-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
285 lines (247 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import duckdb
import pandas as pd
import streamlit as st
from datastructures import StatsForYear, DataFrameResult, DatasetStats
from utils import get_delta, paths_for_years
# ------------------------------------------------------------------------------------------------------
# functions
# ------------------------------------------------------------------------------------------------------
@st.cache_data
def fetch_one(query: str) -> tuple:
return db.execute(query).fetchone() # type: ignore
@st.cache_data
def fetch_df(query: str) -> DataFrameResult:
result = db.execute(query)
return DataFrameResult(query, result.arrow().to_pandas(types_mapper=pd.ArrowDtype))
def min_max_timestamps(url_template: str) -> DatasetStats:
query = f"""
SELECT
min(created_at) start_range,
max(created_at) end_range
FROM '{url_template.format(year='*')}'
""".strip()
result = fetch_one(query)
return DatasetStats(query, *result)
def year_stats(year: int, url_template: str) -> StatsForYear:
query = f"""
SELECT
count(*) number_of_changesets,
count(distinct uid) number_of_unique_users,
sum(num_changes) number_of_object_changes,
sum(comments_count) number_of_comments
FROM '{url_template.format(year=year)}'
""".strip()
result = fetch_one(query)
return StatsForYear(query, *result)
def most_popular_editors(year: int, url_template: str) -> DataFrameResult:
query = f"""
SELECT
CASE
WHEN created_by LIKE 'iD%' THEN 'iD'
WHEN created_by LIKE 'JOSM%' THEN 'JOSM'
WHEN created_by LIKE 'Level0%' THEN 'Level0'
WHEN created_by LIKE 'StreetComplete%' THEN 'StreetComplete'
WHEN created_by LIKE 'MapComplete%' THEN 'MapComplete'
WHEN created_by LIKE 'RapiD%' THEN 'RapiD'
WHEN created_by LIKE 'Rapid%' THEN 'RapiD'
WHEN created_by LIKE 'Potlach%' THEN 'Potlach'
WHEN created_by LIKE 'Potlatch%' THEN 'Potlatch'
WHEN created_by LIKE 'Go Map!!%' THEN 'Go Map!!'
WHEN created_by LIKE 'Merkaartor%' THEN 'Merkaartor'
WHEN created_by LIKE 'OsmAnd%' THEN 'OsmAnd'
WHEN created_by LIKE 'MAPS.ME%' THEN 'MAPS.ME'
WHEN created_by LIKE 'Vespucci%' THEN 'Vespucci'
WHEN created_by LIKE 'Organic Maps%' THEN 'Organic Maps'
WHEN created_by LIKE 'ArcGIS Editor%' THEN 'ArcGIS Editor'
WHEN created_by LIKE 'bulk_upload.py%' THEN 'bulk_upload.py'
WHEN created_by LIKE 'reverter%' THEN 'reverter'
WHEN created_by LIKE 'osm-revert%' THEN 'osm-revert'
WHEN created_by LIKE 'Every_Door%' THEN 'EveryDoor'
WHEN created_by LIKE 'osmtools%' THEN 'osmtools'
WHEN created_by LIKE 'osmapi%' THEN 'osmapi'
WHEN created_by LIKE 'rosemary%' THEN 'rosemary'
WHEN created_by LIKE 'Globe%' THEN 'Globe'
WHEN created_by LIKE 'PythonOsmApi%' THEN 'PythonOsmApi'
WHEN created_by LIKE 'bot-source-cadastre.py%' THEN 'bot-source-cadastre.py'
WHEN created_by LIKE 'upload.py%' THEN 'upload.py'
WHEN created_by LIKE 'osm-budynki-orto-import%' THEN 'osm-budynki-orto-import'
ELSE coalesce(created_by, '<unknown>')
END editor,
sum(num_changes)::bigint number_of_object_changes, -- cast to bigint makes formatting later easier
count(*) number_of_changesets
FROM '{url_template.format(year=year)}'
GROUP BY 1
ORDER BY 2 DESC
LIMIT 25
""".strip()
return fetch_df(query)
def get_sample_data(year: int, url_template: str) -> DataFrameResult:
query = f"""
SELECT *
FROM '{url_template.format(year=year)}'
LIMIT 10
""".strip()
return fetch_df(query)
def most_reported_locale(year: int, url_template: str) -> DataFrameResult:
query = f"""
SELECT
coalesce(locale, '<unknown>') reported_locale,
count(*) number_of_changesets,
round(
100.0 * count(*) / (SELECT count(*) FROM '{url_template.format(year=year)}'),
2
) || '%' as percentage_of_all_changesets
FROM '{url_template.format(year=year)}'
GROUP BY 1
ORDER BY 2 DESC
LIMIT 15
""".strip()
return fetch_df(query)
def new_users(year: int, url_template: str) -> DataFrameResult:
paths_for_previous_years = paths_for_years(2005, year - 1, url_template)
sep = ",\n" + " " * 8
query = f"""
WITH
users_who_previously_edited as (
SELECT DISTINCT uid
FROM parquet_scan([
{sep.join(paths_for_previous_years)}
])
),
users_who_edited_current_year as (
SELECT DISTINCT uid
FROM parquet_scan('{url_template.format(year=year)}')
)
SELECT
CASE
WHEN pe.uid IS NULL THEN true
ELSE false
END users_who_did_not_edit_before,
count(*) number_of_users
FROM users_who_edited_current_year cu
LEFT JOIN users_who_previously_edited pe USING(uid)
GROUP BY 1
""".strip()
return fetch_df(query)
def stats_over_years(url_template: str, max_year: int) -> DataFrameResult:
sep = ",\n" + " " * 4
query = f"""
SELECT
regexp_extract(filename, '([0-9]{{4}})', 1) as "year",
sum(num_changes)::bigint as number_of_changes,
count(*) as number_of_changesets,
count(distinct uid) as number_of_unique_users
FROM parquet_scan([
{sep.join(paths_for_years(2005, max_year, url_template))}
], FILENAME = 1)
GROUP BY 1
ORDER BY 1
""".strip()
return fetch_df(query)
# ------------------------------------------------------------------------------------------------------
# init
# ------------------------------------------------------------------------------------------------------
# create in-memory duckdb database 🦆
db = duckdb.connect(database=":memory:")
db.execute("""
install 'httpfs';
load 'httpfs';
set s3_region='eu-central-1';
set enable_http_metadata_cache=true;
set enable_object_cache=true;
set preserve_insertion_order=false;
""")
data_url_template = os.environ.get("url_template", "s3://tt-osm-changesets/full_by_year/{year}.zstd.parquet")
# ------------------------------------------------------------------------------------------------------
# beginning of the app
# ------------------------------------------------------------------------------------------------------
st.markdown(
"""
# OpenStreetMap changesets
This Streamlit app queries remote Parquet files with info from
[OpenStreetMap changeset](https://wiki.openstreetmap.org/wiki/Changeset)
dump downloaded from [planet.osm.org](https://planet.osm.org).
I described conversion process here: https://ttomasz.github.io/2023-01-30/spark-read-xml
Thanks to DuckDB we can query files hosted on S3 storage without having to download everything (~13,4 GB).
Although for running larger analyses this is a better course of action since it's order of magnitude faster.
With local files DuckDB can query all the data in seconds.
GitHub repo: https://github.com/ttomasz/tt-osm-changeset-analyzer
**Since changesets can be opened in one year and closed in another everywhere we assume that `year`
is the year the changeset was opened in.**
Each part shows corresponding SQL query that is executed by DuckDB.
First let's see range of timestamps in our files. Give it some time to load the data.
""")
dataset_stats = min_max_timestamps(data_url_template)
with st.expander("SQL query", expanded=False):
st.code(dataset_stats.query, language="sql")
st.metric("Minimum changeset opening datetime", dataset_stats.min_opened_date.isoformat())
st.metric("Maximum changeset opening datetime", dataset_stats.max_opened_date.isoformat())
st.write("Let's see some charts")
max_year = dataset_stats.max_opened_date.year
stats = stats_over_years(url_template=data_url_template, max_year=max_year)
stats.df.columns = stats.df.columns.map(lambda x: str(x).replace("_", " ").title())
with st.expander("SQL query", expanded=False):
st.code(stats.query, language="sql")
st.line_chart(data=stats.df, x="year".title(), y="number_of_changes".replace("_", " ").title())
st.line_chart(data=stats.df, x="year".title(), y="number_of_changesets".replace("_", " ").title())
st.line_chart(data=stats.df, x="year".title(), y="number_of_unique_users".replace("_", " ").title())
# year = st.slider("Select year for analysis:", min_value=2005, max_value=2023, value=2023, step=1)
year_options = tuple(range(2005, max_year + 1))
selected_year = st.selectbox("Select year for analysis:", options=year_options, index=len(year_options) - 1)
previous_year = selected_year - 1 if selected_year > 2005 else None
st.write("A sample of data from Parquet files:")
sample_data = get_sample_data(selected_year, data_url_template)
with st.expander("SQL query", expanded=False):
st.code(sample_data.query, language="sql")
st.dataframe(data=sample_data.df, use_container_width=True)
st.markdown(f"## In {selected_year} there were:")
stats_for_year = year_stats(selected_year, data_url_template)
if previous_year is not None:
stats_for_previous_year = year_stats(previous_year, data_url_template)
else:
stats_for_previous_year = StatsForYear(None, None, None, None, None)
with st.expander("SQL query", expanded=False):
st.code(stats_for_year.query, language="sql")
col1, col2 = st.columns(2)
col1.metric(
"Changesets open",
f"{stats_for_year.number_of_changesets:,d}",
get_delta(stats_for_year.number_of_changesets, stats_for_previous_year.number_of_changesets)
)
col2.metric(
"Unique users who opened a changeset",
f"{stats_for_year.number_of_unique_users:,d}",
get_delta(stats_for_year.number_of_unique_users, stats_for_previous_year.number_of_unique_users)
)
col1.metric(
"Objects edited",
f"{stats_for_year.number_of_object_changes:,d}",
get_delta(stats_for_year.number_of_object_changes, stats_for_previous_year.number_of_object_changes)
)
col2.metric(
"Comments in discussions under changesets",
f"{stats_for_year.number_of_comments:,d}",
get_delta(stats_for_year.number_of_comments, stats_for_previous_year.number_of_comments)
)
st.markdown("### Most popular editors")
editor_result = most_popular_editors(selected_year, data_url_template)
editor_result.df.columns = editor_result.df.columns.map(lambda x: str(x).replace("_", " ").title())
with st.expander("SQL query", expanded=False):
st.code(editor_result.query, language="sql")
st.dataframe(data=editor_result.df, use_container_width=True)
st.markdown("### Most reported locale")
locale_result = most_reported_locale(selected_year, data_url_template)
locale_result.df.columns = locale_result.df.columns.map(lambda x: str(x).replace("_", " ").title())
with st.expander("SQL query", expanded=False):
st.code(locale_result.query, language="sql")
st.dataframe(data=locale_result.df, use_container_width=True)
if selected_year > 2005:
st.markdown("### New vs old users")
new_users_result = new_users(selected_year, data_url_template)
new_users_result.df.columns = new_users_result.df.columns.map(lambda x: str(x).replace("_", " ").title())
with st.expander("SQL query", expanded=False):
st.code(new_users_result.query, language="sql")
st.dataframe(data=new_users_result.df, use_container_width=True)
else:
st.empty()