^QMbh%RIXd7{fN&HIf1T%~rup8QZa zbNqY6#{EMkGsQrmt6vzu-#HF6ka?sOq60W0uiRSzD%9#086sa+*-JvAc7F6p9uJQV zXSIAUDpAlHoj^)J%*AhbwBv?Hq3Ma4V1&*$B7=eVkjtd0#%dNw{N2 zm4OC>rN@M5@sOo3i>JD#P{)v*Va_iEzIuBsNbz<^%_W2wOd=C*cKI2Jm{4c4*M19& zBRf>S61Bn#>wkbw@O>zW#!UJ)Y!Cv&WSO-%f`9AmT)aKJs5%IewSUoiN3M0#b*5Z8 zv*7d**W;`Q#%mz7Q`xSnBltnLcw0VDjVy#M@1!Uapa^n0N%8@NF>ho6CRZ#Mi6 zAj=S(rhfk;jDEAsfAMEtwKp?v;~7@+k8Pe6+e-4t5f1utPOSpLtP2QG#q1owy`FC6 z{7v93Q4Rv_RjZIogSZ)V#mbyzHVTRurvP*$;x>NSzZt}?yJ}37l`m{HH#*MnW8%>M zy!g&Lrt@dFN%H$*$?EMce$C9IbfEB$c;nVWwNevW=3kI&;LN$i6)-ofXgNPr{9&BD z!7;~If`f!O#b%_qLjoPdr{&s(+i@YM{CCIPJzMqJHX($ikQzT=8hjq_P~4SHAr=aF z^69>q-`=@| za*!kiw~+Qf>=r4m9M6O)u)FpX&SE?_J?O2|JSdRfl1vFaMl*@_yrg6$o66aUpgBQ0m7*n08vhrQ6_9T^PY1TV4q=^51BC+CY$)~hj8Z!_XY3or*M79Y z*wTFe5RFYAiS)Jv#-mKUbTr{+_%f)Gr7RSp?UgkpE`IoU{rxbMuyc$#E=FAyVV6sb z1a!!CByWx+;h!t`5Ab$?2(9=sU()TLLjXYR3YaEv@&5-*6rZ9n0L^`OLAs!!MdVpL z6~9(x)l_uAj)lYXwu~6vh5r^z0L_oU^U?WB;l+fu==WL9xcnEnZUFAfPpxR9P2}^@DY1_tr7w zCgl(}#q*VAh&(QyxH=?s#}6+8P7Zh|kD|8D-t7x?7c{#v7c$_)qJCQ-QY=hwo?)!O z08iA4RRmfNDar?nkFmcEKpGs2rfz~;THQ7ACh({^_akN*Z`+;`Z+=HGO83)1Pbi(8 zYjTE36$isp`ebbbGVk&5l@&QuSiT?dTzN^rNG=ZUA2rEO$-m&13tC}%ySaXpyI)8+ zBicj2l!DHJ0UT8(j5BQ=*jr-M$Ck$84GA6a5^vh?s_Bx!|3JroL4^t7EhBJd{*_cY z(?cyh`2)i2NWtZh@W|YOdczIneJX?!hyE{5^giSxm_0?xU*^4q|BCq8$^RAcAEotF z$O>PlJaal-l3TCB36}~{3rNhW8lFbq4bmc z3;kk}p)$3`A?S(Mj;1oCfc5HdpLGxZ=cX~`Y`*wfk{8a>-dKM%c1hCl5OHHoKz#wu z{r9<@_!Nn8MVS1O&~O+Ej06duz7eZm{;#b1leV|TT-S6zHCk+KCB@QXyG!oCq`fLa zBRQ%3tvyAkM_bp_9ShnaCKEdB?~dEiw|*p2YMY4`1Nk^FARmVn>Ev|9lKdg}t6hH4 zC3;Rr`+~&?&t3AF)J_?tUe`Sl$M&`b>q5#tg$(EL*!N zd(A*CwN0pEaT{)lHv4;h$Z|d7IiW%kFI@` z?MUl-&vku@-}A73d((mdt}?B`CQCFHoEhM-hzfDbi{H24{8Z{j%m61K*@EEzh>$4` zou%`Ze`@&(wEqP}-0|#Ki~k66jL869^RK2!jsF{vBI_D}_&NTfRha`6Dv3gmI^2F$ z^jXd{v5Fbfsc0zrH}>M37BK-Vnpxuzwa^8dVj=PFDWd;sYruIl4@?V|uRncB$YMEr z6eBjb3Fp06U>%HcBrTCwSY*zps+SG|qcC9#u37P#3t>Uxlxw#WJf;gj<+hJ>kpZnRBN<7BIYh4O9P zG{{H!m7%wMC#dtgnP{lI_A!ztzcHc^q)+t7`rWC0xYuAs{Dm=!d}n9;v-*24uG8ZC zj1j>(bNnw~7YgHp#eh8f)Rr_99;VL0)#kp`!x7!5XDqt@uTe|B?nC-3Zrp{fI_<8W z@!w&3598eNkNCBGhczg`RDJgA!b4<_cZOrqE>6O4g4b`NhFY-1MsdQ|S%b|VV6nM# zeIC}u{4L=oV{~WQMmP9>8!sdp{K%(FlVq8bKAq62GeeDYvu2m6LWFC>@|Qdh7> zw%Z^trnEHcd$&BlUVL_uT@?!)L~{@0c-!9@1Ckgw@lN|0+xSne6i@~@T}%vi?-^1c zChJSFxK-|a6PowUWYd!yfV~gbLs;@JyZYl1L7Wf7)iXahoNGHL+zD+>Z0fRidf(1F zg-y>hNqqtYDhlqYi;{2D&6W3!#PX(>p#S@d`CmTqZ*ZQIzbV6bZ)!s27g1+O(yA;w zp+snZlfo{YEuh;-zoIkfAdbq>LW881rB!f0GZJ>RYrS;s>|6R^=WL|Qdmr2XR2nb6 zr#BPq{d@0s7jF60;oaP6YXO*}CDn=FnGS(u86<{U^VX7>w`n(O_j(SRZA2ESA!-971=!&`K@9|&^bABl3$ z=Qp7c@+JtvfF^@Pd#)#)Fr@^8ybvKy0oGf&)POh|Uc+GHbTva1zN{I%N_SVRgo?H& zvfZz>SS7y0BVaFniH6G1Nt|)aPLdwg28}D2V7HA93jART9fd2a2P>4bQ*c$c?sZcav6TMnO`zN7fsy?T) zIZ_cNAM^YHAj_vbNK8!(y4Vb@s>Ax^uP9u7W8!}j0TPhsVfk%nPQVYs3>SyVzDCIhs-qVq0JhiRP z9RJ+VZEtfUSzGK!lArYk&j<{ScVvzS8q~8CcPjsAE3sbT$K(ke!{12Oc|4#-KBPIu zreIrWT>aFw8%-Yk(vYpB1>_aoXU+wehEAE|j(7`>@{0%nDDmpN$)c;y=7gW{P^nxO z;!6v_A1U~X6Y&;*bAQXDmRAhUJo*aw%lVZ@A&y93#jaT@nS8^b58Ru(49F=6|JOma z|4#A#0Ja0|kDglRoSGCp+OKMj%CMIo*_GA5!IE;89WNxLThBLcwL}s)wK&r}prBEM zC4gs5gw=?}@70FtfSdZvg3ibyOH$lLhMY>J{B=y zcnsl);HpdzG&$53$}s(9OT<@xz*_s`?pZWXVE6#ibS(&!oo%H3Bd8EW{HdGR%%l2BhIXHI4UyY~GT@|UJ~63)s7n@BG`X(2Z8 zR=-cty02o4))lxB@2NK3a*@#{lG)Wfwo!l1i%>_yUWWV%QmIwlly#P@BR{dD0l^J) z)f0(r%(D&p+Rr4`PkbGtcf5@Ltfs7qw8a-_7ln~&p-Q0Bb`SRboV@uGD@UE+)TU#z z8Sf%`PoNlo$zbB=JBjBn2n}na45g+o>ifJNd_Nwr&E@Pa?X?w1AMa*^IaBlFiu(GH z$MPOK$%;k3%}DmFb>>JqnfwkjVc^R>_5Cc>nI3lRbezf?qZqE5&~%`zZY|RL?8l8$GVCRGEaUYgKIcs?BpHsfC<<`U+BXhb z)HJ_Y6Tjfd0}9HW{!~#A6anczdnp(vpf(^8O`U*6K@29BDqx)n7j)M5dHe+1Xb1K+ znzS-4AYAy2nCcqAIglWZ$jpreV7E7)Zy&Fg%>lNuw_4EfC;lPi2gnN{zXNT|{|JHp z-J$a`zNOOS9wtSoIV8EaNMBO9kc&i6qXHeiunv+^#&KeamxJbp*g;ZpUhv}HPf$S> zy4^wDKRTAaAy6nScg)eS*-Fb(aq&Jf_4-$~_0CeO_)irYq50ZWJc1n|tpw%XkN9Fl zI2c~1GKaLL&vnq7PjXGAh4;pYs@L3-v)*5wU!e`_tK=a+AQF7zt_*}k6TLUEe6+(D z6EQx(RN7$(|9$LzZmc9>bO3!ZoqT31%&f75@Xk-|v!jQ}io-9$-chG}ugSIGF*MbQ zDi}!WD8`=f_f(xx9}70LCr!ItT+5uz>_c%i`mwgkvSf*sDj*gdVt z*m00i5;r4>`JYRa=e@hSzPperMDz2^x4wUn!SyRV{V~!!vb50d%J>2+i8Ua($XXyu z-M7&N=UHz_qzJJypg-+JO4&9K=Iox%D6@_9bl*D;14?mC)f8rS>ngL|%1{H5q8Eks zRx|Z~ULsiacO4^idT0$zAN5`*lq*!KhEY>e_ows9sFUvbqGL%M=~p`mmjdUw zGMR(_$$I0)(u~GtW^&l_2_C3ANR$UX*au)a-=?A7I5+zn=k_`Eh)xXSx29OP{Mm!7 zrSJ@nUy+Qm6UNPV%z#NQ60$!*339!JK$muZV4{D=VinSCE!CKzkOBX1=`f8-d<85$@)K;@IEB2Kd+i5Wy3JiL6Tk z3HhOWLRV#AW@tWa-J{aK9B@uS#zOOKPT~lE@$z4cB@Dd)V&iSl({pzeCt5`U%XU@e zB>30WlOQp^SR7$H3xYPSCQ+1LsB{AJ$On)xZc@5oJWQ|Dw(><&jX9Z~T(sa9zhSB3=yI--$Iqo~CEKsyr$YItuw;AI8XXHLQ?$VAfS#p` z9F?#pR@4kCl$+mQ!i3Xadw>MWpchc9z|IZC$?MJP92mTNX%`7|%nvF2LwVXPi2DVh zfkDGJPIR&rj;=DMId5Y@)U~BjUZ@xbB<1nd!nlqpB|NdWrERplJZEfhSM;GqsKW!$ zu!zfnqupzOe@5PzcU#*kb)|>A?yRCY%aJm(#&5rZI5IDmwd(cLvkA$~LZ{rMH(1Rk zN!Oh9wNhbHSI3}LFsHc8&5L%rfl`dp7Hyb;%>URpz65i;Ick9ioG-nXLFFDA8*Lik zr8RnfA|QQ56N{N%fatW6;&1wa5n>roFBc|qIj)7`twg&IDMm1qG#rV9~&7azAy!?-epMELi<^F zP6d=~(CRMc$n!|=4UWp|i)Q5c5kwbPyCpc$%Hnjjz(Zkr&!9DdbnLnY5J=9j&3MeC z)h44P1gFsiY(yf?tPIbAWt6(-ic)+~PYoe_Ku8x40>E924QBQW4j(b3f8+5uf())x z&z~ILa?32p>%I1d;a#x}ZtO^=GoRmE6ad8&QEC|t3ZV)pmYz)4+)~%z-Zz|d_mQ6a*V(|zHT`rzSlb-fUNqWu;Tp3+ z))-__A6TqX#Qk$wTfbiyvusRC&)B6(tb8SFe)hrSNi~cG(do`VbVL42}M?WQz z%^4TAi@OAo%qN9tti5?ia4OGWcUfPY4GKt{=0eH#$gg@#9i7lqu`&uA>C145bC}U3 z>f3?o+Av@|7!HoJbeNKCU?6|e)_ORJrg<3*eD<;AacLRz+T>^8F~FO|2cNqm4EMAB}{Jyo3}`-kQ7 zyu-9DpGA^MoAHSXBiL>(k$`Fa2H!77Mk~B*%4NA2-q}QAwN8y|jX@?<9n8FFaqi%Z z2uE6up+J4F{ENNwb=NyEaZ?I5wglyBuSmUyPGk=k%w#w>o4$WySE%`ut-BfCA^x`I z(zgNcTnefStgNxY4h^jutUfj~GVym2rTKDU)9Bv^NNjFspP=Ug1HQTZ3dr0nPhrnp zeB}}12ue8qY=H~Z5&E-BG~G^3Is?m_>;l1Mo*9D^RblM7W>E3rO3hlZ_|tVlh=-8L{HTnMXWzuaDQ0Axr>ZqU$}-acPR zHunYbw^eleC+uwUYU(VMl#LFuO6G0XAA1+PsWj9uX`U?&;4mQz2BRfi^FpwuBmF;} z{yM8V5Au#NXIFG+dT;($?XU@`+ra@ie^vLKRO9^)DA9)WODw*i#w?(hUm9H%vpIN` zi-_)nULZAf2zADbjLgnEY@QvN`%uB{tghTtpdD}mo%2>sSFlu#1N&*kxp^M?@v4jP zgdA;_F7`(cX5XIfkL~zJAVgynzoE418UrW-8uj!u{9cRrUADsuJPd)sRGn zOFB7K*_OPxdXZkR##xZXLQl5`>OXg&T&K6)FxH7JUSJEOOp&!#byrmW5niD=QDATg zwL;N%yJ9*W#9%sM+B?5Q6t^NT;CpR7DB8F!O30tIbnkiB>zA-uOUEVW4>L0$=k;PJ z7%cY^G__oo3Ls4nw660yq40V-;;Onf;0{??fPU=d5PzsALvv_D3E`rIB`B;<(QC2; zl5|F7v1#3vLh&#{;2{6Tq6Ai>c*fJ7=LEIDNoGa76UHgCT*t`Rb=Pfyf@V2E$Xb&8R zk}uloD}`0}pp_-(VwNnvfbrz6VM~Vusf1(X)LAKzJWq)|wcXk*e~M9Mxo$|7lqbv( zH#B|SMS-?tRq-EUB0HexV7kXG+Uh|IHLfyeM}ZEn>;RTqJdajw7`@C#NiS_#%vDm6o4IoOVt^vq#M~1a33{glv%OnlOGyuUT@4d;3_OpZf4ID8;1GU2 ztTf#*l$+1vlc?j*0yq#mO6G?*#M*q6IwAQ3V2!tz8ZXM+|33gOmH;1mTDk|XH&b%h1OC5+gJ16TWTzFvFw?g{t#_+9Y4sL&hgHEsIKlX6+)uPi=@5vCmw?xg!jyl-F%(-llfSg@9lHhVfOSv=5 zkr?vT9DJDSg0n|PR-Z3{>_@sWI3kC}>h0-n7LV?Zf}ywzI2v(T-yOsH1^1ZA_a{gl zM|lfrbH-SeXB`9JUYSYE@BGm7sjqp{gIUk(>N`Fqe4Jz*Kvdnm4xsE3P7~=c1uFrV ze;Za1+1*x5PW+2uEN88NmcuoSy$}z-c=GTkEYzJ{{1JwQG*kNR=;~{GHq21X$C8hY z>-=`0y61GzLjTKs%h@(pYX$C93;dySS^ga-0g#`<^P%}PPb^OIjEq|ud7JzID0s9I zO879O1s*eT5g)t5LR%HYM_<&cKX9A9s?~VY%h&8_Mc73(VQ7CE$^^(wQ37C5au(zA zt$#-Lzq|jAytkEO5{GY=YrBB#<@CM(GP1CzCm3suefCTnf~NI5cph<1H>j@fV#3O0 z+hAcuKS;z>WitZuqmN(^;f1B8!B}f+qK98rl*ww1u9B?uw~pVrybi&XtD^Bm?uvcU zjFry74b;LKC%YD8S7fu#j@9a(o5fpI!OK<6(C5U3%U6z#P_WRJ)wmy^U2lvg*rZX0X)4-|C($xf%JcRI}7Fs`OozIzkJ6w&dhRWK?Rf^~l}*fw4%ypk_YHjc$Z378wUJX^0bP07 zBWzO$MO3>glcv69P;Z&Cc}ei7oT{E@Y*pj(J0; zF>$|6u>Ev^wy%f4-Ks?S%l%Wo{@Lqp5*=9*b({5BJ4suvsK}266-Ks zzxN$#DDENyA`UF#oWIpIcQY|$uBZTiB?qR8#C-`$yA7j=q{{i_YTMUDX|%}WbbmDW zf^03tbL>{#o54i=7@p2#{f2YBl(xY1w>G!HsP5tRUuB$C&5O%z)n2ntpMIWwetT;% z2B_hBVp{b}U%2jI;~)@-tQ`elZa#;PhGl5nSrmaw4wH2U%;V%|KvaQye3?c+2wreP!MbhlwKzF zc*321U{GwZkA%qGwWbMBDqUcAK1?IjBM8NvdXLzEy?T&SZLQ7t00BpfuijLR0?&b| z|4Bn7k0+V*b&9u53oi16v0%~Ak4V^kw#b#nr1Ew5pIYGA0@D!eG{dG$F5S9^zWpor z-bWl(blN~&aTpii(p_Ku7x@0y8F~lDt_L*l*O%tg)vG;qp)zk>zSruj?Zq#2U*FoyR>ie}OmPMLY z^kjtw=gTzX=bi{%HmrPsdpKq8m3t2dkXO?Abj{Nx<@>rIWhdNUY#7icRHTJITcY2e z;*)W^59MU0cDnwq-0!mvmVg>eOJ~oDf{`Bl9WWlC15oHMU0{p3EjJQWlI6N~jYD(UY8~O?eaFE$pp`hmHpN`}lX))8zR3Lp_TO zZgeRyp1*q{U?F~5GJa3fjo1C;Q{;-6==qz2@AV6dl(}c=68$_AffJrJpEvfVn}&XJ z6logJe5p?E9bzWMRnUs2FRsaUMmI8Rw1WC*9U+1j~?mcx_=HhW*qnBnM z(da4hCnykwTZ(c_+`-TTdOg7-KM%%{(mNb8iRV4J=JRL^v&@wfXvrrk=D;iCN2@j2c&ljM9 z@~kCyTg<=LF8}*E{Fz__Ccs)3kU@A7K2<34+FBP&YtRwJFt&42FXD02lC3C@|zA8DhiY8p+ijEEF8J3}y zzs8yiW3c4sDGxD97SOAO6i_7>2jkUDyjO3Ra5Sz4=eJ?(9$y-gKZH9^k_AsY!Y1+~ z$xvbuC>6aKlJJ+L6}QV3$cN?BCM+Ld=v9Ojc&;yiDUc~nEWCS9Hx}NVe>qL^OL9Mb z!q&}HR5qHtNDGuCkJcW=&d`wb_Y|RUfu%yEeu7V*C=;;*+;Z-lvF;NY-bVkgQ<(h> zwC$bs>d*XGB%lO|{;2tMIYmD5Km{$+Zj$St4W;+((|2yjm2#OC`+J7(uJ$ZvF-PYI zrKQ;sS6}eIu{19GZ)D)M?b7VS-GlvklE;+qsL~zyyLaVOI~aPIQ@P!gJjkAhrlUcK zuRa#$d(FI%)F^M&r$tXDI4TU?6N*LMc9I*L@!R(jyJve|Wfwseg<%5tj3qFn(K2(y5s81-jihZ3n2(?z2MQK|Es(wYU3!m~Isw zVB3ok3(M$`fC!YXv(Khzb9&snqi;%Vm7RqH-h%Go8pv&tT7PG2L1)l1muAs8uTJ^eN0nSw3F_Z!?X00_I(k zcz5d0n#1$y&6C~*-3`m0mhiCs-v!{TTXv>NB3$oKki$x1Zocn)b;qFA`W&B5!BTVn zPq#o~Qi$tA`QBzEWfhJJFmn;d$Or(hrNDSMBi}f|KfRv*{ZF5LphqdKdw=4`JOK+h z*OR5{+dHE3yIk)o>lLW&B<0-GB_YVdCgpsWCA5#wNc}HCNa9i3`#&xkHwXKl2In{8 zUTIxe%a|#gMdk?os_q2Im^~%rdOloU7R}*PRsP*|AeB0sYeTmhpTfJ`|Ldr#@{Wo? zJ7b|U>mcGIkF&sWW^0V?Ix+c;1cc3+URgI_o5Z1S_gK}O}U?|P<&$DDf@V^IL7|_9>FO^j(m+~>hl*)Z__#{6&LW}aO^x00` znG|V2N+h=4EW}j>Q|<&MEP0`@^*aV%4 z!(Ht-5jFJFCEdA8B!Rb-WbaABXc>9|yaqYWEZc10su}El3SpEkj-nG4$B!Wd@w3bc z=a18VZogyo_2?cqessZ=k1=)kP3=NwU1wg)hIe`qY*yR!LmbC^4#;J1$1d(IC9P1R zSN{0BKjfdg^r=ECF1^mC?tk~23X%%IkklK7VttH0{2z`0MF8-ke^Gme{>LyUA_0>z z@Ao4LtvvFHXTV^jAEN2kb91JrDHgdh7oDvy%u`-JU{J{`?N-3K*iX0gTlAHeT1n-? zDgk4R3X~DWK=q{U*M#M(h#iunP#HyDKR~jhgnTSqBELtE>O}n}74<&IKZv9_n%SP> zA7`eDWy{S=y*$ROTqf)Qj=mrRxYH9#Q|rM0xVyj2*NPZ;2zc2JasRe*{_|7JZ|&Z~ zp{Y>QR5vcy*E~I(>Wc#u8A=BZ%g*~cU!4;+O0SZIS|taKcPmxfNor6mFPn&60+G-wC7;8-^W&eX zt)R(P3#5%7l85PRXVa|B018!5S6Kj1aJK59_`jyVqvP91Iv5V9i>7=RqgS)$$Ppi6@}|zD@{JYC^vsx z(A5mFqPSE#>}X(x=15wI(K~<}oMVV}z@=8nx{X_p)4iejR2oq~moHUJOU8p#h!Rw$ zS=Oq}^k=OD44nt!*w{LLJLq(+#IXQ~F2n$wG}!H_zP11OcR%otJFVgYfVN05v<&sH zANa2U5!=6EFugkTJ`q!``65a=L^EA0#8`2IYJT$4T%nD+)L*v-^$<)^W6)h9^c{^} zUPJ14SYE57s%h1a*W^A$3AmDGM>Q&Uf9%dQ%$ ztNp(ZkvR5k0Qr-lH4T`Y%j!DHAs7Kj<`!k@!wCUPqt zw56cwHaABrejrw+|I3)?(9Vb24MXkmi%VxTZOF9QfLOE?08BkClNt~g{QEurYgO~% zcx$&U^SjyZKi(Etcnj^Fg{Qpmwrwrc)ieVV0ut0Uwma-$B@>!7?>^6{$AvnkL6+F5 z=Jy`78%C41$62wk+QhigS)!Jkof*)4+*Urd%_*J=*_6TxrC3lVZ+GE!&Xvz(itlHv zz=*Zv3lb^ftcA$hocJJv%-5S^@fktded_nnreY?p0=ySo!yf_s3$0t6qN1eZW? z3-0a?!QFKr5Zv7%5L^a#cjr#_**W*#bM{xokEx;x=6#=*)vH%OU5Q4oop;1W#9=)T zZ38L8Ao2fSS>tQ`;KY(u$ZYfL6RM?R+c5uD&wxEnSA$xIFkiQNDZ;WmgQd;;MU9e z(H*t1T-M*=CkNRXYe@YE+@r#gi2uVO#zJfn&q1Y%ofNLlp(5*&^=0+s#yk_+HYVS0 z@z=A#x!d>JmQOi;H3F*r!Kx`JU;FGPJYbXV+XwJ-zGMe&!Gr|6ZMqm=?$wdhG%^0Q z1o5|!f6IW|6um+Rq!Y`$E=0FtbTq1cvU=xY6!65FY@xEwxerAyO!XQ4x_PM6)^?PbsWR#wj3}}?*6{GD$<@jlQ_sT%E z5H`Jx=C|6j$F8y0YR#p9SNjilJ&C(esC^BbX8O;+Xx~bCzuSv9kyN@5!%DZyntI>Y zO>Bm|OZUSXizz1rkC~ZF>*|!a;&TJi_Ra7?R_}leL$x#kDp4K6h6!L9vU+BC!ZgHB zbd2L{ZbMzG%@Bp@$k{x}A6A?6;p)iW3*l;=0~3A|w^D&&*r`)_J#6-*MjtoyGsHmh zoWCw`{Cyq&BMLxF3wQ#n&Y*SAR<8-$Xz?K~9r~7-Va_V>_9t=fZ^U9J#w?vtkFEEf z&BLzKfI08EjbD~A{y$kr%GD`-?#16}H=~m9+K7vJza1t+Z`2`Hi_ifZD~O7l(wjK% z2atOlhrD>)imJG-95zb2qeYD+aPt1*Sjeq>#j6@F@>F7)t1rd=6(JKyoQ=lQhVz@f zHB$E6DtL1yjzJHk?*imAhoPf9Y~?!4LTrHC1+q5EQr50mZLcuRCR8UHCgY0@Mk=~u z1*Y4PN>!+C+BN>S6Dc!5jvW`>!s9UByXIRQY(agZdXST7SzDA`&dV%{kj!0aZD2OG zarYT$O_c1+jg_@4GI5kwcx-E$cw8#Nx5!+p%^Ao0&Wz0TwHK7&h3ksqZ0Kd+flp4KL4s11J9H z0T4NwnEv790#hMj<1J}yE9iV!n9ZnAq5}@}T0r%3_sDT_1XTgpQmQ2(=fkZxFQ-i0 z80|SYE#6!L`E;lG4@)6%%9nao&#f14%wr+sJ1*OFT5cL8>lVO#7Jz>|o@C0g$_Ph@dp-v)KSb81ajuJ$h7x$&E47 zvnJP?sisT2SkEQ@e(gM+KjDjF?Pj^{z*j8^wqV!=wt!b=yF|fION@zlpoI4fmu)5! zyKq<)79k5dI%ZikUm}@5rJ$RD9yw4pr>+jwk)WcRB>OeM6JhOpyq#hbqCQ98$19l| z9!8X6Gk6{)Jb4HAU+*3b!zFuY>CyV_du~6-%Bqy4bzcK>6kx+6YE9?r#NQd#WfFoH|LfVQcD(!rOw*n3f1&bL&9IW z6qwTn$$K-aQW?)dV(t}0<_}64=DW5LI*B$?I*AB@8wo5QWg|*sddwIm<^7HY?p=)^C{mv1c-2bI zOJYN%QMXtH!wKk0;niu)F(s7^mD|qTGtOjL>>IEV%IBhBT?C@R4LGa<)*>cmE>@-} zcf81Tm7TMdO|HiYL3b9)OzWZv-hiqHLf|%G^$^Ee8311D z1WZJbSugVA{g--c>Bj34tTWj=ZWqVGK&AWBt`Z_OXPSdQyxqfFQ-uGF)fQ_Y?vhL7 zIrG8?Xg+-Vj^T#8TAcaEga`B-+0v&DT{9dy3|WHK03wunVsVWu$ijk$Db-)okc&^Z zCkA#;pM8b0>%J4z>;VplNmm5jK{H<&tZG{VfQ#R4&u+GotLwVF3hj*#cnb68_8T_y za2}|>dgZWFTn6_Cidrw%l@MZ(3!UBAEGkwdf)95$}NhW#A_RZ9w^ zC;)GwH!WhDv^L{!O&LvUMt;?+*J3$p^jK)jh zG8EdeafUtdSNkq=I7LRLf@AoT!EQ-TSwqFQ+xo%_Bse%;NRxNCuxWoEs#gvF*)k=@ zO~SZ`QY{DS+Jp5`oJQZ7&j<#+9sHy6j2#jsD{%tLc8(o5;s;hg*$P1dBc3y1Rs3Ht z7z!zMn2dtM(a?hfA(kwOte2$fhR8BE!}9Q z9m-C{Z5vXCjwLn)Mr9tUO}2t-k{W933(*r8a1NL_vG^`lqKkBVa19B-Eo_L}V&|F| zh8J}m>n+85*0-N)tLMUY*YEN%J~)d%pBlGqYgg}pvd;&W1+?mNdoe@Hy?t&VB=UsT z6-we4V@wOp7U}YiDp!sCi$V^D1vT?!jSat#gigF$4z+I*JmU_SLK6$i<2VG*_mS1M(+JAdAC1r<>`YOdzCSs$EDC1ye+CZo3ZWw$wAcEveaf5vy zOOBJi?3!_#APH#7vQiajGQAWb4m(EEFkwdak)S)->kPHP_$UkP&%a@mIaH8_^PAVc zuP9&kQfYJpSF9D6eHQFc$*ZLq(gvJ>IWuth&n?)u?N7|S{6^b^b|V~XvBskQ9porF zDtN=pVjaQJPzp}N4h~j(1HRhPey;R%dQONp2TSEMOXFyD7=BaY^h~lk$N9BKv~W~^ zumB>3C~x-vDrNpFp`t-@=*$~MYW<5UPm%B;{u6IZC6pKNw~-*nYlNNJnFP5Sf&% zeu>!Su05c>*TNi5e-F>dr;wO#b=oW= zyRM_==}9m=i#MaszfMTA`XprK=WlnNjK0qmM|6e+!Am#>O=|=N*AYvFaq)a4+Z3x2 z7h_+plNH{Rhw%xcr7I;>4Sp*F^8h6NUG#`P{vkM?BY8YzA)Osyrv=yBN@J2I$<=P> z%j0zjnbPg{(sO#YdaJEmK_^2?%4d`)+uO8Flf#UT9Pp!qk7>Jp&kf9*Fcx=CKeUZ!Z+|}W8 zn~Le54`B=1&m=ipoM;N3Ssx=QHVB(` zQG#0bdd1kZ5y2yhLho-5Eo`P7AU^H_&E=T0OUw69Xxh zA@o|~Ei;nqdJ)bqfpQ6kw4pyP2U~A7)}^lG9mdk9Cjei-^m&XUXNZGRjK1~=ykBD@ z0RNyy0TVmtquq)RX3+_Gl3jS+CY*#Og;|h6)@y$@F)=Nu|Gd<+aYGAC*%VD`dvJC- zF5f(2fuoZD<9{UVy#MYl{Vx=&09pJFkxKgEv%DakF5lzgYd&arsbGm13H4`kVeV|( z8cl5}#hpHK%6}BT##;8aph&eG#eETDa5dD0Di`u{z0ooB zKl2@l){*j^?nC$Qk02nNXJXm0o$U)s)$-UR(+I5)ljgzvRIVv{aH00AR6{XG+ZLZF9Ndwsn%*nYmT$MJ_-Bz zGclI0WMEmp_fQ^9B(!eoPD*ys5WRsMs&Uue<7;Pj1h18O(PEC7rGYOnhJ5COIHW z(8!8tRp~fY`|VobEQ^Af6KC6mkP)LjL56JoOWXA(U!=T)uR<@Om^4U0GWbUJ9$RZ# zP%fq9g@+`~2~)Ar@*O<9MX^ROOUHP>64)oE(9%))3!=w;knIX_h zV;_&^EBM;kqMyLq^CGo1>TO%h3(FJdPnjUYN`1a%58X%)8(|{zs47JDrE6cVToOkN zhh3rQ(o32YqxpCub84F|$q<+C!o|5V0bVa7u3v6A8$It@i*Txpa} zf97!QEhU_#wkLQ-Tm3x=mrDbxyTZ5fanZO|@H(t#7&tl8oLt}PAx7X5B9%YV*l# zA;rU|Fa@S4*Z}nw((ri+n-5Pp-cUE{`Lo^q+J1azyI49_xnfyf!9;gvBwaZkaL8nRqOI`3Ct_yBFp@- z2{oI-Gb-D2EJh!8?WRfjQy0k9B{1!s9^cF9{L5WO?M;vZW5`h3W0$8UQ@*$b&`rK6z)07Bn?92l=fVZ3x}>yHfWQ4Vx&OPj1+TuMtap)HY_ zLZ^9}C)WNVH?1^sgw%jO5N~>tyi559!1U`6sd_n}VsG2qfU)e)#`n;lQ!x7xczo5pffRG5LlbU&M=X^}bxF(=y6qnCt4jko|Ss zjkIxXO`Es)SAF z{8@qP#W^_A?EF`T4-k8+`PJRB+G${|7BsLQavk`J$AA`OO`cS(kaP1@d)MfofS|fy ze*O)JmgG^_No0Icvux(K<%ctRwEm>B$~PUY$PiYKMMWOPzZslTT2D7UwnA!K&KUSZhKcQ7e)TuU$0lHv)3+-$?`fw|X!_7zefZ1lRKMx-Kut7}6eLgrdkgdZ9weF5ksJ zIHNC4EY|b!<1|wyn)m6>zswGJZ@wj=;DjTa;4iJm8?#r@Az6ERFvXqFM;$vQtkAV@ zBSQJ@b@JiDe3!bPjlg2@4DmwGn~e3<>DV5DleL*c!dWpVr#R*=q0^%9&4XJx3|*KYmmmbRc}g90RZ?{yf@YOV72 z@+3Vp**H}#x+eOtGK91(+|$d3tZ=9{6$1^Si}1jLE%{jZ2DNBT!~0;)Cnd!#0X$|Q zNKK&X_3)wGyF>EY=$jARW|c7g)W`W%XS%aVuIaNOPPOb#hY`S$4{EFX9O2Od50t6; zjWx*gWtd|v&bX6$pi|`HOCL{y*{lcz_#{ex7xah?*9HldXNLV~sbmCJS7IxMye`bn zE>q1xdeGeJkX%v}ZtwOFx#mMOo*%E9uoZDC}kNzOuMi=OUDZBKRoLSBfN?h_88vb=)a?IzOY#oYFuR(BVLIfSJ*LqB9{NV3|X>52(bt?EILJ3v@&-QoTwvSmVQe}%ON=J`~m^z{XI7{c1> z#n|?PgF(EHLC+gE14Ib}hOW<<4fX353lpx7vy68GXTmw*cblgJjkO5BA0SylEC90m zN2C3fy~w*3JE=WH{dhKD!nJaR{pjGF-wSB*>}A&z;(Fm{KCfaskg$2(Ny5G#-s2By z^wSh42#hZiLSgN{QS!N7N~=2!b%_%&dOcv)dD07PK4HXdf21m7I&d2G`Sm8IaBA`e zgM*1qz? z%wuxi*H4O@%_ds1K|dy73$pB+4M){(In{)Gcx4-iMCLFBNzWVFg971^Z&H~|^Y&^4 zf#&>KUpfS@SWL294N&^KC+z_L>ZL*IDauGlixN4%%Rm*M%r4uMh@o67(2Fi`D>m77F zUlB@FXc1{o=K_G?usLh?nh2%iq+h#N<}yk0zB};XekFqvM!a4(iV3`@fu@B3Cp%QN z^)Zi$52qC$ki;Pfy#ak{YrupPa;37|9Kog!4lSyd7wX=`P%@eW>Q@L0vh6D1114N{ z#tQ&eaycA3R&LX>CgSnl0s@bxBio8PPay4k3zrB-kH4<^KX|ZtFGw-MGq)IYZ3_1d8~fh9FGdMxI^8t><|XwnSh|w;C02m^6a~hFH@bhQ1I# zIoP_i?63}CCM)`o1@o)egExLt-Y&^zV8`dR_aMU|Af~zi_nHQ(0y=~^CP}w> z*#fk3ABqtE+=>cEGlz6^yxV@nnKQXV=EY8rZASirDcg~0`cizmRzoxb!E{yDrSYNOnjOA!w-{=_tOiuZ z;gmMklf6F#O+an%xb)?2W_2FSW1>k)a)FGTIzcL4{l6FD7Ef zX%8Z~$Pktx%C41zxX)7dInBWDKGN+YMf}dKP!7I#;70O^#254DwY>Oc0uHZ`uJ{bt zK6S|I`g^;I6`)sCl)WSeFvc5Ze*m?TfZWm@Q&#+AhhF&8#LgTj&qN{lh7?N9RJsXJ zjGM*M(OF}m`)u(s41xNkOfxQ4a>bHhzW7qpZAew>$!E+Hh}53u^HuMNt;Es zZCV1^Vg^^-?ey^C?P*G!uj-Cy?+xi2)p&p@oSkhvhjv4gcaFS*@AfEL?EA(9rH?YF zx2c2A?qT+A7Yi1ETlxZwkDP$h%a6~y@3%b93hhVb7pnEnc~qLY*I|auGBf_l2Pj+r zP;#f|hKCT3W5;BdbBh~gMO#*(LR}oB`;gVC3Q`s$9UR1sgOp9>TUeNWsC|Ey_C3W_)^&A z)`!)x=Mhly|PQel4W4sj8R1j|OgB}ILq=-2guj$EKa zE7TVb4V%XAB9sgjySZ1|Xg2KO0VoSo{*zkzk0c5Gu7PM39~Pi ziRC%YART=4f(JbAslJ<-?g1hjxl_cbvH=JrS_nsA7*9OkdALxm-g{Si-tGye#<@Kh zH-0g>b${;fPj$8FUeY?{rc{E_;R;@Vdq1E^KlSs+pYL1ltj(#YFn(1Pszb5!3Kw>17HAUQ*VG+LXr!QBLp1n!A8DQ zYx|oA3foxwW`oDoQOvLF*UIL*WrvA{!J8ovq$3Fx0BizpTtDh}ULYH%$sfCOk2jjW zyE!F1oW{gpdU<|hE5t`e!sL~#iRE!u*|@m@vre+DQt!<)v$T3qzFGuQJUz8`-P?fi zoL#wFh=t89K>ofP0x2kt#f=FiZG*qq&f7c@hLr-UFX}cHg3E5DAso4CKR}6cT(|OqdkpCEsA8nJKkDL4fms5&D|COs? z6(2?zD~&Sovk+O|1UPD#(^x-;uIIu>zh$Cf9l-a8Y;8GlXXyDbwnqG+=wLX$nNK~k>_ zaI>X`2Kp@mHL#iiv=ep!US&;wdmOHfWxRZhI&uc}x3L+=3@IzNqRF%&f}0~czeZRt z70yG&)Z?Nt2QFn+_Qxf#9r!UKx74%|4~1LuBs}l6iPh(_To2<$zQN$hnm%7T7`j~U zMg&PnJ(a1Z2H52lGu}N6T}oFtsDI$z#~`3vrWvoYomltDar0#Qwx5wYSh|U_g}2Q`u`F_k)BhN`u2XcW}s&J|9qT}VtH=*wrl^5`{PN>*I809U3Tb(Y_spqkw4 zl<0LxswA21@XKd4_|K4<5Dbt-3mD!Ce_Vx*QK_my;uWEo-$o8#;aqx2sX74I~nHC&H|qx-QXDMY&+- zr`usP*XLv*30KHP1>~={3{^sTj$WDz-#2t3PRZLa9351C-A*Rh&2vZ(-{uB?3kl@; zx5}Hzn3fr$-^imwEDXu<_S`Y_Y;PU3eLUaeKj77|KcJ)`Ts)lqMK{Wn<@xT_0D1M* znds?M%(TNmzbsvauS6{elf>|~>oWfwI-s*1#?0`1%;bN!_Hg(e zg?H|WG7)DrPu&jm2o)^?4)L;9TvIrDe#1E~tZidw;ki)fO?9E?mjAF*+74pyIu$>F zBk01W>CCHYr*N}vM`-Y#Qv;h%N(}NJqV_na;h&ZI-`q27J^xsBsT5rXRO{ZeVspV9 zPh1%OGqVr>NWI`GpVzZFJyxN5)p#lJP*kSVM` z{JTjEg|-sJP2v4$1nzOOao0d4E7jIERPJyN4k&gn6508Kxm~nk48>0i$4Tso2kHjj zvk8&BuJ#SO?(>5;I>p+`U{pGuThLWS9?{AjbnIl`^s?YNaNjGNe3HA4K{2mE*6Vow z@NMjbu+8=8lNzGcVthaZ{g_xykG2=8+J137?U|+{s@8Vh89AA;T^1<}0_xr;FVxXj zGqly`Czpz`TTy+$Bu6ZH`9@}obgps8Rf(MueYZ5FZEf2sSy^|nlNAyiMD2om`|lpf z|I$}{_?JTxYFFa=h&ZwoJ?mN^j=EYsZbnL<^q$dlaQj<{|3a==tFb&k=QK{~wLA%< z?pNv_Wc7n4<*`QTpj1;BaeiKkVxd?LFW#--gVp3->f*N@W+B|b!37?7tgmR(ud{W0 zi)|S(Z}ff&+WYk;u7MvRh$Ho5!%V~6(mZfp3PZeaac-^HjH26YEe{Puyyd^aU7WH?4dI9hr&B}O(| zCsK2$_oYE3qV|zU!t5bf__Z}qI_n9$4=`dm3q^Q6=}H=>OfWo|Z2i^hDF9fuY3upz zQ9{e0q_>D_JrKce?vn>eSe<%WA>H7)%{g+P+?8-_^BC_boK7@#P2#iq^3ou$aP3tfFAs`ocb~c-7K4Hus@9& zAmw@aelWi8(dA2&`-|x?IiQDwcE#^sMskj4yzfc&W`*|-{q*({utIw0JALLE^-`hR zhK?@`R($UL^fvxA?YF2#Da?$|QPZD5YQ0ElBg6z-R+iyvePiqDIL?%qsshYyG)TzS zYCytwdACg0WEp)hn@@g`5BB>Q_d4TaqJNcEco2oBSQ@>_?Xh;%PbtOqc11gyD|#<@ zL>fa{$Ld++DIY>hg%bP8hQNSEb$nfRswx5SM}jea{1DXZfXY9HjiClj0TXWOCle9( zh14!Z$j+nE0kvdipwn&OrgvTy{e!%G4vvp<&p>pYpQyba9@B`Il52w)b)yWVRxW|$ zG%@pkkM;b06aSZ)r_#%@_6KH*HaT0_wP>FPJFh5o>DwM^hWm7Cy9h=3Y!?Lvn-8it z?xqIt%y1=)wZo}g0$ijSjYR>CWOKTn4ctoNQ3XUoprn~-t;1j zYr-w*;AFYv-F4jGId<7JA9QSjQ>=pFSqz~3Ta`U z*`}@vnH*15jD*uIxu?~-TIUBduE%Cz3uA1N_h(Y_?HiN*j(mcVs-rXSA7JY3iZ4|iHyuT5?LLS|lc`O}|@ z39~Gh11QBx`rDe;3!C-Aw`v-wXKh`q!c}`n5TD9QFN|@8h0v31z!<d7vZrP5Y zCtcndiBYi$>&5|$SVW2u(i(ugsg(!&jK(I&%?%q|^y0J)72FPCPkK(jdxR&7njN2W~5O+)G0kv_9@XXy9 zYgc89kYPX~nIbUv@dVFQ_={tnSWd-Y*oD#NocFIuHpp<+F9@tttBa(06#LJa#P0zb zqP0?{#O^3Bcq`Bs&|^ry7LN z25C(g(Oz~`(Gz7&B#n*U*OYYf5GFCYfX2A9yTt* zeq8V*KDG3n>DeZa{MtWAN1Na|5j%vWi}7Nrb^oyH!r!Ozo0wO6o%F!sUKz?0!2%4$TWvN9h)Dgv+&}^P;8QWoWe3V4t@XM?j`2Va2*KS?tVEQ_ z6Vl-f)$&smwo*wd$W6e)TH@htje;XpSHC+eFLZsGmaNt`UW*Use<=8>LcUaqo^LdKyvtT6P|#u9=Tai;HopCSY6M7!Uv9qWnw0Cy^WxCmGoxv ziiT3ZG5<+4(CK7+(`7D=;j2E|7Y3b+U&7#&`}=mwyo9gw8ZxlO@@HU6($f<{<^SJU z{{MXJ{+y%W57hUD(sA~-OD?w!bRH0f#PuFcTqS_F*OR-vzA0b5c+K0k3G$DYd*$4= zw8(Q+Qhq%Rq~SUnw!{5h5JJto&A(0H$sZWbMPcck7UXv6-8UR{e>UPwWDPAe6#yLg zhM!!f91gIiSP7;#1EGBd z8vjZJpNwvDe7V?GaFeV3j%JR@^aaxhYaUwBa&){=H zeZRt6Lu83$k2#zHd-=lm*08s!8vcIrYiok7OU7AMYH+x|i1_xw47M*PYSF2`*bXhC z)3Uq?`2uM5um}w&?)HMD|GDQk*6c{Tr0i`o*+|`s;a1y4k$qF3ajfg*Wi{NsWn0ua z(%+($N<~!I3HNN5O>C)(P3T5#rl&k0*^ zGt#4a`W#L1eK%*yN-8N&c610jLQ~@T5p=Yd;Ei0Y!qfH6h5LtlTXmBTf1}HL8-5?c zW~Z_6$mrT6+F94ru?tX(MX-)kEZ4DBgY!!8&SqR_`}GzbXll9nJ81 z=?y(%v#nlpYLJxK)YZu_Z78|E*&JUKw3DPL^+^zMB&D0sF+}ur#YXQ6Qnl#^e5bP# zfz2gkF$0(izf$ekvTGXoo?QzJvLls*%5Wnn)LcO~1 zjSCjY#h!naRg!3|&=_{ny#wkcPmbZ`s0J&fP6utXy)M z033!m<4IC=hbz2ngW5xdwsWt<>W7eo;L~Lh=%6{1)Z7Uw$E%v3kG>Pg{BnQAY`91z z5*TmlLCA~L69?A73MZ(89F&Jvh)Nd&9wOWH8^mWHU>F=lw`)lrJi*tdFol*&2K61* zzVz8zh6DZh)jrZ@5GJU3aAp81E$ar#JF7m$8eMcA)EK*h)O5HVY*ESQi*4SHD^vQz z;=i^K+j`ccc7Rv{b${lHCm4%@T#E?DU1x6wH`Ui;zhKJ~TREVT{uV?_&JcRzaeJ!X zf@;QqX#rK-6X0(h4Fr8Z{4-ZU1HlNPlug8c{pkORmVZ75=89^==2qLV{O-BIsInjA zm@M)le7ffK=nI%)qc_-ij4+6VuWJ>{Qlwu$Kr;R%Xs}8j=@0z!YA`E-!(r=@L$X}T z-q%k(ZowP)4p$Ry_()};H-r(0X)*HHu(8iJN76oYo93|*dY-`kLr#=1n}=73|N0Av2jr79To6u%tQzxV@=*JHO>@^k@b<<}y>Qm)sG9T*!w4Oz$!p z!hi_3U{rJTn(*cIHcH&>eO4$ly-u(&O)TWD@Xhq|hV}BXszqnlBy>Xe$7%j@{j~_1 z00RhuvkM+f161E`I3H}|LNv=Ezd0e;%h=lomFp2X3NuP4FS})j`8|b38tCOhM z4v)9pFFYo=r~Hk7w{8(reiH`3>bjc|xtu*q$XBeDL(_ZuL%5&s*mX;RADyf!9doZx zSBQWHv9Pz>;mCyM8+sxuo=YEWAC+J6-Mf^j_Y!FQHhz37uJmpl8mJSyX4J29Km9aK z>&2sz9OT36N}c1M3w4`{4T_rL-DJ%)J?wa zP)K13hhk0Lp^-Egjz3+e@Yv#o>tcV4PrylA4;0mv#vO|w9E+lgT;edbMDpEurFm2t0roGLHM8TjO~F@@zZ%%UkF*i@ELtpyY1L|tEd zZY<>W+A?oK2sWV|&vN8Fiy zc>6FYvz2UIa`@+FK;W$f!6xco{D;N5=A_nLCk->FV0If&Z{VHaF+{1BFmwkG;Q)00 zbnoWk!p5B;RN$TE(C4SS3A$0ej1UKxwOXrl6~^60KXZO7AOR_RBL?=?I2T0ciU#f6 zLWV*B>Qjo~Grq|aDn-S+Bm5W}Zce>L$nR;Vi3%B*TJ0b9`o;dTzKYP0Av|V`$+R32 zc5FHDN1nggWj6Pp_4|2xIV}Fb_hpMeTb^t`VS>LkwOo}^f_|<{%dRH7?vE$e3}d3k zw)Ymk<*7N(#V;&_g`-UhW+HunJ4B)fgtm+y#XS7{2w{?}5Z0d<8;m~UaEgb+s%JIZ zmg$Gmkv~_t!6l!7&-z}&Jy_bCPtiSV3#%4mR!>p_YTRA~pc zzf4*9^F8mXs|(zNjsQCSaoqft6O)_%T9BY#7jgEHxKmP2fNj^-2zpsV`}atO_E!_b%1MV2cAQluU3&_3|WsPkfm6v}8VnzQr}jIQ zsf-;iQ^d8q#7{VX_TbG308Z6|3LR!|yv6m z?4*6icO+nv%9K(b6*g-ju2 z*Su^^_jb7j8|%3I8$VD>D>6J>mcOiQ&7o<{c_fSk)bKFSffKHFFy%99ievN+Uu&CH z>-?OzpsAw@4pV8Yl$ zuDG1>1nl2KHl9GUo{*G_PHrn6*iUajxA+%O)-J5$?Lqu_4+<_-lU|2D(QOxry9udq@Q-+#>S9v*e~NWtB2(D*&iC|rz_6G z#^mctxN^W0Nyq8Okc+ ziITaa_3OIf#(%Dkx#M9jz|h7Hgl5Va1CY6ifX*!wU^U={LnCX)0~rlEM%J>NNs;jh z2*CtgZ|V<4#Em|;VGw6;Gp(hvLZt?2du1hja@6nD6@ifpWP!V0#&jjRy*5Z^L#t0S_kC$m=St?2U4Y^qX;mAkpNuz%6Vf711b z1mBCp3E;SpfNQc;Hq3G9E@X`6|8oGy1Y;{l#CQCdrhUAMAAhWV>~r))cJsT>&CS{m zxd@iLHVeTUQ=Dqe>hH8`;nFXefGRuw111t-s$!`bJf#kn5C=IMWC`F_2w2J=%Jgmp zUS+4fNi0LiRZH2D*NyB$P45eIjqv|aPGH(VHWY^c?HDuWrL7jr@`8$%5o)E`3im|DaxrL>M>~ zezvR1w-(?d>s5v(gE{mY>v83ZaC|}V>^2>{T)eNN_Ppojgn#c$?BmbhR&6IPkX%3p z3C5q$wtd?ClJzs9tQCz3N6L%xCW3C)r>L6|O6JuYGIJb1Bh7kW@ULdI!QuhRZ_-qL zZKhn>50_9+^1L-j>uVhD4ocy;=NJWR5b#bBoH3Qo@AmK7z2rRbQQHiqknpu{#%&CB zwMyIe7BhRXPr{BKIcc&cAB1R94>Owh>bZ-p-had!JJ!o^T3%@Ix?`>l()xj;?e&AJq$aznGkY zMwE7G=>;2EKf|BtwNvF(JJxyV6?LW{?a%DEo1G#_PGnJ0>*?qTowjZLX`4$2&guAaDp&E-cwn;2>C4Vi^_%@) z2-LIJT###lQ?GSdBY-m>!EVsb?@Dd?V0>ni2yf40oKh=H`Gi9rv_*oNqlTR4QhM80 z!hqi!h==sEq7IU*A8NxfMXonHsYP~A?~fiZG}t#ei^6o5ZJq_cl{8RMLjTtfoOoyR z^=@@l(~rjmoeRl3{V|93bY@y{Cm5*^Nm1B~7|2D^PujKOME1N`7Q~VzkC0!r{2o#x zmP@Ye4`!Lss;R*TvFOLpvH2^^;9C$+8}@ol3EdAltX)VBAk}Z4m2w?tN6gm40E$Di zN9%=uSb}v<=i`7GdCWl{JNxft`SC^8kbuhAJ@d$v_yz1953WaoUKnagwAB+8<_xUk z7yH{)tWsO6M7X&ca)HEgmf7VA-w~6_ne*+#M7f~CfXz4`L}CB)PmUcDYC7U|)QF#; z?LNMh-Pkqai=Yens@dE#O2@-ROf|#8ON4^$M(W-248_3J_=!q`qwx)n#>;`q(^EFd zdryUfoP%YGwGlJ`+v*S*&4XOBh1bK?2I&)MCM4lD(nPLk&@0!*1+S4n-}Byv16pIYt>ssBm?XAumk z(s$Jj?O|kOZF8aWbvxd#E+|rZ4SSTt4uxbp8+IUxpD*7`&nzbx4KE9BMBWAFGrGdt z^))(v>0O`3T)l7Rl6V~(=-6{57KM+K6Oh3FLY4o!MGBfZ>PGH*Q_d<;gXmWe%=p7p zuVn$pTaedlX1dh!mdD90l%sdQ$j`Q1uy{AN% zieU}D%*haz7-x*$ICOfSD}r!DWm?M+>+(; z(0pscn^mpljkfxIqedykeW&zwRqDQ5=w&F=f~$@fFR^^xyW6J64=G7}(3G#{HXN^i zu?GotAdux;uai3__)xkZI{)3~A+{QRKj)X# zcG8;#PREr#xeqot8nO9st_jlQiSk$8JOk~gU?vUGYGCY9#rE?r1nw$)6#*L_wJ6KK z(7K6ydAYiwT3hk-=3r$$5;k%+Y59IrMJ1?Xv9?wv@l&eJV=d@%<_TIKxmX%YRs>p@ z|9@T*x%kx_?YQns3wy;LV-yFYBIQ@d^O^Bz6IjF)gb1Kd;)r;;NA@Ea<~?}1p6v;h z+bbgskE>tLySARMTi8s;_gqpik8@jz?dl!8gNS1k{Q^s$Ban!%eLxhmji9ns^ETPT zxAAS9V|`M00dFe2a;1v-aN*C(d5ZtcS^;i<_!QD^83xX<6cO$%aj+JXETk|$jzpaG z&KwlWuMdp~3Y1TBR3y*pG`@=J74Azh{k+qL8|iXbTDAESnJ^qi=kV3pdk`Zj`%(aTak_hw>b(r%dO! zM@?>ro~h1CYQ3U>xzWPquRT^z?|KbJ?RG@kR|ZmjhS5`bobd+9aiV9ZO!(H`23K`N z7rBztK}2t#HEx-PHn@h`)F^p@2K84=hD;ax+5Fro`PPLu`5D4gKIZ1MV{B0HhLkV1 z;ElJ%^!s@uQR*#-9hNyih7%Ec;BTDG@>AiZ%k$IDvj>;o5Cj+mH|4ZZ5|N8EXK`YM#)4>%qQft)~N9JT!ckIY1jZhp{K0kX?=g_TK?Pdr^7@Au(! z+{oJee7$(oK!)7{Uc4H1Y+;;^Y`cwwT~DCd3njRD<4!!b68>e={p6HgBg@G>W!t{$ zhO2)5*115qAoGyxgM&poQFzn7^oLeNEsIC3E-ExacgzK3Pbwc@37(@y32h83Gpn@` zGJPM+Jj5ja3 z^2+#Hv5jne4;;bKL(F;izT<6^X6&vsEtfm|JtCM+$$01&6)Zhs5B^@U3cIg|E>+vY zbfLm&N4NLdIcu;IkR>o$q$3oF@#7 ziiZer+eoU6K%S~Q#+Y|M&T4ieLbv)WyK(&P)E;gY8x&^Qx31(LbZ2z59{aRpDaEdw z+Aq9mNPnU&w#!o2&irv9WiI3q&a0RV`8IdDcDG~vl2_t8lY<5}`6cOY)U;KtVbQif z66~OmdLzEp;C|l&3X$f#O3{6G-Tk94)A#RkvO<^F-Sxk+7l(nTngCy2f4m zDz_C1@MzaziVsEc?gaD*mVz|n^2JI!#M1Y|RD|=+)=U-K)u6gXv>Y>Ww2ho7ODtnC z-IDo6`?yl?qwvHM%g)z^^%cic8@XCQZqs_jksB0mfQsw+G^g96Tz7eU-B zBjqozPoO0_Us(iBUQ@q2Ie)w0c1Kkfvl!bE{4FH`2!*MpWst_*FK*sR*PDj&A(B`h zrU;wc#ZaYE{$ejisWkf5r2!n10p|AyqdLlzfT<%{ ze*VQ;TN2b@p+o#Su23zdm|n^y9QyE{AI1ax&|AN*i?~+0M}4CXMi%e-1))s?Gl~U>nT~0L&aARA?Gy3j9Ks_#TItpfWysh$S4ML08$()#xl= zB)_(6mTPOhD?^1dyyJsgvi6w#K`(KZq1iXU)6B_lYYKKb-etH(a31Gn9BjI|W;cLj z2p2s0ZV#?!*#`LM&oVTFRwgD!7lQQm&Y9|)TX@oEB4LaKTO-0%T~&8=^<)S|yQwB6 zf?IdXW5tupd*!~t6QbZ;#Yd7ic-L2_RI9ncWS(DCtaJGDcoqWB{4P7V?8)&fX5c`U z0i2R!U4OAL(D~+UM!7X`@TtS(^Y$n=rI(8;8SE{KCuG&jhHk6&XQCnIv%-~rXDKcs zrb#0`tvG(zmK1!^i);Ipzf4D3teY=iU9U&vEKT%%mNGDk?wWgM-_wshlZD!Af9YX( zx83~Aaq-(JEB8Y`Y@q(IkkeXax!(9pwRB4~MKeE7+#*ORUB-F*;Vu*>%LDDnWyoa6 zmE+jde$Sw?A4e*!%iQzBtUIxaNJ2Nimv5yZ&MM7*Pae$@+Wef`Y=3V23;68e%M=9t z>!F69!qbk6^9BW?E_PN^@sP}>l-!-nN1*+6#_dQn^O=T3IOhJ1h!x?x&8%TUis+wQ zi!$F2nP_GvO=kIiQtr6W-A)&Vy*R*>*&k!|J$;)?`FxXt>6USL`?<;X{MnIlPs^1( z?;U%TkHFyPJMs!~p9g%_88cC(#XunC@4e8tJ6GW4tG~c;v3}+%WU_IGlvI0l;J2eY z`$g-|>Vw)IOu4r$szxElRqC)#0@QvNUxEnq1Ie)d@?%SA`&} z7fLyX?5&MPT-kokeA({i_>%=JU#8)_IlSDO1IW3~DWl>}5b=xTXYr*MNW+}pnQgkl zR9Kfc*p(q-X}_50BxsD(G=|#cU)9)-*}1D0Q>{Cp3cDD%e>)=f_INNbFR7@(yX7R-Dg5H7;+Uq7Xd8l@pTxK|ZC z{wX<|yhW2pA7lLjmgaCiv{SV29xbjuT)Yss*;(>3v+zZJu7BYhwLSJcijx2C!s&YH zw(wfH)^@p}Le>{y@!D@c4{xGL`_`4!?f;?XxG(y*^&SW7Velr#NUltCyftI@i_M#FI<@y?I{(l?=*???u*Fv5 zw`Ip$S+(b0b8{t4kayKi1?_(kl;>!^J9=_yP#Fockh;d{I?7PJniBr{YNL?5QIj+PaE|+{#q`uX*ek%V#)!-X? z;7rx!-CQamY2XldY_^aPT0{ffIJ5~AFa_Sf#1d`*A`NE+?KsvHqWG2X8U3OU>b2p* z#LWfByHCOHV;S`Lz4sca&FqW7BFrT)QGQ7yxw$EmX;;(@r)A$XC9Z;T|2Guv>vc7o znHqwVXcFYFwDbxJFm5Z6KBf6bJg3>gUkwUAp7WJgyMG+gZt@hh+Dbggq=iSN`J;PL z1o>)7^H zx|_|o=atyp`AADOi)s6bJsZCQFkoGI{e@gw4+raV5_*#kb>ALg(C#qi*%}sI5eiGv zeEY!!v+uLugR7k(uNqk-1(P9f468@UMta{Q2MUA)e>Sdinrhe=)Joy&^<;IE^UWjmdR9P*Nb8*PUA zDCMtdcbH}A#GJ7+Dc>#PVtIr$zn^<|kSrE4UIrbpUON`A=*3@F6hZ##6SFER=HQyp zwn;SYyBZs3l_J%<_)F-LJxcT>jHZ<;1g)|e^rxABN_SqjSMsTd@uReIrO zI;d^WzOZGGI>AU`iS$SN!40TeO|4IYMeE}sQfYo~D|BlS{Jg9{w_JX7lT%2Wa)__! z#14;}!}jw&9YYAYuvkc;-!{aQa$#!R;^)z1et zflWn`eL>@vfbL@C_gJIeqy%iTBBZPMCMMN%;7a%C-cxc@y7wSD-n1Z=+qWO24+l@a ze8QQX!(@2(nl09H=^zst&TJvmdk8%jlL{E($A3ww3Xwik(muzeI)~RG_AC0ET8J-; zk9SdwC4uUqI(zv)ef(tT8Yit89-D}h?Oz*{9k{8^6yj|6s>X=_Kl$X51??YsB_5Fh zIGg%D)%t#f3 z%gj{s)9bshDQuwx`?L8Z^it-M?%4jTG&#L`I zelu6JTq`n(*hdCVlSI|H)N`{rS~|WolV8OLII-$F6*IK4!rUPwEUO`ndkMk0{SkL5)!_;wavO1T-KgKZnz3|1DFomhq68 zmF-HSK(PW4Y&#mu}FkOa*$qH)!#{x zYR;|u;=O82(@89-UXg1zgDVZ;kR@h77Cts;mJa)n45Rw4YZ9mH-6Sa$_(ZhkK; z0ayxgm08c0cs#QC@-2Q1zs3^?a~l-BvgS|+cMhtcChht6kzfsVSJ zPRDP~Tsv!K#>CY1nu#pU9W(qJH(Vn|3Tn=<(%XAr>X^-Adpv|!B$uYLr!|#?rI)Dm5ZR;y0%rq8b&~IcQ2|)T(V%Q^ek1zQDEVUUaG1AHh5h>%J#t2w z?jg=B%YkK|GX>BsDK4-vR1>>h&ob9WZmxxcsL>9GEjc|XukFZp=hu=IW#17$jUCz*WxbM8)s#_KQa#KRQ3 zzdoPyKN|_d(jB$ZMwT{ui(UW{xzn*}+b=z!=@ZtARfJxv;~0&D3%U2q@+khx3n4~` z2v3PJ+ptX{I-Bh*Nv?koB5!0)?Ox1h#i7*+OFiKL^0>f#9v@L7n3H&<6U2=Uvu861 z?htLj^ecQY@sfxx5O{oKF;|c~eb;LS990a3cR5DLxh`ho)W>KZwOQj53a7 zkxWLw;g1DYm{FM%22B4pz7-olHd;p=>kIb74N?C|0e5-x|brqmuLIwDn*8l_+O zkzeDzDNR?GhklV-sjU+mG6oEi^YmJ3z)4d23A=`L7_6ij$BJIPN!H9yl$3Z?n(8w0 zSPFgEN+HivmTybIKG;BA={d{yOk(q^FcOb4^Uv%IoUyx5!3T6UB%mSwbs}M&;e>d+ z#`Z{){%**rb6;+v<2s0k(|UcpRXHpHZNl4c({c~6Sdy@HZhV-;b6_i6pwRxmNYLLG zZ#mI08_>)}Z&b9YgqR*F`r2P~m3IcA>umjmqlICW4!87(MRsfn|n-d(_9C4*He3=XG=h3N-3dskG$8^fEC3j zOL1j&UeapV+KN(MZXjM?1Y^0InzCiOGjA~;2=cno1`Hw7r_h4Lo6w?U%s!$$?GrVz z!}}H^?^5$sdSF1F9`-_rG`}wz3P*>%aO7g3Bg2Bnk!Qye~sEyZo6jba$pdn1+}kGso&Bx|(w#l!dLboTL|)jK}Pjd~Zdmo0tXJD&_$}5fa<| z8p30QY8)R9wAlID`}ry8-=QV^NHcEZ?vrgQmDv%<#oQNvEut*EE}@|TKb*N{23jtb z?_>t$7^I@%Ns}VSN%tl-5Q^6OSChJ`7&Ss6JW^L>kNt&xU5OS^;(%et9MrL;>q$T#R;tl?)|520|hX?{WN8WW12~@ zDa&Z8Sl2-j%$Ix0ELF>VM*fgA(Mhw*HmDVEj?nR%t6fb=>E&EA!33E=Zo7r>;2dwP zI?nM+EodgJiyJRZzMPx(dC0846nu!clz24I``L82F^_`dZTQtn9Fhf%iCV$YTOcF@ zp`^x7;b?qag!*G6!uL%yy8&LK-%AyMgz=LrKp!`^+6iUH6no&w`qGsE?fH_Q`Mdl? zAQd91P`9A1y?r^!EO^xwyYkjCfe|&kT^Ae>zz}B;w9=il2ngO;XMEu3$;FKThN{W` znv1#tecJGrYH82VlH`ZG`{NhE1ko0ywO0Uax{k{60Y7yV1bCK+P6;Bp1x*+%gWtYi z6vv9w{rjKK0^sNgJZ><0I%w*Izf1K*7^>*tlG21IkcU@fkeg}u zj|=qL46CY_*E#%p-D%^l7|5M<(fYY~4$Reh-a)KaJtm*7KT)FBK$vEmVJyIV)F?F4 z!#XM8lRyk*um6aRIA{@~(YK*U7b3vPXuSFXsc)&fm@*7~wOqGl^!q#Ml1zhikT56E zs&L)pI~1V-JX(cNp&R^X#q@WzDL@SO6FMkjwO;%+<-sui{Agzyvi)IXHD37M_RlCF z8~Wo{x4v^f^-5V;=v88~Jr+KyIZUmdx}DxHIa~VVF{b+MH1ZCCDu5LD6~qw4T9{v zroX5|FO?f*H^VLzIV*8Q7-?t*SNZvSQ!U_-zQ)5LHdTt{Y}sOd5=5l;+Io zD$84BG=q&Yxx~G6MK@ZirK`Kfw-@-UE?N+=-6v!is@~S0$s9}PEpv=#Tei~MvhJd| zSM8YBQ@dT=3gr*G_%}+WRgbKk{ZE8X$1;iPtjR-^wcWFzuZH2Ahl4}ZCFQ*_SoWq@ z>m${qWU!>cP8yZbBDBeG)u3|4E&`qg!S}rVBkw4T$w+p1Ci|ep`>}46R$}B<0twYQ z`WG}Hmgibht1s_sxTK(Z+PI8+dbi&EQsXc7{`UnZF0vCesOI)iup-un`U+mzNP63w zVpf%3`=0>p9DQ3_iLFF}qkIT~6Uff`afly?mO+92{Ybl14C1v3+&^-|M_>YcqM z{cLnn=K5Fn!U^tw5+2*-xf8&eAK8_2N6P7Hll(+fm;qE~nW^y%P-JoL71=;2%NLsU zax_f?_0UDpYmvR1Q3V@$RnMB0WejNA(GQsSAk5>4`Hb_7S&<_TDcJu_j5V~or#N8% zpUd}1Lu{lF^Q1lyJW5jjsi?;+)CuO5TOyIt(fuK6rFXmxR)mq7zLwi#`a$a{MSXi4 zVYI#d1GVTd_gB))(rIvr`qU?tkPOvf%o|LPbUbu5VltK03c7`W<3%q)7TF}XpBw@U z3PFR>E?*$7K;NP+GWb-Qng|`Z?_SNXss9C>e=rScBO|mQ5oiPl0db$_p8C&d>M-(S zEaY8O%R~?Uk(vH^rK@ab`W+td=y74MI-W(GyCS{Xsm*1baF{4^p%q|^CZNl&u~(&< z8^cKjEn#>pu;g_n5{gn@&xOJgVAgp}Git0G5B2DWz$g=M_ zzys+Sm9s*=O`hX`KAKLgAW8-5xl{0|K5_RyWN_G5R6$^6Smwh zU1Bm6&|B~h99(R&2sOLH9R%ZUYM=x=AZ&7& zP$(2AlizK68ZHDcAkfrlWg?mpYb^@h=vw23;0F-1G> zQ#=NWL}@dg;7#e7Y}e@ z!2(RkVwzHWKR|t$=BNh5qlhi&A#~DQW8rgAwC1^=^37!ATom1FSYufYGhkIiModj z+uVSRS;m7;0SeH+XS69=Pfh<)O#hMp0SabK3s1}P+0*HKq+*%#GdL&MZ-Vdp_Rosn z?Rlp%qA}hvNijl|SjVw;ig3;q-gTA!*R|4iN;ulYbEjryVDC2W_YQy#E~G&hkkw&L z-TCRhVb?X5lAL-qvx`lSK86t78j%rS2cDyN*yL!6ZevNS`nBY1YU7#B^csPjtm#Wm zbeN)GjSh3)rOY?^j1Q0(ROp&n7RwL8zUias$OY@J-F>p3a1vL{FnF@gyIZX-mPjX} z^i2Z>+_-nN0~6GPit!cSC^Wu8cBymsIwUKZZznLtno=aiZYV-765AH~ik8kzZwM8;xGKAX8T=>7n%nP-XvPD zzT0h`?0xth>lvaQ#~*Efle5r(Yd-~R=PH%{^_o})d9iR@nr5*0rRlfKsG7w0`O_;s zoaUD=hy`4pOcKe)TVQCgcK1MZ)j<&|0ZQ?qZ(=V@k5%Z$J%@=nMdF#^(~fvFzF)%=rmjFB|3}~;wgXln zUMS-ozjLbp1T`jQfIc{P*k;$>55IA(*h1hL3D(_rzX$3eXEZ@Ns3q!uZTJ5z;_#6x znC|Xd#g44ssh+%<^?h^)SAXa|jF*c_Uiu$O%6|WgBU>*=pdc0_tFbnmYcc`RL;iaH zuVyuLoc&P;?CblgNs!CYyl^p%T%@h^4Dvlh63n!+uN)a0WW16 z*}?{7S1VP61Kx1GUt_Q>HLsa=ENj9J^kUCPEH;C%7kK>YO;L(#>GYM!c*~x;*^!R$ zN%kj>h@XXTh_!7jOCqI9av3Xc?-RrL9@=Ir8YTyTaQ8tAbSi!?Hg+1}ebNN6$Q3TN zZW9}=e%l$#;U-%!jqPM%9{D}O85Q7Zw_~0M!!{iIlC&?JU>( zR}w~yh}gs`m9{x6p#SK4=cW9nfI7OHQWC@4B5If#5@Z@m7k^jSWIynIam=E*IMB%?X43H3sa^GN5(O@mi-7x`Y{o)@Z4wi2NwSgF>)#qaaT8AG1t6;I&pVUWoIz+<6%+tImy$}TE z8jw#UN$|5$>4Q9_k%;7lCFL34Qsci3pHY0u8gTyeaN2SaDK3gA_j62V;SQW%2J0D| zTRCb<7@XV13%s2XqmUJ*@51`UQRbl>iF44YaJBS)zC%@VScn3{`=8Ozx|p5XLKP(Ut_ z@2!4nmoxo)SXm)@&`5zIPA;vhm4$-6qFZENe`H!VaHe1lRY}$O4Z{imNmG}U1~}jP zAw0UPz0!$I$KK!UH`dhJYqt}(1_GK%!hjtBW8r%+{;V7IAs%Q;xa^A)u7rrU$AnO0 zFCM00!O_=EVBj%CXW}a}BHKT1iwj_ik5g$Mp-k z3M?Ou`XJ13<*oNU!=*NLu6JTpfpaL*+RTxUTQR(bTdeP#*+%=CC7r)QCOjpVzISaU z!J~qpx{{eNu@kXAzFO^kFmz)na~1p3f`|Bh$^hl4~t>#K_l;Th=BQdtT5SffF~|lnLy!rcyhJAT+j@;XJv8det9ZmwBxD4m{LN6 zJEfRn0rj*RO*H-jP6NX=w+<)VQfPSJuxoUuw_z`LD`5+Lzy>` zD6gcwEuLLCGD@qOKchdatF>I-!N(!_AP@Ky?+2^K*n6J>WwPT3(A-0Hm_#|*zxxy_ z;sw1FiO6ZRIBI1_vt>cwKFZzQ?E}S}ueFzDKokD2P5pD>q0s4hnNuxxkAZ+7C=@QEvKZ->Yyz$wSSJPm#DBe{E ztSB*4viyN!3DenW!svYW8AXlVI)QXr#pspNdU+MwGufYb>+2szNYhO)`I6TwiVfrq zdei9ZtF%L!37&C_iT#BKTB-=pT+atrxx%6*73JD%n`(%)jE#&|VjJPCy zTL7RpH!>xt(nc^Kg^_BsTIv651sswj(H;&%O}@z|^QU?-_0%pO_xh3_xj$#R`x1b! ze{RObQ|hI_i(NfG>}}!aj$ht&G^N{Kt1f+B>=fUe|IUJSE))(!iqXIV3Sms5d!7Z< zFa>W6OBQqE)fgANtNcxMYxDrULI>;W+q3(bLF4>xI?1$;@H6 zjy@Suujwxb@-Pd3;4?stiub-0cXbcCx1JLnp>av=wix&UT~odBKMyP3%?90t7g)CYZj z?tMZ5jr%lvMX-(^F5{JY!C@KbvCx-NY2zFzW%?mvaE~Mp1mzr2jOX5$(qJM6RGUj6 zQZNfiNvQ$qi;7l|4hoRG$BnqoGN3Q~JIxIE<|hQi3sxx-@6%B~RDCbaeYy5Kx`PfU z6i#EQ{YrH}HUGzT#1@E?){#a&HwsIIerG21g=oGvkAcwo5^0TEUnX4=uvU8CbqTp2 zL^lo+?`ok`0BwC17me1tZAVl(#29y1l7rbqTq!=_J``ug0-KfPqeo?Pq9>lENAHHK z4XP@Jn~3IUDvHv5k_I$I`Mysu77r=^mBe1@63nUTHBZj~6i<8OOZA{L3C%Ku@Pga~0sU-d`{f=&WOq!s3MSF#*KJ`#xH!uHqMtVd1b?5k9J^ zg<4$UIpR70SFjI8B6NI*Yd}TN^~``iVEiY`j`I@DOSHtdippTyv@dQZug%Y6k}kx{ zFP7vC+gsB+2Hd%aEGC!;=J1*$AZcKY1ar*&L^F}oq^Ijf9LQ_`?@1(wGzi6Z>-@LogndMfUuekq2_=my4-Z??V z;McYmJ6tP(g(H_(sR6Sr?f?-crQF*hAjSY$?at~sY%1M#We6uIq8z2|bf;L-Z4!U% zEkI23i{U&e_QtfJyi~5RWPuaK*1ibgj_Od)IMkkM<)Mvk`rN8<6zD%{oSq_oQgh*? z8!}ReGbQ#43K}io6q^WI;}DH>-*v5Qd)NWZj3`JW*8)rWEO9Fh_O+XH&AD&BPv!Qo zdG^d_5#U$C!UjTu_ZGu`UdMun1dN=GOT=pk{|#UN@2@~vj3E=m{j$M6@Fx5Y^@VQ{ z&fCaHA>NbQG_vWL@0;BWO;~BbAESo-Q zgY!yS8=(ZLK3{TQvOJbmVhxbF?Jmrujk3K(7^~5cDR6w345ry@ptKiyr-Y5qX+5P& zD-*KPoNm&?pJS~%G{L(1ExAw)Qd!lTfWmQv?!pJbj-uVD^$j`^DWJ$$(Li=AdfMhS zid@-#E(&2@CgQq*0M$2wN(wdx;8%ffG@~Or{qM_gBgjPDzxx$=z#F_=Ie`Na!G<|x z?=#)@XJ^r8t@*g#OCrcj9Yn+emG-tjS$?x`KiLA-hK$6o9~_j6KgdWvJ>5#aH1(hL zMFcdQEBBivea7EZpPfb#u)eO_`J2%tCO^MNSdfrj_Z&zpNzy=pFc(rpDU8b|3~sb| zvz}`agi`_7TOBa-`tB!5e-1a3F!QaZOO!+#_^G^$bzKEwC#S;=axQ4nt09 z61m|pVV#aT;?rUd)a16BV_1&ssVK7GG4DB3&KslAHlstyRF?m9zQ3|R(8&X8)Xcjr zDQz5aw7DzXYIB{tbkQ}RgQ`0*&U9{#7y>{Pucs!B0W$jHy)Xdy`FC-|KxQd6PiLX_ zqoLyWl?##>jtcBzCb>&sPOQNve?P#?{@~hBAp-r;XZfyOO%oP#@>HqrB9NGD37J$U6z_1d{60?LKjzs z-5&f*L3p^2Gc1fI=sD64p+`6hh>SfI0`U zgDyn>4vv`(-c{FXmVgZ32Y17@GZZ6*0zkj&6(27lK!|V;pDI)>3T^^trrTIKB!_Yj!jjU!S{*eHl*p#?MdZ43(agy}gAuu3Ye3=1VJ%qh z8wDobR|)Dc9i4?@`DZ~}`1}UEVfV1~pK2LN0)V9l5*qlwafLs8A}${pLnmk^+dn2RtW3avM@sFe{{Ip5#+{gVr#jJt_H;v8n20uq@3 z(vScmR)*lw59%l}RQ+Gf?l~=(S`6kTp9ZjK*$*-7(~{kbnMQ(-!lq_gdBaHj#WW>mJBzNrGLXHjhm0Axy2U= zW42scFHLsJ@Yivplj0JIdZmJ3E{KyaN)+CV+FEZUCNp6V9acKTM&Q;0%L~VVdrM4& z1D!acM_VmX#hgx6uWt*^PBVeFS-XJD%1?T!=pN0f%;Ru?0eI`OMQi>hiT~j%p0Y;L zVK6qiVf==7AdNsvl@#w+nOIZVA>o(uBc+Wn{QEWg9R>@`4fz z=;XY;A1gfxN#4Sy4+tR4O^B+xo@9$%iWjh6QuD2Wls66^I-b*b(tqkSHyPDxrxJHI zgzxZ?Wv}{wOgT7rG747b5%*vSCJKkq#DNaF1?|_x4l?W!tYGWdZ;AWcO15*2H#4Ri zy}8Qb0-ox8E=DuoOA8wyTJ@SHRL;?hs4{fNzzcV;0uD>vB4F2~L&T*vw%riw5y z$u_n~$_LF*&}0z-RQtXed1O(FVfPk^O-l51XZw7{o+vN7RP?K2L>@-!j&$!pBa6oK zbVVtRHFrhvB~BY=wha(jZ-uEBCHWA>8euGVlr?WED=j?UVummT&BYL6oc66=dG=z#RDmZQ{@Yeg zfp(Uh)EID`I7Z2xV=#RZkAcdtXD3to4n__dZm;75f;3h?1|onfRJ(fT1>-yj#Zy$np6`rc!i0*q9! zhM6OMKxAHL=xR~CUCGlpWrR|2dU|@CaD)QkN+1K4{Sa`Hv zGRi;VSX-CIsMY!kpTGTDM4=V@t<_kOR^tswjnJh;W&sD(fe@65YpLyBMkl#g8}!`Syoe0DBkY5bwAjq{rqqnW2*`u zxn+%K|HfjNPY`6d$US)9jHx_zIPwZW$471J&)ou&2P|Go97rC4%E0<9oz}y7Tw*!U zR;3qJKX4963}Z2(oE|(*u?rsxiQtq`KDves7AyCc+^m}@i4ZEVGIEtQ^nT(hGLPJ~ zkoXwF@kGU#3Y~88oYJH{wlUsOP3dLHLd*;sS$yR@LPse=dxmitE+55YxC|{h(F8?| zW}zs;@mh%K?5D=@!A2z^GxG2*b{5HsR=lKDMrtlAUaSUW(of>6)B4tv0)+7RltxEL zmyrJB{Nnd@rxd>qC^T7k)rvC4;ZiplRr#JH7}AiBY2Z>csNk&SATg9bGLm#zyW>3j zRpZjms^>ItU{_gxiH2j?eYrvVWlIM6QV!4ssXlIU{|4Ls%Q%pL5UyeU7IIRZ?GB!N z#PML1BBV-vd)c%wO|l*c{c&%hxXyV6WLXeaX7 ztfcc;6;J-{jPtVKt6`Q}hwT)V{>Jz451ufbK+7@GR@7dO@1Nq83@*a4#EoO;f){lv zFT$j>-NrBqwg~ZUMVm1+pYBbtbP4GFaC!k+6eeI#nZ73*E36L{f|^f8N0%&P*^RAW zTnr4<$>?$6YKqGR`PtE^8LwbhqrrSGq=kgKv)SQ97{uh#LPZV1DXC!UM9v@SX4FGZ zGZU24Kvi4T?|s)43L5Mr;*`}EjID5I8L9=t#Y(avsJ^1m(gK2f8$!vbQl)i_T4f(l zZq$?o3U;9YPNCdKgEowbNW$FVA?n>!SLV(p)d(F&_jpg~G>jAR;^B|Mz$v;Sjq}%V zv^p}0C!#;@0bR(+1%lWHkn6JNjT$=tK<7X4`X~axp8%ao>h6cEcHc3_r@D{MDQFfm z_DMAV7tk+dml{-BLpF%W4!vIv!pqdW*8*iRl`OXaY2+;@`oZ$0WKc)%5F3jOO-b1b z(uLd2o}IC>=UHt6TAi27eWxsr3An4Z0V#qd&WBP#GmRd?V&}UL-!l@db!ggvo51Sl zlCIyl(xag0%%~dC-Kl{a#_FnEvC^>g_srwxaBa`K00Gg*?r`hj#}-WxDO83unQ>A{ zixVqpQnK&ws1&pay?9QPa@{8MQx$$Z6v+pd5K^}+@)k>hj2=Bjb;>=-$qT76-iB!@ zFyTQm__6*UZ*LhERlBwUE22_TGf0QTNH@|TT>}i=NH-|mAPs|bcO#vGv`RP94FVF< z9a7(#XTR_J`0Q`*@8@?M{8+PQ%{p}5*E+8{uk+3`9~5`a4|Pxuv@}p+ern29A+y8P zd|kaX@d@l>OHV#I90v8d|iInId(T|;|;edLq!UYrD0H6R>9t01~R;S za8Qa<3x>)jS>PZUsETRz>ya&ZJhQsJC~GNzZS|RFw%c0XhZJ%3GnX>G8=@+21{HtW zuBrp->$7BC6L?QkA*(O_!d%N-zF6^TTP;L+8oK% zUnNk;9u-krRBnASExxd1DLT0Fhk-l6dDL}6mFd&z`edQBgra(>x-a}ll7ZWrsnb!i#08u^ zC}zk5rmwNXb09=L{O1_~tAgjRNvDM*c*D>qs>2rB-acPWJ-~|-FlBF(z2Q`EJ!Uu3 zy+?jrh9O^;JlUDg@|3WdR`-WsGR|4g+YCQ@wFIqepfHaYrGWVecm^F0^z`7bSpW~W z{g_ehKk_CKPRmaKuuJ-p=g^M7FY&_xhW92=bl%Bp0B^DZ@bu|t3MM4J7g5zu^Uak^2_P#jmR(QY3ADWs^+b>I) z)+Y}QW|tAxOHg;G1KZMmA+YZUpDa;}r~xmV?q^);Ei4d^K4d=D(=Z*3p zjOkB)?8-O=`RuitnNgoeMZ6g!`)bc6`z8oy?0V>mxWeBR;sbM_8*}A#yrVhDyOXB4 zs_7SUft8#rpWNV9SFJuof3zCFe89P&w)WJl|N1uX zQmT^f-}ilNBE72Lo8-CY$1+e8BNCzZlkP^5mgGW;1?$&K8PO68KlB{t#dcO8iBRVR zr$Te1WU$zkhZK~G#aJG8;S&>zd+V?DeD6K?4-KK@4y(2!>Qfu2x-0L>0h@Nxrm;uL zFgm30nEuA9+&rRP)=9yD({^_fiqviLpMU*!E#Gk$C(CAeqZuEcnBBnhBxF;p=Vi+r zMqzVIier$bs1*|^FQfA_SwUWRHz(0H@!@$Pljf<5puUeSmwMS!C}dg^UYfkpls}}_ z(z)uH)}ErJ1N(5?co6qRE3VITNOF|_y#4tS$QhhVG9pqOGrr5&1xZ?zaFdxHjG#50 zU|><5-Gyb-W3tnpC~F?giBfahy{0)prIKrG!5Sohe+XYUW38ZsH&+Uf<}om6Z%ny6 z{=Q#;bM@5>zjQOHT=lrQ3c+`FS9mI6P=yHk7;CIFke>u2{M<^B`k!9yAIJZh+pP_( zx)n`MIbx~*T-DeALpj}##@&iSalW`!T)D<76X(N~=*Gf!zCwFUiB8AIL@d|Odhy;p zR8^IYi8eSNkDeU^`#2e6UCEYh6+I$>84Zu99}0AgXhk0@>08sA!qz`xx3oUl(f53e z3TMU%VUOHtx2MGLW}g)qVvp#uwh<06;twNS3x9XazqvX?b@A=8pCIZwTct}BZ{X8F z(&HrIx&GG>MJsANj*BT92$G>gQcPSsQ)6&oD0TMbr^fEC@sZY`kSveK44*l3mm(g4 z(_eFyxbtdd$v0$%NC)n$dA_4-m(Os-E|XEIN}&XozoOP0s%L+H3;LZnh}6oh<`g$s!`wW?n&4?1D1$YGA(h0Y~+okchrGC`!=Zyc{uJXZq_yfrq> zbRyI5+~F`fK)wrUEbPTgz?=2Pl#1bO;Q_BjYkL6#umAI3G-5t;ebT|Q>hJGaR}m{~ zFIRyI(BQzdz%3p(Ri!4Pd=N*#|7yu*cY19&>HEhl6$2D9bOp3T zrpK{3>B$c|i@A897O4VE@o!>ZNkI5<$+&BjK6ql%5Jb(2Fl|6z5=dGeYjGQRO4`*V z@2i?|fGkd)lzChMH5k^1wD0KH3Hf_2`G$~G9c{@`3m?l9>IFKE@R0P7G;z~|n8!=T zLY4B_`^4y)1O4%6VM^62mrRAILC;dU+u7TJ&`&D3RlY5=2QPaDd_mkhYwoX--mgN! zKZco^i|u?6z+$j>E=f%)Yptuor<$W|s!HF%$?9eMl*TJ@4Ly=Ac{h8 z>rnV$RzN-h+y&_}7zc#)Q&+Z!LX-_BZJ=Y8kgWZ`DjW5>!F@Xu7*{*=8H6{Ci$ z0rMBnIW(M^&Askkl_?~+2z{fX62$564SLJ0=V!tm!FxSOEk@N+jDg^T2gqygg}=T> z_!n|vJ%F$CUzVy73iw;*%E<12^xkn~FaDw`f}bD&usSj|2qp9Z@LG-8vg#t&gu|YJ zbC`D>fDK!?$d_9@ajXI;H#n7~jkXoTVqz=+c|^FR1Zw<&FKd}S2pbkHGseemDf+4) zxkxE{tJegSqZ=pM`CC%GhE5#MoiLtr(vX*?=s13rHfGRXE7iR2KiX2o7 zXdnclFZq&mt3$BYuZz-x*XG{|^s~mlV^@;pwwc~+h!8a95G>LPw92rn)tvloXJVrR z0vM*nv{%R==75+XT5?lbqL_lshC`}{v8qw*KFISWJCQ4gzT73O*ly&7{_F_d; zeT$L2Br1h``* zih{c#y4Mrh0=o({zF61B=xvUgsOJR2^>XTbJns-`0Et{3HBtb;NS-i&sipn5g`PlbRo^6r{CxbL&fV%yAXvBO4DF(#fVwP^vIO9?>MLsN!6_TS|HPqh)O~n=|(J z{ceVPy!x4UcUE)D0Y5(n>wAi8NO(~w0~+tE>gp~M5Lf4T@_0I=@Ym7lOlRhlmAr!S z_(c6v<9W{NYI$vAV_jpT*wo}E3OKGRQ0m84A_<%|Uvk~h+xNWoIvC(bAH+5zFp~s! zx?Z?m^7I|JIJwrlzfKQ1PKdA}R1;`N-qh&l2x9!)p_)b3k%lsP!ZRsBYit;d8)Z>W zTR_M!EB{VKfLOzL<3t@}uaSrB?hGPuQ)@n&dLHAl+IyJdY8&t!ekb*g3tNHZ6;8A}HlIeU& z+<^H(lRK8ZtR1L|b#84&g1qCYs&UX3dr?aBv=%)3sQKSyk#UK;evd6q>~ajYKTg+u z@uTQFWccb_(7~P^HwR9=Yg3w7-N{m+lTURNESJqZUIz`VajK*?Zp+lZ=4-qEuEO&j zCl4dR03O$8SIDQ7o%?lzPiStDpfCf_qUlrlzL7|gfF5H2PgYqVeq|8VL7nc;tD(te zTGdf(?Tm@d>1saVbNtUhyaMEjc#)cUx3a z{mQLGzj~B_$IM4hCJ6S!L3q;6q}QPTcUkIx&iH{4AwH^DY2=?3lwd>>`Qm*MGa?8w z03%w=XwOAdfZq@hAyzp!&x4T1FE1Rnclm3Pn`HDCu%+V@*SiCLiWN0 zTc3)R#kDgxe2#E?RW*$Jukf>9s0ZsRYE_hW?1#6Pp&7G1D!YDIxvSONwnnQz5X=h=UDY>4Q)`!BO-!gg>PukosQXM#-u$cCjbG2c)4Q4Na~Ww=nb0xu z*2#L@4>M0s+|Pn1LQ_E?s``4j7hmu|IbOMyuV0es?B^DGV2sa*dhH~o9k%Y06n>lC ze508r>th_n{IsM;H3L~(vJe>p8KyH!|M=m!@qx&r~(cK1t=;tgNJ@&P->{feJlU{DlGArI((NYP6LiK zG%7(GERw@Fm~A|gX5nVcKtoh0GFoVv7h~w%nR0H7q>e|EWXy#gsk`74$%%R%+lPd5;KVo&kxQ}7~ykRJ>-s~qEkeZ&K8)EN9#~L>v4|3tOgh4U_c!8lN zpb7WCwY`5k_#diPdCs5bp8z4-#QT_HKSYA_K^74`uh&>816Uq_C^)fBOl-KJeEL*x zd^`2|@B+)O+fVg#=l9x?RJZp!LX9Z+OqoN-$)ZgI)@k)Cr58d`8Ki2xzY|d=75suk zF^E%fC!be#4i;=u>G6{h(&HZaSB}-r8#fKBG=*00bwU}=TWSE%5iEejaoALN{Rr+g z^Hx3nz1nEM;IpPiprcGA`0VCYW(rEz1$x5K+bH+s-nfCDA4;k4=8RsI!9KnMi)RB> z>wDgA9*e{?EqOT35#?JZV1>vL<4;bqMwpPO()LyNwRf`;=v5ZKsa2Jpo&&SudeyhQP=7UDHVm+eJ`H_J$QhzAR{iK8U#*ax1*bb1y5g0RacbH zd}@7oz;#+SAc5LdBcnd8TWT#doNmuYpP{OnBxT6hk%|=G?rI}}uC2^Dk77rV!zI#f zLdc@=tu~-L61;!;x##G(;(@$4&P8o{RKdGh?W$)IG?j(VITH2#FN_!DTJ|twwIXpN z#d6A9s&Ni%G^51L(N~q;xGd*HYxrqaJaX*UKB^mG>6r~52`yZnSb#h0xSSBr_!mOo z9(`;e0`-e7)L5}GYx029)Vx1R;w|4&Wa-d}+ybQ3&32iI4cc?1^d0vZ`kqTtr^EB1 zg15Q6=r^t#82cytu1pz2Q+G!95ALqumR`?oqcaz`eiI;^j3mrM9$7LJfD|00O2a=r z$e(5;Za{!Y$e#2P{W-4+?DGZ$7epCE0G~GWYY~F!p~@5j0mk{?2>{=aVhPrfqWDpu z93llJhh#2>E$>>t_KY@g{4&B!0wJYY5J-eF^f)ICbsV2;thM!IbqFf5=kyh4Z+*=t zEqtmaiA{>{#H!Rs>`GLavpT=g8V$qoZQK)$g2UIygH*;yLQ(z zWw2-6{Cy%uZ0dy0#ocS8nolkYO{TAVP^F|Vw{W5dUf_82R6`FQW^5E6IOY{DN)QmL zyWH} zcx`;P&vw5`LQO|OXx9fwK3z#`O)cshty@RVpM9}?`pj_!x#y5USh{TN(FaFnNmd{F z*xl(p7F_!6#(QDH^Ud1Z1}J=N;mOaPog&-E8~qYS3NJ5A3C!4-ZF=y9`S7RT)FD|< zz3qs~ob}UKmdS~`-gtNPktcQCGQrbQm(^LILXVAjfLU8pb9oiL!>Qt}MQ3-$fzd$Q z^If|>LvwQyPdcQ1HkA>UoS+#$dp7*>Miz5V8EBk}yFZaneso9)PwYeKL6f z5)CL2mKd10M9S#r#24_?x0(z~z#02mg*X2eW9W&MP)NZS@byRt^O)brL_W!QB9gB6 z3b>`gnWdiFj8>$R4#ZX$_9Wg~MjZSym98GD z6`kL<_}71S&4uer_Fnzu)yTq)lhJ0A)g;$>Ma=DU&K}Qk(YtxC3lR*8PoR9f!J3k1 z%~^jEBiT*2^2MR0srKQ;%@2*4>dz_8tfQgFNqwp*v^SyNHOw68qOxrEwL<!tjl{2+d}0G4NpFg285fyw`)i!3_L0 z`TeAZ9-B5ZWnS{#2&Z&{@f0`(s7)j%n%#W9y%0eQZ%+dVoE4 zg^}rI|CIMS#>V8jbGH z=xjy1?04%)v~*{bmpjTqa#e%j0JA{bIt5wTMYV7rC%uokxD7edy*PgTkh|q{S4Ty7 zv0h94W*DX}$EzR)bI7|ZcXZamlA25Q)Kr~!J9B0&@ma5*=zV_bWw^X1`jPP7%@7sx zft>rtxz+bH0L+#IPUVm#5ry15TM16`|88e|h+sIfz~dh&j|bvpX0gX#b{2yebfYe^ zh5|MR0%lGoP`{NZcw+aiJ6v8!P5*d0vL{Brrp$LlRorW+9625Jz_3jsl%Ol+0bA2+ zNZkAOP>^OMu8KkO+)pJJhm@kYGozyLo@$fX0t=RMBT5(}F2h1^=N4Oxamxo4mR^)!r|-S+o{uno{299{9bZW++6c8@rADuiezQi3 z8?3xS(9-mg(ADR{+^u<3Jc~yn6Il>ce^$e|v~FP+Z)0jHfq5VmtA?HD*}g#1udHgx zYOTv_chxS-n5pi^j;1xG=-Uo^Gfr6JspqU_c+$Lg*)6E}qdb^;+ynPfY4|VowzzK} zQk8GIo-tILY!FOMdYm>v8(v%hbZl@qNv5Ms-Fmsp!nq>W%ImqMleP3OBtv2BCXun)PMnhUFKsezvO##o>NZ|SkD-J4IOsLKo-h2p$b>E|Gx@1c z8yw{q*5-ntT*tJHjo^HbMsdL>wKYhPsH@!$V|`^y#*iJ2^hg%nR-`sz&7sPk2O)Z7 zJTsx!Q#M`8`*b1|c?*)8UVF{8?&Kb`5aPw1wT_7W6N$LO-Kw{*ta_HGLejo{gnarD zHInsyR^{bNeO-hboj`=LA?8EVPktm_@kP7=iI42KV}wyEPzye2rmr~u}Udbiq8 zK42n%sfW+vuYCAF7RugH0=|+DM|JY!9}NURMGi>8RH-MU{))sH0n4Nsc#{W|H!)rS z$6_cddS@~}`nW3B&Y$W_@q@y3U&;u#OT8+~e;^{9J5aT?IFZ9AY6@3$mk4XeO@US& z=K6x6$)AjQWrS36_;k&l$S1$&#n%n>INwvwX1DK;^?l+P&-SdOEC*BPRm*#}Sx!?X zxd1pRKv{_SS!3hF)OJ^3t+fA1!e2SECYFZi3Tgunq#3TP4B!<>uM5AJ^IB;8jbr0c z`PdR<;x>(2fhHQ25fQQYIRICFMKaz3oVsOv8wdP)s!_%2ur94q(l!i$Pe&*p;YJ=T zDc~Z`-s`MFs(K{@f@Ycibo$#=ZwL;bshpZ0@Lga%uG(q;H$Gy2z zeTLHmJJCF_s4*`-ZK_CV`{A7LCigZMv@=pNF4oMzZVk zUg)6iH`u+X(DX4oNQzpUZfgp-+^GD##_w55Wp|sZ)x##Kp;BWc0=+Jgux?48#M-a= z1Wcnb!Rrjpf>1vY>u@wgPHdwfe9`M%VoKH$L};Wokkj{XU827~evL*9v*hzk{>i-h ziVc+CxH?}?0JY>thv2xR>Z#B7ov!Xidg1zkWh_dbv8ZZ@=S1fCTWFt=iG;&X`{1 zpw$zDXi8Nzp^yb2)ctJCQ9@VoJtZf4j7c;h(9-MbH=gEMPGhJkUyQw6GA;OBqC2%i zB2-+em>i$($HIKNve!X~;#$nd`n*Lsaipjn6S~7HCTrB9UQNfOnve|n&3={q>Qmw< zq-V4X$ae1qKt(NHB$H4)ZRajZuivS1u#^Mp&uuh}E{^S(rKK6M!`@iJQRKHq=yL*v zXlxIAO-18+n!YwUNEHv5>M2w+R}}aBEVZgQcqt@+mDRd0R%D>(BkVlOo`#=z-WS-p z>eu5v+P6&Ob~(#!KYd>&@-(idNt`y^*yxQdG%S_350WC+ zmA*NnxEx5H6b==cFcDT*_MUQNjWA^le)>o|$vBr(A1=R<$Ae$)P~Ed%Tb>&Rv;P=$ zi`*N?CH+y(eo35s`FE{pGSA8-ZnSbS=ECiX#*r(3%3VB%WyHM=OwOARCxk|l&ArqC zAe}MOt#ccdOjGn2X`C;I5*6kSIcu}^*mf_leI<;uVs)JR35rd2ri}j3Ed&g*bgPY~ zi)SOemfiEFKmE`@NKl`GoHTJ)$l$WY2kLhF1aw`lB;3Vv2%z+XErDSRed8sD)f0ThKoWY7#)aB z@xlNF^3Vn@kA?b;!1&!kz0E+P?Q9KA>GYoIoaX`mJ$JJef2}-+PMKrEVv74gn~u+g z{))xfco;Gxt@1H1R$At~#?MIRzc>wBIH4~|q3M}Ktq+SfH8}ltd_C~n&gYY2A}7B3 zMe&TirhfgLt@BbiDF(Op^Zknm6dT%W*y=dUj|W!+fA- zVxsSR5LlM$$`g0w$TzuXcP!JJ95dHjg1!68K}3;kBWA}60=vR+0ip$gwxg6%doMtH zP9WNzC?;|pJIskHWo?G1?JM1q6eja4PUkfip_50uR+W;&GGAT!RwR!PAMFHS@sZ&? zenD>CWws(giE_Dqsigd4fsz+l1neUeME{euppf*<dY%_NEa6`|lGoU$jt>KN; z$QsDkk;l5 zzR914YU5<(MT%dwgv2L(n@D`V+i?F-)qPQ#Uu)lG-*8y)oA>TO|G3iRP-s0{-#Fh&i z(p7p?>wHuA;ut_V_hWmV?PG*jI9Npbh-wu3AF1R&%NPCf6dl5OzGklGjcID0e|9G* zVb77?Tpm$1TpcA1j7=F3@!EO_R@|?JKUGn4{?{FYUmL9CgRSC5a}^H{nCF)-cXa@6 znrSWraGyNH-dS6f-x!>cZEZ>2Hoq*uH!qwhSCw^gH*wJ=(9swKja0hrv5QNk)Yin| zI1l+!(;oIy+oMqm?W7*7MoU~G>!Fo!g7Ytfb5+JnaM3s$oBEO!ajbMGBNd3GBW~cD z<}@bxer}4r&c^p*t`zfg;xGHmzd*Pfy*{k1G(1;4JlY%aeP1I-Y?Ns!gX&fxBLKG9 za?!k17L^H39XtEt1LnTJ5bM3 z-NLB_%Y4xsjl9es!$V%Du46wmKlMWozhW21{7I^*`$5{wdHFnfkE^d2IXl_CzsrY{ z+};U(7Mr4uQ)P1E(UUgP?#ZGj(GNk! zqq`ZYK$)g_D}D%AfbaJv~QW1M_KUXaI<|^z?x4qpE5)2a<>Dcr=Vime5 zLxpwSi@Bf-J*%MK1ZRe%sJs)nNBV;5oj|X}&gHjnvfFi5nbu>+Fs)Ir!8*4m8%VT= z2fL^IE)00m+mlhf|DFJh00X9}d?UET08=(bNOc(-XK=~k@IVle z9VF3R6>`=2JL%oo7vc9sJMAY-w_RSL{>cXYa>2OYJKfR0H(0QpH`*^DL)L38<}Z<4 zZ0Dp!AY$(MZfq~;L|2Nq+L4PI(b)`tv44Wu{4%>vY%|83U=^gDaIMQd`?maIe6mZu zC}$>F%rD3vZ&|mg1@r#h9{HGbA0<&Lllv4M3Nz&GEC%}Wb!2OXr3Crywyowx`*T?q zOd5KKKu~UiASgTS*3B6-%4rGlpOdlqiUPaO)#NZ-e$_cghk14?Q5l-?1j=2LUm&2) zlo7?^dr7G(A%`O79imdtpm#+e&J%48lF- zJM);JcODsMCTd*UBP|cg)jH&+tMqK&Bq}Gak`N!ea|$+-+3LK?oihJT*t4o~&Y%vp zso`L?y%U{a(hc-h%6vGL_0x3pru}5*%T?DQ#*9zR7{6K4-Z~xU;^{~874eEI134WX z{w4d9@ylDE;mNh+_Gc6GzYTN<%>-*?m{Y^t)g~@Qi{B;hVH|1(diIaiTipowxLP8i zqPfzGA>M9+6&+Se$M<=S48%uMbIi_HLoBviv zO24=;e*FCVLClDWTPX!RdB%ik?&5QnF!{8;y$h{K%KM+^4b(1K9_pGsokd2bip?Pm zciU#1ADJxSxM0(wDlAaRrIY6;v} zRslgA^y}O~BRp@y?`m8HPg0|u4&z4J@ZzlGEbN0LCx$4|lKV}fLPVf31dm%#DvV_( zT@T#CrqTD#(In1QIa9vjs`b4OB$ z7v68d8hidncV&&5POCCAal)$@?@C658=voE@;?e%Re^98S6v8rAMO%)9d1vP&f1KQ z@Vg##xO2bl9v((MNcy39+Q+U(O+1(ZH$9`X`?Zoe=+|S^XTY0TFlo{5+v4IPVnlMu zHpzn!nH4kGDo6Ps0%QT*KXNUk|KYj*ObcNU;F5l1<)OdRf%hn?h&#Xy)bbENV_ii+ z5D$XTO9`U`uBMkz-}AZK5pKW8%BM8SMFH99%96Cw$Z_ZIpVnfh@!Bj;|o=4Fi!NW-k0l)oOy(;E3oQHge?x#Zoh@YC(W z#(s?!W8&p3-Ori2jqGRy`|)9dEEZr+Y!dwi{U$Z>LyeaWu63J7!HP?P%vrIZ%^&Xu z6^b-xl7xZDZYDKSrSBjeZni zd9&OgL&*Kr=4V4~+e%!g&MGnc{`2QFwCotYlnbxo2YJ9=*GY=2zjZQyQHiEtcGLEFO zJe-U;H_;8^NBgPcQqW6FVJ?P|k9= zE5347>d0`@_1KU9LY?P+5k{%5S?i0lU6<8>IxCI)Q00Ak=)k6D9RzDcF?slBIv&`N z#{;5UjdV+Odw5xn@!1WuaJWn%txkw(rMwmC50gB9ncKvu~JW{kBwDF6>uv$bL`fhM72> z$5m^Lq135?dG^tbTy$v#i^r4Py&;Rn>+_D`uQ}$wY)|`zZeu=^j&84zU$9B+o|3l& zw(ddw(PrmEvCzUoruT0rJQarYYZh&B$+D^)ZOC_wHDSR1#w7%?y8QyYpG^b=W-~>; zL)}@8N3@8&>N;x=-yiBYV}#>FUsf)iYZYM73}BW7Fg9Iz_If$3W+k~8_4zlNT3pT8 zh*C~eH}0pNT_T!tH)RQu^nW*h{|#Bh01aTPqE6L6)$k3d5v6sRxotpu_cby-LS=M) zrongN47VSutqZ8!{%nb?pp;>J}3lcZd+XLs=tq2Y*{L;}? z-*quU*%j9v08W8pd@d-u>#+#$bNJ1jSuNL;_ z`Yh6#KOCc|#I>JNr$XX8uwjyY1xjDm38C9FBi-m>Fi1KwPL`tb*BqGB04+pR?;I5( znvgu5nHpx1(c#_|8|0pHY37hL6pm`(%px4nx92H0yz}M0Q5dIR^MYD5M&fH{-n)4i z`w0Q+*_-=op1YH&P0UbOD|<|9Qy8*UGD?DNx=92^L8b8s1?8jOfV4`+YL;1Hl9Fu}j( z_dn_a06zTRpWi6Lew-RgHU2#L4N-aIQTUg9kTGI6h3Ym@A_Pr28(}t_^lBuOetzOb z-CXgnt#*DqAuGuBuZzbj!cm$Fb*(qP*ZWNI&9e(02Fr*K+SVw4&+Yh%<^yu9yByAO zOyNUkPD)jIPmp#BO2UX!?T-JheG!WD`fTlyxklET@0mP8pUrot%xOh~9H7-okFNP1 z>E5~ucW0h6c9B5%&a~Ncc-BK4tqwzGVP(yWt$rfQ(Km-R94HG*0t0E?bl8hY%cAe@wS?vvYCK zIdowM_!TX&Y7=^ZTbduuoj%4ON^{k%TEtwD09u)|b0^eOtdL>{=U`$SRxz_LY=TCb zF=n^t#D*Wlm1r&wzbPtr>9d zI>%X-siq^%ye4S$Oo#o70sP4FMvF2fTtMnq@HCq3(_W4t8*|4e+=6wWW$zEMI^Ev_ zX*gJU`_5R5+4N5`6ubvIheme|+8hya!4uU`>vX;7LgSjqsHGRmY>Ev#Uk2uVj7_tU)jiW^NS z?c|c(NRC6l&2M3dHkgh+Ea~V?6_iV`P5Ue*JEqW}0}AZO{;ZPI>2uyXkkg0}4zys) z1@Tdc9<@IXFFm}9YE5{-P1u?I;HT%+cP_Tc{Af~BTm^f}9^5#g+o9z(KWE|)tblpuQK#nLAb7gIC#+Dt4Y>z(*+DwZ~;S|od72-iol zDBlLNXUdo=iINRYj{3e=d(H2b=brTfp-1Z4C-=I*lT;rA{pv!!qMZ~C%6J>V^;`rF zRMx69cM7*2h^jWzY?y|NQ$D4pMJIPK?&Ww!pG|Sm$8wA9+VXwq;&Cs|)Wsg5kHX|c zuFu((h0G*Ic=De1xNq!&XFX&O(>c2+q-o=J#^>U8A&&Q_ya|IcFp!szlCVJl&EY@B z=$xM)<%8mEzjPG{w%)I$E?T`ltXc`Y(X9Nqy_>@3b*^^uZrceB2JRD(RoW=KvSCOs zI6_}9@rPK{*0PM3qrC8{yPEMNQ}M*Ut|e>pxHr2od5h6AUD#gV?p62g!^oUqE?BvB zH=Q5qZ`JiBJ-Wx=y*9F_AgTj_4m=a5A5cD!Agawh+JgVLAto`I&wWZY_Lh)$(iNak{SvJ;Ri5LB(u~&-tOG*XM1gLK2`O{7_|>hkS@lR;+_IQbzoy z-@a8(E{EMd^j6(`zG}UKAC|SxM`1uZ>y^01hC{ET5?vK3@Tj_8{nNs2+KZQ>doy+T za&`-nd69i`U7uH0#Hx9DI1|$`?tc0=HdswMsfKKh2DZW8^0nMy3%lDeEY$99_`b2} z`TT05m}Ryx7maI>LmNBi{Z)*Dmyg5~^bJ{mqSc!CGGL2RYNAD;riY*zCu=@=_9qAA zpTR6WLX%ITszm8e|HBUWA2mp{l_VlKkwmc9l=L4s1Nvq#1mCp3N12IKA^Qyu+`lW3 zD~Uow&azNCj3dJGKI2Q_jk0dwvHM~cE6%ujrHD>G5h@xj>8QYZ5(PB42AMec6r*%v zv)00A^`X<=5?s4J+PDU`6sEFJ6<_>U5%{oA_$yuQYSHT9SiCJeTcM~@pzKDG+dDfF zg;CM?IScw@^n^9V63d`v{JS>p{P3cv966eLDF~n%N>P_N=`sFBesDzQ}jC}Da>X# z=cNB7tjm2cBfdlU_H3T*;~X6?OOtvINDj4{exL92=0klquY|24dN$jA+9cjh|Beg zLqz2T?zwu^=b3kOjP{r;ny%|(&41Xwe2{h5JO5k2ZPIr! z{@SVKZCnMbpfQn5xLNlk2hZ5H%jMEvnpns;H{{CE zEO`2~96|3%2+7mN@smX?E*)Y7=fBlUB(s1OAAR#E;!jh_<^%w!V0H_TtO0soF9AE~ z9=EbA17h7<#2_^b*`fd%QUW-q=-~@4Pt0uv0lYmC_-c3nGk1tWDxNb~IZ`sPMbQPyM3 zHK-$Xe7=xP-~Q0=*O4hiUH?Hjz}9^D=p2N`pU8}?k5%*mOkMOIpHb^6IO`bG(S=r_ z5vpu;nDX;PYIALstB1ohtWQbmpaR2v(pKNH-{|vF-NSpIHByVHLd?N|m6oqSXo`!f z5@(|ip1d>#V$=cL490c(bo`wra1xO}qma|&tlM7D%TxYJe-u2CV9NAzrF3Pri4jWj z%I?p;SIBKw!dO%w84~OqTyRC%vUcc)8$|+k&c639Vavu8Z5}{1mvfm2e$LNo#3aJY$3spDiL`PQ%>?l>o2J!%E{FJbZ@OI52^fU}s z#Y-#N)k30>t{1>^*ELz>IFFMPAOCS?<&rs<43vRprl90d$i-HVa$T!-`T1ZWc%IBR z%;@PlT_m^JIrz&~cwjJ0M4FD%xDf^^)EtLkrm&jO%fyaNnSNwyC;zf03JrBVMte+; zCPk%(c5*zLUiwX=&6D5fb_;zg61;)8o=(}3JWcbGTMm@>19bYp33YVzV2_LaIYU$_{ekawo=AhQ-a-!24-=fHp~<2#}TJex2-7 ztwC;z@x9Y>YPl3JGCKg%tv}B}+Apnb`;DDxSBZW>z%3f1kJZ}Qs!80%bf6imRTl#PPZoBMli^#4+de;xRZB53HR)32%iPBtFm&;krBRm)dRf9>D1h7jU8 z`lL-%3aC(h0d9B}F2x8zR$e#^AS>>Pr&-Fv9#|VE_aYtEW_xTOf`qFQMd_1%TcZMh z1!2NtdMH8aq!d@&k(l`4{&&Xmk5PP=7kgcFxzs-nkGu?4u{I4TV^Gx%@1ey;%S!pQ zS5@{e1E{|!=&*yxeGdwf_18IqLff%wt6^p_1zQ4VITRjZ|#8m`v7^t7c;V+CrdjviJK_CsK%|^v^6YrhQ+Br*}uf zK0(j-pJvr)MKV$?;448C3mRWH{_fNCn47f-D~RSg?4V6VF~!x1`t-Zx~auFf}OShIG?C*|$cNkY1)pIN}IT7Aaa49%) zu>T%OEvApezAvz#y%Oc3K4gc?vb|MasRoOOFN-gG;LT%^!3wt)JDOoOVnv3;z>OKs z%Wyj_O&3!^-I;SnJFkmhLFm8r5t97<2u;-2T0k~P&!E8dkLj*|)FF%!6CZ4KBt*bQ zP=5!7IKX0)J`^WMq!k9~2&RJqzCy=yV2lU|5LMqmnv}^9P|lY@V3yHDlre5banM+F z@yKLBfX_l<0_Ih{dNv0VOOKRMb&k(SeWMv7NSq}iwiU0b92ZbjFnh?*FP<|gSGam0 zd?%?YF_$838Y`b}$p>Ln+A~)%&z4wzPgj57n2<0y}OkJ42fW+5zDW(-JQjqDTs=lt4K=l_Z-9 z1t024hdQ1Kw>@7H@w{5wnI>)DU| zK4IBAEm?UXz5t?|Mf`hwETJzUzqAT3S=r$JQRTLQ?O;+)s8$0;M7V-D@xgURysxgT zA3F3+`zSVlgH4!OYdA|uC&OVihOZw{kYr`HOqop09_!0X)F}IKCYz4n2K+e@pXmEs#X4vS28GjTq4)Vv>-N#>9P<|{?lZ-GFsMPM=&B_6>= zZ~*;VJND0_HmeIF5%_C+&HuB5_b8``?WtHmdVkd{j}R>oH(jm>K%62QF~KQOy=6p* zqN*C`u$JsO{Me!*>j4Y72vtEi#(EqxxBs?45JBW}o+?|q=upM<~!lkF;Xs`-8m{UqYZRc0re(Qp8RZh{t);{Ic zZOquq#ek6?Jztve)6PGA3s+Z(g|id(7hrT{rX+&$T0qZ|+2eQG7mCl^c6Nrp1(}mX zf!Fg0Bwm30j>#lI;opDZNdG?7>qCFV;vcRpj(a^~uWyN_Svys z_ol>pIEMu1a>Q($mHoP@`ATkWVjdtmxYB|`m$lZ?P*Jd9dL^n(l4Yssl@%^|xO2_D z`sQr|xjeW7DY7#xnWFm@?F@2!|5!EhMwY{?CgQ@JG^1hGM>)wzX1I9KksC^4IP~A# zKi3E*?eJF@pt3BvJ}nU}RK=rP2j}Q7)q`FxG(@$=&$zbU&VQo_n3O9y%t|63nZr4z zt9oWywB!-e8mtYHsBM?9>ucvQR4GhOS?COBgrugZn)T_}E?~X!EF#3Ji+ws0H}VAO z+(HKC!p@RP^rQ797lnxaXS=1SsM}@rLe)vuF{a2=RT7mrHZ;@6Ifq?Nm`jBj0<7mI z?-iM?+TZB8S2!0dBlx-f7^*{IuTv0M!ts|z>YsM=$FVVjbI$gOfC&Bvmb@kh?(myp z^f4lTAV>m$C1SvIJR3k3I3mvc0Ix_006a=jy#-o0O9Qf}N__C~Ly4mImh50%S|ple zW)qK|Dhb+DGB#QA@f!sjt?LIho~}wis{|l%g3!~$S#$6im?ttT{hRsS=}_|cOmDNQ zL$0k?ofEAJw9LmMg5)b91axJOCZ`8=**0<%s)+&fWmtXsi6qeE10wVC!k-d6!PRaa zix2mQ*;y4S7_A>a*7QEcNN=)X-ln@&wf92ZU~(^8Yj%#0S_Mn7$NPAENO;t$eixx= zMkYa>rUA}Kcg8N%cjn`=SpO|>J~)s*tsu~NNAtT9z!#Pv7yU40 zWph$ACO>m25Nb#5+1|Mrsm^U)eMJbM8 zQd6POnPyRa<`Nv2*e34WY|+~VMeOCtRMIN4J@o{q)EMA6M|d zzjWSOIP-x4#_$X+jy~*b5u%=HwKZA&hvEEzLV#ydO$TfX4k%y!Sv!|Pq_0X}$N$xH z3q}B#Sa?nja5)Jn08dgqii$}Pm<&!yoeSCTS#BrIiIX}kbMTV8@h%5wnp|)0X z5Z2qDYN61KpnB=_VjUaf`$ku8HOk6))2%hs=+Gr<-sN$>%0btauT_=#=H&$qFYC(ZMR ziNu-a#36$@Rn?d&NzPUmj}|=Lkrmbb+mVzS6^ps2F zrGB#+;nMxNMowxNG!YF9*<@h5Af%P9>pSspjk?w1-I zGseI}()u{L;2qxo!`nMX*V(RX!)??gjWff>oH5(jw%x`~8>g{t+h)_)wvDE-ZTp+^ zS=fE{yVmz}kCBmaPb5FC>%?*LfWnS3fJbLZgb$Nx%ifAZwB199xx0xx>3LnMMEW92 zw~af*`IUb7W5~rl0KMJ^s1#Ko-4~`(sLw`T)Pnw@4r=y&wc}Q{Uyr*1iE`M_=$61^ zByS$0i`IjC+2@ zpYQG-hUlu%W!{?&$$chag7=bE6mz6YQIto4&)_mH%}G`N$Aj((rquqEe41ggL9KtHKqS`#QOGp0RDK1lINO)vAK=FJIWf&G!)znHiXWRyhAm z6a4Wk8VS0YNrRsmf6HEj%UimCEubQT*z^W{jCBe+-S8|9uvNARQB zO#f8FRvNm^HDN|1)g%xj3XdGLm|hJtvj3P3F_DA|IBonU+*`ibox$7 zAIPbone$e}fr8Ljha*fkgfV{jJQ)@jf(l#sC z$()>UmHb_sD(+5{<}90o1<)ei1vs? z>Npmv5(I3Jb|pyx-v?kKD+r~8n@x=oPPG(pj zdu1JoEP#VA5)hk)+d`YdX4%oU%ccu|x}B^YYw{3hMFM!-fQ`z!0w7PZ@6H(Ad0KIx zPk%7ThTRsvzzZ8>k|w!Ox-tZMvoC`tH4vjBFI(N~f38fmznRiH#JC=cqm5Zp^A;(J zxGp1(h9nRnM9)j34>4M(C?OQy=jg4d=7>D>e0p=@{*{M0nrymr<1=bGGSdauygv!j z>hX4pjJ6v$E+(yL=m#-2njYXbR2#V{qG$InbDMZ%0BDoN7^Ngf>HYb;wUZT>wUulu z(EYh@xH@j~)k$;K?30|z(1vWBGNk(OeP;5_TgAPXk_Wr>oe_a>nRp*v}tEVOae}huTfl2K5)F z57VHTGkvj7x#R!i0~sN}cJYm&188^KAE@ll=Ugy75b%G|1Nnld{N$6A|LT3};|ATK zfk!YaKj;oS!I7W3VhNivINI~Uxs-R@*gvC19RhVHFaQl1?FI$C1Ubx$HjjT;4F!$g zxUiU^2@p6eu-5&^&8oEHilGqHz#sakoCeg@z>a7gu72f~O+qzco`F_xbVE|KB!J@! z#6~aBkIUj7V$+}yP2Mx`2?{1aLeF)9&hoie(3IWB-=sO2MZv4k7VqD}Z5HIEI3}~Z z>4ah>ye|r6HFH$*ak<$4(QuFDsJEP8X>1+M8ynFgUqUj;C@>Ug#;g%alfsK$ty(Uq zMJu8=WSb)$w}JJD`^g4r`XXGqulmO2R&S)71-0bca(B?tudj{|akjzoSf0mkxqk@` z7AZ3&5Q`(%dzwNQ%;$AgZz%axRT65mzdxDmxIRl>WLp=Dtn+i|-bMa7AXg`v*6=~# z*=CyQBgSsLxD&yV>VWUZ@Ab9o32d@r-yTRc*whH-|@5^CkNHJ zOW%I9gi-jJIw(Ys9-4$;LDj|7W;316W&;BBBE<`f%ztdrkt+oX4VpDNZI;k#zdJEY8> zwL_tFRa%A^QbCGs?efd3cqR7OtoT;@^~!nC&h0q9bYqDP|ByhS!d+=nbeLGs{h-@Q zWVxLO$(}Ow237kABO4cj`~F2GC|Yb#5H*mkLD_U_nVYzvt}fa;A3TG49`rB_Px$2I*6%KQW3VC#YJ8oQwh{g3yt!3zR} z{<&p|(HLCTua?U71~2IV7k#tQl%6}$it=Fn7v9TPZ_Ehd0{j!X^I_5DrTuL0F(|G8 zc5E8sC z%Jk5M!eqXE4UsDS<6Vs=w7og^v5XFaJSFb2MYO0P21wmDNeo6eszuYk-aMkJz%ad> ztM%^4>QT|wnfjp#53XFL`h?AONf;qUd<&1-DsM^e~wHtST3-ny4CwCfDlSc}a1Zsj04HgFI zycgAp52y3EYZ{NYN}#^%Qnf^L+5bb$96Rza;yhP2lwQmV0?2dQ05KaWNNv27LxC)a z-}3_JSx~9F^0JEL^n96>-$6&hB9`VQia`1U9mg%det9K(vS-_fOWBj~#|8EJ(cV}| z2o;ui&6ylEc@jp;I>XGA~^)et8)>xzSrwp*>N#{##*(ZYG#59aqGOU2aux2Y)~Yg z)AWyXln17Y>)%|&pHa#P*|7$MeGrRsl*f=XHjmO3Oi0+Z&HYNHEEiyk= z@M+Wwuwi>KJkoR2wiv+~n#h4L_no3Y_4np|{H$DP%jy@nO1R`KKjxg3>iZx66 zeQ=5wQsh54xi44ucEjl%LB-T(XsYd3flq zE{njPjiim~(hzm5?hiWb4F(&F0(u2eShJ4{+ODgl($I&-8ww$Z>G~qmDV)iiaX)_a z`xp(c%O&|3Q_9`}%3K;WVq!nqtX(oX?=-HKg_DH?6Q5nned)_B;=(DVcQkJqD~@|} zek2O{xeQy3_YLx8+0R6N23WG3^xpnR4v5U)h;?OLiWliOoKlQ%Q1dXLn-CO#u3ZFm z9gcOKt3aCt-%eSRSqk6RrTx`HFrD!IpW_pI8=yieAaC zgchq8V#f&xtqZ}=4Q+S zOD3El-ut+(O#`dx>^Llmv?B7WUghH4(gz1R2bGwC+7}c`=QM+FQ=SsCh2z#uq)5Y;2gt5U>y~(xMJ-7UQRACZ z6xiA{9JNSM@0XzTx{=L_*AXj=uf5!68|@$uEx1}N_+e+^h&6V9OQ~-41~tUwnDp{y z-A*lixKMcr#FC@jC|-h(T7&?S*ZB1k)juP!Kci}4U0SddW2y=m{HY5-@PD9UZURvo zf`YVAkPe;KYU6@dF7oq%{N6RBSbanY81{P(Nwb!7qAx21!hJ%@iIW9osUXl5fX2di zrD!B^`L9sYm_xglrdgAKV^fjKgv5y^XY>Q7(HL)9oFN0|IM7ZW&;^_o6P;eQA=B(F zX2B*AO{eA?J%N%E0&I4TK&o>0l#jn-;ATcseEXc=N0%1&wsi;$8S%!NXozexfZ!*A zdRH28MCVl8#pg%t-ZJGCvCH4@){YjmYc_3z<4ebaBNO9gdkJKl|@23V*e zQ=r1D-`Dm7Kc08K{HEh9CBbq<%WgYQ;9z%rA^W7^LJl#v94ou&!vOl`P(R`LO0cKf zZm$UEZ2meJF@Lsok%bZkudj?=FVp_pasCng3hT0h16ss`1EoI-?Yb3U;E)h^@K+w= z7dROH`ZH1#OiTp@LJ0wHq*MZhvtme;J-PtW9R4JL-o!F0dVoTb7`h}CN1p(6iz*fB z&?Wv5p2D2~=4=FLqAZ|Wxd{J5hFAoZf{j$@hSz6FvK=q=ND7a-4E-9sm(3tvmPY0)n2^*+b?@Q}%Q5RDzZFl#hC7hNI5#-{2PB~)3~ zZzBk0GwVn#!1ogl!=T0BSIlODM#A%*)>b8sqgs$86F#r|t6%(Z_eD!6=QJRB*=T9B zen5?e#i4L)y)P&{dzxF)+r+;KJVSB1+kPk8(GqZQ_Bqaccx<3=$Fk-8!GW7~QgPO$ z{PAvh^JY!Ss@dAhrHKasJ_tc62NB&ZFf4N3IZ*iH1pho@P;&~nz7e=*o#gNc&ETR%<)fxZG-*bV~Vo%@wbWeMWMM}#(Z&IRDdF6p zab*Hcg{LEe0XrCxwq10&n7Sg=cdw{Pf4yxcKVKQvgc9J_f>aige10TQ@QxWY!jLx|60~6*jwQg14xkuvVN`D!L|Fx z6Ja4X^wf|zkZ2RSkEb$TOEFj@Jc|njL>q8BnjyBGH<1%plXO#k&S6a`1YXBC>vVbY zOb7;GIyl6weZ{xHveG^TIDUiPxRNoKi+qi&YkGaH|IU_r+T@OV%Z1CZD?93yMp> zW4x8|Ne}p>r>#`j-na^{L-XgYVm+1Z=^{zT&E)3O9ss;;uOx?Xk(|e#DZ}r z{V#y>1&`W$xd`3mW;xNCRpBBZ*z2V>q|fI+3h(h2KRWN5uGzd@aWRK{Iq7QTX0U7z zmgjwZ82g=mH+9SaX)xx z6p+EI3B-2tZ#%x12vQA?^F2^!D5zlvydAf1RM9L8WYHnPK_m+CG9f)URD7gr8DTfW z*ib6SW=Y9Y@3|rjL8YJ0qRk)dL6q8~a%3Whiss(Ng=h3Ok`ziKKeM(lhDe!D^znb!N85w~w*N zDS^KR8JZ>=G)1>-U}ydyuTTc>p?xZMuP`uCKN(K4fUFTv^p)^eh;q&^-ZgXEWBi+* zIO+${oATdMq}3MhzL&e=p|`qCmV;xz2U4qUoOzxg6V1aAQ1Hi!IwV|Rige2yUre05 zMhUO~V}vijP|)F5E`5VctHcH$MEt;1@i9)aah>8SFobOy4{k`TPz zud?lj=WU6JByuZxuu*6v&1_mZGI*R&kAIq!gwY3VONhQY{3l-5elj8t^a zRJR4d12hMFp;Y{=do0>`qFgu8dA_hqbx(ifVN7?iSWlA7(AM_prSDQZ)LzD6k|oO2 zLTGroKH#zFS5w;mtN*Qn(sj3SNk7K}e$^Xvf*x zm(_v`iAqUJhEhaZCYrZ4-jT@SXY-Yk%3*apH#evZV%Ws z+iV?xsJ8y@k^lWtGz@gos6sy?{{0Tv0slJ#2C`GwzTk806q$?ye*&6;nK^6NFZPB* zAQSvp=8Skzdz~GHifHH7p^X2|SrWZc-j6yR)`&z|i!}neltI|_89;GtC_CX{;Y}UWh;n%FGM~8 zsKO2z&8RUn#$VGKA1vQaAn)hmF^!pa0U0Wv!}=@o7ih^35kcoNAulTWrotRUp4m0N z#yCdl_(dt!&E~l0JsL7)ezANJJSBbskH3V{CqBD`k=iOWcqLwXZPjp3k5T=+q?NhV z25AR-nXg-EuU84-4bR1@+Ldim14`@IUXdfKk>joIh=;{-U^WEXDP=7Zc@MDRA6KRW ztrht*75_ia9qQn&@Uk+$zCSa;^5EmvSGJb{Uq~Mz$i{41jk4;4Yz!Lcl;hvz4vWcv zdv>RUHdCacewguxL5PG=ajM!z69FVQmZklge9^=s!)&&6AvCelWdR>A6Lh;awoM}y zr}m#oxBNW|oA1zc6;HPE^{W$f{QLc;-L_P4CCrT}$ z^MK*hoN&ASMn2xLDEkIHr8Ox7FMqpD={4pQ>8D&)?>i4lxRJG-UU3u%AgZta{?u(I zq{PO1lREmVCO>^VN!V!qzGa#1oXV{>R_sUd@7~q2o0omREJaoDQG!T{gZURg;!4d0W&EG*sWp*g2lC4WI77m-2k#EDruqR1U%lJFTas(rj?Wv zfD*qFH}RC?s^V}C##>Rem!X6q3Rce&LtI5CtYnlzATjK7&4U8 z*(Y2IKl~(v=QO_PTykME{!UF#aAd0!Rt%piz7IXERr!BHabw0W& z%k}UWtDM$S@6^6c%laLhQ}+c`(w?Z(Z2npg<-H21Bx4uocF3{#m2bR`?{YEmY`R~Q zy+Ei0?|zP;l75-{=6Ud3oDAq$90$&5R)GoU<^SEg_FsiN2`tY9k3Kyzw|mB2WC~?#X154Q?*bQPVk)A4#F9asuE3sBn3q5in4T z$leB`MLKgFKUsokH+^X@7TF9A9~_E?Tv{Y;2B`s56oRv5oER$8CN}+q+>jDOUgt!C zWB6JV_jd;D%GdiC*=3Dvd}j$2+qH*m8!fMOH3a~^KwMp?);+c%Wwjp}e(f!~ z^yI?m3GDm?@o3!$(;2kq)cR-`{y_B93s5Tad@_BMWT>aGsRX!DhHivE#?I{;n9)twea@)TF8e?nmmDPN6T-paXl+M)zCW5^Bf|Dg`r|#lR9}mJxwBS29jfH z@Y4AIdhUB*Q0Q_rTm6Ulcl>Lj2xL-(b-BT*0s>VD1JIH+YyjvEe7o`_yNRs3|@D_cy< zPIBB~|2kidy85Qcc)!Tq8 zB>7~(dx45I3n+G@g!mbRVr!}@>)9m!E4mH;5(?%w1HBPJW@=+BiBecjO#3r=4fivU zV$1d_GiTsZdrgzZ-+ie$kQ7x)HV0t<)EMSKfs08;pZ0dHo@L^x3ntI;R4`0Yr{NHp zgZFz1?e)GGp_cC^)+k4XDBJT5vD;d9${C)&3X<~l5A~LyKLc6g0*Oibrap*M$?zRGumad~&?iNKR;S$`G z*)(SylDVG{DwI1#yJOtk?3c7;0#G(a(#pg;EY4?>8#Y33zig_B(1ZCq=L$L1whJ<62ZC?`_M z1p!52^Vx<0GRa&OmP$(ovh*dB&G>sGU~E&9e>fM)H1^ZR%wqZ2Ny`zf}#M ze-mobf7VJP%TH~-S*3CQ^@frp-qfrj@fa^a5qoz~9O&k_OyKr1H=3sI79|69w_ob^ zxyhxM=&6NW_z4UxQx9_# zz{RkC#a_M?XSrG@-B_M&sLRouLqq^RlI1ualAt?@A>wbgkrXIXU^vtQbYp9?X!BkX|w*`^KdpgQD)3~z4PQDDxXg!rfdEXTXLBz{^Kj4 zp^3`w{+aPY6~yC)OQFI<~s1??&0jC=2E)M?tOb<1X~s4RH=j!e%mw89|mzS<(6W9CgrlKK$@kJ z@KY0%oA_td`-bV4ik%eA%f%t`MtOMpnNnO9$*A=cHo65aFnFR1NGzxkqZH<;n7aMp zvC7;gHrq57>M4o^l&1=Yqr7>wDooa&)>QGmA66sbHNw?Q=8fOJme=Mu6KlIEqw|rY z>NR?$1}zfuX6ytm<;LAM%)>W_+X5WrA|A&T`wyrDjBZc5qz>n^+nOOIJnDA2Pd>(G z;0?(xWTj*#>+XEN&`gQZfymGqRtBCZE*|xUd{gE9&_L%lXgfYf`a8X+@x8^_0&=>4 zU*7|-oO4Fttd1vOyjIOFbrEM@Y5VNGu}S5WAcc_ot%+QDtjw?YKb7?!3?l5 z_Oo?=xaGh5@GyFB0};QW`mdeCA2K>4ju$6u+Tp$|FAo^skLz+iiM>UaATy`TwmGnu zPOgXOr%MYy;3XN~E1&*#xGXmB`x<=udgBkthf&Y;FqzN(x_R2k{9^i|dp>b7fq1vN z${R}mi1S%4SehLg>$5vK=6vEI<(?3Z(kbwYQyt>|Ikm#wv;LXg@y!3V;wvkzSWXkc z$8hv0>L-gTUr+6iB3ZEB;>LX6+gd*CliY@AZ>;iJ-y_%bp{a;}loo9Lq^}^I>%bJV z8eZsmCA0LXcu3sdF09acA=$EjO_^Jl**?dlX`tFp3ZAJSU{Qyy+Kca_~;`Nfs6!Z{vqpib%iLd*cjZfsQojS7f9WED`u zv7zefG=*;<-`er^`c+d)%05AwQ)FP!W!LuiP!)#iXk?_a8($(ry{>;LwH}gqAIhtb zMX1w`YT+?C>H%M+I~dZ+CM~?dA@n2g!%78g;aCy!IGkO@9wq*BrlIrK)oiGpsNuG- z$o95lk)`{u?_3ED7qfxen~-)X=e>?)`}nomG@z~^W&e&64OAc)vKT=W8-wxOfBex! zKyxw*mFHz%%Up%t33Koy3;#T(QmhBa}Ir52ao8SLsg*`~YEuGPh*qDLy?fXP}QQta! z&kkyjanBpEyB9e^fq7IO=o95Kr}@l{G#qANB)^@sM;xq!G<`D#XfXZ^9;7x07!5@! zF|c^0U}Y+$;j_KGaVKoQJNCW%O~;_8#yLiYhs87`!ylldED6+tqTs4%05D%j*V-KE z_^hiX4iZIk7tFKYUCz_>1{{BDSRYHgV^AkgW)$M_k4%Q$235ozzeoq9d~%05NG#`f zW$sl5q8G#O%Te%)+)E4i<>)HH40iXGT?~=0S?k<{fEL<_DeWJPpXs-~Gj}YKa?IXd zaQM|~@u8$)+@NL0RxXePAVNq8c)3_^*zws{XD-Fmd75SUH5cu**&DU-#W)bv3*v>Y4*)NHG>&!|krNe_aMEQ^KnF)ieB<(8G<7_tmX??K3Ht>-VQ4 z@r%#e&XSPjJdU4m^((v7ow}zMrD0f#CrUINTpjO#N9JYS2nooj6oSijX{2Ki-){`lt9NMv#0% zUQ5(@#;LoG#vHioaa?=0;;xkLfcd99DZ!u~$ZN{dQKY+3&3$&_EFeRE-9OEqz0!sX zL1U*zJvhT8on>LXjZ<5%nWbS;5S&@J7Tt=Cyy{-`et@8OaVuA3h-x~|)od`4w(DA@DY8w-@>G1qw# zNrDFDTLt6pQ8N-nXb<$yx5#)O9=6#JXYzlw7Q)SYTz}`TpU;)*>`5WG?P@703nq)p zDAFL}aC~b_uN`5@79h(exgEj`py`+9Tz4;J0m5}36yr5RA)#h7M+5iBhz0OVeh-sw zZ&y6uUk|jjFvVpa8K=22FLf_P-UJGn@p)s!Lb@GCj(5)tqT9S0jBkXtFZp48udT+< zczYrmTUrL9R3*`+A9t%h$ten zg;raTEN%(!v5Gd6Z1*$Qk!3TLDHweTm6AE}8gSa78J=%EE3)q=8kOFpI=-dXo8^f**oUq;!DWPkL`YXeEIo37{YCLKKkcSxm+h}zzmw7o*I7ux_lJ)L@=2t2Mr zonIf0?*?uO*&hOCy0T#1o;J1{4!ZJvOG+idTE&=ILN$R>0GS0-yTyGP#^4n6y>{A|q|^BP3bP0BwQ z_lk$4*GbB%Ye*EQd` zZZ-njbt1J0etD_3!{bB>65j53lNDuT3nyc$U>)~a$R$VCf3Zay@0fXkS=e0}TXwCy zd*tH(5VdOv>q*qhq6kbAS?VoKm|43HJ+v8G3Qj^{s4*bPe!e$lmupKQG9J`WZE|wh z%=o@kR|&W3Va_n|d)iS~Lf$t_5?KUjfqmC^Alvf1G2LBv{o?|RMKda0P`p7DSf~f4 zd;1#yU9uLTw9QDA^ITa7TJIN~3|-aW&Yl*&T^mZLF~iLcvg7fE+V^{~o-X*7e?FC4 zM)G708t(|UdL|mn&~ms7H+Yzq&m$#lOg!zf^0fI-SF`O>L@saFb$FICpBWtN`=qea z(GbX7;H^a?79Ldp&Z7PLr<1AUom{~Us|2cfFW1=#TY69zAEHJ?2KBP2kudOsgW-d} z(=r!Bx3qtovI{EBQd{6$b6W)A^0Vz7n}G}0C1^8x3|}Me`{D0n3%1apzpz3{5A*-o z4uh4!=!_>3(wf(QZZQ$gbGzcVc;bwS&ogEkl@zu~??Fk=>HJVs-b=H4dv}<-;)Dt$H4 zJ-lgcxc0`X_%4O@>C}81$8`4+bw*8Xy#Xg&or5x1N><0~-mc)51JW1ze#Y*D%^U+K zj&~nl(=MKFOl<3omdiDTD*U0Ak#;C!v$-weSb9uH*8?_g=|&Js<)}gIw`AHnhpqD~ z-i+P!q1C-!7={rg|{Vt#}7aG0QjY)Ck8i%wjwj)PU9YkxJe-e&EmBa@4%#>>ZAi`#37ymID&s%v zA=F#XyQ9b8R<8;hUl7dt0Go|Qq4%(-joF6*iQw?DuTI_e5vI!0FsEhgA`How8{!$0 z+n1`wwDf-7kB;?Ddl7Dr<}x}{EsQgn!AE}+wd~;GRO=R}``c|`E#Nc?<$w-N_`~$${s)-z7*J zqZXzcOksuL3z6KEas7CPNv%uNsg&ONzLuF>&;Si}xt@>O{W+Q@F*gPZ_nZ^akTd2d z5Ku%)9vCqeJK_r)q6n~&lX8Ydq}d9}yb_XALx8~nkl9x5l5h}g)zKH1G!!HzxKY8n zpbdGuX}uE30H|>g$g*<#8z4j|N+b8lLXr-81#QuIg7+=0<6K9$$C#>YYbRO{lcx9xH zwE(y{i_V*~CpQu>xFYiK-08{z?X(0!9-I9sV^?VJv(qF}hxH-q&~=I9jz@5nOlvr2 zW@e+k)a2S(aKrenIzRj;Vfst5_$lFnBF}qG?yCX_;}zko$mt0B$8Wz;9P$bRdCVC+ zBF5R$`HezNtl{sFwY?hc#E5FbvC0EtLhmfQannXinGC3W$ItpJoGd+yK!fr-dbjBK z!SBUX3EiLx zU$%+-jD-v^*eS{1oBsYOV`2Go&fGFT?5rn_>ImW74n%Lj!J_!V zt;u`ftwL%{ug(NEtD?V;ewbk+?hvvXdwQ7Q?Z?b1np z1=SF(M0$Ru&u=`vK`hjig#lT)+%+)JwI5@Ig2z{ZxQeTcR!_(G%@ZuVO}v}*FRy#a zrAd|5xDy|R0}k|E%P_6%Bi=IH6nA(s;Lfg#tE*n_zW;`%ORSt4bO%E*kq@N~JIni| ziN>HdZx+^7Xda@eE&~BXgv)X=_B`Cb%=n-shZceora2Jc9|EwLg zp<02Yq!MMQW_i)I{ZbG(Ns@g8_}<hgKTCz^3Htxn$h(gui*8P3zhso7+9U$`vG(ERtZgR{aTG z9R8*=bzD|NJu7n5jN>g>2|D6oD^P~wTYBq2W_E%abn&$zfehd6AWRsRd&XBd16nj= z1fuUG3JTfzT+Sn-HGu%my=!K)+JUSDr7!|3jF^}h6abFDTc&QvnXulv1S>h^U}zYL zc<@HygQ-A{xa1sJ6e_gh28Ad(vt+^E+fZz(AhvlTBGEIF+o?H}+0Yx|Xsu_Q-{_buLGf{4YY0vT;Igi71tsKuVzbshFuzreP- z1G1RU0d;=`N=fN}U88iCJ4gVG(qpmri}OlwMKI!vCR5}pDl#H|{@vO9>3P@#y?jzy;Xi&=JiyMJ z3o%(A0T9F^zOoF78+0~>a4!uuhR00V&P@48Y`F5|*AqSo8ld2;LJF+ZElef-?3Hsz z9J2f(X6Zp(GK;&1v2q3%A}p+rMgqzCd&fb3bx_z+mVRje-XvWBDPNArNB@C{o<7gp zx7uHRtV$v@Z{SseV_F`aGiVTIDhYGJTo?=#Fg85AWqEjF+RI zyFPDBaLiJ9PXA5gljUlQKUyXCfs%GxCv1e2VB{Wu3YY#j^u=eyEyL}coDvvZ&8YcB zK7bzFU=ZA8ej{Z1>Q(&xz;H`&&J_HNx!FlbJ%gK&K5BYYkS?K?r1eMQxPgei%4&-W zv%_M{Xeh)g*gU#dDvG{E#t6<5xr5oFfl=Yk^sa~R{G~halIA}>W&%jiQ7~jSZN&<8 zqegod>cck0KaNUG25s`V>)ea=%tw-bQeHK;II`xeO)*HtI+`uV=M4Dp>=OE<={0nK zI}`joJ{=LnTCf{@N~fS?7DNF(bUzd+r1fELd+-@F6NMyH9KQ4j;3;iyZ| zjTk`Q7f1Xmo0KUmfJC6Um@^v{HR@K@-%6Je0njBTbh~FrW|}RB*y@K$NK6F`KPMCk zC(!^r2QlM9@>Bt!SvCa3GPQ$(o$aXKUbNnQRlfSUC!yd->Tv-49qW`w9v_EIDrnX+ z{)XfJvp{UI$hww{23*a4qWov|HyHRd4l|kq*E!Zhy3&O{DFpmfEs}d4Jc8T2ckTH? zj7HL)g{qaU{ur3?Yr*5=20D7|wR*V_#jO(fj)XS8{4^m{r4`OqXw#yI)}J-f>{7vI zmx83t8_u2zY<7Bn78HexTvb&SmB70^(C>!-FRb@J>X-G14tsVZ>g2@-;jVnO;=kJX z(Pe}V1Op{MYdxAAwOZ2q#*jKqy;o;t8vEYqlkQ@)^d?tt-y*_#E|bBFu;1VekoOrQ z0*^c5sOop$@MtD8pI?DYXTv`FWOsY3J`5stIYH04?VD06< zCq`x;oKXiK8$J+vI0XK5pFcBXo_3^#}0@TrY&84CpABbc#xx>r25`H_mD=?oj3g?9pp>8>miPWH` z=c;h!0^#Qz(w<#D$bK2~)=VQJTG*2BjqC_oxYgyaG2@sqvBdAKY<0Ey*gPVrbLHci zX@kvUff>_HmOe`6Nb^juk6=8O>J>GFkhas?%_!`z`RTR4UlteS z=yn8-b8o+nq<-uuJ7%x@@?I9Z`#K+|!S?FI=LV?Z6;LTN8y^50h7N_oTa#z zzr5w1ayc6MnKHtF=1fbNjb{Yw&?kG_+qB7grhtw{E(lCq3xD@WOc6o|WJhsnt}-T8Ze~1}kKSuD zf?7_?Tvv||{Ur+4$bShP-%{wlf6I`Jr}yFki+mNBhDmpIHHz;iUzNggcThVXrA?DQ z@=gAxFUcgMb3(WOVL{%WK&;-fr|}3r7+6$WXCxnxdt0`h#LPN3l;_SoIEjr z!hvy_fgPIig>daqss0da`fENBu^UtYy_Vlr)+g*esi?+B^dml-;f4Vd8jUGe9#3Ie z7bvB89fQ_n_c=fLgo7NltNyq|RifFUCl~gafd7E>oqeTbUM$B2F@LLH!BRwHT z%T7UrptzE3Lx&m6*Bh#-R6qGC`)`EK#Fi_k)>bL3ItH9*i`#_DUeE8wvS*~#jp%eb z+p%Dl9#Q%zpcm<3;tb9ChymqRU4<5rNg`|69H?ZR&LP5-GO5{6yL=BUNG8ef&_LUn z9xTT8UGk&P_3xZ_+}kjS+_mD6YLmMZGgY(z zcRxhNaY!*{d&XS@4IUH?3DqMZSHFnlYq*m;C*xr&Pl~6s0b&FCYMqeow&`|ckFKxlL&7QKdNKJ=xi*EIZf zem+IE`^oXAA;xC0BT|;&;uy@VaYTkgH%+LR-cS_OcnRx#0?5BbQh=ha$nSh=8E_3) zASc+E$j4LrX~XYVYvB0$EFD(V7t#Rg1R+@kmg_duZk^X_P3J4}q#uf!%1tKSyM;@NPE;n`+>pNiO5S`$WsiCY_Y$UePT- zi_FwZVH;&+o9?eYX~)D>JuA;pCCBVnvWTLO3UQ-6x=&a&A|^ z;6XUWkWaMJEA7BpolnE-Z@$>M+dbZQTW+5$mqM<1G(;T>W(=VEd{*%1SfQ*J+6rJ zl7dF?J_Tnu8J;>5Hb*Wqhvt!04s3XL(!dvAW)uLGb_6j)>$Nz{_=uGsK?}e!1)(D| ze1DZTTUX{8WmaRNO2#%~>3Fh4CPl8!G+QWAarYs#{dO7PKSUblNrsfbxljNxpn6HfeS`hDkH z>VX+@V3Q4M^8FmC&Vm^1HbSa6O#D6hC-*um5n~rz0SxcGl~z<#Oav>X zz;CFXLS8wqXte2UcpiwSocJuk+JP77gd3q>5>2UF7YYyrlx^YlyL?Si$8eQ*zV!Zo ze7$vCRa@6Ru7Gerq*J=P8>9}6bVzqecXxNUbO;EFlyrAXcXxN^Z{xl9ect!;d+zry zJ)mdrz1CQBjxpz0YY#eLb?J zPifb;k)^vEkg}zSL2>o=g!r^L3FF(Zi_WE7q~aU*gC`eW;H)b}xqE~#F|Yzd0MrQX zJ85)kyPrho#`qIkH3}a=nYAeAb7$X1>W$=S+qS6e{q*9tLVlG$9|*_?Obc za4=|rZNmY%ygI@pr}coq)m=>kC%!)TZR_Ui^PZE%+H4iE3Hm>jSLRW?QP8P?n;V( zV|*Cr!F-OX%E&!v!R^0(m!I7bdA#iXj^b>vSp~`(inM@`j~%61yXv8|9z{8@CMF}* zUoz4(FWYI+fcwbR5JMlWV0bF~q*Y_ajxt`9tx{T!sLX_V6Yn+fVxvhiuHHJgcVxx} znSvO8`EM9>Mfq)`#5#<>KF&`7Oja)ssdyCsv=a4jj>&-YvTHnRE&PzQ-tv@p|IISK zXDk+hPz%GzLs>B~+Cug+CR~X|ge~+jK32s6c0?iwXSDO@R= zw8>dSp-_?=_Z6vm<{-Au|MYxzR$}E2&+KjogS`eizy0bSSH?5S@SPZAU_a16m zxjju-9^%I|F-r(PoEb^(inPpVuER**{tluxH^w=m=*L`9ku^%+x#5InJ(sJar=8^V zow2IU5VL#P^qvy_30?14L|#&itWJ4eiC3yEp@;{AI(Mv^%#Vz489M>x-mD7@nW&XH zvWY*TpA$7B#mEswb$wb)C6|uLUo^5bZksXVYZ|Bz%Al`bDdo7jzEb937XQDJCdX^p zD1^;BFeM(`bz@khnEeoW*#HvvnEF={IUuHYLHb34ZKIAiX3MVO z@(Bk-0d`T+7u4lf2+YlkL3us&c~UgZ!Pg=;MfXguV>SUCp}cz;pDCL{NcQ=<>UeUq z(m4Ey@jF!bg5{Af!@q*jWD-@zatkl7Ly%SJOTCjj?FwRz#fxH?3Brx9SkCKGM4UCfJw6!LQZ4k8-mM>Z~9Fl1iqjSJ&1ck z$!rxBGrCpubx01{G~YADl{S^Nqf4n*DK0-#My2R+(nhAYRRV*y|6EV}o z*T|X1U9A4j=^gU45o=_8HP$fovfZgWEaGr1U)Xa3VY7f531VK>nrQv!Zn|DdHboHF zH-?HqclBnbz^UXLz1R=Y^m}3}Xr+uBkVeY@^70LbrCS!Ol=|r_l=ltdhlbL%j9vt&ii|YjU8J8?_octa$>Q~HQNb;FasF(|?TTS%@!*!) z20`l+gElo;Znc{y81lWMP^b?mQ0PYE!@`Uk{=S^6k#1(R2@ zfmJ10>S0e)OhiiC^S>T@Y}RY9@gvCiUs@%CxEIyL^wh&_9{ z)K{n{HZKzT1iE$71mZ{-pd&{c(xo3seC^zdZu^oc%2!MfCwL2xkf_1KawMSf_7<&XKeJs>3JI-IF-7LyA`2PBKFmtP zV(k#c7j?$Q+DM==gd#pg;ACKuh=h7sJ;ZT65V$xyhmyTaHqVPd7kidaE42`Tr zC`K|e5EZ4&V@e#VE;XBihl3z3N~h<}f+3wMC%6ZKw~mP!?He*0a_mi({K~`$RVFjv z9x4G==yizjZhU~@$@og&2plagS}2o{LN81=d?!?+qY&`4dqFaK@hLvAuVvA|iPJ@~ z%BoTfC0`lHfH#BF|7*|82L}a|*9Er@_TPPs+HO>_fgw^FuIAUj-;L{@ws=RU7`5Z> z9S#$eA|_Gp-GTmwjU(!y^)&r+gbrgcdA0_<(1_vMPJ{JIf*Od}^FfnVgAaX7mv>48 z9y*H;tI2~bNaPDFbEm#3^TpTSPeImJ;+QUDw}?Fl+ex|6q_EOY{O8zH7QB$ZIt^d< zd%Z2wZTk$x);yA+Ih}no(lFye2&tfk)O7wSU;pf*Y<7zpm$KM$mx+6+#FEoK`Xkfk zS9EcGHCtUDJU|rux!o#v;y<^xCv)sN% zJiSfEB=eedzwWvzRMC$yDy-HM-wu?k=P5j0Op4^pqOeTUZwqQgPPsflxnQ5{tYR)- z&W;dnfyrv$@M6`jF|MPezD*G(ixYc9%c0tRO{?mWtd?ayES^@5o;HOmT&~9Lx~ET@ z#-B?Ck-`+H%p>6;di^_#1HzXsVj}1BF@O1Kh!U%kwJ!&lf(W^yIwJm2gjm^BX(JKQ}pH5y8S zE3#lm?rI1})tOOo?zd-941-?jV~w5)aKLz8yb2yU>q5a7ROfyZa0zB8gR z)XXDBx;m~YYSP{znn&xc*B!`gtSw21^}Jb6q@d`Sp3n5pb!SE?{PftOoB9uNh5}-lTtL3iDl?pXK5cCOAyMzLDSRFK4CR{{6~>>-FG3NXiT;Mq zjp3A9tFTCJ4bfE{O-g=&ajwusZ-RVpgRf|cX1DQmJWA8)#rI|`CQ4YiK=)@sO$GI! z^<-w7wNG53xjyH=s12t_B$YZlXXqkuLn%Vvb_KgJAFD@PjOmJJBXr~@Volb-#JP2k zvn^=`0zE{{E=7yNLX;C$A|*A)cUEW^uEh;?OaE1s0D9%b1>*J6(hfEKIqDEvx~!AXn87+{<$iP?9FFpw2D99M_@DX`5E>- z*qO&SC4$nfAhx1eq6sGxaLl4wf@PcQiBlacW3F3I3Nw3(Y{of;Cu^&(5NF(_sil~D z*BLD~&#~}KA2af^n08iUqdt19yPrd){N6Vr*x&XnKVr&Ye33-k@jUhk zKDqH18YJJJHkq51xBxGrdz^Q>*Q)9j_r|ta53;DT=Q)S(Fh(jP?=hbo&Reg4CoPVK zh_%=5ZbWX2teHJAeer}$Xd&tfmYHn$#eqP{VA_Tg0J1KZ-xrrAp<^1Nt7nl z11~i6y_uHNzM~T3N1oRtSx?BK0jYOwb68-$v~%Jk0zI_{1#1bsa`(U)bcq>35O_IQ zyL&=AuC2JuWf}vFP5-l}CyOB1fi?ddzUf5E_B+eH<*1{0$K{q_#Fj?V)1ONm?-a9K z(WtyW%_-QQm)BA#X7yxxdq$WWBlp6`#-FbAyCYf7Sq$2ZsG#M6v8BSV)T!nr?_q{Q z&2;#`Lj2g!OGD~sI;39xI5_s{|lfmI0vH!lau@GhDz{0^5mzFF3Nt&Ze{s<9!{b(jB)Omc*%d z1Q_A2LLjzQVF={Jgwaal4M6mU7HKT(5ve)!*N*7wLKdCo{p zBptk9_&@xduW~uw6v}k z&|r zwb)<^35u^A3!}j5>Rkw8%kuDNM%8&A0LtgRQj|K-lZY7m{3YqGE2~UP)3L%d?|Phc z&&6yhrhw&extu(}%o}0qD4|QHgEv}^l=XIbJ|t!P2n(8CQKajJ-xYbY`@VEK zJrjDV{6J(zXjk-aVbzkuG>r15DugVcn@1jTD!TC4(%s}Q#huN@6OWNiFzVv* z zL&PBl@1jSUPG4blOpjp!ezJZf)>{hI4{cwv>yTaOm^mI{b+jq1Kj=M7xL@~dY^!9q zME9AR!&{#EOE_gL()}#$IJZ8^tFueY80xni6T7249cEFCLE5c5Z(it5)kFpgNZc=_ zwT$+jP=Mp^$h=6*jK;QV&NzXqLk|lchrmw*R9!>4cj)C87o4gxh*R(vAsXf*f}&wq zfl>%s8TgWQ5N_NmKi!JG-HgzHeUEOeyW)ym);uUkU!@|wP@4)k;Ieyvpe+svtY&vn z7^$Oh@9qxyXvV~wppT3;N0f%|x&>g_9LF#&@H4&R)z3TljBU~dRZs9z5#!G)6On37 z@F@i4s6rX-IWC#}s|DvonR=9hy8W-%(eo|Z z4>f}+3ug@xq(4mMRC8i>iI5e2|1{p9$xCNuW=GJ}!NAu9xow>Wo3mydZ(~s}vZ}gG zKDsaOzUJvswOYh`7)7NunxWjSkLX+R}b9 zUfYznB{(YITQ#KHXhg=~+*ixxB_|^n znePs}PCXR>GC$L@+=>|2Yd>@d9rg;UtDA(H9a)~&jhLJWImZj5Bbbe}0#^k7^KFK% zg5!TP%eH(21!*!*!=G`;wnv`M)L zUMi>QKsKmfcw^xc54*8U)jj2DV!LBTMZc9GAU2v^5smq{DVx>T^0(vMm6thh!+c8#Jg-J`UGC2Wz}(T@8nw@B7ONevs$R{r< zx&Tv+C}>wic<(*eh>Bz+>SuF{yKDM|SP-YjsQsulV}nj5k|dgvhm2pCerOYEXUdr( zEk42GMd_TKB`!&TU8eNVud(EU^|8^8TDx0nIBGMp_MEMT@5j6A#&Jky1&}~>747hm zf*rq)3Drck=IaldyO?s-%Y}z(t4f>2VKAlIE8?J`?oO&aWIa0O*k7TK7+uI1Qp2+% zhxg_zf`qW7g>eFBrPXiZn1{#?9(!PF6-ai)MTth%NukX4B=D*f3+h6C>O3N;OcvbM z&;@|$VeytZFu9>8-sZ%m0q=9mK#c%>+2_3I=Hb+_G9%cW+xPnJ=HmBe1wdwT#}9_5 zfQ;>d!M(2n7mF?3kR9(yYB>vK&8)lvE%&e2WPT(xrP^Kw`(b(*#EqJ_e$Ib)7%ewW zuG=US-2U^~H*$F~DFSG0vO@oKL0-?*K$Tacm3OP~Kh%i}m3HN<(Q=jni5za4zwc;? zk6INyJs&6aLWuv!sLIW#sU027&u@j1DiauR`y5*L*pwDO(^cFf3cZnZCq%F z3A4?E8J89MzT7u?fl{RB-X9QXa1#oRmVxaJUV&8dNJgJS=t=FDlWFN!xYMN20?o52 z<)E3`Q6GDu!k)j5$LMs)hCx8oG+%-l-p%VCQ=Ekc6sP%v?K90Z&Spv31*nwf{k41}5= z#x(oa4o@T}d0Dhf{EJZrK&Q}xfIzuy3orN`fV0#jN7^y27KEALH9;em4j6J7oZ#6k)=wYppQHdOK@TUQGoDEp4 z+ly$%Ts(c;x5HL^le1pbTZW4G8ED|ynNl8_fQkui__HOf`vn#(l$j_UnX%pLG`6jl zW(DN^;t!240@ z1{atmdI7GaX}XFakcFB? zn3sXLcO;}b(!!CDMC3O3^YA4fqI3EB3`u=ZSa*=Og7rducd$u2ViJV&V{ZDU#Wt%M zMl?GOEQ~Q)^?0A@+s?%N7j!{3bU zN0@1aV=5B0ImMJ`6(Sjm#bIR1Iw4U4s^ysGa+LHwVyH6o>+{18TC0g<^-{oBdCA#u2|%HD4X6qk?Y(qsq~g zMH!o)lg1&+mb`pV5Mh0b4_{FZLC=y#eU_Q3r4Yr`kVXDIIPbi3k!8>}0|L0C0o-n3 zc3lMI&!*^)%ErftcYlhf3p${$eXTXtO@WnP$L{vsm%^2!rQ+I|@#{*FB;8H%rYt`A zQkzZ(@mVqY9J7d>Ih1&JE z*Z8<{pX$?q1Xv>*T;lduOQ9CjK#6K{0dZg6J3Hb{182wmi(#Nu2Fmb4hJuV7PCHCS z2CF)r_iC^kF!eAdtgTUax3vwbv#>HlMQ8+)jk`Gsu;vQ=P=~QjOjgT`4CY27aKXbt zSj>GxFU{VDxJt66J6O~f^6t``OHK z%)|+378ux^bi?>RT{w533pXTe(F`k|!HnsDe+{;II~fJd!SRIOK>sP#C7L+8Yp64> z$C!8mY!f{!ojaX();q7-#Gy6T4If4t;eJE~k5DF;-O22ZuL>aXFAl0>{+N%-J_F!R zElSP~OJiv!VxDg9dVHe!zG}4jwc4hw#q+k?LL6ulsz{VCP|TQuqwqL8gLz2A<8d#z zwwRqwE-1T?zikbciLN`U;QiK7_xACzXsjtSRQB&U9X-*CZv@;FSh16tT`E7l{4Th6 zanXhPQ9d--2*+~`@sv^l&i2`xrw$Gq;@=KR80KXD%Ub;H72iUKnhP>#j64-IeAm9? z^nT6a;i`#A&WL2bi>j#F73yBeEW{veo5Ahf>R^pJNRA>w@{4IaFp}E;QI#Na|J$+b z@grOr72MRhM+3McOn=>h=`sa^rZc56a2 zvaG~nlyew@{EM$JM7=BSZeWGS2|Y>n*pw&`-)Olp$`OWzEEloK49U2$7PpW5%e%Ls zmORQfuXGwK@op8SA+|>A=lUn*{1+Cj_3lq`Lq~+A3RK9}OA}@FZ9~JX%4}e`Lzp4sYlP=ZHn2kv%d1fnym;+><--w94P4=jfU@_~Fhna67HAy=wqYtnX zZeWMY;bsaVdEp}Voff#UBo^f51bD`q4F$1L7+mvD0f&VjN#$Q(_BUfaFG#|lahRsD zGg%BS*JZgiz4q30#>E*n=Bintr?ixcMru6UAiZ&^TZVws@`(>O1ajEWi?kTR?Vr?x z$dm%YVCI2mDbL@K@ihjjP-ez$?o!!2C^lk52|>A*+QUP^QMtBf-TzkJ0gyHKFe7{76M{7hL7^%_ z!9X9r4knvH()y#+ZWl#NL7dXJU4f!HKmX(A;I~F&>{D*QnP};^I}Dt0 z2I?r;AHPJSf9%Pnql*822IFyi_kJNpcr%ARqaJHuE80h=ME@80_+i<)8<Y(;z6fhhIax1c9GNSlq^tE5yFvo* z4#YMcD|$R?LH|NKm-cNv{jIy2kjaRb+1ZdjMRDm^H0~}>DrrAI7!@9^d(WdosBxyH z#89Os4#u%XrEV#-HN>-$>_#3txopH7!2c33735YqrjG9f#5U#%D#U?hiYT*bztVUE zmm${!*GB`*l2|Y6>}_7vvk^n6nlm<UdtaPkOkuKpW34Lrt{>NvHAjKq&x9^*u#~DQt4r3zl{=UotZ9WBVtdH!<@1rT+Pf zRi^!Kn6$iU3R`o|zMCk#@wiu;sLCd5rLl!8Sm1x#8~dd4CZRaU~a`&%i9I z+8Uyqaq)%1!MG$c+c@?@)ri^@9}D@WfeH@QPd7LBj&7RH|DAU!m}hfcEFx}UPRXRS zc6ZmZwqKGs6f_2STtc4^d4nZ*H58L~&Hg;@a#?2_w#Tf+CK1FPmOMhrSXk7vik>K;(HQ zxTFcoogycBBRUAgrjxy(t#$JybZ%;PL$d%r?3dkY-(y$L|IrH{!hs)r7+BWSm?l}V z0vDaVXJdwg)B25U!St_C6{sOZDpJUCHgu^e>%teUjYbOlESHdLj-%bvO!GAkwnsW$ zNnRY+2~%Nw3<(Dv>L)aEKyxYX*V*Y9*HupX^p9d+Q{^P2tmQ5{L&P$>dw1?`2y;X9 zj`{gI(IpaKURUs48=S_SDggTL*UzB`XdUahK-#yd&KXEyR~*@N-2! z@@Rn8!K;m+R$SD8OqdFknUf^MV|KsC%(V@{%>z(X%UMGAF5hJ<*27T9v z>RV!Hp?6`wJwhQHqH{={$hYXzr=CJS4-K==+Dj89WDoT0M(cDq&nghThw|=}^2V*~ zCap%g-~C9xGVhqR3if4H_~IMzw(p~t->!sl<4Y)&Btnzm%8_iwsU%1V_-xOlwD~T5 z;e<%WP&xHRXCbl8WFuacn`hQSim{H)nS;;U8>p08CK9KREe79)lV?v7YLd@Z)tO6! z(5Da|-BT}t0xI;*uU~R1XgQ<|Fl5RKrlI+b*}f?!CmrJEU8-VN5{nt}oK?1{^q67# zn%Ir*GOagUEHSuNM@4QWY^;111*d}j3oyKx4=~1s?1iHy7H#!x!MYeD2uS-47F1*H zL&`ebO4@fQ?$rds&2z6@RpG|Shr7$FIE$p-1mIabqinHn>S=*CQ=ArWnQ(7m%5MGf zdgFx;bITW77)0s3usSp%R=Jh5=KM0!T7+Uh-F*d`+@V}Fn0YFd=KJzPPel<2eJjlrdr2ju(@y|N=&xdPr zLeW44s{J=irP_)$DB#fHqT$xiNrDwatASd%f@Ty$Z8pHb0#V>wDY>9k# z&yp{%838m~vwz#914ZH;>6#Q&|0D? zxLpgp5{VViVk_?7x&38L-HjmeIY`p(#{u3?y=_Ei^*KUBu;H8y>1BkF55s0oDOh=w zZbOqddhnt9GY3RM)Arg?pdymxkypHe`m!UiK2#~RuBK=1W>tDQqK}}+9^BrEm`S35 z{XK|EN(62XX=d8v#nwU5^5^n6=OdH}Znk~r$} z3q#)v%B)*iiZDsicru#x?_k_kxwd~nDjo{>u}t_DC+svFBgfmt9P)cgu)$rvoIBof z^F94=Qp#!kEiq*d0gC&z@MjxBkH*cB>4ZGmZIsgVrT`Qc`QjyO!UDc?N(Cu4ceFlg z`+f5n$LgZ5a;oT|0YoIDJoFHJaFAvLXEENFXr+s_kft@U9VRm*E(y8c*ero1BfZ;& z2axE8#m`@|n&ut1du-mpAvOlm1v3xj^2kr3=Y-&~LU^JWto)1Oocna@#J9NTatBs&_^@Lo{PdI; zDZc^>(3d}5Q0CW&L_iq}(Uw&u{%?^lfb+s_pb47?q3Tn7cwlqP*wi)qhxYYzH9!1o zHt;Dy4LP|M)BIdkqSEoXWga%CQ(d`WeWP3U^zlbn5^A&M#TP;J@CkSPuFi=vV`L>E z{4XE(%dFO6mA=S+s#Xtz5PZA?dmR#oNe2jP(FEjzq~<)*b?z|`7K_TvTnFAlC=n5% z1(aYF*xDZ;BTLc_oU%_6o`B&T#0=eClRwu0 zK8;~#=_)DijwSmWhq#V#Vrylv-g~`aFsj;=3|#ObI&j@Uqsl-+@Drk@3P?nOO({by z{KvfaXY6-9W}eavAURU0o&~Z>qGj}FRfD?o?)*br}8*=%J z{(||}Fq5Z3^xj*Xa>sq!gfAix%ybQxp6Km`KimBc3^at(P|cWa?S|YrGsm0Di$u7H z{Hfd~m`$s`0|Y{12?(donpbV2Q zEOwH&_X?m4e*$IMi-mqRm}I*h3Rk2xBjArSw&=S98uf7UzgLKaKmetMT+=6v|7G3o z;M~2I1g3cY~@>jrCt_eGB;m|73MdoUwB0TezSMU^1*#_G`JtxiUNA(p76 zrQ{9bmtgmvPkPS{^Rd&B0dk@PCDv;bLD9A!DjV_Em{5W`W!usLudDI8UP2nE?SL%6 zu2EVEd@F+cuz{*cJ5{y$A#6@izU{~hK5u|SfAI+?F7&_>HYXw#GpoIMa^L1xzU65s z8Bsz?aQ1Lp7hcKfVVB3-(FXNz5F&M9b^C%+86yO*@$f4&)j(twqd8||G9FFmjAzC3 zM?Z#Gn^u;+5ek-hUyl}VRmSnA3F8h?HAsTUL=)2<#B~-PJaDX(tB2YJ4k`4u3{seg z5e{J~$-_iTt-Uba8PLSC4k|b z>2AzHlg|y5Os|zA5;up@D6r-46YzS6!;BgFD!c;MHHXRmR8hxwe%Z^{Uu-z9YFK#D z&@P&`3^R^m!JkP8byd;fRoe1V5SX%Jni8L<;+@cRb%|)CKEU=!gb#&pib+G~&JL+4)L-Gs`YiCqGTnT<$8KadkrweMZr-dW5) zEKdf?U81A)_=g8yuN>UMCzz|-LP+R0=8lg%mtteh@fTd$wvr=@vFwzhfu#Y_f0vli zQJ$e;!&f;GMkosXGld9?d)*3N2EKwWE~Oc_#*~)J?t&K1{CfmhK)WlL@-=fHCYtur z2?9vWMi{N#os^{9nqL@34Y{7Zp*WJa=R!ir2%{8lF}Tu%A*ZaE?)6vr{$8bg>2!a+ zZ=;rPr{K-dvgV^v#hQhT1s!SDLteSsFkE1>L6V4(k_cG67I`W4Q2bTuacHRi4fy>o zBl9?2cW^Z8lo#AcNmB{HirxAV?c0g0t?TGkgOahc>O-d z#*8N0pWnjptBJ1bq; z`UQ`clpv&4=)ZD^_*{l1e0dZdup^L0(p3d5t`Qfiu{$j&Su{7)VwmUlQr1aCZls91jw-^^Bc~pUXIuu45Zt-1;J@714M> z(>pLAq$a|~%8G%tu>oVY{d$!t-K8LZyCffQpzumbG z`l9~1YD0zW67g9VN{o!SR2HS3*AR(gggD7t+Z$qEX4y=ZWC!DV0iD3Fr8FJNn&Bz; z5CcJv1c*^K*e@XnTctb)z(~~#rYw=y_W!}l2mcqX+woiT<22a{J-7(yoyq4}_JsW` z-KVbpe?+G~s5?=S_UZY7zOQpNoYBbOSxlVmKZV7eEvPvXtlceT-SZTIw-5`Z8icm- zsJTc7(*(HfOA&rnI(ZXv{EbfsN>KOC?75mXKdEtgUxY^)&r3eVqcQ}fygny2`1y>>As@X5S@*x@cS@f+VdU-B-+?g6zO{(xL>hiK(2>+(pV^^-Qf1VC1E1w&3JjvwoaZ6qlZ+`_ zrmF#g)u*C)+Zuc8Q^nqsseTFZkMQJmil(?7Gl z2Sk@J4G7eoB`BcnnW*zAO7m{@-w(R*ft`u>Q6Lvmk5+Xz-o0o9ShB;0CgGp!0Gyd| z4XRf&U>w$_!HN5fp7O*^hAPv`gkN&cK})XwlK8pK0=^sZK<^Q{`R`KTe-1qYIwAk~ zdnx{+T8yuIUev0=t=*AScIC_MIiAZPOHQ(7h_vng1A_n3cLN}1TFxX#y+JqJ&<_i2 zVGb*tk$H)IK6EeR_m-}CS{Ve~A-b&N6!5;&ErZG6;A}Prc8dG_=id!5t8J&Ahw<0| zhXdyD2BLk0^<1PWRwQignd9rzs$Q-w!w=KV6sXNgXIkO0s8y&#@o3v%T1r& z*(W{M;{FqE{~78(|EW}1fbp}u*CUh{r#+-dRY9n%ln(rR9(Y?XW|d;-`8_=-x4>Yc z-sv7A^C2*0vLhbOAM533U~ELyeLIphlU~)BCp&7vz%M(lL3=gr8p0^dar7y!$DIr| z2_2+S{k7yypu-FDo*z3w0reNmus3l#w#QZ@KD* zg}aUZ3nqQ=U_pBjz%D^i>F~ttH z6kn+ifj|h1z~2QuJb|Ffe|Xye4jm>)NLI(~{N6PfsTdHCdwGScv&+1GhR0DF!~)S3 zO+Qx|N@Ug0H2Qjev>&TP1yrny*z`N0#7w4l14Rl{3TkO3x$Y{vfQ56Khn~iKr>za_ znovs>PfHFyS9?hMWHUM?bzg0orznC*#4?*m+1Yr37|B5G*ww4Sv2U)xDO}%b>lpt4 zcpUV(!n?IDg7_{n$Cag*WYqjXH^AA6%y)~{H5!&P5x_>_+R<4%JT&Cf-R-riJ@xo* zbwoH~mrhnXRAL{#fO&!MEIDQKZ>$ zZ~{MHJqdNjMl6z93+8nXd9W4JDT%Lc2X7#WH7`x&?8uNEP5e5*^V1By!Q#JBD;v-* zWZg^@XP8z$O7ru{J|XOM(ueRR;}KcH?$of{CC*TUz9FFsQ7NqQ>#>xrMC!NH8bG&4 zg(#&Dp#D}YYAj!#=Hg!hQ06~N>pz?BPd-5WfX#V@?nZl$r=5a7z8WH3@#W*pMT3e> z?MPgVFfftn(^~;+kS_a}1gq-dBchjHH>j{lmQLaFt}uNyne@B!j{Vi5&y+i|YQr+=qoJeeh zaVYGVW&{3iONI(c2uP@lOil!`r0zNSh_5}HmN1M)Cdkx3s&X^qDONVtKD(&Z4HquP z17oo;{!^3Yn&<`7x&73J=*hLwLbc@oCj|ZZfJib@j|4Xo7}*o{>;(bo`6jI|1lcjH z`GMvKqbIT>hN3efQ38|MWclTc1FLL(Zi_6xlm-(FFWwdIEHPRM#TzZA;qN+;$H(H! zpgzT|wH!6i(WF#nX=ta1BgC1sLMECHoKwU{M6VBY{RfRE_`peg8;9Nm$3J<2v#JLI zr@njxijt{;2G<_wk{6MVi&uSM%ARV(;f((+f3oeNs3+e)-28atOw?JbiK+V0R9^f7j6(e{_k+*4e=TvlR{*}%P{GI+KN%l3 zRpL*jss`yd-WjR6Jb6d2=27o67^{JdFem7fVSz^cu#rVsFtUv!krI)Jz#u){CF4(9 z$A7}cf0E6SP&OSAT34#rM&t5|$u%k1%HWq#qDk3N&2wwH!rO3V?DIWxFlE@2V%a6) z&3V#33Q@w6H!Hs9rW*XGIaOPjMf&kA{olvl;SAQPaH&ur1C`ZhUaq(glXv8B%@Zol ztMN4)>vj_UtiU#ChYS4=Pd8|tRf&T8vkhI!f-1fjbk-~Dc*%06kMiz9T7YApwywk9dV>F1@wyOB6eHCDIAPxPR6MH(A`2cSgJDVO`MzotpnA=J?=&3>WCT#;pkiL%@HHpv>@Fa$luBg z{1u^o0J>g@#^weE7`M_F3SGMSGfHCsTohG#o}K{KV$Xcsb-occ(Kf-};`d_U!`(FU zYP0GA3Ikf8HzJHr_n3;O<2P5bgk>AJo~!RZ+I{ zFpX!IX!#Hww_w}tZWX>1e~b^El!!-54h-%`7r?7KX+k)M=RZ<{`^26OOtjMCbd2%5gtN9tFXIkdfk1J5d$ zD06*^13Gd^o&l2-ahIRoG)#JP6;Hwn8B5V#Shul&l;x*k{N>QehTQ&q{a;rqu5Zmb zKgD`pq^F!rYVkHK86V8Cw9%>QuFmXUr}}dn(66C$ELzuc(6W8(-!g(W7uF4c7g~Uf z_&;9Lg$h!lq8>gup7bR7GF{spB5*8fVc#Bgyyp&0>-obq;QdNa=0L+R^-?c@PuFFu&)abN;sx9lC^@ewRy4x9IQ?=Qz5e+u=#$2&nycfE}!F9bYTnb3($B{AcRZ;HjQ(~XEwCnMYs5$+r*aKKTmJ=)0RSy$ogoVSXn{#MR>Si z(OBfdDF`}e!B%OO!Wjkl=NY2$o;iP`;csB9xIq;7%Ry{t+fkmKId0*Tp6oxuExCM0 z|L}3QAf^gc2WUMO+J8J6g42FFQ8Xc{6yT6pTN0$SB&0pRGt!K#3r(n^-9V=#a&c*A zVT77An-puRpIjxQdZTDkQwfy=#k7=^W`jOmswtMsDVCU4=p%ZNoNP_#N3xeK^QaDr z*=1coux3*`t+l)QU`3iwtkM`ny7Z*4^=_n0jTb7Zl3qd^-pT8M?}cd}y`!^ho&~LoXO+Css9n@qQ_^e$9)Kl1V zQAy*N`SI#&X`BBVhyh^m)vi{xf#nehg%x0z(^gzoV20G8+eOlRn)0BQ@xN_Ngm1=NZ1+vj`qnX5zcg%*CC{tA?D)_X%i|&q{gs%{+}VAIMJe%0nC@M6UrY%$;K?(>g-;rz=eD$!<`5TJ&C29B7BQ>;h4N9f5j7BoS*Fwzg`!7 z*IHgX_s-2J$%_@!8^MXrQ>IcB1`EQ`AI|w4&R?%DT(VYP=f64LD{?pCxWJmg{6XRo z$x~1%BKLLuWST(tTzQegQv%uHnloZo1E=D^obzOwVW#YyRUr&d5)SEMKX-CPjImJ% z?ZFb1n3!O*pFw($!cO<}>RH%ish+&iJa2pk)Al)IGN);75*~~lr@UhVokN|FmMH(f zg5<0BkSS7x*NDgBJpirFjw2WY$(@CxDS2f@K;NGG=@;-*D-WgWMJZAF( zfKe`?Jkw67q>N>BHJbPaK;P!5!Tg^f`JX$gZT6`nRQe&d)V_j4upXXq+NDQi>C#g< zZ=b?m4e2rHpjBIk{c-sgdDNARhW{Jn{A&3wug&gZ*NllJ(q1>W$ITQ&$Y>L=aZJqe zY2hAg{OD6zj}j_r*yrz=Oo;O+4g`2)ttHz~gZPsLCuo+c`#ThE&)M0q+7bXq*O|}yFt3{hcolLGtT^; zd;gio=b6Jf-(Gvg`@U=K{k5eoR{4whB?S2B^~R*yaf#G>w{}PJOISL0d98`(S~A>w zOP-=GHzQ=OCJP-87Cx&cS~oi#Hi+DNM`xUeBAoYFjqd2pRfZR+FgR3;i%JV!q41NQp@=Qnwjm%L#ZA{x&-WF#cP6#83tMOS7imR~wdGbC<{l|^GFzf80WYmmg%{DNmC`@qtXTf2=Ktd% z9GI{00>g>9&?;*9gP2Sh`Wxrpdz2EYYyZr6O(L?3&qVgp%)xGR@8gw)OU_$0v0#ht z0{v58nLGX+sCpD(a}hAYT++%J4qR+L(c0P1N zd&|a2dq7*h9+Inra?b>;-FR84lZ+s+SkF#H{BMQXZw_+C4YB3!`ZaO%Q045)@2b(p zYqwb@g&R2jWsI?K3ct2Y`6*ZT_5=X=UG=H@;fNLG%xzzR61aJwcu@QF=01uNH+>8` z8*B`vOF71Z4!m;DRUZM>*eYO&a8HX(zgi1Z7^fwCsT0xv4Lfgiz34&$!kfM8Yh%9Y zO3w#wau^>g{ute8NMp~ zDNCSZtj0K_bTcf6di}Ynjh7GEgpf8K)WzD+?sj2NCLXRGNbT$_wJ)F|KF^F()W*ZSJ)% zShWn71vQBD`*;%{uih<+$wV{DyBU|mZ(s!8T9_J68V7mr!7xR-H!*#fU$LGPEn8is znLq0^-)FobXx7%S8<+UmiV>k(EmaO&oC)~h`$7#L7I@{_zSLGHzNeIDJN(1o?_dXr zl*5;LH1O=%a?cFBGooTRdP6M{a9W`UW}|wE)|!bbPO++SrA;1#EyLe?#P7zIyE;sb zo6+%v>CSV)=kY%Be4y6~Pz#_^LhxQGB%4I8wS?}J&JlF(GENh4#zo*>`KT}t9dz|p2x*qS+os-V1w@$>U%ST)uD6> z?Tp8F+xq_zC(ZNI`vo(TcV0)6!y!JYqJe5amtN)-Ukd&cF;5dcPoH97fv4X*^nCS*jMWZLxhMt)b>gSqQ1 zh+-mg;YgW6tpdMr`Bhwe$)B)AAng!PKxp3pm{CgKY7qT3)62^l)8OlKzleOuH@+mSNL#gM0aN=C$k(4fXjuh|tD}o2{)V)mSJbGD&9k zC2Z)dOWOg{FGisA=rcSm0fP(Baqp_Wd zu0NVAZ$Q*8%iDFC`-5lW6piv<@U$1oS$wj&hL+~g`qsQue9;PpChLPNPiYf}q~i_$ zlg`cRW2^@j)l^x}u55p-7HBaQN0mB!n-wz#c`qD3fD2vryL_p}9f9-0*G%xYf!*At z;T?Q@`x0TH_?Z0(dTeZV#rV)xXVJy4onaY zj=n#thjO*21>2}dQdmaBNmFKtNV*_0*&K*Wp?aOZ_U2B>XU(70b_iTNhZc+3kG4y9 ztl2Ql)Q%zJza`m<$hc5Z!_11Cep4}Bpl{}N-$*zvR5(W^g!srq)>BAzo139K2!aoX zCf2BXCO{@NLBs^lZ+7~VH*${{tmM1!#E@(fjA=sw&Qf*q^6&BcLw4Cgi@VRO4rTCK zs@hnp$5g@dr<&?Jb5i{a{KG#AXFmc!);Kjk$Uq<}RRY_EgM5fN$@Kz0Pw1u>$@P9O z{)+jH%j~c_y16Tf=b4rVa)k;@n6YQw252I9ipJGq(7tp$leI-V@*0#7n;Cu7J{u)T z^*PR1tLU0x(n9~by0*$=rHutHn}tcc<5R`kgpm;*cqV~wFx9g+VdK6xOaSoaO>=%j z%?y9ueaDk^Wx(2(!2)jsyW;cLT>vZyEWF3Ax}FQYW2?pBM$;Jmui|||v~F|GoUF5O zWN(*xK}v&p;Eg3_c;yWy2uRLGU>$Gy1+7Sbb2|<^YIgWM`PI!#$CJ*K2<{aEi1#02 zR?iW{{@h{M5|F*g%m;qleGqDfJf%>S^CHcqle&)r*>~ zz!GC1jCq}(DV?t=dgAeBU*GE931@VgB&;BqJ?Mv1Jk$C0Ql;4gVGmwV8e+`*oXu{> z<1Za{@s}YKUs8Xt-O84>=aU6uHt~kIWFGo{PcgSdmvUTjp-*cE-kf4cOW6XlJ*U=j zD`Fa!-CNJp35(%Zi{T77Gdk!u*sWez@wrX;<~-vG9OV|D5OFo{(i2VIPL6FL88Yz> zadd0iVY09Ne8{9XmF#SwG}H!|cz@5_(i~ZMhF0aI-;#}xTG^uTozF|UHiFW)zex#x zko`=Q%Z(e&*{{!*Jjdbc`<6#hNPa-#K4}hF4$!29C2{=rzr7z?t13=pyW6(7J4qkv2cPzk2 zAqnG{sIbK7ZKRT|2)avJh?58AEYR5+8cFLi55M<^B5Msw>}QoyLB&+vDti1O6M3YZ zdra!Aj3BJ;(JFzRR0WLwS%r;zrPN&og})s$7-dbDfpw#0fu}G-v|E`ozw$IS7)%aN zA9tM)t1xF}t|Hq&mP!LfGX|-Rnx}| z^kXzc;YZ5O!lNw+Ssg}3UCFM^AH3uDNRb`W@lDIwIpQ|q41lCy$y; z724hCE=K^v`}J{U@hVR>>sz?)?4mI#Pvk?UZjWSuB}a{jI5D9%p8gk3AX70ywP692 zZq-;2Vhi_4s_73Y15EHYsf>F05ONASyM_*dqDMoSCZ!I~i>D&x)5q@eu(LRI3GRjqW^3Bcz?F6)2*WVIa9Tu-Pxe zk<{4l`Sv9yP%I#dZ@OQ(&Ayso`^LWzO^xOmG?RHC`eD(_iiyqJ9U^0ARoAny5tQ(G z5-a&$%JvF}tmskfE4AIp?T%U#pAJ)D9%3`m*svSsh)n5=JY9clpjdw%8Cn!)g*Ud9 zpZgLaH_|zKk5{#^?vy4uT6bVX`kUYgfOb1W2y4M&MWa`+wIv}sE)#wg1?jd@GkX1? z1Qa#i1mFWU0Gv$o@T4tp0$vnSG#-D_tt(!&+>Wh9lQEACt~VziZfhq9o;tx?BW_~C zF_25^wOmT?+_h@`SfL5$Hr?@=quEe2wrGa+Oo)1caCs$&-`dhpa1Atp6f0D$1Y)m# z_8?1WU}rRl1v@3r&=`% zha^M|K>7A0>psJNWZ=DR*9uJY9G{>T_wb@6_&9MGNjRes1jGze9|BO2=%Tjg5pKyU z0t{Z)LVm-0Z^z!=qXwo}t7aNA@H*kdsZ|xMcpy1(5NSn>a1JM6A=r)3uY}E@NVW1R z2;&P`af~*MkYDiCO&V=D6}3*tb&VLYzW`0VI%#*C0)>>_fs(fJX$pWAX}+P<5dG$F4uP|6b;wU^=6oEV`5> zXpk#v$&|6{&?wy_UKpeyaEnQ3<3;9^F@EjPvK&HbxYVbpErO^TK+D^{4DJ2#C&Y#E z?jk)d=-`IfL|_skSQi7`rnEc6_TC>qeHT>DGI`f{$()~_G@~C!om1uB$7?11wRMN~ zPidiV-R*C6F+`>4o?Cw+=fuqL2WNcVwk!cY&xSE_Q`G@OsuNGG3%$lh;cdYoTa-l#Qh2* z$LI=MHuTD*ua$ZRP-Md17`GUr7q3p%wpT=J%k=1aJezdkO@_bo+92ggzC~E3P0Aej??Id_Kgu68H_pktR5j*f;ZtrIs=QN2qYO_V{}I;MM03 zEeS#jYx_%cUmd*=9b|~rbCoqq$)@q6MvMZWl~Gl^YDo;Ejk-k{f$mP=7ak8}D1Ppk zZg(sn19E5r*!d+WfeRF7EX41ilMV>v>rL8G{3bVO!_f&H*P?uHGwFIu;ZCQ>%m%!r zy|?&yq@YeHfML{=NVASJjMQBs3sVs3nx4XYwpS9>2vIZZgpdqz=>J%>+I~A^smikF zY|B(ifUUs$9Qma21I^=oNZXQ5H%!1@mUBJhk4rTM=uiq4c;h*C4V-8b^kUjbmfP(w zPrB&ocGbb(ITZjnwRAgXK?%;vg+CdjEA@Ki*LUYL6RzO8c<4x)#z+*WTj8+s`Fy## zFK0@=goAfKRsX2B$3i9M4%#bnb1%VBcdRWWMDE^G3{iGRM@)L?$!RRHQ?%6)3MWKs zjZ%esg9|r5d@iYAhb++Agb(-moJutCkD?m^^>zb6nBtBd4@re6c$zz6rPg!^TZeTT z@4y*0n|_DWn=Akv%`sJ`e^f+tWw0hmEITlF2wDhMXk>0fF zn;^Q0*PXq8ADte{-}LrdHn-0Q%)ryKXo?D_{%yN6{j8iWfT}H~wxS&M5KW`mD;MXD zH?38Ht0l|33+8|;`N5(z4_4WNwG?tG`M!x+JuJz}J z6JVSPG#$mkcG|eegw#OU4m;>B#*rf?Bz^{)EfX2c+3`~`gg|3rDricXsq08{EwP=!C4Z$w`X;$BWeK;uEF{zH5vGdW!s$P@XBpf zj_uWnFcvQt2b|iYtHiPGuz(^kZv>h_`7K#7(&|~GOU>~~`Zcf&XddZXrgeGR_A2LS zL}vz3&BE;j8PD^<=V?RGZnS5fES#1#WLVmvO}BjbMrw*6Y(84r;}J1ME?GgRFya1= zUuPGqn4?ZC9i2l0adf$!2C0%tw&EG}Ty&=g(>b*_HE{qq|7XJp7*P2{F#0`52WUF_ zOQM(S*O;S=eDi)uQ2(gk#j(CxFG4TBrL3)FtnO|rAnBsk#UliOo&AlNv9km>fZmq! zwc)ZSgPj)om%27!2&NYndEUGMGFnaQesdsgzDv~pgFjf|r*|dC!!}mncSEqj_IjT> zvd<-S-R@W`&J@A-Jl3}Y@3;s|LQKdy0ML{O8v|7Wscj~PzV$YNTPfQV|0kYnki7M%A59I+f9 zIYTYggXIpYHF4-e|1WL%Gg*TvV7SGgSI$GYv%FoiL~h4G2_kOloB%zEgCuo;n0yh@ zhN~OLUd_0LWA_1+0INE6Bv{ang(6Irqg5+5;CYLR6^QE(eyBa!D;>o*+kiBi@wm(x zIo%88D1H-+VF;(M?je`Um;aiYDYI)isGw?E4;9TsB~T%QKfIa0%{TtWF~zr(`@?7> zQp|$RdB2kOn>jWbypyZQZZ%`If>PMFG!MLoEjnzH;!8kg3D$cNqX?7zOmRQx{YmTAg6i)XmYbC>MH_%k_Iop`m@!`!>LsD28*n^!ctt$Jy0Y&*3J@8b zyfk|U{lTjm#+=vFuYbo0smcmE$#V)O)Kzgo*%R}|x`ZMS*(*|TxRvaXy)pVfRDGYNRnh?DA9#a^+4lks1$0~Ho}@@H%f?v?K)A+yI_ zhu!ky7rhKb@D5B5z9{cJ()Xn4z7?r2qE*+7)M9}kd3QrY!x^xYPv4Qjc7MB9od4Jz zDH(unU=ZoFr$ly3>iEHmxk1dRki&vMV~;?~stc4*PPmkc1>}b`nd>@B5pcE7Y{+DR z;gB+T9K;lO?cOEL7&H-nJ?fy`7yn!L4FJqI^jX+sKjRCORx~V7%eS_dlB#QIn0{J? ze}mExw(EEl0O-)3*|95N(IS|xy=%_(q&!8Jl&EUZav>;zP!g{~|2ld|&5M=*&Jo#! zpP^>JOcl&$G1a%f%ApNp4i({w5ttc`FoQNr%U77p$aJ zwYEbqc?3wfc0UeME3KBCSbgK&vv&P&{_LUCvNxd^pa?qQFjll8%dNGArLo-+p+aMZ zVuO|pzJ`)GQRb^fNkT6&A+VVsWnwZPG=`*ElKr$mFmn} z^St70X|&^WI>ODCJ6lgyeL;?{>tG|$2G;4kvyuWbha&C9oXQk>!qqcNWLp)e1H#}O z*;e$LLXya@&&Jy?ho*%y{)65!LPUuL>`8KQ62$vssVY{jSwTLuez0&P7k9A;#XGdL zyga%D{NoIK49tdfe1s{Uz6hQWc|=bLF%FG5jMle6Ptd&iFtI z20GjMu@XYW#WWROIB0Dz$YteuIu)tLZm_iwHO|F-14MxH$HHj^3YDX?j?jW&J$0T1 zCqJpTCg@TwEDv=N<7M!9)=7kTkJor!Dikjojjo1U;KO z%@3#hnU{EEj;)*=qg~+J{nUZxWTyLjoAejpL4q^}L@Mghea6%P@E6M~(i*Ys06d;4>=b3I#_WfOiiE1MP( z$3X8h*seEcFnsk8x=1TMi#~aeq$}d$vj$3dZS?MX%T29mr+ATT)>#c%IBbhVE}nwg#@Rl?PTnKQl3(q3+lia7PdS)d7c=%M+DPJ0p+q$IW{%GK7<;Z6^63_Gymg zY8RirUVt|G6^bACl|W$>JCXw2t1tMmjvmmUjL9@FKTtp`W;FYFl_#fXK%pH$UK zk;?sB-jen+RDFNa9UXD?pojdqH!-Qqi*G5HrVrJ^_+Uka1W+=RWq1LQVTa@QHAN@Z z<6|;{Ln3Nrx-)L2ExHu7M87K8QAY{hX_UwtV{12HZ->j_DOy`!B!o#yDlSxU!Pg2S z3m?2w0){|B`cZpT4+sLklh6sJhskYO_pIY%J^Jk=2vMI%er!BRe(gbpTYxWvzUM4+ z%U_7c4O-g(+o7NZ9WvXQXj7&cG(zRiGr-=cPRd5(GK{%Vw3>*be*GQs{$CkqyH%y=3+3q3o7d~#M;xF-NRiyjVVyRAf`5mc{ zhzEyhPJajh)6UuS7ksm6vnrn>tQb5I_ozEDp(-l)>x5$(9+W z4eUlvP+{r#e@bv zk5AZfg@fMJ76lVo26QfN)K6-*l*2FV#hXPlAm*;{Lg7x+a9bP2rdBah?yqSQ)pn^V zT=FCtLAWtZ>#z6qyQ@oAM&B|UOd6W7*5Si)|TM3nXC#E{<3Bn>zI49xW?nQz7+cLAw2HZ#2mQek$5;u}RE-#wzoP z5LY>=o3kY*4TSuBc_@;)!5qp_s_FT5Rm2c>We-(H%tOYyk^yMHea5#jrwP`KyxD(V z4xF#kb{$^QyBJf-GoA;?(Mn_`{0^YioD`+O3?}oK@@(Rd7%jCu6W%i%iM-f0-<;+N z02|*4*^iIc$hkx|E8IM)HJV?}Fd#Mr0&swlS;p$+Z*ZU<$8Hly*DtFdfmeO)6(KV( z8;wZ&)_fEE8Ee~HH{KLOLFe^``oKccJT*ygMNT}<@{KWV=Ec?W8Xh7Mh1qBO-3X48 zkv1c`IU3j$qZPA-d8mSD?P<-0q8d;_mQ>Fo+G5{P0c%;Y^!61!F7Mp63eOOF;P<9a zhc}qg?Q;P}-JbF6A}`8CC@dYAGQ8b53Go@pC^7&VryQ#M00Megz){*fqqT3nL~$B= z*CFaJ-kvaeS2AQYG-JG+Mf3bECZ4uduU7DF8>XWVPcRyAbH>a~LsPJ1xkX%j}V2FLrIzM^-lrVaKO6JR zYLT*TE6_LIuDBt{dpJh;TqYoXTU+gCLzUc?{FVXWvDP}gA)H`wX}hsCk;R0PnX8%YY+%ml|)2s>D1XkNyp=lYgBjpy!?4_qkzvxwMPLztopn;QoO zdR?uwGTFbJw9BJ3bdeNwiA;M1S$qUs`%3lhC@hgQkhWABS%>7>;JNn=(_7o#muo4{ z7C=fX4->gpUJnZUQPU`TAGsA?Vo|plN+l9cL{3!G;wA@^ALl)k#J1J8K`0ns` zwN{a`spa#Ehu#m;Vyvm|#%7Lk0+EM-9^4b(=0<-X!~7-JF=ctVUKi|*>3!K%%**)c zP+@{U*=}6apXdxkLLP#>01WlA1LTU67wA}0mXX6I+Pt#WAB?N=4$(F;eS9vbY{C-_ zTA7kxw*jF-hxw$Y3K3oyp;(DNr4@&DO(xK=rDP?yi0{}aIS-V?Dfy8gg68P3v%ox< z2B&Jt#2+mDAS?5+iipfKg|lFTg!591T$FP=+rod9Qs-j}k?uOd6hqeSahuw>z<^a@ z-<^a;eTYz@5q?=Oc}&M8QnP-tklI^SC9tvnZMm8jTk;&JpxMu@G*Ly|LYIhiPCUuj!jbD5Jr}Tmag@nr z58yKl(EcSJT|?7d9GeR{N&A6LPw85Ft`dsmL5dC4Rmn26jP*zqu3Ctiz5L)u#B(~s zDAlHK&N+|(9Z#Sct(b|T; zXU|WLPEi_cZR<|lFm-t^J#B}r4`GHd=o#K4Rv}!&mmM0OOG){&5I8O_MmL7_Va0!U zCb2&#YJ&fYd*F))q--SNL{n;DHY+CMHa!(HDdJ9REz|3AkH$k3V){u8bLx*~DENn9 zNiFCXjs@KAFTv%4PxV&2XQYR1J&a>JFT)$YR2>cF$SlMp?m=ZVwXcG0#;uP#zIx@OE{OGV*e;`fgbJWv&2|;7|^Sh z*SmFA0VYoV`X)D>h4hxMsWF*W=fhYVa8rG2B8jO%0ZB1vEs&5H8r7&49OmIo*^5)y z#^=l_X`)(uZkS0G3xWm~l&8J?#d!{{H_#x?9MoOWTG2HPKj(vj$*46y8{m9{(seL9 zotz)sqGp8X0n=NgiX$dY-X7#O%$&*>wgnb;8aH9AJcc~ z4@&T2hXFKwOh>?3mct%!) z3n5RatI81n>>OtQRXwL<5Oj7APCAQ?-fCLw6-&2W&`awOXg0G&Y_iBm;Un<<&Vc_X zSI?7ip%yRheokl=BmLLF-58YyqXt(VRF#tx;{*W~20Iby$7+Gs#{SSw5U94iz6I0y zIg{NB$1~cUDnZ%M*vr!~Q~E#6?enLO^R!|1Q0#F^E%L-Gk>zSPtMfn!E#_FBlMD@7 zCGrTQ{ANq9kyj`mZsowHtK)7&%v^n<@I5@ptPj)Z@*6vKAfYlbj0W-nrRRiNTFofh z(*T4Xaq2Q8CeKodXuqr=ER)YBF+Fpp_#LqN7S;sLzFIG15Iidu9m#u>Aj2b2etu8 znXcWkf+{mp$kAj(2%OqFe}Aw6Hlk|%QD3aC&1!KGeL@}I>NpY)8=}Y@nCVJVNdhPH zRpXWc_o$|~8lm2Eco=(z!g~SR&Q=~48Mq?PfaCqFP5kLbO2XR@ftGA;Gn}3;VB2jP zeQnD(7r0e-qe8^r^%pGom%@vfXKDAA#5aT|6+I@L7ONwjk=g`djNC0Nvf-{~!fm$>9E2}Z+7kIF@SY&#stZncsZ<$6&5rQ zgQm(J(L?e(dKL6@fG2KE3(P>O6S`Y^S6v}KJJq@V=)~6CUPA()9m<}2fI>YGpSVw%E29 ziWu7|jT~-lw6SXN0kQV>XGb<%aT2l78V_uC!;6HdBxJPuTtN$A($mkf_otPH6!hVc z*wpn;o=a&2@h`*tqW?C4M4&VSciGX%$$NId7y)y~)kb$y7hU6u?DFq65H*B@lMI+^)3^NBwV5@fWzJ^4sU7(2!M+>hU~VBJwuW zqvM^ZHved0gkCIT#Ty1_Coq1ywO*iebgk?ntK4qreLw>#FI4jNDsf&JlpSoaIlwy* z>8jc;ipD1wHQeqR2cYG51edZ1+Tq5Dp+A%@zX4i<>TW5jRi=1=GQ(-y#8T2BHn%sFXOY0$~&iYH&eF>eS$BP z7~mwZ-*tBTJB3uxLJ0f*vVpt-1&3#z0*ek_7XoP(cw3-op=0NC+|^79)vd59Cn-qk&g&)4TeuaD3U{+W8LEl^LVOOyF zmf-*>u#ERIz^8IP@3x~aNwuR*s8F*^e);FSokK zdaB+oU)0x8UC8r9Mg0AjLWMah#nr5p){i))JRd{5IjZd#r2U}tV0AJaCeV-soBP=9 zZ7*-O$#&H7c@;8vf^{Os)(Z9E>1!Zfw@spI1E=m5idDn5yYVXDb-yWX_z+Q=)0cd& zC^#}e=vpd{6?vcm6{j+(4^Gzb!}55mzt}XS7GE3~B#$KrOq&YIJ(352Z%FUf*&qp{ zoY@Pt3VW5auYg8Nnl7NZZjq7K#r}si0Q;Q+oSZiG{xE*}WHsh?IAfl(1M7AZIcQ$Q z;C}{E|IyCs@P@>*F}R0rR^K1}fJ*=18$Mym_cEPZ>l zYj>5|S4=9M2w}cd?}-VC_K(1A&RF($?y%+gTjZ>AL7qa8wvEWyLi}dv1d-12E8Cbm zC?2AOFv<|4nPI&b+t_JQLt>tFkX(cap1j8JKNBOIZgS$(Om7Q!SAVECZzep46#$|q z@p)`&o~VX_x3SU)H;tel3!rf+!?I-v|4W*D@;k8clcDCoKGiEP`DeYS_6LuUqq_n< zG*TAE{+;(B5P#_E_1w-?Z3^ei_zQTo&~bCbylP&WM+F$updFz5FXKXb3pv;;Q-9R_ z8I%rmu@MXHkGD{^>&cO%0)nAk4*Zc~ru_>#oxPvVLV+z(vZM{vXa4}ee$rb0u#jA5#UD*EGpmAdQ=ZU<3?&=9-rY&d0^aHnk zU5=`|_{xbl!|)+TJutKA$TAOvVMCBFs2rTDjU)A<*1U+Yew&9!2tpbX1`%hSWlxn4 z6A_bn@4%-Dq;3r^g(Gz}0JR+$+8loY@7l(-_Z>dSP$3Jd}=h0 zC2-v5KVYOC3Q%jU$fyoP#)DhVI945SOyr_(_3%Aguh5mN1?PqSwMBNm9U0Xp_?1_> z)f8wpDp=LxPOSeh_iIT02Nvky!G(N*eR!BJR9RiUUj4_bOGVr4`9wO_>oAfR_`noYWQ#q^&cDX2k|E+kNu$SJ6lo4qUp-# z!*s{&R5)|L=?oOOx4};b*6K0gqmKRO$8RQW=Znwwkzs6*;KS)l@0|p6<`Vt!t+NK7 zCb?%Z6z5>N`b*yx5_-ag!F}&PC)fY6q7Hk= zh5U-%lXc>1oP9SB&K9FOudz%a>gu$o{cDK#4UrL4`@{h)WLIEQ#e`j{AsCMva-I1Y z;--3s|L8mh3hv8wfsc1+ge15nv@3Pb{r1gFfm%L#3k?2$j!XyqB4cVJAZ_ zseJZR9VW@Hx^&gIjRF7h7ySs4cX~W3nR0BJofia`FFM3+oZE{4H1|J5i_d z`SGEXk=EDe3HVSq`)ZU4t)6QYDu3{nPi*zfkOZ)T3J~)BH=p1A!^;077)?J7zh0co zx$(j>J=QGkhn*do`)$E-a5QH=L8IUQ$S$oTImTsmTG8Hw?gytad>3Tv$RS595buh# z^T6zcfu6Vfr|kXtH{+75M59`cC4 zEIdIx;^(m`u^}y1iR9rXAA!*vn5UEqF;EH&M?5*uZ%@%-49Fs%y|(MfnuEgx9!)QL zg1R+UK0=KAZ^1$J%4Wyr?j7%x70ezbim+>F#ms&FQ*cNH%>iFtkAwbFP%V&y*Jzcf zjT#IC18vOspzVS`Ue~iKAw=*DQux(L_C@k6KYE5SXL`XCU!|@PG)aL}FEYM{QCUoJ z;|ByvCLmzQqp6uu z6!?z` z@4tN*EdP|U64>^DliBk+f`=4Bz)r&>i!|P=RR`q37bb?beh7t9{cg|9Occf?wNAqx zJHWfVb`Tc2`w&{JN|L^N)6txe(~t`6sxLVV;;E8E*ieAj+JJ`I>tCe``1U}Sz5m#8 zz=pq0@>-E`0r{O{?cav;3kPO6i*r7yqXFMU0gWGAjM+W>_7@rOC4zqiy#X6Azz7x; z2X=u3x$VEJN0zT2U>;bIiYI`K5MPr1yPy}o1U8u#A!8Ew;zPQQR|&V#3?6?>+#f#g zKu_?9B=-=4&;~yAj{Pd*Kb_YX@&>Ttj)&SAFb8az;EMb&_XbX90Ee!KU8bafXlnF* zjf|tUfP`7Jyvb*L`KNQ0Q^Y3a3Tp_HvJp;OaA-;cX!j|KKcij#2mJw}N6GqEHSziX zG2RCBCsIg%OIIPvB&Ei->h3>%)D(L_N)^PK*Flil_Zk4a8`yxo(|mc;|8tccWxqny z6`0#uh&27J#R+UMEzr>~41aIJ2LyW}HhK?Cwtul3AnN5xU1X*MuKTo3&H!JrG9h;d z2#4x~(XYgHPsh2R6b)2C-Q2o04B@z9v^dxCsl9HkutqQD~w(b9VuxMa{A{8NADQ&JA>M=b=ysn3gUDH|U z2=#o0ikW}vL33h&zlm_jrB|?}S@rb&qOQn=dhz+Ka{l(nNn(GrR#=*;I2pw z`Qp$fteNm6sZ92>1x(I#dS5nY?V`Ex0=H{}ZsFqVry~06&pMo+{O!*;{X((4K_282 zN=*70v5`ovyzbQKj}`dRA+DRy^r9<4C`q+8SC{|5srv{>feJv3(q$KS=+D~4(+ZG< zw`fs2IA&unmGm6POVPj@5_lFvsy=I$_}vbNFSAfYC3}5%*E3?>+(b4HP>SkR_0_(l z->74F>7##fHa0~OMi}TH8K<&mkY++PY7D3s31(r^g@#rZIX_0fn!UPH5wb_w+Z^t~ z6OWfab+RE4zHJF@Wcn%S6taaoDWSoRH0JGyES0`kyiW3JCB%H2e0oML%oYY4v@Fc0uoQ z#E&#E;Lv!v@hNuSoOtZO#}+xNK-;SjI!OphO?5j?O*xn-Z0e zljpuZxs3QX?T;&MsI}l5>STsc9_nQlNPli3O%t2m-Jy%tm*ypTkqMI z&MEo~$kC?}7uJ|)!`XanRgW(t65`$_lnF4`(M5s(F~&>{oL%r2g_INUVaCRJCdZ7Q zcR!p|1?*fOWuCSD7AV1HiJkPh*_01-AKw%jir2f#?KV|%uMw+AKu=q=kO>lpf7rh1 z!%Lq3_HF5t^CBqWg$Z8U?KWL0PiAqo#)ooUnj;vdz)M$TtbPAl8a(ZKlkR?#yV7~ak!0gK(b@*R{ONt0)k6C{?R6{WESmn%b zttfyh3?frtq(FgqMD+Xj%$Bc(>8`tZR zK%Ls@) zUs~nuex~TUC!Pk(Jxy}li41`f?)wJhg{UW^EU%mo<xM)wvC~7jF*gQ4(C7^`H1$sObDTH@UuN$p@$_s6O9J&pHyks+| z_?3(Q8IoV|zLsNd;1R-ptf+X1ro90`$Q)do1x&WhwFDt*cPW=#PGVSZdd*5ub-R~u zP&=t`&gunml-$dv$c(_S`(0&0iN0%puv>w5=P)qA)o8^kw;w-%fv-+>-W9Myb6wg$|32WO*9_=?X*(j4?k`(2?%k7=ch9RIu`;|rxd2oRbfsXPW z%vv5dy{G0M?F?0YDj-7$ScpSs2ev4ceyk-*MTsA*Pc4fZL|37EHYw5*QZ>}m?%{A6 z7xy7zJ(X)fA^9*>EH-;(VARzF4DU0YO1Y}?%US+8S=|e104qhAB)CZvBy&fG9Toy^ zFi5zN3u~a|7E$O`P~MCZ%k8}JLDRDvi&oAb+b{G$Sl_@~-i>l)vj)$#a`!DJXbRrm z%H~aA2d60+e3iV_iL0PR7BpXal4QXhX~3Rt8fkenYiL2xQqdsH3`%}A8}?-FsBIpY z`gdxiUe<%K27PJQKyh_Vm2l>4urZ|tn!t17-IM;{lx1gED=mSE*VmEC>`K>-0}|oA z8;6s3Piq2&7vFS7WV5moW3n8OPdn}yJ=Ll1Zz z2Y#2qu;5_XDuv~%JTt8(H-sV8sKgOHjlS2l0_}#(%raZ+-lZhu$HilzkfbJkQ692@<1%|)pe4yz z&gD<$6C?8F;8nS4F08AkFj5UX3o4i(se|FqioAsZ)GN0>e}+F(kQznh^|22prWfk{ zoRe5;a8wz02%LP!M`-WGI*eJtrL#+Z>fq}uP6AUxqPn1`3{>)z>59os=WUE_7{43X z3VzHqZK)>KTwhH}d-oV8m8Yd$Pn^M<_&WxmUWSJ_*!>Cv1LNM;aTfj8T>y_}^)m+) z{Msy8?wlZ8M^hv%-td zJ<3^MZck56{My?E?(XgoA1Ay&NL*nzpEjL({-XvyrFOwLNM=WP>swpobaW+GnURsm z2^_=}ct<$UQ`iBB8OmGw)<6(=pEr4-BhvQVvEg8;WMD1rw0#QoeE0kVuhP<&S22f; zn@dQ=#67y)A={Sr5)wngZNeyF!$@sHlj!ml7%7t#s7w*{$7$s76d)uI+?L4e=J@Py zd*#n6%9&Q3yM~ei$0&wQnj`* z@vwnU5q`+(1@B`Oib)~n~jg~V5f`ujzn+4+ z=(c5Uz(OiqYG9n{JF#Zm5cSs?qx}Vx$e37Ua5BofyJ4kY`oF}eHK=4k*xA!D$)~L% zA&3TpMu1Mz+>leim974%(f=$kIGOobL&b6Xo)j`)YoCxtvi zWquAv$y2(ra&ecPJm6f zmJukk?kbI;>=5djrhDe!NoW$PZ@+grz1F z8xQ2qhG?Mb)C6}teCL96t^l8H^)Yw~td&4k>#1fDlk+634~_n?GktICIZ1%W?E@Z# z8ZTVE(-n}i9Aiej= zW)?%>>np@99K)pG%`N!i>pB~RNTJ|l3-^(e{;5YU;#in|qMq6ALK3Oar39A)swGmN z)L?*;j3?JB!reC*&i9{$phhi(gJFgZo`ugedT-0mT|z3?-8j?@j|ad+X4n@AI#gZQ z2?>{*67_6BN{$=XR!BTHIk*dj?8O=otP9YA%V7EPI=Q@|!#JLbODWeA(!XFwE~X8R zSWu2*xcID+pP=BLgpVDf14NWlgzR)A(qFC zTZ=~1WJX4d6Aqn$y;MJ1Nlo_&>I-7*-L+W7kUi@_@}7I{2sVt-1L> z?O;S`?M&pF!9Ao}xWeE5eD&@2j7f{GDiIXhWb97x^l zn^GBO8Z#>^cuGpj#g!G|OuqIgc9JiDzWdiZ$RGdnuyIR5^l}y*9sMIXI9QvxgshyS zx+X9`7qv->Kqgg$>bLmdF_92;MR{*la}YA+<7^sy0UyO?HHhw>9C-fAzoO$ORVPVJ&%eU2c`DUB zsDEDsBW;uwQ@hmM-EVeS0&q6i;;8C`sG?xP>#rNJdgH8$6&}b4HDDKF8cofxNGNE^ zOme)y9-DTAS(vmz>k!z%bTaA$`4IM5>av!LByl*4tW*vf8Q*KhddHgRcD+nuZnYu* zDiHYzNDW^KKg6HI7J$uL<@=#B+PJyJfud(qBeQ*;=>7)&|=FyS~DKqnuN&1Krt9j5KhOs_0%3XY*TP<-Q`F>oGUcMqUFkh z_T%1-cv-E#Kno5Byecc>-Y(sT-ixye;+i3V)6yYJQ~VYzI#{C(mS5{_-5$kA%_n4_ zB=De2>mQc*rZd*s(0B6AWl@v}cByu@wV+2p%qk-s>(~3WccON1W!XNIDRN}W|EcT;P!7w=CivJ^GRj>{Y= zaV-2l7a`Wzmu>h%56l)@Par2CX@~1AYWC@@r;J2MlV98*-{WJU`%OgjM=xlbD&~^f zGN?5XZGxhHrdVV?TO4Vu3JW=ww)#A8P5Mtupsl0Undn=Dm}asI`po;3tfKH`1|3yrdLiKb7Ccr$#9GxQC^Hr4)TCTe=0y^FW3}9Ei=zfxwmulUPlbx<+ zG|cQS{7;I0Q3E3rI+Qy3Rfvf}lixo;#6_dHKcZZ$NUrvyrlFzWyqkMA7w*5L^ABic zSukw6nVVX(N&9>%VvBf&pS~d=i@J;NnEdsYkv7TY5uLpV)`T5w)vtj?zWGfFo|vFiYMk`Em0B;@H{tI z7~|?;VRoYBJ*wmB3$>!900-vmTwy`{QCXlO(c`k}n06bKZ@{LrGHw1{FaU3zz(2F& zJB%d)KNw|H&tYbv;ZlG^$W9J>tDisJQCJWQ3YZ_6eGEGwRG8-MG&!o-=eJO-ggW(5 zO)&o25Db2hO#jf`QEucnlao@t;$XenGDz1_Ytj6VcMoCHc(HuKv7_+6KFF`3VOTSp_PVxZlOM%g zu|1yal|!qbo;MHZzaOIIbJ5MoYJjrs3dlJBc83Nd6@I;vbNg!o0A9c@?x4j6{+J&k zPv;j=DWF;bEtGd7R#|_9LBP)Bh89F6*{VlJ63n z9OKCvEYD_<;{&qJ@g!&6U}qKl*bjoobu&2ObW#3Q^%5!<-gCy4WXB*BgzM*o-h@j@ zbdjRmLj6sIig;#vS9I`lkp36q?rnrZsgbqgsV?}f1s3M&F7tol(P?@+7zVg|7}dSTo+MGdm|$g>LD2*B~B85_FH91 zluD3-i_-{g{s zuQ>(6RG}HuT@F8OC)X#?1{f`z&ETY^oYC-KSkpxiDKwZlo9%Sl{NA_%_^m<-$ww)@ z)!xFaWvB33O4v0hnZ#Y^+%K6Wp#-qU^H|M}crEJtqQz9SfKVhJKQ4ia-dkh4%$h*E zfvVC4H2S0YFX*IqS!D-A4?1_kwl$8-oQ$<%vj*2p`3`JsaE}_wk+1w%jl*grth)wr z-F?*zsqDpYW|pQ0dHoxgG8kODc76k((c_|2T!xYK1HfPVfYLd5Td}H3tDfaeFfA7B z8dOrifeS)oPpry_LUL2~dN|j^s?u$(Xgc(#3HU_Q6bY%A&%=ZmhJetxpjvaQ+)Ixv z$FEd$D+a4ib_ZF4iYO43aBx9}-H)!4B4h!UdUTpspLjDESCdS12CoG9ISU5Blnxg9 z_e=M)^k8~o+oS-YENnj{P1$G2{N(s`ilGx;HwY5PJ%Vk?*MTf7!l#f8wsx$(%#`9I zpp{ge*#74E(0oD_6y-nlw~!dBloN?{LA7Quz-V;NvMDBcU2M8E2FAi&P1KrF35x}v zoq-e5m25 zE7<&N)n81u-{Dvr6$6WPfm`9X2Jz|s@Tz2$X2C}hcpDnC@Dy!R^X9892@oc7ac1{L z7`Z$KUr>K}G$SJnyYzpvYEI2oP|R^vsUI0524N)m}{Gf;fPvTC{5#fm6Ta^PRm&V-{?W{O)xZ`nTK1()&I^_eO(H z_D@yi`#;>z_NwO0P^^r>2v&o|;%7XE!qk5eWU|w?VJ7b4DKQFtgcNfh8jjz;%g*+v z$8lT9DIpIkJAhbi#tAVS(F<8@ayi?9jT?;uMB{o#i%yhUM+NGtRN_7z6=8d~f$i#1Y0cBh1t+qyo|nrf$0 zREY{XovwB6#?13ms{5-jy5fTlja%+J?)sF!bC`zAS3nj|O#N$})bF279ywaGi8OOsrx=NTCb^2%_Vv%jAeA^H^P^vX9DdA zG;f<-{i7w+b$IL_6AXI+$v~DXEbZS+m~e>!nn5EP9c9Cm_9#HdV7 zUQUuC$oy~Y4dXgLbUqHp-h`IuFnv3;ty4WK1;VNG8UiNBLLrl;+$oTM9kJk{LN@p{ z;R34(T=m&7UYtM1aFrh+GkZqK~(}TkMHzF&(5>T&lx{;inX$OAt zc_Ptmwm5sO(qH>BrvO$2TGTLxk|v|$c=#I?AGf7@ZRUfg`{ylty3ND03s1yh!0qH$ z_{Y;kvXY-fvF*$z2x1)cXow<9LW$n!(jCt*l;qa4!nYs8s@itA#8=9a1H)@i2Jl~(P2IDX))QX)2aQxWI$TIzL0pnda zKL!^&RteuOOB{AZMW`?)5fzfat6aoCoQdtrARFDMKIqHyvAVF+onSN!4zp~$uaLhu zlPG+y2)IfYIQgM)u1PBzK$BBh%AGYiMR9OoO4cIlyU4;(r6>a=^iNz%=3hl0Y0R*C zUs136qQbuwK{s``vgcZvK;B2csf1$de2RW@E3Jm=6&_Kzx2DcLqcU@6*r{Mls=wl9 z#hEiE;eeRt`w{i6d}Hf7oC`$&n|=>MYdM!5?RIhMI!3u4FpRA?T$-$fUO~`crMp1rcR1mz1nYaX(&B zCpVhNgs`BFo!79g%HdAp&wa`&Gc$aC=&bl7$B*ridq}vS8;nmc{g!9VfTI!S`HPz` z#DXA3rAebwZpdE@Ix7btAt5;s=AqI7k< zhh)Ix@k4!!k%|rP3LX|J4>BAFR#ffgjX46cXQC#0_e&WhF{(#PJHy;YJN%Mj;T6@T z*n5!5y8|iL9?nW5ZIva}>Yx*71y419EUkE^$g3pRPBD;9b|kZ!5aDPA@6y<%=G>bs zaa13zXmIxAump273!=h5I&r(xRHk84(&T$Fkm4mdzeQRjS#Gq3fNz?V@Ed8&gIf`> zVZT#JYF)W!8l+D`*(&<`#szJj+vQfXNqBY|lPDM3E%Mit8^?4$DW;rlyyFJSJwt68 zzI|1^dNC!~yDL#3S_-b*CynejJF(D~M%ObAe-fbUP2<2932WaCUgNE=K9JAox8SnVy34)Y8-1lhM-4-)-;6lr16#UB(?IU-ukPk_x{Z-L5mcb?ZWy zVNhU*l!{pqj2#^2B>IE2oi%fm>^U;}tLUCJbYV=_QVG+qEP_40VPEgU6YmVZM}Ag5 zT}Bh`C_+rw5VDXObI0*TT_GgOO2mZpl2;-7B7r)p0Z|;lj|8A57&uwmzLKO2cU@7O zxp##jLCeGnTp!RGl-V8PRlR#~HKnaue&s~A^g1Jwz$yc&c@kt+{3PRY94|g*1@BRhv$OIH!Fcj;HaVXdr18&b!(DKNrCK^rx+v9@IrUEjmCg zKgPg}B734p4|dWM1a9Di5bud=3iVp@GPYNO^-@ny3@U~nzE5B7ThdqkGAT=NQFHU8 zKPmnJCEFbNU))gi0fJ$*J>dF{gKhq%-8o&p&>bOS{}2M;`U~PtkJtZMPH0ZGck#!t z=lPvKKfSH$Xb>XGUzp>|Gzg*4q)wO0W|u;k7#l+%At9-2XtW=dC_VmHU=sZ06J>N< zoPSmpk%*`$dL{YSz#6Awjbakv7-*HY3e3V1a}qRlAUHTUU&D#+YeBRbsd$7fvF!NI zg~6`o+NpI>r|KF866FzMLeJ*25)nuR^@g4ybkLB6k~}!q`Y`$5@GKYR_d;XK?mD7= zpUa;4DdY$)gizwUBom$RN1+}!lF4Eb<9xz3^>-474`?(w8TXzn?i?--8tt&|Cyj>v zz6ZGRgs-q7;?K?9ii%PZ_r#xvW+!{`N+}k!J@I_?d)CZ_pwxCT`%U$g3yq;U(uNoM zr|Att^cANlJfbXapwrtSN**jJM!ywym?1^TcT&looH3x`0ubhbPu{(p8z7a~4{YqN zwIh?Ikr=YP@0}3^-z-=o9HwQu#KS<)33nJ)^!2}ggTyWDMBtf*_(di}9lko{bEfS% zK(dHdZwC_XpT2P>>L!S7D01F(ov5tmR?jG7s6UtE1*Qy=ke5wASeE^~M8p%h9i`Rs zt=o|1bi9Ej5X%>wT*lV5x#|0faH2xeimtNoa$Ttj+*(~_wg|{QvGzP2msXL zW+yH`L*hyYEvYY;a3`*1EC7C&q9^u~2N<4K;WjZI(FxL6UU->#{+bslmsgXAStbVi zE8y!v385Gk@K1h#P`&_!YsTP!um@l=N9fx!Z<@|j;VEva?5rKhg%pf&O(9*y+C7K8 zIvTXhPbTjGyRW!_zhpXO-&kZKKndBL?iyRq{SpKQ42{z0y@s82iE=TRoSfXjG3~1q zt*prNe^0XyfT@@-#>U3q9jP{L&_%8BDE+O+HK#bHkt?!_;769+P(YjfqG2gPR6t}H zy)A~68!e-h@*OLhycg-BTI zLIG*hK@BL|38ZJT7=`9M*8w*3yeN}VZg)aV z!P6vEX{0Dyvm?7D1Dbc0@%8 z7wX&OsS_FA&)o0ppYGq*hq7FiT3(K?_Rdg=?pZTCZ@W5r@~awSCsiMmK61uUV5>)S zJfPs3b_Q8!E-a5;TJ1Z+FC8()e3}c9hsF41K^0~}eyee_!FypwcdVv#`Z9EmNlde} zo9WXfXSPi?t+Z1>&t%wZ?1&lxxFtb@nw>DJ_7>qm<6tm&3IOeL+q5GK=3jQ@gKA^* z;DTI8l4aGn!!LU_;6@Y)dme&72rTa^t8ivC0lbx>WxGy5%LKU$?9=CIUp=4q>pIw4 zZyH#&Qnw3S+#VYYh#;wl*$A322o2lWyxLiD#xY_Hg~T?yMi^pkr5E zTqhu`DV+y`bOQ#$R_`fH>0!iT%_CuAAWMC2AjLY3@}1UfLs`?(obWur$(f`jfg|TU zTwCXS{qGNK?8Kq~* z^y$j)n>Oj%&UDTZd_lFf*Cm&I2!A6aSaq6R3H`?wglKw%Y1~w6wG&YDz!L@x$7h<3PnP zs2+roja^E~T+>CUyn+f`eTI-d=Y~|bb4+zas5I_`U%2f*I|r3!nx$p4rL7)U1z%*G z_)0h_tdF8HB#P3%s4xn_7|K;7Q73ph>Ug8jgX6fe}{LMw$6sn~ir7hQ#d~5p-UQ^(Ek^ z&^mr5!_T0o($e`qWvuT#2-|Y;b13J|)Vqzvz(TMf5D8UkL| zG>m~o)kq{aXWob^y2^(g(z=bfU3U^-^Gw&@=mb}(#wdiHHC;5Gd@E+hMukyKcg;Qz zpAsU>yk$r2FSEX+ejkto4C{GUgHLG?A6fDfwbbGR=+r@z29O@~-|Oas!nLb0e1MBfe1rUsI7JeRBmfE~g zIF56E$WCH|4T6fw6Ha2X{Hd5niY~VNd45;>aGY7j;Y0Yd=YY;^)y8Mii|1(Civ*E( z!2zSl7Rd(A@Zzf|H&-}FmW%&Ud9W9n0n7z4O&*` zYpT!qW5-<-BjJ)ZI(%;u7(Mbxv*hyqdUr8?WeXT6``K1xk{%q5br1eR-& z)}1Wk+ql?dXEPj$Qq?~)r;oPWswMLuS-qGd<8Z|l$xOsLBUwM@v z`AU6r%(Qe`XgK`+O1ku-^HDq@XD~UtAE?LFEMpKaC_@r|f3VJ!o6B&giwMRM)&J1m z9ZSV@b=1ymvqa>Iu8zP3y~qoRdKVZxW5;yF3i(s4A&5#nVZtka^b-itWWdCxLpArR zu&Jl)okWaptWDvRd|aO!rS*eWiO0*;PUfY6OhV-ENwA!DMWI|^h@;XQTf4SGnC!#8 z%>#^%XaYwhyE@}0wvt)PQl46hN*%C6#fZc=P{p@+XDsQTj_3eG&!~CLewdQBZr7SVUWJ0my>Uk5L*;G3R@w|7T?H!YC?CIE ziBkRIh9&`R0)+pr=M}o5MsmSKqUDH0^>tE{MEL`Md8K%X-%e zx6FKxef<51VPt|jaKt^ZT$piNGqovEG)&%;DekC%R@zC-oVkD&(se&7zm2zfjuS80 z1!j=I4D;CAP~YfN6vnUV0xcO=E~#sjh1k2l#F0wck0{x?3mJvZsDJaA03xEK(Q4Co z**vq5%-Ot-qX}n~OG(VTCfeoTFI*(i@u_}JP;b<#5iK0npKR_#$d><&=>sWHnCgVI zr`;@BF)LU}FwvGB=+z$0m&5V!v?eJr(**n%eHQex>nY66&Q90*Iw3VRwP+1fbqSa> zWg#qnH>iE`pV>j3qv+BL zc4Wqj5{g3&p?fShM(T9>A61b)pZi$XuYq<4fO#?M$HsZp^uU{NO)CwMvh!dG{JKsX z!k(wyA$!h6>zG`FXq39E;eK?zAY9IvWH9Y9AzH;)0aA55j>QeHx|t*i;bI0mG&yk3 zm(cjs&^WxiU25M&>m({ZgzZn8?^GuLDrTBdIt-Byx42*k$8SaVR^{VC@8%k!l{)N#D}qty6n?phdt?4207 zYO`j-i6At&H~A99vlTURp-->wD6~=e65fZ32WozSi)IiH5fi7b|yS1%WxM5;gR)zWhRHne-2dP__qQ9+fM^ zf<3_B!P!r7!9<7V!I;M2OxkgHOHejWADW(lg5q04VSBk|oz{A)R%V!Hb;^`=to45% zx51!J1bKl1{~h|*gD5w&51+J@mFL7zlofyny#KI_zdrCkh8uYd2*;T0GQ4zs#r^`i zl1s%aGJurJ7`hBFmglA~O~rq@iRdY;X`Bmsi5UUaWi`N&uM>Xn6tq`iaiWUR(4g%M z#L^zqcwwR#@cK8E_U(QPKvbvD&{p=NkN@6Bz@K(XLkeuD65RZ33BuNuYUphEN&plJ znDwr!X@8aDcY}eVwR{|On%zY(&)O?L6mblj+%+@x?dy+eaI|GJ6`0)7o~XE#6a8-& zU)h$1vTO_?S&X~@jG#qxvr(Rb*OS=VA1e_d#X&dlE`oqDD>iV zUH1{0;>(J-c2Y>c_%otZ2wRg

Gcs?64a5tBp51h1O9s%WnkVEi5RL^W=7t)V7b^ z-iZZkntnr!4_NoiIhz0gp||zCuuugN#?vEx*IyuyUCa!7)evIB-lz4j_`G@iM3m%p zBYtzJRy~VJK8ep9ZFLr7k)TC|Yq?Z84wH&txElpT>=-kBo(;T7cJ6(I-%ig z6Op3F$$O5AfndoK7U(3;g_HPcE$tQ3{TG!cyjMm{YEn(Q(XI|~1iXjz_EJfk_YK0E z!{~ywgA=fCTy?k%Pugkg7jTzd7|4bHmn#h9f%YRY(%IHo`?KrC#>caD zA7HTZEs~<5^09BqXoq;*K4Lhs0nOi*Fw`yDKa|(qgb`x$8T;8U55Ut^M|4dA&TQTD zd@%$^LslUha@Sl$n#^xZ|5B3x0se~P>T*Wnd8#14X}CXWQb;Un0Lv1QGyZ3(vqET0j4;E0VWTiZ zg*;ZZdNUYxfUrMYuym6WbAPfsYZeRRu!yhD#mhAJ&&?k)N4BUA?umdK6(CG-vx_F`(f!>F%83OVtT{tca_jy&qEKL}F)FuoPprB=T3A4u}rMe4lHHTFs?OCo;tS*b2_ z4*T`UB8hZV5jbLMSnaC-NT=SSTvJ(a-fZ*!S)k6DH*lTDyLFcyG^tlT)8H^*&QcA> ze>Gx8Hqq?*Y{EB469`RiN-lmC=L*3W+`IjQ69_Rt9Iuf)gPoS7i{)WW+2)JXPP5l3 z*;iiR^~c%q<=Y=ghm}f^;9t>Z z2$Y3Hq@>{9-rmT0RMtPUQ@Bc+npB6@Hzj~G^R-8lD(nC$^Zb`?JuHD+B;Ju&h8#8Z z#;z(+)al={*M3Jc$l39daB$he6$HH#7GHJv{5ecWTy~48$+>55al*QBL^m@nwqPF=-t6o~J{E1Scw_ni{zj}xd z7RkF!w|Mi$`cl~3b$i$}isMUv6R^D^vchHi=o1k73kUlvPsBj#=BWX>Gnk0=Fjr@I zh&-j9JkYSZo;$MtZu(TA=pq;va5_>`Vf08uh$oFwX|tg}B$B_LT%?QzC+Qf2*jjV) z{9tl`b`lo9R=OK$({0x8VxIR)d}!deQ!dl4e6q1Y^Xj7xo%$2{QAmZ#>cgk?i8oB< zEz>WAXa1`Cf;NLBzzVBXZ7v9wC{f8#W{dFdykzOo)k~w<{AsuRvMw?4$bepUNve7bQ^FliH-lwxpqA^e+dJJUt7E@jR zR#X8Rx_GSWx}p7Kq!tCTR0*z&o=y#`_R4I#6xUnL3KivD9}wu&sa?6>+o=pm~Y=HJNE|jc96-WmnXV+<7BZe8}jEHEG@M) zK+4c+chjWVDqDmh!!dRPVtcq{>^`Zj?a4a8=t;d4+T+oB$DeRx|L`7A;W+s>mQNDF zQX*nwMM=6_>z$?@9*Vz!8sl#4x~WXpE$K^LS9K@<1C`=AK(!~Kks$l&Uux+p+r@Z6 z9QmX>pE6jeV*V=jJkT{D#w zp_0uAacl;Jvz2pBoF|$EF?&65uf{`bKG_;=4NrdM9bO4V&IW!)dAV3A3s^*rFCh_5 z;dlpQ8NBt?QecU<1jkv@c~@5 zou;Lb;<%hebeubj8a?wmNGEzD3V2x%~vX>vq}28sozmt$d(>?L}rGl|vh*_tniR+K=km|##VMuqI7BnsL! zLeN)jEp{{qSuyD+wdlR&aIMfw>oPXR5g&I5mcfeN2-a_f#i-fF#Yq>}E^xNoqN#~C z59IS>o=CC!tWr)%`OgNwrnop!w5Uj7BzJBh4I|_PLdevXN#cn*dDlLFG;;YAn!|6$ zboLqX=hL9U*;K>@rs%AqtEXSWHNRgNBtW$ITmD@Gs8lVPRT_-6*an;V^-K|DR#^C} z;_#9)(8Kz?xdJea@{8s~fm@$5wibxhHq{RDtHU@KJ7zIZ1!|0z)1PGCHV81ryn?Cn zGxg#@m32{4g5Msdwn2pY_wnt~5P9s)#g|?- zXCKT)$-tI%r$HBd)}>;urp`CC`OKKLQP6!+DlrxY2utzj&1^?a;mT}GiYNzhbb5#2 zD8%k3!dF{8yyehrs%B_%@jhlftJNp8=0|EH&%@viI32acqhXPMfjXK$e3`~_QnB@K z+M5OHKYDL5^%&(ieGh7Eg#xkS{A(x2j{qteFnf$)tJAl1iBaXJFbQVZ$2@5y&Xpxh zQgZTtS|lXV;y*-+u2@h|dV8ZYlC$cCFfcI87psVkKht+2ejE3d{agF}A6f#coqs)K z-N5jA+`;?$`f9T5Ev~bawEXfN%OaC=Sx9wC$@oK6+7c9iC{#m=-}Qf)6XJ!$GL-C^ zs7#rjOk%Cii=7%;q>C2iJwKQYqnvP@g<(% zvRLX|LAU#{VKM`B-G@pX&gdvQHCSF~U0aVC%pp=-itMwlDtfxNb})dR6-JELHJst2P*n>0fo z+w+}J7Bm<47tuE{-@4a>DoKba5Zvb{iWahw_`PT0=9d@FY0XqF{vb%~K}MsIJu{N* za2PL0=Ld5)t-5-7GlCr=^JA_u{xqs)G4nc2fRr$(ndgijo~fW$ZZ&8^zEw2Ih387v z?gD306e?e~S~RH6@`eExAA22H@nDe1!OIG*(^o2swi zy*pzot~3--0HI38#QF;=FD;Ca#Q{obzj~p++sq5E-)nDJ6@2%E&CRpj-p;K$E~MpT zM06XFy-s7+j6C%N>9{KyA+!R7gM=KlWqpt{zjwn)i7jvWJbN+eB>6ukZj@(pF+Z$8>xq+LX-q4Ou$EK z->yP~hy7K_!*0V4%Q5dSAc^?cu%N*BUoZ>u6pRc~4M|RZ8QcC+o&eY>ERgxxv#35B z_g1GXOZm4e>Hp_)@&yoQ>zz@_$yntk$*R@9`MGiPth=XVA@VKv5+>-`i}v1R8QOk; z(Mb})x@b+JJlm7VZ()I1%_%gDAZPOlWns1R8aEyirXw<+I=d(Cy5~JJH>aig%~|Is z)Pi%NVAlvPv&ebWc_YK)7t2s;p=y-JA~aD(JjGEXR_XQAd?6IZsxnohDi;?oY z$NH%u2I^*R6{fsy-g#Qr(H-L?db43tk^w?Fu~=VmMhkBObMxrGinY{YhGBm1M__ZB zr4WJv1PC?Ab{(W|1q*=$oKI~Xx8325+F5mp?OF4WJT+xdi@X-FZ!k#>;Ymwb!)mC^ z6^&5JK}lfW1ixaaKf)mn&i7F&QEcXNKfY#UI;_!BM)h@L8&$tGl+5LsokzIvze2Y! z&-?Sm5pufG^nAw~tf2SVHV(FMCl+@iQT{I3?Qyvc)U#t$`WCD1v0Y1Tbm7}-Pga4~ zr@I=iA&rP3az9ea{8J54huP_psZQR)RU=qFjRa7*AJG*{3zH*y9mvG2K*ZNRMWc|+ z+S5o|klUEvz(#H_LZ}lCV>v-8OBVVe(DsA_Jq(JS&UB~N6UD6(1bAch+I-!pk@P`?=F&1)jeor=H&c>4S|8{4TJC8 z5~S>ZJc@0bC~qxkG%;RR!+(D2{>UKUOTX}$+yvVFr<(&K{M#DBuLL{{erCuZ4887Z zam7RO$~2Tvd5xGw{u7jnyuAhX^Iuspm;<%uQZrOQUPVF(!_g}b*XSbF`$dyV8W7C5 z&C9s%Z*ww`P^d_Z;9DbH!NZTY((`@q?PM^T_2n#Tsu0pj^)Nb=P@|3~S%bN+3k#dv zto(^B<(29}Y-WlWr7C-|-C=q4?<|1tTOS&iRjW)C9$@(i(6}VLQ-6F|XG#-52_c)>4iBK`Hd{X1k>t5fFb?8@~SjMpNTtnv5)D-+(S)i?ncQ?)(g}OQO zGfc46H2JliCBDEGKpHIj7muW&{8Qe|Iu%R*sk45loId*$46Ds5TdHjf6{ttbl?q$O zhe9M5IS_X`y#7#fLQ?S&)gR*?*G{3lVjrdYq8R=XgW4kh7=j4f2?$Zb$L7$=6YLxu z{Bv`2=UG9`*?%$mzwMuY%6et!7iVYo3cb$Aw6va2+eb$vA^|fjC7h#3l0e0Uu;nNf zU4Rs_2+75Ho!z3X_@j;6lkI~(MWWYUehpD0XuLLEFX6G+SeLIvK3AUE$H6C=sTxV0 zCgpnHgb;!qD_@%jaJ@8MH*~p~yf9C6Rcj{qT~|k%;0{GkfYgD8+Yn$Zvx7iQ*_cRJ z`Irrdf4wg76i!r8|7xNfKbhTz5-j0}0bk?u0q)PPK6yxf7W{81T(MNbGj()^YPYgj zYz|c1i|7?1`)HRBHuFqnS4wA$;EU{Mfx7s(S%CrkHE|>tL+4Tpe5ehR&2p4@O#@8MyG^y;e$b zGG;s^WxQIM*DVl^(=wZ3Pzq+^-uE0;1GRTpB6Vnihwo-nMCPigx}& ze)*iuQwB!|Gd;ZDn#Kzan*7kEm#tVV!&%N`6QFSH0}TAZUy>3MsSE)KjWSaRA6V`3 zB2S9tVDc5GRAVhQgK3IP9^$^G(RpQo)R?G743Dpv6h=jhop^ZX%E8_Z{Q* zwkyfhUDWsmWZ+S6+BG?Gqq$`6GCc+uA&Kk}tDz`@93IUkL6C<1;XJNobBLR1zW(@{ zj*fm>PN>eElY*YMXcd{Ty+$U&?2W2D?^0Ak)SvC_-k4w9D1H3)&8YmHz%d>59eTTk zqJDQOUhX(^R_I87iB){Qs&sWCiN9!03E!@r)c47<=TScmAKRE-!;U!C>`q;x!)6X~ zb>&A}0Gnlt3PTB&2ZQ40!VvfF@OuZVog0yVECZ^gWb=nFnni_s9T~F#K1+kE5z{lW z2-X^$GG_%8AGL={>NGB7cJDb9mt^V{>|MC`enL1-?p4f$F{&Ph?jQ&}K6wsM{;;k8 zyPm7yo$*`{3?x8}6oS~n#-5V81FvWZDHN(W?wpN9RH_xfX7!{x-`#n1U*Tnw2LqZ5 z39wnO=`xKN2jMWhQnOU45O#K&;E(3I;Y9p}WbSxoc24$>Kn1#T!1Twi#7KvuECdLX zsArRi&Vs-WWhc3yfi^ZaF&OXYjLDUMDosaBIGnvhaOG@0u>C~-7ZpeLT}S}|ipq}r zTE#`A_3Um%U2lX&M84B7qYve!pq>puzZargR5jq$X&35caAtC;uRnHxv}=9F^ne5 zZr~uu)E{n(l9&EJoV{~&o$a?a+OV;W#FuxV`DW@Fp7y5h#RZL@J2qd}vFXXS0* z@9f|H_BrEx=btr3Fp}rF@5yUkbIyvAzPt>bji94QWMXw5!^9$f!tXm{s^QDE=P{zv zaZ7I4@F`xw9;L(S_b9=0k!Je8e-}%m)AS7HWwiKSk(v4)7IHc&YJ|&Y@e{OB#q`*L z;U3dXka{)Xw4o)gYJ3xVeJY_p;Y~rl>S5t9h{1Spx%_?1b69LzZaI;ZT@C{xSeA3X zE)-WE1+W_?Ha1>Do0`uHhwyPFP$UF`3Tr4FjEwxjUAEW^^}DH7@3tDojk4xh2(XhSRKvrKoQ;k zOP|YWTS^{f>DT(Fo%SC*5c5Bm&^E7Ylsv0O8Q2&;gdXViqc+U+Mlc4~RfWV-vP;l~ zK2bZH@V%+TKu}#8%+t*rhjs-0ZDbk5%gb*d=phQUnQ%* zTzPO5nAq^aTl7%9k|Nf01QB&nLZiNjU*xUWmdrZZl`v~w7=EvndLBUD`0+cy{oy~I zdfirUiLBb@UQH}f4b>=(5Pn^?Zot!gxds~!{v7%!+_&j}wCsNudU;*gH$G8KO^s%m znc5iQ10|*ATvBS{TWbz_vQE$r#z=FmHN6inA&o};REm0E^#ZawPYvIx*c2OWCk#b( z3fb*(u6m;fm+inwNgVU1k-|G>=~pR`H2nkxE@0%k+OeO6h(0zaTnvDi4kKIXX-`Fw zl8v+8S-Xv#S9mYFO{i_&Was-2BaQvP=F(eRteJXvqa=|6?YHD&rPe#B2_4`Sz z4c8YWw#Op9FR>JtkmyuV`?~Cfs8KT1E}lAOCJ%-nkUfSLLFth zJ|$W#+VcB*p{ENL&9FSfZ@S&&^?a{}XQPD8C_ow2_@3nsI_TIJyc?$9TaTM|pT$Zv zpR2DA{Oy(Kv}?XF;~rn_Q>eRKd_Z$iZ<@sC%Ud`gW64V`7GJ3>7o|2>qsmo}BB7fk z`Br@bk1}er(Os~RKP}#;J|;&k8nephj={OEhFOZysKa71!CcQiE~oRf1j^@Y+);?a zvjx@cw>4%6r|>g?D{2fgWVe+2uY^=B#g=G5NJB4WoW}9XfoN_H!oncss#Z4WC@a6L z35lBLqG2S%Blbx7(*jcb*gM^Uec!xzZD*x-AWVix_5Bfk)u!8r zt{hp$5M}B>n@92cN>`*txhsk4l1UKZ)=(hi`Vnlo{ZtSM%-ibq!-0rSZPY`H0l=4XL1djf$V3 zhwnb31nlV)NqPm%y`J{JBrc&OrRl__J`f6|Em((qAo31DUY++V%?G98Qq(l~a<@}M z^D;|uU+ZnNxtsy14t30V!PyVAN6zf;YnoyW&O42`UD;q9G!%=DYZKD>@@!8S-HOjw z&6U=bbYUU(2=SU=?0@?&Wu<*=8Okm5^)q zLYGPy*j607y)34;hU^h>SfFft$%>P{@>R2<)qEC6<>7i8kljgOz(;A+AM=QYN?W`k zTz+@-o(d6EcIN?XzJzwYu7%FI=6Nw*K_0R#5ca-c!3DXP{GsBTnbt;eO?N<1tN_Gr6P1%Vp2cp)tyfRA5)s72JVSsi>-C!sD_(+-OEm`P$I`Y&x< z?GwaaN2l$}mdXqR7m2v~`OfGsjORX;3o49)PDZ8Mq-cA)1w~tsD26XqF&?<*^Zb;s zh7F-*HE(wiAuFIGKc{$tDDS0FsgCWy@-FoD{SR67#*msM*Kq%AhK$>5;VIkOYE^U> zIY|{&r*i&Cc|aSF7#3g(dS^KvWes*hQRpr>Xo_oc4P1AffBKQojC&fb)QkRF>Mf=k zrVu8@K!p6GUc}&gVZt%mF&vLyNXgm`i|H^`&W=G`Ba74=F^c?OqFx@mks0W`8x6q@2{eI;?r;-rO|ozyIUE z$625{2?#WGyFE=$v2?I6`2jmA+;=R?pw@Y+1adjD?d=irtxdZNdOapoWT*Z@PejmU z{H)O7-;RdIRsH6;g2G!ktjpT+Vp6%<*R2%--mz76`b%-h7l@N?O$tClhwfNNlg=&& z7R;u&48iS1$(7z3FuiJFL{4)(-GZ0Eh$P>#9T4%*U*Dts>*3!q7ZqLiOqi&5fhb~h!U{M zW&30M2eT+;0kObmBmpIOb&Z-A*UG@b3B10ER(ek%5VPsUFMTMF9RBWxH)^nvg>WIv z6$(a_56+ms4Oy@25e6<=Sei8vsn-1vKb`r*ZHaCh5+0{Tkfv(kGFaZM%WCqEqsb$j zmIXbu!l)&uel4dIL;H@Ms)8vmN5ogcuBcE2i#QFw{EtIiGli8l;pEio-{o}`>Eh7P z5PiGMgTzcpIh4TCYe>ooE9BdN5d1napk*51X(i4~;7zszq@+1F zxagE+_#fY^h_P{FiBa!wu&uS=$C|OEOOEZ3u(A6U22xmZI0mJ*9l=Ws&uP1D;EEZN z{?v&TmA8j`q>rn6#7@+=nbA25jh42vu+#)f%7`5Xat8$$6La!HSfo1|v(l*9``tt#=vx{@(JqWDtgj+y-B>*+)vU#J6s8_daE3ZQ5=yFzj)F9DeR}@P9Bh#Y+pis=@WAfF% z*?~L&9JvorbJu%>rd#2$!qu@6$l=KfX(PI2g4*nM&N;b$OP9R!m+n-UfNk95mPJQuwwffr|=e0~tgF&PBKp+Pq6{Gvdt4byy)-VrcMfjw31UPXeVY1S))X zv;vB3*Z=SPZkeFPNj&U~E15Z48|oDdCwY6aiOX(A+GEv_`=aNO-P~$K*d1dD z@hZMF?7eVov!+Drh9x@i1gq?gPrDr|N}p>sIOoA*?n`_ArzP4-1~DLxll6-M|DH_= znxvUrvR2)>-EafHitG*TnMC=-I7=9)@Aq7&)7%a!yMh`rXJAl&>{6sqbDi@BKhGQD zTyY|i^&hSrivQ?8G5B0@03;zg&O7(Udzy^dR&HM2-iZkrkGPFLoTUGH=l?=nD3YH) z2Ub;8Eq?z#Uji!v?^I!-d-Lh7F9rmLIh%>Aq4=kY5WijkXsX*+H4s6gzHm=S`$kB{A(oUJXL z*%R`~IIwJOY@(qN@yz+Mmh}hJ zCBj5{4aofLOPA6_}|Cv17h z;Y-ZsJ7}Zg#Jc;ro@iY=J%yt z)OIHc`;w$qg+RH8WM9n^`0)!Knr^$WBWD@#6Lhr&A3>yeW3baehmDnaQ;5inM2-C* zk|+-Au&j@N$-Oh8c9eYK0XhBeb`shzrvSv~e3Ab+V^LvvFf@RLzew@Fr*If4?B$5& z!&9wAwUCaB|0A>Mv8TIRm}*Z6C@TDk`1A<G zKwiF1H+!NL+@pl#$NT&4fdR2A{_KBpfd7#5KVNj02@CfyK)Y`DLJjXd-Q)G9@Odox z0n^hj^r60!fleg)4g4x_|?(BQ?dTLc=@Yk`>~QHv9c!356#Ztrc6#M7LPr1 z!vZ7hz|jDhxww18;18tT!{`pKuaxDRUkHHVVo4(DEqMy({`U{rrX^PyVFC4UKm_aU zRc{n=?^!(Cs!zT*9GxW}{_Csys|CJ;1?nR5DbW2fty>(F-L>>SD_!ug-)MMG3adO- zu5A}&&GwXfk~2Z9Gpxnal?Vb`F;N|F59mgJUllnWOu4;3mG^EsS-&9p2QGbaLsGQn zusB5`Iy$=fDm}ep=R%%I;~}#9uEb^>v|#0QOzjiMJP{>3_0em8VgLCP&&$VjDwJ|H zo89ObJ!gq`9Z!p)s3l0CC#3}g}pS; z$lcZLrrPJ3O&FnqK|%R{doW=Q^sty1aY@NA;~H_(efx__M)%Hkxj2;4d#pEYN>@N4 z{b~np?LlsvE$FY5TKPkEnM`!B_}4xF7e{lsXJ8Du0pHP)}$dQootrw_EN& z4GW7N)Eh!NsuzR^8Hp}2GQGmsl&md5jnhfDMx`ap&<^gF|;^y zLv=_+BAfOpgZ@`uodO2RN0!^E?C{*GF27PsGHz#rkn_++e>SB8L#cR4|K)Wy7B>-; zd#k+B=uE@iqLD-Oj{z<$!vO0GldLu`cp&lz5>i?u8Vd`_F~#ogeuVvf)oPatI3_#2 zd8-+;=#H}sj~2S5-u|S91e7?ZB}oKQrLo4gs0Pd@Z+c{%xhqrS@@hxjl`>!&RM z6BwK|D7}VCVy@L$S0yG2<_LtWj9*M&f?)ImY-Zn$iKlGuP-kt??oT?cb>4s?kV5-- zLe{v1_(1we2WeCDcScH+4&yTfDy83n9)xD|r8e+%t?JjT&?RX9ia2KaTaAcOyP0@J zG{h78K)VhrX%q8O1Y|U{f`jA-%*1)Zgx%4HKgo$JO5xRNh@_=y^^VRKEdOfVTMyk? zoH8vYVWEN2fFny={oXwrRvayl5B;UFWVI7|!)pwp@_I-jD)djI3`o$GX~CB&bwn&nuf4*I zT!?ToRL6-BKt}aNp5m|Wfezq*3$PwYLE7RSU*z%ckIaeV$Wo0aa%_f&Cui*&t&v;! zxVQ6TbjBLxX)9*YC8cG0T7AD92a6PkOiWKN=`pz|Q2e82q!*T`#3V^RX9KnLd4cBv zDw2GA@1dc4yT3NGBstH=D#8PU&JuVazbd_cyssBQRELqfyv2}Q<9e_6Gl;=x1Fe6pX4f+npiB_Fo%gGX z6XY&cydL9GN>8l|K9eX<*1?=UTvEPxrl}Z%B{iF|dP+Fo=Yh4(7n@rea{if@3Nj2| zYf)ej5yh01lZ;($*47M6t*G2P`Twz1*PmciyiAh<|I@7e@sEC;FmWhSdIjJ9mr=)q z2@>TW{P`+t$(^4mqSv{A-N|Pm3kpwxp-r~>J6mUK3sy4Z8E?jKu@hy_}54*}= zEfVAhuC18d#VHLxNJ_9bR96f4g&^LnQrk2n*Pzfg(aMJXSTvz7@?OAWMB^nG=$OD^ zai_}}4vtnzTj)6$GyB?92fPqXKUWbYNdg~PdJR2KweHI{Molxk%k@`?w#DJwb7F6r zY2}A1IfKTNL4Lv{JQSceq9=x+sQyclU z=MIwJfnvG8F~WcMv0xw_ycT=YKvJ2TKL-kGfEU(ZT0w{Leh}@$T_>>AX#1eKP+67P z`)yuILKqiuX9=PWH8r8Usnd6+0{gV0{6>{XMf8s(S3!d=|7b}zePkre_e!#MmR6;- zdud7Ss(nN55CD_B3XAU6&IT1JSXnlMs!5~U++;(8W!DjqX3bf(y8jb~fEy{F&-3Ub zxzc5jJZ{tL;I+FJN)|1ujI=2NzN?*E%W}`GD73pc?M|-HVBf*zaMG}$d_I@y_zQx| z#EoEW_b^$t%bK~hM|bSSSaxw-)OhrM|@;@il zZS|QrJrf-kEfdmj=aLQWQISadH;Ie*$9y&@cz6+@)U4^B6Tvk>zpPO z2ydAywqOiH4>qET}iEKk3KoHg_`F=OdFq=61U ze}?L3o2|2L`pt)=<{J%62Z4X&t6+aaXgbP?gUJWodk<6Z`%kZs)O^g!fAIm(^~f8* z4DUH+@wv*@3WQJ=*_UsV{r|Hjq~J?G-~Sj+j?Bw%-F&VF4esIQJ?SJZ-EN?=-#r%7 zhKFCY60+fD*-RzhpQCdsjd~M~3tE&n!&{MrMi`y6Y(66O{PeVSs_pM%Cj|p6_mm!b z_;?eEl1_uqg56{|P*$6&n0gM28bg@I>|&73q_SbPcWi^ z?pjaCiYl_I%s^fmLclcn8gs68DyE(>O_7E$-20qbgMeD5K+0 zxs|pt;us#~YwsapfuoaXgRI+K~oEmJ~J{SH?`cXkwVUOkQs|Ds2pkl*74PRK^q6hw!I<^>hY2 z#PmoS!gYmuZVfo{9KFy_kw`lhJ{lpM7nTc%&kr}kCm=|HP#5(4bU&rEaAAS8okt+2 z^o5hwiA4Fk(i87Bt8G{@BRDv-djb(bBmuLIfAg#DRQ=d=i{ujD%kMfQc&@%{~V+)+uNm7ef&Wr1TdAV zH7<1vMneHfmUuoVbT65{?LZ8VEO9SjBE= z*U?vv8Y0($1E!6;1%*PAJ$*vhQJRaJ!0Vl##fn+5B<`Mqzb!=BV9|heb311Q5J`}b za6mYw!_pJ3ZRxZjJ(a0rC?rub7wsaE$?Xj~;PieF=!-1CC@`VXH#Y=>=QDG&k959Q zX`mxVOEaFqldC?8Z}z;Q>?K7f;i?Jga22R8KT`}Ew!@1oLwQdZgAyTTs!Z^6T~^q- z7JQJi$iCtXj)=yZlLpSWarc zGS!Vg@{@!IG<)V?GRd=qmzmkUH~^i~ z*;vg*H#kwxTo1>HXK0VmOH@c4AK5#Ehu7OXgO<}kux(H_u|EsN#*^;$;Q>50w}6yJ z1qq6a$;8$!yc8_v!kKw=LVXcH&3PrL8q*bQA0M`IA5EF|tHG1y9MLi66S#3FlKu3< zof=!+1hhMMX5 z5wT=m0u#gnwA?K2q67dDv`bPJe4Z!-)5d-KU#hc;J5m-F1=irYSfRT+n)AD8<2*<1 zH_StX>i;B)zJSSUaUneTxwcCSRqUR%Eaf`qDOsd3>%CRZrx-Cb+1*Qg{6l<|+N*(#Ph<1FFn zzEOf1i+xLkGAq(U*8H%c5lp9=8z0JZZipfuU-}R8+Oyl~(a3`{gnTux^O*cw1R)&0 zI5<3R`3kGHhpS}}Pd4n|T%{<35(+o^UQ?c;=2$cWd;q5Yc+cYc%lMT8=%eIW{db%6 zeZkH^1Stb$!gB`QFtD82%DIe3q-vUYw*-Sw%NW3Z!cpRft?Nz!Zu=+j03MdWVWJlk zPKvo>^Vx4)f``AL`8h-%;!Je<9?m&;XsPx`9*5)6ZU`u6jmz_pVH>3xa)q% zSqpfr~$|T%OG%E0hs?A{kab1rmlbk+D-ELO1?|aSJ@r)6!EpF?YYnM zp<@e@2+Ax7loxWA%vD0SI#C-aKjP4g@3|Z@rP&PHRIC28c78+cq&yejJ=pCLdeJm^lLNT5G z%sw1h?PU7)*j@{*7^Pw+GFgXYJ6(_54!f|n0+J#{Uy*e4d4S~-KT6Fvhp?m93e)Xf zDait)Ibkjm~RJeJX>`SwVDTJj7axoKf5|y z9J2AtPEUiSlVst034+wtglwjh*7~R^NssafX|gk0$HfXrtrC6*y)#jKpyR_`SJ*MHlHd@!gND<6^nR$ z_}Izhwj}pC>5su`qhfKK({tubD zsIcCfZD5*JMn(lCu%O(^KNV6vWq|3?)q&2gI0+wJ@2>Q4y;P@VK@PL)J0xpuZMEr? z>MnHwp`7!2Uyi@cmR`fXtbD62cJe=4LqH{Nk+)oI?}hXUtafgWoX%z@4+^1W7!`A0 z$rMmRpsn{C(UdS6mHVcSm9IYY7G0bJCBhL$4B=MhLqzWRRj|CU?3TTC?lf5Myp$$r zRmTH-r0QAknJ9;=fkoD0=i$|jJ%Xi*3dTy_J%F0>ktc>eBV++P*n1by+}$!}?j^)s ztv-{P6g|oP8v>evFBl{K7njzZQ+f6ZIwP+O0JPv{MMk~Vmgpx|;5XnS{=H!@igOvI zvv#7%ODI$>eXqtu&gm>CEw@oXh!Lm$1O9OYk$8O6*1A>oX_b>3C7LRxF}4l!mxgJl zWpl6D;Tm}d&B=W9dxvda0#91+vwiHTjMn`1xJz>u!+9^BsE&vj;@XC9^QkAqYK>Hw5JQfz0ubprssB%@k@4VI0@Je37Pk zE57i|W~+n^4k=7Qj{1)FzCXC5RxufyeR@8jSt030yX$0=pG?>o?a+)9wPPGW1qkAn zx61S|>2Z0u3(%ps8bVQ)^ZVm;ruealG$0ol%{+2&Xy5&YEafUTXQc9SKIs&D;XYmKr7>k>w=XpZzhpvx24c6B;K|tAFNY?}=mu(LSihmltK- ziq>~~`0{C3rF^qr41)fYD!PMhBYhg7Vx1$rHMyZ$vh@pcR~7ugv*DT=4r7Gjm_Oo7 zTT4TVxr$}SA5P*Mh7lo3Oim6tGc%K5LD*r{Jv}ac<>j9J262xhg23)^Y6%j^1Utin zqC_{^G%n^Kvjcy(RXOj*>bTiMXIwOW44UQ|CpKBZgQ}2T21}KEh!AIZ>b{H;>Iul* zFkh?~^zE6jQDc1zHK+)xWH9a^Q-fj4vwZzy-8}o!k*J z!@rKD+AG$h#Eh>XiyXI^o0F~RKw$9xMM*%W0^_ad5CImM@V|@@JUA-L%>Btdu$H>C z-voylp>vz`I4ylT$TFNnbtmfMoruHz=x;}gtv()|8;kW$?N#CAzq!x=2?#QL{=Or2 z?=1_H%&1`j8X}B

`iTQFruH6qK#th=C(b+(Qd(pxkD2*h@@-P*QlkZM%~lI3TO- zOZX?J#+{F_qMYUa0(jmWh>5Lkm;Les=l~irb)5$bN~{k))Q)}!qyqK#aGSAb5v9F% z8DiBMNI%O7{b}CkL}c9~%AX|`s()|N1cK*~DwDVbypYpoPy{hGuIT z-rwcV^e8M?=)eM#WUMw9Z=>w@BA4c>BcJel&1qTK#b|yMBm-sWheZ(8cBsBk72PN(Iy163}i7QKjsrG z(8EE&n9+upJ`A)Bq+SYUfUxD2OFZ@!9a;2;zXc0Mm&_^T$&)l*=bY@5UsVb`ly|v5 zUF(EKNDr9%k|3FHSl3|G5SHu($qRM4rs4S1j~UgH3UsQuX1z`THPiKN)WAj}O`etd zigFE#R7{DH+U1iq^61#L)$Z?XBiPH95kpz+)DCwJ8 zAWL9#xjifZItHU>y60lJkTvEtX>ECJoLU~6#VT}T<&a2o9cMB)#)a6#RZETxkm~+yGFL!k`79oZA{H z-83z=q$4B2$RX;Finnsmxz1C!{f^V;lODh&#$?>k!H+EwG>R!7mF>r{P0FN~j+o9>^eGJWCTNG{W1iwq_7uiD8JSz`Cq~xvRs)h3mK6v zu1hOA3Hpr_Og7-<)#ScEmDVU2;uoDBD03sm75JQq65-^?eFZ`JmYs#oFwRGxq}0ZrL>DS_W&a4sIelGXR>42fG=0dVYK+{gR8*z=6*~!Fn(E!>s|B zf%`jQ(3okx)s%w29grS)%2uhnDik;OXo3vKqxDnLquFQD#;nTZVUh{Gu*VKUx4uc* z^@5h+co4oNT1{|qkW^x??)ww`xPbRq|^HBj882;=r;54(1Tg4%&;mT0h*f zQ!519HAz6m;dfJ9C3eDfq-Xrn%`sdt=*mj|a3MyMk_N;mFl+B@g|R6(&NY`*+`e$e zDlrn$PhRNCE5HH(wF#^Sm!08E-up1j20ayC*RCo*WEHVgji8NCUKnKkC^Hy8$sH~thSYVsIY2e~5eTG@x>VE~T1ltGg9}l(+yDwxb zG&LexM`KFHgbhTGT}omg*;Gfd;33$=PG!K`^+)l;h8AV_`b*>?M3E3!^7eE=bA^oK z3@fq4U(kc~xT42Vw-59UFJX&NE(Mrf+I4B3N&oHc{pyGgidKFv=LX4(9ZZT64n}QT z*~_qpCaVP?+;*56oOSb7C5IIrI*)P{4z@%)VgW|-?RL61wQBCh8AMGa1-Zk!ar+jl zaCz_Ck-Z_xK6+zGBt2m+FL0(lw!#3DB3W!UYZ3ADM5olVyfIku+n;5L5N=W6v?8o{ zIWIq$+6hK~#``JcXuDx|oJxpFttk>c;t^zWg8U=wdmjr#)4o7Wqe=1(XW(oq1sEYL zaQLT*1vzcxUnEy}@2zGvYUO#%^T(bgLHHB25Ln$>i-|W5vy~8h-`U>^dm(H~7MW1q zE0ZQ>p};-4JugMkIb1HGIl$1a1JnoO{WV&9pa02$^k{(Z_)qS;L|?G#MxnAEA32Cx*r+mPoEY9`vg;Yz$nF5CI#5OXqj2M{4^n zR)@ovUz86KDw(f`hRXJLbght=BwZ<2ABEd5nUO*M){IV!!u&uJ2~V zcY^I2*A4Lf01u@FM@Hn;>?|mFJ#0mF0NS^L9X@;qYk)Ds&1?tVD6}KA$-<2A1WhMo zS3>d-^u}7M-nW2W9?nnWGUZ?_yo#Fo$a!@f21M@?)tc1My@@9~dU$1ao#BLppLL4a zw~HCdu+!>ROio+f$(od_=)NeVLSb^OHDmCeG1|rPTI?6&?o{lp_8mZb^0?#)QdPn# z7lXlcLW3WqAL5CJ3FG({aVs)tXpb)^%b)kad?mWJ(ntXR>WX>UTN!wH6dL^NeYYAr zKRX}%Qyfz|z^viphzPoC>!f83_6JuB8iX!1(lSrP}% zx@6sI4E-}&iqEq^4E%%XyStajnjM|<0BTmLnU%?NaRZ~UVffrKDTB=qiAzz!PB~{P z4AY$yG(oI2A_qM_7ic`O=5*04d;RIsFNin?tn_-Gz(o=~i>{W;2JKo@x81mK`kHaHeW)dkSoTewEyzRw)mGX%rJ%VaH0cysFy z$}dFj{>D(Qo27c_xyYA$FF)swx1lJ%B7!nC5UYV2{Vmc#j~ZYM0$DpTN{Ra-Se!Nn zX`9RVCp3)43g#~h>JhaG$fB{E83&xBbfn6hIl1?kpM3Zx1BH#v48WBBztdg7q z)5%_Gs!D#-$-aej$sb_~>x0TQ;meP-kZmb^f<}8L$oQD|OalhZJZVTU?)0N9PNudp zhe)y0R(lw;3e*eBNm=*bPZQWOFE2G?#sSv!@mMtQP71dgv>Am*D? z*ArbNO2mk)*mdG#v*(%6ljjAu?O;hHe$q}x2wAG3rItiapIeSVJt+Qy2hP4`$I7YZ zVsqDwt$P~2TumuxkwYtJ@ZrlLm-kG`;ccBvt#+$0=xhT@v{C18gV$)Y)p$N8mm14* zK%&12f)=>EJN}iYaG``@qLo4zw4gW93v}D2&3DWX!KroNZH*8(h*UIZnKKsC?!Jxo zB`X;`NP94_;V^rC+Szq|=^mz8y%g>4LD_&vHE>{x1+V$+^5f!QI0c;QHDE3v+IsEL1cCC*linUlpW(!CtM};etjJWEv5A1?J(m7;Yoz3U zc;>F@4U5|zyR)nEH$xnE_FEZz|6IF+kUi=W4cz#$o918~^uw>5w#ngXr$fsEMxclQ zOCml24bU>r%=GUpfIVX8K6UA}XZb_p0UaV2XeZJ(#-AC#9pY1LD>9>w9*N+@)U-PX z^HYtk@NWZdExurlo}`p(nlXYeFTvC=^_PD=(a%FRdYI;DuEZF^^fInK<%I3>Sr^Tp zsAYNr?VTYKCt!-~4MYFMaM14sj!zTkvF9qS+l-IwUbaCSta{UYqA$K=iN}M%E@CJm z1w#?9ePR$?M-{?o{gsmShcTt(Ur?ytz}AA5+r>JFB)3(Bp*b$(du@)uP>oO^>ah-f z;D*BvEOAiyo;Kt+F((leispSB<;QA5apxwi-_)tz zURf!2?+Y~_KZ4LiNA!CDA%$xtJD`MLRa%_Z_Ov4y0;uZds?6Y4Hct+oCaubUD=ipk zGzG;B_L{Ngy+$Mp{+`l8t1jjCkcS6_u(VW9LJBy(0yR{9(cROS zb*;Voih^}#1_cT-UH;4b!xbWer4dd2`Pc??dN?=hEBy=X1lF!n4r4M(#8_37yvyU% z=lfsw1dzP5sV>;J6m_+LiIg1k*G6nFYZcJy1wl#%JT1_~wcn82xQnx>&!+G58WQ&% zlKP_aIh@Y7((~CeT)+7@R%Gc98I3Z@U@xU{k|c@!g2rL%uOsHoD`kM=f8L~ds^(I- z;G#co2P?gW@1Nd4vb<9%WSC^)4PoH=ouE89I9gL5h5wnqM`QmoGObpZdfa5aon`0I z<06GUkU&8qu=-ax`h&MNX1h>iY0(_kznHBe8YuFj0ZU=#10gcdvMG}chRnu{NJFr` zZSYQ+-FIV!X`Aa6>QmpM__545%ZFeYX&GLPl$)5EU_|`vftWtv4K_SGvd{hv#kp`k zpJ~UffSc8VF!H|S3Uu2l0$<&2^ZA41dECC}!xp`G$qLlE!fvr5Ax``5s9*oWWSq&T zE!|nwUe&fWK?T8xyEic%8$Hx^3wZ>z_*k6-gX_IXLQ~t~oOWo@sWMV9g;{-1XR!jy zw7Lx8S}%F3p`GgTn<;8=Hpkh1F+uXit{qwlwExy2mC zwWWtlf^mRhqYp_2;qS_gTmXJ`N-)gPRp*@^rV#qDl&99+tlc+xPgK&%sAb(+IE@!G;*Ks18$%1g(dyrv9e!8xL}yY zW~G>Xj6HFkHbxzXHU=9P;*UmRr+e8bqE|iuWDI;puzW4O>;A_!O9L; z39urkpG}?r`hC_XEI96EXg$N{>!0?!I(Zq{!OiBMDLF2Fw!7b_Md~XphboZo^xyT> zoGRuCn*&Q`q3YCp10P7u=u9xGPs&0J_T#Djov@C5{TtXe#4&XruZ~rT&$itO?(awe zd2{;uC;s1U+IA**ClhYz+b6zp^FHI;hQQ-urpV3xPJjWX;R)h!6mphc^}}Y2GX7+t zqyl@S%pQz4>-E8Hv<_<7RK<*-x+V^i5^{%S^YwuS?k4+Nb#XBlHDzNR2t(!A@dZ+} z?TC@q&cXvDCYAlEe6#y&eG?#mBsJI%6w_q_fm^zCAO;%n`+GZmH)O5w&RR)9=MQYJ zVOZCR9J_gL6F>6YE^Vo$9U*-PU7)!7cdCy&v-E3H7CmEk3}8~^x*~@F&(`09<=yEq zC0hw&d>ezdrMR(Y$`AciXeKJ;yW|Ag=LS$SoO?A6stgy8sU$JizTk4-SO#C7^OlG) zD`JjcM$3i*^LfVW*V$BX;nry<-!Ll0G`_9u7KRydKzAWbXW(xqkxN#4jgOh?$g<_^ zndo#D?RNIw0>jaTGRH>W9-lZ5$Kh+zzwGiC*+ii&M>LcMfWc<~!(DLwY0WuoP~H&a zx448CL|((pR?#RTCs9@~r;W2W2Mc*|2BQhsEI4+@T<|cOLC)>byCx{lQFJM&|3zGy zuew}^1&Up+nSw?;e^CuiEl1e*09a^iLsS_r zuAKt|lX0Wc2?{6%$Z{fo5}*!GDtFQG;=UF;t^#uCOMg7BijyTwT%R{!1`#?kR&O^%Vs8taR*B0<+%ARR6rMUjzt&R;D-qH;40+g{2lFH?w>H5s1S3 z8>4WxxP}Ep(@v2-KGDUzr3gC(O|kF~;dr7LD?}IdlOq=7fqi7m+9smC`l78!TI+a4 z#kf$XQd9T755q}3nXc#~qR{-!tpZbA%%A@!T=+(8ea?7vK?NkIWcYjXA>^`P*krSN zM*U6Z0v3%f#yi5W_-UD$Z)}5gy*B_u`wd&#&4VKI6c!}&B|_reMt6qetByJ{kS2;J zgwpBPsK=Tq8$IeN-h^eHSffSkhW%(ZD z%}>0eS8e>D@rqHfc!+kfav5+fNiwgF_Ufm^?4ZRsOh6?tzQ{68b4!)vJFvq-MT@zZk}G?> z`c9S*Pk-3#Lmst-V^F0~2*=Qz=#OEzY_mo&*A7ox%xAnrGyw3U&N!hK;XWF5+U}4# z-!ov+w5;|NL_>705=XKe)2c5#^f#?>fUY26(h)*0` z_2=8srqKij#Un$Cc^%GwTLZ&{H9&l6WsP`xT^>+^l7&s?8({NeXeajZiQ+@^Zwfm2 z;Y20K_+gE7!i}_gIHSyq5AE>Z^4<)=4qYd;_`+iC`YeAFP>&>u6>jY1D8KqvwN&#U zYAq9Z?uR_nk;#>vK0Qj+-F;-W%%v6+p}?MWwD3*VvH7@RA? zG4jhf05lfXzbl3aAR1MlW+$49tZ!Z5m_>VjtN8rqFa1j>7XwfmEpr_O8i;I&iSQ-Y zRW8GQ*UgCpdCOB2YXTlzz8urY$dPrkD4Xs5AMip#zW0wyq7~m?N=$W@?Wo>FNr9n# z0h7D#JVuh3EYPGcmf1yH=>D@izm;|Nbvq@s`Ro58>Z_vKP`7SNad)=@#oeK} zySo$I-CcrPaVSsXGMJa*Ddof^q1<(*r`^^w6e8VB>sM(CHvL!kNoIqUzIsuarD{SU8T7t+BG zs2z-y>Ft^D;zv>HoQ{a{ddk?&9%h}>L^OpvN7dV0Zm>hl=cio`@LB6v2vC~wAoTPD zmBSy|oHy4meI82%51`zUgSOj)wwX8?GDi0w{0AlUvBlrF$V=LmVN88wByhLSUI6#i zPMR$FUd1WhBNnE7TLn*aU~LBfouXi9foNexbOZ=KyUlKM*A$l7$k*$6xkqAEPc8L( z{Xdl~*!&nByd6@}2TgFmGMMgQ+OwBdjT z93Y~KRmm^6>rXEs;C&vxzErc4_HEgU<%xULN=*{eC5)5DgqtdMA<{U}ILzHXA!;2} z;zz}tOv%dBB9L#P&IOvwC~7oo9Kf(K>kIWOU!JVm<|mrfUw`>&xDdRBHZKFN9XWLU{L z!PVOU9`7UC5K{9`a%F5%ZGhoO&DFg+5nS#!BWT~~W+dYc%ZtXpQFs$=Ms2=gO=!NJfcJPS9MV#mAw2lFGZ zb{XA+RRB9j?a=nfV3YGrPPp^VVJN89wkOmv{6$puq9Vq&yjQfiT-uJn2O@p?ftXew zu1|1B+iVhtw%{Nq|4xASRfvxwl80PfSl5AoAYS8=J!k$ zuPhqqe|pQ-G%y=VL(qbfEXCt&IC3OC9d%%3dopCb3ZW=IquvJ1%vQ>HjCGPXS@*&2 zk>SRj)(dS;SLSd}b%n~sOWQ8|FQXBhu3Nc<6Vz2Kl?YYo{hjzPZJyr`%s1|dRB(uDMSbO{}v6FgL zWcqpjTVM^$W3M5|5ks`i1g2o`KhDMf#Dp46Ckk!<8nJ1mfOm+YN{>n{;$M3C2k3u$ zgCLZ@%`dES9oC}{TpkaY2^0=@0}7++Fyj)0+OL#wV*31&fHZe1W%^h>S3R8)m7B8s zw*yW_i`KKnwC;M}N+;#s>@6@0o{lcI>Z%M@6SyJZ$9g5?iy^{}rU0@5#g@A=c*`*n zCI{e-nEa?=Mam+K_c~Pa-|#xy-c8EA=JjUwy5$&rqKU+FpRf_89OKxUS z;tmuKYi{&4={=mzJMp9YsFfsP0ptoEr1wROc~0;=35ra_k&)m!Q)B|1HezbTWl~z2 z(ZI8`V84-_2fv`XiiW+q{Vju|f+`ykUn;+w z^W^A^plnc-CjQe@4+&uYiLbGDH6hH6)7Zy*u(J#ORLC)?@|MxVHHK@we=B{Q!a&SRUC_4z)f_2IJLlPP?jk^HU)6gIp0W3hDu?%DgfryG}&%&g__Tvrg1 z^DKl@Mf;U^(M8Ss1jMCTxVbS3h$vRrWAkVk>~mZOq!pB4hay{&zK&c#6-f8qF)mk= z$vy;);Nf?1@acVuPhN&LHhky)q+2Fh!HJX=9q4I45FLTvy3a|mkO_)Z+LtojPa|e6 z3obG85H~(#6076d87rgiC*wJS{!Up$!KjDQ1a{7(vT&-YjmXWS$VQ5JRv!B^o9>-S z@NLW>N`^V#`FIgg{FfzJa%$J;3=xx}hVnq4WRHpDx8bi}sHFVdI6|60czvr?Y>nQ^ zkW4i-ao}P1O7^C`3I{raA-LcDSaLbp_{f1XK4o~tQ45SHqd(%+Nx67RrXZt2@Fd^n ziPsr4Zt|2{F;R0EV=C6`BfwcIYW^8Z!CyHjDes0QYKnJa*caQTOWj~O$+q9q})g`6+Ll$npy zz#7%S_pObn+D4aSbVD-)Bl+v&!F7u`gGuKVeI$FEaocnYGA!E-DCT)}{%ACy<3==F zkU~sw25YHQrev5bZw;DJ<&)9{xxu1?cPH4=`#y&)=4;|O`FWPFivKRRd`1VXQVnOL z{0I`j0sx^Vwy8IKG9&)e41R`Zq7Y41O`Uu&7GQ0f=d6$LT-;t%4d3fH((dCe>e@>? zH-YJo%h*-4wq)dnD+TBNFLx5njTTyq)HS5c6A@jXmXN;Vf}%Ym5D)&NT4vs5qY-Oe zDigV=^A?OZ$6F>>QjBJQ2Z~wsDKDl_pdoj{`)dcQ&r7aXXA9IWlL4#cuJO#g+qN>d zOeT>xCs3Jz&0(d#rtluUa4N3kX?)PQn^y}jCR=f*Bs1GJnl96&%nzsxzrc5i6)%YZ z1E>tz3+;ca4g}1k~b<0cd$Ox?I0(X{Tw4 z7yqHIJ_%BuD6^BhKVSY)TXxZ&wO;gc9!&)twoNBedh>)Cxu=37hHgrp%h5C5E7EXD zX4N+Xwdso&7m&Ar)&%i{YPq0-o38lucN|v@O|kXhQekCiWn&sI&@7dNdU7_zKU?6S zByiRU$81(y7>cp4ofmXpt04S0S_=EyWdeY1uHS*mOO3XdO+!njbVZP%88e3`jO`F+jaZi*^nj-Ue)~X6oy!pX&|SNmbQ`& ze98v=SXP_BFSwzEgd0oDYSm;k6&slni9~Tl@cE?fY=}Hfi?&X87M&bKLD;$6+qa5! zLo`Xw?>j;Zt_M6!KyfmI>jEreyM&`ZeEIjj{u94!CUJRG(ntf2NKg2kkZ{EcD2LO# zRw{5lwzP$Mwr~MsdRs+gfXYZyPL3mNFE{J17jv$gADqUQApBW8ocJ280%ugaw!Yh# zc#d_?cR)vdcSPEJ-lbzWI8&AE$f+Hf*jr&=JnPeT`7B!T$H6h7=YbnB#-vdAYREkU z^jgm{RWpji*q#&e_U3)X2_El-NdQ$P&3t{{NKY1Aq25=0QG!W8LG2KuE5{pg4eLG6 zj&tE+WL(Ko1_SLmu+F>;1lB9;b+$Qk2eU;2esX!uVD%yBtnMBeai0ZvPGaL)r zjk{@ZmDb>>VZig&KJjLUD?rEqMo7|3r&~n4A0bm^k>>H(3&(L>lolkfJ#!86Pg6d}KUp zA7kuK#UT#qP&Dl7iZq-2=s9f2UhP&He80pgrF1X)l!Y2asFDyGda>Wf*NBz{v1v5k zD&EiKaIn&f4>RKuzBpZ$5%3c16u;aLYwE)l#2tuH^}|oGJDnh|AU)(l>B4kHX*&Va zklbN?%p2U3$4j2_wbmtJNVcSAW;o8aN)C5a{|%V{ zhe4oB2ab~4A$qcGt-I$@u6jS1#Ux@XxI4*}A(JbQ`6asHL%Gkk5eXn474Y;m*U8|s zwCb1bo9qTWqX%pb?HZ&@cq%?*S_D^ZX*2U3)XVt{_=PLwL6W(EgR9FAH#S4OKlR|& zf3U9{?_I}q^xj)yK+hg3!u3^jwuI^h-+OK%v?3II!Taq%<+B98Ol_r}=z%4@B!rt= z)k5wkGg5J}Y|^bOZHYQ*`f&PYtykj%}!TuJTc$3hFwkj&EVFr=y+!C`|@&6bOtLrN{k}QxEvEFmVVo zu}tKnk`@Q@w7GUsdc{^)s?l+fOP*Ya3O64{3l{v17CgelH2hkAqQBI68szV__B6Nm zgG(?hQncjMV9PvaG!l%62*4#As+_Q0>BX0ErE$%YaL0X4argj-9bA$1|C;NWzjZ%y zlpzZEiGZCVFt%eLu5S;vd!IgRJwluJ-QR2PN#4~Yse=lz^Bxi=3K{O}@a({e3qL4Y z@lj_lQ2SztJp0egi=G@~=n@1b2T?5q`x;Ac=3}nuFUqd z=L)B@Sp2eZEb%2Kup0s`p08#_=dTzg&S)K|)V(vj&KgCfSiDtIg;PrHf$T0+%=FC} z#5aBxNU@H9489_v7dbp)eek%vYKiEWpwM{lJ744u;x`6=mfdX>xReZP&9nx~XQuKP zt%R8k(prSBdXYU zvQ$?teb{c{7V&3igcRT=jY%nLs6M)&%vRW#FVVE>g3z=G52CVX%`@jbJeIaZ&(p>l zIU`ug+rX*xy$@YGNc2LlMOhbVJRlYqkuq|i;ZXtXS2_Y3t5P*5i(C{h4?3hSr`vey zpx1iMKZZAn_8ra^ux7S|8(v@xo*tVF4Ftm}PczY?y>B4k5TkS}$lNkj{diGOvuvFO zF~U499=Zp7>F{~_&&@{}{V%9Pt{b-WpNK$M99*7~fBOAA{I@Knw`8+n`P+zZr2aE! zDXW3Y>umFA>+oi4UnU^;iTcCK@f$A$8}mz-&Pa=tJ@a@B9S}oL^APU!U<%!C`8RS= zQ>5a{{7;64XzOKKA%I)K3-|PtXmMf|Re|Y}g59@TwB?>8=v|sVWt=#{{@6?ZjVz;- zMzX#IORN>So+gUwt>}qG;UJ0JM=wJcvlC3#OaOgQ=_r_=anSut(jeX`LYkwWOk>*hMo?ieXtoK6i?`T#6 z)KFW2Sn~m0TDA9Nnj5hu{|#;=*GgX&;kL3BEl8qpBB^%3tR}Bj4z~uC#rlUa(NbLw z`ysZFi|vU;9=x(63i?{97TPkF<^XaJMWU#~EX{yy+Z7b2y~j$h7bA;ET|6ep z_Lq10+!K>B-CmE7nj;OBRjjmU8;#5xP*$o18AH*%zw&UMGD-Clo}bU290+3%&C943 zM$XBfS@7h3t@o%+3KSe>#IMNCPi^(Tylgp2eh;(MBHe@+E7)CuF64NjA+0jrIUcw=X z@SOIK)cL^iif(lbU#_~#&6FXpb*)A;h08rIENT7@619MZ1nPVm{c8 z6>`7jym`*>_5xZk(#2zhXqASDK2GFmIl4K{L#=H+a+!ya2Mp`Nr8XQ)dO1u|o2ZKg?Py@@K|kKHmd$tXvW$JY-2oDm@|tNn+Fu zb-)D08|rjc>v>KfHt0_)d6&y1W>)=qw9G9Lhhh55@81gl>M?(?ft@zg&8yjN6aQ)3 z4ZXn?rO&Q{_8}jbk}N9(1@}LPCE=pKQcbm1n=maBFca`f=#?pen2)&SJAzRSy#%L% zBt!R3yfkV1XE?->6}@VJnBRB&5zs|x zk2ehG-nneiJp`n&d64%d!)>l;E#i;E2ug$ak4|Z}5*ZX}*t0Q*#Svbgco|cmZTxt! zUDwKnDzJ4^P;qw;reNd^exoKB-sOOtBwp_XCWsp`60uG4ucp< zfVFu!XTuGz?#{+tmU6;nhCil)Gn<6E(&~7%g@t3Ij7CqLYFYqsS;SZuSrI;76w;7lM9qZ#iAIPNew3F4w;W>T2%)_l(ie9u8tp!AG|e2}Mv1hfjn4PD#% zDmUWC7EfPT>4^J)4q)5rBJKFesdw%5s4s3Mz9E6!P*<}rqWoijcts1{YmzVjK#c@5 z+UKu~4=JVK`@SUdi!b8!9ZZS5(}YMWsh+8}ul-eglEPV2T%qqriF=|q!6y}R^;TvN zM9lKp60I#+b}qnYlTC=C_a z5ld1esN@_YW2Nrv zkbz3~WBv&N!|Jx0{ITilCKja$(^}t4&KsIRY57mtS6x$a%hNJsxzwzB=5Zm@XdZn- zCx`)ca%XG;blJpMpqT-l+0{9P`2?Ze_bWJN@mx}r`1OXa111Y=oYbNy_eC80W}Zv|Ig@+JJdz9EcQ z;MMw&FUiV>r&G4}o=;nD-lvlv3l(DWB(oLI7L%1O>veyk{rFZzvUz6eh|{LOA~np$ z&^=YNX~l#VT_aeZCwziQmBb(ziAx?FkqXd(eYI2+JEtQEaEd9*yNfsNFeG*S7PM&T zKa=s3dX6*9VArO2PaRvMOfyXF_Q;9OHgQ+xzKK!v5;5a}I6F!O_Ip%dL+#+c0<~km zIwK-NpMgPW7d>+ndB}C*kuQTzRBoAtHsw;kOCdOR^eln>x(HBv?3?PWfdb<(J6R1- zP_H(FEMq0}+VvqsU6(}Y&-I$JV=cAlsdiEIU5E;x2IGC-$h4hk)hUhMh=|pnyooja zRnh{JPt&>3j~c3u@>9-K znIe)5!ybJD6vke1EWLafDj1jE&ljhF$y!-0;pu2Dnx60p6L5;=Mqz`l-lLmE-LffR z3_|gkY8Q?!Z;W$#n}nzuog9iJj)&EWRfG%G$yy>>-2D04mZ4MjLwm|Mp51pf!(Jy^y4jNN zFYQtZCG1lA;=Ig{!#*BKEq0kq#h?ccxMQ_fmJIP;sSV9&xIpDkKo>&WCvDWb*ZnXX zsqDADV#G~=_=b$7@Iz%-w%~SV7jJbTDTnq}HvD|jJEL)*m4em}KY!^*s`g8h@vMyp z&v9}X(A&J`^q$)yZY_L320s}J3(TOZ*86xz;)E^#<*T-g9=YxJrt>&c9=AOvele3g zQymgc-8rf67mYnLuhW+BI7@Qy z?@^JCmB%42qpIoA{gaoI(wvWp_2WLSVb7sfH#iU2$Q_*FNq9q$MI~TSHW2+RY<(UC zxIW7J7XD~H%p!D><&KNm-M8=m8xH#wMK40gjQ%&`b#m8X;3-Ra-0va$_ZR#*=38Ku z&8j=>-d68^+?_+)RH=!~j$r(0*TCKvq@(2xn6KaSXG}lHU|FpY7sfc)t`0Lcsae<57?G1Odb2iXjKY z_xCtLe1hQLk5}2`aPJJ?LMa^Cdtn3AB^n-;%b%OtmpV)z*Ck-~=2$F+ATTI;&=S9D zNh6Rg(5N`o?cNd}0=JW~p4m zhl~hJ;KEjzPAYua-63miu}4qKxm2}oV4}M-3f5>N7C+r9Bs>?ZWpRF2(~N#7)GNg7 zS9l}UT|fxrA3}fJfzqtv=?oyWcww0aOr|y`dN7Ofow~TpPAF4cvemnFQL_|n%H{8t=({<$AbV<{yT2B6kJjOvvtBj zdJbg_8Gy(d;s}#|=G?sU4UEm5O|Ke9{4}CKDqS~e+FA=!%QBXF(8WE1-o*BWUF^#K zFD}I)=CN6uC&^ex8UewtIz|>$qKmZKPKPsqazDx!gR!nk6)ihE9ZfXG3<*+~cT|e^ zOYw{!$~jjG)n{cs#hpXf^1!XIvGu#`Uch9x5>dI0Uw9#LSxKC`OEgrgM_>@6R&IA( zI)VcIMuda?1Xx|*-^#{(wF3et{ka(%Ekm;}sY^+8E$|h|_m)X%fgWmbeM!jhMvWh7 z-Q)`18;pKb2|Fp!Mo6%H@!aB>YeT;yl&jK0Am(%H{CXt6w1XMoMQid>{k{WDgn%ab zZgTji44~ODXGJGJnyXeUQ9L6_3l4~#sv+*5YY26sVS9X)D;K;WWh#qx9YN06xOb)g zt%0wl)!*J#QTY%EM zmGg-_BS|KwqS-GVG&>unCZSJLxz-#^obd7Dy8%X8Dxs;*ezOx7ntxYO$dC8`HU>>F zIR1w&I7d<8UlZN@zxMq3^OowStl+Dvm;ZqHpYm*n3H;I}-O{2dl>}Y9v6LHN_L~9@9wp=G zMW4lOAyR9sdGh?0MPv1pwPmdgB1+uk;q{%>Vj~xw4!*w^8l#k71}Z-(2!3LJd}FHC zI5k!9@mdF}PPKb^ks;V3V(b|z7r`zz@kKtN1s%h*AHj7G3 zCu*agX8U4TtC&xFo{0B1^y--Rzj1Y={dB4b7} zT7R-UL50r!k>pN|g4tr*ffMY&Nai-sYD&8SywA#)pJ-9XB#!qs;XtFy2HcZbRQXdU zDRds@AE7d`{%-Sr>cwa`Z@svDn(;sRf&rAC9Z4ci$H;paUy3=!1wD3XiwIqkM?)MT zxpXNp_MvArK3J`+c_6|%4n&&ea@2s!C8H`>TV|8L8NZi)z0E%V#GwLN$#UiMqS#RyC8RI3-0||0 zs|)&`{0@nR>ywont%KFB>67BtUut)L)R@`Xy<>&g>^LDKV&Ixs`S$nBqztB zPU!lRI`4Fm=w+frr!rSd^{aU9H^UJ~hE0P`uk%~fpF`ITZK!;j4ks_ci>}++^9{dO6~G5_p|ANe9a{#Q@z{n)DLbVCD#Qgedcr&#cDp)zr@2d~NON9n2cd0VTwfK?ME zxExNyxiaojfq)r{$3g?FoAiHK0Kz!%U*S?El$)|+#c8a6`2EfzV_1rN$Sv=GFq`oi zwYE)ta~%F%+w{XVgWUv^BsxE~7XD(kqvxs5$TluybjaVyYK!OO8Y7;RRpi&LI1%2o z=qH(w9GS^d|1- zZ+$qQZ9c2O9$FnX+p(5tJk&`+Cw?fhXVB6BCQ&w<4jka~Z053h^d^uV%)Y{xSp6NY!&o$Ki|C+ zMg(jF*)j9%bhxg5z-BxQ__1=5z0k1rWevb-{FDA^di#vy(!@R(;pr1G#rimCCdk?S3mD=V1 zkYmM2tKX`XA82CUbqDM#$$AfMx?elWH|?TcexWClojr~{wWo_bYZwx2V7OyB682-=tyxveW@>gD@3UYZAhQxlf?q9?#njd_jMEl{UJ-~d0)7WB$_$d7Mql0STn3Y{x z!@5zqZ*Zv}J0m3GGCTA8BT0~Iq85FyC;Z=3U$)8xM?}G`PaYg)jAu{Uq^r{x<%f;z z)KXKJ=Wn-@Kik>q(&|IP5>a+QfQwtNAi4Cj?kuA&)eBW^j)BJ8t3H z2!2SH+H`OjM1$%o^`kIu1HxkgdX%&o;$Gt?QK6yr%;5rlg{@{#lLJQ9&KpKTrBPR0 zdY%n^`L9`-7Pvkt1cCL4#A(zXtrg<(cLwFfLV=~3G6X*MJ7G>T0)WUH9GfE$;xv1z z#!~Hb{-yD@Is?x>S9*f`P1b431TS4339h`{1nr2g9{ zz*&l+Q&LJ^(x$&1#IG}F4O|St8PQ*sNSI>vk`D4nNmI*thz6@>pJSNhz-z8U_GSdK zmUVl>by93M#p58|0<~bdt1ykiPTov9_F|yy863ViN6(2aS)xY3gqddS=W1IgBcPMX zaFZvq_>_Fo3`wzH7ee42)2M*fk@LOVRLn1J|X49hh2x)>R0?D0a(H^ZBPsY zhYEM+&(z0+z!mz9=i|i%!g+4$^UPrsen&5@^APSK*kefr(O5uiI(3|e4peQ=R^I;( zmjfp_lHAT9%cZr8NtBgnnmlCI6YPit8AJ5=bGrDbS;#c;kXF9lwW()u&ENaK4h_*W}Kl=gc{h==Rb zq-$@w`S|8X_jFOXW2w_Zu3Ix6o|B1^L~gqA+KYRC7A9uypf7v)@{XVgG)eZ~QF-uu z!_M|8Swhidg~U{MrA=ra!>KmAuXy+h*V_1oa&Opg-OeN^3X}z)VMo`}pKYv+h);^M zzhxZB{i;HQyj!I(UH>8@50qDLasVEtvQcml9fq6}5|*u&fr;V|u5-jIC>kAHNW+VH zI`qCgX{Q97|Fhr&~&-$rx?7lgF8~o!@6ef02@r zpV!zUtip2I7u__XC2Etusqw2klzMwjt0cDN5vG+`o%h9mV=-ud_3~#7c)ZQ`3MT%A zv2dpYL|)fQ&#=nX{6&NgK{ioW2TAz$)z6%(KJj7eGY<1YTm+raP0Fv?3EN?}n{i5b zx(b)<7l9SUvpz@a%5HXje|`$aoV|{hEy+KVmV?X(It3|9=LNCXE=-~z6&~@|mXBid zM!0d#m*_*w<9Z2+bsCz?fH3Oy^=LB0cbqs%8YJ88z~jAqDQo8gR(sQ?QgZdH)jxQx z4@jcWrdYDXzHSDM1fkip$BF%9kC%$E8Lp}vFoi6|aYkI@eYl0aw<Sac6o>VgCUFTp-$Oez^1Fxrg*%ng%Z~Rzya<2`HNz zE=~Si1u!bp3*^|)y70GoK~0l{#f*iDA->F&ag~P+A^M6JyTn!JDM6~w+|&vk@micV zhew3ihU4NA8~6a+O^@AFV%7RLZZ<;~b|~6$huudu(jg2c<+k`Zkuf_m);5LWw;P00 zT`9$jY3A7{-wXA5@iY%3(UW1jCCp(yz%}>& z`Ogc08Fy8O6D5WjHi~q|W=N~V2fh2q2D(?br-4|kJ^DR<~(TCBOFm-wd~dHBmX`lYMWLgUT<>4jOZ*vKAI>xj}OVk z)Tu=`Upj{*M8tpq22Hha9SGlh#t63}6_%EYX4t!^>&(5Ll=)S}lHvMd2)NVVBSMwf zaCN7KXI)D_;=Xb>-l+R^Onw%}7bVv23%W_}cJ?n)aNjZ^s62*%&g zFFo}^W~+Ls*sGk_W9R94ZeoN7jWA@w6Eh)Lc@Mfn{%gj|FH#q1<5fGT)_%0S{wYiq z!d73S@oo~q{~Q`FW_;Q5+4fGG)#PW)xYWU&52S$ND=h_<>WH|VwrC-NwH`>lK=%P# zY+CB%av`EUXxE z_$18(+^%`MP6#siFpp=vD8#i#kACHQ?Pj|%3KY9(5zf=X6te%8z&uSMOkKO)K*4gX zA7mvjQ*s<+IHI)?Arpf%wLc8v0n)4Cwe^xGBAEI}JTKRxXI`2L2auBXq+~ ztZ$6|Jc^M2IrrIaP1VIDsHDwsvIGW0U2V5W19|+F<$RpL+q;jUIuR zWLT4dGc_Kn160E+ko^pDmfljCA62h%l953VGj%SRdbOT|GQ1kByRh7*yMD0*4Zh&v z1tZSf+{=t;bKv3vVoYUSvc$Y>i*DmjZf(#lKT`>RL86vbw1LrVSWZy#)31*Z4N9g5 z$bplMjq2hwk1d3FemArqq0w6(UXbLpM3`|>+YM&fcri$3k0pKoQ*~iEf(usc^S8pe zf1(S8S-~NH>a2%@7%NC%tlw#0ZTf$7?MGqo8Rr+oK$CA4t&AkRV^B_9i-p^xPW6#R zCVy?vh_$RD=Rl;RK4RYlJvxG3>R?p}WU;NnA5fLl5d_vy`)V74mZeAEbU01a?j&do zKSnk-VNYvjhgEHea2r*sY9ic5jP~8cV^5Q!$j(tC^6duSJ6VmO5czLZu^mz&QeV4I zGKL-Hz#4mXa5;UA4e7-QTkZLEIO04fL^ds-3UlX#{{?$J%&x20U#XT-^fHqkvI_90 zyzYTnnFd(~mmd5UZBrxngXJs2N&8s^j*85eqM0^X0YbkiTNcTHX}tPF%)Qz14Xr2- zp>}Lr)U_Z-zkYG(x)e4K0e7OvAtB!Fw{n#QT8zAfpT+HRpe9F+y6Gv83$~e4gR<() z^L;ddKqa{!n^jX2Bnq&xT?gZ3w%JfWylW;LMy*qmhsfn8S{gBW<_*+zPI>EUT*}5- z?6-8|4hEt*=z*(Lx&dJE3ieBpU$jesLmBV^WWU6#9g7>N&}) z%4?nrX=7N>_BRO{59LJQJoTB$Jjhtwd=0C!7lT;x3z@^Rfj;IK5nvsTGu*BFQ~HVL zmw|lIrqjmwbtb7ODkbTLR0$i`N2t&i%I!`L?pE}frXLbCbEc85_q~;zXBV-a!@ z#U=?b2WXq&2I(f^E+uTRl8`IhAgr@^;C#U;DD!407 z`Psn%uFAE$km;pSFqKoY98x{c|yJi~ z_n~lJ;)G|Li6BPxK(o)&HtmOF(~Qo0HaS$_I8iX8QeVgEZdxwjsUBpN#${><$3eI} zWlGpwJlll0qovei;O@CJ}y9`0KBh*z2xJ8j9w8leFJN_8ckFm4cY&!JqJugjo?JH%I>2oAL z&k*^=uZ{(Be&m6Qfzh=sbzSC*|7&MECJ!1N2`NYE zEX4B{O%ri7qv7g-jNkWME7;xVk~qi}0k|ht27<}9(!oDk0!=SCFFyjnfL=NgaQ!Z) zck`a0KgKOid90qprusO&BiuH%K@6HgB+##z`St(Op;W;zmW0;F|87?DzlR|Cgp9gG z1sHdpijF|}M-(TF@)zzB3tHrF>jh5-$!sT#Vpu!|{OhF25csHg%gvHPjWQc+c z-zOX|yU%w-D6ifa>ABFK6q8;f)ZG85fUK!+4xcG?HNiebheM)1#oSCq;IdAIXA{3Z z{##gwIHt<}hm^w|C_(p?g4c|u9XLY-f{GcCXlULwYk@y+T$#=FzKsty zHux)cu<>KPpSksgMNCR7HwFHzSAucfzdE=vP~a#lPpHP6ujU~H7X%S2>!^YDfgxoi zm*m#0oPl?NR6+}!?xML68Y+GI!7U@>W=cTWp-71%-wOolw+mpFQH_<0h7a$_5{qkP z$Y&pk*;uTh>hL8o9 zDl12V6&ZLh)JKW)DwiBlqBe~1=V?ylUg^(9+cgH4;ix(Kk=TGUJjl!Wl+nTHzHeHK zHFDmibDsiJNPD zs!fj$cj-UyOPCPcQvaSDYBBvR8nt+Z*)l$gAEuBH_T{5o4}QW>D})XR@r@9Tkf1qQ zhJ+MXnYadbe7OY=A5KiSivnRl&VS^somg1vBn65}547j;6=Y@BiLO5@nR6(T@JCkI z*~vT%m%>p7xUc{p@sz}`@vg|Ew@?_yguJomXYkuqV{^& zfi`@G+Vq!az}Wr5!c`j-R){>T`3@C#q#hi;f45jx9X?a@Q)+?5ie#)ESMU>;NP)~U zOF>w#9r_U1K@!zz08-1-tL<7!8Y>xP!DhM{Mlv?y|B?2VVO4EyxUe+R9fG8Er+{=f zi$>{^Zjc7)PC-DrQ$o7Ckx)vyk?yW7jw<|jQhEt9Al2bFrfNQ zIQ2R`BUY^DmFkzOl)bpl17LFa$0p?){7>nU-;LYNkqTp2Vkj%^F`5pR=UQuz$f$8x z2agNpi^ykqOwP-BE49MD*}-Hj!ghY;z~lFM8Y~48eA|~J;*O|N+Ns8Bj9CY*OvC?0 zUslC!KdLuMWSKZN*rkTHI?{)qe&9_W5B&qY1;ZV%B#$z)`ZBL{FDJ96wdjL{;coi8*jl;g_Oo^kBN`MM74 zOJgU)-NXf7pa#r#>NTB2h^dqiB0R?rrH}h+vOfel#v(BFk#kd4i^Q12($2eyNo!CW3**p zDN9;+le9EDaV7}aH1}RfOk{lcLtY?Q`_{ut`eQh3LXPNd1T(mlU`$A*&^8_zm2Y#S zYI>D0TxsT)hk)!K2&P*sF^5|szm>li+t^db%#2MloDELm%KZY8{&I3L-Bf@&Q2dlX zDS=cr<~e$3rE`0EQub)3rMy=Jyv#`MUNG*ZMJMfU!)jTLV8~nnf1pj8&oEBWn2f!G z|B4dMK~fve0eVk=Or}ay{q(hRD(X}zp^iJH{>qrTFA&k@>=53eSddj@V6~D+G2egU zhn!7AJb{T#j`9Wh$C}lN^QSSwb)qOA_8#UDr;Fi?3;|7F37z9Q4?<-k)6k|a+yRLY zbHA^tMIFAFYGgKI)GaTJJ(!2JfK4ljGJ|nK=sMhjYvXw+3ugOZ3_rcfs48eF+_HbA z0K`}D(mAeEc>b(&yMk|_AxX$Gxhik=JrO%2dC|q3Flu?+58{}GXPIscQnK}$YI1@> zvGlGBp5ESg= zj~v$%CLg%m(a+&FY7Cth9oRyMIrgrK1%&PNE3-fME=aXxG?&M5EfUTH3{j|f*2N-d z6#mt-`@Me`LLhKwn9fvDYEoxzVfmrnQSDMoh>vrg{ew>3D;!XYng(M5!W6<{d>xTA zVYUP6^q+ISMGH*@Ge{d2(7k!#ClhWQ_BEKiuOJMRHqG~zHuADa)VA;&oJE3nlr%RX zaWoFF2t#v>Nb$fU0|%|n5%bojN5hc`S~1gK{S*BW#kt(4KtCJ*n64k=UP;I^BlGWL zoK$e*`uWg9aUF%_8QX$WQD0l0g(uA2JJ7#*3GXyrJ=njvbaC|IFet-II*Ea2STk(7 z8ktQV!_rvW|G3L$_ZfGQeMH}>oW4F;v;?%P#i9{e+#tN=wJy|Nzx}f5xhVBy`dC@H zY`Kc)a3TctY4+K!EmLiVi#q-BK8pBG|E@i50xsU7xz6G#VuLx zZ@$Qj$r4WDTT$#w6mnq&BYF5aMCmTg5O_C5$`AO0I{0mzW(~v$YL-6wBXt`@uD?m+ z#>rfm?~2a0hDQqlv5uRbaD1F#QxGD#Xbe+?(>{`q3luY9WA`tNG=i$ul}ds5O=GhN;A|n~2VN!^Z8u_l%*2NG?)V@Ja9|{XEafZEo znKcdQcL9q%pX>(hXk?kkLJW($A~hm@>`8wYStlC}P!aoY(nSNu9r+J1eOs{y{#j~A zB=D}36w*v9GGoIJ;kOTq3ZHXYHb=5o!+z~j-vt*$8EF{f;(v??H$RDKrzaa`DXRFj z5R1Hb_D-4kKAH-;bp;{`zsPYbh`7N!^bLJOagjxg2QVw4<%K>5$yo%f7eMVgG9#}T z6qy#!6OY?}U!NS9?S;}Snj=QdH%?rM!>3c)ar~VLEqgmfV?yk~?88{H7{&0sI!0J% zF|g2b)!}vO)R8r)eQ2Cw2 zpIxQ%wGzzwyE;unTu820Oy!PeBL#(-sFk$BM^k-I-$m@I)QiXN-22WuG_+rn&tb+- zuK$?b4Fxqho}X{%;yKfSu!Q)keF^Dz9NRX|BbgP8?G_~bmFQw8ICx*ck9gc2@shw3 zdHEb7DWENq^QYvj4UN`2+k_WH|L9JyQ2hA`0y#j%16t6ZoXbWU7Pp*^MP zOxK&)*R)lJw;^O5H=n`{<7fGr%JLP1OqjIid8M;fH&lHzMTTzn^K<7?GJGk$ey6?@_{Noz0F!d2_Y$vKZ1H9}2y*70Q>3Y6-VXSyx{_a}0qJ#Ka=Cjz5Pf6cM3>i6r-xe;`+cAkUTEic^qqlI>3S>SUIn?UOe?-gD}H0cym zSo>W=Mo>VJec#J+5>aZ^a{4dIhp$pvJ&C>D0*gd7SM@qxl=8{046MD&jx{?!9;Xz3 zzNf>7Ss@;opdMv-+YD;w7|xL$hSc@?PS84?zYtbuWK%Nh1#7a}^%7Zx@?cm0SiY23 zj){~Ei;3HM(G#JUT&2`$@RJ5l8;ny9lXk@{F09}S5XU_kjk`$Pv#FDE;;S$SU0&M_E&ON|Nm#ZZ3W zF2}W~Qb3ikpz;j8?8R4e`tpHt65ME8O;il7Wmv# z#y4Pr#rMr#^5JHiq(`3T{nYU(9}NLQ5Yy345iv;4c%>%KRH`32XsK;zm>Jh3dp(s< zNMb|p=K@vM;);E9173{-N<*R&HNt@glB;)m^(Gbdz1;gE3upx^oQ3-L> z6|VmZ(gy^`;+5G6nM129_I4?s0*66n(^Up+J7Hq^){^#E>+{!}bV7p3@ErN^EG~-O zXSHG)ZUayi24xV^#juxV8=|KractE-xSGSCU;8rD-X>9ZwU>*dhNq9CM#$u{L>JTz zFru*3RU2S^)WRMVl%7ZUS?@^URTRs)5cket_?njicT9IgfcfnJu?u;f*Lv<7{h8|n zv@d$>?|2m?6-q}9@0z5iN4A2#z5K!`3^De=*qh-r)g9xe5tkWgIHl)CS1kPM<0%Un z)=eDA;W}mtvLspv9?xX_Xuh}^GNh4LFbJWGibgN7U${7h48i+3x9?Z}6>6K~W4VfA z1?}lvU5H!p{f$B?V0&7%_S5^lQQ;npjJnTPW;B;AAf|$!DHfw5A`Mv3bU$p(E@@x;*R(4SC`)G)%f~6{yxOB!VU+ zS4}jp?zuPay^t?3yIxvmI-K zAF^cB0q^w`)m<=G16$nq2umyljJ!&zv#TGS2%}Z00{VWcRX1fX#?wR#Vn+wBX2s!V zSuY!$f^He&q{$&gGe*HJY466sKZ!;PTC{t5?>GEpJ1XJZQCRPnp*kS^BuAO@6`V4XqlZq)cL*CW<3Z$$6*qQ(ketwbJB1Js5kVI*wP zei(K9r5rD&6fAR$XaOa)@ucZ1cPR0x2?MxtOCv>GmV;iWIx1XwgekGF%bFDhe(`k~ zs0STYNG&EcuH?_$DzsK^Mg zERHlqmBA7Jkgdf^73M81q}Fx)7J&!*QEKAR&f=jOz9cZe(j6|BJt~^z#=UiNngv79 zlz1^!!ZLl%&S=Q=A?DNFDU87dQJbOAd|b76*M=*fep#;75A;klFYH0_l8y+|BaW<+ zQS6hCNTS*d=rvqoNILF;ZKVys1}A({{Izzchl_PLtaud-IMnL1Fnl+T;tc)pviR^- zR-P&FxeO9=y~k?cWfd-77Z@Mw`wyK)IDcB^?ro6wvf&h(6q)Cw*+*1lD|k+OANn6t zj+mzKx}a&^bzNxiAL}H+rj}nq+qpV8-qWoS4j`Qn?|~kkd}DAOkB1)G?e6Z3NgmnIu0V6^r62Y-NxkQi z-)gi+%QJ?Vksl2%GPU~v;)u*Al&S=<${v`NO99|qz6Z>q9VJZc@k+S^IY#a$v+o`P zFk?Dykb{aoU+bxg44yhx{WL2cH4rcoUdD?<+e?$Q zpV*XWH6YfC#C}PQSL#J@@=ozJn=cl+Vb8HN(I%miRN%r;6NAHH2-I7yLy^=)dgGE< z^WQlQ5WJ4SRcN9NPI8_F)sEJN3Lj$lQN;`wE8YN#6uSu z3ypJ9;L(b$aT1>`eM-)~u%8@m7o;0X#_iKjRSnC~mBNTku}<7C-E@sM&VFNk4>r>D?rjEg}*%iCdH1;A8~ zMa+|0hExK)6jo^y65}9|{rNMF4 zU;E2}e!Yb?xFN#tQ1bZmNjetBrvzFH&FGpB$btc0-PfcP+#?R^s?Z4W` zyBRF35G!ty!)=B7!FN*xtbS|7EkAPAkRIn8?jquw@d!OgDS7eQ{wc)tS+5!4Q%vvs zGmEOu`(ah3o>wQpI@IqRz=EZyBgMdHHQT{b$d;<26ckw=LVV(^1><4(g#zu$$XGAq}t` zd>k`bLA&$n;#PwXF6`KeIY-;GPDAP>>ZIPUUxH}4nru}(->70*tKp(MuISt5q4D=W zyNU}+fxE0yTW01|z|>Pf;1gox&?p2kCbH;cXs`Y8=aV>9GZNOUxlQ&7ZT-pWOUrkh z&TP4J(!4%4v+smm31%@ye4YSC^aMzATGb(dX3AhP5RK}E1o8JHz26;l0WW7}um%Z> zoD-f7atKGId$&&^@8wXHn{rh$AAC%+J!RK8gJzpMk}14R2ZyaJ#nrmXzB4vs+Lv)-dBh@Y}63Yr(yIj znBix|Q?>Lzw@PlSFQGX7kd3~w7ulFl);_`X2FqBg&?KnlLxQ0r`N`?IOq2}J|G9mt z6^lAdpXA4IAtHKp+-roA%4{}F!VawG4~I_&?d1v%t@>${?~~UXoX;3Pesda-N-xHWzgPRX6v#lnx#SpaE|5#*GgpN! zZk-q!nIx(-kOtp0i~p-yq7J$h z5w|25^IPWUm2N7^=q_t6&CaZpgo@}WSClLjx$T!<6W3$WQK_?YlWed((L?)_ABZ|n zdk<9kF$ra*s#CQ%0(4(h$z0Ne{#M<_+ETe^G0Va zX$E&jv|t>oq1?$*CU@{vkjbo4QFm!o|K>z1e8H>g|jJ?n> zxl)zhzCT{4%_tPXS7Ck`7{K3a-B@vWcGA-J=cuT?XvdCXb;GN)3R2-Qyf$#$r zv-lvI^P$dR@d2nfR>g_+1e8c*w*y#l=V7pO}n zvfZ#1As1`($yCgMGRgEpu{uPs6rB30+r9k+tVT#8%Yqioh{gbsv_H_4>NNPiib`8v zpB41)Mx+e2ZD3|JMuppaQ?S^C%)?$BskED9ZRchuWWsE5iNh;>eR!ymhg!)RXnkAt!j|0zs)_CNMB{%w_OC_u(%A7uE>ffPM7iXi5_yM?%3d#>JCj#oJ~>DN5V zj<`I^AKe2+C^-7&Bw@_hOld}+fd!#H$s1XX@fzmKYeHOX-jJM);-NbknMSE^-jDz1=YOf`?=5@ z=Iq$y4aAosg?e`BcfDFsy;n z3cOC}_MnWDEw$ZE7En#-m%1t-@^%~a4(Nbay%@nv6mUi*l0amnEi^Zs&Sx$NwMk%T zuSMy=c8#_5{)%?ajjFokz>oP{ z;*6HPeL&}I=~C!)2w3nX%n<@gNrKrmBwNm>WGGbS@C^Fagh1)>9p|$g$JeLQfm8Di ziB9vl=mYd~D&HN3rLC@gd+7R;ETcCSqjs6RJnSXk5m;OlS z6Gbe6dZ*_lKc@&ezU3Og2=kR1_Ha928gU$iGfMwZ5+)u_cj{b$<^1t6UG+;=?Z2vX z7;tqi_EHIad=|AdIKh!_R=wOQ%Fp)Wr%!R>CMa~$Mex2W45SDW^e`a1uXDs{M_;DM z9~=M1O9k*djXV!BSTF`0cJAL{{|Okb5+wLXF^a*VhQ(Ri&)TNPk@8?yp31wbziVGF zkqs3SHDbrWc4MxodS9q>{o$uC;J;*lzcBH;;r{!c?T)}bWkaRh0zY@YT`tqBctY~h z{5`tn+pG`u+q-8&H=zjv@*{*HpA}RC@W{uXH={eu#wiVo;=3SQy#3tm?Gs|&tKw{m zlbQIUEvKlsc+=oaRd=k*Zi4sn0HgOp#xt<8mMQfwE`icmH{V~~q+)q$zHWuMxFS>u&e3uwb2D21 zvebv+d$K|c&Sxx3Dz5h#o!8LHWP*+7OO@sVEL&gmf`}J?FKO0AZp@v zAZg(~qYE|rDRKHlnVkcDkqJnB@>rjWK}uCu2#A-Sg3NQieCyUz%bO{Zno_*K zeRLAPvyoFoZln^=PEwN*SQn66%@i9$x{d_+MgX%xY`lNB_y_{x!UwEH+v)W5FYz;5k@(KxMj8|kKp1f zv-!}yzH_leg!b9~xha?WTX?$sK-2jvM31o|9{O&|sK5_O&YL+SxvU$}!TFj!`aJ^t zvf7xf;C%@u1D8#6m=>7M_6^0T`I#7p;a*1Fhlp%iFRS`HS{9A78Z%cFNA~PBW-DCa z6qr)0Vp8&nH|k%MbaQQElLsT@LRG%?D|b|)QjBBSBFwqK!9@?Xd7d8}w0Y9Yb$bZ2 z58YcNWmp7l6qq|&XDxC&n)5~6j=A<^{Dp9Tu~(qsd@;#sx2I*pEmrBXeLCqR2wL^B zD4);f*^zdWHit)3%JEOR-aSz71VlHEZa+izC+hoxqrNXs z@+WB^>MxT3oq3MKleF>|=tZ`UI1|1=CCf{iVMIsJO;J!vpFkz1m?xIf217aQ>e4zf zjR0)=l9dT1n$ZP*1;D#8<#)s9v624ol=*j8DIf^oHOzNhfUHOtL(+2a$8COa3Wvwq zB);TXN#PlA{Q{y}GWq^A<>4pOJ#;ra#! zK1%27iv5L@&tClqRk%KsN56-?IGF2XWAgSF?-nXGgl0?rQlL^v^lALFuTm0>V$6`L zCso2F5fd?Am-5KV!}Xm$$}T#iYi3qME2jeAPfk0TZ(p;;|K#7k!dl?7@49R?`f%U8 zv`73tqnx^{yVvhw7dQ=(nVHkCJ|20X-0QPWBTi8qYoDUB{kKhXnATT5W~<(vY>HTf z_$6*bogdT9Wu(o_UDrBL7-=AF(s;W*;Fc|8cIlEo-F0IRObURZmrf9=Za@ar#$tzU z#a@La6z{VN?bVo&7&y^`_CI|5Io?27Qn}x0q$61&Nh;x}!A#^1w<70a6k32WQu>;k z$`6<`q5sOT1PXjghi#=FZ>-Pcd_2x5tP1z=bVZEdLVcHLgBal<5&8wKvFsNXVSED3 z@#5|GpWYICL&-#XM)lfw9Fbk}K>|BmCzQM|Z6T!(kI=JHeRf70FJinJ1y7|;Uz$8; z?N3;`iE2=z87J8{Ubq13?XjPus4GV zL!K;7oZS&Pe1i*cZ0j}&AAo|csgV7TkNp$>e@}NFf?rb9yY>avJuJ)TV)&2=wLQ>p zgwG>Qx!@G7cgkd{!+5IGcROQCok|)Cd!Hl-ssS|pj2{0{9hyrF&uh^e=|;pqCY6iJ z2lpSlnjh9f$-ccTgjYaFk# zpF@sL>&&IZ_}^mw@!5i7zowUf^ca|um!^OWNPUtY-1d3mL;0z61_=f*2TCbY?rKgo zZ5z-Gqtg1gS|Dq_vLAh+?wNIn8cLGHwajTtz?ei@n*>cX3-|B0R25j?jgmXaxT= zqXD^qodmO|5HK%ho39iixJ((1)atFK*He=WuWU4~Qn>j(E$rhm6_sCjYLyuDaS{N^ z6%y}M=m+x438<2mL-;5RhOt5iI3&9-@6!TrvBwU|_xfONu|LvFXO@!V4d{06FJ7Wr9Ndtq#5|jq>c`Kp|LS(xBE-R7&LWMQ6(_}V=yHVRy z(33saqcK!uWVEm`$11O-wWx!XINlhFnNY>y5N9}x{)@&$V2z+=D1ChV$_fzVn|M&< zAEW3a0kDHb1cw>HSHLi~*?*3u{nFwZ-qJlSqh7k^ zE3@S=mm_^~88;ZeD^Xww9+0Vn-L@g5mpccD(?>iQQa^^1{fyTs6X&ZLi?-k181eZ0 z3%E;ofH9uX>^uSBucCo-g@xDsiBe^LVNVePU{6t4TliU&!~_sz0KauNO^!_EU5KLF zALadP?2nRX)IGW#x7a^!r$bn<5gte$KBcm_jHBAph+wGbZ&k+XpaM0@K6V?;%F)~z zO3k7tM3lzaG$@wgd!^v2_*dq-5U5?FSQ=As&+FF{qT#>-Ko!JMfWP{^3^nuj!2*KN ztYB)i`+`p>8kK)9O1-Ks2Y6 zWQxQg@Ie?Gyhw9#SqV)*O@nQb5R@g0g{hw8U>1K31Q@##|C(yL>`yFbMNd$z{+yoD zhYN-q@hz?YBltpq?vQW*NAb&p|K||l0SlqXiMf~suIDqP{kQ)9pd$$W5p~KVS-eR9 zkOhPedO^y`iZK>~@DpFNqeBICjUT&+C~E-C$3TvRhJ{G+sg$JJKt`F(6E+cTjG0iU zDCN~(PtTx6!>iij@$%lyuPE|X*!5*qqkI-6^Sr>^Fz%R-$thg-1MIMTw?cf;GKpG{Iv(C>jZH7m(dBZ85-KE$E@Vg2QYg_nm<_gJp+*Z(i5Ttc4L4* zx=?^@FYRdmWH5hu4q!)M_nQWQH9*CMpj*OQT+zD6a!Ooll@ttMxqE?VD#C$q<7-htT#Ar6Sxfb?f1MiGFJuUAD2!C#=$ww3{x z9w&3f|5>R1Uv~$JP8;AqlK?_IY1ubb6Wfh5~}{}kf) zoyo$0-=TlUM922$ab4whD}80-n0=BPj2bmIp+}y8pBng&;&?%pHF=X!SlK8}?6%R&DDsDD)3n$=6@jU~Qp#KE)| zM4Z7Sak4nqObq&H1JrZ^U=6g9U|sxH!uxtage1D|EowoZ7c0r?d*3KSzn~qodUOve zq-V?C;QNQNYIg@J{Zi|H>JDuf_+(lYtspt=v4pY!UKvu-xx?shDumDUNMz;QrK!!yHUvv{J%2vJ8RGmU!gaepB2s&eMW8jKlO zW511lWaoblL(r!cQ^R(N@!Go8%#qYy5!&45!Mt4N+2T+3JbvJ@aVP@7a}1gQX0UkS zlKgsPA`L*IBv48?Bv`V68{m&>u$$Zeb>CkA2eShxiOH&q8lg#N9!jkC-yHrNRLCaK z6;vq^;HpBv=&I)6L4MTAf7=C!WET=u$6F}L4(>=BUC)uU`XsM2cq2F5i|88wRKSa_ z5gI`sJcc$BmGFHpYu-ns{e=O#fb{H?5V~w3)cn8fqX2R`HP>_g6WOC4$&QPT@2_Ni zbe-+Yd^O7Ofnc%NQZ3wi#nk?pm*jsK>d6a|#6Noh{Qg?-C(L~?6HVdEE9yx1tHcyn zvsbuS132fQUjaR?tpnT?l*QFUqs=>jnDcrRfLR?-pF=L!b1((toGt*%FWLE84Vb}S zd5q=?m`G@1OYl#UxRF}j0yZ~-{RgJ&)x57KEtsVElI5OC_LgaC+W&t$Oh8TX&X9nbkcKDzNlj*t zYAOvz5~5!JDBykrBWFU~p&<5N3f>sc+-_&3U?Z`8&G8?E5rpvc5m*_Ne0$Im0O)Jm zyWm8=bnU33?nWS(xL0lS!)U7!8tv)Z6hBC;U?ISUx-*71@*dq#n=atc&(u9qk|0^6 zNu)wA%Vm*5Xph^FjlcU<# z@3>EXTRr!cg-`q?qi@dB)kF?HDj-(;#hAMsec;MkGcJx1x%Sr$ak`Js*Fhu}(v^A0 zW@NCL!Wb)?V84X}P(<8W;APq)qlHNU>!dE{qJc4}dt?{H|7I5}OeWSn1YXk+R1i@M z2O_y<7FXhE9di+uG-|!p+ezM(;J+KocWAE%MZNBdAiS0n%9bEd$ZM%5vx&vYj_ifUTZoKU$2Q6=H%#&k( zjOMD5_8Bc-#ZsqJ+`kBXQ)s?>-Mu@Ss)V4ny~Qj9^6W4hqb zdCmejxwDO#zmFd)nD;SK>55L0#3_m32Y#wrhI}{gip|2MMfX=@0Fea3J2E98e!lNV zOd4XwjLHZF>mju|rH29Ip1e=d0-R;Z&na>Z(+ zg{Z@h?Uw;LRKT&P=z?Tc;StM83?Nd!`KE;mlhp#Y#XXV#9ej3$sH+Dw(}@!s)-g~7 z-15DE11bK5gMUkMiRc4%s@fBffaf}A`e?9F0AEa?LyFa}Z&D4; z_sqw&&;hf@2Ah3oa}Os#UjP|VaE^q&twjZsmG=n6%l{39GyugYv4FRWOG{f#CF=6> znc^L%_uqw}))N(Egficd3Yy9NlC3ux7v0}QpymN&;9{1gp@1)U1GB7|-!SYENfHBa z0Ks!EjfYfJd?e_z|4q4~1uvhA)?0Rg6^Fk^>~P#ZAOY4wG!~7B z{h^n@?&a?aj9mXziv0J!Zqr<)MKUfdk4{)whU zk2GbL&n>^UYwK{?CGW zh=G1iCLf?z+9Q@t==x`SU0=6PDL^a=+{44emmfZ>cln!a@10=Q?D1E+z6e1rM6 z8o~47WAw$)@?-Q=u$-bBt>C`%YpuAs1CB?YM};+6Ne1JR^#S0|SmDchhDVh2qySv# z3kQvrN!-9i*Zh5Wq!2Z}SI6cDB&iQQ6PK+?Z{9$#+J8lsx1X#?ZOE*U_X)PXM zQMwOpoOTE~gDEg(7&D&|{fPgXZv3uPuv@-g(LmasoYfv`Qz!gGp7sQW9ol}TTjF*a zN!TpMa-@r`g z3FWpxDKbHcxadQ#TV`T_+HO`jOQ!8mMvToA8(zN}ABpEuky+|$fJES3;6?u))vWaV z`!N>vycP8)ohx5#~aiq5MPB_*+4mX=8?&r6A# zebv3$F=&q1G74n8ru&Co+yltl^4Cl=$9>TlH&gMNY6zZ}< zhJ*(fQ$xUAgtAf)*aa5=pd)a+t{Xx_BcT-zA&H|#>W2GUlm$FNd9dJp)l+@Cm$wJW zK&@786%U8%$4l{!9Fr$O3 zc;cJ-@oXYG9#N23%s|;3XGSdJb-i?_;BoU=zE#s+PU}~U{_nbvMUEu$Gm`6WJh?cM z0AL%t9nRpg`vo|xZ(CZ^KI-f?9?*w(cW)BSqdk1Fc9sYtiM#DJ4lmTe#N=xY-4&r6 z*J;6}GdDp(66o_hFmU5gN8)3mB?*=WtpVHu6JSP~auel|^#HV0a*6p0mcJ#^k92D7i~ z%XdvPdbh)t9e8}pW$yXqn>_@IWn#QWoRZollml;Bne52j8=jN~T(^r zj9<}+QoUa#jXY=!t^LMABC`|BGyGcE`9ZIFBd{s2_XL!C_#{P9ouG&hbwvH8#JA|p zH7tEB`1xunA9q7-Mf-2u&yocVzect7c&%6CSsz=?+BPg*Q-x{Mh}g~BXF z%NOR&@S7%+BCwTo2?6%GW2W}_Evtf5RP0(O8rV&s9uf=r&gu!P=m;i<3(!GSVb!Hb&t+zXpgGIdW*?enXTN= zS!_|Ou~n2dZhj`P>&|ABn^l_ zdN=Q$IQy$xvP=P3sf(07H&*cdV`&zZ4J2&$t1sMeO8vyj?w?d3WFPz>$BR)`brRlp ze<~8%XwXB>()JDP*UsCpBvuzMvzZQ}oGo6p)t|sN0k4)lCyun*Zuh=2FO&{V%+?b~ z;b8&xoVq=CyK_2xj_`z&*g4C%{o`~=DbL5R$eIenqU&9RUoFn>mmQFIHcPrHa1o}l zKS#X#OiS|NsMR95c{-7MnK)%f9jEjpS1(QOZ55Ufj&uHKihyArVeK2N_s8BouB8;C z3fh?rF?4U|XW(m%Hqu6JkJgVVhjg5fMxvhuY&T?nmU&AD7kztV{?2oazyoh(Uzm5L zQwmxYm0b>7tWm=!nVc?bcYIK(Iy0`IatyOr>ov>B%5(FLYN>s9A}GRQ!(n9_thmom z?{u-^uZHMy-X47|??Nyd!O1lD;pfT)Hrg{pNh`Gpz)~uu$#J@NM+!1L+j7BkiDIscK~+J@_5{@ONWz()3_!WZY_nC=3r%c+NPB?@g%J-GGT&9s-{Q{j z)ONu-sfG%B+FGi^l+fwGA?g+fij(WSmaVJ6)ZY85nYVF#l>%w*bD+sX8a4aO1Bvj~ zBFxAyYUL=Sqhvf2c158Wq3>2#UueSMr^7~=d2>jS!TBDtY3leKNtkN#V7wSBL^AQs z7^8_{i7MPH#52F%qh)Hm0LBjkw4UxWIAW_2Iz{Hu7020|g{ycUUYd*38y)r(HAMdO znAWVW?Xv6P8sYmn?4BU$aN3u~BvkFuY^(Gfp=b-G%!wfvAwMQBX?X^1@ws+PWjBIH z^uDJO5`SQjA3~Dr!D`gYedK79rOb@-tdlIw=|wK%x*C=Srrm>Ul7=1I8-q`PfuT>W zLO?(qdfYwt+P2W^;s~(F`*$@9PLRQc2g#?WSdz(Toc5~^E&U`a>^rvBC_ujF1}I0^ zric62HE)609c;FnR82Xba&S?JQ(ZoSSq;QO+m=?uqM^p8V!#n+wwh5dD`{7MB+}ZZ zc?hZAksLZ4NtAjgtX##yN(8F1VB0%bf4{Wb#fEdheoH z{VTPM&!-(51FLG$K-?~88Z_VcNG)9RjqF8?4SsD|u*c!1Ef*LY+`WkU@?NqKgYf^( zHFzp<_M^V{24)IkA$-vg50v4MAX&P80L>Uh;aCfkacxFHIvRA(N*o~87;S#E6eAVN*KvnowsVeBxucY-8wAZC=Np$ByjgqeR;IofWZY8iT$JH5xwvUO<$gM#Ax4!sV+$ zxUCeT$pG7bnna||AdRMZt@T1d@0ws4&;Q$#Rb@ae|F)DzwPb>uQ;*$k7S+eLhsQXI zuxH1%Tfpd6bS>-~`kZI>DnQ;YziYJXm5-7a;`NTaq3{{s5t8KxD)paS4cFkC+8Z|R=5E^ zrl!-A#-WE-O^oU7>u@?QSKCl6WJIwuCZcI8xyx(OtXhyJtPdkDE*o6Dr2;*(HV9qv zub*(dx%b=6d%&S}!M?oRg)P-N>heoiIJ~;X3{HlZ+GQniUS6U8L?u^HoHp&T2vtk? zwS2i)#WTO}NeUki*3}RJV#(Ax>unc-f~vP$^Nl}K>-)06B`|QI^!lVYWL3P+Z-JYI#U}^h#n(xgZc{D3BOYzow)YS z++FQ-bGW25hu$#pFP$)XcgY(>(Fdd`W*WVFQEhv@8Fc}r)#CEpnW)wGV(Q?MJj~CZ z<~ymT4+gdJ3pR{^!Rx!D^>%JTK2PMRMb7~5IjlbQY#6P|ZQ`Q=1ZN_?R7IQH%Pj!b+H}5>P8f;-| z)0%pE%UVgJ(vi-8Ahz}ALVuw|+P_`Yd_^v?GjaHIj!1JFnJ>g0>NwexuX@}`Y=dgJ z`DJOa!+}WC^(B6~cj%6tuaRVYKZIC{G?{Ku`N7Kp&!f9knL3v{#>G#W^EFVL?olwogPvNQVDxGxm)V`XNHkztL?kYk;mT&bqCc%bSq z=`PQ!d)sL%L?B&-X3F+!N#aiq299I>h##Fk8A6;DFfLFG6 zJzH=Sd3%9>%BTW`s3SQc@Wr`nAMwFYCip_Xh~mekr4T0E%U!goowgu(4aNGAmL~gW zCZ+SeVW{axY$PZc`Tf3-xr6Q87GIckb>nufudY9CH|?A;9`b`IBO6tc>@y2a7WXQP zkXh~?4td|+*Pw=1kNdRK`S%h-V@?Ld&g;XN_YP%^dbrv4e3*-}!SDiTC z`%`lcqh-9G=k&Fd`!L8WyZrn>S#@F^l>&W!dxCYU?()!Qah4F3K-m1F?+kT<$@bC7 zhTjW}@MnE~JIh!ycW<#L2izF|bSSA@r+`NdOaFCa_z~Q>-r`+8+jE~pt#w{2ju&LU zm33qmT4avdUO5MG;8EGpi2KytAUa*SsXB%3$V8(>xbC4l4*r+9(OAhl=hcH4TZFzd zdV`1LroE3*8w`CvSsSp_4N8Z%d9nY6>-}M=@NZfV5tn4wK49>sq2h(y<*!LUE#Db;8S>{)F+8xs&RZP_W73 zfW2F}>;vDS7^+|eW-z-MPam;@p+DQc#b%iFns(Q2*MEmFt62>iXxWNvjV%aYebhae z>wNtNXQwZ#D$l|yckR8?Av@r^DNvg@4QB`8$Il;y{tMIaAg-wOS)X(mj?X6fo67U> zG1pIlHO{rrIsg@>VJF{*{fyDcpp*l^0S~d~<)oHQ$xZc=1>V^^J=_;6Oo%1?)$tAT z=p{Au%tv8~|9dhvomj%qCYSy!_2*%v> z@Uk~mX+&){cr0$X75ewMD|#=mt7pxoy7KQz&d;nje4n-2#Yd55_;H!ZnwGR$TAK$Q zMXzixEz+p*YNx!c=X^y#uAI*peb;!axNP>fh?LY*E*L=HJ48tD^XJV+d|%cp94 z$LKOh2fe)5vnIg7{)|`Fppl?sI?6=vikBqVwmr#W(Vlj=nJO-2m|YB3{arXvVa46} zV-j5R*A;KBABzifTr6qa!>so?^j4c$pbJYU~91D9msHc zCmpmnnn;xK!Tr5Hu?1j8YyU&s+Vz8AU`NxJn*f4d0ncAqlPM0sldZ=Lj(S)#5;>9= z6nB!JaR8lIBd#!+vxSL%J}F>l3Pb2&rx$?@yKFd9OrdDL5}a1)gR+j`iR&^lIH#vb z-}Lb;Y`vz~4Ha)f-uWu%jM@(vS-mlV&7;X;GCxGI;Vs*+e?WlwrjNtPeiA)KvR3Hf zboavPb0x!O3di>}63)h_=snDZyrRnYvAWXNSuLVCKKYjRwqh!4wFr-EP<|-~YHTWA z1Wq%@(6i&sHnBmdH~2?;vwld&_3}@0HJ5ti#kf7fbMlhKf(wS-3zfo`-9a^Ab818d z@OG}F)(sy}^op?ku147X-gl=U?nlAGj0pH2i%_p9l{}5OJZmwGafbN?NpeOCQgxLxSLdGh}zxH;zpD-%*}R3%It?lb`4qs&rxe=G|o&Kni`sURLN9`r;a}>wKNq z&S60(Ug;Itr|Df%_!NM>`bo=(gUK3wLs57d0L6Wg0{{Vsk2zMs!wz_JJ=$&ax~{ze zxAZs8g138}Hd2?mfWc;d>+OO!nYEo2&i1qq%PX@?Dw~td)}6)sEr+0fKe8e-F;}@D zY14UxiifjcmpV;Tf8LJjU?>EMMG%esF~PdH^2^>{@a*TXM973sSDnAIztF%?K7x*jJNaJ!6c-e65Z%^WJ&lnp=9B4c4hYdM}><>fQ<}5xSCTnwsz8~O3 zKOWtYm8I2U%D>3GO368%)6>Al@8rzd214>GTV>Dp?EP>A!V0 zK@W5w_U*#fPO+dFZJocbY#(nsNt&^~S^VkjWZa@{JmlCw9h>Tke*-X@I!zLS zXL~1g);VwG1w$8heCFs9T*w>u=NoJ`+MIPx#D2}ah0*fFo365sIg^Vj{MGJdhG!mg zw-J2#ILz=Rt-Xe_l2T7^kq}?JdIaB9bNZe<+98tj>BAmhz2ks`OH$ucz{C1L(gn93 z4Ks#pqG_3|2H8``@MIX<;)jxeui>>WLDVah$Q>?E`YHIib=13`8GY5|GIY@sui&Ui z|K33NJ1AbBHsnc+!AnrH{>M83d+c#2h>ZMBb-|m;Y|4BxrX!3jIb&y^j|$q;+O zuPqxW{9$o~Pq+&SX7ZRWIgV(x!tIaLS?MeAG%a!xdgX=o4$*9Rp`X6xhx4&~8hFRS zyzrR2sV{37J{0E3LK>>8;knAuZL-KHN`{&6jipGU-2J% z($({j=w*h!Oook3S;f6AXvI`7prJDO&%&gyk~WGA-@8fD_G|YDbPfGFy1G%}sN35P zgAXq$%FF-&D+#`3?4m!yTLiknGDrp={iND=Ok|bw`YDBhcx$lb@o|sdeT)z{wG5HP zXO=H5>oQls^tO>RYXakU*0c9vV-%%^VGc%Fe+YHrg{;z~Zjj(pBi8m6d&wTgz$cyn#$GG^zIP(D>Fa(q0CRO$0GF$tW<*s1;wtNTx8AjlAV#Dcki zek?5&v2Y(^#wVmljD7gBO8jIy~*p%?#m=9o`FCHgwe?mCOObRwl#P2{jOJ z=EK-+Hi+d>sXS3Dtpo10FYONg+5GHq;4!f`{{A?qI*mg=7Z{pe1wG+bOGAC5L?aGf zv1_|JuZ5nzprsC-)^G+KG|gkf@0>K1Dk@Z2+@gs<*pI+kx;IJz7gEcMgx*8U&aT|; zAtCtpe|EPXQte#U2ds%Tx32 zAnjgpeF5(Z#qT2+k@MfhUsRzDX{K}Z;|-2AESv};VZC3!xsQHs8LKL4f!sV??pQ1u zA=FsmCs*7lLA>rqP@ujhGx|KJnfo`4#gynM7zu$73?x6yOgzte%35aQ)qiP$0|&pm z?=_0ArzCPy7@8BJR5VBEbeWkWZx($}(nWLbi7cYKXewEJkZ0THyhNle!|aBdIV*c> zf%L*G3k6p;g|CJPz3+F0Ah5NA?NGG$mxNvZ)crU?DPgmYOQbM34dET+|G|wvUm_i( z+2eb?``g(EhC61L=yRKivfc*?qq2oTg5sP@0NfNlPu~!T9pUmE&0I`a-}1sA-@|P| zS4~I1@HpO)yqfNB;PT*R)(C`nrow9kr#$nGO!L#tS^g%=aqy%iZBPhz+08V4Ju7N$ zK^`fc-U;mQax?@`a-MuOzMnoQ=!~Du0t_~d*}E$^=4zq1``n8icqCk$v=rQ$4`zinSD^()D zo)u{1edowNKMBE+xjfmRIgz*Ab`6sL zaoC1_!8Wc3p8JbC%6qKo)O+mhxT%bc01hW;v$i+~z+T^)E?e53{&o!-uYalz84Vlm zNa0Z6O@O)s3%+%UA4-mIw!3RSh3kYnsE|rNq5l&Eu zWF%v`QCvUdhzWJeH{Yt^z~??LuXBpAcL$}!z5`QLY>XWEB5B}@Uhb7QqF>(@*Gj=? z;NMxW(>Yv&f)meb$u4DLT}qeN8#E>q^>k$v$|_+;#)Iufp&*m@h|*87uuy661_22*_r)(48N@`|XaUHgFRRuDtLUuk$HjHn5aH z=of0rrkNU4%Q{ZT)z#;?pdsb#yC{IV{mj~8rv9I|;nyo64(1Z_1E9(M|E~MJ`GQFv z&7+z94i7Gy*g)zKea9L|9S#GnH0XQn*|`5oC`Nxxn=uaAv7k(ff2l(^?qJ2fEkHb6 zh_kOdFAN+_1hO+c=FU!%ecpk7GmsQu?6XnW={#30KARAMv_^)lMyq6dT3=MhU)K{s;09O`6C}_DRC(Fd|^9 zMGQ?qrT3QKp;K2(k zlbvUDizH(8pqkuw&FgME}f2U$7oc*$m#}#w;Uf&JPNxmCe z3kT|3m;PmvWF;*UR`WK5&e+M&L+f7A=xR;SSs7A%z(suJBB1OnPDS_UiElVH24 zio)++vA)|Qu-W=7=)vOjL#YfnVEMlq`^n>fJIGbJ8$+Fcy?Fd`%ZhFEIW42g5D`jh zs%`9$H*KL!Pmv^j-T<(7@UkOp#BXAuqy#6*b{nMHxUBrV_>;yT2WBT19K8T_vI^a& zvIbNjkWzWv?nRoKqa7G1RZ(%r#vA*${qSeYZ0JcgEfK953bso(pr*IuNK zxBQ7}zJiyC3M}VFQ&?w`n9g#swyxYyPuvblrXAz@q=0>zLMPOG2Un%d#63az-FtNg z*(s}syWrjWmB7T`E@JO<7VMAI#JjI4Sjl-ijUK=zvEI(U6`k=qUhbBZa&;Cym8ERv zVf^vfW8y!C2Dw*S!mSmh=i2pEW`6;K=khq`=NVkh_a0l1eExIi<>B7p(4ZK${e<3n z0`8OU~)(OOU3S48tr<*3=TLXDfu8xEkWQ-}^?w z&PS}X0o;ftBa;L58mHQlHwiz_a5gd&wXQN5?);-SH&62)q-VDCozGb*w@MHpptEif z#)4l)KHueRa@euJj_^lxsD8iIj+-*~QpK%bhK#XF;)6oZeo zu3Z-I;t30E((ZjvQ@v3T_1eR*i{SU|=$mT#rVM#N`LR9F=8CoCO{u=2su6;=uINuh zKxYldbHmDtXzDQLJOO&{zl-Z}ks6uX-s}a@EbvmTEn9_Gw$wre16gfgav}v=V3Z|2 z`qR;X^r<5pdRO1+T<+v@WSJmC*>{k|6pFfuJY5_;ktOo9umBFEi?0o7b3L|~ zz*SMYEvhis@pAOr{*tEKb>{oc&9=j$4HGPfpCkpRC-c7DB05+{lkme^dGIteGr+yI z)eFxHL5l$I5&fuEdScp0#@D;3?_}E*+Y6(6MAqX8WH4hiiGOV*{<G z`<72QHwD%UnFGTAQSpI0MY|w<$DasHohL$c_)6eotD#pwQ!SGukdww*{JjAb?to6V zKQzEq<0C4bMdh3LKjzR&GbHH)x__iBwShq$fT}$yx={}5`YfOI^|tO*?sHoKUqg#d zJi{pmjl$3X9X?!0$s%f*AH+s>n3Ji*uJm@9BU93%=~sFCQ!tUeK{aQ}YbR%SRofPr z87H>>l;`Bx8pT^i#ELhE@1U8@xiP=;j0bA^G;OlyK;m%F!&r4_?)*cSKGQ^wz-o&@ zLXCe~gjfGzY%-qRR+u`O^0eFg1s*G=R+*!n3TJ~{I{(E+e--mU*%BcNQNOT3d!?J6 zZT9ZzO3k)N-YZSvv`qLWrvxEBL5g ze}`zC&I%?4S+Kd2l`M^0v7VEE`XG>0ERTHJRXoAW^{|=m?PRKpKfwZR1hdNp(96DQ z;@`8%u#l??d`f!vhN>0IpAgD}LNql%IB0cPpy8PzA@f;}5}$keO43qi-9}g}zxfh# zGPDMD$+<$FP&>Hms&OjtR>H7He$oA?_jYXc7P=5h!+}kI?&@tuXxeFhW}9cnjZH<} z9P}%GhBT9*RayFS(H$46n_Ro?b2RBS5+S=2>N-_fv}aeoiyNY~)2!KSMU3+u#dI}> zx7#yf9M6?}CzE@Sgjaf|CxlOK;ka6)4eH`i61GVylo%}C(B$)0($=uI366hta~fQZ zgBKcsYf&eLg9Zm2{4yx(2vLS$1hCwQJTgswvZ~~zkCCedXJ_q@6(gXsp&h}k_OjF3 zo*Bjq4g;?nMh7;5i!b~6I!?P-&ICs={!Kxfq7jD~gG2{yp@PvY_Cr;DZ*{f|YVFdu zv@5WDB7df#7)yPapVF{^D=_wnzmZ`J&3da`W{gbq8U3m5S8ig3dL|35_s8K^aSrR? zPd$(D06bSl%M;l*iW=}R!ViyMoov!BfUx*eXU!7!RX2pow$mQ{J^qMYV5~EU7q_#*UFe4bQL48EolsAZ-=ln z#~ngR57>5}+vUsVE%|b-_rIqQ$?U1|(7Nj-zHat?O^3nq7V(W&!x=!Z5&q=u+fmVL z3^3=Jt=HD6dQCxp7?~P~NsE)LaQ}D<_Wp%ibej;|r-rP;RrEBDj-|xi)OVN0-0STt zZK8_ntok)aOt8sCCI*KC%{KbyqE%3zbKCDHp#;Jbbz9C%n!0!%%ZEn9|m0*M9oNref8BQ>=G~wx)|eJkH394mjv# zt?-_IyHRaRNERbuCWB@yc2fg(8ze>nz!hJqeb1{?JL(O#Hb|3M9GK@q_)k+a7Peo`K%OYY(es7cK-c}8`OP}ZIJ(2K&9!4Z6=A*FRU zz}bi%&KtW%t~^B-IuhBM7i}J8zXYXspE0`iqVaA6k&|&7oK~3k%c!SP_nwrv_-@Qo z9PWA<-&x;KL-N5x+a&N`m+{3}Q@dQIK&l#+cO-QT>=Jr4-p4?`G^cYFCG69v3*w}IsJ7Z?CAoMW8!mkFxu zX>0nI333CD=YG2pE-Iu2pr^aRE}jLd_+EW`XA**v=bo_};x<|!0e%Z|MrbGo&P^3z zFgL29SYkKRE5K14Xb9zoO_lx7lY?u=)d4Ri&(R3=+%E@Oy49+xj9=D!QiBI(YAXIYJE zN)uHYVRrOOxd>K(hbOVLDqi?{;2CNTzzmFk(q(CFCNl}#cxH28&H7G> zC4@HkZ9&Y28=bI*?d~+xowi;!H9_8B{kymfa;Jm)JUUune{uEBhBHs+l5cV?N%Li9 z$T$()aayG0Y+?<4S;ua-xTGbrew9TPOPTs_;+#iH0E!wB-iZBhZjIQ3ZVF)~;eX7V z!H{kju+|D*6 zYxs+;O7!gAG*B#Kh&uJt4lbhe#ecv|g*YPtY!B>OsPpd*SO!ucu*#WMoM61mI$rpf zDLS&&{E_y}Xe52PSPj|{lZ8A>0okRan<#idV4#|$&7_iv)Go9d!4UzDQ4hVjZgZ5C zTy^VfH~CnkE3)p0s9=dCHPKDoFfbJmcZ_`T=MT>Eny8fgZ`}5qkz?{NLf@w3mGzU& z8u1`%wFemQ0YMO8>i({T1>SUwUbZM|VDLHS^Xfw>_!Dzf=_eg@8J|4Jn(iop4=u`s z(cS?yJUe^^Rq_rBU-vNB!<_+}^K8Qy^`Zf%%h_I%sM&e5q)E9n4kn`DN)KWc0n{xL z!PP7ERfQ*R*qRB;It}L0icNxq*|+JBmdIFM?cM0gWwkTfDrY^69@7E|L1RVA1TrgdA?Ma?_h=sOV1DY?cTd8f$OuQ=iNe@m1wfe%09sX530w1~?llFc40T2zBwbkq^xEQ~flMkA{}dZj9X2s=b}2 zibqA?HR88Y6@3%$Ut?*pvo{rt?O~^`dr~jsQ;bU9cHOgAlz%XVGxFEkR{eIXK8imo zklq2|EaLyLo*9W=nu6OVMl1WVdbVNq4|aw6TMS{Ow8x7Uk@1g<4uBnk zvKM4vD}I-BQMW09gO$++&hF7#l$j_kHBJCL9}G*^z&4OZI8Vu=)MmU0j8Ww1dovcB z*;7N-*;?s-u{*VY#}vv{Cmv;yU>Ggp(ir4_5@10QtCSxK?%huMQ)Ee18c2NjGI z+oa{A^RWRj%D0_RhD*!`<1$p!wWl;4(&VL#-C184N79a`Nv=Mg+ED{!7*+QJVp_0+ywkK6`EVoRM;X_5o?v zoZ9*l|W-Y)v{rmUa! zE=ww(zlszWAN=R*$+w(yplhdW6J)#OySOI(2R8OJYu|}SnO`5p`4sM!&k^(Fa&}hT zs#Tk0C)IqAcpnkPg<|_g59wsQsVg6jCW_0_S}5eHf6CX5MYLBUns~wwEcFKIJVRna zw&ypz%2@_D+o0umBaUcWXk-F#lGHErKw+uUiYDPCqWJUJ_C z(4Nh07Mt@ZLL-PuCFE1UANkQ4HnVfutaDn*eB4kYW$Cg?qh^Lyu;r5+-&>?&ckr8R zFno8>0j;_KnLq9#rk>*|Uqbt$jm}r^xv2)8*?pDtGAISH{*s=!ibaW|3U&9;Lhjq$ zXMk<>MBzd6kunq|Ju|#O2+cdpNk~AW8OvGdR+}QWKhqt*a2sgXbF6L_Xz9}C)!w04 z_=Pvq(r=d^GEGFgydACBcwQIcikmSw&Np6quomJYHvE?o;l^@x+Iq$G-nce=Okk<8 zA&qJi>hA{iwH!_y+N5e+QL+8M?03FfdrwITzi+rpXzbh6gA#%&R5wd9{lOwYpe8*{ z&A4N9m>!@1N`o*X!pC#*uI+B=1dzefT|{SDIvQ$CWqj{bZ(L|I|I=Q?6BT9MQbAp& zS+eSGAX|-RtSF*|ex-P1T-KxAE)cClpdvb3p)!tS_r(R5T3=`P$DHmI;6AX}_dbpg z8NT7H4Lf}#1(ry(dQCXX-CB{u-5gIbTw<@ycse=OBK2D2Jr@rVbuv2o4o*WcQ=Krt>e^A5>F{PL$K@(;J9eKwW_k;aLj9lUz$}FQ3x~{G(e+493xLS)TIhe-fQ8W% zKeXt~Pk|e_%pRf{(KOjdE<<;s*gFMx_1OCd<@Nq0WcAaZpuf2@m%rpO_ak*nu6lGTG#6XccG6)p)JsDvKFsd_NGlnjbn4N;I#UHf zy_8gQp8S*MbI{JtN*&Pb4Uoy9{UANsz_&g`5UsAt6j874K>VSdwfpBAS`{1Q4Cp7Q z1(@edmxsVGm27Z~=^r{_@i>dt$BcXU*Wa^FPf|*@!!ByDuCFOzvI>usp*S*2sh-9} zpDqd>jSC-Pepv?LvttEB>J`DZW7IqTr5pt&5G-M<{MsR>WG~x4xxc0qv$5x7fUkrM zi<4F8l)jW#MKHHmLEj6IsEH<)N+j#0*Vk3~ZHu?@{cD=s%okLlQSvp9(`O^OaNV90 zR;8K4EM2s9$qDPgT_?%GmP>inA5JhmR6nuIx;L#2D z+Nzx!*_5C)hyms@uK&t#G18MBCP4u~T%X7P;Wp%(l(zvEow4jwxdKXrY{!;LjoE7|tjcBBJcPp02{^Vgcp)aZh{$Sd3h z0CNqQv}zLQYN*y#J&~?UlO4ooIll(q-J4QN>uQ>PBW#mC`J?$mD@;CMPdY6asP(;~ zqSA3jl4WnuoGVk&pB(us%qWnb5->T6OmM1kVK3xhydEIaAyP$(xj0mNR0a{AWl)05 zmOPCUO~@_qjjq6~{~Y5BAQa-9kCjuJAJ)^YRI8(v(voj%Mb_X5amj3^Lm+3}?H6!{ zb0G|JxsH+qm(lx7Ik*~`UOP)<-CEQil%KkXX(Cv3ymFdxS`u(9cL=<6iK#NVs%S7Z ziJcNrIJg^vRG&2&f&SMDS6)F9{aVDm`(craeiaYbBJ)81x4?$@kR^}M|N7oUagoCq zr|*BX5>O(MeVr$d3to(L{n%NKNdp=fAW$fPPK3f1Af}q@@NaYdcmMSJ>#)xwOBW41 zrvID2_vS2tEI{KZDKLIcY^_4@<$N3|7a35LG_Py5tEGfAvA0r&vg-gy6GrwGBoA%R zPM1K0Q(t>n*`g783X2A@60k=m7D!5QqSFKwibWS_M($GnU@FHB9%D^2DkwD&9V$F8 zG@hI3Js1gI2-4x4WmWsJO#YV}Hq{elgHe-%3ULZ((|3^c5%GxxM|5npRIYyfx{(Qi zS&H0RK@bD@4!%WOWj$`c0LciSnrsE2Yvoch)+7 z^=T{0cP9I7^@+_kp*p$UIEtfUK6`?#fFm5dgB9sBf{UgdBDzfmh~qLejl!3 zpgFe@II_?*>nUl?)3o)6r;zGJ8F7VMwo+aPoccxGn=AO!V8Ev`PC>CC9WLppGL$@7 zbYH!N5*m#NO-O2uZ^4Mm>@K3=?^kMPs73{I9FK(>+;{W{5HngW zgIp6a7xmAL;BpNe;2NE@WS8hqPhxI~&hTCl*G8Tc$o#4rppyVN)b(`6Gj4j~DUSwA z6tirvBAB<4>VVHpKwR9Iu;dIxweFr&D37j=_4J8q< z8MOEQ(WXe$Fz&orz@nUxzeQ#{d!xmFRfc@Q`@hkemnWu{1knEkKr>sif8d2AQRy3s z4cs1kN#fK|hMAMQP=*?xuy*5YQJQ?|=539bVEE|}dh30>Zqpl{QA3<-@&-g8I3l{A zLoqtasc6B;Yv25EAkp0D<165`^G%n0Buls?7q)p1d&=R^x;i{zB;@r%j^0Z>o-awd z-`?N_n2uFQ5K&uu4fIzWE)(NV-!-3S@Ajc%#xP&(Rg~!`hb7x+q0{^raG^D;h1csi8wF?d$?051u~-frEnsiIvp<*IdhAK4V9-407rXMPu9 zWh}hmpFF86H5CDmz2Yyo)=<8#m?+{eW;s)}Qm24GdkTAVqB#n;S;5a%XtC|fQ~*B5 zf8W=xw9Q?VK@MXw1BQD~gSX~+FvA*PlD6K$YUIW*X8C49n9+XP)Lk9Mjh;5E(@H%f zVHP*z-WZ9eZhOy3IN!vVaXYKypF?NU$9$qLWdXm5fsiW+V2H!Z`BmeK|MKaf0-|*u zEl?O8#{hC{-H7wn!JBJF->oM<}C?oGfoU?4RMH zT%_J1FmLH@V}3)1={-wQy>r)860F}O9X`G4ZO1(R!}HCWegfrh=T^umfPqDDW1o6J zaSKpN8Dhe1LRbP%p9wCmvCkeKo5I|op4Sd zQ@6a%pzCQwX!LNt-Ea>s8Ts8)--9a)ljEWEdB>eT3?-JquPq9A*77pFRgU^iul*hmi6a?EF67@7i68MmZLOVa)iU3x=NIvROY0v4W{o%WgnS&)PHY*SW z0qE3*#k8JkSn1C$wDr;!LH$_2gyCtG@@lS~(9C03>F z5k6yuH#`4CU{zIfd+toErAZ?br<@}nil^_j)R%-6id44mwn`djX{U_LMi2yQ$0&4e~MAC}O_RB@xG2;?~b=|lM(RB?&re_Jhfmq|H4-0U3 zB-Y9!U!t5V?o16LpBC1<%Nr%Rs>bxDRx26zYw3U82{=6ib7&Ab1Po=~g=Af=qhIDA z0oK_pCFA~4n9?H|hh?H8S@woI=_Q+(1rp6qyZkA*(h zShAifz;XB^afYYd){ua|J)ZEHdn}JeJjGaJ^@-)vL?ltd6rTODTXhRYZ(0oMhdw47 z#^z2>^6!G{PM+3c()>?HCp797opARgrX(CLikvXOY6CSOZxZP7a78DPW*_0!BCP~{ zcYIqWZaukWdwA%v&@_Xq85{PG_P_D-Hm4kZTnf#xyd)w@v24X5(LfQw4kkYM@72-& zU;A_K3ltW0&~8Km()h~@_)-M0=9v#V0ZCfH(1i!sv<)nm{;3H{8X{dUr+`iY>V^7^ zC}nFDPC7w3RI%Rxk#V7#=#Vc>%!L`Mh}E%%fb)+b+3CqP<;-^>sLv}r1Onc`I}Q8o z<#!6GxAGyTR!x6A?k*%(mNJi<6Elxvy{gl7Tow7Q?~dR15d!J(=FJ7Q9~(&zw(>IbZs6;c%v4kqu^N&|qe4Z!!eDIwaugW@t+rC*~u3=onqcU~2(4yjG zck^Sa9pGJk-JQ`~DFYSPPahT+Y!B1C@nG=cCYzS?G2y0W)eSjnC=63cytWcdTnYMrS4)=olU75?y3a_6AI!zT@Li#kFhQdU-|uMJD>f-s z7?Pru^K@}%-zhP77&d3tVw22cd7gF=Ibz^?|DFhs*Aqm;?q&BQS@3NeOtbv^=tcs| zTNm!f-KmwU1*>{4we7_!5{;J5(eb+TPE5di8(djye~j*$wZ03;f2*e?yOeVDdx zy85w@J=;)=U7p|%L2g4INslju; z?HpUwyif*TbRZ?ZOJ+edS0r;34g?`h??Ix*%A3!nidTqgDCedx2|(}$+$bT*7!5YT{!n7I zbguGwPjaGvG<6pA)w;(?6B#)0_|=mx@0&mqAI;tnD~5|r8O>fuWEI}Ff*!&@lmQ00 z<9tJH_p&wOpVwoJv0g$SL-49#QtV9*9x~2ewCuyn$1GX^VtHYVEG3_kaC?@C+#BeO@!bGlI|Q#K<}-_urV zRQXKH|?34)D4bp zVo+-qO@CsN2+Ma!r+f1-d|jzIFMz5=QI+Bovrut*NP}I& z8P(=D+T__%7je(PO9+y3XqdLo4l7?BcRXHuF;_BH_sN|*`CTvR`9;T=4=*KSlVt4n ztPC!Mu`lHhM6mAAKAY|0<}ksEr#C0b7Mk4LW6oDVj zCJl2RrDD+fP00-@y@l0eQ$5nRJ-gPF=F`*eBqLJ`x+nS1b;^Zdy)R zBmx*%NWCs&1!*xA$$jWjsJbdn9xyv~v_bX70E1}>T;cFLFWaFqk6TvB8Z|jit3`dB z;0{-jvGHn$w@t>9lUM)2wa#+6>VS6Ih}_rt%kJgo=*CT03qRXc%%drvYJ8@1T*5d|tUAw!``KA!MQM7+$1Qg42Wqdg^F_c#{7O-1mk-q;Pdpc6z|<4Z zpXXeri*DGyTsgF5UfX4;wle%;&BZuDeIX5pFLAH*s*!6q<}2vP#9M#*o`&Hcuehgk zfWlm$z;hRjLC4x1@-`n-+rirhSJqv9Q$jk#7hCqdi9>d;s+G*K^2r0QbCOnFwR!6d znY}nfiNrXY+P)bUdQ^tp->vi9Pu@ba{4Uf(g-h@InDM%Nb)O&7tlO_u->1*DadHs- zlhjwmefLGDSYv#}LO#vd1)IRT=bsbBDy^F-zVP4{FO`2=0)AiNI()EyNt5!MLyIxg zwYtH}w#^89=_?0ke`|riSRi+y9a~GytJV{Ej-4`y6fId8voZmsG%_U{ip{V0;`yjP z5}Rt>=ffr|NvC(ARsQ?}sH;^$zvq6D;*N*juhicCr)+dJjFr=&~lfI;HnZLf;cXwVLcWF{0$r%~6UCXB|SC3Uz#=xAI5Dm#fb zKBI#@oHvjKec79!|9IQOd3rXdSKc_GL?PxKG7Y)ttt?ECC*Tk|2_BF4%HXN z7q)o>LF+5rde7|Hz8r0BmEL5b4D3jkKzxRtm(fWV(iYK=_kcog z7q9j}V^VeHZfO)3yFHfc0nj7LM79s#n5ezrOYq$W;jh5BOFH+*GQeD7=UofX#ct0V z-d#9pJKpeRvisc5sRPf*P$}vGk&kUZDxY7@Y1x_Rp+j4Xc81#o6mWXs9lgSLoOU08 z$2BeMK|P$kd8pc)M6Priu%6Ned=>);-bdUmHem zu-I+yL=ZcHaxcW2puav~@r*w-Ja;2rI6V$CX*CAK$U;3#asvOh#!{#mGY-)MPYzG> zO<9Z11w!vk@-6$Xe*%N`#tX7I7Npj75^lGZCQYq@Q^Q>PDgLm#4;T@p#QEX2iCesW%}+ z4>vVWbZ_U0#LAeL(IgwTxJ)g#knCp%c&doAuLBszN*e4#{&fL8@cYsPyO^wRQvl2M z{Gb%Mnt`jF#y?dsGh+=!S6y%ao;K1ZS#ANV3VqDg4nZQ*C?TNw@f6%zlqfOBAxGMs z%`%~Gp7Pd%v&U#z*|l+|em&yild5(iflF|VXYVN#JdtbM;JH_>ukPY%1?8{I2XZ>4 zRGhETwe8AqV{wE99O-*LK*H6v)^0aE!Ba!C~1XNOFbq)3^PGF6Y&1g8!+J&KDWKc=SB-)Ii$lskb{XR_>pjHPQx`a22RP%=>j6 zmCZyKY+r3)heojT<)Nqu9nbNn_3W8C0~*hz$x$WljWgKR(c0v7TL!QK|HQP z`%#kcB&GfABjj#L7NRt!1A=lXYuDEP^b)bQhgEw!{@ai2)mrU`ZS=x9YdU1?{hPmv>$t zPu?5ax%fjIm3e-UvOzQvYZdWcIEdRQ{t|6hX61v##;ZzQz6p{Ps^Cl;J_mv>M$>4B zN(VR0=51ARhsr3mvif!`nXb^}Wx68U)Il)cc z!Hl(=PTwmt%-y?p!A}c4IPKm76T^xX*EeBwcPsKuul3XdOyl1b27KLGRxJijxktcq+#qj!?^cU)(?^otHx4H3!!?#L*L~0X(2*_Dw zdSaC*ELT@g(5n(8$l~q1Qr>j- ziZ%QUfeU-aCuU5iUED%6*;Ff1MZ=cr;?NM_N80J^D{P<4)2&i^nFJs5$mTGn-E_m* zW&PRrdvo6rAg{f$!hUM3ohi;^ZLFNHJ7U%3?1~A*^C{{ z_1}3SAnWDHlcm)OegNO)xsc;QPg*paGaNCSd`8Ed2H)GrxUxi2B3j;oape_vT1${mS!k|!n(n(&boq*tSM*C=IyCj^DF@rx zwZ09mRGyng7epzg=YqwQsW#GmHtX?Df~ko!A3EK}jXuik2WX~Ks_(UJF0dT=f&M($ zSzZj0=-th1M^ znu2u^5XO$Lp}S?C#Er~B`as6kW(6wPGae)Y+RPYzH1ig zbSL=CM9_NkaRq{zvKS6+EKwt2&D6W2I`}7xhQ)D4RwJIX*lcv$K2kCrDN%V15DU*3 zA`zX9fQm+`Z>_H3+s1R{P_2%)qlNNs7_6fo)SqL$)!E$T0L2M6@%GOb<_d3Dw^j0VxiksRQP&z*kXgoyQiGb|w(4Zym2&rc+ zYv}5>|IC&ykyq==yAoYVUQ8{-E_}f672pvQJ^pVA+_*f1dRXuV1L2eG%e*FRv5=h2~-vgZ^ar(q$oG+sSSkErJLg zIw^ISIl03gK5gQ@yep2@i)mU`^(4=gd6Y9VZu}&tjZ@v}Q zbUiZUo@HHuF?P(`mg8M7MkF)*iu%ql_aji!XJcPN$gdf;Tl4M9zNVtw26%y7q>R{{ zjNI*rV`TAY08Fm!y*Syi5u<}$1@p^4jBniaFSbX{y%QHxqkYBcfoNV%XZlDFU-P76 zqa4~EpoBEFi?%3-RR@bxpLi?(Z-j&$AHq!)Ih;p-e(Ooq##HZMQtR0KdV77_Jp~|u zWgtwwx=k7CD7i8Bw;rS#)(qP?ClNGnZt^g~zkTv+#VLHcRJ_4GGJ5>^a!|l#kqJp~ z4=0w_q324MK>|8%R&$Kx%%S+zyxFapHzTD0Sb44l!hQSLUkkeDLqVbHlbSE1m8B{+ z$i$Vu5MNL&b=&p5aa&4uGWNciaz)-chl_Yejs!AVY)O!TKSKX}QI2q4Kh$xdC7=>{ zBbGG^5;IKSx~-EmPo3sj24Sw@OZMZp4<}~%m|}{C4Poqh#MU4 z7DRD3N$xKq?2@ROJdOy0hWMITFp`dILUn7rzjeT)uk-nOhl!&jkvw!#gwp81E~@O= zRXFZ8>r8kB;vbT|bO2|V>Rn&Ms(ZfbaXMOK9o3jIF2Vb8LQ;TpNDNv7JueMV|1^ft ztNao)3N0n(%34mpg1)|aZiJy-Ie1)t>V&KivDhIrbO$%U4S}n?-5x_=lY*1 zp1qZ0p`0341~%UgiE)iQXqlFcuz*se24E590Dy^)pr9Snv{n}1@v0-Z{_F^!hHzcG z@4?v~_sB^nz_bQVzXE>2{Z{{(A;A!WWemVHqrZ%cG&+h+5rz0jsO$tDG%oXtcaG>* z(S&}7t?fL=_tcmcJncoxFGw@>>4U29{FNy3#8(3Wn=gF03)Hki^SwtyiTvVa$+OOk z52Dd{J)sFltE~I!RM+vBTv=vT$yx&9h{|W#3>yv72zWGfu(%VRHuH$Ql|L_TJaPlQZNE!!A9sgM~}(|_ZwvS2}5 z4N74j&v}h39eT~!fi=Btrxrm#N8b^mcT=swNg7!g3Ne5u;V9?q%A-w$(t#Go6*3EB zCK!8uLlj5&>gKeAc4_oW8VlyN_enF3zB;RtE$RM^(Dy}gKGGy;dwYeli zB>xS;IqitPL&g|!5Ui|lJ|cblU%WMCgk#qrU93rZA?GhV?&$tmHVMu!1m2iK-CqX7 zrv_9I<6{-G)Syh@k>Tx_Qu;ZeKA93oJv?V(xQ`5~ia(lM?j(GaXPru_GRLekcltk z9OOPVEegb_Q3#)@eY#PNq+G>41~!)OXbAZ+6mXGoR;a3get(2Xey<-YFXF;HB@17_ z3+de+eBbAd+4f2SkNnKG`sUm>IdjH!%{`T@R=b8-CBlCiYF| z5RTxN}OMME8?yM7%UM?d0{yhi9RHwKwBZb1MxKGfl5yx-x6 zrO)RES3QxM_q}cR;=ToxWRJkqDMMqI$<)<6><`{Nnbj<&4OyGnPObIv+J?roiz49B za<%tF=4ooa+=?x=M*`6ZHw3Z083mq^u5{xS2RrGj8qceeS%CcRTq)itT%sDzEaTz5 z5;)Kwvd!!<-L_-46~^Jwa*P@#;b?&xUauP>D5Zq65W^kTWv;5B1N{P@aq#m%zY4Em zICm@GxmV|n1T#}?Dn~n+1_P?srbWsDJ6nwF3JNQjl?!TEAwcz`nS+2Sx%LDUN_E3 zAk+2>9hRX)yPI6h7(CB>L_a1&o2|BkNgFGy>m6}Y`k0^$fC}}uY<9V%Em5%9%W(#` zZqtY;m(dBWNMxqZz_hFDOQh;>2$mkD-X3rU8>`n3CLT+#M3AH|SaQC$6NIaLo!c5e zavsXF@Yk6Yd#LK5DUIR|R|tF2A^jdf8?R~}bgP2th1DzF&=)*WQ$L9w9e}V2NS0!S z2II6lPAGrN{%MAO_jLFiSJ}jPox;w4>_KZyd(Q7Jjds-j+x!J99i^!;6{qg>>Q3 zTw~{CKeMSbYUPd@P3>;EIEs5 znt8%AQ+Gr3?6{V*KU`(H|MdxWJdge=lpfQ_&PNGvM$cOxTP#Rs+7@f=(zYs!Y+@MVW7)#*V%kFwYM(6Sy}zR`JZxtV#~ z6g1p%!Iy#Ahw!QAV8`hL4bHxz?HRhLcUKe$PW9(0txVTjJbzX|!-sIuI#7^nEqq5z zqH9a4{HY*B7leIIw^ARly2Zy}43=sF+EYWMUblPWia>7}KBjVGMKGcmLUKqKXNJL< z#baA41&g5kHsRIkmmT}M*qCIJ=B{rk_`gZ)l+mdQ)(BQxse4HfgYpMMDH@e5cfb8{ ztn<)L_wn96^RJ3?Qd1t&Yr(#2a$9#rB zd1siT-a^|ljG73QZ}1A-iLpB+rm4?3zJrvTUL&aa>qt);TxFn0ph72!2Ad_j+BeVi zNrY)s(Ga@9ss=k}un;XxZYQsE=wlCK)Yixo=YI8F$gyWaKcqjE2rCxleX}5Ls1J^M-+?94bCED4cUf=V>}j0DxLPwQbkRuLR|=i3h)d%g z*9;>(wC!3`98?@1@gvu9&D0{exvU2aJo}Q0pU`LqHi1(>8nYE}k~lD3&3!68K!TO?S_(P8i7_GXkPIvRrX?%4ivV zq2$ml5HnLvbi038o9UZUdJ2Eu)I5pJQS%x7$_{(_!&G%q9+G%{bF0N1lgm`#+wh#q zyvfH8RkBeZ2+>^@U%%5Y`wZLf&-F-es~P0o0ehx^ZAPYzi2oDOcZ^ zDy$fyndb+1HNQPUCf#W5DfN3Z%&YZ$q~vmiVvn+kBEEtFI!^0uyfa$7S$w#^($<6R zn_heif?t+1v?jSl(&UW0uPcSyA-<_*)wDEtxJtsDZ}RO4_|WvYlW=ZlrP&PnO#+{Y z_ZwYoz3JAk*H4rsZ!?7IREH%SFW{{7Ovow5az{NnW;KftdT&3zPZK1feE(WYU(5Af zbSwDX^H2=%JhV?pEI3&B!M#<#rm1}bA*53B^q?=DONd|}n4|Y-++5hG%2&tA8y-fIMtHPexvno9A7uR*^dCK_#MwB0tj@wsj6jJA0d#>noRla8 zfSWKGjC}hi3Q|y-LrPCT}7WkS!!0 z7G{cqTlAwQloJD)cuVriV>8Hk6zieSCd9b|bs2U@w+1zQ-!3Sx9nmfh3DO(I7a~Sr z!{r0y*<71-_2!Oy-9%g}3~pBCO2o!0z}Lfpy6-a_$bCZWkmy3E3551G(vvIwEWEI< z?)rQ{#s9jo8m4PuAe=?3!EyefLpq)-dx;yJD&NSYInzl1ZGf-WlY?W_wT~yerJ-*D zouSILy$sM!sX|awg(?|myhJn<^3~TA;rW93xltmou8Mc8Dln}67rGj%;t*{Zf(G!t zg|eMKF{hD0r1MozNrofa zmj_^P?}9?U%2vfN!?+9VcC;thVGA}K-orlgcCZ?>YjMRBi`}qvZ~Gfwbjcx_q{1|$oGe@ zn26?j6x3bxh4nXuLPjI}L|RqYM;+Wx43T0g59)1~_acG@qW&LZcgath&|fW=iRRDO z^JU|TX6U_^xqmI;&X{u{AQ%(lNU;m&4=dvC%3ugKII@REL3R&fAY5*UN%pwzoyn+! z;?13OrzbxqrAk?EzRu5o3rrN8S?i!&@ZiX=PPK~j7=Yu&RTS;soSoTTKz!OgCibC6 z^y$C!gPU~QuLaEkb`haAMJ?3;>aQ_2FrtFhU+WBf%S(ZLDK{~=hh)h;2!-Qht_P}l zJ(GuO&S>Bhb7gNOqMm4_s?QK}wfu_^u=~g;*qio2z_!YP%aP|w$~{CEEV9!J8|8Ic z2rfUdNbng6CtbDo;>Y?<1*Ab%IVW`zO(?BZ>R_N(_m9C>S7Mw9VN(^nd4$C|+OBQ| z?+p&)I0I)FfjUDb~zdw54d%$I(-as8NMH zrzwdbqJ&Lm-@6{o;D@*X>Qk%(V>9u;ECcPna&^1=uEhC;(S5U#cp_y?+9h^xg1tSK z>!wR%4DB??XeJyZ2& zHzCa+>M=A1m6gM?IHvm^34?!f(m*c9E?xAr*fmi^9-oyV2@?J@IuHW>c7PQ@&#Fa6 zhS(mLA6~irceHG1e>sC#ZFN^K6&)CB77X$JaIv`FxUu6LA=fwN4+#2R%9$a|s(smG zJdE=s8NzG9<3TM&>Sy<9li5aSE33QL9&meeH&{$+>EO2gFpK2_Lb}*jAcCQCkB@U&-f@ZMpiKJtv=(|Gak?Trml0NO} zrcN$$Df&oo9q`>M^99z~s*k_Ha7RX%fwuf$woL@%J#c4Hb!GJ8>mU11)eOo`*5Q zGD`8|cJ>@@ymwrnf|RKQ)qf#b*Z>Zv0`PDs0ck2>%C^PuH&wiFmiQt|mTdFyMoaa8 zvdW+kPLF$`Yf~uA;3xYe6xB3bEkiA4HugncwI=A$FB*?bW1n@5&Dr^sJv2hDAVP&p(gZ_ zHuDFn)n313ND|yoFF>^#LjzKCTF3hw$Zl=ZqgqbGoKFikw$!;y4IhPPGGVS}2ZzKW zm~uLP4Z#3ka_D6IMEQ#GbxiFT~J{K{;kSf4LG^b`xat-a})lgQQRo3a|v!n`927EXi&%JCU!KP=68|vg&$3 zr;=LRgj^jsJx9z`smwC2PC$@2kn;-$F}X06D1p#=4a2a^R6t1I&R*R;l~flmdb8;r zG2^o&3bqE}RJA=ov6gY+c_aJCYky9+MPe9CQA4^c8UInc;bVn)MS5u?W7oK!rxvhy zp==weR+`y`R(>ZCsQv;7g*bAZFldt~zF>dhrhaxJU|Gd6()0Dtlxjv6yw`=iv+5DW znGSF;6qx%C%YF8geb9Hdg07wQrRUAj(LkLV0KFqjEj@AcUvZwMfgCU1Sd5kwLvE40KO6E0DDZ*GuVkW;xm5*~>o>xS#tJ zQVt|x6+Is*VR@-n4EmEl)-}+ieDuv~YHY$;8t08-Xt^Pg(k$7Wwx#4vi4-!z%gv?A zC_3Y#NN?k4M>?Ww=@*YmCeb!Malc_mABn;f*`vK2ODmo+0Qx4qCw6!|YxAcTK!enA zJBEG=+vGxHpum}tW@~h+{chgb3%e|SQ;bHaY97uZDwMp@sVuJvKs}|66>jBmd!KE5 zL}Fn5(g_;#d7bF9c(F&lo%nEPiqU=~`q1}J!|byiDqp#NdER-c+n}B{reO46Q(4>R zoUYL{U!6I~1}v%87{5L*4|9M)LdhwWi}3C$n?OCF7if;Dx+0 zTk8;Pb_ElE^ipb~An#L9)>E8*AFhg_QD5i_S$tdg)=t)rsS?V^Z_RMZ;ct44i-lnx z6Jh;hC72v;WF;SdlN43%!0}0GbW4VNb!da-i}uIPZD<0Mi2z5|=@OL?Bv}|Z+XzV1 z{Npuz)CmM0deYWQI{J_q;Th*1r(V_1!gcuzi6!w1&uWO(pCzwas84&iyr$#b*yq|0 z`LiI2eATP1J}@DNU{u;FFG(=_knuYM)4XJX>w3bA9xUJXeC>ESY5CCCQC(H5OuJlpc0NLW9|~qS(VHmGgR$mY&(E(kH^mlT}DCOGcw{3*0u0;#EbglGq$8 zlp8!2pu7xpzfzgz8SL%-w3!CT5H;;8Lu5JFzATpgg;SWCbNKy4^DI zszN#yxfU@xK+T-9LmCA;iuRAvmWt2mGvkr{RKa+m#WQbnV^VbTy1G)3) z-7hy&bc7rq_SXKBpD?>iIJIQQVQV>`P;NA7)WiPpBQRlvO4(E_ZSIB1?s?rTl>)BA z=Gf0a0G@FXB*pLV@Eg@U&613i&KfsOIhSmm___NPPM;13*p|0iFa)+GEf5EMyk5j+ zNW@=P?6=(5_n!&GZ*a$Qjl2>fzL4qPs!%rcA#nWKOGJ?fzi|9wq>|;JYd2oTiPShA zEuwg4BMFY1IeGNxmxjsxg|5PLk0g(B-!ucid3D)nA+Y*DcNj~)a9$)z%q3s$sEmMh z8O8T&6zkYDR9f0+-N##eQ}ywlG9QGkaSXV-A0H)m{SC+5KRx$tnrSkAJy9;NtY(lm zmbK|L>Z1`Wh~@x7x{Ci^W{*s?egh)>y<_bpdefXMHMogg(b@a>P0Cjjt% z&7mJQxZL_fOly|S^yf*;jtqvlK!0?O*G0_0d2)lKb}1FOd|LDr+!e{~cQ!LX%ti$Z zQ}~WqHTZd>3)6!~Q=9AnCk0U=6Q!0Oetc(=*0;saO#gtm5P>3yyIy88biAC)^&rXW zK8>(Q@Z?LGf@l}==LP(&Dt*~d5UY!_#oj`DCqgweaw$immBWe}MJylyq#!5WA9A%U z?E^)4_%nV;F+p_|yCN!7&gim(vOgf)M-+vDj{X6v;%g`9y6?X0JryXDA`>E%RUCOc zOU)jA=vLCIVv##j)6v;_x@*oyd{k^(^pF^Rzx9Y1$S~CI0U{8cYjokm5&YtPwUwdW z;g859X0qC-cn;~!!ww-JrRBGSC35u7aMce-F4!Sn6+P#(6oJgGR%yCvX}ZRxvtlIo zhPJN(0>k~@m%WQ97`De#FreNrgE1OFN<}|D?CXFj)O}=|xh)RWk($xE`~d5TM6$K0 zn#t*acAwQIqVRywx5U}AIEz-{2Ax+U;njpOoLQ_~T#8f;>E?;IPya-`@yO%(3!TW# zzoCmA4)<#d?TT> zT4~g;vw~RF`|+D)!XIBI)@LW(kqNE{0=>*x@C!*f^k*N+P+PRuy<1 zly+sbB4nrgA8h1p?}ngsydH4RJH-jd$?0&vW^Saj2tcP)__^a-$#L{duodb^faNMY zyX;YVRy=L?hZuAdxbd4ERu ziQ@*GRir*^6g?BIgZP5f=o!6Tc23gviX1%jz-l{^j>iR^D1KT9r^uC2jZX5j3=rg3 z`Eb4jrqi+;vwzM{wBtc)C8T@(ILkmOuBei5wAafCaeG9@d#WlvnA4FMGNy6 zp5o<6SUi?aT&t~=N|`P~z07CXnn`(&ADC|zC;LyFZab(I0-j-ARg$6Bi>WTgMjcjc zGnNPAzq05J6>puP`Zis?A5rD>TSF+${gLiiz}ch6ZJoyaGsPA&l{(48jhT7uV5?IOfA)I zF_$5hssNcAIyHO3o7DJb3bmNbG;$E)wY_yl1AtPQr2N2_re!udKqM7GGLKyBec`_C z2ZyA(jG#>2uC7;*(fU5V>RG~<%A-*>7(4Vz;Ht;$qSkZzH#WgL)eO7Tw5aWU)7-O6 zhx7zdbJf)3x}3q)BROif2fBsp1Yw9*8=&yNs?L)c1V|E3k53j{nrI&*@(jzx0R{6I zreC_xZQZkfdC@@Sc;{uK{Iib);Go6?R-*~rB9_eG#Vz@{M5>LZ6@F-}qWJsz2NFHXa)gVma&^OT}^7ouF zL?8#mP{TO9UJ-9i&p=8*;zwR1X`+yDF(|sDi6^k|6w9cKLvLirGs?K`a`z7(5-ltm z+n`I?Lfk))@<2?`S8^qN1{5x3{S(vv0*Z%LWpBh7UTi<)ROJnG;FrIiqe1L9D6^^O z1bt@5P51@=bSH?xQk(qeLFND$Eo^&mSk%%dO~F9c?Rb$*2WNH*Zp=p95jwl~e78)b z)ql*FdmpYIr%6qKf~3#anuciUTcY1D)(hD;IJhmLf%}AEq#-UYO=lqE z>W0fdalgdEimrnWUYI%-Zt3Cr0d-5^@kNvV5xaL$tNcpAV>5cGfw_v@Dwpn%9 z8L-YqB{ude^e7i>2s&iK>;4YXBq)2CGVRHF)tIe@8_<1#3EVAR87 zl2E^8MHqw_`gtmcxTEGkq3y0KzEt)-R0ADw4F2FLNFwjxheN}r8*m77A#gCoJ&3A= zvFPS6@XP*%4D`NRd}omm`@lAr!W9n$jv3ebYK{Q@iUvLYg-OoVS)L1RT_dF+!0LPu z0X4Ly^&tDhvNLN7g3G_w3#e0*Im?%_{Dusv{=OQxF_R2ap<&6c z%;~w1QEp2-3thvr_`vj}sQ&^0p@O-fhCX4Jrw*und-@G1^|H%w0D+4SKFk9I?pc_a z7wL=HZMl>?l=?GvAXzq`)DpzDB_ZMj+#Rro|H{@hs0Q77LGNy#gIzI2(%jU*{W^Ej zSBm~9RGm%RAT@0JF7JTS)30eOP`fIPv&&wQP4Fu4Lf0vk96I8ip| zuK|Ge-wVy>wBLMEBs)I{aqr+agQOI>cP+Y?TJL@P>}m(lLYYLnfT{nFxgh*K78w$Q zDPc-vAx$k85|6(n+>97%YFKO|1h6fQ`714ug~(FoD0qI~plcekuRj#2CoIR607s?@ z5UIFlO$ONTDK65~vcCG9eA&cW=dN&4w%o1AnBI@bCdt|RnML{Df=++Eyao*rP>-#> zAjpk}GF)x)sNlR|^qiJzDaN}9x=29-r}i0(B`vMsHhronUl1yE(*2p)$*Im_K2x{w z0vV@Q^x-&7wSXNe8a$9^X0CnElmxw%Sdvhqgv$9$dXV(bVkZQq3i0iS&XEL7vgf9n z1;kapuf>ldz9=F=p3&eK<~=hIVc8#LQ?Dp~Pl_c4;(IQN7}46zj|N4Bc*GG(OsDa{ zKn3o+T%21{Le#(g8xP9q(*<~K!0frI*nBLx%YU>PsWPztfuv}Gv*6KZ3xYJU_sN%> z1I1?u@|dM+qIfL#r}F!q9&Rf+Cw^>{iAkXTj6g>5O{C18xoG-;^-Z7lOau5Zv2x0z z_B}^;F;3aSA2J0f_MRj1;Scwj+@eCu(>M?PoUh5 zpGCk+=Wc@%Lt~-5#^19|df_oAi@>CL7EAYqv(mo;k_bnmGok-ZA_R!$f3MXp0t$mT z;o_U|l34ckRe}%+@W12-xTp#onB1w<1U{aAG0l}Lss8!!C$?7R(cd>n{z%A63Lb|< zJwYVrtV&Fj=#~Kx;oh!n!9N682#ydEhCcaiWGnP77>k;iN=#;P$D6h$AX2+Ez-ay@ z!9R2QKgXwxT*XPGQaYof62@BiS=bHbePz8%+YYp+ley^Ve88pDc{CCFkU7?stKW&T zl=1hprA7+!M(kl)ZJ9+6Fn$YE7|1U6zz1lNuV|}M|MB{N?^_KFfG*cm_fWF_-?Q`Y zZJiAR6afgB(@+T;<wmXL~d3;>O{rbbRsN8S)_|@!|~5d z5(0~pAfnI-4;7i^?V5&10yG(PY5FxOQKAXEW6(cutEw-6leOmTu3+gO=JT&%3F5tv zh>N?r7#WMIG_WN&f8x*JF{KH)nc;Kvy|L2A&TleZ7wOT$QhY#i{sq*;NfFVXVH5?n zB2)A1Y5~%-b0bg2fyzN95uN|D&;C97zh2Uk4B#%cwATEsP5yrEKM(xtT2_=QTq0B$ z@;I^-kU(}+RbdB*X|z8JE*J^Yod8Nvr|nZ()l7+!!&LS(W+sC1zr|flfrvwrEb5@* zb35T9{eJ8Ly&roS(j>pt#-AJgneli8fXK+Q8VF_n*C77KKL+%`=p=#C3FGKkx+i1( zK_h>o4q^c2dWMYXzn{bmI6m94h?z0Bh8quI{`V4OMR~x+3|i1P9OHQIrU58<2G4gb z%#kGi&&!9D;2j3>TMH%s$E5vh&|Ny9wBnFSTprkfY>@vLOQ_i8Lr<=7w{NxrdjoLO z&PNbG-(1eZA-R76z*?lxUq~TU8~P?R@>%`>M+E|1?>QM!;wCH=#J?W#zeLi-{GKGk zyc|{bH-`K_m-!Nb(h5WNLuGRk{g30<_Yle!em2v{NeMxsNJTPbioRr+3J>Ye)MS(R zJv_LAwnqeVVu1$%)=hMjS^hF$J(I>J!u{*2e+v~b9R_v)&x)~~tT_0e?fd6ue=Y;W zQlS$CZe^Bm6IO1jgT+GuF!f>oqMbylc zEHj^qk{X~v4E;5nD+5Z#*8(bLr_v>5Lz^jR>xv4$<{5GQnuRztepsag45o{>sYXlF z()0$VjT6pl*-R&uOoIXm6D~d@A9pqA^UU{7G=RPf+J-vnA2#Gi5y1-@)bn-EzWqta zzQsa`LLIkQfd~>SS!LW^3$ph&B!iQh{m(c1BNAWy_qpCpBx6(JSvXLnYe|A6l?OJo z;~j8a9ne~D9R4X-LoEdwZYmwH+G{~nY1u+rP$Vi!*o+h!fkyHmG7UzcdCe_Ih)CLK z5yvMgXalTIl6%?Nzi%gSP_$-FC3HnLS>oticA^Vba&qt_c4bXg^N|2ppw|fLl1@B} z)TB8jP{E}8xfSs@Vuc13b!~6}SJQifrnl8;vu2;cUnqoxDWIw{hl)yA|fDLKav7@CS2;fY+1_Z{h%kBkTiOsFXN z)`Uxrb~U(P95RcdMb6eL`m=<_=Ajk2o?=RO?H^SMD@)VBZQA7!oC9$`B zf=a8YY`eH|&*DNO^^%0qT?s}Ro6X)Fau56iDU^?s^H$UJ9N4B4a^l83*DOl&40P6X zOcOfBuMKew08ii*>%o6v@d0=yz*h`1N5_GyYaki7R9QTw?o8`j(>?y_+I(k8!usAp{XJDDIt!J3*6KrB9nm!Q zAnI3prW8Ejz^?DAZm`@q#PvUZrvy%x%~5o#ahS+*NgT{fIwl-Kfv$JebO$gl?}M?v zwkX;#>ERxP(E4of1h;sbOIe0B?@|ABK|Lh{6jR|LX!+Yp`lIRpt#~LAxW}> zHWkFAR$a>zwIg97-PWdHRpyR3uNM;o~tP zCCT3}}kVCBOU`IEMKfd6VkHG27voEewlHwYTYXqpy~PjKT>DvSdyPY%!kLoOT@qS6qzTz4Y|NN zy-df?Av=tzYGF^(zMJ0YqbiX9tnURuU1o|43q9qg&)Jfk!)<9pym(Neo)O&>wy!bA+=ZK8e#9=~!$;3;$>mD)AF6#P zLBu2R|4|j7rp{0ro9HX??c)W$dWbC|(03xl8zSV~g`Has55Vqe^!SSoqARF#ee1Wa zXrW-cZG0ZF32u@(08&~uL`ba!Q@ z$(J?WOSDt+l^YMe6R}^WtYQlcS(I&NIj7oVRFcv zr3X9 zdNU%;xR3`=-`m>POB~e!Fn9{iYSuGkEF$$|eHarR06{RBE9njU2`Z6rrB6Ep#28;; zu|^uGWGtNZLBRP&v>WK@QUtgcUJQLL;M}*3(Igubh}bS)g3FQrA}%Ic1)HQYYw(6R zSWE(WV5LjIIOEf8tNwK1=sJdk4TBI}Zw;GtV-*yiFMN>umLw~Kpi>6idr_&uaA460 z26^E{lOLDTTgE@!M+I#>broQ4V9FI+5RHXFm1qIBbajyz*UjA~0cvt7wh8}D_XTdc zYDMsszK*K=_5;+d8w33M=PoCD3nEkOqL4@;r+LYY?H35 zM&_WLpYR=To1C~eL9Nd^oS+#@rX(oVFq)wuj)~|~CZ zZda4?WfEfH^e_m9K-9K;64~|hsdn}ij zJQ*9t7(8O$bTx=C5$9KNGt7CrdOlW`X68tp$P}f_CMaJ?kSBhop8-;m3}kyp9wg9# z#;b|cKu^TvDSoJI!ypEW=zh;#-b9#&psqTn!9&m=Xwi}rw`Lb9i7yc;;)k zu&|$6cF4l!{UR82k%Bw-oPj>Oc*-|be9CI%fzl$vlzg#M<->{ZKg00Qs!cGzCQ_pn z*C;blgaka_@<*Jm6xqe846CYM#3!1f0L?$&dyN zK^S`K&4Tw2e67}si~XR;xz-BIed0AJ@kkxEsZMWbV)x67y{29K}?TEyM}zcIQ*dBZNAGoRB%pDKz`1!O3=4jFX6s zW9452I?b$L#*sP%04d$cXvvJu?B3D`2P(Le%jTh7vp_3Qp-^qb^61Kve>i$49PPUd`1$Zg zYLOe8@B-TrGi8DkOr{b+<*?@Fz@We9B@fs%ZG@gbV4{C{j+9L#0aS?so%64)591Gb z4O%kPraafsaE7hWO^s9%ccw-CN)V$&$9E~W)%ORGU}NG*1rD+t=l$~6_S^w6WnF!N zY{lkzy+lXaz>vG6iD_tE(<+yg#KiDjoaJNOx64m#{5yuj9FSAQ{BG93P$0TkVM04C z1sdq>95G)Ke~Y3iSNuyNHg4$A^IKyaW8ZqVss$g8sl}5mqU-&tr$9D%7-_%Htih!RfzR13{b)$DgWB?S@erZuWWf>0|S+FV=7KX zn*#WNw()exe*3+mjUDG}iH;=XZPAc&vrjnSt4R5G(#TYrD?LT9?ai=BJuCPr{zF)y zeIn}S%d{FL+pfP#RbZX%GNSMH=~uYYvJW{6Q-!#{vVKvIQK+(wdL9I9az&PHN&6@L zs{+$!;+)@AP}E3~YoHbb8iIapHPMcwEaQUW;`pzCi$6*Oe~}gjkoc-d|H2UC#Ol3! zB(qoPr|@0l1Lo!7rMD^rtRB$cH?A$-s|(;(GQuSB_&h_9;M3C3%k0} zyzRL4&3&Qdd_c@^Rp3F@bVcX@x$>6^rM*Dh?5$Cw{te?F&p|2&N>**{Pr3`yF2UJTOb3Gx2?ar*%7P8$j>+*rn0 z-tetD4+9#0A%q~l&@eh4CN*zIP#2HP2M#?vu>8q@8Cw-7_hSOEg*wIw>vINk6Rg8xbgkP_z%NQr|B^+d$E z!gaBE+U!*KgM55NsRs7Q|B(selT;d+zI*jrp==nu9EdMCD9pEsN9X3qx4{ncO4}oa zj}jJ`%MT`b>Wx8q=mHF=ZMZ|_4?X)mJ5c7RZ&Y^LX{z9o^5-au4XNtqt=i6ZB<6|L z4N830i$QWcIRjp`KqQvhenDRh|h|lYID|a6L9QwjY_*f9F zj^jg$O|Yf2lp!ndQVxpfeV)Cwt&N-a>og_~pxy(}2ImKnCtxzU(znn<8T96l)Gn}o zl&}*vI({}?mY&crP>R$NpU0J9{~u-V7#(T5u8Vf;q+;7<$F@4QZQHgxPCB-2+vwO% zI<|e%bI$Lqz1KQpkF$T(QzKRXD%W%AesAS<%RDy|YY^F>FjZIk$t47OknY-6!LWuj z$2>U^*Lk`G+@j-Lrc*=2moqw>=l4)mt(BjQfMqTs#i?$&I!R}xiOfww+6kTA2J-ci)nh$OLlD$=;Y9P<_S3NXmwtgpv=yt>6TI7shv28L^inIX1f zG2xd|%c?73zwZE5ZMMXk;&%~oYeXqw))DEZom@Tfd8z`TEzE{&Y4g`&->+6Kfun$d zp@3L{fyo1Ev0(;n&P0W!g=_icYmpIa0|BS2Iv{JOs75>4^`298?T1zbq>tIR+$oC4 zTOG`|lV|sy(`yx+5hhc2lDcAl>`p3riOC;Of?5C_(7o56V-MtjT)%K)(G?Y;DaEom z&gaAS*A|xpa0C3$XarqkLNZIQv=cZz8{?2N=no!7BMgfcu-$wo?ZwcU2D|lNO1hQt z8X9mb&Pk5EyGt6WuMhXqTxp%6L7`xrRuQ3hTo5nHzv<7Q7t>A8EyndTZjLc+wmSS% zA?U9^=Fsa-F!JPP6evDTiBr?&g;tz=PzcI>#Oxj%4x@IH6D-4zUM&a2AN{AVl6$|F zw24Tm@>?syq<*S%&L!2ePt0d3^6?1nuRyN*yrJnT-sG7PbHSP`3TfZqxXXmgaR75w zCKB-@=0M7UQUId>MSK(S`(NMk#}M&9t@z%M||T|*I1pl@UHb9#+Y9!oQwt8x#+-}8Jz|Hc7C|c zEx$A}U4KfRN2bx|;tfkO!PPltN9rHXiRbmL+E0GNWBFA~E`#^qq}76GxO9q_PkrXUP2L7$KoE0nJ3AhM zbqj#H3;ci!A!vKs z{G;W?8-X3@OQdF>1ffoz!m34{^RRUU)-nYB< zvaBi??tR~}uj%>51BY*uN<$76GCi`8`72E5>hyMhDD>|PbTfvm>fSO0Npnvcu{5ea; zOinE_FwW#h@8OZq@^(F1nRg~$Bvd_{nk&@nfqNs9Qdcoz|X3{Ft0m#fMXa;PKC0r^lcXSQXA%+ z^w+PY_l?dF(D!nN@(yjM)(xWr$2>rzu(kTS_PctEbAXijLojHcN@lsk5C^M#C%@2# z!0@;0_r*)t{v=b~{adwKVEeS8BVH4_j!@0q3PC=qBE*gbfIG_*Gk|yG15mN(34tU} zcziw$xKxmS9QQnPxe>n^Lhj}*%+x(nOkACX7LmGxOIQL5NeGOLWZiV%hc4J4(_Ws5 zJ9Zz2jn?1g%WQo>&TJ3+Pnd$s?YkvGvjVI zKaL>2YJrT${`R*fhSHIIPu)M2A{G}^OEt-{$a#A{o)sA!=b*TEUn13UAVE;O1Mpu!g_<|d{A`Al`-`0(e*yMgtWp*qI1w_5x5Mn@6YuY- z{Wb9~z<$b~&c%Ks6)ePOw&tKfl*ATHyX8GN0cNq>i*C2##vg0do6dBu*&Dv3QhGwZ zZco;K&7`*iWMTx+YPS?c8{!b zptksvV!ra2i5}Wj*N^xVBA+ljEiw6;Ubn%L8!AO%S-h+2^qRW{!3k)x%`HZO5$S;G)RKJ+(*nyHXxdvBC+an{^AqU4*YSo%ahAsQnvW>+2AWLpUV5$+CxpRo@Q# zm$sMU5uUnhJsAz}l&m^#ni=E;8>!^=l^)mqnH4MKrD^2}z-*T|a;6FrtgbwHSso(? zp$-+w3Tq$vuB|>}I*jjUx-|K2p>)`~5(_t2GiRmzyhoyT%N>tlcv?uXS1>bfQ zl+AF;8Krh=AukbsZ-Dm8cB;CS?HL~cL3VZ_Re~K_qD>LvP9hh24gK(yh0W@Oapibx zJeX93vQ7aftnu}Z?!AFkr)Ske6P;X-q7INhD?|M$A-@Fn>#;(3I^yJ2@{Ja+-PEne za$KYXF~U=sHW^_2+X)9AOg7Y6ey7I}fYoD(5AnwFOd@47fdKP~5j4*e4t0?L!1xT8 z^;0Mt28ixG>^xXeqZnoRwn2R|_A?mz(sY@_h*zybtjRp*go4*)C@5pu2tPqw3pg@3 zl=0U>sG#^=kUEa%?KAkcvKyI|pXY`FsABAYArL?<<-S)WPMo zi3hQ_m&KiDG%4W;j0kxjMDcCJoJ2&STv3dAKG@rdC;jL6y}fJGX*jpRukxpLEfX&W zNW^j7H>BB74^x&$?ttmpHxgM@`~h26iN_a8Np~>5b}|h7XAzT*kb9jwFJ#Vn>_|JC z&l!%}D>(sp_4Z=Gl{vP7eTAz87&D1mZ5_mkEMG!XvIc!$XJG$zD7-d_Ojo3c3afDK zS$T!Dy$E}-aL-mzsvvILa&BCPR)jD2z{hd^_D*&GlVOL-+H)AJL*Myk5r#{=cJZx- zo{uz!Xo`I1h>=$1Q3yEmRIN4LxA7mfkf+LmE0F$NA!kUd)r>D89r2YA;L!{pvzQZQ zq#Zg3iLn3%?O`$X7V^#4VCMp)QRU`C`}|Mva-s8j$TaOXk)!h#v}TUHB{Io#|VJIu99Td!oX z0>x{c2XrXVg-`%XN*oweyLqow799^L{8__&Ai&>F(*>(KDGbtJpH>C@Kr)4&@SViV z=N)GnsjD0`=vZjlnE2vlIlm&EUo&JvDKIXLSMvP#Km1+j3Tuf1>SDqQuKa+_2&gJg z;i!uZ3+Vhg;+qGbjDgu?7Ua{2fiOdtn+-Tt$>Vhd z=tcbH3R+gjE3sTR$B(jT!aS-6>cfr98ivwqU!dc$X`WL2rzL9sD&RstMkb;RZe7ay z5ZJngn+!Bik}80qGtj{2uEg(A+gFyGbJ1=R6Uh7?w+iaAAyzWt>y zl853@V&E7BrZZ(%_;)<6Ao*fj@1LXzOmIZ#Fu~a_4c!Le7Kq@sck6Mf+f`6|!~@vG zO!6PMm0MoY48fT~P6>TWZzyb)K%W)5_coXf9@$Xaf5{37FO#sK#HcQY<*_pY?_oLl zOdttldl*DT-8Hr>%EIxa0+f5aA!-4ikqqIf`5Ofk{s6!#N(C07& zx9<&bwsISE^zhEp%nHMytmgJJqqGZFgtO}=HDZErh=_cXmpaO{n5bT#6!*ugqlR90 zgAUUp_~lT!@p&-nP^vvwYSbEm&HCc-k+QbEWjb3Q-w1dyg)Wp*i5l8q*v-hHsqfAx zIqGQW8(OO8Jp(uFRPVUYH?KUt5i67fk=h&7Yq44{aZ*VGUmo{Re91il{AV(};d0C$ z&R6zU_)r=t_6U zz)24IpEx$vAc_NA7mntEoSGDKZ}a`29(G@+g`8A! z56^G!(i?z@=Zl*u$S952Dv?BMbP1ikr$ir&Bka*CQmaW1Fu6J}jzl^^mHta8H_@x7 zvLG=arEG85l;Q74R|0iRbx5cC{dgtE9Z;9c_tj5{j&A!4a=ffeYxt#$s>T8MqC*pd z1%|TA90jq0#?<**=cSRtH}$V(8n4T`*T=&Rs-r2&x)Ac`yj+}3*QN>W9IQ=uVCtbt4-=q zRKgieV{qgAc)jegJXRyUowngHa77Rn2`()u$JJ`xm0haokky@l_AM1;C*P}a;&_uU zgM>xm+Z~)cd?Gny{Uh{F>8Rhd0E69ntzbyeM@R2pIF?RN%#4Z5gna4>i-jckhB;AH z83kh+yQ`kzgUpp zG*{BrisKk2be1aNe1@}uIVll0Oft`_b(X>+HNtnRli;<7e(beJ@CW0w5k}D>>IZ2Co^D~Aj1oRCI;-iQ ze)^AJd8Kuh?;02$RKQZwL8k|%BU$8M#FB@7PUHVe_Wy(BZ!%xRbpCQ4dp`M-`(I47 zJ@p?Z8v2)sBG9M5bpJgaT<{hOm#lC2&cECde^~~{!_u1Yl0mZ}a(_COUafiqN6MA)s(pw^kXb^gDe0bVwE&S#ilmhG=;}@nAB4?l@pM@I6CKMcmjj$cs zf>jOpi_swV=YY3K+ldSogzrXe0!7V8nz3->J6Ei22cs0;xF2*>|V{(2ArMKCb^Bmatdr z7q#|0vt=xMCk1fWBk%C0_it&V6_v#b)!+EFhrqh6o%jZ?>NVW!`~uVwx0VU<v@k+zaIEYKzFLYY>{-0ivNI1 z$7dcR_slry=Q+du6{ol3iEsK+hA@)6t_CahtFI--a$6XO$L;LWTaI7 z;Kq=n#yDhf&H+E74Q@DIZ!g6w@V|pH$2ba822=}t{U38iA5)F7?-od?hUx;KOeLBVl_j5X1OteP2fe|9Zp9M>~ulnTAq z3GlqNnz2HR^!?hftDcPO37sX&>@e_<8hun$hgQ6)0qc0$8n*M6DpQtkR4E%V2z<&q zU|Q$@>3(WBF*=vJq}B?oeXdu7NWK}^ZO9hI^-dJcZ>t7x^3J_2u^6-1C^-V-VahS6Ggbs>c!{NVucxzMP{Bxu4Z_P)C?vzB-fK^t^LTFcko zG%EmJema8uM7<0;o8z3A-P4)J^gWBj^6{SUGN|uxAB3b{vwr})y>?%YTdH7AZ17_5 zcenpdOQHcWT|fxWYrZv@w|1_AxY**&mB`UW13>lQ)sP1RiIhARs(;78G9&^zAdD|d zTln`bW-6jxuyTcQ1kvfZpSEz)Bw9rK<~+G+4dXtzk=Lh^SHyD2_u}k2$3B2_#&EtW z9MG@PtmT$wYz>&VKk^J(K54Bj#^)MDY%k~P(igkH*=i5XR4eM3tQXD!v^xNdBMH14q=~3&jrN_sM5B zAg75uDdV4K0sOsTw*F;^#A;;of>Iz-dArTbfAai2xjs_WQMgRVdl{ zcw~cp+XD1abdwzOVpN*eK;f|a)u>@?+#C`T;ehTeTl^qa;)h*SY`ZWbxEWjRZ^^ER z3RgcD2tROw(_9|ZuqF{P#Gf;lws&HDC@PVnhKQLD8hhSS8KUTj*L4O}7$h+b!yTr< zWe{`z*x^KL1fk)`N)TQ*<6e|7I?)>uc7T_3K5^0^l=l&jhJCh1aGbXp&fwA=$>6)M zdJsD8xiwJGStU?BV?MMv59R#sPDF*9&E?L~qq)?&$@LsRI8`CUUJPHx{rK<0izZ)PSAV{xk>m0ap^#0Uy?@sE9(^3n~dgIsM zP~m|eIMZ(88{`nrMtexaIRTP{`oh7;3!3l}JNO4fg)uaU6}#zrK*v{B4F-UaI;$8C zovzp}&n_57Ih(J?b9WCjFh;ik3Mnoffzkno6@Vt>vST}SA!B)MX3E$5O|g&pn?7e#RmrxB}KK;M**4n>i~QyY3E5#4bElrSB?I+S^-Ms)#xL4 z0M0K2p=DE-iLmkf$K2Cpy;4Bt1exhjB{F6+M5{fuw~gPM_8+1NS9WO_YFItiSc(IX zhxSIl(~m=|I9kLprisXX{BUtf>+o<*HpBFE)=y6ZqIC9(VMQA&w6id0gn;dv$O!2P zH(B;`IMe3AmODy>D4aj~(__61@z(A8eLf$0NOj;%X-OCcK3^R8E5> zitPnwY{qY#dNLy<3iLhj~s+l=a;5XOCaXUqXcZhOG(J73fjwQ;l9H93Ue}Q zuc@SqiO2qvDQx-0@$_UyrP1%dO|&S=PlR5o1bnSlY9Zm1<{;%F&H;rTLpn>W7=SUb zU+4kBTW~n`Xhbq5xQkJeYc}MDu#leA%&`@ZjyCwc%QtT|3?y)wL-Z|F>RZ;6iwM+I@hFm@Di=m!5p{iA-dr68M;fwkL&(x%bn3d6ntL1} z2{!^(#DkFQ&Q~inX|Y^KB2mnwP9y9|h}g}DY|*PQVSmCXk9$9%=!)ZoVRPD+u;$@Y zhgYx^vEx_8R)Wz|SC%b?nZK zTsF9`)IOrW(iC#l6k*JLFOXk;m`Lz`4%v%{5fQ&zcsr3*gUCBO1toq$1%7KZ#*fHwrjOvY&oJLO*K;G$gC^5-agSCj>ud zx>|;QD&9%v)ed7>Wv@ad&EM6E-=O^RZ0Jp8t~TCN>}K)+#TibX@`a42VV^4;LogA3 z-r+5Olbb^IynO0W`O!m?B74gLR=v2KznQ35v8&;e`Z~DX;z&8U($c)b5ZY44lBt-V z(pxu3v%dRMx&_~%z9vz=I+h}p%dR~EzF`T2T%>UMlB-B98}!*PT8M5IrcVe_yR3yf zBV$4;G@)_Ki96jUJ=~xJ2L`E9=M;4#cNfyStnPvF$EC6$OiZ>zUkodOzA zHv}TMxLrO&5vxhYf!Us!ynWNu`=r?K_KbEEV$mNk2mF{;F-XgB(1YjpU4<-|p}Ixr z@>L$TWCdGboqNO*>arye!<+;McJg4(<>PS?O&X3CIQE!FPF{-Og0CGScd)19DH_Q(b|K(CY_Bc)QNfm~c>cQ*YOSS;kXeOmErLvWEfg znUrPk!;4_**BYOUL^iP=$F1lfkY`B49U{Y-hdk#%X5YOkpq&cfu;|ZA* zG+9gAxnLg_S7Qs4Be#JTw$q*IlBqnS+EdV87)*9cfkIlkrvH5wfY@u|*^q|oYNU!M zxK5VX(3hR?jIK^0iyD;CUIB$WnydGalIstozUSE>bE=|P=N>ZoW={p0iyG4Og;b=5 zzQ7YuR9WAa)R9H#{-Q!dQ(7Q)#*6ukNh$_b6z0&$JH_12#K-sL1uUD~>HQ$3Fv&a^ zd87@(9FnoPv=d~eImgmd!j>rRu*c10Zmp-la6pKPlUN|8sXD$YfR=4=SDgOda_w@5 z_=#5DBOcB({%mDwT!U279Y{BCh~*mTbthOb=n1JE;@$VBaA^>#CviNtn4ckb6#LYN z2@zE?so2?oab6r{0ZV~e$kVBM6l>!!*+n26MU;wWzWr|d|j%qR|!KLwi z*+I5O)3SOAc2spq)>Mi}GdMizOf<`htJ8tko~0Z}N* zb?CsmY`N|HS6U~T#x+C&$83c_+a!4vOJv-u%ZijavCpfIUnSF{#stMT2I1#YF*`>G zWF+8{cK~_T@KM`F?J=B`9n%wX{*+EnKnPWDQ_#eGOk5hBJxMlQms?kUwZ;PaU^=o; zNN$K`4!3yK#2rl7W5qDB6vGKV_L(#zUHo7osAN_68c1{A*o;$N_hZkB69C=;=w3ua z@1iyEN-kd|&kW|)`FpwmaQwD=NSBMoVP6 zFnHTJs39*ye2^-FGgt+ax(YEWssEv&4TM*nSbFXUPwg{Dz;?2h!^cCP(znr0vZs+# zX__STZ&Sv9hjb7#4%p+HMF*WjB*E~?rR&`;BQ4xu?y~5{mVf?9O@f&>8?;%W0l53GBawaHzMol6q9xUb33p99+9>l`sTpAz_zsyy2c)af)yH z2?kW1^`0+MZzoFvtD7U0E?0#|4Z;PMvf9(V>Ar;IK27Q>t&}2=(|Uj__PO)T;hRUe z-~>3i61Hz5DJ0WCBuJ23uc{>S4l+DKL(uKTu#rxLe1)RwJde*eL|Dp*I2}&#jlrsz zGH+o>>`{9)y%nt6eB*pHVK|Gq!pWn;oU@)pT-FijPS;vToo?ui$L!E-XU48kD%pW> zQ--`Io+h#yXngCGy_pXIhWHotq=Dm(1yswK@yR2(C6FDYrdb(bZ<7@2h|*fZFV1KV zT+Q1VafIgvt;v3|UjWjOb1Dt^KW2W$VbSrTv zmNC(a)D7DvdQ)OP`!B=H!IZrXxvLuVE5+Q&wC#>+fLK5DGTm8TiM)`xto3i zA)1)`KaU7|&CO2CWUsZcOl~4ykKnw7Z))6|7ElKk>{>eluD6G{mRJ=DierC<+$~Cn zid%E47fQTA6X?{`yFygSl~IDcN6Qu+_|4hz{%ZpKpc^UA%t8|7hcT$t4P7kQACXY~ z3H-9a5JF~WVxuBQnzYhy8dgz*^211DV9@K=BfkFxeuW{uv~nRuV(JIPEDLGYp7B=8 zOOEIBuRgFKmK^%zkG&zH$cXk|K~fn!7+pVoMmO$*U+FDb$G%s3IQbM_HoW3yR;n(0 zJv|TeEbK-TPvW`M=u{_Qg_-Y{2~|tzlGHL>s79b&5HX|%9l@AQzT241Tl(xHNq&oQ zWp|B>bhf2BFT4$Hmo z-_zKJx8y&$pxEC!S!`MpP9kI>T<(PXbjcA8u2GauyV`E>D!)Ax9^EPUt@{{Wsy2=jCQf8Su5{@TVTk4IE!e$k37ssaQY(o$lJ3(4_L0;;pm@zrW#Y7~F z#78*+3%0opPsFTDHjakO4N8A9NuXQ6en#0*$puXDP!hM%_Kk8y3 z%}1JKG{{6KaxDS+h(e^`Ka%f2SWWjNj8J?oUBxFH5Nmip01l>_dB;Sy^Xl!#!DZV> zh~|37!f+x&8vjKR%dy#lnj(^dyR*Dm8imFL8Rw-3TGj?$voEy^W1T{nPC=_o*2k6( zUn(dHlIJyCDwyclo5gjiSDYzZT)OPknUHZS*iUD9t#mSbPw>DV;OaQ(o7Rx*WyWH0 zx6+5i0);jOf;sMXbUmi zQ*ddL3`j#iD9RR%DvsEl&xbqGV+BHQaUOHw*nNZ*4d(*Q7Tojuo~oo0h`-7!U1R&*v!pzF^zs3 zLvAbUM5orSb(`Rj70qtqZvmr5!uFuc(C@XMixv%t7^kq5i?^RyLTa!DAlu7cIcHmEyZ)^wSME6wu&RiJfn4=J zzkL3f+Q~Mn0KwR32V-q$H!9__XmadxMyt1eD~k^LGieytna^dDItr z!90)IV3p7B7=IBpi>+s?Mv!#Cgb~-Jpjq1=CYd(n-)&-s=~+nMA%3jV_j(_vGVq^^ zEZMueeYq!XFH}X`2Tk#eq7UATMq8>9<6W_%uUvn%E!RDGWAK01wsFjm1#t+7Wba0w zo#dv{ztzgS@SfR7y!}7@iy6_qCH~WqP5)A~6hDrByQ26@|7CPcn7^&)V!rqvrk#fN zf3;=V_`m+<6DTv{2lb_Wfv(IJwZgwZ(b%V1o=EABA(d7hsH@3pkHxd|1I&ZFe$xl9 z%spjQqSo6piYUu*aHVg8ZwDYnG}KT0tODnoRQXCv|3C;9hM~edrF3~|pN>8-;V;C1 zIRvt?7-4%3+uj5?9=U*Mu_R?dV7E@L9xDNo@`qd=e$7#K2VzP0&>z}Zh7;~T##E@R zQNM;NH)@yli!&t%`yi|?^`rF3x5mp@t^C1U;SCeN>63kT;i#A}-7N~?m(cNZ*HM&? z;r1^rdn#pB@|mVUa3UWAFjc>0NeEe~cCM zxEw`4wv3~nbp%b3A)#fQ{Ad9oL5#1aAf+>sTCLo?dx@UFlR>N`qgB<5Xi?D>Amp17&P^Sgzq!x(YzLA)? zCj1nD++VQ+c=C&*gOm(%yPYqFf756h3ScK2P{%(o6(KP3(k3+q)46izs9V%th4d`! zN<{oI0qL&%Ap7JlH|dNvl!`WA3Pm((c=oFv`jD?KD$|Afio}Rudiq!?Rg!3 zP8!q2-Jh9%W12bfPc8R~&QicBMQGj`|3AJ3pN2;3|2Z74lH{8Ju@9-vp zdS}_Vl*F||q1Mly*{$OhpMe;87yO}@$FY!26egDV7JDa`PeLWr6}|E|s^>|bFcL;F z*=5Zshc_bY3?f)w!U@RFm~PSudJ61!CQ>h})i}2QLasu|M4K*ea(p9+q^M}0ll})t zi9mLEe;&$V*4BCZ-klJcz?aNy3Nk|`2MA8x36Jen1-*ogCr4m;vqJl>Lx8C zShnL0rz)nR2#J!ieVm@f@XJ8~?M-Yxhb}8UA_QvfcjF(543hw%`|_Ui5!4FvtfCMi zBEl>5;YL9SBsKDA?ddI0otN9-W*jM`q1?U9kbu zNYnBxQvGEO2_^`#be98?VtFx`Oym_F(8dpjHxwzY5kmp-@A??G5PW(XjdWQS@{{`P zNR1e@a}g<~&rSWf-$O2fE51wTkUVofF&tC}?tN%1vt0L~vXbEq3D4|KD9ta}L^R-u zx^L(FVtfHD)^+E%Dd`DjzeXZsxq#d{w32gg>}B_I#;gEcrHs=)o|$G7zTc5%uNqn( zPDru6-Z^z8A(M(L6AmCIY4X+GeK~l2qVcYZHBg+|rmr6AATaNY{i;~j^9dFfa4Mia zTV!Vm6JcvgPx`7EzH#bG*Hcc9mm8(Ni3XUCx984GIG!!1bU!u1Al-EYg7Ub|5FV*( zgT-H!nys6E$CIkn16CVddPX<@xQ;Z@5s^ao|dk&8jF@tmSs zjtVaJ9NldA5>+KP;Hx!Ni2NyGJptkk@1Pp6x8l5k<}fI}$Scd4md}0CO`o@b%ka^- z5?C!npY7-SakrkIS6DIw!MDu6#S5W2?8}KM!{rq?zE?nbfYw=fyfiYLIf0^K7eA|Y z-Pe&*{;b!tXof{7_y`8@h5$su3i~1eCu0DQspUJ?7hoCPmWb3>*{hp#2(M>0#8DD6 zO=FF{;d;$5k30E?^&C9zzG*|7PTfoTnbXQ61xuDGJEI^pM>}#WnzFb*qp_huZfhB& zn@Ha&M7`}?&ZnVC)Mq(>$J`~1Hq)GSqC*urVC9Xc)YmaIWk+Kfj7k@*Cm9b;RNbAs zeFQMf>A0?Jv`xG6P&Lg=3@0Z>H)Mv)_lZLGB~i|XEaYllm3;?T{8h6B949)wQIM%h zqya#HK?yd7jS8M*zBfWo%_{td4fV(e;Qr9&s>t!)<88PnP0DhC2$JcVQcr5P3~y@e zgh8vCqds2P>H=hB#U9BO;><0-n_n~9wni-k#&!(zZf+V_eRSfKnv zw2qat9%7uxO}v2iw6Ctac$x+OEoO_86VXX2CR5uoVKR5$%_3T=Pv9Ch>%fzgDT9De%$FJCdJn&IO#F_bPJ!ygt zr8x&~)e94K^Uvori5a+}6Cb^^M*uB&5Ff$ha)d|pxrlK;xX8eKAn~lhL)8Cde~1pJ zBcC~W2fp^QHbqfp%q-@V&*gjA(uig~4jY_%m9Z+7uzIE`)B+Oi1OV!xHc-2cXl0^$ zmS41M{1szLctQ15llv6VbGnaPM<6t66>u}hG+zwH^+G^3M(JK3zkZ0VchnR2UOFj7mAi2Or3{}OtEX2nK z(-@9xGDxWzxG8wVArU2g5^H+)z1tZV8p7Uw7Qu+lke8%Tg5w%1i?NU{9%QaKX>sj@ zYeWpdYTt~`6>KkHdCvcGh#)mN{&4;{OBZrbbZ*g8TBWN>52}@VB)*7*2g!9}hSg~V zisV$;0ee5`+=3Zi1+fbw?oA>e2wUqLfW(zXmbuwsb)nUbN?MC0dH|6EMUkPrN)&G6 zg4mAMWz(_ql^lRgb<*mM(PUx|2_e!C|K4zYFc1%+X0d_9Y+DQTHrS>=xAE=}ind0*+o&&k!=$=SlzCCiwy;IbK$6Gz^5!xm zHnFIXGSfs~14F6|D+M5n+=Qp>j)3@6LP3W{mG+PKHa>%h!v$4i0(c!we-+M((>yky zBNa~)8Pa+f*)?M~3~r3Vr1qfF5FDg|DVsnvsp{Ij*>8<#I{itA%1KHZUAWi?^*Y#B z(i#PXW3pWSYYAB6j~sP%v#*c;jmpKC4R?DRA(n+Xtr}u1_+Q~9uRSCT4s?7md5rwy}w_ssVmGRi^ zRCqza2%avq5&o1c;nS6q0`bK41kM8Hznl65rhl<1qc?L=@?S9Kfb`eNlDIS9_;mfZ zvG4GIZR|ht-ajZb)TBpq%|1CG{XT3%zVza(_1{J6(7KE&LXPFfdNDl_na?T80Sfm< zCD$HqC_1m*MMPH1gosu}2Fv-V)AK|`vUjh8TYX(m25UsK@oz^D_!j33>8o>^lNgwnBL3Oa^?nUq5!J|;H)f=y~)8(QBZDY0&lmx`N0CQme(>QHip zQ>)q|>*)%O+?}4vA6dgF5MZB44}g9Qk_X2K)23L{P|Dzw7H16yj>5SOpyVL z1cd=n6TeOvaj1leRn3k7kbi=P!X$s3#(s=dl)7rLVA$l)`9`5r2Y4b@qWqPP&FI7V zwEfZ7qya@|0Zo7s?Tg6TgCgUZRrq@Pw!#`Zk6C^EJnYGii4#D4NCa?xCcEhR7>n`r zmkw#%Zn^|rR6|wu7`4p4CtBxX=hps;`1uQep?I}+;03-;3okpW_=kAY&rZh*ia-I!#pLrbo}7Wvm_0@QY{0MXH~sx>g8d^b)6>B&uG z==Rr-i45s`38pWTHQ9%YB=vGdD=oHbkkYN$ryfRa4Vl=KXg$1?y=>bDs_+Ksp}oD? zk1UUn6AY9?`VfU+AGkRsd&XsJ_SnY7u`-bn!3q(2wtOLNgdj(w#IKT%kt$!Jp1s^4 z@0ZO_8Tqv}HxII5?T58@#JyCEY)>}N`<0}{FFd8ul?d~+Qxd^HRSPM^jtPy6q;VzI z&OZ}22ENh4} zcYL8ml2Cu}g|e*?F@~ZtE~R&4o6RLh>;Kon7aOuZ3m>VUlh=(lz)X={Vz!k{9|peN z>tkqZxIh*6O-WlZ04pv^=|)8pxg545_QCXkYTuT#WQehYHc5s7c)Fobm1R1%H3@TQ z|I7DscdkQSeG#sIRp8mD)8kNU6E2Hi%oyEfC zx>bGUEdNKbo5TOFEf0FqAoDNtKCb>RT21ZBT7L5VdxASu@t+CqzXzY8weiy7yb}VE&57eQdH>fD3KPCZ<7gA>9uU9JM_fFQavMR+un~>#O zLM6B_^5asfg{dw?fq_fNq)cW+8ozLIUJS8%&W&kM4I&0B z`U|RQ!e*=@hQ>G$5Wd<%{D1NlssREff$H3<=-;NF)atAXI*;BnkY>a5vDB*f6BGz6 z1Y;mf&M*p3;(6TLm611o77`JUNb8wvcz+`4>(6QYr`io`=VZ{^eRjKK@f#jF$Kp#y zo=S{@{fQy+T_L1cs??MKruGipXlfezJ}go;a<})6A?x;DVU##74*M}4S1opUjyD%# zpEAUNHwBs2Z&WUWt2MMos_Kp;`J0dZc9kbl-mvxo985W1YwZXOebe;bpJ~6+c&nH0 zscdaW3PV~W2dS%rQERO(r|>uQ@VQ~xy_a%dquwp8ok}!9R;LyP1{);8?<)3dl*EQi z$2d*flW3t%Pmoo1AL>ZWi104Rb`iho-Kl%}yh%bhT>PB-$0+iqr~4cBHn}xfG*L)@ zQSVCHaX6r!DkW~Eexy<-MwHV#b)#8hgLjpcf!O4Ux(MAQQ^p`sXG+yW2Wx}Ft2E$Hts zkp(1uBjKzyn$w`n$Q5eeOX6oseDswG7UtZ<5WRiUBcknTCRj9OGAd|7twZ0edT_tgW5^=?NC z;=k#c|CkKmGd?SyQlB}4%NDb!XyPY`xrkpa?aDBuVfP|QLgzd4;|R8wtG*z2u13%~ zi|xS{6Bu)X$rpDPcuP01U(wlpONS@F4K?Rl8E)9}0P<{0IY545M|R>qeP<8P{q9M$ zo&R#5MNRcw17X2w+sB3WIWa)Y^@!q?t&&|ac*xLP<&ix!v9S>|gkcw?tZM{`R~xh~ zFWSUtFc0$B-YD4pE-PXCGha!pqO}IZ=D_HZ0~U3 z21&76(eFkj`w}2|B=5nx|A)7?4vM4O`bL9$aCdhI7TjGzaCZqB+}+(FxD(u6g1cLA zmq2iL2;82W_q^vk-~FoYf48cur)z3v_u6Z(^;@>(hZUmu(jFxrr6O(GNF_^VpnhFv zC(~di@=*KJk^T13F70(m0^f2_S4QmC2{w<};=fY<&r1JJ`SVDPXdKDHrgT~a$ug~1 zXQ%O(YR?NSUB@ z6?PJbb?{MTFvcr}%@|qlhiPmyTa%@{i)BS`xG$P3W;}Z7I&p=?)b$7E^4jDvD35Q9 zk&c}tPDYQ~feh9>?9VIO|8oP2F2TRc5bseN$zD8EVV>3myhlHdpumcVpJB@{K>)*wTP+4N1#+5*krtJ2_RWFd68zU{k zeE9-`&wW=|AgeD>bR>g8t=k(ULAd>#iFA`h9~)P#Ve1kcE=eQ6;_m=&sUW8*2keZV z^JK^W5V96e!;5zEs)u)y9dyjL((`4&S(C)ERQ{qB16G|wpX2k&Ud&bCUBc{A!4JU= zNUlRU2b4EQu-$a0U}7_0VR|=xxPf8#2;l}azKb)zA_TJKt)uo2+P=uePf1&rs-9S~ zL`J5(R&pJ^N{v?uBpay>Bzgl;rL|**rUHqS@8X1{f4^(LJT98ULVXohm}v^BQE*G+>j`%3GF^$ILP`rg49(Nv}vd4bC7nQm}V>sqHyq2X@hgv0l$(67jW z?fGWM#?y=w>8SJ0Y~6p!(~Z_z)^f7^-jJEV>V0>fm<0t@?*8%bonM|8R6(WgGYqYL zCD`CbAM<$OP(HOczUSxhBz-~0=NnC(GlvvGo|HT`Iyzo_ZbFXPTeA;ShAn4(2UA@s zRz4mBt_qQMWZZG@IbFUWM6h2|qvh8kTA<*MNd8swZk+V1+V{5(nnO(asWaphj`)Y( z_h3m>GJ>`6GJ@Zih*zKU)-K}M#q;IJM8YXzYxC-n2KC*j5%f4KkWzF*YZrvd({WP6q0KP{xAX^lY6Xnb|-!a0XS zB*#bSh%$iFg+s6?3?-YcbDEPAMqmcU`}TviE=U+%uGNP?Ps~)|#(~;{12=?RKO9*> zDKG&uxxoyD4rwXacAQbPsU4Wx9YmexWeTR%a4o@r&dx*!X7v^c>&!qMW^a^>|B8b( z9wQ9C9|s|&v2v7xxn+`U?^};&1$Q>p9K0-&+#tzLMmmn>*?IXnrbKT#(u#09iu}CYJIx~_<}&XyJ^%j8Db44F z_qeL*eSK0QCeV!|fb)SG?IZ^NEU_vT-$VFvr7;3x+B zqY5{7G9e=jPfOaaW9#bs?~3~=u$!u_2!*o(j9{L=^BH+At4wVRj<5^D-~1Ib?&v=x z&_2(Zi(^b8tEiTlTz%i#D?2OUJVkuYkaC5pZ@_c@F^XfOdCJ>mtX|E7<8~8R!Lk!! z_x=Zb7gpOV(a#wFs?LZm8%zD-#>H$$S^#N&*A#Oo|DRj(_+SGdbmV#nX9@E+C>{R0 z1md}-h(i%FZe6Sdzj^0kyavms=*z~N(A1}ObCRc+h_}JM7W;KMmJA@T4<(@`#Uu=* z(;TEF71`<$L4hl)d3~V)@QIabLD_{00?5ZKV0La=Y-t;sI4$$G)hY%$b1m_OL6@6t zmIEPM`l{hF1e%VV3I>l&Y=0G##Fdd41;xuw3zmidVMmzE7!?f0gD0>?n-Ex|EvI6o z_rh|DVMJZ3o-HN74$bjoolFlWEIlEtmz9oy2HRQzqczFX2Th$Iq<(e#hHb?ojak_u z7ghONfc(piV7h#+VfW%%yC5;;X7L}(C52DLH0FV>YAv1xqy7s&0*I=F>OE#C7pHEtoh?nnl64aLC5RZcBQmfDJ$s-gzxy4HYPHR|Qh@mmmBLo&^@zd^k_IjOgT(!a_XZ@^< zx?2|LKl;X1DuE=rMYv55Jl5Hz|)b zBApekQB)TXcLm%D#9P86J+MmDg$FG%x=~)@yG|zD&-Y`OepWx@P(+q$XZSC2zE*G@ zLVsbm`urj&N$H~4WzHsX=(QzoV&GM{3ezPb*z-z$}=rLE&0BzN!AiAdD-H7 z?0HA(PA21E4AQlv%8B$JTF4xEM_|#?kHv8kO1XPJ(a#s83h*y#MspMl*AI>0oEc`4 z#d7bj2?W&c&7+G0nD%hXF*L3%$s!z{$q*ICb;wf$gkA%pE^FV8L%m%W@;gHErYcH@ zLfJnlBhFPr-y17xn11o=QseFpI1&C{FjE7@C!gKBCc(ps5cDZYaNe}T49$##Xt@!fqoA*JdmVZ{oRe;a7aQju*w`p?>sj>Y{?$ zkk>D0z;uk+jh>QUMEz$YQW8H@-Rc$zDO>(zR;cxK<^LL5I+-RimamVn7n`cMnY#|l zS@SElrjkb-O7&Q;x#V~j_Rn9hIec}wnPr`OaE{~VK0?`GHZT1?e$D#?D?Ggvx?D>= zQsv!IAuVWcAtJlQ`?^b(H`0=o*n#$4x~J#?uYBwgf_Umje8Ecr>woh9tX z-fxzEpN{nUa2?%K+G)|{{PJ6Mjb=heDc~@9UKTYf{=eW1 zG&$_Z^#s!r{a+Q;}^tOQY13Sn3rh$<(frRJwI$(AqJ5>WcSRh&acI2{k#88r6_c-$&#MtmL)o~SaxQ>lZ^dO zG(N30xFSb#6Mc+k%>c>g^-C`gZL}mG(Yp#Vxc*2Af4B62-@EDsjms)J-=NRX>95m_ z2lx6?rIG|12;cN{LzuFDlSC+!(QV)%OhFloVR{!g zI9IOl%e!-CBQ$ zYRF_@n>8DYUc}(Gi4;X>$`0TBr7j%K&6kkiyNzi*Ba+I53xg!jNREu*lx|tlIOK#* z`1REraxju5O33G8jl_EPp%rUrX$>N{9^db?+XjkXRz!rAa9KC$4fqqaK?)U-P>Lhk zLx*!kX!xwp!l+6R&&j|mkCS&zhHz6<%Z>#ACYgZy-_ilehq!O>q;x)={E9=@kZGvnhGA6wQp`_zriUb26$x1-&#r~dD&rD-mH&KUiQ|&MM;({+uvBQ zDoC_*un+cMB&O!cz^i5wyI0m+*wBQ$HlpmGVvi0cwGf=#>+~<&;SFbSV&%D8iFE%O zG@#Araf&W^e<+eENBSDTg|LD0YbAX^BQmkdpw0rO!hJkO6H1j~5^~;A;sv$3lMW&r zei2^7inRH|$1pvZT&t{ju8B&~uPNJx7Y0cStT%!-&ca!WFuyDr5#b&!r??P59!KUj zk9;@Tp@%*ljNCi@CN*1jy6`7k^PF+SgSf!7gL=&X+7~_G4IS%EZixK(4nssBS`mDH zr7?D~z?=NDm<%QkcU>%$0Ax$SyJ)g#R44i{xjh1ND zxM_aEc3R}J9M#KeH+GL_oam)jY&Lc`@=Qog7ePfo zx%JBrFTj0ZgeBF=Ms%U~oE0J}bNC$g4e>2T$}0MV4wyFkM~h7Ors89bj!X1FT{#X6MA9aY8u+_w}1#moZY63qW||1bYcF_8C# z=B>r~FUZ3ML7tgiapP+aSzMM_$`uM| zf&DnCQGr}wvE9O1D$o^^w0LoDAk$g)s=3hc?-Ii${w1;^Z3!C*EOG1R)FZy($xK12 zu})lIu&cbg3pkrjh{0_%q-HL8O7AGXeW*k}co!a1u+8sK0dp%>Tt$M*yeE_(T}^md zMlbda^%Eqy7FtRtdJy$inuI5u6mz%MRA*0j&PE!fSc>KfyGLMbgh@@Dtv7yuI1Ni7$QM?6 zMx^0;z5BMri_lV1_c2P4%`bX%WqqBnB$d9Ys?DW2XT8JaxQ*V$)pe-MYG`FCdfkZZ zL!avzq+IViwhs_f>zh2B^6kIhvOOmW_xbL{GxrfLHrF=eN1QmPF^aqE#VZw>-k2sj zNW|B;sK{(EX0KD$K8vl=?41?4bMK4?Rzjk?HD$%M%#x+qGrCw#KV5!HV(n3)$yZ?+d^l_?0v*ihh)+7T zC7S+eS3JRK~5oVcak_g!6v>THQ@{EAbq>}A|A7nA$U z^#Pn5!}p(d%9!a~W*9RCS1N1k8xtp~4EMK#v)QLC2CIyQ!INJM`*E@e_FaQqE&RzjHy1Pf^rEpVe60VYHX5X;kInW zn7qKU-fTUgb?1d^xpy4xi<$navWgJ9*vztnF&i-)Eh%w3k9PYNwo)J~9r;FbV-Vp| z#Iy{3=Wa6=yFfOS|NTZudW&i`x{=uJ1=I>P7IFg+a7yHU;K-(bTjxq7DoTn$d2fJBjvSUf>Q=U@mi_( zDvob%5yNr_Y({d+R2p}3>9qr5Glq;_uVuJpOG>&;doEnwXdz|`KOnJC)9c~I|^t);P3vP1^? zk-Baz--rp0j|VdNXu?1CPA@hES=W`QyMa|&1kb33`nH35btwN&&iVA$J_2@j-f9g2 zHQWhw!^xk}63fe^!3r+>DCwf$6hi;GW`z7iO3eKx>7@N2rAX4@6kstY-W%N3MhYb% z51qHqfR@n9%_|B35Jj9%;!RHaI z`Zfr>K+*)k3)a^-0F7ah9_!t2t{^S1RH-pPIZgWCdBYnmMlrh4dpEP;BFX4>iMY-< z>@VQx|ACiaZYjcY#J~+J2$jrhdG(M-523g7{Q}YQW{=Tx1)fG<*O(DyTA-a9mhmbh zu;*!ea*-ZZ>*%ukiaek4S@8=W#c2)B@3#uGFL|A4%!#pAb~$hmLNn$21Xp0^ zz2XH?2}0Cwh=LaIb0g%-77S;@u>#bu z11(;IgtBM9qj8;&wqomfj93=Q4(h$J2fwlF&6Tu&fHN&S6vIP{tld>R2rSftP~eR0 zr1^CBhmz?;D}4FqZ-dp-*qzUWHZ*+hobO$kX(&+R*OT1#=3(7KiIkXEQX1<21=#;%5m@vq?OR07YZn*jd1Qf$+jJG1)jDr8$Z5A= z-w%*r3JUAIOuOh5kDGV==G(^+^I==Ijg9ol*lgJ>lbd^#bpL`V<0e0(I}h$|XeUX! z|5UG)`bUn)4JMJ!Eo|T^Jq&FG&uDpK&)mdjpi4e0`w9x1gHFQpVht3Q!RdGCL-L#VxnG;G zmL62mIJig)P}VUw1rW3gYln2$Y2uY$uW>wnef2X{G9h89Y9v&KF_WAc_*$CU0yXn| z0i4lcjng_c{jOHZTSZmnRT=$Mp^f3mpcbsY=DR+j37f&m{f^*?-hQx!WAkk7cxI=B#+@CB-#jEsf9CC7UY%bcfuwBJl=jNgqae-f6qbYP zx49`3+;oG-ODJ<38A!^nY1_4;5mNO9mAqOuGw^!iw38NF0&@rm9&eWHu6%;6@7W|j z_a`_qi|*rn9a#PWZ~wraxMP=gg}d*WJm|-UXPB8pZ6)gV^+qH^r)>%izP+mfsa`VH ze{p8$0hgL3VOUV~IV@adqIQ1}d~QA`z`)ly2rHs>s>F?|_K#ynlQZic!g#eNIE1|S zLS};Kf)i=g)Ykwx=&6boKGdgn4(xe)#2yR5(|&rfPr+J-cWbrgx*yWArL?ggz&2L* z4cFY5PuxpT&85HXTL!9nzKZ-&=vR*L4b4{|Wad*;C6^emgFWy2SvBks8Bwc@b{fs3 zO!)K6GQUp-Nly2@_iK7IDM$UWw_sA|P&;2U%$V6!(BkCr1!k9f{w!DK#u`499N$W? zSp}=Ll@iNmL3rov_p#LZ0*t{5ic^^!3Gd+I{`d0hK+Q!N-QW}Plmc+O`wl?dI)38? zA@Cj$_DZ1UW#z{0k<$4ms)Rixc6~|o;g2s>qDk6WHwTmPLVyj(dAKaHOc>(&IB%Q%`M z+IwDR?|m5AFwFYz=i(Td684zGS-F3bRjVcqx-pZ+&%Wg~+lG4FUXtqV> zp~EvGBc*ERmHJauff&?Q}?hF@`V28CFw_{P#Ad#ep8>PiY3-VG`$5|#xyo>U=h zlSO2*$mRG*FxMFIreNnl;_oW+b|1#4FY48=Nwhh}_E~iYjyio(sy`6zfBq63$>)xf zsd&DByTL=Y@z}kKoI2uM7)#6>kDHWYv!!eDN#coJvW(=ctG4}$fz&It7JubhaibRi zJ?H`M%pD7y_&d+E#1u}{pnaFD;XRCSi-@HutN8uy&lLKE+UAV@%}FMtW(1b#E8<8z z$pOqpmwUty^^Wap@nSg(P2Y(TuI46$tB{5BhL1s)r4MEw;Mr3ni`&-O6g@C#bul!3 z!(r0iT)i+{*6ghUPOUu2Ql^IvY!n@k57o?Tm^&VQHFxn2oDW*h^kc;6P&;TH1u#Yv zp-Odjdug|Ly*34UqUkv=Ps-na{vAcevnWtu5vOQdTit}WoZ)?-mxrk)uo%e+`TJL^ zLcSQ$cSmQD?jcUMr!D9z{+HbIDSesT=Q@s574B&HWtsNOO~_!FGh|c)nQxR*(O#4h zq-GHhaerCTYnqObNYrZ+>z<)prvn9>@%E39^9Q*=~g ztcZiJ6J&w{(rS3D(TOAiNt?c~`jOD-;n0PXuIT7%^oBd1q%HAbq}O$}o-Z>la)uYx z#PTl7Oxe$*9uYa0GawGOXTZmD4)2BCXDev5_=s8mkUgwFy^_Wde7tsxI zbF7(J51rjTMnMWUnO1hM!)4QOJXSnqqr{_IRsM*%Z4`+#h7$AQi_q{!BggGDvWm<% z@3=0+>u_sbnnr+OVbETZfw1U#?6IMovAY!wyp+UH&1HU1NEkT_y@TdViTb>F^(av0 zw)C3Td+{o&;aE$g1w|xZ8ECXCU-F#iDAK~?+lMU;%b3kp&cq$U7(E-xJt!?6viN?W zQS+hkh$eFp-Ue7&MLp$jG;l>Gn$QCKbV($@$-Fxnh-}GH=XN);*+Li4bkdD<>aF9- zqUx!6=(MO!aNFMMvO z&_MEQxxrK2H&LEHhmdz%5(f>lzig8D5|*`HXkW1yZI$RO z8DMwbcbHmCy~d{W38?7P7Q(heL&Fm9$&-6uSI-xeL zQQs7jV^vXYtv*=uuI8bPP7;VXg3$bbFA_Xhz=KAb)}#a>zZe@Bd|v)CScQNKfc7W9%h(yMmV4RYHTo$i_3 zmGvbrWBxrfnv3q_IbM6ny{`mCq2}-ekl8x6YJS?7dAQ5jj%DMO`0ey81LH=rP;;VSAsru zi_MwNqVLS(L*;gp6~YZ+slkZn_ww5`>bfL+gwtu`#MUIx+$qD^jXns!O|h?G#M&F# z;+W<6@s*v5(>8LXSYK;WiEf+&*(awF&Cz#?&~mQe{I^-b$hq&(W3P_gNkdvh+}d;2UBU>h~XzQB-NRO#}`hRSmWqptd^?}_T#5NIFntimKql* zOba1mzxtF{X`?w29I1hKRr-9#a%%Y{a_=i|EE8XIZogM5s8F#lx2C?XoL}I&9O3%2 zJZN-ICvtw*)R{$Zqrt!{L0GQ_>Q#>wj*^o@WV!VBoV$)#e`+F`k=#bjS5C9gGk1&l zhnNNNX`@wy^`ChXfeC0b0Yini@CA!3S>}wh!TLS}pD}->tqh5o5PsJf9cX zon#eyE6nBWso!J>K=k==5b91PS45Lt_R~hPsNd)7<9v-daKo5+qF8fyi^Nf^<9YSU zjZgS)6*#fjuCU&Fc5SK)^Xsr(v7cymIg>T_au8j^GLJ@^+N|V<#PuH)mQ7c-?DK+z z(8?UzsG$ZpBc?OVQJsod1$z@%_yz0$vyLG-mg4zWgbk||+=+>&R?(PVTgi84Oy;3H zfv#KP7i_{(?h>9%77CWYw9w&BRMXX}UYKtklTsWn`fEf=(+9ZX8TuSKDj3%z&$dO=3F4RZZlbB@>>pBbvLoj=oU5)HwA{UQ3?aLX26nRD#CisfbqPp6jS zSMI^AJpGCE&Xjh>;F_c2W&XjvkEC!}wDk?5;&>L3|KsMYm>N4^?E>5cMsA*^7}7T2 z3KK#Ea-Hes;+m@Y;qy+$h#Nxw3yS<8^FhJ>jBu7S$PX2|0ilJ* zWBr|m1mGZsaqH0gDUAl8;Ls#XhNs*?hrRj2&;0y+S*kFM`du@K!aIyST1rNjI9LI7 zcT%S|18Ayt_075iW#NfFF8^Mwp2lY)9Z?%v?W1QFc76)zO=CHYlKcSTRZL}y&>XWN zRf@T9eU)Q4C(S3cz`BbK^U)Y`Drhy>1;>N5jZD zsNp|nhN~q$B3n*~T9w}nXRaugw>BDJB;H#f+<$Losgg65>--~{#bByj(b)=n>m()} z^4RCd@aB$u{Olyw)tEAVfm*1V8Nkc?gS>Lz_MOt>Z13nQJ#^k_jq1e$LSVkKXZsw@ zS`9)7@*iS8wt=A()vxgd&sff445)?Q@1Bk|)PHixgj1Z+F!dAOH|)gN087Oz2NVVf zS-l2J^PCkIkB!1gWRo$1i%$CDZ62esai95nvuXQ27;OlwJs15o-aePq#Ux^;7D!n2Zzt*<2lZ#E1o-OcuqabnFLMIE3WjS zp7M|bv6l1YzjtR{&MSIENSGJ$&}QPxu+z|nQ!uUm%!5t0@hZbgDZLsHeL{t?ceX<< zxD;~cPV#*@KOdMQE%@+zn$QcW5Lmvx7X$sZtw28%Z zCqn5YUDuB`RW^Z$SjnhbkEDwXIp+oGp^Q1SWIRO{t=t{h#%4^XOQqb$YN&}ZU&Ui9 zsOI)oqM&n7Yen%O&c5P?>WN})_0t0jrW}n-Zp;HV`k)I$M@(Ayi||H2y?tgp!kD6Q z{u2YOS zk)%HtwtBVKOFlzCW}=aLKW@%^71DRQ940t&to>NbH;unLs@C&MJN?{K?Ug96Qt}yB z(MFNqMaHPJx3qAjz^e@d1oSi1ZaZavB_i3_j^0UZ3{oFBDU# z@SByFl}1WZv$;Jb*g~lB&uBH70IVg~8;zz)`-#vD-O+WK;Ry! zFy2XY@kICjoHycn@qBjxM&Ao5j#Mw7LMoY*_X>k4vh15IiD(e^BK^hdsDSmlC%8Is zd#|J*r4AZ}a9PEpLcS4_Tk>d>*a~yAV$ky2GStbsH;!2c@%FcKSIB`ksM6UY$ptb@ z#i4qNSxxB!6HP~q2d8UTmlNJ_tNWbo)0B5ylup4J+H~J1k`bWB)Wzr5MpS%NKQJ&K z{9zv9aRs!NiJ=YeqeRuy%$cTMJgz`Tn5Bj$tBFb1*x@ify3zc=Q6PRGD+A!-UIXVF<8 z^x|+8PO8?zbzkrO*xLl89ivfFOkdCKWW{hF?%O%f9^3n$nK!qYUyFVb2(tJ{XMk~E zrHBoTo(<#Y3FP%Rhnm%#ciZc4hP87LuS=qhXH{lO zDtn>lbD-wL=O1)}x*J;2+KoTF)4H$FxqRoVWya(!_z~)gx_-pMvX&Z4~UhPF7@-H&uAs@26bkW_!2a z0-5bD$e%a8C32NTTH0DkO`j@;RZ9rUR3{@%R)|NPR*2(um!~*e9NYwB^jbomnFYG< zGXza8(MathZieHVQASltqY@595_iPDtF8VDm$8Yr@RvJ`^c+Io+A5W8Ilacpfpnx^ zG?7YU#hm?(x@qde7~9^}KN^~CXIO|rr_+*}`VTk5hyt+rM&GrUX+W9^`wh^Uyq#@v zv>GP=B|t$El4LzH9ylamvyz0#+7es7qmWUfIzjlCy$x{N6VPB4)ATz_1yIw@CEh^9 zph%CHgqR*;THgT*S8wj-4>=CFEu##0dSR468026rsSKpLUJGuwsf9>Y9@2up1&Wl^ zz+UqFccM*<4VsmDvVU(80&#eD9?AC6TUN#y>BeMwj)}w%tXh zr)&pTWf%mM{GT&X-X^kV0~G>J6`TPDJ2jXnZzCs^&m5aDimGxvS~m3e%=814a1 z9D_)^{C~HoDB3sZ4jH2oisnf;h=;$kR~Z#8lc8|NJ=(Rn266}ky$0g1ih2K&2iFuDNZ6| z3->0~QHuCOlBWlc0Zu8sL_sL4nDN~^IBbgoE(4qbDN!YAU;j{)3CbBhS-zA>;!zNw zfZIV02LcoxLu3w9iA4Zn65oq`nnoKG;etKwM?)n03~TCL#1Q`<0W(4ad*rkQ z))>Qz#t5i)UC=AC+^p8)8%Iz@NKcq(|4-=MO$s!;hhmc-|IYzc2D-kC!Hhr+>f;Xz z;1#-U!4d;1;EJ?CSDh||#V_-yc@$uY6fy~r(q+09`nO$5FH+@LTyXq}G6xiefl7q# zvNzp{zCbU&z|?qzf?gro7A>J2 z5A;th2p36Q@ozrBv;oB6rw72S2`DH3wO{|DlqFcGdp9t3>CrdUegB&lB;{xSI^VP2 zs=G%N>LT`p(|_AP7(il^Ah;uo{+U#c2KsGEUc-INNIu!9->XJf5HCm=ogiEI%QQ%MrVr?7SV*vVPsec)B=W6|^L=kR#$HN@wM-IwT z$G3}Xe-#GgLt7!bjTPt{&qBqB0O(cTf}qG6l*w; zN^8gfM950B5W;Er3#q{8>2-O8%WizGFlgMxR%G|3`Yw}2HH(yoLN^Pm=?4KK-9J-Y z`Kt)QIp_= z`2MXhilTt0QL;U*^`Ar!D21O5bij0KBkwC{Bn|LEq836gO9_?;nXd$EI{Pj=3Iot# zvf$V>!YH6q@Ap5XTR8*2(j>GH-vVX^wgQK>?F#_j32(hiv?AF|6ch?K*Nd=8QS4))KLJm(zqidL0aQsJGPgAW_=1V+F^-Q8JnSv$egD6e5O$pZ4Vz$SVULg| z5B?p5kp&~r#3kS&trX%#WQB?w^|Wm+6`>+FlPtvG+W(gB_n^MP*r9!*_%{^&6=r;N zfVe?FO+L^7FOdQ)I+>SOyAT=+bZmQfV2%a!5Ob>he=St&{nhKg zHA+HQIUb)g7Te%_DZx>}mCX-fDXP7#EI+WEz}BJ&S%Ya#{I>T64#3aF79 zGtd~;yP9i9kpo{F|40IPeZ-Z>!~l`KLy@J%M1MiK`2QP}|Epeq2U4Wx3y8{ptMb3- zJpiCW#c9@T9W>}Dz<~il5kzMd9LZ>5Hl%ZcZ+iVhwxc+oHW~8>RQV#7zefXV{^46)G#8_B=9Ny7opjP@VF17T6k>q`6zT>p1xJG0yQ9-Yilx(U?9>@Fc$dF z0RA@(VOl_U#TjiEB>usYJ1OALo;UDc{~Cr>(69igRT5ix;Salr$U#TjT&;$V8yeU z!~adSq5@6j!?Kr?f`tn?A><_wfRm~?z~{Nu$NQ;*v>!8yq2C`)EC(1Ty4WQ0;C z;EQQ}o_BB*P1g8;zlB7{;lE-FoDPt>2>62X7)g}>K->Q%%#RV&BtjWO;{Qn3zqFAc z5+q}L%v!P_hAxl*+~A<8Lqw~I1HQ)!h!A51-~cREQ(6cFay%be@af@}f>C5-HvnYD zoD6dLR#%|c6ckp@KlQmDpn^3r1lx!P=vc+M#{XaBd_$pIf^aaI%)~n7t1A${#E{w} z@bc${29fiww+{y-S;s$8|4+R7FL|dhKmd(Q0NvO>^?nFs!Hgdx7eGAq;{b6GDS{yo zk^y8hgLBE^qeM!ix{cM)ra?OS9`S5Y2Ki^LtmWYOA%mwg3b?wF`V}H$TWV zTS7I$|H~Wu|DSjx7K<{9tc^_|vS{V=U_*P$b*b2)q1I5D1eJ}u6DXWNw*?4J0|bk% z9H;}g{L;WJtxoJ8Qv1L9R|5smZY})H^dA!DXAH7owJ+jUAc*hA1BoKEc(O1!7Dx?6 z6yl{MNL47dSm@ynfamr{UOt{5egOptWYlCH>yxir$k3GjZXXa#Qp<-prPY&s zA{&h$91Umx>skDd;S&-UIy?@{aMcsd<`%pvimH~RJQ!nJYyX2Le0WXbn=awOP03H znr8X@&Cx}mGBARwtMv@WYGE|oUoj`&VBtH_7UUB!Xs3(3TpFA|hZ4Y<7*fW@F9OCs z-o~^*1mM03jUAa=xJU_XK%~k?sIw}<$mQY<;aM;k?qcD2FwqNbXyslCs15z45KP|5 zol*wI(Z++YkXCeUwIAn%Cz^aP2%INFX}rvrqUufzpTnF)n|4>GXTyv&E#xo=|t_JV`yu5Ij8LGSqGQmVXONoz5WY9`6N~PsqVdxtXw$ zYt%%;4nv$9trP2Uy-Memk<#dLAQCANrx`ttQCJ6M4B(-_wza|)>=X9E%wLD1E4khE z9q^>k`kTBHJb!b0wj8N)TTwPz|G^_Pm0E(2^e_F-6R zRL7UW1Rrx=2YwrG)ZJ`ZEtT{}h*hoMSc@$nH$i9|#Gvs@N^OyU;65ra3MyhFEX1H8 z<6;6NgkaINVGRuA<#-k=0=K~mQWrq%=v*GsD%n4iJOwL|HbHs61sE5f8SlXnpLiU{ z=8&d{Y)0n5BFTIa&ydknpj9R4FLL$<@O^{Bjbk4q-A@9*Oob=8K03uBFMlWwncTO- zsiW^z99zzg5GxcM7`Jqn4vx%jE?WMf{^?3=jRQs3_1kGA4O&SLcD)GvZJ+w9s5i$c zqC&}h_4{gFER5#cEucfzvyz{No8+Bme0B*TODfRETzRX8$_4r3r_U-1g%>DDJli0$ ztU&wR`y3f%%@&L#J8I|*h=7@JMb~=q!JGBS*#PKdJLjVFkrG zw#jdZeVU6JBPA5B?ubWv9w(aa&H%QCz25y=G!l)6KEIpY35M#uFw0CyMI>IWKaT## z-I_~g@eTie{z=}s*TLA{`Ln(Wk06+-mE7Q`Q^$Iz#;tdmT(2J5{WECRm~D_MNcsa1zBkTr^%`s`^QI|6CH> zY#+6)@M;9Hybn72SlI%=h`O1xFv6t*;c}Au$96Pc*rh}iy3`idclXtTgQLF020ycy z-HPyg$hhLe30n~&evgHHB;uat%CV}@pphd@3is(&W=RLscEObyxS8Rph0FVdPE(p0 zS3H$y_Gp@*$P*HV2S6jR?+H#BDb%i{UW-ZMohadvGoSb6$`$2HN^{U(9u8~F*$AMk zcLiVZFK}bGy*i@(j2J{1)6t8C29H1|SFE^W;G6b_b|4Nc_k1R`vR3kvgm^xvP=fZ& zBvJt5z*-X;ezGw$$#DaFyB)VlG{;Jgk(?O`c9zT(+B(}9UiPBhC@X?6`;Oy-=o*R< z(27g3!@)ugcYq!jzLB zk5NpS$>NBBsiNZup{mOKmQygy&Ri`i>`MV1-J7$f*?UadI@g}F>z~`CJ~7*WeI}M* z5X=oETEqMk=0JHvRI{PXzc5zGTn~I8Wd2OQ$$Kos@BN;hd~<0dXvgYg;FC+s`6op#LMRuEhCn{ zdo;4z?o#q1c-l2{?SqAh>5UZTwK}{qET)J0)_kfY$WT869xPCaDeosa$Gxy4M!IZN zu-@S{98-1UttLXGl&%{>*rLU9$yPalO=oTFYl`$Ou+;h4IIMRj7V7Y|W;^;$^?^xB zsgncR)ha??_LtZZm;b}n9q!r2OW0gvS+@ay-Jyv4#|Su@%a`g+1%rOUbQ(OR+nuzc zpIGf#n)4+&Vzu@alOd2Mqs6Jans|Xz=J^BC&Lcky4kzDghWnftKH&OnZFD``YkE%c z7D`-t?8OfVX;@5J%MOt{J{s@3Ki)rcHJ!8SSq<80t{9b^XAe;A7 z6}A8d+@p#v|3;2a_k~LbvQ5h_kiYz!S!x4dsC3?{swjXGP8(3dLCV%AV?ERSc@)NH zrCIOe$w*J;6Mo`l0*CMorL3CQlBu(jIjHQBGuzr6Do0UO;c!a!h~=|3Fc+?+vzU`r z^2H42tMtoXm*xk^zOT0ggaDfRpG&9#e%MElbB*tzMt~2;)rKO2h=Zd@ zi*kr2yP*u*lMqZV)obUX5O*W5&z=1^`e8ejEda=s1>!I#`knp-+`)>TPPnCJ6uKbY z>E@}2-@o`P_#QESY(O0_Tf<2gZ4>}nEVU=sWiS*+*E6(63ML6s@mqdiqVH{5i0aNF z$7x)_@fR;uN+;nnixj&mt1r?=`OVzk{82W+c*f#2-K3aw;~Sw_l@6&=_y z@w0mM`B$0FxJ`&ofZJX+m+-LJn>u@%usI@+{h2Z_i04T?E(j+`X+(F?O%0ED5>_8i zw>We&Y4X!>6L$B4jF@{wKvor@*-rgi0u#qM;H?m$Vs#$bibVPpk>9t$X{o)FG|*z@ zIYXW0{5ojy4Z1E4N4EQL7mIyj`91F+c680)@Rr&i)U0@6il8Az*K*5gtk7)cPr*d( z5_1u#OOl-aGjT9)gR`LT2`4zubrN+`@VWPguK?HMNzc|DMD0#j@k0@Ov((2A~DS4g*kLdee7jdhS7(lIMnpf6mjzfAy%(^J0iVK>#TX94J>KSfHJX zb19HR%YK6fVdr81K?}@79C1j~Wi!iU##jv$Y zZO6~hEOXrwj*q@dl`oKWjeQHdzIj?kfvQ7!_`~HcLPA9^L1V}Jh69&FuyWcMNGr|4 zdx%9(VT3rc=oPYCyORV$XB+m}xt zrHU|Tf-SRp+R>jo% z#*N6NhM*VALDqVrTl4(lMTTpL zKd_9<9jDW*Qc7)KW4Z4zWq3kzTa^6G2ZJAhqkmQ%OeoU`$Lk42;+GP#%~j5CmhZrh z7(Nt(0>3j493C)=uy@&19$?uxfJmbQlyBJJ7kmC6C-z^tlmD84383^HP!p%|yoNmu zpMfOMg~g;G6Hy&T@uL#|Wf#BEN8dc#%ToJ+Qlb5~=Q<^&Jf9Gj z+5pub^M|X%CD-5Img|V+tD-TacQQIA5h%8#K-f=VJENwJV#iLJ^cL#6Wcl4$h}grm_8e4pxh(yWliJ6plNCQ6+A z$g|PiY;qFcaIv}&ru4H5S*;;=<7$A#5tT|oyO$>Uf_kwz1JSBg+08rQo%63b#Y_3m z8*^^ICMVeQ2&NX6gZInl%v;d|$boGHEYmM7?I@yaWi7pV)iVy<%@$z~Fs zc=5K^p-(7h!xlK!>X{&m*J+V6HA4G9lG|U-9UbR7oM+IJ``nAaw8_va%tJIt0Un#FL@-@dq=4e=d{8QAW+r|a&nbAmTg)pu(ttXr(hNC<>bPVNm~aB44}I$5C<2|GVAcDrUuS;+ ztcFv=vMdJiTzP1^f`)txM}!7yL%=Phap=tW_8W2wAr3SVd|m(;kid-!;AIK=>jP2z z^?|hh%LfWyQTZPqh)hGo6Fop3aE zj%(F+IUaiLPLkGjCM6xOJPY$qjlQ57 z{V*rdRMoxS5nunP)UNtR`X?@J2yx#!X)puY2zQC6c~cfj+&1-{D^tkeake>RAk@tL zFU6<{EAO7%EcUc7Bo5b#Ztq63&xJxqPiwb>{~xNpIk>XETY4rFV`AI(#I|kQp4iF6 zwr$&<*tTuk$#?QR@BQw5|4F5G?K)LCJ8SJ;y}J9y6I~1pin|d8|2zkuWmpB9Ytn$C z`Y;3=oQAsofHg2DpEw?}UE^!^kHe((tB0-Q=)V8&a{)Xcxc9F|Tj5_lKqczeHld@__dVA9-EcAW4#v1fYKsRkh-buZdO~Tc9pC z+=mM)$IzF@?tDg|obv$=6UTEJ3+GUCe%^mf1J|O|9mFyNDa%I>@;}e8;<^IJ;bECu9387Z! zPHupcn(Uo=aJakMk$|D4$eg9Ix zlyCV$ELzc`g(nA$8Ce0vWJFOlh#c493Zyv>v|Hf96WI%F54YJhyYuxSg8+AYpzfwN z^xi?)^fw3&aa&SKLzDXnCZbF@e0~30ynw&^H=fD#KZND~vI$@GmnCpw|3BOc_E*P? z%n+E>|KcmlcNNHA;*i+H-8>5=+tsEIix8!|-XO>_qSd^>G*%DlrG-EX0M+-+KjdbOQk zU`I2F4CnP4y@L}b8NK>Z)lR$fHm`BzdJB=&A9jz}Tp$?O-oK^I&Lh9fTI{zI7X>Gv z^XKs$^=a!BeKUbZlx#k$4SYm6*DK`{Y^}rPyNV50Ul?rGH8pQwbLDU}v&i>&C)&ud z5dK?#I26lgC=KgRS&?SA%^5@#i$9r}%W!;S!fO?tJ(tVK>74fH&RHFPRappjvH8M@ zJr~8A>>ROy3v+bP&(AL?H0d3|8r(Kl+hsiI2ycIWu|air@Ix3%qlNrox*q}ZyxvJIL-%e4&4X3iD34Da zhc2JTb!c`w-ArbX`I8!G1)=*Q7?^^pkUxTil8`@t3T?A%yOhuHL4ba)`aZ^S>4xFc z{|8Qm<@RQ>oH(Vx4KJH}1eZPw6h8U8n@Df1MTodOUt=QKX~u9WXvaU0MR^Phv_T*} zy-^L znsfF_=~8w;kJ}z|fvpBaB$e>JC9Eyaazl}VPc%6oSq!d)jUivQC`x0B%7o+WY8Dcd z6ueuPHVqt9z&v7uOCutQp^K&2b(@N2U5QiMUQNzmQ7+yK;g55Yy4U^S!j$Yo z_r7luPT67f@Hah5Gajc$C=$A;4~dY9=@;tOTdmIbg50&(k(>gvu}phpIjCCqyXDTB zcf!bzFQWMa+A*jn?+lw?a{@H`t^LiJ&3HmPa$KZxJ41L?PnK&>%)TejNG2R>4w86{ zD&;BRs-qJM>X2%nRjbJMvM%Khq7i?}f&iVT3lx&1CDw)zV1_?aKw(N+gMc?Et$!HdMdrvZxX>wL)3;f!DgYqmBmP(&yNv?DmQwCI2l>dH--*XeZ7b6 z0SQe`??P+mq`}&EY|0h_Ugo%YN2W;RXC6YY{I3L2p2|>cdP49U@ zp!q|a%7M9ojg&8uf_lniiMO6Qbxr>jCQLp(HMI4ec{}0-g`c;OM737$Td3Mh0W=iU zt*UPjR9p7`P8oQ#?ofJ6?mm{~rIMluFQSh`Tw301;$Z2k^l>_b6iQWpwg)~!TDHaQ zRQ;?x=iCw%V(iGFbLMv4L#IqKBpX9BI@GP9U9`=XF_lfa@Swck^$;7>O7QhinI$Kg zPFDZSumYV)Fa6r5e$RB}vRuWd3HPLxSRf5HZxfYCsh#e*4xv-QOj=2NvC3~A>S==*))#~IEyDGe`LO>8|6w<-&xvB zkL$DuqDpuEdfYZTClRHsy)tIKjynb-r9q#5CgZPh{3M6(hiIhg=>FeUK=SpGR~7-9iK>#eOi29IO7N!)R9_C z(*GqUf5vi$$phLkTEK(@HWp9iR;F|yy1tX}KjX(dryZ=rX5^y+#YwpH%A8)5yS#Xj zGskq^25|ZU=dG!|#tS-;AR{u#W#8Dy3t}`Iu31(C{|JjsQN@6ScNU^5w>=4p zrxa(?kXB5Nn@D&X9U6>1k^kkvM={eqt5@kkGB6pJHL0!-GHUzxo$m=@(j?2b{|C&s@s$HJ5IJ)#IUjaT7Na%I`R|1pFW%!_{)?dUtYf zZdgRr*>G6^?1n=pf%hE-aQhOnK8LRscln+5lT zC!$b&mzHQjnF6RgcN&a9NLJ{jldQH@H>i=crXgpEmA8wdHnvyCkcoHak#ZW9LBZ_M zv1r)FC4Oe7sJRv!g2GAlqz{gj&%oX2QV}Bd)|LGI2D{TaQK%E0uowH? zu6ND|1iR7WtSs$VW1GJCY(Ti!f9E~~t`2iv;l3YGt@d$oJDvkMj9!{Echo<5IyKCo zx$$9}z=l}pU5q=LCJ+HS&he>r{rEHjW|z5jqP~Fb!;tOXY_N%;OH=|(XwK{Qqwy(= zJH9>GSu-nCg21^9eoKW`(%G~8+}I-6Ao2=ZpVO|N)d4J`!8U=7<+wBWj}_Q~lhv$n z5LtZIer?YDvnF(vL6_p!!=h2uxi(B;t2W;%y$C%u4c-22wx@A@_%!YQZmyt_`DFmrxVdQ8o>8eP=c)E_{*(EA8r3f;z1k8dEDfaLz_R;c=hUkvH(QPCH_a%932fSp+R<=46>W4_-AJb4yl|r)34_yBYtV_KpySK z1Xee03;%#7c?vo1F}HqEJ~xBE;}sJ9aMpY z@|QnNvQT?MU*npsEC9{074Mod{~!Jmptkw9f`@azTFPHO01ny5i_A@-|MC&QKjuYq zmjKvx6rPJ0Q1a@>1XYh4E%gBWk43e??qC4jJ(f)VJkx8Z3 zdqa1*m#znN`p~LvC8E)!MvMjAqa?}FG`;cT0*L#H4Uzc!$((EHQNH}FK%(1{{P>Ej zzCr{oahv!KuHCNe5O}4k^Qa=p_EbCNQ>B?c)CpaRaTEoIK5C~jf97GcYshHnCesV|Y@ba)q z@*CpT;U2yqGsEw9%lq}Qtjn0tb$Z!Lc0Nhl=(Q>2#t$WP6C(_QczL-+kjiZC1Z}5o zrJq-CPh}N9hd~6(JQ|43RwlcjcWAfNx`@S)cw)RE==8C=Jz_;^zhKxR898qFpfZ;B z%6h>!zk3g@xEX;L0lnM3^_e2k%XM&nC+4<3j*LBDFcsX~8TE`vX|Bm3WH|AdOv z|95vGw|XWI=P85JztlbumICuCn)n@Rs@EM0^wPWBEQ(Qc)=>Bb31a)~5r-Q#t9wy) zb%z_{@bN(eC*n$A(|CNk%$u%V4s5KmbP}FmM0N)t*=24iBm4Z3$>kL&)6GY@gQpU< zxz%dT^`Y=A`K$I{_pN9>ksqyelvU`!tjtMRc{(D2Q6RJ^IlIr;Br2_^$JIpjkG|o+ zgHu>N?FOXnNN8gB_HUUxIGiQOp+pr?1ctLLt&i*J5Q1i09@l7&eFV z$hA=RX;<%oG-NAgTpJ}9wBOtADL69}P{kZ;MRx^I>AA~iB4LF8J(ip}XMatSinugQ-XF#1Db}R#sN6AyIWKJ&Fx(YRz+B{=Ni^rXLN^D zATZo)3q|F-PF9f1+wc~q5s-6uTQ#PqW~82J@6TlWcRx2x{zdu~)OAV9xb7eIF5iIQPk9Nhs4S`VB7J?rf7γkf$RE0RA%5$@jb zgnwOzE+=iAj2qne565t8Q4mF-`s3PUg}9#8eQ+MABMAIF@4oVQ**{i>z#NN_f2P=U zguh)OMtiS5fS0*@$cyJ+0X~g95JyVfvk$10yOk}RcR7^O>7m>zyFZxy_ zHs^(lp0FuxsQCP359*>9&@a&&76)!)YCt&u%{_rb0ico|g1*!L=AUlAfX=Pw7|K6r z=u1Wh9deZnYza^=6$kes^JQ-#<@ae_zrK6VP?jOjoWPjvM^BuP*#WdiedvsU)gXX> z5>EmoEE4{!RpO~OU+{8hGik{!&~#76^?F7fX_k{WuVQOd5|ytoMUf}aqAId-|^+(y*yb9K}h=Cr-B zPtDDZ*dRH%nz7O2OQbJSMFMT=6zjYgcG zOk@dv>Da<=)<--Qz+pU`M0HkJWXpy|3(fgf(dwQj`=YhJ=!?!3#@|<8tw91Z-9t`z zHTZ^#6hAjE=BF*kwWiI@?D^jSXQlqOg{?16MQwc{=|VlMS+_tK7~=^yQSX-O(KK!P zz-{UwA^wbP8^*Y6arX%Q` zP|JD6Orm@Rcl;|XMS;1S;YNeJjeFRPxI(1L4+}(n2QeNyxR``y^TF^$Qm)uAHPZbm`+d zxn4wG;2U@FF2^WYXUPR@aT8wG`x2jDukmEp+4gxV_3rPinv2fMT23HpjPwv=%=Sf9 z&sZEPLaWTh27h5R4qlVrD%=i*MRisKj{R`|-h*M@jG{uuP?BBM!Q@X-U@bcyl zIl^QFdzIb*m+EqI`4brf^ERtrBH{s~KQ47+lLrTM7CDuYGX{OC2e=w)c2W+bT@G4G zy$2K2H<|+qH|dU%;ne=Sq(^_ckaA34;1s9 z8xAohjv=F4I1fZ;TFG`PqBNTi*rxQLIzQ0#EX6QZ@A^XMX+7Hkme#NgX*Zstbz>LD zO)5zGSMBEK&qL+-?f-69bQ1xf&UpF?=)VwP9|iyz_G75j<$N_;I7vV+1+1pwa9|9_sM5zt8sxqo!uavrusAXQU)qhT01gn% zop2;hEJbO6Nz1>JD9VO@J$5ba*wJXBVH8KYth`TXkQ8$I|x>f zU%4HImZ48Qm~KnE(_S0)F}x|RZ0#@=&zl4gnFKv9sg{0@E=cm_jo|~4t$Q%+Q(Bs9 zA!9pn%6TdTL}xYAHv4ysD_}MVuw=EoXP+|4)%2KZLdGk?=6Xf(*qSSNBh6_+S0<_X z9;UhH2oEZ`#I`{cj%WRe4DhBe)d(%MwRF&^&veAX-7yk~5R<5`7NG9{=WOjC$*dHJ zV_2^i8I{e%8F$j^>w#pafQjio?sfY$wt)Vs_z;Q+QM!BCmNqp}?jl?&6zs|DBvcc5 z`YXNvhg4aD3uhHhEJzqvzC-RCfHqYWY*{HmMo@wSidyfu%M}(o4u1)DkYABc5cxEc zps)2Xj{|}(dVHNKF|;pt%|p&3XuD)&RJ9%UO9Er!Zt#*ca>wGg7MT*3Np|`lV zbQmf_-aj^!J*T*Kn#7y4Z1~pHpwD#N&Pk|#@eX^tc8^U7+a4f>lR*EGYK-qZ^Bc`o z7ZG${%23tz%5EwS`$)d-$AafbXdvQ&p0dUEA~+}E2*5Tu$q7?^R}mP{JUI~ZS{{}1 zD*0ecx{_!bF`jDrs~a={BjoevPktIkX5dV;fY^r5xnL7P+)qz(9BOOej4jF1+|Eif z(t)6H_T64$dTvAJlhqYBfXwJW5pzG-ElAH^WY%QxSLm(ebI*;14Bs7-fval&q_4f@ArWOHVpV{uLWWvhK%P zjvDDgear7A*DB<*23dd!@5vUac~DV=yDG? zcy5d40mP5LcFYpYat$2UeVu11QsK-n7#SUfyE z>g)fDZg?#L66=2;**}(pf87n;gb3ANatx|LN+F-vFc4th9p{ln{e;15mK{`?dCZUk zo#6gY2E;C;FiHT&K9Ni=hW885^#X*07WIF8Zv*tdkf@XXx?Dgga&abi=5RoJO*czo zeGI^eLPjqo`K4mM@AyaCn@U6f%>+!@=g`B(agXqS;>^GW^4ouZ+M{WfqqO5#5OjcV zk6%C$sE4C(^G?m1**>C$otF03?YtTQHjI>l%m+!g7E~V1Kro|^J>8S3)evfF2G89s zrpY6!mf4FW@V*7{!GC`%C}lknta|;}c;83&1!;m@!_mPuDoj^^vf3+|(%m&GFSnL9 z%xmOVZ})Io?Gjb&pt(6djlUa<4?$B|M2+lSQCz31)Gn0GA|<-+PekdTHa?V)LWc<8 zJ<5awKVBtxSlR2-^TI5VRG$XDSyN{v zSHG02rb!Fz3SzSUx8$c;z1Sa~_sA%J_jR@AGOhTGR`$Y6wFnwEflD=nNAFif{&nJ} zIZrJLdO628M|;GTw&PDv!lM^xMKTr)6~%L8&ysPB_J>j{0&(?fwbG196Q?cQCJNK& z)wLVj_q)Q#J>Ly9okmEK^_i#s0=$<@&d?fHsb_h?pDC({7je>I&61!R6BkR)PLLxh z%{;_4-GK-DQ+AV34axY{e0OXwumi|+hNk)+OYYz8M=%PZN;Dn};mwiGq7cO+e&;o! z;#Aof5LH4A=d_u~W;uun3Xn6~F+SXpS*y?G4}aKOu?qD`@@pc`zR^^L7kp^E;G=clD&72x-{q0(NV+jv{5MB zfqj+s0v7Km=%fV++ul=_eEQ}|{u@zuNX^$g22Nw`nX!_RY130Bsxp1I-1>ej zar+<#(i|RR`yFRc<+96Ei<8gA1~Y~eN+A^8Y0f^rqV2($mI2K>5e^0kMrJ0IQn5|a6_0h&xoUJo6DEdroDmHQzhBFxS7 zT2xSyUHfQfK)3)7c{_qST?eNACq&MA+e+dYA|o~TT_fy4l6Io2(<`W zjLBX{3Tr80e-YlRWr!(ZFl2hijWV{&5OL6yt}OXTpYF9uZQfA2);@!t_CIKE)z(cb z{wi3W$YGx+>LhgJ?1{MJ)4bFLR>>U~CXEbfJ++!bjd>HfyOuEGs4P72Dnp$!QuARF zSoLVnKM*?1x>8?HMA4*0>6Ky=fJzt*@Vrq+zRO}e7J-@dbA;X%H?bm>@i5)l=gIQ) zv=6oNXEUAH>$qM!1iBA z2Re!p#HhiP8T{=YT*2rsyu@I9)c1UCXC7H3VL>_!sg45G|Ln|?TM<>bGFEfmd(}@s zgP6f5=-TiZ>{6<0xz>o|^z|mvn6T2s@O&74%&%Ww{lhwa8giAdr2UXj%v{W3E)UGH zaIqMg%g{8?17$x&)newSKLPnY@5;qVoK)VD3ryw1+=u{}Ap;j9_*pMt`I%2eV(w*w zY{u+6j@dv03j@q@#HgP{ucCI*DEzCrd{$rQET?Ab0`#&}QT|f+j-;mx>)UBm0+(ip z&r6)Gy`yv7^YQ+G*Od(qn6twzf6HZ!`>MMM9b z{5J)wmoZ!`m5sU36%TH~u6K93T7S0fbi1e>r;MrAbZ#D2&v&{^C=i~mO4S+z0w6{V zDFR_rB@M7_)zjtXB24FzvtllHun%i1Pbo!V>_J`cZP&9@Do05*)Hs?7VP}qkSUJRB zNhHj&#(WXz95t1m-^+3}$?F#5DxPvZIH(p}FDU1*Egqx=vBL;DmQactgFl+4?|INi zBq0VmE0+xr`(DR7ndHadNKRFaY9g%|n<7)%X=}MI)yzLe4HTwx?q!zlRlRg}GO*_d z%6mp|3aBADq$~}$I}&dXCGb7cHZb1Wq`Kv9 zARM*X;0h;%Z>|~6Y}PlP$41`|#Y&<7YsJ>h_>zY`)BRt!j1O=u5TGVw|0FDne6j9y zUq&Z4Le6P(J6s{5e3gy+&KoUmN88_fTsxKsd>XmzjJ)u zN=im@s|plC>n~4WlZkaCpGU`@F!|@~;cVkh)uOM%0DxIC(CwR9{^ zHf5<4ebr+`w8wr;31t3B;Qo$K0FFP)jc-U{VBC(enA6h9jCe2Z9VLKaBh*uQjkfnir&KTW_AbK+qCTOuCSK!;;yCbuU(Z)uvTX_-lQ(QCczWe7aJ z>Jf~_y!{7+-rXgs-Cfz6)Bb#d-o^X})65vVF&~{N18m5n(83{?J+;E_b2o(Psx{HW z>4uK$A%6u#S#`UGn4c>kTr($vs%w$KtjORYD zIql=2%dIx?UbWo7z30zw= zoS-4+-$wz5@k8y>$HMzcOzH^{t`eYuWEu#qGCWBh28fie$AEqLKE3I zfyJTCpU}ZbpiC5D^Y)IX#r5%ly~Xe7?Z2T&e{Vr4jp8ZkSoH5B(LE44JByZEgc&cp zS(f(D>SQ|DM05^gzyw0Y>6!6>lB;;JO-~T~#cg!m8O4Mos)JKSHjQYJl6TeNn1;QNx_H_0XzA_`H9f0*=mRN1PqxzPi4_HlNC1cyVEj9 zmp6A9dW`$XxUL-iifQnLkQ8=m;iWs7icnmKmaOs9;2zHfi+-!zxt(2^U0c{ueZ;Ck z%IVgj!=+-xC}qTZ>oY%2eRk)&nCjMaE*@6zce)g)a}=jyJ8yFdB;0lZ92Rm}Cvi9@ zs3_6KPOE#jTA&KZ`@baXns?Wtz*Z+g9@n*1Y?#0yZ0s51Ik}2jeYi}e21{nkqiQz@ zraZZ%6f4hqYzH^&;mNg7GmGOhE84~?B@LV;7G?iRz>W zAsq%&h3{3YH=15Nu~fJil4=1$=V2JZBvKM|jWI^_C1M=doI0gZk%GMI^v!tA-<3qR z?g~H1Of9BHGG<(wZV@-mGe`Mffg{$NSBY~@V@j;h{xwYM!UEp2XE}Yp{%aw%wG61% z8_U;P=YN!gUryJ9V!Ci(!1*ft#j4fx{98zbjU~ZiqQC=NH7>=Sw;?X9$ z$HT36I=A`i?JL}XIRcRWBKj8xFfA+#gqU%r@alu-CmDH~Q zfuX!(Z&^gl?=iJRbM0%VG*Se1ZScO3jP|z1Dt@^FRr32OM>0WXD%*(E!CDrf)5#i6 zS&+N0#j~yEQV@U9;yel!pWxz#advbS|*wO`v2Jzbf9 zuQx#M1-U5Jl4l^l3pnu#2)OvMH{XiHyVZY_dh6`&iXEi9d^>7=Mk`bdy${KUyGix? z!OgdIrdyFrrQ`~|(S$4znrvcv`Idd^!*D|fnrIe`-c-+kkMstF85JeqNJyPX({Wv< z=b5|NmC*-b&(E|Q{%6jcXF+g$xK>m;1-oJ~vpYTYr4isT`CC&D$7(Lp`9HHo8a!00 zA|4oc&3Kh>@zrRKv(X-o7dYRK(BoxL@T}GELNC_Q{gT{d%nwMBcfV+V%~cK0wMp?g zto{a$qa0X~<>_#!TzMoM`IQ=Oky>@$_w;Js0cWg)Dvvmb3sEwXOq*RnhZj6q9Xql$zX z?)1sFCK9%~IubM9*@*ol5!1hy9X^N85R2A7`einuTUCB@X;jOSEmE6M%F;v+J5F7f z6;{m)keaIg&PeZliRO!lwcJiSzC1MJPTlLo?$z0TmzI1g zJUHRF?6npK<;Pv?-Wd+RaZb^7YfU6eVK`-hHQrk%{@R*rFLD9J?y(f2~%CkO37Op=@Y!q|{??@atzIy4@U^_X(2B>mk39uO~*uC`>g)}(vaw69PErH2yT=E*NaI9~Hz(1L& zz_IkDKYb~fgz-cV;S2Jvf*E>SMUbin%ccsCOrAtY0cJbg0|Yn1%U}W4*-hDOU7CXa z>YyOH=T%>{TNyY9H<~cB{)H{11b6*~vl!FFK_DdZ+c-v5ZZBvOnw39Wq_wJjzjK7? zckJC>16;056cFv=;$`i0f^|b7;lr)--2Te2*1WqT#c)531`+wQF%;9B$Z%93|9*PP zc^%+NR$Q)KB)Rv^AzQQsqOo{zkl=@6#IY58CNUuTJY2HX2jZ?VSfa$C5}eKLs9{w9 zkj|Z8)%q99!9`TKA6zrZ*nYy0S2sk_xBp|`zA3+2^ zPH0==oyl&hBUCAD=|(c>$!N2YALP9g#DsA z`@O`1iLoP!b`NT$uM%h*d=oz~#zmC<%?F6d{3{Na$%DAvdm7}(dAgIg8jcc(m6MHk zumzvLuUNANEYIKf%MTD^YD+v$4qWU{S2)=e3~r z%TNUifX}po^Q|ay@uljO)TlttOG#GX`tXSuR&g9->bqSrIEdSLg^Tm-*gA_t#bebf zpo|yrBjf*GU17Gj%=yV7p{g}fY=EXn1E=6%5uA4z^jPhMHW9G%@%+03&S|ci{7kl# zM$a+=5JqbD%=O1cVT`Q{u0lbhwrs-GyvDkbfBLd1OpX|vT-M7C&dG74QUb0>C629? z7q%ucN(6@EVCpceHFrqGdo=f$RmmcCX%N>h%4#s0-*`csv?Aujk0(!a%O&j;tuF&< z(UrE*kAidU4KdX@E0D3u5MHsAz?92^$(U)_1TQgs+`z^7Kg8hi)$5ofVATGkhB1Q)4W7R&IlvO?7s&VDkb(XSGN38c68-}jzQ*@6;eLOjXj>pLDewX~ z4aT{hE(YQ64g5{Fg5;G3wuB6zL7Cz>*?VA@kY+)tOGE_3b@x;op@0vs1qzZQf&&Be zf&T9(ac*Ckd~2)aNc=5L?@KSuU+de8G0S~h7W}zc4VLSJ0HaI30*NHy)L&+nj;|d9 zlyi^tWxhP1SZ;+CELNV9Kea=wI}35ak)00+ss(w@Wz&S~m=*NHXHa2`&->>v9>TE3 zkO=?Gxj233l&jT&wEe^ys8K+*eM~@>lf2GUZF`5EV}_?GzJ5EB^q4+3v1}!F=Zd9N zbSdIrxhsj8S&f$-J1uf~(nQJPvwhQYIeQtIGe}a5XEpWzzDvy7lN$* zM$Co$aL(ZG1sJ=N9JSxh^L&?@E=}S?=10(sr?dis^anRBs$D0)W3jnG9$t1$L4rA6 zzf_TjW}lv%C(Co?d6}k98cc)>&7btzDbK1*cTY&bGgri%txE=QFs|nHIH%>L*u8;4 z*~ki9#T*4OoDhAe#HV0|d#=~#LVyt1ImlAar8x;x{*h2YCWN)*?Rqor z11D%|dDasj5_cHaMR)m^VDzQhx)CaHG@&vVryOTj8HTWO%%ogE1wd4%Bg-x7A+WU__XN`TX(7?f6Ey;C%DM77kFa* zu*JYpZ(_ZL!pXO3r+ujky3s?zZDK2DtoD3#B$IoB97i^HFWZk7JxI$eKkT^N*$?27-=7K;-xh=r zF@L3oo{qLH(TjBTU-Qk&nW#r|KDy!?4UCBvIeVl3S{vw38Vk(AB-Yd4;$;*u5WK3DdUH#maCe3P7HZ7rn)> zFyWQdtC3wK?+v{)5NZHF5JKF)8w6E6+Xp}ljkoo)dkmGA(DweH%-Uo4kw1LslK;mZ z%L{b?ljwpDNSScaGax~r`-(JxKmaA82Xv5@rfzco-!`u`_jZ6#0mZeH<&kY` z{^G;OOZ=UXeI0HZ?RHiMW65OJ9+bM~0r!sO5ZbW%z8=z>!q=J2?Z25hWJbobo_7F7 z+JXm6FZI1+W9XM53k@ud)xvGW9{j$~(l^ZF)o+xpg7BGzh02W|qmy#pkAl9H5;+M* zA;PLxoJfma>2!gPP1Dv)3wbH%8sv*;BDfY3U43?;Yim)vR4+_% z#HZlw@&Xls#YOpq-QKkN+}T@KQD<%?%6g03y4S&%0qV54hSUjB2H_bjY`O`22~@Dt z07oGr7zrkP%F!p3OaSI`+sMv8K|Wbc)~5Zoi5tU=>qhuG_1=7?B{ojt(Z9ZLs?tgN z;Yt&sV&ejlv$L*Ks&Uq}n1=l{Q-zEYxSENZ--=I!a451Muum`2;Dodhi%|tWFauhH zQ&N9C_Q{kI1YFG`KQ;))MrRw@AiE1*?kHBF&aJq>|J7GHm$GVLlrCr+yDPW!Vvxx}^xZ4GV}buO#wB%{lim*<_|7h_EFwd;+U zAEqseq-1sNk^P<p;rrI-P#{Jp!$Wj(SH}86I~e z{=+s<5IW~MUmqkt%AzC{7E=o5mrZj;ctWLxIJb>a)AJbOsQ2l0&KDWZ=ulp&G(00T z;v6rI+y66j_%_3{+U)>uw9~(B!@eWbB2#`3=;^!{GC(rtgy(T-zYS=P1(r3h z2@?#?>%%1v8`@i<%^>%m(cjlW5dDgwLlBRCUjJHjTv+ja!3!@-&$TZVuCsCD@8&eP zlleTlc9*BW`b~h*!~bl#AybWt#BCCuzI#`$<7SezU^$(d8?{j<7|ffQi7;Gtd*|o{ z{7DLB4?slZ?enRkm}>vYmEG*AZ~gwXeFS9{b#@nw(9%rFeRSUxEhiSVM73d$jT7JHSTy7n$ zyhWbaKof?e(NmvMw^JjL#v1^|A1p6MDoBqYErg90Nf9xy^Cy2&HorH>z)AlzslVK< zR8}}>XVH9~o6EwN$ku{NcZZjqjtX3us*Ii3oe|f68wuCvUDtU)CQ9DxzPC9Up@7`VbjZ@ zEJSh7IlTm&$;*9XZ`s6oysU|h6hX9&BfCoA*TSGy{9UkTatt9h#o>o}PEc36%8X(6 zW)|}wo*g$(NFSCdRJnJ;neah&ja^R-t{sBfRSP*<7Za*gh)D&=8{L&uLhf-jBz!#HHAtEK1uNE@lJJBLc#-fZ}Qir_0v{6kWp%8 zs3fQOx%%ULVcL+4`QlfkN6hLD=k~n|u{!EA7N+A)*hv@OUY1StYNdOR2PIViNjc5o zB3wyan%U9k;7!;3l&7T!n%Z&Np$kv+9Ym;a%vI!@pNj}Vs$Cjbq-+a!6g+k*WUdH z5d^?B7Qyw<%s}YHsUZIujd&UuNzK{B?dQU8rzZ7pnyCXnhRdC<}oxcBqa` zcyyz8uxP}QSi3ks8L4G>bh!Y&V$T4XeVor1o5_ygAyxXtH`Lbx{`3{H0e@npr# zjCBdU>;AGfncV%eZB5iplrou|(I0Iy*T2o2kuF-qhX6GNCN!AdH?1w4_97I%XJ%@& zT6@%aoI^q!t27YIm^RIm)H%kBN&KF`nd?BihBKNqiX%7T5hc*(-4k>W*ENcE|CmHJ zv<<6S+0Z0g9Ee3T)OtS)bvgoU$Z^dN2$3H{3&cL&@j!~R0Dg1;hCk&E=;j~IIBTN z*94Onwm_CAz2p7;o_@RbZFHNhP4|Aeq}XJR`Mx`A87ysDx4?UDDm%l5Xh+K~lQA8>FSBQyK|D8tIUh zmPWd}rNjHai07RD-tUgFVK6p3)|&Cmx#pU|*;*@I`ncB8w009U;a!SKs@P3@V>uy# z0v57ypMKiJ$)T>CbZ&DEA|c(cR(Dza*cJcZdm@J@>jL##h?Oqh!=F^e2)~^h1-5Pn zz1jDjeOtc%3v-OMA_ojC+Ifk3^Z6R+;FQr~M+d-DzaJC%LYp5LE=Cs|2Hhcml$3C2Q{>|HuW$VY$hq%93( z{=5{B;>z%yIcD@va5&P{rcd=NN$Nuy{%ovcIf{VNh?G5(K%S(f$Q`?>fqwmY{x?Q1 zS4uE_eO)I&xN^#=cL`DT^W8U#yQl4jOgFBWeq5)bg0D_eAI0x~Cv57?>0B<-fJ$>g z`*n4W+7(yrWq>>AroXpYCl>5)(J4(}Y3|>P%QSHWg*{<+8)?c9abk*iW^vH_jTVh% zg}~W4Jk8_RX!q&tv_)>n9z(H#QbWWBsq{fuZdFWv;jmlNaN}>f*{J+?hQ+~meF=JM zYyHmsZ%x7U`7EUgRw(a6H+R%V%F*1d zVw&WoD9~vvx%W#s8%$GDTTdlMP4515Y!7Dlt+82H-u#h+eR7#A6C!hoq!BLP4-c5% zSiv2t|Flv*1k)DXQbebTL8K@H`Wev7geUpI5{R|32P)|2Bv0w0F{aZuD;1&M&^?*d z38g+N4R|DVGNmHY?7_l}&U*FWDF}OpE=mJ6T7umk|j{VTAzk%R1eg5 z++LT*b*ZRy+iTMNb#AwBuOsByjCup~J45l{sF$m!a({U_jisVdguxwWkFKvIX?Kn_ z1scDyCl{z{zz>Zn83e#@rM^47NThSEDC46$z0;(hI6iuH{?6GzDc;c?Zy-Yo z|ELe)=!a3-FyxHIurYAKFnsm5R(Lc*f!@bq8P3paq#wCzHaGZRpy0>w-uJzG=W8iu zeC}TRlri+I13OKeSQL9K`5kIe>PDIQdD0I4kJ2@qBz!s#n%JLF_0On+ZX$;I!x@b_ zD2r2Sv6^+x#Rh(fMX-!|mu}z>e=o(j^QNS)3OLV;ooV*hfo}GW=9;p(Yh?IYTw8cb zwmzd=^$yCsf9#GgYhmp%?$zI@-Y^PP=@c?v_*$+_xPZGInpNb=K-9RAJPOIYKi zD0ez<`2{nvI_mtong9{)#G!F;jGtf5-58tW^?f*kZ&+CFq+I^ue`P*kGetw zPpUUxoV7yI;^rX z^V+*1N=Z^2F)o8B;BDIShWdzMWWvPJiaueDL1Y3y)??(N2=f)Wo}DC9kFe?5ubB~V zAx70|8S(mFT<>_^MR1_SsjGEYokV$^q_2`P85+xT;8#6!nQt;F41L*`u-NSrzTRL? zK2{vj-#p2dopa8>G~lj}d(iGfBk*S93}t3vEHodxz6)>}^6> z`x3s0?0!c!je!nbx79b^Dyjx;6Xb7cJt^-MKbYRvWGJ1KhNegV>#Esk8@G#g*ii`H zOHyV1hfd;usyl?C)4`5r@|85#_eFGH!7QRwwAWES?eMi}s8YKyN?|4uQb*KccrZrc z8kX;rf_2caCYN=p4i7Pj3cHRb=^CTb3tJMn<|R-PKf!H}P>~&d=EG7=ao8FU0Vd1J z1@vXdg6-{N;_9Z=*#VefgXxR_dKlW18}Ko)Wp<}h8J^7kXK}YBDVf6Ytew>Wi{lPEA+`2eSH8pVZ+^y? z0gbK4SqgI9)5oIfRoYZY8c|P)<#@tiGBm9> z`q+_%^H0vzoK&P0G#iXQyuJGJT8yZxl?|D7C859UjzTLV9u8<9_pNbe#Mzzn*`+0| zwH#tV>Er9p1Zu8jd7BV@q1`C%<$MTG)u5+&%}_46${x!)q7WX9mCzmR4fWY-0f<2Y zDbi*iaAMvyV7a_k!OVS%5_pAe{NznntG~Pfx&7F;g7K5#^PFGhddJCCinqO2N1J@M z&}XxgQV8>uSBILrGeS>|o>sF3H#b5FIUl@F&Toq@zRloaZQ?wB{>e=>Xk8?5rjjq~ zxaK#B)~L6Q;k6wK(^EPlr&-(tz5QMZf~aCPZ{ACK?J9(hQqtu<;_vul%k66OQ)Aer z*v?|jrIU~qouXY7p85h*F_rC*cj;jVVVGMA-phi!o7%%7tvL&bX5LBTt;8_TrqhY% z*BbbdoqCbm(9}_aAOhuEQ)#m%<$?0e`cPoljAx3uu;;F`j?+xgRK zN|(LLPg-eUlg6&G^SwU@%2TC}gf`^%*JqharXS9rB3BMsFrq`8EUs4|CkyM@&pP9ohG{)*E&?k4{1Z zan&Z+PzZ6POV57x7l&enahdZ#u_x!bHufV@kyH z;ncq~o!Rl96a5(-1)xiCo7=s0c-tcs(?m{q)u@x7SDAzpCM*MTn9=>s_pm z<0{OK6~*fT0cN_{n<6B0&jupB`iKERUWKEgEZn(#EILD3>zJ*9Q-P%0(R1AD{YHi> zbmFem0pU%*XBWbET1-~Q^LL+wG#H|}E2TeS?u2$)bY)92wX-eEzVPF$q+0%Yrfrh zy~`Fg9!1{jBIKA0{!Mzdx8NU5DZ>o}M9>yU8*H6y@%TD~+x&kV06#R-{%9jv>uspT zHpbTMbWd>-Zx_iN*(#TGTIf6mb0&U4zLkU>DbxLIV5vX9hW{OYjjuOS zt!|_6Qwcf1=<d8*@pUF*DtmOz4O7WLvGHjm$A!iLYr)K*0+JJF)(HFC!z`P zD(hnHZmH#EZh{!j_5Ag!u~$-F?{7WcXIJg%A!;Rsr$7lU*ILU|CHZ@tXp%>i*xpW_ zj4GD?Bq4AopOLeQfY=$R@RFKPbUq=e$%yLbI@d={hIrj~u5H`yLMQ$w6DXr~ zWfWI?Ghxw`Rj$MXwu@20|y#+Mgjj}ew~91YEV z-AGSxU75DVXs7h4|QZf2QiNg}}J872CFp$6bfy^kr7d46T zO~}oggNO_L?d`7TLDnzPALeV(-KH0~Gd(fyxnrGQm^CZ&&jt@cztHO>pG%>MsK)HM zvqN&c`(@ynM9r=gf=7SjOe42H9qu$Ezns3B&Sa&HDdCK-O5AtA%wE%Rv*>1uHdJmg zqQmYSt&#VR!cZWl>mWJg?Xdm@_UxpSfQs4EsY~V{d=%YVDYrja-abe;Op8Bq#IYqW z)_eU|x8@JdN3rn@Fkh0!p`mJnq1JyM!q8v@_K|D<{k$1#aE=i-Cqe37IxM;-Jg3W! zO28+eCul4`eaKai#iGlv4FBY4loyU)JcMlbg5OAF^#la<`IR+hxe?38yw5E>g<;tYW+0Hj z2`>EB_k+^ki&z;8r6$Ye^jXq7&7ZRP9yIKj!s@@#d*}n0f?fUI*Dx*j*QL5L9aN6z z{u+#=Tba-^I7fGex7F|Sc5!wi)j%Tc$4=vs!C6Wpaud9Pr#vZW6*(f8_J@6B0esOzw!fv|{U8TD zYas*2<1OtU@DdgiPiv})uYoL6T2lHS<5c2UC6Q*~_T=XlduwUW&6;$U0&`1H=LyV* zru|zq*V#}#H|x!A%q!4@EG!uKx#0$6&fL4L!Z#<$-6qsVvlw33)aE0f9d$3R%&_KW zx_!%pIN=x7b98L%lyx0~mB82!!XatY+k8B!4_y-!+&bd1Zr1QF4e^lI&>88sMn zLhl0gtq3x%964LGr(ptxG?`WrfKwPh`Lh+v-`U0jE)v>pkx#7xx-cTczU%`vr=0el zYEO(1SA{i7Yh3R(pD|_d`b#ferFX!-Uru8&Sre%m#Gi3)QsT&$8aI+D)+7`n@~}o- zORMIgdyFX>83#!@`bETa=Yohs)HD%U?J3KWH-LY0bIn!v_Pc`RtQo;2SAl>fr zEts(5D%mOZSWcJLEa0HS>}K7 z+O9lJ;3R5!9-4#p4*4!(f`O{sb=f}Q3n4b#5Cj8;^W!a7MSfaB3P$3k62DJtnvqWS zSz@2v%=`f(TY`8C-do#Jah>Afrk6!*&?emH;&-kQZ_D$hZ@oFcP6GGEwq8tvrw8xn zmfd7_m;9AtA-0(wXHz8UV7b{Nge25I7e>+VdfF+ldo&8**YkI5*e>$&F zN%kk3?N6MU0+`lSK%r~sd_R0I96&E4*nmWeMHy%&(g3NY{H<&V|E>yBd8|}$B3TFX zy5I-prSz#$drl4hw{d5lqM@p0@)2S*lmd)ZHY-VahaxvX^!WdcPC#}FOiCaFPHfeOs+M35_+t)66d>f?b;Xr>gGWASDfV0INcYe0h zPS(_kguFr)j?KPubPLmyaKiVbPF5Zntcg1Kd0nGkE5psB%u~Nbwh<1p1rq$$_=h#^r5U+AxnYYd2 z;xTpgJVG)MnIYZNF&dM+DTN5g)RG}B*gJpQu6(UHi4sv+NF0WrO+;XH+i!uOvI>p&PZWMG}GA*6nyj>MtN@DDi6r=LLEgwIaZ4 z-{Ap8C_`GOR447YtU|wlauoga{{ZFJg-f{bwE~i9SeaLyU>8f$pOA^OmO=ULGP4jmEuYm^% ziT_^eVdqz3g)ak+T3o2%N%T4hqSO0H4Z5%uvIRgz3yzVz`{QA&K1G=l(-#?=iP_=& zfzjhIN1A2n-E_CGDGqvvOnss@*(94>W*XhI`%e|8Z19LjGrX~%UID)9$ z$bbGQ;!k02&ckZF#QdiEo2c!;s946nA+Ny;^R5DQ&; zxKKN2%4yF>G(|8||B*K8lQ*#p;co$GMprtA_2+mvGs*q0jMoLmCu|fOPZ?%8Qxcq- zs&}fdO5rc_x$SobI@c}#Tmq-@=t#{+4-W0Uk9?Itu8cmW!5>5JRlSePw`5WkniTYz zQ*8O8ad>d~3~-AVQHWMrPOoADx+tvHZy*yno2N~R1*6dX6E)>7FC7=$VPm0-hrW01 zE#B9mQcyz2Jd#3(sK1EQ*6vwWRp#HH(0s&5DHmW1*nOxMMgJYhb*KhLkBiNwS?{CA z;Lx`)Q{0!(kx)65TJ^z_lqRWAmXGefsAnEcqv#_{xUmv8&^f?jj}Ef@Kt1u7c-Pj@}KOHldOx(oYNw9Jb*s?4P8@(wxDC#(ULn8Y@^5Spaq0+!m!Q*T_W_|=Q+2-+t*rJgul8h z_;2P%3M6uw=*%?ZR$`a7?_+$cJzJzDQ~n+$XyI%)q)HIK!}+rBO~jF1I!Bw^8Dam^ zr>(928W}HprZ64+0?$i1*69^R=Gz8ob6CvRpMP}Kebt!2fE3ETANft_3}ZQmqa4|> zHJR-S+WWHhg;+*xr>#;lSK~`b$;Nrh&W*sI`djP*pCG+#xMdc6L5Wo+7&W&i{>mA5 zS>cTVYqx^kKA(OsC4aj9+I0XwcZenE`d;Ynly*!n>BNlp*BpL{l~}Jl3zaLQyHPpQ z8>Ir`rOga-mdy{8JVbd1r;;t)%d_;z_Fl8ko1UDB4{cxW&i61Q=t6LiMG{|z*~(EP za?)u;7g9jCTp_faA&WpA;3p~7kUb$DbsMn=HY4pD=Dp>U5UVp_&S5Tw{I-S(tl^S& zkY>Xqe)r_P$J7P_(^tdM%8Rjh+!OztNfeI_h=IP;xM+BxHgfw=lp{Hp^N_QTRJ@6jRY^F|V=%rGD9k8~^SW&!@LF zif1!D>CP!OlAasVg;m_D&U#D5foe79JbtAM-Ieh1EOu`Uhoa#+KTo`h#r`r}WiO~_ zvb1DjE*(d}@Zqhf`)n+ftCnZrV87e_8rr5L_p$wF3%LUx`~ zNUK!>lry_%7~ny}Cm+4mVdGiJ+XmxukME3=}4&#!oVoscr3($^jyWgo~ndW zFAiV8GzV3Ri&#g3#23(JDH37hKRM@v0sl+Om5Mrnb_yrU>>uwoUc7o@)R!RoS((e_ zCBCs#g{nD!i|ZpzXM)y3B<`cbY3asOsW2J!N-~RiGWY^@obfQ@pqkhVk@s&~zrFRa z$$Ue+#o(aa zq1N$)h^Qr4I8F-cAZ{z_$bXhbs{-15tk`ck`BV#^lDB^SMRD6`)LXTdwMT>6%@Jid zHcRmumY%-`f>02#zljr1itS}5%QOxp(|@1V3+;K&)8s(!Oe_@E=aR8FT|`5pl>4%t zp-!RJl~(z)3I>+_&lp=Z>rXEj;8Q29+wRyC?GCmqIxcb{^#s67cnC7=#Fqfi!ac_! z<2ppya0pi93E$nf^;aggm(IB9KqbDDhK^xRI>zHr?|=^$lOlFHJIgHiDve>@8BR?_ z9NN?&4c;9^->u^$v%G_(ufOVDfBS8_WQ?00>d{SaMP)dUf?OB+IP=Zi2Sxszw6L66 zo04d2jzmjm=!=Pi0aF}HT~mJ6{i`h$4JA$HH;BZu5`+uFTOSlyFI^~$KKYP?o28Q%V24VgD{0?`MZ`v`8?eqH*2n*SaxG+|pzXTEsg9xV( z|KoH*4S_Q^eW zm*%`2OLLn5I-MavNvJWjG*7z~FG5^m<8YLj)Bhc>rP=cq9n?u?YNm}Jbex_ZzpYrM z2O9Cpy%iY4j>1WxT);}r6~^^Q2u%p&VgNtb^RkUBs?qI)%w>NTdj;<$Fk?XinojHa zC~myiK909c2WjJL<=;E7Tvdbn=nw+&vpAza{&kdaHadKAxQ5E__Xakfh+$ECv#8i@ zjTGTRgVD!nia&z!%#ZSmdzwq%4mK5wu#9L|;Ytm!?ohu_y*r4;gfzLV7DwHui$6@H z@dqwx*1mNaO@d@>1xv>neDqilc>IO+k+M=4Ys2w>1a?#kU;1Y9)wx%gqh8_+bxI3n zgsF{A51DUYh~4q%+&p*P^a`6Uy_j$n4lgSlE$&S)@dXI z&!mV>5#2YaI0~3kfj@nr<%(73GD#K{NBbIbjQA<45#|J7N-zdgXR1f-5gXF6;nyLQ zq~!@Z$KszbJLv^gr4YF7Ia1cHO^s%5_z&w< zi**k~Ax`GCI4U4v1+$o8OcbPWc934>JUBUY9^X7)Sp=AM4venF0mqN8M68rRXjB|I z+L*M<5OYOB&<{^ft5br&q2gDtW3KLwf=^EId?^FPNn908R?D*}m78CLegC4N-*e~j zQ+7I3rr?DYHT4ZCYnq>Fl!TrKO# zLwDlLZ@r%H?5+PEMJb&CJJYKL^`||FJTL|_E?*~s!BZM^h0|y^)^@sz0gLHCS14#NJDAkI(4Xa+^`>vb+ETP!^t8Ot zu`;YVtnS@G+F{K;7w+eAC)UtW(0}dRj=uqsb{FUC`a#lgwcq6sgT9LFGUnBF?z|Rlj6(^#GU)~?_CFY2GpSZ=4sh=f- z0>d9K?CQ$n=kNc;nc3kEawwPFW}ea!nTtwS&e(eOf9@YZXEohW_AC&5-@kR-1Q3$) zKm{f0T%Df!cL##=V$yuB{2PZyXD`nPrn3~LF4Wgy9g_hG1SZzjfS59q9FFYF0aG!(Loz$NERT7vmHw4$%+B2x{eS{*K!M$K(0 zoH>frl}@GD2caAH)6xM3P`reWzJ8x&zG7FKiNPuPv?Af&lOmVo1=fhur$kvzqbO|qz@a5ao^J)G)>P7wQ9`--+02f#Y1ab)6*t$%1Q47*4 zk-hfy>-xsz0(5)tOAbK39}fKh<+cVO#FQURIf73FQv*a;Mu?o2AQ6PsdI^t};mrQw zPX?+aNNmaPKX;4%G{adI)C1o5;med#H<-1?N^mM|X9CQI)`%#R&Qd7)py?H%OX2z)7vwD9FIg}22|#GJ?=(k@FxY2W$762V7B8^|xeFkrq^&+f2&SXLA~ z%^@PSw^>+T%O2nzFxCox{fx_ELgZbNo<>IVj2e8I1T?I6qpL5w$)MVv*%gXCDbV5g z&1fwInDbPk`}nKxzvv^;3YP7!(IyxQfr!-V4eWV(C=}=(1{UE;v9yUW0)QmaIn=wr z4uT82?VAmI;6L`fu^okg?dwFq!SHwl%7=}J3pPZOLtD_*C-Fmju^;X0yr)X}a#ozk zV&V}W6;J^C~zYV$NK^2WKUU>mQD-4&IfijU06ou>0lb)dmwc{eK%~R4@n&n#}`sq zmDHs|1}qRux{MIS?!S+8aBjPN8QJyy6Lx@bE6=*Jaw1R!1KdMsOWaJR4UlrgD1$lx z`-LB%aTVE1f&!4MzH5ycsNkHV4?zJF09KH<_W!y5#|kekWtNJg(fhMYeFPfR5KWK7 zrP9Y1WqZT40rOs=H3uS!+7i*cD4_{O0nblUvR>`Hph-#B&eY#J3V&e4E;Xvt$)kjR zZ68j)XNzNRo42pub>=mE?> z*k8lPZ&K;P%#(v0CbxXE76WovvT|yU=1=Vw5d@%JH~z?6paOcdNsZ0Q=}G>Zr8ow4 zbUZf0vOlI|9ic#5;M>Y!qAOwS(?Yfjve!RXXM?SXuwFd?6UjU*<_|R28y*7Yg@R}X zl_wX*Qemql2aDwMw?<-rq`MDx%$!p$LogyZ7``tA6VZ@y6V8b3+;%{kG|uQXThM<5 z*9UePxPB<8MK^E<-)s90WL69EGz>S`%MKr}Pv$i(kiHT4k_c>U{DG5^&lptUUD&nk z@4)U9+soAD?!BfT?tZ9JSa^YD^og(^U6?Fngem3I35tOUr-%ZdHMw zt+j)xv7W2=N#Jt)gwiPh7;3w2Nb#TB62NkR&|ufr*>TS^G=Qwf@az>B`yf4C%HuAb zfw@xYNUsE9K^B>*p7s9Gzh11@03$=+=%s#?1SvlXoCe}V);e!JTu)caRfMN2j9x9Z z1%AoX`@diJkKv@i_Dy8gF>idSUZk_M7RV47z)f?s%>>*g@9Wck{qKDDRzgt!pS{t? z2ieqG4sxDBK0yrn4VYYm^`TE3SjjP!J`5okOMz=MRI~<{RKqdTAolvcqel!l-jTq@ zR2~h|*%;B)PLG3@^F}jJIa>tb;_6C6wq4=@xd1Nx_u;w#JGRUhF`6$=PDa*dKE744 zCj40@xj4_RS^~%b9w4(s`4269_`pl_v@hLXV}V1W@C~qPEFtTDQRpLp-O7z+buv`I zo4PP9dprQ|d(6Y9pH2%L@XKUHlp2u(3}+*wI%EMvgm*qOoh%@xr_ucvJTuXJ4dVBi z8GNv2Fcg!vIM3k!hn|hh(5$SiwVs!3MEtJ0)l$qEhCNyZsF;YK#vMzrfwqZ7>H&Ly zG9CYH(bfbM$I8HK!~ltwyCdo(NVEY0hvIN0eg|B%z9c_nHx%Frca$jgKxuG; zp9Tyn?EnZC>3}5ybDg^J$6^B%M)I<#Crg(1QYYWM{3I2R2>kdZCMJ$MhW|JA^)GRK z&tEPA&{*rdmoo5~ZEXN0W313B&!HL?SQF?W|CbLgppVF>`N0Z2S^Hjq6IHxtlfqz^ zf$KM*ipn8b26$6A?Nrn`7)n2Xl&n(A0qjQWCqEZHFxy;KL}u|mpR)0#fFwNS55=Ys zk*VrFA5>9wJ~re2U?86|L`UI`nsgV>f4}wLzisJ!4-ai&;oxS9$(?}mwN!zI0mqUg zVDG9`h%@&?tsXFZu>=%O)xPpM@Cj5<;X5-39b$w(0-}m#V#pNl3!zD5gTr4j1R0IT z66WFta-lJ#m|PM`_dH|6|# z@3x_XkQ;DhU=5x-067TgTSEt2cY7*5|Bs+jQMVcWum;A%)6}rUb^;$~goaGc9|wFw zBzG}2VwQdYcfle4BpTLHFBJ>0Mza5(HBzINslrmKq|xd?UF1rw1-xm@AfpX%7y77v zUq|Qr?*x`+*vc^f3B(1ZbzK8=(0+tG zn)6iwb}F32(8~z^$CceJ8&xVhH#D+qrARe1(%S;#d8Yyw8Y|R)l=h!{V;>lV4pG>6 zL2TJV+|LnH3T>pkdNX?#nF) z&LkvyKJP(=KYDTo9A8D~kEb017V6A!YB|hCGS$lUCDQrp-fkra{~wF@&sujWNp2PT z_GW7AR=SWIDk$XBp5Ps?212sR=$q)Nvr&8FzqEgSIMClSp%y$E&JO5XGK1`)07rQv znDn4av|0lcoQ~+F!~mEZW2~10Hg=(*_BATE26t4$8b2KbNF+8Aj6f3bo=EPJe55Q2 z{Zb--Pd0Q?**`SoW4-2*f4y{tcfe}xwj7hma(r-w&Es*G30I7s7v z%(mW#^69;63D6mvsgfP-|H#Y~c=6xB!g~L#>)*_$@FI*d$^eZ!71>IbawrwJ!D7~cqghD_n^QnhfIX!{WgcP)G#TeYSY77>n7`^ZjuF{D35M))Y zrgR@XLESS!LnXgIfJbtxE1^Op$FxHt#F*QNrjS`wOSF1osZrvjKFzr${WqfV_uvjN zBOHO>>k2cG=`F<2FxM__+CmaGo>pFv#YD%YEJeFH1-?C^v{%!41;2F(Y!#U;XA)ZTXFkFX5@?5;$lD+ee5 zb!4GgN}r@23keD3O2&2_Evl3KA5uOjy^lDCLZNc4_w9@Qxdsy#Apu2LN~d(7ANi}r z&alK<``c%O0rTGiEnJRn++Z=6YurY1rJ!1Fh%+sJ@Y6&w!;O5BwrC>hit$NB2XHX3 z7H)s}SKthMlQ#;pw&{UyRiRS0#5WX$dI@XH{&T32ytVTxYjb_B)O+D=1y2(8EDG4- zAmCVo%FNAzp1R2kYCC~u$_~PPPoe&|AZbbx3>pYQ{)B zIS$yfzv_nolY;kW9zik3hJ6XLD};1z_U@bsu8030*aodknG6_iKp__Fh`{GY#lkY; z%~A}{56#TA2ISh%@{)~gne&X0H;ji|`veRqfK8Jdc$fk^0Pib=9+XFxr2<~yJ+)xtKkVPhtKseInX+)qE_`s6WDF^so zfEAdH0(8#Wl!I$J3w#NUTq1oqVB**j@Z*F*S(PmGFPbgfKcO2|{LDdpoCgCK(yo^4QL**$A1}pq7F=!gv@Q z5r9$8Pq(Wz)#?Orcb;i?otQEgV3~^)8Dyf874(=MrN!gQ(|R_d=7a_)LD6IhYkWe? zctaP=bt;u@`;9*@kSzdqHn{Z@J$ISZEDZj$x9tw`N**Y|S*3?kXZu7FTjXsjisk1% ziHHM5n2?=%N=1@)*4*2SsrQ*h09hizh>d|;1qaAPTd)O0oqzn4*ay;Kvk}4K2Gkmz z>9eFkYTrn$+b=*_?BpGyJo+Y6!{!nwR<0O0xpxs#5wjUCIs&}-R3N%jJh+dc&T7J zyQoy7;suF%zXhptsIStNe~o#o^bL)?OgN%~IH}lHglY7k_{V&Vt=zunqMr+Y zb~zXByxBUEZ3w;CY;Ut3G2r^^@DqSXq3&ZtvwN|72Fes1eR%}YE8W>ElBYB7-wdwW zBRkM(lDK%~Zs(_RTEai_v|VmM#QJA8lhAc)ZXSf zSitr0(GRLpA>2yAw^?{EN#RPIS=h!|ZpBJJ;?dACPmieIcQ(xzk5A4!ss zqSpV4Bngfn(^ZYj^LyN&-;h18(=_0ByIoDMO`kdGm#r@ftE`Oqa*Gfm@B7Qp#pLe5 zGG<`km^;vtWR38xv-5g?vO_w%i8H%H`sJ!C{zUoX{pM|D$Ian9euu$mVHlD!uWM`m z!x6HZsy$TuFK;kS>7K`R7NKk^A<5n$&BJBqqI{g9By!OafG)I(#TWjfF7hB~@QhHQ z3R!F4XF;oxNs5{YKaQ#qVr0ny>%EW=8B28e^~czIELv*Y+u<`;*X^S6eS@T#?zmd75!ui{`X zUe*aMRx?kK4q5xYav@M8F2m>Af_YMcJ42`{%a69S)JQb*C?!MmHW6xbtt{>c+}&I!A4& zk+38qb;H{yIU?d7+EU?4eZ_38qLQxxU;lqNbKA^NiSSgN_FlqGh=#-7a&ph?9USJ+ zG9ilFNgWBnG7^?blkhZ2T%27m z*iJh1l`RB|MOSlqktkjHbk4yMHEk(>;TW%BCn#lK|Ol)vB%9 zLZfkhuJ)^&h+)C@(KQMVm%yWlg08vO%eE<=Hs?}S^SRb}+}TuyDs-g6XrIw}#A`#z zlzDkv91CFJq7sv}n^^)Jr2Ld1aV34DUTd8p|AU|snck=@vKVyBvF%Gf=vmwP_Ts)$ z2{a05vgC+y+^<3vY{Q(+TaFRtb?V{N-5EZTL8cW0Y|*mX2+(LMu%uV1)v3C(#vSXA zcsWC!Q%**4w9}dG+G-#vnmT>U3T$`W3>GJ1;$cN_(Q%_9OIfsA^9r|XzQgDlVs358 zMe)2@@h%lq2$n!gu^hC;lpr4VJA+F71%?0dD>Nnzo&pm69!y=5trY&OQzzd3PRVHo zwDjLIP!_OfIu3&5`{No1aJQZHT*;!m7{qGeVGA@r2zVitS%?1@C7?j@_SsB)EJ`Cp za{NO@Ie-8y8`0sJs@8YPhd2Gl3kRQ3fPuzNMP_BxBxT?#`7Q_$7qiUd07}bsh>u4( zHw*QRVkXD=QD!Ro;BJpbbY0{MG|5z z6v+0cDW&4x>Wgt!Hn5x@;ADH5?>r}nmyv=N&uINh*kE@gG~b=2PZ*e|5+E4jOjTMT zs5>cj)!J!-(uLslqV~fH@w`GSh-!RR;w#fGpEJxU5Rs=@0AK7*A%(8rJ9HKOfxAKXL&AdelG-w%)7O(_Q zq#}_p$oy)D3+s@7C%JLGpx6#(p;(S(V6MU>*^7$wApZD4HW~ekOl6Ol4=KG>J-p%| zBw*+He(Eq1#*hGGt74BRg~B`d{_9Q6o1HnKPbf*l#Y-b_B7W#-QXd7?a#0-3^xB0E zUf@`1CXK+6&55K!+Mf<8$2N$8r)7$26c19vGXaur2Yd1E;Sih&ga9Ba87fY%l>$De z#E~--yQ$;R^cx2hd^Y=^=+9vVJyFIY!u3JiwbFR_G>=g@o)7^u%ZFOq6K9C&CtQ&L z^kb&zEJu8fXkG>>^B6U5ZXH*CAUPImsmH$)YXv)9D}f+{04q?w`Db|dI%A?TS9BId zXe5DZ&=Mws)cZ;vV%3Z>beB1v!l&E|l9}4*NvHi{cQU zLk{SKn&tCO;PT1*MKvlD!qzGW=cVd$u0)`ZkKE+j$s2D?3 z6~xrD)y3m?js9c;GG8a>+~SI(_b6|3o4IawBKrgyd0#=FMz?x>Xb!3?BCx*+Tci-L zvmvHwvpAO($zL^9qxhLjF!9MtI94#zU?B2U?bWw)h24D^>}hS;5k88n7=-+1h}}&! za!$-^LJ#{N#ssv^9Pvy4i~EKv%z!L4^I!afy28MJm-YT)4Dx$G<%VmpL<>^bIoHM|J+mUouq! z1S_z)jutW=Ss0V8B`QkOJK&p>`6#jt8ZC#Qx-U)>40GQ<#xy}}vl=baeISs+1}q1f zg5}aunW#uB5#D1DM-Gm+r6;#sL4*nc(CO}L0{kteLQm)XAg}t72bQt3I6@GO*wbov ze-R~dWeJg;YMFMDO?-bBB!GV@#xZ}V%c*?{)H&+XN1#)tN^=mT5_n^``)*O!bm)}S z6|fS}6~7{@yr;hC*JK_|2UGXdUtO9TD+lB)g=Lz7{@!B_ea996V(12|V zBZDYL%0l&!@8xSC0nm4I>2(02!0XW^k#Yc8vmrH@Mm%Z9j!M)|^V@HkKKw$yl}jf7 z>#(*e0`_#fKzCj4uX^L64QFaPZoWwsp)XHpl#Zhg8`w|CV9?WJv(vtU9aa!Y83qy;?woXcWx62NB!6gPOFpa~B z1RQU{IK!~p;6{+nVW64?)#YTbW#I~y@CJA5Ts?scg+7I%c1(m}o?}A?O4T+@-@L#6 zi(&>+K4fF8okMA$jI^?X+f35kkozlZ-hiyBw9LH!ME(%HwgCjF(Ja6?olM!3XMzI< zOA;8&_BS5fPF{A{XEgQI!DZM_=fxI7hlu#&w?kMDvL+0D8vE#Re!Ue=sDiM&I~CLA zM#EJ4l5jM35agvb8cMJJX4!LeLMiqr)TP#*Z)q$As&H$3OOu>4Wt$rVJPNx0eO0Z6 z4I*T$vqMt|7$Lpu{o>abERD`Xk0s>H)oUVpW+gKdV9$2vKJ*dapz^WxUHMRTH%WMX z@@l2(cJ>T-eI+dZbXR=@&il>)3H!DJOFht;M+PkmP|@7d0_mcC!Nnf&?hcm5%Nhg; z2~)*Bbo)Q8rJ&GFc>pEj{P*zKCz3(-;EB)x zpPa;8>+d&E437aHLdOd|QL^ASb9amN)lf6af>n1sjPiM$NGIC2_BeR?Z7frz=uW2} z*#umX z(Ez0&*BY0SLHn$cl=Ppt`Ya$9N5cP@Y7*ZRP=DHFL<6r@XT~o!c8z!_epnFHlOD&4 zc(XB-NsUpz)n9^5p}-2I{6eLe3*-!h!D6ZIwl0)BkE|5?WkB&!c(}G$8(qO`v7K3U zIg8u-*A@)T9t`?#2HiTZD<7x;{1^J6VRpZr^7VIVy)t)tQCI)obIF26G;egG_@44{ z;G)I+4*pR_&}-nQ;rTN{7|_jh(ByKX0l(OdBL8_+L?ZBX*UZ=Ad!~bmE)1L~;Z+9D z4wne{g-r0)y&Iq|x%iIt0<&iHxYNpl4>3*cLkN@#W-{?bgX0_(BgtfV3Xw`$Rw=4X ziEvCYn8pjR3Oa7!g_LAe z|FQ)N1zZk^+sQdk$xuf;V6(>(fX=zD?&6&u2ujF-q-#Io4{^ss~TSXKI*fl2PH@wZ9jAc(v zB@S$PC=ug210_s|^1`=$3pbEO`Z};rTPhex|4JZu{&IR0uMYY~!UEKQ1g3MNhTTWG z0akQ_E`Y(ywCjf}T3>Q<0H=FuRlWiqQtzhie}b|X09Drd{4@Rm6^YCjfKaOB#%1XE z=-kcvcK>d`ZKw#1HYk@?CXns~>JGTIf^D(Lcqc;nN^wIluBu)sD;u^}X-PmM2MSwT z6M5e`P^VuUxJ-G~KKE)>_laBAtKA7j!<}s)BqJw(E~TO__n`3byudC<#e1LL^Jg9u z{e#rt$A1@{BMJT0vj< zMs9FC1OcmJ+0iB9Cg||r{EbHd+TPGe%v2H!eVGpIp1(!DMym2bNS%3`#9J;DK(y#TMVcvd^;hslUEo9sD|wyv>duA^+M>Rk_d zO(lB6Pou}v$Y(oXVPiE+;stFDwsRn(4LZ`S$&7Mt)<+)N@@12gp<)mQ<^~v>W~2o0 zxWW5rn3QjpOWaaTAEAvi=SBVM)Wvpnp!sIN*LS zgCHx{82%r|zA7jVuGuy~f=h6>!9BP`0)rFW-6gm?1b24}?hq`vy9IY0Jh;2wA^-P( z=ia(6=Y=YuiW>Ib-MxDC>TWO>_|LE9z&HT|<-ypDUb5hw%IqEAPkSv@{vOh-)85FJI z%#eMEr7h$r;-S>bw(UWqzw;7YnJ*r`F_G%(MF>jvx^Qp z@*t(~i`@ATT1!5W{bpuzqq89hW$n>P!?%+HS*K*vOL)R#yl{lu`*tt!hiAy;4^~Ld zMp&Ptzl9=u!DOr2C#)>N%_?281b!R;{dW$CA2N^o(5l4 z>3$uz#lLfq<-ofSa!O6a!HzW#3TCR>aNgVVrAMQj-%L+LgM%d#FP8#MF@=;RZUt8{ z_Qy<14+E*Xh#wlJWG>61NPt3YUP4O#NtRo0S;q4LvON0Pob28=6h79#bE0Jw5EU}qc z(cK1aacS0KYOY)WL$rw+CyQUaKd~R2t^8Bu7JD!yr_``;247B$S6ixaE|>3t(s?Pgzi~}hj}8{@$0vyjq$75+uq?jo91*@b(Sp3lao0ihCW~f z2`#WSaniUeE|!sF7x0#($g%wVV%=?42n>!(?hTG}L2!&Mkp2qb*=Io>T#mS)_45D% zW1MJZ%SLv`=08qKpid4Zw0NX#ms}{vhd~susBXrSC+rxz_>&iy`wNrPhv(OfaM8Df zVNqP~t<>N?I7#-FJS%`lIV+J5dSw@~$p?IstQc+nPc)uM0z1AXwC$TWXFhQTHpWt` zbYsSWk?6MIYY}6gY!B1oyhWP%^%DmkPTHXjvk8L%RYdx8#D)eV>mpEDSPdhKI!d-*VpDtH0? zbRBV1N3Ht|Qes6mn4FH@h}T|2o%*I?4d&b8mYjg|YtPI^dM@Na-IV3(s3~dhX~98B z8A5^r0df2EfiS#7D}Z?ZROB-!Pv@MwH2gz`CyxyA8bZawDbz=W@KPp18fK@_<=V3Y zo8Z}F^sFIi0ZdMiGsjXOF#o4_swaFG$}EW<$@Af#v$Jk19e^i0$E8eeaGv_1lH<`5 z0#p#9&@FsTgNwmf{O7H=^1+pr1o(^e|F9sRx8CgWyq>}0-+WEZxbQ(y+TD2fjOsEal?%Qam8rz9g<*I3 z`Bdyez0W@tN|0v0vL$aT5-0^I+=9rf6xStG(t=hQR1$mrXk&8{oC-=>1PbJ{B{@`5 zi&utiR+{pkXl;}^!eKSg#NeBidP{q0LhUgPheR7V!05CBNt6JD$=_TTtPJ?deiI5% zGPKd3i~bw#NfO@TTO8%(8w=ta^aX4L6-z^b{8{{wR2>osJZjSs`{7cj8DTG|bxZPX zON}QY)KE=QrdwH;^CQMs9TMR{(8x*GjLr*c#M2aefAqCdK=%gmc{kLlVZ4^vWhUDK zw04+!{Nn?owNaK3sgN7lq@g0S*~&easT?g}xbo4BYJ(4s0KD)fr!-idPT+eY!dlRH%g8>ev9JJhbI*;ySZ%yTZ3il%8_UG!CY`7db?vj?&94>VDQ-*R@0X)&Q$ql z=Hqs$2~P4`;Zj}74udnp#P>oZLT;x$X#O1j0|rm({;_ytOv*NF88)78|8x7-|8)%K zFh)I?$gzBCwI{=(Ukyn#{~%6hn=5YZq=pD3FUeqEA})o669m+*Nm!CdqgO?X9R$V! zbNOiCBqF!umK29vktrk+OC>1m<22|-RvNe|Li^+nV(0lW)m1r42>1X>63)hDN}=Rw z33wY@D&+~c`C%mS+q*IrlJKL?Sz*Ejl$f!le2G#w8UjLt)T6pgk$5{(PFzOnDH!#} zDIcB{dhF&T2J{y?t=Q4E-pMt@6Y^gl=A5J;@=bLTQ)%;HWOQOE<&2?t@ZMOVt zZmt|jrm7qli%~O|);(XTDBN{vi~DquyfS~ z{#j%nAR3&c{lbr#!}f>K^I?JYZa3QpNY1;I>4R^AD2pgfZGkE9qeJM2%66Rwg7Bj} zIy1}cZe5l4c#uW_ZAk?ooG{h;!TB@lsgr)Scf8)dAL>Me@ZIy)y;`ii_lAo0M4dB{ zZ@6qMmGXz>GaPVSSB``pT#R7S@j%zL8fR#8l8dzRqkyxC)W_Bhz4TzSVC%s4Q?4@^ zu>cS@#ni7$@YT86eE6b$YL9%ZWA z_R0e#+bo6p)?*jtMAMVC{hEFu^};;P>}< zZ^szfV5R<_7MM5dX@0{S-|D~02k_XEKxKK}^0wc(!PFB__vZj&qv@R+07fAg`BIKW zpWK@20HM%3pR@r~p+V$KJILxg5cMif4f6f^#pBi`65FJ=Eh|)XHC!7Bds4_0^6HjV zfg+s-D8jC4IMN>P!;a;v7LQKGvBE#3F)lajqUA``tNO*oRnA0&&1~B@%c*I-7qeqN zisHkG0yKt&=?$`&>bC=(Xp@p5S`vm1l-#KAC5D-tIScZ168y($(?KiU6CauM+x|W6bLK3o1y2Jj06%3ym=sMsa+kF#edimxdyN;%`)ij z{vCRB{Z=0&v&Ib7xY{~Qxqiu_mQzKcP5qs(_-U)&0dKUkHIG!tToj_-ixtMks|{Iw zOrcXhbkE_0O^c7bX)O#YkpQ|*S6Nns+9|fwcErWiVGLW%NBo0EvP3}P-HYkQg+xyb zfzjvErdxcz>t53ZiuoG8cr0Imw@xrjE|J(vqs!UzeACjii4Nq2o@4MWGz>dFWNrv9 zBr-EbGMbCO*W$YC zt99KTAw0M#Hf14u)L#NIBFWEi%GM)&3j)8p^zi==kbqtEmX+q*f2knx?2|Y1PP0-( z%egs`9T))p>>WUZ_+}9m3Mhj80-(hW>b18Y`EpR&7?BzKDy2jk8@TP?D87k2)S^Ke zpVQ5|58xj1j12*b08ntT=(@Xm!29>$7$_l8t0zOEqI~<%po_{`o!lIYj-*6V6gF~( ze|FF{Nvccy81SMMmT=w*-OArphA^@pkwANpKxdX>&9Jwbp;1UeFUuK4|+FuIiJ(&OH34}GajwfB?jxAS&?_qA)c#L8!r)+lS{_lqfM6!tR;rJ`zoa_Ct}dd1oO+cd_3mm1qP3Pz4!9g#?} zo>7!1H`wM)2N?c!jcG)_;~g4749nAgDo<0Prlcy+n)d%xS-`ghfd-bHqn2ifR5cZn z2oZ9n_(oGe&a~Qa>bXQk3H5xmlQ1H$j#a{-x<=~|rREU09-xJ4>q7{zcQ;>8;8xe<-JxB`U%}ubhiEkxS zlDRl(4=?HGNhplxzSS8fr@76Prub6wEX6}%x+9?x{9EdL)osDJpf6Jtpbp+vrI;%$ z(U-weIGh+Co_o|YI5r3_%m{Q7_Jue#>B*-`Xk2F*(QprDwDNusiruzBl^CXEN~{!_ zqdk{gl;KDI^J5C8LZiRTfO8KFz5J~Ou>NWY#Mi08w4hUhufyLZ zpmHc+E9U7I{nX$cCiX)&0Ls{Br_A%0*;N)7@~+tF)-7ZfX4OqQ?5#ARU;n3{_hw+N z&;nniLoEqFsTVGJ>lFJM@jQDiEnJR0aBWYdIK{W|=?Bdo1Bz^^r#;E@ZJ_I;k5qN- z#A9ntJ(|4LnbHbxHAj1u&vHm}q z88MVg-CMvVn(P8n-$#1&>Doy|ml~4upgj4?g1oV%rk@^@R_Md=Lq<;0`~)K4l~KL? z)rC-L)fB;$lIZSWvSI*_z4J=kU#$8@b?>7VO9nIpfyG>5a$iq7^&O$SNMAm8Yv)tmH`#lg!BmTOl>ZnTr49QU>{9R9r;8q6&Q^i z96?2m^;|SDL$Rp{p1DU(LN5TZQEgWxD(Q_ycyB;~8KSkF@RR|N5aCktmaJ09Lmjqp z{uU>?qft(@QF_C0`7P@QDq_uVR+=V>!Z?M5LV1HY^H@HL`Kjx)gjK>CFg>6UN{}vf zuqPB?R7yl<<-()yl4>g+Ks}HnOf4xG;-9)tO-mbdj#}7Cz7*dQAsM8=grriPi-CfB zq@o~7lSFG6o3C<_^bqaI)lN z+2~OD<|1wB!TBi<cf&4axG>dw`vYe~j7=na?5VR@IWwZr_Nu?Twk}lw zEl(PGyqsj#9}8cdSlm@em0ge1YOf9zg;ke8n!>)!m(x1dOQa9id~-UrZAzYulm-$gN$)8 zeQe~kaaFN zitqE|LS!f|;z;*r^Dn9;*(k0hLV*XX3O{*hKER96X2eS$AcsFD6?MGZxm}ExnGy?` z$rlACBDvX0Ab)Eo-%J?P8PMQ7D;!E1mBnhcS8uY4%Pc{W2sYV_9JBWc}SgECr zLIgAmmNEI<2Y4fz4n$b1KK^|#N^kE4ZH1fe{Gps%?HIjH1i+QyiS*)bZK}q> z)LD*=O}1)!R1noWZMq)CY_;lhM?7Tx+%Opd$hTSkK5D){$Zi=DAtjpJo*63_Xi&P( zpZ1Lrwp0t!;k!{F`G@Rbna$SoFHsE)EBXs@28ss6Aw-T5s-5jQ+|7{z6A~tWB4@n)X_Oi$x+If-%pX$T>WNX(PB-9W zWa;orT0-QTg4zAhj*QXiQp8tYlyy0s9KJ+a#L3b4n56>NrQY`q9c-#ZH&&|=#~wR; zDkRCAR#Uf|iWBFJ$Yz+RX$UDlSDqKzjd^d3jPg3YkkO;yDkgIbdC7q)KExO~Psn4? zFV$u{1bkOFm4h@be!3dOtcBQ=AP&rd0hM!#BUPV)!szo}DNtUOun(f(F&pCPTImw% zI-3~sP3h?+R4P}7?stQtmDZ|YvSxKa+){(s^6tiubQtdze!pmFc;rF!{rcmst|L#b z?NDp|NqZf$c{pu_&8V~11EIBc!i8oBCYG7o;s<^-%-{f}p<1g;1!OTz9v%&2dw}Vw z%+ZR&JKRM#YIajvT1#Zbc`ucEnL3&iY7W`Fb6TAK;^y|@*twuKc|(t?cRbp$@%r5*VLl&TDq07{=&#M(0eGqJT>N&oteuhC%OSvbF2 z&ipUmeEh})rs*4^OifUG~|WEu>AKF!nqtn zEIUXvIVEZd1w!GNA1-KrElsqFAmsnDjvU+_mA6C@Zl4X)iuJSy+QTcl(S%CY*9}Xp zHYuH=Ne^f0){kPyOA5F;7TDuTFidR|W#2N;j<+u9)Z3%@)7lkyo^%!Oq!rFkH3rhU zIUvZDrb%upK&oU2AJE>5%h86)QBcGrYcPecW+Bn2HV(>6GD0y+!qPDcd7Dt)oM6$= z@}tKhgZq-3v~z`NSp3EqgtfX9*G-NW~X_%=@#^q|dVUPfT@y5S>#C_5QU$C$?l-6FSB5wUP| zrY=mXdf<7~&fS?0!uj%==Xl?T=_TAhYYs>0$>F`ox^hTYcv9%lY)vA7k?%M(#}yJpnvGVA&ljXOLA>4v6r_xE_wtt-+@Ibq$d z`0!ilVjwle`{(=qjx&(5+u9;Ru^M9QfwlDhfibm7Wp8V8N4LzaVTNQ}x;sE7g#)vw zAKUQH?dACiHeGd5HlMHCO4Hq=G8Gwzc$TfPRUZ?Gq5rnSruPTI>1C9QU4X6-?-k#R zQ3TE!%+SW#A>?mWg)v1m-;7A9^K(CuJ1<$CK5wJYF9++)jqBw(W`}jeql0}nr`QHv zxw_R1Ee71|9te&E-jw~(`@!ocYU_q`mQIk2>Fz8VCN_Oj;{tt~AeZ&3@ur;osI)d* zg~zN2J40Du@ef}^p9tp!>|z{%j=Kh28jdJ$BHocSkhzlBkMkqJ!tH z+x#9>spe0p{>58(aFkw33*H@>8?z{DiFgPi%!_S|weNA>V6h>*+Vk4k2*YifsWJxZ zM~IAn(AJf_@FY#437Vc8CUW4o~`e~ zRfJdW$j(_ z_Qu=nOMmxPeQ6;_(QMZYkxeS^jd}-Kj`8Ys-V0akkLo*<8HF6wkg-g8MS#CcCBC&&)F@d)! zqE^0XxK-m=25|YKMX+FGwSj~jr7o1VEN!NyW`|<3XhwsAr=;;KMRz<}c5eRnZ|Dv0 zC|DGRoGDI`T@t9YPm(2Zf!hjb@ge}=q7js`cP$CA`s2;81@#RWb&e$*D_YN$n2^tD78<0^)wW{}GthTa3mj;>^H8h+wyoL{`h0BQVXbUTQH zeF@dfRCjtILY*fxBDJa^mzd@Xn8K$+NdjFS@zv`?%|_EP$=klh1EqPvNYpuW?AI-L z#0%mpM!3;dLbZo6KF|8y?^$X)SyGFpgz}j(UHMXDpQH6mg}^Ya=9A7)K+Yt;xeCUu@Z{bBdKGi@HP-ff8WoIzbY)Y1}k;)>%}HEC1Cg?0U1j~lAl zKcGK(NW3vFteiz(w;+RKH$;K6Jf!+E5w5yX_qf(eD|kNC@;-5VdGa`}W25vXv6L>+ z6xFW|BZpRK20>-x+NUiL^lW4>y@vYdcPmyA2a0Q_^6x#^WV12Er}H7c*4t;5ZKWlb zRu?_7a0t__3%H&Mp3eK}Ocp&|t3Xs%>#nma*|T9@LA^?MOAU&6^RK&6&YRF&^jnX>?U2) z_+a4@VR!ryNAP&;_F3TesCqNP+{*W79#ii&sTc8E8goCqZuS@(vvbyW*_as zQxFgnb?^(JKXP7Cqs`|B0qQPa<=1DJwYzCmbA$wuDr1eTAy><#Y`rr4QE-Z!V@IHzZA^(_i2DPEl-2HFm_HtNUh~PUhBn%MtNK? z!Jm*7Mf$?nzJjKK){t)U9=Qy(=MtbR?NkDJK|Uc8GA1ewpLBi^S8tuQe~5~N?E+aW zm4a-JxNus&ys#WST9-tsAZ=7U(Nyn~pJy^o_$RFZb7)ogw~1-mBN zfJ9rkZ9e`F4}MyF7fH8UqLbYB)VD<2ZAVE3?hO*;bm_b{b#wGhMY_#CL%1Swp)LXn z2+D}J`Kb!tCE=t_@;gk$b1fd228of&@cQL!6YTI+@k{CLKD9DYf2v9S?Zc6jx}rJ_oDoos*Q<-5Ftw7f*a zoS}fU07*339FPE&t3i7Hgz+*&!8bnMQ9G%aV)W2xIc#L;9iwh=4yr`-O@nfM-d-ve z@@6i(n2o!?ZUk7A)@vk=n~?`-n&_%rU2pdwGgBs-SkQ-kog7T{Z^DG_CGtI4x|=twp3JVlx6V)<3ipMasV0l&TNW0_V58=%i z7_GEwe`>)#3BbYW6%eeW<%ihuV(<$;yu}(XQe|iUfX-TLgd)vBFsb95Wld9YRbahM zm~ir$YBPz(A98pAjP*1(wjDh5mZ`#H!BThSdMefnt_+tE#|#2uHCRQ|)j6*-$d|{h zwXj&zVU}|r?9f)jU|36#duP!pOe8F3He+I_oLGVM1;Wufip^FaifY&R@=c}H`uOOh z!9^stpVIlD+kapkTK5tNKqQTF!^>e?2=ezFeLRe`!O zJ15=WA)aq`@)7V>?}uKD5h?cHPj&U`icV>9MX1SC;bNyN2kfZB(#e=tSVDGKUXSALry36iJNuIL4$KjBR z3vZrRcV_B7Z7(u)bF-e!Dg!Vn|G3b&Gd={DY=4#1DCJrf#CB?r7w zb8Dtia-FOpjsV)+zYK6xB#vbm(ZHLRP9!lLIw^8f6pdI{9RYI(z1xaBn>Dq;xyA;b zi`ECLykMX-PyUaF{xd(g-=&m@6FK~^GQ{bv9U`)mr~3GL;Oqzm=D9a@jLT+smaEU= zdnsB>65nkxV(C>Rfl+`*&$wY|mQtY$KgzAN;1HExyqg}kiQuKc+&zlr z?2*}A4!-*@S)uY#p#Ge-rCKe7$K?|c9(QonYAUkPUhboQZ>1%KAegQr5iG#@G*#-6-v! zlmH34E50A11%hp+y#gZ0iVY_Q=FyCLd@Tse21k7D+nvoJ=YY58^s*isGy?n!0C||7|L8h!=*1yuJT${Vx-qjfo0`>(`_eF zU4`$q&|$}}a>}Rm<%Z4hVKa`m$l!B85wL*OSA;rCY0kuKzKn{eE+W z^;ngrwI8|pFuvK;XYLId8+Dd+JXvR`N!}mWvpFdIFczuSvh!IaR3uzu8 z>hC`EOYbt*F}ti<#mP1cv0q^b{y)7rEj9e>S{$Cn7I!>_$%F_qS-9)zd#9Pa{Q15A zpfCVX37egTmIJr~4w3H}>Jjkgt-ByPKn4fA46PvY6}NK|*MgQpZNjkdZ z4FVG2dC-|eSs!z!K)&vl@7q`pF>a~0zWnAZAG`6-jj}>nqs~2k3<{X_IV#2xQ5hp`V`_s+zD7EGfBX5* zM-+W_LlLcDqPI3#H)K#(>+6t**Cc(xSkFpMz;F<3YT z`3F`NEF2NCUHPBFz67`{V3s^RGx6U|zQu3-Im%F$#ekU$OpEj1ewcU0mtR8tFaiyx z8CB0oZ`FVSalDazfG-lolualM^5IHsWTClA^fik0vr#En=Vpm%w5OqiwQBO&nsVfZ zb~Dd_L=`67SVi_$(d6y~4}siB8t3j##!B(n9Do+`wv4Gnn(MQCFk>E0Xth2P@{4 z_^oiT!v6}8V%~Dc&e`y}t;}E(L$|2Y??O_y2xmU38GB@7#qTD9lUpNT1ef+W%@%`Z zE^P+B_O#`SeV`Uz?~2layH@*!&qvVn;PhpAS02rv8K;R`2H0Q|j#bbe&}7Q|<9?iK z;RJiA3(+PrC%$OoNe52AzkW2sO6}@K^UiZR=i*D=oLc@59th6p!;?j~9pm^thPLtE zU!hcaUcmcWEjCkVmDXp--HI{#am^j-3(;E|7yXCt_LIYH3$Ry?-c16N9%v@_;A7rc zoMOBr%81N*65UE89PeD6j|S#8BctiDOt*KV%X&re3yhizKO&rTB2o2w`~c?V*Y8w5 z;lD1&{AnjqNJx*2 z4!#KEJFYYi(Yo23Z-1hYRJ(;^{nReCFG`V~^i;Ntiiy3`rvdyytkbhaTz-yjdL+)b zA*AKD_LI1iV5;cD^F)#{u>_si$-p6_(lJ$?L;h)36JJ~8(bA#%_)K5qE3?U%eY z&wTh42r{pSMpsuH^rbkq<$ZMn=Tt}{uQK)mA#t{+BKL#N5&;eM48xC}b2hHeLrrSO zRJW-&DmadlN)f~{+nAAGmSl4SET7#O*Y51S0$ILUi5c{NH6@vS{Zw9_VNZm|VvfhS zckD%EzuxImxwZJ=kQTA~cHL$Y{f|s~K>Tt7QjCi6NPpHTU-Z1nooEC^x82G%uia?2 z+W0O7t8esT4KOMHOQY?5#jz}Pd)Bmk4l#jt9iXOF!oZ;ZFUs=qae*)%?}vqnA6XH4dWhf z^G^)++L2<-rJ{Vjh9}Tn6IrF02S0SVNA{vFdR61cKONt=rcHb7!{xWU0#>+I;^Qy zUpZK|W7Jf~(7)o0-tU^fz{53e^c1lu`+{Qe+>2{*p(ow=#D^Gxa!DI6ZiL_7TV~_w zPbjdN6ygi$S*2jf0FkcOSsB-oqUF@6Y)1NwchPo$f+h@@^&Yev8#UduX*)WUx2PMhsf7cZDpk9$UJ973gh8a&G+Q z&><8GlQ-uUp_jqqfJn|-MuF1-^^LWGwr2nQG4uzyv=x0&dKIw2V-#SXJ>&yewH$ao z{iz5;rL1V9Twfar&hBO^lpG^1Y@>kI;ljj5mcF^y*2l`<7;v-M>=B%P9xG93b}rhw z!5_$W+UFjKO^#gItZ|486&}%X3C~$8f@ZCuqFk{TXm-ym8a^ml&im+6-k~%CuNZs^ zZgfIP{$Go=gwb;@E)hPRrVE~3nfd@!iEOp#Z{fnehVB}bQUm4Ae{7G{AOvDjd>%4Q zj!SpMPy;4NN`H2QX(CRJAu$A4Qpbg_2VzYYZtvJ4$l0qlgO$QUa*F8*?+Onp0Olo+ zP~YwXWEldiH*vz;?+CCCLOj7VWYUc3#^kQW+W}lus3ZNFTnC_-bKS5 zCM_onX;8PD=JvAf+Vc*H;G2TrcbW!()7v0AhyU!9Hp>9lZ`jA2jVs>zW3pMmD4sTN ztKsKcrSk5k(i`fkXVQ36T8p1+jBL!6V?-k=nb-~G@L43^*^v3Na8kTrUe?*x7C$_v*9p$5JV~<&5_85^(QW#TJID=%lY*slio%bjw7)> znhdT0Y-YN$3rQj3(WyPOi55F#MH{rfyQ>j=^gw`E>}{tdlD>b@<|+E4D;#4Nj0ZSt zR?3g4b0F$J(nYzSnf)b||FfmCf2i6Q-jHPL@XsfU4USup=o*$%tFg9e&gSH5V+bNI zeP-n1GBV?M+auex$VO{dg?FJ}(2SqR{X;>Q_|gPHQP^uyhe1hFD#nY-hx{S1$`w{# zX#3&nq0SC4$zn)m+o5#59w^~PDVi#R*f>9_-#rh7t(>lzY zne&#{dD-(D7(tRz(@#xHh7yj69>$-WP+}#a2`nV2^bXjuvt>KC+RL#Rj~?zM_?|Pf zCUQiE?l(lW_w=jdK&ZZ8m57o^pI|npHe+S zNORy6@Yyu?YyxTG(Jm(A{s^0{Y{4>IzMG&{ce}&>?Y&J{&Tu8zA>AWLd6P7fx~90k zrCIRF&|^IppQ&f!?(-j{&ZbLzzS}3Eqch%0{BvQu)!ztq84Xn`%~GRI?{xXExv)-d ze#S!|c1qd3CbWASUo!rw&Mbo683zS^J>?6)_PKe~NnD#U-vrq{uT#Gw3B9OiG9j10 zU?H@xg{fdm_oN>Cmr%-t23^{O25l`5e6`@sV7`QoxDagjznO*oCHTmrAw;zZcC+C}w_U>cCG12P{v-?biz|B6riotVUXS7kAx|<-*L5l=NBOAQ zgxXg$rN**nxBgH{Qnbf}D#ZS0wxQxWl(2~}~9?&zL7-a^Ah z)qEuop2|(h4Ise~bb7aae0%;(q)V!OJWCjQ#TYx)mY=@_u72OAEerJIjeBj)n_S>G zJi0Yrhi!->UOeX7ZVlXx(}DD}PLpZ7A7px0lL=5x-_>-Dl#nV+fhhOsUZU*u$4zB7 zhHRW4pVpL(RT?xE`?dY?#p*8ak$%omcisI_CFlM-Kfm z4>xc4u-=(ltkR0F%YRFNb#f7@ZSif?uDgzvIj2@t*bRQOyNl^ZADQlOr1Ut8x&NSd z%1wjRtdM$_WOo|67) zQo*)B?5|)&*k%kDiqs*fq8$7w79K!>)!066cxrN_kV092J5)44sm&Z7>z}qs2(ajC z_8ng6-zjOnAKyBDzhM%W_+wh<9c#qx^0jRMh;$-_q8-7GO z`wrZ-jF|5l0Y;V(8Cn56ZmJ||i_#vv5iL9J5!RTEI@Ux?d;z!hgMIHShr|i}c}+7; z$bvqsihU1}qowYVCG^;2L?b}Z(K_O)PK&<~~IAxT8=gzxFP zG`S52CssQ0CKW4SAnh z0J{U#Uw6aLcUEeXp6(7A1UkdknpjiyIA5En+b83DnnE*jbwZk^oLbTKmvC6qRLwx4 z6e7(fli~HD)_}nvqBv>>n)7(tqSV`H1xI=~Y#V6yNr(jE@Ebyd|L&pU7ifa?dJY_? zEhMhIui3smJNJiCk*>F0$>)ak*zeV?@*{e!8ZvzA6A81L%FgC`Z1f92O(KWxL?@Xi zE|xGfMaolaq|YRzB>2g&1hOHW8=N@0i~{vs$2`CJ$_zUlvUob^JzhvX*XN5OZ?+Z&9_YF#FR6faQX1K&ak@77E5f@2cWQjE^!Z>evZJwl8KKh(amsfWraPlZI4aYI<&w2Z^Bq=I0lUqWPQZ2h1O4d53s!CJ z^IePWbk*)`S(R+59zcnUCxQ#5Cl2!Uj3rZKP%tBkf0@%@wUB@CoH2^ZhfX814YeWK z`jG4q`f+qW>P9sZv~oeGL_QQO68HP+Ugs0T5RTg=0~c#S+?M7```z>Cz}fDBWtJ5Z zSkK^dt1Q6cQ)Q2b8h67Xp^1eyrwEF}RqSmR1D0Q+J{TvaI}0)CqSwgur%ak5_Czw�}IT5dKEP}|UAK3t)dU-0D0WWMv z1luF|fC~$Qaj~}v2&Cybu$U|fzyBR!kq!4|(eLq6mH%z({@c~BOlCz5&c1c$H$cSC zVOb3(WaIiG0jrc3kx*$`kM)D>HYxT!GTVfv`^qkgwRxRHQ42REAu?9M-67QKhKW}I znbeE7Ixt(4gI-vM;b2R1LM1>van++NO>66Gj48PO0jXP0dL(b1C?!C(%5EPY?c~1g~*Jz!k*M;@bbTo1P|_SPDwFT`F8%;`bc2 zRitrpdWOL0=mgPceF>}qO`GcN;(#EsUzSy_x%WQ*w#Hu9Rm}|9%f@Z2+G!Izdx~y{ z^qt&%ujMf>vUk8<$g&^+3GTLSnGWaN^r_Y9M+x>4_3T-)VR`Z1?+la2uAy-M?T^Oa zzkxIug}i0D>5ki|=?o#^AUTs0oYmu!x<>ZRi4B`{ixHItGK!F)qJz|a?%CTu33m}D zd5st8nXVb_ONpBbcurFGcdfXk^9@6^rp@osW+wGe){u8g!+|m{>}j>PBtqlz2EUF61w05j%A(8bDg5mRI(#%pasGxD6P}=RsStavSqJiJ z$C**p0$40pKb@bdZUoSdS6-g4k4Qa3TOFFYJ&ZOwNT**2C6CRj$Q8$I$ZLE?9VY%I z)w>W(8&Z96BT@u+yYWEU6>a{S5!G+nwyyg7Wm)TKpNvL5#(gcb@g7Y41KuB%VL7($ z5v|w?mD^}k$~HT&uKDbV(DQD4u}pqsfb410f%JcD_2|fOacG+!LJD&R2!XcggglIO zc`QgQCJ|iErWpkOJT8I7xOLK)bjtf^n6nOjbg#V`P8a!~D~FCeIZoPkm6+69JdLf! zSr0t)lRTO7J=kMQs5bNQZ3ga-{YLsEA(uYcVCmeT_KSSq_hBY#&-ZbIDC5Tl29)01 zbfIe~ift|(j(vvd0O@`4aZtJBYCx1R-{QS?{GGuJJ#-+dMG3QU|ne_=z0Z^|p`Av~l zj!L(E2-4w1$9B5nrG)$;Tz>J{@6q=7JW*@}!IKEp+e&nki8ISLp@w*eDCljT%##VV z&^-iP7uda!ejlX&cMM4yBDlc%0xqx~!)t*4Q((R5u=Atb{=c@}nF)dOEalaOYwZ9Q z@~H``aGwGH)8{DdCYgopcCCOFE0<8YJnQCHL61KWI3m@r=cgx$+fxX>?_n8oZlj7r zFc5D1BTWxY5&1-xXl9vb*CdoPaKNIB>izN7`NNfko~A;hdzp1yJ>J9{*ZXfq}| z-&X{+ET?B?-v3@%TRZXG6@#iFF!bv^2Cstc0bWF^gKL^U8PHk^g+il6e#(R^XcSSv z(PnT=Pqn2fAi)WcUx%p4DJKsNEudOZt7`mlJYVDO&lcBrnbH23-He_-tf}EwC1lwR zTa&7nINA7)4$eq_2KrouE`NnDgD)j2ZY6$Vy7^<+SV5kcI+kOgln7eF$FaRS%RJ}o z2wstIwzu2fjjm6hBvof2zjnup6jOGM@ft%)e~0_zizWG8q!??-R?CvI^L@%^e%LD5 z9dy1lOs{L0yVG24Hnv%}a{{|!TIDso*83yCks=)Dl_5_kfOSK_f{-I_@9;4{L876?OZ)3o95j3>{KK4c#FjGB9)ujYx+eA>G~GE!_>$Eggb1 zl1d|80@Cn)(C7L7e(!nTbJjU)oqt%%aai23YPey4p4<0N%GdCuU~hJB26+T2t;%K7fgf z?T)c%y0p1iFcEXxV53!*m$>(rMsYjNrDG;0t1m)dtWmC}MXyDA+#~2{rWEskp3M!? zpKdSAs@$R4)Xgkkr$~y``^AS$tG1bozRl)Wxb~74@qU*PqH@qsMgGR$mPUSj5MQ~r zT9rFDp|0H-<3NbF>Pp;yw*dV}vpSKIjuWTw1O;xv)m;+%V$0fWsHgex9vZlFBPu=t zJ72l8k=nt&ynK^j(SJO2lT@{ySMvx=X>@_^eAE2++xWuwp9&z|k>rqjtsgDZhV^S{ z@4hWK+aACA#$Ngv9DluLikKiJm#Q-dPmBxsI_WaNO7GXp@bj0Qj>Ul1HPxM934Zoo zIxB^ZMGk}SyA8E7fsw|09V}3bxDJ2wG$h9!KWIXz^ymb`;fbunl@SUL!MV6?|v{&hN%J?5f@rqd^3WCMeo5D=jeRF|l2EBI7U%=DN zr^EX;s?u~u+Ko>z+)uZHW(^z-g{zV##7iOeqVO)km=~=BJ!)e8G4}`+aKfihm49udaf5oO{`0(K)9K8p%oPq*MskyAu`YjDsRLw#4>Ncd} z_`VjiFe36o4vDf@T=YCTK+CYO>h(rfEJA9Ik7B84_K3H|-_2WW%<`jWW3O zgp29d=i2cEiV<6N&McFeSUI?{d3)4KbM)j@h0}~sPzD1_Pw4F2i}gX55GT?yhO4N= z+4s~Wr?k!FPN#$zd503=-^3>31L_&bS;3GYT(C6d`{4p~5#%40<1%X0fg08emu+nO z6E*s5&M8vg+|+*yJPm_;=B}Zq{Mkwt9=0B+1doSbJq55eY6{*k2zj%&(P;lp!_Sq{ z+mU%ROGp4X+m5cMIsB>ph?0`*z$;tam$aLT{-36_stXQgSUYSYAgFWVh%8w=yA8QFu30%{tu#28Kyzs7dcM|oFWdjR z(BQHLljioh;CUZPnqx(+7$T2}p!a)^k_{~OW!r_I(dFFz-qmKwUMNA{m9C$}2g2;o zgZvklc%%1L$QW#4yC7j~2&DaE(hg&bJ zm4%+Y2$S*Y_i_%2#O(i;DJsXoa?!tJqXQilSxs;#cdtFXK#1~c9HDWAL9P}rkYL|z zn~}CmUhXdl_vezAOT0gOj{7+nos&*1b&+q$qFrlXk6lFTzPu+ZVdnW zIOpI2Pi<9y;{|G4EiGK?(Jeu;x7RxKB>Fi@rkql?Q|0LkRpp7e^M^sy*QtqGK(;+k z9lDE%>|Y$WLLyQmUe{l=%8sv-QR4ALv^YrF)7la^seJ- z|Ju5&W8EG@DW+q{FPQCAA(SnCi?$1X8_7vsa({uXqfv3EbEK4}xm4eu=|gbm;86bl zdpnUHNE#<(U6EjQM~Z5Ee0%qc%hFw%9lupnxGvjaLO#o8D3m|V@4C;0fZBNIgZq`& zp}uJG4&rLGc_wvJ{V$Wi_KkSv_ZmmD*R!VfBTLUgJ6qUay)M<$tQTcNd!kdQp=XYu z>D!yntecV`!*+N4%F1Cy4_aJH6qf6AOFp{6vsU1+RPXIvJHhcd;g5ujfeJZ_mn8pD z<1AGyK=xI+IMrkSQTazWNNkVsvs)1@E5IruB9s~TMns>rot}udknu=~(d3}+tlsem znbJ2$H$Hxs8-lhUi{D#~@$sVGG;b#Zt3mGNF7Z+#W)#wQP!l%FaEA@}s7f zDv~y;7H@rR_VGtH9s$%C9vs+8PO#z=WzqeDSsH0n4dAKaP%Pt5Z$T1KNfBG&EguMF za0JA-k$Ld5KRyvSjQ_hSO$e|fP1A0hsy`ZkM$rL|XFalgj}L@D1&&Eu;TZy-smt8Jo(9>szRsg+x!^| zQPO1W(ZnkjL`e@IU@l^ijy=Qr?D5;-CS&)-x8fa3;S5P6QWvU><^r$uhVphK78wEbISo? zpfxi-pK)IO(GJhrxt{v{1?RZq2LZ*Gh%6;eg8OO7=@%BaKMmcR4j_YCzYpCa<*1?K zPTO8f8UZg+v`T_86Z43Bt2+e{SK;==w)tCqN5g(LKknNEo(4{77TE&D^h za-o_eH2r=H_e?rd=bNs7EZ4K1+C%?%om)1e3;1bx<;Jc6H2LjnKF$2=f4R2IM`7?qA|Bv{ zKHkbl3ZJipJm=JXv57_V#*vUqwA4z%ALUbaic7-Bg20(vY4z#KSd+yhvicwh_(Ys` zrC8}5SfS92lAymz<+J+PGvQ~2_^+A|DFXko^_g!x8%$xT4t^k zNAYG2Z2QJy3*qt#^WoiUKf&ENQb@ku;YcfKHCxSs)%+p^W9?vyV^>_sHIb;FThGO? zmUnI&W6WHf(}pX`ejvBP0HH+!tEC%27mmK#QII z-81Qmn7uF?3~jphvHr?#ja1(0gIF1Sq-5*S^Va#{{3!u1cZ$XXn3~X! zKk2f@aOOhgQQU^42>)mL+e;O*WLae;o*KD;vb79*|y9dzQ6o4FXf#`{8nGQ znnb2wFr=rqzY88@$8|qyK2%Db6E>V5Y_ekqBO+zFe11T*P`@KyK=-KH81t3es&*Np zqF3R7U%_heZjf5Y&0S&*O)xwN9|%)QYZwlh`Qh}`rnx(n{2GcIC*wYXwQ98rlxBa z6~T@W8~2C2iz7sYE7FksXn^D%Kca0T6S~Im{w(*FklQtW%p?1khB!4;mG*a}kMdNU z_ZkLTU6ky;QPzO=vr@dDdvUX=_2|#+h|s77-*2-7D2@96rZQq&~GR;SUuyB_eFzZQ<1b!Iz?zb=9J;wHE zjDIYtt@H5hMqb+(6KF?7+>-8TWWK9= z!BqzKgpcOGA4VStI%|Y>1}~6x)cp|MstzD}pZO}xiFadiBXkfZJ~h{{tebS6)#R*| zxVLmXShKVeZDvvOOuOQW;DC^H&B3}<=EIrW7eEDszhw9&R0;<55}64pZri*hYuT_6 z<6gy;0$x~)u?gOf*+WE)rW1r{JF$=a!Wb!1>91A{$@SvCG-dKcAO$Fw9<{rK*=U?;GkkWl z>TPE|JP3Hx4H$k^+Aod>?Vm3=Jcaa&%@q3Mg5~)PC#b_o$IvacNTS|lE?getID46g zn572dWN)?FyiDi4D|%(6Qd``3v$DWOTMcSg+5XCX-7s^sHyWfhqEE%<+}F0k%NmA1c=iZSsHFb9A#GUO zAA9rX!YgM4@&kw}ccf4rX2C0doNn_crv@PDr-R!-I3Ul4a2gLQdgQZi@o#_w!~!DA zGfQe~9obZ5yZpBw!>~w6w~swM{r&@$0F8-xa20RcUWUNmP>Tp%%%j}I>xe0)Q&Z1= z#T5-c04bl+v0sP}ctz!FB4a8dP0+Q#*Rfl0DhXT&I;0JVoJm>*)xE zMZAx(Q+s}}fQSagne*~zRvZ~mdts7GZO_$Wa}03pdN0V8GPgWd#OPzE*$cWP_lcx; z`<$YBCL1!t>MhrHw5fGD^+1E_N@E>ZeANtI9dtlfR!bJhbj?tvD^(s0}JS_k$vm> z3)ico(`HFJ#c&k>#I@Cj%H~20Og9C(;GIX?hlWASsOdl-$Czg1J zb|gL>DukNZCqRO#l1WcvK=I*X2AxpFaI8$Y!(*XfBLr^W`C)X%`B!>-^r7I-k1S2J zx_6Hb_*){9*8K3Ug}t6xRg5ZEHSD@B?*v(Orhw!TfBwM0n913!?YG&*8nyf$51xv@ zPYnU-Xeokj4as2le8oF0tInPRWS<+&BOX+_;60ry;7p;@RfAw`A*7knl)%mv`OKGv9LS&@pxu~< z7ZD`QbJ*qEFWe!XyCW*9IK|RS)sXI|ajsfa6yfGFS+O5MuQ1YuG^5N;9wh)M;Kl&9 z;C;Jp%(j*TJ<6?BBLOd3upeKzK7m(lryRNzjs z=^y@KF}Sm$-(T~bOv|bo3Gd>!5s2YP_NBysViO8yz`ElB&&+Zg{-FUMycBWdgSyS} z5P){piYmBK+l z=ojFp`-eu+d+Lhs!%6+CMejzt^!i=UCQG?AZ&TfXJytGW_8AB{JZVZYDU zwT23bV*@W?e)m|S+1leknqBIQRCQyW4?fSlLle*jCsLeY3v#(J%{vptze$KnrMpWi zUx7gswblw0j!wInAvVNtvnZm-w`8pt#Vz=&+X_4-PuTNMo;oid;>2tPhWKM!xSkU+ zN!sC;np&HS3CmvgM-Uz`c{J+djj49hLX9hPOy7o?i!JOp4pTK6=AF-p3{86l(+MwO zsA}O8*Zy$ZdGVD{NywTn%W|2vCJ_StVvI}wa~rd&SjFRYtP*RVut{dv6W+{#!IGhZ zwu{v{r%wg1+sY@-pf@Lx$fldEJBK?3~j?+sxV^HDInrLIhu zol);b!irs<$2BI}-YlO7lLOq2_esc?qm=O!>GI({=ft5k{TY5S#m5*@@?tV`zZUOT z*0jyeq_>^WGn!qf&3-rjvQ3@D*FSJ8joCfbhCJEpK|KV@U#N>2H#bdGtJAw;lYXud zB&$OFGdb>@h9*#yZMCedUYi(dxijCUy7n!O zZmyJ{z1*>^OSf6Mb<)d;)7U<|bear-V|NA0^@}P$%jQXtAMibq!dJN$&yji_s1wy+ zfFU;AU3@*z;An{{>v_r(USVmHK;A{+@t}?9LtvHV6x+!E0)t1`N3>A6++aBS3lM{| zz@wS)f4vOOQP_iOR&fI)g}oZafyWuajf3|oQ2-b*J2;P+Q;K_49216_)6%Ebte_!w zzA|Y4%zi)K_oCv5ViqclJ_3&hvk+oWU* zYELgZNrrRKLK25e7`vwkzRSAY-+U||bUjQckpwncuHOv7f zj~FavO~|qK;dJQ;{Ayljy+s5ZYZ_ScBXhW0fW$Wa z73!33z6M&l4Q9b<$PtChe01H7W$VS7XPvh=!7ab84f%oK5Y2pArY$Tk1deyR$+IIY zBzTtTTYh1BhhSkB%0S1X41T6J@5kGvy^P8(={eb=5DhP$_^lU3>hqSo6~FDr3lms| zTpMuy#ZUJjTIa|a_qHUVsNd_>{V2>FbI?!Y^Zpb!H{?4lwy|_!@ty;}X9{uX_o){D= z9d@H?wbmYXJ|01_82~O$=f<(C*xFcWiT6L1%hbQ?l4BXSh4j0M`AX(g;~w~i}v#HaHGwqD4a>P~7FS2QY&YGxqOlo-!l;$>XwMabmAkQJ${dT!Ov zgMvCNKV{yKTD7(kZkG&L+M{iG(%(sqPo&YY9G%~^Y>O3z-r1p^WvZOtN+5;2edUgv zx%X8)JqoF*aq0BA^$CTO1m8#cIHQaEXtYZHE~#-s$6aCee2F%JYz3jZm$U|eQkQrA zf0bGfQ09e1^S=KuAY3mVIKUc9GY~_2RxnuP)}N;3L_ZdNj8Tmcmns5Zaf`SPZj7rz zKd+1o^BKg9cs+CAft5b><#-;FG)kdKFZiCp=tar_E5A4&p90$s>C*>ft27M^X7opb z(__|B$pyIl#$V>rM4Llp6=qJ=EqA~pwh%h%j`xZk8xtN zes=*G80PF~SI=_*Boz<;4cWgG4mYsWDZvZ8hks{rKk%7}YKb!S%eRI2dM!iCV);J^ zzjJSL*dGgawxnuVO5X3hZ2e68R%mP#l)j?#HDyePhU`LMcHE_Z+G9!oV4RtEPWe08E%Mea!F)vw<>BR1fyUUp>u#Av9i7l6_jw@A# za7#_<hn@J?^Vt{*{0%A2;XSYyn<=x@)7fP`Etg{#)>*KGx>@0H*W7X)F3+>$knHAy%FiS7U zaX0(P=iRZH1Sc8X?4o=B^CqO4f^U1m(#Moc9`_zhFU#;{VVPn4yZD0kFifSc@60?# zO1Q`lZ#DdXeWzV@vtD~%skg$C)OnqdN;sc=NMvHLp5-Yi z7b-5KoiLX~GL(M;+xaD#w``!7SMA85& z^}9oD-}6_Rf!*RWI7C;8B@Ia5_>8d)HrL3@)n)9sMD+#}&h>tq)(JAq$yl3SLftQR zKj2Q6*_MOj`Ob?EZTd3qsD8Fpy(rW=C!Hio`YwoPDA4T58Xwk6$8+aD+Wt1EZ2iP~ zcNk}E?(9^_UMMpukscbdWjdtmK_qNc6reu#)tf%)dwA;Tw$hr`ct#8AQftklQiWn; zNmyj>r<8MjGgfXZuhI5YC4XBkH+xns4nxg|JF2VePF>+Hw;_xy6%WnF`NKpP3%BaI zZX5bz`S%bB`p~JN4>^)&Kmp_^p`X~9{?z*yjEsPaA<| zXi7MLzJn=eKxg!Y5|>$8gzrajoRlXvM+D)JexX+{Goh_bPrLn0WKtiPqA?C(Blsv! zRnoV_6qN+#S&bYMp<}+){=`gq;R{;YYz^WwLuC8f?7;a^>TOD?yw5R6g>^Bnj3<=^ z=Gi}py%ls?;1d%sI^2Fzt-}O;8cVy```4&-$^+?2JuCeR@;`Qh_5qS}6l)qTHe)Gx zR*%zQNBakJnykbyx_xt5Zg%J=aQ@Zp0I?8NqY6P9Ar{ zt?leBKlMyS-=31bM7ZUrp-_@hjQXXpGFCA>+kD71;A5-F75r+=^(N?DO{LZi>s!MR zxXQ%W4d?9ua+{vH)#9?(->B*~w%%OKsJ3Z6(^aP_ay5{?CT4BDC#deh!~T{7Q)zfi z$dmP)zb|ky024?0SBZ7mh*;J-(5moSuEkrKC56byv}OJ$L`p z)L>42wW!bpne){lf~D@A7j?2Uw&OkaogMm!Lr5;yDMtgrU#EisK&ntX9 z_=6?I=gp@5@A>C~F&4#O+}_HLW8mQpa~aGQF{hlNie|n%4AMX!`hAdLv>x+d=eW?@ zPx}3ejZdICVJ+;0&fVI{i^9!6d*|_ismBeq6>?5!BrgenEWkue7-5Sch_lU}oEZ31 zd*;$cx>|0d5rjl*F6(u+TXcfw^Bif8LV*LIEjH&Tf#;IqT7=v1L=N2bcT~Ksyewqn zUz8inEkAx*{pzfV1inDR#GBSuE5dN`#vIp8O@mos9(R zzfo>)3nB25uT;bw8}@4?6J>Ap;-!WKL3w_z%`P%)G;C0y2)aiBlk3dFIq=H*1xDR{ zey~i?*H%dqIXnw=G!H_Gz@vH7|H*2B)-Nc|8{-9|jin_~On1S`XY=Qj z(hfSbBfBR@*XETBmG5PU@dbas;wkZm6792Og%Hx#7cRIS z5HwWB;D%6gl6TcEvec(89A59Z<9P_WqLKS_(n|$T%)>t>g`Ae}Rvp7VhwtP!-?de= zpmGNF3Xnc8J;5HO-UZ#TovSiAh14<{jee3xWH&QqrS1TV@#9OBuGYL)L~MH3SHcnsOnChvb}JRrwI{J>$ieFNrnFfeki zcB*^!@V>3irmB((mcjm^OYkc!&vZM=h`8lxuO=ywnHg(x^4eOc6$QZps|SgL?5U_B zHpQ8N3@Xg4YBt9Hkfeo2s_!qPmXTE!a|jf(o;cZNz6guxGY$ETb*@JfikqJcOip%W z44aZo%)Ue^ZA?G;m@$BC$Iw6I3VXfnj^>e_k9ZtD_b zb_0Z5=+v#g|AbZE5)YPEtlR1jk>HyMgji%B)p9bMTL=Iunx|RJExL<+xi84t@V@yz zI6;QKYYGQff6$n%EJvo-_`Vr$Q%n^TcIxyg*W4km8jZ>|hBrb^YdOEaIh4i}83b%$_9wMP z@p>&5M(!-XN95hz7};D|6d09o^Qts`nvMjEww+#0zYO~XkQy`Sg8e1%)3#&KSHi5s zFH92ZE9nhh9X_#xL+TmzPVGA5bZf0Ghdob27O#C;UT9Vz(L7V#G?=8bTCK61<9-fq zDJ|RO|Kh!VV%4`7LVu8J)!$ODyiS9FeJxhkahj~JG%t(~OCz~>;u{V{}1Pd*n$+jTQVA|rVn-$=cskh%E z;P0R8Ym^ZQl8(xeYjNg^YjuO;oo1yK`4c@akQ2!m%IG7Vm$cHm#>jFj+K|aMeNf3Y{WT8`$L@;`!JvHPKb{% z7l=*-c=fm8@K0^^j}!|ETQz~>lZV*7x=oz-hvWuq&Qb-{XSYd_uRh>d50#;g4fk?l zhujF=f8Ym6i(5d^P-<*#z*%5B#O`_fGU|oi&Ut8wFZ;(SuTyU z`35LngI*~bDEo27Z9b&Tc@`r=b=NQ{R#v-62#V-=h3M_?2ubL1CJ(_)8N7Cp=cIJ2 zWGFP1MxZWNoa~h5z};%{F@ji<$>FznaCS+ffTVqK^R4r$l!=d}bM7s8QVo?B=QbTX z_jzUg)k=xuv7(6qdw><5hWvM>wb%~N9zT_z9{D z!xe;^WLl`>b+aVWHWzVRp{{S|@i&lj&osci9g9H}Mc;%}IxaUA#&&Zkf z*%AhFNtBKVFb%V--67=-E12~dih~X&u&>WLU%{@(4sVp zGB+$3K!ZTgU~Y2W6N!m$s9?<3Fi&V|FuwUK)w+8tl8nlxh-Y-pS7GS_E!7>XTmu-5 zWIoMGZO$^0=;>#rwl5yp+f5)}&OJtvvjEX@Kchyo+LXeo%{A)hb>4{M=CeHej48K3 zne2YzjO%sfJ5*Kt9tQCdp%)4_KJ*IK#k>MX#Sl)MX?-O$>?9z+_0cLUc`og57SDlK zuu`fn-1X7IftuXu2XwrybNLJJns006(f84yk`D@03x_<#n+eQs{ITn*DXkV1E}X~72Z})ZU+l_7mcTZC zEIp@R49DiW^*feM4hwLAQb&(ri_`fl_RkCISvx}qQgGb)yCl7zwKd}+x0BtLwv>04 zI!E~UABKN1XjUO@;Opm>g-2qFF8pS8n)braCeBYilK+p#@u8puFmp5)wfcXhicD1= zEP4MAT=10dp=ZC$l128lr)zV4xldr%^EoN^2~&o5M>*H3;;|W_UAg0J3c{xJ*eYag zz%!y!@YfI+26kV#YBG0gEfRue5K=zhylVK>*yJu@Y<9FAvD>60MF}6dYiu?{s>7zj&z#6egJ+vZMovhDWV<4RV5|B@Ia`b$y2#=-%D{$P@%(mz4}(Q81TG4-O4 zQGb4}#-;m4h6~g+cKCT^20MCc*L+%;8m-h@w35(zhB)zhiE{F2tF}{BQT2v&Z>yL; z_DAqnX2zqTU*BdOs;7+aN8U<}^*Z!sv2U*2a5hs-NA#=!6*KDou}ncnKfd#RVvt}i z;xl7}Wi6fEcMKy^r7<2(+6{dn)u=Ke0$$b#)zn5ti6L9aXAO)Z3bMPRQ>`mk5U@#t zKme9oQ6ThpdDm($<0tN#yu{Djzy&u+7AVhtHlX)>TZ7mi`lGf-THwrjTZM%0yCsA`3KOW<1ar(foKJHeuG8jiAoe^P@HOnJ^;G2uYa8z90j9W3K)+ z$ZQ9PlbzZM7@oT$a1)cUDMFT@FG=QqoTL+O*9@EN9p-0x`uvl@u|e6a=Zm_h?1rEc z4B1pErMEi#)0J1G<_-J3$55HeGQGM4Ii4)J22VnscT6J(saxGn{-nLv>dU3Dp(@Uy ztyf-_T+L{i-ZFF%(4?^!ys_^l!{7)ZqGZ?mZZ}8$ENNV>pY-Y!x7_<+jjj`H)TDR# z3hm#lfk)<(LL9Sj3k)yS!#)Y_=8)}(M7Au6(TP&NX(l@ zk(^-cpT(Apl+UX7`E*oDO~FAuluh^6X`BZZXs5s1;EHcYF`2df87fow$jWXl>D4~S zOH|Bl^!u0mBKCLK3*+p|46;Eq6IMS3I4F7;1oZe<{T*!fZW8R?a`ot!P;i=(*mE>u zFM1XsMm$A_3#Ej;fZ6sNH}?iJ68U&nzCQhqRBOXgdD7Ff+6uer@&=OZ51it$DPjv;83^REqL37N(Um%T?RmHg`>;2%7Bp*$AO= zoPX0$J`{8h%FWBB{-+jaIS}|0AF`gDGcblm9&~4%=JLfP1g&yVF*$xrq2+ope!M?M zng86?;eFUAel#fB2b~Oa6Gr|JM7MLQwI2F){De-^>@cz(b}$%w+)^N0;_zULaJxJH zcZSn=$s)+F!VdGWHv>_^hJ%hAW{mq%4wxzJ_ZSp&Y`Tz*qol-7IUUwW{U$8NMUVBj zNm|F3Rw!Wv{w!BEQdID3BUuFgv%QFe{oD@bwFoP;FknyZ297X1kenJ5UxbR z*_>#3%lY>31eg(}dKceV&gexFVJMd0(u$rt!&^If>YlYUs^>Oa5K_OM^RjWI+&L83 zG!->9uKu``kmiFJF}j!2|}GgqlA4R~~dI*kG(cl;Cu4GVZgJ=E$Zp z{Sfr3g6jpJE6U4NyVnlm0pliFqUxtR3(vI;i0>tTd@`=izUa}}lNJaD-kX3Fq?&$= zMiQf|l}OU@7z_KHiZJKu^Kt~9!ilMOc!!q8mkjuCu|65s-Dx2sp%AqOEbk1fwj(s_U4koTCF z>pXMZ|L!MBSFNZaUR@-PiI~1b<0u7dU!)H%?N`q*8l)O=+tRSbet8LlOc;A+)D{{8;LpD9A$d#h5DcX$|g7RS?oCdcy6{h zK0``+aS7XStZe93rB>{*xufwRoDbH4Jb?RH8k{X9311x*k0TEKjjNai-B$3r;=?#t zd|Y0Irmx0%I@M*cD9RWD$KN5Ky+SRtQAaf3c0Q=E8!MGa@=gF6JiN2l!~eR>EW8KS z7LSWVJ?0_qSq3W0Ap{gR|CFTqrhBsjFLiSs=?DYnfO8f1?{;55amUI|R_=cAV@KgN zC}Gxu?G#5ucK?;F0!mq-z-c_y&$UhXFW>wOP~Ui`o(LMK@#gx9Zsm~kelIo; zGX?}78c`t+?gXDwgJ1b@(U~d7<{4Px$EOJfo(jDWW>2K(VlnVbI7dZ=A=OCnOR6F3 z1MhB}g>=O^X$A8fvp+7T0Q_?2K+2y8FZng&19V_~Z(2e7aDg2mfOU~)yP*FE<30oS zb2%{x{D6i`{{0Q$3&XjXK&Je{@!=%?hYUK?n|k7FOtNE*&i8SwP+8f${_{)p|D@Qx zk!!^tV2RaPA69mm8e@i=74qW!3062yN)G|DD`+D`3=$z~;Y+ou>@(u+Pv!wyY$B1C z48^v|^gp2XC#>ST%eTax*I_DyzGSNn_S(bC$5qT06HRQOD2fOmgGEghj8h9I7`^Bz zZfn6ZXU>(>M+vb8GsHhZpR*24yh6)oj}~(1-ZB#8+jTdsn|Gbb1hOeq>uCSV1&~HB z!Q{S$tF)`R>0?0}%bFSHSr#FZlc)(3phasRkLI ziJuXc6H^axWHfnFu%z>qE#eu0N*0k`BL2N0Qy36=nZY84RsS?X zsQ_9M+Jf+pC~*7{h2{T!QTU%0Q`92W-7hPCKVBW3jZ-H(lPH8xcL&3A?!U506R%4> z^KXz5uk`eTXH8~nP$}b5Jf%FPQ@%0-NGdfl5y^FUlaAnKz6%akSDXgJf^2Q6#tUEE zy5fY4uvz&S9uhEKTVB+WBHZe`NscO0Cu7N-{KIU;9G+H zK>_w3?*IQMX`L>JT*a=~iR%5|(p+qhg&(AdR1>Jx?CqsV=DcTQ`jLtmMvG7_=MxDQ zR78UWje)=L;Km`T5+`_jB1&{v1iwxx^BD%Q6luj5Lmj53V_x$f{1?+AlqlT!>NQXuI%hOkDZz~?L^-Xs-*NxlJ>Gy0m< zNOi8t#Gf@=$dfP>I%h$*zPX&%%>StR8^Dg2yy3+p_*1twM)4r|SY>Jd7(OoDKhnE}ZjMwV zn$jMkd03!qd&oEc*98Omn&!w#RQArt2gh48g{8V|nk7gMdlypFK(DFy8*eQ1Uq4S@ z%W_E||1QNj68|e?%bWn9b{FqO{-a?cqCiF@>%DXZ(qD^mA>9#QMdYku}qwjq6iNhGI%I{2nKq zrF!f)zy1FATO9S35dj1SlX8+K3mMmpEI@=+lY z3W6qf_MZKCo|eCoWU?~WhdPQyvwmQPTvnQ-Q|t5uw^~acEF>>TTPz^wL`s4F-?so3 z@!r+wL(feGuRHRQFfmIxqY@dQ!|rF8txjTE{dw17xcd94Av{{IJdM(KM@jxc0XRjd zz~$~h!zTX(_`ZI?<~qkCwNU?c_KzR(c&}}2-~GE=;&|XIKK%=tVvsKyzTD;*YeRB{ z$8Kckr$3XM#=&hK9uQDIdrOkg*| z(kwj-PLZWD-(E8R)fhG({s*fyGT{8jVZRQ0Fxz2P(29RrB-wmA{-D$UhRM)jfYNou zp*w=4b9_jj^X9K@EJYd`$Cz_vHXp@DPcHEz^PCO4*yuc7dwd zpOpRUA2i&}QDRA6>*<3A5l?8fN%=s7b;O`!o5l~aC>7+`enro=6e_OQW`IksWde*+ zUD@x|iNBQ3!=i>C#A0!Qatu6mjPoX$`UtF6XqQ&X+fXF%@vCG4m-EH?%C-J zKJ5JcSV_;A>|8FCFHEb7vS4aK2uMU5Oca{~c z)3tbQRU-crdJ!NX?Lm}3)Hq>tl#bP-QM`|EyQ2r+3Opkjq@L8)ve6K-uxmaJ{uQj=V?+<4V9whlur!KrmF}G-)h7n)KYJlok6FACQ!wUWxEjwx~TG^ zt-`ID>yx;QI^_b4vmW_z+%stPJS3Q27seY}qCx z8Zg4#_UL3jeh@WP#cL!*X~E$5Q^-V^>1!}Uf}tk3Dsm!NR~qa^DntM(6nmqWJFu_D zD3(%wYC^E8qB6`n*5;)-tW$IGQ{$;w%0d!Wmun#Q!Vz zs{w-)bCIJGSahER4M!4LAWBDmc&F>qOCiX|htTZ(?t3#wX$=yr2G8nED_PAwmUd%p*iIn+F2R>OCMy~jZq!^*x#~d2= zFEvN&#i!8nDj78hhulDpDFhSS{zVitr%F`RGdP_Zl#)Rr={fNxVk|zfODip?D~%~x zCJbay)oH;IBc9VC7S|Fj(;de6*eo>~ODH=gt55<*t|J>0RYJub;S^K_?*i*h>?n$t z4fRq##pg)I4SiGqLWrZrrDy!|K9521dbT*-eI{-YRe5pxHBp_zb(eurh3<1pMY1wt z?AfAWs3iw1dLqV|?#d5jSsZ>iN)+|jLs{E=?fBtrQ9?wP2!1bXgj_5S@HM<8v_GZP ztge*Q@a8Lwc*=M{zK?|ktHB3YWt#l}0JG8id*A(|?PJjo zpGY>R@&0RkJAl4z24D*6hfWAoDiPcL{)@PvXO<(fGzX!z{EWt_1xe^E{G(#RyF6xk z?$w?zV2hVZ!5&<{yVi2h`^!iISFPwN9mx2W*+Rz>Ko}o4eR%rgsn%*xS0#JG$HU4{E8mo`iTU|5+2ECZr3}XAx!N0 zBj?)~ePD!z>LF3KgK&|%te=*D;l4MrGXO{8)y2~OL^xRXz}=!W({7;rn_?^yen2y$ z(RTkH_7q0EM z%Nv%`Q8F}>>Ri1Q4quUE&ybvHUL*&VaEN{}=-hVa9OTlh4MP@@L_}p^f~v+^$w$=% z!<8TvEzQET4JY5(%edC;Z4`+j-{I@+W=v|tz85bp+>zqf;&;I%BPASM&7~7Bw-5pl zWLc+n$q+am70dI>e*yxw$K-zkOQkHaBH?L^e$q--2@EMXap)b6bWRMc`ZYc%1!5Kz zBZl|#B@y!Nvz%zK#ln^XHptI^OmQaQhJbm4m61c1IN%p}F7WP@2PbDBvUW-JG&dKi;Ext=noh)N;oUQo2(I=@-$RVNg1C&QoKx4 zM}wuG?G2>Mf=7dkdLiaJeu;l{77WzCj@{GgJ9Cg6TqAK-9+T99#|#4ovJOf7LUj{4 zd9TP-grzmp@4YMGlzk=Re7Zn78xNbwHR9~+(>z*8-pd* zeSSVT^PfxNTF`(0KjNWgOI%_^z~~lCk{$NT8CpO(R|b@rfA|Hb2I0RDgP|`6o#+Zbu?9#vLFF&+`mO+NCzK zUYElBW6>Lpry<`L=Nc}{0$#fqne*RWcZ146ej4AINn2JH7L>;3YTj;qVALVVdl15j zz_Th%AQD9ijr%LEul+z+o0S32dGt=|MF;2+(WHdfmcuExutw-g(VwMrRy-`bl?p8$ ziF+-C^^?6WnG}cXRvC}~I1O{|^lI?uysGz##KeJ)RDrn^Jouq6La|VZxT~R{Tz@0w z{s5k;7(K*~uX_rTK{<7l@zh1uu^H8vWUm)PaK_$7#J5G962+#A{RZ#Et;N)WD37Co zHhtWX0AtAWXASr9GVoLUFK~YB6x>zF9=A=el8uJN>PzlmG3?kt|Dqo19>?8hGGbhz zMXd4BxP|$S)yjD+Rc*qnsX3C=Ghe9H6&L7f#WsH~pI-exRJ~Jpo$vEK+^{>g?H${; zZQC{*+fEwWwrw=FZ8d3}^i99N|L5R6+&Fly>zRAqYu3!Hfddpiwph~CNwWoO`~j*x zC&Wv>`Cu;xeG+fO5Vt0SU#<2dE&}jW@K-SVpat!$IcNU(nZ?JP1 zZvy@&2Yn@Ld0$5i4Vbv}0-gjQTbsDudb7SeB|<<~@j?D%Z$$VNS+lXraB+t6eB<4D z=bC`2wc8Yo$>1nLbZ+3xA2%cy}@WVM~T{LR%;n_f{z~^fnSi< zPHz8M3--nPR#XKI*YP*&Z!z6Ed=~L;CKJ+~R{%2dy9nO*H#l(mLjNAj(Rn+F9m#59 zDG3n+XDO?)&-ANaL=EI2Uf07W`P=J?Fm4P}Bl*;JYdC@gfGYIpTU^5R4) zFb+hW>ovhilrh6BuZBUu%lji1sbm^9Qc?&|)zWDG`cN!PgQvQa&I^9<3-{1foL2Cw zor_xdrky)pk?Pr+q1c|IBzrD}&mPsXav$fgoy@zQX;9=QY9=LkMO=&FEpkrpVg~BJ z3urOqE8bl5hb{jXVEtd(a@nqhcn!pV?85&ayU63yp=-MD^#Z7Gpbv?c7v%~Ub|Wr3@}LUpz~iXHy3Na#z_Oi5u?VJR+Ca;`fl5 z4K=0(#Kw$V=iJ8p;4dl`qIO&S)ok~?o@_k?9vI;7vX9aAeri6JCjnj)#p}rP`FQ&0 zR4;A;lhLKyVC^r%(*muXDfRT}#@%7n9t$8nEtH%v&31UeuO}LAxQ5?{HN5+o=>2VC zF_cayYFuB0dVK4Zx<~(k+ARl&G&pCif5<=z`!gIy(h7gJ1)m^&{b}B6$MkCgXyLn1 zaK`5<#q*Uvlp3-gu?aI2z0l7&B}5`_DM}>;O&1z3SiF$^IzVzlpGdErM5vO80I-)B zJYptA#v4EeF{FS5LB)PRSa8Yq#hhHWraxllgL=;5G5Wt_~L&Qhgj;20u51)O3trCs&zICLzm zgyyanhb{QoM3T{scSf24)KkKMKV;lj%BdnQz^~~E;j?m|17)GRy94F!;~iv?vf9*| z!9&vm0u;fuVE0-a2_&rYI22`^KW4O0lckjF&%!&`LwEa;+q9bX=f4%Au{isv!Q}pP zUg}f-CxuEyF8uHA2@Ly+;{JtH9hCpV6olmKQteZ4`hS|=*UV(r*Ixp}acPK?i!^RW z2Uy#@F{aNiA(c0XKI%^^L`2#=XVO#?r=xp)w`2H8P#mwuT267L*t;(3R;45B4NoYm zHgdz77K%C2?S<5i2t_*-@$t|DlUou_SBl|A;4Q=Y9ed!3RO0=3FgovTS-J$fG53ub z7!+?XR|z5M%!3{8$u!~V$>g8BYT&Ecn+337TCbTU!yDPkBP)p zYd)aVkB5e%lNXFbDT#yp4Btn!SqN^@Vux4pOl!@?L zUPHtYW(1F>2{!1sGTZ_BZYGA4^+uO;4YN~^M$%BBw+aszh(XM6?tNrnMo8kGkY5{N zUHBEs^lf={BAH61Hkg=hclBR@u39G^RN{t@hc%}+mcfb^n2;qRgqyD1?6tHn5E_jK zq-r-aqd5y?67=<|w8lc6;c#ILH-`8j$INv1M}M^b+<|Cb%7V=% z2HnKJ+EeDw(N|-QjMOMw7hG;FMRT}m;%#b5Z1cy9@X4@N!Njn^G@+ovWxJ}?PZdh| zOiO>%CB0>J2$lnnjqoq{Kmp@8D17de?sK=kpn1yTk5vC`zO)hU3)UgTznbSSb1c z;(xW^#6M{Hsa0BW-rKrCI+U?B#+XQyDRcCiv#dc1!K*+a#1FTx;o-8=WPFB=rlP^I zx&$8Mgsa)4X5!C#b4G>5W?&T3*+xsh7Zu8!%O_2Z@XxU^A_8!&NO%#D;2|=M)~Mb$ z*Gx@n&9hgW;#Z2O@ay6};2NS3lL}@8C!5s8)$Fq5e6 zw1FaCJj77nuS|lh$c0DgJae20zJ8D_u!niwqEG=wRTa)8VTniDK9BDI7{kCgl@Q^f z=nqeM%GI_0c#-`NL|p$>p>-`Bwf^@K9KH&VR2=IG*8f#J2=o5&V4&Qu|HeNBg8to> zw;n-a!Bo5a!`pNN;thomHfu>wQeQ_%@Sc@Jc3{_3&A} zqOs@Eo^sNn@%2m~ky1=P)cp(})zm>`geEkD>Td@;ETn(mZSAvkwN!#@+TE(8i3z>g zW#6tIs=&tm{?V2eANg3d5tgQAVkFzHtD0SW!HoUR zJBVE)VXPFMerzbY8ab4Y+pDwYWvTbL{3L3dvTm2O7~_a-?U5hF_-W>0oj6uR%HyFb zuaj&r@?U8ob&?TAGPc~-vdq_jyNQ5#n_CCJys8EC`L~`ChL5Yad(q;MUUPHVXl?J+ z=-Zdg#>^JxYDIF2yh%}!Ti;cZ5@StvT&mVli5>xtP;kLo`P21CGXa5chc!Xr?;$vx zaQzyKN@N{UXZYipjlei59kx8*_tp)u{T5Q37TTQvale^i!(a0*zq>qW8!-(Ytg-brGzvZisdlOoo@R5 zJp8r7=Ua-v+f$kr~8qVw^9#PSUx(}k*Gr@H%Fy+4Sa?aNAgJDCo-mV ziDEHBFNxvm9iNnZv1cqb==pB$uhE)hl=J{1sr(!NCT~ynX25*z+-Zf&=}z58*+ zt5CKCW{2Ts)^~<-ZHsKSgQ1*%Ju*LKkGPwo6oxe(AG=c|xA=Z}ybIG5LP<|Oc&kv5 zVrH;N;3C8%=J-xp7{o>jP245`8AbZ50C17-u*jM=52eKx-8sReVJ^a!EN(vw4y-Kp z5hIC3ow>)p z5yf0c7lWal` zrG$L2fG9?&7L4f=b0vkYrx{rzF>}|WD3fVgC=q|zz6l}CiZ;W;l3?!ezu&qi&q9nvxUBD2Jq{ruxzM?4Rx}aVG3z`tmaFzwdj~3>w zt4)eZmK8ODzfn`9t(6&C%u%;Jn;y#)4(vQZ!X`K6jhC1UQ2Bcu-ILfX3nW6BOmy)Vf`I@|t`~#f& z3{?F^mK~3)xTwJ1<7HTDJTc6*lUb4PsVaDuZJeX@NAN*G<7%l%iRL;&u0Y9_zg;$W zK_-z#EaM-db%u?Gf4X3%d`<-pBHvGcxBCG`OI*De|{=Mcp zna6+ExDon*k#wkmHx&^DMHLl3n!G$v z(D}{>bYv}15FrV&?iK5uOzQEJZfOXjYhZgPt@8HN^<|G|@6(|~mnWFI%SgA9x=V2x z`1SfA&GgwNqF~O*?=Sae2*ip#(+v#)pr#EC{!7UBctc_so7gMnpgnhaf^t=$jKol> z-)3Jb&oqvpt+)K)8n|?>O_1RAv7^70U|Eh-)#n+LnsQqP_DVqne^2f*w5}B*c4Sh@ z?(8y*2Ym&gz1bp9Sb?DjZ(wh7iTwr(FbqqgTv)RoQ%xDp)PmKd;;xM`#WQRMY5a|F2k{C>Y6je?kyJP}g_?S3*?gzCT_TNP1X!8W$&wigOU} zkIT?mY;Stbx&8_d@5${~Bs5!IgS%VeXR~nfw7D_xsRR+{gnv4+i4#i=clKNBs1^Sf z2S0T1=8T3l62s3AU+rl4ivILtFJ2{-JWVBNbGTZSB zb~R^$8wqgK7PS)u+@%oH-=SZl-UiK0^v$Jr-Wq~$Qy7o7!6B^Mg9KOfjGluD;c@=} zaaPL~AnI-%Kb4h|N$@NJpDjD}hA2;&FJ=SSAc4;K9|MWa5y=kALIr7X!Lm+2%R%&6 ztXD@^P3wI`v!Vrn9hj&}$y!LT#WZ1GUKxsN(ZP+Sgp<>u!MiwUAcVw^l0RqJU#I(U z1!Nq;lYiAKs`hP22IB8kBhHmWtcQU2rJNHM_(>5vt+rP|U?WOB5!>p~o9V2K+-Z~W z%4(O%V+x2hf(7M^fHPA<2~6bsF|H&bdfuVS<@UxVXE7x!H9a`ZYcP0fC-AUF@SV97 zC%&eeXbXC-cC?Xj6i_sbMM!lhfpXWw*_gVdwgn0RA!jtpi70F##Ry=djPo+nUsLx9 z6;-cJyK_Mte@e0^`0~Q%9GS)|v#Tk{A%pIw`=KL&s3B9s?@V9EkCOJIOlZd-wC}A2>md zxToz5Ge>@cQVxt5clAxNe61&9q0>u4j}nZy$=SDdB(sYWfhqR4`d5#iVuECU1|nH` zr|_p+gGfTuHzP`W3|f!bPi?+&Qv)J->l zw>5CDy0U?kbLkRUc5Vi(8_M{1YX%_?;;N3xNB1uW4^V+2|1R6Ew$^T{#(jj=;jhQD z&yo|T%&sDqSN5Js!=!;?Yo?R76u9`(6CX*G+38Lla8^Y+}Jnblw zG>~9PsLLJG_xJU!5~H2N6LQ&pHA0_>HHw}p>^Pm@lt{Pko{j+bCXo>vpOk9M_#y0h?Apzh^^q z|5hqVoF*UxeIH<_hJK8-fHYVxRcCwv>627-H&W>UKP)c)NAUX}?8+lf-T2aSo||KI zkYFp1Gd4)XNUXrERd2|+zq(^6dtt(vpL@@q;TOC;mMx}yZW!7tuSjtd@RcSpvSnb|OUzFlBBHfrU4jGXIA zIA(B9Lm}O*jwPupF{Eu|Z1UF7e^iP!L&({r}hqihATL2=cYHiXLLyEe!FZ> zhY6clc^=(2`L-u;z7yB2;lz@^*MCH8(RpNd5673YPKuW-t}*`y{Fx zEcNg7+!{#bc_Bv1xMdGA9%Y}*4Ywad9$mJR{2Tm!@d&ekpt5Wt;PcxIltS?Tpm3sQd4{c3*xWX!oCCa+^HYS7cCm zo1$ff)X6>?#?=c8$}_j$n>=$h&gx@THi|R}6)QEGF+->j5<<6$Le;DXg`5^!xiz%t zoX}E%`oJD#EYVCSV)BW64ubNz1OYcl(SQN~2W(SMKcQGyN-RKZS|=@G6$KZDR7`3s`da^# zDpbaknLbu-WiUv^7pjW3<`lFElcU`s+>*zKVeXkY_1w`Xb41bL4p##4V6E;K`zbEz zyG8)?k+wBMP*^XttFxtVsGN3gel3f5Sch}qQA;v!7kc}751g(d0B8EA z)RUXWtA~73b-;E!)>F;L5&e6rvT1uEB5OZ0vzT$$vNT=kRR62~=McT7>S(w&!cZy_ zt(EH1h-;l`p{2&Rd=;#dyWg)89Zy!tW`~V1-6Jyn7qkyFj@W5+pL5GBO6XUa~Bpr9A$J9fcX5Y`IRj zNu}zxuGroMUk?k8O73C#$?b0f#kOMh8|njMWmvN z&&UWvu{;7Y@F=}S2|L8aYOt>dMT^NKc_KnPG`0$f)>k1bHMlwr`5RC?E4EiOIBj;N z1QoVB`38wWlJIW8F@H>VvsA>pelq23_>A)G5|S7Co7q_$(1nnA`cBVKiX2vh4&AvV z2~J*v0)}4?2UXMR<`%JQlz#PW)1B^F%a3s2j#r~PLbY?G$osbm9!2}5f6u=j=4itp zOlCTPPxWyR8DZ`v{qpa@I0X24Gr3UJ3P?H8#TKip#Bzg0C>G_#Ua z3Kbevhz9!>H%!dSXn_WvB&x%)ak?Q*C%q(tYYz%}A0BF0;jQN*yB;_rmINxtQXT8r z!J0Ed_NJ#gHE$m|`SJdML#9t}4D*=r!H)#bU2^zS+{-9Z3zXAH2YMWicqCmlFS^)m zx_&%8qzFVt7SNpsXQud8IYhIIDsF+Na@xkE(wJkuWc}#LLzmse8rhBmDt^x3$LsJV z@cIPHB(5(YEq1`(!Z1s3`HagRn_lrme>utEFcClqZUVfYP!T56e4U~`F#3QDe}yT9 z71u*+kE=aICgWPe3GN_Q`)Z-4Vsq?y-3V{KxMAkXI5U+&r3)8KZ}wOAuQe@64xh9X zM>+lUH&sH(cbzaN!6n9KduR1mo~|1*^d81nMn2vgOQ#=kBW_P8x7*BHi|Hf1qS5Y^ z+5dpkgf>WljN|r0XIo|;MTzmg&{hIi@Z{uWs5)UrlnvV6_Ip z>Rw4fIvvm()L;QphYHM5=aL~t;!PHapN(Nt_OrnMW;z@lE&zT)+EA{?M_>1gbSPLp zY)g(d3__*kzlh0s0XfAUZo=;hJNg3_ot3mQ6X!XXRca!sbja(81jO%!q^+1;yD={d zUrNU#Qa*2_WX@$Et3HAk6mk<*mv%%+NpTYS#XH!r`i;@Rb5iDYE5aXawcT@uuSrf4 zbR^o4|9l^QE5M(11B`2k{;fKFM?Uu)J*M5mMvf#7JXqzJBMq!7)9}3l;SLN?aGJ;z zeMMgIBo5pKav!k3W2(n&$S?fBsbf&1fN{7XQQW-Qe=W6%G_P-U08yK$cdmq3joNX z0?k@WL?E2pUgR$F&|rNEXEZ*eIdIu09zENbsw=YwN7W{~>7^ z8KJ*|D<&XNkhOOf95GU!jtVua-9JTtN6d`2YshI^mf`Hk;o-LOt^r1WZ-7l2c^4!f zQ)9vK)}w1>J48h#6&b5lcQXtFo)i<45i3Z6M&!q0&$P#hQ;(M8#BY0U0~)^TQ!~nY zv7Xv%LR9sf=-TD$5xOg*nE7>##**kh4~)s~r7;Mvl?)1hg(7d;#cz#Y;Hb-!)c}jp z%N?5=i#BH@Dw_nL+gjiIxh8mvRC1L8U7b357ogBIW^omEl8YIuD3^KyBBvVMt<82Y z2`+0Que&!wn9MM9N~-)v^B)?Tr{LZUv;QM-l@U1+QK71)*e&4Qab5!-j#~n^kIo`s-_enPi@b%5C@AArAnSN-2rrLFcfRWj> zZvr(tjqf&NF^3OChL8cOKciM52fv5z7jNU=&SwsC{$BL*d4uTkt%=7lxs5&buRiGZ zfa__S$MvcI&9i)Xx0sgt@gpeHXfF8pbk7Xv?r8_lX4@S&QDKu{Z0Wz4{T_n%le^sPY|f;h|c%Hgni*b zBt}`nvjlUmeXc8_GLr$yX+%LGV{sD!&-ds+(xEH2-R>+!in-GnA!w}{@>ApS55&7x z-b#4~3E=W_sge~P)(X^*L`W|uGlsuq$Y2=m(|VGxiIq(r${!<+Rati3;N~RkiM(Y< z;D)L!SyvmX)aZ6XF7kQEJ?50gU*m(f>+X86nvqLD%Ti(ZTOl__tzrL&iO79-vd4F$ z!7RikrmmQ>V#Oq`jrd=8F=1MUq)^hmYZdcCxT|PEM<*~2Vd7JDP6O{J9R^ZIUHL+H z**rSr4oy^)NcT^sJ_$n$wc~lVX19rVHlY*=Gji=A(tQMyFe-l#WM?8lX`qAh{-?NGq$CSW&H~}qjrYkdn zTRe9mRXzmmB<}4Y{-7fMR}qOtS#AR>kC?n6RP?DFJ~$Djf8bXVQkRKzax{tP--J@K zy~kmgTjJBm?hRE15hAhx{Af_ax|kRV_;RVx)EOv*d5hxByTNZmldISTHXlWu1t^d4rTP z&yN+65F{fg0MAL*j+qvl()$^sO}Pdv+(84sssqT$)DVNF7D1!$Ne9XV?q|4O0vwaR zq0T=!O{_$U-WT|$BAyQA!U_T*j-=Q6GdjWx?=Lly>l!Hxv^BsfMZc4v!=O4uo_~{& zh$Ag#WN;T@sCI|joBs6uo)4cLKGIh`wE@$A1W)C|Ue1e48qAwuqe(D_v0mDrC*tyh zarg3Qhn`UH>O(3RZ%`F;try0ABP8a(^qx>6ujL;RU6+#K(EC4G2%!fY9I*oahXt%q z`R3+aVVmWf1ic;(rlqnLMDn=DZ82QRqZQVg~3@__jjX&;zSJ#6x?>f7z44+BaE z9QB0Io8_y%7M~xcIA;_w#6tD&9G*yYLpq}&LJ+v!8HNrp2)}P9AK$f=w*-OYjGn$! z@Vc^s*py5`+QE4gp7fvW6`nW4rlEax8?5Amm&Je(>3qcQeuWEzPhpi0!SrFLLcC>B??7_nv z!+{e~5BWWm^u>Ca5`S9rcALNo)$0!M6jBhrYW=F{9f(*J{IsDIF$8fLF1vaj7U zHe|%!^<-rp-9AcBF$ExfQls)+^+dr@I9^76P!njX5)Iq{N~goTCU*=I`SdX)cN?@?eUez)K97r9cZAE z-%N-*k2USio)W1ldfGdsPH$$MREu5ANOj{_8sSBsg`&VA>1fyX|Rcvm3MYv1iMP#p`qeBd%{1 zwqRJI)j#K;voB>*c(Mut4ce8#CsQ(0%PRva+4(Zp;6HR_nz3O^I_mzwnq?hD43Ieu zQPaB(qvY_MsG1xsm?}QEr#}sV^ZdB`6Rq&zz`~oR8YSp!-jXxgHAbv#5&zifZWmXL zl9`^y`e&)%RUC*+G-Ck;H(XBf?n$JSEfGBPCJq`BGW_g0sQ=d@M5`5cAn$YQbB+rT z0`pG@*p>Dt2;L`bP7o5CGpIC^LBfUX30}#y(7)0dHpLtMyZs5mSgb0Ko)tran=A@6 zL7z@3cMMX11yIZMgltG!j*U|bX+jJy$7>9(ufgSf3R<9_ibDQP87O<4`~VfIch8=W z-jI-y5Hqs_k(wNf&sjG$zJXQWDY3vlM1U4p&y!S5jt#DKlo%iTva=;hs3u84i$1Q- z>~9a4P-?w+w8VY>!5lkcCWy=kR?D-2vjkC$raEM_aFM&)mY^rNw~oV{HYKtFS)m^U z{Qxp4^DV#Prmn+ZVVJDgW50UGfiYWcFc~!=bQhC#SA-BXYBfokFxlII0as`}FTTdH zWOR0GNwbR(eK?d+f+h!UV>As@Syhl?E&g1j0vM$12(nKyBdDeFjT%xYf>I0-gpkGx zX;QL^Cakax6;Jzh_vH))@zO*%A>V?|s4o_K`wRYu9~fK==Q!0|a+mt#eTo}xo7=`S zCieq2YA(nYBAIu^#Ng>7cnY$a0y9y;#pdJ#CpgFg?2F3Vv-Klu{nkT)4XnTt_6_L7 zW+k{Yg+uZdUy-ktv+tD-4np_00MyyiXk5yaaaC}ddI_=D`z~KR%)>&Jli_^=%YDK# zF9`^4PtM5wn!M9v+O`SIJW*%3a=%rHB&t&wxOxTxB;Ox?OqVt>s5B~5AMip)$}EN} z@-+fvg?H3SyDxmxv!y>#F0090ni+rA`^gC5PMA7nNzjaxqEc$ZNhsbsAGZcpM%DFH z@D~K%{0G(w?*FvdEmMjt%KxXus{T)l&0&VjPp;NFm=>+x?XLwZ7luMOrUV6;uG=4t z{@Tk{rJP-p+;G1Mewks1h#RzWI2vvf5R<=nIuW`i@E^Y)K)jx|cQMgQtSeqdW&jgP z*uiVMb9US^DgoRJ^ZWLLwdEd!!aATq*I8XlziG*Bk zAnV(e27PpYrgbbyhGm>2*73R}_~*(_?h1!u{P9+bfH7o#uxDlr-d9LQnH~*#pW*+wm3@i?Il6zPkHu`QU=@1$Y#Nobg+C2Qt2+n zkGnaKRbWGCjfULMINQvY-A#wPtPTf zFU`JYQJTl@K}a@36ZW_KJ+jL21VKutVqHp13e6$b2|%%0Y&f{xSgD#L{$7j zSZc157Y81zoM$DBDypdgbA54RTK&aLNQitD2|f?_IQ+4L06dXX#xClf%L9w!Yz-2U z@k8!@YSzwBkP98B*&+%qwi0lAo*>-nTGUahjaZXjGQ~7OXD=*IKbU5 z{NapwWxK}Izay=+T14pQ+Ju&{diWkoG1Y%*Jga>eSik52IJuSq$4iHWQ*!+UwMKQ5 z4+)5b-PfNKpaw3I+Obw-ZhbH_A_g5;8u5~)#N?21pBaJRIob>&Y##69HP80pFPU}3 zcjP%QeE27_c9cfZK1J+&rwY;@QRh77YT#yS&I?BqPW6ez8`W$~Zl<<@)fB0{n;>AG zyYwxYTiy_ek&*?DMYJ0T#ALJw1lCh+31GW7Cm(Ss^r-*Re}RMeZ~OoW6%CaC^0_OFdS1osHeSrxc<7u$pEVM=4^>S;r_xNPtN6fL_thD&OXRixK1Jm@pg z44ON;OtD5=>Yecw1g2rc4^2Kcd?T%le|-oODfVvDcJ^FaJ|l=%#dsv=bhOKPA6|oPk8QU0 zjwVP@nA{M&JV5ZT^B6JBkC#M8eTP~*?c5B{7lc^lILPzhovb@uoN7EqiC@;#Kl zoKeiwQ^ZF8NcxM=_X|QVF&y*iU7%qUXRHts;IKjK}&dA$Xw( zTVR-rDj4?Z2>z!oT&2T9yo9WgHq~mxZzQN!mEAnOC3tvRsq9GH$vC0lG&fvO0X&5f zGctQz2jOckK;7?AJPub*G%^;9iLr7xX_-&h)J7#l1yRL}OVG@LLR(BGN@&*MOQj%% zb1=`(GV5YI`i`v>RC0#XKQew=c1;ypDbaHM`Avc-Pbfrhjwiw6gX)+FN>WnG3m z`8K+!i5bC0zR_x>PtMX5VJNri3~kR#{y(PM?qT)B+p&=t!cwuVpBt?ZU6Sqw)@0;s z3DJ_dYGQ~gX7$MWxRN4l3+fBbOU!~t&yVdre^r`8oc+~YutjJ&*(}7}NuH6- z%%Z&bY00~gF_Mnakzst_>FiyJ5O#3D@c2YRPQ1Kci%F3J;^41g_#VMzziPDdLs2qX zgw`Z!%BE&;IbS-9b7NgFEXClGMIO?Uc~6(7q&Vh`SH`vFVFR6rrkyy0wHBW%A%D!P zPi9o+j!bN-Q?J;UD>=$Y$tSxb1GuvJGJ>PUC zDa##Pm{NEV`Wyy(9Zlq(cTa@J_{303%<%-ci6d-PwQd2RlE0~mDKTYl^fzio+{^Om zYrET;8sQ7CoPbjmApKN-Ocm(iIOi&7TR}*xa}0(WhbLAdQ$zgMZd_p{NG|Tq!uIcf zFm4b(DFlF8-zKMpbkvZfB!6C=A4jCtu#rc_K@uzeRrt!EVAv_Gv?-e>mxl3ZH?J(3 zR)|?8{w@}DLGq}4%eNwzf$(gX>Qen`4KTU4J%VOWVqFXEI9aaZD-mZs>@v&n4&qIk z9Z)!)*4Z2{hET=9@qp+Y=!C57%<2L?yK5iIyH`0Rn=brG?UQApSQtpm^s6{LI%J*8 z{VaUu7$SpBz#gU)*muqTIdW|>&8us<0j{j>CfxQFli5WDAyG*tKQWhQP~exQ6rHfC zZTO~2UxfE9VBGb^J=!IrkEbiTTz9aq*G}!GH>i?L=XG+GqKUoOl4qSmqFPCOc#D@> zWLHMc`C|luTHvHN-cv~=+R!c*%!oU1w(vdTrHPs1ce%Ya#7Um_C=r&5N)b-1HqtXS zvYiK|5r$0?nr}r#rvNA{P6=~8!*P@ih zTfDRL!=X9&R;earp5Zf7;%@DrSt+z#yu7nh{m)o(Nh|yyUpFik^N}2+9mc}%+!Va` z3=iVIlGo+(T=9A41RWs;5>aRCeZi}S+ASQV?6+pKg5FB;FR6Mks#Vcn0Tt`;{z%bG zu&mgAkq%mJP`cfWlPRbLMq5t71QmaGgdbC}F*DP|1Sz=TtL@X7+W?%GSwpJg(1Yjc zN;Yeb2U`VC3esIU=RD+vHs+d6jNiFV)uZ~!VAMwp;(By*U;Q%z6ka`5pStM| z1o&ql!Sbc%>pj*)ZCDyeOyyL?cs9YJxK#<7+epum$?ZCVxF0->;(am=7o2I4bUvEQ z9WwS1UGYcB1~R{sGWfyCDBW*71RwV#-KacO^ zre^Q@>qHUF)Hc>+sIKL8ezQR8x8J`8}i)Fr3^adqRQr~^d zxtImk$l_Lc^Tx58iTMA#`%Ok?%irVq7h@Ax$t8V;8%u%yNA%sB+M%L^P-Q~S=kwQ% z#5{!?AlT~uy)+%)4jW2H9V6iq^3%&13f}aTzs#}jj2$5=_dJg;x?gKfzdO45B+9jP z=~Wqx4`%Y@fr%rI6MT%b6|48N0ihN8VUnF=>M(4z6lY{QCp70X^a?p8dszOyX9R-e zcAONf5vK^?=?0NACk8OPfqCgn+Y8z;h7|yYsEW(H7~vDsoO+l>jGlg2fXPvypT&G{ zgs5~cBfSP--Lv51Ea8jAC8SU|MbhBvb|7lkT=X(T>~Wb9p+Ec@Tt=&O3|uaxrO?Ve zXGWRfU#ea|l})`b-_TPW=dAj;Q4gQTxu>Bho?+;^y*36gdC}HrQ~tef{NmiNp9G(q z&_ifhx9LU@t06c2NUp+)Q>1Q!)dZoXz)iq;9gn4-V&y8Uh7ywaLI7 zRhsA&W8GwR>m7b^JTGuJHCHI;!dphO^uaG&SN7wn;eZyL@Nd6y?WxbTwZ?|O|sBfHX)N*z7~{c`*yN;vx;N?EoOxaa#OuB z_f*a!Tc3#~yp`M%fW)!<#vGeeZrBE$0JaZxt@CPrb#NHP=!#L2&AaPO%JZvNKS*RiiUDLWG!dfJ(~oaLWaOnpm!05;li|K4 zt_(O#s8}o8-}Cuwwqyc{L!ejYVe0mnEP15MuD~Ic!sRxz&SG{2_&<)Jcm5*|Urf52 z^s8j@2RYZF;a?xvSLjRpODyp^s)+=Es(MVzJ>C#^R%ES!&x20mNCK>@nvO{7pEB+J z`Qt-;&o|)e)ry745cN>2jX!w;^r*#t9(T7jJSy2ExMa_w7kYJKdKj99_W997kC;}+ zs;;;59`j#WgMTZFZ+wI8*)IR%AWHxD$Fch;A;0iZL^vabq$x8H98ViGYbS3o>+_~eLRSLf*T5A}L)c_urviDuXNWBCyVJKId7 z)r0&~Yy*oa1EBG=M)o=t!Ny;Vpd?4tPzx$h86WTFkpubfgK-a{6ICvk`WQjIh0qF0 z?dgNB`B?Z~HMCq_8IM6Uv~b`3dP5HsUw|xH;z*qw`K~jBus8(a-qmTfm zD5!zA4;LIYj|?RA)?Y3z${Tm{O6Xmo|#<5+#XCi-v*X%r@xxM>mALrC{lp?A9zCDY|VG(J@S3KNbWBcK7KS6sq zt5>{=7bk}wR<0NNIJf{h0-ob%m^8~$Nv z-Qa7$a;4U2LS8bQ`Pv*xSNShldI=;0zf;oPd1?KsISm_A$@^}z9Hu6Hb{GVrls@5~ z54l)E{0!9C5JNYu?qb8xRDayk*sD6@#JG@f8&yxn!bS^FBJd6sePn_0bXh|?ebCy=kUHF7>+EkwD9wV?m;&Z7BFotis}fGujN zT6o&tbmdR?Y*`0Wd+GAMqHynr?A+~q%y;Nrd9Q-r5sy>&>US3Ur;H`dG^9?1>5{iu z%cO#{^=pFIKf*e$Vc0(Zt0Lk*6QH3nRcSs^pn^+mUo3Lcpz;Fuv*Q0>E2{qg2wDkE zzqFzH?MEm7ftKac4>?n`@Bn+7fwGd&8Hg%;8FA#!V_PkXsj5ZI_)0+!IS;T}crE6|Vhn5W!Tvj~L57e<fkugVAiT@q56KJsIiZdF zH%3NG%2d_kb9l{Bm*^U~V-k_)ZV8)q#mBq9S*_GBWe=5itk;M8$NM2|wb;eEt<>vk zJ6m*%lfQ3?OS(B(r6pDs4S|DM3sAmRs(Cg5v~8{u{(KiyK^@j0b1zaZ3h!{lA*fjo z9U>NQMnOynehuN$n|KY(qu_*ET%IA|yCRA2Cl*)4KQ>X@^2pDVN2ENgladvE9ky6a zUV@j5_yeqk%W3<(S*j()w-DoVzz@jHVDI4K!j%v0;XcHgQhtsLQATKJw1fKdF0JWqmwzI~DX8pZzy6D;19~S}P>{DJ{8>s(( zmDE6R?4SRn=mgiYS=@g-3mj@u;Gbd-MubH$Pe`aD2io(~9b{$6ez@oza~aufbRSXs zEKiysSc%Z}iPNX|Gu9M>nRfFnCZ;b-QZFS^yoLvj{}*4B1ucN=Yz~WH3W~5f!dHpt ze#Tg%fikRnqcWyFtZM_I5VR6?zM>1(M$-vhe5x%-H31_zH5)I%ix0;tHW-zX6(XMs zdH?SI_heh5wdNYJ?KWz3Fm7ZAY`UpBWwC_ChFcYQuD@5s7w!k(Fj#c zx4$BVJwZ!U>J$b*1s#QdtQ$P(h$bT&_?2@$K>Kk)-_**0M_pFQwZxvjE8xIh-N4y@ zI&iLoz3?AKK#^8PwIx?i#@}$j(;;2mPGuRKdf?PleG^yD8OWV00vvFQwoWf&1?imy z%vD#yHbtA_N{CI%mF_!G#?`_Xg`Y2A)yg0mzKJI+BD@zn2J}DAXkQ`esKOqyz^nQF ze>8mqcU=wFZEV{)vDw(R)!1ol+ezcbXl$#o?KHM++xPT&zxxOFIAiQR&YEj#`M@r@ z%<#Invc6)xy&AFNV!Q4%MsxBk&nl9k$l&pyY04_Yfa~U zr{pU8TBQ{#yV0PcVS7c3f33*Ud2%G-U3od|dN|w8(xRc-X|A?ivQb@&tD+(=F?u(` zw)?aFD4}G=Iy@@h@0cIcxxXidVuJA?_k{cY?iH`HG1WN(7r|XL*dd6F%RUW8YSU3S zLfF)GCYZ6>vqPHXmCRjx(uh0S1QJV+bjY}o()L4SyQxTiKe1x=x>{gQFCWbwroSOA_`Hq2f|k`r_Jw?lrld0TZ@5r&Gv zgkL3tUFB9>u(skKATmDil*o3(y|Nbwz4L-%O&&b)MFsk9*I_@Hh45|v{JjgB={Ve? z2a%Ft5OJ4R?CfjIn4_|XPdBkL4e zL@S|W=Pp2HKO&-2*YWk)weVC_d)2E}+-NFR^!gw`2wdp*26EiRM#Mp#=c#$sSpP$p z6hGK>6Dg!J{mpOn*Bz!iV?qD5R|vXituEy(yd zf$YI-JlJ};54PaoJKbNq1YKh+UDH-DBFg(sFimG?$uJx%$S~srScM6})bJwAzy>m|dhpgv!rc3=X7H%_&`wlIuoQpX@A?mlf?G^oGr%qxa zYQ{YXKka%v?7QfkW($HA$UJpTy5|;@J^-DFLLcUUuKbMiduhAA%{Kp|SqGQE!2U`a zaR{koP*c;dWUEC;?h=rOOQAMjckLF&af#C+sexjQlNf1vZkZ+hw8u}mhMLql2)!)p zN16l*ldpuqWoaZa#6*S+#V?SlN4JW361+=nzXb{43>##s+BJ@Jawf;aSJW4szhG6P zcB!BW8`eR!m?7!GLVkc78WG5v7n+alyhnPOqamlu0;DVp$p8=I1m&}zI%!)nxjTs7 z{j45wcYtcI!d;!jIkZ1XO|TDTVmAP*Cnh&78Zect*~7rPn3Bp^5D78ZpNo^j_sLCCK*-=6ZNa`?1jy``m2 zKoJ&`32HT!X|s=4F%U7+nh`WFBgoQ$-p(`PpCMUJ6e>jouHzt2-YmL#I`PoUUelAK=;4oj~H1d-%p7u)kCvN9VpaOn6FkK@k?WFpyFx1 zrbH=+&`7?>FO?xzSX}avmbMN+_=!fBmiG(nz~!8Ycf@nFi4KDzdI&qXe?F&hIWMx@ z!e(^T$XO|MlTCvURwMs&mLc;R)6fWCXS^ZbiyIqzcM-_B(vE~B`TaT9H2D7O4{m5j z^r9#HHDhlhS@=B!c&-~!Okd8hJxPX*v?;{o4Fye1{NKQ)wD~`nVY6PDot=Rs7+W;% zu50eU<91iRRU+BEf77bpJvPpB919S875&oLi&EhB*ogO>6teSKYb{qgfKXgXxv$Gyl8=1=SJw-y%Xbf~y6hpE zlq>W(R~Flyjbv}^c3v)XBPUvnL8u6At>EkT2Xj~GkVPAiaQfju(0I%2C!lJELx1xq z76;k|<8q+n!b?bnTtt$U>8(}-L>H%}Sh7east9*^B32}v-(4;bM6-2m05l8|>+w22 z<)(Wi&x@8#7MPo&!`U?Q5wE8>pGX;t8nHUr;O<$CMDXnhJBdN9| zU$@O7#|l+3OPy5f>}IqwrfV+hjy_~aA~0Hf*k!m+lAneu^11PdO+YKPdb5Ny)IiByFr?8b=o^g$D317L5%SZty1-(RG7L z{?C0pLP`CeKWX8VtJsUk#E4c%$gk?ncgJw7P+9BGHe>Y8m3WDqPg*hJ@2(_7?iM5gw0HwJU+ssdzh^_D5G9$kgtoVVL3hK z4*Z6sTupR+Hn6X=D@C%u4WB8()Cr}Ua$~xv@7f{89<|WAn2DTFFV?G>9Ymu>y(y_tZXigb zro`q9Q&l9;bt;t?x>@k&(s<7P38wA_`Hn=ft)i{YhU==h2osWD6!+Wlc{f;-91m5) zn9BQk&WBLw&Ta0{4#w&P4B2~}j_4qjX>U%^j#QNQq3ozhcygL#8j4`y+u=2XuH3@B zsyHjowHI+TeEcjAi1@qJh+(qOEjBvSKe?`IOey%Jxj z;#RAT8h;~E4)3O1^O3(~b>$@l2L8>>3IL1}`hi&a-!PPmY#G91di~l3;mzQlN%WEu zUU0GcoiQG8YvrcOdlJzD>sS-;X8ebc!Q9GZn3xPG?Dpc$cDZx}W^A$5L&pAAb+0QS zgn3Suq0J@t!Ckgpd>4HBYZwt+Re4C}SE0Rx+N2ZWk+Q#Y}ebu<1Zv!X@ z^FiA~Q%GUXH3!_C97pwUfk{~O<1{L|$gHd090wHvR*&eqyb!oaM z{As4%MuLZgav*m(WeP4+h99#V<4C%WNPqQW2O|hJ+97!RP(sSRyR9PIb3WmK%Hfkl z0We^Nx%|-2(&4B2L{v;g^%pKqU7H&41%Od;w?J5OGY~;K=eNjI zS-o`vbaqsaFP*vSZR(+njjrJ{MO%i32aNoxb+g zE>=qWCsxFK2TKtuZ4Krp`O6=gv-ygIosK5^TP=a|nE#7V&Z4ZDQp6e_yUQ2adg{Pp z32V7`@!I=deuD52S$eSO4JyQ#JrVOTzeRV6lEMkuC)ECte0t7CU1in1uTWeOpjP5m zwF>!nC@?=#jpRz#5|8oX9nt@yJ;3JB@Fyw83sOeV=$?1q(lNheGG1;z*?3UdU$!clWPJ7x4)uC1q(G zMVuLG5dmy6G8hIM;;4?CBnlTc;e-{^w3YywF^Lcvs{g~v1IbLrW<_NSp}ck|pV z<*ls+IQHEMNR+V#XZr!Fy{MeOyUQ^Ivu`QN7-X<|!SD9D2$jmTgSFVH1=!;78E+1p zm75|>xT)WiM9!AzVGyGZ=<@0GgaNW7y*Sl@lRKEJNGC}(kxkNPG7!o;3Sy#|6a%Ce zr;zn@dEV$zlw$EQI530xaCH^!w&>pUo+fCzMMbs6ADNN8vaIYsO{?{CN5qYxc9oD= zGwg3+y;kd~@N`Bzodg0!Y>ITGnG>VOj15tT0qAYkQZN~4s;#8j#OBS+z_>dR-U_A( zba?MfpMl=XRDBg2f+tYO36D4kA#jn*y+b?mOO;@PaB6?OdowFTF>=lKGlN>1p zW||l%bD$#!;VkH;A9$_4JOEQXEJ3M)zA>s*&v;K$bbU(vZ7>~NgSLdBkMvs1>z3L&-DYPkWi_x?z9TIGyi zzuO9Pv~2mwnqc>Y!h5xU)4}j6d{xcw1TDoM4S8d=VQ<^ckhG)_d-Cs^;J|dc`f>s&WSFptpBkn_ip#BXdl0A@)t}m1!6_(LqK$NLTSXS~; zqf%Pe5sRbC6Kt534bQGfQkAc}5?wnz&_&IZ4UI3o<0#fimCjw0u{_iCy#;`V?JBXb z|KZuoo2SjxDO33A1~L9MMuiC~Yf8WkAYhWetGJgL;_F-A^gyd<`e98%ra~s&S!*nh z{D8agpGM!)q+Q<%Lb-f>B(k=Et!hA4=W?mq8YWlptYv)jU)VRUb<^qUy^@0>RRkJ46MN zW&Tv^KaA6QWOYd#FHTG?EAoi zCV<(ke5I}nZgYc%QNF^(%_d#1Rn4caC7fTHGZOZE(;xxg@Izlk;(FtY^=a9J!f?~o z9tq(ZYCqy>jkP3$;EPb{j_?R?H#F0GR^j92M7|{7(*R7g*^;Rd0anc$e#xkmqIdzF z&oM;D#v+or`yysY!p@a#x8aI>m2jgZj(~RuuShvhSoBVm(w=dC_1y%Bb4Ff*U(% zclOEwq$66^>$5A~YwO}4y)q}8MB~}Vfl97x^!W0eJ$i%nNB9r%}_V-(|kXU`5B zMw#i|68y#-P7q)UvR8w^0o?PQ(SdH!I-$59phWKT&T zfl+_@oY{B#dbgbbs9hY{ngoPj`mk-W<)Flt40-mK-M-E|7;Id%J^%x_pB)-Y=4c!S zI6+Dcp?p^{ex1C+gl#X8vD`jLvY)BtG0dZ=J?q$au!cV(RQFAe@Fi zmf-E$PR~w-l&z4uoN?B6*^w1#Z!NG{nz4!IYRsjH9vOM1mCrI!1;}we-Z%qG>~^|@ zb7JuPHmiY#N_)SO2;E{dUc>3N4`xcuua!^)WKxrxGb5znAB_?}6RX{$_cix&-U0JL zxlT4)4Y(Bv?0GzuVBXsmuopZ1Shb87!|-qRWuUl4@*w&?PF!JYfOICxxAvon4W8yV+~hrF8hI?MnzM<#7zhM>okuMNDG-28 zAn%OB$geXgWXCQDeuXl;WV{8c><7)D4{fg$t53B~YJ+FF{Hxee{n12r3D>rA+9V>rW07i`_(Q%9n>-qahY85rjT!-R%)X@E@ zL@e7#YvBJa^wTJ4rC1@P{W}eUf_>&|_Omj%jPY7t?ZY>#9lZ`qf3xL3<-??xso^ z45p&tyJrUtv4dCD1%ZD1MxaZ6iPLChw)>a?8c>(-ESmUYl88?Y9B`$k&m-)f*$T( z9!2`oN??djQ8DT3=wJPug4se%!n|4q=QBR1Iv!0qoc4kox(uKE+^~QoBZHiRQYYef zAE@t%m?1)rfFGe)3A6xK@Z3@|sxq5gHDv@6Cy=uvdT~c_$Xi*uW1H8wT=>|0iU=4X z<7uVhWK5C%c9DZaaYJ}e4TxrDoFYbPk*TrjTeyKNK~QBkybW|%E9LkyotL{Ukixrl^gImbLnr83Gx+-L!`gU#K9{auMH)G2eV z04l?MH93hz1h_E~F(K@zCbE3iWEt*WrD)zdilbgRu)*5q@}8fYMrjXHiY?M(mdSa) z{uc4J;AQVJeOB8pG*x6e3&pNOZG9{V>Zf{ z5rxZet;rZMC6jX3WWFv%<|}E|W|g2xlO#kKirT`H1jlmboJL;zA7_=r zg^+5kI6S*(0t-fJ0@%4B{C%eolS(f})quq0QhFc9|HL*R?m_v7dxC!|kBI#r?n(L& z_iUIUh^Xg;!Z4U44Bdg3tMySjL?m(+`%Gi%oozGZBpw-`SxY)n>lG9#CrHkVM``ya zo+zFoiqOQ@@4yIbRD*|-uSy9#O28>l%yJO*-!inW4hCfeE2SKii1n@ZKRd-?&5|I$ z6{J4)8ZyNs^lHZDYgApI<}Y4zDB+Dd*sbWlqg9bOBt6Ps-=}U&M@0Wh6Ml#dm8?~4 zudQjg>nV`+&MhI@A3Pl%g|9uzB3n+*oq1k_3Q@^1(EeF^vE*=k#YTP*&)Tn2Fgm9l zKFnis3s{oz2v+@7x2zLhch)onB5b)A8zJkRU-LV@J~T0-Wb7;3IPqP*PLFC1HC<9~a6(~e`kmE^mGl*UrGjNXAzsf|68W+h{D_qgu63bQX zF))qSlQ}F64O2qC{LGWw9H`(KEkJxDCJqhPMTDHBxvRD8|MC8-`UE9(1b!}uC^#Gz zW-sYw`F%~Ia;Ey08pcUmAC_BPy^-q>kWFHS6*Zl^pULt$6One%A6?DxALfAUhVkJq zOT==TosS6`-`h?xkiNtNk+&lZ37tX^CN3t^Fg2W1T&vZxR;sE+8W^7oGp?=LG%T^< zGGpYhdqx*L-QQcs<1Kkwzz{0mYkR18ynj0`U}dbg`eEEalx+^ zuy3QJUw1x(7ul%roYduI;7_bQ+d>IJ%RAZcO5qgKXT=AfnI8w`b4|DCSXHAu^CXn;krL^&5Rxs4g6f? zRqU_w@nvySki4%BX)P^^aC`<<`XsQ;aSWIiwp#eXGZ5a$?P}UwDQR z+aW~sa^~*iRG{_|UG88VZl?GshHv$I^iQxewSZSSGEXTnA^p@zBX{a@)eg zd?%o^;&hVC+ zU#_4vpE6NL+CL|Y_8ck+b6ZP(p03xZzicsW0T-nm?|ha3B{|x`cx)CUXCBrUF^u`3 zY?I(^)r-#PtNm5`y)pPY%L`8*v8mnF@7=5B#y&&75F&cZPGH~u-U3}CnoYInP#cPX z`3LK?TUAmf81@9fJ+hSrq82s~LBxW8?93VhFdpvYy8iJnf45-8$X=ML^WI;g>VV3Z zqgr?hk(G(wr}N29;3sy}sOi`coSj0`^_`noMX|zl6NeYb&Qz|GwJ!;&o&?rTksE{v zzXmVL7`@s;9-)HZu8E0twxh>?>md z_4%a_nhzI#g>}aUP!U3P3aU3_nV`wPa(nG|B(wg>8S2Keatg!n1_V8W4Z2`y)NROt zG)_U8g=~zl5#>BeSNOp~Vi5kN>fNLqLFp=)E`#^9CgN}V4RH)Y5ir^D(uE@pRJ_rf zzQ7O-ERj)ND2%4@@H~kY-M+)fl!VQ`BUe&t>5?RMbzB<~Jx@I5iY=Qv_MG;Di^no^ zTqma0bXWn5hB25f8z3pY9u_BmK@5X7tM+gzQL|eRu4q3u9+X`}rp2{ll;VKTmFi>ANtX1}ExL!CP(fUJ0%vjN%AeCwgmE)`6C zzPiyrYj6riy@L7Ay4#svHH3xaT;G8g0EJ@Cp3N$NRBPP6?W+g@yI$cQy)INbVWIj0C)J zQ@f;^s8S{5r7>+8J)C$25bvW}sa9_)Vjp8(5m{5|!JsGGa6!#D^c0jHveLDB(8S+; zUUmU&51cXNda18Vhnch}k$A${R{jKQnWqXIlu4tNwwy}(<+yi;z)Aq?R~r}lCdsYd z7ax3btO^T6^*|wSOrCa{>7sOao<`W9_TSdFvJs%)OL{AtB_4+W_GOjHCRU%gD9WQXyB+Jhjph z1`!Dj?y)f~9E(X=hnsYqO5Re?IyF*n1dkHIAzd9m z2E^}z-sYeHSNe>XB4FgdP=dk%;z6>I&0aL2r!@+pDW8F~Dg_p0U=3`x7y z;^_3`LO+E?*7X#>fJ|n|4rvJ6hUMtR#l^(mj`XbbEYF;$v1bg-#cU6o0{{XgHj}P2 zoS)wvYyN`uP2^v_>zj_)>wRqOa#ch9ynKJIAa--L#eHjd5lhwl*Kx%W;fV*`bp?76 zD-~4MJ4;~^@4(Z5r?&fDKnL?gdevkgoqX>pC*xilPtF)p7W32I-)oMs5@8X_F5u;h z_$=kvdZ(s8V!Tc}gv+DowmK_# z^A!<&3x`R#D3K}r@%}L#QUn^_@hILVL(c%+HFqS`hGRup1{~%~qluFd!=BdwB{)<4 z)i_SY;+gs+o}Yv$^FzoRzP{6g&6q*H>)SRBP+ChK^Rd7-4t}#A@|4RZU=bzm+Z*t$ z9YOgCUd6)b#l{LKTIl6+fYALt?NHP99)ag>eE|vCB4BcCktkAvw8n!$WGP;8w}MC^ z$!$_*4iQ?!(cy|6$~ycFR}(I2Z*``dnMr1$WCWPlj!7Ldp`WXvj_RedR@`Cj)>dF> zlBZte#{;vcMC$|$d)@-Q&rO+Es`vaN3!Q%Vb~6xNFn}b+o=W8FT7kB!_NToQ{rSKR zlKG~oDo&V%v^{NxBl7c?CCI#_On#_I+`!?s)A9Hinzc>d7*$W&9a_<#Iv+RhPuamb z2cLIY$}P^iERe4fNy9^&1s>O7E5`5^6O3Xq zaFe}b>UZdq?B}W{moZd=r*TT`rFx$4d;;1PV4<1Yl@jeg94MJU_1b1zHfDmqjtU%MExQ~Vp9g_1SNbo)jTg=os&W8P^@Hy- zIW@jPj+(c-i$(a#6kos&M1=DLNFEMM$63wAGq=2|#j2F+tqAhh;_>1tw4UYq<+hzU z^I$C5kf{n&+i{v#(<4aj&L*|Q7_36wXJf3RC&WM`@2ivG= zyCz(%O8H!j1mo3*H&ZFP^KdmCTtw)E(m&Y$5?T?>ouPl9@>F+ZMcU`fz;3X?$isw0t`WzUmB=pKVPyGex9%lA zd70FQ5~1M_lBwOwzuP}B=yK>r=lVH~ga~UAXl{xWoa%)6 zv%^p@^kpPt*U@e@tdnIwEvdzCmTaTSC=yH_$|~3iG}#EwQy*BKt)Zb0A=xK+!*Zem z@yB*I38<_PHHYNnMmvsd(*^+Z;k3uq1LDe$8I-~JYhae*EsvK_xxo*n#-A1QVqrW3 z=&xkpbQ_4rPK=`496Y4nya;}j^gN=vx$!QL|GR~U9)c#lS9jN6bFHZGkWD^b*s)S2E)Lv&q86FdT`AVQ3sYvyo~tP^tcMuI@T39)c_liNLd|wRK1I z-GMY}D|l9y;t4M{6`Mcm@9X$UM$XyCXm;pqX_e;3o^YWC-V}IpRoL#z%D3sPXiB)e zoqv#nR!buRdN$7g9ok8Bj>k;u z7^VPISoX(I6b6Bu8>lV1E85o|D;D+kaDkT)C}K#7GO`_HQ;A;lejuD6=AI);SJx&r zE@12ljvc+i2>cH0DTczo{k*#`Md`Q^qpmD6+dug^COQqjr(Zb=o)8q?aL5Qxb(d+TW4NkkYpSm*JGvoe~?DdLcworD`!oQS5{oFXO~wz!*C= zh?^`M6t_tb2TIaaOVUY0_pJwoLe9xZhyYZPoC^QdL_8o(?L0(Xr?2)z38Q@EPePI~ zZ=tA(Y;96dPnAe{bMEDn@Xi_$g)2m!=Gre6!jTc{bm#-YuT^#_G`qeCGLr}wVwMj^ zQlZ!<4RQ8SJ~79_aMJv(QsudLh6?q>g}&+}6&>IrKV8&NbUz_<8dCD=Y0_KKZ)9$6 z&APe4QwEl2u_RG2EcUVlWxL@($uA;4OtIU~-(1VTmOM789YtxO-TKQXP%xCM+v#3`v2X(pS=GP**M~$w!qNO1s(+%OpWH=RBZDxV>%&;$Q=Ua5JYR#|mA0}dCJN^tR6A(K2&HBL;fRPOr{K0UE6aZN)#Q z@4J6Rwn2Sd*yT6kzPpcTcRzf%kn(EP2UOc1nB=Bpr#5H`Srfw9v2G##zXVKY=9k0- zs-`auAXA>Rsj&k!=_*HlFK z&FhX%W^p2m)ZyGl%ceCRu-e^zG-IBRtea3=36H>m22&b)c4Kvj`1%5yl!+}L5q&!E z5c=koka)inaxJ&3q_;!uMZAH{NR+gl@z^b~QEF_Z4iWZcBH68l*e9yrVL`EW%KW;5 zfTo!3f82g>#`93(OnEU09RZJ1%nHI~SPnDbe*AoZ_LEXCse)Es;wxUFs-|?$d z5(AD@E>Fl$eP^V*Mmw|zvjbUu#;?qCM9Gi2#^++O!x)!=mZqLxiyRUliIgPOe9#7r zQ3J%3i{CnUp^OIiK#y&g975;OLO9(O|J(P$ zorVavEq@p4F8tlXrSOju;nFdB`e#FT2w-UBT|NrBsqSzsXG5#)tYJMYS3JS z_P2nJchf-RM9G2(N`5?cN|-^+&)}R*gK(}!Wj^(T+11Sv_nXm%%Z5{3=k43Lz3`Q@ z_*~8!j9#;Q=(INvDqEjF0JSUZn+N>h$;+F1ZuQqK_*xr#wC=c~(U?9nkZiqoRuPv) zLiX;3r$iER@l;Ne$qX{78n!ycvrY6w^Ug4!SC}azEE(7oShnwZoipxnS8_+K#v@{* z4#^w)sux5_F5?ZBw~W_v(j%AVM8F?C4-NEsLJ7skQGF8MofiN?1~NWZXl#^Z^mDcE z&w^EQQmC8jLlf1+t^%Ak!Q)Tntp(0#Q*)_L`DEr2NAOXrzRhKaL<`{^CP(^c&2YnZ zWwN7!ueJ9mP*RNyL8===$tk~#T*L+44)eOOI^xqLlgN_xb%b`42?X1Cszl0Ez-{g! zBg3rTuiOX)D4R+%+96rTla)7JeQ zJ1{9=(_vhc!vSbWze!G5WLBxk!C1pKLL!;(MX|WQ=wl>?QzOEd75oY!_>oA($O>_c z4^pz-MNL{`>0ICQ2rS-AGiTwnE^T|Elnjtm8ui z5q}uX2B-Kqm@!rS|6Kq>t4(D+UN(=XcKs~Rnh`QyVHj|{Ez{rbH|RcYwtr<8=WjGR zQ}vUw*znqB*LVCzpdThcibgk@|FyYF_n6%lbOUX1Az5vi%CW`A_T7h(N}7#aR;`Jx~A zK}wMd`yYp*qF0>kR5rLh1u~-P$&p)F`a_t6LLmjsb~^P5m0rGusoOHR(->JI^1t|4|Ci-(?7V*YodTrB`FwWK zG(IwlODgH>QTrFQ$xI>3M?{mXw01TFlsXV1;T((%!2X7slcfX5Cs`#MlSV{T+Ce5f zx_R5QEaY`Kt2Z5ie}s)}7{i~z>2JHaZc=@c>Q4LdHoIhLm{NWnFG_+akrcf&w5a%m zp@iS4(YtB>H?>57Q|tM~-2)?gH93Y})tI!R zq=tVBn(0M{LjjjEZ$y5WN>IW?u?Vxx#U``_`fV>yNJWLEMTy86T+v2uP`-bsZxxZa z)0LR0dZs7}jk|=D`9(+-D$gQEKmcoQk&0}nHhNz5iTE4H7NXmHFg=1;;YYb#YiO!p z@snsjw(;$+4;~ukj$>I3dxRkRS16*jq)769??ldW#ZmkP^57?P1?>R!aYiHgcq0gz zWkHxXeH(X4x?_6y!_EhXW4?0%8@~}frjnQqBo}+en4f*%{${;WF!mlUgwVEiz`4hq zwd&cRjNQA_1^s3;>43d4-Z(60`7|(;=)pS#(Xv?gO<~f)WbrPL19c}?T4wt;8K29Y z?_majw^t~O~yxN6Snw(=wI}qONl?hV!>-&h3Mk$s%$W>#+V zW2pn&U^GQdZuky-b8ED=M|Pm?%aLFI=|jmc2KH+8B5TfQ-!sH@;vRZ;xV*f7-Pc0u z$q-k*&B)%Qv&uycp=pLVbeng`{b?}zc~pVV*kGn3CP-KD;UEBR&vE5x!F)gRdjZB` zx%zXSfPwI2zS=U z--Lc(^?ka_XdS&E)agsI|sq1@Ymxk_K{{ z8OfGg$>j8JeoQiE4NW53DVe)0Ez)JR6jQ1g1_RgFL8elStTM6_rV^}1)`6saB9|CUBRp(BbH6UtLf&{zurQE+zhg@XQVPXut$f(0dxQV8BaZu-2 zyb(Ory>AmXWkL~)`GW{mNoh|6q+~6b{zFg+vWS^sKmL($CMvO5JFMwMA%)7#LEk4q#hE^gH9_XD2}icSp^n zxeH{+vyjApFJKhstWCT)cgFtIzI-r;V3#RG`S{)}kM|ynGROVMkx2K2-|BQv=A)^# zz9fWE&vJwun}v7yMu{B3!u>OLLbS=PBqEqs>-56|?~YL|PKgXgTtx}Pa4iSuWuw#) zQ-h@I_IrMu$+jp+_Wl4;rmN?w8u}qE4K89O=A^VNxZmN+=k<{+HikRty1afcw^D`}Oux5CQT%^{91Pm zTkpt@Io1U8W_PB`Xh+QEC5UsYoLhsn8{_5*uu`p3y%BKs=F!_0CaIntQ%rbL+%%OSkRNGR8ut?0OIBp>J_m>zFVtt(cVQ^Xw^|AVO^u!SkQZsljf{u9zn3v{unJt+C4EfSp+0^)gl zRQMBTYXvvfCt=*XpOu(wGM>TgqmW`8Ba(OnBmPq8eg(Pp z3p$y$Ko?DSo~YdbVgJaQ(r+Q#7^Sz7f5(HPQtpkh^rMbMn7RmK*k3Tp-L4k35Aaiu zk z=Q4`VN zT1G)XqVsIZXj6XUQ^q%0Ro3Ut&K-dxjg*}UC2~yWW18_ae04p~x8Cpg^wNP3+b*A& z)Z)Aq8_Mtp?_3r~l=oxYoX1`UY%r)TSlyfd#nm!0-eT5ur=?VGLj%DX=T%!p`UwU` z0JKEN=7Kj&#DC?=TZsX{SDqLxl@P$6;}>ee<1HeAM#iMvTjLjY;=6vo_>#d3GZ@Tz z^wsma6-(0CXK`y!PU%dQ0S8mmaYNOmT~FNVC0-Y_HD_RQ_>t}9YF$oGI*R!I;2-6< zxJ{_Dc<1TE?o3_PQ`XlF8nTw{ji?tt9el3rsR(hVY6~{zS#WwhLCvn z0sGoihGaovmA<}hAszacZOfp9azjzhg!u2&sDXIpUupitx3?xk7Fyh%wXge2dt8nr zDf=RTM7&yK$8?7@M5D48{>ZEjz{4Y%yO8N%S^(?WxmruoL65eIG}KHQ!7-yt6=pl~ zL4StnLr;(0v&AaPGAjAPa$dq1yMI3ofq*+9D>sQC1lG-8-}^B$$pb58J;sPO-J({t zYPe1(78>pN?-VSc68*2PLnTv4;lZs=H$xWcxde&uERy@a(R@Pje}jX(F0~9kV&|kG zV$04#7V;7pRnXE*j?TfJrgx}oohuVZN&y=-z3AXfY#vBFh}61Bqv*q;4W%OPzkwSqmUXY3DwlD0Pv_h#Kr%@Fe}x; z-8?l3k05&$lAG#4`Co_0KS6`+-vN`W`9>v`|Jl?m{)qy3((}82Sb$7!N*v)I#l4VK zSrm~V7JoNyuCx8rin0DJ=fB&9Ly1afZXRz@C=k;;s8o}Ki|$j~a)CTS(g9&K9K=-1 z<(Zx6vq7TlFyi)wUJkJd>#ES*JZMZvZ1?f`VwabHo?oYQHy>DoGuk?M;J)xp`&^Sa zuHeW&|Ko;d^^O%d^gWDUgb-Y2I*R|mAGEYyLUak{w-x8{i{R3N(PjBCU;O?&HpzXT zpc#YV;8mzix58XjL6MQh3V5t(2_QQ`!V%W68g{K1y)7qL>K2S_G+&s;@2m~?V@6Yi z(n;L?PVzXxFMd+0aghA~h&spM$fK?6PbRiCv2EM7?POvn6DO0TW81cEn=`R(+kSiQ zy-&SW{i#26^{GDn-{(QeG?CIAnyeF2!m`{PmFz%GseR-eFoHc{jDEl(5Z zQHXmcV$Nvct|V^&){MSYQi>sn?s8R9BG<2~03mT`yceAHEYd~N z-)Za3YXbJFQ@N%8-{Qp(NwWG&DmajYy!{FSQr#Fm8K4XaXwTTw_BkT8 zIcW1GL>uE^|6xEME)ngSuv%;YjBT3BVTZX7WX}4w zM%01X#Rke<&UwHLf3hu{OnpPGrwps_7;u1$d0BO{ceXK|bLB8vPwhdK?cLhDTo4gL z;9J1d(vh}SPj`9mtn|FKiCdUH?xpfQZyyDB(;eYzBu$Yt@9C{<>VDvjoOkJDF_@JM zxnYrfJMkw%!J7$afMTT_no@?llNScF>s21V-5LcLPRa9e6(6?#uv(Jg+$!ud_n*Y( zOiQHlx;1~hZ0p;7){`**=f)0kJtdCh8zzpR{VrXj@9GUBjpnbrc+AAco%MM+ z7}jem9%>E`jZ4~*OFjA3Tj>N)LsAiSzZSr~D{9KhQDP$yle;h?cibEVw1x23^k3*! zz#1W+?=So>61t)eCH^1)^4T_+R9=nyeAv87RQ8K@3a;|&rqJe34kMcE-Nfv(xSH)` z%r0JEFBvBp!JSvVOjat9;992N((T&&9p_?u|8|W?+0&g>oBiBP-LcqPx~(o^ApK9M zm!Hb_CXl>kPIb>$3ffP$Ox~c>IF0Fn)Q3LNMrKV!>%YLlE_1LTPXM+GvE(~L|R@jcX_Sx+b~n|7Y;_B4o!#b6kSCCvI}8x|A@ z5ew`ygJihj4|G;>G|j5ca#uqj8Pg!B(O(|V7jRH#>Bf%yhJm@<9~;Z71iOh#A)+V7 z3Ky_`5Aj%1ntpYRTgJC-fBY?n5oA`TPVNz0} z0dgG`+=61DV&Y>#UKP{Z3Z$id*2_H+R5S{8REGZZnT!A!??UZA7ZBB$@7{rSK0(&ypE27 zxy|#lQtNWM=k*`cQh#|&jj-$c_nz2zo$(YIse@hEA|3iGc1mlhYdDFBaOQCVnw0n? z8axE8F$Y#9da|+Bs1Oq0w`=6qvx+{|qs$c0H|gJ~3qhwe6&&NBAnpb=JOOk^vyDJg zse)W>b4!TMF;pUFo0a^+X@Zot5c*%^YkS4$1;NKH=&n+Vv(cJlTqM48LGk-+QyLFDsVrT&LjQLwLg z3Fe|(M(o!XvIVAb7SOzSl@nY#&)E}Lg^qj$NeSAoJAzKZc;~K20k6;LdPy+g|AlV%;{EHuxS_?}fJeayBahxMRkCnq)r^PKjSyqo*>itXVhzupglJs} z;szs_2ILlWCXOKf?so&179|arR0;~iHLxTOdR1^X*id8=@2e)yJFPIi%9>u=J4Jzv zvLkD%X1cV#@5~S_3!b9DrgUA(zRsD#cEvJm?^0-rcc!@@&?ImyuQp1b)171o-h* z5%fLJbY30Ni4l1p=h1l2W>)+WPjmtS;%>{0tXUcd*%9R1mYB&h z%zKNaZ(ra`exKMq_NGz8q{*`$gHf>3uJ(Te(Izz?Gn@9@;MViM<%ANGVLdlOq9Amr zDu{xvkGHU>jA0>tlE@dgAe}b~)bsN9hI8$Z{AtUGL{?&WW@hw{mjZwVsdWCpS;lK9 zwWZgY{n~#M(nLGCX=g`5xE$NbpE4DVPKb z@_PjE@3wo9an2AX#vxXcNeM|i>-BTXC}p?1qY{nZ0Ojq!@Fr5o303$IB6xY3j(7fI zaZSV8EsRy%Drp7N^ceJBjYQ0Uur1O=!}elFhv@|dWUQgQw5qe=Vh2Swb= zvJ!rogcaFwic@Ld_ikEFieNRpb4Rbe?)^CP%4Bj`2Sx_wt#)9kXtsI-h4Th{lwtZ$&dzhvMHabkcAg^z}3AElgV|Y%D zMGn_*93knKdty+DfyOAh)@aD#XN;G86K3<4V+CHZ`4rGOC9k(}16)`Y0CDr9@#oL} z7uTu+1TL;@-sWn0bX1i6X%SM(SjkZn)R@WQV}hd7h<&*Y?aP))Qqlu8hLhE}vFU-n zNL)sT)*siIdE`WXNhmKfj;S4N*gK~;S^~^I*22Ipjn2!1h3r;laK`&vi;$gOXYFwt zQe=@Ew~A0)PE^uawXsij+7By5r0`X+DlJ+)sq83eS<_@Rv|+i^D1}$fyDQ`17qg3# z`$w8oJRyBTc)$IgjPH5BhwUKSwNR5x4L3QKY9$)(^X>}N-lCUZDuFNo13gz?4qnw_ zvYm&Vy|Iki9ftd?)0YP94W_!H6Z6oaZK(7JepfsKd7A^zb0X&K0+!e`-2~lHIs?inA9DP*?0NhUw?Ou`3fb-kG)7n zZl%Frpwt~gD$nDvcQYgdPNxdk1YmRI48AiJPXD^kx$cNpl7Qrq^|K;ADbrd;-b&Ji z3j3!{p2j6p#6b#AG9Z=f%M*ijBwR^_Qg^~X{#f+p#oIL{Enf{(e5>1?6NszS2URDt zi1}MXHx%JBY3~qL2)+C8jN;X>bm9x18E=2J79$B4qEa!TB%( z94q99q;VyZGsV$@Lt;*j2&EGoLlij^Lh!y*20vYZF+hH_q1`dNT#P*3oPmE}3#kC( zWHJk$eJ>%_=M#FMTymIS;Tt9|37*-4DdVIw!#Hb&5Kt6(>-Xjdnd$E~hCsjJEH@g{@!U;}Af^ zN{FU|P!EgX&*RZbSAcGh?SW)0M4QkX*SU>GPLaQBMQVfPU_`7rViG+eiKqUM={PUm{O@Rv`$l43$_D0`b*hRwPj2$z&LGQ$qG zX~ZZrm}hY-sU_4Y)=qGpJKc6VpG3y!KFBqJm{o5stY}QS*PY?@}g7khE+c|qi!fZ z)tR|J6Xn5+pdq~Ifl@RGQRGPswgJ$M4p-69ewJ2kac6?>9r%~0QJ9ckebRQ2Wtzg9 z-H{Yj!7Z zw0oGQ!-=5|kp3LfOS0DkdaHx?6H1C1MpY7iYOT{#enTyJ&TFbd(^^t?xEJJhI>uAH zo3(%vb~NQWyicL1rPCf~sHqLYeamHccc^4oZF8oS8}BdE3k#*0R->#PBtfIXzeF6! z-(nL4hfK*9O64pj>#QUl?T(91cvFcjFHoBUrY$G&&_E0LU_l#eJ?D}JYKw(_j9=`H%W70YLRLia z4K7J=q837ei(X)+mdU9}LD2v{pyS!kgPx7>oa)CJ61YedI8 zZ`Z?M43y52WuHFEZnoH`;(Yx6O zpkKO1hxf2hkDMM-dG&); zn*^O&72B`@2w*m;-s~Gm#K2JW0Ep=mbO2f=ZqQl4Ec4TIRbzzwHwSz<^| z(_VA51SLPBo29Nv_US1PMHvH>7>f93p9Ae?Y7w3empR9M&N6;i!04H=5^_G`@ZNqD z3?1e0QXx1n*DyH-)F5Psuq|#jO+9Xg%d64u2u=ahdU+Z_Oic=$*&dy^r1F)zXc?O1 z5Mih=I$g};HXIGZpKPnBw98BBOBiDfLe?&3Q#9V0j5UPE3zotHLE??S_V&8JH0|Ts zFt%0cQ2YTjuQ2rG0c{bVZs#Z&SIYv<>RZnq)aopT_IEtr{E$&RTh zoJX2UZ_Sb3?}{Ae=vm)9?#EWXLX(L*iq!e zd)9x`CldN8PgQ-WYQ@K5MZfe$YMuEZ9!oL&#s}q5g>bu{;codrCu*U;QSSHsXby<9 zz5E^WZsYL)$G)j?h`#&WrlaY_za_{eM?uVEV@!xf!7#FAJ;3zUd(9}*3Vht9&dOXei3#uhrX)0 zC80n!Ko}$@N7=G&X*)N}!hsFNGs6qB{or`yB=4O7@4u-n35pF677^)}tCKO6LS7YctyDGb)SBTJxbjuLggMRT( z`FcA=akV#&kLx&9{Ccm!R|}T8C7mqCC=Z{1%q9USBC2bpR~E4oC`J{p)wFmeGUJ|g zC;OxxO+qn@FcXP>olf^qFbQ-aXSELV0@IQcVYd4l*ZocRTzZwG?vCumzg9!9xy+K$ zhuLaM-h*{ez%*V!9;?3)VRfK{pwJr)ArxS)8h0i^9w}7Kk_hID%L)U4GUM4bJO1MY zA^Mob9ZP!5f$n81kIlCovkQTV@&F;Glbl98XSY-K7Roge3l_owSy#*hXdlwgn8%xn zxf1dYNfgBV3Qq#Eq>7m1o{mscCv za5l@g;NeF*$CX^jg&gB3AVD}0E$A^w%Y|VR6Fn)(gP-_01jc4cZD*QeD)xwU;VoCG z?{XI!LYR-y8q{My-)Sbj+o%m?-8(+{i;V2!s$52`U_ArVxFWfX9=TO#KSs66vPA&^98NFcTMZjVv5s*8({a z&WD&Rh+iush3K&;xwffEsMpQ%o~Hr|+1HyE>J$G_m9Ct7dLC>flntix;cn^Hbu`E8x$PY-lrV)Z7@ zN<`rqF9R+1W?!se7OwN6Sx!pZEGC;;y1%%84lqN2he8aIxU_&RNk=y21NBi(WKV2Y zL?{2KtW$)JMUOVsDCn=z+C#Z(Pq>`&(4C49h0V z=9|=cdeEY{ZZjr?xi|I}KD`>b>o93y#S`AXp=x5P_bocff(3+lHUXZZ;7G4Ax^RHe zy5leo7M7fkBkE~mCa%p%)pXa(A$eHy;TZO$RPF~GB+H|XqilI91c}~)u%>P>Pd@

Ee6?L|z-5h(8=^Q)ntMTTkyupVHO%4<;@ZUf#mr@?2_W1t1`>3`rsMZ#nz`CK;8G{+?&y>B!|z$F)L*2 ziw2hOO4ihXeDQAiUq^@274(`(xB!L=a8{t)5;$~fnpx(o)cXYrEpEpbDPy@+!L#Yf zfyCcvLe%E|gI{2knFDPot8^KSCpkL{_L!ty!_XX!LTY>Cxk9=a^gX>< z$vtY*0&mvy%KQ}@d4eO)N|?Shag{4@lFOIxQ-rKHUflw{M8W=E$F_{G?c49$#s{@8 z(h#(TeIN^#2G_(MLJ2cbjX5#bn)=uaz|&s402gQ`+i*V zs_&XKc1Eh8FrB4v}(<~DJcalA_cXbz1+bg2rCItQuP%#Vcs-hw~D$NAZzoi^^asHnvc^U%eXop z9l*~Ks+zQb`gqKG6Z4|X{mOWx9yE{%7pl^=nVF3q7Q)tApsNy%pGRQm!U|t{e?Yfv z1#%K!Wx&);Q$6ifx6;ro-}P*v^HGGfg{~dT(74*Q)6(JMF`J}RJdO43=kQxuQ?wpe zc!em{e`%>xAJ#5NW(~g51~tv(#RirS`;_3UheQeSGIIRy2&ZG=VW%Gym0`G^gFBj zC^l%0Q!nvEry!j9Da+!C8#DuOpV&j)TN?U;`j?8y{Rc({kWymjw^uxOcV@0{Nr(7} zp#D?BbN$H_F@cSOqwQCJKMMkRH`7M(2w#)wsV&w<9pE=nb;Lj0`T&Wu3Unzqj@ah@ zh2Wuf)%(`NNCqReZlGE3j#z(xnCJ$P2lMC~HPte79Q6QmX6J4?=7qIisKmnVDxvMc zb;rlA?UntDzdW#?94v;x2Qu$x;<1>SM%_cg0cT20iqiZ(a`@QCAm&}|Tk>U=1;Vlq zH%1o=O7ubthleV#8Ka`UeH!Cj`zf5anO)f5j5_ScjzjXt{l<*rXROA0d(8D+naxM* z?jsh9A3eTJnYPMaP14cs{F3w7ahgz?XHRI&7M2ahrLlfzy_>iHPzQXMdr&-PjmG8i z&_v zYs?uyj_Vf$Zc7$vX@xJ_9`4Jm=)o7Q{g+oxS5+|lnKyx}u#jJ1sZ->SPX{*}*Zlx| z7Xb*yx(3=>169t1agxLnH+2YMxpzatz)gC zTc*)K3QsH>;bO@PXslbB@w^JPCuQLCzPs-0TnrA7?mHz|s&r+`s8g*v3tDFQ8*|N; zWN*mO0f}W$@XZ#^yP?Ym-WHbSPohk~hAR+UIuC*6es^{$`CiKb6p9U*lX>#uz%|BPg^`_sy2^ZEpyhpeQ<1{C|sJdf-1E5!Zaa zBE_a&zHAJy8DY+!lI z53~Dg%k`%}=!+(nX-e1`5y43G&x0Ugs!cXeT^fK%?1U4NBi&6)4%Ec~PO5l`>g?A9 zEAR^Nlq11nb&^L*O?04nn$$@*EwwKp7P^1Pt*IBr;@!X$;5^f5H)&9>SIW^C#g8t3 zE1nnc3-i)K==k;oxq}8V{vCn`%|7w>ZK*Ll$R_r*ECxr!v9EkK`vxp`u|LiC&a*S1 zdSWBsnlSP9Lia5vTEH)H=8y}5J^M5L)ugO`AbjEnvMi0>)>ijw2JC;XKXreL^r{DK zKc-c7E?oB6J(5{=OGE2$-DR9ox*#|Xry!4TJifSV9rPNq@UH3(!JashxBp_z_91xgyb}Jxy+&0B2cRHQTxVT1U%ojHyHtq zDq%`F{2ECRRF4D&-A2wZ%nO?^YDZ!Y2nd5JH7=qn>4DE5Faq2CSO8;((S+Jm&; zlXd}CT?)Q(*yotSuO;OMrl1%aQm4c%CM?nN}L-qdAFX3uSS9y>=@ofj4F$mKyb4e z+fM#3PIikU?LyLzWl~)%kwsivo@yebl8K>V4FS`U8QMc~H`-!;@+!TA(&H5-m z)}c^_%c|mtqYxs1_;<;X$n!b}XhpQafGeLF?kt(>&A@(KAX8NqtgUT2%zVwD#P(9d z5^}b|(3JT@H40CzNQhl3HzSyjZn+90o7=PTFw*@tL)m{V8k?LR7>m_gQ5Rz6=31NV zXm9vTV4Kjhliguin0DJP+W5>9W1hr+9DO={m@3`uc~_gi(fINP__-^F2fA%RYx1CqX%pu1Ui=f}})1$qt+Z??M1h!?Ara==}ub76^DvzL{X7RoYN!@hTjzzG)A zC~kf`SwAw(`lJU`IMJhVojkv%;4J?<)RGAIc@<-W2f8Y9mDc>p zGtw3C-?c@yHPXw*A`Yno72>+2fcBiC(TV;RoNALSsrE6#tn}`9;nBc?_PvC@OE=Z) zN-FFH`#+cfp}#s$=j|VbeZ>jOvkW!MgA@^WG`QNU!uDc_sI*zH9;+pZ7qj^IU+Xwt0dIb8W`< z?_fB6{A%~zI41bC!r0{h_K6!&N@1ajqI4qywF4FFO>v)XKoE*f5GQYchq?Q04p``Q zu@?LZl8lceG4KoXX>pMgug$TB$XiCARoU9vGhjHr5TfF8TYtL5OkJ(=JPOmZ#v&cj z*e-xae*dgH1kyl6&7`D|XJ1vM!BH!o6WQ44J%$<(jpf! zS7|ujJm&C9sK9*h)&%oyJOlZ_jIJ`Ctqtd(#v`tmFZO^;`wUtQrX-rB8qlPONYc?V z-O6=h>Xgu=3Ml+CM+X)adJY@}9ZWuOdvg{aEQ2Z8ZPlxNsZdNN=cPD|qrdJy0bU1c)sHCg}*c>w{(x2lB@Pw+vJpQe? zUO0P?Ok6bE65_SpIT*s+WD8D9iT)t{L52H`6x664ySGZRUV`4M#^4Zd%SO5c1TIfE z#G2s?G}x4dXJLYcUsB_VA$xU=zQBR$H5yJKl@Igd>{!|N404ZrH#g5{z<HqjG%2g;M|GTki%yjDD&KMbEzLikcsibSMW<*Fyj=Ci|QE z{7{dMOdUJ@f+4GeEH$yT67rrf`A*?Vq-2CKx)p9WPh!8j@*3q}o61Qsm*$*e#TVU7 zGqL0m@0MHb2qs$T2sxca$PO9s&8?Hm31y2WOl|LiZ7`; zlQ6%5EBM7LDPEYW&iN!Ip-c8?g-%w&BqmRcCLn9!HM9g*q_B7guJ73Xnq-qqiuz)0 zCL^DF5Br8eLs9R0xfh%(KR=SOl3+>gOcEH6<&%_>NX%9JEv-$hG z0i-r(IeVlFi4<)8^#H>N(-pUhRqb%;7hiCXu(f*Ybkr7FG*`WDN_tw@^E(Qf+Sur9 zCKiHe)KrhFj0@?+L1O)oAzGF z7t#pk9rtqiMRZHb8jUP^C7$7?_ujctfDJr@GJM)~AN9FB zq(P}3C^#r6yc~lD0a&@$aR8N{QW1ZU>2sn-V$ACuHj!G(k~q1ZAsUCRO#&EKYYtxo zBo^gJ5GA$)=fp-?H|N-WG&mF{J&3Vl9Ln5ZjxxSrkit_KY+JXw(IQ^F<{ZY1kpuz1 zw-Ge?S3uU1_4^?7rbcLII>3bM3X9UPHE$%~*pH@pIC+eu9PIsrrd-4#{Q9r03W-du zff~i;rO=CBRVJ*?#@m)NP5ZweAA`uwwKEmd_ zLWW&0TmW!rO9sooKZK-BdMl{2Q(R74bCSrNDdJc1Bkv>AQ;P-^j?SjV>^xamjbN8?c7p&$VJb z$_hnnNUKm@g!3)bE@5sCQDxyD{~LzJ3#x$UaTbByobeATKe-GeJ0}OaK9yWAW+3L7!RvI6 zNAzqr5Xk4NKH)_>3w8i`V-+Mirw0iMDTJ0=R+U@W;3~f`tRV76L#Ke=dl&ooPafza z$*1(d6p7b`RzGdv-J4Wqq>cg8aEgvk#*|bZ6O5l9bt(!bfQTe_G^{roU0{dyg6IsQ zC={)1>lIDGZOOpiN}4dSlo{OISKI$0uI=>}82B)LvDAb3enF>4Q22<-in|B-Y^jXI ze?|$M{R;oV&nr!F#N)X##m%(TtJqels1q?g|s(azQ8IcDIQB`E$kg6b_ zM8eErg$Zr8MH#`)Sb!-3ynp7=0Zw!j3cThqg33zrCr(Jnf&-r>r6_Ma)gh4lKCZ+} z_{sr!SZKm-1rm`@>H`K7(#Ef8G?n%JI1`UE{NL_;MUNBWxvj!QsKLBf(Hk|$T<^p| zut5X)`ncdYiDEc)JwS9Dlnq5TbC>rfk0M^}$$+)_-0gc_K;ZlJhEBnbg&r&k6S=8Q zii(*slfF(f!IE83#rV+Ec{|W&ShqUIm1Vmk^gNm$harV3R zLZNXTKi!>zT|M^+QXZmDMk8pxQIcqwWrlVVnwiJd9Y#2i^3ikkDHVU8({dtU$3Xd> zC(8%ANLIMz=wy%pk_QtJzVm5@3muabayk_=49%1oc~5$Aa#&wW}c$HB=w>4|ukdG_~H=M??*Oz^|ObR^GPhY3;oGA2P>ovWF z$UY~+|7!;U)25u`fQ6DRB^_;?=)e5FiGSmc3H`$23n4l%wzh^VNXl6j8CTVQUF;1{@(Hz zGcf7!r$&*mKTwna4ef9%OsmrhOR!Na$DWa_`Tk`4A;%h4wHjKsSQg!g8_Cp+62SVV&Jbr zH6Y!4MUo@PB5;7m_LW^~X~%bWUiBOb5@swyp{==s9>MY;g z9C0R_mEPNdhy3zE=Fa6=b>~Kb6TAWhd5luI^d5(V+*E~32!t&-15s@r#?$c9brb=? zQG!>|v^mO&W@N;d{am7C=*&%~33=p5;bMxzUqM3#7edYcvW8;fWv}pJId&J@CxpSu z%E9^TxcfXIhVQY0pZY-dnkMPXAH8S0v0tP(o^JUoF*+%V_h)n9Rb#PaceEKPSV0r! z^h8bbwJz!oxX%KUp4|evaLJq*C{SvSHeCE0?n5>k*TR(x1kA^r`*Pl&x>wpmDD>>f z|Lzso0Au{Ta$Q~bTz?`(+Sg1rjI5i)M3NYwsdH2iMnW+t{u>-PC^wWE3NjeV?!e9)I76?#lJparko1!}lIsxi zb>A{RvC%PsS-)s$VbWz1Pk)`y7TK+Z$VY4vJoae;f9CBU2S#%6uuzetCe&~~?P-13 ziyx{|+sdi1Ud)B$$t=)J`@t|W;OKEmNI$)&)K#M?N&ve_OkGA5M-v;ME7^X3OtP*;O^+iiNB2pQws|pQI9@PR}fSUE!Zrwt7dUs>4h5N zg7+ym@8^w^xNySQoIY;m=Xy1$V)qPeb3D@jjpHC$swXDR<^{xO$?FsQXY z!5urEo4G(*9S*Aj#djh3T^o8xKw#Su{){3W;n#g^9ACiB2o-xMbMD&^+&l!D#drLI zRAyS`(M@T~)D+I*TFhnG?ydM=`scy1?1pYJfq(n}c^WRYX9}dOeuLamn zJl)ds6TbWxOo>FQi1}|ks8>in_z$L+J0_V+x;=S3?_+{8p4}bpljEqdYH33x-d0L>n*vb@9D}2Mr-QDH3!)wbOpLp7@2y40JxZ zp;2ojMFdL3n79VO5s8RzUu4tmRN^%!QA%|MFt{0rCW_}3nb~{4nG%3m)U@rV#}(mPFJf889o&MQti8BnZY+AA2G>4oTOEi@ZDz-ghxp zP&bsE&*oP4sj8k#Ld^}k6E-ACe3eqvXkcqb5)A2)g>dgI@krsJg_|3oFv$k?$(vkzbABoE42`R@Cawhl32fwb94t1Cf{z z>goZM?5&WUnf&H zI59(uQ!HC=&xu+|u_!(bw8@LW-W<&BdU*R+w1dSr|GJ}m&Vp}7E;Tq>MWeLId6{q% zp%%K1%?-f~1$5dTJb48@kgv_%ff?05RaCw%1NP%@as|HlmkEO`_JE+q5d{0#Mu6yl z?Gc93-{pXhpjg@G+m~g}E=`4;B~>ofqfr%~X$!a}uHe0ycFwyjAxd_9Onj{{dv*hV zG6eqv1fN=)1)O(VE;H=vnoq2r-~+8x1?|TMyRg`5W8E0p1J?{TvvyRdp)qG5H{aVP zg1+upU$;l2_BlyWjsHYm46?f~pKivpHs=4-7jm8UOl@eH`hj2OSG?c$D6bm7Y?jJ3 zG**%i>_F)axrNWzj(T!d`^(*5{#iPn4lOX2tly;nVMB&R~8cqC!_Vb(y)%Pvf< z_=Tp`?l-B{i!xaR5Bk_VrUVk$+W`t zbr@~Bh=_SaeHkN+Zeg=xCBEjBSjOhO+}WuINO&F?Vyd32>&fiCnlF=m`d! z%L@TDK4*v)$CRQ0#H#5i2@x$IQbpe-xhKe%34B{tuijxg20v>J(D>KiyU%}(oTMlc z%0Z-6qKb&=({w*1;W#Rb(Z@)+OjUL~!p%2wzBP5y0~mbo+$^BbiS3xfc^X>`hDnDC z3$uZE_#RnBrw$YOp7`^WoDb?L+X0SlcfOb=G$pf(Pt5ipCu~%i?=mcR3`lpkb?8QR zh&ZbOtq&7DL)od2j?Mm5VuxVNq6Es!Z-=UJsD}+vzXtQ_v(LFxNd|u{zCSHV$oqsY z0dM6GK)`@I+)KY=h|iw&&KUuMtp9XoC{;;I{%I;C_)wiz+u&@}DKaY{R!oW#BZojK|d%-z$qdd9m#j%SadMmIKAf<27%}tj%z`fE2yVzotnWZg+Bs2 z3^peW-eHOo82-qPPhUXPpp#0B59V(&k)dAd#7qhSOyx;vgbD+ti=p;7kWav3j=ZaPF zT=~ic!9)eYJc(of5GOXRsI_4Ay#1}Y7Dv5;a|G<-JJWA^t-(uf-q}BYIO)rFw%}?3 z>b2y?J@!(z2CfWNHU`Lcy=VqMi4$3xPUP0VHok^rn%-bF-wuIU!Q6}}4fd~Ko3rkS z-ES#Pkh(wpNRh|OLS%iv40?vGA0)!<%yOcY0rd}Qnp^j)IgV5I1S5+gv)PYVD}6N| zlxco=cHUb>sj(St)34iHq{4WzqE{UxgvjNX#Pb0YNDRmNfLj6~fV5)zO$>fuyvmfY z4)+9srHO1~bEu@k(2RX|DDdoGO=BX4w+M)UpQ2 zZrEoU6%#REFMsyj?}u#DeA`wSiXU3#mh&g$3wh@j7;t`An`!juo~M*l7-TN}@kPI> zStTop=^L?Y3#cjJd!!)|E}{}9)1pwxrX+b$HX8Kt<*jwc>Hf$lLHfl+QK15WVf2r9 z3O4rA!&2h|{iLEO7@CXd*mnUfkpWm8>~ft)=G3Vw{i4s2Qh%uF2Gh8(YaRs>KTc5c zjQK(pyV=7PBkCmp_4w}H*C;`J9eqh*iYCm&s(`OwWh-geiU{JT(J$-bdhW+7OAZSI z>mJWP)(!k#E>B8ni=QQko4-Eq2sCo@lGGdvO7T@f=O|Pv>#H_?9#tGhbK>jOmo;pX z^1JO|WeQk=3G9@R8`o)~q(a9eQ~Zp_Ga0NcCIZw5)Z@z;;i!D_M52H01fW&-@RDfq zz@7^I+oGa|k|?oIY@{J_Q5Yb|Nd5)Hu@A(mcK(QB2a&w$$p79Ffhw$hI4Nc@}$;}Om}7PcDiwiGblj7CFx?lknByriS$2hK4y9-B`i}J~BdxwxyeP{$2?H6b36CuINg3Y!7~EuqWXI zA0(&9a!ZiaqOcfzcdWkc`S^L&VH><9-b1a&`7$>(EHdt%_k*-i9Rs1k9i|uO$0kZz z^x}~xpYlm7GyMZC!o>4CFUKm#NdH!F4&2?;Z^Qedwlg>ri`zpfTfF6$9%<~){u$N& zF>bg2U1uM0>;-Y+1CQDrHGcb>K5tKTotMy9QbhP%O}{IL?%(-!Ed7r@iZ?Rhm3G~+ zpEmCIi0<1n8g(@D4c@MyP-d_kHGOkW>ro|Jl|mZV&2pO>srQ^0HoCXfXAbJF_~~Ca zc-|cX#EELltv_JDo*{YfUey8Zh>s4ys0(6MjW-o|>)PkO9+RC3>*>+P$?OQoK4@ph zMV;zCu{#Gs;fG1_oPUdfd0zF~3fk)4?0UCAkvvffRg@Zs_gF~S&hceNO`{an zB1Th*7fyys%7t2>LcG9<+w2)PnYEMukgxRqAVVXg=TQo)`QB)q%O2JXbm|-KOA@Bk3>X?|2U$7olVkBJC1vx0KiewbwtST@{9gnvRe+)-8y*_()kJcW;Yw@~>srhFzexqjNnGt_muruphP z$fBYGP+d~u(9@F2m$%+MwLxsz8M?1jCiLWogQvRQa73+)VvvCCvuxZ4_27r}LJ$r+ z=fmPh@_O_T38Mw)!)LO!cNXzq?E8b8=Fe5dCpuvOLiggSwm^7q?N^gaNL2A>JDH&A zwYkR7+)>RGt_uwix$cVIx(JxmMVhF>`I4h_xe5nOi5Y2J^k`$9GDX+#2Frx)?V845 z35%$yb5iC+t2e(Ei+%{Hvl5at&e1v`_uT{^h|hwjFoxC0r>i~D?N+8#zm;g-WiqF+ zHZW{OWc|o^C%uz0A&M-wDT5>Df$^F#?a>eArbXkJM}*fHe|h9WU2( z&@D2{0lQEG5AB^OV$HJ>>+diW%#L&HW;2UrEanJCf*|# zIxzH_UhSAtAX+|eI*vi95V1sK)`Q~NH&P5f7ipZRbUz`r*y>i=0L~G zDELm@wLP6KT;B-l(M3R>eP{l;?7z}A`DNr09;C9h;oXXc z>VStgKT#=0rbnu0zP(m;8PaI0eioLJp*)nSrUu)$Q1xl2M9?aB$G&upV)S+Bw67bouZJ<=nr)%GYPur0v{H&0zppqk zWd4+a&Um5!bX21ET*o&&1Uh^_x~fE(Os_#JQL7`6A{e$(ZZmUv_2oNs###GAE|N2Z z*YG>FP-?HfI2J?J7Lo+Wx?~^}<^V^(fhKS6?H`mle`4F69s*2!_sd=Wx+IKjqHuy4 zM(40EtVlRzdTmK$K12{z62A5grWY`wBHs63h>@ndJE?8?y{VU+A#$7U>{uo9t5r_G zB&wb|om`^e`U1hO-wS!ft5Qx)a1Bi@SQpDKWGx2zhi@YPu*;j`2dtTp0qx^H#9toW zk31wZLwMfOV!t8bgK{VH^mAMvxN@7_DdRbq)v^~kPxR=xXkZ@8dD}r z_eaP#4bkp+%B!}2-*V8Iui{v zLq*GQ0meaU0q1JlDXW2I-~e?42#$ZIrJ1ztrme5yy$N#$Mj^iHSmUP_}` z#wST(U@SYhOF#}>!pUpkpnD3Y=0XLcE*`4{ncdNpK4CcJMC!5+GAr*Vscz+D?I*#( zV!Fg&!(C9C&d)x`$cRXGGo7~yyOs=}&w`4myEp<%21mGLY`3pa>(ddty!AeZ5YZ?` z<#HJZpF-Q*ZtMdLT^De!W3RA(mVqFGrkQ*6U@z%UKj%G9=pOt6?(aeG?{Rr|l~rV- z-eI{(wfq_FF)Au6&_f~DWl9g4M_a)30Z%w23qFKDM3o=bPt~9*ZtK_jBhTP&uh&H1 zFq=wK^=)x9HToJdAXbr)IU}^}}f6j)qMMq~-?2X~o-iSkZ;IgGBh3US8=j*r>nR4nu3Y?d8^2oi? zggskGn74R2DYQ_i#RS&qTWj}y_x#ssDLkfXar)CzJppUVl&g}+`jMw9kiIR^6D@$7 z*YK9So#0kgH*GvyX^Pisi#-`r8Ex!IJ2aePC9EY75kHzrNG^ z3)zIW1&3n3*B<_Sw??5xxN#aIzRlkBS|ah$&s?)t-x_htV&UU`&Uf*3@YdbfOpLM0 z`3_CfogrMb_Lb2Z=52c7v_6-sdGCAo3cS7TR|J|OILR!0Hswui7bep}p}L};m=Rho zene=V|1N zT9f_i81;{k?+({QS?=5b>EhG23l6+}cI2=h5D2{ld(Y=GgqbelN~f{U1y5V9w$;&p z?#TL{aQW25_p6cwx`GC}5b;4W6r?>TR|K}cZlwLKKhP{{W3I2X|4IUpu3F2QO zakXD=HkDwpZF`@qx!O`+)P*}w_7gza-eZ!meRmyp=H?M$gGj62Sh>+YP*qiu?;a1CffWWZnPaeX=0$*4|Jm9f1~dO&(rwq-MWjz z0L$jpF*&k#@A+K~i1w07eEtyp1IB`_NXpO_m)TF;#s~!~;Tta{d1=%rCyp09YW@g( zO#eGfSQbrg`Fisml2GlDS*cE2ek6ZoE|?yEt{r5FjF)${ z5b;CYf>Ip0Ph}oBOq~rFF?y{KGrvbATmJJpNjfVS8N`xMVDfIZfk??pn~Gpd2~Nni zMm1NSJ*v0wJ+Yv`>vh|{>vDe7!dgC6$pJ7RhvmA1(apG?^T}d3cuQk_<#Jv{B)eMl zW*oI)-#I)$Z|@ft|L?iU@pSL@0e0_|p~c^q10bt4KEZylRxR%Q5x->}rxLT=8sqe! zRHc)CPDrH9LQJ*lK{SQES^>r=T%DlPpN8l~P;AWKOgb4@z?Zhc-VZT7Op z6j`E||L@;N$XwI1Shk{fylngpML2~C9V3Dt(I+XfEQ_Pl=a?UWxhokK@T-F7eP6cb zT@QMf$qi*f^4vP*Of0P0&C;;Ef`xbROT_Gh3;6i*>cxRRkR`P&Q>scb{Do z06)tB!LBM}x1OuG+@z>9^t2K5-5xuNNj1D`YAI>ov(_~ZnWC#CrPkOBorRFc0=fk> zJ6#VaBIMFkCWefb;E@6dRK5u;K%|P4z{~p;&f|h zW$S9KiKL~l3m8=x{ql0W5A}2h_L$>k4>8&Mn;BHMX$jb48PwEPx(=5(yJqifK+N)c zjc3lkJJyJTsOm_MLZELwviEuMIq3J2PJ8pH#d3bk+C^3mC9e+QFXEdgfs9jztgd&u zzU&@Bw_KeZY^^}{x*jGX%BkG7*BjiLe^!`+5hjNq5F^#Rhv;|%Mkdh;Dw&`CkklJ3 zZX;&LfC0YG%Mk}tJ-a^!srCh?_B*+>GVB_TG{B#XY?6( zz3M-hjGt;S1bh12Q_Q*JUo9n7t7O6UHZQtxaT%ifs|jH-MaKn;;y^};U`1Jz35zX? z?OFg0zA=Dw!ItdndUawRzoW&RQUbeT<1hB`c-8JYyN-iIModt5%6ZqXmodq6(PaY& z7>1YeFEx_fj#hn};LL|pLvP@V1TCbI>1u&JH57{MRa{g~d^Z60bL|}TMXcz;vydqs zuEM>0eb@Wx50MrsNl&CcB$b$LzqVDpH6Dv$G&5Nh?~d<9Rjgmxx)6#aEfbp{HLXiv zHgS&SEudz_sqX}2^`^haZh?OJF$l;-@+KyaaWa?sau+-I#Xj|g+5AgixG5Q1Np8hV z*^1aO*~J8yd!+B#C;8jzRL-0UtOg+sqSQc@F76dp#`p@fY^Ta%zkP&GueIHsqQ%zJY8RJY^5(qxvrIj-`)?6VEf!1Hz~xE9M9n**5mDF z(uSA2@La^<-qM!5&bQ|{#{u@Vs6LiGN#?Z2_*ikn`H1A)A}h9w|3EY*Dk~L~8j2XR75hcPMm z`Q&e5ZbQlda3Nb;FKmZk4lK#fV-64{tc0yb`|&gFHOP2L>{b}%e)M>v@#|PZA&Vtb zjv-!@as#q?p(YO4*viq!qUcMho~yAa?oa`3Qg{uQ?PlwU{Fbokg-EIqi@5J z>WN)o+%(18xrW{qEhz<^ICvY_%6S_2Vl6e1E^6_?M9hWPq3Vsp2-10oFbjPlQjbP) z5^XpbO__YzU@EB1`>N{M)%A?iS7>+$M-Vzzj&-q;ZS~cwbZx-Y0sx(Gemzn*&E%(P z0RQ#CQbuoT+is54Kz~bpBSzYYjtVwLxn;MC;X+STcot`q)fOG?n?c}i%wvAm4yK^M zvIIuP&Hee!pD8{B02fJL9a_}0=3bwvxBb{jY&n$w+?i}{@B(w#?`Cm?cW@J;A>tG> z?oTd@t<(|zUHwI@ccoDja~(LlI$9?Ya0J4cbo?Rqu}IuOh$>1CLH6h1dkarQ^yxU{ zntXrqsyB)-?8~x;(bvsM(7)HAWFvXB4^Z;xvfrE&0&*5Y$1T{RI)A;~3Kz$d30z+z%2wy?Jv+fjz)+- z9{w^c;m{gGFXiACf0I)KRYD+fXE-pj(y>bmK-ccjoXxv^pSa2(;e7T9`E^p7bPbCq z1&dw4bUeEm<3`wV2(s#Wrv2sUpwqIiryKiSmA$aU0%k5rFtsm}6QfeEt!$9O={Ll( z%iv;>{r6HQ5txqGe61|etf`!6(^k9NDytQHe0^-j#WSPE7`D1S{dlnNzx$*1%Kl`61zC`0}#L@zdMe#jXhZ@lLpaa1&!6 zOwlHzG=8~M<7*^9VOgR>)BTIes}D8I(;gldGgy&RzF9*k6Ll%dKyGfB1Hw515{de18z4b6d&(= zYg$LNx&pN$tO3$1yjJyxC`9dFb}!YJrdmRhAh<&?mtNn*i*44@6_ zAqf)C84`wvV<&T~_V=UYCdEo%VarYKwV(4EN~%&uOEGlpekyLC5z4?;dV4^PGR6)f zQ;&3Q-3O(MG^0ox(8?6#9;p^Pp02{ zGR1F8o+KFl%zsHo_;L#n-{2M61ouwqs={;@Z{dDr;8lG!@_s@t$i)#JxRw0EYUM^= z!OFHCe;-C0BN>Pn#SZU+r?Kp;^=!y^gNr4xgVF^&j@w^Wk5(=e$m4 z_P5&Fv}GiMW$3a#u)L-+5Ds8Q1pquP*dRoPm;%r5HzAk@cfS!3e_f!q`H;Alep#u3 zJ=--oMn#`L%v1brI!21aJ@2~twZovKPSo{K;Rn9E-Oo`o6A?o2l*+ zJ2N?NmU?iu4U>f}qU}M}@b~vNDs|EYSPG5D7|>CbthW2Kv)7N3 zBjQ1FtaYf4|B)OYkzkUe%Gq}Lho9UGrCE$GJp%?seLK41|71X1{;#ORKBRs3(-bt; z!z5$Hpe^|?J>v79>Lrk17RpHuE~sjP?`X-%_{oIDfXd7Cm|;D93QXoO>9^vIu=+qN zY)(%oYcLkxqj`xe8*Pn;{12j}KOzc5QzuF&9GvvrtT3{GZ&pW9G0i~=sC?K4+vko} zJAg7GrZW!12n9gqiftCgwx-LQ<1)kmpK`Lk+7<{6gU_O$vcFBmgH4N)AD9Ay@A%$o zCazSSDtFw(_vLXd53RrSvF&}aHT+xs9Q3)HXviX!V?heI>ze#x^97I;pIE8Hj3*R6 zk@_Bh{M2+Ujyr17xx!KdXF-0BE z@W9Lw(ZKCxwbie1odxg@UdCuw2$`;_5s`~{!6GHQ={5m8I&qfD43-W( zPV6P6@cbQ5938!crXZ*F(MUZA>0_ewMONE67uFMz*|@}9C(0cBjB#RoB!T+BTAFx* z3asjk7JK!Jtx(jJPr=3~ln{29@idSxpc>>P<9GF|T4v`NXPnz~Pti+)!PRb1JK2-e7v~_pW+`!#jMUtR(;WCCnY_BGM`sQFB;v=Q)Jy2S6pKRG9rBT>RVKFRV z^+iWT1y&yTOn#0ixeiuB4g2e38zI;5_Ki*f1own)FDn`-{oaURQ2!57Aw88fcpG3M zBw&AX;>T559oHfu+6w{_erJeL)W^<=Ms+FE_$SMH6N>%2k7~qtH#&_>_r8vCxbL?^ zp687o`Mp1-Ldg$|((2O-VnO8+L(g+PkGD)mCNVOdnTOAmE56xy&gI=eEuXw>Hj23Mrz#j)bj!h}fiLWyQ~G+tu;%R4Uhevd&3ZlHRY1 z<_VOj<%<{L&mp_NWwmoKn0NiI(>50dP6?Eq-P^0Q^*Uy*Zg{JpL~BG^_=?jSQBU#d zLAf z2Bp@fof9#5wp~|OF6Yz1c0=zvww7HTrma05OLE_hVg6c`oBagWLyQqn!^r}2_Qs)aJ%aCPl93tDIbU%H_r|j_>_tDEk1M3P7=N5(7I@PjsM`#^#B#6(XrT zNs#krg})$0fDZp$(SQu-LdA%x`U;z*cqdv{7#3N?9%ZlojVvVWS8Ya&WWJjPwz{^i zh`#rpUpEobT`JT6t;oRQSq%SCFE#dRQQ4gnB8?YSfU+oppOc#<?|n5>(#w} z62<#_pyxw@Z>~V|bv84tZ)w6)uh!+$LSx@D0KCx@$Y?Fz8-k*DwyO`4e`rwcrm!#O z+QZ{($DN>V0ILhUe7HPY2t;l0P#76UcaSNJjbr4&&-AcM$FYtZ3>1+fU`h1!gEGyj5BvFGTumIC`x)Y^$ShOp)~1K}<(RYC2>Jr$R?Z&3eEj zm~Mt=<+X1GO4HyJ?A?f(0rTCQY8HUD83Y|un*bmEE@~igOpBKRkj*g*Ng6Nfb9tYu zh!+j)3BxG&H}5!kYEI`wWjz$ue3#gfHO&x6Xr|n|rGQrE*uK8ic%q)cpH)Bs60I1A z0?r(=9K!+}l(-je6SXwQzjlddmC5JR+wJVq!%j$=H-B*TN)8kz5!|)Z;Ej~#wDjcH zU&NrV4*PyP`a#J3m)Le63J6UvRRjMJ+m8ogtHPT&u$H!huIN!LW|7TZax@pumBBD4 zP-WmR473}-xvaR3l(S*j&vmSJ&_7+OD}7H*wf`UgMTh%Qv7R2*IVoQhTN1Sde=*l+ zhmv05H!1`Xwb)2;KQ=+YE|=~GzZM36aI?6K88eUIfSANjr_#l5J}hjXyYv^~{@~nW z*u536_bO=fB+y8j0np8>$UNlRIf9!A=BjA~%+xY~Ee_xSAv!W6 zV{piF3|oA7iAow;LPAat6q-&(S7yN$ZTac<+c>TE1u|P-2iT#U=h40YGI(hN2e5Y`vpx zaKXuVg}-GHm%u0BQ*Fa1jU~657RBJE!?7%ZhUQ5qM zToo|l<0Fp2JZk#LO4gJQiI$9{&7Zb86Ul6CN)1`h7lOQ}5%PGrS<6vlqx{##+1151 zmjB$+FA(5p#kpZlE%I#6Y6r8sv12Sd&h%@Br9Uypx{V!n4!-d;5)z_V-N4vjHC-9@fh%~K!U(8mh*O`v= z<$x*E@Fqa9*b!wY5)e$NT?Cxu*Hj64`DUwSF*-6nwI3VyR2*8Um9=+*t$>%vdJK8U ziM;yg9xCPfv7kIyeE5)kdy8%N=bj!n7js7W{Q3u4$c&AZZ7kw zkSexYtVS}_8-7n+hsJV%n@J$T;Y-bu!H|9Xs>mmbvQJk)DVC*gEnIDd>C`PnLJylwDv|`I8&)+qns95HViWU0I2te z_tmzxj9xw4w`p)XRxaA7OLVK)t9GhUiA(vjsHP7;@~nu2W!8iB`a;OxAPjt7;IP~D zyxSzuH|M=!6OgckwTA2KUuSlY%ASd)xV%>3!wzMR`QO$2N$j6PA+8f66T>RuGa42P zM~_uvH($K@w|V3tJg9-t4iXBsz#kkx9d!eWHC{*qa>qcu zvy~21YC~soeU#CrMyY&c2JvREWx|ogZR!^XnbIKe?d(@`aPf^AgN( zqQ+94PsNMV&J+)nj;0l#jTyif%Wi^K z7l=blK_I8QYN@gVSc;}tm?JYiHYj9jIG)tWX?3xZdgeSsRz>)`YkRnws@Qq5XX8?I zK~GfnbJLF~-4UXQ_`XDY&-%vZO=zDiki^G46}S2I@hl>*J>6Pnw{s?^l@P1X&3M9)9@#yk-hF0i}=FyuD=dD7B@*1qeZEf7Vo#SW-Sj3j29a_6Swh= z%<{(kVDe`Avkvy@u&hX6_*wSkACKLE;s+xZWX{YGWyfkRS`r7NO`#tgvX!Uu*rOx0 z@&>L?GGNCt(6pEZ`>!m)^k2dvV8Bk8-jbQDIliqvdK#Or$`QCr6#1ADs*tc`%s<-qYn4OCp&KH55*)Vs)~rx_nZ4hG*UD zK+hi37em{WtO`M1L&-PWH<2T%wx^$VC0ZPbs&NCESz}wJnr$yU}=Kyq#u{`)cCo0gS+NqTyVZP6ME zrX2HZMRW8hDm@zdPx<;2iZFRN)1TwBs+@|MnE$KWq%{`3M(u-T`B(9lZwTe@;LAS@6#frVuLJ}WNm5^&&B>0Q()fn-Wtse?m^P6#MA|U;pNb|*#jRA`wA}~a_H$AD zSqmw9lc7w*fvQ_l{UL%HVOY1vrF8#^m8 z9_Y0!8nHFcMDU7=@~UT%J>IERX)u?fl#Gm9`5`NSnXF%>fx4cHJ}tjl#&2xc)Qu?ScNVV@g9;?*>9(NY*H_%%;0zAi4f*U_nwYRGkNQLMkh$u5e*7R3SNDu`{kbj;OgOi>)_zbk ze-45)c;l9jPJMIJ8NG<^$E!c(=`e<(izokO9Q3C#A^08Yc;C_7RJ91iEX1GmT(*Q} zNcclWAIeqmSmC)6#{mOatftmzsI|yj{PCjCe$UU3{@Uw0Qn&wEUc-4y=Q{>SP|6IW zrIqNRcV7qd9jl3Ppmkc-+&^!6WkoUy$rudP0)2+<#u+cig!BD8Gf4P^;1#;Au}xJC z5I;VL(xyyKy31ZV7b!##GvbuMfp0HVN2H=7(K)NXDgp?J8XPnxLPd~c zRrb3@@T^3NDZO!;wKk5H1qREQNg;H5zk-cWoY;R>aXEt+|u+o8jUE-?jE^~Z9`SFB}V&H z^aU;Til|e5Z$}QA7=_m0YmqU2H=ywPXl9GWWoI<-4{C_Hz*aGF5t=vkkax7d!TcGI zl(w3tRV4bksPZj+wEmk^C!54_CG0vXnhK2?? z7zhQewugAN_g)@T`i zy{53i+*o9y4gLCQuT4>syTj@_N4h{|BzAsn@Y%^l7^6+V+Ffuii7%`5mcuR{t)g(1 zH6otvJM%^Q1&-FIZ8tM!*CVCVk07C=AV#T?gdUmpr!_E8E?WgQA7?URyQEnl!WF7S zgt_C!DmB_!KrUJ`Vaoez(a1x(uFGl<|D=JgdlWQ z`Zw005Tgf;SB0c0fyFQ!M2#8z@{ zATp1%76vn#?vjFbMhGd;8we*WPN8HmQvSNyhEMspILc8Sy^Suhp4VtGLM5B+?W|_% z{_)CW3X1TXOjoVC_$lrIgO&~&xBgN#%E_Y2cITy$m z7Z;HY1!Hd|qkz%!-it)Ef9-CTw;@A5ad^$x~b#R zp5VQmI_Kf}H^^Yy;b;OiZ{w`5Me8uNf{stTS);1EF~WHxl`OvmZvT;Y;ad4ZDac#j zs&31hxr(M)q<_%74R;NMFh4x$e<=+t zQ??3`LHpz1ic|eC$6`nY@qY#9g}TlLBRxf0B_V}r9mp)#W7`S99AuKPo;>t3Ls;jrL+Qo%J5*A?mo1WEO03+*liE`xh-EV=p zA2lB>_=FeG#>R~277R2%S%K|A^6#Kg=}cI?)<_w_d$ti1HR3PZ_lLOXPTw;<>z~Ml zBU7|lZhGoD)e@F#x`s(#^o5k2mOfEWjF7E9d)~W!ekyWPI);=TYll^(CCF7oJ~m8V zPQ(!9Vu24s+ByMQrcUwIb~g1{>UENdNhmpAp(@GU8b$BsMxF?Xw5JI%{z|5#4$>Xp zL5uBknN9XE3vhXtBAajoFSxd*MgxU=6)-hbm(2~3jGm4NqdHO5Bnp}zvaUDvyJgdX z2o;wvnO;pK%U*krwtt$Oe4mf0>~S>d%LMhCwF?K3HA6xMhBKyUrs=S{vg^>6m#rw>!QX^^z;dvgDC$c;T7O z=*fm|x{X`Zu?#QlTiQMqRJ+C%DDK_6&X2UsD?~t+j@1VK@(hS#DBdN^&EpVu?8M_U=1wUG{3aqpQrfQ*ewh<*%F)08#pk9*TRNLebt2>IdqNd8Ed_>*I~+OgmK4( z{HTswEy&}<&-=~2_x7f{h}Zu41r$~?MsY1=c8n}VfI1yt4$z*|1a0fkVwfqbGQCz0 zv12XSXy)^U<1^`%1CgYTOca6O)NPyqsM^;3UVG;&z452^U4)vcD?pZ2z zQ=zNK;rx7)a`@gS$M({jnSt9DkOtgITO?bB_|wjh*xveU2BB2CsfE)*W+>tEz!~{!S9;sKEGO3L}>2 zv5Q4H+mJHB+hMNqGjc5YH5^w>gp*#NVS>kR5AGVl$FXvlAzA^y$CrEiqTblIKBH~1 zs|>pHXr{D(qu&n zNs$1V4m?5yRIw*ueDsfE>4XC0V*oxTE4uXy6G+RYTtbvs zHKP*~XVytr{BT};^flG^t~kX?K2hZodZFN~(rEZN`){J1ii0y6U}#VAA(+t7+4rPf zsyMfL*uU8nUd{Gi{8|jqFI@Z1dqeu**)`EpE%~goH#r|OqT${8klO`@VY@fCNcnOg zMy6JP>+qNL%#KfA)IK;C#lP@#gtleQMHcbYRpoNY!~nYk2uGEJ zByo5_MJ+Rxl<-k6dP_q=FnQro9hU0N?K#4?udkdQrUYPp_}Vc0Dw@%!Oz)45MD_Ox z15b_dvA&;evK^^tLAq{;OweNZ&+Ymbq;({+8-(z2^H8huxt}e+2m>#2+Cb49eA?`B z4qmsAuCDu-&opQ0tN*Vz@?Q+BV8S^8rM!QS_47H&1XHz>aCEVyJ`CJ;d_Cw>$+VH+ zB9m?3k__NTm{Kmw`|eDcVgz++h)oHlUtvRLpPmq&8rxCYPRLhk^6F@2Hx3zx6ynI`MrQ!HSK+bTbyQgn<} z3By_-*Z=&)n-=F&DM=FsZR66thZ}C@XQQIox4O^Y6X-WK%JsQ*xinieQ%N5Jz7mO=gnZ4wo@RzE~2-Kps| zvey>Og+;VAs&vEl^>iTiseXrQNhNe#`j2eL}FGb;j#k_u_lj^a3-r1ujpOwXQI6mMVJoDr!ll7Z- zOjcMARn+U1O#PAH>1ij5VV=cHM@j$y{sltie$mRpe~tt=9M9LhoWC z-B9;-3(_hz zX>B7@%*<09rLpmUE$8E(eOZ1PS*7V3;pr4AO_}X5KdiMw|63WM>y0}?5^vCjk`P22 z=j1l!Ra%IuH2)29Zomk_LSYLTtgQhaZ!a4A6W+gFkpFpP{w6Z*A(eFz298}^T+cA%<1jB z_c!7#-Ui$!a9V9Nbd}`t7*GGw83bVPA#~a#S6PM=O+;70rZ9BCu()X2*_X)<)~QP&gPA8g@uf7Q4ULyE2JE$dOy=3qNazDi)dxm?E= z{N)`(^jDEetj|2<$!B+M{Yt+(LRk3KG_U?JlN3e7LxDKA1FZhQA}a(~58*hMqEJ}j zZ9-+N+KeCkPYUxdG(Eg%4^wypIGoT0TPI_t&qz}OFt>u0FN7MOihBEeaVlE4i*_Sp zWomSDMA%ef>gmT(us`{&7Ri8oqUShmad0dVW>A&~X`g$LFG7IQcu*3(;fnsmuohzFMMK zrc^;!n*wVJS~4Vp$|#4sG-+#78nEAZW9KwI{VI=$XL66y{zb=oh zCzHT1Mv3O*Ox4p`D=muYxIsR{^eok8C|+7@L8-B*`X{D>{<_=ze$@mYrnBPaxLK8! zgpjq2>#!K(IMh}RPTR&(qWZRbn_>1D*ZX%^2lG8rz{0$5hc#FYMoYj095PvW;|=A> z`Lxd8-*2rh(*o4u#!>v7Xrm=m4MgUsuv!{w@sNk1NJma&1!I zmssF1u+=kAiO-d?gez*f>RXYhd~0PNH&B7QSQH|@Yz673&qPSNpMR#j-dFSJ=3q$zedadhAAxT2ECoFXhu_Eo)7LzI_Ql5M0~Zlp*vjM z9kR@UCSo@&eR^BYu#2C7lt`FsBj^H^yg!E5I?UmURYZnNf{??n)T)3~mcJ+@QsFnC zlx~*tos}v^LZD?u$nm1(y`0yrSdE(gxV#ieLW?o$ zC~up!^gew)6+c$vM{H_KCc1Kj0OcFXjJ_sj{m)j{LdB#Dn-(DU?9Ztj6yteg!S=z= zQVb3{Sliwc_C}FzFdY>%XZHG*vN*zLozlS{Zx0k!IP1@QZ@QMz2rOQl@GR7}qzYo< z(%__~Coq)H>%>?nrn>0q^>7sr6q=tipLalrbw3>i_to+5R&2;dLwYPG^FHokz#eA; zjT+)Eo?V3SE5#{5zu?Do5Kfw9)Rewe99M`9!(TQlndmIrSN;YoP*!I;Zq*Jg&`9jt zMz0alYUl{y0wr!YHu;e}IBog|y?)EaXA^bOPaO4`4)ofSEW4+l^>DV>eX;Di5Oq9W zWgIPfd(pG$~9 zNXlJMU_L1}0zk^mYX=F|v9K?ZAj)HhRq#TaBUp~oKR=mw)1ez#_M5$$`)i@6>yZS( zpR1L{os?PT=v80gfsz5n+d{O`?!T?W_!%herQoO=MZQO zEpYZq$R<6cQT?;t)L|FzvMa-q&+KQ79@q>&GyUk$d#rEhJKg3vpjmPd3R?kEg|E6z|;3hb9-QHw_|9Rd}cqL`5v&6r{ zozJbd$F$lu+eWT0gm3lCSKa}9;QSiu-uDJ2z2*zs_bYz>7q4&idF5g%_Frda{SHc@ z$PgYbZCx;<_N?L&2tdO?)|$pkRcah9_Ola(J-y|0s?<~cPx2L{M3Ic2nF0$r{uHjK z5LF()l&G}zl(h$!T3Tk@xI`3BQ^Q3Z6Z zmLY&7I6FOgbg8ifIV$C+>L3TyFqRJ&6%Jgynqn|{DM+FbR%M(MYGAvVppfKkrO()# z@THREDkUt9VE)R!Bvs;%$w~rPIE~AZh<(-p6onlGY~qCk*aO>J{1cUXXk{)8S8$jr z=dS7`&U6Z-tr!cBWNUFBepG(2t~a;Kvxv=hWFIZKW$nshs2AhUQttY5$d+}vjUqIC&3m^C<*@Cy z`qPQ|ys-%pH7@OUNl3*^LYBcH-KqqNj8f+xI}QH|vw`qVr-U5TYbWen2uo>yzlQu^ zO{;$UBiD%E6-Vs-F=L9@=gVGq@}${{zuxoDi=H5f3_D_fo5g;Av3jgSFV~gTBlaiaqd=;Q}o zhb_~|XfSV#Ce2x1zC>4JA4N`Awidu%P!9&XEGco;4)&Ia3@bM$@bO=)SZl6Luaq`mM+=t?F|`Q zwgQ(w_|$kA!E=h-2Lg&bw9Y+n`DataY!YwTrVG%S8Xs;MAH4DVG>4_RheevU(g@G$ z&~#%GX{M9o&Vs}!=Tl@dd=C_8V!^T-mR}4zPq)0AlAGcbiXX?{B5`~g4z(&%>f{VO+SDd);2*D1Q?j%esN z!!%5M!(-&^rdodQSh$vQ@3f3Fx*MxRk?zQp8(n@}je56u(J3qKZ7i>}e186H*;^kirS@(Pws~$>{I5Z9 z0xOh9gLrOnwVEXSDK(sVH|F^GNZLj$92kbKLlxUO&0f)Ij8WAI&Wu9j zM59wxWK=xw>49Zn{;{~tFtUoIxtb!H3(IdTfSYVA;9u2xRwphNPA*;#wNapm^G^K7 zC$I&sbulblBCz^}&a}GR>R^rSkK2p_2IYVY4YnbxpH{H3Z4uu?5U&(+xB+0~gu-xx z3oU1^XyCEhYm++YyA3{1#sjOFwo!NM7`k0gTP)x2Wr|JLEBL|K`IPhG;P@A#v+MN*+~YF48AHUnLivwC$eGfGiy+u&GghHvVPl}k!b+A9|Bv<`0r+{3d!L3@`ftsOeMD3+ zqO~e=m_^CA#nB+l@%fy5hr&OPZ~Au-Kz2ofm0UGA>HJSgDPz8Y>#SsZWP`t#!|v=T zp0b;Yk&^o#vfO&<+5EMb=il$&XAZoE(Da!V<+H1~)wP73wW_SZ#w?9*^E%eo4_LY0 zWLZB&qddKbm_&Xe%f^X1*9Yg@9)f^&FD_EuwNkcv5@H2C4^y{l)@KeFm_<1%TPsESj%8VjU*ywG$T*F9)^lFdsTg!iJ9KZyoVdkF zFD<7kyA2`;xws?7Rb)EVTiPC&(@oJbBEvC$#iiLqJY5W3A=c|!n~EkWicI|&Z-W&l z`jS&}us$!sW@iiG$(#4$@-pMV7y~V8Ouya=jm+Cicy3;Hk|;dCEr`)BgHoIyfwt>K z8Iwo&Vly{jNDN2^#-ef*P4iV*tE zlK+y`G0@Bt1}1JDP(0QXDA8yg^5pm56jPD(lOqshsS zll10~+x9Mj!A5Z&ze1K)QZp|`k5ZS%>YiNoSF5|-i1=tDpr$}Bn!OE&7_#O=j}ZdN zG#7||7bbK2s02WM%wL8&@+rmRqZ-36FT^kD`a4@wF$yOODa4HXtSKcG?M4{#jE!59 zJ`kplBW5e@;u6ZvRA$E9=38$GrOscNVo^Y0Q3P5j22g3&knr)P!72p6z6DFOf3|{N5;G-C8BM zc4uE{P$;GP6V7G6gt0TtSA=yk@qS!C2q`xt)eOehFyRH2a7tkSVm-JbslG>nl&Eo; z7*!E>`W~o%g{$mPX?^|}>uQxiVk{=ZB>!fw`K7YNI7<+Y9S-N}=CK0U#b!f}Px>gW zw?adO3Oarvo*IpiS7kfdIeJ?J{MEZ#J<_W>g*%Y&KmjBYbXgqTt(;9o6YqSgE2nE}sMv%`&}`S90~N85`1i#hx>iajC!w z0x4O%)kD|j$TcO^KEK2fjsFlg26rc*f_*dC6oTL+V3J_z9&r`WIGN+)lY<r2K*a6tjit*2+6Pc=Do2zDXJ z2lJ*uF)}^UHj!3p=+?*u7S}lwhte``8jx&*V~uR5WFR$Td9~6JOdi-^6~G zEkdN7w(2E^EWU%0eyy3hsVjnL6_cA_w@uS521=Dmm~;phiKqSsvWlIcxG3F}2Wa$a zXTq-%dM7BV_a$xtn%p;7e4^|$eLr~p1R-CYVHScl3nU8lG`iHgTBKiYeR|2V_Rwx4 zOm-{(u5;OrRI2ZCvVTnn#;vCSm>}pN`=VH-W>6%#Pu#_1uSW51|6!J=^-3OAGrqw_ zE;SJZ4wj)i72$?+gyV+n=Eh3F!45Io%`qzFw5ytD-H{qH0UM?r#x_Le1sZbFaea-C zl%P%IiT8@MGQUv3g-(DUD*I5<%R@uhuzQFb4|PwCeKv9u@zn?0pf9GxRuZ2Y-pz3< zhgL-Pw`>M3BSKvMmb(8(+_THauo>P#T&@wipxT-gof3g$!})zTeGKbAycGb83=Z(m z!Ixr&1JjpXFnbTx7eoN-bjf<=Uye8P_|je5fi~KR!SqL9_R!{7$fy7BApwQm=uFA%oOP8o;pHn|L*|1p`T{7bpu$SP8<)Cuj?X zjfIlU?`DYRRuL-j_LOAA4mNZt9}kR>z^Vqea^P=b?ZQn_e_Zo|p$RS#{F%Z~+w zMk0~;3P6_Nru03Y`wHaS)Q-6j-5<> zy!ZEXYxE>Y(-`*2quvw_oL|(DN%r1ZXY8d4`uKS??xX%;F|N2Az8F5r{5!@p=jtPj8^zyp4mtFN zY{`d>LCt56<_G|qXsNXEFoQhHWM@KP3utVtGB=t3(^CMzB!~fMjtjG4D(5qG+8s|C zQIgu&x){eIRr$>gP{l5kK(9s4$?xZL;eKVWK|9ep`oHSM?-hh!nu50{K(Avhy7@i( zwt>nDh2yB-hI<0zuErRn)Q;c`TwE7Jo{%r3e|~Fw;0L%rvAGOrX^Nj31q2zFdPD@eB@ z{1OK%A@Y}1G%Rgi^g*8yH-l8`lreXN2AMZTB=IDPI@)V`nX)`DhE$)FyFC>C%|cNs zruZ^!Y$Ie1rW1%pM(Lp~E65(z_mKEiGwJoV52C8n2QCJ(NhD4c8}aNCd6@)#@{}|v zad!5ZPwO#Co93^HC~57q)i&i^6Qwb zV0f0a`L*VUpU2HV_P-Wbur;U1{7-K1yRYHoJ9CIQcLzvQ>Znf{=8Vgd`(|=k*EJ&Z z)3t(`nwsPF6bT6lQ?BpfeHt#BK>J&0Iv`d#O25Gpj*E^8TL~Aqc%}q`Hc$XIeV+7e zi4mN250k|8g>3DlzGg#~LINOAMoc`OOo&l9oEK=2K4Zu;KY<&y88?g7z8eZb%bOlU)S^k?3n z4cecK?`iX`Qu8xYFRgfm99CatX@^`D;+jtuU@`D=F`_HIph8a-0D6qU*i^V)Jjk9#Tu?7~)Dr7dv24<-UTX7P z_xemhQA+6wuGd5afmRS8n|!ISj{RTGsEfe zjY=)E2LxAKy=$Li8<#Sqd4#>Go32Dguw2CTJ@gKRO*8mw8g*W{zQ%6R$jOkO&CN@) zL2iRzcuxLMDR$PB5!HDJd_TU2KB(`?DLTW!Wa!wW@Z6Bi=J`6@uVD2>>Na$)`6Hx zdPr&q5>o=LAnvu)IoHm1s40bjRv?qqw9D^l|1WM2g~i|rtr@^X{2hT@+z%}qec#X%+>p1_48f$O$w<(qF$$Ni2favix@KzS`U;dot?oC&JP+v= zi4Bd(KuK!Du^z0;lIlc~A?g=%M>si{gEp+3<4S&cR9skS{xgr2;QgdJfw|PzI6!)& zCfszs7BBe~b~f%j@=Zu1PWz}a?tv5^*Bb5o-g|R58783ScwEDfDsH!VTJ>n$R~;i| zt&iqBoh7({#$N9p)F=csllD+I`8+2%krd+;@Fwz|r3~*Ws?XvS_OF)DTqtjAS>FB* zh_o?~`WwezbOdk6%f$bp$LsJ&w)M!vu=ikc za!=1MYsnS-3zbqG6_9P*FJol3LYnU{w)uR4+#)M&Z?o=F0{`nXAfzo`!X*tVNX#&7 z41d$LvdB)*bd+or&xEY+)Ri3!Y({^ROZREX9r5(37Gck#4<m#}lrS86}#jiLgMy~uZ0&|=^74SH=^P@EYPaod8FQyoTQ+Rz9y19WCuLh!# z8s$ihij_KsM`5Rc24nhAz^e4+;A5Pr1*K($M$XXm()UsuJ|rkc2Q?~8BiG0=OUc_= zw=!%%dx7q9!5|=fB@~fhSV0~2Ud)|o4SindEb@;5;v0Uc`RGPmpaV)(3XHt^dSxPh z4Nt$aHkBh{jUrzj`IwaNWSfQ;PbpR~*Qy+)taX_pm%Xm}TNl>c1e9r+CSJm8Mowde za489HaLpt^6j1iIK|2T?VZyYl2)m{!fr3h6h%Wqa6o!hXM5BR=!$tx-I0+k?`u7P? zAeJg*!W~X#;vW5MW)dtXV!&{%8{wvOWkK+}^Z3v!ZNj1?;{QU+0A|>Nhi&|IxF-q6 zTQCEV=+4vV?Hv^`PNoF*ygGHj=5_zKf@N}{OQ|LMl%M(zVgPPa?vT{q>D&L{;m8r4 zAq!T^qHdM9D%8~TOeRhFL|Mni4`fG>wdM2XtXI7#_?8^jt2PgAw_KZ7TxBr`4v4D^! zTnuPB%4>!9a*#8hM`6$734Ikfvy;g(?4uQEwy>GpHnk%7Ky-TRev{9MKC}fzUq}U9<`0>*@&Rf39!^{hQM>8rmrSom=o#(yn zl))g7)jl-GMv(mWu-5~yd5>7BJL*A6ZY?)AOv8Xf=gg8CPIK8tW6J$aiGnEB)WjSs zFa9i*>!#1kYp);zQQf84tad$>?uQPg)Q|>;5~D^t*gdN~E!cPOllgnAJlo<(O*C*b5gm!wPmbAq0i4vO$~z*jCp5w?Xo9;Y#=#`KX)WL}eze;9~JX-~8J%<KTUFSRiaT& z0Xv+s&)o`X4LBo5VO~A5=wu8f<#ILf$wpQS3Z)o?VhzV9J4%}y)$FwGX+gFAc>27!y2=P+e;hB#A1|cp0-tJ><(rXM&I1) zh&DU?hH9j$ITjbMD1)dO>_cg>kmA4HPL)4P&>K`PQ%~q6Htikf61tq|#k-lvl<+>P z`f_d%5FZ!)pvNHCT|Pw8q5`Fc%bd>!9J3_&bc>5jr<+{t^Yq(F=B`2fk-TCyY*Q9w~1E;7tWZ~_PF8J8lX^dJXSUQ~i$ zK^Y}~6eJgBcy7I3(gALs=1I_$e)7%3F%UW_fQ8CH7TdYglm@V3nmkmsu>x~oA2Js? z(4Ye4qlv9nJ}TM1F2vgo4Ar-ut++Cfp2$Pw$=YooFq1s`Z^Z2W}=!ruWe( z$}hv&&@*wn#7D-{S$DD6DG_N#^Lcd)B5Hlji}Q#d%=SeIxAZcR*<{*d?p@#-+BY1* zH-0%Q=NZBwA97CeyKxzxjhlcj(xM76ZrQVOXL}~b|I@e&SPV#1GbN55o2OdNpN&Vv ze&Ae8e`T*Nb;gI5dsHc-23RPuJL${1@brDU9ha5ixAC$?1c>HOnGIgP{RyrHbaa{PG81lFOs1X z1lU6uQ_;L(-`nKK27p7YRcy&l!js&(H9FjNJUs_p{tT!9Q7AC*hl*$DGbK|Jg1n&h z4gMznpY_!Tz;Hq}Q>q+Jz~k!h$=C0A+%V-97-4kD5&Pe~c{xPF#|3_|wE-DlOLiMT z|8noUWXhw81AXa0Z z90^UFEYKDBK2ruyPVVSo*Y@%=HKfquvky>Qe8n|tCyLp(qTc)(si2}J9lH9WO|n-H zdo@0?Y3I09I;V>NgAYyu#+i(#0!5h)s;q6Z8D)OzDMRBCHSzEI@46pEC2C$vsg`}l zKH$Q$X2fTnr2b!W4zL0d#{*#Bzu9wZz6V!4D&1DUaQ@aY81@3?eeuVX|3uw&cUYS$ z!O(fU(}@P-2)TOMC}gPSUFR?vFz|!}nSU;nS#JvymoyCWbUgIzF9Cxi&Y+g0$g6jv zk?{E-JZnq~G}#j3{FgX-)^gWh?Rlk!&n27;{Ix#;@zCsbKV&!J?MRPM(KNl*;E8m5 z);@k4+d+`B;L~ZL`|NrKO2}_Y{1|A(|3Ap{?=O)d(^5BJX3B8dOV z(>vH6l~Kg~e^lw^SP8>Wu<)u$2CJnvKDR7Kli4;^=`TG zFu=*pK&SloyC~Km=Gh@8WPcV80xi^^`-tRH?hwiFw}G4;VB*+0u=XodYma^7hYi~K zc8&=Ur|^u~2JP=^3510O*CAdnn%9gmMI92VMm zzPWmHBc=D}Put@wFJu`S$;kMAn^pbsi*ix`5cOjeK5~rq`4*v{`S}ZqTEsu{nqdf5 zg$~i;RJ3nN%a{iOUKv|yOKt{v24jVPpoa; zHK+Pt?C!S^YT^#$6n{IQ_i{q$jm4Vx&e^KvSY}a+G~_u?9t3co{}~uL5D^hkM^i5D z7sP}L*U<`po&`VwH4g!DmrPvOKO$42l&0E!T5a^{lDwro#`7IT+Dy5fM;85Gx2cfR zgw61YYUV5J9*6S|XYuW68Q}-n{1zeASJ3}`pEwB6_Y)>vq~sN@i`wFu@cuD}sO;*M z(;~8&5Hpp?2VDQNh9uBH;Q!A(y1}vy81*F>xW=YsZPcHdcS(9)Hp{Q?9d7+AA99)i4AE5D z5UC?`%@iXDCQvluDfY%Y-$k&aLb^Rp;t`34taG!O*h#XXNqZ`H(O7z_>Qi!`;>oH# zG?)|V9)F@IRM|VC440wdi-mp_Jl9Yhqhl;_wq&elQ6NR%Fv zAt_@4&m(3%nWIKp&$@>eWvrIIqpEXIi=fe{BYxfx@P7&CU zwwT3w#lLby=2;=k3ro)YO$7{tTEtNL%HC`TU?Vzil0AbpWvTV%yP!rJKF6;>kU6=eUs@! z$#o;nmm{nc=53y-mu+rE-U=P-lAQgDb=LW&>Jb#4=@XF<#Cbr4ezFkl8%FK)(+4N7 zs-K#cmDD>QUWlFj_7)-EC?mxXTKXciz;;Bh5XW+HWR!b_0o|Hkr>1#dcU6d1u7x8!uI@6bc7@> za#-hQknOwd_Aa{(v|;b9WDU~HB78S!*^)dmsJVaEQDEG&NUxYb)c#zh0vsSdYVHqj z{uAY9Fo8PMHsi*T()4OA%X@E+4L7@1jg7`9BLBwO^>J8mKH~M^Ppw<0W5r_qwPPLf zs^#fkyD!4D3>pp`&f9tm@o$TTK{oc7%TLCmM2k%_iYzC+;*Fo1@(~N=$UDg|{Rb{o z5deuv)HK_37@gRXZcFQ*pfJqLTFMxZ&fh4vBU<5{~fpUCA%yeQM*@o6NNI`uoQLzatU!-WaI%v-I5I zC?Bs7jdW}YQFqRZk_SlwhP^91|J`Hamkyws8JpZ{c>V;S$TMZm+UnQ+1MVbp0Vy3n z$tzY`xz~2Y=bqlav(*v7o8N75ZT-u6Ioi({F%#VUzUD|Fa@yHYuoXs#7uh52L=1^Z zZNir{A1@;y$P>70LlktUiDMoQzmFQ0U*@GvGS6E>m0gEe@ZO^h4TO z1b&!k0N>6LTypCt_u{LstWr>A@&Z}D_53GjUz`sZejVXO8u=jNtNy?$as>ZYJo&2JN$1>tplez)9I9kZMtheOtB92u%rD6?dbKEPFC;i11isU#yV*aM5 z$O)a(rmwpl5!eM;FI#e1CtKY?(^q*a5F|*rGT{Fku|G;EQbVdiK@`Ki^fR&Zf`COL zKlSb(SQDrzZ8mZebZdV8o%lOsj@4B{PcCz8pZIp)+vFcMKat8200V=H-gcG-qZT7h z_<3S{fN9MrYEk|`=Z0Z}o*vArcZ{FBS3iZ~mX#Wf@l#vIZ!VSDo`ui%iS;qOmTf72 zNCLoGE-6N(Qrh(MbRwkzl7(9sgucX^?EsibiR9_8ai90Zs1l&?pKb{p$L=unSP(Yg z1DPosH)8qaHrjaB^}~;!jd$+u$EEA}!t)<64R&J+>3LvI+T-kEz;g zvY&JguH9^AOd00Hxy-r7T+2OmKD27>%qbP^WJ_#-fKqKe=l;oNqo0`F0mD2xOBQpT zMI{n?{7*f7%zu~Tb$CRd&ydp)Dn&N0hWWi``hz^?oYG7ZkZ^Lrabkybe_}PnkPLRu zG_xLH?f?9C3P(txy|C#e`6Il6Oo$mG@1e;3pNLVvM^(|FUR`!A?1fPXFjQ-ESknI` z?kdp*Zqi8^D-TN~GZJT@%jKJqzs{VQxBGHWL*RToQA+T5%|~N!59_YVquYi*E#?J% zeL+de_}%M4?5EDCs5PSy!=xKol&Q&EjQK67(x$TxXM($qd|i$5nE-Up%N7mWQ}g*{ zEZ1&h8HQgQrjTcuo(g1cc;@XxGvydIfDw_-0*fsql%z;DE%Kejn8>^bk~?u0U}HLj z(P7Hp3lp&4kh_9`0UG#Vd4#o~uAK{Zvcil7&<1lfRlg(;gCL~~HY9rCqhFhbVKmB8 z$&F>0(M?diYpo+Tc|#J1G4!=-W~(%v2B=S!kb-Teq2J^}>L;2Es(32*gq!c4_C1xE z_~`R6aX|NeaO5weDCE>*>-(=$o!q(9X`u!YB@Wz%r3ga6sh`d2$wADH^wTR$pY}aXb-jB_SswuWnW- zYT=O%jQ5u4ej4zDoG%7-2Jf*V8LT;DTak8#Y(uK@`7lJjkdNSY-|Wgx3+9KUr#4Nt zc(oC zOr~U%trXOO6%mhgFnJ4`tENx!AaEqhw^)(#C!*xM!vck?%Z~Bu3LN{SpS>6*TAj1= z)}VtRtJ2Sk^gsU%65crl&y@VDT*9wswIQ$-0=~oP0M|csQi*W7kFmJ}VQUXy*W^5u zifmTm*}giAA3=HBme&S>v*REBva-VZE+P&;z7T? zdEdksJ2z4)j^wKIg$Ut^y$l)lW=zEZXqFx`S$WST0x@yKT7}64I)qgU*9+m>i@#YK z1(amY59SC!qRoAEgbL5>gJ{k6nD9y*He?<{g2xB`r_oZdAVyO`h#q^!jlgusJmx#y z`nl$xv3c@5kJ)`_#}dXMVLkh_JbjIRb^P^H=ZJOSA1Lx%=oVnX>4*&v9SW^&-FK(1 zrXo(nWQUr?)io>HcgSC>T_LA+7?PtYuM80^qB&0Z5TzNgZ~SuOvok?E?~U}}tp4E8 z4I^8UPDFLtcS0dmSb2{qExr`2U4F6;JS?3!Gw%Qoz6=^}1y0GEPmkVk`nn>gq56_q z{+w~cL}Dt(0s{?bz$df3kfkIOb-Sduwf@uz9=SDON+R)zm(gpV%9?kJ5EGfn_|*y! zclv{RivC{sB@qbN=Q_tYid1qjTpjmlkt}z+ok1y{Uj{?+xbXwm;a}AE8BSTB;WR1M zM*JBDD8e8UdJ??lKU&;@n(}5l;xB8iPE|wZPVvdU$LvNezn^-O>y`!g7Z~8Ygzi%f z{%JnuJi6f2&v<$_Q7>DCrvs^1vfT|)DL*&gJtSL{O4Y(H4gB7b#L3*1%@O-anwJ>0kP&HP1SW5d)K1{FAr?}3Z^*QsT|(*GF)O`T><~n- zT=aa^IGac+>yLz>ZVT*?yc5|49sqI^t^_io1wyA|IYG*5fvW|OzB=ZxPGtzZTRHW@ zG;VE3>_94FVNgsMSi6m}MKc}?v>F7z*~jF?I~UA+|I~ffG12KVRL~fMp;B6^Fv0e` zigUO`UgaH5^gutg5HHLD)naPiY}fn*dE!V&u3w3G>m~8)W{%nl$2vWK0RTnF-0Vtu#pual$O)8Q=G9PLvEHKhf6c1`7YcCLwI zHZbYPtZ-#{wchL`#4lxWiXzd=CY;xu*P_F4MIwuchyrjhgTHT>mmHi1rl+Gd&yMr_ zoqaFh{VyXFm#$6V^#zw8A#RHbppG_+}nss>v$)Zc3ord3t zzb6|LsZdMD;30f}cAPG5<{_6PT1dtC9cz=zB^W7H;~Yh{(9Chc3m!~QBr1k9(Kur< z!M}C>s~v|@+Ujk8udPv&O{pU2l1MyQ7uB7Dg#nl*4xY$*?fT395Wg=46i=*c@h$tX zhLsAr)L^V(oUVHrHh=ec#px6VX0jAq^`>mv(%|vHU(e#4{IL3$XMOwy?^)#n=CLbjUbM0%x&vuI=pi>qoNrM z1T*3uJ{d*9P4O+4HT2SZ%mr|hj--%8b$A^03|sCwarNyQMtl){7|GT76-qEu%l7?l zcf4wSm}g@#H!7u?dC`6~?Ze^5n3yV%^A1b*^%EpC>5WY7oKk#3x1R z55bu>t}|qWGeu|*zrcDQrOlsG5{lsd0TcGNxm~|*lDH4~Z|XpS{|xYHSBHKq0t7qt z^7nLCGGoY4kgpYz)R-`T+}B9)7}gAej&wuVy2K!p;l0drq>O(M!ef7OANAH~#|jo+ zeUOrYzNkA4rSnB865~TlpC)Db+BkB&AB>;Y@k5l(ea3tmLEU0ecO-=~`a)RzmHiV| zQuKjEvSeF5uDGud3UhRy!Sx7Rejif2hrpsZFFgC24)p}0T2ac%ty_Px{yPr5IpkE? zK;0JPR)=@}*zDpFS+hPBn%k0(vJ5b6PlBXdHgEcI)7@^B5>E&&Pf%?2`26F7{Vrb- z{G1Y^`G#6vs;Sp{{uq(hx(r9!q9!Pii%45VF|h3Un#{!e(nDsEgJb0fPkZJh{*Ft$ zTO`u$t6?XVwOF%RP0I!26aiNPL!-vmZ?%Kt@|J4~O*f`ZpL%4Or-#dg%3%s$OD}V8 z>WIwcWo+4Uai*UQ5od3%F(=ij1%5j5O}TocF4-GJtu5>O(V2>3Jc-Z3?RelSDQ5%zwkh4Da4$Jju6h42qQd>Ru+A8z|+jNaYLFh{8 zf$^_uvp)ZYw1ghv^6<}9U{hIq(i6fbUee|gTrt-()GDd*WB@SX&GE$d4%=5}0; zvy)E*nk#GPMmUD*N8>u4?ptvBem~78b^FMv-!I}5`Xg@nEqwSTH^NWAYWRcbL-_R@ zy0>B%Omyn@i{$27NXiO#L`V%k}8oKMN@vUEjoIQ)Y&E2ZTWw{YO2Q+awh}BzD+bqVPWd0L z7$DZO%n_bHEcTpw5+@Ljv@;%7`o|{$HxX%Qi_I?PT>{&EALcw0xW)RV6!{PaEnF+D+U734M_#R0>h+sZYI z2l{eMJL-iLDZ{Nh5BYpOTH>0{&!o}ORiAna@WltBd6YFMx%24?puYU*!1onul#1#k zep<@Uk!6q-4Kg()4tmP0Aw!vM#FZN-3TuJRNC&3%j-~uu9$3h*V9d1rLlF~r32Fua zlsNk>CvM_7-}G_PEN#7$5x>tEYGLw@%mU#X!Y?7RF^!MEhpBq>TQ)h-dYJOQVu^I{ zr#_V*mo0gfbrgY4|I`h--usxbB2}Z+E@&e%L&Qr;AfRMOBldKl{*ao{Gh4zMCJ%oz z0E6`M>>0>QV}&{0hsZLVG=9_^#VN{UIjj`Y_w%6*k-bkfIkOhR1Fe&Ty_-H*vMB%! zj`_SoHa4Kz&YhYr?~UbD7TY$|RaUUyh=v-3Y+u;VB+6#Dx5?triKjO+u)8c{cmQ&l z8f{}f#|l?d^#5$@GVoB9DtDMWCTm@)ub95^vwTqW;qn*d+qR4>K%Fgl%@o~V&_W?~ z;B2*})Y`_q$b_6;$G4PuQx%F2?=F3cISh1v?fK!)smppOl8QkSM*O^-K-=TrGLsU6 z6F@0Dlsj27<58{h@)Gas_4M1EW}eYxOGR@H|gP)8x{9f9nvbK$xDupIxpT z8~{)UciLY+0K^^J*g8-8lD8-S<{f^vxsd6$#|WgN{H-%|LOrW5ZNH{XSj2aYf`#}> zF__?64&$&z(I>nKx1O3PHdD7>%boUn+UyGN>#@n(Xh0_So(?p-Bx)l=3_rBjc0JD{ z&iAdc4F)r18B`ZF9t3Ql@v@W~zoXPYB04U>s@m(yfvVsM&y$^fPT5FWQ>^;rO{`Gu zBa+2QqdrLrM%E%v7i4!MTvioT&g9ZfU^v^`JEABoWwz&VJ$E`r2Ag4U zVfns?8i?9=-*5LzL6oO0+=rhdnxhdl018|T?GkM`Rwh`=1!WjsR$NZK{2G2Pyc#|f zWKrhNoeB4bxhK~zJ2-~l(P0`yCn`et8E<*6B8a>-@&FXx3?hA1wO*E3;r$D|9_s1n zgs{BpG*$>m{_z;Xc{s6|W)0`E)!?>~u&W;~i0=N?<++ShT<5dF{Kby3dQN42Eoq+V_!HS8>ql+PSe>vg@+^d+Jn8do~sK z%X4qS@^f)r%$~?9N#*yX5i$4V%nx|EDtj2~C(gp>dgIx$bH-@p5!dl25_`}%!lY#?_8ozx4>#8^P6H4>k43>Qe+&T7iO4shys9BRz( zSE(HOdwjp-x-RX?>WVY}L#Wk5OyB`9Nr8YHZ<(a*G(EO1@##0J1P<9d6O$%3($Cv4 zEp{e}ovrWQdu}X=R!3)UgbPiKcOta)R8m!2_6E2hj=(Cm`>x6rLVDN^A%4UbBwP8D0roOgGD=a(7Og=%I6X$mBF#J`h=m$2P%It=+l9~n1S6pI7zQaXpLfWJk zoJAOAHnWb5D>9Fdd~y@QRt>jCx|QW_{3gD?80#_Wj3le5HaazZex9>0__E56PlETA ze#x~5(x)Xhui8%ykCbz~T_7Q;H+*p#xMcDRfGxZ;=uSA0wEpYHuiKBfWq8|^{3b#{ zD`pO3knJ+m9SdXq-Z{SdDx(2sua$*!9BM~HM?vG7h)42ru5zkX&goOc8H)F)vol@1{p;oUONJtp`hA6P*c=uo zk`4#T32(l_=1w=UpBs*3G+V4Wyn5w=p9>EvF`P%Q>^bA52RLd3a~5!l`4or}87wCk zZBO5B?={@g^A5bw5@lL1mH%n>5t9imgh8ql-@|PCp-te`aOo0FaFbe__g13!kJ>EG zYh=E+D<2$hjO8+#Xi97xA|dPhuG?HzNl@}fTV)vDIFUx~dmwx<5LGo9c^PG6hDzErO-Gk zjdT-?_2ZwPZ(@;<1|GXWIs?wLn`9hXm>SI|$FsOG^N97{Yutr>X0vG>=f^{^`j6S1 z<;Fj#62MzeZ2cw1dXQ>52 z(t)HTs|m=OAeRLAYe|#pDKlqZ{>uaW;m?%TOsT{basa_gIT7+j{4QimBsQL*bB_jT zetYXEri=u>b$FNuvbA@Qzl)e7KpK1=Yj#kGzQfPl1Wnrpm~NzG+66p3eiR>Wf6iLw z&3BkM8~Z%O0JZnx5dSlvXy*?t4@vy{b0Oji_HIH)UQEU(97b(OU({`8MjLVj@y;cOx$Gs8Tg(&$1_J4 z5vjFD-inAD>K80TG_#savM&_%U6ou^9hIY}4k5ymygk+z-&sl9T21`RA3@^wmL&sb z7I#-wM~L4B`sP1*tcUf`rDkNx~B_D!7<5{aeHuY~l-I$fsejSQ}sfRSi_GK%5_SzcKn>p0QeRIWE%VTk>sOjPgpoMVYKU~^66d(IG0+4lo$C(KkH94ykkPIbscLXTS`AdHF31_Abm zS?}j%z;S`6tC2g#cSJ+{c;LFdNNuw2($`FpnE}*kcdd8jwtULPWND=~Y!BMoTf+ad zZkGU12kZOP89}CGTNO{Gx6_-8+Pl_U>4M16KFI^=`d{}I4Ev27F%gdL*s_uv(emtb zQffTm{af*<=K<$8BQgBC+&e1k->_^hGs1@5l3QApS$=nhqDxK6^Oh!1tCdm5uLoJk ztOS+o-10woaT*5wzz+Jbp=ta;J2cktNj3vu4hIhX2drCYk1At(PjdQ8Mu-rB-dL|6 z+C1DpVB!pX>!?)ydUMf#3yPjW{d(3?fyH@q>tTA}981mpx&TYo;_LtL>2UtCa|=pn z%7UVh=T15S@~hHo@42ZQ(mae1pC^quK z9hc0esMq*@?+BVI&Q7YaS*m^{CIJ$#E74R}p0T|SUKcbG-t_UIF;F5iHVavkVzAy5 zi7+pRZOk$Qw=K2?_SGfLie@mbMV`5jY(a06q{w*L#KUFGX-|aVS9vWqkaI&5) zG`{1>ozjJuiE~}nx3NE_{a$N*^t>!YS?NMllR_?_Kh3|ID_A*?3ww|`(G}N3dy=_w zSh*N&?tWHWp3jnnL6&OgNDR|NGU4ZkjNLKQ?d#&o1;&YFJexZ}WnR`~W5F()>6H>w z#W3SpJVA7mkU!=R9qFIW_Smx13H`XS7rk(uGuO@p>b>!S>ZnhlY-74B&L*Sa`koRb z-K>bM_z!|n_3f)sLK@ijk{{IV`VYiLusoZeg!0ihyb4g z$Huhl`-_iKZ}QxQ;I~vl6%qvhH^LYI`x30U`Eu0pH$&G~Fs&!Y9Tnb!Sbd!iMBg~v z7oe{&V_)8LMrr zklXwJl+u)b(3szf1vkLwGG?$x#O8SaP9x}*8j9RqihY=`mt{X6U`-BKcY8WT^Zk8T{dHFg8Det_XdA? z_>L+ThcRMR8ZZjpz_bzS^)t%Gm^Vk(0}ygbAF(7p+EwDvN0Fm*TohlkQwk8r!XUMi z#?;U1)#-$pO{jNwSW#@862F5Dq$Sb3PK^YKtX(?!nG8;So};jTq_V}QJpY#@Hj_=Zqa03m}y;GW=N?1q=weQHfLo~W##f6VT%%}HI*N35!6meiti?S(4>L zzd#KEVx2YEu9j(2mw+jXGc_DkREJ{V+XnPB>vZC*iCN6akZtxlHD4sPQWR=O?La_kT#=?X9XHw6 z$47cL@OQi~&E@2&5T+9u|Has((N}rt@oCyo%chHXYTsK#_*0tKYvEqPSgCfF4)-LM z)%HUvdWKsY+aqFI~3`yaDXizlx(@fMDu(aGb_*rseXf`zId(Bh+XV0Jvn0V>pDkZd`S=UtRJvX$MC{lM7w!E7F zCeP8%{Yl!Fy&#q+yu!cQD@9;5t%bR31*ekQPS#TE@qJD zsqUW~?qzGhCM#=_V2<6q!c-r`L&P&>)@bD+t;Wz6ffqw>!rj*bo=Tovpj26j-uo zcu&Rryi4U(fZ*8&HQY76`?{e@vkHSF6P=d)9g}eqPZq~sin_Ox zR+m6yxfd&%Vw<%)knc^TpNnt-9zg^mWJ_7;fxAeLT;1D=3=dEG`zUlKp^j0yeGXTj zWxFWbcqWIe-^=-_QzPYGkx4R_c0MZ(`P56pbXVl-OkjQ;sprc4tIMA)Nfy&d4j)B) zg^g(d>XrfOLAvJV*yYe9I{jDQ4|0C|9X6Sgv_5^vp>bWjr%PflvW#zAogcDs-<<=W zG3#?}sBJBjx`bl`dy%jdEn8o9xa86gWYDKq!Y74%}gN*F*|^k9Wbh( zeCU8W=?7>NPy`6a!2|B$+E=&6_2R2`8XVH#|pyf;jJQ#^J`A-QvgJxz% zOi}s2T^i7nZ>ZIfN!8rK|8x1*Fxgu1XP4!2mDjt-^#~Ki8;69yvn$d`kLs2!y8q9e zT8f9>ViyG=!$CJpM2A=*2}auZ!uzW06aI7nCv%q)b7!qup+G&hy*|D)%1G0 zE{U%pld%+1rGh=MNa|XtPR!!k=D*$nY=ZLpTLassy`4t!$J62*(etnEx)W^|Pgd(5 z!{n>Bzs)lvq#c4K-!_p9E;uq0V$04z-)9eGi`MslA6faLT%Y$l6f&Pfu_jjWLcYgy!YCaNl^!>SWCfO0+#w4gL-yczEWMSxnbw0F z-{0IDi;9kBF!a4HF=zo8{*>S$(U&m0H4g5hiB;YvIw&bSbF9&b#|l(!$4o3S^5V`l{KQ&(siI` zpQZOQMYSaZj#U3AHG-&->7i$jyuT1lbyD;_W%}CMcB=>-Z!_C%0??k_gHgZ#VHL#v zaeo{UBmKs)pP=UXfe>R`(6mdrZrB+*zfsNb1up``8~T+x{)O92N{pKex0N)e+bJ z)_A&IHPn9fY@yP&&*2Av;;urE%1hBKh2rH>~SRND+WK_^O^-Q z7W`!i=Sp$O3$fRXAj)D%fAlDwK7duSPnTndD(F|F!9{b##pIuSQ;Q;K_JQlst+RR` zzwnTc8mPDPYh8WW_ z+-!B(=cr?yKYJg!R;0l3aFl3y==bfJtBN`C{=Wg%1t2t4GCFAv#agUj3~?(93b=fP zti1!!mdx_5l0mCUv~ybV@B+|ulS}W@n__Bq5s8dG<2&${$7M-m>ZKUCP>*2~QZiTJELmIv_N;6$o^82la^#jxH4x(}n0YM$jBMM3c}wAF&)L;e`jvVi^F7aY_0qa=1m(#Fo)cj*3cVbrJJNv zXL@WMy#t3?tvoW{hYRgcD+G5=Kk9fB*{78==PJ*xqC2+K>w?R^w}NB39EYOr{Fv z@g^nf={jm^waNVvb;pNQTEg1>h)X@S8UWUKv)yaN!0~*3U-Ahm)KCxCmDo61@pmz0 z=2P$+ouNo;m4az!>4w;hs1+Qv1Sy!Ly(0Z%CVrn#CgeYd!h;59x*L%AA#R2?FdW75 zZT}sBvU)=)RS^2-pi}m|Tp5K?1EYT<)p~;iyLU?4<@dy>{8c(s{bU|U2hf(CqV--} zdqTD%>M-GcF^@eNp59;P`HlNtF_6~ZPAlcpv-92ge4&mkxB5O{wr6~Ps5KIgmu-}`$~m$9&Jd}Z>hZPpfEM` zz%%b*`u|Q+q_>70jBW{~ck|7^cjyBe$O2PsDuEj5T;KlOFbP)6`;?qv^w z$|2!a`(Mn)nRT&cm9s0%4glVM!&R~3$tbO;$KE_>Blb?gVW!xFa3h9KXpc(r{WS^L z@9VS|{ntJca$dQj73u#TV`8Y!~BWx4*zR=Oz%)TS#>zdR^&{%U!>#VCklJ7 zYEwJq+NJ1KuvNEk=XMV1hu5kucY0xpCP!)dVanwXQMm7ZftXf<3e$zdLlpadyJE{q zU1WuOK=R=2eU}1Em2diui)b2Uz68% z>(r_*7Nxstmd;q$>d2H%H|<&4md@zxuT&qk)&mqtDXG1_Z8nF!chVD|``~dS5!ZaZ za_SW;x-N9ReKQ$_kU6!i+|m%`2=#oFsDv4U(~1N@zIv@!Zo;c23TLCqCq0T`}x1mAuD!TpbC>0$D{%Zt>=x z+Yi?>4g`8p7!(kt2#O_ArV7HQ;^^*V4;3(MX@HDr&ZiN!S=luL9v>U1QN>-kVVk9*oOp-6v2Nm%jKpNNTxiS)X2$kRgv zV&8t4k7pYbsa1`M^2s)Q7>KqJ^I(3mxBZSUSQIarJIkvKTF+e-VqWzE3fP6NndHEt z$T7t`I`(fgDy&{`ajg=9<50wZEk|Z&pWODa9(oCBeyL zj;lE6zkP*3Z`1~hCcbsBG#GegGFY+Iz}O^eV35Hc@$N$oj*E*70Yyy5Z>{J^ktu{N z`Uz*mL?1n#5o_uRF?z^C;em0=w_D2e+IBfV0=;?lo*Jf3Dbb$y3eYwSPDj>8bJ_b-J&AHA+S)b_(^2ikta%v-~N}j_*B;9QjmF zgZ*9B4emC5vMjt-)T+Jy|ow zle;~j{K+8uM_HiLjaOd~$a;s%i`RJjkRIK_mA4dBJ1vl`J)}Ls#TE!M5xlfk#yq}V zU!6>HWPUBSzoSjd#bYEho^oHhkjdd+j3T0&!`6A*qajU-Xju99E|2$;6=KP561B=OaIvkBq`r0 z9B6S^R=lZ|`orCh%Y$sbhu@-s%H$zsY4H1pTN`)mhvQ1lZTwNg_Q2YmV@T%ib?bx} zfEoiYFpQs-QK8)KC?6UR(CA67_AjHHTIA4O=*m}ohjwx*nskQ1=^znX&y&0bhnN|c zukMaDh~pz{6L7YOX?lk`(tZoxU`8>%t4}?R_VPStQ}b}!74azbje0e59Vh;~Rj2=L zGKnjWevE}60N-~PYw+om5PO|#vQY4f*)jm*kE@)=am`hz-}rIfO!NJ0t@h`8O5=+A z#UI~}^uX68HhfIf9=en?n1eGNwSO*^CC<1=sVXkk$hYkqBA_#AC-OsbN;C-i>}Si; z$qQM8KWX>X*SZ$SPF8@7EsG<2NobdzE`7o7k$a`|!Y9ayPhQBV!3o|JvSy{PFWv58^pNC^SDpq4|9t z?8NsMsbBmMaDwqOwo4cM?_tK|2|A12)X{e5u{pJy>OHvTIjT1P{u*=v3EN)@U7)9QWfhh?TqhDU>j6D|-lNy(zY0{9B zE#igWr*nV5!`k*k2uovX{&h(~wX~NMS+F__nm!Lc8QJAC3sbC6fOh(D_aFF?=fisG z5#@G>0ENs*$ck_x^0i`X&5fMANCDALY>nE=68{y{kJ;|uiDB{^?)gd97B)_r1_~~6&__!a#1LBQEoRA` zu^*t(KA<^x{`@vE{WB|kuvtav1esyXaY|-$)(}=S*SWOOmE&PY^56u%(DnluhJ2l= zwCe3n+{T%1tTOJ5jsE)_`YBRFwkH6aMO2S{y(*iHiVpI*prLcx4pzBVBDwW^;`&~JJ1l6^uTM==0~vbb+AVBSCt#>u0mV|Y z?i`~Mt7DZon2L7Y$w#Uoq(!bXxeolwl{$SU@F%6MjuSCJZry~5*>-zNc^a))**AL2Vzb~iXsBb3Uff0OqiIlB{WPZxX(`z$4=|yN>bJrRL_wX zRTMSR^kk-%6oJ~a`Qe^jf;7j;p|?q!1?1iRvBn%r)&rL~HnLgC_;+4tL;Twm+Q1}F z>u{Zs)(Z2CH%pTbdOIJnWMQ5+EI7DIsE8l=50wyDCAc6C+h5k*m;+mJk6tdK z-#n+C8`a;+yzI0sFFWn=?bhx;B9#s(01G^otyE#=v#zq=Vz;lZAlbI=r#$fSy+Q%K zp!^kryr#cc!Os+d@0@5z7HHjBatln!Ma;{mPc4nR`-zH-qS-cQJ12oUw?vFr7p!oS9jhxz}3Bt!ZmXhV)DHe{ivqoJtBOV3#Azx6$ zk&#;X1GT#e);~pEvBV_ME*kH(WEK>gD$}`!{aL6>_1K*!AS(iX(-V5#N*UkO%xO-~ zT9OPsg8A4+|E6pupHYP(C@)6FV%CK2yJhsik6~;B zxF)KPBm8=kyD3GUe$4k}NV0oGy3&E5y+&bv3%u=g^l1aDfg)~xUjbB!B7qOCwu3awmjqHEjN!Y}iDKgD!ef~T=JPp4CuFMfW_(Vlj`NM-H^MQ+wCIzeH? zpVk&-0iLmoI*L7{q5-eu`&mCe)+Q}Q9X5|# z@K&j`PTW|m+k&TMsEQ?XP!w{)Sn!f{-3z#Y-D(alguZ5L+-vYH%;GQ9w-1z3#>3WM zk@wy2!#T*g6z%TUZVHE*+!)K-M4eBauP7>ES*xUT@?Bjkkj_5svehymW~#7o-qEL0 zstt#oojh6qe;lHX>!cby8dR#>*ELMlbGvx=0H)6uJ&sej=1P2k%pIkOtO~`k)|yJ$ z1VJF8RF1@dlm-r-TnN4EdT53a#AzRa=8;cBJX@N`8(ppbg3ynQ9hC9k6`4b&pz!vG zy_H*A`xQAy=}m8oVdwrgw9QT$6Y!5TLyw@xGs0rrp;I7tB&|k#22ZY| zZt6EfLT}-er39Me6=mWaHj*I8RZ3n7uK_mX34a7IMcOqLYwo_n#?JT#bC5g+5B2i2 zflofvimjSj_gBS1D5B#EF^?aElsBGdbVg)+sQeX{l}#VPmvQX z6$*$<5a?)*3wE$R7(dO=*xen zW+Rn6doTO8`^1W7yeOGGXNsqSjwIcsdMz^#t##S-K6=U6e1Af5xn zX~8$f^D(%5SU>2aKp}zV)<*C5`A=AxeL9T~zB%7mPpS)o^3q;2&UG~JhbDulZj*l& zsJ8k}4xu)4?B1vrcojX;UNn14crR8G2uhXH7A1?8tX5L^i9}AK%oq0S}rD(}_NEthrY5dVQS+yZ|jc9rj5H$Qy(5Y4=P#>zfMbi9RNf zhki!Pgs%n}BUHL}p_u3}VHEMOfO<;#h3)k473BEa(%>#_))PoHPj=pkEXm;ps!-72 zgH_gkjeJY?nFGdxEAnLRLakj>jFOX(^k^S(9d~vyIB=KTF_g#o@_*y zIeh=_ajy`D4Mg!tf=%-uDzW>5$Snu6As+M&ib}c z$Co%_8Qa;LyUh)Qlmu;j!&TNfhNG(P_BUQWvFV0=-vre_LUtmN{%+v@Vz6!3aO}`- zcr?ZoV6d=PIT!IvQ5;aATH$a0V1nk4c|{f^>3{h{YAtUSj#;M~Im;$Q-t)%o?MyOX z1Ewq(azuc97+q=6<`oEo$OZD6(6F+&M_qJpU1Ww4g`sch0AHkM8_vnd${CI zZhyi7a3B3zvaCgz(@$AtbGMBQX0uva3A*3d_Nb263RKXCovqmZu5v@bbH^)tA0FFP z3>-V{DijvBJN%x9v^QPwgr$+az^oH3>r>g7ZGl^JUKoiYMP^(YA+uR*B#2%qlip@) zIGb(2VfF0ZUAY-?RiuR_ZJ47$;$m$;Ru+@^KFTA;OH&at@Vyx)Gj)^o145?3F|t5x zuj$U(n%t>6z0+JmY3$ol;w&cy3#~U&5c3YQpCX>HnrTv2rPNtfj4>L9BfSH6g~f10 z#83_`mUsj2Wuer27Rgq-r+)mcxwikNFlbHv{azrlE3&>}m$l^VTcbWq5(izT_jJkz zb}%+1x^r5{w)E@RxVV_5QVo)!^pQOMHx$xci`q>}+TWd(RqfLUH|&jWPYUNQ#RZk@ zBSj$~itZ$N$z~S~#b1_KvUHLwtSqTvME7vq;+nq>i%KFgs_HR+%+SZ;D9(U-CD*qm zn;Sfj&{%~4Ud~jJqzKm6y*0=}nLef#2;?QVD5kvOu%UZJ=2r#xTb%NzZt`Rqow4#F z09rZk7=VB}8~s}^x-agq!R&QM=HK;h4*rZUiFB{ zE46P0gOltJ+5R{t+hEDIGOBe1`w;p)gzv^I7cx4bGR^7!!lp>~2iF&K|1zf4q*C4w z%B>MA0Qcu}n4F^v`grL%wK^>Z7Hk_3xXKYob07)eePO~P!Nyocdg8lT!_QJp@p~Mo zQ;{p#+YBFW!3ir`hrUhzZ(aKtl^)mexlf`*$P?3VHM|G+P=v-cR{vu-ae^L4M?S1@ z0VFCg>$Ck5?&rj>!)JX#%xS{6c?-W69!^#Z0<)*FFg=G&#dj9AL=aUsp>h%Rgq({n$l0 zUVNA7Xl{|SA}$%eCeW6AJB$Bt#?H#qVQCy%Mz&|{X@NO~Q$Cl775!XC-k*`$wIh-> zR%@U-d)8IWR-Cc9Sg*_|DTv%PZ!}`=7SGrINJw{^??Zt&W<57w3*JO2V}$e}#n47% zJAOE9)-BM?CE>YcCy0=+-^2LzX}nC8hWSvNoO~gaier*L{_5q+RGx<{sE` z&R=$S3`01Dg&R(--i;TTckNxqmS<1a11pp+aDq@=9c-Lz)v$fv(6R#(zJ52+{=0?) z{vEXf*A+MAEJS?N?vWV#=NQ%+R|Ct^^TaQdk_%{rH8}hxxjXxBv3O1Z@VrIgN-C8q zae#?z^ucFak3tT*?^|6y`@24Sd7nTw->#qz3M#mSGT5h!B&6xZ@ zsw|&q-$q-}RcZ#T=~r{y&7Ox%*y&`IIHZ1+z&+3scsguLo{Z%1J`w{HdQzoe#W8NF zlO*npZB+KvvhW9i#N{08pL(Z`pZiiRgGfFvia^eA_;^VIzh^I62LIy30jp@z#kNKI zwWY+kwtc0xCn{lTkF?LfkgA0x9wEMA?{mjY95#&p7T}0T{#B79-+GtFirQ0CwiV29 zh^?J+UUOMkPk(Z-%0PHKs}Qd4K6M|Q(Dfs_tB6fEhlFqdnwa#P1&@T^Dm`QPt)R)_ zYN#G7Jr5C^-;eY?xDVMZ*$QI={m7{weujo^>*=Q;2qLm}wb5!jf>VFsT6LHvC?H=PPa_}W zkGo10!X#7x{^L2UA{SuYGGmd%-ffJXi#1T{7;E!}o_Musaa`CO1w1Lpb#`ko24vh@ zsxEXxOOa21Fx0iOu76`zlsTU5iGKwub>Hs@G|>6#s zqm|hhU+HP_6=hDKnrNZjSIM4OtRSAl$~RWT7oJvA5Gz;^jFV_y;rm(l0tdmDJ2t_) zB&_>ZB8lB9k^-Ygz@+E*+vGP(M$$Wm?Smc%hK+EkN|M&)Y1w5G!k$jS zqPuWsLtKvYFnj}l7!rFJ63j#UG{(D38BeO-N^J6&ug=-nRa1}-Jr5g9eEWXgxf^jM zj0p1G`v}0)75#XJwcU!7fNPhsUKH6{DUJpcIAp%eEBj1Am zLaa)8ZE1S(#&x6YQwfJx@tu<>n;PTskJf~$w||QpJ*X1l?F;L0^H(f1YJ%mcbWE;& zV1o~~Tn!p=k%_O{Q5PCC_GnM5sQ7(N<+rfW5d7bw2gOVZ`qw49e}pyCJW!cJ6gx+a z4kNkn+*~<6-I~?758g;=@169Q{pzk<&%1H57nmY$#GBM1ke#Gb|Bd`0XigOapX$@dz(?EPH()H*3=fOw${Eqv0E zVOL;~rUPvdm6R)>NN<@Sd8UhO!RF15WGd8JarL*nxHotB*iZD6H{+QRRfhY_D)N*^ z|BLr8^M&sU^VD*H&a}s8;{-#?zELSuq$zCH31Wykfz;#!@wiZo5DkA0cj}$c10CI? zBg!ndfyFdTn?M&rQb2RC1)BTw83 zWmlYcY>w$>SN2_gEDQpLX0AKjuOl-Hp1*<#UoX~Gl`ArvaVQ_h!%a!*xK$uI*>^sq zR3j=sy2*8{oPq<(?6FS;tIAaDu5(ch7dP9L2CWDx&o^Yqg}M={t-$E8k*EYWM*laa zKEPaBmxe0cLB=*lErYAFM8DUU_|sy8oAqvcMbjWPqiQ!(K?+qO+MeUZ31sp48B70SLk*c;mj%T? z5`Ar4fCM`%*&9+CqcJg$Qm+UL>ZQQwACMy;KImZNC*7T)bPAECgZz1E?p<;bx`Us% zYePFjKV>{1PU)X_w+J7T+8j|UfMKTVGp|3ML-n|((d6N#Idu1;IBwcN>xQ$-3+I!6 z2rhz^&BckF`P8ZKjFiU@A9TN*=P2a;yD+zNOZ&@zpE8P>`U`SV_V`xZ$)x3%{QI*| z1>zVlJFB#hv*q*3A~Y!1%8>~#%hN0BVz!ei;uIsiI7*B39 zpxq{_$ckfikYa2iWO3SSQT$85o42L?d2l7b^ypI8FZv}(2sx4*kEsDLGhXiQVO-(ooT`O$>qSIps}r2#LM}5ZTpPl z<|9-jY2HE!PLNtO8H{5C8OFDNDUksn9R1`*W3sm~97vqSa1T*K>3i_VbvBPiaFu`dEafoK zs)0=chvQ>YdWswt<7e<-auS~t1f_1(7wp9`A@W>Ez=`MJC}B~Kc+*jh_4+9NvB~mk z2HGmXZD)zZ9qHj;8#-#V^X)wZE%7d{vn?6Pv(^%9XMP}6%>5xjX+9DB#=U&~_`KfX zPU_PSc70ifOZV@!G>n=BVdUsV*&mGcfrxwLq3@u6|IavTSjUSdHbr5KuE*c>;Qlva z4E2&QUT@;r4kJF+7G=6JAZejOmeBX#Zj2d?I4dK@ZXcV93GKx1aknvHWADb6?%1uZ zbz_089~FPoUu|bXi=L{j;;dMA7H$@^4pf~5#{caXmHwRAzO&>;Bja8-{k$k++^bpP zL)OCXOA$yy{0c_;`kb6JV@~9>hsNTV?gx}KiHyT237Q(d|pYPOLRGdyNz!j z-kexO?ZPt|Aj`Dd2X5Oxqgi0dDkS|W?-7+JZN{wbWjX>B*LeEg2$0tl{R z2$ACAH_{46^LEHC_p-X;03`Tg$%;mzcGa&Q^ty{>ja@ST^caP@m{SVHGu+K;D0^#ymlegw_5U1N^khlvq^{s*R|B-FzMFT!T zxi{nDhv>R44~SxI603e_yTexx2akA%@mBl;l)3IUBV#;w*HDXE>w?X=r#+sk2BW1$ z7v$MT3YuMW!YmvZre@fRdbTie+M$l+YDQuY>++(nfmvu?VUatmYcr2Kfbgi`t}cui z*4#CN+PB0rXQG*(nzZYgsqmgO**5Z4B?Q&4Io?7U+zPQ&i@Gx&1mbkHXcQTslLxD?bqovx zsyKJ77Q9-}4gGGB?5s+csAV8WtH!tfdvTdH+^%LrA+NzAEips0$LpQnfPm;2vA`}^ z1X9$jjA~R_^`h`Q9N^4qZfx_=Ewx zQ-H@68gHQZ39}%v@o9J%P@I;t5#ityYDX@J$|I2>XrcEY_%Z|SelYFDoSzaa&?wh* zRHfXUr}^oL7Zz&F0oq|MEh&NMRbVkTHD($!yh+V0y^zTg^*C|X!+4Kz0`5gFCMy8r zFMT=${a%5|m5Z13na!e)51-zguorkv_(Chx8>jA7A!C}rc8OvZ-F(saTIsPo;X@_l z1ls zdhpsLpV0$!Nu8SfT32KT&=UNb+<8ktP@vLeR(DB7BSueedOG${db1lrUqe|!e0S8r zI=5yT>+E*~9t!{+CiJfyu@zJfz6kD~Foi~);xG=_Iw6S1` z{rlx$mSGn$Q+q~f@?C)g8$!D zrV#i1$`4-S#)tUXE7qKV%S7=DQ6eB*yG-VZ7g6+=UCAC4UQuPslGLAig2+jjhTZn- z({5n=OxYUi=p8scsak8{kvz)yiXUV4T)Z1xhT#c4%hv06?w6qD-y|t5XT4rfr}G;< z7EQ^1q_j};T8{wh@4FlcXv&OHOuy)fc^gBVDKJuL(GShOXsF`IGasmKjL%rTFC{Mm zsY-6R?Y!mGR+@n6E7+w(rHv->eJ&h;+HW_q@R7La9`oAM=aO`MdsjP1OGMaY)Br1Hu1V#&N@0EZB=)W97 zgTP$Cs!XGxBl5m$&qGQGG{(_djQ`Ey{zOB*;Y@ae2LQq=i=nvZ5u3ii7@Kyi<((d5EmngU2gv*am_WJrS8uRstve^!?DZ#n<`3B9~xan6!lsXFC&}^Lbg_YkiW}c zL~?{KnAE;3>schUVdU04@15e`2gLq4;P=UUZ>SO>DcPU=pv5WRUqu^f{9w^)Y-^h^ z&*(w=ub_uYeeYkKZI^H@=#K*g0j~uYxiD8t1fw;Hfvp84OTSIGF$vcSU7_b?)(ptf z8zn<86Y`G8kl{Nu%8n9QXIJDHwsH`xm< zTD$6aO)=bUU#n&Q2B2ub0|TX8RQDF@^~ugS(#?)CGxdZiG;V}4^_J6j#ORG{2H)`h zwjKO@Aj@sEdsORixY$(ibvsrPYA0Tpkl${k;9FGgItIFhG3SbgwC$KcyA`o;+m=G# zWfD^;=3LY&JNKZS`|A&$U$mjRDiGIWa!I`2JHy$#6ITNUf#`6+ICKWsF}bU@{lIHl z4Gi3Lphhr0zsY>GNiB)` zOUuEvq3T^gs=qLK@dNAvz+lPYM_VCsAym$zm~HXnJ4cdDeNeOBE;_m@<;9?wJr zcXGXAI(H+v5%W~XYPnp&>Z#@`^{zRdNkcs>)+1n2lXat<2?n5M`3(Fzktx`BZ52&` z;Nh;KDu_8}@lO(@fDOmaob#H(^h@&&Y=!99(_g?26wOHYI4HH6%RBD0l+Lodrk9VF zl|STQ>}k4;H;RpgdeK&Nj#1 znH6`sA5v27s&wA)Ny;%Np6v{*J5pn}c8$zqycj()o?X`8`2U3cB5??MoC)gg4Iat< zBs)CqzIirxuPup%E`?~@3!z#~hlT(5h)sbYi$uRicObM?&h$Wkr1t63aw}SqrPZla z=&j^`)Be+okm)zVD#rqVcQe{@U(Y3FhOGJk3erXqf zF~gq~x^OPP2+!SmnGA>TuK7m$-nTRiFhe$tV#Q~iUibB{o2!xHyhhB96Ug}7Uq+}q zj_nlwxb%NlG(e%pCO$#i$Grc4w7q3ORpGWSEC@(RcQ;6$McS?g&k`mJ0 z-KDfN(%mVI@XZD2cAtB`fA{`d3+8%b#50~T-k1i1-MX3y*GBX+JRICKu>$uP=tuJN zBsNT)IwwFiUAAfGn`2eFg8+%5UdVzFUt2@Zk3xip1Xet^oLEM-B13`aQl=mz^rPC< zz>5qL1bn|;!l!1Gg-Ed(=B;y*Yz?-ORF;0&^ILVr8^A*qYu>uqVmV(8(jwjyP5(XSATL*kOR+5)$9OEPk7(9+*GQ9LwC7|I=H>4WN zd3nqC>Ul9si~v{R}nq&Y1buK>6SaI4h&vzTzlnQiGLh%9D=hj`}N3jU4udUIiSA zdL>1$RZu_Jxf~oLboVJ}9RtKQ*1+8(Q`+N&D8ri)>KB{u&kiCvl?D%o0_z#RVf

    XEtJVlEDdzt3A`CQW$^}%8e9gR0z_3A2*?W>;k(5*o{O&c)4{H zTvK4WQ(DjV+k802vkPtVTCrwhOQv$G@|4DD8E?$GgvSx^gS`SXB012mkD3rWTqbNa zg$SvHROrpCReRi@X}ax8e*mdFbO_u8F2M`Kj0+S3-?Tct@Hh`75#90l$f3J-X{9Qs zMbnZg&wMJ7mq!{be_b2=-e1niYPz8gy&>0m1xFl-`eXoRTw~`2-|=v6*+=E!D0Mxh zMt!P0nt;6U?!(I0`b+q>i8KHLe&}5k{IZv|8-jCsy`gvf{S8Yl6OOov`j1!@o@U=j zo%G%o)+-!r_45PY=cy?fO6Y*Q0^3xLx$lM`F9%v8Sw32G8QEA*z)nHM1_~urlDa0gjqa934arxX$yw@3~4aBe_;(3TBi7u(wgkISfSbC4x- z=e<81H3mHsKjWlF#C<)YC`Xh?pi0VLbw&CcrAElxh+^rntpM`KO!I{gxMsb#0H4vN zi}Hv*W1cU@#S$!JrH^qOv{mXE$z^3M|^k1sq-UaxlFt^&Vp|2 z^XxUp6?~7O2+STGw03wT&R4{HhxOARl{oV47EbNlD0XwQ%hDKz(dd`xuO<4%)u{q` zYuf`JNU(B&3!S;BQL7iGA#h^mtX-Y96H7VvB3}R}T#+Rd3;cTLLc&W*C#gFzywB7o zuHv>e2-dN~N&~##RkyV&1m0gcfYTP@YXTqt+oW?z{j-kHNBZ* zcPYx2K4Pc^Sw%8j8N5cU%3iJ5{s*Dn-(SKBTBhE!FVvGE>lRF4=^4;ueNjvpvv{|1 zeVuwVi~jL7yoo#-+=fF}--`P2S5`JMYq{kK?_l};3o&T4gyN2Sz$$8C)z9N{uT4&>* zdK&fI_QD845QU9F{!^BZkU%Vr8p;_r&uERHE!q#y)TI2EX}=$s6|h;l%m1d|SoGa7n-mtQ~-IR~cWIsd$pCPa`W^OSG9UCANQ4JNp& z7j7NcsY9NE?x!kwi~NPnbXgY;b0B>TCJP?seoJjM-z@>5Zn`jF0evP`*6Pd6+UfMG zA%XTXqVcru`!D@7F8dc&X1TDAOMG8nbHjVw$GfcJHF?#ANb1A&jjlBhy_ubdydDB~ z{InxCl|)#xvYHH2nr`-cbuBXW)MI2u*&MXnVH+|d;FTh`w_mkNCo(0c4sBSRaJpOI zSqbw1QS6q9&r>B+0|Gp)we8neZ(~U<4ta5!(uT`2`@)pGB*zEsPl2?*yS=&esC`w) zOnrSO`x%@j_z1>HdK~Fi>UjI^JlO^RujHlEOiAK;Vo$24pa;efB1_aL3ub^WM?peC z0xl0Dp^9!JD)544*^cBP?dy992B~kbik$kzN5RS$yr#ycY=uV7s;~0pV-^57ykhAA zaE@AXI^M|^ciU`DIZvw_{kbRiv49fg^yZk(ArMQ`3Dn>O#nbhJEC&JqUB0_C9k;!u zLk2IHZ$=$zRgrSOqk6#i8I5y7#1zt zN8DEkHL(ZC+la=m*nW;$cw?<}YgICY4f0j@a0M+$ zGQYxFl%0#P1}9fA3jD6u{|jSFUhY0jDi$fnjOBu2C?{Vq=p&s*yS1*`bl44WU_=~n zzOlrZO&~QA4l{a`tDNs{%SE~AzOhi)rdz%9&(~r%8!zpfwO+pkA?h3mQ7^DJE+1su zwg!O)3yD#*0KNDEjAH7dX~*Uis(PeW<7bmu+CE5Y4?*$2ccufZ^kLcmfuN!y$+e&f z5-)1^l&}(m%WqolkJbygdd&X7FP5BLyTPReR+&A#5)F|gkb@u>tva{FP$-)#abJ6E z`d`3_2UrIvB_iCG6E-8Z3Vzt?C0)-a7N8P_Uhb6dEql$hP8D%DfxB{dX=WqqEb`T* zD7g~M(<)os9?Xi()>55kJh~wvi!n&Zn}9!Eh#2~Z>Fcu$Vj4lPjC*{)&BLfM&c33N z_0^&2*&L+oBw0(!^%xXcgxg>WbMPM}(d1~a6tlo0qe>#pI5D;rn(Cr5772SpRZ#5T zze9s-+5HgnmCQ}QN`R`pRFV|lA#Tea_A}UGaVUmZFYNh8`!6>p%FriD#gVNZp<4*x zI3qO!KLk`K>aipwQahix%2%&*92ZjK0LndhQ&JWYAmD`KL}fg1)L#%Xnsq^ZwfnNA zs%iU#)0L=AJBovq=QE6;FlLVqthZ~L#IHUOTCh*(s`ktvP(6~BiIBQLgpK+)k$ z3>9w7(EkZ~#$Fr5TjL5#f{N&C9!@lTL!fq`Npik_5EwNya@in$* z2R3&@P2d-l2_I$<>S`GzTg1!e)5FmS3cxHzG|D?`FzPE5j9nfqX~VR7DPtbSRePe6 z$*)ZKi>a0`gB#C(5DXAiI~MZylj|^(>Cdt5zP}|GloEvas{Lv9a=Tf=RC`=K%MG$a zNFQl;=>tlsIC|a5g^bI-SDcd)MMmT`9geO@X=vW+CB+DN5eB}^4Vbc3WB66A0n%6b z%5$MkKe>W7jV<0~TBi?~*$OJg?~u})r=SZ8*(;Eq@XfP^)f|KLMwDp7Z86|xUHcRyPBcB^{)T9u^25JV$r#D4OtoLs? zyemro!}R{gwu*lhhn3;u0F-b})+G&mWFdd$Z~A4TgsoyN%h^>+0yt&Ai=c#Mk0h~m zBgyyc=9+A>ryzS6_cPvCIIb_6U>qn}`ZlDj#B8kOwL<19*pa-UzHhz*ClO((x%nKR zBa|ge{eCqF3Emh5oNK|U^2aBBNLU`N!#(^^+PWQd$ny!6Li~b0YyB6^8)9@(1r>e0 zKnZ$Cxh}!LvNEc<&{25!Z_7KnzPa)tg0xbn{bfXGv7@RNtFM1G5-@OTXVKH(D$?kO z2`U3`Uh7#EH>FKOF9x5`WQY*_hKQQJ(4D)O-jnope<2$qwtb-;K?zp9Q}lB{o62Y% zW~sqJfWHOxRQHT+wVWi2WV||d8&DtF%A9ogJ^)m(n6r8e9+68JQrU7gfU&e+ldwH$pwo z5sErw(3kbQo2)vIj|S>i(7_^?3vF%b40@l27-N;CIn&>`D0bG2o{biKNrM1Nyzqiw zQv{e_gr`nFw=aB4rx&O2Veu)6`2k)TU)=4Vi+y9R(2$cdbA6hphxBIBH7- z$Tf4$jIPd81b-sXpmwf=`0)dF*bjO4aNTru!zzxb2g2H4eg^i#evFf1hbI4}gB&Q` zx+ipBiTr`t@P}T=EN?`)qYszg)V`0iGO$N@Lx;QTl2CRjcM~coqf3A)13}4<$at71 zz?y(;OZ&69xrLp}c)tIcP(iy}FFotR=PM$#0F37{=>ms~9=6Qdg~;==4nS{+A)Y7C z##GYUWiM8L1PnN+TpLFXz(yoZbe^;*$@SBx{(u(*mW1p=fe1#@e)uqjXaTS|i9q>9 z20;rCQH5n}3o^Lw;$qrz)04M-h848q9YPP%<(B{!qF<*5#Ks!)J!2lyYn0v&f{^me}KUcS<{j=Am4v|$Pd-f4}h5yvn88D;8j z<}+}7tpOXodB6b|S@4h}OqC85AT*W+s!<5Cb+h^+hNq&0aWm7GHle z)C>w>JH8$u_v1~nKzMY&a9RF*MZKBp{W`m!!UD?B^nb8tMfZpoKa)1H4k^F$D+ zN;b)vB>!V(e?Jnf0<_a;ZXhx0EwpFI?@fZ`JRK^6fNoN1n6j#J!BG-O`9eEv2WwT> zgBlKJQehE8tVk``w)~sYrF&)!;&NCjTH0mBHrSzaCn}{PBI-s=p~?b!D&l(6WY|#w z-)YYS7#SYu?yMu>Ej+Rom?M8gV{^f$2d*M~E3_ z!eZ1YQ<<9h3(7zOEB#1jO0*%9R_9Pog1$uexzpaekXGCsP14mE7{({q5n$My?Wn!b5=K)({dp!62cilM?LgOPUjK{MOLLg5R z4l#OiL=LjD{Uz}|PB+eAGm~ong+sqb-_6Zf%zYLVe- zFCR4dK>vUW$S`DNdTS8d&x=i0J_pAy;`2LO_cAZE8tYRZTCE@gG>UQLLiGp@L^R-- zB{%xrLHKIDPkJCNL=4OgqILYgi|BfUZ7VtZ>_NOxNf0LTFL=cPJn9*DO zGc*uQjjja8JqNbbe!{e?iJ=|8v--JVy4a+LVYZa;!d3lLqU&F1%zEQ|TNL_UG}d3*CS$sR$_E07I_=rt{-`iRDq? zK58&s-ITgr;enzYIUSJrOzwNSS$nu#kLOi@0_GiP;lz8GPfYf|#RBTgXB(Ok+KAJ> zJM9m92eCk+Mo5a^RVeKl%QIS*H52TXm(OBpmC1hY7>GQKJQ@g?iUp8_e+~=C0FtUq zRzUdhqz+$AB%n*o=oyHAr}anpeNcd1RDi`O{YyOCARsdh^qJfyQL^^yr6@W-zRJ>l z|6Z@k)36uxyTl5Rpt#-lxSs3+A86wT*oxI(qaz{)f;a>$``-nle7{4TKH($61yDeQu+aKUr>@1IUWz>kWpV zLLyop7s$Ye(&+v*@FzV-e*&itxZ&$)XdIPWGi0&etr3n3N;BOj@opq!P%%)jCt0nHu( z%j$7`^si7r%53X`RIIDrWlY+G7m%_F7d8%S*Kufznkcd>Vgt??gvX=*JA9zZ;-yym zGQs)=+mi4nYjG4J=jDHh5-79IA11navZN7G;5z}{!GEO63E;;Mu+G6h2L6wV6YBtR z_AvWCu0Cg%I|Tm*x#3gR@x|vGjMSwqhjySCj%DkOqj|9LOEa9m4DJ6$$MAyK{ZeIw z{|qgM3aCFtl-qkT?UY2}UJ`T9_hUH{&TxR_mqQE8?bR^B&6EGX6$7nh`PBUfa^3>2 zL+;xl{ZE5`J|_A;%r)eH>(XZaf)}HB-eO!Uon4O#Zy)aeR+m1oQHbdRtwN>I(QsMv z-z-LcuVN%_y^k{}9{dSh1A1|_Q{=r)=_uEl88-CWwb~yDf*(y9{|p(J@&-}a?~zw~ z+;-nhgB9w&kQztfTU7lvcyvI2U`88^VR%nx2Kj@5?|%i3coz*dnkZLZnq^XkP?)Ib zPd+Em!kZ5V2oDh|`lf<6MQ7RaoidshB29W+K;Uk;l4p5|WJ z2q(1eur~(RdBfo~-g{V}ChY;!_^xUEarLRC|HE^L{tr0+0}DWZx?}()!~P~*hWl@a zeUM;h)izls^nQZ*-vcL^r-VC`l#XU@QdyiCqaFe2|AqMwfU_U)wso*2hr2NnR$U0- z9$t&ii#dT3!v8n6Q`XkgELMKMc7G4n zLxdBO9d?=S59sMxRa{HLnTO1Ig9I?7`T??Dfk$hN2I9U1cwq8hROjae8vXjbYyN-h zvF$C0ZGH^VW&is;$hqz2@2fe`_;+0lO8A(JP0m{C@`J^Yhn)2NDhbf9^0QrTtTW{xUO{kGwFXN zsGA2o9wbrzpN$wmmr^Q3)SOTTo3w!nMok9M{p**mKWwH|HL$HIXC9d3|11gqXVvl# zrD*}0-Nr5dUr8M!h}4DaVNAdHcSLJNZTXVyN4@dQ96#S;n3paoL#^`NFosnh**rYP zs0e_a&{x%`dWxQKuIyK7 zah+Z7VqWh^cP>*ywUybpr{N|@LW!S%<~CT9@!%c>$q%w6=zzxs3D7iszy&HDQI%taf3W*_wgFquGnRP(X`g~cLEfj9mG!~DK@XsRbu%9_oq>Hc(v%{$ZtR#@}*zl&75a2`5o(*?O! zj=sR71^8@(LX(?)55XUP8GQi=cl|eB*^B>Gx=5g(%j;wRYe0!P{E80nJ-?6O&?MsI z5tmXY7q+%mjsEHrRCC&RorQ<^q)#EhAYQ`%xugV89u$xl8WEvA-rezcevke8a)UCX zC`zBfKO+Q9m*@o~LVA68t26%hc8rSLoo_;XLFV7|XWn6(Kg!Ad2%d%urbucdJ8%N-j}R9k(jnl zT?0)1M4!HeH>B@9_^>@HpsP9K*wrUxnSw~kpG|k5F}Lx9WEY_ScMIFUoksV9#C{A> z=K4>Muxru$x;D@`w6{FLX2UIJ8tf&(+NtWsI)OzY|IchzQn%k1b=rO}eAM~6AB^ye z!c~RnqO23>Ac9Xl$Xcvez8^nHg%yzUkG3VDzhl<@0_Yk_aNVYSx{R?eB~_1RRK~B2 zL3~<;U!Ra&zHJ)9@Hhk7@Tkv0Vq@RRT?6;_%`%*-YTs!M>4Q4?c|lh@5Xx`{KXTA3P*!lu zGKKf*4>HdHBvtWT%{Yfbt>fL^{jy~E-5L7z{$gM$wR&^0XpW2TDqlqRQTN4&>kaWh z9y$6aH;oiTs%R5nX9&c>-YtHZN=a{8Wi1j~;rLeAQM#UE@5)m9H`7=*H}k#C&JxCxMmjxTIkOg_hVnO zmBT)$t`8K9u+a^kjL!!Kq-ViT-6ekt4!W!$^PE@g>!jE9YK>w#d;9DoktPR^1()`a z83JyG2`RvhB2xe)J?p)%eK^JocjRA}XR1g+!aF7>}d{&vRY)U~2< zzl6FuARVCS85VGTZBo&Khs{d!706Chn^c3-l!A1v{iy4^F)D3MdNHX|>j_IWcdGN* zv${?rNJo}WC+gBu_@2*QuP)k$jR;g(=%VN+J^Y>V#oGln^{*NegP^0`SSIg#rE z4^oe21H8Rrqc`ixdPV5~NRgLCd_ew(C>8@kAa+#Js8)ZSh5bldv2+1QuGlRW%;Zf^ zKb&(P+HK;=^L;-CCmuiWNvd%J&e!xf;Xy+|^eh=|Sw@5zGnezw6HP7?IWRdo^AYl2 zUlvnZTTBUiCs^kj?@k-2cprG@q2QE!*R*{FwaQZc(nh9u3j?6w$ z2RjA84^zgC{)=b!d4iT8j?Zr6>KARGG^#49+GJ6K+k0lI{lzNYJjmY=l*Z0v^l?7P zUlfGSF*5Ltf2wCb@}Ly+W{gybmR@Q%6oD@dU3sKDz$iVguI3j{9V{H5fa?9Xi(cnZ zyIDQq0u{fVmS+hni2Q-!5SRz0?Jwwp3}mO1k2-%6bGC0@m`@*T$JARcTXODrGE}Sz3s%p| z)>j0p^3xT~Nk3PbKqi-;gYa;cVG0Dlnf z)|M~N@M+G<{D59|Q9^a@2hloXm=G&XM6`^`akFY%IrEw0G-c-VvfBa=C8B1#xz|v_ z8jH}by2wj3=5My{Np!TvFQ|K~$X=*hz;#dNNM*zv_l&~DLf^x-TVQb;Da5t=$ z^J?E8rqFF)@X`-zBouS9C8h<{_YI728UbP$MwpF?oIu=O_}NWDrlr?+d}PWdvWDgU zcq^(Icghy3S;;_VdxllPLz0v(W`W?m7LNA1kz7;1UCC%Gk61Rtr=oEc*=VsmvITqR(XBd>SD&oAQj$u0+PSJ@RZ^q18EY;7flLK z&a3IGamT+3CIYEFPS*j3y3eTl4ab+)>Lrbx3mDdZ9;ib^7A}yyJ{OpNqEjM57v{7+ z3PG$wh%4P>a99M&_z~!@-;G1sCr+?X(2 zNrhFL)-nv%AhKdEb1sG;o<_)~k11E+r35L1Znhdr9pB1xD~Y;}ixqCwcg&>zm$vNU zndy404R~)ju^>i8|w8n z-u3QaoW$2ez6wO$J^2mn|6XB#8Xlg;Ua(xREXTzW%KJ!Ay z;ngDcLOL1;;#=JdOavJ5UvNbh3NM9*VZdgj%UCVA8enHOSKe3F@xmTOQg)zux@Sk> zN^n{7*9l%4`r#SKEG?M6tNB4bEOg!jXZgKhMVG8}ts*T@xyl4}!AlVpk6#7+*FPd|eTpX=^}Siq1MQMf=3zWs)*h_?Vw+dEkpQ7Y4X;@_)0^ zdK)D5igJ6NotGXe#MzOL<{A|K2gw*vK}fczwS)VJWZ5p@vB=cjh+yFVQ39FIGnfpN zXZwhu!s)5dr#WyoDlz3DrFlN6P7v;G=Lg*5HEH3y9=F*mQ<|1#=O=E{CLufx>VD98 z2UF1JxYn;KTeGP{N^WG@n$N9Ws!Kz)UtD?%$E@*(S+bW^zt7>@f<%|zhFHt(&6GGL zcgcf}jt6h{MB<$i6;qCkmD#zU@}5DYXrS#DPC&j5P%wfRO2dkhfPwGBm=FV7xaZrX zXpCQnPM(FX-p~|AGvU$*PO5b5qrol}I$6z<&#&f6quSsCDksqkOo`maa!Y(b(^<_7^guq*4VRB9U_| zu06>!zx3#@17=Wyo;O)?z(TQCU*A(8@A-hPVF729c?Hj!y&|wQ2Ar{U`1$-R8Xfxg zf#z_y<}j?-2{wYkk>UrVhXkZH%1`uw`Ty|%C|@Iu^Of0RcW+M<=4{EZdeZB*F0%SN zzWG)HCTxHKJVR#u0N6KthcNp?_yB1#4J2*u-=fNYR6+!PuLIJq`d#{zvuODp?`6gU zZNDN?8*_E+{Ax#loOY66-Vduc4qg^_BZD*AY3A+kfw2ID9L- zeGx*{+D!o0I$+&hHi%_m{+u4a2mWSf03ZSNS;Gw-;Oxq4)Y zE@t}Jwe`!(OU@Eag!cK(L!{#?uISgO6>HQVDwGO3n=}_(;MB-yyPS2V3bv|tInact zm5ksyobf*OlMQU6c=Q$`edSAUy7H0TTYftn@zu^a?@Y`iyOxdJn3)%gBYA9&@Symz_PCiyvf5?6bTYLcp%Oj9}iZ&w5%sbquoN}ccLPa(3G z!@FBQP2TG|(7Bdjxno_9+XLHIHU=fTKOVDN$~@DmTEDNWk%VcZ?T|qT8PDM*dwP@n zK>x>IGtrec*ojjW{DCR&QRlb}N(N)Bt(Jd$HLp9{Vq5UOhIK6n@6#?LlcF>4EaLCs zOM~m#!t!|#KWmnMogq|o zxjLf+k<#kNHQaH0EXJx}^36Xpr&?|}6Qbg-oz44g2MURjA424@!G3Nsz>tYjqUsyXvn{XhuTLihnr(V+rfN0tu|HnLXzosC0AUKIcg{eA2bN_ zotg>Oad9={!JyTOO6@HrO^JFx)uNPCjaI~U(R+z3lNT>tCU{c<;SmMhxe!O7T5U-< zG#|B8iTr+obkL`1GL^|{%h-YtGV7VfPNLVLv%fm3eNX z6dm(^fRp8Y^;~BnIXYX&ss9{{$CE^Jz^-RSsAPmeGj07tOCy1=ImK)?BWKYKCeL;H~VfoYMLJK5DWwAd6wXQ;HhEy=GqV<_ef1d34!o$omK zFT&fgHh22IieXWPAoNCY|TF_>-q&To=9?=8^r7lULL!>)MLc34~ zCnmJWSkZtmdBN;B>e^-+zO5NyBs1n1wWGc=ng4T&^n0%8uU-D4R5slHn)I&b;al!6 z%+LE2!CwZ``}9UP^r03Gwj#ZmgRP+vjMX#}SsDPZNSKhw)z;u1s^0m85%kF$iCaHE z3a$uIn-jkCwN|%D;63?eYBfs3V0x5ST*a2f&5i%+beRJ=z(ji^YH{r3Cw^0?$<>uS zhl;@WJut3caVe?O7jM@vO4BnLy>v0)<4!0Jn!2m3yAi*j66xv4+vbKn?Qs(PI#AAu zcfIlIijGiXRp{lLM2LQ6Z*5if`X)%}Z`lYBQ*%@!w9nzv&$h1hf^{Z`Am)4=Sjt6P-X zH1D;k_Y^Dr@9+XELwn^Ma9H4HD&bS@3a%+5ntWo6rG)Q446ERfD#wy?>+%>6p8HIF z=DH-qsZ>aeH49ya!_E}#3AIpzCMq1mgz?V^^1~}Izw+LyT z7!)nP`m{2Ux_;``uoo~v2Pbg$TnqYjZDd(Tyq#;N{Z%3oG9QU@oqogA<7%7oHgi$8 zv5;p&TWRA49Cv^FCtX)eOgvP`%laK}EmfcM=gmh_$9UpMN=2lTR{Hk31KM|(^fHxV z-szj6t*w?VSA9<&vo%<$8iEkbuQZ^E0N#0x^NGS>u+SoU^0C#dKC`~Rs!>F>C_i;5b+=k zrqL?TZ)R0cr3!Mx>Qwm94tuqMWpa^RYQ?eN9Cog!L~u!i#}8~Dry@zOtwt+Rokpw) z+`hU{?;}~0`Xs`-DE=}e+qV4AQ=CadEr0Fj7)!rsl%5sU(Rz~$sbTch;r1t^kC=y% zT|+9r&JW7i!9!kj~P>JECA>kMjT*W~v;i2*PC^X7?MgH6ZFZypW_mw$~ z=a=O_K6BFcY{#X_3!>NJkA?1#;iNMZ_bx4bDqD35kYLSe5a`7&{AopjQ0yQek{YGH zGL=6zrI)O0Z-?UsZzuMJC}3Q#_(TB;4W}9vvu84>g;EmbH*A{pfLcyT)OQjKZn~F0 zBTLi_Fvqsc6%=)PdQ?$1BCKW{rYJ)^!aYeFGKOb~JkYuru5k5NdX%sfv~Hy&NYa;< z_Li|)E}s$Hp}}rd2DPT;Fyai&_({*xkk;JFiMMkhNV0jwd({W-qeAKZYN&K677EU= ztz3aK(DZ~pKg2;yF1jXoHh&sx(m-zGblUbcN_{8L!I6p50r5HyhPbYtzC11cLv^a0 z+Y)d5E?ru16%n2%gPsvSKB_!-A@i?uomx-EmP5v(x=U(Nxy;%kR?33m8GnB#y)DHa z^cP;o1`}==R{Mv+w+)0ZL>&1#ob*=On2z8*GBmmh=S`1mj;5PoWx7}TWDL8iuYNi* zgyX&e+of-29@q#s8rAD|Dl%14G@%gwHpXVEuE!`Nb~>j{+nI$u!_@2gOj*;lkeous zpIXvt$$?$TCa~m0wkah>+Wb4xAW&hlM^p={zzxovs%m!8?ZbQ5g8TYF4VsI$GN;D9 zsug#zb@t`)BDqU&gp=`>`>)hAF8zAV>=zz>m>Frayz*p;*2})RyG2Nh8SK|U?o&63 zMpD4@=@rz$ac32dzIfGnbI;G`rnT9d?j$@c73>m(o$Au>X8!M`I|#VnP^NF7Wi#m#}= zLkJ-|XqEpY65RLpfj%*V=#$|dH*@M!U4UN`KofLK;_E+u0F_$wf#e2-MVwxRY}C5E z(VWL&{`4(&Y(l}C6c3s9tVrV;bfB13=&4kP=h5#>M_M!$)G@`|D4-SR^(N|lF+LN` z8%-filKw=vK-e`w<9Nu`&EP4Q+h24o=5S6DK!72I8)Z%Vj1JLBc7pka@dpeK4?_V2 z`drkHs=lP!XD7yzFSetcU9Ptvg}>p4I`{d*e$O(%>Ulu zDhHXOwH9&XN8d+=dV==KM-$ud68re0txGWBtZg~Rj^5;G>XwS2vs~j|FHkP3=*@xV z^(n8Q*-&isfhjB%Ou-cUQ_Yk1Med(NW6Yv#7~%_3!2ySR^~12=|F+(q=#w}ZZ;M+f zF zxMg|QzQw@glklyqf1-q*O4C){U~POET-IWAm&mVgdHTt()+yPom5=9xJVNub?eEkc zO=|IEbXT}Fk#h%&9vJV)UjG8wJK~Snl6}Zh+gu?qbDBCxiZRA_ywkR^D zx$K7aZY8%@(KKN&B#W(WStiIuDz`E1cm_F&?HhW9N5V|OOpA5#}Fy>-ji8p*6 z9wf9FS4Z)o=qgB>c~jKuHM^0X{n$-z)XW^3kf^KJwS>)2?`JH9VUSGnEzjk@+tMvi z*M0sXyqKTo?ZK(Mu;PDr^%{+k;_K**>9dWb{D76&b^A!35UwohFkzLItM8DfW?J2` z>zD=sa}@&?k%Ofv0Q)pC*Y9$UF!}g(3Ib7iHdN`YF86)G>IiSb9ei7~1YP+_ z;AG-xi~N-HPm#LT$`^L|#qIJf{)yI;U6(mqWpOrepF?9_5FXpdz%Z}V`GIq=v<2+f zr*XSb3?V3+qtIU?ip;3GVA~^pDJ-0wLOJ~$Lr54QQ9OU;%HQ~Px+Pbn+KAm|jw5P| z!r&OW6uD=npF)W%WLqo-^_TXCo}cUIR4glHW;}Us&?twc{63d7M=SHB{|;{J5Kv{G zj&h_RwYf)%RiPJj7=Sb;{qnqIuy1d7ZL86uJ|1h8hK2;Tl1vb%)W56uTGOs?JX+^G8YEU}`smc3Dp8?{jJ=DZ)@a^9hJ|9|y|R9U;B&?Y6DSB6YIm zYZ*Jg(!kd!o9>pH66Ge zbEE;P`#JCWj<^hYi`0;g(RpRGKa%4zdxy$}wlZS~o?XAr)8^!3?$110-`6mF4=nMT z<)47r77fW9d^m?2E`TtoD582l^&;!WNp#FCP`_g1t!i3)Zf>pK!SpLtXC>)53Yq`} z;DWaXuh%cBTM6-dcjgl^!k2+N^1*P+eoY%_uSH`R;Rk1Wif7!LiF}=rt2R&>Uu7|~ zG1#8|;AEqTJz(c?EO!3gluMTiii=%fJ%!p^v>Bme@>?g9o4t+H5~p3Y-)7*;t;_T` zB#I{+MAvGL9YLEOaxJtks5xJD)_LKN=1D~+^1GHCG7R77&is0R^yW+zeL%g0-H9;S zKgcYT!(jZ|nflMEA5DSLn}euL(Yb>0oI_YFRfu?&5<+k9NUyG7O?ZMbd)GXf1YeaA ztS7rb>2*@upkR+4b2)$&(NUhPhDbxFzFs~HReo!lhA;0KiF@p3WG?TySYqjud`jiQ zhZOMgeN5p#>z;$N06JR@6I3f-aK2MyqPv2_-e0_oqt(10L{$#e)PTKH0K*uTtA^@>WREq4IL;%(L*Ok`Pa!`ct5VP^sm%e z%$W}G-1-b+qZodR$4)2VJ?Z!iU#9OT%g5H9`@PJxiH{qME+u~Hn%#>@_f&rd!3t}l z6)s6>0RI!RD9RO-Kyt3Z$n+WYF>*iF4_z%Hr|Lmclxu8j%g7$w^kvgo19Yq24_gYP z8maVHEOU_fMc;{V`L^F?cGwzhqQDcbMm{^Uh?wYIxm}i5Z@;mdOEZQGoAJHn75@Il zc!fhEy5_ATYgK+wg)2+v+7xCJ!aZW~CVY^zR1RCHvBZBJIoZl+tNZq{=jA zrYIxIaDrLH)ZI9d*IqLpg}uA840f4}eo473V%&ajq8bdYS->o7kynnBWE%?K)QK>5 z@QAsC?kqunVaq4Mfhp0d)4Sp7ZljWjBU!7TDLIyS{Ix(Z6yDf!Nul<`>@0C_>UK>Y zljKnZ%n8Q#Z(Xho$Z^z&1_A<6q z9qr|*uMdUSzZkI)zo_lyT*<1kwJM&VYR)Xods!=Q} z9Q99U;4pL24TZr8axt<6qF#8jg+kS*X)i?%ii66nu~oUR-TK@}X_b4H zXS3Nc8Hw_>#5p?mMNKIU@NR^_TZSi;-0`{*r3MV!yQDJw62G~^Ezq0mMJI~0pcMi{QpC4Ztz1AUcI?YrRd(9b^CilWtN~{9o{o5_tqZwgy#85Ae!3N z3R*$Dukp@z2EZOb{^$+>(y0RxpY8BI0XXnCB2Wn)spj6Dcsq(F(QFK@QqZ+sK$&8a zqx!}3&}{_%-!09U62Io4h#?4HZmurSW8!DN8Z7zUQvU3<@+TWLZed=k9vvS`%$s^So(_FWRkls#9y>UwQKP6NkRcU-bUET+2 ztkxy?tON>J7qqal_U8@OJ^|aIOp#M74*UvVYQ7hnWUTxHXy~QqRmm+qxg;WAw+ssf8nK`B4Y_% z{K`T+y<0CNCE3ZoRZ!%DY+U#|rH&;Z)IKi!363Ia_#U86!_c`XuYpF?Tf8kTXFlorwJZc?iCX5gcN8qn zAb?=!%x?2zp2_s;57>F97U33|cV)K9?5|74$wh!-{`)`~oqoH_ojkT_rc8RfT_oSP zNMMU;lQwgAa&bnvgJw;$BgCRhISaiE8V!}lYlBg_ic~DXg2pwP^pZWa>6D7wB)R6E z3T+PXUYfaiUIeY+q8>JZY{QQ)*m{b3CiN!!zOKf^^`*BJ+OyPMpJ4CT!P6?a>CWe< zndZ{iqb;^GfQ^l2pIK<43*!tdR;y_Gr5h|@xwEQmxzwP1u61+29;)Y9Udt}A(RRQ& z9K#U%^x1rArW5{}4C7<2_Lf{F;w>*VN#$P?x)k){*?i33wH;$9Qus*5ZVk zZS@9+w=g)frlCQl*iw8Pb#H4HyxD``Nbtp7uVNh2+MKNvJ!#r=@5LF2VA0>p_mLNR zJ+NC%b}Sgxv?V6e`XpowD&tP`K?xn23v>7vwNA)9LOtrq>ltaL^Db{>U}p-mIdnPA z@SP$GXetESPESuzs;qbkz%*aCc*JipJK<1pD2?@%QMQX&9Lk~d+%7_Q$EIWVw^@Bh z8Q7Iat#=sk>=?{E$){slZ{UO4R7tOmb2cAR@pw7s!Ro|T17AML(QD@{u8q&X2qiOp znTWY>Yp-xq?NXD2?-1yUHP+fR0p;B%8zmCAA$cUnWQEno%j?44D|&ccs$K3^{QNW` zJ>J@Gs(r-KoT){IAoVnOZyxMd!NCVQYX~Mi(eZg3+?&}CmA=@{h+h_Pe{c4<8P{Rd zOSzZ?kBfd%VvjSgs$xvJ^wK?sxzukV>7EvNk?UX>sn>J+}+i{-q<5fkX1Vfji0 z@3LEVB;QPTZrvYCjjV=;GkJ>LNzAcU%Y~9VeJJ^;FN@p``jmSyttK&l@3s)yAw**! zyRYj_8AVcQa~7UAMfd1$T_TLBk>=LPF`kALcn}C-b4Ex}{H?PAbdw02+qd{8YGtjv z@SC4lJ_#gKky!9wGWr$UBVe1#PH{dNYlkHGirrQW?&>M~;HzkUkSKdX3i%y@! zVl&Z^3w6z|*Q;HHef=84L|2Zc3tW(o#Af)Fp~W1^dNX z^Lf92HQP9^rBu~XdmW>OC)D=2u72F26m7g5OCAV$SJ|@A8cLJhb{E|Np=}n-NKx3j z=Wyxyk?K6yYx9=v1tV2>#Ro=pU7@q?4g)BBqyKq0qLObrDT)N_YB73^|kGW?ajl>>B$>e5w+2j@5Jv-2mt z@Cv3wm(A#_{s!z_O>8F=mXjr2cSswB4w)r)CouIsBp=#$M9@o?W4+b9wjWZ4k=#k| zGyA8wj2YD^-qr`iJacMqYwHkXt=3|JTcs}!b~ds$czJB)?1rLSXD&#iu<%35Hc32- zC9>*}S?>&bTsk>>gThadc7Chr-$fuNf6`0dIp~B@NrxXn^_ln&*K5gJOlk8orm`t? zqqROxiV5Rkb3)e=0+hOIx5btz$R!_)iv!n|Z&Hb0=2Q6TS9UFJp-$xCAhEfwQ0?6S2+YSHe` zR}g2vra1*d(u1SF@&iI~0WpdCGFD8x>qo7ztq*Bv;F80cN`r!zz~Kfx&3N^ zmqvjHYzCXWBS)2HhG8rD5>LIQCexpypt#Q}40r^275zeXS(Z$RN!pzTnBtT$I}aT?!lud#6cwa4dupBPYB;7E>^sK?(>oNWsNkI zBQ2&CS`ZxO`*{_-jY?w_$&*^n_!->={<)m<9@0aF&qwiI@cRdgE((mrwldU)p0EYW z9nV8_XCgS8%KD%l#P}Mr<^jnh`2lTdDB-5Qe~z-Gt$_gss$NkwUgpu+?^3oEoAyZ) zXo(15gLgY4MYez!+IKf-kdalraSMJ8$rAe`pB-3Z#f8w87$!mV4!m=TM}Hquf#@=0 z!nsBP=zio=nr?`v`x>!9D}*PGd5j(5ljkq~K{K$-suW;FrgtCG;>`f_EIp76;MP!vpv*BcrN0$8grwd|l?= z-!V505PAJKuXbg_716z_obL_mqRC1VXm=RhRUEp+^wtVE`eTJd7?%}&7^_>%?8&!i zCP6(XgE~}j!xK!%yQNqvRLA@i@X45MoLZ3|-!SN->%>R^wlu##q%hbv9Z^|y_4C}^ z2Y=VbtM;CZ9cfTClA#Og2e40pBYqHYBs#D7+6Glh#Ttx3t>IXOH_@S(|5%e99>ud| zy$tg5r(}_|lHzMd2#_$P(sE=S1uMzHv5q1?$x}K_gIv7~_E(QtG|2&CG%=7)D~O5W z!LZ@Y*pv%Vm8~VJh$8VS$vrpr?vT>JaIks#{peEy9$CvSPSVqgFy?N#U;Dt+S`s7H z)y-6l%Yi*EbM!>+)`2cPiqK=m^*JTs&|~~8f96DsUP>reETP!Z&&+#mAMNpBP_wKV z;7sgVB8{t0ZzLJdkuhB;rGtyk-0`P2=(QK`C|p6{Cj#xpsn?n)fW2crDi$!;V5o5>@{7p8xvx&eE`>U1O()s$>XEiP!gwV1!n=s3cp!0pfdelcw(k3@)`3{Sr>v7J)WLCl_U zl_w`K!>?QQf;&Aq#lW|nl!CZ!OpS6TbiS?4KQ?S|L;$d>T3&WGOV5dV9_;1MDH#u!6hhnkfJRt7QD2{RkHFP*P zCCGcBhBE-#=#A66RBVFPi2nWPxm8ZfGxDhIOQ*1s=UR6CXwR!=9%F70UFAu<)=li> zVLccT)G(FfAu>xnY#^I#6dLu{R9jKLiRVFEJMu;SJlv84*hYF3`4Wf2Clkvs%-F*E z7Pu$=$mt0eU2%4dk|Mn*Rkvgyo`rL+zE}_##URRw3@Vw*)Z9RIV!IZ)#!_>bWAzZ$oQ3T%+LDu%DOOV0GBdO zz+YT}hP_gZvUIrT;O=*p?YPB{t}X^mY^wn9i^U`hPxETiWlW1&MQ?-%Y*m9ZGCexV z$Y}n*kD9C)#N_VkDnGxM^nK}Aud$zN1X^mOK4Dd1rL1}ugTgj69JO-~SqklL%CGvY1+nu$> zAkmoFoVyBR=S}g%l|^#(r5nbG;4N%7Yw-ZYytb$PBxeoR$=Q~URn1G1OZ=yO&%`VE zD0T_h>X64br;NKSoZU2eo72a8w_*ho<_aj{H<^qpcTt+&nmFvV7}F?5rU`9!suiXN zf_bl!SIy|bTa9kV87iYfP3zAY3ydBN)~O*y>cphBYf%K4hnn!lw$x5bou}+fI14-v zg=GvKN4j||9#AHQc_dC3PhRShLi}9y>%;x!Vzrp_7_?QUhb`{f_ig6u4>`@)3R0IZ z0&;;*`uabv{RPQ?5&L1-Z0Lo*azlP!~fA0%rEhQiJDLW|9lTttmA_04>ldL44KKrj9+MHXu0JN(aw{e zmvL#ap?X1g(0xXCAbQ`{pV=xM4MDqA$qn zqhrXzgODu}<-Ox}FUAUsnRam# ziB_*C8;HZaBiQIlb+@Saagxd)GvDc%t5YfiHck`blc`WA)0GkuXg)P1Vc)F1-%)&>+$ z8zf&)2v(xP7UBkY0Y$!@Ioy!_yQc9UZmwF#=NGoy`sh^E4vdnRN{yC$R~sAtQeP;5 z^7N$vkqqmj&tu;~i7hv$Kaf(?DZN&W??>3>0Nc&q3gNAvvZ;n3=b$TO!Q?Dtb|y~R z?8ddANsf#5src2;-~pwQvUd+&M?Ft480f=9KhXy-D0TLm4I$jpWKvoGR{2sxKU)&f zkIt&J>z*-3o<5&0xoS*%U6q{vUYJ#Oziu!%w%*iW=(j!^*6uUX+3ri#{01yNgc}nb z%Dq(cg}U|}^?!E(#B@Kyg`J_B|7??u(YzI+5u;MpSbJc+y}iD;f#D|rLu-|-owJn7c$e&^$GXliCDiwwmme7Dz`pML}< z^@`0L%3KFva%b2E;vqJU3hC+DTYT6;6f`#tFP(pT9cN#m^$jS`sud0ZRU4Zt&i@@x zzLkc&m0r^qh2qz16-K*5tO+hGiLUO3U@9qoxix$PXn%(4EV2)l{EZcgXFit3yAK^5Lq*N3wNj=6c4nR= zteTE$&7VmJq7mao)y<;#>pm`Elm4P!4`)KM1Ey+xbW-F`Oo1 zj{mCtS22M55px1NKTg2^`=!=bHIIPS`X}-MN4|dO4DdHJo}A8Om9RG~_NB$3RV4oJ z=|Rgzv`Q%RH$_ZcW1CNo9FX0UuGc^q_={dVJs7J4)S9v0oDtOx=hc*nlgPQXWLPtY zbV1bhCwV`4C^$L(`dXH~^l@_vPG{hl*q%ut3SIE_+;RY1$*-~^)r1a2@badog9)XO zZ3MY(*(Jc>S^PnN(duUUAUOuFsUntwq6=EO4kg7M=PlBl-#21@p6BDHR;>;l|ep$r3DS_$v09u$hKbbO`S^X!MYyi|tS@}l% z(@4HhMnhHC6h>b6=uja+&q9D;vC|?3vL4(BE4EY$O?AO4+<78vD$nvkH9#avzNoNL zTFzdXk^Y_ry%cW*|E*`g`d-dvSji|EGkLoFJ=-F$x^KO7Ihe>_oK1{dhV9fqt=y1# zXg~aimUAQ2%sfuGG>urEo%VI=v^<`z4HkBKln`O1m9P-AG82)%)A)50?VP+9E+?v}Rt_?B&_Ua_%kdH;Q7L@mv*%jE@d!I|q zjcq0u8&IKo59&29*+e>e1Xp-YB-283c!9vAfohVm>PI3*5@UBd14@}14yWQy4bMjB zrk(h^dA^-ICWq28=a3??+;6Yu)Ex39!6}NyhVaCrl?q z6X2A%=y|Y9@F1}X+C+;kNmS1*QPm*(8;AeP6ZM!4R#J@2 zGx5X=#X5kHRu$Qpu2+CyX)qgY{=}s)b%+_zHa!ZfX?PEuv~bfjAV}o#`4Y7uKc>mo z7Y{|U{b5fpYxz4C*$*}H9#A#*i^U_SB=Cfm>M3+F^a*kwcJphnJ#dphLQ|bHykRMt zQPXZG=Sn1+YrW)P1clu@r>c+i_=K`jIJx%)0f!e|47vUrrvJp{2&wJk zG|QM)E#0zXhkHTIk=Z8g@{(lmKV|wC^w$&{RaQaZ-)c`N`ZdB1cjR$O|DWuC5(ZTE z7h&I@s&5IKx~h(vA*4iB4M;)0*Q8?8|O)H?i{RMl8gKLjhi`|A@EMxN#}QuWl2NfIxn9qsnFd19U9cp&pz=Rx-r8xW zZCV0fsgBO`e*>Fdy>7Oo%-cHGfyA{2TSX&k>ndQ(RQ*;SG7%}2P8U}59o4WqRmBO^ zz#M({iTu_18=r(zV9M5#YUrN&P`Bq58E`qw7}BAzle$gIq+xHn2OhjYJ%m zlXoMco*~M9igZq1Cph8o{ymxv6m!tl3Rjljdh5gxo#VLam6q@!V>xh(NFXDmJEf zwvXQTLULP#)o6OP`R~OTay+uo{OJ~f)eki*7ID`r@>?wa1oLair&Ns?+3L0U#_Kza zesfa1u1X5LLr}0WcjXZc85h+3cE=^UL)X2jnu3j-VJIwF_^K%5iyQJAHos7{-WYn? z3ol;h;SvGkp{%G*dA~PFq#D)$@nVe3nm)ddxzpU+y?^TLtc@Yt|6dqhWwe7@G#o1P zx(;-*GGOUq&W|GXL+?w1C&!04(ZQ*~F8&c884IL!{$zh!PFG?k+r+j@?=;c0k#|@U+U%y2|WDfSzG+ymk zBzlvKH0w`pH=D*zeQyiZr9GVoL4jX4+4eIJ=>t7xF%b-|Bj0KK^ZDV2V8ic^P;U$z z^<*L@UymBa@h@ZR@Iu!-!wL_;`&3v*9!%Sd!Z;gk+3~$va7AbId|H#5Q=AR?nWxiT z8^#r!`C42?2T+HB=YU(Bb`XqWIXSQnt8Ps+h8)$|L92k~%Efz&^PG$}ET{s{}!gYc#CCt@2sD*!RW^r+iULLZ9F0#)HYT zi?*!ubvQ}GK72Jo9(5nPQ8-atfmE#9yHYTxWu%ne0LIWIp1!$(hSr%=nu)Tg$3y4iO=>>TD~}NqnQfcI)IZ{dv{u7bTfl+1zGHbnz;##-984g z+ZV+WVev*kOna|n*{xNT>tBSF*~rmY9-G2YWP)qstGU|YGG+~!{ZuDKmb^Jo6*E8z z;!+p~*3cseZaNYQ#2-GH1yAMKrYxzv>otOTYOx21Enjcz)eIfdS5lF7B0k*ef|9}0 z%bhazp4D0D1R#sl(8c?w*YIK*oCM)NN*B)aDtB&1uM9J4f5=g|AEXf)QK9^CWcwbQ zXUU4aO~aFS#^{p_KzD|*@Hd02f0LPjO_6BwUscS~IzA;-KQKG-4{VpN`?jQ_PMpG) z*fqk%S6i|7aGrDZC`~$%8Bo0wiN>b_T$zT6gV7dceq931y%v7HP3Bra+V@C|>`Z{r+hbA4tX993oc9FTHN z*?Uknunr>{Y+Rng$TeP&g3>(vJiAQdZ@sdV;WG?x7QPiB_K7TjqhsU_#bD_dmwFs0 zSeNA1U#0MV>t~tGEhM|6YeoW8OZ!{QWy${`aDW<)1&B%b_5ifi2QnPcpxga{)Qv2n zxZ?MiNkaoZEQzn9PmN!8vdssE`{;k`>@Uu*LVN}EeVyX}VqFA~51@LI`-1jdt5>kt zg3o#(M7#c?F4L~&Yq@z5Ikk)@i178r!HHkXA-4aiA2?$qxI;5an%2^OFCjf4!PjZ` zb&#?|c6|Va$AcNDy%g$S%QBO<6GQ}dN1H~ZC|=CH)Wmkfp;>9@t4d%<^lPUDORjUsi{tMrnp1-~zUb40GHT9pcMVb_^%r4$);TteH zY6h{vU^g~Y3;~#8@92$UqL4hl8SHOEa!9o6xTAPRHZ?QJM%sPx|u()#f@+dFk z?1^dN--pav`&NIbwNq;YVSb#m-qnLcW-l6>PFi^1O6kdcUATzwFPX!$(3>u zW_hLR3Jo`$-5jFttsPI^DL$@|78nz|Z$aNP`J6EaD|q`k?zdiHofvm#yzdxvzu9(N z2QE3}(JV}R$X zn#GeI#mL}?1`3M*8&g~8L0c?pn-kM)2RVX9l(Tg3cJWpMD_}EoE6$6fDRjn&Xsqb0 zWk(ZkW6^StzVq*!<;0T-)WLBD2(5A5&U+>SS*5PuEJcjNzsBCFpYi6Z}owZo(kCf|WVJlfg z+UEdl_pNCMxy%^LkJ-IWr3QZzi-vGW@3l1l*6A}ec5uVUo?;?jiT`=Y=NruA-a)#T zCSQ5-Ut&hJV1kZ2=f<)@Z}Yc$QK3`keQn7z-kc#r@w~Wpmj6>hzfqA z7vY9Mn^CYM%mk6W%wPYKHq1N9Dw_Rh|51u7X0N{Yr1o@*D7mxVP-<+hJdmWp=YT`W z(#JLZ9HA7G(dE5^8>8N`a4R^E631sk&Q z06$etVXgFpstFN3zUaSMtp?lsE+bt6q^y{-(S!JSx?CrS{8YdWvxMT8<4v4{=*_B0 z)p$7^PNKsdt-r_8lCq7&pnlpKqngcGjn&l*)Zuu7SCo}k9ZVS4aWFD!BEQ3yYN+W= z4L3?86o73X;RGf*DFV%}A#@63bgkGES3m;Q{p)57=#z?DZOQ-6U_(x~jnJy(+CJU= zyG9f0c##G3S2>z8|Nfwon8jGz5lEwd3o%3fwP!URbtKOO1Yd0#aH(oAZO9Uf;rrSe z+B0B3O_ExBDktC#?ViK=D6-bDDJ%oekDk$9mg&Evo}gaaXrl3-Q!6~68Q2yt{Z|Wc zl?r>O(KuHtvlE0qUYpzg@qBHrf@x6D(p)j80i&Uy764Gjl~0>bA^YKQRk_e|kQ~hhFuvd~q|tMx!@KP9P>mtbXCbm9kF5 z2VUsmPEfC$U9=AbGSM$7@$q?=gHnV8XD(ZFZs(NCcOc1nTC8K+va5H4Cp7B1I0DOOzt+Q|aC1-<3 zk0v0+%k7T)Nk%P+6=CI~CHNlh&LkD^1Xgq_OGe&Hq{AC-Dp370u4@-j$beN11J5*( zkIPxi0fgx^{*sFs(g}GqyL3LCa0g}$`zXIhzLy{V6`JM5NT8exvLqzgzXrkxjC&?Q zO_oZWrG>F66K&0o=LVcBb87m^=P?#;t3_tJs&+w#GXMQvHdAFQMw!n&FBQN=nAFRY z0{OU))i)ZCMv!yK$G}S6+I!gKg0fDrWagy%6_XXq+Wg}ML`xfb<5I0({tQd&&D5Cy z7~>;hG*PpRJCM4Q{yNiXf$)1BW_=UR&3I1Idu0i%;N|?_G5fEa^935{13m63E<+** zJHa%z-XDP7u%5)0Wsjx9oAu8`s)xTxuGsrABud|wmCA1a3w(H_tblBc_;_-JZOW^3 zJXYbY%+?=Cs%dY!Li!6*OQbT3=s_dFvkgb8Y=AGm+K5IeIc4|bZJ{dFF@91%1>5LQ zNA$O(ARxel;qJ)PzB=O?M;t8a|4*$4hQj4X3Cs$SCCkV*kxD_Y4Q?fNq8|U8Ot9qs z{%@20VfWQQ58_F!|I5q#62F{?RI8tJ9{$vqrU{`|HQc^oL zC=7=js73){qvU3DY*G!Tp79n$Yzl)e;&{?<=6`zax2{Vc*7zEmc`xRmc~Ltq!9-gyiyNhqcmnQ-V*gSBV7X7_*-=6%J3#kXE~zSTS8mnUZwM)^@b@ zQ_LWCV^)|)2xt)+!IJ&{W2_K}#d$A0(H#)mz0~@1^DbkFRg+o6e`uRjPY& z=N&aFQ=?SZwD%-i*9$-_$mc?xmnxEaf`Mqgnz)rLpxbw>!X2zuqq;TbiWh>8B4+ibZPBf%4}cyboz!EBXwG(Etv|f2xv}d~qfX=A0`e$o zQ%tjK(t{B<{fOmLlhvR;%#TzLv17%+^+o0nR3Dy-YTEs^s$Wlju||50{HU_BL)$y3 z;>)7x89rq5u~1ihgzRN1%CtjMdi!|Y0AE_f2^AK4=uk`o#JwgfggsV3OI4)YhLBis zWKf#FR2xL;Yky`6WO&QuuS_Q4P@{gsn&fZ+=me+RqWJ#;A z;l($mzAjqNmJwOKeTY*^K-AYBP{Vc)`wlbCs=GKj`JxcuU#xz6$grk4R7*ajxqL!_ z#F76=!ZWjZuzAF?D_{RiyoPa*n$3gMQI$LKtkSxv-vA(LCqS^XRKW|hbWyMaP1p^p zt}&aX`XWX*L`>-hV*;TxfSgA7`994E>9*N_o_*(DO-anj z*pfewt>=fw@*i_?(TOUS-gi?~uO6)$8`@W6wfeJ+f|s4|Tb8OnFT2~#Kq7euVXRAG z2gCAFbSv&PA@3n`Zt_Xwa>wm?Q62`)Q$roJ)`(@MTl%zZr_a9=Cab4See zzZ!Z#Cy)m);Zch=XK?>tgFuQ5sPJUSKS-2F+}bg;N?iIY9^WhmSv2$p)ClevkUzf} z$uw0J8ll1R-p4gAfVz=qc9(CXId=SgJ1pl*bzr4=X`PQ^vCS#HYURkO7eg8{@h4W8 z+&v+*TS!-xuWrm+t!m7Jpz(KK&N?eUl67_zWhdg46W0S^dFMy-pozMLV>YJ zWG`ppu?+eyt#0^eM3mp{shi)g2VC%si|O0Bf{CKI_2<2`Z3p_W%NsJg2M(I+L>M}4 z^#akb84$KXOksM51t9V3VWkf3Euc>3F(U}O2ON`AZM!jg;f7Ej_)PiL8&dtdDm}N) z?io+_=uo%pSBg=uzo?WL$ zWf|She>}N*Wx0tg9NoFa(p@bvlWeRO17B4p&gJwJZN#A4BjZ4R7WrJX$*o}9@4_h2 zN3^xe{Gyq?fj@4XGhh;Qn_Bf}8dvlFB5EhE25`wARO-~<89cYHxO#^?+Buvr0vrD_ zNOCs&%Do3Bbg4KfdrW(c*J$8?s$eT#@Mt&Sii;gQjF8hHie(`Q)9|u=s<4R$UhF!d z5uYgqot4DaSWLn5T@eniUC#osXdiBK|>bF-3m;zbuAc8}d|8Pp`>>G*D z{!z;IX@@oh-8+3qtE_$+{|HTIn=|ct%7Yul<3U~9WSaubtt;FGT{m38HAx=i(|iEO z$6t9GmXBJ|6OOZu9D(`g=B6L>WF<=Nh~M7jgzB;*puY;XL>uWhkv}`BrN7= zjK2Wfd*T)zdt-UpYRGG=mce)+&ATm-f=2z|+32OxYvtH@73~`m)toi+xt|kcRdZ*uhQfUK?q%b^+VJo^_XUImHnHiBZ*5-{~)_ zHb5<_s@6F*T0!c}h>+N3TRd)G{5)ds0!isW7a6U8t?sV)QRY{V{ESj&p+W!>-SG>2 z&u*C+ShXS29$bv)_8rNHtAqo><>5h4`+Q6N!~1v;vFv;kulHeX55(`8pscWVj1mMn z6^jhphIb|RY=|T>a3!vSSM%XX&$}Gg9D_~Pr;{^!ILkv{a7u%pF^;K0BX|lfOa4bG zLi~}+m8E_((V?rJx|jwn)T*ELa-H>@CGkN9>kTxyI%^Lvkq0_P%|#Ws3-9Xjem|I} z5AUVlg$#=A(>;TcRy=NTLl;4aNAfISy7eCmGlAGwKYPw{p@cO z5mlEd?7X{TSgHzUB#+?9wBbar4Zk!Z^8MKfd{@$&KX6hNqp2KPL?rG(^}H1r4>~+= z*T9uZ2H!f+>->ZBDGb9`3D2)~a4;X4;PfBsU4Mu5nCH1wY-NFfY)^S6-a`9!f$%=~ zj%gR`+|&v6;y_8^0j(sQKsIyrHLCfO>kMc?omxJ>*Y54OJo(#cU!YIhkLXfLSrl5% zIF41Tp2IW&}Ak7>7L_m`3k3Q6C-Z+xC8GcJ1%*ey(&+alSj5?|u z=|j!mYBHaVl~QFI4IvoBu2$$X8Twa#AgRCD@;8L0W#J9{6KIk(;Z?vg99&M*K)5<{ z@J+)GXjk*5oD{LYbqdewCdq#WQawLoz79V2KiTkYHP*r195>CYTCkYh4u7ys+rMii zjqke~e8zEA4VU#IW-mNWm18cMQMUb&uCmO4$dnALjs1~bDLQ)-@G-dI2EiIvr}wrj zhYEy5rGE*gh}xRBwd}#Lw0f+@@4@FG(7FLd-B6oSOS9y084gUX4@LtpX0Z)75(Ozj z#s-qMJ%g}kET=ubkDpzfo$=o8P^*BpXK`#?;C$n;!z(6bcoSUTMXT`H@znYZLHUT7 zZt|rTXbR776=Exr0&MrV*$zVTKv8;LdY<6v|At{+`k6#eSb;6aG zpj-3mYpKTLDQCOBMBpj655@{Qy} z4dts}%`s}SxpJumPqouQjhd@t1{9~J+=C#w10>!l{x`D@k7*lIDq zrsby(0Y+s?z4$oTV&EaZ!6-k?x&GxmU)9;N?1S8cd#{+Qdv$rtj778O#v075T#}bE zB#I8kvM309O$7MeuX@ui6?P%3O+i)nQ->8cjaaj&zfDed&phP3|xi^eZtVO?r>lkzXPv_}KTnf;Oz za+Ci73m`banZ)4l=0rH;mK^SLcwq^4dB=0l0Bgp0{*%tn{WuI}b|S18WA=U<9|2^s zNF>}TbGQwBTw*q=w1~$Hh~L+J2BCBbFUeu$|OL{jtYuVbeBD zTWwU#8Y~wT7b$UGFx$$vF!S^FYx;XecAa_(jan;fXBJj9I`rFW_H@p?gFkFb%(;9c zBXqQ>SJ(V+ANK<{PU48PsfpHyer^;9`u-7?iL}A5=&SB^J*l+>Gvt2g_g$e}4ve`P zc$~vwbf9rI8#+t=Y68Qwu_ia_9oO!kPXdc26L^E6T-R9bmoSt*DJ784H1 zq@AZ9&{0yf#{h2UI=j+2uG4iySN+X`&|lm}J5rT;;7&($#tGr5=)Q@fKpN2&p}W}^ zd}Ek)>idKG^12xmqj|>|begD!7TM|y219K^>o;Yrfx)8J!=5jl1l2TxqGiF^KmD+o zurytu7`$lYXXE#ICtk!wajk~SU8d_$*7iXVj5c}l9%F^E`NlX@&hQXX*$iwD!QPLW z!Mhx(@gMydy5ZKWQ(7Q?2y9I`rA;SA4X=OYF!^Q}PBwx{(G6JPva)TI8u@0d1u|k{}0dO{Fumo`TJ>iC!d+3*dqg39(!T3t zm!IE7xV{%*Ai4(cUCGzkD-m_|sUh?jR<|-1`~|XJu|M6QvqQ zgv+RnbM2@lo0xbSLfNS3;fZ>IR938vyClOCnzvZ zdf;?;CxkOr9>Qm&rRrYyZkP70*74Pi~!EL$r6#L`m&VZw_NXGUeC88nvyZj9CovX zsHji}Dmr2rbM0K7sr+Ni%=m0t`ls$WaI%t?Jo}&Gs)yTz`zo}=8{pe^wwybp2}R3} z1uX`*$I?e?ig-!l=3(&yW3N_6at5&U@{)n?#q%l<740yWT29Kyo{fJb(LHmc9)9FLxvD?At7DE zY-Y%rlWno<&`ngF#E%_I!y~TPwB(!?MCCQ=M1+(3sTl5`m~|$%e6qc&=y>G^m}LBz zi{(q1CD09@-(G?%^@t!LJ!4dl8w^iCACttlIhtzL_AJ?v2MRyRbT6BVCuVC7P$|Po zD(ETCb)$GQ4f_T~cC2*2`STAHLVa6a<81dtI$9N`E=d9;y_KY_mgr9#$`OQR2)#@S zg~U`J7})_8{Q|U_oU=rt34yrHM#!jXj`r z9x9#lho1Y4t>{NoOR>^Oc2;p#pw2Xs>ti?e`r~=`lf4$L2l(A zbH-2?XU`z?Hx$k2m*c=0@8WeLIebJl>=~=MLg(tXRF=IPk{!E}OEjSTUO}d230z=X zyxuI)lV(s9X%1Ntv7+U2F2h!O*_L$Ph(D=_B`0mm=r}?OHUUc zxusjGZ(FJYVg!8vmT(6%ZOP-Iw~8YE7%3+DfK2jMJgMv%_#_ZOz`0fg{zC9cx@M#d zyXj}8A}bp^w%i8t{Pb^ktfktM zk-ePF<&SX)MlY8xn?QhLTtmataXw}KCzpD~prd;1NDe0y2IELGO@pX}i#piwxV&x+ zf%Zg2WdmVYFI;~*dUmRvN&|z<$&vqy6HRUv7!Akk2NV$k!M2-WTa}Gm2}$z3R99w! z$r6Q_Uh@PE!R|xVjs)1w-=9Y@(_dO`T8WBFNgLlg^R&zn1ULwY z=%vxFGd&JKNhvZ-E3W6EI3oyMZ$pTdhSZ9q;rRy0woU&c4~0b7tgH~Z^p3DQ&lscK zh7H#<`L1#iaL=QXZ{v2ngpGwue$Ntc$th4s*7A-+%Y&ssExkex5^X{7R=dwI$2A29 zm%NUIZ=j5}TcI=He`m~GWRzEBgzSacP7UA3bWQ3RBMP~)9UNuVcI8raMk*Qu`MqoPSNNJ34e?>qBQc1fH!`p#ej5;?J+Le)k)3u>w^>HmQ8xji9=n%r`QkCl zO}JEK;XfWBoo^hE(NnAR$qF0g@CAdny?Uei1Ex&+MJdOGr5S7np!>ng`lgfG<>e>9 ztoEoF$xfZJB41~Hglp@8gpe=>q4=UfbtO?mn>80k<=|;*pP~AIOa|(NC(i}V4(Tmy z6gF!)_mtGFZ(NwQFYyDc4P15$>W<`_sq)%k$EaQUfiKZ8VCuvu{n{SbU$#v`>8I2#LMNWG zp_LeclvhL>$ktKk^!X!cpz7Dv>sCJP*{`MCkv>smOK|4Z0(5@!r{E_SH?+~~WfwmG6Q__HL(hvKdruRsT-SyZ{D7C{C39I6$mOIV|TFXPPN3q!>9eLv^jNAR;=@l3@$r_>J}4*vE~PPuME6X z-Km*+)tPZo!M@R|oAJ*!bN#AMjNIJ=I7WsoQgYM;i!tgdN*-^1k2hDc!O@)CiP4Mg zs&|PxtOgXDx#NMd5b^gm1jX*V~B-85OQD|pe{WFx3c zLSYys|MiCMVoc5JULjoERv|$|h2vB)H76EXvBClhxewyU@@r! z-9H5%0GJ+A1{9P3Yv%sPSoSq|#y}2zLl5AxXe8z$>kZ*;&o$`LtI}P&tZGz3zt*rB zBNhG+q#^@+ZVvu0&;AY?nF?T7kxll)Z2ucweYf~>gR|ACO>nYd&-Ia;)-uVlVx=jS zRM8BFlwXDdt4%1m>O%9#cX(cwo5?%UYV`6r3V^FpO=Qb@djM^~pc}kbw>~9aNICoN zs=`_MC`#|)8Cy9LFD9u-d#h;X zxdK)yd_H7x={S{d4n=e(ODZdpM}ZeWD-`0o3P@kF+CrQz)L6N9=-DT-{fu61b|tyh zNd{V2PabiD|Dt${C+wU^C-40M)fWsXRK1ZR9kadbso0V}q9oIl`%~ORL3Kx(ES&+D zNHNYKj*7CBTvZ5vKDE&p6bBTR zbeH~glV1rpFg4Tj6SzH35;x~jAvPS1`VV(TOSfAImU9$X`BJe(WjyX5Oh^jBtb#we zuG6Jv<`~p!wQP%D+R!AG>M58)qnufvWY6F~$TQ2zVi_5r7tSN)XAAYDYMHCv00vtc z*zPbzKTHp;i&_*Nc1K0TG|E;P(VE4-W0}e6Hm5ZccE~#V1h2qeJ=r1DmHVb`s0`6D zB1nHV5Cv@6yl+zjAZB`iYq3+^4|$D~Rp{uG=(O%RWO^iV)A;<*IJE}E(H146rPZ1| z-VtgG;Q~GU4prqkp^|wq2G)Jk7r&El!@Z@*436CwUELI&gdvbO>`(u8@OiU2yEIi8 zkf`6z)2VZ_F-G3p*}F+gt)D<(Fcjh&N$;<&^hbXe*B?33F1DH!tNwMfO}gG+rw({X zAgUNd-k4HmO(SRkE4#O6Y)(LXp35e@3PqC9y##?i@Gl}Xi<{o%1`3MtTNn~tL`fub zQ6HaasdrLR(nd$(Aq1oM6e&A#W{E{4m!>k<*20uNGSJ@_OEgJiej9P|!|A42;uA_CF~zp7p|!Q; z7)9F>7Zgb0xybKu=e{K+!Hl@ttHmXDN`n`83yrzn92e2|@;9q(ls1faD`rlldA86Q zEKmTz!4hGMi~Dbk{}cGlk>6ql2h-0XuHWu?0&d#;G|*trW=4Knk{kR3dYY2}iNM}s zJYnE^izw3TT3e~_&&R*+nnK~ZWAZ;15fNX2{7$!bHf9w6d+2kA5E+u%?3P39$;*G zehl0SOH3QaJTua{#{k6XbAo)q57#g5yx&bQ411%#+*RSq#i?TBYb2$%3&*u|U$s`bKsSn2^F3y=;7TO}M-c=j#RY;x>b1osKcqOgbuTB(ZV#GCP3o=jXBzTiR}$E`%e`Qj%9;;yHcBM=3{X8-I|OlY{# zDkzOiRZX?{H1tIAK=@VqJZ%LbC^M-L>?4lF#IySqCScXxMp zr??lVxVzsO+P?31zjgoIHNQG^&dJ`%PVyw#$w2Icm2fXvPwy0VeZ9YIuDM9#N7Deq zczqH#=%wD4X`D)%oloX1&jOT$wuU66t15mj*sVWF{nvWLJ1!gX?jSPsJiIOCko-f? zgg!L%8?O~3gcyn{{?M#*L+qQK-nDw3WND4O8`n&bS~!d$!A%Xx(QP9)UK|9!DZWOg zww?RkmPBxi!7h{0H5*turj>)7(D|ipo->X*ve@232v$a!qsWsJo9L_B7vNn)| zq?o+(>gZrN&_$9Y%8h4Aq1DZ6b`1JO3*!aV+~3u~1SHIdKLEy!!fHz8-Ttfb+AT z&KdvTUh#m;FFzPFvDN*!-jU7#4*W5T=cqOZCmJhj&5$P0Zt|Ct0zGEcXQ zE;SvSl*fNBNGAjS52e&pZYx}xm$t|aOOILB@=3$zaC>c_Z>!PoGYrAJwLC%Nb@Wy; zS_y`wNs4f7>E}Jry=YeTA=Oa5x5i|)hA@US6?jCwS48-g-BmT>b0X^~kd7eePD2b~ z=}Dx|I<@8Cx5iWZKpOyKO%HNd^kcgKr7m$@N_ZdsM_vjLFv$fY&TiLB|M`)WtN<%6 zu&!9CyAuBxZrG6d$6K;H1(>;FpXa^*`!i7)V0c-pZ=3Kx;pI$lAS?h?7@pFGwrV6& zIoR;Nm+^pcw>t91^H!VS6w9IfKr79h`u03BQ0NAXZ1H6Sr{vLbMg~Cha7zm@hCp+_ z#laYKJ0##kJI|o@iWy2uY_6&xbSp-M4!_f!lL}<|48L!I7DHmKK&HK(RH+^^22eI^ zT=D~#=+N6ebo$5|hlgFt6B+w{*jrx~ zLf-!^oyht54~t@bDdREH&K5A+xMX^oK2O4|+2?QitVzyfiJ-<^WT!0wVp5dHRe7oZ zjk&*xl_7L$$N9V0wD!2g9vg1=wgY;sl{%@2WdVpckqq*B0J>_tG!p-GbmuxiYY(p% zhr#`~{m>O~7SB~C${<)9QD+M$X5F`n-Y@B$qzH_gSi}izhVw23h<_MrobV1aT6tb) z^bDK>xj!UR8(~C1?R@Vvf>Kgf;W)cs1wbAnHt3(j=3ayaAr8gW1Scd`+IelMo~7!a zte5nPA6A&CtTjr?WrGY%BxDbhEB{}Mx=QZc4YE|J{LU34FZ?sa#lj-lI-eYu7VDAg z$o#V4IG64ZGbdbulJ!XaHuMP~8D3EOX@GT9k4HrOX_5qFx(x&H9jnb0KX;(dkgD3b zsHFgA#2(F!R(6dY%E*;#kRtaKcvwJ)Gj%{y;|OVQi~~euJS(F!OJ&^#zui^r1x%sA zNc7}VaRD9|mf%(XP~A*Tv1>|A#f>GC;DCYNmmoU;(J?45&{uJA7`Ou!@?E7tRwYjQ2 zMf~Q^+!!xlb?6XCR>i+xh6MxG7*_Og=s%4Xg!z?$Jf@jah-gREjtZ*jG0QnTVPA(0 zV=M8oR<6(%K(}>gPy2Ie8w=cMA>Wh91}vy{uh7%xRC~Y zzO=Qxj*FyM4}8~GM8r|g3wh%_A;cr7C7tO6${C2|rAOU6vyhGQ#BbE1u zH~=-|pj4BV);l-0tqABwK8sy?WfiJu`%$ z?#RA9wpDUL+**Q(iTe7>D*dmGg#`n~hZH%#@#iZ2AnzF0HttJbcupJ1H`3NsgPA>a z%@nD~y2}w_TbRU^tK;}ed<@({hx@N5Zx8Y%ioyzvoIGF852(jf9ZT$N&cuT;X6ba7 z;BFV~Cz5McuV0I6@Z!OxH6~Q7Se8+ztheCsPO0)~FF)&{Qb0uwcn*MBGH2QB-s1x@ zjLDjham|%$)1wb3RjmHL3;-mN5>t{sq#o=4jha{H#Jk-H5&qi-B#S<7hJP0P8$s(_2b!Dpk|gW2QI||~a!HlvwCqUP6n@jBu3N0-D zQgJ(mo!S(D9$wEhe_Ug#llG9p{CtlLl0$0s)D3^9(QXjcj!vf^sY>$b+mp4!3s(&~ zWc;?}Kxv=(&qzruVE3jE);lp~|ELb~ngiGe2{U6Vy+17a?}GjjZX5?#7;8u@^V?=% z(Sj%nQhEzv(3de*7@?z0?5W@CbMw{1dagyrpiV(a%y<%^-7boZ{)}ta`qvBK7E!?G zb59?OwO~sY-nvPd+-Fd%WRE zAIbT!;j#TZ^2S&#*>^sJg@tuqDxX${ghLnh@`5-I*u0j9i*e+zbL0jrZ^`L_b? zUI5n&dgH&8|2yi0px=OIwJa+SpjH1ExPOxQ??;((fTKD^DLwqwBVW4`YzkHI91xG5 z>>zlEAIo8Sb;>x=PCB)3{Vh>q+`EY5g>(?iM~>?h;1oUN7Ms1t+fMOq0m}=CdY|kg z15ZSYxb6*Z+;=W4`9t)&bc~Ha{CfcNKy5Ks|L;P_Y`GNL5o)kRD~)8MMw+F=ONLmB!l zAxNo;kNuKQMHJUbtI5sV>gKCFIW)MX0#|Nuq@AT>3$T{j=3p@~u~oVw9<9%3i-a01 z>@0n)lfF7eDQkqs6ghu(oDf()Ii)gz@o)QcfE>vw`DzpNUo8Ow;N$)~X7sm-c>jy? zH-g~-Cn*ks@GHh2@(H7&kzgb>8|{ulnb=r9uziM3@!Q?4(!SLbro5MG4E2+xo;2Qs zl!D1()j`}500TH8ycv;nkTRPmu|^Pw_6dgJ6T>y-T}v_nf8*WQ01EP|GXHuWgrK5g zKu1?OZ~M(B{o_8o2TBTvKDEz(2>)NCVgpSBJby0j+es4T=NEwLQ^`?hLRj_d^P;(k zRL+DEjWqQ)b*|a48pgc4Kj}IDIg~AlwV+4|ADU2sJdU~hMUavSy6lO9C{C&JYrZf) z9%wUf=TKTtnN)A2qW99uoHiqU3A#nB$sV!0Aa(5vr_;1w0sBVH&>Ll zwksx4*U8rR{c9R8M7Y&|cGfCL!C9)T>}kxW`Kk-I!FA>p5FjP#A`Dc=PmY#hUD(F&7h9VHjh{y|2{?bc!ocloR(kV>{zjSF#0>qGOZ*=J_W1bEMnvtm~y=qx}l z*!>_cQD`u3SpT2tIoM{@t}LARvaL@*5)><`lBr{8!ko)32n2QX0#;8jeOoj!T0GAiSID z>0R0Hz3<3PYVs*(Dq#(4X}ynV5fbo9_EZ3iwF82kW+Q2`{{p!G>;u5q6%4M8CmKnjnAs#2xIa;$(3I$c@cV<9U)#HK$R8 zx;;PDP};;Cx-9EegCH&r*&Ob0`>s{eDcM=#OlEOnM>@J}EKvlD%spDsNXaid6BD~u z;^dMfj|t!epyCf$2yj_g5_dY)Av7gWVw`XjQ&NZ_LzG*nsj@bZ?#?(tzpx(*2*z+= zr*ACK*Vjgruy~xVDm}%&{1JCAWZ-#1Rv>Qr$5Mb%1iXz{=+Rz;-=kA?dgnq?B73d& z*>hB^|Bftz{DjNSQ`1{jMI`2Mz)42il!}wTA7a2QZEm zWscf)g49SPn96&Ea7LFOfX3sDeEiQ}Z9kIn-Murc=m@hcy2O%PpD+bAtYhdaUz5mK z;rBY=W1p#hc^njn?pozsZG6zc0#DSc<(!i`&1LI}k7u|4MiIwa{DIkgX3bTs@_E6+ zk4a>r^5^N^H>!@gL{pZn(Up{YWJGJL0pyjJ&cIkB2Dnp|4|7Yb(jowt+c$I`GC}(~ zFA`~``yQ8z6_*FKjRxyfsI}U4PQCu8V1_zB;cxIK_DAilm+8jqP1Mc4OH1%_TUt50 zB{}Z<8hpF8hbE{+76LO%VVIvn)7{1&O|YBM=1UpBu+O8}FGqiO8(&B^U)jB?=P@{{ zbAti6^{82I(8GI0od2cG&Q!RN=>5br6{wio?beL)xnL|@>8~X{j|7;?Q8a4$)wD(5 zy!j6PR8(9uor|-6N&DldFrAsiQ@kujqE7mjBgsjzpwD60 z+4EDT!ur&N5_HW&)JY#s7bQjnwt$&&%naHUQY?;64a0sVbwiyoXVnabc&%M%p`v!2 zq37A>GVqj;ROAQ=Qo1fV+xFhA+T%-mQfIxeNnCZzZTQIVXC-pWh;Ywhfueb_@lb^)3V|uS==# zIb`ebrc>sESU8b=Ef>p0`XJa4#&-*wHl-S%U->J5ny#YQH*AOqlw9jJGxX9bRT`yD z@Ke;Adc72SNgd8iIioSzuH&^=#pgGu;2S@Mb z_$gdA>d9sD^>chEiBlcoF+*K8I?v|)f+0=w{*zyz<$UXT2Xd(O<}Vp^hh6_=J{c=# z*$qkQC531WatA!>@Ga z8#N|y=q$9P34Gud^M5BLeAWC$>_@E=a<^WS*l-Ko9^82*bu@W#%e$vED(S8u7g^=< z3!ED@GJ#pC@K*^z07p%CUWF=>AXRIEKKM8L7H#pCDcLn@rBruw9Hn28(&%kasT-KZ zzEZE3QP+pdLZvFU$V7`ytGjBS^tN;Bt-gqf#ok?$NoTZ2gl5SFDHqV9(!`ZaL%Am_ zi^?fVU+P-xTq+$QqVg?_H0RH;_k-5CBKA#4*kse7henm}pOoHgf(C18u5Tx$H1vUd&Er8Su>5kLG+zyJFa19QxAR;+jyorOw!mGTo~?75Jt8av@7;WNuGu z8M?_JO*QzmHrfC**c_}-@%1H;eIuhfHINr~Z#Ew~d8Q%@F+U3akLCE6Lm&PJk-XZ0 z$@=!$&nGovK)nkPS`k4?>y%C2mZ19=q8Jdv^kCE__~Umnhj0mGs775cGM&%A)GF_t zTel6o*TvE;*d%e6R|-kAKMQ0^0ob4dkn(Ipey{~LS_WxfGYW!M8F!sAX;OT5P`OZ? zqG!;B2`uK%z56Uz4$}cR225w z(2({IQ<4C(_H*v%PJ#xYh1o(g*r zX_MJBk;`Z+jjXWc*i$427s=V*6-}0n?2iVQ+@)WaV?VWz6c7=`asMsIA4~(=Uismy+>ABbKt!!dSp?UHE@*vzzu|0tg(&QV;RZn?QM_Ew^U$(r zMC&F`9Qe6*6|)@p(1cC@2lxKi+H+eQPBx%%PM|2qKQ(0#uzIleZ<3_-qHK zE^>0fk1Q0eyH>|tTQ?>NFnV|odhu^5#|1z>$YlK5|8@FhBnEw;^{Y1MfoDi#UI{Xe zr5T1AMC5o6XC9Iu()5)4L3=%gqcca|y%B4F8v{I_8iI4as^sg=4dU%z6oU-aE-q(B zu!c%!&OATYn1SErx=aT4j8c|ppzE8Q)}mv~rj}NbpR#-y_e2583G9TzDV{MrhX|_f zS9St7znDO%ZZwU8pW?f|HchYgo9QU+VJCjti8P{p5GKLQ-rR2rJDD&EZ;ONKXVpRv zYH0ckis9A*D%X4VoLCVDo7oCI&JIEA`xz29@#Ei&+95N-6t`2NBu;|}$1Ae0iyJ}% z2O;k;88GSv+wvOx=QaBgj&H$rWN^O3Ly)#MLcCIB_{Uaap`sQ4!pA3@b>|;=fynF0(H+D$QmCAWZ{L~FgXR7QK>kP9=+>MNa3tvz#6^)MP>CklkUb%bP zogP2T9h4|f z209WyU5!om_E3ZN`GugaY$M^1+45uQ?o74SiUFtZcIP#Ai5uy#Hf(bATd6IYg@)c=0E8_1qBPt{L~M2l2NB$o53H0ycUf_ zsf9{Rgnm{g?bI7kt;gf^Uyk%e_hilFF(fBXWUA&1;V?XX{sGb?ng8Z{|L=-)!Up8e z($Zap_hwg97C0qtD!lf&noFXhCJ|mwUMx5rP>Rjror$KbTqIxO;^AzPo9h8~YM~Gv z8$}TM!2gv6#hd62_Y_R!ZJ1X)#@p4*@a_=;Hk(xxAm7+R;vYUxfLvf#sb{7U#@cc5zIo?o2%5U`D2P@3ov8%{oZV|4?> zU=QH};$)#wrn#NCgMNW_i zC`i@v52qq}dq`wG*6Am=S>!p!TSGAAOR&o(l+V-aumn7E zr+`JU{p_-6J7c(W@7XuT*ED3+eRu5~nw}SUpmqWYdLtDm#$-+Ig;qXjQujdj9WYPs zu!(4-)E?J-a?rowEhxFkjW|x076PQeQ1hPNFmeFUF|KVzg8AG(g4$Ab@I9B*hkh-K zJU{FXerH-u-tQJ3v*DzlSG-mSqTc?K-uFl5C~oh=CZv$p!}sOtuE9_yAX5zujZfS$ zdBhKlbA<{epdl$mPK|@|Q1IAXIfd$cakuv%N|x5(tvDY!azS=ov#dyDjp1`ON+dlpi!wm1mXS6(AxdYLcW^% zn{#uP<_A|53CupJ-d*LcMyDNw^0rqZ6Hm|!P`R(M9z2sJVYzJ34kI3M3nqp}kjs0N zS$AOu%H3rMOYEgS)Cd?RdibsS!tE|TdK8xHn))$egu}UZdZRcBuo2Y7YIE-%e&9gk za=U{YS+1}+&9~H@35SZ-!LK6P{EbS+0i#AX^tFHQcm#RLA+6guV=+0#Yd+}4{{$_0 z!OcskkCsa&A>><^6f88aR%9L&7o;ST2Sib-RlnGA08pMNKj3(X$_8%>)}7GSicy?VV^xahzp zD6iFCV_Ed)s>Xin*|?|#_sgYL1IYdzvTID*}kcVs>AVtX3P( z&eIc^_#LVm)z{l|q{sDlb0@8Sj+A}}X^=WWMpV9NUWNy&xX)ORt&ZzoIWQyYK5gED zNXdS^hNC}L%#l7?-`roxKU2BqM-v~zPkVvw9am}&^~mG#8n#txHNw+-q)iu{F_JrJ zXm-7B>L@BloZ6Rc#}j)seYQSpF}}X5_O-e@STj!7YBOuI)7-Z(id19%E_1_Q0#97^ z!^8yctONEG0$Wq%GsS$|6{Ywq`EHFk)s<1-AaC-GYV+s3<)oIM`^7v|Y>FdX;!t@8 zopC$>CJ1-(Lk)H$D4_{fMLa=uVOa95+*2v7CuS*>tS0_GA*5-Kz8f8g^pa0>q{L#% zW|C|-;Dp1U1-UNELlbbJ_ls#Hsmm&IENMNp-0-}km2MA4hjAI(i$|ZR0OXSw~m^*C*i3Yr|qHCC3`TV%cO(}r* zPooQxd31VTziz0@+n?d|*ga_K>QH_CLk`Viz)weLfKXQq2` zW(VdhafG%z#7-CVpz$e7Yu1O^hvodV=ygj|XZQD3;|<-IA@2abh3J)#5rs+Lk5RcR zGE7ts*JFHy^fuiyu;Cw+AwxngK0V^6y{t~`LvK)zzZ`hgTV3OM`z=Z91%<^0jQ;T% zR?K{1zf4Zq$WYb0p8CivVG9NTg5pr|QuPuLoZ?Vq`o%?E59V`7cz|SuS2Qp}60Jbm z1n}zts4qM8l7NHGBl@Tb?59ka;AEI4zmcr&RMl&iZpU$ur2CK=Ov`=((u0vbPtZbV zk5R^Vt0aeUV-Z20*|q1u8J~I2QxUoLV%?Rx5fxcZ3d4S*30b?Bn)CUN@#wGKs>Gds z76K{MTh@xS7#63#x2}&pN-nx#3ghG*(p$G7nhPZ9xLN>bMk_ts)O1`+j@A-SO_MKv zM;u)$g_ECO?e;gWl}L^Vb5QsAI2+TZTO8vW_lXMHUL=z!SM- zqx_ENu~NBbXJZa^h~s{Cxz|O92a(p7X{oK}-6JbKCxVUT=8xp7Vd$Sseqpb6Ju+qT ze|OR0e?PZLbMspqs)^PX>g4MMxp&>%uGCVg3bc z5`L6!B^OxTFewMBRQnyIRoMylQ`wkG9J4X#(rj_4(mT3D3Z}MOFP$|b1?Q(}q^#Hz z@W-LWOuq+3U0mF(AU|@4#|u+$rl1KVF!4+_YeV?raFYA!F8{0(O7y(J6CPQpJYgBs zDuXw4uoeZeuf;fee1U|#(UsQ@>$R*z$+xk1)cM-xGwiP}@f#}F#)wv~PF^OgRF07j zCT{971O1BUW?-e~Co;_kqs>f}OOM2TqWK^3_%d9!sNQOkK4+&J@(`!hO+{3O;n-e+ zH}w#wu$+LU0#gaafP|0)8_vU9Iuhum$su7e8Id(^inF@>j%KIvV>SYpyJFG=y?8$k zh|U^n(0te?C5nrp0wk~(>-VexTc!^TEI>fI5BY;NV!ryBQCI@78r5*S-5;!Gz%um? zvkUfHr~9IYTrUJy?eZ;}>$1u&hfaXIg}aN2l-=4RP{M#YZ5vCUzOD|xR=htYlhuRP zPn_TRzZbsZ21-H{iV*f$(o$cohCof~I|hD8KxQsW9v(V*@<3yDCig{^3VRpS3 z%z*QWIOAI$ND`gQm^oF_4=Cf^)lxD&`$Rg5^H1cB4qm4N`Z`5BV(Z&!2FCiiJ>em@ zw1ARm59mvcnMD1<9+#n}?5l>3By@7P7%M$Nq1x3eNe+P+c~Ezm)d3erDaZBdficnz z+?T=$Jgyv(l93jvuJA84>&aa!v!#ra33_moM!)I`Qj5p{2~{{p>bI0frX>)v(O?Qz zDHXVNox?w_--=w}c1g&<%pLkPS$q-rm`~P%)D{0;#g12!*kz+8+BKgtbR~A#U$!XR zJCJ}6CHm*EU{j))xbH@Ldl={P$rlm-Vc!Fu09}2>#bj9y)&f6S^JUJ>8ps0TJYpKv zAAOmx_JZ#X1V4fIh;ZrpR_Pp5aZ5%O#&p^ihc1#}XZbNR#m8`hf`TZu7ndpV-bN#lRc+2J`&G3KtA5;*R}DR&(TsTT z=S>OtQAXUvq?8`X#muaLr%^^6O&C}Fi?>j*!jP%%2SY-MO#P^7S%2BqIQ{zc1q>ZS z2zmIKa3ZLzukOE@O5e>W9Amya_!tg1U1h;Yl!S=-!!aTq_5-#AbdZ+^Q2%+%yjP8u z2Wx~<`}Lu`h5;JzP20$uahsE+t$1!HJTlQMni6~G%Y3 zgXn&_lgl`xpM=gJ0f*0ujQiK_CbEn+`Et|I8#Wu3B37C=>-k);ZcE-b$hnbMz9cVw zM@|_F0Kg*Y!*A(_Jxq}M+bL>)+0w=HpFj0BP6mRInmXBS1q(LXCg$W!OPOyt-Q1tf z*Aw>ISoHiqwLR!m*5qy0umhC999E2AmHj=_$`2?X4$9SRK10@OWqn!=K?LZmJ012) z?P)r{FZslblna?$7`60(P8`Fd6yQVy^?I|<#^MT;yaON>qBkPDf?q9UQ}Y1w=q68L zhr0-Sj2oAWNkDPQhtFPb(R-t;3qsgQqmF1Bz%FbJ-&&GD71EAH3gQiAI_*hu<&bqe z%3mg1%s~!!0D=&x>7^flllQhXEMkCAe$Xw89{VGtfa*5^?fzn^prDAMUgYL4pPVZ( zhZE@YTR@9Q(@>)btmfJQql3D{Ui$bD^Mr;{a%>X1unrC5O1rp>qud}wP^#6_9yD_HaQ)(_9obv3$I)AG=KsDW44SsoVqKvTDwRf2@csN(D@nwPcj8~+G}|9S2x0^by$D{A z)GGX|%ywY-+#>L>?d`;7TdCdH>O_-lq(f-*$p#2nuV^+&oo!_^olN5D$G4%Zh8g_) zTRYp<*`c1Xyk*uriPO=0pnv-@;>xS2RPl0E9cQ{Z&lG*bAfubb%f)y|xHx_f%J+&Q zT84DQTqU@F;V;K;PJWBI%IofPD5JH}7f31mB7ssb@WYWe#fMU}n$>i+H~=EgoSBo6 zfi~j>1w@YmkYCiR*cg2n5E*TuaJphdVpudYwNvMgn#cYa(YJA=1X-sJQ-bGC(iY>q zwnnl(DFoL3P^|_A#%Ob{q%~DvxUDgg3(@!Nw>+zEESAaw zhG^2k^|{(HGt$}tmV?Cexi{Oy?gXTqU9M@O)g|$7#o;}OvQ~w2P3cW3$--5H_Kj?5 zktV)%M@MjOmfHZ8RE+~q^5Ek`?#4hbql)u$HChjHmO(v>K;oT}>~vSUxN4L&ECU4j zJ6!-+Zli|lW;%y;jP!@nC#i{3m<*R4B#hv%aS73-rKah;z{qi%I!Ru&YneZPDhT> z;bd4@YcG5*@!eRq0tTjN(%fF-b*dKY#Id#29^TPswbFe%V?9}|r#%<;!1<$~!Q+)Q z0==#lUuQTMh|~2sjw`RNwuu%Tx~c1C!+}UG_c_OhNg_lm_Vo{%u)~IrNs{hxt_s#fheq3g;CCk!Ao&6Rtj}8 zvBq)5t$D>g6k$7a6g*irOl&KYcMvt=lDr*+w9@g2Bw)$Ap{7pEanv?dluCo`G$-<* z=+Sj^1DTS~3Nu^&)H2^H)ft^3UrF(UINc$}{y=odZK+6UrE^%n{}>!Q#3?BLhR*sI zw;&Yt`0feQ%@ z*600ttuNS+nwne+Ci948!`tGwlm>j%cdcRQB$2WJH?PPD%fKP8K}PwQiU+6m9tV&& z7Eic%GqP9+K*hZe4U7XH|7xkE+b$3eikWXB`+Z#uvpmDprQgcY4r_KIBEE{65^w3# z^laKGu$V{$)Z4O+TGnpA@bBEw8IDFeS92(Svorj7vDJux%DM|`w?<--?m(p@>~9|3 z4jjl7*i-w|X3f20+(?AU=)OzhaL;%?0JgJ?*tPxXzK?6_g(iulGtR;%@7YXWH!L7D zVW2^0r;YU-y~2xzJj@IPQ^R3ox;2}Qhge&ZxRBd0Kk>Q4+ltb-bYy!^u7^ne%@=h6 z!g3c`Xnjy1JOug_7APw9&IE#M{$@2nw7WdDu3R$?WpO)O`~1%o0DNESPJ|Y9@q}x5 zgb;2;#!C?JxWv>nwF4!vkIaZpdYBS!( z9y?3sa+tDs{H`!YVBF4MmcUYXBOnC|b-7z5XQQ)gPfIkdTiBt%Pj4;x)ryJSURBwF z0x}}Jt+LW2+71`>H7<<7+tF%$g#^swOI+(`q}Sr3j$nHxr&`kh`tloDPWX+#i5}gK zID@z@-u65eQE5|HcKIg1DiD>r3-0t#o}HxC;eNCqf3>8~S3 z{jKlR51Mn-^o-CH^{VM<9tB6ogzhe9)Q0%E7%ah`nDXA6rko=ayr8|}HHD~Yp-wSm zFo_Y(i{7>Q;z$%LmZz3n#Y4SSPVML0aEd!t751p$MxeBBZzloT^TR)$8L`o6#0l2x zb$Z!DNsGtl5$Dxn)}N%mV@Gcg`Ms-_y7t=_o-1x2<0b)RmC8#?!-*{Gf5sTO3! zu%-_Uk94Cv;U^bc2Z~mA$MwB6n(yD`YC^i0-U+`Eg zJ6d2bXqzhzOPL6vnKu{Df+{B)c z({uNF#x|=ckA}S$nvrVXhqVcKl1r%c7}X1jQ}F-{#rg0W=7`ew?u|zsiFD3UZN&;c zrH3c~RrKnzbTl=RCjz{%oc6;?lQruVH*~uFz+uu&mF!9*txQ}2jV5dDYay>#V`$mHz@Hjb87DM{_A6ewkg zrFV!g9zN2lHY2!J_!EA#P(+F@!c9~%_8lrw)=3uA0S7_qc?@~>v>Uh>$cAz?4{`gY zw6!t=VG7F-ds-?OS>=kH{_Uf09CKTx{jO7^LA7hAxJ!@$pwG^8hCgO-?o?Zq-l>y< zybY(Ub9ug7Um4xV`Fyi`9RV?Q{ zi{diw>6pDHXT*F3XIc%~2-~^ZAJL~Bn;Lokjowf{zPjebdT(p=o z?diR+D504f8`c8bqIXq=Sj2ldDv@*hLnCo7wO?cjX5T^pEdJQ{QP-lfQY$W|gX-l% z%|{6)K}933t9*`b+DHfIaxf?8+mg!h<(DOPgXQxI2HnSRT1OlX$TB1<1_jlTMeq_Y zzx}OQ^0lp`#QYDvo`{x?#EdICs80P4PLuWf-FN~f(=fM`V$PPvt@O^*(OqBBZZj@1 z1@ed`$VHf)*FQZ&)!W&~S`^MOB=7tPTaM+KFcr!?!=@q|-EnUUFZ=SN+vwH6uRoZg zUgCqU2ErIcd3Q5(N0;~kK3TkAZP5#x$n16M;}aH!R7#)}rdB>(X)je6z8JpVmsqzD zk^C01aiiF;dp|>>-B-}*;l4H*zkDFic}y)|ij9lqY!(+R#O;&uf6FOe1$aHV?gNy1 z>Fg83ZIxROx?goDd%nlQInV9OGh?Q?<{95w-`6!WC%T7l%Y&eLA=fN(VSs5|V4CkyJO7ze3$E(?+knZ+#)wtHQUjX` za$zh(;7rp4TgI=XsG19FVdgMo$KuOSKB}8MlbE)Y#B3b4Hw_O_=7T8H2WXGk{JUi6jR8~B6u^AfbXy%y~7`6 z);-o?+wAhiM*5BCDu28sjQ~r2L)D*MeA7xI*Ow3{{TS!a+v8zHrHp+KsQdHdU1(Ii zL(&+JZbi7yh9j7klzMur#x_bBtwTbCyuO_A;CtPQZ!SVh*eW)&{3kJ-`#7hyL%93N zAxeHR@RbSDUzTdJ@pLyZ4Y7kVDYIzwTamk@X558&BvVJc-;5xj`N5SUR6MT#^1yQ? zJ0bBUZ_R2FS94~9vTY-m{*0_5bk?5stgIcpSiIAfJ1Uff{eLM=9+ zc2WBZSo4xX{hO4hJJp4*ax>33hHL;@0})(Xt>%g%+xk7C?*3|E479mhiwoAL_V>fN zEJLX}29gcrul>>!uGB6=Mj*Q#vhU;c#8j-?*D} zu!{36+etg(*o`X9H(5)0F=5cBCCN<4aPpS*7V)*h3bWIrNbmcYMzJ}eaZWsbw64T$ zlXY}i^QRezSvA`-J}5lAFX+8R`AO#Fp^Fw`I3X4NlitOQKmpe^H9RYN2(f^}D#6bx&l`@X`&0PO_LEaoUTn?dV5uCeu;H+jcI(0e=V$gB>>M&Y6d|-G-Vf~p z9Ls96!c+RKe9WlsViuhwRqwiL8CP~K2Ug{-bxLya$iWD@Q>&({&TqtaHj$kXhaLKw zdr~GCST^m8xUqzF#CDUhoOvZoE0R<40@fFN*^G&kaK=NDlpK8yk4A`>={Bm!pk8>6 zm`7y^mpDIm!n-4Sq5;aciuE?jLKD@PaMB`9kMw8HNthldrdj1QM1KG#>Rh!4U%Lm-32RD1jD_Do+s6*Cu3kk||+v-4^uMl%D3@wZ?;G%pC=dfCb+~M77EM z3l4R384r`cf#;br_WNc?jnu#`yZj9H#n34NF{GyK;IKyds#bfb$NBg3Mu-E(YllG! zNc=<2h8lQ!k#~AJ8jH~PpwVOg(e@M0yCtmAQiq;rH=TqFMdv}?R%<%81>{(s_a$df z+DGe6=hzXh=s)e$bi3;_rQ**UsWrC+BTSOThR0_K?`E6A7lj7&(mvfzB*$6}dm>;D zA6ibqM4Ovju8yAZb~o5tNVa~Uq5av+Mzg*c=?$K1xvB0~vF}q{L!bXE7MsC9`4d4f z@zfA0#>jU-mP)6{NdBX)YU&xJG_(_5dxVsf1sU{gjZh4?y>Bd12uY2o-U>O}Qbr~l ztCnAiYa7x;35IAY>aWv_zco}t>E=ETb@k3XPtGz}6%hA;64EoxtD2z&omc`7ER}YK zmq(&cRHo8B$Du5;swW;5q09>cL`}S~u3C#&e$#D720DftII&mw1qssq+Z{3+QrXxP zC7EH|WRq@--;Z$B;fqt+9UhT^C@EA1XS5MBKikyk#--E{{j)h6U8q38_pJ<)S`x+H`BP-8k3T)bUelXn+_a36NVm$O9}Nb9N1RkC|)eH&SFvMM`r&bVA7 z6%LokIb_dWR;~2jef;+1`|_$5_{e0#&i?o2xqfv=?x<0pnME?ml5>DglfG5Pw4$rT zC96>bpzyrrsmKl(-S=uo0u&*nMI(i1XvS(-8L}&_NUNd6%GdH5KAnV|wQ*JPY$xn3 z{t)n9N@J`LQk@O`9)m<(_JQ7iD z{aaUqGI}2gE1(ItjS0bT%_mA{<<18EU0F%pU0Fa>J=&RmQO}&1l0D%9>tq%LF7`Z8 zhQ3JG=B*m{O-&kHDM}*zEwTSjQTe(}rrvnX&%nfLTj7sihJBc4p&w@mtfe^=hU!B| zguq{dIUT4nL9M7pf!-g%qrGVgXowktJR)>_{;o2UPpV(={o?HS{6ncO1u2a3P=et= z=V&*~&Byzw`8WX^H(cTzPhtV?A2jhZ*@7&Rr)nC8@!yLw{8IoGIoHxqeW88N?;$JM zWQQcq!>DL2E^@SaZ5_xM=so&+2``Ld^g9(dS$d>pPuKmc>f$8RXT$(QN=VC3xWd|q zhLwDG2`lR0aW8iLIeWyuKFQSM^$IZOGgv48s-%an@Wxx1?KMzKvO`fs&Vq1V+!{Vn zb0SG^9LMh+GJ_ugy^o5t@PzKrU9|BOus+F!hG9DhNTLfFk&K9=i)}{+Trvfq%jP1> z08EGsrEA9PAI8=6IAR6+<(M2xa&?1&8zS0Tr=nN~uS8P(>wEqhT`3bxX+a{R^Ep_u zW`qbLq2wLthv6Cx?3p<$U@8Ha!H1!q1D)}hXPi>7W1t&^k!7eM7}dUYCMdeRfgA3* zcOs362~?5~7X2(4<&>!>Tp0DIRt97b@R~j)S_Tx8EY7f}cX%mS-E6Uo&MYni@$7=m+B3*wN@f#cCs?Ay^&%HYa;4C|nVD?X1Ki2pU6_G+V>jh2U~brivJ1f_pelDv(6w2F@S;LEBc+ z?v)f)@0SW}%ZGP~p3^R$F)$ns!pRVc4VJuu<4GjYY=u2Ot_dsdO8E;ccz$PFLW|?E z1S1}Lt#OP8k+ZY7I`aAT>p3JXlahJ?1%uj$GMm!DvDLw`ftWZXyRdM9n3#AWWWj&o zm-o>HPYqWMTg?%%PpbzDpM#N+(TV#>6Xz}OZhG9Xr^rHEq4~YFK?w{5or&+r>$u>a zngK|R{;;oZA1o1OQL>wp9RcFn;b6Bxd7#Pejo#;Gq%e!M_cYn7)YH<#h)p3FVjJp7 zQT(P_w*>9ojIi0qJHxH+>E7roskQ3n^jb zo~BMMksi;ecukeLGs7Sq0_a3TOF!AG65?llF{zG>;u+YmKG|!c#yw>{XB_fr6$#Dc zN3h|4eZY={LbTWjrM)v6CK5&{p`VbZlqcx$gc?<6UymnNm*2+6^l{ZIDY}rs;Koo~ zrZ-wPB)To1@XRIs%K9q^`Mlh8l5^g`@Xs}?&5CpdEhQH zW#F28>&SbfFjE97dTW-NB96db_*a9%hlnV^%*k?%=h~wU54TT@aQ5nryg}t36Mcf* zdt`@#jG7o5Pw$?6q2(FS^Y8lu*Ke@c@>kpi?d|uP%Nto7xNrFM9!;i?C{?PVE{vG6 z+J7^h@HkgY&+GdwhQ)Gl6=uKdN)8R40h4dE{CMwy);5+}nS^sXgXKR>L7rKR;BoHy zkYlGzV9%M)4U@-RoMoG_WOE`J;Ry09+wzFPtsJLVyygIl+}1`BVy0lPcf2kb-_955 zpVp#nvxl121VSAM9+GL*j{Es`E3G^Fq|J0M4qCBa$~W&;rF8e9rP>_{jT3S1lY4>B zsJ^H^xpYL;Z{t+x7tDD0`~=!oMw}l~hU?AQi}}LMmVG5VbXi~6#lt!7+?CMbpkcde zLjoT45zM+yl?#}b%OHQJdSq*qC)KxW>!6Ls!tZbLt}o_@IhAoSlFc#=NCj^EY7Qb) zWg;6urea=21N*$L8=_6#ljCn8XMrNdiy5T6mUna`%)1m&{^|6iV8iS8mBfeDz$H9_ z@?S-~U@4z?dhe`VRSfvB?|)MUef7U22_155b-sERX^*bKGT+sq1IgH2D!pTXs%@Uq zZTXWX=d|_#Dys>&*}xpu zHJG@d_tITMM%|C>7N#PF71USUmLHaVS?t)b?_OEE00=n5aqk@Yb20HuDC%-BRG!Bz zMzAb*?rR18lLcvEYg6^sTDwLxXY5Jo*sEfFNH97w65w;!A;eEA_`GJ&l&Fmi^7iq5 zWe1B${S=rcCY?W|uS_eCBGhdEIkrAn^cf$_jv`e)5DNUM)fw&edy|i2vHs_%77sB= zOF7A%&-o8u&iqmvq)$3?^{S{TkPNF^s{*+`#ZRoFh`&66Vw53v(T#!I$Clm|SOM9HxIF@D^{?9CMD~fAHTbr_{udQ=?iy@`KjAx3R=mT>V3$R^Gp!+ zw=K}%Cp>AHeZPoM=@PsbDVyw4J*}|gdGMRMkP?TMgs5>j^SzIwIDF_h3}#Wxk|8~u zgm8y!3dpQ!x#{nUzd@iAWy0#^zA^*!-f}`98sSG@&v9+S0F< zJSdtjxSEr&L8@&}AgEu{ygZ0Da=`U$%$sKB_8sIbPh{;)XCYH>Z?-<`-`Q<3Dm`&w zTt=)=6xc)COz2JyI1;F2Ll?c4Qd|=lJv(QIC~Wyz3$|iZLImRXQgsu3qNjhP?@xE7 z9U{?Ct;OF6!4~vr;VkJH$|<_pJYSX#t2y>FVCR@phuE$=@zHtaS)Zw;hAHlj-Wc=8 zOXSpto70#hl-#lD3>op*OHSdVkLq9RrZvNnjMSa&xUlz=xq{#@ocfHECc&rSi`mC+ zdJA7Stho3wajOmVxfo^#40$y|QkbS8uW=YY#F$&P%lTbDoL!($JSa72HR%c2`2Bci z)cNZFVd@>2D_gs+;qGw9wr$(CZFg)t-7$C4v27pBsNpo;Y5xwBGLX0ucJoqB?pdW%FpzSE ziM-lObX1gf00hVgjV%&T5{b;S8m^GAfGdpV_Yrl@s^qz_LpxIDsH21Y}S93*? zr&^i*vvj5@4%XBI72HM6cy2(r8_x`?E6yLTBHI6Nw!h zy{winnPt$I#dc?e$#%Q`gxHdh3IS>^8ulzE>pVTr%J1G#?c;>`%^Y?JzyQ~qK+03G zq?h+V(&dPBvX=Pp61K$2Uk0kXq?@x5$>*dY@+#EFR9}u)wy&~_^tprED329h+leth zYWlotXuC)5GD?#`#JrYe1T*#*Y4lM+S;(q|4%+X*%J^!k++Wl24u0ov=ho1`c}mkI zxekG>(wZY?tHy$5GbT$Rm*PYzPa4{sALLv_j8~uVz%3HhE!NH)8fn}ZW7NfN0J*7i z=}JKMRBx@9p}j2cI8q_ynF|}^$+)BJw326h=tm@WWzrV^(!rix43MK^MyQ(?U1}hi zl^&Y~hpi7*-jed`f)tkr$gLGjX^SO4l?#1e<#A&Pi-bVYn#x+ZZ|q+KNF0dw z$t}12VB~^r4pY5iO1y(7eFuU<9~&733gr&OXE}{g@reRgc|#YP=X?!SgLTCph6V+(KDwRUglDrd6~u{a$- z7fTpu?fb>D!r1BWr2uUg;m1rtF*dWy?!S))rG*s&zk12Kw=;` z*>O-sFgFUILWKueJvDk6HLJJRYEB2;@azYJ?%S}M19WQwk6RF3psic3BYJF}iUscV>QMTN((DJt03*qL1)O{ zP9&;N=y%{Zhx` zdTU_n>|&FK2F}5e@qA!`Bt36m>D<4nf!JoWPF8Y%O7Zc75FFBZ0Q814|W~O@meD-`VDCy5S%uM9%diNikL= z2KnzuN#&MUFDgblnu`( zJVwfq#$IkwhbX!8x#`3P69<^{t;BcG!NXl!Cl}|MVw3e&6@`?`%V_b~XtF*;5_qv5 z{whR~$g?K~(%<3&!?r0zBDXf3{L?JWq=LSc)JYJN zDg2)1pPWuHjqkIUNSJzUWJv;sQk>wcJv6g0@@eBxR!Als-g%avcpjq-hg@YnzJ&T=y9mZ60h@6&wQlifk%aeiE(r4x8ehbNHe0F?rJc69&K(ELvI zv;|J79fF=N9U2dajin=;qfgS3&k~W{Y^k3aJz?1JnrLHxl%>6mH=lzoN+>2;i5R5~ ziQ?OGPj?jCCp014>evl!5u7{oSzdEU7ZE01Ux|-ESLdW6^X58XG_5O7q2=>|?%$6@ zt%UqDGUNj-!=SMP;;{RY2sqr0Tpn`^+(yc-f7h7}7UkENtW&b0lCn+9*EVtV6+R2% z63#~M3~OWQEj}4Lo-%`gksiQv>A&2Izi+J0n?xjyIog-=+*mK?!O~i0|CzonnQ@}R zryOMm0$(6@Ce}i{2C-I*Zii*r>l~d8e&*xan)aAT_Lv20>)A~EwWlg=mUuK&67uGk zv}-C1ih;ufeXC6kn&Sx(346@-Q4gWuf$XU|H0w`rA8cQ6p04w<(_f8Kex6$H4muY$ zwPw(0L=7nvIar)StS=*=1;ZUAyJ=cpujFsNP;YWRKJMW9ctse7(KIP&!uY5(_>~M# zeq=8po~ItV5VpNiQvt8(IfP)xoeoVo&Uhjcy)hVZVq2$yK=GlJxYrLli|{Dm6Ik738OgbF}Nf0t#{!VqM;9H`te0 z85>G7*BV25qZ2D`-h1~8qDTX3j@U;w__Pd47CXAzuA0drL1FnK#v39}UBe#eC}LgF z)&WlcRz<$>axkUSns1YxsW_Wpq05#$sOI~;OC8^|I^8MDfV-FCnyO=Xe2#ZiRqRKT zOU_35$U9j*oq_Om3rGIIbn|=>sQ0MD zDI*rcB{z6_XZUE=tjewz-T+;g>zCqrTnSS5_R`TOQF&!h7J9GvYRH+s3Y53z>k9l} zj*Ab2cX@id>?RMzwz@!DcTF1Eo7{sGxGRDM0619DK54z{!bcXn!}`ZBI`2E(wtJ7x z5v_*nATzHhTa}>t(D_8SI5mmd=TS_O!g!r1LBgOw?kh5Srz-bIuRmi|Qy>_v(Oy7d=wu z_5+x9C@MJ&k%66OB|>xbA9Cixw^+hM?rTs8Lt1E9lyE4y7Cht5o#nL`N!l}dS(yo5 zp$&}kj+z|L0tDUWAM`!kq~nXI-qSQJt~tH==SM5=Wf6VbVaB^>hpUYj7ZoujO(Ki9J28*hHar{?U_od)JWEviIfKe3ezc*&gSm%U#!$4KnA3gUAw;8ErXj97;eBNyxO& z80W*OJ?iyd2=EGEB{-9s=uu+e5hZzf)Tpr-VOrbD2%y|}gVSRylrq`|cm8X>2H*+; z#yVPTZG5kcz+4tj4UbR_qQAWBv2w~d@Nq|$h0b3mG+#b;R9@s5No@>Ml*Zi`z2ZW2 z0F(HU$TYt$UG3Zianiliw%lyPFzFx-xHA_Hhe(;}o6P~ex=gJo2E zilvGE%%TdmAuqR+wa`(b2eF2`}l;KEylHT^3p8kFsAEAFnmdxs2PtBGaDDh9S{K`91n8 zZx5`14NE>VQlWc-wBEmSWAexq?;t&;Yim0=kRtD4cnPP|Pnb~oN-dp;`I3S!m@V7txUGQs!kj-c2F_Gw{9KMd8Qn-Pl+-KqPS(}S1gyca~O&msEByUO|p%K zO}=N+ZFN3kd6U6#oo*7D`!=*fW3=X z&L>Z_naog+&b!HYE2+l2%WsEB&a0vlq;KCQ2!+ zjP|$akL0bnfb8rv1ZMa=q&5X&>&V3tQbAe63%T&OLz`*%^cLy;^8K&w-IL&m@V#U6 zO*_gt4na9+L;MLngx!ZH6B{_&UZ`6P_bXgo7EP1I`wqk_&s`SBOA|Ae`!Cx8TRvL<{?) z^*B^xTB+cJ);w#XE8fQ4dt@DaCRuEZ@Rfn%L(t7cEgZ!?!yoPK4QTEwS1ZZ6A$g5nYh6lOIkAhqQD;X* zEZ4|nE9P)vE_^ifi@8_nx2W0K77UOJviq2N%h=Q%3-)>GYA9`ZyiSM$EyXCW0+Ypi zT?CA*NT%&>PpP+;J)ni(LV9((Mi`%wgDy;YOkOG6&VKhm)Y*gO3B(j+X#3tOh(^_i zoS#@rE7wU$xsU~{LDTSCN?>F7E3xSqi^1v~ggx=zxiA)~f5lIwe(Lt`y||^g$1jA9 zSq7%&dNbA}T$D_B@cc+V%y*10ZN?me&vRPr8SefjTT$9oY4RtX2m{Q;Hq6dHX8F&s z?s(+l$5PFJx_5UU1xuoM6KJfadU8ypos#j(t?9%m;&zr=_oxuq+^Hzz0^aU5K&49n zevtkAkF>3K7oP{q5T|jS-3q4p2!;N-qCFtE2WUj|I9TQDJS~ebk`5yxoRGW=YO~cG zP8P=WvtB23C|%dXs<4zR`U!7Wjvm;%SsI9i;oh6*Sz^wDrW8RQvQkK&ejO1O8X`lF z5#YEv(kEBk$)Xfjmis)O3BWcalC;{Xc&ROC7gW_Ecrk;f@|KX27px+&y_Q*u?BJN{)$A zVqKg+_Ph;qj6T{)m#-CIas!XT$h-a^&9upA)^K7rHFG)VMeH}Y4UU_Mp@~VKijWFh z_7HtMv4QQWF1q1!g_{&leQJNRyemCH8_lyXUfh9Lvt<1#TK7NHQpW!N1>LiN$nD5~ zq5B{Belr5g>hg*Vm+APZL3_!++@D8AR~tL+5_&rn0RFlNa=t+!AtDf@kZq!)KO(He z>OAuUkb7n?rPL(lIn2?gSj2C3|8ND_$o?Dr6M>gd1ARZ1Z~`IJFLQ=nNrHom|L2GQ zxE2c*z`&Mla}c&n!#l>n6xcP## z*iDq_jP(zk`NhkaLXQ^(q};t)qm)K^5CzU5xIg47Vmh*}Rj|7QC1J}hegs8l9l)tF z2V@lsWO8A$A8aC1AC-od^FLk{bk~oA6E*lt!#r;8Os7o}NKQ^RpR^KHcEZEDH=}<^ z21!@qlAHQB&{ML!5z0(YUrtl?c(1UnrLD8+M(EP5=FD#M0Zb&7;&dIZ+Wc+dSE8$B zsSB=`nC4oU%tU>a$Rp-+*fXw$CEy?xLTDXJn&7zY_7h5(^NyZCn^}vJl%hjs2`HFK z;z-!r4W*=ysg1Y7RZ_I%+HPOke*$QAIZ9q(ZsB)i)~xcRx+)c-HT2qR15w^trv4n z031FbcvW1TENIlV8qcFW2WyH;ljAFxk9)2IbMAXdbIWByGEP$b!teQ$50tck1bw~_ zg#M$V&VzfU@JR-P%a`ljTQIqo^6Q(TJ>;;!j^zcYkUSRTEFQhuOs2{h6CL;?sCn%gfWj^JYJN$X{4;U;G(=8gqSfeiW}t>+ zD~yJR6&8)VN`)p+O3Kn@T?x!(ue`NnPWW7JjVr2wuz@pLGOm;>Y3(mmj3}ButBB-B z3$G6|?HT%3bbzMh{-P&|ex<#=s?KN(U*#RrCDNW{p#18xm(>1LBEZcW`(P)%!ddKv z1oM5YDfH2LF}3)w@Y?Em_*)rM*Uk446ozFD>;Of(!@Z<}g2qZ3r{lFDaQmBkM6V?0 z9`)#U9beL3Ve-7R*bEMRAM%0iBX8IZx@RkT-HcKDm1mDAxU@>cRrNek?TYqb6g$rb zJCl<${3dLN)xOfeV-0d;e#vOj$d%lUenYP~F6P|31e0dQiW7!Mly=reV%hf~MzoUh zLT;nES~UyvU!s&io)|~;M$O)ZmMFQ}qe=R^@zQm(V)f1OlHZjLb=@@%Nf9X%@MBf> z5*&Emm_b;H6F^(*S&x0Z+j#mtiMCA9ui;=-f%?-dY+qrit;cCuzg;6ihBzsP>(}Wn zoo7G4$@%YLgWhTt-#hN^Borxj)husZBVTG#X}1H~xXd&_WD;&{YE@Bn=&_Ozrmkii zG3BuAMA*1XG#QI&(@@0e>hwZbW2}T53qfGm)^$k%%Rnr)Bctb6Ed`PB?TQ8NMS_> z94 zd+Z{i=xD#Ex|hYj4^$)O?h!b+yo;YH#{Qx#aGI#8kzxD6hHmgo5#;6Fm+Z|^co>%t zSTG7>(cYW)JeKN5|66H-dFY+WD)3iC2;Z6HMiYH^am=!Bgv6S|=rDd$FzC-?_fabs zFfzGLV``<1zp$_x1BA(J3eOFN8CoMuH>;oHl|EI z3sX^zu!3}@6f5RMHyVSY(ZuNr1ud3_NJi|Az$oUV%YL{bTAo)%1u*=B+2fKwYM5qe zEoIN z&oda_u$&NzpN9=%pvQqZz1gtTplDlhR=|M2nujSm@p7LkfwVKJ(fr)*&N$xYQ5%#1OUb;=Sp}R`%4ltZhfnH58V#Dj zEo?QCcv4=*7Na%I2q!Qp%p?;Jt{cUj%{!{U1X7c%y-IqsO@V?0u!{#2% zBhql%G#8ShrX~d+#yZee6n0<^Qu5=S*uocAGD(YtyCgDlvVx(=A{Yy2BWXHs7v6X} zov=2Xg*TiQ^_3>LVYWgrdv?rjqAsEZbDBe*!UT+0Khmc4A@w6TQVc6+xvvG&8yC)H+lyJ;Sf8_@0{jK)TpEWSp+ zCPaG91$XH^0SrzC8%v`44djRkIv8x+@`20am{~nv&0sL;@^cW;*jZ(%jg;S!a?f<{ zNFljuQnAr0(KP=vZOma0<#6FKd%dzUj^r5u4A!c!`k zERxBJB{CDjQO)*=BU4hw&HC=qQBx|OT_~<_<0RlU@7VXCQ8A|y?6*w749R|Cr|Mf5 zYrbO1Dt6&W)Xbq?{8?P{f_%MsdKIhOtC`O4_R#Y;jRS_`v<(FZP)y*Vg8fN_>3K7XUg68$&$YDUw)-} zhdlc+KV1vs$$3_eKV+5iUe6*K_0$b zk(&GoZy1`89pp2(YpK~?HcWeE{O@JDkkuJY9mc2N!Qu<765`&{f z?vuu@6qSNX{907rwdobRqHI<@T!Yw!YjnM!L)#LWBXlik{n}Y6VxuxNc?UcD7>zJj zry}1@pAo~AIJMV{91k5C zja`xwC(41D)1nr|69p@!XjqS5T*guIt;_c_>@|F0^?~?hGO&yKSh*B6pN}V3RmryD zrHeY&*!VyF4fY?y3RakO;~#eRzjw7MVaSM-+lfR(O^0tr7HK4ka9D4VW-(_kDCpjs z3dL;Fs5@*~U;?uV2IVwg(}#E}EKX}YhUDFk!J=UKTU8di$1w-y?3R?-`|X1ooq;Rj zG=l~HTu5)F2QU9*kNK#6xM`^y?XS$4UJKeQn*7>$hxEv6DXAwz^L1R7)MQsUAn}S7 zcTOYp>rP;y)b9gvmZ_>EO;toBwCBkjiP~V?lmZ&XY`W~aYDw$Ico)I8mUo|p4%lDxtGDWLuFVgH`b#? zJi9`mZsznKgEu1LD|e!QEGH%bhH>#sau&o1+j`3`*qA2wIpxXNEt2Rv+c5Y}_Y$Bg zx6M#R$uBlIY?A}mLEkx4F^bUbl`CoOT~Pez5=jY=n6-(O#Pu$B?IBEIkk#XL$j_|9$oh!3MwTMlO$X-^d27;kQEU9}^ zS`WF`WPeMcFWepfjku?Qx(;n&=1QCOKA#A3Yp~WLdjVk&b;!PDIMpY5ca;>5W3b8s z^F&NqAV#0JE=|I$!^ML2w|!TV(bHR9eU0O&zgbD*$f!R&YE0nKv%RWF%}i~go|_(X znxfaecF~{u_J9K1NvGlO87jZn7Mk7z6?N;d0lY)Haf1du3EUHm$>@7%5+Cwc9i8a5 zQJ7=t?GGZ}bsL<+C5=oHeO%2gP1#C&Nc*5^+01Jc%3`*}Y9;H!M?d4wDAnuWE36iR zg2m|O|5O022ArW|^4S7Src_8j?}Ia^pwja?rseas5E;YiV?jr5;7d3kC|Ai%MJG&^ zIA`QiGIFp&Mpn-qUWQPFa1Y>$h^Q?9(%7*}Y1^cSZzQD}Zz5mh9yuOL-CDA;KT$!M zjXS!2S^}|WJ`PYMT_)p|aLkPrNEb!2CG`WL#`y#}!)M6OZQ2J3|KcQ^*QP;nhp_J) ztFa~nFW1H!NEqpN=NPK>saN3@N7O*3SMRzz2KQRIRMSyt^a46ZVDDb)kDtM<)4GEB za~p9mVds(M&u+fbfMelFN394{cS6i z%IBh7z8?sEH6CMYl`_g5|F_JK<7mMu-%1{+WO!h=0Cu!O>0b_tf9!j-zlNwn^3fcu zRgC$L!A_0SsHx)kgLB~x;46yCcKTakUhxW)nY*MdGlpuE5AO6toD#+vc-(t1c``{U z$PqMs^+Qf4yl9+lUC?w^QR1A3K8s#x#!W8YV~nd7q7}cp+zyl{R(k#*_s6_4GQmi| zLmh6kJXUhtHqE%E9aM0q?(d-~mm*|8Es~>d1Gca)iZ+@J33LgT#kDU7v73Q9X7qK* zGMw==eS>353;c3p{(*o7#@!of;+TPmgCtD6XDQEc)!#|+z3FYgdT}1dt9>XiIP`rl z>!BDHxv|+U-v11Mn!cPFzA~#Mq~V9l1Wwd%9Hy{d?@Wt)>@Oe{@pXxtRR8#G70k%C zh@Wc?r^oVu7qXTa&*~;wdGmwPm+HOiOR%sE8o2u3Sp9+X53eZp{mRiHAiNmMKhdzo zQc|U(k8bSrlMC4V%psp+0d-_4sP&w}+GXesiYA=%ER- z%bxwaqfaWk@~W-cvMW}!w9sY18t+%Y*yI1mF~*}df)@wGTNN8dh!KCa<@|ge zh{^6U9!OgExO)0)kUSgR2%N6ZdNxR=XA=4^av=3jFpdn4;o9#1Qj6b_{69%SoR{qT z)>DQoXWdj#sL-R1V`Q;_S4A@MRER)n*zfC5=7UNtPNAKcs&uY5JlkTVW|gpW%VMKo zWVY)}Mf!G~yAi}hP#y%eI4A)ZT6O45DdnC?=wrSw$nOwbVp5NvOI zOtMs;LV-S_LD=8-^O~oxYit@&-O;Rbv6QS%pmcGywaQ~mGveuRb63Pq|3j%{orc@rVKb26(m#B#bi5tp4B z8r?)^EKdxFXQ~{s5~0zh$~HK}^ujUu>{Gw3iXuqq4e^s_i8Yl+|Ih>sO|Tz>J$M5&*??L=(xx~Bmnm-oS{3!3qr)LTa z#TRaw2&A&@MSp+h-yuq3uj_4gt{`cxNfp;O1z_rg{hE=E{6*9QNsO_e8Xq}}qLq-a z6>_2!U~;otUlbPu6>E=>(FaYUChT!tSRN^*0dFkIlnJ3ss5aXinPT`C1m@CD<3pz( zkEfbm0>+>Apn+hZ&E&DL(4x%y64buF4m&CzdWfvIWPn%q{<4w}9x{mTu+LZ+YeI>-|nt8GUj_#a|Zpnbk;7m9?t3PKuUc|#XPu7l(^p4J9y8y zP0Znz2PZZOX5z%P4w5HO{PTB&sg`oBPq9UqtdilI)Ecgensvqy@B3sq%P8E&SX}CC zZtt5+*b$xV&TJI0)OzJ4&UE_S5G-kNyJ_g(u^zeh85=3x743j^F6Z&>0-BYj*pZmS zOqN+FTbO*ONp2mgc{o_<)gVKF8+)JiMNgmScffAgCf5dPKV2f@?hgC27b4#{ch4ng zn~o@)GBb}+K^zuF7}Dm*fLvQ=dfwR?4CiK7{f3)_?W}?>?j|NMSzrC@6bW4C?gh>A zbjpb6_&-F`2spCUT9_4ag%c5t6jL5Idn13r~@xQ8w z;EKqX%fNk(lKU%rroLzR!TPBn?ME!3d1YhDY%47CrotiQ1;KhSS#j3ZSG}8Q7N$&) zvVsJpnOfmNLD@WEHj)YVfnVAqe>-?xA1enLU6fm3hEcN4lnlu&rt@&u z_F}G{rsDzD#GVztICAcfYNYxV4F9PXHaF-$7JRa&Y8b&$DQ&6)CFbXP3`i09Z|J_5 z@l9eg>bfT)+QT3seAs!opNUGoDBej|=S*()fbLw3GaoKzy*N16w&wh{)U0oQJ@Wef ztgBBu{cf`GetEc|b8t{v)Onu(Z&d{!tSo{Ak9`4u!Lzz#Xyo}-gf0_17F)6w^~9T_ zkTfB#4Pq;LECId=I};aNp`3Iebt25SaWXkQ)Me5T zMbw4kLdBmXIN$e&_0jR z>^6S}ENfg|AIxd^ghy&{%3GP_zL7mYe|Nv=P?dY4kep*gI$3qCNO4Bg;2eN-YMaz* z0ySGn-r_QVDpY$+JDYTjx@{?7a;%EseDeOHO`hm=NuhtDXMO-lS*+YI!n33t_~+yT zpL9gG?1lb`i|fm$`3S&H{h3_8$#T6Z=foW99j;9w8LT%}vi(KUraZA~si%!e@6BM83AZ_;V8Dv(w7Gt1B!3K4 zD+)yw!F|iCnGmYnx^`rt3cA}x6^;}4Fxp8RG#HrYmSYN4`J@sg%{bbNbx3g_V>&g| zaOISD49r!hxgMT^YjHt8O7*_Sx34x_?QPL)eeMh0g2R85BGz`k zBS1Y=t|m_@Z~|z#V381?*TxDqYzlbO0k#vzcJ-lkk)?F>LqgiO8{f_jho-K&tn`xd zmbTtcJtFaJ>2^XsIR21IH0^RSjzCuFb2Kf1@J|eg9n2iSboQq89zMxL(o)q>6Jucy ze`8Yrt8Ki8m4uoinuw_HQ|M)U`7CDf1ME}urWew7457Q$qw%|a<2QFuuiRgP*9n6L zef6zCrdRTE%H%A7Msfp`Mij~8j302?k0t*}QlbbO6Ws?)h5FR-Wd@8m*4a{*R6L!> zumvgQ=JW)=tQ-its8;0b+t!FO9zyVo`H(qhaF#O2g`r@dHp%P%=UtnVhY%K*%a;bG z?r~AQBv6PET==TzOc@OlAep4~xeb__;{2Y3#eWs4>6hmFn1)~ETVasdNVf

    0$c!Sfd-caiy>Ni29&4u*kGwhVO!UY%xxRN5pkxWsoqfsJN`q3 zu?Cf6+yIMXd@rggKp)i&8UB#VXg{38m{7+Qe+%il0t~-jRUA z_z)!ZTLmM@duUB}0m&7&U}nxX@X7JGT(gt+&BbbIVGi*aHO*wgpBAFa=%RH>hS-2` zAiA~+{$2Iv3Exw$;mYrN_A)Ew)dGkQ=#P9S5oR1Ov;an9*?aBO-1mg0hyLXnd%4N0 z2j%YYcaCB_%psdoi#ai_x7{_sW4lac5oC zd}^z2vK{c(UTazoWt`C1?6!%I#G}M`F~ZuU@FOA0X6d8_hejLZ%`DNda>x7}gfZF! zy0vz)*(Qq`y1I=mKAJ?*%Fu*j+1+wgpnBa8<@;}%h>2sJ%n3#QD2pb_G3td0^EoIw zH>PhYbmtu3U_ORTBJf9DM+41}!$jag-QhD zzJSJTeY@U_nc%!eo&=jX*ow1Y@4RC4fOesSc>pw%29IB!IX;n>b`Ru`nYx5M*!k4j}GmAGIpQ2tD|EO zJB#WO!vEZ;TE_R%-d{XWS44#fw_7^%6n9+#oAFbgr+_|YI;xo5Y-^2S-B{%0Jo)gh zv&kp*7-;x22N9m{@wiv%F%vpsQ4erkX+}uEdZtg6I^@nhtCyOZT8sr&vKtSdRZB@A zElTbsQaN;DENC+#^9k-nP+uTr4i}Bq-*eTamT{YVw&vM*wxKg#n71>`WWw~_PyIry zEaKAgexd4qb~NkxESq*5=rd>Va}PAPJJK;Y56Q6lYeF-2czrPnT&GzH9o%*5+3@!8 zgzd?2>nA&HbOLYHXK~XGBd<*-O^GMTF@pEp^G|{`IpK=D7axUKag6BqI_W(0E739} zjNy>c&R<_|GcHUfYM|oV!{g;Pn|QC|qd5g}@7X#;YBAx9u?JZ?hc5=za)OGv4;t-i z8_A60PoHZzc}W*wV9p#vj71dqYk4Y?G(h#2wfbufys|Egq*vVBeNezl_|-8NNX!T8 zy4QvNdEqp`D>mDQQTRsYuigXWB?&x5wOo++Olfzut`t=g)-!=C ze_m~e{}uk)r_)P+u(7)4$3y_}&)E^E`;W4E!@I3?PEN(j+BG#AsHxJYFKl19S9iWr zBH23k>Bnwy`s|`r2>97^dnYuZaNF^PHOE+8hY-d1vqp}$O>rK1TxnUPb#qfIf0quS zm<O_ zIj4qxyvkt9MD=BF+bh(V6!`Sq!84J(nD8sf2x%E_ha6W=Kt1NhSoQZ9KIqIu0GJya zHJoC($eZxH=OA1Nc97)-&d|!uqzE|NH35%|$mYpi!9HdrK1^ee>#LG`CO<%iBWn{t zvuwu1b{;^le7yjBN<9<5IBy&&01r65OaIMLxd(Fw{l#@EjO6I+tI3W~li8hm-^6N^ z@YhCT&g6t7t3qvckA=~EVlUb##Mqal3)G)m8J9saqY}vO0m8X5KUR3#amsfWWIo5O zoh2$ptNwL#6qLlouYm&K-n<45+?r~*<=Bc~ZKG!$Twop0-)Z^+jtcsDCL{7OgPSZ9 zisL1e5GOEi1beI4T90-fX*IUUPkkJoGk9ZSSe%M^Rs<=GLTsmie|~M~j92BnW)7@p%x-QzVv7Kt#j$Oa>W(n^=g1F}x^@D6EMYOBch6VEhEklKl ziO(>qv&cvI-4KP07E-^tXhn&;vUr;(TwPp6#fTxX2Sr~uiBn;@>W66WQEXxa?3iy{v0O_54&tZ=!bdUMM+Y>!Ad!Q9uRR0=mea8+oVYnzcqf|D(SCkje0g zj9M5Y)?8$25nd$rfVYzh5)ju%5|4pf(yjeJnjBueX2EAzAPCd0x@n*dVc7}*=E_*Hw^#}@T|!0a z+Dr|;R?T3Vw)7Rj>+y}o=(p}-)*{F5XOd+`KH(fU#gAHQvfLf;&ow$MB*)3F27V4! zu|IqoBJZNFs>Fi(8XbVq+;><<>{ytfv0hs%fw~eQDH|FhI-%pQA`ZH6j0=g~D5$fz z8j{kU!CNyR`KrS`I6tc&;O&m~C90+p*bHW8y7SoUP74^^=-c{}LpPzC#%zdfovuIy(kKnAPT8(5v`Uwy3fy#&-0;j`JsKg?P8}mX?z3Z+?zm*ljqTiTmK;2AM(94 ziNXzC$s5&x;y66EZ zH0hm@54#>6R`Mkvo}o@w9JOW$^R@Uug3W%1qHxaBS>#}{;{9BNw(y@wF{uu6?bW;{ zGG*ubA>vZ1Uba5niv=D+wd5Z*|6BZ4-4?yp2R@veG=4@8N%aw z3!hQ`VBE5U!pp;nYs(`$(2RV6s2FjT=b3Oj2a+pnjP{ml+Ote75rDbfR*WkYj;;rW z?M(ilc_8p+h^eKoD;1KW*Y;TsUvqv%nj13~DOb#3*(ZA`)5U*XPK=ewhicln;HeQ^ zZUwtKOv~w-_&Y^|5L~D=#T{T>G0pBn?&~iDgK@M4cddj0(d@^t;i51F!MTET{U{UJ za@bZ~+N|-+Q`@7p*982Y%cU&h7{V_^h2FEd(qtkI3C3y4OatDA+3DnO~WH;SBVm?$gt7ntQ}6uEtN@(ZUid16;m`&gSI@T|MybY4;8#l<>cn59_8i&` zUMxqbLoN;Bo7@>COvo>DPI3`?08sQwR=p7Sk6l;?o)vuyR`u}{gC6;9$B*oUN;$Wm z?$a^V0`USZ7%TL*-5W-Xunw@eXp-a{2du%q@d~O{z}v5s*ZT? z0qcI0+I!t8xa|KKJ~9xksI3l%nRaHDa<9dNFVUFM+@X5~OUuL=sg=ORAX6 z_NbKsdD64m!aO$u;cD7{)+`u92?Jygl=B@CVGChryjxHP z#%eqf68c74YsbXd01TIVPO-R}<&Xz>=fzxL#xD^EqeNEUOfRj9hp)Kw4F+9K7BXb2 zAS2vIl>ot`17)o8PXelIRTYE&{W=w01?s~k7gR(HVwszO4NQi#FhTLP%(IN6H>IrT zO4Z4nqi8;}yP6)>Tq{hLC;NyIt8`xz-=4@I!+i%tHq((k4 z1Pc+J-2Ia5qpw!IRt#&J-&Hpo_ZXA8h6$(HIHmPs9ycv0MfrxOjOmK?IM}Wwrj{v_ ztTuznhjXKWy2WtX6GyPyLp8Jxe`j#NnCc$^SO;1x&A7ml?uRnKEN1Vb<}K1 zPE?Fu(M)2k zWk$FMwMN>Zi4mm~vf5q7&Cc|2h3}d$RA$+7kD)%JtN}T7mG1#A1@>35Tr+ofb`ffoA~T|5FrCla?uo2kpy2gkCW&cn zcRBvO+We6Uc+De}Hm*JgqHiR-T>@bATpUow^+q+Jo$kI`y136S_@JJx6G3SX={tmM z!Cc`fg8HC5R#?TX|6%ZKk&W+}OI72o@)T7+G4?@3C8K*EK(-=oT*(kQrE6WHorwqMIPpg2`BIj`JKa?nb4)?JzdKll}~+>DwP!zLeMBb7iWZCT+|%%Vym%7 z8liK@v$TS1Gc&Yj!T}1REU#NZte=U=_Z%kgJl7F{+a(O_o?H zW2bi!)=5^IijIwI?2WDML)p{yps%ymm%palwXGm~SDF))?~;_AE3}B~0JgW89N zVmv}9Tc8GG$Rwp2X0BimgYx3y3e!U^*L$@*BZzL!?;>=4=dIOI*#3T z`?C0y<%om(qXhe4dbdrDT>7#vHc|)N^!`q=KD0HKDaXQt$<-^{NfUZW`DwMEt&3-x zJ(}!*qK7`5tyEjnlxF*h(ILXm2f|2?z62&RAD$r}gl6o8VS>0W)n!I5Peh;}G%Es_UIm}aWLpSX`&5pA^1YhdfO9whqHfK8##_!`U$O!bG z@U7k06KF3`a8&lgtgV2%kk!~Zc&und9m+BtHlOYIR5lZQRBe&9Qn!~YaGcWw(GNXi zN2$S%KC*wvE{?aK2$L0*MjLT4=visEYi%cyaq3)yXPFM?f;eo6)cd|YFTjp1eHUKk z(eP_>J8+R3Gk@&E|XSP8j{*h?A!mfJJN`?MEuO zE~>+u-O=uY_kFbO?fj)!Y?W(xrk5sIXr#?!ahrNzTFy27cbIHQ;lTjy_rCM4UV1eF z|JmIm{kLOoG_Gv*uS|pp6$!0ns4~J9KCP9dpLf0TkaKUzEe~FG%^&BPzC{Z)Dh{Y7 zY&z|tQG~K8H--x7wS6f^#f1xFK(|nK6-v^pc6XGEV~u?N3%=A54oE@>Q*s7W#y*s- znMq)(QYK-bjo@w_URMo)sPzp*Ia}gfq;Dard;`&__(TXqZ{puHcWM#gU$ZC2Xs+*tT=^(~UaI+FA3=*G){;n~z|F?)pzmEa zs}s(JYSr5i*>paj+)hdrPW-85>rkF(BwW)Q-KO3AQAEqGA=Zo8Hq!$u0YvR9gaKFb zB#T$MUVcN;Y0mP@F9N11U%pv&u+jeEM4lI_$xjz$4FuB+D^bll#H3dk3*Z_t ze8WYVziFlu=%``%BWka$dJB8UgO|>DR~6c?Mz_S?eiku<*{px7J8dVlPkUJ?Ao${G z)Du4pAZst0(V|>ZwED()ghAHMx=v3$Q!vtrQ`W0nFS)0(*-0n*osf#RmV+}_+}dUp z2ufr68+0Y{4hCJ|{(=Y5P6zKpth0*T?!|QW3`F1cHX+!UMk#e97R14Vx)w@Dngc65x1@l`9`ZR}$zTrkdrT<1 SOyH zoZ?TPu%ows7NzOE zK^%2|iM;Z)Z)11}{-kk>0?`F^7VfEUE(^SQyk_(~6&tpX3^W1{l zWW4Q2#4I{?N6i<`g>G_9iWoR22bULB-drtrA9`B>%8^VxC{`U)Xp& zS&MlB-HqA_M)SDNeh!sHca~;v`^!81!U?D93sQZ`sQ<1Cf9AlYHrXkhBQM@d@k6%) z0m}XD!{gxto8IqOKzYL;aOC&KSTXD}@gq{rUG9~UG+vhGuv#yZcahzHQ%&Gx=~w%K z*FDCYFp=j26*}(@%rqJo_O>fX_#dU}o>pUFrSRI+FAp7O=uh8EP6^jZ=Lo8vf6Ug) zBUPf57sr4E&j$eL`yS3}L;kNx1j6I#u8$12phph^CbhjhebqP#^*K~)+M^+**6y-$ zm~C-wBWXV_H@5J;Uz7?Qowb4q(DkWWo30zyzbr7A?pl#(l>s=Wpdu zd1LMgLp7B0^7SF%u@dUqD|r{zmyUWW@E?iAxDE2wYu|o)S)TNJSt4t;(g^!Xvlz!w z^bxI;lC~@S#kZ;7KoR9Okgvy9Q9LcIc@BRx;&t2?Gj!T(IA+Dk=1Q3_&EXcj(_&>7 zrZ4B+LFuirM=h333kT~wl0NGEej`E!odu5QZ+b+r?c+>+2$waZ0NyfdYQ&ecwf0Bd;Oc-yeeG@)#Ss0 zweFJdCPQ)jq*dotymQRh^k^#PSS7zIaeo6L^S5xGD;pQ{V!Wt5Mg2WQ#EQ zX0P$SXD@s@$c}%xsA!g`z7{@46r3Gu-xYQc)+C$EP6zIHk7~u=#ex(aq*gqNR`{;v zWrm|@k1c(o+^ry-|*2x4zWJg@OqVvoRgF?Kp9Kc65166htnie@=tC)~_X-R_$14l^fZ` zu7qZwKP=) z#;UEcN6Vgp@Fsrqm_tboXE^&qN=?-sVolXHxj`-l3MP04qYk@?NwUigY9VT9S9q3* zi9MF%-T~W~MUC9*#^2vw;u8cfigPP=0M|8ROmJ@pPVyYh&mq{bVzx%`IHL3ZJeICb zBt=^Lw%@$;h(>i&{1D~WC7Zj>_wkTbS0a0xr&?_1#K^VqG4XOAzFqS?NS^IQvNH(_ zEr86MnJJlHPr`I?UnLib<#vBzr}2w>rzyvHorEx_jJjs{rzk3f>w84j!Z7w_;Uw_1Xmx$S)Prs&8QC8Egoc~h{8iN5hZ_ln1gl;~Tj!3s8| z1xCM*VtXXY@Y))_&~uYtVRtGvf?J4LIX(nq<=LfO1-WSqb7rYYk`i=dmx|`3o|83T zD#c4ZPuI}o!R!c!4oY!!av#PSw&bsOQ7wI}7*}sYEuN+8FO_Q@qM@hK^J%^631O$2 z4f^_2La<(YNQ35JwNRRY7`&OQ6L4-Q)0jmi9EWp5`iC~71>#xG@CfC0VQWat?l@j@|jU1J7SpK| zF1EZTtAkcX);GSwT$=pEJb5r&X58bx{QOXY{RsE{7K!-c^Ozd=UmpGVsT0XWmC@Gb z&r>9QZK*%fJc&x4o?Xq8`Qfxr!7uZgovYVc7~hrPIhMcoVqL^M=ETS#?5HfkayJ#_ z?6A19wd$bf>kMh~RyD+T6#HZ{wsbzwC$p`IUw^o^pxDY090s)_qz^X8X^c=8jG}&0 znKkvywk}mso|QHgia^wCkMeihIv`a+{~&m+?zBS=6KACp20jh>{I(hA)K2y+XmVYR zZ)@c!70x5j_;6G7)pA~CYDU+|a0?b+U%b4!w0;kW6frj+{5s?!vTN40_CjmfVd2Y| zOgamSsTEbV8n2G;blX8o1j*@zirXjXC&55rUX84QJ7UB5@^$_3m>h4fYphYWm*UIk z`mIqGd#+Tu&b3=bsycrf5u+F4ig9kHhCR7v!1I#zwj7e2yt+*Cwmi< z^f2Z_{{Zec(8P{Q{X1(_xom^HJwxl+8D>mOJr{9el(JOA5X+G-ZXtLt6|WQ`@Wfyl z1e4Ey^*F|3I%A>4!{fTVC-z(V@G~em=XH8X?X%C_So&dw8A4cyd(P=R8Ee--@(9I< z^_kULeupCjl%lFBQwzU#T;HB;Yw(<@3g&lwx%Obpy>x3ooEJf*1&Xv5slwgaNH!T1JVRZ&CFC7w9(n<#>wPzPfi_2sJGD7A#Yj1`anjScv z8h6s{ESppE5pmgy-9B9AAxZ3#$U> zQz~C1G&QA}J*~j07ZW$C#EYwt;)vw6v=-EaCrh4M2-S;R6g*=am7Yz= zm3Bci@|WF6%k_^9h%SDu@MhQMfvjwPcrdVPuYN_ATPsM}*M%|;Ec;aA%F#?pC*rdjn;YMin>x~BY?T@2T?RZpzxfby}Pi&@T9 z;DF`AotYqOacDNHC0!@a;)_P)--{l_g!eP*+tZqXQh#UL zk^#UXF-2o~m)os-b)^DRb?fP0Rc<<6vd{2@cuw9HWl^I}-;`TTp*ind@ZojxS=i1a zmJR*b?Y5FMN_W}+-il=K9!$D|hTNU#`8Zg|=F0c8f_NGt^;pVt@lYa9ahQ+s1e)Pt zK(6XN`Os-iZ*E(9wX;D6!!)j&IADR--bZY7Vt=O}fvHl_N3u~?8E11U%1#x-iox7z z@xy+%Qnsxs3JX-4Kc9ySwP$#1qZ+k?G5<=>@sXvOCH?lI-*A7zhY1Zv7!(4rotZcS z-rtbzrJ3oZ;u+2W>L_x;+h}uch6O-kL4gX*3 zGuH}jUTK1V5?^{i;;VI*6v3)7cEhrO*biAm9dJBHaywcN0>1*azmqGmTn+q{mr{AO zNd@A+NH1rIXt&KnR)3V_@vw;5hUo=ti(mAb{8(LYYhmB_|8LlNp#cQ8dH-qw5$+&h8gi5Eh`B6+QG7goVI6X9bWdCbN zE>$Du-|=(6DbMYypL4&7O1@n1(QGpTXDo4u-Ip%aJU5op zVnL=2zUN4)4ofWU-B7{JCg1n1PZ%tHg+-29rx764P|xsnfYX{6m^fwl!68T9%k{u*q+u70_MXd2lf!81}IrhRVD=bdT zb_3hfV~rFz_mFj}(76#!;C{gqMEC87Xarw89X>`$#6n&HdbnZjYBu`po8skg#f=>k+#b<=@^hnpONs8D{!5jse=lWxn?v?zuViGMq|A={!{bMg18rM$c8OMOga_&(C%RU zLTTCt_6meFqxWwHtf~DzaL+z%*ILxFp+OB*Z+Djn1Xt|{4O+mf=r}>0dvFk!1?4G< zzu~{$+aQnWei=M3FC3m5@Z5cS3}oE@92!fzC1CT`6jm~DhK39$efGgs<0IBmZ#M&k zqq|e>rO@Z@@9#f9Kta60=}NH8?|LzX3E64|tXPm!gTLn}1?a`8JOZ{nk``HDdWdLv zeVpsMZI%=V*jZvr%$NyT>Boi^7Wq}EAI9^uOE1KCXp|h1QWf|U{s=hRP39XmY4+>y zL#gf=xN29eIMy*hqNfx=dN^ue?YYv9?L#%SI;y-j3IgLd5gxw)1EF}i+b-Ra!F4GL z3&eAN$EjarEVowlpek6z%4>`^c-*>4qF!$US8-VH0B0>sKY{l3G38%+4jBTlLyR5{ zvnyT(Iz>8FbkXfDK4rL=DTfWmyj5wp*XAL80l zJjsF0FbCbJ7cSC`L3uO<77!el0m?_MOEN@Dketz95lC3h__1JzdQ{@6a{alzX$at)qr7R;b+ zosYu{aNrYEpFYIx$#WEIJAuGRoC4AWf#UwcyDh9h(XmF|P%|Eu%rz)$FEfJ8uoAbt z4u0jPki8oUZ1|DPa(%D4C$q=&0_T+Xj}4!Rg2atN@x0rho&Pr$U7&YO?07hVmr z?8UMwKBhFZBD)YP0qlM+^(4JO>SDSiJ_{8HIJhS8(_Wuoj`clrwSkJ`Ac6_w*qhd4 z8EEb>#P4B)^&X!-J1OM*OKDv!kL8;CSc$`}^?hXg2t$V<)Mxk4^MfU^B zT$gmph&`{*Q63xmSHwbWH7<~ZFcw75MESXWnm$>)A7N?dltR{q(}BCntpo8R0DnnS zE}ZblzFzooIr58{zfL4-!Y}=`eMpxS7c$SkHEb?obP*K zEw^-?j-U2qaNMyR$ht6wbGTru(5oW8YeIPXzK{HIqW8J{?Q+X=faJLkafFaHo>zf_ zGg;k0tv&UNmwQD<4*9ng4Jmc}9ol5qhzE_(k#mHJ477||5`I0WrzF#p0?E!ibflsruM{O+r%2E)7@#E@*p-qk# zb5&Q~Tm#yn-8jrX@uZNs1~!#dJlWgJW~K2x0jE25{Zm^C`A%W}dmfiIoZmq@icV7n zIwgoy`Rw~+6>!yUA=XI^fI2rlkE0j2ZrJlNm~MFcRmivywCjS^=jTF=VYdhs$ON?f znZUR6Zoc~8gf$WD-_zBNFSJO_GS;o1-kH0AI6=;-oDd{;i}i4R<#RTW{O<5>CB zV_Y|+m{x@U-Z;|%LvZ55*kh89Q+CGB(Hc%u#P$x+QE*OFjdD1U3Bf&zB&vDcq7HV0 z*A~>mq|@)(_y(fZ)Zr=6A4e#?CYgK{6`@o17TX?Weyr`K5=wk9q50=W0geD!O;sWd zP!MsYpq-$eJO)m54)i`_~Ce77bqMIstL#fAifYQy~ef1IN8C=)xiQ)T{ z?)1Zx%YVeBfM1r#X*gB*E@(+!Ty$!39L*#CS70Z-K-hHF8;aXIn;;SMcAkK=whGS9D6OX6!!R3eUXE(F^XGT!x4Na_%0FR9|-Av-}G5bM<+gaGu!1z4VoGDY6s1h z8LmNbJz|;K&V?R>k$iH;0=LdT6%Y^?baR4AdEEpbKW^zbN1y&dZUVyOI`#(uOy74T zP=uvo{#pop%dM8(EsRusg z2=t&yQ+T9c&|u=+n%BGjfrw}4CA2H?X?kwS@Wj&Guz^`YEwu@2G;Gh-b| zlnsvi?Lu>kATJIant&vi^BMY)bCUSXa*7kb7IN4v5l}LKODk4syKqj`pIzZRCwINz z7pvTxSjz0_tq}Z|Z2&kA=_9}lJQL2$`e`jRQhrKo>@ZvFw0GjEe8zfXxvzjSs6j@?FL*d zu7L9q`Z%&v!||5ezg(;hZ8&EH5`2KEysy|vj=~hd?^?*z%1o6 zY2W7k6i7mE;#}*|WA@O53LhSntUc_@V%7wO=Cl!m!A6EMUW+H`M*lHj%xEU%8;BXQu zo|K8((@7q{c>2rh)y;1hCsfP@qoRe+c|)K;ECGnY%H!JN%%Ered@MkPhv~Aj(YT<|iO!?TW4IyeI7Yz;0 z7rF<2@#i+su80G!9shU{R0b$By3FjYC`Byiwn(-Tr!Jq4Cw=wOu3fMYJ$)<#jLOI1 zXGQs6bpb^$AUc%i$4otiBJWPV75HhCQXo`^)flMW9oxbR49ZG@<=6fG5xHsfQr z1sGRMmQaG;%@v`~7Qn!Au(tD4r2IR944oKZ#xC_uu46&okwN5lxf>d-}spj|I|s z+EDId?6RA5@RxZ%i1J@hg8*yy<8+!#r^W_0wqV-Nqt2h$c!hxK7EASj&%ko=cRhNi z_l^6y(Hs_0%QN$7wx~3WPGziEDnX8cKBi5-kuZX=iOS`}so*sQ zDizf<*5uv0vu}K;UKv{W4$wrBIRs%!Mw342%aY1N<}(f#mN$u@mzwkOZ{UMy5{dK; zrUQfNAW_XuI)dxz9t=uy4JMcxEvV84|Hd`+ItI?)qUA#620c@=h>ww4W)^W~4tMfK zU*P(&$TVX83&(#A%ZVQ-#xEs7aO60=_8l-Q_1a7wms!~@{zpES2*(>fzeqpj=M!&{_9io7MX?}!^l}F%#F9aYL$;a6~}GDI{n}dMqhKu_}bKUwdz2MkH5<$BDcG-W5an1jbvQ_E6G==cCZk2D^!^Q&VB$cY$P~t^gu}p zx=!N#RfPhMvFtj8$l&A=ASSnmqR-_f-0(bK$aKwC!*JkW$wuSSxu^;U>a2ErZ@XLR zyr*pnB&ML*x$^$bsm+k0b4!iy`iU2-%rzn=8kf);@!g1OE*PH|_->A&~!^T-i(71C6oiQzXd~^wm7T}x;FUjXb znU>MA%Mtr+LO zy#Zdt{WZA!+G@MYV54%K$MgF2?uQn`uuUgD(vPSl2vE|rLh(3hN~+nQT&0{KrxnUl z+UQ);%5Z=F(p*~j*~~TNO#VU@P%NddA1*pZi;QG~;08UX4MEHKNYbv;Yu@vT^`v$C zoyMbYj$74lPIXq-7?%^SuaD0!!ZIgXFQ=Zf5_uelJlx&%ezP>V)Kd1YY4~d4YDH&? zyWq0FCX!?zgpQS)ok)J;J%7@~vG51^7gIk({HD-++IkFVq8~tkpy5zS1U+vaSZGM# zqFarXS^s|6Lk*VZT${_RU%|)ya79k;U_w%Xg8ULmR<1gqHl!~iNd_7^ zv0WPNYJZ@5oNk`_rqbH+9;D{&$|u(f3^_9BZA68V{q5wgH@L?Bf`mXO_x&cP5)XF) zUiHU9Ziit4cyv55i{kRArc0R{>%_A8$fZn2*B8;B9i>mPg|efV!uS4Z0T?*RKFCYq zvz{>0EfFS|xcJFG@S@^AefpqOanV&B#Y=e{Kxaa)Dffp^5-boMk9uR7+&aFNj6Aw2 z|Da<|D%*hBp08i3<)(RX0sleo$$&(86}L(?b}R2c%(>~6gbL(MhOrwq?M8F8IaWP6o7YFl z{NedO#0;p-%q^yJ+7uO(MP|G`kj7mLzJAXvF1?Rpc72qHKR4Swi9=jt@iK^85&pi^ zfEL2V!Mm-tuIHcAccWYMf+I!d_ZfGG%N&~2uc-CZz2Z#Wn~IHhuNdOL=sG6|&9p_+ z?Y7~!d=wn$w>fHPdU7N^J?^Ejs*Qn#cB=`0MkQDS4V}7InpFAp{`i5eb1_%&@j~aT zM^6pJqBnKjY%;5f3xFCveIwv??%-alQYgW^ky#BLs6? zDcny=B6qvPstI6S{BQ$y*1hB7* z&O12=stO;dG_6{>&xbm#)bpg}(A0VuYV`M_m0MV6Zu(wT;YwXumfLlMPj;^!K6|FA zwKD54u7{dyIY3EzpPyhacsOA!``J>t|LDVnPKpX+OM6z=gsWlKG+{h-6WO#2LycXw zi(=wbt&Oqk6_{s^L!g+!QYNYDUxEWz(u9heOy2?~Tb_qyO88(!#EBM5*@j^0YGHer z}Rvaz(^eMCIohn0M`Gjt+q zTbk`sRuB?;6eH|x8uxGEEvU}8PFoXjj^PXNJ8=_v9GWK(YFlp$E~jUx=Z11b7AkeF>)&V(|w~6JxpiP+Dl>ZluUhf*GPQ>_CkHL%5_ZZqSNzt~dE;rB6&0oe4@Fhn2bLFyr=>xPRq0jB2DFmU zsY*qNLHCjQ08D@YC%ounQ!4%+rJ;W@b5Xa***{$V!`seYWigms;B0jCWSE#RP+0_n zZS@<&W1&1Ns}N%bx!yR}St-g~%8o}A_w^A9w2w`#7l_Lg9r@Kbc3v3WCwFi&(s2Ua z<8ZVpl2~>%dk`~+!129|*+i+E46Rwatzzba>*VoV`|gOci=nksMrt0MFk960!oT>U z@Bm6E8$@4>{a;N-aI*WYcaG=OPGK0KS&(Vno;K{ z_#hyY4|2FpEEiP<=Y!Z5E5D?ZS&sj3U(0Nvz{Y(-7)*6U5I}WI91z$#26OtFP8-#f zopAggYkQ->f`@?b7{tc|KL8^>R&no~xbWYrJ4;6$b_+>|8O!P zAsR1bazE=cV~f*Y(kDLM!%4FfE6TTLFY#lzWf=Gj0dp4?XRW|o9B|I8YJ#Y_MOUw> z1XEssKnf0C>_~Tz1QR^|>98e?NUrW@TctQNSLbxGy-#J>0#>%MeLL4o_*3LR>VbOV z0hXUAqjX<39G@TFp2W@T?DTc4Fl+y!0h~-VOSlGOJ=ak&Qe@`{fXS%(3!+eVrDA-* zElioedI|!2_}I|_PuPFsc6IriFi4o=J$L%exy$aEAm&)X>m5mg_0>ePa$&1v>S)7l zy5+gv%(THKAn}c+M!e zRd?RQh+riQZE^&1@>Xb(EzP9wmyF6OaM8&sQ&-E>Fk_=~%b7v3D+NU~&3_$MwttikH-9F?GIrk@1U*R5B$vhL71 zY8*n@TCI4o5IgruTCmVex`7M|B!-3RL%Y_t9$&`_1(j`rn*=cRPFSzv>Q1lfIs2yt zHVNgI$*kWSk-EDd7!dGtq55|pw8&(^rdj>uO%~bwuY8R}XSPZ=ZMuipcCYg2=Do`c zLQu^02s=CFp5)YA8JDq@H%^YT`!mrGO<$cokq~d03*_r=QSPq6#fX%-CX@717!G#1 zb3_VsP{~ZD6lOXg=srduG(5smA_n8Z!wC+e4)@$c_k!>%mec4Fb@^nZVfI{0uJ+c! z)UG4MrufO&^ehinXV{j=bBzO?>ab>wRcTw89NQ?P%v|qxw_zrPYz8Suy!)CU|J1SQ$=&+yHMtLpl6-R3v4BPXr&uf*@IEi zt%3GQ`A_(m!U zeseAXBr|14+P0dg>cfpYduj_u7)-I?|uUfhbfYBuH<2lf{2~2`SO1X zm|iO-uY!WV&_Ve-D+iM^BJ3B5nUmG6lP(PTmWXosPR)VgmuRLh$ao-T4roviHy3yP zn+ymLsn3l_5hzHYRkIg|?#F3dIN7evJhn%!i1IHMekyO?v&^?(Qz5fnZayrsJ>4_) zvo>#oruD$*bvk)_G2At2lV5Jtyat{6I->{-fl-Pls6hcn$DRQr+Z#|R!f-i79e}@c z`PE%_G616bg1VJPQG(4HR1EdDQwyax_c(C}q>%0Lf364nDd6 z;f>5w@W7ofUlzR&K~-V%)8u*wXc5u$rOt-)QPU^M21RASFw;B^`!m8ID&AKQ9z6ab zB`T!y2YLCA;Y41R?0k3tUW0*7&E;SfegOmhxv#Wvi0tKhD&9T2K}xHiT~4d+2M;)4 z{yQn%J&2lXm2v|Cm#`u;IH?Bgw2@Q2dy%TAvw5+O;_+0?-X2p{sOpwW;ETs_TN!3@ zc@mXFB5crj3?y)aD_G1PYtYb^x!UON{|;%v=8rE}5FNyDX|?IHwC;`QkG|LS!JFGs zWM{&3&b)1rcW7~R+zJ)&Sb5%CA&g4vEt73@`-0$0XlUnL!zJ~b8PkH8ASx{rT}~JU z8tPo&t3vXukN;RS06pP#D!8UPxVeH~^Hu*xhiu?ZVTEC4_$%`@9-Nv4%^eJ(a|mI0 z@F!NCaF5t{>k;Kh$N=yBM3dThNcYuRm||%%joWj~isOSkzo2_a{hd~KvS5_3vKrhz zZ>UMH*ZF_YB-FQ-ra_x#!;K7dJUBMrMee;$qL3&U@lZ%?tGcqJxfgoxDPWMo90tUq zL1Ks?tfFOFc?^Gy`|ef^+_wBJsXmpn--D)NZ0lRqnB<)=hCGDZfb)+QZPqJGi@udo z%qLPOL(t**0L%-A`3zU3F=^jAe+^ux1PAy7-?V2e4B=UV3Q5kb2U3|%_gDtcz|8&( zjmr7l;H~S=9^^PGhzo>_X+bf?7AxDrj8+}2g;rx9+k!QOai`$m3xtK$5?P?x>(5yt zAQ@oBTWTL8-j*Urtzh9T0n^scbhRy+>!v%-DBs9Nrh-7&wJ!TaJqVA^~lzExJ zK*Th29rD@Qm6_}gO?mF*06gTP;YxWaRJW?8`H8m}eCO5dR0#dgWD4MO%NLEJ zZwy2B`2mBi)m-m4@5Q7Kz*=w%G@l|fb&FNZ7`k{2(SHX6Mpjo%iC7(`7`3@oIHV-; zg=T?A*_8SH9GYM?jP#?Oy^jA{(E}%hdN+}8#kZWqbzY=yzC%kLjO$dD#kPnIfH@W3{e9hAz!1<_!l`bf{FQJdI+OpsSHD#}*J zG;{2nJCp7+p2P|inQ5y6Qi|?=yST7bqBW(aA#h)J0EHG5f&LiGqnf{S&{fT)rTvjQ zijJSnh(=cWADs|%0BN4mM=o*q>u5W?@lSsYxH(k7%_W>O_Mc=Hejkh~bGG$RG7bL+ zardQgPlylz-B@73htPf42U6O6(G*gKa!8!2vQi|GfbxFUVHcCfkyNguLMqKj^;=z^ z=lZ{B?S9uGIFceKR7h;Hd7^QqpL1J*aNZ7>k9S%ag<&FOJU!@N!NcS82$B!ei)mho z#Z0>M2mcoj@J~q=SdLjZ#i>9avy!qZ{{9Z#>4!aseQS_$?W%8OUII)K(Gy@>8y;qG2vKgeUuB{ zud{WV%Y633d;PVW{lBXEzYksvQ&L1DOBcx1Carg;i+8%X5$Xc7&k`W_+`(R!A(^5$ zo1oRLy}p~pq|dh;$6v7g|3(4afP6}lev($V>iX^*t!VL19%a5MDqwC3bijtttwh@s z@IXFq`P<=%vW#ZI`!7phj}52Jzm{j6{x59#A76=K{C1hi)V&;ZPSOhVDA}(;vzz*c zyp2Y(V+qU@99^8Eg~87LFHPC>@|qKCj1E5;p1E?kB>CZ4s>L4vkJkQI3R#s%km}={ z2Nb??nX+xkE{j$#$LAn#WBk(<3)tDu)RawqsJZ$IGh6j?xO<-M{}Btr&}&$YIfJ}F zek|^y^iAp7>=

    *;X`tJ+>Q>Pteq$agnYT%)7me z2Rxq5@1lE@*7ceLjXbkEN60Slp-Hca^OUQVH}KW26v8kA+Gji3U#|_wj&=W07rhHY*9t+b0)l2l(K(4 z@bQfguoT7P{&kCZ4nz&b+^96~)r$zx0Mx_zkr_T%fADXLyP{)996&0KT-digAQ&ck27W7pq6rlo+qHLZ zFnIn1S4y&)_W-rXCaj-@o)dbYqJctuezXi_^pZq)f}D8Xm!3ZsP#9SEbo+_*k6Z86 z!T^jJjPe39-M(m;7J%#3-mhTS@1Q#1d-c^$65_rJ1JO!_fTV0C;b>U)=h@ASRY+;H zZFw$FWaekyZQeuzt3?B$3PO0V&&`Dn_~Q}MxAHqK1T6Zmv;r*P=#95p;Aqf`X6$z7 zr!l=R=(ylHu@drurnfB>#9-^wQN1unzyKS}+2&hJbE8Ny1Wk&^yL-l6FGL75M9fG) z(A1Y)qSxJ()Tr5C>hQxZh)bz$hCu)WVq2)KjAPqPjY2~`GLgffmo7UC@i|#e|0VWC z;nG0)b33%C6B&c^+x{B+b_21!Y-}Z)6I&E z6%5s6h%&ym8|k0u@@kSPc}&4jEyqmazG3sDry5uJ?W_i*$(%zb&g74oY!s-sA_7eF zlYlbv(X86Q^c)3aLjY0~WSLfN7#OM6_ecWS2sO2^Wj( zvFq(Y$Fmhz#2zDahlg1?-uJj+W4nQkW#1q8X(yajETkcunV(iX&qhmnC_s{`kkkB; zAwd_a(-1v_zk?N%qPpC?$e&k{E!^DP@rY=W7)+KC~uID=CcqDHJMa}oqL z^tz#^@KZcAMJf}XC5$7+|2h-Oh^usx$oIOp|9ti*3!d&+9MLeAwDt{Rb*A4Nd$3Mn zp44!&RxtJyu{Fp2&zHWytKWCxT|0>8wLwxe3wxQ{J0&80|5T_%PTm|guiCO%0Bj$^_VFHffGBJc9_REN$mHtZhfqL!Ws`(SWM*1PoP#S7 zHd|U04DUO58FR1CUN*Yo@UZ1WebzwKeU;%Dm4tk*Evz(f}u# z|4}nQj_ZyKJ;d`M%^9+Ei9=>@s&;V_q_0C-s zY94$wU%e*_Cy4DJ>sr*`44gb<9XWUBT@5h)_1Tqpi72`vqq z*J0#>drI3Paojh48kUMh-996d7c?^Dv}^%KyMK)OFy-jnRL9wX@~|_tgv}~z{vy}O zs6NZJmMFDbq8nQvnFivHk|s&imtjC^-(H%?=}%A^oXUNIuwloD(;RxIof>#!u^}e< zKvn8r{j#x_K?eCH7)`B!$W&ealAwP-hc_?3lK?=dI|MD!xWN|JVL`b6>r3Nw@ipbu zE>$le(Yt*#{pOR&f1k-rK1lEh&1L`1;WoWAMK$+Zdp|rz^F$x%%Yck*!c6}k#n2Y} zq8Kj%LP2@4&mHgSOaeD-JmTgviDp8_X$Ka{9jwxaBO$a!%s#JA_%Zlv5_>H)&38NL zJ0C%?;7WDF8oDi?N@Al-X#lbELyR|eaAt@;-s3-~c0FnJcgOWmGjUIKn3f}UE!X4teI!Hn`;olG5 z{Ymy^eV=?XuMUX*7rT1vBD&hS*OArSNi>Vkq!RI>#hfE3DhijqD9}0;>qGuxfxTS! z;fg=jlhZZpH~|={Z5}d86{$FbI)`&vM+HJ0Ax>#}N4nsZOQ@rsBkyyKT^8Ss)VB?!mvh;`4QmC$Bzx=^YL% z0`J{@wrLF!1bp@rgT|bV796mvYES!01kjQLL-Jq?lesV}K-$zL4%Zd_!aQ#^vq1At zxV|FpZwhCRSG}uAy&uMc7+}A_65eNP4VHWYf(P~Dw+HLdYtnE=sM+^~Xqr{7iZJqddXX0DSI_%q65xH4I-|k!+CHkz$V*6CDsMgZ#BDtN36C9;wy3f10Dk_TM zI7M)|)>c9A8lC!MM=_mFNQ=ytffsbIBwJ7t1$mqiO+7a`KnI3Y&cg7K)2c$f+IXT1 zrqJ)E82fTmk5s^}Xsml2BQsVR*6~Y_&C}Cq@wpK_g*#|wm9KyhoJTLRHMP;zh@xz@ zaSB*3Wshu=Re%=99U|_1|1(W88S6z<3vT#Tn4~D;$m!KJj7P;l_f!})%oNeM%Bm+P z*-ds`Hq@)4y)&mR(5N>551JS995v3MJU$azgZ6lzt(dbATKl1VyZ(<9Sc=5;L0oHV z*^be;rB5!(Z^l>Wm_IcjdP(mQTFU z%uuQ(B?2K-9K`%txY8+<$V53h&rAZ5SgJz4kjib$;isKUiUN$uYulN{nKPb$^b6|k z(Ysdz3w0E4f84IDlE*BSE`gHPi~zImJ^NC~6|6B-d@ye9$DKIm?Y!VTI;J=Je?1c4 zWuILWS6URU4x>uSmH+C|TBs7BFx0xzW89x}u=i<+bkMQAn#EsA%nXe~@n0@~{CSZK z3YHaZ5ItZ{d1+X0A@{=dC=E&?vXVeiYRkDH60bFNZxVOd#LIUH8$0}ETHKhUgY@o? zZ7rcINKmGuv)n4Szr2o6oy1d;zz4VAa3_HoqHYUpP|!*o{?FH5XB9C!`G}!u{Aui1 z$_#Ba67{rPoLel~qN-_VYC264@k8FVdv82wsUsd=8aWD9P3|58+nc8aKPhKjs{Lr;WYQKRM%0%e2%&N^N($ z$fN<-sKkyIrZT{RprLj>t8>exv-&0`sScCD&3XcbDfPD0KHs$1Y&Ld#~!tvMxZ(tytrm zu8fLy|NYx?t>I~CxpA4Ghkz5O&~TW4F8u84Bv{w(%g4E<<3(bGVo~!HD@;Tpb@Wf@ zeesJ5tXQE@&Sn_gP5fPtE4iPGt>(kC}zOps9dDn zb^+qAdIJ*loGUsVtupp^fXm<_NXZ~)(s1DXmAJD4Z&Sxv#3^+#R=+77{)iWEhoqHJ4uX-iml~cYdjyiAqNM$je`*h zc)U8*M9G5u%V~M&k(;?vc-_P}wi1F$s!8$ihPUl(3yMo+;HRq}?p8TSe8;+R1k$J<%LV zNv!B2d&BL(QRr@EHOVjCbK|u*!2C>BQ@unJxENszwf+=1_y}v5hG`wcmNSL^WwM0W zJKl|~bGD7$6l{5}Z^0RTfXP`5$BMSLMXu#0<6gcK>d$IN&>ck2hCdtOa2&+U`fz7@a8e;> z`2@=Ft<6W+i%zMUirzkw!B0n2tPb|szOdrWB(LOdnoh_Pb(C}HE7qbdV@&Zf9$VX( z*g$NCRwN_YZ4HvAn9nxNo~9w?qILIMAW91T9A0*3)G4(w)Z-%RktU>C*c%+?=-q0p zq$pZ&;Gr-6S%)^Ycr@QhJ50s*WenYha=PGu zY8=ipWvYZO5m*k#sK{&2r{4*Zktf~mk9b6pUp%3fbH{h#RkXRdDXAMHLv{KdoM}+D zHt@DcMg{^!S?6ck6hmB1|DN z@Sjvbf2Qhc5;UBp%Wi=!bx!*of{O=a2%&jADMXlv8PRcZdiES6G`bQXIkqpnv_EeLZ1xA z#RB$v1LMeXCmb&i^$pghsy9DlA{o+vb~yu_0KgKW|26W3D7xal`%W#|>ozS+j>Fua z7|Ei^qr1invDH37EHIv%E67|Y&TW{z7k-Vx(p=JwZJvKG{dmpqHo2$)jltKR-p26} ze=JPopThZ-sj+GRz109r5|O9BI074tv&c0zW~P}3(cHt%pG|t$!A%_ciqEGdzeNg7 z^z!ya=dak^;2d}hFAOvFx0W-<&6@pE+SXo_iR8uZ;mBs(V`BZ`?jk&p+iZ>&CWpyR zni&r96XK)YSXgfksR(-_xlT0SejpK4V`lo$1s`$bM8f`Uqrj|r7qKp4Hre%ecYyO* zj#7XE7zq?k3?|KY$_#qPx`2f;>BE#Q5(+7`gl^Ch14AB6{ekznl2G^#Tl!&_yKc+! zjcW9e&>ce*fWAP_H%jg1d_J4hbD%$om2ru0?%FY?$@vwd|N9lf5U%i2~oDFC>mD#|+Md?N=&W<3@rJxRf>50u`CF3PWKiZC0qVS#);C_<_NI9G8{h z$1!G-@S6~cNq=PttEvPChJ(%*D$B2+Y=4uo;i1g5&?Ui@+CESbrY-ro=u0Dx|8*g@v&GCWr?JOax AaVF8WG6&Cvcv=4P;LoQgkN;V}1Q7IfCC z3H_c8I!Xym0soB%Ie@C6@9BVgh|W~gL2NNH8VmwB{sH{*coH}urY77fQu3tJ+l{dX zNWN9^-~j=U|660Jy8ThYAa(*A@mYCHM%Xbe>{P}Ggr+V1(Wj4TS!x;pExvO&W z+|mKsbYCpZBZOU-s^$N!w?_zt7Y?Z^K>fdTc_2Us9D$F)2mn*uJ|7Q3rIF%SQ%$&EEfQ$#x{OJMyriX0?L6 zL$pDG$A}j+NrWWV!-tDuDY_c1L%y{&uq-LRNYmAWgFDz0H4qqSTygb`p@@v`i^w{l zw0DL|%gOR3X{D^&kaiVT$E|8gJfapK8O2u1NCRvQPDIZf=MAvB`lF3jVjcdpm&JYDd`kBXV>4MTQzs*TVbY^0L$7< zTYnkXW&%=U7--yiU-#wbQC4`WFJPHP2wr+Ym8KS$?chkSIGY-e=I@Phe6K0z0Cr$N;7zetLpIToPb4 zK+zRXRRC#qgUN89f3qt#5Q12}56jrb=--#Yp|Dq1w&K=h!fTS=XJ zkqjTHx?FBJ`!X}LXb|=&{yiCC0)L>vylO|EPSE@MOsLzNGJF4QSp0J;q7b?8A}{Z@ zhY+a$_-bdHEH4aVu2c<5aF8-iZ7p@wOFs>Q9Iki2c*X4^V$UOT?1Hc|IH2G`>-yf& zQL$FQ{+Pl4@Di2L@C>z8X{{ILGKTdMM1hn*{HHTER_mW^4FYl&+W*QUG5GLyY{(%! z;|1!LjK*Ry>_pG_MBWht8v!5jM;4&~{~e;Is&(HR+UjmLVApc&D$#nq{aw5`ur6NbP*(iv0Be! z*QH7e2F+hQ1T+HCsf9xfj0nm^WAx}mjOzLZyFQV`!jyso4USNg&2vgZUh;1IAWc|? zE@GdazE6`@N*KE`bjW*4HTP1&5fBYeId;_w5VIdc$0#0GW zU^I0|led;?1}lW^R*3s2v5#8w7iA3nrYEpy=kbvah*=5rPoXzQQbzqWB#I+i(b!1}%~kK_4TU9~(Hiq_ zL#m7QglKUSHV@f`sD9lAx0Tp*s_Z%4MMO##sYFB;@|y6cDsm^Zc|Nh#;(`k5O`R;3 z__v9oZ)>rVNm(y)#MJ|fdrM%roHivHPVqS^xmZ1TXGFB){A>NYQe%&w_ACRO4_JHp z&>iy9kC~JYdy8wC&Z+y=77dp`>c^(#SZDkE9>>VntzAlk+XvKu1rQ-kTOTBDiJAM} zt6Wj-b%){$UojmmF0gPC{hF)--) zscuxJ`4v8^^$Dx21S(FrH-NAA1(!gp&i`T@aJ<^+*5K_#DRppWqd#w1^?-)5(B+Rz zmqD8`;j{V@vo&PCp|2WUV`StP^tBLM~~d+EZ00?CBg)a!dIEaHI-{u*tti+ z+8F~99c&B?%V5r>^p&#L-v*_FD@>2gnYxaN+Fux)TVH#w?fax3n(Y8DW3xIFQ>ZX$@5)o9M(mN zUwjl{qQ=*D^$Vm{Gb%L+eE8&)?x%=Uov?Jg05Kc1W{ae}uY=UabjgAiv7K zhuo^zlkW#XA*Q0$yOajmFQ9Z3n7kp3WJGTtv>xB5JWW_*UN>dl>s%2PpF1)@vw6d@ zQ1W2CaY}j3vp4w;F=uWMOw;F61b&59otFS6<^v{TN|%etB>sIt32Cn8>(KA2(0;}1%vSvNY%y@ zkdh-WMRGaN;eEd~l@AYM?3^6>W?a`F&@W*&1dQpKM?$UGY2+&9^p(ox5J|?AeR*ZS ztPnu?-CL@1*?EUF=m0(3(6DU-Sz<663(c1<#gfVDAX8~$&OseMvc3eOlRQVq(CKbp zo!q+}JVIvq`y&ve|41?BD;QOeBg?AHaf4K%iUU`Nne>HZNIm#z1FWyF&*pMfAV1(o z@_DOxPeR{mgLd1Ntm*|m6&a=q77-r^5#LWq{F^|L(vmgP4^XjhAFplM&GtMfmQ!AY zccg@?NFN-HZ1J|^p+&;9uS`IB2m+AiVGFkbDV|%_M)i`q=ZLYF~$1$l4Oj?l7i!bwc`u^W)Ht#f%$1BL;b_O=JfQpz6nypfkDMUwB+ z8_!>tjbSQIpoGoz$N)+F<5Q4amZeKrmslpwruo_YabdttOM7Lsv4M_$F>@DoUA`PR0gd0_HflvJ0!Wz zWHVYpN#284W~oeQhwVIxDXTRLNLhum)5VP-hy`Jf${B^lcXB+t~ZHU*Opb_Lj!1gk5UF8G8C) zX5QmmLYu9d^SW=K!Wj}Uctfk4b*!!WYSkatcV`%Gs951eK~T`H;5v4;mMA|P#ErpVW`VdXH1Q$syZx;hAiu`C!$|V9eEO;I1Nq~b5a~`!UW)Ri+B;1 zB$%kBhL{NlQISfVyG7voobh{O-N|tLUR(R=7wDOu_zp)BQn(#Hug9zq`L{VwXd>QQ zo9UW!l~ZITu6AKo+`~+(T_iF~cI#|Spu$|9_=b;a7Ld>%)@BUmqOaVm>@5*KXtlN7 z<+i;xuSD=DdNFdbVxV|hDH**n^Y;&#ZZS0YU|)-)>(E|=YCzctjSC_|+2gzuRioVY z{w8zi%1SwXYrv&lc_x`^CA+r=bb|l*c4Gfk`k{_8D~&d)JfgfsM`-+(&~v3IqFzm2 zvIZ~S&^mdLN6&C&*`WM3=Je||%fragr(m_-wiL0Bjs8T;v#Pf;gUAMi)KnJKzE-fd z%CihD4T||_eb3E1(-yVQaleCi3`2$reHpU1`LN$gl`u>Mw$#b&eNDJCmVOZDoU`4p z$U)aM1<4M3;<)!FFqi38u$GS zM9$@uq3=R-yJc!Pq>-^YW!zJ5&;80r8kF_%w*8m3bsWD6!-bJ$R7X18G5dv9UrM-k z)tKVdihkc!qgf05?QA>VA#b7C_`&k|$pR|x-hQTWMZ;;!ppkilT>EOun<6id9H+Wj4Z;Whi)Db4 z2TEkTij@5MDgHWW>+1`{NsROr4;{NKc?v6<4<08dqBuakhRo4cB-ns<05$**7+e4K zfSnCgRHRerixpUoEdyg9PfOs23wPjl(=x<_Hi+T?i>NvcKkXD#FOt6OdGBxwk39ca zHDFDQkAkIA*e#bZjJ{7}y(8RR`wJ>jCuvxaTn?UHuLs=t6M3GJ(4~mq(}TB?AaWQ9 zxz>?kdo_e7IAvF6r&FTrl+o~Pp zIK%RcCd8ft5aW9l+Ju;@Rs5+LlN$tB;%uSup7=JijsUs*`UQf@yECM0Zm$U;c@7`< zDE1OW-z^3>f^-C*F#($wCRRtARB00q?E>WnA257*6b8kiyiyLJHsiAUY zhZ_P^$-u4BZ~Df!DHN3s-7v%%0fT4-!DNG#Ri7gL9FEixFKqi&4~G2;PRIq@;i6@! zL3S&~Qx(^F3e-*{tXdl`kOu$6gV5(S3y{ir6CN;?v9hlVk^I@_^`9?sT8pnlxYV18jC3564pW7jb3>#?Mm;{v|FL_ zxDDfye&7;;FiAcnOOa>EKU4ng!nmxQ8F(Tw)o@sNw<2SB@E$&Z$wdc8$i-XC(tM@@ z!MU5HiXQ13T`F|YU2IS~K%f!&9ZSk?Zyy%Rr~U#Qx&HhO{!G(V zv@aDc_ku3md7yyNH_sJ8Ie57^ad3U>g5{QBub!||S*OT|RSmDQKih%f6(V3FAWx0c z6}Pmawf`P^DNc|wQ>Ek(c=sY=O$KX{;+%AD6e3_{pWlq*k*zhcA=%`!obL@bHRb|{ z^R>AO`ppw1%UEV`&_E`6xv71IGYVk@PB9^r;9bXjb45gzvbv+yFLvmqGxwqy6Ov5f z2P&KS5Iq0;<7E5j&*nu?$xJqcfuF*q6q;J})2>~dCUVyWR-bbU$#T6e#vY2&i@ySP z|Coa{v~Dq=Tqq^J#IeC!_vcly=}i5e)mQVW8h@vOFOE*RJ&fJxhT(x)(ySg)nN!gv z3SMBIoo3SN79=QJ?p%jw_D40CrV#3)f<ug*poteX!d;x_rPhe4;BPjn;EFb2P#;xhyw%B>kZZGmd5x6B{KT$2h>@t54LrAtc_G_zlAo)%uq;?`S8ewB5@!v{UyZ zsUz9OD2w|98T$zm9S!J9PGkwM8O+D0k1rzm+}zj-XlwX87i_^S zi6|&DxqgxjCsF@ER<432!q-z0Aio+o40&!a4A?OZx)k$2b#5`RALw>-u)~_?B#%kU zwu|t2s1xULhtQ=?gRe+miOR3flou$nOYnc#Xw)%Fqq<`xcn14kBU*WW=P9fgRh>$V zDi8)w@C=ex^>+2$tSX5Kyc7(&Gkf}nY>A2n!qw9l2$>6Z7sY+{p(7Dbs5Hba!hqG? zX02-Er&EKdN;@^~T}8;B^5zrM0fC=0I5=cmeocUB}dOP7to z8_*3X)uScQIqPYP`yf6=xJSR2^`yA(J1fDbP%ElOrq4q0l3jEV9z=N*v1qDF>0%`dWue#x4T^%q&|zpLtFbM0E=)Gs%I!)4tAVK z=bw&Y4Ds6s>Hz%C?)9e`ktWKG6&Uv8eU*XsPxMZ=5Me3V!t$YXuXO zcvX@Vlu~uLx`+b=puR4Mo9k{YSI3*h25=-vDzvW{>+fq&bA_2vu#HJsX?=)E$Fl-U zt*Hc$=P__}=~s(=IB}39LLIEB;ku6J{o6Yigdin-3Cjx{c%7T+#jJ$KhOmzw28BDQ zPIKkTpLB3Kzo8P@OFiy-G|}Wg?_@#EAC{tG(@qdN?|)}GypEBa<)ER1oxvuTuR*0m z8w#M_+SuHAM4dRr*}7xrNGKo&t7vVYGKkg>aGkM4{hJypb) zWZ@De;e3Nfy-fM=$<9x1Z7$tJ2d?2&+2m@i;4E2dfjU7-`k2-4JK7D?WcFl7H2q%e z4EsbCqf$jpcMRpw^^w;)^Su`kPl-5@I}$nhb6ksAnSt??uNZT3rMAR2D^tJr*|egs z^nl&_XS|dx@??I!Y_H#O@_4&J9t_ahz2~C0xMLa2U%o6h-q5!aol^qwR?kkin4}nBwg{t3pMt@#D8D}PeGizrl=i#vN#NBBL0Zk285e+yd zi4*negL-@tU)+Wjf6rihbPPh@FyGn8bf^@&{4Dx3*W2m4A&UDIX({O`!F!*epp=)p?%-Qo;oGa@(K*c`HMEVJPYD4ta9_4@oKF>Yj+s>h`%cp2B zWv{qmR;>F8SwZ!(h4ih3eY-;5$)A3M_-F*V$O+aP84ry)5x5(|dosU_&%Ta*ah$1m zppMByP*2vhY6|aJgBoCm8?p?qz|n`boGk9cUKEBL*{cgpqL;;(EmlSV^xO(Pu;Mkc z^Y-SUwa4Y^*u%*;i9!Y9@xYSp#U2}hG;o8|u3rxcTUu%`cU8C)-@6q&Qf`NM?8)QT z#L{?q#F)b2ZvVP(81xL;&Zufth4;~Qk+Gjh20~Hc?#{>xH`~)YWI<$9Aqum2=RMpv zV7jPAh8?aW%1uE|g;EwMv&fgnPlFTy_S!r@{w7+^GnH%M-ek2m<@xGUdZC~&vRYt8 z2UvTI=+p75R=Gp9hY_h^h_EK#In5)*Ui6AS@bpaYtQIa{_T2ckhV4!vYzuYcgu8%b z12&Q`RsT5+ZawH|KHdqK7`NA3_Uumboan^T{06)u`;PNl~I5Bl7}4stAITbAhGq4+ggN> zgFwN;@e%oB;LIaC@A6FTPyF)aJ(cqWFkV(0YUEeMc5cY@v;d~*U>i-9!F9k_UX~4x zwIY;(NMgHujN+vb;tgU#2^gf`S=i9AOkRp|9DJQO8e<@H0G?4iwnl?<^iTz;$qCdm z7~CiD?1+)g>;h+p%eYRQCJ?xtJ-y#HB%LU$vCK^5M+;#vjCm9XyHbEalFA^k&Q7l% zBir@9W#lK$y}~MpoIp`m7n|<+0|tN4{3ZDoQ#$C1pENabtuh3l9{1?aaJqdo7b*N3 zac4(VfdZFMR=V!c4F;g{K?lYDRe2hD#pT&1`H~E}J2ZiaWY0Xow@=r_KthCiwL*FG z=u4$cPAA*lmqU9jEI8FY*V&;(bz+jeO(>lAJ&hXdbzmApsqzpgH8T&Hpz)c2G?(}U zQ$6M$Va^VSW%hLlk@58>V#R;Aj+ z(qgp(=<#0U3Z8i-6wCcl@X*0VQMg^MrINSmp{UeKE9zW*E&sdVm#bKHW~o+pjB6@l z9ds(VWncOV8jbQ=MUuiGiWE||%7kd+SY;`gMiY*Qa1Bvzm?S$MnCfx|IWurwIaPDmh3rW3XWkn;}eRrC^ zUTU;UxYh;l+yRjn%)d|55tf)t@T55Qa7)nRnafeXo6-i8BB|=FCDwZwyM*Nz6vh19 zz%$@aa8Wz{2~iOBM7)o+b(7t8iP+8Woa!Zn$Asd2DG|d{SrpB0*jOI>b28g zjt3(3qaIu)Fu6U)yOb|dB-ETGmG4PNH1wy3l~d*_fTJ^v?rTbvx%3GFrlrh{1t8{uWvKWXSftb;|p?ML}0x9mk z-(qHt7ZoeUUO%onF`XNOEU>M>W6WE?_RZs5$N4%dek3t}-^0(uqdV-=z79ry9E~t!|6`$4aHphsKz80{w zIO8#LF(!1*plcM+-BBplF&AvjCoMf0XD(Pb&dVb9Nbh*)lI~|rJ&ke_JlM|1m{ra5 z{Ki$c2+I^btIAi8M7I87$-F$t(13A{Dc@J19|M~O^N2&rbCSOLw2LiUT&rLb1Ax=5 zah3lUPCHxRbQWD6nAXD=YTE&|iaz42PiOJMPzBDaM|l6Z_k4(elm{gwz(xB9TLGyf z8qm|MMuW9XLlNt8rCyCu98S<=_eUeRymNBys2OAdpj5|w1leL#oDAYLE8gp>v^0pWCx+moI^r&Obz@*~gc zY}rgDpDp}gJbZMT9@HE5TT2UPCL3?pnkgPab`g)}(DvZs*x;uBBCsxXQs0|ZUwAvM&Is(ib2fvs;|+AO<7cuh)5V14=%dF8)Q77wOKfg zw0(5?DA8T4;;uxc4*%KFNJQipbeAsg&TC6UrK?@%nCUu%QkZ@szUJP1%3RIY--oSI zYO6FraMbIhHM3kkZ}=nvUC&{!Y4XmDf9tS0u^2wt)^X@68kB3>l1Q4PkSD0nw=Zvn=g;bBjKY zN$Fygr_K-H&7y76CAmg<*%vNjLJ<~hoEVy{Tn>FfhG4%2veHtnDgSl*xP5?#gj z=%bko=ql`423>Gtl{dc#Rh8S<9|qi!I0oQJ`igkgZSyy>3^xL|Qfd!?UXmJ+j_a7T z!M^*7=4CH0->-=qg<*0awPbkLh1TpP83~koXkU#)VxTYN5?4Rr3RP71*bx$Dt18Xg zqVc?~sS{BJYq2S4LWpLHE)w-GPYi6ewVIcvlR$KirDjYHJ^9oYNya11C1-T)Wl>p1 zvWibqrE9Q2b(HZ29OycW>ZYkB@&}ZIFqpj9)l#KOXGrDV3ufW=_7W%x^;2m>GiGn& z-8FIxc=pG@A9$nl8a1Eu(2oUGXNc&(y+E4jQiH6QpNAJamXixHsZY7pAj#ZHth%&$BSJ3dqBxk!rPBBm=DM;q>-IBuQ5(K zH3gqfvQLVRQn;I$B}`rd+qf+adNKO&wytlxX$Qs*5wk)NdM)zoOA)%t3#+{Pu}fPv z{fjC@FkR9JG})<~aF{R?g6o8j)ShH9twJ#BR`k!P`m$-+fyvHa{R-?uBX<2xChnzr zvVW~?WkV;bHV`QaQu}xz8q(w`XG2=c>eTJ_z&e%Fqkd1su+l8|KiSHP)wLd1VI^|V zHR4=ZL_;CV3V(|xuhwOLe8zk`)0DEUioR=Bj_Ds52-GQY&@Y_`UMFYWi!`7a48`>2 z?w=$0Y;fCWXXyxWE@SCGe}YFP^tq3I^M-p-?Z_AC$3tjcO}fLG5`CRnIEiYEp43od zjgN3<96jgmy~6|?U1uW(mfcPO>{OY#3$pbz)Q+k2KxK2&m6MJnlh&i|E(cM+!T_Kg zKEtAMQ^-L{c!8$vBHfjZ(Xv^z^CNDzJkll4)Nts*h1~oJ%u;i1K#J2?B=b(~pcM_o z@eudYffssCqfqBCtiuoNi1HlztB5XbBUp)pt(EzT zG?5(z54Y6UF>2>d$h-$pIu(R#lN~TUIz(~vp`JVq`;-0 z(hy0NKb$g1gtwAG=nL(2v_H>AhwRK`QfAB$&Os3wel{24rKWTFA*5*>%tWx433Q=E2UCLG|zplfKJ~C zw(5%8wO2H_w-_jwTYquRc5@Guem{?MSyCdM;H4}q(%9YjxPZZxC|n$HgC+o!Q(>bw zRo`N#ihz1#CLIr1_xuu=HCv-iECxYhyThrY&F<%{szbz=byxR;gg-eRhQ9s+jvU4E zl08UH|Cg7HV^2^KHf$#7HR%6K^O%aJALB}wYx#~E` zQ@rhJR6s+nvRut>sH*4eopU{CZ@K{lLy0g;*Qg??;d7UQ*Cs`pVyz+X zGh}qz(K}RLmvBOE`&xs#mGlzxX5rD+$GLK)mQfnUVe2UB@ELSF4;Y$kjqL#o2kI33AAn59jgi9wLWZy*lw8&ruQKB zmCW+b)R#?W7d6edOB%4kAKxOg(&_eS7arJoUIcuz?Se>1A#}W3t)$ifOFCxecPt4X zEVNzqQNT(mIED(yni0n4bOyOAKfgqPbD$rJ2YC$tE?nm^Hd$?-?=-9){LQqU&9Ms= zE~~j~<{e5vYBY{hmuHts1@`twoj}5G_gdar!mt6+#tTKQmwRX{oXnjv*G~e{)!nPz zz>iWS-bStMW7^d@hd|^G+zIvNs4NNoU zzXR@*|7D|CYk3P2ZaU|JhR7>2G$ryvJzY_&rFZmri72C6*JG#(_W&B&B>iF%Pa}$p zOsNSphsh)wp&`r^xc4+i+ez zh&Q4LL|t3X(_9*DY_R06M^}O%Y1rk|(c%I-IkCM`mW_*^%|-UOvyL%w=c=+D19}By zTVtq+L`T8vM#VY!XlD9DC>3EXx36O;@$0M#ouD+MGKukvE zjS-^>46Q(QJwK~f?L~sD5`LBM)fXI%A;FNZG(m#4RYeKf@oN4WB*!py#SMw>4+wpO zvxhnU^N**ofSS}g&4pQO)$CBR_BN)zs`dmr9#mzEP#;xKV-Y_|{!O39ngJsVkYEx} zi2(z@Wp!+Cj5OF?w{!1KxNCA>qXFRJ8&%0iUg9G)aU;T)`FONF_RQupgi4@)<@;b| zu{YPIj8to(L{|4hw&maFD}(~bp#aSsi~kpE`6Lh;UppaJqBF&R?cdroI86zpaI~`S z{)%bJ*8vux2oyli%vucNJ@x8sK~E!wvbe>Jj7vgYeiwW-be5ZssBi6DDK ztCElUwvdZTxf{#-#sTV@APhlr&j^YOSH6{X9kcbM+;@!*->YeEf?Tcw=e;~DkV?J% z1m%rpOQ0lVsYA==v&~W7{u?dFwwX1-D!Isd4qn@rJX*_vcq5Bc0D@%v`{%8?HRaRx z7f{>wzU@N(K)E=d;HUQfq!L%VsVN*Ef~rVxcl)?Le9<@uv-Mh@A4ye{jCr4fU$u@%uIX>t$Zye>IFJglu>T zUKwg*bl|Qo0)(z%Q|k*tu~t|>Ly56Ox4J&q_7|&_h%N0PAht-rrf>uD6i9+Py`^8j&%+8jF;# zy33UcK`PN{!=svrPp3$b{NJ{;%j<|$StLcHp+v}~>Vv?1V;`j=Ik3KJOc^VTw=pzY zS>5f_7PM9G&nKIDfrG^KBPsls<6-{Y!C#FfbG+6^#d|eB1Gxfv2oU)Jonb;xcBiI){?1R&D6PL0I+c*?_aCw1AB}B4 ze-1VON82uhz+6YuP}aE0_*T(Ro>5%u<`gN z(Xz{dCegNJ$b8rezIY@+;6D^sE%1jldLLk&_N>d30_sT!4!e=7}J+N8rSvqk= zKr9$6$QVfdJ}g%-2}@x4khkwez>M=hpGQ%_ynJQZjGDXOkG*P-u+N z+~}*ng-ieu=;0suLpb8`Km0)i3Ol8-(pVU%@N$so^@hx4d1P!1}De>;t{-4~$ zG(MDvMs^-m8lQ~~6wPK0t!vm7fp~quG!LGVr&cZbj}lDt0HsO=bH=3Gzr@qL0Js12 z4smu9Lr8?B=aTxzro`fZ{1XJ0Ea4xkF)O>7*`o;P>G?XxHvJN!aX5EApkzn~^FPIH z`{?Is^A;WXkM8)GZ{nNmk>m?dExbcnI#hmP!uCqAU{|V{n zJ7C~P4HqzbO;SI-n=LOQ4bg0g+2m3M$OUg;;Qe#|I-+m z4~-f3$(#F+m?2sG(;8MDpD)4c<6MK*nLx8VB))i+!he`8cJVRV3nF~;SKp^@n2>Sp zpcT&vA!R87rQFLaqrZ0{f$DTTf9pA@=-QiGVcL>4NY93#WVmso{YTrr(E=WOMA)X3i5{HFwPCXWxB%Mt0D=L?haa@MSf z=3J>iP=+QyWfHOTTxrZdjKt6Qn1C5@pPFU=)rxk=2j4e;3@TQ9Db!30KDGU!pj4t~ zf*N??zm<;nwa}zie;L66f4=bq*V-4c;lF>?Q}ACf~_@wk0)ft5{c`L$iAkcx=D(oy235z3^zC`t66eky#l5h$qoPHFsa3jK$H z07pp@0OL0+_hDCDfQkOyW_=(P%M}3`J3ghjHdB%yQH7dI?2iLx9{(+EKs3GC1spCT zt5EzM@mOhsg*P`yxhybq{Q8d>!2i&)zOc~Ge?MCzxn1?+jIdltJImBt$zgFXvq(F; z%;^0`%?=p=K(Fo*Xo&x!{{P7P_=X)oKO5|}ARp;8C40kJ;5%{$C@SN98@Nh5J4VMxM}={2y-(f{Ed-!j17DJ>t%dI^D`vGW1 z)-;(sbka0;=iMI_#J2`GjFi^5WNm*<=6|C9xDadk0GSr=G_?ufcF^tJB+W*b3EZu% zt*|m$odZP(6gn;Hzj6?f+&uG?)oOZ%aJd_YfQ4b!;8a|$)M6iH(3f*n+aJrAE~xbW z=imLDgaCT&G`r;V*C90^vU|=!s>fkR(nQF6i!}Iu*!Jtg9Q`V8F{A#YBLA`e=bI9gEuIo z_7kNtbzmt2&yMEbr~ifaW#3e4?0f9Y&BH#d%iDMCSN<=p05keIyGH!)t)M{ecY~_7 z8$0tvWUIa}$hraTWV!V>juuhj#`L?s)^QYu!8bch-2d7xdQ8B$Fr-x{;s5^L9asin z$0oEx6xU;g)a2R(Frd%+>6XIy1{MFR$l3=4ufh2tgX2S9_rC_T*xjsa2BMe;`t-Eq zD%2yhQe|MlgJpS&R_#3Cv?d`7_4xEmm3g@YFvJD(^sH}`*}p2P31MvoX&5|3(vp)h zt0k1OEkOisEoDBcdCp*coib@O2dYi^3i3{6@WTqVGA9se(#3jt^foP9luzP5V!n$I)~BffAy0I)rwR=S0u8aq>UE)Oynrk`)btgU z{j_&6rvq?iYgP*DDE?6^@cS8daJ3ea)7Gy2Kg0KP68X@>dBB+%-gn0|u$gV)thjj2 ziDK(L0O|jq$On>SbMG0_6_>k9+mp;K{C@R@Y%=Ev?(otOgr`))*NFPx^gwLy$87n} z3HS!8zzFn+B%@->8(K)Wrci@Lp3Vy=a(@!eh03l_hsTup2js-?jXx~v*VQEpVxX{5 z5K&R5?nw|@h%h!IVCanyxRMq6XTfk7M2vMj%n%kLmrdiM?ofjO`$-#`Wg~`2`S=FS z$@1SqT4=I0(Tg0*oz@qh)W}_6W+*MCVS#^JdI_#@qN&SGugn@Uy2bv9Ujp z)x%gX>>qH0FcnK5HEI36WAm}##P(bV6<#(`KyQQH=-b~9MzXWuqwfZxSfgu>73)~< zO?=X>e5=dt*!|4-@{Ju%CiuZc^Y2~&hRu6KFYDRdDm+k;JZq(h{kk2|K}nB4*UZSh z{)NEU%#Zje(-ZGub1wqmlk~j(Dv|dCnChbDfc`(T`r8-3Z*+c@zT4p|cjI>6*D`yI z=e^SS0lz4~BBqp^Gt$Vd@5d|Q2ed((<^Mj-0?SO z+jh|gOBK8tyv(jzgW#cUBo7C!;k&gj6%bnq6u;j*P$o>20`xT^Tp})@Wjl!vfkl$f z{Iq@ImfGbEF>Q2GqlyKt2ge>D&01J=!z~rPC5M`{{Pk9UOru+~vhgzv2f7!Kw>{v# zVQFF>xfkUdbri+Kr9A5|nB;1RTDFE!xG_`((UPCE3SqL zx2ZMzfdV0*tD8%+H{e$U%5YYwhTA`3CxF4kFdt4*Fp=dS%izZ(tT*GA(0Kn~UVJ|! zM9JSm${Xr?t7j0ODd?@>tvdbJLl9H>08c6#mI47juzTM35Xug11wj9VFZrx25p2&% z460sZ&6iT6mAKaRZ!B|#-7M51ddgJUx!}e5{B7NQ&Zu!cMBqWBsO4K6i4y5M z7dm_EQO+B`NSE$!>+f!Udb;pmcp7hQSM1Z9zh9PGYSJR~jBvI-Hhi)co@Zd!G}pg* zyXUpCh|fHT3%r%w-gkTjb6KoYFIu;!(HZ#vh`Q>ysJf>wC?Vb5AkvL=cXxM}bV%3I zjWkFLEZr@gBHi7&bT_=~qyFAM+0SLq-rYO%jhQn?(>$&obC#DY$cQmHPd~EHAx6Dk z%rr9nb{~Nflev?kDElYf|IkA0H}Zp!0Ql%&^!?RHync1fb9cixzkd9o4*ad6NyqH{ z=_8F3oJ5KH*}buQj*2X{`|~Im!0&mqE^DKMq`ivEf9YB$&Tl1+&?bog z?}b5F_j}*&BY{R?%ECqFoI7IAoEQdXd~Gk4;Cc$p4oZ8sML$U@nUTsRJM{ zCtA;+v5|`q!Z40iI(FQ3hBge9sLW@2u|wutG5eM$PxRCMg!?h>6HiW5%rFgU6MHl1 zqOD8Ja6cJ+2t?6oS3gayK7-_X>~ov7@x0a8;03q`BA~}gma5nPi{6`pu14m1af$gR z>KeBsf&lc}7r`lnmQl&O^WKJQvs;uzTvu2FGFc{(drV}9FRG5s+wmFk=wV~^XT4TW? zbtcxWwUV!})TMs{1Z;eQ{~1D5UFa`ou!`?|nbL4LxOryVN-qw_AoQ&hJ`8acbpyH( z-6xoPCdK?qV@AJ!SDcD6H33Mpg^#?;twcN(9paW<>HFL+DCw9+3{=nixFv}Q5Vy$2 z#}%~hfG6OpD{KfmH4@>^9Fq99o`+A@OloP-eLoOioVfi-vC!HO5~0`nuC$Mhp0!Cq z)O=_kkJa$+WNup9#e#LN0ZOi@vevYfVvWBcM3 zh4C}(Z;I)(;eFwYf3mRD%_#8g{^>>5lag%1+PCM_Au(^!hOV(1OlojEio*}YjldPe zNquUIYr@)EVhqn5+cGKVU0NM99Epv@Z)%b%@W%Oh^p$~#-4v1D$k+lWVj_WaUslo&Hk^#}CXetTnV z3*{~mfAIiKfn?u{X}59-$-cwCSHoPCJ(0>ZT>m&d*K{IK+!Rypf7F=iw>5^VVn2?B zCh7A|7IMtky?J&1QYyYV|3P&g+*M`mN$K+S$4a1E(#Opf<>{#jXge>M&h9sPS<@04 zt$kes13An7gl92^rV-1v6`ii;t~i?uiQ!f`*IVhXBz~WzaO01SWk!pAyRUKjkszg#uzAVkcx46Wn}E|soO^cf zSQuA8Y_8M&_p`?96F;5oeRb2f;XHS~Uu>hSVSDxf z7EzqWpZ;{i$Bn{*E23vzzhLZ_1vZlgV4B)JU~Xeq52A!GS~3_lLq2-)$?%Yc;$2rMt9=_p$6R=AqJE?n)=TOi=&5gd`y7H@Vz6 za;F3{XcW5+G{lTyfJhLMG_3B!arZz64|!ykgD|)`ZJ}LfqX6Z4`}vwCYXoSHq7<7& ziR)3##K~w0Rl4Jbf(9Y@6`$~iuYc8T7rKha(KhX!Uguy9U)3)K(yyh=h#Zx};%a0U@~38fOI-d_iQIJn8e zT&?cV?KU9{vV*&g_dbcL`_Ni&{kuh&-%qJm=F`0miM)Pu^x-WLsqB4Roa!zmShAG$ zSpKzHlu+Zsuh*sq6vDFj*Xsvisr_8NUQxjYea9R8q;jj7)J3%+6Tzb7!Ee+i+OF}w zf5728#P5t9ApafyuM{+tgnU#m=qgycMO+Y#n4wo#S_ZnQxja=vIHj@%QS@;KBL0&) z@nBsyG{_ya8z)FZj#6bpG8DxX(Fxl+qUhWAc9~F(K)LM+7VxY46R_h*J`q^7#sBfh zYT%T%=?p`*IkprG7>T`Z8|((!p|K@5tUmS3*$B*6>vTPRmcE?4G_KXIqfV+-yW@EMZz? z!{{1&h~TrIIo3bEmaVesa=ze$oTbK*8D#$6H~#PY&a6N}?HWn37w9}V{Bm~eUW_;`5g`lcd4Eg9%;FN8$Cky6J(5f3N(apLH#jg~=l6-A{l2J~b^hN2Ar;QniR? zn_2CD7@GRq6CG|7S^9^eu&{%E?wW?RteY?}@)g52t5O{WQx!mf) zJOfwx0*{YF-ET(mUxZjp2aUqfX3EFQe669ryi7b#o;ETSd%}EnFS_e-KZxhFYDAM8PAsPcKR`+E0l$xCQ*lbnb-y5glZTsAUR_T`=-BFoC zeK~%H=!*Tyb4#EEnx$#gk^%_gN!RZQb=&V@8TkZ6lBqdpzTo(O`e2gbBfNfl#D8>@ zyDKCCHoru$b*Ry(K#qWB{GZflcBbSey+fyj z{-t!VnL$Ob_;o{ZpGW8Oa}VB9tZt_XF`>dU`$z!V$fHqrSuu_-Yb=q_JjY?U?&agyu$B`4E z1|s^Z=Gq8tpH92#q;W|e-C=Z673iIn_BhVy(hvZ`bto`(x_yt1j=% zcyHh)wV^j37;a4LW$#?^LS~1Gra~P;ulM#r_G5TtB$^+TmIo1N`9%VcSugc==Q~?w?2=Tc5{Y~xCBWrXe81zU-+{p zMN)#x>3%v)PZrTY9`0q;!G*K8QaU5Of0hKXkxVUJI_3k{);u)+=fzt_ySB5);i^J? zY4GN(^s51T8Q-2xX|5RowS~E+PcqLz=(p;*#aLaL48+FZQ;F_2_Ze5J=1(FiRg#ij zkHJ;i+Ba_S+NGG|e9+Ty!YP^NxmitZW>CrVM?Li^*<=GY!wCfoiol+C^JQ6q=GDb} z##!X6GJ&fb{SEAz)#oG?tq;}*=+rF9w&C&4SetXBJ4PoykS5%Wz2%1YeGEdDmt0NN zb#H5mXG%{i82pl+zfNB^`?>{h+(*b)Y2Ur^@EjXB!R%2Y2l0yzHy?WCzg*c2PVQ(N zX|h5iI#~^WeqirW{+A^Be_JLkJa^zG;@_oM{Z>E8l^CFwK#M)L=_u8tx6{83AF9$M zyqg?N4yYe7V$Q<+1T{5r0!3&0Pd5XGE;Kx#2XYMW+uf5ouwNlNpv1y5`QM)>$QItA zawM@xDwxleYePKq)QeKCc6=|gE2{jxdK~EY(xBEjq`x`^e5g97_X+pt!r})76Y+6r z{YU~!x*E}$GF>bW=RP77vv<3b@BYW^D8RP6Dq8n+K27*AF*1i-kHY26Mz}IB+MEY? zocYdB+nt3ZrsaFTSWcaX9qOC0H2<_EyUlzozBqGq;b`SAXz~PE(S=;~@9;Vv@NG*J zdgOMdAi#5-j0X~MY>ErY#CMF`TbjyIqL;Ben6@({msq_8R?F=G1WIORcU2WUG^0&9 zDEMXpGvXh=9VdJ&3A%_D-3>srJv6*1_a7A5wXGiYz)siK3o}A5a~$}{5L%nJA0^WC zXw#z!Ib?SCwB{yDz>W>0`*ejcJ@)3ZLdLQ2^CFE#@0ocAw5*hju!Zm(dH5q zQd6-ldU?(n*2WtDQH}SIj^2uhR|1=;TtveqCKt!QQg!4b(L|LZDdrI^Qsnxk1;*Bs zLhi&RRB-#Q+q^m45X+%$?{l9TZbX{TUn6wc&zHZ8jo)tj&5ujYmE~#~C^vkF_v!3! zsAoP%_A?cMZnCQ%MU>Z3+*{MaVe$F+t(^v@wXhOZqDHkFn7>z@7vTLA##74!HA*@1W3dYvC`KpzkQvEn6 zn#gkzXT^UrlbUXCx%09(NsWKv6Z9A?CoW{eb63(IQf1a$e?HUJknWq1Dxpzw`! z!G~%U8@N$0CL`AC0j_pY2eFpXHpNjXKZPhJ#D4#cjB4ca1N{pD3t_Ahg@vbmZPEzyqrzW{i zztqkAH2D|utG{^xx7SmCBV)|Bj(|{wtRi_BOZNY-F@S}E(}vrr+lW$!xR@jbsDrc+ z0_FhnzY7G@f7e6OPxQI}m7Sy{NGRAaB4AfUatpYB4R z+FL_B;Y#P8w!>?#u~eF`KP=UzPIzH_Ch%5;toV@Tlqa|WIhdpsc)EJxe!XfyPaX_g z_-ZAVo0UzT$WFR_-tJz_GG}Le|W15QW5L@HZ z*e!z^mVG-{>i#KTTb0CjekTpQNe35LX__-;Lpcqej-LXfU4ntc$0bzP_@Sf?P34ne z)E1yp&^E#aMQCZ0r~o@~1S&VMGl%KW^b`6V z?ryP7d2V@LIIb9ZAM#SYShaH;CIXFL5;r0rZGK$b7qWD8m+^`lw1k_nZxYG0cuEZq zTVEQQJ^jcbt$1yRkY5aP!5rAiI~JZ+ku~|sg#0ay|4k3aVsQoa1+zvD6P%_gRyP{) z51-?JH`j-S(~1N&dVtx5It5+OoOy+o#<{Wim2S?J)D#S%b2G|Z1J>rEj&yuM4Wy63 zhx_sCxVLT%%9(p?{ep<3>uoIfYWXP{VOVU(Wr5)t(3|(e296hP#)_%tp=Rg8gDEqj zWof5p-OmZ2`Y2hd)_uIAel^vfWQCwWgjI{Zyrpr0b3rpc)B={U2Y5_TeP^YPSQ!20 zN3pSIT-qE14dKP{*ISXZgo$;2zNspeNur-u;_ zo3@*TBOvBsGKb^`iz%&pHQL3iEeLu_&svY(rd$J*w|ydyuYN4>5iBA zHK81uLoz9J{0ei78(~b29I-4CQGRUT?qvw;vSXP9&0}bkudccIq~;OgJ`&b)D25gN zlD<%v2iH8G;|joSDj42YwZO77NDUvNF%DpAqWcVZ$U7xtLl-ujF1T2 zir5WKS@H@>*UCGIlS<_;;Yd%Z4g=N3-8P=x&c~-Z%Tp(!5v9*`)-9zl>Btlo!ZNG) zkeWLwMQuI#h=n90?thmV#(+W?A55Nf!OeQ%!3$PpOd4eMwl@-*Yu7v{*{xT5pXr+x zRsFn}=ezM)iCqSAZDaRDEtTsFEzvuwk8jT%!-Y64Td{0wBsfU0SviST{c9@&$wfKQ zNC&;H#_$NdP}6J>&CSNGqzx=*Hn+=Sh(vU9QnL)!zP6PAxBa~96uQ-JM{s5jI)V2- zZfXvlzh;t`%&o+M$YxNxhyPjSf+^ z`jZURW{)*9vz|VVelcIYHYM^^hAKWn+UNJid0?-MSpGTf9^v4ptHnh?7;4vfTnQB| zs_1kl#QS2fQ0W}B9Nnh?eVN1ZVeRq@Ui`YV+P`|zRdBsy;VecIl zAW##MvXUJTXA`~*#_kv;jv!DQuQnidvDGI0z+!!)J>BBziktBfsXq==JAhhDnvxBX54Uo)-pZ6={Ih8lGUe_C<87>Q+98x=tNBSTtVh&ac#VxjN>La`IaS<%w;AGj zUuUmL>+`*k!mbx9x+2985xc)bZ`EPF_Q!7^5=oK*%aSIn&PcAT?rGr)locYBna+au z(5_Cok-XT1sEb7&l{k<2(fVX{H3EuWgaDN24(jMYbQ1+tAj1Q~NvJ#`4Vi+|NQe>a z8DCi6*1%@=3I_sh`-hS+$CO(mNu*3EZM*<6WWY1KlWzO5x7|cl6B-niAOxJEKjfOE zzYx&=9qzA@prD}5eXH{?CniN_)RHf^A(|%%BP#xo7&&kLyBG(KLf#axTVI+R;p6y1 zW+_7CEBxPE2*kYsC<=^sZ7Nd#dCzm9^*fJq{LmGo{?OdsNM?$f2Jx7(v^brhJSWr9 zH`G)~G-6KQ<b&pt7x%jPWwS1 z(-L-lg+EpHYWY@M{V164bX!?^=*Y6|5Hgu_ANm`Hdt|+wbnYIhfXA<1VAUNoQvF0Z z$@jJB%>sPxT3a97K4TJkFeYS4+e)dU%#Y9f?;=vGirPt~oZM~^F3#XboKPma z2MIxFVmI z$v&;+B1fpHY${mJUR2#|B;E!RIjt%-!*yABRBrRglfHWd=_3rAKZ$!&Q#lwbVoqy$ z>e-eJ2fKNV83~z@3sD_I{H!d1v&zs8f4LcawwnE^iV4uD=u9n1i#~}>TH|-2{Rk{4BCitfV!!=H1?cnYOZ{mu{$OTWu|g>D;G2m3wUYW;HZuW zyE)*;FhZ{0xb@txer)%y2v2Bo!7kHfg&J{6lh^g((>V z;9^*8qXx(uNgjA=-bu=DZ6Al|?OAkElSve}c}D3E)KwxMaz`Gz$)KN+{=jw}-^B~mR{AC&mSF-~mfBZhNSLq@T*(6RZu8^Xa?AG=H%gsTMRKR>)Z~G?DE>mY4W~ zm_= znYCxb_;;50odepd!C}6JbA``wyYmbCTZbF^60!&QG`tbU^85bGDz1OmffGyQJGh;n z;YiUoq&|2iuiBrL&~?NA29HD`4bN^(OCr-$W8=~OHVt9d3|Bflif;iQZ z#Gj%}G*D;@nmy9Rs?P%s(_gqrj*|a-17FwxZ?2j=^O>48*D?g*KE&4)o2d=O9R*!= zwH_1>w=bHZ*q5LTge6OHOcEND=AwJdX!r~yS?V*?x#XyU2iZ2JcB2YOyKgCWZb+RC z4LAE$mubslEU0A7^uiRVYJSu3!VcDwYSUUrm-UMZg%bk~CZg{XW)!~T7c)kchl5xd z1u>^kx?;Xg@i~;~KmeG7iHYG`Jy{(kc1VR`+E&&%W+q5XAtxpea*=>-gE~Z^IGI3s zV-73Yo2&Xccy_Dl=`o>-HpQGR?K>M`@s1Y&&yp8eg1WpQ98j(V6coPdBv)8wTm5oD z#>SMeqtwn9O0O@a)GAahIgrCc*7L=H;T13>@3)oy4PWHIh||#pK^kY5iA3!#6|_wU z`Tq18kA-kDUR{-UEu!H@Z=>*iM-ma7!fiEGId+y3bat0Rt7qyLgNjdyl{{|Q=rc`M zvr{e=uzpd&^}kH^sqgzMFzT5HELgb@f>+rN4+ZeAK9FAN7)nw4?AWfBj(m;XVn&oQ9!WHkQq(u$^avW1(x%qp-sYhiK$;6q-rw zkWth&uw@y>OXvHH4l{y+x{K%z1kZXA*O>1C#GIarQjcV+xR;4*Rlm|Z8@rznG}U!K zm3j47hAjOh7S+!UsX>W22$c@awGWpLekL&Ar>@FZgb)k{$|~pE>}Fcczk^5Fj2g`% zHM!B4qnu1QNRnnp(@WsQiT}Q5_pG3Ey8&r@xE3JYK3(GBTT?ve&Xv6^E(ty%XO1U~BseM->hX zP>T}mATlbF4{3MqLmCmlMr9bPwO7}W&Y`FkIeug(U0zOrR>0lFs5KeK_b!)rE%L_t zDLkLSuXEM1kFU+SlZIn4l4E_me`}#osnn5pHoVX?w6H9|02C>$+7AN9@VUvq+|qBVTOE+vNuQ8I z;;PWSH}#$}3hNhkaBBh|G&QaYBOR=5V{d$D|M2BC5+owCl+&5RmzNcHg(5%&YJ#ZT zods;r@0MVSN}3?1s~tr?pQ;^D=1ikBwZ@8Y0V1$A+?#W7BM<~AG&&_ChGe{}I$S+n zMYR2By0cBB2)z)vi9_A1 zG82U*H|OgdyGr|_qX;sXbh8!llZvvEd#rF3mv$&Vu@8M#WEML&g#uyWzZqk~1qJ{^ z>T=s+Qf@}Ip-v>`gv+a5$_Y@Y*f9q9`t!cq@e6vPXU;)CYwd_`)rVG>v>!xBf}n*R z?1IRxhf~IkP;F`q9MC0}4zdN5Q;XwaSv>~3f=q!m!!VE9;`%ePpdOOXW-4$11;VcE zU>5}h+E>87Rs*K4{vc-h*W~V;w=icK#o%FW+HgiNp?R9MV(xidA0v@NLg%upSdDOw zX0d}8%lmC+9%dyuKvXADbY?8yfHP`|2L0bF=iBWHGMSHh@WNXwdaiL@w)}&UB{|?E{V_Zw4Gg5$;xLeU(ACYE2`P23dMhHi)e5-1~876 zy=K}Q)OH!N`oSGwKVsRjon7$~?=Pse zi*@}tV?`H^sLZ5=}{h=Zztx<16tt0kTJ;(PRg0ryLDOHF-rqXraG%qi!LITJ8wIX2X z^;^Oojm>ugk9Wx8Ninwx*|JXVb7BcuLfkD97~%eEH}2;Uk0 z-vv~H0roU;0vc{E7-~5zg)*0NOJ*j2D0aXpeJ9EEEkEQ@_MhN61HgGdUE!)=MXoKL z?!5v|AVTH-W84@yg5DV55C%z@mHje1YAM$HDbg6NgMLUVqmBMW?yv%{=#;t zF+%&(1-YKsl@=4R2?#4pNsLs^IhkLE^i3s1lA`^+-1W%rEY$e%y3{b04URqBB|-G$ z_1=0G<#(lLgJsv_fT)Mt)X32S&?h24&isvtLy$BP+4Q7w5CWF9ty zS3$jrfkIAbg4@o!Jm_$0O&|WCEU1j0J_DpBQ=1UXft1|lG;5x(5~+Jsi6x9B*1 z=oKSA{csxHMK5d2D#Y>&m+nzRkB^vEicaI+Wq7l1?zh(2Y972%R^aP8wdGQ&eBhgw zHDmf4S|n6)-SBIzxlOJX8jS_o5d^XLSa!y&j$D!j(7js*edos8R_G zpu=$QvIBLC>?zc6Xh~_J_*C`CH{HK1hRr#HQp@-YI@)f$03M3$NQ}%eyygSBEAp!P zp&n79Ki76Q0<53Z6_Ms6HMVGRRVAm|KFPtHAl#6CZRVYHe8}#qQ|~a@{JCc!q8N@R z2iU8zqbhVBIcP9;Kni2peUI8dT?w>cl2_s?tBAz@#KwjY1iB&F4a`x&(Jdju;!Ey{ zNfVn9v{zzRw9qwb;+@5vG1q^>GnHnaB)pYKV&?J#-JpjI)Z*pe;WR^LlF@@IZu<)# zCR!U1Z{`BG(5CKnzxdt7{DYf$EO1;j1k>BUimZP;I_E@;WyMAskw`^NvfSPuR(N3 z@MD*r3Mp7i5OAGy4B^q{IQsBgb4B$^sj(wWr~|mp^yW~x5Hc`H6Eaed*2CVW%8UzO zIYKg5`_j9Asccpd7D}eZkXWG!u`@K^)Bag2kx>J!S;hD9Z9YO$3y}A??4kd$Cf{-Q3>E`(Au24C8>k}x z&Q*1CbNBVZM!{GFfPh-+?SmPjgKm@mlsJVI`WaG}JI9b%qj@L|5l*2sjJ3@PUp4(< zF?baI`Gv0I+#ul1XKOV)y_+AZjg~4%`HV*cVZ1Ff=?I@$8~U}^K3D?L4aae(=Qz|W zIdZJJh~|r$^)m}M`$ty?3tcr6jT)IoCLsLu;>S#=Kd*m)^y!N#Ol@x{e-=I$)-{3Z zV=rtrV)z#@C-}rK}j|Gr+d?EMv6W6yCAX&fOYA7jJl+OYvcKocZ z>qXl^*Z5O5eoR32U)4v2(h8}fS83Rtt3%17HJi(J1P9U>W^eZVMqgE5BOL!(YqP9l z{)h@(1(Q(F>&`MMx?}B`4>Di+XB#PY3I~+jd>C&MSEEp{?h<&=ny1vr|0Di-IUt~O zHH#&0 zX_Bo!B7?!Q;?|i$?9S$Be>>==0(p9d_iIuQRjdz=*8H8`k^0MK|3%5TmbFI