-
Notifications
You must be signed in to change notification settings - Fork 4
/
realtimepredict.py
491 lines (422 loc) · 23.7 KB
/
realtimepredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import argparse
from hashlib import new
import json, pickle
import os
from posixpath import pathsep
import sys
from pathlib import Path
from threading import Thread
import numpy as np
import torch, cv2
from tqdm import tqdm
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.experimental import attempt_load
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_suffix, check_yaml,
coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
scale_coords, xywh2xyxy, xyxy2xywh)
from utils.metrics import ConfusionMatrix, ap_per_class
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, time_sync
def save_one_txt(predn, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
aot_results= []
def save_aot_one_pkl(predn, path, file_path=False):
if not file_path:
track_id = 0
for *xyxy, conf, cls in predn.tolist():
if int(cls) == 0:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
result = {
"detections": [
{
"track_id": track_id,
"x": float(xywh[0]),
"y": float(xywh[1]),
"w": float(xywh[2]),
"h": float(xywh[3]),
"n": "airborne",
"s": float(conf)
}
],
"img_name": os.path.basename(path)
}
track_id += 1
aot_results.append(result)
else:
os.makedirs(str(Path(file_path).parent), exist_ok=True)
pickle.dump(aot_results, open(file_path, "wb"))
def save_one_json(predn, jdict, path, class_map):
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': class_map[int(p[5])],
'bbox': [round(x, 3) for x in b], # XY WH in real coordinates
'score': round(p[4], 5)})
jdict_gt = {}
def save_one_json_with_gt(predn, path, class_map, labelsn):
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
if len(predn) > 0 or len(labelsn) > 0:
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = predn[:, :4] #xyxy2xywh(predn[:, :4]) # xywh
#box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
jdict_gt[image_id] = {"detections":[], "labels":[]}
for p, b in zip(predn.tolist(), box.tolist()):
jdict_gt[image_id]["detections"].append({'bbox':[round(x, 3) for x in b], 'score':round(p[4], 5), 'category_id':class_map[int(p[5])]})
box = labelsn[:, 1:] #xyxy2xywh(labeln[:, 1:])
#box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(labelsn[:, 0], box.tolist()):
jdict_gt[image_id]["labels"].append({'bbox':[round(x, 3) for x in b], 'category_id':int(p)})
#return jdict_gt
def save_one_json_with_gt_dump(file_path):
os.makedirs(str(Path(file_path).parent), exist_ok=True)
pickle.dump(jdict_gt, open(file_path, "wb"))
print("Predictions with gt dumped")
def get_data_split_number(data_yaml_file_path):
split_number = os.path.basename(data_yaml_file_path).split(".")[0].split("_")[-1]
return int(split_number) if split_number.isnumeric() else 0
# split_number = int(os.path.basename(data_yaml_file_path).split(".")[0].split("_")[-1].strip())
# return split_number
def process_batch(detections, labels, iouv):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
iou = box_iou(labels[:, 1:], detections[:, :4])
x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iouv.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
return correct
def is_fourth_frame(path):
return True if int(os.path.basename(path).split(".")[0].split("_")[-1]) % 4 == 0 else False
def plot_val_images_for_me(imgs, paths, shapes, targets, predictions, transform_targets=False, main_indices=[]):
from torchvision.utils import draw_bounding_boxes, save_image
from torchvision.io import read_image
from utils.general import extend_iou
ogimgs = [read_image(str(path)) for path in paths]
is_any_plotted = False
#targets[:, 2:] = xywhn2xyxy(targets[:, 2:], w, h)
for i, img in enumerate(ogimgs):
if True:#i in main_indices: #
#target = [target[2:] for target in targets if target[0] == i]
#target = torch.cat(target, 0).reshape(-1, 4) if len(target) > 0 else torch.zeros((0, 4))
if len(targets) > 0 :
#print(f"Targets before scaling {target}, og shape {shapes[i][0]}, ration_pad {shapes[i][1]}, loaded image shape {img.shape[1:]} {imgs[i].shape[1:]}")
if transform_targets:
height, width = imgs[i].shape[1:]
target = target*torch.Tensor([width, height, width, height]).to(target.device)
target = xywh2xyxy(target)
target = scale_coords(imgs[i].shape[1:], target, shapes[i][0], shapes[i][1])
#print(f"Targets after scaling {target}")
img = draw_bounding_boxes(img, targets, width=1, colors="red")
if len(predictions) > 0:
img = draw_bounding_boxes(img, predictions[:, :4], width=1, colors="green")
save_image(img.float()/255., f"{os.path.basename(paths[i])}_val_check{i}.png")
print(f"plotted {os.path.basename(paths[i])}")
is_any_plotted = True
#break
if is_any_plotted:
print(paths)
exit()
def visualize_detections(frames, detections, output_dir, frame_indices=[0, 1, 2, 3, 4], confidence_threshold=0.5):
"""
Visualizes detections on given frames and saves the images.
:param frames: List of 5 frames (images in BGR format)
:param detections: List of detections where each detection is in format
[image_index, class_id, cx, cy, w, h, confidence]
:param output_dir: Directory where the visualized images will be saved
"""
# Ensure the output directory exists
os.makedirs(output_dir, exist_ok=True)
# Define a color map for different class IDs
color_map = {
0: (255, 0, 0), # Class 0 - Blue
1: (0, 255, 0), # Class 1 - Green
2: (0, 0, 255), # Class 2 - Red
# Add more class colors as needed
}
frames = (frames*255.).permute(0, 2, 3, 1).cpu().contiguous().numpy().astype(np.uint8) # T, H, W, C
# dump frame & reread because converted frame
# from torch to numpy isn't working with cv2.rectangle
assert len(frame_indices) == len(frames)
new_frames = []
for image_index, frame_index in enumerate(frame_indices):
output_path = os.path.join(output_dir, f"frame_{frame_index}.jpg")
cv2.imwrite(output_path, frames[image_index, :, :, ::-1])
new_frames.append(cv2.imread(output_path))
# Iterate over each detection
for detection in detections:
image_index, class_id, cx, cy, w, h, confidence = detection
image_index = int(image_index)
if 0 <= image_index < len(frames) and confidence >= confidence_threshold:
# Convert bounding box format
x1, y1, x2, y2 = xywh2xyxy(np.array([cx, cy, w, h]).reshape(1, 4)).astype(int)[0].tolist()
#print(f"Image idx {image_index}: Detection score {confidence}, x {x1}, y {y1}, x {x2}, y {y2}")
# Get color for class_id or use white if class_id not in color_map
color = color_map.get(int(class_id), (255, 255, 255))
# Draw the bounding box on the frame
new_frames[image_index] = cv2.rectangle(new_frames[image_index], (x1, y1), (x2, y2), color, 2)
# Add label with class_id and confidence score
label = f"{confidence:.2f}"
new_frames[image_index] = cv2.putText(new_frames[image_index], label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Save the modified frames to the specified directory
for idx, frame_index in enumerate(frame_indices):
output_path = os.path.join(output_dir, f"frame_{frame_index}.jpg")
cv2.imwrite(output_path, new_frames[idx])
#print(f"Saved frame with detections to {output_path}")
#breakpoint()
@torch.no_grad()
def run(data,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.5, # NMS IoU threshold
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
save_json_gt=False,
project=ROOT / 'runs/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
num_frames=5,
every_fourth_frame=False,
save_aot_predictions=False,
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None
):
epoch_number = -1
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
check_suffix(weights, '.pt')
model, epoch_number = attempt_load(weights, map_location=device, return_epoch_number=True) # load FP32 model
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check image size
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Data
data_yaml_path = None
if isinstance(data, (str, Path)):
data_yaml_path = data
if data_yaml_path is None:
assert save_aot_predictions == False, print("please launch as main script with '--data AOTTest_1.yaml' param if AOT predictions are to be saved")
data = check_dataset(data, streamable_hence_skip=True) # check
# Half
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
# Configure
model.eval()
is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
nc = 1 if single_cls else int(data['nc']) # number of classes
#iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
iouv = torch.linspace(0.5, 0.95, 10).to(device)
niou = iouv.numel()
# Dataloader
if not training:
if device.type != 'cpu':
model(torch.zeros(num_frames, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
pad = 0.0 if task == 'speed' else 0.5
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
annotation_test_path = data[f"annotation_{task}"] if f"annotation_{task}" in data else ""
video_root = data[f"video_root_path_{task}"] if f"video_root_path_{task}" in data else ""
dataloader = create_dataloader(data[task], annotation_test_path, video_root, imgsz, batch_size, gs, single_cls, pad=pad, rect=True,
prefix=colorstr(f'{task}: '), is_training=False, num_frames=num_frames, makestreamloader=True)[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
#print(f"names {names}")
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ('%20s' + '%11s' * 7) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95', 'epoch('+str(epoch_number)+')')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
loss = torch.zeros(3, device=device)
jdict = []
stats, ap, ap_class = [], [], []
last_frame_index = 0
#print(f"Is testing every fourth frame ? {every_fourth_frame}, frames {num_frames}, epoch number {epoch_number}, Confidence Threshold {conf_thres}")
for batch_i, (img, shapes) in enumerate(tqdm(dataloader, desc=s)):
t1 = time_sync()
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = img.shape # batch size, channels, height, width
t2 = time_sync()
dt[0] += t2 - t1
#plot_val_images_for_me(img, paths, shapes, targets, main_target_indices)
# Run model
#print(paths)
out, train_out = model(img, augment=augment) # inference and training outputs
dt[1] += time_sync() - t2
#exit()
# Compute loss
if False:
#print(f"val loss computation {targets.shape}")
loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
# #select only main frame images ignore other temporal predictions & target
# out, train_out = out[main_target_indices], [tout[main_target_indices] for tout in train_out]
# img, paths, shapes, targets = img[main_target_indices], [paths[ii] for ii in main_target_indices], [shapes[jj] for jj in main_target_indices], filter_targets(targets, main_target_indices)
# label_paths = [label_paths[ii] for ii in main_target_indices]
# Run NMS
#targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
#lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
t3 = time_sync()
out = non_max_suppression(out, conf_thres, iou_thres, labels=(), multi_label=True, agnostic=single_cls)
dt[2] += time_sync() - t3
# Statistics per image
main_target_indices = list(range(len(out)))
for si, pred in enumerate(out):
if si not in main_target_indices:
continue
#path, shape = Path(paths[si]), shapes[si][0]
shape = shapes[si][0]
seen += 1
if len(pred) == 0:
print("No prediction Found")
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Plot images
if plots:
# f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
# Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
#f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
#Thread(target=plot_images, args=(img, output_to_target(out), None, f, names), daemon=True).start()
frame_indices = list(range(last_frame_index, last_frame_index+num_frames))
visualize_detections(img.clone(), output_to_target(out), save_dir, frame_indices, 0.5)
last_frame_index = frame_indices[-1]
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 + '%11i' # print format
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map, epoch_number))
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i], epoch_number))
# Print speeds
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
parser.add_argument('--save-json-gt', action='store_true', help='save a prediction to JSON results file with gt')
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
#added by Tushar
parser.add_argument('--num-frames', type=int, default=5, help='Num of frames to load')
parser.add_argument('--every-fourth-frame', action='store_true', help='Record results on every fourth frame')
parser.add_argument('--save-aot-predictions', action='store_true', help='Store predictions in AOT style')
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
print_args(FILE.stem, opt)
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
#print(f"Running task {opt.task}, data yaml {opt.data}, num_frames {opt.num_frames}, save aot_predictions ?
# {opt.save_aot_predictions}, test every_fourth_frame {opt.every_fourth_frame}")
#print(f"Conf-threshold for nms {opt.conf_thres}, iou thresh {opt.iou_thres}")
run(**vars(opt))
elif opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=opt.imgsz, conf_thres=.25, iou_thres=.45,
device=opt.device, save_json=False, plots=False)
elif opt.task == 'study': # run over a range of settings and save/plot
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
for w in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
y = [] # y axis
for i in x: # img-size
LOGGER.info(f'\nRunning {f} point {i}...')
r, _, t = run(opt.data, weights=w, batch_size=opt.batch_size, imgsz=i, conf_thres=opt.conf_thres,
iou_thres=opt.iou_thres, device=opt.device, save_json=opt.save_json, plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
os.system('zip -r study.zip study_*.txt')
plot_val_study(x=x) # plot
if __name__ == "__main__":
opt = parse_opt()
main(opt)