forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.hpp
251 lines (226 loc) · 9.22 KB
/
utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include <math.h>
#include <string>
#include <algorithm>
using namespace nvinfer1;
#define CHECK(status) \
do \
{ \
auto ret = (status); \
if (ret != 0) \
{ \
std::cerr << "Cuda failure: " << ret << std::endl; \
abort(); \
} \
} while (0)
// Load weights from files shared with TensorRT samples.
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file)
{
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t *val = reinterpret_cast<uint32_t *>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
struct BlockArgs
{
int num_repeat;
int kernel_size;
int stride;
float expand_ratio;
int input_filters;
int output_filters;
float se_ratio;
bool id_skip;
};
struct GlobalParams
{
int input_h;
int input_w;
int num_classes;
float batch_norm_epsilon;
float width_coefficient;
float depth_coefficient;
int depth_divisor;
int min_depth;
};
int roundFilters(int filters, GlobalParams global_params)
{
float multiplier = global_params.width_coefficient;
int divisor = global_params.depth_divisor;
int min_depth = global_params.min_depth;
filters = int(filters * multiplier);
if (min_depth < 0)
{
min_depth = divisor;
}
// follow the formula transferred from official TensorFlow implementation
int new_filters = std::max(min_depth, int(int(filters + divisor / 2) / divisor) * divisor);
if (new_filters < 0.9 * filters) // prevent rounding by more than 10%
new_filters += divisor;
return int(new_filters);
}
DimsHW calculateOutputImageSize(DimsHW image_size, int stride)
{
int image_h = int(ceil(float(image_size.h()) / float(stride)));
int image_w = int(ceil(float(image_size.w()) / float(stride)));
return DimsHW{image_h, image_w};
}
int roundRepeats(int repeats, GlobalParams global_params)
{
float multiplier = global_params.depth_coefficient;
// follow the formula transferred from official TensorFlow implementation
int new_repeats = int(ceil(multiplier * repeats));
return new_repeats;
}
IScaleLayer *addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input, std::string lname, float eps)
{
float *gamma = (float *)weightMap[lname + ".weight"].values;
float *beta = (float *)weightMap[lname + ".bias"].values;
float *mean = (float *)weightMap[lname + ".running_mean"].values;
float *var = (float *)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++)
{
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++)
{
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++)
{
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer *scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
IConvolutionLayer *addSamePaddingConv2d(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input, int outch, int kernel_size, int stride, int dilation, int groups, DimsHW image_size, std::string lname, bool bias = true)
{
int ih = image_size.h();
int iw = image_size.w();
int kh = kernel_size;
int kw = kernel_size;
int sh = stride;
int sw = stride;
int oh = ceil(float(ih) / float(sh));
int ow = ceil(float(iw) / float(sw));
int pad_h = std::max((oh - 1) * stride + (kh - 1) * dilation + 1 - ih, 0);
int pad_w = std::max((ow - 1) * stride + (kw - 1) * dilation + 1 - iw, 0);
int pad_left = 0;
int pad_right = 0;
int pad_top = 0;
int pad_bottom = 0;
if (pad_h > 0 || pad_w > 0)
{
pad_left = int(pad_w / 2);
pad_right = pad_w - int(pad_w / 2);
pad_top = int(pad_h / 2);
pad_bottom = pad_h - int(pad_h / 2);
}
Weights bias_wt{DataType::kFLOAT, nullptr, 0};
if (bias)
{
bias_wt = weightMap[lname + ".bias"];
}
IConvolutionLayer *conv = network->addConvolutionNd(input, outch, DimsHW{kh, kw}, weightMap[lname + ".weight"], bias_wt);
conv->setPrePadding(DimsHW{pad_top, pad_left});
conv->setPostPadding(DimsHW{pad_bottom, pad_right});
conv->setStrideNd(DimsHW{stride, stride});
conv->setDilationNd(DimsHW{dilation, dilation});
conv->setNbGroups(groups);
return conv;
}
ILayer *addSwish(INetworkDefinition *network, ITensor &input)
{
//swish
auto *sigmoid = network->addActivation(input, ActivationType::kSIGMOID);
auto *ew = network->addElementWise(input, *sigmoid->getOutput(0), ElementWiseOperation::kPROD);
return ew;
}
ITensor *MBConvBlock(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input, std::string lname, BlockArgs block_args, GlobalParams global_params, DimsHW image_size)
{
bool has_se = block_args.se_ratio > 0 && block_args.se_ratio <= 1;
bool id_skip = block_args.id_skip;
float bn_eps = global_params.batch_norm_epsilon;
int input_filters = block_args.input_filters;
int output_filters = block_args.output_filters;
Weights emptywts{DataType::kFLOAT, nullptr, 0};
ITensor *x = &input;
int inp = block_args.input_filters;
int oup = int(block_args.input_filters * block_args.expand_ratio);
// expand_ratio != 1
if (fabs(block_args.expand_ratio - 1) > 1e-5)
{
auto expand_conv = addSamePaddingConv2d(network, weightMap, input, oup, 1, 1, 1, 1, image_size, lname + "._expand_conv");
auto bn0 = addBatchNorm2d(network, weightMap, *expand_conv->getOutput(0), lname + "._bn0", bn_eps);
auto swish0 = addSwish(network, *bn0->getOutput(0));
x = swish0->getOutput(0);
}
int k = block_args.kernel_size;
int s = block_args.stride;
auto depthwise_conv = addSamePaddingConv2d(network, weightMap, *x, oup, k, s, 1, oup, image_size, lname + "._depthwise_conv", false);
auto bn1 = addBatchNorm2d(network, weightMap, *depthwise_conv->getOutput(0), lname + "._bn1", bn_eps);
//swish
auto swish1 = addSwish(network, *bn1->getOutput(0));
x = swish1->getOutput(0);
image_size = calculateOutputImageSize(image_size, s);
if (has_se)
{
auto avg_pool = network->addPoolingNd(*x, PoolingType::kAVERAGE, image_size);
int num_squeezed_channels = std::max(1, int(input_filters * block_args.se_ratio));
auto se_reduce = addSamePaddingConv2d(network, weightMap, *avg_pool->getOutput(0), num_squeezed_channels, 1, 1, 1, 1, DimsHW{1, 1}, lname + "._se_reduce");
auto swish2 = addSwish(network, *se_reduce->getOutput(0));
auto se_expand = addSamePaddingConv2d(network, weightMap, *swish2->getOutput(0), oup, 1, 1, 1, 1, DimsHW{1, 1}, lname + "._se_expand");
auto *sigmoid = network->addActivation(*se_expand->getOutput(0), ActivationType::kSIGMOID);
auto *ew = network->addElementWise(*x, *sigmoid->getOutput(0), ElementWiseOperation::kPROD);
x = ew->getOutput(0);
}
int final_oup = block_args.output_filters;
auto project_conv = addSamePaddingConv2d(network, weightMap, *x, final_oup, 1, 1, 1, 1, image_size, lname + "._project_conv");
auto bn2 = addBatchNorm2d(network, weightMap, *project_conv->getOutput(0), lname + "._bn2", bn_eps);
x = bn2->getOutput(0);
if (id_skip && block_args.stride == 1 && input_filters == output_filters)
{
auto *ew = network->addElementWise(input, *x, ElementWiseOperation::kSUM);
x = ew->getOutput(0);
}
return x;
}