forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
freeze_graph.py
49 lines (38 loc) · 1.61 KB
/
freeze_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Freeze a model to a GraphDef proto."""
from absl import app, flags
import dual_net
flags.DEFINE_string('model_path', None, 'Path to model to freeze')
flags.mark_flag_as_required('model_path')
flags.DEFINE_boolean(
'use_trt', False, 'True to write a GraphDef that uses the TRT runtime')
flags.DEFINE_integer('trt_max_batch_size', None,
'Maximum TRT batch size')
flags.DEFINE_string('trt_precision', 'fp32',
'Precision for TRT runtime: fp16, fp32 or int8')
flags.register_multi_flags_validator(
['use_trt', 'trt_max_batch_size'],
lambda flags: not flags['use_trt'] or flags['trt_max_batch_size'],
'trt_max_batch_size must be set if use_trt is true')
FLAGS = flags.FLAGS
def main(unused_argv):
"""Freeze a model to a GraphDef proto."""
if FLAGS.use_tpu:
dual_net.freeze_graph_tpu(FLAGS.model_path)
else:
dual_net.freeze_graph(FLAGS.model_path, FLAGS.use_trt,
FLAGS.trt_max_batch_size, FLAGS.trt_precision)
if __name__ == "__main__":
app.run(main)