-
Notifications
You must be signed in to change notification settings - Fork 233
/
simple_http_async_infer_client.py
executable file
·125 lines (112 loc) · 4.71 KB
/
simple_http_async_infer_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# Copyright 2020-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import sys
import numpy as np
import tritonclient.http as httpclient
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8000",
help="Inference server URL. Default is localhost:8000.",
)
FLAGS = parser.parse_args()
request_count = 2
try:
# Need to specify large enough concurrency to issue all the
# inference requests to the server in parallel.
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose, concurrency=request_count
)
except Exception as e:
print("context creation failed: " + str(e))
sys.exit()
model_name = "simple"
# Infer
inputs = []
outputs = []
inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32"))
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input0_data = np.expand_dims(input0_data, axis=0)
input1_data = np.ones(shape=(1, 16), dtype=np.int32)
# Initialize the data
inputs[0].set_data_from_numpy(input0_data, binary_data=True)
inputs[1].set_data_from_numpy(input1_data, binary_data=True)
outputs.append(httpclient.InferRequestedOutput("OUTPUT0", binary_data=True))
outputs.append(httpclient.InferRequestedOutput("OUTPUT1", binary_data=True))
async_requests = []
for i in range(request_count):
# Asynchronous inference call.
async_requests.append(
triton_client.async_infer(
model_name=model_name, inputs=inputs, outputs=outputs
)
)
for async_request in async_requests:
# Get the result from the initiated asynchronous inference request.
# Note the call will block till the server responds.
result = async_request.get_result()
print(result.get_response())
# Validate the results by comparing with precomputed values.
output0_data = result.as_numpy("OUTPUT0")
output1_data = result.as_numpy("OUTPUT1")
for i in range(16):
print(
str(input0_data[0][i])
+ " + "
+ str(input1_data[0][i])
+ " = "
+ str(output0_data[0][i])
)
print(
str(input0_data[0][i])
+ " - "
+ str(input1_data[0][i])
+ " = "
+ str(output1_data[0][i])
)
if (input0_data[0][i] + input1_data[0][i]) != output0_data[0][i]:
print("async infer error: incorrect sum")
sys.exit(1)
if (input0_data[0][i] - input1_data[0][i]) != output1_data[0][i]:
print("async infer error: incorrect difference")
sys.exit(1)