-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_qaoe_lsmdc_fib.py
150 lines (126 loc) · 6.12 KB
/
main_qaoe_lsmdc_fib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from utils.lib import *
from dataset import get_dl
from model import VIOLET_Base
from utils.args import get_args
from utils.logger import LOGGER, add_log_to_file
from utils.dist import NoOp, is_main_process, all_gather, get_rank, get_world_size, iter_tqdm
from main_qaoe import Dataset_QAOE, Agent_QAOE
class Dataset_QAOE_LSMDC(Dataset_QAOE):
def __init__(self, args, img, txt, split, tokzr=None):
super().__init__(args, img, txt, split, tokzr=tokzr)
total_examples = len(self.txt)
invalid_examples = 0
for item in self.txt:
ans = self.label2ans[item['answer']]
ans_id = self.tokzr.convert_tokens_to_ids([ans])[0]
if ans_id==self.unk_token_id: invalid_examples += 1
LOGGER.info(f"Split {split}, Invalid examples: {invalid_examples} "
f"/ Total examples: {total_examples}, "
f"upper-bound: {(1 - invalid_examples/total_examples)*100:.2f}%")
@property
def prompt_text(self):
return "fill in the mask to complete the sentence."
def __getitem__(self, idx):
item = self.txt[idx]
img = self.get_img_or_video(self.img[item['video']])
q = item['question']
q = q.replace("[MASK]", self.tokzr.mask_token)
txt, mask = self.str2txt(q)
if self.args.size_vocab>0: ans_id = item['answer']
else:
ans = self.label2ans[item['answer']]
ans_id = self.tokzr.convert_tokens_to_ids([ans])[0]
if ans_id==self.unk_token_id: ans_id = -1
mask_ans = T.ones(txt.shape).long()*-1
mask_ans[txt==self.mask_token_id] = ans_id
return img, txt, mask, mask_ans
def collate_batch(self, inputs):
img, txt, mask, mask_ans = map(list, unzip(inputs))
all_imgs = T.stack(img, dim=0)
all_mask_ans = T.stack(mask_ans, dim=0)
all_txts = T.stack(txt, dim=0)
all_masks = T.stack(mask, dim=0)
batch = {"img": all_imgs, "txt": all_txts, "mask": all_masks, "mask_ans": all_mask_ans}
return batch
class VIOLET_QAOE_LSMDC(VIOLET_Base):
def __init__(self, args, tokzr=None):
super().__init__(args, tokzr)
assert args.size_vocab==-1
bert = transformers.AutoModelForMaskedLM.from_pretrained(self.args.tokenizer)
if isinstance(bert, transformers.RobertaForMaskedLM): self.fc_mtm = bert.lm_head
else: self.fc_mtm = bert.cls
del bert
self.task_tok2id = {"vtm": 0, "mc": 1, "oe": 2, "cap": 3}
self.emb_task = T.nn.Parameter(0.02*T.randn(10, self.hidden_size))
def prepro_pretxt(self, task_or_prompt_txt):
return T.ones_like(task_or_prompt_txt)*-1
def forward(self, batch):
batch = defaultdict(lambda: None, batch)
img, txt, mask = [batch[key] for key in ["img", "txt", "mask"]]
ans = batch["mask_ans"]
(_B, _T, _, _H, _W), (_, _X) = img.shape, txt.shape
_h, _w = _H//32, _W//32
feat_img, mask_img, feat_txt, mask_txt = self.go_feat(img, txt, mask)
ans, mask_txt, feat_txt = self.prepro_txt_inputs(ans, mask_txt, feat_txt, task_name=batch["task_name"], prompt=batch["prompt"])
out, _ = self.go_cross(feat_img, mask_img, feat_txt, mask_txt)
if self.args.temporal_fusion=="mean": _T = 1
out = self.fc_mtm(out[:, (1+_h*_w)*_T:])
return out, ans
class Agent_QAOE_LSMDC(Agent_QAOE):
def __init__(self, args, model):
super().__init__(args, model)
def step(self, batch, is_train):
with T.cuda.amp.autocast(enabled=not self.args.deepspeed):
out = self.forward_step(batch)
out, ans = out
if is_train:
out = out.flatten(0, len(out.shape)-2)
ans = ans.flatten(0, len(ans.shape)-1)
ls = self.loss_func(out, ans)
self.backward_step(ls)
return {'ls': ls.item()}
else:
ac_1 = self.get_top_k_acc(out, ans, k=1)
ac_5 = self.get_top_k_acc(out, ans, k=5)
return {'ac_1': ac_1, 'ac_5': ac_5}
def get_top_k_acc(self, out, ans, k=5):
_B = out.shape[0]
if T.any(ans!=-1):
ans_mtm = ans[ans!=-1].view(-1, 1)
n_valid_ans = ans_mtm.shape[0]
out_mtm = out[ans!=-1].view(n_valid_ans, -1)
out_mtm_v, out_mtm_i = T.topk(out_mtm, k=k, dim=-1)
ac = (out_mtm_i==ans_mtm).any(dim=-1).float().tolist()
else:
print(T.any(ans!=-1, dim=-1))
ac = []
if len(ac)<_B: ac += [0.]*(_B-len(ac))
return ac
def best_epoch(self):
if not hasattr(self, "log"): raise NotImplementedError("no log to find the best epoch")
if "ac_1_vl" not in self.log or "ac_1_ts" not in self.log: raise ValueError("calling best_epoch in pretraining, maybe?")
val_index = np.argmax(self.log["ac_1_vl"])
test_index = np.argmax(self.log["ac_1_ts"])
val_max = self.log["ac_1_vl"][val_index]
test_max = self.log["ac_1_ts"][test_index]
return (val_index, val_max), (test_index, test_max)
def go_dl(self, ep, dl, is_train):
if is_train: self.model.train()
else: self.model.eval()
ret = defaultdict(list)
idx = 0
for idx, batch in enumerate(dl):
if is_train: self.global_step += 1
if (idx%self.args.logging_steps)==0 and is_train: LOGGER.info(self.log_memory(ep, idx+1))
if self.args.enable_prompt: batch["prompt"] = dl.dataset.get_prompt()
elif self.args.enable_task_token: batch["task_name"] = "oe"
batch = self.prepare_batch(batch)
r = self.step(batch, is_train)
ret = {k: ret[k]+l if isinstance(l, list) else ret[k]+[l] for k, l in r.items()}
if is_train: self.log_dict_to_wandb({f'train_{k}': l for k, l in r.items()})
if (idx%self.args.logging_steps)!=0 and is_train: LOGGER.info(self.log_memory(ep, idx+1))
gathered_ret = defaultdict(list)
for ret_per_rank in all_gather(ret):
for k in ret_per_rank: gathered_ret[k].extend(ret_per_rank[k])
ret_all = {k: float(np.average(gathered_ret[k])) for k in ret}
return ret_all