-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
168 lines (148 loc) · 6.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import tensorflow as tf
from model import CycleGAN
from reader import Reader
from datetime import datetime
import os
import logging
from utils import ImagePool
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('batch_size', 1, 'batch size, default: 1')
tf.flags.DEFINE_integer('image_size', 128, 'image size, default: 256')
tf.flags.DEFINE_bool('use_lsgan', True,
'use lsgan (mean squared error) or cross entropy loss, default: True')
tf.flags.DEFINE_string('norm', 'instance',
'[instance, batch] use instance norm or batch norm, default: instance')
tf.flags.DEFINE_integer('lambda1', 10,
'weight for forward cycle loss (X->Y->X), default: 10')
tf.flags.DEFINE_integer('lambda2', 10,
'weight for backward cycle loss (Y->X->Y), default: 10')
tf.flags.DEFINE_float('learning_rate', 2e-3,
'initial learning rate for Adam, default: 0.0002')
tf.flags.DEFINE_float('beta1', 0.8,
'momentum term of Adam, default: 0.5')
tf.flags.DEFINE_float('pool_size', 50,
'size of image buffer that stores previously generated images, default: 50')
tf.flags.DEFINE_integer('ngf', 64,
'number of gen filters in first conv layer, default: 64')
tf.flags.DEFINE_string('X', 'data/trainA.tfrecords',
'X tfrecords file for training, default: data/tfrecords/apple.tfrecords')
tf.flags.DEFINE_string('Y', 'data/trainB.tfrecords',
'Y tfrecords file for training, default: data/tfrecords/orange.tfrecords')
tf.flags.DEFINE_string('X_pair', 'align/haze.tfrecords',
'X tfrecords file for training, default: data/tfrecords/apple.tfrecords')
tf.flags.DEFINE_string('Y_pair', 'align/clear.tfrecords',
'Y tfrecords file for training, default: data/tfrecords/orange.tfrecords')
tf.flags.DEFINE_string('load_model', None,#"20191112-2150",
'folder of saved model that you wish to continue training (e.g. 20170602-1936), default: None')#20191111-2035
def train():
if FLAGS.load_model is not None:
checkpoints_dir = "checkpoints/" + FLAGS.load_model.lstrip("checkpoints/")
else:
current_time = datetime.now().strftime("%Y%m%d-%H%M")
checkpoints_dir = "checkpoints/{}".format(current_time)
try:
os.makedirs(checkpoints_dir)
except os.error:
pass
graph = tf.Graph()
with graph.as_default():
cycle_gan = CycleGAN(
X_train_file=FLAGS.X,
Y_train_file=FLAGS.Y,
X_pair_train_file=FLAGS.X_pair,
Y_pair_train_file=FLAGS.Y_pair,
batch_size=FLAGS.batch_size,
image_size=FLAGS.image_size,
use_lsgan=FLAGS.use_lsgan,
norm=FLAGS.norm,
lambda1=FLAGS.lambda1,
lambda2=FLAGS.lambda2,
learning_rate=FLAGS.learning_rate,
beta1=FLAGS.beta1,
ngf=FLAGS.ngf
)
G_loss, D_Y_loss, F_loss, D_X_loss, fake_y, fake_x = cycle_gan.model()
optimizers = cycle_gan.optimize(G_loss, D_Y_loss, F_loss, D_X_loss)
summary_op = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(checkpoints_dir, graph)
saver = tf.train.Saver()
with tf.Session(graph=graph) as sess:
if FLAGS.load_model is not None:
checkpoint = tf.train.get_checkpoint_state(checkpoints_dir)
print(checkpoints_dir)
meta_graph_path = checkpoint.model_checkpoint_path + ".meta"
restore = tf.train.import_meta_graph(meta_graph_path)
restore.restore(sess, tf.train.latest_checkpoint(checkpoints_dir))
step = int(meta_graph_path.split("-")[2].split(".")[0])
else:
sess.run(tf.global_variables_initializer())
step = 0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
fake_Y_pool = ImagePool(FLAGS.pool_size)
fake_X_pool = ImagePool(FLAGS.pool_size)
while not coord.should_stop():
# get previously generated images
fake_y_val, fake_x_val = sess.run([fake_y, fake_x])
# train
_, G_loss_val, D_Y_loss_val, F_loss_val, D_X_loss_val, summary = (
sess.run(
[optimizers, G_loss, D_Y_loss, F_loss, D_X_loss, summary_op],
feed_dict={cycle_gan.fake_y: fake_Y_pool.query(fake_y_val),
cycle_gan.fake_x: fake_X_pool.query(fake_x_val)}
)
)
train_writer.add_summary(summary, step)
train_writer.flush()
if step % 100 == 0:
logging.info('-----------Step %d:-------------' % step)
logging.info(' G_loss : {}'.format(G_loss_val))
logging.info(' D_Y_loss : {}'.format(D_Y_loss_val))
logging.info(' F_loss : {}'.format(F_loss_val))
logging.info(' D_X_loss : {}'.format(D_X_loss_val))
logging.info(' D_X_loss : {}'.format(D_X_loss_val))
logging.info(' D_X_loss : {}'.format(D_X_loss_val))
if step % 3000 == 0:
save_path = saver.save(sess, checkpoints_dir + "/model.ckpt", global_step=step)
logging.info("Model saved in file: %s" % save_path)
step += 1
except KeyboardInterrupt:
logging.info('Interrupted')
coord.request_stop()
except Exception as e:
coord.request_stop(e)
finally:
save_path = saver.save(sess, checkpoints_dir + "/model.ckpt", global_step=step)
logging.info("Model saved in file: %s" % save_path)
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
# def test():
# coord = tf.train.Coordinator()
# gentor = Generator('G', False, 64, 'instance', FLAGS.image_size)
# saver.restore(sess, ckpt_path)
# # Set up tf session and initialize variables.
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# sess = tf.Session(config=config)
# init = tf.global_variables_initializer()
#
# sess.run(init)
# sess.run(tf.local_variables_initializer())
# checkpoint = tf.train.get_checkpoint_state(checkpoints_dir)
# print(checkpoints_dir)
# meta_graph_path = checkpoint.model_checkpoint_path + ".meta"
# restore = tf.train.import_meta_graph(meta_graph_path)
# restore.restore(sess, tf.train.latest_checkpoint(checkpoints_dir))
# threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# # Iterate over training steps.
# feed = {:}
# preds, _ = sess.run([pred, update_op],feed_dict=feed)
# coord.request_stop()
# coord.join(threads)
def main(unused_argv):
train()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
tf.app.run()