forked from noaschork/find_orthologs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
OrthoVar.py
603 lines (531 loc) · 21.9 KB
/
OrthoVar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import subprocess
import sys
from Bio.Align.Applications import MuscleCommandline
from io import StringIO
from Bio import AlignIO
import json
import argparse
from tempfile import NamedTemporaryFile
def parser_fxn(command_list):
'''
This function takes in the two FASTA files
When running the program, the user will type in -O and the name of the
file with the non-human sequences and then -H and the name of the file with
the human sequence. Function was written by Deborah Thurtle-Schmidt.
'''
parser = argparse.ArgumentParser(description = 'This program inputs protein\
protein sequences and the human ortholog to find conserved clinical variants')
parser.add_argument('-O', '--orthologs', help ='file name for the orthologous sequences in \
fasta format', required = True, type = str)
parser.add_argument('-H', '--human', help = 'the file name for the human sequence in fasta format', \
type = str)
parser.add_argument('-fh', '--output', help ='name of the output file name', type = str, required = False)
#parses command line and creates a dictionary with the verbose name as the key and the input as the value
arguments = vars(parser.parse_args())
return arguments
tempfile = NamedTemporaryFile("w")
alignedtemp = NamedTemporaryFile("w")
def combine_fasta(filename1, filename2, tempfile): #DM
'''
This function combines two FASTA files into once
It takes in two different FASTA files, one with the human sequence and the
other with the nonhuman sequences and combines the two so that they can be
aligned using MUSCLE. Function was initially written by Dylan Maghini.
Args:
filename1 - the non-human FASTA file
filename2 - the human FASTA file
Returns:
combined.fasta - a new file with the combined sequences
'''
with open(tempfile, "w") as output:
with open(filename1, "r") as f1:
line = f1.readline()
while line:
output.write(line)
line = f1.readline()
with open(filename2, "r") as f2:
output.write('\n')
line = f2.readline()
while line:
output.write(line)
line = f2.readline()
def get_hum_access(filename2):
'''
Finds the human gene accession number
This function parses out the accession number of the human gene from
filename2. This will later be used to search the ClinVar file for only
relevant mutations.
Args:
filename2 - the human FASTA file
Returns:
hum_access - the accession of the human gene
'''
hum_access = ''
with open(filename2, 'r') as f2:
for line in f2:
if line[0] == '>':
line = line.strip('>')
line = line.split(' ')
hum_access = hum_access + line[0]
return hum_access
def import_variant_summary():
'''
Imports the parsed clinical variant summary file
Reads in the clin_var_data_dict from the file parse_clin_var.json. This file
is the parsed version of the variant summary text.
Returns:
clin_var_data_dict - dictionary with accession numbers and data
'''
with open("parse_clin_var.json") as var_sum:
clin_var_data_dict = json.load(var_sum)
return clin_var_data_dict
def gene_of_interest(clin_var_data_dict,hum_access):
'''
Finds the gene that we are interested in from the larger clin_var_data_dict
This function uses the inputted human accession number to find only the
clinical variants that occur within the gene of var_interest
Arg:
clin_var_data_dict - dictionary with accession numbers and data
hum_access - human accession number parsed from the sequences the user input
Returns:
var_interest - a list of all the clinical variants that occur within the
gene of interest
'''
var_interest = []
for gene in clin_var_data_dict.keys():
if gene[:9] == hum_access:
var_interest.append(clin_var_data_dict[gene])
return var_interest
def read_in_file():
'''
Reads in the multiple sequence alignment (MSA) one line at a time, stripping
off the new line characters and adds the, to a list
Returns:
file_list - list of the aligned sequences
'''
with open('aligned_combined.aln', 'r') as aligned_seq:
file_list = []
for line in aligned_seq:
line = line.strip('\n')
file_list.append(line)
return file_list
def convert_to_string(file_list,hum_access):
'''
Converts the MSA to a string Type
MUSCLE outputs the alignment in type Multipe Sequence Alignment (MSA), which is
not mutable and so not very helpful for our needs. This function converts
the alignment into a string.
Args:
file_list - list of the aligned sequences
hum_access - human accession number parsed from the sequences the user input
Returns:
symbols - a tuple with a list of aligned symbols (*,:, or .) and at position
0,a list of human sequence at position 1
'''
header = ''
hum_sequence = ''
symbols = ''
for pos,line in enumerate(file_list):
if line.startswith('NM'):
if line.startswith(hum_access):
hum_sequence += line[20:]
else:
if file_list[pos-1].startswith('NM'):
symbols += line[20:]
return symbols, hum_sequence
def full_conserve_CVs(var_interest, symbols, hum_access):
'''
Identify Fully Conserved Clinical Variants Between Protein Sequences
This method identifies the clinical variants fully conserved between the
non-human protein sequence and the human protein sequence. Creates a list of
the cv index positions. Determines if matches are fully conserved clinical
variants and formats a new alignment string. Identify the fully conserved
clinical variants and their parameters to generate data for a conserved
clinical variant table.
Args:
var_interest - a list of all the clinical variants that occur within the
gene of interest
symbols - a tuple with alignment symbols, human sequence, and non-human
sequences
hum_access - the accession number of the human gene of interest
Returns:
full_var_output - nested list of fully conserved clinical variants and
parameters
'''
index = 0
full_index = []
symbol_list = list(symbols[0])
for character in symbol_list:
if character == "*":
position = symbol_list.index(character) + 1
full_index.append(position)
symbol_list[symbol_list.index(character)] = '/'
hum_positions = []
hum_list = symbols[1]
counter = 0
for char in hum_list:
if char == "-":
hum_positions.append(counter)
counter += 0
if char!= "-":
hum_positions.append(counter)
counter += 1
full_hum_index = []
for pos in full_index:
for loc in hum_positions:
if pos == hum_positions.index(loc):
full_hum_index.append(loc)
full_var_output = []
for index in full_hum_index:
for line in var_interest:
for cv in line:
if index == int(cv[1]):
full_var_output.append(cv)
final_full_var_output = []
for pos in full_var_output:
if pos not in final_full_var_output:
final_full_var_output.append(pos)
return final_full_var_output
def strong_conserve_CVs(var_interest, symbols, hum_access):
'''
Identify Strongly Conserved Clinical Variants Between Protein Sequences
This method identifies the clinical variants strongly conserved between the
non-human protein sequence and the human protein sequence. Creates a list of
the cv index positions. Determines if matches are strongly conserved clinical
variants and formats a new alignment string. Identify the strongly conserved
clinical variants and their parameters to generate data for a conserved
clinical variant table.
Args:
var_interest - a list of all the clinical variants that occur within the
gene of interest
symbols - a tuple with alignment symbols, human sequence, and non-human
sequences
hum_access - the accession number of the human gene of interest
Returns:
strong_var_output - nested list of strongly conserved clinical variants and
parameters
'''
index = 0
strong_index = []
symbol_list = list(symbols[0])
for character in symbol_list:
if character == ":":
position = symbol_list.index(character) + 1
strong_index.append(position)
symbol_list[symbol_list.index(character)] = '/'
hum_positions = []
hum_list = symbols[1]
counter = 0
for char in hum_list:
if char == "-":
hum_positions.append(counter)
counter += 0
if char!= "-":
hum_positions.append(counter)
counter += 1
strong_hum_index = []
for pos in strong_index:
for loc in hum_positions:
if pos == hum_positions.index(loc):
strong_hum_index.append(loc)
strong_var_output = []
for index in strong_hum_index:
for line in var_interest:
for cv in line:
if index == int(cv[1]):
strong_var_output.append(cv)
final_strong_var_output = []
for pos in strong_var_output:
if pos not in final_strong_var_output:
final_strong_var_output.append(pos)
return final_strong_var_output
def weak_conserve_CVs(var_interest, symbols, hum_access):
'''
Identify Weakly Conserved Clinical Variants Between Protein Sequences
This method identifies the clinical variants weakly conserved between the
non-human protein sequence and the human protein sequence. Creates a list of
the cv index positions. Determines if matches are weakly conserved clinical
variants and formats a new alignment string. Identify the weakly conserved
clinical variants and their parameters to generate data for a conserved
clinical variant table.
Args:
var_interest - a list of all the clinical variants that occur within the
gene of interest
symbols - a tuple with alignment symbols, human sequence, and non-human
sequences
hum_access - the accession number of the human gene of interest
Returns:
weak_var_output - nested list of weakly conserved clinical variants and
parameters
'''
index = 0
weak_index = []
symbol_list = list(symbols[0])
for character in symbol_list:
if character == ".":
position = symbol_list.index(character) + 1
weak_index.append(position)
symbol_list[symbol_list.index(character)] = '/'
hum_positions = []
hum_list = symbols[1]
counter = 0
for char in hum_list:
if char == "-":
hum_positions.append(counter)
counter += 0
if char!= "-":
hum_positions.append(counter)
counter += 1
weak_hum_index = []
for pos in weak_index:
for loc in hum_positions:
if pos == hum_positions.index(loc):
weak_hum_index.append(loc)
weak_var_output = []
for index in weak_hum_index:
for line in var_interest:
for cv in line:
if index == int(cv[1]):
weak_var_output.append(cv)
final_weak_var_output = []
for pos in weak_var_output:
if pos not in final_weak_var_output:
final_weak_var_output.append(pos)
return final_weak_var_output
def not_conserve_CVs(var_interest, symbols, hum_access):
'''
Identify Non-Conserved Clinical Variants Between Protein Sequences
This method identifies the clinical variants non-conserved between the
non-human protein sequence and the human protein sequence. Creates a list of
the cv index positions. Determines if matches are non-conserved clinical
variants and formats a new alignment string. Identify the non -conserved
clinical variants and their parameters to generate data for a conserved
clinical variant table.
Args:
var_interest - a list of all the clinical variants that occur within the
gene of interest
symbols - a tuple with alignment symbols, human sequence, and non-human
sequences
hum_access - the accession number of the human gene of interest
Returns:
not_var_output - nested list of non-conserved clinical variants and
parameters
'''
index = 0
not_index = []
symbol_list = list(symbols[0])
for character in symbol_list:
if character == " ":
position = symbol_list.index(character) + 1
not_index.append(position)
symbol_list[symbol_list.index(character)] = '/'
hum_positions = []
hum_list = symbols[1]
counter = 0
for char in hum_list:
if char == "-":
hum_positions.append(counter)
counter += 0
if char!= "-":
hum_positions.append(counter)
counter += 1
not_hum_index = []
for pos in not_index:
for loc in hum_positions:
if pos == hum_positions.index(loc):
not_hum_index.append(loc)
not_var_output = []
for index in not_hum_index:
for line in var_interest:
for cv in line:
if index == int(cv[1]):
not_var_output.append(cv)
final_not_var_output = []
for pos in not_var_output:
if pos not in final_not_var_output:
final_not_var_output.append(pos)
return final_not_var_output
def export_file(final_full_var_output, final_strong_var_output, final_weak_var_output,
final_not_var_output):
'''
Creates a Tab Delimited File with the Clinical Variants data
This function exports a tab delimited file with clinical variants found in
fully, strongly, weakly, and non conserved regions between the inputted
human and non-human sequences. The file provides additional information on
the chromosome numner, position, original amino acid, mutant amino acid,
whether a deletion occurs, mutaiton type, clinical significance and the
phenotype of each variant.
Args:
full_var_output - nested list of fully conserved clinical variants and
parameters
strong_var_output - nested list of strongly conserved clinical variants and
parameters
weak_var_output - nested list of weakly conserved clinical variants and
parameters
not_var_output - nested list of non-conserved clinical variants and
parameters
'''
with open("clinvar.txt", "w") as f:
f.write("Chr num" + "\t" + "Pos" + "\t" + "Orig AA" + "\t" + "Mut AA" +
"\t" + "Del Y/N" + "\t" + "Mutation Type" + "\t" + "Clin Sig" + "\t" +
"Phenotype" + "\t" + "Conservation"+ "\n")
for entry in final_full_var_output:
f.write(entry[7] + "\t" + entry[1] + "\t" + entry[0] + "\t" +
entry[2] + "\t" + entry[3] + "\t" + entry[4] + "\t" + entry[5] +
"\t" + entry[6]+ "\t" + "Full" + "\n")
for entry in final_strong_var_output:
f.write(entry[7] + "\t" + entry[1] + "\t" + entry[0] + "\t" +
entry[2] + "\t" + entry[3] + "\t" + entry[4] + "\t" + entry[5] +
"\t" + entry[6] + "\t" + "Strong" + "\n")
for entry in final_weak_var_output:
f.write(entry[7] + "\t" + entry[1] + "\t" + entry[0] + "\t" +
entry[2] + "\t" + entry[3] + "\t" + entry[4] + "\t" + entry[5] +
"\t" + entry[6] + "\t" + "Weak" + "\n")
for entry in final_not_var_output:
f.write(entry[7] + "\t" + entry[1] + "\t" + entry[0] + "\t" +
entry[2] + "\t" + entry[3] + "\t" + entry[4] + "\t" + entry[5] +
"\t" + entry[6] + "\t" + "No" + "\n")
def list_var_pos(final_full_var_output, final_strong_var_output, final_weak_var_output, final_not_var_output):
'''
Aims to add a line to the aligned sequence file denoting where the Clinical
variants occur within the alignment
Args:
full_var_output - nested list of fully conserved clinical variants and
parameters
strong_var_output - nested list of strongly conserved clinical variants and
parameters
weak_var_output - nested list of weakly conserved clinical variants and
parameters
not_var_output - nested list of non-conserved clinical variants and
parameters
Returns:
var_list - list of all the clinical variants
'''
var_list = []
for entry in final_full_var_output:
var_list.append(entry[1])
for entry in final_strong_var_output:
var_list.append(entry[1])
for entry in final_weak_var_output:
var_list.append(entry[1])
for entry in final_not_var_output:
var_list.append(entry[1])
return var_list
def aligned_var_pos(var_list, symbols):
'''
This function finds the position of the human variants.
Finds the relative position of the human variants within the global
alignment. It creates a string that adds a "|" symbol to denote the global
position of the variant. This string will be added to the MUSCLE alignment
file.
Args:
var_list - list of all the clinical variants
symbols- a tuple with a list of aligned symbols (*,:, or .) and at position
0,a list of human sequence at position 1
Returns:
new_variant_symbol_60 - list of variant symbols formatted to 60 characters
for the MUSCLE alignment format
'''
hum_positions = []
hum_list = symbols[1]
print(hum_list)
counter = 0
for char in hum_list:
if char == "-":
counter += 0
hum_positions.append(counter)
if char!= "-":
counter += 1
hum_positions.append(counter)
variant_symbol = []
final_var_list = []
previous = None
print(len(hum_positions))
for index, char in enumerate(hum_positions):
if str(char) not in var_list:
variant_symbol.append(" ")
else:
if hum_positions[index] == hum_positions[index-1]:
variant_symbol.append(" ")
else:
variant_symbol.append("|")
variant_symbol_60 = [variant_symbol[i:i + 60] for i in range(0, len(variant_symbol), 60)]
new_variant_symbol_60 = []
for lst in variant_symbol_60:
interim = "".join(lst)
new_variant_symbol_60.append(interim)
return new_variant_symbol_60
def convert_to_dictionary(file_list, new_variant_symbol_60):
'''
Converts aligned sequences and the variant symbol string into a dictionary
The accession numbers for each species, "Conservation", and "Variant" are
the dictionary keys and the aligned sequences and variant symbol string are
the values. This will be used to write the new alignment file that contains
the line with the variant symbols.
Args:
file_list - list of the aligned sequences
new_variant_symbol_60 - list of variant symbols formatted to 60 characters
for the MUSCLE alignment format
Returns:
master_dictionary - the accession numbers and line labels are the keys and
the aligned sequences and conservation/variant symbols are the values.
'''
master_dictionary = {}
for pos,line in enumerate(file_list):
if line.startswith("NM"):
master_dictionary.setdefault(line[:20], [])
master_dictionary[line[:20]].append(line[20:])
else:
if file_list[pos-1].startswith("NM"):
master_dictionary.setdefault("Conservation ",[])
master_dictionary["Conservation "].append(line[20:])
master_dictionary["Variant "] = new_variant_symbol_60
return master_dictionary
def write_file(master_dictionary, hum_access):
'''
This function writes the alignment and symbols to a new file in the same
format as the MUSCLE alignment output.
Args:
master_dictionary - the accession numbers and line labels are the keys and
the aligned sequences and conservation/variant symbols are the values.
hum_access - the accession of the human gene
'''
#print(master_dictionary.keys())
for key in master_dictionary.keys():
if key.startswith(hum_access):
hum_key = key
else:
pass
for i in range(0,len(master_dictionary[hum_key])):
for gene in master_dictionary:
if gene.startswith("NM_"):
print(gene + master_dictionary[gene][i] + "\n")
else:
pass
print('Conservation ' + master_dictionary['Conservation '][i] + "\n")
print('Variant ' + master_dictionary['Variant '][i] + "\n" + "\n")
def main():
tempfile = NamedTemporaryFile("w")
alignedtemp = NamedTemporaryFile("w")
command_line = parser_fxn(sys.argv)
combine_fasta(command_line['human'], command_line['orthologs'], tempfile.name)
out_file = alignedtemp.name
muscle_cline=MuscleCommandline(input=tempfile.name, out=out_file, clw=True)
stdout, stderr = muscle_cline()
align = AlignIO.read(out_file, "clustal")
hum_access = get_hum_access("human.fasta")
clin_var_data_dict = import_variant_summary()
file_list = read_in_file()
var_interest = gene_of_interest(clin_var_data_dict,hum_access)
symbols = convert_to_string(file_list,hum_access)
final_full_var_output = full_conserve_CVs(var_interest, symbols, hum_access)
final_strong_var_output = strong_conserve_CVs(var_interest, symbols, hum_access)
final_weak_var_output = weak_conserve_CVs(var_interest, symbols, hum_access)
final_not_var_output = not_conserve_CVs(var_interest, symbols, hum_access)
export_file(final_full_var_output,final_strong_var_output, final_weak_var_output, final_not_var_output)
var_list = list_var_pos(final_full_var_output,final_strong_var_output, final_weak_var_output, final_not_var_output)
new_variant_symbol_60 = aligned_var_pos(var_list,symbols)
master_dictionary = convert_to_dictionary(file_list,new_variant_symbol_60)
write_file(master_dictionary, hum_access)
if __name__ == '__main__':
main()