diff --git a/python/tvm/te/tag.py b/python/tvm/te/tag.py index 1022875ce3dd..487e69687225 100644 --- a/python/tvm/te/tag.py +++ b/python/tvm/te/tag.py @@ -86,6 +86,6 @@ def tag_scope(tag): # or use tag_scope as decorator @tvm.te.tag_scope(tag="conv") def compute_relu(data): - return te.compute(data.shape, lambda *i: tvm.select(data(*i) < 0, 0.0, data(*i))) + return te.compute(data.shape, lambda *i: tvm.tir.Select(data(*i) < 0, 0.0, data(*i))) """ return TagScope(tag) diff --git a/python/tvm/tir/op.py b/python/tvm/tir/op.py index 4a52787262bb..a8aef8f85495 100644 --- a/python/tvm/tir/op.py +++ b/python/tvm/tir/op.py @@ -950,6 +950,7 @@ def reducer(expr, axis, where=None, *args): # there are two way to use this {0} reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr + # tvm.{0} represents tvm.te.{0} or tvm.tir.{0}. B = te.compute((m,), lambda i: tvm.{0}(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: