From b3887963825971f4e427f0d637d1e2381b799212 Mon Sep 17 00:00:00 2001 From: lhutton1 <35535092+lhutton1@users.noreply.github.com> Date: Thu, 13 Aug 2020 17:21:35 +0100 Subject: [PATCH] [BYOC][ACL] Add support for dense (fully connected) layer (#6254) * [BYOC][ACL] Add support for dense (fully connected) layer This patch adds the ability to offload dense (or fully connected) operators to ACL. For fp32 a single dense layer can be offloaded, or the composite variant: nn.dense, nn.bias_add? (ACL does not currently offer fused activation). For uint8: qnn.dense, nn.bias_add?, qnn.requantize Change-Id: I83ea00b2aa6bdc5d9ef5cd6d54bbf981e523bd14 * Don't offload dense layer with unsupported datatype Change-Id: I856eb2298499fdf22c172ba7f85d21033d3cc920 --- docs/deploy/arm_compute_lib.rst | 7 + .../tvm/relay/op/contrib/arm_compute_lib.py | 74 +++- .../contrib/arm_compute_lib/codegen.cc | 77 +++++ .../contrib/arm_compute_lib/acl_runtime.cc | 48 +++ .../test_arm_compute_lib/test_conv2d.py | 2 +- .../test_arm_compute_lib/test_dense.py | 319 ++++++++++++++++++ .../test_arm_compute_lib/test_network.py | 2 +- .../test_arm_compute_lib/test_pooling.py | 2 +- 8 files changed, 527 insertions(+), 4 deletions(-) create mode 100644 tests/python/contrib/test_arm_compute_lib/test_dense.py diff --git a/docs/deploy/arm_compute_lib.rst b/docs/deploy/arm_compute_lib.rst index eaffc0a565d8..c0b1a7e76498 100644 --- a/docs/deploy/arm_compute_lib.rst +++ b/docs/deploy/arm_compute_lib.rst @@ -181,6 +181,13 @@ Operator support | | | | | (only groups = 1 supported) | +--------------+-------------------------------------------------------------------------+ +| nn.dense | fp32: | +| | Simple: nn.dense | +| | Composite: nn.dense, nn.bias_add? | ++--------------+-------------------------------------------------------------------------+ +| qnn.dense | uint8: | +| | Composite: qnn.dense, nn.bias_add?, qnn.requantize | ++--------------+-------------------------------------------------------------------------+ | nn.maxpool2d | fp32, uint8 | +--------------+-------------------------------------------------------------------------+ | reshape | fp32, uint8 | diff --git a/python/tvm/relay/op/contrib/arm_compute_lib.py b/python/tvm/relay/op/contrib/arm_compute_lib.py index 2f031b39e461..e20f2d191d03 100644 --- a/python/tvm/relay/op/contrib/arm_compute_lib.py +++ b/python/tvm/relay/op/contrib/arm_compute_lib.py @@ -98,6 +98,33 @@ def qnn_conv_pattern(): pattern, wildcard(), wildcard(), is_constant(), is_constant()) return pattern + def dense_pattern(): + """Create a dense (fully-connected) pattern. + + Returns + ------- + pattern : dataflow_pattern.AltPattern + Denotes the convolution pattern. + """ + pattern = is_op('nn.dense')(wildcard(), is_constant()) + pattern = pattern.optional(lambda x: is_op('nn.bias_add')(x, is_constant())) + return pattern + + def qnn_dense_pattern(): + """Create a quantized dense (fully-connected) pattern. + + Returns + ------- + pattern : dataflow_pattern.AltPattern + Denotes the convolution pattern. + """ + pattern = is_op('qnn.dense')( + wildcard(), is_constant(), is_constant(), is_constant(), is_constant(), is_constant()) + pattern = pattern.optional(lambda x: is_op('nn.bias_add')(x, is_constant())) + pattern = is_op('qnn.requantize')( + pattern, wildcard(), wildcard(), is_constant(), is_constant()) + return pattern + def check_conv(extract): """Check conv pattern is supported by ACL.""" call = extract @@ -114,8 +141,26 @@ def check_qnn_conv(extract): call = call.args[0] return qnn_conv2d(call.attrs, call.args) + def check_dense(extract): + """Check conv pattern is supported by ACL.""" + call = extract + while call.op.name != "nn.dense": + call = call.args[0] + return dense(call.attrs, call.args) + + def check_qnn_dense(extract): + """Check qnn conv pattern is supported by ACL.""" + if extract.attrs.out_dtype != "uint8": + return False + call = extract + while call.op.name != "qnn.dense": + call = call.args[0] + return qnn_dense(call.attrs, call.args) + return [('arm_compute_lib.conv2d', conv_pattern(), check_conv), - ('arm_compute_lib.qnn_conv2d', qnn_conv_pattern(), check_qnn_conv)] + ('arm_compute_lib.qnn_conv2d', qnn_conv_pattern(), check_qnn_conv), + ('arm_compute_lib.dense', dense_pattern(), check_dense), + ('arm_compute_lib.qnn_dense', qnn_dense_pattern(), check_qnn_dense)] def _register_external_op_helper(op_name, supported=True): @@ -164,6 +209,33 @@ def qnn_conv2d(attrs, args): return True +@tvm.ir.register_op_attr("nn.dense", "target.arm_compute_lib") +def dense(attrs, args): + """Check if the external ACL codegen for dense should be used.""" + data_typ = args[0].checked_type + if data_typ.dtype != "float32": + return False + kernel_typ = args[1].checked_type + if len(kernel_typ.shape) != 2 or kernel_typ.dtype != "float32": + return False + if attrs.out_dtype != "float32" and attrs.out_dtype != "": + return False + return True + + +def qnn_dense(attrs, args): + """Check if the external ACL codegen for qnn.dense should be used.""" + data_typ = args[0].checked_type + if data_typ.dtype != "uint8": + return False + kernel_typ = args[1].checked_type + if len(kernel_typ.shape) != 2 or kernel_typ.dtype != "uint8": + return False + if attrs.out_dtype != "int32": + return False + return True + + @tvm.ir.register_op_attr("nn.max_pool2d", "target.arm_compute_lib") def max_pool2d(attrs, args): """Check if the external ACL codegen for maxpool2d should be used.""" diff --git a/src/relay/backend/contrib/arm_compute_lib/codegen.cc b/src/relay/backend/contrib/arm_compute_lib/codegen.cc index 88de3edd1124..1132b1c56cbc 100644 --- a/src/relay/backend/contrib/arm_compute_lib/codegen.cc +++ b/src/relay/backend/contrib/arm_compute_lib/codegen.cc @@ -61,6 +61,16 @@ class ACLJSONSerializer : public backend::contrib::JSONSerializer { const CallNode* requantize = nullptr; }; + /*! + * \brief A series of operators that form a composite + * dense layer. Supports both nn.dense and qnn.dense. + */ + struct CompositeDenseNode { + const CallNode* dense = nullptr; + const CallNode* bias = nullptr; + const CallNode* requantize = nullptr; + }; + /*! * \brief Visit call nodes and generate appropriate JSON node. * @@ -82,6 +92,8 @@ class ACLJSONSerializer : public backend::contrib::JSONSerializer { std::shared_ptr json_node; if (name == "arm_compute_lib.conv2d" || name == "arm_compute_lib.qnn_conv2d") { json_node = CreateCompositeConvJSONNode(cn); + } else if (name == "arm_compute_lib.dense" || name == "arm_compute_lib.qnn_dense") { + json_node = CreateCompositeDenseJSONNode(cn); } else { LOG(FATAL) << "Unrecognized Arm Compute Library pattern: " << name; } @@ -190,6 +202,71 @@ class ACLJSONSerializer : public backend::contrib::JSONSerializer { } return json_node; } + + /*! + * \brief Extract dense nodes from a composite function. + * + * \param cn The call node of the composite function. + * \return Extracted composite convolution nodes. + */ + static CompositeDenseNode UnpackCompositeDense(const CallNode* cn) { + CompositeDenseNode nodes{}; + const auto* fn = cn->op.as(); + CHECK(fn); + + // Traverse composite dense function from child to parent + const auto* current_call = fn->body.as(); + if (backend::IsOp(current_call, "qnn.requantize")) { + nodes.requantize = current_call; + current_call = current_call->args[0].as(); + } + if (backend::IsOp(current_call, "nn.bias_add")) { + nodes.bias = current_call; + current_call = current_call->args[0].as(); + } + // Enforce a dense node exists at this point during traversal + if (nodes.requantize) { + CHECK(backend::IsOp(current_call, "qnn.dense")); + } else { + CHECK(backend::IsOp(current_call, "nn.dense")); + } + nodes.dense = current_call; + return nodes; + } + + /*! + * \brief Create a JSON representation of a composite dense (fully-connected) operator. + * + * \param cn The call to be represented. + * \return A JSON representation of a specific operator. + */ + std::shared_ptr CreateCompositeDenseJSONNode(const CallNode* cn) { + CompositeDenseNode nodes = UnpackCompositeDense(cn); + std::string name = "nn.dense"; + + // Inputs must be added in the same order they appear in the relay graph. + std::vector inputs; + inputs.push_back(VisitExpr(cn->args[0])[0]); + inputs.push_back(VisitExpr(nodes.dense->args[1])[0]); + if (nodes.requantize) { + name = "qnn.dense"; + inputs.push_back(VisitExpr(nodes.dense->args[2])[0]); // input zero-point + inputs.push_back(VisitExpr(nodes.dense->args[3])[0]); // weight zero-point + inputs.push_back(VisitExpr(nodes.dense->args[4])[0]); // input scale + inputs.push_back(VisitExpr(nodes.dense->args[5])[0]); // weight scale + } + if (nodes.bias) { + inputs.push_back(VisitExpr(nodes.bias->args[1])[0]); + } + if (nodes.requantize) { + inputs.push_back(VisitExpr(nodes.requantize->args[3])[0]); // output scale + inputs.push_back(VisitExpr(nodes.requantize->args[4])[0]); // output zero-point + } + + auto json_node = std::make_shared(name, "kernel", inputs, 1); + SetCallNodeAttribute(json_node, nodes.dense); + return json_node; + } }; /*! diff --git a/src/runtime/contrib/arm_compute_lib/acl_runtime.cc b/src/runtime/contrib/arm_compute_lib/acl_runtime.cc index 2498dcf2ae6d..f62420a3684f 100644 --- a/src/runtime/contrib/arm_compute_lib/acl_runtime.cc +++ b/src/runtime/contrib/arm_compute_lib/acl_runtime.cc @@ -31,6 +31,7 @@ #ifdef TVM_GRAPH_RUNTIME_ARM_COMPUTE_LIB #include #include +#include #include #include @@ -128,6 +129,9 @@ class ACLRuntime : public JSONRuntimeBase { if ("nn.conv2d" == op_name || "qnn.conv2d" == op_name) { CreateConvolution2DLayer(&layer_, node, mm); num_pools++; + } else if ("nn.dense" == op_name || "qnn.dense" == op_name) { + CreateFullyConnectedLayer(&layer_, node, mm); + num_pools++; } else if ("nn.max_pool2d" == op_name) { CreatePoolingLayer(&layer_, node); } else if ("reshape" == op_name) { @@ -257,6 +261,50 @@ class ACLRuntime : public JSONRuntimeBase { layer->function = function; } + /*! + * \brief Create a fully connected (dense) layer. + * + * \param layer The ACL layer to build. Containing inputs, outputs and the ACL function. + * \param node The JSON representation of the operator. + * \param mm The ACL fully connected layer can request auxiliary memory from TVM. + */ + void CreateFullyConnectedLayer(CachedLayer* layer, const JSONGraphNode& node, + const std::shared_ptr& mm) { + arm_compute::FullyConnectedLayerInfo fc_info; + fc_info.set_weights_trained_layout(arm_compute::DataLayout::NHWC); + + // Collect inputs and outputs, handling both nn.dense and qnn.dense cases. + std::vector inputs = node.GetInputs(); + size_t num_inputs = inputs.size(); + bool has_bias; + if (node.GetOpName() == "qnn.dense") { + CHECK(num_inputs >= 8U && num_inputs <= 9U) + << "Quantized fully connected (dense) layer requires 9 inputs with a bias, 8 inputs " + "without."; + has_bias = num_inputs == 9; + layer->inputs.push_back(MakeACLTensorFromJSONEntry(inputs[0], &inputs[4], &inputs[2])); + layer->inputs.push_back(MakeACLTensorFromJSONEntry(inputs[1], &inputs[5], &inputs[3])); + if (has_bias) { + layer->inputs.push_back(MakeACLTensorFromJSONEntry(inputs[6])); + } + layer->outputs.push_back( + MakeACLTensorFromJSONNode(node, &inputs[6 + has_bias], &inputs[7 + has_bias])); + } else { + CHECK(num_inputs >= 2U && num_inputs <= 3U) + << "Fully connected (dense) layer requires 3 inputs with a bias, 2 inputs without."; + has_bias = num_inputs == 3; + for (const auto& i : inputs) { + layer->inputs.push_back(MakeACLTensorFromJSONEntry(i)); + } + layer->outputs.push_back(MakeACLTensorFromJSONNode(node)); + } + + auto function = std::make_shared(mm); + function->configure(&layer->inputs[0], &layer->inputs[1], + has_bias ? &layer->inputs[2] : nullptr, &layer->outputs[0], fc_info); + layer->function = function; + } + /*! * \brief Create a pooling layer. * diff --git a/tests/python/contrib/test_arm_compute_lib/test_conv2d.py b/tests/python/contrib/test_arm_compute_lib/test_conv2d.py index c40746674116..a89f04df6347 100644 --- a/tests/python/contrib/test_arm_compute_lib/test_conv2d.py +++ b/tests/python/contrib/test_arm_compute_lib/test_conv2d.py @@ -392,7 +392,7 @@ def test_qnn_conv2d(): "output scale": output_sc, "output zero point": output_zp } - verify(outputs, atol=1, rtol=0, params=params) + verify(outputs, atol=1, rtol=0, params=params, verify_saturation=True) def test_codegen_qnn_conv2d(): diff --git a/tests/python/contrib/test_arm_compute_lib/test_dense.py b/tests/python/contrib/test_arm_compute_lib/test_dense.py new file mode 100644 index 000000000000..2208026f7924 --- /dev/null +++ b/tests/python/contrib/test_arm_compute_lib/test_dense.py @@ -0,0 +1,319 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +"""Arm Compute Library integration dense tests.""" + +import numpy as np + +import tvm +from tvm import relay + +from .infrastructure import Device, skip_runtime_test, skip_codegen_test, \ + build_and_run, verify, verify_codegen, generate_trials + + +def _get_model(shape, weight_shape, units, dtype, var_names, + has_bias=False): + """Return a model and any parameters it may have""" + a = relay.var(next(var_names), shape=shape, dtype=dtype) + w = tvm.nd.array(np.random.uniform(-128, 127, weight_shape).astype(dtype)) + weights = relay.const(w, dtype) + out = relay.nn.dense( + a, + weights, + units=units, + out_dtype=dtype + ) + params = {"w": w} + if has_bias: + b = tvm.nd.array(np.random.randint(-128, 127, weight_shape[0]).astype(dtype)) + biasc = relay.const(b, dtype) + out = relay.nn.bias_add(out, biasc) + params['b'] = b + return out, params + + +def _get_qnn_params(input_zp, input_sc, kernel_zp, kernel_sc, + kernel_h, kernel_w): + """Get output qnn parameters given input and kernel parameters.""" + input_max = input_sc * (255 - input_zp) + input_min = - input_sc * input_zp + kernel_max = kernel_sc * (255 - kernel_zp) + kernel_min = - kernel_sc * kernel_zp + output_limits = [kernel_max * kernel_h * kernel_w * input_max, + kernel_min * kernel_h * kernel_w * input_max, + kernel_min * kernel_h * kernel_w * input_min, + kernel_max * kernel_h * kernel_w * input_min] + output_max = max(output_limits) + output_min = min(output_limits) + output_sc = (output_max - output_min) / 255 + output_zp = - int(output_min / output_sc) + return output_zp, output_sc + + +def _get_qnn_model(shape, weight_shape, units, dtype, + input_zp, input_sc, kernel_zp, + kernel_sc, output_zp, output_sc, var_names, + has_bias=False): + a = relay.var(next(var_names), shape=shape, dtype=dtype) + w = tvm.nd.array(np.random.uniform(-128, 127, weight_shape).astype(dtype)) + weights = relay.const(w, dtype) + out = relay.qnn.op.dense( + a, + weights, + units=units, + input_zero_point=relay.const(input_zp, "int32"), + kernel_zero_point=relay.const(kernel_zp, "int32"), + input_scale=relay.const(input_sc, "float32"), + kernel_scale=relay.const(kernel_sc, "float32"), + out_dtype="int32" + ) + params = {"w": w} + if has_bias: + b = tvm.nd.array(np.random.randint(0, 255, weight_shape[0]).astype("int32")) + biasc = relay.const(b, "int32") + out = relay.nn.bias_add(out, biasc) + params['b'] = b + out = relay.qnn.op.requantize( + out, + relay.const(input_sc * kernel_sc, 'float32'), # input scale + relay.const(input_zp * kernel_zp, 'int32'), # input zero point + relay.const(output_sc, 'float32'), # output scale + relay.const(output_zp, 'int32'), # output zero point + out_dtype="uint8" + ) + return out, params + + +def _get_expected_codegen(shape, weight_shape, units, dtype, + has_bias=False): + output_shape = (shape[0], units) + out_dtype = "int32" if dtype == "uint8" else "float32" + + node = { + "op": "kernel", + "name": "nn.dense", + "inputs": [], + "attrs": { + "num_outputs": "1", + "out_dtype": [[out_dtype]], + "shape": [[list(output_shape)]], + "dtype": [[dtype]], + "units": [[str(units)]] + } + } + + inputs = [{ + "op": "input", + "name": "", + "attrs": { + "shape": [[list(shape)]], + "dtype": [[str(dtype)]] + }}, { + "op": "const", + "name": "", + "attrs": { + "shape": [[list(weight_shape)]], + "dtype": [[str(dtype)]] + }}] + + # qnn.dense params, input and kernel + if dtype == "uint8": + node["name"] = "qnn.dense" + for param_dtype in ["int32", "float32"]: + for _ in range(2): + inputs.append({ + "op": "const", + "name": "", + "attrs": { + "shape": [[[]]], + "dtype": [[param_dtype]] + } + }) + + if has_bias: + bias_dtype = "int32" if dtype == "uint8" else "float32" + inputs.append({ + "op": "const", + "name": "", + "attrs": { + "shape": [[[weight_shape[0]]]], + "dtype": [[bias_dtype]]} + }) + + # qnn.dense params, output + if dtype == "uint8": + for param_dtype in ["float32", "int32"]: + inputs.append({ + "op": "const", + "name": "", + "attrs": { + "shape": [[[]]], + "dtype": [[param_dtype]] + } + }) + + input_idx = 0 + for _ in range(len(inputs)): + node["inputs"].append([input_idx, 0, 0]) + input_idx += 1 + node["attrs"]["num_inputs"] = str(len(inputs)) + inputs.append(node) + return inputs + + +def test_dense(): + if skip_runtime_test(): + return + + device = Device() + np.random.seed(0) + + dtype = ["float32"] + shape = [((1, 128), (16, 128), 16), ((32, 32), (32, 32), 32), ((1, 64), (1, 64), 1)] + composite = [False, True] + trials = generate_trials([dtype, shape, composite], 3) + + for dtype, (shape, weight_shape, units), composite in trials: + outputs = [] + inputs = { + "a": tvm.nd.array(np.random.uniform(-128, 127, shape).astype(dtype)) + } + func, params = _get_model(shape, weight_shape, units, dtype, var_names=iter(inputs), + has_bias=composite) + for acl in [False, True]: + outputs.append(build_and_run(func, inputs, 1, params, + device, enable_acl=acl)[0]) + + config = { + "shape": shape, + "weight_shape": weight_shape, + "units": units, + "dtype": dtype, + "composite operators (bias)": composite + } + verify(outputs, atol=0.001, rtol=0.01, params=config) + + +def test_codegen_dense(): + if skip_codegen_test(): + return + + np.random.seed(0) + + dtype = ["float32"] + shape = [((1, 128), (16, 128), 16), ((32, 32), (32, 32), 32), ((1, 64), (1, 64), 1)] + composite = [False, True] + trials = generate_trials([dtype, shape, composite], 3) + + for dtype, (shape, weight_shape, units), composite in trials: + inputs = {"a"} + + args = (shape, weight_shape, units, dtype) + + func, params = _get_model(*args, var_names=iter(inputs), + has_bias=composite) + exp_codegen = _get_expected_codegen(*args, has_bias=composite) + verify_codegen(func, exp_codegen, 1) + + +def test_qnn_dense(): + if skip_runtime_test(): + return + + device = Device() + np.random.seed(0) + + dtype = ["uint8"] + shape = [((1, 128), (16, 128), 16), ((32, 32), (32, 32), 32), ((1, 64), (1, 64), 1)] + composite = [False, True] + trials = generate_trials([dtype, shape, composite], 3) + + for dtype, (shape, weight_shape, units), composite in trials: + outputs = [] + inputs = { + "a": tvm.nd.array(np.random.uniform(0, 255, shape).astype(dtype)) + } + input_zp = 100 + input_sc = 0.5 + kernel_zp = 50 + kernel_sc = 0.03 + output_zp, output_sc = _get_qnn_params(input_zp, input_sc, + kernel_zp, kernel_sc, + weight_shape[0], weight_shape[1]) + + func, params = _get_qnn_model(shape, weight_shape, units, dtype, + input_zp, input_sc, kernel_zp, + kernel_sc, output_zp, output_sc, + var_names=iter(inputs), has_bias=composite) + + for acl in [False, True]: + outputs.append(build_and_run(func, inputs, 1, params, + device, enable_acl=acl)[0]) + + config = { + "shape": shape, + "weight_shape": weight_shape, + "units": units, + "dtype": dtype, + "composite operators (bias)": composite, + "input scale": input_sc, + "input zero point": input_zp, + "kernel scale": kernel_sc, + "kernel zero point": kernel_zp, + "output scale": output_sc, + "output zero point": output_zp + } + verify(outputs, atol=1, rtol=0, params=config, verify_saturation=True) + + +def test_codegen_qnn_dense(): + if skip_codegen_test(): + return + + np.random.seed(0) + + dtype = ["uint8"] + shape = [((1, 128), (16, 128), 16), ((32, 32), (32, 32), 32), ((1, 64), (1, 64), 1)] + composite = [False, True] + trials = generate_trials([dtype, shape, composite], 3) + + for dtype, (shape, weight_shape, units), composite in trials: + inputs = {"a"} + args = (shape, weight_shape, units, dtype) + + input_zp = 100 + input_sc = 0.5 + kernel_zp = 25 + kernel_sc = 0.03 + output_zp, output_sc = _get_qnn_params(input_zp, input_sc, + kernel_zp, kernel_sc, + weight_shape[0], weight_shape[1]) + + func, params = _get_qnn_model(*args, var_names=iter(inputs), + input_zp=input_zp, input_sc=input_sc, + kernel_zp=kernel_zp, kernel_sc=kernel_sc, + output_zp=output_zp, output_sc=output_sc, + has_bias=composite) + exp_codegen = _get_expected_codegen(*args, has_bias=composite) + verify_codegen(func, exp_codegen, 1) + + +if __name__ == "__main__": + test_dense() + test_qnn_dense() + test_codegen_dense() + test_codegen_qnn_dense() diff --git a/tests/python/contrib/test_arm_compute_lib/test_network.py b/tests/python/contrib/test_arm_compute_lib/test_network.py index 1ba6ca724f04..ceef179a4741 100644 --- a/tests/python/contrib/test_arm_compute_lib/test_network.py +++ b/tests/python/contrib/test_arm_compute_lib/test_network.py @@ -93,7 +93,7 @@ def get_model(): return mod, params, inputs _build_and_run_network(*get_model(), device=device, - tvm_ops=10, acl_partitions=18, + tvm_ops=4, acl_partitions=21, atol=0.002, rtol=0.01) diff --git a/tests/python/contrib/test_arm_compute_lib/test_pooling.py b/tests/python/contrib/test_arm_compute_lib/test_pooling.py index 4d48f793a636..c9ae1d9dbc05 100644 --- a/tests/python/contrib/test_arm_compute_lib/test_pooling.py +++ b/tests/python/contrib/test_arm_compute_lib/test_pooling.py @@ -100,7 +100,7 @@ def test_pooling(): "dtype": dtype, "padding": pad } - verify(outputs, atol=atol, rtol=rtol, params=params) + verify(outputs, atol=atol, rtol=rtol, params=params, verify_saturation=True) def test_codegen_pooling():