-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathsynthesize.py
149 lines (127 loc) · 6.78 KB
/
synthesize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import logging
import os
import random
import sys
import time
import torch
from shutil import copyfile
FILE_ROOT = os.path.dirname(os.path.realpath(__file__))
PROJECT_ROOT = os.path.dirname(FILE_ROOT)
os.environ['PYTHONPATH'] = os.path.join(PROJECT_ROOT, 'src')
sys.path.append(os.path.join(PROJECT_ROOT, 'src'))
from daft_exprt.generate import extract_reference_parameters, generate_mel_specs, prepare_sentences_for_inference
from daft_exprt.hparams import HyperParams
from daft_exprt.model import DaftExprt
from daft_exprt.utils import get_nb_jobs
_logger = logging.getLogger(__name__)
random.seed(1234)
'''
Script example that showcases how to generate with Daft-Exprt
using a target sentence, a target speaker, and a target prosody
'''
def synthesize(args, dur_factor=None, energy_factor=None, pitch_factor=None,
pitch_transform=None, use_griffin_lim=False, get_time_perf=False):
''' Generate with DaftExprt
'''
# get hyper-parameters that were used to create the checkpoint
checkpoint_dict = torch.load(args.checkpoint, map_location=f'cuda:{0}')
hparams = HyperParams(verbose=False, **checkpoint_dict['config_params'])
# load model
torch.cuda.set_device(0)
model = DaftExprt(hparams).cuda(0)
state_dict = {k.replace('module.', ''): v for k, v in checkpoint_dict['state_dict'].items()}
model.load_state_dict(state_dict)
# prepare sentences
n_jobs = get_nb_jobs('max')
sentences, file_names = prepare_sentences_for_inference(args.text_file, args.output_dir, hparams, n_jobs)
# extract reference parameters
audio_refs = [os.path.join(args.style_bank, x) for x in os.listdir(args.style_bank) if x.endswith('.wav')]
for audio_ref in audio_refs:
extract_reference_parameters(audio_ref, args.style_bank, hparams)
# choose a random reference per sentence
refs = [os.path.join(args.style_bank, x) for x in os.listdir(args.style_bank) if x.endswith('.npz')]
refs = [random.choice(refs) for _ in range(len(sentences))]
# choose a random speaker ID per sentence
speaker_ids = [random.choice(hparams.speakers_id) for _ in range(len(sentences))]
# add duration factors for each symbol in the sentence
dur_factors = [] if dur_factor is not None else None
energy_factors = [] if energy_factor is not None else None
pitch_factors = [pitch_transform, []] if pitch_factor is not None else None
for sentence in sentences:
# count number of symbols in the sentence
nb_symbols = 0
for item in sentence:
if isinstance(item, list): # correspond to phonemes of a word
nb_symbols += len(item)
else: # correspond to word boundaries
nb_symbols += 1
# append to lists
if dur_factors is not None:
dur_factors.append([dur_factor for _ in range(nb_symbols)])
if energy_factors is not None:
energy_factors.append([energy_factor for _ in range(nb_symbols)])
if pitch_factors is not None:
pitch_factors[1].append([pitch_factor for _ in range(nb_symbols)])
# generate mel-specs and synthesize audios with Griffin-Lim
generate_mel_specs(model, sentences, file_names, speaker_ids, refs, args.output_dir,
hparams, dur_factors, energy_factors, pitch_factors, args.batch_size,
n_jobs, use_griffin_lim, get_time_perf)
return file_names, refs, speaker_ids
def pair_ref_and_generated(args, file_names, refs, speaker_ids):
''' Simplify prosody transfer evaluation by matching generated audio with its reference
'''
# save references to output dir to make prosody transfer evaluation easier
for idx, (file_name, ref, speaker_id) in enumerate(zip(file_names, refs, speaker_ids)):
# extract reference audio
ref_file_name = os.path.basename(ref).replace('.npz', '')
audio_ref = os.path.join(args.style_bank, f'{ref_file_name}.wav')
# check correponding synthesized audio exists
synthesized_file_name = f'{file_name}_spk_{speaker_id}_ref_{ref_file_name}'
synthesized_audio = os.path.join(args.output_dir, f'{synthesized_file_name}.wav')
assert(os.path.isfile(synthesized_audio)), _logger.error(f'There is no such file {synthesized_audio}')
# rename files
os.rename(synthesized_audio, f'{os.path.join(args.output_dir, f"{idx}_{synthesized_file_name}.wav")}')
copyfile(audio_ref, f'{os.path.join(args.output_dir, f"{idx}_ref.wav")}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='script to synthesize sentences with Daft-Exprt')
parser.add_argument('-out', '--output_dir', type=str,
help='output dir to store synthesis outputs')
parser.add_argument('-chk', '--checkpoint', type=str,
help='checkpoint path to use for synthesis')
parser.add_argument('-tf', '--text_file', type=str, default=os.path.join(PROJECT_ROOT, 'scripts', 'benchmarks', 'english', 'sentences.txt'),
help='text file to use for synthesis')
parser.add_argument('-sb', '--style_bank', type=str, default=os.path.join(PROJECT_ROOT, 'scripts', 'style_bank', 'english'),
help='directory path containing the reference utterances to use for synthesis')
parser.add_argument('-bs', '--batch_size', type=int, default=50,
help='batch of sentences to process in parallel')
parser.add_argument('-rtf', '--real_time_factor', action='store_true',
help='get Daft-Exprt real time factor performance given the batch size')
parser.add_argument('-ctrl', '--control', action='store_true',
help='perform local prosody control during synthesis')
args = parser.parse_args()
# set logger config
logging.basicConfig(
handlers=[
logging.StreamHandler(),
],
format="%(asctime)s [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO
)
if args.real_time_factor:
synthesize(args, get_time_perf=True)
time.sleep(5)
_logger.info('')
if args.control:
# small hard-coded example that showcases duration and pitch control
# control is performed on the sentence level in this example
# however, the code also supports control on the word/phoneme level
dur_factor = 1.25 # decrease speed
pitch_transform = 'add' # pitch shift
pitch_factor = 50 # 50Hz
synthesize(args, dur_factor=dur_factor, pitch_factor=pitch_factor,
pitch_transform=pitch_transform, use_griffin_lim=True)
else:
file_names, refs, speaker_ids = synthesize(args, use_griffin_lim=True)
pair_ref_and_generated(args, file_names, refs, speaker_ids)