-
Notifications
You must be signed in to change notification settings - Fork 223
/
ckpt_surgery.py
executable file
·283 lines (257 loc) · 10.6 KB
/
ckpt_surgery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import os
import torch
def parse_args():
parser = argparse.ArgumentParser()
# Paths
parser.add_argument(
"--src1", type=str, default="", help="Path to the main checkpoint"
)
parser.add_argument(
"--src2",
type=str,
default="",
help="Path to the secondary checkpoint (for combining)",
)
parser.add_argument(
"--save-dir", type=str, default="", help="Save directory"
)
# Surgery method
parser.add_argument(
"--method",
choices=["combine", "remove", "randinit"],
required=True,
help="Surgery method. combine = "
"combine checkpoints. remove = for fine-tuning on "
"novel dataset, remove the final layer of the "
"base detector. randinit = randomly initialize "
"novel weights.",
)
# Targets
parser.add_argument(
"--param-name",
type=str,
nargs="+",
default=[
"roi_heads.box_predictor.cls_score",
"roi_heads.box_predictor.bbox_pred",
],
help="Target parameter names",
)
parser.add_argument(
"--tar-name",
type=str,
default="model_reset",
help="Name of the new ckpt",
)
# Dataset
parser.add_argument("--coco", action="store_true", help="For COCO models")
parser.add_argument("--lvis", action="store_true", help="For LVIS models")
args = parser.parse_args()
return args
def ckpt_surgery(args):
"""
Either remove the final layer weights for fine-tuning on novel dataset or
append randomly initialized weights for the novel classes.
Note: The base detector for LVIS contains weights for all classes, but only
the weights corresponding to base classes are updated during base training
(this design choice has no particular reason). Thus, the random
initialization step is not really necessary.
"""
def surgery(param_name, is_weight, tar_size, ckpt, ckpt2=None):
weight_name = param_name + (".weight" if is_weight else ".bias")
pretrained_weight = ckpt["model"][weight_name]
prev_cls = pretrained_weight.size(0)
if "cls_score" in param_name:
prev_cls -= 1
if is_weight:
feat_size = pretrained_weight.size(1)
new_weight = torch.rand((tar_size, feat_size))
torch.nn.init.normal_(new_weight, 0, 0.01)
else:
new_weight = torch.zeros(tar_size)
if args.coco or args.lvis:
for i, c in enumerate(BASE_CLASSES):
idx = i if args.coco else c
if "cls_score" in param_name:
new_weight[IDMAP[c]] = pretrained_weight[idx]
else:
new_weight[
IDMAP[c] * 4 : (IDMAP[c] + 1) * 4
] = pretrained_weight[idx * 4 : (idx + 1) * 4]
else:
new_weight[:prev_cls] = pretrained_weight[:prev_cls]
if "cls_score" in param_name:
new_weight[-1] = pretrained_weight[-1] # bg class
ckpt["model"][weight_name] = new_weight
surgery_loop(args, surgery)
def combine_ckpts(args):
"""
Combine base detector with novel detector. Feature extractor weights are
from the base detector. Only the final layer weights are combined.
"""
def surgery(param_name, is_weight, tar_size, ckpt, ckpt2=None):
if not is_weight and param_name + ".bias" not in ckpt["model"]:
return
weight_name = param_name + (".weight" if is_weight else ".bias")
pretrained_weight = ckpt["model"][weight_name]
prev_cls = pretrained_weight.size(0)
if "cls_score" in param_name:
prev_cls -= 1
if is_weight:
feat_size = pretrained_weight.size(1)
new_weight = torch.rand((tar_size, feat_size))
else:
new_weight = torch.zeros(tar_size)
if args.coco or args.lvis:
for i, c in enumerate(BASE_CLASSES):
idx = i if args.coco else c
if "cls_score" in param_name:
new_weight[IDMAP[c]] = pretrained_weight[idx]
else:
new_weight[
IDMAP[c] * 4 : (IDMAP[c] + 1) * 4
] = pretrained_weight[idx * 4 : (idx + 1) * 4]
else:
new_weight[:prev_cls] = pretrained_weight[:prev_cls]
ckpt2_weight = ckpt2["model"][weight_name]
if args.coco or args.lvis:
for i, c in enumerate(NOVEL_CLASSES):
if "cls_score" in param_name:
new_weight[IDMAP[c]] = ckpt2_weight[i]
else:
new_weight[
IDMAP[c] * 4 : (IDMAP[c] + 1) * 4
] = ckpt2_weight[i * 4 : (i + 1) * 4]
if "cls_score" in param_name:
new_weight[-1] = pretrained_weight[-1]
else:
if "cls_score" in param_name:
new_weight[prev_cls:-1] = ckpt2_weight[:-1]
new_weight[-1] = pretrained_weight[-1]
else:
new_weight[prev_cls:] = ckpt2_weight
ckpt["model"][weight_name] = new_weight
surgery_loop(args, surgery)
def surgery_loop(args, surgery):
# Load checkpoints
ckpt = torch.load(args.src1)
if args.method == "combine":
ckpt2 = torch.load(args.src2)
save_name = args.tar_name + "_combine.pth"
else:
ckpt2 = None
save_name = (
args.tar_name
+ "_"
+ ("remove" if args.method == "remove" else "surgery")
+ ".pth"
)
if args.save_dir == "":
# By default, save to directory of src1
save_dir = os.path.dirname(args.src1)
else:
save_dir = args.save_dir
save_path = os.path.join(save_dir, save_name)
os.makedirs(save_dir, exist_ok=True)
reset_ckpt(ckpt)
# Remove parameters
if args.method == "remove":
for param_name in args.param_name:
del ckpt["model"][param_name + ".weight"]
if param_name + ".bias" in ckpt["model"]:
del ckpt["model"][param_name + ".bias"]
save_ckpt(ckpt, save_path)
return
# Surgery
tar_sizes = [TAR_SIZE + 1, TAR_SIZE * 4]
for idx, (param_name, tar_size) in enumerate(
zip(args.param_name, tar_sizes)
):
surgery(param_name, True, tar_size, ckpt, ckpt2)
surgery(param_name, False, tar_size, ckpt, ckpt2)
# Save to file
save_ckpt(ckpt, save_path)
def save_ckpt(ckpt, save_name):
torch.save(ckpt, save_name)
print("save changed ckpt to {}".format(save_name))
def reset_ckpt(ckpt):
if "scheduler" in ckpt:
del ckpt["scheduler"]
if "optimizer" in ckpt:
del ckpt["optimizer"]
if "iteration" in ckpt:
ckpt["iteration"] = 0
if __name__ == "__main__":
args = parse_args()
# COCO
if args.coco:
# COCO
# fmt: off
NOVEL_CLASSES = [
1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, 19, 20, 21, 44, 62, 63, 64, 67,
72,
]
BASE_CLASSES = [
8, 10, 11, 13, 14, 15, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 65, 70, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 84, 85, 86, 87, 88, 89, 90,
]
# fmt: on
ALL_CLASSES = sorted(BASE_CLASSES + NOVEL_CLASSES)
IDMAP = {v: i for i, v in enumerate(ALL_CLASSES)}
TAR_SIZE = 80
elif args.lvis:
# LVIS
# fmt: off
NOVEL_CLASSES = [
0, 6, 9, 13, 14, 15, 20, 21, 30, 37, 38, 39, 41, 45, 48, 50, 51, 63,
64, 69, 71, 73, 82, 85, 93, 99, 100, 104, 105, 106, 112, 115, 116,
119, 121, 124, 126, 129, 130, 135, 139, 141, 142, 143, 146, 149,
154, 158, 160, 162, 163, 166, 168, 172, 180, 181, 183, 195, 198,
202, 204, 205, 208, 212, 213, 216, 217, 218, 225, 226, 230, 235,
237, 238, 240, 241, 242, 244, 245, 248, 249, 250, 251, 252, 254,
257, 258, 264, 265, 269, 270, 272, 279, 283, 286, 290, 292, 294,
295, 297, 299, 302, 303, 305, 306, 309, 310, 312, 315, 316, 317,
319, 320, 321, 323, 325, 327, 328, 329, 334, 335, 341, 343, 349,
350, 353, 355, 356, 357, 358, 359, 360, 365, 367, 368, 369, 371,
377, 378, 384, 385, 387, 388, 392, 393, 401, 402, 403, 405, 407,
410, 412, 413, 416, 419, 420, 422, 426, 429, 432, 433, 434, 437,
438, 440, 441, 445, 453, 454, 455, 461, 463, 468, 472, 475, 476,
477, 482, 484, 485, 487, 488, 492, 494, 495, 497, 508, 509, 511,
513, 514, 515, 517, 520, 523, 524, 525, 526, 529, 533, 540, 541,
542, 544, 547, 550, 551, 552, 554, 555, 561, 563, 568, 571, 572,
580, 581, 583, 584, 585, 586, 589, 591, 592, 593, 595, 596, 599,
601, 604, 608, 609, 611, 612, 615, 616, 625, 626, 628, 629, 630,
633, 635, 642, 644, 645, 649, 655, 657, 658, 662, 663, 664, 670,
673, 675, 676, 682, 683, 685, 689, 695, 697, 699, 702, 711, 712,
715, 721, 722, 723, 724, 726, 729, 731, 733, 734, 738, 740, 741,
744, 748, 754, 758, 764, 766, 767, 768, 771, 772, 774, 776, 777,
781, 782, 784, 789, 790, 794, 795, 796, 798, 799, 803, 805, 806,
807, 808, 815, 817, 820, 821, 822, 824, 825, 827, 832, 833, 835,
836, 840, 842, 844, 846, 856, 862, 863, 864, 865, 866, 868, 869,
870, 871, 872, 875, 877, 882, 886, 892, 893, 897, 898, 900, 901,
904, 905, 907, 915, 918, 919, 920, 921, 922, 926, 927, 930, 931,
933, 939, 940, 944, 945, 946, 948, 950, 951, 953, 954, 955, 956,
958, 959, 961, 962, 963, 969, 974, 975, 988, 990, 991, 998, 999,
1001, 1003, 1005, 1008, 1009, 1010, 1012, 1015, 1020, 1022, 1025,
1026, 1028, 1029, 1032, 1033, 1046, 1047, 1048, 1049, 1050, 1055,
1066, 1067, 1068, 1072, 1073, 1076, 1077, 1086, 1094, 1099, 1103,
1111, 1132, 1135, 1137, 1138, 1139, 1140, 1144, 1146, 1148, 1150,
1152, 1153, 1156, 1158, 1165, 1166, 1167, 1168, 1169, 1171, 1178,
1179, 1180, 1186, 1187, 1188, 1189, 1203, 1204, 1205, 1213, 1215,
1218, 1224, 1225, 1227
]
# fmt: on
BASE_CLASSES = [c for c in range(1230) if c not in NOVEL_CLASSES]
ALL_CLASSES = sorted(BASE_CLASSES + NOVEL_CLASSES)
IDMAP = {v: i for i, v in enumerate(ALL_CLASSES)}
TAR_SIZE = 1230
else:
# VOC
TAR_SIZE = 20
if args.method == "combine":
combine_ckpts(args)
else:
ckpt_surgery(args)