-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_caption.py
277 lines (234 loc) · 12 KB
/
main_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from math import dist
from utils.lib import *
from dataset import TsvCompositeDataset, get_dl
from model_for_captioning import CaptioningLoss, VIOLET_Captioning
from agent import Agent_Base
from utils.args import get_args
from utils.logger import LOGGER, RunningMeter, add_log_to_file
from utils.dist import is_main_process, synchronize, all_gather, get_rank, get_world_size, iter_tqdm, NoOp
from utils.misc import ensure_directory
from utils.tsv_file_ops import tsv_writer, reorder_tsv_keys
from utils.misc import concat_tsv_files, delete_tsv_files
from evalcap.utils_caption_evaluate import evaluate_on_coco_caption
class Dataset_Caption(TsvCompositeDataset):
def __init__(self, args, yaml_file, split, tokzr=None):
super().__init__(args, yaml_file, split, size_frame=args.size_frame, tokzr=tokzr)
if args.data_ratio!=1: self.get_partial_data()
def __getitem__(self, idx):
raw_data = self.get_img_txt_pair(idx)
img = raw_data['img']
vid = raw_data['img_key']
raw_txt = raw_data['caption']
txt, mask = self.str2txt(raw_txt)
return img, txt, mask, vid
@property
def prompt_text(self):
return "write a description about the video."
def collate_batch(self, inputs):
img, txt, mask, vid = map(list, unzip(inputs))
all_imgs = T.stack(img, dim=0)
all_txts = T.stack(txt, dim=0)
all_masks = T.stack(mask, dim=0)
batch = {"img": all_imgs, "txt": all_txts, "mask": all_masks, "img_keys": vid}
return batch
class Agent_Captioning(Agent_Base):
def __init__(self, args, model):
super().__init__(args, model)
loss_config = {'label_smoothing': getattr(args, 'label_smoothing', 0),
'drop_worst_ratio': getattr(args, 'drop_worst_ratio', 0),
'drop_worst_ratio': getattr(args, 'drop_worst_ratio', 0)}
self.loss_func = CaptioningLoss(loss_config).cuda()
self.log = defaultdict(list)
self.running_meter = {'ls_tr': RunningMeter('ls_tr'), 'ac_tr': RunningMeter('ac_tr')}
if args.freeze_violet: self.model.freeze()
def masking(self, txt, p_mask=0.15):
(_B, _X) = txt.shape
spc_txt = T.logical_or(txt==self.pad_token_id, txt==self.mask_token_id)
ans_mtm = T.ones(txt.shape).long()*-1
if p_mask<=0: return {"txt": txt, "ans_mtm": ans_mtm}
for i in range(_B):
mask_mtm = T.where(T.logical_and(T.logical_not(spc_txt[i]), T.rand(_X)<p_mask))[0]
for p in mask_mtm: ans_mtm[i][p], txt[i][p] = txt[i][p], self.mask_token_id
return {"txt": txt, "ans_mtm": ans_mtm}
def test(self, test_dataloader, predict_file):
tokenizer = test_dataloader.dataset.tokzr
world_size = get_world_size()
if world_size==1: cache_file = predict_file
else: cache_file = op.splitext(predict_file)[0]+f'_{get_rank()}_{world_size}'+op.splitext(predict_file)[1]
self.model.eval()
time_meter = 0
all_preds = []
with T.no_grad():
for step, batch in tqdm(enumerate(test_dataloader)):
batch['task'] = 'captioning_generation'
batch["attn_mask_type"] = self.args.attn_mask_type
if self.args.enable_prompt: batch["prompt"] = test_dataloader.dataset.get_prompt()
batch = self.prepare_batch(batch)
tic = time.time()
outputs = self.model(batch, is_decode=True)
time_meter += time.time()-tic
all_caps = outputs[0]
all_confs = T.exp(outputs[1])
img_keys = batch["img_keys"]
for img_key, caps, confs in zip(img_keys, all_caps, all_confs):
res = []
for cap, conf in zip(caps, confs):
cap = tokenizer.decode(cap.tolist(), skip_special_tokens=True)
res.append({'caption': cap, 'conf': conf.item()})
if isinstance(img_key, T.Tensor): img_key = img_key.item()
all_preds.append([img_key, json.dumps(res)])
LOGGER.info(f"Inference model computing time: "
f"{time_meter / (step+1)} seconds per batch")
gathered_all_preds = []
for preds in all_gather(all_preds): gathered_all_preds.extend(preds)
if is_main_process():
tsv_writer(gathered_all_preds, predict_file)
reorder_tsv_keys(predict_file, test_dataloader.dataset.image_keys, predict_file)
synchronize()
def get_predict_file(self, ep, output_dir, data_yaml_file):
args = self.args
cc = [f'ep{ep}_pred']
data = data_yaml_file.split('/')[-2]
if data!='coco_caption': cc.append(data)
cc.append(op.splitext(op.basename(data_yaml_file))[0])
if hasattr(args, 'num_beams'): cc.append('beam{}'.format(args.num_beams))
cc.append('max{}'.format(args.max_gen_length))
if hasattr(args, 'use_asr') and args.use_asr: cc.append('w_asr')
if hasattr(args, 'num_keep_best') and args.num_keep_best!=1: cc.append('best{}'.format(args.num_keep_best))
return op.join(output_dir, '{}.tsv'.format('.'.join(cc)))
def get_evaluate_file(self, predict_file):
assert predict_file.endswith('.tsv')
return op.splitext(predict_file)[0]+'.eval.json'
def evaluate(self, ep, val_dataloader):
self.model.eval()
objects = [None]
output_dir = op.join(self.args.path_output, "caption_predictions")
if is_main_process(): ensure_directory(output_dir)
predict_file = self.get_predict_file(ep, output_dir, val_dataloader.dataset.yaml_file)
if op.isfile(predict_file): LOGGER.info('Skip predict. {} already exists'.format(predict_file))
else: self.test(val_dataloader, predict_file)
synchronize()
evaluate_file = self.get_evaluate_file(predict_file)
if is_main_process():
caption_file = (val_dataloader.dataset.get_caption_file_in_coco_format())
if op.isfile(evaluate_file): LOGGER.info(f'Skip evaluation. {evaluate_file} already exists')
else:
data = val_dataloader.dataset.yaml_file.split('/')[-2]
if 'nocaps' not in data:
result = evaluate_on_coco_caption(predict_file, caption_file, outfile=evaluate_file)
LOGGER.info(f'evaluation result saved to {evaluate_file}')
objects = [result]
world_size = get_world_size()
if world_size>1: DIST.broadcast_object_list(objects, src=0)
result = objects[0]
return result
def train_step(self, batch):
with T.cuda.amp.autocast(enabled=not self.args.deepspeed):
out = self.forward_step(batch)
logits, ans = out["out"], out["ans"]
ls = self.loss_func(logits[ans!=-1].float(), ans[ans!=-1])
self.backward_step(ls)
pred = T.argmax(logits, dim=-1)
acc = (float((pred==ans).sum()/(ans!=-1).sum()) if (ans!=-1).sum()>0 else 0)
return ls.item(), acc
def log_train(self):
ls_tr = self.running_meter['ls_tr'].val
ac_tr = self.running_meter['ac_tr'].val
log_info = self.log_memory()
self.log_dict_to_wandb({"train_ls": ls_tr})
self.log_dict_to_wandb({"train_ac": ac_tr})
if ls_tr is not None and ac_tr is not None: log_info += f" ls_tr: {ls_tr:.2e} ac_tr: {ac_tr*100:.2f}"
return log_info
def train(self, ep, dl):
self.model.train()
ret_ls = []
ret_ac = []
for idx, batch in enumerate(dl):
self.global_step += 1
if (idx%self.args.logging_steps)==0: LOGGER.info(self.log_train())
masked_batch = self.masking(batch['txt'], p_mask=self.args.p_mask)
batch.update(masked_batch)
if self.args.enable_prompt: batch["prompt"] = dl.dataset.get_prompt()
batch = self.prepare_batch(batch)
batch["attn_mask_type"] = "seq2seq"
ls, ac = self.train_step(batch)
self.running_meter['ls_tr'](ls)
self.running_meter['ac_tr'](ac)
ret_ls.append(ls)
ret_ac.append(ac)
if (idx%self.args.logging_steps)!=0: LOGGER.info(self.log_train())
ret_ls = float(float(np.average(ret_ls)))
ret_ac = float(float(np.average(ret_ac)))
if self.args.distributed:
ret_ls = self.reduce_mean(ret_ls)
ret_ac = self.reduce_mean(ret_ac)
return {'loss': ret_ls, 'acc': ret_ac}
def best_epoch(self, metric, split):
if not hasattr(self, "log"): raise NotImplementedError("no log to find the best epoch")
val_index = np.argmax(self.log[f"{split}_{metric}"])
val_max = self.log[f"{split}_{metric}"][val_index]
return (val_index, val_max)
if __name__=='__main__':
args = get_args()
tokzr = transformers.AutoTokenizer.from_pretrained(args.tokenizer)
ds_tr = Dataset_Caption(args, args.train_yaml, 'train', tokzr=tokzr)
dl_tr = get_dl(ds_tr, args, collate_fn=ds_tr.collate_batch)
ds_vl = Dataset_Caption(args, args.val_yaml, 'val', tokzr=tokzr)
dl_vl = get_dl(ds_vl, args, collate_fn=ds_vl.collate_batch)
log_data_len = f"data_ratio: {args.data_ratio}"
log_data_len += f", train: {len(ds_tr)}"
log_data_len += f", val: {len(ds_vl)}"
if "test_yaml" in args:
ds_ts = Dataset_Caption(args, args.test_yaml, 'test', tokzr=tokzr)
dl_ts = get_dl(ds_ts, args, collate_fn=ds_ts.collate_batch)
log_data_len += f", test: {len(ds_ts)}"
else: dl_ts = None
LOGGER.info(log_data_len)
if args.size_epoch==0: args.max_iter = 1
else: args.max_iter = len(dl_tr)*args.size_epoch
model = VIOLET_Captioning(args, tokzr, is_decoder=getattr(args, 'is_decoder', False))
model.load_ckpt(args.path_ckpt)
model.cuda()
if args.distributed:
LOGGER.info(f"n_gpu: {args.num_gpus}, rank: {get_rank()},"
f" world_size: {get_world_size()}")
args.path_output = '%s/_%s_%s'%(args.path_output, args.task, datetime.now().strftime('%Y%m%d%H%M%S'))
agent = Agent_Captioning(args, model)
if args.distributed: agent.prepare_dist_model()
agent.save_training_meta()
if is_main_process(): add_log_to_file('%s/stdout.txt'%(args.path_output))
else: LOGGER = NoOp()
LOGGER.info("Zero shot evaluation ...")
res_vl = agent.evaluate(0, dl_vl)
for k in res_vl: agent.log[f'vl_{k}'].append(res_vl[k])
LOGGER.info(f'Ep 0, val: {json.dumps(res_vl)}')
if dl_ts is not None:
res_ts = agent.evaluate(0, dl_ts)
for k in res_ts: agent.log[f'ts_{k}'].append(res_ts[k])
LOGGER.info(f'Ep 0, test: {json.dumps(res_ts)}')
if args.size_epoch:
agent.setup_wandb()
LOGGER.info("Saved training meta infomation, start training....")
for e in iter_tqdm(range(args.size_epoch)):
res_tr = agent.train(e+1, dl_tr)
res_vl = agent.evaluate(e+1, dl_vl)
for k in res_tr: agent.log[f'tr_{k}'].append(res_tr[k])
for k in res_vl:
agent.log[f'vl_{k}'].append(res_vl[k])
agent.log_dict_to_wandb({f'vl_{k}': res_vl[k]})
if dl_ts is not None:
res_ts = agent.evaluate(e+1, dl_ts)
for k in res_ts:
agent.log[f'ts_{k}'].append(res_ts[k])
agent.log_dict_to_wandb({f'ts_{k}': res_ts[k]})
LOGGER.info(f'Ep {e+1}: '
f'train: {json.dumps(res_tr)}, '
f'val: {json.dumps(res_vl)}')
if dl_ts is not None: LOGGER.info(f'/t/t test: {json.dumps(res_ts)}')
agent.save_model(e+1)
metric = 'CIDEr'
best_vl = agent.best_epoch(metric, "vl")
LOGGER.info(f'Best {metric} on val @ ep {best_vl[0]}, {best_vl[1]*100:.2f}')
if dl_ts is not None:
best_tst = agent.best_epoch(metric, "ts")
LOGGER.info(f'Best {metric} on test @ ep {best_tst[0]}, {best_tst[1]*100:.2f}')