diff --git a/.github/ISSUE_TEMPLATE.md b/.github/ISSUE_TEMPLATE.md new file mode 100644 index 000000000..d78a3dc34 --- /dev/null +++ b/.github/ISSUE_TEMPLATE.md @@ -0,0 +1,19 @@ +Please use the [caffe-users list](https://groups.google.com/forum/#!forum/caffe-users) for usage, installation, or modeling questions, or other requests for help. +_Do not post such requests to Issues._ Doing so interferes with the development of Caffe. + +Please read the [guidelines for contributing](https://github.com/BVLC/caffe/blob/master/CONTRIBUTING.md) before submitting this issue. + +### Issue summary + + +### Steps to reproduce + +If you are having difficulty building Caffe or training a model, please ask the caffe-users mailing list. If you are reporting a build error that seems to be due to a bug in Caffe, please attach your build configuration (either Makefile.config or CMakeCache.txt) and the output of the make (or cmake) command. + +### Your system configuration +Operating system: +Compiler: +CUDA version (if applicable): +CUDNN version (if applicable): +BLAS: +Python or MATLAB version (for pycaffe and matcaffe respectively): diff --git a/.gitignore b/.gitignore index 351ea886d..768984e5d 100644 --- a/.gitignore +++ b/.gitignore @@ -47,6 +47,9 @@ # PyCharm files .idea +# Visual Studio Code files +.vscode + # OSX dir files .DS_Store @@ -81,6 +84,7 @@ cmake_build # Generated documentation docs/_site +docs/_includes docs/gathered _site doxygen diff --git a/.travis.yml b/.travis.yml index b920a935d..329795475 100644 --- a/.travis.yml +++ b/.travis.yml @@ -1,39 +1,52 @@ -# Use a build matrix to do two builds in parallel: -# one using CMake, and one using make. +dist: trusty +sudo: required + +language: cpp +compiler: gcc + env: + global: + - NUM_THREADS=4 matrix: - - WITH_CUDA=false WITH_CMAKE=false - - WITH_CUDA=false WITH_CMAKE=true - - WITH_CUDA=true WITH_CMAKE=false - - WITH_CUDA=true WITH_CMAKE=true - - WITH_CUDA=false WITH_CMAKE=true PYTHON_VERSION=3 + # Use a build matrix to test many builds in parallel + # envvar defaults: + # WITH_CMAKE: false + # WITH_PYTHON3: false + # WITH_IO: true + # WITH_CUDA: false + # WITH_CUDNN: false + - BUILD_NAME="default-make" +# - BUILD_NAME="python3-make" WITH_PYTHON3=true + - BUILD_NAME="no-io-make" WITH_IO=false + - BUILD_NAME="cuda-make" WITH_CUDA=true + - BUILD_NAME="cudnn-make" WITH_CUDA=true WITH_CUDNN=true -language: cpp + - BUILD_NAME="default-cmake" WITH_CMAKE=true + - BUILD_NAME="python3-cmake" WITH_CMAKE=true WITH_PYTHON3=true + - BUILD_NAME="no-io-cmake" WITH_CMAKE=true WITH_IO=false + - BUILD_NAME="cuda-cmake" WITH_CMAKE=true WITH_CUDA=true + - BUILD_NAME="cudnn-cmake" WITH_CMAKE=true WITH_CUDA=true WITH_CUDNN=true -# Cache Ubuntu apt packages. cache: apt: true directories: - - /home/travis/miniconda - - /home/travis/miniconda2 - - /home/travis/miniconda3 - -compiler: gcc + - ~/protobuf3 before_install: - - export NUM_THREADS=4 - - export SCRIPTS=./scripts/travis - - export CONDA_DIR="/home/travis/miniconda$PYTHON_VERSION" + - source ./scripts/travis/defaults.sh install: - - sudo -E $SCRIPTS/travis_install.sh + - sudo -E ./scripts/travis/install-deps.sh + - ./scripts/travis/setup-venv.sh ~/venv + - source ~/venv/bin/activate + - ./scripts/travis/install-python-deps.sh before_script: - - export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib:/usr/local/cuda/lib64:$CONDA_DIR/lib - - export PATH=$CONDA_DIR/bin:$PATH - - if ! $WITH_CMAKE; then $SCRIPTS/travis_setup_makefile_config.sh; fi + - ./scripts/travis/configure.sh -script: $SCRIPTS/travis_build_and_test.sh +script: + - ./scripts/travis/build.sh + - ./scripts/travis/test.sh notifications: # Emails are sent to the committer's git-configured email address by default, diff --git a/CMakeLists.txt b/CMakeLists.txt index ef599b689..08f56a33a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,12 +1,24 @@ cmake_minimum_required(VERSION 2.8.7) +if(POLICY CMP0046) + cmake_policy(SET CMP0046 NEW) +endif() +if(POLICY CMP0054) + cmake_policy(SET CMP0054 NEW) +endif() # ---[ Caffe project project(Caffe C CXX) +# ---[ Caffe version +set(CAFFE_TARGET_VERSION "1.0.0" CACHE STRING "Caffe logical version") +set(CAFFE_TARGET_SOVERSION "1.0.0" CACHE STRING "Caffe soname version") +add_definitions(-DCAFFE_VERSION=${CAFFE_TARGET_VERSION}) + # ---[ Using cmake scripts and modules list(APPEND CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake/Modules) include(ExternalProject) +include(GNUInstallDirs) include(cmake/Utils.cmake) include(cmake/Targets.cmake) @@ -16,13 +28,19 @@ include(cmake/ConfigGen.cmake) # ---[ Options caffe_option(CPU_ONLY "Build Caffe without CUDA support" OFF) # TODO: rename to USE_CUDA -caffe_option(USE_CUDNN "Build Caffe with cuDNN libary support" ON IF NOT CPU_ONLY) +caffe_option(USE_CUDNN "Build Caffe with cuDNN library support" ON IF NOT CPU_ONLY) +caffe_option(USE_NCCL "Build Caffe with NCCL library support" OFF) caffe_option(BUILD_SHARED_LIBS "Build shared libraries" ON) caffe_option(BUILD_python "Build Python wrapper" ON) -set(python_version "2" CACHE STRING "Specify which python version to use") +set(python_version "2" CACHE STRING "Specify which Python version to use") caffe_option(BUILD_matlab "Build Matlab wrapper" OFF IF UNIX OR APPLE) caffe_option(BUILD_docs "Build documentation" ON IF UNIX OR APPLE) -caffe_option(BUILD_python_layer "Build the Caffe python layer" ON) +caffe_option(BUILD_python_layer "Build the Caffe Python layer" ON) +caffe_option(USE_OPENCV "Build with OpenCV support" ON) +caffe_option(USE_LEVELDB "Build with levelDB" ON) +caffe_option(USE_LMDB "Build with lmdb" ON) +caffe_option(ALLOW_LMDB_NOLOCK "Allow MDB_NOLOCK when reading LMDB files (only if necessary)" OFF) +caffe_option(USE_OPENMP "Link with OpenMP (when your BLAS wants OpenMP and you get linker errors)" OFF) # ---[ Dependencies include(cmake/Dependencies.cmake) @@ -32,13 +50,13 @@ if(UNIX OR APPLE) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC -Wall") endif() +caffe_set_caffe_link() + if(USE_libstdcpp) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libstdc++") message("-- Warning: forcing libstdc++ (controlled by USE_libstdcpp option in cmake)") endif() -add_definitions(-DGTEST_USE_OWN_TR1_TUPLE) - # ---[ Warnings caffe_warnings_disable(CMAKE_CXX_FLAGS -Wno-sign-compare -Wno-uninitialized) @@ -47,8 +65,26 @@ configure_file(cmake/Templates/caffe_config.h.in "${PROJECT_BINARY_DIR}/caffe_co # ---[ Includes set(Caffe_INCLUDE_DIR ${PROJECT_SOURCE_DIR}/include) -include_directories(${Caffe_INCLUDE_DIR} ${PROJECT_BINARY_DIR}) -include_directories(BEFORE src) # This is needed for gtest. +set(Caffe_SRC_DIR ${PROJECT_SOURCE_DIR}/src) +include_directories(${PROJECT_BINARY_DIR}) + +# ---[ Includes & defines for CUDA + +# cuda_compile() does not have per-call dependencies or include pathes +# (cuda_compile() has per-call flags, but we set them here too for clarity) +# +# list(REMOVE_ITEM ...) invocations remove PRIVATE and PUBLIC keywords from collected definitions and include pathes +if(HAVE_CUDA) + # pass include pathes to cuda_include_directories() + set(Caffe_ALL_INCLUDE_DIRS ${Caffe_INCLUDE_DIRS}) + list(REMOVE_ITEM Caffe_ALL_INCLUDE_DIRS PRIVATE PUBLIC) + cuda_include_directories(${Caffe_INCLUDE_DIR} ${Caffe_SRC_DIR} ${Caffe_ALL_INCLUDE_DIRS}) + + # add definitions to nvcc flags directly + set(Caffe_ALL_DEFINITIONS ${Caffe_DEFINITIONS}) + list(REMOVE_ITEM Caffe_ALL_DEFINITIONS PRIVATE PUBLIC) + list(APPEND CUDA_NVCC_FLAGS ${Caffe_ALL_DEFINITIONS}) +endif() # ---[ Subdirectories add_subdirectory(src/gtest) @@ -63,11 +99,24 @@ add_subdirectory(docs) add_custom_target(lint COMMAND ${CMAKE_COMMAND} -P ${PROJECT_SOURCE_DIR}/cmake/lint.cmake) # ---[ pytest target -add_custom_target(pytest COMMAND python${python_version} -m unittest discover -s caffe/test WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/python ) -add_dependencies(pytest pycaffe) +if(BUILD_python) + add_custom_target(pytest COMMAND python${python_version} -m unittest discover -s caffe/test WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}/python ) + add_dependencies(pytest pycaffe) +endif() + +# ---[ uninstall target +configure_file( + ${CMAKE_CURRENT_SOURCE_DIR}/cmake/Uninstall.cmake.in + ${CMAKE_CURRENT_BINARY_DIR}/cmake/Uninstall.cmake + IMMEDIATE @ONLY) + +add_custom_target(uninstall + COMMAND ${CMAKE_COMMAND} -P + ${CMAKE_CURRENT_BINARY_DIR}/cmake/Uninstall.cmake) # ---[ Configuration summary caffe_print_configuration_summary() # ---[ Export configs generation caffe_generate_export_configs() + diff --git a/CONTRIBUTORS.md b/CONTRIBUTORS.md index 8db66ea82..3fd767812 100644 --- a/CONTRIBUTORS.md +++ b/CONTRIBUTORS.md @@ -1,6 +1,6 @@ # Contributors -Caffe is developed by a core set of BVLC members and the open-source community. +Caffe is developed by a core set of BAIR members and the open-source community. We thank all of our [contributors](https://github.com/BVLC/caffe/graphs/contributors)! diff --git a/INSTALL.md b/INSTALL.md index 42fcf027e..05c714dbd 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -3,5 +3,5 @@ See http://caffe.berkeleyvision.org/installation.html for the latest installation instructions. -Check the issue tracker in case you need help: -https://github.com/BVLC/caffe/issues +Check the users group in case you need help: +https://groups.google.com/forum/#!forum/caffe-users diff --git a/LICENSE b/LICENSE index d69d16f5b..0c99adc18 100644 --- a/LICENSE +++ b/LICENSE @@ -1,11 +1,11 @@ COPYRIGHT All contributions by the University of California: -Copyright (c) 2014, 2015, The Regents of the University of California (Regents) +Copyright (c) 2014-2017 The Regents of the University of California (Regents) All rights reserved. All other contributions: -Copyright (c) 2014, 2015, the respective contributors +Copyright (c) 2014-2017, the respective contributors All rights reserved. Caffe uses a shared copyright model: each contributor holds copyright over diff --git a/Makefile b/Makefile index 80bc37375..ad173f807 100644 --- a/Makefile +++ b/Makefile @@ -29,9 +29,17 @@ SRC_DIRS := $(shell find * -type d -exec bash -c "find {} -maxdepth 1 \ \( -name '*.cpp' -o -name '*.proto' \) | grep -q ." \; -print) # The target shared library name +LIBRARY_NAME := $(PROJECT) LIB_BUILD_DIR := $(BUILD_DIR)/lib -STATIC_NAME := $(LIB_BUILD_DIR)/lib$(PROJECT).a -DYNAMIC_NAME := $(LIB_BUILD_DIR)/lib$(PROJECT).so +STATIC_NAME := $(LIB_BUILD_DIR)/lib$(LIBRARY_NAME).a +DYNAMIC_VERSION_MAJOR := 1 +DYNAMIC_VERSION_MINOR := 0 +DYNAMIC_VERSION_REVISION := 0 +DYNAMIC_NAME_SHORT := lib$(LIBRARY_NAME).so +#DYNAMIC_SONAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR) +DYNAMIC_VERSIONED_NAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION) +DYNAMIC_NAME := $(LIB_BUILD_DIR)/$(DYNAMIC_VERSIONED_NAME_SHORT) +COMMON_FLAGS += -DCAFFE_VERSION=$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION) ############################## # Get all source files @@ -78,7 +86,7 @@ NONEMPTY_LINT_REPORT := $(BUILD_DIR)/$(LINT_EXT) # PY$(PROJECT)_SRC is the python wrapper for $(PROJECT) PY$(PROJECT)_SRC := python/$(PROJECT)/_$(PROJECT).cpp PY$(PROJECT)_SO := python/$(PROJECT)/_$(PROJECT).so -PY$(PROJECT)_HXX := include/$(PROJECT)/python_layer.hpp +PY$(PROJECT)_HXX := include/$(PROJECT)/layers/python_layer.hpp # MAT$(PROJECT)_SRC is the mex entrance point of matlab package for $(PROJECT) MAT$(PROJECT)_SRC := matlab/+$(PROJECT)/private/$(PROJECT)_.cpp ifneq ($(MATLAB_DIR),) @@ -169,10 +177,29 @@ ifneq ($(CPU_ONLY), 1) LIBRARY_DIRS += $(CUDA_LIB_DIR) LIBRARIES := cudart cublas curand endif -LIBRARIES += glog gflags protobuf leveldb snappy \ - lmdb boost_system hdf5_hl hdf5 m \ - opencv_core opencv_highgui opencv_imgproc -PYTHON_LIBRARIES := boost_python python2.7 + +LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial + +# handle IO dependencies +USE_LEVELDB ?= 1 +USE_LMDB ?= 1 +USE_OPENCV ?= 1 + +ifeq ($(USE_LEVELDB), 1) + LIBRARIES += leveldb snappy +endif +ifeq ($(USE_LMDB), 1) + LIBRARIES += lmdb +endif +ifeq ($(USE_OPENCV), 1) + LIBRARIES += opencv_core opencv_highgui opencv_imgproc + + ifeq ($(OPENCV_VERSION), 3) + LIBRARIES += opencv_imgcodecs + endif + +endif +PYTHON_LIBRARIES ?= boost_python python2.7 WARNINGS := -Wall -Wno-sign-compare ############################## @@ -221,6 +248,8 @@ ifeq ($(UNAME), Linux) LINUX := 1 else ifeq ($(UNAME), Darwin) OSX := 1 + OSX_MAJOR_VERSION := $(shell sw_vers -productVersion | cut -f 1 -d .) + OSX_MINOR_VERSION := $(shell sw_vers -productVersion | cut -f 2 -d .) endif # Linux @@ -234,6 +263,7 @@ ifeq ($(LINUX), 1) # boost::thread is reasonably called boost_thread (compare OS X) # We will also explicitly add stdc++ to the link target. LIBRARIES += boost_thread stdc++ + VERSIONFLAGS += -Wl,-soname,$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../lib endif # OS X: @@ -242,21 +272,29 @@ endif ifeq ($(OSX), 1) CXX := /usr/bin/clang++ ifneq ($(CPU_ONLY), 1) - CUDA_VERSION := $(shell $(CUDA_DIR)/bin/nvcc -V | grep -o 'release \d' | grep -o '\d') + CUDA_VERSION := $(shell $(CUDA_DIR)/bin/nvcc -V | grep -o 'release [0-9.]*' | tr -d '[a-z ]') ifeq ($(shell echo | awk '{exit $(CUDA_VERSION) < 7.0;}'), 1) CXXFLAGS += -stdlib=libstdc++ LINKFLAGS += -stdlib=libstdc++ endif # clang throws this warning for cuda headers WARNINGS += -Wno-unneeded-internal-declaration + # 10.11 strips DYLD_* env vars so link CUDA (rpath is available on 10.5+) + OSX_10_OR_LATER := $(shell [ $(OSX_MAJOR_VERSION) -ge 10 ] && echo true) + OSX_10_5_OR_LATER := $(shell [ $(OSX_MINOR_VERSION) -ge 5 ] && echo true) + ifeq ($(OSX_10_OR_LATER),true) + ifeq ($(OSX_10_5_OR_LATER),true) + LDFLAGS += -Wl,-rpath,$(CUDA_LIB_DIR) + endif + endif endif # gtest needs to use its own tuple to not conflict with clang COMMON_FLAGS += -DGTEST_USE_OWN_TR1_TUPLE=1 # boost::thread is called boost_thread-mt to mark multithreading on OS X LIBRARIES += boost_thread-mt # we need to explicitly ask for the rpath to be obeyed - DYNAMIC_FLAGS := -install_name @rpath/libcaffe.so ORIGIN := @loader_path + VERSIONFLAGS += -Wl,-install_name,@rpath/$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../../build/lib else ORIGIN := \$$ORIGIN endif @@ -290,6 +328,26 @@ ifeq ($(USE_CUDNN), 1) COMMON_FLAGS += -DUSE_CUDNN endif +# NCCL acceleration configuration +ifeq ($(USE_NCCL), 1) + LIBRARIES += nccl + COMMON_FLAGS += -DUSE_NCCL +endif + +# configure IO libraries +ifeq ($(USE_OPENCV), 1) + COMMON_FLAGS += -DUSE_OPENCV +endif +ifeq ($(USE_LEVELDB), 1) + COMMON_FLAGS += -DUSE_LEVELDB +endif +ifeq ($(USE_LMDB), 1) + COMMON_FLAGS += -DUSE_LMDB +ifeq ($(ALLOW_LMDB_NOLOCK), 1) + COMMON_FLAGS += -DALLOW_LMDB_NOLOCK +endif +endif + # CPU-only configuration ifeq ($(CPU_ONLY), 1) OBJS := $(PROTO_OBJS) $(CXX_OBJS) @@ -312,9 +370,9 @@ ifeq ($(BLAS), mkl) # MKL LIBRARIES += mkl_rt COMMON_FLAGS += -DUSE_MKL - MKL_DIR ?= /opt/intel/mkl - BLAS_INCLUDE ?= $(MKL_DIR)/include - BLAS_LIB ?= $(MKL_DIR)/lib $(MKL_DIR)/lib/intel64 + MKLROOT ?= /opt/intel/mkl + BLAS_INCLUDE ?= $(MKLROOT)/include + BLAS_LIB ?= $(MKLROOT)/lib $(MKLROOT)/lib/intel64 else ifeq ($(BLAS), open) # OpenBLAS LIBRARIES += openblas @@ -329,8 +387,12 @@ else # OS X packages atlas as the vecLib framework LIBRARIES += cblas # 10.10 has accelerate while 10.9 has veclib - XCODE_CLT_VER := $(shell pkgutil --pkg-info=com.apple.pkg.CLTools_Executables | grep -o 'version: 6') - ifneq (,$(findstring version: 6,$(XCODE_CLT_VER))) + XCODE_CLT_VER := $(shell pkgutil --pkg-info=com.apple.pkg.CLTools_Executables | grep 'version' | sed 's/[^0-9]*\([0-9]\).*/\1/') + XCODE_CLT_GEQ_7 := $(shell [ $(XCODE_CLT_VER) -gt 6 ] && echo 1) + XCODE_CLT_GEQ_6 := $(shell [ $(XCODE_CLT_VER) -gt 5 ] && echo 1) + ifeq ($(XCODE_CLT_GEQ_7), 1) + BLAS_INCLUDE ?= /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/$(shell ls /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ | sort | tail -1)/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/Headers + else ifeq ($(XCODE_CLT_GEQ_6), 1) BLAS_INCLUDE ?= /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ LDFLAGS += -framework Accelerate else @@ -444,7 +506,7 @@ py: $(PY$(PROJECT)_SO) $(PROTO_GEN_PY) $(PY$(PROJECT)_SO): $(PY$(PROJECT)_SRC) $(PY$(PROJECT)_HXX) | $(DYNAMIC_NAME) @ echo CXX/LD -o $@ $< $(Q)$(CXX) -shared -o $@ $(PY$(PROJECT)_SRC) \ - -o $@ $(LINKFLAGS) -l$(PROJECT) $(PYTHON_LDFLAGS) \ + -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(PYTHON_LDFLAGS) \ -Wl,-rpath,$(ORIGIN)/../../build/lib mat$(PROJECT): mat @@ -472,7 +534,7 @@ runtest: $(TEST_ALL_BIN) pytest: py cd python; python -m unittest discover -s caffe/test - + mattest: mat cd matlab; $(MATLAB_DIR)/bin/matlab -nodisplay -r 'caffe.run_tests(), exit()' @@ -508,7 +570,8 @@ $(ALL_BUILD_DIRS): | $(BUILD_DIR_LINK) $(DYNAMIC_NAME): $(OBJS) | $(LIB_BUILD_DIR) @ echo LD -o $@ - $(Q)$(CXX) -shared -o $@ $(OBJS) $(LINKFLAGS) $(LDFLAGS) $(DYNAMIC_FLAGS) + $(Q)$(CXX) -shared -o $@ $(OBJS) $(VERSIONFLAGS) $(LINKFLAGS) $(LDFLAGS) + @ cd $(BUILD_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT); ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT) $(STATIC_NAME): $(OBJS) | $(LIB_BUILD_DIR) @ echo AR -o $@ @@ -539,33 +602,33 @@ $(TEST_ALL_BIN): $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) \ | $(DYNAMIC_NAME) $(TEST_BIN_DIR) @ echo CXX/LD -o $@ $< $(Q)$(CXX) $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) \ - -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(PROJECT) -Wl,-rpath,$(ORIGIN)/../lib + -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib $(TEST_CU_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CU_BUILD_DIR)/%.o \ $(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR) @ echo LD $< $(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) \ - -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(PROJECT) -Wl,-rpath,$(ORIGIN)/../lib + -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib $(TEST_CXX_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CXX_BUILD_DIR)/%.o \ $(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR) @ echo LD $< $(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) \ - -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(PROJECT) -Wl,-rpath,$(ORIGIN)/../lib + -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib # Target for extension-less symlinks to tool binaries with extension '*.bin'. $(TOOL_BUILD_DIR)/%: $(TOOL_BUILD_DIR)/%.bin | $(TOOL_BUILD_DIR) @ $(RM) $@ - @ ln -s $(abspath $<) $@ + @ ln -s $(notdir $<) $@ $(TOOL_BINS): %.bin : %.o | $(DYNAMIC_NAME) @ echo CXX/LD -o $@ - $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(PROJECT) $(LDFLAGS) \ + $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) \ -Wl,-rpath,$(ORIGIN)/../lib $(EXAMPLE_BINS): %.bin : %.o | $(DYNAMIC_NAME) @ echo CXX/LD -o $@ - $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(PROJECT) $(LDFLAGS) \ + $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) \ -Wl,-rpath,$(ORIGIN)/../../lib proto: $(PROTO_GEN_CC) $(PROTO_GEN_HEADER) @@ -617,6 +680,8 @@ superclean: clean supercleanfiles $(DIST_ALIASES): $(DISTRIBUTE_DIR) $(DISTRIBUTE_DIR): all py | $(DISTRIBUTE_SUBDIRS) + # add proto + cp -r src/caffe/proto $(DISTRIBUTE_DIR)/ # add include cp -r include $(DISTRIBUTE_DIR)/ mkdir -p $(DISTRIBUTE_DIR)/include/caffe/proto @@ -626,7 +691,8 @@ $(DISTRIBUTE_DIR): all py | $(DISTRIBUTE_SUBDIRS) cp $(EXAMPLE_BINS) $(DISTRIBUTE_DIR)/bin # add libraries cp $(STATIC_NAME) $(DISTRIBUTE_DIR)/lib - cp $(DYNAMIC_NAME) $(DISTRIBUTE_DIR)/lib + install -m 644 $(DYNAMIC_NAME) $(DISTRIBUTE_DIR)/lib + cd $(DISTRIBUTE_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT); ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT) # add python - it's not the standard way, indeed... cp -r python $(DISTRIBUTE_DIR)/python diff --git a/Makefile.config.example b/Makefile.config.example index a87350255..6e53bf7b9 100644 --- a/Makefile.config.example +++ b/Makefile.config.example @@ -7,6 +7,19 @@ # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 +# uncomment to disable IO dependencies and corresponding data layers +# USE_OPENCV := 0 +# USE_LEVELDB := 0 +# USE_LMDB := 0 + +# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) +# You should not set this flag if you will be reading LMDBs with any +# possibility of simultaneous read and write +# ALLOW_LMDB_NOLOCK := 1 + +# Uncomment if you're using OpenCV 3 +# OPENCV_VERSION := 3 + # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ @@ -18,13 +31,17 @@ CUDA_DIR := /usr/local/cuda # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. -# For CUDA < 6.0, comment the *_50 lines for compatibility. +# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. +# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ - -gencode arch=compute_50,code=compute_50 + -gencode arch=compute_52,code=sm_52 \ + -gencode arch=compute_60,code=sm_60 \ + -gencode arch=compute_61,code=sm_61 \ + -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) @@ -55,7 +72,12 @@ PYTHON_INCLUDE := /usr/include/python2.7 \ # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ - # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ + # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include + +# Uncomment to use Python 3 (default is Python 2) +# PYTHON_LIBRARIES := boost_python3 python3.5m +# PYTHON_INCLUDE := /usr/include/python3.5m \ +# /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib @@ -69,17 +91,22 @@ PYTHON_LIB := /usr/lib # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. -INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include +INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib +# NCCL acceleration switch (uncomment to build with NCCL) +# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) +# USE_NCCL := 1 + # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 +# N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute diff --git a/README.md b/README.md index 813058d93..bbf8480f1 100644 --- a/README.md +++ b/README.md @@ -77,18 +77,29 @@ Please cite our [ICCV'15 paper](http://www.robots.ox.ac.uk/~vgg/publications/201 # Caffe +[![Build Status](https://travis-ci.org/BVLC/caffe.svg?branch=master)](https://travis-ci.org/BVLC/caffe) +[![License](https://img.shields.io/badge/license-BSD-blue.svg)](LICENSE) + Caffe is a deep learning framework made with expression, speed, and modularity in mind. -It is developed by the Berkeley Vision and Learning Center ([BVLC](http://bvlc.eecs.berkeley.edu)) and community contributors. +It is developed by Berkeley AI Research ([BAIR](http://bair.berkeley.edu))/The Berkeley Vision and Learning Center (BVLC) and community contributors. Check out the [project site](http://caffe.berkeleyvision.org) for all the details like - [DIY Deep Learning for Vision with Caffe](https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p) - [Tutorial Documentation](http://caffe.berkeleyvision.org/tutorial/) -- [BVLC reference models](http://caffe.berkeleyvision.org/model_zoo.html) and the [community model zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo) +- [BAIR reference models](http://caffe.berkeleyvision.org/model_zoo.html) and the [community model zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo) - [Installation instructions](http://caffe.berkeleyvision.org/installation.html) and step-by-step examples. +## Custom distributions + + - [Intel Caffe](https://github.com/BVLC/caffe/tree/intel) (Optimized for CPU and support for multi-node), in particular Xeon processors (HSW, BDW, Xeon Phi). +- [OpenCL Caffe](https://github.com/BVLC/caffe/tree/opencl) e.g. for AMD or Intel devices. +- [Windows Caffe](https://github.com/BVLC/caffe/tree/windows) + +## Community + [![Join the chat at https://gitter.im/BVLC/caffe](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/BVLC/caffe?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) Please join the [caffe-users group](https://groups.google.com/forum/#!forum/caffe-users) or [gitter chat](https://gitter.im/BVLC/caffe) to ask questions and talk about methods and models. @@ -99,7 +110,7 @@ Happy brewing! ## License and Citation Caffe is released under the [BSD 2-Clause license](https://github.com/BVLC/caffe/blob/master/LICENSE). -The BVLC reference models are released for unrestricted use. +The BAIR/BVLC reference models are released for unrestricted use. Please cite Caffe in your publications if it helps your research: diff --git a/cmake/ConfigGen.cmake b/cmake/ConfigGen.cmake index 566d6ca0a..09bb09b4f 100644 --- a/cmake/ConfigGen.cmake +++ b/cmake/ConfigGen.cmake @@ -1,31 +1,4 @@ -################################################################################################ -# Helper function to fetch caffe includes which will be passed to dependent projects -# Usage: -# caffe_get_current_includes() -function(caffe_get_current_includes includes_variable) - get_property(current_includes DIRECTORY PROPERTY INCLUDE_DIRECTORIES) - caffe_convert_absolute_paths(current_includes) - - # remove at most one ${PROJECT_BINARY_DIR} include added for caffe_config.h - list(FIND current_includes ${PROJECT_BINARY_DIR} __index) - list(REMOVE_AT current_includes ${__index}) - - # removing numpy includes (since not required for client libs) - set(__toremove "") - foreach(__i ${current_includes}) - if(${__i} MATCHES "python") - list(APPEND __toremove ${__i}) - endif() - endforeach() - if(__toremove) - list(REMOVE_ITEM current_includes ${__toremove}) - endif() - - caffe_list_unique(current_includes) - set(${includes_variable} ${current_includes} PARENT_SCOPE) -endfunction() - ################################################################################################ # Helper function to get all list items that begin with given prefix # Usage: @@ -47,45 +20,24 @@ endfunction() function(caffe_generate_export_configs) set(install_cmake_suffix "share/Caffe") - # ---[ Configure build-tree CaffeConfig.cmake file ]--- - caffe_get_current_includes(Caffe_INCLUDE_DIRS) - - set(Caffe_DEFINITIONS "") if(NOT HAVE_CUDA) set(HAVE_CUDA FALSE) - list(APPEND Caffe_DEFINITIONS -DCPU_ONLY) endif() if(NOT HAVE_CUDNN) set(HAVE_CUDNN FALSE) - else() - list(APPEND DEFINITIONS -DUSE_CUDNN) endif() - if(BLAS STREQUAL "MKL" OR BLAS STREQUAL "mkl") - list(APPEND Caffe_DEFINITIONS -DUSE_MKL) - endif() + # ---[ Configure build-tree CaffeConfig.cmake file ]--- configure_file("cmake/Templates/CaffeConfig.cmake.in" "${PROJECT_BINARY_DIR}/CaffeConfig.cmake" @ONLY) # Add targets to the build-tree export set - export(TARGETS caffe proto FILE "${PROJECT_BINARY_DIR}/CaffeTargets.cmake") + export(TARGETS caffe caffeproto FILE "${PROJECT_BINARY_DIR}/CaffeTargets.cmake") export(PACKAGE Caffe) # ---[ Configure install-tree CaffeConfig.cmake file ]--- - # remove source and build dir includes - caffe_get_items_with_prefix(${PROJECT_SOURCE_DIR} Caffe_INCLUDE_DIRS __insource) - caffe_get_items_with_prefix(${PROJECT_BINARY_DIR} Caffe_INCLUDE_DIRS __inbinary) - list(REMOVE_ITEM Caffe_INCLUDE_DIRS ${__insource} ${__inbinary}) - - # add `install` include folder - set(lines - "get_filename_component(__caffe_include \"\${Caffe_CMAKE_DIR}/../../include\" ABSOLUTE)\n" - "list(APPEND Caffe_INCLUDE_DIRS \${__caffe_include})\n" - "unset(__caffe_include)\n") - string(REPLACE ";" "" Caffe_INSTALL_INCLUDE_DIR_APPEND_COMMAND ${lines}) - configure_file("cmake/Templates/CaffeConfig.cmake.in" "${PROJECT_BINARY_DIR}/cmake/CaffeConfig.cmake" @ONLY) # Install the CaffeConfig.cmake and export set to use with install-tree @@ -94,7 +46,7 @@ function(caffe_generate_export_configs) # ---[ Configure and install version file ]--- - # TODO: Lines below are commented because Caffe does't declare its version in headers. + # TODO: Lines below are commented because Caffe doesn't declare its version in headers. # When the declarations are added, modify `caffe_extract_caffe_version()` macro and uncomment # configure_file(cmake/Templates/CaffeConfigVersion.cmake.in "${PROJECT_BINARY_DIR}/CaffeConfigVersion.cmake" @ONLY) diff --git a/cmake/Cuda.cmake b/cmake/Cuda.cmake index ff58d31c1..b2b19e8b6 100644 --- a/cmake/Cuda.cmake +++ b/cmake/Cuda.cmake @@ -4,7 +4,7 @@ endif() # Known NVIDIA GPU achitectures Caffe can be compiled for. # This list will be used for CUDA_ARCH_NAME = All option -set(Caffe_known_gpu_archs "20 21(20) 30 35 50") +set(Caffe_known_gpu_archs "20 21(20) 30 35 50 60 61") ################################################################################################ # A function for automatic detection of GPUs installed (if autodetection is enabled) @@ -56,7 +56,7 @@ endfunction() # caffe_select_nvcc_arch_flags(out_variable) function(caffe_select_nvcc_arch_flags out_variable) # List of arch names - set(__archs_names "Fermi" "Kepler" "Maxwell" "All" "Manual") + set(__archs_names "Fermi" "Kepler" "Maxwell" "Pascal" "All" "Manual") set(__archs_name_default "All") if(NOT CMAKE_CROSSCOMPILING) list(APPEND __archs_names "Auto") @@ -89,6 +89,8 @@ function(caffe_select_nvcc_arch_flags out_variable) set(__cuda_arch_bin "30 35") elseif(${CUDA_ARCH_NAME} STREQUAL "Maxwell") set(__cuda_arch_bin "50") + elseif(${CUDA_ARCH_NAME} STREQUAL "Pascal") + set(__cuda_arch_bin "60 61") elseif(${CUDA_ARCH_NAME} STREQUAL "All") set(__cuda_arch_bin ${Caffe_known_gpu_archs}) elseif(${CUDA_ARCH_NAME} STREQUAL "Auto") @@ -132,7 +134,7 @@ function(caffe_select_nvcc_arch_flags out_variable) endfunction() ################################################################################################ -# Short command for cuda comnpilation +# Short command for cuda compilation # Usage: # caffe_cuda_compile( ) macro(caffe_cuda_compile objlist_variable) @@ -174,21 +176,57 @@ function(detect_cuDNN) PATHS ${CUDNN_ROOT} $ENV{CUDNN_ROOT} ${CUDA_TOOLKIT_INCLUDE} DOC "Path to cuDNN include directory." ) - get_filename_component(__libpath_hist ${CUDA_CUDART_LIBRARY} PATH) - find_library(CUDNN_LIBRARY NAMES libcudnn.so # libcudnn_static.a - PATHS ${CUDNN_ROOT} $ENV{CUDNN_ROOT} ${CUDNN_INCLUDE} ${__libpath_hist} - DOC "Path to cuDNN library.") + # dynamic libs have different suffix in mac and linux + if(APPLE) + set(CUDNN_LIB_NAME "libcudnn.dylib") + else() + set(CUDNN_LIB_NAME "libcudnn.so") + endif() + get_filename_component(__libpath_hist ${CUDA_CUDART_LIBRARY} PATH) + find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} + PATHS ${CUDNN_ROOT} $ENV{CUDNN_ROOT} ${CUDNN_INCLUDE} ${__libpath_hist} ${__libpath_hist}/../lib + DOC "Path to cuDNN library.") + if(CUDNN_INCLUDE AND CUDNN_LIBRARY) set(HAVE_CUDNN TRUE PARENT_SCOPE) set(CUDNN_FOUND TRUE PARENT_SCOPE) + file(READ ${CUDNN_INCLUDE}/cudnn.h CUDNN_VERSION_FILE_CONTENTS) + + # cuDNN v3 and beyond + string(REGEX MATCH "define CUDNN_MAJOR * +([0-9]+)" + CUDNN_VERSION_MAJOR "${CUDNN_VERSION_FILE_CONTENTS}") + string(REGEX REPLACE "define CUDNN_MAJOR * +([0-9]+)" "\\1" + CUDNN_VERSION_MAJOR "${CUDNN_VERSION_MAJOR}") + string(REGEX MATCH "define CUDNN_MINOR * +([0-9]+)" + CUDNN_VERSION_MINOR "${CUDNN_VERSION_FILE_CONTENTS}") + string(REGEX REPLACE "define CUDNN_MINOR * +([0-9]+)" "\\1" + CUDNN_VERSION_MINOR "${CUDNN_VERSION_MINOR}") + string(REGEX MATCH "define CUDNN_PATCHLEVEL * +([0-9]+)" + CUDNN_VERSION_PATCH "${CUDNN_VERSION_FILE_CONTENTS}") + string(REGEX REPLACE "define CUDNN_PATCHLEVEL * +([0-9]+)" "\\1" + CUDNN_VERSION_PATCH "${CUDNN_VERSION_PATCH}") + + if(NOT CUDNN_VERSION_MAJOR) + set(CUDNN_VERSION "???") + else() + set(CUDNN_VERSION "${CUDNN_VERSION_MAJOR}.${CUDNN_VERSION_MINOR}.${CUDNN_VERSION_PATCH}") + endif() + + message(STATUS "Found cuDNN: ver. ${CUDNN_VERSION} found (include: ${CUDNN_INCLUDE}, library: ${CUDNN_LIBRARY})") + + string(COMPARE LESS "${CUDNN_VERSION_MAJOR}" 3 cuDNNVersionIncompatible) + if(cuDNNVersionIncompatible) + message(FATAL_ERROR "cuDNN version >3 is required.") + endif() + + set(CUDNN_VERSION "${CUDNN_VERSION}" PARENT_SCOPE) mark_as_advanced(CUDNN_INCLUDE CUDNN_LIBRARY CUDNN_ROOT) - message(STATUS "Found cuDNN (include: ${CUDNN_INCLUDE}, library: ${CUDNN_LIBRARY})") + endif() endfunction() - ################################################################################################ ### Non macro section ################################################################################################ @@ -202,17 +240,17 @@ endif() set(HAVE_CUDA TRUE) message(STATUS "CUDA detected: " ${CUDA_VERSION}) -include_directories(SYSTEM ${CUDA_INCLUDE_DIRS}) -list(APPEND Caffe_LINKER_LIBS ${CUDA_CUDART_LIBRARY} - ${CUDA_curand_LIBRARY} ${CUDA_CUBLAS_LIBRARIES}) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${CUDA_INCLUDE_DIRS}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${CUDA_CUDART_LIBRARY} + ${CUDA_curand_LIBRARY} ${CUDA_CUBLAS_LIBRARIES}) # cudnn detection if(USE_CUDNN) detect_cuDNN() if(HAVE_CUDNN) - add_definitions(-DUSE_CUDNN) - include_directories(SYSTEM ${CUDNN_INCLUDE}) - list(APPEND Caffe_LINKER_LIBS ${CUDNN_LIBRARY}) + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_CUDNN) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${CUDNN_INCLUDE}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${CUDNN_LIBRARY}) endif() endif() @@ -246,7 +284,7 @@ mark_as_advanced(CUDA_SDK_ROOT_DIR CUDA_SEPARABLE_COMPILATION) if(APPLE) caffe_detect_darwin_version(OSX_VERSION) - # OSX 10.9 and higher uses clang/libc++ by default which is incompartible with old CUDA toolkits + # OSX 10.9 and higher uses clang/libc++ by default which is incompatible with old CUDA toolkits if(OSX_VERSION VERSION_GREATER 10.8) # enabled by default if and only if CUDA version is less than 7.0 caffe_option(USE_libstdcpp "Use libstdc++ instead of libc++" (CUDA_VERSION VERSION_LESS 7.0)) diff --git a/cmake/Dependencies.cmake b/cmake/Dependencies.cmake index 7c86dd55a..c48255c89 100644 --- a/cmake/Dependencies.cmake +++ b/cmake/Dependencies.cmake @@ -1,69 +1,108 @@ -# This list is required for static linking and exported to CaffeConfig.cmake +# These lists are later turned into target properties on main caffe library target set(Caffe_LINKER_LIBS "") +set(Caffe_INCLUDE_DIRS "") +set(Caffe_DEFINITIONS "") +set(Caffe_COMPILE_OPTIONS "") # ---[ Boost -find_package(Boost 1.46 REQUIRED COMPONENTS system thread) -include_directories(SYSTEM ${Boost_INCLUDE_DIR}) -list(APPEND Caffe_LINKER_LIBS ${Boost_LIBRARIES}) +find_package(Boost 1.54 REQUIRED COMPONENTS system thread filesystem) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${Boost_INCLUDE_DIRS}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${Boost_LIBRARIES}) # ---[ Threads find_package(Threads REQUIRED) -list(APPEND Caffe_LINKER_LIBS ${CMAKE_THREAD_LIBS_INIT}) +list(APPEND Caffe_LINKER_LIBS PRIVATE ${CMAKE_THREAD_LIBS_INIT}) + +# ---[ OpenMP +if(USE_OPENMP) + # Ideally, this should be provided by the BLAS library IMPORTED target. However, + # nobody does this, so we need to link to OpenMP explicitly and have the maintainer + # to flick the switch manually as needed. + # + # Moreover, OpenMP package does not provide an IMPORTED target as well, and the + # suggested way of linking to OpenMP is to append to CMAKE_{C,CXX}_FLAGS. + # However, this naïve method will force any user of Caffe to add the same kludge + # into their buildsystem again, so we put these options into per-target PUBLIC + # compile options and link flags, so that they will be exported properly. + find_package(OpenMP REQUIRED) + list(APPEND Caffe_LINKER_LIBS PRIVATE ${OpenMP_CXX_FLAGS}) + list(APPEND Caffe_COMPILE_OPTIONS PRIVATE ${OpenMP_CXX_FLAGS}) +endif() # ---[ Google-glog include("cmake/External/glog.cmake") -include_directories(SYSTEM ${GLOG_INCLUDE_DIRS}) -list(APPEND Caffe_LINKER_LIBS ${GLOG_LIBRARIES}) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${GLOG_INCLUDE_DIRS}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${GLOG_LIBRARIES}) # ---[ Google-gflags include("cmake/External/gflags.cmake") -include_directories(SYSTEM ${GFLAGS_INCLUDE_DIRS}) -list(APPEND Caffe_LINKER_LIBS ${GFLAGS_LIBRARIES}) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${GFLAGS_INCLUDE_DIRS}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${GFLAGS_LIBRARIES}) # ---[ Google-protobuf include(cmake/ProtoBuf.cmake) # ---[ HDF5 find_package(HDF5 COMPONENTS HL REQUIRED) -include_directories(SYSTEM ${HDF5_INCLUDE_DIRS} ${HDF5_HL_INCLUDE_DIR}) -list(APPEND Caffe_LINKER_LIBS ${HDF5_LIBRARIES}) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${HDF5_INCLUDE_DIRS}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${HDF5_LIBRARIES} ${HDF5_HL_LIBRARIES}) # ---[ LMDB -find_package(LMDB REQUIRED) -include_directories(SYSTEM ${LMDB_INCLUDE_DIR}) -list(APPEND Caffe_LINKER_LIBS ${LMDB_LIBRARIES}) +if(USE_LMDB) + find_package(LMDB REQUIRED) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${LMDB_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${LMDB_LIBRARIES}) + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_LMDB) + if(ALLOW_LMDB_NOLOCK) + list(APPEND Caffe_DEFINITIONS PRIVATE -DALLOW_LMDB_NOLOCK) + endif() +endif() # ---[ LevelDB -find_package(LevelDB REQUIRED) -include_directories(SYSTEM ${LevelDB_INCLUDE}) -list(APPEND Caffe_LINKER_LIBS ${LevelDB_LIBRARIES}) +if(USE_LEVELDB) + find_package(LevelDB REQUIRED) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${LevelDB_INCLUDES}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${LevelDB_LIBRARIES}) + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_LEVELDB) +endif() # ---[ Snappy -find_package(Snappy REQUIRED) -include_directories(SYSTEM ${Snappy_INCLUDE_DIR}) -list(APPEND Caffe_LINKER_LIBS ${Snappy_LIBRARIES}) +if(USE_LEVELDB) + find_package(Snappy REQUIRED) + list(APPEND Caffe_INCLUDE_DIRS PRIVATE ${Snappy_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PRIVATE ${Snappy_LIBRARIES}) +endif() # ---[ CUDA include(cmake/Cuda.cmake) if(NOT HAVE_CUDA) if(CPU_ONLY) - message("-- CUDA is disabled. Building without it...") + message(STATUS "-- CUDA is disabled. Building without it...") else() - message("-- CUDA is not detected by cmake. Building without it...") + message(WARNING "-- CUDA is not detected by cmake. Building without it...") endif() - # TODO: remove this not cross platform define in future. Use caffe_config.h instead. - add_definitions(-DCPU_ONLY) + list(APPEND Caffe_DEFINITIONS PUBLIC -DCPU_ONLY) +endif() + +if(USE_NCCL) + find_package(NCCL REQUIRED) + include_directories(SYSTEM ${NCCL_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS ${NCCL_LIBRARIES}) + add_definitions(-DUSE_NCCL) endif() # ---[ OpenCV -find_package(OpenCV QUIET COMPONENTS core highgui imgproc imgcodecs) -if(NOT OpenCV_FOUND) # if not OpenCV 3.x, then imgcodecs are not found - find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc) +if(USE_OPENCV) + find_package(OpenCV QUIET COMPONENTS core highgui imgproc imgcodecs) + if(NOT OpenCV_FOUND) # if not OpenCV 3.x, then imgcodecs are not found + find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc) + endif() + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${OpenCV_INCLUDE_DIRS}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${OpenCV_LIBS}) + message(STATUS "OpenCV found (${OpenCV_CONFIG_PATH})") + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_OPENCV) endif() -include_directories(SYSTEM ${OpenCV_INCLUDE_DIRS}) -list(APPEND Caffe_LINKER_LIBS ${OpenCV_LIBS}) -message(STATUS "OpenCV found (${OpenCV_CONFIG_PATH})") # ---[ BLAS if(NOT APPLE) @@ -72,22 +111,28 @@ if(NOT APPLE) if(BLAS STREQUAL "Atlas" OR BLAS STREQUAL "atlas") find_package(Atlas REQUIRED) - include_directories(SYSTEM ${Atlas_INCLUDE_DIR}) - list(APPEND Caffe_LINKER_LIBS ${Atlas_LIBRARIES}) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${Atlas_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${Atlas_LIBRARIES}) elseif(BLAS STREQUAL "Open" OR BLAS STREQUAL "open") find_package(OpenBLAS REQUIRED) - include_directories(SYSTEM ${OpenBLAS_INCLUDE_DIR}) - list(APPEND Caffe_LINKER_LIBS ${OpenBLAS_LIB}) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${OpenBLAS_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${OpenBLAS_LIB}) elseif(BLAS STREQUAL "MKL" OR BLAS STREQUAL "mkl") find_package(MKL REQUIRED) - include_directories(SYSTEM ${MKL_INCLUDE_DIR}) - list(APPEND Caffe_LINKER_LIBS ${MKL_LIBRARIES}) - add_definitions(-DUSE_MKL) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${MKL_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${MKL_LIBRARIES}) + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_MKL) endif() elseif(APPLE) find_package(vecLib REQUIRED) - include_directories(SYSTEM ${vecLib_INCLUDE_DIR}) - list(APPEND Caffe_LINKER_LIBS ${vecLib_LINKER_LIBS}) + list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${vecLib_INCLUDE_DIR}) + list(APPEND Caffe_LINKER_LIBS PUBLIC ${vecLib_LINKER_LIBS}) + + if(VECLIB_FOUND) + if(NOT vecLib_INCLUDE_DIR MATCHES "^/System/Library/Frameworks/vecLib.framework.*") + list(APPEND Caffe_DEFINITIONS PUBLIC -DUSE_ACCELERATE) + endif() + endif() endif() # ---[ Python @@ -99,18 +144,18 @@ if(BUILD_python) find_package(NumPy 1.7.1) # Find the matching boost python implementation set(version ${PYTHONLIBS_VERSION_STRING}) - - STRING( REPLACE "." "" boost_py_version ${version} ) + + STRING( REGEX REPLACE "[^0-9]" "" boost_py_version ${version} ) find_package(Boost 1.46 COMPONENTS "python-py${boost_py_version}") set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_version}_FOUND}) - + while(NOT "${version}" STREQUAL "" AND NOT Boost_PYTHON_FOUND) STRING( REGEX REPLACE "([0-9.]+).[0-9]+" "\\1" version ${version} ) - - STRING( REPLACE "." "" boost_py_version ${version} ) + + STRING( REGEX REPLACE "[^0-9]" "" boost_py_version ${version} ) find_package(Boost 1.46 COMPONENTS "python-py${boost_py_version}") set(Boost_PYTHON_FOUND ${Boost_PYTHON-PY${boost_py_version}_FOUND}) - + STRING( REGEX MATCHALL "([0-9.]+).[0-9]+" has_more_version ${version} ) if("${has_more_version}" STREQUAL "") break() @@ -129,9 +174,9 @@ if(BUILD_python) if(PYTHONLIBS_FOUND AND NUMPY_FOUND AND Boost_PYTHON_FOUND) set(HAVE_PYTHON TRUE) if(BUILD_python_layer) - add_definitions(-DWITH_PYTHON_LAYER) - include_directories(SYSTEM ${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} ${Boost_INCLUDE_DIRS}) - list(APPEND Caffe_LINKER_LIBS ${PYTHON_LIBRARIES} ${Boost_LIBRARIES}) + list(APPEND Caffe_DEFINITIONS PRIVATE -DWITH_PYTHON_LAYER) + list(APPEND Caffe_INCLUDE_DIRS PRIVATE ${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} PUBLIC ${Boost_INCLUDE_DIRS}) + list(APPEND Caffe_LINKER_LIBS PRIVATE ${PYTHON_LIBRARIES} PUBLIC ${Boost_LIBRARIES}) endif() endif() endif() diff --git a/cmake/External/glog.cmake b/cmake/External/glog.cmake index a44672f27..f9d0549cd 100644 --- a/cmake/External/glog.cmake +++ b/cmake/External/glog.cmake @@ -37,6 +37,7 @@ if (NOT __GLOG_INCLUDED) GIT_TAG "v0.3.4" UPDATE_COMMAND "" INSTALL_DIR ${gflags_INSTALL} + PATCH_COMMAND autoreconf -i ${glog_PREFIX}/src/glog CONFIGURE_COMMAND env "CFLAGS=${GLOG_C_FLAGS}" "CXXFLAGS=${GLOG_CXX_FLAGS}" ${glog_PREFIX}/src/glog/configure --prefix=${glog_INSTALL} --enable-shared=no --enable-static=yes --with-gflags=${GFLAGS_LIBRARY_DIRS}/.. LOG_DOWNLOAD 1 LOG_CONFIGURE 1 diff --git a/cmake/Modules/FindAtlas.cmake b/cmake/Modules/FindAtlas.cmake index 6e1564351..7ffa6393b 100644 --- a/cmake/Modules/FindAtlas.cmake +++ b/cmake/Modules/FindAtlas.cmake @@ -26,9 +26,9 @@ set(Atlas_LIB_SEARCH_PATHS find_path(Atlas_CBLAS_INCLUDE_DIR NAMES cblas.h PATHS ${Atlas_INCLUDE_SEARCH_PATHS}) find_path(Atlas_CLAPACK_INCLUDE_DIR NAMES clapack.h PATHS ${Atlas_INCLUDE_SEARCH_PATHS}) -find_library(Atlas_CBLAS_LIBRARY NAMES ptcblas_r ptcblas cblas_r cblas PATHS ${Atlas_LIB_SEARCH_PATHS}) -find_library(Atlas_BLAS_LIBRARY NAMES atlas_r atlas PATHS ${Atlas_LIB_SEARCH_PATHS}) -find_library(Atlas_LAPACK_LIBRARY NAMES alapack_r alapack lapack_atlas PATHS ${Atlas_LIB_SEARCH_PATHS}) +find_library(Atlas_CBLAS_LIBRARY NAMES ptcblas_r ptcblas cblas_r cblas PATHS ${Atlas_LIB_SEARCH_PATHS}) +find_library(Atlas_BLAS_LIBRARY NAMES atlas_r atlas PATHS ${Atlas_LIB_SEARCH_PATHS}) +find_library(Atlas_LAPACK_LIBRARY NAMES lapack alapack_r alapack lapack_atlas atllapack PATHS ${Atlas_LIB_SEARCH_PATHS}) set(LOOKED_FOR Atlas_CBLAS_INCLUDE_DIR @@ -47,6 +47,6 @@ if(ATLAS_FOUND) set(Atlas_LIBRARIES ${Atlas_LAPACK_LIBRARY} ${Atlas_CBLAS_LIBRARY} ${Atlas_BLAS_LIBRARY}) mark_as_advanced(${LOOKED_FOR}) - message(STATUS "Found Atlas (include: ${Atlas_CBLAS_INCLUDE_DIR}, library: ${Atlas_BLAS_LIBRARY})") + message(STATUS "Found Atlas (include: ${Atlas_CBLAS_INCLUDE_DIR} library: ${Atlas_BLAS_LIBRARY} lapack: ${Atlas_LAPACK_LIBRARY}") endif(ATLAS_FOUND) diff --git a/cmake/Modules/FindMKL.cmake b/cmake/Modules/FindMKL.cmake index d2012db57..5ab93b2d6 100644 --- a/cmake/Modules/FindMKL.cmake +++ b/cmake/Modules/FindMKL.cmake @@ -20,7 +20,7 @@ caffe_option(MKL_MULTI_THREADED "Use multi-threading" ON IF NOT MKL_USE_SINGL # ---[ Root folders set(INTEL_ROOT "/opt/intel" CACHE PATH "Folder contains intel libs") -find_path(MKL_ROOT include/mkl.h PATHS $ENV{MKL_ROOT} ${INTEL_ROOT}/mkl +find_path(MKL_ROOT include/mkl.h PATHS $ENV{MKLROOT} ${INTEL_ROOT}/mkl DOC "Folder contains MKL") # ---[ Find include dir diff --git a/cmake/Modules/FindNCCL.cmake b/cmake/Modules/FindNCCL.cmake new file mode 100644 index 000000000..c88459341 --- /dev/null +++ b/cmake/Modules/FindNCCL.cmake @@ -0,0 +1,26 @@ +set(NCCL_INC_PATHS + /usr/include + /usr/local/include + $ENV{NCCL_DIR}/include + ) + +set(NCCL_LIB_PATHS + /lib + /lib64 + /usr/lib + /usr/lib64 + /usr/local/lib + /usr/local/lib64 + $ENV{NCCL_DIR}/lib + ) + +find_path(NCCL_INCLUDE_DIR NAMES nccl.h PATHS ${NCCL_INC_PATHS}) +find_library(NCCL_LIBRARIES NAMES nccl PATHS ${NCCL_LIB_PATHS}) + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIR NCCL_LIBRARIES) + +if (NCCL_FOUND) + message(STATUS "Found NCCL (include: ${NCCL_INCLUDE_DIR}, library: ${NCCL_LIBRARIES})") + mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARIES) +endif () diff --git a/cmake/Modules/FindvecLib.cmake b/cmake/Modules/FindvecLib.cmake index 9600da436..8eaab5947 100644 --- a/cmake/Modules/FindvecLib.cmake +++ b/cmake/Modules/FindvecLib.cmake @@ -14,9 +14,10 @@ set(__veclib_include_suffix "Frameworks/vecLib.framework/Versions/Current/Header find_path(vecLib_INCLUDE_DIR vecLib.h DOC "vecLib include directory" - PATHS /System/Library/${__veclib_include_suffix} - /System/Library/Frameworks/Accelerate.framework/Versions/Current/${__veclib_include_suffix} - /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.9.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/) + PATHS /System/Library/Frameworks/Accelerate.framework/Versions/Current/${__veclib_include_suffix} + /System/Library/${__veclib_include_suffix} + /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/ + NO_DEFAULT_PATH) include(FindPackageHandleStandardArgs) find_package_handle_standard_args(vecLib DEFAULT_MSG vecLib_INCLUDE_DIR) diff --git a/cmake/ProtoBuf.cmake b/cmake/ProtoBuf.cmake index fc799bd39..8005b4487 100644 --- a/cmake/ProtoBuf.cmake +++ b/cmake/ProtoBuf.cmake @@ -2,8 +2,8 @@ # the standard cmake script with version and python generation support find_package( Protobuf REQUIRED ) -include_directories(SYSTEM ${PROTOBUF_INCLUDE_DIR}) -list(APPEND Caffe_LINKER_LIBS ${PROTOBUF_LIBRARIES}) +list(APPEND Caffe_INCLUDE_DIRS PUBLIC ${PROTOBUF_INCLUDE_DIR}) +list(APPEND Caffe_LINKER_LIBS PUBLIC ${PROTOBUF_LIBRARIES}) # As of Ubuntu 14.04 protoc is no longer a part of libprotobuf-dev package # and should be installed separately as in: sudo apt-get install protobuf-compiler @@ -23,7 +23,7 @@ endif() # place where to generate protobuf sources set(proto_gen_folder "${PROJECT_BINARY_DIR}/include/caffe/proto") -include_directories(SYSTEM "${PROJECT_BINARY_DIR}/include") +include_directories("${PROJECT_BINARY_DIR}/include") set(PROTOBUF_GENERATE_CPP_APPEND_PATH TRUE) diff --git a/cmake/Summary.cmake b/cmake/Summary.cmake index e094ac004..ed8c25268 100644 --- a/cmake/Summary.cmake +++ b/cmake/Summary.cmake @@ -101,7 +101,7 @@ function(caffe_print_configuration_summary) caffe_status("") caffe_status("******************* Caffe Configuration Summary *******************") caffe_status("General:") - caffe_status(" Version : ${Caffe_VERSION}") + caffe_status(" Version : ${CAFFE_TARGET_VERSION}") caffe_status(" Git : ${Caffe_GIT_VERSION}") caffe_status(" System : ${CMAKE_SYSTEM_NAME}") caffe_status(" C++ compiler : ${CMAKE_CXX_COMPILER}") @@ -114,6 +114,11 @@ function(caffe_print_configuration_summary) caffe_status(" BUILD_matlab : ${BUILD_matlab}") caffe_status(" BUILD_docs : ${BUILD_docs}") caffe_status(" CPU_ONLY : ${CPU_ONLY}") + caffe_status(" USE_OPENCV : ${USE_OPENCV}") + caffe_status(" USE_LEVELDB : ${USE_LEVELDB}") + caffe_status(" USE_LMDB : ${USE_LMDB}") + caffe_status(" USE_NCCL : ${USE_NCCL}") + caffe_status(" ALLOW_LMDB_NOLOCK : ${ALLOW_LMDB_NOLOCK}") caffe_status("") caffe_status("Dependencies:") caffe_status(" BLAS : " APPLE THEN "Yes (vecLib)" ELSE "Yes (${BLAS})") @@ -121,10 +126,16 @@ function(caffe_print_configuration_summary) caffe_status(" glog : Yes") caffe_status(" gflags : Yes") caffe_status(" protobuf : " PROTOBUF_FOUND THEN "Yes (ver. ${PROTOBUF_VERSION})" ELSE "No" ) - caffe_status(" lmdb : " LMDB_FOUND THEN "Yes (ver. ${LMDB_VERSION})" ELSE "No") - caffe_status(" Snappy : " SNAPPY_FOUND THEN "Yes (ver. ${Snappy_VERSION})" ELSE "No" ) - caffe_status(" LevelDB : " LEVELDB_FOUND THEN "Yes (ver. ${LEVELDB_VERSION})" ELSE "No") - caffe_status(" OpenCV : Yes (ver. ${OpenCV_VERSION})") + if(USE_LMDB) + caffe_status(" lmdb : " LMDB_FOUND THEN "Yes (ver. ${LMDB_VERSION})" ELSE "No") + endif() + if(USE_LEVELDB) + caffe_status(" LevelDB : " LEVELDB_FOUND THEN "Yes (ver. ${LEVELDB_VERSION})" ELSE "No") + caffe_status(" Snappy : " SNAPPY_FOUND THEN "Yes (ver. ${Snappy_VERSION})" ELSE "No" ) + endif() + if(USE_OPENCV) + caffe_status(" OpenCV : Yes (ver. ${OpenCV_VERSION})") + endif() caffe_status(" CUDA : " HAVE_CUDA THEN "Yes (ver. ${CUDA_VERSION})" ELSE "No" ) caffe_status("") if(HAVE_CUDA) @@ -132,7 +143,7 @@ function(caffe_print_configuration_summary) caffe_status(" Target GPU(s) : ${CUDA_ARCH_NAME}" ) caffe_status(" GPU arch(s) : ${NVCC_FLAGS_EXTRA_readable}") if(USE_CUDNN) - caffe_status(" cuDNN : " HAVE_CUDNN THEN "Yes" ELSE "Not found") + caffe_status(" cuDNN : " HAVE_CUDNN THEN "Yes (ver. ${CUDNN_VERSION})" ELSE "Not found") else() caffe_status(" cuDNN : Disabled") endif() @@ -165,4 +176,3 @@ function(caffe_print_configuration_summary) caffe_status(" Install path : ${CMAKE_INSTALL_PREFIX}") caffe_status("") endfunction() - diff --git a/cmake/Targets.cmake b/cmake/Targets.cmake index 2401f252e..090f86c55 100644 --- a/cmake/Targets.cmake +++ b/cmake/Targets.cmake @@ -1,16 +1,17 @@ ################################################################################################ # Defines global Caffe_LINK flag, This flag is required to prevent linker from excluding # some objects which are not addressed directly but are registered via static constructors -if(BUILD_SHARED_LIBS) - set(Caffe_LINK caffe) -else() - if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang") - set(Caffe_LINK -Wl,-force_load caffe) - elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") - set(Caffe_LINK -Wl,--whole-archive caffe -Wl,--no-whole-archive) +macro(caffe_set_caffe_link) + if(BUILD_SHARED_LIBS) + set(Caffe_LINK caffe) + else() + if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang") + set(Caffe_LINK -Wl,-force_load caffe) + elseif("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") + set(Caffe_LINK -Wl,--whole-archive caffe -Wl,--no-whole-archive) + endif() endif() -endif() - +endmacro() ################################################################################################ # Convenient command to setup source group for IDEs that support this feature (VS, XCode) # Usage: @@ -87,13 +88,13 @@ function(caffe_pickup_caffe_sources root) file(GLOB_RECURSE proto_files ${root}/src/caffe/*.proto) list(APPEND srcs ${proto_files}) - # convet to absolute paths + # convert to absolute paths caffe_convert_absolute_paths(srcs) caffe_convert_absolute_paths(cuda) caffe_convert_absolute_paths(test_srcs) caffe_convert_absolute_paths(test_cuda) - # propogate to parent scope + # propagate to parent scope set(srcs ${srcs} PARENT_SCOPE) set(cuda ${cuda} PARENT_SCOPE) set(test_srcs ${test_srcs} PARENT_SCOPE) @@ -101,7 +102,7 @@ function(caffe_pickup_caffe_sources root) endfunction() ################################################################################################ -# Short command for setting defeault target properties +# Short command for setting default target properties # Usage: # caffe_default_properties() function(caffe_default_properties target) @@ -110,7 +111,7 @@ function(caffe_default_properties target) ARCHIVE_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib" LIBRARY_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib" RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/bin") - # make sure we build all external depepdencies first + # make sure we build all external dependencies first if (DEFINED external_project_dependencies) add_dependencies(${target} ${external_project_dependencies}) endif() diff --git a/cmake/Templates/CaffeConfig.cmake.in b/cmake/Templates/CaffeConfig.cmake.in index 8f23742e5..77c4059e5 100644 --- a/cmake/Templates/CaffeConfig.cmake.in +++ b/cmake/Templates/CaffeConfig.cmake.in @@ -9,37 +9,36 @@ # After successful configuration the following variables # will be defined: # -# Caffe_INCLUDE_DIRS - Caffe include directories -# Caffe_LIBRARIES - libraries to link against -# Caffe_DEFINITIONS - a list of definitions to pass to compiler +# Caffe_LIBRARIES - IMPORTED targets to link against +# (There is no Caffe_INCLUDE_DIRS and Caffe_DEFINITIONS +# because they are specified in the IMPORTED target interface.) # # Caffe_HAVE_CUDA - signals about CUDA support # Caffe_HAVE_CUDNN - signals about cuDNN support -# OpenCV dependency +# OpenCV dependency (optional) -if(NOT OpenCV_FOUND) - set(Caffe_OpenCV_CONFIG_PATH "@OpenCV_CONFIG_PATH@") - if(Caffe_OpenCV_CONFIG_PATH) - get_filename_component(Caffe_OpenCV_CONFIG_PATH ${Caffe_OpenCV_CONFIG_PATH} ABSOLUTE) +if(@USE_OPENCV@) + if(NOT OpenCV_FOUND) + set(Caffe_OpenCV_CONFIG_PATH "@OpenCV_CONFIG_PATH@") + if(Caffe_OpenCV_CONFIG_PATH) + get_filename_component(Caffe_OpenCV_CONFIG_PATH ${Caffe_OpenCV_CONFIG_PATH} ABSOLUTE) - if(EXISTS ${Caffe_OpenCV_CONFIG_PATH} AND NOT TARGET opencv_core) - message(STATUS "Caffe: using OpenCV config from ${Caffe_OpenCV_CONFIG_PATH}") - include(${Caffe_OpenCV_CONFIG_PATH}/OpenCVModules.cmake) - endif() + if(EXISTS ${Caffe_OpenCV_CONFIG_PATH} AND NOT TARGET opencv_core) + message(STATUS "Caffe: using OpenCV config from ${Caffe_OpenCV_CONFIG_PATH}") + include(${Caffe_OpenCV_CONFIG_PATH}/OpenCVConfig.cmake) + endif() - else() - find_package(OpenCV REQUIRED) + else() + find_package(OpenCV REQUIRED) + endif() + unset(Caffe_OpenCV_CONFIG_PATH) endif() - unset(Caffe_OpenCV_CONFIG_PATH) endif() # Compute paths get_filename_component(Caffe_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH) -set(Caffe_INCLUDE_DIRS "@Caffe_INCLUDE_DIRS@") - -@Caffe_INSTALL_INCLUDE_DIR_APPEND_COMMAND@ # Our library dependencies if(NOT TARGET caffe AND NOT caffe_BINARY_DIR) @@ -47,11 +46,9 @@ if(NOT TARGET caffe AND NOT caffe_BINARY_DIR) endif() # List of IMPORTED libs created by CaffeTargets.cmake +# These targets already specify all needed definitions and include pathes set(Caffe_LIBRARIES caffe) -# Definitions -set(Caffe_DEFINITIONS "@Caffe_DEFINITIONS@") - # Cuda support variables set(Caffe_CPU_ONLY @CPU_ONLY@) set(Caffe_HAVE_CUDA @HAVE_CUDA@) diff --git a/cmake/Templates/caffe_config.h.in b/cmake/Templates/caffe_config.h.in index 6039e8f6b..2080c63df 100644 --- a/cmake/Templates/caffe_config.h.in +++ b/cmake/Templates/caffe_config.h.in @@ -4,29 +4,9 @@ /* Binaries directory */ #define BINARY_FOLDER "${PROJECT_BINARY_DIR}" -/* NVIDA Cuda */ -#cmakedefine HAVE_CUDA - -/* NVIDA cuDNN */ -#cmakedefine HAVE_CUDNN -#cmakedefine USE_CUDNN - -/* NVIDA cuDNN */ -#cmakedefine CPU_ONLY +/* This is an absolute path so that we can run test from any build + * directory */ +#define ABS_TEST_DATA_DIR "${PROJECT_SOURCE_DIR}/src/caffe/test/test_data/" /* Test device */ #define CUDA_TEST_DEVICE ${CUDA_TEST_DEVICE} - -/* Temporary (TODO: remove) */ -#if 1 - #define CMAKE_SOURCE_DIR SOURCE_FOLDER "/src/" - #define EXAMPLES_SOURCE_DIR BINARY_FOLDER "/examples/" - #define CMAKE_EXT ".gen.cmake" -#else - #define CMAKE_SOURCE_DIR "src/" - #define EXAMPLES_SOURCE_DIR "examples/" - #define CMAKE_EXT "" -#endif - -/* Matlab */ -#cmakedefine HAVE_MATLAB diff --git a/cmake/Uninstall.cmake.in b/cmake/Uninstall.cmake.in new file mode 100644 index 000000000..bb8e2964e --- /dev/null +++ b/cmake/Uninstall.cmake.in @@ -0,0 +1,26 @@ +if(NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") + message(FATAL_ERROR "Cannot find install manifest: @CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") +endif(NOT EXISTS "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt") + +if (NOT DEFINED CMAKE_INSTALL_PREFIX) + set (CMAKE_INSTALL_PREFIX "@CMAKE_INSTALL_PREFIX@") +endif () + message(${CMAKE_INSTALL_PREFIX}) + +file(READ "@CMAKE_CURRENT_BINARY_DIR@/install_manifest.txt" files) +string(REGEX REPLACE "\n" ";" files "${files}") +foreach(file ${files}) + message(STATUS "Uninstalling $ENV{DESTDIR}${file}") + if(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") + exec_program( + "@CMAKE_COMMAND@" ARGS "-E remove \"$ENV{DESTDIR}${file}\"" + OUTPUT_VARIABLE rm_out + RETURN_VALUE rm_retval + ) + if(NOT "${rm_retval}" STREQUAL 0) + message(FATAL_ERROR "Problem when removing $ENV{DESTDIR}${file}") + endif(NOT "${rm_retval}" STREQUAL 0) + else(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") + message(STATUS "File $ENV{DESTDIR}${file} does not exist.") + endif(IS_SYMLINK "$ENV{DESTDIR}${file}" OR EXISTS "$ENV{DESTDIR}${file}") +endforeach(file) \ No newline at end of file diff --git a/cmake/Utils.cmake b/cmake/Utils.cmake index a1bde1ae9..653de5fdf 100644 --- a/cmake/Utils.cmake +++ b/cmake/Utils.cmake @@ -346,10 +346,11 @@ function(caffe_parse_linker_libs Caffe_LINKER_LIBS_variable folders_var flags_va elseif(lib MATCHES "^-l.*") list(APPEND libflags ${lib}) elseif(IS_ABSOLUTE ${lib}) - get_filename_component(name_we ${lib} NAME_WE) get_filename_component(folder ${lib} PATH) + get_filename_component(filename ${lib} NAME) + string(REGEX REPLACE "\\.[^.]*$" "" filename_without_shortest_ext ${filename}) - string(REGEX MATCH "^lib(.*)" __match ${name_we}) + string(REGEX MATCH "^lib(.*)" __match ${filename_without_shortest_ext}) list(APPEND libflags -l${CMAKE_MATCH_1}) list(APPEND folders ${folder}) else() diff --git a/data/cifar10/get_cifar10.sh b/data/cifar10/get_cifar10.sh index 623c84851..423f10989 100755 --- a/data/cifar10/get_cifar10.sh +++ b/data/cifar10/get_cifar10.sh @@ -2,7 +2,7 @@ # This scripts downloads the CIFAR10 (binary version) data and unzips it. DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR +cd "$DIR" echo "Downloading..." diff --git a/data/ilsvrc12/get_ilsvrc_aux.sh b/data/ilsvrc12/get_ilsvrc_aux.sh index b9b85d21e..dc0d0a727 100755 --- a/data/ilsvrc12/get_ilsvrc_aux.sh +++ b/data/ilsvrc12/get_ilsvrc_aux.sh @@ -8,11 +8,11 @@ # - the training splits with labels DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR +cd "$DIR" echo "Downloading..." -wget http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz +wget -c http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz echo "Unzipping..." diff --git a/data/mnist/get_mnist.sh b/data/mnist/get_mnist.sh index 8eb6aeedf..ecadffa44 100755 --- a/data/mnist/get_mnist.sh +++ b/data/mnist/get_mnist.sh @@ -2,23 +2,14 @@ # This scripts downloads the mnist data and unzips it. DIR="$( cd "$(dirname "$0")" ; pwd -P )" -cd $DIR +cd "$DIR" echo "Downloading..." -wget --no-check-certificate http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz -wget --no-check-certificate http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz -wget --no-check-certificate http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz -wget --no-check-certificate http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz - -echo "Unzipping..." - -gunzip train-images-idx3-ubyte.gz -gunzip train-labels-idx1-ubyte.gz -gunzip t10k-images-idx3-ubyte.gz -gunzip t10k-labels-idx1-ubyte.gz - -# Creation is split out because leveldb sometimes causes segfault -# and needs to be re-created. - -echo "Done." +for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte +do + if [ ! -e $fname ]; then + wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz + gunzip ${fname}.gz + fi +done diff --git a/docker/README.md b/docker/README.md new file mode 100644 index 000000000..f9c7c756f --- /dev/null +++ b/docker/README.md @@ -0,0 +1,47 @@ +### Running an official image + +You can run one of the automatic [builds](https://hub.docker.com/r/bvlc/caffe). E.g. for the CPU version: + +`docker run -ti bvlc/caffe:cpu caffe --version` + +or for GPU support (You need a CUDA 8.0 capable driver and +[nvidia-docker](https://github.com/NVIDIA/nvidia-docker)): + +`nvidia-docker run -ti bvlc/caffe:gpu caffe --version` + +You might see an error about libdc1394, ignore it. + +### Docker run options + +By default caffe runs as root, thus any output files, e.g. snapshots, will be owned +by root. It also runs by default in a container-private folder. + +You can change this using flags, like user (-u), current directory, and volumes (-w and -v). +E.g. this behaves like the usual caffe executable: + +`docker run --rm -u $(id -u):$(id -g) -v $(pwd):$(pwd) -w $(pwd) bvlc/caffe:cpu caffe train --solver=example_solver.prototxt` + +Containers can also be used interactively, specifying e.g. `bash` or `ipython` +instead of `caffe`. + +``` +docker run -ti bvlc/caffe:cpu ipython +import caffe +... +``` + +The caffe build requirements are included in the container, so this can be used to +build and run custom versions of caffe. Also, `caffe/python` is in PATH, so python +utilities can be used directly, e.g. `draw_net.py`, `classify.py`, or `detect.py`. + +### Building images yourself + +Examples: + +`docker build -t caffe:cpu cpu` + +`docker build -t caffe:gpu gpu` + +You can also build Caffe and run the tests in the image: + +`docker run -ti caffe:cpu bash -c "cd /opt/caffe/build; make runtest"` diff --git a/docker/cpu/Dockerfile b/docker/cpu/Dockerfile new file mode 100644 index 000000000..67e2e61bd --- /dev/null +++ b/docker/cpu/Dockerfile @@ -0,0 +1,46 @@ +FROM ubuntu:16.04 +LABEL maintainer caffe-maint@googlegroups.com + +RUN apt-get update && apt-get install -y --no-install-recommends \ + build-essential \ + cmake \ + git \ + wget \ + libatlas-base-dev \ + libboost-all-dev \ + libgflags-dev \ + libgoogle-glog-dev \ + libhdf5-serial-dev \ + libleveldb-dev \ + liblmdb-dev \ + libopencv-dev \ + libprotobuf-dev \ + libsnappy-dev \ + protobuf-compiler \ + python-dev \ + python-numpy \ + python-pip \ + python-setuptools \ + python-scipy && \ + rm -rf /var/lib/apt/lists/* + +ENV CAFFE_ROOT=/opt/caffe +WORKDIR $CAFFE_ROOT + +# FIXME: use ARG instead of ENV once DockerHub supports this +# https://github.com/docker/hub-feedback/issues/460 +ENV CLONE_TAG=1.0 + +RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ + pip install --upgrade pip && \ + cd python && for req in $(cat requirements.txt) pydot; do pip install $req; done && cd .. && \ + mkdir build && cd build && \ + cmake -DCPU_ONLY=1 .. && \ + make -j"$(nproc)" + +ENV PYCAFFE_ROOT $CAFFE_ROOT/python +ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH +ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH +RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig + +WORKDIR /workspace diff --git a/docker/gpu/Dockerfile b/docker/gpu/Dockerfile new file mode 100644 index 000000000..dcdbdf326 --- /dev/null +++ b/docker/gpu/Dockerfile @@ -0,0 +1,47 @@ +FROM nvidia/cuda:8.0-cudnn6-devel-ubuntu16.04 +LABEL maintainer caffe-maint@googlegroups.com + +RUN apt-get update && apt-get install -y --no-install-recommends \ + build-essential \ + cmake \ + git \ + wget \ + libatlas-base-dev \ + libboost-all-dev \ + libgflags-dev \ + libgoogle-glog-dev \ + libhdf5-serial-dev \ + libleveldb-dev \ + liblmdb-dev \ + libopencv-dev \ + libprotobuf-dev \ + libsnappy-dev \ + protobuf-compiler \ + python-dev \ + python-numpy \ + python-pip \ + python-setuptools \ + python-scipy && \ + rm -rf /var/lib/apt/lists/* + +ENV CAFFE_ROOT=/opt/caffe +WORKDIR $CAFFE_ROOT + +# FIXME: use ARG instead of ENV once DockerHub supports this +# https://github.com/docker/hub-feedback/issues/460 +ENV CLONE_TAG=1.0 + +RUN git clone -b ${CLONE_TAG} --depth 1 https://github.com/BVLC/caffe.git . && \ + pip install --upgrade pip && \ + cd python && for req in $(cat requirements.txt) pydot; do pip install $req; done && cd .. && \ + git clone https://github.com/NVIDIA/nccl.git && cd nccl && make -j install && cd .. && rm -rf nccl && \ + mkdir build && cd build && \ + cmake -DUSE_CUDNN=1 -DUSE_NCCL=1 .. && \ + make -j"$(nproc)" + +ENV PYCAFFE_ROOT $CAFFE_ROOT/python +ENV PYTHONPATH $PYCAFFE_ROOT:$PYTHONPATH +ENV PATH $CAFFE_ROOT/build/tools:$PYCAFFE_ROOT:$PATH +RUN echo "$CAFFE_ROOT/build/lib" >> /etc/ld.so.conf.d/caffe.conf && ldconfig + +WORKDIR /workspace diff --git a/docs/_layouts/default.html b/docs/_layouts/default.html index b8efe60bc..3799e95af 100644 --- a/docs/_layouts/default.html +++ b/docs/_layouts/default.html @@ -36,7 +36,7 @@

Caffe

- Deep learning framework by the BVLC + Deep learning framework by BAIR

Created by diff --git a/docs/development.md b/docs/development.md index 107c2c3b2..ec05bbee1 100644 --- a/docs/development.md +++ b/docs/development.md @@ -4,7 +4,7 @@ title: Developing and Contributing # Development and Contributing Caffe is developed with active participation of the community.
-The [BVLC](http://bvlc.eecs.berkeley.edu/) brewers welcome all contributions! +The [BAIR](http://bair.berkeley.edu/)/BVLC brewers welcome all contributions! The exact details of contributions are recorded by versioning and cited in our [acknowledgements](http://caffe.berkeleyvision.org/#acknowledgements). This method is impartial and always up-to-date. @@ -37,7 +37,7 @@ We absolutely appreciate any contribution to this effort! The `master` branch receives all new development including community contributions. We try to keep it in a reliable state, but it is the bleeding edge, and things do get broken every now and then. -BVLC maintainers will periodically make releases by marking stable checkpoints as tags and maintenance branches. [Past releases](https://github.com/BVLC/caffe/releases) are catalogued online. +BAIR maintainers will periodically make releases by marking stable checkpoints as tags and maintenance branches. [Past releases](https://github.com/BVLC/caffe/releases) are catalogued online. #### Issues & Pull Request Protocol diff --git a/docs/index.md b/docs/index.md index 932b3b58d..b633f7cfd 100644 --- a/docs/index.md +++ b/docs/index.md @@ -5,7 +5,7 @@ title: Deep Learning Framework # Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. -It is developed by the Berkeley Vision and Learning Center ([BVLC](http://bvlc.eecs.berkeley.edu)) and by community contributors. +It is developed by Berkeley AI Research ([BAIR](http://bair.berkeley.edu)) and by community contributors. [Yangqing Jia](http://daggerfs.com) created the project during his PhD at UC Berkeley. Caffe is released under the [BSD 2-Clause license](https://github.com/BVLC/caffe/blob/master/LICENSE). @@ -23,21 +23,20 @@ Thanks to these contributors the framework tracks the state-of-the-art in both c **Speed** makes Caffe perfect for research experiments and industry deployment. Caffe can process **over 60M images per day** with a single NVIDIA K40 GPU\*. -That's 1 ms/image for inference and 4 ms/image for learning. -We believe that Caffe is the fastest convnet implementation available. +That's 1 ms/image for inference and 4 ms/image for learning and more recent library versions and hardware are faster still. +We believe that Caffe is among the fastest convnet implementations available. **Community**: Caffe already powers academic research projects, startup prototypes, and even large-scale industrial applications in vision, speech, and multimedia. Join our community of brewers on the [caffe-users group](https://groups.google.com/forum/#!forum/caffe-users) and [Github](https://github.com/BVLC/caffe/).

-\* With the ILSVRC2012-winning [SuperVision](http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf) model and caching IO. -Consult performance [details](/performance_hardware.html). +\* With the ILSVRC2012-winning [SuperVision](http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf) model and prefetching IO.

## Documentation -- [DIY Deep Learning for Vision with Caffe](https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p)
-Tutorial presentation. +- [DIY Deep Learning for Vision with Caffe](https://docs.google.com/presentation/d/1UeKXVgRvvxg9OUdh_UiC5G71UMscNPlvArsWER41PsU/edit#slide=id.p) and [Caffe in a Day](https://docs.google.com/presentation/d/1HxGdeq8MPktHaPb-rlmYYQ723iWzq9ur6Gjo71YiG0Y/edit#slide=id.gc2fcdcce7_216_0)
+Tutorial presentation of the framework and a full-day crash course. - [Tutorial Documentation](/tutorial)
Practical guide and framework reference. - [arXiv / ACM MM '14 paper](http://arxiv.org/abs/1408.5093)
@@ -45,18 +44,13 @@ A 4-page report for the ACM Multimedia Open Source competition (arXiv:1408.5093v - [Installation instructions](/installation.html)
Tested on Ubuntu, Red Hat, OS X. * [Model Zoo](/model_zoo.html)
-BVLC suggests a standard distribution format for Caffe models, and provides trained models. +BAIR suggests a standard distribution format for Caffe models, and provides trained models. * [Developing & Contributing](/development.html)
Guidelines for development and contributing to Caffe. * [API Documentation](/doxygen/annotated.html)
Developer documentation automagically generated from code comments. - -### Examples - -{% assign examples = site.pages | where:'category','example' | sort: 'priority' %} -{% for page in examples %} --
{{page.title}}
{{page.description}}
-{% endfor %} +* [Benchmarking](https://docs.google.com/spreadsheets/d/1Yp4rqHpT7mKxOPbpzYeUfEFLnELDAgxSSBQKp5uKDGQ/edit#gid=0)
+Comparison of inference and learning for different networks and GPUs. ### Notebook Examples @@ -65,6 +59,13 @@ Developer documentation automagically generated from code comments. -
{{page.title}}
{{page.description}}
{% endfor %} +### Command Line Examples + +{% assign examples = site.pages | where:'category','example' | sort: 'priority' %} +{% for page in examples %} +-
{{page.title}}
{{page.description}}
+{% endfor %} + ## Citing Caffe Please cite Caffe in your publications if it helps your research: @@ -76,8 +77,7 @@ Please cite Caffe in your publications if it helps your research: Year = {2014} } -If you do publish a paper where Caffe helped your research, we encourage you to update the [publications wiki](https://github.com/BVLC/caffe/wiki/Publications). -Citations are also tracked automatically by [Google Scholar](http://scholar.google.com/scholar?oi=bibs&hl=en&cites=17333247995453974016). +If you do publish a paper where Caffe helped your research, we encourage you to cite the framework for tracking by [Google Scholar](https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=-ltRSM0AAAAJ:u5HHmVD_uO8C). ## Contacting Us @@ -85,17 +85,12 @@ Join the [caffe-users group](https://groups.google.com/forum/#!forum/caffe-users Framework development discussions and thorough bug reports are collected on [Issues](https://github.com/BVLC/caffe/issues). -Contact [caffe-dev](mailto:caffe-dev@googlegroups.com) if you have a confidential proposal for the framework *and the ability to act on it*. -Requests for features, explanations, or personal help will be ignored; post to [caffe-users](https://groups.google.com/forum/#!forum/caffe-users) instead. - -The core Caffe developers offer [consulting services](mailto:caffe-coldpress@googlegroups.com) for appropriate projects. - ## Acknowledgements -The BVLC Caffe developers would like to thank NVIDIA for GPU donation, A9 and Amazon Web Services for a research grant in support of Caffe development and reproducible research in deep learning, and BVLC PI [Trevor Darrell](http://www.eecs.berkeley.edu/~trevor/) for guidance. +The BAIR Caffe developers would like to thank NVIDIA for GPU donation, A9 and Amazon Web Services for a research grant in support of Caffe development and reproducible research in deep learning, and BAIR PI [Trevor Darrell](http://www.eecs.berkeley.edu/~trevor/) for guidance. -The BVLC members who have contributed to Caffe are (alphabetical by first name): -[Eric Tzeng](https://github.com/erictzeng), [Evan Shelhamer](http://imaginarynumber.net/), [Jeff Donahue](http://jeffdonahue.com/), [Jon Long](https://github.com/longjon), [Ross Girshick](http://www.cs.berkeley.edu/~rbg/), [Sergey Karayev](http://sergeykarayev.com/), [Sergio Guadarrama](http://www.eecs.berkeley.edu/~sguada/), and [Yangqing Jia](http://daggerfs.com/). +The BAIR members who have contributed to Caffe are (alphabetical by first name): +[Carl Doersch](http://www.carldoersch.com/), [Eric Tzeng](https://github.com/erictzeng), [Evan Shelhamer](http://imaginarynumber.net/), [Jeff Donahue](http://jeffdonahue.com/), [Jon Long](https://github.com/longjon), [Philipp Krähenbühl](http://www.philkr.net/), [Ronghang Hu](http://ronghanghu.com/), [Ross Girshick](http://www.cs.berkeley.edu/~rbg/), [Sergey Karayev](http://sergeykarayev.com/), [Sergio Guadarrama](http://www.eecs.berkeley.edu/~sguada/), [Takuya Narihira](https://github.com/tnarihi), and [Yangqing Jia](http://daggerfs.com/). The open-source community plays an important and growing role in Caffe's development. Check out the Github [project pulse](https://github.com/BVLC/caffe/pulse) for recent activity and the [contributors](https://github.com/BVLC/caffe/graphs/contributors) for the full list. @@ -103,4 +98,4 @@ Check out the Github [project pulse](https://github.com/BVLC/caffe/pulse) for re We sincerely appreciate your interest and contributions! If you'd like to contribute, please read the [developing & contributing](development.html) guide. -Yangqing would like to give a personal thanks to the NVIDIA Academic program for providing GPUs, [Oriol Vinyals](http://www1.icsi.berkeley.edu/~vinyals/) for discussions along the journey, and BVLC PI [Trevor Darrell](http://www.eecs.berkeley.edu/~trevor/) for advice. +Yangqing would like to give a personal thanks to the NVIDIA Academic program for providing GPUs, [Oriol Vinyals](http://www1.icsi.berkeley.edu/~vinyals/) for discussions along the journey, and BAIR PI [Trevor Darrell](http://www.eecs.berkeley.edu/~trevor/) for advice. diff --git a/docs/install_apt.md b/docs/install_apt.md index 2976e3cd0..ee2cd2877 100644 --- a/docs/install_apt.md +++ b/docs/install_apt.md @@ -1,5 +1,5 @@ --- -title: Installation: Ubuntu +title: "Installation: Ubuntu" --- # Ubuntu Installation @@ -9,14 +9,19 @@ title: Installation: Ubuntu sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev -**CUDA**: Install via the NVIDIA package instead of `apt-get` to be certain of the library and driver versions. -Install the library and latest driver separately; the driver bundled with the library is usually out-of-date. +**CUDA**: Install by `apt-get` or the NVIDIA `.run` package. +The NVIDIA package tends to follow more recent library and driver versions, but the installation is more manual. +If installing from packages, install the library and latest driver separately; the driver bundled with the library is usually out-of-date. This can be skipped for CPU-only installation. -**BLAS**: install ATLAS by `sudo apt-get install libatlas-base-dev` or install OpenBLAS or MKL for better CPU performance. +**BLAS**: install ATLAS by `sudo apt-get install libatlas-base-dev` or install OpenBLAS by `sudo apt-get install libopenblas-dev` or MKL for better CPU performance. **Python** (optional): if you use the default Python you will need to `sudo apt-get install` the `python-dev` package to have the Python headers for building the pycaffe interface. +**Compatibility notes, 16.04** + +CUDA 8 is required on Ubuntu 16.04. + **Remaining dependencies, 14.04** Everything is packaged in 14.04. @@ -28,8 +33,8 @@ Everything is packaged in 14.04. These dependencies need manual installation in 12.04. # glog - wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz - tar zxvf glog-0.3.3.tar.gz + wget https://github.com/google/glog/archive/v0.3.3.tar.gz + tar zxvf v0.3.3.tar.gz cd glog-0.3.3 ./configure make && make install diff --git a/docs/install_apt_debian.md b/docs/install_apt_debian.md new file mode 100644 index 000000000..bd91124a8 --- /dev/null +++ b/docs/install_apt_debian.md @@ -0,0 +1,165 @@ +--- +title: "Installation: Debian" +--- + +# Debian Installation + +Caffe packages are available for several Debian versions, as shown in the +following chart: + +``` +Your Distro | CPU_ONLY | CUDA | Alias +----------------+------------+--------+------------------- +Debian/stable | ✘ | ✘ | Debian Jessie +Debian/testing | ✔ | ✔ | Debian Stretch/Sid +Debian/unstable | ✔ | ✔ | Debian Sid +``` + +* `✘ ` You should take a look at [Ubuntu installation instruction](install_apt.html). + +* `✔ ` You can install caffe with a single command line following this guide. + +Last update: 2017-02-01 + +## Binary installation with APT + +Apart from the installation methods based on source, Debian/unstable +and Debian/testing users can install pre-compiled Caffe packages from +the official archive. + +Make sure that your `/etc/apt/sources.list` contains `contrib` and `non-free` +sections if you want to install the CUDA version, for instance: + +``` +deb http://ftp2.cn.debian.org/debian sid main contrib non-free +``` + +Then we update APT cache and directly install Caffe. Note, the cpu version and +the cuda version cannot coexist. + +``` +$ sudo apt update +$ sudo apt install [ caffe-cpu | caffe-cuda ] +$ caffe # command line interface working +$ python3 -c 'import caffe; print(caffe.__path__)' # python3 interface working +``` + +These Caffe packages should work for you out of box. + +#### Customizing caffe packages + +Some users may need to customize the Caffe package. The way to customize +the package is beyond this guide. Here is only a brief guide of producing +the customized `.deb` packages. + +Make sure that there is a `dec-src` source in your `/etc/apt/sources.list`, +for instance: + +``` +deb http://ftp2.cn.debian.org/debian sid main contrib non-free +deb-src http://ftp2.cn.debian.org/debian sid main contrib non-free +``` + +Then we build caffe deb files with the following commands: + +``` +$ sudo apt update +$ sudo apt install build-essential debhelper devscripts # standard package building tools +$ sudo apt build-dep [ caffe-cpu | caffe-cuda ] # the most elegant way to pull caffe build dependencies +$ apt source [ caffe-cpu | caffe-cuda ] # download the source tarball and extract +$ cd caffe-XXXX +[ ... optional, customizing caffe code/build ... ] +$ dch --local "Modified XXX" # bump package version and write changelog +$ debuild -B -j4 # build caffe with 4 parallel jobs (similar to make -j4) +[ ... building ...] +$ debc # optional, if you want to check the package contents +$ sudo debi # optional, install the generated packages +$ ls ../ # optional, you will see the resulting packages +``` + +It is a BUG if the package failed to build without any change. +The changelog will be installed at e.g. `/usr/share/doc/caffe-cpu/changelog.Debian.gz`. + +## Source installation + +Source installation under Debian/unstable and Debian/testing is similar to that of Ubuntu, but +here is a more elegant way to pull caffe build dependencies: + +``` +$ sudo apt build-dep [ caffe-cpu | caffe-cuda ] +``` + +Note, this requires a `deb-src` entry in your `/etc/apt/sources.list`. + +#### Compiler Combinations + +Some users may find their favorate compiler doesn't work with CUDA. + +``` +CXX compiler | CUDA 7.5 | CUDA 8.0 | CUDA 9.0 | +-------------+------------+------------+------------+ +GCC-8 | ? | ? | ? | +GCC-7 | ? | ? | ? | +GCC-6 | ✘ | ✘ | ✔ | +GCC-5 | ✔ [1] | ✔ | ✔ | +-------------+------------+------------+------------+ +CLANG-4.0 | ? | ? | ? | +CLANG-3.9 | ✘ | ✘ | ✔ | +CLANG-3.8 | ? | ✔ | ✔ | +``` + +`[1]` CUDA 7.5 's `host_config.h` must be patched before working with GCC-5. + +`[2]` CUDA 9.0: https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/ + +BTW, please forget the GCC-4.X series, since its `libstdc++` ABI is not compatible with GCC-5's. +You may encounter failure linking GCC-4.X object files against GCC-5 libraries. +(See https://wiki.debian.org/GCC5 ) + +## Notes + +* Consider re-compiling OpenBLAS locally with optimization flags for sake of +performance. This is highly recommended for any kind of production use, including +academic research. + +* If you are installing `caffe-cuda`, APT will automatically pull some of the +CUDA packages and the nvidia driver packages. Please be careful if you have +manually installed or hacked nvidia driver or CUDA toolkit or any other +related stuff, because in this case APT may fail. + +* Additionally, a manpage (`man caffe`) and a bash complementation script +(`caffe `, `caffe train `) are provided. +Both of the two files are still not merged into caffe master. + +* The python interface is Python 3 version: `python3-caffe-{cpu,cuda}`. +No plan to support python2. + +* If you encountered any problem related to the packaging system (e.g. failed to install `caffe-*`), +please report bug to Debian via Debian's bug tracking system. See https://www.debian.org/Bugs/ . +Patches and suggestions are also welcome. + +## FAQ + +* where is caffe-cudnn? + +CUDNN library seems not redistributable currently. If you really want the +caffe-cudnn deb packages, the workaround is to install cudnn by yourself, +and hack the packaging scripts, then build your customized package. + +* I installed the CPU version. How can I switch to the CUDA version? + +`sudo apt install caffe-cuda`, apt's dependency resolver is smart enough to deal with this. + +* Where are the examples, the models and other documentation stuff? + +``` +$ sudo apt install caffe-doc +$ dpkg -L caffe-doc +``` + +* Where can I find the Debian package status? + +``` +https://tracker.debian.org/pkg/caffe (for the CPU_ONLY version) +https://tracker.debian.org/pkg/caffe-contrib (for the CUDA version) +``` diff --git a/docs/install_osx.md b/docs/install_osx.md index 6405d8ad0..a2da82f0f 100644 --- a/docs/install_osx.md +++ b/docs/install_osx.md @@ -1,5 +1,5 @@ --- -title: Installation: OS X +title: "Installation: OS X" --- # OS X Installation diff --git a/docs/install_yum.md b/docs/install_yum.md index 2104912e4..842fbd641 100644 --- a/docs/install_yum.md +++ b/docs/install_yum.md @@ -1,5 +1,5 @@ --- -title: Installation: RHEL / Fedora / CentOS +title: "Installation: RHEL / Fedora / CentOS" --- # RHEL / Fedora / CentOS Installation @@ -15,7 +15,7 @@ title: Installation: RHEL / Fedora / CentOS **Remaining dependencies, if not found** # glog - wget https://google-glog.googlecode.com/files/glog-0.3.3.tar.gz + wget https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/google-glog/glog-0.3.3.tar.gz tar zxvf glog-0.3.3.tar.gz cd glog-0.3.3 ./configure diff --git a/docs/installation.md b/docs/installation.md index d535c6d09..42f1d0ce0 100644 --- a/docs/installation.md +++ b/docs/installation.md @@ -5,35 +5,51 @@ title: Installation # Installation Prior to installing, have a glance through this guide and take note of the details for your platform. -We install and run Caffe on Ubuntu 14.04 and 12.04, OS X 10.10 / 10.9 / 10.8, and AWS. -The official Makefile and `Makefile.config` build are complemented by an automatic CMake build from the community. +We install and run Caffe on Ubuntu 16.04–12.04, OS X 10.11–10.8, and through Docker and AWS. +The official Makefile and `Makefile.config` build are complemented by a [community CMake build](#cmake-build). + +**Step-by-step Instructions**: + +- [Docker setup](https://github.com/BVLC/caffe/tree/master/docker) *out-of-the-box brewing* +- [Ubuntu installation](install_apt.html) *the standard platform* +- [Debian installation](install_apt_debian.html) *install caffe with a single command* +- [OS X installation](install_osx.html) +- [RHEL / CentOS / Fedora installation](install_yum.html) +- [Windows](https://github.com/BVLC/caffe/tree/windows) *see the Windows branch led by Guillaume Dumont* +- [OpenCL](https://github.com/BVLC/caffe/tree/opencl) *see the OpenCL branch led by Fabian Tschopp* +- [AWS AMI](https://github.com/bitfusionio/amis/tree/master/awsmrkt-bfboost-ubuntu14-cuda75-caffe) *pre-configured for AWS* + +**Overview**: - [Prerequisites](#prerequisites) - [Compilation](#compilation) - [Hardware](#hardware) -- Platforms: [Ubuntu guide](install_apt.html), [OS X guide](install_osx.html), and [RHEL / CentOS / Fedora guide](install_yum.html) When updating Caffe, it's best to `make clean` before re-compiling. ## Prerequisites -Caffe has several dependencies. +Caffe has several dependencies: * [CUDA](https://developer.nvidia.com/cuda-zone) is required for GPU mode. - * library version 7.0 and the latest driver version are recommended, but 6.* is fine too + * library version 7+ and the latest driver version are recommended, but 6.* is fine too * 5.5, and 5.0 are compatible but considered legacy * [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms) via ATLAS, MKL, or OpenBLAS. * [Boost](http://www.boost.org/) >= 1.55 +* `protobuf`, `glog`, `gflags`, `hdf5` + +Optional dependencies: + * [OpenCV](http://opencv.org/) >= 2.4 including 3.0 -* `protobuf`, `glog`, `gflags` -* IO libraries `hdf5`, `leveldb`, `snappy`, `lmdb` +* IO libraries: `lmdb`, `leveldb` (note: leveldb requires `snappy`) +* cuDNN for GPU acceleration (v6) Pycaffe and Matcaffe interfaces have their own natural needs. * For Python Caffe: `Python 2.7` or `Python 3.3+`, `numpy (>= 1.7)`, boost-provided `boost.python` * For MATLAB Caffe: MATLAB with the `mex` compiler. -**cuDNN Caffe**: for fastest operation Caffe is accelerated by drop-in integration of [NVIDIA cuDNN](https://developer.nvidia.com/cudnn). To speed up your Caffe models, install cuDNN then uncomment the `USE_CUDNN := 1` flag in `Makefile.config` when installing Caffe. Acceleration is automatic. For now cuDNN v1 is integrated but see [PR #1731](https://github.com/BVLC/caffe/pull/1731) for v2. +**cuDNN Caffe**: for fastest operation Caffe is accelerated by drop-in integration of [NVIDIA cuDNN](https://developer.nvidia.com/cudnn). To speed up your Caffe models, install cuDNN then uncomment the `USE_CUDNN := 1` flag in `Makefile.config` when installing Caffe. Acceleration is automatic. The current version is cuDNN v6; older versions are supported in older Caffe. **CPU-only Caffe**: for cold-brewed CPU-only Caffe uncomment the `CPU_ONLY := 1` flag in `Makefile.config` to configure and build Caffe without CUDA. This is helpful for cloud or cluster deployment. @@ -48,9 +64,10 @@ Caffe requires BLAS as the backend of its matrix and vector computations. There are several implementations of this library. The choice is yours: * [ATLAS](http://math-atlas.sourceforge.net/): free, open source, and so the default for Caffe. -* [Intel MKL](http://software.intel.com/en-us/intel-mkl): commercial and optimized for Intel CPUs, with a free trial and [student](http://software.intel.com/en-us/intel-education-offerings) licenses. +* [Intel MKL](http://software.intel.com/en-us/intel-mkl): commercial and optimized for Intel CPUs, with [free](https://registrationcenter.intel.com/en/forms/?productid=2558) licenses. 1. Install MKL. - 2. Set `BLAS := mkl` in `Makefile.config` + 2. Set up MKL environment (Details: [Linux](https://software.intel.com/en-us/node/528499), [OS X](https://software.intel.com/en-us/node/528659)). Example: *source /opt/intel/mkl/bin/mklvars.sh intel64* + 3. Set `BLAS := mkl` in `Makefile.config` * [OpenBLAS](http://www.openblas.net/): free and open source; this optimized and parallel BLAS could require more effort to install, although it might offer a speedup. 1. Install OpenBLAS 2. Set `BLAS := open` in `Makefile.config` @@ -77,21 +94,22 @@ Install MATLAB, and make sure that its `mex` is in your `$PATH`. *Caffe's MATLAB interface works with versions 2015a, 2014a/b, 2013a/b, and 2012b.* -#### Windows +## Compilation -There is an unofficial Windows port of Caffe at [niuzhiheng/caffe:windows](https://github.com/niuzhiheng/caffe). Thanks [@niuzhiheng](https://github.com/niuzhiheng)! +Caffe can be compiled with either Make or CMake. Make is officially supported while CMake is supported by the community. -## Compilation +### Compilation with Make -Now that you have the prerequisites, edit your `Makefile.config` to change the paths for your setup The defaults should work, but uncomment the relevant lines if using Anaconda Python. +Configure the build by copying and modifying the example `Makefile.config` for your setup. The defaults should work, but uncomment the relevant lines if using Anaconda Python. cp Makefile.config.example Makefile.config - # Adjust Makefile.config (for example, if using Anaconda Python) + # Adjust Makefile.config (for example, if using Anaconda Python, or if cuDNN is desired) make all make test make runtest -- For cuDNN acceleration, you should uncomment the `USE_CUDNN := 1` switch in `Makefile.config`. +- For CPU & GPU accelerated Caffe, no changes are needed. +- For cuDNN acceleration using NVIDIA's proprietary cuDNN software, uncomment the `USE_CUDNN := 1` switch in `Makefile.config`. cuDNN is sometimes but not always faster than Caffe's GPU acceleration. - For CPU-only Caffe, uncomment `CPU_ONLY := 1` in `Makefile.config`. To compile the Python and MATLAB wrappers do `make pycaffe` and `make matcaffe` respectively. @@ -103,7 +121,7 @@ Be sure to set your MATLAB and Python paths in `Makefile.config` first! Now that you have installed Caffe, check out the [MNIST tutorial](gathered/examples/mnist.html) and the [reference ImageNet model tutorial](gathered/examples/imagenet.html). -### CMake Compilation +### CMake Build In lieu of manually editing `Makefile.config` to configure the build, Caffe offers an unofficial CMake build thanks to @Nerei, @akosiorek, and other members of the community. It requires CMake version >= 2.8.7. The basic steps are as follows: @@ -112,15 +130,16 @@ The basic steps are as follows: cd build cmake .. make all + make install make runtest See [PR #1667](https://github.com/BVLC/caffe/pull/1667) for options and details. ## Hardware -**Laboratory Tested Hardware**: Berkeley Vision runs Caffe with K40s, K20s, and Titans including models at ImageNet/ILSVRC scale. We also run on GTX series cards (980s and 770s) and GPU-equipped MacBook Pros. We have not encountered any trouble in-house with devices with CUDA capability >= 3.0. All reported hardware issues thus-far have been due to GPU configuration, overheating, and the like. +**Laboratory Tested Hardware**: Berkeley Vision runs Caffe with Titan Xs, K80s, GTX 980s, K40s, K20s, Titans, and GTX 770s including models at ImageNet/ILSVRC scale. We have not encountered any trouble in-house with devices with CUDA capability >= 3.0. All reported hardware issues thus-far have been due to GPU configuration, overheating, and the like. -**CUDA compute capability**: devices with compute capability <= 2.0 may have to reduce CUDA thread numbers and batch sizes due to hardware constraints. Your mileage may vary. +**CUDA compute capability**: devices with compute capability <= 2.0 may have to reduce CUDA thread numbers and batch sizes due to hardware constraints. Brew with caution; we recommend compute capability >= 3.0. Once installed, check your times against our [reference performance numbers](performance_hardware.html) to make sure everything is configured properly. diff --git a/docs/model_zoo.md b/docs/model_zoo.md index 06dc0a49e..3f77e8257 100644 --- a/docs/model_zoo.md +++ b/docs/model_zoo.md @@ -3,7 +3,7 @@ title: Model Zoo --- # Caffe Model Zoo -Lots of researchers and engineers have made Caffe models for different tasks with all kinds of architectures and data. +Lots of researchers and engineers have made Caffe models for different tasks with all kinds of architectures and data: check out the [model zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo)! These models are learned and applied for problems ranging from simple regression, to large-scale visual classification, to Siamese networks for image similarity, to speech and robotics applications. To help share these models, we introduce the model zoo framework: @@ -14,17 +14,17 @@ To help share these models, we introduce the model zoo framework: ## Where to get trained models -First of all, we bundle BVLC-trained models for unrestricted, out of the box use. +First of all, we bundle BAIR-trained models for unrestricted, out of the box use.
-See the [BVLC model license](#bvlc-model-license) for details. +See the [BAIR model license](#bair-model-license) for details. Each one of these can be downloaded by running `scripts/download_model_binary.py ` where `` is specified below: -- **BVLC Reference CaffeNet** in `models/bvlc_reference_caffenet`: AlexNet trained on ILSVRC 2012, with a minor variation from the version as described in [ImageNet classification with deep convolutional neural networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) by Krizhevsky et al. in NIPS 2012. (Trained by Jeff Donahue @jeffdonahue) -- **BVLC AlexNet** in `models/bvlc_alexnet`: AlexNet trained on ILSVRC 2012, almost exactly as described in [ImageNet classification with deep convolutional neural networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) by Krizhevsky et al. in NIPS 2012. (Trained by Evan Shelhamer @shelhamer) -- **BVLC Reference R-CNN ILSVRC-2013** in `models/bvlc_reference_rcnn_ilsvrc13`: pure Caffe implementation of [R-CNN](https://github.com/rbgirshick/rcnn) as described by Girshick et al. in CVPR 2014. (Trained by Ross Girshick @rbgirshick) -- **BVLC GoogLeNet** in `models/bvlc_googlenet`: GoogLeNet trained on ILSVRC 2012, almost exactly as described in [Going Deeper with Convolutions](http://arxiv.org/abs/1409.4842) by Szegedy et al. in ILSVRC 2014. (Trained by Sergio Guadarrama @sguada) +- **BAIR Reference CaffeNet** in `models/bvlc_reference_caffenet`: AlexNet trained on ILSVRC 2012, with a minor variation from the version as described in [ImageNet classification with deep convolutional neural networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) by Krizhevsky et al. in NIPS 2012. (Trained by Jeff Donahue @jeffdonahue) +- **BAIR AlexNet** in `models/bvlc_alexnet`: AlexNet trained on ILSVRC 2012, almost exactly as described in [ImageNet classification with deep convolutional neural networks](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) by Krizhevsky et al. in NIPS 2012. (Trained by Evan Shelhamer @shelhamer) +- **BAIR Reference R-CNN ILSVRC-2013** in `models/bvlc_reference_rcnn_ilsvrc13`: pure Caffe implementation of [R-CNN](https://github.com/rbgirshick/rcnn) as described by Girshick et al. in CVPR 2014. (Trained by Ross Girshick @rbgirshick) +- **BAIR GoogLeNet** in `models/bvlc_googlenet`: GoogLeNet trained on ILSVRC 2012, almost exactly as described in [Going Deeper with Convolutions](http://arxiv.org/abs/1409.4842) by Szegedy et al. in ILSVRC 2014. (Trained by Sergio Guadarrama @sguada) -**Community models** made by Caffe users are posted to a publicly editable [wiki page](https://github.com/BVLC/caffe/wiki/Model-Zoo). +**Community models** made by Caffe users are posted to a publicly editable [model zoo wiki page](https://github.com/BVLC/caffe/wiki/Model-Zoo). These models are subject to conditions of their respective authors such as citation and license. Thank you for sharing your models! @@ -42,6 +42,8 @@ A caffe model is distributed as a directory containing: - License information. - [optional] Other helpful scripts. +This simple format can be handled through bundled scripts or manually if need be. + ### Hosting model info Github Gist is a good format for model info distribution because it can contain multiple files, is versionable, and has in-browser syntax highlighting and markdown rendering. @@ -55,14 +57,14 @@ Downloading model info is done just as easily with `scripts/download_model_from_ ### Hosting trained models It is up to the user where to host the `.caffemodel` file. -We host our BVLC-provided models on our own server. +We host our BAIR-provided models on our own server. Dropbox also works fine (tip: make sure that `?dl=1` is appended to the end of the URL). `scripts/download_model_binary.py ` downloads the `.caffemodel` from the URL specified in the `/readme.md` frontmatter and confirms SHA1. -## BVLC model license +## BAIR model license -The Caffe models bundled by the BVLC are released for unrestricted use. +The Caffe models bundled by the BAIR are released for unrestricted use. These models are trained on data from the [ImageNet project](http://www.image-net.org/) and training data includes internet photos that may be subject to copyright. diff --git a/docs/multigpu.md b/docs/multigpu.md new file mode 100644 index 000000000..e04ebb0b7 --- /dev/null +++ b/docs/multigpu.md @@ -0,0 +1,26 @@ +--- +title: Multi-GPU Usage, Hardware Configuration Assumptions, and Performance +--- + +# Multi-GPU Usage + +Currently Multi-GPU is only supported via the C/C++ paths and only for training. + +The GPUs to be used for training can be set with the "-gpu" flag on the command line to the 'caffe' tool. e.g. "build/tools/caffe train --solver=models/bvlc_alexnet/solver.prototxt --gpu=0,1" will train on GPUs 0 and 1. + +**NOTE**: each GPU runs the batchsize specified in your train_val.prototxt. So if you go from 1 GPU to 2 GPU, your effective batchsize will double. e.g. if your train_val.prototxt specified a batchsize of 256, if you run 2 GPUs your effective batch size is now 512. So you need to adjust the batchsize when running multiple GPUs and/or adjust your solver params, specifically learning rate. + +# Hardware Configuration Assumptions + +The current implementation uses a tree reduction strategy. e.g. if there are 4 GPUs in the system, 0:1, 2:3 will exchange gradients, then 0:2 (top of the tree) will exchange gradients, 0 will calculate +updated model, 0\-\>2, and then 0\-\>1, 2\-\>3. + +For best performance, P2P DMA access between devices is needed. Without P2P access, for example crossing PCIe root complex, data is copied through host and effective exchange bandwidth is greatly reduced. + +Current implementation has a "soft" assumption that the devices being used are homogeneous. In practice, any devices of the same general class should work together, but performance and total size is limited by the smallest device being used. e.g. if you combine a TitanX and a GTX980, performance will be limited by the 980. Mixing vastly different levels of boards, e.g. Kepler and Fermi, is not supported. + +"nvidia-smi topo -m" will show you the connectivity matrix. You can do P2P through PCIe bridges, but not across socket level links at this time, e.g. across CPU sockets on a multi-socket motherboard. + +# Scaling Performance + +Performance is **heavily** dependent on the PCIe topology of the system, the configuration of the neural network you are training, and the speed of each of the layers. Systems like the DIGITS DevBox have an optimized PCIe topology (X99-E WS chipset). In general, scaling on 2 GPUs tends to be ~1.8X on average for networks like AlexNet, CaffeNet, VGG, GoogleNet. 4 GPUs begins to have falloff in scaling. Generally with "weak scaling" where the batchsize increases with the number of GPUs you will see 3.5x scaling or so. With "strong scaling", the system can become communication bound, especially with layer performance optimizations like those in [cuDNNv3](http://nvidia.com/cudnn), and you will likely see closer to mid 2.x scaling in performance. Networks that have heavy computation compared to the number of parameters tend to have the best scaling performance. diff --git a/docs/performance_hardware.md b/docs/performance_hardware.md deleted file mode 100644 index cdd4b361d..000000000 --- a/docs/performance_hardware.md +++ /dev/null @@ -1,73 +0,0 @@ ---- -title: Performance and Hardware Configuration ---- - -# Performance and Hardware Configuration - -To measure performance on different NVIDIA GPUs we use CaffeNet, the Caffe reference ImageNet model. - -For training, each time point is 20 iterations/minibatches of 256 images for 5,120 images total. For testing, a 50,000 image validation set is classified. - -**Acknowledgements**: BVLC members are very grateful to NVIDIA for providing several GPUs to conduct this research. - -## NVIDIA K40 - -Performance is best with ECC off and boost clock enabled. While ECC makes a negligible difference in speed, disabling it frees ~1 GB of GPU memory. - -Best settings with ECC off and maximum clock speed in standard Caffe: - -* Training is 26.5 secs / 20 iterations (5,120 images) -* Testing is 100 secs / validation set (50,000 images) - -Best settings with Caffe + [cuDNN acceleration](http://nvidia.com/cudnn): - -* Training is 19.2 secs / 20 iterations (5,120 images) -* Testing is 60.7 secs / validation set (50,000 images) - -Other settings: - -* ECC on, max speed: training 26.7 secs / 20 iterations, test 101 secs / validation set -* ECC on, default speed: training 31 secs / 20 iterations, test 117 secs / validation set -* ECC off, default speed: training 31 secs / 20 iterations, test 118 secs / validation set - -### K40 configuration tips - -For maximum K40 performance, turn off ECC and boost the clock speed (at your own risk). - -To turn off ECC, do - - sudo nvidia-smi -i 0 --ecc-config=0 # repeat with -i x for each GPU ID - -then reboot. - -Set the "persistence" mode of the GPU settings by - - sudo nvidia-smi -pm 1 - -and then set the clock speed with - - sudo nvidia-smi -i 0 -ac 3004,875 # repeat with -i x for each GPU ID - -but note that this configuration resets across driver reloading / rebooting. Include these commands in a boot script to initialize these settings. For a simple fix, add these commands to `/etc/rc.local` (on Ubuntu). - -## NVIDIA Titan - -Training: 26.26 secs / 20 iterations (5,120 images). -Testing: 100 secs / validation set (50,000 images). - -cuDNN Training: 20.25 secs / 20 iterations (5,120 images). -cuDNN Testing: 66.3 secs / validation set (50,000 images). - - -## NVIDIA K20 - -Training: 36.0 secs / 20 iterations (5,120 images). -Testing: 133 secs / validation set (50,000 images). - -## NVIDIA GTX 770 - -Training: 33.0 secs / 20 iterations (5,120 images). -Testing: 129 secs / validation set (50,000 images). - -cuDNN Training: 24.3 secs / 20 iterations (5,120 images). -cuDNN Testing: 104 secs / validation set (50,000 images). diff --git a/docs/tutorial/forward_backward.md b/docs/tutorial/forward_backward.md index a645f002f..528b993ba 100644 --- a/docs/tutorial/forward_backward.md +++ b/docs/tutorial/forward_backward.md @@ -29,7 +29,7 @@ The backward pass begins with the loss and computes the gradient with respect to These computations follow immediately from defining the model: Caffe plans and carries out the forward and backward passes for you. - The `Net::Forward()` and `Net::Backward()` methods carry out the respective passes while `Layer::Forward()` and `Layer::Backward()` compute each step. -- Every layer type has `forward_{cpu,gpu}()` and `backward_{cpu,gpu}` methods to compute its steps according to the mode of computation. A layer may only implement CPU or GPU mode due to constraints or convenience. +- Every layer type has `forward_{cpu,gpu}()` and `backward_{cpu,gpu}()` methods to compute its steps according to the mode of computation. A layer may only implement CPU or GPU mode due to constraints or convenience. The [Solver](solver.html) optimizes a model by first calling forward to yield the output and loss, then calling backward to generate the gradient of the model, and then incorporating the gradient into a weight update that attempts to minimize the loss. Division of labor between the Solver, Net, and Layer keep Caffe modular and open to development. diff --git a/docs/tutorial/interfaces.md b/docs/tutorial/interfaces.md index 9006179d0..b5a4f1ad0 100644 --- a/docs/tutorial/interfaces.md +++ b/docs/tutorial/interfaces.md @@ -61,7 +61,7 @@ For a full example of fine-tuning, see examples/finetuning_on_flickr_style, but The Python interface -- pycaffe -- is the `caffe` module and its scripts in caffe/python. `import caffe` to load models, do forward and backward, handle IO, visualize networks, and even instrument model solving. All model data, derivatives, and parameters are exposed for reading and writing. -- `caffe.Net` is the central interface for loading, configuring, and running models. `caffe.Classsifier` and `caffe.Detector` provide convenience interfaces for common tasks. +- `caffe.Net` is the central interface for loading, configuring, and running models. `caffe.Classifier` and `caffe.Detector` provide convenience interfaces for common tasks. - `caffe.SGDSolver` exposes the solving interface. - `caffe.io` handles input / output with preprocessing and protocol buffers. - `caffe.draw` visualizes network architectures. @@ -91,7 +91,7 @@ In MatCaffe, you can * Run for a certain number of iterations and give back control to Matlab * Intermingle arbitrary Matlab code with gradient steps -An ILSVRC image classification demo is in caffe/matlab/demo/classification_demo.m (you need to download BVLC CaffeNet from [Model Zoo](http://caffe.berkeleyvision.org/model_zoo.html) to run it). +An ILSVRC image classification demo is in caffe/matlab/demo/classification_demo.m (you need to download BAIR CaffeNet from [Model Zoo](http://caffe.berkeleyvision.org/model_zoo.html) to run it). ### Build MatCaffe @@ -114,7 +114,7 @@ You can save your Matlab search PATH by running `savepath` so that you don't hav MatCaffe is very similar to PyCaffe in usage. -Examples below shows detailed usages and assumes you have downloaded BVLC CaffeNet from [Model Zoo](http://caffe.berkeleyvision.org/model_zoo.html) and started `matlab` from caffe root folder. +Examples below shows detailed usages and assumes you have downloaded BAIR CaffeNet from [Model Zoo](http://caffe.berkeleyvision.org/model_zoo.html) and started `matlab` from caffe root folder. model = './models/bvlc_reference_caffenet/deploy.prototxt'; weights = './models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'; diff --git a/docs/tutorial/layers.md b/docs/tutorial/layers.md index eabc792b7..2faacc583 100644 --- a/docs/tutorial/layers.md +++ b/docs/tutorial/layers.md @@ -1,186 +1,77 @@ --- title: Layer Catalogue --- + # Layers To create a Caffe model you need to define the model architecture in a protocol buffer definition file (prototxt). Caffe layers and their parameters are defined in the protocol buffer definitions for the project in [caffe.proto](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto). -### Vision Layers - -* Header: `./include/caffe/vision_layers.hpp` - -Vision layers usually take *images* as input and produce other *images* as output. -A typical "image" in the real-world may have one color channel ($$c = 1$$), as in a grayscale image, or three color channels ($$c = 3$$) as in an RGB (red, green, blue) image. -But in this context, the distinguishing characteristic of an image is its spatial structure: usually an image has some non-trivial height $$h > 1$$ and width $$w > 1$$. -This 2D geometry naturally lends itself to certain decisions about how to process the input. -In particular, most of the vision layers work by applying a particular operation to some region of the input to produce a corresponding region of the output. -In contrast, other layers (with few exceptions) ignore the spatial structure of the input, effectively treating it as "one big vector" with dimension $$chw$$. - - -#### Convolution - -* Layer type: `Convolution` -* CPU implementation: `./src/caffe/layers/convolution_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/convolution_layer.cu` -* Parameters (`ConvolutionParameter convolution_param`) - - Required - - `num_output` (`c_o`): the number of filters - - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter - - Strongly Recommended - - `weight_filler` [default `type: 'constant' value: 0`] - - Optional - - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs - - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input - - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input - - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. -* Input - - `n * c_i * h_i * w_i` -* Output - - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. -* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`) - - layer { - name: "conv1" - type: "Convolution" - bottom: "data" - top: "conv1" - # learning rate and decay multipliers for the filters - param { lr_mult: 1 decay_mult: 1 } - # learning rate and decay multipliers for the biases - param { lr_mult: 2 decay_mult: 0 } - convolution_param { - num_output: 96 # learn 96 filters - kernel_size: 11 # each filter is 11x11 - stride: 4 # step 4 pixels between each filter application - weight_filler { - type: "gaussian" # initialize the filters from a Gaussian - std: 0.01 # distribution with stdev 0.01 (default mean: 0) - } - bias_filler { - type: "constant" # initialize the biases to zero (0) - value: 0 - } - } - } - -The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. - -#### Pooling - -* Layer type: `Pooling` -* CPU implementation: `./src/caffe/layers/pooling_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/pooling_layer.cu` -* Parameters (`PoolingParameter pooling_param`) - - Required - - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter - - Optional - - `pool` [default MAX]: the pooling method. Currently MAX, AVE, or STOCHASTIC - - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input - - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input -* Input - - `n * c * h_i * w_i` -* Output - - `n * c * h_o * w_o`, where h_o and w_o are computed in the same way as convolution. -* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`) - - layer { - name: "pool1" - type: "Pooling" - bottom: "conv1" - top: "pool1" - pooling_param { - pool: MAX - kernel_size: 3 # pool over a 3x3 region - stride: 2 # step two pixels (in the bottom blob) between pooling regions - } - } - -#### Local Response Normalization (LRN) - -* Layer type: `LRN` -* CPU Implementation: `./src/caffe/layers/lrn_layer.cpp` -* CUDA GPU Implementation: `./src/caffe/layers/lrn_layer.cu` -* Parameters (`LRNParameter lrn_param`) - - Optional - - `local_size` [default 5]: the number of channels to sum over (for cross channel LRN) or the side length of the square region to sum over (for within channel LRN) - - `alpha` [default 1]: the scaling parameter (see below) - - `beta` [default 5]: the exponent (see below) - - `norm_region` [default `ACROSS_CHANNELS`]: whether to sum over adjacent channels (`ACROSS_CHANNELS`) or nearby spatial locaitons (`WITHIN_CHANNEL`) +## Data Layers -The local response normalization layer performs a kind of "lateral inhibition" by normalizing over local input regions. In `ACROSS_CHANNELS` mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape `local_size x 1 x 1`). In `WITHIN_CHANNEL` mode, the local regions extend spatially, but are in separate channels (i.e., they have shape `1 x local_size x local_size`). Each input value is divided by $$(1 + (\alpha/n) \sum_i x_i^2)^\beta$$, where $$n$$ is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). - -#### im2col - -`Im2col` is a helper for doing the image-to-column transformation that you most likely do not need to know about. This is used in Caffe's original convolution to do matrix multiplication by laying out all patches into a matrix. - -### Loss Layers +Data enters Caffe through data layers: they lie at the bottom of nets. Data can come from efficient databases (LevelDB or LMDB), directly from memory, or, when efficiency is not critical, from files on disk in HDF5 or common image formats. -Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass. +Common input preprocessing (mean subtraction, scaling, random cropping, and mirroring) is available by specifying `TransformationParameter`s by some of the layers. +The [bias](layers/bias.html), [scale](layers/scale.html), and [crop](layers/crop.html) layers can be helpful with transforming the inputs, when `TransformationParameter` isn't available. -#### Softmax +Layers: -* Layer type: `SoftmaxWithLoss` +* [Image Data](layers/imagedata.html) - read raw images. +* [Database](layers/data.html) - read data from LEVELDB or LMDB. +* [HDF5 Input](layers/hdf5data.html) - read HDF5 data, allows data of arbitrary dimensions. +* [HDF5 Output](layers/hdf5output.html) - write data as HDF5. +* [Input](layers/input.html) - typically used for networks that are being deployed. +* [Window Data](layers/windowdata.html) - read window data file. +* [Memory Data](layers/memorydata.html) - read data directly from memory. +* [Dummy Data](layers/dummydata.html) - for static data and debugging. -The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. +Note that the [Python](layers/python.html) Layer can be useful for create custom data layers. -#### Sum-of-Squares / Euclidean +## Vision Layers -* Layer type: `EuclideanLoss` +Vision layers usually take *images* as input and produce other *images* as output, although they can take data of other types and dimensions. +A typical "image" in the real-world may have one color channel ($$c = 1$$), as in a grayscale image, or three color channels ($$c = 3$$) as in an RGB (red, green, blue) image. +But in this context, the distinguishing characteristic of an image is its spatial structure: usually an image has some non-trivial height $$h > 1$$ and width $$w > 1$$. +This 2D geometry naturally lends itself to certain decisions about how to process the input. +In particular, most of the vision layers work by applying a particular operation to some region of the input to produce a corresponding region of the output. +In contrast, other layers (with few exceptions) ignore the spatial structure of the input, effectively treating it as "one big vector" with dimension $$chw$$. -The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. +Layers: -#### Hinge / Margin +* [Convolution Layer](layers/convolution.html) - convolves the input image with a set of learnable filters, each producing one feature map in the output image. +* [Pooling Layer](layers/pooling.html) - max, average, or stochastic pooling. +* [Spatial Pyramid Pooling (SPP)](layers/spp.html) +* [Crop](layers/crop.html) - perform cropping transformation. +* [Deconvolution Layer](layers/deconvolution.html) - transposed convolution. -* Layer type: `HingeLoss` -* CPU implementation: `./src/caffe/layers/hinge_loss_layer.cpp` -* CUDA GPU implementation: none yet -* Parameters (`HingeLossParameter hinge_loss_param`) - - Optional - - `norm` [default L1]: the norm used. Currently L1, L2 -* Inputs - - `n * c * h * w` Predictions - - `n * 1 * 1 * 1` Labels -* Output - - `1 * 1 * 1 * 1` Computed Loss -* Samples +* [Im2Col](layers/im2col.html) - relic helper layer that is not used much anymore. - # L1 Norm - layer { - name: "loss" - type: "HingeLoss" - bottom: "pred" - bottom: "label" - } +## Recurrent Layers - # L2 Norm - layer { - name: "loss" - type: "HingeLoss" - bottom: "pred" - bottom: "label" - top: "loss" - hinge_loss_param { - norm: L2 - } - } +Layers: -The hinge loss layer computes a one-vs-all hinge or squared hinge loss. +* [Recurrent](layers/recurrent.html) +* [RNN](layers/rnn.html) +* [Long-Short Term Memory (LSTM)](layers/lstm.html) -#### Sigmoid Cross-Entropy +## Common Layers -`SigmoidCrossEntropyLoss` +Layers: -#### Infogain +* [Inner Product](layers/innerproduct.html) - fully connected layer. +* [Dropout](layers/dropout.html) +* [Embed](layers/embed.html) - for learning embeddings of one-hot encoded vector (takes index as input). -`InfogainLoss` +## Normalization Layers -#### Accuracy and Top-k +* [Local Response Normalization (LRN)](layers/lrn.html) - performs a kind of "lateral inhibition" by normalizing over local input regions. +* [Mean Variance Normalization (MVN)](layers/mvn.html) - performs contrast normalization / instance normalization. +* [Batch Normalization](layers/batchnorm.html) - performs normalization over mini-batches. -`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. +The [bias](layers/bias.html) and [scale](layers/scale.html) layers can be helpful in combination with normalization. -### Activation / Neuron Layers +## Activation / Neuron Layers In general, activation / Neuron layers are element-wise operators, taking one bottom blob and producing one top blob of the same size. In the layers below, we will ignore the input and out sizes as they are identical: @@ -189,337 +80,56 @@ In general, activation / Neuron layers are element-wise operators, taking one bo * Output - n * c * h * w -#### ReLU / Rectified-Linear and Leaky-ReLU - -* Layer type: `ReLU` -* CPU implementation: `./src/caffe/layers/relu_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/relu_layer.cu` -* Parameters (`ReLUParameter relu_param`) - - Optional - - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0. -* Sample (as seen in `./examples/imagenet/imagenet_train_val.prototxt`) - - layer { - name: "relu1" - type: "ReLU" - bottom: "conv1" - top: "conv1" - } - -Given an input value x, The `ReLU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. - -#### Sigmoid - -* Layer type: `Sigmoid` -* CPU implementation: `./src/caffe/layers/sigmoid_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/sigmoid_layer.cu` -* Sample (as seen in `./examples/mnist/mnist_autoencoder.prototxt`) - - layer { - name: "encode1neuron" - bottom: "encode1" - top: "encode1neuron" - type: "Sigmoid" - } - -The `Sigmoid` layer computes the output as sigmoid(x) for each input element x. - -#### TanH / Hyperbolic Tangent - -* Layer type: `TanH` -* CPU implementation: `./src/caffe/layers/tanh_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/tanh_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "TanH" - } - -The `TanH` layer computes the output as tanh(x) for each input element x. - -#### Absolute Value - -* Layer type: `AbsVal` -* CPU implementation: `./src/caffe/layers/absval_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/absval_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "AbsVal" - } - -The `AbsVal` layer computes the output as abs(x) for each input element x. - -#### Power - -* Layer type: `Power` -* CPU implementation: `./src/caffe/layers/power_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/power_layer.cu` -* Parameters (`PowerParameter power_param`) - - Optional - - `power` [default 1] - - `scale` [default 1] - - `shift` [default 0] -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: "Power" - power_param { - power: 1 - scale: 1 - shift: 0 - } - } - -The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x. - -#### BNLL - -* Layer type: `BNLL` -* CPU implementation: `./src/caffe/layers/bnll_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/bnll_layer.cu` -* Sample - - layer { - name: "layer" - bottom: "in" - top: "out" - type: BNLL - } - -The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. - - -### Data Layers - -Data enters Caffe through data layers: they lie at the bottom of nets. Data can come from efficient databases (LevelDB or LMDB), directly from memory, or, when efficiency is not critical, from files on disk in HDF5 or common image formats. - -Common input preprocessing (mean subtraction, scaling, random cropping, and mirroring) is available by specifying `TransformationParameter`s. - -#### Database +Layers: -* Layer type: `Data` -* Parameters - - Required - - `source`: the name of the directory containing the database - - `batch_size`: the number of inputs to process at one time - - Optional - - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd - - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` +* [ReLU / Rectified-Linear and Leaky-ReLU](layers/relu.html) - ReLU and Leaky-ReLU rectification. +* [PReLU](layers/prelu.html) - parametric ReLU. +* [ELU](layers/elu.html) - exponential linear rectification. +* [Sigmoid](layers/sigmoid.html) +* [TanH](layers/tanh.html) +* [Absolute Value](layers/abs.html) +* [Power](layers/power.html) - f(x) = (shift + scale * x) ^ power. +* [Exp](layers/exp.html) - f(x) = base ^ (shift + scale * x). +* [Log](layers/log.html) - f(x) = log(x). +* [BNLL](layers/bnll.html) - f(x) = log(1 + exp(x)). +* [Threshold](layers/threshold.html) - performs step function at user defined threshold. +* [Bias](layers/bias.html) - adds a bias to a blob that can either be learned or fixed. +* [Scale](layers/scale.html) - scales a blob by an amount that can either be learned or fixed. +## Utility Layers +Layers: -#### In-Memory +* [Flatten](layers/flatten.html) +* [Reshape](layers/reshape.html) +* [Batch Reindex](layers/batchreindex.html) -* Layer type: `MemoryData` -* Parameters - - Required - - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory +* [Split](layers/split.html) +* [Concat](layers/concat.html) +* [Slicing](layers/slice.html) +* [Eltwise](layers/eltwise.html) - element-wise operations such as product or sum between two blobs. +* [Filter / Mask](layers/filter.html) - mask or select output using last blob. +* [Parameter](layers/parameter.html) - enable parameters to be shared between layers. +* [Reduction](layers/reduction.html) - reduce input blob to scalar blob using operations such as sum or mean. +* [Silence](layers/silence.html) - prevent top-level blobs from being printed during training. -The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. +* [ArgMax](layers/argmax.html) +* [Softmax](layers/softmax.html) -#### HDF5 Input +* [Python](layers/python.html) - allows custom Python layers. -* Layer type: `HDF5Data` -* Parameters - - Required - - `source`: the name of the file to read from - - `batch_size` +## Loss Layers -#### HDF5 Output - -* Layer type: `HDF5Output` -* Parameters - - Required - - `file_name`: name of file to write to - -The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. - -#### Images - -* Layer type: `ImageData` -* Parameters - - Required - - `source`: name of a text file, with each line giving an image filename and label - - `batch_size`: number of images to batch together - - Optional - - `rand_skip` - - `shuffle` [default false] - - `new_height`, `new_width`: if provided, resize all images to this size - -#### Windows - -`WindowData` - -#### Dummy - -`DummyData` is for development and debugging. See `DummyDataParameter`. - -### Common Layers - -#### Inner Product - -* Layer type: `InnerProduct` -* CPU implementation: `./src/caffe/layers/inner_product_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/inner_product_layer.cu` -* Parameters (`InnerProductParameter inner_product_param`) - - Required - - `num_output` (`c_o`): the number of filters - - Strongly recommended - - `weight_filler` [default `type: 'constant' value: 0`] - - Optional - - `bias_filler` [default `type: 'constant' value: 0`] - - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs -* Input - - `n * c_i * h_i * w_i` -* Output - - `n * c_o * 1 * 1` -* Sample - - layer { - name: "fc8" - type: "InnerProduct" - # learning rate and decay multipliers for the weights - param { lr_mult: 1 decay_mult: 1 } - # learning rate and decay multipliers for the biases - param { lr_mult: 2 decay_mult: 0 } - inner_product_param { - num_output: 1000 - weight_filler { - type: "gaussian" - std: 0.01 - } - bias_filler { - type: "constant" - value: 0 - } - } - bottom: "fc7" - top: "fc8" - } - -The `InnerProduct` layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob's height and width set to 1). - -#### Splitting - -The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. - -#### Flattening - -The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)` - -#### Reshape - -* Layer type: `Reshape` -* Implementation: `./src/caffe/layers/reshape_layer.cpp` -* Parameters (`ReshapeParameter reshape_param`) - - Optional: (also see detailed description below) - - `shape` - -* Input - - a single blob with arbitrary dimensions -* Output - - the same blob, with modified dimensions, as specified by `reshape_param` - -* Sample - - layer { - name: "reshape" - type: "Reshape" - bottom: "input" - top: "output" - reshape_param { - shape { - dim: 0 # copy the dimension from below - dim: 2 - dim: 3 - dim: -1 # infer it from the other dimensions - } - } - } - -The `Reshape` layer can be used to change the dimensions of its input, without changing its data. Just like the `Flatten` layer, only the dimensions are changed; no data is copied in the process. - -Output dimensions are specified by the `ReshapeParam` proto. Positive numbers are used directly, setting the corresponding dimension of the output blob. In addition, two special values are accepted for any of the target dimension values: - -* **0** means "copy the respective dimension of the bottom layer". That is, if the bottom has 2 as its 1st dimension, the top will have 2 as its 1st dimension as well, given `dim: 0` as the 1st target dimension. -* **-1** stands for "infer this from the other dimensions". This behavior is similar to that of -1 in *numpy*'s or `[]` for *MATLAB*'s reshape: this dimension is calculated to keep the overall element count the same as in the bottom layer. At most one -1 can be used in a reshape operation. - -As another example, specifying `reshape_param { shape { dim: 0 dim: -1 } }` makes the layer behave in exactly the same way as the `Flatten` layer. - -#### Concatenation - -* Layer type: `Concat` -* CPU implementation: `./src/caffe/layers/concat_layer.cpp` -* CUDA GPU implementation: `./src/caffe/layers/concat_layer.cu` -* Parameters (`ConcatParameter concat_param`) - - Optional - - `axis` [default 1]: 0 for concatenation along num and 1 for channels. -* Input - - `n_i * c_i * h * w` for each input blob i from 1 to K. -* Output - - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same. - - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same. -* Sample - - layer { - name: "concat" - bottom: "in1" - bottom: "in2" - top: "out" - type: "Concat" - concat_param { - axis: 1 - } - } - -The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob. - -#### Slicing - -The `Slice` layer is a utility layer that slices an input layer to multiple output layers along a given dimension (currently num or channel only) with given slice indices. - -* Sample - - layer { - name: "slicer_label" - type: "Slice" - bottom: "label" - ## Example of label with a shape N x 3 x 1 x 1 - top: "label1" - top: "label2" - top: "label3" - slice_param { - axis: 1 - slice_point: 1 - slice_point: 2 - } - } - -`axis` indicates the target axis; `slice_point` indicates indexes in the selected dimension (the number of indices must be equal to the number of top blobs minus one). - - -#### Elementwise Operations - -`Eltwise` - -#### Argmax - -`ArgMax` - -#### Softmax +Loss drives learning by comparing an output to a target and assigning cost to minimize. The loss itself is computed by the forward pass and the gradient w.r.t. to the loss is computed by the backward pass. -`Softmax` +Layers: -#### Mean-Variance Normalization +* [Multinomial Logistic Loss](layers/multinomiallogisticloss.html) +* [Infogain Loss](layers/infogainloss.html) - a generalization of MultinomialLogisticLossLayer. +* [Softmax with Loss](layers/softmaxwithloss.html) - computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. +* [Sum-of-Squares / Euclidean](layers/euclideanloss.html) - computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. +* [Hinge / Margin](layers/hingeloss.html) - The hinge loss layer computes a one-vs-all hinge (L1) or squared hinge loss (L2). +* [Sigmoid Cross-Entropy Loss](layers/sigmoidcrossentropyloss.html) - computes the cross-entropy (logistic) loss, often used for predicting targets interpreted as probabilities. +* [Accuracy / Top-k layer](layers/accuracy.html) - scores the output as an accuracy with respect to target -- it is not actually a loss and has no backward step. +* [Contrastive Loss](layers/contrastiveloss.html) -`MVN` diff --git a/docs/tutorial/layers/absval.md b/docs/tutorial/layers/absval.md new file mode 100644 index 000000000..220c41189 --- /dev/null +++ b/docs/tutorial/layers/absval.md @@ -0,0 +1,22 @@ +--- +title: Absolute Value Layer +--- + +# Absolute Value Layer + +* Layer type: `AbsVal` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AbsValLayer.html) +* Header: [`./include/caffe/layers/absval_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/absval_layer.hpp) +* CPU implementation: [`./src/caffe/layers/absval_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/absval_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/absval_layer.cu) + +* Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: "AbsVal" + } + +The `AbsVal` layer computes the output as abs(x) for each input element x. diff --git a/docs/tutorial/layers/accuracy.md b/docs/tutorial/layers/accuracy.md new file mode 100644 index 000000000..80293b1c6 --- /dev/null +++ b/docs/tutorial/layers/accuracy.md @@ -0,0 +1,20 @@ +--- +title: Accuracy and Top-k +--- + +# Accuracy and Top-k + +`Accuracy` scores the output as the accuracy of output with respect to target -- it is not actually a loss and has no backward step. + +* Layer type: `Accuracy` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1AccuracyLayer.html) +* Header: [`./include/caffe/layers/accuracy_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/accuracy_layer.hpp) +* CPU implementation: [`./src/caffe/layers/accuracy_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/accuracy_layer.cpp) + +## Parameters +* Parameters (`AccuracyParameter accuracy_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/AccuracyParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/argmax.md b/docs/tutorial/layers/argmax.md new file mode 100644 index 000000000..9eb8b7739 --- /dev/null +++ b/docs/tutorial/layers/argmax.md @@ -0,0 +1,18 @@ +--- +title: ArgMax Layer +--- + +# ArgMax Layer + +* Layer type: `ArgMax` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ArgMaxLayer.html) +* Header: [`./include/caffe/layers/argmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/argmax_layer.hpp) +* CPU implementation: [`./src/caffe/layers/argmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/argmax_layer.cpp) + +## Parameters +* Parameters (`ArgMaxParameter argmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ArgMaxParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/batchnorm.md b/docs/tutorial/layers/batchnorm.md new file mode 100644 index 000000000..a5be5ce08 --- /dev/null +++ b/docs/tutorial/layers/batchnorm.md @@ -0,0 +1,20 @@ +--- +title: Batch Norm Layer +--- + +# Batch Norm Layer + +* Layer type: `BatchNorm` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchNormLayer.html) +* Header: [`./include/caffe/layers/batch_norm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_norm_layer.hpp) +* CPU implementation: [`./src/caffe/layers/batch_norm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/batch_norm_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_norm_layer.cu) + +## Parameters + +* Parameters (`BatchNormParameter batch_norm_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/BatchNormParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/batchreindex.md b/docs/tutorial/layers/batchreindex.md new file mode 100644 index 000000000..21b36c39b --- /dev/null +++ b/docs/tutorial/layers/batchreindex.md @@ -0,0 +1,16 @@ +--- +title: Batch Reindex Layer +--- + +# Batch Reindex Layer + +* Layer type: `BatchReindex` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BatchReindexLayer.html) +* Header: [`./include/caffe/layers/batch_reindex_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/batch_reindex_layer.hpp) +* CPU implementation: [`./src/caffe/layers/batch_reindex_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/batch_reindex_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/batch_reindex_layer.cu) + + +## Parameters + +No parameters. diff --git a/docs/tutorial/layers/bias.md b/docs/tutorial/layers/bias.md new file mode 100644 index 000000000..d3a00c2fc --- /dev/null +++ b/docs/tutorial/layers/bias.md @@ -0,0 +1,19 @@ +--- +title: Bias Layer +--- + +# Bias Layer + +* Layer type: `Bias` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BiasLayer.html) +* Header: [`./include/caffe/layers/bias_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bias_layer.hpp) +* CPU implementation: [`./src/caffe/layers/bias_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/bias_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bias_layer.cu) + +## Parameters +* Parameters (`BiasParameter bias_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/BiasParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/bnll.md b/docs/tutorial/layers/bnll.md new file mode 100644 index 000000000..2b68b79ff --- /dev/null +++ b/docs/tutorial/layers/bnll.md @@ -0,0 +1,25 @@ +--- +title: BNLL Layer +--- + +# BNLL Layer + +* Layer type: `BNLL` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1BNLLLayer.html) +* Header: [`./include/caffe/layers/bnll_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/bnll_layer.hpp) +* CPU implementation: [`./src/caffe/layers/bnll_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/bnll_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/bnll_layer.cu) + +The `BNLL` (binomial normal log likelihood) layer computes the output as log(1 + exp(x)) for each input element x. + +## Parameters +No parameters. + +## Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: BNLL + } diff --git a/docs/tutorial/layers/concat.md b/docs/tutorial/layers/concat.md new file mode 100644 index 000000000..c7b253953 --- /dev/null +++ b/docs/tutorial/layers/concat.md @@ -0,0 +1,40 @@ +--- +title: Concat Layer +--- + +# Concat Layer + +* Layer type: `Concat` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConcatLayer.html) +* Header: [`./include/caffe/layers/concat_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/concat_layer.hpp) +* CPU implementation: [`./src/caffe/layers/concat_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/concat_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/concat_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/concat_layer.cu) +* Input + - `n_i * c_i * h * w` for each input blob i from 1 to K. +* Output + - if `axis = 0`: `(n_1 + n_2 + ... + n_K) * c_1 * h * w`, and all input `c_i` should be the same. + - if `axis = 1`: `n_1 * (c_1 + c_2 + ... + c_K) * h * w`, and all input `n_i` should be the same. +* Sample + + layer { + name: "concat" + bottom: "in1" + bottom: "in2" + top: "out" + type: "Concat" + concat_param { + axis: 1 + } + } + +The `Concat` layer is a utility layer that concatenates its multiple input blobs to one single output blob. + +## Parameters +* Parameters (`ConcatParameter concat_param`) + - Optional + - `axis` [default 1]: 0 for concatenation along num and 1 for channels. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConcatParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/contrastiveloss.md b/docs/tutorial/layers/contrastiveloss.md new file mode 100644 index 000000000..bb1859d9f --- /dev/null +++ b/docs/tutorial/layers/contrastiveloss.md @@ -0,0 +1,20 @@ +--- +title: Contrastive Loss Layer +--- + +# Contrastive Loss Layer + +* Layer type: `ContrastiveLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ContrastiveLossLayer.html) +* Header: [`./include/caffe/layers/contrastive_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/contrastive_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/contrastive_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/contrastive_loss_layer.cu) + +## Parameters + +* Parameters (`ContrastiveLossParameter contrastive_loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ContrastiveLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/convolution.md b/docs/tutorial/layers/convolution.md new file mode 100644 index 000000000..cc9f4fd04 --- /dev/null +++ b/docs/tutorial/layers/convolution.md @@ -0,0 +1,63 @@ +--- +title: Convolution Layer +--- + +# Convolution Layer + +* Layer type: `Convolution` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ConvolutionLayer.html) +* Header: [`./include/caffe/layers/conv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/conv_layer.hpp) +* CPU implementation: [`./src/caffe/layers/conv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/conv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu) +* Input + - `n * c_i * h_i * w_i` +* Output + - `n * c_o * h_o * w_o`, where `h_o = (h_i + 2 * pad_h - kernel_h) / stride_h + 1` and `w_o` likewise. + +The `Convolution` layer convolves the input image with a set of learnable filters, each producing one feature map in the output image. + +## Sample + +Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)): + + layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + # learning rate and decay multipliers for the filters + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + convolution_param { + num_output: 96 # learn 96 filters + kernel_size: 11 # each filter is 11x11 + stride: 4 # step 4 pixels between each filter application + weight_filler { + type: "gaussian" # initialize the filters from a Gaussian + std: 0.01 # distribution with stdev 0.01 (default mean: 0) + } + bias_filler { + type: "constant" # initialize the biases to zero (0) + value: 0 + } + } + } + +## Parameters +* Parameters (`ConvolutionParameter convolution_param`) + - Required + - `num_output` (`c_o`): the number of filters + - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter + - Strongly Recommended + - `weight_filler` [default `type: 'constant' value: 0`] + - Optional + - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs + - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input + - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input + - `group` (g) [default 1]: If g > 1, we restrict the connectivity of each filter to a subset of the input. Specifically, the input and output channels are separated into g groups, and the $$i$$th output group channels will be only connected to the $$i$$th input group channels. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConvolutionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/crop.md b/docs/tutorial/layers/crop.md new file mode 100644 index 000000000..28f91241f --- /dev/null +++ b/docs/tutorial/layers/crop.md @@ -0,0 +1,20 @@ +--- +title: Crop Layer +--- + +# Crop Layer + +* Layer type: `Crop` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1CropLayer.html) +* Header: [`./include/caffe/layers/crop_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/crop_layer.hpp) +* CPU implementation: [`./src/caffe/layers/crop_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/crop_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/crop_layer.cu) + +## Parameters + +* Parameters (`CropParameter crop_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/CropParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/data.md b/docs/tutorial/layers/data.md new file mode 100644 index 000000000..58e0dcaab --- /dev/null +++ b/docs/tutorial/layers/data.md @@ -0,0 +1,29 @@ +--- +title: Database Layer +--- + +# Database Layer + +* Layer type: `Data` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DataLayer.html) +* Header: [`./include/caffe/layers/data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/data_layer.cpp) + + +## Parameters + +* Parameters (`DataParameter data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DataParameter.txt %} +{% endhighlight %} + +* Parameters + - Required + - `source`: the name of the directory containing the database + - `batch_size`: the number of inputs to process at one time + - Optional + - `rand_skip`: skip up to this number of inputs at the beginning; useful for asynchronous sgd + - `backend` [default `LEVELDB`]: choose whether to use a `LEVELDB` or `LMDB` + diff --git a/docs/tutorial/layers/deconvolution.md b/docs/tutorial/layers/deconvolution.md new file mode 100644 index 000000000..2eff967d6 --- /dev/null +++ b/docs/tutorial/layers/deconvolution.md @@ -0,0 +1,22 @@ +--- +title: Deconvolution Layer +--- + +# Deconvolution Layer + +* Layer type: `Deconvolution` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DeconvolutionLayer.html) +* Header: [`./include/caffe/layers/deconv_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/deconv_layer.hpp) +* CPU implementation: [`./src/caffe/layers/deconv_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/deconv_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/deconv_layer.cu) + +## Parameters + +Uses the same parameters as the Convolution layer. + +* Parameters (`ConvolutionParameter convolution_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/ConvolutionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/dropout.md b/docs/tutorial/layers/dropout.md new file mode 100644 index 000000000..d8c6f9556 --- /dev/null +++ b/docs/tutorial/layers/dropout.md @@ -0,0 +1,20 @@ +--- +title: Dropout Layer +--- + +# Dropout Layer + +* Layer type: `Dropout` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DropoutLayer.html) +* Header: [`./include/caffe/layers/dropout_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dropout_layer.hpp) +* CPU implementation: [`./src/caffe/layers/dropout_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/dropout_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dropout_layer.cu) + +## Parameters + +* Parameters (`DropoutParameter dropout_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DropoutParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/dummydata.md b/docs/tutorial/layers/dummydata.md new file mode 100644 index 000000000..d069f9c59 --- /dev/null +++ b/docs/tutorial/layers/dummydata.md @@ -0,0 +1,20 @@ +--- +title: Dummy Data Layer +--- + +# Dummy Data Layer + +* Layer type: `DummyData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1DummyDataLayer.html) +* Header: [`./include/caffe/layers/dummy_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/dummy_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/dummy_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/dummy_data_layer.cpp) + + +## Parameters + +* Parameters (`DummyDataParameter dummy_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/DummyDataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/eltwise.md b/docs/tutorial/layers/eltwise.md new file mode 100644 index 000000000..70fe7910c --- /dev/null +++ b/docs/tutorial/layers/eltwise.md @@ -0,0 +1,20 @@ +--- +title: Eltwise Layer +--- + +# Eltwise Layer + +* Layer type: `Eltwise` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EltwiseLayer.html) +* Header: [`./include/caffe/layers/eltwise_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/eltwise_layer.hpp) +* CPU implementation: [`./src/caffe/layers/eltwise_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/eltwise_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/eltwise_layer.cu) + +## Parameters + +* Parameters (`EltwiseParameter eltwise_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/EltwiseParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/elu.md b/docs/tutorial/layers/elu.md new file mode 100644 index 000000000..11db0f0e3 --- /dev/null +++ b/docs/tutorial/layers/elu.md @@ -0,0 +1,25 @@ +--- +title: ELU Layer +--- + +# ELU Layer + +* Layer type: `ELU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ELULayer.html) +* Header: [`./include/caffe/layers/elu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/elu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/elu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/elu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/elu_layer.cu) + +## References + +* Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. + "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)" [arXiv:1511.07289](https://arxiv.org/abs/1511.07289). (2015). + +## Parameters + +* Parameters (`ELUParameter elu_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ELUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/embed.md b/docs/tutorial/layers/embed.md new file mode 100644 index 000000000..271636d8d --- /dev/null +++ b/docs/tutorial/layers/embed.md @@ -0,0 +1,20 @@ +--- +title: Embed Layer +--- + +# Embed Layer + +* Layer type: `Embed` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EmbedLayer.html) +* Header: [`./include/caffe/layers/embed_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/embed_layer.hpp) +* CPU implementation: [`./src/caffe/layers/embed_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/embed_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/embed_layer.cu) + +## Parameters + +* Parameters (`EmbedParameter embed_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/EmbedParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/euclideanloss.md b/docs/tutorial/layers/euclideanloss.md new file mode 100644 index 000000000..c1b72084c --- /dev/null +++ b/docs/tutorial/layers/euclideanloss.md @@ -0,0 +1,16 @@ +--- +title: Euclidean Loss Layer +--- +# Sum-of-Squares / Euclidean Loss Layer + +* Layer type: `EuclideanLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1EuclideanLossLayer.html) +* Header: [`./include/caffe/layers/euclidean_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/euclidean_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/euclidean_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/euclidean_loss_layer.cu) + +The Euclidean loss layer computes the sum of squares of differences of its two inputs, $$\frac 1 {2N} \sum_{i=1}^N \| x^1_i - x^2_i \|_2^2$$. + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/exp.md b/docs/tutorial/layers/exp.md new file mode 100644 index 000000000..ef2500ec2 --- /dev/null +++ b/docs/tutorial/layers/exp.md @@ -0,0 +1,24 @@ +--- +title: Exponential Layer +--- + +# Exponential Layer + +* Layer type: `Exp` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ExpLayer.html) +* Header: [`./include/caffe/layers/exp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/exp_layer.hpp) +* CPU implementation: [`./src/caffe/layers/exp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/exp_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/exp_layer.cu) + +## Parameters + +* Parameters (`Parameter exp_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ExpParameter.txt %} +{% endhighlight %} + +## See also + +* [Power layer](power.html) diff --git a/docs/tutorial/layers/filter.md b/docs/tutorial/layers/filter.md new file mode 100644 index 000000000..aeda9ee66 --- /dev/null +++ b/docs/tutorial/layers/filter.md @@ -0,0 +1,15 @@ +--- +title: Filter Layer +--- + +# Filter Layer + +* Layer type: `Filter` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FilterLayer.html) +* Header: [`./include/caffe/layers/filter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/filter_layer.hpp) +* CPU implementation: [`./src/caffe/layers/filter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/filter_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/filter_layer.cu) + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/flatten.md b/docs/tutorial/layers/flatten.md new file mode 100644 index 000000000..ecf082627 --- /dev/null +++ b/docs/tutorial/layers/flatten.md @@ -0,0 +1,21 @@ +--- +title: Flatten Layer +--- + +# Flatten Layer + +* Layer type: `Flatten` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1FlattenLayer.html) +* Header: [`./include/caffe/layers/flatten_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/flatten_layer.hpp) +* CPU implementation: [`./src/caffe/layers/flatten_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/flatten_layer.cpp) + +The `Flatten` layer is a utility layer that flattens an input of shape `n * c * h * w` to a simple vector output of shape `n * (c*h*w)`. + +## Parameters + +* Parameters (`FlattenParameter flatten_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/FlattenParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hdf5data.md b/docs/tutorial/layers/hdf5data.md new file mode 100644 index 000000000..d6b7ea24d --- /dev/null +++ b/docs/tutorial/layers/hdf5data.md @@ -0,0 +1,20 @@ +--- +title: HDF5 Data Layer +--- + +# HDF5 Data Layer + +* Layer type: `HDF5Data` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5DataLayer.html) +* Header: [`./include/caffe/layers/hdf5_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hdf5_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/hdf5_data_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_data_layer.cu) + +## Parameters + +* Parameters (`HDF5DataParameter hdf5_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HDF5DataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hdf5output.md b/docs/tutorial/layers/hdf5output.md new file mode 100644 index 000000000..cfbe4ddb7 --- /dev/null +++ b/docs/tutorial/layers/hdf5output.md @@ -0,0 +1,25 @@ +--- +title: HDF5 Output Layer +--- + +# HDF5 Output Layer + +* Layer type: `HDF5Output` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HDF5OutputLayer.html) +* Header: [`./include/caffe/layers/hdf5_output_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hdf5_output_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hdf5_output_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/hdf5_output_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hdf5_output_layer.cu) + +The HDF5 output layer performs the opposite function of the other layers in this section: it writes its input blobs to disk. + +## Parameters + +* Parameters (`HDF5OutputParameter hdf5_output_param`) + - Required + - `file_name`: name of file to write to + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HDF5OutputParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/hingeloss.md b/docs/tutorial/layers/hingeloss.md new file mode 100644 index 000000000..ef4fd95e2 --- /dev/null +++ b/docs/tutorial/layers/hingeloss.md @@ -0,0 +1,19 @@ +--- +title: Hinge Loss Layer +--- + +# Hinge (L1, L2) Loss Layer + +* Layer type: `HingeLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1HingeLossLayer.html) +* Header: [`./include/caffe/layers/hinge_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/hinge_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/hinge_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/hinge_loss_layer.cpp) + +## Parameters + +* Parameters (`HingeLossParameter hinge_loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/HingeLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/im2col.md b/docs/tutorial/layers/im2col.md new file mode 100644 index 000000000..0badc1cdd --- /dev/null +++ b/docs/tutorial/layers/im2col.md @@ -0,0 +1,16 @@ +--- +title: Im2col Layer +--- + +# im2col + +* File type: `Im2col` +* Header: [`./include/caffe/layers/im2col_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/im2col_layer.hpp) +* CPU implementation: [`./src/caffe/layers/im2col_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/im2col_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/im2col_layer.cu) + +`Im2col` is a helper for doing the image-to-column transformation that you most +likely do not need to know about. This is used in Caffe's original convolution +to do matrix multiplication by laying out all patches into a matrix. + + diff --git a/docs/tutorial/layers/imagedata.md b/docs/tutorial/layers/imagedata.md new file mode 100644 index 000000000..82c8a600b --- /dev/null +++ b/docs/tutorial/layers/imagedata.md @@ -0,0 +1,27 @@ +--- +title: ImageData Layer +--- + +# ImageData Layer + +* Layer type: `ImageData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ImageDataLayer.html) +* Header: [`./include/caffe/layers/image_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/image_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/image_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/image_data_layer.cpp) + +## Parameters + +* Parameters (`ImageDataParameter image_data_parameter`) + - Required + - `source`: name of a text file, with each line giving an image filename and label + - `batch_size`: number of images to batch together + - Optional + - `rand_skip` + - `shuffle` [default false] + - `new_height`, `new_width`: if provided, resize all images to this size + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ImageDataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/infogainloss.md b/docs/tutorial/layers/infogainloss.md new file mode 100644 index 000000000..b3b690d26 --- /dev/null +++ b/docs/tutorial/layers/infogainloss.md @@ -0,0 +1,23 @@ +--- +title: Infogain Loss Layer +--- + +# Infogain Loss Layer + +* Layer type: `InfogainLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InfogainLossLayer.html) +* Header: [`./include/caffe/layers/infogain_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/infogain_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/infogain_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/infogain_loss_layer.cpp) + +A generalization of [MultinomialLogisticLossLayer](multinomiallogisticloss.html) that takes an "information gain" (infogain) matrix specifying the "value" of all label pairs. + +Equivalent to the [MultinomialLogisticLossLayer](multinomiallogisticloss.html) if the infogain matrix is the identity. + +## Parameters + +* Parameters (`Parameter infogain_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/InfogainLossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/innerproduct.md b/docs/tutorial/layers/innerproduct.md new file mode 100644 index 000000000..98b9bea81 --- /dev/null +++ b/docs/tutorial/layers/innerproduct.md @@ -0,0 +1,59 @@ +--- +title: Inner Product / Fully Connected Layer +--- + +# Inner Product / Fully Connected Layer + +* Layer type: `InnerProduct` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InnerProductLayer.html) +* Header: [`./include/caffe/layers/inner_product_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/inner_product_layer.hpp) +* CPU implementation: [`./src/caffe/layers/inner_product_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/inner_product_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cu) + +* Input + - `n * c_i * h_i * w_i` +* Output + - `n * c_o * 1 * 1` +* Sample + + layer { + name: "fc8" + type: "InnerProduct" + # learning rate and decay multipliers for the weights + param { lr_mult: 1 decay_mult: 1 } + # learning rate and decay multipliers for the biases + param { lr_mult: 2 decay_mult: 0 } + inner_product_param { + num_output: 1000 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + value: 0 + } + } + bottom: "fc7" + top: "fc8" + } + +The `InnerProduct` layer (also usually referred to as the fully connected layer) treats the input as a simple vector and produces an output in the form of a single vector (with the blob's height and width set to 1). + + +## Parameters + +* Parameters (`InnerProductParameter inner_product_param`) + - Required + - `num_output` (`c_o`): the number of filters + - Strongly recommended + - `weight_filler` [default `type: 'constant' value: 0`] + - Optional + - `bias_filler` [default `type: 'constant' value: 0`] + - `bias_term` [default `true`]: specifies whether to learn and apply a set of additive biases to the filter outputs +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/InnerProductParameter.txt %} +{% endhighlight %} + diff --git a/docs/tutorial/layers/input.md b/docs/tutorial/layers/input.md new file mode 100644 index 000000000..b74c35d2f --- /dev/null +++ b/docs/tutorial/layers/input.md @@ -0,0 +1,19 @@ +--- +title: Input Layer +--- + +# Input Layer + +* Layer type: `Input` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1InputLayer.html) +* Header: [`./include/caffe/layers/input_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/input_layer.hpp) +* CPU implementation: [`./src/caffe/layers/input_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/input_layer.cpp) + +## Parameters + +* Parameters (`InputParameter input_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto)): + +{% highlight Protobuf %} +{% include proto/InputParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/log.md b/docs/tutorial/layers/log.md new file mode 100644 index 000000000..df5203748 --- /dev/null +++ b/docs/tutorial/layers/log.md @@ -0,0 +1,20 @@ +--- +title: Log Layer +--- + +# Log Layer + +* Layer type: `Log` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LogLayer.html) +* Header: [`./include/caffe/layers/log_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/log_layer.hpp) +* CPU implementation: [`./src/caffe/layers/log_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/log_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/log_layer.cu) + +## Parameters + +* Parameters (`Parameter log_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LogParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/lrn.md b/docs/tutorial/layers/lrn.md new file mode 100644 index 000000000..2fbef7346 --- /dev/null +++ b/docs/tutorial/layers/lrn.md @@ -0,0 +1,28 @@ +--- +title: Local Response Normalization (LRN) +--- + +# Local Response Normalization (LRN) + +* Layer type: `LRN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LRNLayer.html) +* Header: [`./include/caffe/layers/lrn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lrn_layer.hpp) +* CPU Implementation: [`./src/caffe/layers/lrn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lrn_layer.cpp) +* CUDA GPU Implementation: [`./src/caffe/layers/lrn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lrn_layer.cu) +* Parameters (`LRNParameter lrn_param`) + - Optional + - `local_size` [default 5]: the number of channels to sum over (for cross channel LRN) or the side length of the square region to sum over (for within channel LRN) + - `alpha` [default 1]: the scaling parameter (see below) + - `beta` [default 5]: the exponent (see below) + - `norm_region` [default `ACROSS_CHANNELS`]: whether to sum over adjacent channels (`ACROSS_CHANNELS`) or nearby spatial locaitons (`WITHIN_CHANNEL`) + +The local response normalization layer performs a kind of "lateral inhibition" by normalizing over local input regions. In `ACROSS_CHANNELS` mode, the local regions extend across nearby channels, but have no spatial extent (i.e., they have shape `local_size x 1 x 1`). In `WITHIN_CHANNEL` mode, the local regions extend spatially, but are in separate channels (i.e., they have shape `1 x local_size x local_size`). Each input value is divided by $$(1 + (\alpha/n) \sum_i x_i^2)^\beta$$, where $$n$$ is the size of each local region, and the sum is taken over the region centered at that value (zero padding is added where necessary). + +## Parameters + +* Parameters (`LRNParameter lrn_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LRNParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/lstm.md b/docs/tutorial/layers/lstm.md new file mode 100644 index 000000000..8e4095e95 --- /dev/null +++ b/docs/tutorial/layers/lstm.md @@ -0,0 +1,21 @@ +--- +title: LSTM Layer +--- + +# LSTM Layer + +* Layer type: `LSTM` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1LSTMLayer.html) +* Header: [`./include/caffe/layers/lstm_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/lstm_layer.hpp) +* CPU implementation: [`./src/caffe/layers/lstm_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_layer.cpp) +* CPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cpp) +* CUDA GPU implementation (helper): [`./src/caffe/layers/lstm_unit_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/lstm_unit_layer.cu) + +## Parameters + +* Parameters (`Parameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/memorydata.md b/docs/tutorial/layers/memorydata.md new file mode 100644 index 000000000..afce4a24a --- /dev/null +++ b/docs/tutorial/layers/memorydata.md @@ -0,0 +1,25 @@ +--- +title: Memory Data Layer +--- + +# Memory Data Layer + +* Layer type: `MemoryData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MemoryDataLayer.html) +* Header: [`./include/caffe/layers/memory_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/memory_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/memory_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/memory_data_layer.cpp) + +The memory data layer reads data directly from memory, without copying it. In order to use it, one must call `MemoryDataLayer::Reset` (from C++) or `Net.set_input_arrays` (from Python) in order to specify a source of contiguous data (as 4D row major array), which is read one batch-sized chunk at a time. + +# Parameters + +* Parameters (`MemoryDataParameter memory_data_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/MemoryDataParameter.txt %} +{% endhighlight %} + +* Parameters + - Required + - `batch_size`, `channels`, `height`, `width`: specify the size of input chunks to read from memory diff --git a/docs/tutorial/layers/multinomiallogisticloss.md b/docs/tutorial/layers/multinomiallogisticloss.md new file mode 100644 index 000000000..5eab74a8a --- /dev/null +++ b/docs/tutorial/layers/multinomiallogisticloss.md @@ -0,0 +1,19 @@ +--- +title: Multinomial Logistic Loss Layer +--- + +# Multinomial Logistic Loss Layer + +* Layer type: `MultinomialLogisticLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MultinomialLogisticLossLayer.html) +* Header: [`./include/caffe/layers/multinomial_logistic_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/multinomial_logistic_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/multinomial_logistic_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/multinomial_logistic_loss_layer.cpp) + +## Parameters + +* Parameters (`LossParameter loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LossParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/mvn.md b/docs/tutorial/layers/mvn.md new file mode 100644 index 000000000..08e44887d --- /dev/null +++ b/docs/tutorial/layers/mvn.md @@ -0,0 +1,20 @@ +--- +title: Mean-Variance Normalization (MVN) Layer +--- + +# Mean-Variance Normalization (MVN) Layer + +* Layer type: `MVN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1MVNLayer.html) +* Header: [`./include/caffe/layers/mvn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/mvn_layer.hpp) +* CPU implementation: [`./src/caffe/layers/mvn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/mvn_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/mvn_layer.cu) + +## Parameters + +* Parameters (`MVNParameter mvn_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/MVNParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/parameter.md b/docs/tutorial/layers/parameter.md new file mode 100644 index 000000000..b7e85ec5c --- /dev/null +++ b/docs/tutorial/layers/parameter.md @@ -0,0 +1,21 @@ +--- +title: Parameter Layer +--- + +# Parameter Layer + +* Layer type: `Parameter` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ParameterLayer.html) +* Header: [`./include/caffe/layers/parameter_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/parameter_layer.hpp) +* CPU implementation: [`./src/caffe/layers/parameter_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/parameter_layer.cpp) + +See [https://github.com/BVLC/caffe/pull/2079](https://github.com/BVLC/caffe/pull/2079). + +## Parameters + +* Parameters (`ParameterParameter parameter_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ParameterParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/pooling.md b/docs/tutorial/layers/pooling.md new file mode 100644 index 000000000..12669ee8d --- /dev/null +++ b/docs/tutorial/layers/pooling.md @@ -0,0 +1,47 @@ +--- +title: Pooling Layer +--- +# Pooling + +* Layer type: `Pooling` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PoolingLayer.html) +* Header: [`./include/caffe/layers/pooling_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/pooling_layer.hpp) +* CPU implementation: [`./src/caffe/layers/pooling_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/pooling_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/pooling_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/pooling_layer.cu) + +* Input + - `n * c * h_i * w_i` +* Output + - `n * c * h_o * w_o`, where h_o and w_o are computed in the same way as convolution. + +## Parameters + +* Parameters (`PoolingParameter pooling_param`) + - Required + - `kernel_size` (or `kernel_h` and `kernel_w`): specifies height and width of each filter + - Optional + - `pool` [default MAX]: the pooling method. Currently MAX, AVE, or STOCHASTIC + - `pad` (or `pad_h` and `pad_w`) [default 0]: specifies the number of pixels to (implicitly) add to each side of the input + - `stride` (or `stride_h` and `stride_w`) [default 1]: specifies the intervals at which to apply the filters to the input + + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PoolingParameter.txt %} +{% endhighlight %} + +## Sample +* Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)) + + layer { + name: "pool1" + type: "Pooling" + bottom: "conv1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 # pool over a 3x3 region + stride: 2 # step two pixels (in the bottom blob) between pooling regions + } + } diff --git a/docs/tutorial/layers/power.md b/docs/tutorial/layers/power.md new file mode 100644 index 000000000..d6617529b --- /dev/null +++ b/docs/tutorial/layers/power.md @@ -0,0 +1,46 @@ +--- +title: Power Layer +--- + +# Power Layer + +* Layer type: `Power` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PowerLayer.html) +* Header: [`./include/caffe/layers/power_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/power_layer.hpp) +* CPU implementation: [`./src/caffe/layers/power_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/power_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/power_layer.cu) + +The `Power` layer computes the output as (shift + scale * x) ^ power for each input element x. + +## Parameters +* Parameters (`PowerParameter power_param`) + - Optional + - `power` [default 1] + - `scale` [default 1] + - `shift` [default 0] + +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PowerParameter.txt %} +{% endhighlight %} + + + +## Sample + + layer { + name: "layer" + bottom: "in" + top: "out" + type: "Power" + power_param { + power: 1 + scale: 1 + shift: 0 + } + } + +## See also + +* [Exponential layer](exp.html) diff --git a/docs/tutorial/layers/prelu.md b/docs/tutorial/layers/prelu.md new file mode 100644 index 000000000..e7b7b44ac --- /dev/null +++ b/docs/tutorial/layers/prelu.md @@ -0,0 +1,20 @@ +--- +title: PReLU Layer +--- + +# PReLU Layer + +* Layer type: `PReLU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PReLULayer.html) +* Header: [`./include/caffe/layers/prelu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/prelu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/prelu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/prelu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/prelu_layer.cu) + +## Parameters + +* Parameters (`PReLUParameter prelu_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PReLUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/python.md b/docs/tutorial/layers/python.md new file mode 100644 index 000000000..2e30b3a79 --- /dev/null +++ b/docs/tutorial/layers/python.md @@ -0,0 +1,27 @@ +--- +title: Python Layer +--- + +# Python Layer + +* Layer type: `Python` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1PythonLayer.html) +* Header: [`./include/caffe/layers/python_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/python_layer.hpp) + +The Python layer allows users to add customized layers without modifying the Caffe core code. + +## Parameters + +* Parameters (`PythonParameter python_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/PythonParameter.txt %} +{% endhighlight %} + +## Examples and tutorials + +* Simple Euclidean loss example +** [Python code](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/layers/pyloss.py) +** [Prototxt](https://github.com/BVLC/caffe/blob/master/examples/pycaffe/linreg.prototxt) +* [Tutorial for writing Python layers with DIGITS](https://github.com/NVIDIA/DIGITS/tree/master/examples/python-layer) diff --git a/docs/tutorial/layers/recurrent.md b/docs/tutorial/layers/recurrent.md new file mode 100644 index 000000000..a882b722f --- /dev/null +++ b/docs/tutorial/layers/recurrent.md @@ -0,0 +1,20 @@ +--- +title: Recurrent Layer +--- + +# Recurrent Layer + +* Layer type: `Recurrent` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RecurrentLayer.html) +* Header: [`./include/caffe/layers/recurrent_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/recurrent_layer.hpp) +* CPU implementation: [`./src/caffe/layers/recurrent_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/recurrent_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/recurrent_layer.cu) + +## Parameters + +* Parameters (`RecurrentParameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/reduction.md b/docs/tutorial/layers/reduction.md new file mode 100644 index 000000000..db55414b0 --- /dev/null +++ b/docs/tutorial/layers/reduction.md @@ -0,0 +1,20 @@ +--- +title: Reduction Layer +--- + +# Reduction Layer + +* Layer type: `Reduction` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReductionLayer.html) +* Header: [`./include/caffe/layers/reduction_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reduction_layer.hpp) +* CPU implementation: [`./src/caffe/layers/reduction_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/reduction_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reduction_layer.cu) + +## Parameters + +* Parameters (`ReductionParameter reduction_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReductionParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/relu.md b/docs/tutorial/layers/relu.md new file mode 100644 index 000000000..01aab0af4 --- /dev/null +++ b/docs/tutorial/layers/relu.md @@ -0,0 +1,32 @@ +--- +title: ReLU / Rectified-Linear and Leaky-ReLU Layer +--- + +# ReLU / Rectified-Linear and Leaky-ReLU Layer + +* Layer type: `ReLU` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReLULayer.html) +* Header: [`./include/caffe/layers/relu_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/relu_layer.hpp) +* CPU implementation: [`./src/caffe/layers/relu_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/relu_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/relu_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/relu_layer.cu) +* Sample (as seen in [`./models/bvlc_reference_caffenet/train_val.prototxt`](https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train_val.prototxt)) + + layer { + name: "relu1" + type: "ReLU" + bottom: "conv1" + top: "conv1" + } + +Given an input value x, The `ReLU` layer computes the output as x if x > 0 and negative_slope * x if x <= 0. When the negative slope parameter is not set, it is equivalent to the standard ReLU function of taking max(x, 0). It also supports in-place computation, meaning that the bottom and the top blob could be the same to preserve memory consumption. + +## Parameters + +* Parameters (`ReLUParameter relu_param`) + - Optional + - `negative_slope` [default 0]: specifies whether to leak the negative part by multiplying it with the slope value rather than setting it to 0. +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReLUParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/reshape.md b/docs/tutorial/layers/reshape.md new file mode 100644 index 000000000..92d23f2c7 --- /dev/null +++ b/docs/tutorial/layers/reshape.md @@ -0,0 +1,51 @@ +--- +title: Reshape Layer +--- + +# Reshape Layer +* Layer type: `Reshape` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ReshapeLayer.html) +* Header: [`./include/caffe/layers/reshape_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/reshape_layer.hpp) +* Implementation: [`./src/caffe/layers/reshape_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/reshape_layer.cpp) + +* Input + - a single blob with arbitrary dimensions +* Output + - the same blob, with modified dimensions, as specified by `reshape_param` + +* Sample + + layer { + name: "reshape" + type: "Reshape" + bottom: "input" + top: "output" + reshape_param { + shape { + dim: 0 # copy the dimension from below + dim: 2 + dim: 3 + dim: -1 # infer it from the other dimensions + } + } + } + +The `Reshape` layer can be used to change the dimensions of its input, without changing its data. Just like the `Flatten` layer, only the dimensions are changed; no data is copied in the process. + +Output dimensions are specified by the `ReshapeParam` proto. Positive numbers are used directly, setting the corresponding dimension of the output blob. In addition, two special values are accepted for any of the target dimension values: + +* **0** means "copy the respective dimension of the bottom layer". That is, if the bottom has 2 as its 1st dimension, the top will have 2 as its 1st dimension as well, given `dim: 0` as the 1st target dimension. +* **-1** stands for "infer this from the other dimensions". This behavior is similar to that of -1 in *numpy*'s or `[]` for *MATLAB*'s reshape: this dimension is calculated to keep the overall element count the same as in the bottom layer. At most one -1 can be used in a reshape operation. + +As another example, specifying `reshape_param { shape { dim: 0 dim: -1 } }` makes the layer behave in exactly the same way as the `Flatten` layer. + +## Parameters + +* Parameters (`ReshapeParameter reshape_param`) + - Optional: (also see detailed description below) + - `shape` +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ReshapeParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/rnn.md b/docs/tutorial/layers/rnn.md new file mode 100644 index 000000000..b6fcf4713 --- /dev/null +++ b/docs/tutorial/layers/rnn.md @@ -0,0 +1,19 @@ +--- +title: RNN Layer +--- + +# RNN Layer + +* Layer type: `RNN` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1RNNLayer.html) +* Header: [`./include/caffe/layers/rnn_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/rnn_layer.hpp) +* CPU implementation: [`./src/caffe/layers/rnn_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/rnn_layer.cpp) + +## Parameters + +* Parameters (`RecurrentParameter recurrent_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/RecurrentParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/scale.md b/docs/tutorial/layers/scale.md new file mode 100644 index 000000000..0e27549ad --- /dev/null +++ b/docs/tutorial/layers/scale.md @@ -0,0 +1,20 @@ +--- +title: Scale Layer +--- + +# Scale Layer + +* Layer type: `Scale` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1ScaleLayer.html) +* Header: [`./include/caffe/layers/scale_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/scale_layer.hpp) +* CPU implementation: [`./src/caffe/layers/scale_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/scale_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/scale_layer.cu) + +## Parameters + +* Parameters (`ScaleParameter scale_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ScaleParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/sigmoid.md b/docs/tutorial/layers/sigmoid.md new file mode 100644 index 000000000..f18ac4b84 --- /dev/null +++ b/docs/tutorial/layers/sigmoid.md @@ -0,0 +1,30 @@ +--- +title: Sigmoid Layer +--- + +# Sigmoid Layer + +* Layer type: `Sigmoid` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidLayer.html) +* Header: [`./include/caffe/layers/sigmoid_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_layer.hpp) +* CPU implementation: [`./src/caffe/layers/sigmoid_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/sigmoid_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_layer.cu) +* Example (from [`./examples/mnist/mnist_autoencoder.prototxt`](https://github.com/BVLC/caffe/blob/master/examples/mnist/mnist_autoencoder.prototxt)): + + layer { + name: "encode1neuron" + bottom: "encode1" + top: "encode1neuron" + type: "Sigmoid" + } + +The `Sigmoid` layer computes `sigmoid(x)` for each element `x` in the bottom blob. + +## Parameters + +* Parameters (`SigmoidParameter sigmoid_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SigmoidParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/sigmoidcrossentropyloss.md b/docs/tutorial/layers/sigmoidcrossentropyloss.md new file mode 100644 index 000000000..a6e42cadf --- /dev/null +++ b/docs/tutorial/layers/sigmoidcrossentropyloss.md @@ -0,0 +1,13 @@ +--- +title: Sigmoid Cross-Entropy Loss Layer +--- + +# Sigmoid Cross-Entropy Loss Layer + +* Layer type: `SigmoidCrossEntropyLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SigmoidCrossEntropyLossLayer.html) +* Header: [`./include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu) + +To-do. diff --git a/docs/tutorial/layers/silence.md b/docs/tutorial/layers/silence.md new file mode 100644 index 000000000..8b4579a99 --- /dev/null +++ b/docs/tutorial/layers/silence.md @@ -0,0 +1,17 @@ +--- +title: Silence Layer +--- + +# Silence Layer + +* Layer type: `Silence` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SilenceLayer.html) +* Header: [`./include/caffe/layers/silence_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/silence_layer.hpp) +* CPU implementation: [`./src/caffe/layers/silence_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/silence_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/silence_layer.cu) + +Silences a blob, so that it is not printed. + +## Parameters + +No parameters. diff --git a/docs/tutorial/layers/slice.md b/docs/tutorial/layers/slice.md new file mode 100644 index 000000000..a492f1e82 --- /dev/null +++ b/docs/tutorial/layers/slice.md @@ -0,0 +1,42 @@ +--- +title: Slice Layer +--- + +# Slice Layer + +* Layer type: `Slice` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SliceLayer.html) +* Header: [`./include/caffe/layers/slice_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/slice_layer.hpp) +* CPU implementation: [`./src/caffe/layers/slice_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/slice_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/slice_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/slice_layer.cu) + +The `Slice` layer is a utility layer that slices an input layer to multiple output layers along a given dimension (currently num or channel only) with given slice indices. + +* Sample + + layer { + name: "slicer_label" + type: "Slice" + bottom: "label" + ## Example of label with a shape N x 3 x 1 x 1 + top: "label1" + top: "label2" + top: "label3" + slice_param { + axis: 1 + slice_point: 1 + slice_point: 2 + } + } + +`axis` indicates the target axis; `slice_point` indicates indexes in the selected dimension (the number of indices must be equal to the number of top blobs minus one). + +## Parameters + +* Parameters (`SliceParameter slice_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SliceParameter.txt %} +{% endhighlight %} + diff --git a/docs/tutorial/layers/softmax.md b/docs/tutorial/layers/softmax.md new file mode 100644 index 000000000..e5d534251 --- /dev/null +++ b/docs/tutorial/layers/softmax.md @@ -0,0 +1,24 @@ +--- +title: Softmax Layer +--- + +# Softmax Layer + +* Layer type: `Softmax` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxLayer.html) +* Header: [`./include/caffe/layers/softmax_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_layer.hpp) +* CPU implementation: [`./src/caffe/layers/softmax_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/softmax_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu) + +## Parameters + +* Parameters (`SoftmaxParameter softmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SoftmaxParameter.txt %} +{% endhighlight %} + +## See also + +* [Softmax loss layer](softmaxwithloss.html) diff --git a/docs/tutorial/layers/softmaxwithloss.md b/docs/tutorial/layers/softmaxwithloss.md new file mode 100644 index 000000000..d9a6774a0 --- /dev/null +++ b/docs/tutorial/layers/softmaxwithloss.md @@ -0,0 +1,33 @@ +--- +title: Softmax with Loss Layer +--- + +# Softmax with Loss Layer + +* Layer type: `SoftmaxWithLoss` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SoftmaxWithLossLayer.html) +* Header: [`./include/caffe/layers/softmax_loss_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/softmax_loss_layer.hpp) +* CPU implementation: [`./src/caffe/layers/softmax_loss_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_loss_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/softmax_loss_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_loss_layer.cu) + +The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It's conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient. + +## Parameters + +* Parameters (`SoftmaxParameter softmax_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SoftmaxParameter.txt %} +{% endhighlight %} + +* Parameters (`LossParameter loss_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/LossParameter.txt %} +{% endhighlight %} + +## See also + +* [Softmax layer](softmax.html) diff --git a/docs/tutorial/layers/split.md b/docs/tutorial/layers/split.md new file mode 100644 index 000000000..4fb71d1f2 --- /dev/null +++ b/docs/tutorial/layers/split.md @@ -0,0 +1,17 @@ +--- +title: Split Layer +--- + +# Split Layer + +* Layer type: `Split` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SplitLayer.html) +* Header: [`./include/caffe/layers/split_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/split_layer.hpp) +* CPU implementation: [`./src/caffe/layers/split_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/split_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/split_layer.cu) + +The `Split` layer is a utility layer that splits an input blob to multiple output blobs. This is used when a blob is fed into multiple output layers. + +## Parameters + +Does not take any parameters. diff --git a/docs/tutorial/layers/spp.md b/docs/tutorial/layers/spp.md new file mode 100644 index 000000000..26e586202 --- /dev/null +++ b/docs/tutorial/layers/spp.md @@ -0,0 +1,20 @@ +--- +title: Spatial Pyramid Pooling Layer +--- + +# Spatial Pyramid Pooling Layer + +* Layer type: `SPP` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1SPPLayer.html) +* Header: [`./include/caffe/layers/spp_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/spp_layer.hpp) +* CPU implementation: [`./src/caffe/layers/spp_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/spp_layer.cpp) + + +## Parameters + +* Parameters (`SPPParameter spp_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/SPPParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/tanh.md b/docs/tutorial/layers/tanh.md new file mode 100644 index 000000000..360634596 --- /dev/null +++ b/docs/tutorial/layers/tanh.md @@ -0,0 +1,18 @@ +--- +title: TanH Layer +--- + +# TanH Layer + +* Header: [`./include/caffe/layers/tanh_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tanh_layer.hpp) +* CPU implementation: [`./src/caffe/layers/tanh_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/tanh_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tanh_layer.cu) + +## Parameters + +* Parameters (`TanHParameter tanh_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/TanHParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/threshold.md b/docs/tutorial/layers/threshold.md new file mode 100644 index 000000000..819e9e6f9 --- /dev/null +++ b/docs/tutorial/layers/threshold.md @@ -0,0 +1,18 @@ +--- +title: Threshold Layer +--- + +# Threshold Layer + +* Header: [`./include/caffe/layers/threshold_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/threshold_layer.hpp) +* CPU implementation: [`./src/caffe/layers/threshold_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/threshold_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/threshold_layer.cu) + +## Parameters + +* Parameters (`ThresholdParameter threshold_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/ThresholdParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/tile.md b/docs/tutorial/layers/tile.md new file mode 100644 index 000000000..ea03aaa43 --- /dev/null +++ b/docs/tutorial/layers/tile.md @@ -0,0 +1,20 @@ +--- +title: Tile Layer +--- + +# Tile Layer + +* Layer type: `Tile` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1TileLayer.html) +* Header: [`./include/caffe/layers/tile_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/tile_layer.hpp) +* CPU implementation: [`./src/caffe/layers/tile_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cpp) +* CUDA GPU implementation: [`./src/caffe/layers/tile_layer.cu`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/tile_layer.cu) + +## Parameters + +* Parameters (`TileParameter tile_param`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/TileParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/layers/windowdata.md b/docs/tutorial/layers/windowdata.md new file mode 100644 index 000000000..0cb4a8dfe --- /dev/null +++ b/docs/tutorial/layers/windowdata.md @@ -0,0 +1,19 @@ +--- +title: WindowData Layer +--- + +# WindowData Layer + +* Layer type: `WindowData` +* [Doxygen Documentation](http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1WindowDataLayer.html) +* Header: [`./include/caffe/layers/window_data_layer.hpp`](https://github.com/BVLC/caffe/blob/master/include/caffe/layers/window_data_layer.hpp) +* CPU implementation: [`./src/caffe/layers/window_data_layer.cpp`](https://github.com/BVLC/caffe/blob/master/src/caffe/layers/window_data_layer.cpp) + +## Parameters + +* Parameters (`WindowDataParameter`) +* From [`./src/caffe/proto/caffe.proto`](https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto): + +{% highlight Protobuf %} +{% include proto/WindowDataParameter.txt %} +{% endhighlight %} diff --git a/docs/tutorial/solver.md b/docs/tutorial/solver.md index b150f6487..81c626386 100644 --- a/docs/tutorial/solver.md +++ b/docs/tutorial/solver.md @@ -8,12 +8,12 @@ The responsibilities of learning are divided between the Solver for overseeing t The Caffe solvers are: -- Stochastic Gradient Descent (`SGD`), -- AdaDelta (`ADADELTA`), -- Adaptive Gradient (`ADAGRAD`), -- Adam (`ADAM`), -- Nesterov's Accelerated Gradient (`NESTEROV`) and -- RMSprop (`RMSPROP`) +- Stochastic Gradient Descent (`type: "SGD"`), +- AdaDelta (`type: "AdaDelta"`), +- Adaptive Gradient (`type: "AdaGrad"`), +- Adam (`type: "Adam"`), +- Nesterov's Accelerated Gradient (`type: "Nesterov"`) and +- RMSprop (`type: "RMSProp"`) The solver @@ -51,7 +51,7 @@ The parameter update $$\Delta W$$ is formed by the solver from the error gradien ### SGD -**Stochastic gradient descent** (`solver_type: SGD`) updates the weights $$ W $$ by a linear combination of the negative gradient $$ \nabla L(W) $$ and the previous weight update $$ V_t $$. +**Stochastic gradient descent** (`type: "SGD"`) updates the weights $$ W $$ by a linear combination of the negative gradient $$ \nabla L(W) $$ and the previous weight update $$ V_t $$. The **learning rate** $$ \alpha $$ is the weight of the negative gradient. The **momentum** $$ \mu $$ is the weight of the previous update. @@ -113,7 +113,7 @@ If learning diverges (e.g., you start to see very large or `NaN` or `inf` loss v ### AdaDelta -The **AdaDelta** (`solver_type: ADADELTA`) method (M. Zeiler [1]) is a "robust learning rate method". It is a gradient-based optimization method (like SGD). The update formulas are +The **AdaDelta** (`type: "AdaDelta"`) method (M. Zeiler [1]) is a "robust learning rate method". It is a gradient-based optimization method (like SGD). The update formulas are $$ \begin{align} @@ -125,7 +125,7 @@ E[g^2]_t &= \delta{E[g^2]_{t-1} } + (1-\delta)g_{t}^2 \end{align} $$ -and +and $$ (W_{t+1})_i = @@ -139,7 +139,7 @@ $$ ### AdaGrad -The **adaptive gradient** (`solver_type: ADAGRAD`) method (Duchi et al. [1]) is a gradient-based optimization method (like SGD) that attempts to "find needles in haystacks in the form of very predictive but rarely seen features," in Duchi et al.'s words. +The **adaptive gradient** (`type: "AdaGrad"`) method (Duchi et al. [1]) is a gradient-based optimization method (like SGD) that attempts to "find needles in haystacks in the form of very predictive but rarely seen features," in Duchi et al.'s words. Given the update information from all previous iterations $$ \left( \nabla L(W) \right)_{t'} $$ for $$ t' \in \{1, 2, ..., t\} $$, the update formulas proposed by [1] are as follows, specified for each component $$i$$ of the weights $$W$$: @@ -159,7 +159,7 @@ Note that in practice, for weights $$ W \in \mathcal{R}^d $$, AdaGrad implementa ### Adam -The **Adam** (`solver_type: ADAM`), proposed in Kingma et al. [1], is a gradient-based optimization method (like SGD). This includes an "adaptive moment estimation" ($$m_t, v_t$$) and can be regarded as a generalization of AdaGrad. The update formulas are +The **Adam** (`type: "Adam"`), proposed in Kingma et al. [1], is a gradient-based optimization method (like SGD). This includes an "adaptive moment estimation" ($$m_t, v_t$$) and can be regarded as a generalization of AdaGrad. The update formulas are $$ (m_t)_i = \beta_1 (m_{t-1})_i + (1-\beta_1)(\nabla L(W_t))_i,\\ @@ -181,7 +181,7 @@ Kingma et al. [1] proposed to use $$\beta_1 = 0.9, \beta_2 = 0.999, \varepsilon ### NAG -**Nesterov's accelerated gradient** (`solver_type: NESTEROV`) was proposed by Nesterov [1] as an "optimal" method of convex optimization, achieving a convergence rate of $$ \mathcal{O}(1/t^2) $$ rather than the $$ \mathcal{O}(1/t) $$. +**Nesterov's accelerated gradient** (`type: "Nesterov"`) was proposed by Nesterov [1] as an "optimal" method of convex optimization, achieving a convergence rate of $$ \mathcal{O}(1/t^2) $$ rather than the $$ \mathcal{O}(1/t) $$. Though the required assumptions to achieve the $$ \mathcal{O}(1/t^2) $$ convergence typically will not hold for deep networks trained with Caffe (e.g., due to non-smoothness and non-convexity), in practice NAG can be a very effective method for optimizing certain types of deep learning architectures, as demonstrated for deep MNIST autoencoders by Sutskever et al. [2]. The weight update formulas look very similar to the SGD updates given above: @@ -206,21 +206,14 @@ What distinguishes the method from SGD is the weight setting $$ W $$ on which we ### RMSprop -The **RMSprop** (`solver_type: RMSPROP`), suggested by Tieleman in a Coursera course lecture, is a gradient-based optimization method (like SGD). The update formulas are - -$$ -(v_t)_i = -\begin{cases} -(v_{t-1})_i + \delta, &(\nabla L(W_t))_i(\nabla L(W_{t-1}))_i > 0\\ -(v_{t-1})_i \cdot (1-\delta), & \text{else} -\end{cases} -$$ +The **RMSprop** (`type: "RMSProp"`), suggested by Tieleman in a Coursera course lecture, is a gradient-based optimization method (like SGD). The update formulas are $$ -(W_{t+1})_i =(W_t)_i - \alpha (v_t)_i, +\operatorname{MS}((W_t)_i)= \delta\operatorname{MS}((W_{t-1})_i)+ (1-\delta)(\nabla L(W_t))_i^2 \\ +(W_{t+1})_i= (W_{t})_i -\alpha\frac{(\nabla L(W_t))_i}{\sqrt{\operatorname{MS}((W_t)_i)}} $$ -If the gradient updates results in oscillations the gradient is reduced by times $$1-\delta$$. Otherwise it will be increased by $$\delta$$. The default value of $$\delta$$ (`rms_decay`) is set to $$\delta = 0.02$$. +The default value of $$\delta$$ (`rms_decay`) is set to $$\delta=0.99$$. [1] T. Tieleman, and G. Hinton. [RMSProp: Divide the gradient by a running average of its recent magnitude](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf). diff --git a/examples/00-classification.ipynb b/examples/00-classification.ipynb index 46bbb193f..1950f08f6 100644 --- a/examples/00-classification.ipynb +++ b/examples/00-classification.ipynb @@ -4,54 +4,72 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Instant Recognition with Caffe\n", + "# Classification: Instant Recognition with Caffe\n", "\n", - "In this example we'll classify an image with the bundled CaffeNet model based on the network architecture of Krizhevsky et al. for ImageNet. We'll compare CPU and GPU operation then reach into the model to inspect features and the output.\n", + "In this example we'll classify an image with the bundled CaffeNet model (which is based on the network architecture of Krizhevsky et al. for ImageNet).\n", "\n", - "(These feature visualizations follow the DeCAF visualizations originally by Yangqing Jia.)" + "We'll compare CPU and GPU modes and then dig into the model to inspect features and the output." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "First, import required modules, set plotting parameters, and run `./scripts/download_model_binary.py models/bvlc_reference_caffenet` to get the pretrained CaffeNet model if it hasn't already been fetched." + "### 1. Setup\n", + "\n", + "* First, set up Python, `numpy`, and `matplotlib`." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ + "# set up Python environment: numpy for numerical routines, and matplotlib for plotting\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "# display plots in this notebook\n", "%matplotlib inline\n", "\n", - "# Make sure that caffe is on the python path:\n", - "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", + "# set display defaults\n", + "plt.rcParams['figure.figsize'] = (10, 10) # large images\n", + "plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels\n", + "plt.rcParams['image.cmap'] = 'gray' # use grayscale output rather than a (potentially misleading) color heatmap" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Load `caffe`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# The caffe module needs to be on the Python path;\n", + "# we'll add it here explicitly.\n", "import sys\n", + "caffe_root = '../' # this file should be run from {caffe_root}/examples (otherwise change this line)\n", "sys.path.insert(0, caffe_root + 'python')\n", "\n", "import caffe\n", - "\n", - "plt.rcParams['figure.figsize'] = (10, 10)\n", - "plt.rcParams['image.interpolation'] = 'nearest'\n", - "plt.rcParams['image.cmap'] = 'gray'\n", - "\n", - "import os\n", - "if not os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):\n", - " print(\"Downloading pre-trained CaffeNet model...\")\n", - " !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet" + "# If you get \"No module named _caffe\", either you have not built pycaffe or you have the wrong path." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Set Caffe to CPU mode, load the net in the test phase for inference, and configure input preprocessing." + "* If needed, download the reference model (\"CaffeNet\", a variant of AlexNet)." ] }, { @@ -60,50 +78,65 @@ "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CaffeNet found.\n" + ] + } + ], "source": [ - "caffe.set_mode_cpu()\n", - "net = caffe.Net(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',\n", - " caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel',\n", - " caffe.TEST)\n", - "\n", - "# input preprocessing: 'data' is the name of the input blob == net.inputs[0]\n", - "transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})\n", - "transformer.set_transpose('data', (2,0,1))\n", - "transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) # mean pixel\n", - "transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]\n", - "transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB" + "import os\n", + "if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):\n", + " print 'CaffeNet found.'\n", + "else:\n", + " print 'Downloading pre-trained CaffeNet model...'\n", + " !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's start with a simple classification. We'll set a batch of 50 to demonstrate batch processing, even though we'll only be classifying one image. (Note that the batch size can also be changed on-the-fly.)" + "### 2. Load net and set up input preprocessing\n", + "\n", + "* Set Caffe to CPU mode and load the net from disk." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ - "# set net to batch size of 50\n", - "net.blobs['data'].reshape(50,3,227,227)" + "caffe.set_mode_cpu()\n", + "\n", + "model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'\n", + "model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'\n", + "\n", + "net = caffe.Net(model_def, # defines the structure of the model\n", + " model_weights, # contains the trained weights\n", + " caffe.TEST) # use test mode (e.g., don't perform dropout)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Feed in the image (with some preprocessing) and classify with a forward pass." + "* Set up input preprocessing. (We'll use Caffe's `caffe.io.Transformer` to do this, but this step is independent of other parts of Caffe, so any custom preprocessing code may be used).\n", + "\n", + " Our default CaffeNet is configured to take images in BGR format. Values are expected to start in the range [0, 255] and then have the mean ImageNet pixel value subtracted from them. In addition, the channel dimension is expected as the first (_outermost_) dimension.\n", + " \n", + " As matplotlib will load images with values in the range [0, 1] in RGB format with the channel as the _innermost_ dimension, we are arranging for the needed transformations here." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -112,21 +145,54 @@ "name": "stdout", "output_type": "stream", "text": [ - "Predicted class is #281.\n" + "mean-subtracted values: [('B', 104.0069879317889), ('G', 116.66876761696767), ('R', 122.6789143406786)]\n" ] } ], "source": [ - "net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(caffe_root + 'examples/images/cat.jpg'))\n", - "out = net.forward()\n", - "print(\"Predicted class is #{}.\".format(out['prob'].argmax()))" + "# load the mean ImageNet image (as distributed with Caffe) for subtraction\n", + "mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')\n", + "mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values\n", + "print 'mean-subtracted values:', zip('BGR', mu)\n", + "\n", + "# create transformer for the input called 'data'\n", + "transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})\n", + "\n", + "transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension\n", + "transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel\n", + "transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]\n", + "transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. CPU classification\n", + "\n", + "* Now we're ready to perform classification. Even though we'll only classify one image, we'll set a batch size of 50 to demonstrate batching." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# set the size of the input (we can skip this if we're happy\n", + "# with the default; we can also change it later, e.g., for different batch sizes)\n", + "net.blobs['data'].reshape(50, # batch size\n", + " 3, # 3-channel (BGR) images\n", + " 227, 227) # image size is 227x227" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "What did the input look like?" + "* Load an image (that comes with Caffe) and perform the preprocessing we've set up." ] }, { @@ -139,7 +205,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -148,2843 +214,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsbdt2HdRnvaq99ynuue/ed1/pV9i4iJPYDk5M4gQ7\n", - "sp0gSIICMiYSIQLxgfiAD0Dwg5QIIb744yeKkq/ABxLIwrISMDikwibGicv4xe/Z7913i3NPufde\n", - "xSz5GK2N3uady8/KVm5OYkb/OHudseaac4wxxxhzjtZbbz2bpsmSJUuWLFmyZMmS/eNb/qorkCxZ\n", - "smTJkiVL9s+rpRepZMmSJUuWLFmyO1p6kUqWLFmyZMmSJbujpRepZMmSJUuWLFmyO1p6kUqWLFmy\n", - "ZMmSJbujpRepZMmSJUuWLFmyO9pH8iKVZdkPZ1n2K1mW/VqWZf/pR3GNZMmSJUuWLFmyV23ZP2kd\n", - "qSzLCjP7VTP7QTN728x+xsx+dJqmX/4neqFkyZIlS5YsWbJXbB8FIvX7zOxL0zR9ZZqmzsz+qpn9\n", - "ax/BdZIlS5YsWbJkyV6pfRQvUm+Z2Vfl/19DWbJkyZIlS5Ys2e8oKz+Cc/62vsIsy1JemmTJkiVL\n", - "lizZPzc2TVN2rvyjeJF628w+Kf//pAVUambVxc6ay62ZmdWXO9vcvzIzs1E4W3keALNzb11Z4e3J\n", - "yiL8tvQjx2KanSMch98UZ06Yh++yTM6Lz7l5Wd/3oWwYYtnUn8Lxo1+/5PfT6Ocb8Vu8R1ZyS3q0\n", - "ezI/Xn/r1USdpJ/GcWSFF8eZnC9Hn5EXF39nZtMU6tt1XnY8hPr2Qx/LBrRLR9NkHcq8r4sidHJZ\n", - "1vby7YNdvrWO96JufNitVnU4DvekWa3id3VVhbJ17WV1+FyX1aKskHvdd6FO+9t9LHv+8mBmZi9v\n", - "bmLZ6Rjadjodw7UaP2/G8aTjJQv9M2pZMeAwvyf1KpynkhnG9o+j9yeqacdTOMcwnfx43K8x87FW\n", - "TKGtgw6NAfdz8ErlebhwkQ9SFv42lfcneyzPUNHe2zD04frsIzOztg3na09+XNdyPE12++7Btm+s\n", - "rapD2Wrl/VmuwvnqrXdKHudp+Nt3PrKmAceNfjyHvc61yPOczgDsMlA5n3Xcx1uRsc0yr3E/y8Lb\n", - "wGV0Kvy4gT+evMxPKKtXG647jX4+joVm42XNJtyf9S6Ube/5/dpdbMIxK++Tug7HDTIoiiL0RXmx\n", - "jmVVGc6zu/Q51uD7Qep+i/lxc3NrZmZP3n0av3v/nWdmZvbe157ai1+7tasvbC0/oF8LvXdYz3qv\n", - "Z9dyTZT7xMvKuJvQjhx9k2XaLq4rft4C85Rjycwsx1qfyzzNePMyeSZgTLRy/SwP/ZlV4bi89nat\n", - "LsIJq42feLUNn7c7v0/NCt9PfhzHna6x/TFcd//S59j187AGjIdw/ZtnBz/HKfx2kHPwmVkIPjEa\n", - "nydShjkmzbcC3ajPyd2j8Fy+euN+LPvgVx7b57/vM1ZjQeu4cJk/EyYZ6y8wdt771cexrLLQr/oq\n", - "wnk/FfKcyrhOyvOM9UNbtxu5JyuM9dzLiqJF+5ZrzWTyPMN8P7Z+/WEM53v5uLPrx+Fe5HVlb/+8\n", - "z4MP20fxIvWzZvaFLMs+Y2ZfN7N/08x+9MMHNVcXdvGJj30El0+WLFmyZMmSJbu7XTxq7OJRY2Zm\n", - "1cX2n+6L1DRNfZZl/6GZ/aSFvfxfTBF7yZIlS5YsWbLfifZRIFI2TdNPmNlPfKNjVlc7U6bUBNhT\n", - "1RgmHKBlWYQgBUbGAdnMtcUPctGc54gXWJxD3WNERSepaAWsWF0LPc6TictgwI+LM/ISuRwV25Wx\n", - "3gJPG1022ikfqq+ZZWiQlhHS1eb48Us3Jv1XhcCjFaDtSd0o8VrugoqnkWqOcEsOw2jltrBhGCNU\n", - "m4mriuehS41uQjO/13krx9M9uhI3FqD/KRcYGz8Zte4o1Pa0La8H94S4bPPoCRB3L13Acq3YZ7P+\n", - "BDwtJdNEyHoJ948Dz+vfZXAL5NqvqHsm49/d4YMcx8Huv6VLtarE3Yyx28KNK91vHdxsvSPh1sIF\n", - "2fntj27GPM+tvqgty/LojlE3QhzbOp/jmEDBpD7TM+Max49yHKH6PNe5w75eusfVxnx+/aKS/s/j\n", - "pPTz0s0jbqyCa5f4gOlaGUdxAVa4dzNaQCg7iaukexbOd7wJ7omX1+7aefh6aNfFlbvsNsHbZ6ut\n", - "u+w2cNltH+ykLLhsVuI+r9Zh3rWDXz+vwzihq+7UtvG72za4bO5PF1blpe3eXFt7G+q7f+H1HA7s\n", - "u1hkBdaTvtN7EsqyMwsV+78SNz77NctlDOMapXAlSMNVd1+BeZfJoIxjN9MxhjmJcV82MtYyXktc\n", - "q/icK90E9csmnc90I/r971u6++RZEMduKMtl/E0Z56RPykgZMDHUJZPJxqVF3Z10AVe1uODR3lpo\n", - "Dq9/7jWrm8oqnLeuffyxLuqyrA9hzNQy1iZQAMRTbgU9oLJQ5fQ36qMYt4zrZCv0CDYnr/zEOfp/\n", - "VDduzu/kWuXyWj2pEkrLqL7xOvLKlM2bq4tXdelk/5StufhI3teT/TNo9a767Q9K9jvCdm+uf/uD\n", - "kv2OsNc+ff+3P+j/x/bKnnBTXszIyUQCct3CkkOtiEBGwrQiB4UeHo7D30GIitylZni9ne2BCEgp\n", - "+MOdcK67hfC5EmL7Gjum063v6kh2nu2+sWMmUXw0bdfASkYjEDXNCJPYkfWyIyNyN7vYEiXRnZiZ\n", - "EzfNnDCoOzi+rI+jkyi5SxrNd6nTtNzpRcREkQOcWncu/HoiMpTJDu5Icr6SQ7Fbbr1dHU9cyHgC\n", - "cqHk5XEiefoYy0jQjURkQT8qnk+6rQRikUk/EX2sZAfHxuruZ8S1FCTh9ePObNJzcFfr05QIiwa+\n", - "xjkh03mcQJ6vhLy/CfesrBs/DghThWu0rZLISSyXHfSJbfFqxhs7Qx+4S9fxBNRzNvPQ7yC2T6Of\n", - "hAEykxJ2LZNf4QwgByt03XM3r8cRiZVpUscAFB4p8wq777yUOoFkPiNW457klZJ9UQ8h5Y817p0g\n", - "fPw8HmVO7DF2D+hsB3ps7MIP2vZeLOvuh3u8uhSU6j4QqavLWHZ5FdCpfOvnq0pwQHqFCYCSDOHC\n", - "+1shwu/CeS+EnL1fh7m7anydeP5BQK7aG1knunCefNA1AX0iaxfnWJxDsv5xLSilr7OItORyHNCP\n", - "2W8jduFlJGUL6t8BnStBzi91DWUdCyEx58vnCdfTIlc0KxxRCJpVVAzo8X6KgBWHhJCuR/R7rmu9\n", - "Pyi9nlh3lNjtiJ2gqfhNJqjb1YMwth4+8DHGwAdOHkUQix4IltzXI1DUeiszsA5trXIJHomPiTNl\n", - "57w5BQPQ/FoEx/NZYNcyUCfDdTN9TuA3xbqU32JM6uAp5fMZS7n2kiVLlixZsmTJ7mjpRSpZsmTJ\n", - "kiVLluyO9urIK1k2c9nlJACrfy7qHsnP6II7h7QpZk+i8hm3IG0GHJ4jO55hUVOraBqFnInK3Bfe\n", - "V9sF18rpRtxIdMfB3VjMCMO9fhWuEV0b6jKAuyFTNxbPK7/leeRVeYrupuX7M91yucCuBdwyVeVt\n", - "pe5NJ+4JQs+5wNjxEjNdMBTZsu6Ec4de9EkAwZ5Ooq2EIdvPXItwt8j1ed5eNYMwxlSDJmuPaGu4\n", - "1mrlbq+6gXugFngeLt1BIOOSAQgyhiZqQJn6cRYf3ANry3sdv5wN64KN8WvB9aXjuQZUvxEqYgO9\n", - "m0yDHODmjrJnMrG6nhpbSxL/jByKG1uKC4wM+VzhcZxmEDdKHgnlPJffG7pHZvPalm6UGKhiS5vk\n", - "nrA9lZJSS7oA0P8yhopySdgl8VzdfdRsU69sZnT3SfvZbnGLZh1cSzMfZPhzgms1H9xldrgG2T97\n", - "HsvGMtzkq0FuNq5bbb1SxRoaTCs/H3unkH7PDvO1s5TAjmaDOdlpAA7738uuqsCAv33sv715L7h7\n", - "skFc0BkDBcQtBddiEdcVXX857sUVWHBM+Jwoz7iAC2oWyXFxiGnwALX6uNbL/RpicIgXVnAt5+ru\n", - "4vnELce5Xei1MI5qcfe1iPiIwVYyYOIaKg07E08Ug4IKcYFGbS1Zfxswv+vtxstW4TP1+czMNuvg\n", - "0s3i8uN9yPVZ164S2k7rra+nw4nadkvX2kzmklp9+iz0hoVzScCQgQ5waP05MaCPy1L6n8EDM7oL\n", - "6iTrVB2DLfTZda6X3RIilSxZsmTJkiVLdkd7ZYhUkRc2DcsQTpUa4FtqMUNQ+L0QQFk2nnlrVJTm\n", - "Q+S1GYJgy3BV7oQVOSKhrcxlVxvr7CjJGsrDTeZk3/0xqGwP7VIJPIskW1HxRf0GbQR3RDP5gyVy\n", - "RmK17qZIUPad25KcOI+hRVv1rZ7H9U5snTqqnZ/ZpQuzlt8r6jCV87DSQSUkwLrsBf05TmFXq/ek\n", - "sbBzGmXnShLrOBtj4Te7C9+5V5AEIPqhhNlmzbhqr9+EwINON0TcQSlywuop2RztySTUmCHZhBBV\n", - "rsFjHASlwX0f9N5lYdzlog58CTXszT3fpY0gtmaDs415vQH36dj7eU8HhoErARzXnKkIA5HSsOqI\n", - "puk9WaIE/nU2Oyb8J//wQd7qMzIlWuSSIF7G8OhKUMeeqvxn0D/ujGfZBmK7ZWIxglr6n6r4gxxX\n", - "8t6KxITlod/HWa+gPxEUQIQoVDico2uPUrTBaWXusOtkTnS4x2XhaxIDIHqVZGD4N87XK4LZAEFa\n", - "C/qQL8PFG6wZU+F9TUTw8J7PyRLrnpKyiYSXGVF6Cc2vziBSGDOFwPkRYZfxxEsosXygTIJX3TKi\n", - "jUTJJdS+ZFCGQPId1vNxRizHeWXtivIvci2iU4WssVUTrt+d6BHw2h0PGK/5cvxrn0znsmIQOZZ6\n", - "EglralG7LymT4mthhbK8Ivonaz3mfyuSOA2CGNaCfrZELidFxFnfJZ6sS0F83gFW0jkZEflB0Ofo\n", - "EVk+YxWRc/q9lCErQ6UZDRIilSxZsmTJkiVL9tFYepFKlixZsmTJkiW7o706svk0RJeAmUXIfBCI\n", - "mWDaXB8qm39p6qpSbRcqC8slPgTPKZwYtahUiwLnK4XYTS9jIZBtXVLtXMnOwd2iCrwNCMB9hiSj\n", - "onBLz8IoiUdJqJupmJ+h1E7xuxkWuvjtQGgZeiIKD0fkVFybVYP2C4x/CddXq2rXexDQW1Elpzrv\n", - "oH0S/s4ctVEVewl7x2SYmbYB8GzpblQqoJeq4wR3QyXJXYuGV/arXEFUJ3aTuGeohD5KWQd9plzg\n", - "/p59nXsZE2hr8IDBZaAK+BPJoOz3Tnsn9Ke6NqMnVFyiUdG3keTGV+H76lLaT9e3aEVdF4TK4bIQ\n", - "xeSYMUDdWJFYL2OXlxACdtTlkhs6LKduVG0/N65ZNhbuHrA4r5cK9LP5H8nr/tOoWj6L6Mhm9Z15\n", - "DOHGmeR+FXA3Fbm7MSboyOXinumobqNq1yTqqrYR+1NcEAPmZwFtqUF9HND02u7cZbaFtlNR+73u\n", - "EbTRiSp5uQ/XOogLhuvd/saTex9vA5H9gITf3cmTfJuF8c9ADDOzHv2prt2hhrundBGszT2QnU9+\n", - "YHsDV6HohxUlXXqYL5p4G31dDBrEQbe49xMT2Oq9Y+CBlnF5lsdOdNXnVPgW1xqfE7p202W1lfuf\n", - "YT4NMp+oXzSKBtcIjkApdAdSKfoMpHN5JnGdVGI7PcazYCoU5qKjx7mQSwBCBmV7VYUfqIslYzfH\n", - "ul9x7siYzKC3NYg+KwMaaiWbT2E8qQuOuuTq7mNWhtLO3Ke4Jp2hG6gGIeOvVFkel52tCeh2iT+K\n", - "97iSAT2eCUZTS4hUsmTJkiVLlizZHe3Vkc2z+R405lDScGmWnfl9ppIAZ8imfGGeEctIwI4FZxCZ\n", - "cY5/hXPJmzl3Xxrqz6NV7ZobEa3nwB0md9Wy06VcQ+a7Be4qZ+1HG8bpTD1tUTRrIwl7LVSkq1m4\n", - "OpXNvahhuPTaz7G9wg5G3tZ7tOvmpSNSpxMUe0/aJxPKBPUYuOtcEosZRKBq11QdbmULUXOXakJK\n", - "xfdKlCcCqqGu/My/OoZuDmEnvu9uY1lO5GDQXSLIoZOwiKlirArYRD00nJpdwUAAIQdnZ8ihzEW4\n", - "2wrZH9u1R49cxXqoHpuZSx6Yma3Rjy8mRx8+1nyTmZl99cX74VyT7r5JRNeRhZ2u9CvVy2c7PaLN\n", - "M7ItCbi60+NvsdOW8ecq5hIuz4COmdr0ktjOwIpS5QfQt1nm96kE2sVfDoOiVUvCLnP95ZMQ1pHF\n", - "oBfpjojO6RQrl+HvzHGXraXfhwrtQgCMIt1ExHd+PNPyKHLLOXncC3KL3flw60T1AyQWDi8ddTqd\n", - "noW/bUCT2tGPzyM52vtmxZtW+b2mdIPGklCdoZE1oQd5uGpFfgF/i2yJVsSnxizbBMaJoiT4q+sk\n", - "0WwFWGfBDbEM4x6k9EJy/VUrrDUbQe6xdqisRkQ6ZQAQnBokr97pGD4fj94nx+Nc7XyuiLKsrwcR\n", - "zbRuwrX0GQMkaNLkmRnQXjltUVDZWxA+QDcFkSut08DsCOJ9ATrarCWLAjwWvRD14/2ZIUfnnvh4\n", - "dg5nvjJWSYMNeD4ZgHF+yNypiciZlBEBlwCM3/qyHzpjsmTJkiVLlixZsn8sSy9SyZIlS5YsWbJk\n", - "d7RX5trLimyGnEd1lnOaMTOb5N/5b+dkU5Lyzp1lCdTR7TXTswAsqrIvVEVVN55BvVp/OzFBrWCR\n", - "PSDVHgTQbKb7AXK0uqyg7bHfO7TO883hXhLlpYVwQSq0S2IrSZm5/ICeGJEOsRJk882FJEO9CBjo\n", - "Skjcfpxf6/oamjHXXvcWLr1WIOPjAf0DUrreLaqoqwv0HOwb3cLqgsX9r0QxeL0O/an3yV16gL1V\n", - "sRgkUw02IMdUx64r2yhRG24JdVXDzaWkWLrAMtyvTPqfSUgVzd6AHFoI2biGts7rD69i2Yr6PRei\n", - "twXXw+34Fa/7kW4+uGzEPdVFIra4sXG6QtzCMbez3hpqMM36Gvdipu1Tzn48Q+55b4blfFUlbLrj\n", - "dT7F02pARfRKLF2VXk11D9LdrEmboeIs7mby3tXdGbWtJLm5lUzMLi6TD9MNzCyD66fnyBJXTF6H\n", - "41f3fKAMOK8Gj3Q4x2HvxPLjMdxbzbbw8jrc/8PLZ34NJGYukGS2KySh7hTc3FkjbaXLtJRgB7jZ\n", - "JU7D6ns4Tu5/B7fl9KSX3zJ4B641dW0zA4Sf1jXjZs+OKCTkde94/aUbaRgkowLV83NSAbyvV9uw\n", - "hjRXvq6smKBbgk2cjK7XQrCRPhPwsW3FBd5zPFN3z9s65kt3c6R26PMn6mMJtQI8gmnv5yAZvGxc\n", - "R6qKauhC1Gdy92b5ysCgqHwWFoZgFwkoG0BYHyVQxx9aMp/o7ZP2tHhmjnFK6FoLzTh5no1wM+tc\n", - "Lxg0IOt5UfB55u2PSah17dA6n7GESCVLlixZsmTJkt3RXhkiNeRC3DWLW8JCURr8VaSBkaMzVXJK\n", - "B0hINJEAfUvN45s7fydvq9x9z9iufDX23UqPd89OwlVdUVrVVpeE8pjrLubQO0eEc8tB6L6850rc\n", - "p2PYYepOcxipdqs7NxdF8OYQ/Qj9dOplZ4JdpSrclqtQtlp7vzaQGNjthNiNn1S138+yQQ47c+Rk\n", - "XzCcXInqoR0jN72y1awBjw2yWyPJuJNdHWUShkFy8gHZUzkH3otCwpktjh2oEws5ejqzzaAavyqQ\n", - "t1Bb7zMncRdZaHcvCdgq7Eg1d1jcsjOvpOaGxHG17OpWl6FP1jJzqxVkKuS83/XF7zEzsw+OX41l\n", - "77wIYe2vr1+LZY9vQp/16P+xW+7WM7kW0TmdJgTdIuJkJloXsiNlnkj58cDzZdwFahAHyNGqWM2w\n", - "dpGWd4TjTADGbJfOmy3XYP6xidX2nScR1KyT6+NjJ+TgsSaCI1eHOrKqzUdlbZWpWFESQ/qpCGMx\n", - "HzH+BRErkMMuV6UPEK8Hyf95QKBE13lZC2Lz/rlLEpxeXIfvOp87xQqSBJQYEamRsQIyICHsOQDr\n", - "lcmuHujUai3XR469URDG8hbnuZWgoBNJ3pQrEPQBa9Ygj648qtgvA5Bq6X+CTqpKXqAjx8E7lE1b\n", - "I9jGZuhr+LyWm70G0jIVKn8S2t+evO+4yK1WlRSBlK+kePzt6CWZEdZPs/aZCTquaH05f9aZeYBW\n", - "KR6BU0+U3O/TZEESJtOceDHGZul9odr4IM/uzkiUlzytE8tEEoL5BOVZFNcOVdtnRg/8VfmJCS8F\n", - "qljPvJYaFEVCu+ZaLRlsJOsOg7B6OV+Vf+NXpYRIJUuWLFmyZMmS3dHSi1SyZMmSJUuWLNkd7RUq\n", - "m48fSjJM2WMpG+ZuDzNx953R1sjOUNDPiBiLns2SHDoI7FhNhPiWsONJiY1UrBYYmYTB6ZwLCoTe\n", - "GRF2YoLUpRZOLfBkcy/ArkqifgFV4q5TfRD25/JdmVBxVigRHnUU1d2MWkySZLeGa68WsvnuKrix\n", - "RB4l6o0M4ioaoEfTi6uOaus9DquF7R61gGpJfNnBtSBQeAeYl9+FNsLdIrB8eSZpZXRRAIoflZzZ\n", - "E7JWFXMoRg8KhaM9tbpqAwSvQQlZtom/iMYxgHrmKnsNkm/ZiO4V3KeTzNxPvv66mZndW/t9+vrT\n", - "r5mZ2R/9jj8Zy37j7Z8xM7Mv11+PZc/e/lJoI7SFykZ0X0YQq1Vbim48GbvUFtLpxLE9zAIAqOLt\n", - "x5HQHSF4JdZirmmfUCtmnrQ7XsE+bLP5NOUfOt5s6Ofn605yDiRrVtXxOVEd5yUBVtwjUVFaEj5H\n", - "+SoZE3T9FVopunLhYstK1UfDIStVlg5/1T03Yf3rxd29h87b6bmXtfvg5pt6J6AXTThuBc24TCgT\n", - "zNSQibstgws2r9UFhjaKZ4seyr73+1nvMO9ulgRsg7tt5tpCXepZ0Al1lNyGmNxdA0Wwxiq1AN93\n", - "0sbqIsyBuNaJPhTX8Jk+Vc9k0H6tqmFgj2avCDU8nWSc4Ny16FJNQ7gX7YEkag3BoLtT3Zi4J0qi\n", - "ZwYAeQCS2mJn5u4obvFxWrbx1IO2gLGoZG+6jwdxt3ONH4alGy87p98oz93o+lUGRMGAqrnuXDgM\n", - "93qm7E7CvqydJV174tonsVwuFoOxNFPDGb0xtYRIJUuWLFmyZMmS3dFeGSI1WT4j1vJtWXcQGQhz\n", - "MwVwEgtn8rTc1elOI7xhaqhpfKvl26q+GUeUyk/L3cRsRwo06ajhl0BfcqnTSMSil9BhKNXGCFbZ\n", - "mlf5Uk2VobO57GArKMbW9c6PQl6j21snkR6O4Vqt7BJIxou7Snlb5wZyf/Cd6cUYlLJ1F14j/LUU\n", - "JeYCiNWq3sayLZSXu+79WHaEsu2p905+sHsQroFdUC/E3n5kbiqv09QhJ9zB++lEdWiBxMa4Tfdr\n", - "Maw3E9SrqEhKx/UFVDq2Yee+P7iy+R5lp8HrlJ0Ja+cOJp+pkgcriyUBMtKlBaUdOV5lu1OjvgI+\n", - "2Q7t+eLFZ2LZw9feMjOz73jj22LZ937L95qZ2c//3N+JZT/3f/55MzP7rm/6ZjMz+3u/9Hb8rkA+\n", - "tZPmUATqUAgRNYvjWHKisYmZI1xTzOEliATaU2H3r4RV7qqHVtGnbPbXzIR5uxzrMwV09JkikjGf\n", - "JUPOhcRaor4z+Q0rFmWxfrJOjJizKhMQyeZCSiZneZIgB+62uQnW4IgMqKcGAFDZvpWMAadjGJ8H\n", - "kU55+TysCYfHHhRRYT2tFTklSgF0upIcfkRnS3l01OU9MzPbNj7/DfnybjNfkwjscm0yMys2WLvl\n", - "p1EK4BbBBrImEJ0aFBEDEXgGvuM/ipJnZ9AkSpbMwhTwHCkwJnMZr1Sb7+TElEmZLR450SQv4vNE\n", - "nzFERHLN5wfUp0LAQq/yN/RcLBU8ZpIgOdraSw69EuhXId4MPgK60e9Ji+fUoZV1F9IZo4UBq4Rt\n", - "IjfjSYnlJMq7RTmReUJL/JG5Oy4lfjjfSqJEyivnM17nesYAjOXzvxHUvYwoleQfxHl6IcoPs4wn\n", - "S0uIVLJkyZIlS5Ys2R0tvUglS5YsWbJkyZLd0V6dsnnXmb7HRU7mjJwa/qreUoRvFdm3M5pRxVKz\n", - "h1oU0esgUCyhxWymRXWGsI4uG8W1dwSkWQg8Sqh0bB3aHgEjF2j3eiPJWKGxUUrSYqqcZ4JZT/is\n", - "CTKvoM7aCCn7Bm6+VuDWA0iB9NRMM90rEPbEFbi/CQfef00I4FRAn0HGASrdiGsvh7L2G6/7ceyK\n", - "XIZdA7dgBl/FUXRXujb019E9a2YZ1JZbL+zhKugEgieJMhcC+g3u91pg+dJIygTZWNp/6F6amdmp\n", - "Vy2c8FlhZ2qQzDRbou6IuGViHk25n9SPwq0o1WWGc8zU+THs1luB1qGFs27ux7Lv/+IfDue71QTR\n", - "wS35Xd/zp2LZf3ATLvxTf+Mnzczszaun8bv3X5Cc7dfq8yPqpNfH+cVVbGeSUNOVXcjYabbV7HAV\n", - "bh64KKi0W0/YX+Y6fSUaaxH7VYMH4CoUN9rgcufhd0Iw7XlTpP/HSHYXtXHcz0ncyBNI5Jqg26By\n", - "Xq1m+v2hiTMF/HHeLrlWkQetJnU3dXDFZKLt1B/COL1+4W684+Nw746ibD0ykfdKaBF0pTHpgLrR\n", - "sD5tV04tuH/xyMzMNhtfJ/ImnLep3I3ybAhjay9jku5riUmxkgrgGAyjruHdkhw9UVldVawxd3Tu\n", - "ZtEt6NfixOslyOYA5ffNLrRHPZY5zquuXdZFA2XoxtN4qpFJmM8kIVdvW8cEADhdrlpIpHvIEPLP\n", - "Mv6wrjaitl9CfK6Ue02trmLmvqS225JgzcTcSqJnt7e9BzHEhMuzeC64NoWU74Fc8tzP6FL3cUJX\n", - "ch910SSICJSNcdDAJupdLTUQVcV81VC9XvoJ90d1Fsfk2kuWLFmyZMmSJfto7NUhUlk2Q5pc7fsb\n", - "K5tn8Tt51T0TmTjFUFdFs/Cmy7dgIZbm/kM5Ht+dkUnQPDwjZAfGXslp2DnLlmQAyZqXzzJ54waq\n", - "lMtuge3W3QJzA03yqs88bbWEye8Qat/WjsiU2Op02CUfTr5bZbtG6cybmwAhXV87+rW7xI60F5SK\n", - "irFK4s5fcv9LAAAgAElEQVSpgO753x49gpxDc+2XJRKI6za972A7oFPD9DKWEbDS+8rdz3iSewJ4\n", - "opV+2uM3B9m5GNTbiURMRyGx4362svsi2VPJliQ2ZqLsXaL9paoiEyVTQjnGBBGUfNCxjvMJJMoc\n", - "ig+2rk5+QP63N7Yf97a+GxC7r7z967Hs+btBEqHe+o7sh/7t/8LMzL7zO/9lMzP7r//Cv+91y4Fq\n", - "SlDEe8/fC/XU6UfgRObziAM0bJik1Hrt46SsMXYwN4dBSde2KDu3JkTUS4ti+LPbAORghgd9aCs5\n", - "Lad6RDzCSc6EcMdrynlj4VLiRYM3ZgrRsDwinAxrX651ubRsIJos69nhFMqOtyIJArRV5SQYnj7W\n", - "kgEAY5DobDNDC8K9u9o+jGWP7gGR2m1iWVaF821WnpWhB8J4+9IDUKwJ9TvVIjES0cyl+4GoUyHS\n", - "7hlQnUJI8eUGSLcEtrQ3uIYih3HdE5QY7b+9gRL5PSUsM2BCgy3m+TrNXJR7praOQaHK6jH/6kyp\n", - "H7IvKDopWgJSelYux99MQQP9P0OfkKexbJYyDSY5IZnxg+tqqDTmLnIoKkpM2Z22XZLiB0GEO0+i\n", - "5z8+k+2AQWgqJk5kN84xBXD5WwHJKjyL1ht/nvD+NI2o0mMtKmy5nihy2ZqjbecsIVLJkiVLlixZ\n", - "smR3tFeGSI39MM/MHHOjCfeBoc7yahp9nmdQIhW1GydKJ2g4NX47UixT0Cru+oSkURAtUfE/yjQI\n", - "IhL5CrrTG4m0CJrB9GPgILRSt1MW3uZXInQ5NrzGMtZVdz/cHHWCiPFNX0Ptm3GeE6yU0PQjOR2t\n", - "70IY1v3sifO8NhcBzbi8JzudCyIcvkvkznUjQnP374UwaeVjHA4QBEQfV4IWHZDPrDxobrSlcGmP\n", - "HVHnGyLrICaZi587R/vbyneEK/LQjJnZdWdG9UMdk/CpS7gsRT8LCXUnr22GpuKjCsJ1uF6807K1\n", - "4U53lHHaAUG4rJy4cYEcZ/ene7Hs5//e3zIzs9Pe0b810Mzb0/NY9hP//X9mZmZ/8E//R2Zm9mf+\n", - "7H8Zv/sL/+1/HK6/c/Tr6c1j1FN25Phbag69nOHP0nfoss3ax10dQ5HJPRM+0jleQgyX9qIo0qeo\n", - "Ar7X8GfyoQZFvcHXclkV5V4Vi3MQkZrtqVkn5c2wKqpmQtRdOZcRic8Wx3HsKPrplC4NNceapOK/\n", - "4BcOwpHsWyBcg+/IOe9mSwfmfYVNeCHAxNVrQa7kYu2I1GYVyu5dOEePqEfJRHxmdroMJ7q5FkmY\n", - "Q+BNVZeCXOwhRApBSuVDZZS60VB/IBi7S+Fobonm+/UPDyDd8MT7af8yNLIURKgASpND/mMQZIZ8\n", - "wRmqyXVFZDqitI0cyDrPtUQjnuRFlERAuzQ16ASkrTiH6uhag3W/Wgua2BD9Vo4mryl9TMqhtNvp\n", - "v+Tv6VybZr/T5uic4PNWxynnuziCYs7OYVg+4/hbXRPjOWRe0TtSC2+Y3Cgt2zQrnMN/y2tkCkll\n", - "OkGWlhCpZMmSJUuWLFmyO1p6kUqWLFmyZMmSJbujvTLXXj5kMyXakXmixBXFcOrMNISVpFypOpSl\n", - "B1WsjcLGCkECsiM8KSTeEsdpaGZBeHYW1U2fgcCocOn1pnni4CqT9pQjQjgBBZeCpx8PUD2/cf9U\n", - "RRVxCZcuQfKeKlFW9qt6RY19okRpqvjSnSQh7HDtVbW0iyrut17P62cIoX4o13oNauNHcaPB21cL\n", - "sW97CVdJKS4IunSoLJ+724fv+VnuIfl0d4wS636iOrXkdaKMtN7/1Toct9kKoZ9K0Tiv3v+xw5jQ\n", - "XGe4d4O4Gwq4pypxGU7wYxUCmVOxt9dxym7kZcUV2SGceNVc+vHds3D9zu/J7/rE95iZ2bO3XZW8\n", - "exYI+oVC2/Ulru/938IF9Pd//C+Zmdnv/3f/q/jdD//AnzAzsx//u/9bLCvXDL9XFyijMoQojnxq\n", - "o/Q/UzbWjbjKK6jSwwXQCOk5EoElKIMwfjEjbFOSQP1oqIckJXRvm7rRQimj35VEH68wLuukfoSe\n", - "65NQEDg+SskrN5xQP+f6Wz7ALVGIqw4SAwxN12ADsgEkMtwGuMP7k6wJR5BzT7JOwt09mvjA0Svd\n", - "3vuTAQA9pD4aCY5YgRewufIgkgevB9fvunE3GsnQvUg3HNvgArzcuLv5eBn6pJq8Tvk+BMG8ONyE\n", - "6++1w+iL8vpWcHeVPk2s3sGNI1SJqgtlm5205zb0ycsX7sbKseDXaKvm2uQzppC8dvtujzJ1rcEt\n", - "K6T4KF2T6TihW0zWThC/Yz5JlZqJ41WeXainkrN5ywrN0wkC+ihzt6CrUrKC8DkxyNiNBPQoEyHj\n", - "la5vWbvKuP7K8wcuu7EV+QuMRZVYGeg+10gQ5l0lFUOCCIYJ7w7S1zn6bLPy58kWbrxS7h1J6Roo\n", - "M8BtuZb15Hhcri1qCZFKlixZsmTJkiW7o70yRMrsNCOYxU2ivBlzV6MEdBLaRlPCGoS+5HTMBD1K\n", - "RnbuYkoSTGeZ4SGMJsy+CCbpboF5mEqF08ZF2diHt+NWUKfiQxIPSqbrgebkLz3M8jr2hVyrCd8X\n", - "ghyRqK8M2AiEtNJPH9o5aP9P2OKOQrbOgDAoD/awD+25ufYd5H4f6nRV+Y50IqFw9N3kxTp8P0g4\n", - "PXe9LYQzCxEaZU4uomWhUuHPoGKqaPjuwq+fQ/ahEWL7FjvRWhC+HIgUpSlGgR9jrr9ROxZhwEKs\n", - "jmH9tVyfIezSd7lR/E92PxQ9RBs0h1mOm9iPTvZ/HSTf6aWf483LsNP/ypd+MZbVGMer2vv/9hiQ\n", - "gJ2EqW+aEJ7+wfN3zczsnb/xP8XvfuzH/nMzM3v7K/9vLPtaGxCxSna1lDpQbmYEMWSQrTbYEUro\n", - "Ngm4bL+KenJeD73OdWqH+LUYLj3T/mQ9ZuoCmHdSkkWZBNz/mYAvjxRU+0ywx9n9KAmwEuqe9dyR\n", - "C8JEkVDVXAQiwWVH0YooiSLrZEcSr8pqAEWZ7aOZ6kxVImGDrqdAycaWRGDNjRgI3Zcia3LvXhh/\n", - "u42PqyMiP3pZfzfrLf7upAyIxOTzfo0cn0X3xMzMrkWRdwI6qONvtQvzrlr5OWrkH9VQ//VFqF8n\n", - "BPxyE77fXMq6cwPkrmdwjqIfkFqZhLBPCYO5SnQok3xtFPMsZI5H9Ecgxg7rQ07Su+QazBqKNIsg\n", - "LMZHJgRwik8Wpc4nRjvJ+geUSMn7bMY5hRFKkWS6hvcM9hFyOsZ9oQEjQKdUkDeLY8vLTh3z+qnE\n", - "BOYEhXYVkebaLST2Ckj8SjwiF7sw/vQ5QY+FkufLkhNP8kkW3xhzSohUsmTJkiVLlizZHS29SCVL\n", - "lixZsmTJkt3RXp2OVNfN4LQIJwq0P5CoqCqy/L1A0Tnh9kmPIyvTocWKej+AQpmjx8ysjGRjccVV\n", - "1OdYwqNFpu5GqO2qawNwY945tEgwlrU8ii+iO4TPJ8lDZSDiKRLfbcL3662T6Kh8XuRLyFhzDU09\n", - "NThIzlZ1cOYw82ux2Xqb9vvgZnrxwuH2p0/gMtq4jtFAXFhUeYs6nHzVeN3bTYBZ22sSYaVOqHsr\n", - "+fJaEGYLuXfbXajoVjSrqKy83Tlk32zhKlRCM90ozO8lbozszD4j9nWphEUSNr1ddB+XQlQnQbmQ\n", - "MTZAn4T5zcpK4exwjmMvisHwVX3qY98dy67fCbpQjfy2BGm/EMViKqXnhY/Jrg998hD50r7+lS/F\n", - "7y4/+6tmZvYjf+zPxbKf/iv/Sah3LgRg1PNGBioV2Eshm5P4qtC+pwmDe1C14EjO73ROwBWoWlAx\n", - "UEF/u9S2YTaERnSsBmYlOKNZFdcn8c8ObI9mQKBmjhBWoy6Vuu8ZT7P2PqFUTy2q3MxJRgLujNrA\n", - "YId+xjYP35meA/0v5x1Asp0k12TUL5u5auCC6aJCmLeroD6Pu/EauI83Wy+jEPSpc6rCugnfV7XP\n", - "ic1qjTaKLhvcna+9HsbkePS5dv32C9RDiMWoXr2WoBDM8Wbj47TEulNfyjw9hrm1v/F65nDl0SuZ\n", - "idspwxo2SmBFQde2rF0ci8OwdONmOk6Y61DmSQm3JbWSCqEi0I2VZbr+yBrD62N9ys+4pOaZQkgz\n", - "8TqdjqEvNBcrLxdpJPId1fEHdWOfCQBiftpeRcsw7Gpx9w/VMp8mn/xknuTyXGHUmmYbYQ7XC9EW\n", - "2yCjA92eZtJ36pXFRO3lfEpHOGcJkUqWLFmyZMmSJbujvTqy+WQ2yM6IJLJMEZSl6Gt8m9ZdQgwT\n", - "lV1V3JHJbwucu+Hb+kx1GfnqBK3grkJJ6cxxpfnvPEu17BxaSAIIUbQzhsQvVZR5vnYvpEOESx9e\n", - "ito4Qpy7gyBn2HXKJi0iG6rUzU1ETDWouQFJgJZw/bxEaGiuu+9wvufXN36t90PurDcevO6XgtRD\n", - "lkvdKbtQaR9j143vTkIsbU8B6cpUagD92UhY7/Z+2HVMQthcI3N7vZF8hgjd7wYnb1tUj0YWes2N\n", - "xb6Q3c+YEVVSqQvu/nQ8r3Gc7BzLUKYBEEOJfHbHUJZLWzmed5PvqjcgUTa1ZFBHuxWRYFiv7qOY\n", - "6XwUhC9OMrQ/k93tV37hp83M7Lv/yJ+NZd/2v37ezMx+uf3AT4EBVYn8BeWwNdegg3OCpsTd8TLX\n", - "XkeS7bn8m7nuqpWpze/D30GQpjWQqI8B6Qh1Cn323ntBsf3m5kX8biTCrXn1zqo4M9hDhUiwS9Zc\n", - "g1S2FqV0qu1r4EkFZM9z7gllHAEQcxFpICh6HBa+ZiNjF/O5l5D04w3Gnfy0xbpTrEO7dltHmquG\n", - "Ocx8TPJeKErIbA8qP9Lh3tal5DoDmjXM1liQjSHhcPXAj8/3gYje3QoBHUiIdKGtsf4pmtNskVdN\n", - "5nPDnHwqcdIElKqDUvmk4fpRkkP7Onxfq0eAwROaqiCiKoJSAVkvL7w/md2hQfu7M8Epo5DYYwCC\n", - "BMDEZ6J6aTBOFRGLY+cgkjS4nye5RpRRYLtniuXhWu1B+glS6Jke1y2RJt4JXXenmAJCEC4S9UcG\n", - "kWkAGNZwGWvrXZjrm60TyysikrXk32OOVbk+JSHGg6LUs6iVhSVEKlmyZMmSJUuW7I6WXqSSJUuW\n", - "LFmyZMnuaK9O2XwaZ2CZ670IPE4tFtUMIrFzRlR3CjqNhL1MIWNCmrhYKUlmK+gJVeILpDpqqWRD\n", - "ktJn3LMlKXSCHk0mpGS627IskNkyUfFuS+hYSbuo2XQ6irIukmsOoi0ywn2mOlb8rKQ8uhZIzu2V\n", - "sEovirgHo1bJzN0KGPfoBOjnz4K20DtP3o9lb7z+ppmZ3Y5O4mQyVOq+hDqAbN2ecF4/vuuWiWwz\n", - "3NeLKz/HFi6bXOD2ch1+W4oGzEQF/ExdUCQPU09kSSLOxWU8UuFX+qQmZC7QPl3Aeb6cYprcN+qd\n", - "1HTFCukVg2wjeiZrENofbi5i2e07QcV8Iy6TOO7EfZtRFVjGaQNtLxJM1zJfSqhdP//yz8WyP/0n\n", - "/j0zM/tv/sc/H8v2uGzWyljDPFoLsbiB21Dd8tEDgQ+daCzRtZLL/R9c7tzblS/heTajEmX3q/uh\n", - "z3Y7d6PstsEtfIEx+f7jx/G7998PivrdsBwTMxpstkyuyyNydcLhNJNMiRH3fZRAgR5RK5FSkKnb\n", - "gXpbkkjXGGzi11pvQrt1ngxd+Nzt/bcvq+Aiu3nulRq4v0bXFaLFtNlsZ20282Tpg6iY00V7Ovl5\n", - "j3DbayL3NbSfWl2n0J7mAcaLuFg6JCMeWnftDS1cgSdZ6++F39aN32sS+nWdnOiClHX6sA+/3d9C\n", - "C+skRGi0a+ZMpmtfE/nC9aQk/ujElr6rSuo4SZAVvq+3oR67Qsn+fNaouw9BRKO6xcO9oJs2lC2T\n", - "BrPOev0eNAO9x0PGayzXEJLMlaoT1z8RcutYvzMBTTp3OLV16YxakeVyXvF5tpPnyvYirJONBCBU\n", - "oO3kSi3BfR9Fq45eQ02M3EomiXOWEKlkyZIlS5YsWbI72quTPxjm4ZW5MYeQEszwnqchnHyblTD1\n", - "KYIKuiPFzqFcolncEZeSr47hjY2EZhcIw8xm8BPfiL3r4g5bw6TRnkJIjAe8sVcgnedCYixx/Kjy\n", - "C9iZ7oXEtwI5UjjMdntACO+tvuqH8zWCsJFIPIDsrMhID+SoNkfJCCYpiY/tn+QN/gRF2994/51Y\n", - "9uZr983M7Cgqwhm2uJlvJq3H9rwDAfpw3Pv1+7nqtJkjhpu193+DfFpV4f3EMF0NWz1N4dwKZnL3\n", - "EZuYKYKH3Z+oCJNsr2TPHmMhG2T3QxKjSmLwP6KTscI9KeulOjXVq7eVt3WbhV3Xg8aJ/UMWUJRR\n", - "dk0ZULpJ5k6N8zy79UCBqcOOHMc9ffrE6/bG58zM7PGv/T+x7Pt/OCBSf/F/+e9i2ddbxok7iZ+7\n", - "v5WEGhMI0PDrMc5jKMwLh5c7XF0nONlnsgb8WkFqIFE7IZteXAVF7VqI0muQaHebHeroJz4gdP/p\n", - "Y8n1OFGJXa4Vd+cqvxJlyWMZZUeUp2wnrBO1oJ7YJUNg3ErZQTvqoBE4CKJZK/oX7v+9tSegW9dB\n", - "jVymrr14NwR0fCV3JI6o6Po+dvUitXL/EormsiZQnkLRp7YN8/nmxsfaLcZd23muvTxfEsB7TFBK\n", - "iFzd9zYcX+K4k5+jP4VrDXsNngl1yjPvE/eBiJeg5P33McGcdCQiHw/ergPyAA4SxEN0RGVqSJgu\n", - "ZaEmclSvJAMCc8Yq6hnRMQY7ef9TVqQQqRW6R2oJFGE2gP3R5+TzZ1h4ZTpRnmIldeLzVCU2pjho\n", - "AyKpaw2DfCYhrI+QdalFJiXHOirKDTFAR7FcIoaz4AnmyY3jzn9xsQ6yGlsZp1f3Q3tK6aZqReka\n", - "WZPQ17P8p1RKF0L7OE+RsLCESCVLlixZsmTJkt3R0otUsmTJkiVLlizZHe2VufaKfJjB+ETxNPFi\n", - "JJjNMr8CFzyjhTEnoIJYpgRktLZkAkTlHBdUNhfCHKUzZu4ealDNlVw+fBzlqHppJJtBpfReEm+S\n", - "AN21klAScOJrV67jUsNloUkmL6fgRru9dp/Zs2cBRj8I3F0QWqX7QnmwJFGLxk8OCLTvlezKxLsC\n", - "RfdLDagbqHHXQuLkTR7sJEUg1B8CBH1qvb4kmythu4IbT3Vs6PlSYjFJ45m4TIx9O8mwH5kYGK41\n", - "IQITzs7FPRg9zzJ2OwYDrMXdBx0xdQHnuN/qbibZkxCzZd6GAvdie+WK0Z8fvjU05dorShdgLm5p\n", - "4z0TePo53CwPHn48lr18Flw6K7oHBOJ/cRu0ot543RPUvvi1nzUzs3/lu38olv3lv/sTZmZ2I/O0\n", - "gktFvJKeeFTcQvwJYydOQo6f4FqvNUEv5tgkUHt0Ac80c0L/7C587lzCBbAuvVIlPq/gCtX1597z\n", - "4O57+czdSCf0a6WJZ+HGKMU9NWByqVYcx7Fwgi0fSJSXxSjnWsRktLLWYf3R5OKcY3Xp4+TqXtDK\n", - "iq44M9uUwUVW5T7GHu3CcRtJZP3BixA00uxCfe8/eM2vheMKCcpgMFB38ACU6xtkQHj6MpY9gdv4\n", - "1Lm7b7MKAQCFEKoruJlbrhej3//dJtynw9rr28GlNLzw65dXCOhZP49lF8U91N3J9hN1uSQoIsoY\n", - "IbCHf83MctBHZq6eM16fki51cRXTzaVUCbreNfCo5v1hMmJdr/KlayvqU6krCt9r0t6HD8Nvb26c\n", - "PmFYsrv+jKtOyeYd3Jxw+46iYt4dWaa0BAQR1X7eCi7TtQQANAgAmK1d+NiqKjr7GwuwsFKiFtnF\n", - "hbuAL/F5I4m0qWKuGRCoX1nIGDuC+qKuRQ1QOGcJkUqWLFmyZMmSJbujvTqy+TjNCIuMgxaQJubT\n", - "U86ZIV+Uhl9SWXmGZmHbN2bLncM0Uh3dLYa4z1QVlirGM0VjvxiaoArYOF5zzWFn7S/fIlcwLeu0\n", - "AurS1KLOChJprYQ5lLUPOvltQBree9vJw0R9MhB8B1VdBvG+VwI8diFKDhypziz92tTczfuOaN+G\n", - "neB6e99/jJvbTpI7D4RGok99K7tFRn9LBSghkQvSVTTLe0dSZiZblxbjRNvN/GtDD9KvLcmhSliN\n", - "QhtCxOyQME3DiiuQnFVOIZL7Z8gJdoxQAs4rR5qYk/Ak5PA3Ph/Qgewf+O6bIdS6I2X4tQ5/qnhP\n", - "gjCOI4McgILI9voK5M133/cxtL0IUhd/7Pv/jVj2V//mj5uZ2U5Jsdi5a0h+zFkp/R9VsYH+FULE\n", - "L+NEEUQAE7DXUGuSbKWtVEruB58T9YrKxpWUISgBfXO58u9eexTQnMdPhYjdH/DXr8Vw/VkESBwL\n", - "S6mHOVGe6Phs8OIURDD1HMtxXaJfN2vf6V/dC0jPw/uvSdkDMzOrel/2X24CJJGvvPM2z8L3XR4a\n", - "eXnpO30iLL1kEWhP4fPx6HP3+bMw/18+1/UHUgtHR/iYi3ADsn9oOOYpmj3IGDoSwdZlHc+E9uiF\n", - "Lx6jXZJrsG5C/VaSlaBeIQBG7kmFtXUAmjL03tcN+m466FzjXw3hx3ouwVMT0UR9djEoSpBorkkl\n", - "M0tIW4uc43OZAWQmv4NKKXBGj4nmn+swaW5vJcgH407D/zlO24EyNYq+IyemJExYYe5W2rElpYP8\n", - "nqxWoS6XFw+9jZCp6UTi43B6id+iLX5WW+H5txEvRdNQ/kDznzIDiAaKAU0V2ZkOY6ztNXhCXBVn\n", - "LCFSyZIlS5YsWbJkd7T0IpUsWbJkyZIlS3ZHe3VJi3NPdmhmVlLFXI+ZbFkGSHNG2DxHwMtJivZf\n", - "E46vaupEiO4FCJOq7B0TpM7ceSQbqrYQVaw1kSx1ZNQtEb6vAG0q6Y1uLyVdNqsAVdbi2lvHMoeC\n", - "KxAVOyFFZoRRxbX4wTtBD2cPonI2g4xxXfUwsAmSDZSekkog880m1G+19bLDMVxrKpzsl8EtNwqJ\n", - "sGfSVpK9VWF2WN5XEpVVM2wi8j6Tmw5/WnFVHqFzM4r/mDpGPd29ct5yrHCMtB/1076jBtrpqARw\n", - "6rfI+bJlImNqlbiarihGgwC5k3t4/Ti056EQO9uRbjEhUcPdNXM3w31489IJuLvLAKnz9rcHJwe/\n", - "eBkS+JbiRv7ab/6KmZl9xxe+PZZ97+d+t5mZ/R+//HdiWUF9IHFB0R2VmbrgMe4ZsJH7/aoxT0+m\n", - "cw2/FXIoSaF5L4MXn0l6NvPEuKXA/esVyKZ054zuMt1CKfnNtzQZd9BK6zWzQPTjy73GmOlaCcqA\n", - "W2aY6WKFz+qWqhokXK/O7HPp2hNaBNeRShJZc524f99dJruHwd3XTL52lOvwOZegjGyNtQNj4mrr\n", - "c7iBu6eWwJ4BWQ6ePnEX6MubMI5ePn8Wy25uwrjbiyr56UAdOckUQIV+uDsHoQwMXEO0C9HX4+Dj\n", - "//ZZqFMl7s7Lh1xj9Lf4K86igYVU/RYaAZvdy7zuua5oTBTdc3ILy5wJz5XuwePUV4lnVwxi0gCs\n", - "8F2uCaLz5ThR8kK8Vgxo8b6+uIBrU/r4xQ1cdWeSmzPIaJBsIxkaXpvQTeJc8JqUeRhHTe1u3C10\n", - "ztYS5NLw2aZ9cvkA1VgSwfOciex9XK8wrhmcZGZGr+gk6/9EVXwZFMOwLOvVb3nGEiKVLFmyZMmS\n", - "JUt2R3t1iNSYz3Nu4Q12MN0ugFisqqMkKme6q6eKraidA+2ahMQ5MfwdJMJJEBwiUTPFWubrU5kA\n", - "7ghnMBnI24K0zOlwOComCsQOUkhvkWwru1CSHndbf4Nn6Oh67W/wZUGZgtnFzMyRtvCZu/6wSzwc\n", - "fLeeoS56TxhyOoiKPBs+IzFjh7XbOYlxAppw7H2HXyPUt5O3exJV2epBd7rY/SrRrwCJUXMf5SRb\n", - "C4l9ysNvVKZhADo1CNkx7kSJiArSWcYdluy+zowrkpdn0g34PMurxZxoghz1JXOnIdejKBYf9qG+\n", - "98z79ZOP3jIzs335ttQJBFiverzvikhyE3s8+X1vLgJK0e8hV7GS/I9tKFMEkWja4av/MJb9mT/+\n", - "75iZ2f/9D/6mV+CSYe2CJmEY6QY6yp5A6sAk2wAHWalSEzxeBiD5vOMk6BekPpRE++ImkJzffOiS\n", - "CAVDoivsuDWlFqRQ1hu/X/chBXErof6UUdFdco/+LyT/4BhhUkUYGGQi5GHOhmmJnFMmQ4NtOD4V\n", - "uaBC++q+79LvPYAqtaD0RIyz0RveAhXcARnYyhx6CCTw5pmkJ+B6JnkSW4TYH184+nk4hbJD57/N\n", - "8jAWBfS1i3UIUCnGcP1WxiuBQA026UlKF/R5APr5/Ilf6+r10MZC8m9mZfhNmTlyRUCswNzsNDSf\n", - "sgaKapSLIssmBm+oiwMIm4yT8Uye2IroEB5KrUgNUH4hE7SkrJnDUq6fzasbCrHGSUBHMVHZ3VHH\n", - "Aev+rXe7HfbhP1T9NhnXnJSjidROC6Rr7RVomvDMutz5/Fs3yCggayKDi8pSvR7ILYq+OY0+r/lO\n", - "oCryJVXMZf2ronSIjFM8NDXv7MBnizD1y+IbY04JkUqWLFmyZMmSJbujpRepZMmSJUuWLFmyO9qr\n", - "c+2ZmUky2DGSYgV2jfC9wKjRtbR0nY2KyxPbVLHnjurhVKyW71gVIfEq8ZVGYqeqmEf9HtWbImSv\n", - "6rAfOqwplxC/CezIBL21uACv7gd4vqnd3UMIdFB8nPo80p4T9V5A9iyFnEoXmLaL7ibtabrbVFul\n", - "rgIsfLl1yLZcL92idMF2QmI8HkFshPtIXYbUKmFiTTN3jykB+kQ3Sy5aH1m4hnjbbAB5fNBKRa0s\n", - "JIOW+0WPyqicy4GuGLmvcPeVZxKkqrYLlXpzVUqG2m9DfS5zl202BnfDpz7+RW/rLfSmhIg5oJ+o\n", - "nWKm93Hp2rt/X11bYezcHMKXh5euWfX6a4GofCuJZ1vcry//0i/Gst/1nX/OzMy2evNWAbKfcnEB\n", - "5XRtCLE5uu3hdhE3Cr8pxY3gxGMl5+L7M9tCHbvvPgmK3Z/95BteJbhZphPcE+JGy+ACKho/y/oS\n", - "CRxpDcwAACAASURBVLK3rq1ELaBJ5m4HV1kvbpkeY+10EDcaya6Fkl1ZB7hslVh9Rm8uBiyIjhnH\n", - "QqXEetABBhnQdHPclO6q/CTIwA9OYfx9YfvAz4GfHuU+tdCP+lVJrv4eEgl/sH8hdQ/fj0Ispzf2\n", - "0Iq7uYZ6OlwsR0lBQd0x1aLrmZVBXLtji/l343399J1AadhcScJvBCM04haamIQ8uthEH45aROIy\n", - "YpJp4WtHGscss8EZHSk+O9rOXVUZxsmYhXuiAVP0I1cy2Ks+rDsb1UwiZUCek6SeKImay0guz4LN\n", - "mmR/Wbv2YW0lfWGScT1hfg6SyL0jUX8rLtMi1I9BN2ZmWQx8UL250J4YdGCu/ch3BqVMZMhMrM/J\n", - "+J18pkt7rrcF+opELwwdE6irjlZy7SVLlixZsmTJkn0k9uoQqay3TJEm7uBnu6/qw7+Kb5CZENs8\n", - "0FIlg0HUFBJn34YdQQcl7KKr5LtwPs3NVgB9mHIlBzL8VpAL1ECjNeOuQ3bpUb0cb+utvPEzNFw5\n", - "pMzxVq0krBmhyLud59Aiya4VsifJrvuV73S2UNveHsKOc2/+HcRhZ2/r3P3oDpaKxpko8ZY5wvqF\n", - "xL3F7reqRGrAwg6rk91ni50r89X1J9nVYKfbC9JIoKWT8PO4c1BECnjGSfqkQ/9rDqcCatwjSe8S\n", - "Vk9Zg15C07nHUUSIfT2JYnkRj9Mwdexcc0WOmllZPjrS+PB+IFi+K8TeL25qXFPCxYEIjjJ5mH8t\n", - "k918D+TsZu/nW2Ecl8hdtjXfQb54AfkDkemgrEe9knDpX/wZMzP7k3/0X49lP/nLf8vMzNpGiPWo\n", - "cyXq8S3uI5XoNa9hiR1kp8ReIqwzZi2DPSSHIcihpSAnR5Cdf+Px12PZW3lAlih7of3F/F+bK1Fs\n", - "rxCwIHvQmjn0THewDMn3uh+wqz+eVBU8jO3bk8tODOiDyZgbU9aJCL4p0ohd9bRcT/uTz13+opS5\n", - "ex9r3MPOUZpPYE5sMYbaJz5fKR1xr9O4/jB2hsKlFn7+5hfMzOyRyJ883oe6TBJQ0gOl6o6Oel5j\n", - "PSsGyrrI+nuCXImgH0esSTOHBGREBkEYn3wtSLJcfczRxGKHPisk8GbAcwHPiXHSEyOIQObEkDNQ\n", - "Reo5LccTg5IyGf9cuyfJp8cgnw7n0zyMJ9zPW1n/ikOoy+3Rz7HbhDY0guqQWD0JwlYjeEmDkqg+\n", - "MPSS/w/3+DCFNSGSzqXdgwRRtAjUmG4d6dwDTT9ufEwSpaqEWB7XAM1oUjAnJZ7hsv41mH8a6xUJ\n", - "5fLsIoql/cnnz0GY9YcDA5XOPGN+C0uIVLJkyZIlS5Ys2R3tFXKk5jKbjoRkv+UxOBAfFLqaywqY\n", - "OTdJAvejENnYYgdZO4JBF2l3klxf5BkpSFMy+7SEWjN0flb1pX99AmITNynKRxqJYIivHm0tm2Wo\n", - "fS1CY8wXVbRe0T14Q4WEszNMlvyJQXdQzM0mdYric5Kbq8RulTmSzMwm5p8aVlIWPsvmN/qoBw2/\n", - "xi6iBW/keND8Rthpqk8/ylQovwznlxvFDYuimjFPU68IC+4xOTKSL4yilqPs/sjNmmV/B3KhaCr7\n", - "kRnHzTxkO5dQ37rZ4G9An1a58wemU+jjB2vPl9a3YefeDYLWYtelyGlJQVZpf5FB6mDw3RflAVa7\n", - "sEu/boWrgfMdRSbj9dceheMk/P/i7a+YmdmP/IE/Hsv++q/+VKhH4WNizCnm57/twQOJYJ7sNDkp\n", - "O7lf5DKcZAzlMf+cH7daA9UQhLmCsO3zWxeJ3O0LHI/xKmKFNe7TWkQdydHsBWmuc2aVlxx+4Gso\n", - "R2oENe148DF2fRPQwdXJ5/0B+fxOE3PSLfOqKfpIiQuVXxhx3U7m03MIse56n5SfeD/0yeaxXB/o\n", - "0NchqjmNS6RrEAmTT33y02Zm9pk33opln34cGvvs+v1YxjkxziYK8y8Kcge+UAaIqd1LXstjqPtR\n", - "BVEBGA2af5H5T2U48RLXgvBeYUx0M+kECKLyt4I0UzC478/xZwV9js8k+R6oSi7kXCJbhYwxCpEW\n", - "uHcHGS8lEBlFickv62VOGhDu8p7kFWROVB2TEXVRkVDkn5Rx12DtqnG/VDonynlIXkF253Dj7XpW\n", - "hPG8Kl3OpwQCXghyV2ZLNG/AOjblkJVRUeNhycft0MZB+KiUblGZohaekMOtSvJg3TvKcW0S5EyW\n", - "LFmyZMmSJftILL1IJUuWLFmyZMmS3dFemWsvmyewk3L/PAIqVHIiox5zDT+PxG490VKBm6Rw8sYU\n", - "nmWeuqaQEHZ8Pwq0S9VVde0UsdIzHHdx/QkQfIyq1TBw5vCTJsQgaA3NHQAxCgGyKOla01xrS/V0\n", - "yiTQfagK27xEKWTfCYWnVodJqOdu7fAsFeUHQT+HE1xm8qo+wgXYHjRPFfoYt+IkrrXudE6mIpSd\n", - "BEau4LI0zUmFjhzUU8TgAVFq73HfhyOI9a3eMLRPHMR0AczyJOLjLP8T4PHpTE4sdQFQlX5VgZwv\n", - "rjCqrl9diNTFBwiXlnPQjaMhvC3kHxrxAOZQNF5X7j7MQUbd7cL9PMi9ptr2cBIFflyrXnudruEe\n", - "/IS4pT918XEzM/uqefj7yyPJs6I2PzHXINw+GjBB124r5PRb1k2DPcL5VuJGLSAroTnkCrR/EAL2\n", - "fr9HPcJxlbiiGT1Cd7qZq/d3GihzJttBhbxfJPOa+X2/uBDFZBxXHbyN6y64YF7com90Uczogj/j\n", - "sxJi9QnZAFp1dz0J/fnmE6EKvPuemZk9kQAQur5zEKALkWk5Ia9cIY+Or/3GV8zM7LONE8u//bVv\n", - "NTOzX3jy6/7bnv2keRIZZCQrH2kOICxnpbox8UHqNIx8Tghhm659VYTB19cvnNh//00Q2pWp3lNR\n", - "HucYlSCCdXpGPsa6muliRxK7rL/IT6pjYl0z2EQCn+C2rCFD0OzdPXsNKZL26Pdr3dDtpfoLDLby\n", - "dfIS64gqwPdHStJoe0gz8RLeCyrrr2RhOWKdnubpPsJ5RZX+9mU47oXkxGNWjMn8ecI8fo1o17Av\n", - "yhou21lgEcapzBPKqvTyAKB7TtfkAzI6nMR9eoCcjLqKh9PSlauWEKlkyZIlS5YsWbI72isV5JyF\n", - "2sN081UwX5zm1WIWatmQcaenp+OudyaxgI8DoJNRRCUHvK0OsvvpT5A1cL525NPlsiPKYqirlkHq\n", - "YCaJwLfvbFHfcwhdg52w9tIEpGHM/A16GMLb+iAoGQmduYiKsk9IcKwq2WnFXaC81TP/nmxNSAZf\n", - "rXz3Wea4/gyRCn97eVdn2PfJI53tdAh1otDj2AqxFoTWQUmc2HX2s85jtnYvotJfd9L2AzmT3RcR\n", - "rpHIlIiaUuiymImqAiWTMuYQzCRMv6D4nu60WV0NMpgouhpQoloyoxP1OsrO7HQNMriclx8VfSiA\n", - "EvaySyWKkytPfWCmeRBsS98tt4cA/2hY8S0kBARUsBY3/vBlz//3g9/1w2Zm9pd++q/EsgqT4Sj1\n", - "pNhgR0TwKHIVmH/DXscELywCfsxPKXkqJ6BJha5wEL0sJf/Zs+cBMdti/q+3siYMJJE7+tasAmG/\n", - "lFxvnKDKP+aatVpptAXaKrjz5b1A8l9tvU43Ny9wOOaL9NehZzCAippinZIJUABFb5752PkE5til\n", - "kI1PGM9rQUIzIAYt8wXKEG4ajGvJf8lccG9/5aux7OE3B0TycHJi94Rx3086Uc/s9IEi5AiyUUSK\n", - "DPBMZFWYO66VORH1TWU9I0yla9ztbWjHWtBMX+NZICKtdkb8GO2RmBgrKWcjzSoR5LPeOiK8Joon\n", - "p6vRjhz9dXHf19rdPvz22fOnsezmGMbEKCj9hkiXgmkI9ig33taSujfXkruuX6KeMXcfPBaFjH8S\n", - "wDPxHOUQBM0kdyYFTm9uHRHk+VpBRBncsRLZn9VFaHezwXop3PyoO6RBDOh5DUDpIPCqnijmcVWR\n", - "6L6nJI+P8U6EXc9ZQqSSJUuWLFmyZMnuaOlFKlmyZMmSJUuW7I72anPt/Tbm3hsFSAH3ztx9Z/Jv\n", - "wUZ5VyS0WODEmvOJPG3VfYnEdiFgR7kb8S1mkdC91KDKhbxOhHiMriqFh+kyknYRThWIdaIbTfwt\n", - "VABXBeAe7pZW/G0dlMUHQMCqBJ/BB1Jq/j9qnIgrqiwA4xbibmP7hVnew0WjCszXyGu1v/a6H2/D\n", - "+fa3wd/Xd0tXlJI9e5DBpZrWQ0hmUgI23ZzyW+pSidxSJJcPIJh23dLVMFMnxr2oayGRMsee5tAC\n", - "jFyIYu+J1y+9AjVIrh38AlvBrDc4byHuLvrl2oP7R6mP0opvgYrlheS1mpBPaxS/3BFk68fvB72f\n", - "hw9cnZrny4SIuwPErvpQjx6F3HW/+Y++HMu+40d+IBz/v//lWLaHAvutaBBRjZ+57o6i40a5qaMQ\n", - "0JnrcJIAgAq58AbRvaGXdRQXDLMHHISBnHfhIiO0ikrR8crpipOAjRF6X6WMqwkXm41d5r8r/Z4w\n", - "2EO9+HSVFeJS5TpFF+zTp+rGx7wWN06dhd9uRJ+ngLbPZ194PV9Hn51kTeD6lIm7rcM4XoMUPcla\n", - "t0JftDIn6ipc94O9u2xes8+Gesg8KeAeGaTu5UCtPtGvg6tuD3droUroGdXR5bzoV9VWipkyhBTe\n", - "QLJ7RkoekOtQPTcVidqhb8pMyPExUEjciFGKSQMgQhvXlauoVzUJ0+JaY/+o+xBrcYUccoM8V+od\n", - "COiX3oabmzBmjyfXkWqgdzfJmkyX8k4Wzx7uzmYnOmLPEbwyaUYJ1oGabdJ+PB/V200NvlLcqFx2\n", - "Blmnnj59hr+Pve7b0P6re5694xJk9A3ypa5E27DtkK9U3LMZXZBy/R7jSTOAHKC83u6970ZQKXrR\n", - "kera5buFWkKkkiVLlixZsmTJ7mj/zCib8/9zwjhJ3LJbOaNizLfkeVbn8Hceps63fiqxyhkiYVBC\n", - "Q0FezU4SrszcXbr7oQK5MFt5PlVFp/wBdzVFoe+xS3Kcn0yJxaF++lbN63dStj+8wF/fJe6PgfjZ\n", - "YRc+yVt9US3zxZE8ryhZCYL6rSAiV/eCirEqFh9jeK4TJTtIIuz3BynDLhW3pmuV4EjFcGkrCavK\n", - "gMX9F/AvkudHlUQAoVxDfXsgIMylNGoUA0yJlSRv6k6LJEbltbZAIspa0EQc14lK7vEQEKGbJvTn\n", - "rpGw3hoSGr2GdVMuQHPoEcHwtt4w7FjGU808etJR94BAXVziHg6SwxIyAYVkhr9FffcHJ6f2uNYn\n", - "PvlGLMuevGNmZt/3LX8olv0Pf/+vm5nZSe7xcQ/18gNlMJa5ARVB6GL+uVgU+2TWT7gZqoAfAwA0\n", - "24BRdiG0+1R63zRABxWtGKIkh4RVo89OElbOe1EJsz8GwMzCyiHToGMcHxnE8fCBK9tPz8I5OlFi\n", - "3jbh3lUSkv57hjDvPl85wshLaF6x3Trs+kdZDEmUpjSHon8GNFHV3ikhkcs5NlUg6BdyPxlsoznU\n", - "qEQyk5jB9xEImoXVc52S83J8zB4JWDsEOSmRDSKr5UAMGV2LKQvDIBs97XAGsfbfSQ69ikijBK9w\n", - "kdM1Caz4WqU7KJ3D7Bz6TGBgi6KPQLUuBl9ruT5wXoV24HyC/jW78Jv9rc/nscTzQVDHBjkzux1z\n", - "A4pcA66ljzO2v6p0sIc/naCEnO+6xg+YJ6fOUaLjgeeLV/XjmfdWxkQFNFFV+bnGz2QNBkoc+W9P\n", - "6DNVlG9lvp2zhEglS5YsWbJkyZLd0dKLVLJkyZIlS5Ys2R3t1bn2sn5Guszi3yVhWF12hD1VHZnf\n", - "K9xLt1CWqY4QyoozbkSQ7mbJcAHjZpoglt8J3FyUS2Ij0fBBYFlqS5F0qtcnLK5aVAMTZM4Ui5HQ\n", - "U8St6KrQhL/H0zWOdxdci9/S7VaXDgVP05mhMC37PwdU3rWSeBbu0F4I8EU1LcroNuoFWiW5u+/p\n", - "spqpZoV/1dvGXKCSyDYrzrgM4jUFAu7oxhG4F3080Qc7k32iYr64PUDUrDLvL8LSowppkYBciasM\n", - "rr1SoPUeboTbl+E+7Qt3xdZrENsHcc9QbV/qdIsEoioL9tbHgzvo2QcffLhKVolm0X4f6vToDbjl\n", - "cj9vfXON9nkfHm6Dy7gTYvFqdT+05eg34Mnbv2lmZn/oD/6pWPZTP/+3zczsvVsfO0OLOQGS92lw\n", - "3aHS4PYVn0EZ3UxLJWz1oxO+14AKNq2TRKYjiPRTF+ZOJar3F5sL/EDuF7TFRnEZHXG+W9EsGyeQ\n", - "2GWsNdDvoZ5QOADjTwYv5wBdMIXM9e0muPFyWTzvQXvsM8P9WPadD78V9fDrH7swTi6392IZAzA2\n", - "u4tYxinDjAWTjAkqsWuC2lUd1pGVucvwsgznazKve8+MCpKqoEP7NXuD13mZjJlusUwzMDAZttzr\n", - "KXrR/LwF3O2bjRD7SSyX/qyoS2hLo3tOXesV66TPM5SpAjoVuzuhj5Q4T1N6P9UgpfNRMEhN+LnJ\n", - "fO0uQAEYJp1XYS2qG3F3877KmCzQ1rV5kMXNbZiD+UqoMtQbuwQRvhG6Q5XPjjEzq2oGW8WiqDZf\n", - "SsLxE6gVpbneGt3t7cndjR3c9uMEAr4MCa6nmtmhYMaEQd146P9OgzfgKpeAGhLLewl86Y6/tUvX\n", - "LCFSyZIlS5YsWbJkd7ZXm2vvTL66OfoR/o4S/jqdQUn8+OV74Vw9HGW4bqaEZby4DsoY7hDqWyix\n", - "DaiWhJByB6W7VCegC3JiJBHOQ0lDXZbtZ5z+Xt7MM24IJYY/R6jz8eg7kg477FaQo3E6zX47jLKD\n", - "6ahm6zsTqmPPqJ4DSfT+Bv/0RQid32xcATqqAyuxe4ICtpAIKTcxRvRNyJHsa7mvkYAut4mK7sOg\n", - "Oyh+kPs0cKchKCVbF3O+nVEil3FKxHSQ3RfzE06NSEIUrJMEL2D3o7kjOchHhNO/K4hkfwio0u/7\n", - "+Kf9+Jdh199JPUucoxN14A8+CMrHn/vsF2LZl7/0S2ZmtpK6ry4emJnZe+8EBOn+a2/G7z7+qc+E\n", - "Sz73fHkl0KFjochpqMvjl44mfR4E6fWL61j2ez733WZm9rM/9T/HsssmjLcDyNubynfmHSalBgz0\n", - "H5rDZj7vZ8kB0D2qlH8AEnvsHLktqGyPcfd8csXohx8LyM12pbt6jCFhoLcYTy9f+rh+/PTdcI7X\n", - "HP1Zb8Lk3V6KUjXIvjMFdAYUYGz2slsusVt/ffXA6wnU50c++bv9FAfsviXXWQ3UuZVsByvOWZlQ\n", - "VG2PgToy/6q4KAuJGnnYVpkjPUS916LUb4cnZjYndtOLMM1C7edBJrPwm+i6kDkZ0WHJyTdyTIgk\n", - "xgrBA5J/kU2cKdWT7A+UbBbWMlJ+RYIIxjPPIpt7P0IhEPlR1z+oyItSPEP2q6LB/0Vqg+uUtot9\n", - "MXq/FmWYV/1JPDd8FsljkjIdAjraZrtZ1Ok4hPtJ2QOqmZuZbUiOlztVAnWcpSTkGt8vCejqTaDc\n", - "jeZY9QUdCN7Kxxq9BNpPHiglmQpGPP9k7kaEXwJKYi7WQaWLEiKVLFmyZMmSJUv2kVh6kUqWLFmy\n", - "ZMmSJbujvTLX3jhNs7e4LJKtvYyEciUCZpFsqoDvElqlh0zPR0K3qFgszqvkwInwoBJBocSbiQsu\n", - "kuKFAEnPyyg89TKSlwETKmEZ3wnqbJMxaanAvkzkKgTMEuc5nfy4HsRuJfvVUNQ9gQA9CJkuz8Jv\n", - "VfWaCYJVR4Z6G6q3tT9c41pe+T5bkmj7EQrsoqPUQatooPtCXbED74lJ4VJbrKUrRF17VMBWTjL/\n", - "o2U8bbYcQ5bR3elFdCOqthETKDNRp/5WE4m2JybNVG0ZfBeT9npjN3AFrT/u4+R24v0XAjb0fjpx\n", - "mZ4QePDe++/EsvuvgYD+9Hksm/aB5H51P7iKVM/lK78elMpz7TAQ6rPCXVEvkPD09U84Yfnd94K7\n", - "962Vl/3ef+H3mpnZvf/rJ73uSNZ8ewx1qoUxX5XB7TSKe4peIZX7itpXqiyPITaob2GiLo8OKNzP\n", - "koRV/+ZEF/BG3AO4lBKG6dohEd3M7P13QvvbgxCwL0N7Xjzze3d1P7j+7omKM9vRZmeU5UHs3orf\n", - "44fuBWL5pegI3XbhvirdoapDX1caAIP7qATwOqrxox7t0o09CAG/XgUXVLZ3N+7zZ89wnGhLFetZ\n", - "u8zMsgGaRUKfoNs6BgwJPYLrWSb6bHlJHTlVRwfZWTym5Rr6UPLUW69DnZSonMNt2Y98XuiijGAT\n", - "0Ruzga44fXjhmqItWDHISAZvf4Iu3+T0DRK118UO7RKXHZXVMx8TQ0E3mmg7YSzWoqJOzaZWxhMp\n", - "Cp2Qskl5KUVvq0Lfdbhfwo23qlpqNkViuzzlSSKfRAOqQfaGScZJDr27opJ5mvN5gswaEsRAl940\n", - "eyajjXqzmSlDX3uYGFy0Ik/ou1vNwLHXNWNpCZFKlixZsmTJkiW7o70yRCrPM5ulMIuIgISLkhQ+\n", - "+yXDmhUliZ/khCwUSIbXZpGQHj2cXAnLINZJBbhxUQLyCCRGQ/eLMwrlE3PcgTE+NUJgO0OY4xv2\n", - "IEy4rqNisxImmVdJGXtAuCTXFcN+R5xjPzoyxLr3gn6ReJ0pERP9L1zLeNzN3pEO5poalWyP45TE\n", - "GOUJIpdQJauxq9T+BxKghO1sojq5H8cQ90wlMYxojh+XVSRbLqUOOCZVHZ9IoOawylfcJsuujqH2\n", - "vaCEHX7TiiQC1OizE8ixrV/rNZCSd5lvq29xr3NBpHrIKmheuQK7yeONE8BXV4/MzKxsnAB972FA\n", - "qVrsVl8KglWDCL6WecKwc5WwYFfsb5yUfoGdfibj6Yuf/WYzM/sDn/nWWPa3/9GvmJnZpgxt7CYf\n", - "k0RGWtlVdkBRs5myPBTrT0IAB4pSV05KXQFZymWO9ZBboGKyIn2UDul6l5+IqsyTBqBw7MQiqzCO\n", - "D89cfmQ8YDddiSQBVMZzkR9pauYEDNe6J+P6HsLEv+/hZ2PZJ5qQz+3FrV8rBxRTCiLF+UEUIJQB\n", - "TVGEBX1AorSuSTSVK2gxnhVNHDEmL3eea25bADGV8HPKOEyFI3cROWYmiMGR1rwiAVu8BJweua7J\n", - "yF154cEztkL/C0wfAxUE9eE0otehV7SEyJ2SqHMGwIhiOMZdI4gUn1mKSO1PgYDfjfrcCefZYJ6W\n", - "EoCxwnNilDIiVp1kJThiXKt0TgfCuMKuHMbMDWpm1lm4P0poz7lOYpA3IqvAnJSjZBbogToOMv8n\n", - "kvdFfiEGG2igWJQJ8jG53gH1RBerrMGEm5HLmjCi3b2s/1RgVzS77bieqZeAAUXqYTmTcUQsIVLJ\n", - "kiVLlixZsmR3tPQilSxZsmTJkiVLdkd7hUmLRcPHbM4KhpHQq2Q/emBGmzGQF7+NCuniPyR5nOj9\n", - "9KFfmJllqjtkdBkJ2TFWV8lx1CASuJ86QuKqqpH8tWnC8StJMrrekvTpNRojsVpcEVSFFdcCYW7t\n", - "BSbeVLIhv2fS3k7dM+2SsD3QFTmDUflXieokoDo83EMXppsR+vlBIwAoDER1XIFn2dui4UGNj5nn\n", - "lL4l8ZTStZDLEI+BBCqawhbR3SL3P8+pWaYaN9DgkgoUUW7d29qCAKsK7AaipPV+T1qQHLOqRfv8\n", - "+huoSO/37jI7nujmUH0a1C3XOQR3r5DCn18H188bb30ylj19EdyxFxdBFfuttzxB7gG6ZOva3WPv\n", - "Pwn6SGuB9ukCf/rU67l7MxCr9zfublqBNP4D3/uDseyX3v11M3MSdylulwFaNY3OIRDrb4/uHuq7\n", - "ZeLTBq6CuvbzXcJVWq/d3bA/kagMwq64HcgZUNXjGFiiOkqY9+oWpwu81+Oo6C7j/4DggnXlfdcg\n", - "IXAHV9jl5CTyP/KFbzczs0/kfk+e74MbRxNuF/BVKtk5Mq/FZUIysCZtbeg+wk1R9yBd8RpsUWGN\n", - "GUcfazUWMs2ewLqsRcfq2Ib7c9J5l1FbCn0t9IwMa5KuyUyGrMkZIJRvzT1xmUKNuyjcLXbC+QoZ\n", - "d0wcz0wYvQQWrNHvpST+pgusFL2z9Tr0BYn4Zr60dDpO4A5blaLsfWK2gyPO4fp8Gdxjtd7DfOla\n", - "7jGeVRavHFGXWQYIuNF6r2cD+sJQS9Je3JOcQUQzbUecX561TELdtn7eFkFGfSvuNqyPjXBFSEuY\n", - "0SywnlVoF+ermdmAyJJcAiYquplVFJ9zVxJpD0w0foYWosmlq+IbvyolRCpZsmTJkiVLluyO9uoQ\n", - "qWmcvUHH/FKy++EOc0l1tg+9rVId+uyF/CN3OjheScQWldX1twzXlLdvgg9yFK+r+f9IypuF1ZIM\n", - "hwYxp5KZ2cUu7DoaQakOCJ2e56tbtiuq81Z+PhJE52qvIJaCdLnpfLdwHMIuSQReIym7E6TJX72X\n", - "avNDITv3bImSxV/K7pf143EqEkzEMpPd50R0QlTpiSLOiOWsk4b1UqZgWu7cs0JbHox5BU1JjCDq\n", - "ag6zAW0tNCSZQRGyqylA2s801x5+0gL92e99t7rCQNG8hhzrmleSytM6d0iK3sjOedWEcOqbaw+1\n", - "/gyUz6m6fnPtyAiJuIeTX//yKoTp769dAXxVMazbx99+H65x/56TjW+fB2LtZz73LbHsX3ojkKb/\n", - "GpCuQoj1zB2mO/KXQKJOmq8RshONhL9vEepfr/18G1RlvfZxv7Egz3DE/TrunZxvyARw6Dyv4NDh\n", - "HgpySEJvL/eJaK4inJQaULL3/hiucfPYAzXyi1Cnp12QUPix3/+vxu8+kV/gWk7OpsRDKfti9oSu\n", - "XRwnTeMEbEqmrFaCkmIslkRkZ2tYuNe5rD81QtEPk/cTUbV3Dl5WAJ1pNFAnkpK9Tm0fZBQ8oEcD\n", - "cBj+LqrTmIsagLC6CH29uuf3vwQ6OYuIx2kUzeWadMBYK0v/QYH7WYuXYAWV7VrWX6J0kyCizPGm\n", - "aFa5CX3CDA+h3aGNDMM/7oVsD9XxWbaFnEEBIonSUBJFPRf4vlKUnkFJMu96SFIo6I3+ySNa1CqA\n", - "LgAAIABJREFUKe0amP9TPDLDcuwMLdEsQZ2BCHWCUuYIkNJnVw7EMOY6LfXZTSV+Vcyn/M1SkkH7\n", - "joFaiuYy7+sg6/n6UvQezlhCpJIlS5YsWbJkye5o6UUqWbJkyZIlS5bsjvbKXHvTNKOaR7eTJo2N\n", - "ySvP/F5dJq6pNDujmc3dHZG0fi7xMTWrZvDg8rwRFRSyJYtyKWNy01ySG+eAefNqCV1Sl6URcvgG\n", - "bolrIey2gEK17iVcBqq74VURCBiq5dSWGmuBXUGE1ySvA9sgvlVCxcMsaSzuk6oNn9Fg4r0YM4Xq\n", - "+WmcHWPm5HB1urncmLYLelPqMpyoQbPU1pKhE2WrCNnnlcDogOAnVYKGnorqzhjcDYXqgoGMqWLH\n", - "jBPoVMiKXdEzQav3TQGuZyEywge4SjIhYPc9yJYzxV4QRgfVVgruoKLyfnr2JLjb9lBCH0Wz7Aa6\n", - "UKpO/02f+SYzM/vggyex7NHDQFQvxS399GX47Wbrbjm6UV+TRMqvXwZF9W+Gj3OmY1YEHZ1Lca38\n", - "Wv84tHXtHXubhXv2svd7N0Gp/zNvfSyWvX/zG2Zm9gXRsXp2G9rx7PgUv4tf2QR9pH7y87YgAufD\n", - "kmysiaSjUrickLEOTAprZrZ/GlygjbpRngdV8B/5tu8yM7N/8WOuGcXsqv3JicBNA22lSd3tcLdK\n", - "poIKa4yqvVOVWssYqMIIAF2nuD7PKBiMCRG6xcVr4b6uL5wU/2gdxsKToyugN3BLdbpOgYDNca1u\n", - "fM7hQiZWDXLyJPpcq4rBBv7TaoM5OUsuznnvB1JvqMQ6XQmLfQW/4IW4R9fo/6rw+zrgXgzm9ykD\n", - "obodJLMDXMD6NORzqkPgw3Hvx6+oxK46ZnBzq7YXx4QJLeIIV7VJIvk8ZmCQOg2kJcSi+DwjEX8U\n", - "faoRz6SDqIOzTpPo4g247mkvyuYg72se96hoL1pZhuAdJ5Qvnz8zDUrU93SUpPHoz151vG6QWWPQ\n", - "9ZxuTFmLV0owWlpCpJIlS5YsWbJkye5orxCRymb50rJIAF6iSkqsjYCQvMIWgBgGQWl47kHenGNY\n", - "K8+ir8EMIdVrRaKoEAEJZ8xI0ZRpkPaQKC2tqbDrIWGzmCFIVMeWdmGHsdvuYtltFlCFw0F232y3\n", - "1IlkRyVbk/fYA+HoBJkwEHWnmeotSLRCdieY0s/QPNRXAJkCqFemEsAT26Why/wxCON+dNwZK7GV\n", - "SrVDp8gh/g46nrir9p3WRKXe0nfJOUiORCKVsB+BMxF9jmoCoqzMIALhsMdggxnCihPNkEse14eL\n", - "VXJPHj16HW0REjXQjBdPnezN8OxCd1BA7Mrad8mX9wJKwJxrZmYtAgkePAqyB7mQODfXgdj8/tu/\n", - "Gct++Zd+yczMPvs5R0m+9A9/IdQXKISZGaOPj72o5+Nak6i9f/rTnzEzsw+Q86/Yem6+h/cD0vVc\n", - "2nqzCuP/Ue5teL4O13hijtzeFOEaQ+bX+jjyCTYyxz/5emj36d2AAnUCYRwxnogCm5mNQKkOMk9q\n", - "5gQTNI/jfxRV7KmldIDMe+yEG0E9HuK3/9b3/EBow7UTtm+BuimxuUNOwEnqXoHYXQlywjGeC5pL\n", - "SYJJpFs8k8ESmSDqUQqJuiWJWkLYD20g7b/5+qdj2ftDQKKOgvBWGb0DgjAeSXbmeNF1nWH9Z8Lv\n", - "V4pSoS8ESKB3QBHWEX3SCu5N4vcOMgmqTr5Dv6+ljJIcxQwQRp5YQZ97ymQImsSsBIoIDpAEYA7V\n", - "bHBkZjzAIyB58KJMi1yrgjzJJMd17VK6xc7kGI1k7BkQiOcpxppK55yoVC9rcn8Mn0+3gnQdmadV\n", - "rgkpoLIR5JQqHZK7dfYcMTvrzdJH0jmy+Qko7nEv95rIlaBUU8lcg7Lwi7flnCVEKlmyZMmSJUuW\n", - "7I6WXqSSJUuWLFmyZMnuaK9W2fyMK+4M0jizzJ17UkolXC/JP6SYHa4RLxz+zIjYS30eJ5YLOTFe\n", - "d6mjNL8+3I0Ct/K4Ciq2M3JwNvszKyxMCaMgYooWCV2bpQikEKnXOkUXESF+ZZEzeadokUxwX03K\n", - "oWafZUt3q16LatNZ7pAoNUByucklXUlMBi3uzgH3opqxHukKE3ieirV6r+NfuU+E9oXDGBOz1kzQ\n", - "7N/lPK4U3Sm2QWBnXlZJ9AUTnvY6dkhUFtfeOCdRbleqBN3gWnKfpsWHONYKdUFcBqL29sLdbRTt\n", - "Pty6jtQa5FXqYr187m6kFdwjO3G3Udk6l349Au5/8dI1qBgoMYrL4gi31CDJjT/76M1w3fffNrM5\n", - "wfSTF6EN1+La3lMd/NL75CUGe7t5IGXQ4hF33+WDkLT5U48+5ccdA3n9Afpp6p7F7xrMl6P5PXnZ\n", - "B72nQdxDRyRLHmWcPtiF3zy/Fb0n0AxaSdr7YBvczJ8FYd/M7Ef/8A+bmVmH/hxaUZimpptoZlGX\n", - "KBNlZyaB1eWUI7GSAJgSPthB3C3M6BB/oK5AELBPknic61otCvhruKCna0m4i4CWjbhAe7jxKuEF\n", - "1AWU3aHjo3Ooh3t01KwM0DTSdmVol7I3XG9KA5DgKhMXdNTemmrUTYKCSDcRyghd65msa3mxxChG\n", - "LKStuLa7qK0k7mO65eHjurl2bbMyD/26lmCLsaAbX4N4wvebjY9dztm9eKn6I4jtku2h4LNlPLPu\n", - "0outMnbMoiBzYoi0EEnaDvrCpFpxGKfbjWog4q88O5hU+1wieWrgFfJMHHoq4J8Rl5RAHb5wZLKe\n", - "V5hbpSThLjUa5IwlRCpZsmTJkiVLluyO9krlD879Pzuzg5jhNMs0PI5RzZTSEaZ7htjMt1nN4Rfl\n", - "FxTBOfMpolPT8g1V35L5tRLqbxFqeXV/WJz2w/UIdQEiJSTirANyJ7/lDi5XWYFs+SZO4l0JlCwf\n", - "dBdKJVqtTPijCq++SdEbxR+JYu1Ite9z5H1R+2b4Me/TdAYRU2XzM+PEd4KKki2vRUQsE4SpoiRF\n", - "g2vJTj/DLmTKdKdLZquEEDOIQULCGf5bmOy+CE5IqO3/x96bxNqSZddhJ/rbvfb32VZWVlbHIlUs\n", - "UkXRNARDEiQBNmRZsOmZPTBgGzYEeGZ6JHhoTz2ybA80EAxZJmiIhA1IggSDIin2pWIWq5hVWdn/\n", - "/N3r322j8+CsdfaKfy9TxisSnzbOHuR/GffeiBMnTpyIs9baa1OMOp36W/HOrZetbb1fYak4tRxR\n", - "PCz1qnA6AkiExAttU4HafXdvH4RtV5cegTo/9chMLejHEqe6JxYGZ+fPnHPO/eDdd8K2r3zN13+7\n", - "wD6cc26CFeZyZehXnt3y7RXx9v79V5xzzj1414vY88qONUL6fSEo1dde9d8/vbBV+iuoU9keWp88\n", - "A2IyGVunrCFA328MObmVveScc25T+XYeHt0Jn5088s7i5d6tsO0TCIFXC0Oa5lh071W2X47rXtKv\n", - "l7CHuFeZ2/sXXvXX+9/++s+EbS8BlWyA4M3XYlcQrCAkrRz/5qXUS4PIXJNNmLyiAlzWx0xkPksp\n", - "8mZq/MAdGveJ3musGCAIRolzKPYMERmlfmyN5yaAXxW+8zYbm2NY/y9Y0sh+057zn9ynmDtStQ6h\n", - "eFmQlhrz1ODZEfpHk2zwBQj2k0FdV6LfUv+zY2KT1MsjmqJzJxJfMkE/NrDuaNR+ANdkde4/u5Ja\n", - "m8sa9RdTQ1+nM3/cXua1CpYRU7mf0inm2kbm6bVv+9VS+h9JA7kk5cyRDMKxMKjJim1aV5ZzUTES\n", - "/wlHixeZk0P5x21LDkX9O4xJPtcHTA+/o+MUu2ukrl6NGn+btVRFQDUCOvw75xyB1VIE8KPZZ2NO\n", - "EZGKESNGjBgxYsS4YbxQjdQQffH/Ds0Ptg05Qz07yTWnJYHqYYhSDG0/h8cYmO8FCEmOz1X9AHzh\n", - "G64ei+mX8kZMgEVWOuslDdb8W3C9r/WN/NvvRrj/Cu+5ikgRdSoH1ai3Uz37IHOQdH6sMDfsO7Va\n", - "oKZCuX+m8Mr7dpc8p59wzqX99vs4+6mT8+dve9EPBG4aK0ddLbLC/ErrKsJoL2m2V8ROEDmu0/NC\n", - "ES6glLn0EzVSXHzJKohgTid1uELm+iA1F/uQbmg4JiUlnLYXy2uzrqCdwUv3fRr+XmYrSA6xLLFV\n", - "fVF4JIQp0s7Z+dcrW1VewmByKanzL7/q0ZdTqZ2YQwdFLcXx66Yfeu/dHzrnnHt6YvYDNKnLUxtX\n", - "t+/7/Z6dSf097FcRkem+11qJb2KwfzhEbbZe0vo7pNA3YhL7yqHXTb10aJqiJTRHhdgKzIFIZaI5\n", - "67Biz1JDbrj6XT/2+3jWWn+9CuRuXYjR6CefOuece+323bBtg3p5h1ITcIVVbyFo5jOkX781szb9\n", - "zJveHPQrL78atq1XXod1ee1RsrFqxM49OqFmgSNcO0XuqOXTO6Jn3bUdpsOpIDdtQ5PGbUsamioO\n", - "xz/OWXRTNCQd6Ot6b3+wlGtS4F5IE0P4EtoJAOFpOq0rCEREXHppnZMM5kQgbZlYB1C3qGaSNfW1\n", - "gtzhGMvEX69RashMA1RNUZUeCHOb2n2d4/qsxWB23fjreb0xNLWtPdJTr8QmgQaXuHdSOYfFxu8j\n", - "FauHLPPjQ68hx0It2q882O4II5BQtyq1C4PmVKE7zGdEnwS55jVZiSEnnyepWAhUKe0/pO0BYJVa\n", - "eym1VHb4wEQlfE71W98n4uScabk2MiZpY6IezdS3lZWNnQKWEUmmzMVnvypFRCpGjBgxYsSIEeOG\n", - "EV+kYsSIESNGjBgxbhgvjNpLkuQ5vfa2OynhPBWREe/bZROggkHCuKkKhfkHxda50iMQwg3oPv67\n", - "S5Teb31PxeaGhssx8Pf5mYd2K4ETKZisJQ02nUFEKbstAGMmQjewTwbuuDjHxG23swXtptBphraV\n", - "Qg+sWwrQxfWYWmtJCS7ZFrU/aFgTULwTgqBdUldBIxRMw1Z3csLDhaQG05xcoNYU7tHJwAEZf2ud\n", - "rpzUolJ1TJP2O64KsZAg3Sj8SELKROjGLCEtazBy0ntBbSK3GIfxdGJUzcv3vZD5/i0vcp6kRoVU\n", - "Fe4Jccfuum16hmnNqysTdneoXddJ/1+ceDH43tFh2DYB3ZaBglxLbb4anb0UIeZmDWpB7rX3fvgD\n", - "55xzo7FRNkf7/hz3hZaioL1QF2P0dwlx9FLT2kFMsUagc869fM/XzlNLiBr0TCYXqkX7LsV+YDJC\n", - "CrX8NkMqdnr4Oeecc+935uJ+NPZt/+7DT8O2v/zVrzvnnHv46aOw7ZUHnubbnxnd+PGJF+WXQpnc\n", - "bXxbvnbfXOG/+YUv+3NYmk3Dcj2kjxaXRjfS6iATCpR/D4TlCWuY2dgpg/2ISCpgZ9E1eo/hPglW\n", - "JzqH8B7ezkqppQJCOfE0p2ioXRFEzHZP0D26EFd2UlApEmtyoewaUPY6r9PFO6sVFyA9qXQP2i7J\n", - "HjxtdQXv0T8LWCNUqZ1ECgqwEh6fdi5tbeff4J5Z1HZPLiFsbhO7Tn1L+wWRT2Ae472+WolgGnPB\n", - "eCI0OsZ1JXN3R2G10P0ODGUhaf0jiMHnWk8R40hr0nGeprJDn9NMUNGkANKs+kxkLc5EEpDYllzl\n", - "K5BeaKJYGix70E+aWIZr3MgYbmrSk/Y9jmeVe9DOo5GHV4kEFWHqXZaraH47IiIVI0aMGDFixIhx\n", - "w3hhiFTXdQOxucUuo8tu61NdkXQhJV5FlKwTJWnCFO/xrVbeVrlKa0R0GGroqflYqImnKximf/Zb\n", - "3xuibv5/rq/8KiHNbLXS4rPDIxWHw8BuZKvaEdCfTFZEAB8GK9JdAuwaXwxC8MGqkoakYkIG9EvR\n", - "J8pXC0HEiEjpSpNp0uvaBJhtx0rb2k6ahOIfuYYZEJlShNVNzRpW1qIEqbOy0LNrLasvB2QrkZUO\n", - "0SnaL3RqYZFBsKrIJUSsKtgMK8hWTFJxaw2qiqNPbh9Z6vLLt70h5Qyi8/3c0KK9iV9C5gu7Tpsr\n", - "fw4Hx/a9y/MztN3QF1pnlCrsxaovE5+EDz7wCMy9O/d9ExtDX770VS+E/vbT37fzR1OuFyaY3b86\n", - "cc4597N/+a+Hbd//1r90zjl3/9jO9ekzv4puDs1+obvybe6AtOxNbBn46aPH/pwFEeM9uxGx63Ti\n", - "7QQW13r+WKUursK2ycQL+jcy/vanGONI0x9398JnR0f++8m1iPNhtbAvyQ77WH0fSNun2DaVFPIN\n", - "kKafeOXLYVvhfPsWa7tPaCxYQ1isCOLiFAJ0sRWoYR0wGtmxiDoXIlROsE2NBldIPOgETaKJYob7\n", - "uRPomrU49fs5E2AKO/4aKGI5s2117bepUJ4GuJnUhNuH3Ubn/Lku5HrVTMBRRJa2DgJ+8xet1lDD\n", - "fmpxpGzJMMgxmCjBCWW+tnk663x/Nop0Z/689NnRoQWb3sZuS1sJeZ5RID1AxELpRvSJnBfrnp6c\n", - "Gkq5v+/vp7Hc6w1MYmuZu/mMy+Wxz2SoQoyQ+VrA8eqc1dYj+q2WNLTVUPbDhbFm+y0SWhIJIknz\n", - "S3l2BNBJUf/0eduLbfudISFE5FSRQ9QulGyX8dRfz83AdJZJSdamLIuIVIwYMWLEiBEjxp9KxBep\n", - "GDFixIgRI0aMG8YLFpurF8QOLyJ+LJAdnW1VHLZbgO73p0J1ije7IJgcNMhvy3Uv9KdSB3D8SPeb\n", - "7Gi767a3sU4QPDkuL0WcDF+WUmDHMtQ8EsVmBc8YwTFJKdaN0QMOFN3A2Z1UHh3Txf8pw7Y81Wvi\n", - "/9UaVvS0Uih4BMfsvBN4FnW1rjd2/OXSb2s6a2cfoFr0tfQl6c5EagJmBb2tpJ961jUUcSI9sAZC\n", - "eVLA8j14hSTB7V4dlnFcoUApgG9a5WxxXTP1QAJVKgLIEoLF4yOjgA4PPS01gwD9cGy01+Xc02fT\n", - "pfXr8S1PN6ln06SGE7aI3VPsT0fhCCLvfGLO0l+876lFWmVdnJ2Hz779rW/5Nt0yeq5eeJrjSNzR\n", - "Xz7w5/CvvvWbYdsRkgE++vC9sO3gyIuxr6XtLeiew32/j01tLZ6TPpTbiy7zV1Kvb7n0570Semy1\n", - "9H/rvXuNum5aYpKUGo+1t2di/9Gev04v3zW673LuReFffNX8tja4TvsTo7H2Zv58RpltOzv3v711\n", - "ZM7miUObxUenBd0zgXh4fmbnOp749l1dSE3Emd+WaP0xeFsJs+cyUG+N1PrjeO4a5UVI7aA2nPpD\n", - "QVJQiYs6JRCzPRPbpxPQk1firQRKmXUtnXNuuuf307fWT8sV607ivGSe4hTXLqU2HotIyoWtKe0Q\n", - "WoyO5ZqAwaQErdMW6kNibtgIPX/d+b5QsXlH93Jx5+5BC2pNxrZnXT2ZT0A3aUk4iuKTjnOIfB+n\n", - "uLw2yvrs1FP7B/s2roJXney3gRg+6W0+2YAOX6/Fx4teTULpkvrkZ53QmEGOod6CucpB+D3Sczp3\n", - "orKEjN1Qd1fm6SCz4VgQGQfn6UyfE+j/XNze+UKhvnQUu6fyMsAxniRK5+2SIWkbYsSIESNGjBgx\n", - "Ytwo/sw4m+8KE5sPNvp/Br/FG+wO74TBT1m7iW+/amFARERRMhxDgA4Ttss7aBreVsUBONT1E/uF\n", - "56wTEkE15ld+pXM9kXpVQIK6QQP8P2NxjKWgstb0eziaD1NYuYrjm7viFRAHysqgYJqoiJMLCAUH\n", - "IkKI8iqnjtF+m7qYE8XpN7qcIEpmLQ8tCqif1LXDakZNjEdAP9pKUp2xmluL261ds200McUqTR1z\n", - "6eKrAnResn6Q6kt3ZEU/+bk48KPNk6n10x7qZI2nHiXaiItzh/NZnpvY9fiOT7VPz61fK9gObB4/\n", - "C9suTh+jnYawZTjv4/uGsDz6yKMpb7z1Feecc/fvW625Mzia37lnLt6LK4+OiA7TJVjhr5fW9vLQ\n", - "72cjK+c5XNYXUtWdSQlHB15QPZ/L97Fanu6JsH5BZ3fbxzlW5I0KhuH2vRbB7OWV3/eBIIKPn6Ke\n", - "HlDVvcquDVf9x8eGvhVI4V6LJcMT9onMSRR+P92chW20gigl/XoxB0qhOl0Ie2ugmZUgiBucdzkS\n", - "F3MKimU+yZg8slb7EdzjYh1CtCmRpJQOCPgaqFYjlhhEBLSuJ1f1mSAYKzZJxh+tUHKxvyg3/u/x\n", - "xM5nuvF9V8MBXCs7EAmXrzsCUr3YH7Q76up1TInXuTtlnb7BJO+/h+HUyvzDY9WaMMMkFhmTecHn\n", - "lCAdBdE/OxSLDHTd9rzHhBmd/ynyVwTlGe77ydisRm7dIvpmx8pWOO9a51NYp6xsPPM5ocgRbQLc\n", - "889QZ8+4TITdHJOKXPEqDhA5jlN5FFmfqaDd35/sm3Tgzr/9rOdY7/v6uS1uqErHOZbyPA1jQu+J\n", - "drj35yMiUjFixIgRI0aMGDeM+CIVI0aMGDFixIhxw3ih1J5SIYQCBx5DyfN/mD+MCpCDy/jAlRzf\n", - "21FcOICASuOAYlKIkRq6TGHXIIpWKJbFJUUct6vwI0V0AU62qFHkdL0wKHIByFih6M55uL0TdWKK\n", - "4zetwviEp1Wwx76li7u6iKNN6s+Cfi+E2ivB6aiPCx11KylkS68Qk5A614798a/Vgfo5GFnd2ekV\n", - "leVKrW3TwfSgqeT8WdS37WScBCH59vqBBTcLEZ0mOfpf90HxvAhm02KNthuNREfrpFQfF/S7WLaU\n", - "oPbopiu1YN1i6Sm9eyMT8VIc/MpLL4Vtpyhke7ZnouTV0tMilycmSj7Y8xTR04efhG0FKK053LOv\n", - "5/b9I1BqzdKoxTFoMZNkO3dy5mnEo6lRUPSFaXNxyofYtxG3Z/YOxfOnpyZ2X8M/6u4DE9GencEB\n", - "PLNrPYNg/+rcaMGnJ34/B/tGd9AL5+JC3KZBR96FY/pc/LEurvyx9sdGBRagABpJiphh/LfqrLzw\n", - "v23EA+sLX37TN10SOi5FyM1gUkoO+m4lRab3Jn4sqGM+i7amOtUweaQyb6EE99pKxcuYH5UWrXE8\n", - "/quedRQd91L4O/CSwrc/XvuxOF/ZNSFlQt8r58TTTm7JvPT7G8Hja6FeUCEBRdzOoUDPxAMvC/O+\n", - "VnuAi7jM5ymLoMvxg0ccK2Doswbq9Uzo2YSjWAs/k1LqtkXZbafng39VbI5nB2UZvYjDWYFAx1Xb\n", - "+TH79NPHYRuLZXcb8fvCPdkLCZaiL9SrjcJzpeX4PGWR4yHVBcpY9OUh2UolOAk9wLZfOwZ90rPa\n", - "hSTvDDwPzSfNOfM7bOTZ0fR059c24XqKLsGee0pV2i/+30ZEpGLEiBEjRowYMW4YLwyRSvvnUKVu\n", - "h8As2B8oqkJnXa3/xJ3a/pOtP2z1w5XBIA0eO9EX7dAktQTYtV/8q2iKivHsGMMGD5zQsW1+aSuI\n", - "yQirn3R7VZV1AmskXOmLsJG1iQZ1tVhriCsT2UXCN3PbRnuEboB0+VBn8zEEuJrqHUAnLQmYMp3Y\n", - "Vh8bLsV61uuylRHTlDOnqwWuNGSVDPWmuo1nSEVOG0WzKMAXUf7aN5DCwmZjvdJxfyIYpbC8kZUu\n", - "b6Jgl+BccEUeIAdYYLXOhJ20lkhH+H4raeXnvi0P7pjYOwVytbwy5IRC4dmeITdPPv3YOefc9MDQ\n", - "LAq1jw5uWTvR5LNnvg7e0V37jOhUKnYVX/myrzX3+DvfDdv2Dj1ic/XQ6s8tYDUwGRt2lbdDpMM5\n", - "56Yzj5g8O/WIVK0raIzTp+dPwrb7t31fLKWuGftdHbiLsUfHFBCmncbezFCq+bVHjogIb9bWtnO0\n", - "qbpj13AEi4PTT83CocK9sFiJTQDqOn7uDbNJmO37cz0T1I0p22utdcfPAF1OR4b00Qk7lzkhhcdB\n", - "mkq1AYiys0pSuJHGnzaGyK1xvp0gAkQCa9gkZHJf82uKXNOVfirI3ROgmM+e2bUjcq1C/Q5i9LVc\n", - "T05ZnKenUsNxhfv6orbahMwG0vkvQDyCUrX5NhIf7GG01h3d03n/y36JJqsTOl23swFzsC1Ybhuy\n", - "HvLsAuqUynweBP3YRyt2DZwTc0H/e3z/6tL65GTkx+eg1h0ta9RrAU1RhGsNS5JWhNpMGght08oO\n", - "/KzbRkkHZuehnu12ApZeOzoc9DJPVOH5RHG6oE/hfHaghPrugL5T5ojXX1FHWqYME9okQWpHREQq\n", - "RowYMWLEiBHjhvEjIVJJkrzvnLt0/nWt7vv+m0mSHDvn/oFz7nXn3PvOuZ/v+/78j91JjBgxYsSI\n", - "ESPG/0fjR6X2eufcv9X3/als+wXn3D/p+/6/T5Lkv8b//8LWD9NkIHrbEoI7gzY7UeLxr6GGm8Li\n", - "bXHYwBfoOfuodEC/0XdEID6amO8oUKyur8GJVRx4g6Ntv+McuU3gdNISyyuDM5cTeLw0Ispfo51S\n", - "tDWtUFxU4Gnafgytuvxv29Cf294lQ7pvex+kL7XIJOkJLQZcwqtm4FQOam/SCGSMvzc4r07OlUkE\n", - "tfRTXtGdXKkN/28vAtCMXjUibE0a3yb1YElB7dkYEiEsqRKphpxVvP4qfsT5iwCX9N1Y/H4SUAvr\n", - "1gS4LIxMpiBrDLIvW/ydG7R/eYYit9dCz6zgNyWi8A705WYlBXdLT9HsHRp9dz73Pkd7KJp869Bo\n", - "rym2rVdGI37vt37LOefcV3/up8K2R7/52zg/8fuBQPnBqy+HbR99z9OBeSUeaLjf5ktPSyjFRAh+\n", - "uTRqkU7k9+4a3Xn11J9DK+N5DB+p46nRQh98/JFzzrmjO0Z3Hhx6Qf0nn3oBPv3PnHOuQfLA0S3r\n", - "r8ePfVHn9craVMF7qha6ocO4m0lx2xUE6MPirhjjQm1VY3+dFkg8qSrxcQM9k4pgN4NjvtJIvI1y\n", - "mX/yylOErfp44X4WpjDc25xiNAHI3KmFzIAoeFoZBXhy5vvp5PFJ2LYHik6a6Tag8tdCt5MqSgI9\n", - "JsJ+OPbXM2vw+hLrdC1aDAooF20BfZ4ycSAvgo+cFhcfJr5ovVrOcb0aVGGbJhu00KVkA4MwfCby\n", - "gUApqi8dHc0xNnIVZ1Mc3Sm1hn9Fl7JY+P6kd5r/qf/NRKjaJhSSt3mC414d7YNQG/25H/X0AAAg\n", - "AElEQVSaSFYMi2CX8uzsSbfL85d9MSxa77dtlKqn27jQbSsMxhIFpXvZB8eJJnb1HX0B3VYMEsBU\n", - "jhE+x/4GVZA/m7z7k6D2nhcD/Q3n3N/D33/POfc3/wSOESNGjBgxYsSI8Wcu/iQQqX+aJEnrnPsf\n", - "+77/n5xz9/q+Zx7mY+fcvV0/9C/UIvrSPSIoDh0IxvCWmMgbOdGBwYsmYofmO7yRdoOaRxD9Dd48\n", - "qcRTF2vf0j5R8RlWdfpy22+nzvbPNVCF4MFFW1JOL8+RVj8WlAyWCJuR/ZZmzHmh0BHTelUATbE9\n", - "ji+C0eCAPoCktr/HlUmzw6Yi1eNDjFhK6vQUH68EJSlQO69myq195Gq4HvdSL6lK+Duta+X/7dRF\n", - "nKctq+9wTWprZ7CMYAa32B+ElaMMIjqa5922YDJJJJUd6EzrDLmYYSXYSO3Ey41fMR6m3j27Pbfv\n", - "v3X/J5xzzl3NjRl//BDiXTmt+dz/ZiMoJcdTWyv653/05KmlSb/5xTfQXj8VnJw9DZ+lbh+nIucP\n", - "BOH844/t+FgJZ+JYvYLw+pP3Pgzb1p1fTU5yQWkgaJ7u+fP/RGrz5ejDrDIRPS/XRlb/G/RnImON\n", - "QnW9m2dAp06eGUpysOfRpmXtUS1FGl9+xaNp13ND5Gq48l9embCXLv9jqbXH3Swu7NpVQDrWgkgs\n", - "rv2+R5UJytdAaXk6/Y6KDd0OuwK1CSGa3+hKn+hLYceaAk26OLM+4T0wApq62Sha5rcN6qABRZzM\n", - "TGz+zre/75xz7uSJ7bed+HYWgkjWtCTJBQl2rJOJenWS7NJgzi6l1t9k6o+7FPQ5/LaROqUphNq9\n", - "IveE7uVrTEZy25YslrAkfY3mJeK2HtA0tz13ppK8VOYznJfc0A3rxPl+GjIyRMmFucH9WY1s/DFR\n", - "aHlhwv5q5M/1tLY5ZjQicrRdAWP4fCQ9gXtdHisZLXEE/Ql2BgNdO/tCWIqGLImcPy0ZtMZjTouD\n", - "Bm0T5qLbZpPcDrdzPsd21fXVdjJRTFHXbhe0JfGjvkj9XN/3nyZJcsc590+SJPmeftj3fZ8MKxTG\n", - "iBEjRowYMWL8/yZ+pBepvu8/xb9PkyT5JefcN51zj5Mkud/3/aMkSR44557s+u3FwyvHZUC1V4Yq\n", - "4DFixIgRI0aMGC8ynn1w4Z59AJPjPy1EKkmSiXMu6/v+KkmSqXPurzrn/lvn3D9yzv3Hzrn/Dv/+\n", - "H7t+f/TSLHhtOCeFfAdOqNu/I1Ta/muKCNp+d+yD0N3AdwKeSSpiDvCs+l0B2lR4MPnjXdGHqnhu\n", - "er5Qr8Coso8FYNmskYKKfN/sxXcEfFghLuYm9hZvKXAFLdx5lXYktDyA7MMpKN8KcawUg+0n/da5\n", - "pvh1pvAo8OBKPKhWJWkMii5FsA0KUIx93cZtU5AUPvYDcy96hdk55vQgqSUBIKVQEYcXwSqvk8Lu\n", - "BeFjgedZmDkXWjCls7nQCITD80xg9I2H2Rdox/3+dvhsBJFxuxC1Kw57LT5SLAYsbFeAomvZSK+y\n", - "2cwKE1/Ao+nuK68455w7mNnxnzzy4uxCxskY4+p7v/PbYds3/9Jfcs459we/9ZvWALiIn58YjfjG\n", - "57/q25FKIWVA+tcoEDxfmjh2NvF0Xyo8JsWmg0Ku6JNSEiAW2N9s3woeHxx4inAjY+wa1NoYHkhP\n", - "ICZ3zrm7D7wqoZeb8gIFipUeuMSxKqFRX/2cp0znl5KwjGtxeW7bCnhErYVuSSAeTygsz+36ty1d\n", - "9MUzC99rpZ9CEXZRkdc8j6WNiRJ04HhqtFCNttQN/ZTsFFKMcZ0SDlAsNzkyz7C3v/O2c865xysr\n", - "2rwY+/lsJEW7+xJtKfQaY9yD9lutbK5pWiR2SLWBkFAkU3JHXyK5JsWI1I59r8T4y0s1vMM/kEes\n", - "nRy/oQBeJyBKBtRvDu2Q+ZfsVS5+Xy0mnMHzjA1sSfHZteHX9LrmUMOPCkusYLKHnmso9C2U3WrJ\n", - "ShnyvY4JMNJ2No3Cek1AyOhLqFUk2ud+abRcMkhy2n52tpg7ckn8CMfbKdXBv516kZHak7neWiy/\n", - "haRGE4rw8Z3Xxu7Oa/7+TJPEvfNrD7cPjvhREKl7zrlfQoNz59zf7/v+HydJ8jvOuf8tSZL/xMH+\n", - "4Ec4RowYMWLEiBEjxp/ZuPGLVN/37znnvr5j+6lz7q/863cwfKsP6MeO+jZJv736/GN3uv3r7W8R\n", - "/doh4tQtHZCObuBqipWeIn187VcwjXXVdH/dEHXT2nihLXqCFKfObUWUQeTcDZy92Rhxu+1Yr0jf\n", - "voHwhEZJGnQQlufyfbZJzosojTjh1ljVBNW7M4QvlR7NsGIpClu5lBQUA65RcSYFtc1aUCr0maZ6\n", - "01ag3yGeV9SNgsZOheJhJYhrMhBH0kVdVka8ZAqTcZUo38t2IHLMdFbrjBoOzRuIZ+9NrYbefO6R\n", - "jgMIsZ1z7tnomXPOucW1iUivLvyqP+nFgZqgpyz1eP7nJ+ZW8uWXvuicc+7y1O9XUYWQhn9hNfx6\n", - "ODAr0vXr/+yfOuecu3XHkK4Sq//5yn6b5rQzsWtSw0V5A1uDXATTl5fezuFQ3LmZGv1MziFntYPa\n", - "xvMenM21dl4FMfj13MbuLaBUrLm3f2jWCHRPr2RlvMEx1Nl/Xfv9zaa2bQ6kay12HryeqaAJoa5Z\n", - "IvW/OqZ/+/Neyr3WIaEgE5QqwT5WKxPA7+15lCgT9KPvsR/R5LKdI3GqHgElo8i+kPz/EhYHi6X1\n", - "6/0RjiFzx8W5b8uzx89sG75XzawB1T6Q28qu3XTPHyOtMNfJnBju694E8yXad6H2H0Qk5LfMT5Gc\n", - "BFcACS4VYeZ4wny6kXm6bshIqLAZtgqCPqdAszRRJQdKnYpNTcMkJ3WKR5sLQtia7MPEKkEk+Vei\n", - "julAkxq1zsE8OZxjt60bVkioUIF10JqzNqGM174G0yHnyv3q8zwkBQn8xYQyBfjo1N6rJQTGZ4MJ\n", - "Wq2LBlYcYR/btf44d+RauzAjcrvtrK9tz7IdUJhEdDaPESNGjBgxYsS4YcQXqRgxYsSIESNGjBvG\n", - "Cyta3Lsh7UWXhAHE2W7DfvTv0IKCz1NmfhshQIVMKaje9pOg2F1Fbz2EhYocko7shdsLJRMV7n2u\n", - "QLL/Ec8LjrlC8RCKHNaTpI+JwJg1/ImEHtiQbhQvDtanVPbSXGm3PU5CJw/OFRCr7CQIBuX4TfB7\n", - "EQo0eCslz28awOK5I6XnP8z0+zjsZm2wa9Ztw9M06u1ExEyaM/hjOedSUnUDqhK/xTn0iQjGKdgU\n", - "LgB1V11RyjZAxpn4I4Wi1ap/B6VVCwVQw7OlWvgv3nvZXLTrZ16U3FV2XiXokVLEsezj9dIoYJ6P\n", - "QtJ9oIzs+HRAhobbffLhB+Gzu0ee5tLzv4KwvRJ6dgN67lgcwB9+4IXq1cQomIbeNpdG943LYdHo\n", - "XkTEvK9nMxOMr9ekQoQeRSHfXjyDSkcPJKHFSxxD7pNTFCZmkd/J1DyreDMsxPesxT27Xl2GbVMU\n", - "QV4IjZiBqqU43jnnlmFOsGm3xm+ykQmFq4rH9f1ajY3a3WCCUI+f5dxTWrleE1zXZmG0IMW79IJy\n", - "zrkp/m5r+x5pTrqtj2fWJw08rihwd865Atcwmdg5vP2eH0cXkpSS5f7v4trOf7YG3bJn93gPkfle\n", - "yeOKsB7nkDk7hwyU6npi89QJ6OhWvO1KFK1VWjYrcG1lPi8hnua0Wwy8oDDWBtqObRopVENoVICN\n", - "eV/pPsxTSouRZqxBd3YDF28fqWQApBm9oCSxCGNMn52sfNHJfE76brnQAsWUT9hvMwrKeyZqaVLS\n", - "9nOaD55WtBJBvL7D8HFgIr7jWZiC5suyHdhP2J3SraRWbRt/K+oBV5SkT7UB/p9ENC3dZ2uKIiIV\n", - "I0aMGDFixIhx03hhiJR/ed8WcDWDFHofg7Te4BhebG3bVX9vlytwQCEk5XRXkmS/QwBOEaOmlVKn\n", - "OHB25X4GIrV+eAT5KKBqmodqMsKwpVnT2dUuXThsp2//w/06ZyhKRtGdgmVYrfUiGGUf6konCAFb\n", - "RQ707Pg9pN9r/aOUqJOgSejIbEe/smP1GnY1Vp9LQd+Ifslo7nA+KpTf0Z1Bbx/E64W6Dvu/c3GR\n", - "z4lIibVvWCWKAL5C5yZapwsDr5YV5qYmSuT/fyTJAZN9L/y+eGZWbCOIjMciwC6BBCxEbExRZq65\n", - "6zn7SWuyYTwhYaAQpPHJs0fOOefefOONsO3dH/h6eSpApmD57e98J2x79WVvp3B8ZGjG4tqjOGtB\n", - "iWiF0UIUOxcheAW3b0WfriGszwo7frPxiMyeOItXQEmePDb0q5r4izeuzIF7PvdtOjrwfa2WLHRn\n", - "v742Yfsax8ok1bpEDUMdavsHRzj+J2Hb4bFH7OZiXZESCZW7ZwN06M69B84551pJIrjqidzZOJm3\n", - "i61tCZCOrrZjXUPsvr4SRAb3TiWu9Keo5zgG0laNDWk6O/Nj8ZWXHoRt4bgjO/7Jqb9OxWjbHzAV\n", - "hL1HIklbiVM93O7rmsJ62wfrDhZSQ28FofBsbNf1GmjevLWxNp971OXwWIT6EOBnTlzB0RWsdpHp\n", - "xIZkg0TOgU/RQV3T8JyyTQWdzQU5yXGwVuZz1kIkcrzRpCCMl1ST+WnrIvN08FoYtAnIlTrFB6sH\n", - "eQISuRbopgjWLpjDB89J/6/O9WEuHCA52zY16a7nZHC4GcBUaLv/31zmMGZKJQPkEN8ThqEBOnq9\n", - "MIuVIyTXqP2FXTNBAj9bax4RqRgxYsSIESNGjJvGC0OkfCjSg39lG1eirdb84S+FkCXAoeV6wsux\n", - "fs/yGvEdNRyj9mqbC91Vw2+AfvHvdlsjM+BWn3tt1c8C5zzYL9/C5c0Yr8taQ6tlAwYpsTkPIm0G\n", - "R0xKvxxAeNvfD9XXk61tsqhxNWpx1aJHYqp92umrPFAS1UiRt8a2UpCG0cj/vZrLCoppxVprjItO\n", - "lUhhNaH119jFkjkuCAQQJLkjign0SCPh2cGpK6qW5jT1sx8XLAqYiyFmWPVr+rv/m6jCyTOrdbdX\n", - "ekRmLDqjS5i06j1RICV9um/Hujjx31uuzOjx9h2PktSNVHpHPasGKfSF1iZEH37yidXLu3vvJbTz\n", - "Udh2uOcRi1Fp7ZzAfuDRJ4amvfbq55xzzj1V3Ro0L6ydpytD6vFOTs0kkxYat+6+GrZR87EWnc/Z\n", - "R6idJ2ezxop0IX3CVPsc4rfrhSFYBQbD6toMNDvUcxsJ+tEB/Rvt27YF+vXw+Dhse/rEX9vxyAbg\n", - "eN+jPhuxhJhO/SqZ2sDVxlClBNqgQmrNVSOvocpkBd02/vh9qmaO/rwnI2l70MjYMQrU4huX/nuK\n", - "YLDu3mhk12mJeezJD/4obGuSDfYhSA9Q2kysBlizs2jt3iGaOl/4e6KoZKwD9cpau9bUpuZiyJoD\n", - "EWlE38ZpbHFtKNU+EFudpqj1JAiTyjzNsp+9IChJvm21wDp5qeqW8EwYqU0J0S9BpFhXjjUMVefT\n", - "Y7LrW0WptrWcfD4oqtPgHlPkqoH5Zi/XmHqoPNXXA7IJufwfmofD1oNvA82Xa1LAzkPrtHJs9YLm\n", - "Z8X2s9Pq5G0/J2k+m8k++KytxTrk4syjz/qIrwG2lqJ5Dc9A6U/VVe6KiEjFiBEjRowYMWLcMOKL\n", - "VIwYMWLEiBEjxg3jxdkf9P1z7rDbKaQtIPtcxHmk3hRG5NvgTvuDHa6nu9Teu/7a5ZROOlBhRwp6\n", - "u53fF/ruOUoxUXFoRzhT4Hmcg/SS0XzKLaIzWkmr3zDVt5I02XAw0INCBVDQ2arbPBFgNfHmcQdW\n", - "D3R7FwqwprOufY3u5erAm/Ye7p2BbiiE4iCNclUYPLtBqrvSnW4DuFng2ZwuvnI+OVLRa6m/RR1r\n", - "TypQRLcpqM+8VBqPPLLUi0P/aLmuCr9Jpf9JB6glAQW1y47CZnNnvv3AU3Fnz4xuovO3dn9GEXmv\n", - "Y9If/0DE3msIbzOhtGk/cI2af6u10V45VLaaAPIR7BFef+11awAE2IeHZlPw/e96mucV+d6jR154\n", - "fXzbxOuLuae7qjHGQWfO4mtQcM1KUvORfl1dmf1ABSqkFpuMNSD96dRorDUcm5drE+XPQK1doYZe\n", - "o7XZYENASs4550oMmD4xB3haFyzXkkIPEfP5pQnVD/b3cV52jB4U0N5M6TaME1zkO7esTza4167O\n", - "RUR+Acd0oR9anH/bW9/1jadvG7vEbgMKspM6cUe3fY3BNcZEcynieA4FoT2Yiv8Pf+UXw7bRXd8/\n", - "lVB2CZI3dOwGZbfOHZBIrNe+n5pMrgn+HOXS/yktQYTaY03AQQ07f4zlue1vg6SNzNnY4XV3qLGn\n", - "UgAKqjvNLKJeWuwnOuxvJKL4IqVQXuxPeloiDHxn/Ge0BNJTgLQh1eoIuOxtoxYGFKDbjxeLbRqP\n", - "SvpcMo9YDaOV+55SBmO95JlMqYJaLeD7uXYearyWkqhTw2JIXfFZNSEZlg/x/wV9pzVUaSekyWMZ\n", - "KEW1S5igUoM6odOpP5M6qS3mYq0K4Fyk9mLEiBEjRowYMf5U4sWJzdNkIPDju+cu26tO0p8plBsU\n", - "304p9pPdp9vviHzBbkMa6nZ65WdVl9YYvBETTBsU2+vc88EFI9OFhymnNHqT7wdVvKJKWBGpJQNW\n", - "2q0K28MLtKAU2HeLlUEqb+HBCDGR1QoF+CJO5Opo0HcBahMRI1b2WpPJrAa2Vz9wAXDjsQmWmX5e\n", - "lYbSbK627R/YZ72sPrKKNfzUEoImlSpKHFpiqKlhyrxnsQRIsE0F+KwrV01NRJqWOP9CV5o1jm/9\n", - "Xi9hejilhYEhCKdMIZeuPofRoKb/clVVjMQ6oPbISS73TjX2f2/EJmGB1P4kWIhoxgbRAts0Qyq8\n", - "iuJfe+AF6M+eWl21L3zB1/DTel19TuNAE/vm1QTH9d87EmPKDz70CJYKuzeoMUi0wjnn9g48EtYs\n", - "DKUKSRmy+j4/98L3Oy+9HLalsDE4O/NjTE34WlyLtdRwu/Wyryeoaf2sTXcpgm0Kf0eVjYnFle/3\n", - "RCwpVjD2zKVOZYbVOW+T+caulwPCkWZ2XpOJX/Uv5tZOIkaZoN70RqxFbL8GAjkeG+pFlJT1D9va\n", - "vj/Z99enE6j54HWPYH3v/Xft8AAiio0Ii+l9uO1bHBJhnJM5niixGsiiLUcjTTbyf2dy7aqESJMg\n", - "ImjzamW/vV75Y+yrmSnQvBHQx0TRKkyiKzn/AshFLpM32ZEiU6uJcnDOzpmQXdmMJHTZjgSkMO/I\n", - "HIptRBeds1p3jTwT2s222JzIViZIPJ+nyUCojqQAID2K6oRrJywBr7HWlawkkcjOh6eo7BTarjgP\n", - "a/eFon9qtYD2CtLPX+ZSJ3N8y88TWS7IFcaWolk5UecBCPXZmFNEpGLEiBEjRowYMW4Y8UUqRowY\n", - "MWLEiBHjhvFCa+0NiTzAcwLZ7SxvQyfsRug+Ooar7wOdwtWBtWWtPQi7h1bog5btaq3+duC23VJE\n", - "ueP4KoB3w9+qZxXd2wdtIgU4gFF3uH1TvL7Dnz0RyJIsRw6uqBF4ugQ8vcOcd3iVWMJIKCP+rTRK\n", - "1kHsKdQOu0eFjcHuCx8mgvuPJl5QOh4bZbEqPH2yqQV3Jd1WWpuykmJHO1bb7qBb6ZUVYGGBuAM9\n", - "q9QylaVyDuwLQaeTioJh+V7CRAXxlgLNU9aAvYUKodh3sTTKiHXQOnWHZlKCHL8io9DLsdDbh4cm\n", - "1KXwnjX/3GBMrrFJaITMw96V1JA7haD6tdfeDNuuQbNNJ7OwbTb1fkerzdKOAYq2AVW3d2x15fZu\n", - "3fbHFHPsPdZBE8dqnngt/dpijaj1H9mPy6WorXtPVV2dwONp39pLD7RCKIkW41rrWhYj/5tM6sot\n", - "4azdi2dWj/at5XuTA3++19dG3yXO/51Vvr2jyd3wGWstqtNyB5GxeuZ0dAeX+oM97ndNNrheLLFf\n", - "63f6oa1qUGZCI0/2/LkmQlnlENE7pTtxT2alzp28x2VGCbsWr7yec6f/fynX5jrcQ5frs7Ct6vzx\n", - "WzmvEeaCQtoODXEQszvn3NU1KCuh4OkLlSCxJRMRO0XmhVwACq+1dmr4vvzNeVwdwAMdKG3nvV1j\n", - "PtXzCpU9ZLLpMBY1UamBZXmj1Ttwb7et0eIp6XaZJxxlKwNPQ4rNeSzFYLapQNKhKkFI0XdJsv1b\n", - "fcZw3wMKFNcnSA9kTgrUnuyXPoqDyh6siaou6iF3SsTz/fDf5/ezKyIiFSNGjBgxYsSIccN4YYhU\n", - "mqZDZ+9grP3Zb359QK623yoH6ActCZo/Pm0x2VFAZ9im7WPZNjl8cCBXZ3O8VTtd4beD7+t7bM+0\n", - "Vi2XhP/RdFWK3IdYHrY1svrAv3Qdd84cgCn6dYLgpFi5JFJfibtTRILo06BPHEXE9j2uJvT4TEVN\n", - "pP5R0vtVbIq1W6KV0SEK1GrtRQlbBb10GMWKCNL2QIWqKc5jYH/AlQiWvcmO1Uo7GEJcrYk7c0gd\n", - "N0SgRJu11F2SePSjleNfL/zK+irxq+rLlVkdpBCn92sRcfZsrqE6RYHkAbFpmBQQBXdqHQERsYiH\n", - "uYqkAL+QMTGuPHI1qgSlQf/kIuJvln6/H330Udh2fGsfxxKrBQjL50uxM4AVwQj9NBfB9Ouv+Xp9\n", - "V9d2rmdz//2FuI2PM2+ncLGRtHacK8XR/mT9NTk8NmH1D3/wQ/9R7Y87duZEnkEAnmSGtMwgbD84\n", - "MgTnI7i3FyIAZ0241craztV8ObL+XCHZIE1ElI1/RxNYgsggWq/gbC331ZOHj4Y/dIa+N4JSpHCx\n", - "XnUqLC5xjjJPEYkFcj25JX3CeVWQ4yuI149eMuTs8ArIldw8tKTQuYNu5600nmgLHeP1Btzgvltk\n", - "4vaebJ9DNfXH2F/ZPXGFZ4HOZ0xo2TTiwE3UeYMkEkEriHRXgmC1GONaL5Gu4GrT0hBNUZiq3bYp\n", - "6HB8oqkbsTVgcowbuIMPmRbnzEU9EZSsBxLVZ/qc8OOoEYQ7h2VFOrAn8v8wGUPrr3JMJImgxDss\n", - "IdKMNQTlWuNvTUpp2GaxRODn2XOsjj/HdGsb3wU0sYeIVa99QjujZvtdRK0buuhsHiNGjBgxYsSI\n", - "8acT8UUqRowYMWLEiBHjhvHifKQSNxC2BmBvyJnhqwrFYdug4DB/qtTStlM6aZ6wRaFACtZ30H07\n", - "KcCd3lL6vWTwj28zYUkevtv6/uBcWYxSBcA7DLeCs4h4WxEWTlqBoAFtbwDdFoLEtrBHH9Rsxv6U\n", - "nuzhaZULZMojtAKPbgAZ17VSe/g3Uch0KOhW2D0UvhRofTyBA7v4LREyV7E9hZ0DUa4jPLwtQA9f\n", - "EyqKLua6D8Ls6lNGprKR8ycsnqQKgYPubRTu9v3zyYUvzPvKwYPw2UG6h/MzaH8MH5e8ML+tPPef\n", - "5+LB1bYQO3dGbbFY8WJxFbat6dUFh+e2E9dtwv6dCaFTXP/J2Kito31P/ZyeWCHjEeirorDjL0C3\n", - "jSt1O/aduzj31Npkz2g00h2VFEM+PrzlnHPu8syKIV9BRN4PxK5+TMznWqDY040roRZXF34/r731\n", - "FeeccwdHt8NnOejuu/fvWZtAez19ZmLn/T1PwdUr87FaQTyulNUIVOliJX5PIex7t2/5MTBfwPdM\n", - "fNTy1PfnxcIow+mBP6/FpV0neuU5oTvXDYvxalYEky3Uldu3ZYb9VlO7hlNcu+nxrbDtOx+955xz\n", - "bil089GBHxONuMhTNqA0yiYYScl8/hyL0otkoEdR7XUn3la4h8pKcAEMhb2xSBWW/vOVqNfzwvt8\n", - "tUJ3tqDWMkzUw+oM/l+VEXTJdgJQKMwr80mHOTbV7zUsUKxzrP97jftVi/xaQWObvNm+AT3V8Vmj\n", - "InZQkNLBCT3LBmIRPguV7qJ/IaUl1il8Pqh1IyUouq3EuEsyoZv5zNIi8Eu2d9t3yvZlry4trqcm\n", - "EzGJp5DvcYypiLxtmQAhzzMWSFbx+o53AI2ISMWIESNGjBgxYtwwXhgi1fb9YFUfXL77bURKhWgB\n", - "Hhjk6YcPt77mBrXj/nghe7JLxMbVmraz33775kp4l3h+4HZOEWNYhenxuX/Ztm1iG1AttUnogzuu\n", - "LOVSCtvFfqHjCgtp0LU4bKdEsGxI0BU819Rg1jxyEt12Q5tmW8TXAJ1KZDUZUJqaFhIqjgQiJaJH\n", - "1ssrREQbCi+qi++aNaxEWEt0TlKC02BJgF3IaTHDfiOoml1/RaTgol3bftcQiI/UuoL7lWvScIUH\n", - "AehGEKE5hNUzcb2m/cHBnlkYjOEG3jSGtNQ4f3F/cO3C76/IzW27L4lI+P/fP7B6eWcnZziWoU9j\n", - "1KtqxEX58sr/fe+eoWn7e17QnVWGJvVQytciFC9x4EuME7pqO+fcBOn0z04NQatG/vjVANWi2NXG\n", - "7uXco0Pj3FzRX3nNt++9H/5R2DabetTl/v2X0F7r69VTb4lweGhia1qYaF23yzP/vdXS2lnivEcz\n", - "u06X5/68c0Ep12skVJTWzjPUzmswXqd7Jo6/RI3Bg0NDhJZA2LTW5RrC4strE2UTYU5lUKS4Zy8u\n", - "DU175cj3BVH6TC1B8NNLSQr59Xe/5Zxz7ry2RAmUv3TT3IT1HeCctdQk7IBSNjJPs3Ykk2205luB\n", - "Z0EtqEoNdKaUpJQRHm2ziV2n5RJC9Wt9TkCUr6nutM5gwsqgOgTuV7FfCck20qZgE1CLABzH0qIX\n", - "NWw/ekHE6PK9gnWFoiGh1Kk+J2gXIIlVRBiHT7xtUXZ47skxOAcVghxR5M35tJcKGD3Oq1cLAcyk\n", - "ihJWIySqyPOE8yjdxJ2z+6Nv5B5Ph0kxGhugrqVYsoxGo63vhdtD3zFoU6QO9HgmbSShYyEI8K6I\n", - "iFSMGDFixIgRI8YNI75IxYgRI0aMGDFi3DBeGLX3vHSLaGMmVEjb03diWxyswlI6m/aCmZqzuAh7\n", - "6e0UCh9v+y5l2bbAbCjOC5xh2Mb9qe+Gusza/oa/HMj70F4VlhMeVRfxpASMKj+nbIwAACAASURB\n", - "VJAxmc+Bj0a77fdEzxaeT73Ryw8qSJxoCYGqEyyhVXWdpbO7OpvndKDulO7yFIQYULtqRB8pwqkq\n", - "oiQ9qVAw2jw00tralqHgbmsMVBCxNmuliofjKZc+XAffFRl/HYWlKqL3bdrs2X6XY9AiMnbpfdVu\n", - "bFuOIrTGCip0ve2Ovn/saSZNCqCPjF5/FjLerI3aoX+WClAVDnfOub6xY92/9/Lgd74tEBuLA/jR\n", - "oacDHz36OGwjLP7n/vzPhG3nF74tqyujkeZLTzcegFLsSrmH8OfxsVFrZ8+8V1UjfcjTVrov6HPV\n", - "gwx/X14atXj3rR9zzjk3QTHmVCi7Db2ABv40BdptNF4HCmbvwOi2DS725akdq8NgXIgr+/7UC9m7\n", - "HYkqd+74/WmR2dmev651o8WtT5xzzj14xahVFpDWAsm8/+dXNiZmcFYfj6zfry/89Zkde1pSacQp\n", - "uvO751a0+v2lTzLoR3YO09ZTm/XaKJEM1ycR+pbcc6rFzSFkZq+r2DxDZkch36ZjfCZsTo7+LMf2\n", - "2+mB//typeJt/mV9XEMgXuDeSOSerMEBKrUbBpvQc6SbXC/yCVJvqkqABGAjbvdB+ZFsP//yvEBr\n", - "5ZmAZ00vO2ayUauVLbBNC7OHosEyxlskt5Tin1aOSrRl+/s5qFitIjFDIe9qrHOSP7HRSJ/J/nzk\n", - "0eHGU9+3Su3xGdTsmOt4nZTOY+JZN6iUwjlZfQkpit/2iizFvmssCRe7IiJSMWLEiBEjRowYN4wX\n", - "V2uv7bRcTkB6WkFyglPsQIA9tBBwTrRjosAzB1b5Xj9Ekwa1gUINOW0U3n5lJyYAV3fubUhkV00+\n", - "07jxD0nXTLbbFIR4svwK9fnkTZtohpZLIjqWy4o0OMpyVdHqKgxIizosMw241NX/tmCfmwYgXHjD\n", - "1zRVOCvLapqrTYoYtYbaEgK/VvKPrQ6XJiqED+1YRAllNVuvuEqTZqbDeoaars7VzEBEGlJo7Xsb\n", - "FLZbzeV6jrBKlvGUYXwmrV1QXrMRbAKO980degIn8FSVsBgf2ic97RFknBIl7eVk6ZA9FZuEzpa/\n", - "zjlZNfsjO+ecOzowsXON4xalrVbXQKzu3n81bHv8yCNHTx5/Grbdvu2dys8ey7VjO8P1tPFCZ2E9\n", - "V46Tr/7Y18O26zXrL9q4ov3CvZfvhG0lEJFUHIuPjr3dQVZCxC5j/TyFi7igdEUJBPFSXOxnHtWp\n", - "Rtav8xMvvC5LXSWjz2TsXkJYro76U+zv5MLXMJxMLAFgfe2tENLO+unolkeOJvt2/ORTqpLDJnd5\n", - "6dvUi7N93fj25WtJgMD9WcGKomQtPedcBvfq6xO7rsvNAqclyDVQnEbcqUPdQ0F4+b1B+j0TOjih\n", - "CNLBemm5jNMC92kp91qRo9Zg0clvccxc7A9KtlPd032bMwjKtTpCjnZ28qzh3K02MeFWVOQYCTiK\n", - "iDcr1F9U2xX2HUTfea5CaP93Kg/PlhC/JuqwUoPa76Q75k7Op3I+IySUKBNR4L4gEKcWNiR98lL7\n", - "H5/lBuuUSGwRXXdAhwY2Nei8Vp+nGFv5c6ySc86VWYl9ybluE0eBJcoK22812hbl83t5ouf/2a9K\n", - "EZGKESNGjBgxYsS4YcQXqRgxYsSIESNGjBvGi3M2d8lQMBvcvrcdXgcFctNt3wvSLAMBO+FYPUhP\n", - "v40dXlBkzHaYk6t3Bdukzq72220XVaXqWlOFo2nqmUXYWyBjCjHzbbolSVRY6P/txMeoIgQu0HaA\n", - "NElPiWRzAz+TXMT5DkWDlW41sbV9LZy30KiEp9XHiLRMI8LKNeiYBJ9pQd3l2v+dijqdDrupFvls\n", - "6eOliQL+30boyx4CZT2f4FsVRJTqoox+En8eY/TEd+XKt2U52i7GmfVKLYCC0KLN6O8EyQNVavRM\n", - "iWLBeW+C3Q1otFzAaMLOtYho6U6tQvFwnwi0P4PPEe+JRMTZLLzbbuyavPTK6/4zEXbSAfhIROE1\n", - "oPd3v/9u2HZ5ucR+7Ri8/kskIhxIQd8WClT1PWowZq+W5phNsbEWDa9APZLOcs65HBTAKy+/Hrbt\n", - "HXnaLAdlt1jYfq+W/rdVZtTm1ZX31jo6MrrNZf6aLa/tWNOZ75/LKxOlcyra1HY9R1OKeEVYCzqs\n", - "LEqcn4zXULTd7qHx1FOBWvB5Dpfz62s5PvyWJjPx9kKf1Uu7x8agCOfn/lynB+YjVqKywKN3fyNs\n", - "y8nj9DL/cXJtdZ7GR4P5nHO8k22Yp/shneOccwXvT5n/+PDQ+ZxzRiIJSEFYndq5Ntyf0JJkcmsW\n", - "vpVnCIu7t+pYzudDP3gC4UNxQMf8rBUgOD1kO5KXrL80AYjeVvb9PBSDl++RqtP5DM7zg0dcSlG+\n", - "UfXTib/+MhU4FFRwJWjRQrygmKCU5ZLYwMoOOyqLDAKyBD1Hzucbnbu0gLJzAy5ug2dnKYlSlFQ0\n", - "UvCZYnNNBGuDQF+T3PjcE0lB/tmYU0SkYsSIESNGjBgxbhgvDJHq+mSAyDDVX5EOIkEDE3O+kWfb\n", - "wlpdETCdvu0VOXpObD7Q8G4LwCm2Gwrh+C0Vhbut7/F/ugF0w4+AqjldLfl2UujnT6cdfOaciLJF\n", - "bMeFQC3HoqCyqGTlUgydbdeNrWoTpO7qqj5Ltx3b+5b7EMEoUR1B7tjvmaTQ0hV7LV0yn3skot1A\n", - "YCgriAYp9GmhfQjBpoiouzV9DRQ5xKZOxfMUj6oAFihNBYGhKBZTCFFXKxGx8xiyBGmABK1t8R9q\n", - "QaaCXDYV+lgEmEf7PrX81bH/98GhiaM7pI53khtMi4nZgTlhs4ZiIUvINb6XySqNyFVZ2DXhMOJ4\n", - "ykRYX448EpPvW/25NUSspaAP1ys/jpYPTYD8ysteeF5VJlT+9h++7Zxz7vDAxjhHG8eJitiZaj5A\n", - "3+A8fnDbUvKfPPS2C4ulIWcjCMvv3LofthHtPJR0fg5t9muRGTJUlP78NTV/Aqf0UhCka6AU1chS\n", - "pB998gm22bkugaIlkqaesZ5ia2Oirv1AWq58e8vK9kvn9enUrv9m5cX2dWvnf3HuLRF6WVWv5n6/\n", - "ubjN55hb9PhZBiQUyQnZyI6V0PleUv3nQNgU/aRDfaO13uj2LW0KlQXkGjcUdNP+pVZUA7Umexsn\n", - "RB8yTf9Xj5Xw4+05nvroRpiADGgyE0taQZVazImpoNTUqav9TeZ8+1Ybmbs4d7aKSA1rjTpnz6UJ\n", - "0vpzQXrCM0uraITmiWAcSQ4bsZoYwWpGH7IZnMdHExunk5L1PCV5oCDqR0setaQB+yDP36ShdYvU\n", - "VcX4aKR6g0OVBa1eEZ478ixgv/eBEZE+xLuAAqJ5T5se2UfP66oVOGC10Ctyv83EJF1EpGLEiBEj\n", - "RowYMf5UIr5IxYgRI0aMGDFi3DBeoI9UHwTGzpnbtnqRMNTHR4Wyti3Z+ozwae+2hXqEJZUeo7Op\n", - "ejaxeKZSQdxvKxRYE2BBETvjGFpcklReS7pHPqNz7EREf0nqofpaCgmzy9RHhN4/ev4JhOKlUHtk\n", - "LTpAzMuFmmz5E9fCzh36LpN+oqPyrFC4He6wSu3hJ6WIEovCw7jjymDkzdo7MC+vPD3QbAT2JY0r\n", - "vi+kgxUeZveTHsRW/496i9CzZlC0Em3D/04mQlnS9kdoZAqrV9fizpzQW0gEo3RFF01stY8xKc6+\n", - "y8TTPUeHb/r9N3asxdI7TNcLc8eeTjxVtl7a8Q/2PT10dnIatrX0kZHxPyKlI9eYruwU9tZr80da\n", - "rvw1ORTfqaNjT+1cnp2EbU8eeRrr9ORx2PZdePC89oUfD9u++KUvOuec+0e/8oth2099/RvOOed6\n", - "0GepHItO+OqYX4389xZLE2zfPvZ06MOP3w/bZjNPh1WV7s+Lscd7IpTHfb/GuVa5fuZ/2wm1PoYY\n", - "XinrezNPfX30/vfDtr2p38/p6bOwrQHdfbRvQnUKagtxdGebVvBR64TGGoOyrMWyfzLyY2JzIZ49\n", - "oHkv5PikOxPx0bq69ILyBw/Mv4xu6PdfYvHiWj7z7awK69fLS9+vq5VRiwv83Qq11KzhWJ4o7Yax\n", - "KPdYA1qOY1jnH4ekAJVl5LgntVIFP+9l+meiysDvyW0n/gRvM0gWapnrC0pGhNqjpKRXF+2WB1Zv\n", - "KT477KeUanRaSB3HrUDPJYOi0f57Ta8JOBCMS4HgPKUXkjST4v2RjScWZna5PgtY8FxobhZwhn28\n", - "7tcSxVRGARpNijtzXFepUpWYk4U647Mtlcl7qdUo3JCKTiDHWIm3GBNaErf9TFAB+grPGxXFF0ie\n", - "0CQPpWN3RUSkYsSIESNGjBgxbhgv0P5g+AZr4rVtYXEyeKveYR2wY39cHSSiQGMtviBUE4EhUY+R\n", - "IBI5LFibxo5lzte6gkQKp6BpJp4XlCLUzsNbuPR+iZpEebm9+p7b4tu1WB0msiIpKtokDDwJfCur\n", - "bfE80/rTwlYcNYTdvdSGYq3DfFDrjuegYsdtG98SK8eR1HWi2FyNuuvOp1Yvln5Vu9HlGrouL0VY\n", - "iFVtKfa4G6xgFU0L6cyagBAM6GUbmjfe839MDmT1h1XyeG8vbLt8ChG/WEes5v6atGI/UMA6QJX1\n", - "LWwSchGFvzrzlgEZVmSLjSENvCUquU4UnqrVxtPHvu5ZIcLyuoZQX0ShXNkWY/vtGlYURBWL3JCG\n", - "DRCRS2eoxnvv/JFzzrmTZ4ZIffTRQ/+9hdVwy3E+73xgAvSf/Tf/onPOuS998SfDtg8e+n2/9upX\n", - "fHvkZq+Qhz6qbAW9gIv5wcyuyekjf/zjY7MpSEKyh12T27e9aH65sj5mKvp43yNY19ci7Meqermw\n", - "LIISiNTt25YUsAHSdSj1uD555uvPjUfW1+OZb1+W2vkUQDbm0ndVwbR/oHSC9HabbWf9pfO/PT85\n", - "C9syIMGHt62fJmN//KuFIUd37nrhvd53B3seYasmftytL+1al3d9EsGHH38Sti1Qu/B6Lo7pQKQ2\n", - "0td0L8+VdcDqv0uk2kHPihKsdqDXBEk5gmp0mAvTROduCOUHNdkgFB9LZQHMidkO2x2quHtBOnqK\n", - "mLWGaUJxsiDnHe5ZqdTQ4bdqp0ObBk1KoRNAeHaktl9e9lwhIfTrwIk8Rw3TQhOVUCljKlUJMN+s\n", - "ekHYgabVYlNTovLCCPODojXMWGnVbR33riav8FrXglJmZBikn1Zrf/zF0s7n7Noj97Q92qxtrPFB\n", - "MRDAA6VSoT6d9dWFocJzqhrbHFsWrDJike1gyjQiIhUjRowYMWLEiHHDeKGGnIrWkMtUrpIIQyIp\n", - "6Ynlf8pv8X1Ff8BpDszfSJgTmRKzNqYuj6Radah1JzTrKuiKZEWCFUYvKBENvDpZ6WWhnh4N54yr\n", - "HUNTUU5E54Bq6uuBHqgZnINzVs07K+TtH0hcqmZyKXUzeDPXOnxAOAZcPc80UVSH2jNbQbDfE1lp\n", - "TSZY1Uo6+QS6lVyQkwqrlPXKr+qfnth+F1jhZmJ02cISopDVZzmDRmupOguajsr1J0onx0+Q6ju5\n", - "jZXJvhgdVv4cmo0da1NhXLntlY6unPegIcnEfLLAOD6emkZmL/coQQndymJjqEK+8td9XJhuh2Nt\n", - "PjfjyA6rynojyCnaMh6bwWWw7pBhworptFhYSh+usCJdiD7hYunP4YcPDaX57rteyzVfmiEkD/Hy\n", - "wvrk6h//qnPOub/21/5K2PaDH37gv/eqP69nT+3834DFweXCth1N94cn45xLgb5sNnbtDlEfsBRE\n", - "lPX89o4NTTrY9/3TApE7Ee3XhmaVAnRWE1p42Hmt1/5anD0xjdgMppaljP8N9ZWKnGBFnG8Mdiaa\n", - "WcNqY724DJ/xttfVdw1ErBor+kXd3LYOsm1FcwdrC1UtjWGtsKLObqMWMr6Pi5Eil/74iytDlbql\n", - "/1uvSdDwVNYnRFN0jqceJUGreqlrugE61Ij2Mu05n1Wyja6aar4L5EbQHP6tfo/m7DBkEJwzCwdl\n", - "P4hcZTKf1sF+Yds4We00+CxQ2oVIZJLxWHYoF0wlbRObpxrZYHsjWq4R0FEBuF3N+nMyAFjjVscY\n", - "rQDYTDU/roG613KjNLCkye2SONf5MTEZ6xzj5xFF/a6BSJ2f23Pv7KoetE1ZqiLFs1OQ/gWsY2iq\n", - "65xZ4ehzt8L8TxTWOedG0ClnMsay9LNflSIiFSNGjBgxYsSIccOIL1IxYsSIESNGjBg3jBdK7Q0C\n", - "qKCmpiafre+yn9LtVL5P4aGKMk0MDTGniPOYpj+eSJegAa3Ui6Kjdrc2LLQEFN804tgb6h8pteT/\n", - "ZcqpsAOunCKFdSSU1QjizJXUdQMqqW/AKbhH0V+bi7qI5DrUmCpYw0/E9kzxzgRGtzpNQvehe1Kp\n", - "4UcB/qCuHvp2KnW9KDYflYYt7009tVJ3EKdKXblV72HfRCwcClA1SSqQOZHasUDREFYrjRJSh4Vu\n", - "HYEWHB/7zw6ORAgMenR5pZA5KUOLHND23sRqko1BfZSlCZBb4OdPTow+6pkmjvT7XETMd+EsrnWm\n", - "lqBA59cmTm5B7fSC9x8eHuP7kqkAWma0tv3R7T4DBp8Ljdg1vu0fPTIq6A9QO280M8fyN/6ctzi4\n", - "uDK68cNP3nfOOffJufXU4ycQKBe/GrZ97Se+7JsGgWc1tv1uMMqXS6OMboGyyoTaZ/r7bKI15HAo\n", - "4TFS0KxHh1ITEDB/j2udy/W6vPB2EnSJds65EhIAdYxOIRk4vGUWAh2udSLC8hJU4fza+mkN0exU\n", - "XNGZFdFi/Ks7+br210KdoEdwHk+UWkJ9xMMD689nT/w2WkP48/dtun3H3N5LOPAHcbKI/euVP/57\n", - "H74Ttq2uUW3g2gTArN3YKrVWBv8VO1fMhbnaUjtQxOiHRKi4NRNLxNeAt3Mi8zlr1w2sS/CTQuwf\n", - "6IqdlpqAQldufEeF6KDKVNhOek7PNWlZqcHOivtTuQVF21rLjVKNoDWX5xqp/VYkGJSP1FKpgp9W\n", - "Qk/xgaO15grWP5XahaQI1X6AyV20mKFzu3POZTh+IzRii7bUcv5JENbL/IvLvpGO4l40eYsVN7qO\n", - "VjsitwD13IqzPqUXs8LGP+teLiTZooFUo2vsnqwWfr7RGp9Z9tmYU0SkYsSIESNGjBgxbhgvEJHq\n", - "naJS3Y6q1sHgTFYEthJQQ0jsQw20+FMVpVPX11NgKIjUyL+F5iIO5gKvEURqibpPSStiRyIyWn0b\n", - "qtBU01Sxwluv/ZtzroJ1pKmqwM2hJls+ln6as/6YrPRyih21T/CmLSuNDMJurkJGIk6lwDPUrbNT\n", - "GNTQS8vtWoeUqjZS1b7pPHKgwvIRTEfHUrurgNj2LiqTX6xMWHvpPsW5yvGxgi5ECNlBqFiqdUVF\n", - "EbsgnLigjRicZhP/+eTQ991IUK0Ey6lQ3d45l+PzVsT+Jf6c7ttKfzrxSNtIUIKs8Oddyzi5deyR\n", - "gOO9W9ivfX+DFW6WSro+6sWxbpxzYpgo438DRGK+tP6sgWbMUmtnQvE+xv1s//Xw2d0HHi363vvf\n", - "tnOdepTsDmrpOefcrVu+7V/66p8P2/7u//x3nXPOXZ9qmrzv49/7zrth21tffsu3A8jZj3/FDDwf\n", - "P/vIn7+guh3HvaC/RGfa2q7JnZe8oD+XuoIUNGul+XLPo1jtCihFLqgK0FkaUzrn3HzljzE9MBH/\n", - "Civio9fesm2XMEeVVXULOHklK+Iyx/kInF5gzBwd+ntI7RcyJpaI/QbH53RqiFwGePr9j56EbRSj\n", - "N1KTcg/mpNOJ7Y9jYgK4oBcLh/On/rxOzq1NNPVcX8tcg7ltb89QWp6P1j9dpdiP3s8UVDsm8dj4\n", - "p/tj24txak+rC2UY/L+5JIqQndApuWYmkYq9iUhxPtWkqFD3T55TZFPUEaBmXUF5ToSfiJkkkHW1\n", - "86FlB617VBzPR6KyNcGeR4T9TDyppmr06ce4ItzBzFqmc9akc/I8STu0pQYiJIjcCH2hdU057y9W\n", - "dq1rJK00lVgtEAFPFf3xn2fSx82aCLyfu/pGLCyQjJWW0tdMPBDq4PaxT6yYTm1MnuI+vb6WOpFI\n", - "slBzbjWW3hURkYoRI0aMGDFixLhhxBepGDFixIgRI0aMG8YLo/aStAnup86JV4eKs4O3lPwO/zMQ\n", - "APbd1jZCr4lAhhSlc1NZ2ulTRJxXUq8HNdFacTZfziliFhgT+2mFRmx7wsPiQYLdFMAMm0HNKQ8t\n", - "ZiKEpGfWWOrvbSBAbzcK9/Y4h+1tFMI7Z7Xjsp4u7nZ0MlCrC/XxAmUm/hzsMxV7sz7efG2CvSz1\n", - "MP5mpu64vgGF1JqrQFUQbr0lHj9n649wrkJjQcSaVQqZo07hnjirT+G3tBRRIuuajdXcBO0Ye/qg\n", - "F3d4ihdzETFXgKpruf5jiGjl0rm9fQ9ZT0ZGQfTA9s/mRrctGw9ZNx0dxoWeybeTGJpA99l5reDf\n", - "kopg9wJ0S9sZLbJBgsRqYTX5JqB2DkFFvvzmV8NnV4mn7M6FMji46+Hxd7//YdhWTrx4+7XPvRy2\n", - "vfPB+/5Y1+bj8o0f99TXD77znbDt44+98P4bL33OOWc12pxzbm/qx9B6bj5SHJPLldTLAi14JM7m\n", - "7J/J2Ghkh2ub79u2NSkiXLtKXJ9/7Me/7pxz7urc+uvy0l+7qzM7r8me//HVk0dhG6naTtz2i6nv\n", - "//tyP83RP9cLEaDDF4yXWIW1yQb+PDM7h8meF9SOJ3ZDV3Ci/vxbRkF+/AHaJ/Pu4aH/nOPPOeeS\n", - "jokvSA45MHH+2//yN5xzzj1+ZI71I+e/17bizo56blOpyTfKfZuYdOKcc+c1+s5JAgboMyoq1LOt\n", - "JO2mPkLZNmWXIismFxPADL5MuXqL4fM825ZlBBdxlZHwd5LEFMpjyvF7CvXVRpvPpEFVDiQlDWqC\n", - "Qr4QHO5lTmpYG07qZYKqbqTWaMP6q2qQlSCxYiD2p3+gtB3Cb33G1UhUYdNHIsQucV33pIZqj6SE\n", - "pTNvuQYdVYsofA35Sie+hDXGXyc4TwYPxOtrv7/M2bia4l6YVnZPkKrUmpD0+bonc/Irxw+cc859\n", - "+uxh2Ha6usD3RVKyo8avRkSkYsSIESNGjBgxbhgvDJHa2x+7K6lWHl7q1UWb6jwt9R2cTVXsx1o7\n", - "stKg2Lzb8VuKTgV9oHVAVuo2pFxqCTuuakv1GuCH9mfK1Ye8yYaUXH6vtvYyvbIQURurtGvqJZGz\n", - "VgrWccWSSp0+O76gNNhfSdsDreGEQ+S1nUQHJK6Q1GAu5tLBdcKKSGoznZ96EemtQxFKQzSaZbZK\n", - "4NJyRLuAkTihj/1KZ5UYSsFrl4tjdFUSYZN6SRDWFhNDGJYLiBgrO35C8TqQyFzUibw8tTjLN1jV\n", - "doWdKxEucXVwsz3f9kLGJH+7L+cf6uNx9anoK+wM6rX1IdPaKVx2zrkcKf6KXK1QoLEUxWRVesSm\n", - "baV23NijPscPPueccy6d3Q6fnXzs0Ze1rCDvwfbg48cfhG3/4n/5Peecc//rL/5y2HZ14VGkjdQO\n", - "PL30q8lXP/flsO0Rxskadg6KqtQr38dPRWz94JY/fqLuxJnfpoLQCdzjNxtDenKca1qYszwTGdjO\n", - "Bw8MVfv2b3r05f333gvbFkDHFpeyX6xcj24Z+vPFH/No1t27ZokQKgmMbIxVrV9FL9e2cqfKlfdu\n", - "KqvqFsiAuvPT4iGRdfGKqJbcp6+9cc8f69qSQurGjydNAOk4Z6C9SWN9/fEjf92/8tobtu3K7+MP\n", - "z98O26aV7+tSYNoK98JYkjdWEA+vGkGzAJ13SGIZIE24P1uxMGHtSnW6CUlGA5QI85mMkx5oTiY1\n", - "2bgjHitRACfkP+1gP+RgoT6i3s/cnyBSRJP0e7SOSGFXo8wJheJrQYkpsm/l/t8wJ0NtBWgnoc+z\n", - "3o+tZmMnuZz7sdNIlYODAz8+8nJ7rLFentpUjMi6lDZOVyFRQGwaIMbvhZ3hvJdqpyDJpAmVPQSl\n", - "TPivHWsKd/4iM/SpgsVLNqi1isSO18wm4cNTz4ScXlulgmqbxBhERKRixIgRI0aMGDFuGPFFKkaM\n", - "GDFixIgR44bxwqi98bh0fW/vcXO44qo4nF5ISuM1PZ1V1TF8W4DuQuHF7WMTxVXKiseiINE557KC\n", - "/iRK90EcKD1XAu7sBUZdr4eCUW0f3dvHQvGwkHBeDHBsHEs8TiAe78WfI6MruRQtprdOKn5PJSDz\n", - "0Rius4KFp4Dgu95otLRDkWGh0XJ0XiYUWIvr2IiI9erUi0fv3bkXttHTaAJ3an9yLODsz6ESIfoY\n", - "VEzdmbB3BMF6Is7GxP6nM3GRHnlouRQXb4r808zoow28lVjcNhMaLwF9shYfmxzUo3pbFfAvUbE5\n", - "P82G1TX9uQoEzWKh69b3+0qowDVuz24lPjpMrBgU4/b/dq3C/f576gpew4379ZdN0P8SRN4UmXfi\n", - "BH52+sw559zRLXO9XkBkvRLKroXr8MlTEyBz3P+tf//nw7b/6r/8T51zzv2d/+bvhG2PTj1VxILX\n", - "aa9eRNiXFuOu4Xcl1/oaxU3VsTiHP9ieiMcTFtIWATodqCnUfe+d74bPvvVtL4rPE6PnPnrC4s42\n", - "Tg4grN6IB9vZs//bOefcT//cT4Ztn3/jK/4UJCnAisGqKzTuZ2ybTo12WJSeAtNizLwX1+Jin+M+\n", - "KoXGDuLpQ7v/wjwlEoQa12B25BNAuoXdf7cPfVsqccC/uPZeVUd7Jvbv4emV5+rL549Rit9PhXm8\n", - "sErBboIitF2yxrHCR66pPQXatiLj4Jws3lp0D0+c8n2oKCH3M/s4k2cRHb1ZKWBYnQLjRYrsUr6R\n", - "y+M0DXO3UPBUqkiTgvRCxkSN42aQkRTSXxuUcdDH2roFFSfnWoMCa1vpf5xHXkoD4EAujz3XQd5x\n", - "Lff4bOZpa1J66SADjMWAbb8VKL1EqLV66cduL3Os4zVTX8bAPUoyFn4TClpLBY4SIvrEWXt7JECQ\n", - "knROaEyhQCtM2vrmcP/YP7MqmXfmqxP3WRERqRgxYsSIESNGjBvGC0OkmXyBIgAAIABJREFUyqoY\n", - "OEYTOZkvJA0XK/de3xf5JqyvkNyHuuOGumPibM20Uoj3ckVwsMIboAp4Te+lrtwYIua+FrF3zpR8\n", - "e0vmKqKT+mds3wJivk5qE2WhXp44DIf3XBGnApFayiqNtb5UbE+BouwuoE0d2pHKqjbnW71AbRXq\n", - "hCWCvmShhqCdF1e1raTfLrGIPTu1Om23r/xKeLZnK+cUQvI2ZBtorUW4SEv9s6IhwiDWFUBRJiLK\n", - "HMGpeS0rwmRNp+SwyXWsu0iUSAT4RCk1/dylqFcn1hFJSbd12+YwtrT+GesTlpI6fAyX8QwrrbnU\n", - "y5pghdWKsDqBAJtiSuecayAGbxpre9dv3yAPXnkJ5yUO0GOKSCHw1SSCsKq3bVe4Py8vTBzsEt/X\n", - "ej9xNf/eBx+FbV94601/zncNpTx7/L5zzmw/FBlIkAGSy5ioeS/IuVJsPx4b+nJw5EXz7cqE6rOR\n", - "F5l3E0N4uoVHSSskj7zz3ffDZx8+8cc670x0enTb73dyx4TlFxBbPz43AfqruD7ff9tsIqqRtxHY\n", - "37Nrt8F5VDKg2NtEq9Yyh8xgU1FLrb8FkN69PRPRZyknsm2EX5MXKtwzG1mlHx75dlZILHgkSOMf\n", - "/NCjdD/4+P2wrcCxDqd2/LOrU+xfEWH/dyHbKtx3lSAnayLbnNcEQCkTIBzqbM96fYKqFUDORzL/\n", - "jTGfJ87mnxa2M4X0MbuM87UyHZyntP4q0UEFaeiKXgnrkcEyRmtiEgnVpKScoviMtiaCiKMzarkn\n", - "aIniBOmmK7rOCbQQEGN117F2obokoC1ZIok6S1SAoJ2OtLdzZIlkW8prYg/UWe7HfSvJQz1Qx1TQ\n", - "px53QCnPs9nEn+PVlf93LElhLoN1jXyf2vlNa+jrIWqhNkt5yKd87tq2ae/Pux3ZPNF2UrN0R0RE\n", - "KkaMGDFixIgR44YRX6RixIgRI0aMGDFuGC+M2iuqbOD6WlSE5QweXy4JXyvdsE3tUQyoYjd+LZV3\n", - "RdJteyhUWowMMqXYcmhECyqmEn+iyh94I6JwFrkshKoko5MItEmKhNSK2LMEGrFQLi6hP4gIGynA\n", - "F7dbCq9TcWIdT0c4Z6MAWjrW4vtFZtBtAW+bQuk++o50QqMBlm9F2NyAjmrX0v+gaBbXBuOeo9Dp\n", - "dCricfhHbRp/LepWYOycAnCjPSjyThMREaKzpenBMb2VMZGhH+tW6V7C/XTHVzdduiiLOzW6IpXr\n", - "T7FrLoJZFzzKNCmAIlL7XouBXOG6j2sRzK7p2GxtanGNVURe5qQR5DrlM5yDbVssvFD34LZRMNOp\n", - "H5+jsf9+Lxj/wYHv9/O3zYl9Hw70I/HduUIfqzsyPeDe/cN/Fbb98i/9ij+GeABdwe9qChdzdYwm\n", - "FXR0YO0NInvp69XK04wH9+6HbUykUFoygx9TIjA+uZqHH3r67qMnRllegdq+84bt1218P/3u278W\n", - "Nr1239N9n/+GFVx+53d/3znn3EuvGI355Ikf93qPVxhQ66XdTxkE2jkoszRVesj/q5IB0jPqI1Tk\n", - "/v5XLx4yVFrtYAM/oolQxSw03IOy/Z3f/q3w2Ydn3gF6X4pBj+DjlQhl3cBRv5Hi2rzsfScFl3EZ\n", - "KxElp4kfpyMKtmWuYRJNplQY2pkpZY32Hci1pn/URoqAny5B/QrdSSF5jvtK3elp7a0F6rOOlKWI\n", - "6NHFlQi7ecs04gFF+/ZmrfMEEnog+k/lYZcGwbj14RiSkqa1Y/XwalIfQXo1NSLUp2wjlXmCkhuK\n", - "s51zboPi7/Olb1NV6QMY7ZZ7Nwf11kkh8QrHSMdWNDitLra+xwoUej1HGAxTVKyYyPwznvi/S6l2\n", - "wXn9/Npo6QoSkUmhugz8RqbuEfqzbmxMrvLPNpKKiFSMGDFixIgRI8YN44UhUqMqc6W8GU4TprDa\n", - "u90pXY8l1T+sxNSxtu+f32TiPRFFj+BAPZ36z8bTmfwAQkBJobQdiosy1IubSt6+WetJROlpvy3U\n", - "rVCTiCL6dWqrtcnMv6XnuSBIITXampRj1acC6D44kIvbK16mM4FpaC1R4N9a3GyDK7isVhquEiQl\n", - "nYid/pYr4dVGbCJY929j7by+8OjD1b6hjszJXm38Z2uxX2BqelFKvSQINjtJl82A+qWyrEiBJmRS\n", - "E7Dv5/itIEwlxNb4aSfu7BnEzoUggpvSt3Mk6d8pEIRuY6vEHrWjZOEahPq9oIlERBIIbCeS1kt0\n", - "MBOkYUlXfkEkFnPeJzZORxAlqyh+f4rzEYuJZ4+fOuece+1Lfn+blQ22B7e9TcLTJ0/Dtte/8Q3n\n", - "nHNvvvlK2Pbo172jdTG168QEhNffNETm13/tV51zzr3z/e+HbUGgCiSsFHXwEoLlzhlaQiAkE+SM\n", - "SLAsyN3xvr+fahlq2b7vk1atQzBO3vuhR1p+4w/eCZ998Rvenfy/+M/+dtj2D//3f+Gcc+6jf/4r\n", - "Ydsffvt7zjnn/oYgTV/75k8555z7g++YncKXv/o155y53jvn3OrK179rBJ4m2pcBfVmuzPU8H7Pa\n", - "gaKPfiz2krzSAf6ppFLABinx6go/BiI8k4FSYV5c4Bo+PLeEAaaaH4slxtmV39ZKpYgpLE6uGxPq\n", - "M02/FoQ7ATo0EqEwqwEQnUylZEBdewSjSg2lHAMtyAV9SiDU3htJFQGwHmlpNg3HG//3k1Or53h9\n", - "DUf/1t/rqaDUFawZyrHWRPV/q3ULmYBCkbMMSSFilZ5Q2LxR1IkWA2Qf7Psl5qtE2IwEqHIt9hs9\n", - "hmIq6BtRorYRm4AO7IzMZyOMhcxJ8gJYlwb2C3NFUDGvpDLX0JV+YDEEhC+RQolkHVqZ91oicYrm\n", - "oczEZOSPq4hYVtI6SK0uyD4Ywvzhkx8455z7/P0fs3PNmWwhlQUS3juCHMtzcVdERCpGjBgxYsSI\n", - "EeOGEV+kYsSIESNGjBgxbhgvjtobl25UqRCQhV/FiRi02Om5iZOvL+l3pO+AffhF2AJYuBJRXjWi\n", - "Z4SHB7VAbgZ6Ls2EdnH055DCvyN6UOn3II7LVexGUaz6k8CDCMK5TOBUsgK63xywrzprU+St3k70\n", - "8ciFWqCPUpqJPwf9UfBT9c7IE0DgudCTCR1+VZztz7UWKiLof1WUCSg0EWF1A/i6XonfFDxFNhCl\n", - "bsTjhSLbTGBfQsFrKdpcVYCitZB1DXhcHIMTuKfnqZLA/hqPQI/UQo+0DdsufQKxdyl0I8euOlZ3\n", - "4Jlyqc+cFv74nRTtLEhBAovvRLC/AT2jLvIs2tkJ3VfjWLMDoyyaQF9qcW3fvusr6+Nk6s/3t3/j\n", - "nznnnHvjrb8QPpuN/bn+3E8YFP7+U0+Bvf66UXtXl358fnpiws4H999yzjn3F75pzt6fPvRU3ZNH\n", - "j8K2n/6q95ZySIRI1J8HsPvKKRUAIayIg+k3UwqNQ+qrFVE0650WuRZo9eP4vY+9O/crn7eCyg8/\n", - "8ZTWf/63fyFs+/ihP8eTxybAX117WuD3fvfbYVsFJ+hjKdC8yeBj04iwl0kxItTtQL20ECCPZU4c\n", - "w5394sKoKPoYNZ2Nq5S1XZdCLYEC7Xu77ylkToWqKm77ws310vOit4/N2f3hqb/+Uls6eFatpJB2\n", - "gUSFbmnXJGeh78TGH72SnNBiZY1rDGlDLvRQBRptnNm4ZmHuiST7cP6rxNwtm/h7PB+ZpGO09n1b\n", - "je2ETs+8eP78wlPaA8qcxxLH+LLw12Sk5zCGsFu4ZfpXCbPlWriHcx5wzrmWjuqsWCBZHDmSksby\n", - "7Mgg3m/FRX6NuThLZa7ZwU5RllGOtFICimbLOGHVCLK3q8YkGGvcu6ulULsTyEiEbsvgmJ4KBZyH\n", - "Yu2SgANarhO6FzXl3f4hqG3JCuPtkWf67MJG4fvXoLSfXX0Str18C0XKE3nGIlEilWfheCIJKjsi\n", - "IlIxYsSIESNGjBg3jBeGSE0mo7CScM5WnyNNTU4gGJWU+BourquFrcitTtS2m3M1EqHgmHYGeAuW\n", - "t+UCb58bQVXCC3Gib7oQ0Qn6Q/fYRN6I+YZd17aayWg3ACF6IQjKBG/wWWrfT7GPpNfUYPybijgO\n", - "SxwV6jPVV12sua7hy/xoJCmdPQXr1v+s3aTi6BorEUWkuGDqBE2g83QmLsYzOpQLmrReQKiKlWkj\n", - "9QonM6BEA1sL1J/TellAH9TZPkv8SkxTh0sgERsRj6eoycTkAEW/aE2QOFmt4+9xaY65Ge0HnF2n\n", - "bsPajepe79vXdoowQYALCwlFCzrWsFrbCr5eMa3Z9kuXc01AmOLaFpmiHxCv9yJeh7M3x+TpyUPb\n", - "x8zv96/+RUOV/oe//w+cc87dv2+WAF/98S8555z7Uve5sO1zr73hnHPu08fW9j9824vMU2er2Z/6\n", - "hhdgNxB7zq/MiXyzgut4ZWOI91Ou/QqUcCrJI3Q53khiwajy56N1Kt/7nheg/l//3Avhv/zNn7Xj\n", - "ow7gr//m79ixgATX1yZi/eX/0wvP/8Of/5th208CpcuPrf/fe+LRrHv7b4RtF08/ds45tzg1UXaD\n", - "umIU3u8f3rbzx2r9YN/QRyInKkBnaPUIormF1M4kwj05sJR0B0fzDAkgI6l28DosJq4lXf8J5onZ\n", - "xJICHsOSIt/YPUHkXi1miHBrm1iLbQQ2YSyIVIq5WxNGUjhb5wK5VGAOxsJ69ECOSmkTrW2q2o5R\n", - "BITJf295ZahSj/t1LFUsaCcxFdQiAerS5jYm2b75pc0/wfZC5jhuKzDG+1TmxAlcvxNlbnBfp4aS\n", - "3R7567Rs3rfj9/48utzQVKLuY0HkeszPucydY9yDeyM/7y1bu4dPLvzYTQRBypioJIzIuOQzQeZp\n", - "zJ3KBLHahDrKT5AoFtDZXs6f9RLFziftORatX/d5zWpr09WVv3eqkY2JPoxTeXaUn/2qFBGpGDFi\n", - "xIgRI0aMG0Z8kYoRI0aMGDFixLhhvDixeZ67icCJOWi+RooBj8cebjs8MhpliWKdCu02G0KKWvDY\n", - "/9t2UtwS1Aq9LSYiBCY8ql4sFGqrizgLP+Yjo7aaBUTZ4mJNN3LVmlNQTd+XUiiLHLSTQsYF3H43\n", - "IhIkxDrPDJ513Wc5q4tTNiD6dIfrLKH1UhyGe1Cq69romYZ9nNn59wFmFQoUwuqpQKIHR56OKJSC\n", - "g7h+AcoiUWdx0FydMxqTlz2VSqZd5/u174xaYOKBaN0DfZyLAHUDioKO3upPZeyZHasEjTQSETMv\n", - "WSfC7g50swpQ6XKeSyFl8q01KJYL8bEadxB4rg1Gd6QlhbKdX/v9jSfWJlJfvRMaYQMB7Mpo0Ska\n", - "Pzv2hWo/fvft8NkGgt7Pf+FrYdt/9O/+deecc7/2W0Z3XUA8r6L4P/p9L7zeCAX0b/zE551zzv30\n", - "T/471s7OX+OL02fOOedW98T1GDdPJpRlijHeSJ8cQNi9Ecg+B/U2OzJajKUEVhf229Nr3/ZPLz2l\n", - "+DUZMPXSH38srs8N1p4qAfjiW/68/ta/9x+Ebe0SvmjiYj0HQ7S3b/Pe1af+/BcLozSpVFjAP2op\n", - "CQi3boMKkfukxvXshAIqQFFfXj4L20gHjqQYKwuXJ4NEEd/m5RyeTdKvvCabpSUA3Z8+cM45dy4C\n", - "ZAqLJ1JIuoXIXAUYGXyZdO6ccF7EDTgZKY3lI9d5LcP9L35LdFkvJzaf5aUfJ6z64JxzC3gvlbUk\n", - "71A2kXgfpYlWm4A4uxO3dbqoq7N2CsqqlQQkVtlQb6Uewu51bW3frH0PrXA99440OQb3uiQHpJgn\n", - "93AdnHOuwPywEro9KX2yx1KSHa4hrNYEmNnsDs7V2j5CH/DxUHX22QyVJ54uTsI2FjwuJHmqg2L8\n", - "/2HvzWIt27LsoLl2f5rbxI17o3vx2nwv26rKrKwmy64GG7sSYQT4p2whPvyBEBJ8I4wQfFrAB3wg\n", - "+DQyQhQ2BbIQIOMqCyyEq8msclZR2bzMl+9FvngR8SJeRNzmtLtdfKwx9xynblQmuigJFVrzJ27s\n", - "c87ea6+99tp7jTnmGPSIG7UPXUpkb8xZ3jMtIRxPaSSOXl08aCmOUtDSqxYXUTVwHzvSaux8GJOT\n", - "lJwykKLshxVtu0wb4oiIVIwYMWLEiBEjxhXjpSFSRZGMhGgR9pOisnYo4FaVNVPJ425ub+QXF2EF\n", - "wd51Sl4bPJEIsdIp8Wac5lxWCm+4BZG9UyXxMQE+rBKSjNTWsTrsOlvVdCi/3/HEciqxAGkGUnZX\n", - "BCnLbQVXosTVMWEOPoGbjSFSC6wEWX5Bbfcy8iQa3+b1e+x5pWX49AafgTC5ru1YKuuQ0kojxRs+\n", - "I2wp0JmjY1NA3tsLb/1tTWXSQMfyVomVVOoO5GpgqQd0BROrlZybkCp6p9IBTGxEp3giOytKp7xG\n", - "Juw7fD8j9EvXxDn1a4G2DFSSrboHFS2/BgmoQ0ukfI/fNnqNiUQ9FUUQafWNa7haGgF2ArK5Yw8t\n", - "IAxcOu2Bzi42dv6bdVh1bYE+3r37hu0DitEfvPfuuO3mnSB78Itf/sy4rYYP14KI4jmkCPaZKN6E\n", - "+/RiZSs9RdYcVvPble1jUqoPHSMiKACgFbyD/1ZPfaeq0Fs61gyq0OfPbTxfLJVYinJ9UvG/fhxQ\n", - "OkbEHCBR9aMTEfm7//3fFxGR5Zm1ff8onL+nwoap+l8awC7Xb4Ty682FqceP0gbqoUdzyBOozN+5\n", - "w8raI/w8bqtBFE8IYVM+s6c5doYyfk/HcCD0J6sLnIs1eAppgj2SjjltAtKxYE9QIDL7VFC07MKx\n", - "BnKPyPKAEjFyMe1036HfWcJGPdTYQ1UdCDwVUTQNkDsiEat7g3ckXTIJ+1ktDPVWeQpFVWqCG9Qn\n", - "0hPZevTkZGcLdHtCKOGAMZvRdUrxeUIIj8cY6zpVB2e8A8rehNLNJwGJSsSI7Qn6uGtI4gbFFnlB\n", - "xQt1kCKpu+fjtsn8FtrLsiNA7tHeVLpLn3FRgM6x9WDXeu5UkodMOVEUtFP4hbkw4fE8+nmqYSOh\n", - "9EO4xuxh6oFIDTVJLahiPvl0Fopw9zafToHsb7Yk+7MjmXM5IiIVI0aMGDFixIhxxXhpiJRzTpKd\n", - "EmZwiug76mrPuecKOVVf2pvu/l54I10uWVQLQnM7nnx4i9ZSS5I1UFv1hFAdLb9MqKxTEpVQoHbC\n", - "94cRsR5l/CqNICLSel1hhn+rCb/BwweNUCoTJ7XvHUIYramt/LluTvH9y+7bzBHq0PYE/ImUHK0L\n", - "mPMN7DSOPplM7Hvrra4g6JpAuDGj63T7JKx65nvkk4a3f+Z3uHGFU/yJc2bPKbomQFgGKhfuwOHa\n", - "KetGH6ckpjpe7xdIXCjSwOhjiv31xHNSAbuE9qtjzBNykQHhYDmPHgZZrrMc/cVKne6x+ib5hXG8\n", - "0hhW1HFCBD8rXSfx0Uz7mjwRBxXfo8EL7yxFPxriaB3P9nEutt+zJ0G40k9t9TtA6O7uTfPm6iCc\n", - "mGWGCNTPwqpvVti2xSKgHqtF4PL4YzsvFQ7dnxP3C/vdUDvVV1A5YOF0wnkfHlk7t+dh1X16bujD\n", - "DGN2jn+51P2VVwNX5HBunKKnz0I7c0Ja/v1/798WEZFf+MrPj9uObgUhzpSQy5O9sJ+Dm3bvTjZh\n", - "9d+tXrO2A4FdQtYgI1kD5Xy0La3IsR7mezIFSsXzyXjP0Jwk6O6ErrGgxD9pQz85+mxSBnTq2eZs\n", - "3FYDHZ9NDelIdf6jVtbgcmZTEs4E2jSdWp/0Wdi3oqUZ+aq5Pvy23ZL/HHbnaU5QNNuzJyGOVZJM\n", - "wwZop/qVioh4UZQarScARcdVy+Kj4NckuY3JTDlSxEPtB+W3EfcnUUkKRj0VuQn768gbbwqJj0Gs\n", - "/4sqoJqeuGw6Fw4kCeASlfgx9Kkq1ePW7sltHfhvs8mJtR2csAEeqzzXTyDTMdA42apki2P0CSiR\n", - "I6/L8XOSbsH12bLJrN99njL3Sa+dozlZqc4Z+UpqNoXFbxXF6unZ3bbK5bP99YTsvygiIhUjRowY\n", - "MWLEiHHFiC9SMWLEiBEjRowYV4yXltrrh2ZX4Vb9dQiK03QbK/aWgBR7IpuqKveUyNPbLaQGSDFV\n", - "EzS5KpATxJiAsMj+f61C4JwCdOoXZMevUIq67jktqErV9tOxtB77a1pKTwBtZiXiBCWnOUHBOYjF\n", - "B7WRuAeU0HaDkWgrEOpdatIFApi5gOeXUMoyQ13rlryhlKivMhQiIj1IfmT1JsUcaZTrtr+bNwPM\n", - "X3JJMI5HCgvSo8RWUwt5QWWoUDGWLam4I/nbUwM6H0i+aUYqxigZz0pLgWgakf2XNLs8ql7QmFRl\n", - "WyY96g9Kuk7qDZURKTRHakVTUSIiGWB2ykrJXjrBYZFupWvtke5MqPx6UGI9Kxvj/qgmlG7rLkPm\n", - "gjFZUEl6s9J0c/jexbmVMM/2QxqHy4pfuRZ+y2Xl08M3RESkzCkFfet1ERFZX9i1uzgNCsi9NwL4\n", - "4iKofReYDLqtjdf1Jvz2eP/VcVsiSjolYjEkFhKWhLgI43hv3/pEvR7X53af3LhxU0REfvWXg8fg\n", - "1/74vfGzo5PgF/ilL31u3PZ//s7viIjIllJLP/vlnxQRkddes3Zeuxb2u3xs/fnOn/tZERHJ9ywF\n", - "Wk/Ctd07tHbO1+H+dB5FNDTVdUgxnJ9bamd/P+yP/R/1fkqpAMJjLmyo7+ZIUQ5zu++ap4GA3CHt\n", - "fG1uabfFOqSFbu+Z/94E92xNfmkXmDuXRADvIBOQUlp4XoRzrSaWPi1g5HeahvFSe5rDRrcB26ay\n", - "Mkz2bseUto3TDvffhOgb0xl86oiArCl4jxRbRvO/Fj4wAtHj+I7mFVfAWSG1m71HSl+LXkSMSE+G\n", - "ElLADUI59kliUhMq+zLw+ffBjWBSmGL+MLpnsNo6nCrIPUHT/Al5/W1xD3rqd49Umu7XN/Zgy5Ee\n", - "26fnhPoktgM5YPgXHB8FVenOFBvuz4LnbqUKaA6OC7uQe+WiLD1+Tn3dgb7gHRcvIC1InoS911S5\n", - "zXttHVN7MWLEiBEjRowYP5Z4aYiUl2YHfepVLK+ht1D14UmMbJeXWi6fX/ptQb5uSpDk8lPnRmZx\n", - "+IyQBhUwZO21Aat0JrE5fSOnN2glebKvmm5jvyBdiQxa1tzz23r4rZbti4iUeFuu6E1fQIa+RkKD\n", - "kyqsGLetie+lRVgJux2yub6lwwU9tbJmRdByQjoGvRb0tq5c8I6ESzuc9/4rRmxV3628JGIhVsQs\n", - "07DFas6jDDYl+QenZHNCzlp4sg3kIN80kJMYSPwPpatpaW1v1dWbrmernnggBe/wGzE+uTTcyPt0\n", - "XnKZ2J+jzQmRx5Mk9HdBSOikDB06L8P1LFoiXWJJWp8aSrjJw+p0oHHS4++EVl/aZ/XGSvI3QHhY\n", - "zUGJ3EMNv7o98nBbBNTj7h0jQudYzRH/Xw4q+IrRqvb04w9FRGRxdjpuq9dYWTNxE9fk+nFAOJ4/\n", - "M8+5GycBdc1IaPHsaUBESI9XOiC7bcPyF+HaLU/t+O0mXNz6whAxgDnyV7/6cyIislo9GT979jDs\n", - "7ye/aFIPMy2Nrq1f33j9bRERefWuCSJ+973gofezb75ux7obrn9PAyWBdEhG404LBKaz8P2zhZ2X\n", - "yoMw2X4fY6yaGNI1YHymRIrPgdhmLMmB65l5ki5ZheueYTzN6boeQ65gNiGZGiBNjxePxm0qxNsT\n", - "iXoAYlCSdMSsDOOtKEk4EwUaEyBX9x98b/yshziv3jciIguImSbkU+qRneBSdwHqu2X/UwzkKRVv\n", - "6DjSJnFhwQoo8YrI6S7HfUXEag9ELnP0jIMkASNnGQqE8pKfHfoX5j86BUXVBxKaHoDw9t6QqwxI\n", - "d0/yAz289lRyQESkRAYmT2zuroDEtDU/u1BQBSSMBVwT9AlLx8yw31Vj95qChMlAKD0EWVniIskg\n", - "RdLbveshAK1eqB09V/UlxhPSmkCKgVUSVHbIUfVADkHadkfqAIU/lY2JgrIdL4qISMWIESNGjBgx\n", - "Ylwx4otUjBgxYsSIESPGFeOlpfayLJPt1lIWqg7btgYFqp8ek0hVCZtJzB4K6AytFoCvWcdGdT5U\n", - "TyMlcqx66eS0behAAE5ZT+KyPlGvpGR6LVU15J5UXN3oCQTPJVZ2Rw6ubQ2K9SWgyIxgTJyPJ3g+\n", - "A8y5NyNyHLa1YmTXiaZFAeOmzlJ7DWDfnFTEO0DFPenOZIA4C1Y2x2nskQJ9kYMASpBtOwRYuCNf\n", - "q4tVgG+nSAU64VRE+LvpDMb3Er7P6Va9JqxsrNezIVKwKrpzWiRBWi4ZlJxv16RQHSlOTyL315PX\n", - "VoLrmpCyr0LGBeWKE/SZ3xrcv+5ArATB0ZOxYn0BdXb2QUM7JxV7iAFa9zyew98L0rFxSYCqHSm7\n", - "r5YoHsD5FAsaQyD0OyFfQQzynnR0nj0Iaaya2lki3Ts/tFRhhT4551QVUqofYh8T0hG7WIbzqna8\n", - "GcP3y9Jg99PTMMb5flJSbE++gu99+/thf0RsTgak8pAe/lf/yi+Nn/3OH4WU0vtPjDB/81YgkaeJ\n", - "ka2dhPvp4X1TJ38DqaLPvmPfO3k9KKWvnlv6skfbzy6MPO6QyixQPEA2ZNLXSli2cXWxQEqH5sn5\n", - "LLRph5aA7pnmNnbyg9CmgYo3hjrMBRuo59drm6f3MtUdov6HKn5KxQ4+07Fr98lUqReUqqpQ+DAt\n", - "bZx45IBKFAqsLqw44JOn98N3KD2TYHw0VIDUogChoblL00HsCZlgPz2JAKbqseowhyWcigIRmQqg\n", - "tIiIFdtH/aiUlbS0eMXGaYmU3pTmbiW096AADJTGUl+5nojg620YOw0VhSgtpSCv0yQJ1zHJ7Vwr\n", - "1YDi8+ngqEF6f1o1VaKwgNX2vWjazb6u+ljsU6j+f5wm871ScNhjFmlJSqk6F1L6da3aZnatVYPQ\n", - "Ey9DSeQ9pfu0yIjfJ/QnJc2ngxYNUPFAGVN7MWLEiBEjRowYP554eYhUnklNpc4NVgZtb4iUrpJ5\n", - "RZArUY/416KefEz2VtI0ISdFqeR1LQ1mc77wj/O80gn7YJREka5V1+9lAAAgAElEQVRtY+qwma6+\n", - "iETqQBrOmEUKj7UKys5Mdncoe2dXcSUZbonYejwLKrZ9b6vkCh5eStITEWmxvwv2tUPfVVkg8XqS\n", - "i9DVx7Yxsq1yl1sm8eF7eUkq2lh95bT6yCqskp21abu9wP5s5VZDPXkPxPecVibpWABAw7RW9O+y\n", - "ijMzoJMsnHdPKraq2dARUTPBaioZ9NrQagm/ZURSy2mTnW2XCdhKBq+p/DnDKrKl8v9zlC5fLMO2\n", - "/cQIyzdA7M2o/n2zDm1i5DbPgQgQK1VXjFy8kIMU3G4I9cQqfrMJbTu6Zn1TgWy5Ig+91z/3BRER\n", - "+fiJoSo1VtrzPUI4t+E3q6Xd4ypJsKm5rBpoAmQwOvIwu30zjJ1JZfvd4P5kRRJVgx8IzVUC+idr\n", - "a6ci0e3aijK6OvRJNQ9I040TK+L4ItS7P/+moWTf+OPviojIw2d2Djeuh/tvRordn/5UIOj/xC/8\n", - "hJ3rk4A+rT/+zrjtDEjcZm33c4N5Yh/9P58TqluE/tlu7L6um3BfZTT/6ejMCH1KQQBOpnZPemVU\n", - "k1J5oqgz5BSa2hApVeVOqGBiWgSEr6AqhjLBdSTkYpOoTAyRovNQsj+h+WTA5D4BwuXu2I21hhL+\n", - "prb5V0HvtiNl6w4eko1dp5lKJxABW6fglgp/HOY714Xz3raMVsBZoDDCfIpswqaxe71uQn+WM5pr\n", - "ID/gOttfUYVt8zmT3cM5rmHyN3SEEmPed42hqg5I2EBSN76H1AQXoGCeSggSVBQpLaztHZ5305lJ\n", - "Ymj5fwUkeOgJQWs1S2D7nU7Cb5c0rgXFAJ5J+aMBJM3xngsE0D4H9fgUUhOEvnkg5vz88z3GMJH4\n", - "ezxrGhoThSr/D1RkNaqn83Pvh78qRUQqRowYMWLEiBHjihFfpGLEiBEjRowYMa4YLy21J7KrD1Q3\n", - "ahRIzEqk+zg9oSQ2T2m0HCTfjHWkAF9mRB5Xc+EKv2VDVyUbp5QzdEhL+R3NDDWZJDNaJdsRKVy1\n", - "lxJScdV0VAU12Zy8Y1UDqCcS5TAEGJMh69U2qA4XBZFdATfPpqStlQToeUhYAR2muUh7su6QEuDr\n", - "lg19NWVp8LzuY4ewB8jW5aQPhF13ncH4NZR9mdjZIc3nXYCqXWaEVdUKKnJL7WiWjwmYCo8L6Y2J\n", - "krdprdD1WtBACuRKNsXpMIl3/Lu2dJOSx3NK2TU4x4QIkD2KAhLmiSO1xzomagg8Qxqj7EmzBum7\n", - "uuOdYFxRHlHFgzeNweiqIrxYWf8PSLOwCfUeSMmzg9DHT08tjedA7D86tDH0T7/xT0VE5O13TFvp\n", - "9Hn43t5tS3eskWba0vEnSCktSFtmsw59ogrH08rOvyyCLlJLUvgp0pzUIzIgFVCvjZS8AHk7J7Jt\n", - "VkJZn6a9PU0R43rmpNj++hdDWu7jb/7xuO3P/8xbIiLiSIPNQZ388Mi27c+hAfXIlNI/+UEgu6+e\n", - "fDxu80jlZxM77z2YRXeNakHRuWKg5lTYsIGR7EBptKlqz1EBxnwCzaaTm7ZDHMsTAT5DvqtQZwkq\n", - "YtBULBtfzzGfHqwtPZWh3y+IAD7BNc4pVbWC4fG1uc1no6YfCor2p9bez33qZ0RE5OFj69ePP1ng\n", - "+zSvDM9w+paWbDHWZGYpICcoQHKXU4u1FhvxYxLjpW3oueJDH6Z0TTzmmK6zftVRm7HgHCgF5cSu\n", - "XTWDthNoJGsqTumghSYFU1DCv31nKSuljXSkAF4gfcq0gMqDvkLziRLUh4bmwnKG/WG8ZjauSgnj\n", - "yiX8nETKcno0busd7sn08jOxJ7pHooVaRClpkapVCbqMn12qc0bjSpXQCyrK2kArcSAdOzVons8s\n", - "pS8tNKhokunpHeRFERGpGDFixIgRI0aMK8ZLQ6ScuB3VbyU0d7TWHN/cWQl5VMemUmuU3efkoaMo\n", - "UkFkb32L1TLMhNS5HYjXPfnlpfBm8uzhA5ZrSh5GPtGVo71BZyB2D0TAyxWRwsqgpBWMEoU9ESG3\n", - "TVhpZc5If6tNKLGuDuwNOnkBwqSloBWps9bwnxtwDJaGEFXdJQ9BVYIloEU6LYlntW/0sU9YxVfV\n", - "461PPMruB2cIj1aVeqeEaduvIlJZZqtfXWG03tCXfCwiYK9DrMiYaw7CYEOkZC2jzb2qzpOEBiDD\n", - "qrT+H4sBcttHmqNcWQx96VxAmDytCBX1cNQnDsrLfavq6OTDpeRQWtUPQFW354YcoXJ/B6Vbr7GC\n", - "I68rLTHuG7p203C8Zou2Ca20Qbw/PTMissb3vv/N8e/PvhOQm6dPPhq33bgeVqLz0lCq80VYMR90\n", - "hFyN3Rjafu2moQ8TIGGOizh8+EFO6vgpxh+Xuut1bEiBusI4SompfnERiOdvvhF88tqNXcP5q0Gx\n", - "/OZbb43bFs8DyXlxYWTnk9ktERGpicT+6FkoIlgvTH6kfhrQCZZpaSEJ0VNRyHoREKsBLOr9uRGL\n", - "FeptSJ17vhfGWkPIaQN/ytmB/baaBYQvPTwZt3n1vyTUvVWftBr3JBXFeIyPfLD+30O/diXJH0CB\n", - "3IvdO1v9LdXJn6HPGn9r3DZNgfCAnL5nuxXpwvhwx1wUEu6FRf1d2+bC8eut9X/XQmKBkIsMyE5P\n", - "CNOgY8ar6r+hz+kAZIbOf8CYzKhQZj4J83NLY7Luw9ztB5ZEUEkcUhvHdVd+c0IyNV2rbgs2/zRt\n", - "2F+R83MK8g9EgFdle0eSPF2nckKUicEY25UTQJuAzAwpIWiYHxl974dwTZwnqxCv3oXWd4rO9yST\n", - "MehzyhPqjzlbW+RIjmDcH52/vTNw1iXFv/ScQj9ut4bSFTmyI1SMNXBW4AUREakYMWLEiBEjRowr\n", - "RnyRihEjRowYMWLEuGK8XLI5E8bUoJFSYZqVGwgzdC/YVhTQbNrRx1AjYVLgBvFcSdR+h2CoJsPU\n", - "Js0sUspkQArSE7Srx8oyhlZBVMwMRiyyAIFOMlW9ZhKnv7TfHgS7NOPvBbh5uTG9p/nkroiIbFvS\n", - "AJrgNzXtD+T6UT2djt8OgZTZU9ohJwPh8fjoCk53tp2S+Izs2AEW3yMVaQcCfL1lBd4F9hFSKs4Z\n", - "xJ+pZg2lGydlSPc0nUGxmo5Kd5R9CebV7w2Xh7tPdUyEExs4PaTXk/W21EiZxq46WCvEH7Yh3dfZ\n", - "tlb7luTLZknIW1zbC+eV1tRGjIm8NBh7u9D9ERETJqvLle24QaqoaS3ds49U2erUUnXNMhDFlZzK\n", - "yu5KBGfS5+G1kB555VUzMj48CNc1zwyKv3YcjrW8sBRki9ReTZmNFErJRamkV0sFdUi33Diy3M4a\n", - "6XZWlu6QMi4PjbBcQ8cqyYlYjHNsNkZKP5iHFEwKLbTNxoxS+3shfdmeW3roAO3NqLDj0YdBF2pC\n", - "6RFNh54cm5FwcnQd3/9g3FYgHV5N7RxnMB/eaHqS1OlXm3Cu6y3p82As5KT2voT213zfFMMd3AN4\n", - "nKYrXOOO9Ov0PsJ80VEa0Q2aRrLz1/RRRamgCe7dlkzQN9BqSgvrpxL32/nZvXFbfxDG1j7SwgV9\n", - "X5DlqjsbV3tIrWbkQLBqfxDOZWP91CHdnZU2JrpeKRVEC+hVKy60fbsl81x0naMiHlVi5ykhh4vA\n", - "huapHnSEmubJYSx4snOczaD3BlV+T7pT3RYUBDuU9FopkxHZGmnGjDQY21ZpKdZPDbSV8tTmaX3a\n", - "DeSAIA0U7VX3jRwj9iaYE4kWoNzxgfS5tECm7+z+Ux27igul1JWDaAnqHiCgQpSJkdj1+cBFYX2r\n", - "z3Mi0WMuaMiVIQUtZ13b8zSbQGeSjJx5vn1RREQqRowYMWLEiBHjivHSEKlhGHbqC5UIl+2UYWIF\n", - "SeTgNNPSSPJQwxt2yn49o9i1vSUrGVm36WpExPzSGMlQcMJTNzm8/bKK96CEOpJTyBXNIjQjw4oh\n", - "AQrC7fWQS2CkzWP50xIRz6HUdrW2VXIJBWxHqw/1KRwITVCieIcS8mFLK45UVb/t/BWR6jtGhLJL\n", - "23K81Q8ka5BPdHVMvlJQSs5phdn60IYGK8ze20qzyMLys99B/8Lxd7yuIMkg1E9asc0rTb3+RWKr\n", - "ZDeimFjVUKl3i7LylIoY1OvN0+pLkQ7ZKZfFapKU6sf9Enm8w+pomYTznlEBRIa/a+prVezebOza\n", - "9bUSJm1bC0J5S9fz+XlYCVYT6n+VBwDqwIjwDAjW+bmtIItpQEs6WkGvoHqcUwnx/U/Cb472DZG5\n", - "/RoU9XMr/7/3zVDGngG5ev7o/fGzJ/DOO//EyN5HJ3dERCQtDH3J4ZPVCyENeVix7meGSGTw7rrg\n", - "CgTMN+tVQJBmr7w+fuS3YVw/P7U2bbJwXkz2VpmAhhTbVSH94f0fjNsUHWRXgDzVQhHrz20Xvpeg\n", - "8KIi+Q8twJkSStmMBSBUko7P53NDujKU/fuV3WMD2sSuDM0KqBPGxpqQpl5JvNSHM5SzDyy1gKId\n", - "PT8REY85Ke05wxDatF0aeX+RhDGxnl7Dudh1TfHMyBJCtYBmpqX107AJY23bGfraAaWs14a+9Cpn\n", - "kxDC2akrghKrSWqiO8V5UaYD878nB4wEBSiDAVKjP6HzjLRc9pPVbbNZuHZdS560cOPoOHOC47KE\n", - "Q4FnDauNj0Rtep7VGLOJ2D2eYd73PWVCOvUdDNcioaKs9QLuFPvWr/qs63dI+UDT6Lmr2Qy2hRjU\n", - "Y5AI+OqnmiOr46lgRLMDO56E+C1ZSEqL7IBL2JMV2+hY6zoUilQlFXn8iDeliEjFiBEjRowYMWJc\n", - "MeKLVIwYMWLEiBEjxhXjJab22h1DxVy1gijtkiLdVZas9g1tI9YMgjptQXB/ghRZSuTZUUdC90Xw\n", - "pBvJ5mQyrNvYDFfNjdmhFsTKjHShkg30WRImwGNbrik+ShmmCme2l7b1LZO+F2i7QfsXy5AqOTgw\n", - "AqRrwvn3tD/N8jTNZYgzGVNABI8C2i0LIwCPotx0+jXSTZ7g6cypuaUdPwOhMSEdkxwE3R4pMNYO\n", - "6WSFzyg9gDQDp6BG82lKi/adXk9rp+vDOZZEom/VmDjRdKvtt0P6wpFmmSLKnAJ2WihABxuNkXvS\n", - "xUKKrqfUhkLPQx6uZ0rkaJXUcg2ltnHPZJSKqKFozFowJVShB043QNm7pLT0M5jA7sFwuKOChXNo\n", - "S12/dceOjzTKa6St9PpbnxIRkZWJQsk++uLhfdOWun03kIinB/a92V5I/X3z978uIiKffsXSgxX0\n", - "wR5/ZPpAH37rayIicrBnJOq922G/xczGf4GUYkZ6b1Ue+unaO9Z2AUVAoX2mFqjuUZbaeNn26jZg\n", - "Y/36jaBtxObO9+9/GHZPJO5ZhWKTytJtDdJhrOOkQ7sFifvsgtWx8R1Kt+m8l9J8NsMxHM2xHVL/\n", - "2YY0e5YhLdMRKbcDHWALI+uMxksiqplHKfAVzOVJW2gqOv7svPYxt093aBmhfQtyCtguQjru+SSk\n", - "WChjP2rmDeSAoSnbgdJIOe6j1lMBTBNSZG7NCuDQlmOx8UFdHnAvUMqyh+H4hvahfS0tK6DjN0Ts\n", - "VocKLt5QBe6E0odKW8jweOb7uoXGkvdcAIMUMOndqQOHo/E/mhtzQZNSDwZLgc9yJeBfNhKuNyDs\n", - "0/yv415TrCIiSabafvY93UdLVAV93nTkqNFA28llTAqHBpayKEiLUFNwNV+nTk3biQKBOdlxWhDP\n", - "DHU9EREZhlD4VPd2jUtKr78oIiIVI0aMGDFixIhxxXh5yuaJ3/ELy9R4jnigaaqqr0QExNvqQG+L\n", - "W7xMtuS1pn4+rJStq7i2Vc85LmlUbzQiFivCQqs1rWDfQa7QvsSx1II2mBAGvLdmqZLeaWWWqBI4\n", - "94mqydL591AMpmVaAwV0723l0kN+oKlZxTv83eO8+8b6UKUYPJ1DCUKnS3ilhfZ5vibhDX4YWIEa\n", - "RQGE3BQFVgesVI025VOUoVJZ8wTyA0yYVwJ+Rsq2uhDxL1CxTWil3yXan7SaT3TFgu/RaqXDas3R\n", - "uWo9QUorSO3PwfO6BGiWp/2haKJlArpTnzSMddpFqV6PCZWmTyAXsLVrp9dkS7oCI/GXULIGpeDL\n", - "FSk1F/C/Awow7BR7YKVNpdFf/HJQMT+8ZlIDHz8NROEpSVDnGDtf/MpXrJ24Jxsi6n/67XC8+x8+\n", - "EhGR3/2a+drdwO4+9baVOhdaRUKK/VugA2crI3bv4TxmM0K9QbzOyeswn2GMA7nx5Nc5uR1kRbJD\n", - "O/6jb/9h+B5JKJyfh9LpnMbE0Tzsd7kgFXMgEgNduxxIZEf3xGQaVr/VPpARVtYeScREgF6Ga9dQ\n", - "Wb0HijqlgpYEbXYkSZJiW00SDyn6R/u6Jb0Oj3Ha0z2UwVniOLNjPV2F/c1p/AsQjpYyB5ULCEfV\n", - "G5rSJGE+eX4avAmbwsZ1UQQkkm+hulEXCZ6nQSIfbP5t1kAfU0MpvM4jjJIBOemBCG6XJFeAPnb0\n", - "XFnD49I7O68CqLe6HoiIlJ3671nbx/mBMifqD+qADOUTKtjxOB8aQyq1U5WsIi44FqPZYUx25Gun\n", - "474jVnxbg2w+kE8hCmTUZWFI7FwVQb1YPBq3qa9mO9h8PhbgsFXGqGxOqQOdR6k/nRaK6f9pTG5r\n", - "II1CmRunSLNdJx27XBSRwB+W6sRGj1X+bU998aKIiFSMGDFixIgRI8YVI75IxYgRI0aMGDFiXDFe\n", - "WmovFSeO8nijCTBBnJqW8PS+l4IcxvCsonwD6aj0IDSXpGOSqsqumtf2RrBTEm9H5GBN8wxEDvYg\n", - "sRUVw6gAHCktNgCK7AluToGBqi6Vo1SknjbrSGmbkh3XYG0bERbTsJ9NbQq8pQ9k24E0S7LEgFER\n", - "kbZlQ8sA++4QDBNNI9gmJ5pSI+PPTNOI1neqc1RRP3UD9HEGS8tNoGlUg5Rbb8z4NYHKd0JmyEoA\n", - "T0hFfiSIU0MH/N0TBC+tarbYphzwuaZW287GRAMdqY72myN94cjE0uGadYTZa+ovYW0TVYWncarF\n", - "BS10XNa19U2O4oWisDHctqrObP2/0fHP55WFNFY1sXTbyXFQgD44MlJ2B50zl+uYsH1cuxmI30o6\n", - "FhHJAdn7nK4hVLnvP3ho38N998FDu57Hx4GUffe1T4/b9g5Dm979/j0REWlOrf/rZ0G/abGybSfX\n", - "wrh+9MSg9g8fPBARkS988Uvjtlv7oe3XrlvK7OZJaOfpUzISRur5+PgzaLiZJvs0pJEcGf9evxn6\n", - "/+F3fnfcdv/jUOyRUX7g8OZtERGZHdtvW6jNb0mVPIfa+PTA0od63yl5t6L5Z1TC5iIKpHa6rfXJ\n", - "ADpAN7HrVOBH/dbSLR7q2SsiTw+YFyb5ZS0iTS16Hv+jjBrpAuq8R+M/AfG375hEHI6VU7pXP930\n", - "IVWU9jaGz8/CHJcOlsbRzH9e2T2RiM5n9pxQA++e+qnDfZpRatX3moILY6NurW+ykZ7B8yQKZcT6\n", - "tYOKeUr3iU5ZRW8UjAapso6MxAcUGWmqzhOxPtfUNulIqX4Sz4ljF9P856Xb+b6ISI7rSV7t0rQw\n", - "HBZru05tKeb9ruPnio4J0mzrVcfJdqyFNEnKg3fAMUnvS8/H87MTqTo1VKZddOqsQSlTJZZzxrDX\n", - "QiZ6TjtQYFIqgFICuicKAKcDXxQRkYoRI0aMGDFixLhivDREKkuSkdQlItKMJF72Cwr/emdvuvom\n", - "mpGvUAWyt6dSfyMl29t/gb87lUFIab94W09oZaLq6Vzqru3bUfZGW9jDaNwNlSQnStr2l72JOsgE\n", - "0GmN5fSMCCma5EkmQBV1WyIWJm6DtjMiMuzsj+UnlPO4owQLNItVj5VQr0iOiEjqKuzPVm4blFh7\n", - "WqXrKqWcGAG0LALCMJ8EZOJJQyrSWKXkVH6usMtAK2IdMkzUdy/wWlTZAR5j+rnHOnigFawCATV5\n", - "M3UDxhP5FKZYVfU7noxY6RKaqKukjgoFlMS4lU9ERGSvMgRjo9eT/MrmUMyeyqvWJnjtrddGGF0u\n", - "w9/nq/Nx23v3g2L0wZn5Ss2A3OxdC4hISqXWzz4J38uo2CO/Hq4Xq9MnSs7M7LruHQY0p6jse0ps\n", - "/cFjQ6lyrJj/wld/VUREnj6wtnkf0IeB1N5X2/D3nbc+O277qV/+ydAO9t/cD319QnIK6Tz0bX/B\n", - "q88wtuoKcglT83pUKZY0MWL55HZAmpKHhlxNVqGvSyrK+ORBIL43G5J62MextnT94cVWE3m4ASq+\n", - "ByXyycxKr/tRasSaqeX0NRWPXLsezrWjQpVE3Q4GLjIJ5zgjrz+BivVYpt/yHMJEYXy9u0yYTlX+\n", - "gL6vJPa0sXtsCsmEPZJOSUEAH4BCrFsjMXeQghlIryBzkHpouVBiiuPbPaEuA11tyJHC03xWqhTe\n", - "qq9qzwiyeqLa8Sugijz/DRLua++pKEY9WUnipxYtMqHv4V91KvDkjajISEZI1zivU4bHYyLne2fA\n", - "MyEtOMWAZxHL2TQoSvB8jyOLo/sjhKbbhuPOp4S0gaifEik9QbFJXnBRUPhtltG81+C+d4YcKlFc\n", - "kz8NZVOmQN07Ote20aIIvnYoHiJJGK9+riwToZkDGrt9F8nmMWLEiBEjRowYP5Z4eYhUnu6IKiYK\n", - "iTD3R8UXqYS3x2o+J5Qkx0p3QyWsoycbleSOop9YTThPTvM+vIVzrlhzrymtFlIJ+yio57IcsgK0\n", - "SinK3XLNsB+sSLTtXFaPlQFztKpMkZ7L4o8DuVFrOx3lfvW8m5r8ksA1GvPHJCpY97qCIbdufK90\n", - "tlrtVdSNEDFFvTy1SYXztr2t5lPAjmVlK+wC3kkFViTzysQfn5xCzHFgpA8CdrSCSJRrRisIpys9\n", - "FhhV8UMqUx9XYlgR98TzUh5A2zGqFY6R0QDonMpp8OoLEhMDyxRcRh0VAKuAPtTEabt7J5TfV/3l\n", - "Uv/TZ5+M2z55EMQfVxfGkVM5kZM7t8dtOQQhT58aH+Hxx+G39z/8QERECkImSnz/5g2TOnh2rm2h\n", - "su40XM+7dw0l03t2dmzCmUf7J+GYnxjC0EISogdK8yv/3FfHz/6Xv/2tsP/e7uFSEUbyP1R0bN2Y\n", - "+Oebx6EtGfmvleBo3ZiY/18Pglk+AUepoHsdJeybpfXrxSeBD/XwkZ2DQKTw2ZN746b9WTjvas9W\n", - "2jmQ2Nk++dqpwDChCTnu4+0a/pMEE1cV5BLIrzEHInjjhl3rg2sBiSvJVzEB0tMuiYdWw0ON+DA1\n", - "EKkGCKenMTlymRyhejgd9kRNsDEh+YMUvJ4poU8CeYA5cVSWmJcSzKE5Hb9RoUlCSzz6jn01+w7c\n", - "H0LkFcVIaX/96EnKnC8IfELMU8V9ceDwD12vHp6QWU58MJVsoLmrgrAx+5mudQ5urU+qKoyTHsdn\n", - "VE9UnoefkxD/9NTXA54jDfPRcP2pql9E763EUEI3avzQNVY5mUzRL5LVQP9stnb9J0DdsorRL1xX\n", - "zoTgWrCfbZaqnx4hcRLGbAt0lGUllOcp9J6gSFtKnowpsgR0+JHD1Xc7T2r8S+8d7M/5goiIVIwY\n", - "MWLEiBEjxhUjvkjFiBEjRowYMWJcMV5eai8tdxTLc+CNLZHDlBTsyP9MvdYKIjsPLfzSaP9lCWVZ\n", - "gva8VwIyCGZCqb1a02OWstIUDJf/Ftlk5zMRkbK67E3kAT0mrLYtu+m+jmrNO3yWELF46OCNxfCk\n", - "g9cewZ796Bdm78VL+B9xSbJXRXNAwAxXKrGdrNZUsF0ckf31GA2nFgBtD5RaVd+7YYdsj+9nlu5x\n", - "KFN2gHiL3FIhXj32WBIDx2dlZyX+J5QCtXQj+SqpJALJIudI5WgqqmVyuN9iX5QKTNUvj9KYqTaT\n", - "VXQxnsXIrsoP7Uip+s3XvyAiIvtlSEX1a0vjPXw/pJH2p0QsVV4vndfsWiBIZ0RUv3kS+vi77743\n", - "bqubkMZ79OD+uO3n//xfEhGRT33uZ8J+Szv+o4/viYjImuQPXn8rSBd8790/GrdtL+CJ9n2Dwvdm\n", - "oS1HN+1aK2n+5k0jarcg8nuMnZuvvj5+9qWv/osiIvJH/+B/te+nIS1X7Ns+0mn47euUxkyRej19\n", - "ZqnlYYkULDG1c6TeSvU6LIwwP2ipe04eYkgFDiSd8hDk+Tu33xi3nT4Lqb+MpA6qLsw350sjO8+R\n", - "xlkTyV9lNA4ODkRE5IhSdm0d9jeh75+ehjTvdGZp2dlhSJF3e5xGAbH8gIp8ULLf9JdVrFuQwlka\n", - "IElDex0pPavsTLaTssG8Q5PyBPfnorbx1KoDAKXWJj5ckxYpm5pI3KIkbtriktCmbufZgXlFyO0B\n", - "aa6OfOWScT6jAgC0xfcqjcIuBinOmdTBIUkwmbFcALZNiOwMwnI5ORi3XYOH2/rMrkkLq44CJHZW\n", - "J2/QdvYrHYuMBtoHaCYNzfG5qCcsFepoui23e2KAyjyr1/fgvBSQNXEkvzC6WPT8TILXHaXMRveA\n", - "np0t4J1Ivx2gst4zzwYpxUyLA6jYq4aHonibu4Yx9Wv3bkFuGBoeacxux/8QUkgtp/N++KtSRKRi\n", - "xIgRI0aMGDGuGC8NkUqSVHJa6bleUQXyHPJaGkmSCBBzTGil0aBMkt8KEyWIezvG6F03qL8QyxqE\n", - "4zPSop54GRFbC6x0Ci4hxfpoyisSCCcyUdQ5JXtDQI/eqlu8ffOxHMr+EybMgwDb0wpOyeYNlek3\n", - "44qRloQQ7tRVmicqvCIdzGvcoO1tT4RFrCrSjM2J1MOI5Bw6FVrjt/rQ5uXaStyrEqWrWJGw/2AJ\n", - "IUpPsgIO184T2VUF5hRBCueo5Hka4krG32VbioiVS9e1IUgZSLwNrWD9uOqm1ffYECJAAmEbqE03\n", - "TgJ5fHbHUJfF8wv8ey98llj5/dFRQF1KGhMtyMHtYON6sh/6vZwZIvXd9wNRe0PigzdvBLL3r/yl\n", - "v2Lfe+97IiLyv/3WfyciIhWRzd8GSnVyfDJu+9rXf19EROZ7dvy3P/P5cCwa632Da0JjLEFPPXxo\n", - "RG1FBOoViLWEiE72A0q3yKxNr732hoiIHN42pGt+hLmAZHzNnhEAACAASURBVCUU7W3WNnbXS6BT\n", - "NJ9MQfJtm4Dq3GAPsWk4x5zkOvaOAtLz2Z/86XFbXuo9acc/uINr0dAqHWXsB6Xtr4dIZ0cSAyqT\n", - "sgUBf7uxMakFKzmR4g/3A1F+uk/oXwZiLRH15fyxiIhcLKiUG2gGixmnuO/2ylfC8RdGtt9i9V+S\n", - "+KUiViwTo8KJTEDvIfFQUIZhqqgDbVtI6J8MqPKqs3tonDMJ/c4SFdq1NinZOvXW1yq+6HsSc0bx\n", - "wtCxTIIiLGFcETAjmcrkkF7AGlIj6q8nIjI/AHJDc02egRTO0glaoDK1+2mrkqRAVXryH1VRYyEC\n", - "/Au0T8eMBXOk9Z7ICRFSgvwO+AOUyNEcrz6xYxEBPacTvEZMcpLpAPq37gxNnKnX3450DYqC2Lu0\n", - "00wAzSe1kschNUT38GYTxmRVXPYa5GKjNFcxTypKUOkIusj63uGFCqpoHn9RREQqRowYMWLEiBHj\n", - "ihFfpGLEiBEjRowYMa4YLy215xK3o2zeoyk5QXwNYHFW4M6V7EipHedB2OsMikuQZkoJMk6UPQ1y\n", - "YN9SegbHJWkn6ZE+yYgAPpLdSdm5g/ZSkhuMmaiHGqUb1P9K0e6eyIFNDdXfxKDoLlcdLWtTDki1\n", - "JsjS0mf2xQawaNM/tzaBZF+MpGxWVse/LRMMoXFD+HAFkmvGOiq16rjwb8O/nkiJqjarqtsiIgdz\n", - "kOdHxN7OqwTJPhWDzDukLCkDK71qGjmGjEGs7zlVrCkAgsW1nZoBovaqr1RJBOQkC9fYEbFddcw8\n", - "4eObLqSKfuoz/+y4bXEWtj14YATwvekBjoEiBmpbjZR1tya/SBBfSdpsLID4+KMPx2237rwlIiLH\n", - "1w1u//CD8Pn/8Bv/9bhtDj+vL37ll0N7jszz7bd/92siIrJ/YP2f5UFT6l/453913NY16gBAYxJp\n", - "vlsnRgp/9ix43G3WBpOPpPwtriGluxsQQKeH1iZXhDTfd98zX79XVkEz6c5NO9flMii6z+d2n16D\n", - "T+B0Rl6DiabqlZzMue1wrVvSB8qgi3XgTTPrFaRem+fk4Yc0Sss+bRifq6Wl1k6fhoKCemWk+Plc\n", - "C2XCtd6SOn2GduY0r+0dhTE0O7BxKkiVJ6SsXqOPJ5SCUrL3xcLuSYe0TA4qRM4+gBobS3cPbfh7\n", - "2PGQRJ9RCm4fGlgbmk/0srd038+RKlzh2rgNaXvhWKvG+lr6cN2nFRUFID3Dvp57VUhRb7ZUgAPS\n", - "eJ5S4RHmk6bROdTm8BrzyWRCXn+Y/1Y8Tgp8b8qaeYL9Wp+oywErgFcVFPCbcD5lZv2/2oTzHkhv\n", - "UBkyjuZ/TcHRNG1pRnqeKbWB96c6e0zoz5A/nOD+8509KPsGaT9OD6J4Y03FFucXGOsd6cKVSui3\n", - "Phan2lJUKIRioBzuCTm5KOg7AfvqpakWJXGhWGg7SSWKcuGzjLQCMXexVthub1yOiEjFiBEjRowY\n", - "MWJcMV4aItX6VDImgmn5Oa1Ix7dqJodhpVOQsnVegJS+tVVVD/Jml9qb7rjqBJrFSrBKYh8IQXIg\n", - "m7HXnKJjXBKrpaBZSqW2WXgTz+kctaw1UbTEFovSt1AsJpSuVQAtp7J6HDbh448lnqSOq07bJDHR\n", - "Dc+xD+yPESSsEltaLaqsAiuBK4g3EImy7i57GI3VpIS6qdp6QsjhJ1Av30OprycEKQM5sKDVmoDE\n", - "vOFrDRiRvRNVeZmRI0W7OiJqlmjTWP5K/arjr6DrP98Pq/80N1SlaQMZN89s9Xnz1mdEROR7H/zu\n", - "uG0PK+aKiixyKLqPvn7eVMcFq75pNqPvh3EyyY2A/RRq2299yvznnj0PhP7vvPddOx8QhV95xdTj\n", - "f/rnfklERL7+e78nIiKr1detvYeB+J6IlWv/yi/9ORERefzk43Hbk6dhXN0gNCsBmvDgowfjNi1n\n", - "XhIio6rcev8PdL+oTMTpx+bN1735qfA7UpZ/fh76rCOfxH0Ufjx+asc/OFBfQfvtrdtAc/bCtWPP\n", - "u8l+6HdH8KeuVoc9u9ZHuMc+pkV1uglI69mZtd1jKUy3kxzBu/CUFKjd6MoQxt1yYeM6K8JBJuS1\n", - "psh+QdIVHbzOHDkQFJBT4CV5+xzq5VT+30FiQQs7pLV+rYCwOCpKGHp43VFRRqtoDheg4Po01Cbt\n", - "2pyI4g2Q6xKK/vlg479uQr9yEUUroXihJL+2AVIvOfVT4gOamExoju3D/uixIy7RuaXGuZDUAea4\n", - "gdBnB8S83tg8sVrAxSGjYqdr8Ekk1HPolbxORHmozGc6r5M36DR/U0REts7uv6EPiGXBdhsg+1cl\n", - "FWrhOcXSMfo3E9X12bLjUyfa9nB/qAyGiEhSQjqkpUIN3MeziRXPrLpwL67WhrD2qG5KMnruonig\n", - "oHlPx7bDK8vO88+H8ZftmNJC4odQUlWAT9nrr1E/WXrHwLUdyLs3cRGRihEjRowYMWLE+LHEj3yR\n", - "cs79befcY+fc/0Xbjpxzv+mc+65z7h865w7ps3/XOfc959x3nHNfffFeY8SIESNGjBgx/uzH/5PU\n", - "3n8pIv+ZiPxXtO1vishveu//Y+fcv4P//03n3OdF5K+LyOdF5BUR+S3n3Kc959AQTgrpWJ9ohDZZ\n", - "CVyNJ4lYB6jWE7OsQKqkJFXsxTqkW1xiUH0BnYk0U3iW0j5IabF5pRqzDpQeEvzdkQT4qNjKBHho\n", - "QGWFbdM2q8YS8eCkBxTaNHxeaAXhzi8QZ5Ucui9twwahAeacEClvDQh45KkSEpqoGSylVrR/UtIM\n", - "aUHO3DX5hCp6Q+muGv1D7P0K+jmOyOMbXJ8ccG6ZGhF4NgmQbbOl1KaqnZO2TI0+SyuDh32iaUlq\n", - "J1JlTGJU09YCJEpOd6oWWUmpvQwpg5JSBvNZgNvdYOPvvff+UEREJmQa6zvA06Se33ukQ5AWzMh4\n", - "M9X7g/WZsPZZrqyI4O7d10RE5MMPf2DnivF5dGCGw5tNaN/n33lj3PZP/vE/EhGRHP20t2+Gvh4p\n", - "q1/7tb8+bvv1/zZMA7/4i78ybnsT6bbHD8w0uOtUW4eI8qmmrGxMqAK/jpfz56RZBAI0E2HPzsIY\n", - "PpkZ7D9orowY+D3mkRlpK11sQCItbd55+gRpwQ5p3CmbnId/PRd7ID3br0nZfhJ+e/z6G+O25w8D\n", - "sf9aa+O5XiClQWmhCca4o5T2dh3SVjXSc8yidZgLONMwK0LKzlWWgs2grdWvqQAG6UPWdtqADLxd\n", - "W6q8QJqjrmEondD4gwm3ozYlMCFPdsjBYR8FkbIHpAq3ZBqsnrYN67dh3E2GCu22se5w/2/Xdl8V\n", - "0MfrKD2pOls81rTwhCkVSRL6P/Hk3uA1fRXOMSMXDVWd30kZ4Xy2NE8VVfjt4oJSq3or0ByjBVWO\n", - "6A6p7OFfJX3bPTTNw3j2pKw+ZEpVIS0wzCNVab/tGi3AsmunrhRtexlTSXcI2KFPOugtzbgAB+T1\n", - "hLbpw6WtSVuxD/dCQvNpP+A5zQ4YY7qRNbhAy8G48pQyzsbnJKujq7k0pzHD/jYbe3ZsN+Ge7PlY\n", - "MMveYc+zwN0L4kciUt77/0NETv/E5n9JRP4O/v47IvJX8fe/LCK/7r1vvff3ROQ9Efn5H3WMGDFi\n", - "xIgRI0aMP4txVbL5Te/9Y/z9WES0xvmOiPwOfe8jCcjUpRiaVhrymstBABuIiDeK2JLc9lQVqBN7\n", - "q8yB/kwm5DUHouqqNmKbigEXXomShL5ATXYHpQIpct2asmyGVXXHyBH8slS5WEQkwakVOz5Noc2K\n", - "yDDBTVc/LaEPDQjoaU/vsfDf89QnCdRhB5JzUInyPLc+znyB4+f4186h1jLYHfAQpfYpE/u0rJmk\n", - "FtTDipCz9VK9C2k1jT7m0u0KpbBblGnnU0KEQPzPCWlscF1TXiVuce1IMTcBQT/ntUKqisW0IgTx\n", - "PIGXEysG68opJ7JnDrKvKrKH3Ybr//HZt+28qmtoE0kigCjriIDaN2ElXrqwv5yIsOpd2PRW6j2d\n", - "BFmDQyp1v/d+IJQPjbVzbw5iLSGYE5Rxv/ud74/bDg4DAlUCOTg/t/vq1/7a3xARkf/8v/hPx23/\n", - "+r/xb4mIyNd/+/fHbU+efkNERE5OjGz+9ttvi4jI44+t7R3Gybe+af2k6vUZ4NklIVITEEzf+onP\n", - "j9sWQHX6h9avb0LtvG/s3nm6CXICN28awnbrbvCs29uz8aSoo5KTO0IL1KcyeUEBhidEugFBvV/a\n", - "ue4fB5Lt3jVDpD74RpCTaE4NuTt7Hq7JvDKETTmzLRCpGdVaHB4F9PG1T/+EtRNIb7uwQoX+PIyr\n", - "hFS01yAPp4TIdFvIJFDxyBbyJDNFM+geLlBEkFREdk8UkSevS/TTllDqtgn9VHpGfYHwEXKfYsra\n", - "4Jow+m2q13YOWmyyXtM83YY+KQsrCtAMQ5qQn2kPBwpC80fIHsen6WqsCmG3Be/VxYJQ0jbcCwk9\n", - "ky7OUIBEiGiDoqiBimcqoOMFPElTytK0Kk3hKNOg835GUhvqisFpB/WaJU9WD/SNXS56IGxMsFaS\n", - "ucrZ1K21d38vjPV5anOiplsW9OzqgU5fkHWiIpsJ9WeiD0+xfurgbVnAa5OLiJSon6bsdbjd+UxE\n", - "pK4VVaOx3qraPEknYU4g4E78j8Cc/l+TzX0YUT+M0v7D6e4xYsSIESNGjBh/RuOqiNRj59wt7/3H\n", - "zrnbIqLmaQ9E5FX63l1suxS//VvvjiXqd986krc+O33R12LEiBEjRowYMf4/jQ/fXciH76rMxiWa\n", - "905c9UXqfxSRvyEi/xH+/fu0/b9xzv0nElJ674jI771oBz/3l98aiXsiIksQLMvS4LkG0PbgDAus\n", - "oJVRFIZ3K7Q8JbXxPRAvzzamGNwMAfpNQSxlgplC9jvaGYBxUyKsr9dId00ZxoXhMCnbOsCojlW0\n", - "FYLE9/LO4NQJSH81p8wAhedERFRlc5dY2zPAshWZG6shs6fzcSBxKgGvo8Ex+vmK0PcvG/9qapPT\n", - "km17mYDZKxmVIfhetT1s2wa/HUAKzVpLT5R5gMc9kVOVbF8RiX1ahmux7kxbRlMLA5sra5Mp3aH7\n", - "bqDOmxLE3OBaTCk9kCZQUSYS7bOLYBCck+HwEikDNi3tkdJYN0ZsTZEOzqCs3DQ2riYwXJ2Ulh6a\n", - "IKXy0YN747bZLIz1jFS8B6QMUkpLnj0PpN1qRkauVfjNEtpBX/rKXxg/+81/9A9EROQXfuHnxm2/\n", - "8Rt/V0REfuoLPzVuOzoOabz33/9g3Pbhh4Fsvd1aHkmJ4puVXadr89D2Aor5BbsYOCWAG4k6B8m8\n", - "pVTIvR/cExGR23eOx23Tadjfxdr6v1ViK+VqyiJc/9ksjLVyYmkfTaMUpO2mIlCLhZ1XC+VxR/PJ\n", - "2f2QPr0gZfHXvhCMjhePb4/bHt/7AxERef7M9KbKFBpIRThXylhLjmOsSe/q4GZYuyasmH2KuY5y\n", - "YC0I5S3dz6rp05BSeYnz7XHzZo5TS6FtGY2rUdyOim2UbE7TlKRIm7IDwBrzc+uoeATHQ8ZeBiLH\n", - "p5iTuK9VvXpFfT3TbaQKr+rhjgo62g7k9cbms0GNfDUVRgUrZaHnQCa2uE+5sELJ0GVqxQ6j9lJv\n", - "165tw3XvOtKPw/5SKJz3pCKu89pOunGcs+wcVO8wyyv6IoqHMkrBgqDO7iEJqB/9wGbZSIGD7pLs\n", - "6POFtqeFuRgoRSQtSSsSE39GyuJrDG7WgFJF+YxoMett0AqrlPpApu1KGeioX1WWLU0unz87hVRQ\n", - "VleD6rC/0Ka7bx/J3beVruDln/xPn8ifFj/yRco59+si8s+IyLFz7r6I/Aci8h+KyN9zzv1rInJP\n", - "RP6aiIj3/lvOub8nIt+SkJD+Nz0nk2PEiBEjRowYMf5/FD/yRcp7/6/8KR/95T/l+39LRP7Wj9pv\n", - "KwtpabWSjWRrWhnghXTTGmGtgDnTdPLOuE095FJaOc0UkVqaAmyP8tguQVkv+UDp6pO39Xgzdc7e\n", - "zBOUAjfkSZfqm35u3el1FbNDrAz/KpqUUHmllut6VnFX/jOXv8PPj7jW0qBMviS16w4rzJ5WKV5J\n", - "hiP6RO0FMuJ2vg8CLpXGqoRDyYq542rCzjUHUbutraFKBmdC/xZq7w795cUIuylWRlMitmYgirrc\n", - "VpUTXbk7Q3O8V7V1Wrmml0tie1zH8XsEyWnJ72pj53/rTkBfzs7MLy8HKXRLsgbq8dUnhr40HgRI\n", - "UsDOIImwxfdKKnVe4BrefuPNcduj+wH12Z8b+iIg7H9CxG71uDs9JfI21Kh7kh3R2o47d4OEwXJh\n", - "379Yh9XycW+I3DtvfVpERJ48sdXZxx+H1eKXv/zlS9uWS0M6dPzfuXNi24BiXDsM1y4jwvoFELTZ\n", - "zMbaIXzfVgsbEwtIKHz00aNx2+tvBVK+bMgncqIohd3PEyByut7rd0jk4Z6YnRiCtIXK943rdg4P\n", - "N2FF/sEP3h+37QNNOKlsQH39f/+fRUTkzc/+9Ljt2h3U4hApViDdUqAoQYnrIiIHx3dFROTw0K5/\n", - "vwzHb3qSbpgEUu7Zqc1/MyAxm42RslVRPCls3NHdLiK796u6QvA8mY1uD/bLTpETQhUqsObVc1NE\n", - "5AB+ogUhAgXmmBYPgKekhF2BZD1NWRIkHL+jAhxVqHcsp+PWaJNt2wCJVSKyiEgPAnZeKRF6/Gic\n", - "QwaakxOQoiualEt4WG7Ia24CNDMj6ZQRuSFl77oNKJ1H9qPgYhtVYqdron28s00nMiKMZyNiRsgh\n", - "kHC3U2QE1I8mqgF929cqYWJjrYZPbFPQ3K0+iTSf6uOH0bQU/rMdaVI0rRZl2Tw1wY/Ozu6LiEhV\n", - "2bPOY95lErnrw/xH4Oco+8BFYcNYZEUK/HgHGSg7lDK0+oKIyuYxYsSIESNGjBhXjPgiFSNGjBgx\n", - "YsSIccV4aabFfdeOWkcilr5KSR9DTTtdx0S0AJV6Z/CcmlUyG0uNfjMyvG3bc3ymWiREBNeUGiN4\n", - "IJszsbuFFk9LjDlVgB4IWveqCkvnqAaVg2oXJUzixtcLaoB6CxM83sE8MnMExePzZmNppLpTwiph\n", - "m4AvFYHvO8NYizT0YUuwr+tV2ZdUZIHV9mTkqXvZMXYctUpIlRx9nO9A2+F8aqjNdnStExfSRwUR\n", - "Jqea0vNMoofei+PUAoj1BC2rHotj11gcT/WufE9KyEC2pwfW3o8e/pGIiGSFpUeSIaS+BkotJmqW\n", - "TddOSflMdkyc6qeFcX1+atfkZz7/F0VE5NF9UyyfTQLxvGZ1XpC3b90ysueDj4JWUU4GneUkpLvn\n", - "ZLjbqGknUjsfvf+98bOv/PwviojIH/zBH9jxkR48ODAC+GuvBbLz979v+lTTabiPrx0a2XazUW0j\n", - "GycHMIFW0n+9tnF1fD2Mydnc2rvdhLTLfGqprcOjPZyzpfYuzmGkvGfXROkDe3T+ExQN6D2U0MXR\n", - "tN9iSelRpBafPbpn5wq9pQMqQGlOw9j9pLbzuXsztPnZh98ct+1fCym4azft2qUD1OhxbW7etNTi\n", - "/hG+d2Tfl61q5tic1Ov88PTxuO3Jo1AAsCHyto4/1rtrkOaqKpCOOT0ykpiZAoAUGN1sJagKPc0d\n", - "agyeEnm/UM0sSpWpgXKFx9MBURZ6pGcuNpTGQ1oqJ4P2FumhtKNCAVH3ClbWDsfqaT5p23D+KTT4\n", - "WNlcU8COiPWDFgORtqEKuPWOjo9r0veWWtaMmn+BjtKANN6GnlO1D2m/ji6KA3k84aIAKNAXVBSQ\n", - "qQkwFeoovYPTeD2KsvhecB5zcA66R09K7Gj7s3Mba0cHYU7oqVCshd4WaxV6pG8H4WtXXPpehuvu\n", - "s5DG9r096zLVO/N2//WtPuOp/7Nwr3t6TrVdmHdZq6yFVqP0pCTgSMztBRERqRgxYsSIESNGjCvG\n", - "S0Ok0kTEEcHL6Zu7Y6QhvCVOyMOnw5tmQ+WnOXzKBrHfFopIkU8cOHHSjorqLE2gXm/2BruBrIFn\n", - "SQKsqraJkQh1VZUQAd1LWPWlORPasSJSDztCulQSoWeyOY7ld8jmeDNnVEXPj1a/SihmFdsEKzZd\n", - "aOQJqf5qmX5Bpb4gduf55Td4ZvHpomcglKpD3yVCb/Uou3be0LRSDQVBJtxQWXtTh3O4EJOwqK6B\n", - "HJkT2TNXtWn2NVTCIBPgQVTnfk/VayqssFhqoYLnlWttNeKS0JaUVnUKuuWMfqX6EcsvwCeNVqm6\n", - "Oq/7sN8vvPkXx8++/V0ohlevjdu6bSB0tkSAP4Ky8CePjFh8fBSQkw1dEyWIbsh/7fpxIE0rWvTK\n", - "K3asH9wLxM43iOzeQ6n93g8Mfbp+/TrOy041xyq+76w/FemYV4YwrlGePoWsgbZbRGQFpK2aGPqk\n", - "91pP40/V2dlDbA0PxYzGs6JPRWEIo6JTGyBdAxFRJ0DV2hVJgUOJfn7DUKJPPgh+7q+8+qlx2xl0\n", - "Ovq1lbU3dVjpz28bmrS4OEU7rU3Xj8PnHRSuc5IayYBOdaRznM+uXWp7g/lnduOufQ/E/4tHpCyP\n", - "OSGbGqFZLSDUkzJjSQogwo7L1WtFxKidkDNhV4qRtM7ICTIMPJvNgdR7/HtIWYWnQIsykslpobK9\n", - "U5KPubDtGPUP466he0IclMKpUGjAnKmODsmOOwP+Jsa0umwMYnNXN6h0gvVrDeQwI/kBJe2z/ECO\n", - "QV4vw70xkNehonrdYPew67X/KSMy/nUZVeLiAUURk9T6uBmW+CX73gKJhHr4dkP3FeZfJow/O7sX\n", - "vk/PDn0mejE0S8dRS44CPdqXEHIomMcbJaB7KmJSXj0T21XihiR5hhbFBinNyZifeT4ZW0zPKUfH\n", - "e1FERCpGjBgxYsSIEeOKEV+kYsSIESNGjBgxrhgvLbXnpduRvVXYVeE/ESMg5hnBjnWA2+qWGbuA\n", - "R1kXSYnFlNoaQHJVJVRWfR6JbUS6TMEA3yEgI2XWEIypBsZDzTLe0AwhaLsfU3tI8RA5VNvCqUg/\n", - "4HNKWfQQ3xrYIFRhSTZcRt/1ZGRcVlCFz0Jfty2R85AqzYnEnuVLtJOIiEgPMTlPYVaGgpW825Ni\n", - "sAzhOrJmx2ggirRASer0GxCPMwKqV+vQzvm+HUth/oxMextVRaZr5xMllhsErjCvpgXXG/v+aydB\n", - "4+fs3Mje80OoIxNhulPiKaUFR9dq2jYSmimRoWax1+afFRGRDx789vhZBYPOtrHUpir6TkgxWYnn\n", - "16/ZNvVK5oKGAn07P7J06wIOoqdnIWV4+/Yb42enp6rfY2kEzUCcHJva+gV0nMrS9ruFPo+qJIuY\n", - "8n1LhqeaZmvqJfZv56DK/puNkb2vwwR4uzayqWpR3SKDYqcS+KQ3dnAQPt/ft3SLpvnnc2hs0T3U\n", - "4bNqn5TgoTFUZKYjNT0O5PDhk4fWzjfeEBGR03vfGrd5zGOZszF+gjZXpJWWoHimQHp0781PW5uW\n", - "IFFPyY0a81m7tfu0BIlfKC3UQNF+OrG2C1JENZkLJ5iDskTn0Ms0AiZHlyD7cnpq/A0Vj2ixi6cC\n", - "FJ1jyW96TK3pHHNO2l5qLjydsGI4NOsoPaRFLBvSEZtg/vNEAdnU4d6qiEucZVp4gPbSHJ7pM4um\n", - "vwyk9JbUybNMn1NGAVGF+umEi2KQRiPD3d6pKjjSXi1pTG1RAOCs2KVM1bGCSORINzJVQRvN2l4e\n", - "431gSgmKoXqi2aROje6R9iUCvGrFeep/fXbkPbcJzwlHY1c1w0g/UnB/5FTQNeDZqVplLHvVoPDA\n", - "U3sLrR1jvTM9LPWJpmo9aVbp0PaUKu/dD8ecIiIVI0aMGDFixIhxxXhpiFTbLSWhlVmHt+RJbqs/\n", - "feslrrWkWOlkVI6o6t2MEqg6qyeyb68lm3gj7sVWYYMP25hYmAhQMkLOPLpsS75WuZa9LkmBe66/\n", - "IXVYoFROSz5ppaNyCT6jMmCgGh2R2FVVgRYE0uMNu8+4rB+rQyrTVWmJ3AeCLaueuzSsyBvygVO1\n", - "9Z5Qwim8DhtCpLbwdVNUUURE+bFDclmBfEbFA/sgAG/asILJcpZ/CMenBZnUq7Dqm8xtRVqhFLsn\n", - "9GEFMqRvrE19ourthDCMRQPh+ydHhrR8/CSU089mdF3VL4tQrcGBFEq+hlpq7wbyesKKLHVG8m/r\n", - "cHKHt4A+bZ6Pn01BAPXsYejDtumeoSrPnwXEpqEbpcEqfo++9wxK4W1jfTzfCyvnYh3O8ezsyfjZ\n", - "rVsBudhuSWoBitHLlY0T9TrznlFSlTEmn0SMhaoioi72nWOV3lEfqqxAW9vxU4zxprNjnRzN8JmV\n", - "yZdAX4qJXeschQ0FwQ8qhZFNwjXJCK0oVZWcSKceBNhhZcruRyB0PyHF9A5E+aM3vjBuu3gYlM+T\n", - "jIotoNCcFJdL0kv1PLswRDA7DGR89p9brYCqeLtRVt8OCvjFnpH3S5S/z2Z2/NOnYeyw2rcqG3SY\n", - "pwpuG4ojCkKOFZ3K6P5T4nndWZ8MOEbbENKgx6T9tUDHLurwW54v0lYJ2zZ3laNjg107lf1Y0zjd\n", - "1iBbE5qmGYaWClXUg1XJ63Ra0o2+gkSiHi4jct0QrslQ2/E1I6HzJe+7Hwx1LiGd0AJpaqjYwUNq\n", - "waecacHzhLzxnH6e2Db9uyBESNXAO5oTmgGFUoWNJ49nocMztG/J11NlgijToPIPCc1dXlXxCSXv\n", - "0tD/BP6MTiWkZiE9fPTy/jLpe4uiJNbpyKfadiKxI3PUkEzFKH9BavvOX5Zf6OjeelFERCpGjBgx\n", - "YsSIEeOK8dIQqWFoR2RIRCTxWgZJ5frg3jAfZxQw6xhpwfcI4Snwqp94ysciD6w5Wv5+lqpY2uXV\n", - "Use5XyRaW3rT7gCZpIVtq7dOd0xnrV5vQNC4vHTQVT2hVFg5saxBiVx63TJKpuWnDN2BZ8BCbz7H\n", - "fsOxysJW5h36k1G9NFOndSprxuqU+7/RFRzx1sYSXltMy6CCeNTMsgQSgLaw/IHDCkv9+ML56H5t\n", - "VaGV40VF/K5NgfOi1V8f0Jme+iQHbyLHdV1vjXuQ66alyQAAIABJREFUgfOTkIO4A0qQZ8SvwwqO\n", - "lyVlrt6N1J8S0IFJeWPcNr8eUILHENCc0jms4THJPIsZEIGWynUz9OuKfL0SfC+hdt66FVC8B/dN\n", - "JuHps3CBPv/5z4mIyL17xgdTngsLWF5cKG+KPSR1RUyr2ibcE5MJiakCJepa4zeZ6GXYduOEUDWs\n", - "vg/nhqotFmHlzvepiiOqgKSIyEzbTOevIqHMUdM2l2O/E/qiHEmScFDkihRRpFnBf+8N4zJtH0Ie\n", - "ojCUbO9W8Adt1oY+zHFueUUiqZ0ivLhfCFWRGnzAmSGycwy8zcMPxm0V0J97f/iPx2237rwuIiLP\n", - "n5knmnJk8tzGnc43JfiSzIdqwBtzhIiorAR/b7VeXdrmFLkivokKwV6s7b5THZGJhP2uCS05BHK1\n", - "JKTzDG3KCCXScdVu7VjKh+LniSJCLWUY1E9U7yFWmhmQYcgZpkLzWqYjYa7vtrax60K/rje27fpx\n", - "OMeUELYewpWiaD7xYWvMu0Nvz7URCGM6mj472VcO++12JCmAEnWX51gCPSVP4X8HBMcP9uxqavjf\n", - "TgnpxTVmMVedID0b4Olzb2c+edHzfIrzAh+ZfPUa9EmzJakDZJtS0qRJVSSZRaIVzSMulyL2RU7n\n", - "w2jbCyIiUjFixIgRI0aMGFeM+CIVI0aMGDFixIhxxXhpqb28KkbStYhIAii03dq2CmmkvqfSXECG\n", - "xKGWZhMwSC5dVui/qoyouG7D35oB6xkKBSycEenSJ+q5Qw3Hb6ZU6i1pgN47wnYbqHgLpbsU0c5T\n", - "VRjn9kKugNJo6s1WEzlzq3WdDIWKKvAyZBtgTPauU3J5qZDxQKlVkGyXG8vFFRUUc4nE3um1oGNp\n", - "qa/3lpbT9CnLOajasSdV8AaSEfN5KNdua9vvViUZCPaugTdPibDpoF6dCo+dcI4deS05kOy9t9SK\n", - "oswH8FB78Nj82kqQ5zMiB49+fqTinEIBvWms/HlSBHXqnq6xpnRTKrLYA2l+swDplyD2Oe6JKn1l\n", - "3HbnZkgPPXzfSu21GiOhvp7B9+3i3M41Qarq5k0rf//owT0REXn6NKR7VKVcRGSJdNuKSNSqjs4l\n", - "5DoWWxr/mvpoqK69nOG8vV2TDvfsDMrmljqUUcOBvRn1GOz11oHEW5DadZqoJxyPcRR70LUrME7S\n", - "UYmbTku9M0mJWtQLtKSctcqa0LXLZlAg31jKanJ8J5zPhcmOtFBKV9KriEiB9KHuLd0nuYLTUAww\n", - "JE/HTR6l48XExmmzCL++ft3SyOcY2+w1pmk5TssqaXokT1N6TlXOd9J9TXNpm0NfF5RaVQJ6R7Iz\n", - "PVIqh3NKFeEaDyhJH0jF+/kKnowdpbFx2zfk/1aAKjCf2TzdNOEe2zY2npVYzs+YHMUQVk5P9AgU\n", - "kbREbB8wj/Y9p4z1X1bMRr8SfLFZq/+gXbsOKe0UOUVOuyotgot9Usy1Rcnfw31SXvYf7Acu/wdV\n", - "gtNtSOmnQoRy/CZBWszzPjCfqROFiMhsBheBzMZ63eE6kkq4pk3ZbaCDxIijeUJ9Ui3dR/2Kvmjp\n", - "mVCnmBP5vipRqMC+fl1oZ0cpYE2L9lx4lvDEcDkiIhUjRowYMWLEiHHFeGmIVFHuiaNSxqHRN077\n", - "TtuFN8iC3si3KI1dEGGzQqkxC8fpinlg8nQaUI8OXkKeypp7p2/TLIyH0vCdl1EtCbbvaZmkS9nr\n", - "Dt+mUnevIp6pks2J9OaVsEvtVZLzYKvaNUQqZ8dErFZRMXqD3oAA2BMpcQsy8kQF/xyjb7oKo5JP\n", - "EDBzEuT0WIk58hA0HyIqAMCmoiBETEmchMi0NUjxVdhvURKJEwKbO+X/WK2uN+TJiLZX5cG4rczC\n", - "qjMlRMI8/qjvgEgs67DCn5Ykl6BoSkbEeqz+JyWVy0JoNCVBuBxO5BURFpWUnYmt0pbPIDCKMnhf\n", - "2y05A9m2W9g5NFuMXRaEVZtEOtctkMWT64ZmPHwc3Nlfff2NcdvJSUAsnj0L0gjsq5dloW2MNFmJ\n", - "N8mPAE3d8Y5UnzIqddZig6Ky8+/gnaZoWkPEbnWu31BhgZL3J1NCtTDsG1p9TnNFfUm4FegIF29o\n", - "nzXwH0xL+36PMumMpC60DFto7tICjIT8P/tpGIslzUlr+OqVJEngl2FsbZaE5oJ4nkGstt0aOb+4\n", - "GaQW2ne/bvvYC9IZ9akVEQyrgD4lhbVzijHbNIycAGEgkUZF8bxTQUqSOlG5CkI6VEy0I/kN/ZvA\n", - "P9luIbBLBTi664T6Kcd5T4B6TwgQnOdh7KwIfVoNYV7rB7uu6r86m1CpPYpW6o3dz2fLcN8XhR1k\n", - "swj73ttHyT8j/ZCaYYRCxy7vV4WGeT5VX09PWYcORUM9ZQ5URqTH82QYGJkJ+yX91FEImed/JXun\n", - "lE3oW70m1Han52jf02cbeye2uMk87nW3kxHRIi5rUwHx2YrvJ8z/PRVF9Q5CvAnNcZgTevauxece\n", - "mSbmfmvRFouPdhgfFT+8R6FN29RtUahFwtEe2SRF8EREplN7trwoIiIVI0aMGDFixIhxxYgvUjFi\n", - "xIgRI0aMGFeMl5baS4ZMytTSXhn0ZhqCIgeo4iYErbfw1duQZs5qreq8nNpTZWnCAAHHj8rBhb1H\n", - "qup5yqIhKdRUE9OCUdhPCApVMnJHcLMkl2FxN/rYqece+wVeViJXZJUVc/W3DK1mKnfO8DjOoyO9\n", - "qUH1NpCym0xsvxXOYY80e7abcD5FQSlQ1UyhdFsL4idreygBcCBS5noTYNyDGXmddeG6a/omJ8Kk\n", - "9pyj80+60P+LtaVC8jzso6R06/4kpKyWiY2TFL6DQ84KxEg3qC4Mp1Y1BcjGTprGJSJmnmtRBJMT\n", - "Nd1n39uH9k+7NvLsmL7GveAojbhaoGCCSMTDNpzjtLIxOepikYp8jXxfR0Iumj5ZLCxVrKRwJR1z\n", - "2kvTA0omFrFUEI9JTdXspLtVn4hSS9o7nlLKxUTTfEgj02czVTanMaTFC44KAAqkwgaazvQcj44s\n", - "tann5ok8rD5mY3pma+dfgahcr8jXDymblIjtg6YnSYo5hcfdQPdpMcE92dj+elVRXpu20+L+/dD2\n", - "d4IuVXphKQtVvnd3TLMqffCHYV+ZtWmDPll+8MfjtvlRSClu1nRPIN2Zk96XjhmH+zklasUcRQGe\n", - "U3ZQ53c0/463EWlGVVCZ73ouSnDYB6vn43pryp6OX0KLadiyYnm41jx3pOiLnvShpuiTvaltew6n\n", - "hO3axniK+aHRwicujkDb1aNTxHxK+dmR457oaY5XFfEs5QIYeJe25AmKVF7Xql/e+JE9szbsSRt+\n", - "O9RMQFdfUSqKUW0nSje6F/yl2ot5xj6ZSIF1qlloY1i9bg8OrChmnAto7qygqdZS+r7eqscmUUXQ\n", - "9po8Fh2eN5aCpJQhnutcvKXpy4zm0wxjrd+QthRcLjoa0KoVKDsK+FFHKkaMGDFixIgR48cSLw2R\n", - "yiSTLDHSaa6Oz4Q+rfEG3xOJTN+0e0Juzi4CYZAWiZJl6qtk25TEqKvEg4qIxfDS2fZWfj3A9b4s\n", - "SQEc5OieZA2ykZxHxGa8YQ9Ukqlll2500qZIdsl8IkY63CVMNzufidhKyBGJsADJr6dVikoLtFi4\n", - "kTi5FJPQx0VFb+FtvnPMcOBwDh3Lk2OF33smz+NY5GGlFbbn5+YnV2AMtFgFduR/WEHFuCV59Ayr\n", - "yvOV7bfuwwntU6FAhRLyxBapsjmHijUpul9sAxKgXVySEm6HlVlGpEslYDZ0Xrq/nZXmSGgn/0Gs\n", - "yLakdqxFDjXGSYcSbRGR6RDO4aS0ld4pfPU8ESFbRcISKgkGyXvFaEquZGu7nioFUJH/nEZHK8dx\n", - "H8mL1l66+rUtJdABlinQ3zpav42eaapOXlgfFriH2Ydtgnbm3N5MXQnoXsvD38uloW+qvJxS/fkG\n", - "pHxF2HgMt1j1d8TsLYCYt4ScpxjYrM7c4+ZKSAG7A4m5Xds1Lk+C2ni+TwR83ccjkMdL6q8nwePP\n", - "k0xF26v8ApXkF4GAvmYRadx3N05MEuEMchMNIZF6nUr0ccJyBZhQWzZABXI0pXNNFSUmpX5VUeeB\n", - "0gBZYtQl1eMB4d/SXHOxCUVGFyvrwxRjrG3sHLIKxG7GXIBmsUp1irHYDnaOOebpDoUljOoMQJC4\n", - "1F7HGo+rflCUkqRTMMlwWf/Qhb8X53ah5nOgfiNyxKX5imqNm0bZn4QuyQgi03llZdiYESKbTxR9\n", - "IUcPv8W/tr8BqJsizZx9qeCTyYVCFZ6JPNcMnUon0PkA/RmzKiJSoECKpjhZg+yujhLsg6eJEEbQ\n", - "ypFkbp2izh5FeTxu28IzcKBrp/MeS7zsJIVeEBGRihEjRowYMWLEuGLEF6kYMWLEiBEjRowrxktL\n", - "7fVtKhmZFqdQjE0dQfZA9C82puKr5PE8M7j/fBXg7gWpKB/vB2XpggjtCXSGHIiNCUG2RaFK5ETi\n", - "g2lukhqxsURqifwRpQVk2VIKTM2FW9JgatXw1is8aXBuDqJmTrCnItwpexHjkmVEwFUSMYuvqrKz\n", - "Jx2dehvaMp+F82l6Sjv1AU5mjZdMoVrW7HB6nQyydsniT35NHK5tSnhzBkIfE5p9BrIvdJcGUsxN\n", - "kYrylJ9TpXpPxF7XqmYKQct5SKMVpKK+cYHEyxkrlypRH1pIhemFDP4ysTFNlDC7pu+Ff5PUSPR5\n", - "FvZTkOFxgzxLwUrx6JMMcHrRmxJzAvK4I9Xp2QypBdICSjH+2Aw1LzQ9QaRY5E8aMma+ffuWiIg8\n", - "g5HtrmYQUiGUitEUGGtLKRmdCegV0uYNpcU0fcipcj2ejjvVZAongetJJHavJGIa6/2YbrB+yjrV\n", - "4iHNml5TcBZqvrtE8cJ0aiT+Fn2XEhF1W0OzqKO5A6bSAx0rhQL6lojVzQUI6KQ35s/D3MVGvprd\n", - "zq+hDynd3GO/w7nNicU8pPnO3v3GuO3wOIy/+ralhS8eBCPl+b7Nia2/XDygqT1NleU0J+j0VFG6\n", - "VYn3XNijiuYpFQ+0UOwe2MkWYysjB4oeWlUe6/w1zQmTSbg+R/7WuO1RE/pweWFp7DJHX9Mc22Ou\n", - "6T2natF2SuOoHFOqNAZ2p9DUUmLFLkoV4cKaEvNTQlqBbtD72c613ipVwNqk7hpaCOAc0yjwDKH5\n", - "T9NtPHcOGLM9p6fUtF5Ib8lDg5HU+1W1vO9IKb/9E9eONBN1LvbOKBhpEtJnrCOoZsVcbJAgBZfT\n", - "w2vAeW/ofqpVNR1uA6w7plQZdnZIExSWsEF9EYp9ytRSe5oXTKlQR+eJ2lNRTvbDX5UiIhUjRowY\n", - "MWLEiHHFeGmI1LK5kFlpK6OhhxIqEcYHrHDKglYrgBNyQrPm07AiO1+Tsi+8k3r2zhvCKmoK1KHt\n", - "bFWhC7IdxdZUFcNNRV1AImcCeN1iVcOq4J2WBNubrqfVkcguEbvAiTNhcTqSk4lsDRJxRitI3e8O\n", - "AV1JwcQYdKkSm8P+JhNbVSiJkrnETgmAhJIlTv2iqPwfq548J1I6muJJAVmlC1hNYKixigQ53hGx\n", - "VMt5p5M5/SCskq4dkIRCq8raNk5KKCCzd6F34XxXWyalhr5osQqZlIf2fW0nLQg9ToxXP6Nic0rs\n", - "SFXJoH5SiY2eIDH1Eeuw4iu8oTXNJiAd6YS/r0rI1ok1EFb2euyUlEpK7Ur2Z0+uZ8+fo22QFSGv\n", - "RSXZtoTSViAPs4r1wUG4n9iTr4E/JKNPWjOf53xPQO1+REGoXBmoLssKrFG6zwTgCcrq11TWr/dx\n", - "RitJbd90xvMJ2gH5hZrQZy3XrwnpWp4G5G5+QnIB6PeOEPGigAL/0uaODB5uKakor6Aof/3VT9m2\n", - "p98L5zUHqrNvKKmqjSeE9LUo4Z8R0nTxLGybElG9h+zIxamttFUyZMdrD9cieSHDFkURrE6N884c\n", - "9WuvKtY2dnRuK3NSRYdMyIKuXYKiiR7ISUFzvToKdBckq7Je4hxs7lbFckbOtdR+IDQlxZxVTmxM\n", - "Kr6ghOac9tGrJA0zu90av7L+coPO5zzWw7mqv6CIyIC/HfnPLZdQ1C+B1uQ81yMjQKh2gSKngSYq\n", - "9aekW13S0bvQ5unNJtwTkwl54mGe6shRQOVu1MOvJKRpgr5jBXgBItRS6qZtkLkh9E0LtDyhT5qd\n", - "qUj+QB0/GmRV2MVhQNv4+acergUVlOXITtHtLFN4kraJzVM636WelPLziEjFiBEjRowYMWL8WCK+\n", - "SMWIESNGjBgxYlwxXlpqb1Ofy7owLRQlZzOJtAUpLU0NxlOSORs/7k9DOmbbWFpiC6JkQrBwg1RR\n", - "rurdHcOu4V82VOwU2ssJdlQCeEkGlfo+WrNBI9qesRgHzhHYImf6FPZkddwSmjop5dtUlblhaafR\n", - "LJgNgqFOTCQ+TT12mk7qLRXTAVpOmfQ6QsV2XhOQcXtSFt6HLsfQmgaXBwbOCLiy5xNKNyaq7YI2\n", - "CRHGM02jpoZPz+bhWJzu09TWTlpSFO4mZW9o22wXZ+O2EiTLHMfqyXg2LwPs25BmzAZpVobW9Tr6\n", - "wcbfegh9kc8NMk9HUialUaB3UysRlwxK97Lw282KtM1SjH8yKO2R5mHdp1wrFXbcPcNvKoK7Ly5C\n", - "6ulgP9wT5+d2LNWCYsJmiVRhy6rDSDcdHlpa9DEMkq9fNxNkTR+yFpWm3saUJRGRVVHf03jRlCGr\n", - "qGvxAhNQlQy/XLIq+WW9m65RXST0P+dxcT95Ni3GWNsuTYl8bxr6rqHUpuruFKSjNSrQ05RQNeE3\n", - "Tx58OG47xJhoNyjiWFnaIUVBS0aUhQukSpOBJhTMnVnPhRLoMzJyVfIwFw9oSm8kMbPCM65FQfOa\n", - "qoh7KmzQQgnW9tHCDt6faktV5J6gV9FB26iaUnoGbgtcAKGmtW1r/X+GvpsURgHQdPQgZBANY+6U\n", - "0meqZF5Cn4xuNfGagqZUnKaeuWAg16KA3rY1DbTy6DnRjel+ooWgoKFQXbyU5kscIyPT+AwE9J7m\n", - "/xKpr5wm4ARz4bKzOc4lSD2T3lONtNhqTYVCOO9MNeOIsuETnaetnWvo862WVGzQqrOGjbUS6euB\n", - "rqfSJ9i/3oyJQzu4ACDR8yctLIfn6IRSdlrI5mibG+DKUJG2l+xqy4mIJNmL0twWEZGKESNGjBgx\n", - "YsS4Yrw8+YOukw15TuUgpfqUa9PhtdXYKjnLAhIxNEQUx+rgeGa+WuebB+E4BPto2eUGyInv7C28\n", - "R+kq+0oNWpLfGdKgStRMtnYgG1a5bdt0WH0QYU2RKEXaGC1TwiADQl5Xn6yOjDLQhkh8Wv7NKyIt\n", - "Sa9p9Vf83+y9S68mWZYldI697Xveh1/3cI/IzMjMyqKq6C41AnqMEEJixJAZ/4ARo57xC3rCHCQm\n", - "/AQmzAC1oFvd0NQjs/IZERn+vM/vZW8zBntt2+umu7LQRSUX0tlSyG/Y9332OHbOMTtrrb022q6H\n", - "EL9zdm4taidlj65Lr5kF61qnkKwTsOpeUQ2rtoHYl1b4bYWVS8S2F/JvhGtlIWAPYftQGfp1dYl6\n", - "WYWtNFf4e1eZ27GiKFlkKEkEF/V1YdsegGYUuIaehOhpJu3kySaiw3V1NTm2T9IXi4X1P+/lt8ej\n", - "iY3LEit3as8JF1xCvJkO5KIP9/Zpadsy1HyaCNXRldNIx3K4j2NE4wli3yUhUkek/SsSxOJsRXAS\n", - "quEWqYv1wpC2w0H2cXbG9QexqqdyA9r/GTnU72n9LUbL9LpqFiJjRawu5c5ZX18tKSnhDz5zzq5b\n", - "x5BzzrVItVekbaKaWjWE7+uckK5ckIaEhK0HOKCvqK5gV+8ena9zzvW4J+29oVnqij68/rkd98ci\n", - "PPdHue5lave1PZd271/b/LdGu78jlHCFPnMglOzsTMbObk/O+ppkQ6v0dE67/9hWZK6nRwkAbpI5\n", - "s8jJFR6MwETJI4kKhB+lqeMEeJ7G8UuM/+/vbVx/u3/tnHPu1Fl1hGi2FSDBMJ4P3WDos1ohxGx1\n", - "kOh4IoYBSFSpVig0KaE4hPOUgOOBPvG1jqOKyAkRUQG+s+fJiP428m9Rd28AWupSQv/QxzIap7P/\n", - "eUK1a7WuHKG5E+5jRkzMvgYim1p7am7J2JMA3WEcKUpHsOqE5KV+JIajUZRw3jSPf3ZM10SdBde4\n", - "TaQtCEx1OWrmjRNYhZ7tD+TfKOKEAbXpsWvQ5+SSqiJojkVT0buA17qvtrcsC2LzECFChAgRIkSI\n", - "f5AIL1IhQoQIESJEiBBPjM9H7bnONY35PnWpwG1jb/BkCnFYSxSYioHjhL01BArMiQJbTELftCRA\n", - "HyHyvduJEFb9KpxzLgF8X5CLbAxh+0D03DgqBWLXMhcIJm8ddZRuCcaMMwha8bWUiux6wJ4J+WP0\n", - "8Ptg19UWQsGeKDsPeLwjH4+hg3id/GHU0VZdrx/5eWhBZWpXpXamR9Te9NG56/5aLoaLc6+JAokA\n", - "h3vCdgdAsCOg9dET7eC08LO1a6kC/E84MRfkCt6Bvi2JKiomoQCH2M6phNi8aaUvsrC5R/uoJ4xz\n", - "zp1qFYUTPQD/qGgiZ1+0z+7wYd42dkI9JSmJLdHH4km9UKxjbdfSh2MWRwJifyTiRzuV5I8Ue6UR\n", - "yW9mIWPrdDSqTCk9Fe+yiFfpUabbtF8PRHds4em133OBYDkXvk/696fE5nzcP/x+RX42KmhnHykt\n", - "8sp7UKH8pwo0O6IRlitpExVbFzSwU6hdmbJZreX7Dc0rutu+Yx8t9P8Ho5Y0UWS9vbDv3chcFJHb\n", - "dLd7L8dSEfutCdHjG1C2P3g5bzu+Ebpre/Vi3vbw+hs5T/KgG+DAXtVUgSFTXzDyQFNvr9lcjwq6\n", - "wjOK3eGX8Eo6kdxAfX48+ShFmjREZoETkiGYKoqRDKI04rOV+WhdI6Hj3Z314aYXWqqh+W+BRI3j\n", - "YPKREZxVQi7emgwQkXg/g/A8AgUY0ZzcAXuIqRh5rFRUY/ud6zMTVazFiidyQB/xbOnJb8vhukfQ\n", - "V1yMu9BKCER7deptl7I4HIk9lJSlonjKU3JjBwlKz+MeruhslYWPE52KqK09ntNVbW2tw6M6kSwF\n", - "gnr2hRtnHzmq3rBa4Xv0LICQfLXEvSEJxBG+WzyHRJhHo97uU4R7Nw3W19V7bKTxp/eEn+dTwrTh\n", - "xxEQqRAhQoQIESJEiCfGZ0OkpmFybWSrpWYQQWXe2upjXq1HJiI9nLBaKwy5mvDGHlFdpyKVFXFL\n", - "K7K+fezs3VIa+kKdYCcWQstqbexM2BxNuiK39/oZkSLH2BSrrqHld1W8McdaG4/S4NWVl5248bau\n", - "Kxk5J/n7UV0lqPL4nCYsJwZaaeghigwOu5RCOgKl6agOXgyB30Arg67X1RqtKnoVoJuIu2nEWZhT\n", - "/bWuGQGBrgXadAQiEFMadAShIJtjnyAizckVfxbF0srx7g7i+cT2lzogQpOtZhOIQU+t9BfP7rij\n", - "toWtYGqsyAdSUWalXFDLTvle24kEm0h/zjNCmBRNRSJAQuhPB5fxaTKkyQE5aHpe1UKUTkJ9r+nP\n", - "JPZu4J4+EcKpyJEhOLQy/oPvOGfITfzIWR92HoSSliVSjQnNUIH4o1qL+M0Kq1C2P9Dj3nirK6eO\n", - "8vp9PndGE/X8FksSwOOeFIRcj738ZgP7B7aQUCA2pWs9AM1LEk6/fvyv7Bh2Dh3NP/dvnHPOnRaG\n", - "SJ3j3O+9jZ09UKwV7DcSQtWGUdCX6GT3td6JeH1BVSFqpP9fPbNjvX/9FtdobZxnisgwSgA0G/eO\n", - "74kiR0Nn51THco1Jbn19itV+hFolU4SP7Bd0TqY+EWHuUkuEs7W1/8+Q0JNEZCsySA3NujaGowVK\n", - "Gw02/jMItcfexn+GOp5JwnYethfnTBAux5Vr4LE+jHDbJ6RrUBR1JJuASQXTdD8HxofwEyCgZvtD\n", - "KDnGPddkdZhjGdVLUOtzJJx2RKp/ElOty1H6ST+yeBtWA3TuWaG2C/7Rv86Z7UjdGPp6OqBSQM1J\n", - "CVo9g6wusJuusXNK1jK2Pbnyt0BTtQ1zSmxQe5qWkkjUidwT+qVAYE/zudqdjFR/Ua1teur3LfWZ\n", - "T0VApEKECBEiRIgQIZ4Y4UUqRIgQIUKECBHiifHZqL1oStxITqQVHIOLyCC2BNj67NLsnEsBCx4b\n", - "85bKIMb1JBhLAAuvqOCxUhuzFQoJsRPAmOyiPqqIz5GhBCi1iWDUVl3UqfBipi7WBI/2cPFWgSVT\n", - "kWpAzaJHN+i5sD+JnMswshAPkHFPIu5BKUiCZ3XfEBguC6NHRgilKxbnKmUUEfyMP8uU+DZQiyMZ\n", - "f2TwGTrtSewPF+Fo5EK6cs4NLjEnx2R1Ox9JbP3ug4ho1wsT23ZIQOhJRFg36uNkcLNSGh35gqmp\n", - "yQQvHKZCFRUfHtFo+Ju8cNQ9PopYgKn0CLlNq/N0RwU/0U4pKDPPxYiRqUAa8tm9mKmYCH29dsTt\n", - "oTDrRN+L4QDMVJ1SZVrwd722PqG0HBe0Ved/LsaqBVJZRJ7ChGXJAnhQZEzjqNhc/aSKwr6v7uVM\n", - "Iy61vYieUzH8OLDYV9p6Q9eT6CAjClJ/q0JVdtgevdJYJMSGKLhvmdqV6z4eiNpFn0moTfaD9LvD\n", - "b/6PeZt/9hWu1fr41gstXYOW3VAVAdUzrz5YEoPSkt3JxP6brVDfd/fmD/Ty65/JtncmXu9xb9kp\n", - "Xp2ltZniRyUDkDDCczL6QkJeO/FM31ACTkPtqNt6Fa9Tv4eLtUf7TyRE1oLHJfXrDeYx9pZ78yDt\n", - "M3JCEejzvCQaCXN2TxUNOsyBOhdnREWpO/04sgQD0gZKVJpQtHeg+X/Qou2k1FcajZNsZtE42r2n\n", - "fr2Ay/uxtuefFv71NCd1uE8ZeRs6PAvYbynLpE2mk427CvKJgtzeF+ifC/jdJXRPdMrqaV6b0BbD\n", - "xNQeKEi61iIX6nlB59kgaSEvjJYuMZ/sj5Kc4emZpDTfyNIGr8W4yQMO1UMmenZOqT7jOFUFtDA9\n", - "Tz09Az4VAZEKESJEiBAhQoR4Ynw2RCqOIxcYpJVtAAAgAElEQVQ5cqLFS2JHKZx9Km/1Kb1pqwNx\n", - "dbJUSx/LSmyiNPUFVt+eVphFj+NhZdpRym+sIm968ZzTdUlYWtfqNs5IE5AWEht6L6vPslzT9+DA\n", - "fSfXVcfs2Axh6cCICATLsb2tqzi3obf/VN+q6e1bNbN9SysyoGQjBOOeUnhTOMYeBxNsejg783XV\n", - "Xto6p3RQraE00spV60pxqmunteho9af17xTp4NWarla9NwRDV2JVbavvCKuJurX27HpxQ357+2be\n", - "toTz+Imc8rMCAsxO25rgH5wMC+ZVu80r0g3EsIM3RGICchHT/pCT4HJCHVV4Wqmth7d7kkGIzKnG\n", - "usI8VYT0YaUX0Tixc7b7rwL4aeJ+om2sSBd9BgSPESn9XFEQ56yu3mZjgmn9PKPxpwJQrutWFHDF\n", - "BjLELura17dbS0BRJIoRFP0tIyd1rX2MBbiP0S/5W46vqDKnmsdY/Q+NTQo5LBEqQlqrWu573Fs/\n", - "vb+WygprEsWfnX3hnHPuWNn33l4LcvInP/5y3nYAYppAvHtLCFLxDG1M1/rwQY51cWkr+LGW+WS5\n", - "sLE2YHIryBV+Rgfpvqt1Q6djkp3IgRbFj1ANuRc1JfY4uHcnZA/tMSfHZDGRlTI+IkK4FLlqMZ7v\n", - "BusvByCBntBfRanOCP08tNL/DjROEngGxNTH1DInJQF4W4l4v0XbeJrr+knr6tl19bjWuiU2BddY\n", - "k9VEW2tNOhqT+LvlMaYO+Uh2aQkNaTHvnEhYXSBh4DH4LclbMbEeamcRE36yiGROHJ3Np1oNI6Ua\n", - "q8oEKUiV55/oL/Ss0XHUkYdCguO3hAht1GqCIJ2+kf/JCaWKYVPRtsJIcK3BHNlIbUO1cyGsPxwa\n", - "+p78Wyy5Tq4ijARnuY+ZMEaxPhUBkQoRIkSIECFChHhihBepECFChAgRIkSIJ8Zno/a89y4i744B\n", - "BQ+rwSDGfBR4uhtT/qFzzrmYKItTL79ZJAbtnho4O5Mv0wixXRqvsA8WwgHGrlkwB2qHoe1YCymT\n", - "rwSEjx0VvNUCtTHDgxCPn18I7Hx7b/uoG/jTxESFJCrsM4izhGdR9cixWNouInhyHNQfJvtom0cx\n", - "5mkiGgki7yQ2KrLqBOLOiB7p8LdRJ85tCjluVVHR0l6/R/cYSnUVZ8tJ4H7O4mWmLOX80pgKZKJA\n", - "9fFkhUyLXKgfdgeuGhHZnpp3tm0SGqUbjRYexhWOIfBwEn88JLwnfzBQASysVBfnR4LFVvqkJxfj\n", - "GALMiHx08l767MwoEWWh1Bqf0sNeruGRZxqg7YG2ObRnRYh0UUDs6li8Ksc/wpWYPYaWKALMVNjx\n", - "KNd1e2siZvWMUj8n/puLFitVy7Sc/tYE8B/TcyyO1++zsF1pybK07ymNqKJz55yLIMC9u7O+8/y5\n", - "0G0qaFc3feeci3WuSVmIDQH6wDS+XNft69/N25T6ePvtr+dtV1/8COdux3j51TPnnHP390Y3X17I\n", - "tm/e/l5+RwWiT3t4FpGIebmW/v9wY8WQGwjUyUTcnR4wnoluy+EPFD2im0ABq2fWxHIDUCFEt+3g\n", - "aF8sbD7JU5wz7TfJ1EeIKBh07oETfzDfqtb32dpo5DiVPnFfWXudGpn/Puzsvja99GefcwUIOe6q\n", - "OLfrcZpkYA212sh92j2IZ+HtNUkwcrl3xZIKOSNB5Uie4eOo86l9rwa1Og3Wd7UwMTF1c6WIwctx\n", - "mW4/VJAP0DOxBqXsiZZWoX5FSVnpTJWR2/cASQkXIdb5iSpaaMWNCRQoe9Z16nY/Wr/SwvTef3xO\n", - "3NdOuJ6ifDZvy/XzntrJ6bPgEvviAu1yT1JKdmgrUIudzYke895APlI5+kdCc9ycIDLG9D0bg5+K\n", - "gEiFCBEiRIgQIUI8MT6f/YFzzsW2MkvxVtkP9qZZ1bIizmJO11afAEJaFP2gFUEKG4XEsYvr47pe\n", - "MR0/GtSuwPZR4VTSFaf6ApGiumpdp6JMsh9AqmtcEHKhbs9OVljr8ov5s/d3IopuOl5BPJdriAyl\n", - "G1K0SWpv1YcTxK60cBydigNJPFzJCifdyoqMndh7rMwY1dvtdzhfW5HFEFseJkN1nIryyYG7PUGA\n", - "2NGKJIMont7fta6VOtyyJUai+6OV1kKdvwk5cah151hE3cvxm8HsD9qDtCMjPInXFTlQleRjIfij\n", - "wmKwFYgpJTpC29GixjUQlE+MHEK8OZDFxziv3IB0cQ1FrJy4htlqI4LipCB3dKzmq5Mda3884vtX\n", - "87YU6eHqxO+cczcPWLkjKaDI7R6qyPsDpdorwrpYrGib7G+zNrFzDURkpHunDtFZZivizUb6ojqK\n", - "lyXZDyhKsbLVoDq1M0qmx2f0S4XnLGzW4mEJib0HrL5v3r/HuVFduRo1HAlpOe2kD5UZ2Z8gUSAr\n", - "bZl+/UbQkTU5QB+uxYG7vLCaeAe9T5Rq/nCS8yvUQuXycv4suhYk8Hi0eTLLZTUfE9I0oS/c3dn3\n", - "FNmrCBEtcC9KajtNBlBUbyC3d62NFpeUVo8mjnhdrmh6QvMv7klE1QZm13SyLpnnZ9w7AnXdCv3+\n", - "bGXI+fpujc9s7rzeS9IMC8U95k5HKNFqKeL9ZWb9uchknLw8E7uI6gub/373/c+dc4/F2TOCl1q/\n", - "ejhKf4qpKGaqtVvZKR4Iu6M2Hmpp4/xMvt9TEoOOJ0b1Na0/peeZx3Onb4kl8Vq7j5z9Md9OhHDN\n", - "iQQxnRN+O+K3NUHdKjKvCVZTVCclm4qZ4SH0sW3grF5S9RAn80hDFg/tqFUZ9BnKbv9y3CSlyh5I\n", - "PGvJwqBXJLCx/qfC94SE9VGhc7KNiSSy8/tUBEQqRIgQIUKECBHiifHZEKk8Kea3TOecm9RMkzQN\n", - "DeoZVb2tqmZpREwaBaAkTWv765CKzvXsIiBSKxh99cTBRkgXZ6M95c+rPR1rJW+pZW6rxAELFkbO\n", - "lCPvqZ7dYi2fp15WUHlsXP3ZVlap37/5BR0e10N5rRGMyLKMVhUHGCJ6Wn3BCiEnfYd3sF1AvcLM\n", - "26pO9VicBq2oy6P6e7FWC7cV5O4oq+Q0tm0VahNNxDMPSGuNS1ulRYlcT+wF/VhSDT3X6eqLdEOw\n", - "UJi8oS9qphmT1UKBWow7qnUYaZ+J2MwU5xnJvRnJQkPLxKWFHb9GzaeypLZWqwOCrjxQyo70ECl0\n", - "aC2tMCMHRAhWEyWhCoutIJKb2GwFTkB6VrQiVwPBjvru+YX0zzgx5CBBWvXD3lbTqivS2nGbjVkN\n", - "HI+EOup1oVHOz88/+oz1ZaqRYo1eDPPDPCczUays2XRTQxGxN2/2tBVaNkKa1CahpfGv55LQfmOg\n", - "jVfPTI/hsZ8SNfmayuYaD33laW+oZgadxZt339t5vpCxu78hk0y1GCCNyIRVb0soweVzucfvX9v+\n", - "FkCJNmoEzNojoNoPDzbW3nwPLdUzm5POzqR/7Mk4URHxlKb9CPf9WFH9OeiFRiAnMc0JM0r4SCOG\n", - "zwgRUdQlydgQUzV6hCbjb09rerVC0fNgBEd1c5zCX2DM5Nz/gGw2LWk0gVKf9tavzzbS/uul9YnL\n", - "i1fOOWMf7h9MexVDv/X65lfztg7Pp35kVAVaNmY9MqAqLev2Fvgt1TpErb0emtM0Z7sO7dekB0Rb\n", - "NB1ZAmEu6Oj5N0DXlpKdjZvblrSRhdZOpfp7QJN1hJH3qGs6GH1STVhFczyzJEC/WIeZ4Rh3+/fz\n", - "tjJRJoCskIAc5dAID9PHliz8TqDm2FnBNj0tfmv77WBdMtDcvU2EKVqUXM/3j78qBUQqRIgQIUKE\n", - "CBHiiRFepEKECBEiRIgQIZ4Yn8/Z3OUuoVR3FbMNk8HebhCosiLH0igV+K4juFf5Pq7/pLXWusYg\n", - "63Um8G2J1NwoNyFkDRpj35vArQEUWZAlwABX8CW5A2cbgTGblty2QSN0BC33oKrWqINVkOjSDQLf\n", - "P7/88bzp7iAurhPXdQJknJI7dgrX14isHhKI/GbKzrn5bt/fvHbOOXeR/8n8kQoFi5LSgBdCrRwq\n", - "a2utUxdRTbwBdFfLObyAWwcSm7tJa6IRtYfriJxCwWQ1AUHxNFGqK+jJcSL7CdhZRIQjPzv/M+ec\n", - "cw8ng4y7XijIkWDsvkNKbCzX1VBbl6AHB0eQOYTiTFk50IcT1ZWKQRWfiMZzo5wzOysvMqHtFEYv\n", - "PIt+5d96MMpqvZFrbclqQ8XBnq4/VXqG6E431wS0a1yv5RqVTmDaSYOtLn76U+kzTMUp3VBXdp4X\n", - "Fxc4N7vXmv5cUq0zpc9ZKK4xU0wkjtZzZ2pP6aaG6kROqdoUEGUBupGz+dNEqRLpawOJkxskcUyd\n", - "OdbvjjI/jK31id01zm/g/o++SyJyn6gol2xPIDbnlPDFSmibBhYTOc0hWpO0JEuIBFUEWBR+AmVR\n", - "kASgQL87EY2Xwkm/o7HboRZar21Hcgttd+5rWuOQHfPVHqKnc1LbDU8UjDpxeEqy+EOqdiQax892\n", - "BXZdS03iofPUpKGetmUgpu73Np88azXJgZMsZExebOV5saRkh3aQ+788WH+9xfjLqV7iZiV077G2\n", - "+SfFGE+JluuVxeL6o0hkUnkG06gZRP48T2R4ni1S228NEfdA86TWCeQKAPoXS0WUSvSUFDOgekWP\n", - "e8EVADSxqaDr71CAryBa8gDx+ETzf4/6rAON8VgTFSZKPJnbALYm/Px3Wi+VaXRQwKQY0N9Mj54/\n", - "mLu9PbuPlSR+5Zk995Mk2B+ECBEiRIgQIUL8g8RnQ6SWceFaesu7Q220jkwV51Ui1UbLR3lLnLiw\n", - "kC6EeKUDsRmVn5tNzFT0u1o9nz9KkfZ/VxP60aJeES9hOxhtOl4RweCTjOY61EmaKJ3/BoZ5m4WI\n", - "2aLYUm4VVZtIsJfAVqBPyawO+0sy22+MN/GSVxW4tSkBQmpIGGPF83BrAtfzCxEPj7mtjM5Xmhps\n", - "+73ef4/TtRXRAJsAruodebRJyu/qmkJrW9pGTnBZyvfYmE8FqJry6pxzmRpNHk0AvFk+x36tO1+s\n", - "5Hrai39v3vard/+T7HdiATxQGpy7JyGmApwpWUKMlSARbWXHTyEYHXoyGgT60lGdPi3k2JFSc1cJ\n", - "6rByso+O6nWtIJQcqMFUqH5/ZyjJOYTFI1cr13MjO4cjkKVXr17Z/kZdzcn3GNVR+4vnzy1d3wH1\n", - "ZEM+RSdevfpq3qbC1uETNarKglb4WqdrVESUqsAjyWG5tO8rYsm1sXogAquljSetk8Y2CYrc8W8T\n", - "IKIJjn9zZ4Lxdn/tnHMup1Tz9iD3f6D6Z1onLiOksQXSwfUPFcQ9OzNReHWSe1IQwjYAgSqvpA+f\n", - "yMLAAznU+pbOGfrpKIVbDQY9Hb9F//N08xT9OlDtSg+YRFHPhpJNFJFarm21nkMcnxAikaGGYk0J\n", - "ABmSYXJCTtTgtG0I9UXnVZuMlOwyGswJe0KOs8WAYxJqcCPHOpBxpxqRpmS++eHDL51zzr26+Np+\n", - "i+fE5bns78XWkj3aVsbru/1v520R8l44AUdRlSyxdho79ElChNSKJCNRetvATgHn2XlDlXIgiPFg\n", - "ba39KotpXKE+aUMG16mHmS2ZVMZ4xjAinMGkkgXd0wk2CRBs91QTNkKiDgvgPVD/jGxiPI5xR/Vc\n", - "R7ANBfUJjwQlKnE5z3vdAUgXPTqVnWHz3arV2qV2rWq705DYvVyCCSE2J4bYfQ9GyDnn0i3ZfXwi\n", - "AiIVIkSIECFChAjxxAgvUiFChAgRIkSIEE+Mz1hrb3SkDXPjqJC94XntJPRFmhg8PELYnJI/jjpL\n", - "R+Qsbp5BBrcWpXyeZQIjbgmyVcFsfkfuwIDs29E8i1a5eIV05E+k3hYl+U4MJzl+TNTKAGrl92+/\n", - "dc4598WVwaMFsMqIIN6uU2E9u/6CgiIvpAU8U3KiShP15+nstzWE2kqLHsgfZw16iL2oVIhaLK2t\n", - "FWI9DVZrbaYPPEHb8Cxy5KM19Oqsa21cV6Ab4A69LK1LenjgsD+UwrfDZJD1rhbx/OXmp/O2AnWX\n", - "LrdGY13v/tQ559z7/V/beUaPKa1FQWsLQNspUYsFPJ1aEtHG+HyivhvB0Tqi+1/VgMfJbX2De6b1\n", - "xc5X5g7eAk7PyR1/B2ftojAo/N17qSd4fm79uULtvKm1MfHsxZe4VuvPKWhpFV0eDkYjKI3DItoE\n", - "YmwWoCv1xsJu/S2L0nlsa+hxleJLs+Gj7+SUFKICdPZ702PsHozGUUF7T9RSg/Nrib7U3AYdE2sS\n", - "wr95K9fYU20uBwpwJMdyHX+nnsTGW2nXU2WU1QThfX2w+6/0fUqygHk+Q3utlnavb3ciD2jJxV6p\n", - "3QP5gxWg1lqiZ85Wck5Na9v2B5ljM5pPlV5X3y8W8ep97SmJIEZiS04u1h7SB3aqn/2QEkqeAUU5\n", - "kdv4TPdBYNy2LBmQ77XkI/cA8X49MQUOCoru3R5U9Zrq5D0goeDtrc0JF/AZ2+0l2eZyY2PyFeol\n", - "vrk3WcQHzOc9+SJqVYRHTvmgDB9JRYBlJJRsEClFqdc40hx+lP1uiMYce60rae1fgm7riFpvIOye\n", - "qLKB+m1xAYAY1RscSSBUetKjrXtKgMigH+F6dF6TLEiqolUsYpKFHDpIRRIWisNbkGQW6gep35tI\n", - "szN3cWpXlQA0jzwQ0RfZ2w2eUp7uk9YAjkcbT/f7v3V/LAIiFSJEiBAhQoQI8cT4bIiUc/1ct8k5\n", - "q8NFjghugPB8pDf9NEP6ubM3bY+370c10Zw667LaWt4wM9RV4lT/CMhAuTRUqTqKAH4isd/gZAXT\n", - "teYA3dRyrHzBLsqywvO0Ste09/f3gqB0ZPWwQoXz3FNaM+wR+s7EpgOqmke00j9HqrlrGaVDSvKj\n", - "quoQEaJtWko5PaAy/MurH83bRqzwFrkp+zRNtmsp1RXfi3gBo3YW5KysYvCBROFznTisvnNSx8e6\n", - "SiPBYAJlZ9PbivT+IALh5xc/o2tVEaW15+Xqz51zzu1rExRXSGQYNTmA2msWW07sDr/Bv4YqzJ/7\n", - "j5MdltTH1kB/BtOJz7UgFekcyEIghZ1CTJYQmq7P6epffiWWGR+uDSXMkTSwvbDV9AkWH1FGtaaO\n", - "SLWOPk4hTtBfl4SIqF3Fbkdu30D/Nhtzdu4hxuY0+fVaxsye0s/X6PeKZrEQXIXivKrU/ndo6o++\n", - "x8P/AejU5TkhfLMA3a7//l76vW/kpqj7u3POba/kt/sbS2FXQTlbGJxquWfnz6x2ZgNhe8Ju/7Og\n", - "mqxDUFu0L2xMrEsRmV+/l8+WW3ORXyBNP3NkiVCh1ibNCYoqLZd2T04Huf6InOU9EIOps3bPgdhr\n", - "V9iSYF+tS8qFoQ96TiPbXatAn1zRByAGjDDrPFYuCaWax538E9McrnPNlqxj1qg8sUhfz9u2QElb\n", - "QmkaFSxzQhNE4b/+xipKbFFRYL2BsJsE+x6C/u3KEjCWC2nju5vv5m1xCrE1oe8F2nUgOwO1CtdE\n", - "COfMnmAC+paxJcdezr3PqIZni8/JamMd6ZxNiUJ4jk2UlDBgHllR8oA+Fvi508OCZU58oXGaw4qh\n", - "Ohn6ul5KQoX3LNKWHV9s7BmzwNx5qAzh6wediwj11MQfjP/FkpNIgD5SAogiVj2xOSo2VxsO59wM\n", - "JRWE0nkwKwm3e8vVFT6OgEiFCBEiRIgQIUI8McKLVIgQIUKECBEixBPjs1F71Ti5iURnmVN42CDO\n", - "HqI3hlb7DsUTiZYa+o89Y/TPnqi1/QG+UF+C4qJ9LDKhHdYk9r3vBKrNSID9UIu3zJZE0ff3AhVe\n", - "RFd2PaAAmonEphAbKnJ9/fDr+bNoElF0lxiNZr5PdizVzp6fWZHNJBUYtTsSjdbI34fejl9hf0r7\n", - "LLitsePjiQS7cN3mpIActGg7GLTsIGL03ui+AdQDU7BxArqDPGD6PsMxVAhMlM1CYHFPUOx8LkQB\n", - "13Cj35FnzLoQmiVjv61IrvvF9h/P23739l/JeYCy7XsSIrcC2Y8xiUhBiw49CSvhmO2ouHKEv3Py\n", - "RUomFI2NjW4Za2mLFM7Gm40Jxh0g7o7Mxj1oue3a9tHgnAdy7E1T+fxwMgqqWGHbziD75Vb6+y1c\n", - "tNlj69WX4gvFLuL390J3Z+TFo4Lx49E4SxV7K03knHMlBPJv781HpkSFAIXbDwfrV2dn0hYPD0Yj\n", - "qrC7JyrkBJqBz1OTPFhYH4FaaNob218hxz+ijd+/M9p3rtk62f0f4MGzurDx10D4XZHfnQNFP7GP\n", - "DuaCBbmS7x+EMhgru56HVtr46koopsPJOkADevbZmUkLTqD2TkQ3qmxie2Zt0mmVgUfecvo/Nsa0\n", - "WHWHOaEiwXxZfuxs7kDLlzR3asWAnHzk5mORA/yIk4liGyceFM087REVp4W5PXkxrUApr87MFzC5\n", - "EX+okc5zgM8TF0F3mNsnb/f4F7/5N8455y4u0f9pH+el9MkNjeGilL9retY8BwUVl+TtpN5fPc1/\n", - "mgzCam/4KMUqT/F2r6tS7vXt3mj8dSHz/5JF7KDbtgX1v17+PpAoP8o+duxepHKNPRk56bw4Vuoj\n", - "Z/erw/joKAFA+9hm8/W8SannlKQFmf+BfEbJDsdK5ocDFRBXXz6d97kChlY+6Fp21sdnAyUxYEyk\n", - "Obuyqy+WXatKGnp68KXJH8ecAiIVIkSIECFChAjxxPhsiNSpHh/ZBRRwj26drWq1vs5IK0IVHrcN\n", - "r3TwPUoTTSFQ9FRXTe0Ujr2gSlltK0OUC3LLJaVaV0BLaFXbA/06kLN2hPfRQ2Vv2ioyVgQNJyj7\n", - "w7+exMldK8cgvbZrRhXg2pvxxeYnzjnnnl+9tC9CvP1AKuYjVsc91zACwjOiXtSG0upVCH5/oNpQ\n", - "l7JaOdR2rT1E2eyYrdYVKcFEFRCDiZa/iiwmib39q8h4mjRd1dq6LOHOTIJJFSN7xyid/ObUGCJQ\n", - "tZpYQMgJFIsp1WS8PPuhc865d3d/JfuorA0XTq6fmtDp2iMjF19NP04zW6VGENmmlFab6IqRHHhH\n", - "9IEJyF1dUx22Wq4rm6hPqtUCpfC+/l6Ems+vbEWuSE9Hx6ohLGdEZER6tAqWf/RDs5BYr2Ql3JGF\n", - "RgPH4O3GBNB2D+2cVPi5pOSNvmeX9/kM8FmHY1G6NsThObntK3IW0Yq0quS6rq4MEdb7mHkWYMO6\n", - "gNDUE9A5de+PyMV8PgahH2qXkRH63TjZ3/HINimo60e2Bg4JECeyLlhBFF1Rv5swjmq09UhOzGqn\n", - "caB6eXqvc0oKULF9S9/bvBSEZff2zbxNEdY0I+QK4uUBSBi7s+tfbH+h6GBLIuolENOUE0tiHc8k\n", - "NldHbbbCQVKMhzVKS22jY5fnGnVi57k+UeTsRELxWtqupjkmUwdyEmrfPwgi+JtvJeX9cmvC8qqW\n", - "c1qTJczPXv4j55xzb+++te81gqq8WBnCvMQ573d2PUMjc2tH6M9s7QMrHK41mKutB6XmVxBbn+U0\n", - "nztFBO08tws40DdkKwDLAq6AMWE8ayKMc84NqDwyo2qDtZeK+NlWoHd4/qSGPm9XMj6zyc4pBQNz\n", - "URrqpnVX++6X87Yax1AktK65YgISm2icaE/1NJ7VTmeifqLP4IHsFDKgecyEsD3FpyIgUiFChAgR\n", - "IkSIEE+M8CIVIkSIECFChAjxxPhs1N5D/didWWmPiNxxYxBd9yejm1T315E7bwpBY1ORAB0fx+Qj\n", - "0oIW+gaFKsvCfF9awOiTZ8dWiGjJCbkHLXDaG7S4hc/L/cOOfisCwJhcsU9H8TmJZ82n0R6T+9gJ\n", - "uunU2dug0J9+LV5IZUneTqCZDsef27Eg6KzJFVjtW9KVnJPvCOIu5bg9FVk+gdKrGoM1k1kcSv5Y\n", - "KorkgsvqVeUstEBsQ6LEHBD8CNE5WXe4fhQIPJpy2qb0oG1zcNkdSdj+UIlo+MXyJ/M2pWoigmnP\n", - "FkKR1vAROlYmRN6PAk+XJI5X190iNbGxh2B1HIxGLCKhA7LUWkALWPedbdNunBVCAdQPRsVocVX1\n", - "aZFjybm8fWOeNREg6/3B4P43b6WvrYmCe/5c/KbqgY6Ptnv5SlzPLy6soG4Ouuthx/5U0u5MmSq1\n", - "xh5QRaEePB9D4jvykXr5SmkT+L6QF4zSR3ys+3s5F6Zn9VhMCyrLMD7yllEFqp3T/kFo/kIpSPKs\n", - "c4mMk4zokQwTUEPUgu42y63z3t0IzXPx7AfzthiJBNWtCdojUJpcZaFuVAAr/y7XNtbvboXiYMfy\n", - "S9CDNzd3dp4q6KX55P6tOOCnRGN5FepSRoPexxE+PhkVLR9wTsx2pxDsc9FodZHuiW5JcB/ZF7Db\n", - "oVIFFaH3JNB3zrmcvL1ubmV8HsnbzWHuXhU2125XMj63J+u79U7bnatHYMxMdu6atPSb3/1r55xz\n", - "P3plc8jy+b8rX6fDv7j62jnn3L/z5T+dt/3d638p+4pMgH95Lue0Lo3aez9JP9lH1/O2w0nOc4lC\n", - "vhkJ0VUy4cj36IgEjZbm7kUsbZGQBCMFtffIVx1UYeRZ0K9UGX2zj/E92QdTux6Tdk6SgRqeacfO\n", - "rmvAPrLCJBBlJvPTMicJBMT2XW1JDuP0Pc4dyWZUIHrAfNp2nOyDRCXP0pIEnzFVL/vjhCo3Ki1o\n", - "N3n0j/QdH0VApEKECBEiRIgQIZ4Ynw2R6qvBdQt7481TFfZyqjtSLkd7M5ywghpHe9Pu2wTfp3RN\n", - "OLb62PbXIsXx9lZW68dnhj7oyoyFpSNWi+q06pxzLd7Se3qDP9Wywt4QwtbW8r0FbVvmstq/P/7e\n", - "OedcSSmfDtYI/UB13QpNdTdUQUVvF1tb6SyQknv3YCudb19/I/tjoT5E0V6tCWgFN+tECWk6QbCe\n", - "RHYNHWpXxZ21iTrvcq0pdQBWh3HnTFgb13bf6xau6CrOJtWjCgEnFmcD1fJ0/3OsznpOdccC81Sb\n", - "AH2xkuvYv6cVCYS0l6uv5Xyp/WvYX3CttxTt3xJypSn5iSM0J5JVV5YSwoe0+8EZ6pTDpqDqta6a\n", - "oZQZxLlpbELMHsLvlByjPdqkpL6mScmRNkoAACAASURBVBFnhHRUlay+jy2Jx3Efr56JUJ3T2gek\n", - "tUd0rEKrAhTWd3V16knYre7hvE0dq0caT5pIoUJ1Rp9MbE71L/E9tjrQFWZFVg8ex+qpdp+22Z4E\n", - "2Oo2f2whrKa1Zd/ie5RWXqHGXEaJGk4rFJAAN4Htw/2NOTavzy/xGSG36H8THUPd61XsyqjCEnYa\n", - "VUX11ypUIFjYPRkH2e+eaidu0Lc6sh+YgBgNhOapuFstKSqyZlD7g4RE9NpnJpq7O6DdGQnVG1h9\n", - "xJzqj/YcqI9NsSa0wEKA5skSVgPvrrk6AVAySmbIUSngbGVj5+5uj+sj1gF1JB+5YqOPTUgi+Otf\n", - "/O/zZ+drQVBXnhgBpMt/9cIcu3vYKVRHe07EiZzT1XNLCsm93JPv3vxfdnzMzw3qyo5k1xCjxl5m\n", - "t9W5XD6/bQ19W+F56ghV6jqtQMEiarm3LNNW5PyRxQVsURLcpySzzy420iZJTlVBgPDfnew+vQNK\n", - "W5aE0i0ECR9IAK/O7svM5q79UedOMEeOr0vtjNjCQF3Mra8pm+Cp2sZc4pH6bov9LKh24N/3ohQQ\n", - "qRAhQoQIESJEiCdGeJEKESJEiBAhQoR4Ynw2aq9tJldT8dbFmcCjw0QC9AhQXW/Q/qCnTMKywX3s\n", - "T9MCqu5JAKtFdcdeDvzuzpzFVwulFhnGF1qoG0mIB7qPofi6FVHcy2dGAY2dnGc1sQBXoEoPIXRE\n", - "8HieCSzqyWMjz9TjhNsE7tiJwagqfE3IgX2lHl0kLO4bFapmH12XFp4dBhZiCozak9Buwm/K1K5f\n", - "oeJuNLw5yURYGU3s9yHv7ewe7+Ga3EPsGlOyQd+pOzq5GMOJNy9I7IxLrBsuJCz/sGePOlt3LXm2\n", - "LGU/BWDc5MLg+ZtbOGHXVLR2o6JLO9QRlFlRkAvYiPMkUXSP2zOSsNSDxlDRq1JHzjk3RPDxooSB\n", - "Bv5lLbk9fwXvp4YomCUokLa1+//710IpPyNqYYF+rzQKu6NrIzK1ppSa+jk559xqJTTH48oCoHsf\n", - "ib2xj5QKyTZavSD+aB/aF3sSQi9BDx92JqxXOjAlymhEm+3IFX0Jv6WYlKUPEOifbWS/dUPzCpzC\n", - "B0oOULqdhe0ZkhzY72kFT6fD3rY93Il/04vn1sfu70QWUC6tQ5UoIFsheYVpPI0LKsY8U6Cl9T+l\n", - "Jc7OTBagrvSHk028BcZbRPRhhvud4j51PYmdUXmgJAG4+rMNNCfrfRyon6pqIo2NFktWcp4T+YLp\n", - "cFfK2vUkol7Iby+3lFjyXsbnWNuxUmTWJIUdawNn/9NAReiVKqakCPX50wLW33zzV/NnV/Cd+7M/\n", - "+ffnbX0m39+ujAr6YhLK6riw+adDofU0oULmuNdntSWvjFo0t8H8Q8LqGgJsrnYR+48TNe4bjA+a\n", - "k+JW28SOfzrJ9+Kc59MT9mdtPCfoIFPq/Oyr+bPNGmJ88kXU59P9kdz2MZ7fvrNEmZcX4i3V0bMr\n", - "UXkHib2LQvpxD6/EE1XscHjG8LNDs9JYljBhGyfFqLdczn5/SJSI6blD+RmfjIBIhQgRIkSIECFC\n", - "PDE+X629eud23lCVNRxgM3oz7rGqYHfk61t5q48GEmp7TRcm5ATIztDbikAd0kugEHd7c/j1EVYE\n", - "iX2/HeRtXV3HnXNuGHQFY+iTSvXu94Y0PFtrOjVBF50cN4MQMKIk4gXeuBcLW2nWqLlVNbbS2sGJ\n", - "ebuxc3q4l22nR26v8ta9opqALVZ4BWot9XT7kxQu7pSGvNvL23/TUL1ArOA6QuQ83vAbetNPBjmn\n", - "wtmKUN179Y3fOediiAI1NXUcGZGAwzG5I6c455zcvhP0mQMhR2MvK6GI6gk62DMkCSk1UR8wBjrI\n", - "yQ7brfSJHdkKjINcd56SsBL11/qBEyUgdhwIzZlE+Jon1naNl7YdsVwfSAh6AtJ5lpuIPYulfxSF\n", - "tVMPDwXPqy8gotfvrU/GmkhA3yuRcKD1r9h+QxGhga7r7k7Q1O3WRLyKel1e2j3R/TByo/srCOHi\n", - "Va9zn67hN1JtsARIByNtA5IROE1ff9PR9yasOnta4WtCQwWUpqRz20GU3jOqizpp7LbvCmkLRq52\n", - "J7l3nhDZJYTN+72hZNtncj9HWs0P6IMpxiTlWszJNm1rc4KiZHVt/TT2sq2lc1L0o1wZwn39TvpH\n", - "T3NMCwSsxH4nShhYlPJbnrs0dzxd8pyM33JeudekIK72AGH3SHYSuH6PcTIQgqzp79woBcZ/cqAk\n", - "Esx/ZW6p9lcXMmfuPSdKyHEjQuJrMCFacy0ipOff/u3/6pxzLiNh/49fiiVNFjEjsMHxDaW6gUC+\n", - "IZTGA0VNqOadB/qTAAbpSVitJA3ppd0ApMUTqngL5GogP5kN6hnGA83d+LfaW9/RPtPSdXuFZACr\n", - "L5eGoJ2dy7O7IzTXL+VefPv+m3nbopR5jMqPurudoOQZ1d9TN/yRksdSJG+MmE+GRwkz0neXC3vW\n", - "ePTPgd4JtLauJ/RxTmiiNlbEiuc95/845hQQqRAhQoQIESJEiCdGeJEKESJEiBAhQoR4Ynw2am9o\n", - "BjckBic3KNa6Xpt3xAhaKNkY7FsfBYI7HUkIB5+jvjfH5B7QfrEwqkDpAIVsJ/LJUPjex0QFQETK\n", - "QsQC1ELMbsfwOdmTA/vFhYjxppboRsCNKWjBjIr3JoDPM3L1jUqBT2/vrRjmm/F3cv0Md4Pm9OwO\n", - "PKHgaWLtlKAY5AhRaEKu6yoijEkcPSwH7JfoNvWdcXTvALP7xN7LaxQNjjIqDA2fnZREuWmkjuoQ\n", - "Ak5Eu8CxfejYM0yu25fkNg4qICJaal9JscxFZGLbEe0TM2Tdorht/gznYe2l9Mh6ZQ74Dv0qL8jZ\n", - "PJb9PVAh6xR+SwmJ8nW0MX1ZLIUC6A/w7iEoerURysjXlJSA/szO3h3U9vnC+s7ba4HMuT2rk+z7\n", - "8oq8ouA3paLsc3I2ryG2riqjdo8nULbkI8WCZg0VvnIRaqXoH/nTAFL/FBWowQL0Fq7fS/JAa5FQ\n", - "kMYsgFaxKRU3Bt2hfc4553IIqitQcUNNHjMqoqb+r07d6aMqr0hYIB+vSgvukrdainurlRicc24A\n", - "tZmQK7pSC+psT6yfO53k+Eei20dUY4hjuydKd3ZEWaVIZEioQPFMC57sexX8mO7uJdlmuzHaSYXS\n", - "JfEzKei+5dqK+w6j3JOBaLw8lXs2Uvt3EK9HrDVXUXClfcfO9wHPiWtKNnh9LfPu7mTzfwW5x5Rb\n", - "460gBo+Jptnv5Hv1kbya8CwY4EUYJ3b9NSjQv/nbfzlvy7yM06/Yxb6Ua+g6Oj4SJb4nsXUM6UWx\n", - "tP6cVzInDCf4s/XW13K0TUsVOCZ4Gk6x9SFN0Dm01k88GrlIqU8oBUsJLS0otRON3bQABQkadbU1\n", - "ylSd94/OkhgaSCuY2l2BvitzSl7A/ax7Sh6BB9qn5DPKKHNlgdjr89SovRyUZkuJKrXS/N6oVb0/\n", - "fqLniQ44Hqd/vGZxQKRChAgRIkSIECGeGp8NkVrk8VzLyznnqiPqar2kVP9E3gwPrb2tbvAi3FCa\n", - "uOop40duu/J5kRoitUAqaI9Vb7aly8fKKadVba11eGgFFSX6BktvxLGuyGx37+9/hf2ZKFfd2zVL\n", - "OyEhYAJUS11t5fvypl3RauH2XpySv5t+NW/blJLOPpI/rVoS8Iv0FMEpHiuTmBxzVcTJ6e8xbA8W\n", - "BQnWVdhMgvEJLubH2mp9pUDs+sFWiWg6V9W2SlHLAI+VS0/i4GiCJQXZL1QQCpedrX4ioGkTrb4f\n", - "DrJKnVIWJauI065HkTOH2n1sP9EDCYszW32t1hDbkmA1hTvw4f7tvO32VhIZTo3ZBKzXuE+EuuQZ\n", - "rg3dlLXxKl7Pc+4nKfZv6OcCVhd3VGttVESCjvXqFWrtnWyVWi7ktylSva+v39Fn0v9ubkywXiPF\n", - "/OUXlv6sIma2zlCEibfNqAPnX+D81Nagqig5BMhM39o+SiBhY2P9tIIT935vLvYb1JPMKXnl/Tu5\n", - "tnNa/WsiyRLfa47UX9HWbKugqfGcQq1zQkP1xxaoO7Yuqf4YxOuMhGdolIRQEu3tarWSUbr6WSnz\n", - "ybtr69cHuJdfnNl17Y/SJudnhvCfgHqORxLgYtzxPKFoYxnJvwdq1xRJBhEhommpx7X96uc93ae5\n", - "QAW5nUdA4kdCDvS3WgdyoAQQ/WWZW7tq8kJ0sOPrvRhimk9V0LymSglqHTBYv6uwnwnzf09VHLSi\n", - "wvv3lqj0b+P/Tc4j+0/mbWUrbZdSWv0ApCel8Xw4yJgtCXy5PHvlnHMuwRjSKgVynnKvi9jOqQM6\n", - "WrP9A9p6IjRrAPqUeGs7TS7iuTOBKHuge+Jz2VZosgElzKjFQBTZsQ6K8NLzJAVimsY8nwFhmwzN\n", - "7/BAzwiJ1i4wYk6MKIlJ+9BQ03MayQAFueJ3rRxjHG1b2ygibNsi1DZtaYz76Y/7HwREKkSIECFC\n", - "hAgR4onx2RCp1TJyzZF40UTedE9UL+vZlbymF95WVYuFfF5W9oY46ls3WQ1kQEy4cramWNYwPxzZ\n", - "mBErB+WMnXMuj2T11XR2npo5Hsecpg+NAmmEfAKOnvhYTWfVNHWujO6gORqohtzUYX/E3+4rWR22\n", - "vSEyh5O8aRdLO6eLpaxqho5QP9QE1NpdDa1W9I3bR6QfwgqTC18vwelzuqiDhiQhfZlW4s5y0oHB\n", - "fsKPtvzqYToXJ7CVIESoxQqLTVJ1BdF7u/4FVtATnbtqNI5kUukdVtopp8nKqmO/B4LVmR7CYWXM\n", - "5ncqr1qXVKEe6bqX56al+v7D75xzzh3IS7Gq1LjPjq+Z/cuFGo3aajFCu3akVdg9yAqWLTlKpNVr\n", - "jTTZn1xrS/qyM9RnvN8b6rI9EzSpPsoKsuLUbDQ7Z7AvgbRwNrAaRm42htx9/70gp9utwbSqUVyv\n", - "bNtsUwBkiu0X1OpjSXqcI1CdBVWa3wNF6sgSoGxhJ0Fp0iukot/dGepWYCwcoAeLSXuiyDUbKGqd\n", - "uK63dsqw/M/IpHLo5VrT2PrT+lzMB6uKtJyYO7gkZgp0bNI6fDSHdRBrXL0wPdLdh/c4JzZklT5x\n", - "f09WC4DMe0or73DvxvFjNDEFY5DRvKZyUU/oU4LHSEsocYwamxF1lBHzXkz6OjUljgayk4BGq0A9\n", - "u93BENQGfSgnVDnHsQgkcRkmLZ1f5IvoE4Tce8w7ntH5P9Tr0TyptSFZU/N3v/5b55xzZWnPqb/8\n", - "k/8A50v6XqBeA9U61FqDLddaBBJTwkx0vTINYgMLiZrQz7n+JF1/D4SJyxqq1pdrHQ419GBsnIrL\n", - "zak/t7CniBLVL5FdwKSf2bG0TqMns+yHndg/ZIXpMPV5yrUbHe5FP9oc50ZFuFFrl2xlMhi89oTI\n", - "6aMzelS7VWvy0W5bzJ09MRFogCGxQdnRc/RTERCpECFChAgRIkSIJ0Z4kQoRIkSIECFChHhifDZq\n", - "r8iWrm0o1d0JjHbzwSDziwuIs53B4zFSIqPIYLfNVqDd/Z1BwMlcL8popMnJ5zlcZNkdWN10u8Fg\n", - "fKc1tAhGVFF8WRC0nQvsmBAE3gEqLwhaVGHznHJM9MBDJdDhYrI6aJmKXckSQcXep8p+W6by+aIg\n", - "F2MIal89/w/nbX/zS0nZ/f0NhPCOaDTA2GRi7MpMxeZGo6xADzAVoJB9OpiwPhuEUoiJqswUMu05\n", - "UQCQLSDwaaRrBWTckOuyQvDHBxJxgw5cZEYZae24mtXbg9CifUtUDejA005g5KoxYa26Ig+RUXGa\n", - "rp5THSgVHmdEC19uhHr55ZvfzNsa0Awjwd1nSzj6g8bItkRjwcW/I2ftDu20KI1GU+uOxcrOKQMt\n", - "cE61xg5ID2+oJuFvfyH9eXUhdg7Prq7mz7Senh8p/Rqu2MeD9b/NWqgHFpaqAHy1tutRKj2l9HtN\n", - "sjBrEra1gNUAiXPv7uTcsw2leuM3vre+dvegzvoWHqLwLLE5YcAY70HtJWQhohQL2y+oLNs7u9cd\n", - "7CFiSmwpS2kTvtcqKF8s7d5pfbqJ8v8biG1XuZzn4d6owPVa6NnFmupVghY53HyYt6mFwIZoVJ0z\n", - "WIKwRCr6mNgYv7+R+96A7lmv7bOzjcxPzUg1GdH/UuprqlqIKaFoAgXHEgyv7ukx9WdYOyQ1EkCI\n", - "xp4mFXtbAoRWfuB5JUW/SknY36kVBSX5TOBUE7JT6R9Ad/WwMCDKdMQji61WIpzTX//8X8/bVON8\n", - "uTKbFBVWZ4Rf5Lg/TUM2NaqlaECtemsbtTYfPdG9rVJWNE+AAh6JgtViCBPP3XjuTSSm7tEmEdN3\n", - "oPZ60Lf9aDRuB6q4H6kmKtz+rzb2PHtzJ5Ysp4YkPUiKykjs7UFztgMnQ4EqxAMqp+vXhIaJ+pVe\n", - "f/koUURd8akCBKwW6obqBKr9RkKULvOBn4iASIUIESJEiBAhQjwxPhsilfjRrTN7Cz3sRQB6VZqw\n", - "7vpGVmKrta0gStQdy0nEnCOvNl2TdcGotdbsmDFS3FXk7Z2tqlukmMYZpzzqcW2lecRKW4Xbzjm3\n", - "PZMVWxETIpBqRXpbueqb9ghjypGsDq7vxKTt+TkhaBD7eVb2jurqyKsq+Xy9NEO4s6VU5F5khhL9\n", - "kz//j51zzt39CzVBM/SlUwNFQroGmNktyehRV7rLla2SaqBZRWaNfWy11tWjXHc534FrF8q5t50i\n", - "gmx+iNUXWU1EQC5HWq00sFNIva3INHU4IgG6CjBZFKtKejVLbcnora1E2L3orU+ooLgfDP0836BO\n", - "IgkmC4iMLxa2Iru9u5FzS6zdlxBAHyFE31AdtLyU63l4sGOphcYDCcavLuQYWq/ROecOR00ssOu5\n", - "+SBjjBGe7Vb6W4MkjwPV3NI7t1qSOD/62EJCEbnj0c5Ta/GxKFbT6tkkU0MFs/f3lGo/19Wza9B9\n", - "MEqp3ztSosqylG27e0Mur86l7a4PH6+IN7D42JHRowdKyDYlFUwSS8pXVyBkYvQTl8ip3jUQ8JhX\n", - "+kB9EkKzihRtBwR7Qe3fwEB2IPuDJRCui+dfztuOsCxgsa+KvLva+r+ijjmZJK7PZH8HWChUR2vr\n", - "xRK1TlnFDETckyXCfImECMVqJ0NjVzXbE5sTr+X4I2piblMTJ4/3er5kIXAv53mkftIDRe3JfqA/\n", - "SZvFSzu+1nYcSFC+WMrfN9cy/puGjJthCMuIvKqseduvf/UL2e8P7ZzOYbCr7eWccynYkWJl/elw\n", - "knkiQt8Zj5TEgHqtWl/TOef6DlYzZP5Zoy0iyhSagKq0EwvV9VlEdgoQ47Nxa6LzdCv3RPuhc861\n", - "PYxuiblQ54TF0vr1JZD9abTjqyk0Jy/oxNN3nAAhx4/Q1lybb7+D1QLbZEB4nkT2jqGCdp5PFHWc\n", - "uo8TCiLqkz3f709EQKRChAgRIkSIECGeGOFFKkSIECFChAgR4onx2ai9fde4ZUo0Rg9/ls6EsD3c\n", - "YYfeYLwkF3HecknUHiDNkqiVvcJ3tG21FAHw4SQUx76mmjut+m5Yk/hUXbzJxTVWKsrgwRNE8ynR\n", - "WCrA7qnWXgTPGoUO2TOrhhB6Qy7uk1MvFruGFB5IE9EoHUS8EVGQ68VL7IRgdMDCP3z+U+ecc796\n", - "89fzZyWojboyGN/BnXwkum0EFMreOpNXyJS9nfQd3a4xhbCUa4epQ+3tvVz3QMJOrcnGIkKn/lzk\n", - "OtvUcv2LzM6pBx2XpiT2hdi4I5hWIfKZCqD72rUqOiW6N1cnXDulPII/FFEwS1BGJa1VVOTZ0zWe\n", - "arnvP3j5I7mWxr6vsHdCzuq31wL7v7ig+n+gMT9cm7N6D+FpRKLMBbyqFkujew/wcstwQUyFqYh5\n", - "tTbBctMrZUDnCfEyexZdXJgYWkN9eZjaU/pWt0XExavLOYu9M4iXG+qn6n1Fw9RNEEMvye/r/QcR\n", - "Y19cmgD4/t03zjnnbg+yv4y+nyFRpSOKYe6TZK5VlNr/WZwLB2aqirCEK/ThYPRlAc+o6kT05aUc\n", - "b2zl3kVEBXW1tElB89QJiRfLrbX5FKtjOFFLz2X+2701V/zomZz7d7/9pZ3nUtpigfHaUrWB/U7u\n", - "sTriO+fcYoP2JBG7UjAj1Y5UR/NH4xlUaUzHmCCyj+G3xHNCiXnn1TOj+3bw7Lrd2fcaHHdJEpBd\n", - "r/591v5nJebTyebd5Ur28/Ag53sEJe+cc5Pek4nmP4y1ckP+WEhieHttdVKLXObdmJzdE/TTnJza\n", - "Rwiv7w5yrz0/pie5J+Ng8+qIhJ6RE6WU0qPsIY+Jd4hp/muQ7ED9eZgnaPYZHPVinXPOdeRj+OFG\n", - "ZClfPPvazmmSPlRQUtY5xlPdmbQj1vmRn1M495GTErwmecDHi+YfTTZhZ3WPOXlgSg5NEXlO3sL8\n", - "R5DSXA0hsnl/cmT09okIiFSIECFChAgRIsQT47MhUnH6uOL3JUTm97UhLVn5h79yboAojNEsXQiN\n", - "k70l93AqTZYmwC2A5viF/OCB6mqdOjmuJ9FZBrHfekFCwFK+14+2Ilan2gO5aPeDHGtsSGwO5+8Y\n", - "dZJ8ys0v2+4OtvrZYkWYk4VDies+kji1RcX6N2+s/tNf/FTOryc0T1P9FWlhd9oEqFK5slXVLETs\n", - "SFiMFUxP1eKnWOsfWdv1PVYJVGlcK20nVP9qqZXl4SK/e22V0RUl8uyYXsOdN6OVLsSrIyEHAxSL\n", - "EaVpq2P0kFOqMawtGqTwMtISQ+TuyfVXU8i5NtotHHvPnSFHHivnlDp5CsRspJXOAMTuYffaOefc\n", - "q/U/suNrunRpx7+8lJV4QX1iQP3B/cH6cwnn73Jp1iHzOpNWaQkqnKsVSUyCTUViuYbXGk7onlZ/\n", - "6k6uAnPnrMbeguraKcLkOSVd616ibVJCXw7kaD0fa9Q0aNuWAmlsycW8A7KX0XnmhZzL7tpQtw5j\n", - "dwtXdu5DisRwqnuK6gQTibj7QasC2DiZ0Wdy0dZdJylZQuDf1cbaSS0efvDlD51zzr1++/382QVQ\n", - "J0WGnHPu4kLa/VjZthbC6oZqFyoCfnZuiFz70GGboVndqPOZ/JYNYTQNfCInbm3hnmwK0kT63eM5\n", - "DnuiTQOSdybqYw72BzHEy9HaHMMzjJfdzlClczwo/uS5JXb8Bp/fO0IEce8eWkNzIqDIaqHjnHMj\n", - "KhmsIbK/ubX7dcK8p0kKzpkT+hk5kFuJR/ve7kHuz7MLSwrIYW0zknVDBhSzgKC+JXd2rwJ0asMY\n", - "/S+LOClI+n+Zco04CLUJTk8Wco1sAK/g0Eh2JhopnjsdoUpaJ/XdrVm9LHNpV651WCKxJuG6dep2\n", - "n9s8eToJShTzqWtNQMxdCaF6KeYwHpOKKkWPKnDI9Q+O7HQyZZ1o3k9h00JsxjjyyXwcAZEKESJE\n", - "iBAhQoR4YoQXqRAhQoQIESJEiCfGZ6P2+nF0nkSkUSFQ3CX56NS9+HjEVI1xhMs5iyhVFNqSYE0B\n", - "xQWJotV5OQPsPJAQsj0pxGeQcQx4siBs++VzoQDefTC6ScXDngrE1hCvpwsW7KnYElQUeXwkKLx4\n", - "aqgYqheqJqWCmlpcOSPH4BoC1Ie9/faXvxGX3RdXP5u3TepQHcn31afIOec8HMZz8tEaWhXs2XV1\n", - "8ODanUycmcz3keBu5VsnFsrL30VpNEIygYJ6JrD4/mhQ8G9f/518RkVO1avFj5wAIMfl4tJzsVg6\n", - "vooXmRb0sdBBEzywfWyw7wbC45xg5wIU6KknKgLQ+u2dib0ziFjZFXkCHRwTBO/RJ2/w203xav5s\n", - "CcoiItffE1yuh6PROBorEpH/6GsRtn73nYld61p+8+Lqx/O2M7iSf/+t0EdlbuemIt+IaJwB1M5i\n", - "QR5woBSL3GhEpQDY70kFrSMlCqjIfKb7iLPL4DPXVDVtk/3GfE7w9uEC5ftbmTv2g9H95xDAH7hA\n", - "q3+cPLIqqGg1DtF1LDSFO/nCvjc59Syj4tqgGZkqjiDyfeQLh+tlAX5Zwu/qWty715TEsIew/PLS\n", - "HOh3e6HCSpoTRvVPy1iALMfa763vXD0Tmq+pKckFDvG908QOmld7pfZstzoXexqn+htiip1PlAK1\n", - "H6co4D1V7EAtbdcrFUxUaAzBPvvzuQnFrWmcPgdVW+2I2kRSziK3+SebZMwUa6JlUV3hCOnHxQsa\n", - "rxCWZ5GJ7Z9fiYi/LO3Z5SL4GNFp1o3s7/0Ho2pfnElSEPeJUWUmHkXbKWGnR99lejxGu2bkLO7R\n", - "/hHJCGJQ4AXR5yO2+Z7mU8yTdW/UeoxXhcirsJ0TMKRNDjROe4wZPaZzzqUYnzn5LSbw0WJR+Bb9\n", - "/0BzXNPJeI4w/phujxNpk47oUQ/vN3Vkx5XJ9+m5m+OcNLHCOeeyTKsscL93fzQCIhUiRIgQIUKE\n", - "CPHE+HyIlPMupjfjCW/VGxKsnk6ymjw19mbcYoWZRibOTDxq/dCKsEZK7JKWRDFEfANqQ9W1rTSj\n", - "FKmxnb16qmA2KW1bAWfrNLIV6eEob7jVwd50G6x+mkcCTHlL9hkcuztarTpZzVAGsStL1LUjREpt\n", - "CthZelGIGPP4YKvKv/nlXznnnLsnF+dxgisxxO4xIUhpjmOk5OKL8+x7a6cHXNfaW/vvsSLOchIx\n", - "Z7AJGGg1CYShiG1FmKtrMVJuv3r50/mzm52kaXNNRE2dHulep5m6bdO9Vkdp+p6H8DIhsWELoaLW\n", - "euRabwvUU1vQSlctNhaU1q4lrtqIVr93gmw2KS/JdXVESCxEjnUvv31/fD1/duXF4qCYbPUbx6hN\n", - "d7IxkWLF/tUrc7b//ltBoqqjCatffSFo10Tn/ptfSd3FF8+/cs459/aDJSz86Z/9Y+ecczc3d/O2\n", - "50tpk9XKUBJFTmhRNyMsbUcuyuhv7ACtyNWMVtFKtwAiWB2sXdWepKBkCwektSWU8OJc2uy3v/79\n", - "vG2JFebZxsTLH64FJdCkhD63fq3JCW5k0ak64XPI/xWEyLSNzFOPTNxxjSkJWxugOSdCx/W6O7ht\n", - "92S/kahNBdmf5Kj1eaLxr8cdKfOikwAAIABJREFUqD3ne0KI3PUHQUIvL0yo/fvXgpgsUDtPk2mw\n", - "R7kUahMdYTHVupwGue+evE6m6WNh74hHkM/tnsxjUWu4nSyJwpXyfMif2fm2sOw4DFS7FbUwlzSe\n", - "73DZqSebklwQoZLy39ONtLsiSA1df+HlvsajXeuL5zKfZZQApclIIyW7ZJgLPrz/OztPVHko6Lcx\n", - "hNUdLAS4D2mfTOkeKsLLzI26mDtPzzMo1Advv9V6rmNOyRM63ZPbu6JeCRD+cfoYpVyQ1UKP/p/Q\n", - "XNMpclxQUg6uNSZMJ0KhwiKzcT+/qaA9PdUfXWNcn8hCpBtlLPQ0rhRpyyJGxOS4RcEJJXLcOLO2\n", - "41yIT0VApEKECBEiRIgQIZ4Y4UUqRIgQIUKECBHiifHZqL1piF1DPhULUGYdQXY5oPLfk2NzBHhy\n", - "saKCioAgu4n8hgBpDgStanHfIxzNR6JYlB7oyFCjaeC2vaCCmoAdSyq47CHALgaiFiGyq8lHRgWg\n", - "A/yUSPPmUlB765KKLIKCypKPRYwXS4PC9xD7xZ399mEvflTfdN/M27ICtNwWjtWFXf8AemJZGsQZ\n", - "QVDbVHaiR/jTHCYSYKIdh5ooGEC/q8Rg9A7eUru9eWV9cSXQetfiXKig5hdn4rfyzdvfzdsKiPIn\n", - "Elum8P0oS3I212SEgfzGFAJPycUXdKealvRc5BVdLKHi0hkoiGS0/ZbwVmoO5hh9Pwrd0JG3WAFf\n", - "ppwEoA40l2on33749fzR2WKD4xONDRftZLJtC9AC768/zNt0HK235hn0m2+Fxru8NLG5+rF49M0N\n", - "CdZvsL+CBNg5aMTX35tg9sc/+Qm+bxRgDtF6wkV7IUYdchIbg3pRCqQkYb0KwJcFeztJ/08Xdq+1\n", - "gO3uaIkiE4qVXp6ZA/b9g9yf83Pr49utiO2VAhtZHT2o79nHhXfrilz8S7lPczKHcy6Z6YOPf3s6\n", - "WR/XOa6mJJPVGoVcIahvSR6ggvKhI3oaXaxc233qkCgS0XhSWrQ/WX8+QD7REn11eQVRPpJXIvab\n", - "gzg4ZQ1CrPeQBMhIAJrIAVvdsfuEDAI1AaMksbm2DwT7MbnzjxCAZ1SxYrOVe/yBJAD3O+mL1+QZ\n", - "FWPuThz3HSSZ0G3PU+kTm6XM/9uTPX/yL+F2X9n496Xcdy5urVr/prEdq39fRgWidZ4+JSTBgFZA\n", - "aW/a7SzKnqhN1GV8pP6nhYfZnypGX+gnm5OVvps8+yTJ2M1o7MYqUZi0kLzd60WBhImWFNl4Fp4o\n", - "iSFXqrgxEblSlUn8cVJYTK70GSqfREjsOJ1srlEBPhtPabWL6JEoX64rjSl5CTd+onYatFgxvU/4\n", - "v+dVKSBSIUKECBEiRIgQT4zPhkilUelaEodtvpBVHdcB0hTPprbvVQ9IdV2YYE1F6x2J41K8YR8b\n", - "SuvF2+epgnNpTGmgeKuNJnrTh4v1uKV0eawwPb2tL4DsTJRqXwIlqWk10SAVszvKm271aLUkK5xn\n", - "Z+Z622HV6SNb1WWZnPMFraozuMdeEprVfwsH4MqO0aAZtV3p1NzqHKn+GYsDYRdB24ZRfnUgAWgC\n", - "4T2X1cohRvfOVtObDVyZD3ZOZa6rE7l+FsfGOM8NuXNr7cKMPCniRI5B2e/Ox1rry7YpItmSdnbA\n", - "yk0tFFiwXGOFk3qqYYj2LxNDBBPUbirXlpKuqOdxb9ef45zY2XectHYdrossQU6VoFpqw+GccwmE\n", - "xRMhpw9wTF6syH4A9+zm5nrepsJLdsqvvIyP9+8FffrJ1yT2v4MQm2tNql0BIS2ptjWt6lWMvttZ\n", - "P9G+y6CPoiS6cl8QMqEi2pr6RArRa92yhQHG5ES11rD695Fti7G073pDaVIgLB6iWBaC+z/4V64L\n", - "afWU6q2O7RlZDajLOVs9OKS4J5ldY4V+sqJ7dw3n9R98KQkA795ZG7ZIStguqf7hUbZNnqw20D1i\n", - "skS4vxfEbkVZAfVJvngk65DdTv5eIA2dEzDUMZ9yOOa6ehPXKUWrTSSi1hT/hFAC/dxPxBzMNfm0\n", - "5qAhAyp8b0mAHzu5F2c0TxyA+sf3dp8ar5bdJIrWCWIgsTX62xJJPAUjaJmiH9ZeMSx2Rsc2LTo+\n", - "bfxrvbaisP31rdyLmmxCOrXOSORaC6rhqo7y5P4z11r1nFiD5x8nCmldy4qYgxLX9ignAvcuYQd0\n", - "fCFfyh9ck1QrP3D92REd8ETP7lMrNW6XbB2yR1svbD6dqxdQklUSyXwSI8nsfGP96vYWcxwhUiVq\n", - "/HU02SdAotiVPwVj0lL/10oZzYkSxSJzrf9UBEQqRIgQIUKECBHiiRFepEKECBEiRIgQIZ4Yn4/a\n", - "y5w7T1hYLRDkIjfKboBT6yo3yqRLpDBiSl4QWpgwJm5pAfFakpMAGdRfCe+ghqBQLShKtShdBhix\n", - "P9GxEkDq5M6r+uSEIEP1anIJUXAQCO4hsKx78s6A23WWm9j36lyu++bBfEdG+GiV5CxdgDKJR3Jl\n", - "xjvyz3/zt/OWXSPQftsoZWoXuxzg58JFe5P00fedM1fiksS+6g8yUdHWHu7IrTdq4QCh+kgivu/e\n", - "irj6fC2eSU1jEL8KAQuiFgbQBxN5oeRw1OYil2Ov/iDWJnW7wzVyIWX4XQHFTkq7rxVovoicrVMI\n", - "fxee6CGInfvW2rP0cn921CdUUBlTIVWlTUYI2nPq/7u9iFzLwjxzFugf0cbapOrkunYHE3GqULkj\n", - "Z++vvhTarm5NqHk4gUb6gTjgv3tvgvVzdc8mIxulm78E7eScc2/fynlmlIChBXInssCOcYPYFVy9\n", - "3Mxuxo6l++sSg9jj2TGfPdBSfGb971RJm3S10chr+EediNpIcX6rpVAFHVMsEL3mRE9NmJOKzK6h\n", - "AX3TEgWl18pu51UtfSalQrJKo0zkSq0C/Q8f5F6wi7XDvFfROFng3Bui8YtS5q793u6/0rIfPlhS\n", - "hPr89FTwWb2ialClGd2vCuLh7dWP7OuYJyK6rh7eX1Fu439ay3mOAyW0KI1HiToOdKR66zmiJ0+3\n", - "0scfSJx/C6+8lqQdCxQ85j55wG+YbVXqfb02GqsFzaz9ar39gq4LyQ65tWs3yPFHohuVbh7JWy4H\n", - "3ZSmRIshKcp79qBC+4O+nugxrXQX+621M7VHVJz64xE9N2F+mnImq2XfbUXUqp47NdRqKfOSx8Nu\n", - "QfSkJj7UlVHQyvKdattvjvvYkwdWin7fkbO6Jp4UhSWKTO5xpYqONDMrPIvYHf0OrugRiegHPONS\n", - "eibr8HxU5eSoBceJ7vV/3EgqIFIhQoQIESJEiBBPjM+GSK0K78441R9p/SWJiO/2EOfRSjOHey4j\n", - "Ryqi61jshtUkZU7PtcBaCNobWoWNKnIn0aPWc/OjvdX3SNMvqCbZAUhHTr/NsPrrp4/f9BM4ZWct\n", - "iTghDo5Hqk0HMfyitDfz272sUpPejr9VkXNnbff8UmwFXpNTdZ+KG7IKEIeJ6hoekC46WFuXEKWS\n", - "h7RTF+fG2epbHZ0H/tqgLvL29r/bCfoxRLaaHMfH7vWpJ3tsoEqcFKC1lhyly6pjvaP0X00hZmfh\n", - "OdXfW79bxuoeLf1vvbKV0e5eExAIETtIe46EEiRwVu9GW7UosMeOvZk69lLtMA8rhEYtFmi1qoLV\n", - "dqKVHoT9fE8GIGwD2YmcdtKuV89tNa3ox7v3Zl3w8uUPnXPO3d5Iv1qTYF5X1RmtPlUoentjFhbv\n", - "bwTh+Mu//CfzNrVCONsQwjxpW9s1qmg1GoBMcNtgTE5cnQArTNK/zwbM48hoFlaptCLOkJRSUz1H\n", - "rRCglgQZOVxrfxoJVdPaiSnlpGeYx1jY2k8q7CekCc7TXFFhuRCxa1VZ3ykw7rROIafVN0DYuP6i\n", - "uoOPhNLvIEBfLmyM393JPVmSUP3uTu5jWZIA/UhO4s45T6n2GRILOhIx57kIcSdC36JM09UtJlgW\n", - "TCzehkB+2BnCEwP11twByrR3KzjwD/eWRHGrVSQiTlSC/QYxEjGE+iOhXwdca7GyNjnqXAT0I6UK\n", - "HIpwjbUdq4F7f8dWO4PWerMW0JqMbDSQ4lmQU6KCjpMJaBXXNVQhuic2I4F4vqH+F2mfoRswYYYe\n", - "aDw1SHgaCE07IpEl8oZEXoAo0XqWPK+2YB86qgrSzLYK9IoRaQUKSsqATdCJUP94kjZOW+vjlxup\n", - "ynC2kbqGx4P1UbXTOVbWJ9ZA7vvY2kQtRmKuv4ukhH6whjq1OOeIknyiP445BUQqRIgQIUKECBHi\n", - "iRFepEKECBEiRIgQIZ4Yn43aO9uULifYLwEXQrV4XRyrOM+gWPUPariQLf49HWjbJDBeQqJQP3tU\n", - "wZ+DnL1rQHt+YigWdBeBsX6S47edbcsh7Ly/Nrpjqd4qa4MR1b9iBH02TeZdUTcCu3dU5FXRTobR\n", - "VbBaZASjo8jiNNi1LiHsfHFFvlQfIMoEdM2u243SZyNxJp38XRC1pp5VMYmtHZzdk5jE5iqiJbG1\n", - "CiojFvGNcp/qWs5p8CQsxnt+7A12d7O3E9Gt6o8VPyIX5RJ69uCCiJCg7UKp4oVAwSU5Rg8D2ulI\n", - "PjY97tnuPX0PbtMkovQ4z4monQV8bh4J+tEXBwjrYxY1gpZ4f2POysUziD5HEqDG6i1j0Pp6LdfV\n", - "k2PvEcWlLy5NvH5/L6LMtkVB3zMWooJuI27h999LEeCffG1iY6UA37wxyvDVS6Fg7u9M2K50G7ES\n", - "s2dPAdqTvaCmXj226JzgxdZ01k86jInN2qD4mw9CI2/PzJ+mhch8opLD6pSeAO5nwbgmcTzyzAE9\n", - "kRFllGEe8VSgVWm5/d7G+AIJIgX5OFWzQNyucb+XpJCylOvJSGy9WAjN/+6tUfbVSY5VkLC7Bc2T\n", - "EN22RUH4a/rtei39aUdUiSZvRKCWIqI1VNA/kCxCPaPGrbW1mzDuKLFkQNvGK65uDaqIxl2sBZ+h\n", - "36goiWKAt09K1QHOFkqF2m53nez31fOX87bjd3KNJ3KlHwZp/weiMwel2Qf0VxpDfQMaq7bxd4Qv\n", - "XkTUoukcaE4ctT2NslqAUuw7u54sRRFezPue5BaaqDI11icLiMKZHuxVlE5Fi/V5l1Ki1IS5+0AJ\n", - "GCd49W0Km3dP6KczPUvzfw8ZRUelOvpJPbOs/60XmkRg4ZGMFNNvc1Bqq/LVvO0nX/2Fc865+3s5\n", - "jzyx6zrfyD4a8mWci6CTL+ACVTvYF039wzIaO6cO++tsWz/xvPhxBEQqRIgQIUKECBHiifHZEKnF\n", - "KnVJRymPeDPe39sKVkWBcWJvq5phP9Aq+XiSVd/1rYnNFGwanK1mngHF0ZfLid7M40hXlVRzZ5K3\n", - "2aphF1tBn1KqtZZnmqZ7mLftDoePzjPBiuGIt+BxspXJHVZdX35hq6VDJaiHuhk751yHFTS7iN/t\n", - "pc1Kzw7g8na+XZGLdSMr0mOlKaR2vg1W9ez6u0nl+wkhKF7rVbX22xHp33w9Qwc0idDEMpfVtCeE\n", - "qRtlP20tq/CIJOseyMFjBEtWjmNi1zpAFNpzCu+8ErZtKc49IpsGTTuPsNJeF2RJcSbbjrGtvqz+\n", - "mKEfR4hde1LFTlh9j4QmTECpGCVI0bYtkJaRVpou/tid93CUe50lhiqNQFGznByDgfSw2F0V2nHM\n", - "liCyvxw2EWVp/fqAPny1smu9OJPP90frp2cX4lifUFLI7IpMaJIiGy2n2mM1XQJN4nptkY7PT9Tf\n", - "jKmKgE+1Tqe1U4pkED5WC5uOzcb6n9p5zLX2KGGhrlEHjhaj5fJjB/6+kr/zzMba3P4FW0JIe263\n", - "ti2dhbdUlQHu9uqYfjzaWFsDwViROPrDeyRALOz4eh0VIS1LIKKrrf32Fi7qfN/1nsSKRBEipULl\n", - "lhiBAucZkWDeY+7sef7TumYtu23DaoCc3UdN2gAkX1xYAsTuVuaJ+52h/xUSetLUEhtcrUijHStx\n", - "GLuFIRf1IO2zPxFyDmQ7HaU9h5psHY5ynjXVK6wPcj9bQkmnUatSWJskmjyU2Xm2sKBJUpvj8gUS\n", - "GtCdm44qYGDu4moTLa7fJyQ2V3SesrJm93hCzhsga5qc4Jxz66Wgzefrr+dtL57JGO9GeU7dPPxy\n", - "/qxSNmVilgYME52nJlskZImj1h5UTtKV6J+rzPrpZikic9/L/Xrz3uafeyQxdb21U4T7PlH9P6/9\n", - "jxLACoyZviIrILX7oGlqIuf7T0VApEKECBEiRIgQIZ4Ynw2RitPIpaSRgmzHPezJLE4rnff2vTXe\n", - "IEfadoK+Y3ewt8Yab+fHxhAuX4Cjj2UfSUpcMdCEyVFtHqTJ152tCCtUkN8ujXsfsWRdLE0jcNcp\n", - "SmPnOVTy3noCH871ytQm4O2H387bVjkM5FJ709ZVd93wKlHezpv+u3lb26CuG6EvSyAWasJ3JF66\n", - "7mQf/ciIHFJtKQ1U0bGYVppqOlg31k5qphp7WyUXmewnSew+TVj11Vj1dt3t/JmCU91oy5Uo1j5B\n", - "WioseloykDtihRV5W5EugBxuz+0+nRq5xgmai4HOLYFxXTnYNejKqDrYvauRLtz0lNiMFflAtdsO\n", - "aONtZqt/rZOl5m/9RNfqdKVp3785iUapKG21lqdq9GnXWiLFPSLdTgp0ck9avgkI5NUz6c+Kwjjn\n", - "nAcykpCmJ0Vj14Q+rDaS/v7Dr0yP9+23v3POOXd5ZcjZw52sZguqJxij73RYkmaU1n/Yy+qzJFRH\n", - "tTQ5ua92GLsN9T9F5w4HQ6kjINvH04OdO2rnlYUiTbxax7Hyj41Gl1TXTVfV3WRLWEXfGtK+rJYX\n", - "2C9VlccYLMgKpoNx4nIl2+5u7Xzfw7ri6pm19cWFtPH+3u7rBrYTFWmfmiOQ+721k1pLkG+hy4Am\n", - "5qoboQ9TReQZfVNd28n22wNZTS6sRtkI5MoTwppuBW0ab23cR2qPoLYDdPztS5lDDt8YS6BWH/uT\n", - "ab/GGOafo30vL2U8PdTv7DyBiNcHns9USwT7gdb6624nfe3mgZBOPH9G0tdqkU/PDYt2WhP4lwB1\n", - "nqgmnxp8Tk7OTZ9Xzjk31lrXjzRleIwPDJ1iHqHsfwefUdcRStWizy7Ki3nbD1/9uXPOuednP5m3\n", - "bTdyDmdruZ9x+h/Nn/322//TOefcL17/i3lbqddD888Ea5+B2qRuoJuiZ5Eit18939A2ucc/+8Gf\n", - "yveJufhw8zu5rprGXyHfTzPSXDp97tp9aju1RCDkFIadOekgHdWx/FQERCpEiBAhQoQIEeKJ8fe+\n", - "SHnv/zvv/Tvv/f9N2/4b7/3vvff/Bv/9Z/TZP/Pe/9J7/3Pv/X/6D3XiIUKECBEiRIgQnzv+31B7\n", - "/71z7r91zv0PtG1yzv3zaZr+OX/Re/8Xzrn/wjn3F865L51z/7P3/k8ntiZGtF3rnDPIsgZVdKQa\n", - "UhlgwYigyAIC6IHccVclUsgnowVrpPY3PYmX38u+12uB1lkIpzWfGB31sERoO4PxD0jN9d4gc617\n", - "l5ED8dlWUjd3OxLPJxAx9vL9/YFSw0Fz7h4Mnk8uZRun36qIt26ZgpK229OxOrUuIFdeFbYmqbTd\n", - "o4xORUVJgD96+X5Ht2+AOHogm4QIIkJuu3ZUt22qiZZ87FQ+4RgpUpjvd2Q/EO0ffcc55zLQgwO1\n", - "yQBhZ5J+4n5OLOwEfXi0PpHCSbtBbSafGzycgRbNC6t/GA1Ke7BNBuhWbzTSNKo7sB1LHbJPfO6A\n", - "8QeIUhOy4h8H0B3kBH+sQeOmlhqcTEgXXtt5LkFZtRWlKddyfKXMnDNKT+FuFsxfbC9xDVSTElYA\n", - "ZUnjby3j47vvjFpWaqmj+m8LCMAPZAlwdfXMOefcHhTUVWljLc/hjk196LiX+7QhAXwGurdvTIC6\n", - "3Mp+Dzz1oMOzSbHW1lPH5p4sJFY4Bp/vAhQci821JhmP0/VyhWNRTcRKa+3ZtKt9guuaKaVwAhUX\n", - "c01Q/PtAzt7brbT1am19/R7nnLB8AML71dLu3cNOvpcSVaqVD5TaS4mKVYsHH9u2BGNoIvuTGHTw\n", - "SDYdE+jWiZJHpk7lFiSKVjE62snT9U8QuX8BR37nnDsi86aqLbHoWhN1WqNFR1iraBKFc87VsEc5\n", - "HFgoL+e5hiVKRPdaJSAt9ZMedeKiRyJq+TehSVFv8eHI1CrsXArru6OKx2GF0lKyT4a5dt9Swgrm\n", - "eLZfqNHuEdkfqMwiYVd0tTOgepIjXMkXNBZfvBAB+gZ95+7G6NFVKWPt+cbqb3YnmQs4UahFgkhE\n", - "NWFXa6GlM+o7N7dSZSGKje7Wuq+aeLNIbfyXeJ7dktXNhHnKx0ajT5A+DGS1MTuw03OvhyidyhQ+\n", - "qu36qfh7Ealpmv4X59zdJz76lLHCf+6c+x+naeqmafqdc+5Xzrl/+vcdI0SIECFChAgR4v+P8f9F\n", - "bP5fee//S+fcv3LO/dfT9P+w9x69tnRbltAMH9sed+1nnslHOtIoVVWNqhZ0aNGiyS9A4k/Qqx50\n", - "aYBogAQSvQIhUOELCSqzgDRkvsx85vP3u/6Y7cJH0Jhjxhwn7+WldKXkSqU1O/fc2HuHWbHWilhj\n", - "jjnGdCsin4jIP6fvfCeKTL0TvTQS0Wq9Nr8sQisGvOHHROI8Wys5sar8Pe5iDVJs+jP/LcjOA7lK\n", - "Y4EnaQZUKfaVWYLy44RkBVZ4S5/IhyfGm/7u1lep50ACVltHBNIMZF9apbzcfy8iLrCXEqpm797x\n", - "SKQ2rKCYbG9+gRJRCW8Hojy9Fp/MHZ3KxNdAffJEz62lFfSIN/Kejm9l8j0hAgmOz0JnI+4PCzda\n", - "8DYj78YLklMYDSXQFUaWEREc8gyr1FcmMkLUkATU6h7HpzJ5E1gcfZOkJpJJYnoNxOdGQ9popSmZ\n", - "eUP5thikdLaQSoC+ZSx/YE1GfbzHebLAatfrijmBCF/G0giJCfj5StvkJKraV9orlAmvlk5Anz2+\n", - "aKV1uNXfbLck3QBiZ4QV3/mZ+zrOS2g6X/M1tFJmEZG60X5akP+k+S/evn49b1tDOmCigoZ+9kTU\n", - "frei+9pAViChVX0D1Glc+PdMMDeh1bdVKjApNcOYbEi6owSyeAc0d7n01bKJasaE1kyzXyDJagCx\n", - "Seh75mu3JK+72f+PEI4YHel48DkuzfTvBXkcWmCxLC1JspgSxYIQBLsOkzcQEVkAsT1UTmzOQRpn\n", - "IWBXPYBYJh2/tz5Bfmmj/YA87CIgUlPkv44hcBrRY2cA8X4krzXjJ08oBBkJ1YuQYdhVjqqmyCxM\n", - "5F1qBUKHEwvCapsU4sjdq9c6T77dk3BjoW1SAEEn8FkiYIJT7G2YYp6850kIT75IGLnUf3vytavh\n", - "2dcO5PsKmYYRqHo/cL9G3yWyf4c+uaUMyzqF0DDxpW1O6EmmoGv1niQ0nk+VPqde3xA6DCS2iLXY\n", - "htH/HgUa3ZGEa/FMooSIpEAxi4UXakWFzvc8dy8xB3zx7M/mbZ9/9rn+gfl3TbI+Dy51H9c7KsCy\n", - "PkO+qoMhx9TXBiBSFbV/ApkkFni+J7b6nvhQsvl/KCI/FpE/EJHnIvLv/4rvvvt0DREiRIgQIUKE\n", - "+JcgPgiRmiYnI0VR9B+LyH+N/z4Tkc/pq59h2zvxf/zTF5KAZ/T5T87l6uHF+74WIkSIECFChAjx\n", - "/2u8/KqWl1+ZBNCvxoM+6EUqiqKn0zSZaMe/JSJW0fdfich/HkXRfyCa0vt1Efmj9+3jH/4bj2Qg\n", - "bziBN9LFpad2OsD+8eT45AIaPC1D0bgKJkxOgOWS0X9rartFAs+z0dMDGdSr05Y8f6Afkyz4e6q3\n", - "seuc2H5zp8S7qzOHLE2B9uHZT+Ztu05h5gO0rfLMYccSnmx55GmXAfokixUdHwTMmNKClqoYibA3\n", - "zuTheZNU2J8J65YdEQwj+FuR7pWlXWICLgcj++WextwdNWUU3YPAEZTa20G/59g4LH+21vaMkSox\n", - "pXERkSI2jR9/yR5awPiUsixAmBxJNOVUaUqjHT0FZl5/I5EtTcn+iIZiT6Um198uFw6tL6A9diSf\n", - "wg7nvl25AvMZFMDfvHVSsLVdXftvzafPdWGYxG+EdT/fDB5TA6UHMqQROlJx39/q8GzJgCxGiprt\n", - "FBflFtdIYxHRIo12vvUxuYcuU1Z4X18iLdjUTva8AaEzJx0tqzkpC+pjGMemLXU4eCrKSN6fPnSN\n", - "G0utjpRGbaBY3nZUWHLSPhYxUXr+17f5tUJFu/BxZUrtGXmY2fjrSQvJUpqswWW+im/e+DyxPdN+\n", - "nNI8ZartTOi2sJGzWvk4tZaLY9/WVEhVkLKzXevjKx+nd1Dl78kn9NRqGy9JM6eYfQeRsl3QZzMB\n", - "nBXz4Q7AKVsQwFNquxHpQOb/x0ij9BWlalE8I+bDRg+xCue7J8X26z0KdKgNKxQtHWtvky20pcrU\n", - "55PD3XN8n9JiCx0TOQpLmAifYUySBKF0qaWR/VqTHIRl8gQ17b2YdJQmjPuOiodMDd7oBpLTZ6Cq\n", - "5Kn39c8wPp+cecqyLPU+NXSeu5P2k2tKwd2CynCgdtpjPq8ofTp1uqPdzRciIkKXJc9e/pWIiNw0\n", - "X83bViieSdgTFP+Og88TyYR0P5G5Y2g/ff3sT+Ztb97+joiIFGeYLzunO6TofwMplrejzis5OWBI\n", - "b56onpY1j8OMnsUjKBif/9paPv81fR5PyUn+7H/xdPrfjL/1RSqKov9CRP41EXkQRdG3IvLvici/\n", - "HkXRH4iO9S9F5N8REZmm6adRFP2XIvJTUW+Of3d6H3EmRIgQIUKECBHiX4L4W1+kpmn6t9+z+T/5\n", - "Fd//xyLyj/+2/Tbt23ulwWmqb35MsCxQrtmf/G3VCJsFrWqOd5o9LNe+1E7gnTM0RBIDSjRgRZaR\n", - "C3SEV+woYW8k/e1m6UjDAkrc6YnUWQdd1RxOjj5cnf1IRERWpED99PJfERGRn3/3R7hmP1aWAhnI\n", - "yC8NJOeB/MdsOZeS1IItjtuayOP4Tdf76mNtq85OryGJiUTc62e80Kygup0SYTRFl0kIJVwvtJ7g\n", - "eHLpBis1jsVXzqZEsdsPKmzgAAAgAElEQVTzigSq3EYEp+WqoXoZlVqbYve+csJwZGTj3FcVW6zi\n", - "x87f42+BdpwtCPURve8m02Dl/SJeBs7+g1Omq5KmpnJ13ONV4SvddaFIQP7A0ZSb6++xY1/p9UBC\n", - "djvdttqQ6ndmbul+//MlVnqFr6qaSduiP5JiNtYvCyKgV5A9KEtfuW6xmu1wc4zgKyLy2WdKLP3+\n", - "u+/8+oEObB55G7a4F9XRV4nbM1w3KQKbJMREFQDVXq/j8lJJ7q9evZg/W0JW5OaGVK/RQStSMbY7\n", - "vKVijwHHyokAb+X8BSHMPcrpS8w7I3vooQ25PLk1BwQqSjgcgH7HhH6hP18+eDxve/lar21ByMnG\n", - "+il5/CVAlid5V2pEbNyTrMtyhbFLXxuBkh6OpOxtauxcZAKCeH2i8nso8BeQuKgO/phYr7TvsLOB\n", - "AScTKXAbGZm9E8XGJzkAmFJ9tnQkfq4QKfE9IiJnILEz+vgWMjJ96XPNeqUl+V1HzxioZ68KP9YE\n", - "nYKRqLx2L6K5vxIWgIvNUkZabA4jSQigJDk5SyzMUYMQ0RYK4AkV9Nwe9Xk2ZBjrjd/YbaLj5AeU\n", - "ufnNRyqFcn7h1x+hUOXlzucJk2zo6P7vUdBz2vvYNX/YnsbpRftL/e0OvoKEKn1//VPdR+vz2oj7\n", - "lOd+/TFI9BJ5QcuDjT47Tieau1AotSh9jP/86z/Vc3uAa2n9WWvXlRU+1xk/v6N+YkVjy9zvfwJP\n", - "1oiL3OyekSvGPQT2PRGUzUOECBEiRIgQIT4wwotUiBAhQoQIESLEB8ZHMy2OZSVN6wS3fIFU3EhK\n", - "zEjzrJYO2Z9vn4iISLl2yO5nIKWVa4KAM6RqKiKgIZNmukgTEas7pALZoNTSQkzEXMYKH04EWZei\n", - "eOPtzomlP3j0eyIiEhEp9tFWCxpvNwrd3oqbbKbQqUgzghMBhVeUbjDJXCYgT5NCxmzkG0FUygij\n", - "IiLxWXfvnEoi4pkppGRE+rN9NH6fFhuFRSNKd2XYz2pJCswgLKaxp3ZaQPrjwLpA+nkGCPhYe8ru\n", - "7HyBS/bvl9BH2YlDuyl0puLR4dntQmHuZe7XeHP3CxER6RO/nhbEwhpqyqaJJOKK+gmlNk0BnbXF\n", - "GriBPti4yWcDU+OE9HZ+9MlviYjIixe/mLedkA5NzPiW+yuGwtUDVoJGG5Z+DdWoqa8yccjcNKVO\n", - "ZFD76InC6BPpyLx+o+34+LGSxy8vPRVp5rqv3349b/ut3/5Hul8ilh9vFdJ/8MSPbwrMXUO6aLPh\n", - "sZ/72Tl0ZNAnWYl7De2an/3U9WQeX2mqbGJlcfSnntJdphi+WHifMPL48+c+7s6RDpz7GI3rAXoz\n", - "LZshg1qwpHlif9Dr2a49tWBGuynd/4cPde56+ewbPyfcivWazH0xP90i3bvd+H4t3behNOaXXygB\n", - "+JNPnvjhQVuYWj/+4Y1qek1EdrZ0aEdFCbNGGTgD67X39VmBndJtAiP1iEjRI3SOJkpjjkjfMAE9\n", - "zi21SarUoGPEMJ6XhadiMqS5P3vixeGvoRV1TYUilpV/TKn1qdXvNbXPHWZWvWv9ubNDCvwx7sm9\n", - "tFNm5+bXtTS9Q0r/ZBlMm4mAbirfOX2vzHXMdCOnpTEX1Xq/Vpl//xM8E55QG1qmOqY0egNdsubk\n", - "89n1nZHI/V7XKOgYqADG+nhJziNVg4IiHKOh58pMraA05g5pvqTxc1+X2j/ZFaJqdT4tSKtPoAe3\n", - "pXTvd880tZhWOp/3Gb07wO1kvXHJyhw6Yq/ffO/bcM9ypo9EZgLt597i/tgzQUSko+Ke90VApEKE\n", - "CBEiRIgQIT4wPh4iNT26V8LYpVB9rt8tMVxufLX26ZPfFBGRqvPvPbrQ1XTXfDlvS6GsfCCp8hhk\n", - "wxEr17b1N/PFGitXNtiJ3l1VLzb69r0glCqJ4CGVkCTAXlc9m/KR7w6r7hwq3iWRHuPRPLfImwnn\n", - "Odx7GUYJO8kElChX3pPaeQQ0pSBSZAsS6RLecQtCpDKoR7OHVDr/y6X+irqVC/dVstLtJTyXREQy\n", - "tN116/fJroeJ8j1U221l2NIqYLcH2T8njbFcz6+gFVmL1c92RarckyECvpp/VKoUxdudIwIy6Epr\n", - "ATmFA68+gaqMtKqOQbZuW19Btwdtn5dvnJT98ELb58nGPfESeAI+euDFC/s7/U21A2Gbrt9Qr2bt\n", - "fXgBD7esdFRhmIsCvO/mID6XF94m9Qmr1Nbv8ZPHivAsgeBldG++e6nI6dOnvvo3X8OavMkuUXZ9\n", - "IMJyBHSACyW6g7a1jUMRkb419Wq0NaGqBoR2JDVgStkjlTobUX5HJfHbjSFdhJJiPz0VFJyg7G6E\n", - "YvZGK3MjETv6NGEwttSGprKcE0rV4fxG8vWyEfvpZ+4Tt7u7xTX4/qxvGyLcEEpq6tnVnW/bALF6\n", - "89IR8bKEhyX5+u3BwJ1IxTk2XzGSoL5An00wd/B4NVRvovEnKHGfuAAEHmoRlZXHkJ8R8nqcQMqO\n", - "cpp3IaMwmer+5G3YQ8JlJF2X3/zJ74qIyJ988ct52w4If135/HOG+5ORU0IOkjH7fw4o0Hl1q+05\n", - "crHHQsddR84OaYExS2RzMUmW2MdEg7k1SZ0UvkQ7Rr2f09VGx1sf6zmtEn9OlkAET5XPE68hsZLf\n", - "+ZxwfdJzfnbwtn4OUv7xSOeO/Z1v/HmyWel+yg0h4TBj7TodlDX1//k5Vfs+zIGBvXNHEOuvLshR\n", - "BE1Laj5mKCFtxtIRuu/vb3XuXq2dbG9yIlnsz98RKFkae6GKQM4lpUxUFmv715O3Z9uZd6+fVB4t\n", - "RMQLYf5mBEQqRIgQIUKECBHiAyO8SIUIESJEiBAhQnxgfLTU3jQtJSXhk92two5F4ZBtV+nfT88d\n", - "Yrs417RI3jrstyw1fcGmoRlSNevU4cnlWmG8HMq2t6TcOhrcFztk3QP2PjFhGyS2hFNmMFfNKFVm\n", - "+i2pONzY1watQ7F38muYoLvUE7HZVMFZiqWCAm1MMLIRlbekNn7ozYyWCJgg8vcwGd5VpLFhXNue\n", - "tTNAjiQtkHpEW8Rssqowa0747MVDhaebtw6HHk/6d0Kpghxk02g2/vQ2fAPdnYdnnkY0aHlFmiGm\n", - "lFs1rmO1zD/BNRCMCx2Xy62TEt9+B0X7Se/XxT11fGh7UWoxgvZXTQR867HffOOkbIO7CzLhXaIv\n", - "JrH/1kSbY/QFK3oQcfLqQGasZvKcxn6eKe7PQDpiFdLWfe33M0e6kw0/J+xvD9JpRErkiyW+R2nk\n", - "O2g6/e7v/9687Y//9P8WEZEffuppTOv/Lesyoc0ePfB0Y4P0TQ+y88NL17g6nnQfmzWTrfUauQBh\n", - "udK2u772thsGI5t7yqQFodZUx0VE2pOeU7l4t7BhwDqzJG07y0qyzrBx3FsyQ02Q0hpJx62udexw\n", - "quzyoc5nxwORrbHrDvfOVMJFRAbMDyVpppnGTUpzUnVAmi32Noky09GjMW7XS5p6Jptkavflyts/\n", - "Rwo4JX2yWWOHiP3mFR8RLyEuzbSaHBhqTVslZJYenWv/mJbaF4ZnPq6OlaaHv3vjBQMTzoVJ1B2K\n", - "MgbSgOpSK0rw61+skQI6+tgZcC7Hk/b1itqrqJF2pfYyw9+EH6c9TIOJKG7z6anz585qo20S02/L\n", - "CQVNBZwViLA+9drGNzfeX57f6Pd6utf7k57TXe/zdJVo/4tIgX6NFPCWtPUuztE/SayxRgqwhRI4\n", - "NeF8TjGl0Qekx+qR0rKj9slj7UbSpVEUaDyZ+XhDWnFDo21yRGFNT+4Ulyslsbe1zzX1nMYnWgTm\n", - "sZGoAnYZNRVFjXgmxROlpanN3hcBkQoRIkSIECFChPjA+GiIVNM0syKsiIhgRd4Ssbs+mWIwrZJB\n", - "/O2FVj8g8Y0E5sQgZRapr9xNvdw8nJ48ctJnjbdfcsGaFU4H8rBrKn2rb+lN19TDyyWdE/692bnX\n", - "W4zjLrMrnLe/rR8hBdFMjn4lEd6wiRw3RPpWP4xOWJxifXM+WzkiVU66mrxuXvo54bddB/SLCJsT\n", - "yHxJ6avlCehTRuXyHf5uSFnWiN1rIjZvNvr3jwsnBb4F6shed6YbHaE0uMj8+0miiNT1nZMto1Gv\n", - "a7MiIiIYi9XJyd4DvKtWay9/TrByWueOSC0ea9s+++IP9fi0Wi6Wei7LpZPo+wRltTtvV1vBDqRA\n", - "/OyFEl8LQg4fXOm55CQxYaZdM7GXeyC8A/sTrf67Fa7PV2t5pufU0n3qB+0L7D+5yKDeTaiL+fN9\n", - "8kTRpBev/LoalP3HhH598vSHen3fO9L49KkWeySJj+fn3ysptCRl/0tIHfSE0tiYMTmPgSQMrG9c\n", - "XXq/OsBDL2UEBSvNR48cEashz9ARed3QlGHv25ZbRT06kGdzQlUyjPueUDVDrnIiWzdAAlMq6+6B\n", - "jrDXYY6iEFq4z7IjJSmwH251zmhAlM5i6utAlUYizBux/EiSBPEAUjSXtaNAZiQSr6Fu/CAw78AW\n", - "CBqjeim8CFMih1vbUQ2BJIZOU0n+/CchgkmpjTGRArsATYu2Ou7ih+7rePpr7Z+v6ftff6lyIjeE\n", - "YHx3rej0ckPXCqRrd3ICcgd/wjR3xMHU++0ecv+f8JDpO7+Jp6Op6NO1AokZJyroAQE+KvyZcARy\n", - "tky9AMX6xBKFDzwiDHS+IVTlFvepp+dUigKJiLYtMD4b3iMuo1yQJABU0Seau8yLco+xUzWEfqKP\n", - "sV9kCxQ1IbV7M/59/doRxuRK7+OqJoQVKFpEkgMdPDkjqI0PVKj2Gr6iLKvTDbrfvvUCiCX8B+OO\n", - "SPTotDfkU9q3es4P135P4oLvwrsREKkQIUKECBEiRIgPjPAiFSJEiBAhQoQI8YHx0VJ7Q9/dgwLL\n", - "zAiDRIREamMiFe8aWkh15fD8Hkq1NRF1swVMIyndsCg1tTKOetxmdNivWCu0OBHpsUAqRDi1BUj3\n", - "eHLC4B2UgNvB00gXSEckgzfxrKwK2HW9cEPTw1Gh6JHMIC210AkR9pACS3qHttdQcV+SufIWcPzu\n", - "uROwjTT/tn6G/bvG1QS49+yM0kOAQGtKAZoHdEw6KlMCjRFqz7FXAuCS1LbPkUa5uyZz48Hgc4XA\n", - "15SerBtNBb29dn2cNFaYvx38WElq5G2//9e3qinW0jk9uPgNEfFUnIjIdqlpvuHJPxARkV/81f81\n", - "f5YN1q4Oz/eJqfh6Ox2g/cQkxgg6Mm/evp63DTHMVcXJlmacbZJia0ottkiBkbSRdL2lVp2wPpqR\n", - "dUTmzmKmod4nOyMtU/qsR+rry6+/wkesZ4SCDSJ7JzCjvXnj6ZHPPtNigLHzMXkCifvs3NOi1otS\n", - "GveWW1jBvDci0ml3gKFo5tss7WR6XiKell4sPd1t6faIlNJHjONy4d8rQQa2dEZP+lRmoM2UgWav\n", - "fT0nFW/LlHIRhY0dVgw3M+IlEbVNM0moP5lZcAt3gKr2NGoOc/O8JG0rFDSUpffTznR0SBcvQhoj\n", - "zT3dUqMoISYKhBkOx3ZhlIo1de6xIWI92r0ntf9UTLOPUtWj9omJ0veWeoq3rlXWv9G0eALV/5hS\n", - "i49++++JiMiffO+aUSn0ob754q/mbTdQzL6lZ8JU63xXE3n8AJL/QKRoa6cCzTmNTDqGZhblZ20M\n", - "R7Qtwhw/UAowRvowS31OGqAKf6R0Ww2mvtU9daQwvoeO1oHSqA369T2ye4r2pzRWijETp97HM6R7\n", - "G9JbtCIw1k887nU/+1vt/5VnUaXHs2Ck/iexnjMbH8ct5i5ylri71c+zjfeJAdSPbGDyvh5wmvUO\n", - "vQ1vdt/jPLhQR69xTYT5KUHxRk66iCi2YbNyc9mISG19syGhq/dEQKRChAgRIkSIECE+MD6e/MHQ\n", - "yxj7KqCA2mxHC5hhAgGb1LbvoI68Jw+h49FW+P7jE6CTlo4R4S21AHGsIGmACqqnWeRNYnIBKcka\n", - "9EY2JGLnCWXaEykgl62u0lZcJgvfLUMBeBVoK82epRagKG4luiIiO7z913R887PLy9+et60LRQIe\n", - "kVL2L77SFd5gaE5GyupYhdY1kWMhRTFQaeiEFWlLy/S213vy0sEXWeWKSI3ka5ShaGC5YEq/Hs/a\n", - "kFfQhk4Nk6N0dwe9hhOtiABmzNIIIiId6nNfvCSieqLX+/jc26kXI8r/SEREHnzuK5PXUNG9Svka\n", - "9PyigZTF0WkbUvEtsDozJWYRkaHVbREp2tdAFtMlzoOIwLs7FEDkjqCkkd7XqSHCLPo4o5mpgJRO\n", - "K63DUfvWduXH70BaT9fa1jn1yQH3uCRErgKxtWByNIi/9YGQNvT1DfnEZRhvLRPlC702azru/6Z2\n", - "z75+I8rZ17xCxIq84zJ1oBQsidKBoL0k5Mq8KIultRf5xQGdyknCwjz09reEiOZYzZP/pBGws5RK\n", - "12NDs72frkAUH2k82z0rQcruyX+0yIE05X5OTfsu2XeyIg6SmBmALGfk/2eXNhBRd0DftvteEIJn\n", - "8hsjQxKYu7MLR5MnIM3Rwoni/VGJ4nHjaHqUYd9UABFfaUFDBNV/eetSBwmKAX7z89+Yt/0P/+c/\n", - "FxGRu9rHRDvgvpJ0y7fXisSPhHTUg6E0PiYilN+XC6jDT95eY2Pl+kRAN0Q4p6IokPHrg/cn846t\n", - "ckaucfzJz70XPRcD02IqNmghO9PR/TL0832uFBNhJam5HZSEUpokBH3vhCKovvVrrA769xFuExUV\n", - "MZiKeUzPmhJSQwRSSg9F/aH3flrheXNIKBMFNJ1lP0xGpgLqFNFzugI5n8Ds+dlumSkRkRHPsZGK\n", - "QqxQpCeNoQzFQFHuWSdJA9k8RIgQIUKECBHi7yTCi1SIECFChAgRIsQHxkdL7e3313K+dcXoxhDQ\n", - "yd/tBmB1rLd0u1Ni+YHI5gPg+XswOkiMnILaQ+17MIVXgvEroKJjTOkunEoUObRt5r4ppQVHCKRM\n", - "mcPdPVI2Y0bHAEFzNggliHO1VFIwK1bHnebKBjINLgpoW5HJYmO6GympWINE+PDyJ/O2r7/7C5yw\n", - "tudEBMcIBPyWIFuB7klSMj4LYnVCaSxohVSVp2C+fa3aLiOdZ4S/U4KqT42eezErNXu7JiBMbtau\n", - "dn13q2kRNo2doCPEei9Gym4pZfLNsz8XEZFF6f0uh0HoBBg7Xzs5egktkpbI2UluqvSkgI9r6IhY\n", - "Wx/1vm+IFDy2SBUQ2beJNC1qaST2PU2QUVuRGfMy0VQZE7YPvRJvp9FTJsOgv2lG0kyCBtC9VJkR\n", - "6mNtE1bstrTcy5euLfXDH2ra5c3Rt11c6pj54udfzds+faoabQWlkay/lQtSFkc6wlIQDNmPpvJP\n", - "WjgD2qlpfFyVgOon6msxNOBY78n0oBJKIyVo8ARzBx3KyfFkUN5CnyxekBn6aER1/+0sM0fpvsHG\n", - "Px3/NJkrgo+xCWmGHqTn8wsi7CNXklG6zVKwI811gxHliWx8ArE6L8mVYFb+p9+aUj5SYCM5MMzD\n", - "k1KGCf6OSFtvWlm/p9TSSue44db13iboTU0Ju0zotrhUAnL1wsn2/U7nxJHG+sWF7rdkCobdPWqT\n", - "Ear94+Bz/PlKC34WC7/HMead5QJ9iPpwd4IW2Ojb8lK/39CY6EGGHiKipZzmh8y8LSpA81j4PTED\n", - "8TIxjTOffxqooh+P3tcr+5zuyRLXUC642ED/XRApfLAULP22BwGeMoVi3aibNxI5He1q87XuV/fB\n", - "emMN5skbcoVoTbcw8mtM4R7Rkir9gFSqFZlMlNq0KWukedrMsI8nek7g/DhJd7L0KeknZgWeSQue\n", - "i4KyeYgQIUKECBEixN9JfDz5g26U08nJqal5rMWk2D1AYXfwt/XrO12R1PSWnmNVFRHSUAOl6anU\n", - "PY70TfgAYrlEvjKPRqiNT1QajpfUfnBELMZKZCZJisjlpa4Yb09e1v/gUq+HuK4ygjRq6FdGROz1\n", - "Us99aAj9KPF3QiReQ8noPAeooe+OrjZ+sVFEICNi3dVDvcZX11ouGt0jLKI0dPK2ttX6QKuVFCt3\n", - "JjHn8BU70Crp1VtILFDp/mqFVdz07mrC/Pwm8jRKoET/4MpX5Buspr/5/st5m5XLRiR10XcD9k+k\n", - "ZKx6vvz+T+ZN8VOU3ydKjk8G7y8bEKHPNy4hYGTnNHWUbAT6SFZXcnOr287P/HsRiO1t5dc4Qqk6\n", - "zrTtmt77pGBVxaslk0IY2cNs/oz6hJUd00pqANLB7gElELObG+1jFxdehvz6tfanH//YHQD+4i/+\n", - "TEREfud3nbD/5S8VfTzfOtl4hRL/mojl5h6wImXrxYysYKVJfaMHsTslREBmKRRSMQZinRJR3han\n", - "TOw24nnM6vGF/j3hWDmR6E35P2GkGwrLa7pWQ5qeffPVvO2Tz7U/NZUfvwTZtz7RPUZ5dsxFLhiL\n", - "6Yym+RjOMYYYkTWvO0ak7O/9wVW0J4yJ3Y0Tm5dLvf/LBUkiRCanAakVmmtaIKH5uaOksjBUiVbw\n", - "GMdJ79dv9fzxyufpfn+N/fl8KjYHAX2Pn7jX5qu/VF/Hiojdr251H4zSFigsici7dJrM/9LHZFnA\n", - "AYAQrgyT7BIEZwIQJUV/TSJHmgcQ28/PXMLhZq/q3fudFyWYKvrYUt9Ngdyw7AYKcGyO7+n77Un7\n", - "xoGKrczPktFU1FpIklNBE4jXlEyRDJIpXOzQ9u8iZwnQ0Rz7Y4AmRtYlK7lNgNKdSCYH/re7g5/7\n", - "ONr483ZaA7Fmk4O5GAIyOfdU9HEszjANmGPrlqR7UFDVEUqfgHifk0xCucS8m/q5jySt8L4IiFSI\n", - "ECFChAgRIsQHxkdDpKI4kdORBDEhCEZ6hJKkulpg3kRt5YqEEp1vdPXXib9V7yotex8Hz1uPgtUR\n", - "lhhjTytdLILYU6c8A6oU00oLH6edr+CWEVY19PZ/Ourx15ckiZDrKr3pzFfM35YziH8Wha/W38Jj\n", - "zkQQRUQmvDnTC/ksOni7/37e9vBSV0cji8lZDht+RXFM6BucrseOSuNrc5Vn3pr+m1ObFJH+Zlo6\n", - "0lGBN5bQNRrC1RPCaJygKIXgGon/bTZof1pCPXygiMntna9gDwfc14R4JgKBVeoTZa77y8i78dmr\n", - "vxYRkcutrlJK4j5Y6fTjS18RH6G70LLQIFCUmHkGWDK9JvFRUx0oFtTuB6w6sfqJSP4hQbsfar+v\n", - "C3NpJ6E7Q04y4vJEWFUPVNZryMnQUel6aStsE+Hzzyas8CoqdX9wqejc1198MW8rwPnjY1WVyQr4\n", - "ODEUsyOfuOXSOIcQySUH9w7XtWZBVCBMEy1JTUAv5lGBZmLuR47zjHg8Q85hwraE+Gsj2BQxLfVN\n", - "zHAa+Vh6jJdvCBFGP+Vl9c0RvnrUT2MgYcNI5f8YFCUQ0ZrEL9MZxSakZTSvNx/rtzc6d/D97Gvd\n", - "D89nhgCedlTqbWKmEGdltGy1An+FZCoKcF6i2O9TnGtn74/kNQqkIyLpinwLMU9CDhITjAQKUCxI\n", - "mgBjeLd3VG2P4+8J6avBKy1JuqJBv+8n5xIar7InRKoZ9DedyX8whAMOb1EQRxbnOVK5fn3UdkoI\n", - "EYvsmRX7/RSTPyDO6YDzO4K3Wbd+XwEqSt/791vIDqTUJ9tZJoC4X7jEhIR7O0hnNC3zm4CSUsYk\n", - "wnXn6AsZeZ3WJudzTzpI99dWhAihH1cVcxT13zL373XzGKP53BApjJeYMk3rxHhT1P5AdRtC805A\n", - "wtgT82yj7bOg4y8Kk1PxdwzOIrwvAiIVIkSIECFChAjxgRFepEKECBEiRIgQIT4wPlpqr8xjaUjG\n", - "3IioKZVGW4l/3zs8fXsHojSlm2KQjBeRw43xWmHJw/HZvM38tAymTOn7NVSh88SVmIcaEOfS4dG6\n", - "U6g6I2JrhPRZGrMkACB7IsVngHFTIwVTyq4DyZgh3h3Sg0VO3khIX7ASawrCcpc7sfPN3de4HieF\n", - "joC7sxxwJ0GXPWDUaXhXMXk4MtEO5desrDzp92K6nizB+RE8bMzyYWBoG+kmpAJjVpsHUXW1+LF/\n", - "H5Du4ydO9r1o9J69eOGkfCPb9pRaLJAWWKXe7ZtW2/2b7/9SRESeLN1/8Gxzhd95KqJFiXdLatN9\n", - "CRifSMwZjhuTsv7tnab5tiSnYYj1gP2mwmXVelzuV/tOS8dbuicZoGjqkpJlSNUwURqp7InSQlWl\n", - "6fUMqbWKyf5IN7965V6HBVKGHaso48BnZz52zMPtePD0vctTUKpELLWH9ByprreWliKvTatxyKms\n", - "e5Qe+yD/s8j+JaI+Ununyu+JXXcMdW6htG+av3u+lp7enTw9VEFWYGSvNaQgEpqnalOFJ2K3FbdM\n", - "xGlYgWRthQ2UnfRtdJ4nEI9j8no0RwGbV0VElkjjtnz9INsWCann416YE8Mk76Yx64ZSe3MqkI6P\n", - "1GKyonsHeZSE5sSp1HEcZ/7bAcVAKcZQ+4akEdD+d3siR486J2/Iw/CwU0rHiYodOjxPErpPluYe\n", - "SHanAZE/ncwHkjUx3vWfXOD5k9L8F6EAKE2IKoL+VN2TnbGL8DbuBW4Hkx5joDFpqUWW8LAU6EBU\n", - "DTOoqMnr0eaJgapiWozTuvPfWoZwYAeCSOfCHGnpKCNJEpP/oNMcB3MxoHOq9O+m9uMvOxSKTT5O\n", - "28Z8Kr2PSYd+Wuo9LOmWrOA80cee2rXn2Q0py5tn7NmG0ugpxmTm6dO+PuEa/BhV9atflQIiFSJE\n", - "iBAhQoQI8YHx0RCpRVlKS6slW3V1hFbEOL1Xr52wO8AZ20oURVz8MolJOK83US1ekaJ0H6tAFsab\n", - "FibWRmgF3uZtZS7iK8Ju8FVSXqioW1X5sQZbJbDQHVZdJioYExHxCCJeRyTO3VGve0WoyhKIxRi9\n", - "i/RERKzbVUrGLBJyuh7wpg2ickraDEaonZhYblILdA2jIRFcFQASZU7ExsiIf7RtxP3sCGHYV4oi\n", - "9VjVFYzSHUBwJBJrAXFAW7WLiDzcqjxCmvn3vn2hPnlHWpEZ2ZnJq2ugVHfXSp5+0zixe7PVVVhL\n", - "Hm4trrXv9vQ9rEdWq+AAACAASURBVKoW3v7FFuX01J+W8LNLiFDegVw9ogBBNr4ymnCt242jb/ud\n", - "IqwHQhPTVq8niUmkFqvvKCExRUNOU+qnuJ4GK9IDXdfF1RPsg+4X0Jcteei5JIQfqwDx3bz5RFxY\n", - "9XDwleODhw9FROSIJTT7gKUop+5IaiNBiTtVOkuMfjy+hwCe3OvjKGefvO0EbTElhup5f82w6q5q\n", - "v/8T+jCvtPfwGlwQ0rTfKxK3pAKACefEKMkScgsJwU6VeQICQYgYfUDcv349p2+/+mre9uiR9t3V\n", - "2vtOD4+7h48f029RqED3zu5BHL2LiPVAH8rU77/Am68nqYMI1z/GLjUQW1n73ufOtNSxG9OaPoqt\n", - "KEiPf3PniOjztzqvxSs/qSOQrloc/ewhSdA1LH+j7VSTJ+UCYsN9w/OkydToPmqaVw2lvD34/d+m\n", - "iuZ15KFpRUsjo08ziX7eJHWFohwak9Nozx0UO1DbZMm7YzhPDdX3/dq9Y0QyRxahn7hQQf9tyLx0\n", - "jBbYRrI/pR1L2zAlYnkD1JdqSOYiBhbJnqUeUn7tMDFZb5TOiOrNu96ROYo3FhtGn1FEQMLV5t3J\n", - "52SemFHOvnr23CfkahYfpQKE7t0xyBEQqRAhQoQIESJEiA+M8CIVIkSIECFChAjxgfHRUntxvpJ8\n", - "RXAeiIrxQJpJgNvy1NMdAhjx1bX7NR1bhXuXRBQ3r52EUkuzT97MIaVUADy0bnauBZMipdQSFrtA\n", - "6imJyetsj9Tj4NB+BLLb8R5krFCxeeeNk0PRC2jGVA2prePudKT701qWgeF2kEFJsFX6BVI7qcPt\n", - "lqookU5gFXUTUe4nUodGCm6KHOJN0Hg9aXaYplHUsoowFGs53ZKaZgqTN/V7h1tt4440PoZJv/fT\n", - "v/7LedsnUDn/0eeuInx+rpo9qzNX5TbNmIhg5AHpq6xwYq2pu2+gtj1rUolIg7TX7uAk9kN9wDX4\n", - "PVmb3HxCWjggG49Hb8/t2QOcB30P6bhhxD1piew8aFqmq70Pb0vVtDqSin21RyqAjj9stX+mQiq+\n", - "UEwuM/baMqJog//TPnrzZOTUQoJ/2cNO98GK6ZdXeu6stm06MtwlJtPxAbOTj9UCl09I48e0wpqW\n", - "tJVwLgn56pm2TkYkUsGYzVnbykj+IKLHTM6HttM0MtkchF1KBXQ4lumeiYjcQQOuIxX3zPy/jkTU\n", - "xjmPlIJOQAYuTEWcFLuP0KJarz2NNPRGWPfx/PLZtyIi8slnP/TvTXouXGywWsG7kfTrYqSNLKOb\n", - "URo9XekYKxak2I/+1FPK0pSwp7eu95Q80FRxSt6Zs5MBF/mAPJw0+tuzs4fzZzdf/ExERF7XPv+v\n", - "kDK8rXxMJKm2Ewnbz04JKaW7jQ4y3fOJQ7oX97imwooCE29RsD6f7q+mjp3he+zrZlnmiDxWGxR7\n", - "5FS8U5g/nc0rBHdE7yk2yCzdRlpIJaotMkrLm95gR1SRGHOsFUeIiLSNpQX9uDkKXiLM3ff8KvF8\n", - "rqiIwdgb7Oea4pxyIpbbdfTkCWlzRtsSeR9/piiUSsnDtkMKtqG5q4In7ETtZBp8Wcp3Ra+noblr\n", - "wPmNI7kcNIFsHiJEiBAhQoQI8XcSH89rL84kzn0Vkk1KQCwi39Yc9S34bEWrFdRYJnTqB7zVD2Ts\n", - "VsCzL8n8t22jZbIxSJwxv60nIIeT/15T61tqHztyNGIlOJCDeFuZYjOV9YNsN5JPVQp1VAOzOlL4\n", - "rktdOvVEIraF+EgKr1alGlGpfQSUboq41BQr7TW7yus1bnANNaEVZsDUEom8xsp4IHXmFCuniZCG\n", - "ywv1zmqpJNxKsltaJaxB/M+IbH5RKEoTtUZwdXLshJXw4e0v5m0v3mhZ88W5yxR8+lTv9cXSV4nH\n", - "p0/138rv53KDEloiAPc1VKHRx0pmgoIcuj/4SreDN9Rm48c/nZQMm5MqvslfpNR3DfUi5QTpWxBv\n", - "M6A6RGqcTlitUWl2ghL2Vexq6/te0Yfjye+JqdgvyEOqg4fZSP6DhtwMKGFfrchDDqTskVTcE6zm\n", - "Y1a2x4qckaZrKLoz2XtR6HGXRPbvgQj2psRM43oC0tWRz5UhRxMdKzZldUbOQPwdCbpNcc4joa6Z\n", - "eeuZX2fCsgpAxAl9OKGPZ4QSmfL4mpAuQ6JLKp1vgWy05L93dakIT137Niu46Aa7h36+Bc73QLIS\n", - "NtYePfI+ef1Kiyaa2vt/Ac/IjMrfnaDsDbpZ6PUaWrC9cG88a4uS7mENonJ5RkgftsXkLDAc1Cc1\n", - "/cRRsqnSOZms6ySNcY/HdwnLxcLmBEeJl0D1rpZP5m1jr+NqGFmdGh6CVNCSA2GPJkIfrMrGCkEm\n", - "knVA07EnpBXUNIRS2rw3Ursa2jqS1EA06G+7I/Vd+M4OqY1/ul8jpCEIabEinrRkD01DjqnU36QT\n", - "SkcErWphQbIrw6R9kbqOHHbws4QS/TjQsxOZjknIFWE070zfxxpI5O6O/Qfh7ECkcPPVGzo/RjFD\n", - "UiiOIW/CFs+nW5I6qIA0JyWhdCsds4uC7ufwLko+z8G0cSJ07H0REKkQIUKECBEiRIgPjPAiFSJE\n", - "iBAhQoQI8YHx0VJ703gfYp2QbmAALQV8XhARbwTc+/qG4DlAtlNKKQAjxSWk7XJUuDdByiAhsrkR\n", - "YSOShzbTximiYyEF2JFp7BCZZgip4wKr7EjFtTWNHqT7EjrWAXciycmMFgT8LPHrN2J5RqrsdtiW\n", - "oOW3t3qsltJy50ZQBcS7PXeCaXdUbH21eDBvSwDZ1q0bj+5PCs9fnnkKKAVhMxkcHm6QbkiJxGhQ\n", - "aV4SUdPMYkGEzTJPT3QgND45c3j+LYxJp45J5HrcjEjs59BeWpMCtqWAEjbXRDrOpGvyFZl8ZqaF\n", - "RdA6bs/FklJrd9o+U+Ztbcj7FHEfB3ma0kLrBciuMFfdUQHAza2SbVcN6U6tQewlBfr1Uq+1J30k\n", - "657M6y9yM4hlbZ1ZLExEROrKYff2Tnfy4PGn87YEmjkxFYAcYEz7eOX6RG9vNLV0du5pIdOD2lCq\n", - "zLJ2XW/aamT8jG0ppeBNvymjIgIjow+kN2WZFy5sMBPaOGMj1xzXA3I+keiPHXTXKD1TQ229o1yE\n", - "pRs5jWy0gIjmGCPvswJ+a98jQnuPdGsH/aqY0sM9HBCYAjChnZrWt11cPcTxfb8liLox90mMyYhM\n", - "4BsYAi83SI+SwvQAUamG9psuNWXIxsdLqIxz8YCZFk+kLWbm0+PNV74t0xRQglTp3Xffzp8lmONO\n", - "ZFDcDtqfFunlvG271jRfMzgpvYUGExdATCjGychtIJ5N7ZHuZUPlWXfL+3CE8dxQG/aVGUR7CirH\n", - "fMq6XDHSgmNPmAbmM8swRUJaeJhDMkpFDXCHKEufEzLToGKD7Pi+GbaIk8Yj0uWaTBX/6H38bq9/\n", - "n63NZNvHlZlwn0iDsEehyEycF2/jy60fv+2gN0YaZCPakc3N89yexXqMmu6h1Qdd71kdXq91s6Z5\n", - "osRzN6aUHVKwDRUADaDSRFS8ERMN530REKkQIUKECBEiRIgPjI8nfyDDrD4sIpKkuvoY37OqHIhY\n", - "VkEBuWEPIaw04slXkwkUaCciCmZ4Iz8cFK1ZlkTYxpKcXuAlKez8iLCLsvox8nOKQI5MC18RCBTF\n", - "mWxnpMS+gmLugdRk4cmUl1SaaWxzWn7ERsAkryNjQK4XvnI9P//RvV2IuCfU2bm29URE0POHimo8\n", - "+eR35m05Sse/f+Grup998ee4Ll9V9pBsmIiobWgfKzZPQMcGKnXNoRpvfNLVkkqDUSY8kor2cdLz\n", - "zEhZOQU5c6Ky2gkNH5Pa7QBSfkzl3BFIwSsgWGnNCrZYBdHqJ8LaYyBOukC9vN575ykXQG4W/sUG\n", - "/ncRldUu0ccWha6mB6rX3oPY/PotqY2jK6Q5raBxk5e5I4yGeo40JsSKFojsb6vv3kq9iWFqZOOB\n", - "ybH47es3r+dtj5+oiva333k/SdFno8RX7gNWujGpMhtgY63OCs9GrOYS6uNez6+JGCWAdyZLXeCW\n", - "5URUbkwVeUGIGLrHXK7PxN7epCHoZgPNJKDXPfaIgFxjjJ+OVKgCX8c1+Yk2uN8xoV4Fimb2O5VQ\n", - "OCOpgwr7ZV+7ttJ5JKf5LAXqxmX1BqzGREA2cJZX34YEHDGGstKPH6EtlkuSS0j07y7yOcGGTLwk\n", - "qYMa/fjoThXJ5a/hi545uPnFX4uIowp3pLD98rUWfhzQNiIiTayE/SXd6yTVcyqIbJzkup+2JvV8\n", - "oChUzyNFcn9+3B/fHRMJIZdGjh5pXLWQ1o4J/TB0MqICDFMsSQmlHiABNKF4ybIgIiJDDHXwwvvk\n", - "Bs+6YkHOEhkyLOT2YW4YC3IPKIGspSQT0gBN2+ckZ2Ek78ZcMUhWCOeb0Di1jM2C7r/A65MLNWL8\n", - "5kjzXov5ZmQpJEMuJ3MH8P5/Aorftt4my4127GXhfX2NsZDQc6puraCKZH+A0i7YFYH9Jt8TAZEK\n", - "ESJEiBAhQoT4wAgvUiFChAgRIkSIEB8YH49sHnX3NGN6YOXjSIISEBfZU7qhAfExJthtu9LUQkr6\n", - "QDNkS6RwU1adoLFkxFERkRwqsnlKsDeg0JHyc/2oEKRBxyIiJfSRcoZRQQZOEocsOyjGDoDCMzI+\n", - "NSJuOzlhc5jhS0/jzGrLlNrcbPRYv/3p78/b/v4f/EMREbl65GTft9eajjEl+IJ0t5peUxBPLyll\n", - "Vujfx4OnliwFutt5ysLkqzpqzwXSbDFpcRyRMmhJWysBfG+K9sfaIft+NG0rMoi2FCxBy6aiHlEa\n", - "yxSAS9I7erXX69gQAb0ApF0WmtobSB+nGVSr5tS5OnMEE9aI2s6KAUrxth4PuNeUgqkTbbOCtY2Q\n", - "W8mwv9XGz22NftpRas2U1xcb0keBPtNI+SYjnk4Ej0tmitWUKkY6rEfKggsbjGTdUWrrWNm98H28\n", - "Rpav6byvPziDjhcpxV9eaAqmbciYHNdvGmxVxUr8SMUfyQwX51kTYTlvdJxmIxeboE8QsTyC2vHp\n", - "xKroMDI2Q21SsTbyek/tmiTv+R766e6WU0B6/D2Nk8VcvMCGu3ptTPaekHqxNvnmW9dRs1Qlf9/G\n", - "JKdMZhVtylRb2jImVwYjXsdEFC6Q+kzy+3pOIk7OP5G2V4l+XV65Anm7g7ZaTanFFdJ3nBc3E/DC\n", - "NaA2T3R///S//e9EROS7u+fzZzuYitdETq5QPMP9agQBu6Xxl5UYf6RVF01QdqdCpaS3VK2eb03F\n", - "HqYfxZSNfnYH8ONbejQiCkbSGVGdUpAodklpWyxmrqzzVU9zaAFaQpYT2bvEbwumtmBc05jo0Z8j\n", - "Mqh+8EgdIh5c/GjedrZSna8k+n/8eppvcO7lO9d1anUs0qGkR6HEkBHZPjeyPaU20RcHclzu4O4Q\n", - "kyvJ3zTubhsy+UZxRkqUjQL6eauMxjq6eEPzqYhpMPqWGFpyKdFSyjUVd70nAiIVIkSIECFChAjx\n", - "gfHREKlxHO6ReMfRCGZE7IUP0KIkBXSQUbuJV7X4l94LaxgFFaVvy6GAu8RqnVfQp16/n9CKPJvL\n", - "VWmla6u/iN909a17s/SVTpIoijSM3/t5JlhFmjp0Tl53uO6MSG8nkFNb9rASRbOa0d/0DX242FzN\n", - "285xLldrLwmey+/3+tvbOycMN1j17A8kZwul7JsbR6QqKBYfaFVv6uAJrdLXkDiwkm8RkQbtNNzz\n", - "dUKJOwjbXf3Kj1/Yufn1N1jBsxL0EcTTsnTkLo/1+Nu1r5Jf7n+p103eeQ/WT3G+2k7jSKRLkGJH\n", - "VrbHJY50/8uVnmjJJcz4sxocObEq8pFKohN4C0ZYYZdEGL240v1G4oTN0x3OnfZrBPgkplWTIZeE\n", - "Po0gdsb0PbsVJvsRdTwl9Lhmv9a3L7UtHj91BMGUirdn3nZjZOOElPJR6j+PAxHpTBIDkgiM9ORA\n", - "RNgHrMPqd0HecDUKUAZCScyLbpp4rQjULeWiBFwpfstFLIZITQQ/nOCTN5BfWQXZgwMRy89Q4s3I\n", - "WYTf5FTR0kNuosh8W4JS6+qE0vCF9+vtpyq7cdqRYj8IvR2RbTMUbbQtl5DnuC5CX4Dw3WsnoLgm\n", - "TZIT0mG+ci15gg6t9t0tFYUUNmcTSj2hKCQiNEVwPyXzdkq3KsHyg5/8RERE/tk/+V/nz7pc56y7\n", - "xsfwHZwHciq2sEdLQ4VCl0D68pKKh0ymgBw1UhTAjIDas8yJ8HP/ZJkO9BP2mquAyGSTX2uGtmbk\n", - "eH4+kVL5gKzMCagWeyjG+H5EfpkFZCq4AGU06R7K5kQoaGJNlLNz7U8TSdcsIWfx+OqTedvrN69w\n", - "Lu+qrRtgFpMkSwQ06UDZjDVQnWpkdMkmVJYkQNah4GIwIPxou6b2NhlafJ+ySWa7yUirOR9GhDQV\n", - "QAKTkeYYawtG2Oh63xcBkQoRIkSIECFChPjACC9SIUKECBEiRIgQHxgfLbV3PO4lJXXuHOzIvnEI\n", - "bYX0UEV6SzFIgVnKZF+9DDNgFRGpkUeZhDQzkDbZQCl42Dmc3IJEHjFkCbg/Ix2nFBBjzKlFaEaZ\n", - "KaOISApC+f7kquB3B01B5VA2jijFYNxpku6Y1dFrSuPEgCUjegfe4Tq+I72nT2EMGpXeTi/fKgR+\n", - "BJx+IpPbZ8+U0Pp89Wze1rfarl9+49tu76B6vHYYOcOfGUHWRlS+I6LwEQrxXGSQAW5vQfBckrZV\n", - "j+81RMpfT3qw06236+0CZqiFk72vVvq98zNXas+fK2FyJPJ0B6i6gLbP0Ht7GWF8JBXrEanKrvd7\n", - "kpVISx59v3GONBJda2wkYjJy3mPfMUxAV6R7VoBEulyTZk2kaYaIlHat7xaUMhpwjJb6yYB+Okae\n", - "qphwnyw9wWkEwVjoak9ZGQTe1X6eXWMkbiJnIlOSJJza07bbn7ztNmc6ZjZIC7298ZRNCny+qb1P\n", - "2N8bGms7KGqzYr2l3rqGilfkPmFVxLWnhjk94+1qBNeY0i6Npdkp3X+qYZBLyvLHkx5/dc+VAVo8\n", - "pEtkmjasgdYhfT1AvbzYOGXANHbihNMoZrLq13XCPmJqEyN59w0Z5GIOyih9V2y0bVcYQyOZoUdg\n", - "5S4pjW50jOrVi3lbudb7GZdUUIQ0X0ZK7RPoE9FElAIQkE0+aXPplIVffvczERE50Fx/RHruEPm9\n", - "22NO/OHnvzZvW6EYKF158cpdD9PkiTXYNLUVoY3znByVMYcN9JxokYJryLS+xbhuKAXbNXBxIKL2\n", - "Gs+niDTARhDkm6ONV9+vOXWs15TGFN3W0LMzEksLkt6faJrtRGP3xSud9x9duFNDC43ArqdUNQyp\n", - "TyB59zQnF9Cxak9E9obafEMFACeksUdKI6eJ6TeStt/8nPCw7LqJndcVz8mYazMuNsGvqSjN+OzF\n", - "ggyXbdDQmLA5sKVnwTAxQf3dCIhUiBAhQoQIESLEB8ZHQ6T6rpvLIUVEsnlRRVIDIErGKb99wsOO\n", - "VrUdVE9PtRPbaqzcGvLriUHUNgXyReEr83qvq5SOymXT3Ei8RE4FmnG8R0oFmvWIvdb0TTjLSe12\n", - "gidbBCVwWoWOLc6NiMC2EE4TX/2lIKqXRKKzt+U//8ufzdu+faYlw+XaV1OGIm23WoYutNK83r3U\n", - "c7qmVRWUut/ckfwA/BEjWv6ul2vszttuAnITs9edveGTKnxjnmFAAs7PSJoAqGNE9+nUgkRLvmbX\n", - "13ru5cqv9dFG23NLyMXVRlear49eANCXUA8GwjNMvqodRiM4koo9uufIZGMQ31NCGHsgFjGhBAlW\n", - "SQWtvgwAOgEtGCuqq55XVVQujnLphKQeRlsRU0l4gpVYSmTzQ6vjIyU0o5gRVpMf8WNZAUhDfpHL\n", - "taIjd7eOHGW4P4c7WsFe6X52jfcdI9ve7n2cbkEKP2EbS5IYYbypqdgC18Xos7U7e6gZcsv+e/Y3\n", - "+28aGdb2wSrmhlb1hEga8XxP12DkbZZkMdmHs8de7JBjTpioeMTmm+2SEB4UdJQgT0/s9Yh5jRXb\n", - "D3eKdPd0rXOhDFs14HqSmBWb56POf1UoxlgusA9SjI9xvh39skffWTIhFwjrlLqciHkmjqSAPcGn\n", - "MCY0Zzxq237/Quew08nb/3CA6jah6TWcEhg1KDNFvR6uHWlZAP3rR0ezk1T7bJJQQUmtnxvJnL0x\n", - "M/QrllqY0HZtT/cV8xr7uR6PILaT/EBicgoNIVL2jENhQ0soveE0q5LkZ6yIhJRO2kE/H1hOR3Rb\n", - "RwUQ377QftpT4ZU97+rW+/jsiZqahAO7kqD/01ka6p4MrPYOAj65HYy4ZzxPFmif5N48CT8/qNzz\n", - "nGSALF+/qZ6klE2aYvM6JekczLsDFQBV8FasGv/tsiTE8j0REKkQIUKECBEiRIgPjPAiFSJEiBAh\n", - "QoQI8YHx0VJ7m2wjWepw2uwjyoTJRuHGlki8qyWIigQZHluQPUkxtzpp6mckCDZHms2A/YnUVGOQ\n", - "joeWNEYABUfMvzW9IyL29YMe4+0bN+O8utDvjQOrHSv0OwGLnITJsWYyS4aaohBkTFB4itRaWjg8\n", - "WsIssyai7F9/8YXu957elO77937/t/Ucz87nz/JMUzb7xpXFExh+lhUpccNlMyfIugGkXRakAJzr\n", - "5ylphiygWDsRBJuYGjwg3ib2az2Hsnofs2IwUjZHv9YTIOiKtG36XlMqq9yJrZebRyIi8vL2q3lb\n", - "VWka43hEepBMLuNe27gniDcGBp3TGiReKMl9TZpdHdIczcn7xCozXSS/79aN6pP24ZujQ/GuHszt\n", - "r40X07YJbTeRBpPprNWkbZUj3co+xvabGCmGmNKzg+lH0Q0bUij7Z56KurvVIoYtEfsjpNn2B09B\n", - "GGF0JEL7HkRxM0Pu6fgn/PbmxlMxZ2dn+B6b7Op5xpQKeJ8CuaX+Okr32+eWxuWUoX2f033v22bK\n", - "4i0bqc8q8kSsRd/paDznSDNklJcYQLLPoMXD6VZBMQIbulpa8u7ujX8N939z5gUYg/VnSu0skA5f\n", - "rzzdaRkqI73nRDfoMWfXpA5dgCrRE9l+lswb6BGzWdgJ+zakgCLSAHv2zbf6L/ShaLqQrsI8Tamd\n", - "HGrbLE/0g6c/EBGRVUH6XGjPqiYjYyveiTy1JZHOJ9YnitLn2gjPE+5XlvrtqV+ZGnzNKUA8Y6KR\n", - "2gnz/rRk/USbO0A7yDk9rfeu6sltYrBz9+81vY6rnCggtt+u8TF5vdffrrNP520b0CI2Wyf5n07Q\n", - "+0ug47YkzbpY592c0mhdCx2pvbtCxOZ2Qdpa5mwh0XsoHUTKH0BBqGoUZ9C9XiAFvaHsW77QL3RU\n", - "qGXUioq1zWz+bYiWgXuXRETp4ReT90RApEKECBEiRIgQIT4wPhoitUjjewuTbPZ18je/HUiXGZVL\n", - "Xm4VVZjWj+dtP//6T0VE5HTy1bytTk0GQUTkBYh1l1t9de1ppWd8VvbhMbXjqSRICp+3NZXJgwB3\n", - "uyACbqyrr6EjtVUgEWkB5dqTrww6rP6TiUqDeyVqJoQ+GBExWdDrN5pssfRtT57oCuPVS1cKtzLx\n", - "AaX7cU8efiBPW8mtiMgCqNcZEcDt+gu6Jx1WdR3JH8SR7jsjZXnjWCakCmxKAEOC689JYRYrmJTI\n", - "gXkJUnhENFmoQp9ab887rLoeJ96eZyslnue0xq1bRYwqrEiyxEvNF1jNbkpfrVnZb7r0c1qsFdmL\n", - "SYF/D1X0W0LJYlxsRirWx04/byANcEvl/6ZOnK/8vn5yqdfAqM4R++1bX1UXQESWtJoW3J9TTT5t\n", - "MxJgiBAhLebDRr6GtRV5ZIQcbrXNImKMvvxeUYWLSydb30CBPiPk6Hi0wgv9/3Lp53t9ravZntAK\n", - "K6euW78GQ1oz9v+q0McJETJ06PbOES6TDoisiISkCQxV4n0cDkZOJgRpbjNfka+A8Ew0x0xAuIuS\n", - "ikxmknVC39O/DXRnIm4DL0ouwLD7k9HYaTAntSS/UsD3LKOJt0ZJekrnvlhoP+7Q7iUVu0hmKC0p\n", - "m6NQ43zpxPJZ4iTi67+/DxGRBNfa3zrCcoLExdtXeu7ffvutXwPGWNvtaJve//NzR9g3kG6YxOez\n", - "5+hPh95R9yUAuyIliZ1Mx9HYg/RMCHI6mK8nzXVArpKRS+iBPpEqvynvRwSdjfDfiwhhjVAgEsNt\n", - "IMsYfURRCpHj68HI5uQrWKCvJT53xINeTx+xny18X4k83mMuXFHxzvocaDqkUBYrKsoCAb2pCEHq\n", - "4KHX+fGPexDwY/otiqcmgpjsanuaJ1sgSzbt8/hbLvW3OT1rGoznmFTM6yPalZ4dnTk5MEoG8nyZ\n", - "+8Arsl/9qhQQqRAhQoQIESJEiA+Mj4ZItXU7l5KKyLwk5dVfhDz/duUrHcuvjsIyAbr66HvPx67h\n", - "NSXMuUDZsQlYslhXB6GxjDy8THSP/f+s1tLKQEVEYogUNpR7PVVYOdJKM0KJawzhuAWV1Q44/kAc\n", - "DTtGQofvsFrrMl+RF+UC+/X2XAHF+MEPfzhve/1ay4mvX6qA5QWhWisI7B1oBTNNJhxKAn54m6fU\n", - "s/RYdWUpuXon9i+/q6Pt6IIGrNxqIGIH8nWrQU6LEkKw0D964vmUkNFo6LcVRBIrKvU3EG29duTo\n", - "tn+Nc7LVuver883FvXMUEUm3emHcJ7bn2j/jlL2+dDW9I+TOvA5l4nJ+vY+jQOhz8PtqonLx4Kv1\n", - "Ev2JS3gbeHztWLgWvJVi6cjFZgnkrPVh38HXy1CKYuFtM5p0AZEEQQeUgjhyVn7/yQ9+Mm+7g6zA\n", - "kby2BsC+y62jfoY6nYGvxyvTN28g/kr8neNRPz+/cO6P+cmtCBG5vdVz2m5d/qJ9D0fK5AzMY+90\n", - "clRvsdDjpum7CBrPU5MRLWilm4MvyD6Zo+hvnzx6NG+rgZyNwsitjsUNiKPHO0dQIvRFEsmY78+a\n", - "vD7tjBm5NDFjFpg0wdiI5BRaQ04xrzD6nUGmoSD0uW3AKaJ7N/MlafwJtk2EcE7ggb589Xze9tX3\n", - "Kk9ihzh1ErRs3AAAIABJREFUJE0A6RhGH8xj7fLKESnzXb07OHL1+qUKho781MOYjVd+PUlux4P4\n", - "Ld2bCXPY9B7h5mTkZwI+I6THxH5ZkDOHYCv3sdkTDvNuTPvogLB1hMjOnMvO2zrGnJySIG4JFL2v\n", - "fTw1xquKfEJfrrQdR6GxsMJcBOHWY+33y+a9YaTnGZDInLlf4AGaN56IzNzYiJ5dBc75QOLE9j0z\n", - "O01T2i+yWQO9T6Q2rmmetmTXROO0yIyHTM9p8x8lj800/dWYU0CkQoQIESJEiBAhPjDCi1SIECFC\n", - "hAgRIsQHxkdL7VXHXiIqq05R4tmSD5kR9e52XkJ+ttGy1mGkknj4aa1IEmC70t9ylea0Q+kyoL1C\n", - "iEy3Vcg6Kfyc1ufbd4+F0uEDnZOVnzeDE4V789Ob/BgpIO3WiLCEek+AfZvKocgs1eMOAwP5KLV+\n", - "j7IzqTnMqrx57g3w9ClUfkFw7ghiXeL7Ty48Ffj9NSD2ltXZ9VzWpZfG5rParRNQy7Xek1IoVQSS\n", - "5V3rqYp4/r7+1YlDzHb/WYk6w/0ZDgR3I99EmT15eY3SaUqtWYZuw2rTnaUx8J3E72uMNEKSecpo\n", - "JmVTqXcHuLmr/bpeIVVxIvKyZSMyKsnOc6j3w2Rxe+FplAjpvnVBREjISrCHVhKjPxGJtYXXW0Tp\n", - "hgXStgkR5Xsj+aM/URZVBqQRUkqBjyBgjpTaWCMFZV5aIq4EfCSyc29q8BOnOyD7ca+Pa7zBPfyN\n", - "y1/368J5FjTWl4ml1qnUHP20JlV0S8cxodxSKkYi5/R4hXHKaZcWKZX+PWr3/D0joEcjuTJYQu6e\n", - "1xhU2Ym8PGcK8dnm3NOY5nGYcMoax1hQUUIOqY2ey7ZxDC7TN5Xxs0tPC55fqIxFDmJ3RuRwS6Oy\n", - "rMMC93qiVMg8uRF9QZCyiSjdEiP1mFC6/X/+F38oIiIvbn+uuyjYRQCyGpSC/eFnmoq6f5+0/V+/\n", - "dkmI2AqEKAVvU1EVed/NURRQ5iaNQeXymM/vqeijL5QJl9DbPEH+o0hHFUQet2KQkojVlRVIYeyO\n", - "VGxUIgU79b6PCgVAZ+QiEU3of1TYYfdnRW4PG3zctz4mxljpDkXu3xvxrB6s7xLd4cVznTMToQII\n", - "pPkWdPtz/Lanc2pB3i+pnyTWP2ic2IOin+V/qP+je/SUxu5xD0eq1LBiDKagLDCfDkSpOGHuTAeS\n", - "/fCP3xsBkQoRIkSIECFChPjA+GiI1Klt771wlid7W/XVhwlMtiRhsFkqUfNEK82h1rfpIvffFlgx\n", - "ZVRqnFf6hmk+QBkRoS9ArFye+eqrQFn7RESz/Q5u4USsOx0ViYqorLODxxEjBx1KVpPZ84p8gFDC\n", - "ShaCkiRwcCdivZVhloQ0LbCq2ZGY436v57JZO5pi5eF5oWjSwAhGb35J/raejbrfQ0XebHApTxe+\n", - "gu1A2G6I7F9O5mtGhD0UBaSRv97XzRvsF+dGKwjzE4tYfHKEI33rDXXs4FZOq6RX8OKLqPw5RTsl\n", - "GZHy14pOZSXc0sXjdMT1TI40CSQZOhJa3R0hoEdl+kc4vWcssDqbJ/r3SojYXUZ6bjfUJzqgZX3s\n", - "fbLDynBROKpUNvBfWzgisztq39mTJMIZdr0g0dF81P0kuPKOVtBLoARd5fuNQMqfiGycoj37zttk\n", - "UepqtmdJDKAkDckvmBfiEWO9WJMwJFaYvA9DAu6hH+8Jk1Fh5MBQFJMBEfGSedtf17MkCsjx5INn\n", - "QqCMCCezXAGVWgPNulpTUQyUUBvylevRTwsapxH203R6/OboaMmFkezp+o08nhGxOIVg6oK1L9E/\n", - "CRCZkUAmql8+UrmPxZkKzCapX38LX8mJkM4M6GBOSONoJHZqu8kKJDpa/b/VuWN38G0Xl3rcn36t\n", - "447L+nuMCS72KJF2YHLwCf2pP1J/nkvt/Xt7lOSPMVWvGKE90+MniQvttjPSQ0hHZpdFIs0G3BAg\n", - "aDItY0pjB/cn7QjhwscxhDtzknDJgb63nc91pfnAHVnWRD+vqD83EJuelo4SZ4X2u5Q6RYWHEBdK\n", - "Zch6RECd+tYzEoKx/ua5e5gWOQo1mICPuTMn9G3CfJeSEHNi3o00x6XIClWYT1tq2BHoY80+uQug\n", - "tAu/hgKZgFRITBXSHfXR+25z0JvC4twsY/S+CIhUiBAhQoQIESLEB0Z4kQoRIkSIECFChPjA+HjK\n", - "5uVK2sEh65ujapEQh1FSkNL6yCG27579QkTu++pN0KyIB4JnRyNAkgYSCNURfpuSnkcKLZaSdiEg\n", - "4uZEdh5KhUJ78p/rUlOM9pTBbqfXdk/FODJlVxBMKWUlSIENBFn2ILayh535OsXka2QKzGfknffs\n", - "2Td6bpRavDhXONbIdhWRTmMoJUcNea3hXAZKrSQgzMf3CIPwQSIPJ+tZWekp2AypxDjmcwehGW2Y\n", - "khJwBL2tgqBwg6oXCevz6HF3RFiuoXz8feMFAGukhS/OnGyamKbOYLCzt/XmQlMcX3351/O2vNDU\n", - "Rk3pqR20ahpi+5uH4DZxYvsqW+HcyNcr1z62XCHt3Hm77vfQVmNhfeioTR2ltuA1tr4gEvtG2+nQ\n", - "err1pkNaOnUSqRHJC8hos2JwnJj/JOkuYdgtSxoTjW7cnnsKooOOWknETksHndhPEORuI1Qfbj2N\n", - "akLdTOw2AvhI4797jwZdi76dEom1QTqO032mKWXHYADf/NSYxG46UyMpUbfmNkDXaqm3nP0nYWJX\n", - "kaNBhrFQ3Bvjetzr1+r/uKLP6oP255wI4BM8wSIiWycg47IqtnFxo/foza03ntqLckuB6z2+u/VU\n", - "UAvidUE6ZqZZlC1IRd9oE6RZZX9PDal4o0/88U//wo+B1Od2o/PV82tXNq/32nafPHFfR1Pljigx\n", - "f4B+WZF7yrTAHMspoAG0kXpPjg4rpO9t/i19vCaFmbOR12MKWgBRQBr0iY5TdujQE+EXGeaMlvwP\n", - "Y/SdMjHdPZ9rlih8ySgVmYmmT3PyNTzuTAmc0l055l8aT5bGbEirbgvdsGbrc+w53EBS6OxdUXHA\n", - "Fqnoc+r/b15pP12tPbVbnulcyBp4Juk0UTv18FG93vs5dUe9ninR628bmkNQlFWsqP+DbsBSlT1S\n", - "rwOR0idoO1b+mBA5WJ/18xxYS/I9ERCpECFChAgRIkSID4yPhkg9vLqSl3smkcIbihzUzacqIr8m\n", - "83ViVrD56dRE4rzBW22aMgEUzummcEyE9R5v02/35OEl+nme+dt3BLfqLGdfJbyJd6SifAB5nlCf\n", - "DKTNMW7u/05cPTtb+PnOKsYDSR0AMSnp+CVWn0nmiNTpUt/Yb8h9+/T8OxEReXCh5MmCyHzXx1/i\n", - "RHy/Dx+qn+FycvTh/Ey3PXr0+byt+VZXDt++crLx6xe6n/3K5QQerfS4I3kXDpm22QlkvpLK6hdQ\n", - "7G3I1+046HUVTLaFO/0ipvuJVVdLxPa70w0+82OsoEb/8EKva7166te6ULmIz//e35+3/dnP/0cR\n", - "Ebm9++m8rTpCWZeQ09jKdIlYnkdW6u5tfIIkQITvbUpHH8zj60hkY1OCrlsqv0f/zxa+bYE10kBq\n", - "xxVWcQ2hGRnQ1ghoTkqIXH3a4xpopWdEaCo/L6HO3JCKdIxScFoQS5TruS+JAZ2ASLxeQDGZ+mth\n", - "XmOkhP3qoN6RPSFCIxBT9tozGQMjfes2FGqQT50pms9zApHI7e+JS9htNUuohhWNjOTTuVqj3Wme\n", - "yjDeaDqTGMdl1M3QLiPHtxVJaACROHXsF6jjviRibZwaIkWEXbR7S3IuE64npeIV8z2tgJJ0VPt9\n", - "rPT+FGfudTrLY8SEPs7HpUIRQ1NrLtRAnyQC+revv8CO9bem9C4iUgKJvCRfPQOCbgnNrE6Q84ip\n", - "eAFtUg8+T0RAicaOfAorQxPxvCjYfxHnQRImNX46EfyRIcPREgHdkLuCUNIYt53V00d0kAX680jj\n", - "b8T8nJIkSopjMKozVkBTSaZluYVMyZ7OHQUNJ/JYvcU8+snnTigfR507r/Ds2JCESmEekrEj/U8f\n", - "KJq/Pnsyb8vXevyYJoUK3n1v33h/3mNOuCxJqR5zx3dvdU6ayFdyvYUnIjlm2KvA/kiaOB3OmQvF\n", - "7jDWKBOwxRy7IJkMlrF4XwREKkSIECFChAgR4gMjvEiFCBEiRIgQIUJ8YHy01F6ZrCXJyeQXCsgR\n", - "ayuBUHxPMBckxigiFVf8O5CR4xFpuzhyGK8GjB9Ds6ii9MjrnUKAce/vlgvA7cXS92taLT0R2ydA\n", - "5RMr9qJpY07fAXrscUoxQ8HQ1lguCeIHFN4TOTPNYW7bOYxdLADBDn6tnz7W1Nvp4CmYA3Sevv3u\n", - "KxERuTh3fZSqU8i0JNPmq05TWz/6/PfnbUuQ7S+3brz6dvkS1+wpoxPg8Rc7v8dtoZpR2wuH2/Mt\n", - "9E5Oeq0dE7aRCiGBWWmndwmDqxxkSyIHxr22zxRzWlR/U9ekYgwy6t2Nblvkfg9/9Fiv8dMHbsb7\n", - "2af/qoiI/Df/0380b9vt/oVeA8HjAui/yv1+rjHaoolMg0F2tBTwGY3I7UbTniONiRZaMc3Jj5Wj\n", - "T56RYnEBsmVH2kInKDt3ZKQ7QasrR0pxIh0z6+sRkbj3O+1PZ2ek9o5xcqq9rxkZOSFS7AKFFz0N\n", - "6C1IrCv0f9a4GjF2Ot4vDKrvyMg3Q6quJtNwazJOma1XmqLn4okeaXMr6Lh+66noCJLlnMackMaI\n", - "ycjZCkCYgG+s/HtkV5hLn5NW1v5OUyZH0rE5O4N+V21kYzZIBgWAzLVtBhxIsyePIvpk/jF+S6rQ\n", - "jSmVU7sjldejn+Y5zXXQTOOU6cbSbJRanUAyjnrSEcIpV42nyv7oL/9YRES+ev5X87brg96DBmT/\n", - "hB5TT3+gc125eLew4PkLv3enBqbdOVElQK3g/md/ppQ+bpF6NCpIyk4EcG9I2W0htaIo72tZZFqF\n", - "5B6B9GE58vGtHxGmkVi6H+lxUkwfoEWW0VSTwtKB6dArpMozKtQZsR/TZxQR2e/1V9WBDOcz9N3M\n", - "0+yXmEejWK+/bz3dukn1OfL04Wd+AnCVL7b+TMgX9owjc/dJ/7668qKc5y80ff/Vl65LNSCV/vAh\n", - "dKRICyqHufjQULHRXueH/S0VheCdYOq9PbuD7ueqpPPE+0FGKdWG5pb3RUCkQoQIESJEiBAhPjA+\n", - "GiI1Tanksa9qu8yQJkd/RtG34C72FYxxEkvSKbAV21QTYa/XS6urnr6nb51tpW+pQ+RvsHcoFy32\n", - "5MOzhayAW13JcoVSfy5/xaoiolLjFiXhCREwE/gjtfCLSgj9MDWBBZVw2nKpSahcGES9fOP7PdWq\n", - "DrwkbyTBar4gEikqh2XAKvH1q9fzZ8a/zogc/ZNPQeIbffX1+RNFZyJa1a6gbMvl30sQX5+98NX8\n", - "Hqv/HxJv79McKutYuR2prDXGKmETe6lzDiSgP/hqaQDquFh6UcABdbUxefdlRsBOfFvfQyYDq49v\n", - "vvlq/uzxwx+LiMiPf/Sb87Ztoqvvf/QP/s1526nWlfDPv/7lvM3Uuw/k03UB0mpBxQtxc8J16woq\n", - "Kh1BO8f3stjvYYsxIROhBA3GDpV69yjUaKnYIQeKkRGhfAJR/AS/trRjErXek92tlyGbsjZ7g/WG\n", - "cDGajL57tvVzGowoSxIXKxy/r/S+LwhBtIX76fBi3rYE8bgjAvZgEgaMyAARa6h4pUR/YvJ0OxPK\n", - "7bekjg2ZAlZ9ntEfIrub711KqE4KNIcq4mcS8atX3/k54fpbUlHO0nPsV4+bE6oRRabYzlIbpixP\n", - "ytYoiWdJCPvbfBBFRHp4nHbUdgX2Z8UOTJguiw3Ow49vxP6BJFFim/dSQnqOyDokvvo/AFl98ebl\n", - "vG3APZuAQnz6xCfgYqGfRdT/3r7Q/b668bmjb7SPn5+7rEOawjuP8AMjiGcpqV1DNbyv9bhclJSu\n", - "rJ28ra2gJCGkK0PbXZFTxniyZwKNE6CZ9CiSFN6lMZTiR/KkjSNtz5T68IQ+XJKx3YR5P4v8Wm9A\n", - "vK4qmoDvgPpTAUIb6d8XhOYlqT4DGjw7jhXJKuB8X5GEwqLUdjfEVUQkOYw4T+8TSzw7SiooePJI\n", - "/V5XC0epvvxOCxBevNW54JycNQr0ses3fvy4Rb++Tel7yFyQU0SE6WlD3n3m6JBSHyvoefe+CIhU\n", - "iBAhQoQIESLEB0Z4kQoRIkSIECFChPjA+Gipvao6SEOkz6k3Q12H/UYjcRM511JbCb0DlrlC1Xni\n", - "aQSDo02fSkTEfCZTKJZPox/rAPi+opRBDciUSZzjbIxL6RExxVqH/yIoj9eNQ8YFUnQl0kg1K0bP\n", - "VEHaBig+LyllAG2VKfaU2anRFF0Wu7ZLV+n+jBwuIrJdKVT9plPS94mMQkcwuhsi8b18/UxERB6e\n", - "ubZSAnPdgUi8p5NC6qwYblodt28ojXILzR7S+0qRUiqhQfK68XvSv9V7sfjs03nbCmmJ252Tja0f\n", - "TbWf0zLX9EixcFK8pYP3x1fzNpP+qWDM25Ky+x//+f+ux889FfejH2pqk81IHz/8dRERuTu9mbe9\n", - "eq5poYYKELpJj5FRf1pAR+sGaSRT0xYR2SEX2xKN1I47kUFsDF2ahk5qOtkXWccHqY2CjHmhtt2B\n", - "vF+y6u9J79d26zC6EapjIRLrnNLxe22K2VnqMLqlAHjaSZCqGpDSX0TeNyxVxMUBloKKWAEfx2ju\n", - "FXuQejyiOml/YmVzS/1Zqm4cvW1apMp4XJvGU89KxyiA6Oi3C+j8tK2nm1rc457SMhXmuMtzT2Mc\n", - "oMe12ep4rXaexrYClZbU1kekwEgyaFbKTogwa/pQXBSzBW9hmHiOwzGg2VSxFpcp4ZOOj2U5E0oj\n", - "RRhYw5L0jrDf5898/KVIy68S0oXqdd7ZbmHQTan4FGnuA1E29uinw0Sk7N7up/f/weZpSkumiaZ7\n", - "zCBeRCRHmmdE8U5DxT7xTLPg+29EbL9W49hHlDIsVlCMJ21Dmwu439mjze7ISIR9S5/XlIK+WOtY\n", - "IwbArPZ+oJSxOWkMZELfoZ1WW0qLX+h8tzmj5xkKiZrazOj9uXLC3D2NPtZ3B22T650XAEx4Fl89\n", - "cArK06dQSr/yZ4c5dawX/r0ff/ZbIiLyAPpU0tPzF4Vfj0iD8fNzpEd/OG+S1VLnroTmjgKG2wUV\n", - "dOQomqC6J+mHTv7T/+wP5f8rAiIVIkSIECFChAjxgfHREKnD8VY6Klc/QEU5ppVJD3mCw9FXJBPI\n", - "w2vxN+LRSNu8IsFqksl2PRh9qZV1E8NvXVi5MKloo1y5IWJdhe/l5EmW4jpS8pqqjj3O148xiPlq\n", - "GVpG3ky1fjaxECvI20uSiYhLlISz/x0Ium9vv/ZzGrc4vrfJYqVv5OlOjzuSivkJZaBMdv/6G/Xr\n", - "e/zoR/O2N7eKfkVErH2zUwJgQeXfOa7t4ZXfpxuUc3PpcIzV/AZoRk5+eYejlRD7PlalrqCb3FGS\n", - "Qw2169HP3XwCDa0UEVmmKH/PvJErIJwNZAV6WoU8f/FcRET++//tn8zbfv2Zok+blV+DoaQmOSEi\n", - "crfTtstIAdtQDJbzWC+VbH+Bz5KYSKQoYpionwzoz6s19WusEtvJV7XW/4VI0ZLpMWhBLBMQwQXa\n", - "LiZ29AryCyTYLgWkBu6uHVXYQMKgIfmREn5dJXmtVbWiiAlJByRAzOyoERHhBxD2t2ufJ56/1P53\n", - "Ufh+7RIbUqw/AtU5O/N+cn0DQj8hElbWPAB9qCpGsvRGdUTAN3I6exJGuHdcpm6K7exJN2UmseDk\n", - "+RL7GTc+73VWqLKGYjn5mvWdzn+s4m7edKRSIEeUf7MqfQGZkIGKV6qT7u/80qVQUty7an/CdXl7\n", - "5UALuKw/ASLISE8EyYCEUPcaY+yvvv1y3vbFs5+LiEgzeH968FjvWQwSd0RZheag9+uGJCk63KeU\n", - "SMxxBKSbCNhzzUBLYwcIfL4g9wqkLjKgbi1BE/GAAgBSvS7RPwf2Wuyh4k2SCBXuSV/7/LM803uS\n", - "FexyAUV19I2YCPv5UsfkYslzIvwqF07YzlF4VJPa/u2djonuEcmf4NmVL3zsREBTC8qEZJAdERDf\n", - "MypAWhcoQCFJCkN9f/zUJzubkiZC82I8x6Le2/Mcsjyb3I9h3qYdELaBCPgZ1OvrE811KOzKcyKR\n", - "4/lcUjulkfm/MqaEvxkl5EnwPREQqRAhQoQIESJEiA+M8CIVIkSIECFChAjxgfHRUnvN0MhIxOZx\n", - "UiLo7Y1DwQNMGNuKzWhBFCdtk2Ewc2NKgQDl65nQDQ2OEe+PMaUCctPsIM2Y2lJFlEarDtD9IMKu\n", - "GYMyOrg0qJggyBwpyHSp+7ugtNve9GwGvyU30B1pWkojACnlY5ka/FA72blA/maMHDJtOyMKArql\n", - "tFeXK8QfC0P2+vfPv/6LedvWCHuUWjmeQHbPnKifJgrPr8igU6DoPJIC+w46Mudr6A7Ffk/uYDJ5\n", - "tf1k3vboqarn9nvXJznt9fjVyXVE7B6vF56ysAKEInMSY5yADIxu0lC/WiBVcLP3VMw/+0NNRTy+\n", - "8pTR00/0GFnikPH5JTRobj1lESHdEFNubQTZdLvS62p7V/NNkGamLJ4YT5T7/26qcc2kAbUAKZvU\n", - "+xu0bVVRuhnnVKTaJgOlEUdLRVN6yMZiRvf1LdTAWbNnAbXhOzKSLaCyzGrfBr2niaa9WEXdSLa3\n", - "JydsG2G9Ovp+O4yjhooNeozZuiUdNaSqlgsyLUY60s63JdPiHmlZTuMZKZ1TASkMxB9eenquNOY3\n", - "McBbkJYvL5xY3kNFuyVCfQmV+aG3/kLGw7gXCZmo1iCWcwFCj6KFA7W/mSDn525Gu4L57Ehm4Q3a\n", - "wI51Ovm4trZIU+/rVtATZ6RYbbvb+/Fffa99+0tQBkREvvjuF/rbwsdulmM+A8/hVPl17a/1XBIy\n", - "9y5jaGaxOjUoCo8fuGnuprT5Z94kC6Qxt1c+J9ipm6HzQMUJV0gVrxaeWisxdgpSm8+glXWiFOQt\n", - "5oJTRc4KUNRflt6eR7R3jYIC1gJcQBV8s/FU5AJzcZpyAQa05Zg+grFbU0GNqdgnCVEgQDxfrihX\n", - "DEV909hik2XTSiwojW/nxKbdI+az4V7xDGguRLMp0XbLzMfpBsVb5l7SUsoywfO3/H/Ze5NeWbY0\n", - "S2hb772f9vavy/cyX2RkZKeqbKBKwKDEEBjBBAkhZgxAjKj6AylAAjFgyqCEBFJJSAUTJBKJSWYV\n", - "JFCRVURGRrx4/bv9Ofc03rubmRuDvZZ9y697vigdCa4S7W9yzzV3N9t7297b7Fvf+tZ3bGPYxW8j\n", - "fcNBk7XgOYnnusZJvYik8ZogcMgCIhUsWLBgwYIFC3ZHe2eIVN1sXS7KqRlq3C3XRiy/ufF/b5bm\n", - "JUZ4M44q8RxBwFQ6GN8llSi5RXeZLuk29maa4820ye3d8qi/n+qdgDyYCiucKsqs2+Wcc1soTw96\n", - "Uv8MRPF+H3WgBP0pUBsuWatcgO/XVNJVNxvWepK0drRJU5KXQIm2saF5TAWm5zIcC2EaBNSmlhRu\n", - "pC43kXkwn337U38uId9VlUckclHlrknik1qDXZIHhRRdAm2bbtC2wryAU3iQ985M/uDRiSd0X3at\n", - "NlcKT7wn40nViVxqIq5Bdh9Iv5tqibb5/s+lhp3DGI8H5hFWS4+EffP1Z+2xOPWI2cmR1Zo6GXiv\n", - "6mqhqtggtq8snT0/8WO8rb2HWfRNxTmJZ2ijqJMD4ahqmydj1IbSWncrrJlKLh9DRmQ2k9qNQCK6\n", - "Pd/H4755uumWhE3r/wryIJEgIkzJPz01qYlvvvkSn9n1j3pjtN1+m6EWX5aBCNqza5VYn6kgDeCc\n", - "upupoSQLHFzObUzosCZC4l3OsRa21sflhmiOnzDbRlFyzEVpb6OZArCTYyQMDASRAaH56soQmS4Q\n", - "2W5qaMZ8yiQDScmPeA7f3k7H9pAUSMN6bigdf6s1FOlpb0RtenLl50e/a+1kzcp+z7z56ymSbOrd\n", - "5BznjOSeCEpGmDzqS/1FoPmLG0NYv3vmkzcSIeB/eM9XD1hFE/ktEm8w/2ZbQ3DGD0BiFxIx75PK\n", - "2TB1/mRsKCFRlL5UQBgioWLQt/7H+N62rU0oexiSLRIh+xdd//dQCOCsU6mVBV5f+HlyO721dmLO\n", - "FEKs5hQjMpWL6vZoONhpo3PO1YisNILqJCCHpxKlYVGE2UoU4LFQcolOcCwKIe9HQH2rkpJA8qwD\n", - "qiS5Bi1iXYicUQR9hlKWUMnziSTIFmOm1QMy1EIs8EzuClpEFLvTUakVPuvtObXB+ljLPrlFIoHW\n", - "k6QEkwC8O2jvIQuIVLBgwYIFCxYs2B0tvEgFCxYsWLBgwYLd0d5d0eKqdt2BwalVA2KlcJPLEuEh\n", - "USKtQCithChezaFiq+q8OF8m5PG8Sy0MFDQUYmkDslmvL3oWQ9+YRmDsLVV+JYxXQnumlhAYIfPe\n", - "SEJ7GaF9aNZIMcwCuGgnMzjzfOivO3mjxUg9PFqJxsUWOlJKwGsgiFQ3BuM2CO31QWzs9G2wYxCl\n", - "NYzZhe7GJ5/8yL4H8vwvvrPQ2nJKcqgoVnP8G1GgB6F3K9AqI0RzEHF7Q/v+ydFopx3OOVeh4PNm\n", - "IVokG3/9SoK7p6e+0LFq2xz3QABvLNxB0myS+faej0S7BMkQ86UR29mW7cbmyQW0jbpCwM1R8LIn\n", - "0HYJbbEis3myXjP0g4KaHSHHI2SdZhICx7g2tc2dfsffx6OhKdtfXvj7/nJi938UgcQshP4c86lA\n", - "weM0Fi0eJDGUooXFFZbLmhgj3HB9aWGsGqH3gWggxQiRdEUrqkDbW8Xswj5LYySRCMR/79SHRzal\n", - "kO1R8HgtxPoNkkyymc1xErAnlaktxywaXHI8tUAwiqELEZuhSi2azkLK05mS4vH9SCs1kDwuelMM\n", - "6Uj41q6P0JLsaxHUubtSsYBJFlshtvcRAinXSkFAceO1rb8I86lay3zqgvhfcl0JPQIk/liIxTHX\n", - "tTxwaO01AAAgAElEQVROYrB8GyHx8jenY5vjnNqb0kK1ozHDbX69LqZG91hC28/JHJ5M/bhr8IUK\n", - "/KqjRTV41RbqIPSbyz7RQZgnxfe0yDevoiHeAkVwi0zDc1DWlgQQ7mdM2HHOuQTn7gh5ngkPQyb2\n", - "SGiVYTQNe7HlmeiY5W0ClO2nJWJ7vdieSdxjdD6n0N7KJKGI4Xu3Qn82qphPwvZOLIy/tLaz4LzS\n", - "V0Ae1/sUYZ9opAJECm0rhu92imazjxLaZOWNrWQWbFs6gpCAEiZl2fdqhPc1pK2q/YcsIFLBggUL\n", - "FixYsGB3tHdHNt9UbqvyAyDMNoKqsK7ckRABF41/g14JKZoE9EpkqbcghyWqNou6Ti5ByrmksLP+\n", - "XdGTd0v8tJF6RRVI0Y0w5qqY5ExRYAcZL3KSJtxn/iWkDsT7d3iDzqSGXn8AD/KlvEEDJcjF+ymQ\n", - "Or4Sov5mScKkeC54c1/HOBabt1p0gQhk1q/xsfccf+sHv9cey/EGfzMzVOeLN548ma5srLfxvlcz\n", - "7ACdEPLyxYWXFmjrLsqQ9OFBTacm6zADsf7py6fW1wnSr7s2nVdAvUZ9I5vWOF8tc8wBbWEa8hmQ\n", - "LOecm8GDfX0l419C7Xkg9apwr2dzI5GPoPatJM4a9aE0JXe1xNhlGJvaUuNPx58455y7nPy0PZY4\n", - "JkCYp9vr+THOUpsT1zGIqlKAiwrAx8fWpvUMqtxAfbXWHz0yJYePocDdiIo5PbzLq2ftkRGQ2LNT\n", - "Qx8WSz9n+qKAn6B9KVAA9b7pOKbiVROcHI0M6ZrCw72Z2PynrEEylxpq8NJLTTIBIpBgLcZChG7v\n", - "8HafWN8VCQUHpOny4kV7aIQ0+UyIwkvUHytrVUwG6p1IncSYa9efdyUIbg/ny7U6QHvvhGyP9XRy\n", - "ZgkA3B/yjrWJ9fyqRtcOkiJAxO0IgsYkA1Wndqh/2awNVXIgqpdSbWI88HNioXUCQQrvyLp7cM9L\n", - "Fhwf+2O3F7b+iXTUghBM5kjKEJmCCAjDSlD/BeZCJQjr5MqjWdelyZQM0E7WmOz3Zb/AI0YTMHog\n", - "6vcEabpuZSdk7kJRey37Lu+TyvRkKStv4FkjQE9NWYuZEfBToH5ZZihlWzuy1ucp5k4h1Qsaf+8U\n", - "TYqxFjOpclDiWZ1w85JlmoJYHkm9umpD+REp1cFrSGJFgQWdyxzjGCsixXGs8JxUcjj7qihdDEkG\n", - "hSlTIHbCSW/rDypTPto/tBPtOmQBkQoWLFiwYMGCBbujhRepYMGCBQsWLFiwO9o7C+1tN6WrRYm4\n", - "ATxNrSPnnBtAs2MjWhB9hN7WohhLfZA0NvgtQyHNTkcIY4AeExYeTlUnw5uqvlYgNK8VigbZ2S2F\n", - "nEaCuMCjEUIvN5WpYq8AfS9w3UJVv6Fn45TsXF2hvRYym0+hyi7Q+oDnE2Xd2wiaGUKUJfFuDWK3\n", - "IOHO9UH6y+zd+vjch2Xef/SRnQNaHGdjCxn8ov4JzifaVlTWjTTch+K6ogG2WJLs6n+7TOyz7rH/\n", - "++Lqu/bYZOn1ia7WFkZqoOzdqw3aZog4X1m4Z4FioYn0san8Pbl/5n877li4N0n8b19cWMhkgASE\n", - "aGwh29USCRC1kK2hX9XpSmgNyQNupYU8CdX73/Y6clNAVB6P3m8PLfE9rTwcEfvf2rUYNi+FWJwh\n", - "9NCTEGgH8esCRPlupOrMvq/DnhQeBqFa1clfIfQyEA0qhkWU7BojHJMKjJ9Cj4e6O7GceIv1mqtm\n", - "DqoDFEKO7SPM1u9ZGGeO/WG5tPtP0nAthbFZeaAHDaRMCpoyjBTvkL29dSWJoC4RWpLvLWbQJ5OE\n", - "jgKq1Bruo3q2Vk9gHkmE8603FsbJNqQsqDo/Q3C2d1AXKpYQ2JMHXo9tcGTh1qjv71Nkw9T2O6Lq\n", - "tSTsdDISoKUYM9WhhbBL6kOa2dwxArbsXVgfXRn3Ldbu5NYneWwkFEqNIy08a4r6sv9jXun9n0x8\n", - "GH02sxAki1bP5xKWdEzUQdhNNJMYMlIVcYZ5d7SIsLdXstfx+VNJYgG3542GjvA5x2srGzULaGsS\n", - "FVW5qcnknHPRlu0UEjcI+qqinsb+c1Vv55qt5LlbMpSPcJuSvXn9WsjeJQsvyz1JMU8OEcV17GhV\n", - "rXqDu9pSWoGAY63n5dqJVe2dFU1iGZOECSUaFuT35Lca5ztgAZEKFixYsGDBggW7o70zRGq5rF13\n", - "YG+cNSSY9S00x5vuprL3vQgea6FkM3g4qZDjMhLrpIcNUCJ665W8LecgR68krf7mwnspV6Ki3INX\n", - "2xNiXVLj70Lq/yGdeiFk15nzHlEX3uIgF88ACEM9lzd9eL29gaSLLkCK1Zp48BJTedOeIk04qYVs\n", - "j+5uQFgUBQXnEtQQFE/z/Pihb6cgDddQAq9F/qEHr1vTxDd8w1dSYt97p7OtjeeyA6J46ceiLM2D\n", - "nd36c1yPDemZrvwYVpWpA2d9pGmLV0EF4norUgONP0+0tWtMVv4YidhFbIThCmrveUdSuJHY0Ahy\n", - "0s982xu5JxVkJNYyyJQa2AiJslyhJt2tH5N7x+IZoa5VWhj6kFGeohIPDmieXquIvUzAg+HD9tgY\n", - "yFIvtnnX9EDAjED6FHJ6gfl0e2Ooag8L6urWxv/0nkcnRZy49diXIkkQgaiqaEINr7dxqOEn3SKx\n", - "tRFyMFXxM0mrZ0q0KlA7x5p4dmwNUnotSS4j7BmsYTYSuQZ6vQoWUEV8K4klrHU37KkCORABQQ6o\n", - "kF7tJNQw1V72LiBmEdoeCYI2h5xFIQkDPIdmaBMJUKQnRX247tjU8wlmxolIx6AmWwM0ZTU3pK+D\n", - "ey0lRF0EVLeJJAEDyvpEgZyzpAUdz37fj5nWOru+9muSiFAkP+A+qdRfylT0eopS+T6ORdmcn9e1\n", - "QvHNzjWdc24JORsiSLFOK5giWK9f+/WhytpEVhVNqtv+a1WICt8XYneLOkFhWzrLPihAQrRkK/sK\n", - "j2mdPrYvlQ4RHdMkEybeKMrC9H/usdoHon5Natdv3D5yRXXwtUhtsN+1kO0PYT8ke1MaYac2Xr0/\n", - "hpRVcKV9j6T4HZTcUXbI7h1RKk2yqRudM/sWEKlgwYIFCxYsWLA72jtDpNZNvRM/ZXi9kVTjBG+4\n", - "WxG65Bu8aBS6Gh7reqNvjUCpxMXd4q2b8eC6suuvIUxWmgPl1jf43tKGaY3K5KkIR6a4bCyezhp/\n", - "bjfW0JqCZEjTrjsitAgvYW50CDe+B0RK+DDNEKn2EzkvxqSQWl95x3tkm6Wl5NOz7cCDrcXVWa/A\n", - "6SnsvA/PPTcntURw92bqz7corYbWcOiv++qVpRBnjX/Dj/sisAiUsC/e9Fnk+RrNBkib1JDbADlZ\n", - "SK3F1cKLKSZSk4+IZCOChA1rAYqrEAHNWC7FS177L3w9eeXPpQKG4NcVIr+RQRiucdYH1jrUeLyD\n", - "mGzUmJwBkTAV6Tw69WNy2oGHO5d5hXvS3UpVc/y9ySWFnzF98dKOztD/RgQ2E9/ORJb9Lbg8ERFG\n", - "uV+UK6iE+3Zz6z33oie1zsh9kHkaQ5LjaiKSAAe4JPTc10R1BBEiR6MulVMClFD4iEzP70v6eYY5\n", - "vtRK91vU5BTkrtn6+UdUSdOwiSBE4sFzyShIwRT7k3NDPyjjMLk1pCMFIp4J+tRD+nch6DRR1BxX\n", - "0fT3LXgwa+GIxODBJAITFUAfCrmfORGZSiQuwJchf9E54a1QHTkSBAH/Nl3hd2LeVTP7Hr+5WApM\n", - "Ca9eRVdbgVtBbogccm4kgv4T/bi5UT6ivymKSBFpUqHLipCpcHk6EFM1npWgqUDmFP7inFgsDJGc\n", - "Tv2mPR7bObSPNKIzmXBj2b56R6ZgV4hTJUHIeVJRUe6rVaXoL8SsBTlv0R+51i43DL9tOUIiponf\n", - "8HQbQZBKXLdOJCIA2ZdMhVtZkzGRY477pF1/i/MpD8odEPOl1UC9F9IXPuMz4YhVnKcHxkm5ZOy3\n", - "1klcr1XuZd8CIhUsWLBgwYIFC3ZHCy9SwYIFCxYsWLBgd7R3FtrrndY7hDnWhuv0NQ3Ww2lVZLDa\n", - "7cz/3REWOeG7UuQUZoCUNzOtteOhwhghiCw36I4k0q4ohpc5UvJXEkYBLJ8kAjGifVUt76UgJUc7\n", - "dcoAY+NrU4HCY9bak3pJBSDt0UjrQPnPF7n9tsl8SKHXtdDCEmGhy4sL6SNDFSTnW4ilqvbVaZn2\n", - "PRHF7m+/+9Y559zVrYX2GPqoJU14ATmH9VYgc7T9pLBwF5MLlrjXrbyEcy4rGIKUFPaUsgImdbCF\n", - "YvliYdDuHGT0rFLFXBB7pZ7gce5DoCmlAQobQ9a6yiTVfsvfRjon/FzQsFDchkUs3JKBbJ7K3Jkh\n", - "TX9bgLBby/2vEZ6pBdrHT+dbS2LgXOt1Nf0d0LrMpxVInktRyl46/B1TfsROu0XigfDF2zCbhhEj\n", - "kPFjDaPi86WESk+PPQFeicKU5KhrJkBIGBdruKpsrkcY1ziyhiYJ0+rtnvRBrJ9L+nvVknil/h7I\n", - "tiSAX0vIiIrRlGjwDfTX6net/8ORn4u3E6vJyBClDJNLWXdSkiJKhAx6Il1CuYEGVIRMQqEpQna1\n", - "9JVK3cOhkd05xsul7T+nrGuYSbIBwqe3QgpfIZTOGn95VzZq3p+BrROuq/rCJEmeP/f7w42EwErU\n", - "R6yl/wypNjuzAn/H+6RfhtRKkRBgaLORRKXnz33lAw0jbxFa1Lpy8xnbZ5N3Dn7F7a0PbWdy/yl1\n", - "UBQiU4P1NJG6lgwP6VxjuE+J0kmrSq7hvt5O21VWg2GpdGev2Q/FrVaqZ+GN4dNSQlYrkLKV7J0i\n", - "VN2VCgT8Da+v94tSI5Uk9qw6fp4cH5vUxhDP9qS2+TSd+jGeSViO/dXrdzA+DRJFlEbBubAjtcBk\n", - "DwnZkSA/k5qYDBHrPeG4RzKe9c783LeASAULFixYsGDBgt3R3hkilR3XzgmZrAA5uRZEqE69hycv\n", - "te7igh6MeR991iQSL6VaUsxMEBYQhfnTgdZLA/FcxRpZd28oIoWsQ6QCZluQnXMR2qMO31T4ciVE\n", - "6iJ4nCqWyTftpXhrN7feM0gaI+eV+b7QH+v6dWIbuy6EC5cz80xy1vOCN7NN7Voku+dyjpfX3sNM\n", - "MiMAv3rhPT0VumtV5RIb/xpIx+uJoVnnM+/FFqmdLwPZ8xJeQhJZX4/hOSqqkmz9PeynNimYztwp\n", - "DLnsFh4l6OdWw4sIQy4Cp0nskZtB359voEgX7sV6s5LvI11e0B+SEksZ6xHOEwkpug9PM5FaVzmL\n", - "qoNsn+fWNnrfcaoaHkj/VU+rIhFUPFLcnzK2MWGaeCNrgp4YESYd67ZOl3hmaeHHq981sn0JQvfR\n", - "2BCRCe57I0xpyh9o/ceGhG78fy1oWQwvUBNQGsf2itBuTKSpPeRK1pUTT7MCOhbtOJdIHgEiVIiA\n", - "aox5rYTdDpJXFnNDcDZLP3fzWEis2GSaUhAZrhMZ/wznLgV162GMXcF7LfOfySAqoIjR07pmp8P7\n", - "vl9Cei7nQFjum5guE1D6QtQGcO+aGshE1+5rtK+b6KIE9foyQ/Oupr7fXz77pj3G2zgc2fkK9E0J\n", - "9Q1uEJEJVWnpAZGOBU3vIdkllZMslh5VUlJ+i3BIXUESpTVNnzIBRDAUmUiwT+r6J2F+KvXvtvV+\n", - "TTiaErUJNqmcAJGzms/EWhE8PBNmEpEBYtYRBIfolJLiif42OwsAotOiXbJCQsNG6mkSla23zc7/\n", - "nXNuCfRrvjCkpx768/YHUv8Pki3aplcvfZLP1Y2huZRfODk1mY4Cz9YGQqPbUuY/pR7k+UsUV+Uf\n", - "iNJtpK9pG2ESiRuWE5S9uHvgPqoFRCpYsGDBggULFuyOFl6kggULFixYsGDB7mjvLLQXx7GLVHei\n", - "4yFAErydc67aeKiue2ThnkePPGT68lvRv4A68VC0WBYAhDcaFkAIKEOIQ0lvJOqqOnoMsu22MHB5\n", - "jdpoc4GME5C3Y1GWZe2wwTje++1q4dvUjQ2KXEPjSKSt3BI18W6nBgUP7wGqlBAkRYlLgSw7CP3c\n", - "P37QHuuCoE/iXCpaJAXG/f3H9+28gHhfv/zK2rTw11hOpU4h6uOdj+xaG4RWh0JsXS8BWfcFMm08\n", - "Gf3J0H+vX1jYj0TFnmiH1GhTJqEdDruKz5LQWpf2vRy/SRuJAYG0y1BgJiGDdjylhiPh80JCa8tb\n", - "H47abGyuXcxRf24o2l45tbLsGhlgbGp6qYoxCajVjjo4+iW12QhLq+7KQmpRtm1nOEIuQrg/bUN6\n", - "ou3GMGbPEgbqte/3WpSQT478PduUFp66vPShvb4kjzB82Ije0Xzhw01xRDLrvj5OLKrDjHJEKuON\n", - "NmcyT1Lc67LcJ90qAZX3pIPEgmMJT5JEvFPrDOO+XFoYYzH1YYn3H77XHru+8v3vdSUkgDCa1gls\n", - "a7JJUgpDn62atBDwK4Q0en2bVwwzqWL3lueTMGLe9UkekWoctUr2Nu557O83hbqTQu4hwlhNbCEb\n", - "+uPZUAjoHYTbciEsr1BtQSowULQ9k/BlgRA4538s6vB96BJFggGQKtHIlOAxneusydgcUAA/NCeo\n", - "jr6jIUR9JgkFbvCcUsV+3lc9L8Nyqt1EFXWdY1y7TLY5pI6eiv53D2vs5MRCYSPUU1xIXUFev5FE\n", - "Ge4ZSkAnAbsslSjv29JHWFbrzy5Xc5zfxikv/OdTIeBvlnP02faJGppuI1l3GZ5LqsVFKg2Tt7TW\n", - "IasH7JTDw/e3siY4FVTvq1X0lz1phXvSCM1BE4QOWUCkggULFixYsGDB7mjvDJGaT+OdNNhOzErb\n", - "gkhF/q22K6nB7z3yb91Xr8zTnE/9W+VoqG/p8BLE03FADFhrqBFPnwrAkRCwWy+tFLVtvBGXQhgk\n", - "764rXkIXnl7UERVlfg6ph9VCaJSRfav9C0TlUryqDVCqQd/eqsfwNI/Hp+2xM3iHP/rwV6Wdvj8k\n", - "TG6V4AjS62hoHmRv6Du2klpfP3gfSsAd8SAy//mgMC85AqGzI7X7qFR/JLW+iHqwrlpHEEGihFkh\n", - "iETJ6t+qTs0UdvOSSiCSC0n/Zs2uSMim9dZ7RxWItY3ca3qCmUht5F3fvh2vskWu2kMtIqKqxG17\n", - "m30viV6oep9EmjT9e7lS9Whvw8Fg71hL2BWi7JpV5cUj55/lIWI5iJqVzD+q929WRraew9N8/dok\n", - "MQYgL8cHVMGlO26Cmn2DAVK9BWnietmpq4WxK6VeHpeOku3pQe94qZjjqSjLD0d+LhZEa6Vt24bX\n", - "t+8vofa+Whvix3uspOAO+t80Nk9H8OYjUVZPWCdvp6KDPx8TQEpBqxKsxcVs2h6zJApbJ0QaM0l2\n", - "4Jx0gpI1me9/p2tINLfAGMhFJOvatV66VFtANYJSVMw7QHUe37daj1OiIzuIKKQrZJ4QbYza2myq\n", - "js7KFravR5AHKXTvAjqkc50yJaqAzevvoHlb1jr0/1epgUMSAryEVtEg6qGoClP8lai+Qt+WgiDf\n", - "Tjwi9Ob6CtdX+YUe+irVFoBwKnJHxGwwtL2Ba6KU6hE15om2c0x0SEjpHANWEVmtbQzXSOxYCdKU\n", - "pf7zTPaT+YH6e/wzlUyRXg+JHx1NsuEez7UjEYm2Tbb/8xpHR/ZMTLAWtCYnZRwUTWMygCa01UJu\n", - "P2QBkQoWLFiwYMGCBbujhRepYMGCBQsWLFiwO9o7C+1Nrxu3iQ0ezbdeg4MFYJ1zbtJ4EufoyZP2\n", - "2LDnm/zBxwbZffWZh0CrxuDJHsJ8GpboEzLEJSoRRVkCYs26ojECCDQqJdy2rPaOpdCnSiS0wMKo\n", - "mWjQOBCVyxKwvIQn8nq/yGd27NuXSOQmh2L14/HH7bGH5x8455w7PzJ9mH7XE4A7WiAU4YY+YW8n\n", - "WhxUYlc0Fd1Zie7HSebv05ORhRbbcwhRe4OxU6J4Do0e6in5H+EfQLG1hOcY5ewJYbnVlpHwyHIB\n", - "xW7hVyeOSrhyT0hAl3FPc4ZgCPGqYjiLoVpoo0I16rXA2FTHViXeIcZa9Z4OETtJqCWZUtWRqeei\n", - "3ycE3pMCvTXCXanevJj3U5TVM+rj2Nwterv91zBajTleJ6I2XvnxYQFk55y7vp2jTXafpghjnJ+Y\n", - "3leGEP18YXpDJO9z7JSwn/agRL+jzs77IxQAEMC3ElprC3lLQkWDOZaItgyLqq4QWllKdYQSYYSe\n", - "FOhttXVEs+js6D7aITp2mP+DrhRoxdhqOxOMiZLiN2w7lMiTrYS9ElZgUHV2//2+6OJFLG4rtIga\n", - "VQtSiVJsJ9jj+qJBhL8jx7bvqzpHQlgu537sXr2wAtUbjMVaikbHMcNoNsYZ7sVwqGscbcOaWE+W\n", - "8pn//subS+sXQjEffPhRe6yHvWYroT3urFuZ//yrrLRNUPQ/UCD5bYVv55zLcY+fvGfPqS5CaoUm\n", - "xaA/jcyJAdauhi8TcEVYMUIVyxmC6/TtodAd+r1ew5O3V/7ZGUsh8TYELeFmUgA6fWtTf+T3Ow3B\n", - "cX8uDxQUPgKxPYst3Mz1qY+/vNV2kvWE8VxLQkWJPbsR6ksmoV/nnKuWMv9W/hwL0TZsleJ1r8PY\n", - "zUTvazHnPi6UBtBLdkKQst8dsoBIBQsWLFiwYMGC3dHeGSJVuK7rx+bpL6eedNrt2hvkoOMJ07Nr\n", - "ITGeA5F6aJ4u30gnc6k/hzfRjXh/I7zpj0Esr5y95V7deA86FUmEFCTq1VZUh+HOdYdSpw5v9bOV\n", - "eKRMq8/tTb8L8lz/1Kttb8b2/TmUgPsjSZeGOnl/bOd4/+wT/GuI1IMzj0Rlkmocw3PdSk2uEunp\n", - "9D71jZu1BjWtuIL3rYTBtOe9n5549fROaqm11AUSpQq4VE/Wt3d6DqyTVCoRHB6WEoZJeowqafvA\n", - "/0ZrzdHDy2X8qYZbivczgxezRh06JXvTE1yJp0NyfCZeVYY04a6gRNEOy3n3fAcN81UV46eoHTgQ\n", - "MjmJ5UpAbdWZpU4iZRVymRNFvn/fuU7YbyVMb5HsoenqlBhoBGmYr7w6cRXbnOB96ktSxApp0oXM\n", - "CRJlicgpwZTef0/I4SRRbyVdOeLclX4Z6iFkY6TxD6RO3O10ht9C2V3myxUkDI6PrA8F1lUisM5k\n", - "6r93Kujb/MrvZyeCtMxu/LHTY0u2WOEeKxIfI9Xa6qrZmFCdXZHOAiRzRQTbWm+CXMRIRom7dn0H\n", - "tKtuBDlqPNmYazKJdb7wLxl/oL83t5aAcHmNGmYyn56++M45t1vrbjDwY1sLoZ7IBf9VRJj85+OR\n", - "RSQ4T5JYUbr67Qa31GGta9dKAsj3OI5cE6uVos/+LFrrb1CM9trJ/ed2ZpUd2M6iI3UV012kxTnn\n", - "hkCYmJyg7W0TYBTqQYLW9EbU9rEnF5KAkIEMLwCvi4DY6X7eov6CurX7BOekRF866EPv3KpIEAlU\n", - "hDsD0qN1Ojk/tpLQdH3tka2JzCfuccdYO1Sfd865LvZiVefnNWq5r3Mom68E4W9iKrXrPgHUX+op\n", - "fn+lvYBIBQsWLFiwYMGC3dnCi1SwYMGCBQsWLNgd7Z2F9jpp4XpSCLCE3s+gEMgaMF4tobVN6SG7\n", - "Y4H73//wsXPOuc+/fdoei0EsbhZSyHLlYfx7Zx4C7DkNT4EIqUVTgUAOxgZF9hDSa7ZS8HgLyDSX\n", - "EEyPYURT6j4a+5ACi4BWjYVxliBMrhcGOzoUQS0bC20+OfWhvdGRhSfIMS4TISyCKR6LLhdJmckc\n", - "RZ5FnToFnNkprA+MlHRFRTkCQX2ztnfwDcIoXSGbt2E5AUVrhBa3kYZPWTSS993OkaYM7e2/72sY\n", - "J231gfbVZyOBwDOEdKnE65zBvVdXPhTRFY2dASD2lRBBGbLaSr9IXtVC1tQ70gVGuDmJNSlhu/PZ\n", - "kdzXwchfP5O5ziKcO4RJ9GEkCQAnJz70Meib3lcC7R0l1jKUF0dQAhZybouKa3gE4dGVaPFUgMo7\n", - "Aq0zLNOV4sZ15dusyt41QoQ1tLh2wp/N7jWdMy201ULmOueOzgnq3sje0UWSQye1sAArHdcI6c9E\n", - "Cfr62hN2VYvo7AhEXAmZs6j07e2b9tgI5N1MQmBLjHumoTqsic3G9oLVAkrNCDN2JGS8pt6QxBp4\n", - "D0shAPcw7oVqjHX9/FC6QzZ65PuwEaIw9skYhbcbrQRALTYNtyNk/OCJKbv3oaP08ruv7af49+LC\n", - "iOJPn3mCuoYlqemVtrp3drFjzPFEQjsMs7+5eint9P+Mx0dyCGGcRMPHKGQtHZpOfcIH14Im7Bxj\n", - "faq2GxM7Gln/bxCWWkxE74skcgnBpwfI5qxaQHJ0vEN6RhWD1b5ivxYZNs02JUkjoeVGiivjWlrl\n", - "gjpKpST+cH9qC6jLnnDvnqeWCNd9J0HGrlXhHNJ/xBlz2SdInxgNbe+ifh4pCwN5JvVwLEsO4EIy\n", - "d6xSg+iiRfzH+kOyf0fCnVHz/cG9gEgFCxYsWLBgwYLd0d4ZIpXGmYtFRZxeep7ZW+gIb52bjTVz\n", - "tkRKuIAP3dy/LT86MrLn6wvvHTZCSqZq8py17vrmGZ8DaaoK8+pZzye+ryRO7wmp2nESQ4E726+1\n", - "VAh5lWq/fRBAc0EaKiBolaR/3048UfH1zSvrK34Ti+psTSXejdQEw/mUqFojJXsLT0MJlt2tb1NP\n", - "6pqxnfr2v954zyCR6xOl2vFg2hRm+94MKEJRmPcTQ6k8QdMVfaJXU5b7qaeFSA3QH1iLR04U6VYI\n", - "izT1fgcDP9/GY+/hJYVdvz+AhISMCdN1b+biwaOPlXhh9OAq8RJXG/ZfJCFIrEVKdCTeWgnF4K2o\n", - "XpNEqqR0eti9js3dQd+juX2p/2Wpy9YmemKcC7u1ufz3msquRVkBJwT0LpCOblfQVyAHVW33pEEh\n", - "yfnMUF/KRJRIyVbHrwOy52KtkhT+HyXsLqf+81zqTw5A8r5d2PVHSEmfSFLIHKToDATvkdThYmq+\n", - "evVbkLK1KkIf8gg6TzvjIZpra5IE2U2l54PsR2XIWR6BgM3vyaDkSKhIhIBMpEORm5bPmwphthCB\n", - "THUAACAASURBVOPnRCKo77bx9zuWNm0gwRFD7T/pG4mYay0SpM0B6Xv88a/btUDG3qxsnVwuLpxz\n", - "u7XW1qi12I2tnRvsXTfXfu0qgsR1tXxzYdfC9xXVyUGs/vAjq+wwX5HYb03PEXbodw25m898/1cr\n", - "P3cU1eIErA6guqWgRERJC9njibYS8XLOUJodOQXMOyp2q6wL93Otq9rW5tM5QXX8SORMDpDnD/02\n", - "SiixYvs+E16IoCuCx/1UE1W4d+sx9nE3oQfPWElAYf8fiio+ETPWQlWyeXsNeSbZXNCEKrxjyDO5\n", - "wfgksu8ymqBq++5AVEQtIFLBggULFixYsGB3tPAiFSxYsGDBggULdkd7Z6G91Wq6A9nmIBY2G9HY\n", - "gNp3LeGuxYQQqMGoPUDLqcDYPYToVnMjNvZzH8YZpR4yHPZFCRyw/1Zw3w4gwET1meJ9sjHhxkSK\n", - "WxJmV70RHmPhycHI4GTCnZuVhSJYoHchoQiyPFVZltDmji4USYnyPdoG5HUlBEa4fiWQ6QZFMJex\n", - "hPHQB4Ws+XcloY3yAIzLQr95roRyhCoBuyrEzZ820i/qPelYUzNGtWgO6cOwvx1RFmZYgOHGSODh\n", - "BBCvoONug3vSCNmYsLjSETnuqibFthxqE8dkraFAwO5K7GVEqdpRYsaakbZ3oB+jxUA30M86pJV1\n", - "aJ6wR9OphWcY0o1Fs2c8PH778m0RVlPHdq5A6E1R8jV0kdjesrJxzXOEbCQ5IM+wFoXZmkFlO5Z7\n", - "EmHO9kUVn6Tty9emVH1x6feHxdyP+w9+8Gn7GdXWZ1MLD6fOz6uzIwlP4y5r/1lIOJIttshZhNdC\n", - "Kxz/kyMLn5Ug4DPMu1waOThN9hMqSPKPZU32ELJ2QiKOEKqLhJYQgeR+/dxCZfOZH58BxmtgERYX\n", - "D/2eqXM94izXRAGEwz/49EftoadPv3XOOTcaWvh0hIQODXdzus+RFKCUAa7rupI9CRNKaRQrhNnm\n", - "Uxs7rvWVhOCqjMkLEipHWIzX0lDk5aUfJ93D2vUvg8J512yl4DJ6JsuvvUZe7Os4LbHva5Fzhps0\n", - "ZMb1qTQO7v86rn1QNDIJozG5ZWffBb6i56MxjHfoWaPHeF3VkeJepwXfOf81KagGfaSWsHiN36YD\n", - "JErVGgr090L3tbTHNqlOF8KI8t4RoZ07sn8tAV1oQb9ESep7Eakoit6Louh/jaLoL6Io+kkURf8B\n", - "jp9EUfTHURR9FkXR/xxF0ZH85u9FUfSLKIp+FkXRv/q9Vw8WLFiwYMGCBftrbL8MkSqdc/9R0zR/\n", - "HkXRwDn3f0VR9MfOuX/XOffHTdP8Z1EU/cfOub/rnPu7URT90Dn3bznnfuice+yc+1+iKPq1Rl+p\n", - "YdV246aSwj3KQRQXWYH5xL91L9eCvuBt9fl39lb74MED55xzvY6RXfsdIDyFvWl/8NDXYjo79XIJ\n", - "vZ4R23spUC15gaU6eKcw0h0Bq9VmP70zz204G+roikwA1VtZh2+ztj5wiLQOVAd1/x6k4q1WVOA+\n", - "RKwzo5ekqBMRI5LDt+LVxzjf6UjShfGmX0d2jgJeaiqIEE0zbROMXRSb50TCYrxDKAfqBmK1kqj5\n", - "/UZe90mypUqvP4dHPypBM+jp7HhkA38fdTre3voUd3p4WgdqDk9vLR5xRSKi9LsCGTyRe7et91Pd\n", - "6TlHcu9WmM+8h3ovSdSOBCWtW1K+1MEi0ik1DKloHGv6L1qtZFOOD+eJetW8RCbe9wboSJ7YeUv0\n", - "tZHxp7K9ElZJWq9LJVuznh3UvGWsmw3rdUldS6Q469xtEeFYPfIIbbcFTW++kfFsEUZc4oXUixtD\n", - "WXoja6iGnEgiqdZMIugIAT7v+Lm7nhtTOIqI0lr/CyrFi1I7EdMkJ0oqfcB1FdUkqqsLJR9DvfzU\n", - "UPeoAbH/1XP7Xt/vu4va5sTTCz8GH5z5fbUrqE7SP8cfzozSGeLBx/Dgh1L/8/H5Y/zUfsz5rgko\n", - "nFo51o6i/7cgag8GGiVADUMZV9afrCVRo9fz46o16drbGCvC0cH52EabkwvUfxsMbF4TuXnxwuQX\n", - "SCifLQzNpZzJQOQsRkO/355LAszlm9fOOefe4F8lVh8dAf2VPZSoj6JkXONVtY8054JIdlBJYKfG\n", - "JmqRbuQZx+nGfedQdYSdGp7YV7pSbYLX2FGqxz6tQu1VwmiCHeQdW6MWrUZu2BaVTuGYNbGgWjif\n", - "1u2L1r7/ijhxbHN5xml9zEP2vYhU0zQvm6b5c/w9c879pfMvSP+ac+7v42t/3zn3b+Dvf9059981\n", - "TVM2TfO1c+5z59zvf28LggULFixYsGDB/praPzfZPIqiD51zv+uc+9+dc/ebpmFO/ivn3H38/cg5\n", - "91R+9tT5F69gwYIFCxYsWLD/39k/F9kcYb3/3jn3HzZNM30L1msiZeju28HPoqbYEfRoWKw2E2Ix\n", - "NKMWQk5bQ1NGVbkvX/nwzIcfnrfHBgMP7XU7duz+mVfePR541edGmt2Ge7RAL8JHTSQkVjRPkNAW\n", - "gtRxITysRSNbWPRA8dqWPCltGkGLJhfCMLVAlBx8C90XPcZrKYmQxPcOQgYK584hVrKU0NLo2MPO\n", - "6Y4+yX4YpdU0iQQypy6HFKNs2rbbNWYgJVOpW/uQIixDrRPnLNynhF1C69ofEjCrStqUUIHcxiR5\n", - "S5VY1cnXIK+vVB8L3eqK6u2WhEmZ6QWIsgrBM0SjocW0ArSMqdPshKwA2cv4V1sWNxbCMuITg6El\n", - "L+RtWEjCLfhbIXiGAxgKSBLVfdlPYuBYN86uz9ueStHiMRW1JQHg5sbrop0fP2iPlSWI3xjD5dyI\n", - "3acDr7rdkTXE+ZwoYRTH8txCBkXq59O2vG6PURdIw5dMVCkTVBGQfYUhPS1Q3WDuFHJPGsQldKOj\n", - "3tG6trnep0ZZY9dgKDPuWkidys9crzqvm1ZZXPZJ3Lt792yvY6g6jUTZPEVou7CixbdXnmy/mkgI\n", - "smTBd39jVXcpajg/9NHByStrnX2RfSLCmkglLIpCFe2+js757yE81Bd19qwNWcs5sJ/UWxsnFuhe\n", - "yj7RCvXLb4fQiMozCcsizLg9sNe245pqKNB//8kTwwwuLlBweWFzl3N2LIrdo7HvWxQrLcBf9+bW\n", - "z+HqjSVHUNvudGz3kEWOtRjwBvNqvrBn52Ti11YntzBiivU/GqlW1m5fnbN1R+qFErvbxBqZky2N\n", - "Q8aaPVSyfYb5kR14xuxWWdjVr9qlICCxS/bpQ8rqbQhYn+cIh+s84T651ud5sk9lUfulL1JRFGXO\n", - "v0T9N03T/EMcfhVF0YOmaV5GUfTQOfcax585596Tnz/BsT37+ovbtszC0XHuhg8PfStYsGDBggUL\n", - "Fuz/W/uTf/Rn7k/+8f/hnHMuUXHOA/a9L1KRf9X7r51zP22a5r+Uj/5H59y/45z7T/HvP5Tj/20U\n", - "Rf+F8yG9X3XO/dmhc//O77znGkFLepn3llRFuEZqbiIkyhhN3q5UVsC/LS4n9tuTE0/QPj42ovbx\n", - "iMrnQGtKewslwS6Wa23pfQuCQJXpWAh7dMhSqTWX50QflBS6S2yrd1LYka4pnna348dkhwCPwnrL\n", - "2DyNAsQ6RW6IyKg3S+eARDz1KiYz//1vn1lklnXomKLsnKX1Ktm77YOq4+JtXr0aoh5KduaYkJSo\n", - "qbGXSE3XdtKurq7av8dQo1YvhJ8rIpSjjuNyKQgnajzSXYoTRXBIOhR1eCASaSaERcwZ9cg6XSJ3\n", - "ugChwC6oH72kVj3++LT9rARRVBGRGdK049hIrKy72BMSK+UZBBB0FQnwcp9ICuUxRTA5KDtJCZh/\n", - "G5EkSVA7byTJG0TTlDxuOcZ2nzoFVJGx/taVev9ck3YKqq1n6iC2a0yQPiYbyDxdAHVVz5UJIryv\n", - "WlfPJBysr2eP/FhvBBEcgnisxNrr25u9axUgry5lnY5ZvUEIzbxpDeaiol/teMm6Kjo471qIzYNf\n", - "cc45V9WS0EJl/SNDBHP89s2loR5fffOlc865Y8izpEIEb2+Gok+8r1IvcItxjaVO3z3U4nv29Iv2\n", - "2ArjeHn1uj3GtfDkyQe+HVJ/knXvFJG+xbrXemlMfGAyi3POnQDFUYSL+5nuE9xvKBeglRBaFXNN\n", - "4sGa0fs/QqKC7jWcuw8fPmqPUcV7PjdCP5fggwceXXj+3Ejs333nEwFKIYLnINEXqSYs+DZXsnbz\n", - "gnNM6griuorcd7CelbxOZGk+35dkIdLWFVkZPmN0nvJHssTaShmphngYTZHIwWK2+zzr9ewecioq\n", - "OZ577I5MA/bxXPbTASRDVo21k+f7w9/7XfeHv/e7vv9R5P7oP/+v3F9lvwyR+lvOuX/bOffPoij6\n", - "MY79Pefcf+Kc+wdRFP17zrmvnXP/pm9A89Moiv6Bc+6nzrnKOffvN80vqfYXLFiwYMGCBQv219S+\n", - "90WqaZo/cX81If3v/BW/+SPn3B/9sgv3B4lbTswLW2/gpS21CjMEOQWlaj1okUlIUJ8vE++nAz7A\n", - "QGqyRYiNUixS+RA5EIZG8jBbPsZOvToIV4rQWob4uqaa22f7sVVLpYzke/sCZjW4R5u1pnDuSxfQ\n", - "c+oKl+RQDaUe63QxDVyayzh7JZ7x7Y33UvVdmJ6gxr6JTu3wcVgt/ECa7EIkDphiSi9QzzsDqtYV\n", - "j5CehiJXSyANypupwM1RLtditt7rj3GJYvRFJCzwva0gko1jXTPhSJDzIehTBU+4EjSD7VMvLX4L\n", - "ucul5hN5CyogyLb0+uaRnRzf2+mDczZ3JxOr60XZgYF45G39q7ZavAiNwiOlDIlzzqUggvUFferk\n", - "Mf61ubYC5yVNFKXz80+9ZFIPrq6ucQ7zglvUQWro8XRafzABElzX+zyHXNbT1cR734rcTlD3j3yM\n", - "+gCnsJA+PLnn52Kvb3U9M6Av09s37THKaPREzJfCmrp2KSy7lHvcOcFvWBtxZe2doSlnp4a0V+A0\n", - "3RekI0qBJgmXz1X+WrOX37WHthDnPT6xOTGb+HV3S/mPhcgfjMBVES4r6wlWUv+NW2bjbE4cP7iP\n", - "axnqSomP0cBEOqdAH54/96yQjaBP3OOOjo0jRIT74pWhWgnWwlSQng2+dyz1FB3mUSUER9a/Wywo\n", - "1is1UVuJD02X9/+qrAIRqVTWs0my2PmG4EspSkKUrIs1PhQ+1MsXXrri22fGmFlsiHQZP+Z07OfH\n", - "mchfHEP09erK5in7kcgc5x67K/C5GzlQ+Y+8nWNS/7Wm+KnNCdbHHMr4r4EiLaWgIJ9ZusdPMCcZ\n", - "fTjE0apU/LoVpBZpIKBfk1tb4ytctz7Axyo3ilzvC+GqhRIxwYIFCxYsWLBgd7TwIhUsWLBgwYIF\n", - "C3ZHe2e19uo0crPGYNeYqatSQ6meeoit6Btkl6YeYksLSfXuIrQlCrAFINW6EQLaZjeFMhV4OgXp\n", - "MjlAOtwlIO8PWbeHsFxqbaeirCodtKEinDeRlEpCkUpEXhHS3wkZUtZAQhu4xm69NH+NTEnRESQh\n", - "AM/q93NAt3l/JN/fD1Uy/VXJlicnJ3vnY/RMQ2UtYVEU7W8ZPkGbVGphAMLksrbzbjf+xC052xlR\n", - "U0MmnAu7ZPvuTtucM0idcLKGjPg9hb3503qHnGnzjsZwg4aPDynwUiGeKv8adpzOfFhOpQ4SKBE3\n", - "IjUQQ1ahlLAUz6O1xqKYc8LucauADFK0Vhtg207PLTxAQuuob+GJ0yPf/8mlhRH7IAhvJWSVx0g2\n", - "WFh/1oDWG+fnfeyk/iTrL24Usvf/LiTcVaAtlLdwzuQ3VLF4A2h/I5IMXIskhdcq14G9o9+10HIX\n", - "CuzJTrjHt31Q2Dy5fuMTJY7fe9IeW839NXpCSmb4VO8dQ0Sdrg/pDDpCLWASgfRriBDQtrQ5GYFQ\n", - "3jTW9hjVG/KB/fbiGx8Oo+q2c86dnvvf3kx9aH8h4bFs4Y9lI6lXibakEsasb3z/k1MLNxWZv/5W\n", - "5v8UZOyupOTnp36MSemYL40IP5ujrqckFnCvZYKHc85lQ3++m4nJXzDyXm9FqR5JSysJS3Lhc/43\n", - "VxrG83+Px0aAJylbyc4MbWnyBmkp19eWKHNx4cNsx8d2vhHCV+NTHwJ9WNoYPnzo783r10ZAZw3B\n", - "I6lhmCYkjGtd0QbtUDkRjF1nX6ZHQ3tMpOrgOam0EMqzrCUBpcazQAnoNUOgssdS9qGSe9JsSOi3\n", - "e8K2v3njx05pHG1SjLLYsU70GNe/JjvN537PUvrGDHtmIgllfaFSHLKASAULFixYsGDBgt3R3hki\n", - "tZovdkSwSLqMCiHn4cW1EcLaoEG15oF55Gni33o1Jb+toC3k6U6+S+jeEVXj9QWFoVehxDaiCYp+\n", - "EeFRAGcBITRFGHg+XkPREnouuzXU6FWLtR/bWz1JeYoS8e9EUmLpWXf7rCto/V/P5nvXItlXPQir\n", - "dG7fpJjmoareOsY8ph5Bm3ZPoTshbBMdVPHL4WC/WjxrnM0ETeE4kvTpnHkxNzfm4b5N9tR6Xbw/\n", - "ev953unU+lpWrNO3ny58dGReItG5Ujy3Kcb9+NjPISVCX6MO4GopJN4NiN1982DnIAN3xPvbwBNT\n", - "suXVtUcJ3ntiY8d0ZqJ6m7WQnkHyPjs2YvWg79vZF1Sl2/fne/zBr7XHhvCOry6MFPv6q5/4/k9F\n", - "OmDoRSRX6EMh9QKnK3imUq/suG3LvnBmR1DKFEhD3dh9Itg8kNqZA3iaJKrWQlhtgIgcD61NGbzU\n", - "RDzdBOjgRurqjY79PL0Rsn9ZsyajzfFt3Ee/7Z4kQG4AoLvZyubL6Qnuu9TfKzLfB0Ua2PY4tfu0\n", - "Wl34PmwFYcWg3M6snT/89d9wzjn3zbc/d845txSkpYD8RjGSBAz2R/azyaVHDk6GRix3SKjJBX2i\n", - "AO3VxFCa41OPxI1Gx2i3zZc3QLqev7R5de/MI6aa2MCN7PTUrt/Kz8jexX2yK8+TakPRzQzXtzXB\n", - "v7XW6BmurzX52GZVbqHUxnpt49mipILmTzFnVliLWueNc/1MECzuT/lOoow/HxMctH26xx1KhuKx\n", - "XSFef28ZdVksbExaUZONJtEke+fIIRMT74g0A/2TSBDr2KqcEB+319d+T5zNbE+wWot2faKESuIn\n", - "yV/RrOtroK6y73bxnNT1pFIQhywgUsGCBQsWLFiwYHe08CIVLFiwYMGCBQt2R3tnob3NTematbzH\n", - "9QkdGoSWdj3st5bQ3hRE0SMn30sYshNSJuDbuFGiIJRVDyhlM7QWH6iDp1pIfYRPej2p61WQHGnn\n", - "pVaPhrYI3/L6h8J+qo5bo6/a3i0wa/3t5kBNrqg8cAys9Ahg7EpCqwyzdgTqZfhGIgHt+ZoD4zoc\n", - "GGTfanDFUpOM55UQDEmOrTa1qmiDKK9aQBnvz1ZJnBn+NRif59VrkbSt94QwNtWL9faT+K+wOz8e\n", - "DOy81EBaSl0rqvKyvpVzzkUxyeYWRqDOUwd9yITEHEGrqjuUUFBFBW6pCYh7pzA654zquExufVtu\n", - "h9YmhiqmMw9xJ1rzCqGCrZCze10fWlO9qQXCaJvKiL0dhM8ePPpIfuvH+Gxq15+h/l75yis2zzYW\n", - "YnIggDZbuylL9qfR0Brm80YI2ww4iN5NitDSUceIo3G8W2OxFNJxjcoH47Hd6yHCfIu5hTZ60KrL\n", - "RLOOStF5JmrzuO9FR8K9GM+OzCeqd0eVv8ZGdNc2qEl60h3KMYyT7B0Rwx0Sq09jP7fWS9MROgex\n", - "/OLyRXtsCpI51/C3X3/TfnZy32tVNaIEHTnq0kn9O94nSSxwR75fvZ61fYzQ933RO7rB/OAewwoP\n", - "zjn35vIv/WdCNq9rP4alkO2paabrn+E2TYBp9+ylavoh8QhjeHRuOk7VAcV0CzNJsgvuxbHoXV2h\n", - "rmEl6v2kFihV4QbhpmdPvcK8hkyPxv77D+59vHeO1xcX7bE3uJbSXVipQZ+TfN5p8hLXhFJVuj3S\n", - "MqC7JN+vE65TWX/48WpqIbMKNIPBwO4/6QhLCd9yzu5oKoKMzvW3kmQThiw1FEedK1WMf/XKE/T1\n", - "eXoEqsDRkd0nPrs13N49kFCkFhCpYMGCBQsWLFiwO9o7Q6SybscNG7s80+rrSIhwQJ0iIUynIGKm\n", - "8rZIJ1prLSWR/20W77998033ENFOvXoj3dl5iXQoiY2EXv0tPQwlqb2NiDXNPrFc01BbREr6RVKc\n", - "ol+t8y3jRISlbvbRtyXSO2fXhgwMWENPSJRjELUruT7lCZoDBOxqI5XW4bHyPvjvoXadpCnHJPm3\n", - "fTZPZ41xTcUzope8032qWCvZFtefTIxYTmIplYOdM8+FqFMt6Auvlcs8WcNzauRes56Wkt1zzM+5\n", - "kBgvQMDV37LtnGunQuymxeLv9PrDnb4459xqPUdfbK5vQejURIEaKf6TG0MkSN6kOneskhyUhJC2\n", - "3IAA3xFJgPORRxMSkQYhP3pyYbUbu7jXmgBwDPI0EZmLZ6/azy5eeSSkK1411VF2Kt1jnjS1XT8C\n", - "iiWOs2u2/vNZJXUKIZ1CQm8siHgX9bz6PZtXqxJSGyJ/EZe4n7Ke7z1+7M/fP7cGtEioradf+fgT\n", - "55xJuPgTYp+4RRJBX+QSMMfrqaF/RZ9VGex7CVPC5VoxFk0keyIRzqEgYt+gasMKpOjVixfyfazx\n", - "yObJFjNkJWttfOY9/G0mSAeaksaGyHzwwNffm8xsL1puWAHAX//+A0MLfvDJD5xzzv3885+2x4g6\n", - "PHr8QXssAtl6LUR5bo9a/7ADtEuRQyLcC6BpeS4I0gC1FtN9qZmRSEh0kDTBmqfOGeq7FIRxPCbC\n", - "K3IO+HsEQrl+RrX9r78zdfq/+Tf+hnPOucHQkNarK4/szme2J1vkxNrOfUdlEijjcHNjc+x24hGu\n", - "ckX5B0EVMSZNZPf69tpf//nz5+0xIty9uY0J26RJTkdUL28UdfRzskUEN/L8wfemt9Ze/m1337kK\n", - "UJdGEzqUDpEWrJGoUch6ktyOgxYQqWDBggULFixYsDtaeJEKFixYsGDBggW7o72z0N7p/fO22KZz\n", - "zs1ASpveWnjkzdr/naVS5BPwYSKsYKqXJkIiJMkwF2Vvhr6+L+y2q4TNosmiLfOWOrlzFmbZ0czA\n", - "uQ9pJjF8pQrbCbSwVOOj1aeSvlZQyt529kN2OwRwaKqsF1I0Em2KCz9Op6cWRqIuylz0ORbQMTk7\n", - "twKpLJZbCdny9WsfjunqeKLND+9bIVW2Ly2EgE5VboTWlAA/bBnoNv6ExXcI+G3BYxt/alr1pOAx\n", - "54SqV1MPheftdqxtb658KC4WwjJ1l1RbpgQUriHAFSBwTVTo5CDPiwI09dNWILYr7E/So6rdcww1\n", - "KaIlXjZSSDTz82kjmjU3Vz58shai5hxhjlMUjRXE3I1BbB30jRzNBIQTUTvvIAQ2krGmpktTW7jh\n", - "8rUPR8wQJnDOudOx//zemSc9P3xg4ZmXl/7v6SsLD2wb6K0J7E/CPsnhzjm3xbxqpDD4CqHnQkjZ\n", - "vGf8V8PYA4TZdV6lGNe8sL6OME59CRn8yic/9G2STA2GkbtCLB6f+LU1GAp5HKHKuufHvZBwP4nt\n", - "1bElVmyxdiRi5xrQEaJYYpsxzrO08X+GArY679eY4zOEzB7fM2Vt22KUbO5/e/XtZ+2xDpTlOw8e\n", - "u7ftVAjYU8T7MqkJW6BSBPfptayJx+/5/WQtqtfPXngS8cWFzZPjI7+36Z5MDTpNHuG+Qz0355w7\n", - "v+fvSXFgD69qT+jeoTZg2RUde3bMoX1GJW7nTHuu17M10Tkwx2Yz7BOFaUXRXr3ye20l4emf/exn\n", - "zrndkHlLlRBiu0MiS5ZLgeKNH1sWGffn9mO7WNqY3NyiuDD2vY17YOdAKDhP97X97t27b5fHvq/E\n", - "9pzPYqGUVNg79D6xCsi2ZuFnibWR2lLYuh6P/NpJZe9u1708dzMWrU/2Y3epVgWp95+3agGRChYs\n", - "WLBgwYIFu6O9M0SqSTP34L4hInO4wvU3lmo7eQmFV/E+RlBRdpJqG4Nkq+jDAKn4ihIwnZGok9ZB\n", - "Yj01JeySUF6W+6RwTVel13NIEkCvQe+jre8ln1FtvFwr0oJ2C9LDN+i1KFa3KJqQstdI9V8KAXpw\n", - "5j2tLsYhEhVppp92hMQ/W3qvJ7+VtGYgYupVkJT48FNTts4wjuMj86qI8KicQQEPOwZaRPKzN5Bj\n", - "naTkg7CriFSL8In3uTiAXBE5XIpS+NsKuDNRZyeqpYT9Cbz0SPLKqcY+FzStnELqQtCvNUjhkjnu\n", - "8o7/nPNU1eEPzSGilDvqzEDEqupWvkeyvR27mfr1dHVl/SkGfk7OU9/2YyGsnoD4nkhixRFQzMFo\n", - "vzaY26n15+9TKkrhrFdVLU3iYAkEdJr6e9Ibvm/nHaKu2tq83xzedCVk+xr+4HRpRPUV1sd6rbW2\n", - "gHpKO0mAbsdTXMsBUrOVxEvUQUnkfRBvHz2ydp7eg6yApKQTxezIeJKAq6hnguwKOsH9gV0/6vq/\n", - "88I8/QhrslxZEkEC4ruunVaeIjOE6/TU7wmf/eVP2mNXqAXH5In0se2JTGF3pSEYXB46d2ugPyc6\n", - "oFsS223fefrdF75tgojkXSq1A5ESRPbkBGiWwG9rzIWrq9ftsQSfawp/hj1enxNvLnxfN5KU8frC\n", - "d+jhQ49+CYe6lYZQFW2S3WdCmOf+SOVs55yrK3/9gdQzpSQC6wpqvykNcHNj56U6+mplaM2f/umf\n", - "Ouec+9GPftQeW1HZX87btqMRsn1BSQ6V3aHshLVzPKacDGR9Chv/i0vfh2FX0B/UwmUdVuecu8b+\n", - "H8mzu4falV2RxCDat5JEnQUkDqiwPha5AiK2a0HfciSoxPJQZBSrlmdCyhq3EnUqUEkjdfacag7I\n", - "IqkFRCpYsGDBggULFuyOFl6kggULFixYsGDB7mjvTtl807hSyOYDKPWenoqK7NaHGzTckkIdWInl\n", - "RyAWjsYGIw5BAM0PqFhb8eCdcsDOuV3F3gSK6cPhiRzbL8ZIUw2kQ7pQbxcmXovuUq/2lI7RhAAA\n", - "IABJREFU0GqnZxDrHDomSwltMhxYKmQLbD2RvkYIi/X7+7pUdUk1WzsHNZha6Nw5t1iwGLFBrNNL\n", - "Hz5Zr+yeZChCWlY2ng0IiI2M8RlInFpwkucZo8ht1BjEOkUh06JnZOcOQltKRFzjbw2Vaui1PR80\n", - "XRQWZ1Fhkvz1HvLeKRScA26PZerUCK1MhcTdRdhUFYBLQM9zUUDvIqRJDZpM7uEEoRWdayRWa2hv\n", - "gn7FUvA5z/xvL64s3DNFAdPJpYUKeggbEVrvdUXjCTo2mWgrUb06dhoeQ5FXCUFTvTgVzbBeCrX9\n", - "rc37zdSHviZIWFhM7Lwp9JOyxO5/E/txTYTYW2DupLcWMqwQItYixBz/11cWbrn/m540z7nRFS2y\n", - "DUK169JI5GOEwmIhojI8vJVw7zU02hoJ7cZgVM9EbX7DsLQQqjkHBgMkm4jGUZRRRVwSNrD+EmFs\n", - "JxH0eWSeFj0fDlzefN0ee/atp1IsZC9+CUJzVPt5N5O2zbAXdC4tjHoFfbSF6DNVEz/+3/z0x+2x\n", - "kyM/t+ZSoJgR2iy1MW6pD/jw9tbm6yn0qcZHFu78+GOv8l2JthcL1O4mFCU7/zpnCR0alqeOUoow\n", - "2nuPLdx8eenDh9fXtq64d+i+ZsV1bexOkFjwWkjxVwh3PXpo1/j000/9OaD3dnFhIcu8TVixflE9\n", - "/bPPjOxPustIlN0rhJYZHnTOudKxeoTtMYOhP19XiqDz2cmi4frkHJE8L/sUqxhoWLZE9E7pIwvQ\n", - "R5rE5k4XmlbjgT13Oz2/Trg/awUIavblkSibI7RbyzNhif1Z91OGbTuin9eG+6WP9YF3BbWASAUL\n", - "FixYsGDBgt3R3hkiFWeFqxt5g8QL39HA0nqrjX/Pa7ZG2Mydf9M9PzOy5wPUizqRtNou1IhT8dKJ\n", - "UvCFdCOEbZMksDdPEnu1XhO9pEPIhaauk9C4g5zg7ZxoVV/q9fF8et4IKcZaa3CFdH0lO7NDC0nh\n", - "7aNNnYG9adOLOQY5WOsbmTdh57135j3YzntGzryBevGXX33ZHstAznv64ll77Ae/+iv+tJLWS4Qj\n", - "TuwaX3zpz3OLmmuRU8I4FGb7NiYrIFgrSeufTEmoF0TsgEwAazEpAX259F4K75N+PzlAMMwpjyzD\n", - "HzOFWWQdupA4UAXyCK6OIoE9IJCcG6qYPxCSMY1t1z7Q+1IvlSjdrZDN6f3OZoacrYCYJd95L/lH\n", - "P/ptuZrv/0LQxzyLd87l++j78+TJk/ZYVQNNnVqyw8nYr9lI+v9m5dv3FITVx+8biZp1GlX0uwIi\n", - "1qSGnK2oQJ2K/EK7nmz9cW4NRYH69sbPZ6LeuSDdXRDqh0NDxCKMSST7Cj3cjhB2WTOyFESyB3R4\n", - "p9YbSMtbIcXTw+4gUaMRRMqhXp4SdlmcTJGWpmECiqRtYz7f3Bpy8u3Xfv09fylp+tf+nhWQRHhz\n", - "aZ999QXWq6iYm/yEzfVTJLZcvf62PbaZ+v6/urT9/OjI7/dZbm2fzv39fPLEo4VaMYBIj9bLJMLx\n", - "wQcfyPc8mjMUWYleKzWge4L/7UfyPCHZ/uUrjwSdn5jUB+u68V/nnCs3Ddq5ku9VaKet5xKRhdVK\n", - "E4oa9MGehTn203Psv7pfLBYT/GvPhDH2c6011wFKqSn83OO0JiJPHcvecXp6irZZO1mz8/ISchki\n", - "IXJ25r///LmprbPu6FIkFJggcHRka5fPnUY21AmQ5bEQ0DPWU+0A/VWkH3sn9yHnnBuiAoSS7Xnf\n", - "OV/9F3wftSYiZXxUlf5QDV61gEgFCxYsWLBgwYLd0cKLVLBgwYIFCxYs2B3tnYX2XFy6SojdW2g1\n", - "Fbnh+PdO/N9U/XbOuV7tIb6H90wx++yI+kjWnQbK29tUChknHu48wBM/aIRUVR+FoRolMxP2U7iT\n", - "nyss+3bR4q4Qy7cIRVGTxDlTpRWEtSXIa3FhqjxvNFQHku2TRzZOBbQ1bqFtcizK5hVCITdC2P3w\n", - "/Y98O6WvDx56leMjgUJvJh4C/frbr9tjzVvFeJ0zSPXlq5ftsRWg3wYEyCyxazUoPPvll1+0xx7i\n", - "+gz7OKfJA9Z9DXPRMpBxF0L2ZgiW33/zxkikfXy2lnGl6rMS0PtIbBgPDIpeLvy9u3pjulgVYOaB\n", - "fI+6KA0Uu1WJm3ZIC0uPMQS4FMIs1bY/Lj5uj50j3PLqpYVWNgg39BBmvhXV8eXKz49Yxprzeb0U\n", - "YjFg9nNRwCdhV8M9RONzUXbuAoL/7AsfFviVH/5L7WcF+lCIYnGW+fnfNBbG2/SQ2BBbv0i23coe\n", - "w9BXUagqvB8zrnEtGs1kk1yKJh+NfR9Pjk1Ha4OQwptLC3f1+3aPaR30Q8MtMcIsuhap8rzGHMpH\n", - "tv85h/WhxchZM1loCTH2iUZ9ZXy8EaLuj//inznnnLuVMEaDSgLdDfYwSQ5YlP57/Rd2T548eIQ+\n", - "WFiWhWFjUdv+5qkntv/0i5+3x/7wd/8m2r6vbcUxVN2n73AOJsI459zjxz6kfHwsyt4IaS5Ei2iC\n", - "MK7uDX/wB3+APraH2jDTCvf1s89+Yf0a+n4NB7b/ZSkL6to55gif305sP5lM/I1SBXImL2lhYpLr\n", - "eT/LjTwnt/vnoJ2eGC1m2PXhvqHM0xh7LFXXnXMuwyuAFiEnUV+fcUoad243tEqSvSqhc6/X5985\n", - "FPKHYxu7Y+hN/fj//MftMcoM6r7bSXyb+ggLNlJZg0kBel9TPAxWtSaP+RPrc3oB6oFScPjM0p14\n", - "KfPokAVEKliwYMGCBQsW7I72zhCpb7752t0/E3VYkO26HXurJDrV6ZtHPGz8m/ZY6n/1QNDdIcdB\n", - "2TsTAvAaSATfpnNRMaf3oSrW9FZ36rrhDVe9JCJS+kZM51CV0qnA2pAc6sx4XiWR16W/riINzQZv\n", - "+AK/8BenUn+Lsg+FqBhTHiAGCsLzO+dadHAkRNwUBNCN1Lpb3/gxLKVNBVJnf/WDD9tjM9SVWo/M\n", - "S+E4LqdCXoan0ev0d77j++i9hcHAvK/1moiMeUhpBiVo8T6WIEhnO8r2qKsmqrzRW8jZaCTzqkdZ\n", - "BztvF+jEWvq/BDl2sxL0BSTivqg4Jwm8dCEuLtGfCNefiYoxic0DqeE2xzGt/zWZ7HvaRClHfbs+\n", - "BLPdmUhc0NOsII3Rl5Tnck0irCjbY/qlMq83FeskirIwyNi1KHZTlT/JZEyATv3G7/4t/x1JeS5Q\n", - "z24g6vgkjy7lWhXboiRupO6XonZMtfueIMELJBtQ7Z+q4s45V6J2nxKGWWVAPXTOoY0cG5z4eZRt\n", - "rf8t8VVSqYmOsjacc1b3bAtUOZJ09RxK9K4RYjlS2GNJ//6+ZO33PrQKBL//B/+Kc865P//xP2qP\n", - "nQAdI1G/FPmVVllaJGEePHrPX18SS6j8TeK0c5YM9KMfWkJD1qbO6xzz9+nLrz7Duaw3I6Tm35f6\n", - "fzSVemCa/laQngFUtHvy7GiA8PzkJ/+sPXbvnieXnwD12XSs/0RYlOxNhOP99y3ZggR4RXNjJJvI\n", - "NtUmaPCaztl8oop4T5KSuCcVgioSwVKUiOhLJmgq0exMHvtEthSlmc/9+L94YVVGNqjJd//+/Z12\n", - "OOdcBTRnPjHU5vUrj2z/GqQcnHPuwTmiCZG+dlTov5H9iY4uRHanTDFoc0pY2BlGkGzZQe7xzKo3\n", - "QjYn1CUyPQn2qefPnlpfK7/uS9ljCk34OGABkQoWLFiwYMGCBbujhRepYMGCBQsWLFiwO9o7C+09\n", - "f37lyrlBcVnXQ6A9gRhJ3u2Kxsb9Iw+BVhLaqWoPXyphjDBep2vQMslzDK0oFEo4tdSKskAAh0LE\n", - "a3WBBDKO8/330QTwfZ5KcWW8txJ2rNYGO84mU/e2MdynWkRxq1ljY0JY9vHjx+0x9lX1fm7eeLh1\n", - "DDhXYU+G9I6lyCT1s16+NHI44VMtLsyx63b3w52vX5oCMuqo7sDthKBJCtW+vn1+55y7AWFUjzHc\n", - "sFrtQ/Aa2muJ0hKCcz0q0PfQZyNCU0dEQzvsl4YbnNsngDNEqOGO9XqJdsg8xcfUCtPrs6CmFrQ9\n", - "eUt3yreTBVpFgwvjqVpUHFuF5RkOLOL9NcS/EykyzfHcyn06gdp0LNe38bfQwhaE+jy36/cQqnnw\n", - "vtcd60j/O2h7I9sUSbGLjZD4oaidyH3aIHnl+lqSNxBa0zXBMeM4qIo2Qyoa9uCeoaGVDdbRtfx2\n", - "fM+vI93PCoQeEyHxdkBlUAX2Gve2Ay2yTMJDJJlvdxJ1UDEhFTX/tqiv6l3ho8Ta/of/wr/sP3MW\n", - "Kn712q/3bseHVDVkzDV+fm6hKN7jRNSxSTbWNZGiTQ/vW1juUGHusmIRYn+fdL0yYUATRs7PfVio\n", - "J2FpjrtSEL596nXu3hddsJuZ30/uPbBECZLtqwPagkxK0DXBdaWJKimqAXwgdIcG907XJDWgdE3S\n", - "ONaqhcX1x0Lxeg6lDFhSis0TXv/QtXYLoxc4r1EqXr5CuPVrn/ijFRjOEEZ9JUlELFZ8JiE7Jra8\n", - "emZ6U9wf+5JQsu34tl++sPNx7r56+cI5tzv+1FTTvZbPx75QGzhndPy5x91cWaJK1CY8yTMmk/eC\n", - "AxYQqWDBggULFixYsDvau5M/qDM3WRqZrECKp2Rfu5fwID943+oQPS48Oe/itdUfik5Qf0dqTRV4\n", - "Y+6LLLIRH/2b+Vq8b6pYD4XYPEFap2IP9E5VFbxCqre+EZcg75aSpkmFXiITW2UdwutJxVukxEGR\n", - "SA051C47EeToUF0/kmiVqE7Jggwo2VZqqFHW4NtvRYkYnvGNok+4ll6fqrDffGPkRBK/14K+sI7g\n", - "WsirRKfoEakHS1RtIp4+UTL9Homli4Upy29Qx1BJ2SWQi1zQBKbs3oDkrarT9D4VkaA3c3Nj12Jf\n", - "NV34CjXu1HNiW/TYC9Q1O8V4dofmLc2mvk1xLMhpzbkm6sxANTQjnoiVqvgeUuBv24L5p2r/RLUU\n", - "1eOcFaD14Dg9f+aV0kfi/dVAjmupP9cd+gSJfODblAqqcIvzjoaizoz7VQmCw7mjBPQS15jOra/z\n", - "Bdedqh37c3M+aR0woq7a/3aNC/qWQc5A0TyiLzNRdqfyeaRzFyTzuaiNFyDl50dAImRc3RbVGRq5\n", - "h0j1r2ub60m8r4pPYEWrB/z5n/+Zc85QIOecGwNN5TzRZA9KXCiJ3CoGaLUHIAHS1wpzayvX4jxW\n", - "2Zfrt5InFBHjtSai2E/kuJFrXUEpP5dnwr0HvgLGlexns7lfH0peJnLDa2lZU6p+71SgaMnh9qyx\n", - "uq7227Y/sk+MsN4VTSayzvWkex3XpM41zn89xt9om3j96UxRWqJvcg18rkr9x0d+j7984+fYRJTt\n", - "59inKkHpn2H9L5c2J3/nt3ySwWJpe9L02t+7kcg0EM0rBPWKUVHh5Ut/3ufPrV4hx4nIpHOG0mnk\n", - "5Azq9WupisGhPT61RIE+EiAauSe1C4hUsGDBggULFizY/yv2zhCp3nZXrC8Dz2UjbjW9yliaWUX+\n", - "N9e3Eo+GB3f/1N5IE9Zu0pJ08MQofqmVoU0SQcTyJObftgmohoqFLVinS9KU6Tmo50KUgMfI7XHO\n", - "uS7i1quVeRXNiiiNnYOejv6WMXyNm19DdDMSfg2F/linKM/N+2fbpoJgrOCRas25ycx/nsj1Wc9r\n", - "x0tCH2U4W09IPfwogTeNG6V8kA7GJJUK6ps1K60bR6JNhe4KSoC+ako0azwpmnN15ceJHm5RmIQE\n", - "PXGtubSAtziTY3O0RVOYOXbqTVOSQ9tUAM1grUEVEKSTqPefIq5ap3G5ECFWmHG5BBE4gPq1khRA\n", - "MI9FQmMFBGEky8DqVJZ7xxTh7UOyQZHj0cjzoJKddeXHJwXCUQiq+hc//UvnnHO/9Vu/2R5ra13K\n", - "2mVbJuJps9I70WfnnEuxFraSfm18ST9frm9sX/nkk0/wmXwf51BR2XvwhE/ObOyItGr6O2scrkS4\n", - "8D3Uh6tkoSwnfh33TzwiFam/C0RsK/tPlGCtpcb9OWi4UW9evWgPpYkfO+WSbkug+UATlfvy/vte\n", - "6kBFZbn/TKe2d7Du2Vb2nxnm6XQm/B7wNXdElzG3iQxVpSII++gvTYWTK1y/L2jap5/8yDnn3P/9\n", - "U5M6mIKbqjVZb258PzYbvyYfiagx90zdQ8ghVVSLPCRFkzeUH5B1Qv5TJXXiiCId4jkRfVHeFNc1\n", - "+aO+7f4aunfxuTMTftnx0RjX35dzuL2183F9PDz3Y1Gkdr+eQjqg3toAjFBDMZGox+eff+77Vdt+\n", - "3sn8HPv2qckPnAD1U+RuBgFW7qc//OGP9tqm6BstOqC+rTxcStvEEjlifdhC9thudx/hVQuIVLBg\n", - "wYIFCxYs2B0tvEgFCxYsWLBgwYLd0d5ZaO+oG7taQjy9MUJbQg6tHdTOC4MRCWkvhfuVZR4qvn9q\n", - "Kawk1tZbg0xXa9R1Y80plUsAVLtQIh7g1oXAniuEwJTETIJurAg8/qNhrCRhGMHDyCeiZtxpQ3ui\n", - "WA2i6kpI+SuELKYTgyx7gDQVxSQBXJXVCRGTKHgrdfV4LJYQA+vJLYSczH5puiyJf5u13RSSgdNs\n", - "v67ZoTpxtEPyB6dSh4yhL5IJ/THfPpUEYP23i9eWvbBCfbjTM5snw8ER+uXHaSA10jg/riVkynTy\n", - "RMI9lJ2YzZRY7OefhiCOoSi+ldgew1Ir9OHlpaThvpWa75yRw28PEPA13MDfKtmc5GH9Hv8egPSq\n", - "48/+aB/6IKCuVjYnmDyhyt5UQH751EihVE9fr63/bGevtx8yGQ39vZmLwjHnzkpCoAxBLkT+4gqh\n", - "bQ3Z1LhliYSbOJ4kFh91LF2aIY5S5vo1QrCzmY0r57CGWxg+11Tz6YzhYwlLMbQq5zvnfI+x70Wa\n", - "lIIKCMpZaBiyFEkWt2/cHpYSWmQ4TEm53Dv6mMMkWDtn82l3XyFR3/Zpzms9RlrE6enHcsx/T9fO\n", - "eMT77tsWSQ1V7iu6rzL0diuE/Rl+G8v3XoIA/fK1rTGe5wnU2Z1z7tNPf+Ccs8Qb3a/OsHfoPeQ9\n", - "1j5QuiGRWq+UlhnIPOGaaXb2hM3O+TSFn3uoPru4rnVMTLJl/7xdCbe9+M6Pic7dDZ6ZvZ4d+/LL\n", - "z3F9yLRI2OsIz926sfO2fZXvpQhBX0iomEvr137Nwvcxkqs2Eu7Mb/25nzx5f6cvzol0UanH9hOw\n", - "2hq3krxxAjqQUip4T6YrO9Y0+88ltYBIBQsWLFiwYMGC3dHeGSJ1/N6Zy4byBl1QVNHeoJmmuBFy\n", - "6rJk/Sf7XgVBPCV2b/DmXm0M4Xm7Jp6moc/xRnot6MsSHnQq6cJMl1YPgm+9mpLNNOpd4czezvdi\n", - "8ep4ulS8iiEIux2pF8i3av1eATGz169N/PLjjz1Rdi3IwTVIlEdAc779zqQODomVUUBzLojYKVGV\n", - "raJP9L6FWL2CcKiQWOnNKXJED5c1n5Qw+eKFJ8UOxDN6CJmGuXgQvI+KkjF5QQn1nCfPBCWht7dG\n", - "6vxyuV9D7VxI5CQeK3I4JTok8hf8HtPFnXNu2yZS6HyiN+XnRJsk4Zyboiahpisfoe6cVn+nEOZU\n", - "RF2JmB1JnTp6uM1OPUOQl3lM+kBCva6TDqQjyqUiCL4tMyH7soaVyglMgRh0+3ZPmEbPdXX5xtCC\n", - "9973SN+3334n3/fz/uqNIY231378n8p8JsKiXaXshSZqMAGFBHglUZeYL7quy9rPj8dPHsv3QFhV\n", - "QUDMe03UYIKKCuey313x3EmybYgqNOZpt3NHzltjT0x3hIH3Sbbcsx49fNAe++P/AZIlssc+xOcd\n", - "tKkQD/5tIrT2oRadAO4Puk8en3hki+nlzhnqtNbaiZW/aRTf1CSeFeRcColScH7oOd57D6T4vq2T\n", - "Lz/3tfs++dgQMQqrptG+cO9HH/nvxZGKP/pxWq8kUQkCjpu1ocQd1Ik8PTc0j2srFYmV9WI/oYdR\n", - "jy6kQBYH9rpDKLXKmtQHxET5+UQkOdjXRq7BPflIUP8jyB/0uhTJNZuDCK5IG/dVRZPbGSaSFMet\n", - "JI/NMd7v2cwI6GfnHuGeIoqi45+137f9p9MKfNo+bXumCqz6tivCylq0p0fW/7Wg3YcsIFLBggUL\n", - "FixYsGB3tPAiFSxYsGDBggULdkd7d2TzD09cJqS39Rp6QomExxiKawxaJRSZKhQIaFO1ndZtXT27\n", - "Zg8aPITq37yxmlusl6Uhmw4g7Uz0KQ7V6TPy6r4qtxIACSkSlo221q+vUMPo3n2D3TeAE5WwSih6\n", - "KeE2hrs0LPfFL/z5ZjMLld174Il1E6r5ythEIKwqZJ/iWrFA0fxRmu6HsTS0xjaPj/bHTuFmai/x\n", - "+1SJds654dD/No1EiRyhgC++/LI9RuJ5Lu0sQJ7uD0UVGm0v5xYCIAT+ArWWUgkF3X/g4eTzexae\n", - "I6FxPrcwWrcPbZexQdtxGzISHR1oVTHs4JxzNfRLloD4jwQed9RR0zAyQls6J/jbvtQ6TDGOqqMS\n", - "IbSoYQHqzFDHKxHdGwobX0odqsUS35d5wv4o2Xa58N+bL22cSGI9caLKj1AqVYSntxaeSBPf19fX\n", - "Fsar5/66L0Sf6s2V//wXP/tZe6ytayjJJgP0uyM1+cqaGmggrM8tZFRgPGutVwb15kHX7tPXb772\n", - "7S1s7NIl5rqExXgXd7S9QB8YSBhhtfHjOEpwTEJWDcjLkYSAoxrh2Y2NdQw9tEhFyxxClTMLQTHc\n", - "VnRtTKhpVmKPUT2fVasFZ31lsksmYdwx1kK1ldqNOJ8SlW1PthA0R4rJLqmEXT5BuC2V6gSsIlDI\n", - "84RciS+/tnDvPeyTqrZ9/9TvP6qB9fNf+L2F4SmtIcr9XFW0Fwhz37tv+wTDY6RnOGcEcCVKs2ad\n", - "hu9IfeDYaG3Iltohzx+GR3VeWRKF3RP+5r5QFRjuUv02PkeVKmPPGz/XNAFhPoc6e21zqJ+DliLJ\n", - "HvO579dclOJfXvrw3eWlhe/X0Bv7yU/+oj320Se/6pxz7h6I7Su5hwXoAXku9fqwTl+9tH3iNfYM\n", - "bfv/9mf/k3POuUeP7LnLcKN+L46+/1UpIFLBggULFixYsGB3tHeGSKVxx5ULeTOHR9rU0iR4i/1Y\n", - "yKnwOrZS14dvzoomkVg6kGrys5n/fA5ERj2TLby64UjVTIFI7aBK3qIDle6VWH6oqjm9BBKqx6K6\n", - "e4S336fPn7XH7p2wrpV5WqZAfdweI7L24oWRqEls7PTtLZ31AZnOrfWVkthfQ5XVcwxx0tj79gZk\n", - "T1VRZ7+VWMz0581rI+nRc8pyRfOSnc/Wcn0S4IlWOmdEzXsPTG04w/jUQgqeAelIhGxOQmda271r\n", - "Yn/uj554henLS/NgKDGgshIDeJh6T+j0HwmqQLK7qn2TZKxzoo/5mcGr6ktl+vv3qTpuKM1rtE+P\n", - "DUfe+1dEaAhErpFKAaenfs6UpZKC/d+sr0bitHPObZDyq3X1vvnGe463UuuMddoUuTlFCntXaud9\n", - "feW9z8ePrK5V68thjJXYPcU6nU+svTcXHh17+tzqOn7+lUdfhRPcevNKok6IoigBHQhfP/djOBCk\n", - "bzb3fby5NUQgy/x9f3NtxxwQkytZEwnmhPafSMNS0IcbrN1TkW65uPWfJ4nvfybob5RgXouy9PwK\n", - "dSJz+173DPteZt+rlx65W5ZGyv3NX/8N55xzP/6Lf9oee/zIz1Ny5xWtSECsVkSkB+iyHXPn3ApJ\n", - "PsuZoWTTKaRbpCbmaOj3QF1PXB99nC+SsAJRL/0+EwRUEoTI+oPHtk/0kACgCuj8ngJ3v//7v++c\n", - "s/qbXF/OmVK/ojVs7xtBjp5grWsNwQ0QQ1XgJoqk/WE/uBb0WaOJOjTuoXpeHlOUinN3p7IEzr2Q\n", - "MaEUgu4xHONDZHe2aSUo9fWNn2tZbtfaVH4sbi8tKSpGndAbkWk5RoLM7/z2b7fHWIM0Y5QqsblW\n", - "V6yNaM8fjjsRX+ecO0PVBk2eefTwEfpg31ujesbP/vLn7bFM+nvIAiIVLFiwYMGCBQt2RwsvUsGC\n", - "BQsWLFiwYHe0dxbau3zx2qUrg0cJH1dbIdFdergvPhIS8ZGH+GqBOEne05AJCbhbVUAH2W8O9fSe\n", - "kB5JfM+ExEldmDwzWI9aQEoYJAFZYXzCh0refgniG8nWIyEWzyceiuwIYY6EYhJh/TVAgBVo+erq\n", - "9V7/WXD08trCCFUNbS2QV++DfOmcczfQ4lHNqi5g9Kaj/d9XbGZbYiEWrqEiv5gb3M7xzoTsWyO8\n", - "SNVxDc9mmR+L+drCAxwz1VGifshECnRS7TgWsveSSsmaKIDQXgUy4UMpUGpK7DKvAHcr3M4wh97r\n", - "AuHLsYSKqcDOkIFzznXf6711Pg1ZUx/NzsuQ7tOnRs6MIpDSJQRC9Lrf1+KyCPd2bPxjd7ZzraMT\n", - "I/2uKj/vxkOb1w8eeKLq559/0R6j8vvnX37WHnvV86HCrYRl2bfJrYURGoSNN6geUMU2rxOqswsB\n", - "/eaN1xZTyJ7q5V0JwVArSonSHSQvOCG7MhzYzsmtFMjFXH/x0pSYmUSg5NM11r9WUejjutsL6/+r\n", - "C79OVVmZFIRtY7+dg2xbbf33NRRRYC2qttEXX/ow51Y69v6Hvk0PP/pBe2zDkFpla4yE6r/9L/7t\n", - "9hiLJM+QMKAFqjuF31dOpLg19eZS0dEqsSecnd5vj33yCTTonNkVQrU7Y4JwZIk9djQyesYzUB8S\n", - "2UNIxtaQVXfo+/UEIXvnnPvq81/4zyRUeYziug8fSYUF7PExtKVKGS+SzJUAzlCUVoDgXkz9Jeds\n", - "n3h9sV+9QEOlbTISPtNQJD/T0Bq12HT/OTvz7dRw1/JQIXXscRoy5Hl2VOlZgWGL56o8WDlf9NnJ\n", - "NjdKWEeYV+/nEGN3JNpepO00shdO8cyeYu/UQtbTqT92Jtpp7MNCwsjPoGz/sVzrww/93zpOVLTn\n", - "GDq3mwR1yAIiFSxYsGDBggULdkd7Z4jUm6+e76jJUp07Em95Xvq35Y6k9R6XHolW4Er0AAAVaUlE\n", - "QVRYC0ozJ/pTma/Tg8em8gd8YyYRty9EdHoQlSBNZ+eeMLhZ2dsv09UV/Wk/E/I2UaTJxMiGfOsn\n", - "me/m1j4jmvBAlLDnIA8rYXACku8hD2YltYGYarsWpe4cXvoERLxIlNCJVqiKcNHzb+mqrE1PQL0/\n", - "tl2RM3KcG/E/Hz323ulE+t3t+rbTg9F+Ueohtq+7Y0gdrMUjmYOUrvWieJ6ppHr34PVW4pH1gcBR\n", - "vXm9sfYyJfr65k17LALxV0nJQxAxte30JlXtOQLqmYra+1fffO2vBVXy83vmBZEIfXZPa5357z0R\n", - "Ze0LeLipsMKJmKr3Sa8/EeRwGft7xrn45ImlAadL1MHr2PVXQI4e3fvD9hjzPp69sEQJ1nG8vrU5\n", - "ydqVz1/Z93LM0xRrsxLW77NnHn16+MDaRA+2Eo94MGYNQxvrGGPx0Ycftsc2Sz9n1JtdsE7gBnIJ\n", - "pdSQQ1OuRX5hCc84kq1zOvXJIyo/UkLtv5a9I0n8vfg2sqSQFPeHc9g5575Dyv4p0unrcj+tXdPl\n", - "VyDKagLOEmrTw77KBPh2jnqCnLPKgzwJstjfkyzxe+1C9hDKVBBxds7QvELkP47iY/zW1t8hojZR\n", - "kgtBaXpAQsZIvPj5V1+3n62BumlSxuP7PnnhZmpSLwmGrJTKDkTzLi/tfg5Adk+lnirXEQMRcWLr\n", - "le3U/f/Npd8fBJBz//Sf/BPnnHPdgdZu9H+fn5v8AEnRinC/eOERUEqnPJD5f3JC6RCbE0z713qJ\n", - "PxMpENqnn37qnNtFrohI6T7Btmg05xgI5MWlb9tEqigQuUu7tq8kkALpSZ3A6crPmZ4mCqBqxWJq\n", - "8+n/ae9aYuO8rvN3ho8ZDofiQ5T40IukRUehZcduUqNwGiToInAWaZpN2gItsiiKAn2iqzabtstu\n", - "WnRRtJu6RVAUKQIUCbIpmrQo0rdVG3IcRVZsw6Le4lMkxfeQc7u458z5RiQdgbU4JnO+jUZ3hv9/\n", - "3//9z/nOd2x+WGAT4Grvd2/nvePeXQ8KqqlFfnXVf39e5RJGRt0ieetm/tvbN+7Vy9q1zqzKbkET\n", - "Z894UMxuz3tGWKQCgUAgEAgE9ok4SAUCgUAgEAjsE5IalG8P6KYi6bmLvajV2J6c/2lpkGvI5stz\n", - "QyP1kjM9WUU5kbTTib5sKjXdJcDddmVKkGo6R2YW340w3E2JGg1LpJlj/cVuPHNzsQtue3tTf+/X\n", - "Md0qc4Xx/Y283U5aTKbszCrCG2rubCE7srkFWAG4qu6AGpFy20v5e9M22m7QuMp1WqfkjGbuZTfe\n", - "prn2yI1lZs87d9xlM6jm9mKJiLLqqjPNKsCVoqWwk3S5rq7ChQXXGDG12XUiwFr9hKTabSxYbXhT\n", - "tW1aC6yLZYTWPO4LZLJe37CgBJ9D09PZtL9BbtSkbhxObmwuGCbRmouU3VILc3luPVC3y7mRs/Xv\n", - "LlzI5mkmmz5UwmaxQcclt2FycrJeZvO4o8PJ7kV1YwqROOdmsjtgeia7Oy4++3T9O9Od4Xlqis1G\n", - "cM3IfV2luWPtF0pQ2q6Ezfk5d8FY/czFk8TrZuZ7dnudPpXn1QaRws2PzElr797KZHwOSrAMAMs0\n", - "xjC3+JoGR6x6G7bUFWnzAAAeasLX2pbXc2omuzt4/ZtWV0fJ+//MYL6/UBt7j2dXTbFIwRvatuqW\n", - "zs0ub4MpO7O20rHu/P0IuTFblbBdof3P9p31FcoAofcoEFFddDwtqXqBNuUeDXawROUA6psc65gZ\n", - "OXdri6nlGRyoY/pE169fr5fV1666k6q7aPHNLboby1z6HADznl5vZMRdO6aozq49S9A8M+MBBbbf\n", - "dGm/87q+9OqlhjoCrg6/Tm7E8fG8jqbvu8tyq6Z7NwXAdKmLknWczN1m7eH15y44n0NGqG6lcbLk\n", - "66xjZa7nFqIA2L57vM+zDUwr5YPbaPctaP8/pMTHo+cyYfu//vvf6mXPXHwWAPA2uRiH1UW5RCry\n", - "tsZqtCYsGGdlzfuk05Il1/XZiLCua3x40AMb7Dly5Qeujj5ybmRHu0yVnonttk7YBQ0R/MznfxnJ\n", - "ODCPICxSgUAgEAgEAvtE08jmGxvb2OZcb/r200mWFiMsb9NbjZ2mh087EcyUdVl+oFPfdIuU/8rD\n", - "2fP1mBxq4JxLZnVqJ3VWqZMtWX4hf2a1cQvJ7O72cPKpKSfI8bUAJqC79auzW8PqKazaQmxrpABt\n", - "lpgCneqNeL617W9/5Up+c7K35LV1UvjVt76ODh8UU9g1RW4A6NBXgkZ1Xn2roJN+ScNJSx3+lmQE\n", - "eFbPNlVse4PgUG8LNWein70Zzc77G+m5c+cavgOAguaM29pmomz9y3qZ9bupCLe0eh8er/TsuK5Z\n", - "B6cp11uL1pP7xN7YurqoTqZ2/tCtWYPDeUwKLblPlpa8XaYyb3IduZ65rFRiEnm5oS1cZ5ZOWFhQ\n", - "+Qc45pWgOjg0oG3wNeGyFqQsrda/u3ddfsHCiVsoRNjmNhNLTan+2DGS+KjoZ8ntaiXFbgzV9FpO\n", - "tr17NxO1h8+SOrqu04War53Bk7k9HUTsN+mGGVI7FyO7HzfCun9XqAcM+HxdV6vXOlm/zDrY2+vW\n", - "7AcL2epVo79d1IwGnZWdEicNb8lqMS/pvsbj2qfZEM4QEbakef/WiTBdEF0ztHYsP107zZ3ezjzH\n", - "E+2xZvW2lSC0Ji3UvUhWjRXNtsAh5EZoJv47Hqpln9eTkaJ5jzF5lm19ANyddmvRSy+9BADomHXr\n", - "k1liWVn/ZH8ea+tzAEg1zedIeTKnv2eSNN7+wYFcFyORV8giODExAcCtIADw5pW3AABnznlY/f8q\n", - "2bxC+99HL+S/PX7cLVz3p/J8FiG1d732229nORG2tA0M5HnNVjV7Fn38J36yXrawkPcftrDWtP0r\n", - "1CdjoyMA3AoFuJwP56ns7ct1mp7KfdJGkkDmseG9486NHDDx1tWr3tbpXOfjRLbvUGs/7/uj5/P3\n", - "/NyzoBTbEyud3v8P5vJ1eV4Z8f40zatlteb3cw49PW90dXvdbf0lzl6yHWTzQCAQCAQCgSeCOEgF\n", - "AoFAIBAI7BNNI5s//dxxpJqbx0VdMYUC1yd//sjwWL1kYuJ5AMDogJMITR+ko+ymZSM2s7aKmUC7\n", - "K2YK9/ubaZfdGGaqZteS6We0ErHZCNALZDKtqKYKuwVXVrLJ0NxYTCK2+jIRs0V/x2VGFGaXgbn0\n", - "mGxtOlsFSnja35+JqkYovzHp7pnxj4zrvVgxNpuHG5JhKhG1SO2y/lmnZLibG7l+UnCTubnqykTA\n", - "XtUxSfpdC/V/qZjNvg8W3d1qmirbNE3qJl3xPjGya7XqZZ2qH8Zk4xZ189hYc0JfcxU/JMV0Wy9s\n", - "iq4nXCZ3b7HViNo7ie2slGxtrJvTKYjBNGPYPbythFXmPLYUzN3m5nlzVbIL8L4qdDNRc34+m+p7\n", - "+/McfvopX1cWvMAuEyOHtnEmYzWBb9KctG2lRmvM2l+i8V9SF7j19eqKzz9zY26s+Zisq7ZcH5Fj\n", - "jeS88IBI7KpFJEQV6FYNqkQug6ruD0V1VXD/13StbZIbr6Qk+35KMgzduzi5dVVd6jVaT0bUZaK4\n", - "7QlC42lzsUfHvYGCkCw4g1TsVWW92OUuoPu3JgEAJ044AbdHydttPV73lvXc/8yrTbbf7VJfS7jM\n", - "AQvtuk+xjo9RC1pZn0ivwzpGdVdh0V26q6r91qoJxx8suIq4uUC3aF1vKPHdXPwAsGR7MU3T2dlc\n", - "dmFivF72xuXsgqtS8MAzF3MiZ6lTS3y+dGkfz5O2nLlxR0b9OXVzMiv/pyrRLdRlOjbmLsDtlOdJ\n", - "kVxl6xqUNKPuOw7isfYPDnpWCpsfTPYfVBcgJ6E32kgH7Qmmy1SgdVKu5H5nt2hNN1zLCsGJp8dU\n", - "HZwzW2ypm5ldgJZIvpVU6c+cycFjNabv6JjduPEe3T/PGVuLvCYqmtFgjbJiGHjvNrqB3RNwagMH\n", - "5dhSfOcdz9QwNjaKj//054NsHggEAoFAIPBBo2lk8y2poq3o5zh76UlkalhdySfYgRNOGDs/mMPD\n", - "O3v8BGlvzkzYtM+rK07stTdhC6deJGK5WV2YMG4kU5Mt4LIyvf3NPshvTMtkYeqo5OuxsrlZndaU\n", - "nMlEYHtJ49DYJc1h1kFkQ8v1tEikdMv1tURvJBVVZ+3pcQKsnc7NmtJHpEcLZ+Y8cGbpaSCR63WN\n", - "YMrY3GBrTm7/9KyTsttVbZ6tTkWVe2hTYm25uDNf4SaFWlv/V8lyYBax1rYClalFjN4fVpd3KqAv\n", - "Ly/pv8t6T18SRjpksrHdi5WlrZ9YOmNBQ/y5rKpvU2xNLD7Sx4tENjclYlP9B4DNam7jGqlN26tz\n", - "w5u+mFK9vxGaRZKGE32aC8zIs9sNCr7S8A8AlJS8zW9g9bc6IptaTsoy5fozwyZLbJR1ntgbcank\n", - "V06qcbK+4n1yUsPVZylwo7NsZHvfE8zSw/ITPo7eoJKS5428y9ay0xrQwvPfAlZ6+3xcFxfzumLr\n", - "5+a2ElaprLahVtdWHxMjRVeo72ycbP4vLHj7zRLH+T9nlCg8TzkB76h0xNmzLmdR7s5Wim0ipW/W\n", - "cvuXl5y83KV7lwWRSI1lYnKdGnK4aZ/w+EubEpuXaU/UoIhOUrs2UvA2yVlcvZZD1sfO5/nP6++4\n", - "ykUcO+ZW2tn5vIbXN32fXlzLY/LUU+frZaPj+Xo3brxbL3vm4kUAbkEHgOmp3J+2J5RIkmZuMbef\n", - "pQ5aChpYU/L299oYkkXaSNkLJN1ga3aLLOGmrG2SLHNzbpEzSwyTzc3DwcFW1354BQDQ3+8WSctx\n", - "x3I2t+9nlW9WT+/uyHtCT9EJ3X29ud9XlvJ4zl25Uv/uwXye688+O1EvW1ZCf4n2rm4lbG+QnIj1\n", - "YzftyXdu385t7fZn8dxMHpNWfT7cuefW9xG1XLaR1Iqt+8FhD8qYVVJ6W8nn38mh/LuZWZepsLU4\n", - "NOR5V1k1fjc0zSK1tvz+LPjA0cG1dyabXYXAAeH1y1d/9I8CRwLf/Y//aXYVAgeES69dbnYVPtSI\n", - "g1TgieOH7042uwqBA8Lrb8RB6scF3/3PV5tdhcAB4dLrbzS7Ch9qNM21197ehkq3m+JNWXf1oR+w\n", - "JsazqXBs2MlhnUrALMBNsavqZqoSsdNIwQ1meSM2q6nY3FSAu2xYHdlccOWy19NwnVSkzR1YInO3\n", - "ud7aSFtns2qJeXNZe9HN82baZcJya5spm7sp1hSgWceooiTSjrKbR1dWzW3prtI6oVfdUv3s2lPS\n", - "bU+Pk3iNAM1k9zZtoxBhsKify6Uu+tvcnv7+EyiXO9HffwIlVWrv6fXfrRkpUc3+rPBbbt/Z71b3\n", - "At3f+ieRC2JJifLHju3UVuKAAla+BhoJmxZEwAEZ5pZixeCSEps5sKHzVK57Q/CAuiP62twtsal9\n", - "fLo/m6D7T3jSYhvjnh7/fUJV28DJdXNZR5nKdHmwVpnVb3HJibKf+MSLuT2aXLdNyO+nRHymV9aT\n", - "IROxtFPdDR3lMtrb29DZWa6TzdvJjeWuR69nS4vpw+T+LNKasOCN5VXv656U5+f6mrsHzFXK7m5z\n", - "y3FQgGml8Z5g6+3kgOlO+Z5gxOqhIXePzM7nNkySe0iSJqOmwI6i6jOxu/GUaj8xsdfc3K20xm2e\n", - "2p7U10e6Nzqe98iNt6EurRXqk+cuPpfr1ub3Wt/M/dhWIG0pva8FGwDuSku6n7KKvmU22Ja8s2wL\n", - "UFJdrCol/G7RVBXlCq1h/Xp21uefuS0r9LtRVfdvtb1zbWfA0NR93//eu55JyWMX3I3Zbi4gImoP\n", - "q/eqRlSBh+p6XCYKhtE8LPHt6po/V9Y21N1PQRSDJ7MLqEyE5V4l9G9tEAWgdWemCuuzB/PeJwMD\n", - "+Xr2POF92vaE8XEnzNt4Ne5ledxv3bxdL/nUp/Pz9Obtm369eXV30bPrWFd+njFVALVtYKuKDdUe\n", - "HBr2Oj3/sY8BAGZm3N1o7kmmERhthQOaLIFzCwUK9fbltTM/59SbSlde99Pq4uvu9efUptI8TlEW\n", - "i/ozgfb6IT1HlOm5n4wiQnu87Q/87DAKyF4IsnkgEAgEAoHAPtE0+YMDv2kgEAgEAoHAPrGX/EFT\n", - "DlKBQCAQCAQCRwHh2gsEAoFAIBDYJ+IgFQgEAoFAILBPNOUgJSIvi8g1EXlHRH6vGXUIPBmIyKSI\n", - "vCkil0Xkkpb1ich3RORtEfm2iPT8qOsEPnwQkb8WkSkR+T6V7Tm2IvIVXePXROSzzal1YD/YY6z/\n", - "SERu69q+LCKfo+9irA8pROSMiPyriPxARK6IyG9reaztx8SBH6REpAXAnwN4GcAEgF8UkY8edD0C\n", - "TwwJwGdSSi+klF7Ust8H8J2U0tMA/kX/Hzh8+BvkdcvYdWxFZALAzyOv8ZcB/IVw4sHAhx27jXUC\n", - "8Ke6tl9IKf0jEGN9BFAF8LsppWcA/BSA39Bncqztx0QzGv8igHdTSpMppSqAvwfwhSbUI/Dk8Ghk\n", - "w88C+Kp+/iqAnzvY6gQ+CKSU/h3Ao7kS9hrbLwD4WkqpmlKaBPAu8toPHALsMdbAzrUNxFgfaqSU\n", - "7qeU3tDPywDeAnAKsbYfG804SJ0CcIv+f1vLAkcDCcA/i8hrIvKrWjaQUrLkSFMABnb/08AhxF5j\n", - "O4y8tg2xzo8GfktEvicir5CrJ8b6iEBERgC8AOBVxNp+bDTjIBV6C0cbn0wpvQDgc8gm4k/xlynr\n", - "bcQcOIJ4jLGNcT/c+EsAowCeB3APwJ+8z29jrA8ZRKQC4B8A/E5K6SF/F2v7/dGMg9QdAGfo/2fQ\n", - "eLoNHGKklO7pvzMAvoFs8p0SkUEAEJEhANN7XyFwyLDX2D66zk9rWeCQIqU0nRQA/gruzomxPuQQ\n", - "kTbkQ9TfppS+qcWxth8TzThIvQZgXERGRKQdmbT2rSbUI/ABQ0TKItKlnzsBfBbA95HH98v6sy8D\n", - "+ObuVwgcQuw1tt8C8Asi0i4iowDGAVxqQv0CHxD0YWr4IvLaBmKsDzUkJ+R8BcDVlNKf0Vexth8T\n", - "B560OKW0JSK/CeCfALQAeCWl9NZB1yPwRDAA4BuaKLcVwN+llL4tIq8B+LqI/AqASQBfal4VA/uF\n", - "iHwNwKcB9IvILQB/AOCPscvYppSuisjXAVwFsAXg11OkUTg02GWs/xDAZ0TkeWQ3znUAvwbEWB8B\n", - "fBLALwF4U0Qua9lXEGv7sREpYgKBQCAQCAT2iR9r7YdAIBAIBAKB/w/iIBUIBAKBQCCwT8RBKhAI\n", - "BAKBQGCfiINUIBAIBAKBwD4RB6lAIBAIBAKBfSIOUoFAIBAIBAL7RBykAoFAIBAIBPaJOEgFAoFA\n", - "IBAI7BP/B0EEnTIvM42+AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHDCAYAAADvDfQIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvcuvbUly3veLyMy1z7m3urrZZDfJ5kMkRdrQA4YgyBY8\n8MwDAx4Y8MTQ0CNPPPc/Y8/9F1iwYcCGAUOQH5DtiWRYoiXwoRbJZndX1b3n7LUyIzyIyFzrVFfT\nNqF2ScZOgmTds89Ze61cmZERX3zxhbg7j/EYj/EYj/EYj/EYj/H/fujXfQOP8RiP8RiP8RiP8Rj/\nso6HI/UYj/EYj/EYj/EYj/HnHA9H6jEe4zEe4zEe4zEe4885Ho7UYzzGYzzGYzzGYzzGn3M8HKnH\neIzHeIzHeIzHeIw/53g4Uo/xGI/xGI/xGI/xGH/O8TNxpETk3xGRfyAi/4eI/Cc/i+94jMd4jMd4\njMd4jMf4uof889aREpEC/O/Avw38AfA/An/L3f/+P9cveozHeIzHeIzHeIzH+JrHzwKR+jeAf+ju\n/9jdD+A/B/69n8H3PMZjPMZjPMZjPMZjfK3jZ+FI/Qrwe5d//37+7DEe4zEe4zEe4zEe4/9Xo/4M\nrvl/mysUkUdfmsd4jMd4jMd4jMf4l2a4u3zVz38WjtQfAL92+fevEajUm/HJr/4y4ODO7dNPePrW\np4gIlpwtFQH5ynsGFSQ/M4FSCi7g6qC+/m6o4VWoQwJ7K4qU8zKGowju/uaaAKrK5I8VOf/bzDAz\ncKeYgXXMBgACiAPWKQaiDnb6jD46RcjvMYoGIKg2MHeGKIiBOcUtniF/391xd1T1hBHNY87Mvnqa\nVOMp3amtYGbrGef14rmMMQalNAB67/Rj0Hv8d/xePOMY8TzzGUScYZ2P3x988r2GW3ymqqjquuac\nv1orqlBboZVYflpj7lWcWjZKU0qJF1VU0Sq01vJ6hVrz7xBKKet/RQTJ+R5jYGb03nl9feV+P7gf\n8dnr/sK+xzOawb7vjDHy/pRSlaoFF8OK5zzminEDFVwlPif+rhRBAMUppaBVKQrzT0UdIZ7JGev7\nAI67cgzDfTB8xLyqX94hmAwKCl7XO8gr4yPeq4263pNqBRTF0dJBHMmVs5UNLXNdGyIKnmsRsO78\n4T/4nF/6nW8yhjG6r3UxhmMGNpzeWZ+5n2tUdMQ85jusValN0Cq4GvVWaK2tOQVDS65JE8bIfeiK\nmyKunPbrXL9y3VvusSIuU+PC2jNzD83fXft5xL3rBZvvvSOuGGOtYwCREn+rjhQw64y8HxFB3Ric\n+2Pen7vg1uFwlMYwWfPt1nFx9FZ4qoVSK9ris7YV6qaUm3C7Vd69f0LyXkoVWiuUorn2TxvVe0cR\n2vOGbcJte+bv/Rd/n7/+7/5lVJW2FZ6eNm7vb3Cxc4ax7zv7vocN6J2XDy8AfPz8I/eXnY8f7/z4\nR5/z2Y8+sH8cYYCBegBFGeQacMH7nFSFIRzHgU8DPGy+OPAa//awx733mEMbFAWR833NNQWa66oQ\n+3Kg+ZFqfKWIQhEUu6wLxdxRLfEzFXreyhiD0rZYgw6tFcZlf+utUG9pI1pFWvxhabBtjdtToxSn\nVE4bpRUbjlvYYQd6fqH1WLPHS6d32F9sffbyxZ1CY+zQX3deXzo+TcZwfvQHP+Ib3/0Um+eCCF/G\nJ0aeISKsdYnGmSHiaCHPj2n7GlKE50+feP7WM+35idu7DYDbU+Hd0y3/Nt7lPHfmfjIzxIX9OPh4\n3wF4/dELP/7+5+hQaq30MdZ+0iLr3UoVhvd1PhWpy6aApT1jfV8rTmtKa+NiS+J5anGQA3XiPVdd\nf1dqnGXuBmKMPv+u8Ho/wrZK2Nkf/9ELn//xHQporfzB//pDftr4WThS/xPwOyLyG8AfAv8B8Le+\n/Euf/tr3gNg8j/EYj/EYj/EYj/EY/6KMT7/zxKffeYLNKben/28dKXfvIvIfA/8lUID/7Ksr9uxE\ncIg4c3h47SKCqL7JEa5oV0p63zNCDU84PO0SF7pE8w4R8YnmzzOCVEftjCZx8Es0OSMgufw8PitU\nLWA9PnPF060VERTBXBkMikkE3BBIExpgmRlxO/PDQAUEA5G4t3kvCMxoRgAf2LD1fSBvotHr/4/o\nYUYd1795O6+gqF6eEaUUDXSpaETe+Z2ujltDZEQkIxEBzu8hUQDzQTzOjFok78kjCPXOKIme9Igu\nW2uMMRhutJbvpgkMYYjndxueEVSrupDD9Xx2IodX1C2ikJybcUZSvY+fmBcfxhBBcBiGX9ba/F1R\nZfgZ6ZZELsY44j0hIIqvKDEinbgvxZw3Ed3I6BQdic619f6FjqCYkc8+I/3LPbuDdOaSMgtU18Rw\nh1raiua1CkVG7AkX+jEWslQQfOQcjEE/BMt9YqaM0RndGMMZXRZStPaLCCo1o+N8J6r5b0eJPTWf\nXfFYv+NASsH8RGtEYmG5xb4NRDWf3ZXh4D4CvRMoGBNyjj19rgW52IxrpbIJIMJYG/VEPYq0sAV6\nzrMoSBG0KmKCXp4bCuqOFA1USM7vH92hBHqolBNFdsGGYcM5/KAfhrzG9x+lU7cCzfl4q+x3Z3u6\nAdBaw56EUjulDFq7rUi/tMJWN8rzRn1uPL+7cXve+Oa3P0FLoIFba0gLlGAup310ytYoe2Pfd/Q4\nOPI+n3Ao0OXgNgrv9YntnWFHro175zgG4zBsQHGNyQLcIiNQb4U+nDFszQ1z/aiiwxkTIpjvwQci\nhVLyfMhXUVVAHLOOKoGwlvhQizCRzjBJhq41FbtYRXAcR+Ja8z0dHZGCoIwxIssBOIb6hLwEqYVa\nJ7JitNaoVRE1tPhCxxgjbLgIVZTXY2ccaXNM6H1gHfpujDFRqji7rBuOozNbcgVlRQJ1TzvvImsu\nA1v0zAxI7JF5hklcLwxXnA8zM9C2FtunGKpCuWRw2q3l9WI2WiuQCPvM0rhXeu80GrdEzXfdaduG\n9ELvsb64omMaLyTsxon+1kSgXIiztCjHPtF25RhHnC+DmO+W+15LZBFyDlwKde17gxLvVnyg6ixz\nYoWtKmO977rQSLaO1q/O+szxs0CkcPe/DfztP+t3Vroq333hcph5pBqc8aW/KT9pDPMA16K4COaG\nL6ehBIxbC+h0h2Ya7sTydaYU8xAWPRdtOC9+plryf6V4bMqh69Ab+84wi8WWqa950ooTzgUajtLV\nQZNY+iQkLurpZob/5blxuDiZ+WfhKF5SFW8dJcMy/aeiP+FEXd+Daj2N+zz0AlfHuuAjl4pbOqgj\nrxcOQPuEdYi7h0MJekkFglBwE2w5pnO+E9k/Bq3G3/aZLu1CKdO41NzIMw0Vm9CGI2LUmPi8dskN\nHmkhkYLZnvfn6Sg4vYfDcKZ2Cu4Ds45IHIqS9+J6piCHGFVPR0Ly4WutZ9rZjPMMltjIrpnOONeg\nyLis/XhX81z3aRDS2Ihf8oUzzczcDxJrF8A75gYOVQutKSWNgSqUkimTPnLe8p2MeJ/PP1fpfeBe\nFmg8ukU6tEukp0zWn5kbKhUtEgZK7E2qJVJkkRKL9PR5KniuKbH5/i6pPZ+/Q6zl+VdS0nkvuB+R\nLhU5P/+S83TOEW9syEz7zUNhphrMDNFpV+YVDGmRajZ3tMkKoiAO/sPCsYvMTn7PcFpR+gTgzfGV\n2hUYIIdzN4d+4DO1hSFFaLdKl48cL+94/kb83e12o/eN7RYpPrfO9hR26Pn5idutIc8bZStstxv/\nyt/4LT75xjeotxpOoAi1KVLKOS8Wz1a3Qrkr+gLdWi61QcN48sHeDxxl2yIoADj2QX3ZqR8OjrvR\nD19rXyTSKN7PgG+luWcggkSaXIWap7d6OBJFgypwtdmlBG1BJA7DcKZkrbdMUkcKSwuXlbHWgHsE\nSvOjJkr3gbjE0h4s+kVrNTI+F1s7D/1W5z4+g9je97VOS7mhDmNYOK5zzl6PXGseaU+vDDttXTfD\ne9hwVb2k0Y3t3cYYY63xiM8z1ViEWgqDCDqD/pLPXWStd815ncZmuPH8/I7tXaFsjaenJ+qWjk1T\nntq2gtJS2sXO9WXnj3Hj9cPHdZZutVJvFS9Cq5V6sghQLahegv9L0BL2IVLlJe1TvaVBcY3t6oZp\n5Y7Tcu6LgkoBqWA9rjFttEYwphrBncugZArWulNaRSHnVaklbnRUX0HBTxs/E0fq/9HQQJYmOtD7\nSJ6Sxs/dTw/7wl+KDRDRRv4AADPBxJELp8GJDTq8o54Gc3ET8oWt77pyYQhj58kDKqw8cknekyTH\nSYqglhOulb7vmPU8xH0dGKK6IiUxR4ucB5RLGgTncp7GbVx5VkLGUOuUXYeBM5Ge+VFE55Nq9lXR\n+OLfXNCb+PmcvcmpquvAPLqD94V4zcttnxSmg7M2rZQTXch5GGMgJpj6Mvz7GDAGWykoihVOV8sG\nFUPkdt6PXQ9hGAWqxDRdn9MM+mGMLnTTdX/uEryo4zw0Zw5+OUbEwaiFhSqJCtqEIhF5Vjkdl2Nx\nrGrMDY5Wucxxj2vnPI9hLFBijDh0VHDbmNH0ekZTioYD3fvAF4p2opKQSGH+ndFx36l1o20FqZ1y\nm2t4C06XQyc4edNI+R2OPnj/rSeOboxxLCM5uoEJo0s66HEIzPkSMcwiCtZazqhcHcTiQNNEvebT\nicRh7MoYyjCDjPxt8p6IaLtoXU74dKrC2a3gJfmOyeXLzRAo8VvOo08ujhu18BP8SGdQpSbP5kSo\nTOKwj8NovZ41tDkNZ3inqC6+i4rj2sGh1IbvHZ3IoRs6FNGDPhSxQpkxy4j/0/dYo18cn3PsrwC8\ne/+e+75xeypsT5Wn543ylOu7KPqu8PRu4/b0Dm2V3/nXfwuA7akim0IZFKmUUhYvtVhBa3KZGDiN\nI/fa6ErvAqVQbxvPBEJwHEd8Z1W22xNju7F/2Pn4crC/TAKKBefM4juKyeIIujtFkh+lMaFlclzN\nKOhCUPT6jqSnAxPBuNayAkzUEQ9EU3TySs+9H+sugzGVhUqbG8Xi8FYKUpSWh6n4acMmB7SUeQ3P\nsyzO7+sws0CUpYDGgS3z71qlVcHGjqgGb3Pa+uPkBY4x8KETA8AHbO82vB9YIr9hj+dCPAMj1whs\ntM4PvxRwm+Pb5N0V6nPj3SfPvPvGe96/f2Z7irXfNkVqyf1V3+wnZcOPAzO41YaYM+7x7ne9UzbC\n00ge3DYNQ4mzfCLP43JN0bALus4ZX+/MLJwwM+ia7vUMKBmxXtKEVoUjbUJrbWI0AV64n9F/0Qia\nib8TdL2nosJpzL56fG2OlDFjwBhaCwE1nuTZ5VTAmsgg7DkyLRFJMtbwaEV9pWIkPc8J219Tduvf\n8/pckNNram+hLtMIx315B19ISUz487snbGvsfec4DvbX+8wyIh7pRSUWtvslks2oPPbNRLDOhz/v\nOMeEw/O7F9k94Wo4Nz1wcRb0rbPI2yj9JHKeMGagPU6dqTaBPgwsDrOZbo15qJzkQM13eH7fWuQB\n851GWIOgbWYcfaf6Ge24d7QEgbYIYZBlOgu25rYL+Z0nsXA6s4NJPj9TLbGOJlR8feaYB1HPdIGe\naFUL4yoyjdaZaigSyViRi4Pqg2n9XAxBw8HN53c/0SSR2NMqGo7FgrIiJWzDKBr3dnUIVrrLJzp2\n/l2tlaenjXYrlNapt/isFIlAwgQtBddEmACpBe3Q8932YRxHrFXrkgdiODh2WSellDCu4pQq8R0r\n8rw4HuaZbiyXzxTLlI97oaQncRZRCC4TkZs/Csggnh3cJor7k6jTyGvJZe+PTH1IDcfPrnMqEkUR\nJVPGE1lb96RprwCLe5VE20TLmdKbDng6K8UDIfFLMCDugUgVhSOMtgeYQU8kZwyjaMVt8PrFntMo\n1HGw941tVCjwNNEjCV9Ut0Z7t6GtrtRH2Qq6BSQZyLoi8xDqSaTPoh0RX6TpunVqL7ReqF05xkDc\nFhpDd3w36hOgN8rzbaViPv/TLzg+HjAMGYVidaXavIykLsS8liKg6fBLpk410uxhN/1cwz5A4lyI\nc256p1n0oSWeR1gZBXE5UXhOmxbvPjIIag5a15qG2Jti4dy5CyUDQoCmhVYbro6KEeeYv7n2dSwk\n6yaMw5Aa6OB+P22CjQEWdzgpEfMZGGFfu4adv4IM8zlMBFQoUpBqZzCYtkIlkH8RkCwI2t7dkKKU\nduP56R2tVZ5u8dntueWStUsq79xrYYcipbuLL4ey3SrPY+PYB6MrW1FKZnC6dfAoljBhzR1klsg8\nA/V0ohc07BkTe6JHZdn2wzuOvdlrM7tz9Ah+zSWCFan4+r6aGQenpdM9yfp6WQc/bXxtjtSEJDUP\nbx/5cshql3IeCrG4Tr6PcKa3jIkoJRpzcTxUJkJS1ub5KngfpkNib35fNTzwubjn71V3vOTOuqQT\nsICAt5tg1tifKuM1PfO9x6FuASWrsiIsoTBshFH1mdyY0PeAfEbDk9OR95K59/l5XOt0smycz3bl\nEc2fLVhYJKvtyO8MGF1FcBloOVizOlNGEfIhopzZDQtulZOQ7ZnE04RoXTidugvqdjU45qeRqjVS\nTEan6um0xUXDkLtElcf1+U5HyjAbl3RivPvb7UYpnZfXOyK+UIBtC36JFKc2R8XPNVqjkmuuQ0PW\nBtYW1WXxD1nOHhcnXpLP5+mszQnwdKLMNI1Sh3FeC0amXskUXz6Hg1LwTIFFFizXsCpPz4Xb06De\nDuoTK8Jy38N56BvaCM7d2k8WlWgSKc/j6LjF84/uK8iBSIFcX5wIlBro6GFjRfOqhZXiFgH0J9bi\ndMivB8OMtCN40by709BGEKWJ9nny/OLzyYu6oq5j8rJU2bYtuVW5d/JekXSYck2WVk9OXToWNjMM\nopS2r+ewTDMhsW9vz/MXnaPHB2MMWlN8nMja2IPjWbQixZcD6kPo5uhomAeiKj2u+eGLAz06rR+8\n54n2JLzssYifPNKcsQ4drWmvCMQkniH5nGaUFpVZpbRYY93BD4LXuB6P0oT2JNRubCi9Occ+UbeO\nF4sKqabIcOrcw+UTXj47ePnsBT8MHx1L1Nq8o+bUWgJRrn7yDmsJ50udkkGyTpQmg48qGqnKy31W\nPCtSR5roS2Ivg6BZ7WYua19UFQ4bgV5lUDApBsF/NKwYZdEGpuNWkh4QyL2qIukMeg/nxefed0dm\ncDViXbZS2MV4ujUkA4x9HCsNDB7zNFFz1UT03gIDc6hkFSeB3EUFfM5pKcuRKqJspeJZJbrVRt02\naj2dyHl1Q9lKrJF+CQAhqp6nw+17pM7qdnHc74VahVZa7Ofc3227Bdrms+owvine03TQTvR62uEo\nG87zR3MdT7SOHlWXGk65uaxzxr3gwygFbAR4UcotP9OotK9JO6gXuoXUdV8/bXxtjlQrX1qMHrns\nMXpG/XJGvA61Xg5Q8TOiy3TZoGRUPpZxjySYL69+pqOANwtwohNzoZpNaYJc+CqU3MCaC1hFULnF\nBic5DTow2ylSKCq8225YXnNrB/djZ4wD6wPHllMQ8GaGkZwQJeQGTi9nbv51zFxQpnEhvMdnp9Nh\nFpGYlgmf5zPbCVOb+OmEZRl+74OqlUKj93vcTxsUFWwUCreIavP552FYawUTXA5mDiMCztgw4URt\njBKHUNHzwHEi6mOcKFvFcRkYyr6/sm1P8Zk5eEgfmBpycYZVBDeLyO5LCGetjdY2DKNuZUk8xGeV\nWoXaCqUJWmzl0fexU0ShOIYyfCCTd0Q833DBPInc02MmDuHRB6JgUmjUxYWZEdbhnvIHUCYCOhwt\ntyCmJgLTEyGS0mKdyIGIZdQWn717fub5G1BuO9vN8dpXCXT1J7rVSDn0lAZIw/86DsbRGMO5706/\nXxwbS4e7BMKmUi/cwYzyhSDcXtBPM6OWGcjEez6dpTis1SU5TuVE26XRbSTn0WKdTH9+XePiqMrb\ng386aO6ClEopZ6BUt8ZgZAo8eWu5FscYeTDPIo8L4itxz/HWOpepiYN7HvhVmWjk8CDvwkBGotOT\n4Hx09JZRoCuYU7YZXCrCjWIF7uHgzEjfzGLPWwQSB8YxkTDAVBjqCzWfjv0hA6nx/a4F3415Ch2j\nZ+AoOR/hOAAcDDrO0I40p+AcnPakHGCjBCpnit5PIjqfCr0KXQ52jP6hL4eheqHURJVEULHgZgIq\nAykj0mFyC86KBootJjhGLRV1wf1gnrOqy5sNuyeyAgzVgo/4uXGAtoXohwOUacCUCbD0ascY4Uhr\nCb6TD/aUd2jHoLqF09ui6OEKYKjEFLvNsyZXvobEwt0OSvGIndJe1hbOwSClF1DGfa79RINUktN4\nSdUxzzYLFJQzczF/Twi0r4rmOsh3WBrP2yfcSsim1Fpp6WS3IlStmDpVJg80r5nFFcE77bRSGYk6\nHXpgW2UUxwZ0GwuxFYmAL5zQuXfnxCU6pWHXuhk2oVqJ9ew4XgbCE5KujFvI8TiGlxoBfFJvXCEo\nAJH6FNX1fueLqipQs/hLzjlz/bNdpT8br3qMx3iMx3iMx3iMx3iMnzq+NkRqes2Ll1NIGHMiT2fU\nWkqJqI4QENQrOsXk/xS8nKgKxPWiZP5anXOON/92XfCnSAmu0QxvzVeaUDKXG4mFWaqeaJVOJGbg\nloKB6X3XBmihd8eKIMnfAVY5/4qyxVdUPiszQuRu5oon8SpRFzLSclsfKRG9zxSHE/DuSkVpeORR\nej/ivy9Vd0IgM1H1AvV58i8KoztbCieOMShbwKNiJ+oX99wuyJ9kWisE7UR8kfTXPWe0dH0v45g8\nCMnUVvBzANi2jExjIbvZStG42ELA3IVKQVt8UWsFT+j/dmuAvRG5nGJ1rdVVZQbBHzKiKmtP0dWZ\ntx96ol4igmkgQ2UuKifI5BJkWndfpdWUQNKCJzOZGyfEbe64jSDhXhBJ7/cQBpSCl3geTcJxee+U\nZ4l19xSoqmblZaVys8rLOLBm3E1XtZCZ0dnZD6Ufkb5ehHIplBoSD1I0IsuZUq4p7aGyEGVZvCtS\nBFFWKn6lS/O9G4EeOlFxNNeDmuFZretLwgSwyWuydQ9Xvl7YlZkaNFQKtbb8bHJkoGfKeSVibSy0\nKFflhcsWkXzwe4/gY07oQRxxpW6Kq9HtiBRtvl8Xz/mbKdKTs1KGYDtYFUzXq0cGVCRK4p20C4lY\n1OBxPd0qWxNut8a2xfNpjVzxFNVsra13MV47hxxs7Qkkfuee1WA2Bvf7Qb+/YuPgGAeLyjmMfrxg\n4xXRjqpT6ljIsWukfTkcGT3ShEfyfY4D9cG7XilmdBX6a8532h5GoEGiY6FHk8ZRN43qZcYijWtJ\n/o8Hv0ou72wWQlzpHIu2YLbQ+qolbVJ83zgM11jHQYWThbgWCVRZM93mw5dw6Md98Fw3ms4z66zm\njWfM6l+VZc/jPgN5V1eKVBSjlUCAXIz7sbNtFczpFzHlfJKwIxfO5PrE48wTEaRDVV3z4wZ122It\nqSK1Up/CLpQiUWRQtiBXq6BtiiYXvECT+MgvBQMNpZbG3Q9GK8ihyw5LjUpQkn/EOLkpJxc5+FXu\nUyYl/tvMUI81UOQnJXzyzcTvrUruwOAmCKlyVmwuKovGmRaI0zl3s4JRUGo9eVHD/I0EyleNr69q\nbxKSlxGcuerLgZb/32VyfwJODBQ8HYJMFcl0Pq7K5SGmk9d3vuxIXV9M5IPnwT6WblJrjYospfF5\n0IdcQxjWNstuI2GXhjeN31rkkfYoNbhBkSGcaagzxWdmqZXEurd5rxK/dOFDnb/jZC7+cqi85YRF\nBdtZfGDLOSS5EOfsKC4WB490dHPqdm62UsFN2Ycx9hEHLlHeu3LeKFBW7nq+tzF6OjcXlXXOUvVl\n/C58luMINdzQbVHux77WhbUWThLJzdCZypgZXuGpVtzkVFVe87atFNQbdfgSB/A0FLZ4R3HfwwZI\nD42Vq7r2VGBWItVIlMMDqDmuyU/AGbaf91oVGRqVOURqxZYqcXABRgmYXseZTqEGD0Bq3P9QaJ/k\nMz47ehuUTWhPTxz7K++3WQ0ncD+4VePjkVzARQzvHH3gVlGxpCJcHZUoEwbH6cshEo0D8TrFKwUd\nC5eZbjlPKhAKXQZTK0eWmjH05CeKFEwbPk7lY1RiLTmISmq6nY5UpKgyNVzrKhIg7zwMqSAjyLfr\noPVLtwCrbwKMyCQazoHoQRUYnM5LSDEMuh2R5pvbSyNlGGssKj9nykxMkCMrf2sEkivNPKDvI6r3\naggETAeM4txujef3G0/vn7k9b9R0pLpPbmDnOA6qFmSbB7TgvnPUIFsPN15fw6sZx0DG4L5/5Dhe\nsytA5JOO45XRP9LHKyIWnRJQZtGMSUg8BEE/uCnecv/sA2Rw7MLtHRQXpm7d2MOZKoRGUZnkdViV\nchFc9pi7dIbVIiXpEpzT4Mr5+jst88wIWzJtbASTRskqQDe/2F+PKu8xgv+mrPUsCnW7pU5PWdfJ\nl49XImVa9K1UQ9qLIhLONCwHrErl6KG9pVopYqtA4XCnFGG/3+mjYyacRT2K+Z7cxS87AhnbWaaT\nRbGeBHqgtLAVZauUWkPOI/+u1KTJuGFauCrKUwulBs/TrSOiS1FcgP04omJZlOM4aLdURPdInR/7\njtmdgq9qZREyaMnz26dzkyrzea7H+5rfRDIhloGPAOsKoKQdwUr89xtZjCgWkNSsmkVrJStxr0DA\ntDWn0/XTx9fmSClZMTc5Bj7C4qiwqptyLCfIJ53BV2D6xnEgCeYXEACN/PIsvJvf9+bQ9oi2xzr1\nz8VpYyz9IAAtjqQTULVQ5QwhI9KG2Ccp6DivYxcnyT0FGXPjT60n1eCJHX0d3uFkXCQdLs6Rz7m5\nzNFZZZJzpnkwiSWykY6Zg079Hikx//mM01GvLQl+JSJggHoLMr1I4R1xHs7qu/0+OPaoxpsI0szh\nu8UBUaxEFHrRb/EsHpA8aPPIXe8JDxG1qAIai9jYp45KiwMhuBKT4Bz3Lh4G4lquuwodVE9S5TQY\nHpvLBe73F/bRF+H0sDuzQMKNILDPMupEPobYOpRNghsEUc1iRXA0NMRcg79FrEnPMuZZhSl1RlEa\nxpmMpnXU+YkzAAAgAElEQVTqPoW2y+3WOEaHWnj/7hmpX8Q120fqDUYx3j3Bz33rPR/+9PN8xOC/\nffL8bW77O/70Bx/Q5AHtgBDVl1GFdzq8fQSHq9bQlpIyjW9E0FoSGU6+45TBsKzGmRWGkvMc796j\nKCKdiDiIZvCjQSr2GUleA4WxAoiiuhzaqz2YyGKpgcZOdkroCnXclVLL4grGZ1eU1JYzNlequxDV\nVFtqA53v0PyI96jJX5ker4VzfRpoXYfJcRwMVbQl4oycshjiITKKol3ociIk2iqyCTRo7yra6iIB\nQ/CyzAJlOXSExECu/d4N8yPEb5EzELrv7PcP9PHCMXb6fkRlFXD0l1jPCi7JI1Mn/ZpEkxWZ+myj\nU2Z7FYS+G3oroRXmY4HKQwfsRvVC0qPPvShQtIVTPMUb5ztEMpg+D75TyNVij0102PqqSlUNmRYb\nEdgGcrTUM881lI7S5DG2WwtZiZbBQlNKOhJVLR3BcNrLVZMv1xEQApsX+70fO/0IDa5+dHoXerax\nuu9HSgr0xZMtK4KK9lehs3Yi/nNcpRqAVWQBoF6w3pfD6jOwyf+uTYNrJgNPZ2rOd20NfCx+2xxV\nFFPB+oEx2LZtSbSM0c5nHkbfTy7bRIvDidGVPZnDsRDcvHAt1z1zXiPecdr2lRmYiJIvX8KTJ7xi\nMdU1D6oWLWsIsr3o+d4uahI/dXytVXu4f8mxSW/UczHMg32iMm4pLHmWro7LE54liqfhG2OgpZ4w\n4jS4+jaFdIx+EYY1ZJadH51DCaEioGZlWih/BxF1LqupN/WmQvBLL332f4uDJdEKn2hSeOjb7ewd\ndPSOjZGl9CC8JfHOKHym9d4gK9MB9FiU6OloWFY94IUpCDkrX7Q6MChVKW1Dqi0C7O25cbuNs7dd\nAffUg7oP7q/Ovh9hII5Q7Z33ajY3RiH06qbHEVHLdKRm6gVCXyykEXyhGTOiU42oKErWw6i2mYZL\nOFhLRKe1ljfrSfWs5Jy9+uY1xaNaxz3YnmX6WEekgFafpnEaIdFI2cS1IyKfJfYQ92Aash3Wcz1N\n405EgkboiyG+tHTCWZNATYqlZk589vz+HYbTJIosfuk73+TdU0SCP/zsA9w2nj79hP34nE8/eRf9\n0IA/+vBDuCnehG+/+zlefrTz+T1RidERNmbZ/Vy3zFmVU6E+1sBEhvM5MsjQJKTPd39NlwV6lAd7\nOrPi0fly4AuNg4g2RWpA9nqmU6ajt+5vOcknAlxS2kDSUb1C/KwuCjUrhK9ILuf3vwlcRqzPGuvH\nBuAp4eEyC4mgpbM8UbdWMd+j16B7CJcyD3bB6oAyUKlx+vdz7Vck229GWjwr1ak3pd4UeXJkc6zY\nWhciTh/Qj0GRwd3u9GP2jCvLBpnBy2tfc7q/fGTcP+I64hp9x7IIwRh5fQ2NMoxSLSrrANOCWcdG\nR4ZSRsGmgjeOPusSIa7i4UARRRVFBXZHbKSj7WvdhDiuLcRyvpxh++mnfinlg4d20FYroX5+PYSj\ngi7A5CyNv7zwkwqhgfjMFLRUpDa2p0ppghWnbXkmZN/DWmdV3GXPeIgdj2EIDbNjZkPxTnYPMPbd\nGF05FrrveI/MhGTKa3a0mHZvdLlQP87nn87FyCINVV1O/RgHhUJ/zcKZ2s65KY1SK7U4yo7qxpZI\nZtUoBhAtiyaz77Fu7swOF4rqQC8dH6oKXUPcUrctQIMMsGIN2kXS5YJGSkq0XPblm+xMosbhUI63\nRWuF7DigeZZYft8sZAgkLxzfaZ9lzetpV45c+05fjQ6/enyNgpzCG0hqbh7CyDpzMlipl9OIs8rZ\n57+jlQvrZ0AcznIKecFlsTFz6ef3X9kp7sFjCtTnRI9chDHC5LeiiIzT413vMvkCnCrrUWWTzWqH\nRZntvM0qIPFd5qEZM1GXUoTjgOPIa1hfc7ZQA59phfNgR4I7ZTPVViDM1vn87lDNEgo/K4mqChRB\nakSc7baht5jD21OhbY1Swni0Tde7iBYWzn437ofR750jhdmCDjBCGTurB49ZOS6wGtQC4n6iBxmh\nSr6DKfZ4fZcQEXi5qOGJG+IlUadIG9+yAuUqeTGvs1AkG2Cz3JhVfg2kiGogB77SQWkUMIaGki6m\nWKJss9S3ywids0jQRDphOucWWmeqkurH53qNVxIIphblXRNatgmxCtIaRYWNAmo8PX0CwHf5Fdpt\n4xvf/hZ/8sU/48NnO9/5+V8B4PP7Kzvwxf4Z7BUtA9HZZBVkP6jeQoDysq9iTUoqAmeF06QIZem/\nyFXr6kQWQFLAMA7jiYwiErpRPpKfcj67e3JLhDhUviI9fw0Wp4MHgUJJGvdIDZ3vvfedUmfUbvxk\nQ/eJdIT68zq8x2AcB9YdK4qrYNP4t0wraqTgTX2dC1IcF0s+lSFyVuwWFwrhkIbJOFbKPSTXAl0x\nnFoaiz/UnO39Rr1VukTqaAmH5gEzksfThyPHeRCMo9PvnY/3nbF37vdI3437C85BtAcRSnW6RNNi\nk0DOh70wfCxkZgay1geaciHDO0Jhy/04ZORBY6AVq8qY1YRa8I8Og1UtOVuWTP6piF6qqKcDHrj1\ntUr5uq/FIzCZkdw8Emzk70kQAsJh7Osa8TyhkSblRCyqVDRRjvZU0VtoPwFsSy4nr+PnmTAXp1uB\nbHWz7/d8vrB3wwduGYjNxWwe6uSD1PJTjrHnuiicDX0hDegl1SjzR1kJeX4WtAJHTDnqgWxKS2ep\ntVsIeBaoJZDx+XdjDPSI1ODwEEqdac/JhRNndXi48tyKwFBFimOtcEzlfon9OitFtciS7Jmgg7tn\ns/TBWYX+ZS0rW/bEe+htRZA3MBM0W5GVGg6nx5dHij6rC6cDNQWVwwGdXE37FxeRMpme9vmzqScR\nUOYZZc4FEw4OJ7eH9Ckmj8QtYfT0vieR9IrSrD8M47Rg4aErgg6CWnJVLPhOZ7ATSMNSXFUWf0pT\ngt7H1As57/3LnKWCcMobszx6Zy6iibpUnp+f2Z6M4zg47n2l0s7Ip0fkrqf3/abMVko6dFFeHj88\nAOOwJJObnXBvDfViVUObUbdBSzHHVp26OVurbFuhtlSRJsQr603Z7p26Q28bL2kZ+mForSDKmJyj\nOafHWNIgUwpoAhiltdCRyjRkaXURGafQ4iAjGB8r1aKtQRk4jkhD5exvVoqc6yblqyfh37yDwLCB\nSRjTa/+vIKf6Onx7pgMOv+P0QHLMQ5rAjLGI0yTLLxA3zKcfBRotajx5ZFJOgnNRxQSeUWSD9nT2\n+CqSEWATzA7e3Sott/Sv/dJf5Bd/4Xt8fv8BHz9+n5fjhdreAfAbv/wX+f3v/yEf/RXnoAOexP+m\nN744PkAPdWeTsaB4IVJoofguyxACy4nSSQw3u/AVU8cMAlkTXVGpa2EgaJJsY72ehR1LiboaPuTs\n1DCCEzl7jb1BgfNu4bL/4HL9UIsnlYxFz5T3bH+EB4+tHxaKzLE40smHu2fgkXt47Bal7yVTTupI\nm3ZngGahjIJXXzpDepP4GMWL4ONYLZFENXh1mVKz0ZmCZ+2ppQBoGP2p+wUwisBxBxv03gih3Hi+\nfd/pLwd977y8vMDh9CMO9m4DEaPe4vCxlwPT2erEoYRWVLcDP5TSNNjHOWz35LXEoTmFNRsjStg9\nDrlDbQWtZSSod0vkfJy2OpDKKJeXhRSmfVNhdI0uAyLhiOczhrhjBJgqQlUYub4P9yxaCZfJ1RdK\nj0sIWQ4LxKkp7Ta1m3wFCVWDjLwlEbuIUlvouaGh2bX4lSPPMQ2bXlV4fo5A6DgGPgZF4LAR6f98\nhkL03yylhJN56RU67MDGichMbs9a32gY1zyPbLBaGdVaEQwthY5Hf0NmoHAQGoI35kabNjP61gWK\npDWKZpZzlnv/6CNoCuonGu07USTQObL1lo1jrSmRCF59nGgegNs4z0/3oEHIebaNkRxWc6C+ATEU\nh5bkdvelOemWIp8m2dv1JJTXSa5nalQK3eY5G4UNf9b4sxlUj/EYj/EYj/EYj/EYj/FTx9ea2nOX\npVQbmb6slnJb1XEwOS2aCsysdAmQEvBnXnvYsVpMuMDh0OxtRRiw0mDBgQul3olkuYTXKghVBB/9\nJKLXaCEBybNJ+HRec6Yf3INE+2WC3PSwlbPKxDKPPe8p/l7WPGktWVq9cbt1Xl8iSjyOgDz7uCcB\nUC9zBtiJOEW/vJOIH/cyIhefcKevMvdKKwWtoJtRm7Kl8ORWswdVU7ZWKA1us6WHK/2AvQplg10M\n8Yi+9j2I6OrCwQAThp/iesrsV2WUpiloGFFLUaWaw0UZfo4ugiY0HY1mEwEbxiAUrMcYmfa4oBQT\nicSTq3ZWyRkpTWC8WTPRWNejnBthH32ha+adITvmB6A0kdVfbK7TjZpVqh5NdRN26xqRrGTKz+Ta\n9zGTR9VpT7OfWly04rx/agzfqd94zz4+0on5fnoufPOT93z6jXeYvnC8/i5f/OhHAHzn29/hu994\n4fe/+EP2YYje+PDhIwDP5ZsJZRvmiSxM1IlQjA60QYMLMTN02b4G0dlYfqVVqBpd2QlYTuREnVRL\nFkGcqWVWirkRpd/Z5X62tsnfEc+6LIsU3Sx5J38WQeSX03aTKhCRuxRJ+QXWe+x9x8bB6BKSHrn1\ni58IGRa2yCaBrgr0kBKhEiKTs+ckSukCNpBNEqnMaL6USPl6dkyQ2JcAaopLpsHEeGoFmRIHrVI0\nVJqrOiohBgxJWxiaTCbHbGfMtjN753gNZLvvO/b6ypgtgHC8gu4HWg5KDUQ81u/A9KBs0eLHcKw4\nkv0E5eZUNmrZKKWy9zuuwbsrOoACVqLY4mboRAAPxe8Gd0dvFXoPZXVCIDIQh47Zjo1ILwKYCgXF\nrUL201ttfswT3TOkhR1fGzFVyCMlkjyouQ/TZqCh4l43QRMo9aJI03w/DiboSJS+BTLm5QnjCIR/\npi7NuN/vaHbCOMag5Jy2JogpvSmtCP2S2htpd/bjoEhUnc7ijaMfmJUk0+uF4jHtd4o3C2itRGFG\ndicQKKUyMgPS3dh72OF3emOrleHg0oI0PrdbDTFOzezM7E8YkzPoY2BEVug+Dl5TPdST5xY2qwfX\nbgKAHskFyU8xW8281WUJfBbAiq5MTIi3OlNwmxFoNYSpMgeGUbZZwDVTxVG8EOT2U2Jl3ktNekzw\nqiSlFEBrYVxaun3V+PrI5tmZ/uRKaJA1NfRnRASbzVlVkxw+oXzOXLJ78jvihZULqVWRUIYWWSmz\ntw5NQHI6eRt5sA+LFiUVTUj5QjY7zlRCd5Ai9KnwqiPSaz3ukzHe8iuSr+TmjP66XvCpwDwotORD\nTIcooPuqUVpMrSu10/fB6+vOaw8Ctk0INK+JTOg/DmrMlrEhqxu1Rk7NLfo+QeS8/anFQeCOS1la\nURQJSYitUZpw2yo1G1seNmimPB0bH15fUI0SeUiHN6uazJxRZS2+KHFVbERLgbZtl802q8TCMfVs\nCD3/7rCB9qkvczaCCUh8GnnhGAdT+8E9ZCv6iMoXEYmeX/FpOOpimA+699WnyvzA6BjGvXcsoeq4\nF2I+i8T9jj2c4LWJC1BBSqQRq9LngaGK1WgGjMeTiMyGrw4eufuyNVR9dY8ZOPcm/MK7b/Ptd+94\n/67x+YcfA/B7f/KHDHf+2m/+TX7xV36Tv/ILf8zv/pP/BYDv/+BP+cVPfoHjU+H7f/wZ3/35X+Cf\n/qMfAPCiO7db5bPjTik7dVwc0ExbqMzgZm21WG/X5tvANC9ONK0tni125kvI51uaQDWDkMWX7JF+\n12h0a97X30Xpvod6c/qW0Uann+8/yABZNnLKCkxupLszjoD+V1psDMwqdhSwnkULa2Wse5OSKeF5\n0HimiwqIS7RNmp+F6kVYiTE5m2cPxpg7iwKDVHMHYHNcd9idIluQ0afjVjrSCtIUahSbzGfovaNe\n6RVMBnYYx2umoO/BXbS70Y9Xxm5nCxzbERlIHZSnQpNwluOBk/czIk1VdEe8Lm4dHm2cqE7dhN41\nmlxD9NUbEs9TFJNKnbb9udDvhnTw1yOCz6n6Pu60WeEoDRGj54EmpiEpwAjeoXVmgiViyMFQ0CPS\nplM1Ys6tUDBqBJGZahoeznd5qtStsN0Ks5die9pQUcbRGa2wycbId9jNscPQNhss2+rEMQZUSyfS\nnRf2RRrP0qXgu70L/tsgPN42BB9wzxSWD+GkFUafxMk7FSF18PL5PZoUDzfG2GN9rfZQFgFGBjSl\nyOn0uXOMQRVl2J1uddFW7vsXVKnpZBS69y/tmUxxHx6dO9J8jTHiTMq9V2s9U2bEj4PvFcHbWSEc\n59Ks5lMtcf4RZ3eRismRPUyhJad4JKnTJ19GYp6B1YR+Szv6ZW1J977aJMHJxY0uDn928u5rc6SG\nAy40PQlks1Hh0uG4tEPQRIAwC+RkGqmIv6Isu0TudooLklyUEVbujCaYtKpLtDr6SQ7NSo6p/xHl\npLkQR+jldDdsHMitLZ7IOPaIGmaU5n5yby7Evdmgcw6zHk1StRHfdDogkC00alQKStFV1Xe0Tq1K\n7S2aJPfBsU/i5CRl1kACRjoMzHYXacBTcLBQ6COIpfu+o3enPd0odQuHaPKaWqW0iI7qVii3syHq\nTRqlbIhV9KUhesdtVj7cMXH8Pug9WkzU+nTOv2TO24WpLRJzFU6ymaFG8GQ8EbDuMODej+SryYpm\nR1aDWB+47Gxyasl4FUaW1WrNyjM/7yOWSLQlGGNwZHucvb/Qe+ewwTGOdLJOHoxZDwKqjeTynTl4\nkYp50IZUo9famZ/PggGcMSJwmByFkRGgFXDplFLZsub8SZUff/EZf/kv/DrfeXqm3Z1f/d4vAfDD\nly94/eEr3/7tn+Mv/cbfYKuv/PXf+dcA+O//zn/HDz6+oO/f8yf/5//GL373U37rl34ZgN/9h/+U\n509/gdePr9TWsCMqWmFq/AiSDW9BVtVWjChnRkYSy+dPwzgZjrYNc6fJRDqCbB7rX4KUfSmmmPwP\nJ5HLiRqP0+guHoXZ+jycrrjHcJTP1iNmUcItHvPrF0OPAcdALSr6QlR3EnVlCfNdK4Bz4WRgGGuI\nopTJgdwJBF4KduzLWQbQRCJnz0DRU+/KhDjYbzVEFfM5IB1FdbxaVHNSVsQ+hlMr+D0CrON+sB+T\nI9U5Pt7pHzpuPcr2VwGKIWpUBB2JxK3XGDIpvgjCgfycgrM3tnqj6kbVQrltjGzldBx3UOH+0QOR\n2HzRQ/uxU55B4kBgF8eyQKUcW/SvPKI9UuynuW6CeO4W6NBVIsY0+a8o3VKjKkv2xXsGm7mv/LT7\n892WuvH0vCHNFnqkWrN4YTrhg2sFtHtwKlVnYJ5ORlbezSC++KV/X95zKaHjJgV8NokWUGswztY9\nE41zHxzuCCVAhaL0Pha4UGuFY1DEOTT2xXTsZFZbazZ/V2FM6ZOxU3ulDMcPpxz1bI/kTrXsUSmS\nPVWn7Tv36byHq5yIZyGVSGHMPjdz12jIwJiFhMSV+B+cyzxrbbzRGBs9NBHFC7OoJO5kOoVhj0XO\nqkTVtpyn2+0JVRbKd+oJnpXX86yM6/wksn0dX6MgZww/oaXsRH5OxDW1F2WOvkQ75+TUkgrHXxbl\ngmwCHKz/WqPkeGpqmDt1wsHpxc6y2wBiwpkyt3SsEuYjhOtUg2T98vG+tHTEswx/ksWtw4XE/Ebu\nwOUkmzMdvPCiHVtKxCzk2ZnqsPPll+cbbavU7tz3Tt13xi2eYTpWZuBHVP4MGWuKJO9J0pQGPJyC\nfn3w+npne2rcbjk9EwkoFhUOxZEG1LPxtGqllhvb9sTTu/fU8gUioV1kDIYbfQy0wdYqt/I+/06Z\nZNmIYGAsIwXix0pB1lHCgSIVojU0xfbRMZHVo64QHcXLAC1BTuxTfC3/J6Cf8YbIKQ4d4egH9/2V\no3eOhL73o3NPp8oZqfBNPkMilQ5p4ph459sRBNJAWvJQGGloCqt553z9tdQ3m7iWQk0DVgV+/ue+\nwff/4A/41d/+S8jLwa/+0q8C8Nd++9d5/eHn+I8H33y6MXrjez8fTta//2/9Br/7e/+I//Z//m/4\nex/+Ln/6+7/PX/3NfxWAH/7+B17v2dTZwW4wPs5S9QzQNYGRUi7Q+InofTmNPg8h5KIFNZ3IqtRW\nl0PrrqekiWvs+UEa4lOaIK592oe5rq+l8CWVqK8BVHxWAl1IyRB1FkrgYyS6pVQNgcSTsJ7PZYnU\ncpakjx6HkpYaWmLDz4qJKtgRxla85BfOB4lFJ1gcpnqmG+YUgKdEii1yt2T/NZQoiuCsBDSD+94Z\nqdtzHIMsFOPjhzvHxx17CWmFUsqpdSYCpkiLAMW6MwEnVUFKZXjIJhQtVL1R9Tke8fbMu+dbpk0c\n18GYxPB+MBRuT5WX10G/HwvJK82RW8F3gZlKTS0lF8uKtXBSh1+q9ggCtiKZHzrRQR8dbdFTz0zD\npZqvf8z+ic6xpyTFJIZ7pNT0ONhGoW1l2fbgH5/vf987Ps+EBmWreW/zd871OJ2oSQ5fApjasHk/\nqtTWVoZmjCNsQNG0+7qQM89gMzIIwjgGrdblZDKCTG4+VrC40uW1ZMVlCPmeExPrcKZt55l7ZCBc\nLZDBqSvWTZY0guex4sNSGuMs+vF85qJ62oi8l9lQeq31S3CyzvyZuuPtrapEQIcU3Ps6u6e4c8nq\nnsMG1U7ifCmNp6cnJPX+ZmVeU41iqPzuIN6fX/hV9WrX8fWl9noIjc30nctb4TB5YygDxQklmJR4\nn4YzTEjCuwYiy/u2vG4pWTFntpTUNcKRpfg6FwKwWsqgE3o8BUCD5xEyAtaPqBqbSKWPEBjQ0GkZ\nfQ+kizx4GSuCK1Jpeci2Flli8z3LfJWikUqrZep25GJAGbOyoygtNTpq7Wy1ReUicL/f2boxutFr\npMPulwKkTLCHIyvxe+ViiI/dub8c0XrigrohBRVna6k0XqDW2FBbfUKlUkqj1cqnn5x55sKG2Bf4\neEE8DPi2xNAUoWFCtrWwtYj7YRxHQ/uEeFlp1lJ39teQkAxfWkPwjzD8s81AlIEbTAE9d+oI51JL\npD/mWrMR7/joRyBQdnDMlIkR2jN+pPjhiR6IKDWRLZFoZzIrh+YaVgWb3CMpq5qkuwXSqqkHX3QZ\naZFATZoWilXGPvjk/XPOzQe+98vfpQ3lB3/yGX/hO7/O68e4n9/45q/z/uffMz688PEHP+TdN7+F\nfRYLtfzir/EXv/tX+JXf/psUlL/7d/4r7F04vN/69sYXL4Vv8HN89tkXHGXwfLvl8wf6IbYTul+h\ncH7OtwAljdhFUmJCGxLRndbCVLZut0rdNK+T1a6z7Y5HCsc0dv54w8vQFZhIprFD9G+m2UFqRM0h\nR8IbYxv/k1zGIF7mhXXpMXW3vO6CqtPJi8pNSyQ3bygO0p6Hg8oqC0fGSl+0p9kyNT9a4m3QpEbq\nc6HtmfawqPKLgzL3PiU0fThbdcy/G0c0o74P536/M16N/pIH4Od7SJCMaMhbi0ObaAWI5l4plgKM\nGdjaiDVaoJSNrRXadltyG9vTjedti84NNSoXDwtEqsoTHz9+pPtOa4W9dCYm18uUkIj2OGpCW9FJ\nCna6Rbp9nI60WuhZSSlZgQsn0y2roomANhqITGS4ACWr4yS7SCT6OzrUxv4aGlWlPq9A33XQ6o1S\na+z/45QpSXZQpI6qUlTo05HwaC9i5ljIo5/Og5XFGdpqtGmaTaZ7Idaog+8BIExVd0ZPRDZy2rXW\nzOzEdQ8Br4q2SvWx0EsI6kStJbhwNdXky5n6KsnXK6UGWrbmLff4SC071SWbIXmW9t5xG4zRGXY6\nfWik630MShFsikIzJQxOjbDFDXWh7wch7FtQC+dmzqloDWRZ4jkWGpdIt9me6UJf3yeysW2VUoVt\nu6ElmlADKTTrqyqzi3NcOMNfWfl/GV8fIpWOzUJIRPIwmcTwgHrnZxPmVyzUjhfLNQmnwmXTJ+ok\n59/O61wAsChzneJe7gs9EvdUVD4j7SUbMFOMnKmF6QzSQ1JgqGVJp5/OmcfCH/PZOfk1UKk1+o+d\nQpdzAZ9EeSFIuyfyJolhGbfaIv/ck3DqldZCJbn3jvtBHXCf8P9huGeUoB5tXybhGoEh3F8HLy93\nnp4Llum06K93AJGGLHIKqW66UesW3AQXbrdn8MnWbLhVRBqv7Z7w8kxTtJU6HWPL+z35Hvvh7K/K\n8dqXLheEY6IK4zgobgytyEwZLRmIUMk3cV4/xsavTVNAL7gpqqcezhghFTFG5+Cg206f6yoP0e4d\nBqk+fq4tLY0hFq0XXLOn0+ksqko4H4NUVZ7p10RT/dTMmutNM+DGguiNs9IN3/i5n+cH/+wH/PZv\n/hZlPPFxv/NXf+3XAWh75Ubj9vyeH/3JH/FH//if8M33IX+gv7fxyS//Ks/f+zf5D/+j/5S/9Nf/\na/7B//C3Y75/fOcH7U/50Bv9uPEqxvM3Azn84x/8CaIRXU6RwAl/K0FqRUqQM/HltJfJAcSREvM+\ng526SR5IzmyPch6WrBU5FvH/RJy+Cm6/6gqtHRtUuJNvnDQCSgoyXuyQ6+RTjoVAXdtOiREoleWz\nT4V29+WMyeRjzQNjWCq3s9bRQvLwZbfOVlhvngiS5KuJdcZPNYOU1IzyM0g7uqFH4Tic15ceTtRL\nOrwHlEMY2aswpEMylSY16RWT91JWhkB1imMKlSdqufH+6VM++STWxtNTpEq0RC83Kcrg07if252m\nn/Hh/hnOzr2e2k0TWbAG99eOeDlRR0tHklwTFwKwW3BGFwLm4RpDkIO1VbQaVlNmYNpoUaxHCqdq\nZfQLd9KAruDK/d6pH44139t2nksqGjp71/R1OgGq0VJorrUpyju16szL/8Xeu8TctmV3fb8xH2ut\nvb/vnPuoKrvKpgrjgoAdxcTEBBkC4hEMJA3IAxLSQIlQFEWKlE6UXnqRorSiKA8piF6aIBppREiQ\nSDuV7egAACAASURBVEiIIAIYExSCTdnGj3I97q265/Xtvdecc8w0xphz7VN2OSidS+MsWT63zne+\n/VhrPsb8j//DbCyA3vbp89drsUOck4ty8DEfQXKC2gdjhN77YUSsgw94nAWCGCleQ2dJhmiHPA7f\nkTiitNxIdDi0S7jPnHRTzSGmaYFCnW0viRyo092+W8tOaXU+i/EZU7CDmFkSHRNqWsu4FVLwPaGW\nQyDUVK19O+aaqj8sa4fnEOZcO8w0rVBOKR1eYMkoBDFGcs7EBNmfYY6RYf467tPkayFvpQb8Wtev\nz6B6d7273l3vrnfXu+vd9e56d33X69PL2nOlzCTjAl6yc+h27BIx/sRbBLbe33q9YebJPQLVvW2j\nR6U6qmgYSpt+kNnHa9GnQ6t3+ObPBldrIFIdZtVuVfpwZD0++/h8rak7dBsfYXzOEozfEIuZE+bt\nCFMcmUExWivI+Eij6nbeCOpcC6bket0y3aW+ISjakrXhhhFi6rRWuFV1hYXHk+DkSbWT3NPTlZSV\nkB/mfUsJ0hIhR7PYH319xKJCJJGi2fAPC/4lbzw8WBvwcrpSytGDTn5qam2EBacjWbw2NF5oqrQm\noEcL9j4upGhF6h2RMwgNcyfvrUPVyXeIRc1oLws9eLtqWDg0QUpF1Vocxmuw7116czQ0EhZ39Q5H\nW8W+q0ySJHLwIeZpdnaJwuCjOtnYiMySrI3V5SBPmsABStvJSzQjReB7P/gNnBB+7is/x4/80I/y\nPfF7+UDet/vdFn75Z3+Zb330NURuvPz616mugX9YHyih8IUf+rv88O/+0/z47/wJfteP/S4AvvgX\n/jv+2t/4y/z0ixc8lzOnS+P9z9lrvrm+4Hq7QYpkyTQtc9ZIcOjf2HDGS5rZOmNsJlI2xGpxd/YY\nDRnKnk/29tyxcFvrKjVTf921b94y4bxDnW1MmNJJZIhMmK1Aa8O5UW8YaLfM3x+xPOIZeRMEnbwm\nJ6RytNp+lfHuHdJkbVCb473rlJOMfx+QccCea93xmnbzgkcozQBtOZjgwy5lCux6YNdGqUoraoKL\nNtZER5icTdjrwVfqKZlyTQV6opZO9zmTo5F6Y0wEySxp4+H0wMPJWnvrurEspubtIjMOB+C2X5Bm\nHCZtF8oCT/sb+xxZUe3spdMXRXcz2gRrsUcC9DR5cAORTm4K29vu3MID/Y1bhNSJKbO0QG6N5s7u\n9WrLdVAhoFQ5nm8PhtKZ8E647Y2Ybc6kFi3toJvdAfnOboBIDEes13degyel2iexGnCDSKXVSqvd\nCIhj/DYlqThftNFEyMvg6Vpbmj72OH/u/meUQ0hj1ItITAP1tJQLSWHazHRfw3oMxGR2Er0rpe1T\nfUcM/t0zvdvaO5Awi3rpjPQOW9v9u3tL23Izfc0enU29o0cIHiLtzzAailZKRZp3iPyjdNw8NoaZ\nezquUVPEmAkxkpbMsjmlIyUPQ7buTc6RNBApDxVXGaI3pcyO0f8HQYpP09l8DKaB/8vbUGkY7TYO\nklh3UrDoHaXBL4s58Ql4V2QFNWh89Bnuw45HETVllhOOtHaPqT0Gv8plt9wt4MaEPkYw3EG7xpCd\nD79btAz+K3QdnURuWkHNs0RESHq4cJujLkCfrs73C624q25rnVar832MszPIhuYQHEyxMvgH0WTe\nuQbjITW9k/Lb5iMK5aq8iYWYb/5ckmfvwbJEpC7EvPq9sUU2hujEc2YC/HbqQGBdO+tp4en2RCmj\n6PFNs9l3igrNuS6lwBKyTai9EOLhQwIeO1Or3c96t9GkbsoW6aaGkWZeLoDkSuqQejKeACDqcuWK\nRWG0jjZvuc3ix4roIIuxLo51zwsJWCLWj1PgztcrTDWWjWXph/DByKm+YXqb715uq1ppRVnOK7VV\n+vhAu/K9zz/PSTb048Jv+9HfzpuPbIP6h7/4k9R951sffZPL5QXvbw88PVkB9vIWWR9ufPy3/hq/\n9I/+L/6l3/3H+cyP/BEAfv+f+o85f+FLfPSX/jz7N75Oy4lHJ5U+P5+43l55wWQL75xP0okxoWL/\n3YU7Txy1cWPcUJYlsbryNISApIB0sw6hHv5qg7zr7zA3JICuI0XeS5L7dr+/rnEo7LO0Hu4KNCu0\nzK35zh0bX5ecEkAceYy+0QRAmxHDx+QeLQVfE2YxSEBG3da6F5xGVDZ/MZ9rXXDVA8P1/WBQeQam\npxYIk6Pvc8b5JcFe5yjm7N71UqEWeqnT2oRqhVZUa3trN5Ub9tWMftAaQcUOYu4xRbBD0en8wLad\n2daNLT2SxHhQOT3wcD6Tl83uXdJDLYVlJaoIopm2H7yuyo1aOrIo6SGyW4AhAFEjcumTQCxBZg5j\nEAvetfZfI6XM6o7h6ZTRbH3hSCSldd7R67US33T2NxaPQxfa7iTXYOTjmANpESRDk2GJk2nNhBFj\n4x+cOwnjMKdQ1QUnxx40ch4tL1CP9Vvu9qDB0RxFncebxRDcdVvpy+CODQFGmzFYcMyUEKLtpyKE\nRUjj0Mexn0gUQrLUhNGeTxKNhO7jX3udPKEonndKn3vKUIkea9sBchz7u82p0tpU2o6x39towRmX\n0c41XrhnU6IL0awNejloHXd1gY1Xpjirq3GtU7RQ6dHKA1iWhWXJxORimigsIwbG47lERktTZqJD\nbQfV5Ltdn14hVW2RGJvJyJbrDA5DN0M2LHW+f8dCORVBGg3BEiuWRkwFjGKrMYKEf02FgBqRPKjM\nBWXKIu3D2KIVj9+1KAEIvlEeWJZYweUxGdpkks2TpbraWaI6uXgeBYUqO3uvhNiphblZppD8NG1Z\ncvf3YaRb28AU9+85FtOhEBFwEqsgPiCGwWjET505T9M+VTvFKmYlcb00YrZJk+ONsG5cnzqnHHhY\n8iT49i5OELZFOaXEstwVEq1wLRXyCY2NtB8+JCN+YZ7eBlwTGrfdets17X47j0k7/33r1NamX0zq\nzQvraoqPDD3bD/MiSG6k4L5j7n1kLxqpWpEo5BzQFg8/nBjJwfgaJsW2wgiMIC6CG1Masam18h2F\nVHOunPEsdKg2jahi/mKCmXUOLkyweZACXG87y+lAVx/PJ87Lynr6DL/h4Yucauflk5kg/vzP/iN6\n6rz33nuc+hnJK5/93mcAvHr1EnnKPJ5+Ey8+/gb/51/5C/zwx18D4Et/4N/jd//eP8MpwH/7P/yX\n/Oyrr/H886b2e7ad+ThGlhy5qJKHGg8IuAQd2yBUOGxIxL3cxEw3t22dJE8LC40eQmucM2lHEWkb\nrhUardXJx+uMeSC2IiPfsUZEnxe+pYl7/ODocFdTdmGmlVPG75e9lm9wPjZEjeTaapmF8oj0mHzH\nwZULereZmt1FV0OOVLuja/bwW2uktJj02r2v/KU8a9AsIuaaYm9IR/GlxE7yU82q1Gohrb2aYGN+\nvOYoRu+TGza852pVlpCoRV32rqSRM7kEm3s9sS5nHrYHtvWB03ZwpFJcWdLGuq50aXOj1cU21+en\nRq+dy1onF+hJodVGkkhTRZc6D5jsHWkWEm2cHbNlsO9xzMkOpCWxuigiLgHW7kpts4y5DfLzSTg9\nz+yvT1zeXKmXSvR1odEt4D4GVCrLtpKXcdg55PRjPHb/DrW60aQkqroFwFCmBRdI+YzuMNW6onbQ\nyzGiKhiNy98vRaqrFKN0E0YMcQ4DDbf7Kq6KOtYaQV3mn7IdwD1SjugGuIZEuXBrqtWO8d/Uxnj0\n8ba7X5WqsizL24caBxts/bYYnODxObVXpIsLTpyTPJFdz76bnaHOvfKUZndMtRs/6q5Yi2pcadXq\n/MyjuwFWkKWULQ/WMxFTDrOwaq2xrht5VEvdD4J65PuN0O0uh6nnd7s+tUIqdZc7j4WxFiNwCv6h\nD5O8FE3i2N3jQbuQfGS02qdKZGS+DTxyqO/CJCC3O7TK5I9RzF8mOtIFNthMPalIsor/aBk5euJO\nzKJ9hsY1Al0yoZtVWxBBR36dmnZEmuU5ldpJg9imDb0pO6C3SpPA5iTtlCoSmxWVRchhnRleHfG2\nRbQiqh/Oz6ZsUJre7BTXG82VRoAZZLZAG4aU/ZBP55wpFCsiMQLk7qqfp6TEfGNLK+UkFBVW3xTL\n7srIJZlCTXU6lOeY6ET6dUfajrIi4lYCtRr5WoVMtnaLL6a9BXJULlTzJhqtHDDDRqkUlKYCrROi\nQ/FpQ6I6qXQlRciLLabL1olLgmSE9xCdjYwtJnFxlUaLhjR5QW/toEIgoBRUhODjMCyRQDG5eAgo\ngZyWeVKDbv/XLMBYNFL9WcVgomEhIXUUw3ZvihvAbut7PIRAq294cfsWAC9ef5svvfc9nOWR3/KF\n38yLb37Mt7/+VQBOCJSMvjT4vAWBavPg85/7Ah+/eE3ZbyzL+9xuL/nK3/ub9lnOn+X7f9cf5kd/\nz5/hPwkr/8V//Z/x8sU37BucVvLDCUTYEsSuVAYiE+hhmCWKtU6GsaIku8901hVirJP8qgI9FjrW\nUklOlLXLnklVsxXR8Qv4qbu5j5C3ynrvVAaqKqi7PmeJRCeJ+4O0Q4UOKgCUsUjbiDegOdiCO9oN\nIkItlegFZGsNdaK2IaGmxtRuZqHjlByrkNyLraHEGKheEKRmBblogaC0HudBEDmo50aEdYWhj0Ur\nzKIpuxTUC34tit46lIbuSqjb3PSFHUTp3RVvvdO9cG1XKAr5lGcLcBL0a2PdMkmVNSTWhwfieeXh\nPWvtnZ+dSZImobchMzNwkUiXM60r57VzWwvVD1Exw+m5opdCDpVK5lU35PRSdlQaS82kkqxVO4rT\naOt7dCl/PAXkwT9ssnDc5bRaESZKaKZ0jcWeU1ogPzOk+9UbJ74XJaF0SUg7s8QEydaTKpXYE02V\n0DsLyzjq0aVybUqmsDsiO53C1A7DMSbayKn0QqL1TlMh9OxDvU30RMVYA7WbUSiZmTxhexAUlBDS\nPIBOG54QzLYndCSHSYIHQ4TFDzq9d1JPsy0ZsAIiL9EaODVOewCGb1cP7jN9WMaE4H5lpU7/NZdV\nsaZEaYUUIiUFat0nbaZRrWDvZosiPU7VuR2mrdWnvdnpfDj+h2BdgdaQHmj9SuvD86mzrpsFJIdK\njAtnR9S3tLClzCKZTCK6OnHM7dEW7L2TUuQki4+ZK0/1MBH9ta5PD5HqO6HecZdwWP2uvTf/rSvr\n7nkMgx9jPhvdHXjDW4q+0UuNXsxqaxa0CcZTqM3bZS5fnYiUw6IxuGS93nmtBIcnIagd78b7xRT8\n5JSotVtsyPAoASThVbT1qafEv3Z6MEWNUggiptACVw4mcleDYHMjTlmTVcspRQumVJk8jt66ef20\nbr5L4m3UfreZdA5vLT1ae6qB4Vwtoc1BBnC93NgeNm7Xxu1W2W+Vto3TQIfWaXtFVpfD60AeMtti\nBntBkwfzjpO3GALlG09a8twU5AZxMV5WlRGlY1+hlOpp4cFkzALPzrZghhxovRCTIUsxN7KjY+uW\nCamj0Z41dyd9i+ywolLBZNbTIHJwnoSEGZ3O01wQ8rIC5rC8pMXCcO9ObagFsBLseU3rjWaWHa2Y\ng6/0+3vTXGp84bwkPnz+vdycX/LNX/qI28OX+NEf/hEeZOHnf/oXePrEiqxtjSw5k9LC7XZj33ee\nOCDxh9PCBWGVxEu98MZ3zK/+9N8mi/K53/Gv8mM//u/wH/37v8hf/It/HoAbO2kL7NJ5kMDeD45j\n4L7wUAtt9iqgtUoWYVkz27YQo8xFPwdLLeCOIzfMi2KE1vSt0+/0ieruexQdlcQ2kDn+u3vONb3z\npfI/vPOqqhPxGW0D8/dyD/OxxsxW+hHj9KuveyalobPjMCDS6DEZqt2gVZkWC/RAEG9r+IY3Q8A7\ns81pr3MExYoEP/jYa1pL0V5zphz0hnbMC8hfJ8Vxjw5394F+GrJrLZiUI1oVHQagLVjbPi4sy8Z5\ne+DZwyObJx48PDzjYTvNtk7tdSJkcEJVWduJVgrreuLkrcaiSqvF2n8ZeowINr5Te8OlX+3wVI1v\nMz5rlOLWAYnlvJBX5j0NObEuC0SQZEq/7NE66ynQaqflRilCqYHTo6lZy75zu1wREr1A78XikMBM\nh6XRtJC6mTwOKgit0BGLW3LbgvurhUpKFtNiOlFHTaKhNFUVrZ2GMii80u2wG5aB0h8HXcmmkE3i\nGJc0Ur536e7TWibmRArxaE0JzrPtrko9HP9TSrPIiW67M7nIMlB18U7HsR+3ZvY6vdp3abVOyk5U\n7uw+lBgPLm7siVoxjq8al+Tw0Wq0dliodJhFndGUFVBHs497PcbfDCVOcfouLsvCtm2czxsxydzH\n7fsGRHQaCWuHOEAJMrn8M1pIBecZjBaTteSsnWa9+j4t2sdCOqNU6JMP1ULzRdBOvMEa1vaawRZI\ndWKcyNH6MuKvEukOOx4upykfSe0hWDtsnBTE3z85ie8eIWkjL8z5Hr0HahsDAyQmqhSH05mZger8\njXpTYgsUPfKmdHWZa4McbXEeC4ZEH9zaZ3tsnGal6yQ30tU9AHXy5kx2qzQdxoR9thqnjxZKw007\nfY9oWrleKqdT5fJ0I6UncrbK/fHxkRgDrXViVUQyXYZPR7bCdAFqp4eVgeFfBfZq6J+IICnS7qH7\nbqaZFlJxtzEyNpeCxMjDaeHhwQmQfScQSMmky+s5k07j+RrJOCSIyfMWh8a9M1FSmjjqdyxQo50k\nCCkGt0AAs0mKpJyPBc0JsuOKmUnIHD5H9u/wyW+8iyhhtnaDOiyeFa03bq/hi1/6EgDrm0a+RbaW\neHr5gnJ9ORGwmBZuZae1xrNnH7DXG/vVTvpBFnopLNuZLWb6+gEff/x1AD75lV/k/RShr3z2d/4E\nf+JP/Kfkj78JwF/9B3+Vj6XztRdPyAkyAb0jrHXpzrGweIrdN++cveWZnJsR7prh3fge4wAk4ShI\nVKtzJyq1HFxGf0xUHa0Pa4hZXMyByOLF1Gg9HET0flijuNBkPmEZRZjQ6zihHr9nfCt7OrO1yKit\nnKc0xCSTVQvahNiwArNUGBEipUM3A0ENldyP+3nPlxqtk7Fgd+8A9o6tF51530Iwj6UeuhXmUY8i\n0teEgOXY3bu1t27twkQADYQaqHm035WukRQ3hAw9kfPK6WRFyPn0wPm0WRFVdxIJpxfRe2fbzqgq\n+y2T3KoFbHOrGPFb6LAlPvzQxA3P1hMvvvWK1y+euJWdXZWsLtWXSgju25QDaQnuxwdpzSzrRgsm\nw1/WlXXd/DuaAWdrgUUjt3KQv5cSydtCuVWzrNCI+vOIiziSU80ORXXK6juYlY74QeiuyLA80/Ee\nVtSle7RPjrXMNwXA2qwiRhYnB2Ifc8OK/d4jKgfhW1QPZ3YnWeNDIgZBdSCZzhvFDTRiPCKwVN3T\nzVp7MS2TKiEOAPQ+Dtb3xaLH2Ghzj7LDZT243cMoPCVwZwlkfK2UE6jth2XwEVs1zmS3oj/Eg34R\n1A8AyboQZp9y12nxzx6jkLNw8md/Oq9s28qyWsyagQVHJyIEtzzo7W5FsOcyCszvdv1q+Ofd9e56\nd7273l3vrnfXu+vd9U91fYpkc6um76FDHJ6WEM30zqMCQjKC3HQXFZ1cAcupC94WCnbCkuMlR45U\nwOC7adrGCEs1sp+0O2l6aPTezFwuGV9rFqSibpznpzxRdyNnKvxaG5EEgdBG7IqdcCU7ZNqUfXd0\nLBm3qdRGr0pRew0AbcUTuhunFWIsE5Fat4yK0KobpUmavJRavRVo+io3uezHKRk/EXSTRrd+SCGn\n6kKM/CdyIICqO09PcDqdiPFGDIF1sXbaks+zPapVXL7sryl24ozBOFhNhe6nyx4a9alYD95Rx6nq\n6UpphVIKVSu7xxAAxGRE2ryY9cDDORFG2G9rnE6JZTGCYd46YfHxFI3Ea5BjMcRhhkRHajOJugxk\n6K4FOeDtqRIN9yTHAD37Kc8CMA+DOCNIWVim2yp426TvFY02hs0k9OAHLlukNbi2K4/nB9rliY++\n8UsA/Itf/BG+/Pkf4ulbV15+4+sEUc6uXNqWBy79NSkJvRdS7PRpvNdJ+YTWylMtrMvCFz9n0TJf\n/+ov89VvvmR9/+d4+pn/jcff+uP8kX/rzwLw97/2y6zXv87DdiGfPqCVOgUaUYRrNwVYx+wzwuBQ\nEMxROEcTcuQ7FVF3RR/dJOB3SM69sra19qtOfeqQTP0OxGneb3gLhRrIogRTuuJIbutv21QgYihR\ndNRqzAvpgP3eQKIPGxYBJ4oP5GB8Gu0eSI2RmcII4gV6MZxiWzONJ6oqd36Fb1EaVI+A4WERYE6j\nzdv2ef4OjOgRa9N1H6da1FqOniHYOThptlJYrFRrwVCC6j9conHTxXgzIRg6ta3GkYoxklImBOFa\nIKjOuTEEA9ty4pIuZgrpaM62LpRuXEVxqsJAJdbTmefvJ4SF0J+g36hvPNS3Gz+KYFluIQaiq9ry\nmugJckiEFEjbypBgJRn7i42JcLlOmkjZxduBwWODhNHdtfldITo6dZc/yojtCp4/1/tsQ/Vuax99\nZNMdv6dquFBOndIqgYjgpPgY3HjSnlNYjF/rb4eK727BTCe7HoHtIdi+am0tW09HK121e5vMn3k/\n4lxGy7KUYpQQVYthAXC14bDjGePLXsPmpy1x1iEa1BRVM1EWEaR1U+JNcGd0cpqpE7PZp9hPzLJH\nm86EiBm74wpOYayrMpE5YqB5mzznzOl04vxgiNS2rdbuC5BTNOPku7kVo1lcmNLwWDtSSpah+utc\nn1oh1ZvS9A5uV18YQySghH4QvCf5VEaOkdK7Sy/vBqbI6PMPmM9h/+5ePPGgYKVgRRS9u6JODuhw\n8J6Czb8gh8PvsPwPMZkPVatToTEUCClaVEnTMlsRplyIFgNSlX63Wtag3vftUJWqfdgTIVXpT9ba\ns6BbmS3IujdiktnPhiP77a37MZRterRSx/vZnzJl2/Z7Al2NX9AjipKmPMv+fHp6Mtg5CumVcRq2\n5cSaVlLMaItGoB6wcVD2roRgOVDoEU0QNBNyYt+viG+adSSylyt6Fw3QOewPQoBlDRaWurhAwHf2\ntG7krVuRtQTS0q23BoRoSi1TlPS3Nivj2wVH2ZXWJ73k7Y06BYhv2xskSV6gCTmtUzUJzjnA73Mf\nnILDv6XsbQYUSy9zZgrKac3EPVD0ic9+7hmXl25j8OLbvP/Dn4UXF968fs26JXI/RBjn85mcvLWl\nndWjQFpvtNZZg3Brnd6MtwLw+S9+matWyu0lX/uZv8mHsfHhb/6jAPzxP/Uf8At/7h/yurwh5mzx\nk0N1K4FUncSalFr0UJAGkCzEHGYk0XEvj/vXfHGubWxszcJY9c7j7a5wsRaWqV+t3X+4YjPbIFbY\n2Vy277+uK+vJZPqllMkhA1eQem4iYgq7uwVobpQy38ZbIe2+qMJVioMHFkF9I5Vg68lwdA5iVhhd\nJk9kLFL2encME73L4Ly7HwErPge3ylowpnztwRRto+LtKaKhUq7F1yu5K1DNt6jsXrRmGANx205s\nm0e+rAvrtrFtGzGn+TlKa+SYyDmz1zJ90kyRuPtB5HCXBog1eFCvUzdCoKopT7VU4iI8PD+RQiD2\nwM2fRSrW4JduhGMbd+M7CiEYOWc7n2gC6mv76bQB6o9UCelE8ZBkiY2QlVDNL6rVTvS9RCrgsSkE\nO+DJtJpR86xydeFIiwA7RHSX6ffOsZjgBVZ084EEUTLi8zf6waLudRbz49DSdXhFWdZlzpF+1xIO\nMU9e8ThghDgWFP98/r+7QnayedsboQulKZKAHhAXkChGebGIl8FVPVp0odtcUucG65ghTW0vUfNR\nRPuMzxmqc/OOHFvL6AkOfpbYgZ44eYxR3JNMlbAIvR2KXFW1+KKcOD9sbGuebU6zP0isa3RO1NHa\nG0TqLBlioJfrVLOacvpuY/01rk81tHj4QMDoUfriWG0BmENjqPmwnqlJn33SqBMRhTmwZ6yLc1QS\nHmWCToQkRTfJA4I0euxHkZUOe3hLg6mTeyHdye1eEdvgvj/9CrRgPd56PKjWo/1b7VRRamzIUIPd\nbrZ+xmz5XLvOWJJQup9mlV6Lnfy8Om77lZwTPVQnhveJVhlpzray1vrsWevdhEMtCsXUPzrzkWIc\nyEuyzSD0I2TUiYtvrhdkCfR0ZCSueeG8bMTUuSSLMRgqydaFEK04O6Trkylj/+2S7r0qrbhaptmJ\nUYxoQhKZYaghwOnxzJoXQoa6F0aex7oFQ6FitVDRpIhnVbV2o6sRPUX8ROeFbdWGCoaIhkAPR2SJ\nRCtGreiORAmkuIyb6STlAj3ReiTdxQzYYpYJavyGTqMHl4c320RaUWI036JB07JFqvLe6WToCZ3v\n/z6zI/j8w2d49fpjwqXz8OxMu9aZC7iuA10zfkNMaU72oB3ajoYIat5ir69P9nzzysOWef1GkE15\n+Y9/kvfe/0EAfui3/B7+jT/8J/mF//l/oj0KrMbDAgiSyd08YhrNMtyGhUcKJHFvtgjQjoKHQMcQ\nzBDsNHnvh6TKNEYNs3w57o2Ip4GJMdfa1M57cdbMHDRnW0QBzg8PPH/2wLquKJ2npydevbTDwNPl\nNeW2U8uOBM9FG6hic98m3FsqyFFkh+g8knGiDlNl1dQMLYlDZat3RQaglVvpLDEapq7HZmL+PbYx\nW17gUXhasPp9weX3hWZGjGs2TpoKfSLcQNqIKXC9FCOEDyKyWlGnKCU2Wuicg3Gg1uXMuljWXEqJ\nZc2+1oy5mGlaSd0IvtLqRPJGGPl1v9lzlJENBz0msiz06EKCCLhaSjvcpNC0kXLjdI5kNbuFer1R\n95v7ZHV6iXdKyE6OgeSmuwITkUlLnIiN/e9OHKa6qZBVKTfz/JMGcTxPL2ggUNxUcs7tMDwlkgkg\nxELJwTg7rR9jYYwHgEZDo1lqSFzIshAcpde202unZ+sWqDIzVkVNHa0030NdaX7HVzREBbSNM6/V\naQAAIABJREFUnNYxbiIzv3EcFoawByP/L1uGZty7vB52AvcHw9ba/CLDSqgVM4CttRx2MnhwuH0B\n81G7K3pwTmhzDtXdWcRFGp2OiTDijGNS4zYGXwPi3b4n0QrA3Nm2hW1bZrhyzhmimJ2M53BKGpFL\nd5FwAtaF8vFbjw7Jd7s+RbI57iLrpyjDlUHVbrRvWPhfi/9sqHF0WhwIIZp5pjZ70GFWj+qtA1uu\npeuEBw3dMcmoBAj5QE/iUO15Ij1dSHfKLRmeQR1TRNxtlkPRoEE8u8gLopCg2ymji1qx5YoQCSu1\nNPv5gE8HjLnbyXG/Nctdi53W/OFLp7hdQoxiBdZEa4LLZI9Fw3y7/L87aLcTP90XmyGtxtog4hYR\nIkxFn4RmA1XtBBIu0Pw0/628cNo2wvP3rU3T21TDlQpEI8qHnIg5zRDK4S1S6+7EzMO1vLU2Nwoj\nIyvB71s+ZR7OmxVCvbHkQ3Kf1k7I1YJdg5KXRBmTVJWY3H/F79Fsx3Q1VIC7fMfpIaaIpEkQrV0J\nPg4T1mYYC4ghXWlC/AfUbwtYkugnfjsEaFDCJpTiQaADUUeIRDYiEjJUMywF+Myz9+i3wicff8Kz\nGEh5o3D8vqSI3gpBOr0qOHqQUnSfsM7DwwOltYnI6O0Np/UZp8dn9KaUjz7hF3/q/wDgB/7gc/7Q\nT/wZ/upP/i3+zlf+HutnNjMhxD5/3+/UtcFVdVieVYqBnKJtoG+1xGzii0R3RW7UcqA8tfhcZRSl\nBzI8c7TvVXTzwGNoi4REjLCeltn2PJ83liVxOq2EEHg4bTz3zLg3bx54/fo1r16/ZN85EAZAYjxQ\n6Pnxx0Ewok7WNiXc4YkDHpauwZytix6kcW8JETrUSBdrYYPlk2nCJ6BvWHJ8Z9Xia6O1WobkXsVa\n11uOZElkEuprxl6g7Yos5mJdboV683ahWwN0EpVKDIrkcYKyQ9DpdLacMldWjsNX00hgoYvRM+5b\nrarK5XKhlBul3EwFnUb7M6E9mBVLa/R2F/R9juS8mdJ3B10j/TbI72UKMXqptL0Sd0dZVjscERL0\nwPaw2ibK0fJRrbSOtZSGMq+YyWRKkVup1oby+0byz9fF5fdyHHYIJt8PTi0ZrYm7694S4SiqDEkJ\nPVt+pYS5XnYVYopIHjl94Q4VCS7E8HWo1kndGN9xtMNxVdsRunsYx8529jwoGgpU90ZahB6ZwcSW\nPmGdkRDCW4cGtM3D+mjjjg5Ga8UOBv1oHY/vPxEhGebWB4rbegMXoB2UnnE3DTU2p3IXQviE3E4n\n9y9c3NV8NasbIDiloIfumb5xCtoCTPPZ0bK/VwpPl4Dvcn2KiNTblgZjcbUTpPWOx1js1SvvkEG8\nOgzjrka0qbvEWltO7750SNEKsGjo0/T1Eddlhg6hE+UIMLSTc6B7NZM8Zd0+5h06c+c+DWNxs6Ku\nFBsU94u9SDL+lSix2UZh7zcGZGcRC/Dc3Qxsx1VlrVk6OA1xfkTKgb0UVDq3mzGS5mRKXmDGEU0S\n3iqqwO6VOURbcTRbpDGZSWGy4q6rMqNQGLwpoV13iEcL9qNvf0TeVpbHM+e42qYxjl9qJ7CYEmtf\nkK4zsLLuO9oKWhtl39EeJ0esFktnb45K9tDJq33/JWVSNmWG9EyMgTBOQrFZ2zGtxNiRUKc60w5H\nHXEEtI/v6OMjpeSuu5g5pD9vU57YWFU1Dl3pY4ysZtw2w4bj5FOBKcyiLwxgY30cIlJKmFOiK1VC\nODZhNSlzUkt532Tl/fQeAJssnMi8KY03by48LNtsv2js0xRVyxOKzJOZkqgoKZmTdKuVyFDICq8u\nhfX8ioflEbk2PvraLwLwwc/+fZ7/4E/wH/7bf5af/2/+c15eL8jgewShJYFq3MHQA9kRwCVGtryQ\nYpp8ielPQ/IIGOug3Uv8y94OSwR1lHAO3/sw8lGk3qtr7TVjEmI2s8bz2dCVbVsMUYlCDoG4ZDaH\n/0/njcdnD2wvNl68eMnr108TccVbs6O1N9CV8d7Q74o6K8bt83m4eCt2MCHQHD1v0flFIhTUWjYj\nxkmEWtXGhTDHKkCnGp9k8EXqUXwngUQmp8QpLaxxIWCt26aJuldaKdyerlwuhavzjp6edq43Uyyd\nlsx2Fki+uYTGdt44nU6sy8nWgG4taYCwVFLO7PtOjJFaK9ertej2fWffd277hVJvaNsJo3sQzH1c\nQzCEplRyHiiBeUQlEjcyQa+Ih7K3slMTZLF2rt4KfbdCuTdTUGcPOQ4cHJq39phoMSoxOaq2LOzF\nbUj2Stgjfbef7c3Mko3rM55tnPdUiAw6pTWkZEzfGUbdgdD6lNjnsFqPxF1VhU5yjmeNEeFYQ2II\nh79YEBqR9Nb+8zZfr9bKvu/U3ZIf6kyKaHeHUx8v05DTEOXaKmXv5DUzjJFrr0QSKR0I1nh3dT6V\n1m5Ia3dfP7xTHc3XaveD8xQqOvquvTlgwew2xCXRqnosmq0ph3u61wp6I2WLvxnfYV2F83klpYW8\nKDHp9DMzKkgipTi7TpNPPVFnJtI2pv0oVH+969PjSGlAwoE8BK/mmyoaIPQ4uQl9bHihmlGeRnc9\ntcXV3Bxtk286u7OIdGvhiGd/iZB84ZPeECop2aIeYp0DPAbfUCM0yls9ZtXm0lG5e58DrYoRaN3b\nY0df1bJ7zGIgxoze6lz4WoNzzLRbN6+pVqwQwNCxvTYoaoMjx8N4TQR1CW9rBoE3t03oN4g5kqKY\nxUMUYmD2rlX36Vdl1KzLXGwC3ZyGd8t+s43eh4rzL4gmAd/3fRISn/ad5dUL3t8/5CGONs/YhCIk\nQx32624nbC/OWr1Sq6WG77Wgar12v6mIeBvNViTzdAHW1QiKkmAlQSjEUZT6MzMLi+j0k9G6jCbV\ndcQsRqGPiaRDquz+QiFNc8LOzbg4ITMT53221Z5ppRBjn20Lez3m9yAIlWKFbUo2xsHHniBRqa0d\nCyaGEkronGI2grs2vvD9XwTgc8uX2H/2BR+cHnlTXrBfrsfJO2cDeOmgC73urF4sxO3M17/xkuWU\nqaVyKTdO7gcUYqCVys//k6/w/Z/7LTz/8PtYXv0cAL/yj36S5w9f4stf/n386Z/4d/kf//Kfg9VR\nJ91QXqO9Gm+mtxmxYMROQzhHkTBmz2ybipojvoajPdZwcnWgy2gVHYgTd0RyMIuPwY3uCHnLrCmz\nrInzeWE9WSG5rIvHRwSWKD5GbHznJuZJ9957FJRbuaGXw+AXxxVqa0iMx0EBb6X3gxt2f3UB7RHp\n1Xhiw+SzCCqdGpSsgpbj2Yc7/tSyJCTw1iFR8NZMb0aQ9kNE7omQEmuwQmpZTsRgzzfHFSGy18Ll\nqVBe3Xj12goePnkFlxugPD7LpEchbM5lOmXWdeW9h0ceTidDLwTP1AStdmqPvonXWrk4mnG5XLjd\nbtwuO7f9iaYH7zGGhcE+jgg9DWK+rUMRIAjrlqmPcZLsA5XldaVebU5KV/rNXrNeCtel+1wQkDw7\nA2ZOHB099oOOo2NLtS5CS83W7yQ0Nz+WYpE5tVY/ANuYs+cUsHZ1mM+DSVkR0l07TFIkJDdbZrFW\nqii9tXkIg2HBY4dgFGI4fNl6N8f5MP7C98fJO/OYn7Zu7LVQa+Xm9+bpze7tYhPxqOpMGSAGlEhI\nZjVQaxuWbtYBasOaJaHlLjbF/yy1kXZHnbxQznGhVzPUTiGhsiMOxVv+n5WdIL5GjxZkIsZG7ero\nbzvi5MLw4bJi+JTt0GB/Fzk9rGzbZjVFMnGAvaEZREtK1or3AtXuaaf3QgzBjJL1eL7/NNevT0V/\nd7273l3vrnfXu+vd9e56d33X61NDpGLobxFIA4J6uKfBoP3opXaZygW8XTZIzIJFMUy6XO+TIyWY\n5UB09CRKN0UUrtpz1YBxiTj4LWInZEQmX+q+/zxl8DModHwW7/vOf3+0KaqFj/lrQeGA6UN1Iqm3\nNaSZGR4YOpVTZHtYSSm7Qu9ApKJ0Sg1c9xv79TbluvvNevzlZghJjInWbzMpHPE8tyB0GlX75Gwl\nOhVDRiKBJjoO//RukSaWR9RQFXCEKOXMfrvw8tUnvJcX60ePe+PM4Zgi0Gi9vGXKWPYrdS+eJM5E\n1obRqEg0blVkQtrLkp14r24r4LL28brR+FSWiygHwtmBmIhiwdFKmwqUpqC7QdMKEO96+kQ3mCvU\nbvl3gzhZi1pcBQ5zt0bVQ2Fp7R09xpbuyIwnaGbFkRIxno3/MZ6FCFrhM1/4HPpqJ377kQ/lSwDo\nm87r2xOPYkGcnQX1exNdCVOKZV+t68q3P3kBwPd88X2eP/uQ169fs+bEY87InWIzpkhKH/LNb32b\ntmQ+fGYZfZenC7/0k3+dL/7Ev84f+31/lP/97/4V/u+vfcXe771Mbda2TgiBNKH4FAb3zNrb9hDm\nY6KLc541UPbCzbkKLShk6yoHNRuIwxpBHBXsNJeOqwgeWEZMQohC2jKPDxvn0zoRuSUYxzGJWWOE\nECZnZ/ElsSE8LhuXZZs5dfvNxqZqIIaV0AUVD6gcWZZGmX2Lz2VtOTUzSI2EdqwnRDE+Xe8HT/Tu\nkqiOmhlSOpz0wXkvbgwZJDNdv2NiXR7IS+RhO5HjRnIUIMeN6OqztsP14cbjayPan04rT7cnbuVG\niMpyTjw8s3bow/NH8ulEOJ8JS2ZbnTMzlFSK2bBg4oDbrXB78pbhqytv3jzx5uk1t/KGa32y+BUg\np+y8T4sJiuEI7K5q1ABrp5pTtX8crqr0VtlrR/cCTSbqok87fRFS2tEstKuy4orDlIzbSKf3SmvM\nvLXoBssSbGwMdBOMA2nqPiM5GxfoQL+bZ9GZIjEfzy/YWEWFFBJZwoxkMSd6MVVjMKX6QKVSSm6U\n3CxjVQOHL4ZrUScP7e09qoxcQemcThullOlAv+ady9VarbEZqX6GpztjRrVbVyCEQ6QggY5w69XQ\nv94Psrmj+K12VKPbGYz22NXvre2LQRI5jzSIPrm80GlyZJPGsJrKrxTjM2mf1gg2xk30FJOwpHRY\n8CzrtD1YcibE9DbZHCZiHGOcCHmpdYpTRuvzaKO3O971r319aoWUeHbUAMV6N4KdRFfD9cOFPHg/\nWnqAbu2p8TNtJqcP3STtIQQj1mKbeErRNq0gvpn6qtiDvXIDCY20HAnWRCXFBO5tIsJk8NtDH2HF\nA9ad38r+visylCH+7GNriAS6t99yjnMR0gC9Gtk9NIOJ/SuQt0zOK0verJ9/l1QPNuE6kUet7Nd9\nchbevLnw+s2FcqsmIa+RTpnWASLRQ3KbEbhFjESL8QvklE0pFOy7N9+gQnIiqQq4THxwxfJig/vy\n9IrLe++xpWUS2K0fruZnEyOVfQZitlYo1xu1WCFl7sMH0a8Vn3Ap0mud7rt5TURxrlruVvjNiCGd\n6qUYg0HEzhPQZtlsFi7tz2A4CpdOb9GLd2zyDjVnSKiaqqqLfcaxHzZ1996shJAJxJm0buOmE9T8\nXGKI5pszEOeY6d1UQTEmYppCMXrZ2ZbMyxcf8wOf+QKfWX8Tn1u/B4Drt75JXsyigrqQTsdkH+RP\nI6YrNQjVx/cn337Js2fv8e1vvULrhecPm21GYGGnqfP8/c/Cc/jk5c8j/TMA/OAPfJlvf+OrfPJT\nf5v3f8fv5/f+8z/GV37uZ+07fLZTeidpdgVt4ME3yxT9cNJlzp8prhNrbbWuaHeXbT/QdLEsrhCE\nKNHa8zPlfahGbCyKz4sw2oK9mR1AWMlLYFtWljRc9oWcvAgXK2DTcrRFUkrG/bttvD5thzKxOm9i\nkGLdu25cIUQjzjoHZy7E2snezjV+S5njOzVTB0kDkhebYwwL7q9kUn9zKfevPQ5lnrGZOXLDYlo5\nnR55eDizrpktb5zSye9LJIUETZCtU9cHzpttNOfHjafbEy9fv+ByeyItmYezpxacH3h8fE5eF5ZT\nAjF/IFXboKUKJGUvlb1VrpfC9elo7b1584rXl1dc9id6b/TkB6UqLItz+bQT6NNfzURF1jLrXai9\n0jnk+BoiNVg7SrXRL4PPsyM5sadGD1dC2+f8XleBaC3DsCa7n1PU1J2rCyp238ehNcZOiwpVnUd5\nkOKHqEJ9DXh7TzBlurl0B8Id8dvsXKLtZRJBMjEc/LAUGoRkVJbATFwIIaO1mD3N4Hj2twnlo9Cq\npbgIzX62rBGJmbwI171yve5oHXOqORWm+pwLs3QZeZPmaK7Q1FXSRu8wMYTZZwSUOPz1MuTY0WKF\ny7quk9OYU3T/sWR0lWhPwe6lHUhyX2dRo2MeuqgneOZlConF0zVOp9NU/2/riRjzcHqYJPT7SLfW\nhyehHfKaFuPq0ebPtPc7wdGvfX1qhVRVnOx19wHFzOLCCMcbOJMTTY21F9/iIITO9OMZar/ej8pV\nxdOvG/TYD26G2sC2jdROhAci5ejBJAQfn9Giatx+4TvY/eN3TUopb/99Mi+qpIJIM5+iPipj7xGb\n5geRPCf3siyY+d3CCKgcuX9Bkm++GXFuy+6De91esWyZN6+euLy60bTYyWEieYaM0YMVfqlNdLDW\nSqieMyh9zEu7n0BIyRYaYFniJPpZkde5lSvX/RXPn3/m7lmoq0Kan5gE59N7xIWbIxbzIAlv3fNj\nw5rqRJx8q82COaOTeO/IyIhxjLpEai2UeqBOJgTwM06Ph1qmQyQTgpnkdQ7idxScs7WAGp9pcs6c\nQ9BbI2RDVRN6t7gFEzCoFadvRRD0lRASXW+oXBHpE61a0kLusJfC1775K/zgb/0RnlX7PJfLlZNC\nzgHJm5GTHXGlmpVCjNH8zO7I5i8/+Rbn9YHHx2dcL695ulxZBjF82SB0np5e8z2f/ZDOh7x89QqA\nn/nKP+bLX/w+bm9uUK78gX/l3+Rv/dRPAfAPnn6FvMM5LQjQxKTdNifGwWNke90NKH+Okkwk0qkj\nPcUQGgk26JqhyjNWSVxRh/PNghf4Q3IvAe3dCLfVSOhxGT5ihurG7B5s+Qh1DRJIS+J5DtS28159\n4loMsWnFlHKjEFSO9xOJVIxjM0UyA5EKbnvgUnW5K7C7G+FKjzOGYhSLKn0isyEEYlqouo9ftDVI\nghH7ReZmwpo5nU2VeDo9cMoL55OpEtOyEjVAheu+U3IlRIN54jmRrsKyBq7lAaQTz/YwHp49Tv8n\ny1MrnNNmVgBAJ7C/uiBBud1uXJ+u7E42v755Sd2v9NYwq4crdXee4/K2kSqtTyVgJ3iBbcKf1nfz\np8LibG6qh19RP7ay/VqRlzuNzlYWtvc21KNuqhRijoZydFPEHqbQVjyEKCjJidA+RqNQWyFpIOWF\nUo9CQhkH6oNvM3PoBvqF7T16Z70wsiFVK8EtH+b5ondCCgQxZMo6HcyxEFKiS/fA4j4Dd+1rCOoo\nUe92iJnc2W7csZQSkortOVdX7Kp4NI1AkPn7czTbYkmtO70x95q6F0JIjkg55Wyopz04PCQ77LSm\nkzsZgnVYliWzrmdyOpkqHNB+Q8WUxbda0Hqlj8NOtvsmYmKy5U4dnbKwref5HWM+DtcxJefOOtEc\n5j7Te+NWbrRWULVSangZ1lb+2SWbz1PAMLo8anPoVuWPwE7tnS4RDXq0+dpRfVvhY60jCWG2UxqG\nehly1FGV6dDNnerHzCiZv2fFkdrpsgs2vMeCOU4A1RczmXXWbOcZ7X22feZ7AARY4mKGhXfy4BAC\nGhpNFG2B9WRQtOUFrYwcoNGKAObClsROhbUqyzIq7MR23shLIC/C6zcX2tXy/+7v+1BOjo0OTBI8\nQlBDE0zZ7/etdZoM4r6QUr4z6gvEk1lGXG8v2IupfOzXFBVXZ8gRSmk/q7RgEPMwj5zk72YJ583z\nm+ROuaRgvlTJTpDJPcjse7kBo1guVCmN0sai33282Am9VSZC0iVawaeNQHDRQzjG4bhv6nLmiUip\nnYqbIV9dE7Kmu2I5kmQxUL50UxtN2ClAV0ORMMfm0d5az895vp14evmK6+snvvrVj3jM5iOll0KR\nyk3foNfOuuVZEFnBP8ako5jT+6Nwu1x4PD+jtcZ6fo/ixOA3t0rrlccNPvnk2/QQ+Ox7HwDwy1/7\nFX5JAr/hn3vk5Vf+Pp/7bb+dP/2H/iQA/9Vf+u+5lBuyBB63Z1zLbdo0iG8IeEFlvPsDBVCs4C3a\n6L3MAmQJQnUSau1mfDv4rTByNwHphvJwOOnTA70oxTf20upEZQakHyOsS3TiqW9CQUyeH5TTw8rz\n8uzOQ+bb9Fdq8vDkbcY+rEicaC4yQ9LnXJvIlM0ls9vwokksqDY0IdZuobfj/TpIwknFFrZ72Jsk\nBpVhUg1chLJsiWVzpeJ64rRu5LO3dk4bKSRSjeSyc3u6UMfBpETCKpzPJ67thkgje5beaV05xQx7\npQX44MNn1FKnYORWrnSt1NuVp6cnbvuVy8WMY99cXvLm9obaLuzVbBCqP38zQz2zrie2ZTMj5rb7\nfQtoB/V2sywBcSl7eaoMC4xAJPTD3qS1yvX1zRDJnkiLorZEobGRUiSSiZoIPUyyu63HEfNcVUOI\n4iGJ37aNK1f2m5G07/ewsu+WwRjGfBvFmRJ6J4UFgrnwD9QpEGi9ESW6T6FO93IzJu3AbrSGcGTt\nNe2zqBrmq8fn96Eza0M/YIz3HC1nUdaQgNVQBsA8VG1+3ry9NQjsqs0LoUopldbUbTd8LPYArZGw\nLoHMz6eoBJIaLSJImkrXGFZyDmb2upxJ8Txb7CkrrReKNs56Y98XM9Dm7e8VciKHO+FXCJzOq5Pz\nrSM1HO8ldBRbR0xwpAxSkNaGxUZbCkipN2od47BNW5rvdn16rT086fnADs0szDdKbfdxJiMMtNsC\npHcyYH/YJm7oc0EDGK5ktd9txnK06I4AT5Nuzo1NfCO65zkMtCqM/qn4aH0b8gvBCj71Vt69B8a0\n8lcl5GNi9G6RMlo9PkblUF+lSM4rQrA4lnWdcHMIhgZZtICd9McpIaRAyMb/WdeVbXvi6eWV65NX\n2bVaKCtiLq/hsD+w8EtbvMXm93FUitGKwGhKHjtRON9hi4TFVBJNb1xvr0kr8zVDjDaYmw3Y6cTs\nMu6x6fdWGUn26lD4VIgQLMAWyNl713JMrMOEWq14K8ZN2W+F4qdZoplAWtEWUL0zVhwRFV0RzFJB\nJ3LWzcFamwds61RfJUnsqMfLKEJhF2ZvPXehDlPKFKAPZAZavyCOSlIzFZ1tuNvtxlNLNAqf+fDz\nPIbPcPnIJnhCIEdiDcRgHlzTa2bYKKBEont22Wue143r02s++OCzlP6cvCbWzRCLst/QulP3F7x5\nU1jOmVdPtpl85v0P+Llf+iqdJz7/5R/m2Te+j9/xL/9BAH7s//kb/C9//X/lIb5HFqGFI64oSDhO\n7EEM2Rvu3WrPX6q11JoeaiD7Z90QaTq9h6MAU48918EXsXiJJF5ISmd3rt3rpyvnp9ecH93+4LRY\nYRv0CC8dLvsRam0UX0SXFHn+nnHENELIgdvr65RGj5bRCKUVGW1pYQyqUpohbWEDyVTdpxI0JltH\narGA8BgOY2AWL7pmFEmbr9k9fcEwFfFW1IFeSTcE8nR64NmzZ+Sz3Ze0REQjiUiumZwzF3ntAzxA\nFmvVdPMb27JN4NO2ErqhDY/LQnm6sp2W6TMU08LleuHVy5e03rhcLlyfDMm77TcrmG5P1H5jr/tb\nnFNTld2o52fktNKdlBYJ9B6ptdH0RlWoo/UThU6g10YtSiDNwpUm7LXTQyHECuFG9vZlWs/mnRcK\nKsoSMvgBS9Jiew9K6+73N9rMQWjV/r7RqV1NAYihR8WNX+3wf6D7nUaSYM7qanvcUBBGdD4ri1+B\ncVKYSnUJc2+bTtvuWRY6iOhU7B3ot/GAxCeRHaruQALMk1BCIy/CuftBfOkQhVspaOnu6efv2Znr\np4zPNLhVbugcQiD1RESmvYV0H48xEUJmySe2baDfmS2vrOlEDImY7tavnshhIUUlpmfw0OgjPmd2\ngpSG7d8DxQ4pmhp3sfD4uERCPgrNGD1+zlWXffAxXcHYmxVUdm/f7kT9etenaH9gG/WsXdRRgm7u\nzV3lrS8Serc+bxtpeYOwpuZm3G0wCTrbV72LSTiztW4iaVbfNLVB5nEVJr0en8UhzSHLdWIbMM3m\nDkPAw73a2lNlws1v3XztEAx1U++WjS8/SeY0a//IYa4wUKclr6R49JTB2n5CPCScetdmy9G8pBCe\nwpWuIGRSsoXvdrPFrbVqRoMpTAm4ZSwNfyXbkEeihW33Yvyxbie3UdWntJDXRN4ipMatN+Ju77ee\nFsOBfOMrdceRU1qzex6ctNk6d07sUOs+i6kUjvtdq0nJQ0j0ALVVAmPha2gtjqzZ+01LhdZRcW+f\nWTD6hti6oWA9mLfSkCDjgghvh6rayfUeHVRVg6HFPxtKGu71zQqCNWfiIKv660pUbqURxX7eeptk\n89u+c6mgr2587sMzP/D530h4Y/f7aXnJ61JZWXl89mioWzksHiTiC/R3jMceePX0hvdvT0jo/MI/\n+Sd872c/C8D5YSOeF15+0rjtr8n9PFG3p3LlB3/Tl/jo46/ywetvod/6KvI9/wIA/9qP/zF+8u/8\nXUqvaLiRt3VuQjHgfDr3hblDP1s3nowkN5MKfRC7aB5vBp0Q7dmMo26f/98KLFvvrb3mX5IgnVYr\nl4vy8vXC43vWanp8PLOIHVZCcgR7GKBqM2RHE8iTb6Y297dt4dmzMzknbrfd5+w4sVtGnhkh4id0\nf83sn1Qs3spSNw7krHXjBlmr/kA6QjA6Q1exPLlBKbBXNYTWY666i2PsLhiNIEonnyP5MXB6tEJi\nzdmMdAEpC02gNifqtgwo6ryrNSaeO7u7lx32yhfef5+mylMpvL48sWSDeur1wuXVSyLw5nLh9uZp\nctJeXS60/Ym97NS+U3V/y/ZGQqEuigqclrvDLhFpWDvvViglTO+94fe2p4zGHd11otGuoczxAAAg\nAElEQVRdLZ+tlsjlzc7eC3HzNXPd/LBVkNBMQOAoUM7iXJluvJre6cXHm0BcAqFGqNW4og6BNdp0\n1hZ4a++KGAJj/F4rQDwUhiZu2tzVvAUJ0+QzJQGyCUbabh/A97wY+3EgD2EA5p4FaXspMtatUZiP\n7+FRaBFCtYP+iIdK7SiUhhfYQKprbW6OCb0G++4TcW1g5vuoVESFPJDaHAxEyJmUF1LIPJwsn3Fd\njRgeY/IOwmFo3NU4aCEu5JRY8h1AEjpFC9orrRe6Vvz2214dOpIGGHEY1cYQEQy0sL1aZ3Ha3New\nlIIW9426M6/O6dc3OHhnf/Duene9u95d765317vr3fX/8/r0EKkeuAOcXOlz8KU6Rw4fPRAwyKgH\nAy0HrBq9DaW9UFsh3JEOezcDsaAB9kjPCmmcyhU00tXUa2i3nDtwIuqQsleH1v0E7aS+YJKaX0U2\nN4zDEI5Wj9OViKd3dz/DCnc/s1NlSP8ve+/ybF+S3Xd9Vj72Pvfe37Oquqofltp2S2pLlmRZTz/B\nARgmwJApA/4IPGUI/wHBiIEHhoEdMHAEZmAIIjDgMBaSJVtqqVuy1c+qX/1e956zd2auxWBl5j6/\ndreJsMLREUTtiO6quueee87eO3fmyu/6Pkb78bg2QTw3al28cl/zkR0UkvecU4wOVCpo9ddiST20\nORFsAUnE8HbaP2gQJCdq7eCcO0H4e2NEewq8X4+ADkFYc3XhiBkQOdqQp9MNy01ivc202NAwAWbf\nBfck+m3fumlf781vQEtzp4BERx/obRFzgqN2Bd3MGlSQ2qj0HbmVuaNDdxwSGJLWcvBrpCs2w5Ug\nYPyjBXLIHlytCZpO1LSDilhL1Ob9+XHnXb2YiOgcE8Gu7C9qJYq4+V3xFuB6kvHm/rWix6OkTIi+\nayuXjeef/4jnd3fU11DuN/LFuScad3KL6Lmyxc5zmy0z6e7tPQiZOEGQmG948mzhW9/9Js+ePeP2\nlHn14tsAvHmJO33fPCUvd+x7hTK+X+EUT3z0/pf47j//Nk9OH/DszRcA+Pmf/hX+4ld/jf/1n/1d\nbp5/QIk3pKG8lMt0kp5IJwfCSzAsVoydRpnROSEIlYaUSDIodnD7sNZjOgJl92c5EsdXBZwj5vEO\nynm7cP/geYLl/Wc8zUt3kU8ey9S/j1mdeYsSQZYJrCFbcRVSSNjiSFEYrQ9xReJWSzcV5WhBs0Dz\ndo1ZQ4q3cMHRWBvqIPF2UZqqrgBdtmC6o2Iz0sLBBhfJjLb4aBWjboToBHvg5AR6gCVnlpSo2ohL\noKVE60RnuVfWVWjryn4Rnt0+4tF4Zi6B5+Exty+Uc9tY14iGE6mTxt9cNp7bSk2NNw87S0yce2vv\nzdtXnO3sKG10486BnHqUC7R675mYLbtJZ784UaKrtK9a9j5umicqxNDnGZ0cQDPFLFE3obTCmiL3\nrxyNvHvUuFuEFqoHJptM12+R0InIYHhe3OAWxWwz3DjG4PzOgRyaUENvtdNR+2FDIu567m33zuvp\nE0rR1sdpQvF7HwcSv+/erjaj6e4G1nNke3C70NcibeR8IPUuBLKp6Lt2xPfv7NysEBIh2pwXY8ws\ni69fWy0UCROVUS29/QVWO8I+rnfVnv8X0FgJ5GmqGgmwBArKTYo8Oq2ehwfODRPnjkoAsXS1Bvna\nF4d6ULsCH6erxCQE6+70dpqcaQmBnDxCJ4Tsbc8+oYRm5JSo3eJArtql3mK94jO2Qyh0TQn6YceP\njiMlPZNq9PVHOCcgzsg8lC2MtG5x+NKMML66Dt+m/oevQksF52c4P6R4gOfwFUBp2TOvYvLAywkp\nV39dQu3uq0zlVugSNhO6nwaTl+M3LxHEE7+Nq2KJSKMrOIK3EjsvuAcBew6eeH/A7RfwwFfpSdXr\nmri5zeTumREIPQPJH1zTOFUt7ACPiGydB6RY05m8XUUJJZKXhdbe9fQCpnx7ENFDv8AtKKZGaEJr\ngrAQg8P7Oa3cLCdiEJboETOHfNjvxWjTqSpl7wVRVWjVJxbtnjr9wWilUlqdcTJBKiOvPmR3LC+l\ngezznvkFb7M1uddGLYL0CbpKj/NoYFUwOVqips1lDzE6ubwpuh1wcysRghPLo+V3fKS0+cTZ8DGh\nHNLoEFxKvGkhqYdmF+3t6aaTKNzE09gzzlkK8cSbTxqf/8L7vP/0EXVjWhUI3W8mNnTbCHlhGV4p\nIjN/K6XItu3zWctZCOFEaUZeT7x/94iXLz7t39PbvnG78Oy9594a7gVIrZmv/f7v8uGHn+Pu5gm/\n99u/xU91IufjX/53+Hf/2l/iH33j7xNRUjxR5NI/z0NQJUaaDDn7aJc2QgzE5pyFlNLhQq1OjpVY\nvdDurTx/bRTzTAWORkjDD8y1VC5gCcZ5v/Dxq08AON3dcvO555xShrZN1e+4T61V54cESEuiDBfu\nU/RzKYVsCQf0Dyk7QG7ZydJBZvtqjEPVgJZMStWjX4DQGlEDEl1RJjpsYY45p7Z9xlwM2wTpG0gX\nQHpgbI2dEHv3mLTkubgu62mqmpZlQdWFMk0CYTduOmfl5f0nBKl8oCtP4hPkjfG8t6Y/9+iLPCWT\nq7GnxkWUuCwzo9Hicx7Cxjfuv8erS+B1OPPJq+8B8LpuNPqY3zb30wsjXgVCMWpSYqkEe3CLAr9w\n3lI04dK91sZ8ssdKYXceZBcs2FVki4+Rvlg+NM7Ni7rX60tubj+HSOChVEI24trnheB+ci5GiBjb\nTBkQVfd3Cz7n1rYTJo8zdDFJ7BvtuTdy+ZR5aPZ4Luc61+Ntaq1eCOh2ZPuZ0eSMENHSUAnU5ly2\nmNzugsEPjsJq64zWQc2921L3+eotZaDPq+pu6iZIs6MgFGd3aoJTyP7s9GdDQ6XtoKXTErQcAp0m\niLoiu6m38CdHqgpShLhGV6bGlSCnfm0SmFvKhGAYx9wuLMQUyTEQgz/fI4NyPHMK05NrbKC9VRj7\n5lvJOU5uVSOgtbiyX+hWD32jvzdXozYPXnZ+2BAhxLkp+mHHjy60uHtGHGnp14TjBqQ5obyjQMD6\npqTvIMXVeDYr8CvCnXTkStTt/YvNhdaCEEvvQe9Kzn1XA+TkSq+hHPSsuvE9BTrR7ggqHTt2v5zV\neoVuRhtKOHq+kXjPWAPHDoojvFH7gzjd/4MXUzEHUg7kZeGmh6+mtCC4XDd0EvbYsQKIBVpVUtp7\n0n2jdfm0WqOE2pEig5AYbp1eQFm/ts6BGkR0tcqwokuaCWGZ8RORDAprWokn95wYxWJKrmTU6sq3\nfdMDkSoGNczedDCddl9aKqXsmDViTqgdY6apHqhgj145CikvbForlFqdPNqffHeYqh7RQKA2pQ5F\nX1cr2pJoxXdZY8K8XPYubgjkuNBqpXDw6Hy8HoaC12ilG88NM9eMIIcnkix9l+avUSOxT4q3T27Q\ntxf+8Dv/nJ/58Z8j6Iq1IdVXWg0s8RbCRorLnKRjjJxOp15sVFIOc2F/eLiQlsxpWbCmLDcrN48c\nATutC2jj/PIlr1+/5vZ0M5U0dzePyVH45je/yU985Ss8frzwe7/h9ge/8Cf+FD/35/8qv/QP/hy/\n/i9+h3VVpGciEsMMffViKc9dsAdW92sV3lVCqg5SbMCSoJd2oC79mrbqBZPbRxiDBtchXyREYoSq\nOw8PvhB97+W3uFmFp3JDCtqtEwah6Zg/QnTJeepckDVmYhVidZJ5SsvkX/i8ox0By+/sYLWf3+Vc\nqFUxW6Yc3Q1olaaF3SqEgMWB1vXyIA1kMcxCwu+xh8c2VUIMkxvq7+vovTlPjL6Qe3wIrMsNL9++\nYa1wat2EVB5TSuAn83t8Id7xaAlYn2vsXLmN2YUlMXg0lAXe7H2DpZV8Eb7II/b1KZ++fs3l3gvp\np8uKYry53Pt97xtNH/uONguBszVsKYdfkiWsdGsU7bycXmgEq5i5wrQJbK1AHTYs2VVYJoQG23nD\nLgfh+HS7cvN8hdhAITVHeBdVlpYgNSwlJ5iHXihqRULrfoT4deib0iKHus2quR/WlXBpoMI2CdqH\n0lO6EKNZo5Y2Q2J8rYDSKrUWQohzjtr2Rsb5YikF4pI4bxtrL4hzEEL3ukrBx8ilezCNPL2p9Fy6\ncrGPmyCNlLU/Z4m6L/0clZwitZxdSGVHjizaOh+5YpppItRR00klxkZa3Vphu9SphBxGy6aNNS5Y\nq4d61kJ/tjzIWSKTj4h4QdhMaUbn4vXr342Ure+5Nt2uIrvaFCWN821jwz6yCbe9W6bonGuu3/PD\njh9ZITVu5jgOh/ChiGtzR3a0wAa0L4yq1OubMfO2SYDrfxVwBEJEvJvXVVahgiZjmL212mbrY1Ta\nsS92jUMtIzGg0tuGHXq9vsStG4kdJ9oXaBGX9lrrxoTHxEdz88DxUI2J0L+oEKJ6MGPOnmrdd1DL\nsrictD8sMWkP1PTvp9XIS2KpmVorqSXycHm9SgsfPiWTMueuan6+wRfiKf80Q7IHweacSSFNN14x\n97uKkhyZC1Oc5XdMN7QlWtvn4gKurNKiTvSrO9rimKMopWC1YaGHjZpO5Vato0XcW8FBsXoUUljy\nsGMDugLI75Hvpmrw86lVD3K7KqFV6t6N9VTmhFlrt6lQ+oIWJrm936w+GbnNxjv5V9EVmUFCNw6N\nsyUaJSMSiXFBZCVLRi/+mY+evMfpJlHfGmv4wCewnv9VSsWakCJoErZ9nzmMdJ8yNw5sHbVkvq9q\nY11veP3pK1I+8XDx63Z/f89td9DfysbLly9mG+buZuW9994jLolvf+c7fOnzN4RbP/9vfe2f8tEX\n/iP+0l/46/yz//5riOy0tU+YJG9TMCZImQ77s5C18ZwcRqUp+oLb8AUlBObGRLuo5NqSShTqED4E\nJw6H4LmXKSzzup33Bz5+8wlhecbNmlhypNnYsffcQww19/4aGX0xC9tmSOwIiMA6PXHcbHOgTy5Z\n7xur3Rf9m5vGXhyNanNMZS++9gB79fPvzs8EhVi7pL5hdrTbY/S28ZCEN4x0VWTV6qTfKInt7QPL\nkM7f3HC5XDghLJp4L6zot73A/Pn6nJM947YkqMolKeWTFwC8efGStGTCaaHWyl1eiRImifvRoyek\nS6LVyDntfO3FN3jSi7ccAw/3Fy4aUElsepkWF3TEu7VGoLFXMN72e7iizVwt1xpWAnrpF/xSqOYq\nvr1WqnKE6bbiXQp1A8kc0zQyPb/e+PR7L4nrByyPEm2rSJ/wW1SaOIlbqmLZkGEO2lv27vqtPUS+\no/+MFtxRhB9oxigYu2dZOFzPW3UVeorJbUuWMJFKq41NKykEorgp5dgk11rZL5tbQzTFHnaqNpbL\nQB0Tp5vESoaU3zGXxBwla01JZFKyq5aob3RiEDD32hpIfc4rqpvTSCR6ikEZKGnfEHZz2aZtXrcs\nkX1T5G0hUpC2zecCc3FYTpm2VcJyIEsxGqIu3vI59Mi1dKTN5+OUfT4ec2lr7UrI0Lrv2YEM+2fr\ndDBv5eh87HuhbIWyNRdGXHlHDVDnhx0/Oh+p7zsOL4yI3+3G8GgZrx9tMm8D+M/f5cuPdPnrw7n6\nXt5o6dU34lYGWrz4EmOspvveWJdE25WYvMoN8286kOwIknZDPpufHUKAVmdLbCISV0ndpm7qOOFf\n7TJu70W+g6yZmXMjOiIVY5x+VyH4Q+OTRCA1wTrUXltD9kAsCVIiJPdHSh0iSoOPFQKhtflZANK9\nquoosDRNh/Ignbe1LMS8Qg0zSFQ1oy2jukAJxDUccKIp2EKrO632iWk8GBoolzonzLbbVAkOiLVp\nI1okrGG6vidx6wZX9AVQnYac2lc6M3EVpNg8B+29cKvSd63x2JkUNwV1Xx6Xlg+wopVKyBkRR8qG\nOsSvnU/cxlXbqrcBxr/LtJmAEBOx34u8LMSYCbKQYyZbQqojAftD4KMvfYF9f0AujXJ5RRz8Irtj\n386E9ECQiIR2tIyWBZHoijhZyfEG6y0qSxtVG9u2oU148+YNubdwPn19RpdCoBJychuG3la6lJ2X\nL1/y/IP3uXv8iO9+/B0+/OAj/y6vXyBf/xo/9+M/zY9//vP84eVjbk5P/RwuxdvaSdypRXdan9wK\nuxt31s45acemheYtidZ08o7GAlWadQWXIwSmFSSQevtyWSIxy3SnznGZno0NZasbb89vMG4wMiMI\ntVlffLs6NIQwOR0i/vkxp6vNVG/B54AQkd4mHjxCgLYEMEcHS2ku5++I1Pl8pmqjLoHU3Fm59EWv\n6OYELfFC6l2vO782KXgMURNDx7iova1dKlKVFsoshl++eQkFct149BqebcLypntMXQrUwptyjwrc\nn9/2EGNQEfZasfMFrYXXrRHEeNTjg05x5emzpyx2w/2n93zp7hlvd48kOl8upI7Ilr1MVTB4ay/G\njAUPg68aMO1KsbZhNVOL0MoOLVBL95GqRiuGWOe5VjfE9Wffi+wcYkcuwvQu0r1yflM431+QvBKi\nIelAZLayz42uXK0lznNyiwHr1/hwKB/0Be9QxKuCdkR/xW4CGZJc+S+NeDI36ww5kScHcCXVwr5X\ninQ/xAGailsHRBEu++6h1cFc3QcENc5bBYy4ZA+w7vYP1pzO4qHDQDGqHTwhT1kwbyE3m9SEJQaa\nwBoStW3U88E5leYbTiFiVOevjXU5AJbYDGhnb2PLQI8i0iKy9MgAkcmdRJU2ws6t85e7etaaO4/n\nkFGrXuSMtWTyBY19b6RQp2eZdwV6AoXWzmP0v7lfdt9gluZUF4uzMG5lvyqaf/DxI+RIyTvF0ehr\nHgZjOv1EpKdVD0JljDIhQNWRc3RITq8XMvBdsODy2hlYHcWh4VYpJWB4phHQPUOMwIhmCN1bCe8p\nS+iuxo4iySykrPflcUj3oHR0Nr3/a5LgyNFMs+52B+pZgxaO61IVbmMkJUc0sHagXOZog++gBRUh\nmy+Ie9pZ1kQpjZgSkhwBGb4v7kHlSFXobrujeAtixJxIw1m4HaRL7RYEOWWWpTtyX2XY7ZujZ6uA\nXtnqi0RooCVRd48uGMWLNS9otIFWY9/LJCu2zlO6Jg7PIjo5Q/4oWoH5kLo/FJ2QaMaURwecvKjN\n32PNIXnA4xKq7/BXid2iYrTv8kSjTH1PHaavz+Eaj8iV4/X1NZB3/jfGZ4yRnFZy7MgHHmECvtC+\nffuWDx/dsj88kCWzj1ZjZUYfXfZG4Miq8mfCeRvgKNQ4YozkdfGJJS1gkafPvehZl+DZbSGw1w3a\nzrZ566NtO6dlZds2bvMtz599yIsXLwG4+egDXnz9t3j/V36ef+sX/wp/6x/8jyxjTcjeatmtoubt\nuioj6qN2du5hJDq7861zFarbG7QCez8Pa05EGblYIu4lt+Y+n6RAzEIL2ifQw8Yip0jdL5zPQu7z\nTlrG1XFbPg0+Ofri19tJIXi7VHx8NNWDsxQPsq+kSA7HopByAEvd7y5Q98Klb3hidDTsUi7ktmF2\nYu9Fz8OOFwFhcDn0mE9w3o3V3Sf8NK1IUfU2RWmNSyvEksiDP3Rp5Hvj9gKPP1Xyw8bwbHtxuadc\nLiCBUJwXVPpzsd6cfAEqlSUuXOyCGbz62O//+dUbfuwrX+HLX/kK1ZTvfvoJ3wzOkdKsbFo577XP\nqMfzFvNC1YrhyKFixPE7Zmhv7xB9PMzxLUJF3a7CrM/x/dk3EDv8/ooasa+DsgTKXrl/84Z8gkeP\n17lelFIcObJAVHWfp14olytRwXUqxfiefm9l8mPH4WavHm8kwTd+461LXgh9DMS4UPY21zWzQMju\nBVZr5eHhQulcn2A+/gxlPcVpxXgddwKOzlatrDFN7mSUAE2xENl7UXs8cN6dcW1VH3eDj2Q7KRol\nmMe8VNgeDu6RL9kuGrl+1kop0Fxg0PaNJRyUBlHDqlu2nG4STYXce4I1KXnpHnlRITq9xS9OZ8X1\nzQxNKV1EtSwLJtI5v3o4tX/fcW2hA+7SrsXzAktp7OXIWG2tuSv/v+L4zP7gs+Oz47Pjs+Oz47Pj\ns+Oz41/z+BHaHxzkP2AquUZ1P2TR/svaicQeoSGSpjOwk74P/gdyHRrZlYGMIEomaVrwylvUdxht\nQuhDZVSxIOjAU3vR3hrIEieaFIDDJO8w2HRV8jX5XdDQzcB0fN+BqvkHBOmoXIMOjk2Sqffhm0OS\nHcIVi3jApF8PvyTjur7b845ddn7wzbwlKR0+82iLg5MWkucgRrwFOPIXzCClTF7chuG05IPMp+Ym\nltVoVYiFaWNA8fPUXdA9urleD1jW3Q3daD2moDVKOe5vCK4oMenk7xFb0IxNdzdWDB2RGshht5BQ\nNbRUN/nsap6BfDbFncqbTrNOqwbaQ3T14hE34973tlktm0PeUaYE2HNBtO+E8iSWD/jf2z2uRI1x\n2Fv0Xbm4UV0kkdMN2OHqf/PkxIuPP+XzX3zG+89usW+/5lE30GvtrRP9d4XmmtBxK0opc4cYoyDx\n4JZhi7eQJTHijmrnwK3rytuHtyzLDZ5FGbldb/stdIRzTZHXL19xOt2QOwL08vVblke38PCKX/qz\nf4lf/73f5WuffN3P/XFmQ3tEj9HUJg9RibTqbTq/F2B73wUXo1XnMbQaabtivTUvIRLUhSaIi1c8\nW3C8fvBSJAhKm9cmh0Rrwn7Z2HKmNSX0nWlKzq0yAE1YNdIw/+1/b7T2andBHkcXFCPSIC5T8RWJ\naHQD3ySJdc2krau4QmBvldACe1eHjgDlEJWtXmi6eUhrV5KCK/mqOi8qEqlN3yHKS2tsurNZ41Yz\n+srP77TDo7fCF/bA+vEZ1cr3cMSRajyLtzzU4jYn+UROB8cvxsimylYKS/Sxs8sh4Pj93/99zg+V\nH/vyV/jyB3+abxdXgr7+3u+yt91JEcGRmzTUUqqopxT6PBME1fGZXZFshVC72rmrqJckxFNk2wtV\nCxDnXKvqROhYcd6aQO1ojvPGhFIKpTQabaLHjmT5OKympGjzko65c3BYa9XZnvXPDp1m8q6ZtHR3\nckIk5+Sttr4+rWnxCJMYCSGyno7Wdesq8taMWiPLKU/05Hw+u/BFSyeseEclyTCpNlezmaHWrROG\navOUQRPbZizJOz2xt7dac14SyXoXwo6cuhio9QphD0bu5Ha5GHsthERv7x3Aqa9B3u0xdQXwNDgW\nA3Hpj7GwtDQpHSl17qp4NmBYnLri5+dJAXspLKeMhsP6YyiVhy3IwTlm1hdjXnauWUfVaqPue7fm\n6IacY26vzQUb/4rjR97auz7J6/YcMP17vCBy2agr8eps/QCHYsLsnQXqiGcZlvJhKvOaKlQhBB9M\nUrUHFEMLDcwhfgwk2mzthdiJdsFbdNefM1QYZszBJKPnHUPn7HRVR7oKN32nJRTeKQY9tHjwbgyk\nzEHTJJPFFwW/bnIEfvY+cQr0IEjFs8DG1zn69r74hysZrBdiEpxTNQYg4P4mCkteycm5PdKHkdbo\nSrcoaO2TZr+HVb2tU3ejbtBKoKdwdF6SUIqixbDaZc/gpNSQZ6vqWj482nqtGhrUXc47r846xN6a\njxWzQ/GkXZFhJh6U2/kAANr8+psJpTRCONplOkjCQUB7i7nzh9Kph2nicQxHq/rguvktDleFcR/d\nJsSYyHElhqXzs/qFa8q6RC5lZy+R9vbt4TIfOglSfeyVXaEe7aQo4J46sbdgR8tb8d6zK05Hqwrg\nyePHVDVKE7QVbPN4DoAcE+fzW6oW4pJQbeQ+eX/y6nucngjvf/vzrD/10/ziT/8qX//73wBgf9gQ\nM3K3DWlNqSN8Vp042prQdi9qp2N0FbQFtODO1U246mP4KXQ36JE1p5N42Ann0XPtROqMZFKtLlXf\nK2/f3rOu61ww8hJJCUIKPs5EWVfnEJ3W20M0ELvn0FiE0Z7RNqKKdBb8IUVyjGh1gms1wXrb+3R3\ny2pKs8p2idS6z/a72IkQxFu5uhGCcr5SX2FXz7klb9v0sbbETGiCPFROoqwXl/9/pHe8bwvLeWdD\nIcKj7mkV1oXLXljyifX5Ix7uL6ThwYMXHyGtLMH91bA6OZdtL1TdePPiJe29ncd3T6dtxmV/8Pst\nYCFS90YefmfUuRYML5+D7+LXziwgVG/ndvV0yj7+Qm5ohGJ1MiVEQ593u/JKbLZmksIS184RLTw8\nGDd3I8fKN9WYzyVEwTjyOf2ZzfQTOWwqiLQRFVSdVzQ213tthAQpZiRFUs7kkT4RPf7LuVXuBXWt\nKBvLXzMvuofP4WlfqbXy5s0rHi5nty3wyt/vVQikADmf3G5HdBYvoIScnW+6RLQaaeQlblsvxgW6\ngm9UkiGOjYQQk3M/9z7XtK7qHqplsEnuD7lv9mNznzwt9IzkXuR6YsW+X1iWZa7lOUeQxrIkT/Ao\nQlo6tyyOqC3t1JRA6uOp7Hu/ns7Z+H7Kz6ACDODm8PkruGVCmeuLdhpBubxrkfKDjj9WISUi3wBe\n43hCMbNfFZH3gL8FfBn4BvCfmNnLH/DeeXLArBwHIjVuyPhdXxCO1PRxvGM21o/r/xZxMmrDDcTC\nnExxa4QUaMV9VYZU37RiIp3R3xe93tdt2px3sbi1gtnBxfIb5EqB0FGeUUlY/y5CL1J6ACQwCxpr\nnvMUsstWYSZX9MnbB/SIIwClaqG1QBKvmmeR1QdMawUzJ9hJMHSoo6zv0DsyJnbAetIJrNrPKUgk\nDxKJ4nYCrbEuS0eDjg6xE4K7KlJcIg6gtXLZzpSys10K21b9uuOTT9mVslfq3lxeO6woQqDRfLfI\niF7pEv8uBzdTUnbOylRfWez+Ys6fMBXfteOcrBEi7SROOxCpjlSNGrzVwzZhmLG2cgR2juiAUZCO\nhc0MQjyiZ2YBNsbk1bg1A7VMDCdyzkgK6IyeERbxzMD78z3PxWh9B/lgSqSxakBx+fFAXaTnL8YQ\npydZm5uWRpqLiSI58rabfOabW9blhrev3nCTFwpHrtylbUgQ5wCtC/fnBz567krbe8MAACAASURB\nVIHGf+LJY968+phPvvUdPnrvT/OLX/0l/vE3/hEAv/n7v8F6yqgsXPYz0iD3BbpYo3SeRClGUKWN\nQqp4gGgtgVaEZmDDI6i5t5wkJ7kO857JcY3O61CNxNAg2hEdVZ10KsE4bxeaqRulAk0jOQtJI9oV\nQ3VsmFLBYnTjQPXd+hAwmHrWoqmrYK2jIf50ub9V6EKDVo3DS8g3K2uMLDmy7xfPYuzjRGIgVqFU\nw3SsQD7x59hJ701ZUyR3RViMGUmZaBBfbixVeR/nwH1BYQmV+wwva+VkkUfRCeO1NWRJLDc3FDV2\nlNs+A6WU0AZrDl0cU9FaeBjjJkckNc71wsP9G2rc+fStK/4eyplmSl4Sb/d9clj84gTEXCVshhup\ndQuTUhsiJ9Rc4SzBXEHdn5lL2YBIXBK2gO2jqHXk17piV1SO0N4p5mlUayy6Ht+leN5qjMHngWZT\nFSkzcPt4vg/Lwn5v1ecFVQ6FWYxzA+gxKYHczVFTyDOHMowN7ZD/J0cwc886NIW2+Afmk/sFLqfI\n6XJmKxullO6X6PPiEhduTieagDRlBKvtdQdt5GV1pBSdBeEqi/OZ9kLra8b4m8OmY3Q5nHc4EPXq\n+aUdRQspHGrH5OtKSIF4FUEGcD7fU+vOZbt3ontIrEsX4ORMzLDkwHpzIuREWvz+5iX6eGtGttoz\nbI81KKXkBshR5jM3zmHajXTVXu2efGWrWKnsdfPXK1g5UMyx/v+w44+LSBnw18zsxdXP/gbw98zs\nvxKR/7z/99/4l95o7zqCX7f6zMyr1ekjNQidDp+KBWaQ59yivltAHT+D0vPwJNg0Cou9zdLK1ncC\n0Y0dcZGSmd98bQohzlabNiNJxC5G7Tl9KR0L5CTKA402CcQglL2H7AahNGOU7c1iNwdTpKMESXqQ\npMCtVAIFbQuNFR0mZOqDfgmR0g0o9+6+q61SbWfTQmkVlcKmZ1cC4ZP9kH6KCRLTvKYxJm99inkW\nlDC9lHJOmCl72WgCKcc5SSUyoqGjhUZgnwNQLbBXuL9cuFwqbRNqGXBsYd8vlNJmIaYDWVJBu4t4\n26+CpfGCz0nfzeXPV6iaqbl7s0RUA7XZQTY33HW89oVPD/jX/VD2CQFfLvtVoYy750cgVEJaJsoV\nibO9arVRZWe5KpZUIlY9QNnEi7chP5R2Qcpr94Qhk2XlNBYwEew2kO+V9Hajkbnp+WeXT1/SmlFW\nN5TVKBR1755QG2v0ydrMkCUQRgo6N9TWOJ83atnYP93YHnxB/Dj9Cz763Ee8ffUJ5/VEWjIyisyy\n8+jxLSGv7A2ePnrO2769/PznPuTu6XM++eZ3OP3Bb/H0l3+Ov/LVfwuAP/y9f8KWIrut0IzKzlbH\nOAzsW8Eu7uHzUGS2UKU2t8uosPcW7Bij2hWSOXd3Zpq7Tc89hm9mVBVp7pUzDEk1KA+WiVYRjK2c\nqTPseSVJRrVAXEiLosmfqbpVluDKwzUslB3qZDG7cWLtAa5EZivCqLQsrqz0Ff4w48UI+UAnQ8qc\nxvgWYbXM+QwPD4pq4jTHaUUxskaSnIgsLMFbvrfxhlaF5QHeR/gzN+/xIe4TpjQuWmnnRroUbu5O\nbCOfMUVuc+JyudBa4+l6IkX/m/u+sayBJB5uvjeDYDx+4mOxlUZ92Lm3B96GNzyOH/D49ASAR+ER\ndr5wuTwQa6HIsEiErAFI7GYkDUiotCHzDxHbK7k7bFetWJ/7dowkiz+3HZGdYc/SW+PaXbtzm23t\ndV0gKSlkViKiF6z0NuvSi47ggiMkzfkm2FXbyvweSxjrRSKY0M2OOsrWW5B5IaWFGH1eNTnI4WGJ\npG5fY1qZwd74ZlkkEkNGglFVpwl1EiU2yFXIu1DK2jciIyvPExRCgKTREf4xDwXhFAJZejEsFemq\nkKCGbr6iKk5eD8PGIAttU0qnWhQrSEcHVXqIfRbf6AemxUHALQdijlSrboQ5KhuDfa9sW0G1EuIB\nZoQlc/follwXTjRWEnkQxC1RmocTl+ot/WF/EBBiKqiZK2mHSANHor2r0O0TtsMYtxbDSiM03yho\nKbR9SMcDdf83iEj14/tLtf8Y+Lf7v/+3wN/nBxRSP+yYbtrG3EHOdp96eIxZnTdK7dqP6t3CCzpi\npSOS4ipGYXx56aZgYlfu2d7Wk5gxPEl8bMsldkdvf0577/iAVEMI3XTOi6o6lHB9Z+IqT0e6rlE5\ns8PJ/V2VQW8P6XCBN3TI2IfxW0+wNxVKX6Aul41t2yn1wrZfPH1932dLxczRGNPRGj1gzhB6KHNX\nbw2zU39xcNiU8+WB0+1pwrEhOABX2+5xKmEldhVhs4q2SNmFy2XDyjb7zg6n9iKmHLJivxYA4ooK\nOf4boMYjMLnW5gal/a1aXT3Zphne0b5rbbSKO+JkdiBQrXb0c8QQORTu11tdtRjTHPSj5esRMP6z\n0qrD2LVO+wPViuvxmIGg45pu5wewQE4XlnxLLDsW+060T66ttRlhMCZMMy8Wbd9JeSWlwHkoaepO\njJm9vWVZFnJcqGMMB9+1LcsNsUfRjHvxySef0ILx7PkHfPeT7/H0lLHUd5D3Z+rryt3jR1SE2BqP\nnroD+x/8wR/w4Rc/x+MPnvD6zSfcfe+bfOWLXwTgJ770Vb7+6mM+vnzCgxaC2ty0vN02rLr5btm2\njkb150KCn58FfyZF+3UESIQIho+dkXE0nI4teAtdVI7x3OGq2NED69lIEoS6jx37mSUIkvNY0pCB\nRlf3OssEdnYkeFSQ34tCbUZtHVVfA2Xm1bjDeg2OooUkQ3jrFhsxUlsgBEWuHJUxIYbMzd1jUkqu\nKuutpks7o1oQyZzSLXK6od2MhRaeny/8BE/5iWcf8QF3LP27vAU2azycH1jXE6Zy9fwGtm3DJHCz\n3Hjbrk+lKSVaV0AZvngtyy21+Xyzb+5KH3Z4eHjg+Yc33PbEA+2bkVYNxZH3GfUy0Tc39QhXu/+B\n4qu5MWrfkvkXUlfTSlfvOaoy4Fjn+CRzl3yjzc5AyIlljbRQaaERReYznGJv/4cAWXzOHu0yettN\nA7WjFuO6SZM+F8e++UyTljLsalKKtFaJS+LaH1GygXoIcuxrBPM83bYl5EA2wcaIjJGoEErBBNJi\nnOxA1oatjKp2ekJ4p2tAR47Smid6A97ak+iXVsVtd6aqXhLrrbfw9l296O2v5ebFCWrE5bB8oY8T\nES+wFskUK1foUb9v2sER9mmomy15wsKYK8vV/e2jQxViMlo7ujspRpIlBwAG6MmgCminETgdwlt7\nQ8ndqOJzfKuNbdtnx0RUKPu/WY6UAf+ziDTgvzaz/wb4yMy+01//DvDRD3vr97fp3kWUbO72nTd2\n1Q4R6LHwbh8/0a0hhT/+iq9DNv/GeByHV5Opt0QkBNL0aFGC+eKlWHexPoq5EHxwqgS3K5iow+gw\nhKvMs+O1mbUlQ/5+FCDgexHPHDygb49tOTL9atuRerzPf35mGEWWTjzay4VSd/Z9o5Qzl+2BUrcZ\n6aClIZamWSJXRHRgfkc3HL0iqUffF9VGR5EKqRe1e22+ZMRRkLhZJIDJgFM9zqKVNqXjc91Qd5K/\nNj+Tfj2G3cB12a527ORjCrPl5X+sm5tWpzJ6O6+/VodxYpe/XsuZOxXNjRmdWzQW0oDH+USEJSXP\n2uvftWqPNxB3mR6F0pyIoEP/hobQd5j9HHOmnC9sYWMLF2SNk3+XNDivQxOLKWibLToRobRKqcrS\nAnEx3nvvPQAuD2fent/y5O4RW3mgWZ3oaKkbZd9IeeH20WOESO48oA8+ypzP9zx++pz3MCw0Ht2O\ntHa3z9hq4eHhgQdTzD4E4JQyn373Y770Y19kvV2pr77L6UMvpP6DX/sP+Tv/y9/ln3/3XxDWwKXW\nGQ9kJfhucBNa8fE+Cj5voTqCE4P0dvhowXYE16JzQk2njQeA9p0q6q1QDUIeGY2mPQczuCeNNUZq\nYkHYpWI30R2TLU7DQcS5fxa6ASYwnEXLXijNC9tmSm4ROvUmaGQP5ovlMuKg+p/U0DMZ20xDmM+D\neSG4pExahRQKe18wVnMUd5UTN2nF8sLaDTCXh8afvXmfn338Y5zSY0rREe3HFgLbfWNJmVO+QSTO\nhbQ05XS69ZHe2+FjDk4hEpeFuu0EEU6nE033aSwaYwYaobpRIgVuoxdSK5l7LYRlQWtz2sMgBw8x\nCtotHOLcDImYe601ZcztkwoClNZb/ikQc6R1sn61iuJ5a6PXnbtzalqEnD2DMGUjresUNWlnQuUw\nbF/aNDkd2a5Ha+/gPyYGvcHzYa+NeI+Wv3OqWiszK7W1hlFIaWFZorfExnyhne4RYj8P5lyqeAJA\nTs6v8o2VcW05MLmvwa/1YVFjZAfOEIF8Wkj18Lo7n89INm95hStwIQSWGDFJWKospxv2bhosS6B0\ndCctgXhVVeQc5zrlAEmaz7CMa1KVYF6sWb8Xqb9v3y9+XiExypWc82zdSWCu/eCbpGGKPGyRWvc8\nqq2SgqcOlFreiYGp2sCUvSn10ti3q45N40Cnfsjxxy2k/rKZfUtEPgf8PRH5p9cvmpnJwXL77Pjs\n+Oz47Pjs+Oz47Pjs+P/V8ccqpMzsW/2f3xORvw38KvAdEfm8mX1bRL4AfPcHvffltz+d/356vHJ6\ndHJrg66uOow5/fDMO+nqowN5GLuDaxuFa2TFXxsZXTZ7vkg3v8T872nDRruwRX9dh+3ZsXOKizBM\nQC3IlYW9I1kx4uehhgSmODpyqA7dsOxdtd8g8Uk6HJXBW1at+S631t370XKoPhwxUpq6S+u+d+6J\n+o51L5tLpdt5EuwAaimk6Dt9NSPYMpGxoaAZ1xPFVSyM6t+ddN0o7oG1EyJFhboVJLljb60PpNRV\nRhFMd7/i5hEFY7dj2t3L27u7PugihNqJ2mFYn45B0b9vEGjeHrWJYgqluhgA9deG2s0DQvvfGp5z\nA5AaggeJTv63xoC9nGfnLvdRnKA/XIEzCcyJ8jFJR96O9p0YnQi/ewp5zhOqbyGAVS4PZ7Jm4i3U\n07gWcLOeiC2yWGSv20QyTaAMlOpSsXPh9s45LX/yT/4Yn774mFcvPnWTuqZ083JOpxs0RPai3L/d\nuLl7xO2tE47zmrkrF5a0Qoq8evUptauG0hK47JAzrK0hrc4xvKwnyi6Uc2O5iXz83e/xpdtOcP7q\nL/Ozf/DP+Po3/ymndMM3Xr6g2qVf74AVCLYQO+I145gMAtVjO0gdZezPdoCBajsNwHfYNmzvBY+T\nEU+zj/F4Fn0n6oGsRgGrlM6fExNQ4VGM1FVZYupZQv1v7o1GAYRGpQ111qZstdEUtv1CSrh1BlCz\nCz3SkshtZQRY+1gs7pxBpXKgHDB4dwrNEYhFMqfsKE+zxyxp5QkrN2lFl8iTex8XP7l8gV/4/M8i\nwIMqa0pzV14uG9kCN7ePus3IPgUhNzcnRzdM3kFNgDmu13VF6HY0kpEeMNxEOOtb1tsVrY1H+RFf\n/uKXAfiNF/+EgLKZESQh0dW54EhPjJEUIiqColfzviPxMURHMToNw19KxEU9LNx1Y9Sh1jZxXotV\nR90lHgpwKRAj6ymRkof3znbwFAO5ya3TM97lv16jGLNr0A2R4TCinMhoFxnUpkRiv+Z9IgqRFM3z\nAi0QJR2RUsktUkxANDmv8ooKEkIihkjR4PdXPbQdICzO02wN8rK6kOYqT8/2RiR4ixsldfK7iXHZ\nL4QkUzXXhlqtAcEIGDdLRiwQOz9QIizrWAMbIs5Pgmsnfu88JPJUlrfihrYxGCnEaU/j1w20FbSr\no9MijIgvtUpOXgeo2hRrgU/jat3+oLcvBmHezDsQbrUyyPNXdI9aseo83UDixbfvefndzYUt/6ZU\neyJyC0QzeyMid8C/D/wXwP8A/KfAf9n/+Xd+0Puff/HJ97XyegEkVwvo1aTin3lIyr+/WLr6Xt+n\nouvwZudQHEopu4ptMYJdBRNKmGouMaNom5ZWunN40zS84BrcOaOP/EbosPxVMozn7QWZYcAHUd57\n68y/c0UORKmmHjoZIQWdJOVozq8YVlelFLatt/Z2t7VvrVDKjmql6X743oxAYtnBUl+Ihl+O/0ow\nJ2+b2Sw0VL0dampoqDyc3055+Los/uAN7lZo1K40kmCoKEUf2OvGXspsbani/kETNtd37r30ayJ8\nf3hkn+TUrZS4UnU6jO6WCWHEt0z+FLOIm/dmXO/+cIXg8moxObqJ3dNLxB2YpbYZ6BuCS/mHinBA\nzHr1ANZap4LkuvhvCHmJ7Fx4IGI0ts0LjVNaeH77nMenW8qrT8nrytvXQwTrTtuXThQPIrzur33t\n9x74qZ/4Kh++/yG/8zu/g8aG9rZvrhs3d095dPsYlUArO/cPr/21smJAtcCz9z8gnW6mHD2lRF7v\nePXiW27LYQs3d042fvb8OS9eX/jk07esj++4W+549UffBODpsx/jl37ml/jdP/w6v/3dj5H7T6id\nd6WbEVPkydOnnC/3tFKndNowtCprjlTzrMRBRB9zQOiclEj3jJFj4RMF2lgEmZsM1UZR5yOJ21Rf\ncQcbahv5BOtpwZYTsbuuo4LKEbaNel49+CambI3zVnlz/xqkcXfn93BdPSNTIp59eTrNe59SIlDI\nyzFnTfs86e1Mc+sSNaX2h/02nxAyOS7kNbM+VH7h8ZcA+MWPfoqVO16d39DqhUSYBebahNPdYy6t\nOI9oWd9pQ7mC7Jrj0r+XdE5Qq2CDD7oQ++K21UpKC3c5UnpO2fuPve17s95RLhfO1T3frkN9U7/P\n1i0KJPlmxb9PoLS95yka2NXcLgpdXYwkZ8DOB1yh+pwO2knoQw0XkWQeFxQDTcsMnl7C4u0i84I6\nxGPyNkIPNB9O+oF8tdkUDvX2Owu7ja24a8erCqkXtQmlde5rrce5AVjw6216ZOyVEVMiI6fV5x/x\nP83ILwxECi4MGnYO4wg9DsnXpuAeekNBGulB595ifzgb0rM0a2mgQk6+WbVqdAocCSMu7mc2eG2D\n/G3W+jzsSldVnWOmhoAU95FCmxfZR2wzEqLbI+DXfGYP92s9uFfuHzfak3G+JkQ8+WPt567OAWzO\ntWytzDa600cASwRzUdDzjx7x/KNH6FYoW+WPvnbmhx1/HETqI+Bv9wGTgL9pZv+TiPxD4L8Tkf+M\nbn/wg948OTdj9ynCMCE0GxfueqB6D5oxYV6hOe8Q6b7vM+bnDBnrjBEwSA3MFR3WmOabgqu96NlK\nIsoolq36Li3GODlR1/EBFpoXKQKCEtvx+cbYxQTPeJqLfo9AEc93Gv12cM+M1gq1GnsFlYp16Xiy\nxN6E1ImQtdbJkRrGZEC3QBAnufdkeSfjAs0X4KZtqjBSXDpPyZykaQci5b33hLaK0ijlzOs3HwPw\n5NHTvoMSPPShTquGoZ44l41qjrANFMBanQ9Z7ejU4FBobY5CQocUrrzGrBc+GC2AVp18JhH3IApB\n2FsDrgpzdbuDEdbsD93VOOw7TzBiOrzHsIM3tmtjSYnrHU2TRsxeFIeortQb3mQ9TFNiYN8q2i4H\n6tZ6NEHc2ZYL9+2G1LVbH6Sn3D67YV0WLCdqKwxpy/29eyDdrCv7w4XS6kQS9q3yT37zt/nlX/5V\n/uJf/qv8n//gf2OrQ8pcuOyVR48VYmQvBX3Z1TnriWfvfcjtk2c8ffacZVn45JNPgCN4+cMPP892\necvlvPPihQt2tzdv+NyXvszLuvG9j7/Dj3/xI950+Xv63d/i0c//Ar/y5/8q//ff+Zu82l5gmz+z\nz/ITbh+tfHK+Z9vOnGKmDaQugkbn41k75gfoXGUb/EI9YidmFeaLsyPJDeHgV6lWSqtEG/llgclY\nCzuXy8757Q23j6ubLg6UU7rdgXb7DNVJ/G/VhRLlUrh/feG8v+XNmzcAPHp0y83NjXN+FuF0OoLH\n13XFWqapI25aKnqVfdnELT1MG0ngtg1CeWBZHcnhzYU//7mv8Cs/9pOAc6TO9/dELYgamxZy6PFD\nIbLVQm07t7eP/NmaZHon6zt/tC9WYSzCmVZ2TstCDMFtGiRw0Bl3Fsm8ebhwtsL9/Sse3zkieZNu\nud/+iFPMxIYr9nJHXiywa6FRfA7UQBgIcH8eaytk8Ry72ufamJyXo+pzukiYXKcRDm7qSE0wI3Qk\nL603aNzRoKgkTssR5C5TdGNIlIkgAYQcaJMX1VXjg8D+DgkaJ3MPsnlXjjmZ3GhS0Y7Gls2vdTy5\nErSUfYoJPOokEmJyQrg1Ur+Hvo74+qXqiG3IV4HHIbDG3FG8RrBriyAXV2h1ewVP7hrh4l6YjCIo\n1TI3Lqgg4qpzpTnS1vcXOSSC9bk6ezblrGlJJFuctN+cmzgU2SkoJg1wj7Uoh9AgqBvjinhIuKAH\nGo0jycuy9vX/KGJFDl4t0u0kWq8jxI1BKztijYBOCwtrUKtzh2t1L0Mt47mIBzL3Q45/7ULKzL4O\n/MIP+PkL4N/7/3r/LITe/an/THpi/Syy6C2WwDC8PC7q+Fz6734fg/34DS/Fxm7PDlTINBJTQGVM\ntF4dW+hVajLCFZF5kNb9njvSBcd3UoTQIWvtzMlWW9+p+G8MSBtAYic/N9+NShwKvVHRK6UZoYEx\n2oCgunhXqhtW1u7v1D/BK26rpBzYd+m7wX7+3U9DTQD30RqZWzomIoxg5r8zuditI0buUm3xILg/\nbG/db8YMC71Qme6/DsnubXen8Van14rW6t5d2n2fmMAkwdJUngzC6fW9t+Y79oKn3Q/yrz/IAZWu\nKOm7muON0hWU4CrQ4yW/v0Mh2q7GlFsjhJhcxtsXcXCrC4niOYlRew1qTHVS68VtgxhydyzuxUtW\nWm5ITOTLjq6NGnyBPqeEPlyIdyssme1+45BIn9gvO2vKPbOszGIhEMgx8n/9H/87X/2Zr/Irf+HX\n+Mf/6B8CsF82Ao0Xr15wOt2yritPnjwD4HR7x+n2jv2y8f/8+q/z/rNnnM9vAXjz6QsCyn0t3s6I\nibs7bwlubx94+b3v8fhzz/j042/xrWA8fd/l75fzPXf7hT/zla/y3vqIpPD4ib/2+NEzHh4euNzf\nE4PbboyssJBWbPcwZhMf2yM4Xk1QDbMVazgyNSC/w2ivAq5+G8pEtUqOw9qkK6rGjCq+KG+lUvZK\nuxNG2rEYmEZUjWrWCahH4R4RtDa285nXb15NNGe/bDx+XMnBVVoPQVhvOjH8tLKf7jidTod4ZJDt\nMVrw9lMojdv1NFVutZPWnz7Azzz/CX72w58i9eLU7h+gFaRUUgi0GAhdaJBSomrjdn2ESfTFOh+I\nlNXqar6B3DOyyPZeWBl0HyHsmG/XmxOXN2cvrvadV69ecfvMhQ/beadW5bSuUBsWQzeIAdXd2zTi\nc7G2I7/Qg75lIgzJgpuyMgoJX8wtGjElbPgAZrxaM4Pu+ZdvO2KRu89RN5VcliEz6Bvk4dFnQmnH\ns9+6mqtWJUgiimGzgJJOH1ByTH2NOjZmQzUXgpBynIuVNohyohZ6m7zNBXFdszvhh0yMoXdM+vc0\nN3RW29CezWoCMR+qvVIcIEjJi5hrsnkrI4fQW7ZjzTAVmtV+L4yYmMXSGpOnTUglmKJRR5Y5MUUv\npPKRIVq3DgR08n0relBzBkk/ufWDi7rEs27HsyZe1MbUaOZO5kOxa4zuVCOlPOdrGC1E9XlXe5C0\njvs7it+ISe6I76C6VGrxa1N2pW3KfjlsT66zSn/Q8SN1Ng92wJFj9wH+sxTjjHNRVXe4bYY2/ZeK\npWs+zeDZjM/wNk1vCV0p+kKUfiFjLxqYLYwQfSdi6pW+taPi7X+ZWrWjOlcJ4aKH3N2CO22/c86+\naPvO3iNjwHdlTT2Sxv2t3u2HI8cOWETYtm4iVpoHEXdk5ZoDhRwTfEqJm1tju4SrBwpvEzQ3Ugvh\nKNC8pzysGrx9OK6qWkVCQ4LzEoQjtuLh4YFlXUEq1apvd678vsy8LbLvu0eSjPZ7c8XEiFYQCbNd\naf07CAE172HblXxYCY4UqZ/T2Dm0Zl1J5JENjlAcRU0Qr4QkSg+fPlp7iHl7offZR59/nL8qYO5C\nLSMMNLp5olJ9HAVhJIz79faWXy0GHfofqpBWlBYra1rRtHKuF9bOPblbIh/d3fL85o7vffyCFDKX\nOlx4BFFhb9U5ASFO81ATI8fA7ZPH/PZv/gb7+cJP/5k/B8Cv/+avIzHy/PFTYszEkOb3fPHyNdt3\nXyAS2PeNoMqTJ67ae/PiJc+eP6FhPJzvyTl75ASwPH7M67evyI8XPvroI15+8jGPO+/q9r0T7Y/+\ngOVP/SR//df+Gi/v33Dpk+Jlv/Dm9ac8zjfsIljx9o6fnrGsK7afacGIerT2BHEj1ZkuYGjbh8PF\nRBVrreS8vItO455DcYmINCSdSbMgOqFaMSse/Lu3yS+SNVE7R0a6C/VUUMZ0oJmluh9Rfxb312de\n75WbdZ0bq+HpdbpZON9cePbsGeu6vjOHWRBKVy/Lbiw5YF3teLLEncLP3X3Ar370k9hDYO/Koqrm\nn50Sl6asIXE6OSJTWuVmvfW5orvsD5Q+BMinGy8YGYjUEavEFfIeA9SiM6orSJxqNWsgFnj62K0x\nbm5uOJ1PlJicjxShzJgrCNIIQd14Vzj8vvr/p9TJplFm0deqsiw+3vdLAWnHHEUgpETTgqXAensi\nn/r9TYWY3b8rJf+++yiigyPwtTVHNbpmehzD8sBbhodtRGtuGTM2e265c9AOCAEhEXuw9li8WzWa\nFVotFC2YKDe3y7zGd7dLv+7OExu9rWhGTEJRcbsCmHMbOP81WOktLIcQjta1UyS0F4ZjAwvQyu5d\ngeYIoUllOhkoQGSvOyEKmeAcRLzbIup8MrEeAj6KWrO5gQkhdfRun+cvISBSyTnRiky/wpCDI2Oy\nT5POg5bT0f3eQpwIFOMSWV9rrLfq+xzRx3VTX59rY/Kumim1lE4Bkc6xvmqIzgAAIABJREFU9XMo\n1Wj6fajj9x0/2ogYuVpnOxQ3OE3A4URtAk37zkTRNmI26ClDhwWChINfM/LWwDkUHPwz/7zobZsm\nAwEaE+0Qwoq3vsJxE/2Z61JODdOw0r+n36mI9JiUNkl3ENDWur19AFsIse+Q485wig3R/XG098PD\n/8vem/1KsmXnfb89RURmnrFOjXfogeyBpAiSNilOkEwBsgHDsN88/IsG/OAnCzYMv+iBNGRDtkSa\naoqi2Wyy73yr6kyZGbGH5Ye1946sdpMC9HL5UAF0X6DOyTyZMey91re+wXqd6ZOJsUAd6+nfa6aV\n9W+UNo+vX1Ea2c9gzIDewPqgWvEseSFK1jgVkdV/RCKWen2McptWLMeCVOi7Jte3DsN4w7zcKx+q\nqO9Td8nLSmzPKZFTLTC66ZOgGEqFeRKdvybG4IqO3toi0DhiiNOEb8lYK2rKWc9FybqZmMp985j1\n3BQ1OrW+cSRaTqECGustokXtaaFuK2fFZx2DtOJTvNWxrmIjyrGwyoEAiAlispjs1LHZSQOWcFmI\nIphRx8kmJXwd4Vxd77ieLmBWCXU2pnfCrgjRWsySlDcRTd+EnA9Vvhx5/vQFn/zNp8Sj/uyH3/8N\nfvyTv0LKwPbinFToI6rNbqTwSD4uPHv2jMeHB7Z1IRuc5YvPPuWDjz5kHEfe3r5hf6jfb9mz243E\nec/sDZeX17x+o4KS8/Md3Dnc7SO/9zu/zydf/DV/9K//BQCPj+r/td1tub17ZAmJ5uA0hgEpCTcN\nhFjFBPVaOCzZ6qKYko7GU8ndn2lJSlp3xjH4kXETOldkPmY2Z2c4mzkcF3zIa6OUtThPZiGVR/1f\nWyaTjvdKEWQ5YoWeUWgLLB3h8gwmYGqnUGJiKYk8VxdmU5AqHZc4kpdI8CM5KQ+kWV9ECksRtsYS\nskZj7aqw40PO+N7Fc7795AWpZGJ+4FBJtUdgchuMNUxWrQu68eCiZoNj8DjribHgx7aWalMltSgS\nIzrzqIfySvWet8YzDOu6eP/4QDrO+BH8EEjLkVTNWrfjBj8O+HGDy0JOUfPnAHGO4mYMC7b6hnWS\nnDN458nMGJNAht7wdF+tUnBhIHuHtY3rI2QzI9YxDI5xM2BrY1JCIlvl+bg6tuzcpuDB1Wggh9qV\n1M+ZZs0BtVjEeEwRUhPLiGCcp+ZS4KxX6wx0Lxl8qE2WrtVtrSl5JqVHSskUacbMtTETwTGr9Y4x\nYBxjJ8VnitVYlJbVN6e5FxM6vnLEedEFza3u5TFG5Q3WBAcvgcjcr3ExijZlUS/FTqyXDN4on0x0\ndGnrfWMAm0VjcrLrCRD1roEya0JaKUjxdP56WTB1MlAoGuHU91JtWlsygw+l0ySsVbNda5oYYs0Y\nNcZWwEGpKTlJF8uAXrOU1ctKiiNWZ3NqUaVFlpDiGhmn1/VdvvbPHj+fXPT+eH+8P94f74/3x/vj\n/fH++Pce3xgiBQ1m1KNIwp7kGVGk582JNN1DdZw2ZUUQqkvx6bFC+HW0JNKNLrtqytQKuRLSjJwG\nJpuKSkGSRmBunfBJ3pI1anNwMkZLKVGsxUhSkmrrBJNyqJrNvasWAQDDMFbyacJV8lzLDCsYshiC\ndcBq1gdUF1aFeSnv2kAYo7wvU3lA+v1kdQ2WiC9ezSqTom898FUMqcSugpITh+5cimI7orC+sabz\nmSRmxCpClYpC7Smt5y3XDsIoq3TNL2qmcQ2RspWXRUUjK29EQ2Fthdb1fGdlwiPJoNkO9by1OBjr\nMUVzu94dz2Z1rzdqsLgqQqTDUoocxt4lFUmVv1YQO1Bc7qMGkRq2bDLWGaKtY8/mNlwJz0VQxYyE\nHnQ6y6LKEon6WUYHRQNfp83AZjOyPL4lpZl5joRQxy05Ian0z+68kHIbv6g6CmuYc2F7cclXr5U0\njh95+eIDPvn0b0g548cJX70RvBn46IMnhOB4eDxgjOXhUdUqL199RP7iU3766edcnu9w3nOoP5vG\ngbdvbtnuJnIUnt885exMeVAPt3e8eHGOvP4C/0u/wj/9vf+Un/70pwD85et/yZPLc4Lf8ugiPqix\nI6i53kzBGw2mNsbipqE+T6UKFDIO0XGWGEx12nZVCTZtJ6wVvCkMm239rJ5hq5ycTMIPpj+LrvI5\nYjKYrOaQbUCvLuvN8sEqT6qJSUrE4igpVi7HSoy2NdEgLjPOqQhEfEPdE3afGMMWWWAuid009js0\nm6yRTYfCq3DNr734NgAf+h3P3Ib4eOTeFeKydO6NKQYxEWv8mnVZH4xxM5FEEOsQZzoXFPTZtMbo\nCFFU+p6lpT0YbAiaQZeS8ne870R85xxutwUfOYuFwdn+/TfTOZfujAcD1iYGr/mdUKNlxGieYUkd\nBa4PlSYkGKdj+5z7KFHQ8b0pjtIUv10UIBpfNRXGyxEz0bl1Q/AEZ3FuIIpFSu4AWCbhrMciNdtP\n0XxQE1uKwVmPw+K9pWR9Zorq5bFUKoWlTyKmYVOtWywY0Tuurk0OR14yJTs15XQe13hXKbDsM0ez\nsD0/U0Srrv3WOhxWx8n1ug5u6DmEbcRagieXhPUWf2LxUJao2XVBIGbMUhFu63QuoKRkcIFckbyU\nGnnbqLmxKd2GBaDYgsuCrer73CYDSQOVmxhKUuprc0wFRHMGLbabZcIKSpqqLhdxPSDbOhgG38UQ\nKaeaGVH3B1vPUU3g8M0UuxRM1jzEnDJ5XvoUJkfl2JbsulCrjbUNqbuj/23HN1hIKaGt7aU5l3c/\njAimR1oYbCXHiYCVNbxSFQCmj/Gk2L6gqG7eUqhZS3YNMKRKopsD9uncT5QgoMThpvJrc2Src93V\nEmAlAXYVHitcmKojurcOHww5WbLLFImEeqGGYWQcBnyd94oo0VTPS3VnBVyx3fW5fUFVOwotJPlU\npdjCMo3OJikUwqbNmaWO1ALZ1KBg04icVKm3ngyRNZYEAEvna6k9QD03pvKD6mg05byq1uoX01Om\nm39TSgl0/x4Rjc/oZE1ru+OzQ4m+TRJjajGMeMjqLG7rQ2Mr6VBKs00wqwLHNY6UqVyI2K+9LuK6\nQBkpVSJcNxPvECn12qjWxfViULCmxufYTLIJX1zHfK0UpDriG+OQbDFLvRZmDTyOEqFkhk19YcyU\nJbJ/vGVeDsAa6VAkU2TRDC8RDZruhNTC4PSeCmHCec80Kmfp4fCWzW7g+uaCh/2R8/PzvrF5PxCX\nxNdff00R4cmTG8YnN/X7B56/+ICffvITwqRxPE06bhCGYeLhfs/59oK3r99wU13WGSyv779mMpHd\nMvP0+7/K95+rVP///Mkf850nT/mrL95QRs+ZtxTbxkkF3Eg+LrhxJBRPrBD7wWXScdFke2cwSUek\nB6+vnVLgcqe8q+IEH4RpU8cm3mL9AibixpEs67pgbUbmSJhrfAdCzNXzSmp2n6hyTzB9vGOMoUgk\nxyOSFzKxX4tExonDei1EKJZcybgxRZwtPHx9h5wZ7ucD4/Nn+sIgPB7uGKcN5+6cX3/xPb630XPq\nEZJoSHA+6AbRR1SAdcLgfSUmr27h2RimaatjOoyS2VuTaIXgPZCRnNTt3a3NbHPxBy201A9L/223\nO2fZP3JYDiCFYQjcH1Wk8PXDA8eiRZFvDtl1jTSAyTr6itHiJPXiDWugqBQ/V9X2KrTRIqdkQxLl\nCLXMz+ILYQwMoyWcecLO4VrgrfOESmXIBsRmnG8csYIlqlA5FcAR67OmDbdXPy/r1IXbtT0hVQm+\ncqCsM4xVCRjGUP0GM9a6ygXWQrlkmMyoBWElYrcj58wcDXZZ8CmCt90GQYxygEY71uZ4/Q6gTVvK\nyvsMg6vroP7MuEq2N1IbYhjqHpfmRMlCwCM2I65KY1Hemm552rwa43pgdzF6rcQUtf0h97+XxZCL\nei8qmTuuflHFabRXHdWJdT0FxnqDSFKahNEEjjVa53Qkq75Va0qI7fYTWi+YVWFWjKZwSCGXhDN2\nHc+m6m24aNZnzMtKIwgOc8KT/XnHN4pIvWP5X03qXJOji1nnkkU0HbtuxNbabtlvqt6xvZfIzxRE\nCI0eRSVun/79xik5PbTIMJUOpK/pBdgJ6tN/tx7doK0WMaefpWDIRXAGTXQP9sS0TDkJ4xjwXlVD\nPbYhxk4018+8yvgbl8wImFqBd9KdXdE9W8+LF+moUwoFX/RvZWOIM7SgI1WAWFI3RZW1i3JOlTWi\nN6/m0tXXOTXHA51nG0svstp1grU4dN0BVH9P6sNqnemKTZGi3U6phY+YHkAqqL9XEaFF5LQOra7B\nlThci7EGSGUt9NT81GFcANc2RH1nEbWDUPlte7oNNE8hSYqEdRBPv7tIrkinIMwnfUyNMPGuypGh\nhfOVIkhOzKVg8CzHyFAXqY0LuGYGawMiljg3lQ11camkYWtplVuT5ishUwvHdi122yv2j4nv/MJ3\nyQIP+0O3TZCceNyr+tJ7z2H/yF50QzTW8erVK0JwfPLJJzy/ecpmqyTm5Xjg/OoSd+94+/Yt15fn\nLLX43p1fcX/3FjNsGF5/xvjqB3z3+yrV/4Of/AVuN/Jjec3lxRmbmEh2fY5inolOOJs2lCwcajH8\n8PZtjS1xHOeIG60GLD9UErPJbM4nnu3O+eruKwiRcaPvu5lCldIHwugx3nGs/KIlRgyFYFUpFNPj\nuriLI6dKqs3afDUOnNSSIuesESWlrD5ENVtOjMNY2A0bDtXTapaMKYbHtw+MfiLdPsBOkbw5HLl/\n/Zpf+vj7/P53fpkf3jwj1EzAPM/KyLGe5JM+B7mhTiMWw5ISzqlS1zQ31lq0j2FQTx2RjjZP40BK\nGtbqWtZaVzwpkmytqt1MVVf5uoGlVLpVhBgI48jbyj95szyQdhpcG7IiTKllDbr6XBVLNrX5YT2M\naD6fxm5xkiOXsHagWNEm5UTYYi3YUdS/azMwbByuBvMap/+z3oATnLOdxqnNp37HVDIpRaSuNcF6\nMEo/bypRX382hQEfnJ4XrCrlGr+mNbJQDWDLysEE/OCVN5YzIpHQlNwSoVhKLMR95eGxru3WV1No\nybiq+m57YrMvOIpQ5jWDDhpyp4VkM4hu21kIgVh9n9qe0xV9NYi5GzXD2tCK8lFTytSU2lUw0dbk\nlJFckNQ8sJQHK1l5pCIgXroflMHgncNVDpi1ayi1dcqP8q6eXxPWxvtkOtQFWqyM+bjk2lxT9yAt\naheTQFLdL6ppdOUp++CZQuNZ/fzjGyukuv9OvfjuRDKqxcuKLEkzq1R77FoRtx1svSnasdY5rdJv\nrP2VVNxKZkPb2NeLAGqkWRqBnXWDhrUQ+NljVdqti1rPC7R1FOhNNYVz/SG11qiCxFgNXQyBqcL7\nKap6SA0267lytv89U2FRZx3Ouu5f0oqo9js5Z4x32Pq9fbBYGYiiKJL41bvKZJXYavmp7+G6p5eq\n9fQm1Z93kzyyFhNGsSbvNfEb6D42imQ1d/rTJUVqQVVVL+3+OJGCm1LgBOWhSEWO9MGz5N41W6nr\nc0GLIkPvTHJONctJhQLWQKuIrAXMrO/bjN3qSc0GLa6dYAZHNytFF/ZhKFiPquhQ2LkttmItxTpK\n1i66WMHUQtos6vGlhoKaNXi4e9TXzZnzMPEYRlK55/BwpFS13247YHMkxoyzBocu5ADOei1yc+b+\n/g5rHbuqohunc6Zp4vXXt2zPzzjuD3z+aQsgqJ5mkklpIce5o6AhjHgHP/je9/mj//1zvvjiC16+\nUPTEWMM8z4zbDa+/vGecQ0ebAW6eXpEfjzx8+jnD1Qt++EN1Ttn/5V/xf//43/Ds+goZR+z+0B2q\nGT2HwyPbzcjkFXL/6qDn5cGOGCwX5+d89eY1D/sj87znbDqrz4jhfv+GDz94znh2w+e3f0NKala6\nPXvK2eaat/dvEZMYNgN3h+q/Zo6aReYtJQvJHNVTDrAykVIhZkMog1IN2lisaKGRFM7WRqaHJIM1\ngSVnHI7dbtebofmw6AboPZM15FKQ29v6WWa+PT3hP/veP+SXn73izAqxonXBW/Z7vTbTZkBERzig\nxbWqmx3WDxSRviFuNiPjMJGzdFl+u4cb6tzv+ZJJbTPxHlsDZBFh8EF9eFrX7hzDZmI+7hFTuHhy\nzedF/eVkEK6vr3XtfZw5WM/Q1uQ8E0vEpMQiWYnQtXLtaQdOrVhKyeuKUaduzhlMsJjF9Jw2vNJA\nhtGxnTwuCL4hUqPFBIcbbBV8mB5iZyqnwliDs4LY1D2iRDT/zYvFiyM4z1hH7EMdOXnvcXYg2LF7\nCyaZsRhG60lWkffmtB2CosvFaBluDL25olRVnzPMR7X/cLbmLI4j1noNgi8KN3jzLmrinFMX+prC\n0W1hqApXKSrYMLH7dpVKLk8l9z12XYc1IaTdM6ZI3SP0OpWkSroogsWteXpZVIiRUnUy9yzVLsfb\noOhgrqNapE2KNag6BKyr4h6X+/fTsZ2h7VenmabNY7IXgCIsVfQgomp7Jdqrgrxnfpage4jLim67\n0AvzQsb4v6eFFOgDazsX5l1kR83CWrFUwSQrikjICjmf1E/9PU8PVZrUKpW1qi9iumS0+VD8bR5U\n73KP/naIT6RJX1Hk6tSozarCwnqL9RZhTeTWhHBXJfPK6WqO2cGPeK8z+eMyU/KKfK3jr1OvkrqY\nNk8aEagmc6etnrUWXKnOsDpOcW4tXJv/U3cLbvYAksilvXe7kVfhsXHoBlJn22300zpJawzWNQ+g\n+rLW6TXlZF67OCv6WmmGrPZEYcc6xdVMAVl5IujYTUT6uLFXYEXhKr2u7ZqeqExMrt2lXpMmqTcW\n8EXPk1dEzrUn31RzOZPrQ+6wyGosWgRI1buHil7VotZoR67u1ZEpBJ7udJw22oH9vSJC02ZLyTO3\n1dfJHheM0U3SitppNDXUPM/stiPjZoP3w2pGChzne+7uv2aJmevrG569eNnDrK2FlCPHuTDPyvcJ\nVaof50f+r//jX/CP/+A/4Xd/9/f4n/+nf0aqm+/NzTWIGgSGKXB7f9cd798eHrjhCS4MLHePmOMj\n/qmOqD749sf887/6V1yOI2dmQ9zYvgm5sIHpnI33uJS4PTzyWEdC12cXPD488OLiCifCfPiUJReu\nbrRYXMqR+fGRx7df8OFHL0iyIx61QLmwhWdPLvEmYoNhHw9sa0xGQZgXQy5euYqZ3pmWbFUVmjQw\nV2/RdcEuuXmVmeoO3m5UU0evgXhUN+UWIG3zHmOscmmWxNW0IT+qkeeTzZb/7nf/c37jxfeQwz1x\nk7RzRqkQSQoqKHckJ4S6oedZwDisC8SYcMF3xDHlTNw/EtwaR9I3IaNNCd5qNA3SkazW4SsinTUa\ny3saWJuTGocmKXg3QHC4ur1sxy3b7ZaShftoONhEc7hAhOJ1XfAlk6zvDY+I2lsoP6V0HijoCDqn\nukdYRVlci/8KMHhP2BiMVWvglQQn4JXTNIwrSqf3vqLa8xIRMj74joz7pFEsDkMwgdGPXZk3BjXW\nNHisGciZNTasuMZd0LFSSZROyqoeaNIiw4SYGlqjY7JUuZ2+lP6see9x1WZA6u8oc8X2e6PZ3vit\nZ5kTy1xRLevU566q0wyOYlqhsYYxt+/d9s4isJraFgyGOdbX5fr7IqSo61hz0rc5kJZCjjpSK6WQ\nlmZ8LUxhQ3FeixW3njfvjBbQlRssxqx7EZYitlPPtFGuSteKwreRXkqJlNY9SGrKRY6F+Rg57Guj\nnjyShGVWOwo1BG+jVDVM/buOb6yQKqWhNW0GX51NpaEg61hMf17QU19vvGb9QekbYXoH5YCGdJx6\nK3UEwemgQ4pZK88TA1AporYApj7EJ7P5U9Kysf6dwkbq99L3lk7E9hUSd049kZxbyXNq4FY9rVwb\ngbUL59buwqrkd1maQ3WFIXvkDO8UZ+2hENHsJJPX82OKZUkJ63Qhk5xOvKIKuOrTU6HOhhwKbfbc\nw2ZWqLY60FunJO+CXtPTo434Ti0l1DBAURtb37u9ubWW0ahENhstgHpRkA3SM6RQs76OONbFqiTl\newlQu3nrB4y3GJfB6gKx6lcLzg9Ypw7lGcHXVb+YOi+3scp1V6Iq1US25Faq65jgND/QmAGrYSYV\nkm7nxlbZvq++LYndmea0Xd88IWZBsi6g0wDlQr/kvH9UCXApWKkLdOVZWGc5zgVjExdXO7a7iXHQ\n9/TjBKLCiOPxiAue6xstbF7fvubJzTOmacPd3R2vv/yS27eKLGzCyKsXL/nDP/xDfvN3fptf+qVf\n4o//9b8CIMYDF+fnTNOAsVqctxED1vDpl1/w9Oqa0VnS3Rt85V2dvfyAX3z2gtf7I0ssuGHb7+E5\nF149e4qLha9vXxON57JC7Ltx4lgcz93IdHnNm8++wrvC83Mdi90ly1xmbssDT+Waj5+85PZBz/cs\nkbTfcz6cM11Y5P7AXEfXkxvBQR7UhyYXJboDWijlhElCyhrB56VubramIEgC1AvL1zFwSpnSRhtF\n0coh6LWQcodIYnQelw1DLthavPyTf/Af81vf/gHp7R0pL8S5EOuoZrk/sNvsEOc5zDMWmNsyFwYG\nPyJYnDFsNpt13DPP5FhwKCn6VBBBKbp5WN1orF2fJy0EXf/v4B3WrUVYSkdyngkm4MfAfn+POdfr\n+PL5x7zxM4e4MI2GxS6UHj1jdERntEHLRS0a2ucRRItWFHVpTi9xVt4NWRMMxAC+Fj0uMI0TGE1Y\nGJ3DNLTOKT+olFJ94HylI0AWr6hFXtQ6JjiGiqTjhWAdgwsEHIOzneBM0TgTZyxYXfOah5j3npwj\nGSEVTYNoXmIpLb14aRzOWLTgCcFpMYFgQ8EWh12qyMRmxOvWLlIqzxNO2OiEweuILlfvqzYyK7Fa\n9mRt/sj9ZW3cZWrzemJbX+8Bo95TFZLI1Wipmd7mnLElEJdCiRVVTDDPUS1vMpRlBU9yKSRfvarq\nuNVVjqMPVr2+bME5i5FMrg7l3qOfXZRaYk8oDWtj3OxubLcxSCLM80KJQlwyy7I21zrOrNMvj7Ly\nmlGt82D+bkPO9/YH74/3x/vj/fH+eH+8P94f/4HHNzrae9cVXBGAPkY74TP1ClOkulCvhLU+sjGr\n9L0x+Bs3qGFbXS5P+z2vUuWKBhVpadamyu+V4IyRk+K8oieVC0FeZ4uNj7TytUr/cUqJkUBwHu+M\nzoerJNUa30nkUiWgjT/VuwTjGILaNOTY3Kt9R3DMOwgHOk4oAh02Ljjnu0Ijo0ne1tYsI2e7zNuI\nZpQVGmn+FNasuXZ5nUe3xkygRnYofGqsKpb03OjvZ6mjMVlDo01VQynsbTXuoZ3TUl2UmwmnOeG5\nmfodrSJOavLZIgaaZUJ1XheDbVlcQ9Bxgs8YEwGvsDtQLDinI4ts1m4JqhDC6d/1rIolvU4a/WAr\nZ0sNSd9Nsle5o8NkwZVVMKE8vIATi6Hgw0oAHTcb3BgIaWA/z3280t4zxiPee+Z57rFEACFMnO+2\neB+wbiKJrZEmkOdHvPc8e/aMK+95fDxweV1z0VLm7vHA2/tHbq6f8OxF6MKH4/0dYxgYwsSf/flf\n8Ks/+EWu6+seHu5AMre3mWkInJ9tSTVAe9hN1XhRuL19w9njZQdcz66f8+tPXvFX5ms+F5VQT5tK\nAF0WvndxhcyRM6edYbsPnr18weP2LY/LkZvdGd96+gK7GF5cKLL22W1ht7WUi8z8uOfDF9/C1qDk\nB3PHJpwzbCaiv2V7MbJPbSm0WCksfsbMKq9v2ZZH8eR0YEgZrGcmY+uzvuS5jg4gOGGcBkx9Xdwf\n1Ix2Vhn1fDx0t+VhGBSjNIWb7QXPRs8/+KES8X/3h79Gvr9jmfcYI8R94vCoiIUYoYR6TTPqAN++\ngbEamWQHtpstastSkTPn2PgJZxWZSWl1YDdGlb0Yq0LYUgiy8jEF7dynMeCsq2P+hlQDUjjbnvFw\njIQTS4konjRa7DhwHjLmuOexftqUMiWCFcPgR+YMoTPRQUSJ37ZoRFiLjynFIhFKldDrGlgRqeAw\n3uv4x1qycQQaiZsaw6X8XCtrzE+WRQVB1uIEzX+r6KC16mg+Wo/HYEru8ngddyWMrTQSZ/F1rYl1\n3Bv1S2oqwYn6cVnmumckKKU/azBodKDTtTbHAFbtO2QxLF7w1ugaKoWSq/s50KwGrNVQ87jkTrHw\n3pGOMxLV/sUbS2osbslYDE4gGM+xHPv5NsaRYsYVq5Y5rEq5ZsBscLicyUkoVa0eY65E9ERZQJKD\nxpeVREwFOxaGsZL5201jBWsK3ul9aY3t388ac7IG6nlcRWuaHSmlULIhR+mj2yLN+V8d37ErhcQF\nELNgjMeZjB0cTSUo5d0A6593fOMcqXaIKGTYfEKwq8rIyEr8brzkTgKsUGShbVrmZPMCFOAGW4nn\n3UdJOunPVY+PNg4yIjgL2SiRr0jpVgVraOX6F04Vdbk7sDe8td5QS2ZZEtNuwLoB6133EWpcHSXx\nFbAWm+r3c7rIUISsseT4RmB3CrEGo2R9Z0N/YMjtedWbiiwVzq2Qul0jU/QXV6Wcksu12BJfNJaj\nq2Vy5QIUtFpaR7D1o9fTnokx9rGYKvxUtdhUmJ3cbpxKtZOA0+IwypqrJKLnxou+wpj2M+Wkpbxy\nJzr1oj6UzirnLJOgEQZdwvj60BqvRNSabWesQWwiGYMNHrwgDdY1jXjvaqyFoZiWyK5qpVjH0t7o\nWCQu+olcl/DqeNqUPmlU5ZfJiBW882yHc3ZBC5S8FGQsuqkNnnjIPaPQmBaqDGEYCCF0BZYxhjBO\nDMPAbrcDazhWTsPGOo7Hhc8++6z6lllydegetyOHx5lgHQ9v35Bz5smFfpY7Kdw93LLdDRwe74hz\n4gc//GUA/uiP/ghhz9XVFUtKPBxntsd9vU89Z8GRJRFLZp4jw6EGGnvLdLblheyx+4V8LJydK2Hc\npMLTccMR2G6fgR2Y3yp/6OOLaz7ZH3HWEjYb5OYJAd9VZAc38N3JeHqaAAAgAElEQVRf/JjHw1fE\neeF6c4ax+h13DHz35Xc5Ho/c7wub3UDZ6o37IAvH/IhZ9mzChiwj4/gUgE+//IpjXacsC64kbOVW\nHY9LzdY0BO/ZuZFUH4boLDELbtBgDbzH1pinJ9MGI5mdy/zg5TN+/9f/IR9e6d+zOfHw8JbRBw7z\nUceClTc6uMBynDFFCMNYhRBtTbSIWDY+kFMkl1UQotFbWQUXw8AwBXzjkDRSeioEZzmJyewKqHEY\nMAb2x0dVKuYmgPFMYeSYlFA/Tme4UT3G7OSZBiHi8HnRxqRutGJ8HacUTA5YltUGoKivnkYfWUqJ\nlNjGfpYi2haXLBgJna+lPkLNDkbz61oUWRYLTkee2VQhURO0lEIUIQlsCLoH1YVelWOQStKsPTJZ\nmkK0EvqRyhcqPf7LWgteRcHZFIwUYlk5SWBqjmHlhLVRU4zsiwUfKCmzPB5I1bdqHEcssPGDPruo\nhUBLbpi2I8Wo/MY4xzQFStDF5nA02AIWTzkcSDkxtKK2qHeSCQPGWEzMnfyNpBrBVOh+iR0vUDuI\nbDLiIFG6hYUgZFkoJIod4bRJdgMmWARDGAacX3m3zhis06bce/VEbJuuGOX8huprltJSuVSgVGOL\nlETKmVTSSvOo+X3B1jyUstJLcl4Q0bga46jNTX3Z6PXv/x3HN6raOyVx93+DLjFtR2kETqv8nFLk\nxL6dXmC1GX73C7Km/5vQcvHaSUVnxaX0C7Sq7opSoirXw3UrgxMS4c9BgUrJvYgqdfHqoZcZjoeF\nzWbUkNqcV7XIyXt0lR2tMLBQu0eTa2fYpHkUtSowA9567U5OMuOsaw+nAmunNgo+KzNJCsxVb9fK\nEDW+LCfnI1NqeKlaFOhNrXE+dAROv69+51zRxnYZc66hzejNbMxKZAQtZm3jsBnbN8QsWaNPKkJZ\nTnhn1lrykvXBsVS/qeYvtvqECRbvJ+Wf1e9gjfJBvPcYv6qvnIVsjVKNgppr5hO/K5yq8dQ+oUXw\n6Dlz1pLRQjwXwSTTkS5TlAeVY1YunPHdsFDPjTCMnnHYcnl+w/Pr5/p5xCELJNEcrDBMHKtyTch1\nUcvkpJE0rXD1PlBqoZlFg5t95cmc7S746KMLDo97Xr9+zZJmPv/8UwCGISCl8Pn9Axdn55yfnzOM\nWoBeXFzwsL9nv99TUuZPf/Qn/OZv/yYAP/yVX+azT36Cs4Enz56Sy0yoZPN5OTDOGn8zhYm0zJSW\nMBsGnn/0LcyPD8xHwe8C26CdtwkZGxeGol5Iz84m8quXANxszvl6+YQXz17C4BiPCSewq0XI5nzH\nPmW22yuuX1wQxonR6gY2MzLNhRebZ3x+yMzsmUctsvL+gZurax7vdty+vWdwI9uKHJvdFXcmsBkn\nvvjqSyYX2FeS/oRj6ye9pyePJyCV4D3fP+K9YylCCBu2Ejjf6XcM5cC3Xn6Pl2dX/M4Pfo0fPH/F\n462qC2Oa2e4m7m4fSJWs3jY9ffYspdocGNduUNgMkwoTqjdZKXkl8XqvxY+oCWE5WcOsVPWhUWTV\nByhzeefvOeeI87E/t43k27gqJhflEvoBN1XRwDTgdwYTI6TCGEdiC4H3qpQrkrAcq1ltffOijWNJ\nagRphM65LFIbgCo88qgIANAGKOizJ041oLErVEQfVtX4gqQTAVKuPB/de42xWNdEMlkFT3jqwIQW\nAYREXdeM1M3YdPRD0GZTWPQ5N6Wv+yLCUpZKiK9rSkWyjssCaSaXWdco43isIpPd7pwhDRxlZBoG\n3KAGymN9TmUpOO8p1jL6kRCC8kuBadqAmziamZwMnkQ86PVMNE5XxiCEYaIc9fvH5aDoY2365WRi\nVKDGcYGIwzrbsodBCmEcsNaQTAVKmgrWKprlvCCoGa9txqGi0xLrBA0sVssHvRereMNWZLZI76BT\nErWXYW2uGwcsLkLJwjInclRi+srTzRwOB5wzBKv3exNo2GAIwxrN9vOOvzeIlNLGtR4XowhGJ4mL\npo7nOtqz1q3mcAaVsMop4XotjEopP9crqv/9apbWOvn2pq1QauT3d1Guk/c+gSNP7RuaErAfzhKj\nsN8fCYNlCAYZ2nco9PmRCu+7jJ0iHT0RaaO69fsZVuNNoEdjWaejzjbCE+vVAbqFV+Iw0lLA2w3X\nzvf6PcS8q5TL1RRPF1X1u+qwZx1pdX+ok3NijSJj+vvrqADoocjFxGqYRi9syEatA06NSG07bVIX\nrXyCCq4oZiuyjVFoto32iinaYdhaPprSwSr1jWrFlaxKQqgdXiHbWEcGGd+sKJwW5q4WcHlRJUuD\noymeUscYxjTflXq/esfFxbaOeSauL294UkdU3mj+l80e4wzDEPC+GURKF2yIwBwzS6oogJ0Zx0gW\nw9W4ZZjGDmPf3d3x+quv8N5zdXVFKYmbm6oSHAeOhwOP+7/g/uGOkhJ5q5v+HJcq3U8khGNc+OyL\nLwF49vwFb9++5dWrF7z+6muePrsmVVFETEfCcMk4jvjBYa3HVhSEYYvdPsGbwMUwkI1lqhtNyZm8\nzFgXWOIRSQsvn1zVW0B49fQpVzc3HOKB6flzyImLraJnHz255qeff4GQePnkJSZ4/vpNHYsN5/h7\nx9PdBdN55q8PP2Gc9fO8OH+OM2dM8yXT7isGLOeTfv/rs2v+5Y/+DYTER0+fYGLmp2/0fF+dX7Ob\nNriUsKMlxsLVjRZ1eb/ny8cHhmnALoGn2y03G0XdZLb8k9/4R3z36gVng461bKrZZ044ppnkjRLQ\nxSIVOVSlr3pgFQzjZsdmoyHBYqDlPTY/sJb+kHPWbrvZD8TUm68kSoqvQiklRue2eelad9wf9Pl3\n4EPQ0Rqt4UkM1jEbiw2+gdgEP5I2Hm+V6D6NI0s1QmxSdZMMyIi1h45IOUK3WyhJcxMbUk2RkxhA\nVeW2ZaeUhJiRNm6T0/XI6PeUogTvVBZcC6QVlfFThCQGZ3xXSVKEaRy1mU+lLu1tzY2UHCHruR78\nAH1sXwnd6Bq1lGNfo0pJ5HIEo+ui2hRU24QMSxHkuO8ipfb39vMjl9dPGI3SIQIBbOmFXWYgjCoK\nSC6tqnD0vih1vxuGQc0yq62Cc76OShWpO11ztQHOuL4Prfuts2riGlPUUHYcpokJso5HnbM4V9dp\naWNG3de9r+pKUXQPKhWkWhyo2Cl177I2qUop4oeg16Sse1hGMM0WKa9m0vMcKUmnQ2lWn71eY1jD\nMJ6OCC12aE2p6T5kf9vxjYYWn/pU6KGmnG1D7pUrKrhUp1OwIhqiCFVm3N5vfV99m1z5J7bfHIZV\nfZZzpuF372zULRxRqp+SXdVwp2O8ymDiZ2oskiQtbljdgJ0OYTnsZ6aNIwRHCJVDEnyFopvSDoah\nbtBFx2rdDsDaHmpqtSLBvFN9180ZRSLUuV3DX7VYa0VSRNDuyVtPsUKpHXtqLq8lk0WjN0qFR4ue\ndGLtcr33/W/7asmfaycs5L64WVxFAWsRlem+L8ZWD5ViejHdil9rDXPWgscGq6ON5gguordI0iKn\ncbxon9QU7aqxFJdXJM+Kqmuc7SNOUzdv57Urt9ZoMV8NRvVzFvWY8R5cqVYcrJ/FxMqfc9XmwHZV\nofWOYRo45oW8ZNIya7QP8OT6hsuLHVMYSUeHy4WxKkaSJGaTsGyIyz2Tlx4Jk2LtvlnIZWYooY+c\nJR6JKfJm/8DbLz5hc7bh+XNFuc7PnnCg4MeBh2alUK/h3eM9r1694td+8z/iJz/+K+J+5vZREbAl\nzlivhek4jnhj+PILHdF99K3vYsLIF1+95qOXzzke7rm6UCuCL788IM6zOz9jf/eGs2mCvVoRSD6w\npIhzjrMpsC8wtjgiiZRgiSlDga0ZGCrKJcZy9vIZWMO+eNhdEPD9vsmlYC8vcMPIOG7Ynp+xqz9L\nsbDdnnEVRs7sE1UuNv7JOPLF11+wsfDxk4+Jy5GHev1fXlzxLEwcbh/4he/+gp6XWizenF0wDQPB\nOIzzPNzv+fCpnu+Hu1ve3N1zfnHGNBiuQ+RbN2pkauaBl+cXPD+fKDkyL48QKoqdDI8Pe/w4MA4j\ny/G4KqWMwRohjOqYDpYlrsqiaZooRkdEwbou5U5LVANb79UJ367hrMZYirG14VG3/8Y7UuRZFbDB\n6Xg6LbGvfdYaZicc9nt2Z0/wYjnUzzPttnhbOLiZMnhInuD1+ycnZFNIRnma2mU1pN4R/ICUhWIL\nMa/jpIIWNJKLek8Z/U79WRRtAEOYiECqn8UFNfRV/yX9e83vrCTdeC2a6rCkjK30D+Nd5dipt76z\n0jlwiI62iikkiUgqjapJFlEPQCmkPLNPh84rK3lBcp0HRHX+lhP/o1QySeBwtLVgqGM/KeDhwhS8\n2YBJhODJPfEhk61ntIFcIrlYbEWjJRVyiYoEOddVgqDFko7sTidFdv1v0TUdsUgSLcJRWk3OmRQj\nudSos9Z8drdTJeN4WZtdW6nN1mpcmlA6T9lZr3uBsVjXnNjbvXbi7yc6gktdWSudE5xTIaVCao2J\nke4WYKtlUN/3G32kqlFxiVJHsMYNnSv3tx3feNbe3/6zlXBbzMpNOkVQ2ns0Mrbpcs7156ektHds\nC4raBlgxJ2OqE2JlLQaMNXW0uPKHTj+DVsu1kFA3x//fqA4qNF4ztx4fD9Xgrn6uaoSWGfGiMTDt\ndcHZSpivJpeqLa/npRajRReS09O5LKkjVmog+u65y0UheLFqtmkTNR5CR1NIJmNUttrIeSj3SM2I\nLUYgDOGdcxFc0A6gQrjNJOGda1Zq7l/9t5SS3sBWOWYl07sWY3RRMs0A1Frc0CoJowWiXf2g3nW4\n1fgL9SehR484r6iUOLBOM8eaBNoaQxhct0QocrLRBFM541a9s5pDJzqhaF0nonwoa13vovKi59AP\nI6YUDEcuznXzvjjfcnN1TcBhdgFmIS41w27jyUTIjmADOSZCWMc0cUnYoK3GvD+sHDHJHA97Ulrw\n3pI+Wfjxn/8ZAJdXzzi/vuL65kk181stPO73j9ze3/Hqww+Y44JYul+MtZbj8YCUyHYYuH97S2pE\n3Zz57d/5Pf7H/+G/53zr+faHrxjq57y6uOLLr7/kzesvcM6wpBm/f1tvVIfkmXGzxYlGpsyHQ/0W\npd+3OSfOzy/Y7Db9eXLOMceFi82OUixjmFiiFoaH45GLiwvwgf3+yKUf2W7UGsFvPTJYTCp4P/L9\npx/zpnp13cU9JtxjTeT55oqvyz23X6lZ6eX1wK99/G29Ln7g4cs3/GIdJb66ecbD3SM3T55yLInX\nYjmvz+mL3SUvtmdcbndc7Uby/Z4ffPARAN+++Q43Zzvu7r9mFzYsceFQz3eKaLGe4fjwgKTcCb7B\nVY6l9QzDRJZCPCpSOQwDBsEZi/FeR3i1INiMY21kCiln7Mm6IdV/SIBWXeQ6L2uIuEPHV6ede/tv\nzpklRa6MY9ydE2pe5HKfGI0jhaBGoMdlJXH7RAgJkerdtqxEYlNWuwVL5eXw7mc1qFWAE9cFDN4q\n2q5Nru4bp5QMMNXrziDZ9tQGiq5NGcMi6HuYlvtYKPNMcZbR2Wqc2egXY6U+aBN5yAmpXhSpZOa4\nUIywLEeiWa1kkAhS1PG8VCFFa9T7eEqLgZjW/SkniHXjDzXuxTnb+WqSCsRCcVCcIjB9jTYGN3gs\nmeQKIXikFkTRaEyNyNyFMKcJGyLN+kYL2LZmpJROGvjKVT6x4VEqjkejXda9TW1ylOrR3MsbYEAb\nqdpacJn1Gp6CJbqvmv731W5GC+JcHePb60qplg9S8MGT84rMLinihoDxDhfAB7qJqw/unT395x3v\n7Q/eH++P98f74/3x/nh/vD/+A49vlGz+d1V5p+jCz0OuVl5SI77VXB17+rN30atT1ElE8CekP1XZ\ntX6ndmW1e2ldDFBz7ew7SFR/f0BKHcOJvsfaRWi4qmA4PCasOXYb/ZwzMQubAj6oeWZDgDajI9e0\nb3XP5Z3KXB1YQyWWFn4WraNK8I1ox3gqueekqwA08BmwxuF9JshCcc3tVjtaKyDIai5qTI9I0GDO\nGjvR4Ouuksw0t3Mdya1VfsmFRNYkeuOrWWX9TMZgvMUXQ6wOuqbH7hScN5WXVDAx/4wBZu1cam5Y\n5THiQh3pgeb4eQv25DygkHMxej/1jD5T7Q+sysS99T0GxDgLWchJVXUGw2CGHnaNWEiJuCyMbuLZ\n5TMuLxVduTi/YjOMhDAx+JGzcM6mjlIlJ7bjjkdmvLfEooGa+pamIn6WEEYOy76PGp0LDOOWcdrh\nnF6jRrYvcuRw/5bH+1vCOGL9Oja4vrrhYrODIlxcXPCjP/0Rm5bDJ0JcjlAW7l+/5cnNdQ91/V//\nl3/Gf/Ff/lf8N//tf80f/fP/javthu995+N64izHjeftl1/z9PkNx+OhZ1wNwcEyk6QQBS6vnvBw\np8q8+/t7pu2G47InxsT1zcAY1qihzW6L2+8RgcFtFNGo5+b85oIwDHzx1ZdsBEJauvLGOo+UhDcO\n5wM7cYyDvu7MZIbtBQ746OWH7OwXpLc6Glg++ZIrH3j+/DmvX7/lud/w3VcavmyXzIjlW1c37NNC\niJlQz+nVuOFXXn3MXGa+++olZx9e8IMPfxGAjy9fsl/eEMmUZaZk6fdMSpFhGLi7uyMEr+7gcV0T\nh2nDuNlSMNjiGKZqxmotKSsXqZSiwos+MtKRtVh9bqDUsX8d3aFWI22tbEaWp3TP1ei39NfoVVYT\n1hgjWTJu1Ht42AwUl3QJrUkKzeCwEJXY7R0hD0zDQKwRIsE5ilhyTlhgGkb2le/iRFEKsUKwAS8B\nWVaeZMwZPw46HsvS1Y4lRopX1Ct2nk8jgFaUq/JmjRhKRUbmFCuvVPmN3pYTWok+g3GeK1WkkCv1\nJJeZiCI2S1w0ie5nxE2lqFWLMaZnoUpqIiudQsR8YgFDAhN5eNjjbdB9xruu2DYuE7CUmIgUJAul\nmVlWZW+xgguWcQqkpXGkXOf+LkvUyJd6vnNVRhdTo4pt6ZxTY9RNPOeMpKjxY02EoJJ7FSE5U41r\nV5TTew1xb8Iw09+zrd+y7vEn6GcXdak18gkPutFKVs5vc5Qo2VLqHkVRikQ7Z4MNKhQyBj9YnJee\n6GCsUzrH33F8o6M9eLdIelcBd6oak0qsXYugNbh2Jd065zovqh0Nkm4Pf7+J0fFeMVocKGm5zlmr\nrF8FHqVLZ/XvaTZQ4/roxayvo/prlHpD5kLLcGvOtcYAxvH4MHfH5FxGUjYsKTOMsNkM1ceqLpi+\n4Isq2RTmXr9bKY042YIvV8hdvURUcp9y0t/tOP5a1JRqfyCVdJmzzpKNUT6BNaar6N6VAyvc2sjl\n0zjqua5QeSy5+2gZ48gldRuLnDMNUfdOlYiaLKO8s1YseWdxfcFTiwDTi7N6/xQBqdliteBdcsY0\n2XewWiQ3/kxVDRqPEulNOQnEdOBU+CA2KY+r3pb6sEqXoTtPz73LWSj4ekN6Dd8sto+ZcwKyuiNv\npw0XFxdcnSk5+Gxzpjle1rP1WxyGly9VnXY+bYmHyBAMD/vIPMeeAn99c8X97R2lJGyNpWgLXzxG\n5bOMXsnHRkiN/Ws90zhxjAuff6mu5R99oEXP1199xePDA+PtLb/yK7+C/1XPn/3pn9Zr4QghkJbM\n/njA3lq+82193Xbv+NGf/Am///u/zx/843/En/8/f8ynn/wNAN/6+BcY/Mhxf8e83zNtRnJVfj3e\nPeJdjQDyA9Y6zi91BBdjYl4i+/0eby13D3cMVT3jguf29pZhGBnCiDGOw3wkLi1exnD/8JrD4RFJ\nmbPRMVV+1WGZdV0gMwbDsmQuNvq+59uBkBPeB15d3TDfHdl+S3/26esv2J1v2YxbPn3z//KDjz7k\n+Zl+1ofXt1xeXbMzKFfq6glzI8We7zizgeP8wIfTDdfbF5zViJi4fEVabnE5c8wZH0Z8HSUvy8Lh\nsGfcTJxdXHB4fND4F2C73TKMmxrjo4rMXHcMG9SLbomRwY9gelAA1ujYOgRHMZllOXYfKW2RsirO\nDGAsprqzF5XyIsaSYkRsbYjqhumNKladDfghMM8H8rYqhLdqD2CN4JzBetc9mKy1iFMqhfWZaRh7\nE/V4fMS6hLeWtESW46E/3845pNQwXmOUs0P7Gsq3SqX0BrIVWX7UaV2MR82Fs7YXPRTB13EotbFu\nZORjOSL4GjyttIxFqujDrLydGJOKouxKws9ofh3W4qVQurJayKkgSfm/prg+2itFxQJaCxgNvm4T\nwaUQSTzYGWsf8UNQoUqLPLOFEhNJVPXrlPegn8ckTJbKlzHdbwrosVg6dlXye6xF1jJHfFBPwcYl\nK91jqvKNsuBHR4uCAaW7+aBFnjOqMl4TPUwd77WIs7WB1huwKkW90khOqTnUEXRb/1fele0ARfsb\nrTHREWjQ/d5CCBvmOtacYxMOlfp75h1e8t9bjtTP2h/8rPLtFJE6DSJs1WhHUsyaOSRoMWNO/kYr\nnt5V4dXCqdoVWJT131Ufpv1u/ROsKkFj3Uq4Q3lWP6vWexcF4+TvKW9JbQAMx7lFE8wqUReLiOtp\n3vqeI6U4hmJJNqmhZ0PHjCIxknK3N2hHm2m3m/H0nKyv1W+nvEzb406s5MpRUzK1tZZw0kXZWkQZ\nY9THpxIZmxrIeCVEOik956iUVBeD+pDJWiwVURq8wXVOTKsWNfcPNYqrZPb+s0pds8GoomdhtTHA\nkSRSJGshZjKmdije+Dp3N1Vi29cZmnVDTz1m9TYxopwMZzQXMOfI6nljlDMlnuC0EI4lUnKbz+v/\nbaeR84sdZ7sN004Lqe24IwyW0XnOhnMcI/uat1amCyVSihCC8lvu90r+Pj+/wFrL3d1bLZYJjBsl\n8TqjMmaMYRgGfFgXoTF4ht0G5z3fGTyf/80nHCovaRwmvvzqa+Knn3E8Hvmt3/otvnyiCsLD4YCU\nxDgGzi4uuH3zFY8PdwC8fPmMTz97zb/7tz/i6eWGjz/+kLdfq6LvL3/8F3zw4Yckk3nc33N98YTX\nr5V3tBze8OTiHOsDYdpoN1wRieubJ/y7H/8l+/2ey/Mdp/zDaZp4/fYN948PPL/RrMC3d7dMW1XD\nvb2/583rzxmmACIsJVNqkVmqknU634F3PNzuu2p3WY5467g8P4cQOL+87D8rJbE93/L67pZXz254\n+cEryhvleo3nFwiGaQo8PDzw4vKSPa0ZcNzaR9hMnJcNu7BhrPYHUb7G25Hj44FUjvhxoIE8kmFw\nnnGz5bh/JM9HvD+v96ljf3/gkBamaaOddn9G68Nh1KNoM4xacKBkc1/r/ZLzO4KQXDLLsvSmVUR6\nvltKCSNqmTBVhFJl+e35VluPaRjwYWAYQ0dO43JkmDwBz2wzWMGO+rqNmViOQraenBWZaOd7miZc\nygTnWKw6U7Zi0ZhqiZKVm0ixnTRuq65LuaWCBNsRi5IKsajdQLGGGNe1RknmJ2pscxKEbA1LiiAZ\n67P6RnWJ9OrBl6nildoIx6Jrc85CSar2behYLgnlb9k17iu2NTGRUe4vWf2p2jVELDlmsjlgEcYx\nME1TbxQQYZ61kTIDLMeMhFYsOopxSBTmJRGPR/KyclVN5Um1M9K2FI3UETzupJCqKKdekY5oqYff\naeMtIAljSy2Em7BH9ydF9ArWDvTJj5GKnrb7a92f5cSAs6nY2w5nfIvqksr3EkJd+1JKuMGSY9TC\nzBm8WSOARKrFRRM+9KI9/Hs5Ut9YIXWKFMG6wbci6bTIElP9kqgqKaM5V/WHGONJRc0evXF95GbQ\nTdoUXXhE1mJDapJ1zCtRuTtVW81uss5V2CP3sUhCvScMRnfHbDsi0wupilwYA9LkupiuYMiio5/2\n5+ZjzbPLqvRz1uJKXbxNIpYFyVrJK0myEvlshYNd1NDQEsm5waauJlorulIq8a5//6JKOl87xUUK\noWVAmdpRWR0lmZxPLCXAOfX4cE5z9Rr32xeVWQ+Dut0kKRzreTscwOLJsmBMBJvpoc5mJRUb827n\nkbKifCq7zUr6bJeegvWGIaoHihFH8+tbloUQQi3AVQbtGhRf6igQJR8aVoWoiICPSIYggZxss30B\nW1TSbR0mqaFfV2CbolYTYcSUABGYE7ZdD5OxbiCEkTHA+W7gvDp4b7Yj3jp8GJhZuN5t2BQd+331\n+o6zNGJy4fxiw+XlZSeA3j+8Ybc9J8dEWvYsS0AqUdlYA8aRpFCOR9yy+qLsRdinREqJy+srPvzu\nd/qI0uLUHuGLT/nzH/0Z5Mwv/tIPAPjRn/1brscz5hLZXExcP73keKck7XN7RnkS+fKrv8GHVzx8\n9hkff6CWCp9++iVff7lht9txtAv7/WvSMtfrazmmwtaZWtCuUn1jPXlemFNiNpYxJVLdoA7HiBHD\nsj/yyfLXWOuY55k4a2H3UAUdcVFi7L2xnFejTxEhW+HCXnL7+i37+4c+9jPOMW03nF2dwWA4343M\nD1rUfvTqA47zzIPs+eVvfV9NKc/UbmGeD6TjgXMfGHeXuO0ZPGpx6sOWi4uB1/f3YDLPn50RhiYP\nv+Z4eGScBJc36nVT8/RcMQzBs+z3LMuCHwemzVDv78hxVtK2tYYwhneENekw90bRmcJQC0znA2k+\n4lLWgtKNNGVeOtYNUHTTinHWQgPIOVJkwVrLnNH1qW46et9YrPOMm3POpjPy6HlbBQU5J8R4EItH\nsK70TDUMWBfwR0NIwp0k4qE+M2L5/9h7r2fLkuu885dmm2OuKddooGHZBMERCYoIDCVqKDFGJiZi\n/l+9jGaEEElJweAwhgakAAIgQbRDV5e55rhtMnPNw8rMfW4JoCL00nyoHdFdVffcc862mSu/9ZnO\nbQhMiPfYTYsRPadD2mvKgxgkOt2D83HDKfpuhfx7GekRRYetsxoajFRiPc5TrHWsNxgSMVsDGBrC\nHEkW4qRFVkmmEKKS8l3AeIc5CyQPNtugeANGKQ6LO7tg8HuWRPEAACAASURBVHkeNMTYLCtvLMxx\nEQulpaixNmFjIhGZUmLfeFrf1K7BamVwU4I2kVKri6wSFOysAgNiYI6kMRKz8nQaR3WaL23GtFhK\n6HydssJZ74dSEBa1dgoRjHoFPhBuiZoU26xyLDYNEi3Gqq3H4r9Y2rNaVKekSJx2m5Y2c/GS0oVu\naS/kOVjUJ1CFE6kaKjdelB7iFT1LUoQ64LOPoogiY862C/iQXE0a+WXb597aO+8Xv4kgLWZZeeI7\nY+qf0+Tf5FNVfwvntZqqUOO555NWyosZnV0QKKHK8MEQjVs4O6UQEbNI+t84yeeeRg89nxQGLhYH\ntcIWYRoj1iUGH9FA8zPZaIDghabJRqFlZi+FWVRu0Ll6QvlOCZE5c6GWkEw9N42+TqpWEqWnrG7C\nFkOgaZpqagpaxTdW/VISucVXziEa74IxtN7jRWrxKGIYp4koliQK9ZaSSB/Sh9fjHF1zztb7wmAw\ntcdusOJIDkyjgdHSFOTQEmaN6Dm/DuV8GxY4HjG48pCbkviu7QKTTG3tiqSsctRCJZ551+jr2gKR\nOAMNrnHVPR8cyUZcY+jWylPYZAO9ptGJq1+p19P96Z6Lx4osdb7h5c9eceV7krlErFQbg48+/JDj\n/oRvG1JqIR7Y71UpFcaJYRhoWsc4DoRp5mKbVYJXj9hcXzKe9vz0xSfcXj/h0bNnALzz9Atcbns2\nq6/y9PFjfvx3P+Erv/J1AH71/V/h4w8/4t0vvsMYThhjePLkkR67CTx79pQfffBTDcl95yk//1hN\nPrvNlptXL5jHE74XXt6e6krwdBpBIs21Y7PZsNvtGHO0zDQNHE8jl5fXOpGFxJh90E7TyDAMrFZr\nXr58qav+lKobcZtd3V+/fs2qV1Xb4aDnxnrL9qLnNBy4vb9jd7jn4kKRnquLLV3XEedADEcO+z3b\nct6uL+H+nqdPH+OcITpXZeW7+1sut1tEhNW6x3ctd7nIjDFyPBywAs+ePaNtG+ZcSMaoCQDjeMS7\ntbbf4zJ+TGFmnCbWF1usd5yGqd5vvm3ou7X6rEVF2UAnduccDoOzhjTMnGYtBvtunZ2x1XzyeDxS\nPAW07eKZp4FpikzTiGSuXggBTMJ7n9VzUls6+fbWyXQOXH3pEZO37E7Z2d4kLcTys2AbR5PVrHYS\n5mCw3tD0Db20mLygO52EcTgCai4cplgnt7ZZo3pW0dZYkLowVXWZhtUaa9XSqdABgtC0LTHNiFFv\nqtLDsNnuQZJkGb1FsgN7slH5UUGRrCTCXEyhvRYYNgkyT/iGuvBMeUHtnVt4t8Vx1KCWB9p7z9eA\nfL5VcZxSyq7umWdK4fo6CDqCHnZHspy4vrfve+aY6JLQtm01QHXOIXFGQtQCSJZYmhAC0zxWr0Fj\nFjpN0+p1x9rKJTvfrLX43hOzLVlFcZG8AHaYrLArrbckgs2L53JcZTsv5hT5fDh+FzWetR6SPHiv\ncRaT1HtKRKo5qj5W2uY0hgc1hs1eW+Xn5wv68wLvl23/aAqp8veHrbfaF3v4OymxOOpSEazSUFto\nQPLgvb9oK1l1hRSnXwImNwm19UeN5bAsEHLZzvfZkK32jXkwgZfWm6nticWjBfRY58lqwnsTmUwh\nh0aa1uCjrqpSGkmZy9SU2BXIvk9LIZXMMqnU4mpxsCMEzZWqEKnN5o9QnYRtMjTOkkyREefB1rrc\narN6kxeSurV412pf3FjmvCIGjTUoA28xQrOlp49y3hSVKvyn5SSHlPLDErEmLuOQ1RapFnoRn2Ll\nM6l1hZLiowgxhYpIWSXFIZJyEWgJuQXnpMnFt5CsInEVpo8eE63yGqwFB1JJ6infP0E5FLlf6bMF\ngARtJQeZwBq6rqHNvJy27zDG4luXSfyB3aSreWeumER5DOtNTwiBPhOuv/SlL/HyxWvmMKqtgnE0\n7Tofo2ecTngjdJse6RqmUVfzn354B8892+2avu9praktnI8/+RAHbDZbLh495rf/6Xd4/tEnAPzu\nv/oXHOcDKUx86d0vsH95wxyVJ/LysOed7TO++t6XefHxx3z5a19mt1OvqIvLDS+G1wxhpg3C8bin\na7KP0ByYpiOrtqPrTgzDwM3N3YP7dr291Gw6b3n1WhGnvlWNsljDertRt/UYaVeK5Hnfcrvbc5pG\nnj59ihHLLrdLr6+vOR1HhlNgGEfGaea68fm7Nhx2e5CG4xzY3d1xnSNypmkkhplV3yIibFZrXrx4\nrt8nhuvLR3oekxDmsdpmHHZ79nf3XL/zlGfPnuCcYThli4NxUo5b44nTxDzHhRidhHkOXFxfESVx\nt9+xbrXgW602ILaOg9b72l6ySYsp79scTZQRcMCEmTnod1gsjfPMZw775ZxP01THVSgCF0OIUcdf\n94adSkxEgX7tiG3D7Xxgn81hZzthx0hAo2lSStVnCGOJmRtjW6UwTLll5JuEiGWYEimESo3Qp80C\ngjNC0u5X/p8uQn0moiPgranjt4psdCGrHDBX/dxIOuY7g7rSlbxS0EIgL8ojSccIl8d9X1IYEq7x\niInMUhaJikQpP9bkOqQUrgsKrlmjsTQbHoAJIUbA1XZZDNoRkRSJUZjGPSEseXqS9Pu6piXOkdSn\nyv+1Tq0vrMCYW7jFD2qaJjUNTolpmnLxvAAUzukYXcbcUoAViwooa3xDFW6JZD5xLkxEFouDs1a9\nELOH6XKdrPW1c/WLONP1ep59prYgAzFp+zURF9+ulNuCKSeouCV5xDpF3Kxd0LSyFeTrH9re2h+8\n3d5ub7e329vt7fZ2e7v9T26fO9n8fCtkYnWdXWTu+gZdgRTX7KJJL0ZwxiyM/0oaT2rKZoSKAj3Y\nkhoxKhl7WSXldYmiJGggsGFZCS0cjkxsq/9e8vUK/LikWS8IlRg4P7SccKPhlBN0g2NmWbXocSlh\nOqVlpZ58Ru4qPHvucB5yX9fqKoPIORRf+tbG5IZATLW1V67FnFQRpMTOwstyOJcz9SgoVCGbq4Kv\nwLoSHVJy+JixbjFPncMiuxaJ9doVlUxZKcQgYLJZX+EtLhh+Rp4MvtFjLbJqPQ2OaJxKv62vslvB\nZtd6sKLqzBgWR11tURZUIJxlG7YKSxunVhbJgMtmldmgT/dfwz5TMNVR2orgGq9cKgnQAk1uUXZb\n5S+JkFLQWI+8xpkOgYv1BSu/xeOh9bUttFmt8V/Qds8wjQrxZ0VMijOnwx2H04FpGGkax+NrVZht\nNhfsTkdCSOz3R+7uf8ZXvvYrADx65ym73T13r55zNQ5cdStWmXz60Yc/47u/98/4z//hP3Jxu2N7\nveZ4m/PrWs/d/T0Nkbuff8I7jx9x8VSVh4fbWzYXT5jnwDRFwmxpWCT33rccj3u8U2T2eMztyRCY\nSpZd37M/LfYObduyOx7o+5bt5UZXvCnV8NKXr285Dieuri7Ynwa8GNqCgsVIGAPb7SXzPJNS4tF1\njuRxjYbImshuf2K/3y/2HtMMztRolt3unmO2anjy5AkxBMZxxLoAwTEetLVnJPGFLzzja+//Kl2n\naNacW95DmECEvuk5DENu/yzPYLvqCSFymidW/ZpVt+F8e9NIOD8YODQ9IHhL33RIzO7OUSOdplGR\nszcpEuN0gjMV8MLLQRWbaTHYVeFMVjOliSBGeSzrjl04cHdU9PDUjshkSF7R6CnMNQQ9zopQRUmE\nzMHxTSFcK88v4ZnTjPHmQfaft54ogXHQFmR5ZhBRmxSUW5skkcjRWGKYTwmsRuwkKzWjz3mld1in\nauQUzsbv6MBqEobYgHELJ8tmzk5yOpBrq3Aht1dOrV7Ueg5TVI5UrEa+sjh0V7NLNRQVWWwxvM/c\nz5QUlXSW6TSxt3q/OYxmzGzWpEY5UIUfOYaAy206k0S5bYUoHyPzPGbBQbZ+KYhjUmNik4LyScVo\nmD0QzTJmW7uoyfWHes4VxVPbgXNzVM3PlWpLsHST1LzzPK/2zW2eZ8QYGuco8vBQZeKWKLNyq4sh\nJwnSYhWhc/FSg+jvKQWoZvLmd/7jJZsLmLN4kfLggl4Qx9Las1Zt4iWoY7ZzC6F84SxJ7n3K0jJL\nSjaz1lN8T94kwZViyZ5xDsvgJKBWB07q5K0hK4WY/sYJzhYHvNHW0w+V2vozApj0UD4KEGE+JUab\naJqipMgJ3JKwyRGcJWVlh+nVETaJepRIesg5M4yV0D3PqhgpRY6prbT/PjxaIVj9u7cq4a9NyPx7\npZ/sraXzJcqnoXEe67XV5rzB5rbfNEWsbYhzIkSFiRfauLrzKlcgavFSRjeyiTA50DOdqehyQaNt\nwgB2KRStT9holNuQdEAux5Bi1AFbtKcP1PMUQk6cTw6xqIN7hZSzCsjpOYkS8JXTleOITEMSJZ22\n1lSLC3Ee4wRcQJgIMiGuSMdRJZU3OGmYxxlLDswUy7uP32GbGuZp4vLJCptbgqfDUbMQASOW60dP\niK9eAbC7P4L1rNYXrDeXjOPIz19qy2zV9Tx58lTh8jxpfPLRhwB8+vznfPErX2a7XXM6HginExdZ\nCfjy44959O5j/sW/+X3+4j/+Z64Gi8uk6fXVluOrW+ZpIJL49MVn/Pq3vwPA9z/4mE0b2KzX7A5H\njqehZuJdbdbsTgP7vU4CbdsvkvNhwFrL7d1rVheBYRh4+kidxPu+5fagE2Xf9gxyIIaE7Yv01NCt\nVzRNxzgOrC6uayF9c7/j6dOnXFxseP5p4Orysi4UToeJpmm5uXvF889e8+jqEeOoRUgKM9ePHyv3\n6vaG29vbqli1VmNhEsI8nOg6JdcDbC+uuH76jKvrS45H5auFrEzUxSNMg0a3pJRqa+vq8lFu+Qvb\n1SXGu9oSNMbiTObFeJt92fJixxkcgm/X6kvUuKyIgjhPylVB40viFIjFIy4rmE/ZmmJR/moh1bat\n8o+i0Locrl5cuo1ls1rTNB3+Ysu8f8khF5LH8cTk1HdujoFpGigyDRM1rjeEyJRCDg5YqrvC2+r7\nHhMtIQfsWpuYh1nbXMaRJgilDWlyeHlKamWStP1Xn2HRAsJYXSTXgSGiXnZBI0ecd7Wtb5MGkVub\naSAxVIpFaVG11iEkLbYKwzZpm8ugVDRNrciFRIo6wUS1abA4QtHAiSrRrFF1eEqLB6AxuvB0JUzb\naGFV7tPDoajahPVa8j22LJJjVH8oZ61yTsLCvRrnkTnMqlgsiz5URYgIUUyNkyq0BQU/QgY1loB6\nPd95ns2Ah+PNWLiFM6yL5Fwoo6rMeV6KwF+0CWqxs9DOjBZslAzaSgEE0Tw/a01u5ckD+otzjaoD\nVX12dg+ytCp/yfb5Zu2lxarAGE3jPi+sGrtcKDJyVFdJZiFa1xgJATg/4IVrsBQLy88eEMpyJarf\nndGNVIoqU4lXIU06MOWiqPRfyzEhvtrbC2cX2JiaXC4x5Uk0oy4xYUkYUfOwEwFnczip5FVgyuoN\n56ok16ZZV1HOqqllSJTYbWuNmsbZpdAsFhL6CwZjMvonSq6uRp8od8W50nee64OodaIWpl3XngVq\najSDM0ZNUY1yycoEhdP3xOw/Y+fIlM763Ekf6vL7C++scBU0CsbarLIrO2oFI9oPt85UcqyJAk5N\n9bQitrVYshJIMkIACYsfFkAIIw5LjHlV4hxRdPKKGJxPQCBmoZ+t+6t4pjWlsB3Y0EL24RFnsI3B\n+ki0R5LM9Tu71hDkSEqeZCNdt+bwUlEZ9h3bL6x4ennJ69vXjONRRRTAaTzqJBwS8xzgbPFxuL9j\nGAZab2n7NdvLDU1GM6xNjFMkSMJK4mLV841vfCNf35lpHrloNyTnOc4jRSHcWsuP/+T/4zv/5l/y\n7X/1O/zV//U93vmyFjbWwSmMpJTory/57PUrvpmr1K/+6q/w8d/8kN4Gjqc7pjTW+zDlGJApCbvj\niT5J5eyMYebRoyvmkPjs5XM2q365n62wWfVcrbccbvccdyOHOXKV0bO2X2O9IYXI5WYLJA6Dcnac\nc6w2PXf3t1hrWK9X3N3l7D881kRub/bs7m55fP2I68dKqN/vd4hJ3O1u9feTLCrRFHGNZzgdwTrm\nGOk6vfaXV9f4vmEYTzhneb27rUhl27YcsrpPgXbL1TarC1MOOW86nWSnqKHeUCXqjVdDVbFmKQis\nq8aOTYnhqJEsHRKHbFwaUduCMiYmvG/xfuZwOBDjTN/3dT9FhBRiLW504ZPHon5FionL9QbjPa9v\n7rh7pR5lx26kaVc0JvsQmYjEgg4rhyUWrmqi5glKLjCc8TQWUmNYr0qg8cjduGMOMyZqx2D5TJfn\nEnBYcLYuaJy3mTOWcBKJ84KQmNz1kIyC2ODq+J1cxFl9PwJiTEXbRd1BSaks8gPFP85bU8dLSIpQ\n2QWRIqovk0laoBaTz4RkI1JT/d+qN1WKeN/gktf5JypnqxzjOM7gBvVItJam7xiymrd1XrmExjOH\nUe178ueHOBGiLmKnELMv4cLVFavnOSQ1HC1h9cbq4lasqDGqCEZq5Yqh2BOoEnIpzq0WKLnYmue5\n2teool7n/Cmol9i5EbV+tCBRCGleuiACKQSKGOwcVS2CpuK3WLwQy/dpjaC8W2EBVkQSyzL8F2+f\nX2svKx/O4ejz7RdBaeeUr3Kj/nfIz1kOlMkTeXGvffMzi8dFymqfskqyWPXgkHMyur7HekdIikdZ\nq9YH6az4s9i6MjKy7G+pym1WDSA5WBOF/iXvu0kQxsDJLQNhikKaBeszOpoLNWaD9xbxWToabYU4\nsUJqihKyfL+UUHJ9aCuRDySZqm6wuAp5CvHBOVZkTz+jpIo/UF4aFRM6m7OTStFjYYqBRhZri3Kd\nCrE1pRwmmqSeU2MMU4rqiNwasFSVjeGs0MWRMAW+0swko1lXJpNOiUXibvSBjxaHy4NYOW26ehOT\nFSHzkjtlsjw6BSFZVZyUSd+XdkDOL0sSSF5DV3WLinA5DdGcwokxFIfySb1k4sx8VBPFy+wX1HlP\nGCf2x3umMCLzRMYvOR2OTGHWvLARDsOpEsq9E7yFcZiJ4YAxQyXFrtdrrq+vcV3Lq5vPePH6dV3Q\nPHv2hKvesel7uvWK426/IBbO0K9a/uwP/5Df+z//HV//l7/Nj/74/wXgSdOwbXsOZqTtO9b9hh/8\n8PsAfOvXv827X/wKL59/yqrr6bqmtuD2w4xv1zQYjrt7VVvme1jVRjOnOeBcw3q95TCM+Zw5rq4e\nse1X7MYbxEC7XjHl18cw8eTyEcPunkePHvHTD37GlAn1X3z3XeZ55sWr11xfXWOd52VG8vp+Td+3\n7PcHTsc9V4+uWWdkyTnNGnz58vVy3+Z1gveeKWig7Wa1Ul8ol3PKwsh4P9J2G4xx9P2Cuo3DhLeO\n4zAQQmC73TLn1w77U22daSvLUc3esn+Ocbpgabyv1IQwKToQbMLTZorB8syK7YDidSS4jKwIkRBU\nqVtoAOeT1jhqAbxdr/MkaDAFeTCGGIMiPNYzTHMtTqc+seo9yaoRKra0biCITthREiHNWNwvVEjp\npJlqm1Vaw8UFHNKJ0+4AyWendi00xOf9M05J5QV5tnmhd4Yilc1ZR5oj4gTnvaI2lf2dx7eoII5k\nU18o9AupqHS0qc4XJi6EfZPnkpQLHqLFRk27sLg8H+bjjVLHN2PUakHOxEllnrNG/QCt3hJ1S1EL\nq+PxRHNWLI/xpAWtUx+889ZWjLEqu/Xvi3jJGEX+vdeUDf2Z1GtvjUOSocGAuDNBlq1jujO63+Xe\nF5FqRRNCVPuYauol6ttncpDymZchqLJcW8KiytQzQnmJo5AESgFawIRzEZh2YwqKu9x3Rbi2kOLV\nZPQf2j63QiohenPaZYJ2xlbUSUxWa0GlNolIrli19aIvFc+OYjAp9Q0ipW+bjSvfYN+n3Ec3xhAJ\nS6UMipblOzSmpP1v0JaPKa0o6iQLZOVZpDFncv3C9RFBTHZPNzzYl6IMk5hNwVIkZAfjo4XO64rf\neo2ZcVktMjup9gTVaT3fiEkSETVXi8lAdnx/c5AS0Yeu2EOA+j/V8y4Wa6VGr3C2YkgZJStRO8bk\n2B0LGIf3llKhGGdx0WGNIyaBEPHZ3TlayXwpPScihliMwsTi8kMciDR+4R80jdfwTKN2GGKk+n2I\nycoiJsUajaGQIVJIOK8uwimbwZXT4r2awqUIkUiUQAaAMKLRG2IdtsnF71mEhkiqAckWVB6dfW88\nBm88jdGYiWE6cZpy6yN5Nu0aM4KZDIebHU8vvwrA0yeP8KFV1+555ubVbbVq6Pue8TSwvz8gwREa\nW7kwFkUP5lmNGq2NVcr96uXIYZx476vv8U9+89vEeeKHP/gBAPuf/T3vvvcMl41K28aQldNM4xGS\n0BvLn/zBH/DP/49/zfbxNQC7Dz/l+ktfQNLMzauXPH36Dq+y/cHr66dcXT7lxd/8hG//k/c5ne64\nv1f+TEyJrbM8efwMYuJ4PDBnXlSMMyl1tG3PEBL96oKQPW+OpxHnPdfX1xpAbQKrdc/tq2xWmm0Z\nuq7DGuH+/p6r6+t8zwuvXt7QtRtWqwuGaWKfpfqbyw1tq67pj58+Ybvd8uKFGoterDeEKWZX/sTu\ncGCT0aPC59put1jJZo65ZXLY7VitVkycCFHjeu5v9fht06ox4jyy7recTsc6CXV9A+IfTGaV/yka\nYBzjXMe21i1odJtl/2OetLIokcZanGuJzkEc6VLHMRu8TlMZI7TYhlSd8sdx1C5B09A0TeUmzkUp\nGAKXlxv6dYeI4eXrGz7NhqztVYcfGkKbaBqNIwqlZUQiSFCvwBSVs5Q3HWPK4k2NPMM5j9M2bDYW\nL57xfmQOhRpildNj0QVlmKoZb8rpAkYE53xG1spCONF2GrlSkbqqWtN5KVqjxpLGVVoJQVXK0hqc\ndWrFUVesVsOPbfZAtAvH1tlGvfywiFGH9TnzjpxHnc6NRuToMZGPTwvdglBJVj274vpvvRosJ8Nx\nP9KME332rEspMYvDpFHD2Y0uYPPOZnBLKuXjvA1XC+taZGfgwS0eUNbkuaReplzQkvGouARvGx00\nF7WoXdJFyPPnNE0ZbbIPnoMgutgOSQgp4UpBKEtEWSqlgCz7f07teQgQ6C8bo28x1tS55H9kfQCf\np/1B7lHGwj3KnCRDaZHJgz4llOLLKGHsvDqnIszwC3qwliVSJspyMfR9pe338PvEpFrw+OjVpwSg\nMRnaldo/Xj4rKenYkE3BzCI7Jg8IaF9+Nql2IZ2x+cYRfXBEqhEeBJKztJ3FzIKYiPP6WttYUgjq\nNO5SJoQuZyVFg3HLPhYIFzKsmgpUnLO1zo4/FrlpcQo/96yyGnlg4qxy3zK4Oy2KnPOaZWc1LwvI\nmWwGj8OPjsZ3kDJPJHlizETGOSFBkHmxt5jslE3ShCBUl+4YRuWFiGTDujO0zBvSrCvLmCaiJEQK\n70iwcyLasmBRSB+U8O+ch5AHB3GEWFZeurLXRbHFpeUcmtZiY0Sy/UGQDrGmEmA9jtY0dK3DNhBM\nqBLp05yJwMHT0NP5li73056sn5CGiZvTHcM8kEJkf9KJb3cniGuxwCkO2hpkOW/OWLyZCdNMlCUb\n7OpyDS7x+vnHmHnH197/VX73938fgJ/99Cfsb56z8ZHxeKtRJHkW7tqGw2HHbODw/MCP/+C/8N3f\n/i4A/+n2D/nws894fH2J63ru7/c0eV/+9gc/5ju/+x62u+I4nFh3jrsM5RTi7DhPYBUFuL29rffs\nZiO5PepwxjEE5cj0fU/KE/B+GAkYNv0ajBauTdMwziNX7YpxmPGt4+pyW+/hJIGnT99jt9tzv7+v\nnJa+X3N3d4/znl/71reYpiE7UCsKttufaFzD8XinK+t8w+12O6w3hGkgYfF9x7rTtthxf8eQBpp2\nS9NtOZ2GOkEfd/eMIXJ5/VRdu52rHkQSIIUR61t9XmNahA8ixFnJxmQfsrLSb3DM2bPJk4068z08\npYkpBrpVy6rbMIeRbq2WGSFF0qzjiWZjJmSq/UJc4/CezIfxWAFny2TaYrsO71tSmPnZz/6Oz17n\nApRrjNeoD++t+p5RUh0E4wWxEd9AnISUW+nCTExK4YmxULiXQso61JrFJWzjabKJ8TgPhKD8USbl\nQ5ZaocHQGEUpnAhIwtVIB4M3kIzFSdLxpj5P6mTuNJCNOAdcXlwLkSBAiMxOY6zOx1Jr2tzUSoQ4\n13nGWEfDBSlOzBK0sHKZND1GpHjYFb5uQc+M4DJqX5BD29jaSjbW46ySyK11mCRMp7E+F3PuAIRo\ndDFa58tEiBMSQ110pzP6hWs8SOEanxWZJs/fonOt0kbyeJoiBNEuB3kOr4WbgSQkMSo0SFJbdKTl\nWoegRZaJ+j7v1RYhlsgzsywYjHG4aDM3y5TTVY+h8p/fKBL1DteYMorFQ7n2hsXF/pds9h989e32\ndnu7vd3ebm+3t9vb7e32S7fPj2ye4pmsXLfz9pKYM55UkgyNFvKznMF85d2KZ71ZZZJ1AKa+Vvg8\nBYVwaERJU3kiojtIASQFsO7cqVWRI2d8VU3pZ+b2on5AJrQvCFi1RZCkOVHl+0QWS4V8vOX4xilg\nWq/qNysYD+dmlUksLs24ZDB2CSV2LsOvufKuKopcnhc4tRD1g4iu0MrnFk5AVslVB1hrYY5EU9Rt\nUlEg7Xlre9J4RclKwLCztrraOudoG2oOnfeJ6AxiDVItJXIfPWSk0GuwgLhY25dic5/eCoaAsMCx\nEvVa6H6rWWGJUEDyvZYWsUG1jQialVXgYXXFz20BYzA5Od1mLNVl0q9kk07nGoiWLpNxi+rH5DYD\nJLw1eBMhajspzSsmM0MccKOjlatlX11ge3nBYbpnP+wAQ5NXbfMws9/fY1PM5nkNc1ZcjSWJ3hrm\nKXNXsgR8jjOPLq7YXKwZTjt++Df/jS986T0Afud3vsOnH/6Uv/z+n3J9ecVpPFUkc7Ne07Yt07Cn\ntcJPfvgDNjl25be++1v8h3//7+mcGl4+//gT2pz9vnaUgAAAIABJREFU9fNPPmI4vOTXv/llfvTX\nf8b773+FttfXYkq0bc/u7p7TcGCaB+banrQYs83nT69JIT+LUXfru5s9MUZWfc90PHH9SNWAKc7c\nvX7Fe7/2Le5f3WAxVUU3h4SJnv3xwOl05P7+vrqXYxyfPP8UnMX6nmGaWV8qX+04Hhjmo3LTpom2\nbTjllmDTtVytrtjtDnSrNc+evctY+Gpdj0jEu4YwjAzHI7usaPPe8+jRIw7Hg44txlXk0PmGZD3G\n+azQMhWtUe5IJMwTrV8Tk8NndVOIyjnp+pbkBOM0EgcUGe18RzhN7MeBrmnr/bRe9xxPQd34nSMk\nEPQYrDP5durAthVpL8qxi9VGW36XK25uXvHhhx9yus+u/nJitpG21VxO13h8ichxkUkmsGpx0mbX\ncd00xmaeY82iSxl1CrPNfMaABB3HTKY8yKRjgv5+AFLN2rONI0SlCFgjNCR86d1bQHKPxHtcYkl9\nMNoxCAlczDyvaoAqSrcQgWjUoDh/n3F5H5PmAhpj6jnzOGIaCXFWW5UodWwXb2HS97gcJnyOciXJ\nuX3GVQsaZ0tSQpPV1iHHZIWK7qiqXK0MJCZmCZViMU0zQqocKX0+8yUUsDFhnbY+Y0at9N4AaRwO\nrzT+tOixVZGdlKYTJXN164t5blGD0IQhhaLay8O+b1C6x6K4LxZJv2jTLleo3DgRWdThVjtFC370\nhgF4wfONKu+LP7ejUm9/6fa5OpvbM35RygdYSd3mvF2HFlOmEMHsQso7i445//v5VrhT50WWiOTc\nPsEalzkueTIl5glafaYk6UXWT1GVgfKnTCV9gvKASj//vHAq34dR6nVpYpr8WkyRmFQaalCiYXHi\ndQlimpiiBafOuSaWG0q5AN4nnNgMNRfCnBIgbfa2SjGqELFAlGLzPirILpJIZwoGjSYIlZT5YEsJ\nmdXparZjJbl6YyA7wzqrid2FI+WdFhbBJFqvgbpN4cc5R3COZDPfieVWnzO8HIJgvPKVyjlt2tzz\nTkGVMOJY1JzaIzfGaZJOzDwLlOukDy7EOQeUliIddcmd51m7yLLA29a1hFyYNq055zECDmMNNls4\nWAxOq1H9XJNJqFYdpY0IKbuCpxiIkphCZB1amthXt+FkAmICfdPnXLVAV8JJI3gzcTjccjqdWPVX\n1Q8rZVJsKO7ykgiZe3QahPa+4fp6y/rxY8Zp4tOfq/3Bfvea3/vffpeA4Uc/+DP6BsYsOU8pcbm9\nVP5YnJHG8b3/5/8G4Pf/7b/md7/7Hf7oj/4I1+iEWPyunjzb8vd//31+5f3foO07QnL4JnM2poHd\nbk/ftoRxYJpG5dYBd3d7Vv0VqwvP7f0N++OeVXYud41nvz/Qes9ms+Hnn3yCFcvTd5/l449s+hUi\nwuF0rARqvaciIQphPrG9WLM73NcCbRxHBMuTZ0+Zg7A/Hlmvs1t624C13O939H1PYxvGWQuNEILe\n076l8w2nYaDLrT0RwzCob9fu7p7b+ztWW/3Mx08e8fJ2p0U/VifsEsuSg4CFzM8Jwjzd5+epxxhL\n0zb4Rsel/VE9rZyB1WYLTrkkU5wpmdViEnPM+ZqnA8f9oeb3WSt0neY+znPkeBqBzOXK/BLnmmxR\nMTPOE6tGC92+8TRNi1mvef7Bj3n++hWnm9yiCydGOdJ2HaYx+NbQdJkn4w3RRsQGrDd0Tbs4jRtD\nyMV/EpAYq11JolFVnz4kjONEmjNVQUydK1LIi8vcMpNWA8ut06xSJ+CrZ5/yaRNJxxIxWIovnRoT\nJJG8yLfYQnAmofL43CY0LFQQr5O+sxYrSs43masoSZjigBiHs17HrLK8zgvZxjrNKcRW53rRxF10\nRZhBBmxV6Ouf+ppaWMRKhSmeVgajrbFELfoQIcxZRRlzO63OrcXTKmb6Tf5+0Plx0oVPctmX8Gze\nSwXksGCSqUWatbZGDel+L9+n9kNKTtf5eBGR6Wkvc72tf5ZN23YaCC0SMbbY8xiS0mnVP8suMWUi\n2U8yL841KqioJbNI7B/YPj9ESgD7sCLkgS5vKQrIk7lk0zIVsJb32bP3PNxKH9SeKTMevKbGFWpH\nwDmx8NyoK6+cOOdWmWzClj2NyoomE8pNklrCliIjoisAfbvJPi6LSsCfcR/0e4oPR8j8gITNhUg5\nLcowU7VMmxymaXQQgSwyyJlbXo9Vw5/L5y/oH1iSESRU0pa+JiwE+TNPL0EJijEE5d/k45fGK1+p\nPN/1fOlNrEVIVjt6S6yFm6JUIUtrvLG1oJKUiDU41SAxLr3vJHhvEJeztjShFNBJP4YcemkMzpsq\naBRRUqWGYGc5c7mfpNiqqO2Btb5ekxRNDgNWfoM1tnI9rNVCOpvTZOL/UkgZ5xCTCDgCyoMrKslp\n3iHtGmtWdO6Srzz7CqfdDQC72x2r64btdsvdfU8My2LhdBwJcWKeJ8I0cZITxeLBGIfEQQn1SZ+Z\notrDOE6nkePuyPWzR/S9pc38irv9Hd/73vf4jd/4Fu+//z6ffPABF3nSP5727I6qNjUxMM4T/VqL\nhf/6h3/I//7v/i3/y7e/zY+//0O++c33ubvVY7Ddhlc3O949Djx68gUUZNRzGuaJtm1xxjAMA2Dq\nRDqOI4fjie18RdeuGIaR1SYjR2K4vb3l8fV1RbBIsRp4dm1L3/e8+uwFIqLE/FEn5b7vufn0JRfb\ndVUjnRsgbjYbHj99RsQoh6eg0dFgbYPB0zUdMUZOma+22VzpogrhdDphm7ZGaBz2e5xvmdKJu909\nTd9w9UiJ769evdLAdd9ijNBYJeQCtE1LSMLpcMR4T4gqLyc/VyklUoTT7oR1MKezgHQmfLem7TY0\n3ldEIiU998EpOXmcJ+4z2XzVNDTe5sJtIswjMYt6rLGsug1NvyIRGaYRkUiTvYR8q9l+6aQxIw2e\nw2stMsfjqMiIO9A0DtNAl20MfOsxLdjGkMzM2AysN3pP+aZTIYGoGaWkxVZATIM1hs43uLUlno7s\nD4d6DZPTqBecJUmqCyUjicY7jASsWJxfOGnWKvIpKWFtizEemzl5gnYSNCJGF9/mLB5KOZ4G7IJy\ngwpbjHF4vFomzFSLFzU0LYiAdhBKoDGgUAhSa4TaoKGo+Symdh3SgjyIVMufIjCRs9ghIwLGaXC9\ntRwPYz2OFNX0OoQljqdskhdklaj9oLg4Dx02VZykFjg6bpqk92g530GKN5aKM8o+654oWGKtaBSY\nWfivS1yMipvOo4zMG4WVhhAXEYbFCTT4TME2NFVJlCp5/sHxokP6m7Exb26fn/2B4cFlWNAbqYqw\nhU+uhYs8YNmffVZGk34RCvRQ6rjcpEpedmc/F84+MtsB5JacNec5k5j8uZJiDiGO9T1F3qtl+jKR\n5kuS4WAhSKorDJfVAtpuKvBuuaG0+DAJlctauyjzgraKjM16NJFajGixUtSKKiNV8vhSuEo2fcMa\nNaKrA3FenRnNJTJVEakIjuSK3VhLlLQkq2efKrVE8PlBMPXzyn6ZZPDGVen4LFH9p0otZM7Ot5Cd\n2dUnRqLUQXGOBvFgfFK/p6Cu4vo9DlDfmhg1n6+syopnTZJMYD27N2KMJNOq0WKVxpYHymI8tK3B\nujzh29KetKrWc1KEKrpQMMtxgNdgZTxRDFOWwyWZiEOLnx29b7lab7nIrdi7F684uT3r60tWm57T\nONSHv2kdJCEElbvPY9DvJ0vAjSq/jodRPbDO7PS990wxcDicsDax3ihCtGo8+8OJv/zzP+cbX/4q\nF5sLjrkN5Zzj5uaGdd/R5NZxmbxXm54//uM/5p//r/+M22fPeHV7w9N31GPq5vYFbbdmmBOby0te\nfPox24yqzWPk8mLDdNrTtj1pSJisSnx0/YSUYJ4D/VrbctNYpNOB9XrNMB4XP5gYqylhSRVIMfvh\nGGHOpH7nPTr5RV6/fs315RVzVgNaDE3Tsd5cMo1H1uut5toBzz99xf4w4nIRdTzusIWI3zUcTwfi\nHFlvNgzZzgCogcivXt/RbdZsNhtuXimhXoOle6ZpoOtW9F2DyS2aYZpzKHWnKF/niJk0PI6jEoll\nzpOe4JqzBWM0hGEkjbGOg6D3Q9d1iBVW6xVdbIlZmZfCjDGG0+nE/f0903jCN1pEt00LzlNMaed5\nZrVa8Si75RtnCSFhV2s+u7/jBz/7gEMOWPbi8QPq62YMvm0YjrlYXM10awM+QiOEYGsbbmUctl0o\nGd57bPbJS8njjcOGiOtaLrcNNlMF9seB0zgQTMJgiUBTkR5V7DprcR4ldxdfJ9TI1NmSZkEtdEzK\ntiiIGlHaZYw2lHlLUZpEULNLFGUhKZkasZhI9Rk0xtNIqyR/0TFr6dKoik9sQUYSi2Qz5U6Bq0ih\njufnMn8LySzoUZH2570FIaVM6whlEaEEenWb13G87I43Vn1tqrhrmUvL/JrMQ5BDj3/xbSrdm1Jk\nCfnjqrzuzKwULZxinhPOsZJiuXPe4jMVkdJ9lPxd3rVVhS5BaLzVsTufs8X1fHFWlwwGnC/K/0fb\nP6rQ4npjGi0sFpQgEc/KruLJpH9PDwYKPREPv+O8WDr/GSxtrPrmZc/OTurZz03mTGXOT70P8u4v\ncTT6bRW2PPt2SUsRVV4jJUXGRAup8/1TjoruTwxginw2ZZTOG+UzxHi2uipO4eXQ1GBzueGosLAe\nwHKGK1qYT4kWjRlZC6KeThm1elCEpKQ3VLl+ZrkJCxzujWEWnbAKCmcxD86beeP6pZRyELR6i8yl\nlSjClCI2GUwTATlD3FQJmPJ/1rC44OdvlSj5gTyDl9EWqbExqzZStXewXhVCvgHbxOyVVZytAXQV\np146RSr8cFARUXbVlIRZlkHaiCWcZjZPPKu2qbwFfxnZ39xynE44b+gaT5h04N9sNty3d3RdT7Nt\nuHl5rHJ1NTpUqXHXdRx2e/os1XdZqVPUL/M8cn+bHaNdIsURYxMfffQRm9WWixza+/LVx3inPII0\nO2wTsMU8c5yZxfI3H/yUL379Pf7uhz9i0+okzJMvcH83Mo6KTIQYud+rx5BzpeAXwBKjcDrqBHxx\nccV+dyKlxGq10jZFXjQ650mosWiTDKfjSOuXeyjGyHa7ZX97p95I67YOmrev72iahtevX9M6z+rx\nqg7+vm1wku+5qJy/oiJ8ffOSGFTxN0wzIQ6sN1okeZ+Vp60hhEC7srWAmueZeTjR9z3bq2vu7u7q\n899gkXnCdR0WlXvPUw77Fcvl1QVtsyZZxxy1pa73fkPjO1X6iWWcZ1ymFq3WHdasOJ12eEaM0YQE\ngDi2zM0AktilwHazYaEDCK7tabzXz7Wmmr82jfKipjAxno6kELm6uKTv1/lzB9y6h43nRx99wMvj\nEZuLMIIg4sEbxGnxbDIPTJwwmRnbRlXMZeUmgJtPtL6F7FB9bv/gbacL4TQTZsHZhnWf/b6MxxjD\n3WGv72tcnUznORGC0K60mDYuUL2ErMMiNE2HESFIrKrjmMdhCbMu7lKsS2/fuMXPzpYioMDfBpOc\nmmtai7dL0DQpYsTjbUM0YHGUGzzl0HMQUk7BKAWmEUPXNqQ8TxQ/vzIOhxDwRnlSIczYM9f7opJX\nBXkuRKSEIc+5OAETyXY+pp5TsnWLsVYXZWedAfVaFJKhLlz1+LWNFuUM5XoAaKhzu/GOxtraUVEq\nisloUzbvLlOXZJuC0u4rBtr6iWg3RefLZKSO0Y03Wek+EUYt6rva1lb/R4cu/o1dPK3mOZ59/i/e\nPldn8zf/LWJIZ5Pv2Xk7Q38EksFmebjk/rTJRm5mAYF4iHmx3MCAPcsKqgaRZ+8z5rwAW8qgUsQ9\n8IEqBPbcf00xKzyNmq2VF4WlgHN26fkufWRyyzAuPhxGqiO6IlZnvDKXIWO03y+yRKS43JuP0eCC\nye6zTh/W5aOxtrQ5l5tf8AvqJg/9RNRGwemxRUty1FZbRa0QXEoYa4j1iVIf/2T1GjnniEU6XfgX\nxiDOkdxiIIgtqGJ+cJKrhnazRIxPOFOQw6UoTiEQk3rpWFMexCJnTfXBlCQZ+s2DovdEXxC3SNN4\nrF+uoWsdxkS881qU1pNWVkZOLRIyipWTXtTXyennphQIwZPy6nqcABO0teI8llhXia51XDy+5v7+\nNU5avG3qgJIk4L0lWYNpWmgO1bsohIDBcDqcWPcrHj9+rBlnqNElzhJSZIoT3jmdONGV52bVsd/f\nMdvE7W5gvfkiAL/2zd/kv/31X3AYDlxuNg9aYuM48ujxU15+8imPt5e8+5X3+Osf/Ujf961v8M33\nv8YHP/uIvm1ZrTY8//QjAJ5cP2IaA+OgEUdN0zBkJKNtR5XMZy+daRi4FzXOXK02hBgxTs/DYbhn\n++wZbZdbRlZ9fj579RJr4aKzFSFyjce7lhfDZ/TX1+yOB54+VfRsHkbWm545zjVzbxgP+XmZmeYj\n8zySpoH1qmWzyohMLkibrmO12XB58Zj7ey3A7u9uuNis2VxdsDscaZ1nykjHnAK28Yi1zDEgIdB2\nWoBs15esNhtiMIhpmE4nfFs4Yjpeeg/iJsJ9qPd341ckga7dkMKAIVJEL8PpSJh9LdriGOj7MpnA\n69e3nI4jTdPS9Re02U+lW/WAMB8nxnHmcrPNBP2MZkjmvRnhp3//E4b7e1yfFxkZDVfE3uDt2Zgp\nFhMtKcyKkMSIz0SoeR6xjV0ctFFOGEAza1E1ZV5T66nu7cEpj7CbRgKS+Z7ZaiQJrrH0K4NvdGVa\n4nOsPlR5Pgh4Z6qXYYghFzKJlC0MFoBICdMpFUK+qyCAzbFVJgnOoBwqWaZd74xypKLNTYz8Pqeu\n7A4hWs2zq1QQq0Ioa6jZfHC2gI8JMTMipeOyzDuGPO8kAauIU+FjWgGiwYpX6kGytO3Z83T2fpvO\nhV1KKJcE0UjliQEQQVJQXqr1efxb9teUbkzUG7BcJ2tVyGWMq9zfOl9mUKFpiiDIKs85b/p7iRIR\n43MhJSlyuD8yHI8YK6xWXb2GzluMdSp4EjVbjrVHlep9/su2t/YHb7e329vt7fZ2e7u93d5u/5Pb\n59rae9OqQKnT2mM1glpEo9BhkKKbU+RoIZsXUzJFRhYiGvl1DdZ8k3W/VOgZb4pU6DQZHqBF+jnl\nfQVSTBQ+V/0uwMSEdV7J3RIf9ldtqajJ1v5n/y4IlWjmXgE0SOSKXT/L+gWmTUllzkkUenZnURAN\nCvcSdIVinVb0fllEnLXTUpbnl5ZkRNKioHRnSJ4ej9MVhKi9Q4Him8YxpwRBA4uLeIR6fJrW7bwh\nTYsM1jlTeeIFrWra0rd3xMYh00RVbFboMGd0ZSiauEhWtR2rq7jGeY0UODNxtSiPQEKxTFjM7hSP\nFnzrsa2r5GdrG6zX7CxtH0iVXBuLZu/laBznNSw72mLmqGatujhKxCQMOXx6skKQe0y8YDxO7O4X\n9/KQya7bzZrjYVQX4tqJFtq2xTYe4xpWlz1hVDTnuI9Mx4k4J45y4PGTJ7Rr5SWdDkc215fMUUin\nE51vmDK3SKLFO8FlZA0r/Pz5J3r8Dn7zt/4pf/VXf879ace222Bz2/OCFdtuTQp7fvqjn/Dt736H\nu1tFcp5/8oJ1d8nX3vsyN7dH2rZbAps7r3E6CU6nE75ZnqnD4UDbeqb5xO1tIIaBaVjI1k2/4XDY\nsV5b2mzyqIR1YI6cppEoKoUeT0M1XmxWW07HkfVqy3rds9sfaRslOMcYmeOkCiIhQ/z5GqaRaRhI\nswZwt822yrVj0PVrt+pZbS7YD6fq+v3Ou18ACTx//pw5GrarvraFLq42jAKTqJVG6zu6VSbUe8fh\nNCJiGMYjczL42NT99N5j2zXrbsP28hE+o1yteGIawDqM2TBPe2w21rRxorENTdezzWrAOjJKRILm\nuPWrK7qmo8mIqjEqRbfWM02B1RNP3zrmfH8epOX6+gnheORvP/gJ03Ticl3adxZjNZLGNw7jqPFY\nIUzqot94FXM0VPfyNM8wOYyzeKuk/xpdFQcEbU0nGzG2KdNFHq9UyRamkWSX1n2KMIwwnEZW3p3F\niEAhN6pFzaQu7IU2KgmijmuScjROHs+jBLUAECHMGutUN6PoiCJVgnc9NpbXI8ap6F6izaKbbGHB\njAck2WoKeuZFqp+bTVNTesj3IXdwCvE7iai9AjpfCtng1Gq7LYb87IvgXQMCjgbv/GI5gFJKjNf2\npMJci8obFOHWfD9XW9eqHM9IqW3UzqK408eS86rEEuV95XHB+9oKtFa5eWUOfmBZI/rdlYVsVImu\nnSN9QzgVd/4Td/c3zOPA9mLDquvV1FZPGU1jcRlx090vtJR/xByp2k47K1iWxGiVpXJGSpPM2bGZ\nSBfLJJ+0Iiif54wqbWDpoRYJ/5sEuXPL+SoBZSHPFdfYc8dsUA8NIO+vvPE5Ksc3Rve5FnUmnREC\nNepgyb3T/1mhevbUY0CtEOpNlqihxUmENGkUivFg/NJ/ThNKws7EZyMmO8gux+h8cXqFmJYCxdrS\n0tO/l756PuOQixDQKJWqQhGLCUmVFgFMWoijatmgjc7SXiwGtw4tdkLT4K1nYtKePMrJSuNETMI8\nGZIs18Jmia8EhzQ8eNgwmh3ondNeOWe8uHw/JFd4eEsPXADTWpyz+M4oxJ4nKN9m3pM12KLiPCPv\nO2doVsqxss7jTCxcdIzzGK+WFM4LSECys7sRT5oN0zTyMrzm3fYRT66u873m2N2/Zrve4FvHfBqZ\n8sR+PJ4wzrPpN0QifdOzy1lz1gndqsVaLVB2+zuurpSz47zh/vUL3vvKl2i7jsPpWO+b4/FI49WJ\n3okDE1j32k766d/+hJtXr/naV7/JZ599xu3tpzy60te6jQEJPH30mJ99/AGvnn/GN7/5PgA/+PO/\n5MWr5zx9+hTjIsMxsOov8/luabsNe3vAtQ1TnGmz3QBZ8HGaJ7w5aeRNlsOv4sjKbwhhIsw9runV\nzTqLLV7f3BBC4uJCW5Axe+AAjMcT97f32MYSorZ2S9tkCiPzPBPnxKpdkSRwf6t8rtuXr7CmpWl6\nfOeJRmq7dL3Z0PQdGMPhcMD7llWO5bDG89FHH5GSYbPdEsPEKntaGWMJ44xPM41zbC/WzEXiPwa6\npmMYAivX0huDZNuItu2rQjPG4myu+zLMB92vJDijmWrFnT3FiHEzremxrQbilkDb0+FAmCNNt1FS\nuYk5DBtkUlHJfn+vHMimJRmY8kTkEeSq53v/9Xv8yQ++j71qMblwd0k5isZavHcI4UHGWzJqR0JQ\nDybJxyHeKam+EUJunZq15OPfEo4BQ0tRjFlfRCEObzT70lKyRMvzqlYJYeoYT5ZN22SvKZ0wmywk\n8N5ndV4e6zPnMYU5K3VlGb+8WipIXsRHE2tGoplj5t3kIo1IY4pvlSNYi5MG11g0liYXEliCiZio\n0WkifplLMnckicVbp5J+K7WoB+3cpbwID2kizAuNRUVQCTEquChzjrUwJw1Ttz77VhXrF2sxXoua\nlPIiuIhXrI692o4DLUsWSwmdJ7NVTZzpXbY+MYmUNM/PYXG5eCrvUz819e+SWuye04Ic2KxKPmtd\nYmyNnpunQJjV622eg4Z84yCtmMdOk0iArgFjO2JSLy0VsOTFlSwirF+2fa6FlLeuogQpE7AlK+Rm\nFhTJCjVuQhCiPVORoeEOqsDSQqac1BgXE69ftNXXRB4UVoVgXfbzHOEquX7GGGKaqx/F+XGBVAir\nFlkFjZL8+bIUIILBiNeKKkWQWC3pS61tjL5ZRCgFfVUkRvUnSkHJ0frF6pnhvN7IMisaVR417y0u\n6THgHFqJ5WsRUT5TBMRw7h5R1FDlHClvqZwrLZOkRM5A5aGZ7GeFSJZ3G2peoni8hXXvdEVsbEW5\nUuOZmoiNmicoYTmImHQwMFiY1SyzppMiNK3PAsqEcT7n6OWYm6hFl28WdKtew8ZiXVKvVmcq6lL4\nDup9ItloT9/XtBbfeBxC4wp3Bc3004uVC2vw3hHmpec/TAHTBmwKxGiY57kO7n3fE+ctx+OBvmkz\nqTl7czWq3HGtZTickBAeULaMMTx68gi/s0zzwJAn/b5zGNMwTSObyy1usBWQm4MwjpNGR6SAdYkp\nozyb1YoXL3/Ozc0N3/jG+1ysW55/+jEAV8+ecTqNXF+v+O5vf4c/+4u/rFy2y0ePSRL4+KMP6N01\nj55+Gdfr4HY43GDvZ3wLbdtg0xKCjUTmSYNq03zk9u6e9UYLsHEM3NzcqFQdy3gc6dyGSXIxMQys\n12vmeda8Peur/UEIE5GZFD3Wela94bBXv6RpUm5ZjDPNasPN/ZEXL5SXZWIgxpGVNThxSGpY5/w+\nrHAaJsQ6Li5WTNOE5PN9N57Y7/d8/etfZ54Dp9NUrTic9wSZcU4tEXQCzJOJb8Farh4/UiNEa4lZ\n6jqPgeF0ZJoCwzAogliIxDKTplkXWhJAZlIsRp5CaoVpjFiEYZqWENmQ6Pu1enVZvQ9NQeNiYDwN\nxGmkW/ekLAkvSKbvthiBP/2zP2Ug0F9dqIkw0JicC2cNmKh/FMjdFasTLVTCrNFX5TlNYjDM2CYi\n1jLm6KhNu8a3HWk2OOsx1uDz5Nm2LcMwVYVzjHNdvIkxpBnG3UzEM4ngijmoJIwJtJ0DM6lQroTH\ne8cwjThnVEmX1X+gPN0kiaZt8ni/xNx0XsUL2mVwNHI+Xwg2aTHhJJuclvrSWWyKVale/tNraIgp\n0VinC+P4/7P35rCWbWme1+9bw95nvENEvBfxpqzMVFZ2kzQgYeDi4CEBFggLCTwMXBoHswUYOPig\nxqBFWQgT8ECCbqel6qpCVVTl8PJNMdyIO5xp770GjG+ttc+NfJmJqo0UUuxU6r13zzn77LOHtb71\n//6DLsAfdT9SUWVn7d4Mx7G8YNRTr4TR5/cABGtnFaCOr+1VVVq371CfLT1vGR33hWw0SNiUgtBi\nW70FAefVTwsgG0NKhpDKOTEzYV59F1MZZyu4ogcOAAAgAElEQVTfqf7+sqCtxZWkBgLU47Ml/+9c\n6UkaylzmseJwHS1Wx1mDMUXlnXLBx0pRazzx9yj3/qBk8/QI6SitvVwRobPKs1yoSjjTkzh/LheP\nCvJvFj71ux77VVWosrz3PbSq7fd7/naOVklDZ+Tx+yuic64Gy2oloAW+Hn8rsqKFrCqBbArCVSfE\nrIWC5OqaPieE60miFBizmSVowSFOidnJG7zT+96ezbQZi7VeoWpjm68RVImpfn9OKmrVE3f2/ZTf\ncv5fZfcpRPWmauc9I67aMOhyqb7XW6cZdwI49+j6dV2H9RNmEozNyHRmTJc17BNRZUzKqXklWaeG\nq+ooreTHc+RQVS7pN68dujKzVtTOwMxoZSJirBbuOYaCVpXj7A3OW/2/0+8X58mmrK5NVMi8GEM6\n55oH0fVmpQ/wpO2h43HgpqAg68USKxpIe39/r8Z+dg4t3u12mk9lBOscq+LQLaK+TDFGrp4+YQrH\n9lsdEFNgOB04HdTKoK4EF13P/nBiOB3oug4npkHkpMjlRrPifvHLv+SHn/+YP/rBDwHYvVMzyP1+\nx/WTJ/zkRz/mq680tPgnP/27GDcQfcf9zYH+cOTZJ2qcuVn3fPPrX9L7xGqzZr8/sCitrdPxyBRO\nfPTxU+7eBjULLPPB7u5I4sCnn33M9nLL8XgkRksIx3bfiBXGYVCbhOPEqYREb7drVps1ve8wxbD0\n7q6oCItizRuLc4772weGw7H8/IHNZsP19SX7Y2C13TQUfQwTtusREfaHQxNPUO6Vzz//ghwju9tb\n+sWyLYZO4cgwHNlsNhyOJ06nkctLDVzO4ggxsdgumUJimiLTeCrnZiAl6HpdOY/HkbG8lnPCi6Xr\nrK7ks6XGOeaCfJ/GAVJkmKa2KF12a5xdNAQ+hIAUd/ZT1lDmhRH66qCeYmsZXV9uuPn1V/zV//OX\nbK+2nDqLO+lrXoRsHYlRkQZLI8YnEibpJJyiYJyKYkC7DxmKn5sg1jCUNtRgBlZ+qcG+sRDSq3u7\ntTjjMdJhZcKWtAU9p5aEYciJySVwsKwWB26mS3hAnGkL4pwmnBGiJNKkvoMN5Utp9tMyszQfwAla\nUAp0tsMl2yb9agpdbJgfiXq0PVmMp/Pj8UlE1JdrClixOCdMY5wXrSJIKaRCaes1g1Bi8ylTLsp8\n7OeBvsbUOZj2G8cxYY1mNwp2HuzPcu0oJPRWLMo83lqpGXxzay6EMp+U9mCuKsmyYG87yWdqx1wJ\nOQVowbRiLeVciPKKKnXOQWmXdl1XLH4Sxma8t/jqVItpyktr3GOB1dl3/bbtD4dIGZmzC8t/K+ii\nzrEm17YLZbLU9yVQRVnrwYoawfG4VQictQrnv73vMQW5FVRzCPZvelLNn69dkHqHG7UEKJsWZqkc\n19yiO+dkkdUkjjOuTyZqCyqp4VuNz5kt7fX7zJk3UVPURUhBIwMqepJzxsZMxpIjRAMm0rybUlJ4\n3eqopkG+1XiwwK1g9MEgtYdGRNrDb9AHrlrqahSBBkbGqKuJGnchCKHwotRvJWnrEYWlbRSmrEZ3\n3pim7BjHUFCZBGMg50gsF0qwmqxeOF7Z5upDgLFG+UzlfAmPW7miZKxyD8wtUScG8VrsiYEssRUg\nupopx+w8xqjDOWgxK87iFj1iJrJJWJ+KK3Ep4mwkcSwWCxtM1IJhf7fj2ZOnbLoneGOZkiIxAPt4\nxMhEb4XTcFTLhmIwV4tgELabK4bhyP2dKsWwicXSc3jY0S8s29UKKSpJa1RRKQLj8KAqvlJEn8YB\n6xLkTidJZzkdSvtqtVKHcDqO045vvv2Kj54+AeD5Jx/z8PDA7e0tyXzD8+ef8NOlojX70wNPP3rG\nu3c3PHtxzX53w3BalGth6VdbesnkGOj8glVpQd7dPXC7f4ld9dhjz+byGb7wnMJ4oF+tEb9gSAas\no1/2HIu5YEzaUgrFpPN4OjaPqcvLLa5bs3ACORGDYRz098fxgTAEPvn4C968fMN4PDT/sQRcXT5j\niuC7jpgD9w9aDH/2+Q+ZUuTNzQ2bzQbnHDdvXgFwsVpzPB6bTxPAadCibsxqMyBW0dred+04jUS6\n5ZK3b74jZlXKdp3eM35hSSERh0kn71Xf0IUctegMYSCFESNz5EcKo6qeU1J1pGSsK20o65mSSvyN\n0VZIKO70JiX6zkNvcd6z6RbE04gvfmCLF8/57stvOUpmTAEk44vHlsQRnBp26piVWnFeHbYNtixO\nJ3LhbWQL2U4Yq8j3mHLzWTqFI71do+gPSPZlLABipLOGPgknLFlmzo6Pyv2MAm+ngaupbzSCDkcq\n7UxDp8+ZncdvjdwSshPGEFoQtLcWJ448hNIWc6RqDUCJjcpCzAajTdDymlITNJZGf6M5m+ikLP7i\nb8xBOglZ6wt1xerzW2O1kKLmU1RmjFOjZ+RQ5rqieDVi2rznjHnUsss5I6VE0PlpPhdadFTzXyle\nUbo4zkWxDWCNJnhYocRelXkFSDlhrUdEC7SQUwt5N9i5zZfNI88obZPqUVXfxtzoNk4TNkrXKIRA\npaz5zqJGqxnrBClKS70WZWFteoytSs9yYhol57dvf9DWHpz3O5n/W+AMA2ngkxqQ6bxd4UHOigoE\njLNt0KBMmCb/piHneaFUfTOrU+vvQqcqb6rurzo0v7/P+uCdIafEszgZhax1SyYh5YGpXJ426Re3\n3IKD6HPXPKiKV0YRpkqW5rMDCmMbo6ueMKlheY1RUBm/PgDWiKI7lZBYz/qjolP3qZEsqbQ0leTf\nflNKKkk3ZfBAmOJ8AxpxeqKz2kLUX5FzVgJq1NRtrCjfBOhixoeoGVwDRF/sIcox6kCQwUZsZ8mF\nTS/eKmLktKc/xdxM8uZtXnXNPlJKQNXWQ+LcMiOns4I9FbSqEkGtfiZJUljZQ2LCSIGOu54YBy2y\nUiSkkdVC/ZlMthweAk96x7I3SMjtycxG+VvH46nEhKTW+jFGvWnGccR3C8hpTqRPICaxWffkNJHj\n1O7hvltweXmhDtxG+WBDKSRCPGEMLBcbDsd3RBGM18+NAcT2ZJtY+RWddez2D+VKJH70w59wcf2M\nv/nFX7NarXj+/DkAw5sjnet5ev0xx+MD643nUFppCYf1HSYm7vd3XD25VDNUIFvHcrvF9gvceo3Z\nn9gWL6zpqBLm/X4PzuN6x3LT8fKVtgxDCPSrJSIjMQaG4dhaeyLCw8MDsl1jjefm7Tumo/4O3wes\n9ZxCYDweNeqmwDnb7SUpG9JkWKx6dscdn3z8Sbm+S15+8x3GOFxvub+9bQu50zCRYlTLExEOw2zW\n6RY9FxfXWLfg/vaOnHP7/SEm3LAA8Vi/YrnYtvvUWgtJOS3KJ5FG4B5Og7Z0cmAq/KdaDIaYIY3k\nDLv9nmzg6uq63ePTNNEvV/jeKeJUExrK2LVcLlmuV1jfg4XFRote6Xve3N8jXh3lg5nUXgB9RIJE\nrHjlXmWZCykjxDBR16bn00HtFgDqk5cTuSwijuGEyff0rCC7Yi1T7mEiYjKL3nOYBiTMiIkaCmh3\n4DAM9K5DKrkdgxNw3hCmXBZR5fEWQ8rqeaSI9dyycs4VYYIWQjnGNnZGtEi0pkPjfs54qimjRhRa\nJKc8pzaQhVhMY6v46f25klzk/+bxnJEzBSnUOSiE0IqCSjZPhcer4/S8EDbOl06Ezinntglq4RMf\n2Rfo9z22QjAy2wUYW+fA2NCpNqSWtxkEsQmXIDbnekWxUvH6c87N3yFlvitzrS3vr8ckYrTtVzo4\ns2mnLXOW5o2IcXOYoGgRlrWu5dzQICZpBddv2347gejD9mH7sH3YPmwftg/bh+3D9ju3PxgidY7q\nnG+5ksZttRhQpCinZllJzBF3Ziz5frV+TkpLKWnUSUOQHleWvw19+l6k7OzflV9Dq4ofvadAkW2Z\nVffL2e9NuaBMWtGTtEpWK7fZobsZZlb7h+/7Pgr8GWe0qhK7c8xEUbluDpkg8+tBEliFiJ2RRpy2\nTh1mZ8f2mc+mEl3XTPaMmSWyIpZKOFfo1zX0KAZtS4o4bU8mO/O7sxqz6etGSfjlu621eN/jXMD5\nQBgzlIyrJIDRYGbnLNnMKkEnCkeDxVpTOBLzqqWa0mk7oaoQ9TPSuAm5XOPaLgXJtsUXJUtTw1gj\n+ML70l2l0sYs580Wh10xhDghKXMaNItu010jCFMeSOORMfq2Yu8ETncnxumgbUeR1jJ5eLgn58xq\nYdkdHpA8crnRltl4zIxDYHXhmaZBc77KBT0cjnjvSys5F8uG+huFaQr0HXi/ZApjsw3I0hGSZZoS\nrhO6Zc/Vhbb23r274W/++lf85Cd/zGeffcLL199pixAQs+SwP/HRk6eKBBkwrqKdgdPhSBaVlg/D\nwFhWf501fPrpJyz6FTvpWa5XTAXC71Zrbm5uWG42PFkvORB4d3Pb8taur6+ZJm13i1XUri6FjVvg\n84hxPTd393zz3ddsvB7rwq05nAbcYuDZ9TVff/2WXIbJrl9yGEYuLreIszzbfszFU0Wkvvv2DcYu\nWK8tb1+/YbPZEG1pFw4nck7shyPOGQ6nic1aUSDnF4xD5vblt8Q4cnV1xW5/2+79btUrAbx/QpaO\n41Ty5IYRkxUNOe5PHB4Ojfg9DAMuC6b3Gsqa2jIbQuAEGOOYpojrHcdigBq8sNloFNGUJkIODR2z\nK6tt3awtGuMs2Rm2zz/W6xgmfvn1r1hvVzyfnvLm4WUjaov1kGqYe1GANdWrVVNZ0QQJky05zbC6\nZEMMip6kszEqiHAMqlolJ0yYZhW0RA1H7hOr6JgwnGooeYYcM9ZZFrlnGCZ8EaFISJhooCj2YsjN\n+sV7i7GGLBGToLP2jIhNMcEUbYtlTQ3QvyvfJ6egbbMc58/lrPmhOZDLuFf7FCFlYrHPieQijqm9\nAu0W1HmgZs01+wOEnCdSTOSoEWQVsTHWEsZJqQsURWdt5YnDUcUshUdauhQZlPsrGUSRs5kqYc7m\nxDJ3NSqIxTilbYtJioyW8cQaReU0lFiZLjW/0GUh2qrIV2Sr5kXmqKHEOet9DELN08sZTbJoOb4O\nU12RCxUnxVx4bbPZckqJRDqrHeZ7jbNO0m/b/qBk8/dbbTBDlI+KBH2Dvl7f26QA+Wx/xV22Tezm\ncZvse4qjWtB9Hx/q+z5TjxHe87OAdrOLNdrzz3LmRjuTCd/3pgItGlNMOpiQsa3KMKXLFkEs50ej\nRWexE8gaIdD6uogSzU3G5owR0cypyhtLc/GSQyQZ9XjR/aYShKn7ETGPysHaMm3n50yamrOQosZ+\nTGOcFUFZlN9USIQxmMYR03bagGSLUBUquj9rPc5NRU2iJO6u1+8LWXP/sqgqD5PPrn0p3DSk8ZHa\nrWYCGgRj9dxVon37bqMPMUnh+fN7oRboEit5EogaKeKwWOvwnQOJc6sNzX2awkjXKWdjLFEvb3ev\n2HYXrP2SN8Fje4ctuWHjblTw33qmEHBn5953jhBGRLK2UQaUXAlKUF4aINIXt+/qsRSi2kmoP1Zm\nmsZWuDnn6BY9i86yXDxnv9+zWSvXqesWiOi5EjNi8NQQ2eXikt1ux1/83/+Mzz//lE+ev+DdOy0U\nVyvHZqUthuurZ3z78juePdOW0BAmdocHbG/oe+WltODhxYLLyy1393tW6yu8sdzdvdanwibG4QFJ\nzxlPAwZtU19cXLRrtXvYcbldaSB2zLhO28UhJS6vr7h/t+Pu5g2H/VsW5XM59/SLjtV2Rb9Zsdsf\nm5R9ipntxZbL6yc8PNzz5OlHTdH37t0tn7x4zptX3+A7yzgMjMdyvqejnt9siEH5bMYVCTgoAd1m\nus2W3cMdq5W2LzfbS1UQifpIYabmQO+NJcfE3f097968gyTqAURp+4VEGCemGLBisOX+TjkSooar\nrzYX6tlUrn3fe3xvOE1KXE8k+hJKvdysdLIZB70Xh4DvFtgLPdbX73YcnWHz0RPc/mu2bPGmRo+M\nTNNAjLSxvU766uhi2nOU0xwinHMkhUQuti45nknRbdQQd3PE2SXRWMRWDiCQrPpIZTgmVerVE55T\n4aUnDXxvYzSOKepznaxVkngJ/VVajqgLvS1O8fU4k3JCU7PCSVQZrEZ8zXNECFMLwzXVE84U5XOm\n+SrlLKTC68wpEdNZISWUirAu2HPjTUE5x9ngnSFMic71rZUcQ9QWXomfMZYSHFxap3lWsBtjmlpN\nHenVjkB9ls6LjjNaSwvwoh2Lc66EYQcgcM6wMJLL9BGVxlI+HEq4snNOf6OkORrNmbJojyW3z7Zx\nP5XCTK0ftEgvSbStiLdWvetinEOwUzSFpqLXyjoaLcN2/UwX+i3bHzxrryn3KpnPmhZzUTftiNpW\nkYpII/o1g7bvKYLeT7A+l5C+X9T8tqLu/DPnnwPaRThHOt7f5lWEtB6+/m02vMxJk8XdGdfhvB2c\noRC8y/l6H5FKim1ZcU3GnrOuqMSWG6hIWWuvN2Q9h1Z0VUhOhJZ+XY0/qwfTXIxWZWE2grP2EUcK\nKBYnkZSkFSyUT+acNXNKXJF/1958ag9uNVl7XyBgjME7S+59GzCZyrEhJImlMq2DQolm0Cq8XKu5\ngDWl///+A2KMaJ6haMaV5FklSFG31VDtHAy5FiB15Rl19aVFnG0ThDG6knPOlRVVxBS3P98H7ndv\nSUnIC1gvVywoUSBimNKANwtWq06ly2Xg63tPV2TZm9UKtzQg9RmJTGNB0coioSuFxDDuqFlyyt2Z\nhRnOadj0NCacHRET2B20WNjaLc4ZxjHTd2uW21XjAG43wvai59Xrl3z11Vf88Ic/5uNnXwBqQ5JS\n5u3dHZ9++ik5J96+e6Ofu37CYtETx4FTGhAT6dc6Ofddx6jELLpuAWHk08JJ+vlf/zmn4Yi4xLu7\ntzhrmcbIclEQufGE7wy73Y6u61ltL2aRgjHEAA/v3nJ6uMG7xNPC50ppwUcfv8AsEs4vuby8Zrks\n58b3bK8u2e+PXFxc8ubNW37xc426+fGPf8yrl79mtbBcX17w+vVN83XKBDA92+Ul4xiIJO7u3uo+\nO89yYSEO7B8GNosLnlypovFwCkwxYftESnuMOHqn/lP7/YHT4chpf8J7j++XzfMpHSeMt6QQSCHh\nDEqOBpBAxiFGFa8pJ9YlL3Cx7IlxIomOFavVClvI5Mv1iiiQTo6uU48sv11xelBO2pt3t5jeEtPI\natnj/GUbM6ZRkQa1HSmFTF2EUib+tjBOTX1mnIArk3tWi4Nc7C3GDC5DzA4jXu0PuqqkyRATki19\nMCy9YBa2HcsUJow1am1iO1KsC0hLioVP5B05ZXKxU8mhVxFUHS5sHVu0wEqi2aEmZUTcbBOQtABU\nsQuY5Fp2a4xCjqLXIyVIpnGEgOKzVHhSOTWEr2Wo5qioUgkGrstszWyVYrlgCHFWY8c46SLSWsRK\nKy70d0CYJnzXl+6AtMB2NRzVK6aL9bmwSyVmqyr9SLnZW1jU21HROP2SypESUYTLGJ2kbIJsqpLd\nAFY7Fyi3buaGahek95ZIJIfcBF8p0bJRrXUth5Byt6WkgdKmcNIar6xYMdki+sBIQwcr4PK7tj9c\nIVVaVuaMzBuimnphHTHN3hA563SJUW8jg20tHHKdHs38g88UfcrqPyPiNcUE1GvbOkzvIUXnqMtv\nKL5gLoTye68VP6z6XVCIheUBU5TsnBWuTuT5rAgg6wAWU0JMwHSOFA0ptDoKpBZ7gDGElNuxVMM1\nDcn0kISQMqm0MHywWKyq8jwEF5FwJgXNAikWxcxcKBmTEemQZLE4XBKkmohiEJfbKkbVe/Vgoz7w\naSB3Rom3ZyfAiGjhl3OxGKgDUcDEjEVUvgqkYingjTBNxTYiKXpU21BJYEqpqEVKYVkKcZMMTtRQ\nMWUlodfrG7PCz0ksJllicG0FVQnbU0kz937+XBYtMsdssEFwySgxu7YwoCBxOpDnLMQKcQeL6YXT\nMDJMJ477EyfR33i1XjGdTtyPt6x8j7eaeq/XwhFzZLFYaUafMYzNfC6yWl+RQgTRNPem6JRMChEj\ngTGNTGFgXQwiu36tGWdlX4ve0/qseSJOluF0QuJE50b6MtH6fsVm/QJnV8Q0FZSs+LD4Bf3misPp\ngddvvuFyveKutFPyGLlerLnZD3gByRO23MNGHN5Yuk3Pfn9kc3HNcFCUawyRxVLNK588f8rrl684\njQNdGdKG4YjkxOFwoPNrnl095zQVe4B44vbdjpubr7ApcrV9xsWltqiWqw1JEiYbFpJYGMf6SnP4\n1ts19/f3dIs1Xdfxl3/1c3700x+X+1QXQ8at+frrrzVlvjw2x2C4frJmPEXudw/kPLHeaKF82A88\nHDJd55iyGjTe7pWIfziOZFH/qPXmolh2zFmKXb/G2TXOe4YwsX/5EoCLfsloHQ+7W83kC5kaTDsm\nsN7iJDGGASum+S/tdgeSyVxdX7Bab7HOMYx6Px0PI37lWa/X9BeW6+efsZsCf/arXwDw67tXfPPw\nK+6GHcE5RBLdSduQvvMcnEdCwKSEJJlDlFPSyT6NGDKmsw3gzjlixKkmO+XiDF6HDEMisQ8jW79k\n6TNmKs+3RQuzFEg+su6poAQ5e2L2TERM1vbOVH3ZIrh+QcwJiRHjslogACciNgkuFm8+EVIZ26Zp\nKoUpjOVYa0tQExcMKU0YEVxNToAynidMKgvQNBt5ppwZ4qAeWEbDvGtt5r0hhokooSw6NacvVHCh\nqB5jzgXBm4naxnQYG/R4ilimFgnGCSFNmKT2CjlNtQs3+zPJkih6r4vMc1jMQecTgWwMrqA52Sii\nv3Ad1vaAh2oJk4O2QPM8nnUFORxPgZQNgi/zqiXnOdWgFkcGT/bSWv7a4tTf5b0vC9kZLBHpiVEz\naDuzafOhLcHOFUHT7latFYTfA0j9/kJKRP5b4N8EXuWc/6XytyfA/wj8EfBL4N/NOd+W1/4z4D9E\nrU3/k5zz//J9+1WzzJnnpAaOthVBjSvFvKKuxlxGTGPbz0VObc3lBg/K+d/aiZyLoKocK8EjrUBR\nBOTML+q9irQWL1Kq9tZKzbkhH1bM4+97pKqox9POMWdVxaP3GkPxXEmlbYhCoGe/J2cKdHtW5CVQ\nVW/lKylu2dqQKUAsN0/U/T+qupP2u2uPu6Fu1cVcagnq5tekolgV7QmtSo1ZOWPZGMY0KfJR5doF\nGldoVxUXqbral1Zte9iNaQ9RzAmX3SNpbCNKTLkUuqalpNdoBpNNcfNNxVhCWvxCxpAtpFGKr0xQ\niTpzoVxhcjBFagsyZfII2SfiFDiNsJSu3YupQNWKECnPqip01B5S6IyQHGSbCeU77+/vWTnLRb9l\n/7AjyMS2FD3GWBaLhR7TGIBZ8VVXb67zCMJxCO3a9/2CUzySkr4/pVlqfHFxgciaKY7cvj0imeZr\n5Jxju92yXh94eHh4dF1ubm7o+56L7ZacFlxcXLApCrvDGBDnuN58xMOrr9kfTi0M9XDYc7FWP6Zp\nGlmve45Fcr+9dvS9JxtLuAuI5Fa4rVYrDvt7lqviVn6KLPotGS2WjLO8fvUKJ54YI8+ePeHtnRZh\n0zTw3bdfM8XIdnuJX27YbvVYr66u2Q8nOmfZ3d6yWHTNjuE4HOj7Bf1iwZdf/oq/+y/8RBVawOvX\n37JdeG5vviWEgF1vmcq9eHl9xekwsrt/YNE7wDAMRV0YA9b0pKjPWQhnXlHjhLMZVmviFBjHxPGg\ntgld19N3C5ZLdW6/+dWv6HtF49bbS1yOjPHE8LAnTrWvpUaFXdcBiXSKdH3Pw06/L6YJv/BYMXTW\nMkwjYSxB133PuluSx5NaRSwXvL79hr/65ksAvj295dv7NwwMRIlMRJa9FsvOWLqUMKOqyXKe1bwV\noTUYnDPKoan0AwtZokbMiKhauFZZRuOhJKMtzJwbbQHAJ4Nxjq7TsWEqiEUE/e6kz3NIUzkfim7H\nnFTFjI7PzcagxoIZixFLSrGhR0ac2vLE0Bb59b6IQYotgSr+Qpy7JClmYkjkHBQgMK4tPOvoGoJy\ny7SI1tfGMeONUhWs1EBkadE6bf6zBpPUnudcWU1W2oKO5WfdliQaZp4TcRrVS4/5c713ZBMxqbie\nl+q00iYyURMdMA05tNbT9w7bCVZ03qx2G7V94pwHDM45hmOZ17PV48xeuVNnzZ6KMlW0LsaEO4uW\n8V69ripPbaaXFG/FlFQp+Z7Jplj/iO5TPxdCIg3//K29/w74b4D//uxvfx/4X3PO/5WI/Kflv/++\niPwM+PeAnwGfAf+biPw0f48JQ4V0zyfvVFYnZKNS3vc6ZTUSobpm645qsUOZwB87vNbqtTlyl9WX\nJl6fWSDkgjtSyJBy7iY7F2P6em3X8WgSrzlr58dwTgx/3H4849dQE7q1qNMCpnzOnP0WE3SVW2DT\nGNRsTfJc6JyjYynqQ9H1rhVh563QFDNJpCAzCSnVxAyHJt1/ipiueobYNoFWwmHrTxeO2LmxW3Wu\nD2PhJZlMNAnvc+lft7Pa+tPTFGZn81Svi8xeK7UAf9QqLeeonFIjgkmWHCCaDFg4g39TVKxIpPTU\nywBmSoxLTJBCQlxs90xsNhq6jxgiXXVnR0heCA6cE0ajnje+O1ssRCCrq7ly+QrJ1Y4MY2CME6c0\nkpY0M8cYA8kYln3PousZT6dWSPZ9X3xnpMicp9YiWa02nE4nUggaSQONe6TPg3IElsslfd83Q8qH\n+z3X19dcXV1Bsty9u9f2GtD3S4ZhYLu95nJzze3tLYu+tOGeLXn53VdYk+j8hps3tzx7qu2yz370\nnJ//6muc7bi4/pjd3Zv5nKTE7njg6uKSw+mg93a5v8eoUUEWy3a7ZQwDTHU1m3n39paf/b0N+52S\n59f9krE8Y998+yXWd0h2jEPkbvfQBtb9fs/+4Y719hK72rBaX7QYnBgDy75jmALDaeLy8rq1vMfT\nxMXlNbf3O168eIExwle/+qX+fmeJBeCgMocAACAASURBVBG5uHyK75fYskre747sdzvWS88w7hiG\no06wwHZ9jZEOYy39aoMWWQWNvNxydXWF8Y5hGJGQ2Kz1OJ3vSQjH455Xr97w8PDQiujFk89xaeLd\n7Vu1xhDLotiJSOcw1vJwf188yXxDh3znWPUdOUTu3t3iF4a+V9+qy/U128WSfYislxtGIj9/95Jv\nT9qi/HL3inenW1gY1nbF6QSpOLtPKZNNxvcdTJFpnNtCFFREUFqHiJJ+9bkwZDMjA845mpMp6k9E\nTEwS8EbwvvYmDDYaJCWcF1yGZV20evVzikNQg18rzV9NxOq4I7BYaMFr7TxFWmvJKTMRsdactYyA\nqHQGk7VdNdvQ6POZknKRNC5m9paLMZKSZvSJ5LYOTKnwPwsnyZw5ouecibaM/QYVYsXU7C8qFFrb\neDlLa33FOGGK0XCjPpwZhOaCYhkxKtKq+ZS913YgQjQB9QIrv9AkfDE6t1bw1uHLMRib8J3gOy0l\nkUBf7lPjukbbqIv5WmNpF8VAdmXOSWe/K5JLvqEYcN41bnC/8G3+9l6LJlMCI7U9qC0/U4xTxZ51\nW87mf53X9e8hqG/c79p+r/1Bzvl/B9699+d/C/iH5d//IfDvlH//t4F/lHOecs6/BP4a+Nd+33d8\n2D5sH7YP24ftw/Zh+7D9/3H723KknuecX5Z/fwk8L//+KfB/nb3vKxSZ+o1N+E2U5rx9o9EGj1/L\nKOqh6rjWSG+viRR+Tf1YKq23fGZZf24PUJIdrVHSZTOJO1ekSc1EO1duzVyi8/er/NO0duP3KRNz\n1jZi5DFIl1LEYqimZdbVfdJWDsYWBKz2uyku5wGVt6bHdhIVZTMGrNd9VJ6Qqi8M06QQtbWPQ6NV\n9VBWC2f5SBVxkgJvJxFqgrTy15XbpudbWhxBShW9C2RbEDiZe94GbcVJgVQbZynqKiLnGi/T+PQI\nZRUlkFs2YzlOjCp0KtmaQA7SjiVOsUDGpbnbkMOkt4gkAlG5RBVxq7wI0ciFaM/NMT0pWNKUGIeI\nt4ZoM0wzyqc6gaSRFqB284BNlk4E7xaszBonXfv9vdfW1PF45GKzYfPkCakqcKZQYjrqvTnD0cYY\nVv2C4/FICNMjJWwuoaz1fcYYRaDQgOO3b98i+SmfvfiC7eqeh722k5TD6BkOJxZdz4sXL9q99vT6\nCR9/9BFffvklSGKKJ37167/W41o5fvijH3Dz5o673R5sR47avhNrOByOXKxWrFZrohhMX5BnBOc6\nDJbVqsMOliFqZMlut+Pq8mN2+4z18PTZNXkYuH1XMvyOJz55/oIcDF2/KDYa+puXq54xBD69esJm\ne8XFdku/XJb9PrC9vMB4xy5GxHYsy7l6cB3v7nY8e/oCMZk/+4s/5WKprwUEi+XjT/4I3y15+fI1\nY4lXidOBy82C0+nIw8Me39lmG9F3F+W3Bh7ub5li4PJSjVq73nA47gh7wdkF28tti4GZwoDgeLg/\nknPkyZMrrp7qNfzki+f8+he/aq1QK7YpxQ6HAylGhqO2V0VmRLnrlNe1e7gnClz128YRyiuHX6+5\n9ELfd1hx7I8H7gvvbPITeCU6WyK97xjLUBRlUiUcWW1tTMJ1RQlZgnpNcm2snvVHuaDCOubmLBiZ\n743eGEy2uAyO2DJWrS3WI0k/45whlFayQ02KRbnMWHPebZhRlhBKAPFUuw06x2QDJOXhnFvZSNIU\nB52jUrNFUXNINfCtyrpprGh7GYdCZgwliqtSL7KiUVXMM4asCmM0AicDORmmEBSVYkbycpyVd7q7\nmctpjKFzVpXOZa6JZ6+J1O9Vonklbnddhxjdr0Vd9WdmTsSWZ8Q7wUhmsSiok804nxATsSbjrGAr\nT9dbhE5jYhoaVP+Zyck0/pSGCBekelQVoxE1C7JlPtLj9Dgr2lFI2kbNUnMmBZPV7keKvUOdZ2sH\npv2iOHf+PJ6cf3ep9M9NNs85Zzm39/6et3zvH2PSVm1ry0iT78ccHhdYMruF60R+xikqJzOSQdQz\nqkJ0SUJpv7m5hVcR5Sqz15m2wYFwdkzNofW8GCqeTmJ5316hnI+z4zSP+rM1kLl+x/sE9qoTEJkv\naeUEiSmcJQt5qm2/jLeGJCVg1NjGnwIp8HOFktUbpMGxAqbk6FXfjTYhWw0lNln0ZjS2+W0gRpUP\n9jcjdES1zOo30kaduXCNMTNNk157m1tB6Iy669bCNU2hHcs4jjrgFIK3ft+5nYUWxDlBMo9zCBNZ\noXYgTjSCv7YkFUpGqpS2Qt+UGArl2mVsiVuAyglIKWFyLjS92mY1TCNgMoGg7cCU6foa5zIBRjke\n2ZHC3P71YjDO0/s1TzYfc7V6wsIUZ3dJyDjgioN5MdYox1ELpzkAuXIHQxqV6+Itx2PCGUey5bUw\nsd1uMcZwOp30niuj4uXlFYfDifvdnkRmu940IvrpdGIYBvyqY7lecjqd2uD25u1bPv/8cz76eOKb\nb36NnE1KN69f0/kVT6+uGY57jof79hxULuHx+MBydYmIJYSqStSQ5vVyw7s3b4HZn8eann/lX/5X\nybbnOOy5f7ihO1vkfP7ZD9nd37HZrvjijz7DGd8+G2IEY1ms1iyXS56/+JQqJerXW9brNfuHe8RH\njEmttWmtZ7tcIibzyy9/wcXFhhh0kO66JX/807/D27dv+erXX6HSa/2+3m8IccJ3S158ellaNfra\n7mHHcTiCTQiexWrZ7ot3727AdljjWa4M7969Y38qWYLiIVuGYWK73eAWjhef6nr25vaGYafFbjAj\nU5gYDkN7nqbhRO8tYixTGFqLfRwgx1EnIZsZBke31qIui6W7vuT0EBjHCZ9HJhPYRS2yh9OpTGjF\nRfzs2TDiSDIp36dEGtX2bZWcaFyJ2jI0W5SUwRQ/O6l5beVJTBGL+u65wkmtdgvOZFxOGKsqQesy\nvjwzyugIWJsxHqx35BJxpS1cozzJoMrFFq4s2up3toxRIc4Lb/T4lD8ZH80HUOeE0q6LswAnBc3t\n0xafCpDqgtUYQ8iZECI10eO8laj0FscUB+V8Cq31JZzPM0CZG8vR6Nhcx+48W78Y8Rpm77tWZNVi\nSXNFDTkFus6D84/mSbHKj7Uu451rTvq+U+WjKUHu1mhxpUeiCmjnbFks0ygWCCVxpObh5ibcsc5g\nsgZEO3E451trT0iNGO6tR0xu9g6z/U3QIq74DwJabIczOo7MC+jvU+O/v/1tC6mXIvIi5/ydiHwC\nvCp//xr44ux9n5e//cZ2/+2+wgX0247+Qvuls5X9PEm39ULh4xg7t8rFGlIxWxQxmnhe3i9G9GGs\nXhl1okcrfi8GrOgNfEZ8V2K2ojK1wJoJxpUzlZSQ854xWeWfAA19Ah0bUq4E6Ey1xm8/UJcV7XPS\nKnPlf0nx/bDGUtGxXFc6UXvPKcdmPiZi8R6s1761mLH15vX1hBijBMtBUak68Du0kEolfVsVb4Xr\nlBM2z9dCeWtl1ZpK7IsRjUsQNxNHo6JwklVoQJzIU7nW3mCMU4+brPyoVkiFCVMIlzlVQ7dynXSB\nyxQyOXkgNk8YjJSQaINkRxrnFUYuyJCpJEahTaQ5C9kaYj6VB8g1ZFSM5kmpkadBQmoJA5MTjgXk\ndFlNQlOcJwXnQbIW+pIzBNuQvKM7AAmfI9NpgqVDSl/fO6HrFrjiJzRNE8NUB76zPElU/pwKyhfG\nidN0QiMdkqKH5aHp+56UEsulokCnw9CetRAzHz17TrLC/bu3vH7zio+fqmrtk+fPGUPg7uGeIUau\nnr5o/JKcM6/fvcUvF3zy+Rfc3NzwzUvlz3zmF3zz1ddcXR3pOsdms+LmpUayDMOA947j4RbTrcjG\ntuegPneqIhR2+z3DQRGQT3/wY8YwsVx0mKBKm9N+z1DMJZ8+fcrpsOf27oZxekGQDpf0nE7TxLOn\nL9huLuiWK31OC1q17pY83O+YhgPGj7x6+4DNSuLOxuP7zHcvf81q7emcZwpaZH762Q94/eYtX/7i\nb/CdZbO9btdGs/N64hSUt5gih51y0sbpwGKxYLHa0NkVxjhOhSMVQubyumeMgRAHnO3pi/+UM1ZD\na10CM3F5/ZT9UdG4l9++hGNiOkxKfLfCYlHGBQI5RIREiuvizVQHxYhJhkBmsVySQmS818Lt+ZOO\nfnuN2y7wDzu+fv01X+2+ZjCqzOuNY4oZwes9x5kBblbEKadEKH5IM4ra5n9AcMaTKmcpR8glYsQY\nbBZ8IdF0eVKStiRi1qKHwmeyEvAxE2VAk00spiwixGSQSSdmMaqcrQdghakUc83rqYJORLUTyCVv\nbwotPkeMKZwb2rMwLzArx1PzTGPIzegxxlhQ6pL3mmhK76D6KVJWtF5EWtBzBiQrCGCMQz0Gafew\nE8M0TEX+bwoh+9zMMlOzR43JzRxXnM4BfbEQyWlqPnjGRowYDWe3CdvbOWO28JGc7UhWC9zK1c1l\nLJQy1hpnW+GecyYzIsbpEJxds/CI0RDyhBGDxbRF9/tbSolpjPTLmt2pv8taS0wlYLpN7ee851SU\nemU/ksAqcleX6r/8s+/48s9flff87mLqb1tI/c/AfwD8l+Wf/9PZ3/8HEfmv0ZbeHwP/5Pt2cPnp\n5jeLpYJg1L83vyYUlWon4YwklkXlpnKWv1M3DSKMiFXjyqre0tdmgh3wuPWRK9xbkafv85Eod7qc\nk8bnAiNVAuA5ylXRqvIdj0nSarAilrLPUg3bDCaWm9GWG5NynOqmK1YwzpImaZ5HzmesVamumIDz\nWgDOD3jSoizaov4Qqk8Xog67Gtxb1JL14U+JnG1BdVRKPTt/z+3Mx0T9+kDpKj2H1AiDAClkxIZy\nzSPTNDGlWeYtMRT1Im1f+sGsKecxkaOB5MoAfk4YTJgUydG0RVmsxnNln+pdIo/uQ+tcK0KayWnx\nt0rBoB6opvmZxVMiiK6qBWFMiX4FY/ESoq+mg0qMtdg2MHayIIXE0noWpmfpliysDgy6Pwhh3357\nNU416CrWdxbEMh1PRY2IEo8lMY5TaYXPrfO+60hZ23jL5ZrVatMG2uPpxDCNPLl+zvX1NeNhz/29\nOm2/vb/jyZNn/PDZJ5xOJ9abFX1fZPyHA+vtJZvVgpub1zi/QMx3APzi57/k2Uef8fr1DZvrNReb\nZQu73R0OhOGAsR3vHnYsV46Li1V5lnIRH0TEWTUfLUnuq23Pu4cb+lVPCpHD/Z7VcoGzxaV7GrUd\nkwy73YHOJ1xxWn/y5CNyVhfvfrPi9uGWj5cvyndWTzPH/f0OI8smJ7+4uuDd7g5jjCrmFguc1+v0\n+u07bm9v+fTzz3BkTiHx8pWS6kUyl5dPSUw83N3h+64prC4uLoqth+F0OqoqsLShFotOnfKTYMUS\np9Rk3q5fMKWBzhkWC4e10hzKLzZbHna33N6943A4KJpRn50wsVgsWC6XpLwg5USYausDsnT0yw5J\nmYe7u6aS6zcOs1kTJ0cKgjy8IpxGmj7eQxwHRbKtw6Rc4RAli9dxN+sCt6pdoyRSjk3Ba5xVRbHe\n7I3O4TqHM448zeaKOhfoc21SbrYZiJLbJWohlInaJipPeELb9BZbJt2CKqPtrmy0UZaNaTmLxi8A\nDcFWH9tzZXEsIqOSqye2iWyqXQ8xEUc9F6ncTymia+Jc/ZykUU9Szq3otKYkSVB/wpxU6osHU503\n9eVcVGsdRhwjp7qe1VQB44hRLUqs9di+LPb6DucMzhotjIxXfz5UPe6MQfn+I8ZYbD9TXJyziCSc\nsc3CASAENcs1xumiPKbqRIEzUuZCdWA3Js3gQsrEFElpIhmHfe/36T0galLsZoGGuGKTIzXPVRqw\nofdiav8UoamjmfR3nIvEvvjZU7742VNUdCD8H3/yz/ht2/8X+4N/BPzrwDMR+TXwnwP/BfAnIvIf\nUewPypf/hYj8CfAXaB/kP875+0vJVEzFmo9UmoN+FeZLs/utWOTMvr0sUMrHAphaIAjk2YXboA9a\nyAWyLf+sJwoRTC5NL5ndtClIjD5gWlTVKrpOSqCGdmou1/qMj1p2zWASFNExgqS6CpuRM4pSL+cJ\naz3GmTo/Yw21calohpzts8QOGJsxwbW+et2nMR3WalHlPORkz9Az9WUJRFIOWPyjGzXHUtSd2VFA\nlc8utLgQQc5cZU0ZkCRFYp7RPADvXTuf6cwLByBOExJsMZKLhBDOYFjQSIK5DXTuUJ6SXsA0BaxY\nJM4tSFIiZWUOpBSRIsnN1aYhFtWMpfEPpDifeitk45BIU1jp96lCJCLKr6jXYowEW/kmhjQJholc\nTAJz0JvWGSFKxFthvdSCwbJEcuBZf8mPPv6cZ+urBs2H8UiO6vp7HI8Kr5cXtxt17d7v9/iuo+/7\npswLk/IDatjno9atCMtFT86FgxZmREoRX8u7t2/YrC94/vwLnnykNMdvvvuWN+/2hGBZdAsO+4m7\n2+LNJML++JrTxZbrqydcbLbN4uD66iNevb7l5uY15uENz55csvWK5LjFkt3djoVb07klznq8L6iL\n0yI25UyYIg+7A9fXasVwPJ74/Ac/xhvh5z//JS8++pjTcc/hcCi/Q1gsVlxcXLPdPOH+/k5NPdH4\nmPv7e12pZykWECXwNmQ61zOlhPPXeO9xZUl7HE845/HWs95ukJD48qtvAFhur/j8hz/idHfD/d0d\nt3e7s3bplhgnhmGg94YQT62wMdKVlveBMFEQJFeuk8Uaj3Ee8gCYxukYwoHlakFnHafTge+++4ar\nK+VdHfYPfPfdV5xOBxaLjhBGjkctxNM40oUFxvVYpyHXNTooh1RcuztySjgcfbl/rfdk4zB9h8Fh\n3eIRGn2MJ6ZxJISgPNZpDslOzE7Y9R60pi5os6aqiHYGQsia74S2dhKZkBMmQra5tbXJgheV3Te+\nSzWjJRFzbHyj2qav/54p7TJxWDNzi4yokaQVPS5imD2t4lQQfFGPOlJbjEtSg14RqxN4ts1HKme9\np3JAF2LJNGTY4olJo07EPLbLoVgbdL5r86A9m7sEtBtR0hPOubMiRhc42bQxtio6JdNahcZ1YFQB\nCtB3Ft+ZUkzlUliX73ZS2ncjTtRnqXY4ZmNPtUswee4Y+VIEEvX4cs5gyzhsS8RYNjjrCweuAg+a\nPBHK2Kd18NncjZqOZiJDmL3nnPEQBqohc46BOpieo6Cgli/iao2RSWlWBD82ao7EKPyu7fcWUjnn\nf/+3vPRv/Jb3/wPgH/ze/UadZGO92U1ZEeUzU8m2z5kfI0ruaQ9GjRSpm2a6mfZakty8M0TmLCNF\nZ1RS6bIlCfNDmjLYDM3kE2bHaKcrnpyVq35GSpuPP7ciopKttR+dAHP2CFZoVM3NrHE419P3jmx0\nQpxSRJLTnCIySg7VhyJmRZOyD6RJe+p1QsCB6yac1763SMR67e3rsQoQSXnS+2zyahWMwr+ponG+\nnv9CuE66D2sd1oF1sVk0ZAyIB3FIjuVaFPTEurJSciSnLYfjQY91jEfGOOFC6dkTiWO9qYXsEkJH\nCoaUR5XBA6cUIelKPY+imYJVAEAmZ4OkuZBIqRAgTW2jloEghobhG3EFvchYb5iiMMhc1E1DwJRC\nKqR2BbFiiEMpeRNEG4gx0y+Ll06fMSaQncMmkN5yLA7tz9bXPF2v+GxxzdausWIYCwIVpiMmTERG\nIgHJdTiFKY5cXD3F94772wdgNqrLMRVH46xcBOsbZD+NieNpYrnc4gwMp11D3TTXUAvLkCKv3r5t\nkSUvPv0CkUycRrwvhVtBCPb7PafDjjff/orVasUXX3zG5YX6L202H3P19FP+/M//nD/9y3/Cy+86\nfvLZjwHolwuM7RC8evqUyRMgGc9hHNn2S6yPdN2y1q0sFz3LxYo3r17xxRd/xMV6xT/9p1+2Seri\nYsMwTFxffMTVxRX3t3dtUhnGkWcffULOiWF/z6effs4w1lWrGpeOuxHEsVxsilUKxGnAS6ZfbVj5\nJa/eveHFZ5/q9e9XULh3u92OZSdt8XW6e8vhcFISvYc4Tmw2Sgx3tiPGwGq1IaXE6XQgFXIs2XA6\nHbDW4WwHxtKVFsZ6tVUzyRBYL5ast5d896rE1dze40UjQnIKhNNALrYRi87Rb9YkHOE4YJioNiLG\nWXK2LIxhsV5wf3xgs1WX9dXyKdl0+h4/chggTolUCvfD6Z6ETlbjOBDKgkjvRW1nTWEg5kSMiVUp\nsk2R+dce+0CCgiBYI4QcyJKZxpGFLQxxIBuV9DtRl3b7qDOQdPGZR8Tob6pguxWDlaQDtxRUuKIu\nzulCVBRlSjZTLXdOIdEvjBZXWdTiqBgY23KtslV+rgln7VKyLnCzwVII5tVk3mSME+JU/QdpvlXW\nrQr5v3j5mTmuxUrxoJPUiqicaWOttw4vWdtxWbnIoRVZVomgXuiXHYlMru15D8ZXg9aMK8RtPa4R\nYwJIsRdg3owoeZvC11RlUZ0vlK+VssP6CSE3JE+s+ukpXaV0o8o43DlfLCVCMbpdni3m65yq/zcu\nz6kcQekY3hpSEdlkU4QtpgAJkgkxgV0gZT7MomNmo/Kk2uADZ6V1Q37b9nvtDz5sH7YP24ftw/Zh\n+7B92D5s37/9wSJiNGvMNi5QSkoc/D71nK7zc4H95D3e17l0XfPfHrWhADEOkvawK58HK41wF0t8\nRi7VsLUaWigSkSrRL+aJVBl/1n6ukdCgYVJZFZypKxoiQyaWvLlis9ZW1xaDGNH2TOdxXhTOB7qk\nVX3l9Vgr5IJkSCrKqKxcKueEsa4EosLUzgnWZVzvHpHYdUllyUyNc1Z7yWKsypQF1G8+z07y1jLF\nAZtV8qqS2ELydA4Kbyem6mRbVhhWc5G888hyQRhGclYi6zidyCGqciWoIVxtN6h7fCbLSCoRQqYF\nCpb+exRyhcjzGQJYnOdpZMczTpqIhkSjbdz6IHQOfGfoF0ZJmNOZeEEs3jrGMcFRrQ8aAhYNeTKE\nKrt1QgqmcTr80mE6mEyi6xx5DFh0pXQ/vmK1eYbbPEeykMaJNFWV1Yk0nYjTCe97jPGNcJsm4c2r\nG7bbLVfbC25ublpLMEZFBDWCY6EtIqkqsoI8phFrPF2/bEqimBLjcVCV28Lg+9xcuJe94/Jiy3A0\nnIYD+zfvmhz/3ds33N2/JcfE4WHHX//Fn/KDH/xAz013yZNnH/Ev/r2fMuQ9//gf/5883Kna6+/8\n9GesVgvGUXC+x63X2NLyvLt9w9VmjUyR3d0D3lu6fpZj3z/cEWNUM8/DPfv9A0+fqMrMOcfd/Z7j\ncOKCyMPDPZsSsHux3fL69Wus6+iXK3a7A82JWcCse46nSNdtORwHKrnOOEWGjF9wuz/x9MWn2E0h\n5sbM/uGe43hku90iOfLwUAjl4wgmMY4DPns2q1VDvx8e7un7nq7rOI27gggWJGt/oDPK83BdjzjL\nYqktUe8943RiHEcWqyV3u9vWhn96cc2b3YAcLePpwGF/T194dWKXLPoNQ86kEBiGgc1KWzuX19cM\n04Q4z2E48ezZx3z6XKNzIkfy8I7OPYNJMBK52Fxy98ufAzAkSNPINI5M08QYJsJU4wL0OUtjLiKP\nRChqR1CaoQ6zkfPxPMZETIUvKmop4LvC5ylWMyBnvBr9hzGCzULIjpDUiNjWcZFA7rri9q78qspV\nTLGMr7HsO+eZ4J0TaVJ1oErj9TtAT7sIGhRd/lCRpZxNUSaqAXKR15Xvi0WVbVQwxMwDFYmQpbmA\nC7aNX9YKMU5t/jBlEqiRTNZWfq/gOyFH6KptRAK8xS88YlT4ECsab2prGbpyTHV+tuV/WdSU053N\nwTHpfOaMzGTtykWSiYQiTDEpit8V6wuSPgVii9o8U7hKaAs0W8TAOEWmcSa+Rz01xDhCypicqY0Y\nM0VERryfKSd1TNT5H6ZxUjTwOLf2nFNVuXOm0YvqDTVNkd9tTPAHDi1OaZZIq1JOSXZqBUAbwNo1\nEynEtPN2XiGsNc+fc5K6wqKS1J5fTG2vacsoCkX6lckSW5GhTqyCMZacDDFKHaNKG06KWiIXH565\nFWmKDEVbbHOwZWk0KnHe6D7ra67zWCM4JxirJHFfCIA5CTl7xkljQ5KJ852BHrPzCsvGKc0coXoT\nuYTt9D8jqZ1TAMldIbePZCakhnc2kqhGMuSc2yAlOSDGFzlukceepYfXq2WtxRrBl5u/84K1ffGa\n0rZHrJ4tEogCp3AkEAk5NuJ75zotpmzS3LAhtlBrLw5JwhSzcpIMZzwBLbpT1kEopzkYNeesXIFS\nRIlJ+DLRLJaZft1hvKrc/MKwWK3KGbOc9gmTMt0SQhibrFydG9QrR4wqaiRLa1ONaUSOBrwga8dm\n7bla6KS49uAkcTjs2PcnrLgm2fXd/8vemzRbll33fb+99t6nuc17L9tqUQWgYJAWJcoSSbCRKYoj\nSSEPpAh/Ikc4/CE0cGjgCMvh4MR2eGRbsoIhSmIDAQRRYAFVqA6VWZn58jW3OefszoO1z7mvQFAD\nTcqDOhEVFZkv7333nLubtf/r3ziSbTFpUi+VwsJNsEaYpoHPP/uc+xfndF1TW3z6/GNUDplxphZS\ndTP1STfiIZBywPl2yRvzzuOtY397YJhuMMawPdPPeXtzydNPP+JwOLDb7bi+uuTqUttJ4zQwzYV4\nLhASH7z/od7f/Xu89tob/Oqv/zq/+Wu/w+3NwJ9994/1kf7kff7O3/nb2NRTrKXdbsl1VRpCZL8f\nubfeqqJ0GpYF2nohjJnz7Zar60tub1/y2uuvLpyel9dXlAK3+x2vmsdst1s2K72PkjJhHHnljTe5\nur7FSuJsWy0eDrccxommP2MKV8SckDpnpmnCeUPGsD47Y705J8/KLROYTObRvQturq64fXlJnInK\nFnIJnK03rLdnkHT9AfUJa9uOUmkCxmSmoxYZJWe8aynW13XG1yggmKh8yWwYhoEY1Y8I4OrlCy6v\nLvHS0/c94sbluW039xHbkMYdMuPqPAAAIABJREFU43Sk9ZYHj7R9N8VIu14RKaw3a+7dO8d4/X2H\n40u28YHOJWl5cXvNRx99xGGnLeih5EVhOXv9TYPev8rUK83BqM9QXMS19dBWApFRC4rKEUslk4va\nGqQ4MpQJV2NwbM7VR0/DZ8knyb+jcm1FFW/WykKat17TLaTT+CaldOhlolIvxEhdqQ2z/r/EiZgn\nnPVgrFrZzIfkQt2b7qz789aaos6HKhS6a4uRUlDBiP5J95V5U5BSCe1aNM/Ec6gEdhFVbM4CqjuH\nVuc81jhKrO29yvsCyKgwyXZe969omCr9O+WMtw5LtQqaElNda/u+Awy+tvYoJ86yGD08knSbKLkw\nS+VKMTUezEDROLFZaGGMWoqYVPeYlJm1ObFAypofO4yRkMNp3zOzEjFWGooWqnrvbhE6WWs1qWJu\nm+aMcqvUR885d+KfOeX8WjG6r93hN5c0/gKx2RevL62QWnydvuClpNvwwmK6Qxa8qwAzd0zUFtQq\nV9KbMhcBFn6SngBUSnv3mkOHQQfmvJkqOVsQY0lx9kuaeTJKNizV92I2TFs+p2hRpnMsMxtXFZNV\nQ5AzYjXfbCZdY6FpG6yNWJcQnxdVom+9LjplIE9TVYXoy7IFDcP0GDfzp+b7ORWlYhOmGJxdPCD1\n2UhGvD73nOOCWMyqxVw9s6TIUoRoFJYWfLlEJVba+bQXMGjOkfUWUwRfF0XnBe/dQuoeY8BUryRB\nye15GtW4LRtFfQBMBF27EEEDg+NMWNWMK3Ga5L4QlqDyLuqXXAquKDdNx4+5o9oriLP4TVVKnVls\nq/cvxrBqVzirn/N4CIwm0/UNOSnXaE5kT6OesksumGAWZMG6E2fLieBdgzeehoZVUZTzzc1j1u05\nnV0Bou+z8Esmcgo0vkOcU1TKzP48p8n++eefc35+vpBK9/v9gu7OWViLsWgWTDK4dsXxuCeNR9xM\nHBWBbDQnT1dIbq8UWYkxc7M7cNztNX4mt+SiCNDtXtgfD0wxkrOhsd1SgO2e3fL5s7/g2dWe3/i7\nv8Z//Vu/zeGoK+b3vvddXnntmou1mmZe73d0lT+z6jecrTZc3l6z6nry7obbG924t5tzzs46wlHR\nJOsEj2U41uLFGB6++oiS1e7g8auvsj1X88uma/FdV5VENaB1fqb9iuGQOQwjYwxQCtc313VUGe4/\n2HB274LVekvbtgyDInLjcODB/Qs+/OADXr54QQxHtutVnU8J353R9Wt2h5GuWy3S8ba3rFYrbm5u\nmGLgrO8Xs8oY1cPK1e8txkg/R1UkOByPeG+1uEqZ26quvN3dstq03Dt/wPF4JN8OS57cenXGbj+o\nwMMUvvb2WwuX6frmhjfffotu1dGuPdnAyxsNUCYUVg922LOjmpR2+j7Hseb0mUgImWmMhFG9RtIi\nZU9ElNBrnWAo2DreSv27XOX92n04EX3nDa0gTDkxVE5W75pKSgU9RqeZRVyjZhJOLJFMqjmXoBtt\nNpN68Hnlwc6nRO8dMQdiUY5gVtbn8jkMLKh+TplpJnLXeBtqAVLMSSG8RIgVQy5KqDfMXE2HKVnX\nbWPuLl9a5HiDWFOVyKfIklnJe1IifvHSmBarPopFDTznue+MUXNmb0kl1rzCmfivKHtKLIR/Y2c+\nbsZXLzYrSmL/gn9innNrHTkWct33xCqSluMMEjhymu09MtY7xjwgpVBiIlZhz7FEwgT7IXM4DoSc\nFsWqtb7+/qgGsPYklDLmZD48h7TPZqFzJM9sLOqtO4EZXjMordGiakb5QA+G/78tpE5F0ry4J6x8\n0WZg+Z4qGVGWYuoLQ07fRbQEm0ngLP+y1NyyueU3K+oUQZnN2Lz3SwCqtUEN28RUWatZJuk0qETf\nWDkN7AX+rT+TOwvAXCwpUAXGImgOXpnxSBNp2hXOgfOpKnPqybvN2GIIMTGFoL4f8ym4nkTIalJm\nXVpaNMZoIbMUoFWJOBNLdSYGTE3/tsUxS5lL1iBIY0+WE1+0lVBUrBR1hF8WDWOwDpz3tI2iRa4W\nTt57fNPgG928utISGl0UW+er/ULgMOwJY2SawzslIz5jneagGQe+mwvlTLZCjNDhSDW4WcdOJpnq\nsxKTypHNTHzXVPAi2v5zvaHd1oJvDeImrIB3Ld67Jf8qxULrK3lU9NQ1P5exBKBgBVorrF2jG+Kd\nOC4LdK5ju1nxYHvGRVvDh3OjpMvGkM3AEDJm9i0LGliKqXJm0eR3gMM4qtKxutk9e/aCi4vqlF0N\nTNfr9Z2xWNHB1mtOlzGsVitCGDXjEhjGqeZeGaajqvls3YQLQqCheEOZhI8+e8Jnnyki9fxyx6Ga\nRSaj87i91Jbgowvh8cUFH330ObeX/4rvfOc7/PZv/g4At9c3/OhH7/Ff/tKWx2dnDMPEsaIcbz5+\nrN5DMXKz3xFD4tF9RU9sMYRhZIojicL6bM2zpzcMwxy+vEUwrDYrjBRVGR5103/wymv0uyNTCDy4\nf0GImTgf36Th8upz4jHgWsft9Y6xjsXtdkO7asEYXdiHI6m6l8cy8cknT7m5fIGYxPZ8TV/RkxIz\nrm20TYiAsYxBX9d2q9q2z/R9S7dqCWMtQIpgrBKCw/GWvtsSptoOr2h4iplx2GvbuRag9x/eY7W5\nIAyB/Ysrun7LeqXj4ngIxDSS88TF+RbEsKvf29mDe1jvcG3DOI34zjNWQvWF7yjjSIk78Pe5/+A1\nulVHvNXCNaVEGCLjpIa6xJN30fx/3xjt3ll7yjwtWqxkUxWjpSxEbV2uA6FoBwBJCyk7iSg0k7QI\nEfJCMZjXbFVQ64Fq8S6aIk3jqgmlWslYd7JvES8gagrdWLfkBVorWuzkQspaRCwtI2NIMTL7CKof\n3l2AoBDCREoWMXoomy9V4Kl1QM55aSVa24CpWEtBGS1LyHvBGFVjWiv177+Ycao5dKIopaj7P4Cr\nPk5GCscQMJKQWSKOma0Rdb8VWT5PSAnnZvys7itlVrIXYjQn0+TM4ghf84g1BNlFutYs7dkYJoj6\nGsFo2HvtqAzJEibDYT8wBDhOJ6NTkWkBYuacPmfmFl0DomvGcBgYwrSU5bNBdqmolDWytENb7+i6\nDudtdTx3ixmpiqvuLOS/4PoSW3vycxv0qe0Cf5XPcvdnes1Vlix/zpjFOn5+nb4ko2XV6T31lJMQ\no6cUEbcMxL5v1XwxG3C6kc4xySUnyhR0kk4Jsad7mE92c0wMsCwYOjZ14graCz+dQdRl1zcK11pX\nlvaNa7RFpL3bep/59ByMqIpL5awGmd1ZSRRjKTUmx9hTNAzMkSVaWJaSyNgl9FKqakNKtRDIeYGq\nfdOCqO2C81r5nxYNldWqaZvC6fNJ2DtVeTlvEdT4Ldcg1bZT08AgE/Yo7G/27OtGU0pSIaBVV+Fk\nzWLYJwlcsaSoJqVNseR60i8ICS2AUw0mtktLdFIY12nx0m887VbvoV3pwuq80DoP0RKrcahzFue1\nQZ9TpmnvRi9A06ifT996Wu+wtAsnz1gh5JExROLlNWmY4EzvY+evWTWeqT9nHFvurbf0Tv2ZpJqu\nZuaw43xyL59UUi+5WlnEid1OuUebzYbjMACyFE2zJ44XDTdOIeNcQ+tOXmA0wpQNwzCSxTGGwv5S\nvwucR5qe9z/9jPfefY/rwxHX1VDbN17nvoEpjFzvd+wOe24OiuQ8vyx81NzwrbceA5b/61//v/y9\n39VC6ld/9Vf54+9+l9QYfNtgjGVfuTWpCKkUunbDp59/wv3N2dKeG/Y7is2s+xUvXzxHMJxt1phY\nI0vGwNXlFV3T0W/7KsGvG404tlttF8Y4qS1CHaeKlDravmF/eEmMabFNEFHeoG0827MzLi8vGW60\nlZriwLDbs1mtaJoNwRaOg27CvtuQMWzvbSml8PzF5eK/5ZxjHA44EcQ1jMdpQaRWvuXl5TUlRj0v\nTUemehByTsOcS8p0XaeHurpbuqZnvztydfk5r776kLbZ8uknao6aUyGFyGrds16vGVOk3eh32Pc9\n7arDOSGMGorb1jm6XW/xzpHThPU7fvrpjzgcd5hQ0bNQiFNRfl/OmFKIk36PIQTEFZzrKJQ71ITT\ngbMa3KhZr53tCDQA2FYTuUIg1cPAlAOOAkXl8UXs4kJurcUUy0hUY0byog631uCkHjQNiLfkSswR\ncVivCJC3HTlNp3kxo02ltoiMWQ4f8nP+Q1RzTZh/j8aPiAWT86IE1BDgshRQwulQ7r1fOi8paaHd\nzNzISi9xzi4qcbWN0XuMUfDO4vw8Zu8EDJMoWblCbe0WzAfFkCPWzEr1Gkw/r2/VRiWEoOaVRVQN\nSd3PspqLqlM7pGUfUlpNkkLT6YEz1bZII0ZtKkxhCpGQIrm09TmqpUSiEKMamc4dBYrRAqgYUlRT\n0TQfoBfvRou3PULDrraYdzd7HYt1HxURur6OXxcIIdF13cLFWsaTnMxQ/7rrS+VI3TXd1FPE/PD/\nqpzQ8PPXXeSqvs7UvLi5Z5eNJmNL1glMWaromUMz+zA1zalNY61XXgOltk8MU4UcXSmkYiv3BKzI\nyY1dasvPlHo/J7J5/TjohDSIjQshUY3lAq5T2SY1hgDAefVqMk7RE63d54VIiZtZtJWvBPm5cJsd\n2KpBKIq+zW0hawWhwfpEkajk/3kAMRuCGua26OxdpD4zmrFX5FR8AYtBcMmRIp4iZfESatu25p1Z\nfDVVnKv8rit4Y0hmwjkoMXEIdYPKE8UZijU46/SxzL5dMUOsWU4o2X4pMsWQii7ORhrEngrxEJQA\naZ3gW0uzhVq30K4sXe8xFCRrG9DWxXQaAkXUkytWTxzb1PGbC41tWa27akpnafypkBJRx2FcIeWR\nl7trhqMWPRfrcx5tt9yOt0zugC/KYQBoERrrEFe5BSUSjzMRXdsoJQUMc3tGix7rDG3bcnNzRdO6\nijrVZzPqougcTIBx/nSa9Q2Ohrbp1bsqBK5uFSFKJvPhJ+/z008+4cGjV/iN3/jmskBP08QwTOyP\nI9OLJyQvbO6rxN+MjufPnvHvv/cTvvbGY15/5T7/5g/Vp/d3f+93efPNV7k67shSON/ex9QN4zgl\npBGur3f0Tc923TNU4vsQRs67nmF/YLtak1Nkd3vNWS0KxpA5O7tQBFgsfdfha2vgOOxZdWusdxzG\nAs4zDicfKWc7silMU1SpdR036/WW7eYe1nqePXtOMYXtpkao5DWNaxnHUWOc8sT5urqJi1++M2OU\n7D4fuva7G8ja9u3blinaZbwdxwEjGSuOFCdiOjL39a2zhPFQzTxr/NPMoZkGSj7y9ltvYKXhs5+9\nWHykVv0WEw3eq19YQQ+OAOfbNednG6Y00ZsOLxZXPX+GMKoYoNtw+/lnvPfjP+fJsydc1zEs2RCn\nSByqm7pxC63BGsE7h5MWSlC+4mzL6HSNNtnipKX1maHmKRZnMDgKBvEFjBDqehNz0nZ0KZXEfOIj\nZgPeKgIWxqLL/sy3NUomb1xDtmoXU91kagyXUgFE7sry5z2m8qLybBqtr0uVk1WKIU5JXco5ITkp\nF3JmOfCecluhmJo4IFoczLEzmqyhLuupFFrvl7XbzFzhIpWTpYVDrveYctQYJGOxJWtRVn+mJrfK\nLZMqwppvxIlUtKuCA/munUpRUnhSzycxbtm/UsrYbNT800ZSmu6stYreeWcRElEm2oWvpnw5bem6\n6oCgr/MkivO04hgYEfR+9R4MIc+d3cIYAtTOz9zmMwWsMXhpOasWNCvfczwe2R32VWQG43BCzlKO\nhOlY0Ty3rG3zHvqfur6yP/jq+ur66vrq+ur66vrq+ur6z7y+VETqC8z4oqjRFwICzZ1eOScp5l18\nSsnPswoiLeTD+d8ZoyeVRc03HyPKzP0BNasc8E1tpzglQFpy5cIYXA1aPKZMcUIKCaSSsCv5WdBo\nAGsr3JpPlWypsQglK3xtJC4/U8VArO6xUhV2NT7FCs4apDVkmynRLFJWayKUiWg8rmmIQ1y4XFLT\nrDWFIJONIHaW4ipPyFlP0xi6tRqozSRuVcCIxo2UrHFzdjYusxivJHXNq/IL7yomhU1T8ojVoNyF\n5OiUbO6co3ENInYhAep3nDi3Z2QHU5o4ViL6cTpQkmB9BwXEZpqZbR8saTK4WBDJ2DbjamyBogJG\nrSOm2kqsrwsBKEKSTNMbmh66dYWb1xbvDCVFxCREInE+WbuCb9TWwFpHCUcq9ULbDCbj+4Z+lqg7\nmbsUeLGI7xmJZITm/orzrY63C3+f+13PWloMmakIhzmY2mg8Rs6T8jpSYgjavopTVH6HVTQgx1Ne\n4n6/52zrSTlwe7tjCjs11AMm09G4Rtu2JSofwNd7lBZr1rRnPeuLhxifcI26if/hH/07Pv70CW+/\n822++e1fIhfY718CsDm7zze+/Q45O548/YR3f/jnPH36DIBtl3jzrW9w2Z/zg5/+iJvDDb/8tbcB\n+OmHn/Dqaw94eXzJ7f6Gi4uHfP3NbwLw/MUTdulItp62BI7DDV2rFgZd12GM4bC/ZbVaMRwSJcpi\n1vrg4SO6zYb9fo9192pagj7TaTzgfEf0he5sw3BMtI2ah6bpgGvW3Oyuud1NtI3wxpuvAXB2do+Y\nhdvrA7FEXnvjdUrlXV2+fIFbb7l49AbHw44mDsspOWWwZx4SxGGEbMgVkeqahhAiXdMSpshwHLlf\nkTyxsOpbjscjQTLWZFw1VSWrJcJMAfDNSfSxajsePlwxjoaXVzt24y1Y/X1t5xDbUUziOA2crddc\n1EiezapjGvYYB43AxntsX9dWD6YRKA2XT5/x5PKSlAXFNOG4D0xDIsYEEYoNS/Zb161oW89602Kx\njHEkVdPRjPIeRRTREDMuqi6lmDtAyHkkk5fQ+ZgbIgZTnHKsxC1tPwBvLdgRbyFku3QNco54q6Hh\nISXEl8Xg0RjlFWmaliL0MyITY92bQq7UDTntJfVS5VntSszpDalAqXmdAprSUNGhouuWCnfAmLzs\ncSlFxHm1sVkoMKcORs6RWT2uNiehhq2DhIAVJZg7H6r7ua+fsZJ1rSXOsWiLozSQRQ2OS1FqQ5nb\nl2CzwxW1QTBGMwdhzh+M+t2XjMVg6jo0hXFp9QUK3tnFQTwWS2t95ekCpSz2Nc5AHEcMBW8Kt+Me\nMTPC22JMU/nQEfXYlPlLwHuLdR7JNRy+tm6dcdy7d4+z8wsur284DhOxVOPrMeKSZpuKKFI48+qM\nYQla/uuuL49sztwrPcGVhppHVkRhvEUyURaG05yhthRchursege6vaveKkpUV2nxKZW6FG0tOV9o\n2mo94Of2BtimVEK6wrSmbmzBFlKikqj19+Y50iDV9l7RHB9vT4CfEVX7IVosxeiWHCOVgVpm8mMh\n4FzlW2GgGNrG0neOaSxLGZmSIFSpK0qUdH4OpwxYUQK6sYW27TSypD4bJxlMwLrCZuOg2IWom8aM\nFVXsWa+txnmD9l5wjcfb2o6Nmdn8JJSBPEYa55hQSP+uKtNaixOLOINtLM0dAl9MLau8JsTMtJ04\nJm1FWJdJ4wGsyn9NLti66YtPTFKI2dDkFt85fF95QG0HxTGEgRgMRsLCkXGc8hONBfGRmhGMc1Hl\nz1JqPImBam8hjUE6jwmCidrenB18G9EFwTdC19t6vx5XW7vNHPtRhJATMe05DPplrGTNmC2dM2zb\nNaY4urkAnxLj8Yht5vzGuMyZUgrjOJJLxEmD9Xk5QwzDgfW6w7eG28NOvXsqAXRi4rg/an6ZLYxh\nwE6zP5Owvdfy4NFD3MUb2Mny+bs/AeBqjHzrb/4KD+4/YjokfvyTd2k2DwD4b//ZP+G/+af/mJKF\nf/7P/ye+/8OfMom24T56+gGvPrjPa19/jaYt/OS9HyJV5vzw9Ydc3H/IdnWfRjpinOjq5t13Dekw\n4hrHeDhyttosHKn9NHCzP7Dq1ozjkWcvnpIztJXgnUphmo6st2v6bssnn3zKq28qUV2cwfWCdB2H\nWLDO4Oohikk5aLfDjrNX7vPW669QHRXYHQLGdohr8KXlsJ9IlRjetlvEeaYp4l3LeJwWkXC73rCx\nDbvjjpsp4vrNcuDJaWK16ithOdBverUpAULMSybaqms0QiXMyiVL068Q4/DeI07VfwC+UV+wVI5c\nPDwnGxiOtSUWMjlGSsw8evyAe/e2NJUncpiO5JzpRa0BokkIM49xjel7GK55udtxM0bG48BxX53N\np1t86ZCkRYE1lqaO/bVbYa2nMSv6rmFrThL4XbhlyDcUG8guYYJB8sn+wBSVpIekB0E7rye54D2Q\nCyVokLpb1HB6XBTbYm3GYciLR6DVPUaKeob5vGzCUm1LZu+mUtKSXelE3dFzPYzre+j3G1JGisWU\nQnGQA0vbS6oPng4GJbLPHXYptvrlVa4XjpMYymANNVdTaqTQSQVZqJ+7WvtAWg4KKWSCZLrGICiX\n6JRTWrMkraoLixRsVfqGKSntRAy2eOXXVs85a1riNGJ8W/3AjBK7AWc9roqV2iRMZloEBs5Ykokq\ndiqaxuDyLELIJA8UT8oDmGl5bjlnck0RSfmIlMJYhRZiMt7rQTll9f6a11fnGpx1aJIJWO8wtQBT\ncnrDpuu5t77HcNjz8lYPgvtxYD8dFWjoHJlQW7vQ0Ohz/E9cXyIipaS0u0oDmPu1laz9BVsBPQHM\nTP0TklWW184ZOXeRKzPLak1RSW7l0FiRmo5dsDZhXVqKEKlhv95XZV6VygPE0JBiIJhTttHiC4Iq\n6DJ2+VxzweecY0pRi4+kXh+LD4cNFKL2iU1RuWqV3GPU88J7lWnbYtT3AD3pGpElw0isqeHESkiU\neg/eG6zXwb9YXpmCFUPTQvBZ8/HmZ4OlxHrqkYom1ZpHjJI1xSqBGzFL6GkpmeN4pGRP2zo8kdDq\njhlCYLXaqMeJ1TwnX9UyKSVc62jjmvVaGGOgPaoarFihNN1i2Al5tpnBGEsrOmFcMfgefF+VaZ3y\nKGz0TMESQtBoCJSTa50nJ1WviC24dv6Z1ZxDKUo2BaSpCFNpaXMkmcJgAsakxaagabzmPNmM9ep/\npTypSgA26mtDgTAcyFMhzTJgM2KkJYXMMQWcGBqvn2ftPcS4aFUzpxyotmmYpokYk95rljvjreHp\n089p20Z9k1I4cQlTYhoC1gtt19D3Pb5Gj1zce41X3vgv2Lz2Di9vI8fjgY8++lA/y/0zaD37aWC8\nveX2EPno/e8B8M133uF3fu+3ef+DD/nDP/p/+Iv3/mwRj4/7iZRe0J2t+fq3v0UU4eP3fgTAx58+\n4euvvUW7WbHZbFitVjx7oST1B/cfghRunu9Zr855efVimWv99ozdceQw7ZeIlXv3zhlulLPTNQ3O\nN6z6NQY4v9gs9ibFCaZfEem0kLYnnzjl4GTeeeebPL54wOdPPq1qOxBjub26JMaJvl1x9eQJAUWk\nHj16xHAVSTlwtjmnW22X7zcPhhs3Yr3j4uwcawpxUhXdfn+LMYYXL5+z2m6IISzqR+UUeow4hsOe\nHANuDhFuWj1cWjDe0nWrRe4dY8SJ5/79hxynkX614fpKn8vLF1f0XY81wmbTYZ1hrBYGYgxN4wnT\nhG8bmsZzttX8vv7RY4yxDM+f894Pvs9f/OA/cphucFXx9bB9jMlwPV5jxdI6T18J9dZavFisaFCt\niOBb3dykFfIxEsyRnBO5zMmiVVNhZq6iRYzF1kIjR0NxKCLsDU7Kwte0GEzNWrO2ehLeyZm0zuOM\nZowK6rMGevCjqueKydV8cy4IBMFqZyPxBTsRK3IKxs1wV0Gn/84unNVU8onAXipp3YuaMps7ea85\nk9NI03RqsUNekDMxGW9VOVpKUZuHLIvdT8xZ44NS0fXRFnKeg6lNRZ4ixjj1usun7NJSVD1XPJjs\nFoTXOV3rUwxIEaxxiw2PfqYG78HZDpuODKWi5kZRqpRUgGByWaw/jEzIOJKMpxBJZiSX2Ti0CoVy\nBBN1jo4zByyQopp4indY39LUvMDG6+FVRTmFxnqszONQawSfNQD74mzDvTM9CF7vdxyHW67214xT\noOm8clrRMbhUv3/N9aUVUl3XMo5R3V5RNYlxpkI6pqrcZtTJKMH652T4MCNQd+Wfd3/+RbWfeoCU\n5T0LgBSMU0WFzBPKG6S6AajKVpUhgPocOUOM6jsCLARnW8nOzsxy84JzpwmkRl8WY3UynjLqyoLY\niJjqYzFXLhqO7JyhbT1TKouCEOugBJzzxJqpNC8KTmQhWIuRiq5pUQXUFPbq2jJqm7Lp6uQXSxyU\nkGhcwflS3XLBSdRsKxWRku4uGsFQouE2jKQw0dmOqRoIhhCU2OmaRYE4L5jGGVxxtK0wJW1PrTc6\n+MvxQIiRRKFxkCML+uhci3iHSMT7pG62TieU7ywWg8sOnxxhahc3Zdd4jPUaOSUCIjhXycBWT4op\nRtUsuFOjOFJIBgKBsRzU6HL2KrEKCVuTwRVW6w7h1BrQgr5gS2FlPay2+Po9JhcZU2DrVnjnaMQv\nbs2mfn8KkStCEaqXTjFSCzS3LPBzcV9SYn88KNHTdwyTWiEAjIcB5x3JBCXpiqPd6Ma+efgIuz5n\nVxqKWD7+6L1FCWiMYbNZQcocbODm9jnvvfcuAP/jv/gX/Mn3/oKnz1/w8sVTDre7ubOFiOO9D97j\ns+ef8k//8T/jrW98m88++RSApy92TCHThsx0OCKP3IKsqJxa0efb3Y5pGHh7Nbeheo63V0hRb5vN\nas1q09LOm5RYHj1+hefPLyFfcXa+Yj4N9KsLsBusbQhTpO9PflChwMPHr3CxXfH+D9/lsDtwqETt\nJ599wP72imkcOdwcmKaJfqPPtGkdZ9t7nN1bMT18zKNHX1uk1SYXun5DTiO7w0usnAQy/eqM43BL\n12vg9GxJATAMA8YIgtC6liSCjXN7OuBdq4aDzqrwY0Yq6zMfh0CqHjjb2r5bbzquLl/ijNC0lphG\nJSYDfbtCUPWkiBBLxtYCu848AAAgAElEQVQNCmdhmvjoZz/l4ycf07WO17ePeat+1sNoefLsCTle\n4Rx0Tb8kEHjr8K5o/p9UtdlCeWhpXKfIGxaRhDPzwTQAhlLz8Qwn082UEzGqaKYRu7RhYFbVWQqp\ntgJl0R8VsXpQxmKLtuNncr84QVBrhFyRmSU9PiuyZFT3puvniUHCHMhsiqkKvBNqrFuWFl6mmGVB\nmS17Zi/Cu+KrGUwoJWjLUwRhPug3ldBfqSPFaDD7rOYlEqMe6FOKFCK57jXOeGRpDRaM8ScX8gzj\ncSTGiJfAZB1dFSJQjUELqSok3TLeKKJ1RtHDos1qogpQGhV/xaSipVTygka6WU1fEsUEChOzkaep\nVqXW5GqIaxa/q5QzlEjJhs55HGYx3XRFrRB802okr7HYShPxTsOkLVIpQQ0eLejPHp4R48iLm0su\n95cc43FROUs7I4N//fWlFVKrtfJkxqFW0THXiTQbsC1ix1OVbqo3eD7xpWZviPm6y65fOFFFodW5\nMNJ/pwWLboBGiyhzQqRm7yrnHBEhzcnQppBKqm8k1TVX33OeSHDy7FkUmzHhvNNWXVKHXanIUqHB\nYBDjca5a/M/qDZ0iiBOarlEjuLFulkEXBisF6wq5JGS2ObCCNKW2GgsmN7SuwVSejLcGrCGEoPyh\nnKGr0DE1UT0rciPWLVwMay2NNbpxo0Z3c4xOiCMpO443I7m9Yt31i0Fi37eM0y39yoJdaV/b3L1H\nXcisoyJpFcmZWmLaaWyOqPHd7OCsPACD6T2+LTRNSynVC8wVOu9JpSFMCSeZVJ3bbdPqpHdRT7Ei\ny0Js7YRNVANNRyow1jZjEYdtLFPMFdk7+WQZC85B4x22tg0bc5p8YoQoRZ3JC2qIKbNvWcF1DuuF\nPE56aq0FYc4Oplz9bDI5hCXQeUoJK7JsvKFMy8/iNKi0fhyx1jNN0FUl4GrjOO5ecnZ2wao/4/zB\nK3RbLaTO77+Bbc/I00RO8OzFC55fqSnjozde4Rtvvc1nH/2UH338Ph9++jPWZ9WQ82bPv/q//3VF\nRTJt42gqL2O3v+KVx2/zD37/73F7s+fBxUPe+eYvA/Dyxc/47OolzmrhQNYYDr33ia5pOVgIeeTh\ng0fE2g69jZe0XhC3oeRIjiO7m1s2/Wy62XO7O+Bbh+8MxQbqUOT8tYfEQfBtjzETIZ/8187v3ePh\nxT3e/f6f8tGHP+bF05c8+1yNLqdwUKTV9xRbaFYrgnYvOV4P7C4/47NPEv3Zz3j1zUve+Jpyqzab\nDV1XEcquZ3u+JdRonTQFYvJsZcWeASgMB0WkxuPA+v59TCkEVzBBCDXM3DZtRdgyHmHTrokz9yQO\nDOGGMcTFvXlVEceUwDw8w4knh8huSKeWYN2gSymLpcmi2jruMRmm6cjFvTN+5Z1vI77h6a2qa19e\nPSGEibZxxJjxtltsHLQYVORE6lzLMxpf9DBgjMVZsLZXF2vQ4qcYTNHAdiEuLvNIUb6m+BoKDJS5\nhWMoUqoC7W66BKjs3eJKIaaIRU5K37omWRzGFEosuNnGhlMBRKkxKDPdNqtFjRg9JJZilh9a7yoq\nVukn6bTuiTkdQmcKSlxC5UVbzk4Qq7yuNKdWpFBD7PUjjcOoqPTiEaiO5F0SpgSdPf3OubAT0Riu\nksDX4mUKgTiqAvRwnGpUmo4bI4WSIq1taGpBMvsmCHNqRAJbsJml22CLehSOKTGifLRc+/plNsk2\nDorDZLfwzkrOykM26i9IsQvvLIVEKgUnLZ5Iaz1+bt2K4uDOuYWrOscDOfEYI8SkvlBN48lhft6e\npnHIA0e/6bm6ecntrlqGMOHLqcb4RdeXVkg1jUN9h2oi+xhIWU+gc/zKKXdIkag5b07NLede6gmy\n/aLP1Ok6FVcn6FRE5fLOG4wkwN4psirxT2oOUinkPG+0Gde4Gt1S8+zqYuOKoySVe4YQmH2V9PMp\nx8U6AVMIKS7FAlhtE5VKcrcshVQpJ78t50StYipPosiMXCUtBgWVCaNIhpu9RCwVlnbY+rydh2Iq\n+lU37SnqrlAoKgHF402zEBXnZ6m/q1BSwRpLRVyJxpAzhENkGgLn2xFfT7TDMNAOMIS+nnINpcx8\nD7O4zopkmtbSVH+aNvaE5Mkl0FjBiF/WMxGpEQDgvKNpu9OCQaTvV5Tccsg7lc9WryBtm2pLNMYI\nlgU5bKxKi8VYipuRqbpgeKMLf+MIWZ/9Mmaqi7mRrEn09fmnuy0Fq6acxlrKVAiT7uytbckpsYt7\nOhzYlnFGc4xBiiHGuDgat/U+YkokijrYp1wdg+vpsrrSZwrDMLA9v+DZM10YHr9ywb37D2k7z/2L\n13j0+tu0Z0q2zsXiupZwHBn3Ay+vr2krwfnNN98kT4FPf/qxZrSdbdk9va7fobY9YokVQk98+rOf\nAfA7f//3+F/+53/Ja69c8N//d/8D//bf/BGvvPY1AJ4/+4ynL1/waKutvTCMSCXh+8YyHTXOxrVw\nPAZc/VnK16y3Lfubkf3ulof3L3j+/Dm7mt/4YHPG4XDk8YP7pLTXYmKtRZ/vtgiRYueDWCFWDuSj\nVx7z0Xvv8uN33+Xjzz5j3E2cb97Q+VEclzc7bl7sKLlhiiOunpTube6xcoWSE9cv9gy377K/+hyA\nt955C58z27N7dKuew3Bc0Iz9bocFppiIMRKnUwbddr1mGgYQYd2vkbVwO2hRqw7TOv68E46HHWMV\nITjvQQL9St3brbVK4KzXaqXO6iJCb1jWoZLU0yiagrWes3v3cGeV3F4S8bCnsYXXHj5mlxMffPwx\nH3yugoJDitUZ+pzDbk8YRtZbFQbknHWjq2uUFlI6cXyOmnpQxT8ej6/bUjZJDy/G4KyQ8khJy8Qg\nxUyxldpR5ETpKA5jtL0Zq+HjKW9N/dZSbeEac3K3VrRiponogd1W8mRK6lSk5+tSxQvzE9Xuhqvc\nXqN/pR/TAibeiV8ti8VByfPeM5OlK0e4/jtqpJeIuoLPpPCojluYogahISeiSQsarbExmhHXNELO\nd9EUfS8RFQsZ0oJ+u4q06SHXklLm9lb3hPv+HGPVukcNqu8WZ3nZo3KKX+AHZ+O1+M2WFEZFk+Y2\naCo1HqhU7pk54QdiwEQouXpUlYXfPAMjECkhIdlj2+qJxUgBplDw3rE5O8PnuSvgyclSTKy8a4Or\nHnF6z0JrG1LpKevAqgqXbseXxOpP99ddX9kffHV9dX11fXV9dX11fXV9df1nXl8aIuW9x9oTUds3\nwuF4JISo1e4CXKLKCavITOYXV393uVNfzO87GX2qu+zMdSoYCTX/pyrKKqfBeanmlkU5UVYIZkZy\nLG022l7KGlg8/2rntL+Tc8Z5qcT3pcReTk7H48jcsgNqi1GRMBEw9g5HKtc2pwFnzfIfQHZCJiEL\nuV0J5HCCjUWoMQIJzCntuphSFYRWTyUCS4QKkKzgpdHTaj5lDc48tFnNaI0hVLJ5TtqizVNmSoWb\n6/2dUMhI21mOxwFMQ9+ulh60thaVJJuyqpTuWvJb12CztgZsaYlyIvmLCA5bORh2MQDFFRrfkIsj\n54YYhTQTGQtqayoeTMA4t5BYxbQkSYgTckB5eYvizmmrlEDTqjPyfISyngVxstaATSAsyo+E5i82\n1hHihLSWdqXoykO/whlHmAqTqJSZ5fBlyGMkl0AZR0zKmoOHWgAUMYyHo0YtiCFWR+EUNTpm5hdt\ntue8+sarABVNeqStIWk4ThP3K3rQ9Wuub6dqYxFJYVoQMDGGZy9eUqwjFc/u9nrhO1jfIqZgS567\n4gsSPCXHvccXQOYf/qN/xJ//4F2kfk8hZsJQsG2LtZ6ubZe2SAqBGBLjECBrC+pQUbyLh2c0HTx7\n8hLfNoxBRRmbs00dNMLX3vo6437HNKpj8/n9Gp9DwfQbQjhi24YwjEt763B9y7t/8SOeP7vGyj0C\nE3/2Y0XWLg+3ZBHaZk3jHZC4PihC9NPnNzzYrFh3Pa8/eEwjtzz75Ll+lmkifqPw1jca+s2G4TAs\naGQeI2NR7mDfQ26b5f7VOFbbU4fKn5rdrVNKxKxS7xBGxulIV5HDtvGqssoF46wqm2YjXlEUIyed\n82fb9cIPy6XgW0fbtLTrNWcPH0GjiHIaRg4MvLi+5P2PP+Ddzz/lo0+fMMydtrZnu+oYDnv82rMP\ne2JNJ+i6RqkUVnTO2lMsS0oRFxRVy7VFt/QPivJDBcEa4W4oOiWRxokkyq00UNGkiiwZR0FRYV/K\ngsjZnDBo18PWgPT5dXOb3xiDK/qOd/eSjMI1xlhKCYtrgHO6z0i2SzDzbEXhKsfSuoKUrIkWZua5\naeyJE4+ImjzPqItBsKLUCTWAiMzxxk4MwRgKOgZmNJ8vUAksFK8B0rGcVItGuUez8j3neCL3k1TI\nE/W7MNgaFwXH40TjtpQspGwUfa/3mLI+XxGNPzNilpgfiiC+ocuZnFssPWnOn80TqmTMkAOm5MUt\n3hRorJBNofGOxkVC5elKfS7WJpxvmPKAnYOJi9I9ConjkGk7Q9c/BmrrOhgoTtf/HKhySNq+IYZM\nTJFWGmy3osaBksvEKKf64hddX1ohZZ3qGE7Fi8PYluNxJCZqPt5JCgnaijJwF1P9QgH185lwJ4Uf\nULT95etCZKtVgEipbQmYHWcxuUa/6P/Fgq0bVNupt4dvhBxzfe089UtdIGxt750+3yK3r+20w17j\nO/Rn+jyMxNoCcsu9Y4062pYq82zcElkSlVG4cMlKSQsD0jmPbwTvQWyqk62wGJ43thYJogOTiLcz\nR0x9VxpR76cSDcXM8lJbiee6KExjXFyaSRkTjUqBo7C/Hmk7XaR9ZziOgWaIGBlonF9UTTOPJ+ZQ\n5d6nNq2RhLMW71bYDKZ4tWRA4eeSDY1vcFZVNu2s3ugsCW0V51Yo4k+ZgJXHFoIWs17SQmQsUcCk\nhRwunJSOJRfEqAeYI2Ead8q/kqSKRoMW17Z6kDEvxJlsClmiktTRBREglRrEXCw5Vg6V7ZYxrK8v\nuLYhDRPH47xBdVjnaJqGYzxQ0hfzzZzzeGtxtuF6d8ubb7xVv9/M1dUlb775OuvtCudbrl4qofz1\n9T1WfcPzZ5+wXnWIF65fKEfIuoYQC4fdSBwDwzHT+M3ybJytwzZr/tb5fV3A/sO//0N+8Oc/4tf+\n1i/xG9/523zz69/gg4+UbH6cEiCc33vENE3q4r7I0S1nmy2fP/kQbw2vPnrIeNDnMYTIze01F+f3\nwWSO+wPb7TmutmL61YbDMNJ3K8Kww5kGZ7VYmsaIXXlSPhCzusOfb7S1+cP/+H1eXu6w/j4f/vQJ\nf/aj91g/UF+nb/2Nb+Nbx6rXeJkQbvG1NbB7eeD5k8+5OUaevP+Utx/2vPP6O3qPh1s+/OQFsTS8\n9vordE1LW6XjQ0xYGhW1SCantNAVmq5lDBMU5Wq2XYOvY2aaDjX6RzgMe9q2p+1OG2lKGdd4tSJw\njjIrs0omxUxKkRjV2TuEumOI1TzM1rHZbLSFUy0zjrc7fvT+X/Luh3/J5/sX3Nxc4oBNTSmICL3v\n8X1hsAORQKxqQLteY+SOIKOKagAa42icJdMx5UTO1RUdKCVgsgp4CgWLX7iapiSMi5rPqvThpS3k\nKiVDrMVECDkvzy3HxO1wYExZxTqEhRhus9IacsnKZRSZ/dcxdS5qRzBRsl3iU8hGf5coF1JjVmZx\njqqpdb+uVgjz60pRbrBJGLGUdArHNSZjTaFpwErGpLJ41qmrO+Q7ysAYyklIZNyyReas/oxLW8zo\nfFMOr1kO4KDFnjHUsHvBGLdYHKRJ2I+Jbddq67QIJc2FjQqTklFOVOZ0H7p3K0fO4/B2Q1qI21mL\nQ5uwFPXgmqNlRJ36rTE0Tlj1DaHuF1MAKYa+FVpvaVpZ7GsQMAQwmUxkmOyi2tuuzmjbnpISrhis\nbVVVCBgR2s5ipkSKCWPcEleT7erneHZ/9fryCilvcWKWIsla1NfGOQ77iRDLMvm/SJQziw3C/DP9\nq7L89/PZfNZINdhyS/Zb21nER90UnW7KJwL7F1EvYwptqw91LIo2TWPBWp2wS7FkbfVOSvX01Z0+\ng7XEGmxZDGykqxlxLL4eEEEszvkT30v0/lKIFFODbr7ABctY2xJCoBSDrwO/bT1tK7Sd9tmZCfP1\nhCFZiz5r1YDSSF4I8kksJYtyrAwkA1IXN+N0UchFk8ULqcYU1MUmZlI0GGM1vX6ciyXh9vaWbtUr\nilQM9k7KfQgHUomavp7DMhGdc0j2UEolhMui7PCuq3l6tmYm3l0UlM+UKEgS9dCajUzFElOVE5dI\nSdPyOpMdxRg0OgGsuGUBm0btzTfOgylIY+fHqXw6Y5EkFZYyFJPvROgoYdaKpUjBpMhcZI1S6Jyj\nxyFBcMUtWccmZFwxqnIqBePcUjgfhwljAm3rWa1W5DzRtjWPK3fK0yuFfrMmZnj5UvlM9+6vcTlT\niHURcmwqabxpGjKJddczJsP5vQ0ffPQxoFlVm9WWTb/iuRU6Z7mtnB5nWyIQY8KWyhmbV5/pyB/8\nr/+SuPsnhOOe1gpTzb86HEf244RvNPutr+o1gG3fM+Uj675j5bfEeMAYLdyGca8IpFvx4uVTDIm2\nOcNVn6nDqAa7bee5SpHeX7DkRXY9tB4fPdMhcrG94Pnnarfx47/8CbZZ82d//D0+vrzhb/7Wr3M0\nWhBcDyObsuHq5oZnL56y2z3nbK3P++23vsHXfvkdRDyffPgJP/zRu4x1cHznV94hSOB2N9K+uGKz\n7lmv++V5l5KYpkkpI/YU1yNOaKWt3kc/l0hvVRMXQlAUoGRCLVycFbxXcnspGUmFWXKfq7q36VpS\niMQUFkWS73uMOFb9hq7fYqRRtR7w9JOf8ad/+qc8iVfsSmBVA7kn0UJy3W0AoVs7FeSg4cgAaRqh\na0hxUrVytqTZz2+2dzGFNJmamFo5p2I1LigqYmExC+JeTKNGnDW7bn5G82WNq7YxonNxXjMsZFmz\nCwP7KTBlg52VeSkvYd8Y9WCaaVcp6qEKowiMMafxnZNGXOHBVfTMLgdazQoUk7HOkdKkYiVU8GOK\nqsJLDJRosHOhiKlWOVH5wJWXNV/GGKx3NMXSTXIqlAAkk/KoBaE1QGQxtyaTkmJc8/ssN4kCA/os\nHSV7pAqJUs6M+0BDopSgHYN57UPD68VASoYkgaaOKTGGkDKUpHxC65efYUF8IJkjhsqjqvwpNWPV\n71v9tDTDFaCLDlMs3jm6xuI7S92e8I1aOsyh1eO4J5dn9T0TFxtH21nyNCk6eycCyFhL4zzZRExK\ni2ludi05nLiLv+j68sjm3mDFL0TmVJSgLcZireF4HAnTDP/OH7bKTwucJBTzVep/p1aetfbkCWK1\n7TMnT7ed0LQeW1txSpg7DSgkUwpMIdN4i3W1+rYB36hKLCcVaS6bvld0Ky7IgCwTw4rQ91tSyuz3\nRy0WZkuB1iLS07SNynwl68BCWzum6CKhC0xGZh8lW8BEirRkHMUEpKmoUmfxnal5Wloc2NIs72uL\nxcai1XdjcC2LU21p1IG95EjKGeM9d1uU1gklaojuFBK52goQhSkajiRaV9TbZarF2a5l8Inx7ICI\nQtGrPHtl6Z/HOKkdA5P6HIAmk7sOW/TEKDYt9g/ZCGJafTZZFLKfi1o82KA5dAaEQuRQx5MlJwdG\nsLIG02CkLvpmwCarzvCm0BRDqUTkTKE4Pd056XDekypcZbP+TmPVf6QQiPjFEd8QEbG6QEgluc5m\nno2jLR2r0tG1gomFUlFH3zgyIz4LicwhRXUcBrrW6XM73LAbR4oxuIoQbDZnmEZRP/FCW+JSoJjR\ncP+110kh4Ypl2/esVrohDlMgDyOrzrC/OfK1197kT76rnk8//ehD/tYv/w1e/cZbvJx2bC+fs3ui\naFXJIM7inTrkxxgWpPJbb7/B//EHf8D3/92f8OjBA2JOvLjUdlmYDsThiDeFpu2InIxxnS9cXb2k\nbVuKcQxBKEVVYq4Y2m7NEPcM44G+70nW09YyM6TCenNGTJFcYHKG1UYnTjQejhHvGiJHxDiefvB5\nnaf3+JPvf5fv/ewjfuv3f5+u73n9XJGs3/nNf4DnIf/b//5/8t4HH/Gz5y/YPdfi9P33X/Cd3/y7\nvPLogrfffMAvfeMf8h/+8N8C8L2Pn/L3/6tvYcXQthf4VbMIO0yBOB0pYcCJrW0gWZ6pFUcRtEgy\nGb9kN/r6fZ8QccOsWhOmacKmRNetQO5691i8ZMRGCpbUNAthXopgamC37TroevbPtT357sc/4Nn+\nKYe4w9qGjd9gtgU3C8lK5jiNdL5j3Z0jItwEfe1uumTTrglZGJKuE3PCQpYRZzMkr47gjIsdQUeP\nTXoIRmBMh+XAU4zH09JnS2tU6LCs0QLaMip417D1blEhYhKP3Dnn8ZzdMBBT4FAL0MPxSEm6AhUi\n0cTl0CaoP6Fki7derVzqQpyLQ0S9sowpiEt6Tygi1dgGjPrYtdYTk87DGAWKJxVLmGYjzpOKT0xC\nTnG8SzHsXU+MGTGBtl0BFn9UtZ1+x1ktIwRMnMCxUDrIhVLGSoh3pOiZ2xRivYZLZ1vXpzUi85jS\nwvh2OLIyG8Rm2vo602Tm/NfcDIqoz0h91oSIUjLZZ5CC2NmzTxMwWrsi/n/svcvPLWmW3vVb671E\n7L2/68mTJ2+Vt8rqrqpudTdWg7sB01wli7axLCFGFgz5U5CYMUJCHiAmiBkTBAgh2RhjsCzRxi7b\nZXd3XTNPnjx5rt9l7x3x3hisN2KfQq4eeFIMMqRUKvXlt7+9d0S8sd61nuf3yEyWtBjnIWeqQvEm\nUWhZDVUDjCF3tJAiG0WCX/++YIDd1eFH4XhcpCeJOSeud2+zjRtqLifhvyRKmaF3yFQcroNhg3jm\nf76PbT1+dR0p5/DOr26p0Y2UWDjosVfFgf2+s11mgxDWPg+G0whP5Bc1UfbvNyylvdDx3hGiY+is\npDiIUc1j7L9XqUtsQX89H5SSGzlPhNhdXYM59kJQcrMLZNnRWXfKHn6uak+m7o6Izk4ScWy3AzHG\nVSOUq4E6N5sNw1AQdyKQ12q7E7CK2nldXTbTlGhr78J0Z4uNf4HROb9Yd7UDULuOwAk1d5KtBEKQ\n1b3RmlCLUIu1gI0b1y9+NX1Aa5lG63bpZWempGQXuQu6AhD7JyGlxu3d0Ypnlzj2vxe9MqXJWtSt\nGN+oO/paa4Z3UG/wvDdbhT0ME4zhQlWkk5ipEXURJwecNEQSrRcuVEdrHcrag6ddRxHUYs7QWqo9\nrKrg+o0vNQG2IEYX+ki2j4pxlNmcOHZKKtLy6QZXs123ZfyVjPUCUMQx94eMEaD9iT9VjaulU6aK\nBRHX7trMdOREt/POqXJzb5qd+/sDF9dXIEIpiRA9V1vTCLXc2B/uGOOGn/3sZ3zoPBePrCNVWyWl\nwuXV2+wPz/nsww+56kHAX/z8MZ99+B0uNme89/YD5ukD5m4vfPrVK8JmxKlB/Gqt67jsvfev+Oij\nb/PtT7/Lq5c3/Pinn/PlF7ZL9AzstuekuZLmxmG/562H5/08JegxS61UUs1cdg1UKwlKwTvhretr\nbu/vjevUyeaP3n+PUgwXcX39FsPVW7hOL89Twonj/n7PELY8/fIpT15aR+rpq9f80Q9+yHc++w28\nKC+f3/DX/tp/DBh09Mc/fs2PHj/h86dPKcjaJfjpT38KdeZf+p3f4ONPPkRC5nf/jb8AwN//O3+H\nH3155Le//xmb7Y7ryx3z3v5eSXuoiX1RpFUrGstp9OOcZz4aimIYxlUfGUIgpcScEs6NjOO4jnVT\nOhJCIMaIakO9Y0ljOhytUyHVAsxFWWGGIQRcHNBxhxu34DxPn30FwM3d6y5r2JKaMae4q6Sb3gVT\nIWwGqtrGa8ax7d2quTZKmVAHpQqto16W+7vVjDqH94Krb0glajH2GgLe0VDTtQDRVXxzxDAyeCW4\nut7D3gfQgtOAd4JoWEd7qsLh6PCDI25Gck2Mk6378f6eaZqYponcJuY8o30dEnG2vxYLld4M41pk\nlWKTAOdtnRdfcN2N57VCnfvabSHCdL1tbeZSVBFaVXI+TQVMaVKRYMBMFwS/PK6bpSZoUkSdaWqD\ne+OZURAvNI6mAfZYnBig0f5GztXWONcoKy1/YIgjTjxCoJWBcdj191oQtc2RtMw8s3Z4nXSOV63m\nnsuJ0iuiEB1ahSSFoB60rCPY2mxzINJswzi9kbzh1YCazb772pS8wEEDQGMYwIWMuMLQZ3siNg1a\nTKrOOQ79vbw6vCTMFtGl52+zGYdT7dAapWQrkJ3VDOvzS4RY/+xS6VdWSA1DwPuwis0FxzhGYoxM\n00zw+1UguXcH5rlSi+N4nKn1JEZebZdvxMYsC4oVUAGnDR/Ah7LuWgysaREqqoq6RipLgrR0enZd\nsZNLazQOlm0UvFBLp+D2LJ/aiuHpxdqyEk64BcMbnNACo4/4jirI5VRwSBfgL63oVs0eumpfcluZ\nNzQrdlSXnZiuuYPDEBg39jkXAbKqXyGgIla55+IQCVaoLO3frrtS6R09ZS0InCu0YlTgUvpY8v/D\n7lL15AThbDzRlmvBFc90SOQtOBpzzymTYaCVRpomUs3gK7mlN64WRdVZW78Yq8Re0/4dw0jWGRWH\nVLuhajLlgxKA2Vg065i175462M1JIyyCcnHklrrF2NNUIJ/eS2sGjvXOIxrWvEDFkRuUfMp99L6u\n3QXDTDSqFAozooZRAAg+4LLRjwWF2pi7bsXjiEANjjRNfafaNXIpMU+JXDMhOM4urzizeojDfuJw\nnG3k1wSn8XQdIBwPM2e7C46HiR/8oz/iy+c2vvvo0++xHd+mycw4jlww8Zf/3X8bgL/+X/+3/OQn\n/5Tvfv/Xubi44OzsJd/+7GPAHqxfPntCbTMX51vOz8959513APj0o4d8+tlnvH655/HjJ9zd7bl9\ntdDLr3nnnXcYYsxKtBcAACAASURBVCTPiagBt9KNj+w2G+qcSCX/wmh+3ttIKx8mpvnIg6trNIRl\nlcXHwHR7z/Fw4PLiAue3pLSsCwEnlU3cIE356Y9+uhKV/+4/+CdcPfqQb3/71/j69gt+9OPH/Gf/\n+X9hn+PT7/PDP/lT/uE//gGPHz/D+8xZ76gfjjP/4Af/mIvzHc4Lw9k53/7sN+z3fuPP8Y9/8nN+\n/fu/xVvDNfNcCc4KQpcT1Stj80i2EcjyoJHWICdamhm8Jzi/IgX2+zvu9rcEP+C82GiwFxmLoHua\njkxpAf0uXSvBu0DtuABpkLq1228iw8UVbfsAzs6tiO0PqKvLh0hQHj/7nCevnuM2Hg2O8z7aHJyJ\n2vdlsvtzN+BmK9BchcIR56tFVum8rqdOiomTa0UGYZ4dQwcdt1KsQHNicVpV1k3y4FxHsxjxPDiI\ny8+CJ45LTJNpXNtiXvEODQO1eXLOzEWJnbG13W457I/c7Q/M84HD8ZZpWhTHtoH1YiP86Dyud3+D\n39Ba14/6hoaGX/SmUkjJ9EgiFSkZ16NsYhNSF3sHP1KzkcPt+o14H5E2QW8W+P7sqsX0mINzpJw7\nu07X+1ucZ8oH03Sqx2tbCzuRZq+nxmoSLatOmWbaJMHTqgOJqxh7HAacmFSg5kzTtmrrRArbMFKo\nHPYzmyGYman/PfHG2aI/oxfkg8J6fpxTELd+3y1n69CqUlPGB9YmiPNAM0yQ87YudIIPrSebLNE6\ntVZ8z3gaRTnOB17vnxJ9xfm3VilMmytIopHM9FDbeo2qa8ThzwZyfoM/+Ob45vjm+Ob45vjm+Ob4\n5vgXPH5lHSkf/QpnAxvRhWA7zhijuXeWrZmzdtt0zHTN7Sq4rrXRWul6KPvZm2JzyzurxCiEWFfy\nt/MWWOy8Rbc4MT0QmJAaogUnVgMMLsJgyPjgyZ41rmEVODuDZooz9EHJjbZ2VhrqbReYU6XW42qd\njy7igyV1a3futbqQxFk/S5rVIJZrIKa+4fLoAki3aCh618k1age3IWXVZakzHVSM0XaoybRagOX0\nqfWgTIR/ctG1ZtlHrVVyrj3Go/8MsffWxX5TqYxnvUPUGiqOQSM1FYqqkWvtRaHvcFLNXY/Qu03e\nmXFI1RyXLa2ZgKkVUpkZNxdE9air/Vx1TZJNzI08LzP0zqFKxau5SwTBiVst0KqN5mrXDyzGhUWz\n4pAW8SjqRusGvIFpUBGaeiiyjmd0Uaprse9OE04aTdNKVBYRwjgwlgGdCmlOlGUMiUAtpMNEKplW\n6imuqGMiWmvkOXPUaXXZnF9edQNCIwTb3bZOTZ4mI7U//vwxj955i0bk/rWNBH/6pz/ivW8JkxwY\nQ0PKzO98x9x+/+Ff/Uv8d//T/8DsE9/7+CO++2vf4csnBvk8H7c8eueaVI5cnF2y2W159NBCgj/6\n5FPmeebx45/x5VdPefLkicVBAB9/9AmffvwBXguKOUAP9z37TROH/XHtNp+fn6+OxU2MaM3cvLgn\nBiU6z+78iqnvoOfjzO7sinQ4sJ8yu0tHmk9jVh8q3g88+fHPSKXywx/+CIB/9Cef8wf/3r9D3Dqm\np/e8ePWcv/l3/77di/5/Zhw8rSR2waOy5fMn1snbjJ6rB2/xxeMnfPjh+4Sx8dWXTwD44L2PePns\nOS/v7/jkk094+ewrLhYtYzqQj3fmcKuVuZVVOJySdSA3mw0hnEGdmTsRvbXGZtyZOaBWUrbxERjc\nMyXLaQtug9OIW+KvuoaT7kATV9dxIQ5kd467ehtipM2mPQMYd1t+8uWP2O/3DE3xKfPg8ppjdwre\nHl/hknAmgewc6kamdt8v/UxrAXGFJZy9dXCqqKEZBGcdCn0DtdJp6MGZgUNbIPQOYPSDjW9aQrQx\nxsjQ9a9OLWtOnOJUDK2gC+LAo96E1LV4Ys6kpbPtPEPcstkkjsc7jtOW/f3U75kJihHGo3OGoen3\nthHZnQFJPagvK97BxrNd7C8JkqOUxel4RFqi5kKuhnkoXRtas9KcTTREWjf3LCgZgVaJbmMqgVkY\nhpGh54XmbCPieY609oJWCiH2bpUqqaauI6q02tiMvYueHanZvVFyNQB0/xjBFYbR41tAUeZaOMx2\nftO05zAdkGAi9ikVwiKpdc3Go652hyVr1SFqUWzOAVLMcNbZz847anO02UanMbp1ra1lMRxpd4Ke\nDF8aHNoczg206qhSyXUJFrf3Li1wf39Ayysue6JD7d056myjb05TLzPi//90tDcOAcERl9GILJZY\nMceFbMHbDdV07m49oTYxCnpa1F9iVsWi60LyZiFVazJLb1zGe/ZbfomHcc0KLFgDQQs2YxXtbXHX\nTuK1OlvrMDpy0l9wCaoKlYyXXgT60xhuyUGyMaIJB6WexmwL0Vu9aSVOUXtqI6sGk6oFZOopgFIV\ngnOkOa24B7BWqRWKFv5ZF8G6nP6mLTTemCCyiPU5WV6zaaAWxglgIsw2U5vFatTKqj0qmf7/2bw8\nTQcaNorYbHZsh8joBiSDRFmz2NLcUG+RD6gVoMPYk8U9ZjdeXJlGuervpVBKskJaI4IJ/O3zFVRK\ndwEZhyv65TxVasoI/lRErZ+v9tl/Wb/PlezeGoozG7ZEoh8sagdMzKqK9HZ4mQvD4NZgzyZ9ZOss\nyqcKa4t7no+UWtFWcPRrZ5kJt0ZKBcXce7meiOgxRmorNhIfz2kia3xOKYlxNP2fItSU1/GlGwe8\nOI7zzItnT/n004953kXTh5s7bl495/rRQE4HNiEg1RbM3/tz3yXrnv/1b/xt/vjuwHd+8zM++JbF\noKh3XL/3AKVytt3x8O131kzAJ1/d8vzZCz7/2dd88fOfc79/xW99zyJifu9f+V2ury6Y5j25jLRa\nOB6WBfqOWg+WQBD1lJMJHKYjMSibsx1aKzlnog/IkmSfK34E5zypNsLZOSwOpGOlzZWSjjz98ivu\nDjN/6+/9PfscccNhTqQ2WfhpmYh9HZpbYk7OEB9aefHqS37vz/8eAH/9v/ovubl5xV/5D/59Hj9+\nwreHcw7d3HB3fsPFgy0/evwzPvv2p5ydXVD3VmS9fvWMdHjGvL+npGTC8CUotz888nzobibB9wig\n8/NztuOOw/Ge4+G+b/iWyCEHorZJCp4ly61fUITooZnGSrQydF3Z9uISxpEavLmLObGZBpSLuGH3\n7vvMeeJ+f0RdQbuT6pA93gVCCOxzJuWJIdjrplJwUWnNAqaHYcC5Bccw0xhxatpMQwt0Zp/amG4I\nHpFC1LaYCJFm5gsbY3ZTjCzJBRYHNgweJ57gA7WLpoMO5OypxUxGOTh8l1aE2igZvM8ggguRGHps\n1pzI6WCZbq3inBVvdm8LITiid4QITfMqt7D1aDAuVHBoaByO/frOrW9UWTerpW+S82GmZmHcCkil\nSiV1jdBuO/RnpDPMgwq1lPX8j+NI8BF1b3HMI6W+NCQA9GdORTThvJLnuo4EhziiOOZJaK7gXF35\nek6FMQ4ELNotSsP1jckUG3eHe5sCOsjJiPR2LmxjHqRZ6oOTdVyo4nq6Rpfo6NojoNZGTsmcm9GT\ncqCsCRMjKsMaM/amW1PVo9IRDeqpqVJ0QcJAiBt8c5SUmI43HLy95u7sgpyLaXCbYWsWbpf0z/Fn\nHb86jZT6nmy9PPisu1JtFI4TKNLx7Zwj7CkVct+t5XXXlhEGSu3ASWEV7IkIueyp1aFqF+wi51ly\n9oYghNCoRVe9lmLOwQZrsbUmbysgNkP1g9lkVwslDSeNaZp6lXyy5Jb+0F/el/Zkd1hE5NXS0Z03\n3cCik8Ctbo1x8KRZV/cV0qNcRHoUxAkEZ8HHi3bKQ7NFeck5sotZqaUSmu0+fH/QBB/ItfYFoX+2\nLrrMNZm1mQSiqIZup+3FYuvxP/VALZnaH/oP332fYRM7KFSIzUP//BVz5aAZcreuLl235glIF3/W\nHqWwdHIMrtfqhPhg31N7w3lJRaVZsRnCqZj1AZTeoai9aOnnKXfwXvM413r21WkC7kTx6vBqWXJx\nkV5gBaBzirhIqtkgoXHR8p10CKKN4svqanMefBZqzsylmJtksWtLgGI6mZISDocPi7bKkWtlmiYO\naWaMp9t5HLfUNndeUbFqui8MZU6UdrRImeT4+vETLi+vAUg397z46nNuX3zJJIHt+SUfvP9x/4yJ\nv/j7v8sHl2/xN//2/8kPf/AP0dGE6OPFFdvths0wMt0c+cmf/Jj7e3tgfPnkFc+f3TDtD3z46JLf\n/70/4Ld/83ftXFSY719Sa+Xl8xdcnZ+x3S1dzBkRGKNHVDgcDiuMdL+/43A8sh0iQYRxe87d4cjW\ndbGEa9w+f87ZxSVThpoqbtN3mBtPeX3g+Zcvmavwg3/yz/jTL81F+P3f+n12uw33r++5e33EI7iu\nPQoyWJEfPOoi98cbPvvsU/u9732H1hq/8zt/js9/8hM+ev9Ttg97+HKPtnr96objceL9d9/lWE1s\n/qoUW/Ny5u7115RW2ewWga8lzKl6bu+PXF09IPaugza1h8HeYlNynqk9/skNZ93MkpjSEZFTruNm\nu2UMW0QdKpW5qTlcgVYa0swpVlvrAvB+3d5PXEtkL43kZqY6Mb++4Xz3EIB3theUJiQtHCt4cZxF\nMw3kUpjZ26IuFevOv/E3e7adtGI29+5YLc1E7F6dOYXbSmPANbAGayNEQV22HFaguUbzQhy8hfS6\ngHaGWHODdXubI+eZqSixu4drU/bzgdYjbPwU8a4HNMZEq9bVbZ13tZiAvPOMcejrjNikYY346tpU\nDKSc5Yj2h/cwBO5nRy4zuSpzztRe1JWUoNpGOI7GVFo284JtnqSpoQdKo6lnM9r3fba7RprxyIbh\nW/b8dNYBbHIklBuO+ZZMtuidctKAbrcXtDrjfccV9PU0umiTE2/nitbY9hw+H6BK43Z/SwqFUU+s\nw6RCiFbYVinUUNeiw3ntut1iUW3ltIGcpoxoI4YAweEnpSz4ms45VAmgfVrSFoyBsbxas+umeoeI\nnd+cqy33dcYP1uWekq1RbnKMw45SErWJRcIsCIsAS67gLzt+ZYWUCczEHBYstk8BDzlVynwa72w2\nI7VWjvNExhhF0rsStZqt0TlHbUsrdHHtZdTZg1EdhCgr/sB7GCKECM4XC6hdSOrVMAqyPmBPnR4A\npNgTQAtNlNJHJq2pjcyadJdheZMdSi6LaND3i+gNkbi3Tomq/gK9XGRYnXVttMUzL8G0aSYXE4Q7\ntwQeLy18KyAsL9Ch4q3g6sWiC0qau7W2s7DaSpwVHA4EihRKTaSycDRsDOeCIr7ifCV30WFr9IWy\nmMCQxrbTu88vdrjgzMkoYh3IRTyJmMujFmrJBKdrmrc2q34FR66dFN8/o3oHtVDqhGsRxa8dQFlH\nmBVXrUhcBOwijeDEGFC19vd9Kuhrbp3fJTapXMM57fOHTmj2zhH9UkQruYG2aN2xpkQvp1Gr68aE\nZuDVxX0KIM1GyIfUyE2QUpFeZG2kEZrSSiFNRgJeBO7HacLAPA7fidhLcS6t0kpjajYqpmSOPRQx\nTRmphXEI1Oq4vb1lc24Pmo8+fpc//fHPef16Igk8f/2c+6N1Vj768FOmPbz37hl/6S/+eR5/+Zyf\nfWnuu9v7PXdfv+Z+ThxvJ0qpnJ9ZQfD9D67QDx/y6Ucf8r1f+4QQhNe3dj3d3808vLjkfg83t895\n/vWXBG8jwXEIHO4mDlS8s1b7fr/v58Ko/LUWK8idUlXXc5z3me3mDFFlsxupx+NKW1YJ3L14xcuX\nr7m5n/nx508pHR0g0dICBh+twGjK2N1+BSE16Xl0iRAf8kd/9A/X+1tE+IO/8G/y3/zxn6BB2U89\nu/JO2YVtf4A2pnTP+aV9N+nwkGdf3oMLNGe5ckvn7O72HlTY7c6t8M+ZFy9slHp3t2cYjMlWa+G4\nP6yd5OBmsnpaS31Mr4Rx6fzLyswZtxtcbeu4TFWpc6bOGfWO11895vEXf2zvM9/TXCXlPXWe2TS1\njTBL4oOyz4lD3nOoM9U5Wt/Gx00kz3cEP9I0UepESvadOh1tzZKKozCIMna+XCoZJxh+xjVKLevf\nC2HDODobdfZClze67aUU5txwY8QPkdC7Y6UpWsH5ASTijpVSF55dZlg34YHkoaTebT86Sk340QTM\nraYTy7DZiMkHmzY471cDUi7deSi2kWklr2t7xiYPToRDStR6SiaoxXI1pykThtbdh/Yxa5ttkiID\ntSibTUDayHZz3b+bAcVSCUo54v0AK75HGFUZZs/d/pbiHLm79ub0ms244+xswzwbDNUv5O/gaHU2\nY4AaM2rhlkEhBCEGIWPut7IYYiq0uXR3aHfRL/iDzthCLGNVyfgFmyA2zWmlUhNI8LRerdSSKCwy\nDt+ff8vz2SOq1NQ1QFJwaoWU+oAUm3o00kk6BMzprnPHggUrt0Zti4tf1+7ULzt+hRExrndN7L8X\n7ROYSl68EnW5oWZUhWEIzMV0A2Hb27haORwmcxk0uqPvjYeo2hddKXgvhGg/C772QsOcVUrB90Jq\nPiRS7rZzFQTtQbdQymQzby2oM6hhY2ljKqVkREaLO3lDP2SRL4mmDW3WoVoqZXV93LfMe51f3V4q\nETCmk3OBcTwRwWvLzMdKKq0zptppJNjn64aXqOTUdWSrm8Ie8o0eHi1+XVBdh4aKCKkWUp5OHTm3\ndMmW4rSR5m4RdjY2aEVpVbh+cM31Ww8A6yGNowFKS8q0dmJ4OOcpKRO90rLVSSuU0OYSNHKH3J1G\ngopQexxBrRV8pvaHpZSGVhvZnkav9pq5Tvb5vaflxXn4hnPSqnFytUWp9u9b1fhgipGmnXOEXiil\nZmNTh40CY/SouB4lAuoSpSbTOgiQwfWfueKAyDzZ+w9eif1c+BqJKKXMhA4fXNxnx+ORViubjT1Q\nJavBRAEE1NtGwwUrRJcde8E6bQXh7m5Pzkfu58N6nq4utpxtztDBUSXy6s6o5z/4f/4B737rY64v\nBi7GyubjR3z8LXPmpWPhbn/LfEz2gPduhdieeQFXaSUxH54z7QvHvS1SQXc4CQzecb4buLy8YDpY\nAZJmCOrIcwEPYxzWaz+lhNaMG2wMVSuMF+cc9saZqimzu7rmcJio9wfO33qELhqxY2K/3zOVzOGY\n0XBO8FZI3t1PzPPM1fU5b797xU+fjusooqZCUGeQ16qcX2x5/sr+3v/2f/xfPLg45+c/+Zy3H76D\n3wTEL8402N8e2bnIEJWZPWdv9Sib/Ii716+Z04HLq4c0gdevTK92OMycn58ZRb01Xrx+tVLfYzzy\n6NGIRfkI29352lEvtcI0o6GQSiaGzQm2m03igDRUAoM7TZFrtcDtWiuUxlgSY7++r6+vcBthvjlS\naYQmHOuRu2Ln6lCEGTikI41mY9jeIdtEh6uRuTu4cDOlLN/NQIgLSboxH+raxfU4QkcXWDh5xveR\nUctK02JwxQoxOrT/vZRmxAWmoGx8RGNYalOiehBPbYEKbFXX+2miQe/qqhaC9yy9moJSlyd5qdDc\n2iHyztFaxgUHreM6+rNEpSANtBns0yCeC5sqoSREM9oU13SNXDKndsW3Yg7fcOrEQyGlA5uzK6QO\nbIYLgt9S8yKHsOdZrcqggblktP/NEAZDJuCYjhlKoro+vix3HOfn7MYPcG5DSXV9ljpnm5kMFnJf\n8omR5wpki82qJdOWERnQtJKYCc0cyUFPrj2kUuqM8+aK90FMvwdoj5xpKqTWMCDp4qo3EEStM0Kf\nyPRTo2JdNO3a1jYvyCRWaGtrNkXyetro1mrTq3FzZmo9VeN80XES7o1Gyj/n+NUBOQdnVl+/5HhB\na7MxI1AcjbhoaHLCB9MQuclTU6L2qnbcDDhVjoeZnCu5yLpoOFVEZlqzblfl1LGRsIiKbbwjuq6X\nqKu9o1QRCTZ2bMsMZ6a1hPeB4mtv+9mP1niTakVU6VZM+1kmF8sHKvVIbJGwfXPU5Ggd67AZwtpu\n9+o7P0VQiYTmVgieUrnXxt3B4h6MtH668J2zi9drAK92w7IUKJWmHmUgOk/wYm1UbE6dqnU6LI/N\n03o3o2KdjlJyTyT3axckOMiqlFq5uBx59Oghu+1ZP99WXKSUaOqQpqeOlJjOzEugxZEmeS1+nNq8\nXsppAWqdidKkmbC9VNslFU/rO9baY3FyBXGOlk/tdm1C7REM86p3X4BupmsqxQjmFVbbcYxvMFfE\n9AatL66hWpfNKtlqGip3tu6+fARSNriqC9Ra2R9sbPAiN1w1wF1wxqnxdelkeXz1di42Z6exLjAO\nF+Sc8eMOUW+awCXfrgqxL/bpOJtSY7TCZlOUY4OSZ3x0DGHk7saKpX/6T/6Y7//Gb3NxNkIpPHjw\ngNc7K7K++Po5X/zkj3m9u+LRw3fYDbKCB892jQ/feRfvI6UKt/cGygS7f/P+yDwfqVmIYcf1uGwi\nAsfjDfu712wvt7x4+YRNz4x7/533mQ577vd3jBu7Vul6vJcvb/EK1+fvsjmLZPEc0kyn9RKG0bpX\n1REGjzJz/+KlfTclUvHMc0Zz5d2rh1zurJB69fIJLb9NOkauzt/mwfUjdl9b1+3rpy+7lbzR6sRu\niBwm05b94R/+IaMXPvnwXb7//e/iwsmgcX1xzQ9//iMuHz5k4yNXjzbopuNUdjveffc9tE2Uw8hh\nvl2FrZeXl2y3G47HzDEdccOW3cbuJ/U2mnLOMgpbZeXuqVZEjzgJaE8vWDMvnTOwbM7MLhGdp3aa\ntB4cjBk2dlMM3nHdxeY3t0KuykYuqB5yu6GUzHSwom8vExojIo4glaYnlKSqYRRqTkboD56wcpYS\nzg1d7ycU7k+Fa614UUJ0VDdb/MqiIarWcXPNOsRRtRtKgCK4BlFGEEf1SugWeG2KjzuqOkqxLpQu\no9sxcJSOhZgnUi20vvFWX2ilGrnfCa0WE6AD6Ma0plot6kt03Vy7ahv/VroOVcXyZDHTi3ZN8BA8\naSprR12rR3yy52GplJIYxlNMFzpR64HtcIGXHY1hZWxJS6hTNsPIITe8Ktq7MpYzuAeM7K3a8B0Z\nk0XJc2PSPWe7SyaE1gubVmcSzda90pMwenFKtTFqYwYnVO9tNAbUmg3zEwS0nopsoNQjziUQi/cR\n53A9GktVyUkoNeCc0tpxfT4byb7ZSLPN1BzX5A11lskoGm0T6dvaHaRWvLe1VyVbo0Xs+m5lpLZM\nmowZ6YQ1HghO9/IvO77BH3xzfHN8c3xzfHN8c3xzfHP8Cx6/so5Uq0oIwxvWeUvktv/O1DeE2uod\nvnpCKIzR0cpMXXRJ4pHRRnDTXJA5UxenXK14F03536waX+ylvpk1Fik0hCpQZUEOGEW3NvDSba59\n/u6d7+OFhA9KKMIq4k2O1pTWSv+nrdlBZvk1wZsqPcuu75K82mzYynJKa2ziUu4LDd+zywa0ulXr\nEeMINBPU55kQWWms3lckGAlcarY4k07tBhDZoGK0dSMAn2JgSi32HfZOkVPPONhOOJWZYz6amzB4\nCoUORiYmT+pBzm89vOL8Yrvuok7vywjllhLeu1w1U3CkWvEu0N6gyjYarZpeSTD0w5uuzFYyCXs/\nlsPVz33r2rhmWjuvsgJX7XQJNMu7QhZdXO+A9eR4EWHwfhX7l9518t4RnAUWly7CN2qzna3oPa1G\nVG10Yq9bcaGRq6NgcNGhv9dj80gVxrhjg4dUmLr+IITGVBVaMVuuNvJkf/OYM+fn54y7HYc84xnW\n8Y7tQm38SZ2Z5gPHw9zvma4vE4umH0fPWRd4j+OWp18/5sMPPiKMgZe3L1ft3FvnO966uOLZq1sO\ndy/I90Ja8OxSObt9aWPGMFJwnJ2b+NXHMw73rznsb5kPR6RZtAnA8bhnf39Da5kvf/4TLi7Oef/X\nfg2Ap0+/JOfMdjMQJTDtZzZbu9jOL7Yc726Z05GhRHbnZ+xz4dg7dqVkYv88Z2db5umwtvi/fvIV\n98miaLZnjqvrDdvuPnvy+oZXz29599HbbM4KH35wzssX5ky8f3Xk7nBjbjQRM14sAEWZ+PCTT/ng\nw09pOqAaiIPtdg8lMeaZT997h1YSl1cf4LEOIFm5vnoLJzMvXzwnTpHcw1Lz8Y67u9e4uOPq6gEq\nntQzvxxCLZ5cGmm2hIKxO12RHloeIuIs6HcZmcx5wlMY4xZNFfGCdsinGzaUGAzP8eoFd88+J/fP\nF9S6Wn4z4KqnJaVV7RElkGfr0m/GHakkUqus5G/JNJ9x+0RqDe8cm01fa5vH68gQzsxxFTy+f8Zp\nOlBSQrwlKoDrGZVmppmnjLRCiMqUZlwHHJvguyGuGuJEfG8Jg7SABu3mE5gmQbb9uzkc8SNsAiCK\nm4UpnNb2XBvBNUSKmY0W2Uw1lIaI0bp9qCiLy1uRUik1IV5xNaxZFFU8qnuc2HfipSF5AQMLInOX\nj/Rc0HWaYM+Oyg2FAecGFF0d6a2HXJfS9bgygPRulVbrXkvXGIlb81elBUouTMcbhmFg3Ow47rv+\nVayblNIRLxkfTsHMqsrgHaKRUMxlvESjzSUjbtFtm+a0LiMc6e7QlsjFjAWLpGUcI9k1kkL1ii9u\nNeeYVgu8RmoRmzytDjvpE5xq64zXNfNRfFvd8irSgaoLEmWCLEx1osxm2lreZyf6/JnHr6yQWkTX\nOZ9EzEpjLsWEXXKySboaUK04TXivxEHJ/cIouYCACzB07c7yhdfSoDm8WgtVG+sFHpwiUoBCbQUn\n8Y307ABzXRdeKz4Wu66AYvNxtXEaC0q+LbEqiZoztSeX22ta8VRKw4sn18LcZ/OhJssvV4d6uwna\noh9ST6veRnUa8BLXYqgkE2Y3iajeoa4sRjhCgBgtjqAUQVsxqnrXZXnddfeg4Q68Gymt5831c9AK\niFpcz9Ial1Qtq66LpV2U9bvxpbFpwma44urqzPg3b0TWmBZLUW/p3MvYs2ahlYbzAT94apnXGbt4\nQbNhJ1orr53ThgAAIABJREFU/Ubosu/SyCVRy7zGCtWFL5Zsdi9utswprStuwhalxdUo4NxKSa8U\nGs4Eou4X756T1spibRaGk/1eRb232I3uynQOFhe0b97GqVLJuUERAtbGHqODHJF9JU2ThZz2h9Bh\nqr2V7ympQlVS18mIH5gKtHlis9sS/GbVnmhvR5daiHFg5/1quza92kA6TkzHPa9e3bPb2XsZBqGW\nmS+//DnvfutDDlNeHZRn2w1nw8hZaLgw4Mctt0f7e5vtGdP9LWeXI9fvvs+wueL6yhxdt6/v+Pzn\nP2Ke9uR0oNXKWR9RvTw853C4YZoSY/R89zufcX9nuqNnX31FHAcudluLraiyRko5sXiYw34ixEzc\nFgYR9n09SQczZQTnKHVGnayjmP3dPbk5tpdvIRcbfue3z/jiqy8A+O//x7/Jy6/vuPsoM+XXXF9f\n8+2Pe8GbJ37y8wP3d0dUAilXdjt7P5/8+ve5enDJbrfj4cN3GeLAe+9ZAfan//THvHu15dc++Ra7\nsxEftycjzfUDXn/1IyYyFxdnHCbPzdHWr2m+4erqghA3pJQ4lsMpQkMid3c3cAchjmy3Z+v16YNF\nG1W8rSsi6/gdZ1kNU5oRGYjeIb34ruMGt42k21fkV89pxwMp9fM77LgEXtzNxOi54oxN2XLXC9ez\nzRHcSHORY6nMdXHVwdwKSWG7CyRVJMIQrMgMElAZ8G4khJEgkZBsE3EIgeP+jqYVtMfx6BLJVBF6\nDJcrVC2n+7s1Ui3kVhkJwEjtDnCcEp3du+KUQSrS1++KQkpIruy2nllMtwqQnRJzD4evhSqnPL3W\nJnI2A0orUMuM7wWYa4WqlUYfA+JXU0BKCafKMHhKanjvGIZT7Iy6RvAFldmift4wPJWSaCFQ5Z65\nPEWZ2Axm0iizZy6mQfUaKdXo8WCOYdFE8ANt08iZHmxso71Yba29u3vG+VklxL5LLglU0dbIJVNq\n6/FcdERPZXAKITJJYu7ZgaUuxiFdTTuNRYvru4i+WqOjVVpZxtMzvmfqVcHW065pMbF/RtqIiu9u\n7K7TBaQ5KtmSOVojdAJ9KYXSTH5TCbjm1/ckWlaZT8U25ctaM8+pu7d/+fErK6Smec84jmtXJuXZ\nuETNuiHNtdOHlMJqZ+/QxQX5L6ImXhb6gnCKOjGZSUM0Y8mNb1yMUgFzzqkzN1joQsMGuIyJzFVA\nTnAuC6tUajPHgcRTLlpOZeVKqQLuFxkXiLmManeKLUiBWm2xq7XrqpyuQkY0oDjEOTwOxNFax0LU\nSm2RcSPsxnPmdGPxC4CXTFDL6iqqdtM6Magl4MQCYp0zmyicOCSpzWi3Xpso3OJ1wPRJpQZqtdgX\nqdBrM0Yy2+GM3XZgt7kmxgHvl6iEjLoMLeK96w6VaflazG2piyDw5KD0PtKqkMvBduHUXyheck85\nL2VLKstiBTWJccXUirbaJpouyeLd5Vmw8OJmwkR7zQZSUUv8pJS8ittbNVCbOmgld2hcL2pbMRGk\nU7woUgTnPLJoU7wJUVs+UNtELceVXaV6RWkG9Bu8MATTVwFEGfBzoRwtlyrnzOV6Lfag7+4wrDR8\n72TOx8n0H1h3ptV52RYiKPOUqKWw2Qxsrq6ZD7YxefFiz+4sMPjM4f6W8wdvc3PTuTelcn88ME0T\nPid2TvnsE0MjbHeXHI9HLs6vmIrZ2+eukbp9+Zz716/Is6UrOrGgXoA6H7h//YJhGPj2J5/QSuLZ\nU2MsbceBYYjUPOO3G2qauX3ZrxlpTMfEZrR7Z39za53TpZNbC/N04Lgf8IPDh4Gha4+0Nuqk1E1k\ntxnYCvxHf/Wv9F+b+V/+xv/O5mLLxx9/ytXb53z2O5a7c9deMm4cX331FXf7ezbDyPvvvw/AWw+v\nefDgiqurB5xfXLO7eMDXHchZX9/y+3/wb+GYuP7gW+jlxs4nUHbQPEQUjaCzdU8BzjZbapvIrXB/\nPCDqCb39uz9YJul2u2W3O2Mct6sjt7VmWhgXCDH+ArCQJssui3E8M9F0t6o3oB325Fcvubt9TSiN\n2B8mguk2yzTjUya3wOwTm26YyGXHIR+Z8t54aA3SIrZ3SqlKbqYpDXFk8HZ9B92hXnDOuq8+7ohd\nND3MnoMfuN3fUmU2ltrCkVKFGDgeC/OU8bGgXXflaqPlZp1XNSfvsmmN0TGXTFPBB9NmLew1BiM6\n1zr3rg9s+3qZXSEn8K4wz0rJHte7mCVN1HpvExWO1Hyk6XKvFRyZpoY7UdfWSB513a3mKiEq6vLa\nkRFxqNugklCdTVcki+FnwrtoWtw8o36Glmh9I6zOMuR8cNSaQTltTF1DPGipaKmdKdaF6G7LEMxx\nnrKSp7zqZksW1M19WjNTayb3QHrLePXWAGkOiXri8rVMkWQ6VgqzQFzMWaF1t7m3Z5w0WncFCEcq\nh/7sN9PVWki1mZKbubSzAnXFE6hCST3XVMx8tgZ9O3PNtmZFuKiunLRaLZqpIVAN0hzjicu2xOH8\nsuNXVkiJFOZ0IMqSLl3IpTLnRK4F3/SEI2gF1YS6hA+d1L1QXrO5uNRZ+9H3zg7Yl1haWaFdIrzR\nZTjZGbUDNJdEcu8a2UlngFixtVrgO0PKCqa27izBblrvhVIW4nRdg4BrNVusuVNyf71FiJ4MLqZC\nzkZ3jj3jimq7SfFAtvZ2XOBFCLAlzRDdllxGKvf9zdzjvbWGtVQC5jZaFmKqEnRDCLHnBc643pFr\nOjLPM1UsZ7CRVyuoBTo24iC44qjl5IrwDkYX2URHXICgYfl+EjCwZCtJ7z4CzGlmZjIgah0QF3HL\nCLI6XPC4atRdKx77udMjjZlcMnOezJ0my/fdaKnBlEBAXGY69puhIwHSrNAMb+D7guFdIOfSbeV1\nLT76Lxqri9a/l7J2a7wArSI9xLqJuSjXawMF2RLVU8VAf74X9Vs9w+uOWAZcUaSWdbcXVcjt2Gnm\nmVQyx3kpJqxVnlKiVsf27ES6j8OGOFZaKRz2N8zTkVaXvMZKcI5x8AR/ovADXJxfc3m1pWnj+esb\ninN8+IGRzW9e3RLDwNnFOc45ppy4fWlCbCkJ3Miz50+5u7sjxkjp5zDt70mHF9y8fMHl+Q5wfN0F\n3HM6cn6xY7fbUmriyZPHa5c6esc4bHHdGr2f99Q+aoox0kQ5zBPXqhwO96SUVkpzoxoZvCQOt3fc\n3nzFqPbwrvPEvD9ycXmNVHj29Vc8eses4//pf/KHfPj+OX/r7/6Qr34kDMNnXL9r9+Jvfvd7fPzu\nzJOnjzmmPdtx5PLSiqyry0e8/dZDQhS+evGSn/7JHzM9NXH7v/5bv00YEsO7I5fvPaIipD6ene+e\nsRsd0z4yHV4zH/andchHE+OnShxgSmUFNqqPzClT90frDsbGrlv81TlymgxM2de+uMIjLSTdy0AV\nE+UOcdcv0kg97Il55iwqJfm1oypYp3+jDtEAUZiKo0/nSU7J5UgiM/SO+mIKqU4IxQqKGpU4boi6\n6/fbSIhiG4DicOoYtvazzbhjMyZojvv9K1I5rLKGQB/P5cKUE/OcVgyNusgQA60GgwU3z+KdV4k0\nDNjaNDOnslruTfA+2yaxF4OtjxJHddSgpJlewCToMhHRbF1vbOxXq9DKIu43R1rwSquNkvZ4v2Bm\nGiV0l6QUwmBdToB0rIj2Qqiz8E7PrEVq0igloTIhbs80L7zBS7x3lNonDHWidnelZeXd0iRbUHCt\nS80DCN7Z8yCGQJrt/wcYopoEph0Rijmsy4JqmHtIckOl4URoqzTDsBEtp164WCcIsGc1HsfQwccN\nWex3sjPJCkcqCe2OdrBuXdNMqwnnI1p17cRDNpB2H/u1dhLMO20d0i143/D+DTPYrEDBR985huYO\ntHN4crT/suNXVkg557oD6aQxoalhA9psY7HFyS2YtdyDq+Ar3Ylnl5Zraq3ftFjQeyFllRBRAqoF\n5ywSBuhdFmufGlW1rdWvw9mDrBrSXqlrCKM9eG2mjcgKeVxes1XpxZdYobUUbtKnlV6gCDZaOsEz\nrYv1RkCxX4pIw32qM4hcrW7Vl+gQybnPi0OAwa2t79Ic6D1IomoDo0OsbWVqRNpI8BtSTebk6Z9/\nO46ICHO6R+hxMEsNolhCPXv7ULDuooIbGZwStBJcxYeyzu1p1XhPGimlUgWOvYV/d7g1XICOWAv4\n5DLy3rpT2m+w2rIFmPaT0cSAh3M+EotfeSLW8avkZOniLirLBZWL2cBrkc7VyYbPAEQjTXvh65wV\nwn0xCa0YNNA5VBspTbhFV9cahQQydldI6zTgxZKcjdybG4VgxXjvoLU8g3jyZPylmhK5f6e3s42J\nKUorFnuz2fTX7Iue7zEh3nsWMJ0Ldk1lJvvuNEJnLEVv48IY7YFzd3fHfraFFl8Ik+dwnMg18/LV\nT3n9yorzj7/1Ic+fP2OeDlye7XA68PKLzwG4unzAuDvj2csXlHQg+lNy/HgR2UThnbevOBwm9tNx\nfSTcHQ9cX1/z9YtnFmwt7o3IksbL1y+5vDhD0tydagtqw7PZ7sg58/XXXxGDQ9/kTHnTWN7f3nHl\nrnj59TPmO+sQ5arszs8Z/C25OjbxQJn6mL0E/vIf/Gt8+sF7/N8/+BOePfkxXz+1MdSn3/mQ9z8a\n2Z6NIJlBPak/FDbbK1JyHI5Hnj7+irBP/KvfNa3XB1dbLh80vvVbH0IMtNZ6IAqEeeLw+jXzfOTu\n5objdN8DV0HiBuccZToyJeM91TUo1sC8x6N1uF3wq6ZDVaHWPrb3NupbrPoxWMczF4vI3uxoHXIq\nrSB5Yp7ukGliLoVj71TWnEhpwtcjW2c8pqoDvsdkTfM9zXmESHGO5lmLvtaOBN8gFJqOwMnpOwwe\n1BHdDnUbaptWZ3EYBgv/vTJyd5rqGp+Ty2TPBefQqtTmSHnh65lbN6fGPFfcxtZbgNIaTgNQ6RP+\nNSWjttQ3vAK1kEpZ0y5EKy57qtoIL3plWrAviyu8axgbnlr6ho4exdKTGdQ16uL+X5IpghAHoSRH\nGbpGqmXQYhretiQ5LBto08aJHHDamOZK0aW3YhurBS0gKD4ISO/Wp5lc7/GxF44VSumOPh+RGmhi\nCQrOybqPVDFGXUFso6NvdPGrhdg775FarZHQ38vog63ZmKQl6EBc9Go0avI0NeCuSMP3gsVkIBta\nOUDb0zis+INWDTFTmgGZbYLDekirxqjqk50l+q3VijpvlPk3or3sWov4UrvT3jrei0Pb+3FNYPll\nx6+skEIqrdZ1ji5VkIq1sstxLaIAnI9WlUvBu0ZzrFTZQgXx+CxkyUaFXgoUHXEx9PZmpSlr67CJ\nGtPJe+vEtGKvBSDFbMPFFmMVUL8IsWeQmcbc07NPxZm1Uo2eqtotmstL9ggArw5RZ+PD3sIPzqJK\nqNAo5DRR++7SqWdOe2MTSSTGYd1dpZRIybLUVD1IRDttNhfPnJXS7kAz3tvoznfCr7QNrfS2P47S\n4lowiGu4mmn5aPbSVli6K606cIp3FsnSmPrCBDFEojcyu+oNLm6h7zxLFhsxyb6/vyNzf3jneWIc\nbETqNJiOaokRUICI02APldrWc2/xJ2rFzCIWX24QOXWTagXJsu4wUuq5is3yld7MEkQKQUzb5tX1\nxa8/hACK9FiKSi1q11a/DlUCIXbKsQxIG9aCwSjNDSRxnF4xTTfreOsOZatXnMUHuOqseOzrXm3K\ndnNGq5njfTZaWL85Uk1dXG6bgTTNv2BzPx4nbm5umOeJIURc70ZGVzjc33B/e8d0PKK+MQx2Dqe0\n5+YOdsNIyYnL86t1t/fF469499E77PcHfvrFE0opuD6evt2bbT+lwvXFOa9ef804mtYppHPSXN7Q\nb7nV5r09O+d+P1Oa8vjpM/KceOvaujyPNo/sutdIazCnwu7MBOz7yR64FxcXzNOelDO+lbWQrjmT\n54TzDWnGoHr68kt7P8NoGquHZ8af8raoA2xC4Djd8v7Dkbf/wvd4+mzin/3MEAef//hPucl3vP3w\nPYZh4OvDK+auERucjfpu757z6GLLd7/zAbu+iXjw4SW/+S9/H0SYnj3m5vY50wsr6s7Ta473e26O\ne2rNFrm0dkGbAR39gAuFlhOs3XZ4+PARITimdOD29vWawxdj5Gy3Y7fb2XUtpiiya7/HboQRDRF3\ndg6dpP7/svcmy5JsWZrWt3ajjZmdxpvrt4suMzIyozIkK5EqeAUmPABzhDFzGPEENWFeiPASiCDM\ngAGIUFKJQJUUWZkR3LgRt3X305mZqu5mMVhb1U5ARoLkJGrgGnJFQtzdzjFTU9269lr///357nvS\n0wNOlFIrmg3VAhhqwJlO04XIUhayVlwbz9v65Cidb53shLR7w1dPjDuScxQHiSN11TrFHU5HvIvs\ne0fWfiuWg+8bU22gLDPLeeI8GW4hBI9o09asHZs2wkkpkZcJTTNzPhPrnrgx1CqLJrxmSqlEH1at\n9bpQoGWBOqF1oZYGK60Dy3KkZpCqdH5Aor1wmk5G4XeZqsm+s1X8rBlxF72tk2A6W+x9d72QnXW6\n9od+A02LzJb44E2OkkvG1WYW0bZRxJOymauqHnFtgzmXE1o9pVS6LuJid8EYkHG+Q1QRjXQB8orT\ncQXNgHZ4H/DFUTat00JKgX7XMfQ7cn4msdCFWpO9KTF96YojEPUseSaGZmwSh1unFG2yAxXnIiJ1\nQxc559tGt6eLdjbXjFCb5mhbtwuow/sV7+Ao0uxMIvjoqWvebTG+lWOFp10MbUhFfMDp5Vmw9UA0\nIfXvL5U+4A8+HB+OD8eH48Px4fhwfDj+gccfrCMVgidp2gCDRoM13ZSKkutyCTAsC6KuVdOV2EFo\nrdO5AuqoIkQf0MiWGefE7L/Fn0EiXcdlLCaJkie6bh2xuY1grYD3PTUoNUNVj1vBi3Gg6olcrL1s\n77vtNrzNU1f8gnPhmUUUajbtVIwRJLE2T7QKWtfQ5trcae11XsglUZZE7A503bB1uQzI5+ldpIsj\nuZqGDEBl4LR0zGkV5S/4OOCdpV172aHV0rq996QSjOcPZH0EmQnBUUo0hIOsxF0bN3rfN42S28jI\n1r0znZgPZwge0XF7Xa2ZabHsr+P5YRsXVk1Q2ijNBUC22bxzmPgvCAHHknXrnK0iWu8sykP1GXTT\nt121FgNwlkTZkP/FRpla0To0SNtK950JocMH3yj18uzzKaHzjcJfrGvWvou+GxAXTbCrypIWSxFq\ngsUaEqUWimYL8nSFc+vOzbUwzYn3xyNRrtnHPTfNZdRFbyLdaoHJJVfm1slbR8jWhVpJ9qvgGNO5\n1UqMHd0wbGG4czqjEug6aZ2riYcH+5kffTRaVqIIIXTsdrsNIHh6euR8deAf/3v/hP/zr/8GZeH6\n2q6nu7s7bq9vKUWZz0eGwy3zbB03lxURx+nRbNXnZSa1vwvDSMoLaEfsPCJn5iYMrgXGbiClyu3h\nGomeU9OHxc4+zzQtDN1IyhOlPLOdG22Rx6NlNFaEYddMGprR9MT56S05BuDSye3HAy/f7PDvvuLr\nr77ixx9f8ZPPjd7+1Xfv+eWvvuB4PjM/Fh7u7/js1SsAdv1AWRI//PglL18ceHHV86Of/hCAH//8\nxxAH9Pt39G7BPXxLvf8WgO9Pj5zvHzktZ3rfgYucWwRUHzy73d5uvTFQZaI2ga9Z9xOJwnQyiOAK\nMh2GweJ0zjOx6xnHfhsXqlOIHTIO+GGkituiPgKFsYukUqjjgegyY7uflumJnBNeLKZKq0Ct25hG\nXU9KJ7xTA/NWxW0aqY7sHFV6MjPKifN01+6ba14cPqKLESkzIoG+OcVsLDmQQkJefYbD8823vwbg\nPL9rgvAAzn6frCFONVOLCbBtzZkJYwPAOkE1oySiSuumNMF8SgRpUWMlE+rCtK6JGBZGq6NW11IL\nVp1XJOUTeZnIVGo5bWDg4JTOVZwzp5vWHjZ4ZKVqopMOHSIpKaV1TyqKJUJ5xPVorZTmaEv1TJAd\nJQWLmREhp4nY1hpHtOZQ69DVIjbVYTUiKM587ECxsav9ZKqHkhM+ekLsSGtmYGkgS/X0cUd0shHh\nSxUyBW3dU+cDMbT8wjJT6olaJ8QLKnXrRnsfwGmLUoug/Yah0Tb2zCW39zzgV0EeZ6omnB8aAqfb\nANbibJRdsge1jN01BNua1cVo60vCu3GLDnLOUXMECTb1aJ3EdtJ+Z3T4dx1/wNFee4A3x0jOGXGF\nSkY1oa5sD6maaS2/2rJ5hLpa0T2AQDb2g5du09PYw9XEvyE6Ylfpw6WV50NvwRkpEfzKlQBhMNy+\nmitLVDdrrWg0Zof3oMa9WgWQPjhysmwlaqXWi0vQiMJ2I4fg8Z3g3RqE7LbwYdSjVHK7aTo6RBy5\nJs7zO1twaOM58VswZ9VCP3T4sAogO4jXdMlxnoVcn3BuR2hRGOgIauJ7FeNwLCvLNTk0N3eanSrq\niu53QBuFeQc81624hPpoZGYXURJajZejEsiNvOs8lHliWSsplOwmCrPxrIib0UBw+FCJ7JiXB0Nm\n1LXgLcQYgExNGSRt8u5atbHDAhVbxNYCN6ngNEJxiDOMxKodK0WJIRKjBWOmUrZRYnTmKHWxo5c9\nhLI5L0s9QRWqLAgVLwfUs+kbXDW3i5LaSFLo2oJagc4NjIdrOg7UuTDRRireI7lF3QSlpsq5Rag4\nb3o11CJ+Ui6cS3PDoQy7gWE3ME0TT6enbfRT8sRut0OGjkDPro+M2RaUaVqY5/fsD9d4B998/dvN\nzXl7e8uXX37J09OJTz/7EV988QVLI3v3/cB5KYzjaDZoLcSh5cnNJ3JO3NzccDzPFC1bLMX7998T\n3IBIQEvm5uqW2MZXZQLpI8Nuh/RG8PatkJinhXEcSaXgi2VNOgePLYtumo+ICNM5caWVlx+9wLfA\n3zIt+F3HPJ95tXtNHgZSe4At6Z6r/sDnf/ILMp63X/+GsRXgP32z5yev/hFv707Ms9CP/5gsdr6P\n55kYI1fXI4frPW8+/YT9jWmPjk/vSI8PpDQjeeL88J56stel+0fy6RHVmdlnXL/n6qoVZ+3BqM7G\nDssiPGU731oFH4y1tOSZSthCoruuA/F4pziKEaybu67rOrrYE1+8gJuP0BBxU7tmpgWHMdJIM4mK\na7qUmpWSTLMj3qMN7dE3FEmumb46igaiE2L0tJqXY53xnafDc5CeOfc8NNfi3CV44RGiWdylXjAO\nXaTrPKqeXfcpb17uuDrcAvD23be8ff8lKb3HS6AoeFbEQ8L5R5Y60OsVUQVdmrbKZVwQxPeod6Yx\nXWO1QiTNBaona2SqGc2rRkrpXE+WloiR2XSVnhEfeoo7k3LAl57jZN9T8Uc7UeqMgycXfY6IifWr\nKt1gD+uhxSqpKs5lck1m9qlCSW2NEnC9oybL+wvBgSp5PeFaETeYY7vYxDJuIm6l5IlSM74Gywdc\no7OSxQZJsJQNUehaQaSuNySOtpgs57ZnTZARl2wdtoeGM6kKTe7CgZw7kKfGtWpru2ozY0mLJyps\nu1Zn3CytNHzDskXLiHos4cDhXWiFZotHys5kFeKADvcMQZPzTNXFOFfeo7VszvFh7JpkQgjiUYSy\nxqLhWXNxf9/xhyuk1G6Y9aJalsTmM/9/HOIKWm0mKy7gn802Q7WwWN+bldFcddsrzfHmsE6NpC0O\noR8C3oOwoNV0yG6Fg2rBEVrEQpvDtgVDqsOHnlQzzlnY7CbLwdhBGnPTUjljUkHLAHTN6WcuGv/s\n7IvzxkYriQqksoZeLqCBWjNLfeTh0XEYzXLddTtUoyXbOxORrsJvdRk8ZJ/JNaLLniDdJki0my2Y\nM1E8OEfvnnGzJFNrQpxZlsvaHazLtmsQB85n3OaiU3wQ1F2QE5mlfY6ZVBZbICqonMllFfNFwwm4\nSgx2Aa8z/VoLwfU4gS6OFH1A62ofdgTMLaIBJOTNhOAEK7hVoHrUh63oSWkBVVxxqPf40G1hoV1n\noE0rbgPO+Q1KWLQj9p6h7wgus6QTaQOuWkfNBwdhotaAqmeNkLFku9yKqdmKzK1b6c39t+WoDZSp\nQQlzonOesmSkVOAi4I+xZwwdqsJ5XkyDtl3DysP7Ew9P9+ScWxhnK/hjgNNEFzy7oePFy1fb654e\nH5hPZ6ZpJqeJkg1pALAsO5xz/Pbr3zDsev705z/lr//aQm1zzuxl5Objj+i6wLvv37K0BzRa6PuI\nq846haVYbBEGjs2pMAw7tHrrSrXzsLu+Zjy8IPQ9Uyq4eWHNROxCR86FrotUhIByfHy0+wWYi8Wg\nSBPdvrt7fwlI78CLJx3PlMPM9csbTi0rSMvC6fTE1YuX/OQ/+Ce8/M3HfPG//RUAx/JAdcLV64E3\n4w1LLlRvHdcf33xOPwz0o2M/7piPC6f3poMq9czp/j0P777j/puvqdO0ZZ+pwHg9sOsGvDPd0qpH\nfJoeLcC9WPFSSmHfIlv6fsf5fOY8Pdhmynf0rSPVdR37/YhQyTWxLBNd60gNvmM83JKHPWV/sId5\newBrsQ2Ja0aLUQLntqEbu4jUYs40pImb3SYOdrnQ9R6XJibNFky+Coc9zGpRJXiPiKPhqTifH7m7\n/4Y3t58hridQN5u7byC2YdchWqg54HvrgO4+vuZ2f8tvv/lXPB3fMsTh0sUPPbUeKfnIku9xacA3\nIZAkpbgBvKJ5xlG278IIzNEeBvNCLcvWiWhzDATBq9HmtKz3momyQ+xxAaLPm5ZtyTCfT8TOAM9a\nC64t/LUKQkCkIi7TDeZwA3v54bBDRVlSYF4cKVuhXJPH9wNZlxZLptSSN62qk4qWuWnAPDkLsa5u\nVmM65bS0rnOETbMFIYh13UpAc7y44711/JdlIlXDNGxEjerwsmumLRPHuxV8HT0aRpvoxIJ30HXr\nlKJs+XdV0zPNJxsmqNSFeT7b80TWqUHBuWAmLY0IlwzZGEzvLKzA0LJhDBDTFHtvEWG5LiyrecP1\njMM4G731AAAgAElEQVRLaq7WOBG3PUu8+H93OVLQOEgbJLFSmkOsNlDixYFlGT/q7eEtwkUQFrB/\n6wJBrDJffyYKzhl7xAuIE8JqaQQLAC2Ccx6nzoBsQElC9GJckOqsFbsliwMEpHUBpOXy2fs0iyeS\nLeNH2ZxiK9FbBDrviMGzGgFWEbpzNChZpja1ccoR1FtBJjPTfM/YrynfA0tSvNi4UOQy2mpnmBAC\nfT8QXSBr2UZYqNuSvbUJ/8WvN3HBBzYSunAZNWpL1Fab1eG8bCwwJVOx7KyKtZAvLDAQKWYkUEV9\nJnTtwe6i3SSSQBYc3RYGbFRfKxS7bkfGb0VdycV+P0LJ66jrIvvTdi1UUZx4iq6tf99YXhWKXUOy\nOj3Ls+tSzN12ETBboZvzgosz4i5p5aCozhStOEt8RjRsThMpDqcLSGot40rNK43XCpHzfKaqsG/5\ndwC+qJl3xFMlIZ3fEB7LaeJ892gjzi4YlmEd+6bE+XxE88JhHO3zrZT1cU9ZZnrfcbW/Ji+JqXUI\nciqEYML+w/4adL8R0Z+enlA1Ds6/+Kv/hZ8+vufnP/8FAF//9hscytdffckQA1eHA0ODLtZk7J5l\nqQxjRwgveGruOiVy/3DidH7k+nrHsOvpBuvkXL14RfQjEq1cLtOyFe19b07FPvbt2kzMy7K5pTxC\n0oJ4YU6JgN9oyy5aV2AYBu4f3rF/fcvrj6wL9HD/ZJ2A8yMaRq7/+Gf8tI39vvrV3yAeltPMN4/f\ncnDCyxsL5R6cMh/vSefCXc5Q4K5l+3VdJT3e8/T9d6SnO7ouEJvzMt5cMy0z6WzZZ+n+/Ua1ly7g\nfDCXXfTk4G2NA1KaqbVye3tLpTQXql1rx+MjHqEbA1UquyFyaEiBMOyp3Yg/3JLjgC8Vt26MVCDY\nw3yZZ1KqlGf8HO89YQ01TgviHP0a8ovHVUWd4MrEJBfmk8+OUAvVBaN5y0JovLuaTjydvuPm6soM\nPmrwZbDutxCJweOHiquRZW5mmlS5Gjt++Eng7d0veZr+htxo8ZZ1N6J6Ipcj8/KAa8Lwfe9BI6lU\nXKjgKqVtkmtpWJqc7c+025zceUn0IRIlstjz+TLyV7VJSmkwXokM0a7h4ISiPdT5mXRkHT8rXjqU\nZGJ1GbZszhh6As25rj1OlL4hcWrNLLPawoExAoWwic0rhnVxOHJubsE1mSNYoLL4tjZeTOd436GN\naSjONYnL6m675L2WOpvpZW0eIcRutE4UtoavSAUtyRofXkg1NIPAagazsyHNOY2ojflpI0hnkhJl\naQkh67PEJCRaPSFERN2WdOLDSp63gtD+/cWItCzmohSB2Dmm5tY9np4QdvTdjpyMhr++z5Iu2a+/\n7/jDRcSsJqn2kBLvkCrkZknwrJohc0lUDANQtTR6tL3eokrERmbi0VK313lvWg8v9vAPIWwBtHaz\nNv8rjioO6lq5RnD2M9NinaTqVqtrcxZosFbtNvgBJwXvCzmL2TOL227Erjf7vcfTdULvAn6FtrlC\nxZwBQRwiAdcumnl5ZIxXeBdRiRQqj+fvt3MW/A3gGrcF0mYTrK3SV1QFUwWVzdlSSkIxCGnRhSLL\npmnIuuA7j19WcnfcClfnoGhunTXT7KwXuPd24YsoKReCiIEogeAPVPUUzgg2ypJGp681mVszz6g2\nrZSu9mEr0Lx3SPVEf9iKs3N5AinW0ldzxHi5LDalps39WUqhlpVD0m7IYKR1XbEUNNdHC5xeAYcr\nKwr11FJwJGrIuOi2vzMOmmkyqi7mvqnLRrZ3Thq3o6AlEwnQxqx9HemHK0Lcc4i3SGurA2gq6JJN\nm9K+t02bUBKxcb2KJs7zzDyto5g2dlTl8f6BnCtdK872EhGt3L39nvu339L3HcNwgbyWUk3LRiW4\nSyTR+fwtwzDQdR278cD7u7cbS+YvfvHn/Jt//b+TljPqd6gmrm9aRIxccf94ovLEMI4sS+buqTk2\nE+yvbnh4uKOox3V7Xr02TdJ+/xJtLslOFA0jtA5gnhe6GHDeNa2JMlxfMz9sJ46cClk7cCO7/oqS\n7EG7pCOejiKFEITj27fsd63TsR94/PYb3FLw5yN3X0/biO3Hn7wEhPfv31GnO4KDNJkz8fHxLQDT\ncqZmu36WNoKdlwmH8vLlK15/9jlaZh4fTCP0/ddfMjea/csXr7nZH8idXRdJbNPgvWe337No4uG9\nudaeHs+kZcF703wFF7cRBjnxMBfCPrK/ubLuX+sshP0Bd3ON9hFXM7KcqVNjDJWEFANHqgqUsk0J\n0rKQ0mIj8prxnTl0U9Htd7paCAp7P6AsnNdNm+vsTlYhKWQ8rmkAx+jIJXH39BXiFjp3jdYWWaOR\nwQWiQo4Rv++39ft8eiTXjA89V1cf0e+UY1sX5/QWQkLCgsyZIAsE25jWYbZIFXV2L4ewOblRh5aE\n5orS47ynJjs3dTkxzU90boevI1UvzKeqCe8roo2nVB1B1s6pJ1dPKvfUspBMRWXnGxrc0gph67rv\n2nphBV1WJRRwriOvSRCloE6NoZcncs6mN2pNAsEKcNQ1V3PcOu7e+8bhS0AmZ2Ecrch20lMLW6qG\nyRRaL672BOcoYoT59MwdP4wdMTrrqGeL11p5b6WY1EWwjTeF7T50HSzzQtf1OF+aC37d7Cp1RQFZ\nqXbBQKhDQjAHqbMx4lbnqEOqQ50596zLvzomO7zLlGLnzFRCl5Hd8fQ9bv8S73f2uhWJ84zK/vuO\nP2hHSuR3OwioawLiiEjZWCuGHNWtKCp6qer9mhGngFoHZn3oh+AaFsAe+s5X015B2+4YWFGcCe/y\n1rEwumvwpr0o1K3yW0reRoulYJAx//yEmxW35FWUvd5sC8GNBGcQxPBMUG3Fhl2gqtJGZ60YlMq8\nPNDFhJPR2EDV5u+PT47DLhLDgZQnG2O14qTr7SaeF5vPp2LFzwplzLlSvIOq5GqjprVblWtqor2x\nVfpuEy56V1jyRNWMk4hi7VcwjVQtE1kD4hX1smXm+bYwxd4I9mURVK1VvSwT+IlUHlGuUZ6P6ITq\nMuK0CUsPm5AzFRuT1WJ2VicrLgFsP2a7L9WWTbZp50JrQStF1pz2dRds+qWSKkG0zclXXopxuCzD\nyxHW686+fKMNY6gIoTZ+zDqidJCqkftTRYu7IBsQ+hCNC1UyeV62HZBpgx0uO9BKfbY7ct4SAXQu\npFpIS2WZn3V4S7Fislb2h2u6wRbph7s7as100eKTdKqbvkbV6OilFFJKLNOydVy7oSNE65ANfuDH\nP/oj7u7swd6Fnp///Od8/c2v6caRVy8/Yj7baG9eEndPR6Y5473y9HDaugBJhb4b+OSzzynZITpy\nf9ciQp7ecuivePV6oOuF85QosoJTO3w0HlBWy3Bzuxviqtl5KLiwIOIZYrcxYQDO0yNBR2LYMXYH\nKBnfvsdSldh3nKcj4xCZv/uKhyf7jONhTy5wfbjhR599zLv375kb6PD+/TtevHhBL/BwPrEsCy9f\nWud4N36EC8J5ynz73Vse7t6ynOxnXg2em2EgO4drbKP1ikzzbJRbhLu7R0qtlwdiMHZSrRXBo1I3\niG/XdQRnTL68JATP7soKxew8QQp1ekQk4pbZrOvY5kNaPmkcAqe8sGwjz/VBUokx2satVsoax2Wu\nHLrQ9HEquNWSXky2MaWMemnjnDbeKQGYydPESb9h7p/oRyuknQT2Pm5FgkjY8ABaiwE18wlVoQs3\n+INdG6fkWOp7amlC4zLB0jpZ0wz+jISOWh25rqkZ9jNrVkPx4JrkwT51CI7H+0emuhB9xfnrbU1E\ns3VyYmyonLBFspQ6k7PgtCP4kVzmbZ21TXabvrjeNtBb3qtSpOIKlOhJqaDTOtqyDNWiGDTThbbJ\na8+MKFYAiQE2nQRqW6NTKm3zbCkiuczMs33I4DpC6MklU0tCJJKS3cOSLwYq7yI1V3L7Lhaf6YPB\nlktlwzush0kO2ji/5gumoY3+01ItJ1KV0thc6oSibdqj3ob3W9yax+mezo2mjQozMa6dLEdeTD8F\n1jVb342I5ftuEyvqmkJHzgWVmePpHeNQcYy4dVQalbpc1o+/6/iAP/hwfDg+HB+OD8eH48Px4fgH\nHn/A0V7T37SdYGi0WUeHSMV5vwnPAOZ5bo63gJa6jcUuAbSCVGkz0hXqZcG0tbK54ta/E3FGsm2t\nPxF3Gac0i2bNFe9MsCxuzQCiAeB8005dxpQqgtaCiOXx9bHfumMCDTjpW9ftQusWadlAuqDkpida\n9WELqUz4uCAIubB18eblCa1vubl2m5NhxR+IWAejiX5aBy1T286iVAEKLM5auE43IX7RiiDE2JMl\nU6ay7b5itHFpSslGad6hraWsMlEyhM4RQ2+gzLXLJ9YKHodbVJXcXbqDVSaQmVQdKT+Bd3h3saWq\n2HjSvnuP5DamcJ4qEVnBhRK2KBtFsYw9QKWFL9tn70OkqrS/M6jmpQNWzN7s1OCFodt2Qii40BAN\nYu7KdStiIz6LFcpptqBRyqYVKMVGryYtq6SUWVpMCGEhFaErCZ2gd90W6eGqa51Ku2dSmrcuwDJn\nzk9POLXve1kyaRVFqpGvc1nIRVnKI/pgYygtSuwjYexJota1a9u2OS/U88zY91zfXpNS4v7eXudj\nh0ogDge63RXv7idev7SxwLdv31GkEHe33N3fk/R+07kddlf85I9f83g6c3/3SJUB19v3dPz+HV9/\n85YfffYp59Mdd29/u92HXq0j+9GrV3zy2Y843Lzern2RHhctBNy7jj7sOE0z09pd6V5Q5gVXT3Ru\nIRe/QV6HbuR4mhgPtya9jY5j6xDtXr4ifvQx7mrH/DBzffWapzZK/e7LL/FdRNNMmhfm5czc7pmb\nwx7NiafHB3JOfPrpZ9u44d37d+TpzPuHe8N8uEp/aKNU1CzjeKalkMr52RhdCSHSjzuEjnkqjIN1\neby3rvnxeLZILX8Zp+RS6Pqe613P/nDFfr8njNaN1LFHtFLPJ4qqmTw204dFhqRlbmBj/l/aENMd\nZot3Uodfu2C+J0U4a8YXpTO/rZ3v4HiazqaazFBEtvXNeTPhS5mZH8+QnraEhT4Kc44E6S3MPAnS\nui4xDMzzQteN9KVnyU+0Wwb1N7gkzHKPSiaVE77aeSvpTF06arFMTHKLd8I0T1Uropm6Uq7bRCGL\ndWrTnEjpnk4roY3KKdmSCoKJs9WxxW3VxUjmqh6RgeAgN73BGnVloziTUazrl3cWbg327CulbEYi\ntJJqRjEdb625ZX1eukbBia3Z7V7anOzUDY2g1UZn53Js59umO6UWarHvaJ1o1TxhnTNHFzpSTazw\nzHTOLL4wjh3awugvkyb7/6WoQY7jpbPknTLNZ5xUM25Rt9fVWps72yJ2SpZtPB3D2M6VddwMZ7HK\nLxwhGroml4Kq/E5MW9XUROsZpW6IA+9s5FrqkWlWvDvT99Y19SJI/HdUbL5lmbXD2r1tNCKCk4Y6\nAHvI13WeKXhkfT5TSoL2BfhVsC2XhUikEqKN3EQuomLnHFqiWSCr/a7N8YQgWE5Prator73P4E1U\nTm2kbNkQ9Kj9bmn2Twn9pvYPbVFyTcSHE2R1vEhpxaNNg/FKbUh/0YUQTFBIOKJ4Slkx+oUlPXKe\nIrthZ3+3XtzZtBNVE1mzZc89y46rNVEaX8dHZ2iANhbUUm1VcR6P4L3Zb9ubZQg9nSvUaoJFdU2X\npH0TNpoDqZWz9jM1AR3UEXzFdzM9trgtNZJybhf/mS7ucKG5KfCm8SqWbWdFxWWubcJIC/400vpl\nkar27q3gqWUba4o6PB0uNNYXmZVsbd9BaIWnNvq8+91rtrSIIL0oTtcIiPUcgVJy2jLsLK3It0ga\na39vQk61Yt3HkX23I8Z+G6fl02TffakMLuCcY86r+zDRxR5R5Twn5nm+nO+2WIXY040dOIcLazhp\nYNzv8F2wYivni8g19ozjaCPtmk3Q3/RT53mh2+3Z37zkcHPDYXfF7WtLnH/14gXff/8tMUY++vyP\n+PLXv93GhZ+9cYx7YX/1gtBfI3dv0UcrzurbO86p8G/+9a+oek9wJ66aEPvQRYJXvv3te77/5muu\nb264vjYHYQhm8ccFhqsDsdvZuC+stGlPjTcc4p7gCjG4zSUb/J45Dgy7PSKVaX4knNvvzC8onfA0\nzewDLF5oEwyKOHJVrqqSqKgP9M0JeDpO3N7ecnW4YW6OqC9+9SsAnh7uQBL7/YH+ak8puonGnUHJ\nGLuOGALTfBF35zSzTAu1HBlHmvNrffgK83TCOWHX9ZSaWvi4jYPTshCijeRVZMs9tDDpiQ6M4J3L\n6qNhfeg55xAPsRu3SJZaK5osnDvnhA9CP/RNuQpkW1+CXdy4ZmkHmMWCbV9I5LEupLluOpwVTzJr\nRv2ClhOn08W92vsRVxxxGkDDxuzTekZbZmYXe0SGzecukYYZUVI9sqQj2tyHNc3INFOiN3Xrcw2N\nF4rtrtBSKLp5jFCgkiiaqCSeppm+WqEzxD01mQGgCx4EcgsQrpjbLBdbuzZc9vYt+uYQq624bJ+P\nha7bt02XRaL4beNZqdl0DF2MLdbEigoAJxG3hv+Kt4JqfSZuxZWZCkpdtobFonaOfAw431FyvaBf\nvLlk07zgELShF9ov4fHh3q7jcWBJ87a2dV3XNrnNXa2LOfQBH5ppySkpm954bucNycb8cguqVuRs\nzQVJ1PafxDMxdJS0IhzYNgCCPfdW3XDOSyumjHBeS0F1RfcUHBbwrJKY6xPakDBd6NhmgL/n+IMV\nUrXaTbCecNMWGX/IMnd0Q7uLCDFabIeqOanWfCQRNb0LmAYnXgoi6/SsERqXStd+YVtkVKhV8E62\nCrsqBG9uvpIxLUa+BMWaOdAKs1rZFhPxFR89LtnsX4tsi5s08bfxNyCGiPjL3/k1u08LuEKIrXIr\nSskeoW+dk3RhOuGR4ng8fo9wS9/vtxwnbUbXXOZtgakqrFuMnCpVDKy3dqlk5UiJnS9zK3jDDqw7\nfVUiERdMg7HkmQvWv0HvfMTR8qxWPYBWnDPwocrJwHNutazaBavZrLNVTQRp51RQLHzUdhPgW+Em\n4q14Et1y8S7xMX5jqNgWjE2TJCqELhgTpkLoLuBU712LMLHZ/LIsW9BzqeYStMLOnDAXsaJdd+v/\nci04vXRHay3kbEwfatsdlctDqvOOWoQaAmmpW5czxAFPR02ZkvMFQghoCJQEeVlIaWYYds+YMJXY\nW3BnFUs6d22XbJ0eIc+Jh6cnnHPsdk343nXM88Lp8Q6thV0/cHNrzrSu6xARpmXmNkR++OMf8ckn\npmex4uyaJRkvqusOfN+CiafTmafpjtAfGHYH4ulMGGznfbi+5easfHP/a+7f3fH5m1fsvHW5PMZ9\nC5LJZeH73/wt339h19N+GAmhI+z2dIdb9lcvwHVo0+WE3Y7++obOF3Q5MnRKpS3gXeTT1x8zpYqj\ncnM1bJ2Vu7t33O4PHLqOfC6klOmbXdvTM17teTxP3L+74/rlKz7+gUE3z0+PnJ6OON/x7Zdf8fbt\n2y2cdjyMlCXQx4FIR/SOQ8u3m0vmNB2JVUiLdYG2rhtmWKll5u7xTDf0pNnO28ryiTHiXaBkA9aC\nbdqG4UB/GHFdALls2hKeQkCXjJREPi+siBZV62rlUsjTzDGdtwBpAB/MIKNOwIMX3QK03aIQLXA7\nqCLOkVYTikpzDVf2GI4mt3XohKP4jlOulJjwCufT3XYPe91To+DlSO932+vm+UyVummKcGasAVr0\nl0dysJiwkEmprd9hQmtENJJ9JNREWvWoqpRiU4uiSqlCaQ5KX000XXUxxhBwnOxn5nKmC5FIT0rZ\nXHGbOUm2iJiCTTnKxsGrODHchWs63RU30HXdljnYdaadXDVQqJLUCp4LQsBtLLy+H6AqJSviIq3n\n11664JzDmqyWRVebqDqVZD/L62ZKWjvqorlt7oT5fLQcvnZdlJqpuXIk49wr5FnNYVMgbYWitE5X\n2+ynZ12eaiXk+iyqzgxGtdoz3BG3Z7j5tA0mLQrRx+1cXbSpzQ2oy7aJEBHTRVfTMVvtsRauxaZC\nJHu9Wy7cw9oT2rry+44/WCFVtBIkbtZykBbEaK04kZmwPjCdghNKNQ5RKYWwWj2loN5RpFL8THaw\nfpNeAlUSUeyCMeu+ndRc1CCKUtoJdVu3ykBhHi+eqlBToduyfGZzFIg2Q4vfdkl2gRR86MwxVcBp\na/8quApeIoN34Cvi2yLkjKMhrm5jmvW9qAN8oKRW9Ol5A4XV2uOlIFk5T0/EzhM3qrsj10qqxUZB\nuiBu2aiyxWWyZlypeEr7rG0hktIE2s4QEU5x0sBsKBIEoSN2PTi/LVKGafBEK/HIeZWGWsaSkAnh\naDuqEjYBsAsz0Wc0OhYtkJatTR19QXTXdoogLpObcNKHSC2KF7fd+CtnyHkzE3gELVZkr2gIERPo\nBi1UZuOPrRDIUnHNGVSZzYSwjhLx24JguzpZ8WKG7dDmAFVLQa/VsBL2Ox1aJ6NGayHVRGmFa4cz\nEJ4bTfyaEzc7y5uLNbIsZ5zOVFFkGDd3Tq1wOj9RqjBc7dnvbshtXHg8nlHxEDEssypRVqDfzN3D\nPS5Ebq9fsB97UguQnvNMRdkdrkEqaZqZGszw6rDjzZtbbm5ueP3yU3IRvv3G3Gr7w8B4fWC/P7BU\n5eNPP+OP/8RCe7/97reUrMRxx/cPd8zAi8Nr+3wf75ieEvnTzzmeJ7788nv+9vSFfYd54S//4o/o\n+nY/okgbp9QQydFx2A/EEBCdeHz8mqfZ3utweM3h5Ru6LnAVO+Y607VW/SFcMXSe6+sdmjI1LUj7\nzg9XETThxlu6fYd2A2VvgvIfjAPH+3dkV3j16mOuXlxvi62IEtvm4pOPX1OX+TKCL1dEcYBSSuI0\nHbl/bNc+gpfK0/KAEOj7kbquQ9FRdcG5iG+A33G8avd3IHRtFJMKEpYtJSKhdF6R2LHv9+z3N9v8\nqusUHa6RYw9TxPu31JOZV2qxzn/nFXyybuQ6otGMp+IEUjVDX1Ex9ylQYmb0kdF7Fk08pROpFVlD\nDAziORbh0O+oLvLYxomDLywlswsD0yyU8JahdcbL6Vse6zW5syBr7x63kf+cA6IFrUsbG/lNpE9Z\n8FVw6ihZiAzktStxLkiY0ZBQPIsqVZuguto4zFXayKxybi5Y0pnBg9aEknBSWdqaNOVI0Z4SIh5B\ntLtsdiiIS8QAvniW/Azg7EBqIReQrgnUN/OKoSjIgqMQcdR2/2oI7LpguIYaWhPCMTR3aR9Dw7tk\n22hq3p4n3o3Gx6oB5wupOvsyAe/P5BxQOpxbrEnQ1r45Z1QjoUzUUqh1IG4Aa+vm5TRzOt8xjvvN\nrawkSp0pdcIChNPm1McpNWd8KJTSUXLYXNaOziQZ3kT/1rlbcwil/VdQlJQFtD33XNc2qAlx5swr\n7VpTzFEpKLUuiF8u5qTaJk1i6IjnhVHRydg3f8/xByukvAPVgtS1m+GIzirMWuvFEQGW2ux6nHgb\n/fll6zpFoj18EWNHtE4RsLEpHM4qaDHyONAKqt8dy6wP09Wp6cTGdxW2UYsTRZzV+FUaN2QDiQrB\n2STAS0Dl4h5YrcnOGarAvszVKeabLbUB4NxlfBVjZKkQoulvarl08axNOeOwgi+XgG8kWtFIra65\nr5ZtdPOcGyIilGyOCvGyLZqmH1Kkabpwl7GVzd2FWgxcaVqNhhXI0nQ8hpoQubT3nRecV5RsOwyN\nViBj3SrvC2lJ5AyBgMMeeqV40Ll1DiuUvH2/NhYJrWVshdM6ohMHUtp11jgl+mxnIqI2zm036Oqu\nK0WIIYPIRmxfZ+zqHVJst9l5QVQ2W6wtXG0EoDYT0JpMu4YxWtKiG5+qakJWNhm9db70SN/t2V/f\nNjcTzKVCAKcdXsTAnO077ILn1cs9IgfmlHg8nlmmNURWiKOQsqWyT6eZx/dv2+XtDDqqHad3J75K\nNv7dzqnziCh9f8PQ3+B7K+qK3xEPr/nBT/+Yw7C37tTRioyH08IXX/2Sjz/+mMN+z9dffcerVzb2\ne/3pGwIR3/UM+5cMYc98XGNuBn7+ix1/9X/8K8bdNfUpc/9geqVf/dtfQk7803//T5jLHV4rDVvE\nnOEwvkR15Lu3D8S+w0fPebbvKnfw0nd89+474osdr14cyKuDMi+k40zNRrl2XnDtAY300A3kGIiH\nK8YXb5iP9qCN6TPSl7+i/vpXaJn46u1vKM3V5FWInWMce16/Hvnut488vLXPseREXSYWP+D6Kw67\nPSVZ0RP6AfWOcfeCGL2BSZ91IryDeUqUUpjTtOk2XFsjjscjaTkjNW2jeaqyiOdQFvxporg7ZLWj\nH0/I1QEfeyTEdj+vkTwJxZHnjEPYdSO5rq48xzKfqbU5o3P9HQ2Vd50R0Z1Qk+KTPIvjchTFOFNN\np7Lep6rW6QnOnKkqkepWqOpEzr+xWJspEsOIC6vbb0AbbiSXRMqXDZATK1hEbDRs6oo2ass21knz\nQsTcbFsUiAilVGp7SJeUt1iSpRQeTxaBU9tmqu/D9v2WWpgXT9/3VF/M2489ZnyA2rogKo68xvxU\n40w5Z9y3Lo5bd7BkRwg02LM3fEl/Wb9Sjuaa82CBv3Ydr7/Ue48Lxg2UphO16yZu2lBV+45W1t2y\nJPxQcNWiv6wgWaNlhFSMVSZVSXXZJhESvHXMNFMnY+VdJFIzKU/kbNFgKn4Ls64NJVSLddaqm7c1\nutYAXpBqsGjcJSSZqjiv7br1LMvEitJZNa6lLPYAkNS6V7ZJFpOy2nSByyjVijRBJFjHA+XCTrw4\nrH/f8YfL2hMHrVMEINUjzkTBbLiBtdCwE63V2cVSK7LmODmLzRAxoraNDFd7qZHOvW9FmLoWKQJQ\nyTXbKK1deGtWkwkNE046QrAd33oea844r/jgiM74Sn7lkEjTz8jaZXJoWa3qzigOVajFsA2uAf+k\nsj4AACAASURBVDARA8F5721MKXW7KZxzeK9tF7DC1doF7Cq1ZEJQnHfMywM0W3EX99RiQmpxxQjl\nuM0+rWoz65wzQRQ8G2dJ2+xea9PVOLaiQqsS44CTYLbW6rYIEa3SIG+J0/HMbj9uF2PFNAeabVdr\n73vV7AxUAa0LSReW/J4LM2SP8wlVZ4JtLeBaF6BlEmo1uKiJudcxpeCdWr6V1rYrWTtSTQLWsurE\nXdrNtRRSntDq2lhjLaMuRWgIDmmjubWlbLiBlgvlA6rud76rrShzK5KhbBiH4hNdZyytaXE2wmvX\n26Hf40LEqxqnSi4bBRfMpn08n/n+3XtSKgwtp8yFjuMx48LI9f7AR6+u2O1snLS73rPbXdn37Tp8\ndJRWSKkqp+PClBY+/8mPLK+wdTEfHu/RGHl8SuTzI/vbKw5t7DfkTL+74u3bt5ymQpoSv/yVEcFf\nffox5+PEy5cv+Ud//gt+/Ed/xjfffAPAdDjzygd++esv2V1fcxiuGIaxXReFfhd4PC/UknjZxmEA\nty9f8PhY+R/+x/+J85R48+nHfP7Dz9hf26jx889/io9Gbv74s88YB0/s7Lt6Ot6xHBNFhFQSh37H\n9Yuf2LWxf031ASkR8o7sPSo2asx+4Pb1T3CPC999+W8JufLbLy2SpjqDBgetvHr5EW68on9jBeht\nCJzzBMWBOnJZqG1X7oee3dU13XiwIttdUhvWXM5uVFKu7KVuDYu66mL6a5bTNWV62ICPOVdYlDlW\n8oueej3ix2bekEhJM5REmQpuOpOatXuaZtR5lvOJoJWxHzb6vmoTL5OtkKI+063aTaVi7yvnbEgP\nt3ZlrJAItXCeF2owcTWAr9kerFrMnFADi6yIh8pS3xNKR3S3PJ6PW9fJux2uje7tv7LpznwX8W6g\n6kytztax9l5SrkhJuDyz1NRGOmzne10DaRqvFfRY1UY9zrtG05aNeRRjNeBlTRZHpUJpiQbBdTjE\nNJ8aKVoZ2qh4nhK5aNPrwrJkYhvPZZ1wSRn6SC7JMC/1ou+Nwbo0po8q1rlZM/PcCtusdl5CuBip\ntLTzVfGeZnxaP7F1sjIzlIpI3LSWuVRqNhE7NMNM6xD5YhIMpya/SPmJ0AComnN7jxHnLX7GrRIS\ndiAZ1FHqRMnnjUvW9/ZsFTym1DKWnl1qshX0OVdELmDvXMGi3fKmoVtRZ2YiM82aTRXCs+t3NXlZ\nYavbLGVttPD3Hh/wBx+OD8eH48Px4fhwfDg+HP/A4/+zIyUi/xz4j4BvVfUv2p/9l8B/CnzX/tl/\noar/bfu7/xz4T7AJ13+mqv/d7/vZjtYawFqeJgozS+fqxrI3Yep7720ksbYUwSrqruvaaE6oFGSb\nQZswPMZdm31GC9WlicVLJpe6OTy2Tpar0MZikLcZq30+3ZxbzrXEcV0xBgULmrGOUla3ud3chl4w\n4Z/NfC85bVWzddqCM6qtrCOjYg6qhvq36n3VZXho4DWlNBJs25VKotZ19FRtxusuOAIRbWLoS6m9\nntdSmgA/2rhUhE0YrWpp4955gjeX5NLov4KN+pbFxgzz5C/CWWeof1Hd4HNxAwjusXymR0SPLMtC\nyo18nSvOF4LfoxpQykV3RNniUkScoSo2srvZuVETHzrnfmdX4ZyzMa0Y6mBr8TrIZbIxMZVaI9os\nyaksBoDVAcpCFfBNJFVq2YS5gc70STlsgahr+1xVWdJCqWlzjLjugeNypqtnJLxE6n4LC601U3PB\nB0+lMJ1PLK2DIFkIYWB3uOKnrz5nd7jhsp/29P3OQn2DI4ZuGwtpFpZlYVomlmzQR2lj7U9/8EM+\n/8ktp2Vh6D1e2LqYP/j0M8YhMnZ2b+ScOc6XSIfzlDkvym4/sL+5Yjg17VwVrm9uOKeFf/FX/5JX\nbz6jazb+w9U1y+MjP/vZz/jTn/8Z//J//l/57uuvAHj16gWfvb7iPJ3p+0jVsHV4r198wv3pjvHF\na/7y539JKqbL+ujVGwDOOoHP/Nkv/oTD1WhditZbvPF77t0TIfakVHBdpLYwXHf7EY49BEjZU+cZ\nly+5YbM6Eh0hXrE7XPPT0caXc0qIU9I0I66SKJuW8fw0oc4Ty5Gnu7fcPx239xJ94OrFS4brF9bh\n8GGznGuDX+73e3PY1krdAJiF2A+E0FnmWNcT2ngyxp4wRlzwlOFAHne4hj8QAh0VUsbXQpXLSF9a\nMsTtYd8YyGUTBKeU8c4Rus7yQNdO0HrfqMkqCi1L1IdtXFxQoigpFJxUcr6MhZwoUa0rXpeCREfX\ntDcTiVJhmh/RTigCOa0d4AeTBxTLtHQOpK1Rvjpi2JGLMhdDi7jtUZdI8xHRZEuhBEvTwDpSzrlm\n2LHvITf9p0kDDIsTQqAmNmPLMB4s0stl+y5kuQjKS20uyGwaNhfxa1fNGyDZRk4exG8O8FqluXJ9\nO9+W02knzcCd0XlcWY1PujksRS2dQGtBi6LuEmPmnFn+7X3aM9O3810yzHNCXGrid73E2qhCqCwl\nmBzCy7PPuND3PT6EFgRcLwHDAmgk+AEfnI1pV+ioa/FOUunkgMwD9WTU81ILOCVsqKHL1MDOj3VE\nQ5CmKbafmasYXNOs8Q1IvHadEpUJrUrwYxOtrz9z1ZFl+xPVi/aZirbR8O87/v+M9v5r4L8C/ptn\nf6bAP1PVf/b8H4rInwP/MfDnwOfAfy8if6p/B1/di7OH36r3UXOPiWgToIfN+YDwLGOvUlpbb3sz\nzR5PS49enWJOBN8NQJsZS6SkNUS4EkLf4iUcUC5zZF+xWVcbJUltydA27zd3WjZmktetNax2DgjB\nUUormTaBs7RRkm8arLoNjZxaiKdqwTkbfTlZHX12npwvaCvM1psCzTgXN/2Qzc5Xd6EHDe28rItP\nWXWFVqhiUTZopj7LjtIW05PzwuIqrvpn2irfnBRre9Tw/QA+2EUrIixLBZ03O3qpZ0K0pHKnC323\nZz1xwsBuuKYLLxG+Qes9eQ0t1pmcQFksRP0ZcqDmNqZrGq7nhZKVrMY9qc3ptgbaitifO1Hji7WR\nMNhbqhVjV4lawbNyXxotXFVxmuk1tFzI9uVjsQQ5ma/HPxs1lpIsSkIwrVjOW7GcUkYKDFHpR4uv\n0DbEOacFnT3aCbvdDVe3H7NrGXaRiGQLtj6d3/P09IRUWxTP5weezn/LcXoipcLj03krmvdDZHe4\nZre/ZhivGPo9w94etN98/bd88WWi6/fM58k67+0j7oeR2xdXvHnzkv1uxziOpotp9+AyV/a7K25u\nX9jIuBXKn/zgBxyuriil8PR0IincN43U8fxEB7x68wnqlD/62Z/yxd/8XwDcnd6jJeGcp+bI+3dP\ndDv77N98+5ZXH3/Of/izf8qbz/6Eh6dHSlkYhqZbmU988ulLXr6+xdVCvL7esha/+epraoJ9P7DU\nTMqRbkWKLBUXIcQd1Xs66ZF83n5mvBl58+d/ih8cv/n1r8jZdFB3798hCod+5OH+HfPpAW26pPls\n2IjdVY9SOQz9dg13Y4fzlXI+IsEI1qszbb8fcWTSUyIOhiLQVQfloeTjFmR7fHzkfLL/P+x6rq5H\nXl1/TJgg301oE+H7GNCaKFrp6PFxYPUjhdCxTLPpTNTkDGuRFYKn5MlG9MVc0t6HbT2pLVR+xRqU\nopuZRLytdJIrwSm11O3xFcTuteo8yQmTGmYCYFFh6DqWpMzpDse4EfFL0f+bvXeLlS5N77t+72mt\nVbWr9uE79tfnZs7ucTyesULGHuwhQIII2EJ24gQJiMBSCIjchEukgAMhXGDCQQQUhLiwiMzhgsQO\nEowSFCexQ0jCZE7x9ExPn7/+jvtYVWut9/Bw8bxr1W48tpEDmlx0Sa3+uve3965aVet9n/d5/v/f\nH0k9nmVNWFAdF6hW04aAoaFtDhh3aY5Ost6pSD1rwsDEiQJIcdQoLjFAxcZMGJIxEqxDJJNGDcWd\npj9pLISm1cgZC5lx1lbpdVR3pacQd2DKvnBLVLQPAa5jCpw6g/t+q0WJiXPYcRyzXk/j6/5ZpQIT\nGsOJVkU54fDzmgWqN/Z+Cgo2GLGzs1xEXeE573A4pZvXT4erPY8iBakj1UkKQ4ZxN2p4duiQkmYt\nsuroPEXUQGVsngt+51yVOBSsaQm+4+BAx+i5bCnstPip5iI7xQ9YLdr7cceBb7Gmm92OxtSCPkmt\nBTzTGxVz0sNK1bJac83Fj61if202yDVNVJFIupaM8N0ev2UhJSK/bIx5+bt8yXyX//cTwJ8XhQa9\nYYz5FvA7gV/9db84qN1zsjRSRbgYqaLhvdhcbe5Ua6JW0XN1ahy23nyx6Bx0ipYxWJxpasaex9LM\nJ5OUMhSFfxoB44b5YhnjqsYp1Q/b3tUlxWMseN8BGWsjEw4olwlxYKo+y804gpL3oDLvLdbFvXW3\nKO8Kqxqbks0eSFk7AtZaiin1uVWLe0pYOyLSEKOgRY5eF+8d3in/KifB2ULCECc3hRSNAgAwliRl\n7ryUydwoYMas7jyptDssY9ySsp58EavdNEAkzt2f4A/IeUcym3ptehKOxjQEY6Bh1gMEtwRpCS5w\neGAp2XK5Oavfl7BGuUqFEWMsfrJrG0POA43XBeJ6IaWLYamFqyAl7fV4hmudLKN/nnlQWSV6xVFy\nIaU9mykndWWKFIKF7JidjqXaihUapyBYY8t8iiwyaEFuUSijN0jtdAa/0FPtYHnw+AHOdtw6UVfb\n88+9xM3lPWxldqWUiDVaYXtxyumDR5ydPqLfnZPiFrJeU2cD23jF8c1j7j3/LC50LCrioIwjfSqU\nrNDO95+8rawqoO0WPHjymH67JYvh8PCYe/dUd+Ru3SGbA56cnZMGTZ4vFVOxXBxyfHSTGzctbdsR\nY+ZHfvij+vqOFgx95HB1BLnw9PyMR6eqkRrHkaP1IaYIu82We889z+d++B8F4H//pXc4u3zK3Zu3\n2A4QLzbzPRMHPeEfho7tJpJzZLN7yG6nr+PFl57l1nKJiME1K0J7SDjS13/UBNwoLHzDxdklKXlC\np3EuORZsyNiwoLGqzZg6jeOuJw2XxP6Kd999m9MnT7CDfk7H7SX95RPOxg3rgwPW3TH+8KR+GB2u\nCdgmEEKLtbCrjrbRCqZAMA7feJxN7Gq0ztXZGU3TKOKg7xFrlFMEeOvngNeuXXD75h3cneqwij3d\nomW1PiaEjkjC1ns0hAVx1MBs4xNj35Pr72ucp1usGPoN/a4np5FpEzJWVFdVO07BW7X613vOB3Us\nqoOu1APlBOoFSoZs8AKNbakrD8kWxBuyS7giJGPYxnrAqIiFrhXimBlz3OfiFXUUW2dnp9u0J0iG\niGp8ct5Syj6svSS9L1POmOI035NJbK9GOdWP9nW/qftMEs1jNSBZBdwaUVTdjikQWqdddxMxFYzs\nahdLTKZbLJQvWS3+OGG3m1zAKu5uO/2ZwWkBlPIWKTuKZI2VApBGQ4VFBf/U0Pmpg+IIRKgFVKqC\n9H0QVinVDCMGKX4+JBcyxmdsEVIaqlN7X2gGpyBOHwQrlpSmbD+Lt4Y0DOxKpm1bppw670zFRijj\nz7uAnbROdmL7JTSBqJlRMyaZarwSctlVrVN9f2Pdc01iN/YsWnXdQ/2XzYhR4bh1BcfekS0ow02N\nTmn/2ovB+4r9yWrqmq9ZtuTfvI76BxKb/5vGmH8J+D+BPy4iZ8CzfLBoegftTP36h9i5UwLKHnKS\namtTNOjwGrRO9/Ws3SkxpJr95IzBWV9bxtSTUn0TfVPBZK66u6pkH/1gWbugIPp9kq9ttMpzkure\nM8bNsDOM104XDh8KGLtnhhhTE7LVepeNJc+/z9RulrrurFNxIuiJ35igmXVG240m1tZ/CNW+j3aB\nuEZ1v1bKpqQ8mCl8d7fb0AQQcYxjxPq4d5RRR0aSK4hTqo1UF3dB+VfGWTIZYtZA4um9KJmhbqQh\nhD0ryhaQXLtgOi6z1bKLVzE5QNeucWZJqA4cg6ItGhcoNAR3SKhAzmFzgTUF7y2u0umneZlzrhZQ\n8VoreXJe1hGsTDfMvpBCro08jamF1XSz6RXItWuYSmJPmVercZGxdvv27V5ddD1ModpkRPr94k7E\nVWekcw4bHZvaJeh3G+zBkmfv3OGgOyH4QxZWN+FQGjYXp5ydPWWz2eiNX0dtvujrXh2uabqGnHrO\nnujGLs7wqY99hqZb6KkWx8OHGup6ev+K84sniB0Y84AYSwh6Erz33Mv8wA9+lqOjI9ZHN7FiGXpt\nt59fXPD4/JSXX3wJv+h49/57lPo57dpLuuWCk1s32Y0j45DoR32e529ecLQ+ZryRWS4W7Ha7mXp9\nuDoijjoSudruaEzgk9//GX0vpfA3v/RLXMWBHCOxCM2ijuDMIZeXmdXNxOooM+aets3cunMPgOWq\nQ+pnMSxbJAllp+//8dEdiHrP31gegl/M4wabM3Z9SLYtXiJZ7Jwin/vE6fsPCETiZsPu6pxFp6//\nzp27jKsDnp4+5GK75YAdTT1FRSkwgKvohnbR7B1I4hkLDJJpmo6u61ivV/Ue3tF1DV13wK4fyaXQ\n1fGs956y1Y750O/Ybq44PKzi9uNbNMsD2qMjzKoj+IZST+wlFjxQ8pZxuEJi0aw2IGbDdthRxhGH\nYKUwVkHxOAy0NYtNpIasG8GH6b7Jc+fDWQ2VLdOBTxJGCr5rFcdSEtTvw1uyjNq1koJNASdTF0Sl\nDLben6bKH/Q+b+qUQonZqQi27A9HRgTrrR58zZ4tmNIO6zJO9uaYucMPFRVjZgK21IIgZWi8uuMk\nZ4xQc/p0lG+tJYhXWUadWOiLKHpQKyNFNK+SYe/W7rCkwUJSp2Hp6xNZdDRBC6V+UDF+njP6qqvN\naEt+wgJNn9MePQyLZIY81IKzPh2r67V1pnZv9h1nUwczrpplnG1m8b06xA3W6+u3xuGro2+6DsVo\nOz+lPGONkoNQmU2Gei+5qdFRD6b1fTBopxAgjjucz7oXGvMBNbcKxgXrMikJg9G9Tl+DQ9NBNNA4\nZ8HU59mERl97LT5TGmfDk5RJuO/qtWSeUCGByWH9Gz1+u4XUnwV+tv75TwL/EfCv/gZ/97vq3f/m\nX3mLKeT3hY/c4MWP3taZMToOKaXMDjvtxqlhVoqOu9prGhJTMln2dlxnpziTBufaSjyfQh3t/DP1\nhmspNpNLi5lm0HVu67yv7CC3d3ZYP2+6xhiCa7DNpLsCZKxdCPuBEd10SnPW6GkgCWU6CRU96YnR\nLp3GokwOQod3nX7oTU824zz2cU5DTmOOWOv1Q3MdABm3tShMlKQnjqkjZWrLqRSpgNFrgMhptOQK\nuBqlUyYWR1FyrrV6IjaZvU2UmbIrRPCGOLf3TaXl6uIW/BrK1FlKOKO6CYOr8LN6jWkQyXXEqYvi\n1AGjKGMkpwRm4vZM3TGHFKfvidEOEGniL2kHw3tfXStmPiVJqd2qmOYT3jXZFaBOPWMyueyBgEq6\nqKW66BKhbeNpkRmwRoNXd9stkiPPPqMwx5s3XibYNaQAqWHYwJOn7+sv3SRWrsEvLU2o+sFUP8NF\n45KyN4yype+FFz7yKQBuHB8yDDveffddzk4vVENX38PLywdcXY6sD2/y6Vd/Jy9/5ONzgdJ0Sw0L\nFbi8esp33vgmlxstpD7x8U/zQ5/+AZpgefje21xsdzx+qEiFG4e3WKxWfPvNt7h79y6byy3LlRZn\nhycrHrx3n9X6feKYeObeXbpKS7+83BCHkXG74eDohMa38/P85Gc/x3a44rW/+7eJ/VOiXbKtI7il\nW3Lz3vN0h4fQGpyBk/UNbh7eBGDMW1zTItHw7jvv0xc4qAXKIEJbDClY2vaAw5t3CfUA4sMSocVR\nuy/Wzafk5mDB0dEx6ekTjo/WPHoUefN17ay5YLl1+waL4zuM8phNHthNQaexsFh0FDOSxfH07MHs\nBlsvlgoSXiy5vDzn4cP353igg4MDSkm0iyXr4yN2Q89YNTvWwKJr2O129P0WTGKswbxYz8Hhbayx\nDDFjXN5LBTC49pDFsoOdsqemQiIPfR3HGWJOxKEnTxEarjrfZCJxp3mMUm9GoBCCTgBijDMI0XuP\n8x5TIiYWUjJsJzq/EQoFiRlTCo3p6Kb1hJYiScPJbQGzmzd9azJZPEUCzi/I7BE1xho9gBaPNR1I\nQyk6SkaEWKK6LGsnehrvCJmUrnQUlSu6ZsKbUMjW1EOYAirGOrptncPYhA+WpvWIhFlX6H0hNLrr\npLTVmLBmGodn1ocL8s4Re4cbLbHXFxj7AXvQYWgIfk3KW8Y8Ue8j1mZAr3FMo+75tVhOQ6IUS2KC\nMgtTNEfbOkwpFflhdQQp0xTDIqIcJme1Yz2JcowTckrqhLWhaoT1a21wUAQngVg0icFW/IN2LS1N\n4yipJoaY6RMT9BBrfdWiRZXnAMYOZOmR0dTuW5wnMSEoODNFIVQNWbLaVS3ZVRyPVaiz2HkEaSqY\nWCdeFme6+b0vWV2VUsfZBcvrX33MW988q02Ba/DQ7/L4bRVSIvJw+rMx5r8G/mL9z3eBF6791efr\n//t1jx/5vR+jDd0+y6eoKFh1UOicco5sqSMaE3RTxMwnBTGZKFsVeEuhWLMnhtsGS4tgtDNi9/NI\nbW9qW9F7C7HMi4YW2AVL1tPVbHLXit47tU1aJwr6kIlhYVh0C1K5UnupNQxTF8SAMbXIKA0FmeMe\nKEVtw0bFgU3raVwd7Um754QYjSaZrfQGxA5INhVOJ6SqVypkUtogptPr5TTHr+Tp2vj6wRRyKniz\nLzIperrJ2SKu4HImTZNWI5iSCY1FiMSxEJqpqjdTuQvFkGMh1p6oDdq6xwU2uycslh2Ow/ozHZkR\nKz1YV+Nh6kLU2FmzlEsB8fNYTiQhRjENYmNFVkwA1AxYSvG6UBvZmxdENBNq6mK5MI8hjHGUMmj3\nSPvHc4YZREJoteCtbWfcxEQRTEp1w2qJjDjbzCLFUrZcXQq3bt7j5VeeY9keEur1HoaB+w/e4eIs\nsfBLjhY3aev7vzpes24PyCTdnMYElV9TRj1Nb4YLfLfgo899jOB0w3j77de4//5DvG3YbM948vAd\nlp0WNh/9Hd/P9736GQ6P7lFs4Pz8lKvHb9Tve5tvv/Y6b73zBh/5+A/w+S/843zh4x8BoGk97z+8\nz8XZOcbA04tzXn5FoZvP33uR1954nedfepHNxYbQdPhq8358eja9zZxenHLrzm3Oz1Rb1Pc9q9WK\nzWbHrh9ZrY4Y64n90aNHrI9f4sWPC3/70S8TPCxrJE135ybP/SPPgxWaVeHm4g7D5orLq1MAQqf3\niRTH1dWWs+0V57UgLDHjVw3BdDQhI9FjKl1/eVhYW48JHtcuFVFRi6x2dYzZZjZnGw4PD/nc5z/P\nu9/6NgCnpxckCtk6VjeeRYBchfjjcIlYR4/GHC0P1nO0TIoqDB4uB46OjnC24+KydhVly3K55OmT\nU27cDjQ+MFYBfzaZxXJBaoQuZ2zeQ3MJDhc8BUtrO4ZSKIO+dnN5RZ8KIyC54C0wHUxyVCt/WGBL\nx9YtKNvTes2E4jLZbMlkrNfO+mRJT8VhXCDUe7Nr2r3+FRjywBi1QMd7wnRoG0dab0CgtU4JEVlH\nsNZkyJd4PFGS6g+Ttmwkdng8Ke9U7kCDvaZHzTkjzpCKYKSB2hkvZQCjHZuSNAJqGr/nuMNZq7KP\n7BHCnCNaEPoh4YzmPxbjZsPAOPT1hO+wtsN6pzmj86sv+CDkMlbrfxVb55ZgF5TWVC5Xh7cT02kk\n9xbfLRliQkqYr2dMo+Z52in6zJHTOGuotDRNZHIFxi5nU4CkRGvBZC2mxMjc6tBDpEOyIoi8z0iZ\nxnfalRExVYi+l5EoNDOreFu6D3b5ciFFlaQ431LEzTo3YypNvDicN6S81fcHUCaaKNcrF2U3TtxB\njE5uLMQoWDvOJivnWkTaKg1SQXqYdHB2yhQ1UBTBlOfmQd0yKGihUHjxk2te/OSaIoqf+Bu/+A6/\n0eO3hT8wxty79p//PPCV+ue/APxBY0xjjHkF+Bjwf/x2fseHjw8fHz4+fHz4+PDx4ePDxz/sj/83\n+IM/D/wYcMsY8zbwJ4AvGmM+g9ay3wH+CICIfN0Y898DX0dnLP+6XE+Yvf6LK3jzes6Tb1s8Uuft\nVcMC1cnnVPhNtbrOUhir4jtjGIYt1hja6haSojl8SIcxmsM3tT9LnYOXrLh/BVJWh4ZU3YBpENNR\nsqOpp2tL0Mo9OHxjwKR9ZItEnBdaUVdJjGnuevg6kzbUMFuRWcBWJqp2ApxDxoYyjQut9niMVaeZ\neHtN4KydtmIGUlFkgam6qywjQ8pgExahxIx1sg+zLJkiBqkg0yEzE5WxlpQTYy44MZgis0DSB4eh\nMI6CsRHvzd7aXzSQF2PIORJlLwJMo2CCktL7vufi8jE3jg7qm+hIyepfFanJ7DWSxljwpboKHR7z\nAa1TKQrd1Dwnx4Qs1M5mUohnVm3c7GqpugsrVAePm2MLgm0ZiFgEZxxt6Bgn/EEcGOOG1gaSWJy4\n2cpcJGONwRpDlgHLgnEc6AcN53322Wd57t6Lqm0h8/jROzx5UKM5pOd4fZNbt44gKfF9hs+5wG5U\nB4oPgYIwVqEy1hFJ3Lhzm5MbR5w9vuDXXvsWAI012BJ4cP89XnjhOX7gs5/lzu1nAFge3COmgb/3\nd/4W3/j6l9nuzrm4upwuKV/40S/yE3/gx2kWx4xFeP2NbwDwtS9/ja5dc/fZe+zilh/6wc/wiY98\nEoBvfuObfPxjn+Ryc0XXrvA+8OChNq6fefZZ1us1l5cb7t6+w5NHj3nvvfcAWCwW3Dg5IRfD5vSM\niycXnF9t5s/38dGabr2GpqM9OmR1R/EGru14cnHBjZsn5GQoOEJ7gKk6P2eNhjhnMD5zcmM1jxR2\nm4HWLckl41tPNoVYBdcmtLSLDhkFGTcs2nbCS2ObgD9ccxJe4uwBXG1OCXWU2Bmn4eK77R3lHQAA\nIABJREFUHc45hiwsD2vnQe4w7LYsnK5paYzkOOWtjXgPxMjZ+VNOjo44OVKt09WVdpG6tmHYXdGE\nlrBYzPdoMQkfhAPbsWgPWB6pQaFZHbJLV3TNAZIN3dSCQaUQqe+RoWe7OaMNYZqiU8SQqnRitVhy\ncuMm+UiBq7vLc4bhgphHSi601tF1LVKlBD4NM/RRrfzMgMwcEzYmbEna3JN9IL2znuh15DNKxieh\nncC5BHq7JMarGrBusUxRVZoJiLQ0PjCn2OvFQYrTPUZaxAom6JqxSQPjOOAb1Z0iRbVYQKmjSmsN\nOWUER551o6AdDqE4R3CQyuTIVVi0MYarsmN91MzCI2fBkLDGs2g8Y+8+IG5V6KSnCR0peyxTXIsj\nRled4S3bfjdDc4v0xAwuB3wwusdkFPgKOF9t/CZhTUNMeZaKZKYukyEnVBRfx2mSK2jaq8HpAy5o\no6M/Z1t1O7J3dFrbQFQTTluBwOOoncNceoSBvo+0C0MxYdbr2daQqq7OuMmpOEFlE86rySGNCoG1\nbh/ErLIMiCOMw1Mw+j4tuo4mLEjRUorF+3bO7HWmxVuvInureIlSpSDWOQxCSurgtrgZRhtThH9Q\njZSI/KHv8r//m9/k7/8p4E/9lj/XFIwL2JqRI3iyZHBJM5Ly/olPOhbvGhrnySXuXVdS41j6HmcS\nWUYk7TlS0zhsYjB94GfiKGKVJWXA+En7pNZ6EWhcizN+Jq42LqtzxFq8D1W7NemHkgoZjahQkURT\nx0lxVLFeE/S5qB13qgYbUkqkLDRmgRRPinuRuhacShb2Ns/5bkkyprZKxyHi3XIeJSVUN5ajfpCt\nXWAkz4uGNU5Hg9QQXimUOImqzcytSpUwP2mvgni89ZoLSCHGMhdgGjlTW8110eGaLTVnmZ0mu35k\naHWE0bRrRLQQBsjF0kyOnyQ0viVjq4tSqbvA7OLIoqNAKcztXzvbmsvcgr7uM51dn6LuH0nToih1\nbCwY0X8mwfxi4cEMKiy3GSVZ1BGk08Vb9WI7nl484O6tF/nUJ78AQOdvsLl6yDtPvsUuXhEaowsu\nENwdLdCTVQ2e95j6+R7KlYYyx4YyFIKzc9E3DD03bt+gbQ547/4jrs4eqWMG2F7t+OgnPsWP/GNf\noJTCdtPz939Nx1DvvveXOT97ymq1wOYek+FHf/T3APCZz/0QBMPbbz7my1/5Fca4YXWg9+jR8R2G\nXnj9zbf4yZ/6cY6Wa/7CL+pU/7Of+RynF0/JSVh0Kx4/ecKdGmh8uFrz9MlThmHQQ1IqHB3qWHcc\nR7bbLf2QsUU1eaGOaIZcuNxcUGJisT7k6HANtcB+//4pT892xKSenMt1YLVsOFnpiG633XB5dc6t\nWzfxCw3QXiy0cL95chPnO04vNyxXCw5Wh7M9/mCxxDmDaxT5MV7uVC0LmKWDpUXoWN++S7c6oKnF\nS3v+BBkiZaHFz5gKxtd7fxhZLPaU/2EYuDzX0WbMwrC7gpSIw8jDR+9z86YWZ6vVCkNh6K9oaKFk\nak1PGzpMDko+P+hwTYPrJg2JHgJMHilmRMZCqTl8fZ+xJrBcL/HdAkNht9PCdYwDzlhKGrg82zFu\nPLnRa9YuO7plq5KEMcE41A2mHiKjARySRFlBgJF9oRGs4XChmXep4hdAtYy7NDKSGSQTvGNhJtkG\nDMZRjMXGgC8FqZrLoWwrbbuDsqBrj+aNPWfBOShphGygOILVceFBd4IRi2HEkhXlUg9mwSnHSRCy\nVaJ/nMb6VihJVD/kAqXxe1dXsTqOFgMLy3YTabtpHfKEoKG61hrylGYBSIzE3OONxfmGFPeGp6Zp\nMSyIJdK4QA719QAlRgx6iEyparCsnRMIJtQOxqncQsyclKAHzsmwU/eVqUArBVOzVTEqs9kHaBec\nDRpj4wxpzDg/udrUpFdSxiRFzTR1VB5TIeVIv9sx5JEmtFNUKCnvGWaYNDOu9LrpXjHlCFrr5wQN\n7wLO1n8aT9sGsmzrc7FzdFto0OixqOusBsC3GLHEGPHOz07IRMK5mkwB9dC9L4avoSu/6+N7FhET\ns4DNtHXDcM6pWLo4BKmK+7phZnU+WONVrS97jJbzWkkaW/BOuR+5LliusVoQ+KxC5upSALTClKJa\nJ2uxEqoVE0BqNZrJOdI03Xyik2qXD0EF15OgDcCHUG2ZBmsSkLGT4LJVC2WWBFYhkCITY0lR96V4\nSgqI9ZMbn5y0mJKaJ6hPY3J9MFf0UgNzJ9ead41W7NmSs1M9US6Iq6/RWu1GFVF7sFQkRL3ek8Ba\nUp6RDtO1IWiRCoWcBiY3r8HV61xIMZOTAh31fdICTUTACv2w4exKv7iShDWBkoaqlTNz0eOdEJwj\n+JYYIymXuYAqpWghaAJpsLV42ovioeYzGc2Vmjp/uqFpzpjaXfP8ep0NiFFHjbU1jqV+n7Mty4MD\nnLfkskMYEdFNyDcNUgznZ1f40PDqq6+yWtzk4kwjRF5775s427M+8qybliyOJuji7syBLtKScb5n\nN/ZcRn0fGxpa19BwgLMNxjVQi+ybJzdxFu7fv892e0UWx8svvAzAvXv3yC7xxhvf5qtf/lvszs+4\ndUMF5c8crwk28/D0nO//9A/y6d/xORaVI/XGd77Jl/7XX0Ky4aWPfJzl0c15AXv7zce88OIr/PRP\n/zQPHr7HX/qf/yI/+ft/PwAPHjzgyaPHfOxjn+C9+w9Ua1Zbru+88w4558qNEc7OT4mDbih3795l\nt9tx9vSM1WrJjRs3ZgHocHWJMw1nFxdYDAeL5WyICE1HRthsrhj6Lf24IOcj3rv/FgA3jk9ofMPD\nx48Zx4Hj42NyFaq3i5Z117A+6jBei5HlSjsvQ6+RFjmONGGJW63Jo3ar0tmFfrJspqewK2XeMJ59\n9kW255dsrw7Y9Ruc9Ox67fKNw4iTpJ2qYaDxgbarRbRfIouGy9NTuq7DUNhudVM4Pj7WOBYRhl3P\nwMjy4LB+9oXt1ZbFoqPpWtquU9EvsDk9RWzLsgu0naMkgdqlb28cYmIm9Vt13XrPqsI6vdV8SRMa\njNd1pfT6+d1shBBaVgfHNKvD6hZLjFt9jSVYcurJaUBKYRzjfi2yDWJ1mcwlMhZhqKL5Pke2MVIa\np2BlNLwewCZFDARZQAnEUTPeAMaYKbIjxp5UcQlNPqzX1Ne1LFdcjMOYiV3kcbYll74K9HfTuQxj\nM9aOgEaJzNsBWgyXokablBLGFpowCfgDIrq+S2kYdsPeCUeHEYsj4V3BeZnXWapFP8YBZ1pCWDBl\nEJZcr1vxUDJd6/fOQ9MgLqleLanRwOBmDVXwjlQKznhKcKopmqGjFQVkK2i5xDnGap85q+u9GqQm\nXZKolsw0GOtxXj6gWcpZO2dGPAj4mS8narIhMKYzeumhhqDHDG2neuMiQ12/pwOwAAZnFyx8B3Zf\ndFnrUQCnwXlBZIGr2aw4ZrODvp6i7npA29NqzPIIloKM14r+YvcggbxnCxrHb1lJfc8KKcFp9pq9\n9sFxoYq+qmtuKl1zBtGOVc6J1vlrbWQNz+26JcXAuB3mDkQaE9Y5UhppGovUG0u/USvlnCe42uTq\n0w1fs5sKQtJiqi6Yk6vO1bDHqWIG3YSNETIRGwzeGoqbFgXNRcupYCyavF3DK5MYHUtliLXgcxO0\nzQq+FkrWOgz/j9BewEg3u44myrrHVIF1QzENMT4Bt78xxGiC0VRXSq4ML6g/f59fZNSKNl+3XAbV\np+as7rypNjPaNo2xr4RgR57cd0nb+D44FKJZ2A1ahMQcWXYtbQjq5MzMro/ihCwWZyzWBpwYpAoS\nS+7VemsLJQd19cyk5YzzBusU1Jpymd0bpWgnzRS1nM+nIqDM+UxlLr7bpi7C3mLEE2zQTDu7m2/7\n3XZgu73kmbsvce+ZT7DZZv7el79CFu08HB83HIRDckxzd9XR1ffCkY0G6GaTIASWjW4KPnW05gCT\nPYsmIKUQJir48pC33niTYYi88MJLHBysZwH7+w/v89VvfoWUIs/cfZbu2efYXmkH8M3vvMezL73A\nP/F7fh/t6phvfet1fvWv/VUA+t059559huP1DTKGYczcf6zf96M/9mP8oX/hp/mf/of/kS996S/z\n7/zsv8371bX35a98hX/6n/yn+PrXv0a3WOG95+H76mgLTcvF5Tldp0LUq6srbt3STk7f9zx58oT1\nwYrF6oDLYcd5HTOaIuyuNrz7xlu89+03WS07juum71aHLFtHLJmmbRmGSExCX4vMJ+dX3L5xwtOn\nT0l5pB8MTavF2+rQ8v6TSw4Pj7l18zYlyXzAEBGGoSeIgWasI+UqNm8WxN0WfMPRzTu4rmO40hFG\nLJnNENmKEFZH4OxcgI3jJU4SqWSmTMYJ2NgdtKSdOlpjGunalmUzneanE7JjHDMx9vT1Zx4dnrA6\nOKDxHslCaJc0tchq1jcoYyGOO7ZXW3wTZkyBMQGzNDRdoG0Dm8srthu93rvNFXHYUXKk8R7fuHkE\n543HIfTbC+K4BR8AS+v1/RhMwVqhW2i23BjzbIoZ446UCqkI4urYfVpbrGPhG7IRcsmMMlNhMMbR\n4mZStTULchWbp9EzJjUopbIl+C1dOKrrAmAiEw/QXxv9xdSjzLqKoGgaJvTFmDbKArRqFErEfeca\nKvahZqZWTh3ooUtQ0fRum2kXBSraRHLBFKvImlbDnWGSX9j5cCkIRvaYnVjSDG0uWZE4welBaNm0\njHGDcVInFbtq699PBiyO4DzW+RnlAhB8W2UPmsGnOa7XAsun77eagyv1uZZssN6R8o7GNVi/bzxY\n51gsWnKymLLQCY1MWBR14VofsAgpb4gVjDyOPUUGfND9UJ2sk4Dd4Ko7XAOYw/xeSDHgpDYYBHBc\nVxCVIngfyDkxxn42Qxmj3dgiGeNg3O6uZaCaWqzp+FuuXxcjyP8frr3/Lx7GBJCyp00T6hhIuypS\nxpk1Y51eMIfBukDJZf6aFJRSbRfEXPB2QayLTbaJEBzRCb54clZuBej8XtlRsncZzEaDaWZeMCYT\nY6StNGmE+XukFhsTo2N2GZoACMYV3NQ2VU8D6pLTQmKqfq1zJKtjtJwzNro5CqNzldIKGDO5F6YR\nnDKOmtYzDpMGYrqBK83dthRpEX+qwcDT6MvqgmZRR5yDa+PU6edPJ5T9BzWlUaNjpovPHrmQSiZn\nYRyVdzU5PkCZXkX07zQ54H2oFl4Yy4izI0ZWOLMEcTOQNHSesa8RCcVRskNqZ8GWTB4zgiVLwZFw\nflqgFQBorIBBLbQVHqlUsqKn41Gfm7Ntfe+nlq5aZQ0FXzEcwYE1SVvlFLzzjHkNwKI74IVnX6Bx\nt/jWt17j0ZPvcHR0Mmu94ghRLI3ziAwYBqRUF5kXbLBIchijLWs/BYK6hC16ioolUlJktdLP4tvv\nvIbzgVc/+irOBh48foe333yvvkbD87efmXYVHj54zDDq6/jC7/19vPjCs7z3xhv8yl/6Xyhp5PZR\nxYmc3GVxcMAuwZhGLjcb/uBP/4sA/LM//s/xH/zpn+Wv/7W/yn/xn/2XvPXe2/z8f/cLAPzMz/wM\n3/r2a2w2G05u3uTddx5w41hHVNvdZj5wbDYbTk5O5s/To8cPWa3WWLSrdXp6Wu8T8GK4OD/n7Ok5\nOWcePXiMX2qxcNCtIVvEwihKkY+psFpPnCmIRTDOcfPkDpvdyEV1vB3dajl/ekrJl5A9m4OBg9VY\nP8OC83DcrtV1l8dZBxQDtCdrchzJfcQWz7JCTqUYXvjUCZebHRePHrEZthyu9LkeHgQ2Tx+RklMo\nowjbGoXRhAXr5SHBH9BvLyrUslYSUhhjhKIFVdsFbO3IXJ49prGOk4ObdM2ag/YYCYp3yM7hj1a4\n2JO3W+0wTC3XGJWqb1UnMsaeiwst9nMc6ZoAIVByJOYyR8QYkwglahJALMr7EUtc6O9MWEocGV0d\nq4QwB9fiWpb+gD4NbIctKQmhjqBNKUiOxNiTi1CczIeoBg/F4VKPEvkKroKBJWvXizJgbSaOW0pX\no7NQy7yCmN0s49D725FH1eCqZGRBVXQoskAS5L5u4GaWEXiv+BVlGNmKFZjC0x2GRqNeioDt58gl\ng6ffKWzZGE8xdu84F+0AlgRiEpLGvYaVFrJCm11oGcdRw+UBnOpWqcHvGtcyMo2ics4gBucNjkAK\nUOI0YlAHunPqMvfek2qRKdfW/QkNMRG+c4nk7MBknNER7IQZEoyO2YweNMXs131jDDkmYk64sgLT\n4psqP5ErxPQ6Kajonqn7DQLJIE70QGzD3OVz9TOm0hGPD3tHds6ZMU5TFAjBUGqN4bzHOkMc1QE9\nDD057urvKxRjccHq3ojMuigNQP6HtJDS52XIo34YQ+spUuqYJWEJcxWdEHyGtjJK+twT61W1ImAb\njChNu22FqXOaSYwSyUMEI7ShmaFlpTSzJTSL2pKdn4oFoSRDEqUcF5MY63y6DVph73aZxhtNszaT\n7XTEoMnn1nhisvNs2tpMskU3dRNwxu8ZLTi8n8Zh2glxU0emKOdFzAjGVY3TvhWrb7oK46Q4Cn39\nPs3oc1ap6V7Ukj+dzFylrOe5KNwXRMoc2lf4ZmKuoLNjjYHRo6Vc052llOYT/LCr4v1aEDTB4r3R\nER8OSXmWrJkgjKNgZWTRrkCaaZpG0zgkKDJCGS57jYHzFkYqRyWRY54LEF+7an6m5xvyZAEWzWeS\nYsliKBRCmACvFpMEI2C9pTFujvLxNmNsxIVIEwIxJ1atdlaeufcKjx4/5Cu/9su4JnNy44A4Rpxd\n1GtjiJLxnXYUS4ZUsxaTHfCmJfgGJx5rREcPQBy3jGmjkQ2x4ejgDk9PdRM+vnmD5595hqdPT/nm\nr72OMY6DWmjYLCy6llwiDx484Ma953jppRfq64Av/W9/hYuzU27eOiGNu7mwWa4OGWNh0/dkAv/a\nH/1jfOxjijj4t/74H+MrX/0y/8mf+c957/4T/qs/++f4l//wvwLAt7/5bb7xjW/wIz/8u/jyl7/M\nrVt3WK21GH7v3TMODw8ZxxGNDxo5e6q2+t1ux2634+nTU6y17K42TEkQcdBx9I0bNzg5Ug3M5ly7\nYxdXl5zcPOKVV17RxXPYMY4JP+lEHCyXHeujI9quY3Vym6vLfv6cvvLKK/Q7BRqWa4VNRuiWrY5v\nxCrGZOr2joVYCiE4hjxii8z6mnEcudpl+mFLc7CgXb3E1UONIt2dPYGwoHFCYx1xGPFVO5jHTDae\ntgvEQTf9FPU19H3UDdypIDoEh63j4NXBmtB2JJMoLrPrr3D1890s1xT3VKXZXkGDFT2Gbyz9+SXb\n80uMRGI/0NaDgkaiRIJzNF5HTnMmnjV6KxfVkHjjFbMwSTMKlCYQgmInxrGfD3wFZTclMoV6b9V1\n2AkEPNkGghMCllL5cqNViOOOlhQvGPM4j+D1uRoEj6NhHPbi/IODQ/Kom2kTOhBm1IxzDmcDuQxq\nkjFljrKhCN4oNgIZazRLjdyyWoCknBFTPtDFzmUHohFeFk8cPV1bx6Xek1Kk3wrWFpq2ILXllmIm\nl4Y4RByLanyp+0zrsCFUmGZAPGoeqg/nAj4vqnhctWpFptxLh6Odx3NN25LsJNvQ/cNMxZNkpk0q\np0kLW7B1eiHzJEIQ2eL9gjFucC5oIgVgTKOGrLBQCr8L5KpTjjFii6YI7MaMZDN3gZpmoTKc3Ksu\ndMqEBSwFY11FInhCWCFMRrGEQWicq+PYPdXdWJUBKWG/ynbMpGUrDIN2R8dxVL3fxLRKo+4FxWC9\nFmpu2g+N1YnNb/L4beEPPnx8+Pjw8eHjw8eHjw8fHz4+fHwPO1IlKu4/XXcMuIWCDSlIsvNUMin3\nmzhYHIG2WdLnaq9EIYjeLwg20SRhCBNYc0sRFVUyaOU6aaSM7IXZpYxkSXPHQrtiCqsc04B3jt1Y\ndRskvFtQYkZcqycrO13GTJIRL0LKdew2gffyFmTEmZYCSNkHNicBYz3Gqq4plkiYqu8Exexo3KAJ\n6ynMbhGNKxkQ6/BNw9AzO7oQR8pCCEWpu65FSiFNMDTxevIvUkcX+4p7P2+2TGj8qVu1z0bUr+cc\nr/19g+RST6SJFGUfLl00rLRzhhgHrOvmU0sbGkjCKCPOjAQb5k5WThlrl2DUOGAtmq8F5Ox0rFpF\n/Fb2LkHNxJOqrXBqUJgClEVHMVkciCIL7NSBswXJhoJ2KoNvCPVzYkXtwc4VhjhyfHSTkxONcrn/\n3rd5+OgdDk8M49iQ0xrJaXYnOQdDusJmte6ainnQ13hV0R6Zpmnwzs8CWB9sbcdnxl3CGMcLL2jq\nkifz2muvcX56xsFqQb/JuPqNJyc3uNz1XG4GPvp938dqueCNt94E4J3XX+fw8JB20VGGDe1yTbdU\nd9Y4CH1/xXp1zE/91B9mcXDIn/zZPwHAa9/5Bv/+f/in2e4iP/dzP8cf+KmfnKVzv/orf53f/bu/\nyFe/+lWGXc/zz99jU4XIoE61Ugrj2PPG62/y5IlqqyaHWhLhqF0ypKzjLKBpGppFR9M0GOOIObG5\n1DGUz5bz8wu+8503uH1ym8WyhZxmKOH52Rm7/orVwmN9YHu541aFeXoAZ+nWC4xxHB6u2NUQ5eP1\nmt3Qsx16jteNZl0O2pVYdkvSWIjjACWTizCME/1ex0Ju2LG7vKA9vs3xs4rbO7l3j+3FJW+/9nV2\n54+R3ZXSyIGIWrsXoaEJXQ0F3kdODdWNHBaBJgSamgl48+Y9bj3zHMk6EoZ2uSRNGYynjyh2B7Ho\nSD0p6gRgKAmXDK1vGHY9kq6PLAq73ZZdyrShofVuvmewk64m0DQdBVMDgOuXfdWrVLSBDWHGtKQ0\n0McBUsZIJqDwTb0XFVNgjBDRnLc4gYplygJVu72TTMmTs3ekSK5hytWsVAXsw9ArFiWp6afrunkd\n0/VE9TZFBiiFUjskeSxk1JxiXAVCTyabqTEzySqy7JcakzEmQl6SEjizIEftRLvOYe0Cawv9ZkdO\nCV87nDGr4amUGl2Dw0/OQ3E07nBez7xvSFO6hDWUlJUwTqCPBnFlXjNt1W04CSj4pewDf3EqXLBW\nk0RkZB+NpmihQoKS5+6UvvwEEigpYqxjjFvKqFOT5fKAdtkScLSmI4SGWEHFAc8uZ4oTlq1nGAak\njotTv0PcoNcvpz3KAWpOacRbTz9cgfEslif1ciuYu5DwtmBMy2RltxRwiZxHcqWv57ntVPR9QrWv\nMSViTR+YNXtGsTapalmhSovsb95z+t4VUkZtoxNZdDsOdI3Fu4AYSyrj7N4QEskJ2yJY52nb5lpi\nta0OK5Qw0rTqUgHsmEliGMxT1cNIpPOTpqFaTkV1PUaYFxWRou664uroMFImS/awIzvBW0suyuWY\nEfQIrrXVHVZf24QbsI0Kva1RnlPQYhE0sNQYQZzV+KT9VI2URpLscI2Kw71zmPmGUXKvN7qQFJPm\nGTvWMaakrfk8aZ38bEkGxQckUzRmB/bt3lLmm8tO4tBplGp11GWcpRR1Ik1J35p0HsklU7J+z/T+\nIgXvNUDZekh2spgCKRKCp2Do4xa8im9BtWUg6jBqvHrx6tofDKy7JZbENvXkkklp0kmAbxTDgNTU\nb6ZxsGqqjNWfJQVidW+IdxgRUkkUPHE0M1LAesHZjhQHTk6OODw85P6Db9XP7/usj5f0uxNMMYxF\nHWdTDJC3FkvDOGaEhNiIrURlm5WSLGZBPwYCjkkpEGgI3QGb8y137zzDyy98lPvvakH07ptvsug8\nh4eHxOS4dWfJYaejvffeuQ/W8OqrrzIMPV/72jcoUX/fs8+9wBh7xr7QLNaE4Oir3mOTEnde/Aif\n/oHfxdnVhp//+f+W115XjtQf+Tf+KCEE/r1/92f57Gc/y/MvPcMv/IJqpD7/+c/z/vvv8+abb/LF\nL36Rp09POT09rfeTQVCt4de/8Ws8evCQOye1qBFLtzyg6Touz89ZrNesZlpFoQtLQregHwud90gd\neecY6VrHxdk5l+cXPPPMXQ6PVoSmOjpzpiTLxS7RrnS8/bByrQ5WK45CIHi9n1kv5rBY6w2LsODy\n8pLYLThYLunTZLlPtKslu6srTs+vaBpPU9ehq8tzConD5ZJhOOXtb3yZOqFjcXKLO3ef4zNf+CL3\n33qd7eNHXD5WSvLV5j5x23P58BTjYbEMHLST4FgwVv1Fm74AhnWrn6fd9orNxZb1Cy/TLBfYYmgO\nqvj56SOG7QUmZrriwLvZJTdsN1xtR6xtKHlLHHbEYQr03VJypm1afLDkkjFTfIjxM0k7xoj1nusi\n33FMhOBnorW1FlP237syEIlEoa4R+lzHMrKJO0aTyJLpccS6AF6lwlAcu9iT86j6MFOZQGnElIhI\nh3caXD/pRMUM+lzKwG53CSSs0cJGx4Z1zRZI2ZGreWUYI8U4CGCKI+Y9uV0D0zV4OudIKolQdZXG\nBGXfOQdia2xJXaTKIV3TYmxC7AEi/TwmknhJkZ4iQkwbzdutY9Y4GoxvadsFcawH+0lzWpLKLazm\nxE4hzG5OZzCzRsiHDoqbbUVRImJ0zGhdJuVxfg+NVTG2NYtaqO6zRA1BdWAM+BrjJbWwG+IZTWtx\n/jaWJaW4OXILt9G9S0SLpdZqaD3qSE8pYVstyCWOszkLNF81SQFTGOIpbtBrulweU3J17RlPKTK/\nhiKaq5pzpGSLs25GHKhzWHVY1gpNcOR6k9rgavPE6DU1e2lRfSH8Zo/vXSGFzt+nvKKctWOECaqg\nNzKDtIbcY1OsLoQE7hBfs/asaTSWwxTEGpxtaZpaXfoVw7Ch71WRT7ZEmTQ0GZGBXGKFuyWG+lwm\n8XkpghdDZMBVLpHkCqB0AecEa9PslLMAVrd+hW+62Xaqs1unNlmUczTr16yhOKPOGnEKfSvTTDti\nbQ3gdabOwqdTQsQ7g+SEtYa2WTLHPbh9USEl6Otx17gd1Kc2uUZEE8pBuyCqm4ptqFLzAAAgAElE\nQVRV/OoUAQEglmIKbRNwwTL2w3zaU8RABY9azROchJVUzIArdv6daXJJRqkMLkM2EesEk6o7y66x\nNtX5uIoFmef7+jOb0JHNgiGV2bKaJeOo4csGjMgMTlVeoBZoumbrJqXXu9CgDJUYBxyQKhy1sw3D\nGLlz5x6HRy2PHr7HhFvouoY4QOM8UQqu6KYysYRKKYgHKYlhyNhg584iecDQ4H2vHT8nuGpXT/2O\ni/MrXnn54zxz5zn+/tf+7r6bc+OYhV+Sk6VbNDRhwWuvfweAxjW8+slP8eDRI95/eJ/1+mg+YfXj\nBuMdq8MjDI5dv+Fyow7Kl1/5GB/9yCe4urrib/ydX+XdB2/x4z/xz+jXXnyB//Q//jPcu3eP7//+\nT/OLv/hLvPrqq3pNjeErX/kKn/70pzk/P+f999+f8/Q2mw1d13F6eoqUkRdfeG6O12hax3LZslwu\nWXYNFMUjAHShIcfEbrfj+OYt2jbQLfSaXZ6dk9PIarXi6uqKJ0+ecHr2hKMjFf+v12va7oBiDZfb\nzM2TQzb1NYYxcX5+zu3btxXHcHbGaqWi6adPn3L37l1Yr7m6usI7R1OjddKQ6K92hKbh1p3bPHj0\nmJTP5/v7ycOHDMuOg8WSu8/ew9Qb/LXXXuO1/+tX+dgnP8NHPv5p+oN7tAvFLdzY3uXB/bdYrHew\nG4n9OX11s4ZuTdOuENG1A2NJ03WzhcvhMflxZnF8h667hamHAdcuOTC3kf6Kod9hbCD2WkQvXMPN\ne7foY+L04Y4hR2KNj7EGvNcNxFrPtTOXGm7allI07NWWgi2ZtuYQhhDQiK8JammJVf86jAOl6Aan\nm7xl6nTEGIkxI1Zw3tHh51D2ZERLniyYLHjxNJXp5qpuzGQBYxhKgUkHNPZAp/qkPDIMdrbqz7pS\nm+s6uz/siYEhRaxNWA38qXBLLayk4nOc94pcqEWd5oDqodP7Bu+auRPf9z0hOBo/YX72US9SEpvd\nSE6jCtgl7N/7YEE2pDyo06zYWVuUkhogVKuqUT1ZFVz1NTqscTjb4oKjRGbchhg9wFprKDljTYOv\n2Y6l6pZBo1tKCbPuqmnV5FVSQewSH7oaJaMNhN3uknBwgLGKKogVGjzjE2px550QJ+1cKRi0MG1b\nSxntDEDVPFSDKxbjCzn3WFuvtxOCX82QVjV/1ZifMgJGUUJ5wW4DbeWreV9z+dIOay0+wHqtBfYY\n9TqPYyInwTk/YyHiOM7v2W/0+N5xpGSrHampS+AK2FIrYYNzzfxBFUai9GqLHxNt29IYXdycbSoT\nQx0P1vtZKG2yoc87yJ5MIfs8bybFKpNIs4o+mAI+FRaUKbUozmK2gCUXqXZdo3iBepoXY7HZoPWT\nTHvz/DP1SRWo9tIyf8jUYSfFYLx2iiZshUM7XDlnsreYPMzi1+B04882q2U5LOawzJSG/enR2prw\nnq89nyogNeqULCVqkQLkZObnZSwgewFsCJacEsELPtgP2IOdsWRjkFLT6XMltdXfJ1Wsqs8v7UWO\nWYuw0OhisBvzLI4s2dA1C6zpyOX/Zu9de225rjO9Z8xLVa3LvpyzzyFFipRFUpYtyZLtuJ3ASBwg\naaeR/FL/hQD6YnQn6bbRtmNLsmzZlChKvJ7rvq1VVfMy8mHMqnUYyB2gvzAfWIAAgfvsvS5VNWvM\nMd73ecER1t1OiBFqRSXQqwEP5xX+ckSruSpDs8n6ZUyhJrY0eCgYBfjkWKlii4NQyOXI3EClczry\n+mtvsju/4Nef/BzP8ZQzWC7NycPRxIqTuRIXWGsqo33easaGWDan79QH5lqRfGDTO0oq3Np6Sp0c\n3/ndH+C15yc//lvKnLi4tGu/6wZEd3hXKZr42c9+xn5rhcQffP8P+OlPf8Ld8Y7dbkcXewuZhoZ0\n2HGxP+Pu7sDh/prvfvsHADy6eszzp8/455//E58/+RV/9N/+Ab/3g+8D8Od//ud03cCf/c//jr/6\nq//M1dUVr71m0M0f/vCHvPvuu1xcXPCjH/2Iq6uHjKON36dpou97NpsNzgmbYYB0ckMdx1vQwtXV\nFV3Xsd1bEX083DUxtGWQdaHDbVuAcLhkHidSMufSPFsA79Onxj2K3UCYK/1ux+E4sd+X9eG22+04\nHO7MCRUCNzc3ayE19D0vX77k9ddf5+lx5Pr6eiXCd7st43gk1cIQO95+402ePbXuYL6vnJ1d8Oln\nH6I5c3l+ycWuZRt+4+tcRuHDf/zP/Pyf/p5vvPddHjywzuHdYeTq669xc33PfX7Cxf51jndWnJU5\n4XrYnj/AxY4HDx+unZXNpufy8pJZMnWeEbljbmOg6eUNnYfu7IxJE9PtgU1zQ0Xg6ScfU6On73tS\n6tld2d8cj3dMx5GuH9Y1cCH2GdfvlW5TezAuXV7V2vAy0vAiabWMx+ibiLcz+ns7VwDnMbCRYptY\np8xVmNdEC8FlGHNh1gRFiQuXTypDUIu4c5ERQdyJLzcfj8jWrP5jGXG+mXDK6f2XUpjztN4X03Sk\nkAx8qbN1N5dNqwC+LLtPfKivdEEqIe6wLM4NsQv4JgdIqTCOB7p+0zanp2dQ8J0RzLM1EYIv5NY1\nTvkefEFKR9/trIguzY2OTUtKbYaVJn5funzGKLS0h1oz2sLe7WfBpg1qrsTaikD7WUVrC3AX+zvL\n5lO14Lyn1s54Xl7ZtC4utSfNwv39LX7n6fxg2Jl2LkRaQSUmtVhqkoXh6J0npRkphXkpBksi64z5\nDiMhFqa5GUKyErsjwXtDhEhdGYE2Yo+I7kGFkv0J/RAjaSqWvUoh51Ngd83FVvxifMeaxTAL2PNQ\nXzFf/abjy+tIqT1kZJ3BKrlUcB4nHarzKWQW280krQSPtRyX8RYFkWgwsCpU73GN+eTal+qkR2qx\n9vAi8XEOxfhMpVQDmrVFYyoZapuRl2pj8iXcUJxZh7WsxVdd2BciaA1UmXG+YRGW2XxJtmNTZ3N5\nZdVoAY3A7ixkU9rNYh8QVQ++3RhSTvEhC6NJPEoll8M6ukspMZdsrUxncQdoWStru7gduVhAsdNA\nXazFtZJmu3GUSnC6SgVqmS0GJRtwVEpZF5uq1SzKwSHF4z2rRqitRG0O7/AxrB2zaT5SqkPa+LOO\nCfq2M9FrBKXvHAHTO63ZytUo6ZozXox8u0S2FDUyNRWkdeKW70Y1g0TEmVZKVVcLNOrMOKJGMabC\ni5fmvvr6199kdya8/8Hf4rtEkJkytQLM7anakYu1zo3UKywXXMUcPwsHB4nmfAKKBrwYIT+Xe+Zj\nQoo9hP/ND/4nNAd++g9/x8OLh2z3j1h280Jgmo7UUnjx4gWX5xd897u/B8Df/N9/w+3tNQ8uznFe\nOBzvWVbM/dkFXeiZU+bF7S3f+vZ3Vq3X/fGeD375C16+fMrbb7/N//inf8Zf/MVfAPDkyQv+9E//\nlJ/97B+Byre//W1++MMfAvDw4UNef/11fv7zn5+QAO373u/P6fu+scUym67nvu28VZXzM+NOHcdb\nunCxfkclTTx+dMkwbMk5M00TQxt7dbFneHhFSombu2tub2/xB8/U0CfXL1+Cd+wvL5s+K69k6Lu7\nG87PzzkcDlxeXHB2tqdrXceu6xmnibu7O87Pzzke7jm0wsZvN3QXZ+Rp5u7mJTId2A6No3Q/4nPm\njYcPePniCZ/8/J/4rJ371x89JnSO1x8/5MWLl3zy/t9RvmajTd87NAxcXV3x+PEjPvnVh2hr/p7t\nHDFG4nZgv7skhJ6rh1a41q5jlI6+31DyHXM+GhMJ2L35OtOUePHyY/bdBvzEzUvrYnbBM2vh5vlL\n+uipGdLRvpftbiDNI2ka0RDoFt0Tp83liZptESJrrJQEvPNrh2Rxi9nPqnV329pTitL3y/xW6Jzi\npgPHeUJzWTfX4gO9CoMEjo3Rt2nFYqrKUa1DlxG6eupUu+jI6cicFidyReqpM1yLb2NKYU4TczLd\n1ZxHko44RqJkatFVW+RbIWm3kIIrOFk2haUBOgVawK3z9tmHYEXCnIS+78hlWvlENtbLrbhRck34\nNmmZxxHVicFfMM1tbfTLJvlIrWK4GR1xoa7fO7SiV2dSrXgxPdiyoTPAq8e6Ti0qpumNo4+U9lzz\nQWwTvT5rOkqxTmDRatpcFpmMPT9TPvDyLrHbPKSLrYurmeoy1SVKmUwyIafu3Dwf6WXDNFeLMmuO\nzVSyudsRwDqKfnmW1jtKvqGLxsnCu9XNaeO8jloKWg6mvRtbwVccqGGXiuaVM2Wfz7cuGKAdwql5\nYKPR/592pGqav7CjQSo1F4qngcaU0DoIHR2u2A6tFOU43jJsbOcdxdP5LV3YUnVmlkpowjONhRgG\nQjIoWc4Z326MWlsBoq6lxBvwEmy3Y4JwqNSV1goth4+CCwZ8E1lMx9ZJChpY0PZ2AbfPuxRdRanV\nqmrfRjs+iLVV1Rg2VXWtsJ1rI6yqRhCvxdrZgHij2ToMTjeOx3W3k9rNqlIpYhf6mi1Ds70ioJ7o\nNkgv5LnN/EOCzq0w0uDdWoAiNu50KpArWpXoTl2nWi3TLqcGtFwkUtjnrsUhRKKPxLBQ2E2APo8T\nofNt0bbFrR8Sx8k1Iq/D+bB2znJJOC0Gc9OZWtOJyK5LVpKdh+DcClwVUZx3VPHktGQ7nnRn4j0k\nR3A9t9d3XDWR8uXlA372z//AMMxIl0m5UhZmigTA4WNHHQsu2GuvwNlKG2nKKd5oyfiqgeJGPIlp\n2lEOA//mD/47AI7HA7/65a+4unzApt+RU7EMOcw63/vI4W5m6Db89nvv8rd/+9cA3N7ecvXgEqi8\nePGM/f6cs7Oz9hmN9vz8+ee8++67bDYb7g5W2Fxfv+D+cGC7PefP/u3/yj//y8/56T/+DIA//e//\nB0pWfvWrD/lf/t2/5T/9p/+47ma/9a33+Oijj5jnme122zqedtGc7fakMpOzCasPd/dcXFhHZhgG\nuq5nShOdeA6HW+aWe3f18BIR6LrAsO0pz+d14xWDI80H+s2Wx9srdvsNTz5/Rjy69bofxwOHw60J\naPPI+Zl1nfq+jX2yCZHneVq/05Qy/TCs92/X9dze2074LHrcNCIS6YeBz559jLux6+bBg0ueTgee\nPXvBxcUVF3Hg5sZQDc+fP6cfHLvdOZt+w+3tDbfPnwKw3eyJl4HP715yvj3n29/+XQ6TLe4vPn9q\neq6LCxOjDxtqWxPDdsBfPACN5NuA92m1zt+mA9vzh5wPb3D98YfkQyIf7G8eDrekmvAxcJxM5xPa\nA3i6m5EqlGpRJbbZWzAstXHpDJsSu864PAtDrpj93xhEZqhY1r5cTptOlTbmbo3jXOcGvzWEAlXX\nh1JVWzN2voNuz7HO3DddYZwnDi3GRMvcIkMWYbig3pPz1HAHA6fOmd3vi2bUOWNeAajrLFKrrb+5\nZIam1fSNMO9EEbEkikUY7VXJZaSLGxATOWdZuiA9Xe84TKPxvPypqFknDdlGqlrdKtvoYkeeJ5Ie\nGiQ0UdvrpTqC2PeDZGhRL3XtoJgG6vQcYtXOqkSqVrzv7DmmusZRCYL3lSqJUhMO4zfZLwa8dBQd\nCcE24cs9E4iIOEqdLKEj33K2b78nS9E1osyUOpPSgrCx9zfPCe8jKc9r/qxIx3ScCdGGlkkzGpfp\nRxMSqxV8QZXlqhECTnoKQi4J72Rd90tRYoyIBBy5dUzbiDnPbb1y5DziRFhygGv1VF1Uq7/5+Ap/\n8NXx1fHV8dXx1fHV8dXx1fFfeXxpHak1SHjV2DiDWzpnQkDNq3dp00emCSZApJBKImXbtfbDOeJ7\not+TOOA1LdpvqlrXy3latX9qAebcxkJaqbWY7XEZe6m1jjMZh2sE1UX5XxHJawVa5bTzrhTw0Ddq\ndqnFxPFYJ6aUTMnFdg6y7CZst6BaMOSboOVks03zRK4zXgpV3QqHXA7BgjZFrBOWGlyu1GLvRxUk\noLW03aSsvykMeGdxO9IckWD/3/fbJpA2d8Mi/K81U5nb70dzVixar6RUNQ2VTfziGvhr+UgLniCA\ndtB2l13c0HUdVSfGFQ7Zom6yMpGQ4z2yFVzs1jEjWiBkKAZoY/4igVbVdiO1muJpeS9IPo0gSm2j\niBOGw/mKEjleJx7sXuebb30LgA9+8U+IWHA25YgXTsBC8RRVPAX1jmyzUwpL3oWdb5UKtPGmX5Ls\nHbkezc1z7Phvfu9/43Cw3/vwl3/H1eUZeVbwQk0vyeMy1g5M88wQtrz19jv84z/8dAXcvvn61/DB\nSOK73Rln5+erVmA7bLm5ueHhw4fs93vu7+/o2ljo5cuXDMOGP/zDP+L6+ob/+H/+X3zvu78LwKNH\nj/j3//4/8Cd/8id8+OEHPHn6GX/8x38MwOdPPuXm5qYJzJUYwwnvkWcOxwOqlelwz6Yf6Do7v4fD\nHbe31wzbDd2wQXLla197rd1rhePxyP3xnsvLB5yfn62k6ZwzLjiqJHbbHUMfCB7ub2xdGOcjfojM\n+Z7ddo/3ntiS6YfNBuccwzCw3+85Hv0XhLylVrquY+h7uu2OQ+uQlePE4AI5ZNym4+HXf4vrX/8c\ngOcvPufR1x4z7M94+sln9L3w4KF9xvPzTB6PlDIS+57N9hHTZKOPw/0th5tnvPnWOzz77FOe5sxb\n77wHwMWjN7m+uaOIoqGjP7/EXVp3dE6JeRrpohA3+6ZBacaH8Z6b5884e7Tn8u13OPIJl71148bb\nZzx99jH30zWD30C5X9fEoT+n69p4WguVvA40fOt+hxDoWjdKYdU65RZns3StvPcr/qBqxgTA2vSh\nYbXy12qd5WUd3bSYMIDgTB6gziHV9J5Nvkn2PT7W1jlRW+v9qWtQ50zVbKiVzkZYtLtG1YCMyGhG\nmVUj5NhseuZq5zvGaBFUgOZKbGJlp0Lnw9o9kigknZnzLdFb0PT62XF4OkrJjOPIbt9TmqQhtUnI\n0pkRkbWrFoxDQJrukFCoeFI+udgR00WqjhSdjXDOgsUx6IHJdP1pzQXQiBbT/kpto1i3dHM8VSdK\nvTftmZyCkE2X6gh+0zp2HWlsF07MxNCZtlZGxjlR7+w77LrQpgUZJSEun0T6rpqWVu3aSerWSYrz\nhUgw8n1WnI8swuGsNlERjaha1NyqBReLJ0KDPRuz4Be9lhpaxXuLi7NImsUo1dz7Ys/elMaVDCDy\nRS3wbzq+tELKuCMnHYXoUshYlpv3Zt8H6L09aCmmgSjAsfFb9puIk0B1FU+kiK54gEWPswoj23gP\nWFvUzrlWaP2/xGRNwGc22cCJOVUQqRQKjoKmaWWNSPVoMGqvuIqUss7YZSGQa7YLXLQ5DGhtRGdu\nNbwVQGvWniEAlGoCOKeU5cbHRmulmk5MtfG5aG1jKUiwwsx5Z7PxRUfgHI4BcT01ZXKaoBWuQXpU\nJ0Qy3hW8yLpIpZxJao40G/mZa9C+m1dHppU015XsHqMhKko27ksNrxRuTa8VQgCxwMnSUBTTCDEI\nWjPCiMjApjlQJDiCD3iN1FSNCr7kLGaFai7CWgJoQNfWvzEdRKolkYugbZGqpZCK43CbONs85Fvv\n/g6//MW/tM83c3l1AXpnAekykxuBXOnw0ts50BlxmVJpRSdAtpu97R20ihGUAfGwiQ+Z72a+/70/\nYNbP+On7Pwbg4X7PPGe6fE/pIvM0rYVUcAWvA2+9/Rbv//O/kFLiUeMybTYbpmnibH8O3nE8jqug\n+jDNZCq/895v888/e5+rRw94/vJFu6iE1x6/wX77gP/wf/wF2+2Od9+xQvJHP/ox77zzDlUz//hP\nP+b3fu+7vHhh2pvnz5+z2exMbxYdpaY1TNYkZ5VxOqA144Py8tpGW33foyVxHDP31y/55jd+ay2y\n7u5G5nnk8eMrfIC+G9bst2efPyHEyPmDSw6HkeAd201c5QBndUPoIkWg22w5252tt7aqst1uEcxV\nFUJYERcpWb5azuYW3IeOy0uLnTneml3dF0ctW3YPHuNmG0F/8sn73N485dH5a1y88w5Pnn9GujXh\ne+cUJ5FxmqgI274nNi3MbnPO4XCHjjPvfvNbvHz5kptru6b2j/a88dY7aLWcvkOIhKZnGs7OKJoZ\nb+/ZbXYcDuM6Rt88eED/6IrjzQ1ShP2DR8xtXFgRuu0Z6WBXn6PQDct9UanVN5GyEnz8wgNkGYst\n+stS6zraWwKpX3UFn7JA4yqyzqmuHCPaOwLW13QKZXkmiODUMCvHKXF/GCmxCdh7C5z284G5CinX\n9f52DbGQ0pE02xhvCQg3FIdlqM7zgdB5M8XAqmsNzoMLpvEsp4ew9wGHrXfex5XJp2RCrKT5tsXS\nuHXjmctMFTNVpDyRptMocaowzffGxiPY+r9wqii4kPG1GGvRxbVQylMhlbH9+8wytlw2ilWNHehc\nQJxF6yxzVu+9aVzrZPeSCvPUjB8+4nxnTrpqvCdZHJQ1m7RCOss+rLrqhqZpohbTpCoZkcLYxn65\nmDvZ3JxNq9p0VyWBEpECWRMqocWrQVVH581IIOoQZOUOqpSmb1aEnlrmU6wSDjTjpWsNCtbmQgjB\nrlmnLVPVgovt3JcmSUk4Gag1M7cHbXS7VZP9rx1fWiFVSlo5RGDCwqWr4r2zL2t9KBqI0HtvX6xE\nShOl5VpRqShjK5zC2pXQegKc1VqpWnGvfCGm2ejwPjCXeV00VMB5T8CE2LXqGmngXCDnEW0RBLYb\nsr8nOCSBd71dwC6zKAWkBS4veiyDzLWFxinOC7XUJlJ2qyAx57nFqkjDB5RXAKCsF5RqJjhhXiF4\nGaIYZE4KztN2lK1DJJ6aLV1cwEJUddnRBKITkKll1SknaJsiLhpfq2UNrinvobOZvwghYPyOsjjl\nTBsVfNfEqroKK53kxqAKRN9DTUjDOOQ5G6guBqaxELzFswD4YAtyjJGUc1skTjlWph0IrRvpOSFe\nXQMNmhp90RK0E8XhUOniOe++820++vWHHA4NN/DamQVRa8TRo+WeBTehDahp+ge7Jn3QtUA/ZZw6\nnCy2hkXvU7l5oXzvvT/CucBf/c3/zuVDE3/nsqeUnlpnxvEppJ7YClBXB975re/y7NlTcjnwxmtf\nX3V+aUwtKDaRgAcPHqwPr88++zXf+973+MX7H7AddgQXuXlpguqh63nt0Rv8/U/+ntvbW37/9/+Q\nu7a7LFl4481v8OMf/Q2/9fY3GcdxZUXFaLb5GD3H433rTCxYkFOnoOsDeR5Xy7UPmKValfOzLd7R\ninpIeUJrxvnK9cvPOb94YIgPzLVWNePFoiyiE7bnO6aFdyaBbuhRbzy3zbBlu7VC0vvmHGzH0m0B\nK+yO48jFUnTe3zBsm1Pu6ozpeMPOB1yeqcfE5mvvAnCpE7dPfsHTT35JHC54+MYbTOd2fV9/8muC\nmxj6PWlypFzXEHS6nvPNDk0zhJ6zR99YTQjpODHPn3Px2tc5vzJUQ3phkNN0m5GtY3d2DqXS9cJ0\nZ0Xd+FLwu47NcIHejOTjzcpmChdnbINpfMbxjr7rW8fIut+ljITg6LrOtGXt+l0cjxZ061En9MOp\nsFXVJmR+ZUO66DVTsnxRcYRgOqrlX4UQ0CDkmiwE1502GFXVTAa5cC/KKCeGnHNmkOm7gMuBGGz9\nsNebcUGRrJQ8k3MghsUhrGb6EaXWxDiODAsnzkEqMxK06Zd05YulyTR+nTMsg2o5GXCkIBR8rKR8\nRxcHFkZezjMixUxKpXJ/n9hsm6mHbCynPFOqsNuwusOzigX91kJNE1oT09ymFClQ6kyuk2UahuZM\nW/X7gjKjUg0Q6uLaXDDM0DKZqJYru7jcnT03cqnkUvGurppEIVrOaY4ojnlKbKJdw3OeyGnCSaAU\nZ2BNWVx0xQCk6pp5Ka+5pkEqWZRcHFkdxeU1zkWcmJ7ZHhXkVPBxEb73RAeiFquGVI6zbRSC9+Ys\nt0/LgsgB0BazZEa32p6b7Zmv0jr2QqnJmFyLvrfOa5zcv3Z8aYVULvcNprWwKCLVCd73BIxuXpfR\nQLFCQqoQXESkI4gtqIuwLKnDq43elpu51CPFWaVZdbIWYl4YHp4ihVpGggSSOqS+Ak+soNq1cVpB\nXOss1ErVaCCvUIl+OnV5cs9cQDZHOlHrSLU2pnMOzQ7NxYpC/OmmydkuMqfm8quV0Krh2SXGKRGi\nt/Ba79YASo3SCodKrpnihBIXC7AzH6Kz7ojS4d1AbKI5R0/GU7WiEs3p0DpkOR2Ms+E8EjrrnLWF\nuPOO4IQSjf9RkNXRiCrBD6CFUDwZhSZW9LFj8AObrmMTHH0XGRr13fnCXEbmVFDn6YIJvQEmEnlO\nBIHYRfLxmrmFXvZhj4oQpLLrO6b70Z7MwCxqBPPUI85T47heF84Fau6bWHRsNlz72fE4E6XnW++8\nx8cffczzF09W3IB1tiLRW/GZ4WQr9kY31my4Ly8QYkDH5YL3uDDhgsPLuQkd/RJAO/Ha1Td5cPWA\nv/7rv+Tq/Iod9pqD3+FDj08tsLofuH1pn//trz1mnK558vQjzq8ek7UytjHU0mmpRdnv93Rdx0cf\nfQTA48ePOR4Kd7cj3/rt1/jo4w9XxtL3v/8DpvmWly8+4403H3NxccZf/uVftp99n6dPPubs7Awf\nPE+ffr4W5usmpNHkw2qDBHVGEw7SoXXC9Y59K06Ox5F5ToYDqMr98Y7NZtfuNWHbDxxubm2Bn4/E\nc+ssDbsth8OBu8ORzW5D329BO/xiue97Y3E5vzoGl/N/vtsjITJNR7qho9udreMtH3qCCN1ug8iE\nTD2uQXyN8+aY5iNej7g8gdp7ffj626QZyt0zpI5cP3/G9oHlMJ59fcf89ANcGnFdJIpD2ljXdwOS\nMmVIuPM9ve+Yj3Z+B7Z0vmN6fo/zW/rLS/y5dce0VEQz48snZIX+/ILdRetYHEcOH3zIXVbO3ngb\nP+zYubfsZ88+InPP2b5xyqaJPJ+wAbHl563fV+uoq3ftXAviA7GLa/G8nC5KNl8AACAASURBVHdx\nzWPVOv3L2K82Z50TM42UnEizXW+pZnteqScOgTgJuTkv7/KBSU3wfBZ3jD4xN66R1Nhs78YUcuJW\naHLRa4KLlKi2ea13pNxCuWuwgqFUtDm1puYg7ZyZauwZAlWMm2TXhaK1kNShEiiqK25B6NFaiD6i\nTpjy7XpflKR47UhFLU2hJqb2zOuCR2qPdzNIZs639J0V8MFtyUUpzoF45imt50lKplZwLqLVo9VG\nVUXNFBFjRIuniiJt/KdtPaWAr4ElPrKUyjLiSGUi1UyqM+In1NU1m9YBuQqUgyGHamQal87hxmDI\nmqAYfsg3sKhv50hcYl4QBQuCKPZGII9KmRWZQdvzQqRSHcbxqskKwLakWBfU5BqiM3NV6twaKyLI\nnBl6xXtLllhSK6Q4qkJ1hcpksosVx1PRbNe21AA1slSmhYmyCuR/8/EldqTMXr+82VQtwd3j0eCs\nA7Qw+GtpLdlgXRsta2fJ44mhx4uuzIplEe+0Q47Wcq7VdENLK9o1q+4SyhiCY+kOWj3lDGsg7d+9\nwmAKwYCVZZ5RTu1sUUcInjRLa5u7laMUgrnGnAwr7NOFxWEkdmOokZ5sd1HX96lq3BWH4p2sdUsp\nhawTKq7RXU+SM7OuLvu+pr2qgi7IBQ+0Vqv3kZqNkmuvaZgE8aCtBbrssHzoCMGjCHOCWo4rwXhh\nzRhQ1aBv89SSt31EgukABI93Hf1mCb1UgvY4P9p1gKwLNMBYCykVoljrfXF9+HnChdjcjsqw6SlN\nJ+KTGDm3Kh4HpcO3a0ZZxr0ei4swhw/YyO3dd9/l6dNPefri2nQ5C9NK7ecuRtNH1UTRZXSn7brx\njRo8I+IYNvZ9j2Mhuh3BD3jZ4pxjnA7tgjrnvXd/l/f/5R8YOmWz2bCMWac8ErKCzuSypU4J2qLY\nbzd8+Itf0W22aE7cHO44thFO1w0cj0ceXD4k9B3Pnj1bxwYPHz7kJz/+Ge+99x7Pnz/n17/+9Tq+\n2263/OQnP+Hs7Iy33nqLX/7ylzx69KidJ+H+3rpNL168IMZ+LU5qbXqHegItLq5E5xwhbCzWInTE\neBrt3F5fc/nwAfOcmceJrutXkOfh7t5CcGslRNPnHI7363VhrqHIedix6QeQntSca5vtHhc8Ko6+\nxcwshxNHrYX9fk+pGe/cequE4Oi0M0ff2Y7IRGlwQWSgGwaKc+T7W1QKc2NlDd3Ao6+/zc0nihxe\nMpVCnZr78NFrPNMET5/R9UJVT9e6df1ugyfi8KTOzhttXBzU4Z1w0Tnq8Z4iFX9mhVQJPaoBt3lE\nuXnO7Ucf0rVOXt85zmvm+YsnPLv+nN3F1drFTGni5uaGLtr5tCDptl52HaCkVJhnO8+LSCpgQeU+\nLE6muoZQA22Nra2TZevjoi8C6EIg19pkBPPaWQrOoc7czeJgkrpS9nPOJJwBHJ1n0w/2MAcUT987\npnQg1xaG3Na+2AXyrLjcEXxlnjNHbdeN+jZiAiRZQHjrWEzHTOiVWfO6xqUmITHGna1LtelNX732\npQGDVSs5lxW1UYu9R2P12RhuiUDa7zZ47wxf4DIGW25OuBAQm3HgQkFSQdf9qjPcTV4mGgUR/YJs\nxQdp72tuJPXWBXIRY8LYE8pLYS4LGsIKz4KaJqoUYGEkzvYs04oWxcnANC9NgtMINIRKDKd1wfAy\n2RAJ3lNVThMjXZ7ZpledS1o7nG7hHgr41mFaXdceUGf/VpQyT7SkF9CMhkzVo0VLBU9exndlBhQt\nhdrcjst65dq8oibr4C2RZADO96fotX/l+NIKKaGsKc7LfxGcCcmSIAQqp0JAK2vrzYtftUAlNWGO\n92vfV16Z21t8QAfqcRJWG6iTzrQxNVEJpm9pXSfNxfLZnGNKqQkBF0aHx2Nf9lyNq7SqCCwenZyt\nkPKOlSOklTZCEsBm7Usny+a6AhJMHE5dZ75LK3aaJ3t4G3cbgDlDEBO8l1JI2fK/7DtwVgA4pdRq\nizKRJUFbq6EbYoiEEJg1IXmx7A52g3sDlxnja6H4NpE21jp3TqiNb+Kdp7RRXoyePNuYFuzc5TZC\nyzlTs64LQxe3xrCSHp+mZk9uNmdXqXGDZqFkoQvR+E5YLEWHw4vaA9F7fNsJdt1AZqJmi3ohO7xb\ndBKNVSMV74QFIgjw9ttv8/z6OZ99/pSzi0dIi0Owa0ahISOc90R3Gt1VJrOVu4gEVjvyUoBu4hYn\nG0QHumCi3nk0e/zvf+d3uHl2zc3zZ1w9PEOrMjW2i9TEnO8RDXS7PanOfPOb767XhgJ98EyHGw7H\nxNn+AoDDeGQYtoTexq2Hw4F33rXfe/LkGV3XMY4jn372CdvNnjfffBOATz75hGmaePvtt1FVnj59\nyg9+YLDOly9foqprt8u4Ok0cG4KJc3NeMQfLd7rbdWitDJve0CJ15PbaMvP2+z193/Ppp5+y3e6s\nwGw5dKUkjjVz1keGbU8twuFgP9sMW1vAGzG71NEo5K8UTLvdznL2xiPTNK0asZwzMUa6PnK4N6Fr\nv1kiRCqb7Zb7wy0pC7HbUPJhvfZxAd95BEfVCVmiV+5H+rMzHnztLe4+haFO64bncHvHg8fvcugf\nMN49wVVZu9Gop9ud4VSI/YZclTg0UXznyJpJ82w3+/G2LSrgznaIdNSzh5xvtsjdhsNL02SVecaF\nyG4/8dlHP+P5px9ydma4iYdXr3N2tufTjz8gdpz0o9h6Oc/jWhSbtmghiXfrd5dKJtTQxkqh3e+R\nhTU1jqMlIuhpMwS2nauqRB9MSgC40FFr5u54MIYRnmGhcPcRn+G+gNZC74XSCtCCMNVMEqWWhIpb\n42w8yjD0pmcF4+KVV4jZ2eQUEirxFZNR1UxJiogjk4niqe37znMzLWmmqmsi7fY+21go5YZ3EWmk\ncWNMkV3T6hRCtELVfu/A+dmAVGcbuibfACj+YPFA5STfyMvPMlRxzfJv0ooQ3YoqSMkkDd5HE3bX\nTG0C+uoCEMntebqAO+0NiY15BWrxzCmtwOGKImp/g9JMT02TNc8TtWoroqXx/VZeDqW0DifWBFjO\nEypI9VYgaWnms3bNiLf6oArBmZFkidYRnDVUqhHIi1bmtGyEHVorMShJZ9xSYLWrJlCAJVJG1uSN\nXKz+qNUxT7NteNs1X0rl/6OO+gp/8NXx1fHV8dXx1fHV8dXx1fFfe3x5rr0oUOoKJ/SuWZqyo+AJ\nLhBbGTgzU8oMOLw37Y8rJw1GSQUtlrOmKmuLU6lGBo49c42gHqlLh8SqbFUoOePo6Fo3Q0Oyf+c9\nPpkLwrWvaqm2JUa66lD8CXFQT8J4hzWZTiI1bTb7luPj/NpZwSuiC7DOomKWnUl+xSqbqfRDXEX4\nUovNm9WhYjuLdXchGUXtKy2ZIAMawjq71+oQjTZnVwtyTAuevzpyzXhSi6PxtruB5kabbCfrFIed\nD3uviwPH4STgvVKa9si3boFl/gVKEdJsn7GLQhf3RmCvB2o6rmJ7VSGGDYiSUyJXISxxgh4kKC46\nBOv2LZbVGCNdLZQqVDxee2Qht+tE1QkfrbWc5sLjR2/Y9zzD588+oT/bU6XQu7DuPEMwtatDTA9S\n+zUXTFSYa6Zopos7YtiTyyl423nfulsburBlnitvff0d+/xdx/uffsrFxQPKZHE1oZ1Hj+DcQKzn\ndPWKh4/Ouegtp+3n//ILNp3j7vqGMifOL86Y24iy6zoePXrE3eHIkydPePdb7627qg8//JDf+sY7\nqBbGceS3f/tbtnMGPvjgAx4/fsx+v+f999/nG9/4xjpKvb6+JsbO3Fm+GQ9kgYv6dYe7WLmXbsU8\nZ2IwQXcuGY9bI5Auzs+5ubvFe89+vyOlmcOhrQnBMR9HDgfH+eWZ6dLabr7U2fK/amaaErudXV91\nCUsVQYsybLp1DFXbZ+xCtB2zijn7al0DXzWZFb/fbHClB5TYxMG5VELYQlU0gvMJ2rWRD0q9nXA7\nz+bqTfT6BV0Tcd8c7hEd2b3+dXzfke/vT+ONUhnHyTQlmuiGHXNewIuFeHEBvmO+OVCOI/5gXQGl\noPszKomgylgDXRv7+flIvp9x2wsev/E25Ve/YGxk8+faXMqi5Gz6uWk6db8XUKmIhXUvFn+TI9gI\nZBgGWxOdX7vKy5prWXx5vQZgGe0uzi0TIJeyYjfJ4hiiCcBxwQLjgV4FN2acVCYSWiaO7fzPKTPV\nBKKIKp560t4Uw9lsNhtiEDtfTbYxz7OhWYpdD66zc2yfoaDMDPuOOWdzEy/ZncURYltfZclAfdWA\npG0UZIid5fymlAiY020BZsa4dHJGi09iY12lYNog+z1bn7zzVB+IUWz9AdJcLUbMPJiUZqiJccGp\nGPZGa8WH3pze7ZoSTW0sWNZzVBb0RzFIKUozIXUnswwGI621mnORk6bWOk6B0tbs4N1674t406jW\nTC4ZFfCLoLwZb2wsm1vk2KK5a/DXBjp24qiLG1+lTQcs0kZrWJ8XQsdxzOgQCDjqnPFdkwH5Qql2\nXp16cxrS7t9UEawLq9WTl6gcbHR6cgX+5uNLK6S6YYumdfLVRmQdqFBSQn3Frzlti7q+zYnFm0gO\nUzKVOZGEdRFfig/nbUTXdT1z2SBFKYvgrRjzqCLUbMK02sZ+Uh1Fa3vwdWTNp1gWqYhzNmt20TRU\nbrnZzCmFBCO0ikP11Pou2YjBggeJawGm68VTqLpooBY3jGsORyv4xinR903A7RxOS5ukmwNtsXPO\nNUOlhZ1acVlrpkq//q5dOK1NukSqAIdxpOaR2Gf6wcaw2gIjHWrsFicgCyF40U0cKDWZDoFCjP0r\nN7Cdn64fLCNPPfO02EsTQ9yAM0FyDYnSzn3JFp5qIlYlpZkltsDE1InsamsXN+I6NgGJ3lk4cA44\nHez6oul5ojZ9xMTZ2Xa13D958hGbTYsbKjZvZ+HTqGsC5uaUdIJv2gMtanoETQgRJ1v6uDX3I7a4\n1VaEBe9JVbg8M17SixeftEXfoVkJxeHriRocwyWh7hnvKo++9hovntlYbL6foIMuCL7bc5wmavv8\nlw8vef78OWnOxova7vjFLz8A4Pz8nP1+T0qJGCP7/Z5PP/10vU6vrq44Hm0c9vjx43WcZtlsqRVE\nZS3Kl3t0OZYH5zqmKIUYmhM29ORZ2e3amK1azlocegtf1crxuIzvTCs1TWboCDGsAuab23uGPjLP\nM5vdttlTCqGFa/vYEWLkOE9rUfAq4qCidK4jxshxnNifn2z+OWe6IZIP2RhGixNUQEtBnCfPplcM\nvb1eTRWdZ/LkqLFDhgtcK0DP95Hb8Ra9cWzPX2NyL1lEHTndQ00Wf1USKU0M5zaGq1PieDPhBqF/\neEUZE3JjcUXl5hk+HWDYWVB4uqe2EaTXjN4+4fZ4JHQdj9/4JrdPPrfXO9xym7O5O3UZw56cd7WN\n7peYl1Uj5U0aEUJo4xsb6az60DYiXBAI3vtXimxZ8QiGUNBTcK86vCr77ZmlMEzFAogBXyoDRlqn\nViYc2jRLlUxJmeyaNlOUtEQLldRGbwMSHHYZtVHbdIcjkYpjLhmYcJzWb6RQ7wEfVpQHYFia5qo2\nko6esAkSGiewNHbRukRZ8a8nHVDRQlyiXCRwPE6NvN5G5HH5zqyYin5o95ZbN3SUmVywTWIxqYF3\nkeVkLQ7wpDamtND7tjEvc/s07XxhmlGAQl0dnN57PB0iC8YhgReiM8mCvDK1DcGkMyUrosVE+gub\nbOgJXpnzjBQh68kJKlVwWvHBotOkbii01IZS8G20WbHx3vKlqlZKqbY5FSu+lhFdVctfrEUp0mLo\nFjaVK+QyE8Se+6WwZgmaHKxYzqp4XFXmhq4J3SsB8//K8aUVUt7vQECWirdalSgSKMzkMppmCOjc\ngOt6UpnazihxbPyW67trdtsTmwJOXZzYgilzKQiDZa5Jc6aV2S4gFVyoIGlFKqCuVeAOF3oDg7FU\ntY211OIF6vKUxy5g0UzGTmYuhSG0WA7pKWXRWpjgURZyKLnt7E4L2oIi8K63G1SNwTKO87rw9Z0n\nem8Pfa0NVWB/MWRMRKgGzkwuMc3j+lAYwo7gvc2oEXJ11vkBfJjswWS6fiRkFpu/rR3VHCHOFs1X\npRCyBlNaIRLDSYyac4ZNwEmHk85ccJitfhyPTbfiqTjS4uY0cZlpSsREi7lxT0Z3ACe4kujdpQEX\nG3ytK4nsMtIidAL92skL3gJEUyl0/ZYwCM9vP7Hf2ylhjpQUUOeZ0/1aZOGcaQuSEqU0U8OiOYst\nULbDE3Aa0RLoluslmEBUKxyuj7z15nuLppgXn9/x4PKCXI4Udbga6JpTrHcbqBvyAYYhcJxe8vFH\nBoHsQ08ai5kNsBiOywvrVuV5Zh4nxHleu3rEzc0NhzsT3A7bHUjl5uaGR49e43A48vy56WvOzi7o\n+w2Hw8Gy5lpBZde+bzFLHlVztSzFkqB4bw+TGOPqfgIrwBa2FN7TDds16Lukmc12Z5w0sRioFYni\nHFVgaHqulDLTtCz0zsTkzlhhuWamdE9thVQv4GJAmrh10RqCFYvjaEwiEU/fdYztu4kx4kWouVBD\nBjzdgm+QSilHxEWC8+jkV6Zb6CLSOSizaSH7DVMTq/Zxx+AL4/1zkvb0Z+fc3zTcBB1FHIf7yVyA\nm8DUNa3i9pw4HtBp4lie0p9fIK+b+849zeSPfoE/f8g07PAipHaerp/+ipiO9CFwfXvL5cUZj143\nw8DzT39t14c6sn5x+a/LOhYDoWmelg63QRit23R/f0/oTPy/GAP6psWrLSg8pbx+33bdzGuny66f\nBXBcmujYAnad2IMXYCojnQjqHbXAoIFdf3J0igoHChOZMU/2zKCBPGMPeUCcsBss/B1Ac6Xzhes7\nCwjOdcL5BUMCpSrjITEMgz2kG2rFNsFiXRcxzezJTFFsjc0FzRUnwwqORTDMQfB4hay6CqOj31Cr\nkLOJ2Wup5MXUJMU22DVBddbNqg0nIh05JWqN1Gwi2WHwq/YqtK5f37WiLi7R0ydRuGmKG6JkmQpp\nJRcLGO+DJ9dT5JjjpKlC1aDNa1YooM4KRJnwEla8RxeGldGkCi7VlU1Vmk46hJmsUEoTwmNatpxa\nQees48aKNaqUPC9f7mqaAtOHeRcsYm1hXy3dmpZrKCJQLKB4cWWW4pGWw2iX18kQkYtlWv6Xji9P\nbF4j0UV8KwqKA3IAPNIFSh3pWnvQE9oooEM1keaKNvHg4XhLjL3V2M6cU7k2CvfSzSmldbQ8ujgB\n1SHOxiiCo2hexbELbbXWySBlzq3ZUDbCWHZdDkdYHxgLHcVakk0I346S1TpA67+0DgqYsE/F3EQ4\nj9a6Cu2dcwTfmRVbbEH54u7f/id1WfRa+9cLLreQZGfV/6uZckUUp8bfCSEgekoIr7plmpSaTVxp\ntPmFMdW6ehUkCE51HSeVkgzgjaVlByfoAiTFU7KNkoazwazWa0dDGcdlJBWsnasLacneZ8Fa6L7q\nep6OU0K9MnRC0kzQk0CwizsUzywZvLf8xYVU65RShbkUvO85HG5eEU3bIi84qJFSdG3rhtBRS0bU\nhKbOnUJdg+/XsQXa4XyHVo9vgswumDtQs+K3Ca+Vm2fWXXiwuaTTilSlcx6/7WjmM1Jx5DRzf7jh\nnbfeQ1Mk+sZDcp7QmR1gzomL8wdrl+jucG+utFKZponPP/tsLVBijJRS+OCXP+c73/nOFxySfd/T\ndR2fffbZ2vlcPuPi0qpV207Qrz/z3lNKpu82hGg5XMuowboYzelaKzH26ygobrft9W3c4HxA17zI\nwnZnAvRUMgsvDUB8B+LxccDHgaKBIPGEPmlU9O3+bF0sl25W3/fUWhnHcf0u4mYhPyfmKRGJ+Bi+\nULz1IZBTwQWTIYgLa0FoLjCzZruSIHboImCf7XWqQJ6fo9Mlw94K5fRiJifocTx58jHnDx9x3vg8\nEnrYdLhO6Kcj9flTwmMriPyjdznmDv/sQ+J0S3ER3zZJ2wcPefrxJ9Trp2w9HF7cs7uy3xsudzz5\n4Jc4Zzlw2s6LvZ5HGrpgLXAWZ9qUGIYtnXMM240ZeTq/jj9OBVFdoZ3LeGc57No0acQiAwC7LWu1\n7hi63vqoeLxXokDMheCUXfubdZ7I1TFpIqfZSNThVCgTAqKdEdFLomtuw/32jJQKtcAxzYxlwrXx\nuxbBFktPLiCzXwsQH2ztzcVRteCcrkYasAIx54qWQt+funGIovhmcGkh7q1i9XEwl6YmhB6hkJcg\nBDHX9JzyOpJfCrehC8ypMmYzu+ScmbNbcz3xDl+FWh3kZVKzvNc2zivFnoEi60TExvGdSWdcR9+4\nT3Z9B+Z5pDTeopLR1rFRDEDtfU+MA323OeUXNtq9SE+pgusM1wPm+NYC6i2/UDgZxUSEOWd6H6hV\nmEp5xYRuCArjA9oEamkQWJauFeU+KCEKfpXeFHywxkMuBUq31gNSGrAa2+hXnU9oBOUVU9xvPr48\njRT2kHe1WblDD8HU896BEqmLEl8rzgWCeIpU1J0iHaY0cjzeNoprbUVRK2yqXShRejIt2XnRVkmg\nazZsrc7apO3edm0OrlLw/mhaiSVeBGONaHudELwt6kCarMCqOFRLc3ks5FSDQgrSSOZ1dfUgrtln\nZdUeLRcb1AbTNCKu96dRA1iCuRcFb53PpRjqu9AKJ4Wa7SIpJwBZShas2wezHwfp14u41o05oTBK\nvHPBGDo052RVcp6pKTe7bytc2+sJ3ubMKZGWBO0G3JxvE3307DZ7chtfHSeli5V5toe08z3etxUl\nT2jFQotdbDEJDSCYE+Uw4dkQeluEQhvPDuHC+EtlJCUj0PvGZvK+Q4Nn4yJTGhGfV7dXSsn4YHhK\ncgTfr7E8oqYPcGq7yAV+aX+zUmu0bma1sa/zgTbZ5KI/o+92HO4OBJk5XN8zHQ2uuN1uLcpAd3jN\nRgVv+rE8wRAiD197nbP9BbdPZh6uXacDmh04od9knHgOo2loXOi4u7PA5ZQSL1++5MEjo573feTm\nxsaDzjlub+8ZBnuwn5+f8/z5c4ZhoO97nj178gWbt92Pp9HMCt1skL/FAbmAMwFitIe1YnTynMpa\nZHknIJmu75nHiehOcEyydbdwRvSvmlcoX4zWSd3uz9hs9/hgzLd1hJMz43GiVri4uEBVV62XqiLe\nrd0T0ybaZ5tSJudE6AJBBXWe+5tmne/sQTMdR1zfolKa+6ykbIWMRFxOVBkJrZDKY0arY9MP3Lkb\npttnnG1NzyS7M/LT5+g0cjGcke9HPnluJP3944dcvPUNUnbonIgyMr6wzqlu32Dz+A30+Bly85Iw\n7KiyxO5kXv/Wd7n71c+4/vlPEafcPbXR7fnrb/Hg6jWef/4pukRoLZ26BnZ8tcjsWoevGyJ9N9Av\neAO1cVFZrewLXFlsFNP16z21jP28M4ZTSlMrRq17tMCZAUqeGZd0BufB2xgmxg5fldKiwdDMON1w\nO98x1to6+s2RHYNp16Rds6tb2vqLKkYmH2JHKmntdMxTouuDpUWkiuhJO0deruFoMgsKtDFcLola\nKrEPVhTqRPBLF1uo2TolhjLo1+ZBLQK1oxblvgj7sx2ybvRN8lHyaFpeWDs54iqxc4xlArGRXkp5\n7SypKl0wOUUIASnL8M6eDyoF8YYPUF3N7m0qBOKDdTaCrs8TVRvLhdCR08ScDuuUwoeeWhM+wtnZ\nA2IcKIsWORfSbK/bdVubXrSKKE0ZNKIZQnTUMK8jSPt+lHlKlFm/sC7UZGyq0kKr0VNcD9rCtb3i\n3NKFbl3zZYJSnMk03IC0+kNFqGpsLiPsR5bHbFoq+//C8eUVUi7gXEcQW2xM+GwytiCeUj1zqwJL\nnUyXYm5+Yienk5GO3N07+m7ASTIB8lLYFBDvKBjev9bKzCKI29Dh6UNARSllT2kW0UwyzZEYJyr2\n8dRWLIU8W6yAE49oPFn8l0yfMjfWRVyBZjkbtGAZE60tRiwSQangBRHrwpwYl9Zlcz7SDQ3XsGQu\nrYWYFXSWudc6WbHik6BF0FJRsa7YUoCKd6CRksV0RPHIwu3yMRNr2zlphFpPETrq0RrIOqJ12Qm0\nXWk1EaRHrcOn1Qo5rOsmzjFOM8+ePaV7PRJ9O/eiFPFkV5hLJsSIawtYVzqyK0hJiDq6ONA62ExT\n6zwMlZ49iCV/Azgf6GKH1EyIkO4Dywyy1MLQ9yQKZR7xkllQFCF6JFWKm8H3eNfZeBHwosQhMKWC\n1oTLbsVpeN9ZJ80Z2A11BH+2Zoodx5lhc06/veB4vGVMd7hNg8iVyWBwrqO4I+lwQ0z2fgZ3TpqF\nr+1eQ4+B6+snLEW21Jl8uCepIMMWGukYDM8xTRMxeF6+fMnF5fnKQjkcRkKMvPHmm+TWuVnQACbG\nLVxdXXF3d7NqXuAkJO460xbN87y+Xl0fZssO9JUHdOdJKbXf88xaCK2QMsOCxVaErhJ8ILYC1XVC\njIMVaaHDI/iujUpjtIfhbgs+kqvQu7B2D7tuAMmM42GN7VgKwmmaGDY943E6UY+XrnLKtgH5f9h7\nk2bJkeVK81MbALj7vTFl5ss3kSxWsapFuvn/f0SJtFQvumvBbj4Ob8ox4kZcHwCYmWov1AC/2V2P\nJcJNbgIi5FtEul93OGBQUz3nO6XR1gvDeNxBgMv1gkxGZqKpawXlRTevqjEE0CjUUvbOipyOrD9c\noDSGlEjrzMdPPmKbfv2feXjzluXjzHjIhGEkPHuBff7Dv/CQTuSvvnbmmF4Z+nuWa8HevCK9+4LL\n+Ufypx/g0Qvsw+HEn7/7yFdf/x3ffvstPP0J+thrnG/85q9+SygrT8+fyC9wEaWUHWkRQyCnRByH\n/X4SiTT1acqyaS43Ro9ksjg2YRonF6bHOxpj60iqqhcTfT1ptfQ1Kbgo3O4RKtWU1pwCVMy5VJcu\n6fjx8h1P80dmrYRxQlKi1i33LxPziATBZPRO/laA1QDNx4IpZMTwsYf75AAAIABJREFUzg2AZGox\n78oEX+NLuWsuzeiThIRZZNmjZRIxemMgJjAr1K7LGcKEdsRCCK5z2mjhWqVPRAaW2ZlWxx5lVMqC\n1StIpDQlp7Svwc0gik9EqjneRRSi3LtAGpyArjUS40DMfZ4oN0wbg4yEIKScWbvZgIgjNbTS0kJ4\nwXxSmwkUmto9caS3zWMShiExjA5cTSmRttFt8HvfY1rEEUT9fmpqLq+RAREjZEht6teFx5NZS1QJ\nNIW0TUtD6ONE6V3QO2We5CzH0ItN1fLC0DYgKkhIDOkRrUdaf6FKc1lRa5iq53jq9vvKPcvvLxyf\n8Qefj8/H5+Pz8fn4fHw+Ph//zuPnE5tzINlE6JWr9My2HEYIiVoFct9BijvaNveCEHZIorbKbfnE\n2s5YMIYhMdFzrFoi6hFI7lLLGQmbc2ch5IEUM4gyJEN7L6+UG4s6PiDSnFTddxENZRhHagEtDdJd\nQ6IYVYsHX6ZMsLyTcdc2exadDGBKaJ4r5V++J3+LeDWs7C7BFswtoc0DQkPMxG1eq8VHhTGgKJG2\n74JzTNQUacXdZaUW1ITURy6NyqxnQjgxkNx1totD+66wQS0VCT4DBzB11IRIBPHZf0wbcsHFuxgI\nubd+u5AzuLbsmEdKqVxuV9689s9SW2AQTylPwTU9sYPgpmmizAvVDEEYjiPSNSvNJkoNhNK/a4p9\nRu4OsRASw/BLyvqJ63ql9t+ilkI4DNDS7lzZOhPDMOwCU6Q7d7Z09IDH6aQRzDOy9g29bFDSEQZ3\nvDjFewt7Xphv3nFJURiyMM/bDL56ArvOpAY5DPv2K0pEVw+ePl8+MYz36I2QEvlwZEyJpbqmaNvu\nLcvCL37xCwjC8/nC45vXO/X8dJhY1tXPc4wcDoe9O+q4kMz5fObp6dMuMAf27tQ0TXt3amu3b2G/\nG/E5pbSPdpqWnzi3chp/0snag8MtElPcc/hyTK65y8n1UDF16rujATQ4gDX0Xa9YIK5bIkDlMB1Z\nloXr9czpdNpde+u6Uta6W/1Divu5ycnzGj3sWtF53qngVYV1XhhPE7dlJutA6uONoIqYrw8hJTKR\n0qNehgySMs+XK9EUWmXu2WD6/g8cf/XXyPpIu36E68KbL93N+fb1a+bzM+1DYnh85PZhYeiC8vGx\nsF7eU8cjw9uvuf3zmU8f/sV/38fXvBsG3v/pia9+9Vd8Oz8hXeH84cOfOD2MTG8esduZtWvPtsO7\nd/dued1jXgphVFrdAtb9Pt+Cx1PK5BzJIXqgrdxt/q7B9A6EawgdEuy/hUc3Va1ICuSQ7uticwr6\nUguf5isfr9f7KDFMTAeIOJRzMdslHctSOI4N2gEHaK77mAY1altourpOM0aW3jVGgejdhWD486D1\nGzwkWltchhFXlGUfdWsThphRKwQLDvvcpg1lQQiMcSTGhNi4u9aaORDSLNAqnJ+XfZSWw4BQMaqH\nia3LNqEiaHLsjMTuIJYexts7KJvGLbjZRCzedVnB9ba11u7CVGRbv9UIQbFWWEvlME47OLbWQmvF\nzUcS3A0Xtude8PGjtK6bGojRn8FbnIvnx7okQvdRWSBkv7bMjCEIbdOWjSMex9S/X5+q+HfIPVfR\nhetioeOT/D1NKzG7mz6I7PpeLICMTPmROLxiXYTbtRvThgFt7nD0LpzS+nePSf5/er//7/Hzic1b\nIoSJsFn/ZXF3lSS0RXI67logNWFtV8D1OS9v4BiFojfOtydMjFEzsb/nmB47+dsXzJwG0tbmIxNw\nEV4MAQmNKP7jWzLKcu43X89ji5v9PxDi5NTqprQy70k2VZVGI4th1u2+YXNJQAuJ2rRntRllw9On\nQE4RpKLq8+C2F1k+JooxdCG3sgVCZiD194+iu9MQIAU6fj/1drQTdeeLt7gfHxMhC9UCsU2IJEK4\njylSdnSDWvzJQiviAcvJPG/KQsE2Cvfm8JFACC6W3DhLNPOIm5SIErleLxwfXbN0Gk/+kEZQbaQo\nlP6gQQZSjP0GjsQwcjj1cUPKrPNCtIjq6I6fTUMzjJgFcjhAaMR0phQfCwxTYF1uLOsFBvUCsH/3\nFAZUMsGA4DEBbXNsigucgyRf+Gm0br2TkL3wIjCmB4L4zb5FgYRhYL0V0jE79T4KaX9gDARRkhVs\nhiAHrDuJ0MjjwcN8z89np4PHrf2txPHgBY2urGa0sqF8XfA9rwuHw6Gzffri3hq3y5WHV4+8e/uW\n3//+93sh+fjoo4Uff/yxj+vaT4qs0kn/67p2gfnGO6ucTifmeWYYMjHG3e3nuIy+MahGSsI0eUF0\nuVw8LSBEQk4/sc0r4gLomECEMGZW3Ub6jZwD61rI+c5A2hLpr5cbMaR9rLQVesBO5vcWftzPFfgI\nOuUBkUxMwvV2Ztzo3XHg4+UMg//7cr1rtpbrmSGLXyttJFli7nE2Jc7INNIWY0yZheLyBGD9+B23\n01umV+/49OEbuBQG84Lv9NU7pjhwmS8YBw5f/Yp6c7ffXBZsmZFPV/I4wZe/hG/8t/juT7/jr377\na6bXB54uK69/9WvO322Cjxvf/vk73n7xhlevX/Pp06e7YSIlYkouEaAXuZsBZxjAnM+UU+zaIblv\nvobcDS0uLxizj2L9R8dDgGvZEQibkDfGCD1jVVVhrdz6iK5hrjFSxVIgnw6cOgsuTEeel2ee25m1\nXVjLwtLjqObixW9OJ6y2LozuLtEgvmZJdYF0SIx5c4r5eHrPiwxxF9vPt5VhjEgQis4Q1ntsiEbU\nVmL0DX8gkjbjTivdlCRo8ZGpdEdyMKGWsDOmmq6cP/lveDw5z8nDe33MtEfESKBhJHEtblUvirZR\nlAT1gtZaH1ndCd7uggPE166iuvOpPClBkdhoBUqru4CqNWVt1RsfrVHbdc/TC3HA421WkAIvhNkh\nJFJqeEyMkOK0x2q5dg4242C0O7upAeLkHlRb/24vHNKWkFAg+AaMeh8jNzWwRpRAqYu78oGcJsbx\nFTm+wnQgqDJN23sO1GJY8nFhqVeGrcB8URj/peNnK6TmemGY7jA0a0LtlnqJIE12vkVImSQjqypb\nWb5BICUnCI80Gmu5OFukz4OnWEBuqPlcOUlm2MJCiSz1Rm3aq+W275J3EFj/oY0V6QWYBL8hCJEQ\nxYXMsnUw/PMXbSR/8t9/gOjiQZXWOzmyP9jW2ohDdJeiKhbuYt4oE2tdKKzdFRT2mzSlTKAQQkI7\naEx3jP5ADMai6i40AQmN0hepUru+RZrbU3ELKNwLIgkGsXNDtkyt1vPyzHUtCjtrJGffRQiCqGEp\n7foiq0ZUz/vLObK2lduzC55ff3UkR/Ob0AroPXXceg7OMEzu0mjC0F1N+XBgCS4ojjl0fVR3isUD\niBIkkNOIkNEe6lmqOvdFVlIoqN1o3VpcNJHjCCmgxYiJ3fW1ZTaGYN49fJEsrrr2jXSl1Mo0TC7E\n7h3QoA1lZV1uqFXqWnfHl9aFaEq0QCB72dt/x9vt4mLqXsCGAMOWm6aVZa1ULZ2dw64TMQmUS+n3\nWKAtnuoOEA5HxnHkcHDMwfv37/dOT0rOatrE2eN4jwE5n8+M47gvbik5RgBcpF6r64tevfqSeZ55\nfvbzfTweyMmvjdYK03T4SVFzhzX6dbaBWnP2TU5TyDlRi7v7wLtKG/jx1atXgDl/qtuUx3HkfD7z\n+Pi4Azm3YxgGUkrMZUbVc/laf9Cu60zodv2cvRu359SZ57I9/fA9X/zyt8wRbj0kmnVlnVfGaSII\nrGWldnH7+fkjX3z5NePDkXm9Uud10wXzMJ74/s9/5jd/9/dMb37Nt8+/401nRZXcCGPm9PrEmjIL\nMLxxw4CuV9o3f0bef6TmSHw4kI5+X7y6nfjzn77nr/72b3lzGvjjhyuvH10Dt1yNeV758P6ZccxM\n07QXUpvzzrU8rmkaN7zB4PmDGyNqux92mCOFRCaEgRjdBDPP93Nu5qQvid6ZzEO/L8KJVRvNlOfL\nFUrb10VLoYczC4NkWkr336kptRTW9cqtXFhbIWz5lK1xvsycjs+9QPH/zu81c0d0aqTRKK2Rx62b\n4YYjMc9gVdW9OTakCdkglxwwuf8bQd0QRQYMrRXp+JKcBu/UyuiRLpb3gkdbBssIjdDdfbVvhObF\n13PXv7qJ4t5Y8GeJBNdd5ZiRkKndye46Rcc3xCSkyF64WnNdm4SGUViXBemdWpG4657MYFlu0Dd0\n1RpNobRCMDdPhX4CQlTGYSTHhFGIyfbru7Xi+X27EanRdLsu7ngeFXcnbhr9VCGboLmC9cK+r1+l\nFN8k9Q32y0ia1owQUxeqr16NdQ1cjkdimLwe6CHIuV/fdR184iOJ2laCVFS2KVT7n0bE/GyF1G39\nyJQTGnzhMxKhGSEqMVgXgPdw2hgJYdoZFr6j6V8gJkJ+IKXEp6t4MbXvklcsNjb68LqujEfvgrh7\nzhxuhpGHw15I1+otVcGQoJ76vQvrnEeVZHDXHpGidzQAQDBn5kjQfdTiYkrFM3Y9KZ0uSNSmtLVR\nzQFjUTIbushUaHJ3G0W5W3JNAw7/3MELu/NQgJDcHRj6nzcqW4+72kqp2YuhQYgy7C1nF4kK0PyG\nU3ZRNQlCaVhwuncADn1X3soM0R2W2guuraVsvYuYxXkzg4D1LkCZnxlOJ2e1CEgUpl7UrmVGNXM8\nHDvBNhE6/2aaJobcdkhkjNLhdnhHIYqnf8cJ4rTvIJf5imkipIa1lZDZacpzWRmHragWTL0F7+c0\n3lEBSZEW951eKSshFFJcaBap1bOuthvQjRQDrRaaOfhu6yyGBGWZMcsMMSOt7oVUksQ4jli5Ucri\nwLku4K/VBbjWlLrOVL3jGJBImg793GSIYRdxr6vvpmNKfPf994QYd7G5qvL09MTtduNwcJv75XLe\nX/fw8EDOA8ejcD4/M3Tx95azt73mdrvtC//Dw+NeoA3dzfWyC7KN/bbCaLt/DwfnfYkZxIxED03e\nzqeqYzMeH9k7YFuO1zRNlFI4n88dA9F2sGiMkbUsHcExobWxzht40KnjEiPTePTPXdp+btZ1hlq4\nfnhPeHiF9U7mMAzcrjPLUsghM6ZEztu9P/H89EQ8ZGpdefXFa5b3fk5vTzOlXfn+X/+Br3/1W16/\n+RL95A47m8/I8BqdbwzvRuZSWTvvayAwvvmCeoxcvvuBExOH195NvDxFggl/+Od/5osvX/P1u1/w\n8YMXZykfnRhusC4LLwnkdHxBSslH4zHuTsdSeldRBF0WwN2i+8jDlGKB2B3CMd6dcn4eepjtZobZ\n1Lt9TatFGVJCDtK3EnBpC9eyeIfMIEug9SftLN6NaN3YshVq/ubG0/zJ/SM2Yq1wJ69XNDSaFaot\nSJyRrSAIiajSw+QrrUHqxiUs7wgDC6Ofhx4wLLIgIZEkIGLEMOwmI8PPZasBJNNWY3vsCsN+foMk\n7y5tjkUNxAEkRP8c+f4kN/N7IgQ3GZl4F2bDJeVhu6cyKRg5CjlttPxK0YppwVhcZtKRKSkeeuHT\nqC2wLtqTLfzZU2sBU1Iv0GA7bzCMiWk4ECxQ221HMayrb4zMhFJKHxH2TrVV0ji4g701dPLnMkC0\nyBAKDI2Asdb7Zr6pZzK6Cz46MLr/9LUVQlQkFoYRxsmLVYAUTgSGTtV3WvqGy5F8IAVAPKuPlNDN\nLBPzC6f8//j42QqpZblwiUeO3V7rtNG+kKqzLbb0cOl265xGrDNKNv5mlIEhQ5VIaa1DK7s2IQ2E\nMDiBVn0hn1MviOLgTilxN5dpxNK2YPbPUVdEGyGaaxvwil7CQhDBkqLmBFbodZE69r7qTLO665mk\nYxasAzzdHbADUxycJt6JCdF27kkzJVbZd4gqykYBLKURYsCYd/3Jff5evc0ezB2OJu7K6K5FtYJZ\n6dW5c7q2sYjRNWmeh43C3h0ch4mUYV5XmhZSPO5OItO8dwqGPKAhEPrnWbUSCOQciRWaJqZu16at\nWA3EkCj0CAHp7soEt1U5HBLT9ECQYddeDHnCaNzmmUyiUqGPRYSEaUOCUTUS4yMS/SFEMNZ1IaH+\nPKiyQ/kkePE2Dg4lbFU6Xwbq6pybZVmQ3EgMO1/MdjjlSgqZeblwmPJuA05xRMQ/o2olDomom35K\n/cG2VpblmUlOPMSt4Hc9n7TqELyYqDtLCcY4MJczra4UNdf89esbVUIeCBJpyK4vacvC4+tXxP6g\n3MZfANfrlaenJ1698n8/n897h3Icxz2c+Hq9MgzjT4KAzYzT6bQXLQ8PTug+HE6s60pKQ9dN3Z2A\nw+A7domBoNo/06bJgmEY94fNsqw7s20Yxr1rdrk4M+vx8RXvf/AolBAC4zhyu912x9TLrtTpwfVT\npgEZ7gXD5XpFYiKXlU+fqo/+U9dWtQuXy4W3h5Hrpw8MAaZpQ2pEJk7UtaGlUvSeQCAon+ZnHmTg\n1owff/zAb9985ee7PdPef8uHf/0/IR559+Ytt6sXUvPlI9OYyTaxfFrIjw+QvQNoHz9AjoTjK/Jb\n4ftvfs9Df7A/To8kIpfbmR+//4ZfffVL0qZ5skDKI2aN3AunbXOwATW3ke0+huvnM7+4TkJw5lru\n37FhLzqG4k6xHZEROmfLdY7N7lTw7W9ECUz9N53Xjr2pTqifHgOpGbHVu+vYXCPk3Z6M2Mq6dte1\nNua6onVlyCfXZ23uYa1YWPr6VpBQd+t8DAohddxOIOe0d11ovpYMMVC0oHZHCqi5HEPwKLExHncn\n4BY50qqH9taVffMF1SUCBmvfvFufuJQ6Eyw68ibZnaGEa5SCBEJwNzqSOpJB92sxhkhOEWMlYvf1\nrdU+DlyBCyHa3qlurVHVaFVpTbitK6Fuv7cgzUdwTi4XthpaEhRdGVkJYaTUG6WvUXVNLLPuOqey\ntp2eriaQAlPOSCg0Kzv4WvHznSyQJiEWodStOBXqal5gBtfqaV/bRDKtrq4t1UopjeP0qn+HTJDB\nx9E2OAevXxcijZAdXxNSo5SVvFHmU9yfjX/p+NkKqdoKy3plyL4QCxkxQdWZMqVFpH+8WhdUa5/h\nH2h3ZAYBcysrmcfpNdIq56svpq01NIXOKGk0bTxfnwB49fiOmO4AOe/W9IvNHLRpmr0Kbm3rjCLi\nBYGpEoITULeTnEL0HDYDtb7D2C+MgqpyU4/98Pd6kRdI9BGCOjTzJ7C30HlX+3+9teLNc7KkIVI7\nk2VDRlifazv5WkIk2D22Q7ViUalSmduNIVWHdwJJ850Gi9+YFjaIXEJXFxMHDTu8FOA4HUghssye\nN2hB7r+TCKLe5RrGCDoxxc2uW7Dmi20m0bS+AKAGxAJlKZymzJCPO2V2TK7FOeSCNmFpM+vq1vE8\nHEgpkDjgjLYrKffX1QmrjaXMrNo4HtNeDEpVVCrFrsSUSGHYz3etBVPPPaQYltZ711QMcfYGKRnr\nesNuwmHcRruNcThi0rx4C/dswqYLiLkomYFBI9o7oOtcyeFAiYlpOpKHkaV/nhwT8+wsoDFlrC20\nzvSqSyUNR5IF1qDMpe6ahqhdyM39QbZdF941clbQ7XbbCx1g7/yF4Hy20+m0Fyfb66Zp4uPHj4gI\nr175vT0MA8uy7OPDbfy4/RvAWss+NtoewLXWvZtkTX+in2qtcTqd9kJqGAYOh8NO2t4KBDPjfHax\n+daRq+uC2YExZZ7e/8jbt18w9XNzroZW18g8X25oa3z5zq/TMbrQfu7dmWguvvaLuBGSECoEabS6\ndvqybxIfjwNNleHVW/743/8buXO8Ht9+yXgcefjxQv3xd7wfvmRKXpw9TpnrbSYdj4y1oO+f0C+8\nqFvSkfxP7xmuhcPjiD2+47vf/99+XZSV14fIw+kV51vm+/cf+fKLt36ev//GgZLmHLuUereETVMp\n+3lOOe9CXe/Qal+bsgun4z1WSs1RMkNOqBr2Ao2gzdeQTR7hlIy7Rqq1Rg4eY1VfMMqmYYQVlrLy\nfD1zvl546jrHT+XKrV1Bi0cqtQTbCF49ruTT7co0+WZs+5ytNZCVKM510hiQ7SEcFAsVbV48T+l4\n79apsJZ5Pz/abvsEI8hEEEMoBMm0Ji86WQ51TWRnz9m94Km19lzA2EXdSq2bgFtoxbqMwNlJW3s7\npeycJJE+lTDSGKGbrEwdlkrfdKsIbcu3i4mMQU2eP0thwbu8gj8/WsWvCY37xtxEPZswBKZh+Mm9\naK14c6BeSdn1w33YQlmN1sK+xjQt+1QErG+wIA09gmcTzEfzXDx1ofoYjdjuI9jeGkSsEUQYu9yj\ntUqlEiVhCim4/hc8Ty8Gdci2jM6clE0Dtrq0IAiSlWiNNN1jZ1L6twupz/iDz8fn4/Px+fh8fD4+\nH5+Pf+fxs3WkVJWlzAxLF2smYQiOZq9klHHXNgVVtJ2posRwImewvjOxUMAySRKRjEyvwPw9W9c2\nxR6holZ2Z0fIvotf15s7LaLd7ZUpY0yIGIZj8fc2rrpYOKDEmBjGuAPNYuzWTFVshabizgK8A4R4\nl6gS3JnVbbc5JlLwvx/HrXPU29vSCDkQa6bMs7d4N3S9ulVTghBCpOkdOthapZRKaRUhu+4qj6Tc\nOxZ1YanCIZ18/hwg7HRYI8vYu1LmY9ZNYyARSRFWHwnFGPcQzlrx3WgMjgkQuyd2N/WYHPFZvkhk\nG+r7zkYJfa8mBLZLszQIsjAvPiMfpnHvAMYwMKRMCq67ChYp9dw/S6eVW2YcHonz2cWdeHxMVO8a\nLqYOi9z0BZ6cQLMVbc8MyYO0AQKNtXShejUszhg+almtMoyPJJloOOR0uV2gk3PDFCj2gRQUE6U0\n3bVXWX2HGYMyxCPtNu7XxpAzb968Yq4j8/mG2ELq+oPSmp/jGJlXpSwzPR2JaXS7v+TMWipD9NBf\ngCmOHEcPShU2i3K/9vtOcwNoukbKd6yHw4FhmDwKZhwJIXG5uItsCz8upfRxWuB0csFtSneBsv9v\n+omxY3NsSgwuWO1dJb9vGmDc5ivHw+kFZR7AOJ2OrGvZO2IvY3A23dQ4jljzAGJwXWW5rcQgPJyO\nXM4fOXbt5OPp0ccDRTk+vOX6/J569e7ReDzx+vU7luuVsl7JAtLNK0+fnhjiyuvpkU/PTz2LcdNm\nVqIp51p4/Yvf8jf/8W94+td/2l/3+osvmOKBH37/33n75d+zdMPE93/6wPGLE+uHZ4Yh0cpCjR26\n+eUvmOMz8fZMPDaOrx/5lf41AL//h/+LV6eTn491IUrcO4dff/VLfnj/I0YhdTdjHrZOxxE6usLP\nve70/q0zAT3jEA/M3UbJEjIxKKqFVjzi6qVl3MyI5lBeE/bXYUboUUNBIik0dOuCRZhvV9bzhXWe\nmcvCc+84n9uZlRUNYDE5lqF3bIIpQ0hY9C5q0Ts5XSR6h0cbQXrcT++QNLz7k0d3j4c0kjb5QdfN\n+firEmJEtxGdemB20IY3lJS25d6FTLAjqBC04ZEx134dhv4eClJ9NNr1n6FFoCG1m1uMXRccVRmz\nEMJAKa4njsGQF/rQlN1x2yTsEwPwMVUKza3+OnArC0gPSM8+5dDmQnizA7qNvkKj0RhCppl0Ynx/\nzxYgFKzeqOGGyHSnpW/ogt1yGPag4C3k+jovHMWTS+hCdM3FHYcxIVERreTNCTkMSAvUQn9vCP15\nEZJDkpVClhNRJ/awYwmYKCnHPnFK0J/PBFhvjnSYlwsxt72jKnHgfyKR+vkKKYsFs2dKb8dG3hHH\nNyQZoFWSDd2230Mvw8T1emYc/eGytSq166marQQRhpR5dfLF5rLeaLU5OdvP9j6Dvlw/0vKAtoJ1\njlOPDiKWimT1trZlhqiUvTjrY0VZCSETw4sA1qrEVGnrlmgNrZdgbuWshGgejCgzg/WQ4C60pzai\n+A2CbCNBIQQhBM9zslL38BjTO+5AAcJLvYOLkjMBM6UVxdKy04azRLQ2alnICWoVwrYwxNrTxLfc\nQd01aS4ad2oslru9dXO1Vf+cScihuMJqK86ydqt0lxOq0dgWN0NDhTiCCSbNrbfgTBnJ1Hrjtrzn\nizdfIPYyeoKuY4hkNXJv8dY601omxeKC+HRi0T5asoBJ5WGYSJqY7XuWso3oAq24YF4ArTOB/jpg\nroVafSRc+3gXoFHQtjDmTKj+QDcxrjcfJaOunWpRUG7kJEgX8EtWj/kpxvXaCA1eHV77+WdgiK9Y\niwHLrkkBMFxE27bR9zAyPfhDOKcjpRq1j+NSHkkdOdBuNy6XC+PDkdKdWHub/oUuJqXE9Xrdi55h\nGLr7RoFwFyDjMSw5Zz5+/LgXYeO4Leyxh4d6geOarE2o6n97GyulIe80+E3wD0JZK8/1ecczSAzd\nah94eHjYNVpbIbXxkLYomiCRrV5sGJIDpsZ0ODKM066RUjMehkwMQgqN4zR6Tg+dKJ0jjw9Hbldl\nqYUemceQIvW6sEpgGjK3y8rt4gWYQ+cMRTn/aebVu7eMR/99DxHWp0+8fZXgyfjwu9/x1ZceTPzD\n7QfeDQ+E+sx8vRGJxOdr/xLK9B+/5vv/4wdOZhx/c2R68Pd8+/Wv+HT+yMFWkJUPHz7xfY/b+vWv\nv0bEOF9mpmkivHCK1Vp37MH2kLNtfY6RlHyTuF0TKaVdC5SCcLstLraObprZQufdBeibTMuRmCP8\nRI/ZN5EIcblQ+2a3rhULwuPxREoZmwNLf2Ld1sB1PnObL9zqyk0by74yRjKRmE8sOrO25uG+QKAS\nsm8Qh5h8ZNWfM6kbVEIQkgjCutPERZyt5+4834RtrD+L7jCl+vjIcLE/gNXQdVIgwQt6+nqiVBx5\noy6Cf5n3mofuwq3uV4qO3vFv55sdQYmDOCE8CBK39bS5PKWvj2pC3AwzITkx3m5Uq45iiJtzzXWx\nprFvFtXd60ArjZgjKQh58LXe9gIlQhipTWhl9WD5zaCxDiwL1Nq6saGfMLorXAKlujZqHPx7A0RN\nDESKLbTqz+3UNcyHKRDUNdO3c6O0hbbpjUUwXAuFBbQlUt0C0taHAAAgAElEQVQ23rLLV7TO/u+b\nTMYWPGOx4tmJcZdtBFvuWqK/cPyMHamGYpR+g6ewENsFN2MkZ0r1HUbVQGgHhMJtPiOHcU+eTqmz\nS0KvSmMmh67NaJW5XmktO8CPDbblguFaFy+sRJhi3KNHJLurJUp/iLdG6DltvrM1nztrIafA2O2z\nq3j2nGRlkEBtsmsBmknvwiSCCU3bzjbxgNstx801Xbb9NFb8LSyRZKSFF7Zb1CGbjIi6iHCzI5tu\nwkCHoEkw1mJ7VT+myXdXZWNvuBYMfPxc19W5UuLxMNufbK0SY/Kd6hZ62UXTQYQhJ1q9YKr93G6A\nRJ/Bm3kURGuFutucjaRG0CsmeZNM9te5G0+Ccr58oGjjOPVCqodDCYEcA9ESce4aknLhenvm4RQI\nMhDDyBBcdNjWM8FWzBqRicSR1vwBteDMF19AG3VdSTt00ne4axWvqKXtIs4QPVg3tpkYc49/GHYO\nzW0+M+YRqdK1UJG8uUIYPc29FHLOjON0X8Bmj3AhDKQUvGDo4tDadUDjODJNiVJXtgbvdVEkZeLg\nmo6Q0q7ZWZbFC9QcSS+0DsCuNTIzbrcbZrbrmIYXcSKb5fh4vHedXjrqXr9+vRcnOXtH6uHhwS3W\ntb6Icrnb6r34Gne91vF43EXiqvoTt99hmvbPPU0T8zzTWuOhd5bMjJxd43i73dwduGF/xAGxpTuU\ntk4awOV8diZVd+KKyP69l1pdX0Tg9PCK83zjcvHrZsyJ8TjRtKLNGMeBT7N3T26fnqAqSVaWBvnw\n9+TXnrUX1ifGh4m5FR6/fMvv//EfefvlrwD44m9+wzqfOcXMMUUudeFk3UX3L78j/W//hTf/y9/y\nzX/9r6RRmd56IRWtUq4zMjYeHh6hGD++987pH/70Z9fHiXC7zL048PPSmhHEdSubWD/2rpo/7JvD\nTMuCHSZERm7zxl9LaPACKuWB2B1+ABI9BDjkjG1rx/ZjtOYOvhBYLxeYb2z5WNGMaRzJMZNzwdJI\nqh3TccnkNpDaiNQzS7vDOqUHza9rITP5QzF2NICUvtaCaPYCaBNim3fgHKbcUMpeLKm4IzrnzDon\nNxGFbTJw83o/FsSkb943fU3rG1HBTN3co1th7qLmLVppK2D9fHseIGyi/7srvDUltM2VLb0TOHtL\nCXZNkOuOzfWb/bVWfZMYZCBo9aJn27SK/78YI9hP4aFq5s/jqCBGHiKbbCjgRbCYMs9PtJKpSy8W\n28i69MxXcyxG6k5faQIWUSlcL4a0w651EmaM4FqpVrvj2c/NkIXx4Nm24wQUuUOKO9y3tbWjOMZd\nNxwt+PO1VNd1WUDZnnkNDUrTCrFheMC8v7Dua+dfOn4+IKcC2SjWicJ6IZgLmGs9MkRjM/WbCiFk\nxnHkcn3P7VY5jo/7G5kFaEqTwhDv4rIcBzQm1iZoqR4d99K11rxfKjHQNBHTJn6WTk8fqLqgOuwP\n05RC53WsngYu697CzsM9YT6kwQMgddsJSaeQR5p5t0s2Ui1KtOjWW8luEd5cguZjSTFPpxbJOzxS\nzQnPQV30aejeilUtvtNqsXcQ1Em4fbxlMZLiQGtGXSsxvwiorI21rcSkNBaqtt31E6phnVRrnV20\n7zBkIoZMSs2TwrXthQTBR6uQCCmSJe7dyGbK0oRaZiSshDRyF7ubM6JS5na5cr488erRHU/eGfKT\nJMkwEbYqUxVu80yQyGl69Bu9755FpcMChWAR03FvNyvC2B0j2hqmK2vY8AeJhlGK7xwDjbgTg3Hx\nsa4Oq5NEMgjbCEMN1eT8rWF0YF5fwBaUIU2chkeynSiXRlm7AFQjIZy4LgvzfGXKaV9Ql+oslPl2\nY7ldMZQhebE4TgeIAYlGHgaa2N55IEQkZqZhZD0cdlo5dDTAuu7uvK2AAS9Yzufzfh+EF9l2W7Gz\nFXYvQ4JT8uLMUQexC0+3EXM3KhyPDMPwk7+3jeeA/TPugcbcCy0z4/Hx8SeuvJRSF0ZHHh5PHKcD\n89WrzKln/vlI0d2wu0i9Oa1dQu+FqRG6BXzMidutcL6deXV88AW7+PqVfOtPDpGqjeV249BZSTJN\nzJ8+QXlGa+XpxyfefuX0cv3xW948vuabtmCt8J++/g9887279r7+L/8r7UPl8umMBRhejzx3xtS0\nDpz/5f/h8W//mne/+Ypv/uEfePe1M6YOOfIcG/O8kEX58hdfcHrwB9v3f/qOuS3edUnZi4bt+hbp\nWXveVVIz7AXVfvtN0ha6Wx2KCmBivVhNtJ2k3dcwzI000TtTrZZ9Y6Y929DMWG4zkfaTrqKhWIAx\nD7zLI8Pqv9NjOvA4vuX99cKP+Yl0eeL91QvXyzojke4AVzxEondq8+Cb+DqjVQhDQtikGZ70q9oQ\nBKN51wiwJk7SD26wqa1SeqfSgrsJY/KCCbPdXeoVkJs3HKVS7939F87F7Rq/B4P3gic4pFgk7jgN\nbY1aGzFkqm7jJ2ELEcaMlB2/0qRgFvfPIyFRykJKAyFXrKy76SUEIcbkHSATL6w3yUPOTEMiJgfq\nukSj35tbsamK6kopRt0cds1dgeKWcUwDpVP2x/GAWsMwUhjBRsR8I5TCRBwGomVqLajVvenSWgFJ\npKjIFLB+jvzfHPHjBaln/23SBa1KS+2FA9KLZb9Gq0/ChB5oXvdulZlCX6/+0vGzFVJYwrklvvjd\n1gsSjiSMYguiN2LaTqovzGPKlHjgtp6Zo7fNkwwEGVhLI4iPnLZCKoUM8YGYK9oqs657R8pEd01Q\nUCVq2Ofhso0bDIjeCdiI0abmBZcEzAqtNmCbQVcnpHNwAKYZ9LZia8kLCVWSTCx14ZDf9r+fMYKP\nGENFEFJ3YKy2YFaA5mMvTWzDPVPv+CzNgXCm7BdJU/ORXodg0iAeos+hAaoHwg5JaMwEaZTai4mq\nvmOhomHFcH2TH5kUEkO4F5xbzE9tvmsbhgcsgq7GuvYHplWISkQRcUv+VixqhVp9fh1xRph1K3dE\naa23skPgx6c/8+7t1/33ffRgamvUtrhNVe5wwVILgRtjGim17YuU2kpTj6awpqAR6HEmQWi1EHKi\ndf1Z3Vkv9F1l8Q5jlHtMgvp4LsZIkL6zlD6yw1vTTQuRQFsVS5nci6zEgSkYoopeV1jtjtTQwK1A\nwjgNE2W53bs5MVNKY5DIcDpRmty1CcyAR6tY8HO6j+jiwHQ4kOLAcTxRrexgzWVZOB4nch6duzaO\nnE5+H95uN9eiBbAO19zeM+e8d7C8wEn7rnwYBoYh9SIp70UXcHdBqfbuiOyvi9HjaqZp4nq+ICK7\n82/Tw2xF1xb/snXrYozUVsg9YDlxLxa9M23dbs9PirMtkFnV+XGC7bb6FBNCpZWV+foJi0aXnRFs\notTIWs+OzkAQ24po+HT7wJiMSSoffve/U9p/BuBVTNgQeVgz8/CK01dHpu/+1b/D5cZtmpBl4aCN\nNs9stbAJHC4X1t/9E8eHE+m3/4Hb0wf/c5Py8OrI+dMzt+sZC8oXX3jh9q4knq8fEHUNpXf/to1Q\n3yCJ7kVt7Q+9EAISQx+nezEvMe2cPB87OYMqhqF3U7b7rfh90mpnCtn+cPNRcevO6UYLw469UWue\n6iE+7jf1YhagtpHEQhI4jCPHeuKywSzXwm2eWVtFQ6fjb58zJKYMNo4IqydjtK1YMlr0wHoNmaa6\nJ0ckGbAmlOoMvbJ2uQg+NjaNWCmuZYo+rfDv4OO12sC0O2W3i80iIbwAoaZ78Rmi+qnd1kjVXeuU\nh5GqM7auTrDsjYShf8cmQinerQrRcJhnX09MiSFTzIghE9PA0MsAa+LgXnUC/Zjv4/A8JMaQSdFI\nyfWcwjYxAg+cvid6sG32W0MtkGL2ay3cdbNIIaUR48BpOIIoc2+pT5IIcSSGRMxKa5f92eYFVSOE\n1tEaunF4WRdFyIQQd9yQpG0tVVIzmrWuLTbaluYRFEnJYaXqz+59rB2E9MIz/z86frZCyjUotncQ\nmiZKdYFhdKIUwTahm7cVSxVyHlhb5rL4jn2KkLO3WUWMeTnvWV2eev0KkWdGndDC3rHxHUKvQkMk\nWdqZEnkcCNHt7pL8ItiSXta2vCi0Qn8o9/Z28o61muunQgzkvkjl5LbYtVZqK0Qi626PTuSUfQyH\nkELa25FI9l2MuO28iXgBBVQtnYvnVb2Z7t/BnyeCNqOqs5JskB2QiUS0CYdxRCVhuuwt3mbqWVKl\nIUkRUcf/4zf0gBHIRBkJ5vN0oH8GA03EOJIHYa1bxT97ISKNtc5ETfeOYwg03MorURCzF3EHhjZv\nCQcJ3K6f+PDhBwDevj6gzXMAa51pq+7WerWVUmfW5UygcTw+UjeRfnX+lwRndom6xN2vmQgtIZaJ\n4uLQEHoXswZ8l6NAZMiB6bBR7VdUeldGquuhWiF3HVRMERqMsSMyqjF0PYAEoywLdS5kBoZp3AGR\n1+vMmF9zzJm5Nd68ebObDRRhWW60srKsN0xlJwNLUJpUIPYHFbuoNuRxf2iKCG1R1o5bOB6PnE4H\nrteZ4/G4M6MA5nn2TUXnDT08POwFzO1243w+O6IhO29qK8B8/LfRh1+c534fbtorxx/kn4wQneeT\nf/J/ACHFXVy+/TcApetrUkrc5ivjNHE4jNhayR1/UYprlvKUcfpz2rtZrbWdHO8aoIr18VUrCxFj\n7Kny63UlH7YHna8tdS3YeukYtLB//3dvXvPdh2/R9gzlxnLxMdz3a+bj+z/wN3/zH1nLhSer/OZL\n32BdPnyHfP1rFl35Ysiuievi9tIqQSDeKs9P3/Pw5RccXvn5Xs7vaXZkGo788O13XD4+8dUvfFz4\n9j/8NfYHod4+krNDhbeOyDiOxJzuYFRTwnA/F5uWrbXmGyjxXMLttYggUYH7pgxcA1mt7REpMcZ9\nzVQzf11OHI4najOW2a+3EIf+2oWKuTGkr1GXLTakrmhtDMPAu8c+2ozCj5cIHW8iIezC/xiEmIOP\n7PqammyDQjdu5ZN340PpmYvbBMOTLlpzCXJK0zbZQ2XusFxFkussJd7ZVK011loJndxfeycqiKMJ\nYoxULRSte5xJCIax+EhQjFJ9k+7nOoMqc71By0RJxCh3PaqpP9ukkvPoGKFtomACSbAaaDFzGB+p\nve1UbtU3+21G9ebd7M28ERJjcIaghJWU7/Df1mw/N8usqN1NT0UbDQFzc1QIzePQ8M7SeHggDw8k\nC4SwMq+b/MA8k3QYXLeWdAegLkufCAR1XtbgZibAnxUawQYkwDKXfXOJuIwnRe0b7raXR1r1BT9R\nEYSNpyuo5xX+G8dn/MHn4/Px+fh8fD4+H5+Pz8e/8/gZO1IAYW9/m6aOpl+JNgGNoJuAzDykUDyS\nIOVMrb7DqFrQOjOOGSOzlHW31Q/DQMOwmIi5kRnQ3bqjOC6z+BwV8bYs0JaVMA6kmL2z2vP/wK21\nZV2JSbrgOu2uvWJe6UqYqa0R43S3Elskqne6VgqXTxWJXRl8DJ18fkTXgCUjct/RmUUkZO+MmHko\nI94u1qYMXXToNv27Dqiqoq07RySiLVKWLnDO4roZDUz5QGsHauhZdKVQe9s71D5G2XIBdSEmZVVj\nCkPfiXe3SHKOe1mdsq2iO6rAE8ldUyUEpwrHLfQyYuYCS9VIjNzBi9WIsQCBWr1r9fTkTrjj4QuH\nriUfG5VadgG/2kLVj7S28P75gsWv0eSfc52v1Hp2OvPgDh/2SJYIMffd6kBdl93YQBBicNeoptDD\nh7drbaTiwdpq1YGaEneNQey/TIowRc+J2gSgc32m1plxmIDEeZ7J/fs/Pp44Ta5bkuRZYLdrD9j1\nYDBKLd6hCOM+2qy1EscD43RkKQ6DHXr/O6aBLb6jlLJ3g+Aey9JaY55nSn/tdj/5WM81SYfDgQ8f\nfJzkpPOB4/HIRjjfOlLe/YqdNL50bMa9M7V1llzXpHuXC+iaHeHh4WEHhW7X09aJijHu/7slAmwx\nMOu6epcp3WG04Hqvbazo2ZrbvWau24o+ylJk757kfn7KOiO9u7BFTCzr3KEFjfV2YT4/783fh8OR\nd+++IKeJcvnAlK6sw5f7Of329/+N0+nEr37za77/4x/5cHbZgqbAaT4xsvLNH//I6fUrWt4QDgOk\nRK3G5fkDTS68er1JBYzrpTIg/PKXv+Dp6Rt+//t/BOCXv/47Xj0c+VgvaKndXbZTc/fffgtxlry5\no9veCR1i7r9pYniBsVhaxW6V1i7eXcyb6HkzNfDi9+v3fvbfkf5bpKLkDYwcjGVZKOvqWW9mzL3T\n1XRFQmPKAweB23wl9ddNeeCQDwSEVJpjQvp9GLJ0DYyQGVwXtemgVJFp5Do/s8xXJFZihycTV0xc\nU2oEUsosncBO9FD5VhaW2rrGrq9fpVGrsJSGaSHyIpInSn+mCVrF/SsbwiEJrRUigpqhWpG2aSNv\nGMZavFs1ZZ9SaB9tHoaMqXpMkwppCLv+ldCw2hATYht7gHKfRGAEawTJHhHUIat+aQRMfIoUQvIg\n5v5bbhmbraiP01rYtbE78FrXvQO+TSkCkVxWTg8BXVvXnfYxY80QBGFAmxHSxLp06nspSPQINyST\nk2A/ec5sVHnpeq1Nq9k7x0PD5XC2J7iZ/1jEELqwX3swN/fr/984fj6xubhgbXN1oZ55V5q7rCAx\n9B9fQqBZQM3FcjFGhs7bWOpMZQFbGeSAEnYBq8mKmqBqHtVhibSh3sUIsboAu2tf4pYnV1xmmMbU\nWVKwnaoYvBWuzR16Id7HcOvi/JyQGoKnbG8PDK2g6mPCfDpCW3g6uzjSbgWZjDAUmhaapt3qGgI9\n5y4yDhlt0PqoQXQAqzRpDLEHCO8aKcEqqPX5eJCuS+sPKctIGFB1gnuSxDTcH8LL6gVBDB4eeU9t\nNEptiBRyauSoXQ8Ba1VK9ZRwVddpbWJIbdtDUQku/b6PdZvP8V302i2+cQvSdG1FzpGQI1oTt4uf\nt+fzjxymR1AvsFSV0t13pZ4p9RPKjeu1Muun/QHduFDsipmQbcJEds1GlIhZ7BEMAdvE4v4tiDEg\n+Bgatf0BnFL2jEhVxFw4PMToPzyAqnfX24JJxlZHTviVNTCmTAoBrYUU7jbgsGa0BabsKIKn509O\ns8cNDOPBBdjHfMQks/SR4MPDA8PxxLw0VL0A2BaGql2sKg9M04SqdjKyL3y324V1rbx588a1Ei8K\nm1I8ny2EwLfffrsXJ+M4duJ13Auq7UgpMU33cZ2P9e6Ou5QShy56X9e6P2i24GERYRzHPWzYv7zs\nn03VWWAPDw+sPR7KzHj79i23XgxuCfcAl8szKQVevXrDsnhht2uszF1rQxwQ64VT8w3PvK5M08Dx\n+MB8fmaeF0pfF8Yh8f2f/sAhKVM2WjJ+/NETFm6fQNZf8PDwFSUeqMONZXBTwKsvv+TNofDh/bd8\n//33fP311/z5n31D8+GH74lvXvP64ZGn737gxw/vGY9eDB+PI7d5ZcwTp9fv+HT+Fu3XxauHd9hy\n4btPH/jl129IQ0YWvy/e//FfOBwfOD6cMPWR7FYox3QvUnezQF+eJXhwsa99XQ+jlXXdXKkz1VwD\nJyIMMe3ROrX5SMXF0r0A3ca30jVxEjB1Llrsxdmy3BCD18cHbq1wLutOKA8SKSWw6MpcZm7rfBeb\nLzOVroMdIDXYnD0hJDeCpEwg+kZsH7ELU8pM4xfcho+cr58o122T7AXYNHmIvIgw9t+w2kyzgCUo\nZabJfXRt/TuGJCzzSu0xT36zbacgUor7x7ZCyoIQoo9IfeQd9kHUbb05vV0TEgNrq6TATmhv2jfP\nGHO5MkX2Nbq15jKDGkkMVI3YxrwicisKknoosuxoiKHHA6mWnvcq++YaYF0KIQyum+pBxOAmjIJr\nkjYuIWyjzchaOwNORscGbaP/EIg2QKNHAEXQU3/dQtxdmOsLcXk/79YlLUW75nJT93tBZChSKyHo\nnmGYUmK1RmyGh27fM01zOhC3Oe5fOH7WQipl9rkn7oqnsiL1BhZZtxOAz7aJgVqKsyC255MoSmMu\nFQvKEI6ULvRrJSIpo62xrhWQe2ZOgETAJKAUJDrOHmCQhCEUK24xjULZ9VqeEN3MKGt1+/t2PZmz\ndRKBabew+ykeUqJacDhmGshvH4ijP2zmm3++UlamQyDKSI6H/jEjMRrUQMxd09KL41rV08zVSKM/\nBDcniKpCSETzTl2thYoy9WzDIJnASJAR1UZ6URDl8RGpSmmfwKqzlXQT6bvTyTBu5YolYeoOytbC\n/8veu/vKtmVpXr/5XGtFxH6dc+7Je2++qlrdGO1hgIPRDjZ44CAhwMMAYdH9D7QAAyFMJAxAAtES\nUguTwmgDIRoJgTAKg+pSZuXr3nsee+/YEbEe8zEwxlwrdlZlZbVAopy7pFRmnr0jdsR6jjnG9/0+\ncpYmdBdSrsxNrKrMlNKuvYr3wxWSZwPGVJyEFgtkr50spygKEWWEVRsoeY1YmHHuXnlGzba7tCI6\n5ZFpHqm8kGrifHpkV/TGZ6iUMmvoZdWQaN8Kt2AD4lSPgqiIehV3G5dBTBPTStMdXcXNxkekqD5B\naoZatlPDAN5CbOGm0UZiG8J7t2Oaj8zzBdu0RKVpBc7niXATKUmY5guYyrBbL/7YktA1w24ulV3L\nvsNazucXcjF432ukxxoYa91WvKQmdF01QhpW3PHFFw8bO2ctXpZl4XJJjS+lGsW1YNKuULfFxGzh\nzuu+Maa9/qJh06+ceSGELYom56uDLsbI8XiklEIX9H3XgmfJysdai7r1PcorJpLmlHmQQp6WTaje\n9z2fPn1qeq7Asszb4mvNE1wzI61lY1fJS9OBdd2m7XqZT+28ucHmytPjN3S9PnBDK0xOT5+Y3AMp\nfyC5C2VOPD6rzm82H3kbPF99/VO+/fZbnu0LP/7JH+rP6sivfvVLup/8LXbv3lBPz+T15m7gfDqS\n+pmHN29AHhhftJP16fM3xN7jouHp+EwfO2K77rvhwDxX8mni7u5mQx0A+HDNXlw7do0wiaRCFYOY\ndm/BUIzZoIVSddHYx0gMQ1u0teMfggbJhth0RXbT6wmKC5DGUApGMQHQHvqok8xFx27fc5n1OL28\nvHByI+KhTJlUFlLrKi8lM5ezxs5bwQanrrD2OaV6dgfNklS33dppG6imxzjP/e0PGacj04uaMJ6f\nRp5Pz9SSCHuDMQXv271UbkhiMU6LxlzLNb+vOoKLUAvFgbj8yuXsSKlAVbRKFjakwtBFFa0XVKNa\n69bFSykrQ7AVvEtOWGdIZdWVOoLR673UyjgVfGNFbc7A2qmDtvrNkZ3IeBdJJQGmcZ/aM9g4nFO4\npx4ft3V6qmjBkpZCyU41ZG51GCqouhZdpFhn8M1B6YxOJl5Oz7w5fPFbmZ9uhaRmoRrR+JjGAYz+\nAR8vLOnU9uO1yLFOMQuIxVohZ7Zsw0zBG60hxCzEYMgrMkMgOs0stG1RLytzqjhcd10I/q7tr9G1\nl1ScvGa4GfCyqJNPLMV4lmXtuwWGruAkg7VI8JBbx0LmDSo3m4qJaksHKDVhsm1CtlUUvRZntTkL\nTGORyNWZ5xUqmUZNmQ59wPatiq6a/WaMohuWnDYcgTFQTMWknmwNvnfKYkJvMs4GkAjicfHAEFUc\nuRwK5/OZl/EjaTlizf6V4LYnUDHuTBZPpSd2q0AflpQo9cRlFrxzpCa2NiaAeE24JuOrkMuZ2mv7\nv+vuMFiqTFSTWfCr0YLeOJLteLr0JD9TWfDr3NM4SjYkayjlTCKvRAW8G7TATUUp56VSW+BvFYc4\nITZ0eK1Vf78dC73AM+IKORnCCgStjlqDriYQ+qGjtJuCqRbJCVt13VTkGlpsJVDKzCIjwoIVYZrW\nlXcBY7Et1Vs7du3Lu7WQLuo2wm807aUoz8r6EesCdrmOKkw1RNNR3Rl8YHIVUkVah6zWSFrBr1aI\nwW6jzbleMFHowl67eSWzIsq9U1HmNEGpgf1hYNgd2ufJDNYTnGW8nAjWbOfw5XIm1cL+cIdzPRVH\n1x3asdfO7mWaOJ7OnMdpKzKGvtfA6QJ39zpO+/xZw55fXl4IwW0F3P39zXY5W2sZ+j0hdOS8MC+J\nsHYkst6gpWr4p1Sz5SXudjucDSxp2kZ0rwGgK4ah3w3a6m8r9t7rg34tpFYx9FqErWwqrMEZixuu\naJLh9pZUKi/ThZvhwOl0ZmxYh91eC7qSMnsmHk9n5I1eM6G3nD+P1HkkWmHfG7pB4b963Z65edPz\n+dMTT48vvFtft7/j8ennDGmHd5Hh9p5hr99/zMKH84m9P3P/5pbnp+ety/fDH/0Nll/+GZ/Hkdth\nz5vkeGpYjG8fPzD0HWasPH9+5O7dW/pW1H77i19yOV/YDz2fPn1gNyTNrQPSOBJjx3mauHw3cbPb\nb+PpLkSC87ycTxsnjAZ5LKWSipopjGv7O5pNrKsQXpVCZKkYmwntOsVYslRsteD8BvuFNk4T5f54\nW3WEtM4A2si+lAJFpQOhFfV913FT9yxiSbMlddeOjZBJxxfmOmKMYWcOm1vZWB3lVgx9f4OvV/d2\nF3bEMKjrC8dd9wPKjf7sR19XHh8/8en5A+PyCGXCr65MDMZ2avP3cJ6fyG3xJc6QZaFmze3M9fr9\nLB5vgjqaa8ZhsHNbJIZK3O+J/dTMHXmTLdBMOVUqUrSjnyyEtfuPYXEF4wRTM0bc1jwKtmvd9Iqn\nkKVszEItqjpcMwVhC7Xd94utJPE4E6m5sIgGF0NzO2bDMufmUrRIY2WBJlxYuxqxBNu6IKloOsWS\nj5wsPNx9jbQ8vVI7rCws+RnjKqkIc7u3+WixOUDtFaFUyjaKsW5Nz1CZhAjb4loEbHEY6cE4llwI\ncUUsFfrQ4WLBmtimJ6t7uPsrxeZ/bYWUN7pSXEcf0na2lEBFdQourjbJTCraPsUI1YBtq3lbHQVL\nyc22zqIdHNR6aZ1Qq65ca62aFg368BRLrcoL8sHRt0h9JAcAACAASURBVKiEZT7rDBlHWhrTo+kD\n+r5vxZGh6yrjbCiLrlpi7Bh8RNmWQs7XVUTwXtvZorEl1rgtnPTgeu5vMsfznqfnD6R8IeU1RmBP\nKQkxpbVN62+Fek4+Mp2t6orEYBo2oSTBmRbFUQ3WC2Up26p16G+p4igpKTzcyHZhKNpBWodHoxvW\n7pELqmdYXRnTdMFs4w1dYc7lwrJUBeGtrJRmjV6lX2KXraa1xuuqU5RRY52DVoCJbJI3xBhSmhUy\nCEhNpGXE2qDtWiPY1SUZgjqDkyaqGyxrFILe+Kpac712M9YLpTDj1zGuC9qSXhGh62rcZJxX8vDG\n2UEBb9a0DmFzUdZVs2ar3sya3fo8nVls4x7VgrHgqtmQDJ1pAaRenSu7bsBby1KWDVVw9+aBLvYc\nX57ph73qSea1kDbsdzq6QzwhDtvIpOsdz8cTUxujDcOgbkB0nGKt5eHhLcYWjsen7e+tXaOUEjc3\nNw2QeR2Z7Hd7wDJNa/G4uoj0wTtNi+qmTN0Kt3XB4MWTUtoYVOt2d3fHskyNe+T/3CjRbQ/8lVm1\nFrarfd+Fpn98BSYOIsQ3b8mlnZPINfHg/EJtoE4f3jAtM7/+9a8A2O/3WCNMlzNjmrEO4m0DRFrD\n0+NH3rzZc9hFTvOZ86RFz/1hINcFYy3D/sCSEvu9nsMP797yyz/9U87HM87rcV5Hgnnq+dGbL5mH\nnhos2djtOD0fhc8fP3F72IN1nI9HZeigHbSXl2dEhLvbW15Op01XabzjPg68uXmgIu0hvTLUhG7o\nyVUhsIodaPusjfXWzp2uGqtGrHDVrNVaqWkmdsOrbFrl52lCg9UurlzHiNU09EzTxG5cJe+IroMG\nh305n6lhfZ2hi4E4JWIIhOKJuXX/ncV3AZ8StUJKGgcDEH0g54VlWQgx0cVI5/RYDN2OGHqG4YAV\nHRmPczv3+8D93VveHN/x+fQdl/Ez5xYd5AwE1yvexPY4uyOnc9un2sm2bh0T2c2VKEY2vaIPSuqX\nttOWacF5hwkWKHSh3+7BIoJ3Hut67YDnhOTUpi5aU/ioBUsqihjKrUBJi9EoGVF9MCZs11RpUTo+\n6LUWvDroQScjlEq1lSoV+0pvmJJOIxCnYfPWsdmH2zLUWDSE2JjtXCylYIJBpHAZjwz9Adfue+P5\nTHACNlHSwiLXv6cSDk3KqG3BuZ0zTs/NXHNbYFnqyhYsiWqa/IKEkMljQ0p0WrDvXK9zK3vYOvEK\nnX51A/kd219bIRVCR6rT9v+rZCgqQ6YWxCSWdjICxNi3FY8K0lfWCI1nFEJgkawt/xVKKQYvMCe9\nwKPtMFZvfJ3vKXWh4jC2/FaGnTWFZblgrMG5QM5CZrWcJ/oQCLEjOi2MFlZSq8YP6EWhnZUVGxyD\nxbmIZcDZHms6gl27agNucOyGe3bdG56OvyLV1ra0GbFJ25dScG7exkWJQnCeGHaUOmlbcu3IGLTg\nE0fnA9ZW8jJtsRWX/iP7uzfUCrmsETTrqk2ZPqHxXXKaqW4VJwghqMA+5QSmMrZVcioJYyzZFrKZ\nKclv48KUK+NloR86nC9UWTYwnTI/wFlP8B0hdshyhdUZU9oMPFNlptZmj7ZakFnbEuetwZuVa3RH\n7O61xS86ZbgGeAtKOLYKZrUJ1hGzKZTqcDbqGICCj6uOrzKOM6lWfAhtvr6eM5laTevcVWTJbQzd\nCkKC8mmqsrTEyKY7M0aouWAKdMES4o59Y4xJddz2O2RxXC4XSkq8e68cLRs8z08vqhPKGWOWrSPT\n73aEbmBeWi6es0i7KaZUGy3ds98fuFwu2036tUj8dDoxz9PWIZrnmdIQDLe3t5uBAK4aDP0+Wpyt\nnyWEjnlOm6apNE7N+t01asZtDKerrbpsAvNpmnjzZr8VZ6UUuq5jnudtxPfy8sLQXUcYIrpfXQjU\nWrbvUUrBW0cQcDGwvzlssMO8XFjmUfdpyQRz7ZqPx0cGH/ElcTw+8vL0zOFH+rqdS5TlwuOHE/f3\n9zzc7rm04u40XuiGnmkpmucWA99+82sAvu4jP/zqB/zsn/wTnp+f+eqLH2zj0s8fPxHvhe6wY+ki\nIydi08C9eXiHt44P33zL4/Mzdw/3vH+noNoxzbz74g1WKufTCyFGbLjytubLuMEWV7I8aMdxmqZN\ngC8NTaCnft3E+evxkVI3bpfxqoUJccC3kdmaueVjv41trhFEK3hSNKZLCla0W7OZAhrcsta64RjW\nsX6plbRkpNByVu3WOfZrZ9M40lIaSkD32zwJ1nSYeiGEjqHb4dozIfgdu92evrvlZqfX35L1GXU8\nHlnmmSHuue3v8f5q8Z/mF2IXsf6WcTzTB09JDSlQLsQALgjFLHjfIw0MLJvG0lDxTYy/XkSZaVoI\ntbaJR92wAQo9Dkh1hG7A95ZSE0tb0GMKJhdMzVjU0p/WrESv8TcYq8cul/Wxh0Y4ebwr+GiVZL5m\npVbV4Apgnf0t48ZSFQUUfADRLqVd9cbGbvdvQXl/K5PwNQJFDHx8+sChbzIRMcxTwfnGQ5Qr9V3j\nyRo81tZNxE77rsZYleC4pv1aMRVWBfxWqhb5r9hcKRWKT3BJ7AZP9HtMYwt6Z7fx4F+2fY8/+H77\nfvt++377fvt++377fvt/uf31aaSKVrwlr0nQWumSK9I6D6voMOVGkDaJwtTm5k0nRGmhw54YFT+f\n2gorC8w5URfR9mkXNiBl5wes7dSqngt5mUltrptEGFMmkRl6jw8DU4uCwALBYdC06rjbkZoWZEkn\njGj72rXx2IoGGC8ZZyp95xqw8GYbM2pMib7nw807rK08nzQKospM11mt4stCdUUz5gBvLI6IDxdN\n4IZtRBWc6rO8VYGfQQgOctDy/OX4Cdf1+LCjFGGRa9SNMw0LUAKGwGV6YU3bK7VgsoYyF1H4npTV\njp818LIKxgklpWteERbDQF7UoWPNNRw3hEjNusJKqRB7g2udBcmljY8y1hmkJsaWYbbfa1yO2AxG\nMFa2QOPd8JZi/oBcEqfxO4QFKSuKYm72ZHV31Fywpq1MZNEoByME34OtpKwdN7EVH1WvUOTCLgzX\naIKssQW4FiZqNTJsJRyXailGdXid7xFrCU3gPnS31FAJKROtI/h+Ww3lUrhcRiR7XAi8ff+gGY5o\nx2i/3zNNF6bLeYtoATjsdiQRrA/aAjdXq+9KUt4Nw5arF1+BFwEeHx/xgYY4eAYUcfD+/Xvev3+/\naZDcKxGrVM21OxwO3N7ebpokJaTr2DalxLDrXtHE7YY1ce4qdl4/526320CQrwnkcEUnrCPBUsoG\nD127WytFvY9h6ziv0TG+0xG75qfN7XX91gFZ5uZaW6M3cuKyXCjzBUvG2cLpScdw1SWGLpKWE0+f\nP3J3eEPfxOYFpYC73vB8PmKc3XRC0+kFN+zYHw48HR95Oh754r12lqI1nI8vnD5+w5uf/iG7+zs+\nf6Njxmme6aLnB19/xTSNKr4etNt8s9vx+PjIfj9gnEVS1lB0oHeB7BYqhWG44Xg8stnHqgJNEzrm\nq7CZV2DFWNjfOj4rRqPksnVpcs5NnHzd34CiZ4x2A16PqYyoj9c6C1KuHa9cmXPZ7PXeOmozd2Qp\neGvY73rmUnCT2UbwKc3ksiB1AWOU5i0roV0lIE+XhdDt2e9kk4kMw8Bu1zH0A7Hr2PWrhlM7vJ8/\nfsRMmSkF7GzYxRUNATkv6qLtBnVTtx7FkgJLuWCkEqLKWVZ9YC2uuRANnYmkxSFmaue2ZkMqNsBB\nZeu2W+exRhEqVixdHKi1o/MrWDSzzCNSM7YmxIZtNFVtJZuCtxaHI8sVx2CdVUyFc+AU9bIeO6NK\neLLTzlIp19F9lQZ3kUCInpTK5q70zhOCdsxqyVTyq+DgTBINOK8ipDRtwvGu65orsDl8KxtOw1lH\nkVFzL9tz5JpoIUDreBvBh36rMaAiJWOdVcNRrRumwhgBO5PrxHksSC94r4gSqXvWOJy/bPtrK6Q6\n21NtQRqHJZlFZ/bkRsUv2yim4JgT5NoCbM11NlrttUWsVlpDXrkgUsk5k7Olcwe1tW+900qMvb7O\nG5I5s7QdnqolGadW72XmxvfE9sCoKSNZQ2BDDHR9ZH7Ftlnb5LZxNlbtxjROSD3j7I4uNgFsO4F9\nMFAjadE5rTU9Q69aiFSeESnMteBEQC6U1m4NscP5TJ0XdYV5T1zZLVWZQ533OAqlCt4aunZzO00j\nx88f2N2/I0ZLMVdeUO97rBV23Q6ip/OB8/K57dMLuVRwqkOal7QJtdUNl1Tkbh3eO+paSFWjuH/r\nMFVxAytlPieIPiLWAU1cup6apgUdNwK1lGvxPU8njPHs+qgCx6ICS/0OO0L4KRQoGS7zN+QW+Gp8\nwRiPMYFSYJ4KIaxZSgbqgjP6wBj6ntSo3/NybAVbYZmPeEl4WcOlNZssZ7BGL+yCXAnOaBsaZzSu\nwlz5RJd5UndSVZZMmkaWFpUg1fL29g3USsozHz6MK/KK3e7A06fPYIpmzU3z1qr23rFMCR9i0xuG\n7fhO08Tt7S0Pb79gTrnp/vQ9nXO8vLwAKtx+fPy0MYXu797wox/+hFyW5hYM23jWOUdq47aHh4et\nGAFdJGlky4IPbiOmr1utbMLxUq4juLWAWou914Xi+vtuGyPpWHJsIcIvLy/c399vaIRorWYxtteW\nUkCd00TjGFtBfLmcqWUmRM90PhKcIO1eky469gtGMFSQcn2YjidKUg3YdBkZzxdir4VytZC9sBt2\njZUnzJf1HE6k+YkQHT94/57Hj8/0T/r9796+4WiEz5cn6i9/wxeHe/Y3ahg4n8/q1sJwd3dH1wfS\npOdMDirS/vnPf87f/Bt/iMXyqRkGukF1bS8vJ27u79jd7DZNlqll02CKAV7lJb4e660Cf2uvuY+g\nD3jnAsa5Lf0BoOYFKRrVIiIb4Rta2HGt5JZf6d31Z9soJwR8DNgi1HZdWFsYmrbxnIV46XBjKzRo\nTt+sRHCpmWC2D4l16lB8fP7Ifr/nZlDTj/KOPF3csx96dvt+i2q6u9lz0/X88puFYnqKRMbHdq0F\nS5onltR0O1JeBX0/8HIBSZOOu4xljeTxLlBTJkvG2A7JmWXV+rmAM5ZqlfNUqXi/Mrs8tmpkS6oC\n1RDwmxtQ8QXCLDNiki542+g9p4oXoVodK6oOdHUtenzQyJVVGL6KWkupijUwKu42xmyJFtU4nO3I\nxdE1vdsqvTHe00fPtEyYlDDitsUlbbyWS8Z6ZY2VVe5jLM511Kx6uiqyGalkqjhfNAXDGL2/NRGk\ntc29jl5nSN3E9NYaxHvyslBK04Jt9yHBmoSxC8KFOcn2nn10RLvn922/t5AyxvwY+C+B9+h49D8T\nkf/UGPMG+G+BnwI/A/4VEXlqr/l7wL/ZjsC/IyL/w+967951FFu2h3CtwlRmKlCr5hOtN7BcwdqM\nk4irveLwXwH0bAPJYSq4uoEOTRUMBSsB74KKgduJEbyuPr3r1B7d9VzW2W3NdBQ9kRHm8cLNXq3z\n2B01LRBQ9554+qA3N2c8yS8UknYqhG3laW3mfD5TqrrFQjdQbWyHUPVM1lrICovL63PdthWtFyzy\nW/EpYi6EuBAny7JUvHN0TTBvcdRU8dZi64psyptoLzi4jM9UUzjc3tLHQN6q+oo3kT70BBs59APd\nuYlxx8JMRYpVvZSPrEHQoFh/awXJiui34To91lrXaNByvh7DZclQF2LctSJZNh0YgFgPOISoF4Nt\n50WaWDhz6O5wsSNNDier4NRjfEe4/0OkVH7zaWLmV+1cS2AGrGlxJ83uC3pjMdgWhZBwLhIaLwYK\nSzpT0SIhzxPGrcfQa+q7t9jgyA1IWlahIzAXda/NNSHOUlJzJ8kJTwDTk6ujLGlbDXu7J8aeaZow\n1tLvIktz9nz69IkYO+7vDizzmXGaN15TyQvOeWKIFF85jxNr1XN/f08/7Mm1KqfMXnP4Qggtb+/A\n8eUzx+ORd+9aTtvDO2qFaVwIoWuC7ND2qYI07+4esJYtpw+0KzcvIzlnFamHfntIpqQi/ZKFUq/x\nLnoeKhgyhI6uUxfN6jBLab6CRKswTarlWvVdpZQt6sRa295nDSVvupsiuM4iZaZhtHgaX0jLyEhm\nenkkIbjWBfHWYUtimScVSadKbE/oy0sm1UKfA/vdHeM4sTSXke2CumtLYRcGbvZ3HPbNHi6G8/ER\nUwUxPX/wk59wfNIO4Gm8EG/2mMuJaBzffPcdfYsr6vuey/lMcI5Pnz9wsxs2bVVKSZEIVH7961/z\n9Y9+zNc//bF+zsuFftCH9sdvv+HNF+95/wPV3H34+K26wCRD0c5Sal3F1DqQ639ijMR+0C4SLdfU\neKzXTqBxlrQulIp2451TI4l3cQuIByjTpNEcIqQsVxzDKzu87shKbF3FWSxTySzVgOsIwwHfYsPC\ntMMuIzUroLmUhG33tr2LWkB41do+fv45N33D0PiePt4zT5X9rjJ0jl37mc2WfYggM+ZTYbELdmyR\nQ+ezFpmlUFnA1K1TV4sG8lbbHvjWbZ/FotePsyq4ds4TlpYlKSAmY72nmkKWuhW1h26HVEOtEWcq\nZq4EH7as2FwrxRWmMjFXTWZd+UyBiJcBWx1YdbNL+zw+Rs2K9R7nDbloNwuAperfFKNPdqMLVP2w\nXjNpbY9H9XKuLW5M1knLzkei2zEtIxd5bp9zxJgENmFtwBI37AE5kY0ukmqt6mxcTT8VOgvWVJzR\notP4q5YvpcyyzNSiANGwnWuq6cxaE1LEXKdCzmuxb9Fc0DRyuXzbXqeQ6N+3/VUdqQT8eyLyfxhj\nDsD/Zoz5I+DfAP5IRP4jY8y/D/xd4O8aY/428K8Cfxv4IfA/GmP+GVlndK82qVnZUe0nBQWz5Vyo\nNeG9I29k86wHq2ZymXHFb/A4zcbRljBW1Czw6gGtNvaRKh2hu/mtZPEYOnbNSj7PI/u5hbMuRwSP\nj8KStCgqbaUfQ49Bx1Ala4Uf4ioCjFjnyZKYl7OK4dasojiQcuZ0OmKtw9x37Ht9QBephFC1Beu0\nMFxzlea5UEwTm5uMNQbbKmXJM8YUgteCLoZBeVs0+WIX2hgOljSTZbm2ca26Oc7no3JWwi1DawFq\nrl3Em6B2WN9j99fOEvlMZkay4KPTfCYA8uZ+ct7QuUhpovHa7KSCwztDydPWXfC+Ups41Xu/uTza\nh8FaDUBNWYgWWpAZ2MSSM6cpcDu8x8W42ZxDVJeQtwMPN18ypRMfX7RbMZdnKlnDRsU0+OA6YnYE\nb5vg1pBzYtXZ9+GAs+pKK3XBuojbiuHQOiaFlCrWgw1XwCgFppa03tlIFxZ9+ABdNbjuhqXMFIkM\nfdwI3cuSmZLSuYehY1nyNmoLQQOFj8cjT0+f2e9vqE3IOk0T/XDL5XLh+eXI3cNb3n3xvp2nltP5\njA2Rrt+R0jV8WMGXPc/Pz0zzyN3d3YYxcE5HZZpbpuPyadRrdL/fczgc2pgtbKBMgLKszprShOXX\nbsU6ZnNOxfTDrtvGCWtRJyIbo2p9z2WZSLN2gBZU+Pz8+MTt7e32edabcE2ZYq4dDu895/Nlo7BX\nyRvC5O7mhmUy/PKXf8p4PHHThw3Gd6mzssyqMot297c8tA7R9PyBrh9IYvEmcrgfeDmrYURKwfcd\nkjKpjFQxHA7aBSFYRoQu9JRsmC4jt3t9z8+nj/z4xz/EG8+clTT/ctSxdloW0rywWMPD3Q1Pj5+3\nLojznlIrX3/9NR8/fuSb777lp3+obKrBGI6fH9l3PbYqdiU0xlTf7ZinSwst14fS2jVdg4VXPMXK\nHtu6h2Loet+MH0Yz0DaHnV5LmmHq1Fq1kq9Ls+Vav7GXtmWUKFbpGmp8zcwzKTOXwjktTKWSTCG1\nY5jQomNcJlJdqJI5t4WgIbDbKWfIWcvL+Mxvvv0TQB+gcQrEznJYLOMY2DVGno+BXDPv3r1nZmFm\n4Xyrx2I6nZnmSZ87Rhl16xhZxOCc4AksizrG7BWjr84955Xl5y3er6YHTSpInBGxWClcLtqt6c2e\nIdwgLenBWIckdT+u+9sRGPzQOIOZZVkd2V5NNEFd6SGE1U/QEAWC8+pmFXPtOFbXCOt5QQosJW1o\nG2sqeCEMnmiVxeRDQ1+gI3/vAtGpG241pkzzM4ucEZmx1hPcFd9ibKGUS2ObFajp6gI1skl7oPG0\n1gpDWrA2a55foZZ1bB+371nFtOK9vaXV0aULDmNrG1OvuX+/Bjnx+7bfW0iJyDfAN+1/n4wx/xda\nIP1LwN9pv/ZfAP8ILab+ZeC/EZEE/MwY8yfAPw/8L3/+vY3TuWSRFa5YW4q0IRhLLgXDSikGEafd\nHVMRCUjRA6VhjbpKMgiV67x0BfXVOlLlRNe9pQv6UPBuR9d1W7SEEbbV7MulQ+aJalOzuBdOi+oP\nHnpHH+/Ic4VsMSm3g4AeBKMXqT5w3DUUEei6gZwrj4+P5OK5u2vWWtcTo8e7HiMB62d8e3pba5mW\nRJWEdzNSxy1c2DlHdp7YG2LX4YjEtpoXyVgj6haZE9bPGFu3k3FZVHcg1nO+jIQYuWtYAeOU/ot4\nRAxVHN7rzf1wYygXw5Is1ap7b3X7YRJmHTsGCyLX7gJtRVMNIoFSC66dfjkZqskYMjUYjPdaaNPA\nbrW542xppPoVOTCTyplyLvhd5G74Ac60i8V4vDeUOhPDjvubP9is+t8+/t/M9SPOlg3RsD28O4dZ\n7/MtyXyF0jkXkNIRW4tYqqFd9wTn8NarGxBFHThX8LkVUqHDQnNFFUwZN0u2mJ2666yh6zu6OJDa\njX9ZMjEm+q7jfD4zzRe6Ts/T29tbTqcznz9/Yn/o+PKrr/j8+B0A43yh2oBI4O3btzy8/YJpvnby\nrPN4rwG1KaWtALlcLhyPx1dQRnl1A7J0safUzDiODYOwb8f7WmQ555im6ZUGLjRMAVsrfgPvNYdV\nrbDStNe/p5Ey4/YAXwsuUBhprTq6X1lT0zTx/Py8/c2+7/Vz5YnSfheaA61W5nkm14XOVy5tLGYx\n3B7ueHP3lovxyHheEb7MSTu6hsrLy5ESLT9q3/Fmf2COnrwUinEMux1vG4V8ulyY51GDchFeTp+3\nYw+e2Ij+wcFlumy4iZxmfvXzn/Nw/56+j3h/z7nd3KUIcz4zp5m3Dzf0fc+psbDu7u95eTlzennm\nyy+/xDnHp+90fPdwf8u+H0hzJpuKKUJqD2jdL4bgQktouO7vtaBd2V4i0kJe14JB968LK4DVbZw0\n5yOG2nQmBjGvIMa1KAC1VozoQ30rsmul1Nw0SJoMsEaPxNDTOeFFhOPxM8/jiTEt2+uM0XBiUwq2\nJsyahDHPxDggVXW3Yiqfj7/Rz/mtQawiM/pTj7UeZzUCaT/o/c8QuD3ca4zMre636XRmnE/UMjPn\nGXzZFoKmCjZ6ZGm6n6LfGSD4jpwrSFW3c5JNi6Mu0oq3A3POVKs4HYDLeaK7ucF7fU2pFmnBW6Da\nWWs8USJWLOdl2rAKVbQ6taJFr7V2C+mupmC9ShtSzm18145ToYURO1JSeHRYgaRt1K3xMRo0fZ3E\nqP5XF6zQhYHYCqldv2cpR8b5I8ZowPE6Tst10SmKWO3YWbs9Z3X8qPWD96Zp9a4OaBGjk4tqtxQO\noCF5AhjVLjsvW9FujE5GjVUJhqNX1yKQ8pnzeOH3bf/UGiljzB8A/yzwj4EfiMja9/oW+EH731/z\n20XTL9HC6y9uUrZoFaDN3g2awawn17oa0r9fkSgYBOcq0nZqqVYtpeb1hd2q6Jq0AxIMZT5R5cww\naIvbB43WCNHiTYfZZ7rUVmbDDbO8kOaCdZ4Q88YFmZMh+gi2pyxCRgmqulWsN1RTcSFS0qL8IiA4\n5XXYoDfIj8+/ITftTdc1u27XY6QnGHCytrd7Qjkx15F5Oen4crMOV0Kw9N2dgsxyuBLBTQDJOPFN\nqL/g7UhaV32mqvhZKl4WxtMn5ja+fPvuLdNSqGTEGULw2IZqKDJhzNIE1aFp1VYabUDWBPhW8Vdz\nZdRINZSs4LxaHdLm4d51FPEs5AbhY2ullmwoVsWXCs6r299bsmIUShq5XC4ceug3OKgBPMFbvM/E\nOrDvvgTgi9vEp7MwLk/bWHjLqFsy0s6vagu12iamVGaZdTeUekZkxBqPbaJwqUoSrmKwLiOmZdNt\n0TMBOwRS1yMLUIXQUBVOIvt+YBduMAUuj8+49W+aTm9KVTsnu77bxneX05nT8ciXX/6Q919+zYcP\nH3g+arGw293RxZ7D7R3O93z48HHrHtzc3jK2LtH5PGKc5dRI5S/PR0IIWAvTVNnt+41dtJKJq5hW\nsFTu7/WceX5+5ubmht1ut3WC1r83TkrP3u9v8N7zcnqmiw0A2vRPOa+i0/zq4Vw2AboxytNaC17v\n7VYEruT0w+HAc+Okvby8UGvl7u5OLf4pkVagnzGEbkc1mfPpyCgV0/QX1hSc9fjdwMMu8vTNvI23\nfLenpMzdYWCcEi5bvvuoppBxnjgc9ux3PUsSUknkVV+EjtbH6UI/7LDWUZrurMzP+EGLvWVc6LsD\nQxsnUSzn85nz+Gfc3j+wu9ltOhnfQbAHvvnmyHff/oYvv/rhtmibp4nbux3TuPD4+YU3795S2/F+\nOY7arR1gsDcsOW8xTtSK95HgrAqKq+B94y/FqBZ0abBTH7jZ39APTQeWK1UUM1BpvKiV8WNtA7GC\nWJVArPcp4wXJhdjpWOWKR9Cittba7h1N+7J13AuHPDDWCw/7QDZhW9QUPyH9jmRm3DRSqzBvWoFE\nziqOWzMUTNun3338iDVdE3ILxk1k0QL7ob5n3+9Z8oxURx/fEqJmfva7jn234+n5mcwClI1bZozH\npkIMHTU5FfGvi+RicbWxtIp2TmVNSghW9zU6GibXrRtXp8rp5ZH97Y5AR14WMsqKAyBndt5jzQ0L\nQrEXSkNRFCMo5c6Qc8GWBXe76rlUc2WMAynadTZ2QAAAIABJREFUPTX6uizKxytyFfDHdpw6q2O9\n5TwhoRD9gF+B0k3DZa2nykLA4zuF2GZ7Q0dP1zum8YiEazxUWlSTV4o+Q6y9FvXWGrou4IKlFhXj\n500LU9tkwF6nXdK4XaXDNR2uHhuz3feFxNB5ctEulQ/mGhHjeojXWuR3bf9UhVQb6/13wL8rIi9b\n6CIgImJeM9r/4vY7f/Y//6PfUKkkSXz1Bz03v7vc+n77fvt++377fvt++377fvv/dfvFn4z84k8m\nQIvI37f9lYWUMSagRdR/JSL/sP3zt8aYL0XkG2PMV8B37d9/Bfz41ct/1P7tL2z/3N/5ilwXllbx\nLrVQ6qJxtsaApFY9oqsXozA2qQa8YRWuaBbaSs9unQu7uuEg5xFrBest03zZxjtbJVrBREtn9/Sd\n/tuuP3BJA6meqbbgTd3amClPPI+fOHRvMXimRShNWDjsOgIe6606I+o1Pqai40mpPdZBTi98Pv6Z\nvm4Y2PV7+nTA+5FU3DWctX0zWw3VWIWIrmn0PtB3B8T2eDokB9K0ZgdpL6yWC8kIl1KoxiLt83gX\niV4zBL21SKo8Pmn+1939G6IbWOZMHweM+NbhgWAjMeyoxSImaX5gq6u90Tl9rQmxllLmTeSoZgCw\nvkBRo7LU5oTEIpIxLbTWd3UFm+Ot2Yi4xhQFb76izNaqhPQxXTiPZ/b9XTtnYss6nOm6jrNP+BZ6\nedh9RaVSsmVOF3Wo1LX9myl9pRdHncD1FVnRF/6gLl9TKaXDmYhtlmNnLZAxoh0ba3S/rBlnzvRY\nLJ6K9QNBOlzrSNWSMDXgSyDPQhfuOLQxsyPQdzekKdHFA/vb3aYxMHbkzfsvef/+HR8+fdA4kKb5\n2+/3YFXDNKYLu8MN+1UPuEwcH5+Zhh3D7kApmtsGLVnd1E2A/vbNF9tKUK+zyvH4xPPzI+/fv28O\nP7bg33EcN5TB+rrguy0LL0TH4+PjdgwPhwPn83nrYI3TNfduWfJ2HZxOJ25u9r91XUjRhZi0EXJK\naQNErt2wy3hmiB3Oe+Y2vqtG8DbTdz3e7Xl5fiS1sZA38Pj4iV3fs6QC1mNs01g4w8uYKKnj/s17\n4tBvqJWVSJ+4ELueVKxSuYHzcSajOo48TTy8fbOBJR+fnulrwZwvxF3PMo2bTuTu7g7jLM9PR5Zp\nZp5nTCPXx71SuN+/fc/Ty3EbxwLMNXE5T9zc3FAw5OXaNc7z2vUVbBC9f7ZRoqCiXknqnE0psbSw\nY7sezy2bzJGWcdOPBReJXcdSVaQerd/o1jWXZjlXzZOmz7cOQlHMo2nuOCNyFc46i+0d2Da2yoVx\ndW4V/cRDDDw8PGBudozt3na5nHDLha5GUu64TAs1rwT+hLDg/YCxVp8Hm/2/8s3Hn+l4L3b40Km4\nGkjLC/c379jHAZMWfHXsbJNCiIfYkbxmRXZZ6FfYrotNGwo1gBWz5SVKBWMDgna/NS+v3Z8lYEzG\n4XD0eu9vjuQUKqkuPB5ndvGAdx0mZ1hWF2FUPE8IOkK2jtD0xpe8bFmoGEe2VrEUgLdFHdviKWXe\nonl0vwmljJRUIRmCDNSGkzHBk+b2XJKq3fMmv+jiHu/VRORsp+BVvxqCHB6hMwPBPjKW5+3ZFuOi\ncVmGFpxct5aMM45SEnHosMYyTWkTvlep1LLm0GonrKTWyTMeal218YqDset50UjrNqqQHsMP/2bP\nD/9mv4Fe//Ef6b3ud21/lWvPAP858Mci8p+8+tF/D/zrwH/Y/vsfvvr3/9oY8x+jI72/Bfyvv+u9\nFwB7zTGzZDqsYkhrpgSzRR6ApjTbLAhWmTzthJMqqgdyLXPLetaj7x3UUsnV4qznMo6cZ90ZN4d3\nikaQqoWSiQytNbrf3fAyHxjLM8ZoIKTJ7XN6xzyfMTh23YG0JOZlHSUeGAZPt7Ma/mjm7QHtosMm\nS1qgZoOQyFUfXuN8IZiCR3B05GqZVwehtZrEbRymDJSl4Ju4/Wb/jiHeI66jpkqa0+bcqFmJwdVa\nahKKcywpI2tUQXT0FoKsidteR4fAx0+/4eHNTxAKS55xvkPaDQxTcX4gdtoaDu4qd5CyEq69MsBK\nVas/NOu0wZABR6iWKi0XLU1Yl6Do95gZWWOsTBSMd5t2QqG86yjRsVTI5UysM6fpkf6sY5F3Nwcs\nXqN1zIKLhjqtI4yBff8VpVQ+HX/BnF82AXsRWNILvT3Qm54yT6y6yVInjTcwhZIC2YVtjl6rB4PO\n150Fq1Zah34ebyNWDGIsoe5xNZAbTL0aR7Sa73Xoeg631wy7y+lMSkfyJBQKy9Nx01H0/Y794ZZf\n/OrX/PzP/gTLtQBPqRC7Dqyh6zqGYeDcHoqX5xdC9AxDh7HC+eVlcwRdLheCjTy8fcf9/T1d3L26\nuUVSnrlcLsQYN1ceaGbeOI4bZ2hFGeixDzin4cfWOEoWZqNFzWU8EaLn+flEiBo78/T01L5DYhgG\nDQd+eeF8Pm/6qXmctr9xOp149+7dFWsAGnbtDGVJzALB+Q3xkMtInTLLdGIYBm4PB04bu6gwX2ZK\nWhjivh3bxoJLC/uhZ55nfN8jzjE33IIRdQ76TiimUrJf82eJ/R6SxXWFPE3keSEM+t43b95QponO\nwjxlxPOqkBy4u7llvEx4o0Lrp+dj+3uV+9sbbh/uGQ57LuOo+hxgnGemcUGs4YsfvMe9GnN0XU+u\ngnNBuW9FiM24Mxc1XpwvE8FphFZqBd9ymRoDydH3PSUvjM1VCRp90vUHQtxjbSAtlb5vsoYuIOa6\neKXkzSlW29zTOUvFY5ei4eCgI6RSNFi5ZoyUzQk5iaca1c2kvDAtGR9a7ND+hjJ+RGY1IC1GNrOQ\nFCHXGSdRkyBeIRyss0gd+fa7X+DtAe93hOaENAmOxydyHAm2w1XLPugxfHN4x8v5CRs7lqkSjBBW\n4X8Ymro5MxcNmfd/zj06p6y6Im+vmB0pGNFoq5IswXlcbMgfRpxxjOPM8+XIYXfHwe/xm4zEUaTp\nszDsfE/H6gIeNdQZg3U9MV6LxZIL/dBjqsMZT8nqRAUdFy8pUxdDSS2aaS3c54KrGtSQ5jOmFkq7\nZkrVkb7zGtxsXdgSHRTfdQDr8OyxeU/Kel9Iy2ey5FbcqMvONWeekCgVSjIoSeZq6il5lURo82JZ\nFmQdI6OLBScV5wRj64ZiWHLBeFHEThWKeS0Rqlud8pdtf1VH6l8A/jXg/zTG/O/t3/4e8B8A/8AY\n82/R8AftxPhjY8w/AP4YHe/+2/IaNPJqS4u6jlZUgZeK9UKuiSozDk+hgRBRzYU+QAVqe3ABaWlc\nE1c3JPwqeNYAQ4dhwVghG+Hp/A0AD2/eKXdqcRhnFRTWbrR9F+j7jlAimRkjeYNgljpTi3Bajvjm\ngFhvfJO/4KKljs35Za7ZYMslgwjRG5a0IOKuDhQyKU90tm8gAbMJyovRm0zOBZHA0L3j9k47Cze3\nDwS7V1ehg9kk5ksT6Bu9ONMyIyhzqiLMkxZElUznDcYaSlIRZW3FxMv4zJCeGeItc5mR5QW/ujfy\nRK2J4FV4mIvZxOahndRGMim147RaVp1mSlEqximLRORVpIFxyKaby9tDz4vgbaSIYGp7t1eOGMRT\nSiblEWMLp5Z/Fcxn7m/eKrTOWsRcIYilThjJ3N68IUvi09O0xRUJlWUJTPWFbqcREyt/CDtjTcAW\nS98FbPXrAl07Fya0+IZKMSctKtxa9GVK1tc5LOPzxMo67LpAKZlSZvrDDafTkbGJG0sp2slq3Stj\nA+vOGYaOjx8+8Gd/9qfYYHi4f2DfwnC7XnP2xvmCWMf5fCYtV96S9U17VBUwejw2vUe/482bt9zf\nP9B3A9Z6fHvQvpyemOYLxgr7/X7TN4GKeOd55vb2dhONr+YNjVnKpFS27tGmScuZENymdwohbEXd\n+XzeirWu6zidTlshtUzzq6Ix8fz8zNu3b7ffv4xn1emUSvSRlDI1r1b+GWeFabywTBP7Xb9xhlLJ\nxE5dVFIzfb9jaQDY9QYRY8THSN9F8lbYjYzTmUjAJRhiv13Di1RdRdtIZkKM5fGTdn9vb+8xIfB8\n/EwXFOS4Fq7n81n5OsGR5gWLY9jv2vefeH45cnOzp4owHPbchvv2+Z54Pp+pKTN++kzcH7h9q45N\neRv4/OvfQFJ2zyrW19d5as34LlJSVnzKxi5S63gXlH+XS0G4whxzqiyp4MJI7PUBvTQnbHQ7TGNQ\n2VagrXRYF7w+9UQt3LWvmxbE5oJZCmZJqic1lc5fXbIJQ64FL4JJM3Vp7DUyrjPYZNUlFw2hNkxH\nNsy5gMytsO82HSOoO3SehF/9+mfEftiMHT9490MMnrQAoRI6Yd+uya8efkJJmTlP1LxwPn8itIv7\nZgj0sVNDRFpIc972i/iFWifIqkerAq7lmQSv+kp1HWqHxDVHX2d35JSw3rDMlXnJ7G8cK0cqUXAo\nzyqsweztPrTr9oRSCQUIEe8itMW111aMdnWq4Ohx9lq8SdXmRioFI3bTOEtZEGNJDWGR64Kr1xzR\n6h17f4O1kWAjq4k/V4s1aiLpfCTEA1NuEWZideFdX8hloYonhLWDr7DuZSl03Ro9dO0Mr3xC6zRr\nL685k+hCF6PRMEYE0zRpNReq9wQxGkiP2xbXxv5/LKRE5H9i82//he1f/Ete8/eBv/97/yowjoIx\n8UrTtoI3gmGhmoCwsPY65jSSyqKCc6mtI9UujCaALbmFxEra8hJ989GbainVUCk8j+pe+fTyG75+\nv1Popmj3yrZujpiCD9B3njEpk8e0A1VzplZLmiae60cONztWZWFKjtNloo8O6Tpi7LANWna+HMmM\nCDPOVEr1mNIYJX4GcVSj4sRaE3YtXIBpmqkF3ty94c39V3TNQeK9x/uIrcK8ZAwzaVnpvokpZeal\nkKpDmAm9I7E+iC44qUTvibGSUtkypzCWl/GzjkckMC3PBFldH6k59WRzYV05O77RdEULY+sorAWo\ngjopqDHALuvCBOsCtQTUUl/A2Hb8wVivgcRiyKIrrA3hYJzmFmIYL2e4rZQ2MjhOH+m6yCE8EPxA\nFybG1X6VFTpYauV29xaRwqfnX+iP5hGPY6oT1E90fr/xcGyoWHSVFDvT3GZtZJJa17AV19bu8cZh\n1t64WRTQWCvjeGKWq2OkXBKdWB5uD1wuR47H0wr+Uhih9dha8S4S+n7jBVmj3cNh1xOCwxgNdwUt\nwH71658pxsFFvNuxv9EHrY/qquv3O3zs+MUvf709oH/wxZfshgOHwwHEsNvtmRsE8XK5gFFH1DDo\n76/ju/WBvI6EnHPb59SFho46FZB7dbru9wO11u13SylbRt+yLBv/6XA48PLyvLnyjGhx1fe9dkha\nd8THNvYclRHmjYrSHeYKl8RSUiItE9P4gsl7+vaQev78EaPYMr0XYOn71pkqjrokvNfu93Qet5FR\n3w+kPDGNCzVdMPtCbLlhQ+ioRVlWEjqmaUFaZ+X48QNv3r1lf3vH9HLGOUu3MsSCYWwFofOelEdO\nZ11c9l0k1cSUFoZhaCHDLfdvf4cJAZcVSLjMMx++U/XF/bv3vH37lqeP37EGPq+F2zrODSFwenpW\ndpl/FRYrmVJce1jqBC62dq312g21jXytGJB1UefU3BONWv65Csql1ha2nrG1kI2onZ7WwRJUelCF\nnMt2PZkmRJ7HSYGbXtmAoF2u+P+w9yZNkhxJluYnq6qamS8RgSWRXVndVTP//78MzaF7qLqrqzKz\ngMxELO5ui6rKxnNgUbUAUec00VxwgZ5A8HB3c92Ehfm978VR0RiyMNdMtdv7VDfl1WTd1Em558Lh\ncU2IcSDnmT//+N849HftECfG5+8wEmhZGAKMx56+0Bw/fPg/SBUcnr+YSK5v/Z6xeHckhsjjYaTk\nxutFC/N1flWmlGRKUZhxLh2ZgSeEhh8slKJC/h48vImk3ejxNK7XC8GPxActNEKzWNOd7AZ14g16\ncibnsXPBWTA+gnc7Ssgh2FpJNalTMsu+UXTGU6VQpfU0CB0vgjpoi1RssOqib0LbO8OZl8snljxz\nGt8ho/mKUB7AjRjv1fXsHHbuFzGqSF0q1Pyqget9LbUmIiaTU2XrGpXana5FtNNo9H2oYfabM08h\nm9apVMjYSvgqmLg1dUYOQaGppt1HvvbvVUH7nfMrHUszxGYJbOr+3rkQ0XgVGsboCyyLIZeKsw1B\n29Rb9Io0SzBK0m1VIXlbQnirTWNDiqdUKNJIvXX48+tfeXr8HZMfWC8rzt93ZmJaj79w2D4m3gsC\nuVGbp+K5rTdwEPtIsKQFXwTrJkKLgNGKH41BWS6v3PIrxhgCDuk7GoxVe6o4rASsh7pj9Butapjv\n48MTHz58Qwx9Nm8Mw2gZ3BO35cqPf/2R2u/8amCp+qJtLdNIWHOPXpmco+UZaQoxVbCgfp7SGst6\n5Xx5YYgnSkmsPYTT2YqtDrEVnI72todGcsO5oN2jDV2xjW6t1YgHHGuZEVfwfYdvMLSirCjnf8nR\nymUmOgcoZ6aI2+26Bo/3AwOOy3xjTQvTo2qkpCYuyxthOGkx0nEF+2GU5xLkyMP4A9uj8Hb5iZwq\nzSbIDXew2K7Hk9LIsgIWWQTxleB767+zTEQcSMTbA8FUXNzYOAtiKrmsYD3jYeR26V0wcTwcnjAN\nzhcNU93mQtEPmOaIIWL9QFozw6Dn5qef/oPr9ayutKY7RGP0vP/40yvWarFxOD7z8HS6a52kIlYL\ni9fzhRAC336jxtvD4cDpeNrHc8YISy+kcs4MY+BwOGCNxrNMk9771+v1F0TyYRh+0TH6mgH19vZ2\nZ6+5gPR4ohjjHumiX3N7l2oLMN6KIURYV9W/bXTz6/XK++4IGoaBtMzYOGjMUEecAMzLzGEcFMWQ\nFhaEoReGlkJaE8enJ0xzrOv9vbCssmMhUitU/B4tY5zneDz0IuQTb29/I3bt0enxHdNxIgzvOJ8d\n+XrV4Fh0ynG9vPH87gOHMHDtHeXtPBorlNw4nUaFnO5jv3XfyBwOqpv73Onl23h1LQtMI6dhIvUN\n1utPf2E8jLhg2bpfW0e9dMv70pETxrF3I0MI5CTYDqM1RplH2zX3QUeP0+GoAcli2XpLxhisEd3l\nW0AqpQfs1rliMTjbdJRlpj22A2MQI9hoidZT15m33nGuZmJpUGuh5QKmceijvcfpUSNbTOkFnXDt\no+SMgh3t5hDsHZ/tczZrcBRCsFyun/jTj/8VgONpYjCG7x7/AMYxr4nQ25jjw0SSyncf/lE7yD7y\n5ayh1GSDkQPOTYzxAXvw+KGT1NcPvL58xHChtpVlPdN68TnnM1UCoz3oWM+5Xcs0p5UmjWrBeouJ\nwi3PHNaO9gkHvHF4F3CiTK9NYtGcIXqHwyLO4saIZ3OuJUoRPAOVQsYifVRGNpQkeBMwwSvzbufE\nVfwwcBhGshhqS3v329nGmhJpbZRseMRj/dZdd4xhIrgjwRaiF1zUzV6wjugNUirJJKzZQov02Rdj\naWYlZw0iXtcN4aFTCuM2dINg9jXI7fIQdsfefWBm0A6mNKPsrq16sob21b/7Xx2/YtYelFwpZhOH\n6s5UF6OEMUFjGEB5Ps33IsF2S3r/Oc1Ri9Mqk0bO7ELOoLFuCFmt8hhMb9ddrl/48vIX/NNEbV5T\n3/NGOXXa4sza3m9S2eJ6WouUWtVOaoQ51XvFywi1IRmSaWqz7i+aKR4o4yMpL6SyEIem82L6BcZR\nCmTb8G6ih7UjMhNi4DgddKwhZQfdTcOBw3FkjE9My5FSYF76Tvf6Hyx50YgAZoy4HaCmhyVE5QTV\nqju/TQBqvIEizOnSEQeG2oeOpS0EHK5ZatFz4Mw28++5eN1AIO1OhA0xMoRIjQaWhm1t30FLs7go\n1ALOKVV8E1SLVGqmz8I1myr16+tUlETwnhDhcnnh22e1f/o4IpI53z5xOqoFfjzoA7y8GFrZKNmC\nt4GHUfPNBnfi5eUjqXwm+8RaMuPWqUO1A0KFOrOkGYbejQsPmDBhmbAtEs2ENYLvBSHes6w3HZ86\n/Zu2InuwAecM12tiOpyYxjv524jB2YEYjnt3Zr3pojCGyPjuSYGdDYY40nohPQyqgQkh8Pz4pDqf\nfv2v843W4FIq5/OV9x++5fFBi3NrPF/HtZS67qnyIQSGOGlOnfccDoedXbSN86bp2OGZ4z66dq6Q\nc2GaJv7WOyNp1fvp5eWF77//nnX9TGuNGOPOUdr0NxtNe/tcAM47gvM7QX2LZzq/6ohymibebjPT\nEGkt477K43LO8Hp+IwbL8+MTeV546/iH4+MT9e2F+XzmeHjHulyYhj4SrkLLgguFMESlkffnwltH\nygvBWU6nE8uyqM0eePnyV5Y58vzN9zw/PvHz9UqXpTAcD4gYvnzR84BR5IGeU0WPxOD7yHPdgbuE\nwO1243pZOUyFGAce+jVcVx3DWBN5e72x2JkPH/T+dtFyW659nJpQKnJHyZRCKYk0L7Rae6Za16VI\nQsQwTmOPvtI8tU1j4hl64aebmCrsoxhrNI2hpY5FsELt4628rjhjEGe00DWXXfztnMPGAWM0DWIc\nHsi9M35eV27LSmmNYjRCZNfyhZEpHil5ZognTsNK6c/pmpOOkZtu5GzQDa9eX+UR6ZhIu44//eXf\n9TrFkeGfI2M88HB6h8Htz4UEIQ6Wx/pAfv4eFx1DLxaurxdoI9E/0CQSfOTDey0W1jkR7TOH6ROf\nXn7EmjuGRcTQamFZV2JwiHPYXigO4URZHFISicQ4jpRUOHfWYfROOVGlMIQJI3bvLLVOOTVWES3e\n3239rfZYJ6Mj26/Bua0aFSqJ4KzqizYJjXeBp8dnhmFgLUELqd4hqlKh3pjTmSVdSWWFPvmJ/gGP\nx4tDSqYqlrv/TMcQBqbhgdv8RskzsY8wUlNot/GGdUmI3EnytdYel2Z7piPIFuNlNDpGOVNVN+07\nsVz/tkol14J3DrdDRdmlPX/v+N80rH47fjt+O347fjt+O347fjt+O/7e8at1pNa5MgSD6eMkWsCI\n4KwjNYOphYLudjQvMSDdVdLEYTrBuja1Oyrt1EDNe6htQ0XU1Vlyalhvcd0iu9Yzr+e/EMPEEJ+Q\nfCcxG6tgwFZLxw0UpFfRuQUNQjGlU5pXLDrz/vB0xBmHEY9pgZLc3gUwduA0vSelQr59Qsxtn7sG\nJh1xGBXG1WR2ncjpGLHecZxOxHDC4LvzTXdsU3jCeQXejeHAd9/8AMC8XHl5/VmdLUQMllb4SuDd\nWFrBBY+PB2oumC4sFJRqXGsitQXLkZQ3suuNSiRYDaG1Rtu62/nOecFGg2WAJnfwnrFYH4gxEILr\nqej6Ne1AJPw46i5fyu4y8sFhmsOI1dRznApTUZ2ERc0JcfLIupJ6izd6dcuIVJb1ivfxjiLwkWVN\nIBbntdshPUJhChPx+cBlnbiuf+G6rLtLcLKi4ms0FBSbqPXar0XA8oD3B5wNOBMJw4j1HYRnNYQz\nlzOtXnSXuFkTSdzyTHQHGoZ5nnfxs48TYhr5OuM9lJT2LhBSuS1nbPC8//Atx/Ed57NqiA6HA9bC\nOJ4IQ+R2Tdw6rPLT62dOp0ec0zHdcTqQeydzOsbe+SuM48Cy3KN8Hh4e2LLrjscj1+t1/yzTNH0V\n+ePvOXioXuF2Pe9JAuM47l2nnPM++tvAm5tgPOdMShprpNDN3qZF9Vrv3r2Dpp2zYRgQkf36hz7+\nvby9cDiMzHneQaa2GIYhkucFaw1xHPbu11oa0/jAfPlMml/xVnYEwPH0QCmNt/MbJyq1ZqS/o3Ip\neDwtCS5M2HCCpufG1ZV0XvjLbebpwzd8+90HPv6sppfLbebp8Zk4HHh7e+PDh/eUfM+3q7ViXeoE\n+IFwumfUHadjp7m/8fT02GnYAIEmgdPpgVYqHz9/5ONHFbc/PD1RupjYA7XmfeTrUAmF5m1UYrA7\nDX9eFx37rVu8llLjvbvrdkpJLDdzHyNtFANXcD7SbMEYS/AD46Cj1DHeI4GwBhPNHsptMeq+ElRP\nO0WOXfzezJlLTrzNFy6lcrOWy0aE9yBWEDtgh8DhOOzU87AOSLVIAeM9rTqM7cJoCdp17LR1iyP0\njs0f//jfdczuBqo0ToevQmxrxlvHFOF0OlDdB2wPbzwdM/M802ojjP0d1C/TEE+YKRCiocqV15cF\nBtVkTXFiXi8kyazSyF/BncEphgaLsRqHsnjhWvs7erV8O0VObqSm2gHIvWMTtetl+pS1pXXHKlgb\nEbtS0rU7CmXvnDrn8HGgFU1uiNFj+vt0Gt4zDd8oiDNoxuXm9sx1YbUNUxO1JdU4Gu1Kn4ZniJkm\nbxjjyKVhepZkJVOL4PAEO2GxtA7dtJIRcbSsYFZ1g+thAEzrBiajAO9e5rRWtNtmLRidnhizBRpb\nalsBQ7WNEA3bS7gmGNzdofy/On61QqpkmM+JuF2oUYVqqQgODU80/eMtkjG5UIwFoj7o/UJRnJ6U\noilv0uw+uy1FBepFii6aolZ60ADZT29/JcQDT1NBXMLU7YRbKjNLe2HNupBsKIaSi4bTYkH6C2Sz\nUOaF58cn5SRVS5G7wHUYLdhAHCdiHcklM3QGEdbhQsQwaHElA97oTWrMotoesYDB2sgY3wEQ/Ina\nHDVpZtbtdlP/PvBwfGSKE61abDzS1kqVTOltzoYoeVgapsIQhn3hK/0FXmoj5xUDlLppnrIyoLzD\nsgVK6qjJ2EJpK9SI90dtVfeFRorX5PHR4MOg8QS9NW6mgVxWvCk4ZxFzZ4PlRenyOuv3RB/3kZH3\nFoywrlccjllmbouSpo/HI1JPYBxryeBlj52xaKaTCQaHx8ewjxlzarjxyGPQmIXr7YXcBdzerNjR\ngh0QHMa13VZ9nWceTg2xldpGah06H6WPN/A0d2McIDdLcyviL/1rD0hLVKmkuuCao3WHYUn6uWtR\n/eAyv3LrupzWCg+PBx4e3/P0+IHlctt3fQf1AAAgAElEQVT1TN4Nmm3lHG9vb5wvF15e+hjOGOKz\nhswaH/boD9Aw3JQWxinuOIOtsNmo01sh9PLysmukNobUFuUSY9wX6CYVHxwlV4JXZ9puZe75e1vh\n5brLcvssIiqgF6lEH/Yomx9//A9ePn/hm3fv7y4va/eMwpwLgw+8nT8johEz89xp4iVjmgZsn69n\nYvEcp/68oWaAJloYaADqRj1XHdfxNGGtI6XCtM8GGlKyspNa4jSNzGx5iYYxWtZ64+e//ZHfff8P\n/Kcf/hmAP/3pz1zmxDffHUjXxs9fvvD8Xp/v8+cXkMY6r8RQcQ5SL/imYWQch369Em9vb0x9dO2j\nx1WPER3H/qcffr+bEK7XK9IMl/ONGAJezF0Y7HWUNjrHusw453j4ikBfWr9WrZDTgneO0AsiMQ2L\nw2IxouL4bQzZTKOahCVgrG6INqeJsQ5XLc0oAxDLbrQxLkBrSE7qrKhtv6fiYeKdgYMd+Hi7sl7f\n2KZUa22MBGZQc40bGYK+h45TI4iOPhs9LHhLEfCOVIpqttCw4NjXzywr//Nf/xveDNQfGt99+Eem\ncdO/NlLxBGOZhkhuM8ZqQfQ4aYbk5fKm60guRNsF+tHgxNFujuPxHbkuXK6vbMdoA75aUluQpqwm\nPZ/qWqQJDYvp693YF/uaMi/5C+E5MPgRKQnT+t9YLbgNUdKUBbY9p74pkf+rwO8tI8Y4aGsB1/R+\nMZHnTtE+jN/gzYQxDs8KtuK6rtS0gFzPODnRWDBW9vH7z8OfOR0jvmi02iaOB3UvNgmI9YR46LVA\n1/+2iBQNulYpQ9ldezqSHLoyagvO2cTmWnjWmrGAN24fTYs1eGewbsAZT6l+1+KOLP8bz96vWEg1\nMtfZ4Mz9xT+6iPdGwytN2AeP42GgSqHkoungWKibrcYhsnYNjwUJu/0RCeSc0KlpAcNde9Qay5I4\nXz5iTSaGw+4kklZY5UZhppSFdV21EwL6EsmCIWoukFEXCsBlvnCYnhhDz6Aj7C+p+ZYZxxHHwBiP\ntHWl9l1CjBFnJ4Z40peZ3IW5rSY9WznThsZ8WzkdurX2IbDMF9Z15nZLLGtm2XhAfVEztuk7y3lS\ndh1u1nds0qiSEJHu7urnZoy6Q18KKc8Ys7Bh9UspiBeoEL3H2XaPmJCqDjdJiF0Y/IGat2vRaCmT\njSeEHp1iN4aYwtlct7zS3N2WKgoEMQLGCiEGRrt1MQEPwyGwrAUTPu5WdakrIpFm1Ak4Z4Ptt7t3\nPbdQHJiBWtiL9sEbctUYoIeTAVP2wiUXjy8W4w3BR2p1951e04Xae6MLgWgxLR3T4ZzTv9M4XIzc\n1i+7AymVAtkQEWIYkGpUfwVQFiwD0R0Ai7GRcdTf+fh4JMaIcQNvb1c+/vwXYtelIJqbZkzm4+cX\nrvOFLWjxm9/9wDCN3K4rQzwwTUfGvsPOWQGX43Bi6d3L2+2X+XU///yJEJQntCEOrtcr3numacJa\n+4uu05632MrefdLdHz0epuwBuCmlvajbhNDGGFLSblUY9GsfPnzDX3/6C1+c4/3798oi8p60dXPW\nlei8xsa8fGaaBg69WKpJY0KCtx3xk0lJXzZDVLDo6+2Ctw4XAtI7UpfrCyEFHh6eCH4krQJxe4U2\npLUulk8Y7xj6Z221YK0weRXgf/70Ce+0QPn9f/4HPn36K+u6cnp+5OPHj/uzf3p6ZL3eCCFSc2WZ\nV0IvMq/XK8fjkRAC0zTivWNZtFCOzeOsJefcheSy66dMf+7iEnh9PVMwPTAc5QIZwYpGaBlzD/N2\nPhDdSBt1Jy8l01r75TUOYMIA1lKauQfLiuAt9Hh5qgfZireqHU4rUNeVau/2dRd0Y9WkUlcVpfuu\nnZyGSTuRT442BmZnKR0Oe13eqCwMMdLygVoLx0n/xuAca5hY58SaE0bcrr1hS0m2QjE937F3v61v\nXNKVf/nv/7fej5L5/r1GTp3GE9YWjDisd0zxAaGjGKxOFwYflEO1VNzmSPaKJTA2YogM8UjK+n1r\nWnVjgW5yU0r7BqNV0c2Qsaw5UzCdC9aLF+dYSuHj9Y2Hg8HSGHqxGCRA03j51vMR90C9rJvMrUss\nBkoXVzUDOL2mpRkGd2IcVev1cPqg626pCAFbKsNB7/235QvOBZa8EOKDntO+zq7pwpfXH3k+vVdH\npmE3oXjjdWMuBRsiEY2YAV0LMpmabor+KZlNNL7x6jRzT7tPpbc4W2s9D9WhxZfcddigIfSuA6ja\n/d4P1uwd7r93/GqFVE4L1phdsLeuKz5onpYzAeMqqWpRMA6DtuiWzMvrSk4V33fszg5gIVfpGTv3\ndp1BbaCNRTWV7c6KmsaB1gJLXfHpTGmV2C8idqXKlVJXqihxll6geGspzmJNVNdGyyo+Rjtgn17+\nxu+/OxInLabCZg+vnpINiHY/nBvuLzDje5tcA2tjOO2drFSEeb2RSlX6crvy6bPGHDoXyKkyzzPr\nWkhZNt2kIhso+KBoh1oEj9s7PcYIzbRuk/V9B6nf22gMPrDGwtvbG2ta7gs0ESGRqqaEG2P21PbW\n0P5Tq5TyBlhsxwN450FMXxg9Idzhka0WBKficXFKim/996UMGM1DbB6y7NmG1g+IqHNnGAJiDnv4\n7PV65eE0UfOCc4aK33cfTWaMTVg3dQEze0dKd3gKanVOXWlCb+PLqkRoE3FG0QFt72Jm1lQ41MwQ\ndZfeckXc1nkBUwOCxYhnGhzVazFR5kzwnoilZr2Ht0wxFy2neGCwkVYd03TYX6jeG5AKJvDx9QvP\nz4986O671883hZsusz5b3jF2W72hcb1eGYcj02HoKAv9mZfLjYeHBy3cW+Pl5XMX5cM4Rn788c+I\nCN99p1yirVujX+8Oxh5MvI3KSyms69qzLT3O3UfXW9jwRjb/WlCuBO6eRC8R6U490A7Jw8MDKSW1\n/juDs/eFtoWmzt6mm4SSE/Gkn+9aMyE6vDUsayOlvCcetOp4nI5agH15I8Z7R67UtAcyrxS9Lwc9\np4paMIgN5LTwdj7Tm9+0UhCn3TIvDhs9c8/u9BJ4eHokrTPn25XHd887BHHosMjgBxClPG9ygNYa\n8zxTWiP6oN24XoAuy41jD0wurRKc+2rsqhvU0+OTolGWFd/bLimtvL29QSs6qjoM+98+z/p5rYB3\nlhhid6j1BTo6wjgQDxMujNSqbsPtcFhscDgf8O4Owew3DKaLxW1nbm3nrVVRJ1WFIndm39r03XSZ\nZ66lsPQQdug0mqbdFOeCYmg6/Dc4i7eV4CJh7eibXrjVWpFgaLZR0OBb1zYO3MQ0rtzmC//P//i/\nSLLsXfrvn/+Rx+MjtTRsbYQx7OdtyQkrlsfHZ+2uXhfS0t/tdsUPERcDJgVwDtPNSbZoaSBGeUil\nsHfccIZWhVwbxhucKBpi25g658nSOK9Xiu1FZwc8DwaMb5jSneneasceaLmoU7ZlUn9X1s156XQE\nXkrBGmEYjvszPExe18XSqHnA+UbYEAfZ7SHl0Q8MccC5Dqk2hcv1E8OgbrqcE6Z/zhhHvdeNYmKM\nNXvwdMurFno0Ws2kcmfKjeNA9OEXQfRuM6hYnVYpzsDS2rpzu2ore1ajFlJxF/6br56fv3f8aoVU\nmhPHcSSnrk1Yrkyjww0R5wPYgu001tpmwkF1OTU53tLt/iCahjVR1f6SyflKZSMqqz139AodTCnv\nD/cweh1nGUvOQnT3B3sPyjQK77IIphdE4h2xqE4nxoHDeLzrPVJizW+8Xj/yzfsDNH/v1jhNMscD\na2DwE9X23Zy1DD6orbMI1sNxW5Q66G5dbryaF2II/Pyi46vLsvJ0/Ibbdenp6AYXtvFVVvaVg2IK\nQsQFo0wR6PNmi7exAydlB6UFHyitYmzh4fGEv0Va3QoiS6nq+CnNYJyhtntx5qO6l6RAMhdCj1GY\nqyVYTzAaP+HcPTByo7FXBDFFHUOb08JqYnotIF7ZQKmPWcc4Qud/mKK0ZuO1kHq5/YVhCJgaqBmq\nWdhd1ZKxpWFrxsiNOBz24rs2TzL61harjrlpi52xQq2ZVsHEB2I43lPVzUwqF67LlTBO1HylVbO3\nqvEaSKqMFdk1YwCHh4myJtZlITSLs5Ghv6RGNzLIAUl0ejOctntDGpbIy+uFx8dnPnzzyM9/U07a\nl89fMFJI65Uhem5L5tMn7aw8N8u7D99iEGpa8U9PvH5R63xpwjBMvL5q6r11CmoE+PjpL7y8fuTD\nh2+5XN/wLv4CmHk6nfp9oETq7eVWSiKlhcfHR8Zx5NOnn/dnzfvYN0DtF7iE7WduoM8QHDShdFt1\nzpUxqHOO2livN2wTTN85em9V4yF3B9LSO0vG6a5WRJjiwDWnPZg4zYU835iGkelwIHUHHKjeMidh\nGHWCV8rKOt8jabxzmDh0p1PbNyZzrtyuC4xaQBqMfm40XHkaI+8en3i7XvZFB9TxNIwjacmdWdbu\nkTTo70+yUOPQHaB9MZmeMMZSmoY+X+d5T4LYdG4Gw8PpxLlq4Q4whMA0DORVu4QvLzNT53sdpu7K\na0LozKhhdLuGJk4HTg/vurVdKHa5x2+YiHMRbx34Tjnvn6fmQq0J2ECtdndgkTIiGWcMDc9aC0vv\nOM7pymVZ+XKZeVtufEk3rtvmk0aisdZMdtqR24pMcRZrE8FZorcsqVJTL6KbV6ZSzdjWw423oFw3\n4LE8nI6cz1f+/D//hS0nN2XH7zM8H99hmnZ03BaebiCvOo04TgdSWjhf9D7MrRBlIkSDnyyTObB0\nnVOpkzrF69qvj+xO/YBTnZtRJ2otSYN9N1ipzYQYkKWw5Jsy8/qYuVkIrkHLBAJNrO7y0O5gKYls\nGhXZu1Lb/W2DompMNYQYmU66wVQGnIVl7hrKRmXrZl8QEU7TCecMg3dYt60lWqy8vH5hmgaWdGVj\nlBztsWvCfA+zzsjWOYOuh8zk3HBu7JIBsGYguAODa3tHu2y6q7p1oDKQEWmULhGyPiBFAa+IVSRE\n77poUZb5/zp+tULKYgje752ltKwst5Xj9KA6GOspXahbKmQpSGgcJ09JlqVzUYwtiHisCVRpuDAg\nVRdTa3Uhi2HcRbJsVNVUiQ+FIR5x2yK6Q8Ssgh9Fs96atdzlbE0FysaozbeOTD3uIYRAyjc+X/4G\n3jOFZ80mQi3XIpoo3ah45zj07/Mu9snZFjfS9qLG+xEXI9fzK/WauPDKpeeivbx94fff/zOSYV0z\n0PbRZWlXmtF5v3VQm9JoZd9haNvYGM29s1Z2euuWG2alYTAcjw+/AH0Go6JhEX3RbUdpFVsqMXrW\nJKxpht7lC0bxDmIKMejuZesOWkXBQU1qP83rNklU4KYxeg/UhnWC67ulUlZs0E5aTSuNuhdna73x\ndvvEKTzREiTJO+jPiv7OklcEXWzcVwwxbz0FTaWvot0QUAt0mFyPLRjAxH2xHEeN+Lhc3xARjscn\nCoW6xTaMEWP1e0tOSF33AsV6YamrCvetalG3a5Fz5XZ9IzASx4Hn56ftvce6zNzevlCb4xgfefn8\nypcvWgDd5leCU87YmhfmOfH+w+8B+PD+A7U1Pr9+ZDwceXh+YunE+x9+/w8AXK5vTNPENE38/LN2\nQF9fXzBGs+ien9/z9O273R49jorn2DpRzrm9W7VnQ3YxdM5510htL7sNEwL3LpdC8nSDIFVfjEO/\nwWutVBdo9aa2/SpAYzxqMddyZhiiPsPZczm/MPei5/nxRC4ZWsUaYRwGzXID1tvM7XIl3a4cTo+K\nY7h2xIEfyHWh5EaM2h3aipBcKrV6vNduRPBQOhPo8eEdybxhvVdr9TB+RRMfkaYAy3ePT1wuF+3e\noiaMYB3jYaC1xngYSGnLPcystbIsN4wxxDDu4u7rVTea796/53g8knPm06dP+983HCZAcJ19dbvp\n4j0vim8YHx726J2t+EQqUxx6NNCIc5Y4jBi/VQwBbAACuIqznra9G4zsz1dv/7Ih3WqtNClKNS/a\n4Wplo01nDIVWoZqK2Lt+DutpJIz1GGd7p64ztpbMUhrLsNLGgsK7O04FQxwqzqsez/hK6okY4iDl\noiBKVEso/fnNVXQmieE0PXO7vvGnP/8PPW+5UtcF87v/k+N00ndnHwvpda7M822HaJpFr2G6zcxv\nC+PBMQyGOAQejY7LhmFgWV+Zby/Mt4wxFrfBSCm9a63rinENK8Lax4LGCNHDYdLok7ReGbuIvRiL\nRRiMwyJq1tpyCFtT/a8TWi7kZaXaO6zVdc2lmwLTNO35iFhPsAMtWHI9U3NWXTJwvV1oVRvncZhw\nxjLEDSdS8EpuY02FXBL3xAPVWppOm2/VkPt732KgGsUeGYczAbsViskh1uL8gHegJaT+zLnMNFGY\ntDRFGm3MsigeEHJrROf0vuo3aSl234T/veM3/MFvx2/Hb8dvx2/Hb8dvx2/H/8/jV+tIDVHV84dp\n08mooDTnyskGXLTYPsKxLtJywLpCGBIPT4526RiDZUFaYMsZUkhjF6w5o9EBVqMLxuE+Y6/SunNL\n0QmmWQxbzpE6xGpDu1HO7sGlANY2rNUW4KbZgI4j8BP4wnX+GcOyhyj6GrW75FSboZTuXu23gLGR\nGCZta5uyQ+m8CQSrIMrL7UapV26zjmHO5iNL+sTBPyrBnLa3sL23ffygSezOFw1L7lV2w2Cl20QB\nmqF1tbnUQpOsID0AyfjNhdHjH7xXunutgutukTXNpHzFIAz+SDGJ1sFsxoFzRyRXUnXUUIlha5vf\nM48o0lHyWzZBQ0QhqamsGGvwoY8EqyEYDaNtJM1Sk20M47jcPmGHVaM9JLBR6aKNuGCpIqSaKMuV\nOPT2tvG0OiKtZ0qFuHcIpAnOjgzRY8wRaffoIOcmno4GKcLl7a3Tfj2XfnuMw4Fxesa7kVYNrVjq\ntqOThTB48FAvGYx2CrfjdDp1fcFESonzWUXFab1Ry4XT8R20SppXar+/gw0E51nmG6XBN9/8jvfv\nvt2vxdurBhX/8PxeMy/3eJGRP/7xj1zezjw9aYdkCxG2nYbunGc6aJjx5vjZHHa11v3/b90xa3Vn\nriDHtZO3790p0M7UMAy/0FxtrsHoFUY5z7MiD+ijBrFcL29KXJ8G1ff0FuEUg9KtrShIdBh4e9Pn\nhlY4dhTD+fyGkcZj72RZoyG+3jvWWUOSx2lzUJYdRno+XxnHuHdaDBoTtCwzPlhi9HuXLbrIFCJr\nThq3Uxu239+1R7zknGml/YIAP02T6sfKSogRaY3ndzoqv60L6aVgiFwvK1IuvH/Wc2NPlttt5vPn\nz+SceXh44NjJ7de3s3YbWiGlC9Y7hu1zxsh5vlFK4XA48P333/P5Vcewt8sVelfQoFqUnPMuwvVO\n9aJYQ23SQbI6ns6pspZEHIPOuqzdrfw+Ak2jpaQWrHXYPUS5ajcDs3fJt4mCc57TeKLhyZJZJLPW\nLR0jQ8mIr7SiUVbbiM4Fj2kDxmXNILXs79rSVo3usd0kbc0uzZAs2kWrAk2wIbD0PMyf/vwvtLQi\nYvjh23/g4fjM2oGzcdAQ82VZwepUZOqmh1QW1jXTUqOK1ciSviSH4ZExRFx35+VypXU8Tc0JHx1R\nhGY0/sZgdx2UlIyoKZdIf++ZzXUtGDNg+j1rXIP1LsZ2Bqwo4DQZ2bNSiyQMkRA8Bk+Ibhd/N0k0\n0TQKqyrQXe6yLAtCZl71nvJ+3A1Y0QWs1fSPIrOmnJhNb6wZnBqXmXbiuH5N48a8O/ZIGnYCuxih\nrILD4EyfsthtTSy0VMBEdWxWo05boIhlcANWBGmRaip94ovYe7D33zt+tULqMFnm65Xl2rUghyda\nUxHs6XEk2HAnf4ujUanSGKXgvCW1u5C15Uprput32Ed1vr+EnRV88FhjCT1ZfM0rklVgZ33QOI3e\npnbG0Exk9A/UvFJL3Z0kIipgNMZiCLseRL+mmpJhDNSaSe2K7RE4DbWAx2io9V6QgLY4a1sx9qAF\nTdPMIP2+1snjltt6o9QbtRcdIpkv57/xJi84Dy46Su42djkyBLWNXs6ruvecw9mNxdNINWM7Cr9V\nsDtHSp0524JY6roHe/rolf4L3SJ8t7JHDyk31nSj1cpg/a7ZchSs3MBMyrSq0KeFxNDwvnNjCFhR\nyi5AqbmPZVV43NZK6W6yVAPBWYYQVB9I3R9EkZVSC7clKx9GIkE2x2Im+kHDaVOh5HkvlJ1ztFw1\nDNuoRdbZrZCqpKTnxDuLd+NenLVSMcHy9KBjy+tyJXQ7OChxflo1syt4i6WRuj4weEMcIxjPECcG\nd9xZOi54DS8tiXRJal/fchjrQi0FZyxlLazzTOsaknHy/TmIRGs4TMc9N+z1+gXnHD/88A2/++F7\nPn/6Qhi1GP7yt7/x47//O//0T//EECL/8eU/9mdWMykdhz2M+D5qmecZ7wLDqPmZf/vb3/ZNy+Pj\naR/h5Zx5fFTCv977dY+A2WJgtnFhrZXb7ca3H75hngvLsrD0c2ZERbSn04m385ktDPnLqxZLwzcf\ncE0p361U3j0+k/vCl5aFdLvw9PhIzYm03HZulzrVFmI4IKaxzJevNiee1tQ6nrL5hdjaWYeIYfAD\ntWaW+crU0QE0QxyO+PGIHyclj+8aT9FxXgyIFSXnb0HQOeGCJ7dK9B7bhPNVz9vT0xMYi7x8oVVL\nWhYtJIFvvvuOIUQ+v7zw6dMn5tuNx5MWYO/fvyelxGW+EqMh17KP9uSr8y9GI2Sen3XUNMZB8QM9\nOL7mgnN+v1ZUS65dl2l6FMfGezMGYxpiDTZYjBs2JzvNeSgZ25QT1poW7ADRgFRPKerMKiVRNiwK\nVc0T1jCvN9xiMf28RWvwtuJEqGujCchk9s8iVIoUim/Q7nFUxiit23ivetWmCQSg+iFxBmkVawyt\nNmJfn17PZ27Lv7IUoUriP337nxnCoT8XKzFYasvknEi1qGkINPg9G9KyYGpQE82W9OGHjro5IIdn\ndVx3Un6yM7kobsOaiDGF3EQ1aOygenItuG7s2V1txhB75IwRgVIwdeM19ni21rDG9I3uXYxtqyWE\nQW1Bxuyjel0D1RQUogMTqNdNy7iCaCjz2/kzcXS47flGJSYiSUn71d4/Z193HFULqHZfZ3U9dOSU\ncZNG6Mg+Di4UDN6oY9JaT+nv9tYazhsqVbFAZiB3fqCpULxqthqWJgW3j3zvP//vHb9aIaU5TW7v\n6AyxYmNgXVfeXs5Mh3e7RViR7Y3gMsWstLred8IxUK2nVY+U2uFt2650xDuH2KzBmCayjepr04ey\nVRUbxtHcRY4SoOjFG1zgUi+kDqYTcdC26BfTf9emrVLeU60ajVLKSuycFW/Uvlmq4uydF0xfhHO6\nsMyVIUSsG2jSdgG2NAEbsS5iXNMomy2gMW/upqxOlMbOFGk1Eg8jp+d3nC8zHz/+mVJvWP/VjdoF\n6tZEVSF2UZ4K7Hs4cNUd6Pa+9I6eBg1gaTXcsRE0jNXsM+kCYue23wemCU4MkmHwkbwVNjVTJPdO\nosUbT95Colslt6zdH2eZS8J0wfGh6UIeQiCOWjDUrstwzoI4Smo4MmIqdYeqWUrLeBtwRkiknb8k\nxmPLTMkWHyO2BIT7CyOljLUN7wK12X2xAC32xuHE4zO0c+Z6e/sqBmdmWRZOx0dOh5PGYvTdda2a\nI/g4HjlOI2WW3S0TQ2CZVyiZmgxG2h6BlFLlYTpRSqOUM+t83jVbp+OBWnQxxArPz8/4Hi0kYnh8\nfMZ5z1//+hNfvrzy9KB8ptfaeHx44OnxgS+vX8g5fyUaL8QYe1SRkMuK3PRzjuMBxDAa7Sp9+vRp\nt9xvwMxSyt552orvDYewLAvzPPP09LR3crZu1eVyYZomjUTp8SnH6XDXUPV/670n98Xm7e2N0Wu+\nXkkJ8QOH/ixSC5mF8/mVKXjEed7etOs2xkDwhlIWjUCp5W7jt2owWddFU+VLUrs0UI2QU8JI5PRw\nICVH6/rIWgRcIwyRwR1x3rN2VIHzurtPqWxNdXzHJqSkC+/xdNKC03uGjv5YSuXp3QdOT49cXl95\n/fSRucNIL7cL7x6eOJ1ODKN2ALYcvjleeXh+YjxMlDmpm3nryFR1vom1mKIdHumwyuPxSHSeWspe\ncI3TSOyaNeMcxehG02NVs9qfDOeMwj5bwTKCt/v97WwA7xEpumla70G03nuwjpxvWmhLpfSfmmtm\nPa/UZmlFKPUeEQONODhq/7sE7ror14GURnVQjUJz266lYoPTDk0Tcl2xbStODDUJoJrSVu7uUkPg\ntsz8+Jc/YQRarfzh+/+i31cal5YIgyVJ6aiPpV971eG2UqnaNttjdRQLkpAeEu79oEggwIlDJFGJ\nIImUKw5Lbfd4mVpAxJKpYBrjcM981etllMW45r0r0zpPptVKrQXnDWMvFhdRLdu6zhzHQf/1VtSW\nxBRG0rqypoR3lsNBGyTPz8+cz6/clivX6xs+CKdH3YgNIbKmglI3Nj5gf+/LusfaeB8ocnfHY4WK\nwfsDaa0cxgO19NZ/h4hmqor4nWcT3Io0Sk3ghSaV1qx2/ICyFigGZ6AZIdh77Ezj/t9/7/jVCqng\nR2Rs1KYvxuuSeD/+ARg4nyvjl9d9N9SaYPB4N+H8iqQGG4fGRcboMeJYrpWU74n0eIcbBmBAWDS4\ndxP/hiPCQi4F5xKDDJS2jbYsDc32q1SwcR/75ZxoXTAcQ8AGg+07AW8dWKGVTJNGxDFs3aOWWGuj\nSeg7WxVnA6x1pqSGXQPT8J7Wyu5OMv6Ek0YwnpYdpYR9Z1LyldoMrtFFuRC7pf50tJwOB55P3/Pd\nh3e8n/7Anz79V3768m/6eUTwRA2vtLOGTG6uCGd1NGgyMXic83t2lPcT4xT7ucgkmwhxgxlO5HrB\nxhmpC966/WGwiGboiVBcpjV6sLOSJYw1iCkq7m6R1h/g1DKpFqR5vHGIdaydsp4uhXEKeLHUECky\nYcq2C27EIcAAc16pZiGUjUMykcz1V0kAACAASURBVKwlOEFMpsmy865qzqTaNAy7DcDD/rDV7loy\nLePahWEYdx5OFVEXSjFMfsSdvqPlyMerEqXFFsYGVm6UUhkO031hF4c3I8EOiEfBilkf3PPrBUrC\nGaPp67mxkd0fH59xqPuxii4I333zbb9Okeu8Mg2Rp8f3PDw98m//9kc9b+uFZXnBmqBuTBNIU98o\nNPjw4QPndeHTp09EY/aNyZoXxocTzmvX6XK+EaPepw8PT6SUqFUZZNtiBZDL2knolw7wNKTdhOE4\nHA6s67pb+rfuoAbLVv29h8jTu2clI6Nkc+89w/FAprLeZloxHHo+VsqZ13UlYgkG5vRK7UXBWlZG\nf6CUTGpgQ8T1G3VdLiRjeHh46CiVe16mLtTSn3ftVObO2CIMGq7dCsslEYYDJm5OYKG2gmsOrOkO\nv+5mva1M00QcJmpb1C7fOwSn4QAe8m1R5IIzHA9bqOtIbZZ4esfUNwz0a7jMK3+9/ZV3794pwX3N\nxO6uTPPM6/mVGBzeBAZnCUMH8Q6O84uQ87rDH4exG2DKSrOG5+dnRCK3vJIxuP5ZTVMRPWHQPMwm\n+ybCOosYgw0BwWPStjVRRYZxAexBi4HDTOmbVt8EkxthNGTbyKvsHUC5LZxvC0szrDmR80pLd2Cl\nJSgTC4uYivROdZamHQbAdezFlujgB4evlvk2K0NI4j7aK63oelwrNWmneGPNGOMYnaXOKz/+9O+s\n5cqt6n3x/uEDFodJGkA9+MC0Fa7SsI9HiJGaG9UJpr+DfXCM8sjlWnF1woijdhOVaZbYPFVgyQ3a\nSJWqHXnQd4EYWnUKPhYhia4L3mmf3HWBefWW3A0MVgKtVQqCC54keXeuIdpBHwLUciVZTztoh1vM\nxNoK+AGysORGMPpuexieiOKJ1vF6e+V6W3TECzSj574Zh6lF0RwbkhDfqeWNWpJm8Pa122AYLBhT\nKKWR5xuy08stUg3GG0zz+Bbx/T2U2owhIKVimkKZt+SRVoNiR6wDERJm3+zZ3Cgby+TvHL9aITU6\nJZm7zmE5Xy7cbh95926iVOHLS8H16nmcHK1VrBkYwiOzK3vUS4xCNJHQAjaq267Ivf2vieNNHRhy\nbzerlkaw/WLmWsH3l4JRy66tFmmuE1I7WHNV105wjeQLIRrGPhbByv3kG88Ywx5MK1bA9ZtBbJ/3\nbsWSUOqF13OlNa8vgQ0AJvfgSGuddta215BoBE21Qhwczgam4QMAU/yew/ie4A+M/sg//uEdD++f\nsf+qu4E//fivVKOPnsYBmN31o1bwxjhCTjPHo44kQFkcxhi8dXgXcTXs1bpznhgPpFyZueGD3Quw\nmhOtFJxNeAbmtOxQRkzbOSgNS2123+3VqotZFSXuYvLeim9Sydli8OQEuMy2uQyuYxGsKCW/Crn/\nPtssrXpac/ogS921VbUZSm6IVGoVpILNnU7uHM5a1lo1RDMPOvLQrxKwOOeR4qjmyLtHQ+kF+Jfz\nK2ttONbeapadnBvDAyVr+E54POHHiduiHRIh41xjuc2QDYfp8SsKe2ZeU9ceDPzjH77j0F9un19f\niFFRBkLjz3/8E2997AWFhuF48IyTdkFvF93QPD2/o9bKTz/9hNTGYRj30c/xeORwOKjzsBS89/tm\nxxjD7XZTnpcIh8Nhv29TSt0ize6e3XfzHU2wOf7O5/POLBoGdYmllEgpM03TXtS8vb0xDMMOAa1p\nZb7ecE5/zxAjaS6UWpjXhYdT3K/VW2u8vr5yepjI68rTwxHjtAB7Wy7kmrhaj9/ig/pnHacD1/Nt\nRxHE4KmdYF2qAg5j0KK5tqIYFwBTyRVS0TF1CG7X3Vm7sqxv+Og5TkcMaq8H+HR74fHhoMXXEJHa\n9m7GsiyE5YY9f2EcDzy/+47SC4mprSzXG19eXzkcJoZx5NbJ5liLd5bL9UK+ZWKE47E/285xeDhQ\na2CeZ5YlsWwbOqNJBqUUpocDpij7L9WvmV+CF6PpBD2ga7vGxmhXylgNSd7H08bQyArl9A4Xjvip\nF6AlU+cVGy2PBOKycO6RRM4ErE3M85XLOrNIYt4SJpp2p2ppZK/Xxfb3t7SEGS3Oghh17G4huq0q\n6mMYGqVcqbXsUEZjB2qr1NLUZZnrrnEV6X8XjZoynz9+0kUaqL8rHKYTbtMJDiPsETqCrZpCkXOl\ntJWU9O+rtTPtrEeKFgUb3LdVT8mFJhbDgDRLqsq40++15KQsOu8rpVji2N2euVFtJZV6DwLvbwUR\n1YE10THh4AduZXMCGuLgdaOZVoIv5D6ejyFjxIE0QtQpwdoLbNVSeR7cAQmZNd9ou/tOcN7tbvLN\noaufxSItQ9P3fPBxj9YxTUd23lusbMDku9ZSAFkNrTmsbZtxHG+U5t6aQcqqqJG2bZIEpGvxWlNt\nVtdXiGl4/xX37P9l7816JNmuLL1vn8nM3D3GzDuQRRaq2EK1BAmFlvT/f4WeJLaqWGQ175BTDO5u\nZmfUwz5mcSmouoEGBNZDGkEwL+NGZLgNx/bZe61v/X8cf72ImJwwYve57hAC8+UJ7wdub35FqcLl\nRS+UMSPGWKwD7w5MQyVnveFqiowEgnUqPg7CWjaMQKblGfE6a64tU/sNnimdWaKJ17XlnSUDhuC1\nmhfRr5fONbImEOvKNa1YhxJj7bbDyLiiwEFnjI4BexVtjGCbINZA1Tlv7L9Lqispz5R8xtmJ43T3\ni7axXniDVd1Gfem0c6Apd6UWnXePw4mH278H4Bi+Z3Q3jP6EFRUc3ozf8Ltf/ycA1kvm8+u/qui6\nNMqyvi1uXc9iKriD0dGdbPmFBUNQsa/12GpJ6a3oMa3gTCV4gzULYvvO1lmoVrOBKIzGE7v2aK21\nFz2as9Uq+6LQ2tsDVkrC+V8I0zvg04ilzkLzwrTljVl9ATYK1lRsq5S+YJIrra6s1SGlKjS0d24r\niZobMa2UXMmhMQwbadmSXaMYg3PCXF6pRV/cp8MdRioetXrXUkitcjto52G9Jl6vzyxUpkNgXi67\nHsLdTNjgiVmYo2BsYTxsSe+W55+/EEvlOJ5Y1pVz59CUlLm/fWA83GCMY4mND5//BCiUcYtFCSHw\n2kXZoAv68Xjk8fEdtcJPP398yyE0QsmJdV6Ygo7jthiY4+0NS1w7nqMRgt+7v1uxtSwL4zhyc3Oz\na3YahWVZdlDnL+Njtnw9Y0wv0OKuhVjXdR/dbhTtjaS+YRZeXl4Qo6PF5boqcgPNWhyHgfNZgbLp\n85nf/FpzKL///nv++Mc/8vLyxOQdT58/cX+j19EHS541w1OKdEDoGxZk03nd39/3qIzejTWVUldS\nKvjgGLxnGMb+PBWcbazrQi6ZnCNT54SFELhcXzBGYaOn45H37/R3Ob98IeWI8Y5pOipDrRdSfhgw\nFNK84MUwniZC/5mX6wteHOPxwOunT1jr+OZbpXD/9OkDtf89c114ev7Eh08/93Pmub9/ZJombm/v\n8WFhXbSoW2fNZKvtibUkLexouB5z5Q9HpXRbC2IwpnSdlcoTpHWuB5XS2hvepKNmSk4kCiIjbjvf\ntVKtIEkNMaMP5L5pNSIgwqWuzBXqUkmx62Zbo3XtpxPIXY4BEMtCIxIGw+AmhIz0rkTzhVYL08Ep\nK+8Sd51frZaYVG9nkZ7Fqp9Bi3CFPVsreCssiz4PP338M3d3D9weTzh3ZI4zpW+ujTGUGLHiGMeD\nSkJ6g+B8eaXkSnCBnLxmg25jxmIRNHKriqWWSo2WtO2EZaC0RTNonVEDVt02LrqxbLWxxIZpbh/5\nl6Qb2kgCEYwYwqBrZsyZXBTmkvKMSCH1Iuv1/InDdM/xcEvOCSsGWTfNKQQviHXc+YnzXKkdZGoE\nrAwaK2QNxr7hREQqpWqEj0KXy75G5dKZidYqP1DkTTvZlTbGim6iloyEbSPssFJpLdOapqC0tvdG\nkfZW4Ldf/Lm2+t/kSH3FH3w9vh5fj6/H1+Pr8fX4evx3Hn+1jtQlrRz82GfNcDQnmC9cry9M44nx\nF12ZkgAPZIP1jmm0xI3o1laCMYzN4MXgqqGL7cnlCrUgEjgEFdNGo3lMKc/kHJV+XC0lN6ps3SNH\nlqqgM9fAKKRMvyaqiW5Co5FrI/advjG+V/yVWg05VewezaDuq7Y1U3JjmbVbU2QhE0mlcFlfCG5Q\n4iwg1akDRCwhTIThQOzCulYdtWl3S9EDw54Zd3N63y3nQi0LqTRKGbBdl/TN/Xes6YU5LVgjHA6O\nee6t+NpoWXc7wZ2wYolpx4IzBasxN8ZQxe9jMdPmHqlTmbyhtMovRFIqrjRAsxjndjOBBc7lSqm5\nz8TTLpxUlH/Q2X3OuFD26I2cGzk11poYTYAWYIsRKNplFBpeepZsx2k0ZzoKoikuoGZqb5u3Joo+\niJm2hU5v12wtGFfB1Y5zgJZ71AfCNAXAYmxmcpWS2LMPBxFmqx2Zkj3eN0rfmS3plcdv7ji5W/Jq\nKNnSemdtjYXGwDA4LvPC9eV1p4nf3zxwf/dIra1bgjPPzwpezDVxsidO44kUdcxxc9JnIAw9ow/P\n88sn7fQZvRbL9YWYK9Y6rtcr4zjuQcGlFF5fFYugsS1ttzmfTkouPp/PHA4HJQrnzQLu9niX4/G4\nj2vhrfup5gf9361b9Utx+vbvbnE1CoRVavlyvpK97UiELZi4uxeHQDCat/fDDz8A8N133/HNN9/w\n80//SkmRlhI/dcjtu4cbfNCIk1MfR6a46VYap9OJp6cnzuczp+NxH1MMoyVGR2uCkbF/lo2oXHDO\n7nDMebmwdgfhOAUO0w0xZk0oKJ94907H84ebE8/PzwQ70sRSWt27iq1UToeJYZxYrheuT0/cPjzq\ntbh/x5fnJ9YY+eabb/jy/IVw1Q7+d7/5DfOnT7w+PXO4fWC8OfLjD/8KwPX1hesPP3A6nTgdjz3r\nbaOsq0HDN8VCrPOFYbplOnVnohia0SgPJdA4dsBwLtDUoYUI4gxt6Z2eJapUQJrafqsaVfQzRjyN\nKoWSErUUXG8dW3G4mxskWIZhoMlAiYrb+LJGihjEepwsjKOhiP6e69xI6xnvDTYMBDvs40tYqfVK\nbYUQLTFa1i4juC5P5LhSq+DlgBB252ErOv2QQUXh3rpdmRHLlafXTExXjPmewzTtYEkvFo+lUXCi\n52YLZD+OA6+vV9Z51Qgv63e4r9Ahpk2757WpaH8zluVSNL+v6fiv7cHaaDdKoJpGoSct9KlVq0Ks\nUSNoqJRa9ueN3dUslFRIecH7vmYssZvGMoO7Ub1a//edV6lMS0Wdqdh9bXc2Ic2DDFAzhYIxGxy7\nImI7XsfSGvuYlc1Q1rSDJc7sXUXnDd5t5qi6mwr0n1RzJdZotFyTfQplW8NYxSQ54zSWRraWI7uJ\n6d86/mqFlARDpjJ137E0dQNd5iuX5QvD5AlD119gdRzWihZXzjF2e2k4jphcMDnjgsc3i+2++lUS\nxgRwJ0Z/0lZvv6lWG4gZlvWVdUnUcd5f7KUKUtTt0NALeZjeRhEmyk5N39g50Om3uWCpeAOtWrr5\njNBsD1buSIGad/w+1kHTSIXz/IUpHBhk05REpOmoyGIZ/IHF9LGm9bScaQ1ihJfnM58npVB///53\njONJWVnSELRtnPoMvpWKswOkjLXgRAj9RVtr3SnxMRlC1ngeAFsNZckU8ZhRtI3fb1WjyaTkovZZ\nJ4HaX2y5LDQCjiM0/ch7krs74d2JL69PLPMMxmhYMduculFqxBiIMTP2a9F6DqIUZcxIle5U02JQ\nvLa1S8tgC35LR7eGKhWbBWmeWFonY3d9nDGdti5Kp95cLVJpLlPMSnNwPIz4vno9v3zEFcPD4T0G\ng20Fb3rUAKrXCyGQ0CBObFAxPJDahdfzzxzvJwwDFMfaC4FWDafbR+KsjrXpeOChX6chHDFYYo4a\nJvzzT3t6/M3NkePxyLImSqk8vHuP74viGiu1wvWqTrnbmyObU2q+XKk0ckWtztbuTjnNetM8TO89\nOdU9b8s5x/l85ng87mO3TRelLfu6u6p++WfQEd40KSPrl4XUsiw7V2oYlO79lhWpeobDOJDjDC2R\n8orvhXsxMAyB9TITggrVt/Hjzz//TIuV43Tg8vKJb795z/OT6sc+fn7hcDpqxErnKW0FYYyRadCx\n5bIsKngPb5oO7wdKbnivuYCXrvUax1ELICNY7whl5Dp3FlhqnE4TYgo5razrzE8/9YLvm++ZpiNr\njFQaIQjealzRpw8/c7lc+ObxHQ8P91wur3z+osynLy/P3D3c8/nlhWQv+MHzcy8ib+aZ4+HA4zff\n8vJyZn5NnI56P3lvtTi+XHl5fdVitcsPWs244HrRLYQwMo7jrvXCOSqqHbTWIza8ic2d6FradL0Q\nMVTZKOQr5JUAGO8o/qrhyfTxnWmINWQCjUzoP3NezuoeNMLtcCKfDGNHzYTrmS9pJWVDMQ3nhz2j\ncKyNnCIlN7JzeO8YN3p3FowzGKN5rqUO5P6CntcrS4FWLIImQbDLDxS7Is1zGCZdKzfunoFak2q5\nLi/cnm73bENpPTbLOlJeMTR2ZUKY4GiUSN+1XKVs62yAHDGDpc6ZWpS1Z+0bk9GLoTnFtHjzhqmo\nRSeEzljswZPntEl1KaZSagWrYz7nocS351QPwzAooy11knqtlmuM1Jq4v9Mcwya6wapt1ciaUQ0a\nJ3ND6vmFVZSA3yNEAB276XlTV6C1Rtd5Y3a0i4hFTMN5Q0k9Yk3e3gkhDFrYivsLREtprWOLmkbs\n1ELthbIzTd850hAHVup+zxhryPXfKUfKOQO/iAnxRrB2oDlhTpFsrxivDzi2gFFMu4gQl5UtZPQ4\njjTbKETIGlK6m/NrwIcROxx0ca4N1wsU4wfSKCzxotbaFNni9qokgjE9KdsyOrdn1JXjQMorsjZy\niV2Hs2mEVGtkjJCdJYgh8+Z4aqLidrVMt9063axBiuYLXi4XBvfK7aGD/rLQYhfx0fDmF2G/TdlK\nqRRII2urfPj4IwA/3f+Bv//bWxBPykXFcuVth5FSpNWEdwVjQYrQurshjJ7mSud3CSk2xs52EZtp\n1pNWjS1oxlK3NHOJUBsGT04Ja82+MytkSrJsoAQvC0PvEpItt+Ee/Ej6+BOv18u+a6kIrS34UBHx\nLHNluW4LSsOiRoKSEtWtbwwVEXwrFBcRGq1Y/OYWMWBcQlpFiu9xL12MStQsMJEeoaMLin7REAVS\nBWmFmAphC7ZsK6/nz4Ri8MOhn7e3xPYQAteiQdJi6WL2XhS0maenlYOZeHfz9wQ8pe+Sw3TEGVjX\nC6fbEwFDkD7zbwr6G4Ll8+cfeHp64aZjDACens589+2vORwOPD8/8XrpRW0unA43pFy5uT0yTRNf\nPuhuXozDesc4eXJqXC8X7u6102EMjOPE8Xjk5fXCOAy7g3OelW81DAOXy8w0DTt/aZzCDvVc15XD\n4fDGUeJNjyAirGveLeDGzFqw9cJsDMPudFVsh7CuV1qNnA4jNc+UVb8ezxEphdM4cVku2CHsQvX5\ndcakinG6O366PHPTYZatCqY5wqDAycvlsheEOWXO+UVz03onZivAcxG819iSXFUHVjbGWBeex34/\niDUMo2q9SsmknAmTY5xuiHHYI6A+fPjA7373P/D5yzMfP/3IODju79SV+e2v/4bz+czz9Qzecnx8\nxPbss9cvn/ny6SOT065ivVwIvfP/8vzE5Xzm9u6Bh7tb8rown7X4tljG04gLGiRdWtmLIetUQyVN\nn8mUG5fzrOgUwN4cMVb1jJYKtVA7FgVnMSIqjJbu4OsxIV4KbW1IyeScaPm6a1rwA+ARPxCmgRYT\ndEffEArz66y6nVoYasNuXKPTAT83XmLl2g4sxfaMNRiD45o7Fyjrz942Zr4G1iVhJSqMmfOe6xnm\nA3EVltTU3OOMWumBkjNjOPH4+J7B65pne8Jwc23X2V3Pr7xMV95/o8Vw8AFbQapHgFpXcodcOoTB\ne25vDrycn7tGZ2PkdYt/LeAMwXrVGm4SKatdLo0iawzeK9YBnbbY5vDOIlJwU6Gmft7WQpNApioC\nx0Aqb3FNIhZBdqZf610n7xytFublldRW7k53XXwP2URqLXhj9ygu17uDhVkLPOOU6UdhvvQmwb5h\napSS1eizvYNT7s2VgnVqDnrL6SzdvHLY1422u4CFiu/GsRls2qcbjaZFp7UYU3AmY36Rv+v/vRZS\ntVZGP9G6ANh6ZYZM7khgAmtYki4ooS14N+HciWo8qca91ah0XY+1npQTqeR91NaMwfmpc430xbWN\nvpwdEZQYLtaQVr1gAI1V6btmwrmAs4LpC/jNKWDlxHm+cr1mUlr3VGqq4IwnJx3JuNG8cWayWndL\nDwxtpF2hVqvaPb07UEJjifNbCGPNTK7hqoZLGgvBbQG7ljBogHDMlYbw2rsHf/rz75mmI3c337PM\niYqmqm+J5cZmjE2EoJ2uWhtLt9daW3AVSlkV6tgstW1CR20dNxJ5bdqK3jhSLSs5t3f+aotIRwdY\nIzRrGEPA+ZE1VlrpHSk/IM3x8PAexFF//JGXbitf44XgrLa2i2ZkbSMx19QdpC9VFT82u1Fzw+66\nsN5jrN0LF1DRv3WZlgvOHnbK+LpmKong1IXnnP5XD0MSx0AglkRJlbXfF2OnFb+8fsatC2EYiTGS\ndvAitJaIaeE4jtrRLJsjSl+oX54/Mvh7RpdxZuMT6UKN8wyTsL5eePqkxfIYjgSvULlljpxOt7so\n8v379/z97/4j83Xln//wf7GsZ2r/2mG6V/BoEx7eP/DDDz/w+qoj73fvv+fu/T1//OMfeX258A//\n8D/tVOzrcuFw1JDubeS2dZaWZcF5x7qunc7NXiwpFqHs7i1Neu8QwB5uHGPEe+XImd6ROhxOzPNM\njAslZap1uxvKW4fUxnWN1JQpKTEER3d1M6fE558/wMNRuUrv3u/dwRqT/r156JTyV3X3AuPh0LvW\n7S9E7tAdSLUR48I0HRGRHeKrQnldxBW4WfZCMqW0fz69B9/I7ht8ktrAgPODMrmAuMz8+OOPHI83\nPNzdc7584fmT4jTuHu559/DAfJmYrwtreeLUhdj3xzsWv3I9XzlMkxLl85YXqPf568sTQuXbb99r\nIjhwvjzrC1m50Lqh2FokTahN16qSK81XBvsGiSQGGByIR7FZbzyoVhuliTq0uitsC661ZgRrkZwh\nJoy4vVjOa8SYrOHcxil2Yo/2mwh2ZElKvTa2YvsuahDh9ngEkxSumwp5d/RlvBkZgieIw7XDDtbE\nH7ESceYC3VgQu9P35lHIZWPrGawd9oI/BMfN6V3v0AlQaR2pILZ1MbeOtj98/PO+Xj7efcdgPDlr\nIVBL3XEqa1mpNWKDJjnMadkp4zElav1lgaO5gfsq5RTAbrZhoOTuomRPChicpbZGc3bn+bni+jtK\ngcyxLHt3uLWGFd/5d5rT+AaiXtF5bmFZV1JKO4xWRIPoiwjOD1AKZivO7Yj1AWN6wHZzTGMHRhcd\n+c/LGUqmkmm/kAOM3pFbRUg9b3crltSQYf1BYZ+1soVnt442oBYluAtv6CLnceJxzmLMijO7uVKn\nTtvC8m8cf7VCqkn/TftJrcarNdcFjgfld6yLLu6FgjWeJUVKzSzrFddHgi4XpAlGFDFQbVP+BQpK\nK1IxrQC2X8CtJ5I6HC2DJMDtLyFjC9kJpqIPsWUnex+dBoQ6VxhcJSVLq5umo1KzBmS21six4Mft\n9tZdiTVWx05i9htRoYIWMwQGx97C1d+lUSSRm2Ctx3vBdj+nq46WM34IlDKTYt1DoL98eeb3//R/\n8P13TwgjKUVta+624zNNFgSdwbsh7F9b1oSRTE1Qy4L4sNv4V2NopeFtpcZX2uL2h81I1ptaFgVw\nusq6vBHDnRsBYRiOjMMttVPYLUFfKMbxeP8dtTjSD/ryWuMZYwYETy1LfxG8jRuMtXrTOyGXuMdL\nuOGgegpxWFv7/9+3bEYwUjEOmquknKn9GpYqVKmMQUnoQ3D4vjNpovySZCYK6szZAj+lGsQ5Wktc\n5ydi0pfKdi/OKSFUvN1G2VrA9h9MpXFdz/z0+V/57v1vOfWQ0Wtc8eJww4Hnz5+I87IXbaZBk8Ya\nE9YOHI5H7h+0I/X+3bf8+MPP/P73vwci1hVOvWNxOp1oTXj//lteL0/88MMPvL9/D8Dj4z0/ffzI\nv/zLP/O//M//icfHRz59/ML2F4qzmGQJw8TpdOD1VQveeb5wd/eA2RZ1Y/Yiaz7PbEHG2y5xG5cZ\nY/4i4Bh5i5dw1nYYoeNyueiCm9/uJ72nAsv5let1VhdPf04P40Rernx5/sKnjz8TvN3p3vV24vVy\n5eXlScOFYyItHcXhhHAa8ZOh5fYXhRSozs+5sFP/96DzXhA5F2jFk8vK2p1b3k2UeqVV6RuCSP2F\nzycnDUG3riprqI98g1PXZUqFafIcDjfMveB9fv7M/f07bm4fQF749PHPxF64TeHI4NSpNaeFoY9o\nQXf6xlrGw8j5ekZEePxGr32h8np+RoxlGg4gbyPYUhK5ZGqqDEbp1CKyF4tYo8XOoJEm1LwHwtKg\nNqOh4tZjW91H92AxTajVIN5RTcb159TlSikrJS7UZjHB47ZU9uOIpAFTPTWtpJp3e7y1jhFHMYFy\nXal54dof/aVUxFicnZj8Lc4YjSYBrDccxsxytRqTUusuTVC9WGCdEvNrpGbhpo9E7x5O3Nw80Dq2\nRQSQDW6cwSpDz3vL5frKDz/qhjXFC483j4z+yHxV2YrrY8ZSIymfaUklJtbVHbbsg9Cyrm25CCVX\nrBHq/6vLW0QjX0pJe9qH8Q3rFEW6ISt2s5/TdaiVQi16h9becTdiMM7rO6K2HvcU+7nRzQEieC+U\nnHeEifcW54Vm+jolDRc23MYRqUFrgKLrY+gbWtXgRnXx1iuNFdeLb2ctrV0Jg6fWmcG1nfdF0uD6\nXATjnSJBttNSFL2hUTiGH74AyQAAIABJREFUwY77Zs8jjKPHmYoYwZj8RiCqkO2/UyBnrIXRyq5b\n0TwOgx0s3gdCg9oXzWW9UrgiphHzSoyVWnu0zGRQaVKmiiHzlhmX4koo2+5eO0GbQLC0Qoxqb62t\nYj04s82YFQBZiyAu4G3Dur5gNsHTuDs5pjAQkyXFbhFdlTYutbHmwhJnWu+3BjcgTbU54rQi3rKD\nWvZdXySEYIlrQXpO1RhutMAzSkMPYph66zullVwNU7iFfGBNC/HaxbblwhxnzsvMcbpVy6rJbEWI\ntb4DDx2uCSILrd8sk2hedq1Fk9BLfkMc1Er0jgMTTiwxLvvNaIzBhYzzot2sJhp7AxgCpRmaNNIi\nHKYDfnoTMetYIDE0y/3Nt6SNCk3TgqVmbTXHvBffmcyAQazgh0oQpf4CamXtURVbCr3p3YNBahdr\nqlirSc9OBKxNvQAzOBxDF6sDiPcUsfgKSRrD6Zvdcm1qI6VKsYlWG/OlgiykbYPVKrnP+q2IijE7\nCFGsQyrkGnldPxGuJ0qfefsmSpnPlmAm/EGIz9qpzXnG0VjXxPeP73n3zbd7QfKHf/oDL09fOE5q\nBT8e73jXxcjPl4XD4cCyLPzzP/1nrBiOJ9Ujxph5+vSR3/zmb/n+17/i9Xzm0xfVD93f3+44gru7\nO6z1fPig4vabmxuGMClbKF44nU7U7f5GL1nMK8Mw9Ha9nm/9ZzVwtNJJ7v1ruRTGw8A6KzxvY1CB\ndkb84HQEEgI5L1zWC0enBejpEPDmlo8fP2AFPv34B9z77/T3aQMPp3uu3vH6/Ek7T2XrYlvWONPc\niLXaHRmOHZyaNdZp6y7pmKKPMGrBhQHnLOKEtspfdLiHYdCXW4q7eB40tSFnJYo7G7DurTgprWLd\ngLGWlDLGwjTpWGhZrzy/vtJMw9jKw8MD60ULt7TMSLA0aQxei77tvLXWuF7OyKKF2uuXT7RDj4+5\neyClzPl81s9n/G5/zzXTUsQonE85OyntG6UwNHAeaYEqmlKwEYqaKTSxmNq1jHZvymj3yXqMjJRc\nkbZSN4Gzr9h6xJZMzjOsb4RpGUbGx/dcciPNmSQL106Lb2KIzVGa3lfO7KQRWlMxsWkDU7jDurCb\nZQZjMHaGkOGYQU7ErGtU5pXHdxPLuDA4S8ue41Gv081pYuz8JGsHmlRy79TV2ingdda8tnHi2oX/\nnz/9ibSeub99r3FbLWv+KZuusFFq1Uy7ZvZEA2M9XqCVhWYKOJVfyNblk0bNGS9CtRFvPdI2ptuq\n6/0wQN/0iNefm2hIEoox5K79NV0oY5x2Eq04RfK0sm9acy4YKtMQkFho1nQ9MOT5ijcjzgaNdAlh\nk5yqzCWsZIxGmDWPtLHfM5nQAtFZjPUU6hsSqBVaKbSWCYOOKLdhQxQhZWUD5uzJTXZeoWCVQYUl\nWE+wvDUzROVFxiSMrRi77nIe2kTlK/7g6/H1+Hp8Pb4eX4+vx9fj/5fjrwfkTI3ZJMabXmXahjVN\nE+ZLwji/5wKtKfJyPWNDVGdWqdChZlkKtahGolHIZNJWDUshlsghCIKhNdkDDEvJ5JpoPSS04fYW\nYM2NddER1RBE9UHbVMioA8VawxhGLA2z2VmrUI2hVsHahM2ypXmQSuyp9wZ2l9gvxgGt4RhwOHwo\nOOmZcaw463DWofF+C6G3SG6mAxYhN3BMmBJIi7aN8zyTLdT2ysvzM8YWjM34oQNQh4HgvBLAhQ75\n7DuzYHHe0mqgVUeKwrr0lOyss2uKZfQjTd6q9VJWWs6IlS6mFsbDBnr01JqZ10qqrzh3YPD3/W4w\nfbxZ1WFXCzddJ5Juv+XH8hNxWRGjO4k3OJraW621OB8JfkQ6qTanDKnqOFExtbv2RozFmkaqSf8+\nkX0gLiIUaRgRtTG3uF9fi8XagWo3cWjg1AGRrVbIK3kVKplUIzFHBb/1+8Y3vXcGqThnqX1r5sRi\nrWodUs58+PhHWtXr+HD8jjUHfKuMp4H4Gkn9ZpzGCSONh9sb7h/faUBtz1s7HQ8008gJTqcH7h9v\n+XO3ub9eIr/924k//elPQON0M6kuEM39O4xH7h7uccbyf/7L7wldr7e5z443txgRfvrpp33U9s03\n32BEnXubk3XLZxyHgcvlwrpGDuMRa/0+LhuHgzrd3MBlOUNtO4F8XhecCcS2cBx1PLV93+AdzgnW\n6ihMpDAvV2RDDiRNMXi8f0+aryzLE0/dmRfGI2IK0+BppxPn8yu+68CCC6RSGICSE0YEU9+ArK0K\nrWRqFdblythHsAY1POCsBoBj8ZtGqmTVR6WMGMP5fN0hp94Gao0sy5UWWtdI9TSEYHl5eaWVBk51\nlofezQqD4/zyzPxyxjqDafD4XjuOl8uFWoRh9KzrDK3sY59xmsDAcp1Z8oKzlpdNbB6vHG+OnG5P\nnM8X4rKy7uObxjiO+nxQCMFrN24beRjRLoFRC3tzbs/Fk1yQmiAMgCEZh3RRdWkKsiRYmmm0aHat\nk6CCZrEGgyIlpK9vFgjGqHtwOlG85dq7Lk/nJ6KJ1CK85sK1JJZNNO51ZKmB6zB6v+tkDI1WA96e\nMJMhFziMPY4qXTSQPjicO0A+4HsckTiQoeHNiLWeWiPSc/FaszoWTRdKTRjbGPr1XZaF6/wCrTGE\nUfEvZcMGGM0hNELKy66pA3qofKUZR6s6uqut0rrDUEyjGHU7U9FMyN1caTtmRsOpa6n72tc0VQ4j\nXkfN4nbBtXXazavd1ed+Mbq3wWi3ra4aCly6AAkw3hDThcyKsyOxVCh6TmvLHP0t1hhNAahWs2X1\nN6eaFT/2bmIWpaej5o1UU38+0UlTPz2VpN20WBXF47wKxoBGxrtJNdX4LgPYINyFVtB3l/a/doMC\nrG+j2n/j+KsVUgZPSoW1jyLuO5vGSFOXi/G7C8MGzzK/sH654JvHe4vt1OBSs35k0dlobW0fpzWB\nNS5EPyPWUXLbRa5rTiwpo5WOpRUhb6I77ym5EdeZNVSGMCCluwJYmHyAKpQkOLGYXtjUVihiKU0t\nraN3dDc+S1N+hwFaMUgtyv4BsBXjRhXzMTKNllL1hSGt4lwP4SUTwpsmyUnEVMecF8QEBjOxdAHk\ny1m4rlc9F02F7eP05nzQVO6IYHVB9OzMGCNF86GMxifYQcW9AOtSmFPjulyozeDcSM3b9xmWtbCm\ngvWaJC69APOHEdO1MKUkXuQTwW1xHt+RFktukcZKJe7hu4OZGPygL5NSMWIZ+wuqGkdjwQpYHDrO\nf8uq0rR2oVXXI4L0Z1YMUq1mOLWtwOpjGFHhI22hGKFJ3UWOoA6VKgMWR6sjU3+ROmPJaSEax5rO\nrLmQU91dZNZaBmeorULJOOM15LrfN1KTOl1EmNcz10VPwP3xEbFCbl10O1hOj92u3gRfK4Lnv/zw\nZ5Zl5qGP786XCyklbm7uON3c8k9/+AMfPvwLAH/z6//I549fNCvSanzE1HVXX758YZ5n/uEf/kd+\n/OEH1vnK3/zu13puamUcJqZh5OXpmU+fPvF3f/d3ADw8PPDjDz+/nacu1AY1KBhx0FTI/BaRpKOm\njUnVshKJt9HWRrUP1iEo6uD1Wd1/JVjEjJ0NU9SQUOH8qqPG4zffcjlfGIaB29sTRtLOglnjlcM4\nYLBM05F5TfvGzISBULoJwaggdyc/l8Q4jrSm4vhaK0vrBeE4YkR2zZyxfoPZYI3B24DtSAVrLV++\naPGyhTSLDMzzgkjbi6zb05GcUg90VmL8pZswpmnidDrx+vS8a8Ny3Vy3A/GacNYSJh3h5g3RUhuH\n6QgVzudXUoyE0CUNeUHWC7fHO8ZxxBrP5apj5JITUZqafrzDOash8Rv6RCxNrL6I+8h8ew1Zcaph\nrRqGXq1F+rNvMX1kJNjBUfK8p0+YEmlJnbjWWgJv5Ov0fEGMZxTDzRigCLlvBCNCnl9ZamLJide4\nkPp1uRlu8GKozRBL5tQ1enqfVkpqWOexZmT0Jw6Dan1KGljiGTc2xDnibKjbC9qpNtc4SFndc7vl\nvnR9WY6kXtBsXzsdbwCnOris4vy5k+SHoIWUiKiUWML+fWmXpDhKaTuzbXNYSg/urbV2yUCjbFEv\nLpDFkJkgF3VX940SqCFqXTMlO12fZcMDqKNZur6q1rrPS70B7yClilSDsVX1SECRyppXar4yjhVn\ng34dWNYZsXBzfA8YWku7DKNSKPVK7Rs8ZzzWdC2btdSWuFyfWa9fSLliu2FAnGd0gXVppDXTamPs\nbl1rNUbNdQOVEbPVe9AytYhy4aRpc2bT6pnAf6tU+qsVUsEOtFJZL93ueeM4hVtyy1TJeMnk/ilz\nURH3y6dXvDhuH2459AeqdWCXNUFnyaViemUexOKa4ZoumKowxNy1PilvoMxAzeossVv1LdrBkuJJ\nSyGPDRc2zYo6kiwWsRbTdKEEaHiwnlJ0npuKULow3FvRoi9mamuUVncnxZoLwVhKCUzjwO3Nw84o\nWeJVLfmsHfhpseEt8FXE4laHNSOWgaV3cqxrlM+LxtCIo6aK/mdjNwltEEy1NDEE7xj7C2NzGuaY\naLXS0Dk16KYyYykts8azPlB1KwgqDdVBDeaA2PwmHHaDvoQYKCVyvS58arpIP94faWZgnVWUTDPa\nKUJ3EWOwWBnVuVXeQmSt95TqMDbhZcTYtouNaQaa64vdpq3Y2FQq7Kx0tpfkvagRU8l5BSyrtVhr\n9hcCIgTr1f7LwOCOvH1JcM7jp5O6V2LE2lW7FKBC7Ybaa7Eai9D1NSlfME0dkNbBwQzQHYfz8kJz\nAWtG5ZbRcFMPoL1ciEskXp8ZxhM3t0dKd/PEtPD4eA8Y/u///Huuyyv3dyoqdnbi9nSHdcKnTz8x\njff88IM6AV9ezvzv/+v/xpdPn3l5eubv/vZv9xftZV64e/dIjHEHc/7mN7/Re3heeuEDIXiOxyPn\nnou2Rfxs/KkY4+4e2zRSMWbNWjN1F1sbY5hnRSDEVX/+VmTEGLn04OISBdOE29OBH3/UYu75RaOa\nzq8fMAYOpyOXczevVIgl0pIaXh4e3unGAoWADl4dgWINNaXdCej6tR/HEedWYoysm0gd/iJfUIv2\n7c+VZY0aE+UdgzWk3nl4fn3qzK8DzgXO5/OuO0tr5vb2dhfu5pyJXXszx5WH2zum05HlsiDO7KLh\ntSMCUloRazTOpW9Yv3z5QrCG4+HA4XDkej4TOxhYnLBcVs7PF+5u7hExqokCrNOw9TB6QgioX9bs\nmwwRi/hAa10T1yBsLDg3UHFaRNUVW0B6YHcLR1paaRSkKEtq3/A0jfGqKdK663Nz3+WUaESyMdS8\nUMq6uzLvpklF37ZQ2sxcI3lHUVTwgVbpbr6y34ulRlLSTE/nG86NTEGf8cWeWGUGE/FDBjOT17nf\npyPOQkYUpbJNTQBawZgIsmKsxp2EjSMllpIcwfuO0ulsP2BdFpqo8zNg94gl/QytR2lpEVVSpVW2\nyEBqpW8OG60JJS87ULpVndQsy6JIAnG7Zslhdnetc1b5g32NqqUShhE/KFqhlELrn1Fa0h/crG5H\nxVB4e8+mDGvOxPiZcRp2RzrA6/kjIuqa03Mi+71ea9LOnIx6X/VpA0aLvHCaOLeBZYn780RzWDMg\nY6PJSs51nzR5p9iVXMHSsGKhv9dyrtQ2o5GvlSqZ1E9MFi2s/2vHX68jZYRgPGP/IDUmHE2t03iE\nvFNOJ1eZXMPbGdpFlfUdOeBEs5oaYBu4Ijucy7mANY5o34T7G2TLWSFYJaLGWiit4fvpMFW7R04C\nlES8CqFXw24YFUTUYXGaibzJ+0EwWG9oOXWbr/4u02Gk1JUojShZ09r7ymeqpWEoVb9/HG45Tjr2\nmpcL8/qJNT31XKCG9M7RMDiscSxLJtgThoHD2F0IwWKc4edPHym1kqsQr5HSix4ZB6TppkKcoVWH\nka1yb4gUaoUUmzp9djquwXnhYANxzdS6sNHEm6BdvebIRcnZ23ddLtqOdk5HfLVWXs46aqlNuL15\np9TnecY5v4+MMI3BGkxtFGs7zX2DZwpDmDDW44y6UbYHsWShYXoR4IhxIca3sEwxhUIh5YLUsnc/\nXanYoVHWRGwZL16F6Shh3+aVEBS8aHzbF4USswo6RTj4kdWuRLvsn6NTqRCxvTtjdpGr93YXHAd/\ng5WBsujL7eXlZ+ydA3nEtEBwgbaB6awBH/CTEIIj5rUThsGKYVkWXs/PGJs4TAN3t1pI3d09MATD\nzz/+F86XF0qr+0v4H//xH3l5eeHL51e+++47/BB4fjn3a6HF0NPTM4fpxO/+w9/x/Ly59ubdYfar\nX33X2VCbwDXuEE5rrXKY+kh0CzsO46SALti/z/mBkJs235Paqjehdmu6kz8dR1JcqDFhf5H99/np\nE/e3N3x6+sT9zQ03N7d7h2xdE6kBvfM0TZa7GxVcL8sCTcfXFUU8bJ0AUec0gmUIB2iaiABanNda\n9yLROfd27UURCClFwqCF2KGPvFsrxJhxTp+xzVKv1/6FcQycTgd++ulD7050o0mMnK+Rh9s7jFHH\n8dyDiZ23HKYjrRnWdeU6r/uoRUTp8/P1wjhODN4z9+IsL5FgLTFFXp8/YYPf8Q4SBppAyQvVG+xw\nYLBhL6Sa0Yw9663iKOK6VZPI4GH0gArwbal7eHwzDTA6SmmirgT3NmYXJxinTrAW814ktgZLXZhz\nZMmJyy+6Tn44cTrcUJeFFCteBmVbodwv2//OlgvrEne8R6t6vjToXB3kw6CF+zg9sNaVIheESLXr\nFrOoWJl2gVTxJqtjtWxyhwSScKEgpTIMof/9HWtiG0Y0oaI1t7+fUkrENWoB1FrvDL1t/nMr1BxJ\nKRNzUqxPx8lUwBqdEJS60pzH9ZW4pErNFT81zZLFEte3jNmKZtg1EVJ6Q3hYGxS+2iriHKMzeyFF\nzZSStPPWMiVDrdsmsbDEQq5gnFHzUndCDoO+C5blM6fTjSI6euFeSyOEkeBHYizdud2nQmthuSaC\nCwT/Ld6Xv0CtvF4uOtYzjmF0sD+jVtcg08PI5c2Nb4ylFiEnQ02CdZ6yIZbKm2Pw3zr+aoXUOAgT\nbm+7jaECM86faNUjHHYHwxgqg29M04GULgTnGP1Gh9WfZ61ViFrJezfH0HDW4jSSnUTZx36ZTLMa\nrJkRjJV9ERYatVT8oGNEsqXG7gRE5/JGDFVWSs2YfqFss5gKmYgRGJ0lbRC1vGBqQd99QjFC6TPf\nEgVnAmM4Ag6M3xdU704Mw8DrxbHMT9oW7U2XUgrH04FpMKRoCHaiO3kJ1gEj17lxuX6hDJkaZZ/7\n1h4G2br1mNp2iq9IxTrBuwlqJaOLDKCFTL3SxDBMIznmt92Xs9oyRQnJQkDMpnObKdcr4ziQy0Ip\nEZpe+8sysyxXnBtJOStjarfyKmO8Sh8f2DfOTCP1FPAAkvR33AivDWiCMUG7lZ3WDlrEl1rIndvS\nJOPsNhZphGpYcyLXlbU2fHf0lRxpF8eNBKwRYjozDf1BDIYcCzUlWi3YapRqvyXkOFHnptExl/kF\nONbaA0ayRmzYQC2yt9RrqxRWnEmUahUu219u/nBkOV+Il5XL+ZV5ve6kcesDXz5/IcUF64W7+3d8\n/+1v9d6vhR9/+hc+fPqRcRwJ3vD9r7Sz9Pz0yocPH/jVr/6GSiPFtx374/t3LMvCNA28f/+eGOMe\nTBxj5PnlzG9/+1tEhOfnZ0WLANM0MM9z7z5ZYsxMU9eWNXUd+iFAM/jg37o6aLEYJFBT2AOOQQGn\nVgw1FYZhoADXy+u+o1+WBbGOYAPrmnl8HPBDdwPmSsl6HxyOI9fz6951G8eRtC6It6w5IVF2zZax\nVjskW8SF8Xt8ztr5Oc65/c9751QNuTqam6/ElLjphZsPIzFqp3wcHcGPezFca+Wnnz7w+PioLsu4\n6lgC7eSVWpnjijOCxTMMfW1bI4tdmIZJ0yIuM7lfC+89DAPXy5nz+czgA6de1K3ryuVyIXgd69ec\nib2Tk0U3KdE0Ko0hHPFBeX+gaBCFh4l2qyo7qNjkitRMOxywcqIuZQcuOu9oTvlc1iuUUbaNAp2R\nNEzYQcgm6okE4roSa2VthcuayMXsm8R5jtRxUj2XATvoxlzvN6Eo35lWYZ0j6+HtfIOyhlJUneVG\nWZ+OR6o8cp7RjoaFVt/uJyRhqxDrgrd218ZqMZ2VhC66ZrVNP2UK1q+U6hntRC1+X/eWtNCyEFOm\n2PYXL/KcIrnoFMMYLe5bq8StkPRWlQrSMG6gStoDli0NOzhEdI1GDGZDvxQdLmQyrWh8TNg0eUHT\nLQoZafQOft9gGAMYjFGHd83yNvmJyvGqVKodVGbRx+GlGO1uGn1ejTMdlqmYjmUxGJmobcCageA2\nvW2j5kZeI7nMiJG9ozWNI8YNzOuFyzKTc8PkzQGusF9rTO+2yV5AbIDklPsa0wK5bveF6u3+a8df\nrZCytjANE8euTXC2YUzkMFpicqTVsua3drsTmMYj0hbE2p15RG1UMlV015Jz3iNLSimIKYRksZ1B\n0jaNkIsK7GqNWpIW8xtpvOo8v2S1Kjs77PDIki1Z9Abw1pPbmaVncYXWa+amqeNV6j5nzaX9AkjY\nMMESNioyDWcSg7OM7oCphtZHNAaPk4lpvGONZ2K50Nd8JBtaGTke77i2ipPQGSH6so5ZeHf/nlyU\nw2GcUPtNlXMmeE8TT0uWOBdaT5YfRk3i9q7hzICzlbjxcppQxbC2QqyR4AJuo5e3qgiJ0nkquH1n\nUmthXWZSeqaZrFTerbBpM/N65jjdKugtlv3BN2imnzWO2lTntOm1EAW+GXG6stW38R1ULdZYEW9x\nzih7BRAxajW3aiQoJe3ZUEJjGgZMEeJcuebI2O8ZL1DiC+UKd8dHSnbYtb/Y3UAsK7Vlco06yhPZ\n7cO27/SM9XjnulZiY3p1LERdMSZptMHb7c15uWDDERcCsa3cdA5L7qPQWjPFaPdk64I8ff6Bkiq3\nt7fc3N1ymG53Ifrrywe+PH3icDjw/Xd/gzGOP/8XFaKnXHh4+JYtZ/D25ojvJPWSK+MhcDwe+fLx\nA36ckL4Qffj0Mw8P77i5PTIvF15fXzkcVD82hoEcEz4ERXbkvBcgy7JQSmG+XHVNa4btLZRyUn1I\nF7ZaZ/bzKa3indmLlhAGuF6JPXX+eDzivWcab1iuM3HNDL2wScZTm7yxqILncuni/ocHUurgxawj\nya2TpRyrRK2hv4TYu6PKcuvFeXtbf0B/fzGNRuEwDSzLwkvv8t3f3jH4yjxvrC2zd+ty1qSDnz98\n4ng8Yo1n7hl93nsGH1jXhDseaTXt0FzcwJoy8/zMYZx4fHzk40cFecYY8c5xd3fP8/Mzy/rGyBoP\nE1hYrmdslr4B7fcoSe/hYKm5kdZICivO9Q5aONCs6+kNggnuLe4DgXWF4YC5O1FdpVx0zOqMQHDU\ns0Jem3vbYNAaNWoKg/cD7njidFD8g1uuyPyKWWfW/KyaxF5kx6yoG3ETzUSwsOWmWatxKa1q8kCr\nlbnrEf3gyDWSS8Qms3e6oY+ejDLErGSVhmwYlga1Liqcx7JmdvSH4CnN0ppqmGrhTYhtTAd8Ci44\nqIHU9WHDMGCtShyMMZrnt3XG89btahozI46Y6p4vKdVrJMt277q2R/LoxLkpABMhl1mTMdD4r1wL\nqet/a/X4oJ//OBiMbTjj+7SivOXGNu00xVXzUHM1pL65TrVqWkLf4BYak9f72wShmQo2E2ujRrd3\nuYIZMTJQUmAabvDmwLFzu8bhhGnasV3WMzGupK4B06gdR3AjZnTagexSmMsy02pE/IA1VovqfVNe\nqMUQs6FhIDvYUlDs2/vo3zq+4g++Hl+Pr8fX4+vx9fh6fD3+O4+/Wkdqcg7vzB56OTjdvbdWmKYT\npcy7iDkXJVGPwZHKjYYB9/ZvtT2M0MruUtgyrmItWDF4Z3EdjrB1SIx4/GDxJbOWhVzTjuCXVoGq\nArQyYlx4m+k3UVFd0uBiH47UqLvE83wlGM3qMlaJrlu8SLPQqkYkYAuG9haKyErOK9a+4xAm8tJI\nfot0KP8Pe2/WI7mWZel9ZyRpZj5FxM1MVWdVV6tbgAoS0Pr/v0QSBKlUU+a9Mbi7DTTyTFsP+5B+\n6yFbQL/kyyUQTwGLMONwuM/ea32L1kqv9Bu5rbs92OJYlpnD4agarAS2X9JpdIiJ3NPKbbmSk4oV\n25ZoXRspZ5wzBOupydI2oV+mBzUbDd+sBpM/gkQHN1KZNfRRGq63qq0I9KyyZrrrqm4Cb4sQELtS\nqyEXu1vurVWDQJnfiG7ECJqF1X+jdwbvDlgX1RWy1f9WdThKIR41f/FXu2Brocmd2kyH5W1OGtVq\nhRjUpVGFyibkbKqDKZDbQs6wdAcKDgyFvPzo1+ZE6tdiCiOtKmG/Sm+q2A8bsIh2zoYwEXxUiNxO\n4N8wDiBmwbqwX8dWHUkq83qG7nDy/buW5YZrDRMgEsnXhfObapaCdzy/PPH48Ikqlsvluo/B78uV\nYTzw5fMfWNbG/fZGiB8ZjPNyI8aRT58/aURLvxa/e3whxpFf/vRnfvn5z/wv//W/8ucesHu7Xfnj\nH//Issy8vr4zDBPPz6rzu13fECrrMlOL6ody737WXGglk43udh1uHwk20S5IcJ5SM8fD4x5JYqSS\n1oS0omHE48TxeNq7Qeu6UHN37KG6oKcn7WaMw0E7ZtNAzuueD6j3vnaUasscTkeW+a6jElTSllLC\nJreL5PFbF1vXA8VpWFJO2xSK0lSPidHd+fF45D7r77hebz1aZOvOlT3b73g88vj4pALoUvHeEYN2\nI+d5pgXtTM12AWTPp8QqLkAks6QVYwwvL5oleLlcWOc7RmA6nDQDsmur6rIyxoGHJw0rLiVRulli\ndI4YAzFEgtW/bylRe4afiSPEiJMEptIkfYz2YoQM9Z4xh4wdJ2zSTlYzQg0WaqLMhRB/1ZGqgmng\n8kpab7jpiO9A0um1XEYTAAAgAElEQVRxYnCWW4U0JNrYeOv3jRWIbiIMIw/NUMqyu6CTdHRA09Fc\novB20889+APVLQrTdJGKoWzJBVU7p000O64W2VErpjSkJsSuSLO06jF0AZU4oFFbH6XRkP7cT9NI\njAO2qfuuygeCJlinOixp+n0NONlcoOp+zkWw1aioXwy+640rRvEEppKl4EzB9eisDRmi642K9zf3\nuAikJsxrw9SId4FbvzdG3w0HLqBYhaquboDmaFUTPrIIFaFPC6kFBEvwlmGwOF+31zrWWMQ0DYM3\njtYczk/97w4Ec8CbA59Ov+cwPDJ0g0Itmtn66WWi1RfWdeVyVYPG2+Ubta2YGpjcSEVF5ACPh5Fc\nF0yXhLTqdp0qYhBbcH7gtqrZaINit5z+fztOfz2N1BQ0hHdDHDgDAstt4fQ4MXjPsnF2goqH4+AY\nWgXM/gKjj8BaqqzLQl6yuiQArOCwZH/A1IY0s59UMUAzBNcDD5vs4x2cJdoJYxNCoUkimG5zbxFj\ndDTQqmbIxW4dLyUzzwveNloxmGq6yBKdizcV0VUxlOY+BHktU9bKdX7l+fl3lGpJa39Icd26X1nW\nmZQLsYsx4+BVwF7fmQZPTuBtd5KZgAsLp4cDL8sn2vlOsrc9a6/WjORGWyvFVCQYQteIVZQgvdwF\nsZ7Bh11b5awBuyraQAq0vLM/DCoorGQtdjGYLV3bRKQJ3j/RJGFl3osX2UY4tVDyBe/cB6PEeRwH\njKyKMjCy21OCiZQmrFnF48a2fcYuVFqziDiKWfFesLI5NIpqxNqIsQPWQ9wypZqyrJw3uBBZ7iu1\ni6DV2l4Ay+X6lWmoO1+sFW3T5zLjJKjQ01nqRos/RA6nCWsDpRYCSsjX72o1g6xVTG74wcNG0rdC\nWguv94R5CsRp1MIB8HgOk6OWwpoLS173sdAQI9IM93QnlcoQD5S86Q8Mz88vNClczq8cjw+8dVo6\nWIboeXp6IqfKck+EnuGW0sJaVv70y8/83R//liF4vn3XovLz58+INH7++c8cDkc+f3nZNSTzPKt9\nPcYe4Cq7DihX5QQZK8ToFTXQi6V5XrAx0ozmg1kKeYtxMpp5563DtoZtjdPjkdNJn9Ov3/X3hDAw\nHQ3vrz9Yuvvt+HDiOlusV0HtsiycTjo2eHv/sbtWpxgItjBfdc04nbSA0lFiVE1lX4fDGKgFNbek\nhA2BkvQ3pnXl3irjYeJwiIAh9tDelDLzfOuMOcUKbBb4WqumPMTIMOg4cddWecPr6ys5D5zPZ54e\nTrvb8fx+obWG95YYHLkWYpdQnE4n8rKS1vsev7M5Ief7jctF5QzBW7wNe5RN6xEk1agZRYwKjGP/\n/SYn6mmkDk+4XLDXldpfwlSBQc0W7XrFHyrErehT0ngbJ/LyilzmD7F5sOAKbnSsl5Xr9x/4cOsn\nXEeIgjBGy5oLn6Kuw5fWmGtD2sLDdCT431P6pu1ynaklq/7NaxFR1m5yuAyMISLmrkHszWHLltOm\nG8yaVcMo1e7C91Iq85KxGN0MSd7dTf9+PWqUljnYqT+HDorFet9xAgXre/JELVgRlpqg2b5Z3Zx3\nOpY2SXTTXxuDNdh+3pq3NFtpJKITQAn3gGJCrMMadfy1unueWHNmKZVSYXRe9Ut9c72uiRAdIonc\nKsbX/TmlNiqZ5tS0IrXuY8YhCsFo02Aa3L9b2231+DDq+i+VEKs66VC9cTATx+NPPD79jeZHzno/\npZKY5zvWpv6sGkJ46P/fwpIy1qp7vkqlNL1nnHO6CRCj64y30Ita5xpiA6yNMYws+fqRzSofua1/\n6firFVKHY4RsMHZzYGkkBG3hPs/qlGnbollxwWJKBSOIa8im4pVArivLeuV6ncn3O1PPt7PeY2vG\ncubJP/Vcgu0ONx1qZnDOUJvfizrEYFCIXS4VazLGdA6Hc6rqt1F3+N6qKBuII9xToSRln7Qk6swA\n/NCzxkRIzbHWFdN1V9aNiL3xen7j8enMp9OBNV36V9HQypxXWm7UWnc3QW0N70bOtzPCgRBfuPed\nNe0OVh/kh+ORZiZui5B6nE0pheYSreTuUBKQbRAsWAzj8KCYB0F31Kj41/qJJS84DNYLdesuiMHv\n2AHNbdp0QN4NGlAZtNsX7IT07liyV0petIvnvdp12S6T0QINQ613mnXYLmCvSGdFKWBVygdETSNl\nDE22zmJg6PdFiBPSGqUI3neOzAZcFcvgI8PkCGYgx4n7vRefuXBfGuneGP0JYyNdU7nv6nLXHpgG\nRSqm79jFB8Rp8Krq6PLerTTWqJ6vZY0RSndMF0+2qs6wWhLX2xuBwIguGqM/kpNy1KQFgh8Ivchc\n7vPOcvLWdTuxnu+Xl58Q4P3tGyEa3s9fke7q+fL593z6pJ2o+7LsLjvQF/v1uvB3/+GP/O0f/8i/\n/PxvjL3IOj0+9Bw9eH7+xOn4yJ/+9PP+ua3wUDdfZe6LYq2V03TAuYEhOEQ+HDgAzltyWql5pQ2O\noQsE1/ui8SdSCcExjIG8rPt3jTHigud6P2NFnXLXS2c+TU88Pp56N2piXfOuLYu7jitzrmdOh8O+\n8F8uF54/vewdI30RbfcbvVDcmEyF0AuU7Azn9++k84pzhnE87U7ArbO18e2MMUyjFsO3242cC7fb\nlWEYeqyP3ovH4wO1Ct+/f9c8sjLz9KBFZO0d7DU1bk0IQ9z/zSF6Xr68MF8976/v1O6kBHg4Pap7\ntJT+mz8KPgVxGkyrhM732vhFAH5NsFSMKbSasK5Al0+tKeHEEw5aDLYlYTuUcl0TplSGIcLLE+1H\n/oicqqJ6V+MZnp7hnri9qbZsub5hXFQ2nVSK0Q0qwOH4QDrP3JYbJlpC+DCMmHYnRE82M2s704zd\n3drLeicV3UTlolEi3nSm2Qp1MUieEHHk1Cirfs/bUhEZlZfUMs7GXR/WWto5X9IM0/ERI/3EtMi6\nZFpMxBhVtzr096GtNAsteVK5U6Xu95ZxDVsMISiXrJmmmzyzfdar85BCNY3o3dY4xVCxxujfVSFn\nSH2DdbvdqWLx/pHon4j+ad+YnabIOI4s6Svr+srt/RXQaxGidtxTsbR2xHl1TEMXvpuCoW718R4S\nLc4QnSe3Sl41xD70xsNhPOHagcmPTH7kNH0i2L4Olx9avN5X2jJTWuF21++y5pticGyltrTHw4Aa\nrLz/gJgG7xk6SqaUQjUKKsUp/mB77ktpqvP7bxx/3Y5U8LR1+7IGEFJLpHYmOK8UVBT01UqvKEPQ\nQqejEWou5JxZlrnnfOVdsGaDx3lduK03TMePtHpjlKS7ZbgZw25lNlYpxlSrUGzJ3GZdhBuV6J+w\nRiGMphpSV90ZH4nTgXtaaVUdgbtIPYPLVbPjWiWbgm/byzLQxFJb5uu3nzkMD3jp0MlVcFXHHKkU\npNV9N2+N4CbHsjpaeec0BpZ1EyRKz5krhFA5DhNS234T55ypJVDrSi4rNZdf1ZhCNhaiuh4VLrGd\nNxV8G7E4KRjTuoVZxY/Skmbw1UoV8D1PzvugEEqrbeVmxp79B9GPLPZCK4vCC4cB07tcpRSwpRsB\nGshGKNHWvDGhM64ceU0f2UmS1MkngsNhm8X0l753lmYKpSZa0/Hgr1POIeO9w7uMkYCdumPTr1hr\nOY4TwTz/Oydgax7B0oywLivSCj76/Z5aWiOWhI2eIUZyrgoZRYs+05oWnU3DYcNmPuwCZMSxLDfu\n/kDsluxUVigVaVWDtcfjHr4bxokhRrxoGSrW7Jlx3gUu8zshBN7ef+hLetKX8OfPnzE4LpcLxlqK\nNMbpo3A4HA48Pz/riGhdeXrS8Z0Kn1e+fPnC4XDg9fWV61W7QtNh4ng6kXNmvtw4nQ779a05YaYJ\nKZngj6S07s/oNE3UmpCa8Fbz9mJ/ASepBKfn0Vltv99ud0Lntj09PytPx3qu72eOhwOhYzrefnzn\n4em0n9+ffvppZ17FGPHecr3qupJK2Ts253zmfD7z6ZNCT63dh8zc7/du4BiI3nPPaXcPT+ORYQjc\n73fO5yvODTtqpBR19x0O047A2BIdYozM80wpwuvrK+u67vfpEKN2l0rh/P7Kut5474Xy8eFxJ6kv\ny8Iy38nd4u6cY4qBcRoYhoHr7baz3kLULoSzEed07dtEvNZ4YlBau268qoZNr71D5A74tGBKouaF\nVj8cb8M00qzXRRB9praxWBRPXRbyshKGCXk6QX+xy5ohG5oT/HTAHx3xqJuI87vlx/sbJa9kKSzS\ncL09ZrEE0xgnR2oztWVC7/AasyJmxQ13KFeMAWO6eaOtSEvUpSnvK06Uvu7X5JAWqMmxrpYlG2rv\ncOe16miuY3CK9ExQ+kbQZmoRnAsMYcA4/f/WRRhCQKRpsLAX6IkW1mZ1+EkB05CWd+AmKMjb9sxD\nIxYTzKZ9p1FACkOAVTqUM2+FJNgmNIFaDbVYNf6gG9MQj7w8/i3H8MQYnndTyOEwcjh6rPuPrHnh\nOv+J2/0rAO/vr9zub6S2IDZhfWDw26RJN9PWGpyz5Gzw21rreyHYtEvunWO+6n36dDzyeHxCmmGZ\nM/Jk+PT4k95PdmSK77x5x/Ud7vkHt/mtX8Mr46TNJh8qpf4qm7UoyNT7iDWO2rLS49ER+VoyPjqo\nkVQ/WFfefQj9/9LxVyukGhXvA267+aql1Mx9uZHlzjiEffSDGG2DIhyGCNidI1WaoYrlnuG2iBKy\nQ8cRtAbrzJIylcwqAWs2TovOa3+dUl97LIeh4I0GUKq1NNO6ZfP9WvG+McZnoh/UXtt389Za5cs8\nVO7LldQjIQBMDVQRimgnZFXFln5PcdAmWs28v//g+/SvnIaeyN4uGN9odtUxo2kfrCAX8EELg3V5\n15ic0ufkRblUwSk12oon+gG/kb+tI1lDzoJ1kHJG2BLLtZtU2kIFrI2YjWyeV5orIBXbtUxuixiQ\nSsl37Q4xAR8OLOdCD2Vt+vC3sCerGz8w+IF1faXUm7JKzPY5x0oi1ArdcbNFq9AtxRZLI2vafG+q\ntWpZ1oSQGXwg+kDpnaUwTUzjkdYmlpxYl0ycOqV3sqo1aQ0TtTO5BX4GBqbxCSsHJHvmZfkohsSQ\nm1AqpFoIDsSpPgJgbYl7vhOdVU5UrR+cnVjJTTugtVWwFckbaT3oQuAiYh3n9Zd9b3RyXxjdBFWd\nlvl826GEznvG4YA1hlwKx6eHHRuxXm/UWjmfz3g38vnTH7B99HM8PfP6/U3twAIvz5/wQ486aZUp\nRu73O8v9jhPP44MWFa00puHA55dPvL7+4Hw+7/b/4/FIa43bRQGuDrd3YLz1e3dmni8sS+L5WfU8\nPgR++eUbx1FhrrUkSupappQ4ThOSDWtt2CCsy3WPwjgcTpRSWO6zur9aQXqUkdC4zXUnqscYOXVH\n0H25MQTPNI7a7RPZAZHH47Hzsu48PDzszyH0RPpSqSSMaPpALpsO6oox2omK4UBaC25rfksj5Tu2\nd1das3vw9DBExilyveq47Xx56wHsIKdHDJbT4ZExjpzfvpM6IHK5J07HIy5aqIWMIL2L7SxczjPf\nviZqTR0f0jsyy9zHpcrj8t7uLD9pBsHjncbEOGMZx+O+oTW2Ii2jNnhLyYbWtYU+jjgscl8o7Y5r\n674u2MMD9umJdDnD9UZ1Gt8CQDSwhT2L6ll8d4I+iJBK4/XtG1WEJo3rWWGsbjiR8eSmRYW0BWO7\n1msyrOZGWl8pXLt7T9f2UhSaCg7XrK6nPZTZmoGU7pTsmO+F233ZcQOtNWottCbaCfoVl80Yi2lK\nQa+lcrncdgp39JbmhJy0C2hsQvr3TMud1u5gdO0U43qsGNgSMS1RpfO4mjYhxG+QRAFbKWnp6N9d\nbkzKjuYVmCko6sDQn9PpyDg88/n59zwePjOG530TEaNljI5xPBDdAeP/ZwQ9b2/vX/n6/Z/487f/\nl2v9hUAlsBWSDTqjSYrlGAO5P1AlG3K1GCY1XZP2d8Ll+o1PL7/DyyMYyzxfeenB6n/4/AdGF4nB\nUFPmsnz7CB2vUJJukjEZ7wutr5hRyRa0pnFt0oS0AZOdxXnpLDIdi++dUSv75v0vHX+1QkqaIVP3\ngqhZSy6GLIb7mrQC3GBw1mOdwVrXlSVuT4muUogRnL2Rq97cuyW5NkAfuFRnUotMo+5orLWYXAhB\nRw7GNtX/gJI9jeqcWu6Dpc6nSblyubwyHYWnx0+4ZveFKFhHtYKZnjXjZ7ltEi6MzTjrMRKoOJYl\nsHSRujOav2fwuCBcrt93AXcTQ80VTNbU9Gahi+BSgdjA2wpU7vcLNW+CcQvGU5wnOLvrIdgrcCVp\n31DS82AtZdtfi8V5T9kosFZ24WizjrXcqbWprsnZ/UXjrFVJf06aR2cn6hajIDpGi75by53bF1MR\ngzOBcLTcF8e6XKj9peedpYohC8T+0q17J0dUFW713/ThY/4uRanIiIJBa7HUfn1XssbxxMDgLCkL\na7eVZ0ovAJq+HF3F1s4D8geiH6mro5pKHDwm9fNttLtS7I049UfXrDi76QEaxhayLLSccbSdpm0t\n5NaTyZx2GkvtWj67YE1AbKZW4b4aYt8MHA6P5GzxRsX0Q4hIf2YOpyPjOJGWjHWFZU37At5a4+vP\nf8a5wN//x/+EMY6xc53O5zPvlzOHw4HH52eeP33exzfjOGphO9+ptfLw+Gkvgqy1fPr8zNevXxUk\nOQ187tlviOGXX74SXeR40KJqmfW3f/npEzEOzPONUlYtMPsOcl1XvLcMY6AsBYclrXqd1vsF+3BS\nHoxo9ldZZmqfYUynp840m3ey+jZ+jcHhrGEIkZIT769vu/Yo+kBKK0McmcYOtOwdm2mITNPU4Zq5\nE9nTfk43vImIcBinHdPx9vbG9XqjlKras1xYO3ZgGIaecNCIccI7uN30N97mi+Y9GstaEkOI3Bcd\n+d9uTvUootltp9MjS4fD5rxyvd1preCdJgEsd/3t9/udIUT85LjOhZTSjrBwzpFTBi9YG7XD3DcR\n0zRiraOUShwG4qCj+tB1SSYExBiMd6p7QrVtAK3qcys2QKtIUJu6ftmAfzgR64QsMz6JWuIBCQ4T\nPVbU5t9KRaqe7zgc+fLlDxjj+H55J+eVw0Hvm/flwt1YxDiMrKz5vBP/xS5c7+/My4XcVhrCFt3Z\najeiuAMiluAjY18v15zVXFNVXpFrY14+QJamgTF+xxzsqVI9UcE5XbeWZWFZ9PqaIVIrxLHhXKaV\nRTsi0GOqEt4JSTTD1e0j70pBSLVvwrejP4uN0lMbvIr4bdjfpdZEpPQRu1eJXwzacW7i+9/DNB05\njU9MvRt9OEw8nkbtpq+F5Z528vcUTvzu8x8Z48C3W+R++QUnXcdpLVUsVTy5gmlu3+xK8QzDkXF4\nYAyRnM+7/vPt7Y2npwt/94f/hOsz4q3b7oMj+gnXPEMYcOJ1ogKkfFdTh88YW3FOtCAFGtKlI5pp\naGzUmDjAFIOPrhPmRVmP29ieusfa/KXjN/zBb8dvx2/Hb8dvx2/Hb8dvx3/n8VfrSKWqYLjNfLfm\nlSaNZg1FrDoVtm5VrTinllbvJgwR2RDekrCDI00PXPyZFgTbK8mS8o67T6tlvgqt6kw/BId1kHMh\nBK9xGxuCXyxeLMZZchZKjaSyzUwLqVwplwvRRUY30HzfQVmFBtbFMsYXgj9w7cnqKc9Us2LchMfj\n78M+aikt400j+oipnbY76sw3xJFaC+BwYjR0sVPPa9Mxw+F0xMaRMi/7Tr81sN7RqqU5ry18NxB6\ndlRaC8UuHA6wZHUahX0GLzg/4N2EsxpHYPp3tT7i7YFcZppkgjN731g6wNDaTjaXj7Hpdm5FREWT\nEtk8ssYUvAuIjHhjyS6r/gcUSWE8zkZFVoQDXf+qQaBVk8ANCorzfaxbasPVQC2G4E+YHpINEEyg\nLI1cVozzeDPucNB0u1D8TVu71hGsx3W6b5OoEXjWYNyoduQOezMlUc2tW5ihFTC27BE5xojmXAmI\n8eSaSN1QYCrghCpFMQSmYLtdWVqm2oQ1i+6wbSD3z632HWzCmIE1Ow7jgUPXT/l46MgFoUpl8pG5\n51p+//7K8/MnHh4euN4ujMORXPU+XVPieNRulohwPp/3mIjhqHl13ntCCIhknP8Qm18uF67XM+M4\n8vT4tNuxzz9ecQLjEAje8vb2tnckTqeThuo2HQt7F4nd9JFt08ioViklYaSx3FTLVMtKyjNSLcfj\nA7QVZCX0zvE0RrKtrM5g+6glhN7JzSsRFecaY/j+/euOIjmdTqzrnWVZ+PxZY4u2XXJJ6oqMMbJ0\nIf4eeLsLUwvB+R0cCqr12jIGL5dzz+r7+FxtjXlO1GoYhwMPXTS+3G/M86wC9GkgpcTDScee9+uN\ne70ABWkDzgbGrh8bhsBtuXM73zBNOEyTUsiBer+x5sQ0DTw9vXA+X5BN49k7alsWpfcfAemqx1HE\ng/cejCHlut+nzgRwkVaFljVE1m06VhHwnmYNVkaMM5jeCWilkt/OGhTtweQPW72rBe4qjxDnMVLZ\nguHEFEIcePnp9zTvWX98Y+6j1MfnT6znb7zdv+Gddi+LbKMBoeRGy5aWPZW8j+g0HHoluMJx+h02\nBvKOt1A5gsXgQ8UXwW3d6CLajReDNaNS02UDeZq94+e7JmgbCYsI3vZ4s6jCaNc1taU2ammIN2RZ\nKaUy9FQONyTqaliaxXuHDZ7gzB49k9ZCkoLxAecbzbl9EuFMUOF0bdgadC02m6FAtUXqPr8S3WHP\nBfThwDA9chwnVjfT5Ey5dwDqkjm/z9zuN9oKLbsd1Gr7ANE4jaRJOTB01+IQR+L0SBwGhQcP/wOh\nC9hbeed6uZM+r3z+9ELAsnTkUXBq0DhMJw7zzMPxkcdZn5nLfMawqg63OY2m6e8EKZmSCzRDFWi9\nywiQpSFJ15tUMjSl7vcP0rbR0l84/noaKZM14flXbdx0z8y5Ii5S/Eeoq3JJVlodOBx/h7fHvd1u\nhgPeFdZFMO5fsbZh+o1BbbRmaEUIYWBd6s4uEiwRvelTWnDBE/qN2mqDNjCFCeca9wombOOGjGtC\nLonbdSb6gPPKNglWWSvDaDFWY25cL/je5m/M+YYhA5VxHPfk9JzAiiOY2N/AcO9t4zCoVmFNKpqf\nxnEfhwYPSz5jkicGtdFav83YE3UtDH4EccToNK6li9iDH5TnJEIMmjW0hbM2EZyPan9uRjVIW5vT\nCsEfyQHWeqXl9O8WWw0D3kZ2smvEaq06BvHqNnFWtlxejBWcDdRmcPaA9yeWOvfvUhicxxlPLa7n\n63Uxbhhwvio+opT9hQDgbMA61SW0VrDB4vsCbcRC9tAs2Qi1pj3U0zhPk8qaC+LAxajjQ1A+CYHg\nAsYIlYzf4kyMxkHbUjUz0Wy8lo1PJZS84qqnirCs151t45oQnCWXRMURjYZKb+ewtjs2qBvSeZBe\nhKzphh8GWoPBD4w+Enb2iUFcw3h17a1r4jZrsfTlyxdqXTmf3/B+pFQI8cMeP44naEp4X3Nlw/rm\n+8zj6cj9vnJf7jw8PezOw7e3NyzC6XTSazQM3G66abnfZwYfsFRqEm63K09Pj/2+KKSycDhEfnx/\n56dPn3cURc4LRiq368wQRsqyaOsedZ/pAmcZ45Hr/I6l7lEaKS09S6xg6IiT+pHhVmvm+7cffP78\nmafnR66dtB0HDeettfLjhwrxt3y/Wis5584kc9Ra93t/czemlFjvy45IAPDeK1IghC6u/XDKbcVL\nKZXb9c7tdtt1KY+nB4wxvwr+9kg3L0zTRC0Ly3yhlZXn5898EOFXTtOBWlWkXq8zUy+yrHM9j2wm\n+Ejwg+pJoPO7NpNHU+7PxiYSMLUBlbVUbIjYYUC6tm7LLWsNsA5i3HUljYYzgg0eWwWw2O6WkiKk\nyzu1rIgUqhE2qY8UDcY1zupmsgm2bQakleVWKEYQ0/BD3FEDS9JswTXfuVzvBA+hFwSDDUwhU1ah\nlRvnWyb38eX5WqhZGAflGjrzUQxH67pb2tJaIeXLzogLMervMh/C5W3Yo6HPG+3eYiy7NIEeEryu\nGS+F0jLG9I2YrKq5Mo7aukuyv7tUyBHxg6FRqFKpJTN1TeJpcDTjcN4re8/5/d5ofW1qPtCqspQ2\nR5r3Busytb3zdskYo8HQeg0L0gr1eMA71QSGLmnxTjE3pRTKUpRz17VH4lTSgYAYh4+RYDcB+xcq\nA1US3ja9vn0NH4LqpP7l6//J6WXiMH0m9MLceoNxloHA42NkyQeu926IqQNVVpoFh9dxc2d6GR8U\n+yNFC/iihjCAlItqkFvpsUdtfy6g7prGv3T81QqpKhVq1jkuUMVjfGA6BHJWCZzpD/EQPSUri+YQ\njyAD654ZZ3DGcRhPeKsCT99PTgwBKZbadws09yuL/4boB+8Hmll2OJfUBrkhFsYQcd6zbHA5M1Kb\nR/IMVC63845NmKYJYzw+KnBycEeGzrUR51jPf6K2hejVOryJcQECjdEGXNQO1ZbkLbUxTiOt6o0e\n/ITtc3FxldFM5NViu2Zpy3hqRiFwqRms05TxgsH0hSj4SAwj0m3x3ntcn5Wn0iit0WxT8WTb82Sx\npmFaZYwTLWfued5348H0rp5peKMBmFshlVLCFKi+kbJhiAXXRY7SGpWKiOvXxOG375IWrPG40ItA\n8ZSee+i974tuxcaCtEzq+gMA54VaMku6MwwnoutARjNgxLHWRm6F0gTpLhuxlWrVKpsDtLyyhZWL\nawRXadVQq6PISum7y5QaxsHx8MQwOkpJXK8zbQ/bE73eTfpD69j6VdYUfVHYSq2NnPzuhHRB93RV\nmv4bzuLNltGo+VBhCIxh5BBHpG5Zc5l5fgNJ5CWTUiZ2PtL5/EbKs4rAqxDDyFOHZ4YQMMZyOh25\nrwvvr6/8/d//PQCHcWJJK9frmcfHZ5z5EEZbut5HlEF2u932QsrUhviqRVspeMvePVnXO+MYWRfF\nNZxOh10Ufhw0JeQAACAASURBVL9duF3PBG95/nTin19/2Z1wusFuBB9Z18Qy37GOPUT5ZCNQqFmd\nbs4GltJ1STFyPi/kWlhzIni369XmWfMKQ/TMt4+uGajT1fV4LnXXhX+HhljXlWmaiD7w/v7+wfvq\nhZTyoJRDtXUldM2wPag7k/LM5aK/oZXK0PPygF6AdcBtEbIJNFNYlpXz+3WP5JmXBfLK05N2EH78\n+Ma9M7QOw4j32lHbzvkw9BdNXlRX1XlWtVYFjAIhTAQfNALKiAIifdydeUhFasY1fe5rM/i+vnnJ\nlHzD+ZFaKtYH6tYhCZYhHMjpjnGCiXFfhxHpkwKgNIJzu2i6ZeF2u/A+n3Uz5MwenbWm7lZcr6Tl\njgzDrnGlDQzuheQstyWznheufUe3pkAME5YjJTuOg9+RArV9uORsteDsbnqxYrHOs+VjOu+7aF07\nQL/uyltv9nsYLM5BrQv5rmaijbtnEJpVPRLO430gdy6ZFIVpGim0LAxxYgojp0FPwClGgvN4Y6n9\nJ+yg2lTJAkt3m2tYcheJGUOtK7d0h8Wy3C/78327X7meb7w8HTkdR0IYd91ZsxUxarSorEhdsRv4\n2VRqazRxWFTvtgmKnFGRVi4NZyvUZS/cjC3c0xv/zz+/8fA0cfy7/5WHza2clGMobdUIuOEj7NlI\nprEi1SAm9I752K9TBevIdVZHbq6/6sYFzQFdF0zogvPuOHe2qt3xv3H81QopI4Zc7+S80VqPijfw\nEw+nkZoTeQuaLHdieCL6h57a7DCbM88k8lqorEQ3chiH3X1WS8CaiKOqHTcU4hZuGA6YpsnQzjpC\nbNju3rDN4qrgmmWIJ4IIvj8MLTww2idu6U62r5hw5XxTKOEYJsbnJ4wRBu9wGMbQs6HsI6UVvl7/\nd1YKNR6p3dUSDATjsBN45wll3G+MkjM5Qoe6YuxHO906h60jkm/kesPaSNvo3USMabS6IkG7X0vN\nuP4Ca6HimwOZaDVRzfLByvAeaZacV+wAxYJ0/pTJQgqZIIEpPEIrrOsrANmIdnRq6cGgy24KkDaw\nyIq0O21pRF84dUZJdIGWK7XNGKuhl6Fbi73zeNeY/DPGHMmrUugBxNguCDQMjBAirndkrvONvL7T\nzIwYuC6JodPil5awNRKcci+aEZa+QrcakQy1LdRypQ6W0LkvwUTwR8Q27jchlXl/0RgTiO5ItBOn\n8cgwOL48G15flbh7u11UzFgyTgpOBtrSRwPtprvSAMFZpGRqx4KY1nC+4YhYIxiXaHTGWDhh7Akx\nI2LgUgqyaqZaWc8stxulKjkiWE/r0Csf4HD4REqN4+GBLz/9bi96pklHer/88gtruvCf//P/xNTH\nwa+vryz3V2L01Jq557y7uh6PJ1pauK/znmG5EdjHcejOptpFweNOKJ/zwiiRdb7z/PTEfLvsjr51\nVRRCdJFaEu/nN47TFviqRdDpeGRZbrhgsWWkzPo7JC+IiAaSDwO1ZWJ/ubVsGOJESirgzjnvodyt\nCvd5IcZIjOrq276PC9tIU8jzHVPqltmLMZ6cM+fzhYeHBz59+cKPH522fH5ljBPjYcI4T+i8NIC0\n3vTft45pPPIwvOz/nz7kghFhGAblspXNRRYQA8aMmJZZrjfWLlJ/fn4m1cTl9RuPD0d+9/LI9abn\nbSmiFJFWoDVutwu56OeijTgcgaDO29bgV/R9Pxxw0XKMB6zTrt029sYHDYe1As4jrVLbViwNOBx1\nPOD9SF0Ljo9AWBsNlhNlvmJbwkRd7ERAmsMFj40ZSuPenYm3+0xDSK1o/uDkqdskwo3gIrlE7uVd\ng6+397ppBFu0A87AUhprN/2kBs0GnUTIgE1BOaLoBssSENMILnNocXdCJpMoFiwBQ6Q0CB2sWegp\nCmhXxhB2+3+pgjWOZixWHILfqf7GW1oRsJ5SVyRU6hZKTNwlFJ+nkU+HRx6GwLEXGtMQwFecjYqG\nyJZly9NbEkuCQqKaRqIybwXRLX+ESRvLYmekA5z/8OV/5O26cL1kjqcB8ZbU75vr/J0f55+53c9Y\ndyFaGHoBehSPDroTxqizm+7Un5eAH04YFB9hrNnqGiyNIQrff3zl5z/9H3yePmGf9XPRjLR0xbnM\nfS60Irj+/xVUGiS2UrnjDQz9ua9JeVuuA5C9g9KdBsEGcB5nRgRFIoXekQxhoHSQ9186/noaqfKG\nyLRrLJCMdYbgN9pu+OBIzbo7MqLWWh8Da9csXVsmm5VZzkjITIfABiStpvYxiO3OvA9Lbi1o4rsp\nCvc0HjrokVARKsZmgm/4MBFqt/83zxgjYQ3MBaoJSNMb6vX8xjQd+fTyO3KC4OK+YA7jyCf7N9zS\nD87XPwEf+hnnDd4GvB0IdsQGdsaStUZBnE1HYGIFt4f2GqztoM+1kFtBsv4GZwyp6ouu1MowgJGI\nKT26gAgk3WFhEPHQx6wRR8ZSjGdeV4Jzu6OxGocUddENw8gYX3aH4bou1Lpo7Iq9UyXs8LlqKg6h\nlsayLCQnOzW3hQErQXc0NeGs2a+hcwZvJ3WlDSPBWealwxyLYJ2yUIoYnIs79O04TUjzzLPQqJS0\n8n7Rgm+KhWgnavVg1fFmtkIqV3JZME4T0NPKbq1tVpBqO8HXKsOot6uGOBH8xBCOeHNg8CNuMPge\nfPlwmDm/f1MWUhipVRi6vmqeA8v9io8GewwYoHX9hbVWu3pisF7dnztYVKC1d4o4Uou0lGjdnVXT\nirGO43BQp2PK5G4t1sDVyucvP/H09InXH+87FTmlxPu7ht3+wz/8A845/vVf/kn/zdxY0404jfz0\nFDHOEMOmY0y8n19JaWE4TMQwMhz6tc8JHzy1rj0CauDcO0fQkBwYxgMhBH78+EHuWoiXlxdK1S7P\nPM/kVDCHrTtTmeeZ4+EZrJBqYhwm7Ev/Pg1iDHifuk6yMUz62dvtxvPLI6FrVn7dWdpCilvRsNgq\nsneOW6kkEZyxDCFwPV+Yb8rKen556eNcy/V64XA48vvf/0HvxeOJX375mcuPWUeFPnA86P8XnCXG\nkTWVzsCT/VqIiDpo3UBtlnE4cK+qIcFbai7UUjkej6pd2bqjtTCOI7dL4uvXXzgcT4wPPfEgFepS\nYPCkdaU2s5Pbq1s1jqfM+OiIPpD7OFTuSYnaIZJSYrIBN7CPt4xtVBsBjccKwSkdHE2lcGPEBl1j\n3TixXnuxWJvqEL3HHU/Q0kdHKjpojmYMVnTUvl0Lbzzn5cJSMreycL8kXC/A8EqDf3z4rPwm43F9\nBKlw4SNTtD20HcoGsnRKK6+1cngYoFZoWxyVRUQj6K21+MFj87YRdhg76LosGvi+bTBME7x1/c+E\nrYbQv0t1hSx3fHiiSmBZ3zFdRpBzAltpmg9By2Uf2/sWOYUDD4fAl+MjPx0eOQ2eqY9Lh9EjJlEE\nLveENY3WNWkERyo6hqvSmNeVtTPGal5okvSej33TMOsaNd4HhcC2SroKueVdmjCv3/hx/jeWdFNO\nWfDQdbxGLKfJdSnHgrRK6y680TwxTjrxmeeZUusOVPZuJQyVcSp8/f7P/Onpj7Tunj66AyVdqDKT\n84C0Re8tFBVh2ogxRcGbuZHd5hw35GYxJnAYNIA87ezIiHM6+msmY4PsTj2Rit86G3/h+OsVUqnT\ny01nCeGwdujwrsavyQ3ej0RvCGEghInpcNittUkK3y6/cFu+4sYFbNvF5sGjGpnU7Z7G7swM7ZIW\nQnDUDMZX7EaOtQYjjZITdhSC88T+kA7Vk0Uhbr5Y1uqpmzahXjnPX3l6eCa6JyyBYbvAwfLJ/V5n\ntEW4Ll+xfhMqq+7HSMOZprPnrfXtRJO0HYDoA7HBzgaHtVBaAFMpWQsVoPNv9E8uKzI4puFRffoo\n30SMQ8ThnFpeDRufyWByU4JvbtRUGfr4chg150hvUi0kxvhZP0ZiWd8pnPVh9B67t0QTTaAUBcHl\nvKjIGzCjtsKFTK2Z6tou9NOeQgSaamDiidpF6rd0gVZxPqA0db9rkqIb+fL8yD2euN7eWNN5h2em\nesX4ShaHMwMpZ1J/edeuS2jV0ooiOsZO27XOsZSkD3sHedbcx2xeGINXxkodyHfHveVdr3eIn5g+\nH3h7/crl8o4zde86LtYClpIKq8lYJ7iw6RZU+2FspbKoInTs31XuNHkjmkCSA4LfAO24MHI6THgf\nuVwu3OdlH5m9PP/E8/MLzjn+7d/+jZTrTjAOIfDy8sLnz59JqfD6+mdaH4e/vr2RS+OPn36PDVEp\nBb07+Muff0Fa4fR4JHjHOCqyBCDNK8eDjvXGIehYqXcWpkmL5BA1N7KVitvYa8DpcCRExSd4a/eX\n0O12YRgmHT/VijGOOAb6nobbOne910hrjXGM+4jlfr/pi/bxtMfXbC9oEWGMOo5JfZSyjXDEmn30\nNcWBw3Hg7X1jRemYzNsOrWxtzyg8nJ75mzjy48c35i4g30CWh3Fimo48Pj6SU6LWQu1dCed9TxyA\nmpJiBTajSSk8PD7z48cP3q83Xh4feO4i9VIUaxCPE2Ial2XeO+qjD9BSJ6wPuOCJfTPQSibnO7UJ\ngqOVgutdDkOhtYBYoxDLWvAiH9qRKoi1mDDo+mTNTvfGGh3fb/IAG/bNoJUI1lKpOOdp3mO2cbH3\nEPT3SPVYK4SDfp/nHiH2fVZQ6d01nOsC9gTiAsfD3xDdZ2iNVnUTZaQSrSO4ymEYCS6yOdsLul7O\n8wxPgjWo8Bi6dKwquFkaxuo4FsDbEU2KdTjvcJ5dYC7GEr3Fit677ld6pWAdNNu7Syclot97tyq/\nKRvPKWHd5sqxTxOO4YEHH/nkBz6PR16GiXHy+L5RsFZZXLk0VmNYWlXtLbCsC8uiWr/bTUnudYtr\nKvcONB6R5rF4pBch83rm8OBxPlKy8Cv5WH9+HGIDTYS1rNjeCGgIkj1DsBhxYDy+XyczCGKzjncH\nQ5kXSunk+vWMlIXjZLncz/z89f9m6IXke4nUcgXuNPOEs43S1/bD4zMuD5S6dEzJSu2bAUzD26iv\n0lIxxe9dp2q6FNQEnPcYk/duVW15x/H8peM3/MFvx2/Hb8dvx2/Hb8dvx2/Hf+fxV+tIefdAykLp\nsKzjdARpPbnZYYXdlmqrJYwnjodHTofPnI4nYujjFizf338m1wsurARvkB67nnPBFUN1ueetGfZS\nugcBG+NpzVDmgu0DcW+dah/E0XLDjuyC8jGcyNK4mjtIZoxH1i4enFNhWe68v3/nP/z+d7Qyfugr\nbMOZyPPhd+SnO4aVeVWtSxgHjAjONYxZwVacU0CgcZm1NhBDDE67Jb0bZ5sBY5E2IK0i8pFThRgs\nnlYamMQ9wTgshM3SaWwnGFukNFJt3aoKsgXmSmOwnrTOe6bc6B3OHcDqDqzVstOkh2HAuhM2CXOq\napfeo2UqtRkaFu8iqaa9K3GaTjgbWGthLZWyzkx9dzVOI4gK0HNZOIRHgt2E/z8oZSG6EWcD0uxO\nWTdYvPUMTz8xDg/clzeWVSMNsEr+TUUJ4rW1HUWRUqHUGSHpzs65fcyYalICMbajHSD3HVRKCW8O\nHKIBvAahBo/Z4LDOMR0+cxpOvB9+4Xz+hettcybeCaGbIVpGxJBStzIvlcPRM03KIvY2fPglbMX4\nRG43bBMsI76L6SKBhuF60+ikp5cXnnvcg+BYU+bbtz9jjeHl0yd870o8Pz/vrjUj2jH6p3/+vwA4\nX278l//yv/Hp5SdKK1wvZ5Y3vYcPxjKdJoYhYr3r48nebRaYrxrMO44jy3zf79NxHAkhEDsoj/bh\nhAvWYCxcL2e+/vlPnA4PCvQDHXM0IaWVkioOR0ort/uH2WBZFh4fT1wuqrva3HClFM7nN5x7wVqF\nbm6dTOfc7szzTh1zG/nahQ7fLUKSxhAip4N28ubl3knpGqfifNgzzGpdsc7z8vkL7s1xeX/bxynO\nWMIQSXlBxKpmpj+Ht/uddr/zcFT9aGttP28lV4Zx4uXlhX/8x39knq98+aJpCIfDAeOVRG6nB3wz\nLH2UmjHaIcIyjYExBOrWjauNXIJ2peig3t7J8H5SXE0uiI/UVmg147qzqTmHIYGxVDuBH/n/2Hub\nV+vSNM3rdz9fa6299/l43zcyIrKisqvMsLu1Jm2VjZP+I8SRCOJABUFQEUf2SBR6ZiFOBNGJiIIo\niCIN6kClBdGWLkoo2+rKMiszI+Pj/Tzn7L3XWs+ng/tZ60RCZVaDg1KINYqIN85598daz3M/931d\nv4uga1gTKLlSrxmxF5qLO/6hSdDok4aSuGOkbMHUNYPNOOdpw0SKEHqHSLznk+99QrON4BxfrVdK\nv4ebNZyXwpwqRjyvXhxxVp+Lp3cfmMuiKQ9Whfx27Q7CBmIsy7Lw9PTAy9P9bkLISSHNtgq5ZVKt\nCh9FTTbb/WNMw7u6O32NbJMGQ6kzrky70xUsISgdPueKCQHrujBaGutiMLniB8/gC1OXH9w5ODnD\nwTZcS9S2qiGlr2E1F5aUWJfCpWSuS+ZDNz6c54UlaVh2jAtpycTuCtUV3RGCSkpGM3DwU783MvPy\niLcDOel9GFPXlpWVVh2tBIzJVLEsuWsVESRnCo1gP+IwvMDabYzeWOKZmC4EEaax0vr6HUugtN61\nK5kPHz4wuC/1/m436moMkSa+B5r37mDX0iK6F8f17Y5acR1O7cSASVSE1r83ad116YQkUbNte5er\nyLdg1b/k+vMrpOQlqV339nkJCWu0nZ5F9UW1jw1irDg3cjp9xKuXv840BMYeFYEYHs7vePfwI2I8\nq5h8i3xJnpIcV5uwGa6XyLLoQnQ4KJE750wIIw1D6fPw1hcWb9SemlPF+T67HQy1ClOYaGWlSmPq\nm5cJlWU1XM4PnI8feHX7A+Lu6orQdDQ3uCNDuCX31+mMx5S2t4NrAbqgPKdCaz2YtzaG4FUECtSe\nAh5c0Hm7KSx1w/QarBdsNVika3/mnZwLhmACg59oNZPSQt7YTT3w14mhIZqy3ufhcU6Em0Kwd9Qq\nush1Z5r3Fu9vGIYBe7lwWZ9o2/jSGcpaMFSqGKwN1L4wxKy0acfI3M6kFPfspI8/+T6HKdCKRXrk\niu1oAF8tcc2s8ZHTNOLciO06NxV9qtX8MN0yHCaW3ja/rE/kuiAu9lBpg99I8kW4Lkk/K2cIo9nt\n2KoXFQTlY8W0UPqoNMeK1AFvBk5o4Xdi2rU31jpsBevge68+xvn27KTJD5xjI9amrfBWqV2TV5YC\nJWKkMN2MWDkiXV0XgtNIkXXGuYBjUFcVugBJMUxT4O72htNw2F1kj48Pfcw2cN/deodOMN7s+ON4\n4HJ54uc///l+GPjhD/9B7u9vWePMOV14fPzAr7/6GICbw8TD03sez08cpyPG85x72IXmjcrj0wNr\nXDhM+rkcDxPn85lpHBRXUhK1bFmSJ1KKPH14YF0WTuOJ7dLXWSk1dUdagzYz93Xh5uam65sGWjuz\nrjOHUTcFK1o8Lb3oEsyOGLi/ve05lJG7m1umadqdSyUnxDrN76qNYuw+gj7ZieAD3geKQIrr/nx7\na7HFg1Tu719yGEfev1Uh+hpnysMTKcP97f1ORgcdN1znCx+eHrg5HPtYSN9/aZWnpyestbx8+ZJ3\nb9/y1Vdf6Ws5nZgGz3g44VygxpXYN4w1rv33CzR1EW4jqubADYEb/4JaNdR2W5NMGDDW73ysaoQq\n7OJkHQVeMa0o+mUMyHjbv/+MkLA1UpYLrTY4bCaUjluxBjOMIBWz9t+ZInVZaOOItZMW+B0LU+OK\naY5PXv0aN7f3hPdv+KYXi+cc8T6wpMK6zqRUmTpD7DBopqGtgRBGjDgMWwZnDw+3Svg37XlEl5pq\n5myzu9V/w600o4Hr1lqNFIN95ClbXp4ZqKmyUhHTTTZ+RKxFcHjXR4N9n7F8SvH35PURVxYOg2PI\nPei6FAKa87muq7Li6orrsYeFxiU2LteVa0lcSuVt569d0kqMmcs1qpg9ZXzXxk4+EFwlDGBtZhgb\nZuguQtOo6ZFYVLcXc2NNPYewLlATtaiLMARP62t7ylkzGUsh2czh5Bl7gS3V4rDUWmg244OoAQpt\nZjQ3QPOEUllj4+1rLaTilEg1cry7xViN5fJbAdqUhWVMpRqPaU/7mLGVqk5QAYdDgtsz9GJKGC8U\naeSce+OgK9+bIxgPfMEvu/78OFJZIxRyUrHm+fGR09HRsiU3IddM2d13cDpYTsdX3N9+gpeK66mu\n1Q7cfnjbHxDwFo1nQYVnCRUT5wyDuyEt2xdcWdKKHxQ8Z4bAxhxoxqlOyjRyUauybGJFd0XMoeMC\nBkq57kBKZw+MoyBx5Xz5wHF4ubuBliUxekurlev5AtniTd+8TCEEYb0mZR0ZQ+lijyYbIkCIMSMo\nBgE046818NLI1uKtx/XPbC0rznvVGVTBYpWR0TVLplZqjmQy3lZ8aOReZErpGU4GciwMTgMeATIX\nUqw4GxBzxLlBrb/oaV6wiByZEIxJPJU+K286L69tBRlwdsCYbTF15GQQO6rWiecMpIeH95yGW0Cw\nNVDbujOWJjmR4kzKT6Q0E6abPbKkVdOjVRxVBGsGTj30sl0s1+U9Oa94U7C16uIOUCoT2h0y1eHb\nhBdd+KxpGKsFUJEF6boNgBSb2taNpZRG8AcmN+wuQhqkfAGuiNPPdAPoHe1EtZa4zlzWGeMVngpQ\niwZKC16NEs7sHRtswViv3Zmsr3fT+ZmuJxI8aTnz9Ycn4haxEIaOGjhpSK8Nu8V+uc68evWKy+XC\nn/zkR1gRfuMv/CX9nRJ4enrADJ6nxyd+8On3+fRTFVT/+Ed/RMorNzcnDcitmjkGUERotZEW7TaU\nmDi90ALu4d1bcs7Iza0CKJ8eefXRfV8kEvP5CWoj+Ak3WGo/6ccyq8OsZo63Aw8PDzw+Pu1mA+8V\nxvp4VnzG4XDag4kbleCdFnhRQ4N9t9+9e/eW42FUhMOs4vDbuw7BnGdyTHivuqs1VsK0Wd59Z6g1\ndTUadl1SiVGDrKngB25ubp47WdcrMSdijMy92NvE9tK5XOs6a5em7mmYGCOsy9rF8o6PX33E0hEH\ncY1c5pXz4xOn0wFoyNaJroWWE04apahgf+NkIYYqhtEanBuYbsadCWdQmeY4Tvgw4A8jZjoiG3hR\nnPLYMkhplJKRXhBLLYgV6iFgTMFcI+XcI2KsGmOatWAccTrtIFcbMzZP5HWhxEeMN3v813p+ZEkZ\nf3eDHw+8vH/FZd5y2haqGIINpLqwLMuzY7OCE4sRh5jM6Dx2z3SFKg1jYE5XzLWxOYJyjjgXsKnh\nnCWmvG/Q1hikCQ0B61izwfcYJ5GCsY3YCq05qnfEfl/cBcvoPTUZIGBLI3fN5SHcgT/SnGBKZXB6\niAZoEa5LwWSF1p6vK9YKoa99WRrnKMyx8n658LTOXDuXb6nqcmu50WplCpaxcyOCzQzWMgwBPwTs\nANnovZhbwNSBxtprecdWPtTiNXM0dW5WKfpZAK021qjZqdk88Xh5x2HS58k0ocZCCE4PJGZlF9KV\nlVYbxTSilprkqHvCe75hSYmK4eXHJ83Frc8d5VIKORZSyhhxu0i/5ZmWVlq1FCzeh/1Q2upKTBdK\nahSprCi3DyDgsPX/ox0pGLsVVL+W8+U9lCcO051Ss7NmKwFYExhMYAwTh8MBV5+xDousDMMdRkYE\nBUtunI7WtIAIJLy1YCymE36dG5mT2rXXdSbYo0IP+yXGU1qhSoWaMb1b0+IF76C1vqFlsy98xlZE\nHD7oaOT941uOB80bm68rS43Y0SgTaQm03qZ2A/qEm0aWDMi34JLtW/ljoh28bTqZXT+lVqxYRjsh\n/WGzbdExSbC9fdk696MTmImU1IhFKHVV4nbbMuw0rFWcxdiqC0XdMhFTB9JdlbacG4fdrlxwbsAZ\ny3j7Ee5wQh71lPgw9yy1VrUgMRZvnlPuxQliHN6dWOOFnpPL48OVw/SBlzffY10yjvJcuOG5u7nj\nOldSTlyXt3inr8WZG5w9ImL0O9xl2HB7eoF3jqf3hjg/IHXG9ZOJcRkqeOcRO+LNDaE/iNYL1ldS\njszxQhPlmIF2SNYYWd+8IcXC7emGXK6kLlJUke/CNAA1k+MFU3s3NjeasZjmMa1RVgVp6meqcLCc\nDGP1SGuYLQhaHEa8nmQRWk6kzUxQDGtVfpSpFdfMXiwZZ7q9P6jzUSpff/01AB9/+gm5Fr7++ksO\nhwMvX75gvvaNvUUtIK4XTqcbPv/Nf4A/+L/+LgBfv3nNZ9//RDtitRHTumdjNe+Iy0JOK8Pgubu5\n2WF3P//ip3z++eecz4+cz2e899zfKjLk6fzYc/6EcRy5ubkh52fCsHOuwz89wzBQStuBnLVASgVj\nHOPxgJXGY/9Z6/T/l96RrrX+wtivVLU8iyjOc+5d8+l4ItplB3LGGMk7NkGhfTWq62nLiAPlpKng\nOfPhcubp6ZHbPmYdxoFgJtY1sVzPpJT3DtFlvipmoWnxJ5KJ/UATnNducP875vg8nvTek9dIy4nz\n44Myj/pnZpyl5kSplRAs3j4bNMTrevJto8qwdfG8mtitD9gQsMOE8eHZ3GAaVlsZFKsU841ZR2k4\n72hWsOMJpFL7WEiqdkjsJWJDYAhH6p0+b0uJhLXhHp9IT++IcyT3ufYaL7w+P7FcP3A83hJr4al3\nXXKBYgy5QgZK8dQ9m/XKkiK5rIhr+IPBXvr3VAqmafdUYb5X7dpsn68xWCOEMNB6wQXgbdXuXCx4\nq/vazo4SHaVSFSxqaqG17nY7Z/zdHcNwQ5wzxltcdzlbqdR0BgODCTjRDD+AahxryhBXLhSyVDIg\nrncyc+O6QipwKZnYIqlPDYqrCBWNOxV8MIxhc0JmgqtMB0MYLUUq7KHVlVYLNCGmTCqF2teamgVp\nDue0oxfXM2bjdolQS9U/a4WH8wOHQbuxLw4B6y1ik3b5S0T6UcFbWNZMahXSSFr3ZixxXRGEy+XK\nXVzxMCE63wAAIABJREFU45HUDRo56T7UaMSYWZaI7WtpsB5TKq1UmlTSGln7/ZRF9LBvDdgRk+gm\nJ8173Uw1v+z6lYWUiPwA+I+Aj9H38e+31v5dEfk3gH8e6KIT/npr7W/2n/nXgX8WBbD+y621//ZP\n/+3aBt04Q8HdkOLMalYwjZQacdE3OQ6CNfrhDsHgGbTvDYSqQM6cCzRDE42hgM7eFCGgUTStsncQ\nnBhe3X+PIrpgreuK6QWYtELNjSIWQQGDdeOClNit8o5c6FbpLYWx6kKFaJESHyl1c6cYcio48VQs\nh+F+fzBS+kAVjazI7UwrR5C+6ZE0ENUYqJUsC65v3rVVpAoxFwY36WfTf+cgkTkuSMuUFkkmkmpm\njbrY2KaRJS1DQx2NWycvd6KtlYgPBtME47ZYmkKlkvIVVxzGHOgHBQ7jDRSLdRPjcWJygh+0uyCv\nv+Sr60xtgrSGdxbTtV4iCuJsgHcTwkTpm15rwvsP7ziMN0xOiFF2HIEdAs4Y3UTrmTU+kZLeT6NP\n2MEBA4ZMk0zLGyercTt8xPHFPY/1S84PP6Fk1fo4YxkRhmHC+FtMuN1BpSaA9Rm4INaQY+3xPVCr\npVZPLZX3794wz285Pt7SyjYyeoUTTzBHjLW0Gmids1O8ocZME3Di1eq9Q/sKtRnixbNa6ZE8ffPO\nDedF29jpQmqCaR0AW1V316SAN5S17jEhw+SZhlF1Os2wpsinv/Z9AG5vb/nZz37GYZy4uTvx+s3X\nLB03MY4Tpnm8n/jhb37OF199yc+/1Hb7Jx9/j9NJobiXy4UP79/tsUJ+OnK9XLi/v8UZPTV++KDs\ntbsX94Rx4JtvvmIaDxzHibmPw8/nKzc3Nzw9PHI6HRnHkdev9Xuy1u76JmMmrPXc3Nxx7CNDDfRV\nqn0uGdcLMYDLZSYVJbdbnxiGgbWP71wYGA7qBjSmEYZnnWPMiUMnt5dSmIawh/qu8xUaO73cynPp\nPncy++ADtagb6PFRR9fj8YBzASMWY4Tr9YJhcwHnfX0pKRHsgAz69y3zzDShGsfW8EGhpqBkbyPq\nfI0xUkvZA5RdE2JpquVKRTVaG1LAe1zwCjtsjZrLzvvyQ8AH5WCZYcDZgPWe0jVEccmYwWGnI2UY\nlR3V9S65vxfHSK2GFgz+0DfoeAUzI3GlrBesGRH0PjVO4bCtGSCR3r/l/etvAHh3fU+zwuO18Sdf\nfMlK3LsgT9fK+zUxr4naFpp89AxOTZElLqz5SmuV1tYe+q7E7JoKiPLb1B6v36ExhpgXwNGMo1lD\n7EyvVith0uSE67rg3NY3BO8OOpWoTYthC9Z0XWUxPFwKH78cCFMgJUX8gMo4DBmhkavuf1ttVo0l\n1lULgZpZamatwtoPbSKiUNGqh2ExA7b/XnGJViPUgrFGk7F6V8KHhh/0/6kGjAm7bpZWyG2hJkNc\nM0us0Fl/pSqZX6yhZkPKBhe21+IAoTSDeOVFfXirrDtTGrc3R0oy5CTQMnULs0a7Wy1VSmnoWWRr\nkJSOhcm8ffcGc+d37WRKCbVhZq7LhaWs3JiNwN4QU3EO9KOSHeuztsyaGxUtqAa5YXTH/nkXmvl/\nFxGTgH+1tfZ7InIC/ncR+e/Qoup3W2u/++3/WUR+C/gngd8CPgP+exH5S+3b2R39inHGGN8fEqWL\ntwZxVStzKXUfi5WYaU0YzKCan+CQzVpbMylF1nXVDKlh2AVr0hzGBBgsFIch0LZ2ZNXYjGGaeHH3\nSmMd+il5L8SwWD8iRsh1095YYirUnIhUstT9gXJGCOIRJ7hgyDHtoENvJgoR2oizJ7wbGZwuGO8e\nC9f1DeKEWg1Li1i7FWdWOxAtY3ylmUTuMRnW3dKKno6wlcF6fb8AJjA6z4flkVwTVRYshmXR938Y\nRlJZQIKeePN++GAMniJZHw4MXqqOBdFxYqVhZCWlR7wXumacIIWb0wFnj3irJGRzq0XIWioP1yee\nzpFW9AQQNnho6eJel3HeMA43xKSdrGAaT5cL794/8MmrQMorvusWTiJUyaqlkwVrVrWJA9eovKph\nOjAMmhlI2RLQJxpHxmAYP7FMofDmmx8D8PTwhGOkWYsfHHYIDHuG2aCZeCZi40BZF9pGZCwgKWGq\np7nKEhMlw/Sghc3N+IJir8TLI8FXalkg9PutJIIXghuoeSWW9izS9wXpPSfTTngCeRv92JnEB0Y/\naIROLTuCJ1OwpRGMJRfhNAwcthFOsLx/egIMh9MRb/w+anr7+g1rTrhm+clPf8z1euG2d4hqgWEK\nfP75Dyml8sXPvuTuVt/f/f093g2s80KMkWU579qyujpevHjB7e0t16fHX8ioU0aU6uK+/8mnxDnu\nHeVhGFjXGRHh9nTLPM/fEvUKKaUdb1BK4nicuL/VscHj4weN3KkFUz25NLZkDhMGHUUYw/FGi7/c\n/85cNthtw5kBaYLvo6aUEle0g2p6AZ86ZT8MgvPafLAYanw2fmgETAQc43DEBf+sDY0FZwVEdV2X\npwtzh4ouyxlqJfiRMQQMBekHrNYgLSsv7pSjNefIMG16PKuJABSCs8rf6nIPFzxHfyLFqoWmcdT+\n4McYdRPuhVUqlXbR51BI+FZwh/vO8gsgZscjlJaIccXNV9zhFSKB1u9TZxs5JSQJTAeaEXbDeBiw\n/ggxU+MD+fIBSVpohJuX1DBhTicccOPCjqL40YcviM0whYlzfOTnr98o7wblaD2cH3k/nxHXaO6R\nVrRwl1RY0sxaEtcYiSnR0MNObQYflCPWYqNI2WOlKsIYFNVRpUGttH5ILqWRF8EMBmMqppkdfpvJ\ntKwmIWsqg5Vn7I1ZFE+xjkzhjtoySy+GS40MpjF6TysXspV9P5xjZm7CaoQlCXMqFGP2w7f3I8Za\nXGnUVjA1bR8NrULshQ2lIsExdl2W94VgnYrnq8oItmlLTgNrqsR4ZZ6VEdj6AxVTJeWMHz2uI4bi\n0vdEbzVj1CpqwBKZu2zl4WkllwMHPzGYEdsqdYvNKgWPYS56YFQsQpel2LobL0qMvHsE53UdqrlQ\n6gqmEvMTMT1R+/hu8Ae8d5S6aEJAe46oq+j06ZoFiuM4BaZ+8KwC4n812fxXDv5aa1+11n6v//MZ\n+D/RAgn2AdMvXP848J+21lJr7cfAHwH/2K98Bd9d313fXd9d313fXd9d313/P73+vjVSIvKbwG8D\n/wvw14B/SUT+GeBvA/9aa+0D8Gv9z7frZzwXXr9w5Zyx1uw22JJV4J1L1bamWMT0YGKndOfcMrmt\nlDXvrficM9f4jlhnajFc57qL57y1SAVLIAwT1oyU1DtSCNVGYn6C4vFj2DPsalVXzhAmrNEQ2+3P\nqI5SIykn1pJIJTL3DC9rPWOz+OnENAQOx4m8bK/FM1hLS0Vz7pzfA0EP0wvWtJDTk8IuS6Z1Arsz\njVoThaxN1iqU/lpMSVh5wGrfCO+HnaTuxkBIA9FE4vkDJVXEZHLR0UhKBSMTxuioIqWVsf/s6TCw\nrleqFMTAWhu5tzpiEqovWFQXktq6hwg/zu+YjkcO4Y6a9XVa0ar+ZnjF/e0bYnxHXhdMue6WUmOO\nu+5EjOEwQW2bwLeSwsLj0wfGwePE74LiVN8zTpbSVmJecPKcVr8sM9fLA2EJvHjxGdPwYkc/CIoc\naG1kMLfc3/8Q23Ts83X5MQ/vXlPrFeNHTrcW30/d4xjANmI8EoJ+7unbGVap4tko6R7jHU9P+nm/\nDj9nODTm9EhpVw6jfY4BMiCDECY1vtuOHwBo0hAiRpRQnkqDHQtSyDyRy5VgjuBu2NqDtgmudyfH\ncSTYScGuwPXDIxbL6TQxX2emyfCHf/T39D71njmulJiAykevPtn1Qyklbm40MPzduw/EGPns13Uk\nGPyBy/mMNTruvF6vfHSvoNYqwv2LF8zXK+Isx+Nxz5PbxmQbINQ6wXbUSFsaKUYOxwMxR67zZR/R\naCixOtTmeaY1YRqPO2lecx4Dx8OBeV5JZA1vBYbu3HLWMHi1u4fu6qpBsSvWWRKVmMveBUupcF0i\nw7ClxD8TrJd14X44UEphmRPBOpZFO0s5RsZhoFYd1gQXuOmn3ZgUHGiGgYolHKY9kV5yZZ0fOK9v\n8Fbw4jG9i92MYMRxvjwyTkqS3/R4bvTq1kuRahLWo3Ym0OiLMOBDY15XpYZvgF/rVPtjNXQ6xriH\nBNeU1RFltxFMRkrdsSjD6UjIE0suxPMD491I7QHpNUZcSToyIwBhT5gQ24k04YAbbkjtC+qDdo9s\nyrQXd6RhwE8BhlfcH/Q5/SzN/N0//gNiS5xu7gjXK199pWPmS1m4ppnaVnJKfPN61REiEJoj5pVE\npVTtWq9bZp4THRHVCjbhbKPm3nXKhjAOaJSoUAu7e9h57ZC22jASunB+y1G1Os5sVZ2ssuwQauMq\n3kBav0FkJRdFwIDqVa2pRAPCQDGVjQ16jZWCJbZGbFCNp9GwG01dBLEVaGpUMc/fPw3EVLAZI/ra\nS3dyR9GxZrMGBGpKLB3DktbMfC0sSyTnRspplx+s64KYgq0HorV9xLolWtTu2iyYLJQW8Jshas2Y\nlmFYMONR0T4bwqFaWhFCs+QCLacduunEQhPtVltY4xPzqt9vzmqoMqbRaiQMdt8vKpEijWKyog+a\n7OaN1mGs3ip0tFD2kOhxGLtM5Jdff1+FVB/r/efAv9JaO4vIvwf8m/2P/y3g3wb+uV/y4+1P+4/b\nhr+167y3WDNyLgs5FYxLmN5Oa6KBKktunK9Xais7pXq5zlyXt8zrFYMl58a8DZMHnYm2ro8ajPsW\nK0odFkvJ5LqQ23Miu5GmD700EI0Y2OycOXXWhbPE5Ynr9ZG+JpAMxHLlaAPWePBeQyoBsZUhTIhv\nlLKqnqb39Lw/chhuOV9XUo4Mzu0D8REH1pJsI7fKJSe2lHPyleAhFIuztzjnNA8OVJNRA8nAEmfW\ny0ppZR+JLtd3OHuDVWEHlYTturPrstDaSnAN44WUy34Tg5CbFpPGNMQ05s5SsgLvH7/iNN2RiyXF\ndd9oKPr5j5OnuQYxIbbP0U3Z2TH0DKkxbFqfDKaxrivny3tuTh+Ruz16zVdS1XZ8ipVE3tPDc8nU\ncuVyLmAa5aZyOnSshTuo7bo2qvNY85KbF701bCdSMbx//RXzPHMS2RehQmFwAzYfsHbAYJFtbl+F\nJSrTZRwnpFiaa7s4+unpiVQNBG2Df7jOhGGLmJiwvmEPBW8rQxnInYqdcqN0wWup+u/Sx0liBTtY\nYk1kLlgz4M0WH5MoCN6NOOeYl4V11oLfG8t4HJivGjj95vINoReLOE0B8OPAixcvOJ/PuP4eb+7v\nMM7x4eEdpTSOx+PuErxel134/eM/eY0xjr4ncLrVseGyXPn00085X69szfDT6XbXIDWBcJi4dtHw\nPM9Mw4i1lut6xrthH5fpWC/ggocl6us3ZidRiwiHw4mK4IeREEIXriuWIQTVf8SsM+39ABI883zR\nzUeElOLuarPeaqaf8czXSEoz47E7e0Lg6bLijSWmpjmVm2yhi3nFGqxzPD5duOm4iWk8MAyFJSvX\nB2l7iLAt4G2DpRCXi+o1+4HGeodFw7Evl8pwlP09zNcrMakjzXtPjHH/3IwYalHh8+GgReT2uYDG\ngiAGMZ7DcVSWE0roTrVpPMwQEKqmRvSlaK2V4eYel1UQ3uqKmV71+3akrI28nuFc8Kc7TGcJlbwg\nEhE7IBzwt9+nbXvD/IS9nDHLQkVgPCB97Pj5p7/J0+MHfvL1F8obwiFdmnG5fmBtBe8rPuia/OHS\nD23NqLmjNVJLrHPcdW61GIyo5smMmodo8pZ2ofdeTaLGG9P2td0Y2UntuVWcHXZjhwAskKqOkUwp\nO2OKlikZnMvEXChlovWDZ22NWBNFsgbq1kbrWqZEIddMxBBbpjYVmNfdId2ooq7UmDPGls2Qrhqt\npuNLYw3GC3EbmRmhiCEWjVUq2dDliqTVkNZCXColC7GP+fRZUzdzbhnjGiLmmbFlK9UKsWRqNdjg\ngY13lYhEvFSisRh/3M6IpCQaFF0EV1Vus2UNtgLGBcRWaoU1Xcmb2w+NHhNpBGc4DqGHEENMK2LA\nTJa1aPj8Zl4oWRMSrA9Y12g2UUwfs5q8Jyr8suvPLKREMy7+C+A/bq39lwCttW++9ef/AfBf93/9\nAvjBt3781/kl8IW//T/+iG06+P2/cMdvfv4RjcoU1GKZm+pzAEqppLSS88KaV3KOdNYdy3xmni+0\nUrHOaz5W2ZwWBUdhNYJ3EcxC8NvMu2BcIwTIsZHTSuuzVGVReHJdoa4ENyH9hJFN63lAjdaKdpK6\nZseHhhFHTheSbxiZCP0LWOIKNI6HkbQUYs6I7w+baVjr8e5IroUUF6b+zeQa1c3hlY8R17yzmWpT\nmORSM3M8MQ0fEUY9sQU3QfPcikYFLOvMdX7/HOmAIaWEGxolRWywbKtijglrhWIV0mlsQ1wvdGxD\nknJUrDEYSbtjFQxPT088TO85jIYUG2YP/VwpNWKbw3jlc9F/Z2uRmCqSnIpNTd3T04fBU1Fkf4xX\nHh5fa5GKnqxybgzJ0vCkvOzvodZKaY01Jdb3XzLnC6lXvLen73Pw9xp6TAOjPw8Qppd8/IO/QpET\nD+dv+HB5wt32jpQPNFEAH1louZHWDobNHounVC22R6+dhdYLG8eAqR5nTkyHW+b4gdS7R8ZV7cgF\nizjBVEOZu9ieolwue8T5O6ZwINgtzPuBaiPGC7RKLjPSWTO2OIz1FNHDxnpd9HUDYQjkHMm96AjW\n7V0nEUGCZkS+fv2aw+HAZ59pU/nnP/851mpHyTl1op67nsdZ4ZOPXvHHP/rDPQzYuK1YOlGKOuNC\nCLx+/fXuWvPDxPuHJ0IILLGq9by7/UqpjOPIvFwpFQ6HYdccxlS4e3HoLCWPSGZd11/AH7TWdkee\nMc+sKOfcrr9qYvCD240fzgaGoM9kKUWLtb6x+yCIaKEZY0KMPlsAKS8cpxNLLJQmUEVdTughUYwh\n14oVwVj295HTShg9ITjifNXQ2v48eWtozjAdT4ChJTj0iBTvA806EEtBWJeF2ouMYRgQY0nLAk25\nSLkvmCJCCFvepjD68bn7WYVWhZJFux/fMpkMw4QVizUeyYrlkCoMWycvNmooWO8RKq0UWj8ciT0i\nU8DaQHp8TTm/R45aZFl7pOQVKAr0ZKQcFCxaDwPh7Xvk9QNiGwxntgXF+swPPv118tz4wy9/yvvz\nB95GReks+UqpVWODnKOZxlM32eSlUKvB9JDp7CzO3PbXCdIqhowfAs4ZTBf3e4Lqdq0gVaG4sjlE\nKbr/9OzJoWvoAGpp1NowRaV/xUJeeuFCZaDofWoyVqt3fZ2ASAUc1lhKy/taUm1lvioPTKpmsdZW\nyf0g7DRdtL8hR6OLylHRvPWCc0oE2zSVgCIcSqO2ikEoqVLXjjGImXmOrItGkaWS933Wea+A1pYI\n0nBBcPveZvTA2nSyMi8Rs91/Vg8L81poNdGGtL+eKpXaHLEVjHP46vZuneppNUO2VUPNeQcqWzG0\n3hPTCCvB9IOakaZIHzQGDKPYGoBUVUNpJIOsuGD58idv+dmP3mPN8+Tsl11/lmtPgP8Q+IPW2r/z\nrf/+/dbal/1f/wng/+j//F8B/4mI/C460vuLwP/6p/3uf+h3TpzGE02ehY7WNsB2AGTbCb8C1JJI\n65V5fqK2zBz7mGJ+ZLnOWMlYow/6xpgqzZCyCnBz0VP7TS+krCQVWbdGaZk1Zzw99LIK2giq2nUw\nBdO5ICEYWorErMWGGzxrz80SLD4kjHhSPGOkPIPCnBBTQZaItdo63IJyDZZgR1LIGD8gecGWvtCW\nmZoXnHeIBe+F/C1lWykNZyqX5ZEXdzNht7IqMfhoXlKK5fHyjuv1cRcIGlx/MDUE2WKR7WSWG9pI\nFJLoacaPfQS7zDQ01LG6qKyqDo+sa6G0xJdvfsKLu0wqAqIFQfAJ2qxso9ZoJj53D5hBHE4malsx\nNMT0mx/ljDTUlr0uK0gfbUkjJcjZdOSE3Tev1iwNg/PCHC/MH96yzn/Ub2BLuJ+wEsA5ahG2TE8h\n0Kzh/pMfIINlzSquBJgOB9zWRWSAavZ2e8lAGyktscaKd+CnCVO37CyDs5ZmLcZYBn+C3mlaecJW\n27OoGrhGBwqTpGFsYBxucUwEmRj76Ve85yrvyfm9MqmqIeUufubYN/wVE10Ht268L0MqmVQSNRfG\nw0HzHVGxtfeeeVlwzvHZZ5/xxRd6Fvrm9Wt++6/8Ds4bfv/3f4/peODjk3Kk7m5PPDy+4/WbL4nx\nGWYJMIaBlCN3dy949+4dxjhOXcA+rwspV6bJs8ZM8HbvYh5OJ5rAuiaMd8SSSf37nU43rEuh1srt\n7YC1wrIusBOOdaMMIWiA7/XKlmowHQ4IuuZ4ryPxrevnfSDGxGE6Ms8LLjwvkbIJt43FT0Jd192I\ncD0/8vR05nBQ6n9rYPw2vlvVUVwz0i5MYeDSwaHGTMTzSggWZzze2F22MKPjMNMst7f35NT2CY0b\nJ809a7qIt9b2zlJKKnSvOsOmpbYXkTU38pgYxlGfrrJ53XRUX6ThnVFnV2vP47mq48wN2GqM2uBN\nN8UEGm2NiIzYMFJtoMlzygBNsOEG96JQH9+RHtUC728+xroJWibLI46JvDnM5Ah2pdQH6nJB5rZn\nCC+jbn7Hm3vu5yferu/w73tRV87abcHoWuYbtVen1QqlWmoLiBs4SNhdi9ZpCHyVyuAt1sqeFxmM\nqDQkCiUaTcnoRd0wOHJZuFwfkLLisrrzQE0BRQqpNlIqpFaQvl5KS4jLlNrA6//nnbqcR3siGL1P\nS1WuX+lcrlSidniifucxZy2WNt9L0mOh90rKt7Y9m5doeKN5cq1jbrZpgLXama1tJeWVlAy5P08J\nFXjHVZMXUkq7NEVENHvQC4gChbff2cTgfOgHzEgl705mZxrRas5mxdJMo9bujjPqKk8Iqa00hKkz\ncVItxLhgzUBtTXEjW2ZeKSDSUwYa1+uZFvp36CAXdTLXorTy+O3C1TuKKXifCX7l89868flvnXBO\nzTH/03/zh/yy68/qSP014J8Gfl9E/k7/b38d+KdE5B9Bd9v/G/gX9KZpfyAi/xnwB/21/Yttzyz5\nxSvOV1YD46AdlFS0Mi9ZKNlQbHuueBXD0cc7D8QS2XqVS7xCW7GmgzXNoK4K6BoWAWpfABpLUs1K\nLQvG6iy10qjGsWyLqRmoRmflYjpfaXsbpkKrut8Fz2gOrD3mZokXfB3ABFwYMKaSsv6Zcw4xgZiu\nmKq6i9pPia45hjBinGPum8Fh1HFIXt9xzWdd1DrfZmtFixov9KRr4bq85+VNx/1bhQoaOzGNwv39\nS56eXjMv+v6NUWVVrongLDU31u0mrjMmzthgGdwA/aSy/ZwNWdv3rWhMSS8WRIRUVuZ5IWZ1PbbO\nShpCxRnBYahNaNg9YBmBIXh8CLTSdMS6PRhVsQwvDjfUWnj4sPD4pKdLbME0USsutdPSN+t46mO1\nhpgDLRXmVbUXX7/5I0qdeXH7GUde4nFs5L2SMyUvlLRyOBwILWDb9phYKo5WDYOdcHaksbGgREOj\ni1Bq4zFfEDGMN1scgoX+s+t6pbn4TLK3jVoiDnX2lNYoW7vdGfx4IISJUB1OKnbrnNobbFlJ9Ynq\nZkSuGKMFf8oJ36wumGIQ3J6QvqZF09ZzxvuB0+m0c2/WZdk7R69evuTNmzf8+Md/DMBf/sv/MN/7\n3vf4W//z/8C7d2/4q5//ozu36fHxAz/9kz8ml5WXL19wc3PDsZPIt1FaSonHx0du7m73kdAyR6ZJ\nw3UFhZlKX6CDMyzrgg0eEcE6j/TNaxwmxYI0xYOkeFV787Z5iz7zKaueUkSeN0xrieuK8wNhGMil\n7CfoJhDGAbEWEzxirWpjQMetzlKbYIKB3JjGjdIsvH/7jiE0Dqcb3r57vSMHwnigFL1HJSViZf+8\nY4wcjiPLcsXbikORFgCx6EneiuCsZwwHUtkwLJVmwVjHuq5Y8/z+aq3kGJXSXfUB27pQ1/TEu3fv\nORwHjsOJRt07UsYYpDkiBSsaEr4dWmLKIJlBJoI4xAd9XrsmrQSPGFEWExsU+bn7jwgFg7W3yJRI\nH5ScU0SY7r4HZsUw02rG9/GWwcLtLaVFljeF+d1XO8Q25QNzSjzGM8Mw8PLmBZ8eP9o/0ygV7zRk\n2tB2GYUNgWoCNE1BCIz7IUI3TAFR7lEYnP779tkQiCJUYxEC0gv+cbKISby6v9LWJ9L6uMd/LXHR\njoaprKmS10ZJnSQ+BjILuSSNkfFu5y9N7oQ3Th2A6P64ucpLqlBhiYmUK7kpCmeTprSSECkMXrDe\na/fJPK+1PlgMra/hVTs10FEAWpy1Koh4zLcKFBEtlIw1DMbv+7MxGR90/+2AqufUhnVldJZxGFjX\nrKDMzpQQYPSGULSAqs3sujNKpaRIqkIpBlOeuwcimhzRStMAaRFcf++pRFqpVFNVe2gVmQPQEpjW\nECtEGktNlC3CKziaN2AT1mecd8qeBJqUb01d/vTrVxZSrbW/xZ/u7Pubv+Jn/gbwN371X6uF0eX6\n9K1sOI80i5gAYrVqr53uDPow5TOyCOtSaX1MkduKQRjMkeAPWHvYM4By69lUFZqZMc48Z1XVQq1P\niECwB0zzLMuW4+TAG2onediaMK3DBfsXWp2HKhwGh9zp73y4vCfOj2TvmJxhDG6Hekm1NJMordJw\nqCauxwH4oy7YbaAWyxozpW/e1R+wUsFlvYkpOzxSmkcqJCK4yuXywPVGO1nj7T2VSi1XxEaO04Hb\n+xvmt72QcrpGGpzGGrTc41Ig18QQLAFPmhsEYVNGWzdhWqHGBesHHGEXwObSul3Wcl2ekGZ2G79p\nFgkK8GhNMMYhssVLaBHmnKGIPlRb7Ix1gcM4cRiPSCuMtuCdMngeHt9QC9q+r8pe3rRsUlVfVUrr\ni6hnAAAgAElEQVTDeKd8KtGidp7PvP7wBSklXt0kjmNEyqZN6JsZWmB7PzIddbO8u7nX0UdMGLci\nMlHiU7+hlfFkKqRamVMBOe8dwmkael5aoUbd4PLWXsgjYjK4Rm2ZlNO+0TbjKXWhWfDBa9bXrpFb\noC5YKnTWzEZpbqZRSyHGSLCOYP0edbKuq7KKqm6+pQlvO9vlcDhQqxZYr795y4eHd3uG22/8xg/4\nO7/3v/H111/yV3/nt7HW8tOf/hSAkhKWxsv7lxwmjSbZRmJLXBhk0Lys8YBgeXzUMYxzjmk6kFJE\njDxr5UCp2s5DbdgOEd1+Z6XrPIyh1KTdp8E+j1Rq1dNqKczzrDqnba2pgncDTFYPWM7uo49UGj6M\nmOAxRTDW4vv9vcQZ7x3zdQFjuL2/Y91yylwAI3zz5i2/cTxw9+IF797oZ9qkcRgnatFuwNPjB6Yw\n7K9znjvRvEQuy7yf9IfxQC6R4Dw1a86D66LXnKsS4WtVllSte0cq90OpftezxtD0lqs3nsE6Ht++\n52zfM00TY38tGENpmg23tArjSOn2d+89rjZEHMs8k2PhcHuL9AKt+oCxjoojAZIjTraum6ca7ZKD\no/pbhr5m5utMfHiDP40Y57WrUjZmj+oTw4tXVIR3Dx/I/SA4HAzFQCLzxeuv+fLD1zxlXfeNd4x9\nHOasRYQ9CqQ1PdR4G3DuqH++bYOi+4q1FrENMX43hNALThGnrC3j9s94Wa8YKdgGkzsSYE+CSClS\n00yOGk0irWwSIaSJcvWMFqmIkOnFUomKQ5KRWi0pVh37AmlJlFRZY2RJWQ/lDbaturVCbZUqAdMy\n4swOpTTWYp2FrCkaxhg2vN5m9IpJu0pC3knyRgRnqo47jQXxzB3VkGtnnHm3SzK2fNJWCutVzRxS\nLXGWHTEiovFjVbTT3FpjHLYkj0YtQm2WnDK2WsyG/hCdNhgRfDNQyq4PM7kqviElKgWxlrV/pqsx\niFO4ZkyFZj0u9DrCFrzThI8hCHYA+lSk1Yrd4mJ+yfWrueffXd9d313fXd9d313fXd9d312/9Prz\ny9rDUWvh6fweAG9HvIxUIrgBsYc9sVtPCkoWHpvCzXLp3YX1CW8GPrr5jOohtaqzdUDSlSIJoWK2\n6nJDHKDhjjSw1cLq6YUrBcgZxmkkBI+UvM+njT1As9QMVgZaXTgOOsIIXY9TW2K+PmJq4jCokNH6\ngLGeJRYaBusnUtXTVWyJYI54c8Q0R44L526dFu9peCQXxGvlu31puVR1dCCUshKb5f2jtsxPxzuM\nCZQaaZJAqoYKd6dYzgtDuFUxoRjENEzZTsmRlDOTHTUexlli2wTASV9PHXAtMNgDtmcGpqqwzZTR\n8UApuF6re+PxbiCmC7UWRAzWdWF4U0ecmIQzKHG7fxnH442OOYuO7j56MTB1XUpcLjw+PiJh0FGR\nZ6dCN+OgBXJdGcR2sWAPvZWEaXC5vIWciacro1PNjuVEKwnvhFzAuoEXdxrzc3+8I66NOliuh0bM\nllq6SFmshpO2RqKSjfB0WXFeu2fDKOAyAYt3QiptP3i3Vik204LoKbs6PbmiGrGUz8zpzGADdNQF\ngKlRc8yKZmeJs9g9gNZCcpSk+pBaM3ndQJ4GSRUjGnfx86++3Lsue1ZVnlnmiDWeX/u1Xwfg3bs3\n/OxnP+Evfv5DRBp/7+8+awZujkfECyUlzOhouT5ry+5OXK/XfTzw+PjI3Z1+3qfTjdrsje3arbR3\nznwYKakg1jOOAyIG10dJKSVKity/uMNKwfrNcdY7cjwLzsU0So57N8uaHoUyzztQdbdWO4sbp665\nKFgb2EZUgwukfpoOzuOd53HV7/fmcGRdE+/eveP+/hYbLDc3er+dz2ecFS6XCzfjif+HvTftsSNL\n0vQeO5v7XSJIJjOreqoxarT+/x+SBI1quqdnqjKTScZyr7ufzfTBjvvlCK0WMI1B6UM6QBBgMCL8\n+nKO2Wvv0ptjHeG718sJbSY+8d6RpuuRidhq5XS6UkqjIoYuDOTM7lNny5uhSmE6+GNtoFNaG7Us\ntLocooj72oghcD0/GTd0LSw3QxbmaCHGGiNumljLigx35zabern41VDP6CilEfckkFZp3uNjQqeT\nqT8HVaCXO9q9JT+kMxI97mTr4hwCrDfKfUXmj4Sk7B63qsUW43Bm/vATn35859e/GF9v217okigZ\n3mvhr99+4dttBG10cDJTfSaF6b/b5HJZDC4JRh+wUfA8ngGLiPEpmgKcdgg7PIHeC107c0yIK0dg\nc+8F1UDsndoquWSWgVS2VojOs+pGKQtKPnh3rYmJS7wSQx9Uk52zk4FqzvH9arYS4/7mXrnnO60p\nLRe6dJwL7Fiu987QJe1ENwQ/Iz4meGeorQt4cYYAtzGe7QXxnTbQzhQC/nBNcGTdSC4iLiDJo4NG\n8L7e2NSUi94ZArkr7FxXenbc10rXZqPNfaozwqxPF8H7RN70WPe8t2g4C1ZuiJOdh08fe7jWRhSx\nqKd9RGdpryau0IqxToaa0XnytpLbSvCJ0+V0II7edbwrXOZEOnnE98MWIzSh/HtGe/8zD0ellfqI\nQygZiYEuDu0NCeWYz87ziSATvQXeXt8R/5D6ShdUHB8//wkRuK3vLGX3nxq5X/0FZaXRj5BC78RG\nKhrYbg3aejh7e3Hmm5I8k4/4eH7I0YvxB2IIpmoQT2fPjIvE9MQ9v1gxUjaYH/wDL4FzTGyloiy4\nIZHV4lH1Js10jhgn3tYRI/C2mEdH8ATpNApuL0B6Bwkkd0ZbpsvK2/0/A/DbS+DD059ozUZ3XVYq\nhbC7tneHdwUXVmoVaonHwhC40reN996ZpoivcsCqrXlkOLhbAeo5GNgSmeZEKI3oOr3WIz5HvDPi\nZrMNIPiKj7vsuOFjtv8jDV/LMbpNk+CD0p3JWpXGacRL/PDDGe0rrXVqL+QtGeyMSdU7HRS6CtGl\nI9cxxjMMtczb8sKSM5fz2EzCidQmnFqq+jR7Pgw/pDk90+ud09Q5ZfPZ2RPQA2lECXlT6fRGjG4U\nhfDt6908wWIjJI9LjV2elbdKkUIY/LAglj0Iw1NKV0r5K5tvSHiCfcysjS62kBpvzhPHQ5zEUyRD\n8iATpW6m7gPoyrq9m/VAbrTS+XAeXjL3N+bThV4zouZBtY/L/vznf+Lj00dCiPzTP/0ToMS4PxeN\nUjMxeprrvC83nq5DDaViI8aU+PbthcvlcvB5tm1F1UZ8MQbWdeU0vIJETN15Pk2oeO45G3cRuC93\nTtNMiAntjTgiSfZ1oTVT1e7WBarCPMjvDeMbih9qx/7gF+2EasSbe7dz5D2uJ1hkVJonnHO832+H\nHUHvyloLS6nct8wsifmyk+1nylrIW+XuF67XC68v1kBeOOGnmdJtnDGlAPPDZV0EhGZ/1B0cMFV7\nVqI2K4ROcuTidTVV4Nv7G65DLUKcRsyRFN7fX2la+OHjD6RUKHmsl63S8kLWCpjoYF8vXXXUZuP7\nKA3nK7XdCHU/H4e2Ri8RzwWdLtRdXbq9Esud3hpabsh5ou0u+zHg4rONYvqdki3E2M4HQOntFVc7\nT+cTX2e7v3/5urHVlbU2RBpznLh6K85fl9/Y3CtMEcoKQShj1NZ7JzhHqcMlXy1I2Z43oTZBMrht\nZOnN4z10xWJKWkfrwul0Opzy6YLQ8Hi8AC2geef6qDlpB+WEZ1V/EKodQpChjO4NaKD34/52HX58\nZUWbqYQBnE4Imd7vpiBvUHs9osPoihNYy8qUZrTLsc+aI7gFLffeKaXRhpt4VuNA0YRSjcObdlf/\nCs5dLbalK17c4b0210roQOt0tZisnZpQu60NOeeRQODJQynXmiBeSNOJHsy7q38XPqxUanHk1jDS\nwhCfOcEpiKt4EaagyO6/5WTUFZlNbIy4x/wULWwlE0IkXoLFoIW90W9MKRCcJ6g338W94NNGXv99\nETH/044YBK+WzQNGoNv6go+CBCOmerfPfDtK4f32hTQ6Uv8dcda6M0XwTOFEGhX/WoW6vdKWQkpK\n8BxeHL05q867N7Sr3YjJuq80gndbqZQ14mfP4OPR2p2mjRgDPnq0BqjDGqFmnO+c0xVxFe1GrgNI\nXiwR3XtSiHZD93YOofWF2gw5cL4N6auR6Z0rhC4mS01yeG202nDeJLk4kKS0MYD/dv8V5yNOTrTq\nKGVBRBn1CTFafpW6gKp1C7qTqrujtZ102dHNjcBji87Q7gkjiX3JmTTtKrKEqvE2zBSNx/BYO9qq\nKSWbsXxUdrJiAVdoutri5PT4xnvJxPAZ76706vBBaYPcf73OhPQT2k3+/fLN/HPsPim4RpVC6Akh\nHKTSiCN6h2hhaRvvt2/ch4x/mk98Tj8gJQOODz/+hweHBFvgQkjUZj9bzmPTK9mUdyLEZtL9NCeC\n33lnL7y8WtBz0gnf63Ft1BnZX9SBGmF+V6HM08zsT9SWKe2dzsJuXFa2Dr3ik8MFIfbpyD5z/gU/\n7j806OHBAyqbCREQ1u3O6RSPEOFWKj4k1uVOLsrf//AjP/9sbif3+50//PgDX79+pZS9mB8oiDOf\nm+v1AyEE3pc7l7HwvY1YGFXlfD5zuVx4f7frnVLi48cfmKZIKcUI+vNO0LeGKcTJzGO6HERdbZDS\nzFaaRaf4SPd6FFLGFwqklNi2jf5dlmTZNmpXy3JTRapx4ex3jnQx53DB4308SLy78af3dq45P3KV\nXt5uhGSo2X3ZLGB5nKt3kaymECylEJ4/HIrG9+XOp/kTXYXSChE9PIhyLrRmOZvGhQpHtuN+TiEk\nal15eXkhfacunaaJLznThyXITii/zCeC+8yy3Pj68o3nj1euH63g7bkSxJnZp3OEEA/fJuccDAI/\n4qm1UjQjbohJrqdBVm7UtxekF+KHUdgloW/dCggBqXqgMoqnK4SYKDWjZd0pRITSDWHMnXpb+Xp7\nO+K/pukTL7ff+O3bF+7lKyFVTiMiR+UD35avlFwQhJ47feA1peuQx0+sNdt7sDeJ6EDzuvk7qed0\nGjYss2XD9u6IwXyi9nvocLhu/kkJKO0VN67LrnurvZNCoPbNuH9gnn4dRAO0huZGG956BDcUzzOK\nWWrsnKwdZQ3eszVrRMV76uCBpSnSVC0TL262p+6GrNGa0a6dkvOwQWF8fmjacEMpSy/IeVzTFhEC\naYjAnMqxF8vpSq4b2jgUdDtXtXfj8/UOtahx+8oDOe1NRjB7wOkjFm5bjTy/LgtaHLl2/PCV9D7j\neiF5z5wcQUamKIZiNqdIdWxZKbmNQgxKE1oX0uxxUZG4HdzfKUai93hpJtQYmbCA8RPrv82R+psV\nUpf5xPpdsrr3luFWWiWOBXFfpN9vr+aNIp5ttU1jGoGJ920xYp7MOCfU3o88JqcdHz2pTHjvMIhv\n5ByJ4gJ4dSMo8pE87ZxDxKTtLcp4APauxZPzQm03I7/GD/ihtNiKor2hXY/wz7aNytxlQpqNxCcV\n7fkgyM3pyrZkttYQLWz5/VDXreWGUJjEU9WGOs7vBeZwZQ6TZWllxc12Xdat8M3/yhyv1DyR6zu1\nrQeUWXrB48xmwMnwHBk3xxm0rVKovSGtH+cq3cJ/a+nMp+GtMhapiOCcedZ4L4jztHGugnXT3o8x\nbSkU3aWuBUIh90R0At5CnwHaXUkSebqcYUDRuyFpCJ1LSKR4RupHUrjx5asRfHNfjbzZK0sWgquc\nT3afoo9m8uYD6TxBg1+/GULw9v6VeC7EEIjhgvBQoOggROKEbb1R28J8HUqpqrApmpUgncvkrFMe\nrsExdFwI+HgixmAb50ACFCHg7TOrw/l4dF+1KKf5yvl8Zd1eWev9IBXnVdEameqF+ZzIVhrZ+ehC\ncDPRO2pztmAPt2Fxar5GtVJrJqC8vRsC+nR5Yl1uvLx8449/9x8HsmEu5E9PF95uN7ZlIcaIc3Js\nJq2ZgsjHQGud8/V6qN1ev31jns2v6Pn5A6UU3sfv++mnn4zIHBIvLy+2sYU9YaAzn8+omD1YDOlB\nos4WbNc7dFHznxF/mHt+r9LDO1v0x9iE0bVGH/AiVPdwLxeRocSQIxOw752+eBQr0krtZpA61q9l\nWUxFKELZMsuyUMaI7vPnT8QY2cqGaue+Lse5qXRK7YRpRnLntmxcxnOa5gntOgjSewrAjizYBmUB\nroHeN758MUuB9PbG8/Mznz9/4ssvf2XZliMzDk58+PDENEVy3cAH3LBoiUHsmozPrarHeiEobjw7\nvVe6eMIoxgGkBVowtaTrhf7tN1obxqIfr7TLjHtv1LpCz0wD6WCeLfetVqKABkcfo128QGn0+533\nl2/89vKNMoxj0+nK9WOjvfwX3t6+UXRhN8lrNPCOvm1sraDtYUfQWiP3ClgDHnwyOReG4HRtlFpp\nNSNdeV92FNsDhuKYRYAehcQcIud44iSOKQZaX1A/Cv7eAFOMiyjROcoYX/VWKUUQBOcmWstI347z\ndDIRZX/mHWHsM94XS98UB10Jzp5L/X94X/fezVstyPEVxXyW6CZGQcV8z4C8bXSsUWxZKK3ih3lo\nchM5V5IkpsnbtHsfoztPUWco73hXd2W54W46PCHbsErYvzKKcx3fKO04z1obJatZeXR7T3fvC6eG\n9k8pELypWnUUil0rdatUCZTmWHI73Pe7CiFFJCgSOt1Vgn+M+9GV1hytVfp3xWDLjVy+M9z6V46/\nWSElPuGCQhi8DWeVeW9Q+kbUcKQ9563z+nLjw/Un40YsGyoGVWtfWPM3Ynyma6TkhTq8i/LgNcUZ\nQgwghm6BdR/SwTVFfSfN/vAEKptDY0S0sZRvqHuG3XG2VpzzqGR6y6gsyG666DylRLRX8lKIXo5R\nWh+8BQnG3+i60Iq9iEEyKrBsFcGKnNKtY1/WN5xUpA+n3R5Qv3OLxt+y4bxnWzshjrDIUMjljrYO\n2DitM9QhmJpCnSlG/FC97S6vNHO87WKGjt7pgQ7WgfxtqyliYozoKLJa1SF9FbSaIR67+lA9pTka\nAfWJJsq6WvFSayYRmFok7mPCMTIo2TyaSmkEJrx6zgPeTz7gJDCnM2E64+L1MND79u0bt3zndDmz\n3TL3+zuX69igThe82iueJNDPkfVmN//l/Te+tt/44cMPnJKn9sYyYN04GYS+1YX3+xcchWmMy5oI\n6sCfzWcnt4wUd7jFBx85nZ+IpwvOCdIifVe4rBt042CQBHeZjqLW+YmuiRAmruK437+Sh5JKHah3\nrFs21c75sRCtUkkOzpqI3aHN48a92J2YSyk4sTGfl4dz75cvv/J8fSaFyF9/+YXTdTeB9NzeXm3c\ndrYA0H2DL6UxpRNOAvf1zvPz6XA9z7Uw6TQCis10ci+I0jyhwFIqa21mtLcrFlWt7VEsysQ/VLM4\noeRGvEToQ5Wlj6LXxcRt8FTO5zM+xD0sABcSoVjR053QuxwjQysizOjSeUFcOPhMu9rUeyHnaojU\neGdyXrkvNy6XM/PJEPXffrOifp5tM1SFeT6bm/hYFy6n0/AEymNvErZRDPoYbdSidhF674eaNcQJ\nr8q6VuN1hXBw0n775WeWtzN/+vt/4PT3/8hf//pfWRZ710q903Ti8vTMp+CpvRxFpBsO7977UThA\nGdEb4hwqFqtCV3NWDwnZ43waaM50VYJEpGwsfxleUfUj6cNnuD4ji0eXN+r7sIWJT4RwwsgszvbT\nUYSIN9+birDUlWW98+XN1J7xaaZKRaXS1ZFLIw9/osLKVu60vo3zdYfqSnCmaENwYlEu2nfvvQrO\nmW0Odajf7Jmptdq1ieBDR3onVzsXWkDahvMz2oJRMfZmF0ej2oRiIHqad5jesa4LqtF+b4j0UdR5\nJ4iAiyDB06t7WDiQmMOJHpQQ7Xyr6Ch1B2JFN/uNzmEDYK9NAFGjXHyHGoHtbVUDvQdamam1cN/f\nmcmezS5WQwVxB7IWpONdoPQ+UG99WPTgiNEKUO/tndrHft4betV7hybU2g9LGGvQI9oStTk0cOwz\nwXtSdMRUmSUPhO0xum3O1pxWPL578uDbqjS8rwYiB6OM7NeltXfwkZyVLqYW3JMZWpPjOfh/O/52\nHKl4JhFZd5OxkonTieSS5fmU7XCwjj4Q3IAWp8jr28IvX/9qP0dX7uXGpjdO/jqiQgZxNLnhNWMv\naIzh8TD2jtZmC6YON+LxfL/evxGLEfjacuN0ylyvJgF33QiBIcyIDkLtgFSdzPRqVgdufKbmdgv6\njThD34wEKFQz6sOq7/N8Qlw1aXFrB0dGgvG1Sqk4h5m37WNGtaiDjFnYq/PHLDcGh4ojt7vJqcXI\nuGWMUkMItFrxiCWDN44HRxw4n2h4c+2lj8R2rDtwNpKpXdHa0PGg+qzEOI3uqo1onoHmSKc16HRU\nBOfjMZ5dbyslb9QCITS8iwdpesmNr2+/4fjCZTrz4fyMipF4ny9ni9gIJ+bpidROpNPgVvnEX778\nFfGOUzzTtpVt2FvUUydOs3m0dMG7yHmMk7bVU5tQWqNJZ8kbt7uhg7OeyC2zrK/c1i94XwxBA6Yp\n2bPlFO9h6o6ehTZWouAnzpdnfLxQ84qTR9GY2WjZEeJEyQ0/C/Mg8Hud0BLJm3COV65zPArw93Uh\nq9Brp9cNEPooMn0S8BX6wkk9s5vZZ3tePIFA7UJT4y7JKPheXl6OjfXXLz9zuVyYR2TJcruR88r5\nfDVEise4AYTn54+UYp5RT09PfPn16/GsXZ+feP32iveRZVl4Gs7mTgJ4x7ZWeyb8gwfUtJFrG2NI\nx9byYawowZNrIZVkgKp4YkxGSsU4S62ruZr7AIcRhxUMaZ7GqKZbIRJ3c0GHjIKidxsR755XOy9J\nRKi1DtRgPN/Nuv8P1wspJW63N26rFQuvt3c+ffpshqJj9FxG0bNfx/tt5XKKuOCpZZfAN0SNj7Ib\njO5E/JP4gdILtTZSnA7riy0vfPnllSCBH//wJ3788Ue2PBxe1cYsuWVCmDmdHny1TjAE2vtjpDeN\nBkqCx6cJphNxPhNiwvlk4hvAxRntlbJlSt0ITkg7SvD6RsPjLh9J04w6OdZh1TaQrxNNJ1tzx3vR\n7u9E54mnM0/Xj3y53bl9Mx/or6//mRCVWt85zTPNF7a7Ef9Lfce5leaMW7TlQPAPDzEd6I53CZF4\nNIl4ExGhHiECgTKoGeqU1oYHpzp88KTBD5x9xONp4qkiBB/2ZFT0QDY6wZl/+87jrDVSy92MOV1g\ndtP4veA0DGTaGVrjjJwN2DMxuGspzthJ23oFEFLAeTG0xpvBtexunRhiVKqVXU7cDiwh2MiWajSP\nVpU6njdP5DTZO9O0Haas9n0RH5WSK7U9/KzGyVoTQcd5c3k/+M2OYcJtBra1tEdcTwdo5ALavXFk\n3T6JMFuKEC0CruaNOgqp0uz+lpapXc0cd6B8KTpCqqRoPLwYJzhWBTMvxju0G+K434uuQv23KVK/\n2x/8fvx+/H78fvx+/H78fvx+/I8efztEKkw0hWm4H0u8E4NniidEPG3tBxn58vTE8/MPhnJUNTL5\nGFP89vWFTRdc8SwuEzQdBFAVR/IzrTt6XslN8dMOcQpEkK6UniELVYdkVVfytpH88xgv3JFgCNjs\nZ7RWYncEmWi1U4ZyC604iegYG9gHG0S3CqXVAaUbp6MPjlAuK608IR7UZWoph2usjw4lIGLuvLn2\n7wKfB0xdg41GgzBoN8Tgkbnh3UTrAR/AS2BOezitOSLXzXgWKT6uqVZnLsXqzECyPRRmMUZT0fVO\nrZlOII4xhROlt2LVvBgisKe8B5cIGFyNOKpW/OBQPKUA6liXQlbl/PSJGIfsOm7k9RvvtzeW+6t1\nTH4ffTjm8wemy5UpOSZ35lSmcWU8W1v45esX0nxCposRb9k/foJm44OOEgYiFU9nfLF/yy3T2mbq\nS6BLpna4L+9U7cxzwg1+mItK8IJqJ3jB49FJ6MOQc0pXzqerqYTUIVTKLhF2Jkn2XgxGzp14sW7X\nlTjGHt64NO7MdQTe9nYj375R8mYRKasiA5UIqpYnmbpZgvRM3JMC3Aho7iOjK+dDFFGrAZ6lFD59\n/sECgxcbYZRiGXpzmqi5cbmceH8fasf5ZOq8bePzTz+iqry8mpP8H//4d/zyyy94sfFN6/3I2mvo\n4c7cml3D/dmvpQ1T16EcQ74TaJixaB/8i+48aT4fHKmmnTRfCckMR52EY8zeWqMwHPSrDShE9hG0\nIQZNTExhXfIYQ8bZQrqXZbjCR4ssAtZ15Xy6cDpdWLeNdSuH8/WyZj5idgH0TM35IP9eLo00nVnu\nN7ZcjdP2XdRLcA43XMtF5CCNL8tykPHv9wW6Htf0dn+h3hvrduPt9S+EdCLFYf3h4nAs3yh9mM/u\n76+PTO78MD3tnekykNEQkMFli3FmnmdCMt6iPYuB7gyxUQy1P3hnvVNfX0lN4XpBLrON7YDWG67d\nUaeImxC5HDFPyEZbV1wXzqePPF/eCcmED+Xtzvv9nbJlpuApzJzHmqHnhZAzy6rce8fHdPBrDFWM\nY0QbCfLgFomzddnO25CkXY6/5UZMRlto3q7Ng+cWEBfpTSmtH+pOgEqniZrFrwFTONmfww1HpNaC\nW02Xtocf92A/s7qOpVrod+OrbOIf6ZhHeUCdHGTs+STH9Z+mgHMcjvBBPKUXnAuWrYgQ9jFuLPhu\n98TIcf14vv3YSy2/0iLc4qA1aLAUEONccWRcwi76sBxC50yVu7uXG2/M/lajbR2eua0a37g1M5tN\n+nAv9wGaFnp3rE4o8CCpN+W+de61smHB1GmYfM7niA8d7y3CK7iHurCJiZ/yls01QE6P51ATTv+d\nocX/s46inYqHkQLuXR9Ktcp5PrEWy18D+PzxB7yLtLzRxfxl3MGjEHrDVEfBIT4ctqpODZJGImin\ntZW2DQ5FsGyrvsOOEfzwUfKhsLWNll9wEpCuEAaJd17wEtEy0aQYWW/IUmvdULWkdSd+cMq0aI8A\nACAASURBVBp2crvgljxiAJTa2wGNbnklx0aanLkK58J9QP+iHe88vVXqKKKOmXYzp2GbeTsjng7+\n1LZWnEuEk7cirNvcOYxr6pIwp8jiVvLWLBtuVzXdZWQfgaint3K4sKuzsRzSSCPAdt4l5mUl58yy\nFXot1OpofcC43hNjGFELRhy87EVdF5JMbICTCefO6MijSqkTThf6+jO3+6+88UZKu9LimVOC50vA\npYnJO06DONtyYf34AzlvrFtlmmbSZXCkQiRGj4rQarewyp04ev1A2+646AiTQ0InF+Or9dIQf0KI\nPF3+AK2bFxUQmrOFRSpeza8F15GRt3aanpmnhFZP9IJoYll2ObNnSmfEdeYY2XLn/s0KlPMcwQvS\nO2EOFNGD+Bj0I9c50Ntv3NaFCX+EUqtYSVVHFpXxQoZidbg0tzZS5HM+xhveO+bziefLM61nvr2+\nH9l31+sVEeG+rvz4+e9oNR9E7BAnfvv6wvXpzPl85i9/+cvhUl6rkcv/9Hd/4n5f+fz5J1sNgftS\nuFwTuq3mi1P1GOkXtSJeuy140T9koN4Fgu+ENOEFWnPU4coMME2zZYOVTowBHZRXGBzFUUT7mPAu\nHrmerltep9IRL9jkcZdIO2qz6JU9y2vnzzW1YjLXxuv7zRzLs33+T+lEaUZOd11YlpXzZbdlMJ6I\nF2HbVojpGLXkXJHJuFD2LqSjkMo5c7/fCSGYDceymiAD+MMf/sDLl1+G8lhxoR9kXHFWegaXrEkT\njnEhXjidHrEoxmkZKrnTiel0wfto60y05m1Pg9C2MT2fiC5B64dnGUDwiqsrNXd8EbycH41mXqDe\nIW64+QnUk8azwfWJngtSNlq3wjdNIwLo1QQOuRZCCMyaaGKF5HQJvDgrwvHZ+IDLo1gKweoE5xvB\nTcd6CjPeKbl2SlF6s00XMJ6TgB8cHysMRnEmbjhtB0rf0M6xJ3SpoN3UoGLP8W7erw3jvCJQHW0z\nv0F7EBM0Rxdrahv9aLy7bkC1+0u1ZmNkooJ9rhgjopiH4vBasudNCH5GQqS1ZsXb3kRMDu8rW8ls\na7ZGY3g23W+NyWXSdEKxIu17QrkTCw63c3yM9uz/OWI0Ba33kyUDYAW3FUsmqnHf/cxWBe1u+I8F\nnPpD+NDdhoZKFVuTay07VZF1g9f3QimOpiBR8NO490GJsyPGRoxKqwthbwSc5U7W2tHu8e4x0m+9\nEf4/SFJ/s0KqdYxcN8iT0q3A8GN+nKZHvIrDHoTzaTajsaqs48XI92YbRBq6BcmEPkjcTHg3oQit\nv5HzAuPFCOpo0ui92kKdG133FyMSp04vSq3LUXABVNog0ZpxoTM97+NztW4/t4F2OXyUejfZ6J75\n58JD4o42NsmEKEzJUcqGDgWhmtxqPJCWLXQkd4pDnLesPCodx7btMREb6iwPzzx2EgjH5ubE4WPk\n+YNjed/Ia0UH236KzyATwRU0RLQn2igmtl5QMqezdaUpzWODg+5NgVFKoVaI3j+uqSoNxQMuRILI\nEZ9S147Lged0JcUnSvFHkjm+EeNMT51ye8f1lbLuMozIeleWu3L9OA1kzL52mmaer0/cljtf2ldU\nYBr2Ft7Z9fRToLRq5PjxAnsBmTw+elyw+6RuGLq1Si+Bro7r9CPuwqEuXNZXU+mdI146iqK9EkZx\n6vwFlY4PSpBgi/EoiOZ0sYVQOmsTYlSWwctqpTPNz0zd0UomzZHaRqGRK86bXUATodQ7ZSCA0jyh\nBSSbN8rk0mFwK3BsyCJCTOa3BnA+ncF5Xt9faX1j2VY+DkPS/Tm+Xp5s0WnKdXhFvb3dmOeJHz79\nyLdvL7y8vBwd+7IsfPjwwew/RHh6eiIPa4A0n1i2ypo3Gkrtj27WjEHrcZ7NO7TuRNVAjKasE1VS\ncKMg2J+38S62ZiHRUzxCsu3fhorUjWiLY1MwlMcFuC0ZvlP/tZbJeaWUzQQFeWWPiwzRAlSX9Q7i\nyNs2lEpGqH8f9ho1N4vmGBtUzpnTZBusG7YCj1gSKxJUPCLOUImDqOsHof03TqezZScOBeHzhzNO\nPtM3y0zzCG6sezEZ/0SrIcYiD86K0rkvb7QaeL5eB79nbEK9I62auMApW7kTej+yDyWFYSSqzNNk\nQbXsyrUVrw7ViisFLRVxI8y9N9r2im93enk3XtD50zifGbmc0W1heXthqytT3HPxArk2iip1q4gG\n5vCIEGnTZ0M3eqBrPe6Fl8Gb9R0k0+SBAom4QcDuaLxC32gjS9NjfC4fvKHOg5S/34vgLPartE4p\n0HZRD8VMKjGUyDl3FEROwrBiMPSrN4fu6GCP5rOk3bJjm7JPBboWeisEncAFcs02kRj1S4zePPO6\nAn5YWYTjdxIjTqKJiLwn7WadMbEuCy4IHTFj4pHR9/pWOIVMihbK7X1kT0l2aoTy1Bu5FLt+u+jD\nWSybd2FY0Dj8dX68321BABHbq/ZM196VViu1Gb9Ux5Rj/EL6KC5z6fTiWca+tyzCbfO07lDXOE2J\nNHy9nTNsJqSAaDn8ysBU5OZH6MwKqOvx7PemNP5tktTfrJBKzg9fo508Og3Y1Vlp5adj9LHkF378\n4dkKK6lI6LTRCd5uG843ppG9JT7hd4TEedQHPB2pjtLc4WEx9UIKGY9n2TZqzY8KW+zhDikSQjTL\ngvGQBn9CnWNjtU649KPT7c4TUjSYsxvJbvd8UnWUulme3VAY7Z2fDMnxtjaWtCJhFEyYrD4EU8gg\nxdRL47Z5iVA9q2v4aLJflWELkRfy243bkgk+83SZeDqdkeFG21ujeYXgOF2uXOYLXa3QcOFKiM9M\n3kZQua7cViNyvi2/0UrmfAqcz8kCpnfrk0GKpTccHR/C4cJdW0dqx0u0rD6XkOGxZKZvgsMTw4yL\nATeeWxGHTKA/FO71Z2oEP1LApXZO0xlxnlhmiJ3GyNvy5jOUUmKKjq3dyWOh/Tg94Yp14+EiNNdw\ng8gZQxwbjAzp+4KqvfhTuJC3TlkyUjeiXInBFv2Vhe1+h+64Xk5E6WZ2OeD4Jbzg9QIu0oCpQxze\nTR+u1qW37vG1s5R6IHnrklnrGydfcSkS24nJjxHGQYKc+Hg6ofJ8FB49Z0MTfKe7Ar4fkLorgRaK\njaKLIP0xMlrvb7RmxfAxBtllzuLoeLbmOIcrp4vwf/35f7Nr+vEjP/30R75+eWfLb4NAPKwfphkX\nEu/ryuVyQZ0Q93sYvPmL2eyb0zwzDx+l++hcT6cT2gq59sPvappMVdtrRVQJKeHcxP1u97+1yjRN\neJ8Qb/d6l3mreEOGnZFKbbIxCgaB4IVS+phz6ggcNoRo2coQpphqaXcVEBHW5YYITDHxmt/48GwC\nFWmNt5dfuZwnclkOpSNA35QSC62V0US2o/ny0VGXQpkcl3Ni2e6HDYuSSVHQUqm68vH5wrevQ5l3\nS6Tpgp8f9zWMws2CrAXiIzRcdhFC79ZUlsytZObzyRB+oCyG8K9+M78dB5oc6dnMarUllvxCz3di\nK/jTE262IltrALcQSqfmgltf2cO+ZTpBnND8Cr/9C7l75GzWGOH5CecCm4d7y7y8ZNZvhtS3+2/k\nt9/YekTdCe2OOAjlThLT3Cla6MsXzrFR2AnOJ2oD7dXG6XHFYUaerYK4xuSHEi10BuCGb6bVaM3E\nGU6m4dFmeaBFoYq5u5dSDkqH9kz3ninOo4nupN1NvzW6i6hYg6HN08vwQROP9GjpG/KOcxzmvw2z\nYDGXzDsurgQ/MQ0rkjBVOgWHx9GMRrLbVJCIEpimZPuvYiawQIuYtcy9MjloQfHzoGassDVHbcLk\nIkuWo5C8xIBqoStU56DXI9swhQnnohHSMZWvfNd41xJofYNaKKWhbr9ujVqqFbZSUCfoQM5UbQS7\nNsia2Qosg7Vxfyu0HnDB4edAOJmKEiDOSohlqCoZvnTjPaxCJ9G6x8kEjEkUDL+v3d3sXz/+dohU\ns/DaEPduwPgz2vNxsWUsYLt1gKqyrneaPCIWRI3FH0O0wqm77zhEUNsdEYMFkw/UQb/f1g7RHxJM\nLw9Fn6PT+zD6C0OeOYrhbVsIoSEu0Jt1kbtJXBBTH8TgENeMHzSUFK2aMkWjObpr2Q4FTy8NnKCu\n4FslRk8f8KhxlUwl1HuzDnzA9KZwEqI4WvUIjQ9Xc4VO8acDxXJeucQZ190xFrtcT6gora5M3nGe\nnrhcfrKvPf/E+fTBAi3Lxtv7+xE98+u3yPvLOzqCYrVV9mjs6ptV83TbkNDjXLUCXWm9UHPFTe6A\nlH2MRPG0UlBZOM+fKAPJadrprTDFxA8fP/Mtu0NW7/yFFC9M4UrrHtF0ICt5W1HMB6W3bWzq+0Yq\nuMnThnJTRDhfbNHPOVPLHedH118fHKk0zyPQ1NG24XGyv1/NFsKyOt5L5zpPpBApO3pYMzUKrUda\nt5fUja7Vp8AcL6CRUCttXWjjM25ZeX9/Z3OOy9VMVJu8j+s207UhXqi9EZwwDR+x3p2NLSVAmOl4\nhrmzcTTUeFkNU8rsViOqyraZ35GqmUP2MaZoxXzFnq8fSJPw5z//pwMh+fz5M798+cLby4uhPyVz\nPg8EMMyj47PCbJ5n3m+j0++V09NEmidyLcTphI6uxTrpvSkSutZjDCVi17+0xhQjYQQaHxqc3pkk\n4Henc5VjhJPSRAiDs6TOVFXjPXXD8fn7P3t33Vqjd+PXGerajzHk1jdaU2L0dr+2hTgapW3bWJYF\nr1YkXS7X42eKKMvtna7VeF3xYeGQs43KS16tOA+B2/uIerm9cJomnq9P/PrrF54/Xnn6cD3Oc1d1\n7cq+/Wfun8c5xzTb59hNPlFbT3pr3JeVXCrzk60nLp2oGG+FGHFuJs0foO3rVGI+PbG2yrIWLhPH\nOEniydAtzRb7sr6CGzFe/kxMnyCcgYn2yxe+/ctf7Fx//pnz/Al6Zy3Kfb3z9d34et/eF+7rStGO\nxkDeGk+z/cwQAhWHD4mQPB5Fw3jenMe3NEKE6xhbt/3FwEkyxZxkK1ZGo5+LjagVQzhtT9kVZmYk\naS7ww/xUdsQ3GKoSoNeOkaSGKlUMZZIQzXePeHB9egdxlT7UeKKw9/kqle4aIRkSG3siTekI4FXv\niV7R1vH+jIoeESoiFZFESoEQEtKUMMxoVRU00oqZeQbXDiRzmgOtbKzr3byrvkPkajfOsYggWmjd\n0KX92qQUcBLpRRDCMRINXnHS2HIhF3sud35kK7Z/PjAjPZqCrtaYd7Xw4Vrl4OK21gatQTmliSk6\nwuDUzj4QnUOk4HobTus7+g0dpfVG083ibmSvTfT/x4VU3xDiQfJUbbaYjwVcnDsIiVUar8sbran5\nRA2pMViExXQKnC8zjETu7+WVORtUrpinkx/+RNu24eioDqloePAk0Dacai16Q3hcyK5QqhVQHk8I\n8TD1ci4gHXvZfLe57/gMvYnNgreBvPgzee90uznqdu30PipzeSx8LfTByYi0qrQ9VSkFYpzQbI7Q\nz9cP/MMf/lcA/viH/8jz8wezKdANLZ332+1wBZ8ulqs1RWHL77S68fRkI5zPn37g6foDzntu68aU\nTseo8b68cpM762bkQqd6dB/ee5PvY2iEtE7Y7bQl2P0jo+O6unkUoAZ8A5lcXonpcpi2tZLZ2kpp\nd2ouXON8jH+RQExnfDgNyfJD4t+bIK3iesY1ZWuPtiXHiJ9mUCvgg4uG+AExQKsTSENcQ7UcHCnL\neYuWKh/j0cnbMxMIciIS8MWxZejJ4YYdg8RsERokYKar4ken5N0o0JxnijAzUcYYKqWZ69lzv79z\ne99Mrj+c5B3WyQYJBsdXpcsuEfYjpd7TqgOXDuNYh6DG8hxjCXdIq1uzYr134+TYYjMEE7mRThMh\nwn/5l//E2/tX/vEf/xGAn3/+efgYOcqycT5fjYwMvL292Qg4TngfyVs9CjC0oc1sJnLOtFbYtmVc\nVLMgcR62pVBbOzg7uRa2dUXkBARYK+dzMm4JGJKEgFoxkXM+DPacj+S8GR/LC9u2HVEyTsIoLMvx\nuR+FVDeLBRFut/sYHx5nCmKf7Zcvv6KtH2alb++/UWtmXTvX84VpmliWgZyhlLzitFuklcrxDN9v\nixU7eeG3r56Pn35gHd+3LTfquvB8+cgcI+9vL0ch5QcXcS+avpej24jE/s5bOcYu+/sbnf/O884f\n17N1W4t8DGYGOV9BIm2Q+8M04aczsxNeX35mWd85uR11DLQ04Z0jNHPj3+02tHU0KuqecJePRAJp\n5AL++c//Oy/v/wniRJbG2/2Fr3fjJK55Ge7qoC6RKyzb2KBbYOvZpOwECBW/W7S4htTTwf1xbj7W\naEMpgKqIh+QiTXcJfKLWQoqzcWjioyCgW9FSuzmG05UuO6fUJhOuVGPpyQPJcQ7E69G0eTcddBYh\n0HWjUUzGz3f2B04J3jG7wbNycVhWjLFnmhBvXlLqJjqNPu6T8544TzQ1PmmaT6QRH3SeL/QG385f\n+PLbX/jtt1/pdUTW1IUezDfQeL7+2C9zzrhoTbSIh16peR9TeGQynqF4G53uvKTgjdBe6ma2Cv1R\nSJWmePGIRkTiQHF3vnG097sWWhVK7cfYXoLgUKbZEXxlCnCKo4ikMgWPVthqBRzSdxBE2Kr5JXas\nUN6pN14gzg+Ry792/G5/8Pvx+/H78fvx+/H78fvx+/E/ePzNECnG2GeHAA3WqxZB0DpUfcCcGk0d\nNMjVRm5jfO3MPCeCD/gUDzUSQHSRFCdaXxFXELejCgbT1nanq0PUk8zVDwDnOs7CwUf3Zhwn2Em6\nDSUSYnykaQMycrJMOims2+0Y3+2S0EJAYx+u6vYZpNqIoTNTeqLJdqA8YK7RztlcvvdGG1+73zIx\nQpo7Hy8X/uOP/8CffjCE4D/88Pf88e9+5NPnjwC832/c7q9s1dCVdbvRS7UMqfOZrb6b4gbw2pG2\ngUsWe9f7QQKkC7UWtnyjSCf09IBHZaWtBVcd5xiYfTJnYQbMr8paNpo4gni2YTxIF2gJ7cpWF9S9\nHPEia76z6orzjaoLbc18/PjDuE+Da1CrwbuD9wBDJamOczwzpztvt3dat+7q5k0d6tUxxzNhfh40\neBuJoSdqu5H7mxEgxZCspXwj+AsuOYpWcJ2YdmM8j2szc5jQZvytulTq6CKrNurccCJ48ST1xJ3r\n1gNaG2EOJB+IavYaAGdmYpiM4Ht7J2+VnY3sKSZDd57eBefbGB/Y+DJMyWIkmpqSit3+QAnOoRrA\nGcT9iB7p9vMQts3y4XahhQ5LhX/+l39iLRv/4ac/HlEvpXZutzdSSnz48IlpPlPqg+fXpDKni9mN\nlAfac7qcyTmz3u4PN+0d5QhmIrusNywp/nHPb7fFMr+8pdEvax6oST2+t7ZmyKFzbLmSjqy9TCmV\nENIQGvAwAW22Dm3bdkS+HLykobDLOQ/0rB2jRlXY1sJyf2dZNj59+Higbvf7Qh/xIjEmnIQDUUcb\nXjuuN273V4LzXC82onq/vSHuwpwCv/zy3zidpkMQ0mohpYmymZxct3bItSUYtGLKMo7PYe+FRYDs\npqL75wJoI/8xTpFpjoTo4BD8WGxWjAn1gaVm7rk8Rsn5lRQ+4c4nZv8RWRcYzvLdB1tH54BrV4ub\n2hHJdsfpmSYzBU88/8DzH+2aXr/9lf/jn/9P/vnXX1B3J06VezERxi2/knWlqKNuFob73h4mpzgh\nr5txaCj4OJ6pKJazKYlWxUweB4/ROYvIsegh20tSeBCjQ8iomtABdcdzaujfmJ7UQtd6IMoqgguR\njsMP7u0hQkgDApM+xA9ypBh1xeJquiFS30cnTUFsFFhMDHM6TcaDGki9S/FAvpoqpWRSfEw4DMmf\nSfOZj0+feL7+EYB5emZbCtF/4jx/4nr+mf/63/6LfY7+za6BT/iQcF4OJLO2Qi+Z3ouhX72PRA3I\ndWPzK+F6xjlPqQ8jT/oYYeLta8UdvD1Vyws0xfq+Lw8UUxsQaNVI5rn0g5og3jPFYKKe0G0v3xW5\nATPqpNOwRINdkRxwbNLMyqJPqDzij3yoRPdAdf+1429WSFmWU//vFqmuFWmd1gQnjT7Ud7TA6fRE\nCI68WfCnDp6ISjhyoVpVxMl3garm9eG8wfm1V5zuyjRP696yedo23MaHCmE8tG53b1Ubu4GpPpxz\nSK84qSh5+OOYumCOZ1NHiQWe3u92nltebNxyjfRsvhdlcBNSrcbV0IBrgpKO8OFc1iMTzYk3Fc53\ni75qRoH4ceLDh09cJ4P3T+HMHCJziCb1pltg7ljAHI238sL7+wIe8+III8OtNPy60nNjy8p9zdxv\ntritS6XWOmI+Gq65YzPpWvC1M6upU7wTK4oxz5Si3fL1QkDVHSG6tXSkdIN6Oyz3rwekXtpG1YZo\nI0yO29c7eR35blNmud+JTNyb4EI+iJMOCDJzmT9xmjfCcqeO4OX71unSmUM0kuZ0QkdESmiCSkSa\nktc31JeDJ2CO0ApE8B1lQ2WM4OZI7Ebk1LKHik6sDHLsiHFxHrxWXBAYC2PojdS7KdLEMyVBxhhu\nDY3FVcSdmIMjbwu6cwVcRbqM35UOcjiAqHH7Gmrn5IaJzfgcHo9IMB5GX5DDCyzQ6fQ6bDxiQPbv\na4XX327c15VPnz6NMeDgci0ry7Lx4cMHSqskVcpY3Jz4g1eUcwDXKSOSfZsK9EbVztPpid7B7bw6\nNd6FjeAiOS8PRV/pzPOJ4KKNeMouw9+5TsMnKCTbs/sjtqK1RkrzsA6wgmQv7Pavt7bzo3iMITGu\n4/222niycTRf27ZyX14p2aJETqeJr4P8vW0baRJKKWzLSgqRZV8X3huXeWKeomX0lY3LKM7bdmeh\ncP78mbLcefv6jdPZnou3tzFyDZ0pTXQ5sw7LAXumR1hzB5FHIRVjPOJOdguH/egYsd57E/1od+jg\nCE0xcTpdcGkidyXnu41B1zFuapUujnn+gXi6EsSz20FL36DbfVAfEB/QnbBXCpIXZIpYKPKEDG/B\nP/7pH/hfbp2/vH/jn/7ln2nhnXQe1IzyztIWttZYFiwpYHiMbS3gxLOVjfftjTCLOfvbY4BIMV8s\nl9BajyIo+DO42QQyLgOPcGVfI949LCuUdrilmyK50Zpa0HQtR3g6IRJFaM4KG3XDawoTb5gAxDp2\nI4UPP7feyb2Sa6PVbvST4RMlzuHU2c+eIn6K+DAf9AQbJw6hQctIj0e0UAzJlKY+ENOFp+e/Y5qM\nbF/WTm+e4E9M8wc+f4TXr5azeZsWclusIXZGGd73rz2CxoWx9uluZQStdrPp8DPOT7QOdbcgcg5o\n1D3DtPehTrTDRY8XP/5fP0h3rRloUUqD5tDS0TGqFRHEQxjFphcdjYX9W2k2zsY5S3jwo1FQmNVT\nu8UGSXXH7xMxDuq/dfztfKRKoXc9jMsMTQiAFURdMsGPjC+foPZj/iyiEAYXpHOYfdkPemT51Fpp\n2kjRZrvnmWNByVmopQ25Y6H2fHSlqoFaG14c6nd13VigteNF8MHhyaZeGWjGnD6SwpkYTlZIiDsQ\nty3fya2RvOBjQMtsdw/Am4WD/N/svUmT5EiSpfmxbABUzbeIjJzsrCoamvv8/3/Sh5qm7umirqrM\njAxfzExVAcjCMgcWwDybKnuI+hKXwMmJzG1RVUCEhfm976FIs0iYcLwG6Tin5LripeNYTnR9V6ut\n963z5duN5+evfByC8dqyIf6LUrvFWexlPwu0rSpNHKUJ+7aZvmUU3fu7wnV5oqnw2JRvz6/8/Itp\nE3758oXtsaE1Wo5Uq6cIMvSJ4CAOvMCWM9vQu6y1UoNQvCJ0fPRoHY6ggSAIJCZxo9s1TtAhQCtm\nq+3CNS5sz/dxX9zZ0o3JWfAwPtNHWnlwnjhdcXiW5cbyeOYxIjtk3CPahb10UhLS0MiEGNHu0brT\ndwNsHleXTi0DOqqKknHDeRjniCuGQ4jR8AYSOVEceA9ecN44YA8669i8rxGamBFicn4A5IZwNAly\nMUF+jorzlTrcO8ErpbzSNJLmq8Fnj4gJF6BlWqvUGChdmUahjIv0HpBiYZ+Wen9YfRmiWTe4L556\nhCvXRsuVyXkmHxC1KB2AL1++8fRuseK+deoCfiyKbsRi3G6mlcqPO3kcoO55Y54SU5rp4s7PCMyt\nh/OkeWF73On6xmzrvXO5XHDOsb6+2nMd4lks9QaoRWPUUgf/aLx858+ol/+5mBCxTty6rqYfC+Fc\nT0IIbHUjl42Y/OCkvWkH93xH9fi7ha8vIyJn7AP7upKnme3haLu9p+LURLUSkS5stzt52MMdhbxl\ntL7HI9yeX/hhsud7Xp6oebdsuxB4ShPr6ADd73dETBtVq464prfNqxTFuco89F6nZseb9sW7hBOH\nE49MhwOnk/NGkIkpzUQX7QA1MBYuBMp2J67mlGzV44f4mQ5dO64J6g+x9nx8ySKm+t00qXhkMoH7\n9d3v+d0P3/jpd5/4y7f3/HL/xuP2+fz8t5bZajUBvvOEZM9wrYrrji1nSn3w0//xO67zEM2HhwnJ\nJVALlJpPhINznt5mlID4PnShb599CNZ9t4gwf977Fhpd2HcD29bWKGPjdcXRWqaVSolmejoc2TF6\nJglE73A+nQfk40GsrbMXpddi+Iijk9MHcmGakZToIdHdROtHMrNl1rkOwRnPbh1ojJQmYvTUmsm5\nsm8NOeJVNpuEqCitZTPZDM3lPBnvTvXQ8LkT4tudEpJHurfumRhiBiDMNsG4P56NQdUFHeBnM4pZ\nnqnSR1fuQGbYIaY7tSgYsWh3e2+UvWbytlOLWr7h4UpNDnoxc1mYSDHRh6a4NuusBhRxZgpr43Nq\nrbPIQveOrINhN7Rce3UntPbvXb9aIbVudzxxCM6ALsQBxWpFwQem8CYAfTx2Wxwsh9EqciBOdvpw\nzhgs+74a9RUsL00rdIOuhWh8IYDghE0auiluBGYeXAzkYFcJTq09ftzDMSVrY/aKfByXWwAAIABJ\nREFU93aiOE7QIQrLPBHkgniHc/EMTla+2AkxVjzB3C6H60OGk8Z7kp/JbaOO73POIc2yn9ooGo/c\nJHHmCtTueH5+5d/+/BfeXcyOHONED51Vd3x0PPYHz8/fzoc4t2rjzarc7g++fvl3I7wDn5eFFBd6\nFV7vma/fXnh+NfzBMX5I82RhrDpmn4BUg1FGJ+M0r+xjE1o105rQOqjajX4EnnoNlJbJqlxcZwnn\nj6SJ0HpHujOxb5/JwwLfHjv75cFNAluEi3864YnXGM25Arx7+sC7+wvbY1iutdNbo4qa62VKp9hY\nuqP3aeAHZDi1jizFySB3neHaqvgjlLp2KmVkvTXw5kyVcDgsPaRI9w6pNr5uY7QyFSAIEqz971s7\n7co+OnwXvDqIgrsmQh1fM/ISrSulHbyIwx7v6aoYwMJGcvUQoh9WcFF6r2Z00INR00xs2wtahf3x\neOPseGNpBedAjfB9IAoucyL5wLruXJaBvBiL1NPlifv9Pt5L5eX2yjbEqPM8s8zmLFu3BzQ9O5zT\nNFnAbzW3nqqyjWLBGGaJ2+12hiiXUoinA8kyLFV1HNosUw/GAas5A046x7quJysKONEPh9vtKDRa\na9zv9/P/NS1nUHDVYiHSreHDzO12O8f6Tx+eoL0VZjnnc0QXFxvX51pAunHtxkl/iokt7+RtJ41w\n8CO/7+n6kVVeUFX2fWVaPpwuo6qNl9dnLsv1ZNf5cWAt23q+pnIYew5RbQhMlyvBR1LyzDHBfFj1\nAWek766NeZmNe3WOYSPaKtuXz1yuH+yQOB2FgaeWiuYHDgs6Pp59ghUIvSkuZDoROcwN28rr1xdq\nbixPV+IWuI3sykpjz7AVpRbjZB3Fy7ZZx7CUyqdPP/I+/pGJ8XzrK25+4EMj940W1+9MIx6RhPQn\nhIiT4ym0LmmMCefMFVa0nRMMG/NWO5D3yl7LeYCuoxNaveCzN4q4HAakMVZNE3RB+1sodWsN3Rtt\nr7RWaWroCgCXHC0442aJJVLUqufvtO5NxfU+5Cs7XYakI99oJKTNaN0Rdn734z/Zveg9Zd+pXSFk\nSr0hw2S0LDOTj+xZyAVoyqhbkRCJHspeSZMMoNUbqqAdUwuJiPhzf5ZuTQsVy8MNLtBOt6Mf+IbD\nGQn1gJw6aLVRaqcW63odKCHVSpwOCoCtj90fY7+BMglKTMkYV6dLsNK0mHC/GF6hHt2x3uG8E/7j\n69dz7dXNHAAcTho/dDTNghSz0MNY3L0p7G2PHDPPeuhyrIJWNRbUuq9nsVC146tHW2eaTQ/xBlGL\nXBdLuG59wZdyPoiNRvIBH+xjlO5Op0HPlnDdSqf2Qs0P4mxv+BbvfPrwB3z3qDqcK+cCHaKnrg96\nDQgQKefpubaOdgujjS6O0eLxRpk9P4bLGKVEwtAteOfpBJoqrWb+8vNnpP43AP79T3/l3fuFOEdj\n9jg3Tqb2O6cp4oNjz5l1/8q3l5+pw6ER7zO9CfnReNwr93WjjqpeeyXO75EODs80L2/U3PpAjiiD\nbg+UO9xQTlE60Qe6K8YDOk6COUK2+XufApcpnvP+Ip05JDZVVhSVwhSPxb3y+vyFlgtxTvQgLOPp\nvrpImALJw7IvvL9+Oje9R35Fc6a0SPNteAb7+JlvQLljtHMUdbVVA5t2j8OhValjQ1SaQRN7QcUc\nLS7wBpGj2zizM7Q69WDDUkqnSwXvaFks3ucIbm0jJsV3iNBcQ8br12Yog9BMk5C1npE1ogaxXdIC\n0qh9Zzs0eV1wvZMI1rrpejrFXO+0Zg5DFzy5VGTcM0V3WlOuH95TtfHt5ZllWM6nKVFr5fX1lXf/\n5we713jTjTwed67zwuvzV758fT5Dqa/LTBJPqZmy7RwhtmCL8LquBCf0/6mIuV6vbNtG752np6ex\nkQh6njDNkXUURYcGE6yzeBQP27aS8346fY9i74B2xhi/o4nv5Lwj4ti2jcfjcY4o24hRCiFQa+Vx\nf3CZB9cnBNbcWS4XXAhI76c+KWcIKXFJkRSF+6s7O7w+JkKDPRfj06G00w01M8cZoXC/33l9fpwa\nmuAV36FuGyA01dPRJQdWRd2IoPHnHlFLxq029g/uikuBkwmD4P047Wug5Eqj0w+95l65hoTUQr1/\nw71baDKd3xtDoHZBWkddwc/DnTbN9t6VhneO7jo6nIlffv4zX375K8+3G+tWkCrsY5S4N6UW2LPa\nOh8crR7BtY31sfPh6Uf++Lv/i2v4hBvdk3BVk2ToHVjB3c8C2/FAizONo0xDQzcK0FIQ78+DmvZ2\nMgmP+0vVNJFVy1mc9e4J4ul0cm705r/De1S6RkKPyAjBPriKtVb2hxVo3TWKKmWMbnXuuGBuzt4m\n2yelvR3MVW3CI5XaHnTZ0H4U/JV9j0zzE7XtuJeNI3T+aXkHPVK0kbc7r/fPZyzNcYl0YopjBGfv\nTUxifK3YUW/rmTs0WUXODn3O2fASY23v2im9msavd8Md9cPR5w1V4T29gTqhHn+KFGqrlDyecy8n\nONVG+CYl8MHhfEXisZbuuGiHCO/DOCAeAOuKup3WoKnjtm7UUWPM04X/dUDMr5m15xZar8RBXpyT\nvWGOTm32cB+CTI+QklKL2uy5F/bVRIe1bPiYaN2hfWVb7+jIxVGUJpEyTtGuB2QeM32FVuAyLXQK\ntTkoR5aRUrtDayGFjo8JHTN2tNFrQ2untMqelXmMb3q78e7ywsenGfC0avZ5+4U7hB2Vjej7oCOP\nRQ3BaRqz9jHUGZus84leZXRxjA57tBm9E2JIqDhazWyPlX/59/8ODJ6G64gXi8O5CL979zueLtbi\nXp6uLJeI1kbTne4n+hjhrPuD6CditJOGWdDHQuQTwXW626mt4IqNCOxDjMZHKma9LeOkYZ9hoLY3\nbZBqMQs+ZuetubBHpSyJ3IUwWrxzDOAXSstEUdoyU1e7L2KvlP2VTTrqPzCVTl0HmyvYphGisCwL\nH+aPbBdj0OT9Qa47iGVWrdvzqU3woVkxxIPWG6rT2ZGi7UCk4RA1XcOZw4cVQHG5mg5EFVqmlkNj\nElmmiAqodpa0MGRZbNgJq9dC7Uouj7FxQuuWvdYB6YXQ25tdPUQbt6nSvdBqpRwj6BiIQxRs3SZD\na4B1D+bgQY2ybc4Kex1Zs3VB4xvMsQ5qXa+mLRLtbK8rTmEZG+LnL58R8VwuTzaOVj01JH/+y88s\nMdFb569fvrJuGx+OrL3SuD9WEyA74eX5FTc2/Q97HvEvcF9X1nXn40f7vm3b8N6zLAvrurLvxVAf\no0BJKRGj6SndOEQcr8c0F0IplXXdTgH5cRmzTc8N8vhaG0iDdd3Ytm1oQw4dWKD1SFWl7tb1OfAH\n3iVinGwTipFe3g5RPhrHKDiFpkxzPAX1U1wQ9ZZwXzPzfMEPTcdeNov/6CZgfzy+cVBR6NZpu1wN\nAqnoaewIg/uUyYAyzxfSAKDKuJ87BSfNaPuMYlCijZi8o2tlW4dBYRwwffA0sSJO+h3y26bofEJR\nwpRgCma8ODRtSek+kciwrgiO+mLP6Xq/89oaj9aoe+P2yOyjcH3kRi1CzULryuYKBzW5VpiXd/z0\n0088zVdm706hcuRK08LWX1EpJCcnBNIMUJXW7kNy4vHjIDzpNHIdu5kvFBiFlPdCVYv9KnVFa/nu\nXrOOC9V0Nlvu+JEJ6LoirbF3Z5IH8fSxXvQ27P1lJ7eKOqWnsV7GwLQXShdIFSQhrpOOBUUaWV5R\nKgSlaz5lJEbHb+jjG146+/bt1PFe5p+4zk+E4OjNIT4yj3vY5cbLmg154xT8W+arjZET1W9INoyB\n5PE6UPQ4lKrgopzZmSLN9JdNiTjEReTQB4p1vX23RobA+WyrKrXUsS4Jqu5EuywXT0qVmCzqLQZP\nHZBq8ZZJ6pMVVa0V9EhOUMuVLcV0wU39Gy7GRfT/p1T6DX/w2/Xb9dv12/Xb9dv12/Xb9b95/Wod\nqatPiGukg3IaIuL1pA3jTQgIVp2Xx4boCM+c3qH5aLcrJY9TpyrOJfJ+tHgzrRdCi3hxLJLQM5+z\njxZ+RQfR/4gzUVXKrsRoeXpb2043lMNTskeL0BgicTmcK43XlztzvFkitxZaO8KHd8v3caZdQco5\nD7egJIORNd2s83Q4AbunC+wogoncj9GOeG9IiN5Z5nd4N72Nr16f2df1pBi3z8r6lPmHf/iH8b0Q\n3MQcLtayd/AYo9SiO80FXBQkZWJV/Gjxe/W42JhcJIyIjXWcLlOPJuKdZ1rPdKe4UatHHK4VE7RL\npLnpbcwqEXnyeK8U14juLbg0xJmq4EVI4smqEA/DQKdLZ9cN0YlSH2wjePpRIte+kHqkebhcYLlb\nN8OHL2iu+N4o+52X2194N9rb13QhxEatjdCmIbC2j8kduWu1o7WScISL4SUUR4oLaTYyt9J4PB7E\naGOK2YuN9LoHhzmXxntTc6aJokUpJVuI9hAjH5BZEJrY94WjNd47LTjLYivFfu75tcZeKwFPQZDa\nzkBjdUoXMeoEhdbr6Xpx3aEt47STWxkuuqF3aDZCKNuN21p4//4jz99MUL2tD/7whz+y58p+e/D0\n04Vv42u1VpZ54uvtmb3s414fLfVaeH15phRDOdxvr1zfmWtre9zxYt2k2+1hDr52OGkU7z33+51S\nyhBW57Njc70+UauNW0upQyT8ttaUUnh9fSWEYGObEw8gQ3dk4751Xf8GE6BqY7lt2/5GqH3Mf2ve\naNqIIXG9jtO8QG8b4hIpBF5uL4RpdJ2mCa2N3mDyiSktp8uoA3FKQ/Q8TDYjp63kxhQipXa8OC6X\nK69D3F7KjtadUhfSZHmYh0GlNIXeKNsO3gwrAeuQHHT35Bd6rujUSOPZFudRr6i3+J21KCmEE1nh\ntKOYVq97h68NN8ZJ4iwJFAduNidlGetJL3q60VDh8fUbP/9sKQr/7y9/5sv+jcZKCo45LHzNA1Oy\nN1x3iHamNFm02DBMVBf58ccf+en9D8xBiP5N59ZptCrmHqvgorw5CN2GExsjqXpD0ozRpXOeeZ5N\nC1kzrb/dT60UailIZYwF36jnvdr9L+Lp3dFKRbFnOwZPmYXeVkIopGQYFHvTjOSd90Z3gnghHbu1\nZkpb8TQg0vuOp7OOb60USr1ZBJbzBKeW2TreAaGiTVn3HSfKhK2LbvK0KnjfmeeEJ7K60XFvd4QN\nH8z85L1nmscfJIWmK75ViJ4Q0+nI3rZXez5ljKxbRfwbSsd5P3ReDaSfmigRgWgOeXWC0ijjOWza\n0A7dOYIEYoLRwGeKynIJTLMgwTqxR7ZhiKbRrVt7Syw45DW1U9WT94Iwm5tP30alLnwHX/4Prl+t\nkLpEZ0RZZzexF/BhMoQ9pqLXo6WuO9RAilfeX3/genniaVg2v3z7ypeXf+OxPlv30oVzBivqqXWn\n7TYzzsVxGdwTi3EJlDrcFkU4khJyNbpzoVFrZ07htJy3UkADvRoJtTU96b7uWrm9vDKnCynO1LZ9\nxxoJeHEIivegUt5QKmoclFosIsC7Gd+Hxb9YKzTIEOVJ47DXhTAhOKSaXTum6dSehJhYH3deXl7Y\n1g3nPF+/vPL0ZKLxH3+84rThteFDZMsYARubEbea6S4SU+ApRNqgBvdiwuSgjtlN9OhPPlGHEyOh\nMuOCMKQ+5sYQc7wYp6WfpGkTvyredYJYbJCM14EIPSpJvBWf+j0nbKY7IUsnt5UtRx7FNtJUAu/q\nlXdMTDh6SlwmWzCe5iuP7Sv7munLA5crcx7FWe8k6RYrI43olTAMClEug3C/Q1h4CjMMQ0SMEzEt\nqIuoVta80haFEaYZqPSqiDrDLTjH6yiWWqn0Vii5sW8WSaPHiM45Qoi4kJiWRAoeObQZYkgpFUtK\n17adGg7nrCXuJZCcseOPEdW9PnBzBPFotdDuU5ijNt7xVYfDCPqIX/Bi2rDt8UB7Y1vvbGP8/uOP\nP6C1cL+98uOPn/j29TPrw+799+/f03rl+fFy3PCnMFZERrHSho6pnSHY2xH0W4207b3hCsBGd1+f\nXwjBsSzLGH92ljGmOoqh78d68/wWhXG/298+i1Bbwx9YEBG2bTsLqZNePX5mzuboa0O7+LfxMVbw\nOIQUPPNY3df7A6ESwzzGhpVlFFmHV8MheGfZnqfINRimwzuHH1KHMDZ9wUN0hCBmzoE3Dlct9P6g\n7JXedvK+EQcPKY1cT6HStZM35XUcWKM3d3P1wdavqrjxfnufSEsiTBdyLnSx9/cxPuNlttiR6KM9\ns13emFeu45LpZHTP+KcrcTaatjaHlIrmHZeVfd34/HzEwNz4+eef+eXLX4dzNDCP/L68vbKXTEqB\neZ6HQ9ret8vTlacP7614koaERh332/1x556fqfJAA0yihCNFom2IF0KaaLmiPeAOI40311jVTgjG\n3DqQONI7HmGvalgRvgt77jb+7M0aAlL8qTl04tBssSRuYAX8KKJz3uhtjM+8Q5ISxgjSBaXLRhXT\ns7VW8S5zgAl7V3AZ7xJeCt7Fk8CfxFvsmG+EbnmBB1vRIl6EVoTmhWl5y1rMecMHE7HHyQ9H73iG\nfUYwXEnLfmjpLuczsz0eZrDoDPH6KE59MJSDBLTbCDoM0bhDqMGb5VX6KUs4nt/eO9F7XPTMC0xx\nrLNuvGfO3OA61jGAWgK5VZw6ZOxBbZDNTaM8Cl6MIxnGmDE6dxrK/t71KwI5LU2uHxlXHtPyYCK0\n1pwVUNgidZlmni7vmdOM9EQc89kff5goWnj90yu1bThXztmtF8/kAlvLrLWzrUodhdQ0TYgPtGGt\nN6jkm0Mg183yhERQzczpyKOKaMuWjq2WHZSHijf6nS3s3O93cjiCG4+ibiLJAm5nSp3WO9vQ+mjH\nRLJiRZMXTkfIIejrvaGt0LCQWYDuE94H+uDEfO8wulwuTCkyTRMv3154ub0irrNupi17PG6kfqGJ\nJwbBSX8rFvdMoxHnGfGB6Ou52LirQ3LHK/Sy09TT/FEtOcAh1Y9kczgCWl2yzoqTgZUQOTtLpY2s\njWYPmxKpwyJbaoekNj8Xjw+NMbpGjYZhzrswgZMzKmCtG/e8EejELvgOl3GC+rAsvLwEvu03pGVC\nX8jDCZeiI+iEc51lmQagcmR4uU/knIlqAslAwk/LeT/FZO9nyStTDfjXyuPIhFRnzhLpSN9t0ekj\nYFlMdGkb020AKw+7uhUNPe4Ef2EJCxyareBYm1KbsG6FUgt+nNoQ5RI/ME0TySeCi+jJaDGhsRMl\nqjkiD1G8eQSSdVN7tUPJIX72thnueQcnFLczT0N/oJ2//PJn/uEf/4lSCl8/f+bTpx/H91kMi+gQ\n5OaGe/9WoDw/P1Ob8unjx9EhOoqsfDKPrNvwJkT/+vyNWiu///3vqbXy8nLjw4d3Z4TMy+g2mbN1\ncHrG79v2nT3nE0p55Hja3+rZ991y/IZQ/VhPDgfguhrP6nq9spf1fD4PB1xDWa6X8/WZaN20do/b\nCz4IS7J7at93upj5Za8N8W8aKeuCN7wT8r7RSuXy7mAXFfasFr0zRySHs3OY0kyTjg6ES3AdGady\ny7t1pGlhLQ9oje3gfc0LczTej/iJ2vqpf4zLO3y4oAR8dCwu8Ci3k9tVteCbMLlklvPeOYIoXfD0\nacLFiSrQENwhuA4BaqU/Vh6vK1veuT5ZR/Ly9T2SE69f7jzf/oqb9RSjpHnCxWFSMlYzH97b4frd\n+/fDSm8bcik7z9k+p+fXL6z7Z/y0458E590Aj9pt3ilovyMevMznBIMR8GuG1TZirkbhMswexkLq\nODXAo32IgiK0aqYW9XI0/nDdQJLRRYIzHMcJgRRHE6U7swmbKes4JDW6r/iwgvN0GrXmM1LNh44P\njegq0U2mXRwByzUXKwLVEZzgZTpwdqRoe6a2QC2Cd0oazst3HxcIF9btFR8789JAjtiZNt5n2xPJ\n1dyJwPsPV1IQ1odQsplzjj0qeLP5iEAQg4eer7/bZ1pdRamo5jPKx4nYCSRgWijf8eMzDHEyxlVV\nA/IGQdtbbik4VDxOldI6Xcf65RLBR1rreAc+ybkmen3r5v+969dz7eWGC3KePqW/wfRsgVOOfDsv\n8LRc+PDunbVbG2cliXamZKG1pcI8vXWkokCiD+im3bT7fgjKnZHVXaeVTin9fOPitOAH2VZCwPdO\nHo4J5yyryjnwwQqFg7x6uH0ejxvzbHgEN0JNpXjjErmKDurwOb5ygneefTVbb9eM6DHaGifsbgyd\nmttpj46+4JI7Nw/p3W4yexPxKZFS4np9Yv72jXV9pg1L9uvXb1yjJ+eAC5ElJnRkLrU2sot6pKP4\n4ClDNN+0cglXKN0ejAZ6jhoHsFQEp53aK84fHUAZDriO8w0v/nR19a70ZoBPFbgVJXxHdtfHho8z\nToyHpAehuu3maIzOMBqi7NWK00ub0PqgOqF3R8lvp1LFMS8Ll7BT2Y0vMoqlNNkC6pNjjrN1HMfC\n533gkgTn3tHajnRHXEbhOk/GoCJQfUWyp7aJ/PpmuRexrpvQ6do5InY1NOOZSEXFnD9yulkFuoFk\ndS+4WXlarJJsAq511q5svVL3fJLNBU9D8CkSJDHFRBzC0V4E1wI0R9VBWz/zxgIuLahLaFvplLMA\nUSra7DQYxBO9nMG8X7/8woenjyzTzF8//2Lk4+9Ce19evxHEkdeVy+VyLqalFD5//kJMid/9+OM4\nEDC+VrndbszzROvKnCa2Yf8vrXK9Xokx8jo4UtO0nBiHl5cXpmnicrl859AbHcDBVToKpZMyjgEr\nt23jyJsDzsKm97exXghhMKfeuFfOORQ5he7H31JKoeSd5IGQef/+I/N8JCwY0d6HSN43nJ+IY4bz\ntFxo1fIHy2bFnegQf8eAc8PsEC2xYR7Pr3PQnKe5OhxckNJxPxmWJE0zMblx+BrbQHfszZyB6aJc\n5isyIJdhnuku4FJickaHTymRvwMVCtHMXM5b9mM5AHMRCYb+iGmixXSOkptEfDBx9p/+8q/85fkV\nRvcsq5HrXfCoa+zbK0ejmuhJQ3qhXbkuH86swWmKdsLC7u/Hduf1ZmDJl9szVQtJHVGETWf8Qc72\nnVpXYgTvjDN1dHjpQqfbiLN8lxXJ0Y3seBFqU6TqeQyW4FEvuOCgGe5Oxs+MMSLROoHW/eRvCvqQ\njMHkguCCHPGAZDXOYM5t8K38SOg4ujnO/j+2DnjnB5YFpjmhJVGKhSG3Wr8zRGUuT56udmDqbOQj\nfUIK8+KI05XWN0r7diZFpJSIwSDUqkrVcqJPWlPU70yLvZ68y8l8cs5CsAUG1V3P9zuJZ9NmHUU6\nOMPJgI2jxStOxr3rnYWkAt07Ss0EgRgmmhSOaWktnRCNLZ9VcBLeBPMIItbhtfJBz4lRTNMJ7vx7\n169WSO2PZqGuZ2CmM+YDGK3cRebBhCl1HSfoQG/QRGEo8TvGZanVgJ4xTEyjxE5J6RXEz2wlW6vv\nAID2bg6zHkj+SvDtuy6A4/oUR3jrAEgOHlDOGZrSSsWnhpBxYyFqZafphvZIx5xcehQ9MRL9xL6t\nPEq2Ec0RMhmDjWO12Uy9N2TYOYP30BUvBvis341F9n0f7WsZnJzwN1qPEEzD5EPnD7//B0p5z+Nm\nOorHPXO/bcyfnujVdDfvLrYQx/CO5/uNrRVz/qkjDxqt4KnRYiZoDnHTudE4DDgaUsLHTJDpb4pM\n+wFK7Q3n2uB3QfeK9GZB8s5a3QdwVUShedRbx67rW0BlE1MZebURiNKHsw5Wd+MRPL51a207h4wW\ntqZAfHriY1e2+kBCPKMurFt2I8YF6Z6ezVVoL7DhAgRfkebpWnHjIOCjEea1Gyflfn/l67fP5DK6\nTq3iFJoDjQEJij+szm2naUFiZbpEc8WMK0VHDI7oGlNQnC/IcBJpKUM/03B9w2mhtUHqlQn1ApfO\n5BJRFtKwo4fJoSXQm1DFXDX+CO/sDumNsmc8mVLz2daOwVFRnA9EZ06hMoqQy2yaoHV7WDHt/dk1\n/vzlC2XfcSmRdyukjo3m27dvlFL46aef3nhGo8jato2Xl2fgPe/eXU/m0/GMLvPFumxd+N2PPxFD\n4mU4vg7d0+FIO0Zxx73YWmPbNqZp+hsy+tGhOp6hxxhLgIE2j7VmWWbu99vpPjv+fx+6qe/Dntft\nTvBKbpngphEGPT7fZBE/pVVz9DU9bdcinmm2Yir5wKtzMIj/yS+Di1PIe0V6ZR6okSm+o5Zgp/Ju\n68VxiHA+GcunVlyww+Xx+foYSHHBx3CG057w3y62ocyJUt44X4fNX3ulajP0CxYC686RkXH6JCR6\nMOexOxxmBHAJYuLb/uA//9f/zssoeKs0vt7/TA8rPipaPdIPncw+OGG2kT+9u5yjW+dsM+3AfVt5\neXlmu1kn3qkQ3JWeO61XWp9YhwgyTQ1GceYGifzo/jfN0MOptTMtHePeUkOZiMOFhA4AMtjhFrE1\nTlWJLhAHoiVO6Yzx8b6f+AIwCYliHeLeZfzbfqEPHicRLUJljFHhjEByzTRHXYQqDYl6RsSklJBp\nhubZ68N0f+OkeLs/E6K357MLIpFjJliqdYSc97TSyeV+hrnnHEix493CXobQ45w0KVEbjYbzAS+B\no2nuxKHtGMnaqG46KmW1e8rGeG1IYg6Xt2lmQ3ADjp2MfYUd9Kfk0d4sBLkbXPP4vjY+E/GOGD3p\nmKbosT44ajOJwaHvtXSFt4P9f3T9eoVUqRYFM6ps7z0uWhcjV6XhyKMIyftOLb9wvXzkevmdteIP\n8KDulG3FSzKhWXLEMTKaJ0cP0+BBHSC3YcsUj8eyyFI0Uu1xI4uHMAU7OUeLtjhYG1qLWSTXO3m/\nDyGavYbWM1lfuLhApeC6QLeHRgEfBd/GSbX3s3ugmmnNodXRq6c0hhYKeq8mUhyQRttkvt8QLNJB\nW2UrmXToeWJEtdni3LGWq8z8+MMf7HvbbhqJIgiZkC6nffhp+Qhuonz9xVDJb5pAAAAgAElEQVQP\nPVE2KwhKabh3jku64udkp4pDbC8d5zecvyGhM8UL7kBDFECE5jz38uCRb2f7O7hEnDzeKZWN2BV/\nbrUOF2cr1lxnnhxhGyLtYp3Lpjvd+QHttM/p28MejFIt/5AQ0dGn93PkaX4PzrPkiaLt5J40McKy\nk0xvr2aCHmMYHVBUMRwguVYYsRHr/kC7pyrc7hvfvj1zvz3QdWw6AhVrQbdJ8aExjfyvPgjLPlRm\nN41R1qCXO0gxEiUwTZY6P2pTumuIFuP+RCVEh25DPKmwy86+r+h0GVqpYedNAt6jFVxbDPh6RKvY\n2cwKcyZCiicLrTfwviFiXamq9eyehBgodTUel3SW6YKOk6e2QgyObd+Zrk+IjycV+fb8yqdPn/Au\ncnt98PT+Sh2L95Y3bo87KSU+fvz4NzEuMcZxb3c+ffpE7/3M/Tu+fkRHmT6jn9DVA/IJVmAZyHfA\nWoehIOdsYMeczw162zZeX19xTs5C7OTgddM6pkFC792yB8E6RNflwu2lML1/wrvI/WFf82Jj1r3u\nPD09Mc8zt7HpP/aNeU60Vokh8umHH9gGR6m5sYnEiJMyOoDHwu9Nk5n6iB0xgbTdT94kArWRD7bS\nWL8ulyeuT+8JcWZ5upKmCUmjyxUXgvfsq+nHKA0f3DnC1GajUIfFDyGBHs+Z8DDUYM9PyfSBcBED\nDxFS4tPv/4j+8//gv/zLfwZg73dy/ozQ8GFoN/WQOij3baf3zo8/fmJZ4tt4ulmH7ratvL6+8ni5\no/uQX8SEOE8txnQq/S37rvdCUKVHQcJGipHG4/yZzg0yt9oI68x1HCJ7csGJs+gnOeDOna4GV+ke\nXOCMnGptJ8bZxu+BNzArWIepZaR1Wm+46M+8t+hA1OQONStFlRQ8/hhT+Y54RbwjxAkvZk6wK+Od\nI/qZyzzhggnM7e+Bx/qVEAvzfDXe4dD5eWcj8dp2gvNcpo92KgRutxvP5Rn6jRQmA2mOZz+II4ZA\n6R1RoUd3rl9IoIijIkTvucZ4MgnztnH1Zq7ZG2SxuCswUZA4hwTH5CfDIPQ3FEXpagJzbz25E90T\nwkhZsMbNFP1JUkeUVjv7XqnFpl7H4bI1ztfz967f8Ae/Xb9dv12/Xb9dv12/Xb9d/5vXrxcRUyrB\nC3E4TlpxoCY4QwxKeGgatJkI909/CfzTf5qozfHYra3oOuzbimuOEBtROtNxMqOQkrkDW/Nk7ZRj\nnMQQ941MqquPxDEG8JMQ5khIi7XCL47S7GSy7wXvN9OSiMUilHKkjlsw4t6eCbKY0VQP6zSo3ymy\n46ZhhR/ld9WdWgu9BkoRcunoIapsm/0etdlwioF5OsY3gSATKXii99zXB4/V3pdJJ1KwCt97T1OD\n6cnQbC3TAr3Q1SCbeynI6TSBmcglzNzWSkaoZVTnteFkAX/Bhxn0fsaTlLqi+iDGjHRHKasJ7AHv\nZpSED54gnd5W8hhf9m6nrZAcdj7RE9oWQqBLRXQx4r3YKR5g18zeG60XNsmELrQjS7EHyEaxXorp\nLI6IFO15gEoj0/KO2Ee0AeAjtM3CLe3krqRhAe4jobxKwAWDeu7r+L400TB7/KPAo1oMSBogV6ee\nTkVCQGJA/Q0XRtyJW/BhIWyZx8ODc4TR5dPW0C6UMJF6txzA8fqnZSbsgu+ZHDou6ilkrY+d295Z\ncmDXwqR6fl93nhDA9z70ChPuECNHI+2H4PF+Bu/Qcmh9dhORus5WNhP6H0kfEbKa83Ce3pOmhX0b\nI9iDFu4c03KxMO+bPU+XdOH64QO//PKNaUlc3XvqeBFryVTtPNZtoAzeNCQhROvqqjJNE8/PzwbB\nHN2jx+NBVyV4z1qr0YzHCHrfNrZ95+PHjzjn/kYjxdBB5ZwHvuJN63SI0p1zPB729x+xLF4CrTcQ\nG7GXnOkjE/H90wWaEMOVKb1jK29jgrpnasuEYCT6719jaZlJEq131tszH96/Yxo5fPu+I3guy0LZ\nTd9z6DjMNbvguulrVJU2xmzee7oWG1eLp+Zi8gEgxZkpXbh++IHperXsuqHRTOlCr0IrhYhDe6dV\nPSndMVjMUt+adZ9T4sBB9+ARiTTvzbmsSs7DwZkV97Jzq4qPV/7hj//If/3X/wLAf/vX/8FWXqAr\nl4tlk/bRPTkimqb5YqkG6Kn/nKaJXAr39cH2ckOydb0BQ5aoULtnx9MemdvodM7XZNmMfQVWGyUd\nXaB0pWY9x6K99zNPzgWgOsRBHtb8dnxtdFjEC905qtTz/fY4JHacdGITtMMb/cAMMrQd52aCBNKY\npkjNOK/ktaI407j6ZAgUoO87frZUudozpcgxbCCXnWlS1FvqhuvLG6w0esQ1cs4IM9PkzrGfc8HG\n0A1Khd7EYMkAlyuPx8br65371y+klLiMxIPW7NmYXKLWRmsZN+7TUjKte1xa8E7omk+XpHeNS7Q1\nOovw6Mp67KWWloci1D5GdWcyhaJScUlB1fRbQx8YormYg6umO5VOGxTbUjt1M0hvzQaqdu1AHjWc\n/q9LpV9PbF5MzPWoR07GTmze3iBneV+uH9bbiPrG68tX/rX/C84F9vwYP0nNri0b9EBvgTA24UQA\nbeTu8S7g3Q56tPDNjROd4LuxMa7L0PoEQYKQohusJk8Ig0GkO2t1IAU/LfZ3nFEvO61VXO2UuhF9\nwI+bP5PZ2g2VhuuR5vypLRKZwVV6UMqWKdWf2iJiI6UJbR3vEv07EezlkohJ8T4RUkK849tgybw8\nfybFmWVZSFMYgsBw6qsUT+tKRHHBI+JZh1W/9MI0zVb8tNVyBcdYaF7SKW4PzlM0nCPB3hul7zxa\n5jpZYLML1vr3XfGaLVvYCe/myGMdoxh/pwUhhkg8wivHQhRdwEkxC3H31NrPOAAXd6Tccb0SekWb\npw2qfRPHoz9wdWZ1CxIS03DYxSAWpaIL4oTgH9aSx6YQ7snTsmkUHvfPvDwMGXGZr2bRdxYsXXKj\njBFcfmS6ClupeH+lt9nmuWMhChqZUsL5IXZsDT90fnGyuBgnJjhdV08v9r4Vxuy+QZHAqp0DP6YK\n4gLNCS525vSW/deDoTte607cN/xUqUOIP4vQ40yIHi+KNENp2GO4Iaq4lAALaD5GJiE6amtorTjt\nTHE6dQS9WSc9xsAchJbvbGOs2buAemYXSF3Y1zt12Or/8Ic/8Hi8sudXPv3wB3xXHo8h4K4jDkia\nbdzDSQfQeqP1RvTp1DAdmkCAPWeWZTHB7XDu5UPP5BiaSssAyzmfY7+mpqLctg1FT3wCwL5v5Lyf\nlHCtxUBB2PhMROjj891z4WmM2acpmc5pCjgqeds5ogv2cmcKkRSWcxR5/C01rzxeGs6Z2+p+v/M0\nHG3LiKLpZWdOHlTezDre4SPgB9fNQRvPdkMIMjPFhD/Ye4PrM6UL8/KOaZmJ00xMM+LsPpT+Ri6v\nbEiyHFIOXek0MaWJ7qqNynU/ES4yXegp4sTRHWhuxDwMI+udn79+5uevLzxXG7l+ev97AN6/+4X8\nuZDLnZeXux0Ix2fxeC10J/z4w3su82yhtu7N4VyyhdqW5kghcR3jad+VMg6Vk+vcSmF9HdVOFwQl\ndmevI9yY3PvxsGWc96g+EN/QvNIPSYeKaXEnj2RFu56aHe3dMhhFLB7GKfvY8i4pEgkmHK8W1SSH\nwQFzuAbXcb7ihxgdLCtTxYOPTOK4Xq/0ZgYXgNbMNOC8xcb4ifMQmXyiFkFSoaymnzqihbw396AX\nobdX9ixM8SjAzdzggyDO0xTceAMmWfgYIy/yQnZfjHqWx2ehBekbiqf6mXj5SDzir3onV+MwRhfJ\nWzmxETEGxHsbATcIRXka62VxntyM9l+7HTSJxyi14IMiveKD4oMjHPl9mMNRq72/pe0n8qg3Zw7N\nGumrx9UJPwqpppza6r93/XpAzusTuW7U8Uq2fSefQs1Ka2/ARtWhy2DndvuC4E9QWq3G/hBvH0xp\njlzHQ+PjWVErdooNo3Cr3dMkkFzH+0qg00bcxzTPNFfJug40gD+LM1KktYSoZ6uZrg43ksydOErZ\nKTXTdGee36Bt5YznOJgUb2LU3vvIWOqn4/CwltaioLv97S7QtLCPk+4iM2IqR+sgxOvpliilsO4P\nGpnUIkmvXKaOHyLPFJUQHLkWvrx+YVre08ZG632kPCp7zSCNkvfz7xFnG4Z4R8fj/EzOVrzteUXZ\nKNpozRGl0ZN1yK7xIz0rhYwGg48eji+CoQH8AMh1FRNpjs/e+cQg39BdJxxaNulIMCqJhM5eG30A\nULULua68bC+4sBDnd2eA9JwS8xwQ2mDfLGd4ZVkbwU9cwnvi+4l30z/y81/+DMDrt7+wTJ6eFK0b\neYd1P0TKBe2O2mFtL8S4s7gnlsE3WbDUdQXyXnDTm3hUm8VbpHlCCfSmbKNAc73Tah0sKGPU1HEv\nNm32d4uJg8Ul/Hgu4mIntrI19vKV1zXSr6N7VidEdkp3+A6Ti6b3AuiCdwY6dM4ZmuE4JjOKlTZ0\nZ86/2d9zYbleLNRbK60Wkn9DX5hZBLRs3F/vZ3xKrgbGvFyvLMtiCIj7KLD7OK37gLYGrZ+F1P31\nxsf3HyD102F3OHAA7nf7Hc65M/Ll0Dod+XhHh8ncd3ZvXK+mDXHO0RXyXrksh/h9Z103upjNXbWf\nzmJzZZqNO+dM8p7LdWAzgsWqgGlALd7meIl9hBn70zH4vSj+5eUb0QemGCjbykMPbtMVemd9WGbp\nnJbTuCPOsAJ9OOaDD4TLCJKuOg4D4FNgCuF0EPowE5YL6gK5ibmeDpzI48a6ZxoWizPHZPyr41lU\n6566GEg9QIj0IRzuzg5q4gN1gBQPo0UKkWuaebn/O//Pn/6N7XZny7ZmXC4X3uV3PL9W1trY9o26\nDSROqfzhP/3E+6crYBmYh9jaulE39t3E/VOYTj6RdT0SRRpFC9qENt7TfW+kyZn5pwmaG9Udph/T\nD7ru8ckRu2Mf2JsmjeqyRaE4R/FvAbt9RMOo7/go9PpW8AXnz7xNbY1WCv0QVLeOB5x3xOhQKcRR\nSExxJqvgk2eKV3pz+CrEcRhUYNsL6hyOTt/Km2EmKlz60Cc7dKusYz8RscJpCtHwLpNDlzZ+p2ea\nIs4Z2uISJ/xAHLQstNLRGgjXH1i3zO3FPkPPYpwvH4nX9/g0/40zsTsQtTzRmit9dBW1VHIrvDw2\nHttKqzv+OOzhqL2z78b0E/+WnRmSOSAJxkcUcScclOKHAL0jXdHqYKARNHu2R0U3ByUSXeSIOHrL\nm/z7169WSH34+JH744Xax4bhGr2ZfV17Pzc2MNtj12ynorYihLOQEoDeEeeoXdlqQQboUAccT2nk\nXGldzsVGa6fsmRgh9Qpez6Ludc34OSAkWm5M8els0fZuqeyOSm0Zl6GN/CraFdGZpi9sKmh7C280\n2FkYwd+N7gqHn7VV2HOldXP7uOSIh6C8drRttNYpogPQaK8hRs/1stBbGCfZhQ+Dz1Nr5nVVtFde\ntx3dHlynhSVa1t6764VlDuy18brdCPuNONrfZTcWV0qJyzXStJ8jwzhNXK8fmKYPpLiw7Sv31R7w\nPSu320qtmeUycUmeR7QW/ocpWBaUdFqsdARxtpmWFiHZGLJqQVTOkQkdqhOInV0Lu2b82Lxi7ySf\nDLfgPc7Xk4XVszl61AcalbLf2EchtceZLU+ECClFrvrEZVjHBSFKZPIfmNw7fvz0iT9+/L8B+Pc/\n/zN/+vmfub1+JvgKTOg4tWyPSifgU8RJQ1sn+k4aT/FlZP+VBjFkFMeuh9mgDkcMBITLNJ/36b6v\nNCl0VToeH6az66IqJ6fLx051edCOYfKm7NUUqKWz7c/EIRxO4qF2ghvj6SM7DLNi00FFzSGZLV8L\nGGGfHjdFtsdKruXcvCz41dFqZd8saSCkY7ZTh+PRse0bsLOMzMdcbogrXC8fCMHTayNvh63a4bF8\nOjcCbc9uFZyUcbP4G235dNH1TvB+GFXKcOEM2zUGFDyE5t9zpHLO5+jGuuaVPDaa4//1w66lbw4/\n78A5Ty3ZKPwpnMkFgi3Ky3Vi2x6seeWnjz/YzxRnnYDRYco5n25HS7AXWrGT9zTHs3Dbtxv7vpuo\nXhxby0zLYasPqBt4itGJOQ508yVQaya3agRy789NyMVEWi64mCi5c3usp0tuy4V1fdD9/8femzRJ\ncmVZet99kw5m5h4RQGZWVlU3m8VNc0HhX+BPJ4ULbrgqirCFTUo3u3IqAAF4uLuZqeobubhP1QIt\nlb3oDbiAiiCBhCF80Ondd+8536lYKUidCGH+GWOrFHV0NuPBGKQX0kfjqoGTAciUTd8LtjWMd4zz\nQMwb//zTH3ntOaqlZcI4EPLIthS2lNmnor/59Ds+ffiIk3IU2/vG9Hq983677awBnb31Ti2lkkom\ntb4+WoP0taaURkmKPRChs/X6uMwVWsuIGfWcijkCy1PM2vU0Gpxtmjmct6VWSMqgaqZqB2p/ZrDY\nIoo4qTqSzbs+vync2PmOMrD2KJRIgreeNlpMg5YaQRyyh3IXkKzPmhgNlpZO5pZZO0vZGkpT/Efc\n9uZC5b0sOGM5nSYuH2ZMX58Z1UQxDo7gA96C3TeCrpA2ZZbd75l58jyd1dTk3ZnT+QPT6Qlxltwq\noTvgS02ktLGud7ZF73vTJwqtVkqt+GnCXx23m3DrhoE1F5aSMdYSwoh18SHNcEJpCiHNMZJaxHXD\nF61p51BMl5402tbxNJuhJsEki28OY4dDQuIQxPz/dLQ3jSMbmXuHUhbxOOk8HRqYooRWFPjlRN1q\nrSh48ngpiqCTj0YthZQL0l9gpRWs9TQK25qJtZEP8b0CKCuWIlaTxNkjUiK+WnyI+DCyxRW3Bxgi\ngKMUg7WGEPxxI9ZcqbnhRPH6xEdit/MWawWxjdbDcneHQk4KDbPGYXwhKFlD/9zglP5boeTIEEbG\nbtUnR4JpDLNni5aaLZeTvqCdNfA58Xa7YsVTU+R9eWUNPew5n9niuS8+lev9M6YXUjFG5uHEx4+f\nOE1PnOYzr6/a4vbe8zT/luenb3Fh4Mcff2D0PUjWvfGavmNdF5abZXGGKej1vYef+DhOBDdRXIGg\nOAOA6iZu0WAkE8ThsY9gXrRzE2MhSdHgz75YDtYwWKHlSmsOkYIruw4KUoNExgg4gdoXk2Vbac3g\ni9EFmHC4C8dxZBq+5TJ+i60TkwtcLhoD89tP/y2//9t/y//9//7v/OGP/0jhivSRZykTy1bwZcF5\n8DIRvcXvRQ8Jb0Z8swiJtdBdJVAlUHLDSsULeCu4ztIZfWCNmS3eyLURU6Hs0UlVF9q9S2icJfg+\nTqmJhsOFiWSF+2bIveOa7IC1E61UrK26wO1B2AimKsl/TXe1bPfF2PXR03K7st0XXdi/6mK27cba\n2UzDdCJ1VEHaDOE0YQw4Gk/zdIA8c2k8nSeezyOjE7aWDseqNYZhGDhPZ7wMXMsbW98kffr2E00a\nt/tdcQTnkzLIunNvnucOOL2rRuvRVDts7UuPUNqdevSnbh/3tdZoVN7fddGvtWC9ZVs2rLTeNd23\nu9phlgbzaVYdRv+mMa1Mw8Q4Bl5+/MzT6YlLLyR/uN6U8eW96rq6Bgt6t8oIwQe2+w1Lxs3n43x7\nr0WBy5XzeThs9XsYuFF6JNZ/RWivPTjZGlJcMSnhRAtsN6E2cxp+GElUWt+Vj6NS2W/LT8SakWY4\nTU9Hl48m+j2soTlLs+6IlTJVaE5orccdbQvrVWNgXl9feL0nXt7fiGvibb3yev1J740KSNFxZAi4\neOXyjZ63bz89a6FtK85q13G76b3x00+vXNfI6M40tAtu+nPammNjoVI0GcAZXNmJ95AiiBOsa9Tc\nDpK+MSPWFqyN5FpxeMLekfGONUWq1TGUpbBH+ZRWqUWQZnBNIZdTFxaaops9h+tQ3Ad/KpmE9R5x\njVgKMrhjY5KTYLxV7EHpYOtajmlETRVqxrfMsm342TGd+u9otNuWcyFljYHKS5ef7KkVppCTRRgP\nVMGy3vFTZS4rT+cz1rgH687oX6MPPH/zkXk8YXbUij/hxhE7BMQ1pe93yY5KYSZiOvH+fud2u/H+\nruvTGlekOoy3PD09MYxPSO9y5eVK2yIygD8LwY+PBA3lJmgawtaorTxG+s1CtdA0KiYuhbj0pIQ6\nYk3jLJYghmAdzuw4CSF+RVb/l45frJBydsSFgon95Z43cm00HMY0jK29qOqgzgbGe6oXqF/FwNDX\n41pxRToQrBdSccMabWXnIprd1/YdvKGWRiwVIpQUKf0GFw9bTFgXmc9dA+D15/RGaM1Ss6dWodSo\n6dqggMna6csCtj3snEKlZSFJpRmLrSps1D8oDGECMvNJC5vdUFmb7khq14wZa44YgVw3bvfGeBnw\neGp2HUQH5/kM3/4dNf+J2/1OsUrfvV/1ZlzvC0+XRAiBXCK5LayLQuvGMSDzhVocaRWmpyf+u//m\nX+n3TDoaO0/PYAzTMDMEfbk7mTEyMk/Ccg8sNzlsx9FtlFtmdBk3Wvys2AaANjSqcWypsiZtG9PZ\nXME0CJmMoWD1731RjKX2zEBHkHPPWdTP6rapGFQarSacdRD6TqhVct6wzuuLdU3UpAtwjhnqzPlv\nfsfpdOE0j3w4qWbDyoUPT3/Hv/rb/55/9+//N/7x3/2vvLz+Ua+vUaJw3KrCBk2hlnhEc2w5YVzV\nTlNTY0VLu2i+kltiaE5HyVkXUFAQotgGtlBSJsd8cIZqbrRq8M7ijODrqHoZlEsjxiAmIK0oSb0v\nbLGuuChIDVSvZPsDY9A0cqRuBWpjnmfcLu7fNkUC5MTp6cIYzHF/t1LYcqTUrGOfEnUkDCAjQ7BY\nFzBArgXpBoXTOOFt4Hkaqa2Rtzvz1M0UFiQrvyrFO8vtTWGLqKD4drsRY8SFgVAK77frMfobx/Eg\nkKup5MFYc85xv997erz+/53BlHPW+Jh1ZZpGco6svUPmh4D2uVU8b42h9RFOyRkrWvh5Ixr7VHdw\nruU0Ttze32il8OHpchS127pwmidKKdxutw4Z7ZrD4lgTOtr0npyj6s1Q3Zm1XuGXXce1E+Ht6HTT\n1qC2imsPg0apRd+lIljkKBaBgwZeciTXQhFzIGGsCRhjuk4pcb1emacn5nMXFXeBtbMOM04Ub8l9\nJGxzwXqv2X4IYgrXqxan/8+f/onPb2/8+PqFH17+wMv9hfsBOdWxWMwVKnx4PvN01usUXMF5yzQO\n5KrX7O1V/9yX1ysZ18HFjSp1D5hQWYixlJIV8NjkyGcEqDVRUlG9TsuE/oqOUhhGwZioIoOWDwH7\n4C3ZOLI0nKDC536vBQclC6bAUCzBCL53NJ0REH0vaxbfgz9lPBhvqKJ8LzGefHBPnI5Vk34NUzKS\n6wGyFWt1NOcbUgrhFLC9yI6psaXc5TPCtjTSbTc9OTBCM4X7baPUL0y9kJrOCU+ithXajdV77WwD\nQQaczFwuz5yHZyzuaC44Z3SkaTacMcrO3AtJM3fILVwuz+Rc+PKqa9Dr6ztfXq68vemINm6Z0FEM\n34wjz1hSXohhZfTPjLZLBWLEUMjrjVYM2/0r3lculLhB9WoEi+1Yn8QlnBkwweFxSKuHtEhafWQg\n/pXjV/zBr8evx6/Hr8evx6/Hr8evx3/l8Yt1pIwMBNMYu9puLQtZNppzSoGVps4EINc71eQuPhXN\nZ9otpM7RWsWUii+iO9JemasGoiLV6bDPPAIjS7ak2khkthgVGriTxp3DuoYLSqkeR4fvu7biFAZX\nSiFFJaDuI5rWtSVShLhGmq8PAWxRB0dplUxBosP5naSu/4mIYI1i74/dBZacK7ElWsgUKtJ3rN4a\nlvTCfR24zCe2Vg9InFTB24mnyyfNDisFqNSu58qp8KW8KsRPMqU9Oh3runKePiEnR06GvFaGZ23/\nf7w8I6Yw+gtiYRjemLo7ScRiZMD7kZoyb+8L9+vuQoGbGEYXuTyNfGgzvmffNSzBeloR7usVSQWZ\n+8jMWEwd8XZEN3AZke6aSppZZ7zD2ZNGJVQdM27LZ3K5Y0KldZHo3iFp1VDYKHWi1rnvVvVnud8y\n19ufcDJx/oePjPO3zOePAEw+UEriwm85/Y//E+fTb/g//s//BYA/f/5HKjdKmSkpIHZly5mxz+7n\n0eFaVGdbCCTKYW6Qlqklc80bDJ7RuaODYMXgpZFtwGNIFPb9zxIjJEsrgvEjg51wab+ZdMddpYvR\nXcB3rYBGUWjOUbUaULqDaoU95Dfhg7pa9y7PumoI9+Vy4XI6q3GiP8/Xt1dK3BjGCWdVXL4HaJ/P\nE97rkMU7oKixAODSO0HkRK2NwTV83a3MCSsWbxJv1zfSeuNy0e5nSyux5COfq8TEliJx25Ea7Rjb\npZQ4nfzDoFISMa1KwO4E9NbHJtu2HSHHKSVS3h4h2YSjw0X7itbfn11jDM4YDfsVc6AoglNjQ6uR\np/OJeL9zfX/t3+8GPPH+9oWYVs5mPlx71jVSXDSSxlrG6Xx0Oo6A5yH0fMJ46LwGNxNcBTFqQujJ\nB9CjR5x2HgiTdrC7ADSWzIAKyLdc2JJ2+wCMV4NB46K6rai7/61nSQ5jIJmeJYfqnmr/PepaaNcN\nxoiMMzZMmPDc72HhD3/5Z358/44v6w+s2/sBT465aEe+CefTicv5hAt9FGMqIVhyKyzbyvtt5fOL\nntP3e8TISDKuC6Sh5P1dWxGcuqRb7jEqOzFcz2kuDaLByMQuf0WSavhswZqAmEzds/bQ8xyXFdMM\nVNNp7qopHZylRdVKeTkiRjGiGrGUNr0E7vGzeGMxNHLTD1rjYCpYE9RpS8K2Bin1JWh3UFrEWooR\nghtAKvfu2tQpSiHnRFksLOHoqqZcaVKpZtNgqJCZ7A75rIgJauIpSbE/+2hv8kzBauZluWKaO/SY\nrRXId4y1WBO0G72PfPv/GusZnUIw9z/36ePf8vLxyk8/fObzj9/z5VjDBV4AACAASURBVP2FWK7H\n+R4Hx/OHT+A6pb/sMG3HkoBqiUvk/SUSkz+e0Zp0/GowlNKOP1eCo3iV2GTnkSbqygUM9WdRSP/S\n8YsVUvqSU+cXgMik9tk+xMEItc9SvRtptRC3pDNb2w5HkDgV7eE9ORqQr2INimFbI7mTmL0ZDnFo\nTbWHPDq2lEhRMEsn1Tp1tIUJzFbIqTJOeoOPg0OsXoSYtS2Z0+4MFFzwGjZZHLFC7DZQS9NRQDNI\ntaSsQZagD7BIxjjN/3PukSoPqdNwBYVLVdyg32+aLCVXrrcfCe6Cd785fpYSS9eSqROyrZ72VWCk\nCJSSyalqaHKzh/W0Vfj+u1e+/fCvOY0ThkAr+lI8zZ94vkyUZkkl4mXGuy4aTwviEsM8UathHRL3\nm17DuFbWWjlNFTGVU/Cc+9jLOcuaCs6Ct41YbpguAM1hYuSCMzPOeUYy66JjAT1/QjaG7boR5hNj\nf0FfTvB+f6GWDe8cQ5jwfSHVxbNpdqHAHCxyCJE1TPpPf/5PuODVTdfHSdPpI6NxbFsh3TY+fviG\nf/g3/4OeM7Pxx3/+9/qSSknJ3Q2WrrHYfCW4FWfAuQuhjYz94bynOzlt5Fa51US2G1OfKUzzoAUk\nli3eNSOrK1KtBLCOWjItC9HUI8kd6eLZVohpwzh3OJesFYYwaKCp9VTXDrbRuiVMrJycQ5zh9vZ6\n6I6cc3zzzTeqDamFVspBmvbBcWLS8xqVNzV3Ivw4TagQXd2eRipDH6cE58k5U/JKTgkvhdwdizUn\nnBtp+U6JV0ZvsH3xisudYZwRgffXF87nM8v1dhRSuyao1sqyLIQQjn+38+l2obm19oieUQG3I0Zh\nWW7Ulo+Njj6TD/3S/peem6Bh46KRId5a5rEXRAbuyxcVbpfI5x9/Uqcm6oI1tn9fa3rW4MMJCOCC\n15GRSI8E0gt8hORKwzpL2wPOS0ZqQ2w7RPjyVQHmnMOJxlLlovEd+iXt4X4c5plBLDntIvysuWkV\nvJu6zkcOFp5Y3QxlHJILkhu2Z0K2udGWlbjdsblhcUgvskMYCTZwe48sS8MVx7Kq/ICaMUb4+PHC\n+exwptD6e390nmot1/vC7X7jektc+/t7i5W2LZigomKVf3RTgFXsS25oNI0k7B5O6ypiLKkUah5o\ndjrep5iV4vV61e6u3rW4rSYEIRgNrG61HrR0ayzGOaopFKpmvR0OwgzNHvw+2zgYappLWjWT1Bga\n5mB2gdH/AH3WWk6IM4S+MbVeqALGOiq9MOwj2pyrculWodxBVnOMdi2NtSWg4kfHeHKYLj4yVsn2\niJ7fAoxdj7ksQr4nvDVYZxitY+33t9mKurRtxtaqCuMuIxiGAe9Ggp+/ej77WLvCZT4x//3M09MH\nXq4/8fKu2rnb/a4bNdNlFy2y7CkCORPLxoAn1gFbhGejumHvPWY0BON11P8V0cAaw2BhciPD6HHB\nHdiXWitjXIH/i792/GKF1BpXVuqBri+56ozSWkBfLrUrw0tT/oO4hushxPtJ8NXinMdYTzHagdo3\niq0aIFDzihTLYBxpx8UXRSrUqgWVCY2Wd+RAZIuR+2aYRkdrwrYXKKPgR3V3tdb/6je4GEcpgtis\nIaS5UeMjmmaQikEIzqkIsr+kqIIbVHvQyORcfiY4bSIdKuYxFJ1TA7mseC+k1ni//siHy/MxRy9R\nbcqIho9SLJu5HWn1a4y6846ZVjVGRtiF040vL1f++bs/cjlNeCw57l2giOET4xD48fX77rjQr1nq\nxvk0ME0DToSSDTHt7sOFsmlsQavKv2ndoSHFMfmZVKGUM+u6svUdVIgRc464cMEyMLgRCT0barmT\nSqaJIeGRLdEbclgc8/QRnGXwqiHaE8LjdmdNb8RsDpaQlB2sGJDmeHn5sb+EIinq+W7p3/L86SOp\nVGK1mi3WLbkfnv6erUbMyx+5vW7kMlCo7Jd4zZUpZEaj3UxrLJPXQmPJEapFWiOnim35wB+kIogN\nRDTQudZK3SMdssU0FUqLDVTbu1T09a1nSklz1K2wx5tJUNF4rZVKJOZyAO1MyQQRtpRYrwt5Ww9U\nwdPTE8H7I5fKGHvY3w/XXI7qwhpHQud2GaORMN57mli2bePSo0WsaHRObZvK4lrGHtyXireG7Xan\npJVhOj+E9g2iSHe77rl8b4fW6T+PgWmtHoHHt9uVcRzVoVcK1tqDRbU7AFvTjhSSj+DxGCO1avFU\nctbiROrxPax3xBIZbMdR9Gu/Le9qMLjdqSVhpB2LqbWW9+uV4FSM30o+CtdpHjidz2y3K6UUZfqY\nhxojxoj1rl/LdGwg46oxHsHONKmYUo7MQUx/Z1UNIx/PT6S9OGuGmrVjHmwlI6wdN5BzZds2Wiv4\nYKgtM0/no0BLKeGb79BfA2smd+2onEZkHhhiJf/4xu2ajq/rxRP8xGn+RNyEWu7c1123svF8OXEa\nCpY71vgj11TwbKlSWmNNieuaqP06tap4lZYKdagawtt2ELOQSSD09WagND3fpmXCGAhYajK0Oj4K\n3to6YNZoFJbUI3pEyFDRnD1pVMoRdN6M0FAr/nCaMaJxL6BrkCsdRSGGVDbM0J9DqwV4rv05LQ/U\nhpJbM7EmTGk8j4N2L/tkpJiKE7BSyKWylZW4Q15bY70mWA3be6KlFTv2bk5IjAH86DidHdNZcH4v\n+gwxWdgSxlYcgdbX59wE20QB24OiILZrPO7R9/WNrW6YWhic5+lZN9CXyzOX8zecTxNGLGLykftY\nq2qbrDhOpwvWD8yXp/41F0qsCAExZ2rKnJ47P3BuPI8brQaWp0z+XeXUmwfGG80arKKmiyFgd0G5\ncQTRd5gzGhB9UA+adL3j/8xfO36xQirdVwr+KHpiXCklMU2TOs5SIR8ZQJaYMrWt2C7YtXaHZQlG\nDMZ7vFVad+xCVhEF053bSGyVJnJU7aXblKmCxbLVTOuV8roKJUa1jVfdIY6zXuDVQGke150/oXl9\nkIBioYmlFafdklKOLMGaVeQ3BYN1cDEDN/MQP9cC6tnwGpDYP8ti8bbi0Be+HQxie5ejNiozTSIp\n/YC9DwRRh1lOjbIWGoK3Z56eHbcFtted4qyuxZgatbRu15f9Exor//TnPxCGE3//+3+D612gD+sn\nlnRly4GUNioLb+v3er6t8DR+QCQxjhb7wVB210tMFCNYCYSgOVOlM1omO2KyUKTwWisJg/QXmL0u\nrMMzY/WaRu+85nMBLWx8ef8z4+SR+USr5tjd5VR1emEtZ5lwIRyLfh48rjmizaRcuG8roV+oWBul\nbCQyL9cvpH/6T9yv+rO8v7/xd7/9O6ZpIm2RFgve7igKx8fLE978nh/aF768r9RYDtF4k0QqSt4t\n+Q5+wnb67+UsJBHebl8IIgTvjp+1sdFKIqVKjuDthHTRfJMEdaM1D6ZhjKPsoMdtQbJodp4IxWaK\n0Z3+mB2JyGBGJZuXStgb7dKorbLUSvCe8zAdjrZaGi547BAIprGlyP3eFyGjobalKhXdWH+IeC0B\nO2w0s5KzuoxK7mRwMxKsuqOcKVib2EyHB3pL6YHl3gtSEkvvcFqXsc+WWjLBTby/X9U4UrQAvb1o\nRp/3VvlblYMVtSyaTKAdKTVc7OPLGCMprdQWdTNXzUPc3zZaL7RyF2x70WuYuZNqZfB6LUp5P2Y4\nbgRJg3Ll7Kiuxw6jbSkiKXH+7dQDlCN978XUJqbTJ2ienO9sZcV1LEhwFmegxlUt8ybQ2l6cWNZN\nx/xumpBhwHZ4opeZUoVMJDAzOXd81lpjOJ1pGDKW+7qx3HqChNWu1zicMbaRk7oILftCNFOdBZMR\nb2nBH+7BukWFnGdDpvHd9Sf+/KOy5z6/vtJyYjbCOxUzCOddqD0oW8yLOtysfZDNr1V5XMuyUaN2\nWWUfmTmPmaviH4LgXDg6tc4ZJO2dJM24rDudfxg7siYgodDandLHV2sB0xKNgncjtRoN9UUlG9im\nkg8rNBMe4fHW4KQpYkGSYiEeVRYVxXzkFjH4ozvWciEbSzWGVixS7QFCNq6Ri2EYnrGm4aYBbxqn\nPUDddtizsUw5M8SNob+Hr2llGAqpwPBBnb62oxGGAG4SmAx+tATPQQUXYwCH8Wr+suIZpMNh/Zlg\ndTJh+7si7+R/IiNnXNUCzAjkpPdb3CYWZxFbwGXmecZ3DI01BklJXcO5MrjKnDocdXZYM/RGiaFV\nS92rnmLZtkRNkFLDG8ewy4CsZfSjdsU79NmZB1xaRKUAD37l3h1sB8rkrx2/XETMeiOZkVJ3196d\nkhXU1oYRajlebikltrhSyoYYTeae+8vNhoGaixYTNSt8q2MT4rbRxGCaQhxzKzxkDR3U1VvdZHO0\n1JvXtl5KhVwyMTd8R8TrSzXRikFwmObZT6N3ASeWHPvkvXNuABBlWFUyzYALhVMf31xXDUxsBUKz\nrCUfs/kmhuoqzRTdidS+4wOkFeK6EZzBWMuXtx8JvciybaQWQyo6GtAbpIczozdOtgEriVIgbeVo\nK4+TxxrF5H/33XeMw5kQdBfxurxiXz0ilpgX1pi53rsttW1Us+MLDKN3nLrWqZ5ha/pgCCODn2l7\nNMdQwSxMDT5ZHY28751KPzAUIbiRaTyDEXYYfgtnrAzEdSXIxrVWBrd31Qq5VYq1+AJj80d729SK\ntRFTG947rDGk9QHHbFbwfiDGyMv2mVtfTP7ywx/5D58+8ZtPv2EMA0im9YiBhjJ9zqcnUhKW+BNW\nCqEXBYa90yGEMGqnqu8wz8MnjIxYdMGc/fhAY/TujzjHkjZaTVj7uN8kV1KsqheSjNn5Wxhqi9Ra\n+nc3B04ki9fUc6PuHSNyjDalh3pO5zMBR1njQyNk3YEKWG9vvL6/aXQHME0TX7586feZYxhGTift\nSFEt9/uq7qSmLifZI2lqQzqTRrWB5uAoNanUFAne4caB621jidrCH2RWfRvKSrvdrlgMy5sWKK8v\nLzw9PVFrYPCB23rn2h2rt/u9U8QrKaWjMwWwLAulxI6UaEfHSu8NfSeVUnBudwE+eHZ7lw4y3nvd\nEAJWLEWKPjPrysvLC63bqfUeLBqXUTK1ZXy/h1sp1KSE9hiLMuX2uJraCONI2la2lJjn4dBVtlYo\nqbLkxoAQrCPLrvfYOovOYMVwfXvX9Abg+fmZYRxpTZAqmJiY+zVsranWMiVG55nnM5I5zpuzhmI1\nwrkWHW35r5ALLS60WHl7u/L5yyt/+POfAPjz5z9wu33m/fYTC1fCZDidv9VzaqGRtKhF8TJ7HNct\nJ5aUiTkRKQr17Z0V1xoprjhv8IPDB4Oz+8lJyD6SbTr+9GaXGATVsgHO67pQeicrlRVpHo8hGKW+\n9+WC02SR5mHSLrEQHhkx0lSqUjPL/UZc7kerQ0Dhv2NAnMo2dse5tKryFmNxftBOaJ98DNPMMM4Y\nYwlefzdvOSjkQ5gxdqI1RUikko9x9rYm3aiXDBia+CNE2XntYDdrFb1l23HvW287PNZRIjjxfe3T\nzt4UZqzxuLABhvrhgQVRV2mjZOkFz64tKzRTcM1goiGMZ8bOFhyDP94ftVbilo6usYhFjCPnhhWD\nsw9MQ06FEgsiHtM0EsZ2QkdwvmsEAy54Baz2TvyeKqCSI4WC71Bogxzw5L92/GKFVM6RZuXYRSGR\nUiv3JWPT1jPAekVYspJOt0xrBWfbAVHzscFUyZ1fo3Ea+w6ykGLBISCWhlKz9bNK7ZRfay2DyFFz\nNmtBGrkqa0Sw+0aXtW4K80PzsUxPWofOfhNB3IQ1FSMbrY9oAII3WB/BJ+xQD+ikiGF5bxQaNjcm\n7AEfK9I0f0kaBO3G1X7XSNNFKJaGaRDTwtqBhcFcGKdvoBlSUUBiyvV4EZsO7MvOUHJDZHu8iCs4\n45nmQMoLf/zLf4R9JBoMLUbED6QWud5fiUkXqFoTORfN/BKPtMLYC7cyTthsyHFR236bjmvxcrtx\nmR0ew6nCSuPad43VeJyMnMdnzqdP+CGw3fbd/Mp5+In3JVFXtWzHIwJIMNYjDjZT2SQfRVYIE1tK\n2FIJgyCDY+kvsOVeyFVNDeOoFN5bx0L89PYd3//0T/yH4Hg6X3i+zIyTXsNxUMu5MY7xNDOvK/e3\n7QDaGck4Y/soWef0u9qlJstgn3k+ebb1J6zEg1GzbRVxlkkMwUzk1g4LPKnQTIOAJp6TOyEf7Kh6\npLJFoEBwtKM7Vkg5I5IRPKP9Kuol6yiulMKaMkHsMRYyCKUUlmtkuS+M48g46g7y5eUnYtw4n8+E\nEDifz2pkAG63lde3L4wBvvn4WxVxdwL9MKr4WbCdSWQO23xrjblUlrwRU9LFpWtdYlxYl3dyEawv\npCoYCSxXjfPxAjVH7iXinj5wu92OkVlMiTgMQNOxbhdlQ9cN5kxDBefGmEMHpYVwO/69c460a0FM\n4zyfmcYBUzcm19EdqDbjfXvn7fWGkcr5/HR0XFOMlNLYOmKhtYK/9E1b3I78PGMdfjir9g4wreKd\n6SgPLSj27qha6Ru1ZLbbgkGY536vCZhhVH6RR9lxu6mnFeK2IH7E2sDT0xNLf9bWdaW0RokrPhiC\nDyq+/mpRNEEX/NjAt4rbN0opQ81c36+8/PTK999/5o9/UWzIH374j9y2H2iyMA6inYEdJ2MqYnQj\nsC6V9f3+SIOQqlygDlc0GELvEBnfcGKYhpHz+ayIFrdzwrR4blUUVzGN+HmP8hloUslVR8rGcHQ6\n1pywpvF0npmGkSlMvSMCwZ2QMmgSQDM4N2B70GAphZhWal6539/JaTkArylXrPWcTieGwSscsxcL\naYtUtHhSLIV9wFWtJ4RACAPzPHX216OT4v2gGZllLwrq8XVbVvnLDrIV+ZpbJmBVG+xDYxjCYXpR\n5IejNaud/2YeOBExPYsvIKjBKvjOrSq16/4auURFTuwbWmMoJdMECgVrHXOPJBrNwIA70gniEI9Y\nqdaKapQl06Ti7IDs2BccIpbBBXxPxChdU7znZu7Ps4gcv58x2qXS9dH8rJCyYo4J0V87fsUf/Hr8\nevx6/Hr8evx6/Hr8evxXHr9YR6paFZhKd+Y5C7EUtrggMRITSn8EqI2aMlvWMUdw7ZHJM1ZKXVVU\nKwJdAK6HJtdHiR2S6I7k6VIapILRuHVMEuhjGG8qpalLCTsQWsXk7iRKvXNkpTtu8oMa3KNBxIQe\npzEf3aqcI86LohQCYAxj13kNQKiFZVmQslEr5L1zVhs1G7IZqbGSYzmAnCKPCtp7dfDsESmp3qmL\nAzNRmjozUm7ssTTG6MjCWQOD2oJLF6pbqv5uRrt1Md34y2dtxWMr6emdZgYKiVR+Yl21C9BYiclg\naqIa1YnteoDJWMIw9A4YLCkztD24dMXURpiCQv18I3Rh+CaV0/CB8/QtHz/8DafTiS/yWT+7XRn9\nmbLdiajO537TnX2sGpkz+rNS9GMl3x95auNwxhihsdJqxnZ3Sgjq2mm1aM6Vc7guCrf3yu36xvX9\nzu3tO5bnM88f9LOnpyfG4Qmax8jI+fQBJ3fyvd/DOYIr1LawRcP89M0RgxnLO40L1p8ZfKXkF6Rf\n48Gp2cFIZLLdft91YDjHum6ktCFGhafNdtF0T0Q3XtvWm9HsKgDJDqGRagbxFJdprruaqqE2i6+W\ny3DCfKUtGsOgeqItq8vGCe/dxr8sC6fTzOVyYZ5PxBi53eLx2bYtDC5oZty2HgJ+c7owD89ESQSn\nX/Nrs0irFZcG7m6hVUfMey5a6tDPRiyZvEe69OzDJobb7YYbHClt3N6vbP0zPwTS2vEJpXSxdu8A\nF4Vt1lYOR9++098F+vs/l1KOMNPTNPL8dGLyjsHOlG3B9iiMlFZeXl4J3vPNtx+5394OInwtmW1b\nMOwEecvumKg5kdOGtTNNLGLNATMsOYMIwzBhbf5ZBM7emS8lYmks93qI9HOe+ZunMylmbq9f+PY3\nv2M673E9hWXZYO1xVQ3N2wTStlFrZZompdhXixjLzrHI6Y7PFjueGXzQ7mG/xmVZWd5uvL5+4acv\nr/y03Ll34X9eEgaHH+fDvXxwimsjxax5eItlvSqUFsBMDj9MjN6RaiZKpfURnRk1Uug8TpxPF6Zh\nZOxdVW+dipiNjnm8Hzhd+mhvCBjjjuucc4d2oh0LJ067UdP0Mxeo9xNOFFY6eP33B2anqEh9iXfu\n92vHa+xB1zoiHoZBNVyVA6q6xoV71xk5p193p8gbY7DeMYZBw+WlE+N3eKpVd2GTquO31mhpp5dv\nlKwav5Q2DAXTO3nWnHGDZRwSPgg2eCyPtTQnczwfu1SE/pvU/vt7GY/OFHSnae3dsh2z0R4d55/f\nr4/nyzZDq8K2VqQpsNT3rmKJG61m5uAVt/FV1zz4EWcs3nhd2+Ex1u5oktbo1xb4Kp/z8Wzvov6+\nBhtBdnT6Xzl+OY6U0WfwIPUiKlak9PZ67SnpULZIrZ0Qa7pmqKek1Fpx6RFa/HWTTUM1HxlIFavY\ncqBlQQp9DFgJOExfvKtRI/EUAiYYqAVbugOpi+2gaKikKYemo6r5Vd13TXDGK8cDbSt6ZxgGpzep\nuEPcbUzFS2SQhq0OCny5dbpvgqXqA5nKhqR6OCmM6O/cWiX7yDiGY9RQyopslSYLTQKlVaSZIyfM\nGEMYLcZYUiqYGCmxz+6bhlw6b5imoKeoPwQ/vvxIXldqgyKZYNfDrqxsFVilMGCY3YDUndCuM/nJ\nz9RQyXHh/U1/lsvzRDHCkivWKQ5i6oLq0zzx4cMnnp4+8M3zt4xhoPaC6D7NvDWgVqypuCaY/kDF\nqpqzthXs2SPOETtHajGJcXKM40RMmZTioeewwbDdEjFndYK2eATMXqYR1wqveWVb73y/vpM7t6oR\nyXPG2ROC5RwEXw3vsbfGSz+HLRPXd2xw+N25ZgNbymACzp2xLpOyjlTG0VFaRLJqTmK6E3uoqzQh\nDBNumlhZIMF1FzHXCtaTWyM2jfTwZn+5Q4obpoi6ZCyHo/EcZubxxIDFNCVdh85Xm7oL77YuOlpC\nDidcCJ6np49cLh9Y1zvff//dI31AwErjNM2qdamVMejX8jbQSsN7HY14/xiVl1IpqSLG4MeB0W6H\n+HdxC7lojlhKjS0nbf13jlaqBXEWGyzbemdd42F8cL7nQi7XjhQYH/pIEkillvwz/hI8CqlDSCzC\nNOyF9IkpDEzeYWmIC+S++VqWHjJ+nsg5MQ4zdtJF8X59ZcAfi0lw6loGRXG0nJRx59Qm7/wjiyyl\neOhBDWqS0BOn46CaMluKWvzWpf+5Ky+fDeP0AescW05M/d4P80BeNtZYSa3p6Kl/NoSRXJK+t63F\n2p4usUfr7OvMOIE909KK9KK+bCs/fP8937++ci/grOe5xy4FqZS2kU0ks+r7nF38rmOpJW4UScyh\nHZR9sVp07983FQ7xt22OweuCfppUxL+nSNRaO8l+xoXAGAbGadf6eGwvpPbrvdPpnTMEM2CtLtrW\n2q6mAusMIRi88YzjqGOiPSu1VkqrrOuF9/eZ+7qxdnJ7rZlp0lBfEYvDHqL4Na2sq54P63SMPOyb\nq3nSwqSv97U8MByg65eywhpWHFIbdh/fbplUE1taiNHq5/0kejcfBg3VET3wFpahO+IzUI+g5/08\ntb4OGSMID12hc+YoWDVZweC+0vJpRqPGXlmnWXj7eWuiujFQucEjY9YDuqaLpVP+9++nUgFj5LgG\nJj8c8LVqnmXuMpcY+zvKGnW6BjUKNOHAiZSWMOW/PLz75Qqp2gjBHQnSLaGgxRBYUqTB4XiK1qsg\nVAqtqpNmd4Kmbe+kZErbK8r+8ut2RuOcWphFyF1D4yRAqWxLpLZMtu7IW8M45tFxmhz4ShWLdbro\nmbKR1q2zQzLSPHkHPWJpxqpVFYPYgPe7W8QdKe+jH3ASiTvTShpOMs46QmvY4cF9KddC3hJraz0L\nz5B3/VDZEKtckmVb2eIjtqDkRm0rYjIxL+SC2lP7i9HZgDUD1gk2C9iA8Q/9FNb0F4bh6fn5gFKW\n2Ehp4Z4WYrriTTns+M1qJ6/mjLiVITzAorlWjCgeopHxAkMvepp4ttYgZkYRhtEx9YL4/PzE5TJp\nF8kqF8SyRxN4am6QC94bthwPIfbTecKaiVgdKVY+nE+EqtewyEquBeMF42Zcfey7Uo4MYhCrgvqc\ntwO4SstYK1wuF8y75b688tohgMocMcw+d/2MYFo+NGIpD7Qq1KaLU4rvtKF3T8w3qiWgYoLH2Sdq\n2ZlXN0xYseEDlIprhti7RyVWLabcwDRMNBznWRf2+9vKl9s7WysKPG2C3xcoZ0ipHBsN7wfGUR04\n5+mZp3AirVdaLgzD+AimbYXb+7UvAAPGwNCdrqfThY/Pn0hb4Yfvvme5Xzk/aadjj5qZpom0F012\nZ6ipxbrUijEWa/0RxFxrYxw9TQIxqw7kw449wfF2v2FMglhppVFr66HIuuN0Q2CoA9u2EZftMH4M\ng+eWbuSUsMH3YOKf75JrRzWKPHaiOe9iV+m6Kstl0ntqGmasVZNKLgkJ5qsMTuFyeUaksa4rnz58\nPHbsV3lTl1nliHfaFwBrwDuLaZUgDhBq2xe9QEWQVolpJZfIvujktHGeT3zzu9/w8vIKNdE389Aq\ny+2NYGfC6PR3z3v8lUaLDMYTrKM2oeznJRdMModQ21iLCxO1F+BYIAwU41Vs7Q304g0j1GDYxBK3\nldEN/P6b3+l9epq5rzdy2fR9arQIAvA+0HbOX0qUmmj9vRDE02pki8sBUN21XlYcY9ACxTl3BEKD\ndhyHYWAYtWg4zSNjz1F1zqmmphSsE8Ra3O7MM4LvBgNdX+QhtDeWobtUDQ5n3PHMlJIxJdF8pZ3P\njMGT857t1whhZJ5PhOB1E96dNJc6HaHapSg6ZO+67PdkrGp8EHrDQPaJAnjjO3qhEoI/NJAlNzQD\nXqcTpZQjkFdcwfiKcYHmwPhwFCjGgM2OGPv7K7UDckrXBhtlF6uVEAAAIABJREFUrujPYPfSQhBx\n5FKpgkJQj7D2qtq7buiw1mL8rg+Mmvsp4JzH++ErBqLoPVXr4UreA7KdM4+uYs/C3HlQOSdqKzS0\nIMw5I7txR/r5Mv3J74Dd/Rd8/PO/fPxyo71cqMZge7sySOc4SdEg2taouy+16Q7Lm6QLZ60HCNBZ\nQy6FWvWClSZHtayhnQqtdEFJ5XKo7ytYzbGjGayxuO6i86NlngfGwdKs0m/3FrZpWiw1mnbUKqRe\nnJVmwej3r12QZ3thY/yoY8cqtGawEg62ybqu2Fg4UXG2UMqdU09yz1huuWihaYxSrPuNb6ztVX0G\n9GbNu5CuGmpTJ2JDxyS1VLLbdxiCBG3Pql12xPaxSe3CUYxwOp35u9//a56fet6cCazLG3/6/Bc+\nvxTi/b27FNFWsLFIGyjRsJXHwmSM4zRqMbTeb7S8YHu3anlfKd7oyDMX3YH1XaKMpoPvdKy5lcat\nM0re31au7xs1Cq5BK0LZx7PAOAWcDD37qh7t/SSVKqted/Q87TvvcAoMg6U0Q5bGmm/EpC32+xbJ\nWV1u8+hw5vz47Low+Bt2tgTnKbn0nVi/h8tA2grShGH2VPsAizrvkZa1g5bOiJw57SiO9FnHub7h\nnaMRCEWLHrGFVipGqopfjT/4REEGCkK6XUm1gfhDjFvE4Y1SgL0ZNJyz7sC+zFIWKJlgPM1YxQoA\n9/crNRcuzx+0W5IiH56/AVSoG+PKjz++8P7+zjgFpqHjD5qyd7Qrqo62nc0U/IgfHDVWXPAMnZIP\neu+YHsacWsQGz7kXGa1UMo1mDbXe+7326CDlUpCUSauaUHJMClilu4DXVZ20TU0l+1hsf4Ha3Rgg\nQq/rHs+d0V3xMAxMnfwtDZblzjVe1ZLu/WNjh2GeB2LeiMvCfV049QLMhxFaoWwbDYO1/hgn6cs+\n4pyj1UIIA3nfZXsHxtJq1ZGIzUcBhoWYM6U0Pn78yI8//nBIBZ7OM8MwUspG2yz+dKbtjq6kQFfr\nHClnYsq0HvZb+wjUGCFtqy7q1iB9oyjGUMUipWKIUCMt9uKlGfwwc5nVOFPTRghaZIcQcEZzBP2g\n/LHTWbuV03jC2oGaYLsv3VHZjt9RRIg5am7izvVCsxmDdfrziSC1kftFzN2sUHKkWmFdKwV9n+zU\n98ENYNWptY98jfVAO0a6WkzvnUkFSU7TiDE/F3enFHvWZWPwjtHZ4x4tuVG/AqXSGu0/GzHvP5O1\njtKfw/133cePj3t2LyYs1tseJhyOro/eN5WAxfsTw5CpLWnhC4Shj7F7V8db+5DJmIYJDU/n7olg\n/aMz65w7jFtIo3bDiDHqiyu5YoN+1rphYkvx+G/2wnNfL7xXUG9rAi0r8qi/M6zr19W6n7nt+kPz\nM8p/6+d+/9r7udINpD8KMDFGsz6/Op/7oaNa/ovHL1dI1UopFdsrcO8sZbRKBW6WOjS2dbddG2Y7\nkAQihVTkoPGmrokScZRi0Oest/dTxgQNQS5FMJjDxlhaYwhOgxCNMIilvxO14ApGt4TdCpzX/gDW\nRM1Cy4ZmCuJ43OC16MuzCrU5pBhaxyaUrO1wHwy1bESg9p2XmEDKjWwruUWQ9dixTuOAdxowmbMo\nZHOncBujs37TaCaRc2Rb94RGQ61KwG00mjQtXDt4MqMwRud0Z+28HLsvNxiKKdQm/PY3f8vf//4f\n+PTxd/1aCNt6w9iBZVlY3q60netUDCUZBie0IsRmCb1wO51mzv6EE8PgA3mzvHWr+j1lStTGz2Bg\nyI+HtJSNVu/cl1cGeyZmeLlpF+jHLy98/vyZWTbs6YSxDw3Nsiw4FxjOA8YI9/WN8/lD/5oJMboY\n1xx7oaWnbT4968ugWWJt3DfPfesPsDi29cZ2+0JpkXGwzLMuCGu6stzeCdZh7KDAPk6PXVSwlNaQ\n2igCzjtS1y0s22fG8C2tenIaGPyJedSvO44jb4tlSy/gR2iOmnuRWRreC+MUVGdhBu7l3u/FDcEo\n6DFXTLNIXxSfQuApnCkJtlUZZkdmC4YtJU7W4axnWyNLH0V4sXz8+AnvHetyw9nx2Hm21vj843e8\nvb2pVmSYDmTGeZzIOZLKRqsbwU2PoNjmETwh7BbkiuvtE++94hG6/oImh6RhDEHHt1ZIpbCVSlx5\nPN/7wr8sWGuppRy8pDXFPmrt0oJmDi6dtZYmBvtVusAeuzQO+4tcOgZiOArlWjPr/Y319gVj4PL0\n4fjzw9zdbJsWNykl8rDrMBQzMgxaaKVWD7djRa3zOccHobyPflprBD9Qc2MaLUMbSHvkkFikZL68\nvvPtt9/y29/9npcX5TbFZJjmgPNCmGZOlyfVK6DpBqVB2TK3LRJre4RZ2645KZo6ofDgdhDKcbZH\nxyxUNmwp3TEKa27QBuZJ3/lmNQdJP1OYxjM+OELQQurTJ8UfTPOJ4AZqiry/fCHHdCxwYiBVYauZ\n+/3eN6i7y6ogFCUQlL3rsevVEqWkI1Zova209HBWGzdymgam00W7WX09HcpE8eZYtPcAZ9Cx0zCO\nx8hvjRux/+7l0NnpZsJaf2B9ct0ORE5rFdM4iiEbwuEwCyEQczq6asbI/8feu7zYlu17Xp/feM05\n14qIvXNnnnPurVsqhaWNS1GIBbYEKVCb2tOmDXv+A16bdkq0YddeQaEoFDakwIaW9mz4QKug9CIq\nWD7u9Z5HZu54rLXmnONl4zfGmCvyvAQbh4I9kyRiR8Raaz7H+I3v7/vQeJ5tG070ascRxv6UlMmi\nFjkYuSsy59Guo1ioC9IX12KUL+UsYnXe7c2dVIRSM0YsTgLFpMHx9MFBlaYubEhdU6SnmMl1wzrD\n1lV37XXdTNY5N5CleyNqMKMQ0oKsF5l1IFi13lkMtdfFGHE2DBf6fk41EkqndQltX/vOtM+uJSGi\nik25q576oujXbb+7QiobqqvEdsMFF3BUUlLDejGe4A6rAkRwNNOs6Lh1iWw2GBuQqrJuahx8Bx9a\nZY6S8yY3kWrnJTmcCwTrMUa9b/zwhMmaFJ0V7SmlYHMnVRbSLpCFnDaKxLEqqxhiibB5qs9Ee8E1\n5CzmnWmewQRqseRoqLZL4yu1JG55w54CUjJkRStuBoy3VIFtSxhbBmfHGZW6LrYixlGcx5ge9VER\nfLupC4WMWCH1GJiaMCVRiigB32UliAIiGe8rfjrz4ePX/N6P/wJfNVdZw06cP/B2WfnF0zd8//33\nrM3bZ66WGCPGOiajrdPeEp2nsw4ae8SUSsmCpKOHvUshXwVTEk52xPcBs3LbN65vn6nF8XK98Yvn\nPwXg55f/k9f9M9mBWWd9OGznJCWu1zeqDfgZYk3YayOVeuH18kpovjdIZm5+V9M0sfgT3j9w2a/K\n04vdK0cNA+cwk2NSFKQ93MYZclm5rj/HT1/jxGlO4yDABpKFmisOh4lF+XDAvr5yXa8sp0esMZRU\nR4EyT084U/h8qaRtxcmC7Tw/LlijiIU1J4IPpIGAZdJ+UVKzgLXLMKabPQiOinAmI8bjZ0UBpDqs\nLXgn5JrZSuLhQWN3Pjx+pJTUSP7KK7o1NKOWnbe3F7zX1WkI6kgMcJ49nz/fKDmrZL7Wge5gdADz\n1qkxbTlWl8a0hY9RuF4sw7vHL5VZKqlGTvOkrcpUiUnvt31LpJLZtg1rfcuv6xYPpaFNDqprx9za\nxfOk7flqMKa2TK7ewtFWWs46uc3TNAbbmnboY8XdZKnXSchbpIoW6mExaluBtpNuW6TagOCI9ZBa\nxxgJzuO84Xq7UStMT31fJp1kpICpTGGmQ2e1Vk7zI5GNLW18+vAN50dtzV+ur4gNPHz4mqcPH5Hp\nkZ4Ll3bYcuEWd5ie8LUizWXeicW2a+bNndeX6caTDzoW1h1TsloStIl9nh7ZJmFrSIYRoPHHgmn7\n7ywPpzOnMDH3a4HgKOrUZg129iOHUBEndaT/cD5pIdWtGMb9cxQcHSHa93W0y/R+X9lLM5FMiX29\nknMk5so8B5Y2LkgRbLKHxY5YTs088unpiXleRlbr5APJtaLBOrqXUpffp3Tc391+QMRQpY7zabpl\nQErjXiq5IzlxzE3KQZJh5Am6GCgt6qo2EcOB9AjOOozYFh2kyNX9ecOqiEnZUG1hUjKSlVojGkeg\nkTHQXMm1EIoUlKTQXie5CV+EWloBFA7Dy14oimi8Wt+HjgzlLK19eRTKHREzRsd7c/e7fn2qKXqc\n1fSOr7qZe+Vajc++WwiWUqgNrbqPVRI5+Fa/bvuNjT8RmUXkvxGRvysifywi/1b7+ScR+dsi8r+I\nyH8u0uy09Xf/hoj8ryLyP4vIP/8bP/3L9mX7sn3Zvmxfti/bl+0f4O03IlK11lVE/mqt9SoiDviv\nROSfBv4F4G/XWv8dEfnXgT8C/khE/hD4l4E/BP4A+C9E5B+v9ZdxsZpWxC80YIloC4lAzBnjBFtg\naRV+zFkRDHPGe+XL9Oy72lLCxBqMNQT8nRrOYIPHi64ICi3CARBr8d0W3iRKLi2w8VAhqA1B1s9v\nfV0pQo2FsmUsliyV2iz2xRYQgxOhxkpJiTUqWrNuV9x1Zg5zCzcVgusto0pc3/C2qhpFPDU39ZmN\niM+EWdi2Qk5uGMEZXxApSOponcP4ttrJG3sqRKMW+opAlAFRlqaANMUgkrF+7Ws/puKx2TH7wNOn\nD3z16QNPXhGpkndu9cLkTsxh4WE5cX1R+4McK9NskYrCyk7I7ZxKTVjv2EqmZHXUfmvqs+uayWLx\noRJFc99CWwlP8852e+XFfcv31zeu642Xi9ofXOP3hAdHzZGL3Ag1YIa9gyNh2feImEiSzOf15/qe\np4WcK5f1Qi071htmr7wjczXYJ0swQg2ey2nieetcrgvBFNxkCfPMXKH0aJGocTMahnzFmBPOVuro\n/Xvl4GWNC8oJ9pZVFYvncn3jFgPffPqguV7NciBT8MuZB/sTLm/fQS2c2j28X6veKwnSnqmp3KXc\n66ryer2BdUynANJz+GZcUG6hsQErJwx9NT0zO/QCGvjxp685tfDZ2+3C5fWFyQdcCFxej0DjmDZO\n549YAect5/N58B5iKqSkfCPvlqHQgxYk2vkKKTZ0uK/vqhoiVjVILKKIFYCrbrS2va8Yt2G8Y5nb\nqjU6TGqmvLGM9ge0tl9hILvee5ZFSfphnsDYYcR5bzfh7NG6cM4weU+KHZE7VsNUw3rdcA1VNbaR\ntwW1xTCFFHtUU2ZezsoR8p7JeVLLrqytr5RzVGL1mrBN7ehmoVQ/zkcpZYRr11xws0YqpT2yl8Kn\nsz6/jx8+YKxneXwinBYkhMGPM6ZwmgLGetbSTI7bfehOE86HFqVhqMY3c+CeBqFB4KYaSIWSDxuL\n0oyDU46I8M4Essv/vfctUFh4e9P29BYV4cvt6705qji9Rg8P+tx2lKJfT++VU6SIzj6cve9bYt0A\n8+AzKT3CGNfe4x6VqOP69vv1HgXp+zZNE+u6juPrbdl+38QYx7OdUmk5jxu11nfvOVrTDSG5R9F6\nO0wNgE0ztsyKigJvb+pQ3tvB7zhE0Libfij5DoFFE1K0/0ouAwWrpRD3fagaRaSRuYFGhlcukarg\nO8/v3sz2V0WvdLNOEYFmhAzaZlRLD1FEN8fxum44q9dabY36M2pETUUplVozxjC4yMZqHJZIGe9h\n3P05OM7XD9uM96KTX7X91tZerfXavg0oOed7tJD6Z9rP/waa5vdHwL8I/Ee11gj8fRH534B/Cviv\nf/i++5bwQSjN46HsleqaWqZUHMeBpKotPKmGagRrM67nQxUZULi1TvufXb3RMoccnYiYhly25kgs\nRQl5FTxCscfAz57ZL5GXfeOy7ZRVb1JvLN56XNHvjfWjlZhTRjzUGqEa9pxZ7zwzpMggqdrgOTVS\nlslKht5iZi/Cw6OjdIVVrhRZmU7a393ePDSek4SClYxvxE3twzfuWN5Zc0KwTZWRFXJtN+OeMlZU\nSVcpeCKuRSxsqWJr5SfzB756+MBpmvGdVGs8r9fPXK9XBHg8LXzn+70SEXGUVIk+g7GEfodZMMFj\nvSHvO+vzhVfTnKYRJE+QHCY6hZqvek2vIeL9FXEXqknc9lfWmxZucXvDTeBMoKRELMLUuS5+xljb\ngqQjRY4Q1Xi7YcQT08qaLpgVJtty7yRytRdq3ElSSDniGhQ9TR7JG9YaqnVI2nFzmyzDiVk8tUb2\nlCm2ktiouV1j8fSGXKKQMyOcdbsZbrfC58+/wNSP/P7vfRw+aXhLiiBuwYcHStwZScgpE4vBiyUW\nYS27JsoDORacnDhPC84unMPE1Cb22c0IDj9ZSjE4mZmcTtATjmAsUhxTCFjJfPfdd20/XzgtE8sc\neH258PnlGdsUjZ+++Ybz+QOXlwvOtgmgFe1ryuqBZCYQi7PT4N4M+XPWgGgnGtwAWrjE3GJIjCjf\no6cd1DLGB2MMp+WBdX8ZSjErmgpgxWiqwZ1rtBZSgnF1EMfnUytQwsTsA9459n3ntq4Y2/klqnIt\nMWpIbNQQWz2OxO12xaH+PqUUnr5qqkVgv77iG2/kcrkNvpV3E7d1Y1pmVWWKqn31uKAg6sSdC1u8\nIdemdhSNB7HWIy03rA/2hUIkIzEy+wljPdeWP/rp6RtOpwfcslCNKA+r3U7OGWJO5LQTd/WNMqk7\n/iecBTtPVOewjVxsBonmSjYGqlHaw7ZzbWPmFlVyjhhiTM0rqRdSE9M0jcJ/3ddRMMTPaRB9a62c\nTjNh5KEqUV2J360d0wrlME2cu5U7WiBdW4zV8AkrdYRZ7427c7m8jYKrFzHL0sc9jRfrk2qMkRQ7\nPqCFzjzPXC6Xtv9lfHYvsnrRdhREjH/3v+l8Hy023SjA7guRXrRAGUWaa35zoG0xA4gRVRBaNxYn\nIYSWJCCUkn+JY+R8GER6U+uwMEmlqp3KHRn73hqktx+zzaSUD+uAkhGUu6z0xTL+tp/jbdtwLV1g\neLb1Yqt9X3MeIIBz0hZczfW95DEWWCMgzVE+71Ar0trB6iHWPbA6Yf1oyvUIrG5/8M76hN+8/dZC\nSlSS8D8A/yjw79Va/ycR+Umt9aftT34K/KR9/+d4XzT93ygy9UvbmoSplBGYmNIGxmOopH3H2QUj\nXY4PavoF1EKWiO9pwEbt5XMtKLVMhjJPTAURxLaKvJSxGjDGYUxB9V2KVsW2mo/XyP6auF02Pt82\nbjHR4oiIzrDMBuMsW9rG4AhQvWjWVNXefEyF2vZTbUyyet9sGZcCtaWTOnGEyeGtY7utpLIRHnoV\nDbkUrIHlXDBkYvNRqskgdaE6QTBYNykqBphU0PTTrMT1ErG4oZaiHN4fcdWU8OakT/AwTTMPT1/x\n9PQTTtMTvr0usnNJK9++/pSU35gXy+OjDlovb686OCE4KdgpjBicUsAZRzWGzEqdK9NHnbzsWTB5\nQpLBoKvXbHuI8ERMjusaERu5XZ9Jm/LHcr5A2bHOY4MiARE9N0EC03TSwtxWDRxtIclx3zE2sJXE\nWjLpFplECewOj1uLera4yiXv5Madm2anqXWSKFbNCHtWpEp3Azlm5smSSyaYR3LzH6nFUoyF2lbr\nOHybMKfJ4FjZbCZdDXWHpXlMSUpIhd1WpvpA3Dfl6AGznClsBNE4hC1tQ6RgfYTTxtMyEdxCsAbX\n0JpZJiWRNok7peL6hFhUwHFaFmrJvL6+ktrq0vsJqfDy8sL3z5+ZJs/joxagDw8PbKsW6z4o2T72\nAOmUuG0bzsB5XvBTYJ4b4rrvgJBSZF1Xpukw1/MuYIwagvpgSTkPw9laCsEa5skrdyhYljBxs8eE\nuTUlXCe9j8G+ZwdWi29ciHvM3BiDbYuOKRwBtLlUbLWIs+rZVHOzJIHvn5+hJH70kz9g3yPWHrEz\ngwxtKrfLMyVnTk963iqZlBzBefwskMt4Xc2pxS0VZFIieGqWCrvVyJJSEtY5fON9gC4kg1iMqNfR\nfJ4wDf1OLQg2l4SZZiSXQcQuReNDyAVnoFaDtNDabb9xu6iycp6nhiRkcjeBzGgBhVVSfzkK1+vt\nyrbFpqbSiWxcY++YpoD62Smhumci5qzGrzrhQkqOW0PrwtyJ410dZgd/iqoKV/VnEqCOz4vt+DtZ\nWYsifb6XZWFdb20/ckOeDkNlaxgFjxZM27ifbrfLKHC615TuiqKa27aNSbojoyI6T5jmX6TH0pGs\ndGcEqxYAI6rJ3CsGj+97QdS9rOAAEwYHsN3PpYVvd4sFvf6qhr8nco/ifBQgFqmmdRUOYUcpBect\nMSUod8fYrAOqaOFS8xHRch/V0gvNjvt0xNBaqwuFu/PWi7iuoKwpD0J5HN2kMgq1rryMd+rAGBnH\n089Lf421liK8KzD/f5PNW1vunxCRD8B/JiJ/9Qe/ryK/URz4K3+XJJJKxg4CaMZ6wxIWXtNOjjfc\n1OF2x7av7Lm0FVDR/Dy0TKhZJc57Klgj76SU3ltytc2wLrM3SW4Iml+07zsGy5YieWsXeBfSrVA3\ng8sel6zezai3TZJCamhUFqAT2Kshp4QxGlJaMIMcW7MS8IqoFHRnJ3fBiytct00VXwXY1K0cwM0W\nbxacybgQcblyTT2ny3BbPZYb81nPVR8w/fRIiMK630B2hPLuwQjOgxRyaWqdIpQ2oOwl8/Qh8PWH\nH/HV6SOu+Y0AXOKNz2/f83z9Gbm+YuwxKKaUKKlwmh9J0RBFoCNEJlClKbH8iWITuJ6JKAiBulbK\nvuGDkL0WWdkErlELw7yvpO2NUrtDtaGamVQTpghQsF3eLJFUEmBxInhn2ZtNQ2Vnj5k9FqQ6ajR8\n+70O3ut14+PDmYdpAclkZ7BtgLYSEJNwviqx2KTRSs0546yjWEVUyWDME1V65lRQYqc14AXxE8xt\nMRArH8vGftsp2ZOvhRR6a1Nb1d7OGNHWZ2mrqEymOvVbme0j05RbGCmIF57mSi1G7Q0kIQ09cihR\neYuJbVcEwrR7OMwB6wMx75R9I5UyMhFjLeSU2NcbzsF8mgY0fr1FLpeVZZrx84SpRUUiwHW98Pz8\nzDefPuKCf0fkTCnx8PDIvmu75cOHx0FS3vc4BsUcK0YstTn2mUZnDdaQnWOPG94ZTs1Ha09Z/4+5\nKXm2cQ+XHBFjyNm1MWEfJom1GTDHCntOij7euztLpuRI2ldOy8StL2pq5c//wR8gVVsS58cH3l61\nrR9jZLIOI5Xr5RnnLNJEITVnzstJV+SzJZcyPMR8djink3MqmYWADEK16GQjMFmhm1HqL0UDbCdd\nYYfJ8+HTjwA1Il3jzil4qAaxdvj1YTLGVCSD7BlbDX0FOc9BfYJSVNHXNJEp5J5xVhzsmRxVEYcR\nStvXlFVcQmtJ+XqYmnZ/JJ1IWw5eV9+1+0S/1iYcaO2h6+WdGq+TlgGu1zPbtra8R81s7ZPitm3k\nErUzYKaW6dqJ/3YUIbXq/bKuXQnJKED2lo94j171/Xx8fHznW2WtHYXGD0nMvTvR23b3xYIqQn0r\nVuTd60anxamh8tFG7GjWfZH1vtgaz1O773th2f/eGEvpCrZWqEArpGjiZinUciBZKmgSYtoptqrJ\nbqs79JhVGW+oFHHvUCBz13nirpVojNos1KpPX6oFz12nqY07FAVL+r6klHTB1a5JF0W0NyXG9M6d\nvZ+X3iK9R9tSPqwo7sUjv2r7/6zaq7U+i8h/CvwV4Kci8nu11j8Tkd8Hftb+7E+Af+juZX++/eyX\ntv/jf3/B2xvOBn784zM/+tGTsvrFqBNtjNoiAyqFvWxcrysiBm8PX4faIDqLGnWmeH8xhJIt5AiS\nSCn2eoiSE9bpCXfGUiUNdMmKw3otalI2xHIE+rpJsFLQ8GRdtYvrlavaLKx7AlHbhZr6jQgZ3y6U\n/nttBZFIQsRyI2KxLMFyaW2ox6eFMGkYrRGD8RbOujNvbFy3Z6bpE4tRlMy1qOtcCt4VbredlJQ/\nVmsZ51REMFbdfEs1SLWszRPJm4r3C2e/EFC7hrX1379//o5ffP8dr5dfAFcmtwwuiHdG4xBuN5xV\nrkn3/XHB46YAwbYoBTuK4cu2k0UIs6Xu+oD2dkq1FhuKSoX3qEaE0ousgpsUsVzXnbjtJI6H+7EY\nTu6JknILzGyII4UcN+rucWbCODcKZWcducxIfWCZPNVbpLUTptAMF9lwQLHHIGC8SmatCVo8RyFl\njkgi0GBeu2AnT60y+ExvXKjJ8fAwqwVCtsh+SKtNsNgszS9qZiu94IWKR6og2bBYgzRzwXmelXck\nuoJMKY2JrZRETDtSC2Wr1Fyx3o3PU1NVhehDmMidx7glSozkvBMmS0oFN2wTlB8yTRMpq+mf66HF\n641CJcynscJ8H7WSxmSS9khobcaSssq+40aKhWk636lnKlILRirNPxbTnJUBTqcTqVSeX96OqI9+\njZ2D5qrcw1v7hLGuK3vZxqdYa5VbAWPhVfLOh8cFERlcp0+fPrHvicvrG6fTiW1bx+BrnWCcw6qb\nMNbYEdlyu114Wj5gsuAIiCsjzFrQyeB8fuB6u2kQ+uCzVPX2EdEA+OpHhEjJlb0kbBacGC5vVz58\n03ykfvQ1++WGc7MaEJZKbqu927ZyXXfynqBWRbXajOibPYWUTN0T8jjD5HRhgFIzJN4w28bleuEW\nt9FOzK2NVpppqpo0HqarAymsRa9rp1+0yVARCy1mRkcBWLdt8H+0tdV8+a5qGruuK655DpV6TLS9\nuIlxg+oOBSmMAkPbfNu4TzUkOOicMibhzvmJo8h6e3sbNgj6PB38pv583HOFOnevF1pjoRvm8e8f\nIk79Nba1ot55OMHggGkRczi6//Brbyvm/Wi17V5bkaHx1u6Lpe4lllIi/6CtV0pR/ygjOBNHQagc\nuOYubwTrDLbad6/d2nUs8eCB3RedxhhKPZCsd3wrGuLXQ5nvUC7TvKHMXbEU494+r6k02+v6+b9H\nC/+7v/P3+O//7v84kKrftP3GQkpEvgFSrfWziCzAPwe2f6YoAAAgAElEQVT8m8DfAv4V4N9uX/+T\n9pK/BfyHIvLvoi29fwz4b3/Ve//hX1lwdWG2Kq2mGPa4UZ3gGh+n3/zVVsJUuVwLt1vGO0aat2mO\nszkXctmJe+LWRiIniV0SViq58aRsg81L1ofWuqqeO86OfDNTBFcV7jeSEVNGZeuCTprWWipqJ+Du\nBrcqFhc0noRch91A2grGztignJ1qLKkXiqWiFp+ZjLb+QjsGU8GcrHJKrDaaDT3qImkMy5SxwbPM\nH/BGJ6GaN1aXybGw3W44qwVcbRwqJfdZrE2Y6qi5YFtL1BuL8YatrDyvL2Rx44a7PL/wi5/+TDPW\nzIXNqWs6qLQ2pUouO6Ya1rVyaaaMWz7hs66qg51JeNLceARy4RZXYs1goFg/LCW802xCqUl9u6SO\n/Cd1JE5qSlnUYXjbW/xCyuCLtoJLpYoQjBJuvahvlPiAtw9YN43B9OS1FebRKB9jPaaRfh2wx4I1\nFSFTknJcoPXmSyUYzesSZzVrrQ9kVQjitD3WVlBxawOjN9QY1LelClTbQU6s9XinLW+pGWctdWrE\nSlsbidviqDjjCOGIJLLWjBa4FSE2btVWFTWrWTmC98RR5fIpp2uaPXFbh/9LjDs1RawY9i3jjB1W\nDL0VsK8b5/OZZXE8v6goIO6Zh/NHrA8a4yRl8DmWZWGPK/secUa43W7DONU6S7qt7PtKmNxw4O6b\nTiIWG9XI13khv7ZYlssFKxbvDHFfW8u9HWMu+qzXTK25EcQbwp200KxtkhORoW2WknFWCOHMMs1c\nrs+EZuKby8bry3eclgnTss7Opxb3sa5IMQRn25jmR1G/rivn8ID1npwSPoRBghcDad/YY1RydTXM\nzVR0z93MkOFNNbUIn4cHReW2kkjGIdXy85/qWvebWvHhTBKrwowUqa1Fta1X9lVbyU4MKV9HioAY\nA2Scq8BOLhHxj9C4qiYI5VbY4ivPry88v77wsl3avqrdjYgQW9FxP2H1QiTnTMzpHSJVBfYUR6HQ\n75vu74T3WGMIzg9+ZCbz9qa5dr0YubfUcN6MNlzJ23jPA3FaWxGn7UWAbdMivRdUwDiGdb2OVllv\nT/bisJPp9fmJA00Cxt/3n91P5J0vpD9nRJrcv46G5mjkyZH5qsdbWNftl0jSHY1JKQ3PvdK/FjBx\nxzjLnnaCn96/rmbifuRPxm4eSmXdt0YBUPuPqbXTu5DAGKUX9MIStK2/3zQKJ8bIZb2N69S5XNM0\ncZpmnLWHKWYuWohbQ961vTsW3vVoQ46Cti0Guk/dtm3cbm9cLpdRmPdrdSSQOP7yX/qL/OW/9Bd1\nn6zhr/8H/zG/bvttiNTvA3+j8aQM8O/XWv9LEfk7wN8UkX8V+PvAv6QHUf9YRP4m8MdAAv61+ttK\nuS/bl+3L9mX7sn3Zvmxftn9At99mf/D3gH/yV/z8O+Cf/TWv+WvAX/utn7wkTE705EVbPVOxiPVk\nYylTGfC6y4Jp7t+X68q+xZE5NbUFo5RKbYqTBvQ0JpVQatRAYmPYU7cq6GGTlpR29iwtBgCtbkvB\n2MJ0slQ3DaKXaVWu5rCptHWYXKaKnxxuUjAkx8ItdX5JhlzUrM4ZijnEVyWr2axU5X3E6uiXRtaI\nAEvyVJ/Y6o2OfYdJ2zAprpqLZiZMWyEGk5h9oKbMtu0IhuLrIL9r3Ewhy443HlsNuZX8BoGceHn7\nzM+ef8ZlPyTgt8v3fP7+W2LMWJ+5rW9IVxiarCpM04zlTOXlqjwR96qr+7OdsaayF8GFnl+4sq4b\nOZbmPq3ZcKDtQstEpWBshFJwI88p4N1Zs6hYiZKZpmZjYAwn94HJPiHWYpxpPCqNx3EI1ICRSVc+\nQVfx8/RIsIbaZNo51yHljSljTcAUwXrX7Ctau7C1j7Zr5DxN2h4WGa73k3ME41U+HgTrCq5BHT4F\nNqNp584rHN8/c9s2aqngrWYVFhlmnbkWJFukKMfQOD/u0z1GzFZIxoC8X5XXWpUMVDUyybk8VHSD\ni1ENuSZSqeM9nXNYfyLHxOw8D6dzQ3Zh2yOlZB4fnzidTrxdvuXb79U4tRSPcZNaNVRFT3xXyRnL\n5+fvKBmCN0jNw6HbGIMzRRGslLGzrsz7vsRcqOloAxjDYeKbI3vccUZtRtZ1PUjj+QhVhd4GaEjA\ntGCdkPcNZ7sNQkNqvdoYGGN5eXkBKnPjsr0+vzUkAh4eTgQnXN8UHcvbFXFnzQEUQbBcr9pGVyp0\nbq0G4XSaSS1k1QfPKnDbI6fTSVuzzfHfh1nbkrW2AAbL27WhsWi234N7wE2z8m/aoJjXK8GfYJpU\nHSngmwjj6fyAs5n9cgNpcSXN4HUJC2YxKoc0CVPXJu1pkT7GYaZK9hdWXllT5fNnVeW+rFdiNZhm\nZBrmCStHjFewjlRLG0vjcKenyfr3FiBtObgxtmqbSJob+uLCEcheMrkqgtq3jtbM84wRh5GAEUOu\n27CQ6LSLeZ6xVgOau0qwWx5YqxEv3k8DmVKe0862RW39lvSOGD2sHRqxu+/LcR8ez3u/L2NOAx2B\nxv254wGVUvD2aCHe/+29mjWlPLhG+rPOX6uINPuBzrnMO9uWcDkMXtD9caRaSFX5u84bJB78KVW4\nXlEz5+lAFZ1pwo8bdppb2HZXSV54eXnh9fWVbdu4busQWszzjPOWRx6VymMO4VIfQ0w2IzvPdVFX\n54Q5S7BuvN84383wdk+bGsEuYRyDtm47Mnggh+LuOFm/ZvudOZt7b8jlhjTVi7eB4M+UELjlqNyP\n5iYuTglrH6tj3xPPP4/sW2sNWNsqqcTkAxZPsg2O3StbXnFVyFW0v9/6UEG0ePBimKaZKRWkdD6A\nZ8/gJ8fZWcLJERsUn0qLFyiZvWawlZgPkp8TIVSD9druGSRQiRosKhVJmgO1ND5TMak9HEoOLLkS\nm9pLbFGX6lhxJ1rLqJ8XVcfYmhCJ1LKRGtyaaqJIJZbMfsswVWQXahvAxKoPT3AWcsZK5kNTYJ3P\nCw/+iX278fz8J5R8Zbvp+37+9jNbXDHiWa9G7QFaxMA0qaPz7bq32ItCbYyPt2dhES1cpqQhqqm7\n3yZLKAslZeZwQvzM1PxyTvPMyU+IyaQ4460drT0x6r0S90I6q0eTkd5mzepZZBbIBkulXwpTAzVV\nzURzDuumoexalgXr/VDUZJOHG35/EK21LGFBrBkqItkqZS/saSOtmeA9vpFoobUB5tbGjZqGLlMb\nJAHX2h3WWnJKg5Nnm+K0pKKewXJYWOSkbcsu4y1GqLG34eLhRWMt/m6gzaUoL8bUMXGMFoCIZjhm\nEIRp8jirBW+Nmvk2+cwyOXKFvU1WVgxff/01T09PfPvtt/zJn/4/Le0dnANnDFRHkcKeEo+NI7Pv\nuxK2JXGannDOsW16DEr81USCYiwGT2ltKGuEYAPbdtPIn8aJ8LO2I5bzicvPP6vsuv3uiNhoz6qx\n2FZk9gH38fEDVjJ59tQkiKlNtIDm7wns60rOER8K29oiidYrOd746sMfUIvnz/7sZ9jWRj/NWuxf\nrzemSTmF3TJlnk5KpN5XJSmXnZjj2M+T90R7FJdSQzu+CUtryd+1i0CL6j1FFuuJtxfCvODbAiMs\nZ0x3QXcBqqFMzU+5RM4Ogj+Ry0opp0P9tZz03BooHnAzki21c+SqAzvhzl8xLSv75zd2o/dNSivr\nVW0BlmXRSBB3kJ9v+9aKDYfzAeve83pmo8XG7Gc83ZsLztYSSYRJ/bdKvhN+BD+UcuP5Q4see7ew\nsNaPVmonvYsIy3I8Z6C5cJ0z1HlWQ11ZK7XO+EntDaQyftc/5/AwK6TRSsvD+qO3o3qRYfZd1X/z\nhGZIpvd8pZSJVn2WvNes1PtjfHh4bD5yF6ZpumsLqhWJ8nS1xddJ873Q27YbKdl36ko9hwEfdN5I\nbZ8B9ri1/6Oqho0dthl7TOwpI7JTm9Kvf16MkXW7UWpGDL+0uHHWY436rymfjPZctEWh1HcKST0+\nvTbKez7eS69THlYTj48fKCUN/pTSG9rflaRgxQhCDu8Ksl+1/c4KqVxBqjsKKTdTZQIs3lX2HOie\nSN4U/OwGqa7uhZfPbcW+GoQZ1yhEzhnSsEZIkDLOT6Q9YjFIOPKyKJW8ZdxsOc3no2ovsIinZMOO\nJ8eMaYo2EyHXTJImp86ZMLWHu2UHivEYo9TefvFPD55aHTFG9ltCYhlmpNYHStH8wNI8LGLPf6pV\nDcdEqLfC6aswktwTFT/pw1+y8nDGir1avprP/MPf/Dm2h08swY9VRd+s72nmajD48KjFy1efHjk/\nzDycJuZqWF/euN30Jnt7iXhZkHxmv15JOWEbF2TyJ5bHj8SpUJISXZepIw+excwE8SxmwdlDCWjD\nxEf/DbYKkw04P3FqPjCaIeeV6yOFtB+qnuDayufUBzOhC0hzTeQCKQrVCdTM5FqqvAnKEWop4CJW\nlW1AzRBzW4mVQo5xcCis1XiBeZ6ZvHsnv+5qIxHLdttZrxvhLtKiD6j3xNFhSumUdp9iJN9JkfUz\n7VDP9FXt8KEphVrKkL93aTswPGsqOomkO48W2n7klEjxPWdFA3LVuDWlhBiLb+TvVCwxrVRjSFHR\nsnOL0Pj48QNWDH/yp/8X3377U0opnOZP+nmycz6fCZPhdosYc6aqHwjbtpPyTmXnujnmEkZRW4ry\nZWpTRJVa3xUMmQNJ6KqpEWNidbzYbqrsuifjjiBY7/BTaLEVPd/PMoeJFC3RRfYtYqSjuBaDpdYd\nKDx//o6aW+DvduHj0wMhBJ6f1Z7jdHpop1ul3d5almVhmQPrqoiUMWrPsG9XclJeSyeN92t970OU\ne9BrU2A+LCfcFNjWA32pjYBup0VtYWplnpuvkniqDdQ5UN0JEwpl1yKtbJZcHckX/HRmmQRTG6fU\nGPALBIcYARuoZsF0dzQpiFOk1gbPtASWh3Yd64Ou9Ns1cs6PhZIWJUXVZ+LAyHENXecMFYx3TM4f\n4eLS7CBKUb84a4cq1dYMMampbq34O2sEKwcadMjjD+5RX1R0lHMshNrkP4eDN9Sf5fXud8s0vyvM\ne5HbLRBUBXjwllIq7wqkey4XgNuOIufeiqDWipdmgspEnf3IfXz88MB8eqDEzPl81jmnk6prxdjD\n4PI+7LmT4rdtU9TY+zHW9OswTye8d42XtbfX7cS43ZnMMsbTtEcury/sXnmetR7K+X68GikVePjg\n3hW+GudyGIr2Y+jjlS4q00DW+u86Ib6gX6fQPcU0akq5U4KI8hn7+a6l2RbtVfmUI1vGqOr0N2y/\ns0JquxkklUHUDs6ouUOJJCtse2KZOjxYoCZ8mPBfPVD3QtzVlPH1+0TaM08PFjc1b6TWLpxnx2ma\n2XPCWW2l2Bb6KRRqicR1Y/ZnQvDkVrhZm/HWk6JQYgXikNxXIBaISdUC5Iy0lffkLLMIEwZnnKIZ\n/SElU3MjEWLZb4V96zdUBKMFVE7qx9Fz74oIMTfia4VtjdSuQggeI46wBBa34NzE3FpUpynwEBz/\nyI9+TMXi1LHv3UQEzTvEKCTaXd+X04RzsJwcbhK2WGn1LuarR87hxPPygbenHyOmDMLt4h3eznjj\nqcVgxR1ZRkWl5D5YTssD3gd6WyzXqn45uWCpA9YFHZyMs1gTKEl9c/JYeSo8bQyU1OHrhhzWxF7V\n4qBmnZQ78doZ18ihmkNYYXjCxHTBhwC5F3oZ21bd1gnL4hEH+76x5UhqgoitpFHsmMlrK8r6d4qg\nPnCrE3Ea+9pXotfr9ZfQhU7C1eNVuL3LcmvVQM57lOoe1seAWKMTaz38gnqbNpcy1Df1+MAxcRuv\nq8+O4ooFH7Tdtm0XCgaaSu52u/H8/Mx33/8MH+Dh/DQCuxEtBrZNkYcpLKxNEfLtt9+y7VfOD4Ft\nW5FSmVsBsqeCbeooEXVbHkTdWsnlEE5o4OqhpOor1eu6UasWhuPcOIv1jtPywOn0wOnxgSXctwAq\nRhxCbtfrbphsZNbL9ZUUNwzHeddVrk6YH54eRtvgdrnoxBAc59MZ4VAd5aQF3nJ65Ha5UuvdJBxM\nMyptAcFW8O0YtobwlJjURT4cbvHDNHJfWZZAkUN15K3XtvsSsOGDku27/1AJwEzcNyTvWJPIne7g\nZw3NFguiizaDILUz8XddmEYtfr11fHxSIdE5BK7zhbjn0Tq+l9UrCluxQd555ej766I77Tsx7cxN\nXYp12ppGFdylFEzoz43DiqFWLQS8uSuwXV8AlaMguUMbYkxtHw2lHBP06XR+57cEjIndGC3yS854\n794R0rvZaEqptdgNy9IEQbUMorhI5XpdB/k55lULnec0irp+fbv6z9mGqgWPsXagfMYYaAXTdJqZ\nynyY0aaI9Y59X4farpO4Jx/wVgOE933X9t1dgWKtHYtHRVibofK+crtduN1uiNimgDuemT1qikgp\naYwt99e+1u7f5HEd6BCDC5bgug/hIULQ/S0NWNFc3P672NqetVaC95yaLVA/LyE4nDPse1NDtjZy\nzYW9LWT1WllqQ4Z30jAJ/nXb77CQEmoWatKVmeWN4B+p2ZBlJ26v7G1y81+dMNXigOAt5ZtHrmtH\npN7YbxvX20StbQCd28VYKkkip2wxflHEordMqmmrS0URchXt/wOpVnJLjq5tkLYNBopbJK2J2xbV\nPM+YMTFJVUWZsxUnLUyyrZKMOPZYqbt6v9j56OvmWLQgSAWKUOI+ZKvzov3qLBnnaCtMvWzn5SPW\nBB7CJ54ePnA+feA8qTLtND8QjGmfoe0a59zoM2trQ/05Ymp9b9fdb3XQN07RqmrksA5Ihdv1xNvT\nx6Y4OVb6xrgWu2P1Zix1mE5aK1Qi1lseTk9Y40eLsvsUeWuxtVDkQM0m5zHeKi+ovvc2Uc+QXY0E\nbRgyXlB/IV8FR2QrkdoSvQFK2alVMM6OQbjzzqw4Sk7s2zqQDuMPJQ20ttm2c71duaza2qNqW7bW\nzOTU6sG1gMz+WmMM276PsM/Ovcl3MPm6bUOKCw0hMppUf71eh1JGz6maUPrmDdM/C7QwEqdWA8bY\nwe3ovysFTBs4U0oaRArQCi9jvPICSiV1Cw+KIn1xZ9uvBGfYGwfw9fWF2+WqiMuiIcK3NzU5PZ11\n8gp+5nx6pJJ5fmlu6dumUm8RprA0f6c+0Ook4Rzabqz1WJg080LlseWxuu1eaGqm6Xg4nXi9XCgc\nbYNaK2IMYZ4I80k9l9qWoxqellKIWQvt0EPCBdbbbbhXOxdILXT9fPpI8CeubxeWZSbXxLo2s+FS\neHo4EZwWMa/Pr+NaLacz2ImSIxWjgbStnPANyfAukEui3KESrvE/Yty4XOBsDY6jIJhMIFtL9Z4J\nQ23O3uXhjASDenNEarZDeYfM4D0+OGo5oy70HXHizk9LVaAV9RMCKNcr6baxvl3GObF0dWnAngyr\nX+lu4mnQIZRv45wW7QcKoGPUtm3EvJOpiIHtLv5LirCvO85ZpocT5xYXY8Wy+ECs6hTf74f7699V\ndsbasZjoMnqV6hudWO8WMbVN0L0zst4pvlRVCXYKuHling7VWm+vG2vhfB5FDc1CesTUGItvKufL\nRQuTlNRqx3uQYVDtCEGo1nE6qc2J9dPgv3Z/LfXzqlDk3QJLg5t13Iwl0lgkJKlUA8vTiZOc36G4\n76JqaqFwtCuNMQPJq0k/dzyHNjE55S9qx0B+UJwdaHgqcfBY53lBTEFMAzeMKGJJ7z5kDSpHLVP6\nmLHtRyTP1q7tNB1u8WpZEg8PsHKgcR2R09crogWNN2p+c6n0Oyuk1gtYLKttJyq/sQRDJVOI7PVt\nQIBS4cdffa0kMGCZPT/5fe3rm2r4xc8vkBMZJRXb5sZrQ1GehhGcNfhqse2EuyoYJ8RSud42Um1I\nBGCDJaWs5nixUvZEbcQ6UsXETMiQqzTJZH+4O7SYmgkdQzptjWeeHJsYqmykrZDpvgHgUMQplkws\nGb/00TsyndS5O9fIssx8+qjmeo/zJ56WrzifPnI+L5ym00CkvGstC2c00iY4vAuEVgzowCXNQ6fg\nmu8V0BLIC8ZZYlQUpOfwJXam6cTZHLlQfROr3KJcohKh62FTMU0TWC3WJtdXzx11Mw2CF0pO7yDu\nIro66ZJblbq20zZb9l1IUS0qqGZYZgxugi1qgFn9KNC6f5NYg4j24MmHKd2+r41YrgP85LvFgSMn\nVdOmpHlt3POnGm9iCpO2634FstShdH9XZJWqhO6UM+vaVqL1iJjItQxHYBf8wb+wGpmUalHneXnP\n6xj+O9bg/HRnKnvESnQPpXvpdG9t5FTJJQ2ugC3qHRXTSq4JbGBtbaEUIz5YvLesa8s2a/OuczPB\nz8zzzLauiFRSXyR5x/l8RkweLb3OkepI4DzPpObvc49k9Mr43uel/36/raSUsbbdO/VYJVvnMD5Q\nRZGHfY+jWKxsGBfayru2CaC9t9DOlXJHtvWVubWoPjycub5dAb22234h7WXsv7fdITvh/TRaTM6p\n6eLldsV7R+Ew/7MoL0uP0Siq0p3E2/MQwqxFQa5Mrc2q90BB/ESuhuDD4WfmLH6aqNWwvr3iysGt\nYWrZgt5RbUDw9Ge0t4P794MQ3r6mPfL9d9/x+vrKvq/sKXJpZpZ53QcKq5l49xO0HsfptNANIQ8u\nm0GM2sGkbVOPItvdy0UtFl5esAhPtydMaSj2HNhKGYWfksP1mbmtrZhr90EnSvdzek/arvUw3dy2\nrRHJexLH4XpdjbAsCx8/fmQ+LYR5wrW5JIQAVc1ES7MZ6fvighuI2LIsnE6nwbnsyN2yLO+Kj/6e\n8zzjJse0qDfbHKZxHbdtY71uyhuT7o/USdWJUnUMytQ2ZnUUV+9lEdFn7i7fzzkHuZCaSei1VOLg\nZC1Y65nnyH5bB/Ku73UUI93Ta2rnJpcjHirnTGz3LdD84Sxbyy20d0V8vzalFGLJ1FiH0KAvRK21\nBO91bC2HQKVf0xgjcT9c3Y8irw70TzphXgzvsdJf3n4zXvVl+7J92b5sX7Yv25fty/Zl+7Xb7wyR\nmuzCZMPIjrpuO3X+Bc4CpuIWg5RGSLx5LmYnfGVJUpjmiR95hXFdtRipvLxuWFsJobbgp2amVg27\nqOnkyTmWtsLzVsBZ9qKV7XrbB8TpXYCccUCyhVgStsOxe2ISIXhV3uEPgjNUtpiJrRfsjBmrZttM\n+jT40zH7MBR2+76zb+q8bJ0hGMtudCXknEOCwUzCw3zm0/lrPi7fAPDV8iM+nb7h/GEi+BPOLqOn\nLFKprjZHT12J5CTULh+2BrHKY/JFW5G1I1K1kneoMWGa3UAZfTGHnxynuZLjNiBV0BYGpuCdBZqZ\nXFtJLLO2upTrAmrcdkDDtZaBRCnnp+0LFappK5wDVgdVoCzTQgnCvt207fsDx2zvPSUrqbP3vIst\n1IbeFCpWDuPUku5DQHVV1I8wxTjaAKYRlE/dvft21XZRCE1Z6d4RRDth8j4nqm99xdlRq7e3N157\nK6bJckMIyo0I0zsi61D6obmJYrqi02Jrz/ZSwn5fab9Dne7QP31mjn2Wxm3qhGJs1vuxBJwVLJV1\n7/u5YsVwu+2U0tqOjQvy+PiBWivbflPRhz14QHPQIGC1mdAU+d7eyTU1o8kJ5w0xatCqfl6Xbx8u\n0fftTSWnrsrlsc01vJuunk7KwzKWt8uFWo/MrWlaMA5u25X1esO5wCk2kYKVgSRdr2+EUAkt5uj1\n7ZnH8xnvA58/f89tvfDpo4YWT95CKbxdLszzzMPpTGqoU9ojcd/IKeGc4bTMvcusZp3LecjJt21T\noQRgvKPUytxEBNYHzo0PovEWkcl55rAg04Q763gpyyPYGWNPmmW61qEiM3NUJEoUjSpZla39njnu\nY9G4HjItRJSc4Hq58fnzZy7XK6keJGZy5nq9crm+kNLeEBUlAPtm57Dv+8g7u0eEestvmk9Njt+O\nn8o+FXh05BiZ/APOdDPamVKjnsfGXcp3/DHgjqx855J9x5nq6PI9wbuTsNd1VWStjaXLogreHvly\nzwN6eXlR9/ltZ0uH5QPQQo4O7mQnXfe/OZ/P7wQq98+98tD0NVWgxDSMc9OubuGdsF3rob7rBG0X\nLDVnTIXQ5kTj/HFOqrZdgz9arXvRMOSSCxYZKJFF+YqTs0yPjwPxvr+Ger5bO7AeKJVy+bS1WeRA\nlG+XdXBC+3h1b40w7hEBz3G+vXMqPmjjm3ZIWieiIYrrpvE/MR3Cpc4BE2Owrlkg/MBO4jdtv7NC\nymHxZmJa2o26W2paMVSCdxoKazq/xpL2nde3K49PZ2bcgMr5CkS+wk8XXq43Yt1HX9yIqHVATkRJ\nFGMwU+OsNOfUUATbTmIn8VISXgx2AmsLcT8iJGYBEEouGGdIqL8QwJYN5MJptsrnETfcdr2fmuy3\nO6d6aivA1riy74m47mwxY5yw1+56DdYL8xx4Wp74cPoxH09aSD0tHzjPZ87zgmvS3WKbVX4RTDVI\ngb0pi0IouOZRk5Ja9e8pUpvvibP9YdOJOe8ZMe+VUlNYFHY1qPfRHdxta1ICTm5qFcxop4l2WFui\nuCHnMnr+3mlyuXquhDZg3nkeiRLDdWC7Tx3X9p2R90GdenxpQLjiLPNsB2laCbw7ty2ybysxbqOd\nouTWg+B5D2/3QS00vpMTQ6feeOsGwdlUyClxW9ehPuyD3z3h/N7XqXMw+oBxnltMijCUgvM8E8Ih\nxR3k8x4dcdf2s84q2T/MWKPB3D+UZHd+4DjPaPHUOQgquy4D4u73huChFGLaRusj7W94G7RtZfvA\n31uiE86FFvBcCGHh1JRpsWWf3ReYodtC9BDxGFsb9oD3c85Q1f9Ji7sy7FL0sz3cDPu+gTh1QG+q\nzeBPBDfhXWBL6tZsTCfUT5BW3l5feX19RcSOa/jx6QFvdeLWjLjE20ULSYvw9HQm5Y1KZg5+LGqc\n0fFrvd503KqHOz+iETpIIsVK9IK9U4YpQX8ak0HUZBoAACAASURBVEK/T+dlUuf3pv7sdh3QZPyp\n4qoQ3KTih6WFYE9nTfw12m7FFmJrz+ZYEHYqAbGFaiu8a6kYRAadUH9jevv1xPn8yPfPn1X5VPI4\nb9TMy8sLn5+/I8adeQ6cTr2d1if73mZy7/iB8zxjqvJWSynUplp0zvF0WliWhbTvnJfToFft+wrN\nKsQYowKhO6fx/mzHGIezeH8GelvLtYVQf/a7bUNX5yp/qbUgveO8nFiWRXlwMFp0l5fXEVnWC/1R\n1GQZhct9O7PvZ1/Q9cKuP6Nra08aoPaFUK0jJuV2u4333LaNZTm/UxdrBod7t0/9+xj1WezHd+95\nNTlProVtXbmt60j7ECB0qoLYHyzG7u+fQvAHJSTljOmLVjQ3t+/nlhKXy1WL1qRctX7eHh8fh2P6\nNM9Yy1Bz+mY704u5ewf2foy0uDTjD5VgJasIpRXQ3nsW30UB9V0r91dtvzsfKesI5lDZVBuIJeIt\nLCGQ/Yl50QGlSqJkS6Gw7dK4VLrNPvDVJ4/xD5TvfsHb9WVkYwVnNIPrtrNvN27mynxWMvYyixov\nFgtFiMUiNyW+s0XNXysCNRGmOvguBksuRoN2qyVloUjzS8ES/MI0VYJ1BO+ZG5H1NGveUAgzIcxU\nLKU2fkndyQX2XRVpaY8j+6zWyI7mop3Dma8efp/zSflh0xywATJq2lmsjFWOGHBVDUmrFATLnjZs\nIwfnNakf1h6ppmK9xbUeuSoE1SohWDceamgPekmktOOCp4p5J+X2zmGqU8+sWkfeWmwKp9IJicZg\n+2qvpkaGViTqftAQ6SsXo4aO5IFKHA9pxrlJ/UV6mHVu6EkrfHuUC0DKO/suVBFi3rlcdt7eVIHS\nScqPj49Yd/Ba+lfvvRbcWeN8tjawp+bPErOe16GMuyPG3xM+7w0yRyHqDsVPJxyPDKjgmcM0Bt7+\nntum3mGlFBaWd6vXaVqGAaGIFrag3IRSCrX/d6d2dK6F4VaNBBHRKJVx7lIip0SJWYUe+9qei2OS\n6pPi+az307KcsKZSMWTABzfEFGvOGOMQk4nNT+jdvVYbCpIPc0M9r4UtRow9DDnr2BMl5Gpxhvpl\nYcdCwVpHaIrKMLtGaO18K0Vo3t7eWqjrIQTwxjJPHm81huX19aekxuM8fXwipcTt+qYmoCFwbsWL\nQ1jLjvfu/2XvzXokSbLszE9WVbXFPZbMrMquIoEBCBDz/3/MPAxnMGyyu9aMCHc3M11km4crIqoe\n3UUCfEk+pAJRkRXuZrrJcu+555zL/X7j44dn7NB8hUTCfl8eYlOxBR414B+d300crcGPnviQ5/32\n9sb1ekUj78u43ehQKYV1EtBPzpJPI2mSIFIZzzqvKK9x/gmmkUY7Ir5JK6btQdEWO0yU1iIGARIU\n9T9ao+P63JS2nM5XPv/0I+fnJwnw69x4+/qFYRgYx5FSMvM8syxNOp866iob2HulmHODGHYm8XFq\nz1QphRlGjHVoo5i3F9gOnLm8k6CPY2qe5z5eGj9wV9/Jv7+8vHTp/1GpNw4Dl/O5qr32wDXnjJ8k\n4EspsYatG66GeSFsG6rO+aEU7EG0ckTDjoFbux7RRqaOuMr4NdKHctveIT/50LRYgiMRPLUxJr8n\nfUbne3Ot3t9l88lq6Nv3HNhFa4x3nVPZns00TbJmpURB1/WjvPtOmcMyRjsXGfFCtMYLD1TvyHCz\nYVjXlTVUbmS91zZWOldM6eZTW3l1+h2SVw68wvYcU0rdvLM9P62Eq9oC1xZgStKzC1L+veNXC6S8\n9VinKLVnVNYZXSxaOcmUzhNDvRFvRHo6xwdkxZYRp3KkxDIa0NeA0x/59tX2QayzhpTYokXjiQmW\najkgL0NjMlhTePaKJVfPlGpGppQEY9NoSXVBscajsVBsNTazGIb6s6n+W4Vp7e5+693YvW2s9e/I\n1kVncpssCQng6gJ1m79yW2+UkhjNxGkYGYbmtdFk7oacRcKpDxlAg9ettSIVL4lHNRd0xnbCHlrh\n8sjk5V04JVn0eJIBe4RSY4yELWONdC03GqheMzHKxCjU+0D3QDmGSM57c+dx9OhK1M5ReuWBwMnH\nSQoNck+EIKRVbfbyDcqglJUJfPRaKYWt+qcopVgP7r5t07XeMaaTqD/KXmLQo8VfLnjrhCjbHNGd\nkH1zFqNTkQ/vgoiSE9uydiKwsns2FNelB1DOOcz+mkTabgWhVdZQyH3hU7ns6FHJ5KIIYW+wK5Jj\nJaZxnHCmig3ciWk44Z3HVg+mveyZQUlARZGmni1RiDGSQhSn+aqwahL/FBM6F7YUCHkjo7E1a1NE\ncR+2Euw9X594On+q4zuxLps4Zdfrbujg6XQip1QbfVeVTg1CRzOijCGkQKYiL/U9jX5CmcgcIlvK\nogI1iXFsLvSOOUw8gvjWXEbHqSZmWM09AOEBKqOV7SUjCY8VwzBxe8zkQi8zpyyl3Wl0bOvMNgfG\nWi60RdRAIgrIWO8Y6ho1z3O1+1C8vHxj3TbcRcp+j/r+TMmE9ZXr9GP3rAlrYBxHHo8bHz9+xpwc\nc9kHTioS3GEEHdUNqY0R5yzJFBatmMbPmOvP8iNzxaWFHDKYDWU0DXXKAl+jQyCrBdSM8s/1uQxk\nxKtPkWo3g4MJ6HRm9CP/8cffocnE9c7f/qX2q9/uzJtl82fs4rn/8sbLmyg6H+uNGDPjdObj8ESM\n23vjySxCGO89o5+6UAQD+fZNRB7Wog+BTbMTuFye+PTxJ4ZxYsvV2T0FKecbQ8ny3Nt9eOsoORDD\nUpHeveznnEOfzwxD62yh4CAIKSGSlCLfowgXwo5iZy09IZVSbDmR10d/bg2ZbEFGC6RE5Uvvgwf0\ntdQ5STRD2zsPql/5vZ3Ubq0SUVGtcOSSu9XK4/EgpYLRLZGTe0tlL4u19fR8Pu+0ihJwdie3t754\nx6Tx6M2lanNlXH03tERJ6B9udMSOHsrPBuf7uVti3ROaihg1VLHds3ynmETnnLsQqHmuteRVVTXq\nUR2tD+tfQ7KOP/s+qPz++NUCqfaSGi/HOk2qN6GVx9sTNYmiJHGYVsWyPCI5bmgp+QuqVIrIuRFF\nQJtQj4dMiFIHoC4KHSpC8khswMmN0gTZaKbqQ1KyhiKyXNm4HcrVjE4JitWZ/cqgarRqtOuO4UYd\nJL2ILN5WYzgJ4vYgq1n2p5RIVTYaQ5tQBm6Web3jnO8lEGhZTOllsSPK8b2xW8qZkqM08wWiCvvv\nawncuueTzhjnd7Wc0nvDSNoEkP+W59B4BNIqQSmDtb5e577wN1jcWgn8jpO/qd5aANFQJxnY7wd5\nMyw0VXnYPi8b//65bduY57m3SNh5MEPNUqUUdzqd+iKgtcZPFlWq8uN8Ih2cc1tD0jVH4bjlXe2n\n0Pvzrkq7I7Td4ObmjPzvNSgFEUXnms23Z1ZKkV2svN8wQJCg0+kkJohTc4QXBNR5i65B5nExaCXL\nNkY7pL6uzPN88NrZ24vEsFKSWEfkVEt3dZFyynMazyglqNHoB2IrGendfEApxTKvuPPuwvzt2zdK\nygzDGYrtDsORjKul3JA2puncx0Up1bQvJ6Kunj4l7p5fxjCMjlOcMCpURETQjFAK92XlPt9kzKSM\nrgaCl+uVaZp4fv5ASon7Y+4o2LquODsQAqzzTTb3GoCVUkhBEIxhkuRjXZvMXXE+n3k8HtWyILxL\nFLS2jKcT2/Lgdrvx+cNnQEp+W1gxRrGFufNv2phpSItSimJAD1UNZkSJOmqNqQlU75ulNoo7o50E\n1Dkv1KomJmTKElmWu/huBc9wrs9zOKPNKHSEQzB3XGfk0oTWYP3AD3+Ua32dXzlvM0uJpEUMZFtD\n3JADk9cMpzNOG+ww9fG9LAukIF0kto3RD13pXKI0uN7C0kt47Zm2cnNOmsGfSbmwrFJqe6yPzsVz\nzqEL3aKFsRCCIqVbpQWk/u6n6dQR4GOJD1qiR1dzOre3bhm8w5f32+y2vJ+/rdXYkQeUs+n31Hhc\nTVW9bamuI6GjNsfPHh3CS7EYc+BlVTRGKdVRpG4JVGknutIAWokT9mDpiJw1k1PvfU/Y18o/OnJV\nWxDU1ptjQCS0hiLWN4frHv2uaja+crcqH7dRHI4BTl+/jeolyoac1TxIrrHa88jnHbHuF9oJn7cc\n1vN+GPu/byA1zw9xNc+15UORB2uVI28OEwza1Uw4Z1LIpBXWR2ZZtr7hjrGRBhW5WKybOE0VNo9v\nhO2BLgHnPA7NZCQTHM0JjWccPuK0w+PZ4X1QmL17tDYos5MAm/dEUbXc0LlFAivusvZ982qtHKw1\nXe7aB76znSeTUyFsG2st+w3+xMknctI4I+c8lnZKFn+Ro3y9/X2sv+eKPDRjUdhrv9ZaTIa27Hut\nyFETEB+dnMJ37RDk/L67Qe8IUc5TDWj2SQQy0Od57ouYtUfys343iQRSbxC3olCDR6XE2yUfZOVO\nvSMlNoSoTejGR1rXtS9cncukNdJSQPWeWjlHDEo4+tXEsTQJuBHPMDF8rRLzQymtw9Ildz+VI7+q\n8aPaezm+x4ZilVLYwkasjsYt4BGJciFsu1y7LYjGuH38lENA6L30YwxSikTtC3/7nXb9x47spUhP\ntBgjj8fCUo33UtwwSNIzDAMlBnQNJC7TwOjHvsE8Hg9UMx7UhZQyRtO9ytqYWZaVECLeOYxx5EJv\nuQS1p15cCWHtZGq5zhXrCzkGLIlIRJXcjWxbQO2dQxXzziQxbhvrOvP29lbLDorHXTba6+3BP/3T\n7/HOcjqdud8f3CsPahosdyJhzoyjxjmNrcmHUYplE0NRbweMUjRqhlbybq02nE8nColHFRNoLSX0\naTpzGSfWx9qvxXvLsm3y9/LoQSLA7Xbjcrnw/PxcUaXSS9HGe5y1DG7E2YGkwbTdMi0UOwoqkDIm\nB2JF8JeXjeXtQUwr2mTczRIq3WG4PuEuz+AmirI9PdotEeg5U1YFhcaeBc36w//xn1iWhdf7DRVn\nnBu4XqsL99MFjYwnW8nbsdYaT25iWR7vymu9nBaqvUERRE0rKwKgek0hBObq+WWM7SinipkSoqC6\nTtaHpFsA9ugBQeNYxujreAssy9x/1gKRdr4dvRBOXbsXpUTMMs9zr0Y0FKWfo/KUWmkRqPytXPmh\ne8LZxkxbQ+Z5frfWAe8C7rbW9eSzJmzO7WT64xqFPM1OED+avLb1a5qmfyOYaShd+/5/bz9K1d6l\n200ohbGWaPK7QA9gvt/6/hvC2rmQIChdUkAV/Chj0Ad+ZDt/Q5x6L9giRrvaGBkO1mIrQLLfSen/\nq/ZRTrcB+QfHb/YHvx2/Hb8dvx2/Hb8dvx2/Hf+Lx6+GSG3hRnnU7u4Ix2DQTxg7kJNhe0RMKxkV\nLaaYKeO04b5sfIlvAFxOME1Sr7XagTl0ah4LaUmEDU7uzGW68HQR3sZ0umCGkbM/cTITxgyH8lWz\nrG+olENV6H8vY5UKC+4Eub08k2pWtEOOqQjaEUKuRNh5L2PVMltMkRxKh4kBKKXXi7WSDKUT5HIm\nVaLw96W8I8IRQgAl8bVpZUG1N6l02kBMnT+anCMohU6G0kjSFcbVWkOV+sp1KJzblR0pFiFHlvcq\nB2MMKIFOmzKiSadbdtWyFjFkPNSuncFWJYmyToQA0HktzZU2xu2dxL+hcc45/OB6zzRRaAbCPLOu\ngdZ3Ss4npTVFIa0r5ZCx5Q3WFCs3SiDx7zOvho4d1XntOELcIs/fSa5HAmyIG+lAZBXpeybkjZIP\nY6pmoSkFitoVrrA7qSt0N008Zp7HjLKVG9vPjmT/Y5YsbX8UpWRBDFPmWgnl2mkey0OeY26NX2uz\n41SwWjOdRhSR++O2I2Bxo7nqi+pHE2pZc00BZzXkREqBbV27GatSihwjmgLG4C3EkAnNCbm58peC\nGyzO+4Npdukl2hgzCt3fxd/+9jculxODd5SyI6nyMixhKzxdBrR+D/c3ZdE4jeICrkwv+24xE4Nm\nXjdO54u0F6plv2maIBtyUjw/PeHU0j6G9QOjNkhluxHnK4ekOmanlETlrETZBqBy5uP5ij1/ILgJ\nez6TGr0hQp6/ob2noCiR3pT6sbzwL7/8K27QXIaBpzwQZkHGrb7j3IAygnDJzD8cIuGjXqlA5/Wc\n5w8/8Pmnf+Llly/kKTLbrduiWKeJIWNRFCtu7ke+SphOfQ2bt10pp7RCFcU0nTGVg9PL/Nlxv7+R\nkyDTOQSmishYTUWaIkYpwoEY3bite9/MvYxeytZLaDGGSpzfOZcgfSNzzry+vjZeNCGs0sg8xk64\nb0cKuRLthfdqrepmtEptrNtc18U2T/f1S5B33Q18j3O2Gde2asPpdHrHJRrdzvM6omnyOxrq2tT/\nP41Qnt6tU0de0rquXeV8XDPaPnRUQB/XSmUMrtIcCqk7oqdU7XWylusouguw1tUzuLGf513Xhqas\nrhWHlCO4ajthHEtY0KlST7YNwn4PuX5Wa71LU9vw/t+1tNes8UMtNVntsIMsQApDDJnWfWNZFzJ1\nMd0iKYTqIix+Ex8+fJCmqO6EJe+8KyvKJWdGrpdnfvzwI+epKd4mirFMfmJUvk5GOZ81qjv3CkHc\no6uNgdJlLyUV904dILVoagmlYMqu9sslooquZa3mb1F9jbbSgwgZEFqcuoHT2TEMnlSi2OHXjQd2\n75xWDz7Wdb/nw4QYpYVBU4MdS4TrRsm517xjTKhBY6rzs9W2I5tCorZi31BKD1hALBdyrl5Q4i7S\nIdNcSrU5qIO1aGnBwT7xm1KjlNIXHO89qv5OG+S9dn6YROsq8G97BG2SNQfxY1CjjSJGxbYGWejW\n9V0A2q5zWRcJVuv9rTH0jUwX6WWVU9ssqwInF3Qtc2hFTwbkAel+HSml3d+kpHfvMcZIah2tAats\nDbACRtt3wVvjWlmrGYaJ0yTlr3E8dYJrX3CSPLdQxHlca907w79zDEc4SDmXd0o5SiKHIIpMIqfB\n9zY/8zyTtlA5FkqIu7U8e3m+4kwhhlU8hmLGXHavqG1bcH5irJvhHNrmDcSAt5aULduy9nLKOLjK\nDxRT+mw0xmRUakF2QWuFUhFbSbQ9cNeuBkKKlAsa8Y9q9/H169d9PijVVVapZPzh/bnT0BfcsARs\nawweMtPpwu3trb4n8aVKJRJjIOVAqBuG0UrIwykxLyvjNAoRHInD/ChlFKUtueh9U60Kp23b8OPE\n5IedJ1I0qST8+Yy+foTpgqrKYpUM+f4L68sLfnpCWU9qJBKnWMPGy9sD9fyM8QlfaQt5C+R5xfjc\nO0e8P2TdypS2OtEVfRg+/+6fePvLX/BacVv2gChuG1iNtxY7iI1F/8Zjycs7kQGY2hfQDzVx3ROn\ndswrGLtirGy+We0NrtFaVKxGgYZBa2kPBn0+tDm6bbv6DlRfZ6TcFPF+t0bIOfP29rZL9is/cF4f\nPaDx08hlGt/RJKbpXDmbhmHwvdfey+tX5nlmnu809WHjP+5u5+bdWni0N2lBn9awrnvS7tzQEwgJ\nNlQvgxtjiJluw9KUfyDrb9u3tm17x0lra7rY1jQ1ai2tV1ueLhw4lAvRNZgrsm+Kr18TUlkhwhvT\nG1y3Q1WLhaMS+j1XT78LEGPdZ0tZ+v1kLfdQ1CHRrQCKYg/QAOmyk//Hpb1fL5BKFkXuWYtOhlyk\nz1c2BXKm+icStsS63QlxJhdFzlS1BczzSkpfiQE+fTwxjidqzIMyK7kMGON4OouK6Pn0EQDrxRDT\ne4/J4ndk2jPVGqNNRY6QJ6naoKEOSiFSG/PeD0iQCFM3r733VSPkHUnF+6GlJU0lJ5eyD5BpGlCV\nY4EuNVtqqFhmWZbuK3IMptqA6gqYGKVFwaF/UG8pkBJbCH0S53MlPg6+D/zWF9ANHrRHoTCmKWvq\nOXIEVVBaAsic9Z61HoOulIllY66LTcuqHo9H7b3m5ZkD2iryY/d5Eh6dBFlHXoBkpntQ14j4SokQ\nQYiNe7CglMJ5i99cJxju70kCo1ASOSW2qpwJIaCdxenaf9E4YjMsrGpNchEVlTaV07IHPXKt1cPJ\n7lnU2kiRNTBuwXR7j8oYXDG4Yb/vdh/dVNSIAWYLho8BexMVpAPX5GgCeJRcHzkNgujld4sU2qCL\nrsmF4q2qrybnOI0nSlY4q/HWMI1yLYMzvL78jcd8p2TL5fwBa+Re7uFGLgvGXOQat5VtEU6WHSfp\n3ViUIDDh3zZnzgVRpFaBgy+iQgnxgTUPjNqkubB2lKquTVEL6qsM3u6ZuQxTIb/O8yzo3MH3x+iC\nVpF1nXm6PDE4L4EAoK3hfLqwrA+mk5BhG2cpbAshr4yjY13fasYsz3sLb1g9VoQpV85O9fxJCaLa\n0YaiyS35is1XR7POC8aY3iRY5PGwzRv+05WirvSl3p/xz46Xv/yJ+5+/4k62J43bfWbSI1oXwrwR\njENXgm+pqKUKAeOnf7dhRun+CAJZtfmmlGKYLmg7sG6RwR2IxSqTVvEXi3GtG7WMU7EHsFjnGI2h\n8L4F0jAMghxXhHfn1mm8P/X1cF6X3sroOM+8tXg/Ye17g9sWkAia3Vqr7LL5toY3C49mD/Px40eG\nYawB1T6PYtwkkHIeZ7wkpsgcPZ8nxkkSklxi9VoTdPV+v/P69kYukcFPfPwoe9fpdKqy/53H1BDo\ndt1jrWKEHLrwBqT9ktGOoVYU/Dgyna79ehpa/b1vUkP9u+fdOxVw6etze8ZH5WVDh6D1iq3AA6CN\nxnnXtIvEQ08731V2+9/t+1NrmWVNBzbatfT1rq5rrV9kU9+qrCimkIsitTZllO6hpVSmLHsiOx7E\nA//o+NUCKV2kt9xQGwzrShh0TrLrFPJBfZEECi6aFAIpl+5B5JIiLZHkEwSF8hbbVAjOcHp+wroT\nl9OZy3DFVXKZNxanqo9IikDujVtzjjV4EcLn0ZBLSh9KNqliAN0XDKgBjJJSxVFV0AKp9m+Sue0Q\np1ZWwnKVMWYnLlsvUnmZrLupY/tcc7z+3pyxHZ1w9x1U2VQrbdIs64quXkodFtWV0K1NHyk5Bqxp\n96GIaXs3wHNOdeFHSnmH8lE7V0Ne1g6bl65OaSWvYwPe1ufKe3Fvfnn52q+zOXs7N9Rgsnbs3mJv\nLruXISsCl0Its6Z3JPT9kEW5KRo7yVEJAb0UMbzU1vU2sUVpdKmKR+VwzrxD61qfN1ncNbD3FDvZ\nVjbW5GFkGzYJSuu/GS1NpLMSNWcrNW3bbinhvWeaBvzQslJZUJRV6LiXXtuYaBlsG2fvnY8z2xYq\nunhwZ8+qw+alBO73O0OF28dxZJsjRmsulydGa8XRG7i/3d6VI53ZjSVj2nh6emIYT5QCa9iz+cHJ\n+41B0FRlbQ++S6n9CrUhWCDUHlmplZekhLEZ6f8V8OSK8q2bjMvT6dSD1mPpoyU8+/tqJaMAJXE9\njZyGkRwDcyVjPz091blvuV6fuS8zS5W5r+vKk73SiKzbuvL8LEHPNheWeWayA8bbjl7IPUrZ2VqN\nUeCdIgS5ro1Ug2GQIGRjrgHoNE1M4wnlIYQ7Wnm0blYrCibL0z/9gbdffmFb3roEf1k2/v73v2Ed\n+OFCKHCuZXs/DmhvUFqSSPVv6LVCadAIKq3elUe0bJjTids6o3NAdYRfkPh72Mhlw1X7DJDA5unp\nqfZi1N1VHHYFb8mpb/CXk6Cx3nre8itrqT3u4q4wM0ZjauAzTgOX06XfgdGyThirOiLRTEXbvGgB\nxFF9BpKUnE4nnp+feXp66uVpCWKaS3didLuydrpMO3pi2ljb3dLn9YRfQ0WmVryXef92E9uC58u1\nq47dOPS1VqgHcm23242UCmsLTrcNox1pGIQW8t3e0BPnQ/WgvYtlWfr9HwPaVrJrAeY71KkeSili\nbt5X1TtLlV6NaCbH77tdlJosq3fBYPMVrN/crUXk3rc+Hnrge2w6n8VyQiUZsS3Z2UJEp0SqaNux\ng8a2zv/7BlLP16vIw3Uzu7MMdiKFKKhPzKSKBOQc0Up3B+y8RdZqTIeSeinRcL9tUPY69DBMeDdw\n9hdOJ3EzblCwTIqmnkpkqXUBYLXCOCqa8R7SK0UR44q1nkIhldQ9gWTyOZzfYcWjido7NYE6SDY1\nFJWruaAX2/u6sVnjUWSp/xeDMXtjXllk7btAqqFKx9p5y1hi3HqZ4riJCtql+Pb22q95XVf864s8\nt0ODXZH32p7FHY/vEbdj1tKCqGPg0sqeR/fedu4GqXd38rqBt8kM8PLy0hcSY+auYgExLGy2GI1/\n0+ZejFtVxSRyfL8oODtQaLwJhTtsCE6bjhqipXN5y67INciuihjjLAc8rrdqWGtTzYYIyfO33WTO\naEdIGzHtGZbRFmNF3bUuOw9snuW7ztcLl8uFaZr6z3IRc7ySFTHHGjzuAX/j/3nvexmg/bs8j7IH\n/QduldGWnAPLumC04Vr9kHISh/KPH3/qi1DY9s95P0pJwIIxhZRl/g7OY/QEGUKMUiKk+TZJsKtL\nrZarXV24rIHz6YQ1DpVblrz75cS04YzlcjqxhUJMiVTqJhzEdFNRUFpa/3Q/MC1BQtuM5F1VlaqF\n80kUtzGs5Bx7AGq1PLenp6eKZh0bolYuopFy0e3tbbepOJ14fXnhfr9zspqsUm+g7caBGAJGabRX\nLOvMVC0cmnrMOccwyZrXfIX0mhkvn7HXJ/JgCOGOKs2m4Q3tnvDuyuXnn1GPC/EmCsL7sPC2PHj5\n01/4w+9/z+8+QbxWd3IumMGjbE1Iipb2TQ3BBMiKkla0U2Q01DRDVYD193/4D/zrX/6Z17/+uY+p\nuMo7f7u/UWpLp6bOPJ+v3XhRSjy+t+2QpCnyeDzqOBVlnczviiA/JIDx12s3RvbTyDCMdU3c0UYQ\nxd335ap2La0Evp/7aFK7t35JKfH09NTnmjQ6PhOqp90wTDw9iSn009NTL5Vt21Y9lmpyycKH2gD7\n69eXWnloPL5fGIaBeZ75+PEjicIk8u1+/iYM5AAAIABJREFU7W2vadf9jipR9mrFY5lZ6nNbFlGI\nHrlHx3UBpPR95GO1+24Uipa07oHrjrwLSlk6l62p2mMKGP3etyq0xJpMXIK0e2r7s5WODQ1NP1IT\npLJTg+yyqwVBlPOp2to4YzHe9WsRNFXWA6Vl7Sn7Zf9Pj18tkDqfFQTNOteNNkZiWSk5o2eLsbET\nvOO6UNSGGbw49qaFsdbpV6VxdsJyQgeDyhqt5CWO9srJX5i8YrROQlC1Q5A5p1q6AKvLAQXJ0iok\nRIzS71CgTOkk1FIyuUb1ILXbY232WD6DPcqWMss+EamtF9rgfUdSLkk6WBdFqZYI75CF+rveewbn\nKXURnsv8LrDx3mL14dpQeGNZckYZcc5u/J/HKsGLsxY/DFwulw53O2sZBt/hU9k09ztxzlV0rdSA\ncYe4hXdUy3RGM9VWGBZFiqkT0bXWPZDKFVFq5M4WjAE8Hg+sMyxr9fopakdrggRsWhlKGdi23N99\nM51s/i9HBKIgiJHWe3m01OetUAeOU0GVwNgk9SXirCXV4FHFREi7D428d1kEhGNgOtRMSnhj8Fay\nMm9HlJKN1hlLypEYEo+w1rq+fGwcPd6PnM5XrtdrXcRamTmRkmxU6xqI256lKm0Ynd+facrda6XU\n0qO8BxmTj1k2WqK025HnOjJ6RYwVccvwww8/MAwC028HqH8cLC8vL8zrwocPnyjaEMO8PxcCOZ35\n9u0LRtODDEkOhJMiPRH3hVbV8Y9TlIoa3ue1W5NY5UhqE9Tb6Mq/k0DqsSRKilLODhup8G6xLbVs\nUJSYxbafXc+Wp/Mn4raSiuJ0tthBNtpUCtM0EUJknh9crmMVgkhC55xjSyvLtrKGlaUSQCfvGfzI\ncn8wrB5/vrDUZ5fnG1oVUgmsaSNH181hp8sZbyx5y8QtY0+Wy0XQlZgNKSt89Bg9YsaBtFW0YlmI\n3/5Kmu64k8eWgFIynz58PPHj52f+9q//lV/++jeu45nz2kpNARsX9HClFINSR3k4fY7HcBP+w/AB\n885vKjF9eubz736HCWt/pvd5Jm4zizMsYauO8i1RlK8KITDYgcHZbg7rncOezgzDyNevX6tbeq1g\nhCh/kpTm12Uh1jE1eI+vnCNBg7SQW4GCxlRftLClSj6W62/tao6O330+Va+zti5Z67o1jIyJtQcg\n4zhyuUhwerlcekI6z48DwVt6OQ7O46wXc9jbjXvlBT8eYsnx5cvf+fu3rzw9PXF5unZEbhgGzuOZ\naXBczk9M45nPn1T/bLNL2O+hVTgCy7KbOLfege33lJaESFB+/S7IEpPpnbDfE7oMj4ckFtM0MTjf\n+YiZwhYTKgsypXIhd46rIgZBoZZlYV2XvcRezTRVFb7kXDoy3PaZVh1JSWxqqGcEiNtK0LZXdABy\nCixLe3+WFGKvbnwvGvr3jt/sD347fjt+O347fjt+O347fjv+F49fDZFCKdayESuxMqcMSfqwmRjJ\ni0W5CnOmJLycksEo1GhB1U7u5oxWvpbUbO3hV0tWOqP1hrUTWWVK3g0yW10350botd01V2vdSdkh\nRbTbUZdSybdrDO9UUwDGKP5R4Nrg0N0Ucs/mjwqB3SBx5w+160QflX27VH3Sk7QoKbt7d3etVc1g\nLqPcjrwoLY2JqSjV5XTuaFb2UawSKo/mGJE3KLrBsDFG/HdNVrUO76wO2vVAtWxIYhB5q5DyrIVf\nlCpxVCnVIfxYpP9RTNK64ljPb32c7tsdXa/1KEnuzzVXp/iK1njrUNUlvmUwDcCVz+ycosaHkCOT\nSqvlOym5sJuDppQYrO/ky/7egBhzzZIK27a+q7kXY5i3jXnbpBv7wUAvGxmJKUdSioS4N4nW2uLs\nwDBMGO3ruZpiVd75PM9ijln2sWWNKIS0Fvl0OrShyFUNk3NBaccw7W0Y1phQ2uG8tL8ZTMFXQuJl\nFGdqncT0NcaNoZZTtjVjlOLTxw+cpisx5F7acV6hreHx+Mrj/sp5HFAtm03VpiAXlJGynW78R3b+\nhDeWFBOqFBGwgHBO1rCjpuvS+wLO88YcN8KWmNftHRekcytCJLFBMlDLfqfhLCVAVThdrwyj6/Pd\nGsO23Li9fuOnHz7zuN9Zasns6ccfheOxLJRQuI5XDK38LUIFM47clgU3TZyvFVnaEiondOUOpJB5\nKEGy1Kp5fvogCrKUWdbE80dBOq6XD+A/kpyn5NoGpr6L0f9AtoHXv/ydv/8y4ymC1iOk3I8fP4Iy\nfHl54ePjxqdm4bCtqIfB21tFUTzVeKXPDa0NGQ+3G96sYBu3zGK0ARQ///wH5q9feH0VGsEWV+zg\n+ex/IEyR+3I7dKa4k1Jk2+ZOrm4I7/X6hBk84zgwTb7/LkDYVqwxXJ+euN1u3O73TiMwtlphVBS/\n5EBJu5GuZl9vYwJ12BOabUZbo/ayUFO55m430AxnZS7Fvl4eidjzPDOO+9ojPFi5znEc2ULkGjaW\nVToNrHcZv1+/feHLyxe2bentXo6CIINiLhaN5XRynE5TX7+9FzK89Bykn7cdbc1r+8bOf7V4N1Ls\nznlt33nssdloC60yIP8Wya0vqZOWbvIdBquqajtslLKvtUKhCdUqZBdTtWuUvde+eyftfLvisFF4\n9jJr27Nk39obwDsvLYNKKazzo3N1YUfc/kfHr6fac6JUm4sQJJVpaoqCTQa1JeLcumtvaCWwu0Kj\ns+leQugR68VHavAD3jrpsA44o7G6EHJAh/RuwVSqOcQK81/bvS+cZidJp7pcaPPe88gcVE/NFVtr\njTYCY8u9xHdBVq5+OE29dSRpt421DYr28hunRpldYZXSDi3Lxq+g9n5rJMeSIiDEeOcMMSuc3hei\n5pdia0CqUdjWv3BS0rtLa5Eca909pnIlDDb+yOl0OvAM1DsrBmNMX9z21h6ZVMtz7Wcy8J3wt+p9\ntnBpsI5gCiFG1ofI61srm3Ec+3eFIBYO7f4G59/BscMgC+HxubUJd1wwWun1+OfoKA1ikaMRtcix\nzcsxSG8lyq4csa7D6MZYUuWDtJ+tteTZguHTsvt2NRGBsgptju8iU5SQ0VOSHnVdslvPHdbItqyo\nQ+naWRFIhCAk5ZRSVy6u68Lj8SAXXRMDIY8DTMOA1dKixzqN15lL7SIweEu4B25vb2ijOD9PvcyW\nt5Xf/9MfIQfCGtAqE10rf8PL1y/EtOK8BEumlubdJL0HH/OjLnoGUxfyvETCGvCjeLxpI1y4pY5/\nV+0B1ix8t5BT57IUIknEzvtzLEcHeiWlTgWoyGmqZZrBcD6NjKPwGDF7KWhdZubbNz5eJwyJ1y+/\n7FxNb5i3FZUl2BvGnXBsrbRYUgWWqhZswoRxvEhAS+JcFZBrVXWFLbJsKz/99CMZw+OxcX+T8oYb\nr/C7Z/T4mZISuUjbLbnBCXUqjB8j5Wvi/vZKMvLMnj985MOHD/z40+/5f/7f/5tvby+E2FoVreQ7\nZG04DxNYJ6XPOic0UqqxzpNvkN7e0E+19GUuFAwqK67TM9aPvNz+GwC3uzR5nuzAOJzQTve1onFf\ncomEOBPQPNYWoIiPn1KlcvxKX4cHtydV98cbIa6gpOxlrELpUr9TNv6Qm/AhdXVxCxTmuV1Laz0j\nCZH0H92tB5oUv5X5WrAka3LofCVrbQ8yXl9vnWA9jkNtfVLpDt4yjIoP3pGLrO1z5QV/+ukzPz8e\n3G6v1fHeMJ0GnquTvHMDRtnarFy/S3RL2fmRYuXwnoryvf9TO4RcL2/ZWPHfGoYqUGnPIIiC+Ni0\n2CiFHUe0NWxVwLPGXYGttXCg0YX3zZWFx9gABeAgstmYplO9t/dc3ZwLztl3hPMWqIqIZutB0jzP\n+GHfuxtIMM9zpaW0tX3YLWD+wfGrBVJLWLjND9aqwgE4OQXakNUmnkRrzVpjoaiIiZrBX6Uxbtu8\ns3BypGmpbLJtowXYUkTnnSv0nXjtncqg1YMbCtQCgiOxTinV1W6dm1Q/14htx+j4+xYhLSI2xvRa\nMexRdls8Wn22DQijj7XfFpxIe5OwbsQtdB8mkMFm3J4peLv35gI60Vg2203aRdQJ1XwzQgiEvAc7\n7e+jBLbZ/sv15N4CoPmxdBSkBiuivFlrtL+jR6VAMZrBWYxWrYUbhUygemAZzTDsWYSvWYJzjnne\nW0m059nuU8iPu4Hesiw1yzAdUdwzodInb6v1H4Osdv9zNSo8LjzeD/3diqfKTtK31e5AntnOp2if\nbYFtC6RvtebfiKg5F7n/yUNTthgPWpGL9GjsFgz1c3Hbvy8eOsWfJtUDNPluDtwM8cGRYFY83Z6f\nBCFx5iLGgqMQrq/TwDTuPfNUFkNBN4r1wqM+o/T4xjx/JT82LGIqm7Jc58vLG5dx4Pp0Yb7P5A1y\n3fQHPzHHjLa+ImfDvimUBVCELaNcQWmLHw2+8gi3JYj3m4p9DDciekM8ldvVOSGufb7JIuqgGKzS\nDF7e8dPTtc6Z0hOF9dECm5WPzx9QKfHXv/wd5zUfPkkAmlUmpUBIG9ppkoKlciS99mgSpcRO2G1j\n97EujNMJhSWiOJ1HRiXk/m2dmdfA6+udn37/R64XS16qQGN+4O/fMMOPKPMBStx5jCoDCa8LAWm6\nPtfP6bdXTqcz//k//5+yBuWF2+213vsT3sj8to8747NcVweklJYWPVaqBevtpScg/ulERov31ejx\nfhAlMFBi4rGt3MsdlQzDaeB0bn1NoW3c7b20IOvLyy98u3+TDV+9T0aHqkhe11X4QufzgcB+Zpqm\nnauaEqYZOOvC8lhrEhJkfa4B9u12q2ui2LM8Pz9zvUrg4v2AMRatTV3f5ndVgxhDv74mcGpz9PF4\nUAo8Pz9RSnlnvaCUwmEpuWBQnGowbZQgsk4X1kEQcOFe1XlqLQpX37mcv619a/XMa/uYUrvopZ2/\nrUdHsVBbz4bRStKh3KG6YjCIx6IpllR2AMEKcUrOpw3eeKw67jMFpw3F7MFOO1/jMCmVOhlf3oUg\nvc7ZXj1o47vtW7I/q161APHW836sFYNVCPzz0p/LWg1fc84ozIEfhvRV/R8cv1oglZZIDnupTVvD\nRiaz4qx0Z24MrrBu6JhJGEwJDHYi5moPoC1aO7R2GOtQ1kgXcypMiUapSFFys8cSVRvc+yDfo+Fj\nVnJUBYhpWeqwoNW7EZr3vk6kR58Ix6h+V+m97y3XJnXbaGUD3wOXbdukjHRAOEA25xhD94E5+nnE\nGEHvUm5rLd46IZVTpaBasc6LEJEPwWKi1Ka7iViziLYJt2DsuGHvionYiYxHxWD7vd3DJaEU3aPF\nWtt7CIYQKChUZz8XnDLowXbS+VGqDzAMHmtNR8ra0TKv0+mMPzSzbsrBZnIn17JnHCnZnpEdA+P2\n3kQt1RqONpVYJtZgdA/CdYf/W/YlogGRWjcVTghLJ3b2/lstAFeC1lKyWDIsGV2fm7HvMyjjbIf3\nSyks29oJrN9evvZn8+MP0rC5/Szno8/MTEoSoDujcU6JezhwOY2VoN76RnpQ8ty2JIHu559/x/l0\n7dk6wNvL3/nLn/6ZTRu2tzfW5cZSh/GHz//Eh9OJt/tNSnMmc75KABJiZF0jg9PM9wVOe7LjnKOk\nSClZmimTwFims2wmOT8wEYzP5HkTY82mPFUKkx34XMv2iZzb52rnelXEUDSnbuNwvZ5RRTP5kY+X\nJ+b5hQqA8XT9BGkWkvAwMEy+qw9/+eUrMRdyjEyngawdIVdFmz0LYugNox0wWuNbQqdgWSNWaUIo\nZLVxroHr5fyBqAokzf1l4dPvPjNVqX5WCsyJyIZixijLtsnms4SvTHYi16a/qcgzAAncrB14vj7x\n4w8/8PXlb+TUFF0Lyg74oqSxel7rBlnXU/EGkbFg4HZ7MC6t8foVNVUDX+MZxgsx72jxOI7ElLm/\n3Mg6cn2qNgZ+b+Z9u915ef3Sk5wQV+6PhWGY+PgshswNVXwsC26TPqFSZtsTyGaj0teaUrqv0zAO\njH6qyWvCuaH3S4xRKgwhyCZ/v997uUdsWFwlnC//hpicswVyVbBB29hkHdsT27bWt+f9eNz6PnRc\nh3LO+EHI72NV5R3VtUuMlDJLv9jB7mOa3dW9qaDbZ2FPko8WB3vibXFObDRCCKS4ezcZYygVhYuh\nmWO2ZyD6zZQKVmlUzL35sJ2M0ElyoaRUk7sdASxFobVlmvYOFkBf61tz9ePP2t60E9PNu70UTEUw\nRWGvVLM9MXh3wtki5t71fcj5/q2dw/fHrxZIhVuCrNlp+gplFM4MWGUZsiL4OjER+/YSEzEupG1g\nqKaM2lY0Sjts9QHpJZacqnEiUHkWR3TpOGjee/7sSEoqGdS+afuOYvi++R0f8tHU7Xu2f6uPH7Mh\naKZtMth3f6cdGu5d3kv7jl0aD+wOr/q72nDKZJ07zF0OAYNSSppBp8SyraQQe5aolaoqQs3ZTRS9\nP7eGLB19VY6HUuXwb++5VW1BEDRueBcQpZQkgKoGi83bRmnwTXlonSAEldORSySkhLWaU9/k5dwt\ns3JOvKestbxVp+kW0LX/PjZMlYk49nfSkLf2TJVSGKXw1qK1fcd3CJX7VIr4UMV55e6abYQ9ZIIj\n65J6ILWsr7WEdqkNNQ/mc9ZhjcYOkMP7QBHEmHHnCGRCaDL30rO4bdt4e73TWsU8XdfD2JfArXke\nhbiircH5HalraM22OZ6ulx5MbmtgrTw3jDSMXraNHz8VLqdLL1/9+OMfmE4n7q9fWG8Pvn37RjN7\nc1rx9stXts3ixivOF9Yq4//67Svn87mqBMVluT2znGXzdtZKw+BQxMagLicFLW5HxoDRpFIwdeM7\nDQ7FKKV3J75CR/6FlFJWUtzQRTOdqrGotwyD4+lyIawb99cHp0vzIVIiHx8HNLBtmbK279SgDJkM\naiBF+PHzT/KdwzOP9SvPn35APOkKdmyWComwLYLMq8y6bcRQUVxvOY1nJj+x5cLb/MB/lADUjCcY\nBopSFCK5OIytzVk3y/LlC7pYfvrpJ+7Lyi/ffqnPTDonvLy+8vLytW+OAF+/fOOxbfzu93/EOiNI\nTWmeaHUsotBKo4wmLCu2rlPq8wZD6YHWNF4Ya/ugdZswJfHhfOGnDz/wtuztg3Rdz7wf0GqVYOrl\ni8ynAUIoImmvFhwN5b3f71yqaWXzmmsByu22ByeNMzNvUjIa48RU1xBrqxlxn797oNOcwbvy8H7v\nVYpd8SrPxTnH5XKpirhFSqRdxu8rkqWZprGX2wBuL698/fYL97vYuGi3K+HO48T1/BMfrpfawcBy\nv997ZeC2PLrqeRiG93YFpVYoahAF+z4iJUjLOJqOovmKxrbv2YJ0F1mWXUUn8zGTU/Ng3D37clY9\naN1yRj1gPNW2UqbutfX8sl7t1zQMQ70mocu0st/1eq4lU7HJadWh9p6k7CrvQEp5NcB+PHh9fe1J\nvVgHNbf4U1dmtjHTkuD/WRAFv6ohJ6S5kCvRLzuNv7iKrmSUGTofwhVHDJI5aTOQjCVXawTj7L8p\nwSjTTPkMpGpKqPW7DfQYbWcK5VAWar/bymKC6uwPtfVMav/eyoWy6R438d1tttVn23cca7dHclyD\n98X3dTdXEz4MlFwOMGYhRkF/dNE47cR5vJ6jnQ8qr0dX520kWFnDJsTD+0M8kurz1sYyuqH7tyQO\nzrVaYatz+7ElAAgPrByMQZVSvc7cvF4G6yiVv3IM6pRSnScnXmKlf44kE6WQCDFT5n3Tazwl6z3W\nqj4x2vcLRJ0JYevyd2uFbO2rj4jwVHaeAOQehLQJ189X73kcR5Qx3O+yCLeSWM4Z68WzK8ZACXLO\nl5fQXX21Mijr2FYZc+v8htaaxzwznCYhipcdVdVaY6yG70zyKIqUV7ZNMrdSdqPLbn6aJEA3qtDs\nFpbHDVUm1uo7FtNGCM1aozAN0hIp143d9zGlWLcN75wgblpj/V5ejTGQs/j5vOY3IZcC4zhgnOd0\n/cjp8oEPv/sZpeQdvr18Yw2FjCbEma0E/vwv//0wL1bu24opmtGabsipSybkiA0rdhjRKkEspNoG\nJoXUieqlmvk2lMz5CzEnUqgGR2V3fV+3rYoSxFzTDWJLAbKZnM4TiY11njGD77LrFALOOJTVsrhp\nMBWt+/nzT7y93QlZSk2vr69cP36WsWg8H9zAD7//Hff7g8vTU/elu79848PzwP32Sq4bSwtOR2tZ\n5jt+MkyXEaUKoYlFtMXGREmgjROaREOUL59wduD2yy+MwPnpqbfUevn6iwTXJO7zA6NgqwjBX/7y\nz5zPZz4+PeP9zxTt4J1TWqleXxlLwQ6e0vkuAZRYEGsKW5j5UAPQ0Sa2bcU5T9GZ23rrzzRnCU6G\nYeD5w5Xfzz9C5TPdbq/4Oodb0jmO53o+hXOKoiTQFof0vQellLMUp9MoyEdDHrQV01kMy7yxzFvn\nuVlrmaaJcZS+dfO8vFv3j3xVrfdraTYL6zqLsXB49H56zg6cz9eKsqpqPFwNhZN4bouNiTzPjrJ4\nU3sPBtxYOE1jrcTI9Zg6R1IszHmmtUZq9++c4/F4dM7W7hFYBS55d3Fv64KsA5I4ro+VGCKDHern\nfLX6yP13WvIVNjEQjkmSQKcNw9L4gZbpfJbSbZDOFu15GyMWNEIRqMF1q7wgtjKy/m/kHCn1HudZ\nPKduN13Lu4H7XRLo19dX7vc7SimmKuowDd3XlpgSy7qS6phr6+w0Dh0J/0fHb/YHvx2/Hb8dvx2/\nHb8dvx2/Hf+Lx6+HSDnL5fJEiZK1zNtMWhNWQSLxiDcG3UiHAs8rbTDa4/zYkRdjFNpksTqoWbyu\naI7CYbXGVK7QkbPU3Fib1cExt4K9LipIyt4moqEc36vsYFeDtZ8fuVDfy0kFWdhd1o/XJNJ1yeZb\n08eiJPM5okwNrTgibZ38rOTcqVTjsnrOBv+WKITm7T4zOs/g3btr1VozVB5YqiiLfLFmNHumeHSj\nJUdi5y0JD8eofYiVDG6Q+8sqo5rqRb2P55s8FaS0akru99j+tOtssHWuLs9H1C9Wq4Auaa/vaRyl\nR1l7x0eViZQsY+dbNVQOQJXCVnlgwpXLvVw4z3eWx4NUCgO1w7tWbKtczxwCt9uNZV5RRr/LcJpz\neyBzLrn2XduvB8QKoLXuac8mlyxqzbii1Aac9tJuKvIn7y7q61pVL+udlITnsW0bxhznhSLHRCow\neoexuvOJ1xgotxvWaax2mMHjK/o7nS44I+IF6wesd/z9q7Tyce7vPJ2fpNQcZimNVuLs9Xplmgbm\nx4OXlxdev37jP/xHKVHd3154zF+F6+E9W0o0e/rhdMKEwBoWYkGQqEJt2wRkhTOeOT0qOdz1stiy\nLWzMIsCoJdxj6bpohfVV/ZsyQ0VOx9GzbQ9RwWnN+thQsTq0P39COcfbvODHgY8/foJ6Leb8xE/X\nn1Be8+3+xmhOfPr5j3I+bTg9PeOnC0/zg/P1xKOqs87jM2wbxp14+viJ03QhNFPB1zcG/4Q9AQZO\nyqMb3cGMYMR9QIwUM6aS28vyhlEaazy//PIL0/nCNFaDxOuV+/0mKjYjRpOvVQn47ds3PlyuKKTc\n6KdPFA68Ui3WAY+XF8rLF54+XGl9VLMHrSKKAUogppmpot/X54+sWySkjUe6d3Vmm8PSeLpwOQ3Y\nn3/HqSJyf/rTn/j68vfakFcxTReenqUX3TB4NJFSW2rlEKoju3gnN9RWaBm2Ny02RqwCZL5UZKVZ\nf1RejfcKZ0cYTW8633okTtPQ137nal/HlGpJ6Ru3+yv3+1svX8kyce0ozP1+790AUKKOHcbPXaXd\n5mEIgf/+p3/l9PrCH//4R06nE5fLpa+Lj8cDoweyioRtQ6ldzZyz9NtrY/58Pr/bO2R9EZTw8Xj0\nfWicPM4pwqakQbfTHR3VWuONZ9Ursayg1F5mvN14eXmRkqe1DKNjaao9a7nNNymL1jW6skuq/cNS\n90lBu1ppT8qjgriRoxDaD89mvt97hUqUu7VTwDDycZzwXrqBDKczvr4ntOlcsqIVsWSGKmwxzvay\n9D86fj1n8+dngUTruLGL1ENtMfKAUuauK0TJiimwrRHvIoN/DyqTFUWLK6q14q0DUoNWSmHdXuds\nG0Yb8O3PketzLOcAHTZsP5N/25s7dsJx7ZN15AN9T4JrlvnHuq7wwhuHhoNFArtygN2bqLtwVzf0\nUqHl77k/umh0bXchBaskJSIgIlyQcRo4jWJh0Ajn27pUeDainMWPA+dDCUeZarefhAu0HpQPzkjZ\nK+fMNJ73XlX1mXk3oK0mlohSu3y4lP1ZFrUvdmQgh078bnLi9rnG1WqBUiPe56yY59D5ao1cub9D\nXYOLrZci2/Me3N75/Ug0bNcV1q3X/RunYV1XdB1XYd0OgX4dbypgKHirUEqC0U7Eb32dculBWnvv\nsuCpWp4M7ziAbVyk6o9EEThczusOClDh4z1uEkilKCWm+7axhcBpmrjUTTiXwj0+WEJE8cTz9YKv\n/SmlRU4SRctZFu+hNlJ21Vl/rIFnzjt3JWVR3YVlZnm8sSwPquqYYfB8ePrAj+fPjG7kx9//game\n769/+cJfvvwrZX6g01pLhdXZejrjh0i5vxGLyOGLLpRavtTOk0Mmdadkeg+/Nay4kxVSqbHktCdK\nKENC+nO5ykts3MEUM0o7lDaUXFAUnj7J5u2qUGB6+sh4uvLzH/9T72RfsuJykabMZjjx+dPv+PD5\n5/6eWrPpfHkWKXl9F8GKVPvDNGGc8LgulbNjz1dyXPj69SveiS1F4xUKX9KRtYRdBotyMg/DfOfx\n9a8QE5nEf/vLvxDqRv37Hz9ijeHx+opBkSjMNVEY/cT56Yo2jpgKvnJHcw1CtDKsty/c//zPhNcX\nPv/wieGzPJsyDlDE0qQoOE8jqqrolLa4MZCLZxg843l8xx0VVZ6oQf048PlzazpvUP8d/vr3L6xL\n4u3tG6W0El/juXh6w2DbWqTYrjTvreq4AAAgAElEQVROIVI03Or8eTweGBRudIyjJwfb7TSEqyPv\nI9n4Tt2LyihtMeYkvB8D8yLPbZk3Xl9fud1fa3P50nll3gmvs62XADnL5x6z+Bxp43uCeL/f63Uu\n3Gpf1LfXV+7Pz30v2p+bYpsjJYmnH27f90II+EGsDHKJpBrYqSABUggr6zozL/e+1r6+RZp7eymF\n6/MT/izBWdJRkr+UKdlg9O4beJouUCT5O53lXluym3OufQ8NpiR8XV/k/ucuxdNGiOH9/jCkWFvJ\nGScBZms7kzLn5w+MfuggySe7C6yU0TVxV6AUbtwTWqvE7qf7aLndA/F/Ekf9eoHU5cMVoy2qBinr\nujKv4oWybA/StrGlaj5nE5PzpJzw1KCkRq7WDX3DUFoeVmuEbI0Q5JTefY12X6e9HcuRPA07oboR\nB4Xv0iwHct/Qv5crt+9rQVojkMPeCLh95xEhsdWaAHb5/fdZgtZiuJbjQUWW5dqN8++QqvY9jRy5\nLAsGxfXpslvi+4HJC6JktSHGRDhYJwCU5U4ioTU8X2v7AeeJyoAtnSvQUBlVUt1cRZE2jiOfPn2q\n70LUEqYGNsdAKhfxHrH1eS3ripta7VpT0tYD1+/NS1vwGKNM5kbFbkq2hpw1qwdoEnf6+zx6WqUU\nSYPrmWSzSgDh3h3VIqUUUTDRehA6cozSzX6Z36mFRFps8F76RHk/diRurUhjsyM4IpmNKNu8aI5o\nqFKioMo0lc39gJyKdUSzxFiWrb+n17ckJO6UiKpglEHZPetV3jNosRXxfmRsvJzBMzjDNJ4ZTif8\nMOGGvZ2LsRbjHORMIvH8fK3vwvLl7zfW2xspbsyPB/c61qbTAFuEp5XxckUNZ6iNh5+enrh8nHj9\n8oX57caZ2O/PaE2IkdNwksD29Y2wbcRKLE1AzFk4MMh7C7nNt6ETUkMIUHYJeIgbsWRGNTC4gcKe\nPGUC42BxVqOy49OHP3CpCjO5fyU+TD/8zOl8ZT30bRv8REwbp9NZxB8VNTfWkQsUFNOwt+wB2UAa\nh0U4KgNTbQOCG0lh5WxO1UPPU2ovwZQzJmVUEuNYyFCDDDdOzEozWMv1Dz9z/7/+C//6//0XAE5W\n4aeBXETEsGxLTxQ+f/jEeZxkPuYIeRMdfuWqqgJf/v5XlscLKSyEr1/4saovT9cTGVMpoYrn52d0\nFTc8lhlrFDkVrINRj+/WvnEcmee5r9HDpa5D04h3I8r8V2k/NM+slTQ+jWcul0tNJmLv1yfv/oBE\nV8uYxhsNKfDy+pVTvrzjRkFFOuY766qJVQzRBUmVpznPc1UP7pzSeZ4PFiaZnHRPLsfxhLSKaoEj\nneB8vV4phL7eNTI70Ne0Ugp//vOf+dvf/sblcuHzZ+HdDYP4Ht14sNXkviemiJ9eQaErctQUwkoX\n9KYJ1QAzZ1CqtQYb2MLS991UDK+1Zc3L211EQMNQzX73/Ww6OYw918Qwd0uD9txaI/rWBHpvZp6I\n4X0PQ0Vz8hS7B0mSPSnvdjLGeS7Tae87Wtc3kGSv7RcNpW9zO1EwzjIaA7V3Z+ctG93X+X90/GqB\nlDKW8XTiUtUbscDL/QH+Fazi7Q3S3BaGSFwTkzth/YjWFqV351itpVdcI4F3wpp2aG0xdvfHOKrI\n3ivn3psZwlGyfiCyH+SV33fIPpIaYUet2n8fieellEMGIU2DW4Cl0t5oUWtRhzWyu3EWHfbvaUhU\n97aq6rMUxIhxuT9Yt4XTOInppt6DAmd0JSkXSlm7J8fpdBKfjW0lFSH5mQqrDs6TtOf/Z+9Ndi3L\n0jShb3W7P9291zo398iMyMoglSCEqClC4imYI8bMixFPUO/CCAkxQYIJEqUCihTKzEoPb8LMzW57\nmt2tlsG/1tr7uGfGICdeA9tSyD3c7N6zz96r+df3fw1nDFrPOMbAVQDYdoRSVFWFujRougWRIp8O\nDWiNqm3IXDE9qzgJfSxeyrAEW9JDWAqSNVqY3sVaWZdcsa21mVi4RgyBFCS6IFpNU1/Jg9cJ8/M8\nLx5TDOincUksF/LKe0xrnVGrVPQlWN7MEzlzcw5bOMxCZ/SIF1UmTyYVSi4YYgGaRA5rpUwuyp2N\nBZhd0Mo49sjZ/IJhGDBGsv00aejZQ8UQ2olpsCKpwRQqydF1DQ6HA9q2QUrvdMFDFjXKpkahKqiy\nvtpwWAhgwcMzBrl+7t6h222hRIDXAwrJcH6hth8LAWamYtzjABlz/AAqsBmnBU41exSKzHHpBz2k\nDZDzjImdYfUMazRsRGXGcaS0eRNgdIC1y4k9IMBdLPRIRbKSEs4nQ9IZQhK53wqJuqzQxNZXUTYQ\nkp5tXe1RiAaIp92mJT+5w+0B7W6Ptu3gz9FyYBpwPj7DWoOilHBWoUqIJWdQSoIxgAkGazV4NFFz\nzkObCVI1aOqWFJ2xFRGaCgw1NlUHBMBjhp5iexIuB28zKDAoANEnbLyHg0aQO6CQePX2DT5+R+aY\nD5/voZoSLy/PmPSMfprg9VI0sLi2mGmEn0fwmkOw5A/gEKyGmS2EKABVYY6vqmGMtu8QwIJFVUjo\neFB6PD5iGC5AcDDWQhZN3oTTITcFNDcRuQMAz6h195vA8VPxAefLU3auv/Sn2I0wcM7QITbOmaKQ\neROex4n857DADefeQFub22WqTARsC2sdZj3COZMPyvR+SWTSNBX6vrlSM9MhZsI4zmAgtfdmQwcM\nKs4GGENrzvowX5YlVFGTmbL10bYg+dtxkPO3xePjI56fn9F1HX77298CAG5vbzEOM879Cc45VFhR\nBPwYC0GfVc5r2gpAlBPvAwRX6CJymBAcIQTqugYvFvTofD4TUjVZdC2hR2HVLt1s6ngApXahFNEn\nrlIoCtrbKFReoq6iTUV6Jp7MdI31SAsmpT+UqKO1hZQym3wmP8Z0iA0hZEQ5HabXFJz1/jzPMyQX\nS1cpFtgeIVMK/qnr17M/SHBi2jCYRNfSCUYKC1YAqk+ySEWuppzaIggcNkH4kqrTtmlQNzVUWWT+\nRaEqUpiJxQMofV423mIUTEmOtKnq9LmIot73YpyZNvIEx675FQCuirV1xbtGuNL/zxu7NQAP8RQl\nABQLVOmjp5MH7MoJHKCNzXsPr10s7NZeWJ7StWEpsFiSn8icAmjz/VlY78G5zBOcjDNnzGaKShKN\nx+kx/xlTBQSPi8Sol9NHu4Eqa0Ialb9aUMqmxGQ0zi9HGO9Q1yWKInGWKlRVAwGGYC3MPGQXW87p\n9JM8oVRZEuqBpSBlAJj3hECYZUK1bQvGSA2z9hxJMtuiKHLhlwxQtQamyeRiKBXgAGBAJ8GyLGG9\nQy2LXJgOw0AKOQQwKaBCmshJyi0xxBPcPBkwJjIXZH8o0TU1JGeAd2Bi4dKlwgpYYPmfWyBY77I/\nTEITq6oBg8AwXNCPA0Y9QrvFqkFPM3loCY6yKVFVdJotigpKkSli01ZXY5/g7gpKFRCSQXKPqlhc\n5vu+h/cem7YFl0UusHmpAG+gYGA1hT2HqNoy8wWF8nB6xvHhI9rOgRdt/F4BFgbj4GF8CSY2kPHz\nAmYy6Q0SKgDKzRDeAWf6/i4aEa7btkmBdDz1CJzhdn/Aq1evUJUljjGyxFqLoqxpLDqK9+gn+h42\nUIC3VBJc0jNIHcF1AZsL4jimvHOY47M/9yOsPYNFtVDR1OBKEt9uHMEoOhdxgEOJApwpeAhwrsCT\n9Uf8m6GsAXB4y8CquD5IQWatrAZAfMCEepTNDYLm0P2I4z884nTsMcXvYMcZ0/Mj/vjxA+DoQMfi\nhmidwzCP6OcJsqqghx6VCzlWazxfYMYBJlCpy72HjsaJU/GAqrsBsxrD+RnCTfmA0V8mDIOGFJzc\nz4W7OtCm8T7PM6qaWn8A8WPYltA2xt+ieFS4v7+nP3MGjDsoWYNzGrdpPbFW5feVKRgpkiYa0fZ9\nD4+AdtNhG81oi9tdDAs+x1djVzEoLh+6kkdd8kOa55m4T8ahKhtst1sMI401YxUeHqlg4Exis9lh\nu93muWatxeVyyZ+b5vYaYUvggTEGf/zjHwEAj09PEd22KAsJ3zQoTex4OOIhCcFgOalGk8ltU5Fx\nalkAbcMjHWI5tCpVYbvdou26/G4AKqSSrUShZDZ7Xs+H/jLDGkCq5fBVVQW8dxgnTQa9ImRrG8FL\nVLVA0B4qBKjCQ0eeH/OkYOXxs2RZoIwh74HRd6RCN9rVxMOVdhazJvsJyQARFtDDRi6rqCRCVMKz\nxDdl+MWa+/Pr1yOb8wLBC4xjJJ6VCoWQqFQFW9TwjQMLS7ElywqFL1CwCowtLbpN26CpOzRVi67t\nqA+7SvpmjBamNXeJPp/HCn8prtLAWEvvE7ycPi9Bg2vO088Nzf6xQiohUAlBW7dv3GrBT4Mw/dk4\naXg4WEuS/EnPVHhhcb8lA9vFUyr9sxAcom7onqTI7RcAGQExhk5gZQl03R5AtDEI5N8zDMMVL0lb\nA2tm9GaKcCeHUNFyQMnsAKwYGSvOUQa7a3f46qsWl+0W8zxeSWRdTwO3KgrKPAouE6MRHLhqr1qc\na1PSxFNKAz0tNs65TIYnJ/Lx6r0mNIhsKaarn0sIX+JlZSJy8GARYXPOkSOvW4qcyZnchquLGkou\nLVfnLYpK4Xw+071VKrstV3WZx1n6zNnY/Dlp3KZFek22997jcrnAWsqpip0tTNFxux8HSo4fegyx\nIDhdyPxymEZIKdG6HcoqQuOyQtOW6No9dpvtlVGp4AqeMYzThKosoZTE5fxCz9G1kFxBlRWqpokL\nL42nXg8Y+xM2uy3sJCGFWBY3GVAIh1kDw/mM48uIrqN2cLM9wPsZiis0jaIFLT7vICJKWzJqgegG\nojSQ45L0HhDXkHjqTs+tHy6QRZnbsWvkWEhCm1nAVVEKAGVZo+k29LusA5MsHz6Ska73hCTN05hJ\n46WiFAPnHPb7fURLh/i7L6iqGohteMF5jt6olYIsS3ChIFRJjvYitv18QGAcYFSASLGHlNFUFB5U\nQNH8CcxRYQUAokDTcszzZ5weLxhOF+wPxDsaxwn3nz5Dj3OMyWLgSDxOj8s4ou4HlEUDhh5mHDDG\nlsrL4wvOw5na3/CYdY/TmTyfPn/4ATe3b9BWnPiXmmgcABW8m80OhRTQ1sAzd7Weeu/x9PREvkWl\nzMV5AIfgwP6wje1uSU7rAI6nJzCIaLZL9gPJqyitr4Tw1ihLQpEBYI6t9bS+GO8yArbfbbDb7XA6\n1ej7Hn1/vqJjJN7lNA25/Q8Qsds5Ouzv99tYqEX+1EQcN8YEbg532G732O1oztR1hWka0Pd9NjlO\nRY2UyVonYLPZZDuD9GxO5zOEUFmoZGNyBQ0OmgtFKSkqSTBoHd3EdYAoFJqmQdu2cS1a+Khk5cBg\njb7qqJSFQnHYx+4I7afpuQkhME0T2pa8w6qqyd0V6wwulxO8tYDwkMxn2xcFjrpsIBSDR4D2Dioe\nRgRYFCwhr5drpH52BkIolGXa45K1y2KSzRjDZHR2WS/LEiq20cnVf8n9S9zrP3V9sT/4cn25vlxf\nri/Xl+vL9eX6Z16/GiIlVIWAEjbKalTg4D6g5BKs3qNQDXggCHSeHomnAwl4jqZqsN1RzlFb19h2\nWzT1Fpu2gSoJ1QBW5msQv4g2IWLbkpP2c35TUk4l9/J1xUvqi0RcXVRd6TSzVoitCc7rCJpU4QMA\nMzxDuQl5ySdkTidcZy2sNtDTnEl48AGMk5uws4uJZLr/qqiBIpKpo6z+Zr/Pzybn4sUW1hIQKTMi\nUxc1IHg+fY3zhOfnRzw+PsKaKaIlsb0VuS5KcLx78wp12y5kvthq67oO0zTh8eken++P+dkMI2Uw\nJbVjgv7JIJLM4Lig9kySCCciNZ38/UIeXj33NdEyGc4R6qQjyjOi768tLJJpXQq4TFci/AshAEWE\n3JDsHXgADzHvsajQ1Q2YFGhcncdGshlIZNH1qW0Yhjw+EzcEQDxVL6eohJilcUTjjYwAk/kfgIg0\nUjL888sLTucXHJ8JPZoHQrXIZLCFccAQ+Yj+fcC7t19h091AqhpaD/lEJ4sSLW9gg8cUfCToLy3o\ntm1R1QXAPHx0dweA/nQGZxSjMkmFQhZgKe6BO5jhmJ2ZPS8zAtTVG5xGh0IKlFUAVx7THMn7vAKX\njEw8NQOHhAolpIyoso15kKDcyuAWlex2uwUTxA08n4hHMq+4QHqaURQl2rZBVdWZ59fG+JnUbjJm\naV0n3kXTNFlpma45CVMEi0aDCkqllgmpCaWU6C8XMn1sIu+sblBUFCkDLuE5A8tn39T+ZUAAQrCI\n2DQY4wiOeJ9EERDwiC1mEA9rHGdwJnA6PuN8iVxUC1yeL/AasN6AiWXOGGNwerqABw7vgG5D4/US\nDWnP5yOmcYTiRKYWdUX2HACG8yPseMar2wNGPaIfB9hkiB8jQKq6AHqLy2Dze0ok5MR1TP+exn5d\nE1dPCEFcvtfxySgeUWqbFZGFXFrQqS2ltUbVLLyroko5bAbfffgR9/f3aEp695t2ixAArW3mPSX3\ncOdCFK94aG2htc3rFzmF80yt8E5C69RiT1EltOav529RULC1UgpV2aAfzpl64iLyrTXN44V4vSBk\nUhRQqoSU9F0TBxAhEEJrPf23YFDE4HGJgCo6sbdtC631KrvVZa5W2psSGrvb7cAYxzAMGIZzfLbJ\nGgFZ7EKGyxZSLG7xVdVAa005fGUJFw1Jz2OPoiixazqKTVKrLFyQaTOhYwZciIwAGmPIDzdwiLIk\n4+9VByOt6+fzmdbh2EqsYveCCwGpFOw05bG2frb/1PWrFVIhOIp3ESkY0FFCvRAIioMHBV/F1tdO\nwdgRfnZQrMJ+f4Ptll7ifntAW21jeLCCKhYSM2fXlgfr3jIVHEueUCKOA4tqD1jadWvJ5jr48efe\nVIv1fJkJbOsrWSKkIg1A9mhKn+O9Q/BLeGPaMK3R1FKIe7uKXBqpBJw2cNpgjkTpuq7BSw7JOaqi\nADhHm5QM8XtQDl2DECH045EKm77vsd/f0ISqqKed5fjB4+Zwi+32M55iL17GHrtxFpehx7Zt0G43\nuL29zYN4nmecz2dS4Uw9LsM5f573HgOn3ndRVJFcGgnONpEZx5UTusjP0kWvpGlKrZLkPbZEE6S2\nC18JFFIhkdSTay5bKoidc0SgTq1f6zBps/iWcJ79YlShoGKkhVIlROBw3mIyS6BzGos/zww0xsVC\na3Fjr/gypoBEkPcZyk4XtafKXxRZRVFAGp2LhOD90vYTFKBrrcVsiHBdt7E9K+m+h+GCogwwesrw\nPhO0GdgAeMdwOp2vuBCJuD9NxEc7n0mirceJ4h6qCoxX8NzmTDyjR/jAcBkv+Pbb7/D+m9+jaGKL\niikwVYJJCQcOsICijQcaVpNbNxOwBSBLDqklQg40LRGGC7ynLMFx0nncbDYbILroD8NAHLo4bzjn\nKJTCq1evkYKbk50KqSQd2rZD17YInqGOYhkaMx7GEFHZGg/GomdbAMAZqrqBi7y+7FBe11AFrQVN\n7SP5PUn1K4BJcidnHIwJMDTxzVMCRAD57ATMuVhiYGCiAYIk0giWKBcPAagaP3z6Iz784Q/48PFH\n/PAjOcn3M4kw4C0ko8K4bpPy0OEynPFybPF0fETdVlftDmoFBjheAIJc5Ju0SUkBbw0eXp7xfHrA\n54cnyuYD8M37r+Eahb4nyf00zWji+++6LbZbihr69OkTTueXPI+MMRRjEwKUKrHb3qKJikbOGV5e\nnsBjUeecy4pV5xzqus40i81mg7u7O7rPpgNjAY+Pj2jbFi+nY/65b7/9A4CAcewhFY8FJn3/aZow\nDsSFulwu0Ga6OpQn1Z5SCoWqUJQLTSStwV3XXR365nmOsTTUFtZa54JX6zkWay7vVUKIXNgUqkIp\nS3AuwFX0hvLLOkyHsgBvHcqyxja3E2sIybHbbNF1HcZxyvyp5GFIe2SitaRW4yKUuX/4RHy2uA6v\ns0BVUaFpOrx78xYAsN3tUDUbjJce49jj+fkZOh7oJCfKzMM0gQEoqzpTIRyIm8wDfba1FnqV6FBU\nFQQH4Cl/cE0oT8Vh4rQNltaopq7RtCnjsYCz5MEFAFNUjf6p61crpHyYMU4nVOUu/heGwntIpQDJ\nUQkBGb1PmCphzAQ7TCRLLktsO/q5TXdAVZQohIQqBBhzCEnKHgEWX/CrkxWwoEJpw0zZY8DCPUqb\nas6yw2LAmcjP640tnSzSf0+/B0Au1NabYbZikCIjUtbSaSMRVYFFvcI5BxcMqSOb+FnBulzwLQnZ\nFzBHC0XXdWiqGvM843I65+cgC4XNZoOm62hwxYGTBmXTNNhvdxB8iZtp6xp106Jpa9zd3VGAZxz8\nT6cXmOi7klRiKV4j9Z4vlwvOlyMeHx/hsgpFQkoOwSgo14eAKp4EBzfifHmBMQZd12G73UZDzYgQ\nCQYT40DWsTNlWeYTxcKFWZRw1rJ80lhz0owxeH5+Jk+gukYhZS6Gk0rSWhovHkssR8MrKCVQqQLW\nOkyG/GPSSQmMJnFCogghTe9xscdQSmE2Nn9meq/p3a75POnPU6L5bHQep03ToC0UyqrCdreDnuc8\n9ofziNPljNnQIlWIMqs9Awxejg948/YWxnI4Z3MBCiCetEMsCBa58jiO2O12uQgNAfm7Ky4gS0UG\noQBUUYF5+rNuu4E3I55fLvj8cMaf/+UOqiLCbRAKTfMKTdWSRYbvwRKSIzmCV3AAgi1hS49+mMmD\nDoALuNrMpJQwaRO2BpwrSCVh8v0uaDFAnnUMClUlIRU903TK328P2O+3V9lggpd0MAgczrJ4QEuH\nFkNIJuOoavJJkmm8aY1Q1yiUQnG3gzMOZeTCwHqMQ4+q6xCEAHgA42lTIDSKRXMmBuKc0sSIKiNG\nETgMIkv8GWfgdYfN26/w/f/xv+PT/U+YXCz4eICqC5iJbCRmN8Oe48ZuBiqaRcDweQDnQNfW2HY0\nT3fbW9TtljbmbRdRdbqdstkDLuDT0z0e+x5/vP+Euy3x4MpKwRkLJggdbbqbq8OQtT6vpafTKY+3\nlFtX1zX2+z2MHcGi2rNpKgD7PF8vlwvmOBYTV7IsS3zzzTf45ptv8mHgMkyYZ0IP3717h7bbQg/0\nc4+Pj7GLUEKKkjodZXr3Ck3dYbPZ4HzuMQwDLhfqpkzzgGkaME06ImcOLBpN0wE5ZJHINE3Zl805\nuyoaLYZhymNbygKClygrdWWlkwO9uYKSJeqyhooZpGVNfzbqVESMMNOMpmpRRlUqQ+rUWGhtFqQv\n3us4jnmNSu8HAJm4mhnWzrmTkXyuxpF4mLvdDnVD2YCpcGu3O4AXqKsNvv/D3+Pjh5+QUILXt3ek\nup1mBOvRmEWE4BDgjQULgJG07ic0tlAEYiSlnl7N7RSJkwRkWmuYKXJD+WJsnfbmNA7Hcbw6vP5j\n169WSD0/H1EWDraJX1IqGDBUwQEIUA4IsfgptwX47FEKjiLUUEWDpqTquy4LVFJG0hiDDwzeLg6v\nUkoUTCFwA+0X471UnAgwyq9zDmnmJxO/NfHY/Sz7LG3CV8q0CA8qVcbNb2l7MQbImPm3djUHyNk7\n/x4PiADwsCjFxhTUqg2CtplYHoH9fE+FVGDpNO89mXwyCQ5BclkXsgQ+ITLBAVZreASoOBGZEJGM\n7eEZGe+lIFndU7ClnmYIBsrUioWrrxpsXlMBczpeUKgn3B6o4E2Zd8F7DOcL5suU/T0kkyhEkQNq\nE7EaABi3KMsalLTOI5l3CdkEACED6iYWJ9E5bZoHBNDkc96AuZAXgKqmzEYGkU+t6fLeE5oXJ5uU\nEnPOGeSomibbCnC+bFDDZYRSBYCZAoutxTgNqfOFEAKqqkDXtVmGmzZh4x1UVSKAYdYG/emcw3mT\n3LiuSmgwzNZd3av3DvN8pKLae/Ds6+MhhYQSCpWSMIXKi8G2a/HKHfKhwFoLF9sGnAlsuxaFVAiW\nw+gAGT2mqlIigBSzZD6qMMX35IJDAKCNRfCUqXW7JxLzNI2Ul1gLwHtwIcBEUgNa8EuL4Dv8/j/5\nz/Hnf/Ufw8c/K8saXAbwokRV1ghhe5UlGDhgOIPhAkEJsIKUSABgnAePlPYAh34a4Xz6HhWAgKHv\n83iro9KX8uwqBGgESHgvs2kwrQU0ZpJCMY2dhHCbeYa1GqIps/eM4gqloJDYl+MRm80mt4UU57Bt\nC2M9KilgQ8iLu7MXWG/gVYCVJURRg/HkfA3y4PMCnjF4JiDFL9sPSYjC+PWJ+uvf/AX++l/+l5D/\n9v/Ex5/+AADQZsabV6+hlKIWurPQc5+fd1EVEDLAGA0PgfLQYrsntefNzRtUVZHXRWqz072mQ0Kn\nG2zrHf7sqz/HIRLci3ZLhxPnIESBplGwUYTy+f6UDzlFUWC3PWRrkrJos5UBAPSXEbNcPq/raKwk\nNdntgTbvEEUWh/0tvvnqz6BkgQ9//AAA+PHjB3DOcXNzg66sUR8qnCWh5vM8X4lXhmERr0gp0XXk\n0Xd3R+30lxdqoz88PKHve7QNmV0KvhhLciaw2bVo2w6bDf18OogyVkQKQAXOr6X6TdOgaRooJTPi\nk7oq9LOM0Ki4hiWqAr1IoJ8tZBCo2m1GxOgdUwfFO+D+/j628RI1RaOsVDyY30GpMncBpmkCCwGF\nKFDKEk9PT3h8eM738vbtAbd3b3HodlCyzqp6RKWerAU2N1vsz/v8HT3nGI1GiH9Nw2cfOMYYjHcI\nwaNkNCetTgKcCDrEA5cdNWSISkAvUaoKMASQVKKGqqJPmJ0xXEb05wGeWTBuYhYnYKclF/efun61\nQurjT5+x39oM5THJ8oThnKFiAkWS8woObzWUlCgh0ZYl6nJBHiTjYD7AOnLrTRyinzPt10XPesKn\nnnkI6aRPAZxXLuERBZIR1UgSyZ/3pgklcrG4ydYXCPGEHCIsas1SKbuYmG01oVGSLwojazTGiU5F\nIsLna3h7DTkmtUX6fpLxjDQ7d6UAACAASURBVIS5WGkXceFp6xqFVDCGYG/rlxiB7XaL/X6PpmlI\n6r/idyUFyTiOV0Z59C4UyrJDXZfkKxL/HkDnYm1NVMmRWWf6vNS2Sr977e+VWpCc8+iJNOSFaBiG\nK1uLJDUGaGNLaFO693Ubap5n6NkSr6eqrk4cqbVQRHdcKuKQvaekXL5zOnUvQc3IfIdNt81O8lRY\nu8zBWKvvSLPLYJ3NfjJJdr1uR3POwd0SkZNOscnxfh07k5SMaz+VhComLg/nPNsmJJuUIoZVz/MM\nKYorn5kQAsys4zyVtNlGVHG7uyUvMO/ho6IxnyAjapd4QT5YCB65YxgRGPC7f/F7lJsNKaBiQaCK\nEsZrcs9mAnXVZA7UrDWMsfCe2lGEAC3Ic/AMxgZoYzGMY1SKxvkcVTjpHXi/tEQ3mw0VweOIlGgg\nxCHPr8RZSykGWQnY93mcGmchA6EWNBcFXNBoigY+2HzyB4DTOKDsGlR1DcsFzDTDIR2cyJXbG4DB\nQ1YcyQ8qQMLDgnEGBgYJtWSIML8c1uL7+7myWKkS/+l/9i/xatPhb/4fWjO++/5bGmNSYNfsIIRA\nP5zzWEsHDAaBzWaH29vbPE7btgXnFAx7uVxi9E8b54hHWdI4fvPmHe7u7q7Ujs65zOfRmpDcNKdS\nV6BQpNZOrfSmEdl0Mb2LtJ4UBXGNrJ7AOVDIxdqmLEvc3L1CVTbQ1qAfezyfUrFEhprOGZx6jeTR\nB1DbK6Ey6QCyXnvP53NUk/NY7C08L0KxVfR/ChkZV0rh9vYWb9++Rdd1uTuS3lNV1bG9t3Ksj/dC\nqmubEZ80r9NF71jFoq/PKtHU2Vj7Va3XF+LK2uiXZXPhSm1XiXkyMNFuJ/tPCQFtDJ4eX/DDj9/h\n8f4BTaTefPXVV9jfHEi9ZzSYUGDzsp7YkSyIuAv46s3bvF+chx560tAjrYd21rAmxX+J+P0WH7/k\ngWitQd9fME0i7/dzNH/thwXJ51xg1jYHZJ/PRwzjJfPxnDP5IMD9UrD/U9evVkgdXwb4GRjKiEoU\nHD5W3rUqIMoCbSwglBKxyuygSip+xphxVekCXCqE1MNl16ZmUkqoSkApCb5CgdIGnJEpIbKpV2DI\nhZSUEpUqoOJgTZYBjHPAeXi+TLaENnEEqPhikyeMY2kz5XDWAd6BJz+oyWTiNwDifiS5aiBvjclQ\nnIdg/BcDPxHjd7vFhyQt8olYd3x5gfUuS6u5lLR/xwV223WoYxFWliX2+z3qmtqBx+Nx5Yy7PL++\n7xFCuOKdpUIvbdImImCMsezArbWGYL/02EpeTz9f+JPlQYonSJM7fQ7B20TwXNsYrBemtZ+Q1jpy\nWFiGchNCWFW0GaaMqKusvVWb1jmDEBjS2pXaWSF4cEYoV6HKjPRQIbOYvyZTPQDwZhEqcM7RdCsH\n+rgYCCHIL2V1H2ToV2CainwiTd8/kUJTIb3OhEzjND0PpVSG1NP7maYJVdnkwi/9vXzwmDW01fk+\nU/RDETcz59yVNcRm08VMQBal27QBV41Bs5kg39d4uVygPcMhulfXbQfpTGyBCoDJHNvgfKBWXeBw\nbilMVRGT5VWDcSIi9eVCvkVpvKXNMC3IwDKGn59fUNcVttsOjAnsdrtfuFyn+Qb4FepS4Xw+4nK5\nYB+9udKm0Ox22MSNctM0YFKii4XE7atbQjWDR3AmrhFp/Yrmw0xAyIKq9rR3M09E9XkgtFO1uZAK\nkswTqfWXEPBl0w8hgHGB7fYA9ZvfoY7inMPNDj/88ANccCsk6FUeM0ksUdcttttdPKQs/BMpy4wq\np/YRjSkS/QTnEZxHVdTYRI5cIk075yAYR0BYTDdjW+50OqEqG2w2u4zkjWMfxxVl1TVNk9eMuiSB\nkDGEwjql8MePD3HuMXz99deYzIT7pwc0TYW7V5EjFPl3wXu46Leko9BCMJltYMZxzIf+9TMdxwHz\nPEauLI0VIm53kZvEf+EBlXygUpdjfXgvyyryDptsIJnGX/KsSgj6+v2Stc9S7NHacM0Tzkj0+rAb\naSlKSez3O5Tl4gV3uUic+wvm8wn9cL5CwLYt8bsu/QnzPKNtW9y9onHz+vVr7PZ7yLKAGTSOp+cc\nt0LjMq0rkuxT4kGpLUvoYcQ4DHDOoapKDP0ljxnGOJSS+PTpE7wPV2BGSh2p6zqKP+Y4Zsa8X5Vl\nmfdygBApPZKAQskSUhQoC371XP7U9cX+4Mv15fpyfbm+XF+uL9eX6595/WqIlLMM537EHE/pSrFF\nMgoGLgWaWPG2XY1Nt0PVFmDcYe4HiJjmLROnJUTYdNVqSqTCqi6zoi6dWtbqtUTmraLbMJN06k6t\nJmBBAdLpIYC4LXxFRE/KqYIDYCwrygDAZrO3dHpGhpvh/XKCQHTxToo+waEt5azNIAv7BIsnhCCZ\nzK0RqRBIffJyIjSJCSKql03kpviASz+gKCq8un2Dw+GQv+PLywuenp6w2WxwuVxwf3+fn0O3crU9\nHG6v2knjOKLvR/jcqlxCZlMLLTmlM8YQVmhVgpsTyrR283YhYBiGDFevVZLp+yeF3tJOcvm/JaQn\nIVkhBFLPFMVKwbcisEsyaz0en1GWZW6XJosFpQTGkbg/a6NWzgWsNflzXOVW0PiMEFxMnCcF1uVC\nbZNzr+MJqiQ+VLm0Iy8XItjWdQsli6sxDCYRUELIaJmABeVLCNwwDPmZrO81IWAJYRLxxOpjwDG5\nM5usNgKW1igHMDuLwDzayK8YxxFdu8HN4UAmguOU75PmjIA2pLz0RIOk3yVqtLsDgu+ByaBpNxDx\nc3RwCJziyZ21ZDsfLx3JuM5TVh4hlhNc5BaqssakHc6nEeNsYOwKAc6ROiKeUNWq5a+yzH6eDQ6H\nmyvEOT3bhNA00aogqVK11nj15jWJOdhi/WFmAxccRKFgrEUXnd0P+z2CtShkgcv5DO8smi6hdS08\nk3BCgFclXAjgIS7ZjNp9hShoTZkucPGhCl5C8Cqf+Glep7bGMkZ+/O5bPP/0R5TFguCTESOP79+i\n62i92O12ee6leQpghdYmtfI2P7/UhiskxzyOCMGhqQpIUWRhS3AO3lgMwxlaT5H7cm3Iudlsss1B\nWm+o9bLMNWPMkqcX16fhcoYxDkoQZwoATpczHh4eSO0mOJpaXcU8pTmxRokAwBp/hXKs237puWw2\nS+Zb+u5ljpjxmeicEM4yzvOEGJL6OKHttHe0bRsRXJ5/t5QS0zRlc9+EDq0Rq6RWLkuFpqkyD4r4\nbybbrQzDABN5lxRXpLK9A/Gn2vx+z/2F1JCC9uh0Waux6zZQinIUBeMZ5fruu+/wdp5x++oOpSIH\n9ssxtm71hOD8ohzkLNsROG1QCIlCSBhGsTjp+yfrCXJ9Jw5cUsGmlmMSJr28PGb6RVLTOxcwzyb+\n/4WPud/dQUoVo+WWdZZsXP4DdTZngQEcCLEFBuYgOAP3BKHO/YQhkpgvZ4nwCmjlFqYyGKYeOkRC\npm4xa422aaBkeaWGyw7inOeHk12hQQPYRFXeGqpNEyVtxtbaXNiEQBNq1hrBOthgs0tz4A5gAVOE\nqkNYMvMSLJw21HWrLEnshRA5FHLOfBYJpWjiSE4LSVq8UgRKUn0kGBagNtvxfMpWDamQSREL80CS\n1DIWFKk4AoCnpycMw4C7uzvsNhtsuy6TJ/U0wcbi8+7uDre3t3nAPT4+wloN5zgYix5HccP03mO2\nBrM1sMFDscURPnGk0rNatwsBUpqkiZ04W+mZAtGtWFFESZKqhxBg7HwVqZLzCsUCAw/DiKFffMGA\nBf4OIaDv+ytPqlS0pdZYajVwzqOfCsu8pVRYr7/jNOnMz0n2D8+nIw6HA+ryBiz4XMik75g4XZPR\nSHYd6T7Xz01weeUjlhbUcRxzCyGNjVQMpFasHqMy0S0tvtyaiovw2t+Kc06qt3mxBUnzSwiB80By\nZgB4//Zd3gyIswXo+HPWerTdHtZwFOOIdtMhUpPw9PSEEAJubm4gBIM2i4dNOnikZ6WNifYUdM/a\nUiE56jlD+Ik7mbog9F1CLKZD/K4teSadn1AWbW4TpOedvgd5NC2LbeKgJfIu0Qroi7w8P2PqZ7x9\n/xazpvHoVu+36zoIWeDp++8xjD1+v/s93SAHIAOYJNoDggJ8POzBI9gR3s0UrxKpBvRj9L3WB8ol\nozB2BwMAN+HjT99DG2qZWD2jUgqiUBRr4pbIoWEYoZTB3d1dtBTwcT6mFnSIPKEUDr/MX631is9I\nlhNioHujw4yP7XKFU3/KG1/ygErrG/GG0oGnu6ICpDUbAI7HY25tdw05dCeLg9dv3+D0csSkR7hg\nMU60qaYxbMwcD3byqnDTs83k7dRGXDyWdJ5vTXT1Xw7qAVqbvMFb5zAkJS+Atm1+Zr2zxF8lKxRg\naUensZ/8o4QQmXC+9thKh8fUPlyPhXGe4p7HruJsiI82UUbrNKGuW7x6xeJ9dnh1+wqbtgEX1HLN\nhPpPn3H/0yfMs4EHFT+n2Iab5xk//fQZX//mG/zumz9D29XwsYX60B/RnwfUtcVsNJgAdttDnhfk\nrybQFDU881kJeD4f8fT0gr4/56JprVbuui7zNfu+h4x7wmazRVVRu5T24mF1KGWQvETTCAhhyXIk\ncZiBHEn3T12/niGnjhyWpGpCgIIEIjqhZIFcagTym+KcIwjAMguz4sl4BmLpRyl4RogE/c87gLNw\nNcCdN5nTkwdxOl2BCKlcMIAz8BVpnQYzg3dEanfO5UWxiH5Qidi6Jk0nZCSd5lywucig7ysho28I\nGZvRZGvbFiVK8sQI4Up+CiwowzRNuFwuubjo+56IiFGtpacZhVQpYQLeEichbcZr80k6zV1w7xwI\nXFs4S5fLBdqRL4rzhojD8bmlExKAmN/HwWOhPBkNP0/ZQ2ktBPB9Dz2OEGqJ8WnjqTyEAG09IXVc\nwWiHlxcqQLTW6LoO+90NiqLI9gLpmiYBKRfkpY1eSenUZS29i/P5DG1SHEgFiheoURQVjsfjEvVR\nlpT/ZomEabXJxNi0iBdFAfgA6wyGS58XMME4Jj1hjjLoEAJE5FG0tYCZejw82Ph8mjxxjXFx4vdR\nOVWii6dEwSW8M7DG5Q1lzZVYG3n+3Kx0bfUxTVPmgkhByhytNQKI65WDsIOHZPSOgieuWuLIdLLD\n0PdktRFFD4+PlM/4/PwcC4zFXFSqhDhWCMHDugChFKqmW8Zaf8bx5QSlFPa77ZXQYi0cofFrMWqT\n4zfGsV9xgzyk4OBsmTdU8BFPLQka0vM4nZ4BZvHu7Xu8efMmF6Bp85qNxjRPmI4Tbm5u8rN2wWOz\n22Z0YR6Tr5PAzd1rWOPx+fMn2iDefwMA2O/3QFEAdQNelPj8/Xd484b4JXeKgYkSQjYIgYOzAiua\nJ4K3mPoXFJWCavbZ6JA0lexniFSyt6CrP71gOD+jayRGG+XvlULQVAjzzQa7/QEpsPrl5QXzPKPr\nOrx+/RrEv2Irki9xBL13V/xMICJ5nGPSFuN4xqV/QcqZbNsWdd1CigqBCXRdlwubcRwz+m6tvRKF\npEIhHWhoLKaOxqKyk4UCZxJtROrfv3+P+8d7/Pjj9xjmAfArk9MABMtwHgacz2dIWeT3S6g0xcB4\nnxA4GjPDcMIwHDOavfaIQ3wXWmtY5zBbsxy8Q4ieVi4X4QmpTHOV9igPY5a1jQ4sEnVdRS6YyXl3\n6WfSM7pcLnn9S890mNIBqYok+gXVk1JCtTKjih8+kMfY7e0rdN0G27aFKgTm3QwByvb78ccfc3HH\nJIMNgcYOAMkVAhwu5x7ffvst2q7GZGLm6DCikDWcD/j0+TMmM+FwoPlb123mhhrvYK3Oz4Rzjru7\nO7x//x5KFXm/p+9Ea0862EhZ5r0meWEldC+EkAEL5wKEmDDOA5RSOBxul5BkLlDx/0ANORsRYBEQ\nO3QopYRgAkZbGD0AWJxMN22HrmxQywLBzjCBQcSFwTCD0+UMoSRKSUHDKZOoqKliZzxQC2DlbpxO\n8msPqRwKmSwKfIDglAK9Pg2sVWZpoAPIaIXWU17E15+3qIR8lNYvpEMpZd6wrHeY58Vp2cZ7TBM1\njRutJwgWovy2+YVqw3ufCb8LbLxYQyTEJLXNMlrHGFRZYjYGHz9+/AX52xiTieZrQvc0pmKMZ9Jl\nVS8O7845lFUFxOedoXgpsyIqvYv1ohE8uYULIXA8HjNJu2036LoNhFAYRzKpyycM0EJ+uVwwz+Q3\nswTwkrpLSYbgWUZogKiIkfWVE34y5ZsNZR0mM7cr75b490mBpDJatUYzmmhuSoTGRfUy620uzKZ5\nxvPxc/4ebdtGBIAvMut4ak3F8nqcpX+m55jG4RrlWhSHC7qVFvAyGqKm+ZE2qfQ7pZQQMXneefI9\nS7+zqir4iAi/ffs2n5DvP/yE3W6LzYZIt+lZAeRSnHIXCW1lKCJhvGs6/PThJzw/PaGpK3KaWCFA\ndtbwZplTxvosGDn1F4zjABYclBAIwV8VmcnXbEkwSOOUkIf9YY93796Bc55Rx67rCA3XGp8+3WMY\nhrzRuuBxOByw2+0IPVzJ45M0XusJnz59gjEGv/vdX9DPeU9u4+OEYRrRbNpcuHGpMDuPAtGlHBoh\nBa0yUjtVhYKQCj54sARnx8PSGoVI/x7fPP79v/87fPru74hUn9IloqR9MmOej2lzTlYyAKKhcJXX\nwPhpcQPzUahxyn//5uYApfZ4eHggCkX1mtbjeG+cLQeom5s7WLMgS1JyMpgs7FXrSwgqug6HA+q6\nzigwXRxMDFHgwtFtOrx/SyaQVVmRQjaQs3gIDEUsQLumw2azx9ZoPD4+4nQ65XW4aRrc3Nxgv99n\nE8z0THe7HR4fH6+EMlkhygHGRc5uazZdHoN1WYFFFDcdtNO1LkTJDf86YzQRp1MWH4ArxHmKAczp\nHtcCnULSQXLsJ3gbEKJnoRQCm90OUhLlIbl/p/f0+fMnEqGoApyL7Gv17u17VG0DxjgeXy7Q04Q3\n794BAF7f3cE5h1N/wnA64v7xOScl1E2JommBINBtb3EoWEY4hZDg0V395eUF47gYMr9//w26bvML\ntTz9+/Is67pCUSyF1NpouWlqarumg65QUeVIHm9FWWdUzbgZh+0t/tT1qxVSVcnhGEdV0wMoGgWu\nCgQPlD2Z5yXlQ9U0YIKT27d1cI5hCtG7qB9QNTXauoGriQeRHcMZBwL5ntBmskRapCIgwbIsKh0A\n5MLCOAsTHJy38NG63vhFDZbUKclrg6TrSwG1HsjJLDIhP2VZYtsuSd88Sjm995BcoI3S4TnCtqmt\nkk4YQOyVDwOqZoGH06A5HA7YRDl5VdXZ4M2tjD7P5zPO5x5ltJJImzANNCrMrhcoKnhLthibAden\nJ85llpOvJ39qa6aixTmXuUeJqzRNU/7MNSeNEsqL+F0KdN3b/HPUguoz1J7Ud6RsMej7kWT6MQ0d\noI0tSYiFUNhublaLFou+VTJbKKQNMUmN665F2dTk2B034OSWnDaepKRJ7yN5UrlwjaQAgJoU6rIm\nKHoYAH662jCSYictuFabq/tp4vtft2fT81+Hnq7fY+K6JNn4uh1Oz9+gKBcn4DSm6rqGR2wnmxla\nL8796TNI7l5mvt756QQ9z4QCRwPCNObScy6VhOJk5Lfb0Z+9ffUal/OAYRgwTVRoJd8qYwyc1jCG\n0NFRz/Fe6Tu+vJwwjlPcpE0cq0taAY98kMSHySWGl6gbha+//gopuuf2hhCiYRpzW/5yOeFwOOTn\nlhSeacw3VZ2DcglBsNBmwjRN2G632MRnIzhHMBrCM8xTj7evXqOJqkUXOKkQ46kesGAsHQZo7MyD\nQckUmAJ8SIcvBRZEdD3HVQGZrrvbG/z9vzsjeIs5FjXn5xOkENjH71WIRfb95s2brMh7fHzE4XBz\nFUmVimMahwLb7fZqo6NWMs2DtC4BSzA0rQ8j+GVpJe92O1wuF0xmAucSUhYrWxTE+U4FfNu2OB4X\nq4ayLGGcxThP2LFd/rx/+2/+Df7w4w9wjJzhq6rJh4jbwy32+z3KssA0TXh4eMiIc0ahI78tcY3o\nXjzevn0La0kBd7mcV4cPQMQ51rYtiqZGVfzMpsT9cr1MqKbWcz58rdvayaE8/Q7GllgyH1WHFObM\nr9ZwIQSasoIAw/HlBZeXY35PTdPgfnygd6WSPRCt8R8/fsTnzz+BLCiKzMsFAFlIWBbgrIcsSF2Z\n0i7OPRVAr+7egN+9Qj+ccM7vacalH9DUe9ze3eH2ZoeAZW3z8CirGkVZwehlrpVlBe+iV6BnYHw5\nlBMyCVRVfcWhBRaOZ5rzTdOgbpJ61ELrKR+A1ntpP5zw8vL0izm0vn61Qmp7twdKjqKJpPESELyA\ndxxVW2M2E0zKqxIFZh7QG/K28R7QJkG8gDIE7dsAckC2i+R8nmcUKhGZl2IhbTxlWQKBiqgUyzLF\njV4HB+MdmA/ZeDFB2qm1QC9rQQEA2oxTEZVexiK5XBaVEE3yGCe7fSEkOA8QwiIhw1KSFwzn5G1B\nkOSyIZRVFaXXZzw+3udF6C//8j/C3d2ruNgZDKPHPI+ZzHfYHiKiMSCEEtZ68Lg4lxG5CbHHqa25\nkrJXVZWfsfdk/AkAVbVIdBMJco1kJeJksjBIG/TlcskFQYjE8lSQKKWw2e7Jn1kI3N7e5oUv+UbR\nsxYQqW8JIieWJRG4GWPggWWjw4dphlQKVV2iqWoIsFyc2DimOGeZl5AWmsPhQNErQiFwBlNP+ecS\np8hEN3kZDfFSMbHZbGBjEb72c6KxIZfJW3AwtXBv9GzwcjpDSp6/d4oUOjR1XiyJK2HgTRqnUdZf\nlVAlbUA8cjOsJt5V4vusoylGEz3LpMJwoXYi39N9JpKnlwJ2mDDaMfNyVNvlIuz4ckZRzBmt2247\nDD2Z3UnJIYs1choPHaqGsSPOl1PMhwO23Q5v373Ghw8fcHw5Y3dYjFqHoc+E+mmaMPUDjqfn3E48\nHo/ERQkBShRAsGCrYjGwQHL7cN3y19pgv6ci4HQ6YbtdRBjEN6SWY9PWePfV28y3S+M7/a41x6+Q\nEt4Dl+MJRaHwm9/8BiLOGcUVwARCqdDV1DaRIv6saOCEBFhAgCNjXSyE+yRzZ9OMuu3gEO8FHMTs\nKECBHkAqvEJkUL375ht88/5r/M2/+7+go9muB8P7d+/RtS2qpkJZVCjjYWd32GcUrywquFj0+5g7\nxIVC25SY5wnG6NxyA2gOl1Kh2+7AQC2xLGBQBtM8xAOtwsvpnA/Qigs6/GTbij7nNzYVodf39/c4\nHo/YbHa4v7/Pz+Xdu3doiw4IDEpW+Nu//TsAwHff/QHtpsPh9R2Kgr6PRCSGVw1Y9Bjb7fZo2w7T\nuBR6ybojeA49u9zyzxJ649BfRkyjA4vvt6hovUxoeGrhARSD0k89pBA52y79rrUD95rzBCAj4ekw\nlNqDxiwtPcYQDxlUEKTPv1wueDmeMqdWa533jNFaPD8/YxxHNNExfnEx53j79iuURUPPgPnMZaM1\n+4J5dnj99Su8fv0a5zPRL+4fHrLfF2MMjw8njJqQ6u12i7eH1whegocSijWZA+ftC7Tp0XYFbm8O\nV8j4NE04nl6AwLFttxj1iDFabfTRtmaz2WK73cJak58pvYcqH96W7gUR5oVQ6LYFLpcLvLfYRosO\nFfeCP3V9sT/4cn25vlxfri/Xl+vL9eX6Z16/GiK1e3+ALAvwIjX0PYIXlFNVGzRzlZGXYDkUlwgB\nMSm6RMopKzlVjJI00nDWwiZeUlLdmYB1KwpInAMy1PM+YDYz5uiyHqyDdhbWO7AowUxE9ATBplYb\nnerpPok7ZXMrJqm8gEXxA5ADOCFa2V2PlC3TsCgNVz1fIkBzFMUG6+gFrSdsNhscDrdZlZdOnqRo\nsXBaYxgv1PYwJnOWNpsNbm73OB4Z5slQBEB2iRWw3iHM9kpxAwANa3O7KVX1a36OswGn0wnWWmy3\nW5QVfeebdptP7NNEJqHpeXDOsd/vIYTA6XSKpn90L/M8gxM5BoxTCPMYuTcfP31CXRPviFzPe7h4\n+iA0qo7v3aJq6kzupywpjcvpjGkYwYXEEK0YTpcz2qLCbk8ybqEkNjtClUiREzAMZJ7KQoEx9tGn\naQI4nSx5fJ9rXlYIDmN/gUcg9eSqd2/tIqH31qEqSviIIzw9PmO89AjaQoHjcDhAVUuQ6DzPCMYB\nAehflpZg13UInKOOJ1etNXhU5KEgMqyLirX1eEvtPnCGaQrwTmCMzsDzwwzrHQrB4eYJHn5RFVmN\ncZoxzTOEHDCM58xVDCygH3sM44i2q8Ech42Guumk7ZlHYAIIHKeXiEYKUhpu91sKre1fUEe58nAe\ncD4fiYhqPE6nEz59+IyPf4wBvD0JH/Q8ZSVvjMyDlCK24EXmBiYrEs45vON4fDhjs9mhKpuMgpRS\nIUQLjNubO5RFBa2n+A5tNA4mxScXyFwfbS2kt6RWVQpCSvhITTDeoFYckBKqJiL7cqMOPgRIT6OB\nMZ/XPe89wIFqS0afsDYj4x4eDAVYdDgHE0gu7QyA0xNgRnz99W/w//7N/43PnwjJeffuHaQUOJ9P\nFD8SJtj4/byL6PBmg0pKeOdwu9st7X3voJSEMYAxMzhf1r62rbISrqoqVNUSnj4OM7Shdsxut8Nu\n9Tudc9jvD7k9+fnzZ4rFAfEjyaJAZqJ5IqZzzlGpEvvdDrubG7w8n7JC9re//S32tzcktY/c1FNs\nNSE4nM8X/PDDjwjB4+bmBofDTZz7FHWVAohTSxFYJPfJyDahRACw3VEGX1lVuFwuGPWMSizrHmtb\nCs+NxpM2meZGST+9j/MVkpXGbPqMhNKmtmDiZqbnmO4ZINHApR9QVVVuTa/X766LYo+4rl8hq4UC\nZwpVXUSRVRSseAOlBLwHCi4B6/HqQO3wtu6gJzIPHccJ/ahRNfSeDjevwRjD8/MRjHvMrkIVOyba\navzDt38PY0gpqooqUJ631wAAIABJREFUr9/jOEKPGuASAxsoIzI73gdMowFnFO3EuYD3C4/TWoe+\nJ77f6fQRzhNhfruN673k4CJEBX00q95tUNVLO/Yfu/5kIcUoBfJ/BVACKAD8jyGEf8UY+x8A/LcA\n7uNf/e9DCP9T/Jl/BeC/AWHL/10I4X/+x353fRvhvpgCbq2HCQGQgAgBgQnIxHeRjBRmkPDWwwuA\nJfhXMCgps9dMYuMDuOoZA9fy7dRnJnjTRsXJEr0RQqD2j4yDKbftFpdraqsIJC1M4kYlPtQVqTaE\nK/6KEGIhzBuPp+MTno+PqLsWd4c7zJF7Yq1BUSwZT8S3SFCyyRvf69evsd/v8fREvdzPnz9Dj8Rh\n0WbCtmvR7DaYDS2M50v0EDGGfEHkEvjrnMNsCPJVVQkxLl4rTAoEz1BWKpN81wq8ECxUQUTQ3X6T\nLQfWz1XrmG9WJw+PMnOghGDouiYXUlprMC8yB2yapkxifnh4gPe04KVFZBOVeVVBfLOilACvwaQC\ny1lNCjy6kItCQXufMwiP5xOc0iirIi+UmXMXIyw4Jw+waRpyblTV1LldBh+yJDupk47HI07nF7x5\n8wa7qOxKrY8CBDULxlAVBWZjYCPXpyoXaHueRsy6xna3KJmsnmHgUSgKkU4t0aJcpPrOOQjJUay4\ncImv54KHDyFHxAhGRbIPDk1TIgTgeIqky4EKbikYvHXRcTi6fhcl2nlCN8fYGE+eQQAw6Auejk8Q\nhYIo3oLbpQU7GwfAwwUPIRScA0xslx6PR5QlFXznccDL/RM2dcySdBwPz08YJsrLu7+/x/d/+AcM\nUbXHOIc2MzwCiTgUy4Wd5BSQzRjLn7+2jZgmjbpu0HabK/d/5xxmPYEzgbpsoESB45kk4Kf+BCZ3\ngLg+xAFAVdeU98gYnPNR4JKyO22MOCmxPezx8vAZY4xlqXc3UALw85SVb35l3eAZg+oasGmGG0dA\n0poRigJcUDYlgwG5wqcJqsFFgLkQv+7m5hYfP1HW3Nu3b1HXFL789PQAySTivgalSuieWk8h+sSR\nQzY9m82ugxAkRGmaJvN6AMAFmisiWtsQ/yS2jDiid5WIRf2KDiA4CiwRUH/1V7dooi+TdhQq/tVX\n73E8kqKwiptpSmSQXODx8yP+v7/92xw83e126PsB4zThsN9hs9nmwNsQ/3k6ndD3FDieLDxSdh1A\nLaLNZgMu6PP64ZJtLG7vDpimOhc31H42qFChqWv4lcqbxf1jvTfYFe+KeJ4+q6GT6CGJRIZhyAT8\nZGcCLOM1haOvFa6HwwGvX7/JY71pGqgVd8iveI5rRfscLROsn8AFFR5rjmxZFEDgEFCQgYPFImtb\nNZhA+7sMtIcP8RD14cMHuEDcQXiP48tPeS/59OkTvv/uBwzDgK7r8O7rb7I1Qtrz+3HA8fkRVUO8\nLHo2pIQsigLDMOB0uoALWvcfHqiVn5R93377LT5++ggA2O+3We1HEWk3eb2gPf5PN+/+ZCEVQpgY\nY/9VCGFg1PT93xhj/wWocvjXIYR/vf77jLG/BvBfA/hrAO8B/C+Msd+HJcQuX2X0fErBgN4GFJyT\nn0sQmB1tLABQCwXuGApOOXwspZ7TTeYKPZ3Q08UjV4EzEc0xl5gMyg6itG9jDBhkDrxNQbFkl6+u\nCoX4XPI/U74a/RwD50U2OUynAIAWi9SbzZEbUVJprYO1BqqqYb3Dx8+fgIg6tW2L3W6PEDyG4RJ7\ntUuOE2UuOQzDGI00iSMyxowiriRKVQKcwdrlfs7nM15eXkip0e0AhNwHTgrD9ByassrP9awNQlvD\neYXPnz/HUyNFLKT8tqapIISMBO9lcTLGZGv+tdIsKTKI4K6iaedi1uk8cDldfnHyKooKk54xm0gA\nFXzJ8HIkCTYuwAsB5j2QNnBPOU1SSgQeEIxdLAUYh501np6esslpIpzGGiUv7IlcDCCPE8454Gmy\ngrNc9HHO8fXXX2djwyTDBSg9fp5ngHOossSWLVYFaWyP44jT6YTj+ZTH33ZLkz/JlplhaGIhuWxO\nGvPsIUSF3W6Xfychg0NUgS6nUuccgge8swiSwzqHw56e6XAZcP/5Uya9Bwa8efUaABU9acwrwSEY\nx7Yj7gVTEuM447vvvssFdKIn0MHAwTmf1Y7r2IaqqjBoAzMxaO3xHPkVwVJG5OPzA366/4zxcsY4\n9hBqOehwFwOpBYcLNhc5jAXYGBnDOXGDUkEshEBRlthsOvjgcLmccjFsLHGS6qqB9Q79OOAcbUq4\nVJi0gQeFDjfRbwhAztbLsUXWYhwXFZU4X9BxiV3bYTqe8PIcLTWCQNtt4WcNLiV8ALhcoqM8Y+Ci\ngtRAsBrMRmR8niD3NQLI/8UjwGgqzrjvoYoGBhaSA7//i3+B+0c6Dz8dX1D//+29SYxlWXrf9zt3\nvm+eIjIyIqeqrupqskWKVJO0YAmWaYgyYRiiF4YsG7a00MKAPAiCYdjywoBtQPbGsBeGtZFs0ARM\ngYABQYIMkBQlAvaCNAl2s7urWOyuqq6qHCJjevGGO0/HizO8F82uZrNA1SC8b5OZERnx7r1nuN/5\nvv8QRvT7Q1XNaxtcnXy3UuJHIY6rqk6O45BVxr4HHOGRppqpa/WN1D2u1kuSbEueNPb7cayeTRRF\nzGYzO483t7dgpBF6A4o8V8Bqz1NgbX3AGoa7ypXB+Jl9uq5rnK7ldnnL9XJFKzsenJwCWF2qwPcp\nipK6XloLkabpCIKQ119/TWmhbROb8LqejyOE9Rg12CVQFaD1es3NzTXj8cRqTZn1tF6vub1d3an8\nmrlvqvty7z1m5kVRFIRhwGg0uoMpNYfqfRusfWZmURRWasd8b1cdVFhGw/oz89PMKfPuMr/f/M7h\ncEie57Rta/G+++B3xS6vSfMct8jtwbvXU56qcV+B88+/9ZzLy5dq3EIlilrXLevbFU1ZMNCYvMFw\nzKMHjymrnLKqCAIP4e7MnosyJV2vNFAfKsueDi2WdLVa0TQV8V6iaAR3b29vKctiT6erJMsKzVbt\ns91u7b7/8uULK9z5UfGHtvaklJn+a4ASI7nV//5edsg/B/yilLIG3hdCvAP8FPAb3/0fy6JV7uhW\nVVX50nVNh9eqSpWrTwiBFtRycXF8z1ZCQJ25rDbTdzGThKtM83zXpyq1fEFrvMhyW6INgpC6ai1o\nOu7FdkA77TLtaoqsOSmYuCOI6Ar7MjWUc/N/zWIxxrtt2zLZAyIv/AU1HZeXl6TbjX2xG/aXo9tG\nSh9FDepkMqJtW029bfSfWsIhUKeRpq1pW4l0HfKisi1KpCQMAjxftX5CP7izEUlZUJcNss2hEwqw\ny66aYapZpm20N18sO89xFHXZ/M6qqsjSAuFIBoPBnYVohCOVcOKO+ltVFZ107AL2fZ9An0pn8wWO\n79lNZJtsOL+4tJ83Ho8ZDmIafUpp9bOpyxpZ14rB2HWMhyPm07melzW3mxtrjmwkFAAL+FYu7bVm\nyRl39I7hULUuBB2Ijq7t8LUo42g4JYqiO1pbpiI3nI4ZDoesVisLvjabpjFOzvOc+XzBervm8lLd\n43K5ZDQaMR6PyfOcQktOqHECxUqKrEH0fvtOlfu1X2XgW1C80dYSHVSyoZENjaaAu7KjrYfcrNaK\nCdg1XF2ra9kmG168jJSI62hE7EeU5c73MUkUe9DzfDX2rZkvYq9VXOH6nr0uc3pspUuWKpPpVrcZ\nqzrj6uaSlxcXrLYbHAme7xLEuorouASelqRwOnxvp13m6ra64zigqeWmNeB5DoHr4PmCLEvU9/ZO\npkIog+nVaqWYYXJfzLBSVUrh4joOg4FRxJeWRCGEqkLlyS4hVMlrSy9UVfpSV+S26y1V3uC7AuG5\nmnKvfqPv+3h+TL7dsLy6Joo9W8XNygKkRzi9j5HndE1CIGtoC4o8Jdf7zE9+5ScBeOfdd8nzipOT\nE4IoQEglbGruvRf3cV3fapsp9qv6zDwtyPOUk5MTXE9wdX1NJ83cnymT4EFnx7rW69uodCdJYmUo\nwr5KQvr9PrEmtgQ6ATIG2Ia0oQ4EBZvNho2WKWk7bWLsBfzQj/4JemFEpcHIhgI/GAxs58AkC2ma\n4jo+88UUgYvnrikrtfanszmD0Yjriwuurq7utPYMUeZ2fUtV14wnE2bTqV1raZqy2WyUQOhgYH/O\nKIjv2I67w7fpLIRhYA9e+wxH08o08BLFNtyJERtRYcMk3hc7FkIpkJvv72vhxXHMaDSyVTKzD5nk\nynRajK6XGQvT9k28Qh+q1Dy9uUk147ih7WraJmc6VgfvIArxwoCirJlNpjhdi/EEHI0ndI0SVRaO\nQ380tH6gTVkxdFxOT8+o85QkLegNdm3d/SRRGZDrynAUMp/Pmc1mpGnGcDi0c0YxMpWkiMChbToj\noabFjL+/194fmkgJdeT4HeALwN+RUr4phPi3gf9ECPFXgN8G/jMp5Qo45W7S9AxVmfoDsbpZ4jYd\nbrOrAjmhr/KqzqXb5mx18pOHBb1QaQYFnodsW6SRP9AaT0bp2DBZAMq8RLYdhazsJloW2j2+rCxr\nz3V8onDH3PGDnQ2C6zo2izVhPk+dDHZtAfDsidvII+yfEtI0J0kSW42xwqF6E76+WbLarJkMR9zX\npo+O75EkCUHgW62o8XiqP6/TLItSb1AOUppkMMJ1PLJtTlkq/JNsakqNoaHtGI/HxL0eZV6xbzIq\nhGA06FmRSyHcO4u00TTr0WiEMdAEbKtnX/Bxt0jRRqgQhJ5dxKAEC2WnCuxdaxa0MVCOud1ucXyP\ngW6JmQQk1hWwuq4V3T0rLLkyjHscn9wnjmM2m80dvau6rgkcZekCLkK2FIWmVesNypw4jV4W7GjZ\n2+3WMmYMtsbQoZMkodeLtAyHay1Euq4jSTZUVW3ZgGZuGDaUYoPKO/pOZVnQdcrB3cgKmMrS5eWl\n1tVqNSbPubOB9HoRYRhoZl6wV+VqCUOf2WxCkcV31kyrWxQCF7+taGVD7evKcM/n3r0j8qrm6uqG\nm5sr+3NpmrJNN7SdegahH3KhsTd0QrfpfNpG0u8n7NTlxW79yoaWFmFFHhviMMBxPG6u12zXN5SF\nSqR8V2GP2q4h1lRrxxVWVkHR1NV6aR0I44jAiLVKqYQYtVSJHwYWewMdomuRtLrVeFd0VQiB63gU\nRcVsNqOodybZWabYp/1Bj7rdvYQMHf1muaQoc21Rou/fEdRdQ9cUlL0RdddSafZVVSc0UYNE437C\nUB0OgSRLiaMKV3hcr29YPVsx1i3ftmsY3d7ywI+IBlMkUssnQFu1yDLFlS1B6NPULaenqlozm8+p\nq4owiHF9hyTdEnaxvYc0TRmNJtpBomM+OyLQTgnIpd4PhT607gQro9AnDhaE/Z5iBAvB7bUyEW6b\nhjRNd5gd4SH35BpqagbxgDAKWG83VtMtSRIrrKtacakyktfr1I8DBDu3gRtddSu1Q4JZS714QBSp\ndT2dn9DVJY7rguMxHHaIREufZBlt01iNNFPRV9NJMh6PLbSi1fMZVCI0HKrDVxQp3SLTLjSaaq5O\nUjzPparUMzOYUSGwh1YDMbDvKd2NUIeQlkonfUIIptMpvV6PXq/Per2+k4TtJ4H70IyyLHWlprSm\n1eb/mWpU2zaUZUEYRlZDLsty4mhnoxVFgZYaUp0flx6OA0VR4gkHGegq1yDGj2N6TcN4MCQKAyp9\niGj1Wmu1iGldtyRbXdPpGsIwJM1KkuWSmo6iMs87tO9TR2t0mX3I2B45jrqv+XxOqMfeJIaK/a4c\nOkwV7+HDh3dEsL9X/CAVqQ74MSHEGPhlIcS/Cvwd4L/V/+W/A/5H4K991K/4Xl/ML6/xOxeTgjiO\nxyAegONRdDVNV5MU2vKkyJiNBXG/h5Ag205Vs4BKlzB97VbvOmpigmlRtXjeTi7AtO/MCcBMcIFL\nrj8vzyt7yjBaR7sTtFQvfllbaQHz8lKVKNcKb+6LIG63qW1vGcfyXONgimrFdrslL3KmozGj4RBj\nWZFvtpRlRR0pT60sy7i5udX31+g+9wAjSmaSITqJ4zkEjo8XOdS10tnpjHhmURAP+tpMotX4D/Wz\nYRgSD0YKjFmpsnmuv2crTRrT1HWdTTBM8pEkCegqkmkXxnHMYjGzJ1CV8d+1OjEAfWNpAmrTyGrl\ncu4HHmGwUw02wM4kS1nfrhBCMJ+rytLR0RFBELBcLhWlHlWlAAXGrTq1cQWeA44LurLQdh2TwZig\npxSD+1nBRlN5N2mC7wiqqsELPcaDsS0jz2bm3jJF99XaQSZ5S5IE1wuIez5t19G0CkgMCg9g7kXo\nComnr9UIivYGSuwwTVO7kc7nczabFefn54xGI2azia3yKWHLwCZpeb5TWY9idcoN/YjtJuX8/Nyu\ny6NjhUPJqxJRtvSiiMAb2nnh+h511TKfjMnOTuzcL4qCTZroilvDNsnZrvRpL6+t5tVg0NNge41l\ni3psNiuapmE8HVG1ja2CbDYbhbUbjri9vVXyAQbn5cUEUUhfDqkyrcoe+bQaW+hHIWdnZwx7fRrZ\nIcVuDXet8ndrkQghkXtaS0rOwkN0kha1ka+2OpGqNWVaCluVkXre3N7estlsePz4MWmSKSC6Xt9b\nnYilWUHVNlzfrOhpajVC4PkudSkp244sye2acTyXbjymyJWieFnt1Ltdx+P9995XhzHpcHNzw8XF\nhfqVXcto3MeJ+7z6xS+BlFxqheqmLIgDn0EcEE8m6uWmRRBnsylNWSmogezINhsGOmlv25aukXiO\nixAOnivI0q2t9BR5uiei6zEZTa3KfFnmRL5PVZZsNxtlW6LX8MXtLZ7nMZ1OVQWkK6m1/2ro+6zX\na+IwYNDvs14uubpRCZjjK3zRdpNqzNKYI3P49FRy3h/0aBp1EDSH1ouLl8znC2azmcUPWskBqQkI\nXUdVbpC09tDieoLr6+s7ek8mOYmiCE84eLrl9uGHH/Lee+8BMJ1OODo60smKpGlallqiI0kSewA2\nAp8m+S7Lyuo4GYkCcy2ws5BRn6/W0rVOTk3FWiUTKsE1FWeDAzKiykatH9T6NnirLMuUIrxptfVV\nlSovlLyAUrLfHdp8LyQvUoQfMB5OrBTFYDpk1B+x3W5xGp/Y90gSdZjP8oZp5CEQJEmGLxwrjipC\nlzgIbcWskh21a4Q1G27XS66urri+vqaoC7sPn52dMZ/P2W5TxuMhX/rSl+x77enTpyxvVtxc3yKE\nYLFY2PuLeqodGwQexl90PlcFi7LIbVfio+IHZu1JKddCiH8M/ISU8tfN14UQfxf4R/qfz4GHez/2\nQH/tD8Q7317hSqVcNJtFLBbDH/RSDnGIQxziEIc4xCH+ucVv/NZX+c3f/hpt09yBr3yvEPuiVH/g\nm0IsgEZKuRJKUveXgf8GeFNK+VL/n78J/KSU8t/TYPP/E4WLOgP+CfCa/K4PEULIP/MvzXC1szkA\nUlG1fd+n9iR5W4MWFxRSMBtOOZ4c0/diyqqm7IzoZofvKtzFbKxAi3G4610rXy/HYkR2arStlicI\nbXvImj42DePZlPF4gh8ENFV7x8fIcRwkrZY7uIuDUgBk05vNrZq2aXcp6fpYA7N3wNhOStA2E6Hn\ns90m+ucahHBomppOGCyYYSV6tgRrjCvNiWY0muA4Sk4gzVM8KegNezRGxXi71TgCpWArcC1+zMgR\nmEpTWZbWaNMyNODOicTch5QtaZriCFU+z/JEX8+I09NTfN9nebPCqLub52awY2psdt5nQgiubpZ0\nXcdisVD0f90ySAuFqVpvN8pFPAoI/NB+nqEVux5EvRDP+CXpqmEUB7idApj3tXVDmqY0nWtbOkII\nSo3ZWa9vCQJ1SvMDF1fumI6BrypNhilT1zV1VeHu2Wq0CMX20yrc1mS67KhbdfJaLBYMh337bI28\ng6HnLperO5YtZixvbq4sTsF8nmHlGICvleLQ7MO2lSTbjPfff9+e2H/kR7/MYNCjKFPaRrWtI41z\nC2IF7s+yjH7c0y01Xf0V6jo2ydoCYyvdRs9qjSPsoKrVz3uasRpozKPjOASRTyewuLPnz15Q17Vm\nk8V3APrC9VT1tZO7KoFsqfVYtVo2ZDabcTRfUBf1rtKDQ93WChchVXvW4LLAoW1UK1q4quWZpaqi\nVGaKIViXLb14wOnpqZUxuLq6Ig5C/CiklrA4PmK9VD8XhyHjfo+qFXiej+vBbKZwIkcn9whch9B1\nCfox6WrLhx9+AEB/1Gc6n5FsUot5MRghR3g0bcXl5SV+EDAYTOz4Xl1dUJRrfuIn/jQn9+7TH/TY\nZmquVWWr2vqjvq5g76uTO7RlRa83IAgjurYh1WD6sixx/VC1fUJP4WG2md374jDE8Tzifg/HDymT\nlNtbVXkJI4+2Vc4CRobAzNPl8tYCl8/Pz5lMxvR1heXBgwdkScaH730HIWG2mLPWjMaybRmPpiwW\nC1vxuLi+0Pfh0+tH5ElCNBhwdrZDlzx7/pSX5xd0bcvZ2RmD4dDup/1+nzAwEAYty9Dt8HF5rtqy\nnZQ4Gpul5kWuWboxdV1zdXXN5aW6lqouCOPYztuzs0fWQDlNU5Jka10kkiSxUhvnz88py5LZbMp8\nPieO452Nk/bXU+QmDyEUdtPgqvJcEY+ePn1K0zQcHx/bZzAajaz1j8H5mdae6S5Y2Eq3U1OfTqd0\nXcfy9kq3GQO7f1VlQ78/BNHg6ZaqqcQPhkry5sWLF1Rly2Q4wUj0GKxW03SsljcM48jupxdXWmEd\nye36luFel+bZs2ckSUaWFtR1ixeqSjco+MhoNOLBg0dMJiPlXzhU3+taeOed99QaLkrKRs1lfTFW\naFoIwWJ2xGSqqnhGtPjeaz+B3GkW3Yk/rCJ1H/h5jZNygF+QUv6aEOL/EEL8GKpt9x3gP1STT74l\nhPgl4C2USPRf/+4kykSeC4SUaKIJnStJsw3CE3QO4EqELsX3/MgyX5pW4SoMmyKOB/TjHoO4x6Cn\nFoIFlboujucShqrF4fn+He2NWveyzWZgSqdG/8dgR+qmomk1s6Nt8IRn8RL7miimBwvS+u0ZzEZZ\nKnXYMBQWxGdKqpvN1rLfpJQkZU7rGEkF1e7yQn+P1bFTGQfI8gTZ7ZSVAQ3eVPpT/TDA8R398t/h\nsjKtbOv7Po7b0VZGn6ri/PzcvsCFEBZbZUrhle6j93o9u6Fst2uKosL3QobDQDEf9UT1fZ/1+lbj\nTlTCEXoGHKsSqH6/v7dJqGeaFbnFskVRdMeTyuCKelFMGMbsG1tuNorddnR0RBiZNuROK8jVSunr\n9ZpaSgZCjf1kMuN2veF2tabtFOYrjEz7bkKSJGw2G7zKwZHY52LaktEeY6euKgb6heF5Hvl2q8DN\nCGUtE6j7WG5T0rSgKiV11eF5kX3R3rt3RCcbq9micE87NW3P8/SG4fH8+XOmGuSq/PnUYSEMY81C\n1ctdtiBccq03E4ahVWm+vLxEiCPC0CfwPfs7MOuvqm3yEvYHO7XhLKGrK4ZRj4luNVudLOFpTRyH\nZLslTXJr5WKU8lWboUG4qjUE8OThI148P2e73RJ4LvfvPyb0d4lpg2pny65RIHkpabQha5IkXFxc\n0JU1o1jNqzAc2Z8tc4iigFoqAkpT7Vg5RVGBVBi4QmZ2zzDssMxVit7L1S2bjcLJJIVqk2RpThjG\nvP32WxS6zXg0P+befMZoOGEQD6hFx9svngLw8vw5g8GAoqwZDse4ruClbtF15x2up+a+UckfafmH\nmhZXuARuoBL4CF59ol6Wr7/+BZY3G+JAsW0H/T4jrd3TRg1VkpEnBZ7nsM2zPRYseLSstwVhpUgu\na92ec4SHJ1oGw541lA17O2082XZUdU5+k2D2p6bVa6PtURQK5D2fz7Vvn/q5J0+eUNe1nneC9WZr\nv5dsFJ50MNEtLc9l0Ff3UW7XXF69JC9S5vM5Z2dnRANfj1/Bs2fPeefd7yg4getYlqDv+oy0RY1S\nKe9Aqrn48uUVm7X6zDBU7C9Dq5eoffG9997j4uKCyWSCsQbzw4D5bMFyu2a9XtOLYv7UT/0UAGla\ncnV1RVXkdKKhqnJuV6r1JnA5Or6n2KGbrd03AILHvmVND4fDO8Dvnb1Wx+XlFWGo9sXtJrXzdNAf\nsZgf07QVXQsvz9VnGqV2x1XWNVmeW/JSvx9rBfHcygiZfbhuSoo0RepDdtM1dp72+0O+cHLCm29+\ngxfnT3nyyqt2H1rfrLi9vcVzHe5NZ7RNbdeMEC7JzTVSQNWULG93eOOLiyvSPNG40Y7RYGz9MPOq\nxAsC7o2nBFHIcDhkrA/CQaDeO/fu3WO5XPKNN7+JK0wSe8Zw2NfvojV+6dvCQts1Vk4iCAKWqxsu\ndWK+WCzuaFB+r/jD5A++Afyp7/H1v/J9fuZvA3/7+34qUOYVEo9SaJSU7xJ4gkCjdoSUliLddB1F\n0yI7geuA8Bz6AyWUNhgMiIKIOAiJApXRmhO0p4G2YeRaxo0ZKNMLViKL4o6Mfq/XUxUF/dJWdHw1\nAU0GbzBQhoWj7l07pzsCx4nu0ONvbm4tDua7PeqMLECv1yNJEtI8s0md8D2KsrAnuCRJyBK1uRkW\nW1nUFEWlhN/2cAqgQO3RcEgQOjRNR2Xk8sMQX1OKHcchSRLieEflXy6XrNfrO+KioLEkQhBqaQBj\n4AwKl/Phh8/YblIrEmqqXIbeG0d9iFTVYaU1eOq6tt5HxvvNMiMdQa9X3KH5mrFI80IDKns6KY3s\npmAowMYTqigyW5EwX4/8wL6k8jy199d2FZPJyIIVDWBcPVeFTVMMO0mRqiSwF8eMJxNtS6BYiMM9\nv7GmaSyjzDAbw542560qgrCH5010Munb06eUkjwrLbC1KDOErubMZjOaVhEJzs7O7mDSDLsmiiKl\nBbVeW/mLfk8ZzmZZQV3UFFlmMRTHx8eaKaQkQwaDgZ2vaZoyGAzYbDZ85zvvEkXRDpeCwtr5/s7+\nwyT1DhJH1LRHz3CGAAAfwElEQVSNJAoc3GFAbgCnwzGj0YDttmcxhQY71uspH7Q0TZX1S9cyMeah\njqBsShzPpa01/bprqTMjgCo5PT2lLEuSJKHf79t7zPMcB8F4OqHROChTySrLkrpuVeWGDiEmOO4O\nY1nVNWmaUZaqwtVp0T4Sl7ZteeXVL+D7PpdXN7vqdyNZbzKaVrJJtjhCWkuLsquVz6fsqG6uGI0G\njKYTe52u59Dv9xlE6gXg6apTz/dpBYz7A46Pj/HjiFpLKvT6AT/50z/F9uKKuqzIi8LaXwlXIEIf\n11U6Qf1+H0ePU10UeL6qzj979kzh7hYn9t5932cwGoEGng96/R2Bo1WSGJuNMiseDvu7w1CWYQQ3\nDWM5z3fV5zAMtczLWCUEK1W12i5X1teuP1Qs30ivmbNhjzwveP78OU+ffsi3vvX7yoQWdRDOspQH\nZ/dZLOZ3RCeN/lIQ+NqTL7BWJ2mSKyr+es3LlxcEQWArOQ8fP8RBKFai9mCMdHKm3isdjhMw7I0Z\nT0ccL5RWU/Ag5uz4hKDnUdcFq3VCopPTulTVfWORJYTDWuPpVPK3s8EpisKuq8lkQtuqLsn19bVi\nXYfRHUFSzws4Pj6xe40Jx/FYr2+ZzhQWN0kShrqa0+v1uLy85Pz83GK6zBgORkPSMtdSNYpUZZiJ\nR4t7CCHtwdoRwuouXr4456233gIkjx8/IQgC1hqz6jiu3ad7mhhi9nbHc5lMdvqA/d7A3v94MqPf\nH9p9VlXI1Hvv5OQeNzc3vPeeqjy1dcfljUqI0jTljTd+iDCM8X3leznQBww/9CwJzNjRmA7Js2fP\n7IHxo+JTUzZvEEpAQauCSwGtVJpBijIuLNMEwJEa8BhI+v2BUqcFm6xEfoDnqhaep6sggataX51o\nLJXdgjW1XoY1k93ToCqKHCXuKi1zzyY2OhkzDzxNU1tSn0wmOI7DZrOygmYmOVssXFarldU7MdpA\noDYYozNlAIgGBJfkGetkixsov6r9FmRd11ZLqixVq2I4VD/n+y4vX16Splvmiyn9LiYIoj2dJUiz\nrdYqCUHsyrjq531Lz51MJvZ6jKu48rBTp3YDyjNg++sb1QLzfR/ETgzVPGe1uHcJmFIodqzDvGph\n6A1asyv31Yutkeg2sSw+w9YwG+Z4PKZtW4oiQ2oFbl+Dap1aMTQCVy2e/QWsrq+9o0S/76oehiH3\n799nOp2yXC5p9GY6GAwU200n5WmaqnI3RusmIERycXFBVVWW5QMQeCbR6cjyDUmywfOMjME9pBQo\nR/bKqigDdFJVU1XVKGCxWPDhhx+q8ZXSyh6s12vKsrYVKcUcVe3NTZLg+r6d35PpFEeY6p28Ux00\nLCFzj2aMAHqDAWG/Zzc3z/NsNU60rTq4NDWg1pNJTsPQpapzqjqlqVviuE+j9b7SJMF1HI4Xc2aT\nMR988AHvv69AvMcn97TjvFAtqbalqAqMs3wUhASeT//eCZKWKAqYTo2OVqtA5lIiZUvge0ShulbV\nCvVoO4kjuGNanWnmEqiqcttB4Ju2vo/nOQyHA5pGge2tiJ9sKXLlMNB19R3F+91LXlBVpTWYBugP\nB7a1a/YEX3cWptMp4/EIx3Px3BDPjagHmtiyWfLeN7+pQNAIPMfH8XeaS1K4lLLCcV16cUSkT/pl\nqVwM+j2XMDA+jjtGl+8HZEmqKzYRbVVZmUIjBzKbzSxouqcNYfOiZLvd8vLlS1tNabTszYsXL1it\nVty/f5/T01PaqrYvMDPvzs/Puby94ZVXXuHkTDEMhVAA/7pWyRCO2CUSOPheSNwLrcbTcKhNoj1V\nwUuylDTPeOedhOVSkXeGwyEPHjxgOlkwHEwUQULLvpRFxWg45OHDh/ad8+jxYwC+9e57vDy/5PGT\nYxzhsVou+eV/+k/Ug2lq4n7MYjzl6OSEo8U9Hj98VT2XMmOzWeFpCYaiyJnPdntp27Z885vfZLlc\n8vrrr3N8rDTbiqKwyZWqJmcURcEXv/hF9WxwWa02tK3k5Uul2WQOZlVVMZlMuLm85OrlS9544w1M\ns+qDD97XwPaYMPTJitzKbYzHffpxxPPn56RpdmevdV2Xly9fUhQFQRCyulnaZPj68koxKj2Xl9c3\nVFXFdK4OX4vZjKiq7D6VpilH99QY9vsxq81a6TqZiptmbLquz3A8VK1H7Q9ohHFHo4E1126ahtdf\n/wInJ+q5rVYrkmRDmacMx+YAp35n10nGY/WMkiRRMJKFOrTd3t4yEd+zo2fjU0uknF5I29Y4hrfn\neCCgkQ7SGFXq0qnnNHhIlU31fKJhXxlSgtV3UC9UpYlkEjAnAOFLaLHaEoYqHfZCK9CnDDMdO2nq\nurlTTTIvUlAPuaoq2qq2zInpSG3QURBp9k5yJ/ECVT3ouo6yLInjHnme3TGvNVWTtm1tWwZU/z3y\nA+qiJC02VFVhf6fCnSjtC9+VBL6LbDUTsCgQssbzFXtMibJ5Ft9UlmpzWy6XPHr0yF4faBZGENC0\nkrwoGbSSWr/cOino6goCn062dHVFLXc97zgOeXB2nywtuFle2QSsrkuKQuAJdcLuTUbUuqya5cpa\nxGjC7LdbzTgYKq4pu4NypDeLUFUyWtu+iyKlG+S4kqapiKIBI93ayZKUoiioHMey24yQYyObvZZY\naMfMPDOjIzYej+n1ejap8zyPDrhd3dILI5ugm6qESX4HcY/ScSmznLW+ViGhF6m2bIdULwH9ojXM\np36/z3bb4IidVIFJ7KRuU/Z6A1uRy7LCPi9lz5DTdUYkr0dVNTx99kK9/OYzWqv7csN8MdWig32r\nf2bu0RwOnjx5cqe66gU+geMotp/n4jgeuaYyu02NlMoQWHgOcRTb+b3dbtUzryvi2BwKMj2f1Nit\ny5LAj5gvptxoHEhRZNy7d4TQdPLVaqUo2rVp+ceMJ0N6vZ5K0DUGBTTjyXPI8pROQBAMGfV3bZVC\nV7ha2dE1O1ZX4Ls0QiIbyWQ6VXi4cKd+L6WkqktkEDDS7RhQ25bnKk03LwwIQ38n0aIrWy6CwnHw\ntCk6wHAw2rGKNfPK122KFkmZFTihR16XTKchJ48Vzye+cnn6rd8nOJojnIBWNniebl1KByeMCKIh\nvtPgI+1hJ+z1aKWgayrm8wVSSjYaWzUYDhWjre1oWlUF6PZEMD3hgD5krjcbHEfsHAFch+lkwna7\nJUkSkiS1h4iTe6eMR0pjLQxiWrG7/6IomMwWDEYT3nv/XRCCa814y7PUss7ivqrkGxmHMIhINjmr\n1RLHcWnamt/56jfUMx0O+fGf+HHatub8/Jzb9YqbpXoJX9wsmSyOmCyO+NL9U+IwtOtvtdrguD7j\n6ULbrKRWQ03KFj9wKeuK0ShivBhxlKuDvuxAdJJNllGfn7O8WXF6+gCAs4enDMcxbaPm2fX1JUWq\nKh+j6cRWgE3LyeDLzNdNIeDo6Ii3336b3/3d3wXgi1/8Ig8fnmnx0C1hGNu5WJYpR0dzyjzl5uZa\ntb+7HdYy7gUMh33W61uS7dZWbN7++jep24Yo6nFzc0VWlPYdt9lu8T0P1wNfRpRFhoESvfKFVzl5\neMbV9ZLp/AjHc8n1PYZBn4cPHtPv71qXFgfmu3jC4/z8Od1gQBSFChqBErB2Zce9e/eYz07p2pJz\nnTB++91v8corr9DrR7w4f8b1zaWtKo4nQ9I0UYclV8kcNXv2MVHUoxPQpRnrJLVJ6HQ6Zjab8f3i\n+4LN/3mFEEK+9ienyLbBFTt7FSlU+03SIjsX4eiTmRfyYH7Kg9PHLO7dYzocM4nUIPpRqKsdDkHo\n6U1/B9RVLYzc6nCY01cQBDSytSKQpoVlwgi2GZVvM4mNzoUQgmGvbxXQQbtSr9d4oc/R0dGdKpc5\nOajPDnEcYTd2VVmKrdBaqZMKUPRwU2psWyUyabFRukwu29q+8PaF17wwIIoC/cKNieNwBxCsKvKs\nZrlcMp1OmR/N9oD4O1sU0ys3yQuAq5MNo1JuEjDpKFq4I5Tb/Xp9i6OlJ6IwpKubPfyaoNLA2SzP\nkVIwmShV4K7ZAfg9z2OjxRyPjo6sMBwoNWlrgeL6SBp8rXkkHK3820gcx8P3Q7xA9/vLSldNHKsX\nZu5PJWWdrRTUdWnHULUo5N497DS0TBWmrmvKrLTtCqsWr4UXlUhqhZTtDhhewzZZq+fZdWRZZq9n\nPB5rEb8ebVcSx+FO86k1GCGhT2w5z58/t9fz4MEp/X5MURQsl0tLSZ7Pj2hbydOnHzCZTJhOp5Ra\ncqDXi3j1ySPVjnO0LY/G+riuq+RHpMTzHCKtxwOQ65aY0FRus27UXFQOBopoEeL74R6ubovjQBT7\n9PtDthtl66DWjGrx5klOUVQEvdDOy/Pzc8bjMbPpVGlYaT8yM2/2T+qDwUBt+nZNRTR1SZJkDIZD\nrWK9tetGCKEkE3RVz9xHst5wfHyCg7CtqFyLlTZaY8isw6LOKDJ1H65w6IURjVRnQyl2reS2bXFQ\nkgJRpL0F9cHMYGYM7GAw6HN+oTb368trFkdHitCAwPVDQu2j+Z333mO1umGxOGY6GuPHO4Hh/mBC\nNJshHY82WSPrApqdlIzrutB2RHGsDk97cjF1XVPkuX3Ovu/j6LUYRTFSC5VmmdK929+LRjrxtJi6\nYudc4Do766KuKVUbF8jKksX8mDCOyLOEy8tLu4dCS783oa6lqh76Ho8ePdJzaoVsS5pGJeP3Tu9z\nfaUS8K6DH/7hL5FmW95++y2klAwGuuVbVPT6SsC2rlryNMP1dJs5VPvweDyk14/VIXS91Pfg0tQt\no+GMeydH1E3By+fKdqeV4EnVjdimGxZHc46P7gMKH1cUqnI9nU4JAqUOb+aFwetst1veeecdW22e\nTqc8ePCAfl9VXyaTCVmW2fZ/VZX0epEmIvn0en37vG9vb+m6jqOjI+qi5Otf/7oF20+nY3zfQyMH\nKIrC+po6wmMyHeEFEav1hhcvXrC4p9q+rzz5AlEQaP0oaavCAKenp6zXaz54+lwfBib2e1K2HB0d\nEcd9sm2q15ouBOQpWZGSbhOKMqNIVTtWre2Iy5fKYeHVN1SlzrzXDCmqaVQxxHQAQHWM8jzn4cOH\nhGHI8+fPcXwjqVABCv81GAz49re/bZ/38fGCxWLBn/2Zv/SRYPPvj6A6xCF+wPj6W+982pdwiD/G\n+K3fefPTvoRD/DHG//sbv/1pX8Ih/hjja9/4vU/7Eg6xF58eRko2eC42I7S4j1biIMg1CA1gNB8z\nnR3z5OwR08GEMA4INcbC2LEY3NG+r1BVVVR5QaXBxfu4jixLKerKVhkM1gh2mB2jlq5A4roK4rq0\nOtv1o5C6a1lrfztTah4FPnleWCwQ7Cj9yp6jJMsSe0rY7+kONaPEiKtVRYHr+3iey2Cg3NH3/Zja\ntqVqVOXMAD1BnSADx2E8manKVaMA0sZE2Pd9nL4yNg2iUPsPqapbURRWEVjZeuzAmqrd1dAUBVlV\n47o+TdfytTe/zZPHp0oR23cIw4go6rHaqN/pOT5tJcmyhCgKlDCjbrPGvR6dUL5o/Si+o+wthEC4\nnm2pBntVkLrtrE2EwnlJc7i21UQF5BdIWWCkQIIgYDAYWIHTqtqx/cIwRErlQ2eqXfvyDuaZGDyX\naV2aSsZwOMQT6nqNuamZG26rKljrzS1HR3PVDgGkJ2170vxu004+OzvT5IeWvJB3KmJWfBVou/rO\nv6Mosp6Fg8HACpSqZ6Pm+YPTM/ssDRA7jkOqouQ3fut3+fEf/SFbYTL37/keQu5awOUeS7KVHcPh\n2K6d3edpHJFuSyq8jRr7wUBqYVmHslC4OXMtwlSre6rSWRSFBWJPF3PSzZZ6MLAVG1UlcfWzKa3h\nqZE3MeasdV3TNmruOELgCEG6J7gX6lbafDbj/v37tgqy7C3tfnN8oqqjxuza9126rqUslTp705a0\nGmLg4rDarug6B+EYc25thTEaMuwPkBKGoxG9PfyUrWA2DUmyxfEcZhMN8J0viKKYLMvIk4RttqVN\nte2KcLi9XdPUgqPpCZPRnN/6nTf52T//rxMOx7RFg2wLyrLBEUqawMxRIQT9XgwONF1t7YHqumY6\nndFpIV4j82FO+0mR47sBcb/PdD5ntb4h1+ws1/W5vV0Sxz3d8napKoNHLWjbVFu1OHz4/rtc6r3v\nR37kT5KXGRdXLwk1kPnkRIG4lVjygGRbkOUlk/nMkimePluSplsev/KqrWK/+toXAAjCkJfn52y2\nS+J+j6P5QrE0gfFoih+4XFxcaLutnRGw52m22rrm6bl6Z5jPq0qFUXz8+A3qBi6eX4Neo5OoR9U2\nhGVAb3yf1fIGA0rygwApJFmWs1zeMpvN7NzfbLa6de6S5wW+H3B6qlpU9+7d41d+/e/z5OEpURSx\n2WzuYC4/+OB9Lq9eKPuo0fSOD6F5v7iuSy47qraxitmtgEF/SH84Zrvd0p8c36nmjIcjrq+XDAZH\nOCLm6VPFPN0sVZXny1/+Mo4jybWROKgKoOuEPDp7RIsiChn8Z5ZlXF9fM59LZvMJ19fXrG/VnCnr\nirptGQ5HhHGPpr2yRIsWwPOh6/jW77+jSGi+Zz9P7duS6XTOq6++xvOXSnD46uqK6eKI/mhMWZYs\n7p3g6SrX7e2twne2DXlZ8PDhQ9vOu76+/OyCzXs91ZJzrPVbiyMVCLrrwPGM5gQ8OD7ldHHM0eyI\n0WAMTksnTHvH0YqrBXVV3bHesKwhzb5yHAehE6K6rkCD0/9AfzaMyHPF8hJCefEZRkip9Zq2ScKV\nXvCW5m0/W9pS/87lvaIoVMvJaFtFaH0ezb4zirL7uJS8LJno9qHxqdo3+22ahnAwoMpzHD8g0tYq\nniOQqJeWIwSNlBbUqq6nJYoUpqaVinJvrBIMuBl2GBjzMqmqiiCO8MJI+0QpGxfX84l7A4R0cF3V\nEuoPhlaluqhqBmGP6XTKaDxgNptQaQzcer2mbBQ2TKLAqeZzjQ5SmqrFuY/lcjRN2rQdfH/nqdi2\nWhnYM6067IvdJFhtW9uvmYWv/NIUiHMymdixMd8zLavNZkNZlnbzMnYGAIN4YF/gO3KDj+crXSej\nT3K7ViDXxeKYhw8fWkBlpZkoYMD9gcXRwU5HzPiECSEZDFTrYbs15W/Tdm3s/DbX18mGy4trojDk\nyZMnCg+nd9Mg8PCEtgTJM8JejGMsW2RH29Q0ZYGvx9h6cXkuoR/h+y6+9m806y/0d89Yfd3dsYEG\nA0UIkC1tKxkOd/IleZ5ra6WUui6tmjUozGG62bJer63dUFmWXF1p7aY45rXXXsP3fUtUcPTPGtJJ\n3OuRavxJqBNX4zrgeR7DwQDZdUw0FuTs7Eyp0JcZ682tIoY4ob63Sq01x6NqG4TrEGr2cFk0dI1g\nOl9wcnJfM7SEHacgCKxNSq/Xu0OIAbXJO45qqw514o7rsrldqfalbqUkGs80mc/4c49+msALieM+\n8XCAE/h4wx7Qkt4u8SKHfn9IUVa46KR27JJtN9Rtg0Tc2S+MCbmv9dLyoiDoxXiaLFRlLV6spEtq\nGqbzGUGk5mKWFZR5qRmRNWW5OyQb/ThDbrk6f8F9DShv25qqVgfMIs85Oblnn5vsHNbrFd/5zru8\n+dY36I9H/Pm/8DMA/NCX3+BXf+XXSX/v9/hS13FxcWE9Px8/fkzbVAx6CpOocETq+V1dfcDt7S2D\ngWJCHh0dsbxRL/bVZk3VtNyuN1qvL7d6hbPZgkcPX2U0P6YtUkazKdOJWuN+FFKnOY8ePybPU95v\nO6aanHNycgp+QLHZcnV1xWp5i9BuD/dPHygcWtNyev8BD84e7UgI/T7z+a/xxhtv2HdFEAQ7q5/Z\nlM1mw7e+9Tbvvfc+0+mMkxPVhlscHSGl5Obmhv/7V36Z8/NzXn3y2M43IVwEPsurJbOjBcfHKnH1\nfdWe9DyHZJ3QtCUPH6jEbjqZcXJ6nyDwWC6XlOUOx1uVLUKod4Lvu7z22qt88IHSSXv33Xd59OiR\n1shzGAx6ZLodHvVCoqDPhbbBSpKM0VjtQ5vNhm2SKlajcHjv/Q8sXisMQ46OjpjNFqxWa7KswNHJ\n0nxxbHW04t5APV9zKO8r5u5sNrNsfbMO9yEaHxWfWiIVRr7FNgE4tCBbmlqQJhXD8ZQvnD0B4JXZ\nPeZaY6V2BbKVhK4ZqErfeGcrGeYlXFYVks7ImuA4jrUJaZoaPwqt1ck+rb7rttR1ZR+m7++qIALw\nPQ9H02jDMLSaGb6vHMKV/16rN57dI67qAt93NYW+sxpLxm7ADGCh/aBAvWjMS9F4IZkBvri4wHVd\nJl6EI5TGirnOJEkoioQ8S3AcT8vfB9ZzyvMCVT0QHts0I9mmzGdKKK7tGrbbLV33XbYv7LSLzCkn\njmO6usERCrQdBTFdrZzjvcCzi3u5XBJ7IcfH95AozJlJpIwQnBf4FpNlOtGdNnydTqe8fPmSsix3\nDMKqvoNt2vfv2263VsTOcYXFdABaEkCSZZJ+P76TnBoQvnnu5tmDMZ4WOI45ERt/qR3D03E8Tf9W\nAEpzPaPBUCdhFf2BMp+ezncAxtVqZQ2GPc9jrROpi4sLm1y3nRLhMx5mnhtQlDmg9IYkjcUVVlWh\ncRemClpZfSZJyWAY8eDBIx49ekhWVBQa++c5LqJTFdzJZKJeBAbc3lYI6SA6XwPkozvVE8/zcH21\nnvZ1VzzPrB+FPRP49oTXNjVV3VKVuX0h7AP0q6riZqXm/MAbUGmKP66D7Dpubm4YjUZUdW0NYEEl\nRK67o1d3UtJWu+qwEfEsSwWa3Z9HRhxxeXPDeDy2bL+6LnGEZLNZ2Yqj8TIti5q2a4j6vgL9xyOG\nhlrtqgTw6N4xw/GQdLu19whqXzo6PkYaL789DF6apoTaF6woCius2bYdl9dXxHpvuk0SsqWq/pbD\nIb4XUmUlm2TNjAVNXVKkazopcAKIYhe6AtcTeFqWg7ahHwc0nVT+Zm1jx3Gf9SWlpEXNdz/SSZgr\nEAiqSrJarXG1+TOoA0ygDwPGvLyud1gp31e+j1JKHtyfI/Q8rVupdOwkdqzM/pZlOQKfKJzyhVf+\nBL1Bn4tzbeXDmtffeI2TkxOEEGy3WybjmV2HReny7NmHmnY/pN83GmJHIB1O7h9zenqKEILpTDG+\nZKdwbUVVEvciPEdYoomDsqbqSlXFHvZHrDXOz8s2JOsN/bhHVSvsmXmmq9tbtuvMVrbUPav1ezya\nEEYRsmmp69L6eAJ8+OGHeJ7Lq6++YklUURTZZzOZTOk6yWAwpiolTd3Z+79//4wkSbhaqnUTRCFx\nT+1jZVOTaOmd2XzE8vKcWLM9p9OpNb5OM+XvOdfSJ6+++irDwdgeLkejHY63KkqkcGiaiqZs+c6H\n77Fdq0P5bLZgNlvguj7b7QZka1nnXQcX5+r99pWvfIVn5y8sDiqvG8aeZ42aPc+zBwxjxmzwil3X\nEQ93wppKLLhmMOhpI3t9gC5z4kgdmnONAzTv2aOjI5v8fVR8amDzT/xDD3GIQxziEIc4xCE+ZnwU\n2PxTSaQOcYhDHOIQhzjEIf5FiANr7xCHOMQhDnGIQxziY8YhkTrEIQ5xiEMc4hCH+JjxiSdSQoif\nFUK8LYT4thDiv/ikP/8Qf/QQQvxvQogLIcQ39r42E0L8qhDiW0KIXxFCTPa+97f0+L4thPgLn85V\nH+KjQgjxUAjxz4QQbwohvimE+E/11w9j+jkMIUQkhPhNIcTXhBBvCSH+e/31w3h+jkMI4QohviqE\n+Ef634fx/IzGJ5pICSFc4H8Bfhb4YeDfFUL80Cd5DYf4WPG/o8ZsP/5L4FellF8Efk3/GyHEDwP/\nDmp8fxb4X4UQh8rnZytq4G9KKb8M/GngP9Lr8DCmn8OQUhbAT0spfwz4UeCnhRB/lsN4ft7jbwDK\n8VfFYTw/o/FJP+yfAt6RUr4vpayBvw/83Cd8DYf4I4aU8v8Bbr/ry38R+Hn9958H/i39958DflFK\nWUsp3wfeQY37IT4jIaV8KaX8mv57AvwecMZhTD+3IaU03ikByuTjlsN4fm5DCPEA+DeAv4sR8zqM\n52c2PulE6gx4uvfvZ/prh/j8xT0p5YX++wVwT//9FDWuJg5j/BkOIcQT4MeB3+Qwpp/bEEI4Qoiv\nocbtn0kp3+Qwnp/n+J+A/xyrgggcxvMzG590InXQWvgXMOS+U/RH/JdP6loO8YOHEGIA/F/A35BS\nbve/dxjTz1dIKTvd2nsA/CtCiJ/+ru8fxvNzEkKIfxO4lFJ+lV016k4cxvOzFZ90IvUceLj374fc\nzaQP8fmJCyHECYAQ4j5wqb/+3WP8QH/tEJ+hEEL4qCTqF6SU/0B/+TCmn/OQUq6Bfwx8hcN4fl7j\nXwb+ohDiO8AvAv+aEOIXOIznZzY+6UTqt4HXhRBPhBABCiD3Dz/hazjEH0/8Q+Cv6r//VeAf7H39\nLwshAiHEK8DrwP/3KVzfIT4ihPJR+XvAW1LK/3nvW4cx/RyGEGJhGFxCiBj4GeCrHMbzcxlSyv9K\nSvlQSvkK8JeBfyql/A84jOdnNj5Rrz0pZSOE+I+BX0YBIv+elPL3PslrOMQfPYQQvwj8OWAhhHgK\n/NfA/wD8khDirwHvA38JQEr5lhDil1Bskwb46/Ign/9Ziz8D/PvA14UQX9Vf+1scxvTzGveBn9dM\nLQdVZfw1PbaH8fz8hxmbw/r8jMbBIuYQhzjEIQ5xiEMc4mPGQWviEIc4xCEOcYhDHOJjxiGROsQh\nDnGIQxziEIf4mHFIpA5xiEMc4hCHOMQhPmYcEqlDHOIQhzjEIQ5xiI8Zh0TqEIc4xCEOcYhDHOJj\nxiGROsQhDnGIQxziEIf4mHFIpA5xiEMc4hCHOMQhPmYcEqlDHOIQhzjEIQ5xiI8Z/z8idWnfzj2L\n3gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2992,14 +224,16 @@ } ], "source": [ - "plt.imshow(transformer.deprocess('data', net.blobs['data'].data[0]))" + "image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')\n", + "transformed_image = transformer.preprocess('data', image)\n", + "plt.imshow(image)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Adorable, but was our classification correct?" + "* Adorable! Let's classify it!" ] }, { @@ -3013,31 +247,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "['n02123045 tabby, tabby cat' 'n02123159 tiger cat'\n", - " 'n02124075 Egyptian cat' 'n02119022 red fox, Vulpes vulpes'\n", - " 'n02127052 lynx, catamount']\n" + "predicted class is: 281\n" ] } ], "source": [ - "# load labels\n", - "imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'\n", - "try:\n", - " labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", - "except:\n", - " !../data/ilsvrc12/get_ilsvrc_aux.sh\n", - " labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", + "# copy the image data into the memory allocated for the net\n", + "net.blobs['data'].data[...] = transformed_image\n", + "\n", + "### perform classification\n", + "output = net.forward()\n", + "\n", + "output_prob = output['prob'][0] # the output probability vector for the first image in the batch\n", "\n", - "# sort top k predictions from softmax output\n", - "top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]\n", - "print labels[top_k]" + "print 'predicted class is:', output_prob.argmax()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Indeed! But how long did it take?" + "* The net gives us a vector of probabilities; the most probable class was the 281st one. But is that correct? Let's check the ImageNet labels..." ] }, { @@ -3051,26 +281,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "1 loops, best of 3: 7.14 s per loop\n" + "output label: n02123045 tabby, tabby cat\n" ] } ], "source": [ - "# CPU mode\n", - "net.forward() # call once for allocation\n", - "%timeit net.forward()" + "# load ImageNet labels\n", + "labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'\n", + "if not os.path.exists(labels_file):\n", + " !../data/ilsvrc12/get_ilsvrc_aux.sh\n", + " \n", + "labels = np.loadtxt(labels_file, str, delimiter='\\t')\n", + "\n", + "print 'output label:', labels[output_prob.argmax()]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "That's a while, even for a batch size of 50 images. Let's switch to GPU mode." + "* \"Tabby cat\" is correct! But let's also look at other top (but less confident predictions)." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -3079,8706 +314,244 @@ "name": "stdout", "output_type": "stream", "text": [ - "10 loops, best of 3: 90.9 ms per loop\n" + "probabilities and labels:\n" ] - } - ], - "source": [ - "# GPU mode\n", - "caffe.set_device(0)\n", - "caffe.set_mode_gpu()\n", - "net.forward() # call once for allocation\n", - "%timeit net.forward()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Much better. Now let's look at the net in more detail.\n", - "\n", - "First, the layer features and their shapes (1 is the batch size, corresponding to the single input image in this example)." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[('data', (50, 3, 227, 227)),\n", - " ('conv1', (50, 96, 55, 55)),\n", - " ('pool1', (50, 96, 27, 27)),\n", - " ('norm1', (50, 96, 27, 27)),\n", - " ('conv2', (50, 256, 27, 27)),\n", - " ('pool2', (50, 256, 13, 13)),\n", - " ('norm2', (50, 256, 13, 13)),\n", - " ('conv3', (50, 384, 13, 13)),\n", - " ('conv4', (50, 384, 13, 13)),\n", - " ('conv5', (50, 256, 13, 13)),\n", - " ('pool5', (50, 256, 6, 6)),\n", - " ('fc6', (50, 4096)),\n", - " ('fc7', (50, 4096)),\n", - " ('fc8', (50, 1000)),\n", - " ('prob', (50, 1000))]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[(k, v.data.shape) for k, v in net.blobs.items()]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The parameters and their shapes. The parameters are `net.params['name'][0]` while biases are `net.params['name'][1]`." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ + }, { "data": { "text/plain": [ - "[('conv1', (96, 3, 11, 11)),\n", - " ('conv2', (256, 48, 5, 5)),\n", - " ('conv3', (384, 256, 3, 3)),\n", - " ('conv4', (384, 192, 3, 3)),\n", - " ('conv5', (256, 192, 3, 3)),\n", - " ('fc6', (4096, 9216)),\n", - " ('fc7', (4096, 4096)),\n", - " ('fc8', (1000, 4096))]" + "[(0.31243637, 'n02123045 tabby, tabby cat'),\n", + " (0.2379719, 'n02123159 tiger cat'),\n", + " (0.12387239, 'n02124075 Egyptian cat'),\n", + " (0.10075711, 'n02119022 red fox, Vulpes vulpes'),\n", + " (0.070957087, 'n02127052 lynx, catamount')]" ] }, - "execution_count": 26, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "[(k, v[0].data.shape) for k, v in net.params.items()]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Helper functions for visualization" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# take an array of shape (n, height, width) or (n, height, width, channels)\n", - "# and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)\n", - "def vis_square(data, padsize=1, padval=0):\n", - " data -= data.min()\n", - " data /= data.max()\n", - " \n", - " # force the number of filters to be square\n", - " n = int(np.ceil(np.sqrt(data.shape[0])))\n", - " padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)\n", - " data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))\n", - " \n", - " # tile the filters into an image\n", - " data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))\n", - " data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])\n", - " \n", - " plt.imshow(data)" + "# sort top five predictions from softmax output\n", + "top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items\n", + "\n", + "print 'probabilities and labels:'\n", + "zip(output_prob[top_inds], labels[top_inds])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The input image" + "* We see that less confident predictions are sensible." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The first layer filters, `conv1`" + "### 4. Switching to GPU mode\n", + "\n", + "* Let's see how long classification took, and compare it to GPU mode." ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJNCAYAAAARaCA+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm0Ldld3/er6Qz33PneN8/9ul/PaqEJi5aEwBIoBBOS\n", - "GDteduKV2Am2sY0hSN0tqVFLtFoSYBniZHklXthh4diEtczCEASWkDViqSWhFlLP4+s3D/fd8dwz\n", - "1amq/NGNrf37ft+6h1LjK8z380+/vXufOnWqdu1T99Rnf3dUVZUJIYQQQog/HvFu74AQQgghxJ9G\n", - "dBMlhBBCCFED3UQJIYQQQtRAN1FCCCGEEDXQTZQQQgghRA10EyWEEEIIUYNX/CYqiqJ3RFH0ZBRF\n", - "z0RRdM8rvX0hhBBCiG8HolcyJyqKosTMnjKzt5nZeTP7spn9laqqnnjF3kQIIYQQ4tuAV/qXqDeY\n", - "2bNVVZ2uqio3s181s//qFX4PIYQQQohdJ32Ft3fIzM5+U/mcmX3nNzeIokgR6UIIIYT4U0NVVRGr\n", - "f6Vvoia6QXr3ve80M7PPfu737S1vvtuiRiv4/1GS4YbjBOuSsC7Ph9BmPCR1/UFYUWAb9hNdmob7\n", - "+Q8/+g+hzfvuvxdf6I7KYLsHTTa7XdzPsgjKUYqnq9FoBuVmqwVt4m86dr//+d+3u990tzWycFuR\n", - "Yf948MGHoO4n/86PBeXROIc2/R5+vigKtx+neI6jCI965vpG2mximwy3ZX5bpPv/3M/i53vgZ94X\n", - "lKuyhDYVVllVhCe5yP/jufvs5z9nb3nTm21cFP5lNh6Pw+3kuPFxjsc4jsMP5I+vmdkv/JN/DHX3\n", - "3XNfUE4z7FPkNFjDHffOwjy0mZ2fg7qhuyZXLpyHNhdPn4a67uZW+P4NPMe/9Mv/Kii/933v/w//\n", - "/synP2Xf/dbvsarEY27uWGXNBjTJWtjPms2wL2YpGZPGO5/jIRmThn5MMrMPPBD2xY985EFok0S4\n", - "D1nDXdsJGTfoNRMel4r0KSPj8Kg/MjOz3/nYx+y/+IEfsNFwBG3GJX413PeunwrKP/ezH4E2W64f\n", - "mJldu7wSlLfJ2LmwvAB1swthXbPdhjZJg3y+UXj++tt9aFMWeN1++EMfDMrvfOc7oU27hX2vkYV1\n", - "CTl/UfLSRfqJT/yevf3tb7OKXLS9Lo7Dve1tt994XhJyjqMo3Ief+yiOnffd926oi13/rHDTNtjC\n", - "8zc9PRWU5w/vhTbPfPVRqGsU4Rvc/pbXQ5uHv/jvoe7IoUNB+YH3fgB39Dq80jdR583syDeVj9hL\n", - "v0YFfPZzv29mZi+eOWMvvnjEjt906hXeDSGEEEKIP1le6Zuor5jZTVEUHTezC2b2l83sr/hGb3nz\n", - "3WZm9tnPmR07dvQV3gUhhBBCiD95XtGbqKqqxlEU/V0z+7dmlpjZL9GZeS//9Hns8OGX/j0If8qO\n", - "M/xpNOt0oG5qbjZsM4U/z47J4xj/k+bWygq0qcijQSOPcTyjEf6cv7W+GZQ3NzbwheTRQGcxfGSy\n", - "sGcPtJlyP0mzx5DxN83AvP3O221pecnyUfiT+5g8hmAU4/C4xORn5CZ5PJK6n6iz1hS0YQc4cY92\n", - "kwy3/Uc/bQdbcrNO43iyORT+8dZ4jPvEHoFV7uf8OPmPjwBO3njSslbDSvKYw9wjvrwYQxP/WNfM\n", - "zJuFk84Q6blHEUmMj2z8o0Izs0HiHmGQ8z47j49Q5pfCn+FT8lhu0MfHI333yIs9IvY0vukc33ji\n", - "BmvEsaVNPFdpI+xD/lGlGT8u/rFcd20V2nTX8doe5uF5L8hj3WiCMzgmj4zyCreVuzEvTvF1wxz7\n", - "md+HKMExKSZ1+eilx83Hjp+w4Si30QgfP+cjfD/YNnnEP+gRHcNtv0kevbY706QuHCtL8ohx0Mf3\n", - "g7Eyx+uYPc6DNmQmfEGu7ZF7fJ+QNsnLz8WOHTti4/HIEnLskhT7cOXckpK4CQlxHyqb4PuBdOHC\n", - "HbtWE7/Hm8uLUPfUF74WlL/z8GFo87rvfyvU/dJPfDgo3/Lqu6DNba9/LdQ9+YWvQt2kvNK/RFlV\n", - "Vb9jZr8zSdtjR4/s3Ei8opw8eXK3d+HPHMePH9/tXfgzx4kTJ3Z7F/7McfLGG3d7F/7MccMN6ue7\n", - "jRLLhRBCCCFqoJsoIYQQQogavOKP8yYhd898K/eM+5unh/8RZXEF6maXwmepC4cPQpuZfegRdeZm\n", - "gvL0LD4/3yK+Q06ez8PrtrahbrsXOh9N53KZmS0fwn3ffzyU7hfJtPLCuSPba5vQZpt4GuXYPRsn\n", - "7g/Duz9pE5/Fsy1V7jl7SVw15gf46dlEHbM4IV6Pi/SIiTfFaLmICOZ3pCl6WX4qfb9HogqId5Y7\n", - "v2IwIk4GcalS93Eq4ncwEvfCgrgq3v0xQy+EXaPzi0tQN7dnOSgvTh2ANoM++k5dFwOyOroEbTz9\n", - "LeznEfFQ+r1wSvVogMd8cwOvo7WVcEwYkKn1LFJhaja83qcX0QHpzM5AnSclsQQ56Z94reG2WKRJ\n", - "5fyqmLUh098L9ga+TYH7ie+Pddtk+vtwGDq0Mws4nk7NoHOZeB+PeExEhbPRdrjv1H+a4PJjcQJE\n", - "jzMfpZgSn7MClwm3nZJoBN+HRmPiGrKxhLh3nogMzqnrQ1fPYMTJq773jVC3dflaUP6N/+NXoM1H\n", - "P/urUPeV7/9UUP4XP/OL0OYDH/tnUPfEVx+BuknRL1FCCCGEEDXQTZQQQgghRA10EyWEEEIIUQPd\n", - "RAkhhBBC1GBXxPLMybtDJybmZB2p3ipKo1defDEot59+FtrsO3Ec6paPh/lUKZEQpzooeg4jFIo9\n", - "TK7beyxcl+fQTZjVdPgk5n3MTIf7sHX5KrS5cPpCUL52Bdv0iOw+dhanX4fweozdWnkpCborWTic\n", - "Oy4oRpqx5R19HQtrjInsmo9DETptTNbVp1xga0bCPVMSbDd24YWDAQnWJBROUh2PWJAfC+D0bSYL\n", - "S81csKR/fzOzQQ/3YcMF0q5cwokebB23WTcZYt9xXKHg4DHs+37dr5ysNwevIYL6oIt9v7cVrsc2\n", - "JEGeQ3L+EreW3NwCCuLTRHJeOrg/KM+Q101N7yyWM9+3rMjfwWW4n/6aNTOLYiJV+ykhTLwm/Swf\n", - "uu0T0TwnEyY8ox6O+yN23pOd1z7sTONkodLJ1z7U0sysYp/Py/vEK29kk4yfJMCVTaYpXDti3Kdu\n", - "PGWTAIxMpplqh9+9ZUkmkZAg1oJI8fA6ElQ6sz+cbNJdW4c2X/vsF6Duh/9muNDJw7/1KWjzz96H\n", - "a9f+vf8rXNPvR/7lq6DNv//Vfwt1N9+J7SZFv0QJIYQQQtRAN1FCCCGEEDXQTZQQQgghRA10EyWE\n", - "EEIIUYNdEcun5l2CrysPe7iqe9pAcW90Nmx3+cXT0Gb13Dmo23M6FL33kEUcW4uYDp40UUD37D+C\n", - "iyrvP37ItUG5Ni5RDDz7h08G5Se/hCtNnz991m0I92mKJLK3ZsJjXrEocIZL041IxG9Ck3JD+ZOJ\n", - "3mmEO5+mYbuEpfey3XQHwkvB18OvCJ9muPWKGPA+5Zu9W0JEz9gdTyaRshRlXxXRnHhkqhOKpf58\n", - "mpkNh3j9FU64vXrhArTpb6PE3Z4OV22fmcfranZpAeoOuMXJuxtr0MbTJJNBGo0W1C0shynq7Q6u\n", - "LJ+18VpvOfl7ag7fr0NWFeh0wm0xWbq/SZKjHTlZVaAk/cWvKsCc4JhM7ChcXWlkgkiM161P1I/I\n", - "FTkmEjduB48LSzpvOZF8ahrPX3MKz/vIrQ5QbOO2e+S7p3BGf0rGEnZteypyIbOwd3/cqdLt94Gs\n", - "2lDmuPHES/kZnk+2YkFFBHTYJfJZrl4KJ6Tc+DoUuD/z6x+Duke+GH7X/eiD74Q27/+bWPeOv/NX\n", - "g/Jfff+PQ5sv/j+/C3VvveFHoG5S9EuUEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRgV5yo4TB8vtru\n", - "hAGHS4fQK5jfuwfqlg7sC8o+fNPMbIWsGr2xEgYFlmN89j93YD/UNWcxSM+zZz++rpGEz/DPfP1x\n", - "aPPcI49hnWu3uYpBZZ3FcJ+WjxyGNjNLGO7XcO5PTgIdGbF79h8TjylKSDhcMwyobDQwpJOFbfpV\n", - "x2PiRDEbKHb+AQvkZGRN51IM0JsYM8nEHYcsY6Gg+AFjF3KapMw5wXPjj0NEzgOj0XL7xVZeJ3Wl\n", - "CwHduHYN2lw6cwbqHn34y0F5fnkJ2py86w6o67RD32hhaS+08TTabahLptBtarq6mSXcp4yENU7P\n", - "zwXl9gy6ODH5u3TYDcM9r17EQNzVS5ehzsMCVVnfiFxfZ95UwdxCNwZExP0pSUjncBiGZCYsVNIH\n", - "VhL6JKyxJNJQy3l9M8RDazRxfCl8qDMZ93skZNVrg+lEwZoIu0YrErZZVGFdQRyl0o3DLCuZ7efI\n", - "vR/bp5j6ozuHbc7MzUHdxdOhk3zhLLqU3/X93w11X/zcw0H5wH/zQ9DmLX/+bqj7vV/6taB819ve\n", - "CG3mjn0F6rqXV6BuUvRLlBBCCCFEDXQTJYQQQghRA91ECSGEEELUQDdRQgghhBA12BWxfNAP5b2R\n", - "kw7ZitFMjt5/y6mgPH8A5dM9RLReOX8x3J8NDAk0tro1CRP0dK+tQt2L3wil0TNPPAltLjzzAtTF\n", - "LqDy4CkMBd1/PAzubJNgTSZse2Gz2tn7NDOzlhM2vaBuZpaPmOwadrU4RfGaiawgaJM27C+BOHVi\n", - "ORG2Gd5jZcJ9VaGwGbvP58NFX2pDhG3f1dnnY9aoEz0jEnDK8MGBbNudOTKBwu1nb7sLTTbJCu0X\n", - "Xgxl86cf+Qa0abYxGHFqPhTLGyTk0dMmMrifCGFm1uyE7WLShysi0m6uhTL9yvmz0Gb9Igria5fD\n", - "iSy9Lo4jSbTz5xuTsM0xkaP9oWJKcJnj67y4XhDpOSLhrOOhGzxIPy8mCNsc9DHoMiaTHNozYd/o\n", - "zJAxj2y/ux0Gmm53B9BmTI5Lw0vcRMpnE2w8LISUjc2FC0vNiZSfuX2qyPjGxlg/cWZIzgvr+wXp\n", - "Z55hjoGx+4+EE60unEGxvJngWHnyjpuC8gtk0sry4QNQt3Ex/P7dXsc+tXQMA7H7bvLHHwf9EiWE\n", - "EEIIUQPdRAkhhBBC1EA3UUIIIYQQNdBNlBBCCCFEDXZFLE+d8OZXNV9f2YDX9HoowM0vh0m1HSJV\n", - "zx1GiSxxYunWFUwrrXIiRzML0HH5zDmoW7sUiqV+lXUzs2O3nYK6fcdCaXx2P0ltTsP7YL+i+kt1\n", - "mATsb58nTeFttMJU6IwI1K0It+VflzaYeI339KkXKEnqNxM9CyeEZw2ULBle4izISugsAdqvfJ6P\n", - "SdI5EXXNbYt8FPqZvcjKpHxG6fYrIvJpmqHoPb0YXmvLhw5Cm7WrmGK+cXUtKF++gNfHwnM4aWTB\n", - "rRhAFqkH2iSdPKIvDM9pfx0ngwy2UZIddEOZvktE+u2NTXw3N1thahqTzv31wWDjBlOovQTsk7rN\n", - "zCrWh3M/wYeI5fT9XF8nkxzynIxBjn4fj3m7g+d0xk0gYOPGNpH311bC87xFzlWrhX0/c9I2m6zg\n", - "r2MGE7YrmFli5gdn1iR35yYl55iN6H48Tcm5ikjiPNt32KchivpJJ9z+3kP7oM3mFbyOiijsL/tu\n", - "XYY26SH8Prz6pa8H5f5lvLanFjFZPd/EvjAp+iVKCCGEEKIGuokSQgghhKiBbqKEEEIIIWqwK06U\n", - "f6bcdAGOLEBumzyzHA3CIK3pBXzW2Z7BZ+pxM3QSGjMkWLOHYYIRCV70sEC8pnMgOosL0GaBrG7f\n", - "mg1D5YZkNe/eRuiPsZXeE+bUeI9gwtvpxIVfklxUGuCYOK/Ae3Fm11k13q1ozj6flbjzZRWeh5L5\n", - "SISh88cqoqGwbY1d3/CO1EvbIt6COy4QLnodfNiedx2uT3jC2OuYY5KkobOzvH8/tOnfiB5KsxWG\n", - "65XE61m9ehXqGu3w/VpTOztDF57HwNrtTfQtes6FYR7TaIB+jneNmBvXaGJw58Ke8NouC/Ru+hME\n", - "+eZDDA4siTDjA1WZ28QcnsL1WX8NmZmRrE2rCv86bJRM4NQUhu8344I1zcxazpPynp8Z/77ogedG\n", - "zh9xQ1PnnTKfjMd7hjBtsSKf2Z/SnIwlmQsh5cog7pNvl5FxuEF81X6MvpMnTbFfD7fD8TQh257b\n", - "i9/b185dCsoXnsVg2xtvOYnbOho6V5dIiPU8cam6zZ0/3/XQL1FCCCGEEDXQTZQQQgghRA10EyWE\n", - "EEIIUQPdRAkhhBBC1GBXxHIrQhEwdsZdo0l2i5hzpRMa+0QmZKtPZz5MMEUZNGqQMDqyyrgnaaKo\n", - "12mHMl2zTUIBWyjcdZ3cPiJhZt58Tsmq5yyMEiXnycIaIydCF+R1BZHrR2519CjB40uDJp1lWTHT\n", - "mwQqeoF5ONx5UoCZ2diFbY5J6GpFPrMP6cwnfJ0Xy6sm9gN6Tt01wyYPMMbDcD8rEiAbxXj9pW71\n", - "9xYRfvcePgx13sHdWsMg3QEJiO07CTgjQqqHhV9WJOQxc8ducQnDPuMYJ3qYl/nJJAAW6po62Txi\n", - "1+MEQb7FCK//iPwd7Cc1sIkQfsw1Myvz8DywPYqpWR7WJbSf7/z3eoMEXbbbGEzqXezeNo7LLGzT\n", - "3HFot3DcZ6L1JEGak4yfKZlwM2RBqK6OTUjxAac+KNWMC/BV7IV03G8WoOzHKQbZTfjM7DssJqmg\n", - "iwf2BOXLlzAQ+8LpC1C353gYArxBXre1imPQJOPL9dAvUUIIIYQQNdBNlBBCCCFEDXQTJYQQQghR\n", - "A91ECSGEEELUYFfE8qrwyb9sdfKQmNzv+SRZluw6IIJh2fIyNsqESQMTkouKrYvttk1SYtPMCYxE\n", - "hB4Qab1wIiRLl/bSuF8x3oynZ/stsZRqRuYlWXJMoozIik5Mjom8yNzMLEpdE5bwS14YOfGSTDBg\n", - "+LRllr7MFNLIid0s9ddIWnfuX5eRS7LE8+f3gcmnDC+kGhHSWQJ03AqvhzjFzze7hDL20EnjUYLX\n", - "mheazcyGo1AIZ6K+58DxY1CXkYkeXh5utFEwTojMjzMf8NiNhiiy+y5UkM+bD/GYewqSWB4RK3fc\n", - "D+XdcYHbjmhiuZvwQ/YhJmNXmrg+G5Fk/gkS9ZtE1J+bxQkMDXf+8h4ez5icGy/TswkbNFXcfZxJ\n", - "JsAwWFp/RSbh+Mkt7Dslctc7O3YZuUbhu45d/2xlhQm+H6KYiOxu8ylJhB8NyIQpN9Fqcc88NBkM\n", - "sF+vroSTS6bnZ6FNTl7HrslJ0S9RQgghhBA10E2UEEIIIUQNdBMlhBBCCFGDiK9I/Sf4hhFLaxNC\n", - "CCGE+Pakuk4irn6JEkIIIYSogW6ihBBCCCFqoJsoIYQQQoga6CZKCCGEEKIGuxK2ec8D7wzK3jRn\n", - "K5NT/AuJJB9HZFtOD6OrXRP9PXaBcR9634egzX333Ytv51Z277SnoM3Zp16Auj1H9gbl1iy+7ur5\n", - "S0F5roVtIhImOnCrficRdoUPfuhBqPtffyr8fEWJ4YL5EIMtSx+SGWHoWtLA0EN/7FgwapMEuEVV\n", - "uA9xhfv0wff/DNS9+6fvD7dDgu763S7UNVzYHVuRfsxWbHdhe2VBwlppKGDYicsCwygf+vCHoe59\n", - "D3wgKOeDLWiTk5XWi1FYx8L3Gi0MqE18qGqCAYBRjK+DlD4Snvj+D9wXlH/yvndCm0aCxy5z13FG\n", - "AkDZCFS6QMWCHPOSZLqO3TmNfTilmZUkNPNDDz4QlN9z37uhTUbSIQfjMDiwMTsNbTaubUJd7EJH\n", - "j994EtpcevwpqFs9dyEoLx85DG1aczgu3f/enw7KP/1+HG+SGK8ZP6SzIN1yjONS6dqRnEmrYjw3\n", - "ib/W8GWWkn72wAPh+HL/Pe+FNhura1A3vW85KO85dgDaXHjhuaBc9HrQZmZhAeoGLvw2KUmItQ+H\n", - "NgxsfuhDH4Q27733Xfg6N5xFpO+PCjx/aRruQ4uEiSYkmDh13yvbm+vQpt/Fvt9sh2PQh37u56DN\n", - "9dAvUUIIIYQQNdBNlBBCCCFEDXQTJYQQQghRA91ECSGEEELUYFfE8gjMblckVrcXaf9oS64RtGDx\n", - "6H5VbiatMrxYyhgT2XRmai4ojza3oQ1b/X12756g3N1ACbF0K5gn8ygTDnMizrvPXE52CCxqhOJe\n", - "M0FhtDOPUnVjKqxrz+Drsia+LnYna7yNK9mPiQjtVwbPe/g6xqgftpuewVXAp/btg7qta+G56W6g\n", - "sD013YG6tBmK1nmO/Scf4grjjUb4uoTIoBQnUadTKB0zwb/fDf/eKke4T70eCvdNJ5tHEUqkcUZk\n", - "+sz3hUlWkcdOHJOJCIlrlhApuCSyq7/8ic9MJ6TAeIYDkJXewCWwOTIFmTDht84mAfS2sX/uWQ7H\n", - "qakOCv9rly5DXVWE77jgxGgzs60BjnmesZvsYmaWNPErquH6Z2sa2/h9MjMr8vBYlQW+35i8zner\n", - "yHcgM/5F42i0yfiW4/utu8lCB04egTbTy/NB+fyjV6DNVGcG6tpT4bjbW8drNiKTfuJ05+uPXA5W\n", - "uMk0VYnHvCL9s9kKr9tWE8ekYoTbGjjBfrCN/a4ii6akZPuTol+ihBBCCCFqoJsoIYQQQoga6CZK\n", - "CCGEEKIGu+JEwRNJ5zJRPYc6UX7D5ME086RcO3C0rrcT5Fmqh3lTHfcc+twz53DTJFBxel/43Pvi\n", - "8y9Cm9S9XauNHsNWF10qS8NTn07oRM3Mhs/ZkxY6JxlxajIXJugD7MzMRhsYjDZc3wjK/bUNbJOj\n", - "n+PDPSuWgkhouHDPq5evQZuZOXQNZpaWwv3cRtegIF5W5A5VShyQisT7DdxnbsQTSBlmVjlHISXn\n", - "KiZums8ArTLi9fVxP4fOUYhj9NfSEj0wH3KagCNFIGGmEfGPvFxElAy2KfMj12S+pVns3oCON2zs\n", - "gjZkLKMfL2yXE3mrIM7X4v4w3Dcivs610zh27T1yKChPL6GXeeU5vI48gy72qSLHcNb+IHRhWsTd\n", - "ykgQY+nOexnj2OVDZc3M8irsn3GJ26bn1NHo4LXWIMHLF596NiiPujhu7DtxPCivvHgG2qyvXIW6\n", - "xUNhEGqDfF/kxDXKqp1/b8nJGOsdMxbk2SYhvbMzoZ/Hju52j7iwzpkd9TGENJ0i308N7AuTol+i\n", - "hBBCCCFqoJsoIYQQQoga6CZKCCGEEKIGuokSQgghhKjBrojlYGRCZiZqZCUxKCOWPgevmzS408Ec\n", - "9QnkQbaydObC/K6SwLoDr7oR6qackL5+9gK02euCH2OyIj0LkGuCrzmZmFy41bwTdPtsvIki5MgF\n", - "Yg43Mexvaw0F+MFW2I64tZZMoZzZngtDMhsdDLpk+DC6NgmjvHYRg+22XbjmzNIctDEiL44GYchq\n", - "K8YJBi3y+WIXJjoiMihj7MI8E7JPWRNFz45b3b7XI6u/k+tjUIaC/XiEfYMFRlbuGs0muGZjEoLI\n", - "Ajj9ZJOYjCMp25aLE2TXVeUNfMPJJuxM5UT0xvdnYxm2S5Pw4h6QsNYYBwBbXF4MyutPoqy8ehbH\n", - "rjvf+Pqg3JzF/tongbgeFrbJRqXxdigLj8iEjfY0Xrc+UDEhk3nSBk5gGOfhNVqRyUPFBBMDygb2\n", - "l30nj0Ld1z/9cFA+/+gL0OZ1t4ffF0tHDkOby48/BXWDrXBiTnsax6kix+MyybyHfIyfzwfZsolP\n", - "LRIK2nACen8LJx1111ahbuj7BgkFbs1j38gUtimEEEII8Z8W3UQJIYQQQtRAN1FCCCGEEDXQTZQQ\n", - "QgghRA12RSwHF9JZa0weplIlJAiTNjTE3L0BseaoRzeB3MrEudFmKLutE0nuO04dg7r++mZYvoZp\n", - "3dM3nwrKOZF0C/JpYifcRhOIrWZmLXdyym0ikRPRs78R7ntvHSXyERFLIyc+T82jCDnthFgzTAKO\n", - "DGVJxtWL4QrqC4u47ZvuvBXqNlbDc7VKPl9F1jnvuWO13cWk86U9e6Auc2IwS8pn+ATfrIFDQJGg\n", - "ZBmloXA7NYPHc0SkeO9Zj0n6ekkStctxKISOJvh4bJ4Jm5ASp06mJ5HlMXld5T8fWZF+NMb09dIf\n", - "BCKtFyx6HHaAjVNkWy5uPXditJnZ9Pws1DXSsE9deOY0eT9kr5OjBwUelz4ZJxByzMe4rdLJwv4a\n", - "MjPrb25CnZfGWx0U4JstFMsjJ0ez1Q/YBCbP1haO33e9+iaom10OE98f+9SXoc2r3vbmoDx38BC0\n", - "WTlzFuoq1z8LMukgIdcDu448bIJG5r4PWySdPE3JKg3u+u+TY7dGEtn91ZCSc9yeRpG9YssWTIh+\n", - "iRJCCCGEqIFuooQQQgghaqCbKCGEEEKIGuyOE+XcInieTJ8v73y/R40l5jH5KtaGhnTuuAvWmcLn\n", - "rVfPnA+308SAw0M3HIe6Zz/zpaA8HqDbMLdvKXyvbVwJnS31HiXh8awKfDbO2LoaBk0O+ugj9LbQ\n", - "R8jdittVgudzamke6jpLoZM0NUuC0shK6PkwPFYFCV1jLO0N/aPHH/lDaPPik09D3avf8MagvHgS\n", - "w1N7FfodW93wWF0lHsPF8+ehbs/evUG50ZosLK4Yhccl7+Eq51mEw0KahQ5N0sBjbgnxzlz4a9HA\n", - "/Rz2MHi1cl4P81A8jYQMZ0Tl8IGxFdlvFqg4Hod1BRlxKuKFlN5TJP5hMcHnY64ok5RK72qRwNG5\n", - "ebzWxpuhj3ftLPa7hf3oCM4cCK+Zi1fRVTHivXnKAn2yiPgyFocfejzGcXHYx3DPsgpd1MYm+k/M\n", - "2Wl1wrokwz48idN27TIel3gaQ09f+33fFZR/7aF/Cm1Of+nRoHz8e14NbbIZ9N4S1/dKw2NuJfbh\n", - "JMNjBW1IcG/LhVg2SKhlQlzKfBh+j21cuwZtBtvoj07Nhf16eg4dWupETaAkXg/9EiWEEEIIUQPd\n", - "RAkhhBBC1EA3UUIIIYQQNdBNlBBCCCFEDXZFLPcuJLiRE7jg13nlRPhtTbqVSfIMSY6eXb0SCoV7\n", - "TxyBNlMkpPPs10OBeXqOiNf7QqnzmT+4gPtEgiZTZ8mPi8nCKDfXQzmTya4FEXxbbj9ZQOb08hLU\n", - "zcw5OZI7QMveAAAgAElEQVSsFD4gEmkxDoV3JvwyFp2w/Y6/9hehzSf+31+Hut/45/93UL75ltug\n", - "zeFbT0HdvlM3BOX9R3E19heeeAbqrp0LzzMLBWUU4/BYDbaIUVliXdv1/WgG5cwoQbE0Tl3oaYt0\n", - "GHJqxi54tSJBrLAZkqxbks9SuTf0ormZWVng68Z5WEd8bcsyJqmHrytJHy6GO38+FhxcsOuvCj9f\n", - "kpFJHG2coLF2Phyn+ls46WAvmQCTNMLPvHUNg2aTaufrb3YBReiYSP9+YlKR4/nrdXHCy3DoBfSd\n", - "A5zNzAoXHpqwcMgJvhtyEgr64nPPQt3tb31tUD74rz8ObR77XDjp6OhrMQB4ahq/LwZrK0F5roNi\n", - "+9YGjqdxsrN5ncR4XCL3BRGRb/JhHydD9a+F+7m2imK5kfMw675Xmh0cp7IMP3OfnJtJ0S9RQggh\n", - "hBA10E2UEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRgV8RybyODbEYkvYqlbk+QIF5RedAnpjNpDjfO\n", - "pDjPaISCaG8QJqve/udux9et4SrVl144F5RPvf5V0KZwJnt/HdOf9xCJu/Sro0+Y2NpxAnN7HgXV\n", - "1mwH6pozoeSYtUlyLUm8HQ/C/dzcXIc2/S4m15ZOFo4TlAkZD3/sU0H5zX/xB6HN3//FB6Hu0//m\n", - "Y0H5q//fJ6HNlX/3Gaib+srXg/LJ19wBbY7dfBzqOm518rXzl6ANw0vAYyI097skQdzJ0GOSsJ1O\n", - "YYq5/yutIpMO4hj7gk/U9zIxg0/8YGJyWOdFczOzggjp5icnsFUN2BjhdoxJ6+ZTzQkVXUUB9z1y\n", - "nydtYN9nh/PahctBOWnh6xaP7Ie6vlu1YHMDx7JGc+fE6wZZySFm/cXP3iH72SCfuXBp3ew7hU1E\n", - "8GNJRGYPRczwd7RJyv8Lj+LqBzffcWdQvuvtfw7aPPLbvx+ULzyOgvr8PhTLz6yEwnZJ+n7awGM+\n", - "Knae+FCRa81PPBqPMF1+sIVj+upqOMlhlOOKE515TCNvTYffPVkHJ2yV5MsuH0osF0IIIYT4T0qt\n", - "m6goio5EUfSpKIoei6Lo0SiK/v7L9YtRFH0iiqKnoyj6eBRFeCsshBBCCPGfAXV/icrN7Ceqqrrd\n", - "zP6cmf1YFEW3mtm9ZvaJqqpOmdknXy4LIYQQQvxnRy0nqqqqS2Z26eV/d6MoesLMDpnZD5nZd7/c\n", - "7JfN7NNGbqQq/6DUpchx94jc7zlHgPlP9OG/ex0LsaN6xQQOVn+AAXVZJ/QBllzwpJnZmcfwmbZf\n", - "2f3QrTdAm7WrYQjZeIDPjttT6Jx0NzeDcmNCZ6izGAbixW10HSKyyvnIuTeDPh6nXhdD17or4fPy\n", - "UQ+D4DLyDL/h/aqYrFZO2LsvDNv8Z+/5OWjzxi+9Heq+70d/JCifevWd0ObFRx6Duuf/4PGg/PiX\n", - "vgxtLp07B3XH77g5KE8voB/AaLpQ13FCgiZz9HN6g/DcjEp0JKbGZNX4Zvh+SUquY+L1JP66jSf4\n", - "e4+oRjkJtjR3XflAQDOzkoRDFs5tGo1YSCfWeZWJOjUTdM+KHAPmSfkBrZHhNZpvoke47VymhYMY\n", - "fuuvfzOzTedzjnrovbSJ7+RhYY1s/PbjNfOYwJsys9SFLLJjR52oMnNl4qbFO0ul07MLUHf14nmo\n", - "O/vsc0H54B0noM2Lj4dtVsgYcXDuJqhrt0KHdTjAjpexgFPbuYMm5Is0dj7Z2Lu4xh1M364zi/1u\n", - "dhH759RcOA7GJAB4RL57RoNddKKiKDpuZt9hZg+b2b6qqv7ITrxsZvu+1e0LIYQQQnw78i3dREVR\n", - "NG1m/9rMfryqquB2snrpNr/euixCCCGEEN/m1I44iKIos5duoH6lqqrfeLn6chRF+6uquhRF0QEz\n", - "u8Je+/lPf+4//Pvo8aN29MTRurshhBBCCLEr1LqJil4KbfklM3u8qqpf+Kb/9Ztm9tfN7CMv//c3\n", - "yMvtTW99s6vRD1ZCCCGE+NNF3V+i7jazv2ZmX4+i6JGX6+4zsw+b2a9FUfQ3zOy0mf0l/vJQ+oPM\n", - "MyYTUqvb33wR4Y9K405Ip/dwWEklTgcTpuf3LAfljEirzz99FurmDoSS89QSJkZcfu502KaN4WI+\n", - "fM/MzHzgX2OyJ7sj5xwXm/h5bQMFcR9YlxORj63GXpXheZ/KsMu2SMhj6U58FU8wK8DM7vr+u4Py\n", - "oRuOQZvf+qe/CnVPPPxIUH6V285L2zoEdXf++e8KyidXUbJ88fGnoO78My8E5QXXV66HD9KLiURa\n", - "ZSiWj4ZuwgIJhxwN8bzHTuLOmtg/YaKJodgdk2vGkzDxmpx37wUzmZiGz7rrPyXychnh8SwsPAYJ\n", - "EenLfOf+yQ4ByTy12I2fMRm32ASNOA1f15nGyQpjIlV318NJKikNcNx54krFDjqrcgJ6FaE8XBER\n", - "uvQTkchxGdMg1LAYkWOQTDB8Zm0cpxpkEs6V0+F3wcJ+DDjdf+PBoDzcQpm/v4ljSeYmEJVj7AcF\n", - "C5+eZPyk11H4OiaWj8m478f0rIXjRnuaTGRxn2/Yw++Zfg+/s8Zs3yek7uy8z9v1faq31d4bIYQQ\n", - "Qog/JSixXAghhBCiBrqJEkIIIYSowa4sQOxD1fyz6pi4DUmMroF/YM6dJXzW6duxLTMm0d9L4orM\n", - "L4ehYN2ruODixrWrUHfwptDH2SaLG29uhh5Kq4PP3QcDfF7ub5+jCZ2hyi20mZCFN5nbUHk3hpzP\n", - "Btn3RjN0BqICj29JHDp/rqIJfDYzs8/8Xrhw8C2vwgWB/8cHfwrqTn/tiaB8+exlaPP0pRWoS1uh\n", - "zzFLFovee/wI1PWc7zCacAFNCDQkUk2VEOcjdYv2EoegIIuUQtYl8Z/SDJ2WyPUP5k158gHzGrCf\n", - "eaUlJx4MC830KhNbSNiPZWZmuXM+UhYcWk0SBsv+5iULs3tniISnjvvYX2I3BjSIX8k+Xzl0C/Sy\n", - "0MwJ/l73x+kl8PzFLpm0YoHK1HFxIcv0e4YFmrptERfuOqtfh+9HXtZoYRDqcDscr4d9HL9bc+FY\n", - "WeX4eYc94qa68MksQ1dtPMb3YwGxnph891VuvC5yHCPiGI9doxUuJBw38buhNY2OsF8EeTgk332E\n", - "Cb/++Gvrv1QIIYQQ4s8uuokSQgghhKiBbqKEEEIIIWqgmyghhBBCiBpEkwRIvqJvGLH4SyGEEEKI\n", - "b0+q68xu0S9RQgghhBA10E2UEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRgVxLL73nXPUHZrxA/NYvp\n", - "pJ3paagrXRLvaIgrUufjEdT59PPRiCT6kpWsW60w3fWhBx+CNu95z3uhbuQSw6eXlqBNd+US1Pn0\n", - "1X3Hj0GbZ//wq0H54PET0CZJMRF65cyZoDy7D1cK/8ADD0DdPfeG546veo51SRImj0+xdPIWrmg+\n", - "HoXpxOx8jrYxmRf3Abv6R37+w1B33333BeW+W6HezGzxwD6om94fntPTTz0FbcZd7J97Dx4OyiVJ\n", - "Wh6TFel98m9i6Dw+9BB+vvvvvTfcDptY4qO5zSxyccsxacP6ArwO3w0ToY3lcCMf+siHgvI9P/G/\n", - "4rbJ68qxS1EmKfjFCPsZbo0kNJPjGaVh34tT7ItpE5Orf/6jHw3Kf//v/Ti+HzlQ/tywU5ykeCbS\n", - "RljX7mBiuR8Dzcxil2Y9HmFKdLOBn/md7/zpoHzfu98NbSLyAf1RZ/2nSfYzc6sf+IR2M7MrF3Cl\n", - "gY2V1aC8/+ABaDO7gCsNvMd9nod+/h9BmzH5zhp23WoEfRzf+tvdsA1ZsSAjaeid2YWwvIjfRUkT\n", - "j50PI7//Xbhqw/vux+++Vjs85hnpB2x1gKG7/gYktX2bJLIXbgwqxrjttIHfM3ESftf+wkd/Edpc\n", - "D/0SJYQQQghRA91ECSGEEELUQDdRQgghhBA12BUnqtkOn7keOnE0KBd99BHOPHsa6rbcs+NmB58B\n", - "t6bwuX7kjAv/3NbMbGF2DuoGvS7UeZIUn7MXzuNJG/jM2XsaZmaRcxvac7hP3Y3wuXBzCl0j5nyV\n", - "btVv5mkwmu3w2XFEVg8f93Gl7rVLK0H56gD3aWYeV+VeOhi6WguLC9CmIsdlexC6BsNuD9owOjOz\n", - "Qbns4zP1xz/7B1D3nT/0fUH5NW+9G9p8/rd+F+ouPH86KB86ehTaVBGuZJ+1Q89t4K6F6+H1mIq4\n", - "TWy5+dKJNd51ut7r4P1Zkxg/n3dhqnLnjN4RWyGetBs734IHDmNd2giPeZLiuMFcLu/6xRk6ikmy\n", - "8/VXEueMKHRWxeGnjoj7w857moXjUsbcrQRfV7ljRd6OemewHdIkIn0/cXnN+QjPe3+E13syHx73\n", - "uf17oM2ew4eh7plvPBaUzz3/ArRZ7u783VCV+AGTBD+fuWOckO+LRh5+1zGHLyqwD/s+xC7ZhJxj\n", - "I86lJx8TF9bVee/OzCwjPmDD+VyNJp7jrIHXUb8fumF5TpyoFI9nFNf/PUm/RAkhhBBC1EA3UUII\n", - "IYQQNdBNlBBCCCFEDXQTJYQQQghRg10Ry2Pnuz36xTAw8tL5i/Caxf3LUHfi9puC8rSTgs3MogrF\n", - "vdSFww1JONzFFy9AXVWg3OaJiQDrw0SbMx1s08XgsKQVSvEzCzPQZv1SGNLZIGL5cIjScTF0n2Vn\n", - "b9fMzFrNcJ9as/hZ0iYe85m9ofx9hRzfs889C3Wnn3o6KC8sYz84SGTsqcWwL7TaKC8y+nkoJp54\n", - "1Sloc+7xZ6Du3/2L3wzK/8OD/wDavPZ73wR1X/n4Z4Ly5voqtGFybWcpDPdjEwoYfltEa7WSOuNh\n", - "ZUmCJpn7nTjLmG3bS+tmZrEXWXf2Wq1BRGgmwEO4H2mTEvk7c4J4cwrFci91m5mlsF941Asi5Xpy\n", - "Ig/7QF4zM+8qJ2yYZ/a3Ow5pittukKDC0hnhETHEK2bAOxIWxEik8coJ0xUR7ocknLG7tuXaYNDl\n", - "Ta++E+pe/71vCcpPzOM4/OzXH4c6gMj8jRb2s+EwrCtzPO/jPPx821s4xsdkskLkxu+IXFhNIrKP\n", - "xxN8QbBr1H9mItJHJAzaf0fHTAaPcJ/8JJHYsB8YuUZjEj47KfolSgghhBCiBrqJEkIIIYSogW6i\n", - "hBBCCCFqoJsoIYQQQoga7IpYfvny1aA8vSdMqn7H274LXrO0by/UrV6+FpSvnUEhff0yirpXz4Xt\n", - "Nrub0GbvEXy//ccOQp0nivGQ+iTl6XmShr6JYnmnHcrCbSLOD5xQ2CTp62sbeAz8CuZRMoG5a2aD\n", - "9VBybHTYaumYEr/vljAJ+ObvRIFz5TyuoP7sV0Nh89Kz56HN048+CnULe0MBfW4ZVytnbK2tB+Xk\n", - "DhTL3/jD3wt1//y+XwjKX/z1T0Kbu//y90Hd/hPHgvJwC5OWxz0US7tXw3O6cBD7KyNx6eBjIvzS\n", - "hGsnbLKU75gkHXuxu2Kx1Ay3C/EEaehRhm2YOBs1w2uEpRVnZCJC6la3j4gIzXczrCxIijITxD1j\n", - "lr5MUpv9TjAlmB1PGBNIm6piEemujvSfCQLnLSJyb6uJE1cKv9oCOX9Fjv1s9WI4vqycw++L7soG\n", - "1L3qLd8ZlO94/euhDUuht3/5q2Ebcn3QNHKX4F0OUY72E0TG5PMaqfNp/f6cm5llZPJARD6ehx3z\n", - "wn28MUs19zPNzKyC71Fsw75nWm7lD3b9Myo20WJC9EuUEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRg\n", - "V5yoY7ffGpSX9oa+ysYldHi+9vF/A3Xrzq2KyErhwwo9gsM3Hw/Kb/zhu6HNzPw81J1/9izUeSKy\n", - "jvvY7ddUB32LnIRt2sF9QdE7GWZm414YGJeSZ+wV80IK/+x4MjbXw9XK003sQmsX16Du6rmw7tAt\n", - "R6DNoRtPYN1NJ4Py6kX0GE5/43mo27gS+nL9PnpvjKE7Dy8+9Ry0eesPvwPqbvvuu4LyFz/2e9Dm\n", - "5jfcAXXT06EfV5G/azqzWLd+/kpQ3t5YhzaMyskpRYnXRxSjnzORE0U6kXdoIETT+DXjNz9JFmxM\n", - "rg/my8xMh302aWBQaZyREEvnvYzH6KqVYzye3gdiuZMxOeawHSIWUbfJBRwyT4sdl4b7fD4o9aV9\n", - "YOcqrCvGxI0hgZiefIjhl1lnGurm9iz4PYA2w+0+1OXu3DxPAjK/8bkvQN2m+555/Q++HdrcePOt\n", - "UOehR4CFs2Zh/4xIQGXpPjMLMy2Jv+aPMbuOfT8349ctbJuc99R5fH1UPq0iCbxlFR6XlFyPLEw0\n", - "dQHVzMVjn3niL0CCfokSQgghhKiBbqKEEEIIIWqgmyghhBBCiBroJkoIIYQQoga7IpZvXAil2Cc+\n", - "+6WgvHYRQxdnyMrZh0+FAY6LJ/ZDm5tehzLv/gNhaOaTX3kM2nzm33wa6kbbKD4C5LZ0XDqJm4Su\n", - "jchK3Ylb3ZqJgj50jQq/bNV4v60Jwgxf2li474MhCpzjHq68fuV0KISf/sbT0GbfDXj+Dt0ayub7\n", - "jh+CNjfcdRvUrV8NZdCNyyvQhrEwF04oeOLzX4U2PnzPzOwH/vZfDcr/+G/dD22efvgRqDt8ZyjO\n", - "r/Xx2LVJ3+8shfuZ9/E8MCo30aIqUQYt2YrtrnskRHaF0EXD/sgCHCOyun1UeQF+55DORgePEwsO\n", - "TRIv7qJIW7AQUrefMVl9viQCder2oUqYYryzeE2hoZnhfmYkkDMj8nCSuuNCZXfsG/4zs0DFfIT9\n", - "GiATg1YvXYK6YT8cK/cfPwxtDt94A9TdcGcof+85tA/afO2Tn4W6J7/6taCcFzh54HXf91ao87Cg\n", - "UjbqVu6csjBYHyLJxHI2g6F0+16M8bwU5PNVE9wqDIf4HWbu+ykrsN/R/Fb3RcoE8Thi10y4n1WE\n", - "+12Ray2aaOoKR79ECSGEEELUQDdRQgghhBA10E2UEEIIIUQNdBMlhBBCCFGD3RHLXQLsvkPhCvSv\n", - "fdsb4DWLh1ECzGbCpOEkRmnt7Deehbpfee//GZQvPP0itDn12juh7pY33A51HiblNt2q2AVpkxOv\n", - "LXGrxI9Jom+rFW6730PBmKYhO3mRpSEz5vcvh/s0IqnNAxQT2+3wXK25RHEzs3OPvAB1F544E5SX\n", - "Du+FNnuOH8D3mw/frzM7B20YSwfC7b/w2DPQ5pP/6jeh7r/7yR8Nyq//we+FNqcfw76498ZQio2J\n", - "mDzs4nlPndRcNScTk0GqJvIpW22+9BMWiBHL0qy9jM32ksq1XvQkcq3Hi9FmPNG78FIuEZoLUucF\n", - "31aG75dlO0vVPjX+pffDawZgvj+T8t1njskkgHSCYxUTKZ+NEpDITia3jEiatafRwH0akYTryy+E\n", - "48TVC7iKweYtp6DujjeF3yvf85f/a2hz6OQxqHv4tz8ZlM8/fxrafJ0knXtK0qcsIhOB3PWXkFUo\n", - "otSdU3auSBI4zCdiE5FIXTHBvCOWOO8T/POsCW3yHI9L7iYntNq4ykejid/3/nJnSfns2k4mGF+u\n", - "h36JEkIIIYSogW6ihBBCCCFqoJsoIYQQQoga7IoTdey2G4NyZylcqbs/GMJrHiWBmCsvXAjK577x\n", - "HLS5+NxZqLvx1bcE5R/94E9Cm+XDe6Du7Au4LYB4IZlzJ4ohfr6MOAqp81d63W1o05oNj11Ojl1K\n", - "7pUT73NM6ESVVfjcu9HB5/XZPK68Pn8wPJ4HR0ehzdbKBtRduxQGs442utDm8lN4XtpuH6YXZ6EN\n", - "ozcKj9+tr7sL2nzls+g/PPq5Lwfl7/jeu6HN6nkMkd1cWQ3KSUJWNC8wEK8sXPAjCYxkpFnoFiRE\n", - "02BhdF6TYguhG/FzvPBE/Se6qrrzc8jrPN6jMMOgSzMW5Ef8pwL3KXJ9Pyf5kWMSODjsh69jwYhl\n", - "NYF0QvyuhPhr3mVibVi2rg80zYmmRQ4nOCYF9Z92Hl9Yi9nFBahrOr/y4ot4/f/BpzA088XnQpfq\n", - "DW97K7Q5cvutUNeeD/fh0c/g9X/hueehzuP9IDOzgnUidz2k3n8ys8x5UuBImVlMrja/LeYHjUgw\n", - "atxgwasOMk75EOmcXR8DdKmyZjhOjYZT0IYFcCeuY4+Ib0U0NEtYx54Q/RIlhBBCCFED3UQJIYQQ\n", - "QtRAN1FCCCGEEDXQTZQQQgghRA12RSzf3FwPymdeCMMue+soD+fbKKS1nST36rtfA23+2rv/FtQd\n", - "vfNkUH76saegzWf/7aegrreBYjfsJ5FGUxe2OepiICYNVHOyW38T339qPhSmmbResNA1H8BXThD2\n", - "Z2bDfrgPgx6m4flVyM3MYifJt9ooCrb3z0PdoYVOUO6TY9frbuKOOkm2u7rzuTMz294OP8/yMk4w\n", - "OHbTSah79NOhbPodb38TtDlwM75u4KTjzgLKkiMiXvr+MmZBfoRGMzyeIxL8Oi7IauwQfomvY+qp\n", - "D35kQjMLZ5wg2xNgIYElkZwTFz6bMKm7REk2d+dqOMLzMiTXAwR+RuRIJTsPxQkJzaTt3CQVHxL6\n", - "UiU5Vi6YcJyzo47j28jJ0TkRqPlMhJCcnKsow88842TzqWkcSy667xQzs7NPPR2UP3H5CrS5/Y2v\n", - "h7qjp8Lr9shtt0CbSeYFsF5ckAkMGM5KJiu5kOVWB4/BuI/fBf56LMjsASq7T9A/Gw2c3JKPwu2z\n", - "a2Y8wDE9dWPeeIxjEpmDA8J96dNFX6qFGjYnZlL0S5QQQgghRA10EyWEEEIIUQPdRAkhhBBC1EA3\n", - "UUIIIYQQNdgVsXzQDYW3mU4ou+7bsw9eMz0/B3WdxVCmS6dxheizly9A3Sc++NtBeePyOrQ5cOgA\n", - "1B08dBDqPBERblMn3G0TEZolanvZbbCF0qqXLIcksbyK8bhkLScBTmZGWgbyIBOMUQYdjkIxsLe1\n", - "Bm1G/S2oi5Nw37M2fpZOA49dNZ4kRRlJ3MdZW8P9PHADpq1feC4UWc89ien5nXncz83RtaAcMQ+S\n", - "OLmVS5iPJ0iENjNrNMIk4JhI61XBxODStZlsRyt3PTDPsyKSc+QkXCafw3Zy7PtsBYGBW22+JCJt\n", - "nqPI6hOnx+Q4lUQUzlrumDMjdgKzNSWrGmREvPYrJLAUfC8YM8oSr5mSfGZ/bXlB3cwmEsvjGD/L\n", - "mEjq/V44SaTdbkGbozffAHVTM+H3zOrlFWjzwh9+A+o2nIB+4PgxaDO7tAR1Hn/NmpkVNMXc9T1y\n", - "0WRpOA5Pz+CElCHpU74vFETYHvVR9I5Jv/Z03PE1Mxu5iU7JAPtdbxvfr3KTWwryuj6ZaFG5CUtx\n", - "So4BSXdnE1AmRb9ECSGEEELUQDdRQgghhBA10E2UEEIIIUQNdsWJgmen7jntuMLnxJeunIe6wfnQ\n", - "ZRh1MVCxGuGz3IN79gflW267DdqQfErrb2MIqIdlHjZdUNlgC58BZyR8snJBZaMuvn/qfIvxCI9d\n", - "M8PT7I9KRfwHhl9tvmQr0ke4D6n3NNiq2RXuQ1GE/kpVkSA4EmLnAwbLyXIKLXGugXe5zMy2ifKx\n", - "5/DeoJyT1+XkuX7aCsPhRmQldBbE6l2KJJns76HEOW0x82wM369y1yTVXpgf585zQfoLe51XaCZZ\n", - "ZH1jBcMTfeiqmdmg13dNsL+ygMPIOTut6Wlok6QkaNYd47SJDs8kcaIFu0aZquIcmjjCc8xWsodd\n", - "IB5TTII7I+feMLepmsCJihIMa2Tnz7tF21s4Lran21B30LlMM3Po2W6trULdcDOsu3wa92luGR1a\n", - "hIQeE0/KH6pihO+XO6+PuVWsX/sA52KE482AOFEZjdINmZllTlR4TtvexTX+XdB3obXjnIQsb+K+\n", - "V3l4XCLy3ZeR689/P/1x0C9RQgghhBA10E2UEEIIIUQNdBMlhBBCCFED3UQJIYQQQtQgmkT4e0Xf\n", - "MKJKoxBCCCHEtyVVxROp9UuUEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRAN1FCCCGEEDXYlcTyf/AT\n", - "PxbuRNYMynOLy/CauaVFqJuZXQgrSIzy1voG1A1dGurGNUypHbg2Zpi6+w//t38EbX787/5dqFva\n", - "vy8oz84vQJtRDxNZzz//fLif6+tk2weD8jRZTXxuGevWr14OyoP1a9DmZz/6i1B377vuDcosfTkl\n", - "q2s3XDJ32sRE4STDpGyLw2NekEj4gq0sn4ft8v4A2rz/p98Ddffee19QzkiiN7MLI1cbTxKxbWbV\n", - "BPMsSpLgX7q+WJKV3h968CNQ92P/8/8Svo4kHfdJYrH/NHOL89Bmfhmv0c7cbFBOyTkekZT9sVtV\n", - "Pc+xzQP3vzco33vfe6FNSlZsj126e9bGfYoicv5c1/Ppz2Y8wd+fmiIfQpuiwH7w4M+8Pyh/+Oc/\n", - "DG26qzi+rZy7GJRjN76amS0fPoz7GYXHqtHBVRSG3TWos3HYX0iouTEn92dc/3zPu+6BNlGKG8tc\n", - "6v5ggMdzRPpLw60KMdXBxPliiOPE1lp4jLM2pm43W3iM3//AB4LyfffdC20aUyw9O+yPTbKfLbcP\n", - "UYLjVH+An2U8DM/VmBynkqy24PvszzzwIWhzz333Q13lxmv2q00cYa3fhzHZpxE5773t8HubTZxr\n", - "tvCYT02Fx/zn/8n/TvaUo1+ihBBCCCFqoJsoIYQQQoga6CZKCCGEEKIGu+JEZWn4/LgzG/oVS/v2\n", - "wms607jidum8idUrK9Bm9fJlqFu/GrYbbOMq4H7FdjOzzvws1HmGfXSphqPw2XTaJKuVE9fHP/Md\n", - "9fAZd7MRPstNiMPDIsKGg3A/8wF6MIxiGO5TOcaVtEfEC+k7xyRrESeqgcel0XQuVQP9lUaGr6uy\n", - "8Pyl5WRdfeievbNn6t5/MsO/RqhTY7it1J0v5oBU5c7uzZgcc0Z3M/Q7+r1taJMT/6A9Fa7QnhDX\n", - "qD2D7kaz7V+H5y8f4zXD3KKdGGxvYSVz6MqwLiEOX0TOe1V4Dw23XRE3LYH+ieeTHU9PQY5J1ka/\n", - "w3ezPMfzycQ+74qZ4fvlxBmqxuH2m8QxG5c7u38RuUSbTXSNet1wvN7oYh+eW0bvdHlP+L3CfLKr\n", - "5xI7lkcAACAASURBVK/ifmXhvs8u4/dATrw+T498z1x68QzUbVwOv5+619BDG22G10yTeG/ze9FR\n", - "nFoIv0cbM+i9Nefw82Ut4qv6Ngme47HvQxWOb8wt9P06I85Zcwq/Q/zr8hF+Pxnpi8MJzt/10C9R\n", - "QgghhBA10E2UEEIIIUQNdBMlhBBCCFED3UQJIYQQQtRgV8TyaSeuzbmAyNkFDIfMhyh+rV0JAyIv\n", - "v3gO2lw6cxbqet3NoNwg8uIcCQ5kAYOe0RAlTu+xseDQQYpSbG8rrGPBoXEaSqsNIts1SaCbl0+9\n", - "pH89hi7AjQVdDono6YVU4t/amEjqXjlsEJGWCc3tTig076y1/tE+hJ+HSeRMRI592B0Rd5lsXrk9\n", - "S4hkCds2szIPD2A04Sfc7m64Mp6rNukv7ZmWK3egTZNNFnDBgXGC11qSYR+K87AvFMXO4aUks8+6\n", - "G3hddTfD678ggaM+rPXldwhKWYbnxQdBmpm1p8Nj1ewQITYj16h/d3IIGiTsNnGTYgYkdLEkwv2U\n", - "C9dsTeN1tb16Beqqwl8zeI6rCcJnfSCvmVlvGye8bG6G57S9gOPy0VMnoW6wGm7r3JPPQ5txiWPQ\n", - "oVuOB+UWGWMH2zg2e2689Raom92LwdKzS6H8HZPxptsNxfK1SzipamsFA5QH264vsKBLEu5r40km\n", - "euAY5CcrsGxhnNBAJuqwSTlkXEzS8FrL88nE8l6XTEqZEP0SJYQQQghRA91ECSGEEELUQDdRQggh\n", - "hBA10E2UEEIIIUQNdkcsnw/F6s50KJqPByi2XXUrk5uZnX7y6aB84XkUBTfWULhrO4FyahYl2ekl\n", - "lBVZnaciqcJeRGbC5pisSD3YDqXf/hYm3qYuDTltoISYNvA0+5TYgoimjM5suO9Dst9lQSRElwCd\n", - "M9mVSPnDXiiDDpwUbGbW20Cps+Vk8zQlKfGEwq1qzlYYZ4J4EYWfmUqPTKBMwm2lRCJNMlLnks7H\n", - "TAYleJG93UEJeIFMfFjauycod2ZmoA07xnEc7mdOhG0qcbuUdi56h5y4HcXdfIj9069GwJLyU7Ji\n", - "AUsM92TsGLju4leaNzPL853PX0lmY7SYWO7HgG183aCHwnZ7NhyHM7LafUWOS+6u20YHx9Nogr/X\n", - "x2SSyuraKtS1psPx+4Y78LynMfbrx7/4haB84TSmhd/6xjug7uCJQ0F5ewPH4aIgArPj2T98Civj\n", - "p6EqaoV9aOHIAWiz/4YjQXnxxiPQZunkYajrrYfj5yZZ5aNHktyH3Z1XtGBp/Z6CrQRQ4rWdu++Q\n", - "mBjp7Br1gehxxlaAwP2KyNg8KfolSgghhBCiBt/STVQURUkURY9EUfRbL5cXoyj6RBRFT0dR9PEo\n", - "inb+6UYIIYQQ4k8h3+ovUT9uZo/bfwyIuNfMPlFV1Skz++TLZSGEEEKI/+yo7URFUXTYzH7AzD5o\n", - "Zj/5cvUPmdl3v/zvXzazTxu5kcrS8Hn12K2gvHbpArzfc489CXXnng2fJ69fw3CxrInPTWfmQ59j\n", - "z9GD0GbvUXwOPTs3B3WeEVk1One+UUxC+liYWN+tVj7o43PpyD0rZr6Od0DMzCrzzslkTs28C4dj\n", - "q5ePR+g2jZwDNSSfZUCCH/suLHFMwtPYs/jEOUnsuDB8eGhS4Lkalfj5xlH4uhYJnowSslq5C6Ns\n", - "tNCpYSvZe6dtOEb3h7F8YH9Qbjcx4LA1jb5T29XFZNX43gCPSzIK++eItBkQr867hUPiNnkysk+t\n", - "KfQPp9z1z8JavcNnZtZz1+OIeEWjIfbPYT/s+yxAcpLu6ccRMzMW0emdRBasycYS7zaxUMk4xb+7\n", - "++7ztcn7JSmOQZ41Eg4ZZ3hgvAO1uIiBlV/4zU9D3dd//0tB+eR3YCDnnW9+Le6Y24UzT6N72yWe\n", - "FGyGeDfXiOt78fkwIPrqGQyR3tpYC8rekTQzm13G47L/5NGgvHz0ELSZW8YHSM02em4e/51iZlY4\n", - "36lk/ZwmcIYNS3I9lsSlqrzDSvpdSjxX5hJPyrfyS9Q/MrN3mtk3X7H7qqq6/PK/L5vZvm9h+0II\n", - "IYQQ37bUuomKougHzexKVVWPGF3gwqyqqsomX21DCCGEEOJPFXUf532Xmf1QFEU/YC/9ojwbRdGv\n", - "mNnlKIr2V1V1KYqiA2aGCy2Z2cd+67f+w79vOnXKbrvjzpq7IYQQQgixO9S6iaqq6t1m9m4zsyiK\n", - "vtvMfqqqqv8+iqKfNbO/bmYfefm/v8Fe/wN/4S/U21shhBBCiG8TXqmwzT96bPdhM/u1KIr+hpmd\n", - "NrO/xFuH4mN3fT0oXzp7Hl5y+RwGo/W23Wre0yiWLu1Hue7k7TcH5UM3omA4NY8S+ZhI40CFTzf9\n", - "qupMwCvJytJVEdax4MfMCYUVEfCYJOuDH9n7M1qw0jt+lpSI0D6osLeNEnnOAke9zEuCCgc9rIP3\n", - "ZwGgDNc3x2MUodmxiiJ/jklIZ0yC39ymmiTgsNPGOi+WN0sUxBknTp0Kym0ijOZjnCwwdGGXUYRD\n", - "BwvE7PbD81eN8diNqDQetivJefCceeo5qIvJCNdoh/3Th0yamZXsGnWTDnIyHoyHbKJF7trg5419\n", - "IiehIv0uJZNU/LYiEuAak8/nJ2202lPQhtX5z1eRay1tTxB2S+To4ydvhLo9+8MQyacefgLafPnj\n", - "n4G6hf3hmP49P/L90ObEbTdB3cO/+7mgfO5ZFL337NlZ/73pdfjE5S1/8R1Qt3wonOg0NYXX/7YL\n", - "v9y8gA991i9dhbprV0J5f5uMw8MhTjooJvh+YEHBHv99ZYZh1GYGAyP7XovJGFtOEIibEsGfTaKY\n", - "lG/5Jqqqqs+Y2Wde/veqmb3tW92mEEIIIcS3O0osF0IIIYSogW6ihBBCCCFqoJsoIYQQQogavFJi\n", - "+R+LgZPZNq+F6atrV1GSy4coD0/NhFLs4r4laHPsFpTGj58KZcXWLErkwz7Kn+sr61DnYYJomoXi\n", - "XDlGIbUgKb9Zw6VuEyHOC9NMoGbKqk8QJj48JXKr1DeIRD69iMez4+TdJEPRtCBCs09b9inuZmaD\n", - "LvaN3lY46WC4hQIlo3RieU7S15m7GMWFr4A2XuY3M2u2QiG8KEjifILHKrZwJzKyWjljYW8owCYp\n", - "nr+BS5c3MytcyjZLHu9tbELd+moosno528z4xAcnoGZEoPZskRULxjlex/6cMvGaXWtJIzxXvk+b\n", - "mXU6KOq3Gu78kc8yGuIx9zBpNmbSeLLzsYrIMfcTO3zyuRmfNOIHGD+JxIxPpvHMzC1A3fQM1p17\n", - "/IWg/IXf+Ti0SRIcY9/y34azwu/6njdCm6e/iitjPPy7nw/KjRRF74UDe6HO86WPfQrqRkTi9mnd\n", - "M4vYz1rzYap4ZxZT9ztNsmqCO+8FWy2ArAphxc5iOfsOKX1UJOl3LK3fr0LBVqWAbZtZ5cbFiIzD\n", - "7A1jMsZOin6JEkIIIYSogW6ihBBCCCFqoJsoIYQQQoga7IoT5cM111ZWgnI+wufE3n8yM5tdCp8L\n", - "Hzx+GNrsP4Z1rZlwFfduF32ZDedpmZmtXl2FOk/WxNDDLAvrBmQVd+aYtJxf0SSvg0fMLLSThUO6\n", - "ANCEpRISVi6GvlqSoZOxtYVuzNyePUF5wZXNzKZm8Lm+98na7tyZmQ1JAGd7K9xW0d/ZOTEzy9wq\n", - "9cUIn8Uzf827BqMcz2dCvKWxc4SY98I8t9LCfUgn8GDMzBpNF5YY4flrNnE/R+44bK1tQJvVFQz3\n", - "21wPr5mYeAwp8eOmpsL9zKZ2DhMtSdhnMcK6rWvhvve7W9Cmt4XunffcpkhAX3uaOFGzYZ/tzM1D\n", - "m0lWkWeOEqvzvuEkQZ5mZuU43BbzD9mmEud8FcSpYfvpabXx+t+8ip7bs197LHy/MY6Lb3jHm6Du\n", - "9d//5qC8TsbzT/6r34a6K2cvB+U3/ZcYhZhM7ezUnLz1FNT1iau5djF8v80XV6DNylNngzJz+DIS\n", - "0tlZcH1xAfticwoDVdO4Xv+ENiUZOwvctt9WRV4Xx8TZc85uSVyufIzbmiCj87rolyghhBBCiBro\n", - "JkoIIYQQoga6iRJCCCGEqIFuooQQQggharArYvkQJN9Q/mLBYSxIc3YhDGKbJpJcRILRer0wYGxj\n", - "FSXZ9asolg+IwOxhkmzkwr22N1FkHfZ3DhPtkBBEHy5WkTDDMZGcYR+JmMi4cvFSUM7JivQFCRP1\n", - "q3AzAXduGc/xzFwY3Nki0iMLsSzc+zXSycLUOu2wv4wLlFbHY7QQxy4olK06nuZ4uY2d5JgTKXdI\n", - "AvG85xknk8nD49ztp00mzvsgxkEP++uA9OFxHvbZhg+eNB4U6kNIm82dz1+TiN7TczgRYW5hMSgz\n", - "ETon4ZfFKDx2Q3IMctL3Y9cXyhG5Zsqdxd2I5B2yMNjE9QU2+SNtYF/0ryvGZNsxEZjdOfWBtWaT\n", - "/bVeEuH32gqOw2O3Xze/9lZoc9dbXg91uZsc8elf/wS0efoRDNt8zd2vC8r7ThyANisrl6HOE8/g\n", - "d9F+sq2bvuc7g3KrhQGnTfc9w67j3jp+z/jJUcM+iu0jMt7kQzw3HjqBoQzrKjrJYeew3djYhC0W\n", - "Ph1eowWbVEWuozidMG2aoF+ihBBCCCFqoJsoIYQQQoga6CZKCCGEEKIGuokSQgghhKjBrojllYsH\n", - "bbZDIbQVozycEbG04UTSOEP5LB+h6Nl1KbGrl65AGyaNxkTeg30iieXm0le7qyhLstTt1nQo2M+M\n", - "URovncjKUobTFgqNkC5LhFFG4lag9+9vZjbq434O3H5tXMZ063PPPAd1DSdQduZx8sDMIq703nFC\n", - "8dQ0CsaM1AmNjRQvEZ4c7SRcIi/6fm+GoveAJKvHhtJj6qRKlujL2NrwafJ43iuy89suhX44IKvP\n", - "E2Oz7VKTmVjOrpmWe12S7ixezy4uQl17CqXcKTdZoTM7C20yIl775P+cJKQPtvH6y0fhOfXXgplZ\n", - "f2vnSStGTnE+JJNG3ESWRgOPQUISqCPXz9g+DXooHadu+0lCtl3t3D9HfexTXhQ2M5teCMfFozcd\n", - "hTYJmUjyB//uy0H5G//+a9Dmlrtuh7obX3NbUN7q4ooM7PvCc+0iyufnT78Adf1BOKaWJRv33QQR\n", - "kszt5XMzs0Yn/G5tke+GlFxrabzzigFsDMr9JBUygSJNSBq5H3cjHANHZDUC31/I/B6LiNxeEgF9\n", - "UvRLlBBCCCFEDXQTJYQQQghRA91ECSGEEELUYFecqNh5Nd6TiNgzdRIYl7XDwMY4wmfAvS4+q964\n", - "turaEI+I3F42Jgj8yxoY+BdZuO/jAT7jzvvoNvgnt351djMMa0wb+Lw3iUhAXhZ6DN5ruB6dudAf\n", - "iWYwGNWHoJqZmQvgYyGdPeKFDZ0nUZBAvq114pi57ff76G4xGs6ra7dIGCVzm1wAJ3mET0PevFs0\n", - "bKB74D0tM7OqCs9pzDZO8EF6PiTUzMxIf4HATyIbtDvoMkZR2K+a5PNl5PP54L6SBIDCa8i2ezl+\n", - "vq0V50CuoJ9XEQ8tSsLP3GygT5KQgSNN3OdjDhhxlOD9I2wzHhFfxp2btMn8LuL1OS+EqDiWZXiO\n", - "m81wzCvGeG2XxG2CfTJsQ74KbO+B/UG51cEx6LnH0a983tUdOnoY2tz6mldB3cZm+P2wtrICbTrt\n", - "nb8b2m08dtPT2IeiyoWlkvPuSSI8xwUZg6oqHAdzch2XpG94H5CRkdBj/6qS+Z3EwYrcK8cFG7/x\n", - "/fw1kpIQYjY2T5g1TdEvUUIIIYQQNdBNlBBCCCFEDXQTJYQQQghRA91ECSGEEELUIGKrzf+JvmE0\n", - "oQErhBBCCPFtQFVVREnXL1FCCCGEELXQTZQQQgghRA10EyWEEEIIUQPdRAkhhBBC1GBXEsvf+573\n", - "BGWfTmyGiand9S2oGw/DFOPFg4egTcut2G5mtr25EZSHPVyVu8FWjXe7+eCDD0GTBx64H+q8j7ax\n", - "ge/HfPulPXuCcquNqeLXLoUrg29v40roUzO4Sr1fvbs/wNd95EMfhrqf/KmfCMosTbuVkVTqOLxf\n", - "j2J2/07SbONw+wlJpY8qPFeJe117CpPk/9ZP/CjUvetd7wrK21skzZ585oPHjwflqZkZaLO5tg51\n", - "w62wL2xewzTkfIjnpjUd9uvmNL7fQw89CHV/+3/6G0G5v70NbbY3sX/6hPmYnL+UJOq33HFnx6U5\n", - "RVKw3evSJvb9hz4YXn/33f8BaBORsSR18cQlS22nq7+HrytIo5gkJI9ztw8kMjkhx/ODH3hfUH7g\n", - "/vdBG5Y4n7jxlNmwBUmgrtyqAuzYxSlubZiHfWN9C8fqfh9XI/jlf/4vg/J999wDbSKSQm9u1YKE\n", - "fMK4gcdzdSVcqeLwTTdCmyvPncNtZeH220v4nVKSz/zgh382KL/nvndBm4qkkftUb3b+fKp5FWGi\n", - "f5yS8+cuo+YUjmVZG4954d7v3X8b++I973sP1BVuZYWogceuIuN35L6PWmM8vkY+c+mS20vyvRpV\n", - "+Dqf4P+hj/w8vt910C9RQgghhBA10E2UEEIIIUQNdBMlhBBCCFGDXXGixu75Y8Mt1Z2k6FakDazr\n", - "rYe+yiZZjb1JVpZvdkIfqLdNXJUhrhrdYM/nHUWBz6HXroUOVmceVx3fd+AA1EV5uA9Pfe0JaNN1\n", - "rsFNr74d2rSnOlC3eilcyZ6t6s7wK8Sz5NRxic+cc7eKO1uZnK2uPY7C/SLKiVXk/awMjx1bPZzR\n", - "aIb9bHN1hI3IOU7S8O+RtIl9hfky/vgVJToubAX1Zjt0htrT2Kco1EXzTejy726fSH+psK505z3P\n", - "8bqKx1iXlk1X3rl/lmw75LOMi7C/VAXxiogTWbrzUNLPS1wjV45J358k9Ji1iGKyn/5csc+X4Ovi\n", - "JOz7VUScGtKHE+eYxBnxbKoW1MG2iWvI3K04CvtwXuD1vzCFHuj5tefDfSKOaZLh9VGOwjEgJu5f\n", - "TvbTE5HfLCrmc7kq3vXd+5FLlr0scn2DjYtj8sLBCK8tDxkWwXeKyTGIidcXD8LvzCRCL7RKsL9U\n", - "7npgoz7zOcuo/u9J+iVKCCGEEKIGuokSQgghhKiBbqKEEEIIIWqgmyghhBBCiBrsilgO5pyTFX1A\n", - "n5lBwJqZ2UYRiuTbaxvQZm4vhrxN71sOyvkAJcTtdZTNJ7nl7HYxnHF6aT4oHz68H9qsnb8CdU//\n", - "4eNBuWzg6Xrd298clJttFOmf/erjUJcPBkF5bs8StKE4MTEjgqoRSa90wnRRoUzoxV0zszQObcUW\n", - "OQZM6fQy9mA0JK3I65zdPiYidJniOzac6D01jTJ/l4RYei942B9Am9EA65acAN+c2lncNcPAyCgh\n", - "nZqIl/64UDGZCMVwrbN9YjMK3Fn1QZCMioTo0SHOvR1/f1Lngvti0vGYCO0bRkQsT+g+hJRkAgWT\n", - "jmFTZNv0mvGuMr2Od5bpmw0UtjMiY+M+kQ9T4D5k7niuDTEw9ujSCajbunotKKdtvGYiMoFp6F63\n", - "PHUDtOkReR8hkjzrZzATgWzK9QU2LyE2MnnHlfMBHvOcfNcyadxTxXitRXF4jLOEHPP+NaiLx+H3\n", - "aMQuNtLP/DjFRgR2Hvzr/jjolyghhBBCiBroJkoIIYQQoga6iRJCCCGEqIFuooQQQggharArYnlV\n", - "OvnLSWslkV1n9ixAXePcxaB89cxlaDM9h6vGTy+F25qam4c23S2UFSdxB30aupnZnuXw/c4+8Ty0\n", - "Of/Ci1A3f3hPUD71htdAm9iJes/8wTegzXgTZffF/aFcX0wkRmK6fEYSk5mkF1VhVxsTCXhcEInb\n", - "CZRZguJnTLpx5ITmkojsjCoP3y8fopDOLprY9VlfNjOLiThb5GEacpdMaGBiuRetqdRN8EncTZJm\n", - "XxHxMkp8EjCe4wZJac+cqJu18PpIiHScujRiL8QzmCxdEBHaJ7IzKZdppn41Auaist0c+wGO9P04\n", - "2TnxuqzwDZlsnvidYAnN5EP7yR8JEZOZ/O3T1jOSJM3ezxMTeTgfk0kcrXDyTPcKTsqZWZqDuuFa\n", - "OA5W5Fy153GS0cWvPhqUb57H75RLJHUboKnY+PkK82MXtvErPsQRO76kvxRu20QitxGZwDCBeF1E\n", - "5Pp3YnlMJl6U22u4sYEbB6dwRYaC9mu3n9S4J8L9BBNXrod+iRJCCCGEqIFuooQQQgghaqCbKCGE\n", - "EEKIGuyKEzUehx5IFYW7kRM/Z3YRn0PvObo3KF94Dr2iKy+chbrFw4eCcnuR+FZNDPzMB+gWeaY7\n", - "GHZ56YUzQXljFZ8B77/tJNTtOXksKBcxuiNXnwk/X9VFh6dFVivv9ULnKyMhlowEnicz/wlf5x+p\n", - "R8TvyJjXA9siTgaLVHP+AQv3nISiwA+Tkefs/tN4F+h6dX4/WdhmQXyLrBme0ySd7Pw1XMCgDwk1\n", - "M2uSsNv2MPTVIhYcSBwFr4EkKR6DhAV+QofBJh7mDCUk7NM7X+UEeYcv7cLOvgULIfUBnBXztNgx\n", - "8G2Il1KQfS99UGlBvCni5/jtU0+SeEs+rBScrJc2hnWwHXxdTpyvLAv7ft5Ff7WxgG6TuT6ck/Db\n", - "pROHoe5L58NQ5w4JNK5IAC/CnLadryMWBuvHWOoxModu7Jyokl2z5HUTOFFVjL5jloaeVJqTMOEu\n", - "usxmYbuouQwtygS/1/ylFdEAXoRl5E6KfokSQgghhKiBbqKEEEIIIWqgmyghhBBCiBroJkoIIYQQ\n", - "oga7IpbHzuSsXLjXmASAJWTF5oM3hit1X3wOJfJzT52GuvWLl4LyNBHLm018v6IcQZ2nv7EFdYN+\n", - "PygvnzgCbVrLe6Aua4RBiEkXRc+NFy4E5Wvnz+G292Kg4sFTNwblhT1L0IbhRV0ftHe9Og8L5IuI\n", - "4Vu6EDQWPBcRsTxxAmxRThi26bbPHFkmUHs5OiYrmjOp2q/iPhphH2NiqQ+2TCYM25zqhH2BhVhW\n", - "RPAduWs0IfvEwlL9avMx2TYLcGTHeCdY4KAP1jRD+TSOUAZn++nPQ1Hh5+X+rd8vbMTez8NkcBYc\n", - "6MVyfw2Z8eMbJ+F+5Tm5rsjf3b6vR0ySn0DcZXmjBelTmdt+3sPJNEYmyjSnQ/F59fR5aHPna+6C\n", - "uu5WLyhXQxxLWD/zsEDHiJw/mL9A5PrYvHyOm6EBp66Kyeds/J7kaowTFO4zL3ZvXYI2VW8V6lL3\n", - "nVy1MWyzinA8rfw1STI0Kzo5ov7vSfolSgghhBCiBrqJEkIIIYSogW6ihBBCCCFqoJsoIYQQQoga\n", - "7IpY7uNB+068jlsojA36KNwuLIcp5kdvvQHaXD6NsvmlF8ME8eUjmFL7/7P35kG7ZHd93++c7n6W\n", - "933vOvtotJtBCyCHYjEklIJLJrjsAipOYZykQjmUnVRYIpBBMyONFrTMSEKKMEvFxAUFruBAERvj\n", - "KiqWTBlMygKBUQAhDRJCMxotc2e5c+99l2fpPufkj3uhdL6/79XbtCTeK/n7qVLp9pnT3ae7T/fT\n", - "7/N8zvfEzgt/zeb407XaeMnx1B23V8s7573EvbPj5e9uv5bkfvdfvMvV+eP/+DvV8pf/ja9xdb7m\n", - "2/6GK9s7d75a/v1//x5XhwNpyESWLOTdHKVclopLJyKHvjKwdHIipCds18hE2gL7azs/MzlLZMbd\n", - "ZZIyvl37vrHZ1P06k4R0EoLtkuPziERoM7MOhXQiu2MaupkZjvWIRIjFmQjMzFIPx0cGjfRbn2Ic\n", - "UG4d8ece61OJpIOjTNuSQQ4tOek9SKuxkH6QyP0AbfCp/yQNncIk+eNnn6eSPJG/nYhMLfnj20n7\n", - "cDj+2cmeG8zXLiDAx+TXOzhcubJzz6qfw08/QgbhkLT+FoT07b5PSG8aMhsBUNjsDuTB5Aa3UOkZ\n", - "Bw+wGkygbqAO6z9kY8d3M2vZ8a3rgVbDvk8nj3NyfKdqsXxofBr6sCWNghPBBuWwk4XP/b8I+iZK\n", - "CCGEEGICeokSQgghhJiAXqKEEEIIISZwIk5UA7PZry5drpbT0/WymdmpS2dc2e7pOtzrzJ23ujq3\n", - "Pvt2V/b0hXr7V558wtXpzvj9FeJAIO2Onz381Pk6SDMO/vfXJ9//EVf2gd98b7X8qY991NX55u/5\n", - "jmr5b37v/+DqPPbJx13Zu//pL1TLV0gdxphfjjHsz8xP/k5UKjqjOboi7DfugXkF+Ns4ayghgAvT\n", - "zrwT1S387/MGrkFP3J/NhoRRwnqLXe/GtS0J9wSXifkkDPSd5gvvgCxJG4rV7WQhnZkEI243te+0\n", - "OfL+E5PhSqqdsjHOAtM2WKgkButRn4R0mAh9j81sTx1B8KRYEGs3JlyUhiCyhsJqmUh1ZL1EQh1d\n", - "E9j9h/4fqROJd+a2TcpYbmef6362u+uDGC8/6QMc9+6oXdRLf+KDH9fEdzp9583V8hGpMyYclvUp\n", - "VuhcJhIO6frCSH8NHaxCHFPq+o0Io4zZ3/95famuE70rmvf8Z2Za1L7zwD4viAfauOMZ9+T/LLI2\n", - "9U2UEEIIIcQU9BIlhBBCCDEBvUQJIYQQQkxAL1FCCCGEEBM4EbF8d6cWc9e7tSB+cFDPmm1mdvGT\n", - "XhRcQEDlTbedc3XuesHdrmyzen+1fLR/ydU5TULXupYJmjXnQCI3Mzu8ULf90sf97OGXHvOS4+nb\n", - "a+Hub/3Aq1ydl/ztb6yW3/cb73V1/vU7ftqVNdtaAvzql73U1bF/+X+7IifOEpGWB7+hID7u/R1n\n", - "R4+BhDwaERrRzaTi5Yj9sVBQFlQIIvSwJW0iIiSKnt2CiOyd31+/rYM753MiuxO6WS2WL5ZELCfB\n", - "r01Xr9eSczBsfdjmCkT9QATRNPhz1W/r817C8dLzNnlptWNmMoi6fU9CQgcS/AidKpFA1UD09llb\n", - "P2YXDQtwPf7ZEsi91jKhGUT9ofhzl4ipyyRjJJM2+JBTlpB5/P2eSEhnR8Jg16u67+/C54eZ2eHF\n", - "fVfWna2fp3HmB9McPfaUKzt1Rx1MfLg6cHWaEeI8C9ZM5FzhJaUDbkaI7C6w1swJ6WxgAutnR5Wp\n", - "WAAAIABJREFU1hw/sKMt/j4yKMudP09hxw8MSKF+nrEA18gGWsDnCgtrZedl7MAjhr6JEkIIIYSY\n", - "gF6ihBBCCCEmoJcoIYQQQogJ6CVKCCGEEGICJyKWF6uFzOVeLbeu115QO7p0xZVdulBLgMtdL9fu\n", - "nb/Jl90CM0Qnv79+7VNp24UXGJHLF7yseOWpup2LHX/an/81X+HK7rz7OdXy8pabXZ1f+fGfq5Z/\n", - "+1/+mqtzmrT76//O366Wy/x4sfVazWpp/DzvsB7xFJn8jWIgT4QmwjaIujgz+vVAgZHNzo4p6mZm\n", - "h/u1bJqJSLslad2pr4+naYlYPvP9JUH6+Tr4wRiMDOnZKfnzGYnkjAIzE8sT84nhmmIi/NX9sVTx\n", - "gAV+48Bq689vP0JITyRdfsbalOFaEf92p/P9ZQ4i+Sz6OrEc/yhmEnAmKeM4ZiOwm42Ap5jdM4Xs\n", - "D73nltwzTBD3+/fHx4R7fF7Pd/25Gw788zuA/D3f80Lz4eN+ANNpmL1iu/UDCljKt9s/OT42EAEv\n", - "F90yBpYfu/dr24KNZ3aNmY094viiEbEcBiuEuf8sGqL/3C6Q5M7keprDj7MKZHJ+2Xo0Tn4c+iZK\n", - "CCGEEGICeokSQgghhJiAXqKEEEIIISZwIk4UBn7NwfnY2fO/mx7te+fjyhN1SObOKT8b9N6eDxM8\n", - "d/sd1fLmymVXZ+g3riyPCDgbBr/eLXfdWi3PSZDnQLyMC5+oAzgv/u4fuDoXH/1UtfzlX+ndqud+\n", - "xYtc2QEc36c+8rCrw8AgNhpmRoI0ne9E6qRMwgvhp/CGrJeJZ+N+QR+nhbjsUBZGOV/4stmsDqhk\n", - "LlUiv7tj5mELYZhmZi0JqNuCE9UEf+4YqU+fcdmMh2Y6dSOzRwcL7oNZ46mjwPpLXZaJO4IMW/+M\n", - "GIioleAiD70P++yiP745eD27M+9ydJ3vi3Pw3BZzEmY6ImyTuWos7BZvNXbPMAWkQCgnu1bcLQRf\n", - "jvTXdkRQcWJuY0ueE+ARWuc9wrz12yrgO3YkpPPgaf9ZsASnlN0zgQlyuH8SKsueE3mEn+OCO1nC\n", - "Mfm8IgaULyGbYu4U0tjKlaVQH3NmfZGdg4why35/rEW+y5JnEmsD2dZY9E2UEEIIIcQE9BIlhBBC\n", - "CDEBvUQJIYQQQkxAL1FCCCGEEBMIY0MIP2c7HJv8JoQQQghxA1AwAfQa+iZKCCGEEGICk1+iQghn\n", - "Qwi/FEL4YAjhAyGErw0hnA8hvDuE8KEQwrtCCGc/l40VQgghhLhR+Gy+ifpRM/vVUsoLzewrzOwh\n", - "M7vHzN5dSrnbzH7t2rIQQgghxBcdk5yoEMIZM3tfKeV5UP6Qmb20lHIhhHC7mf16KeUFUEdOlBBC\n", - "CCG+YLieEzU1sfy5ZvZECOFnzOwlZvYfzezlZnZbKeXCtToXzOw2tvI99766Wk65Tixtgk9/nWef\n", - "ohxjXcaSq7eFJcLWh12yPzed+QTo3Vwnst73tre7Ove+7gddGUbANmxGepY4C2nEDYltLbBeIe+o\n", - "kSTXDjC7NotsfdPr3+nKXnXvfdVySH7F1JLjg7azc5AGf41DV1+/YetTf/Pgr9WZc/UvyVcu+zTr\n", - "t731QVf2X7/iF6rlsvD7e+7sIVf2V7oPVsu35qdcnac3/nb4k+GFdTuLT7M+2/gU5XleV8uXyC/n\n", - "73zzq13Za++pr982+EdAJinROdXXJhSSvkz6Hs6qzr76xj5sZhZgjnYSMmxveNNbquU3/n1/PV18\n", - "t/l7pGG3Y/RtyvB4weRzM7NINlZc2jqZkZ6cu/t//DXV8n2v8c+WkP2JaaAs9L5NkawXIDG8IWnP\n", - "BZ8bZpZmddsH8qmSOn+u3vz6H6mWX3v/q1ydjvyRH2F2h46k2bN0cHwOZnIdMrkOqakPyG/ZbCDP\n", - "5je+8W3V8ite+XpXJ0TfdjazAdLiTA7kHmKfYVg2j/56tsWvtyj1/f/db/tJV+e1P/I/urKAH8lk\n", - "f7Ehsy3Euqwh/a6QEHw8DYVUyuS1J8OKb/jun/cbvw5Tf85rzewrzewnSylfaWaHBj/dlatfcelb\n", - "JyGEEEJ8UTL1m6iPm9nHSym/c235l8zsXjN7LIRweynlsRDCHWb2OFv5N3/zN/7838961rPtrmd+\n", - "ycRmCCGEEEKcDJNeoq69JD0aQri7lPIhM3uZmf3Rtf99p5m95dr//zJb/xu+4aXVcjp+7kYhhBBC\n", - "iBuKqd9EmZl9r5n9nyGEmZl9xMz+vpk1ZvaLIYTvMrOHzezb6Zrwu3MLM2C3xH+aBz9D9KypvZCe\n", - "uD9mS1dylPeq5RT8LOCFOANtJLPb43rkN/wAv5czB4ToB04E6YmD0cCs8TgTu5nZQByz4mYBJ/sf\n", - "QSEuQNMQB2uod5CYx0A8lAjb7+is52Smd3C1MpkhnpGgby4b71Ld0T7iyp7X/mm1PN94c+JT/d2u\n", - "7NHhOdVyRtnBzO7KH3dl59vauVoFf14YEVyRZu77fma/8kdwCzI5n3TMCG6LeVNktQn9MZB+EJg4\n", - "gbtq2LEwByPBMvFniLuBp47d7PSZ4CqR60KeU/gIaAdyDla+v3RQj3RFy5H4K/BXcJmTc0f8HLf/\n", - "7OsE9hc2OFEDu7fJczjjs4r018I+Q6CDBtKHyWPQ75/4cqzvD9A/2PMtQ50ZuS5dJp8X8FnQkc+L\n", - "lvT9OGIA2jbtubIA17QhTtSQib8Gz/lCvKlCrnuBE1rYB2v2rz3kI3I0k1+iSim/b2ZfTf7Ty6Y3\n", - "RwghhBDiCwMllgshhBBCTEAvUUIIIYQQE9BLlBBCCCHEBD4bsXwyTsJLtVjWBS+aLcLGle3YQbVM\n", - "MjOtLX49tPkOiJyZXEqY2TBC3mV+aAuCOAtYw1BCM+9GsoBKdA4zEQUDseYiypIjxEgzs9Cg9Egq\n", - "kcIMInLX+fNbiJA+X9YDAw4OfPBkYcI9tKGN48TrM3G/XrYLrs5N4aIri9BlH1s/19X5g6Ov8mVD\n", - "rRU+Y/Goq7Oc/Y4vg3ZGIoMyIvzdVEg/zzMvmyd4VOQtCfcjYnCLhjjZnxvkcLWhf2EiewCw4EIY\n", - "wBCI7Jpm/lgyBK/SOuQ6BDjmmHyb2uH4GzAwuZccXxzqkxc3/py3RwtXNjuC0GPSztIS+XsXg1hJ\n", - "aO4IczcmIg8PROIGWTiyJFYasorSMRvIQu4HfJ6xz5kRHXYg0jqbwGMLgyEyGRyBz/2WyNnsmR7h\n", - "82FO+uuMCf5jzOstecbiMRNBPNBz10Md8ownn6N5hFheSEA0G6AxFn0TJYQQQggxAb1ECSGEEEJM\n", - "QC9RQgghhBATOBEnyuB3bnQGtuZ/W2Vlc/j9ugv+t/hF8L/BbmCi26bxv62uzXsh63y8V0O9JQiH\n", - "Yz+/ssmFsYRNJJzg+MgczDYkEmaGE7yOdKIyeBlstYG4DQa+U+iIy0F8BHQiLj/ufaTTt553Zd28\n", - "vlb56PigVDOzvfbpavl8fNLVmZGgySe2d1bLf7j5Glfn99Zf78ouhGdXy8/rP+Lq7JDAT6cVjryA\n", - "EXyHQHyy0pDw2ba+NszACv0h2V+9faqvkDBBN7E22Z/fEHMGSaAieBmZhEOmPR/uu9mBcN8FcXhI\n", - "AGeAmYvbre/nzFvyG/fniWghblLiZvDPrfbIlzVX6smvw5aEEs78s6QrtZuayPPU2uOdPfYXvfOR\n", - "zCxAJ8rEccGA46tgPeJusnBP2BZzeEZkUdK40cb8dU/oRJF+3cB9y/bPHLoZlM2Ia8QmdEanlVF6\n", - "5kTVfWgY/Llr2OdTB/c/CQ7NxKEd9Rhk4aWkXWPRN1FCCCGEEBPQS5QQQgghxAT0EiWEEEIIMQG9\n", - "RAkhhBBCTOBExPIC724JhO1DO+vWudKec2WnygKWD1ydmXmhuMXAMfOBnEMmkjObRR2gXltAGZuJ\n", - "iV4CbJr68pCcQrOMgiELSjt+9vAxs5Cb+aAylmWYibC5WNTXOBH5vI1eaD66XF/T1aGXrJ//zC9z\n", - "ZWlbX/eD9TixfN7UQvFO9H0jDf62eXqoxfKHt893dfbDKVd2e/OJavn59mFX56b4tCvbhwuWgj93\n", - "jGZdH18kj4A433VlA8jmiYSXZtKvUXxmoXnsfnD1xtx7bKZ3dq+BSJ6Xa1enJ2J5f7ouWy3J/mZE\n", - "TO7rc7w48DfyzOZ+vREwnzmCdIxyv5lZTOTRDyJ56EmfItchwL0WB3Jv5+PvP9bORI3tuqwhA27o\n", - "Wq5w7ENvxGrsQQhksiKLsBzg3kpErm9ciK3fTkuCNPGzL5DPC/ZZZGQAiiORZwJsPjS+35XEBhTB\n", - "NSXhzEZCcjHstrAPNhZeSoJlx6JvooQQQgghJqCXKCGEEEKICeglSgghhBBiAnqJEkIIIYSYwImI\n", - "5RGkuFWphbSn7Ca3zlODL5tDkvNd5WFX5674CVe2AJF8t3iJlJmJiZrdAEvdPt4BtMCkQ7DyiA9n\n", - "2UYk17YkeRgrjhEHzbed+ZTdzEuyAeTPzQER/ve8yHrlqVqqPkPSye94zl2u7P/7d++p90/kzDGw\n", - "8HU28OGJdHu1fBD3XJ1bF4+4she176+Wv6z9PVen7a64soP4jHp58DI4YwbSb+p93y9bUraot1+I\n", - "fJ5IJnOG/oF92oxIsubvBzY4wu2f3Z5s9vmu7nt54ftiv/Cy+Xq3Llvv+aTlofX9LEJCeYQBMWZ8\n", - "sALCnhFUnI+4TFLpZ0yKhyR3OrWCPz7Ue6nUPebxQi4xzx2HwS3kmZtI8niEhOvCUrhZ46Hv8XTy\n", - "4/snu1YsB3zARzPZthsYROpEcjD42RtIHXqrjRl5RA7GDRrBB4KZFTKoIgeQ1Hu/8SaymTGgD5Nn\n", - "C50Zg7RrLPomSgghhBBiAnqJEkIIIYSYgF6ihBBCCCEmcCJO1CzULlMfl9Xypng35uPlGa4sQ4hd\n", - "2/rfSM8VH1S4LLUTNSveiRjI76Yb8y6DbxQrwt/U/e+7kfhWBXyOPPj13LaC/42bzoCNv4WPdKLw\n", - "tTuQmbSZV7Dd1Occ/YTrrYftfPaLv8TV2X/isit78uHahXv2C+72Gyc0eDqDv0WOkg/NvJJOV8vL\n", - "uO/qPHvugzS/qv1/6zrRe1OPN94HvJBvrZZX2beJEcFbalc+oLbtvKPQdHXfbxbeicrGAjjrfl2I\n", - "U5PT8b7amNnZM5NVmCcV63oDXnQzS8QZ6ru6rJ/59XriRLWh7uvDmuyvOf7+IwYI9V5yU5+soSPb\n", - "JgGjOdXtjHPvfDHHLC/BMSPP4RSPv8aRhQIzryei20S8F5axCP2DdTvmFvl+RbyeEcolc9pCYEGh\n", - "GM48Yj3WAPKIRVUs0xPli8YQEnum1zcgUxQLCbYeMgS/EuFqIGGbAfoeLpv5QE4zszCif14PfRMl\n", - "hBBCCDEBvUQJIYQQQkxAL1FCCCGEEBPQS5QQQgghxARORCy/eX6pWt7ta9F8n4Rvfarc4squpFq4\n", - "ZeFwgQjbAdLoUH69Wua31Y+QWwPZFsqRLDyNZUFGw3ayUEIQd8n+mTsYYFtMqKSA/MnWSmw2djAa\n", - "u85LyGnrRdbdvVpgnhOh+ZE/8sJ219bb7/Z8n2LMrRZuIxE2981L3Idhp1o+N/cDGp7XfdCV3dXV\n", - "Inkhgv+F4Pv+xXxbXTCMu34oqcbBC8YNkc1ns/r42P0RSKijT2P160V2z8B5QNmWwa4Vm5EeyzCc\n", - "8rqFkOZJvFYjnrBbr5CE2mGMmUxuZBbAm9DeJV0/Gwm7BcG+IcIve1BlkOmHBbn/iXCPsAE37M/8\n", - "DH0D+8rVQnpRq6WWDG7JZGAObosOphlz+7Ftk7a3GDRLNhVBtGYC/kDW7Jv6mm7JOcf9m5mVMUHT\n", - "LLASykryz/1h4wds5S10WtLRExmIEJu6X7fzjavTzI5cWdv5+2Es+iZKCCGEEGICeokSQgghhJiA\n", - "XqKEEEIIISaglyghhBBCiAmcUGL5YbW819aJ05lInWyW8ydDndp8Pjzl6nQkInUD2ypEct6QpOpM\n", - "UsxdHRY8DGIiE73ZhOJYkQmpBunEhYifCacFv04bxhBA5kuJ5CgTqdOJ5ESkZTOvz3dqkXx75dDV\n", - "ufzkRVd29tab692NTKRtIM12yD49/0o558qO4l61vBt9X2yClxcvhzrp/Enz2/5Yeb4re7KvB1Xs\n", - "setAyPNaEC+Dl/kbFrvfg3Df+vNiTNR1CfBEWiV9NmD/GBNZTu9PdkPW9ZpEEqF7f/+3m/qYU+tv\n", - "2tyTxHKQaZs1s6XJ+cQqRB5umFgOfR1nPjAzKy0RaRdwb5PnRiB/d+OMDMQdNiPnyhHHCdsZ+gt1\n", - "wVl3wQEFpG/Q4O+2PsmJnAM2gAGZsdRt8kwPBQcLkec3bIuNg2CDP4ah3nZPXgESOS/tmMR5In9j\n", - "GnlJpMOSew3F8rRdujpDIa8vDczIMHiJfEGS1UPy9caib6KEEEIIISaglyghhBBCiAnoJUoIIYQQ\n", - "YgIn4kStmvr3/0WsfYtbhsf9Sq1/37t5qAMNaSBf8a7Iuqu9kC354X3T+oS6zJwkgKop8Fs/m7k7\n", - "EElpgPDJMcGhkfx2XYhrlOE39RiZyODJXnJxdSI5lgAeA5+znmwLztXRlSu+DnFxds/XgZg5j3OG\n", - "GvQWyCXvsz9XeNZn5vc3kHN8AUIzHy3PdnU+0T/LbyvVrtjp9AnfUMIW+n5e+jA6NrM7ujch+/UC\n", - "8QgxAJMFI7KgVxpoeAxUR2RyDNwzZUv8p7W//+foXCXvkzEtK4IH0qz9/sJmxP1HgydJNaiXG+L+\n", - "kNshdxDyyDZOpE987hZ2/zfHO1Fsd8zEwfudPfepezeiDobRmvl+xcKSR3w0WEt6KOvl6HhRFRYu\n", - "ckkjwzbRByT3Iw1QHhF2ayzsGl0xFi7KnD1YbSAeUxm8R1ia+t7KgXhokQTNxnGfDwx9EyWEEEII\n", - "MQG9RAkhhBBCTEAvUUIIIYQQE9BLlBBCCCHEBE5ELL9stRQbwKSbNX5m+Xnad2WnQaIezItmPSnb\n", - "gqmXSWJdoTODj7AHSeBYUzCgksh1RJx34ZokVa4B4Y/OZE/EPdxWM+LQru7g+BnGmXiZBghBI2GN\n", - "AxF18bxsN77OfMdvq1vWYvDB0QFpqWcGxm1DhPRTwcvt6F2eLpd8FRI0d6Wcr5bXtufqLAcvR54f\n", - "HquW77RP+jYR+nk9Y3q2HV+JSfjQPZn3XVhwX64lTpbZx0T2gPfMCHM3kH7uxFYzCxAiOSNieSTZ\n", - "e3GoD7qdsZnlScPgmRCJJNuSNiA5suMjO4TzUNhza8SzhCVP4kCWaxWhEtkdewZhHRK22Takndgu\n", - "Uod50MS9Jm1gQjoOjvAbyjRlGRj88WG4r5lZLgmWfT/D5zwOwDGz69juOAjA12ADPUZkiXKxHEYL\n", - "sEtFRzmEugwHQpmZFXLucPNNJoOxejIwqJ3+KqRvooQQQgghJqCXKCGEEEKICeglSgghhBBiAnqJ\n", - "EkIIIYSYQBgz+/TndIdokQshhBBC3MAUN9LrKvomSgghhBBiAnqJEkIIIYSYgF6ihBBCCCEmcCJh\n", - "m/e89Xvqgm0dlhhJ8FxY+YCsdrWslpuDpa9z6Gdjtw3sj+WkdX6m5zKrZ66/9xde4ercd/8PkY3V\n", - "BBKe1jb+mEuG0DUS0rfFUEA2jXxLQvMiBJWRk/CWNz/gyl7/8lfXbSROXUvezVsMoxv8z8stSSrE\n", - "oLvE3vvZTPawTHLg7J5/8sO+7DX319sJLIiVBKNCqFwmddi2LNb9OpOgy1R8qFy0OnQ0mF/vrW96\n", - "kyv7odfdUy1jEOzVbfuywYUJkoBMV2IWoJSF2DYkDDJjKCBRKR/84bdUy699x3e4OjHtujKD54Zt\n", - "SeDoZuGKQqrvURrI2/jrUGZ1eHCY+WdLbH3A8P2v/qlq+TX3/KCrMw8+FbSzVbW8LCtfp/jQWrwK\n", - "pfHPzk0hgaoQaDwE9rHir/EPvfknq+VXPuCPj+aE4v7JdcjkueQejaTvN9m3fbhSP/d32tO+TRt/\n", - "v7/uba+rll9xzxtcHQx+NjNLVj8TjpL/7NvmuqwYCeR0JWYRnvsdee53LAAUQo//jze93NX5mX/4\n", - "Pa7MhV8Gf39kcm/jR8FA0n23JCR709bnZdX6czeQUNdtqOs9+GZ/ra6HvokSQgghhJiAXqKEEEII\n", - "ISaglyghhBBCiAnoJUoIIYQQYgInIpbjbOShq2UzlmkVBi+I5XVdjwnb1ntBNIJYymZCD9mLnoUa\n", - "6Liib4OThbMX6QqZBRxFyGj+HKR1LY0uThORLniRte3qY85MkiWUBs4VkboHInUmEAO7xu8vDWSW\n", - "ehSTmdDsPUg363ii2rMngswfiNRtROJsYBZ1djZx5vWr9er1YkOuMRHu3aTtadz1cw4n64vkVDUg\n", - "Y6JIf7Xs+HYyaZ10fbdiCMcfXyhkEMlABPFtXZaPvFheVqQs1dvHQQ9mZmHmJe4mwjGTP10TDvQg\n", - "bKOX5IvrCGYBylL22w4DG6wAx0OuMbvhM/R2HBQwFhxIY8bFcny+DOTZ1RLp2InziRxL78u6WH9e\n", - "tNnfo+uV/7xAZtFL1WzESw+fY53584Ii+UDuvYj9zswCXNNCtm2kLzYjLik5de76saht9nmf4fNi\n", - "IB2hJwMYNjBQZ0s+j5mQvqWDIcahb6KEEEIIISaglyghhBBCiAnoJUoIIYQQYgJ6iRJCCCGEmMCJ\n", - "iOXWQQo12GalEAEvkYRdENIDEb8LEfdKX8tn3Fn18qCR9FPXJpawCzIdFf6IirxY1iLplU9tXJ1h\n", - "U28rkmRXI+IlhraiwH09EkiAxGu1SI4ltccLjQ2RuAu852ffDawl1zhsMSl73PEZtAv3b2YWmFCc\n", - "6vVaJtcSh7OBBOjUkf1FMqjCxS+PFOdxLZYWTu6HCJ2YDcagnR83Rlcj9yj22RFiayTJzmVDHnGQ\n", - "Rh6Ozrgq/cEpVzaAkB7J4AibX/ZtAFE3Rj/Qw9qZLwPWwYvziTy8mlJvf0b6MEuJx0EV7Dkc2Xog\n", - "OTtB/erWSNmYOmwWA6hBEqhb8qxOff3wSEQsn5N7bQb9sz8kifNENkca8vCKTGiGNPnIHrKY6E+u\n", - "cU+OD+81dh9nco3LcPz1a0hfxIEkkQ1Iiayd8Pwm56DHQU5mtm3r87luvUTek1k9+ub4++966Jso\n", - "IYQQQogJ6CVKCCGEEGICeokSQgghhJjAyYRtNhjOBuGbbFZn8ntymNcBZ2lBgjWXxD/Y1mWBeRMt\n", - "mRmc/Abr6rDQSihDv8TMrJ2R39SHul0HT11xVebL+rfchhwK/bUeXp9Z8BwDf6smOpL1JJmtLMCD\n", - "WzBB6PgwurgmfoefyN7mELIWiEvFQFeLXXEWjOq8NxJm2LGAw77ui30hftDMuzADBhySUDlGhrZH\n", - "sj8WiBegw7CwTRak6ToaC1Qk95VzImjwI2y6950/9Cyktw5P3OzvuTqbKze7su22dhRj4wMWF2d8\n", - "O5seXMbs3UYXyEvoo3++MY9obXVnn5tfryFhwhF9R/Ioo0Ga4Hgyp2bcX+u+VibXHYNfmQdaiEPb\n", - "b+p7bT477bdN+lC/Xz9gmuTPZxvYtamZBX/d2WedRXSEfZ0ergMLo2RPL/SWIvGImZ87Bvbx6AJU\n", - "mW9FtpWgXk+8tw3x3o6cE0WuJwnbHBS2KYQQQgjxl4teooQQQgghJqCXKCGEEEKICeglSgghhBBi\n", - "AicilhcQy0uopcpEHNmWWI7o96Z06OqEgQSxgagXV14KLGzG7Y5I6se0ycysAek3E1GwJWF7B0/U\n", - "G1sf+Y2fvb1er93x2x42/lgKCMVM4GQEFK+JSF9av63VTn3u1uf9evsLcl6gXct9L4yeuug7DOSw\n", - "WjuMDNuMKFAT8ZqJrCCIx0QC+Q59EGOEW3BG+oaZD4NEj3xLxVIPXvdCZn8PpA04YKIlf38xAZZE\n", - "I/oaVK7FbZNNIyRsMxEJOPV12bD1YvnqYNeXrWohfb7w56Bb+mdQ7iGMkjyTxri820IejGHpijDM\n", - "d0X6YhNXfj1oA/sLO5lvQwIpt5BBDmMeLzTAlfUX2BYbdNCTZ17b1gM0FrMdV2e4tO/LDupnTrdz\n", - "3jdzOP6jdEZCVllAZYAA3ib4fo15zZEMDEqFtAn2NyNdKhr5vCBit6vDPvygnWxgwkDCp1Ek35AR\n", - "UytStu7qc7WKvk5pyf7GffxR9E2UEEIIIcQE9BIlhBBCCDEBvUQJIYQQQkxAL1FCCCGEEBM4GbEc\n", - "Z22GWc5pgikxLwOIyCX5d8JEhOKAKc0tSwsm60WSsg0QR85yqre/XHihsSGC6MHTIDkSCfH0TbVI\n", - "19sB2T9JygY5Gmf3vh4tbou0qTR+f2lZn4Mnz/iu99hZkgTc19u/zbxYvjwis83D4IVuZAovzoYe\n", - "yKzumaV8o6AZSUR68WXDwVP1aizxntwRcV6fq4YMTGBgyxsyoznVe0FcDeRWiERud0fDJHJijeNp\n", - "wMR0RiDZ/CWRRxyUpZ4kGA+sDGakJ4+NlMg5QGGaSLqRXAekRJ9cvyb9JWP6cuP7XSQJ6aXUUvyM\n", - "3NuJ9P0E5z2RwRjsuejrsMRydj/AxljCfuP7wqyt75l0QJLjD/x5yaV+NnfLW/0O9/2AAmRObppM\n", - "Ljs+q4ZCZj+AUQANmSViTZ77mGzOZs+gdxqLrwfc57rx9HrXJjJQZwtJ4yuSPL6a+WceJpZvOiKW\n", - "02koRg48IuibKCGEEEKICeglSgghhBBiAnqJEkIIIYSYwIk4URl+v8W8v8iCNclvxwP8nluMhJll\n", - "EsCJgYONd3EicSKoCIKQ3/BbmG16PvP+0/5F3/ajg3qm9TO3+HbO9+qTd3SZuDgsMBJ+O87kd3cG\n", - "eguZ/A7ekrIEZVfI7+AXSXjaDK7x2Za0MxAnCjY//q8FnEGd7Y+4GxDq1nc+rDHsnHVlEfpLpt6d\n", - "dzdKrveHAX3XA9UJFqzJHJMINylzVXjYJqxH3LTYsXsNm3S8k8EDY4lLCfdx0/p7pp35cx77up81\n", - "cxKo2q5dWdtiiiVzR45P+xvIfWzE2VvD8wwDVs3M0kACKmPtmCyKPweB3A/BRoRtUtPN8/gjAAAg\n", - "AElEQVQVoD4guR+gL0ZyDrrO+zL9lfra7Abvpq5IoLF1ddjtqb1bXJWDx57w6wEzcm8XFrYJx1zI\n", - "cxHd1MDuK/PnYINhqcxZYm7jiMuXGhakW+8vkX6A/pOZ2RE8E47m/lgOmRMFrmhPZLzAPLA87vOP\n", - "oW+ihBBCCCEmoJcoIYQQQogJ6CVKCCGEEGICeokSQgghhJjAiYjlKGiXBuVTIgoz2a2rBbGYvQjJ\n", - "vMSSQHYjomfZelkRAwcZgUQVtk29v+3aS4BXLvm2tzBL/N553yYMKt2siVgevIBXtvV6XMr15BGi\n", - "4JC8WBqH+piXa3+ezh75bTUgUC5WpJ0kLBFl2jGhb2ZEnCVSbs7+HGPAYSFhf2VxxpU1IMXSQRWd\n", - "H1CQwZwfI15fXbGuR7MvSYhkBpmX9fNRkOtQiFDsHPUR4nUk9zELPc1dfa+18yuuznKX9MVZfa1m\n", - "S7/t+a4fyBLnIJtHL6QXMjjC1WGCOAZrmlmyOdTx90ciM9mXVK83hJWr0yUi3OPlY64yexC7Ov6c\n", - "u2BkM8swsCOSoMSyJue4R8Hfn5ejjS97/t0vrpabA38smycuuDKkJUHBLf28qNtZ3Anmgr+rQ+6Z\n", - "ptR9GJ8jZiQc1syGEWHMA5G4E6w3kM2sSSDm0azui0wiPyQBw0cwiIt9trfk3LWfxfdJ+iZKCCGE\n", - "EGICk1+iQgj3hhD+KITwhyGEnw8hzEMI50MI7w4hfCiE8K4Qgh/TLYQQQgjxRcCkl6gQwnPM7B+Y\n", - "2VeWUr7czBoz+w4zu8fM3l1KudvMfu3ashBCCCHEFx1Tv4m6Yma9me2EEFoz2zGzT5rZt5jZz16r\n", - "87Nm9m2fdQuFEEIIIW5AJonlpZSLIYS3m9nHzGxlZv+mlPLuEMJtpZQ/M+wumNltfAu1vIcCXGAS\n", - "MBGfMwrpLZmBm0hrYV4LfpHJi0RIa/oRMi2R8kKpj3e9IoIhSW3tTtfbWp72296ua2l1WHtpjgSk\n", - "u2a2JEGcMWRM9Cbnjpyn+WFd7xaSPL5cHbmykOr1zuz7bc82rA31OR8bSIv+ZKHX0+8Pe8tA1svt\n", - "3JU10NcbMqiiRN83UK5lgigjgmSMffN6FDiBLOm8jEg/Zno4Czp34vqIWeQDEXet9YJ/nINYvrfv\n", - "6zREGk8wCKDx8nK34xPLA4jluSUzK5DUdEfyfSOQPlXg3A1GZmRoWMI1lI0U2VsY3MIToY8/vkSs\n", - "49CQQSpwfCzkf3tArl+3Vy1v/BgA2zv3TFd2dvfmavmj//5XXZ1dMlgAiVSc941vYKBFId91LODz\n", - "aSh+/yzgHm+2hAnmZpaJIB5HfN8ykGdQD/L+hnzOHHW+D+9D4vzRzPfhNfnMHBoccEOeU+QZayNn\n", - "7GBM/Tnv+Wb2cjN7jpndaWZ7IYT/vmrT1Tkgxg35EkIIIYT4AmNqxMFXmdl/KKU8ZWYWQvgXZvZ1\n", - "ZvZYCOH2UspjIYQ7zOxxtvJ7/tXv/fm/7/rSO+wZX3b7xGYIIYQQQpwMU1+iHjKz+0MISzNbm9nL\n", - "zOy9ZnZoZt9pZm+59v+/zFb+um/9ymp51OSUQgghhBA3EFOdqN8PIfycmf2uXZ0m/ffM7KfM7JSZ\n", - "/WII4bvM7GEz+3a+PngS6NCQ31ZZEBtmkLHfjqlJ0cBv+MR/IBNg20B+P0aYz5UgqDCRn1+bmW97\n", - "09S/3TKP4eiwDsRjDkEgv0NjeGmgM6h7MLcvZxas6c/B4rAumyW/vzM4272ZGQScdgNxMg7J8aFf\n", - "MTJsE72eSPyOTCQe1wKyHnOpcAb6wgJdyezoeIswr4gRCzpRxO9iG0PHi9Uh3mJpIBCXhW2S+xYd\n", - "rFHZnkSOYfd2aWtHKS6I/0gcpQJ9PTbErZiRkMcG9teQdjKxB+jMB10mEmzrLhX1QkhILnwcNOQh\n", - "GIlPgpcmZhKWPOKjpmR/kRviA/Y9eGfkedPEHVfWxd16O+ReO7d33pVd+tAfV8sHj33U1bn5y57h\n", - "ypCBPGMDC4iFS8qCSlt4vnTkBulZkKdrgN92Js+EllwHZEs+e7ZNvd6K1FkRb3ELQZpbEvZZiLuF\n", - "z6WGHF9L0oRnn4UTNTmxvJTyVjN7KxRftKvfSgkhhBBCfFGjxHIhhBBCiAnoJUoIIYQQYgJ6iRJC\n", - "CCGEmMBkJ+qzIYD56N7kSEoYC3DzgX8kGJEIm7Gt5bYyI1JZTyRgJv0CTI5MKNxSwZgEcM5qAa6Q\n", - "YMQ81G1vOl+nIWJyxhnNR4rJHTh5THpkcnQLoZm2JpIlaydK+cQ9j+RatdAG0n0oBYYiJCIhWvaN\n", - "KCAwRjIIgQ98gEEObLZ7ImwbhB6WkWLksIagWXKv5Z4EfsK9VmibfFHG606ucSDnqpnVZYmNxsB1\n", - "ohevY8fEeVjGESpmZr0XxDFwMLNBB0Q2bzrYVufvdTq4BSgDkbqDP2Y0ywORghM19WuZlweqHh9e\n", - "2JLgxzEDVyIJ8uw3/rw0oW5n23oBHuuYmaVV3XYWCry9dNGV7T/6aLW8d5MPh9y781ZXhrBBKi0N\n", - "xMRnM5GjoS8uyOChQp5duOmEI4XMrCWvBSWQ5yDQk/DLDYjl68Zfl03jgzS3VsvmmQxyYJ+H7t2C\n", - "dDs2fmlElu910TdRQgghhBAT0EuUEEIIIcQE9BIlhBBCCDEBvUQJIYQQQkwg0HTiz+cOmSEuhBBC\n", - "CHGDUnCqlWvomyghhBBCiAnoJUoIIYQQYgJ6iRJCCCGEmMCJhG3+t9/1r6rlnGEme/LLY9f6ULn5\n", - "bL9e7q6Q9Y5cWdPV22Kzo7fBB8Z1UPa6N77T1fn+t3ynK8OAQRbSF0jaJU5Azeo0wU3Z7mEBlTAj\n", - "fcg+zOzBV/8TV/Zjb39Vtbzu/Q6PNn6HmJm3WvvwtkRDLOvjG0iQJ9a5CqxHggr/6Y/56/eOBx+s\n", - "t8JmWSfBgU0Ht1JLguCwjpmlWNfLJHBwIDfEBsJSBxKQ+frv/z5X9vKXf3+13G/Wfn/Zh/s1MNP6\n", - "YmfX1dnZ3XNlS6i3s/DBeom0PUG78uDvx3tfc3+1/H3/6D5Xh90PfvJ3EppJUl0LXHemSLCu2DQY\n", - "/Oq33ZIV3/b2H6mW77v/J3ybkg+jjLh9MpM9m90+QlBoSv55enjlk67s4pOPVMur1WVXZ0au+z/7\n", - "v95bLT/wpn/g6uTG30cJw0Qx0NXMSiLBxKXuw6n3oZn9xj8HB3w2wnbMzNLg2/C//dgrquW3v+EH\n", - "fDtJIGYL129JEiO7FvsiqeM7ukE2syXyvEkkgBcDov/n+3/UVbnvvntc2WJWn6vNwaGr8+TK39t3\n", - "f+kLquXDjz7i6lzp/bNrdv6majniAZuZsRBS+JB80wNv8etdB30TJYQQQggxAb1ECSGEEEJMQC9R\n", - "QgghhBAT0EuUEEIIIcQETkQsTyDqDWlZLWc6e7jfTpdBUqOzZHvxcgazvTdMLI9E+Bsxk3VDZtNO\n", - "IAY2dCZ78j4L1WLxdQIIcSzKNBA502AG86aM6woof2+3/pxkJibC8TWkTU3DZg+HWblbf+7oBNyh\n", - "3l8gAwUY21Xdp6J5MTGQ61dy3fZAxNZAhNQC52Eg/QBFWjOz5MRyIlAS1oe1LLxdezmzJxI+SuNh\n", - "sXR12uiPedbVx9x2XuZtgj/mHuR2NugACUTOZtm+zrdl8jnpZylhn/LtjkTmxXs0kmscR2QQFyLg\n", - "l+SvOz4/6eAIMvABmx6i76/LxY4r29up+0YX/DN3vvTrIeTxRsfJuDueHR8+PM0swGAB9jnTk+eg\n", - "E8szeVbSZ17Nwdq3KZJ7Zg6bYu1cGPZFv78++/VSggE3ZEX2KAnkfCIDuUe38CzJre9Ttz/rVld2\n", - "9PhT1fKnHvUDGm7/6r/qyjKI5P3hU65OIQN8Qjv9+yR9EyWEEEIIMQG9RAkhhBBCTEAvUUIIIYQQ\n", - "E9BLlBBCCCHEBE5ELMek3wTp2ZlIbLF4+buAdkgl8saLs/NwAOt56TgSWZFJxg4i86FsmpkkS+Th\n", - "WEA6ZMI9booFbLNtgxzJZXBPP9Q7IF6rlUzkbzgvLZPIyfENKMkyeZiccywpI/9eGNa1WN6ywQpE\n", - "OraCCfBE5ifSakGxlMjKmRi3Ge3P471rMzPbrusE/6PDA1eHXAbrZiDOkx02RM7EpOpu7sVyljiP\n", - "wjQKo4xC+kFLBgGQNUfUIcfHJ3X360WQgMm56+Lx/ZP1c5SlzcwySPkl+Dr9iGcQ2Z3F4JPHT+3d\n", - "XC2f3j3t6rhEf0IkKepMGm/hemVyHdilGUYMDMjmxec+18dcBiImHz/myEL0aeiBrli3i81YgM/F\n", - "hqSaswEMW7jXevKcGsYb/hWb3n+O3vWM51XLD/3BB1ydM2SwQjmsn1Nnn3OXq9Ps+L546QMfqpZP\n", - "n/IDYLbk0cwE/7HomyghhBBCiAnoJUoIIYQQYgJ6iRJCCCGEmMCJOFENOEj4WzELrGta7zt17QaW\n", - "j1ydWbvvyhZNXS+SYM1AfgRmLoOrQ9yiCL9ps9DMSDywkrAOma3c5c6R2cvJLOex1OeczXrOSAmc\n", - "KCJO9MRfKXDMGQ/uOuDmUyIOAXEbEmx/IKGgdH+bVb1MfJKh98fc9HB8JHQ1MC8EyoqRkE4y03oD\n", - "fYp5aIwC/YyFnrJcvRZCM5njwrwC9FUSdXhIGV73Ec4Xm8m+sPsB9kcDMkmfQmePuWPM2cP9dWR/\n", - "Y/6abcl6ibShgQvIjoW6hW5/xF8zfx/NoFrbMI9whPNF/CByyL6dxBnK5PldQt0XWPxuIs/Boa+f\n", - "lXnwblMkfQ9hj6AmkP45ok6BG2LW+TrsntnA59N2IP2c9MYxnw6333azK3v8I49Uy09f8Q7m1/5X\n", - "L3Zl7/uVf1Mtd3fe4urkw0NX1ub6JMc94lv1/l1ijHN5PfRNlBBCCCHEBPQSJYQQQggxAb1ECSGE\n", - "EEJMQC9RQgghhBATOBGxHIVwDNsrJGBt3nkhbTGrZ6RfNFdcnWXj5bNZU8vDRkLeWLZYJIIm0hQf\n", - "1la2uH0msjJ5+PhGhYQSqZdBiQtqBcI2I2k3A2cUR1HZzCyQ4ECU6TPz+Iipi5Is86fZ7OH498GY\n", - "WcjNzDIExvGgQn9CC4qzRCyPPZPN6/OeWehi60VWPH9l5K28hIC62cwro0w2X+6cqpvUkH5Orl+/\n", - "hXudCJzD2gfipm0tf243PmzX7Z+UYX814zPeu22R9ZwUT54HNNsTn2+k8wdmUAORtIkeH4rlVJz3\n", - "23f3CKnTNLukYS3UYYHDI9IaSR12PgPck4Gcg8gEf+ghzAXPJHwyZxDLM3tWHj9whQYak+NLMECj\n", - "IYNwBmj8iljyhQ24gQcok8hZeGmiz9iaSAbcfPijtVj+X/zdv+PqPP7Hf+rKHvnjP6mWv/lv/nVX\n", - "56O/9duubLasn2+p89cqHRAhndQbi76JEkIIIYSYgF6ihBBCCCEmoJcoIYQQQogJ6CVKCCGEEGIC\n", - "JyKWtx2I3Q2kjEYv0qFEbma2012BZZJYjhK5mXVNLakGMgN2IhmtLFkZiSwB1vl2JLGYJCu7WdVJ\n", - "BG0s9SUMpN0NkSUNxHIr47pChihpdk6osImyIvFM2fEhgb33s/2RNceQh3rNgQw6YCLrYHU9lkBP\n", - "xyWker1ApM7AZrLHjbH4bMLe6TPVckMEeCZZtl09YCEysZz0hc1BPSBkQ65xv/bSOCbTY79jsMRy\n", - "JsnibASRdEa2nj88cj+SCPEWTlVHBeoRYjkpY33RjUcZyA1CjO2AK5J2RrJeDJi6T64Dm2kAYNeP\n", - "RWVHlLhJ12BtwANk57OQ2R1Sqo8v47NzJHTGC5Lyj7fIwIT0ppbd2cwRbBYDHDDRsH5AZf7j++cn\n", - "H/2EK3vxN3xdtby9dNnVee+vvsuVff1/8y3V8ubIf7Z/4sMfcWUv+aZvrNv02BOuzozNKsJmbhiJ\n", - "vokSQgghhJiAXqKEEEIIISaglyghhBBCiAmciBPVtHW4XgvzaTfRJ4fNO+9EYQBn2/jfTWPrZ2yO\n", - "EcpIoKLzA8wsNMefrtiTYETM6GPqD/ktPoAn1TG/w/2+69uYqe9Ur8eC2Rgd/HZM8iPNyKzjmJJJ\n", - "9QfiB7gwQaYVkLYX9MnGOlGwXmSOGekHLtCQhegRR6HB60fcAzpBPNRrWEgnYe/s6Wp5ufCznLcz\n", - "0ofhgLZrf19tjrx/uNoHJ2rl6/Qbf78H6ENj7j3mZGVyPvFM0duROCYYOBjI/mZz385Ti7psOSP3\n", - "Oo0KrcmJJdQSLwuuFQsOJYKXf+aRkMeS/XUvARwl9oAb8UkTaeAoc33qZdb3SdNd4K/hspkV6sLW\n", - "ZYmGbR4P68O0n0EPTSw0c6jbxJ9vxL3DTZGuEYv31zr2gQicvfUWVxYgBfRD73u/q/OSl369K1uc\n", - "q93N9/4//9bV+Sv/2UtcWYIDPHrqoqtz7ll3ubLDlQ/gHIu+iRJCCCGEmIBeooQQQgghJqCXKCGE\n", - "EEKICeglSgghhBBiAicilncgljcgJjKxfDE7cGVdrEXytvGhfSGSkDcI82RSJ84UbsbFVUc/d0Wt\n", - "1aJu2RKxNHmZN0DIGwZrmhnxSlm4IJmVG2dCb0ccm3mBOhKpMxOBGk9xIOuxmdcbkGJzT2RXFrZ3\n", - "vOdN2WIwIQmjDCSYDWVeds5pHiaeK3IOAhNg8byMDNtcLGuRfLl7ytfZ8bI5BqEemr8fMVjTzGx1\n", - "uF8tX7n4tF9vtXZlXVffD3PSTgcx8NmgA8wXZKeOOc64KeKH2017Xjq+86a67TsL3382W//Mc20i\n", - "+2NXvYBVzQIy2Zp4/9FzwMrgBLJnZzPmDiRBpYU+zyDck4rzZH8wiCOR0MVA+kuGE5ESu0ePP77t\n", - "QJ4JpB6K5D2R3XtoOx17QspaOFctCZpuycCgng5qgP2R5+JjDz9cLT/vxXe7Oom09P3/4T3V8nO/\n", - "9Hmuzt6tN7myh/6gFtfveMadrk5v4wKUx6JvooQQQgghJqCXKCGEEEKICeglSgghhBBiAnqJEkII\n", - "IYSYwImI5QtIFo+hTsHtohfE59FLq7OmljEjEcbYDO1IIbbkwFYbMZO1EUG8pEVd0C9cnSbt+fUg\n", - "/Tya37YzCtlM9uZThoNLbT9ebDUjqcljrG4zd+7YmWSJxbj5thsj13sZm8qnhC12IXZ4pJ0oY9JU\n", - "enp8mKLMhFhfhDJmGtHPzczarhafZws/EKKbeTl62NYDNJh0zAZebNd1QvkRiOZmZv3a3+/DrL5H\n", - "mrm/Z5CGpCo3TKA+dkv8WHCQw6kdfz/eetZL+c+8/dyx613a9zMyIIE938gxZ+gwTJZmj7IGBHRW\n", - "hw3+wHurIyeYjM/wbWIfR0QQHyDlO9JAdt+vt5A0njKb3YEl3NfnsyWDlRpybZA+kJkOyHOpz595\n", - "2cwsY6o52T27ftg3mLhPn85sFgpgfehnI7jpzjuq5YEc7yf/9BFXdiekis92/PV85MN/6vd3883V\n", - "ciSfF0eX/b3WtdNfhfRNlBBCCCHEBPQSJYQQQggxAb1ECSGEEEJM4EScqLatHYjG6uUZCc3sGu/s\n", - "NFb/Ns3cJh4hCYdNPCI2mzf//Rjq9GS9vn5XjdSb2vUbG2q/IpOwzQbayWZZt0BCSK0OOMwjwv6u\n", - "rojhkCyodMyGSLAe+b08g//A1abjPY3rrOjAEDvmk7DZ3zFglP7GzjblQkFJCCnpi5i8ODYrrkBo\n", - "Zr8h1514IakfPuOymVnJxBWBw+laf3zDmEDTEZ2qIaIWy5kMsK1C7n/mUrXQdur+MNcI6rWkUjPi\n", - "+Mips03x59y5haQOCxjGIuZbsecLPoeZ5xPJPeO2TZ5vmQRbYv9k4ZeFOFFpqJ0oFl7ckE+MWaif\n", - "lYX4o2O+jRjMu4aFnWN4nhX2DMJnAhHDAilroKWBhG0Gcg7KCOeybf1zCre0/6QP2z17/pwri4v6\n", - "M/JTH/+Eq7N7yn9mLqBs/+nLrs6889chjpH2roO+iRJCCCGEmIBeooQQQgghJqCXKCGEEEKICegl\n", - "SgghhBBiAicjlsda1JtBuGYTiLwYiBwZ64SxwCQ9JitikB6ROpngO2qm5+KFxhiWUOLrMGk8BhDg\n", - "ihf33AzYJBSNSfIxQtmIWcjNzBoQpiNJeSOTsVtCeZeG6PltoVieiUQ+kB1iaF6/JcI9YQ3NZCGW\n", - "iSSxtgHr+G03WMnMGeE0hJSF7UETWIgdY7uCQQbkOvStP1cYsro+OvTbJpJ609aC6M6p065OgPBd\n", - "M7MWwja7BQmaBSIR2yOT+eF8sgBJlMjNzLoGpVxfZ0XOwZMXa7n16NDf6+vN2pW5/c/9fTwk34YG\n", - "2kWfZSQN1h0zk9ZpYCQ8h8l63fFZjRZJXyzsmZdxYIBvUxrIczBhSCdpp/lBOP70kXPABn8ARwP5\n", - "uGWDmuBeHljYrhs44+uwQNwGrvuMDHJgA7ToDoBAHnoFHlRzEpo5kPv26MqlavkUkcjbuRfEDy7X\n", - "Yb6zzj83Ahn002/JdR+JvokSQgghhJiAXqKEEEIIISaglyghhBBCiAnoJUoIIYQQYgJh7Oz2n7Md\n", - "MvtbCCGEEOIGpRQ++krfRAkhhBBCTEAvUUIIIYQQE9BLlBBCCCHEBE4kbPPVP3R/tRy3dUBdIAFk\n", - "Nvc/R3Z31MF9w8wHnh2ufJDfgPsjaWYxkTA6CLJ88HVvdXXue8O9rgyy6CyT085m+DaY+ZydFpzl\n", - "vCEzfjfZBwDOoGw+rFyd+9/+Dlf2vT/x8rpNJISNzUxuUEarsLC9jMdDZisnM8TjlmLwQZ7v/L5/\n", - "7Mp++JV139zO/HrbOUnSXEAoaPR1WNZmhEsTN2Rm+Q0JjFvX9ULvN/7af/w6V/Z9D76xXg87p/kg\n", - "TzNzCaqBVGLHh/O4u6BbM+tIaGWBAD6SuWhvv/+Bavnlr/1BVyeQ+FIsYXWoKwrtbEiaYWQJhxBU\n", - "mgZ/PwbzZW97w09Uy6965WtGtTNDG1jM7ED+fs5wj8wbv+bZhb9+C+jr28H31ycPfcjiO97y+mr5\n", - "NT/kr19m4Z5t3RlI9i1dL6HSQkIlC4YQszKyXm78eu+8/x9Vy/fdex9pkyuygs998lnUww1xaeXb\n", - "tOoXrgz77Om5v/9Pk+fboq3r/fADb3B1HnjFD7iy9qBuw+Kyb9Ns35cVCJHt574v9qf9PbPZq+tt\n", - "F+RZPSOfIRDw/ZoH/Wff9dA3UUIIIYQQE9BLlBBCCCHEBPQSJYQQQggxAb1ECSGEEEJM4ETEcgNB\n", - "GzOsyspLZKX3cl3Yr2XFfMYLalT0zMdLzuaEZhv3ykkkwABlhcjfTJj20jaRZLHx5GAiOb4GhN/G\n", - "vGDIKIbHQiRLds4L7o8cCxHn8RREsp4xCRgldTozuWfb1edhvUPkxR0/4/dmD87fgsiLTMZe1/fC\n", - "4ogMaDgg1xS21RUyMIGAM62H7K97S+TvCH2WDSjAfm5mFgIOfGDiNVkPu3V7/M0XiBQcyU3rbhEm\n", - "95pvU9OAzE/6Hc5ab+ZF4dj4axVH9E+aU8xubtiUE6rNLJHjC3ADzohYvkPK8KxvkxfL12vfTCQS\n", - "Bb4hFydv6411DRmo07CLCn2YnBc6qAJOVWiIkE5WQ2Zk5EVPrPimhc+nlgz+wP2Tvp8P/TUecl1v\n", - "Q565K2K7B9bPsA3kGVTSslpOh6dcnf7SaVdWtvW28q7vG7m74tebHdQFC79eKl42J2NbRqNvooQQ\n", - "QgghJqCXKCGEEEKICeglSgghhBBiAnqJEkIIIYSYwImI5QHE4wDpq3njxa906M3EuFdLa3F36eq0\n", - "TDpEi2wg4h4TREfYZ4W8lzpxnkiAQyBSHsi8VD0dUNz1VZrgRegOjq9hceiEAAplIEngiUiyeFaY\n", - "RM7cxQjiZSDCP/PKUXhnrjujtLWIOCy9WL4968uOzkBq8w6T3X3RbFUfT75M0oLJel1f96E2jbuV\n", - "A/TFlgxyYIMx8H5A0fxaIdkhLFJzl1xTuH6jeidJqeaiN6xGtOAY2fmEpOzMBFX2jKhbH1haOL+7\n", - "Kwq7LmRASMLnKdsWkdRnoe7XZ8mgipt3/NY20IcvDr6d6/74/hkjGdBQ/LOrhYdHoqn7RKYPKLyT\n", - "a0X6kEFfoCnjIz4byHgN68gDu23qisuOyOdwread338iDb28rs8BS67vyWsBS71HshtiQNLXqXzu\n", - "ByKUXLchkwEwuG0zM3ws0Rk1XMl1ZtkYib6JEkIIIYSYgF6ihBBCCCEmoJcoIYQQQogJnIgTVWDG\n", - "a5yV24jHlA6Jf7Bfe1LxrA/yijv+N9gWwu4ykXEK+X0+M/kG12MzwkPREEgwGvktPqMTRX5Ub8HL\n", - "6Ei7u37l1xvqsqYcujoUPBjiHrCcO6wVSbYnyfGzGYRRxuTPHYsJLXhN25G/eXd1I/rOeyH9Kb/H\n", - "w7P1ddhf+v4aMADUzPZm9TWeZe8HtEe+DbM59OvNuLBUn9Lnq5QRIZLUISDrOUeI9Be6P2go8zvc\n", - "vjp/7nLvOxV6YUzTYp4UHjILzWSpfQXC/Ybs2xTJM8Fth5zzwJ436C2S8zsjN+BeV/tHtyx8vzvV\n", - "+f2tDuq2r9f+Wbbpjz8+IyGIDXEug6vn9xeIY4r9MxGHh3s9sH0WMEz8HCQR75R9XnRwnWeNPwen\n", - "5nUfOrNLPFTmmF2pt70aiKNE7tGePLsQosJZAL8rkj5le/uuqMl1u8rSO9FlceTL5uDQkQ8V5hYW\n", - "9qE1En0TJYQQQggxgc/4EhVC+OkQwoUQwh9+Wtn5EMK7QwgfCiG8K4Rw9tP+270hhA+HEB4KIXzT\n", - "57PhQgghhBAnyXHfRP2MmX0zlN1jZu8updxtZr92bdlCCC8ys79rZi+6ts5PhkAniRNCCCGE+ILn\n", - "M77klFJ+08yehuJvMbOfvfbvnzWzb7v27281s39eSulLKQ+b2Z+Y2dd87poqhBBCCHHjMEUsv62U\n", - "cuHavy+Y2W3X/n2nmf3Wp9X7uJk9g26hAWF6VjejmS/cKkzixFDOvPLSWpz5bQUncROjmUhyY2Za\n", - "Z6F5TvQkX9AxLRjl1kgM2LbUbZ/3PpxuufXi3iLVoh4KgNejATmzDCx0kQiwqQC9tQwAABowSURB\n", - "VD4vs63vevMDL3XODmpZOG79+WVO7nZWH0/eGRMXZ5ZRMPTdx7at39YaBPR1R6ROJpEOEODYEPFy\n", - "Rg4QhNvA0ksZqa7HpG4mIruZ7NmfX+T2wC7LhO1ChFvMox3zlXbPwlrJmsHdx8yIZYNNIDSXnAQa\n", - "/OrCdcm2R1w/JibTHcL915L7cdn658RNIP2eJSmveeuP+fJRfY9eXnnBf5OI6A2wkNdAQhbbUD/3\n", - "Wf9pyBMVz0Ji4axxTlpWXz8c9GDGA1SRRIKCB9ZfYPPE5bdT0MxzC3+8M5ZeDDfkk37MkW3I4B32\n", - "nECGjgymgbDicJYMYEIZ3MwyiOzDzD9zh13/rByWEJY88+0ml8EPRPoL8Fn93FauntnPtPfpLRNC\n", - "CCGEuIGZ8k3UhRDC7aWUx0IId5jZ49fKP2Fmz/y0enddK3P8xq//2z//97Of8zx7/h3PmtAMIYQQ\n", - "QoiTY8pL1K+Y2Xea2Vuu/f8vf1r5z4cQ3mFXf8b7EjN7L9vAS//Ll9UFZK48IYQQQogbmc/4EhVC\n", - "+Odm9lIzuzmE8KiZvcbMHjSzXwwhfJeZPWxm325mVkr5QAjhF83sA2Y2mNn/Usb8kCqEEEII8QXI\n", - "Z3yJKqX8vev8p5exwlLKm83szcftFGdkjpBYHpdeTOxO7fntGCQBr3yqabv0h9jAjNdMEE1EHsSZ\n", - "5RkNkRUTSI55lOzq04gjESg7EFJng09xnW0vubIWZPoS/TlnYNAxfU0evJjY9ZDMfehF0/nT3uKe\n", - "P7VTb2dDpEeSNhv2IHn87AFpqCdm2H4i14WkEzdQL26YMerlzwbqBXLuCjMhoQ+N/Xtlu67PS0v6\n", - "VMvES9h+ILPPh5bcH9AslvpPfGIfjD8i8JrZ7pkIxk4rZ0I8SyzHGQRow0kRpq2THfbp+MR5GmrO\n", - "ZgzAZZJOvtv6b//PzOu+0BDh/um1F6+f2K/v20sbfx+XePyPHonMyNCReybCc78h96NPNSezJjjh\n", - "/zrJ3JBCzwZesAB/JJNrlViCPzxLrqzYc78+vhm5HzsiS58FAX0zkJlASL/ux4xbmflr1cf6eZPJ\n", - "gJvsJxqxgn2BdJ+BbAvHLyTyLMvkYo0ZNHY9lOMkhBBCCDEBvUQJIYQQQkxAL1FCCCGEEBOYMjrv\n", - "sybD79wZwjdtRvwc4kkF+P3auQdmVjYsZBEOm87ifryjxMBj+7M1j4NmF4KvEonf0cBv/23xwWVN\n", - "8L97Y0DdmLA/Mx+aacRHcF6RmTWber3ugIRtPr10ZTuPnam3ve/r5Dlp+811wGjo/HlhRJhtPh4S\n", - "/+mKX2/Z1ccTSUgnBpWame2C47VY+f21XvWzsoW+wX78J2zWdUBdZu4feSoE8Edi469xO+ZvMjaD\n", - "OhWJXAuO3TRzlAJpJws9deuRfo2rsZBHkofrfTUakHm89MUCVZmfU8DhaaJfb4bPXDMrcN9ePvJ1\n", - "PnXZd+wnV/U9uUq+Ay3I/YDEhoRfEh+wuJNMnrnJBzE2DTi05GI1pA/j/gJ7xjOXCmCuUSH9rIfN\n", - "D4P/7MuH9ba2yX/OnZqTwFHw+pg3Nae34/HSF7nsLsQyd/66oNts5h3hRJwl995g/rHBWl1YIDYL\n", - "sh2JvokSQgghhJiAXqKEEEIIISaglyghhBBCiAnoJUoIIYQQYgInI5bnWiTzIWQkzKwjgij6mg0J\n", - "30JLj22LieUjZtdmFCIdojyIwvjVMtJOCBwL3ICvYBPoDDNvdcYE16A5fpb1qxurz10g4mcciIwN\n", - "YZvNlsjnR16gbPbrsM146bRvU0uE+zmESp4b9/dCswLRu/PhgoWI5THUwuQOCXmNZEb6xbZu1/zQ\n", - "768j56Xb1mXNMO76oSAaIgkqJKcqQgInDagkYYkoe7NQ2RHdmgYxunU6f87zQNqEy6RNVKSFevwZ\n", - "wdoJ67UkAJjJ0ViHBU/SgFEMzfTkwR/zYa77UJ9IsOahH9hxBH1vRsI9lyQY0bWJBE+yYOIEqaOB\n", - "yNGBDJhAoT8G386UvaCNgypYkGdiAxGAhrTTSMgqHt9ABo0cZHwmMMmaBeniZwobQMHCRI8X5xMJ\n", - "28XrMLBzTtoZITw0kbRdOigGP1vJ5xM7ks8ia1PfRAkhhBBCTEEvUUIIIYQQE9BLlBBCCCHEBE7E\n", - "iYro+mAYJPmdv5DfW8uAv92S3z9JoFpIGGLpIbmdY/L+rvN7a72xhv1eTyc8hd/wSbBegj0m4vCw\n", - "36FzW28rjZgg1MwsQBJjYSFz5PdrDEY1MlEz640Zkt9KNzJ0DSeLHfn3QgMTrM7JbLwsdLUBVyx3\n", - "zF8hE19u6r7Qbfz1a9beQ2k24ESQiYsZOzv1ejMSAMhyH/EssHDWhvhVfmJkEg5JHEEXTEh8R4R5\n", - "U4V4aBHvP+aFMQcEyugjgrlicN0zkytHzGDLJobu3TPQ3AUckt/fmihYQ1P3vcON73f7G+/eoZO0\n", - "23mv6Nzi+OtXiL2VyUMhGbSBTr7t24ldKpCAyjb69dC9wefy1SYwGxX2T647BqOambVwPGz+cXTF\n", - "Nsyb2vp2LsAHpqeOFY6ZYJmcF8xmZo99NtE1TgDOvCkW9OyeVDTglKw2bv52ir6JEkIIIYSYgF6i\n", - "hBBCCCEmoJcoIYQQQogJ6CVKCCGEEGICJyOWg0yHIX2BWN2RGZsw63cggXVUIsNZuUkVNjs6K3N1\n", - "qHwOx8dE2uJnt8YQQDaLuwvbZFZw48MaExh+mcx2T0FBfEQIm5mXI1PrRcx+d+XKmrN1smVo/HqF\n", - "9OJ07rDe/3IzopVmcVOfh5aJ0GhLmpltayG1RN/OriFhdNDXWQhpXJPgTgjpjL77cFDMJ1I+C9tE\n", - "QZzNhD6MSKOlAz2I/IliKW0UbofJp+SewXosbBMDgc182G5gA2CobQ7PG9KmRII0XZtYoCIT2aGQ\n", - "SfIDEag3EIi73/v9ZXKtFvP6eHZnvjPuzI4/vkIGpCT2EeXSUv1Jz4EI8HCdW3LO++Tb3uAzlQzU\n", - "GfN9BOsbMZJAzAbr+G1voAkDOXdYx8ysaY6X5NkTnQaFAjxvFCR5snV2/7vMzBH3lZkf9MM+s0sg\n", - "AxhGDOy4HvomSgghhBBiAnqJEkIIIYSYgF6ihBBCCCEmoJcoIYQQQogJnIhYbiCSRxT3iB/KUn6d\n", - "NEbX83ZdADE4sjR0IlqnEeJs6ogYDCJpYXIt8boLzPA9kERmTIlORKhkHnSB9+c8MrEc5c9IjoUl\n", - "UDu3dU5S1E97mXeItRDenfPtpCnRu3Uacdk78pUI7eb4vthl34ZtX7e9kGjehvRFFLQjkXmb5K+p\n", - "QUIx8dg5c7RWiVTNhE03GMO3k8nRES88TQI/vr9kNqgCII68DexY4J6hci0TUrGAybYszRo6Eb8/\n", - "jj8+J9ubWaFCLKTnkyTwnmyrh9EfAxGaZ36MirWxvu7Ljp3zEWIykY7Z8wwvDRtQwNLP3cAAsl4M\n", - "PsWcC9OwHut8rhIr9OcFJe5CEucb3Bgd38MGTNTbJh9XNiPtpAO7cG/N8ZI6HedFymJz/OAI/Ay7\n", - "WoYXmQyOICn/Y8dVMfRNlBBCCCHEBPQSJYQQQggxAb1ECSGEEEJMIPhZ1j/PO2QCghBCCCHEDUop\n", - "PFla30QJIYQQQkxAL1FCCCGEEBPQS5QQQgghxAT0EiWEEEIIMYETCdv87/7hg9XyTlOHte3O6oBF\n", - "M7MzO2tXttip12NhdJnMbo3paWx29D6xELTaK3v96x5wdb77jW90ZZiDmHGabjNLJIwuQcBZIcFh\n", - "PhSQBQe6IptBkCebKfx/f+V9ruy+V76yXo+ktSWyrb6vr+nte2dcnY/96Udc2S0venG1PDyx7+qs\n", - "9w9cWXPzTrVcsg/Re+AND7qyV99XHzOb8Tuxvz3gWuFs4lcL/e0WIRyuST41E0NXr1asF3viPD74\n", - "wBtc2f/01vr6YfCkGZ+kHiZ/t8gC60g/6zD7jmwbg0PNzN2jkaz4wJvr++/+V77K1WGhmREOJkUf\n", - "95ew4aQsLX2fGpb+2VVmEJ5IrlUm3eXHv+unfKEQ4oZC30QJIYQQQkxAL1FCCCGEEBPQS5QQQggh\n", - "xAT0EiWEEEIIMYETEcv3j+rlAhN17869ZbkgU0vPQAglrquticiKk2Kz2cOHRGaNzsfPtD4bvGwa\n", - "QUhPA9lOJGZpW1+enrzzopAaSRvbQtqU6rKGma2E0tZtWCx3XJ2Pfezjruy5L3hetbz/6EVXZ9P6\n", - "GdvP33Z7tfzQb33Q1Tn13FtdWbO3qJb7i35gAqOA4J+z70AFp4M3P4t7JlO/N8VL4xG3lbakUb4N\n", - "GeTkMvJWxpnPA5ntPhPRGgV4mt1LZ1qvaZhwzzYG/bEh7UTC4M9B6NnAkrpVkVTJC3+tQqwfXCGQ\n", - "+5hsC8X1ktkAEWbcCyFudPRNlBBCCCHEBPQSJYQQQggxAb1ECSGEEEJM4EScqNWmdhJ2unp5MfNy\n", - "09zrMtZa7REk4vUU4qYUEBcyCeSjYYkj3jkb4iT58EkSAEhkij5DO0lIJzazkGRN5mBEEEECcX8Y\n", - "HVyIp5/wbtPe+VOu7OxOXfaeh37b1XnRt36jKzt89PFq+dKFx1yd53/LX3NlD3/wQ9XyDrnGnOPr\n", - "xeD7Rsj1eg3pKi3KeGbWpVW1nAcS1kh1tfr6xW7k30NwHgrxejI5vgLrkQxSM6b6QR+OJMQ2sLDN\n", - "hE7U8bRr0s/3vbMX1vNquXSkTWcOfRmEACeWYtsQ7w3KUiQPM36RhRA3OPomSgghhBBiAnqJEkII\n", - "IYSYgF6ihBBCCCEmoJcoIYQQQogJnIhYPq9zEG0HlmdE9CzEWi0BAg6JDE48Vhea2RALmOQpmrO4\n", - "CR0RywsGd1LJ2YvdLei0hYjJKJJHsu2WZQJCWcdOFOEIklKbxczVueXOW1zZR37v/dXy7p03uTq3\n", - "PuMuV/brv/hz1fLz/vMvd3X66Nu+/7FaQD//wue6OozsZGFyzVkRBjgO/no22wO/3tGlug4R/BMJ\n", - "NC1xWS3nOO5Wxp6O/cDMLLEwUTgtTBCfkb43gwTcbvBSddwSsRtEazy/jNmKnIOLe66oXD5XL89Z\n", - "QC2R63fq69ec8W3KJFDVQ8JTR6wlhLjx0DdRQgghhBAT0EuUEEIIIcQE9BIlhBBCCDEBvUQJIYQQ\n", - "QkzgRMTyU3u1WLm7Uy+3wcuZmJhsZtaD/DkQ9zSzFHMnbDNplbxfEmncrUWk3AbE8kjaFLNvQ9P0\n", - "sB0iljewbSaWJyKtD/U5jiPV1nZWjwJY7sxdnace+aRfEdr5rC9/oavyJ+99nyub79Qi8jP+6gtc\n", - "nff8xm+5sttvu71aLs2YzGuzgGndbCwBSfSOIIS3uXd12o0Xy9Ph5Xq59aK+7ez69aBebr18zsB+\n", - "FlnKOEltb6GsI+stBn9eZnArd2sikW/8vYZ+f3Cp/564JdtZL13ZcFDL5pm1accnlrfbui8Ove9T\n", - "qffifIJU+ECeLc3YQH0hxA2FvokSQgghhJiAXqKEEEIIISaglyghhBBCiAmciBN1Zln7IzsYdkdm\n", - "R++JRxRK/Q5I1B8ampnAGyJZm5aI/zRCy3BtMnM6EG1US8IZcVtD8Z5NcrsjEs+IsM1IPB9G09b1\n", - "ji5d8XXIemfvurNafvzRx12dbr1xZc99yZdUyx97+OOuzhzDTM3s/B114OdjT1wgrfIEuDaF/J1R\n", - "CuloGKCYt65GZoGxc3CZdk+5OsPeGb+3pnbTcufdNAa6TMx/Yn0I15sTAbFd+y3NwHeaE28pk5DM\n", - "AEG61h4fYhnIc4N0DZJ1O+4cuI1tfbvjxjttGKCaI7vXFLcpxBci+iZKCCGEEGICeokSQgghhJiA\n", - "XqKEEEIIISaglyghhBBCiAmciFg+B0t1DpZzIhJ5Tl5XjhBiR4M1yWzsKHoHIpE6GdzMAhVQoU3E\n", - "D8U2dOYl2Tb7sriB46PBj/XiEPx5GqK/zBlWDFR29RQI6UQR28xs9/w5V/bkE09Xy13n23TLbbe4\n", - "sk9+/BPV8s7Ora7O2Zv9/vYvXaqWW3IOGAGsY+rbk2MOKAaTcM+MErmZpcXpus7OnqszzHxgZIbr\n", - "nEhYKyNCsCwLZ+3IphZweDRY049ysG4DYbBrf1663kvxGdpVRhxfmvnrknaJ7T7Uoael9YMAbHnk\n", - "24SHN5Bg1A0ZIALXigXbllZ/zwrxhYjuXCGEEEKICeglSgghhBBiAnqJEkIIIYSYgF6ihBBCCCEm\n", - "cCJiuU8IB7GcyK7FWZ1mHUSIZ5JYXIgZjFtiad2ZRZ2PcHe73oulMxDgG5Jm3SWfRj5H2Zy1E8oS\n", - "iVXfRD+zfN/Wl34gAj4Da3Vzv+2jlU8eR3n/9FkvUD9xwaeKL8/VCd4Rk6zN7GjfS8AL2H6M48Tr\n", - "grH35M+MTM4VitCJtLN0C1c2REgeb7x8ngMRmCEFOyR/zhkdXIdIwteZWI4J9w1ZL/gubAEGhIQN\n", - "OS/E68bE8simFQDy0m+onD5wZWle31ex8w3PSy+kpxkkj5P7sRTySB3qk8efNywFXwhxo6NvooQQ\n", - "QgghJqCXKCGEEEKICeglSgghhBBiAifjRGFIJjgYzH9igZgYPlmISxUzCbYDvyLTGdT9tlgbkHki\n", - "+4M2dCzgcCBl0K7ANC0IdRzIsYTogzwDhi62I7sC+EDU5CCpoLOudqfWq5Wr08y8XxUXddnqindc\n", - "ljs+rBHFu3RExBtCgFDOQtwmY2UNrEf6Sgks9BTKGu8/scDPCA5NGenUBLi30HUyM4uk7RFcsdL7\n", - "c5ASCa2F/jKw/bHbDzI5wwhnL839ORjO+H4WUu07pcb3jey7onOi0OU0M4ssERfOS2b9Z6STKIS4\n", - "sdA3UUIIIYQQE9BLlBBCCCHEBPQSJYQQQggxAb1ECSGEEEJM4ETEcidto1nOZHASIulmdichgYGs\n", - "h+53Q4IYifs96o2ThWZiM1mYIfFYrUFRl4X0gSDekVBCd57Mn+IwjA37wzYQCZmEnvZwXpbdrquT\n", - "Nv7c9ataAp4vfGBlIettt7VM344U59ELzlQQJ+cYqrFQ0MS2Bcth8McSiDReIIiVucoUN4jDV6HD\n", - "LCBEkvWWEhtXtsE+OyMDNkgjcKBDGXF8idTpF/58RrgfGmLXJ1KWoQuxgSYl+XOAjQ9k24E884QQ\n", - "Nz76JkoIIYQQYgJ6iRJCCCGEmIBeooQQQgghJqCXKCGEEEKICZyMWI5uKQipJXphk+X5BpBWA1Fi\n", - "M5GqG7BwWzYbO5HNx6Qmz7cb34ZQH1+bfIJ4m31ZA3Z7IOZ8wXNA2sgk5whqMDteRoA2sWTuIXnt\n", - "uF3WSdxp8CnR/eDP3fz0qXq9nijNgz93cV6nmBdmUDNAaM5E+S/sbw/oswNGbptZIXY0iuuRXOOG\n", - "tD1ETMEed/1wkAEbeIEJ22ZmyQ3+YH2RtBNOH7m1rTR+W0OBa0pjzaGN7ClB1ku4v+D7VGZ+OFyb\n", - "RGZWYINi/N+qZGBCHDuwQwhxI6FvooQQQgghJqCXKCGEEEKICeglSgghhBBiAqGwVMnP5w7DSHlD\n", - "CCGEEOIGoBQuReubKCGEEEKICeglSgghhBBiAnqJEkIIIYSYgF6ihBBCCCEmoJcoIYQQQogJ/KWP\n", - "zhNCCCGE+GJA30QJIYQQQkxAL1FCCCGEEBM4kZeoEMI3hxAeCiF8OITwypNowxc7IYRnhhD+XQjh\n", - "j0II7w8hfN+18vMhhHeHED4UQnhXCOHsSbf1i40QQhNCeF8I4V9fW9Y5/zwSQjgbQvilEMIHQwgf\n", - "CCF8rc7555cQwr3Xni1/GEL4+RDCXOf8c0sI4adDCBdCCH/4aWXXPcfXrsmHr322ftPJtPo/Pf7S\n", - "X6JCCI2Z/biZfbOZvcjM/l4I4YV/2e34T4DezL6/lPJiM/trZvbd187zPWb27lLK3Wb2a9eWxeeW\n", - "/9XMPmBmfyYc6px/fvlRM/vVUsoLzewrzOwh0zn//9u7nxCryjiM49+HbCA1BAmsdGKG0EUQ0RCi\n", - "UgjhwiLGVuXCkKLWBZHQLNq2Cl25URNxMSImOq4iaFEQlGIR+GdhOOgUMxOV/VvN4NPiPTLXwQtx\n", - "uOceuD6f1T3vORd+PJd73t+9973nNEbSCPAOMGb7aeABYDfJvNeOUubJTvfMWNJTwOuUOXUncFBS\n", - "fmnqgzZC3gxcsz1tewE4AexqoY6BZnvW9g/V43+AK8B6YBw4Vh12DHi1nQoHk6QNwMvAYeDObQKS\n", - "eUMkrQFesP0pgO1F23+SzJv0F+VD2kpJK4CVwC8k856y/TXwx7LhbhnvAiZtL9ieBq5R5tpoWBtN\n", - "1HrgZsf2TDUWDak+OT4LfAussz1X7ZoD1rVU1qDaD3wA3O4YS+bNGQV+lXRU0kVJhyStIpk3xvbv\n", - "wCfADUrzdMv2FyTzfuiW8eOUufSOzKt90kYTlWsq9JGk1cBnwLu2/+7c53J9i7wePSLpFWDe9vcs\n", - "fQt1l2TecyuAMeCg7THgX5b9jJTMe0vSk8B7wAhl8l4taU/nMcm8ef8j4+TfB200UT8Dwx3bw9zd\n", - "QUePSHqQ0kAdt32mGp6T9Gi1/zFgvq36BtA2YFzSdWASeFHScZJ5k2aAGdvnq+1TlKZqNpk35jng\n", - "G9u/2V4ETgNbSeb90O1csnxe3VCNRcPaaKIuABsljUgaoiyGm2qhjoEmScAR4LLtAx27poC91eO9\n", - "wJnlz416bE/YHrY9Sllo+6XtN0jmjbE9C9yUtKka2gFcAs6RzJtyFdgi6aHqPLOD8keKZN68bueS\n", - "KWC3pCFJo8BG4LsW6rvvtHLFckkvAQco/+o4Yvvjvhcx4CQ9D3wF/MjS17ofUt5YJ4EngGngNdu3\n", - "2qhxkEnaDrxve1zSWpJ5YyQ9Q1nIPwT8BLxJObck84ZI2keZxG8DF4G3gYdJ5j0jaRLYDjxCWf/0\n", - "EXCWLhlLmgDeAhYpyzc+b6Hs+05u+xIRERFRQ64jEREREVFDmqiIiIiIGtJERURERNSQJioiIiKi\n", - "hjRRERERETWkiYqIiIioIU1URERERA1poiIiIiJq+A8y9O8S/Rd3RQAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "1 loop, best of 3: 1.42 s per loop\n" + ] } ], "source": [ - "# the parameters are a list of [weights, biases]\n", - "filters = net.params['conv1'][0].data\n", - "vis_square(filters.transpose(0, 2, 3, 1))" + "%timeit net.forward()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The first layer output, `conv1` (rectified responses of the filters above, first 36 only)" + "* That's a while, even for a batch of 50 images. Let's switch to GPU mode." ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvVusXed5HTrmuu/L2jdubpISSVEUTd0S3a0okpKYseoo\n", - "TRs7TWvFaRPXSYAA7UFeCuPkoUBjFMhL0gYI0IeDUyNoXMM5QgPLRhJfEje2oxhSoosp2TIlUVdS\n", - "JCVyk/u+122vdR6Wx7fH/Oe35lp7ywrd4B8vm1xrrjn/+/z/8X3f+JJer4eIiIiIiIiIiIido3C1\n", - "CxARERERERER8X8q4kYqIiIiIiIiImKXiBupiIiIiIiIiIhdIm6kIiIiIiIiIiJ2ibiRioiIiIiI\n", - "iIjYJeJGKiIiIiIiIiJil3hPNlJJkjycJMmpJEleTpLk/34vnhERERERERERcbWR/KB1pJIkKQJ4\n", - "EcBDAN4C8PcAPtbr9b73A31QRERERERERMRVxnvBSN0L4HSv13u91+u1AfwJgA+/B8+JiIiIiIiI\n", - "iLiqeC82UtcCOCP/P/v9zyIiIiIiIiIi/lGh9B7cc6itMEmSmJcmIiIiIiIi4v8Y9Hq9xPv8vdhI\n", - "vQXgkPz/EPqs1K5Rr9exvr4OAOh2u/b52NgYAKBYLAIA2u02ms3mju599OhRAMCZM2fQbrcBAEmS\n", - "2F99HlEoFDJlIcrlsl3jlSX8bZIk8PzUKpVK6rpOp5P7XKJYLGJra8v+z3uzTh4KhULm3nnP4HMA\n", - "pJ5FjI+P278bjcZI9xuGUik9VDudTuaayclJzM/PA+j3J9CvG/uVKBaL1i5armKxiG63m+oPPlef\n", - "V61WU7/VPuSzer2etSnbflAb8H58VrPZxN69ewFsj8+lpSVcvnwZwHabNhoNtFotAOl+YN/MzMwA\n", - "AB566CG77rHHHrN2mZubAwD7bnV11erhjUned2JiAvV6HQDw1ltvZa7j2G21Wm4bXHvttan7vfHG\n", - "G5l77N+/H9dddx0A4NSpUwCA5eXlzHUTExN2vxdffDF3nPO7iYkJrK2tAQCmpqYA9Oft4uJi6vof\n", - "+7Efs7H8jW98w8pP3HrrrQCAy5cv48KFCwDS7cbn/emf/ikA4Pd///fxrW99K1N+rm1EuVzOjFkP\n", - "Y2Nj2NzcBADcc889AICbbroJX/rSlwAgUx/Fj/zIj1j5v/3tbwPot1+IRx55xOZS+BdIry8cvxyL\n", - "4+PjtgZ683V6ehoAsHfvXpw+fTr1XZIkOHz4MIDtNVWv0fVHxxtxww03AACuXLkCoD92dI6wvGxn\n", - "jtPp6Wn7DTEzM4P9+/cD6M8RwB/32h+s2+bmZqpc+nzeGwD27NmTaQPFnj17rD/z1vRCoWCfe2uc\n", - "Pj/PP5ptqm3G+/xD5OctlUrumAmRJIn1HctaqVQy63He74HhdfpP/+k/4VOf+tTg8g4t6c7xFID3\n", - "JUlyBMA5AI8A+Nigi3XTAvQnHxc5YnV11RprcnISALC2tmaDlt/VajVb+DY2NjLPIHq9nk36V199\n", - "FUB/4LMxV1ZW7Drvt3mbAnYmJ7qiVqvZAOUzyuWyvZR04QsnX6FQsPJxYfEGSbhYeGB7sYyDNn15\n", - "0OdwQ6sbDNYvD9PT09bX3oZMX8KcVF6dWI8kSfD6668PLCevG9SHvV4vNTY6nY47mXWzpH+9+4Xf\n", - "exOX9eR9O52OvVy5aVpfX7dFPJwfikKhYJsDjqutrS2cP38+Uyb2FzFss6uLq/ci+dCHPgQAtql4\n", - "7rnnrM0PHDiQeW74wgK2N5OTk5NWT28DRezbtw8LCwu55SZmZ2cBwNYNYHseHj9+PLPxePLJJ/Eb\n", - "v/EbAICDBw8CAD7zmc/Y95cuXQIAvP322+7z2NZsg1/7tV/LbKT2799vbcm+rtVquS8Abq65dgHA\n", - "xYsXAQD/7t/9O3zve/24HtZHX/BEq9WyNTLvWW+88Yb9Nm+TCiAzR9fX121sc1PUarVsfLBf9+7d\n", - "ix/5kR8BAHznO98B0G87brC5KZqbm7PDhK6zHO98NwDAK6+8AgA4ceIEgH5f6juBcz08EDYaDdsE\n", - "sXxLS0uZw4mHmZkZayv+9vjx4zh7ts8jhM8HtufA9PQ0JiYmrN1CeJ958OZwsVjM1FPXVO86fjds\n", - "EzY5OYmpqSmsra1l1qU8EmLQdRw7WjbvMEv0er3Mu0PfnR75oGuwt3Z7a/Tv/M7v/MNupHq9XidJ\n", - "kv8LwFcAFAF8OkbsRURERERERPxjxHvBSKHX630JwJdGvDb1d21tzU4WZF6uXLliO0rueguFQsYM\n", - "tbGxYbtX3YGHJ8NqtWqnA54ClpeX7WTj/ZbQU5G3c+W/a7WanTCJRqNhn+npgydHMgidTsdONixL\n", - "sVi0k+MotP8geO0Wfg/0TwFh/byd/szMjLVHeOodhuXlZfeUy35XCpunDu8EwT73KHQtq8d6KUYx\n", - "a5ZKJfuez+12u0PvDfT7nIwpy7q5uWnl85gSMg0bGxuZE5/ej+zI7OysMUc8Pa+vr9upWOvKU7OW\n", - "neNyz549APrsEsvKcipTy2fdeeedxhw899xzqecA2yY0YHsO6zhmn5O56nQ6VicPXCMOHjw4stm4\n", - "VqsBABYWFsxcSCwtLbm/IdtExkRNLGQIh+E//+f/DAD4r//1vxpDQlPh9PS0sSfEDTfcgNdeew1A\n", - "mo1j+b1TPU/rY2NjOHSo71nx9NNPA+iPK5qKOZ4uXbpkfeitqcRrr72WYkrz4J3++e8333wTQN9c\n", - "ynnDMXn69Gl84hOfALDNSCnYPuPj49YGXEe3traM1eE45VgCgL/+678G0GfEWAZC60Pz8FtvvWUM\n", - "u4J9fttttwHor0mhKW5lZcXM5VwTz507Z2VWRopQBsjrV6JcLmfeJ6Nia2vL2pzP6HQ69pm6TYTP\n", - "mJyctHblX12DyUSNjY1ZXXR9DMfMsLnqre96j7CNht1vkOUhhFo/duOGEpXNIyIiIiIiIiJ2ifeE\n", - "kXq3CE/eR48etdMfT1S6i1YmItwBqz2XJ29lrnhKKBaLxgLwlK02VP69fPmynfTJILRarcx1S0tL\n", - "dsrhM9QnxLN5eydclnlra8t2zWQNNjY2Ug7PQP/UlufTMGy3zWd47I6yMfzLkxe/53f83julqs07\n", - "ZAt7vZ7LuLEu/K1ek+ffNT4+bs/gdXqq8RzzQwd0vW5ra8t8fHZ6QtRAALZvkiTmyMqTtLIlLKs6\n", - "8GvZOR+I1dVVGx+sz+rqqo1Bsp6rq6vueCNzxJP1xYsX7UTNv51Ox3yGyELNz88bg0QfGJYRgPnt\n", - "zM3NZcpcrVZtznHuN5tNd44cO3YMwDbbVq/XXRbDA+ff1NSU9SHXix/90R/FN7/5TQDpsUXfMpZr\n", - "ZWXF+ivPV03x1FNPAej76fz0T/80gG3/Jm+O3nrrrdbWTzzxhH3O8eY5Jd90000AgM9//vPuuCTD\n", - "yP5/9dVXbe6SgTl06JCVh2vhIP+vEOVyOePL4s3jJ5980v59++23A+izNgyCYP96dVRG58iRIwCA\n", - "119/PeXfBPTX1o9+9KMAgEcffRSAP3+OHTtmz6Gf2tjYmI1FtkutVrOxQ4br/vvvt+eRWVtfX8dD\n", - "Dz0EAPjCF74AIG1h8Xx9WPalpSXrG65TugYPW7dDX+PwN94ayXJ4/kghW6koFAo2f5RZHwWjBlIo\n", - "+KxKpZJhxXq9npXf8zsN/2qZFe86GOpd/fpdYljkAKFOleoIGDrLetDoKaU12fgeneq9UNWJnWYA\n", - "Drr9+/fboqQDlpPTu46dqYODKBQKNpn5Il9fX8+YN9V8yDIPckpUM1046XTDmEffe98Vi8VM1Ey3\n", - "27VNgTdAvfvkOZt3u91db156vV5mY6n0rQYFqHmEzw/7Zmtryy0D2yCPnm+1WvZbvS9fmlxIi8Wi\n", - "fbZv3z4AvsO1V45Wq2W/Yd0uXLhgY1bNHh44frgp2tzctOg5ls8zgz/99NO5UWLsX298jo2NpSIH\n", - "AX+DwTYG+i9foB9BNurLnuPgpZdeyozLhx9+2MqmmxfWmRvBdrttddnpC+Gxxx7Dv/k3/wYAcN99\n", - "9wEAXn755cx1TzzxhK1z3FgsLS1lTJ2VSsXWpX/yT/4JAOCLX/yi28bcnNPsB2Tb+MKFC1Yuzrev\n", - "fvWrbl24kSG2trbsfhwbly9fzpjVdc06efKkfcbNKdd6XVfYb7pWMnJwenraPThyA6X1D10Vrly5\n", - "YqY6mqM3NzftfjfeeCOA/hjgZpjQoIG77roLAPDMM89Y5CMPGK+88kpmM1IsFu37l156CUB/TWeb\n", - "33HHHQD60ZSs7zBncy+wxTvE5kVbD9rkeBHdo2ycCoVC5nmjzhmNJNcNaLghTJIkNyBs1AAarvmt\n", - "VsveA6O4a1h5R74yIiIiIiIiIiIihavKSClbNCq1pifzUUL2lX3wQiCHORZzd0paWU9F/O78+fN2\n", - "MuQJttvt2m9I7V64cCGzy26328Y+KKMTsg379u0zVoE75U6nY6Hf/M5zCAd8B7udhLvzL+/JHbye\n", - "4LRuHt3K+2lobUh3V6tVO8UolZ/HRPG55XI5Ez67ublpJz2Ol2GnorzTVrVatXZju0xNTVn58kLE\n", - "t7a23DbnaZOn7K2tLfuMJoVQ1mEQtM/ZfhcvXsxowHgh8cA2I6RtRFOdmnHJbLANzp49O5LkxcLC\n", - "gjn9skwzMzOuSTl0kK9UKlaWQWa1vFBpwusDzxEY2J7PygiwbXYqGfK3f/u3+MhHPgIA+PCH+1mz\n", - "vJBqdT7n/D527FiGkWq1WiaFwL/Hjx/H3//93wOAG06vshUcC9dccw2Afj9zrSJDNAg0FRLdbjdj\n", - "dpmcnMwwjPv27cvohjUaDevPQeH7rK+ur0DfpMz2Ck1jAPDP/tk/AwD82Z/9mY1ZMpiLi4umpUXo\n", - "+k52aWFhwcyQZNHUeV3nJhnG66+/3soeWji2traMiVLndDK6HF8f+tCH8PjjjwNISzCMCm3L0Cqj\n", - "70XVXGI/6Xs57BN1q1EmLGTFvN+q3piuleH7Qn+bN5eHOYfrs1T6Aej3Q+hIv1tERioiIiIiIiIi\n", - "Ype46s7m3IEOE84KWYVQwZvXh8yLCizyfu12231uKOY5OTmZy16oOGh4oq1UKnZvDa3W3TDLF7IZ\n", - "Kr7Jv4P8QN555x17HtA/hbKNBu3Uwzby1HBrtZqdgHiqLBQK1kZeSGqeDIEKLCo8X7WwLaenp42J\n", - "ZJlUfI/l8xgCb5yMCm88ec8YFDofwhMCrVardk+P0eHJdVSUSiUbEzztKis3TFSR7Kj6UpG50rpz\n", - "HKgzfB4jpXIZIevV7XYzAoCDGEiWi0zNxYsXXb+QneI73/mOK7dAVozlq1QqO2aiFC+88AIA4Gd+\n", - "5mcA9JkfT1GcYF/y7yCotAOZKG/+e5/R3+zGG29MBSMAfaZLfVSJPGFKzoepqSm7jp+tr69nBC/n\n", - "5+etTfX5/IxzfWVlJRUwBPTXhvAZOqc0cINjin1Zr9fx/PPPA9j2+bpy5Qruv/9+AMDXv/51AP22\n", - "D8ejSil4gTRkTnXtoc/VSy+9lApeCsF59Gd/9mfmn7ixsbFj1kTX9FF9hsLArPA+vMcoTNMg60j4\n", - "TlVfKn5Xq9UyzvCVSiVlHRlUH5Xx8Ngslk8ZPn5WLpdzxUgH4YdmI0VoI2iaFE4M3VBplBjvFTq3\n", - "FQoFaxguwjrRNLosfIF3Oh1TQ+YkVUdgLgT79u2zCZGn9VQqlUZSu9Z6EKoF4mkqKUU5qrnUm2iE\n", - "Z+ro9Xq55rG8VAiDTDGqTcR7hH3oaemoUyDLruk2VNNktykNvA08sD0GPf2nPPpdy8J2WVhYsPuF\n", - "Gjk7gaqYsww0ZRSLRSs/28fr3+PHj2dUwk+fPp1y9gWAD37wg1Z3mjKGOZ/qBpzl43y8ePFiKr0D\n", - "4I+XtbU1+57mqBBh+47a92+++aZFItLE2mw2bRPB9k2SZGTndg+f/exnAWw7mz/00EMWxciX/sTE\n", - "hL1Ah0Ukcs7RLHTttdeaZtSokVS8rtPp2KaFG0gv2g1IO/6H4HxcWlqyTRPb79KlS7Zp4bxeW1uz\n", - "fvLMRhpZzX9z/J08eRJ33nkngO3oyG63a+VjVN6RI0cy5vHZ2VnbEN18880A+mY6boIYCXnq1Knc\n", - "CE19N3CeeUEd3DA/+OCDZrLLQ6lUsrE47ADkwXvH6LrobYa8+RJ+NkibiX2igTdeijBNowb016zw\n", - "fTIokGYUdLvdjIlS33H6ng0P/6OkpfEQTXsREREREREREbvEVWekCG8n7FHo/MxTTS0UChkzju5O\n", - "lckJWQ/dMSszwNMJPyuVSvZvntYWFxfdUM0QehrPU0/XcnkOedzR6zMG6YfkIe+0rsygKo2PEh6r\n", - "yGMGarVaRuMJyA879cKAVZWY8Ji/vL7RPFOagzB8npoKtcz8TZhcWTFICoJtmsdEVavVVJABQQaB\n", - "rNbm5qblNWOI9VtvvWVmK20PMlZkBprNpjGwrEej0TCmhure8/PzpqfD++blwwO2Gcxz587Z6d47\n", - "YQ4LBKDZim0/yml5FKytrRnLRUbn7Nmz1v9kVnbDDChY5z/4gz8AAHzgAx+wfr3lllsAAO9///uN\n", - "4c5jpAqFgrFjf/d3fwegL4PA+ZCH/fv3p/S++CyaHMmyeFpje/bsyWiBKbSNaKa6++67AfRZo5AZ\n", - "0nGvDvKhk7beV7/jGCTrNTMzk0paDvSTOofPVfOcyhnQjKoJiDm+1arhZRrg3OT8mZqaypi8G42G\n", - "q5cVrk9JkqTm9ajQ9QtIB7nkMS67Ye7ZX8pQsr5bW1tmdmX7DXqHEBrE5Mn0hO8az6yvDv76nvUY\n", - "uN0yUCEiIxURERERERERsUv80DBSRK/Xyzg8euh0OrZ7VX8nj3XwwjL5W+52NzY2cp/LU1Oj0XBP\n", - "3zypKJviMTX8ntd74pBadlX8zhM1260fEMF2U2dDnobUKdhDHhOl34XCnc1mM1NudUpniHWn03Hb\n", - "nCHaykR54bteRvFQiqFaraaU6kNwbLRaLZcpZT1HdURmvRcXF3NPRXzu5OSk6wzN3+qYZbtx7Gj7\n", - "sF3q9bqNaZ4gV1ZWjGkg65okifnrkP147rnnLBfcqCc6tkun08llHPPGsfpwaJaA8Jph9/Hwzjvv\n", - "2Oma/ka1Wg3z8/NWbn42Cm699VZjPLz1hP5Qr732mrUN16SZmZmR2nVhYcFYJQqG3nPPPcYCsOze\n", - "uBnUPiwzxwSV3RXFYjEjYeDl6dNncFzdc889GXFLBZm4gwcPmp8W71uv1zMMca/Xy+Q+vPXWW229\n", - "YD3+5m/+JpPDs9PpuOOFZQhlaVj3QVhZWTHmknNrbGwsI0Px1FNP4Vd/9VcBbLfv+vp6ps+HzZVB\n", - "CB2y3y3CNlKJCNap0WhknlcsFjNCwPruIvtdLpdTAsBE6DfX6XQy78okSTLvJx2Hur6H2Qw8i4LK\n", - "OITZNPKQvNsX8G6QJEnuQ/PSgXgIX9BAvoKrF8nlUbBe4uGxsbFMmo9B4ET0zFeKYRGLQH8RGcUE\n", - "FCIcFMPwbqIXlFoNtZb03lQ+9pzIVXVewe/ZBrrRG7Z5CVP6dLvdkUyUGj3pbQxVk4VQ8/G7NQMB\n", - "2yalUqmUqxxOTExM4N577wWwPT7/9m//1r6nM/ni4uK7Wmhp1vacSfOgCWE9c0UYOTsKtG84Jnbz\n", - "MlGzAvGzP/uzALZNbM1m09VsC/HII4+YnpMX9ZaHWq2W0pQD/AwIR44csQ0KX8yLi4vWdtyIfPvb\n", - "3848Y2Jiwl7wGhHITTPnVGj+A3yduCRJRgpyueuuu2wTzo1Pp9PJRPKVSiX7TJO6sz/ZR3fffXdm\n", - "Y1av161uWn4eMDQNEZ+hL9dw/RkUccwE1DRzA9nN69TUlPWH3pfPpd6U10eDXB92uqZ77ztd2xRe\n", - "4JMHzhV+32g07NCnbakJjFkWL/lx6FZRLBYz60OpVMoklG42m+48zHv/7wZcz3u9ntvo0bQXERER\n", - "EREREbFL/NCZ9oDsbniYFpCay5SxANKSA3pK5YmAu96VlZWMac9jLQaFuqtiNNCnPD118jB0Wuum\n", - "91P5Bi2TXqf5rfSUMopqe4jQJNZqtdxEmCHdWigUrJ08ClbB7/XUSabJO/Fpe7AtlXHwmKgwx9/s\n", - "7GwuI+jl3yM8hpB11s9+UKceD15iUQ8czzMzM1ZfzxzK07HKJOym/JwHO2W01WFUT595iW4JNe0p\n", - "+6GOrqGcxk5yinkMGRk8MjV/93d/N1KdZ2Zmch2EPRZdvwvXDu+6c+fOWV62X/mVXwEA/PN//s+N\n", - "weF3HtbX1zOne2DbtKfzXPX3gMFj0VPADq/97ne/a8ELaqbTPI58Bp3+1XQX9q/qyREzMzOmjcXA\n", - "i3Pnztl96NT/4osvZuaIZlbgepEkSSpJMkGml1IWTzzxhDFRqn1FBl4tHhwblA/xxmSr1Uqts7vV\n", - "SNOMFMP0pEadz+HYLhQKGRO25owNAweA9PvCY5C9d5tnJg/fU91uN3dN88yMHkJ3lzxERioiIiIi\n", - "IiIiYpf4oWSkCJ5mPAc/PZ0qIxX65uiJSGUDwnDWsbEx2+3qjpUOcWRMNIzS2/XqKSvMb/T222+7\n", - "J4MwQ7pC/XU8BiRkiNT5blTHWIXu/vN24p70wjCfsVC9dmtrK5eJUlYu9D3Q8rHu4+PjdpLnSejy\n", - "5cuZ05eOp7wTWrlctrGgPjteGK0XKLBb6MkzFGH1yhj+hm2kbcs+IgsxPj5u/kh0eN3a2hqp/KNm\n", - "FQCyIqPNZtP8V7zwbK8fWOZyuZxRTy4Wi66Io34flrVUKtn48OQ0FHTUpy/LyZMnc4NgiJMnT5qy\n", - "vOewrcEOYZ0HKcSrvxzQZ2r4DKpma32G+ZlxvtKHsNlsZpiGTqdjZR3VJ1GDO8K53Gw2za+L9bl4\n", - "8aKxRfv27QPQXyvpkK/K5aGA4ne+8x0cP34cwHYWgDNnzti6TWZK2THOi1qtlpEy6fV6KSFooM+E\n", - "eexdmJPv2LFjJmdAqZAnnngisya1Wi37rfrRegriRMi87hSjWCe8Oexl2QCyrM4gFf3wnaAWE11r\n", - "Qn/iJEkyrOwgBilP5NoTINX75Al3qqL6MPxQb6QILxqv1+tlOnOYEzavUxrV6xw1VTE6SE1G6jgH\n", - "+AuL5xwKZDdXnU7H7u1J6nsvGI1YyDP97OSlPorjoT5bdTy8lxfB68bGxjIvrUEvX/5GowZDrRh9\n", - "mbGe3gvIcxQdtinROnJM6UbFi04ata3zzGkcV9VqNWPCGmQm4ljlON3Y2EilwAD6myaWmWaGer2e\n", - "2pSG5aNjrur0EN6iuX//fnfDwD5kO6qG2zBqnWVQDbdw3tZqtVTfePprYd2GJTpV0FGcppqpqamR\n", - "NlJPPPFEJiGugv05NTVlG0uNrqTGFx3BNcKV7bK4uGgveJZpz549dh86xc/MzGTSGGmUaqg7FILr\n", - "0iCV8xA6p7125jqgaYM0vQuQzlKg44RloHnw1VdfddPVhFGdxWLR5gPNl2NjYym9NCA9xnh4O3/+\n", - "vLWBt/5wfdF6c0OlQUyqjh+mhdI5zxf35uZm6p2wm4wHo0A3E6FbyKA1mm3E8acJgBXheqfvC90g\n", - "e3VjX3NdXl1dzZ233hrtZQFRhGRMkiSZjfQoiurRtBcRERERERERsUv80DBSnkOzMiKeUqmeaAA/\n", - "OfDExIT91jvhEN5nyjLo96o8C6TpT5ZvUM67kLlIksR2vHp9qJexG+fgQSyJ55w3qv5OWE/9N8uv\n", - "Ya88Tayvr2fMPNoupOKr1aqFLCvTF568PWmKvXv3ZhSX19fX7ZSrYbdhWypLMYwpCeu9tbWVcXL3\n", - "UKvVMqZCdbjXBM7sD57KKpWKm+ONbIbqoKj2FD9jW5Gt8E6AGl5Mk5EX/l6r1TIM2fT0tMtIsS11\n", - "bOed8NgWY2NjqfyBQP/0Pkg/igjV/3WucJ1YWVmxcoVh9yE4LpXNHhWqnA2kWWqWa2lpKXPPiYkJ\n", - "a3+O3dOnT7tmFCpks5+0X6iHdPjw4QwjpYzkqON9N87OeY7ALNOBAwesXfjZddddZ+s1v0uSxL6n\n", - "av91112XUgcPn8v+GxsbSzF+QH+shGNxY2PDWCo1GfO5NKG++OKLGWZVTalsWzrMA9trl2ZR0ByT\n", - "YT7Zzc1NYx8bjYZrXvxBIC8wYxDYvjreuBbR+f7ChQuppNH8HX/LNp2cnLS+ViY+NE3X6/WMXp++\n", - "4wblAORzw3dbpVLJ9KGadkPLUx4iIxURERERERERsUv80DBShObL82ztujtURXMg7S/BHaZmjNfT\n", - "Z3giKJfL9m/uqDX/kpYvZC5UOE1P4KF6tj6P8Bzk9BmeKrpeH568C4WCMRE8zYTwnPNGdTLMU49V\n", - "hDt9PXERBw4cMMbllVdeATDYQT5kQBqNhrUX21nZKLIZ9XrdHE4VXj/ksXHq9M0To+dboAgZyamp\n", - "qYxfnX7GE1qlUrF+5d96vW4nNJ5sDx8+bCdeMjVbW1s4cOAAgGzOMMBnoqgQXygUMj4jIZPB6+hr\n", - "xbbwoCHbesr2To7qBwWk/eJ4/SginWF4vILshAqbhrnAQrBfjx49CgB49tln7Tv1VfIQ+lL90i/9\n", - "Ev74j/84c13Iot5444347ne/C2C7/9WPSFlC5sajYKjnO+ixaMOc7BVsN64rXoCIQp3S1UcS8H39\n", - "lpaWTGaCdXvjjTcybKG2wdNPPw0AOH78uPUh+1yVsjnPb7rpppQfIdBvH/7m9ttvB9APEmC7kcFS\n", - "9ltZ4TBIaO/evRnWSxlHDbLhnGN9q9Wq9Z2npL2+vj6yjxoxqpVB17FBAtYsNxHeU31gv/a1rwHo\n", - "+7GF1+k6y3oq08S+8daIUXwTB8ETSG632y47Pmx8e7jqGykvUiEvzQs7c2xszCZlnuN4oVCwxuJf\n", - "L5JncnLSJjM3UAsLCynVX95PTQTAYCdATUUQ1tejC0OToULNArpQhZ/1ej1bMIaZQfIwzBlXkzSH\n", - "g7FarWY2Te12OzMhz58/b06jSpl7oPMtf3vp0iVrJ32WOibqX4UmtVTlXS8JdhjV0el0rL+HmVpD\n", - "E8HU1JSVlb8dHx+3zzh+5+bm7DccY+vr65m61Ot1e8nwBaNOujTtANuOs7y+3W7bBvT9738/gH5/\n", - "cCF74YWtMzCAAAAgAElEQVQXMvVhG2xsbFh0FTdAYUJYIK1pxesvXLhgdacpYGtrK6P/pg78fAl7\n", - "8/a6665LLdYcJ2EKE8BPVzTMXELVbI7TxcVF20CFytsKnQNst49//OPuRorgZu1jH/sYPvnJTwLY\n", - "Htuql8SFfmZmxkx7n/70p61MYXBAuVy2hMx6qBglCq9SqVgS5DyT7Pz8vD3XW9uGqdizvz7xiU8A\n", - "AP7oj/4os7nVTT3b46WXXrLDBDek7Ctg+5Dwta99zRT/meBZwY3or/7qr1ofcbzMzMzYhkfLxPcF\n", - "N0+DNME4H3Vd5/24SV1eXs5srsrlsvX1DTfcYIfNUTGqJpTngqIBN6OY/BqNRkYv6+zZs27S4nDc\n", - "eS4BGgmt6yfXQI2yHLWeO9W842E8mvYiIiIiIiIiIt5DXDVGijSt51genkQ3NzczzJXm9uFpxzMx\n", - "dbtdl1oluNu9cuWK7XLvv/9+AGnTnub/40lfWSBv1877qUZGaI7UUwBZg8XFxcyuvdVqZaj1ubk5\n", - "K4uq8A5zoM2D5/RPlMvllPI5/2p+Pi2LQh282U8zMzMpDSPAZx00+eWdd94JoH+y5v3ILiizEf5e\n", - "n+H1lTd2VFPE+82wkxq/Z7/VajU7rbGNdGxzLKqyNft3YWEho6V17tw5axfOlampKWNRlZH0WM6H\n", - "H34YAFInes+Ux/a97bbbAPRZGpaBZfJYWU0OTpZAmWSO8bNnz1q/0SwJZPtENZdUW0oZGLIOzDOn\n", - "faTzgePYM5dQ+VpZOeZTazabVsY8U4POAZb51KlTufnofv3Xfx0A8MADD2S+88wN11xzjbEdZJrG\n", - "xsYyz1haWjJdI7bB9ddfbwwOzVVeAEe73bZ65uV2u3LlSoZR4T2B9PjgZ14b/OVf/iWAvtk6dNZX\n", - "sD0mJiaMEdSsEiwrGe477rjDVM7JSOn6dtNNNwEAPve5z9lnOg489jlkUhYXFzNrtNaRzzt06BDO\n", - "nDkDIG1NYd94qvdnzpwx9tGDvh818CQsg16f52Q+bG0LE9rr2qbgeqLvCLJUaiYl68n1TtdyrgOa\n", - "pWRU+RIt5yjSCXrNTkyJkZGKiIiIiIiIiNglrhojtbS0lDqdcqepvgUqWhf6QwHIKJF7fi76G+6K\n", - "q9VqhmmoVCrmH0ImSv2SNOzfy7sUfqbMiuZ64wnYO8HryZrPVTaNpxzusi9fvpxhrnq9np1sPIVs\n", - "lVbw8sflnUQGhUmHubg8FAqFDFPlsR+qVM3r9+/fb34I6uybl59JRU5HsfEnSeK2pZaL140qvukF\n", - "TXAcsw82Nzct1J1/JycnbSzydDo3N2fty3Hi+cD1ej37rQr8sa1ZptnZWTutM3x8aWnJdcz/F//i\n", - "XwDYbtOnnnrK+oh+Tgqeyvft22f15Xhvt9v2DDITepLlOFxZWck4jlcqlUwAR3hqZHlYBmWhNJCB\n", - "5dF2JqPhKRnrSZWMn+f8nueQ/e///b/PqHArWL7QYRkA7rrrLjzzzDOpz1ZWVqzvVB6EzAvXorNn\n", - "z1oADXMGXnfddRkGod1uu8LH9F8i4+SxxqqKr/dgO5NNOX36tH3msYFklzY3N20+sl08hl2d5rlm\n", - "bm5u4hd+4RcAAJ///OcBAN/+9retfHxutVq1OUTn/gcffBCPP/44AFjo/pEjR4xl03qHDMf4+HhK\n", - "0ZxlUV8wPjcU9tR3ocfstVqtXIZO15hR1ju9Xv1dw3t4efqArNVB5wLn4B133GG5BNl3rVYrxYAC\n", - "/bmojv1AfyyGVqhBWTBUHJr18fKrsh9YN2WpdpKX1sNVdTbf3NzMTNxms5kxxemE1+/CCL1CoeBS\n", - "ySEGfRcmU221Whnp+vX1dZu86gzHRUtfxuGGoFgs2oDjS3NzczPjiKmbSX2Bc6Hgd56jN68F/KS7\n", - "HtUM7DxxrWp35Q1C1fPiosGJ1ul0rI1oXvKclpVC1xcntWTUCZN1ymsXrbcmpgzHRblcHin9zaAI\n", - "R0JNmmFbVavVjLbUpUuXbOPD+62srOSaajl2l5eX3Q1qiG63m3Hs5+KuOHr0qI3P559/3j7nhoFm\n", - "ZC+aVdM8cPO0sbFh9/MckPliW1lZsQ0N/+r91OFfN/B0Gta+ZPt79ePLct++ffYC89qPG5VarZaJ\n", - "slNwHu3ZsyeVgJfgxseL+Pvd3/1dAMBP/MRPZO7rbe4ajYZFr3FNWFpaMjOVziW2P++zsbGR2cgM\n", - "WwM02bgXrRmae/VgyDl633332SZDX76cAxwTs7OzNhboxKyuDDQV04QLbPfR2toannvuOQBpk00Y\n", - "tTc9PZ3Z+D7++OO4++67AWxHBhYKhZTyOZDuUzqMX7lyxYJmWMewnkB/DNBMzj7Sdxw3UKqKrvXb\n", - "KXSz4Y0jdR/xoAE5gJ92TbWx+H5kUucQXFP5br3uuutcdwTP7Sdcw/PSqoXwDj6hudqLLveiKENE\n", - "015ERERERERExC6R7DQk8Afy0CTpkR7O07rI0x5RM54654XyAoPMMGEeH1XA5o46PBEAfTaFJ2BV\n", - "3A0dBAdpcoQhooPMkSGq1arVzWPUBuXFy5NUGBa+zxNDeNII4Z1UwvIkSWKnP03i6d2TJ1o+d3Fx\n", - "0U4ZdEocxNCwD1kWr261Wi3zfalUyrBPyrJovdQpHEi3Cz9TRpKsjTrNaz4vPlcdLfV5QJ8BChlJ\n", - "YHv8jpo4mvIAx44dM4pdnarZ53S0PX/+vBueTPMR+yo0O7G+O2U6OecLhcKOtI6A/lgjq6SOrOwH\n", - "SjB4prNKpWJ14m+V/STrMDs7a/n38nDbbbeZWcNbvz760Y8CAB599NHMd7Ozs+Y0TzcDz/H18OHD\n", - "ls+Pc+GJJ56wenIuvP766+Ygz/Fcr9dtftHxeZBOVzi/C4WCMchkT0qlUkqTj9eH6/rk5KS1c57E\n", - "xqFDhzISFvV6PbP2as5AQiVA1KRIpo7WgG9961v2mSpwh1aNYrFoc1glRYgPfehDAICvfvWr9lme\n", - "CRdAhm2tVqvWvuzLPXv2WJ9oHb3sEu/GNMX7aBny8sRqrtq8546NjZnlQusxSu66YdD2Y5mVCR9V\n", - "rT3PMV/ZTLJhvV7PjbiIjFRERERERERExC5x1XykyEaF+Zu4+wO2d+HeyVbZD0+4U9VTPSdI7/QV\n", - "MkMrKyvmy8Dr9ZSs/lChXVVPC1p2MlFqV/eYofCzQSxEuLvXtvJ24zvZrXvMlzoD8h5hu1UqFWNI\n", - "lPkJT9XqUEi2anV1NSMoqGD7673oc+X1Q6lUyjgtNxqNjHK4d0rqdrvWx+o47gnAeiHLYRZxdeZV\n", - "5opl9vqDZV5dXXVZRc/Bn3ViuywtLRkTypO1KocThULB/ENYvjBXFtAf92zTPBXgnbJRgM/eeBhV\n", - "tVmvpT+Sl3er0+kY0zQoXBzot6XX1971HNNend73vvcB8EV/9+3bh5/+6Z8G4GdXIOr1upWZ/l/3\n", - "3HOPfcb5Ozs7a0woy/L222+b4zkZmkGMVNiPXvtsbW1lcp6qnIKud+H99u/fb8yWCqqSWVOGkN/z\n", - "s83NzYyf0/T0tK0T9EE6evSojeV/+S//JYC+1EY4vo8ePZpR9d/Y2MgNpCETdeLECZPJUL+iUDJG\n", - "Hcv5mfpPqv+c+tKG2AkLFUrFqL8h+0P735tfYZ47YLtf6/W6vRvoj6drA8tfqVSMNea9lT0OHfO1\n", - "zNpGoci21nFQu6hMDv+GY1F9yHbCnF01017e9+FCVSqVMo7bXrk9M1mxWMy81BV82TQaDWvU0Pw2\n", - "CKplw7IqHeyldPEc6DgAvUSQGlERpqEB0gtU+BvdlOZpwIS/YfnZDzoJWM9wUOq/BynHey9dLhSk\n", - "zMfHx+0ZXFBarda7UmkPodQ04fWNmkbDa3kfwJ+QmvxSTYChftFu0hF40IUyfMbly5czY3tra8s1\n", - "ndEJluaFM2fOZBamqakpe6HRLDRsrnjQdvQOBGw3NbVwLHppLTRhM68bHx/PbOAPHjxoi71uOlkH\n", - "r89VCyxvo0/Mz8/bxsJLqsvULl/5ylcy31UqFXzqU58CAPzv//2/AWzrKynuuOMOM4/RhHXLLbdY\n", - "+b75zW/ad+xrNWvS3Mc5+MILL7jrqvdyo2mPm8AkSUzpm5/V6/WMBtXU1JSNLa5dzWYzpXIPpE1o\n", - "HLOrq6tWPr6MNcOBzmma1vi+WFtbs+d6kaaem8A999wDYFvdXn/rzR11kCf27dtn7wl1/g/Xhs3N\n", - "zYxpdGZmxgIbvAjyQqGQ2Txo4MuoB5lRDgZarnK5nNl0qzmV0CToYRosxezsbCqJO9DvN85DTcnF\n", - "z9R5Pjzwa2LkPG3DUV0P6IAeTXsREREREREREe8Brqr8gTqK6ak3ZD1arVbK0ZF/Q5ZKw+m9Xbln\n", - "QuMu2tOYKZVKdsqiw22hUMiE6nqaJ7oDVrZHtayA/ikq3FF7bJCeFryQXi9RqLJQvJ+e2tSsGv5m\n", - "a2srZVrlb0Oa2nPI3trasjZiPwwyG/AZPLlMTEzYtUr5atsA/VMqn8vTpCat9mhqNePxPuwvPU2p\n", - "eThk8jS3k1LELL93oteysMy7YaK84AudD+F3Ot7DBM/e88kQANtO5KurqxkH26NHj9q11N8JnzcK\n", - "8jTVNNGu6gMRg07drBf79fDhw6ky8jdhcuxqtWrMDNcarbeajUJ4J9tLly4NTMANbCule2i1WiZN\n", - "QeZFQa2iRqNhbUOzZaFQsBB8hu9vbGy4ofNcO0KHW0W1WrU8fcqshYzu3NycMVFci/bu3WuMFO89\n", - "MTFh81XZm1AWRnWzNEMA60tT4LFjx4xl0zLRyZsyCaurq5n14oMf/KCxTR7TxO+q1ap9r2tNOG6v\n", - "XLmCBx98EABMi+rtt99OJQUH+msXmRld10PH916v58o8EJoFhBhk1uKzdX0n9H07KF+gXqfrCf9q\n", - "UmVNCh2ywTpX+Nvl5WXXbEjk5YJsNBqZdUfXaM136b2n1NGe14Vmw1FMfJGRioiIiIiIiIjYJX5o\n", - "fKRGtdMS6ueSZ7cuFotuuGiek66q+hJkumq1mu1yeQ/1BVCEDnvertizLeuuPS83l5cXLzwpeT5S\n", - "XngvoX5OO81rNAxhGPWgE9Bu4bUvkBY15fM9Z8pRpARqtZpd5/W5ym7wdL0b/65wPoyNjZnPGJm6\n", - "drudUvUH+v3HkyH/qjOzx+TwvgcPHrTTM9vghRdeMEVl+sXcfPPN9pn6fZCtoa/RP/TaogwifaXu\n", - "u+8+17+IZeUcaDab9hs6YVPcUzExMZFx0h02jtk3s7OzuWKeioceegjANhOmAo+f+MQnAPT9q0KV\n", - "+BMnTuBHf/RHAWznlHv99ddTztl58KRMyHCFAq7Adh/ffPPNxqRork/vt3mBAuqf6v3WYz0pzEu5\n", - "hGKxaGs055FKY9CvD9hmwFTpPpx7KpBMX7mNjY3cdZEs3rlz52weKnujATJAv73JimhwCttyYmLC\n", - "+prtVi6XM9kTvEAKjzHV3/4g1nd976iwdfierVQq9jwdY/wNmVNVVFeHfO99GOYqVUZKVc9DaaQk\n", - "SXKDCNTJnSzcIB+pq2ba40ZIVcSBtJaFbkD4mZqZCG5E1NncozDVIc9bMHhPVSzn73mdZxLRF6qa\n", - "WsIye/pA6+vrmSTDW1tbmfJ5E0Tvw+sbjYarOkzoQCa0XHmO6kmSZEyA2l/D9LDCyTzqJqpUKrlS\n", - "/lyMdLJwMnvOyIQujGy3Uqnkmpi8iD/PuZFtrt959wv7ptVqZfpVox6JZrNp45MLc7fbzaQSmpqa\n", - "yqi7q5OmPosvLW4gOp2OvXBpelANKX72/PPPu5vDkCbPyy6wGwzasISRv8D2WDt37pyb7YBl1UME\n", - "5zFflt6cW19fzwRIDBvH4TowCriJ03FAkx7vo33AuqkiPPWa1tbWXNNQXlkVYfYBbzOoa6A6bnNz\n", - "o5sTtqmXmUDTBoUm5XK5bC9aDW7g7/md5yYCbDvaM53X+fPn3SCJsD/VtJSnX6Vg2VWLkMEHrAuw\n", - "3b9ra2v2mb5j2JbeXPLeB95nnqld35+cr95a5MEL4Go2m5m10htLnouKaiR6ZIjOgTBpebfbTW1G\n", - "9fkh+Ly895QexndyyI+mvYiIiIiIiIiIXeKqMVLtdjulp0F4u+Jut5tJqlsoFDIUrNKjeQ5qmrjX\n", - "c8j1dJiUqclzqtWduncdT3d6HU8dqlnkhdOHzsYehem1qd7b06MCtk8o6mgdnjC8BJF6UvJoV0+X\n", - "Q8uS15ZkBlQlXM1uPL14pgI1YYXfd7vdjPaMnlJUHT10jNT2ZX+0Wi33xOj1g5cEO6y7MrWEnsrU\n", - "LEUmQMO8wzZQWlvbkffhZ+1229qU5kA9ufLfg0yVoUP7IEaKdQtzZep3vV4vw5x6NHy9XncdqXmf\n", - "119/3dpB5w/7m6ycBgSwfrOzsxlWpFAomPSDp3JNeFIsXvDEIFDCwAvVZ/m89lhfXzezEseCJoAe\n", - "Bs9NgvfJy/X21ltvuSrhHANkY1qtVq70B8fdrbfemgkS2LNnj7FhygqGTs4TExMZSwKwvS7xHgsL\n", - "C5lsAsp6kh3TcirT7eGOO+4A0E+SzPpznpHR3bNnjwUHsL3n5uZScj8sO+fS+Ph45p2mztJsAx3b\n", - "RKFQyORa1bUy710JIOM+4K1r+i5ShOuYZyHa3NxMsVP8Lly3dU3QNTjMzQukrSi8X+guo/dm3fJc\n", - "Q/IQGamIiIiIiIiIiF3iqsofqGyACm2qkxcR+uZ0u92Mc5veR/MCeacTIk9Ekp/r30G5eMJ6eKKP\n", - "WgZlOHhvz3lZn8FduNrXQ/mIzc1Nl6FRnyDNAE+Ev/HYJ62PnppCqYN6vZ5y4g1/o5+FjI+WOU8i\n", - "YHx83Mqvob1h+3rMWrvdzvSNsnNavlCdfHNzMyN/oRh28g9PbdVqNSMNMcjPge3BZ4SK2GGZlZUj\n", - "m6BCgGRjdE6FbNIg2YoQ6k+Y1wYTExN2evZ8bbwxkscyN5tN15eBz7hy5UrKYZ/gnKPMA8Ppge0w\n", - "f/oEKcbGxnKZGUKlXYidON+TVVLWi07SXp4x4vLly8ZyHD16FEA/dJ7sirJVnrAo66aMFP2cVB7D\n", - "A5koOutrrjwtJ8tChk6VzYm33nrL7sPAhgsXLmRkSzxxyHa7nesHw344c+ZMSpCZ9+M4Juul6xDH\n", - "kgoH61qiwRcsp1cW+iVyzS8UClYPKrpfuHDBnjE1NeWy1CyrvjvC4BplY/S34b8104g6brNttJ5c\n", - "A3n9IOuC907lfFb/aPW1ykPYBroec+x2Op2MhUWFij2mPC/4LM8hnbiqGykgW0jVceBi2Ol07DNt\n", - "yHATUSqVjELmIjGsY3RD4Dmgh2Y+jdAbFO0W1su7r6d3xIVjcXHRfs/yq9Oid+9hUX1Er9ezDQB/\n", - "G5ZN66Mol8u55hiW1VMJHqQSruXKQxiNtb6+njHFDqJgw+8HmdNC6Fj0IiSJWq2WMdl5UH0wtuPE\n", - "xEQmRUypVHKTbg9T9Qf6faTmVKA/NvjC0EWHCxrHoLbBqNFlhC5enLdeFOWBAwesLPoMlsuL3tV+\n", - "Dc3HgxxCOf81cEM3vnxJUt1bI/TytL7GxsZG0gAbdQOqYD3f9773uWXg/P/e974HoD/uwudcvHjR\n", - "zEZ0Nt/Y2LB2+83f/E0AwF/8xV+4G6k8c6Vq1nnrKhOKcwM1MzPjmpz5DDUFMvkyzXlLS0u2yeV4\n", - "v/HGGy2CjxFs+/bty5hMNXm96ldxc+jpCGqGCI4XbuDm5uaszOpIPcqa22g0bIxx/K2vr9vLXDME\n", - "cD4ywEPre+nSJXOS956na0KejpsSAmE6Nf2trgWcz4QeRPUdkvdcjYjnnOVaPsypW5/Bcaw6i6G5\n", - "z8OwZ2ikodcGwxBNexERERERERERu8RVZ6Q0Zw6QPk3wtJUkScbRulwuZyj/TqdjpyylTkM6eGNj\n", - "ww3RzGNMVDtIw0VZvlB5HcgyUUmSZOjPWq1m/+ZJTrWq+NyVlRXXxMF78/TmJQUFfPOI1pflIqPX\n", - "brftBOyxbEShUBhJNmBraytXKyyPtSuXy9Z3Htul4e15uluayypkqWZmZuzeynR69G44TrT+enoK\n", - "ofnceJ0X7qsBDXriDPMbang+y9ntdu3ebIv19fWM4nexWLT6khlaW1vbsaaMtrc6+/K78H5nzpxJ\n", - "hYGz7Kwb67GwsGDl433Hx8etbsNy+3k6Wcpc0CzKsqhzM5/hsU+XL1+2vHY/aHAOz8/P4/nnn898\n", - "HyZzD9uR37E/qbINbM8HmiuPHDlia6W2C/uBZl81H5O1abfbGUbq+PHjGVPz4cOH8dxzzwHoq4gD\n", - "wNe+9jX7nrIFBw4csLbneD906FBmbgzKe0nGRIOO2FYq2RDmUJ2ZmUklJiZ4HVkoj+lQU7aCrN3v\n", - "/d7vAQA++clPprJisHz8t2paMYsGP3vxxRdTjFVoNvSYaTU7sy0bjYb1vxdAxd80Go2U5BCvz2NX\n", - "2SflcjnjVuHJh6gcjb5ftAxh3fTd6jHRvF9e5odyueyyqJphRP/uFJGRioiIiIiIiIjYJa4aI8Ud\n", - "fSgeCGR32uqrEjrpAWnZAO5e+b06JWu4vMdchP5GGjbKnWqSJBmHdnXS1RBW3a3zHh6bEQpyNhoN\n", - "OxWpQz2fq/5C/EzDpT2Ww3OgVgFF/ob+FXqdij6Gqt8eg+E52qtjrMc+qWhhKOnQ7XatbdQJkicR\n", - "T4KB12lePXVKD8ug9VaE9fBU7JMksbbK88lTFkXrTsaE49TLKadgu9RqtZQUBsunDqC8b8j4tFot\n", - "q9swdodQPyxPIiQcVx6azWbmhK+OthqGHjKdg8a2+oSFYpmAf8pkH7788ssAgF/8xV80VoTXeyfx\n", - "brdrfReG3b9bsN8uXrw40j09aQRgey3gunjgwAFjRX77t38bAPDII4/gx3/8xwEAjz32mP2Wa5HX\n", - "h9dffz2AvvN6yNSdP3/exuU999wDoJ+rjn49ZKLuuOMOkwZgOy8sLFj5OI7feecd6//bb78dAHDy\n", - "5EnzpWIuvQsXLmTELRcWFowdI+MEbI9zSp80Go2M3EO1WrWxQ/Z2c3Mzs160Wi13rBGf+tSnAPR9\n", - "0f7pP/2nALbn7dTUlOXQU988MlE///M/DwD44he/aJ8VCoVMkEOpVMq8xzTXqsJzBOd1g1jxnaDd\n", - "bmf8w9QPa1iZuCaooLX3HsiDxxwqg8V1Ii/Prb7zR80ZClzljZRqQXFi6gYk3GAA2wuganHoyyt0\n", - "vtvY2HA3X2zgvE2O13H6YlMtqlBhut1up/R5+F34ktP6cdF5/fXXMy+3crls9+Zv9Rp1lgzbIrxP\n", - "aFrzBuDBgwetTzRZpdcm6qin9QWQcq7mb2mSuHz5coZu9xTVBwUChFAq2aN+veg+BV+MbOfl5eXM\n", - "C0XHkG40vQ1UuHhNTk5mXkCTk5O22OvEDU27pVIpk7xXx6Iquocbfb1WI43yFPAVGmHKsvB52s6c\n", - "r2zHQQEG4djWtvMihFS139tgeOZgTfaatynhs5955plUWg/Af8EA25uvYYEsedDsCexj9v+rr76a\n", - "a2IIFf1DsL1oOvuJn/gJPProo6nfPPbYY/jX//pfA0g7fdMsqFHSHDtcp7yoTJ0XnssAx9C3v/1t\n", - "U2jnJuLkyZN2vZqyaJZTp3hudulIT4dwYHvM1Go1G9v60gz1q6rVamZ+N5vNzHvHU9RfX1/PdW7m\n", - "Mz7zmc/gtttuAwAzcy4tLdn9mLZmeXnZ7vfFL34RAHDvvfdamp9ut5tJgq3EgSIkBOr1eqbvNGBA\n", - "xxHflepwzX+z/ZrNZoYkaLVamfedPs8z93njd9hmKaybukHoehaawXu9npuEmG3qmQy97AeDEE17\n", - "ERERERERERG7xFVjpBqNBiqVip361GGYO0tlongK445UTTFkNVRhmqfnZrOZMvMBaSreC+P3Eh0S\n", - "Xu42TbDI+3khwt1uNxMi3uv17DPS20eOHMk4FnrUqUId870To8cWab48thvpas3N5Tmq64k61FMp\n", - "lUpGnyu1zueRCvecr5V90n7ICzXWMF5PLyU8AanaOVmlsbGxVFkBX/kd8HM2qcmR0DGoz1Ksr6/n\n", - "SiaoZtAoEgt6SlaF9jCP5MTERO54UnDu8fpms5nLwI2aoyrPNOY57a+urrrh3jo2yF4w4a0+xwuK\n", - "YD1OnjzpOpHTAZzPvXjxohvwEGJQAm2C43R+ft5YgDzFckWeMrgy1yov8fDDDwMAvvzlLwPoj5Nn\n", - "nnkGwDYTfurUqUyZC4VCRn9HFbc96DzydN2YVJmM1F133WVlUedrMkP8LEkSM+3xtydOnMBf//Vf\n", - "A9hmut98802rE/PrTU9PZ/pN2Vs1D/I6b3yy3qVSKXfcst6f+9znTHKCZVlcXLTfcs5sbm7ivvvu\n", - "A7CdoPrZZ5+1+05OTmbcDwatAyFbtLy8bGsRn7e2tmZ9olYUT8uQUB27MMhFXQUU3ngK57Cu0eoc\n", - "HsLLytFsNm0u7cbEnpcP1HNfGITISEVERERERERE7BLJTtR2f2APTZKBD52bm7OTGXf/Bw8eTGUI\n", - "B/yccvV63T5TtoBCcTwReNATpDrwhUyD5jfK26nqLltPNqP4+pRKJQuFpb+GB8/nJmyX0N9obGws\n", - "4zDe6XTckz7t9zwJ6XWeD0UelCVTZ+m8E4H3G4VX5lGR91vPN0/LFJbFy6umuRG9OqofUei/pIxO\n", - "nqq3CgWqnxrLwhO6+s2RKVxYWLDTZ5hvTDE9PZ3yNwQGj136GHF+nDt3zr0ny0ofmEajkWnrYrGY\n", - "qfvW1lbGsVgDVpRpZN0nJiaMmfGYMt6vXC5bP2n/sp+oEv6d73wn49f3bnDs2DFjvehDM+xkzbVh\n", - "fX0948dVLpfxyCOPAADuvvtuAMCf//mfW1vT/2Z9fd38KikETCfwQaDidr1eN+aPY+vWW2/FCy+8\n", - "MPC37A8NNvjYxz4GoM/a0E+L91NJBgZjKCND5nxjY8PmGX87Pj6eWadarVZmLKrVQNljj70P/Wx1\n", - "7nnw3hH33nsvgD7TxHtr3VjmG264AcC2wj7QZy7Z5uGa/m7h5RFVRfBRmJlBmTx2Wgbtt1CkV32z\n", - "lArWkDUAACAASURBVLkKLQ6VSsXWOc6P9fV1W09UFkLLz9+GKutcU7//rnMb/aqZ9thp4YDTwcmK\n", - "vPLKKxnnws3NTVsI2FhKS7KhZ2ZmMhsopSa147xIvrDjVJY/T0K+1+u5CUA1Ok2v1ed2Oh3bQKmS\n", - "N8Eyr62tZTStGo2G3dujRwc5SHobijBtg24YvIgVzzzLttH2VedhQl+aYWJQb6Onfaj30OeF0P4K\n", - "qeSxsTH7rTpmhqmJPE0rz9k5rB8ROmRq5JC+6FUJmM8P69toNOx+el/dWITgAuOlFxkElnXY9WwX\n", - "Xjdo4WWb5iXx7fV6Kd0ioP+y4aGI9zhz5kyqXfiyZ9tfvnw5s4HSccwX/LXXXutuJLipUVN32K+D\n", - "0kuNCvb/qC8i1tdzhq9Wq3a4Usd9qqHTCf/FF1+0NqBLgYJryE033WQO3uyv+++/P+UgDgAvvPAC\n", - "jh8/DmA7ou6WW26xzRXbR9efz33ucwD6pkVNdAwA9913n5m4dF33DsV0Xn/qqacApFN2adYFL8It\n", - "TOatStlqDtMNlNZnEE6cOAEA+Ku/+ivbLNFxXNdlnVPsV667GuEYuh0A/c1VONd0rWSdarVaZmyt\n", - "ra1l0qjoBl6jnj3oWg+kXU90PoZtrq4n2oahyrq6MnjuN4TXh51Ox9pLs57oxiiEpyPl6VINQjTt\n", - "RURERERERETsEleNkdrc3Ewlq+RJeW1tzahz3W2TieIusdVqpUwW/I47Wj2RqrotkGYrPKfVYQ6t\n", - "XphnaLJTzRulLUOFWaWXeQ/VJeJJqFwuuznDeD+ewJQN0hOGsmNsQ5Zfdbp0Fx4ybnp6IhOlp3s9\n", - "qYeaV0obe2ZBNV2FpxOPGVKGS52g86AO1zTf6UmZbaAUMH/D65rNpssc5JnxFDzJsewrKyvuiUed\n", - "OFmW8CSlkh2esj5NT2NjY5kcVY1Gw56bd7puNBojMSVJkrgBBjsFWSgNwuC87fV6Nge4boQsHRlc\n", - "moq+8Y1vZJ4xNTVl45f3rlarbmg1oXUK835ubW1lTuijYnV11RikvAwCwPYa6THNhErKkD255ZZb\n", - "8KUvfcmeF4JMk5pndH3yysE12isf54Ka+vjcG2+80e5N05W6J9BJ/IknnsiEtc/OzmasC9dee20q\n", - "OTKwHcjEfwP9vvRkcPiZrpUhE1Eqlax/WfZh7gRad5ok+R7SscT7/czP/Ay+8pWvANhuD3Xr6HQ6\n", - "GR0pL1eih2EmaJV9CVn2SqWSSdLe7XatXTlnVPeN40DXSn0/hutNoVDIMGAeE6bWILUksKyjMrq8\n", - "x6233mpmcuY0VFmLURl7IDJSERERERERERG7xlV1NvcEKj2ntUHZxnl65QlDd5D8rtPp2PcaDj7K\n", - "rnhQCHNo9/Uc34Ft9oFlH9TWni8V4Tm20jm12+1mHB6HOZuPCq/unjCdh0H95fmghaxXtVrNdQb0\n", - "ckYRpVIp5ROxEwxymqcPDR1yn3vuuUybTkxM2IlWJRvYdxx/+/bts3qwbiGrGtaNYyhJkswYG7U/\n", - "rrnmmlSOSj5/FGfpUZ1NFxYWzCGbqtJvvPHGSL5Dc3NzmfYbVUJBoXIl/+E//AcAwH/5L/8lc522\n", - "B9s/SZIMCwj4TsP0eeFnS0tLxmzs9DQ7NTVlTAWZi0GMHtc0Mghe8MzU1BQ+8YlPANh2bn7hhRfw\n", - "v/7X/wKwffIGsnPv4MGDKV+wQTh69KjNZYqT6vqiwsIq9gmknaZDYU7Fddddl2GagO2AhgMHDgAA\n", - "nn76absP20PnFNtMndzVRydk3FSixnNy528PHDjgtn84Xm666aaM/xew7VDOIKpyuWzK8ZwDp0+f\n", - "xm/91m8BAP7wD//Qfpu3pqsCujKcnvjmTsG2mpiYsLbkXy0Ly+f5DhaLxZTQcghl7D3hYUKtEewn\n", - "tcSwvrxHtVrNCKOOKpdQr9exsrLyw+lsDqSpOG/DoHQ5X2hcZIrFok0YLggaxcbvSqWSbTw4gZMk\n", - "yZjvut1uKr0LkO5odYDm99pZHrUf0vz6suYET5LENkNsg0KhYPVUnSUOHqV0dxq5pok6WY9qtZrR\n", - "NdG6e8mGVeWW91Hzl+ofAX5CXI3aG2YaCTfX3sa30+nkvsD4jJmZGWsvtoVuvFi38fFxa2teNzc3\n", - "Z2OM9VFzqm52wo2Pardw06z9pqmOiDxT0aibjWKxaPXjc/UloqZRVT4G+u3s6RWF0NQpoXloEDin\n", - "19bWdrVxykOe1tO5c+ds08d1olqtWnk0yIJzUl/OfLFyk9BoNHL1d/KgLgqqneXN61FMGL1eD3fc\n", - "cQeA7ei+//7f/7sb/cv7MDpXN1HeJoJ49dVXM5/ppp4aeMViMfOy0ugp3UDdcsstALZNYm+88Ybp\n", - "erF8jz/+uNWDmye9Dw87Os/YtrVaLeMyAGzPe477ubk5m/Nadz3QAH0Hfa+PfvInfxIATNvq1KlT\n", - "tp6wjk899VSmD9vtth1A+N309LRtoK655ppMH9ZqNWtzlq/dbg9U5A+hkcNAv93C90ipVMoEB3mH\n", - "VO/9oyZvQt8BerD2Ds+ce/xudXU14+KxtbWVSZbtYWNjw4IXuNEcNdJwlLkdTXsREREREREREbvE\n", - "VWWk1BRD5kVZG80fRkZAmYtQ76fdbttJirtmDfMkdPfsUfceE0VsbW3ZtXoiCZmDyclJ2z3zVNbr\n", - "9ex5nklH2biQBUqSJHNqV3OEOk177A53/0tLSxl9Hi95sJ7glEZl+fWkGVK16hSorEzY1l7SUE+T\n", - "KawzrwvbY8+ePXYfrTvbkuNgaWkp0180rwBpRejwHmpK1QAJlllNBWE9hp0URzVHagJi9o2emtim\n", - "vN+VK1cyzECxWMywhr1eL6Pd4o1Tzww6NjZmbToqZZ7nlD5MGXwYSN/n3V/R6XTshK4ImS0dn2Qu\n", - "HnjgAUvKu1M0Go2MuvYNN9xgpkKVZOBJOo/p63Q6phzO+pw8edLGB+utwTAcx0BWwmJUnbg777wT\n", - "Tz75JIBtBunKlSsWJKQWh/vvvx8A8K1vfQtAnzkjE8V5WCwWzRmdfz/84Q/jC1/4AgDgq1/9KoC0\n", - "CZBrTbvdNhkM9p8GauTleCuXy651hGOb961WqyYboe8XMlE0QbbbbVtP1MQXjivNHUvcdtttqfx8\n", - "2k8sE8eMZrYImWaVhdHsCPp+BfpWEo4tdTr31OlDqJ6Trnt5jLrnaqOf5bkeaHJz7gP4t91uG3uX\n", - "p7au+QuHud8MQ2SkIiIiIiIiIiJ2iavGSNHpUBkQIO2rRNRqNTttqDMad80qaMhdPU904+Pjdp36\n", - "8qhcwCAME9rL26GrXwmfq74qeg+eKjQnWFiudrttLAF9Od555x1rK363tbWVCU0F0qqvLAPvs76+\n", - "bqcwzfTO8niZ3dW+7al6e+3G9lJmKmRpBqmsE16eO17v+XMUi0U3XD2EslC838bGRkYFXqF97CmQ\n", - "5wm2euCJ88iRI8YEcezqs+hfB/jjN8zgrj5r6gcY+sO12+2Ms77XB/oZ6zg9PW2//UEoLl9//fXm\n", - "+6DjzxsbXog+/X3UuVmvD9mwTqdjY4v53N54442Mf1in0zFRSPbNqD4pgxAq2x8+fNhYHWWk+Lw8\n", - "5nJubs58Qv/mb/4GgJ8hQPMWKsvKUz3HULfbHclHRP2m6GN2/PhxE+ekc/jKyooxUcQ777yDQ4cO\n", - "Adhm+TY3N/HhD38YAIyF+sIXvpBxXn/jjTdMZJTO3+pwzXmkcineGkJsbGzYOPaYfUpFFAoFk5fw\n", - "ZAjIiOzdu9fyPtLRX/1U+e5aXFzM+PK++eabKauLx5h61pZwfIwqyaHjQOdUqP4OpP1Dw3Ko/6yX\n", - "+5TQd0nIEiZJYu2vATKhGHa1WrXxyb4elgtS22dQ0JKWbxRctY0UB0uo96Hw1LN1AeSA9xYyNq6+\n", - "MFQDJHxBFIvFVMSVXh8iTD9QLpdzo8lUK4mdRBPk22+/bQvoMOdcXscXzPz8vLWN96L3kuq2Wi0b\n", - "hNqW3iaEbcgJdPfdd9vCrubN0BSr6VG0bt7ADDcbaj5UCpbjRDW5+JlSwOEk0JQ+XLQ0CTLrMWjT\n", - "7OkUhe2i5hlF3gbK29Rx4VhcXMxVmyZWV1eN0teNEtvDc9xUnRZPBX6niT95j0uXLo20cRxVBVwV\n", - "phVhxJLqPym8DALEgQMHXAd69iGdlgellAo1w5aWluzlzA3IKImNB2HPnj0ZM46WLw8//uM/buVn\n", - "9N6lS5dsI8PyvfTSS9aWur6yXW6//XYA/fEwSlLYixcvZlwttP24iSgWi/jFX/xFAMCjjz5q3zMx\n", - "Mftybm4uozRfr9ctSpC48cYb7d5cU1dWVszhndFxa2tr1n5c97wUW8vLy9b23DCfOXMmFTQD9Dec\n", - "4Qbq0KFDqaTLbBeOVba9biboUH/y5ElrN24Mz549a4cmL0lyqVRKmcIIfsb1ZG1tzVTnH3zwQQD9\n", - "jehf/dVfYRB0rHG8e/2vmoScA7yuVqtZu3kRePy3rheqqRjqNVYqFfu3uqV4EfhcO9jmvV7P2kVN\n", - "gByjXjYTwltfQkTTXkRERERERETELnHVdKSo/8Bdvac6SxQKBQvpfeaZZwCkT7Ya+snPvDw5pBw7\n", - "nU5GxVqpfT0x7CTEHNhmBkqlkp1Ylb0JHbM9LaBCoZBxGNZcRsouqaMw0N9ZK7Ommh78nr9R3Y1Q\n", - "VXl8fNxYDI8d8cD7djqdDJugST6VPQnNQOVyOaNbVC6Xje3QBLaER0N7oLnkwoULGSdD1UvymDz9\n", - "LM9EyH7TEGyFmmAH1cOrgzqHq+mRyJOPSJLEzLieA+eoeeI4f6rVakYq5ODBg1Zumj92IgkQJi3V\n", - "gAVibGws035JkqQkHfh79vU777yTGYsHDhyw8ntMLB2eL126lOt8yrofO3bM+oJ/R1Wd9vCRj3zE\n", - "2pKK5KPiT/7kT/CRj3wEwLapuNPp2L/p6E1n7UGg5k6pVLJTO9dSHUPKEHpzhXIA3/zmNwGkQ841\n", - "aXG4/qv5K09vCkAmx5/+lkxcs9k0CwdZo0Kh4M6lPO0wlvONN95wdcf4Gc10unby+UtLSym2i/cP\n", - "x6LO283NzYwW1Kgm9EEBPKFT/fj4eEYOQtkiSoYsLy+782ZUhHqCGjSjzvCj3ANIz3VgZyY59qea\n", - "ez0LFzXqBulIRUYqIiIiIiIiImKXuGo+UtVqNXVq40lkfHzcTgea2Z5MFDE1NWXOZXoKD/PqaQZy\n", - "DREl1E/Ey0AdolQqZfItaQ49ZcC8nTefp4yZx56Fp/mxsTF7rseS8cS0vr5uz9B2UaYkzGdUrVat\n", - "LjxRra+v286cTEmlUrFyqWxBeJqcnJzMyAWoH4aWP2TMPDar1+tlBEMVYQZ0IM3QsKzqtxJmAm82\n", - "m/ZvPZGG+b4qlYorCUC2ZhiDybJ6/j/KSKnDJsviqedz7OQFT1QqlYyfmObu0px7eYyethXbl6fB\n", - "er1uddupOGW1Wk3l2AP6jqOhOOj+/fszzJoqUQPpgA1+T5CVabVamYwACq4dR44cMV8bD6zvtdde\n", - "i+9973sA0sK9YR8Pk/ag78bS0lJKgXwn+Lmf+zlzztY5Rd8ezmmVP/DAsPtKpWI+O2SpTp06lWHc\n", - "tK3IXLz66qt49tlnU9cVi0Xrr8cffxxA2mH4gx/8IACk5CTYb8raPPzwwwCAL3/5y8ZEEfv27TNG\n", - "ioxQpVKxMUNhTJXI8HKRcs2p1+v2XN5jYmLC9bPjGsTxpWs+14Zut2tMFNv2hhtuyOSF7PV6KWYt\n", - "z++ODFeSJLY+sX91zKlkC+sSSugAvp+jBhTwPpqRILTo6P34LlemyWO99N3Mec/+WFlZyQQMtNvt\n", - "VK5IlsXLmxnmqlRZJbbRzMyMfU8GcRSr3VXbSHGh4+LBBXxjYyNjpuh0OpkXwZUrV0yrgw1ZKpVs\n", - "EaQTnyaPVLMA76cvPi8xbviy0UGpAyeMJtDBoWaz8H5zc3NWT9LBGsnH+7TbbRsIfJlo+ht17OT3\n", - "vB+Qfrmx3KEyOJAeNCH122w2TUeFbZ4kSebFuba2ZtdpfUMqulgsupsg9hP7Q81anLhK7epv2da6\n", - "oeBGj9FEN954Y8Zp1UvzUygUbFyGyuBAevEd1Uk7L+WQmky8AATtd6Dfptw4KNXONtDFxNuEhQvV\n", - "IOdqItQVA7bbeX19PTc6iJFL8/PzqXEJ9PuH9eAzVldXrVxcD1QPiy+OhYUFW0O0Lp7pgS++drtt\n", - "92S7eMrR3kZKgw30vvwtx8TevXttjhDDTA58UZ4+fXpkczpx9913A+jPHW5QqGyuDtBcH6+//npL\n", - "T8KxfdNNN9mGUCMJ2W4s/6FDhzKJk/VwwRfufffdZ2rSRKvVykTe/dZv/ZYpeHMDdfjwYdOg4j2m\n", - "p6fx8Y9/HADwP/7H/wCQdhhnn3obxHa7bXVSh/qTJ08CSJv2OBZ53ezsrNWd9w4VuwkeCDj+xsbG\n", - "bA33Nl6MLj179qy9s9gv6prhKdPv378/E4A0KNCD/cUyXHPNNVYnbvq8Q9TU1JS9B7h5bjQambro\n", - "hlEDL8L0bcVi0dYndUchlMTg55wXhULB2p1rm2r46VrpHWhHSYmlAVicv15UcIho2ouIiIiIiIiI\n", - "2CWumrP5wsIClpaWck0hZCHGxsYytObdd9+Np59+OvOb0FHwyJEjxkTkae5sbGxk5A8An14MHbOD\n", - "ugHoM008leRp30xMTOSaGd4t+Ew1k3ph74Q6ovP0NUxhmidfnooGhbjn6UN5jqp66g3bWvP0qYNy\n", - "WNZBCaVHhZdomVCanGOCiUdffvnld6WnxFM7x/358+fNcZYnw3a7badnPVHTzKvhw5pfCkgr3LMe\n", - "PAkryuWyfc8+nZyctPryWRsbG8Z2KDvxwAMPANhOZKume/7d2tqy8rG9VbWZa8SFCxfsN6o/x+ue\n", - "eOIJ0yMalnyXLBbHhppviA984AP4+te/nvpMy882GB8fz7BUx44dM0Ylb407ceKE9cOXv/zl3DLn\n", - "4Zd+6ZcA9E1j/+2//TcA2yfqpaWlTHLZW265xU7fXH9mZ2ftOh1PnHusr7oZkJkYGxsz5kJzn5E5\n", - "VLaTY5bXX7hwIeNQfscdd5j8QeiuAWxbHFZWVjK51iYnJ+0Z/M5bB+69915j4Nh/yqLwGadPnzZJ\n", - "CbapBjZ5yEtE/26Rl7R4fn7exhPXrJWVlZHKMTs7a+3GMbG1tWXriAZKhea7QUxYHvtEqHxQXkJj\n", - "BdeJ+fn5lLYkn8k1gd9NTEzYGCTbWywWrW68/vLlyxl5I5Y/OptHRERERERERLwHuGqMlPwbwPbO\n", - "cWtry3bFaq/kDl/z1hF0CiuVSmYH5YlT/RT4mZffystlF5Q581xFmM9N8+rpLjsU99KdN31HNjc3\n", - "3ROE55TuQa/zTi88CdLn5s0333SZjTAfWbFYNPaJ7To5OZkSuAP6tvZR1bzD5+opwWPO8iQCtO78\n", - "reZQ4zhZWVnJOIBOTU1ZW3k54HTsECzD3NycsTAasBCeGIflj+MY37dvH26++WYAwPPPPw+gf2qn\n", - "BAhPi1euXLHTOpmB8fFxG9OcC61WK5U5AOj3H5/HNiVzC2z7eoyPj2d8BWZmZqyvNacZnX51fJKR\n", - "UHYp9DtTBXmWqdvtuj4leej1epZnjozU0tKSmzstxNTUlH1/+PBhAH0/ktDHR520OT9qtVrGR256\n", - "etrqpNeH4/bEiRP4qZ/6KQDA7/zO79jnw8Z5iH/7b/8tgD6j89RTTw0s8zCwrTg/Bq01rLvKUChD\n", - "C6T9l+666y4AwLPPPptZk375l38Zn/3sZwHAGMUzZ87Y2OKc27t3r+XdU+hvQtDi0Gw2bW1Q6wZV\n", - "7L/73e9avUK2ZWFhIcN6AdssK/3oVOLFu45jUjNcsB0XFhasjzSgh58lSZLxv/LafBB4nWbZIDju\n", - "R12zPezfv9/GCts3SZLMONH1XaVnlIkG+u3iWX7yRH/z3o/VajW1/gP9ecl1Ud/VXlsOY6SuatLi\n", - "QqFgLzmNHGKD6CDhgOKg1Mpy8KpGkm6g2HFe1IOqq+ZtlvLSlWiaFL0u1LTSBJAKdqJGwnCTw9+e\n", - "P38+5aBO8MXI9hjkWKwO/BxI/Ds7O2u/V0o6fOl3u92MQ7JuOngPTSTJZ0xOTqY2WkC/3/gC4gKu\n", - "CsRehJ73gtF+COvumZI8rKysWH95m0rWo9frpVISsR7sLx2XnPSsx8zMjLUp+3BycjITAVcsFq09\n", - "uEE7evSomfZoTrty5Uqq34G+KYP1UAV2Ljy64eNcCTfMWg915lRdonBBbjab7tjOc2BnX5bL5czm\n", - "atAGIoys7Ha7qQ0r5xAPJUtLS/YC0ojJ0Myvmyz2jTqa837z8/P2IuN64plV1UxIExGAzEbgrbfe\n", - "cteWUTdQVO5mJBodzRWDNlGe2TrcSDWbTXfzzzmgCMfE2tqatT2jru+77z6LlmO7cRMF+M6+xPLy\n", - "sns4zdM0Yp9rUl2Fl8IkfPkvLy/b/NbycWx75kt9d4UBC4VCwfqN5nQ9xLAvX375ZTu4bmxsuJs0\n", - "VVrnvVlGrS+vY910k8t+27t3r208VQORz83baGn5VSeQbahtqnp0QH/usQw6JjnuuD5WKpVUgmV+\n", - "p+9/fhY6uTebTTPp8fCpavG6gQv7mm2Sh2jai4iIiIiIiIjYJd6VaS9JktcBrADYAtDu9Xr3Jkky\n", - "B+D/A3AdgNcBfLTX6y0Fv+sBaVVv7jTHx8ftBMVdZ6vVsut0VxwmYvWgitV6+hhmqgvBnXKv18s4\n", - "wWq+Ob0+PMkdPHjQduE8vbRaraHO3ESeojYRatWENHqtVrMyDMsHRo0T1v3MmTOpxJVAWseHp1Q9\n", - "3Su7E9KylUrFThv6G++k7OVdzHME1wSg4Qljamoq49y4ublpz+DppF6v27/JEIxqbur1elY3juOb\n", - "b77Zxiw/q1arKRMX0Jfs8PI98dlkXQY5ZIZje//+/TZ29NRM9oTtqM68CpaZp+xCoWDMMPHcc8+N\n", - "nAVgp+Bzp6amUqZ4oD+W2A4XLlxI5eAD+v3GEyXXlUqlYvfMUyBXcx9x7bXX2umfv1Wzj6rnEydO\n", - "nADQH7sMt9frqfD9p3/6pwBgTuo7wac//WkAwNe//nV85jOf2fHvQ6hej7Z1CI4xNW8PA5XIuY5d\n", - "unQpsxYN0twK10BlVkJTm2J6ejozl4FttpAMxttvv211JzunSeRpXtc8gPzs1KlT5jRP1k010tRc\n", - "yrVI8+p58NZ8tvnCwoI7Z8m4kM0Ctk2Xu0GokdfpdGztUL2scP57795Rc20CyLgjjLq+qFI622p8\n", - "fNx12eAz+F5bWloy5p/rXrFYxOnTp99TZ/MegA/0er07e73evd//7LcB/GWv1zsO4Gvf/39ERERE\n", - "RERExD86vFtG6jUA9/R6vUX57BSAn+r1em8nSbIfwNd7vd5Nwe96Gr4eIo+R4Hd6kqR9dWtrK6OU\n", - "XSwW3Z1s6JiWJIntvHkC89iHnSgWj+Iw6v12YmLCTt484Z46dSrDynjigEDaH4rtEfosAWlGQsNd\n", - "88rKk7xmQ2efqJDdqAKVeWHCKiypAoFA2u8nLw+e+lmNehLKg5cxfnx83MYEx6IKSvLUqQ6ZmuOL\n", - "p0r2ZaPRGIltVbAdkyRJ5WcE0n49bMc9e/ZknHQ9X5Px8XEbgyz79PS0/Zbii6+88oqb7y/MTq9O\n", - "/ZoRnvXkuFefFhVZzQuL9hz8B4GMpSo0hw7FhULBys+yFgoFYyoIZczZ5zovKQHx5JNPWvnV1+OX\n", - "f/mXAWwzpv/zf/7PkeowOztrLNAnP/lJAH1H+f/4H/8jAJ9xVh+jML/ZbsA+mpiYGHnOh3jggQeM\n", - "KVU2yZM9CKHrcV6+SWBbUoR+ajqWVH6Bc4/3q9VqNjYefPBBAMC3vvUte66WMy/cX1nyUJS0VCrZ\n", - "tWTQL1++bOu2ClVzDU+SxMYi1zZvHZ2cnMwEoCRJYmNV5+OoayTnDdne5eXllHh0CBWvDp3NAWTK\n", - "on2oczoUk56ZmUn5wQH9NYZrGa9bXFzMZVaHYZiz+bvdSL0KYBl9097/0+v1/t8kSa70er3Z73+f\n", - "ALjM/8vvekB/UudpN6k+UOhEPD09nTGxjaJcyvuNUu9Dhw7ZQqUvT40EAdJO8yzLIBMQBwLTKKjz\n", - "qW688qITFKH+0sTEhLVVqVSyMmpbhlFx4fdAegEYNVpQEepvTU5OGn2tuh/e4ptnwvQcwT3odWFa\n", - "AU1QnaelpdFunNiTk5PWRrxueXnZruNz3377bTM1UNX70qVLmQ3r2tqavfDU3MhNrs6PcJHWF/io\n", - "zsnEgw8+aGPmtddeA9B/+YftevfddxvVTUxPT9tvmVRX9dW81BCsx/z8vM2NUV+8o0bMNpvNkTdS\n", - "bF++BC9fvuxGZrFfOR8bjUaqLnw++1VfZJ45muPjnnvuAdA3AX70ox8FsO14/LnPfW6kOvzkT/6k\n", - "JQPmi/nnfu7nTI+KJkLd1GlbetptefCuZ58cOnTI5rem6vDWd69dvIMD56hmpAg1rWq1WirtDcvC\n", - "DYqHUSPdiGPHjpmyOMfs9PR0ZqM6Pj6eSjUCpNuea4i2hZZF3VuA7KYoXJv1/RleEz6HGPZeUR1E\n", - "lo9ruKqoh22n7xXeQ98/uiZw88eyDEuAPGoEK+9XKBQyUYC9Xs/mq268RiEQ+Pv3MmrvgV6vdz5J\n", - "kr0A/vL7bJQ+vKdSBxERERERERER/5jwrjZSvV7v/Pf/XkyS5PMA7gXwdpIk+3u93oUkSQ4AyB7z\n", - "sK1MnSRJiiEapkTN3WmhUHAdRcOQeQ2Z5K5TdV+4O9ZdMU+h58+ft92rJub1zGkhnTxIe4QnCDJR\n", - "8/PzVl+eEg4dOpTRRPEU2r220lOMR9n3er1cp1HtB4LP0HxKRL1et880hFXz8wF9swVPjGxzzSem\n", - "rBf7mH2kQQn8bHx8PGMiUiditsPhw4fNZMIyeWblqampVMJZoM9WhCHHg06xKhdAUAfHC4nX3F3h\n", - "qXLv3r0Z81Gn07HxtFsTCrCtkTQ2NmaZAcLk1IpqtZphIi5fvmzmFmWBvVMdf0MThZcIHEgHn4Nq\n", - "/gAAIABJREFUlgD9PuJcVtOOx07t1DQ1Pj5uY5HjwJurLAd/A/TrGJqS9DRO1Ot1M4nqGApV0aem\n", - "pswZ3ZMu8EDn9MOHDxsjpSYinszDZOLAtvL+q6++mumbYcEneUExFy9edJPQEsoqsD10XLEtvdyn\n", - "nqlOE8eHMiOnTp0ybS7KLqyurhozrAmhmYiZzuH1ej3D8qrVgLIFs7OzVg+at3Ve6njimnTvvX03\n", - "4ieffNLWBq4X1WrV6sv5ODk5mTLTh2NMEwVzPLfb7Ux76e+8vuGcVIVxWmI8tigsB5B+r5DNunLl\n", - "isuKhZYjTUZNJEmScTYfhmHWG2+/QEZaMz5wrpfLZWxubqLdbqc03jzs2tk8SZLxJEnq3//3BIAP\n", - "AXgewBcBfPz7l30cwGPe7/niLBaLro5NRERERERERMTVwNjYGObm5lCv14dupN4NI7UPwOe/f0Is\n", - "Afhsr9f7apIkTwF4NEmSX8f35Q+8H3PHy1MRd8WD2CgV/uPf0K5eKpUyDmXe/ZrNpm3e1CnNc3Qj\n", - "PCc+9bMJ/UPeeecdKx/DUM+ePZuxz1+6dCnjr3PmzBnbjbO+XkivxwBce+21rggiN67VatUNA1VR\n", - "NgBu9vlisZgRcdzc3Mx1tGff1Ov1lKJsWC7tJ57seMryQms3NjYyJyMVjyM0lFxD0/lb2s01XJ3Q\n", - "cG72mzpuq/M1fSK0bmxnsouvvPKK2/YE61soFKw8O1X3BtI+JfyrGdmBfjZ5jq08P6tqtWrlV2Yj\n", - "FEsEtv102OZevrbNzc0MY3L06FHrD/pr9Xq9jFp8+O/dotfrWV28kH1lT/g8jt1Op2Pfa54xZTGB\n", - "4ZkSyIrcfvvt5i81qnwA876FvmtAv1+4BupY01ybIdQHRsc0kGap2G/eOBkfH8+Uv1qtpoQ9eQ9+\n", - "xvabn583tkDnaCjg2+127TfKtvHfynR4QpXKRBEco2SNtc/V75VrHP3Yjhw5YuOc87ZWq9naoEE0\n", - "LMuTTz4JoP8+8OYPn8f+PX36NK655hoA/TntvQP4ztC5SYFQ9r8qeHNsTE9PZ/IleoLGlUrFzYPH\n", - "9x3Zp9nZWVuzdA3musj28xza1RFcLSOcU+xDDepR3+W8vQPX97GxMesTluXSpUvGduuc55jIk0YJ\n", - "cdVSxOzfv999eXlRcaq140VhDYtwCiPDjh49ags2v5udnXVTDOQ5JedhbGzMfqMLT6jgWi6XXafC\n", - "0MlZlajZ6aurq6loCCC7ufJSxPD3XIgvXryYKYPqfXAy0+EyhOd8PyhyJkToHFwul62edNZmItNh\n", - "KJfL1r6cVHnRoYPABa1UKllZQvXcYej1eraxYDt66S2A7TE97DARQueKLpChc2ipVEol9OQz8pw8\n", - "+dL8sR/7MdPMYTsOck6mng7HyfLyso01tmmv18skOi0Wi+6miWDdisXiDyxqL8T4+HjGGVjnHNFq\n", - "tczsyrotLi5ae/Eltrq6an2T186/8Ru/gZ//+Z8HAPyrf/WvAAx3qmXk2NGjR/HHf/zHqe/2799v\n", - "LwLPyZzrim5yWY9er2dl5mfr6+tWN03cTrCt3v/+99t6rol9PfNi6PCsSWZ1roYm5UHR0YSu8xzn\n", - "v/IrvwKgn2qJpmzP4foXfuEXAAB//ud/bv2rqU7Cd4u+kxRhmWdmZjKHJ89R3QuAOnLkiG2eSqWS\n", - "bVrYvnv37rX2CjeswLZrwcbGhrW/FzDAsaHuDXkHPn03eO9HzvXDhw/bRobXPfvss1YW9lGhUMi4\n", - "h8zMzNh1Ow2k8cbJIP0q1lcPQCwr5/LKygpefPHFmLQ4IiIiIiIiIuK9wFVNWqzObYTqPunuOWSd\n", - "1DmPUIqd3ynzpWY176TE79///vcD6O/8X375ZSsD0D/10GmRJ4PFxUVjEbxQTT0BjSJr4DmRjyrZ\n", - "oLnlgLQKLtDfXYc7/EqlYqc5MgOTk5MZBqJarVr5RzU5sd/q9XrmZK6MCtut3W67rI+qWwP9ccIT\n", - "Mh2VSZ2H4JggzbyxsWF1U6Vx/pt0r56O1TRK8NQ2NzdnbaQ5+W6//fZU2Z9//nk3UGEUqFmVp6jJ\n", - "ycmMvICe7tj3tVotE0RQrVbNIVaduXlK/OAHPwig3x9kb8laemOoVquZSYJh8Mpy8r7lcnnHDGEe\n", - "NJiEwSu7geqDeQ7t+hlZHY4n1Q9SFfjQDKFznuP4xIkTNo6+8Y1v7KjMGpTCspRKJbufnspDNntt\n", - "bS2j0+StL5pTj99760uSJMZw0y1AzXgsn8pkaEYEjhVdl/PYE2XJhjnJA/05yjbguNd1huajAwcO\n", - "pPI0Av22oplHncM5B7w8fBpgErovKCMVthmQtrB4OnuelUGTfo+yNg9j94jJyclUYmrWIxwrKomS\n", - "lyB7ZmbG2m1U5p0M1+TkpL3/uY4qy0TLycbGRoZRq1QqFmjDvlSLDv9Wq9WMM/zevXvxzjvvREYq\n", - "IiIiIiIiIuK9wFVjpK7GcyMiIiIiIiIidor3UpBz1wiVtIdtrEZx+p6amjJacTfpQHaayDgPk5OT\n", - "FoFCh8FRFYSBbbOmOp3v5PdESAOrM52nmq1OhKG2lJbHU0Vn+QY57oZ1m5qaMiduTV2hGjFEmIRS\n", - "ozrUjEvql/cdlFA6dM73dLM87N+/P2Ma8BwZPcdnLYvS997YpukidJ5X7Nmzx0wEOjZCk8ggZ95B\n", - "17OsYT1YTq0rzapJklhZRp17w9qcz2WKHS8YRO+zsbGxa9PeTjDqOvGDXE9GxaguAD+I5wBImeZD\n", - "M8kwlW29l85/3jccR6rX5T1DP+NYVidxLzIsfA8VCv8/e+/SY9mRXY3t+37kuzLrwSoWu5rsbrTU\n", - "bGnQgiYaGEJPDPiDPbM9+wB75oHH9sTQ0L/AQxseffA3MjwSLDVktCFIsNSAukWqKYqkim9WsYqs\n", - "ysrXfXuQXJHr7rMiTtybWUy2EGtSWeeeR7xOnIi11967WYlFyL/zeT5t1WQyqcy3rVarEvF7MplU\n", - "pB3tdrviUcnif563YbZSY/3b6v9Vseq70Gq1Kml2VN1i9c15nro2JkqvXZ8kfy0oKCgoKCgoKIji\n", - "2hgps/MVIXbmLNKEGI3jUeS4nR8eHlbcvFXckhhyVsutViuwMgCL6/D8n//850EkB/HtKowS6otr\n", - "1LXdbncpzxiQErKrmDzKlTe20seuCcwGhxfgXZt3y2dAiKliqSjHgpgw0o+Jfr9fCanR7XbDteh/\n", - "jvvF56WYKN4p++fmMjDcnnwPH3OLc4pBEDydTiv9+vTpU+k0ocqOiMxvv/125XcVEJd3dCg3JwcH\n", - "sDseDAZBsIvfWQSsWDf0Qey9UGymgmIQcpESlvM7oAS+KfCYXTWn3TrwjImZZnRzw3fU7ehz5ko1\n", - "1yCThS8z52fD+bGQLmaakVJzDsbGfD7P6jtmfji3pS+DYpoUixaLgaYYrlh5fLlSuAwbpUIP5Vxj\n", - "dl535Wi1Litbxwqp8czH/PuqLBg8xnLnmhiubSGFQeiDAY7H46UM8GarZWvGRxiT+unp6ZV4CbFp\n", - "CWXmlxkdgEXCw4cPQ8C2dZ6PeqSuvXXrVigDFp11HhtsOgPUyxOjOP257IWFMvPCUi304Kny6NEj\n", - "uWjyg5kDSvLz2VPFTJt+Xn311RBEj+GfMZ/Pk+MMk0RdX7K5qs77C8ACTnn/oF9ff/11GVBQfax9\n", - "v02n07DQQmwuDu6Xm1kAfcRjgz258M7hA8QLKbQLjw0fiyYGTsKtFiOYJ9ZBqm/UpJo70e7s7IR3\n", - "cdU4OLlQC71Y+Vb9QK7zQVGLTr94SZlh/LUcZyh1DNfg/eX3mNPH+GerRY76MPNCSn3M8e7xOOTy\n", - "+TZQ5kN13iq/p5Br7ostSlJAnVVAVrP6/o6do87jJM3K3KfKGtu8enB911n8FdNeQUFBQUFBQcGa\n", - "uDZGColo/apvNBpVdnC3bt2qiJwXi0XY3WIFeXh4GBiDq4pVo2j5GINjdhGThWPzrIOc8g+Hw9BW\n", - "OUyUhxIPM03tBeiNRiO0P2IjsUlJUbtKQI1I2WZVtnFra6uys1ksFoF14lg/PknqbDarMFwoZ6zu\n", - "bKpUOxDUSUWpV0AMmtgzWYSKMgOqz3Gs0+lU0guZaZG2Ys/A1v3sZz8zM51yiAEROcf+Qvs0m83K\n", - "Lvzo6Ci8j2DWGPjtxo0bgWXj2Gsp9pn7XJ23aq7O2A7dswTMhPI7kNqpYp56+vRpiFuDschm58sI\n", - "0VNMZ13096tCLtOUMjkyk5CqEwvM1TzmGQlO84Lzu91uOMZ9qeqB35n9UkJwtDM7nXA8N/6Xy6nG\n", - "a8y8nmK2cpHL+CjzVx1UeimVhogdklYd8zifx7V3Poo9r+5Zisn1/ZTT7oWRKigoKCgoKChYE9cq\n", - "Ns+Nrgp3c7Nl8R1yD4EFmEwmyaSL6+zUcoXEOee9+eabYZULhmA8HicjwaZwenq61DY54JU3CzH9\n", - "74vFIjAbHMnY69fMLiLP8nkAMwdgOVBmJW5MCdwZrVYrjAXFEmFMMKPCuxSvz1FMSKvVkm7KHsxS\n", - "8DhQmgy/k+J3IKXD+uqrr7J3pJ5ZYWeCv//7vzczsx/96Ef27rvvmpl+LxQjBXCbIJr5u+++GyIC\n", - "4x1UOrutra1KmAR2UeddIH7n/kW5mLWMhW2IIfabaodUWAt1Hx7PnDDbbHm8q/eQWcrUfKKer3bt\n", - "LxNKY+jHNjMqimnieykBeux8fz92IuH/m120R7fblWJjzz60Wq0kY8R1833J9eDrUqL5WJ3wDKUF\n", - "uyqkxm9dOBo/Bnlso83Z0SuFWN1S9U0xZnVtVTdHsFUmF9e2kMKLB3MFBsx0OpUfZIAHLUK9w5Rw\n", - "79690HFojLOzs2B+Sk0yMXG1/7jlLv4UptNpqO/9+/fN7Pwj4s2Rjx8/zurEVDJUs3OBMrCqqHYw\n", - "GMiFAD5knBmb+y4FnwBWUfoqWebm5mbluPK849Q6eBanXsAiiF9u5fGFReJsNgv9gPtxHSGgPjs7\n", - "C/dOLYp5IaUmJzgqqJQXk8mkYr6FedzDO0OosYQUJb5OABa7t27dSi7W+d4+FYZZVUB/eHhYGUNK\n", - "RLqxsREWUFw+/M3PSi1e1wH6OragUR88HOO2R10wng4ODpbGI4Bn5G7aUqJg9RGp88bKNYNcxpMv\n", - "ZdrLfV7M/KIWUAB7PaMflKccH1OCdtwHc8d8Pq/Eeot5TAJqUaQWdfyvX9hcFqoP2VPSz0+xMYnr\n", - "8a7wnKrm2RRy31k1tvlYrmC8zvlnnTmkmPYKCgoKCgoKCtbEtTFSSDCMFS2v7j2lPxgMwu+cUBAR\n", - "j+F2rZKkxlbFnh1RO/tOpxOei9XuzZs3w+46J1km4+HDh8EMxiJdPBvHcilFZu7AcG1vb4dVdkxo\n", - "7aFW4Jubm5WYTGYXK3g2t6SE8RyLRcU6qoslpMplpsX1e3t7gQ0BWxeLD+XFqAymdr0onccJxtDp\n", - "6Wk4T40jRir0xKp0dWznhDEP0zebwVDmX//618H8yewigPcM49Xs4j3jcY9YYP1+X5o9fb++ePFC\n", - "jkswZHi3jo+Pg3Cb74ExhHJtbGyslcXAQ7FKuVCmKe5L9Mfnn38e3lMO1eGZktzns3kJ7Xd4eBju\n", - "g/vW3S/lop67U1dsDDMDdeY5P/ZjcZP8e7tYLEL7pkyz0+m0whzF2Arch8uMY5hLZrNZYEVxXxUW\n", - "RNWdheNKElDnxr8quC35OcrUueq7hHbh8qVE4TGmLuebp8zqsTHkz1vHfLgKCiNVUFBQUFBQULAm\n", - "ro2Rgv4AK0LsnjgSNVaz+/v74TzsPnZ2dkIuOzAiL168CLsDsDXPnj0Lq1PsBieTydI1MaicSB9+\n", - "+GGINv2nf/qnZnauo/rzP//z2jqfnZ1VooDziniVwKMe2OE2m82gS0m54jNWWakrDZA61+fO4tAE\n", - "jFT0Z5zPfcish9/F8P1xn42NjbCL5HJ6FsBMh2/AMaUBYHZURf1W8L+z5g5jUWmfRqNRZcyA1TXT\n", - "u1iUvdvthjrx+/H7v//7Zmb2y1/+MlpeDuMBJop1UxgPzWZz6R02O2dCFBviGUwOIsqR2lPvA/p0\n", - "c3PzUu8NwGODI83nilb9DllpKW/evBneUw7jkFP+WD5H9D+PxXWZNX/vy17LGh8OB+BZKm4/Pl8J\n", - "89W1Xl+nMJlMpKZJMRy+/RaLRXh/eG5QuQC9A08sbEGKbeP/c31XDarKUGX1keDrxNdKl+aZZEau\n", - "Ni/mRKO+CbnjUjkx5QYCXQfXmrSYqURMruPxuNLpSLFithz76NNPPzWzi06cTCZhElQf/JQQuNls\n", - "Jj2VGPi4wAMqtRiLIbcTsRh69uxZZWJmYSSLIPGy15keYyY9PA9gbyKesM2WTbGpcpldmIbQfltb\n", - "W6Ht1AKEI2njA+ufb2b24x//2MzM3nnnnUqcITYBcvthsckLBR+FvdlshnGpxJ4suMRLuupHfT6f\n", - "BzMVTHDD4bDyETw9PZVmUD9h8OSlTJpcPowPtYAEZrNZZUJT9+UyYQx99dVXlXpwGg2+L8bBvXv3\n", - "zOy8bVOx0dhL7ao91XIjkdctsnyssC+//NJ+8pOfmJlO1eNjoDFUrDezqpeVOq/uA8n1yTWJ1N0L\n", - "91AmGG/uUSYZPs6LKxWfKQez2azihMEeelwW/9zRaCT7xNeNy8dIeSazyN1fe9kPfa7gOtcbj8/H\n", - "tzL17sUWUX6c85jFOB4Oh9nfVe/1OplMpIl91fbMdcIwK6a9goKCgoKCgoK1ca2MFP/LYQuwQ+Zd\n", - "ghcZxiKHr7o7xcp6c3Nz5WjkdStmv8OIrdDBokC8uLm5GcrF7uMwp6Ctms3mUmJnADt9ro9aXadE\n", - "jaPRSO6Qvasp7zoBzmvFv3mmj5kNvq9ns3q9nqSOmYkyW44Zlqoj3xvY3NysMJbz+TxpjgS4vqvS\n", - "7/P5PNDjqaTJ4/G4shtXO3klcmaGBc96+vSpvfXWW2Z2bqozWw4VgUjyx8fHUjAOcFnA3nFoBVVf\n", - "lBFicjbxg3G8c+eOvffee9H78Phbx+SxagTnXKgIztyWnoniOYLfs1w2QYmI1XkKOSb9y8Yv8vOA\n", - "am82f6l5hb8VPjRBbjJiNs9x5HLOxQegjOiPOhOv6o/Uecqsxoixe7lx5NTz2OnH7LwNchwKYt8I\n", - "zJVoIxa0K5Msvkntdls6J/lrV7HyqFANypkoJnTn5/I1q4z7wkgVFBQUFBQUFKyJa41srlaLzWYz\n", - "uG3j31arFfQcn3322UrPqBO8sfaGg26amd2+fTvoVlJBQmPAThSr3n6/H3QfnCcQO3Oczzn04Jq+\n", - "ublpb775ppldrNbff//9yjPb7XbYJcTqrVbrPqxBu92Weh/s4HyeKUaj0ahc+4Mf/KBSXmY60A+s\n", - "R0hF+jar6qXU7vTmzZuSaUQbctgCVRf0jdJmYZyMRqOVNRsMsIrof1UOFi+ntDQM9FW/3w9tyG2O\n", - "HRyez8/gZ6Wew+MB5cbYrruW74Hz0C+3bt1KhroA1mWUVr0ul8FSu1jOAqDu6xk/7i8+T4mDUwE5\n", - "+Ty1y/bXqrky9n7nMDTqucq6EBNk8/P439TzUvAOS5PJZIlRMTtvAx+SIHZffx4z00BsXvA6rHV1\n", - "aLlQlppVn8mOYf5+rHcGut1uJXyQYpqGw+FSAG2z5TyXl2GNVR2Vo0LdNXW4toVUjKpk4SnEyZub\n", - "m6GT8LFRph6YxsyWB4BaBN2+fdvMLibps7OzIOzGfbrdbjCxYUAsFhepU7C4m8/ncjLEMSwI/+RP\n", - "/iS8xH/3d39nZucLQ9QXH6Ber1dJn7G9vW0//OEPl57BE6ny0PLn5kCZJtR9UiaFyWRSufbRo0dB\n", - "SMzOA1gUoA34o8OpBnydNjY2wqKazQG+H77//e/LhRTKDaH36emp/NioMeqFveualwD0MUcY9s84\n", - "ODgIcb1YhJ+a7DGeub3xLjDdz4tnf4z7I/UxNrt4X3lhiHHJC1e0Fd4FJeRHfKo6rBNDKpbFIIV1\n", - "UlKgPzFX8Xks8Ee7YtGuTLxKNKsWIDEzjSqfWjTlmDVy5xJl9ufrvTlPlclflxJur/MB9PdbZVx4\n", - "cyV//FNzSKxdPPyieF0Ta2wxkWPGVddOJpNKLDi12VFeu8PhMLz3qW95nZeicpBJyU0YlxXxKxTT\n", - "XkFBQUFBQUHBmrhW0x4zKrwTAqsAsxqbDTgSut/RcowhrJBTAjOzCxZoOBwGJorDKWCXyKJjPA8r\n", - "6pOTk4rZ5eDgINwbzADXjV3AvSlO7UgPDw8rZs2Tk5PKNTHBcp2w0OfLi5kD0MYpYTT3KzCfzyti\n", - "84ODg0pUbe5XFhF6M0+KsmWwgFzFZEnFqqljmlIuwnVQlDnYol6vV2H8WBjL4z61g8bY5bpx//r8\n", - "gdPpNIxt/ywG9xHat9VqBeYVjNTx8bHdvXvXzC4YKc5RhnuoiOhHR0fhuGIsUmLdOtSxDnUCVQ8+\n", - "hyOMe3Z0f38/zGm8k1bPUHkL1XNxHjvr+LFTx2aoeE5156WgHFqUeY5NNykmR92Px8TLYBhWQWp8\n", - "ctwsZd6MhX7wx9YRm6eQ42gQK1ej0ahIBWJzkWfW2TrETJQPsRIrC5KkY95hWUXMDB2rh3JoUN+9\n", - "nDyHhZEqKCgoKCgoKFgT16qRMlveNZkti/2gQTo7OwurQg7i5XNx5bpMDgaDigZjNBot5SQDsPJG\n", - "GIJOpxOuxY6+3W6HMrNOywvL//qv/3qJZTOL6xK89ok1V971NAepnR7vWBXLwrsK1Fnpznhn4K9t\n", - "NpuV8AJ8D/RlDGhLlJ2vBcPBu3z019tvvx0i4IMRY6ZAue9yW3jbPwuoeRe1qssst7O/ZjQaVQTK\n", - "z58/D3o9hMFQ/c+Ccbw/29vbQSfGz8K7x+J1ZsDwr9dh8Q4NTAhrBxlgp1jTgL5m0a/aVfoMB+wA\n", - "kSswXgd1rIiCj3avWKCnT59WjrGwHOxTp9MJf6tAmww8jxksFQE9hVXHrJlmKVL6Gr/z52PM6KTa\n", - "WwXrrMOq7OIq8BqvmNBfaalS7Ili766LdVN14vkd4HAKXG41blPvugLmp1arFbKKfPjhh+H3XD1U\n", - "Thsq60KObu5aTXsMXlh5c8vZ2VnoHI6HgckLH5iTk5MlIa7Z+QSOa/FhSUU4j0EJ4vDh7na7lWTE\n", - "p6enYdLHZHd6epqk6oHhcBgWAij7ixcv5EJvHeSIDPll4MmcqVwcA5T3D5cf8Gl8+LzT01PplQYh\n", - "M65hkxP+ZpMTx99KxQdTC/hUNNwYFa8+CjmILaTZVGN2PtZyXmiV4DdGTWP84hm5XnbsmAHTrPI+\n", - "w7lmFw4X7JWpYgGlYpeNx2NpcrxKk4dHzrtiVv0QxD6qHmdnZxWzNUdmRp/zO6VMScrBRJnO/HUx\n", - "1HlM5ZrW1XW+PdiEzs/17acWUny/Oi/FqwRHRa9b+PhFf0xu4hdmvAi7TD2UeSvWr5ib67wJU+lb\n", - "uN/UOMLf+G5PJpPwTebnKUE5solwfbwpm+fyVTcJ647rYtorKCgoKCgoKFgT3xlGipESwvEKGDs4\n", - "/Ntutytiv1gMGrWiRqTsN954w8zOI2arWE0ezLao2DfYjff7fXv33XfNTJvGeEeCe+K8OjYCDMz+\n", - "/n4ogxLxxtgnlbMNz+Q2AsMA84xi93j3i2u3t7cDM8f388yG2UVMKZjims2mdA0HO+Hd6c3MXn31\n", - "VTMze/jwYaXter3eUj49My0sZ4aLQxNgp6SElrkmIG4DlUMPwJjY2dmpCPPVeWonXMfAQiDd6/WC\n", - "2ZB3aGpXqZi63FhrzOSaLUeOZnOeNw9Pp9OsZK8vE8r8rnb3fIzLz0mZzc7bHHMFx+RKMcR8b7wX\n", - "KtaaYgH4finGbB3niRSD5M/1z/NotVqyzACzx4o9yR0T6zJXahzG4mHlsB18LZ+vWPI6qPv4svB5\n", - "/FvKxMbXKgbWs108d7CFCN8nzDWxsntWPtZHXh7E7QYoluoyISA8CiNVUFBQUFBQULAmvpOM1LpY\n", - "Jc8eGAtonzhyOFbCsSjquBbggIeKAcNq/MmTJ8ldOzMIOavgRqMRRKb7+/tmdi46BXOhcncxoOvi\n", - "MoExYXaH9U5oY1zry2N2znBAZMzu9EpXpQTK2LGAkdrd3a2ETjBLu8ryfTnXGdeHr1W7GMUqqABw\n", - "3FZ1/eZDDphVo8UzE8Zs2yuvvGJmyznxfFlUvikuH4T3CO7p6wlwsDy0Jcp5dHRUYUBarVYyArna\n", - "wSuWlfPw4RkYa4eHh5VxPBwOo5HvPVLi3Tphb4q1YfYEv3Mfol8Hg0FoS3bfxr1VqAmA24pZVNR9\n", - "XWcHRiyMh7+3cpDg85R4nP+fcnZhYC5i1kaxBVcd+ToXKe1Mnc5JsUFKA5f7vFXO4WfGwPov/55y\n", - "P7BmEXMk5pjPPvtsSbcEeL2xsiT5v1N1UG3JZfX3Sr0r646H3+mFFD64MPesEpUWZiZ06rNnz+wv\n", - "//Ivl44p3Lx50/7dv/t3ZnYRfXk2m8mPG/Dpp5/W3pexymSIRVCdCRIDnhdXMAvwQiplZtra2qp4\n", - "CXHqFP+R4PPYIwzY3d0NbQO88cYbFXH0YDCoJGdutVrhhVBmMr6vvx+3Lybrs7Oz0EYo53w+ryyg\n", - "1IeAoZIcrwrV9s+fP7cHDx6Y2cVCSsXcYqj3Qi2kMCa47Dzxoe737983M7P33nuvYi7c3t6uLKSU\n", - "CTUXvGDlyOt+cj05OQmi1TqoflcmWTa/qvhGHiyMBnhRxLHXkCA6ZaY1W45HpZ7H90VZzfJjmilP\n", - "3ZhI25vsFDg9Ct6ZWFwktZBSH1Kc5xdUfJ5KC6WwTqy32H1QFv+R5jmJ66iE9EDKu48F7bkLxnUW\n", - "AiomV51J0SeWN7sYgyAgdnZ27A//8A/N7OL79PTp0zDfIMacmVUcgtRzX3311eAwBtN4nXlOLdbr\n", - "FrQeOXNXMe0VFBQUFBQUFKyJ32lGKmVKSKHRaFQYDrM8xujNN98M5/3VX/1VuA7MC1a4JycnYdWe\n", - "y0S9TKhVtXKZVuYsH1vI7ML0Y3bBdikTC8fG8VCxo95///0gyAVu375dYa7YdMcMDu4qJhMBAAAg\n", - "AElEQVT5zjvvhOf6+GK8m+QdFe7J4wpmJdxjY2OjIg42s0qEaYVWqyXZJs73Z3a+K1Ju/l6c2Wq1\n", - "ss1BAMq+tbUV6oRx0O/3KywAQ/UXzt/b26uYX3m3BwZrf38/nKfKp5w1ONaXGkd1IUVWjVuzikTA\n", - "bHkXWxf3CfFvWCSO67nuaC/lnMDPVbHAVi0zQzHX/pqYWc+b9pilYnmAn4tiIm0F9QzFAnms4xKf\n", - "WxYgxuj58qnwMLHzVmWk6kzUfB6banEsNZ/wfXPL8stf/jL6u5LO+PALZhffmufPn1eSzceSDqcE\n", - "91y+VBul3j2PwkgVFBQUFBQUFKyJ32lGSgG7e46a7MGrUOwCe72eFDSDpbh3756Zmf3DP/yDDIyJ\n", - "XTHvttbJTP+ywGwR2oj1K2plj90p/uV6Y8cc28VgR4D2Yx0W9B+s08GuYzQahV0HWJ633367cv9W\n", - "qyUj2SNwJ8rHZePoz16D0m63Kwwdh4AA+P98bx/cEteb6fxgDLAJvItKsUn8fL/zqgvF8N5775mZ\n", - "2SuvvFJpP6WlYhYs5UgRqxfGHfrjzp07lfeMtVRgQobDYRgzzJIopozHdkp/w/2BcqvAjrxTX1Vv\n", - "pPqN83DiPBaJ4xjad3d3N7DYeFd5V8zsE8q8SpYDLrfZRX0572edeN33Q6PRWMpiYLbMSKVEv8wW\n", - "1YXayGEaFOpYBRWdvC7PphLSKzG8Oo9/V2XA//G3CgcRK5dHnUs//uY2quv/VH/hGFtimKlV1/g8\n", - "nSofrr+PqifKlnJoqGOalPa2Dv/mFlJKtAjwAEXH4QPe6/Uq8Yhms1n4HdfGooun4rnUwaeDiZkq\n", - "VqXvY/CRxXnQcvoOTzVzGSG039zcTH5gldlDCWhRpuPj48qCYzQaVQb/97//ffvNb35TuY/yJgS4\n", - "3fwz1EszGAwqomq+B5vfFFXvP9aTyUR6KUI8jvQHX375pTR1YGypyYSP+Y+cqhsnFAbFzu8MFjvs\n", - "PYdFFYvcMV6+/vrryuR1eHgYhOB4b5QnqUrZwyYbhh9rPllq6oPB9VMTceqjn5rAUx5s/Hu73Q7v\n", - "nPpQQZj761//OhzjDYiK9Kw+GD7mmkooqz6uqXb08GOqLtJ3ykTF5r6UqUu16VWZ6fj9Td2TF1ne\n", - "I40Xk0pEDijzZsxElbqGn51rwlLjjuMwKe9fIDebhWpLfoafKxeLRUVqw04EyoOQr/UyCH6GQt0C\n", - "aS3B/spXFBQUFBQUFBQUmNnvCCO1vb0ddmOgC2OiOM8IdTqdEPUbu93T09PgRpnKw2Z2wVip8AJY\n", - "oe/v79dGaY1d2+12Q3RvPOvRo0eS+UL5YZYyu6gvu/EDygzC9wFisTtUHq/ULhYYDofS9d7vdnin\n", - "DBPr8+fPl9zFAew6wMopNgrXeygXdsXqecr5+Pi4wgLOZjPJtimRtBqjKXMvmLputysZBNyPTZSA\n", - "ElJzvkGP0WgUGDDg5OQkuOdD3H9wcBDGFP7tdruVsAuj0UiOc5QV4/nRo0ehnTnZtN/tct3YNOb7\n", - "rd1ur2VCV2J+gHfvPhxInbs1H1PZAvh3/7zf/va3lbLgmmazWTE9q919r9erMNo8ZlNmXz6mGHYV\n", - "G4l/U6Jvz4Qwc8HsDtfTg++bem6KTaljmoDYOX4un81mYeyo8AE8R6SE9Fw3P17UmPL/XzXW0qpm\n", - "Uu6v1HvG5cCcuVjkRUpXuSNVrLIYY5qKgK7GTkqQX8fexVAYqYKCgoKCgoKCNfE7wUj1+/3AwoC1\n", - "YRdhDqDoV+gsZFXanBSazWYycB6eG2O1lCsxmDWIeReLRdj9gYkZDAaSkfJB0HhlrVgefi7vSNUu\n", - "AbsCtKliRcyq9uXxeCx3u2rn6Hf/s9ks1B06ncFgUNlRDwaDEBKBmT//3N3dXdkXGBOsMVG7DJ/b\n", - "bTabJYPpMXLchpvN5lLgRNzPB/3s9/uVIJnj8VgyUYASSONfxeSMRqPwPjBz5cfW7u5ueAdwP6UD\n", - "jAm+0a8qij73S6r9WAyrBOHrINfNW/UXkBK3qnHCbKXSXymWVAU+VGJZL2L35atzhcd5eF5d7r7U\n", - "ferOVwyxYkWU/suzT3zey9RSqesx77BWyj9Pab5i8GOM5walkVJCdTU+VXlic7TSCa7CzJjFvztm\n", - "y98VLp//ruQ6G8Tg20ONNYa67ypj5ju9kELljo+PKyagg4ODIBiHMPbs7KzSIavEmoL49oc//KGZ\n", - "nccOeuutt8zsYnCw0BaINTgWf1gUzWaz8LGEuK7RuIiNwyLwlChQfUhxD6Z72bTHiyI/EXe73crH\n", - "dz6fL5kzUBZ/b7UoOz09rZhOYl4n/kPFdXvttdfMzOyjjz4K3ngACw+Bg4ODihkr5lGlYmh5cTiX\n", - "zydI9lBtnlr4YEPw4sWLyj35I8a/YSHIC2XfD3w+C8L9R7rVaoUxyOmSMFZx31ikdi/qn06noY3Q\n", - "l5yMmJ+L8nP50FapJNgcQRxjcjabSYE/93WK8gdik7Xqw9Sky/3hP+zcNw8ePDAznVRbtdE6UMme\n", - "UQaex7hNvYA6Nxq4ijCe+7FT1/DiVC1A6kTpVyVCT8HPmbw44Q2YlwKocaxiS/nFTu4CYNW+8/XJ\n", - "QU6MpU6nE37H/D0ajZLOUrzI9s4VdRuCmGNJDi47Xoppr6CgoKCgoKBgTVw7IwXWhnOyYQWK1ex4\n", - "PA47VbBPg8FgiYUxW46/oxgY7K7n87mkrvEMsBofffRRZfWcu0Pknbxa7eJZ29vbYcfCkaaxgsd9\n", - "vv76a/lsmMbAcLRarWRsn06nU2FjZrNZpYwqz5iKq6Ncq82qkb4nk4kM38AJaT3YjIf2Urst3EOZ\n", - "9TiaOO+e1H3QlooVUXVjtlNFf0+ZhXAetx/aZzKZLJmzAIxLDpOgWEOAd8qeqeEwCQhlofD111/L\n", - "fsNz1ZjEs9rtdvgdJr2NjY1K+3pWyUyLXPf29gJjxjv6uthtyoRRFyMI9/bxwWKOI3gu95dPAM5l\n", - "ffjwoZktm7KZZcN5uAe3fS7Tw2Xx4yQmslexz1S4gjqxeuy3XHZJsTbqeo7+zc/KNQGlGB2+X6q+\n", - "aFsVsiOWx06ZAFNmwboyMK4ipyDDf0+m02lybgN4jLETUIq55Pv4hNyrIMUGAzEWUJ1Xh8JIFRQU\n", - "FBQUFBSsiWtlpFh4Bkai1+tVtBbs+g2cnp7W5tgCFCOhtBTYKf/jP/6jmV1uZb+1tRV24eo+OHZ6\n", - "ehqYEDArw+EwsAA41mg0QvlQj16vF9qIhcq4Rj13a2tL5hlk7YTZcpBJFjymGCnenfi+2draqujV\n", - "er1eUsOGHcne3l6yLRH00efji0HtslkMr8S3vFNRZVYBOXG/27dvm9ky8wN2iRkJ1uEpRgp9o8IZ\n", - "4Hx2rsC/XFfWNngWha/Fb0dHR0lWJCUYZkYKUGzffD6vnMfXpoTlHKzVLB3WgJ+XgpobVD0Vg8Tv\n", - "jNITesZsPB5XtCDcD1wmxban6sd5y9TOOxVgMSc8hD/mHTNiYmc/TupYI3UtwAJ0Pj/X1V397c+r\n", - "Kx9rpVKi7pQYPgdXoftKtWUMSgdVl1PSQ+WWBGJhLYBVv8NqjKl71913Fa3ZtS2kms2m9Xq9SpqK\n", - "09PTZITcq4L35FosFtkRw1NCO5hdVN0YTN37Dx5PSmwawzXwYHv+/HnSG0t5TyivDrUYYih6VJkP\n", - "UgLqFy9eVIS7SvCtoJwIGMosiDJPp1Mp9lTicbQXv/R8H9zXv5ztdjv8riaW1Edd1WsymQTTLlPi\n", - "aD/Ul6OOA3UUO+4xnU4r9RiNRpV2iaVlUR/adSf62WwW3kPe9HjTWGzS5jHrY/twjKK6CdG/17km\n", - "QOWAosra7XYrTgF1805dvDNfN+VcoUwnLAQG6kTuPIekzEwpMx6b3bgNUuYetZnha1GPXJNn7gIu\n", - "FzyvKC8xBRXDSS3guF9zvoOxBVJOzCi1wIuZdlMLKN4Y4J7Km1TF/UqZ4vga9S0C1LXcLura1P1y\n", - "UEx7BQUFBQUFBQVr4toYKezEFLvjV5TdbndJjG6WTykOh8OKmYR3W0okWnc/mM4QioHj9OA+z549\n", - "S+40wXpsbm4GAT2XAfXl+E5gAbDi7/V64T54VizXn0okiXZRyXd5J6LYJ6azwZ4wM+TDVRwdHVV2\n", - "QcqE0el0lkwmqToBqaTJyq2dr+EdiYoOj2tYcI3o3xDDK8cGs4udNIe68G0wmUySZhRmx9C+aNNG\n", - "o1Fpm8lkIqOsA3XjHGXg91IxFygXx4XyDEi32802v/txsFgsKu0xGo1kOALeQXqTA7OFDMXkpGLZ\n", - "KCjhtsqHB3D+SoCZCG+mN7sw7Y/H41A+hH158uRJpYwxd3lfXy4zv2/KZJPj6h4z8cZYqdgxFWqF\n", - "6+AZCzaXpvor14y3DurM3P5bFRO2qzhS/FvKrKmYsFTMKDUXqWtjcdMAHhucqQDwmQH4+pRjSMyJ\n", - "KSWTARSLphwQlFRFHctBYaQKCgoKCgoKCtbEtTFS/X5/yR045ZbLub2wE55Op3LXh92aj9RtpsWj\n", - "uUwUcHJyEq5Fjjyzqpty3U4cO3ne0TO8PqzdbodngMHqdruBfUhl6479zs9CnTzDhefgmNphQBsF\n", - "PQ/vCNAOzWazwp6wfkllB2emxusbOOBhXRRmXJtifFS0cw4lwc/wfdbpdEJ7gZEwu2gXMEkxga+K\n", - "Xo1nKH2SdwKIQeVGU+NAaRrYpdtfM5vNkuOJGRaEN+E8gl5ErrCxsVFh1E5PT5fCfKAsPBa91k+9\n", - "3zGBstpxe7aw1+uFvlbl5zkJ17KGB/2Z0qpwm2Pczefz8B5ytoXcgIw5u2ylfVFMSAyqTn4e47EY\n", - "Y8/4fF92dnzx166qqX0ZzFSK+eF//XzGY5LZoJTmKlek78uz7rVKqM56Qu+sw3kw8S6YVa0Bqt04\n", - "JMqqfVMX6kC9HynWtW6eNbvGhdTOzo4dHx8nBdkAT6iYxHZ2dsLEgt9brdZSdHCz+gXNqmg2myHi\n", - "Np71+PHjyuS6TiJVhlpg+U4+OzurJC3m+FqKlmUoQbMyb6Fu6qPa7XalF5k3zymwaFWl02HvTbXQ\n", - "ZrG82TK9rBZN6gXCh284HFbG4mw2W5oAzM5TpqC+7BUFKFMXMBwOK/2q4uCYVYXlDNzj9u3bocy8\n", - "2MX7gEXiZDJJmj+U2aPOI009F0CfjsfjsLFhB4gf//jHZmb2zjvvVMqCZ7HQnydwbIxQt1jKoxSU\n", - "J5UysSlvQk6wzB85ZSpUqZxSZmg/0fMxNoOzeVN9ZFJxn9RCnkW/qs1z5rJms1k5T4212AdaLYL8\n", - "MbXYUAuumHlL4aoE57iXX2Dw5smXiZ9fJ/5OPZPBpmxV91wRvFrkpNqVI9uruVxFelfjiufUnG9I\n", - "rA6+nnw/JeBXzkSrPL+Y9goKCgoKCgoK1sS1MVKcEJbRaDSCe7/ajWO1qFiQ6XS6FA37KgCzB0Sf\n", - "N27cCGVAQlY2H8ZMYh5Yeff7/XC/uojaKbDbuDK/KVdTNkNgh8/snxdVb21tBSaCV/dgSFgYraDo\n", - "U880qThIKhq7Ss7L9wNUPB/uD5iKuO3Z/IK6oP2YUWLzlxIZ+/68devWUkRrs+W8hNx+nmlUrMve\n", - "3l6ITYU6qVAMzDTwOPDJkhkY70qwzjS+2uEq93zG97//fTPTjBSzCn5ny+xgnQOCmltUH3H5fWLl\n", - "mCu536GyCaPOycHfj0MnpHbqXGY2l6fMFUCdOTU3hhIzwH48sgmQy6DMborNULGnUuwTn5NryrtK\n", - "9kmBGXZ25MHfbKb37JkyAbL0Bf/PKUMqk4LqoxSU2a2O3eP5lcOtmMVDwfhvZV3oEYXUu6fqYVZl\n", - "gWMhRepQGKmCgoKCgoKCgjVxbYzU4eGhbWxsBME2VutHR0dZzEyuW3MM2J0qd2Cg0WiEXTCYi0aj\n", - "EdzZwc7EVtmplSxE4sfHx0GQe//+fTPTO3VGXR0Vi8DaIaWD8qv1wWBQYfdOTk4qq/7pdBraklkU\n", - "9A3vNNQx1B19PhqNKvWLBWxTeg7fFyxeV6JBfkaKQUQ5nz17VtGWLRaLpbARMbAGi8cu7nPnzh0z\n", - "M/viiy8q4nU11p88eVJhMXhMqGCZnCcQ9WUdoWpzP87q3i1mZxRz9Itf/MLMzP7gD/7AzMx+85vf\n", - "VM7pdruV92c8Hof5ggXXCnU6FLXr9P0ec/P2z4gJ2nN38oByQEg5SjBSfcJZCrhdlMbP/6bc1lV9\n", - "WSfGZVIsi2epVD66Otd+f34ML5uF8s9SWjTfd61Wa2UtbavVygoUyfMiwzth1LEsueXi++DeqPt4\n", - "PM7SKLdarcq7t04IAi5Tzjsf0455Z6ccDea1LaRGo5GNRqMw0XKcKCwEMGlubGyEidOnSWFsbm6G\n", - "a9Axjx8/Dg2S+jhA/M735g6uixgdq2MM/FLAC++VV14xM7M//uM/tn/5l38xMwtJWs0uPubodP4w\n", - "wyzRbDZD+ylPCdTLbLkN2Yxmdi6qxkvAJg+fTFXFxmGBMoNfMLPzfoX5lhPxoq1TCxtVDyV47ff7\n", - "S6YaD743Fi3qeSrGF8quKHQzq3isPX36tFInfumxoGJRemrCe/78eSWBsvJE4aTUPA7Q13gHeTJh\n", - "8xGQKx5mU6p6B1B3jPsHDx4EkyfAnppsfsUmJmby9AtLjv6uki6zuU8lYlVek2yWNztve7W5UaZE\n", - "fz/lPGFW7RuFuo+NMhWizGbaEcd7O6qo7b6seIZf/K0iqlbmOyUYXnVR/21Cvas8J3E7+jZaLBZy\n", - "sasi1tdBLVRznE3UoqNuUcJlTS04riKCeCy2FFDnpejrzrIPhbrvO6OY9goKCgoKCgoK1sS1Ji02\n", - "q8ZT6nQ6tr+/b2YXMaFOT0+DAL0u2jV2f9j57+/vV1zij4+Pw3m8a/c7ina7XTEHnZycJBPtArGd\n", - "HKASB7/11ltmdu7WztGrcb4X3/Num0XQinFSMZkYaAc87/PPP6+Ib/l31K3T6YQy8A4Y7Z9KxMrl\n", - "Y1G3Mi8BLNz0OyC1I5xMJrI9AG4LlWsP4LJD4K12fCqvHfebL+NisQjjHQzN/fv3Q5tz+Xx/LBaL\n", - "SjgFbmcwYjzW2ATJzCvup6Iwe3f/mPkAQN9PJpPwN7C5uRneHySZvn37dqUN2CwEppiZutjuXJkD\n", - "FXwU5tjOW5lg0G48DyjRqh/v3DfsYOCTqquYazEo1snPd41GI5wHlkw56yioOUzNbdxfHOvJm+fM\n", - "quzUfD6viKE55InK8Zfjkv9tQ4UKaLfbFTd65fwRw2XqlGs+VOJ2FR6D+yF1T8UGs7xCsWNKpuHH\n", - "Tiy2lAqD47/bsXAfntnm8q2SmLkwUgUFBQUFBQUFa+JaGSkVeXsymYRdKf41u9BJYAXZ6/Uq9vyj\n", - "o6Ok0JqDjGF3j5WtCrVwdnYWrsV9T05OJBOCnTfnw1s3KOijR48CI3X79u3wDDALSujNu1+1ggaj\n", - "x5HZgXa7vZS7CoBu6cMPPzSzc4YD7cTsCHYEKXav3+9XdugqOzjvUtQuQoU8AGJRaTmgqIcS+MbE\n", - "tLFjHHWaGRCM31SQUFWXjz/+OPzNjBMYLhybTqcVwTDrknhnpVz2lfhf1TGHpWLwe6aCyHo8evQo\n", - "sGcMH/7g5OQklNUH4wWUhsbvYnu9XqUvOJI6n885+8x0SBF+bkpzocIunJ2dVcZl7B7+Heh0Oknt\n", - "Jr+XOKbaX2ly1HOVzk6Vm9kWFcLAa3jUM9V7ycFBmQFkFit2v28LfhywO30qMKYPdQAoIX4KSkvF\n", - "LD+PbdVeqfx2zCqpnJb4FuF7l8uqxnLjpebcVLBRHicAtws/y89PrPVbhQW8toXUcDi0/f39MLlg\n", - "kRATrHlPvmazGSZTjuCs4BOxDofD0NCxFC0AOow/Xv63drsdyoKPXb/fz0pa3O12bW9vb+k3TsSJ\n", - "wcjJbTlBcm5U5y+//NLMlhdDQMxUg2sAfjF4MGJRxX3kJwVeNPEAxQKZP4hq4eHp21gUZjVBqUi7\n", - "AMevQh+jDxloZ6aruc04uWzsGYPBIEwyWNi+ePEi1F1FmmeoTQLGHcrHi3bc58aNGxVTspqAYp6w\n", - "7FgAeC8gs6pZrdlsVjYR0+nUdnd3zezCvNTpdOR7iL7m89G+d+/eNbNqm6A9UpM4L2i4H3w9uK+5\n", - "vVKUP8aO8oiNxT5jj1Cc5yd9vpYzF6Q+GGrhE1ssx8BerznJi7nMfC0/yy986tLQ1Amk+T7499tY\n", - "TKXM22yOUsJyJa73c6YXSKv3S22C/AJVxelScRxzFw5q3Me+RXgum9KV2W1VE6aKD8Xewqm+UWPH\n", - "l2dVFNNeQUFBQUFBQcGauDZGyu9A1WoWq9idnZ1K3Jj5fB52fWr3yeJKL1DlyLxq54Jd5WAwCPcB\n", - "28K7CaYAPZ0+n8+TeQRx3mAwCLtirI4///zzsDtNCdY50rg/bqbFsF78CyiRIdoNrBGzC7xz8Kaz\n", - "2WxWEfNzH7E7O8rFkb5Tu4QU1a12M7FQDB6xaNeePbl165Z99NFHS+ft7OwssQkATKOff/65meld\n", - "o9myE4TZsiCb2TmVQ8u/R4PBQLK3Htwu7Dig4K9nsbESfaLPOSZYKn8dx/9iUzXGG9qRBdKxnasK\n", - "t+DP5fKr90eJYfm9SLFAKTP+cDgM/Yrzu91uCHHCbIHfUTNr7MXLsboqti3lIh5jkFLxsvgeypFC\n", - "nacE43Vxjfy1gJoPlCj920BdGAf/LjC4zAA7hCwWi8r7qQT+ufKBVqtVYa44Qr8yg9WFQvHncYJv\n", - "duqoG7cp5AjAlfQgxj75erCJ1fdbCoWRKigoKCgoKChYE9cqNq/TJ2F1XRfFGGBRLQttoV/h4IVq\n", - "dwXdEv5tNpthRa3E0Cyq9KtYFd6AAXfvO3fuhHpCk/TkyZPKCr3VagV2BEFH79+/H9oGuqc7d+6E\n", - "Z7/33nvJMgDdbreywue2VHXnnT/KD7aLd9Qqhx8YE9bGcKBAr+Ng7Q63S45mgwXPKq8ew0doVznF\n", - "eKeJ83kXyG2EXIVgpDgsBPprY2MjlIcF1D7MBK5nKE3T8fHxUnBT3M9rKXg3y/2m2tSzrRwdn8/z\n", - "u7tY/jXf/tymKhwBjx28w2AF9/b2loLW+h06u9b7gJtmFyxcTDOSE0hQ7aY7nU5lzKqo/ePxONvN\n", - "2ge0rQMzUeoZXpcSYwWg4cS8wnVj+B08a3yUAJ2vyxVSqzJ7/U9u8ErFgq2q0fHP9VGzFTOlHCBU\n", - "GXw4BT8+9/b2Qt3V9yb1jJiTjWKacqPse8aM2Vnl+KCekRqfijGNISWaBxSbqcZijmbq2hZSfgJE\n", - "o3W73YpZiL2TMOkvFouKEHQwGIQPMhYYL168CB8WfEgPDw9D4+CY2cVAwMd9PB5niSCVFxBH1FbA\n", - "Qur27dv29ttvm9lFEmSzi4GFj/Ht27dDe+GlQZodswux89nZWZjklGj6yZMnFU+/s7Oz0L5s4lML\n", - "j1RiYpWskidzb2rggY37KTH3dDoNf/Nix0+EPIGyByH6GmMntpDy97tx40ZYjOBa1UcqdY7/218D\n", - "8EJKxdoBOIYSwMJt9lz1/X52dpZMDYG2Ojk5SabRqaO4vbdLt9utePKw4B4YjUaVKPDsRccmPbyj\n", - "uEesL/mD5idQZcaNTdAs7DZbTreizsM8oCLIpxK1+//7cVznWJJajClzSizhsRrH/iPNkfKBWNR7\n", - "tUhLmb9yBNyx4+q+CjlmxDrkmiOV156aF2ILTL7WX6ekFmpTr8yGjLrFi/8tBv8N3Nvbq2QL4bh+\n", - "LNfIMffVLXI57ZtPBM5IediWOFIFBQUFBQUFBd8yro2R2tzctF6vF1y0seNvt9uBreF8Uz42xWKx\n", - "CAxHKo5Up9MJrAK784PB4fg1HGoAz0gB13Y6ncAWYQcZE50iWjvq9umnn4Yyg+3hcApYFX/44Yfh\n", - "PI4nhGOIO6UoWzPtQs4rbuXiXhfXBPdQK3awTsx+eepXmZJiiZRTJifFnKFMm5uboSxKaM85Hjm6\n", - "utnyeEHfMAvIz1NhHBC5m9kK31Y8TvD8/f39pRhqXB+z5RheYGsePHgQng9TIsOLUVlwnTIBdLvd\n", - "Sr5JxY7x9Th/a2ursiPk+mLMHh0dZeegY8bKrMpIpUyO3A9KQO1Zz+l0WhGvc7vx/VJOIXUxppRJ\n", - "kZ0vzJbzgqlwH/wuY15S+RfVM1WIhdRuPMaq1ZmpAM+OqvAHKkRATJDtn6VMgKpMV8FM8f2azWZo\n", - "N2ZnPfPH5auLE5UKj6CsAvN5NR9hDL6NVMT6xWIR3geO25gy46LubHFi+DE1n89lPMTckAiYDzl+\n", - "nnLIUPdT8QmV41UdCiNVUFBQUFBQULAmro2Revr06dIqlv/Fbgw7PkTW9vCRmRViO0XsmrHD7fV6\n", - "Szot3D8VQA/MWbPZDLtrMGwx7QY0T9/73vfM7DyKNXadzJJhNwl9AjMAqk64B2tulIs9ymum2Sve\n", - "5XjXcK9rA7w+hHc2zEigLihXp9OpsGMciZwBBoL1Muxm748BJycnS3nNPFRwTdxjPB6HfuUgpriG\n", - "6+1zqJldjAVm+1A3pSEDsDtjjEajJS2T2XnYBTyD2yVHw8N6GMU8cvgQ3x+z2SxLK9dutyU7BvC1\n", - "nuFiBpOZM896eSgdkRLu+x01sx1cLp/fkN8Z3tmirEqXwno9FWzW91e32w3vs9qp4x5cV37PvK5L\n", - "uXQrp5m6CNd18EwTu9grMa/SSPH//Xnq/BhbkcNmXDY0gi+f0oHxcWamUkJ3r/nCNSlrQF19U1Hf\n", - "/XjxSGl9+fmexYxZK/x5nIOSx3uKoePfUuz4qsdWdWYK59ae8ZKAj5SPOn10dBQalTsW52HxcnR0\n", - "FBYMKnZMCkwlY8Jqt9vhYw3zW7vdDpMqR2F+5ZVXlsp8eHhYmZhjiw6kfGH6HfVQpiIMnNPT0+SL\n", - "j84+Pj6WHc8xiNTg9gsQM7PXX3/dzMw++OADM9NU7Ww2CyZWtBGL79l7z5vO+GOOMqlYRhwLzD/b\n", - "TMcHY9MIyscfdTYrmZ2bobBY4jGJ+/EH1XuGsicKR6n3wmieWFRsLuDs7Kwivmj2V+EAACAASURB\n", - "VOZ6AgcHB2EhVZciKOWJwgtg/3FQmxRlpsX1ZpZ0duDzeDGBscHehXhXPvnkk0odYqY/H+NNmTrU\n", - "woIXjKlJmql/ZWZWYE9EZRb0Hxa+Fy/QeRGMcnoxv5lVzMKLRTXNj1n146rMSBxvjM/z40nFh1Im\n", - "ttjmLmexxP2mTErqud82lAehL19sMQlwmynPcCC2qOeUOmZxc5+Pws/nqIjpKacJ/q7w2PHv+mAw\n", - "CPfkxPa4ht8Vv8DnMcZm+NxUNFxW/BtzkjC7eL/Vt9GjmPYKCgoKCgoKCtZE7VKr0Wj8r2b2n5nZ\n", - "48Vi8dNvjt0ws//DzL5nZg/N7L9cLBbPvvntfzSz/8bMZmb23y8Wi/9b3ffg4MDa7bZ98cUXZnax\n", - "+uv1ekthCszO82q99tpr5wX+ZnX429/+VuYeAyOQSpyoVqHPnz8Pu0/shPf398P1YDV2dnYCW/Dw\n", - "4UMzW3aJrwPYLlz75ZdfBraD3Tdh8sEKfWtrK5hTcEzlZONdMpuIWECvqFV1L4SQYLoVfYMyTKfT\n", - "ym6czWkq/x6HI+B+N9Nmlel0WjHlMLujKFj00enpqd27d8/MLISZ4PYA+LlsluSwDDH0er3wbG7H\n", - "lIs4t61nVL/66qtK/kXFJH755ZfZiVpTCYq5jjhPRfeugw8zETO/4V1SsW/4GvRDyozo4XeTZlWW\n", - "gENiABxiRZnBWWiPuSUVY4qZK95Rp+KDpVgUdX4saXFdKAQzHRaCx2uM7VD/9+crUbWKh5QSoMcE\n", - "46k4Umwa8wzXZc14uVAMXI7wncFmWuVYAHS73fCu4dul2CduI2a4cA3/5p1SWq3WUp48fz+WvigT\n", - "Me7jM0T4uvvk6yxoT7Ufh8HhdlOJ1v3fuWMix7SXw0j9b2b2n7pj/4OZ/cVisfiRmf3im/9bo9H4\n", - "fTP7r8zs97+55n9pNBqF9SooKCgoKCj4N4laRmqxWPy/jUbjgTv8n5vZf/LN3/+7mf0/dr6Y+i/M\n", - "7D8sFouJmT1sNBrvmdkfm9nf+vuOx+OlwJhY4Q6Hw7CKxe70s88+C7tAFueCscCOlfO08e41d1eC\n", - "50KT8dlnnwVmAEE9Nzc3w71ZP5HzjFu3boXyoT4cxgHsjWLaTk9Pl4TxOWCmQwlJ0W4xfQfvQAC/\n", - "44+5Pe/s7JjZclR6r+dg9kHtvNCm4/G4sgNi3ZTaMWCctNvtCpv0gx/8IER9T0WLbrfbcvcMsA4r\n", - "pfvh37w2i+/Luijo0aDH+/zzzyuZ1Fk/9eqrr5qZ2fvvvy8ZIZQL/aLa/vT0NDCOHFLEg7U+PO5x\n", - "DXSMHD6CoXIGAsymPHr0yMwuWObxeBzKF8sfh3syu5TSSLHeTeXQ89fyO6+ip/M9/LX8f8xdPGcp\n", - "V23WpfjycRgHRioXYIrdiYmDc+EZiZhYOCVAV+VjxkkFFvXn898pQfs6SM3zrL1VjFRKy6fuydaD\n", - "drtd+X08Hof3mJ/h9bp8DH3D+iVmnHzfcfBVfr7X1XEfcn95J6FYtoNUtH6+rwproFhoAGXh8CEq\n", - "3AefvwoLD6wrNr+9WCweffP3IzO7/c3fd2150fSJmd2TD263l8xkKPyLFy8qAtzd3d3g7cYxYTDI\n", - "MOGaVcW7N2/eDJM+04o5mM/nYXHzxhtvmNn5x/Nf//VfzWzZNJHzkh4cHNjf/u158yDG0DpYVVxv\n", - "tvziqphN/jwW36LNX3vttZCaA1D0/GAwkGl90Df8oefFEqBMLH5ws9iZP2JYNOGDd//+ffvVr361\n", - "dO17770XrucX0y9AWq1WxTNwY2OjshBkWluB2wgLE9yXr8PCiGM3ceR9tAFoch73/DeuVR5fapxy\n", - "xHmMd3aG8ItYHkO4H8eWwgIzltrJxz7jRZH6kLOTg/9wxMxOKfF3THzNHy0z/Z61Wq3wDB5rqcWL\n", - "ArefMon6j4NyvJlMJhVnHV+GWB1VdHKOv6M2T3VQEcZ9GVLiapSBy+nPU+Yjf5/YgtA/e52FVWrR\n", - "3u12K9H9+TxuW286VwmBWWzOpi6+r1rksJeoP0+Vgd8VL0DnMqjYWMoRgNveb8SUGZwXL6lFDpvL\n", - "MbfxN8SbIPl+dbHU1LFVzMKXNrstzp+SetK3Y5wuKCgoKCgoKPiWsS4j9ajRaNxZLBZfNBqNV8zs\n", - "8TfHPzWz+3Teq98cq+Do6CgI41qtVtid3rhxI6yQeXcCQTfvXr076HA4DKtm7KybzebKTBQDK3O4\n", - "zk+n02RsnBQ++eSTJXPMtwlFf7KI1+/WFFu1u7sbGCkOz4BdB5gS3h3zM9BfHGfIiyXNqmEDGNiJ\n", - "PH/+XO4YwKSg/DChmF2YnJ4+fVoxxTWbzYq5qtlsVsxQMdOH2lkCuAe7sHMCXW8W4l2REmTz7z4p\n", - "tIq8zQyHGn+oG8cgw66u2+1WxkIqvAZfW9dWKTNSjGLHvVfJg8X3NFs2Q/BvGFs8Fj1LqXbb3OfK\n", - "8YHHKccoA5R52TMvnFicnSxwDTO0PjMDm1PqIj3nsjQpdkeZ7Pg6z9DMZrMlM2nsWSr8gQovECtf\n", - "LsOQy1z5Np1MJvLdSNWpToCeastYuXwZYv2ryuXn3FgePCW18KwoM+sKii1KMY58nOcndU3KEYTb\n", - "1PeDMs+amf3Zn/1ZtB5m6zNS/5eZ/ftv/v73ZvZ/0vH/utFodBuNxvfN7Idm9v+pG2xubtpwOLRe\n", - "r5cVp6GgoKCgoKCg4NtG3UIqJ/zBf7BzYflBo9H42Mz+JzP7n83sPzYajf/Wvgl/YGa2WCz+qdFo\n", - "/Ecz+yczm5rZf7eILJsfPz4nsfwOo9VqhRAB0Eaw/oOREoICsWtzgXIhTENKe1GHlI5mFWD3dvfu\n", - "3YoOhtklDqbIK2+1WldaC3/vBw8e2G9+85ulYzdu3Ag7cxZ443lgM5Ruod1uV/qMA3cyMCaU+Jnr\n", - "4YcbhyNAoEJ2/QVYjMguwF7LxGUDG5QSGNdhPB6HfoIQnFkoNWa47CiPF7Hz3yqHFgP3uH37doWR\n", - "2traSoYd4KjIGC+KsWXdBvqIA7Sy9tHsvN6pkBc8xlO7XqU94eO8K/ZjgstQl3uOtSy41mv9Go1G\n", - "hS1oUFgLJYzm99LvnpWbuUJsTK4rvlb6L1X2GIuCtkf7sB5KMbp8P8/aKr2O/93fpw4xkXzsHDxL\n", - "MYopcf9lwf3A49MzfrFxj/kLv08mk2zWy48ptjgo3Ss/14c6aLVaMrMG1zNWlti7rxxMUnMzBxNe\n", - "p38aV9WpKz200fhO6qbUAsN/oNrtdvioo9NzzXW7u7sVT0Om5/GhZ/MlC2BxDUcxr4MXGTLYvKVM\n", - "EjjGL5wf6CwyZvOWf8HZ0wtQ5pu9vb3wDKaZ2SzH1/NzzS7Ekii7asuYOcinAzGrmnZUmfljjmdM\n", - "p9Ng6sRiTsWM4kUOFiKz2Sz0w8HBgZmdC7e9F1OsHj7hLR9jESmAttrf369sPLa3tyvjmydwvB+T\n", - "ySSYVZW3Hp7BaYHQjhwZHtja2lpamJvp2FD8/jBVrz7saryo8+oSqObG7vKIeQnlfrwAHsd+TLfb\n", - "7byUFu12xWN6Pq8mBVZQIufhcJj84HE7e5MOtylDtYt/Li+kVPmuCle9CEo9I7bhVot1IDUmuT14\n", - "Y+jNzLGFr89iUCd8BzqdTph3eA7xbcmbZ37X/YJrPp8HSQnPY6rOfrHOi0T+JqVSSvH50+kUdZSd\n", - "U2I8FRQUFBQUFBSsiX9z4iTv1t5oNLLDBaiVrRfu3rt3L6xylZmJ4dmMZ8+eBeE7wjlgR8/nv/ba\n", - "axW2gXcF64jdsZJnFkslccVqfTAYBEaD64nfseI/Ojqq7KCUyZDZEdRZMWrPnz+vxH3q9XqV/GHK\n", - "BNjpdAKboBwMVDJN3p2AieJdkaeO1Y40xuj5a3mXpXaVapwqsyXvLtWOSjFVKQG/FzEzzs7OKgwN\n", - "twGL3THGMF5UfC0exzzmPCM1Ho8rOcMYbE5hNgNscZ1I35eBwfm+lPBUxdABeN5JxZHiccCyBrPz\n", - "d8uPBdXXnBQYmE6nMqaZZ67YxFoXAd2zHarNYm2rGHH/3HXi9ii8TNbo27Tc1AnQGcp8lzJD8hhK\n", - "idL5HjlyFlW+2WwmrTX+3LOzM5m9QM1t/pvB7z7PFxhbyvSXCn2iGK6c8VkYqYKCgoKCgoKCNXFt\n", - "Gql1I4hCkLuzs1MJPDabzYKuQuWOS91vsVjI1TNWqhw4NPfeYJ1W1VIx6nZZPhhZv98P2pzhcGi/\n", - "/e1vzWxZ7Kv0Rp51UIxPt9utuFarMvJOXtnuX3/9dTMz++CDD8Ixtn2noo2rnE3AK6+8UmHr2KVf\n", - "QdnLmUn0TF5usD8WIEMnwJGD1bWqj7ld/HN7vd6SUDQF6L/QprD583MHg4HcyXH5UTcAOTA/+ugj\n", - "u3Pnjpld9NE777xTKQdHi0c7K4Epzw9czlQeP9ZIASqIo2JHYmPbg13wgdwQDMq1OsYqKlbJg/WJ\n", - "V4GYriw1T3P7ASnmah3x91Ug5nTgocIzKG3WdYIdEXL0cGZV/RWzNkCsjZS2FPdhZjVHN2VW/dbw\n", - "O5DSsfLcq8TrdW2hcm7mnA+WKqWRujbT3rp0LhYxuYsZswuhMjpwOp2GRQ4ilv/N3/yNXOigsfHb\n", - "KnFrEDEazzo6OgrJihXQwXt7e2FAYcEwGAwqguHDw8MwiPDvyclJsh7dbrcy+Xa73SVzBj+Dj5lp\n", - "8bp/WXgRpvpZiZExER8fH4eyYpHLfc0vixeH14XRYPrYU8mcsJejZ/u2ms1m2RHDPWIfJRXLBOdh\n", - "AbexsRHKgvNGo1GWJyh7KaLNNjc3K2lgZrOZXKB4syCXj9sAz8BCSmE6nYaxzddydHUA/cnxx3x9\n", - "fZumPJYA7isf24yfu1gsKoLX6XRaSZbN4L70Y4wX1+yUoDYbWEDhvWCxLEdUx9/syZcTp8uX1beL\n", - "aj/+yPnFpIrnVLeQUmNXbcauCrlCelWWnO9Vqj4vAywVQF/XPc97JqvfGOzNrBaWvNBPSQCUXAJj\n", - "dzQa1cZfQx19iqvT09NkahhvNufy+XriGamNVwzFtFdQUFBQUFBQsCb+TYnNm81m2MFh591ut8MK\n", - "lBPFYpWJfGCIaxUD7tvpdLJMdLu7u0sxdnCPFHXJ4luUi1f+/rmDwSCsxvEvRwtXK/WNjQ2Z/8jv\n", - "rvlappKxE4CpUzGDStDcarVCezDrcPfuXTPTpjrsWPgZyo1audjiWWzWw7Gzs7MlJspsuT+4/fyu\n", - "hKOd51LKKneb2t2zm68fJzHzpDJl+SjrfA6zdzDFIYHz7u5u5T3Y2tqq7OA42jmLxzGuEP+t0+lI\n", - "QbFiLLCbxdhgZoXrpsybPN7UvT2LulgsKu3LzBb3Z4rVSbGjZlWTZaPRqORi4x2/P9dMmzD5vj6G\n", - "0fb2djKyvBKR413mnIaKHU2xSWwqVkiFRFhFXL0ucnOoKYF8blnq5Bfq/5c1Gabc9/kZPqZZzHTm\n", - "y6PmJ3ZyUM41KeE4vwP4Xb3XXAbuB3wLVLJqFYPOfx89VCgZ73iVY4UqjFRBQUFBQUFBwZr4zjBS\n", - "WMX2+/2wAmTmQgHaIxagYpWLXdnz58/lilJFPIdOAyvSo6Mju3nzppmZ/ehHPzIzLaBVaDab8lxl\n", - "m/ZQGiIGi5ix0saOfm9vL5wXE7F6IasKdGhWDZlwdnYWjq2iUUOZVbgCCN65jxCEUvU/9DcvXryo\n", - "1F25l/f7/XAfpb9RQmfY4b/88kupaQEw/urYTJTv7OwsyXDxzs9Hu+bAeCpsBe+s/A6S87QBKopx\n", - "TE+khKooC+rG12O8xKIE+xAa0+k0SzTNO2u02Wg0WnqnUixhSuA9n88roVPG43FgmlC3s7Mz2Q8o\n", - "v2K9ePeeKw7mMWO2zAypIK1AjC33QVq5DZgNRpmZvQV4fCihcm7d1P3WBYvDc4Xsub/lskS52iil\n", - "MboMhsNh6Ae0fUzjo5wW1Hj3UFkH1L2YWVVzKr5LX3/9dSgrviWj0WgpHynKjvthbdBoNML45bqh\n", - "LVMZDliYr0KZ4H1jdmyVLCbX5rWHqKc+ZpDZctwlAIJxxCBqNBphwsYklhPpOwV07E9/+lMzM/ve\n", - "974XzB9/8Rd/YWZm//RP/xTO/8lPfhKuw0SFznry5In98z//86XKY3axuNva2gr1xGQ5n8/Dxwjt\n", - "wwNwOp2Gc/ll9yLuWFRan8Q3Nla88FTFkZpMJpIqRbthHLx48SIslmDe5DKz6Qf9xSJotD/MFbx4\n", - "UuYKpoVT1DQjRfnyJIa/eWHIUYRxrxR1zMlcPQ0du3ZVkyM2IoPBYGnRDKAP2bsPGxV4YPKmIfX8\n", - "Oi8w9pRRi1fltcftoj5que0BqJhrdUglSVWZEnDs5OSkkrCXI72zg4xavKSiOuO3nZ2dpcWtR64J\n", - "i82SLG7Hb1cVDypWvsucFyubb/t1Fk/f9jdUOfwAKmVSq9WqyAvWKT+Pk1QMNT7m50oeJ8q0j7F7\n", - "enqa/K4wfBovfi/qFkOp8vFcjjrHvPaKaa+goKCgoKCgYE18Z3Lt8eoTu06sNIfDYVglgmFJ0XhX\n", - "BU7imopi3m63A3UJU8Cnn366MtWtgJU6R8/GscViURF2+3xZfvdy586dkICZd65+Zc6RzRVS+c94\n", - "58Bu7SoHHHbouM98Pq/0La7z13qXed6NsUku5R7LZVVsB+6D35TrrGIG2AzFdHVOrCI2uzCjp6KE\n", - "4z6qjqo+qajX/X4/i4Xh8t2/f9/MzD7++GN5rhK+poTeDO/CrKJ2M3PKO2UVOZxNBV4sX5dvEphO\n", - "p0s5EWPnqzhddUjlS+M2YtZOxWvzDCKXkcM54LyYE4Q/ppgENpeuyuoo1LFPueyUP1/FglIxwVTd\n", - "Yma6Vet52fAI3mTX6/XCu51iXbms/H541nM0GslYSxgn7DjiE06PRqPw7cO71ev1ZG5PD3YS4zyc\n", - "KVOikjwoxxa2FHkLS25YCzynMFIFBQUFBQUFBS8B18ZIXcdzCwoKCgoKCgpWxXcysrn3BOLjOXRb\n", - "u92uiG/ZYwk043Q6jaag4OezODgV18VM05SgOFPpTfg+ucJOFZZ/lUVoSpioyuWvi523alwYhkrL\n", - "chVQdHsuBV8n+l4VbGZSqEsB4s3byquNY4alvN5iaUhygf5S8bAAdrhAWVSZYn2khOUAm7LVe6Xe\n", - "4VQ9FotqYtLLIjX2Yb6uS3K+Kl555ZVgikWfjMfjrPG+sbERxg6cTlSbbG9vVxxWUtKBdZD73tY5\n", - "KrB5a9WI3ylcZm5YZ06KObP47x2bJevqlxKHw7mC780SCtWWLOzmc8yW57RV3zOW86TiNabM4Hyf\n", - "q/q+1LVvMe0VFBQUFBQUFKyJ74zYPHJe5W8WwXko1091P3ZxxK6MXadZsJzDUtWxN7mRbNUqeh1m\n", - "ip+3Sr4g/zxfnthOypcnlwV68OBB2HV89dVXWeV7WVhFPJrj+lvHSAHNZrPCTvFYgxPDdDqVcbV8\n", - "rjXOv4dj3W43xLz65JNPsuqowPGfFJMGRkrl4WP43ax3kIidz+93LCq1anMcA7M1Ho8vxUhxHDez\n", - "NBtothz3Sd3L16WOAUEokPl8HsYExlC73U46iQCbm5vh/VZZBXC/7e3t8AyUU8Uxi7W7ik6dOk+h\n", - "jn3wZZ5MJtnXpMqSusdlWV5+nll9GAEuF7dp7tybig8G9Pv9cN46oYQwzj1LyojlxfRt3G63K/EB\n", - "J5NJdiR3D2bv+O9UH7KTRV3S4sJIFRQUFBQUFBSsie9MZHNenXoWJrZj9atxxUb1+/1KPipehaqV\n", - "ea6WIrULUJnh+X4+ujODtQAcKAyos9f7HdUq4Ijadbm6/PNi/4/hk08+CYxL3Q4yd4fpy6d0FasE\n", - "G1X3VzvWXM2YPzafz8PODeEcxuNxOIb8Z/fu3Qvjl3d6HPk6Vt/xeByYqJ///OdmZvaLX/wiWU5V\n", - "3zpWlBkwX052sfb3Y72jCg/BbXUZnSDnMvT1YHdwBurCuQBT840C7qGYJg4E68vrwXkNURaPfr+f\n", - "xUipMCMMlYNsVQYmNUfEwCyA7zcul5oH0H/dbjf0K2cNwO+5OdSY6fDu+dwWOYEoY4gxqx4cSkCd\n", - "y9YWjBO01fHx8ZKO2Ewzanx/sK3NZjO8x2zdUPUC46qihDNSrDH3ude3cXlZN4nzoItuNBoVFlW9\n", - "861WK9lPq+jirt20pz72l6HdU1GJVRJXfuFyPtadTqfyknKMEoZKEZGDZrMZ7scLKPUhiF0P+FQj\n", - "uagTdgK5JrF14q4wcsWDHGOH/02VK3VebiyTHNMeJwXlcqqPK37HJNZut8PYRllOT0+lIFfFB+Lf\n", - "zcx+8IMf2LvvvlupDy8szOKLBR9NmNsHC8JutxtSAAE3b96UKZDwoUrF2VLvgv9Y55pT/Yam2+3K\n", - "BQhSRKEdVk2NZHbRVgcHByGGG5ta/AdyHbMRMhuYXSy+LzOPssk4ZqLF72ZXLzY3WzbF4ll+jq5z\n", - "AgJyBeOXMTPyM3JjguVuDNaRa2DcbW1thbGtMhakon/HxiLqx2lmVAqwnM0Jz2P8XmMxh/OeP3+e\n", - "/Q3B+OUkzX7OMlv+hsfqWCKbFxQUFBQUFBS8RFy7aS/HnbXb7VZWjrPZbMkEB6REcnU5vlTkYM9w\n", - "xJgJ7wbKO5tVo7BzOet2plhdc85ClYx4VVyWyUldo55RtzvykZljdfNMg0rim1vOxWKR3YY57cBj\n", - "lqMTo3wQLas2mE6nFfd5NguxUwSuVzkDU6wmM6ugyTudjnynsPOGiP3p06ehrTjS/I0bN8zswpng\n", - "5OREhgPAtTyOVdR+lCsnyXEMKvlunUmZy+LnnbpxperGEcY9eL7LBUzkjx8/Dm3O4va6/JFm53X1\n", - "dYuxUZysGsiZExQztFgsJCOpWGWVQQBjEG2mHFcUG8UR7lMmHmZlkMPz2bNnFXMfX5saEzHHpZTI\n", - "fR2RPsr89ddfh3futddeM7NzdsfPE6enp5VxFzNheocSxY5NJhM556O9fG5TXGN23pZ45/Dv9vZ2\n", - "mIvq2EU1zn3dut1u5b1YLBYVWU7Od6MwUgUFBQUFBQUFa+LaGakUsIKM2WhTu0m1qsfquNPpLOV2\n", - "i53Hgjd1b6xceffk7+uRI0Ks22nwzgDn5QhMV4HSI8TKkHs/zybxTq8uxAKQ2qmrXd1sNqswjXU7\n", - "DCWSrRPZ57aH7/fT09MwJrDbXSwWMhidv1aJv80u6pdiHz7++OOgq4GOiVlZuMTfvXs33Bu7QR53\n", - "0Dvt7e2F3/Hc8XhcEUQfHx8HrRe/C3guxnG3263oHReLi9ySzGpdhc5zOBxK9sWHP2Ehcx2b5fH0\n", - "6dPAFmEcq/c2l8FuNBoVYfHJyclSbkpfjxTm83lo87oQFhirl0FKY2im28FraufzeWA2mZ1VY8Kz\n", - "3iqMgwIzhHgW61i5bCltZt0cktLwxsqn2kMB5ebyg1XE+1U3RtiZxH/vYt8L//4oRvLs7CwwQ5w/\n", - "1Z93eHgYzsM4PTo6qrQb9yu+Of1+vxJsdDweL33DgXUsOd/phVQKdfQo/+4XL3UTVZ23mvcCVOh0\n", - "OpVYVaPRqGJ6Ui8SJ2xEp3LsK5VQNNc7YhXkeCzGoCYAb567zP2UYJhjgbGHTuqDVycyzF0grfox\n", - "5/uifBAyb2xsLHm5qXJ5xExEZsvjlJOMIu4L38OPp88++yyMRSy8xuNxWOjxwgvX8GSozJR+4m42\n", - "m+Ea/ihyYmKz8z7F87BAu2w8H7TRxsZGEGkDg8Gg8mFkQX7quapcL168sDfeeMPMLsxPqt/qEs8C\n", - "7HWE+0ynU7n4SQnGFVIbvXa7vdY7bLZcX9xjMplUyle3oeL+gJm3znuOPfj8eap//fxilk5ozcl8\n", - "VR/G5nr/O4vJuU4pL2xeTOSI6ufzuVzEs/e8f27ddy9nflVzjNnF5gv/DofDpWTl+Nefx+8A/4vf\n", - "eQGMOmERdnJyEsqM2GyDwSC8m6hnjvd7Me0VFBQUFBQUFKyJ3xlGKpfCBHhlHRMQmqV3lZ1OR8aw\n", - "SAmjFQuQEqoyrc3P8Kv+GAOnXGH9jmod1LnoXoahUbs6ZdpLsUFcvpQpjlkqVTb1DDYFruqmnAvF\n", - "rAHMxjBy4q/4+5gtuyHzu6CuUe8KroV4+datW6G/wAawkL4uxo5/Ppsymc3yu+N2u52MLXMZKMZG\n", - "RQlX4SoUYmwwdsp14wkmQJhYY8yVj/5spuel3FAmOWwbIj2vg9w5hKUbdfcBeO5lpyS+Jx9TuerU\n", - "+/jixYvKvL6xsRHMm59//nk4F2wHh8lQDIx/RrPZrJiM/XlKaK9YSn8+f8d4fvQMGLNFfA+cxyE7\n", - "vMC+LlwOnERizJp3aKlzJmGWDOOdTbscV8/sfDyjHvwsHEN/PX/+PPShZ8SS5ak9o6CgoKCgoKCg\n", - "QOI7yUhx/jtAsQ/ehViFK+BjWFFPJpNKoEq1w5lMJuEaiNxUROB2ux1+TwUCrWM9OMhZStOQy9Rc\n", - "BquwT6uCdxPYqbC4Oof9Se3U/LUpRipXMH7VbQDM5/OKC26r1ZKswrrlio2Hzz77zMzM3nzzTTMz\n", - "e+utt8JvzBT6HfXjx48rO1cGa0eUSzdHFsYzPIPAkZzrRMHrRPAH8C6fnp4Gdgc70OPj4worNpvN\n", - "shgp5QjQaDTs008/NbPlfHkKdU4r/jmYL3q93tqBJznXGubgZrNZme/q5qfY88yW5+PUTj9Wh1R7\n", - "MDuigtzCkgC2Q92r1+sFFpLHrG+D8XgstUJ+/s8NBMrlXwdcFyW+VlYU9DHGgXpvFbM6m82CQwOz\n", - "Qax5xHn+ve52u+Fv1gEjfAfnf0wFCuVy+nGsvrOrYJ08g9/JhVSu14qKRwKwectTmLGIqwA+bOPx\n", - "eGliNzv/2OFvDMThcGiPHj2K3k/FrVG/1XnKKIGi/6DFPLnqoCJzr4pc8xcLZFNlrPPqyYVfqMbM\n", - "h0oY6T+kV7FI9fDRxEejUdJ8XOd96Bc+PCawcOVowh9//LGZmd2+fXtpYYFnqfcxlVIB9en1epX0\n", - "EmZVUS0LszGJ7e/vVzw6ladUqh1ywOMvFREev+V+7IbDYRDOq5Q5dR8JIbMcuQAAIABJREFU5bXp\n", - "0W63K+LbjY2NpFkEY2w4HMpn4AOJPlflbLVaK39sLvNxW9XbVjnjcEwj5cgBnJ6eho86nA/UfGF2\n", - "4fCQijsXS6uUmm9j9U1tXgD+3tV5QLIjk9lyX9dt1v3ffJ56R9DWynlmc3OzMo7r5nnlGZi6Jtcp\n", - "hdtYOa7FUEx7BQUFBQUFBQVr4jvJSAGpuBRM3zJrkGJUeOXtd5jz+TzsxpRbKO/y/OpaJQ+N1Scn\n", - "zkij0VhiwHC+Eigqk+c67M1VmK5yQxhwPXzushj7lFO+OrOmMinkiuZflmnP7GK8sfnYxyozuyg3\n", - "xm6uwwWLQzGOeYeGPjg8PKyINA8ODgKzgnelTgiK37e3t8MuNxWyQf329OlT293dXSpfzOHiMmE+\n", - "0L4cy0pBiXRT2N7eDu2mmI/UPXLjyKldNsc8UnHEWEzumUs2u6VyHk6n0yyzy1Uh992rSzzrWZle\n", - "r7cUggHngIlKhSjY3NysJDDmb5JyZmLRdio232VZb9wH37PFYiG/af79Y0tNnazCZ1To9/sVh5Zu\n", - "t5u0LuG5MfY1Jclg+Dmr1WpVhPucqzSVL3Nd82phpAoKCgoKCgoK1kTjZe60ow9tNFZ+6FW7nwPY\n", - "lTUajdqo2f75dWXKLXNKh8O6Hn8/tofHkBINfttQup9UQFG1I2SbvKqbbw8l5o8FhfPIDcXgr8Ez\n", - "1m1z5Qq9ublZybXHucJi90FZVNurY2on7TVcqv/U+9Pv98MuENHTFdsS6z9m1Mzi2kkWtyrNRgq8\n", - "m/Uam2azGTRlaOeYZszj9ddftw8++GDpmNJjjcfjyjjnflVtw27o6JO7d++a2UWkebOL0AkxnYtn\n", - "W1utVgg/gV17jDlX7vS5uEzuy3X1MLlMomKAVVneeOON8Ds0hrlsRqvVqrSf6o9YCIjcNkddODj0\n", - "qk4CKK/ZcqDQFKOmHML43eJ8tGb1ekGg0+kkgysraxXQbDYDQwdrz+HhoRwngLeIfDOGZKN/p017\n", - "qQ9kLngQKTOYijOCjuYJM+UxxS8BTxLqGnQi6jYejyvl4kWTii3C5fXPZbwMYfRloDwlmQbGOT5W\n", - "kJlecKkXlz/sZsuTIU8EOV6bdabFq1jcqwleLcJUst/RaJQV2T7mXKGO4T48eaJ8Klo895+PtXN2\n", - "dlah3WOLupQ5ty71x6rjnE0rKfMim/u9GacOdZ6k/L56L8bYWFTex4hOjwXQu+++G9rXywPqytdo\n", - "NIKZJTWmL7uZVc/2i6tchxAGR7b28yenA+E+ZO9Es/O28qJuXvigbd97772wyE6NPzVmcz0SVzEz\n", - "qfeHY/Oh7mzKVht3jBllkucFkN9MDIfDyrvB/aXKxWX3GyD+bnNKH8yBOE/FhOKYdrzwguQA1zSb\n", - "zcp3U8UWy+mHYtorKCgoKCgoKFgT32lGKraDM9O79sViUdnV1dGGvBPC3yo3mXKFVGyAWr3iPI5R\n", - "okwY/P8UdakiSCvzV4677FWijqHJEdorRoIZJHU/7oec3cOqIvac+6x7v1xzhYq/pOqr2KKtra2k\n", - "qaYuIrQqi2eVxuPx0jg3O2fMWHhupoWlzLakzD48B8TKl9v+uWyizw+ZG5qlLnxBig2MlQkMCMwz\n", - "zCqwmBj39vHJPNCHgHJo+bagzFWeMVHsDpvuVbgPBszM6MPxeBz69/bt22a2HKVcWRfYNKacLpjx\n", - "WQWXiSHFUFYcZab3fwOoH8do9O3KTA7a/uTkJLz3ADtwYKxxdgJOeOzrz+2skpvjd57veE7K+V6o\n", - "8T6fzyumR5VX0qMwUgUFBQUFBQUFa+I7zUgBzNDU6aZyVvacvZx3a1gh847aa2lYCMp6Er+jajab\n", - "FXdQ3sHwDtzvROsEnrxL9ozZugE5rwIxUauZ1oyxKJRt5Co6vQe3R12metYKxO63Cq7a8aFOf2d2\n", - "3n4Is8H56Dxms1lgLjDejo6OknoZ7NCVeF2FlOA+8s82u3C7ju3eWWuF67w2S2E2m1VYFLPVx3mO\n", - "kwaAsQPWri70A+AdAzx4F+3Zqfl8Hp6nhP0M9IMKkKn0XKwDzdGJfRvIdepQjJSyWsTqwWJ+/Ivv\n", - "ADNRfj5pNBqhP3BtjHHMmWu47VMa2FWgLBz8XniHG/7uKMsKjx3frszacFvjfVd1xxwzn88r47LZ\n", - "bFZCurDjCJfLv388D+Fd4TlLsU88t/pnLBbVoKo5uLaFlH8pUt4pSrSmJk8eHDxhoIGZKvYfDC5P\n", - "Ku7L2dlZZaCoTp/NZuHj5alMlIH/VXXhNphOpxUPiOl0emVJW68anpZXMUX4gwHTRF3UeUB9zNk8\n", - "i+euEjPKl53NbnwPtcjJSYJd552WElIPh8MwiagFFN8D56mEnQoweaj2WywWsm4+jsxisQh9iUWE\n", - "inPG75ky2XDcF9WWVxG/aJUFcMpLKAXlZctxtVRcH75WbSKU4B1RuOE5xkglvs41g5tVHWTqFqKr\n", - "Rt7n+irZAt/X33NnZycsIus8UvHeqIWDSjYPLBaLcBwmwOFwaF988YWsH66JYTqdJtuIx02Od7G/\n", - "Vi1AvPmz3W5X5s/t7e1KyqFmsxnefywiT05Okt7CdXX3YC9qniM5ZRqXyV8LpMzC7An9MjYOxbRX\n", - "UFBQUFBQULAmro2R8rt63oGpFTXALJWKq+R3T+zOmlrVLxYLe+2118zsYrf45ZdfVmJoLBaLIJzl\n", - "iM9eVDefzysr6E6nE+7HcWkUXe1XzSpOj0Kn0wn3Y/HfVZujcoXlgNrpzefzigA0xjh4VmQ4HIY2\n", - "5J1Fzi6jLqZMSoyuGBUuVwqLxULulP14V+UbjUZ27949M7OQ+JbZO443phLe4t5KgIwdvXIbXywW\n", - "oY9wj6Ojo4o7uBJ4qojQypStwL+l2L5VksKuAzw7J/edvw7vP+aLmzdv2vvvv790ngoBcePGjRAD\n", - "iqFYLJhxEY2bocbTqm3VarWkY0HKnOrnTLNluYQypwCpMaHKzmXhcqKsYOzY8SF2H7Nzdhbvg4r7\n", - "hbrt7OyEmF3rjD8/T62TbD5m6kwJrf31ZhflPzw8rEhFGo1GaDf8u7m5KR0f0K+QHmxvbwcWUI1n\n", - "BvoL71sscwnA1h4VjV1ZiFIAI2m2HKfN7Px9rENhpAoKCgoKCgoK1sS1aqTMlhkXM51ZWu2sY1B2\n", - "1FTUbAhjT05O7KOPPjIzC8xU7Fq4knOW8JworbxTAtitnVfUKg+WB7uSAszUqWBl6+x8FNbRG6n+\n", - "VDtp3x5KN7W9vS2Fv/7aGPvky5KbHZy1QCpMRiowJjONzLJ4XR8zq7zjAyOBHd/Z2Zlka1IMTsqV\n", - "lx0kGBjvyH3Hu3ZmAbzebTAYVFiU3N27Er7yc/k8BKV8GVj3XeF2RPnr6g7GcWdnJ0SCT2E4HIbx\n", - "wVoQpUtbF6wPqgtQDKgxpOY2ZiG8Y06sLB7sEMT3xzE1v6Sg5kyzi7o/fPjQzM61Uv69Zf0kQ83v\n", - "fg6J9ZHPCcvodrtJgXfKasCaW+VcBajxf3R0JL/X3oryxRdfVPTJXBYw3e12O8wxubpIjvzvtVTM\n", - "yvG8jL9ZcM8sK8oCYO7KYaOvNUVM7ke9zlOPB5tKB5ILb/a4c+dOUlB48+ZNMztPf6Geg47Dffkl\n", - "5Q7zH9dGo1FZEHJ0Wr7Ov8x8P+XtWGfW8s80y4/7VAffJyoGSG4f3rp1K0ySqQjZsdgzXsyrvPti\n", - "9cupuxKqq8Vav98PbaAmDNUG7L2VEqgr4Nrf+73fs7feemvpt9jYUOZI/65sbGxUBKhq8r958+ZS\n", - "GhOPlEei2cXGB2XxzgT4PSWGrUOd48CqaY0AtbBk/NEf/ZGZmT158iR8sAG1mdjb27P9/X0zO4+0\n", - "vQp6vd5a6UI8eIOWSuXDH2t8QJWnIdDpdJbiDAGpxPLsSebjkqkybW9vJz+SdQskdb7v99x3iucG\n", - "Hn+pxMlKQB1DasyiP1qtVtaiQc1jqu77+/uhvyBH4HmRY0txZHmz/AwCCuxFr9qFF1x+06EW/K1W\n", - "y0ajEfpSrniLaa+goKCgoKCgYE18p5MWq7w3HN0Zv6+6s+r3+xVBLt8PuxfVNopBePXVV+3Ro0dL\n", - "x1SyXGaUciMk1+2Oc0Xf69D7uaxTigVS91DR5DlMghIP+p1oLEyC2sH5Mqgdi2KhcneYsVhLYAu+\n", - "+uqraFnMLnaEgGIuY/3vTQQcGyW1q9vZ2QnszyeffFL5/dVXXzWzc3rex/qKRR2HqBrCUtVHm5ub\n", - "oe6op2JqdnZ2At2vxgvAbMFisQjmR1zLyAlREcNVO2sovPHGG2Zm9sEHH1Ses7W1VWHptre3w9jh\n", - "OEgKngGpY2NykctIcR9yXk3+l7GxsRHGBI83zAO4Rj2LGROc3+/3A4MNofRsNrOf/vSnZnbBgH78\n", - "8cdBMsAsfuqd4nG17jjJYcE9a6JCBXAoAYDbl3Pp1YVeSMGH52k0qvn36oC8eQcHB/bZZ5+Z2UVb\n", - "tlqtpHMAcFXMah3ApBVGqqCgoKCgoKDginFtjBTsu3Xi3FWgmIZ13KPZBRMrbuyOer1etng0R6cV\n", - "04kpm3Yq32BMZHgVgtPUbilW/jomClg14ByzeqnIzapMnAdLhTUA6gSbOQwcB+lkEbZ35eVygk05\n", - "Pj6uBILkZ/jI5Vy3mK5C1SOHoXnzzTft7bffXrp2c3NTRu5GuThw5N27d83Mwo7T7GJXjPuNx2Mp\n", - "4Ff1BHD+dDpd0jmoiOBA3fuYCsqY+s2sGnW81+uF57BeS2nAUv0AlmcwGFQYpJ2dndCv7F6uNEh4\n", - "Lpc/xbzngsf9qvM2a5CguWNmUjmEeE0LC9X5Oh+OZjqdhmdwNHj8jmM7OzuB4WBWE8wW+mgymWRl\n", - "YKiDCr7J3zA1P+bO6ZdhUVlHtCqDy9oi1Ye52QFydc6pPJ4Mr59cpV3qGKlrW0jFRHh1Ymj2FsDf\n", - "q35QY8CkDzFsXRRlPJ9pd0y4V0U3cn1TAjrALxyvYiHFZWEqv64sHv5jtLu7W4kvwiadWBnMzql6\n", - "NvOZ6dhMXMa6aMJqcZXy+PP3N1uOzKxiMgGpj2ev16vEVeEPIItqU/FovOefB6h1XhSxJ2pOWQHe\n", - "xGDCOj4+Du2BD/mzZ88qcYbYLJQSiSsan8e7EvjnYjgcysjhQN1CSt0v9cFQ7Qywqdd7FTFu3LgR\n", - "noG2HI/H4XqOcI9FqYq9ltrEqI0SLxrZQWNVzzF+hlqMqHHnFy+9Xi/LsUDVg02APIfkbu44dlvs\n", - "/Lo5hOuduzBbdU7n/lqVuKhzCMO7PhgMKlHpOZEx5urJZBLaGs/lse1TxcTKrJD7TVKbsDoU015B\n", - "QUFBQUFBwUvCtYrNWcSXcuOvQ51Zw6PODRlg0x5277lxSWJxiXz8DY5Ezc/1IujYbsHTwXwvFf5g\n", - "HdTtNFOmrrrdnY8YXLe7VGESUsyLMu3WsZ65O1LFhAGLxWLJrOCfq8ShsVgxZue7Nm/q6nQ6lRxa\n", - "eA7KYLbM5Kj348033zQzWwqHgDJ1u135rqTc0PGMbrcb+lP1Ebuo5wjaY/cBLsNIbWxsVHIUzmaz\n", - "yvuq3NAVVAJoBoTlPtK52bnbOO7NjgoenGeOQ6dgh4+xw+3C/ZUSJafA7BPH6/GC7Do3dIZqX3XM\n", - "s1Scw7PuveVxaRaPw8b1NDtnzlPzPs/lqZhWCqrMsfk2JTbnsqhvB8sa/L3ryuNZIu/gkQOYVc2q\n", - "czxn48i1LvH85OvE3wYgZnHAfILnqjUEvqOFkSooKCgoKCgoeAn4Toc/YHjmRQVJi7mrY9XJK2Gs\n", - "kLGzXVAwvxRb1el0wuoezz87O1tbH4B7mqU1WezWrrJX41m8Qp9OpxUGJFeXtkrgTl8Gfg7rhHJY\n", - "Ni4rzq9zj1e7qDqX5JQguy7IXZ3WCr95RorHp8p5V6dpwr15PHO/+2s58J3Kv+ehWJSNjY3AhKUC\n", - "aeI5/hl+N650Tu12O5Rf6YoUa8BMnWKQ+Fq/y1WBYJlNwHhi7Qa77OcwN71eT4q50ZbQSCFQIWMw\n", - "GITxgfbgNkP/dzqdoG/D+Z1OJzwX12xuboa/eY5BndBfMTZAsQ9+vK3DBLJWDvdmZwE1P+Swxe12\n", - "O7RRKuhnLlSYATXXLBbVPHfM3tWxcql5kdlnFTg4tw7MDPF3wpevbk5V5VP59+p0xv7erKlaN6vA\n", - "xsaGzN3KInj8hrbmeUDpEb+zYnOz/MjmsfNSgr1VY2SoZ9y4cSMMCk7squhqH0nXm9jwXG8qUBMC\n", - "e6esIixXdfKJH3NR1zephSMfV+fxS+rbTU1GCkrMG4stpcq86uIqtgAF/O/8DLVAwm+DwaBSj7p+\n", - "rfNm8xNBo9GQXlEAxzlLxQDiBVxq4c2pGDxl3+12wzHVVyjneDyujD/lLchpktiLlRN2+489LzZY\n", - "uO/Lz++wMilzGVKLNUbOZq3ZbIaFlkqdgYwKz549C22IBUi/3w/1xLXb29uh3bjsufGc/EeJExmj\n", - "HipdFSO1AFKib94EKvC7ivqiL5XTiZrL1LtSt9lJIWbOzZ1XUnNNq9WqfBN4/kmNT4Vmsxnai9vc\n", - "b3JizgapvsYY57LiWK/XC2MRz+KxzdlAfKwwRZ5wVHTuy9xNsYLqhyI2LygoKCgoKCh4SfidNe1x\n", - "lGO16lTxTZgtWjV+EZvffKTyRqOaGy8XKVZjFcRcXFPCxFXjjFymrMwWcV+m3PdTUCaiWHyjup2e\n", - "2bJZaB3zrAczUryz9ffjnSabYT1jqdhW1QZ1JtmU+ZBNSiyu9XGJ6pwJ+H1TZjJ1Ta7oNhXqgvsQ\n", - "sWVOT08rzFer1ZKhU1LMBp+z6lhQovo6KOYKdb9165aZLZsF0X6DwSCUH4xlu90O9+H5wJtqWJSM\n", - "Y71eL1zD0fNxHsYRZ4uIsU74zbcfMxyrRp+PzUk+PhSXNfeeyvSY6vtut1sxu6mo4qocitWMOSzx\n", - "POHL0+l0sh13AK4v2p+v9e3B56no80CMuWIWOHbtKvBR1ieTSbbFwZdpsbiI54V7jEajwkgVFBQU\n", - "FBQUFLwsfGcYqZSNV+3aE/cO15jV5z+qYyHWCTxpppmVmHBTIbUz44BiQEw07cNK1Om01mVgcuDb\n", - "koOqqp1LXW43IDeKfV3dVh0nqd+VK/4qeaFS4QK4/dQYA9RYY9YlpSdjhog1TziWM46ZJVXM1KpO\n", - "B3VsUIwFVFDvF+f5MrtcUF3F2ikGNnatch64fft2uI+Z2ePHjyvXsnMA6j6dTqUmS7GAKvCocswB\n", - "mB3xTF5dEEzliJI733LZUWZcW8fEpDSGMfD3Kad8q+otzfKDvuL6wWBQqSu3uXeK4r9z25fZOIW6\n", - "Onlm8NvIi9fr9SraYBWyIfZd4e+J2Xm/nJycJBmptjr4bYHNPalJPfaR9QNlsbgIZ88TZN3kC6iJ\n", - "JUdwzROBum+u4I29nhTN6yn2WJn8QsmXJzWQLrOAqnupvEiShaIKbIbA36kFJn/0+UXynhmx9ssd\n", - "J4B6SRk+cjiL67ntlbkKEw6beHCNSgECzOfzyiKM2wD/1pm0+XclRq7zMDQ7f5/QT2hzjtek2ozv\n", - "q96plMkLz+Tncd2VswEfYxNXDGyu5P5SJtvcVFIebHbjxQHaI9XmjUaj0kYxbzzlYabmhJzF32Kx\n", - "qMzhdfNLaiPHf3ObqjhNbHL09+DneS9FRt3chbrlOu2o8+okA778/tvk667iYHHdcs2j/P6gnrwB\n", - "z5kXY/EfeVGNZ/nvYa6DkUKjUY1FORqNKnGz1HyrTO1KHpQVc3Kt0hcUFBQUFBQUFFy/aY9dks3y\n", - "c1mtAuxEAPUMtXM1q4rcG41qJHKz1c0QoMsnk0ltCAO+ry8Tjsfchn2dYuXKjSzsd0sxcXjKZKoY\n", - "KcU+MZSzgUJqZ8lsh2czVxGb55g/WbSIvhmNRiu75bKpyu+MOKZZynQTo+eVGTwXPiZLLGwCcuyl\n", - "8icqbGxsJGMAKUZssVgs7a7N4nVKzQksXvUsy+7ubnhmaqe6jigd6PV6lQSrZ2dnoS3xfNXmvV7P\n", - "XnnlFTMze/ToUaWcbKb1dVPhQ+ocC9ScqUIT8FhU7vs5jHNdmzKzmxO6gEPZpCQGLwN+blXOOLGy\n", - "qDZX+Te57b3pdBUWCO3Kpkc1TmLl5DpxGZgBTslN6rKd+Ij1zI6mvsfNZrOSQD02XorYvKCgoKCg\n", - "oKDgJeHaGSkPDrCFsrFgXK1IlVCdd3S+jqxBYBturhBc1Cfrmtiq2K+o1U6XRZq55WPNQ274g5Tu\n", - "C+U1q9eOqTZXWhWF3NxzKbaO3am9uJWfy7vYHMZM3Yd1aWz3922uIrTH8j4qnVPqHVAMDcY4t4fS\n", - "m9Q5V6R0Z6k8Y2ZVPVe327UbN26YmdkXX3xROZ+REt9y3fi94MjYKWB+ULqjlCB/f3/fnj59mrz3\n", - "ugCLMhwOQ1uCyVOZDVSbt1otu3//vpmZHR4emtl5vj5cy0zNqg40ap5V7AjAbDWzCoByEqkLqLwO\n", - "e5oDtox4zRWH2qlrMz/+cufqWKgDxe5xm/r7x1hF3/7z+bzitDSbzSoRxheLxUqi/Muijn3Kxc7O\n", - "jpnZUtiPVEYSZsRU7ltYLGKM1LUtpCDa9OLXuo8rT/o51KSipvk561C6LJwzq/dEUC9DrmmHkTKD\n", - "xQZgaqJLLWhW8ZQEVD1TZY0t1NSC1qdbWSwWWYJnPJvvx5PWqnFrlFeHGjtK0MxRzHmRgJcev/FE\n", - "iHhI+Cgytre3K8dzk2XzpKmSKq8aKZnBGyFOvWB23lf37t0zs4vF1bNnzyr3UPUYDofhIxeLr+M3\n", - "YWb1sa7MdGRzZRLtdrsrfyRzgQXmfD4PDgqqbwAVSbvZbNrdu3fN7GJsP3z4MPyOiOmxJLyp90HF\n", - "quN3atX5IsdEzqiLMcflg6MH6jGZTJKykVScq5xymS2nhVKpSXixmCIE1CaAr0H5eCzmAnPmeDyW\n", - "30U1l/H7gOcCV+GFx45U65hWfVzHXM/gmPMCvDoxP0FCU0x7BQUFBQUFBQUvAdcW/oBFcR5Y8fIu\n", - "Qa18VX47z3bwLjUVZbUuh54qd67ZRTFECiyWU3mVlDs47zD8/RWdrlzhzUy6i6YEyikROf+eCimh\n", - "dmaxkAjK/TjFIrEJw9eD2Y7UDjdWPoCT3KZ2Unj+yclJYB2++uorMzs3fcF8c3BwYGZmT548CdeC\n", - "cVImwMPDwxBbCMLi6XQqWQXldODbj9vJC1/N8mP88JjFM8CEjEajEJH7Zz/7mZmZ/epXv5L3wQ6d\n", - "2w9MA9pC7SjNlusOkTYzX3589vv9pXya6t5m5+9ZiiUEciP0czgFzi2W6hs/73l4xpSBOYujU6tY\n", - "ZQpqxw+o0CMM9GWr1QosWp3Z3I+3VqslQxx40/10Ok06N6hsBnXmbX8t15PPS8kh1Pn8rnrHIWab\n", - "Yt8VJar3An+23qCvO51OJaxJs9mU9/PjJBXbzsM7pajQPrmOBWzeVjEU8S1st9uVECv9fr8SB43H\n", - "LFioFy9e2IsXL5bKnMNQFkaqoKCgoKCgoGBNXJtGChocZmHMzlfhuUzIusjdLeaiTmye2qnVsVl8\n", - "HsDskb/Ga5uURirVlqmdmWq3OjYGWGWH7sscy1Gm6pESKPP5/lpVj5hQ3fenunaxWNju7q6Zre76\n", - "v7e3F3ZUubs/sC7YTTFifeTbKqYZ8EztOq79GLNbW1sVfc6DBw+CgFuVnyNXY6estB6LxaISNsBM\n", - "BzD1u/Z+v5+dp9EHWlWoG++ss/T6z7Ozs+Q7xYEllTAWGjQwGs+ePatoqfr9fmhDHp8pZw0VEZzf\n", - "1ZQWiJmuy4QayNEbdbvdMKZRx+l0miVoV8gRgvOzzZbnH8/2pxxXzM4dGszOdWypoKaNxkXwVWZ8\n", - "0Ne5oVXQRrm5+RTqslTkXG+W/tYwUtkCNjc3JWOdE2Vd9TWsQd9JsTnEib4R1CS9s7MTJlicHxNa\n", - "KupPmQA9fXrZ9CLrIraQwuSPOsbKlorfEfPayxGCx7ywVkUqPhW3pVrwKbE50+OpCYqxqqBcTYY5\n", - "3ntmy6Yln7piNBrJ9vDlOzg4COY91JsTz6YwHA7Dh44jXKc873ITeHPZ6zYHZuft4hcdyqvI7EJU\n", - "j/PUJLqzsyMXpdzmfkzgmWbLphIf/TvmPanGwv/P3pvF2Jad52H/PnWGmm/Vne/tZrPZElsSSZG0\n", - "RFmCJYAx4AcDAWLkQbHzIBhwAgRIEAd5i/wSIgH0liDIgwMEsYMkD0JsBDCch1gOCMWKRFoGJTAi\n", - "uyVSIkX27eHe233nmusMeaj+Vn3n398a9qmqria5PqBxq88e1rz2+qfv90EOsc23RLgaDoehfljr\n", - "Mado9CtHhql+un379tz79vf3Q1343TjoY74cHR215jSnNeJy/UdzMBi0HIZjfYDgCphGmQW+K/jQ\n", - "BMTmWAnOS8hW+1jp3qrSM/HfXrjzf/v9VQmiqo/6/X4w7fH9KFclLefy/beIy43V1az8wBdbT547\n", - "bm1tLXw/cW5gMzwLLv7bEYuOBXNAdTavqKioqKioqDhnfGx4pFiS9KrumCTpT95sdlHajlxINNWv\n", - "9ay6nuq7RRi/WTOhTvyqvJS2hXlwfAirr0suTNQs3lepPsqZLdXpHyg1PQI5vhfWJKi5A5RqaLhO\n", - "vq7cp6zVwG+Q/BTr9GQyCSHs7777brgOR3VIWawZ8LxoDCW1M7q2VyFXBmumbty4YWZm77//fus+\n", - "Xt+K3gLvwW/cXl7/LP2ntBOKj8q3i6+xJjSlRRkMBkneN6bEwPtSzutmp+OEfmFNE98Dx36M55Mn\n", - "T6RZDpohaK6UqYPntlp7KIMZ37H2eH4qDSzGemdnJ7nvqCAghrI4+P0sZnryDvmxDAeLIqat9P3C\n", - "FpFSZvN+v59cs1grBwcHYayBR48eJekWWPvI2kmzk7ntTWfKqsGuJQC7nvj2lKCrWTbFJ4n6mLUd\n", - "6s3mNdnYz6tGqqKioqKioqLinHFp9AcefGpPSXo4CbPGh53mUgRhfJotcTyM+cOUnKBjrNgqpJMl\n", - "OA/W0KRyXTFlBKROFSKq2qekTrC58rMxzYuvq5JYlaZJUTr46/4paxVhAAAgAElEQVR97IyI/lBh\n", - "wmpcU+PAyDk5KsdyBdQfmpqNjY2gTVJzHA7jx8fHQRPF4cigTICUdXx8HMad533K4V6B/VxiZIBm\n", - "6XBwlauO1wr3mWdKZn9H1tChTVw+fKggbfv6et9C5TuSojfxUOOkHLx93+SIHVl6LwqvJt8N5WOo\n", - "6gIt1P7+fugvjNN0Ok2Sm/p68t+j0ajV3mfPnrV8X1gry3sXymP6GFWu3zvYoV3tbSmSS7P2XIk5\n", - "kZdqSEr8Jkt9W1dWVsLcVv2h6prTIHMwhGfj51yW2E8Gg0HQivJ69pQIMc2l92NV/Zjrj9icxrWu\n", - "/mu8n6B+KgCCNdNK251D1rTXNM0/NrN/28wezmazn//wt6+Y2X9oZtDN/4PZbPZ/fXjtN83s75nZ\n", - "xMz+/mw2+5finbPl5WUZocfqSl5A/uAzHo/lwaLETMGDft5Jkrl8tXGXRMyNRqMwiNwOqOyxoFSE\n", - "kwfK8czgvtyUaSiFXFRXSs2roCJ9YiZSLHBvUkC9zOZV9V3bqA5/sc3XH15ms1mrfr5eMcQS9qai\n", - "xXCAGI/HcqMrYYFfWloKbU59XEsjNXEvQyUj5XHzTuBmp/xaL168mOPBMZt3wp/NZuEwinKUA7li\n", - "p+/1TpP4LmLaWYQh3+xk3FBOKgqQU2ehLJW6o9/vBxMwm87QD9xXKagoUJS7vb0dIi+5z1S/4Rle\n", - "e11NyMoEpUyVzDuGcegqVCwCXtOLlqfWlD+ge+G03++HcUJ5h4eHrWTpw+FQCiqqX1EGC2h+rqyt\n", - "rYVnzqNflYDe7/dbplh23WCXDNzno/L4t4ODg1DnkoTWHudh2vufzexv+vea2X87m83+yof/4RD1\n", - "GTP722b2mQ+f+YdN01TzYUVFRUVFRcWPJbKmvdls9v82TfOquKROZn/LzH57Npsdm9kPmqb5CzP7\n", - "q2b2r/2NBwcHcyp9nCJzJ1zFM+FVinOVbJqW+WM2m4XTacrhLgelXVAM3ip3F0tq6ANc45MyaxIg\n", - "BbJkCAmD26ZO3KmcXSzB5dqpVNfMWmymTW0p+gV+lqE0USz5o+0cnKBU/968cHx8LOkUPJTpMdZP\n", - "at5Cakb5yuGRzX2o0+7ubmsMl5aWgsYC7WBzAGuwkLT23r174beS+c3jq8ASYsm6YU0y1uDa2low\n", - "H2Asm6YJ8xdjurm5GfqFmd4Rsg+W8q2trTkpG/3lGdAZo9Eo/I7xVbkHY1BaNox1zmEcwDyI8eYB\n", - "aq3k9ki0HVheXpaJlv27WRPKJjFv/mTzHKMk6CSmuUpB7eusifKaZh4fTkDs1zLnB1TO8GyiSmnH\n", - "+TfMA9B58NwFVMLw6XQaNIiqXGY+ByaTyVxSa/zGDPlmJrXbZqf9hfYylxrW0XA4DG3Cmtvd3W3l\n", - "0OSxVHk61dri76J/j5pfo9FIZvDA32pdKK0TnznA2YW28behy5ngLNqi/7Rpmv+vaZp/1DTN1oe/\n", - "3TWzt+met83spTOUUVFRUVFRUVHxscWizub/g5n9Vx/+/V+b2X9jZv9B5N6o2MGnRT5t+xMhh1ar\n", - "cNqcgyznl8L7UbayD+OEmyOKU6GfzNSu/JwAvHc8HgetE4d2e2brlZWVUD9IGE+ePJF0DyxNAMpx\n", - "W4UDK+R8vHz/K3JDDk1XfjIq/FRBadZ4HFIMxCxZl0gbsYABICdZQ4MIPwZ28AW4vawl9ZLUaDRq\n", - "5cva2dmZ8x/CNWii2I/ES7Mxeg6/BpSzPtNqqGdZC+l9EQeDgfRv8b4lMc0OJEesmffffz/8bXY6\n", - "P/g3D5UXbjgcSj8NvE8FqkCDcHh4mJ23HihL+aBweYqeIwX2kUJwQoxZH351GEtug9LkYb7HNBwK\n", - "eDfPF8U0z9pJs3lthpqn7H/onYgnk0nLx0u9I7a34/dFaEE4GArt8WPH/rPcXqVZQb/w+mcop3ZF\n", - "Ns3ZLnAPrqO9Ozs7YWxQh6Ojo7lgGbwX+xP73rKWFUj5XPJ+rDIq+N9iawy+wzzPsQYwx5guiR3L\n", - "oanFb0xbUuJXCix0kJrNZg/xd9M0/5OZ/Z8f/u87ZvYJuvXlD39rwU8wrrTvQJ5YypExFSHBm6FP\n", - "0uihzDilamgfoWU2n8oB71NQySDVPepj6J3wubzcYYGfVZFyXh2rnHQnk0lrwikTETsFcv3xvkU/\n", - "RHiPWZ5bJJVuJcaHVVqHFFRkG//mDxEIxOB68qED6uhHjx4F0wFMXpwKQzkjA8qJlQ8JbA7164UP\n", - "mABH1KggETZbAtgAnzx5kjRX5ZK4qrmTM89xklKU4Q8IXEaKE24wGHSev4CaQ6urq61DCwtAub7y\n", - "3FfsxM4HEM9zxQE8XIYf19zBQu2ZLGDiI8wcP6gL6scRqSrBOLsy4PDC95eOhxdE19bWwpxIRfmy\n", - "iZLv8eXGojJVXyozFAvc3sTKexavEb/vq/FiExb/hvmGA9XGxkY4kGM/4TmmonVL99TU94lN7Vir\n", - "4/FY7mk+5ZRZ26TKCa/VfOI9y6eQaZrGvvKVr0Traragaa9pmjv0v/+umX3rw7//uZn9naZphk3T\n", - "fMrMPm1m/0YWTARpFRUVFRUVFRUfF+CwvLS0lD1IZTVSTdP8tpl92cyuN01zz8z+SzP7t5qm+aKd\n", - "mO3+0sz+IzOz2Wz2ZtM0/8TM3jSzsZn9x7PIkTSltks5qEGKHY1G9uDBAzObD4X26tHpdJp0HlM8\n", - "MjHuoRhYWmSzYEloKPPDoL1sAlL5zQB2rlZO0zF+Ey9hxjQ5nPATbWL1ObeBcXR0JHO7eS1BzJk8\n", - "pdJX0m5KAmI1booviTVmShJV13hsUppLmKPYRK1M05DyXrx4IWkAMB5QR9+8edMePnw4V8bq6mro\n", - "59LQ5JhkFmvPdDptaSG571lDjP6H2ZqlR/zN46HajWvME8dmULWuIVmzRpqpDvz+w9ooNlf4fuB2\n", - "crLnRaHm7MbGRqgz5zcr4dBZX1+XWkwvjbNmSEElBS41cal9R3ELKfMhOwL7pN8q8TDvZzzf/dxf\n", - "WVlp7ZHswI16Md1DjnXcr5VY/le/3+aoYNR3j4NSgKWlpTBX0ZeDwaBFA3BwcDBnuvL14nHAHoR5\n", - "x47l7KrC31z86/u3q4bfA+1nM38uk4fZyRpAHZhT0VtToHUzOx131lylApFaZedumM1m/774+R8n\n", - "7v8tM/utbMkVFRUVFRUVFT/iuLRcez43F5MmKrZi5eCYcgZM2XD7/X5SWu+az4exCNlXimixKzwt\n", - "hNdsxca7pC9LQ7VVOUry7kLsmEKq7sp3jOt6lvmfegc717OG1TsyTqfT1nzf3NwM88eHHjOGw2GL\n", - "xoPntSJVTNWZNT7KRyrVVyqkm+cfsLq6Kh2QFWnqrVu3zMyC5hnlmGkS3vF4HJ5n7ZNfiysrKy3K\n", - "EbPTkHXURTlp8xiyRiKlRU9pxFWgyt27d8OYMW1BifPzF77whbCffP3rXzezeQ0iaynUeDKpJf5N\n", - "aRjw2+bmZtijU0EM0+l0zmkZdVFA/3LWBv8diOV4TPV56hoHyqj9LDUGm5ubc0EEHuzjhj5KEXjG\n", - "2ua15DmU7rPKKd1fN8uT13YlpzWbH2Mz7SutsLGxEb6bi/jNAqxhV75vsFjMIoScl3aQ8oPrk42a\n", - "zUdhvPTSS3jWzOaTufL9fmA3NzfDgKooIcXMy6pYpZYFUoM1GAxaPFccocNRG/4DNJvNWtxMR0dH\n", - "weyB33Z2dlpl+371iy7GzO3bwiYTFfGn1N4MFfHgN7BYXVJI8ZaoD3PMvNkVXcefnfW5f/x7VldX\n", - "w7zkaDb/br6PgWSk+OizozpHpHkzVOkBttfrhXYowSfXlypCj1PcmMXV9Pido1lTDqqz2SzMO7RT\n", - "mY82NzdlVCCeRRm5TRh9wOZ5ZQ4oZbvGAWNrays4+HaJkDMz+/KXv2z37983M7PvfOc74XcIeKhL\n", - "ju8qV2e1VwKpOcb7hVq3KgosB2UORn1w7ejoSCYPVsKdilj172VH7dy4+qCo0WjUWsvcLxxl7E13\n", - "/B6OiuX6qCTYuI7v6O7ubjiAqH7L9T3WCgvqXojhOcFpgUoOORzdy4d/vCeVTk0FsSnTo+LmYlcQ\n", - "djHJHaQq63hFRUVFRUVFxYK4NI2UWdxRlO4zM23u62IWglMZTsql7MOljs9mi5uIclqZlITQ6/WC\n", - "8z2kCq/N8BqpGH9QadmlKlOYSUodBXOSUFcNE0u7vtxYWG6JtqaUIZmd17nPSs24eAYS9e7ubitR\n", - "L2v77tw5CaR97733gvZBOeGyJFnaB6l+UZxAikMnprVFe1LzCnP86OgojKUyu7E5VbHss8TsTS+s\n", - "tVOJblNrYWVlpaVh4Pty8wrlYXx7vV4w5ZbucdBM/tIv/ZJ985vfNLNTsyDXRWkIzwJlZupqVslx\n", - "mqlrKU1nLr8ia4pVMInneGLzJjAYDMK4Yr1xrj0EUsTapfaQlAM10x9gTqyvr7cY+n05qD/aqfbg\n", - "VGAL7xPgrFNs7THtng/EWESrnYN/j3Iz4L2Bk3mrPsda4uCvx48fV41URUVFRUVFRcVF4FI1Uu43\n", - "M9POnDknYfav8mRaCsxhVSp553CWZyERoO7Ly8stgk8O6YQE9OLFi6DxAUnj8fFxqMv169ftjTfe\n", - "MLN5ibGELFP5Q3Fd2Vk35bzJ/VIiqTIhWte+ZDoIljRKnR9L7lOSrcrrx/56TBTox1A52l69ejX4\n", - "yHCILofCA379fv7zn7c/+ZM/MbP0nOR1pvxhuM5+rSjpUznGjkajlr8RS4upPmDHd4WXX37ZzE40\n", - "Uxzi7EkGp9NpkWZke3s7aBHYMVtpNwDM083NTRkMUILhcNjyLTk8PCymrgBeffVVMzvZJ7797W8v\n", - "VJdFwH4/GOvUN0VpY9j/T83FRQJ41HfCa15iztzKvzO1N3BQhNpH1TosddJm7Rie8VpS/nttbW2O\n", - "rBTv8O1UfoKbm5tyviu/P/YlQlmp/Rr72HQ6bZXBvmCchcS/j7/bvI9Cw8T5/9BvvB/4/WRjYyO0\n", - "AxaC9957T37HPrbO5p61FAMdWyyeJZwZaAEeaEze4XDYou2P8Rd5M0TMpIiFllKPLy0ttdKeDIfD\n", - "QF2P9z59+vRcItdiSEV4LMKNdBYn7tJEt6UH6NLNKFU/5eDPrOIlJgd1sFCHU1WX4XAYPhS8sd2+\n", - "fdvMLDgOMzgpKD4OzAmDuc9Orn4j5TqjTtvb2+EAB8Scg1MmInbwxAaKtvH6hilreXk5vIcd7/2h\n", - "mBOy4t/RaBTqv7+/L51gAY5EQ5+zEz7GHdfG47FMEcN9w3VZBNeuXZtL+bMo4ET8+PHj5OHvvMFz\n", - "SCVzTu25uP/u3buhDzBPlpeXW4fTWMBFCqVjlEsHwumAzBaL6AZ47S0SIY5nNzY2QvsgZMWEQJ8y\n", - "6fDwMPB0oQ5+7XsgGfrbb7/d2u9WVlZaAR6xyEbvMM7pgHh/xB6Da10O0ueN6mxeUVFRUVFRUXFB\n", - "+NiY9jiM00uTOf4iem8r9HJ9fT2cfHFSZu0T0FWVzvU7i3QSA7QJkIS89q0UXvLJaXRYgkupmlNt\n", - "jnE3qfuUJKISti6qCVPcSDENnG8vO0vmnCT9b4pHKgfloM8JaJVjty+fuaWYqwZtS0n0w+GwJVVy\n", - "2LBy5kyZPLjvsb6vXLkinVVZg8zlM3Jm1dls1jI98ztZ+5TSUKhxOA+ocm/cuBF+Y41AqZYX9yHY\n", - "QNHCxJ7z7+b9k7WPPpBiOByGcpmJ3L9PBRMpTejNmzdDeW+//baZnYwBJ6b25WIsc/2D9rC5XHEl\n", - "pSheuM6suSoJHGmaZo4brQs8ozrqkMqROhqNwnxHn7548SL0F5vBfMDG5uZm2GOYCR/rgC07ninf\n", - "t9ksPjalLh4l7gMxYA2z2b8rmHcS/FJVI1VRUVFRUVFRcc64VI3UyspKOJUq2zROtrdu3Qon6Xfe\n", - "ecfwLK4z4WZXfwUOiVS5jLzfVE7K4meVNiNni4/h1q1bQZLnOrHmzaytufIaKeX35duC57x/gfIZ\n", - "8kzqZt0kLyWdKIdN9ZyqC4BrzFQMKMlGjWu/3285eKo68/vYvwth++zrUUK0ef369SAtqnLRz4oV\n", - "neugNI05skFIs16L59/nMRwOW/5LXFc8yw7hHJLt/R/W1tbmSPxS4Dp7ot2PGkpTxuHxvl5XrlwJ\n", - "z4CuIEcLw8C74VP3wx/+UO5FXgujtGOj0aiVVy+nTU35YHaBn7OsbUnRdHBof9dvWYwGJQWVa4+D\n", - "Y3yeO567uL9p2nkTVQBUjBJBEXL6d5mdfmtWVlbCHsT1OQ8fP0BpGrlNi2iEYuWYdR/r5eVlSQcD\n", - "DRzOF+PxuJXPczqdhqCbj52zOf7GxgeOir29vXAYKE35kTJB8ULLoSTVyHQ6lapfQJWF+rEjNVBq\n", - "tuRy8O/q6mpQK6PuGxsbYdEsLS21IiBj7/UO3moz56Sc3Fcc4cXv8GUoB8uUGr10oeeCCFAvddBL\n", - "HeRKOa1UGUdHR+E+Ns8xSzfaBkZrVrWj7Zy41Sff5cgZddjg9pZyZPnoGfxulv+ooh3YlDi1Sw7o\n", - "K5jm9vb2Wu0cDofh0MnzhTfrs37QY+CIWi/85TijwEuzs7PT6v+1tbUwJ2DCWsRV4LXXXjOzk4MU\n", - "kNrHeO7gw7JIpgEOmvCHL3VQUYl9Y1DZLlKCAz6KzICdWsvXr18PeyVHlaYOsakIQrW/q+9P7ABX\n", - "ut+d1+G1K/jwiv5axL3FR/yp5OA5QHDgdG8Yk+Pj41ZyeGXGVQfaGKqzeUVFRUVFRUXFBeFSNVKx\n", - "ZMQ45Sp24q4n142NjXAvTDwq1xFDmQdi5iWzPOt56h1mbY1av98PUr3XAHE7FAOzr4PXminNELeB\n", - "1bJeMlL5oJRWic1uXG/FC8ImLrN5TYSSJhSURlLx0bATsTeTcbJKlKfmp2LN5X7mkH0/B5TmivuE\n", - "zbNKkvdSlll6DqZ4wI6Pj6X2QUncqTWX0sA8e/ZszgyJ+zA2nEPLawtj5q2Uc3uMciIFNT/Z4Rr1\n", - "Rl1Yy8tQfcTcOWbagX44HAYOOGhHSukLeC5CI/Xw4cMwZ0sdsXMaEJ8rjpn8OTAIaxh9pRyDlQko\n", - "Z7rHnOz1enOa3BiuXLkSHKS5LKX99vvA/v5+a+/g/JVYo8+ePZN7SAm4bYpuRtG/MFhj31V7ifK2\n", - "trbCPOF6Yww5wMQ7lue0lphXzH3ILide08x7Jc8J1naala8LBsZmNBoFUyf44rj/ct+aqpGqqKio\n", - "qKioqLggXJpGCtKUckYFcGLt9Xot/5vV1dVwaobkt7e3J6V2Ub5kwFbAaZylaK/Nun37djjdsw+H\n", - "so37DPPD4TBI/5wDyte/S25B4Nq1a8FBXUnqKf8g1rJw2H1XwktAOSPH2gRfG0gxMZ8C5fOEuvD4\n", - "KqJN71StnOs3NjZazvvr6+sy3Nn3C2tHcn4E/nrMyT2FUl8vtFtlOWctFBMQeuk553eI8RuNRpLq\n", - "wEPRJKgciTl00Uix3yLK6wqsZdZSMVs8NKAPHz5M1uPGjRtmdsKqXAL4zR0fH4d9Bz4j+/v7Yc6q\n", - "+cb0EH4NxAhoU+ubtQa+DweDQStk/7y+N0xzo96tNNKl7/XBM4qRnOcka11RLq8lr1nhOqk5ntMU\n", - "4n2rq6utdTMej6XmH+Vw2XgGWqimacL7umhFU3UFoMnb399v3QuNI+pqdrK2oFXMMabjGezLi8wx\n", - "vKPX64U2Ya1MJhN7/vz5x9PZfDAY2Gg0KmbzVZFS+Du10a6vrxexv167di1EzeTQdYNX4M2JD4xm\n", - "8cUPp2VM/BcvXsjkrQzvuB37mKc2S440xCaOSV6alFOZEWOm3VKoReyZ8sfjsWThTh0I+f24zoe7\n", - "1AGFWbgVd5cviz/+fPhTmy6nQPB1VylYUmDWccyhra2tFpu0StXS7/fnTCExrK6uhvvQ97EDiz88\n", - "x+rs1xxHPZYepGIfFgWMAzCZTFqJkTkaD2PNaZ64j3yaktXVVXv1w/Qub775ZrbuZmY/9VM/ZWYn\n", - "44aDKqcSSiWyLU1arExOAJt7OMIsZR5JRfTyh3QR9mplPgYwzhyRWHpIUOscY/WDH/ygcz1LEeOn\n", - "8nxUZ3U2L0m9w2uFDxveFMfmT/4mLRLM4++Dq8Du7q4cYwDzYGlpKbSNv/2Y+/j32bNnxfyM1bRX\n", - "UVFRUVFRUXFBuHT6A5Ww0yNmTqH3mdnJqXFRlS6/B/9yaGWsvNg1Nj3iVF6aJ2ptba1Yeso5vHuK\n", - "iJy2gqUUz6SttB3qN8WrxJo3Dk1WJlbFz+L7vJTPSznXc55GaAiOjo5k36j5xM7U3A/87+HhYfib\n", - "zbleo8JaFqUlYw1Caaixl/5zpkJ2wleaoVS5LOWlzHjcNvyNf6fT6Zxjr9nJ/FPrTGlU2ESlpHSv\n", - "8WuaJmnK42ATn2ONoXjiuMzU3opn79y5Y6+88oqZmX3ta1+L3s+ARur+/futRNYxZ/gUuJ9VoA9z\n", - "7OBfzjqBd/isEpPJJLlH8tpX2uVFM0ewRhxrdW9vrzXmisNtNBq1XBBU4A23g53wvZlxNBq11reZ\n", - "SZOc2rsAvnZR9AdLS0tzloNYvXIoHbeuPFaDwUA69p+FB8vv28fHx2HOoB37+/u2t7dXNVIVFRUV\n", - "FRUVFReBS9dIeWxvb4cTJvxwWGrHKZx9F1Jhp+zPwZK6l9Cn02nRyXY4HLYc30upDpaXl+ecUVF3\n", - "JdmqUz2egQ19NpsFrUguVLZUelFSgpKMUlrAGOmeChf2/gCxfEolzNwxpOg0GF4jpHy9mLGeCTL9\n", - "O2P+Ol6KjUmd/r4cqzy3wT87Ho+TjPq4NplMgvYBmg72CfL0AGbz4eBcL9zng0h8/jB+r68TO0Gb\n", - "zY85NFeHh4dzzNa+z72Ejfv8+lxZWWkRnjKp6nmwPzNAQHz9+vWwVlJ+N5zfDHQJ77///pnyfHoW\n", - "bs6rx4BWDv2jaGG435WGK0X0G4PXXE2nUxn4oHLZ4Tr8Sp88edIaw+3t7RAKn6tHyneU/SIV1NpT\n", - "WrmcJse3c3V1dU5rgvcqH8rU+1KBQzxeyrrABMToa9wXC7Lw9AelmQtms5mcO13pcjiADGPG5wvV\n", - "/zkfqUs7SDVNY2tra6ETeCNWETXKWZGdFM3mVck5x201iTDhcW1zczNMDjjhIkUN3zcajcKHB87Y\n", - "w+EwmDoW2ey8o513Ak4BG+2LFy9kqg9fhopYM9MOoiWO8U3ThLHhRJeeF+bg4CC5yaTMeHxYK40m\n", - "w4Jk7ivUnz/c+MjFTFXMVA74TXA2m81Fk3ZBjGdGpexRUUK+vRyNAzMez08Gxhwfz9LEvbmPEo+p\n", - "d7iOgQ9sZvFE2kCXqD023wPqg3FRwLwfDAbFATcpsOle8RCpj7RK0u2f5T6NfWDwLs+vFuu/EtNP\n", - "LILwPDEcDlvfC7UPMZ9YzgWhBCr1GH/UmbdJHRK5zlhLHHmrgiHUs6nE4115ExU++clPhu8X9oYH\n", - "Dx6EPffWrVtmdmLeRtnYE/b398OZYJGAJH/Qm0wmRe4+S0tLYd/kA9ru7m417VVUVFRUVFRUXAQu\n", - "TSN1GeVWVFRUVFRUVHRF1UhVVFRUVFRUVFwA+vlbLgbnEbpZQoz5UdjafXlmcaJK77yqHBmZXbdU\n", - "cxfri5SzeVc27PF4LNvlc3HFHNU5lxzgSeEUXUFu/Dgk3jN352gDFL0BO7YrB3XlO+ZDvzmg4eMA\n", - "lWfsPLXCZ11nJWOdq/MiufY+CpyHz9VHvY8BOYLXXDCLojwpoYU4q3N/1z6PBX0A8GnDPlFKJsl7\n", - "iHICX2Ru5Bz8gUXpI3I4771DgQPMVDtK/WJT45pbU1xurr2XdpA6D6gDlF+IpZw7w+Gws1Obmryp\n", - "D1Upu2tuE1Es4YuwrHN9/EbBUM6mfADxiR/N2gck5gABFD+Y6ktVF7zTbN6ZGzxIPJY+ujIW6QOw\n", - "E6aK+vIfjaZpiiNQzgO5Td9DRUJ2+RCUbPZn2VhjkTKKUfs88FF8CLiM0nRUKcT4mFQUbaw+qeux\n", - "+2N7UemBNbWXKfb0HF9TaYoqjiYrAQtvar9T7P5KcPTva5om2yaUm0rFxNF4qfrH6uDbxFGgXecl\n", - "l3WWg28qGlxxBzJSSdq537h/U99jfof/npXM9Wraq6ioqKioqKhYEB9rjVTqRMoJG5kHpeT0b9Y2\n", - "z0wmE/trf+2vmVk5w3CK44cleaWCXUTNmwpDVuDQboaSInyuMIbK7cSSng/BH41GrXD8Xq8X6AIQ\n", - "sruzsyM5nrwqN9a/Xtrc2toKYbYoA/Xh9rKJUrWX6TeUhkn1f4qn6bygpNgStXZMkxh7b+rvGFIc\n", - "WLn6ndd8L0UXbZTi/eraHzFtUkldSjWDF9H/KZQ8o7Ryk8kka07Hfb6sUvPmZz/7WXvjjTeidfG/\n", - "cxmlc405rVIYDoetPUGZS/ldShOSM2EBOV46XlO+/sxzyNe8dof7Eu1QWu/ceOXmMb8n1h61zpqm\n", - "aSXkZq1nqh9L7/O4dELOj4Kz5TyhBimGErUn868wuqrgYxu9V5k2TdOZ9ySVcPT27dt2//79ud9U\n", - "cllOiOtTz5jNmwI9Nwr3s7KXM8Ebxob9sOBDhcOd2pRY/Z1LaOuTpPIzqOtF+OuUrJUuZqtF/Spy\n", - "HyUgtvGpcs9jHzjvPudM8CxMlH7QzsOkV3qQWqRPz+N9OR8pBc8jxs+W7k2p+qnDS+6jXpqIHvVj\n", - "k91Z0tsoN43cs137XB3ccvOz67zb2NgI+yITaXuuOLV+lOlRQX1XYu9L+UPl5rbax/D7rEbtVVRU\n", - "VFRUVFScLy5dI1WCWOQIHIs5mWZp+gGFL33pS2Zm9qlPfcrMzP7pP/2nyftLIwdwUlen+6ZpJ1CN\n", - "tXcRh1F/Co9JZrgOExWb5lKSHif+VFId+mg0Gs2xnJvFpQ+UB8l1b29PslwDYJN/+vRpK+nu2tpa\n", - "aAtLkCr5cmmkpC9DSUpn0Y6ctzM0txd1Wl5ezjKLnwdKpFl1nfugVLov7fNY/6bSMqWcltWaGgwG\n", - "YU6UjmVpFG1X013s3vPSAvqyUmWotafWT66e3FcpB3RVVwdhQ/IAACAASURBVH6HH7dYn6WsC7w3\n", - "eXbymIk3Na9i7VEmtq5Q5apE4Apsfk2txRs3bpjZSQojNXal2r9SDbwPlCo1z5bu+fiOVo1URUVF\n", - "RUVFRcUF4NI1Ul25LnKcRimocFu0PycVAVtbWy0NR85BOucrBY0KqABy9eAcQLnxK5VelBYIUFql\n", - "1Dg0zSkdQI6GwksnPA4sPSFnE+dkBFhD5MeVc+hxmb6P+/1+K+xVSSycFDil/fyofaTUNSV9pvzd\n", - "cmXk7vcJqBepc9f9wEvqZ9FILerrwrkg+f7Us2dpOz+LZ1Kh7DkuqK5YRDuiND08F33fcxns31na\n", - "l0rz78s3O10jKFeN/Ww2a2nEVT/nKAy4bqlcpLxu1T7bVSPVxS/J79tcnn8+dg14/fXX7c///M9b\n", - "9/k+579TPrDT6TT41+byU5ZqclMciIycj9SlH6TOAs/x08XjnpMZ4lm8786dO2Z2MpHff//9TnXi\n", - "SeIH5datWyGqLBUlZ5YmIVMTn5Pw8iLuwoVhNv8xwYcRTuFcV2/eYsQyvJeQQg6Hw3Afmxd9VBw/\n", - "e/PmTTM7yTauPob+N054zO8via5ZWVlpmcTO27R3EUiRiCoC1dQHPmbK8mPexTH7PByoL+IgVQJu\n", - "OwdNqKTAKQdlVb9Sc98nPvEJMzO7d++ebNeiB6mcM+8iZqac2aukzihvaWlJHmr8fqGcjblcHqsS\n", - "c66ZJfdHRsn6Ufcxj91ZDlLq3fx8jnOr1MTmeQJjnIQlJtbScvk+Pg8o53o2L+NfX0c175DguZr2\n", - "KioqKioqKiouAB9rHimAT5MsOahTbKmGDRIkpA+z0xM0wjdjJ3SYvyAJjUajoGpMSTHPnz+Xp3+l\n", - "WfMqYlZrMz+UksYW4d1RPEhe6mQojVPKbMRO6SkTq5kVaYsGg4Ftbm6a2Ykmymw+JJnv8/VZXV2d\n", - "S0mDugDKGVL99lFwRyl0DWvngAaus5L4ffh5jvMGGI/HrXIX0SR1DbdfRKMeeyb17lz9gVh6JLP5\n", - "fitJu2J2Ol7Hx8dJ5/Xt7W0zO9FIee3DeZr1YuXnwP3n509OU5cKxR+Pxy0NF5uZmUdI1V+tf3wT\n", - "eN9QbU5polR7lVaI90z/nrPQZnikvpX4FilzqjJNmp3uh6j//v5+69s3Go3sc5/7nJmZ/fEf//Fc\n", - "mWZ5U7oqN/WdSq09NoOzGddrsyaTSWibytgRQ9VIVVRUVFRUVFQsiI+lj5SXOhRrqrovdq1UeoUj\n", - "m3cmz2E4HIaTMqSUXB6fnGPpIk63Zu02ltjTm6ZNMhrr8xTFAcqISRgpTQ8wHA6D5ko5L2OMptNp\n", - "eE+KLFH5Q7F2TJGDlmp8vMMot+cykxb7+ndJzlmKkmdKSfAYZ9F2sIbzLFjE4T6laV6E3NTXJUdX\n", - "8TM/8zNmZvad73zn3BL/lqDUXydXp/OgYuD+9rk+Y3VSNChdqWe6+vLMZrOWU3fsO6X6bREfqRQW\n", - "CXJgB3BfL6BL/6YoEUr7N9WO3F6k4LVyKR+pj6VpzzcwZi4rndSl5gCftHh7ezuY8RAtdnh4OBdh\n", - "hvqVJMccDodzKWkANQEUfb9XxaacNbugadqpUNQHod/vy3amIoZefvllMzN76623wmGTs3rjsATW\n", - "8/F4PJdCxpeBjfHq1ashEEBF9CmHdYwXRyTymPvFrBzLl5aWQjsU7wo4WS4Tfi7wIZZV2Jyc2UyP\n", - "uTKXLsISnDKJddlwPUod2rug6/vYbABwFKhC6kOvnLlLOXf83yVY5BCzaBmqvJhJqRQ+cpGji9V9\n", - "gJpfuWS5XaEc2zlijqHKU1GMpeBUV135FVW9uf6q7zxj/ZUrV0JaMCDWv6lAgNR3nq/zO3wZ6sC3\n", - "tLQkry80B4vvrKioqKioqKiomMPH0rQH4IR7cHCQzMGU48YpKYMlGJh7xuPxuToSdwnzLkGJ1H4W\n", - "NbCX9FSiy1woOTROrC1Cn7MDLT/nNSXKiXA6ndq1a9fMzOzRo0et8pmtF/ODnXX9nMlpWWD6nM1m\n", - "SWoHtPvo6OhSzEzqWf4bbWSTJ/ePCurwdYjl7rrovSQXOs0asK44C0VAjCE5RffBIfYpDQ2gAi4Y\n", - "523aK31H1/2ladq5Ps+yL6py+/1+a40qV4XRaBTGAfs/OzmnTGylCZRzdU6NeayM8zDtnWW9dskC\n", - "wXu92bxmlZnSlVUjZeosLZ/f5fd8tV+kAlEq/UFFRUVFRUVFxQXgY62ROgtyEpXSRJXCP8vSjjpF\n", - "l+YWyqHEgdJjUemllKU35t/CmhkPhGqDnNRMh7Uq3zHOq6eI81KEnMoOXkoEp7SeyvlSOY9+lMj5\n", - "m/Bvag0oUkBuUww5Cb0rZUPsntT1j1ojxaHT5+HYzXPIz7eYFhD3QYv+5MmThZxpU3VJYRGNVIn2\n", - "SWltcvdhD5lMJi2mefbrSbW71+vJoJlUO3LvO0/NFf+d63NcZ58h1uR4tnZFOVDqy7W8vNwipR2N\n", - "RsEHlff1Rb5jqWdLHfcBlRlE3e+JrVMaqR+Jg9RZJiOeNzudRKwmRwcOBgN5GCrlCkptPLmoCH/Q\n", - "6tLe3EQ/zwgPZvBOHSJi0YnY7NHPx8fHyUMpoMwaMVOHP1x98YtftG9+85vZtuU+0mwqLFmkbBI7\n", - "L3Q186X4utiRnscvVYY6uOYOa+fRjhy6Rkp2MWssGq3FayU1DrEDnP9gxD7c169fNzOzDz74oFUu\n", - "o5QhveQa4zz3F19+yUEl1t7SdD+l7UylEjnLfM6lEVL9m3KqLkVsDZRknzjr4dCbt1UWENV2Ntme\n", - "xx7SZR+opr2KioqKioqKigvCx5L+wCN2WlfmmVRoJcAOnvwOlRNJaT2UqU6dqFlSBpRU798XO+2r\n", - "Ol+kRtH3ZYxfxdc3lrAV7YS6V4UpK0nv8PCwRXGg+shzUpmVJ3GN9SNMJ0x1wFonX/Z5shF7lIx1\n", - "LKeYx/7+vjRhqLYBKeqLmDYrxYOTQ0rbxf/ftc9zqn+g1Mzjn/H1jJloAG/GW1tba1GxxOqpkm8r\n", - "U2yJBoEl9PMMijkrUg7ZMY0Tfs9ZFFgz6N/Ha1rNsdKEtx68RlNrledpLKfgomMRe87PE3Uf7++K\n", - "mZ2Z4Tm4xWzeJJeiDFJWlePjY3vppZfMzOydd94xs5O+xHVPb2FWnkFAaY3VfTFUjVRFRUVFRUVF\n", - "xYL4kfCRYqiTI07A7JeSklJjttGUozI0IkwwlrLDo46qbDObO72nHNW7SoHcNnaC7eIM6stL2fG5\n", - "/iktVKlmaGtrK5BzQtphzSBr5bw0NxgMWqSb169fD/4j3LZUm1h6KmHwVbhIZ/OzzAkg50Sey4eY\n", - "kvTPS3PR9T1d+rzUuT0Vqp9arzntDmNjY8PMzF68eGFm2gcl5pfCvntm3Zzmff1zFCBqzZyHj5Sa\n", - "nzlnc3VN1S/n13cW6pxFc212IbRVWKTPF9kzUvej3zDX1NxcW1ubo5XwQP8dHR0VfY85b6qq33lY\n", - "BWJng5yP1I+EaW9paUkekNDgrhOZHaQ5igEDxqpJDI5naDXTasPYhDI7+TD7gw0v8NgAeuSc15XJ\n", - "k6E2j5TDOPeVv+/4+Lil5uXxQGJh7j9VPvqI+xQHmhcvXtjVq1fn3sMHVvTRaDRqRYLEnELVAQm/\n", - "KQff3Af3oxRIcmYXv6EoU9Z4PG7dp9ob+zD7g+1sNpMfra7g912kKUkdLP0GzHtCyTvMbC5VTMmH\n", - "rtfrtczbOVcGLhdRrDhIcX1TXFWx+qdwloAfhq9LbN/zZlJ2ZWCOO/zG9UMQC+6L7bOl+6vaH/0a\n", - "4Pel9ujYQVT1R860V2L+ns3a0dZ8D+/fal0rlBw8vXkaZZR+t7mvfZncz7yn8f0MJRAq9yD1bVDv\n", - "86imvYqKioqKioqKBfGx00jFnGWVdMds02YnWg2YhXJaGyVpejX5tWvX5KnaM36Px+NwimWmXM/W\n", - "urKyEvLHlZrOFFL3lUiZqCtO+MpJm9lrGZ6zYzQahfewhAFzRU4TBckRGqd79+6FayyB4T3MI+VN\n", - "u3t7e3NqYP+Orv2sJDmF0WgUJN5FpPZSM1OJAzBLrixFp7SdqWTSrJXl62osu2qkclqSlPlDMa93\n", - "KS/VbymwxKq0t0pjDigncs4WkKKhiM3FVG7Hrg7+MXPaebJ6x+pSkm+UobRFwGAwkPyAfn8302ag\n", - "lEuGgsq6kVurKnBIwWtbYtdzv/k+4rri78lk0jmBsao/+nlzc9Pu378/91zKChID3s1uJKlnc33J\n", - "/88aP7zPW41KTOVVI1VRUVFRUVFRsSAuTSPFjmNm82HD6vTsT4X9fr8l+UIbZaYdKLls9h8xOzmR\n", - "Qsq9ffu2mVnrNI334aSKPHJN0wRNk5KE4OvD+eZYOimV7rwWgPuwVBswGAxafkSKRmFpaUnawb0f\n", - "VL/fb71vOBwGx1kG3nfz5k0zM3v48GG4hr5hJ2jWcN26dcvMtFZC2dp//ud/3szM/viP/zj8xlKl\n", - "l/AUESj3Lzugq4CBRVh6gZwmKncPQ0maMdy4ccPMTuc5+wmh3aurq3MSPKDmRipvYk77lGqn+i2l\n", - "+YlBzZ1U3sScDyL/f4kkv7m5GfpDzRdoZ7GX5NDr9eytt95q/b6o022sH73GJUceqZBzqvbvVPnc\n", - "co7+gKrf1atXg1Y7pwnBunj//ffDb8qfMAXsx4eHh1Fqg1j9Y+9b1KE/FnTk84PGmM1T2jWlLcJ+\n", - "sbe3Z1/60pfMzOwb3/hGKBPPpMirzdoa86OjoyQrei5ARt2n5p0PwlEWG49LO0j5DUwlLfQHKrO0\n", - "KlGxTisVtWJA7vV69vz5czM7HSTlgMoHDD64wZTF5jLUkQ9QmAi8KaU+eDzonC7C7KSv/AFqaWlp\n", - "jtreQ0U+TKfT5EbBY+X7gzd9xaHDgEM5DlD9fj+Y6t57771wHw6o/G6MCZtGfDnM1o1IPZTD7eDF\n", - "rA6g+KDxbzxG7FBsZvKgUYrcByj3ESn9eClTHCJRcZBiMxn+5bapwyTX0ydBVs6hvl7qeleoj0NO\n", - "OPHlxfiIupqcUnj69OlcInYPzPfBYGB37twxMwsHJcW5NpvNpOCU4gIDYtkH1Nj4fUftV2wm4d+A\n", - "XBCB/43NTKUO2cBkMmmZ8R4/fjwXROSBtFVPnz4N3wHeG1JBLGruxvooBiV08DMqeIH3O79u+dlY\n", - "n3suKwUVuaqeOTo6ClF4SCb/+PHjcIBS4H0iFT3JwmxKYEWdvJIG7WCliWqDmR43zIMUqmmvoqKi\n", - "oqKiomJBXCqPVI5ziVHK2aFCHNWJugSs0mN13+c//3kzO5V23nvvvaApSZ2sR6NReE+KKVepHBcF\n", - "+gHaBDPdhz7nnTrVs3pcqVjR96VJXNFXZvPmSm9CePXVV+3Ro0dz9x0cHARqBeU8ivYcHx+3+pol\n", - "OQbqj7mmzHh8X06T5KXEru/wdSu912sXYxQGygTktQ6bm5tBQmdH/xRKnUi7osTM4IMM1DOxgBYv\n", - "sSqnb+5L1uR0bTOvN6892dzcDDn0vv/975vZiTYXay1XRomZX9GbqPbmHMu5X0r6VJnxzmoWTAFa\n", - "8N3d3WLzK/aY1B6htDwciu+1x76uin4nZZLlUP0UN2BpIEBuLak6+3K4/gzu89Sz2Gdv3boV2o75\n", - "zmeDVC7F5eVlWU5JcABr6oEUA/6HfSZfXDVSFRUVFRUVFRUL4tKZzVMZuflU6U++7L/U1bmSn2Wp\n", - "Aidkzgl3Funah1aWsnubpR3LFS2EpzQA2CFaXcc7Svwq2PHYa7DMtNZQSY7sAwWtErQebAfH3Njc\n", - "3JRaEPSRcl5kf61FmZ7NtJOpXzPKdq98RkrLVWWUaqRimgZ1X1eH165l5JDSKvAa7eL3pMj0Uizh\n", - "XZn3uV7cdu/PE3NyVc6t0O5CslbldtGsd2XrVu3g8S0JGIjRpeTK84hpcGL38b4NxLQKJet7NBqF\n", - "50vnHb8j1X+p9yl/3Jh2CfVncku0TdUh5hPalQ6mVDOY8jHkoK5UVoSYVSNF/szvKN3T1FyMUaOk\n", - "NFKXdpDqatoAVPqOmKOoKDdaZq7zMQGbpgmDh9/YFMcOb6noBK67N5moRcX167IAlIrZQ5XHSEVK\n", - "5OrFmzqbLs3i0W54Bv3C0TMAmxl5c1BcMSnwOKRSEqj2ArxRpZitS6OO1PVcWglfHzOdKgMO5qpP\n", - "zfTGAudRmFdjkXxdscge4NvmHZC9ENY07aTayvF0Mpm0Pqpq/HOmk64fp+FwOMfjgzqVfHxj8O3I\n", - "1Tl18Io5pQMl+0sM6qO5SHtzH3MA+xgcyznAxb/Lv0+V5ctV0eBmZcKGOiizOW+RPuf6+UCg3GE8\n", - "F3ChoNrJaWC47iU4DxcB1Qc8n0uFyWraq6ioqKioqKi4IFy6aY9+C3/nJIEYtre37cmTJ2amHdnV\n", - "O1QeOUgV6+vrwfT07rvvhmcWkZrwnC+DzREsiXgJIqYxUqzD3G4vvbA0riTRnCSSUoXzO/AMm/tS\n", - "Kme+htBvSIysMeOce3gGpsLnz58ngxJSEhPzvfD8UH2UmkcclLCIlN4Vqi7e2Xh7ezvQczDvEH6D\n", - "SSlmBi2Z72oexMxCOc1w6lrO2bxrn3N5JWZcVcdSU0JME5ZCV7cFtY/GtB2pfQDIJUFWjtaldSy9\n", - "P+X+wfsnuzlwhgmzeWoPVS67KuA+1sTnqAvM5rXavK/lLBKlUGPYlYkc7ciZqHNaGw4ewL8pTf2r\n", - "r75qZidabXAMYu9VvIODwSDUORU0kUtkXNIX3J5YwAV+rxqpioqKioqKiopzxqVppDyTtDpZ5/yd\n", - "lERV4ry+CDMvsLKyEp5X2b/Z7l8iReb8k1JgaTEW8uz9l3J+BIyczxPgtUCKKC4mBfoQ4+Xl5VAe\n", - "2sKavFyuphIfKeXTNB6PpYM3oLQPKUn+LBqp2FxM+Qcp5MLgff/xeLDEmZJI2a8nxUSda1sKpfsA\n", - "+0F01RZ1QYnTcuw+gMemxPla+XjkwPenNFul/aueUf48OSfxknVWGsZv1s7/yX0FrSuTIuM3zs2J\n", - "31RGBq5zKqCGofbZlD+O0vz5b6T/fnGWDS5X+VCVrAHlE8hIje/S0lJrX5xMJsn5pvy1UhYALnsR\n", - "zXXOApO6P+cjdemmPTj+wSQXQ4kq8cN3z93H4AnNBx78pjYyqHzxvhiz6qLO8wyOQlNpGdi53Sy/\n", - "abOjLTv9lUQqmM2bCVFuaWSebxMfclXEBeq0trYWIvjU5oayBoNBMOlxYmQVTQiog0WO9yvFW5bq\n", - "x1Iz0yJmodRvakPm39A/4/FYpr8pmRvKRKXSS5ylHf46yldCEa8V3+e5jwOQE2hypskSTi6+j4NT\n", - "StdjV5NoblyVS0HKPKPMoBxVHOM/Yqj2qDbFTIrqw1d6EPVgjjQgJgSm2qHK43qqtuE39QFXB2BO\n", - "PM4HFvxdaiIsNSmm5iR/V3LfvZJ5HNtnSwXHkrndZT6pa9XZvKKioqKioqLignDpGimvEYhJRamw\n", - "TVzr9/st6bNUIkU5ZmnVOXMG5bQZ0IBAoxJzNk3RC/D7/Kk9p3bH+7k8Zn/OmcmUlK00UudBOaHq\n", - "lCpfqY1zzPHKQTXmeG42r1pPhckzUtqRUpy3+UutAdbA5JyNvckuxsPG7wZKuKC4vYtodlk75fnS\n", - "eN3ktNUljNs55+uudS412am68PxcxNyorqcCQpRTtcrNWRpYwGWeRyYHrntKE+JzZTJ4bivKm1z5\n", - "uTH0dUo9G9sHlOkuFyTk9yLWKjHQZk/JwWXErEGA2k+UNaCrw/1ZtPdqHs9ms7l5DnjNH/qqaqQq\n", - "KioqKioqKi4Al6aRAqMvQq+VMzT+VszRMUdr+M3gBK6cB/l6zgehq00Z7SjVguXoA7pK6N5B0Usv\n", - "Ob+fnHRcQlpo1ibxVDn0UB8z7bhf4nDNUM7rMZ8c74OWY8AGmIwypaVS/jylErqva5dnS1m7S8vg\n", - "/svRYSifhlI27hLkJP7ZbNbSSOXILbvmmYuxjiuNmp/bsVDtVJ/7cvi+Uu1YjGZE+UgBqg9SGqle\n", - "r5ekWFBQGmL2HSrxX1HXu2g4VblAaX7Xi1wDpSSoOT+x1BrOaSlLv4GeTiU2bl7j0+v1wrrFb+Px\n", - "OJSboj9g5Bj9U5YYnh+q3jkfqb768aPAZDKZSzaY2iC5I9m0A/BixodUOckBikmXWbbZVOhV171e\n", - "L0w2PHt4eNgadOW0aNaOolMO11x35fzNm5jfKHKTTqn5+fnURgKqfAabUzlizo9nbPLyR8bfp6BM\n", - "DoBqe+ygjMSacDYt3UBVVGlug+FyuzpaK8Ei9Wzq/pIySq+hTTwf/HjkTAD8rpL7SiJ6/fxM7QP8\n", - "HnbmTX3Ac/VMMdvzx58Fx5QzN7fHl60Ofwox4UTNHWUCAtTHnP8/lUomdSBAWzzUIdabmWOO4CXR\n", - "22zeUv1XevBRa4D38q6HXXbDSEXomZUFOcQOCf59LGRjf5xOp+E7xnNW7X1eaaH2aLWmptNpS1Hi\n", - "FQK+vrxWUZcU/1tM4D8PAc+smvYqKioqKioqKhbGpTqbQ51ndqpN4JPjogziDHWy/bAOc//GwpAX\n", - "Kc/spD0pLUvOhOXvW3SclBrYm92aRud0SvEQqbYpp3nuU6XhWlSlvr6+bjs7O3NtY01jqt9iZkbP\n", - "SszPsrYN0hprVAHux67O5qVmvJx6Xr23xNSR0wylnHnZzMTzwI/lWR2LFSUHwJJyyjzH6GrOz+XB\n", - "TOVu5Ptyc7wkIGSRvuzKHRczCwJqf+F3LcJ55d+XS6h+1j3SQ+1TKfNwqk8XCbtnqLaVmvZSZut+\n", - "vx/+LqXdYEtNKsiBn/PP8t8qiAj0LC9evJDfBgWlRfVaKoUcDQXqdHx8XJnNKyoqKioqKiouCpfm\n", - "IzUajezo6CicCOEkvrOzU+Qky06/THKHkygy1j948CA8w1KekqBSmih+ltmwcU35KEGaTJGqKWxt\n", - "bQVtSyo0maVjvsbEnh5N0wSNkbLFA2wvZ82UIrzEdSVdo0/7/X7r+mQyke9L+UmlGIiVdknNocFg\n", - "EK6z9iwlXfF9vh2s9WQtq0KJNinmIJ+aOymNSi5MXr1DIeVfw+3h/vFjGZMuS7UKuG8RrXFpgEnK\n", - "t6dLHymfMQB7wuHhoQy4UEz+ysn9LG0DuI3nQUOQ0oTkylX38x6nxn9RPzz+LZURIednF6McMYtb\n", - "I1KBLazFUePJ/4+5E7MCmJ34O3nteezbmtoX1Dcu519Z6hOKuR/z4fXPqkAFzKejoyMZgOCtLjFN\n", - "nLeseC24QtK01zTNJ8zsfzWzm2Y2M7P/cTab/fdN01w1s//dzD5pZj8ws39vNps9/fCZ3zSzv2dm\n", - "EzP7+7PZ7F+K987QKUgK7BlmGcPhcM58Y6aZq83mk9oCiyYIVVFgMXja+16vNxfBFbtvMpmEjy8O\n", - "CY8ePWq9P+Z8l5uofuJxBKQ6sPIhrMRMxshxLfmPkmIWZvD9KXNaKS8WsLKyEhYu6sIH89S71abE\n", - "UIEAHyW6REqVIJZ4GOhq6lBRO4u0Q0E5HpfWv9QxPlfX1LzjjyUfnpQw4efdWdJ35Ey7OWb1ksM3\n", - "m1NSQkIuuTUjZcZNoVRwiKGUUbsE7IKgkgN3EWj8QUDtL6urq61vlnof72P8TfLjoBQWi6Y0A/x7\n", - "cjyRi2Bra8vMTr8XpVH0MWAdLGraOzaz/3w2m33WzH7FzP6Tpml+zsz+CzP7v2ez2etm9tUP/9+a\n", - "pvmMmf1tM/uMmf1NM/uHTdNU82FFRUVFRUXFjyWSpr3ZbHbfzO5/+PdO0zR/amYvmdm/Y2Zf/vC2\n", - "/8XM/h87OUz9LTP77dlsdmxmP2ia5i/M7K+a2b/278Yp32sklLnq6OhIql69JNXv9+c0UWZxniYv\n", - "qUyn01AuUyywyVG1Af96aSl2slYmNNSBNVGvvfaamZndu3cv9AH6I+VIl5OcYqpmSAnQju3u7trt\n", - "27fNzOz+/ftmNp9PC+Uo9m/WZjG8FPb8+fPWuCp+mH6/39IWsYSuNFEpbZAaL2Um6fV6rf5i7jNG\n", - "yjRw3s6wKcSc60vzyPnfYuHqKak9pZE6D9ORR0r1HjPLlDiyljqql4JdD3hPUlrllElUteO85lbX\n", - "QAZVx9gaNovTvSitWGnf+3oplurYO2IaPAYHMeTmrw9YYe0Qa0ZTXG+KkifGX4a6Yv9R3ym2rKA8\n", - "3sNUH3BuVliNWLOm5p0aB/WtKsmosLy8HPpS7bdqPPDtWltbC0mqcT2W3UE53Ke+STEUa4uapnnV\n", - "zP6Kmf2hmd2azWZwPnpgZrc+/Puumb1Nj71tJwevioqKioqKioofOxQ5mzdNs25m/4eZ/Wez2eyF\n", - "kwZmDeXOE5DXptOpDCVm3xI+YSq/Ie/7oLQgLAEpXwQFfgbaFpxSZ7NZ62R7FpsxlwUp4OrVq/b9\n", - "739/7r7hcBjKTRGP8XuU8/dwOEza0HH6v379etBExe41m3c8VBQW3OeoN/s7QSoBWGoHxuPxnMO+\n", - "WdzmrSRfD1+mv19JKZiLjx49atFCNE0jNVH+fbiX/1VUAoycs24soICfifXVWYgnVUh8ah3mtBr+\n", - "eqmGRWkXzdJ55mL+XF4rUqo9izmYK39IBR/8oe5L+T12qV/OJycVdFKKnCYSzrzon729vdZezt+G\n", - "lAO9+oYcHBwUadFi15TmB3sG+kKVi9/NTveGXG5ONT+xvxwcHCQpaJjuRWmigP39/RblwNLSUus3\n", - "7g8ec+XH6jVvDOVny9dS+xLee3h4ODcXuJ5cbr/fn3vG7KSvMMeU1QJ9Oh6P5zRWeJ/fy0v2ouxB\n", - "qmmagZ0cov632Wz2zz78+UHTNLdns9n9pmnumNnDD39/x8w+QY+//OFvLcTMDRsbGyEiS5m84Ez+\n", - "5MmT8BubFHCIwLs5io0PEJ7OXjnaoZ5m2mTD8GznzGirNjyus1f3v/fee6FcvEMxJfMAoz37+/vJ\n", - "jY/7gN+Xcsa7fv26mZl98MEHychBVS/ue/yNPl9ZWQkqWF4sfnHGuMAUSj5+e3t7rXYo1nY+EPJ7\n", - "/WbJwKKOwR8Ucmk+Uoer2IGAPzK45qMKVWQLYxEOXgI1AQAAIABJREFUt5KPVuzw3/UQmSuTzeCp\n", - "iDsV6Vnq8Jprk4q88/2pXBnYGRn3s4DB7Smtc6ovFzG3+nkec+pPZUdQQS7qw8dgs5fZ/H6mDsWx\n", - "hM0p+H5eXV0Ne5Za39xGfyjh9qpUMspczhF4qX0vFxWJ8jhgAHUpneODwSDUC2Oyvb0tFRsl2Sly\n", - "Tt88h1JuGmwy9KbC2WzWYkofjUatuTWbnWYQ4NRNfEhEEMpXvvKVZL2Tpr3mpAX/yMzenM1m/x1d\n", - "+udm9nc//Pvvmtk/o9//TtM0w6ZpPmVmnzazf6PePRqNsh+dioqKioqKioqPGhyJmjtI5egPfs3M\n", - "fs/M/sROTXS/aSeHo39iZq9Ym/7gH9gJ/cHYTkyBvyPeGwpFRaGK29vbk6fsmzdvmpnZw4cnyi+W\n", - "gFKmrBg/R0olyepPr6VYXV0Nz0JaUIzaSoJksHTiVZdd1Om5ZJWscUFdWFLBs6quiqncq5pzDONq\n", - "bFDWaDRq5SNU87GLRqpEKmJNkwomYF4yxW9TkrhZheLHUKJVUGa8XFg70KX/+N2x96nryvl3kbDx\n", - "ruUyWEMDMA2J/93sbBqpHLpmNlBmHG6vql+p5nDRLBEx87HX+LAkz9qY1DqEu8Th4aFMQK/qojS6\n", - "3sx8XuPH5aacwxnMho16+rnKFDSpOcfrlt0dcO/GxkbQlLEWmrWYsfodHh7K+XnlyhUzs2ApYPAc\n", - "wr6Jco+OjlpjrbSUw+FQftsWXXtN07TmTGytpBJUK45JbxJP0R/kovZ+3+Jaq78Reea3zOy3Uu+t\n", - "qKioqKioqPhxwKXm2mNJXp0g4fdjdspknZMIcqR7+Bf3QetydHQUyi7RajBiUlsJgVksrLU0LFcB\n", - "Dt7Hx8ctp++Dg4Nk6ChLginqB/WOXHv9GCvNG7c99b5Yn5cEFMS0lN4pmOcn+4mhX3BNSXc8x1Ja\n", - "lJiPlNL4lPoRqfmu4J/N+WsxFtVwdGkH5gv+5bmp5sZsNpub56nyUuXm6s/lxRDrS3Z0NcvTGjDO\n", - "kyjSlxcrM6f15GspjRlri7xfipne//1Ycrm5fJe+LV2IZUsc2ku1vFxuTuui2lSa3zC3HlN7OaDG\n", - "mn/DvzmLCX9LFt0nMEfM0r50ZqdtZ79ir5U7y1qBhSWlkbq0g9Tm5qbt7Oy0HDJv3LhhH3zwgZnN\n", - "T3QVKeWdbnlyQ4XJ78599FMJO4HYwvARBuoQ1u/3sxE5McQmgu+Xu3fv2rvvvtt6Nx8csQjUR5r7\n", - "wB9KSutgZi3Geo46zCUhBRZh0s2ZR8y0KY6ZfplTC0EG/F6w5j59+jQ8D5U42ssbctePNYOfLXlP\n", - "7IAJgYHH/qJNRTxfcuzZvp7eWRRIvYf7vBSK8yjFpcTXU4fO2AFEsTqn9hj/Trwn9iz/xgfqXIBC\n", - "CZSzNO+FyvyVWsOpJOccNMHtx57EHD+pcevSJpThy+X9otSEXspwD1y9ejXsHTEHeeUY7aOZYwFI\n", - "3iG71+t1jsZU/Qvz7MHBQTSTAT+ztLTUcl5XGA6HUtgAuN1qbgOle6+ap9vb22Z2osSByS92kKqs\n", - "4xUVFRUVFRUVC+JSTXubm5stqgMGtBqHh4ctrZKSHNbW1sIJlFWY/lQay6sG5BzPSsDq4NIknqmE\n", - "vAq5vG8ctotyt7e356gjuL5mpydyla+KnddTTqFKFX7lypXgwMiSqNfasDO8krIAJSWytMP1KpGK\n", - "YnnQMCbsUO/ZepWaP2baS5nTUvflWLZzSAVk8Nh7fpjZTLM6q3mcmttdtQVdVPGsHfEaqZy5MqUB\n", - "8fXxSIWcx7SoJfQhMY6iUnOvrws73J9lDinHd9bk+HKbps3Q3mVcU1odtVem5p/SEJq1tYtq32Nt\n", - "G+8hft1ykA3AZjCeG9DkoKyUZQTP4v8VRQBr23E9p8nnDB54n9LU+4CgnPlfjRvazgEIfN+i87Jp\n", - "mmC2RF+qwCazdo5CFZwyI8oOdg/JOZtXjVRFRUVFRUVFxYK4NI2Ul+IX0fzAOU9poaBVappmjnHb\n", - "TNtmSyX+nESV0tSYzUtrZvN5i1TIrJKElU2YNQ78t3/PJz7xiZC/D+BwXH6fl6Rms5nUnigp3PtX\n", - "Kb8kLpedIZUGSUlBXsvC2qKU1LS9vR3qmtL+jUajMGcwt1ijx2MDyYbJVUv8dXK0Bv53Rkzz4ykv\n", - "VC6znLNsSoNUyqhuVuaDwijV3iqwJg9gCb0rC7NCr5fOVJ9a/7wGuF9yzs/AotrxLkEEi/Q5nvMa\n", - "jvF4XOSzyPNJ3c+0NCl/mFTIe6kfYKljeUxrCKRyb8bWT6nWlp3gVSg/3oM6sMZH+QsD6+vr4Vlm\n", - "M8fejH1WaZAWcebmtarGFZYLXONAKR7PnF9lSfnKQuBJjj+Wzub4G52gmMhZRQcHX+DZs2etgRsO\n", - "h61DiVmbq4qv8cbmFwZvmoodWZli1IQ4i7Oxr49/NzYePoTx/f7go1IDxKAOSF4VGtugPe9XrP4l\n", - "SaG5XakNKma2LL3PH8zYHMlt8JuI+kAeHx8n0ygwSsxkucNVVzPYWcx0MZRwwcScsM8D6iClVPtm\n", - "baGKgyFyzvzetGuWjjBUpnHPWefLVRFcpQeukg/LeQmObFLy+0nOcZvr6Q9QsYO+X6MsjKXM1zmo\n", - "vQZQB1FOBMxAm9C3y8vL4b5YABLuL90nvIlqEeTGH6bTo6OjKD+jr0tJv50VJXuGCp7iZxZxl6im\n", - "vYqKioqKioqKC0JR0uKLAMwwSmryuYkGg8FcqLmZ5rJgCQYakcePH4f3KS2GkmJybOH+ZMtSkQ/3\n", - "jr0HkgtrwlRfpHKj5ZzNY+rvVIguTHKTyURKhF6VvLm5GdTALEWrenknvqWlpaCJYlNgSupQWjSU\n", - "++TJk5akpCRgrlsqx5/CdDptSfzHx8d248YNMzN7//33w70lmhclyalgiFL6g5xTNGvJ1Pv8nOji\n", - "DJ8K2Vd1yWnbFqG/AHJmEk+7knM25/cxxw2QoiFImeI5oIWBNaJyKOZQwuSee1dXbaHSzinzC+8p\n", - "/Izfa/j/eV9hTZTZyRpUFoyU+TDFzaSg9kfWRrGW3O/hMfN511yAOY204l3ieefv4zWstKjs8oCg\n", - "L/5NzSelpfL38/VU24bDYStHbtPofLgppFwQ1Hocj8cLadGqRqqioqKioqKiYkFcmo8UyClLpPEP\n", - "nzEz7cgKTCYTu3btmpmdap/4XcyyC00PX/c+LaPRqCVRTKfpHHqR9rbqngJnqlZlqBxVgPf18rbi\n", - "mGajJCzbk336Z1lTV+KvoPwSOKRXSdZMhqnGwZfL7XjttdfM7ERrpJzMPQuzcpZlDQ1Lp0pCK/Fh\n", - "UNJY07TJZkufZV+VrlqHLv5LqTWgwosXYUz3z5b463gpWzna83UOXY9ReTCYIiJFLprzv0j5+imo\n", - "sPwuwQYeuTnW1fGZ38fO0IoC5u7du2Z26j/JYfeshfR+YipgxT+DsmJEmNymUgfpXIABA1oUvJfJ\n", - "S1V/c5CKn3+x9qYCkfh33rtK/JfUnNjc3Ez6eGGMDg4OpJO2xyKM/+pZjPn29nboN+zpqn9jGt1c\n", - "cBjwsXU2x4JPJUkERqNR6GBO36HU6QAPukrSC0BFzJEIfF11tNrgmTEW96cYizl6z0cVKWe5lKMs\n", - "t8Orlv2iW1tbC23h55leH+WpsUlt4pyaxh+CNjY2WoeXXq+dhNQs/ZFRdeJxT214X/rSl8zM7Bvf\n", - "+EaLh4YPILnIP7/Bq0MnHyJSG7f6LZaCoeTjpvr0vBzVU8/mHEsXTRURKxfwpkL1cclFIJrNJ9Dm\n", - "a4v2Zcx52e8dsegvv55LHXdjfGiqnucxJqq9ngeOr0+n7YwJ7LjNdVb1S9VZmd1SczyXNqYUymy1\n", - "SBLekghH/nswGMhsHD5ootfrzbnJmOnUOoxUCp5+vx/qlWInX1paavXDZDKRY6j6i81t/loKMbca\n", - "f+BeW1sL6yuXcaE6m1dUVFRUVFRUXBAunf5AoTRpcMp8hNP9aDQKJ2BoMXq9XjhxKxMPnmXTY1cT\n", - "i1mZVBLjUCmVkHKaAZZezHT+K66DkuquXr1qZieO+9w3+JdDePGv0iqlEgrnTIEYQ5TPrOhsWkQd\n", - "uM6oC+rJHCkAawbU/FN5qwA2u4DO4cWLF0nTXm58S3PTpTQ0/C6lxlfPlMw75bhr1l4jpQzduWs8\n", - "HsoBXTnVqncCMZOY1z6xZpDnnwoKKaWr8Lh69ao9fvy49fuiGincy4g9dx70E9xeXiOoR8q0r6hP\n", - "UnQo6+vr4XfsF9PpVH4nPOP3WehoYrQ6vqyYtsWXyzQYwMbGRmib0mAyu7rP6OCRqgP2xX6/H+YW\n", - "5y3kfb0L1tfXw7h3fbZ0bmMfwDP4F+1Qju/K4qH6R32buvBIVY1URUVFRUVFRcWCuHSNVMoHiB32\n", - "AGgXjo+Pw8kcVAfsWMpEkMDt27fNzOz+/futazF/HXWf8s1iaQN1UY67ngE7p3VTUA50rM1iB1nv\n", - "xBmzGaeIGtG/Dx48sOvXr5uZ2QcffBDuU3mv1H0eilFdtXMymSSdyAHWDLGE8df/+l83M7Pf/d3f\n", - "NTOzW7du2YMHD6LP5uqirvnxZH+dHG1AqY/KRbFdL6r9xHvM8g7NLD3j71x+sRLNtKcjKXHwZ3C5\n", - "vn3Kr0+RtHKbUuOqtFSx95Wy+yuUajMVus4nbm/JM7zmeaxgIWBNFPqA6Q1effVVMzP7wQ9+EK37\n", - "cDgM+0Qq71spq3zMMf8s9Bwl+OQnP2k//OEPW7+z9SFFDpwK3OgC1u4D29vbZnaq3VeZCHiPZvqF\n", - "3HpG23xdY9p2T+mhnu1CQKvG+mPrbK7MSx9ea3XC5uZmWBilrLX8fr8h9/v9cJ0XdcrBWzlzpxw3\n", - "Y4PpWZGbpmkdcphlmZmySw56PtLDH+ZUJIhybubDGBy8Hz16FA406I9nz57Jheb7nPtXqe/VRxOL\n", - "f3V1tfVBU1T+/X5fHoY8D0qs/9TGWPIxj3EGefUyXy9ddyqh8CIRcPi7NFFo6vDXBd5pVUVAKedQ\n", - "NU95zHk9cpTneR6k1Lpg3rSUqTVmtvSmdmbATznG+rqqd8fKVddzKU5KkYogi+1jgGL1VuablLDF\n", - "KYBy+2PJPB4Oh6EuJXxcMUCQPDg4CG1mdwdlBlcHb9X23OE1dcBLmSFXVlZaEb8sZEOgfvr0qUwp\n", - "5s2fsbqpoC8oAjBG6jufizQtBR/WPGcl77MsHFfTXkVFRUVFRUXFBeHSTXsXjdXV1eBApqSirsiZ\n", - "gBSUJJRyvFbPstaD35PTlKUkxpwGxjuMM5M6Tu2j0ShcV9obrosK70U/QAKJ8WahDE6Minrze722\n", - "a2trK7DipzQ6SgOiVNOz2Wwu0W3sfTEzU6lpLzU2rIlTUqfXcHKd0cYYR403xZXypsVMhamkxSmN\n", - "zmAwSOZaw7XZbDbn4K84e3K8NmYnfZWi3VB5E5V0XKI18s+WBtecF4UE3lVq6khRdrD2TmkT/Bjz\n", - "vON2+zyopdQjjK5aPAYzzafmCTuvq/3s5ZdfNrPT/fiDDz6QgTKq7mqvYWCvxPxsmibZb9x2zG3g\n", - "8PAwtAnrhy0K/N1RgSp4n6LSWcSM6F03RqPRXPAS/lXUQ8x9aDZPjcR7oLdgsCUpRUeCMqpGqqKi\n", - "oqKioqLiAnBpGqmmaez69etzucnM4jmRvLSxvb0dNA04zc5ms3CiLXEiPCv4ZOtJP2OOjF6KQd3N\n", - "5jOao50pPwZ1eo4xmyvtCNuCcSLnfHi+v1555RV76623ovVheI0b+0ukHDfZXwK+Tc+fP5/znTCb\n", - "l4BS7LSskWKkwtWVlk+FWytNAu5jegYFttN7cjuVWZ596ZTmQtVZ+RGxlJjShChfipQPSozGQ5Xh\n", - "51XOH4rfoaR7XD86OpJ+aSmfEa4r/lY+HspBWRG35vxwVF28tusse3LMD+sse19Ki1qyv5hpVvlF\n", - "HJ8ViznWHGsSFcGwQmlAgx8jpR1RvrecM461aNgf0Q5VvtfEYwyZrkDtCWfp31L4793S0pJcNyXf\n", - "YeVj+lGfS3KBAx9bZ3P8zfxGZvORbZyKwyfx5I+/2tDwDnZAzh2qPP8Kv7PrAMd4ZJRjNj+TKiOV\n", - "MoM/AvybP1jywaI06iR1UIkdfH1blpaWwsHoyZMn4XlEf/BvAKt7+VDlwYc2pepWHyp2UEfbPGv6\n", - "cDhs9U3OjMOHRP/B5fu4T0sPOan5ocpIcS6VzuNSE1DMednPHcWKzJFrbF5TdVWcZarPgaWlJckl\n", - "5N/Hqv/c5s8RSGhHirdIRdmq5NGcSDllEgNU1CuPQy4ReGkUaOoQpg5SpXMRyJnVOYrbP7+yshLm\n", - "ljrQ5pyTYxkhVB25/qPRKOlwjfKuXbsW5jbuH41GYaxVCjM8G0uXljq8MtdWLnrTP6++vWeBMuNz\n", - "/RW67nvspM8BNf6b3zRN65zQJRK2OptXVFRUVFRUVFwQLtW0t7GxITUMCiUhnRwKy85mylHUS4ax\n", - "k6mXEpQpjuvnHeQY7KjO74W2BVo3JXlx2HWpFMXtRDJnpQmLoZSJHFoHH/4aAzsUp8JdgY2NjfBu\n", - "SFvs+M5SDEJ0mUfMO6gyP5AKhVW/ATGWcL+OYs7mCqX515QTeewdMbDpy2szWePIfVqixVokF1wO\n", - "ql9827lc1eel5bFWpJTCIKUxi5n2uV5m887w3O6SxNMxVnQ/nrH8e+dBu8B9oShtWONrFk+q7Z2X\n", - "OQMDa3n8vt3v94socWJrKhVgwO1JfX/YyRl7MgekqGc8p6Gi2lhZWQnvY/cRnqfY2/Cbshrk5ux5\n", - "ocQFgAH+QaaIyAF9gG/gzs6O3L8wz3H/7u6u1Hap7zbexzQYVSNVUVFRUVFRUXFB6OdvuRjMZrNi\n", - "bZTSFvBpN5cfyP/O0qeSxtjm6qUxljA471zM9m9mduPGDTOzOTZtSFQvvfSSvfPOO3NlsB8J2vn8\n", - "+fM5R2bc5wnFWCrnOilJJafl45xZaKci00y9mzUE3hnx7t27SYZilmxQniqfJQzPEq38nJjck4MD\n", - "IOWwo7+XWJUvCMM7xav28LMsZQNKE8Zhvspvhslc/XgoiTTmrwXkfBRSWgol+aU0XDHtYoxWguvE\n", - "WmiFmFTs66jCxtV7mZlZvZufwdxRofpq/NmZu0RjENMqeXB+QB4vNXYp2oacw7rS1Pq5qOZVv9+X\n", - "GiHMS1xTzutra2tJjRS06isrK0F7x2s09Sx/c1LaZd4vUv6kDBVcASh/Iv4WMdTcUvunf9/S0lIo\n", - "M1dX/74YBVCJ5pe1o7wP+3nM9+Fbsra2FvZ39f3hvRrv4UwY6HP+hvhzBb/Ptz+FS3c2B5hJmyMy\n", - "zOKbhP/IKVWycjJjYFFtbGx0Mnt5eOfGfr8fVJc4MOaiZ5SjLQad1Z+8oPAMTyzFIwWTl4+SxP1+\n", - "HiinRd70U+kHYiZMQKWPQZ1XV1dbm8Pa2lp4ng93ajw/85nPmJnZm2++GX7zJkreGPnQDBMrnPFj\n", - "KWxSAQNAzLQXY/Tnupjpw0iKc4vHXEWflaZg8Zt10zRzpjXUXZnd/IdPsZibpbmAeKx8X/GcVGbn\n", - "nDmV67wo55D6iMTSweBgznVEuRCKYnxI3iE/hlIOKgUVfVh6aPZ7Kq+p1DeFI+CUAIc+43dwupcS\n", - "s3q/329F7fGYwc3h0aNH4TeOYEZfKq485inzaaG2t7dl0Iwvg02AmAe9Xq/lQuHNfVhf+G1rayvM\n", - "n67JwblsjhYHOEipa6Qnz0kv+KpDaY4Pj6/53/r9ftgLcDBbWVkJY5IKpOK5o8afUU17FRUVFRUV\n", - "FRUXhEvNtdc0TcvxUEkYMW6URcEn/dz7OL+Q2fzpmZ1cFeNyCpAuVldXJc+RQokzHzvkms0n3jSL\n", - "M1qX5DricFw2a8ZMIGY69F6FjauQVGj0+v1+kPRSzqFmJwmJzU7NqKxBUFQL0I7s7+93Vk2z83eJ\n", - "s7nSXCgnU9TbbF6SVhpar5nh8WctqdIqlXILpfJIppyX+T6+5jVSa2tr4T521vV7A/cVawVVrj3l\n", - "VJ8LB/cSugK3KTVG7ETOfQCpH9d8DkkgRffB8FoH1qJ2DUBQ9BGxfcw7Pl+7dk1qaFPUIzzv/DxW\n", - "2qeNjY1wnd0rvIbw2rVrc9omXxeV440tGOr7s7W1ZWZ678A8VhpsHnPWPvJ+jPJRP9RpPB7PUYRg\n", - "z+O6AqwpS9F9cHt9/s3cNxXtODw8bPVRjgtOIUVBxEFi6h2sdcdcxPeC5yE7jpfkllxZWQljwmuv\n", - "aqQqKioqKioqKi4Il+ojNRgMWidblipZW+QlIHXaXV5ebmmY2GmaNTmeQmA0GrVyqPX7/WKH+LOA\n", - "JRCU7x3f2WGU/VhYSjBr0z14jZRZW0pkRzxF4se2eUUKqnwevHTPkqMihVPz8Itf/KKZmX3zm99s\n", - "XWMJiLUsXpJnx90UXQCTvrLmjJ3R8ZvKGK4cPL10z7QL3D9KC5DqF9bG+PtibNIeSvJm8DzwY6lC\n", - "yVlbpLSGeN/y8nKQ6lUblZaH3/faa6+Zmdn3v//91vXd3d3wTpR3cHDQameMEqHUURjIabP9dWan\n", - "Vn5uLKGn/HgA5euV80+MOTLjPv9MbJ54R3rlm1ZKiRErw7dta2srrOtc/QCslSdPnkgtCupdOua5\n", - "wBsg5Qe4tLTU8q8ys5aGaDKZhLU3Ho9bOfF6vV7S3yxWb9QPc9D7JPN9MX+j0qwIvm1q3cUISjE2\n", - "CNba2dmRQRMliM2TUjqInEbqUg9SMW6PFHizK1HFm2nGWG82iE1o/yFlpBh3t7e3Q4QBf+TwN5tG\n", - "fP2xCM30QkyBnfnYdArV9LNnz2S/5SKtAH8Iyzkjpj7svOnz4kuZNXji+0OkYhuO1SkVyZlj1/UH\n", - "BWVO4cNVKbgPUh/1XOoXj7W1tVBXzD8+1AHD4TB8vFj48POF+0qNlTJ5Mv9ayvwN9fyLFy9a43D1\n", - "6tXwN+rOTP18AOX+85tl6Ydb3Rc7hKk54z+0KkODOrz4+gMYa47KTX0IUmZwbpvqKyD2fUAWAPQ9\n", - "m2IVUvM0Zt72/cL7BY8Vzxm8T32YS+qyuro6Z24zO1kLGEv01ePHj6X7AvqF2db9wXZtbS3UVXEC\n", - "Ytym0+lchDbqAEGED2Qq+qz0kHVe8GtgfX29ldCe65M7ZPu5nUslU+qqgPmyv7+fTLHGAVA7OzvV\n", - "tFdRUVFRUVFRcRG4NI3UZZRbUVFRUVFRUdEVVSNVUVFRUVFRUXEBuDRm867+IxeNLjnAPk7IOct5\n", - "h1LV78yayz4Zi+ZlYkI8zhW1KHq9XvCxYedQb99+9dVXg88Bcljt7u62yC85Y3gq5JedOeEbYTZP\n", - "4om24T1MgumfnU6nxU6tqi7oU/i7PX78uIgGpN/vB6dbzkEI/yaMjWIaVszrg8HAfuZnfsbMzF5+\n", - "+WUzM/sX/+JfJOuAcTk6Ogp+JKAW+c53vtO6fzQa2S/+4i+a2Slb/RtvvNG6bzAYhHc/f/486vRs\n", - "duqTwT5euRBsdb3UN/M8ocLL2Z9DBS/wuKXyjCmfsJS/Cd/Hflap8Hf21/I59NhXBu1YW1sLvmVY\n", - "M1wG/IVevHgR/kY7Dg4OQrABKE8ePnzY2i9iASvA3bt3Q7k+A8P169eD0zfue//998OcQP/dvHkz\n", - "7EXAyspKCCZA/37wwQctmhYOlOr1emF9sq+fJ4LO5Wnkvo/5iJmd9i/vF4ugxG9Jze2NjQ17/fXX\n", - "zez0G/Ld7343u1/nyjKbz8OX8kHmHIoxup1wb/LqjwjOY2PjxLgXGamXSsuyCEoPKKkPjEpJwu9m\n", - "B14sPr4fzvH4ME+n0xBtdJYDFKeZwdjyBo7642Dx6NEjycvjo2F4nih+LeZh8c6NzNOEPogtbp/A\n", - "OscczW3Dhw/JTe/duxfqjQ18OByGQ0SMj8jsJA0R7uONkdMxeKhsAMw3g+t/8Rd/ES2XwRGpqEtK\n", - "mFpZWQnzKsUgf3x8bJ/4xCeSZXterZiDt3JCVpsysz6bxaMs8YF99913zaxcWFNO7or7it+VYv82\n", - "m49iRl1SH6USZ/yS+1EXjPne3t4cU73ZCe/TD3/4w7l2XLlyZU5gMNNJafkghWcPDg7spZdemiuD\n", - "5z2vZd8HHBAAp27Ug5/lrAxo2+rqaqgD9kIV/MJ8XT4LgdlpoMfy8nLov1u3bsk1rpi5Iahgju/u\n", - "7rYi9FZXV8N1jjrEgQH99sorr9hbb73VKrcUar6rrAg4+OLb++LFC3vvvffMzEKk7t27d8M8UUBf\n", - "sJN7av2urq6GsUWaNkaXb3Q17VVUVFRUVFRULIgfC40UTp0x1u4SsJR9kap7qE4/Cn4qBmuXvKaE\n", - "+wwSEuddApqmCRIWtAW9Xi9IbjmqBqizUcaDBw/mJFW8z0u+MSkeUh0ktZjZDM+r62xeSGnPUKfD\n", - "w8MibhyuXy6pNqRXjMPu7m4oD1qNvb29oOVjMyL6lOFZ9j/3uc/Zn//5n7fuw3jB7MdQ0hjGvGma\n", - "IKUyKz9Mcffu3TOzeS0Am1XRLyl1+dLSUhjXlLZteXk58MyUQrGrKyqOpaWl1n6SM6EDg8EgaKK+\n", - "/OUvm5nZv/pX/6qofqqMXIJh5v2CNtNzVvEzMXb3VB2Yb8jPZTVfuFzUj59F3966daulaXj27FkY\n", - "109+8pNmZva9731Pvhta229961vhN2hKf/3Xf93MTjQOyDPK+e18/Zk9nf/FngVz07e//e3Wsy+9\n", - "9FLYC1E/hNozOBsEaxLxHm4bxgHfDQabdvlf/9165ZVXwr6NNbm3t2ef+9znzMzs7bffNrP5tYz7\n", - "rl69muTLgvbr+vXrc+OTgp87+/v7Yc2xCRgmUT9fYkBf7ezstDSCau9/8uRJmAueQoNRopmqGqmK\n", - "ioqKioqKigXxY6GRwkl1EQd2dr7zp/+L0EidJUfgeSDno4GTO5/gIY0xqRqgsp33+/2WVmk8Hsv8\n", - "V94mf3x8XJSvsNfrSX8troPZibMnysB9rLnEnFHSltm8ozjfHwM7pXtfANa2cf9yvQDOnWdm9tM/\n", - "/dOy//wcXVlZaflf5EhTVf9BooOjN96DerLfr1JHAAAgAElEQVSPiNmJZugXfuEXzMykTwXaMRqN\n", - "wrPKNws4ODiwv/zLvzSz+NiYnbAeq3nJdVaO0V57ynVhDaInoGUoRnal5S3VRClyRobKKqAIg5U/\n", - "FOdJxP0pdmrlD6X85lL1Y0DSv3HjRtA0YO4+evTIPvOZz5iZ2ZtvvhmueXJYs9N9QvlLqXKhpXr9\n", - "9deDRgraMXY2hoZyaWlJEpmiPARZsEYK77h9+3aYB6gz+1cB4/F4jkQWdUIfoZ8PDg5CvdScGAwG\n", - "LdJN1QdvvfVWS7v35MmT4Hv2K7/yK2Zm9tWvfrU1F9g/UWkusT/s7u6Gd6f8mGJA+9gSgjmLvKlX\n", - "r17N5loFSi0+PhNCSvudwo/MQarEI38Rx2aVZLT0sJOrk4raKmHePitSqnr+mONfs3lzkYc6XLHD\n", - "LcxLWMx7e3tzUSRmJ32Av9EH4/G4xSzPBwNskGx2Uak1GOhrTqeAe7FYRqORTC+EOmDzWllZCQsW\n", - "H/NYuVAN80EKYEZj9AH3Jd6tTGzYqF599dXWtaZpWocMju5D/z1+/DhsRip1hWIlR/JnPkixwz/a\n", - "iQ36xYsXoS74YDHw7J07d+Th22N3d1eaitFHKGtjY6MVFcVQewL3/fXr181s3nmY08t4R3X+mz9i\n", - "3nTAcxbjsb6+3mo7H4awLlQiXtUWnp8+bRH/xnXmCD1/gGa2e14fpR8vzDefksvsdI7hgG52ahba\n", - "398PkWoMfFQ5Yg7rD+vt8PAwOZ/+7M/+zMzMfuM3fsP+4A/+wMxO++iVV14JcxXzc21tLcxttPf2\n", - "7dthjqn9G+389re/bb/6q79qZma/+7u/a2Zm7733XlgjvC58X66trYV5gn754IMPwjjwOgQ4RRDm\n", - "7OHhoYyUVmsScwzRsFevXg3jr8Ya9bt69WrYT/ggjzWUivYejUahf/nQgrmIOq2urrbq8Pjx4xDp\n", - "+8orr5jZSSQfykNKsT/6oz8Kz2Dv7fV6UmBEO7APLIpq2quoqKioqKioWBA/chop4Lw4n/jU7N/J\n", - "ebwUmE/IOxb7v81OTuqcAPiikNLMTafTlvMzh29D+uTcaJD+j4+PWxqX2WwWJELWeimJGhKN4q1B\n", - "f6yvr7fMbrPZLNlfqOvW1laLDoAlSNRJSXcMXI/dh/IgxaytrYU2sSoc/QvNRb/fn/vb7KQv0Ocq\n", - "3D/lLKkwmUyChhBmhYcPH85pcFJAHZRzK+pycHAQHHw///nPm9mJBP7Vr341WS+zE2nbm40gTZvN\n", - "m3E8lpeX7VOf+pSZnYYr7+zsnCk8G+ZSpvZAHTgHnNLu4n6lQeI8eJjPMc2JD245OjoK/c9JWr15\n", - "eW9vr0WxwFJ3yjynJPSdnZ05p3WglLLBB+so7Q1rzLAfbGxsSG2B/421xvweTmBtdrLesA9Aq/m9\n", - "730vlOdzFnJZh4eHYd1De/aFL3whaKS+/vWvz5Vjdqq9feONN2TgA89vwDs37+7uBq0z1u0HH3yQ\n", - "XP8qifD6+nrLxDqdTuX+iXejbb1eL+zv0PzyPMb9rAVnHitokPBszBUBdCUYI9aWcWL7n/7pnzaz\n", - "eYoVOMHj3zt37oT6oy6vvfZamBM+sAp9hHb44Itf/uVfDvsJ6Bc4920MVSNVUVFRUVFRUbEgfmQ0\n", - "UheVwZodUT1xYyliEhskM5aAFnU2b5qm5fjKDvJdoPw+PDj0mzU+KFtJGwD3B6S6wWAQpENPfMk4\n", - "PDxssU6z3w80ISsrK0HCh0QDe7dHKUN76X2Q7hSJG8NrLsbjcWgTS8d37twxM005ASBEWb2fMRwO\n", - "gwQMqff+/fstR+EYOSR+g9R57do1SS/BxH54roQFudfrBX8YjNva2lrLH0LVj4lZoZHIUW4osPaE\n", - "xwbl5bTGfp5wv3AGAbwHkjyHqwOsbWUNEtYA6rS5uRn8jHK+L94fip/xJLtm8xK61wiur69LPzw1\n", - "d1Bn5fzP9BcAk0T6ftnc3GyVO51OW/5LN27caPVBr9drzYuvfe1r9su//MtmdkrPce/evZaDv3Iw\n", - "Z+280jhDK/jGG29IZ2XlAJ76xmAMmCoitlZ9YM5gMGhpBIfDYdCaKc0lfLIODw9b84OtFdDMrK2t\n", - "Ba0TtEHLy8thvJQVhwNV0Ief/vSnzexkTqDfoQ08PDwMmiiMudLK3b9/P9T5T//0T83s5NvgtY7c\n", - "XhW8gu/Z0dFRCHxAP6asUsCPzEHqosCHEoAd6HAQ6Mr7xNFTvLl2PaRxnXyalxz3UQwpZ3RMaOVs\n", - "OB6Pi53lvTo41n/elMAHTYwN1wULd2lpqVWXK1euhI2MNx7VR6oPMDbMw4PfeGPG4QF1zh3y2aHe\n", - "zwlOcaIOp1jEqcg1bs/y8nLrAMCmDvzL0ZEMtBN1uXnzpjQveEbgwWBQbH70bMxsRkTd1cdnf38/\n", - "bK5grl5EwOL0GGoe5NIk+fkU++D5tb6xsRHmN4+nj7xS/FXPnz+XUaCpVDfcBs+GPplMWuYl3p9Q\n", - "l52dnZbpMRbBiN95THydWdhBuVtbW60DyGw2a5nWJ5PJXDogs/loPG4vADPSvXv3wt8w3RwcHLQO\n", - "UsfHx2FuY+394R/+Yau9DHZ3UPMRa4r7Ee/mccN+goPGnTt3pAClgHnATO9o2+PHj8Oexn2j3DjQ\n", - "58zN6PfZ6XRqP/uzP2tm8+Y+z1/HDuMsdKB9WMvLy8v2cz/3c2Z2etD+/d///VBeal/htYh+3tvb\n", - "a63Rl156KSv4mp30H8bb7/MpVNNeRUVFRUVFRcWC+InXSHGeM2+KmU6nQYXJLME4rSvVP6QTzgXH\n", - "UoD/rYtGyauaSxm2GYtwbfkExCVQZg+PmFN6CoqmgeuXah9r9CCtsRqd2ZdRBqQcplDwbMLsRJ5y\n", - "ij8+Pm5pQra2tmT+LkD9psB8M5DWIeVtbm7OJX41y7PAY/zefffdlpnk137t18LfCE0vDf5gqgBI\n", - "/s+ePQtz2psgPPwcXJRORGUv8NoTxeAdy4OnOJl8H7OzOdMu+JyHXCZrTHwf8//naGGUycaP62w2\n", - "mwsEAXwiXqaK8c+bzbcb8xK/xfLF+XHk+7AuJ5NJSzug6EZiffE7v/M7c/9/584d++53v2tm8/MB\n", - "ARS/93u/Z2ZxlwFf16ZpZPugfUI77ty5ExyZWfPjc3cuYm3g7xM0jrPZTO4j0Bax9cCziCsz7uHh\n", - "Yeg3ftabxm/evNlK9sxgDTy0RdCmnQXD4bC1D7MWDZQYCr1er0VHUoKqkaqoqKioqKioWBA/sRop\n", - "76vCJ3nYaZeWllqEd6PRKDzLLLsqZB9gKd87XS7ifM4houeBpaWlOenF7KS9kE66Sv0xUkBI/JBS\n", - "ORM8sLGxEfzSmNlYOTLDSRv1e/bsmXTI92Hgw+FwjiTT7GRcMdYccu6Zb/f391uSYq/XK6Kz4BB2\n", - "3xd4TwwxB19PrspkqKBB+Pa3vy3Z4hFuraRG9AVrF+Az8PLLL9s3vvGNueulc+Tp06dBYkUfPHr0\n", - "KGgEQG+wu7sr6SdwH9ZNiSMowBonte48XQUzmyuqEPb1Sq1jaKsGg0HoV2gIVldXw7grx3n0a8z5\n", - "XmmaPBS7O7P7MyWHp3tgaoecBsyXwUCQiJpru7u7Sd9RzLvd3d2ieXblypWg7eC6QFsE52pebxij\n", - "w8PDzvsqNFavvPJKaz5ygAG0aZ/97GeDRgpg6gGMgW+rJ+xV2lHOYoA2feELXwikmykfLoWYdo+d\n", - "7s1O9hqME9r25MmTsEf79saQ8gVdXl5Ojj++YZubm618npPJJOwtgNJM5XxrY/iJPUjhw8OLxncc\n", - "R/Iop3RWxeN9rKb3m9t4PD7TAcrXcxHVr3pmMpkEcxAfMFPmAqXm55QkPuJveXk5TGosXDZhcOQI\n", - "PqBsasNHH6aO0WgUDldsMvF15ggO7nOvgo+lBsCzzNbsD1elZi1+Fs/s7u6G/sNGpMxuo9Eo6fTI\n", - "0WfgX0FZb7/9dhh3mJQ2NzdbUao8j1UdwCr8ta99LXww2JRdAk4Uyn3uI9fu3LkjD1K4nuMCU0Af\n", - "qRRBZu0oS2Xa4/uA6XQqOZsAZS4DlMmO+esUozofnlKO7yryivcib0qcTCaS00rBt0XVxazMUXdv\n", - "b6/FW7a2ttYyq7Pjs+ekY3z6058OBynsEXygwXvZfIwP+JUrV1ofWHaaZlMi+gYBMNvb2615per3\n", - "+PFje+2118zslAPr8PAwtAnt9X3nBS0eVwbGk7mWfIJizviQg+fB6vf7rf3y0aNHwVSPdjx79izs\n", - "N2Aif/78eVgr6rCbQr/fD4dJf5AzO93fnz171jK1P378OKT1AQP67u5uiOD05XC9SlxoqmmvoqKi\n", - "oqKiomJB/MRqpHDaVKo8r/I2O5UsYpom3Ku0RezkvIiD+EWB2+GlAtbecGg9s7mbzZurlJMeO2F7\n", - "9vfRaBRMW54d3UyreVWoMYf2erPn8vKyzBVYihQHDN63SAg+83GxucVsXrrnhNFKumdGZrMT6Rnq\n", - "dGXOgzP3w4cPQ9g42tjv94P06XMbmp2ao3Z2duY0iIDK4+dxeHg4Z073gKSpmNWbpmklc14EPLe5\n", - "b/y6Vtf87/h/Nv2bnbRN0RV4TKfTlvT89OnTlmaItQ+K6oClZx9QwNplfhbP8Lgpx3IPpX1itwV+\n", - "Bm3CXNve3m4xvB8dHbVy7fH44/6tra1WZgBlEsT85z5gYKwUJctgMAimOmi/edz4GwFtC/rsBz/4\n", - "gX32s5+du0/hwYMHgb6D4bMxMC2Bmd4POZuE2bxpD9e++93v2uuvv25mpwEes9ksrCXWtnsKGLWX\n", - "9/v9sI+gr5qmCeseLgW7u7tBK8b7ijKxog85hyuewTjt7OwE892Xv/xlMzvJq4d+YVcUjB2PP7RP\n", - "+G1jY6NFv8P8b948mELVSFVUVFRUVFRULIifWI2UlyAZSpvE17yEyVKAymXFObJKfAY+KihfCyVJ\n", - "saapq18Wh0T7Z4+OjoqctAeDQehzJWGy06+X2lV+M6Y/UI60AGvgFKt3VygNx8HBQfCxgIR25cqV\n", - "IN0hoGE4HCZJYZl9GH2Vyq/17NmzVt49pnGIsc7jPpTB0lqJky73Ha8Z/A3NhQprVxQlTdMspJ0q\n", - "IdpMXUO9uR1m833knzk4OGhJwMrpezKZSLZz71/HSAVDKN88BuYah37n6BTUWPvfeFyZlFI58Pt9\n", - "+P333w/aHThKHx8fzzmFm51qWBg8JxXdhyciZbA2lZnBAe6XX/3VXzUzs29961vhfXgGGrW9vb1W\n", - "Hfb29lrku0tLS629yo9Byq+Wg1g8qere3l4gIUUgj9np/EV+wIcPH4Yxwb5zcHDQ+mY1TdNy3J7N\n", - "ZqHfUX6v1wt9jPG6detWeB+usRaVrTyoA7R377zzTngGLOa3b98OxJ68d2Ec1DxFPx8dHbX6mNvR\n", - "BT+xBykAHT0cDueYhc3mzXj48E4mkzm6e7OTCe7VqXy4wmaYcxi+LJQejlj1q0xePhLObN5Z23/Y\n", - "S8tVG8hwOGw5dPJHOmVCnc1mreikfr8fNnO0I8b+fRZ4VbxZm8F9fX099CGb9hR4/qIdmGPqEMlM\n", - "5Di4cXoE5RjN/WF2Yp7BoY4PQ6qvvHMoOzmzqYCZpflf9IfZ/CGBHcIXOUiVzL3cPfzx8vON5yJz\n", - "QbG5zeykncpRXTkre2HNzIJJDGPIEYT8XmVm9BGksTWjDowxM2UOu7u7YW6zYKA+Xn5ucxRlisuP\n", - "2cDVQSq2lsxO5hinzMGziDrEmppMJuEQx2bI733ve2ZmIc3Im2++2QrgmM1moe2cFsr3/+Hh4dwY\n", - "lriF8PeJx807Z7MbBPqIk3QjmIMPZhwZjHdz5o+UoIeyHjx40Jpv4/E49AP69PHjxyHgQo0XTIbs\n", - "MoI95ObNm+E62tbr9cK+6BMVnweqaa+ioqKioqKiYkH8xGukgKZp5hLJmp2cXCHdQXWuzH7Mv8Iq\n", - "dB+GnJKEflTg28SaHPTV/v5+kF68psFMS8CQrI+Pj4N0mpJwu2iKMHaoC2vWGJxEtQSsLfIhszko\n", - "aQjlM2UD5kwXbQHU33iWuYDQB3fv3pXsv3gPpGzmPuIyfX1u3bolub6UNtFLuDFuGDZr4jm0g53O\n", - "U/xbMZRmFuDMB/jXP6toA7jeHLKvHO39fFPJjfG82TzrNDRRHMihtFl+3fJ8UXOL28iuCdxuD+XQ\n", - "7nF4eNjSsh4fH0vmbWiWoDl99uxZiypE5U97++23w37CWlnOPWc2r7lg4N3s3A3nanaKxlyEJobH\n", - "jU1ofv30+/3WdyVmqUCdd3d3O1kO+F8G2r61tdWiIbly5UqLnX4wGIT1ij44Pj4O7gi5tefnQmzf\n", - "Rl8zRyPqlTJpMncguxtgjmE8NjY2Ws7jXfPnplA1UhUVFRUVFRUVC+LHSiMVI9BLASdWPr0ruztL\n", - "ZV77MBgMWk6as9lszj5rdr422UURI85TSEmWHAasJAYvUQ8GgyAB4dqNGzdCCDEkx3ff/f/Ze9cY\n", - "ya7rXGydendXV08/prvnRU7zIXI0GvMhkZZsE5ZoUZJl2ZEDG7IDGP4TQAECJEZ+xTe/5AS+QQLF\n", - "iG0YAeToRwD7XkO+sfxQIJmSQFG2ZcqgKJImqSE1fI1myHn3o7q7urpe+VH8Vn1n7XVOVTcpkfTd\n", - "H0BMs6rOOft99vrW2t96zVUOn1Q8zpa9Vqul8umJDPuB5Syy6shAX1YqFa0HLByOIxhnoXkxG7YM\n", - "HHPniYky7Jja3t5WC55jOPA8xKdsbW2pRQYLvFQq6WeICXn55ZeDZ3pH+5eWllz1Yi/HHxgaj3Xh\n", - "9vNYOcsk8uGP/SBvDnBsjrcW8OEGlMsy0h5r1+l0VAzwySefDJ5nVcrHlbnf7+fGN40LqLfjjucZ\n", - "xw56a2SeEjkHhGOtRP/v7Ozo92AcspghjhlEffAZBHq9/uFYP2BhYSEILp+fn3efC7AshMfyIGgd\n", - "c6bRaOg65rEdLNlgJRgajYbOcY7Rwt/b29vuAYyDYn19XdcJPNdjBZkthnjoyZMnU+USGbaV7a+7\n", - "7rpL6/y9731P65QH9BEfhPFiPVlQ286Lra2tQNx40gwIc3Nzem+8mybJ//dvaiPFp4kmBU84Dmq0\n", - "wKKUJIkuQJxGAx3HC4xdbN4JG6lJXRme5lWxWAzcC16dOGiRTzFal92lS5eUIh4HLJzor7W1tSB4\n", - "UCSkyplW3+9pu0qlovXF5Nre3h67GOTdz+o0iYzoe5SVkxvzhtADFnv0x/b2ttx5550iMmoDXtSx\n", - "KHAiVqgec8BonmL5OH0vIEkSHQdwdezt7QVpl0Qk2IjWarUggWqz2Qw2vN1u1z15a8th6zKJkdDr\n", - "9YLAYzbW8C+7Tj01ZPRRkiS6geKTY3Zj1ul0gtQa3saFT/x5rsVx9fWSINt+73Q6gXuzXC67Lhr8\n", - "DmO83W5ruTgtlB3LfHCEy4yTYTiVNT09HZxm9AyXubk5bTcYE3fccYc89thjqd9xH0Fn6cUXX9TN\n", - "laeHxC9ktBU+W11d1Zc+xou3EW2321ouXNtoNHQTwXXCvLl06dJbfvAFcx2q4zjZNw6vvvqqbsLY\n", - "7W5P47366qtaT/S5t3bcdddd8vTTT6c+y8o0AfDaYQ10kXztJ8y97e1tHavYELbbbf0b/05yQCy6\n", - "9iIiIiIiIiIiDoh/U4zUJJpEWfA0iLJUffE9Wwh4tk3Iyn/nKT6Pe+6PA3nBo5ywF6jVakFOQXZ1\n", - "gb3Z3NwMAko9zY5Jy7e4uKhtzfmxcG9YO16ZRfKPd2f1Mcq8XyswizkSSefiAli7h5+PMnAgqJUS\n", - "qFarej+Us1gsqpWL75hpsHmzREbW+CuvvKKaMp5rAjn8zp07pwyDzetl64G6oV02NzcDZpDZT3aR\n", - "Y05hfHl9NTs7m/qcmWNcY5Xj2XXq5YwEut2uWtCee57HiXXZerndlpaW9H6exc31sEytV/dOp5OS\n", - "VkCZbJvv7u4G+ku27gCPI5E02+ate8DMzIy2h5cVgce4ZS9Z3Z9lA8Ac8DF5APX12vHo0aPKSIHJ\n", - "9lhLHuM33XSTiAxd2t/+9rdT9SgWiykGl8vNWFhY0KTMeP709LQ+hwP+7ZznccXl4vCQt/q9YDN5\n", - "fOhDHwpYuyxAHoFVwG35Njc33ZyWAMbk4uKifOITnxARkYcffjhVtkmw3/c+jxn7TmD2aT8epMhI\n", - "RUREREREREQcEP+mGKlJkZUrCrtnFljDbhff1Wo1d7dsjxWztcjsjFU7Z+D33W5Xn5f3rP3s2jlb\n", - "OqxNjkvB3/Atexakx6h1Op3gWrZYbfCqyCheYnd31931s0CcyND68axgZlzwDK9d7TO8/ufcTnk5\n", - "9DgOj+/hWfwWMzMzqtzN8OI8wPzh96VSSZaXl0VkxEgVi8UgFqBer+v3bHkh5oZjFDDO8btut6tx\n", - "IWfPng3Kcv/994vIkJHCZ7iHFxDqxa7VarVA7oDbkYVv87IP8H3ZiswL2GahSvShF2iNaznWzxPf\n", - "ZHFVOz4Hg0HAFl2/fl1OnjwpIsP4EZQF9+H+8ALa7SEXVnD2FNBR9nK5HATDe4HjPE84Dsy25aFD\n", - "h5SRAKampnR8Qomcn+fForJYL8BBxlZEst1ua8wavuOxhDHGcwIB0rfffnsQR8Ys6m233SYi6Rgo\n", - "/J6FYPHvHXfcEcQUcfthrB0/fjxgd2+99VYV7gSy1nLMzVqttm/F7UnfE2DPWJpiv0x8oVDQ2Mzn\n", - "n39eRNIxl1h/eP6gjV566SUdA5gDCwsLWl/L/L2VsAro3FaeAG4W3jUbKaunw+ki9gvvRI2X5iFL\n", - "sRgNi0A6TpKIa3kB4tNHWFA4USw6k6nfvJN+eZurrN+xy8NTAs8DTyrPZWf1l7xTbKxAy2lZ8OIG\n", - "td7tdnWRwf2yJrVNgjwOeNlMTU0FivWDwUAnLMbC7OxsKumyiJ+Co1qtTlwW7/QdFg9sVDudTvAM\n", - "DuYEvIW1VCrpZolfMnjx8ThBuz7++OMi4rseRUYpJBjomxMnToiIf7qPgXY5duyYvtw8wH155coV\n", - "HTv8crPuqOvXr+eqbPOmmTcbfKiCf8+fWWVp1MOqa7PrlIPO0f4Y49evX9eTUZ6aOTYRd955p/YJ\n", - "nsGbOi6nvQ+74myoAv/N65MXNM+wmwjWcwKuX7+uL1IG7ocxtLa2pi9ubHy2tra033lseGrceK4X\n", - "tIz6sLYUXuRPPPGEfPCDHxQRke9+97vBtRhjPO9Qvl6vF2wc9/b2gjJcu3ZNXYlw8bVarWBDfeLE\n", - "iWAjxesGNqRXrlzR57ZardyTkh4408Qkmknc3liTOBmxBx4veMYHPvABERmd1BMZvS+Wl5dTmRRE\n", - "RkYFo9VqqRaYd5CCgX7H+9gz6kRGY9Cu8yL5m81JXKrRtRcRERERERERcUC8axgpm9gza5c4CZ3J\n", - "1pj3Oz5SbF0AfA0rNNvcbcViMdCW6vf7akEybWiDOPnaSeExWGw1suVgj4vyNbCeSqWSWiWs5ot7\n", - "5lkpnIQS9eSgdNZwgnXA9C27IQFYh/fee6+IDK2fZ555RkTy+3xqakqfy25LrhPKbF07Ozs7Wgar\n", - "hyMyakfWrcnTemm1Wq6+FiwvWJ9ZQe6ezgsANsNjrkRGFje0Ud73vvepawIWfK1WywwaFxklZxVJ\n", - "590TkcDCFkmzKAjWhQslC7Da2fpmlszmLev3+25b8ZjAmGXG1GMOPZYoLzCeZQEsI9zv93Ucw9Ln\n", - "I+4Yz3x/HKTY2dkJysLWODPdtnx7e3vB0Xr+Da8Tdr54khztdjvID8n5/Li+npSJ5x5BG7A+Dxgp\n", - "SB1w+THPOHG3FyjPeSI50S0ApsfDX/3VX4mIyMc+9jH9DP1x5syZlO6XyHA824MlFy9elF/7tV8T\n", - "kREjtba2FryrLl68mNKoEkmvf9wPmMuDwSDQM8pSwAfYPcusaBaYkcRayesna9HZBMULCws6TlDm\n", - "er0eSAhcv35dbr31VhFJ9zXAYxfXjAsmx3MhydBsNt12QZgEWPRr165lZlXYLyIjFRERERERERFx\n", - "QLxrGClgXAzKfvMRWYFJkZE1ViwW1QqA37Xb7aasf5HhbttaXsViMffItBX1ZOxXONI+A/BYu2q1\n", - "6qr0WqbMi30SkSBQ3YtVq1arbnb2SY+pegHq6J8XXnhBRNLsDB/3thYGH00HC8BsB1t8HqvA/WnL\n", - "x3EHHDOWhWazGVjySZJoGWBReQHpWZakjcPj+ntMHb5vNBrKJoEhePHFF9VyhdTBa6+9ppY5S09Y\n", - "lsKz7HjcoN7jAkfRr4cOHQqCUjljva1jFvhYNscEeQHWzFjZ7/gzG1dVLBZTcZX4HeYUC4oiToP7\n", - "GG2OflhfX9ex6kkOjFNAB5MDRnlnZ2esQj6ehTqhP5mlYGbdHgAoFouusj3AOQFRfo4xssrTzGZw\n", - "8D/ayJvz6K96ve6+B1A+Zmfs+v+jH/0oYDA99Ho9je1hWRDLGvf7/YDVPnfunAZfM0uO77ktuI9t\n", - "jNSk74nt7W19Z2H8NZtNd63kMSMyXB/BnvFaaKUuWB7CYybx+9XVVZeJsl4D/jsvAP7UqVN6MAbM\n", - "78rKio4dT9EcORwbjYauuXhWs9lUEVRPODgL77qN1FuFvAWYI/m9gE0+/SOSPlGBzq5Wq64bD5g0\n", - "0SqX86DB9YxxAXveyR0+RedtkGww7zi6lE9mYNMKt9ba2lowcJeWlvR7XqjsKaasE3s2UHQcOMk0\n", - "2sBrN07cnPeCArLSWeClmqUOLjJsUz5NCtiXUpIkeh/WbgKwoM7OzroL3nvf+159noifFHZ6eloN\n", - "jLyTRN7m3tskemg2m0FyY3ZlWdexBbvYvVOWtmxeehSRUCm/UCgEc4Vd2Z5bht102AicOnVKRIan\n", - "I7HJQN/s7e3ptd6L1G4wUS60hz1Fy9dgTLB6vhdwD+zt7QXP5VAGvj/qCbBrl9W9bZsuLCzovGat\n", - "NHs45caNG4FLrFwuBxuphYUFdz4igP+zn/2siIh84QtfCMZBtVrVzQY2B567u9vtBkmLa7WaPPro\n", - "o1oukeE49Q73eGPDmy+8eTpoRgWR0VTQJMwAACAASURBVObm2LFjIjJ0q6KtWecKY4YDvNHW2HR4\n", - "B25ERuMX9VxYWND1A22Y9Q7DOEFqqo2NDW2jvI3M2bNnA+OEEzJ7RAnmSrPZ1DbFmKxWq0F2h0kQ\n", - "XXsREREREREREQfE285IHUQT6a2Ad7zcWgR7e3uB1cZHovFdsVh02Sc8g4MgrSzAuETLk7aLFyjL\n", - "YCqe89+hzCi3F1wPy2tvb89Vjs5TNMZOfzAYBPnv2GLmQEpYArCANjc3A1rXO6pdqVRy1eHzFM5F\n", - "wnaZ1BXZ6XTU8vGYRmtZi6QTosKiHsfk5el5od+np6f1edx+AGvoePWzBwK88bSzs6Nq6HkB8OMA\n", - "hq1SqQQUPI8r/Msq0ZgXbPGLhH3c6/WCXHGeS5v1lzB2yuVyELjP44qv9RJtexpKuB7uiNnZWa0T\n", - "9yv6DmOi3W6nGCHc12PCbDB8oVDQMvAYs8fyGWzJ2/uxfIR3DbC4uKjuYG63vNxlCDa+ceOGtinr\n", - "Q3mB7xatViuXTeB1yq4Tly9f1mewyw7wXLNgWzhnHJ6xvLys44AZJTyX3xt2XarX66m2ygsbYHbe\n", - "jjtmW9EfpVJJxxhc/PV6XTWgsDawThuY/UajoX3NYxZsK6Rspqam5L777hOR9HjnoHAR3y04Nzen\n", - "z8WzkiRxx6plH8+fP69sG+rGrKJ3cAzvolKppMzafhjAXEYqSZKbkiR5JEmSZ5MkeSZJkv/+jc8/\n", - "lyTJhSRJvv/Gf5+ka/5dkiQ/TJLkbJIkH5+4JBERERERERER7zKMY6Q6IvI/DAaDJ5MkmRGR7yVJ\n", - "8nURGYjIHwwGgz/gHydJclpEfkNETovIcRH5RpIkdwwGg0xFKxuQ+ZMGM06WaWJrluM0bCxAoVDQ\n", - "z7B7LpVKqeBMXGuDg1ll+c1gXEAcsw8ee2YtM0/9W8S36u3vSqWSG0xv2aJyuazt4O3+8+JpPOts\n", - "XD4/tqxtPVjsD/+yhc1xU7iG+83mrRKRgH30jvGPg6cIDyuQGUIOJma2Bv+ivWDRXbt2LQgOrtfr\n", - "GoiJYNgjR47Ij370o6BcsCr5WHgew+EB7JenXM6Mh6eAzTnIGDauzxsTPLa9PvQYVmZobDByuVzW\n", - "3+YxoqyAbgVBGfV6Xa1/yFV44qCon20Hu+54OSgrlUogNcEHR7g+NibMK3OxWFR2EmVheQCM2YWF\n", - "BQ0K9qRUPKYLDMHOzk4Q+D43NxewmZcuXdJ28/DXf/3XIjJkK6x444ULF2RlZUVERvONAYbDW5s2\n", - "NzcDxqrb7Srbzmsc5yUVGa4H9ncrKysqo+CB686MNGQeMJe73W4Ql9btdgPpmfn5eZ33YK48QdHt\n", - "7W2NZcLcZTFPrBdLS0vKBKFOW1tb2p953hbuU4w7y3ja36JMly5d0vKgvxYXF1PlB2wWjWazqW2F\n", - "oPNJYmxzV/PBYHBJRC698fdWkiQ/kOEGSUTEi9b+tIj8x8Fg0BGRV5IkOSciPy0imZkQ34pNxJuB\n", - "51r0FkMOXsXCw64HdDKfEPI2N3kaVD8JsLq6F6TNm4m8gNw8ZG3qbNA9qz8DpVIp2NCyi4X7CZME\n", - "LqKrV69ONJ48Fet6va5l4U0a+pUp4EndrXBT8ER8M65s3swDdjy12+3AvVWtVlPuWZHRIisyaj+m\n", - "7HFfb2wuLS25CzwWyEk3Unz60ZZ5enpaF1+81LlvMR6sCwf34T60GxB2f7CryJ7u89K8cLk9t1pe\n", - "EmwuH+qysbERJKPmhZ7/Rvn51JmdK9648uYtZxrwguzzQgW8E64rKyv68kVAs/cC8gwwHmNWK0kk\n", - "7Zq2z/XchP1+X1/gfArNtjPWDwv0ER/GsEaRh7W1NS0/b5Q8o8l+1u129WWOcb+9vR3opjFarVZw\n", - "ym5nZ0cNJKw/165dSynki/jzem1tzVUFt/O53+9rX6O+09PTwcGTGzdu6PzBpmRzc9NNNJ0HdlHm\n", - "rZ/YvM7Pz6cOI4gM1xBruG1vb2u7cjJ3jB12eY7DxMHmSZKsisi9MtoU/XdJkjyVJMkXkySZe+Oz\n", - "YyJygS67IKONV0RERERERETEvylM5F94w633n0Tkd95gpv4vEfmf3/j6fxGR/0NE/uuMy3NN70kY\n", - "jrca3lFnPjbMv7MUPCdTZVeAdQswTc7/2gDacTo4bxXytDi4/B5bA7DWSV6AOV/HweaWlvesXQ7c\n", - "hfuoWCwGTEmtVlMrHBbYuLHELKBNeJwVWJjncmaV/bz8h1xPG9zIbiGAXSJsDdqE1961lUpF2woW\n", - "GksieG0Eq3JmZkafjQBQz+LvdDpufizMlUkTn6LNOXEvwHMRbcDJclnviCl/Gxjt6fjwGPN0n7i/\n", - "rDXOh0O8+vGYwN9esDnaqNvtKkPCa0eWG0MknUvMm0OeHpr3G6/NvQMynuvePpefgTZbX1933UIA\n", - "3G/sJuOxb9mWmZmZoM0vX74csCw8L7i9bRLsrJxs+B0HKGMtyguh2N3d1XEH99rly5e17lxOL0je\n", - "urjX19dT+fLsIZN2u63PYTbIZm3gvzlDg21Lz006DpjDtVotcB/2ej0tM7cL2oM9E5O4z8YxUpiX\n", - "a2trOr/Qx7VaTcuCccWZS7z1P2t8uGUb94MkScoi8v+KyJ8NBoO/fqMSVwZvQET+bxm670RELorI\n", - "TXT5iTc+i4iIiIiIiIh41+Fzn/tc7ve5jFQy3P59UUSeGwwG/yd9fnQwGCBS9b8UESTh+lsR+Q9J\n", - "kvyBDF167xGRfzlQyd8kPCEuwDtazVacF+jqCXMyi8N+XAvvmrzjuz8OeHE/XhA0yscK6MyEsKUK\n", - "wJLitoLlA0vpIIcJbPZ3hneUmOFZLnyIwIM3Zjy5B1g0XtwWxz7k5SP02tErCzMirEqO59pM5lNT\n", - "U65yNMrFrAvqweMAz8C1XttmsXdcBpHxjBTLhzDLxt+JjFiKWq3mWq4cV2PZCWZPPDaBA6itsjl/\n", - "jzpxfzDr5bFZtm9ZUNRrG2a1MQbxLzMIbMlby9xjKb3DFXydJwvixYl6DCvA8USw5DmfHzNTHJco\n", - "kmakmBGxMTeHDx/W2D4OzLZziduAWSrEWiH2JSs21fvcO/DgXXfLLbeIyIjRZYkKvq9V+GfxX74f\n", - "rp2bm3PXE7BmXkA7wB4Y9OuhQ4eCgPnNzU33PjbOaW9vL2CuuKze2ovnX79+XdcvLhOC9FlMlmPj\n", - "RNKssTd/+DCO/Z5jm5lFw1jAd+vr626M5+c+9zn5vd/7veBzYJxr7+dE5LdE5OkkSb7/xmf/k4j8\n", - "V0mS3CNDt93LIvLfiIgMBoPnkiT5kog8JyJdEflvBz9pgag3MC7o2NsYWTdeqVQKNlJ88o41l+xA\n", - "ZV0aXqi8jZRdyDza9c3irVDhrlargc4QuyGwyLzZE5h5CWUnVU8/yLDz3GTe5ssu8MViURebrKTR\n", - "WfD6o91u64LGgZlYSJH086WXXgrKXi6XA2XzVqsVnD6tVCr6DIwNT2/KG4fVatV9meIa7xQew7r+\n", - "svS1AGz47MIqEh6KQBm8F4K32ckyjOz3/AK1Lie+J29AbKL1cSdreR2w5ffGlXe/TqcTuHG93/HL\n", - "lQ8l5Cn485zyXI/4HcYd9yFvKq0CNgNBzEtLS+7JOOue29raCtYLr/94jI0zXu17YDAYBJkrvOBq\n", - "kVFSbk7ijfbAtYuLi8FG6vDhw26KHVzj6WIdPXpUr8E48frQM4a2t7fVLYjNWL/f13HHp9iszh0O\n", - "OzAGg8FEh6Z6vZ5uwnhNwrxH/7K+GtDpdIJE0bZOFvyuxkaQ9QxRJ94s2ncL3Lp5GHdq7x/Fd/99\n", - "Neeafy8i/37skyMiIiIiIiIi3uV425XNJ8E49e+DwFMituxTqVTKTWTrWXxMnVtGwjs2zPpFbBl6\n", - "ukRvBuOSllrtJM+6aLfb7uce3W1ZCT5uza4J69LhwHIvv2Febjdcj3uLZCdu5nLhOk/Z3ru//R3n\n", - "qGJ4rh2rxeO5YgaDQcBm9Hq9gB3jduc25bZEPezx7Wq1Grgoe72e1jnPJZvljsQ1sPyyAJ0eT5/K\n", - "sr0iI1aOE4bjs36/n2KdPF0yywgdOXJEXVE8PjzXrm23brcb9LUnL8B9zXnuYO0yO5anPWXbRWQ0\n", - "Lr2gb/6tp3Pl3Y+lM6wKPP/NCcvzXCvsOkF9PQ0wTxYAbesFFvO44nyodi33+m8cU8wslCcHYRMo\n", - "Hz582J3zYGvATJ09e1b1jTj5toWXqJjZ1hs3bgTSEIPBIGAux7FC7B4GE8VMDauM4xmWJd7Z2UnJ\n", - "GRwU6P9Dhw4FOne7u7tB8LpIvqfJY6H5PQoW0GMkOYMADkFAF20Spi3m2ouIiIiIiIiIOCDeFYxU\n", - "r9fLDR73wOJ6eUfTPWkCPsJsY5/YmrDxThb2uczAeAKgQLPZVDE17PgnlYnIEs1ky9UKkyWUA9AL\n", - "8GaL2bJKHKTL9fB28VZQstPpBLFPnpBpu92euP5WhsLr/3a7rawILByOWeBxYMuSpUTvjTHrs2fR\n", - "QrR91tiBheTFpeC+zEiwMCMzm/jXsq3T09OBIGKn01Er24s38GJ9ON7JlsWL9UuSRANLPUYK1ifL\n", - "W3DAcJ7aPurPZS2Xy9qWsHAvXboUWK8cq8bz3/Y/x6DkiXXyOsEHB2ycFgcZ83pin+uNE643j3fL\n", - "eHQ6nYBB6PV6EwmKcqwKnre3txfESCVJoswLctOdOHFC/+a4Mlj6nvo4s164BmORGSl8NjMzEwRY\n", - "8/xEObmOHoPO662d39znaIN6ve7GcOGzhx56SESGjBQziCLpsYG/W62WnDhxQkRGYrkcXM2Covws\n", - "zCWM7atXryprizIvLCykDgOIpMcTs0p4Bsp1/fr1oD1arVZwCMMTV+b78FqEz8DCbW1taZ+A/eJD\n", - "CUCpVNI5ZyWIREb9/pnPfEa+9KUvBWWxv2Mw043xOamMi8i7ZCMl8tamkGH6ll0J1sVWLpddteNJ\n", - "FMvtvfH/4xZEAIObF+tJNhPjfsPuyjxadm5uTsvFv8NnPBgtfe7pSPX7fZ3Y3ovY2zh4yNMRmVR5\n", - "XUQCCltkRA2z3hUmttV/Ehn1TaFQcGl+u6nDi0EkvXmxG0x2sXB98DeuXVpa0mBTlLnRaOjzUCYe\n", - "7wic3Nvbc0/35QVEW6OCy8z1RH2yxnpeehyMg8OHDwcJkWdmZtwNnndghN1qWMRZvwZ1xgvUS0nh\n", - "Be622+2UsrhIerPhBbRzsmFrdPC6xn1utXZ4fWJ3uN2E8QuNNy8oH16UvV4vOAHJp22Bzc3NwJ3K\n", - "ZQCmpqYClwnPMU8PiV12vMHD/e0cf+qpp/SUFU4GeqfUOPWLd3gh6yQ3ymTngOcGzVqnnn32WRER\n", - "OXnypH5mswAcOnRIE/uyMYHnsmsJfdhut4NycR/itGC5XNY2we9v3LgREBG8MUPbd7tdnQe8acN4\n", - "8k7FoT3q9bp+zy40q7lWKBR03eTxiTYed9IZ97FzWmS0QT5//rx85CMfERGRb33rW8F9vMTTGNsr\n", - "Kys6bvGsSbQeo2svIiIiIiIiIuKAeNcwUoAXPJiHLFeAx6J4bhKm+XGt1WJhCYM8dx8zUnlUPD8P\n", - "u2xOguxhkoBVkeGu3mMdYLHgSOza2lpKfVvED+KcmZnRz3FfVtf2JBE40NqWxQsE9BLL8n3yAsvH\n", - "Ae6CYrEYqCEXCgUtP39mXTqsYu0dU0b5PJdCvV5XVuT8+fP6OX7LYwNtBYvTO5bbaDTUIoTV1mq1\n", - "1Frko9h5+dQ8cKJgT4aCGbc8XLw41Oj1jooD3rztdDruvPcS9gIeqzQYDJQpZSYKbYS2z2IG0b5g\n", - "MLNYG1smT2+qUqm4h1bsc5nJwZhgl4PnhsD8LRaLaoWzi8eyNXzIgZkpWycvyH1nZydgeprNprIr\n", - "CBngdnz++edFZHiMH6wI6ra2tqbMH+rRbDbV/QXGySvLoUOH9HtvHPGYRT3RBhxGAnC90M9ZbD76\n", - "7atfHR5sf/DBB+WRRx5J/ebq1avynve8R0TSjBT6hl2eeM7U1JT7TsFYfe6550QkrTeF+2xubqrb\n", - "FeN9fX3dDePAmoHxdNttt2k4At8XaxDG29bWloZL4B3S7/d1rqBfd3d3g2e0Wq2J5WomCfx+7LHH\n", - "5LOf/azWXUTkiSee0O9R9sXFxZQUgsiQBbRu/0nKFhmpiIiIiIiIiIgD4l3HSL1VMghePI+n+usp\n", - "W3sBpTYexrtHFmPiiVzaoPRxMWKTsjHValUtAVgYXCewBSIjJorVpm1Mk6c0PS44D+3hWReT9q/H\n", - "XHFcBbOKeRaFZ1myNW7bNUkSNx7KkySwwo3sk+cgTBsIymJ/rBJu47RYHJZZL5QFjNXm5qZ+j/46\n", - "dOhQwJ5mKcTbODFuU25b1NcGsVtgjCFO5KabbgoCz7e2tnSs4b5ZecC8OCMeY5Z9LpfLATvIkgi4\n", - "B8fc8Ry1EguNRkNZG2acvOPblj3Z29sLDnDwfAT4/8HUXLt2zZ0HHjtm61YsFnX+eyy/JxXBhw08\n", - "dgTtwYHtYEB5rfzwhz8sIiKPPvqoiAzjUhDrhz7vdDrKovFBEDuXT506Jc8880zqMx4n4/Kloa34\n", - "GrvWcruwEKgHxBaBAVlcXAyCyNvttitvgr8RG8jjr9/vB2OWc08CXA/OM4g+RFnW19e1rMxM4RnM\n", - "2GL9B3POfYN5WywWdbx5c8XLX8ksPtYK750KMFM47n34hS98QUREfv7nf15E0jGXqGOr1dL5ynFp\n", - "WX2bh3fdRuqthg1OFfGDy9h1571w7IvFc8mwNoqnl8PPejPJnK07Es9GWWzy26xy2DQVrGjNgdn7\n", - "VWEflxg5D7xx8IL5gTx3VaFQ0EmJsjQaDa0nv4A4uSx+j8nnBd4zcK1VRRYZ9dH169f1fliAeKOG\n", - "Ba3dbo89sYb/tydlKpWKLg68KGJh8cYL0Gg09BpPn4WBsk6a9ggvFii1M1ivLSsg24P9nE8OYmPJ\n", - "Lx8soN5JPpH8YHTUt9lsBqlpRMKXEr8I89JocNA36s7uKPTb1NRUSgMMn1lXnKd9l9V+PN7QLry5\n", - "sWVlQJcIAeEio5c02nZjY0NP8tnrRHxtKYbVp/N+v729LUePHhURcdXCgXq9HqzHWes7ME6Pzxpm\n", - "L7zwgrrVGBhPPOftuOLx4qVH2tjYCIw1Hu/2sIbIyI1+7NgxddmhrURG7eW5/bhux44dS5WVdRNR\n", - "j6w2wtjicAl7QIUPyPBmc7/vxW9/+9siMtxAYtMMA6JcLmtZ0Nbe5nQSRNdeRERERERERMQB8Z89\n", - "I4Xds5fYUUSCXTHrEnnsiL0v38PL65UkSaCAvB/3pXe819NOYUaNtVBE0ok1QcW32+0gcS1b22y1\n", - "WwvKOx5fqVSCY8/2b1zrudNsMP+kWk4eOKcU96EXKOyxbR7bxTIPgOeKYp0ckaHVhrJ4ViBbT7g3\n", - "yuQF8LM1xUyizdnFGll5OQH5CDMnh/UsQ095OQ/43h4Px3OtLITIaMyiHjZnmUW/31erH21TrVa1\n", - "zrDaPT2iRqMR9GGSJKkgfsC6MVlN3DtkkDcHeI567DjmtzcOmbnydK4YNkC9XC6npD/wGxtmwJkX\n", - "GPZYOcsQ3H777SIy7AO4dsGEMCPF9wVjwvWwffT6668Hh2HGsVpAtVoNdMdYK8+r4zhtIbi6zpw5\n", - "IyIizzzzjNtPYJA4FAG/48THGN+Li4suU4LrmYGzzOqRI0d0bcN68tprr2k9wUKVy+VAXoLfd6x6\n", - "D3YKbtzLly+nZD7we8voi4TvQx53AOtN4fmslJ/3jrzjjjuUeQOjfOnSpYCN5XUvT3ZhEkRGKiIi\n", - "IiIiIiLigHhbGaks1XFg0iP9b9VzbVZ1T0CTfcGeKjowLj9gnqW5H/FRbydt83ll3ZOvhUXtsTJ5\n", - "yua9Xi8l0SAytBwsm+U9n2OVWFjQswjHxSPtF+OYDABlQZwD+9VRt1qtpvcbdzwXfnpcy1Y29z/a\n", - "l9kEm/eN25StRpQZMUhHjx5NsVMi6aD0vJgmLy4mS6AO1ul+gzVrtVowjkulklqz+HdjY0OPWGOO\n", - "ZvUjB32j3F68E9iOra2tYP5xhgFc4yk4s6Akx0rZ9YulTnhNs8HeHOeCMk1NTekzuE/QNp6EAuej\n", - "s7/f29sL2Ha+LwKR19fX9Xc41s4MEgNyFmCkeC0Bm8LrIpiQpaUlvYbXLNumImGuzcuXLyvbhdir\n", - "rNyXFp5CO5eBBRkti58FFssF7NpXKBSCdfa+++6Txx9/XERG82h7e1vHN8uVMLD2Mhts59+lS5d0\n", - "HDPj5HkDbHB+tVoNGF2R0ZgCE18oFII1htvNi09kxtnWbXt7W8clZ7+YxOvAh2tYfsFeWywW5dSp\n", - "UyIyVKDH726++WYREXn11VfHPkvrMvEvfwwY1yhv9QYq77kckMkLoN1I8eaKKW9LF3rB654K9GAw\n", - "CGjetwq8qHqnIVgLitNwiKQXQaa97YamUqmk0hiIDCcyrmFXoaW4a7WaLlZ5weGDwcDdQOVR8B5s\n", - "ULdI2k1mXUkrKyvaLl7QKgI9NzY2XBVcm/yyUCjoNfwytm43kXDsM63Ni79tF35R4R6Li4sBJb65\n", - "ubnvl413AgfgBXe/Gyl2+3LiW7zMefHF/LInHQG8KPgatAM2Q9yWrCCOerErCdfghVGv14Mg3s3N\n", - "TXeT4QXLovz8DDt+vSTo3ulSdkfyy4Y1qoA8lWY+rMEB9KgD7oO6sauY4Z2AArBR4hOaGFd8+hDt\n", - "zfXgjQg2DuxGxOlPbKQ4XVEeeIzxPLJ1GwwGgcGXBbyEUceFhYWg77zDRDwX0Rb8Ir9w4UKQDJz7\n", - "H+3L9+ZxZV3U41T7MR93d3d1jqBuzWZTN1xYzzhIG/3VaDSCZMQMz0jjUBBcy6EFntFnDaBLly7p\n", - "+ECZ9vb2dBxjjVlbW9Nxgg3V7u6ujrG7775bRIaK+uMQXXsREREREREREQfEuy7Y/Mfl7uN72iOx\n", - "DA58Zgvdo0lt4Ka3mx7n3nyrwKrNsIZRLrbePVcSB5mi/VE3lj9g5g3XsMvGPvcg+RNZtsBah5VK\n", - "RZ/BOZ4sQ5MVWGj7h5XGvXEHiy5LeR0sBSxzZi5ZuZyTwaIe1rXDFjYsfy+IudPpuAcf7BF2du2g\n", - "zbLyBU7CmE5PTweM7jjwcWSrMM1/o51LpZIG5GeNnTzXRF4CcP4Mc2Bubk4tftaegVzDSy+9JCJD\n", - "FgxsjefC8FgMnme23biv8TdLHWCcevpUxWJR87wxo2EDkJmBQ/tw0mqA2Ts+VOK5mdD2zJjCFYv8\n", - "ZdzO6MNyuayuJzArrE4O1ujatWvalvfee6+IiDz88MPuuLV9zMH/DM5OIOIn2hZJayjl4f777xcR\n", - "ka985SsiMhwbVgJia2srkGeAMrlI2l3tjSfgyJEjgZQEy7PgeWtra4FMQrvd1ncC/r1y5Yo+G/IG\n", - "jUZDFeixHt5zzz3KcKFuc3NzymZhXLXbbW1LL+SB1z2wbWBCOfsI2n4wGGSueSIjxuz8+fNBQml2\n", - "HzNbhTphzB4/flzXCbQFxnAeIiMVEREREREREXFAvOsYqUmZqP3mEWOwAnJeUDr/3mOkOKccPrPl\n", - "/0mwUSLpuBVYB3ysFBYLB32zdSAyvi0n/R0siKxj9B64Dfke/N1+xEHRN4jn6Ha72kZ52eEZ4+Il\n", - "vBxvNl5iampKrUQb5Criq04zm2XH+WAwUEsU19y4cSNg5fBskVH7eeyo1xae1T49PR0wa1kHLmye\n", - "Po5PA5gJAbrdrrJULGQIRs2WB9/b+D8en56QJrC1taW/veOOO0RkKLDITJRImkXjnHE2XpLbwwuG\n", - "98YY7sGWOMaEN9Z7vV5gjaMuIqN24fp6defDDrYMLJ3BgIwF51y0/b+xsREofc/PzwfB11wmXkd5\n", - "7QDAmLAUjJV+4FyazC7bNjxx4oSWy5uHHiPCAAttc43ydxybxbGXGBN4vsiIiZqeng7KurW15UpO\n", - "oM5og5mZGW0vZsIwbtGX9XpdnwHpCS43WNcnn3wymHM8trntJz0cZNXT19bW9FrObQkWG2sNrxFg\n", - "ME+ePKl9jXpwP+B+fHAMbXH+/HntG1xrY9M8vOs2Um9GUXu/4NNTXgA6L4AYjLwJsy5CXlwxELxT\n", - "cpMii672wGW2i2Cv18vUmmHMzs7qAoe2HwwG+jLy3DPsNrDPYPqW28W2ES+aHOTunWxjbSyR9Okp\n", - "dp3g3t5LZ1KwCq+3YHgBwugvm6aHwWk5uG52MykyeuHwS8S+kK9du6aLA55fr9eD9B3e5j8r0bKd\n", - "e5yAmk+Neu3Cm3XAbuC8jRTfm09PYUMoErqw+D48VzAuUc92u633we+73a4u3C+88II+F33GJ/ns\n", - "y2Zubi4I8C0UCu7pUy8o3X7HmjzcLp6uEcaHp5CNTTv3tafTg+d6a0zWy9GmnJmeng4C83u9XnDy\n", - "7cqVK4FbaGdnR91LeKHdfvvt6sqCq1BktIZijG9vb2u/cV8CfHjGroXLy8u6JnCbTrrOwlWEecmn\n", - "6dg95502xXxEfy0sLKSSPdv5wGr8QLPZ1DGBTdqRI0d0LfIOzaCs7XbbTbrundK0J0I3Nzd1XMAV\n", - "xocrWLPOm9eYh9iEFwoFbS9O1m43/TMzM9peGAfNZlM3P3CNMpHAz7dl4QMm41JTMaJrLyIiIiIi\n", - "IiLigHjXMVKTHq1mS8PTfZoU2AHjfqVSKaDsWfuIv7M6PZ6r8M2wavsJ1mYL0ysru4ZEhkfmcawY\n", - "ePHFF10F57zEyvh9pVLR53q5/oBarRa4Hj11bQ/T09NaBraavSBegHNF2TYol8tq0fBx4Lzyezo4\n", - "DD4azPcVGWlVMSPFsMmIC4WCWot8nzz1X86fiDLwcXlYpHmU/GAwSB23x79gO2AhZmlqefPPSoSU\n", - "y2VXV42TM6PMfD+7PrDF6bnx8Pt77rlHnnzySRFJuz/smPaCrIvFovYDM1M2gTIfBMhjgbgd2CVr\n", - "rWc+wo5nVatVd43My7WHMu3u7gYHQvb29lymzDtQAHYE4/7YsWOB27pcLrttiPtxjkEofIOR4n7m\n", - "gyC8tgFoK06gDOStm7Vazf1+90LShgAAIABJREFUXP44EZGPfvSj6t7E79bW1rQMvP5gfnMwvm17\n", - "ZhK9+ciadmj7drut98GawDpSP/3TPy0iQzesZb1ZOsG6Xy280BmUEc89fPiwzjl8tra2FjC/rVZL\n", - "mTeMl0ajoeOSc5biGWCfOp2OzlcwR61WS/sbrs+lpaXAC1Qul90gfpswPks3jxEZqYiIiIiIiIiI\n", - "A+Jdx0gdBJ6acN7vPIuZg0RtPBQrfvO/HMSLfyfNwj4pbJmz5BTs8dcswPq8fv16rvo3KyrjGraY\n", - "YYWhfllMos0v6Fl8kwpyZtXNsyi8HIVe2WwsQBabaSUxRPy+tUrUDFhvXtZ2kZBZY1aAy+e1lR2z\n", - "m5ub2gZgRRuNhlqzEBT06ujVo1arucyAdw+vfFbFfDAYpARPLXAPKw4Jls07ds1B55YJfvLJJ4Pc\n", - "Y3wfIEvdGWOP40nQnzwv7Pjh8vF3VoqFRWRxP76WWQyPcbb344BxPHd6ejpgx6anp4N5NS5rA9gK\n", - "DljmgGZvbLG8hMhwHPzwhz9M/YalLXg9wThhBgesA1h1jx32sLu7q2sQM3Fot7zMBffff7/80R/9\n", - "kYiMxiHHLHHbe4c/MO8xL3d2djTuK0uQFZ+zsDDWbRyk2djYULbmiSeeEJHRQQkRX0Qa9+OYQAZn\n", - "/8DvbbaBTqcTxCoxG4kx3e12U3I6WfX14vWSJNH5inHAsWWIdyuXy6nYPZFh+3lrC4Dx5B1msXhX\n", - "b6Qm1ZTiRVdkvMvBS0bMJ5K8k1J2s+bpTXGZx53+mBQoFyZroVBwFah5McTAAHXZ6XR0YWKVY9DB\n", - "rD3ipQGxLodyuaz141M2aDe0Fbs/GTbg2dtcsUsR9SyXy7oI5QUUlkqlfSepHOcO9hJOZ514E/E3\n", - "B1jseIxhweOgeHZ9oi/xOy+YVESCl2ur1dIXE+5Rq9Vy3d9YgDhYHy8MDiz2AlaBXq/n9qvd7Lbb\n", - "7YDa39vbC+a8fcnj/7kf8lLrsPYM2pCTR9tysSGFlzTrNWGNKRQKQRJvPlzBYQG2Pfh0r2ek8Pyw\n", - "Gm6FQsF9Sdt1zDu5yG2JFx8HDON+WZsorAnsrrIB79VqVccoXDI7Ozs6H5Du5eWXX9ZNKe7BL2G0\n", - "/YsvvphyTYqkN3/4lzcveUbUtWvXgnGSJElwws3D+vq6Pg9t0Gw2dVNgT5yJjOY164TlaS4xeJOG\n", - "uh09elTbF2XudDqBltqJEyeCEIrbb79dXXloe2iS8f0ajYZ7otuelNzc3NTn4feLi4vB5o8TFKPt\n", - "K5VKsJnKMrKtgen9rtPp6OdsHK+uroqInzgdmOQgVnTtRUREREREREQcEMlPSsco9dAk+ck/dB9g\n", - "l4m1ZrM0VywjxYwJLPkkSYLguyRJApq0XC4HdDDnufMYs6zPcEwY1kKxWFTLJy/od3Z2Npf29IA2\n", - "qtfrAePm5f3j578Z3S/PXcHfvR1j3EtkLeIfSQdYxRhWM6z2c+fO6WcILL18+bJaVGCXsvoM1jD6\n", - "qNls6ljkoHOwYnmux3K5nGKiUC9YsWyRWhSLxSAY1t5bZMhu4HcIwt/a2kodBwd4jthkqpVKRdsE\n", - "92NVd2B5eVnLj7E4OzubYqeA48ePi4jIxYsXRUTkAx/4gDz77LOpujN4vNuganYd5rmPOSjdy92H\n", - "+jBbwGyFp/FjwcljWVGdpSREhtY9+h19vLKyou3Hbi0Lbmfgk5/8pHz1q18VEZEPfehDIjJkpLB2\n", - "YYxfu3YtYL2uXLmSyrwgMmQ92K0oks4Fx0HdaH9m5zmRNepjXcUsb4HA7FqtpgHcYKZ4nIHN39nZ\n", - "CdaprAMmnF3CModTU1O6FoANrlar+hmHZuAzTm59+vRpERE9ZMG5T7ncYAnB6GQl87WaVh5OnDih\n", - "7kqwX5ubm26eS8hfYG17q7w4BwHW88Fg4EaeR0YqIiIiIiIiIuKAeFfHSE0aQG3Bwnjsd7dCgWyh\n", - "sQ8Xu3W+1rsfxy0BLLCH6+zvut1uYH2OC1S39+Uyi/hMGizHYrEY+JnHsVEoM8fVWGG0LLDFzfFS\n", - "tvx5Ss/8nRf34TFcsOgOHTqkFhrHGNl4lHa7rfdG/Eyv11MrnOMv0JbjAhNh1aF8xWJR+4bbHM/j\n", - "eCOMdw48tkG69hqRIeuBPoEl7+VU9IT3qtWqtgEftWbGQiTNwHlMFPoNcXdcjxs3bgRxcTz3vPxg\n", - "zKrynLN5CFutVsACFotFbSPU48qVK0EMpcdGlUoltbjBRHzve9/T7/EsFjfktmZZAZEhS4H24rFt\n", - "2efd3V1XfNPOkWazqSwmWIper+fGWll2qlAoaN0x1ra2tnQsci49T7YFz8BYm5mZCQQxvTHGzCTK\n", - "fPLkyYBN57hMfMfxUCi7xwTzGEGZ7rvvPnn88cdFxM9biPtsbW0FivBcFoyDJ554IvAQMEPIc9+u\n", - "4Ts7O8GaZYP67bze3d3VcQK2q9Vq6TgGk3Tx4kUtL7NiYKL4fogZRF+XSqUgn18WPCbKxgReuHBB\n", - "64xxz2s0j0+wipPID7zdeNdtpLzNCxqaX2I8UK3bjTdDXnA40595GynWh+END/61NH6SJDqZeLLa\n", - "AF/+jJ8BYKL0+30tCwZguVwO9GsYXP43o6puT1lYWK0YViLn7zDBuY08CteqevPGkIP6UR5ejHAt\n", - "XsJJkijtjft4SWQZPDZQVg4wt1plHjigFODFkVOYwJ3FyUzxPVP2nIQYwCbRa0fv4ACn9LD1XV1d\n", - "1RQcrBCPsYU2vX79ult367Lb3NwMDmGw2jG7wzE++aWFazgJM48F6zJhV7an8eapxPOGht2BuD82\n", - "zXBNNBoN7Qduc08vCeBNp3cIxn42MzPjnny1m6GFhYXUqSn8Bu3Pcx7rgFWDFxmNk+np6eBQwmAw\n", - "CAyz69evq8sGL1Q+MOC5LdHOzzzzjH6G/n3xxRf1M09Z2rpXGXzq1csGAFQqlSABdbVaDU4zTk1N\n", - "BYHpPM7wPB5rHvDd1NRUsAHudrtBEL/NDOCttV6mCWxAMEduvvlm3QyNO73I+lxvFtVqNThI0W63\n", - "tXx8eMX+jjeR3pjx0hB5bc/6amhzHrtQ1OfTvlxWLlMeomsvIiIiIiIiIuKAeEcyUthFMsvDx/Lx\n", - "HXbcLC8AsASAVaL2ZA14x+qxRR6849usN2UZIWa9ePeM38GCLRQKgQuL78VUPK7hYEJ7P8Z+dKtg\n", - "gSIImvNb4bNarRbksmu324HW0d7enpv3CpZI3hHTer2u7cYWlbVi+Gg9uzKs25V1dfC7Q4cOabt5\n", - "SYE5eDQvf1wespLMosw40n3jxg1XG8tTd0d7oK/a7bY+h+uB75mRwP28cnl5E9HnrPEES+7y5csu\n", - "c2D1oTjnIurNFj9+l2XZ2/lo5xiYPATusgaQN/bx2fz8fOAi4gBllLVSqWgb8jF5y9BMT0/nZmHg\n", - "ethrWbuH549dsyqVSqBztrOzkzpWjvLZ+cXBzZ4OF9qfxx/GnXcgpNfr6bVgpDqdTkoXTGTIjoD1\n", - "QNvzuPFYV3zPblBee8Gscs44ACyZF/5x/fr1ICFtqVQKGIi5uTl3PCIYOg/b29uBy471kJg554wK\n", - "/B2Qx3Z57yn066SuuUnBivqecjzAc89bH9E3pVJJy4q24hypeSEsCwsLwd5ga2srODTDLn6EF6yv\n", - "r+s4y9NMnASRkYqIiIiIiIiIOCDeMYwUH/f3YnysSJqX98mLfRgMBrpb5/taS5YD0Md95sFjjmwA\n", - "d6VS0R03xxvYXTYzbJyvz1qaWdd6wnl5x+7r9bp+j3tzQDGsj1tvvVWZCPTD9vZ2wIA0m82JGBov\n", - "ZogFDxnW4vGkDmZmZrR92codp66ehVKpFFjyxWIxpciL+1vmhf9G+8zPz2sAM9qbA3cxJiqVilrt\n", - "3N6eKKDHEliGqVqtqvXHMSWwfL2+Qp+//vrrGmyMth0MBsqAgqXa3Nx0mS3O7Yd72ByUzHp5qu0A\n", - "M4RApVJJlR8sC1udHOsiMhyn9qj25uZmKv+dSHq8sPK+ZXw9scwsmRQ7X3nsoP28++3t7QW/4/aG\n", - "ijUfVLExXwzvMMn8/HxKPVwkHZuFNvAUpkX8mEvMFVbett8xQ4z+4xgZPnhjWWORUT+BjWTpA4xT\n", - "Wy+RYd8juBr35bHoxZhybBae84u/+IsiMmR+rPQDx7EybJ94BxKyxGsBVvCeFBhDt956q9aVleYx\n", - "jlAeb83ksZ0Xc8Uxxh7Q/1NTU8FYZbkPzOWZmZmUZAL+ZUVzPBdzGLkveR+Aeq+srOh7Ik+xfhK8\n", - "YzZS3qkzgDcMTG/bwcUuMS8wll86XvJgPIM1aDCZ806EsMuOT2PZEwutVks7HROET4ZxG3jB67jG\n", - "bgz5GQz+jBcenNziBKH4LSbOxsbGvjceHhCMLDKaOKiTR6d6myhPgdirL5eXDwfYlCVc3zx4pwB5\n", - "c41FM6vcABb4ubm54BBBr9dTtwMHluNFD+r80qVLEyepthuaQ4cOuZscLKp5tHaxWFQXBjZhjUZD\n", - "Fze8MG7cuOEGANuN6OHDh93AZwDjdGZmJphTu7u7gZHALhGR9AZKJL0g872xgUIfbm1t6X24zKzt\n", - "ZTEu4TiPGS6zSNrwsmOR/99LG8NAW2Kj0O12A3cLH5DAOG21WnLPPfeISFpHyJad55RXD6Ber7un\n", - "tmwfs/I+yj43N6dhAxy4bcHrAM8FtAt/xnpkIsO+soH5N27cUHc6gs45yN1zLSHp75e//GX9jNOt\n", - "YLx4Y5u1t/COAbL6nLW77DrW7XaDE5XjgDF79uxZPdXHOl1eAu1J0Gg0gsB3kbTaPMoMvPzyyyIy\n", - "HDt2I8MnG1mvC+OD56h1yXNbeorl3K/4GxvuQqGg4wiB6JOcGoyuvYiIiIiIiIiIA+JtZ6SwI+Td\n", - "tj1K7lHiTBmy5YrdJFuuVuqAdVoA3kWz28Wqk3tWaLVaVese9WAXBrNBNvC5VqsFbBcHNLPiq2Uk\n", - "SqVSYPXy31nJYzlo/K0ErKPp6Wm1HmHJczJdr1ysgzIp8wKgDUqlkt4bltza2tpEuZIWFxf1WpSd\n", - "DyCwxQ9MqrT7vve9T0SGFLpNiJolQQE2gVm8PCX6vEMR3W43YJ1OnTql1l0erb28vKxl8OQSXnjh\n", - "Bf0bbJB3JB1gBilP78dT7eYsALiHZUfQnnk56jgAmH+Pe7EcgMdE2bbma9EG4xiCU6dOiciQGbDh\n", - "CF4QuReAXi6Xte+YwcHYYVcg2o3V7MFEefnGPEYC7eK1yW233SZPP/10bp0BlB9MgueF8PqfgXnE\n", - "WRTAiLErmxkwlJ/HBNZ67i/rSeA1H23F4OTKVi6HxwrYz52dnSCon+vIqvc8N207TZqIOQuTBqHz\n", - "AS+R4TpgXbaLi4va5t///vdFJL2ueMH+eTI8vM7y2Eb7nz17NvN+s7OzKYZJZNjOGLfQ/Wo2m9r+\n", - "mFscMgI34iSIjFRERERERERExAHxtjNSVjAtS/XaZoLnvFUsSmiPQvLfvLO2ViVbtrhfpVJRZoOD\n", - "TS2yRDVtvBZbWZyhHRYIH8lndXWUhYU48SwryFir1dxcemATuJ7MenFsl4gfl1SpVNTqQLvs7Oxo\n", - "HAKsuixrHJagZxF6wagcX2WP2zYajSDQem1tTa2bvBiFTqcTBDV7cULePaampgIGYWZmJlBKFxkF\n", - "P7Iat2VSvNgqjvVDW83OzqpVx22Ux0R5sWiIY7r77rvlm9/8Zua1wMrKirIsPO7AajKLgbqgvt4Y\n", - "2t3dDQ5hiEgQ69Hv97WvObjaikdy5ngRP37HCoAyQ8OwAeisms1BsNa6ZkaK89J5TCiCm9mituKb\n", - "3Ea47/b2diDj0G63g2BklmxAu7HUgScRwAKWAPqQY8fygs1tzI9tF2Z5WDVdZMis5OUA9BTd+b6W\n", - "sTp06JDGgTIjhXGM+lYqFWUGH3vsMf2dnVO8nnnitcizKCIBY8pgqRAW5xTxMxPweGf1/x8XmPlh\n", - "Rs2uVV6A+/Xr14P8oK+//nou24216LXXXstdx5gZxJrAzwBwj83NzYCtK5fLWn4vborHH8YJ5tYk\n", - "OWff9o2UdWvxpskmDMb3IsNO9XSaLLyNGU8+T+0ck5lPYHnKxbZMXGZbJxHfHcmbMK6n3VyxO9JL\n", - "2MoLKgdaA9gUzM/Pp2hxkWEfeIMFEx+Dt9Pp6KKSN0EqlYo+I2+CLC4u6n3QrrVaTV9ovEFDnVBO\n", - "/mzSwEh+AeadhsFLvdFo6MKJ5/LEBXZ3d92XEU7AoK87nc5E7sB6vZ7SPxFJB0FOCq/tEUC5vb3t\n", - "vvwsbr/99iCVQ61Wc90KGLO4b9ZGyo6dWq2mYwzjq1Ao6LxBv5VKJbdO3ssXZdjd3U0p0Iv4c67X\n", - "6wU6WDxe7NrA4E0Z+ojT+OBluLe3p6cx84w6fh4r6nsniO2ptE6nk1LwFxkeVEC/Y1PNJ2Y5oBzj\n", - "nY0IL+Densby1g8Ob+C254TtIr5SOuon4hsbrJTvbUS9VE328MzCwoIGmzPy1hPPRYV2LJfLQbLk\n", - "LGCceGEOvG7zOLJj75577tHy4Lm7u7tBGEpWgmqbBLler+s13F+THMwRGc33kydPiojILbfc4rrg\n", - "bN0WFhYCo7jX6wXl5jCC/SJr7UQZOH0Y0hjhPcRprbIQXXsREREREREREQfE285IAewusUloWcLA\n", - "S1bLSYStG4+PUbK7zDI5rEGF75rNphsIaYMgmXJmNwRrMuH5lrJnTStm1LygdhvA6OlNeZaryIhV\n", - "Wl9fzw3yAwvH+aDygoc9jDsWDrDLiV0neB73NdoQ/9br9eBI97jgSe5ryxzMz8/r37Bcs/JOWTaL\n", - "8wh6rkl2++bJJOQdZZ4kYB6wwbIMVpWG5ZoXsL63t6dUPs+FPJkKz2pHmdrtdtBvtVotODrf7XaD\n", - "8VkulwOWK0mSlNVudYY8LTi+hseBJ3GC36H9WYWdNYOs+4kD2tk1YXXYPEuZA8uBwWCgbcg57exY\n", - "YXc//uXcklYewraLRaVScdkm2/9ePTyWaWpqSscHP8+uab1ez9XpAngOWvfh5uamrgXMxMG9yeA8\n", - "f4BluNhbwYHlFlmsMdgx5PPjOvEctQm3+XdcBuDJJ5+UO++8U0QkJUfC65JI+vCSp9eIMbm9vT0x\n", - "+5QHyLg88MAD8slPflJERlIHV65c0fUEn33kIx9Jvb9EhmsIxuyrr776pstUKBRSCZtF0sH8+Hdn\n", - "Z0fZbDBTYGRz7/+mSxgRERERERER8Z8pkrwYlh/bQ5NEHwrLguN6PHVyazV76uQeu8MxCHyM2lpA\n", - "HFvETI9lkDhgnJ9r78dxWBwgbwM3PVkALwZKJAxkbLfbau1wLAXHfSGWJUtIFM+FJe1ZifsF5wBk\n", - "pWe0AytHTxLfVKlUJma5AI5LsYrxnU4nldNJJDtXHq4BW9RutzMlCxiDwUDuvfdeERnGCoiIPPLI\n", - "I4FKNLOoNp7EwjKhHIPCshpZ0gB8D/b7e8GjYNNWVla0jTimCjFhzGyAKQFL4o0fZn4AT9qBP/OC\n", - "jYFyuZwKzOecfoAVt+12u0GQLweHs4K7F5cIcOyQvR8HqgOHDx8OVMmZbQEzkCVuaVWzGXlSASKj\n", - "vkFfc8A4ArNZFgVl4Tp4jCnaZ2Zmxo2Js4eIvDHBZeHnemUAvDHBjDPaIe8eN998s9YF/dbtdgPG\n", - "mccGYqpYDdx7Bt8jb6yNA+IsOQYTbXjs2DGN2WSW144FjrnEHGBx23cSwBrNzMxou+Z5GiqVinvQ\n", - "y2MGsQ6gb2ZnZ7UfxklJYA8yGAzciP+3bSP1djw3IiIiIiIiImK/yNtIRddeRERERERERMQB8bYF\n", - "m1tXEx/3z6McQcsdPnzYPYoOtxH0QaDea5+NZIYIpNzd3XVpW+vuy6INAZu/SmSUa+3SpUu5gcCe\n", - "/g6eX6vVUi4HkfFJeOfm5pS69lx7Xs6hLLciP5ev5WtYi8NS7+NcTuOQ57rwjmcznW6Dm9ltZANL\n", - "+VmFQkGvwXhBAOI48MECbjcvubHXj3BNYqxlBe5adw+7ivcrlyASqicXCgVtIz6qbYOVFxYWtCwY\n", - "v3ywgWn3vJxx+F25XNY24jLZXGAcXN3v93V+cY4y3MdzPfHz4VbwNMWQl6zVak10+OLmm292Dyt4\n", - "SWHtvO73+9oe7Lr67d/+bREZrU+PPPKI+2ybo7Df78sdd9whIqM28LR0Tp8+LQ888ICIiPzZn/2Z\n", - "iPgusaWlJV2rEDDsSVN4h0VarVYQpsHrAVyQCwsL2g/sSkQf4XcXLlxwDz584AMfEBGR733ve/pZ\n", - "nosY33W7XS03B6qjP6ADxjn5+F1i13eet3laWSKjfuMj+Xhuq9VKzXGRyXLA2Xvb+cg4SFgH60Ci\n", - "XT3JoTfjgeJ1dJL7cGgJfn+QtZAx7rmRkYqIiIiIiIiIOCDeMfIHXm4dL7fTuGzX2BUzIwTrCbvS\n", - "qakpZYk4wNIyXBwYa4N6RdK5sbAz5+eeOXNGRNLZ671jx7a+bDlzgDQslXFKq7hPVoD5OGsE8IRC\n", - "mTEQSVtcnvIw/z+YI68NPBzEmgET5Ymf5qkO8zVW9VwkbUV67Fge08iwwcZTU1M6ptEug8FAA1OP\n", - "HTsmIsNgSNvvbN1zwDXKgHF/5513KrPAAnle+1q2qN/vBxa/J3Z448YNN2jdYjAYaB9x+1q2qNvt\n", - "BuKlWWPXlldkNNc9tqJUKinbgPnf6XRUSPCuu+4SkTTjg4DXU6dOBeKWXBcwJZ/+9Kflj//4j4Nn\n", - "eyyMFQdGGUXS+dm+8Y1vpMo8Nzenz+Oj9fbQQq1W0zGWt3b0+3036NuiXq8HIoXMavPhDjA9Hutq\n", - "A+D576WlJS0zsLa2pmsIWLms+YY+gpfh2rVrOp44Q4QnXgygf1dXV+VjH/uYiIj86Z/+afA7rIWL\n", - "i4sqscDrKecCBbyDIygX5gIr108anM5ZEXjsW4mILJkc79CHFcZm1s5jenjs5M1Xr81ZiNYeviqV\n", - "SloWjEvODIL68jj23td8mMw+lwVIvcNnWXjbNlJWF4MHFiaLN4nhWuHTTnkvgqWlJR2gSELIKS6A\n", - "lZUV/czbJHinBfm0gH0RTE9Pa8diweANBJ4xPT2tHeclE8YzlpeXdZHh+uJlyYqwoL/HqexyW3mp\n", - "HOzvZmZmUikwRHxdIHtvlNnbrNm0HCL+RiXvVBefuLAbENb48dxjfF/vGQBvrixNLjJyDfDLf5KN\n", - "YKvV0kUSaQ+KxaK6j/DvTTfdpBtkzIFOp+POEQBj8oknntDP7rvvPhER+dd//Vc34e0kbldvUS+V\n", - "SjrOvZMwvLh66u6cCgnl4IVRxHc9cOoHlEMk7ca1i32329UXLMq6sbGhL+df+qVfEpFhu9mNx/PP\n", - "P6/1BPhUKV7gpVJJ2/rxxx9PPZufy/VjoG8wP5IkCebzqVOn5KMf/aiIiPz+7/9+cA/eqGCjlTcW\n", - "19bW5Ac/+EGqnB5WVlZcnStgUjcKK2FbraDnn39ePvGJT4jIaA6sra2lwi7yyvfwww+LiMhv/dZv\n", - "iYjI1772NR133C52TSiXy+7a9ZWvfCXzeeij119/Pbj22LFjOkd5/be/W11d1fmCdmFtw3Fg9xeP\n", - "fXwG8P289xgAY6dcLqd0l0SGcxXzDBvqubk5bcu8PmL9qjw3Y7/fD9aZrJPbdryx7uQ4gyUPnjZg\n", - "5m8numNERERERERERESAt42Rwq4Q7AmshX6/n+siyMuRVi6X5fTp0yIi8tRTT4nI0OqwO9Dl5WW1\n", - "cmDlMxuUpTaM8loXoMd03HTTTep+ZMscz+NgU8/qgGWO4NRms+k+B9YH2qVYLKqV4DFSY4PmSDfL\n", - "slNZytZ51isD7YHgzE6n4+rlgEFk5sK657xE0Qy2ZsCeIViT2VAeG3aceAmemUpm4BlcZqakRdIB\n", - "5mjLdrut4437ywamvvrqq3o9GFtWaEf5OEAV4441vDAv6vV64LZOkiQ34XAeut1ukKPqzJkzygKj\n", - "vseOHdP5zfMc/ZuXi9CzJO1cRVujDTinHN/7+9//vn4P4HuM00984hPypS99KXX/wWAQBKMvLy9r\n", - "3WEJP/fcc27+Rc+15iVgtQcG2NWBz9bW1gJ2jAH9shs3bkyUA+7y5cva73lW+OzsrKs27a1jNq/n\n", - "LbfcooHaaO9XX31VTpw4ISIjr4GIaFJtzPnjx4+n2FgLjDt2PSNo/pd/+Zflu9/9roiM+oDXUzCU\n", - "6+vr2odgQLiu3AdwBSOcY2FhIUiqvbS0pGX1QhoQvD49PT025CFPYdubG1gXa7WavhNQrq2trZTK\n", - "uUh6PfHmDMD9jDHujXURX0fMjhNey1kHEnOTPQqT5Codxzixi8+WZWpqKuXdmRRva4xUqVTSF4U3\n", - "MTAoRUYDgF9GNpXM3XffnaLR7e+sCCPfl0Xh+CQXBiAmJy92XhzB6uqqlgkLLm804HIal4ARExY+\n", - "96zBgVgv1K3ZbKpEfxbyXE4ck2V/z5+hzjwY+VSMfQbHm+EFz/2LU0UvvPBCbhJX/n+vHpwtHbBj\n", - "q16v66bK25jZeoukx0yej90D9z8mMcfA4GXIp5Q89xmnH7Hl8BY+jM9KpRK4ybz7c/3xktjc3HTj\n", - "EfHyh5jj+vq6ngTD5vjq1avBhnB7ezs4VVYsFrWs2GT3+/3g5V+pVLStMOY2NjZclzIW4YWFBR1v\n", - "3DaYXxy7g7/xss5zmzL6/b6e6sPL/OLFi/py4bHtAW0NtyCnLUEbLC8vy0MPPSQiozQlzz//vHz+\n", - "85/PLBc2DA8++GBwwq9er6dS16AeNpbpzJkzOn8QJ/ajH/0oSLfivZQYGLNcN6Q3OX/+vBvWYA20\n", - "YrGoZYEBzkYqh2TYteHs2bM697x+xfhsNBpBCAK7lLC+/Pqv/7rOC2y0bty4Ie973/tEROTZZ58V\n", - "kaHhcvz48eB5WCs5STfu7W1K5ubm9N77xe7urttfk24YvJPrFt77m9Mz5RnwpVIpeDf3+33tJ37X\n", - "oN85ybEVzeUwEs99yEa0dTPu14DUuh7oqoiIiIiIiIiIiLeXkeKAUgasSezQeTeN3eny8nJgxfCJ\n", - "JHZRwCq2aUv4Mz4Vx+z+hs6oAAAgAElEQVQD6FamVWE5ehYOLDrPqigUCgF9OzMzo8/jEzNWL0fE\n", - "t8LQfvtJ7OglTrbpODiFALNKsOrZlchuWcBaINPT01pP1I1ZEXZRjGNL7GdsfdrElP1+fyIro1Kp\n", - "uK5TD54FNwl7wWMdVu7Ozo5+jjF7++23q6XKOmB4bl6wdrVa1fbzUlYwI4XxjudXq1VtK/x7/Phx\n", - "tagxxprNpjKzmIPz8/PKymC+bm1tBX2ZpauDz5n9sqzC3t5ewBqXy+VUf3BALK7Fc8B69ft9+Zmf\n", - "+RkREfmHf/iHVBugfiLjk2ADhUJBmTk8d2NjQ8s9zq2GteI973mPiPiJdK9cuaJj+xd+4Re0fJ6W\n", - "HoDn3n///UFbegmgvVRMMzMz2q9oZ09HyzvdNS5IF/c7efKktjUYvUajoQHyWKNZl8tL6YE6Xrp0\n", - "KVjLz507Jz//8z8vIpJKwo13DYcYoJ3BJP7whz8Mxucrr7yiLkrWcoOuFsO2V7lc1ueCNWw2m3Lr\n", - "rbeGjfQGDh8+nHvi0juI4Wn9AeNSYvG9cO24EA7L7mSx9PZASKfTCcZKuVwO0r212+2g3/kkHycJ\n", - "tynPZmdnU9pyIsM2txqIe3t7+pldH3PrPvYXERERERERERERLt5WRspjGVgh1bNoEHzNbBRb42CE\n", - "YG3NzMwoy4IdPccBwFLvdrvuzhNMCVv3sEA8deA89Pt9rRtrrmDny9Y2PoMFVK/Xg914tVoNAvO9\n", - "ZKnjwIwUB1Lb/kGZRPzgapYIsNZI1tHV2267TUREHnvssdwy5kkYgLlsNpvahui3a9euBePIY7yK\n", - "xWIQGJllUXl12a9yL7Oj6Ff8W61WlZ3CWBuXVBMW5s7Ojl6DsW3jiADbljs7O9oGsOQuXryocwmM\n", - "yc7OjrK/aKPr168HQdilUkmf60lkoB8OHz6ssX5o2xdffNG1mj3VcQ+oW7PZVOsfbcosFdgHnkdg\n", - "1MYdtQfDVa1WdbyhPZrNpsZX4t4sscLAHEds1kc+8hENhkcbtdttZW0QZzkumTfWgWazqfXEXFhd\n", - "XVXmC33i3euxxx7T+yAg2+uDXq+nY4ZVpb1xh7KA0RkMBtp+CL5mVm7SoF+er946YfUERUZjmj0F\n", - "mGtgl2ZmZrTMYK6+/vWv6+8RL9hsNidaezudjr6DWOke7xN4PG677Tb5l3/5FxEZMmqcWcBiXFyp\n", - "ZXe8tY1Zb/u5SOjJ4O84kwPm2+7ubsAC8Xs2L1a30+nkZrPgoP88xoglcvLWUIyXarWq6+e4hPaM\n", - "d4wgJ9Dv94NAPJERzeotbgjWZOoXi1y5XA42G6yHBHhZ6WdnZwN31NzcXFCGSqWiL3OU89q1a+4J\n", - "Q5QLE3dmZiag/ovFYuAa9Cbo4cOHA9rYO1Fm4emkWKEzD953WUGG9hnz8/PahjwwbRDkPffco6dg\n", - "+OVrKWcObuXNHMZM3gkXPlgAZGWMz5vMvDhliZ/yv3yPvMnfbrcndjN6gGtqHLzDEl49MVahR1Wt\n", - "VtUFg7Zvt9tBnfj/8zaa165d0/GOhZc3O1iYq9Wqlhmbjqw0SbyhQVtyADrclN7mAS+0cX3ABho2\n", - "BR//+MdFROQ73/mOPg9lzgIHHIsMN1ww+rCe3Hbbbfo7BJuPSxFi1xqRkdG5vr6uaVRwmi0LeB7m\n", - "4zhDAvNyenpa+4fHFTZN/GJDuTAOuO3RjjxO8ftbbrlFN5iem5NTRX31q18VkfQJbASFw0g8evSo\n", - "loGN8gcffFBERiKt7FLCGsYnRIHZ2VmtJ4tJo41QPl5/8N2NGzdS75BJhCF5LWKCAXMR7ZokSSq9\n", - "i4i/8eW0LHwK2Yp+FgqFIM1Tr9fT9kCZyuVyMI6SJNH1Gvfb3t7ONRKy3ju4H+rOp71xjZeODmXe\n", - "3d2dWPw09ex9XxERERERERERESEi70BGqlAoKFUKq7FYLCoLxDt+6/bg3bSV22csLy+rtQEmiYMN\n", - "8Vm9XlcrB64HtiaAhYUF+Y3f+A0REfnDP/xDERnueu2uudFoBElvWfMEFiRb2Z5LBGA2ytOiyYJl\n", - "BwaDgT4bbAZbV7A02CL02Kk82nh1dVWtIW5rVjcWSQfps8WNdsJzp6enAwkD/juPjmX3J1gF7qu8\n", - "IE1m2zi40esf7+ivZanq9bo+zwsih1U2zo3DyEvO6t0bbT/pgYV2u619yBYznuslCsV8TJJE//ZY\n", - "DHYfeIcSPORZ6uxKQFlvueUWefrpp0XEZ7TA4HjMpUhae0pkOGdwDfp1ampK68kZCby2xnhi2QgA\n", - "9zt16pT80z/9k4iMGKxxQbBYxzY3N9WFhHu/8sor6iL80Ic+JCLZ7nWsDfYgQhbQl7u7uy6ja9cO\n", - "lEPE12zKc+1YRhvAu8ELQQCbura2pmMQKWAeffTRYEzU63V1NXIQO9of42FxcVF1sNDevJ7hQML0\n", - "9LSu3Xivzc/Pa1nRZnzY4ciRI5lp0Rgeg5QV9D/pemLBHgJe49DGzCTbNa1YLOo1aDfODILfs4TB\n", - "pGETXqaOrPIDaGsea+NSiXmIjFRERERERERExAHxjmOkisViYBmzrxVoNBq6c+SYEGuN864bx0v5\n", - "iCpbf1bc8uLFi65KNIDgy/vuu0+ZKCCLobDBt2xReWKJ+P38/LxaSmxhgIny2Ax8NwlsAslyuRzI\n", - "GjBDlBeU6O3kNzc33WBJWI6w9Fi0kOtp63f8+HENePZiffLiW7zcbPwstLMX6+UpoRcKhVx2wDua\n", - "jH+bzabGjLACu23DLOsRbcpsYF7sDOYH54LE2P7Upz6lZYGl/PLLLweq3YPBIDjAgWfz7/gQA/fN\n", - "JHIUi4uL2of4PTNEWfnDLDwmpN/va+wRmIFJVNMBy6j1+/2AaXrllVdUNgBjvNvt6ho0KfuHteCb\n", - "3/ymtgPHGnqSLQDmzNbWVsB2iIwSHf/mb/6miAwDvD2GDvUcx4jYsd3pdHQsIAZmY2NDxxMYiddf\n", - "fz0z4DgLqAeX95577tFyslSHBR8SQh8hqJt/j7ioSqUif//3fy8iozgnbm9mUW3ANV+DentJv7vd\n", - "rq5jHNML9mw/cZM2RiprbbJyQL1ebyIBTf4e448V3HGgwrvH3t7exEyYlbdhcAC8nf/FYjEIkOd3\n", - "D48ZzHtuW9t+kzBTyX5PG70VSJJkood6L2YMylKp5KYXyUshk0dhHzlyRAc4TzSrzDzuGd7vQele\n", - "vnxZJxhraHjAyQ1+6VgXx4kTJ3Tiexojx44d0xfFuMBUu5HyNgf1ej31UhNJB0ly0CInW0bZ8cLm\n", - "jQ/agwc02gsLiud2u+OOO3Qj5bk/vczygHeazKPEJz0ByfcDspI0T4JKpaLtiw0LB1+yC41TiOA7\n", - "tCmrBWN84DM+HZuHm2++WdsSbuP19fXcRR3BvEtLS0Hg7n6AeqLP9/b2UmroIum1odVqBW3OrgT8\n", - "e/z4cTlz5oyIiGYB4IMqHKDswaauqFar8pnPfEZERhuzL3/5y/r7n/u5nxOR4Sk1lA+bEh53WDu8\n", - "00XFYlHnEta9breb0jDKwvLysrYbXJA8rn/1V39VRIYv+u985zvB9XgGwM9izaK8TAkw6ra3tydy\n", - "Ua2urganohuNho53XgtxOhKbtRMnTqgbFDhz5owe6slLQVYqlfTkIDZSX/ziF7WvMba9OhSLRU11\n", - "g2fs7OxoG3BwNX6XdzJ0ZmYm6DeR/A1GFrxk9AeFlwUiC3Avox71ej11EERkOCY4TEJkWEdreO8n\n", - "ibMH65Ifd+KPgfV8MBi4jR5dexERERERERERB8Q7zrXnJaNNkkR3ttjVZwWg5mlPgb5lsBoz3Gy8\n", - "ewcDBoug1WrpMzhBJaxFG0wukqYNoRIN+rPX67lB5rBosCtn9gD16Xa7LhMF62lSzR2REQvDrgIb\n", - "KOpJK5TL5dSRWpE0S4C6cVlgQe7s7Ghbcg5FWOawMDlgE5bt2bNn1TqEdc1jB25Xz/qcVIZgXPJL\n", - "7x6TyE+MA9PfuDcHm+Nf1vViKQiPSfGCX22C4kKhoH0DVuT8+fMptkZkOD9sH7VaLb0G9+P281hD\n", - "ZjBtEL6nTjwYDA4UIGst9wsXLuhnmN/b29s6RuGm40wJDBtUOz09rawdpAIYmB98AAXr1+rqqj6X\n", - "rW3MG/yOFaZhWTebzYmkLryMCgzIH2SNXcwvdg96Af6W9WBdItTx5ptvnoiR6vf7KSYf9/eYUNQN\n", - "LD6zUQhkf/bZZ936Wddot9vV0A+4Plk9n8sOl+hf/MVfaL0xvzAHqtVqwKIMBgN9nnf4gI/uTypl\n", - "kgeut9XKs39bsJQAw7LenlwB6zoCWeMQY5tzvXpz3TJXnDOQy+xpXk2S8JjL4CnEZyEyUhERERER\n", - "ERERB8Q7jpHK8rPDKrIxEvZ32NmCyTl06JCyNt5RXNxva2tLrWvsti9dupSKR7D3gxW6tbXlWkq4\n", - "D+/CEWzKGentTpnF3jzGhEXL7LM4R944eEHQk/qMmSmx9+A+RPv1ej2NtWDW0IrQifhyFgAzkWg3\n", - "r63wLBZf5YBsL2bAMmoH8cfnqQ97GBdvgHHljS/Ocu+1AWdK93I/2qDvfr8fMKFTU1OBGv9gMAik\n", - "Cbx4DR7X+L5Sqeh9uC+ZiRIZWrPjjm9Pgl6vF4jz9ft9jU1hZgr1BPPiKZHzAQTua7Sbx3ogtqxQ\n", - "KOi4xH23t7cD9omBeZ0kiV6D53oxfNVqVeck2IxqtRrMTRYgRvmYaQR2d3e1T5ghtL8bDAaBhAWP\n", - "a1x75cqVieK6zp8/r7FKgMdmLC4u6ueQHhARjUFCXBTHE3KMJtqA2Vl7AKVarepcYvFkj1njjBoi\n", - "w3eDtyZYrwYD7bixsTERGzIOvCaMi6vyZA3sOlwoFCZiytrttpsHz1vXUee8Nddjn7IOdeXdJ+9Q\n", - "FLOotux5eMdspLzK4bNut6sULCYkBr5Imp61SWu9gHSRUQA4Tz5MMNZispuSjY0NTWsCNeNCoeC6\n", - "2OBOwaL9/ve/Xx5++OHgd7wZwf3ygnnx+/X19cA9g+sPirxNmJeUmMvJ3/NCAmBA8iT0NlJ2geLT\n", - "WnARcEoX70WLPvz0pz8tf/7nf556fqfTCXSzvA1N1ibLngz13NF8DZCXeNnC2/TjBYTPWq2W/g4v\n", - "tkqlom0+Lq0MgJd1u90ONi/ctnmL06SnfJiu58B3uxH0xj+r2e8HVr2YgfXh5ptvVrcmymiDU3Ev\n", - "fM7GGhSy4V5iYDwvLy8Hm6WrV69qO3BQN9YvPIu179And955Z5DguN1u6+ljjO2rV6/q6S/eNFn0\n", - "ej01DjkAHhsVPLdQKOSevGSDxY7jtbU1XRvyQgF2dnZ048gbL3u/QqEgq6urIjJaj7l+eevZ8vJy\n", - "4IoTGbW5NwcYOMnH18F4wLq8tbUVbOA4VVjW+wnAGHszmQ4Y4+bpJPOLTwbzOGKVc5HhWuRls/AO\n", - "0vA1IsNxx3pkIul+8PT/eL3N63dvjWZj6yDvz+jai4iIiIiIiIg4IN42RmqSI5QcaG2tSnYbYLde\n", - "qVRcK9wyCEeOHFGLD1bewsKCS9Xane2ZM2cCK5Atas5BZHf3HkVYq9UCK9XbvZfLZd09w9Kcnp52\n", - "LctxAbnWEuSdPH9n6z7O7ceyEGAJmZHiQEILWHD1ej3IPZilI2I/L5VKyszAOoW2jC2/dS/wWPTY\n", - "oDymicF9Z8e3p0uVBe93KCvaqlQqaV9zO8PyRX37/b66rdH27PLifuOcWPid119gFdhqRH3ZqvSU\n", - "jTHeJ3UjA4VCQYPDwR5NQrvnaeOgfGtra8pm456eO1QkncdPZKiUjmu5rFYWpNVqKcvCTDKHDaAs\n", - "tnzePL/llluCtYivAThnJLMsHiPEechEhmw/2BpcOzU1ldt3PAesC50VsDFO+v1+cOiE3W5YS9gL\n", - "gTF09epVl9WxOl0nT57UduXcd3aera6uButPu90O3g0sBYMxyfME5WP3K8ZIlhq7B3aXvhUHWZht\n", - "sVpL/X7f1WSy7j7+nTcOPD1Ehsf02Wv4WtS7XC7r78ble7RMU6lUCtYBdveiHvtdk4DISEVERERE\n", - "REREHBBve4wUx0mIpEX3OC7KWsWeomm5XE4pgYsMd7awHCDCx1YcYho2NjaC3ejdd98tTz31VOp+\n", - "ngVYr9eDGKnFxcUgQHFjY0OZEFgpu7u7uUfD8dyrV69qWbMs5Ulhgyn5WLbHhHAguydW6AmdeYAV\n", - "4QV6428OzOTgdDAQiNfwghbn5+e1vaCQ/s///M/6PVvgeaySF1/BZbbMRrlc1rrlBZtnHaTwjtmi\n", - "bt6BgHHK4BhbKHOj0dA+53GK8cQHDcAIwCLMsoLzBDZxv83NzYDd88ZGpVIJ2CyOh2JmDWM/Kyej\n", - "RaPRCAJjPQHVtbU1vQ9ijGq1mltPMCMIMD979qzm2uSAcDwDbbm1taWxShAH/ru/+ztto7yYNo91\n", - "yWL0PfaKYwFxLX4HBpOZf7BBu7u7QZ8Vi0WdjwyP4fKYaawXmDONRkPbEvO7Xq9ru3ntYuNURUbS\n", - "MpyD9Fd+5VdEZNh+lqXi36HPX3nlFWVbOY7Sy6wAeQSwVTwObS5XkXwmqlKp6PWQ0mk2m7oGbmxs\n", - "TMRmj/P0ePfg4Gr0F8csop+sEroFxjGkZzqdjvYrr2fWM9Hv911BTnsAhT9jNtPuA3hvMI5p8uqC\n", - "NRzzfJL4tLdtI4XO5o0CgM70Tgbwi8pqgGxvb+tpDbxMtre3Nejb2wQheJlfGKdOnRKREdXOf3vu\n", - "P+5IvJymp6cDHZoPf/jD8sUvflFEfHcaA53IulSTbKCKxWJK/d2DDdTzkrPyhORTOJgk2KhMTU3p\n", - "5OSgedY4ArAwMi1rky1PTU1p3dHmFy5cUL0VLLSe9tDGxoaWD+CDA/xSz1ts8DtuA3Z12Wur1arW\n", - "Ke+EGW8YvOTK3iKH3588eTJIsM0nPvFymp+f1xcE7u3No1tvvVVfBAxcgz6YmZnRlz4OTTz11FPa\n", - "1/ZEl20DW6dSqaSfeTS9F1DKKUc85PXlysrKRBupJEn0hY0x9tBDD6lGEMMaTTs7Oxpsjrq0220N\n", - "gmaFbtTp9OnTIjJsS8xT7g+rL9RsNoMDHP/4j//o1tmeqN3b23P11NB36Id6vR5c6+nicdJdIMtt\n", - "7a1tVul7bW0tODSzvb3tbpawyUC7zM3N6ZrPqb8AzJWshMwoC05TX7lyRdvXrjkioicJT58+nUpn\n", - "JTLcEGIM8Sk0L9uF7cvZ2Vld3/GOKRaLWn7PTeZtmt5MppJxyuHeZsQ7KOGlP+K115vH3meoCxMN\n", - "3qEVrx6AZzzz+8zqV/FBgP1o1kXXXkRERERERETEAfG2uva8Y4bT09Pu7tsGxu7s7ASMy+rqqu6G\n", - "J01q+uEPf1hERB599FH97KMf/aiIiPzJn/yJfublXANztbW1FSj4eqriTz/9dGDxszsFu/K5ublc\n", - "1wnqPTU1FVjbS0tLustmKjkviNxzBdTrdTdJMixCWGOzs7NBAK29xpabd/q4H5ijBx54QK1Hvgcs\n", - "OHbxgWkEQ7C3txe4AXgcsEVlxxhbd5yjDshTQ/dclF69WS2etYNs3j+RdNCtSNrKgxtCZMT8gZlq\n", - "NpsBW8RHxDEmmP2ARX/hwgUtHzMDf/M3f5OqT71eD47nc5+iTEmS6Odov/0Ec1qLMCv34Z133hl8\n", - "xgH5Njemt77U63VtQzDXp0+fVnaXmWjbx1NTU9quzPyAUWFGygbLHzt2zJ0rP/VTPyUiIu9973tF\n", - "RORrX/uajhm0edbRecwBsOOcFNhzUfM8B3ti8+sxVlZWgnl27NixlJSMyHCttusTtzMwGAx0fKIt\n", - "XnjhhRQTJTLMr4n7YRwxG+wpV3sSFox7771XREYZLjjXYB6z8vjjj+tn6EuPkavX64EW2ezsbCoY\n", - "XSTtbUB/eAeRfhxg7wHa0gvcZqbezmeeH5h7rVYrYJ+zgGv48IqVSWD3J2ezwGcYu8ViMQho58M1\n", - "vO/IW5fw/ElcqrmMVJIktSRJvpskyZNJkjyXJMn/+sbnC0mSfD1JkheSJHk4SZI5uubfJUnywyRJ\n", - "ziZJ8vGxJYiIiIiIiIiIeJcil5EaDAa7SZI8OBgMdpIkKYnIPyZJ8oCI/Bci8vXBYPC/J0nyP4rI\n", - "74rI7yZJclpEfkNETovIcRH5RpIkdwwGA3dLV6/XA6uq1WoFfl4WOmOLFFbMuXPnRGS4m/biV7xg\n", - "RVgRzER9+tOfFpERE8Xqv2xZIb4BljBnegfm5+d1l37XXXeJyNBPj90wLL7d3d3giHOz2Qys3hMn\n", - "TqjFByvGq1ev13MtVQ4etJabx6JwoG2er5jjB5jZ8srgxUtYq3Nubs4NfAdLwCwRYhjYOsRzf/Zn\n", - "f1ZExM1mX61Wg5gRL0A2S+QUFhLn57Lf8X04Nx7+xjg+fPhwEJBp/7bgnJA2houfB/T7fWWgMHbe\n", - "//73yxNPPCEiI1HaJEnc5yJWDcwfC+jh39nZ2SBout/va7kw3+bm5lLsmciwHcHGgXlcX18P2Lad\n", - "nZ0gm/zW1pY8//zzQZlRFrZOgaNHj6Zi5/B7a/2/9NJL2l4cUGzXmH6/r+wF7jE1NaXtyrE+GMdo\n", - "+0ajEeQyFBkxJD/4wQ/0MzCwXlwpA+MS6xTX1YsfQZzia6+9pu2KGCgvfvKHP/xhICJcq9VUzBPj\n", - "eXZ2NmDmt7e3dUxw3AzKjLWc2xl98MorrwRjO0kSN7cjgvofeeQRERmOO3gQEEt1+fJlueWWW0RE\n", - "VLSXgcNCvM4yuwhgLmflhgMrhnbudDp6TxaCxDsBbcHr9E033RR4KbLiobygfythIBLKvHAMkvcc\n", - "zqHIrDOA78cdhkF/ssq/d0gM643H2LLoKzDuufuVNthPRoWxrr3BYICdS0VEiiKyJsON1Iff+Pz/\n", - "EZFvyXAz9WkR+Y+DwaAjIq8kSXJORH5aRNxIPzsZ33ieLrpoyHK5HLz8Dx06FAws1v9gxWcbHMoB\n", - "r8CxY8d0EgPtdjug9mu1mnzwgx8UkXRyTMCqHouMqNrp6WkdRPwyzKMOvaSWPGBAieIeWYurN4g4\n", - "6a89OZg16FAOViAGxgU6om1Qfs9V881vflNpbh4f3skJm16hWCxqX3suIGBpaUlfcvbAwkHAiwlv\n", - "uPg0lH0G2urKlSu6UeHTbgDmAo8TjMVerxe48crlsr5wOQifKW6R4eKFIHKMGd7U4kV+7tw5bVO0\n", - "d7Va1Rekp1wPir3f7+vGAmXmccVzGn+jrVZWVnQDwOPKzvlCoeCuI9ikeYvh9PS0vlRxIMRzxa+v\n", - "rwdrB58mxPxpNBrBIZRWq6UbPLRzo9GQJ598UkSGrjqR4clgz42PjS8HdWP8YE0aB5RveXnZDRq3\n", - "Cb5fe+214GVUKBQC1+jOzk6w6Tx37lwqibPIsP0wZlg7DPeBi3p3dzdYe0+fPq0bTIwrb05vbm4G\n", - "oQmrq6vBRnlra0seeOABERF57rnnRGTo+vzLv/zL4J6YN3B5v/766+4hI6tPuLKyomscNlzXrl3T\n", - "zRrKxP1tE2DzZ4xms5kbuA94AdRZQeR57x12a3lJlyd1OaJeKPve3p72I6d9w9ieVGPL0z7jtSUv\n", - "BRhrTLHu47jf52FssHmSJIUkSZ4Ukcsi8shgMHhWRFYGgwEcv5dFZOWNv4+JCDvKL8iQmYqIiIiI\n", - "iIiI+DeHSRipvojckyTJIRH5+yRJHjTfD5IkyaMi3O9OnDjh7rxFRrth7Do9S6RSqejulbWNsMNk\n", - "VXSLQqEQuMVee+01ZbRw7cmTJwNL6aGHHtIcS8yAQaMKx6BhlYmMGJgkSQIJA89SYBVbfgaCR2Ft\n", - "93o9173k7dABtqhZn8MG/mfRmjgC7x1NZgvHWmteeXZ2dgK3EbcHrl1YWHCPb9u+qVarOlb4aLI9\n", - "asxB3Wx1YLx5cgGsE2XZK7aouA1gxfLBAnzP1DTqjvyPhw8fVpbIS9TK/cv5/vBZ1rxiXLx4UdkO\n", - "3G92dlbnBRiRBx98UO8HF+ru7m4gTdDtdoMg/aWlJZ0HuN/m5qaygB4biP5/7bXX1LWC+b25uan1\n", - "tUxcFjyGlvNlos1tQLDIkC20bFe32w3kRdg16VnF7OIHI4UxtrW1pesYjuC/9NJL8rd/+7epZ+A5\n", - "IvlaZRwCgHvceeedLiMFgJVbXV3VscgB6FYlutfruWwGWApmcjB20E9zc3M6pjHWjh49qp/BJffq\n", - "q69qGbz8hVg3dnd3dc4fO3ZM72vXs263K5///OdTn6GcjI9//OPyqU99SkREfud3fkdE0sHYfNjF\n", - "5mS8fPmyPPTQQ/o9/rUyOCIi9913n4ik55RdVzhp9vr6ustE5o3/cXPDBnP3+33trzx3WrVadTN5\n", - "eEr+HnPluRTBXLGepPf+8tyWNsefx6J512a94zw1/nGYWP5gMBhsiMj/JyIfEJHLSZIceaNwR0UE\n", - "s/SiiLCQz4k3PguwsbGR636JiIiIiIiIiHi78bnPfS73+yRvt5UkyWER6Q4Gg/UkSaZE5O9F5PdE\n", - "5BMicn0wGPxvSZL8rojMDQYDBJv/BxnGRR0XkW+IyO0D85AkSQZZRztrtVoQz8Hw4jS83Gg2lxqu\n", - "EUlbwAhYX1tb06Ow3/rWt4LnInDzxo0bgR/31KlTwWfMJCBmZVJF8qmpqaANWD07DzaQ1ubTy2p3\n", - "K8Fw6NAhlw0BIFvAli6zSx4jBQuI/eUIUIUVwAwC+nVpaUktMy8AlH/vWaLWwshiuCz4kAO3n2V8\n", - "mMnBGNvd3c31rXOwtmd5of1wv0KhoGOZA1TRl7hfqVRKBYWiDTzkMZceYI3//+19a4xkx3Xeqe6e\n", - "fs70PHZmX7O7XJJLLbWk6CUpiYQlRqEt0RIMWwoMWBEQQBCMOICTKH8CJArsKL+cwIAC/csfOYDk\n", - "JJSlBJYtBNaDBiWFMrQUJVJ8L2UuH7s7uzszO+/pme7p7psfvd/p71advtM7ojmmXR9AzLL79r1V\n", - "p07VrfPVeWxubmY6Ylr3Rdbpubm5wMLjGonom++bNAyszMdsKQPValXbCD322U2Rnr5Crrxm+FUH\n", - "dnZ2UoEieC4Af3LSvGAAACAASURBVKx7771XHn300dQz7rzzTl0fINNz584FzyoUCtpWMCmDkkz6\n", - "YP3MQrlc1nGA/JaWlrQv1jrG6wsHHoj0GGd/zTp58qQydNYYg31aXl4OMmAXCgVld62UB7v5O2Ic\n", - "8Pcb3/hGcM2HPvQhrYbAbcd7B395vb/rrrtEpH8aIRIyTj5wH2ZWfXmMjo6m/KnQd3zGMud3oMUW\n", - "+gzSzThS++DnAoPYLzCMYIDZHw5Eym7pBbKc5znJMVdj8DOlD2LYIH+LzfKTJd84tTAX9d2O9o6I\n", - "yJedcznpsVd/kiTJXznnnhaRrznnfkdEXheR377R0Redc18TkRdFpC0iv+dvogDkifA7WCgUMh3Z\n", - "0GF2DmXq2crmDGHxBMcEhFNgtVo1N1CYEHjxWs5w8/PzuunAxoBhHRWhzZwNF+3joz381tpE1Wo1\n", - "VSjcgzdRFhVcKpVUvuxEinGwojH836PPPjAhuJguw1JmLB5wyFxYWEg5OvN9RdIbKX8D3e129Xte\n", - "lPxJvrS0FCy6rDtAsVhUWfmT1eq3iD1OVsQMt9l35uUSB5y53HfW73Q6gQxarZa58OAzjorBb3/l\n", - "V35Fn4+SSNC/S5cu6b15Y+2XT7AiDvm41M+EzfdoNBqBw7WVAV0kjCAcBC6w6m+kG42GyoM3GBgH\n", - "Puq0jAm0B2vQwYMH9bc4yuT+YgO0tbUV6PbLL78sn/nMZ0TEPobEs06cOKEbmZ///OeZffextrYW\n", - "ROhdvXo1eIHxMR5nO+doTZHBmeEhZ8iMj8SwLs7Pz6cilkXSGx/oQbfbTZVHwWfYgFj6hPuMj4/r\n", - "b7Bpunz5sh6x8RzGnMLfy5cvm3M4a5PG0ZlwddjNadrXbUufNzY2UoSAFZU2bJ6m3Y6zBsE5F5SG\n", - "abVaqbIyIj35YQ5AVhxBbuk2roNOikiqQDZXscCzfOOQN9IwAtrtdrBOc1AKl6vKCjLyC3hnYbf0\n", - "B8+JyH3G50si8uEBv/lDEfnDXZ8cEREREREREfEOx75mNrcyV7NlytY2O5yKpOk77D6LxWIqmzPu\n", - "i10n74r90Mbt7W3T6gANDWfZ6elppbbZORSA1bi0tBSEg1vh73z0hN04HykxYI2DpWo0GsExCecl\n", - "4pBdqw2Q+fLyst4H1w3jsCzSsyr8+nHVanWoowSRPkvADCNkyPnB/OtFQouh3W6bDoJZjsBZ4GKa\n", - "0FUrj5B1fCgS6vTIyEiQrmJtbS11dOG3E7DCn7vdbnDMxOHgbEmCRreONOGUbGFqakpZFKS+uHbt\n", - "mhkmj/kD+bCugSnM5/OqlxyEgSMA6DZblOzgC8sdljoX2mXw2mIFNFisnX+cXigUNLM4nMRFJLBs\n", - "FxcXdS3A/GHGBGH87XY7YCo4y3VWNvHt7W2dF3ykZ+kdwGwG+glZOucCVoedyDFenK0ccrR0KEkS\n", - "fQaO53hOMysLNhtrej6fN6sJYLz4SJHzW4n0xshfq3Z2dtTxHAzRgQMHVLdwCnHPPffIs88+KyL9\n", - "9W5paUnuu+8+fZ5Ib/wgS8s9g+vlAZDbbqknLMYT+nXw4MGU/K36pZYeW9dYcwQytLLd8zqa5XiO\n", - "65rNpt4H485sMFgndtLHWFu5uQb11WJCrdMC6BOe32w2bzpL/M3knYq19iIiIiIiIiIi9oh9Y6R8\n", - "Rzpr14tdNCfkZH8S3y+h0WikUiGI9CxW7HxxHYeNw9LodDpBFOEv//IvaxZcKykcmKiRkRG1YthR\n", - "FL4RVjI37Oh3dnZ0Vw+rfHNz07QwsaOGXNhxHLIY5NAOa4mtI8sPirP0Wgydz2w1m80gozGHZ1ss\n", - "C1ffhjUBGY2OjgZV3Nl5nS16q05SluXF13GtJpG0jxS3z9dL9pviKvZ+Fm6RMHkkn/sDtVotlawQ\n", - "7c2qhs5hyH7CS5G+lchMHsYfn7F1hvFbWVkJ5Le0tCRPPvlkIAMre7rPDLAvjeWLxPUEwRZDjrVa\n", - "TX8LmY2OjgZZ0X34PkgifXmApbh48WKm3wMnPsWc9NcVtFGkp59oD9IpjI2NBQzIlStXggzOjUZD\n", - "1xEkxrScw51zmg2dgftY896SUVYWbq7kYNVBhb6PjY2ZCUzRN4uRwvhWKhUzrQ3G3ZIz+sZzFNfl\n", - "crlA7zhhKGqpWhUOeC4ys+PLeXR0VE6cOCEiNnvCrDqSjGKdmp+fV7mhj+yjC9RqtcAxutlsqo5t\n", - "bm4G/jyDfIx9Vt5y0mY/TGbErd/47BAcr/m33W7XjMLHM8CsFYtFHTt8V61WdX1Cup9ms5kKGOG/\n", - "DE7dg3cNr9vDpgXiIBXfp3WY05l920ihsX72Z5FwMu3s7KSiOfx7ZG3I2PkWi87ly5dTJVP4WSJ9\n", - "Kvmpp57SdmEicTkH3O/QoUOpDRTAznk+OM+Vv2FhhUQ7x8fHA0p9e3s7taCI9AafnX0BnhiQOR+t\n", - "WHm30D/evPgL7Pj4eKBofA2X6sDE4cy7/oax1WrpePLRGG9asmA5GQ5D0VqFLK3jP74/t8kvoC3S\n", - "33TyYuNT8IPKGnABaDwL94G8rbYMip7JOmqFXk1OTuoRFeexwiIHfVpaWgqihfhYCG0YJHe/MDKD\n", - "N+g+sgp5A77cRPpHRHgubxgA3vgA+XxegzesgALOMYVNA0db4nl4Ph9/wMiamZlRncDmz5Jbo9Ew\n", - "Ny+cEXsYwJBiOXGhYoy7dXyHY7V6vW7qO8DrhV8ZYmtrS59n6S/rhB8lyCWRWJ/9zQsDmyJLn958\n", - "803deKN9lowfeuihVKmeQWg0GvqewgZ8YWFB1zH00dpwbG9vB1ngFxYWdO7VarVgvgwytvwcb9bc\n", - "tNYJS+9yuZwpO3+zwZF8WCcKhUKQObzVagVr+Pr6ujn3shzpef3hQBsAbeAM7X5xeG6fVX3iLc1s\n", - "HhERERERERERYWPfGClYabDM2KnO37EyG2OFkDM4zFakt+vEjpKdK/3wcpH+7hW7Yw7BtQqLwkKw\n", - "MtdOT0+rZYFn8ZEI/nJWbO6bb41xO2G58O6ZrRX0Y1D9JlgssPAHOSpa1q5vFVUqlSB0l9uFfnJG\n", - "Y4bvLMljD/k550x61WcVrb7kcrngMz4Stahsv23+My2HdusoxGfHisVi6lhWpGedWmHo6NNuWXV9\n", - "ZqBarQaZqDc3NwMLMpfLBSzf8vKy/OQnPwn6y+Mgsre6hJiXa2trQ/8erAkfzVppEnj84Txsgetl\n", - "+qjX64FV3Gq11EkWz+W2Q/aHDx9OHeWgregzB81g7uFZMzMzqaAPkZ6e+KyFxcZxmpRhc4JZKSAs\n", - "BhvrnnVkY7EZR48e1bWB1wOr7pvl9OuH04uEx5XlctlkVjGeYL9WV1cz0wqwrHA/iyXCUfDPfvaz\n", - "VIWJQahWq/qe4uMmvw3sIM2Mrn8dZxC3+s0nCRwosVtGc8A/cuQ8bFgTBumTVX9vWOdsPzM/r3+c\n", - "OiFrnWBd9ddPfufz+8Rnx3ZjzIdJe6C/GfrKiIiIiIiIiIiIFPY1/cHU1FSm8x4sjdXV1ZQPkEiP\n", - "CfEZg1tuuUVDtAHLp4adOdmZD+G9sP7a7bbpsGllh/X9nJIkCVgUqy3tdlvP+DkZnW+NVatVvR+u\n", - "4wRwXGUbVi9bOPxsy6HUZz6cc+YZfJaPEjud+35ufs0ykbRVY2Wi383CgWWTlVTTQrVaDaxiZgbR\n", - "VsuHp1qtahvZJ8CyXnz/kFarFbCB+D0jSRK1mtlvAuMBOa+vrwc6xvfi8RvWSvVhWbgjIyM6vlxj\n", - "EM+zKsezzw365NdhE0n7R1ry91NKMPMjMlxdLMu/p9PpBHX3ms2mjjESOzJjBx06ePCgMhqcLBXy\n", - "gE9is9nUNQbXXbx4UfXEZ6sZ4+PjQRg96xzSGuxWPYF90NAuyJzvj/nYbrcDtoYTAQNzc3Op+qIi\n", - "PT1AP5mRQn/ZJ9R/BqcNwG+np6cDXdzc3NR3iBUybwHj3G639RmsN9DfLBbKcvTO5/MqN/6tny2e\n", - "ZYr3T71e1xMTngNZrEySJIGuWHUY2UeKx4HZySz4Y81BQr5flEg6SSjGBH3nNRryYzn6AVWDwKc8\n", - "kDnuMyjNgX9PdixnOd8MEwXs60aKX7gYiEajYeaUgtMdjofa7XagyHw8yA6NcACE0q2tranC8aYN\n", - "ixAXxPQ3SOzcxm3zF4xut5s5CdBvLvZq0fdYdKw8S1wwGIvDG2+8YSoSTzjrGM2XZalUCl7SfqQl\n", - "rgOy+rubkzhnevczJFvgMjrcFiwKTM/6L9esCFERO0IT+mKNUZIkpsz9o6Tt7W2VA+uV9fJHG3GP\n", - "SqWiG0t+4fkRkzeTuRhy5ogVtIVLLPgLLWfC9x3q/X/je7zor169muk0Dp2bnJzUucnHGpyTC8/i\n", - "TZqV+XzYYqXQXx4vzDvMOQbGfGVlRZ2L0WYuo8PRbljbsF40Gg39DcbaerENmj9oA9YTC7tFgeJF\n", - "xGsMnOyTJAnKQS0uLpqFhPEMqzwUwMYb+rmbAYQ18MKFC5n3HvbIGMewnU4nCKSo1+tamD0L1vqz\n", - "vr5ujgN00gomglHGBiR0id1JpqamhnJ65jZxFJuf94kd94F8Pq/rEjtwWwatX3ImSRJzDLOCRyxk\n", - "HatZAUHsvI4+Tk9Pa5vZfcU/yt7tneSvj5nt3vWKiIiIiIiIiIgIE/vKSOXzebXQEHZ76NAh00HQ\n", - "3xXv7OwENfSY1sZx2fz8fBDSWi6XdUdr5dNhC9ffSfNOGVbx1NSUmffFLx6bz+eDdAvlcjlVEBdt\n", - "gmUAWbCjOu/MYRnykSYsDes4jfvEx2m+pddut4cq7DsoxwY+5wzUgGVZwHIolUqmVec7VSZJEowN\n", - "U9B+wVOGZR1xNnm2rPy0ApaDeS6Xy2SCLLYKbTh27Fhm1nGAw8aZwcRv2HrC95AjF7yGnIvFYpCb\n", - "rdPppJzgRXZnuLhvFluA78ECfPCDH9Q2wDHcsj6t3GsMZj8s3bKyekMe1Wo10IHl5WX9nvsE2Vhj\n", - "yEe3WIPgnH7p0qWUIzGuR1+5SPhuR8kig+eZzwxa+K3f+i356le/GnyOPmF95DlguTTwHPTHzAom\n", - "sbJ6VyqVwHUjSZJUjiWRdE0+Xtcx1jgSK5fLZsoCf70Q6csc86NUKulneF+g1iSDTyF2c0S2WJn3\n", - "v//9IiLy/e9/P3VP/ttut9W5HUzU5OSkzoOlpSUz8z36wvpk5VDywTLnzODWfMe9rVp7e3UZ4Lbz\n", - "6UcW+9XpdPQ3vuM492O3422Ag3+4xqwViLYbIiMVEREREREREbFH7BsjlcvlZHp6OrBi4OjJuP/+\n", - "+9XJk5OvYXfKO1BYcJYTe1Y9vyRJhmJgRPpn3vBLeuWVV/Q7WLXMqsGSsEJY2W/GqkoOy7nVaulz\n", - "2crDPZmNYUc8C9i5z87OikgvfYPFSAFs7fifcVvAjm1ubgbh2Nw3zljvJ13b2toamHaA28CV6mFN\n", - "MDPB12elWADY14urjaNd+KxararVDIuFgxestmP8p6am1MKEPNivjwH5giVdWFgIWJHJyUnVZYw5\n", - "+4ll1ZZqt9tBMrp8Ph+wweVyWb8ftsI82Jlut6u/QZueeOIJvZ6d0v1+O+cC1ujUqVPKXKOd/lhC\n", - "vnfffbeI9OY61gL2c+P6fSK9ecb1wAA/LJ/ZCQ4fx/hj3lYqFWVccA/2VYI8ODOzBTyrUCiYaTL8\n", - "6g4Wrl27Jh//+MdFROTP//zP9XO/vman0wmscA5oYfhjMyhBJ+6NdZvX5TNnzoiIyPnz5/V+YJqc\n", - "c4H+VioVlS/W6s3NTZ1zzAD6zEq5XA7W4W63q2PN7x32c+W/3J9Bfn6QHypd/PSnP5VvfvObItJ/\n", - "/0xPT+t1YCELhUKwXi8vL+safeXKlYAl5NpzFpOD/nKgEvfdH+t8Pm8mPt7NlwhghhHP8NPL8GdW\n", - "2zn9gcV6ZbFs0A1OG8HvVp9VbLfbqjuDEiOLDOcjtW8bqW63a26aJiYmtFNI7//YY4/p95y9lhco\n", - "kd5gWY6afjSOSHhkc+zYsYEvNR9YNLCB4qMoP4OsiJ1jCKhUKsFm8s477wxyUxUKhWAiHT9+XCM9\n", - "rMlubXxarVaqwK1IT37WcRdvjPBbwCoKy/3cbcER6cnIP07lzQHDipDxj075mmGUX6S/UWG9wmTe\n", - "2NgIHDKPHDkSvFh4E2s913IoBYrFor7U8Xd5eVk3DGjXxMSEvli4LAxHnYqk8wNx2/EZxso5F2ya\n", - "ssoScT/5+JC/t6JwAKvc0Hve8x5tu1+gulqtqtMt2sllX/hYzZI5XthnzpzRf2Oz0el0NIM7lwPB\n", - "dfwihV5CzsePH9djdBhwp0+fVuds9G99fV3XHSBJEp1z/BLL2vByDi3ML2uucqFl/2Xz+OOPy+c+\n", - "9zkREXn66adFJO3IjLbMzs4GxuTS0lKw6cRzGCsrK0H08fz8vF5nGbZAvV7XPvELDTLnjP7QCW4n\n", - "NhuIlOM8cdjUr62tBQXIOfoM4NIpjGEjAn0j5uzZs1rwmqOtYYCiv2NjY4GeNhqNVCF7/2VfLBZT\n", - "2fpF0sEhWetOpVLRdwZkPygHlZ/hO5fLBYW7t7e3b7ooMMAG625O6X6hen7vcdReVl5A3zhmsKE0\n", - "TEFo/d2uV0RERERERERERJhww+y23vKHOpeIpMPpwQysrq4qJckW0Ic//GER6bNT4+PjugO2drG4\n", - "R7PZDKhJdoyENXP58mUtGorwV6s4K34v0rc6RkZGBu76RfpWkcXAHTp0KAhd5yMAn3EQ6TM/J06c\n", - "CCy9SqWSyiPlF7oVkSCcmS04foZPcXc6nSDfk3MulXMGf7OOz3Bdp9PR/Dxg4Lh2H2RgWYkWI8W6\n", - "nBUmzXrH1h/3Hf32mcu77rpLXnjhhYF94xwp1pGj76xq1X0T6R+FYNxZv/xxERF597vfLSI9OfrO\n", - "1UxrM6z8VT5yuVxQh9G6rlwu67hauVkAyyl5YmJC28d5mADO1O/PMz5q5RBn4MiRI8oW4eiuXq/L\n", - "+fPnRcTOX2YBDFi9XldGCkc1uVxOv4deXb9+XdcTzhWEOZfF0IyMjATH1t1u1zx+uP3220WkL+tB\n", - "rDru87u/+7siIvKlL30pONqZnZ1VBhRrxJUrV8w5AvD6ghQRfjoHxuHDh+Vd73qXiIj84Ac/EJEe\n", - "y+enHMjn86l8TyJ22o9CoaCfszsE2myx25DF6Oio6qLFxHAKENybZeAfZY2MjATP+/SnPy1f+cpX\n", - "UteJiMoAaz+7p0BvRkZGtKA19xnO9cOy7uVyWfUT/XjjjTeCIu2sd1ynz2c4rTWLs7VDLq1WKzON\n", - "QVZVCX7/WAw37lGpVFKMGu7nF0YfdHTnz7NB6WiwtiRJYgo9MlIREREREREREXvEvqY/4N0qdubl\n", - "cjmwWD/60Y/Kt771LRHp+3gMSnjpJ+RjBz5YpFeuXNHruP6eb3G1Wi2TQfDrlq2vr2f6pfghwD78\n", - "Hf/U1JRaDmy5cmZcfOeHg25tbWWGbVYqlcwMycC73vUuZYnYSd93iBwbGwuc6EdHR5W9QEjv3Nyc\n", - "WiqcZsD301ldXQ3SWvD9fYZIJG0RMos1CJz9F2NeKpVSMuS+oF0ig5OEwqJhywdtBbt0/fr1wLpi\n", - "HQY7OjMzo4wJxpqtdst6fvHFF/XfYEA46zjAejoMG83zjC1J3zeDZca12zCGYHws+a2srKi++ykD\n", - "RPoW6ejoaDDP/Dnr+2KBjRKx5yHax8w11onV1VW9P9gV6AO3td1u6+fox/Xr15U5wHhUq9WBTtmM\n", - "yclJ7R/kOoh98NngQYA8Hn/8cRERefDBB/XfwMbGRsDyWnX/BoF9xkRsNnhtbU2ZKMBKIpnP55VV\n", - "Yt84yNwKDOL6mX5gUa1W07kJ2TabTXMu+ckmB8kWz8vyXfvud7+rbDHPUcxlnpsYS2bneL0bJhiq\n", - "UCjoOstJK3ke+MB1PA7sJ4R3JeRmBU2xb95uvlJZQSvsj8VBSSI9XYSMOYG3VUsV7xCrrRgv9m3l\n", - "Nt+MbxSwrxspnqDHjh0TkTQ1jRcQNlEifdrz+eefT22MRGyHvKmpKaWr+Tv/BT4xMRHkI7GymE9P\n", - "T+vz+DurxAoX7BXpLcb+xmxxcTFYDK0jQI5wZCXHv/FbzgWDl4RIWE6FwXmGrMWD/+1PEquQKCso\n", - "57fBosXPgiw57wtT6iJp2VrKbWWgxT2YcgZWV1dT0Z8iPbmA/uZNgf9b3njz860gA9yH78dRXSLp\n", - "jQXubT3j4sWLehwA+fEmG99Z0T2DMAzFzrA2ZJyJHL9Hn5Ik0XmGZx09elSPjdCPF198MdgwlEql\n", - "IMpqeXk588hWxNZv/3h8dXXVNKTw8sUL69ChQ0GxcitnUaPRUD0+deqUfo55g+cXCoXgqH2QPvsF\n", - "zy3kcjm9d1YVAMbzzz8vImLmJBoZGdE1A47bpVIpZQwNAgfrQBa83vJ8Q98RTPS9731PbrnlFhHp\n", - "58Nrt9u6geIqEH7ZHc6oDZ0YGxtLBY+I2EERlgO5cy4w1nK5XOZmMmtjMDc3p3r10Y9+VER6myvL\n", - "2EW7EORz/fp1bQMfYQO1Wi0wGBuNRmaAD2SZz+e1DVbJM4DnMMOPSO12u4ELwF7gZ2Dnf1vtsyIN\n", - "2fEd39VqtSCjuXW/SqUSrIfDFGOOR3sREREREREREXvEvjJSIn3WhKlHWJ2+VSHSt6j834j02CdY\n", - "mLDU+B5WQUeE0+5Wfw3Wy+Li4lBFDZMkCZzS/XuK9Kxga8fvF7zd3t7WnbmVDwuOmYVCQWXATBHu\n", - "x8cbYG3YcrRYB8uaG9QfkfQOHhY8Z+kFxsbGtO98JIfncv/8TMVWfa5B2dN9dLvd4KiEnRsZsAJZ\n", - "5v7YsBO+laMM1tv09LQef4D1yOVyeu9bb71VRNLpAJiB4XxlIj3rCb/l7+CUytmCOeSb5cDI5/NB\n", - "PSp8jn4CHG4v0mN5/PsxG4j7zs3NBczG9PS0Xgd9aTabJruEduG51Wo10+k2l8upFc45nMAc8dzz\n", - "mQ3rKJBlwPMLLCBnrAdDw06znN5BZLATrN8Wi5mq1+uqixaLnQVrfuzs7GhKih/+8IfanzvuuENE\n", - "shmpJElSgTsi6TnKlQsgI+QGnJqaChz42+22rjsY662trVTuLpHeHDx58qSI9BlaZmStfkLXeK5i\n", - "nnU6nYAlLBQK5vwBOEUFvucgGugYn6xYQH9xOsPs52233aYpUQBOdWJV3ECf+AiTmTCficrlcgHT\n", - "xHOQs+xbwUnoOwdIWEw94OcaFOnL16p+4ZwzA198BozTs6Bv1hEfp55BP6138TCIjFRERERERERE\n", - "xB6xb4wU6jDBwsDuOZ/Pq6XAPhw4N+YwUd8Zme/Hlh52sbzD91MdWNXM2aLKYqGsbMe8A89KMsY7\n", - "YIQPVyqVwMI8ceKEOiuyw6pfC2zQjho7c2ZFgLGxscCvZnl5WZkNDhH2rf+skGhuD/trAdvb24HP\n", - "C59lMyz2xA/f5VpMkDnXNwSmpqYCNnNmZiYzczD0Y2NjQ//NDBsYQb6vn9Xb97fBNdBfrvNlsY7Q\n", - "WXbchoUJvyPnnMlO+EEJhUIh8HMSCf0BrNQT7NRvZSWG7FkPsnx9WB/ZSsVceu973ysiPYv4xz/+\n", - "sYj0fT1arVamFTk7O6u6xekoICN+nu+34pzT5+A7nsuw3tmHBkzjyZMndezwt9vtZjIbALO+lvM9\n", - "UK/XU87vNwOet8ywok/MAEO+Vi1S4PLly8rCANxmyODo0aPKbPF8y0pDwTUhITfMvWKxmClLzNX1\n", - "9fVAhhw0wffwWXfLz5LB10OWrJNZbCF0cmZmRucBO5uDOX3++eeDQB8rYITZs93qZPp15trtdrCe\n", - "M0uN79gvidks32ndYopZlrx2+OzUoBQEPvs0MjISsI5bW1tBG6rVasD+7uzs6HvTYqyAQRVCGPu2\n", - "kfLzxVgRRvxvfxJUq1XtPNOy/nUHDhwI8hKNj4+rssLp1HIi7XQ6OkhYsJaXl1NUrsjgFwYWpawC\n", - "rKyA2LDkcrkggogjPjjT8L333isiIufOndPvT5w4ISKSooL5pQSKGc+1NhHXr1/XY08eB39TWC6X\n", - "9d64R7lc1hc76HZr89dsNnWDxUcZ1hGsv2niYzjLMR5/i8ViMEmnp6eDl4FF6fMmgieh/8I9fPiw\n", - "eewBB1vc99q1a9o39Js3k7jv9va2LlrYXC8tLanOoj+nT5+Wn//85yKSPoZC1BSubzabgWNtVkkE\n", - "hmVADMpcnmUw3H///SLSe6EiIhE4efKkjg2Ow8rlssqNdRvAizmfz+sL3sLa2poeSXAEYZZDvn90\n", - "K9LfRLRaLX02FmGuRAA9OHPmTJALbGNjw9RfHyzHLAOuUqmo3LKOshlok0jf7YE369ioYoxPnjyp\n", - "G4HdnG45L51ITz6+LDkrNtY451wwHrOzs3pEiOeOj48H85sL6DL4nZAF/yh72Fx0FiYnJ3UcYFBZ\n", - "hZtFRDPrQ1YXLlxQp37OHQUXlWHbYblm8IbG0qesecvvQJaHL1dLN3jN57Jbvszb7Xbw+3K5rM+1\n", - "jPWsXHWlUknXO+wRNjc3VZZ4r73xxhuZGyhgGLnHo72IiIiIiIiIiD1iXxmp8fFxk5b3LYGJiYkU\n", - "lSuS3mVbdLmfBVakT2EePnxYn2s9n8NPsfPFddVqNZWvRCTtaIffrqysKCOUZRV1u10tcIn+vvTS\n", - "S/o9HxV97GMfExGRv/zLv9TPfAfkWq2mz2UWApYIMiEzWJbo78TERODcyLlCcO+dnZ2gf/V6XVkz\n", - "bpefwV2kbzGALdjc3Mysa5XlPGqh1WoFR8AWVbu8vBwUfi0Wi8oSscXspycoFApmRmk/WIJz2bBe\n", - "4jP0m1lKPvZivRTpFXsFw4BxWVxcVMaHHUetOl34HnJhtsA6IgeszPvVajVwLN7Z2dGxgWOxiARp\n", - "SziNA8ag1WoNFXbs5yLzHZ6TJEk5OoukjxestCu4jvUdunv48GFlCdHul19+WfuEZ/G4gYXc2trS\n", - "/mXl2hn2yGtmZkbHcNgs19BJ1nWMJRffBhYXF81KCFb6BMgI8jt06FAQin/58uVgvs7Ozgbz58qV\n", - "K6rvGAMegPCbHgAAIABJREFU50ceeURERL7zne/obzEGCwsLwbgNgl+v9ciRI3oEz0yEz2rzmo+/\n", - "o6OjwXtnfn5e74219+WXX1b5c/CUz65MT0+njvt9FItFnX9oa6vV0rmLtg5iNdEGdofAv9FmPhLN\n", - "Oiq0UgXx9XwU6F9nyXK3XFRZ71QrUCWXy+lahr/OOZUBH4da7jm7ITJSERERERERERF7xL6mP2B2\n", - "BztIK/EY/z92kCsrK6kaXCK93bPlEOnXJkOoLX/X6XTMhGJc/06kt8v3d9Tlcll38rBEqtWqMiFg\n", - "06zz3DvvvFMtILZi/fpWk5OTWmcQuOWWW4KwYeec7rhhObM8OEsw+s7sCHbhFhvAliSzRpaDInwj\n", - "/GcxuMYf10vKOpNm6z7rfgyfxWIrmcfft0BqtVrgX8f1F/36eoPAzukYV+hpo9HQvu/mt4RxggPq\n", - "pUuXAtaL2aKsbL2tVitIwsqOqtZv/cz63OZhfa5E+kwU7lcqlZRxsfwh2OfGh3POrMsHrK2tBb5K\n", - "o6Oj+jwr0zjmYbvd1vtxOhX2MwKgU7wOoH+Q+eTkZMAWLC0tZVrAYH5GRkYCdmVjY0MZpN0ypqPN\n", - "YJUsOVv32NjYUD2Hzi4sLKTWFpF0EAtkxU7W+O3a2pr2CeuixQY2m83Ab5Wz+3/ve98TkbS+Azxu\n", - "w6SqEZHAj45hnZxwAkoOvPAZpEqlot/Df845l2Ki8AywqFg7eR20fBDb7Xam/y0DY4K57pzTtQ26\n", - "4JwzmRx/7eYky1gbms1msM5ystSsDPL5fN50IvfHlZ/LTu4ICIHv09jYmPYNurW5uanP48zvWFOg\n", - "J1ZwzTDY142UNXA8wUHVbm5uyj333CMi/YVgZWVFhYkFYJBjH7LmwonPohx5I2XR6Fz2AuAs5VjQ\n", - "8P2JEyfUATULBw8e1M0QHN8tCrVWq+mkwXVvvPGGWZwTi5FfCFREUm1CW3lTakV8YHFxzgV5n6DE\n", - "jNXV1WBcBx3hQpF5IvkvTI7Q4ygqv83WBmxkZCTYdPFREo9/FnWNiVYoFHTc0c6trS2zuDTkyy8E\n", - "6Lf1IuPNDv6N9o2OjupYY/NULpd1k8aOuf5xlRV1xKUkeAwgU14UuaSGSDoDNmSbJEnKyMFneIHj\n", - "78LCguoxZGDl/yqXy/o92lev17UNVmSgiB0ZiWs5rxaATWmr1dIXHX8PnYAD/7lz58z8dtAPdqqG\n", - "PPD8mZkZXavQp2KxqPMZGyVeyHHfiYmJIAKWC/ZmlYUS6esMR0n786VarZpHYdBfPNfKfTc6Ohrk\n", - "SOPNFRui1ssfwQhYs6x1fHJyUnUCbRobG1M3Ap6/WUedWUXOl5aWguoT3FcOFsH3WHsPHDgQRAPz\n", - "sVWWY/Pq6moQSc7GuPVbK3cU/5tLRQ3jVG25SFgbUV7j+MjzZkurZG2yeCyx5nO5Ks4TlZUrioF2\n", - "WWs0wP31S8FlIR7tRURERERERETsEfvGSOVyOZmbm9OdJf/FDh9WydmzZ+Wpp54K7uEXKGZLkr+D\n", - "tcbsg/9bkb6FbB0lYHfPzA92yp1ORy0a3Pfll18OcgFZzEC9XtcdObfFzw/Du3arzQxY/3yECXCf\n", - "uDYVZ24XSR/FQX4zMzOBJcryQL23CxcuBNQ11wKzHG5hBeZyOTOPC5B1hNHtdgPn3Fwup1YMO2vj\n", - "nmyV+9bX6upqwHrNzMykss2jb8yeAhhr6ES5XNa24GiEWQVY8hzmjfutrKwMLPjLSJJEmSgcpzSb\n", - "Tb0P11L087UxJQ5ZDEp/ABlAjpOTkypzDrsGE7JbhQGMK889yBSy9/Of4RmsE1Z78Rmcpq1UFe95\n", - "z3vMzzGvIT/LIZu/BzY2NnTcwTAcPnxY2RP8PXz4sMrLYoNw32KxqGsCh3GDmclKf8D1N7l2G9qA\n", - "8Thw4IAZNOG3xUqX8vrrr+t6yPMC4GAhP7VLrVZTlwNeX/wjz2effTYIFHHOBTVIR0ZGVKZc4y+L\n", - "NUab/AAbwM+RxiwzAhysnF6NRkNPU5577rlUO0XSuRAhUxxRrayspK7loy2RtCx5zeQM/gDWAmSB\n", - "r1arOv9fe+01EUnn1cIYbm9vp+rz4TM/DQUzbwCnOrDqpgJ8fMjvcD42FOnJzaoFi/nPa5af3b3b\n", - "7Zq1L/15wXkHs9oc9GHXKyIiIiIiIiIiIkzsGyPF9XNE+hba1atXU+yESC90GtYLdvC1Wk1++tOf\n", - "pu7Ju3JYNidPnkz5xIj0dvb4nn1u/CzGpVJJrUrrzB5n2m+++abu4GHRTE1NaZ+w85+amlJLBqkM\n", - "nnnmGdO3h2uJifQcdP3klWxZwYpZWFgwmSg/1JVx4MCBgGniMFDIldkndloGYPW88sorQVoDDsGH\n", - "dceMFNdug8XAPi3QE26/5dPEgQciaUsdNcOuX79u1jrzE2Pu7OwEqRiazabJAlqWLPQDfhMsY4td\n", - "go5zxnI8/8CBAyprK40D5HLixAl9HrfJZ9YYmIuDklTiOXhGqVRKJQ8VGRxmDoYQcubs3hx67OvY\n", - "1NRUJhM1LIrFosrdcogH033o0CGTzYReIvHpgQMHVBezMqqzVQxcuHBBM+Dju2PHjul8tXxFmOWB\n", - "pQwZdTod1UVLnwAr0GNzczNgsdbX1zVE/9VXXw1+w/Xa/LZa1RHa7Xbg9yPSXxMgbz+Fi0hPx3yW\n", - "/9KlS0GAxOTkZOCrxL63nNjWT8Ug0l83rfUdsIJYONwfMvvBD36g38On7vz58+qXarGlzG5iDLk2\n", - "JCfk9NfuQe8NK1AI83O3dBAWLP8735nf0l3rM85OzwySJZthfbb8YJhut2sydYD1GXSs2WwOlXbF\n", - "x746mx86dEgVlKl/CAZUaavV0pcD/oJOFbGP4vxCliJ9p3N+wbCSWCUi/MgRq1iuRaG22+1UhlqR\n", - "NB380EMPiUgvJ5S/2PCLip22/SOF48eP63EF5+mxgIVna2sroKk3NzcDB9CdnZ1UlA6ej+M7Xvyw\n", - "MD7zzDP6GRYDtHlqairIZt/tdgP6vtls6rGXdUy2WxQOdAC6w5ORjy38l+qgI0PICH28evVqcO2g\n", - "rN6Wsz82S+jHwsJCkA1ZJL0xFkkfR1nHkpgPzz77rH6GxUGk31+03crkLtKnvbGYNJtNfQ6XvEGb\n", - "sTFYXV018834L1de6K0NKcALPmT/0EMP6TEEMv0nSZIZJMCO8VZuJ6wd58+fl9/4jd8QEZFvfvOb\n", - "2l+8JDGX5+fn5cEHHxQRkb/+67/W63xHW86hhbmwsbGh/+YSRrtF3AFY09D2CxcuaPuzNpvb29vB\n", - "GsnHJHiBz8/Pa5mXM2fOiEgviMHfMFobSNYlPmrhIuMiPb3jNUEkHRX3kY98REREvvvd76qMrJxV\n", - "Z8+eFRFJGdNWeRY+qkbfcV273TblBrn45bdE+kfyExMTehzJ5cUwDzl7v7U24Bk4eux0OhrlyO8h\n", - "zqhvHbtCNrzhhsytDRAbRfge9+BcSxivVqs1dHWDYYzd3crWcDutahZ+GRqe//xe9seQA3jQ33q9\n", - "ruPPOoP347vf/W4R6bsEZCEe7UVERERERERE7BFu2FDFt/ShziV+ngjQ/Pl8XneRsFyYavvgBz8o\n", - "IiJPPPGE1itC6PeRI0eC2m7tdlt3mNhls0WNHS6H8eN5g3bPsEqwu5+bm8ss6MnsAhgdWPn5fF6t\n", - "OS54iqMEMATOOf3+fe97n4iIPP3006mCniK93TMzesiSzuHHkAMXRPWtDi5qy8dlsFg5jcJdd90l\n", - "IiIvvPCCPgssAFi4Wq0WWKeDQrazQn6tTM9W2C0fUfjHWkzV82/9o12GVX8N/SgUCoHVmSSJsmKw\n", - "OtfW1gY6szIOHDgQMKF33nmnsiJ8vOGP2y233KLtt44r0N9SqZSZ7oOvH2aNYIfmXwSQKdffs46q\n", - "H374YRHp1Y6Evvz+7/9+oLPb29vKzPkO/CLpoJRf/dVfFZG+UzCzT08//bSI9NgF/IZzRllHp1gn\n", - "sDa8+uqryl5w/i3r+BifQfZHjhzRccf8f+WVV3T8reMxgOsWZtVVY/is9SDgvuVyOZVrTSRdzBlw\n", - "zuncxLrdbDYzmWbMo3a7nSriK5JmODHmU1NTQeAAX4c1uFqtplh0wK8gYJ1CiIi5Fv4i8N9Jg8B5\n", - "ybKOdAF2Use6Nz09reMEJnwQQ431C/rObBv0vlQqqXytHHR4v3e73dSJhEhvXP0alOy8zgWIsUZj\n", - "PS6Xy/qeyDqe/UUBRitJEjOvRmSkIiIiIiIiIiL2iH1jpPL5vBSLRXXI9hOZederlYC/58+flxMn\n", - "TohI36JeXl42a2f90i/9koiIZp1lCwMMB9fkwmetViuwyGZnZ9UihZ+GldzutttuUwaBWZQ/+IM/\n", - "EBGRL37xiyKSdhj92wDGF8zWoGf5vkqcYf69732viPQccy3mzaoB6FvoxWIxqGvUaDTUYmErjLPv\n", - "cpt8+BYch6ajkvrc3JwylxiP0dFR0/E0i5HyM81z+0RCay5JkiCjPt8H1tvExIR+xv588AFBmy12\n", - "rlarKduJe0AnhwEsTPS7Wq2mslH74DH1AymY6YTsT58+rewJ5vfXv/51vQ4+CJy1m5OIQmfx3Gaz\n", - "qXK22sl+EPiNc07nJmRVKpVMf5NPfvKTIiLyp3/6p/oZnIbhw7m9va1+YZz8E/Lwk3+K9NestbU1\n", - "lQ1kz07d8Euam5sLWMIjR47ob2699VZ9Pp5jpW5goO+QD1vvrKe+HjMzAGaD+4bvmFnH33q9Hvhh\n", - "jYyMKMPE7C7Wcsi0UCgEgQqtVkvlnMXEsM+iNW/x/Pvuuy/lII7rwahA3ry2cx1Y6IGli0gwyjVX\n", - "Mc9GR0f13/CzGh8fV4YL92Pf4CRJ1FcHDO2gpKN+SiGeN1kYGxsL0hBY6ySn7MH4Wu/KmwEn3USb\n", - "bxaY86dPn9bxRvuYgcf4ct84wSd0C33c3t7elZHaN2fzTqcjW1tbQY6nkZERHURQ9t1uV53C4DAu\n", - "0i84+uSTT+pvoej47cjIiFKvfuFJkfSxBn6bddQxMjISvKysIq7saM4Lzxe+8AURyXa0FUmXVBAZ\n", - "HNngO5EOOmLhzyza3t+sjI6O6vOYGrYmFiY239cqTAml5s0V7g15WEUteYPEmyd/ceAoNnYe9J3+\n", - "razoxWIxmLy8QeZFC7qFNrfbbTNHjTVe/rgPoqOtIwcfm5ubgdP8qVOntC1YhCuVio4NNgRra2s6\n", - "D6Dv6+vr5vGCn+28Vqvpb1hv8G842V+8eDEoa1QsFvW5586d08+xkMJIuXr1amZU3G7HIP4xskjf\n", - "cd85p07BaMu1a9fMscCLnecPFz0V6b3keJ7iuZAHH9NyWQwfHFmL3+Ll2el09MWNsVxdXTWdpSFD\n", - "jNvi4qL2nYsVY77gCNLajNXr9dRmSaT/YmF0u11dsyAfLh7LxqSV2dwvGM5rNM9BfwM1MjKixzwY\n", - "v2azqcYfjJNGoxG4BZw7dy4wICcmJlQOVlQcNnKLi4v6b2x8eMwxfw8fPqwbN9yXN154J42OjsqP\n", - "f/xjEUkHBADOuUA/ue9ccsjK8QSdwDHdxMSE3h/9nJubUz3OcgrfLYM4b8w5pxz+8nGgSG+8uMwO\n", - "gDWBoxj9dzgbNrjfG2+8ofqJz3gOQg+sEnV8b/y1gh18xKO9iIiIiIiIiIg9Yt8YqdHRUel0OrpT\n", - "5eK8sBiw2x4bG9NdMML8b7vtNqVFeRfrsw+D4IdHcrFcy7HYYnFgyW1tbekOmB0f/XBwDkdn+Lvs\n", - "Q4cOBXQxOyAzCwVLDlbP4uJiynEfYAvSt+LZksJ4MNPBcrBybGAc2ILjMHuRnpz94IFSqaTfo09Z\n", - "eY5E+ozf+vq69omLTWNcrZxBWRmw2XEbMrCy7PJ9OA+PRbP7ubt2s+SgH5/61KfUCkPQAef9wbiu\n", - "ra2pgz/mDBel/kXABYX9GlWc1wvXHThwQFkPyG18fFyZH8hia2sr0OPp6WllynDkNjs7q0dikAGz\n", - "QsMWoy2VSgELmCSJPg9pSAqFQip1hC8HfrYfCGAVWD106JDKg7/LyhgP9qtUKim7g3WHAzjYoraA\n", - "tQA6VCgUVPf4qMtPa2EFL6ysrATpaLi4NYOZKB9ZLP8999wT1EhkRhw6NDs7q2OJNBg7OztBtnOR\n", - "fn4wnFpYbWg2m6qDOC61iroz6wpW6NixY2YlDP8oEQ71In3Zj4yMKNuKPlp5uxhJkpg1SH2WivOh\n", - "YYxWV1eVyRvGOZ1RrVaDVDZcGQSy4bUNn5VKpUDH+Hv8HVSkHnMOf51z+lweS+uYHjphnaAwA++j\n", - "XC6nsr/7bR+EyEhFREREREREROwR++ZsLtKzmOADAFZhbm7uLXe+9v1hJiYmdNfOSRNxfoxdO1sA\n", - "7FiIpIpgGi5evKhWCTND/m+Xl5d1980MF9rHTpiWDwhndRfp7eQ5RBfXgEGq1+tq+WRVQ2fLwdKH\n", - "LAfPQZl0/TqDhUJBZcRWgp9dmf1vhgVXOce/2b8G8udK9L51J9L3R7F8ZdgR3fdvse6XJEmgE6VS\n", - "SbOrMxOK/g5TT1IkzTSyLoiI2S8LrA/svzDIsZ+f65zT3zAzgXkB3X7zzTeHZo6yANnffvvtQfLK\n", - "iYkJbddjjz2mLBYzZhhPrubuMyqlUkkd4xHezakqrKS/AMsD/T1z5ozJ1IJdQT+s1A5333233gfj\n", - "Pjk5Kffdd5+I9JOuXrt2TecPMx8A1ripqSnVfbBG7EuJNq2srATsOGd6ZobLr66Qtb6I9HWiXq/L\n", - "r/3ar6Xa/P3vf1/7izX46NGj6t+EQIRqtarrE2f+txgwBAkgLUSSJOZceuCBB0SkL1MrYbFIX3eQ\n", - "DuOHP/yhfscpefx1T6TPjjATY7XFR7FY1P5yzVB2/vfrwg0C1nD0w2dVhwHWrFqtFgQeWP62zFxb\n", - "64DF+DGgi3juoPQq6BvGbXp6Wk+VMM83NzdV1vi72wkB4++ss3mpVJL7779fnnjiiaGu52iJQajV\n", - "ajoo2HTkcrnAgW5tbc2kprnApQ8+asMgsdO5Hykh0h9gPIvbzorHDozoB2hFLOZc6sZSAPSbj+F2\n", - "UxQuAJlVNNLKGMsFQq2NlL8ZbrfbehRq0a3s+GjlhfIXNz6GgMw3NzfNPuNFgTEcdF9/g8TPyHLM\n", - "t44WRPryw4sgSZLM6CpELnW7XaWrrYWWn+/3t1Kp6GaC84RBB9HfhYUF3RQMa0zttlhbkbfY6LGR\n", - "go0tZ22GrBBZy8dlWED9QtgW8ByM+WuvvabPsaJ1gGazqUEpnLsNssnqe5IkgQzX19eDtapWq5kb\n", - "Hh+FQiE4tu52u6pnOAZaX1+XRx55RETsjRQfoeMFj42PVdHBORccPXJ+IFxXKBSCucIGFb6bnJxU\n", - "/eWNw7e//W0R6a+Hhw8f1jGxilwDloHNhcCBu+++29QVRC5yYIsVTGCtZ36VBwbcTbhcDcPXg0ql\n", - "EsxrLr7Nzs6YKxsbG0FRZO43F+L1KwckSWIGh2CusIHrF/ZdXV3VscF8HPZ4sFgsBkfjSZIE0bjs\n", - "ksFRgBzMw3Li9pXLZW0fnnH9+vU9lXnxn+HPwSzEo72IiIiIiIiIiD1i3xiper2eYqOs8HHAChXO\n", - "5XKaHwg780uXLunuOivL6ejoaGDJP/jgg2YosU8/3n777erQDgvi9OnTmkGcrV2/CKVIyHodPHhQ\n", - "28q0sF8bzS+87AO7Zt49s6Mly3c3ShX38QtTiqSPR/AXVgdnoh22PpPl+I77ceg05xISSY8hW3w+\n", - "M3D27Nng+JCPIbhN/vEEU+d4hpUzjOXI8s86ZsOzKpWK/p4dbqELSPexvr6udDz6yPWoYHFubW2Z\n", - "zpcAjx+YKzhXcr1G5LTZ2tpSXQSrkM/ng0zaYBvRLvQB17EzLfqB6yYnJ5UtxFiVy+WbPuL1n432\n", - "81ED+m4B8x86xkXGh60RhrnOLgOf+MQnRKSnJ6jjl4VqtRro7Orqqq6XLBc/KzqDC0v782xyclLZ\n", - "azCms7OzQQHg9fV1kynx5wozANCxxcXFVGCESPooG/NjdXU1YFsgB/xGpDdufh4uXuex9lvvi0ql\n", - "ojLFszqdjsmi+uviyZMndd0GI2UxphMTE6rH7ArAuQpFerKFGwHkeO3aNb0fyzsrv6KVsZ5Tz7Ce\n", - "+30ql8sm6wfg3VUqlfQ9YuVa4vc15M5BCdYR4l7mNcAy5L/cvkFsFNYoDmbz8+E1Go1UnkOR4eZ+\n", - "ZKQiIiIiIiIiIvaIfWOkOFxaxGaiGNg5co0qWLm88/Yd0iYmJtQ6sBwzcQZ9/Phx+dGPfpT6LfsC\n", - "sOWPHTqcSRGCbvVRpG+B1+v1wPJaXV01nbDBCKCtrVZLa1TBumPmgdMvgDFh1uD48eMi0qsLhb5k\n", - "7eCLxWIqySeAazk01HcoZGsaDMH29naQiG9iYiLIBM3tBzqdjt6Hq5cDPOZ++LGVPNBikHZ2dgIW\n", - "gOtCAc45tWzAYHB72VL/wAc+ICJpXzrICPe1/HW4XZZucdZuv2bg+Pi49sOq+8j9wW+ZiYJ8oTvs\n", - "A8eMra/bFpsr0vdL4WS3PpPI/oeQz8rKiv4GvmNs4YKZGB0dTaU8wXzmzMzoc1a2ZE7mC4sVfpY3\n", - "A8shFmsX/u6GBx54QBluME7lctmsp8d110TETHa5tLQU6Fm1Wg0c2peWloL6izMzM7pOg9Wu1Wqm\n", - "bgHsk8Y+jSI9Pcjy3UR/jx8/rn3BPVqtlsnMY40G8wM/O8bW1lYgv4cfflidzJk5wThhDeEAk6w0\n", - "LVeuXAl8faanp3VNYsY5K6CF13I+pYBuA8MGlhQKhSCU31p3JicntZ9gnJrNZibDzYDucLoUrNMY\n", - "G0s/x8bGVK4cNANdQGqKQqGg7cLYXL9+XX9jvccQAJPP55Xdw3pw9erVgJWzUoBwQupB2LeNVNZE\n", - "BLCQnTx50szx4i8inP0bC8HKyorpHAelxQvo61//enDN0aNHg/wmt956q+YwAQZFrmHjw0WJsYhw\n", - "Hg4oNSbf7OysKiDToFb5D79gsEh/M8EbA+uozd9QiaQLNvsRMnxPLp9gvaC4SDLgO4tacrOCCRqN\n", - "hvYJE3JjY8MMQLjnnntERHRTfPHixSCbNG8mcN/l5eVgM2CVVmg2m0rLA/l8PlWAE0BkD3SNgyGs\n", - "hQxtKRaL5oID4FmW8WHpei6X0/HiuYKXAW8+MNaQ6aDNB148uN8DDzygCxVeWFtbW5lFmtHfO+64\n", - "Q+WC9i8uLuqLwsqNNei+KDsD+SZJEpSL4LlgRVkBNxPVkwXM2wcffFCjxDirO4C16ODBg0GxcXZG\n", - "ZnDm7kHY2NgIdL/RaATHglxpAmBZQd/K5XLKuPKBl9PU1JSOsXXEg3vMzMzovWGkWGPORgr3B2sC\n", - "6wTWRcxHLrSLkmHXrl0L2lWtVoM5dO3atSCv3+joqLYBG1F+CXNGbX9dueWWW/S9grbkcjl9Bozn\n", - "XC6XWk/8Ntx5550qa2vew9jpdDrB9/l8Xo0crHGLi4umuwfeVX65MZF0FCh+axlVvJ5hY8KBPv7x\n", - "+87Ojq491sYYfcvn83ofzn2HMbGORkEqiPTHDrrY6XS0DbtFojLi0V5ERERERERExB6xb4yUT21i\n", - "lzo5Oak7UVhZFhs1PT0dZD5lqpNrGMHqhPWxtbWl12aFNjIb9eu//ut6P9+aHOTcBmsM7Fu5XA6o\n", - "39XVVbWo0I+LFy+mnFVFejtvUM64b6lUUiaKnZct6xTWTLVaVfkyI+UzQa1WKzgmY2YDO/lB2ZXx\n", - "Oeexsgr7ZlnSbHWifbCGSqVSUCsKfeG/nU7HzHVj5QXCv3dLtQFZgjHlmmLcx1OnTolI37pmax9t\n", - "qdfrQeZzSybFYlF/k3VEdfDgQWXM8Lw333xTdcwqsLpbf++++24R6Y9pq9VK1boSEfnWt74V/O74\n", - "8eNqOcIi3d7eVusYY/nqq68GjFC5XNbfcqZmWOuwIMfGxlJrCeYN5+7yx79Sqei8Z1bPP66xMpZb\n", - "sAIQGKgFOj8/r0eSfm47kb7unDt3Tq1sTqGC3zLzwvXlBiGXywVMQxbjybCYpJ2dncBav+uuu5Qd\n", - "47pvFqBHGN/5+XnVo6z8RoOcpzFveE6jfzgW5moRmBd81Idj+IsXLyqLwcflPgPKRe6Bbrerusp9\n", - "xxhinh85ckTzh1k1NSGXYrGobbECEJCuQ0RSNfdwipEly06nYzqbYy3gFCB+9nKLqeXPsF6Uy2U9\n", - "veEC6dAPzOVh06/wPLP6hjkwyJkdeue/W/32Q/6Yo8Mc7UVGKiIi4m8Fw/pwROyOYTc+EbvjrU74\n", - "HBGxb5nNYSFkZc3mM1RYY9iJcp0kDlfGjhWTxTrznZqaCqwlzpDLtaWQtRbtfPTRRzP7hqrjKysr\n", - "ej9rBwxwnTuAz9qxO2ZLw/J34uzdOPve2dnR82qwJ+wcDotqbGzMlJfvANjtdgOWamxsLOUoDvjO\n", - "yLVaLfDpOXHihLaPFzdOLieSTkrJ4e1oP7MBCOWHg2Sn0wksHs4YzIwA5M56B1mxLCAjrn3nMxfI\n", - "hMuo1+s6dpDZbkkuLWAMqtWqjit0w/IdYmYF8jl16pRau2A1JycnU07cIj02eFBGYUaxWFS5sX/S\n", - "2wFOl/HZz35WRESee+45ERF56aWXlLXhLNF+Og2R0IeOWVSM9djYWGY2aovpzPLDGgS0D+kvlpeX\n", - "lXUYZl0R6c8f51wms8a+Y/g3pzfxMTExoes1vh/kT+LXfdve3g6CNW4G7Hwv0psDvh/M9PS03hvX\n", - "3XbbbaaPKYBs6+fPnw+YKwsnT57U9Q760Gg0UnXmRHq6iXUvK8v/xMSEPg/XcQAM/xYyn5iYyNRF\n", - "gPXYSnZ8s6jVaqkaudAzzJ9h1gsfSKALHV9YWNBxwBiyTy0/E+w05lmz2QxSGHQ6HZUh2skBF1zT\n", - "EuOFPQLeIVmZzTUr79v5n4gkn//855OItwZRlm8doizfOkRZvnWIsnzrEGX51uEfkix72yV7TxOP\n", - "9iIiIiIiIiIi9oh9LVocEREREREREfFOQDLgaG9fNlIREREREREREX8fEI/2IiIiIiIiIiL2iLiR\n", - "ioihjjlwAAAEq0lEQVSIiIiIiIjYI972jZRz7qPOuZedcz93zv27t/v573Q45153zj3rnHvaOffk\n", - "jc+mnHPfdc694pz7jnNuuKJe/8DgnPvvzrlrzrnn6LOBsnPOfe6Gnr7snHtkf1r9dxMDZPmfnHOX\n", - "bujm0865j9F3UZYD4Jw77px73Dn3gnPueefcZ298HnXzJpEhy6ibNwnnXNk5d84594xz7kXn3H++\n", - "8XnUSw9vq4+Ucy4vIudF5MMicllEfiwin0qS5KW3rRHvcDjnXhOR+5MkWaLP/khEFpMk+aMbm9PJ\n", - "JEn+/b418u8onHMPiciGiHwlSZL33PjMlJ1z7oyI/C8ReZ+IzIrIYyLyriRJBieD+QeEAbL8vIis\n", - "J0nyX71roywz4Jw7LCKHkyR5xjk3KiI/EZFPiMhnJOrmTSFDlr8tUTdvGs65apIkDedcQUSeEJF/\n", - "KyK/KVEvU3i7Gan3i8jfJEnyepIkOyLyVRH5+Nvchr8P8CMHflNEvnzj31+W3sIR4SFJkv8nIn6K\n", - "6EGy+7iIPJokyU6SJK+LyN9IT38jZKAsRULdFImyzESSJFeTJHnmxr83ROQl6b2Iom7eJDJkKRJ1\n", - "86aRJAkyJRdFJC+9OR/10sPbvZGaFRFOx3tJ+koeMRwSEXnMOfeUc+6f3/jsUJIkKKJ2TUQO7U/T\n", - "3pEYJLuj0tNPIOrqcPjXzrmfOef+mCj/KMsh4Zw7KSL3isg5ibr5C4Fk+aMbH0XdvEk453LOuWek\n", - "p3+PJ0nygkS9DPB2b6RiroVfHB9IkuReEfmYiPzLG0csCmRg3ZeWvcMxhOyiXLPx30TkVhE5KyJX\n", - "ROQLGddGWXq4cRT1f0Tk3yRJkqq8GnXz5nBDlv9berLckKibe0KSJN0kSc6KyDER+UfOuYe976Ne\n", - "ytu/kbosIsfp/49LegcbsQuSJLly4++CiPyZ9KjTazd8A8Q5d0RE5vevhe84DJKdr6vHbnwWMQBJ\n", - "ksxTOYUvSZ/Wj7LcBc65Eeltov4kSZJv3Pg46uYeQLL8H5Bl1M1fDEmSrIrI/xWR+yXqZYC3eyP1\n", - "lIjc4Zw76ZwrisgnReQv3uY2vGPhnKs658Zu/LsmIo+IyHPSk+Gnb1z2aRH5hn2HCAODZPcXIvJP\n", - "nXNF59ytInKHiDy5D+17x+DGogr8E+nppkiUZSacc05E/lhEXkyS5Iv0VdTNm8QgWUbdvHk456Zx\n", - "BOqcq4jIR0TkaYl6GaDwdj4sSZK2c+5fici3pee49scxYu+mcEhE/qy3VkhBRP5nkiTfcc49JSJf\n", - "c879joi8Lr0IlQgPzrlHReRDIjLtnLsoIv9RRP6LGLJLkuRF59zXRORFEWmLyO8lsQyAwpDl50Xk\n", - "HzvnzkqPzn9NRP6FSJTlEPiAiPwzEXnWOff0jc8+J1E39wJLlv9BRD4VdfOmcUREvuycy0mPdPmT\n", - "JEn+6oZco14SYomYiIiIiIiIiIg9ImY2j4iIiIiIiIjYI+JGKiIiIiIiIiJij4gbqYiIiIiIiIiI\n", - "PSJupCIiIiIiIiIi9oi4kYqIiIiIiIiI2CPiRioiIiIiIiIiYo+IG6mIiIiIiIiIiD0ibqQiIiIi\n", - "IiIiIvaI/w/CAMCOMj3yxQAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "10 loops, best of 3: 70.2 ms per loop\n" + ] } ], "source": [ - "feat = net.blobs['conv1'].data[0, :36]\n", - "vis_square(feat, padval=1)" + "caffe.set_device(0) # if we have multiple GPUs, pick the first one\n", + "caffe.set_mode_gpu()\n", + "net.forward() # run once before timing to set up memory\n", + "%timeit net.forward()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The second layer filters, `conv2`\n", - "\n", - "There are 256 filters, each of which has dimension 5 x 5 x 48. We show only the first 48 filters, with each channel shown separately, so that each filter is a row." - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmsbldxv1nvOb7zgCc8GwMGMxkIMyKgRCgk/+RDuiMl\n", - "6UQBOg4eZQYj7GADRg42wthGcMEoHkCOlaB0R1GCWpGSNJmDiIAEOYAx4BHPxsb25frOZ+gPl2fv\n", - "9T57132dg92n8+/6fTnnPWe9a9eqVWvtVbVqmCwvL0ehUCgUCoVC4b+OudUmoFAoFAqFQuG/K+og\n", - "VSgUCoVCobBC1EGqUCgUCoVCYYWog1ShUCgUCoXCClEHqUKhUCgUCoUVog5ShUKhUCgUCivE03KQ\n", - "mkwm/2MymXx3MpncOplM3v90PKNQKBQKhUJhtTF5qvNITSaT+Yj4XkT8QkTcFxFfj4jfXl5evuUp\n", - "fVChUCgUCoXCKuPpsEi9NiJuW15evmt5eXl/RPwfEfG/PA3PKRQKhUKhUFhVPB0HqeMj4p7m870/\n", - "+VuhUCgUCoXC/1Q45Gnoc+Zd4WQyqbo0hUKhUCgU/ttgeXl5Mvb3p+MgdV9EnNh8PjEOWKWmcNxx\n", - "x8Wzn/3siIg44YQT4sQTT4w9e/ZERMTatWsjIuKTn/xkRESceeaZERGxtLQUERGLi4tx6KGHRkTE\n", - "3NwBo9onPvGJiIj4tV/7tYiIePzxxyMi4phjjjlAxIknTvVx1VVXRUTE2972tql29Pvoo49GRMTC\n", - "wkJERGzbti0iIt7+9rdHRMTOnTvjsMMOi4iIjRs3RkTE3r17IyLi2muvjYiIc845JyIidu/eHRER\n", - "8/PzERGxadOmiIhYs2bNFO3vec97IiLiiSeeiIiIQw45ZKrdli1bIiLiYx/7WEREvP/974/FxcUp\n", - "Ojdv3jz1TPqGFvqem5uLm266Kd785jd3PI2I+PSnPx0REe9973un+MX/4fdkMun4cu655079Db87\n", - "xstP5vP888+f4hf/53v8hJbzzjsvIiKe8YxnTH1vx44dEXFAXuj7wgsvnOrjxz/+8dQz4OmnPvWp\n", - "qXH62evWrZsaN3z84Ac/GBER+/fvn6Jl586d3Tz94R/+YUT084lcb9iwYeoZi4uL8dWvfjW+/vWv\n", - "R0TE+973vqlnAvjKuvj4xz8eEQfmPyJi37593TPWr18/9V348s53vnPq2fQJGC/jvOSSS6ZofvDB\n", - "B6fGsm/fvoiI+PznPx8RB+SLv/EdZGXnzp1TbZkjaGCOkDX4yPzDF8siaNfRb/3Wb0VExJFHHnnQ\n", - "vm+44YaIiHjDG94QP/uzP9vRwrpBTuDL5ZdfHhER7373uyMi4u677556DutucXExPvOZz0RExLve\n", - "9a6pPpAV+MJP5ujss8+e4h80w1fmlvYXXXTRVDv6n0wmg32RNcT+xjj52a7niH6/QM4B36f9lVde\n", - "OTXWI444oqPFvGTPZT9/+OGHI+KAbL3hDW+YWksR/Ryxjhj/rl27pvhH/4yV/WXz5s0d/ewV3ovY\n", - "u7Zv3959J6Jfa/D26quvjoiICy64YGr89J+tiw9/+MPd++GRRx6JiOGexH7x1re+NSIijj766Ijo\n", - "ZZW+eSa0wxf64znQTv9XXXVVt8/xDmG8zNHXvva1eMUrXtHxnPcizzSvvdedddZZU7T4nbW0tNS1\n", - "/e3f/u2IiHjWs54VERGHH354RPTvbN5lyBbtGRd9Amhjv/jd3/3diOjXETS364L9n/mHx7Sdm5uL\n", - "++67r1vnN910UxwMT8dB6t8j4vmTyeTZEXF/RPxvEfHbbnTCCSfEG9/4xogYboyFQqFQKBQKq4Xj\n", - "jz++Uwz+Xz9ILS8vL0wmk3dGxN9GxHxEfH4sYm/NmjXdaR9twSdwwKmYE/bCwkKnlXAKB3wXbYf/\n", - "8yxOnOCFL3xhREQcddRREdFrVN///vcjoj+5m5YdO3Z0fWJh4rTbjrGliZN2FikJrWg1jIFx0x+Y\n", - "m5sbWAHcB0DLQeN65JFHpqwS7ptnts9qfzL2iJ4nT/ZADG3wDU0DTdTzby0RLWoM0A19nn+DcaNZ\n", - "0o7PnlPkg++hgd15552DZ0AvYLytZaLlM+1/9KMfTbVDAzMtyNPi4mLXD234H2BubLHK+ILlgX6t\n", - "BXodrVmzpqMfntvC7HFCKzRlFiePibnhOS1fjj322Ig4sAlG9JY0tF3L9cLCQuzZs6ebG8bFs8wf\n", - "ZB2LNXKAjLb8pS+vd75jWmyx5lmeS/fD2NgvNm/e3NEDmD8s7+xrjGOW7PJ9yw+AZp47Pz+friHA\n", - "emcO6Htsn2sBX5h/LH6A72/cuLF7Ribn8Jxns4/y2XsRc8qzmVu/J8Bhhx3WteG7ln/A3oKVk2cg\n", - "wwb7oG8LPHdtXx4XP9esWdPNYUQ/j4899lhEDN/B5ift2z1prF1Eb4HinYRs8V7werFlljll3lu6\n", - "I/o5NE1zc3MD2WJc8IW+bImdhafDIhXLy8t/HRF/fbA2mPUKqwc21cLq4YQTTlhtEv5/DQ5chdVD\n", - "zcHqo+bgp8PTcpB6MnjmM5/ZnSyB774Bp8j2/tLaHMCPhtMrp1K0e34CrGGcYqEJ7Q6aQKtFc4rN\n", - "NEZotL9N6yMzBtpzWoY2W2J27do1OGEzHluk0Cz4+9zcXBx//PHdydsWBvjE2BirfWsONo5MC7SG\n", - "Zs3bWmCruUbEgOaWB8yXtRrzHvhZs7RotH9ohp9btmwZ9MVnW8VazQsLSksb47GFxnyG1t27d3da\n", - "KPPk+beM0h5+WQO7//77I6KXPcZtnxqwuLg4sAJapgBWPICsQZNph0bGYN63z6ENz+Azbbxv+CCL\n", - "dmzfQ8AzsR7YMtHuL/4uPLY/nvHDH/5wilbkIZNJW2aYsxb4RsIX1lRmBWCeobn1AWu/D/g7z9m1\n", - "a9fABxIgJ/iYchuQ7SPw0b6mtn4A5GX9+vUdDfDGcp7tC/DF7aHdVlLae8978MEHB5ZD9wHgHVZC\n", - "5goaPE768TPH/m4/Kz4z7qOPPnpqrKwXLDT2MfR7Bz741mVsP0V2sLwzXs8v8DPpi74ti9DgvW1p\n", - "aWlgvcz8LRlvds4wqkRMoVAoFAqFwgqxahapiP60hybKadCanC0X7anSp3q0MbQd+ylk1i5HjnGK\n", - "zXyHNm7c2GmvmSZtH5FZFilHGNn/y6fp9s6XPjNfMGvB8IHP5jnP8r3+fwWmqaW7Bf93dBqANt/P\n", - "ewwtrHllsGbJ50w7Zo5tkVlaWhr4j9hiZh8Gy4s1eL7HXGS+I/Pz84MoI/ME2ujblgjPyZg21/40\n", - "lpaWOu3V85TJYuZ3Yd76/16zLe3217OlKKOFcTqy0nyxr1nWrgX/81odk6G2b8u3tWM08TZaj7FY\n", - "fhk3ba1xZ35p0ML3+Z73ojELaOZPAw22Ym3dunW0Pc+2pS2zprf/p022br3XMEdjlvcWtuiY1rad\n", - "LamZlYP/OyLQtyim1Xv42A1J5o+XjdfvrmxtAq8LaPB7JGJo3QSWIeBnel1ke7V9x+bn5wfz4/cb\n", - "9DLe7LbJKItUoVAoFAqFwgrxlNfae1IPrYSchUKhUCgU/hshS8hZFqlCoVAoFAqFFWLVfKQ+9KEP\n", - "dT5ARJrhvc89K1l2ycqK38ZkMulybXD/+ZGPfCQiIt7xjndERH+/jN+Gc7OQNZXswNwJO7sqtFx/\n", - "/fUR0WeT3rx5c3eP6igbZ+QmOoH7WCKFuJ/+8Ic/HBF9ZmNHmhCJyJ0vGYLf//73D6Jr8LPiWTfe\n", - "eGNEHOB324d9wPhM32SHhW/O3s5z/uiP/qjLVGwfJ99Hk5GX+YTn8IfvwR+ySZOp+L777ouIfk6e\n", - "85zndM/5wAc+EBF9Bu82n01En+eFeb3mmmsios+yDa38RNaQTbLy0r+zNm/ZsqW742f+4TnPfuCB\n", - "B7q2EX36CTLVI4sAueIZ5F+hPdmHN2/e3EWRsR6gz3LOeJx1HFkmszGySDZmfA6hAf6QxfvCCy8c\n", - "+HYwB/TNGoUWaEAOoAU5gI+nn376VH/2lUEWP/vZzw6y7FvO+ens0I6wZJzg4osvjoiI3//93596\n", - "piNs9+/fH5/97Gen2iKvrD32OYBskcEdvhA5zHid8R3aHdU5Pz/fPZP1TOZpeOx8aMgo+xxzxHph\n", - "X0QW8Wciyz4Z37nh2LVrVzeP7F+sZ9Y/42Td2H/rc5/73FTf8JwoP8YI7bwvWNM7d+7s6EZ2yI/G\n", - "GmJvAawb5+HyOJF/eM5zwF/+5V9GxAEZQAbJB8W42QfYi3i3ME7a2XcMWni/OIcXc8Bcf/SjH+3W\n", - "M/PJHvvQQw9NPfMLX/hCRPTr375DznTOnFIJAX835qSVF+hGzu07BphX7//w2n6v0MK6g4/OU9n6\n", - "UiHnZ5xxRkT0vIPXjJdxQHuGskgVCoVCoVAorBCrZpHasGFD3HrrrRER8R//8R8RcSC3VETE61//\n", - "+qm2aMVoi29+85u7U+uXv/zlqbacQtFaOHmTR8l5oaxJOHO3o3E4uT744INx1113RUR/gnaSUUc+\n", - "nHrqqVN98n3A6RdLBf3RjzXZH//4xx1PXLcMix3gNE7tIJ4Fz9HUADRDi62HrW+doy6xAmU5meA5\n", - "8wotxx133NT3getgkY0eviNHEb32S1vXUHIkJNo+tH73u9+NiF47ph4kQIuCvySye/TRR+POO++c\n", - "aotF6Xvf+15E9Nraa17zmogYRuHB03vuuScieg32lFNOiYhepgFzs3Xr1q4v5NyZlpEdxsP/sXoY\n", - "1uLIdwUfnbtlMpkM8sA4EhbAc2T2Bz/4wdSzXvCCF0y1t5WI70HDWMQcfTkSyNYs5APrQJvXK6LP\n", - "p+X2aK7IINbGVrt2RFhb57IdD4BfyBF9QlO2pp3z7dBDDx1Yg+HVS1/60oiIeNOb3hQR/d77ne98\n", - "Z6o9fGONsmaRwSyyEpnduXNnt54d4Yc8IGPOnu29iP+/+MUvjojoSov9+7//e0T0VhUAHx544IGO\n", - "R6wVR2GxbphnngXtjsT1XsWcspf7HbBv376uDbKDNdDVAti7ac9e5mz7wFYz9puxrNzMD2uLNcV4\n", - "kWfDlt0s4pCxcWuAHMCnlnbn+sOihjxYXoCty1n29Kwyytzc3CDCDx7yTFfwmBW9CcoiVSgUCoVC\n", - "obBCrJpF6tFHH+1OoJzisY5Y2+VEjvZ/1113xb333hsRw9M3p31Owpx+OaU6O7jr9aCBoOXYgoHm\n", - "8uCDD3anWVfrBs5Rg9YylgU5otc4TzrppIjoNRK0RWv2z3jGMzoN47bbbpv6rjUpZ5Hl/2h/bo+2\n", - "7DqCrgLe/o5mAK/H2kb0c+D7aLRGWxiYA+bkm9/8ZkQMs9ZHDP2zrNXZAomG0mrSEb1PkHnOXCNn\n", - "rXZtTRrZwwqCZQGaLLu0dwZk/k79R9Bm+KYN47flBWsoNPIMPtt64mziyD08t6w//vjjHe9cp89W\n", - "IXiLNcy5ZmwlgzZrh6540LbN8mhZzpFBxvn1r389Ivq9xtqufUXYw+w70v6OjCE7WU1J1ia0QwP7\n", - "ojV1+/3xnF27dnX7H2D+seZgicD6abBfYCVBnphbr2nkhbW9bt26bi6wlADTyzhd9wxwq4BF6qtf\n", - "/WpE9NZ1rzto37lzZ7d3MA5bJFgH/B+as/qpz33ucyOi3x/vuOOOiOitxqxtsHbt2oF/LvPo2xF4\n", - "Zz/XLCs/8uOM+Yy57R9LIvLKnLR1CVu4/iV9tT6hLbyv8v2x/cL532xp8jua/d2+hq6QAcyvtrqB\n", - "9xDX7+MdlOVAy7BqB6mlpaVugbBIfegBDIrDwvr169MkhXx22nkmLStwyOTwss4KjjLpRx55ZPdC\n", - "YBLGSri0z7ajtzdGFiFCycHLNILDDz+8WxD8z4n3AAKEoFgo3Tffh49sMGMlaOjbz8ySvTEeXmJO\n", - "iulFyfUCm7+d9dtDALzFPA6PkSkvDMbDs5/3vOdFRM9HyyLj5tqF52zatGkwTjZ4Fx22TAJo43u8\n", - "YPzyBtC2b9++bj6zvtmcmU/Ggcx5U7cDqw8zXnetczHP5kXvgxQ8Q+Y4/DN3zAmwjLImXQzcv7dt\n", - "M0dVZAv+wPOs/JOTHzrpX8sXxu0ErIzfQE7YV2hvZ2zgQ2N2WIzoeftP//RPEdEfoHwt777ZL5BN\n", - "aM/4grKwfv36tOQHMoQyYgUse3n94z/+49T/WReWL553/PHHD65sDNr66i9z7YBG3AnYy1wEGGza\n", - "tGlQlDdL5sn8unCyDwQAmfVhaCyZNIoQz0TGZpXOgib6npVMlL2LvT27Mozo+eGrfoNnZnuy4Su/\n", - "1tXA77ksaTb7pPeiDHW1VygUCoVCobBCrJpFam5uLi2g6GsJl9ZotR2b9ThRurhqdqr3s50OwP1D\n", - "y4YNGzotPiuzYLOmna99teNQdLQATu5jJSJsSXDRSGCHXVvPsoKY0IQmiobS0u4SFrMc9bB2ZM/M\n", - "LFiYz32V2PKF+YTn1qwyjcRzlcmii5m2VibTDc9dMDQrnQMww9tpPyuF0Y4vuzbG8oK8YInKylYg\n", - "J/x0WhBbMFrN01YbWwzoK7PUZg7hdl7PClRHDMvTZLKIxYLrM/aYTF4A/WI1aK2DAPqy8jSZBdNu\n", - "CNl6gjb41RZ191UtFglft7sEELC1COtiZpGAj22BYej1uGnr8jqZFZA9iPGyf0B7doOxdu3agSya\n", - "fqfoyMqxAFvkXJjeWFpa6tr6u7YcuiQUa4pxZ+VtzM+xIA/kEvcRWzuzEjLsEw4g8fpnn4B//GTM\n", - "Y3tXViLK+wXjZL79vUy+PPaIoYWRPpgLLFDZushQFqlCoVAoFAqFFaJKxBQKhUKhUCjMQJWIKRQK\n", - "hUKhUHiKsWo+UmeeeeYgxJK7YKfxJ+V/G2JsHxXSyV9wwQVTfTrqjL5J+f6ud70rIvp7a0f34edw\n", - "9dVXR0TEOeecExEH7mG5XyeC4yUveUlE9CVfKBHhchzcO3N//KlPfSoioitvYV8Bvg8t1157bUQc\n", - "KBHgKCrupvkOpTCgG18Z/HDok/EyTtLsO4WD/RQ+9rGPdSn/ocH+BtxRUwqD0gb4YcAH+zwxp8yR\n", - "y7e04e/wkHFC98te9rKIiPjWt74VEb0/BaVQTjvttKlnE95MWDNzRVkO2uP/RNTk1q1bO3mgVAU8\n", - "ZD6zsGbknDIeTjWBTxFpQmhPCZq7776786dAxvgMLZT8IVoHwA/8CuAjpTDsz+fIQ8p4XHrppZ28\n", - "En7OPBK1dNlll0VEP0fwFjkhBQURVC4pBP/wx0BuWNvbtm3rSlt4XfCTaLU/+7M/i4i+XIXDvx1x\n", - "5v0CfkF7u46QFdaz03y4VBBlXBinS3wgP9AILYyVtYif1ze+8Y3ud8pmME7WL3PlCEH6piQO4yKa\n", - "GR8bxkJ79jrGtLCwMJB3yhW5/Aj0k8yRfcF7F7IKP7yH0T/vi4hhYlqXtqEUDmvMSV5JWUF7ymE5\n", - "xYcjyqDl/PPPH/Dc/riM06W26NNRn8wp8sKeztzg5wNft23b1vXN+B3NyjOhBTkHPJt1wRxcd911\n", - "U7QA7xebNm3q9i3aOsLc/lqME3nh76T2YL+AdpdmA/S/adOm7pm8Wz760Y9GxDBBMeNjHVHeKkNZ\n", - "pAqFQqFQKBRWiFXNI4UVgHIFX/ziFyNiGIXhAsQPPPBAd7J0MjYnXiR5I9YiNAzAyZNncOLmp33I\n", - "OBU/9thj8Ru/8RsRMcxB5bZE1WAVIQ8S+XMAGidag0vnOGpjeXm5Gy/J6WjjhGmOAEMThS/f+MY3\n", - "ptqjHZDL6ld/9Vcjoi+h0ubCcR4pR7Jk0UYA2qHt+c9//igt8Ovmm2+OiD6v1Mknn9y1ZT5ddgLr\n", - "B9obgFZkDn5g/fmrv/qrqfbwFVnE4rlz585BCRfn/7n99tsjotccmVeA5kk/jPfP//zPI6LX2AFa\n", - "1G233Rave93rIiLi53/+5yOizxcEGD/yT5JX+GOLDEAWKeOCNci0//CHP+wsA9DpPGGA+YeXv/AL\n", - "vxAREZ///Ocjotc0ATIODZQIotzJP/zDP3RtnVvIuWpMN3sQcoPFClnEOmZa6A++MafIcsRwHZBj\n", - "6ZZbbpl6JmCvQUZ5NhaGLOoPfqKpP+tZz4q/+Iu/mGoLvVhNWe/IEHsScB45xgWN5gtgX9i9e3e3\n", - "d1BcHNjC8vKXv3yKfpf9cvke1naWM63dX2gDXS6z4wSV0ITsuiwX6x6a4At89b67sLDQjRdZyRKJ\n", - "Opku42K8WckhSgq9+c1vjohepv/5n/+5a4v1i32Ad5VLpABHpTpSNuM58sR+ynpzlHjEMDrTUaiA\n", - "z06qSs439gVga3R7Q+JoQ9Ya7zXvg7ZoZiiLVKFQKBQKhcIKsWoWqWOOOaYr8/K1r30tIvoTqi1S\n", - "nIL5+cgjjwxKwQAsUZws0ZycgRg494Z9H3w65kS7a9euzo/mxBNPjIiIv/mbvxml2yVTOCH7dGy/\n", - "LDQQ+OSCmHNzc92JH62FcbpvNA+sN84H5AKYaCLOcMxYvvKVr3RtXSDWmoUtUtbqsHJkpTPoD0sH\n", - "c8VYWr8fjwc6XeIAOIvwt7/97Yjo5cdao3PXkNvq0UcfHVgvbZHhs/0NALxGrlwawbLIWJ7//Od3\n", - "PMXHyxZGaGA8tGe9OIMvz8bfyXwbs3jC+za7dcSw5BNaMdYfKhagYdtqzHxjNbGvTGvZcZkMWz+t\n", - "1TOfzmTsPDoG7fg/66nlCzTQNz/hqS1S9MEeBB9Y42jNoLWOR0T8/d//fUREvOIVrxhYgZwF25ZY\n", - "58uxfxZ7j3NdZbQ88MADg4LhwNUleBbf9R7tvZi1jTXB/cPHnTt3dn3yXc8/8oJssSYp7n3TTTdN\n", - "tYdP9u8as7hEHOAf8411IyuQDdgffFtiwHOqMTjfWCtf7H/QMusZyAlyjizCe68rZ1dHhnlPt3uA\n", - "88aBsYzs7bgYLz6GliPgPFqtf6/n33LOO4XxshfPQlmkCoVCoVAoFFaIVbNIPfbYY919tX2LOMUC\n", - "Tqicoo8//vju1Ok7bOBMrs68C1yDy1piVt/shBNOiC996UsR0fv0OCLKWXUpMMzf0RIBp2M0Fyw1\n", - "PuWDXbt2dRoD1g744npeaFK0Q4PC38gaKZ/RbP/u7/5u6u8+2UfkWbINrCBomsw3Vi/PqS0x8GXM\n", - "4mHt1RnKTZt9xqANP52sgPJYNntbXlwIFa0+swLRjvFhgcNnypoac3Hsscd2fTFPWe0s/Cno09E1\n", - "wAWhXTMLTR+0RWp5Nhqj/dJsveEZaOi2SCGr/B1LFvxp1zTjccZiF3gF0GDLBOPzOHkWcuAo2Fa+\n", - "nG2etnzXVj3a2RJtvx6AJQZ5Yd3ceuutAx4ybjKcY+Vir8kyekML6wN+en9hv4Wmo48+ehARDJhP\n", - "5BnfUdrZT4W+WU+usejqDvS7adOmbv/yrYDb2i+JZ/pdBA3wiz2LNe2s3BFDvzqseplfIjxmblyI\n", - "HbD+uRHBCu0xtH3AM/t4el90NnHGB22uh0o7xub3bPse5Xffgrh+peHqJOYPcDSgq120wKLMeoB3\n", - "yHdWo9Eoi1ShUCgUCoXCCrFqFqn9+/d3J0lOhZz+s9Ns+5NTq7V6W5TQ1lzXy/BpFeuPrQxgbm6u\n", - "65NTvf21fJp1HqTMzwBtgfbOOwU2bNjQ/c0WGJ/SrZGbf9a80BrttwXGKsxnd9u2djmyks9ZDTrP\n", - "HWMj0qbVppAR+4Bl1ct5tnOYOIcLcD3BVjv2fDIOeIcGBu8sH/DcPnS2DoG2Uj19YXHIfN5cnw65\n", - "Mc95li2ytia0f4c3rBmeYUsqz6IvtNhZPiG2dNnvp/3dedUctQqYd+YOWlpfyDHYAkO7ll+WV9aY\n", - "6xwCPmP9Q+Omb0ccMjb653t79+5NrZ2Mk33RtSMBc+GIXGBriq3Ra9euHVgDAfMOTbaWQJvB/DvP\n", - "nq1ALV+9H5ovjJv/O/rM1jR4jAw776D5tLS01MkIa5LPttQ64tQ8NS2+8eDZyG5r8bT/FM/C4ur9\n", - "HD5Aq2vXZvui55o12u51zovoCPzM34xn+jbAtMAP+oUPe/bsGcg5PITnzDv88W1IhrJIFQqFQqFQ\n", - "KKwQVWuvUCgUCoVCYQaq1l6hUCgUCoXCU4xV85E677zzuntZ5yHi/vkzn/lMRPS1efj7IYccMogQ\n", - "cq097mozX4as1pprqHEnTHZpahZF9He9jqagXh21tuyv42gzatDR3vfT3Am7Zh31rdrvOLcK2aKp\n", - "+8Z48OuCf9xPUyOK2mzwGZoZA/1cddVVg/kBzjBL3+985zsjoueffSkYL3WfGCf3265Vt2fPnkFd\n", - "Lvs4tXUaIyKuuOKKiBjWiALwhX6oh0YdJ9fDeuKJJzofCMZJ35lflcdJ+yzfGJ+hhbHOzc0N/AS4\n", - "42ddwENkyD4jPDOrzZb5ClA/693vfvfAz8S526jjR+0s+3F5nNQ3o+6fc6TZT+vKK6/sZGtW5A9r\n", - "lPls6zZG9H4a9MNe5Dpx7BftXnbppZdO0W2fF+cTY/7POOOMiOj5Bc/t++Jafq6Xtn79+u5vtEW2\n", - "7FMJ3cgBewv7qPc22rlOHHzkua1fHH+jrefIvm88k/lnnPap9R7GHMH31lfK/ojQwjjhsWsnEq3o\n", - "Om6OPIMvrll3xhlndDzOsoWzRqmd2ebBaj9bdlnTzg3GGPjeJz7xiXjPe94z9TfvF6w5anPCQ9aB\n", - "91PkiPcL/UMLc4sf7KZNmzq6aeu9xX1DC+39LncEqWu5usrHrl27Bu9c1jM0OOIPOWZPz1AWqUKh\n", - "UCgUCoUVYtUsUmvWrBlkHnX0Qds2otcq9u7d2510M83TGY6JBKG6M+AkzsmTzK9ktH3Zy1421b7N\n", - "6eHoAEcsOFLC43W0SRbFheblfDLLy8tdX/CME3eW0woQrYEW6Gg2TujwxRp7G1npquaONvGzrUEx\n", - "brS6rAaZs84jA632y3w6AhA5sBXDuUlsHTUt8Jv+0FxvvfXWrmaY+4YW5oa+HYUzxtuWJkeQte1p\n", - "Y60UwAfmBt6Rk8lZ8/0MZDvLtzY3NzeoKM98OsLLVk3mz5ZXAM95ptvbEtr+z2swyzkDnGU7q2xg\n", - "6xIRde0eAA1oxI7CdR0v/o9c8Azy7Lm+HWMZqw/qvYi5ceRoFpUM7cwdWj/ts1p77X7hmnoZyHnl\n", - "6gnAlllcuERSAAAgAElEQVRoIEKVPEpuPzc3N7Byem3ZWuh3kNeRI4ydtd7Rz/Pz84ObiyzPHnLu\n", - "aDyQRdYZyFUr2/DB0ZuuomFa4I9vVbK8g9BIHj7qLbZ1ZRkffGHes70ri85EJh3N7uhOsGfPnvTW\n", - "BHjeZ+VEBGWRKhQKhUKhUFghVs0itXv37oEvhevdgdYSFXFAm+ZE7ezArr+FZQYt0KddV4mn7ldW\n", - "Dwva1q9f352UnXMF8NmnYLRYa17QwHjxd4I/9ilZu3btQGtBg3SNMGs7PMtZwo3MR6rNyu48X87F\n", - "lNU35O+2aGW02EJnGlsa7KthGQLOfWQ+2YJlPz4yhU8mk4HF0ONmvqHXfcMHaIAmW0FAy1+P020N\n", - "fACBawqaj1nOs7a9LUTOEwQY31juobG+x57VYiz7cNanrYDOq+baW27PZyxVWEP43FoN7WfnCgVe\n", - "u/yd9s55Y+sZsK/Rli1bBpY0W+jQ4llLzlxPn7OyTQP7Q27cuLEbj7/rig0veclLpmggYz3w/LIv\n", - "+tYBtNZo3xpk68I0znoXmY/szd6jJ5PJwOqVzWObF6796fckcBZ/W51bvnkunF8rq1vX+iW3/WTv\n", - "OmjCosv32hsSrwvotD8r8Dvelk6/X72/tjcl5n3mz2l/z1koi1ShUCgUCoXCCrGqPlKZZuYTpk+L\n", - "W7Zs6TRoa6v4ftAnmjR/t4+UI0XwdUA7smWnPXk7+7H9Dawx0B7asrpPnLT5jNZr7WjHjh2DZ8I7\n", - "a7PWRNAQGLf9NezP5dN9a9mxJuTveo7sIzUry3br+xExtJK12pStW7agWcNwpXR47AzgwJYftKWj\n", - "jz46zZoL+I6tgsA+UtCELHqdtJadzK8CeP7RnFlH1khZN55TPpv2dqzW2s0H1zWjT+Y5qwrvDPdj\n", - "Y4aH9omxpdHtLUvMs2lBLpD/22+/fap9a5GyVY+fyGLm22H/Pme8Nu3wpY0gdAZvZ5t3VnjPP89m\n", - "nOaD+/cYInoZ8h7Fd+mTWwC+69qrjmJjvPZHAu1eZR/PzCJlntvfD2SVE5AfW7z37NkziE73nupx\n", - "ZhUhsooPIItmjRj6V9oqZIuz4UzumRWI57C3s7+07XkWz2a+4YtvHDKrkG80APLlDOl79+5NeWZL\n", - "m31lZ6EsUoVCoVAoFAorxKpZpNauXTvw9M/u432KXLdu3WiF64jhSRsNgWfZd8B3x9zfZ9pUG73m\n", - "O21rAozLp3nf2wPfdaNhMiZXop+fnx/UbXN0HcgiR+zbAKzt23+r1VBttXBeG2uBmZXHz/D/wcG0\n", - "S7QQ123LIgjtj2B/t8w6yk+sRYuLiwNrJ3AElOXGcJ4sR86YluXl5YFFLYs24plYWjN/nMy6Zmsj\n", - "mEwmA5653p37ck6btm7hWHueyRjHaIEnmb+IZWuWNdXr3/nroNWWijFaDPuOOc+YLbWZrxlo9wlb\n", - "jBy1iCXVUasgq0mZ+dLYx2xpaamjL/P1crSuLY/AtNki7Tlq29On6zu6L++P/gm8p3lvGpNd95FZ\n", - "OVgnjpj2s/3ZkcR8v+WLI2JnWbt8W2S5Ny1ek1iixtad59+WOs+/93JbDc1fZNQ+Zu2ZA/ida95l\n", - "a9coi1ShUCgUCoXCClG19gqFQqFQKBRmoGrtFQqFQqFQKDzFWDUfqQsuuGAQWeM6PVmtteXl5S7i\n", - "hbva66+/PiL6mlK+q3YklPvmDth5ZLj7veSSSyKir0G2d+/eQf4S10K76KKLpsbD/x0h4dpJ3Nva\n", - "Z4Q79Ouuuy4iIs4///w06sI14s4///xRftiPhZpS1FpynS9HWm3btm1Qa4+fzicFLdS3csZvR/Mx\n", - "R/DcERV8b35+vqud9K53vWuKTt/DA9cgs38XNLjWGnxBLtrIK8bpGpH2jYM/RM5Rr44aUfbbsV8W\n", - "Y21l3f5ljOeaa64ZpYXoGuQGXy/qW1EPzb4yfI+xtrRYlhxtC8+ZI/tU2QfKc+Q17bm9+uqrB7UT\n", - "bXF3LTTLrnnOZ2hhHWX5Z9asWTOotQiyqCtooR4mPGZ/8ZxSmw0+2v/tkEMO6eQBWWQNAeSWZzH/\n", - "1FqEFvvzOLoJ2WVNtzLuSN9PfOITU3xx3Uev/7aOY8TQ18654qCdfXRpaSmNvqPuI3yBd6aJ8cBH\n", - "6r65Lly2js4777yBTxDPgDbXt2PeM38/9lGvC9ei4+/XXnttt7c4Yti57a699tqI6OU88+f1O/rC\n", - "Cy+c+jv9t9GvXnOOlAT4KVFr8ayzzppqx/ecK8777liUZPZu8bsrq82YoSxShUKhUCgUCivEqlmk\n", - "2kgOTqDOswSch2nXrl2jVcYj+tOqNe7jjjsuIoYnTbQcawvkWbHVqY3uIdqECJgs4zI0uCbWWBbc\n", - "lgZ/39aBxcXFjifkgeLzUUcdNdUWPnHibq05Y307sy/zNRbNYsui8/xkmalp7/wpzmwOn+Abc8MY\n", - "zMf22XzHtdGAc3c5CiuLGLSmu3///jQLPjKG9moagCOrbHGx5tZGJNra5UzlzAEySwQo7RwR5rUI\n", - "7Xx2frW5ublBjpmsTlUmF878DSwnzhE2ljfHmmXmC4rsOO8cc5bVfUT+yU9HVvsxWbS12PPrcTrC\n", - "yvXuADQ407MtNxHDdU+uHvYuj9OWKK9pYyx3XJb/x9o/PHzuc5879Xe3935oq4dpXVxcHERu2bLi\n", - "vcefs+hF5oIKGM4/Btp3giPezEvm0Tm8svWUraM2Ss10wDvo57vekxg/4/H7I4sKBZn1qP2b5cM5\n", - "+jweWws5N/jZvB+goa0nm2UEQP5ZF1nUZoZVO0hF9AxhU3fJCGAz5H333dcxnXQFwMm93vjGN0ZE\n", - "v/HfcccdU+1dloFiiwiaC2Kyae/fv787vDgFAWBS2Cig//jjj4+IYep7h7MSTs/ifvaznz3Vfm5u\n", - "rjswcmCg+KwFwJuXrxm9edkE7CRy7Vhtqs7m0e3ZKBgDLyF/j5IQ/OR78KN9ebnkCxh7wUUMzb++\n", - "uvJLmmczRjbSrVu3Dg4vHh8/aec5Yj34oOjit6AN7WccyKIPRmx8yCIbJ0kNnRaE9vyEDxwY/OKd\n", - "n58fJGvNSicBxofsskatvHhTZ90dbJP2S4k15PB39h7mkTV76qmnRkSfoBcwZ8wR/GPdtS8Yv8Sz\n", - "cG3g4sx8D9qy1B2spwceeKD7n4sKM+/8PPnkkyOilymnKHCiQkoKZUmUmcu21BKy4pQJVhgpEcM8\n", - "/uAHP5hqbyWBOeLg5TlijHv37u3GlxUtdlkq9n2XdfE4ec8gm8y/193i4uJAkc5S8diVwwpDdoh1\n", - "CL+TzEb0cs74eG8ee+yxo306zQNyzfizQ7KvFa2At33wN4wc8MMlgpw+Bn7ATx9ePQc+RLbwnmWX\n", - "lzElbQx1tVcoFAqFQqGwQqyaRWphYWFQbsFlNwDaH1rCSSed1GkA1qT4OyVQjj766IjotZx77rln\n", - "qj3aLadbTqRoO7ZkWAtsv+vrDtqiMXHy5rtomqYF7Q9+oD2OFVxFU0AD5ZTvNPs2YZqnPsU7QSUW\n", - "jLGCu9awZ5lFram3pS0ihpqXr2fNR481op+3LPU/4HNbbDWi57UtL3aMR94OP/zwwdWLtV/mCM3L\n", - "1hEnebTzdabZz83NdbKXXTPDcxfxzq6NXJ4Iywvt3H5paWlw3Z4lQfW1CesDWiw3WVkX2rcWLBc+\n", - "dVFy98042Cfe9KY3Tf3/7rvvjjH4yuP++++PiOk17ethW9ZswYYf7IfWkrOSKFhgkJdnPvOZg32L\n", - "/2ENRw4c2ALguUtHuT8AX7F0bNmyZXClDeAL48HSnCW09fdf+cpXTo3Fe3prlXWyZ9M963rV1g5o\n", - "QeZ8A8BYwPz8/GAdQ1OWkNlO99m1qpMr2xrd9k8b76G+6gN2Q7F82Gps/tqy09LO3sP8I4u8k3xt\n", - "6PeCE9b6NsVBL/ycn59P9xb64D2XlfzJUBapQqFQKBQKhRVi1SxSi4uLg/B4TrmZEyoa/datWzst\n", - "LNMY+b99H3yq5xSMtoAlilOzrQatL4qdAG2B8P0z2h0nbp/yrTVAg0Ntwc6dOwdpGrKCjS6sjCY2\n", - "ZmFifO3/bclpi2A6JYIdfLMSMTyDcaPNeJw4ziMH8BHtr/WHssO2NSLz3A6JmY8RQNOnPRrM9u3b\n", - "B5Yx3+3bUdWFRF3M02U87PfV+gPZgdnzT5+2VECzrQFYFly+xU7nYHFxsXtG5kwKoBH5tpO6+WLf\n", - "D3zMsOy1WqPLkthHw7KIxc19UUjXBXTZL6AZn0r7+bV9ISOmwQ7dfLYFAlnLtGOe2Zb98fzb6uuS\n", - "KVmZFcZpfx7DKRh+/OMfD3wngZ8JT3mGZdS+VsgmBaPtU+Mxtr/bItXSG9GvNWiwtcPrnrGxjsZK\n", - "SrmodJayJiuYzLxnKQjY4+CfgxUieqsPbZy2wWvVfIKnyJjbwz/7ZyHr7Z5uHye+ax9Y4LI2LomT\n", - "WVNd/uyQQw4Z9M3/vM9xfsiKwBtlkSoUCoVCoVBYIapETKFQKBQKhcIMVImYQqFQKBQKhacYq+Yj\n", - "9e53v3tQZoH7VZfCoFxFe4fusilXXHFF12/EMHrHfhaknyd1vvPwOAkg6efPPPPMiDhwb0ufPMul\n", - "CignwDN9v4w18CMf+UhERJxzzjkR0d/9Qjt3yTynLSnh/ChO3kn5GVLhc79M39DG3ymFQXvutuEz\n", - "cwAt27ZtG6TZd3kN7qEpbcB82mfI47zhhhsiok/5D1/wHcIf7IknnujKLFAegr4crWUeulyBozj4\n", - "PqUTaM+Y2nb8Ds/PPffcqTa+b3eZFeaf9i4VAVw6ZefOnYPcLMwTJWIo+YG/hv20mKvPfe5zEdGX\n", - "/MAfhcg6/NPwCfnoRz8aEQfWHbyijRPnQQvy4vUPkEW3d84054y6/vrru7Ip/M/+eqxvyrggi14P\n", - "9rtgjij7BCw3+/bt62SL+bevkMsXMU72IuB1RHvKm5x++ukRMfTzmJub635nn6OEBz4+jJP8Qqzv\n", - "trRJxDD3EfsKc8pYzzjjjKl+22hXxuG9xYkp7RvLnk77LMIO2qC9XXfsuY4Mp1wNa860OvINnjP/\n", - "+FCxB+Hfg+zeeOONEXFgHdkHGDDuD3/4wxHRyyJwzq62FFJEP0dt3qyInvfIxXXXXdfxEL9deE3u\n", - "MXyJP//5z0fEcI0CeE3f8JH9gnUDH+Djxo0bu9JGvBfpI4uwZc3xzvX68ZqFL37vtu+ltrRZRP++\n", - "wE/L7yDmuUrEFAqFQqFQKDxNWNXM5o5SsgUD2GK1YcOGQdZn4HxBttSMZWSOGGpFttQYS0tLacbm\n", - "tk07niwqCTgrrMvdmJbl5eWB5cxRfMBlRmxZMhxR4/wgbWSNoylcZsV8gh/0kWXsBln2dTSx9u9o\n", - "Zc6TBVwKwZYneO78U26PRaaNCrRsOTs6spXxBTifVBYFB807duzoeORM/cByArBQWNv3Z2d+H8vH\n", - "ZasPNGSyiOWKvpHJLDrJkYNtNA7wGjKyYubAVpJsjpwR3xUDIvr5gWfeD7x3wSdbRW3BAuYXfN+3\n", - "b98gas9ynln3gOfSz/a+MVbFwGVjQJap2xYm004/rHGX0HH7J1veI2LI46zYOTx3lm34wZ7Ujgke\n", - "w/Msa3ZWCJtx20rqygnmZzsnzCP0Z/nzTEuGbI6c02psH6Ut69iWN/PFORB5RrYX+RaqvQGyLMJT\n", - "fjrC0ntXhrJIFQqFQqFQKKwQq5pHyrlMQJbxl9P0pk2bUu3F96L2L3Df9suyBmpNq81DYeuXc1S4\n", - "EKb/n/nMWJPPata19c3ch8fhHD8gK4hpWp1Ft6WdU76tP7bAACxQzvSbzalpcJ6ltn2WkdeFXYHr\n", - "ODJnY74eLSxH69atG2gvHic/Le/Ac2FLlDW11qfA2lyWeZpnQIt9A0Fm0QVjVkbnjslkkb7wL+FZ\n", - "tgYDa97OPt3CxVUzPyyPA75hocsKC7fjbWkY84NzcV37ujhTvS1Sbp/5ko1Z5b2GzBdbUixb/J2f\n", - "zk2UFdBu62xm8wnsv0Y7r1HvD/TrtQpa/tmabR7al9Z9ex05t5vn0PtrW5PVz8jqf7rOITR6jY7d\n", - "ULQ/27G6CLl9RrOqCUZWIYLvZ8Wh2znNLPKuNWnaLYuuFwts4fJZoIWrMdjS+GRRFqlCoVAoFAqF\n", - "FWLVLFKtRmPLRVYPjZP2E088MajHA+xXAjLLgrU+a8kHw1il77HP9ttwBAngRG5tN4veWlhY6E76\n", - "9GXt17TAY2d+zvKJQYsjJdoTu+mC7kyrt7bH953ZGbgdGogjCds2zsjcWjPHkPlG2MoEjfaNGcsm\n", - "bWtnlnXbtFsjzWSxfbb9sTK6banL6iLiY2bNLPM9Wrt27aBWWGapHKsI38LyklkRnBE9opcJW3Ey\n", - "TRnYCphFkjkKNPOha+mjrWvtuW/Lg/3aMgs2aGnOasS5ooF9J92XrUaZ9d1+oAsLC4M+gK2d9pmy\n", - "vNgf1n44RtvO2cJNi60j0OLoM0CUo3l/MFm3FQiYFvsAeY6ym4lZ/q4R/XvNPoCOygS25NmifTAr\n", - "YEtzNqdtX943sz3G783s3WX5an31Mn89W2Zpl1mkjbJIFQqFQqFQKKwQqxq1Z23XJ3FgL/82EsIa\n", - "oSvLO4IsixThxIxW4FOt+281rlmndEf0ZFWrfdJ2zSjTsry8PNDWZ0WqOKIh8wXIrErmr39vacj8\n", - "0lwpfJYfiy10B7PUMD7aWFuzpu4oRtOcaeq2viwtLaWWF+h0lEnmx2Z/NFsFPNbNmzfP5Ll9Wxyt\n", - "l/ml8T3XQxyruG6raBZtyWf7iGT5dmwddLReK/PZGsvWP33CD9plvmHeFw7mY8nvtpxkfknQ5tpq\n", - "mUXKloqDVao3X8CsKEfLTRbl51uF9v/eH7JI2cxH0pbabD8BLQ2ez8xqY3+bzPLmmxBbycyXubm5\n", - "Qc1U5z8D9lvye8P7nX3LHCHX8gWrnn0ksxsMz9GsSGPftnj9tXzJouzG6I4Y+kTNquXq90krf5kV\n", - "MMtpVrX2CoVCoVAoFJ5mVK29QqFQKBQKhRmoWnuFQqFQKBQKTzFWzUfqvPPOG+SbcZ0r6ttQx4d7\n", - "y8XFxe6uPqvLB7gD5Y64rREX0dcUIj+Ic9bwmXpYbW0m+w+5ptTZZ58dEb3/Dc+AFvp2jSDaZ/f2\n", - "1PI7//zzB//DwuhaWIwzy+wMn6idRG02RwW2EXIREZdddllX3zCLjOEztFx88cUR0fsbOCrniCOO\n", - "iIi+jpv5CN/h38LCQsdD6s/ZJ8IZmi+99NKI6OtVOSLEUV70Dy32c1laWur8h2hLHSfGad83/HKo\n", - "h0bfzr/jGlTUw2KOtm/fPshrw+ePfexjEdHLFshy9bgGoX2vkDfXT7z44osHEa/OzUJNScbZ+ni1\n", - "7aGNWmvUN8tq7PG9yy67rFufzvDO/LKmWEPIrv1QXEeTWpvUcbNctf5vzD99OzIIeJ+jb/sU8Zn2\n", - "7HVnnXVWRAwj8fbs2dP9zW3x14EmZ+KGL661Ce/plzlz3Tf4sXbt2oHcuy00mIesXfZoZLHd/yOG\n", - "PjLwsd0vkAPm3zzk3cL4aMez4Bdr9IMf/OBUO/sQMRbav/e97+14xfw40z1t3/GOd0z15dxdfJ+6\n", - "n/CRPFWmmX6uuuqqrtYiyGrosf9bFu0zxE/4SI1L+0i1/lvUK2Q+Dz300Kk2REQiL55/Rzu7Lh51\n", - "Qv0+an0oXWuR+SRK2f6byA97V4aySBUKhUKhUCisEKtmkdq7d+8gY63zKIExTdTReCCrnQccheNs\n", - "uY4YyrJ1t9/NMhUzPvp0dEJW34p+OBU/9NBDETGMGJlMJoNcGo6AadtGDCMAMyuSa3I5oqatj5dF\n", - "lQDPAc/EEoXWaz65f88FcjEWtWUN1HWd3N7Ra86ID+iP/7dWhiz/FePMtFfT4lp1tqaCdk7R5qDv\n", - "sMMOm2rLOOCDLZdZXpzMgmm+7N27t5sPR2NlWYJdv4/vZ7mrGBvtof3II48c9J1FujoizBFy8N77\n", - "hL/vXEZjdb8c4ej9wjzPaoQ5ehPw/6OOOioi+v3i3nvvHdTzdB6gLALKtDMnyKCjmoErCBwsSstR\n", - "zrYwm/fO3cUaziJI27Vrnhqu4+e9KKsE8aMf/Wjqs3OEgbYOJn1mtVady8r16rJ8fdCOdZF27bpw\n", - "Xixb9by3zMp5lu3RvKPo15adlhbm1XnEkDXgd5XfWVmkutfdunXr0goetlg/2fxRoCxShUKhUCgU\n", - "CivEqlmk1q9fP7BIoQ1YIxmrhp7VcXOeI7RWa8kAfxy0OvrjZO3TLpaYubm5QRX7TDNyllT7NAD7\n", - "I23dujUiek3DfFm/fv3gbjfL+uuq39bUshxYzoQ9ptk5y7OzILtvzzcaiPMQgaw+Ihpeq2XYz8b+\n", - "CKYfPrX+Vu1P59dyhnTkYffu3WnOKVsSs4zM7pNxwZ8sZ9jy8nI3TvtTAGve9jczTeYDc+CcXmD/\n", - "/v2djDhbsi1MPNsyZf8rj5P/28LXartZrSyP330zfvsAes3hf8IzDz/88IjoZb+1Nlju4cusmmL2\n", - "/ck0b1t0kJv169cPrB7O54N/SpZHzHPiNZplCIeWNtu+27KvwWusp5Yx4Lp/fM9+SoDvr1mzZuCf\n", - "luXRynKfMb/AVnSA5WUsp5H97rJcXNlNRTueFq54Ae28L9p1YWux17H3C+fsY3z0bfmy/5qrTrRj\n", - "QvbgLfIATb4VYl+0tQ9aLF+ZBXz9+vXpzQv8sdW4MpsXCoVCoVAoPM1YNYvU/v37B/eRWfVv+zns\n", - "378/zbTKydLRepygfVrlrpsTcxbl0T6b9tby3Nan2cwq4r4fffTRKVqAad+7d+8g03KWkT3L0Jq1\n", - "z3ynxiqLW3O2lSvzkbLPg2tNgawe3NjY3DcaUebbY18g+2OZFmvkbbb9zJ/C2lpWp83yg4UB/hzM\n", - "d8QZer2Gsoz+2fyP1VRsafdczM/PpxnZ3daWF2C/DeDs8/DBUU3tOLy3sP6zvm01pr3lBetzFhXY\n", - "ZsK2hcH+SFmtxazKQLYWsUqDhYWFVLYcAejahO7bGfwzKxNoo6mdFR1Ar32caO9s4rZAOoJ01n7a\n", - "jmdWHUfLrOcCWrwOvP7AM57xjEEkoGkCrYV5bBymlX55Nj+Zq5aPzsTvLOheo/CWn8xZti9aXrJq\n", - "Hm1ftv6ytuwj5Vqsma8c8K1Uu+7cFtiHMFtzGcoiVSgUCoVCobBCrJpFaqw211gkFG0jpk+92YnR\n", - "J2JH5WR3+z6Bc4J3Zeq2f2ucWSRDVt/O4K6Y9vbbcf/79+8faDFZLSn7FWFJyWpE0c5jsL9C2weY\n", - "VQsJWCviHt5WEGvDrho/VkuJvh3x8l/VAj02V2RvLZTW6lwjDFrsAwVcWxHNDTnI+LJ58+aBT1Pm\n", - "82CfkSwiyHNjvz5rk4cccsjgGchQVmvOspdZDegPvjkyteWjfRtMv2XR1d5t6c72IvtSjlWib3OM\n", - "tXRm68GatOfEVkNHuWJF27Vr10w5d/45gz7xT+HZY36J7ec2UmrWus+iMTPreFaz0uuitYzb2mWL\n", - "hNcDfPI8A9o58hbZtH/P+vXrB7XzxuqVtp+zyLrMvxM/X+AcaGN08Tmr++h3rq2H2Z7vPWwsKhTe\n", - "OYIYS5Qt71kUq9+PwPsJaG9wgK1ajjT2ODOURapQKBQKhUJhhahae4VCoVAoFAozULX2CoVCoVAo\n", - "FJ5irJqP1LnnnjvIveFcF9TxoX4W95aHH354d79KW+rbXXLJJRHR55jwnS13otRao29HPJApmpwX\n", - "V155ZUREnHbaaRFx4G75hBNOmHoW96+uKQQcEcgzqYdGjSDX/eMOmM/w5UMf+lAXdQjd+Gw885nP\n", - "jIi+Xhl1mRgXPCcvDnfm0PL2t789IoY5Ph555JGp53zxi1/s6M7yRvGZ+kau++YID+7tqZ1Fe9/D\n", - "t/0zn8wPssWzXdfvT//0TyMi4vTTT4+Insfw3r4V119/fUT0c+rorpZHyKLrPjqiDN4jW65Bxhjs\n", - "vwdfzj///Ig44EuFL4t9Glw7jT5ZP/zE5wnZfdvb3hYRQzmhf/hy3XXXRcSBuoL4dDkSiPlk/qGF\n", - "eYRWfx85P/PMM6f+zpqEBqJcb7zxxsGacy6urKYgPIePrGnmirpf8JwII/teLi4udnU5qfkG71gf\n", - "rFm+i2zRN2vU9S2hzfUT7b+2b9++Ad3IIuscv5q77757ihbaU9/Q+cmcbfvyyy+for39P/NC38g5\n", - "dNM3MmnfF+obIi/OkUf/rrdKjcu5ubmOZ54v6KbuJ9UjkDF4jqzxXmG/4O+0Y85Y48jAaaedNvAr\n", - "Y3ysvS984QsREYN6ePYJZZzeL+iHvEw8B/5u27Yt3vrWt07R7bqv7I833HBDRPQ1CB3FCB8ZE+8X\n", - "1pH3Kt4fGzdu7OQWuhnX0UcfHRH9HLhv6viZf46cZE0z/+xVbS5B79G8/5Fv+GIfWOYzw6odpJaW\n", - "lrqXMsLIguInsBPq7t27u4m3A56dhGE6G6PLuAA7OrKgsjQCrXMtzHcBUCbDyQ95lpO6OTmkFxxC\n", - "OUaPk7I5/J3xOFTavAbHHnvs1P/N1/awZOdfF93Mwrb9osic8RF+Dto+DLZ8YX7tLM/fs2RtzImd\n", - "Te1UDdhQeCnOz893B2uP047LLgAKXPSXeffLC7Q0Ogw/cwZlzfEzc8I+5phjpv7uUhGW9clkMggK\n", - "yNJVOITaSUJ9UGZ92SEYPtmRNmKY3NOOzcDKG3LAC8Y8dyi2Q/zb9eR170NXVgrDJYGyBK5Z8sC1\n", - "a9cO6LYzNPOXlR+ygzPfZ7yWXdZBGzDjg4D7dtJf+OU15wScVjAtZ6zN1tHbBW5NSxZCn6UkYT9x\n", - "gkvvL4ceeuhACWG+2jJbLY0uFZY5PDvgwf22a5r93HLBMzK+OBAsKxnjPastyxIxvUZZY/TBgdhp\n", - "MYADaVyOyPIFzT4MrV27NnU2d+odv8Nmoa72CoVCoVAoFFaIVbNIRQyvALKixZQQaMs4ZMne0LCc\n", - "8j1LOZCVHchKrbzwhS/snnviiSdGRG+S9OnV1hG01bEkZRER99xzzxRNpn3MCgAPXWQzC62nL5/u\n", - "XXVJDFoAACAASURBVOTWpTZc3Lblp0NcbZnKCkv7OjVLSMicuiSArxsi+ivNLMTe5Vp8lYO1i7my\n", - "FfDhhx+OiF7rRc42btw4KJtgLQ/NlGd5juAb/4dWeO91gTa1du3agaXAllfoRPsDTlkAuPpxORM+\n", - "U1KpBTKTWSCBr9s9HgNaLFes1Tb829coY6lTWngembNsXTB+h+wzt23/8Ah+QBvj5JoFQCsyl1nb\n", - "gUvwtPKXpW2Ah1wD2WoOXJaD/9uaAGx93rhxYxoqD22tpaCF5QVafQvh6xjQpmyxZS0r45UlHrVM\n", - "MqfQ7ELEtjJu2bJlUJQZuG+seu2eEtHLltcocpJZWVvrKPui053YegOcgsEWt2y/sLV5rBwasmWr\n", - "HuvBe5dvRXyz4zlFVp3iZ82aNQNZdOk0W3ezRNZGWaQKhUKhUCgUVohVs0ht3LhxUM6CkzRaIkBD\n", - "54S+sLCQFn7E94OTJKf2tthwi8xygXZg/wto27t3b/cdrBTWDPi7HZ8Zt7WXrBSISwCAxx9/vKMX\n", - "bSe7w+bkfdxxx0VExA9/+MOI6Hlufy0+owXYatjOkUs7uFRMpr167rKSD06W5oLUrWaHRYl557vM\n", - "o3nupHaMK6PFpYfo9/DDDx9oUqYXDQo+efzW/v1sa41tQjuewU/kF1iz4hlOvAjggx3e4aetI61P\n", - "nh1UrYnbf9HaoNvbggef0Ipb2YUuW+jg/ayEtU606DVnjdV+Xe0c4fPh8hPQ4mS/LpTdJrdsaQPM\n", - "jf0h9+/fP/gb1m7otGXZvpMOoIHHWaJKj/GJJ54YOOxncCCQZeuuu+6aonWsVFaLNuloVjDdnzP/\n", - "TrfHooulEv6wH5iWHTt2DIprZ+sCWfJ+1/p8jY2bPYg16iLfEf1+b7p5lvd/rx/TZCugE1lDG/tK\n", - "+95F1ux/x3cefPDBqb691lxA2/titnfPz88PeOi+nER3lux2ND6pVoVCoVAoFAqFAVbNItWeUDlR\n", - "cwc+q/zAZDLpTqe2MHGfbP+Z7G4XrdDagX0Kxujnu/bd8bgcnQRmlZ/ItGIwPz8/KKLLd/0saEVb\n", - "wWJjjaMdX0sTn235aseBZmDfN2uv9sugL+bXViM0b7dzeYaWPmSJ/6Fx2Y/JPiPQhBaYzb+tIkce\n", - "eeRAbl0ayOV1rO04gsbWlUwT37Bhw8Camfmd2FrksivAUWnWcu1r1tJm/wiP0xYIl3Exzxkna9tl\n", - "ndr2thghI44iAviO8D1HSmX+XfhzOI1E2z/0mRZ4ajm3BROe07ct1QArA9975JFHBv6UAD5gLR+L\n", - "wm0/Q2tWcgY4bcgznvGM1IcFuPwM1mS3px/2UxcKtjWFtbxv375B0XLPP+OynGQ+dfZj5FmZD+bu\n", - "3bu7Puz7ajlHpkzLWCmkFt6jsfi07yOn/7B/kmmxrLqUkt91meXKJYkihkXtXQrH43ShaL9vvKeP\n", - "FTOnfWYdd/murGh5hrJIFQqFQqFQKKwQVSKmUCgUCoVCYQaqREyhUCgUCoXCU4xV85G66KKLBj4E\n", - "9iX5+Mc/HhF9ivj2jtRRe5QToBSC71/9mRTxpML3Hbr9fUhXTymEvXv3dvfM7ptU+JQ2sM+Qc1Vd\n", - "ddVVETEsKcMYuZ+GNtqfddZZA58wR0JSIoS+M38baKGMx7nnnhsRQ38k+xRcfvnlXd/OTG6/qquv\n", - "vnqKL/CDiBJoghZKPjCnzqeCP8JkMul44vIDziPk0inmOXC0Ylb2p40QQW6RRUphOMO5/dighVI7\n", - "9lvx3EIL7ZeWlgZZnl02g7bILFF90Abt0OLSSbTDNwTfk3aO7OtgvwrKLLhEkOcIIIvwnH4cWYXc\n", - "ffrTn+7mH9g/z2WZaO8IU/vKILvIYrZPrF27ttu3sjIb9umgtAXrwj5CzhDu0kljY4UuZJH1jD8V\n", - "ewv+NMiF5dw+Z/DH5bA++MEPTtG4uLg4kFvKz1A6xzmb7CNHe2QROLrPJaXg+2QyGUSCel343cL/\n", - "7SNnvuBLwx6EnxZ+XND+oQ99qPPxYbzOgci7CL7AL/udMV76hnZnTHdOrE9+8pNd2RRHHcOXtm3L\n", - "Q/vOOnobWlzGx/m71qxZ05Xloa19gpFJy+4ZZ5wx9Wz6zvY6yvi4okS7R0O3S9vYZ4q5gpYMP9VB\n", - "ajKZ3BURP46IxYjYv7y8/NrJZHJ4RPyfEXFSRNwVEb+5vLw87vlYKBQKhUKh8N8YP61Fajkifn55\n", - "eblNl3xhRHxpeXn5islk8v6ffL7QX9yzZ88gC3OW08hRaw8++GB32rRlhc9ozuSkOPnkkyOij9IB\n", - "jk4jc60LooK2iKszrjpiw7WEnFvDuXscpdFmbG77A1u3bu1Ozvfdd9/Ud7J6hWhMzmRMxIyf5UgJ\n", - "5qgda5apHTjCx9EljPdZz3pWRAyjLZgTLFf/+q//GhERz372syMi4sUvfnHX1lYL11xzNJu1OH7y\n", - "PecoAfy/nUNbP3hWazmL6OteZTyHn0RWMceWXWjbvHlz14ZoQ88F833LLbdERM+Pl770pRExzGkE\n", - "DXfccUdE9Nn7TznllIgYyua6deu6eXUxcucoamtmRvTz6jxahiNvWU+t1uxaWdCSRQQ5CzJ56OjT\n", - "2cetBbO2xyJrbUkyvVm9Mv5OMVcsWM6v5+jXNk+V1xzjQKZ+8IMfRERfqYFnAVueiU7Lcv0xNiwd\n", - "CwsLHU+dcwirGP93niCvf2eC59nw3nsdNN53333dfscekkXtIVOME/45Hxv8IC8XNFBn0/3v3Llz\n", - "UBgY+ixbfHbU2QMPPBARwyoL3tPhM+utXdO0/da3vhUR/fvxda97XUQM15ytOV6zniPXJmQsY5HY\n", - "fl/cdtttU8901QTndHrRi140RQtrFjjqEdnev3//4GzhiFqvY1uPMzwVPlJ2vvrViLjxJ7/fGBH/\n", - "61PwjEKhUCgUCoX/z+GpsEj93WQyWYyIa5eXl6+PiKOXl5cf+sn/H4qIo7Mvc2olcy2fbWXiVMjP\n", - "DRs2DHyBAFo+J8vTTjstIvpTq61Gvpf/5je/GRHDjNiAz+vXr++0OmiwtcM5N17ykpdMfTYtfP/I\n", - "I4+MiP4EDu1jNYVuvfXWqe+gtWRVrp0N2TQA57Li9O98VBFD68esmnOMA83JleWdL+fb3/52RETc\n", - "f//9ERFx4403TrX/27/9266t86SggcNzW3UYD3yjvesjAucLav2AbNVx1uAXvOAFEdHzPMsL5Pxa\n", - "0Oz2bRZeLEbWsADr4nnPe15ERLzhDW+IiIjvfve7ETFcRzzrpJNOioiID3zgAxHRWz75XksLWify\n", - "ah9CgBaPjPIsaldmObCYi3vvvTci+jXb1sNz/jgsCvDHfOH/jOtlL3tZRPQWN88ptGFFg2bn22oB\n", - "3exzyLvb2mcI66GtQ4B+4CM0LS8vD2oEuuLD7/3e70VExM033xwREd///vdHx4msss9keadox9o/\n", - "5JBDOtmxnw1tnOkbmbKljv2C/zNe1qgt+3z/la98Zbd2kDlbgXk29DNHtlAD9gf6++Vf/uWI6Hlv\n", - "S93u3bsHuffgi/dNV8iwVdR7EeNn72ddjFUrYK/Fiv/rv/7rERHxla98JSIi7r777gHdEcM8abbg\n", - "AefM+853vhMR/Vy1a5q/sSZZQ1nOPsbBjcV//ud/RkS/dm3xhDb4c/vtt0fEgTVqqx5tXTsTerP6\n", - "n8ZPe5D62eXl5Qcmk8kzI+JLk8lkanddXl5erlQHhUKhUCgU/mfFT3WQWl5efuAnPx+eTCZ/GRGv\n", - "jYiHJpPJMcvLyw9OJpNjI+KHY9/9l3/5l+40uGXLljjmmGO6U621KVfPPuKII9K7y2OOOSYi+tMo\n", - "mgOnX9fxcfSS7699X4vWvX379q6t620BNAX6oM+vf/3rETG0AljbdX0ka16PPfZYp6XwE60my+CN\n", - "ZoL2wjOJiAP294H3Y7SghTjCh76tvXL6Z67gD1qRLW8vf/nLIyLiLW95S0T0mvq1114bEdPaEX37\n", - "J+PH3wAwDuaOOcMiYcsefLalYt++fQPNGx6+5jWviYiIO++8MyJ6WWT8AO0HXsM3/JRskWrr3qFp\n", - "2YcHMD604X/7t3+LiF5zxPcJUJMRfmB9xfrnzNl79+7ttNYsMzPweqCvrHYc/HANLeaulV3WMdZL\n", - "1gE02drFPvHqV796arzsGzfddNNUe1ueGBtjH8vizfign2fYL4W1ydw5A7w1b/Yi9jDWwSmnnNLt\n", - "AwB64TnWnS9/+csR0Wv7AMsNtPNs/E0ySx1je/zxxzs5Nxgn/LCvlK3GjJO5fdWrXhUR/frC4gDa\n", - "CFPkwJFzANlybVHamRb+jm8R/PnGN74REb2vFDj66KPTzOT2v0Ie4GVbNSFieHuAbLNv2g+w3cOR\n", - "c+bvr//6ryMi4qtf/WpE9PuCgdzwfcbn/QU+sD74Pz5nfqdHDK36fNd+TFj5eG/yf+8jAOurfU6P\n", - "PPLItF7hWET1Pffc08nPLKz4IDWZTDZGxPzy8vKOyWSyKSJ+MSL+ICL+r4j43yPi4z/5+cWx77/6\n", - "1a/uJsfOYoVCoVAoFAqrhRNPPLG7CkXxzPDTWKSOjoi//MkJ7pCI+MLy8vL/PZlM/j0i/mwymbwj\n", - "fpL+YOzLW7Zs6U7qnCzRSK3toiXw/x07dnSnVDRnwAmTn2hFjiZo6YjoT8XPf/7zp56Z1RSbTCbd\n", - "6ZwDoaOTsPo40gVLhCOfAFoA0V2u0QQWFha6NoBTvTUjtBf4AN/o2xYs57xijI6KjOhP8WgYWU0o\n", - "9834GRc0mC9oBd/73vciotfk0KKOOuqo+NKXvhQRvYygEdk6YmsHWpw1VqJyDNfLa+t9Wdu19Yrx\n", - "of27jhP/d/4d5/IC7RzRxrlYTDfaK+sCWkw7Fhl4T6Qkc4tfA1heXu7kGgsRMuL6Vq73Bu+xFtvy\n", - "iuwxRteWayOCHMnE3pIpba5nB39oZ4u0rYKseZ7bat7QxV6CXEO3/Wmg0dGPzJ33F/5uK/z9998/\n", - "mH/2OeaC8f3Mz/zMVF+mhf2Sn46KBYwfK/ohhxwyiNxy39DEnst4bcnC2oplhrnCEmVrGvxtoxfh\n", - "va3GtKVvorv5u99F0ML6YLzPec5zpsYGWnlj/ph3W2kcBQ7YF7wuWLOseaxnY7UcHSHHuE499dSI\n", - "GO4t7OWOZkN+HM3O/xk/fISG1oJp32G/Y22ph+fwh8NNex5o4XyDbX5C7/8gy2X3ZCu/rPggtby8\n", - "fGdE/MzI3x+NiF9Yab+FQqFQKBQK/11QtfYKhUKhUCgUZqBq7RUKhUKhUCg8xVi1Wntnn3324O7X\n", - "vjXUt6JOEHfLGzduHNTEohbSRRddFBHDzOS0516emkLUNyJiwlnWoZE6PmeddVZETGcVx2+C+2Da\n", - "Un+KPriHxX/B9aqoKUV/zirO/fOVV14ZEQdqbWV1ijxO+sY3Cr4RnQN/aE9NMWg2X7jvv/7667u6\n", - "TFg36ds10aiHxxzZhwSa6YdxMv+urdVm0/U4HeGFv4br1b3tbW+LiP6+nTmlnWszUifK9dP27NnT\n", - "/Q7d1HFyHTxAH1l9Q/t5MW74SK21Qw89dFAzi3llDb3//e+PiN43wrl4PP/UlHTeoDZ7dkRfs+o9\n", - "73nPwOeL77he5Zlnnjk1fkevmefUCQSuRoBMXn311R3drm+J7CBb8Jz2jhTCf4VnffSjH42IXr4c\n", - "GdVa9uE5e4t9/7I6fsiW/fBcAYC6X/ARtNFerlfKmsNnx/LrenXUIITH9jHk76wj6r6xR69bt67r\n", - "E14xn7R1dQrzkjmCj/Z/s/xcdtllEXGgvl3EAd8ZvkPbrAYhfjjOos3cuTan66B6bcPHiy66qPtf\n", - "67vVgnXBu8W54Jzxnr7ho/NL0Q7foW3btnXzSV/s545WZ47YW7zuac9+41qe7OGOQI/oeci7xXVw\n", - "vVZZF7xf4Af/93vG+67fowsLCx1v6Bsees3Rjn0BOc9QFqlCoVAoFAqFFWLVLFKTyaQ71XL645Ts\n", - "bKL8n9Pinj17BtYLgIZAtBEnYtpnEWX8nbwXRG05molT7lFHHTWI+DNcn4jvOpIMMH5oRvPKImUm\n", - "k0lHN5om2pm1FGhxZB0/M2uC26OZtLQwDveBxuE58rOxGqKx20LRRl1E9FpCVpMtoucZPEd2zBfG\n", - "yd/ps83Q3II5Ycz0v3v37sH80JYoJMuYI0h4lrPIO8s8wFJx7LHHdnRnqUSIZIF3yBh9mpdZBCZ/\n", - "dyTW3NxcZ+3if0S8mS+ed75HjhvTAp+yNdzOUVZlIIvWYTzwmshB5tfygiwi61gy+F47R4wbyyvP\n", - "wtplmpwFmv+7/qMBTccff3xEHJjbjOeuc+loPMO10tps+i0YG1aQHTt2dOvZ0WbQwE+itIjizCLr\n", - "HAXo/EMAPm7fvr1bx8iiZcc1OZ37zHua30XIDVF/Y7U5PW/0nfEQsGYd3QngE892BZCWdujlO7ZI\n", - "Z9HMttBlmc15Fv1AA/xq5zTLcZfVN6Uv18+kGoH3aD5DU/v+8fzbSshP9uhZEeigLFKFQqFQKBQK\n", - "K8SqWaTm5ua6k6jzSPkO2Xkn9uzZ050yne2XkzPWLnIOcdr1SZoTpzUtcnJktejWrFnT5S9Bk/LJ\n", - "2Ll90ALR1KyBME6f6skJNWbBct6sNovrGOjD1eCtHcEvtCJnWW5pyTKbW4sBmSWGv1uDBfAHayPy\n", - "4twtEf18Ih/QndXlQtuB12g7WZZtvocv0sLCQqqlOW8QspVZTewLMqsC+fbt2+O5z31uRPS8sWzR\n", - "NzzEGgQt5ostj7b0jFkZGSfWGdqi3QHmG36Rb825aAA0wHvyDjHW1oLlvQL5RV6dkdsZ8LEe0o/X\n", - "tH2vsNRAQysvtnY6o7l5aOsItDNOt3cNN56zZs2agWWS7/IMrIDwaSzzdETPB/ZRW5Hcrq09mVl1\n", - "4BHj4/9Y1JzDDblivNSLZD153UHL/Px8tz75m2XRfq7kEUN2oQnY58r5loylpaWOD/Ccz5ZzWySd\n", - "T8x7kbOxs5ZZT63s2s/KlibvRfYpazN+t/0Ayz8VJMYqZ/DMjIf2V6RPywlrObPC01+7f/o95zyC\n", - "rDVyVVleMpRFqlAoFAqFQmGFWDWL1Pr16wenYVuXAKfGtl4UliKfXn1v7JpTPpE6OsORAL6vRzt4\n", - "5JFHBpmK3TeneSLl+Mzp15oaz/SJ2/5K7VjpM8sSDjido1m2WW8jhpY3xsJp39XgWy3QEW7A4wPM\n", - "J+NhrujHtLv2HFYjtM3WBwEZyrQeW/Vc/R0tF4udtR1bPFuro8fPOF1xnGd5Ppkj18zi7+YnVqSH\n", - "H3544Itgvwrmm76cDdo8Z13ZeuoIMjA3Nzfww/IcANeOIzs/486y7MM35h0ZbMfKM5EJ16Gz7xDA\n", - "Ku7aeWN+iRFDy5c1/oie12jUaO1YIpw1m76QLSwzWbZ69iLvO5s2bRrwkGdBH+P1ngRscbDPSzZH\n", - "WEVammztYP55pmtyZlGctMfiwrqyLIK26kV2s+CoRWSw9fVqkWVpR97GrIzME20yCwrjbP0uI3Kr\n", - "F3zCigptY+8AWwxd0WKWj5R9A81zt+d5lpu2L1u74WV2a8C6wOKd+QNn/pCLi4uDvQieIktY0jg3\n", - "ZP7PRlmkCoVCoVAoFFaIVbNIzc/Pd6dBTuicZn3CHKs1xknRERHOp4PvyJglJWKYH6nNCxQx1ALb\n", - "vCrf//73I6LXGGy9cmQE9cnsnwAcEUK/zivSjtWRDGNREtDb9o2m4Ht7YCuTtaSxOk7OAzNWhTxi\n", - "Oq9HRM8f500BfIb3RHdh0WitksiKo+8YZxa1B80/+MEPIqK3xHiO7CPVWptcU445sOWN8WTRSfzf\n", - "Fh1btlq5wPKS+QJBG/PvWotuD1/gn+fIluC5ubmOh1g77DsHnB8L65/9T4DXPxo4NJmW9hmMO+vb\n", - "YI3CT1tm6Me54EAr6/zOMz1H7ts+hWjWjMFWI1v0sWBt3rw59dfk76whaLMF01YDLJisI9PiCMP5\n", - "+fmB5Rk4mhd/RO97psVzyp7k/aWdY3xdeMdkEX68B7CoYXn1uvBe5+jWsfcR9LL3OOIX2PICrY5C\n", - "A+xx8Ae/R+/Z7Xd9e8KasqXNkYVZ5HU7zoieH6xp+Nha9rznwkvWsd/RjAeamEvWf5afz1HPc3Nz\n", - "A55DA9Z0zgvQnUXKGmWRKhQKhUKhUFghqtZeoVAoFAqFwgxktfZW7WqPcggRvUkSYBYkFT7p6gnR\n", - "feCBBzqTJD8phUDJB5flcLj6ddddFxF9ing7yblsDWU5KD8Q0Zuk/Z1rr702IvoyC05AyLUKZkNK\n", - "IVAKxY7MgDGRlv/ss8/uzMW+/uJZn/vc56Z4SB/QigmTz9BCWn7ak8AR8zsh6B/4wAe6vl3ywVcU\n", - "lB8ghT/AeZCQape3oPwAcsEVSVvmgPIALptx8803R0TEySefHBERr3zlKyOinxv6Rra4yoJ/0ALP\n", - "KbUydmXk0iaU5WCe4TVXki5XAV983WZHUfpnDBs2bOjM3VzRYKK+/PLLp+gGvl7CyfKP//iPIyLi\n", - "tNNOm6KVK89XvOIVEdFfU7De3ve+93Xy6mt0zObQQskPxsmapB1XoJdccklE9OsCXuMIynOQxcsv\n", - "v7ybT5eRYJzIGH3Dc2SJOTHvKW9BSRE7J/P9Rx99tJMVysnAB3jI+ufnxRdf3PEwYrjukRvLImuU\n", - "vzP3O3fu7J7JPscabVPIRPRrCl5SOoP2dqGgHWHh7NHwkf343nvvHQQquFwNvGbN8V2X2mJOs2SY\n", - "zBHtoaVNf8C1OHJ76aWXRkTPc19lOSCEPd3t2bte8IIXRIuPfOQjERHxO7/zOx2P2VOQb4JmWJsu\n", - "+cK7q02xEhFxzTXXTPERvrFHsz9yHXvFFVd08wlw2H/9618fEf212h/8wR9M8RC4NAzycMMNN0RE\n", - "Xw7NqQq4ht+8eXMnW/QNb7kutpsKe7rf6XahgE/eR12abcOGDR1dyCJ7KH3DO/Y9rnopEZWhrvYK\n", - "hUKhUCgUVohVTcjJSRsnyZ/7uZ+LiOGJk1MuWsLNN98cv/iLvxgRvWOr0Z5CI/qTZuaYaEc+TqR2\n", - "CEZb2rNnT6cRvfzlL4+IodMrnzm9ozG87nWvi4ihI6OfzbMcHgomk0mqeXOSBg6JzUJNAXODNgwt\n", - "v/IrvxIRvbNqxLDoJNoL47eDpwtKo9W95jWviYg+HB44KeDtt98eERFvectbImJ67vxsvvNLv/RL\n", - "EdFbpoBDsWmPdcTyYkdwvr9hw4ZBqg14yN+Zkxe96EVTfAAOTSaY4aSTToqIoaM862RxcTFuu+22\n", - "iIh49atfHRFDDZn5d+Fnxmc5cPoA5uo5z3lORAwdPJ944olBAWysV1lyWLRVtOPf/M3fjIjhWkRm\n", - "oZ2xvupVr4qInp8Rw5B4eITFzikHXGbk1ltvjYjeSdkO/k6vYH62axRZwdoHLaeeeurUM4ETTCKD\n", - "WHbGyvJE9HPI/rJ169YB3ew13kP47BQF5h8/sUS1678Fc3nvvfd247RDvh35oWEshUREv6aRf94D\n", - "XougTbJ61113RUR074ssVN6O+21y0xbsE8g638f6Yyf8hYWFbl5uueWWiOjl/LWvfe1UWyxXLhU1\n", - "5rDd/p+/w1cstG0AEXTRl63jlpe2AHZEPyesI88p/bHv0h+W/lbunAwUuWfNOf0Fcs4eBU3QYvck\n", - "B2cxxr179w6CqtgP2mLbEf1ZJHs/GmWRKhQKhUKhUFghVjX9ASdLNC60AFuBXL5leXl5UJQW2DrS\n", - "au0RQ42M0yynV7Q7F9Y19u/f3526ObWijZlun945tWdlPPieE/GZlrVr13bjsaZkK4DDXF04OUuC\n", - "Sb+MFQvgWFI5l4bx34ETTTJeLJPmi0vIwD+sJGNWSbR5LDP0ifULOESdZ6FhYv0CLoMDn8aSArpv\n", - "+5t5nE6oZz89a7ttoVDkIEskagsUPIR+p9ZwcWY+U0JhrOyL01fwjKyYNZqn/VcyWTQtWMfa0H0n\n", - "b2XcWSoOh4NDG7JmvtBvlqiw3bv4Gxox8wlNWORm0eLUJR6rSwqNlXthHC78jSXBFgmnd/Ca9hy5\n", - "nMmWLVsGBY8B4/B8umAwsP+q90XPUWuR8D7n2w7kwalbgGlBZnnvwEcsmW0pFPp16o2sHA/w+8FF\n", - "fU07NCFffIam9tlt+p6I3m/PNxi20LCv0LflwSka4DNy1bbPyrTYZ87jtMUeGmeVWmr79xpCprye\n", - "oSFLnmqURapQKBQKhUJhhVg1i9Ti4mJ30iZ6BQtDlgQLze6UU07p7oUz7RX49Julwudk6qKe1kha\n", - "KxraHIUu7SPFKd3aO9F+1qRc5JPTPCdvW+q2bNmSljbINEYnw4TnttQ5coSf3/rWtyJi3L/Lifbs\n", - "RwN4li1s0I6WZNrR9vBzQtNtfZPMO2jBEmU/A2tqaIuZLMI3J0vdvn37wNoBDS4VkhUWduQlWqK1\n", - "PMDcr127trPKOcLH8J0/cmKrKX1j2USG4YvX0WQy6dq4xEmWSBReM6933nnnQWlxZB1z2rbPtHbz\n", - "Gnh/wD8v0469HlxgfIxuftLnHXfcERH9XAHWRRa1l5W3Yl9o/cPMw9aXr6Up2+dY/05umCUq5Hns\n", - "0ccff3xnec1KRzGf7G9ZKSQnqnTJLPOljf7Cv5A91/LvAsG22Gb+N/Aamhirad+8efPAssT6z5Lm\n", - "ukyZLTKmBX6wB4wlk2XevRdliapNiwtwe05p5zJvY8mnbb1in0MObDVinzdf4KvfM9DmW6m5ubnB\n", - "OLkNgwbmm/fck00PVRapQqFQKBQKhRVi1SxSrQaEdpMVObU/1ObNm1PfJfrw/7P2Ps3yLFto/P+I\n", - "YTFNn8ZdIsTakLV6nsn3XAjSaKMQ+A40+FTv6BR4aR8SYJ8KMFb2gT6z4sXuA03MpWQcrdGOs30O\n", - "lg9oaPkI3Y6m4hlZyRdb9DJ/E9qN+U5k82QZsy9c1rdLyZiPrYbmKBtbYOyv5AKxlt3M/4R+bZGY\n", - "m5vr5j/zWQFZCYis5Ic1c2Bfu/ZZLj9hSyzgmY70cV4h0zrmr2g47xHWHObT8p6VscEK4P3CI8QD\n", - "tAAAIABJREFUss5YxvY61hzjsf9dNk5byT23YCwaGroy+efZ9pHJrED+O/zLyrjMzc0NrJjmbeZj\n", - "i5x7XI5EZm6xqo4VubV/qiOLgS2MnsesmLPzjPGzXdMuWo6lmXHa2k07z53f1SArAzZWWBrewQfv\n", - "e1mRa/7vtZ29b8b8X7MbqWwdPFmURapQKBQKhUJhhagSMYVCoVAoFAozkJWIKYtUoVAoFAqFwgqx\n", - "aj5S73nPewY5WfjM3eYVV1wREREXXnhhREzfY/o+nbo81MLiPtnPIIqAGlRnnHHGVN++G+cem5p1\n", - "bf0s+1/wmbp81IjyHTn3tK4RBe2OAPKd7/XXXx8RB2oK+X4Y8CzqG7mmoCMgoPFTn/rUVHtHWHgM\n", - "n/3sZ7u2hn0bqBHHOJ01F1pcmw8+Gm0+GuimzpJzN9nPhhph9O2oHcN1H+1DMzc319HN/LjWWpZX\n", - "yjWifG/vqJ2PfexjU7S3NNvPcNu2baN8sZ8KtCAv1BTj/44YNV/e+c53dn9zbiX8KqhXBy2u4+Yo\n", - "LOo+uu4XQPYZ/7Zt27oagYb9MP7kT/4kInoe2g/DPkXZfkH71jeG9UyNMACd9vVAdi0vzmXHHDCn\n", - "XhdtdBJrg7bUK8z4gQ8N46Rvy67zbDGnrIsxfzXmF1k5/fTTI2Lof2O/Pmhv67JGDPcgxkA9PPg+\n", - "Nzc3WGvmIXLrPFKuF+r9xWN0tm6vu3a8tGG+WHPQYl85Ry1mNQizfG2f+tSnUh4aXs/Oq+j3LrS7\n", - "rixo3wG8F6nLh++f/TupBOB9zvLhqiS0px6uc+dF9HJO3U/WnP2ynBeOcWYoi1ShUCgUCoXCCrFq\n", - "FqmI/rSHZsHJ0adDV2RvPe99Auak7XwpjuICsyKqslP+8vLyQEvL8gIRVYFG4dwlwNE3WKagyVF/\n", - "Le2OpssqZPMM509ytEnGV743FqUEMqsO8HcdaWnrhzU4awstH62lmMdGFs2ZZWmHj8wRNM3Pzw+s\n", - "g5ahWXyxVou8O9O5aVxcXBxE42W5eFybMaPN43cEqfk2Fq3kcZkWW5SyqDPLnn+2/TvaNrMCAPiB\n", - "pZrPtgoZzsuU5fpq/2d/VO89WYRZVmUBWtkn4N/i4uIgw7a/O5b1eYxmR7061xmwZWtxcTGVRT5n\n", - "eYAcWWULntd99v3JZJJGaQF/N8vZBMwH36Z472qjWaGF71pW/B6hT0c3eizZ2mzH5vVvHlo+bKGj\n", - "vTPeu3+PxWu8pdO1WR3lbjjy3NYyP9tVTdratKbbcu334yyURapQKBQKhUJhhVg1i9TS0tIgH0T7\n", - "vxa21CwtLQ2yBQNqAmV5oKzV+6TNCTXTSFtfG/vJWLux7xR9WksGZKQlU7dP1GMZ3631ZbmYfI9u\n", - "jcNao2k+mAZijTt7hr+b5XaxFsAYfT8/ZjXMLAgZMh+QjC/OZN1qgabbflmWhyynFT+dTyzTntet\n", - "Wzd4ljUvz4G13mx+7UtzMEtNJtem2zX5Mo0SOHu/LVHt970e7CeRWbvtI+l9ALC/2PI7NqeZf4ll\n", - "zrR7/BmfsKIhi+1+lPHUWn1mYZ6VLTrbL1ofqWz9O9ed92D37e97b3dusINZoWflF/Te5bnILLeZ\n", - "1ShiaAV2tnBgK2eWww84y35mPW7ptDWQNp7/7N2c5XSzLxrrYsy6hLXUay2z2Gf1Hr2ugC2Yrc9p\n", - "ts+ZP9n6z1AWqUKhUCgUCoUVYtUsUm1V7Fm12cb8OTIrkCuNO7pmrEZY2871nty+vTs1XT7tOjLK\n", - "2qDbt/42Eb3m5Wy7oNXE+J8zEnucPvVn7T03pr09qWc+IBns6+R+DGdItsWm1aYclWgtLatBZw3M\n", - "c2faPUdjmc2tYVtm3T6jLfPXGovWcbQZwGphLTbzv3E2eWt5Wd23lp5ZWbOtaWaWF+bEmZ89t+2z\n", - "M1oyS11mTTRcGcD8aL9nS4T7MJxl33Udx/yvWtrbvXBWvbLMN8a024pqeXD7MfnwvpBF3WX7h/1W\n", - "LSfmS/vZlrdMFjPfKNNka5KrEIyN1RGDWd/O7G9LbDb/wOuiXQveM6Epm//MZ87vU9NuC6etjhG9\n", - "LGbvDY9zVpUBf5890JaupaWlwRzYYn0w366DoSxShUKhUCgUCivEqlmk5ufnB/fRsyKtWu3Ip3Xg\n", - "yCcj89dxdEpmNQItDdbWQOY7lI0TbQg/DFvbrAUsLCwMooUyi4FzE7neUTZOWyZAe7K3tpdFOhrm\n", - "W3Yv7/7Q0PnZapH2VXDfs/y1sjp3poUcKK3PXWYFtJxnWg59MTee/4NZD5z3JpN/WyoyHzjLhX0G\n", - "xiw/Hl/G8yy3zyx4TWa+Ey2d1krNeyzQtkxnkUO26HhMLS2ZRdLjB7bqgMx3Ctqximb9tn+z5QV5\n", - "sOXdUY72jXJ7+30tLS2l/lRYDDKfv1mWV8ti5lPZ+opluZYcpWnez7JMZjUcx9qa7iyCDHjODPfj\n", - "uWn5m/l6zapBa8t15jtmC6Yj8trnZFZw+5ABrOmZX57lxRapNoox86fKfOUs5xnKIlUoFAqFQqGw\n", - "QlStvUKhUCgUCoUZqFp7hUKhUCgUCk8xVs1H6pxzzunuT4844oiI6DOAc7/q+mb4BGzYsCEeeuih\n", - "iOh9GaiFRE0h55l69NFHI6K/C6UuE3V/uGclx8W3v/3tiIg4/PDDI6Kv+0b/a9as6XxaHnzwwam+\n", - "3da+DNDe1giL6OsbkUeE9tQe4u+0v+CCC7o7Xt8j85NaWNQUgufQbh8B6pu51h4+QY899thU/5/+\n", - "9KcHNcWyyAfoZj59503kh+uEQTtzTR4a5nTNmjXd/FOXKYvC4zP1qugbwBciS5g7ZNHtkY+HH364\n", - "o5u6TK6Fxf+p3wiYI2qQMReMc/v27VPfpzZfO1b+Z58W+GKewx94zjPdN7TDF3IXwce2vf1QLJOu\n", - "y8bf6XvHjh1Tf4fn1PFyNBNz1I717LPPnmoDHFV0zTXXRMSw7uNhhx0WEf2apm/zJcv8vGbNmm79\n", - "ew3h+0ieOPjl2nn2LWNOkUVoYb+gH/auhx9+ON0X4TXfuffee0f79hzBH+af/k0LYz3uuOPijjvu\n", - "iIh+LswX+63ZNwZ5gXa3Z10wJuQFGdiwYUPHc/ZQ00ItPPuvIS+ef/hiWfS7iz3g3HPP7dqwn/td\n", - "RFvohtdHHXVURETcd999EdHzHHmBj8gJezT7Sytfrm/JT+hmPPCFcUI7/PAcsY+yRgHPhpa5ubmu\n", - "LbXw4PXWrVsjIuKWW26Z+sx8XnTRRVPt2VfaviP6d/oFF1wwNSZXL4iIuOGGGyJiuJ6ZI+/RzH+G\n", - "skgVCoVCoVAorBCrmtnc2s5YXpiIYaTA/v3704igg2V3PVjfWY2dg2U2d1TKrCy5bp9lNnbEQJZl\n", - "O4vMOhgtjnTKIiStac/i4xjGcuu0380ixbK+nQNlLEIzixDLPrtveJ7lOJmVX2usT0fVZPXqsizC\n", - "Gc3tunDU4awswZlMZu3905FSbaWCLLqmbRuRr8WM545yGouUyiKCsohQa9po4AeLworII1Hb586S\n", - "xVn/d2RYJsuW1X379g0i4jLZY7yOUnRUV1a1wGPhuWvXrk3Xc7YPZvtFts9l66P9e/YM052t91lr\n", - "78nsN96vsvxHWV61WbmMHP06FhXuCFJbAbP3BfKR5Q8DGY2O4mv7yLKGZzms3CfIcn2N7QHZecGf\n", - "x6IND4aySBUKhUKhUCisEKtmkVq/fn13ssQXxP4XwJm9169fn2ojrvzMfWqWR8Y1x7hn5p7Wmhp+\n", - "CBs3buzo9n0qMI3W6t03PlBoAXxmDGM5gA6WWbmF65tlOVxAlvNqjI/WIGbl4LLVwH1mmveTsRri\n", - "L5HVObOGQXssE/bzMZ+YA/v3tLmcgPNcub6V4Zwt1pIPVnPMbU13lmdqVm4raLaG6rFu2LBhMK/4\n", - "MGVrznOSWY2cJdmZ4cesBllfhvuEp/hreZxZtmmvzYh+zXn+s1xcXv+uj+dnsP+ANsu+22ZrK6sp\n", - "Zn44q3y2jhjD+vXru98ti+yh0OI+szxSAFrtx2Ta27nPrMCWb2CLrftmbp25e6x/+vL8Wjad4Z19\n", - "P6s+4b2O/nkftf07+322poxZllmAnMBPnm3fsfZ/8Aq68Wez7GYVILL8c5nFr827CPz+h5YnO25Q\n", - "FqlCoVAoFAqFFWLVLFKLi4udpkUUS6bBcqpts0pnvjvWJG0d8YmUyA80S2ggasea2v333x8RB07T\n", - "aCXQb7rpG5qwdpF51VlTf/SjH0XEMArDUR7g8ccfT7OCe5zO2G0tJ7vrt+Y9dlK3BmDfJfPFfkWu\n", - "g5b5irgWlT9H9Lz1OLKsuVmmavrOwHN4NtrjWB+uczVGd8TQekY7vmcLHzTs379/4Ffnvl2DEmTr\n", - "gr8zLtPuelhj/OI7psVzxOeML4zJtI6N1bJkX5as7p0zeWdaLWsUHCyrv3lOG1vJAfscNMIXaLCm\n", - "Tnv7kO3cuXPAYyKFbZHAesEeZdr5CV8d/Qj4PjRF5DcM0AJsYcj4wjixIkCb99G2P78Hshpx5mG2\n", - "LuAXc8g7wBFkoJUB+1V6P8ciYx+fLGM9NDgCd0y+HEHL/HsfA17vnne/d5lr7+FjljreZ4C+23fr\n", - "2P/9OavZ6jls5zazAvo7Y/v5wVAWqUKhUCgUCoUVYtUsUmvWrBnUe8r8Nfz/+fn5mfWHsrpfs6I2\n", - "7EtijbT1b5hVG9D+FLOidtwebSe7v27r/blOV2ZhyjQK89N8yKI6ngyy6Cz71GT30mig9v8Zk5es\n", - "QnxGdxbdlNV3Mh+zGl0Rw4iXWf5I9suyP1bm3zKZTAbznq0hRwJllhfLIuPMKtC3a3KWv57nb1Zk\n", - "jP07wJiPRGaZncUXI+OLZfFg6yiTrQzmg9dF9qxZ+1BE78NinygsEtl3vZ/OwlhNu2zNZdbwbM91\n", - "hHU2B+0el+13bpvtm9m+6HEe7N3lPXRWxN+s9wSYtbe1tNh3KXtPZs/Mojcz2g8mL9BCn8hmZgUE\n", - "/w97bx5seVXdfa9zu+/tgUZo5maeJ0XAeSQxvknqLSsmMZXksZJSKQUhUYSKCJQS8iAEUHiVRKKI\n", - "hjwZXpKUScU8cdZgRA0OiYqRsRFknqG7aejuO5z3D/j8fvt8fr91z+WG1I3Pu79VXafvOfvs39pr\n", - "r73PXmuvIZvnDONquJZ9LNSnMkMtEVNRUVFRUVFRMQa1RExFRUVFRUVFxbOMJbvaO+200zqhkaTE\n", - "51qFciWkfMcMvWLFisZsx/XXBRdc0PRbghBRgPmQ9pQ2yBydXSKAdPXT09Md51/TQukUnAv53E7W\n", - "F110UUS0pRBsRrUjY1lqw6Zmrl4I44QW+qYP+sSsigMffVOuAPM7fKQ9/Lr44oubUgWZ461LfsBz\n", - "zKjwpXRUjWhT/ruMg5Mmrl69Os4///yIaEt+4PzKdyhDBF8uvPDCkb6ROcYHTfAF2l2CCD5OTU01\n", - "z3JpE6e78DUsZRmQc8rwMD7C3Pn+xRdf3OGL5x25+MAHPhARbSkE1hClUOBTJud2NvaVaVnGyaHy\n", - "DipwaQuX2bBDM+2ZU8BYkclSvpBb0pfwDDtuM873vOc9IzQa8Bz5gufwy1fAq1atanhOOSHG43mE\n", - "95SrgecOCAE8k/3ijDPOGOFH6azvvYL5R/ZwbHaJIGinRAhygizagd6lk2i30047NX3yHdqah048\n", - "7DmClmyOWKsf/OAHR9o//vjjnbQ28JTSOdDi0jnsRdAGH5FFxslcwkeXzinLeHmvZq3+/u//fkS0\n", - "c2RncadoQV74fWH+CW6ibBVzfdlll3X2OfgBbfCJ31yvOV/1A/jIXse6g8/M/apVq5rfImTFey40\n", - "8Qz2OdrTJ/wozwMR3f3F7hebNm1q/k9ZHvhilw5ogS/QnqFapCoqKioqKioqFokls0htv/32TWK2\n", - "733vexHRhsUecMABI23RDjgtLl++PHbZZZeI6Ia+OlyfEzGndDuAoiW6bMGPfvSjiIjYfffdR9qX\n", - "JSXok5NxFjLJ51gasI5Y43QyUTQWaCiLLgK0jjJRaEknQJtjvOZplvSO7xGy2pfy34kkQVY+hXYu\n", - "x8IY7NDsgrmmHS2o7Aseo1Ezn05iyDjh9a233jry/X322WekfZbQbdu2bU0fwONAc0ZuHnjggZHP\n", - "bTVjbqFp1113jT6sXr26+c5PfvKTiIg48MADR9q4+LAtEw5/hy/IE7zPfCrn5uYa+R2X/NXWPIrb\n", - "Mv8eJ5o5c8e8I5PlGmWc0ABPSVvgcQI+p2/kxg7tXld77rnnyFjKPQDeMf7bbrstIiL22muvkfcB\n", - "PGb8fP+mm26KiHauAPJlB/K5ublO4AZrDTrhNbLocbkgNBq6AyBAqfVHRFx77bWNDJruhx56KCLa\n", - "dcsag9deF053se+++0ZEyxfvO2VySMbBvDgJMs90YlX68DhdxBf+IGfm48zMTLP/O72N+VIm2I1o\n", - "ixUzZzwDsL7gM4WZb7zxxoiIOOSQQzp9IxeMl/dtaXR6IV6ZM4+TsUErtDFXZToOeMpcQNMtt9wS\n", - "EREHH3zwSN/+TUd2kRsKb7t/xsQY995773T9sy/OV35sPlSLVEVFRUVFRUXFIrFkFqkHH3wwDjvs\n", - "sIiIeO973xsREV/4whcioj2ZAk7BnGofeOCBRsNAIwRZKH1WKBVNi354Fq9oywCt6OGHH25O39be\n", - "TQtwuK8tGJzyrcFwqrc1ZevWrU2f0LX33ntHRDes2z5gz3ve8yIi4lvf+lZEdDU1NC20Y2i+8847\n", - "I6LVCiK6ye4c3u65gOdo4FgW4HlWzBP+4gtw6KGHRkSr4cKTss0ee+wRERGvetWrIqLV1gDjfulL\n", - "XxoREb/xG78RERFXXnllRET88Ic/HGlP/06SOhgMOv54aJzMI3RmYf8kpKOfI488MiKisb7ecccd\n", - "I+1LayxaHH2TJBbYJwLew/OsgCiWHb7PHDjh49zcXMdqiQyaL8jgEUccERERr33tayMi4p//+Z97\n", - "aWecWCKR3euuuy4iRpNksoZYt1g39ttvv4jI0zcgJy7LYYs37yNf0IqVqVx3rAss7K985SsjIuKa\n", - "a66JiK61C22ZfYXvYXGzxdv7D/LmuYlo55lnQANzsG7dupH2rEFkzr51WLIAcvKCF7wgIiJe8YpX\n", - "NPNjKwByv379+ohoLS/0gbwDFxRn3Px+2IJVphuAJ/Y7BcgLsmVLHH67gD3Y+25WiHfZsmXNXsk8\n", - "8gwnd2WdYEli/rG8lftcRHvDAQ2vfvWrI6Kdq9Ln1GXW4CG/Qb4dsaWKvvge+4Fpx3rO7dL1118f\n", - "EREvfvGLm7YuS2NfMJdcsz/i97///Yho5cRzBO2sdWjYZZddYv/99x9pizwgo7bAl7cd86FapCoq\n", - "KioqKioqFokls0itXr06Pv/5z0dEq4lnGiwnVjT0hx56aGxpC995ZonleDba0XOf+9yIaLUcWw3Q\n", - "mg444IC4/fbbIyIvVcDfLgAKfM8MjY6o4nRsbWe77bZr3kMDwGJkixR9cY8OL7FgoWEDtECsg7Tz\n", - "XXs5Po87Q+aH4lIqAA2Fzynf4yioiG70zXe/+92IaLVB08q8f+c734mIiN/6rd+KiIhjjz02IroW\n", - "LPt3gRUrVnQsKWg7PButDk3Sssgc0Q/yheaF7AG0yQ0bNjT04zdgfwpreWhaWJHMc5f38GufBdPJ\n", - "YR0JA9Cs0RRf//rXj9Buy5uLmmPpcCRWRLeYLLzmu7a82MKKZSor/YN80Y7++wrFsi/8+7//e0S0\n", - "828fOIBVHEsFPlXQlhWthQ88e3p6uuPbwT5x+OGHR0Q7/9DtiFnkB8sTfMhKrSBHyOELX/jCTskT\n", - "wDzj24M8sIdl1lRoMV+8juDf1q1bO1Zu3wLQh0u+uEwTYM6wgrBm2Q9s8dywYUOzt2K1ZN/zXsRe\n", - "Q59YXqGJ7wFuC26++eaIiPjsZz8bEe0c89sW0cqik9tCW1Y6Basf7bK9C1qYc3w14avLAvXRhCxm\n", - "ln1+g2644YaIaC1vLjnDXGCFZi947LHHOlZA+MC46JNnVh+pioqKioqKior/YiyZRWowGMTzn//8\n", - "iGi1IbT9rBQE3vnbb799qtVxendhW7Qc+xmhNfM9tAJOybYCoanMzc01J3+0XWtejk6wNcPjdDFG\n", - "tKnsfn9ubq6jIXOiNi1oc5zOrR17nNCMFsSpHw2u5DvPgueMq6+ERzlOvmeN2hqJIyrRaJmL0gcD\n", - "LYf5RItx7iaAtQf+/MM//MPI+9ZgATSXRUBtvWAemROXjDEtjNsymkU/0u9znvOcZj6ZJ/MwK9vi\n", - "yBngqB1HwtinYmJiopknZITv2toJb6Hxq1/9ajOOiK7lDXnhc2hwLrSI7tpCU2ZubGHAWsj4yz2m\n", - "HDdgTGiwWCbgVzlWeMt4nB/M65+5oU9ode42j5X9B1kty1cBF8BG44anWbkNaPLcWNaxLrEPlbcG\n", - "jk6zdZQ5Yg3aqoMVARpo5/JFoLTcZAWCgYv4wmv6dKQ0e43zb2WFpXfaaadGDmz18PyzV+Ezxnza\n", - "yg7gE5YrLFD81pXtXXSeeXQOL8B+8m//9m8R0e65jNfryHsU8oCclHPutcmz2FMz32LWFlblrMQQ\n", - "oH0ZBWvZclQqYJxZ2TKjWqQqKioqKioqKhaJWmuvoqKioqKiomIMaq29ioqKioqKiopnGUvmI/Wu\n", - "d72rU4vNNcmoKXXCCSdExGiUDnfV3Kd+4hOfiIi2/hCWNvp07h7q+LjuF3A9N2oKle3tE+Q6TtAC\n", - "iE7hHplxXnHFFRHR1hTi2c62y105dX9OPPHEji+Xc25Rf4r6dozf9c24T/7oRz8aEW0NMu646d95\n", - "Uy6//PKmXpGz/TpKkfmkphyw3wa0UJuL+ml8Dp/LaI1PfvKTEdHWfHIdPwMeUlPK2bN9/4680J57\n", - "d2jdtGlTM25qYcEX+yUg764pR3va8WzXiaM2H3M0Ozvb8AS/CtYHNaWQLWQOWXJdPGptwXP6w8eB\n", - "8SI3V1111QjtJf3OWQMPqSnnGpSAuTjvvPNG+oZfrlmJjF5xxRXNmoMfyBZ94r9F39ROZO7w12CO\n", - "2HOQXe8Xziq+bdu2Th03YH8a1/FiXTBO2tmPDXlh/hkj35uYmGieBS1ve9vbIqJdk9CNbCEPzD98\n", - "cV3QMjKw7N98f+yxx5r1mtVDdc05V6Ogvh08d8Qgz2KOoAW+LFu2rBNVxzPZ59gX7StlHynaU8fP\n", - "Ubt8j/0D+TrrrLMaXnmemIuyXmVJi2mCL6x//y4C+IQsX3nllc16znx/8DujpiS5He0TiEyyjqjN\n", - "6Jp19v/avHlzsxfBc1dCgCb45BqUrvdZ+itHtPsL68j+UMuWLWt4z3zye2E5hyZ+s/mNzlAtUhUV\n", - "FRUVFRUVi8SSWaTKKB+0nKy+DRonJ8zBYNBkKM08/N0nmpejsND2nMk4q8DO9weDwQg9fbSgzfC+\n", - "tbosagtaXQ27LzrFkX6c5q1x8Gw0JkcQOS+QLXnOz1NmT7ZWzt+2NLo9NDO/8NaRMozJ9aDov7R8\n", - "0YejNWmbZcJ3dXNrg6aFCBk0s1WrVnV4Dl3WEKHRuXt4NrSjDdEveWhAWXGecbgKPUC24AeRUERZ\n", - "WXZteSJzuuvclbTbAsX4srpvzL+zCjvXE/3aKmrLVER33SMzZU3EvnHyPUeEWXaRB+9J9OtoyYiu\n", - "JQKZyaJ2gfckR+3ZIsfanp6eTtezx0s0lqP2oA0+OIrTa5E55Hs77rhjb1RtRDtvjJe9yPnHDGgn\n", - "Kg/ruy0PZdUBxplZSvjblnxk1zyHr+QZZCxEzpHjCjz55JMNDaw5Xp1l2xZr+MKadTZ51ov5yffL\n", - "mpVek694xSsios21ZLptyWUuswhy2nud9UW9OVeXf2u8hqCdZzuS2HPEnNKuvDHyenZ+MeiFl76p\n", - "ylAtUhUVFRUVFRUVi8SSWaR23333Jvvp3/3d30VEW1OOmkGA0+ExxxwTERFvfvObm5o+f/ZnfzbS\n", - "Fu2HEyZaGqdZ5zBBs+JU63t7W8do9/DDDzc5p6hXhXYH6AtthRpKn/rUpyKia5HgtIx2hI8B4ye/\n", - "CHjyyScbTYI2Rx99dER0LSmcvMkwi7ZDTh9nwrZ1ECsROW76qnmX1ecjujWyABoHn1MXzZYpgMZJ\n", - "1vk3vOENERHx7W9/OyIirr766qYtGhH8IC9QFp1qbY68KeRBsQXLFeiZ04ceeqjJYA3gC7KKJkq+\n", - "GMO+ZWiiWL9c96nMDUUb5rOshViODxmCbmghWzhAfn7hF34hItrs43/xF38REd3s41NTUw39yBiW\n", - "A/vKIUPOyMz68fp3HirkBI279BFxjjLGYcsEYI3CB9YyGbrJfA9cHZ7++/KrwQ8y8VNVgBpqtjDa\n", - "WsL+SK4rXgH7Bf0hX+vXr+/Uq7PVD58pxkH+NPcNkBtk0PsF/IMPt9xyS1MVwRm52UtcsYFx2IrB\n", - "34yfum3Q+K//+q8j7dkDDj/88GZ+2COc/8o+QFiBkVGPk98L5pJcgtBIpnywww47NPsdn/3oRz+K\n", - "iO56tk+sfeO8p7MX2ZLPnlX6HvJbw/wfd9xxEdHKGFUGAPsl42UNwg9bPP1b5byNzo0X0fVLQv6z\n", - "+Wft0p4xZb/R0ALfZmdn03xi8AprJn/XWnsVFRUVFRUVFf/FWDKL1N13391oAWiBRx11VER0NRjq\n", - "wnE6vPrqq5tK8a6IjXZq7S7zebE1xZqYI4rKmkzQizZmaxdaIZrCtddeGxGt5uiMv7aOMDZOyX01\n", - "7ZwNltN7lpGVZ6Ld9fk8lX87AgstqLw7tv+E77D7KqKXz0ZLQgtyFAoaFv2gXX7605/u0OKaTq4R\n", - "aI0EGYS3hx56aES0/gi2pqFx8z3m9IknnkijZ+AhmimvtrzBr+yZtqqVkWlYcxinrTiOtkGmsOq5\n", - "gjrWHjRvomK/8pWvjDwbDAaDZpz4OEGLZQsLDX2g1TPP47RGtFv+to9MXx9ZW+YZzfsb3/hGRLQa\n", - "ta3MgLmyD1G5RrECIRdYoOBt5jtIH/DRVnXAGseqwD6z7777diwpjAM+XHPNNRHRWmC8MChjAAAg\n", - "AElEQVS9z/E3a4656bNIR7T7ImO+//77mz3GPm/0yeeOUrXPi+umYsmEBvOR34l77rmnkTXWg/2S\n", - "4Cn7G3sSa9O+YKxpnsF+Q/+2BM7OzjZ7Bc9iLrz+s3qAptVAXvidRDaxxkd0s6MTbctvjC3YztTO\n", - "HCLLniPG75udPn9A5t9ryL+fhqNZmQv/jtpPknUxNTXVsY77XMC6YRz2Bc1QLVIVFRUVFRUVFYvE\n", - "klmkIlrLkzUWTvCA0y6REhMTE536TJ/5zGcioj2Nor2gKXEitrULbY+TKhqro+EAp9/BYNCpHO22\n", - "nIQdPUCkhGF/LcYAjX110lwrzFFnwNou98t9FqaIbq1B5z7qs3i5D1umgCMG0dSznE+MCX8VNFAi\n", - "yUqLl+saOoLQmjSaCK9uZ82L9x3tuf3223fGz3eROcue5cWRYvAFa0A2R6UFC63O1ivGh4XOddBs\n", - "BWOe8fuCj7S3drx58+bmGWjraLvW6qGNvtDi+8ZT0g7NyLCjwSK6vlCOwrF11DXoXM/R42TeoYFX\n", - "9plS1l0P1Lm7LFuOYqJv+GefSvvOQPPc3FxqScFPh2cjW5bNbA6w1Jl273WrVq3qWDlAWRMwop2D\n", - "bG/hWaw91o2tSaAcOzzHWuP5B+6TWwPvXXyf3x3XRzTtpWWY3xhqzGZWIObfFhhHdVo+XAeznEOv\n", - "c76Lhc5WPdc3ZQ7YXywftIffyBPtSj7QR+Yj5ZsXPwP4twn4N5DvrVy5srOe4Sny699H+9RlqBap\n", - "ioqKioqKiopFotbaq6ioqKioqKgYg1prr6KioqKioqLiWcaS+Ui9853v7Nxt24ufOnGu4zQ7O9u5\n", - "/6TODjWCuNt0fS76pi6T61txf+u7bvLnUINqdna2uTd2Vmz6PuOMM0bed0QD9+uMk7o/wBnTGT+1\n", - "mc4444zmnhm6HYVAW9fOcu0pXml/yimnjLS33wavH/rQh5q2vqt29AQ1wqi15M+B64S5phhzU96Z\n", - "Qzd1uUwDtPE37akRxRzRt30p3B5aSt8C6PnjP/7jkbb0iR8Gcg8t1M6ivXluvtKesQ6Hww7d5fz0\n", - "0ZLlWYLnZ5555ggt9i2DJub0lFNO6dRvc3RmxvPMp4F1QX1D+7t5bi+55JJOHTfLLeP2unC2ffjo\n", - "NWo+ur7k5ORkMz+unebcU67jyPq3r5D98VzL0f2XfWe18Owr4zqO9O16Zt5fXN+s3Dc9Tuqy0ZY9\n", - "mu84Wg3aPUf2Z4O2PvnKMlPTFr7Qp32lvBd5nOYjr9QsLOst+vbHexHy4vXQJ+cR7fq3P6DXyYc/\n", - "/OFOfcs+uY1o59N1ImnndQLtZd3PiPb3CBlYvnx505a9hT6cNd2/F9neZZ9a+mcd0X9Zu5BnMJ+u\n", - "tefoW++jGapFqqKioqKioqJikVgyi9RwOOxoFpm/ljXy0grgaANr885tZA3FGVldqds0lf1bS7Nl\n", - "xXWKsvp32VgcpdCXR8aZlkGm/dg6No735ldfHSzaZNqf33c9xKx+EzD/0KqyqMAStnqYFsuJtaOs\n", - "b1s8yrpehvseB8+Vo1v62jlaNeO5I4GycZrn42S3pHOcPGQ0+nPD/OibG2vOWV3LjGbXi/S6svZv\n", - "q3TJl8zimtHv2qOe0yyPmOVqcnKy8x7Pcn1LRyGWfZTPthXY/Tv79NzcXFo7Fdiq68oIpt17crZH\n", - "l9bHbB903xnc3pF149Z2yYfMYlS27XtW9rnf9z5R0u42XoOmxdawcTXnbC1kj3Y28vL/XksL/f13\n", - "P6Yty7c1HA5TnmbPGCcfTbsFtaqoqKioqKioqOhgySxSpQ+Kc1ZYI7XmVeYwsZ+V87pwMuZ5bk8e\n", - "JvokNw15JTJapqenO9qsNQZbLYwss3GmWfRpXoyPV8ZnWly3KbOeGc5O3mfBMl220I3TGMa1t1bM\n", - "WG1VKf/vectykzAu5CWbQ0AuGPNxZmamk1tlnDacyYX7zvJrlXzzGsq0XWvUfRm5+2i15tZn8XAb\n", - "W2Qz2E8vs6ZkudHK961B23qR9Z1ZRy1HjNE538gJVO5rlh37bGTWEftE8Wp58n5R1mhzjjKPi+/Q\n", - "Lluj5oP5BMh1V/oxZmuRv9lrx+UPct1TeA/tmUWqfFZm9fb7C7Wu21cos0yVz7O107Q4lyGgz3Fz\n", - "lPlU9dE3bk3aVzDL2WTYMuW1HdHNn8Xey3eyfZL34ZPzkZkGclp5z+vrO0NmHTeqRaqioqKioqKi\n", - "YpFYMotUqflnlghgi08ZtefTOydI32H3WS8iuloQ2v9CfCTsR5JltrbVKPPX4W80UmumzmxbWgHG\n", - "jdOa1kLvvq019dFuLdfw+4zH/hnZfbXv2W2h6bsT9/gyPyNb2DLtH/Bs5rLUSD0/jrob5/OW+VLY\n", - "d8ZjHA6Hnei0bF6h35aoTKuz/4p9yEpaMkuLYd7CN9fBcvvMalDSYln0dzOLhNcosEaard2+igKZ\n", - "z0sm545yg+euZWna7ddpq3v5HtYcW/ky/8zMSmRaXAlgy5YtvXSU380s7lkGf1suPMegtGBnFnjD\n", - "spRZQd3O+8s4i3bZZpxPpbPHu6/MEtdnNXIUIq/ZurAlMruZ8bP5HnPv6Nfy/7ZM8l2sm8ARyY40\n", - "zqzGtqJNT093eJpF0vo3aRyW7CBVMtbm5cx82GeWzA4vFioY5bB2ihLa9En7+RhJW5tBTQubcxbO\n", - "DnxgyBxEy+dnYcnZJgZf7BybbRjZQuvDuB884IVg8292VZiVa+ij29/JfhB8ePW4fTjy5r2QA+lC\n", - "rxl9jbrQq8Bly5alfQJ4bqdhbyAZTVkB6pI2t83k3Ie9cT8QWQqLvgO8nz1OcaAPh2K7uLnbIy9e\n", - "syUtnhPvJVmJGL8/jnYfep988sk0CAd4v8icx59pwuaSVh9K3YarGf9YW254n8Maa3LcflHCSorf\n", - "t4zN57Bc9pPtH2B2djZVgAzez357Fur43HcgzRSjcQfp7Irb7X249Tosx8I8OgXPuIAg/774d9W0\n", - "9KU+yZQbH6Ce6UGqXu1VVFRUVFRUVCwStURMRUVFRUVFRcUY1BIxFRUVFRUVFRXPMpbMR+q0005L\n", - "HfSwkn3kIx+JiIi3v/3tI+2mp6c7d9OUTSjLZpSv3NXi0HrRRRdFRFuuhPtUEnTaZ4rU+ZQrWLly\n", - "Zefe3SUf3va2t0VE6+DJ5zj84iPw0Y9+tOFJRNfJmDtlp/E//fTTO/4Uvtt2OYGsNIjLFZDy3/yD\n", - "FnxKLr/88k45AWBrJ2n53/e+9430YVq4+6akxIknnjjyvuVlu+22a3jocdpPg2fRnhIBPNs8Z9yU\n", - "zkBe5vN7Qm5dlsN+e4zDJYJo5ySx0E4JGkoQTU5ONvQ7jcdll10WEW3JH/sA+W9k6+STTx7ph7mC\n", - "NtYJfHz3u9+d+oIg/9Dy1re+daSd/SpYH7SnvIUd3SlDAZ+uuOKKzvxkPGeOkC3TAu2EULvsk9d+\n", - "GUDBfJ500kkjfWUJN7NSGDzbaSRYF7S3/9umTZua8XpfpA37IOuDvYi+2efcnj0IntP++OOPj4hR\n", - "Px77JyIr9G05R8YYN3sX85+VzOF9+P6Wt7wlIkb3H/sElnJb0moHfuAyPsieAyTgD7SfdNJJneSt\n", - "/i1Czl0Ky+W8GA9zSjk0rx/4yPf+6I/+qFnPTtsBX57znOeM0EJ7+wraT8tleex7VwbOXHjhhRHR\n", - "8txlaux3xj7H3oWMel8BLs1F/9BS0g7dlPxxolmXI6PvDNUiVVFRUVFRUVGxSCyZRaqELRPjQm6H\n", - "w2HHagNsHXLZAVso7PGPppFFFJWa/7iSGFki0Sy02FELLtPg9tu2beto3C4BAtDieN9WrixKaaEJ\n", - "yfraZnzJCiZDk/txigInWS01DSfpy6xBgD6sxfWV/CjhJHHbtm3r8NAWCD73s0x7loB1vmhW5p3x\n", - "OEWE1wF/Z2H/9Mer56wPWYRnlvzVllo0zkwWLSd9/p22KHiexqU/MH/Grens+2Uf8NDf8Xr2XrRh\n", - "w4aI6CYWBLaylRa9LFLWVqIsQaPfJ2IYuepLxVK2m5ubizVr1vSOE2QWCa9/+GgrGpgvEhPesP9Z\n", - "tmxR5PMsgatpsrXQsr5ly5aOhanPQlL2yT6Q7af+m+9hPZ4vajGLCM32Fu+HIEthAh+coLVs78jB\n", - "7PfNtLPukYMsujGLQF2+fHmazsTrN0sOmqFapCoqKioqKioqFokltUjZD4lToHPVOKna7Oxs8x1r\n", - "3rbqcPeblROgRIxLJnBCzTT7bdu2Nd/Jck44X4a1n0wLsH/OfCUlOJ3z6vIJAA3BFoWsdA7aJLTw\n", - "6u/NR+e40zx8g3bfSwPPibWFvhIxwPfupgltH+3m4YcfHvnccwQf+3KGZdZLl/7IcpMwPmv7Tp4H\n", - "mKPhcJjmxwG29ti3Iyusm1ks5stbxWeWQZAV382sxtDukiP0U47F69UWyXFwbppx+djYX/qso7Y8\n", - "Wzu3vEC7Ew1m7XmmLbkTExMdPjDv5mVmRcyS5Ga0+O9t27Y11ilbM5wU0hYG0wLNzAVjs49c+eyI\n", - "p/jtvdbrmTVEXx5PNke2ttm6CrZu3drMj9eU16DnjByHmcXGZb+8T5R8t1+Wf2sXWrYLGr3f8Czm\n", - "3Oun5Lt9hKGBvTcr5p3R4r0pS645MTHRmR9b6pGlvvxX82GsRWowGPzpYDC4fzAY/LB4b6fBYPCl\n", - "wWBw82Aw+OJgMNix+OyswWBwy2AwuHEwGPzCgqioqKioqKioqPgpxELUtCsj4o8j4s+L986MiC8N\n", - "h8MPDAaDM57++8zBYHBkRPxmRBwZEXtFxJcHg8Ghw+Gwc6ybnp7u+EaATPPqK8Ngy4DLD6CdoBXY\n", - "IuFitT6Jcu8MykyvvtP3OHyP7qi9LC1/Vq7EmvrExEQzLkcy+ZS+cePGEVqz0h/Az7JPzXylMDKf\n", - "BeAs0sCFpoE1L2tXpbzYhwPtJPN5srboAqkeC/Jgi2WfVcgWhbJ8Rvk54FmmPfN7KjPdOwLW2qst\n", - "snzXvg0APtgfDQuMrQzl9y2/7tu+HbaWuG8X+53Pd2yctTfzkYC3Cy2g7bVpP8+yL/p2pKTnCKuG\n", - "9yJrzdlYSsuefWHcxvuj58hW4Iz3gOcx1uXLl6dZwrOKD6xF88W+YrZ4er/ouyGALv9e2IJvv8bM\n", - "Updl0zampqY6lnb2rcwC5QhDYFrY042+DOG2DGURpADabGHKstV7j+N3qM8HF567XFUWlQ1oh5xk\n", - "vpT2Ey79nrLfOVvFs/nPMNYiNRwOr4mIR/X26yPifz39//8VEb/y9P9/OSKuGg6H08Ph8PaIWB8R\n", - "L1kQJRUVFRUVFRUVP2VYrI/U7sPh8P6n/39/ROz+9P/3jIhri3Z3xVOWqQ6Gw2Fz+sv8nICLd05N\n", - "TaXRZI4E4ETtIpMATcRRHVn9vLLWlttaK3F+JGu9WX07jzeLnCh5kGmzwCdx7vhddDNr76i/8vPs\n", - "Djs7zWdWE99pA9+/83ep/QJb+5zDx9oxfOP9HXbYYeT9jC99xUr7oiojujXFMr8U52AZZx0p5Q0t\n", - "N4t8gpYsUsztmW/6hRasAl6zW7Zs6ayVrD6f8wDxeRZZ6XWVWY/K9+yvx/jH1S90/pssysnWpT7r\n", - "i+tY2prR5/NYjsc+VpYX+7mUFs1Mq7e1I4tO6rP+z0eLv1f6/5jHlvNxtda8l3vvysY4NzfXKQBv\n", - "WbRPDO2yKFXLxzh/0NWrV3d+S9gPvIaw4jA+rxPDFnr8N/ssdc7BNC4/lK2pyIktd8AFs73v9lmI\n", - "oS/zQzS8HjJrqq3FpTW1z5evj95niv901N7wKWrns3/VcjAVFRUVFRUV/0diQbX2BoPB/hHxv4fD\n", - "4VFP/31jRPzscDi8bzAYrIuIq4fD4eGDweDMiIjhcHjh0+0+HxHnDIfDb6m/eriqqKioqKio+KnB\n", - "s11r7x8j4s1P///NEfEPxfv/YzAYTA0GgwMi4pCI+PYin1FRUVFRUVFR8d8aYy8EB4PBVRHxMxGx\n", - "y2AwuDMifj8iLoyIvx0MBm+NiNsj4jciIobD4fWDweBvI+L6iJiJiN8ZJiav3/3d343HHnvsKSKe\n", - "vpfcddddI6K946QeDvWt8NafnZ3t+J9QC42aT/SFT8ftt98eEe2d6F/91V81dDw9zojo+soQpQUt\n", - "1FqKaKNJ8AeAFuoyUfeL8fE50RnQcuWVV0ZEW1PQeWQcFUidqHe84x0Nr/bbb7+IaH17eAa1k6Bl\n", - "zz33jIiIvfZ6ynXthhtuiIjWL8N1vPBL4G7c9/eXXHJJ07ejK533h5pizKfbcc/OK+3huX2HGOP0\n", - "9HTDQ9oyHubfuciohcX8E43GXN5zzz0R0foIMP/ULLPf27p16+Khhx6KiIjzzz9/pG/q0iEHDzzw\n", - "wMg4XA8PueIZjgZl/t/1rnc1/djPgPFaFsmbxrzCQ+aOGnTU2rKPCZFC8PHyyy+PiKdqVjkCLquF\n", - "Bt2O7GGc9EN9O+bUeamgCfm55JJLGp4zPuafvpEt+qa+mWuQ7bzzziPvs7+wLng2finsL6tWrWra\n", - "uo6f/ct4FnPkvhkDexlz5fpm9vOYmZnp1KtjPnk2r8gsf1NTDDm3Hyu8Zl9EFum/lAGva/jC/O+2\n", - "224jfSH3XnPU5oNWxskehhyxX1DjcNOmTc38sHfwG3LFFVeM0L3TTjtFRLsmkXOehbxQm82+NpZN\n", - "aD/55JMbPyxn++b1E5/4RES0NQLZixz1yiu0s1/QD79Z9ne8+OKLGx46P1YZ+RvR8pD5hw+sA/ZH\n", - "nuX6dvw+OAJ7zZo1ccEFF0REW2vPtRbtt8VvEeNELpAXxgm/kHXXTy3nEvqYT9OS+aGyRjOMPUgN\n", - "h8M3Jh/9X0n7P4yIPxzXb0VFRUVFRUXFTzuWNLP5AQccEBGtFnPjjTdGRNdznhMlGtkRRxzRaG3O\n", - "RI12++CDD0ZExJ133jnyPidSwCnYWWSzTOicUA866KDGsnDLLbdERKs5AufoGZeRFW3IkWRYm5x9\n", - "d2Jiohk/dGL9yKJI4AsaA1pelhGcZz/66FMZMPrq4VnLycYFnHME7QbNAhoBGghzhdzA77vuuqsz\n", - "TuYbftCnc6+U1ckjWosN7yMXBnN7yCGHNO85UopxlxnII1rt17TQ5x577DHyfebd7cvcV+vWrYuI\n", - "dj6d7RlgBd5ll10iImKfffaJiNaiApyNnzlCdk3LcDhs1uS4XDz8vf/++0dEO0eso4wvtoY6x1tE\n", - "N8KT9QHPs9w80HzQQQdFRMSRRx4ZERFf/vKXR9oj294f+nIXWe4Zh61AwBo2c4V11LSzT8APrM0b\n", - "NmzorAnovu+++0aejawZzmkGP7M6oY5ILfMneZ4cVYYlCjl3pCTtnLOL8XuvK6Me165dGxGtRfLu\n", - "u+8eacs+AQ22qmdzBK2sC+TL+8Xc3FzTB1ZCeOr93FY/W/8sT4xz7733johWbtirS2sTawpZ2Xff\n", - "fSOitZLdf//9UYJ27LHO8ZRlWXdOOOfpKwF9tCmj8kt4/hmLaxMCR3+W0fCeT3jKHgQP4UcWMWnU\n", - "WnsVFRUVFRUVFYvEklmkNm7c2FgWOM2jeVmD5bSLtWDvvfeOe++9t+mnry3v0w7LASdP4Ltit7fv\n", - "Ce3uvPPORqvHn8K+LJx+0ZzQRLOcJvDh6KOPHvk+mvjNN9880n44HDYnZuhGs/I4OZWj9btWoS11\n", - "aAG2jjkrbdm34SzKBtYCtMTMamANDVqhsbRKou2hpWA1RNtB4wBoJLfddltEtNqc62ABxoocIGfL\n", - "ly/vaNLQgB8a/HCNKY/z8MMPj4hW3pnb66+/vrf9gw8+2GitWDGyrL833XRTRLRrjWfYagCNzDf9\n", - "zpdlm7bwEPpYHwANFBqQVTR285FnMrf06/pYEa2mbH+RzELHWkQDZf3wausoNOLfg8Xj6quvjoiu\n", - "BSMiz4Ld17Zsj/WIceITBJyfDD6vWbOmMz/IM/KKRQKr4Pr160faw2O+x5wiJ55T+IKVZdOmTQ3P\n", - "s3ql9AlssQfI8ote9KKIaNeV14NpmZ6ebsaL5SW7kWD+4aX9MQG/TawH5ggZznKmRbQ865Pbkjbm\n", - "H9rZa5BpgKxz6wJfbEUux8FeybPtQwqQLW4kDjvssJHvsz6Ara2sC9eZjGh56L3atAL44nxc9G2e\n", - "u9oHcz87O9t5Fm35XbT1yzzPUC1SFRUVFRUVFRWLxJJZpFavXt1o6sARNgANhVPwF7/4xeYzrBhu\n", - "65N0FqXASfzAAw8c+Z4ztQI0j0cffbSxFOBnYGuHa6Q5A7EtOWj08MV1jayprVq1qvGLsPZnujm9\n", - "H3PMMRHRamDwxXfeaKJoGPDN9/0Ro7WM+saXZQenD/tWWSNBo4CGa6+9duR5fA5PIlotxhmIzRf7\n", - "3aBhog3asoemyjOvu+66iHhKg7GWznxbQ8pqyjHuz3/+802fEf08j2j5uttuuzXaPXRlVgCswKyl\n", - "PgtjOW6PwdGQZf/MB7KUWfXo2+u5jIAs4WzaWAOY05IW85jPvO4NfEHQuFmD1khZk1iH4QvPK62v\n", - "aOX2M8IKaJ7zXWQPa9G4LOWsm2uuuSYinhpzZpHGkoac49PjvcgWGfpztna3Zw1MTEw01ivv555P\n", - "5AS+ZBaKW2+9NSLaOUDWM1q22267xkLGOmVOAOPmdoG+keWswgN+Scw/68TWke22265j9eiT2/JZ\n", - "PNvZxTO/JPY4+8yVfGHc7HeuR2d5gQbk3DVZbcGC5zwbHz3WT2kJZPzMH8/OKj4gc/CLvqAxy4XJ\n", - "GMt6kZZF6Pa8e/8Yh2qRqqioqKioqKhYJJY0ao+TJSdn1/PJ2q9evTqNHrB1xDkqfHp1LS7fu2an\n", - "3bVr13a+k1XGRuNynSZrmq5/BTiR99X94zu2dpkWV8xGU7AWBFy/ifZZ3TfoKfsEWW4O+MKp3/mz\n", - "gPnM9/qsadDnaCr6tmxZPtA0XasNWANFk52bm+v4gtlHyJq4eQ7tWFldY9H9l1FRzFMWOen1Yi3Q\n", - "PHcNSmA5K+F8an3+ERFd/wyswfZ9ANDG+2jXfRE1jAft3JGz5iFWE88n7bP9xfyerwYdfHENTa9/\n", - "57JzHrbMgs37PGfFihWdvr13YOUwb02LLVPZHmdr5LZt2zr0u63rYmI9yiKlMkuOUVq22beyaGb7\n", - "xNiylLV3Pq75fPFsUcqiWR3dTXtHwwL45b3LeadK0Icjx5El4HXj3Hbj9nT6p11JC7zyGsssr/Cc\n", - "OXHtyqxOKPtQ+eysji/ywd5rGsehWqQqKioqKioqKhaJBdXae9YfWmvtVVRUVFRUVPwU4dmutVdR\n", - "UVFRUVFR8f97LJmP1CmnnNLcoWfZRqlZRm228v7aUQcXXnhhRLQ1fwDtnD2VWnvU8eF+ljt1Z3Z2\n", - "rb3ly5d37mzpg5pCZ555ZkR0895w7wrt1CCjPcAXhLtwxkDdn1NPPbXpyxmdXQuN+lO+2/adObTA\n", - "cz5njPjO8HrppZc2beEVbR2FQS0k5sh33dDsenjun/bQMDc316mFRt+8OoM5PPT820cCvp533nkR\n", - "EXHWWWf10rJ58+ZmnK5X5rxhrqGIbFEnDloc9cb7tKdO1MTERMfPkL+ZT2rK8bnroAFqbdG3a1oC\n", - "5Ih1d8oppzTjRJaQV9Ygdfze+973jjzbfne8UmvL9c0cDQofL7nkkqa+Xeb7xRx8/OMfHxmnLfOO\n", - "8qOmHPLlfEOMcfny5Z2akh5Xtv5d346+7X9Vrv+yPfvFE0880eHhOeecM9IHNDBO6Gec7BeOjLNP\n", - "JWOlfl5ZH9KRUF6jjngEjBe+MP/Il2lwbVbW9LJlyzrrAl65pqQj5Ly+2YtY/8BRX/49Kn/ngP2o\n", - "4PkJJ5zQ2zegH/iI7HrNA2T9Ax/4QLP+s76Zt/e///0REfHGN75xZDyO1qT9n//5n0dE97fLud9m\n", - "ZmZG6g+WbZyzjlfqpyK7wL5izP8f/MEfREQri2WdP8bCvFJrD1n0GcRzBO0ZqkWqoqKioqKiomKR\n", - "WDKL1GAwaE6StgYY1iqXL1/esTC4Lad057/xqd0REpxis+gUMDs724lM8HccITYuOsG1huBHlrul\n", - "fLZ55LbOOcMzHOUIHFno2lvl2KyNOXLOyKwh2Ry5H2u6fVm8zRdrjsAyiNab5ShxZE35PL9na5hr\n", - "QBmOthnHx/LZts5ktAD4kGWdtzXRubD6aOfZ9J3lBeNzZCjLZWZaLON90a/WmM3zLPLR7W0dzWjJ\n", - "2kV0ZcWWNEcEZVGfHrdp74sKy7LsZxF0Ge9pPy6PECitRVlEsCPkWJsZjZ5DR1SZ9+We5ug089zR\n", - "2Z6bLCu9I2+zjP/D4bAjYyCrPpBZ9rN2fO6bkXKvMw+9njNZzObZY8n2HdNY0sVvCTnwsv0R2cwq\n", - "W/TVoI3oRvlNTEykdRlN/7gcVUa1SFVUVFRUVFRULBJLapHyyTnTYDm5csJcvXp1pxI48J0/p1jy\n", - "Q1hjcDVzsiZn9/fl89B2eJb7pg9rYNYcAPlReMU/IavNFJFre9mp3lpcponaR8R3yGX/mQaZzSdz\n", - "YmthZqmyVpDRHNHlkbU688V+N8BzBZzDqqQt017sn2GfOZDxyxonKDVzy3FfLbyyj0wTN81em1lO\n", - "s5UrV6aWFvPFlqvMFwRklgfGUra3D5hz0Jg253izFSnjo2tVYsks2+PrYUur8wkB59GyVuz5Z29i\n", - "DGjqTzzxRIdu8mVlPm9ZpmrP1Ti+lJa6LHeXrdzQbb8aYCsjz2D/MB9Ly1YmO4B5Y3y+HcnWqMeW\n", - "3WRs27ats/Y8LoAsYWGBD1keKeYwy51XtvfvZGblBbYSew6zmx3/zZhKvsA7xskr+fayCg70RQUR\n", - "qm749wI4h9jmzZs7v2uZD232G51hSRNyesPw4ceACdPT0+mGzsBhNiVUfMByn4DND8ZmhUW3bNnS\n", - "HLr6rtwiukkgvaF6M/NmR/9Ojgampqaavr05m4dOMGeTqxepTde0d9LF8rvZNUqW1M5/O3Eh8Oad\n", - "HczK/3sDhU9ZYIOv/pyoE5CYjv4xS++www6p06wP2tlVlhOTcpBGLrKD2nA4bDngeHgAACAASURB\n", - "VOigT29G3jiRezZpy4vlxD9+fbR4nNlh1H35oJkdJH1V5ECJ8rsuK+G+AOudUikONuhLghvRygn9\n", - "912neLzzyW1E95AGP0sH7hIO/KC0zHA4TK92vSYzmbKS6OSJ2b5b7hsO+DDdmUtAluzRh53sWqpP\n", - "prN9zjQ64W7m2Ew7uw54vygdnBlXti4crGFZy662nQyU/stkur6S9cHBsmgFAzB3mSsIhyL+Zn2U\n", - "tNAn5diQaweEAYqbs2dZhk0j/fBaXv1lSbC99rLzRYZ6tVdRUVFRUVFRsUj8t3A2t1bkk7rbzczM\n", - "pCY3p+4fVyoBuPSDrwiMycnJTtkV921tzpqGNSkKpmKBAJg83f+yZcsas6UtL9n4Mt5mViBfjWVa\n", - "ZvmdLHU/sHOsw3fHaaS+Aivbm4bMsRu4/IpN95ZN/naR6ImJifR6JCtanV0bWDvKNK+ypJA16MzU\n", - "bo3LIeXAzui+yuy7IrcVIwuSyKwlmTndDqFG2T67/rMJH1j+0cRd8BRYXhysUVqNsquWzBpk64eL\n", - "oGelk/ocqG15tcUI7d7lfEy7i0D3XaeWNJQBMg4qAF7/dmi3nPuKk6tAW/pNS3nljZxnJcJ8tZtZ\n", - "6qCxLIRbjqXPmurAHpCVNrFFd1yQCpjv+s0BD6Y3s9R4rxoXMGUa+2hHrj3f2RU2FiVkls+zGwxf\n", - "R9Pv1NRU6mZgvmS/lxmqRaqioqKioqKiYpGoJWIqKioqKioqKsagloipqKioqKioqHiWsWQ+UpRP\n", - "iGjvpbnz5l6S8gOUTuB9/IIiIh544IGIaNPskx6e+1TuY7kL5a6fFP5Z6RSega8EKeJpPz093dyn\n", - "upQHbU03tHDnzyvlB1xmweAumNIJ7373u5t7dcZLpB9+CPCF8iP27XEEDKUTKLPAnMA32nGvfcEF\n", - "FzR0A9/Hl6UKItoSIXx+9913j4yB9n/5l385whdoZm743rJlyxpZcYkg5gjeQzfyR0kRQmWBI0k/\n", - "9rGPRUTE2WefHRHd6LeZmZmmb+afchL4vBFVZX8T5uitb33rCM32qaM95Q3gy+bNmxue2UcwK1dE\n", - "tBrzixzRN2Ucdt9994iI2GOPPSIi4v7774+INvSYcjhnnXVW0yeRjdAEb5Fzxrlu3bqR8Tqi1mWf\n", - "4B8yS0oTIoPOPffcOP7440fG6Wgz/GuYI8qPOLkr+wo+k+U4S1rtW/Tkk082a+htb3tbRLRy7jB2\n", - "ZPLcc88dGSc0Oz2E55/+7Xu1cuXKpi08L8umRLTRzIyT8TBOaEH22FecFJF1x75YRlTZb499C7lF\n", - "9rxPuNTS7/3e70UJ5Al5cAki9rrly5d3EqYyn8gWexHj45W58b7IOmIPgs+sC6I/KW9y+umnd8p3\n", - "sTbpm/JTrDlgnynauxSOfzfpn+dedNFFzXyy5vbZZ5+IiLjuuusiIuL222+PiIirrroqItryM/SF\n", - "/65/P9i7XDrnwQcfjIhRP0HKlUGL5RtfKPpm/pGt0tep5I9LBMFH5oi9euvWrR3ZYv2zRzu6G5mk\n", - "LE+GapGqqKioqKioqFgklswitXHjxuYUiIZOdFoWzcBperfddotbbrmlt1/nJMoKogLn7OF7nEzt\n", - "Q4ZWsGHDhuYz6M+iTXbZZZeIaE+3aOymhffpD82Lk7qjX7Zs2dL0OS7/iaOvnPvJgG/33XffSDss\n", - "E8xFRDcnif82X7KU/mjJ/hw+OKKiL/oJLRUNCp7R9/7779/bt/MAZdFJ5GuiXzTziG6OKmhxKZSs\n", - "XA3v8z0+R34MZPaRRx6J9evXR0TEXnvtFRGtxgmwICFbTpiXRYwdcMABEfHUmovoat5gOBw269nW\n", - "YFua4PWdd94ZEa1GCc2WF+YCixc0wJ9yTh3Jk0X6gVJbLV/Zc8r8NxHtOmPeoc2RtiW9jpDDypdZ\n", - "np2okrlhfwC870jC4XCY5kti3dI3OXr6kv2W7zsCddy+MTk52clFB8wP5syJNk0DfGPe4XlfNDNj\n", - "Zv6Y16wUij/P1j/Yd999I6KdY/YF9//44493ysjAQ99keF8oo3IjurKMJZZ15PVQysCuu+4aERHH\n", - "HnvsSJ9ZLi7PmfPTWXaZUyehdhm1iJZnLt/jvHKAucHCxOf0k+V6w7pYRpJ6PmmLBQ1a9t57795x\n", - "ZqgWqYqKioqKioqKRWLJLFJlZnBOgZx2ncGXE+XatWsj4qmTZZbnwflg6NvWL4BWb80T+ESKJr5l\n", - "y5bGUpCV/HABXOfysdYILZy8XQLBGsyOO+7YjMeWKWsvmQUiK17Lad+nfudNKd9ziZDsNM84sBIB\n", - "NM9bb7115H3ndnK5itISZN8mvoPGxHiMMit0RDdjNbCfC3K1Zs2aNJs82j9WHaxDWM0A68GZvhmv\n", - "ZRQLxYYNG1LrBMBSleVJsnWMtUa7m2++OSJazc0WjPvvv795D8sycmwLI7KJNQQZhuelD2T5LLR+\n", - "W19LC5Z94ZjvrPyOtX3Pr9eorUSugFCuO2TOFkZo9F5kK0hWSgk41xsYDoed+cSCgtXvrrvuioiW\n", - "T6VlNaKbPZ69yVnXgcuZTExMdKx7gPHTp318bJFk3dD+jjvuiIg8+zZrcmJiohlXX/HciHY/Z1zI\n", - "PXNjS81RRx0VES0focXrr6Qls7CZltLfshyfy9B4nMgXY+2rbnHwwQePvAfdfNcy5H3fvM4KybOG\n", - "nVOulBfnl4Ne5KKvgkdE6xPJuJ3JHTB3fcWi3Zbx05a9y7wch2qRqqioqKioqKhYJJbMIrXjjjs2\n", - "p1r7wPhEysn13nvvjYinTr+cmH1K55TqgqGckH3/mtV7yjK3lgWFXdMpO6VnVh+fdjlpW8vNMjtv\n", - "3ry5U2MtK0aMNuf6Tdl4aYcWwCmf15IWW6ScJTbzp2CuHAHn+UdrgH8uhFlqU3yGP4WjTMxDxoM1\n", - "yBF15qNr7YHp6emO5cXZg9F+7ccHbIlBQ+P7fiZj2X333TvRJrYYuEAoWh7asmvSsU6wGjEH8Kkv\n", - "gzj+c4wLut03NCJbrCPX6/I46df1HsuxZsXM+2QlopvZ2rQYjhy0rJfy4vnLiu8CxmFLXlZ9wJFF\n", - "0G5fqojWr8xRetk+x/6JZm5/J69prEZlJF62LwLaumap90msoFhR4B9y5TktrSLO5O81hPzDc+9Z\n", - "ph1a4SOv7N3+fVm1alVn3uE5fYG+7Pglzf69sG+hZbe0hME7ovP43cj8r/jblpmsULSLgmfFziPa\n", - "dUEbV7bwfNr6a4tbNqegpCHLVM7tCL5kWfWRDNUiVVFRUVFRUVGxSCyZRWr58uXN6Q/NxJW0AZaK\n", - "8jWrnWXtLKuxBKzB0h6NzLTQ/9zcXEeDyqw6rm6d1VpzDiCf8vtgTRoeuW/feZvX1qSwElqrxhpQ\n", - "at6uoO36ShnvXVvOfhaAZ5a1Fsv+Sxlw5BwaFXPgvtEk8XeDD5kfm/NplX5htoLYYpnNO7CfhS20\n", - "mR/fypUrO7ljrNX2WRLnowlLFMASY18isOOOO3YiIOGHeUi7TPO0BYsxoTVCA1aEcqzORWbfKNMC\n", - "ra61lsmua9BlmnlEV5u3JS3zqbP/WhY5Bq22Lk5OTqbWS0ebZtHJ0Eo77w/jrOuPP/54IyO2pDmP\n", - "nq3ptqbaQu+5tAUC6/uWLVs61g6vC88zNFiOgKOBfYtgPq5du7Zp69sP04I8m5bMv8+RcY7ILucE\n", - "i6QtkRnd9r11/U/TkvkW9kWom+f8nVmNPc/2IfSehp+bo8effPLJzrrg9w3ruGnxfpGhWqQqKioq\n", - "KioqKhaJWmuvoqKioqKiomIMaq29ioqKioqKiopnGUvmI0WdoIjuXbDrflGbp/RLcK4dauFQx8n3\n", - "0dz1cid6/vnnR0Rbx4n29tehvWu5lfeyzmlFHR/GmOWu4T6WOk7U5jOgjXtr+HLWWWc1dNq3B7ov\n", - "uuiiEbrdDnA/T222U089dYRG5zLh/UsvvbSpywScoZa/qYUEz11Dynfa1Amjvf0wSv8H+natPfvS\n", - "MW54Tt/2y3COHuTLNcjKKEjz8D3vec8InfZ9wBeI9tACjfYJgy/QQt2vmZmZzt0+QG7Nc9OCnwX1\n", - "EJlT+wjYpwZZPP300zu+Cs4tQ9/IFrCvm2ttmuf2T+P10ksvjXe84x0jfbiaAN+l7pdpAcwBfKFO\n", - "HHw0rdCwYsWKZpzUfLM/kSNr4SH7hdcY48Zf6eKLLx6h3f5tZR1Q9iLqjzmSjnGyt7gGoX1qXO/0\n", - "/e9//wjtpazb/yzb5yxjrhNJe+8r8Ml1//pqljJf5jnjzKK36ZvafPDcvlOuvQgfTz311E5kp/ci\n", - "1jNrzjnwAOuI+adeqH3E+uQLnjgyznuT5YW5w2cOX9ty/y/5wv5g37S1a9c2v0XQwvgcOcgzszp+\n", - "fO49m/6pn+i8ZFu3bm3eo75luYeWfHCkLOs/Q7VIVVRUVFRUVFQsEktmkSp9s8b5afXlPsoi2WxZ\n", - "chZVW4ey97PIqjL6xfX7MouJae3LrVH2nWUKN03btm1Ls+Rm+TKyvgxrUfOBZzkKI6PFVhHT5Gda\n", - "a7Jmmo21D5ncOOu8K40DW6KYs+np6c4cWNMyX9zeUYx+RhYVWv4/yznjPrLKAIb7NX/K/rNxGlmG\n", - "blsDjCxSroQju/iOM/MDNGzzPMsjZEs4n4+rzdbXVzaObPxZJJ75Pt/aXugc0c6Wmixa2nmDhsNh\n", - "Zw9238DWQ69/r3fLolFGpFne++TWdJftszXblzW7D7Ozsx2ejVvPtoZnEcT+/rgovz6Mqz7BM7kl\n", - "8jwDLFH+Perje/b7kK2hLIox2+uyWqyzs7OpdTj7jV4oqkWqoqKioqKiomKRWDKL1MTEROeEnllq\n", - "XFG6PIlnOUrcV19ujfJ95/qwn4L7n56e7mglzn+TZQ9mHNYwnOnVuT6cCXt2djat0m1kJ/Ess7mz\n", - "8WYaeglrUlktMJ/2rUln1b9tRbH/WzlOW7kyS5wrroNMc3d/Wa26so/MOpppu6WVq3ymczeVmr2f\n", - "ZViTzCyzIMt4nFmy5ubmOhbVzHpln6hMK8xom8865hxsnt9sPs0/vuf9xfPOenMun/L/C80L5PHb\n", - "GuT5p719ZPr6dg1OPnf+Hz97IdbQvu9t27YttVBnsuV1Dbz+yfHkSgegL5dexvPMIpXtd8515LVs\n", - "Wqanp1PrsN8fZy0ZlwtxvlxPmcWtbw8tx4F88Ntmq7lpyG5hStoZp/NHZtYxW6LH3TL5N7/cA7Lb\n", - "jiyze80jVVFRUVFRUVHxX4wls0hNTk52LBGZNm2ryWAw6GQwB5ykORGT5dbZUA2fdukny1y8ZcuW\n", - "jjYyTsOwv4a1F2eR9Zg81sFg0HnmuFO9NY/MFyDzpenTijIasjt6a0W2YLg/a4G+ty8zBPvZtjSY\n", - "/qw2XSaLmR/PqlWrOv5U1vrcp9tnY8j81co5Guf7ltVDzCyS5rmzrVuOBoNBWq8ys3Y6iinTTO2/\n", - "BvosWNZWnWnZ819WKijboYET/QqQNUf12I+zpCXz7emLtusbV7aekF38vEqa+uanfGUczOu49W+Y\n", - "RvorLTnO6O621BL0/u+16PUDzcyR+y/3esu515znyD6BmaWCfuFzVldw2bJlHdnKLHW2pLC/ZRUC\n", - "+DvL8F3Ki+lGdtwHyCLqMgtOto/2VRRgvpgL2jBOyy6Aj765MV8yWku/Zvc5zpduHKpFqqKioqKi\n", - "oqJikVgyi9TKlSs7J8rMa5/Tbulb5BM1sJ+SP8/uUx0xktU3K+uJWcO0tgMt9O3IoXG19pwvx3yZ\n", - "mppqTvfj6trZd8S5WLLoNDCu1tJ8yHxkMkue/3YEiev/lXNsHvFZVscJMK9oRZkfky0cpWxaVjKr\n", - "gPsCWE/tEzLf/NPeFtfMeuEIIP62Vg/oj7FlfkyTk5Od9WyrDch8vcbVtwPzRaVZw/Z8ZeufWlvM\n", - "QTb/lkX70pRjtcbNZ1kNPfYLtHrX/3NtNnIc2So2HA7T2nn2t+PV1nHvuSCzYNAe/s3NzXVqi5ru\n", - "zEJj+bBMU0sts6YxlyXt9g0z3ZapLFIuu2XIbjqmpqY6bfr8KUu4RmG2TzJ+51djHZY0eR3wjOwG\n", - "w7+HpsF8ZE5tyevzY0NG3Be+beOiE0FmBfT+WdKU+YZm67n6SFVUVFRUVFRU/Bej1tqrqKioqKio\n", - "qBiDWmuvoqKioqKiouJZxpL5SJ188slNvaZHH300Ikbv1yPaWmuun7Vq1apOFBm1kN73vvdFRBvJ\n", - "wt3tQw89FBERjz32WEREXHXVVRERcdJJJ0VEe4fL/Sp/c99MnagTTjih6RcfAOjFd4daSNROynJT\n", - "uaYgNYjs10N0CzRRg+i0007rRC/y3QcffHCEbmpKbdy4MSK6fltlvTL6jojYY489Rj6nZhn+Guec\n", - "c05ax80+DNRCguf2+WCOdt555xG+MP+O1kB+ItraVmefffYIH2655ZYR3uGHwjjf9KY3RUTrI+Uo\n", - "Ne766d9zij/Lbrvt1tDFOOELtCCTzMHuu+8eEW0dpxNPPHGERvgJn/AhoDYX9c2mpqaaNQS9yCK1\n", - "szxHjO+BBx4Y4SXjPOecc3pphj+sVWg/7bTTmvfok7XE+9BNDUJoYN6dL4n21P2CRngObfjMXHTR\n", - "RfH2t789IlqZY+3ss88+I/RTa5O+4Tnt7UPiup/wEd8j+n3kkUea9UktNMa1adOmkXHzvseJrLK/\n", - "2Ffqsssui4i2lh+0I38rV65seMR8soZY73vuuecILx9++OGRcSJbjBNe8wzG/fGPfzwiWtllHQ0G\n", - "g04kFzUI2ecsqwDfl/POOy8i2r3L8gFf4Cv7LrRPTk42+xUyAk9da5NxIbOsp912222kvWvK+TeM\n", - "McPHc889t5Ghu+++e+RZfJffOdcJhW+77rprRLTrn3Eef/zxI8+85557Rmjmt+9DH/pQM07k25GT\n", - "zCeySL065t/1/5gjyxd7HXMCn1asWBGf/OQnI6Ldcz3v/s1lj+b3wvmnGANyxLpDXhhbWavWtRZZ\n", - "o6xf5jGbowzVIlVRUVFRUVFRsUgsmUVqamoq7rzzzohoT+qvfvWrI6Ib5YMmUmYfP/zwwyMi4rvf\n", - "/e5IW07CWFI4xf7kJz+JiG50CloNkR5oLJz+Od0DTvkrV65sTry85xO282McdthhEfGU1lrS5HGi\n", - "1UHrzTffHBH9kVVoO5y6b7vttohorQAeJ5qZrVyOjIBvt99+e0REfOlLX4qIiKOOOioiIo488shO\n", - "W/qib0738Ac4/w193nHHHRHRWigA34dfz3ve8yKi5cfXvva1MNCwr7nmmohotVsskoA5Q1O5/vrr\n", - "IyLida97XUS0lj2AbN5///0REXH00UdHxFNyg+wB/sZiwJwgs44goR1ziRXoRS96UUS0cwHKjL/X\n", - "XnttRES84AUviIiIvfbaa6Sts+MfdNBBEdFq9/fdd99Ie2hlTl72speN0PaP//iPHVqcQ4b5LS2H\n", - "Ea0myXh4xm/+5m9GRDsHwBGHn/rUpyIimj3gkEMOado6utB12rB2lnRHtPJy7LHHRkQ7F6YFONrn\n", - "rrvuiojRdcezkVv2gRe/+MUR0ZUt5sYyyZ5kPtqKztzss88+HTmHXvqGtm9/+9sR0V2jrtaALGPh\n", - "2XvvvUfaw0eeu2bNmmbvZB8A7DW77LJLRLS8dyZq0+7s/OvXr4+Idr8EyNfGjRs7UWrsTaYFq8+P\n", - "f/zjkc/ZLwF84vfhwAMPjIiIz372syPvgxUrVjR0Q+9xxx0XEdHZL5x9nPXDGDxOaGGf4HcUGS7l\n", - "xRb25z//+RER8aMf/Sgiotk/AONg3TBHrHHmDsBzXuEnVrK+PFLspcxJFrXv3FfQdOihh448AzBG\n", - "+odvmzdvbngKmH/W2E033RQRrdx7/jMs2UFqxYoVzQJ7wxveEBHtxnLjjTeOtIWxbPaTk5OdEFqA\n", - "UHEw+vrXv948LyLiiCOOGGkPYx1qilCycQAEaYcddmj6YiK9iGwmZnxZ8VWH3EIbguaNdHZ2thnX\n", - "vffeGxHtxPMjA+iDBcW1EhuH++bZ8PyXf/mXI6I9oJaHQJt7WXS8Zj/q3jB+7ud+LiJaof7c5z4X\n", - "Ee3CYeOBn6961asiYlRe4Dkb+kte8pKIaH/gvvjFL47QwsJnbjggIl/wFbDwfCB9+OGHO6VtfP3D\n", - "nGRlaZCt8scoouU5V2bu/4knnmjGyasPo/Ca+eRHDtp8zcocwevvf//7EdHyp6/4L5sP68KbFmB+\n", - "uXblMLrvvvtGRMS//Mu/9H6PA9crX/nKiIh4/etfP/J+H+AZSpvXv69ob7jhhohorwKRJwAfmSPk\n", - "xlflEa1scOj+pV/6pYho5diHV/YPH16YS//AOIkk/T366KMNL4GTGbK/IceZ8sqPkFO3+Eed/lES\n", - "V69eHT/84Q8jolvCxrQgY3arAFb62JMZrw+BtL/nnnuaK0z2yazYMn1zQITnWXkbgDKAMsj4v/CF\n", - "L0TEU3KFnCOnrGd+tAHzD60/8zM/ExERn//850doAv7t+53f+Z2IaPfjco9mf4deFMyXvvSlEdHK\n", - "8Te+8Y2I6O5ByAPtPEcuJYTCQvvSyOCUG9l+COwqgrGA8dnY4cLJHOoeeeSRznyyxqCPK0pkjH1j\n", - "HOrVXkVFRUVFRUXFIrFkFqm5ubnm1Ip2c91110VE1+SJJsbJc/369Y22i2kVcEpHM+C7WAOyEiGc\n", - "qDktc4rNkoNNT0832jyakU+7NkljOeH6xVYgaGD8XBdgLbDWODk52dDDd+jTWqDLcaBZoQ1aw4QP\n", - "+++/f0REHHPMMRER8ZWvfKUzVjuZOxGpk6TCN6xEaFxYAQ4++OBe2vneD37wg4joWngiWm0MTRvL\n", - "GxoYFkvTznjRLOnH1lH4x5jQ3LZt29YxA9MnmiTmf8aZJfHDmgptWElsHS0tUs997nMjor2K4hoB\n", - "MBeM65vf/GZEtBq4r6Xh+QEHHBARrUVqv/32i4iWT2jew+GwWZPwzM6yANnBWoCMcYVt2bVcIYuM\n", - "9Tvf+U7T1skbnfwv4zn8wSrA1YWv3+zwDE1clZbXWDwT6xBtv/e97408Ezg4A/5gFfD+wr5g5+tH\n", - "Hnmkc81qR314zP6ZJc1lX7Elx3PEWHjOLrvs0tBlS6qvmdjXsex7X4QW9ihowrpo2aX/1atXN+Nl\n", - "j7YLA397ntknnByUv5GrL3/5yxER8ZrXvCYiuldBk5OTzXtYc7MCx3aepj0WGFswy9uRiHZPZ48u\n", - "k+eynlmLWJ6wjrHnAAcCMCf0Y9cR2nMLwV6ABay0BLs0GDx1YlHgxJ3QgrXIFqksAer09HTndy7b\n", - "F7Gmsq7HoVqkKioqKioqKioWiSWzSE1PTzcaGtqznSwBd958fuCBBza+K5nlhdMrDmnA97BoL75D\n", - "t+Ov+5+ZmWksBLYgAE7Y69atGxkH1rKsXAlasUP27UA6NzfXCQV1GDxwKRw0B0739pFx0UosOryP\n", - "w+yVV17ZKb+A5QieZmn50WqwMNA3tJkfWJfsrFzy3bTYvwJH9U9/+tMj44NWrD9ovXZOhn/IHa+r\n", - "V69u5hVAJxoVc4XcZMlwkUkXsbZ2zBhXrlzZWC+hG4sRfmb21+JvBwgA+kGDxfqHX4LXxdq1a5u1\n", - "gQwity4rYwdffEiQUdYLQPOGj1i86Bfn2i984QudArfIN5YX+zG6nAavWEfsKO3SEU43UvbPPKIF\n", - "4yuFtSsrX2Ua7YQMXN4Jfi9btqzjy8M47NCblS1hjthzoInv24LjMjgbN25s6LLFwPQj11g7swK6\n", - "rBvGiex6v4BPWFsiWrk3X3g28s56dpkj08yz8TFC3vx7tG3btma+aYMlNfNLxJrz13/91xHR8t58\n", - "ceqbW2+9NSLadVXeBMA71gP+pb79AfDL+ye/dbZ4upSMfXbLmwDGaTlHRr3n2nKHnCBXmTUdfmV+\n", - "XeV78BArF+cG+/dmqBapioqKioqKiopFopaIqaioqKioqKgYg1oipqKioqKioqLiWcaS+Ui9613v\n", - "6kRvcC/P35RCILcDWLlyZSc654ILLoiINuU796/2r+B7pJMnzT7tuJ/lbpw7VKfCX7FiRScZJvRT\n", - "ToBSBfjGOBeL0+xTOsP39M4XU5aI8N00fUI/qfApbWC+2f+GUjuUCKBfnsNdO/y9/PLLm7Ip0Gdf\n", - "McZNiQhKYeA7wrOd/4P28LEsgeHnUE6A+Tev+S7+B5RCoMwG7fzKs5Avxmr5KHO8XHHFFSN0A8Zp\n", - "Xwd4Tnt4zvhoD19cxieiGwnFeBknbekDup14j3VBGQ/zwb40lE44+eSTO9Fj9i+h7Tvf+c6RPi2L\n", - "PIPyNpR8APiWQDPr5cMf/nAj546uc6QQskXfXmPwhWfBR2j33JR/Mz8ubdKXWDiiLbPC+ncpGfpm\n", - "DbJfILv2tSr5zl4E3awx9w2Y/0zO+T7jplwJ8lXKR9Y344QPnhuX5aG8CbTgt4O8MP5PfOITEdHu\n", - "0TMzMx1Z4Tsf+9jHRmjxOGkPbR6n9xfv2WV5M3hlWYRXyBZ0Q4vLd3n/P/PMM6MPzBFj/chHPtLM\n", - "J7R4vwDsc6x/R9TBe/6Gj9AC3+ADtM/NzTU8IfGuy07RFt8uEu+eddZZI7TbZ5BnkXTZpbnKOeK7\n", - "7C3l73lE6xvm/HKs6QzVIlVRUVFRUVFRsUgsmUVqcnKyOVE6h4vzpXBqLk+kthwATsw+lbvMBODU\n", - "yimYZ0OboxPoZ9myZc2pHs3KtPh0zncZryNI6MeZv615gampqWY80OLTfdm2HD99enzAmrY1tHKs\n", - "1hDsd5flbvG4+NslImwt4Hl9tPB/lwgBWb4ca1wuqeLvu5jr1q1be0v4lLTwXVucAFpQxnvnHaLd\n", - "zMxM0xYZspwDl0Sgb/Pcc+m5cv8TExNNX4yP73gObJmzhm45t1XBc9wHPrOseP6JtGTvcZZ+r1Hz\n", - "wxG25RzZuuF5z9aJo7F43+OlX6/NmZmZDg+RTefkyXjoz12+xXNqS9VwOGzGZx6ahrKwbdmH4XVk\n", - "fs03DvcB6Mu3BMxvn5yX3/NtSt868jrOeI/8+7fH5YiA58B7Utnetyfmx4eztQAAIABJREFUi3no\n", - "0kqGx1lansrv25pe0sBrH7198HnB/DRtvJb7TJY93fNIO1vsMlSLVEVFRUVFRUXFIrGkFilgbcCa\n", - "uk/ek5OTadtMkyA7cFacl5xGnIqxTDh3T5kp2UVDXZeLMdIOnyCfekGWs8p35mBqaqrjP0GbPutV\n", - "2ZcLO86n1UV0NbGSL767Hgdo8x13dm9vq4LHVOZjYRzOm4V2l1k77FvkZwFrXHxv1apVnQzuztUD\n", - "D23JNJw3JuNrOVZbu7KcU7bqIZvOsWKNMst5VI41y1js+bR/iXmajddaMO3L95lP+jANtnYgF7T3\n", - "uLz3APtF0m9plYSu0oo9H+yPYouUrQPOylxq0Zm1wvNJO2eqNk3k6nH+NGCL3GAwSC2MnmdblrwX\n", - "2VoAj1k/pp05XLVqVcdXJ7uR8HftG+j2zpuF3JmWZcuWdfLpZdbyzAqa3UiAzMJf8tEWM+8t5jnj\n", - "Mf9s7QHwyVYj2pV1N+23DDLLm2ket3+6EgDy0pdfzfu/fYKrRaqioqKioqKi4r8YS5rZ3FFpmQbj\n", - "7NNzc3NpXZ6sfg+nUmtSttDYV8YofYqgi/ey+2Q/K/Ml8hgyawDYunVr6ndhiwrjZpyc5unbvlJZ\n", - "Nl2e56y0JbIM78AaJrQ4CgvYsmMLVml9gS7fozM+j9O0WH6seSEXtoiuXLkyzVTvyEH7MgCeZWsB\n", - "33MmZPg0GAzG+oJkWqtrTQLWouUrk8UtW7Y0PFmoRc3I2ntO4ZOj4CJaXmW+UVl9O685eG2LhP1Y\n", - "3G9pVYYunuHIscwi7TXK6zjfw1JuPE77GfIMW+JNC7Qj90RaeR3Bt9LnMLPyIfe2Emd7i/16Mt87\n", - "UFo8Lbe21GY+Q7ZUur2tYq4YAaanpzv7lv3wgG8N7L9o2h3lDGyNL/vKLFGeT8ui5d28J5rb1uW+\n", - "Pd1WPZ5FxLz3XOQFWh1Z6znC79E3HBs2bOjsc/alhjb/Xo5DtUhVVFRUVFRUVCwSS2qRstXAWjNw\n", - "Po1t27almrRzDHGKt9YDHLXhOj1Zjpa5ubmOP5Y1gyw6yX0BfGwYL1oPWmCfH4tzrzg6A9jiYm0o\n", - "q80FTZzu+yw75qExzs/EvgGm3eO2z0lpkXAOHmsYvld3fhxbOjNfE/sKTE9Pd+i0NcTPyny+zEfk\n", - "yLRYGy6/m0Wn2OKCDJovjnpz7qMs+qmkx1FlwHyxFcntsYZAsy2ZfVZikEWxArRgW8ft3wgsF1h0\n", - "PLcRrSbNuJBBWyIBn9tXyDmKAM82n2dnZzsRpPaJZF07cs7tPe5sreOXUkacwSNbUoH9kDJLHTx1\n", - "LdbMMuUal2WftupkUavAezpzYf/OzHdsxYoVndqZpgnY0mrfIM+pb3Ds31P2799Y1xg0LZlFN4vm\n", - "y6zOfZY91/u0L6GRWcEzn0rzpbx1yG5qkEX/vmV+WEa1SFVUVFRUVFRULBK11l5FRUVFRUVFxRjU\n", - "WnsVFRUVFRUVFc8ylsxH6pRTTkkz/AJqClGDrC9igLtN6jKV9cciuvktuC+ldpLrVWV+PtS3cv20\n", - "8jvQ5bam25l9XTvLfHEURlmDyr5PjlL54Ac/GBHRqUGW5dOib+rhZaD9Rz7ykaa2kfkBeCY8p46T\n", - "I0HsfwJfXCeuLxsxfVM7yTz339Qgy/jiZ7gelvk9MTHRzA81pTz/WZ4U2psWf898oX5aH/gONaKY\n", - "o8znAbim5Lj+4cupp57aods+D66dmK1/5IC++9Zc+X3aX3rppR1ZdFvodt2/+WQroru/OFqvXE9l\n", - "/cH5UK6hiHZd2NcFuE6ga7OV4LvUFEO2skg670WM0/43fqVOZN9YLbeMk76d68u5nuA5+6Kj3UwL\n", - "Yy3lJdt7WRfUoMuiU13L1bILnHcN2t/xjnekPqIgm6NMJj3OLAq8XBfZvujfor46niUsD8gi9fCy\n", - "fWViYiLOP//8iOjOZ8Yf12YErlLCXDBHZ599dtqe7/zP//k/IyL/jfb6Z01nqBapioqKioqKiopF\n", - "YsksUiWsLWZWofLEbUtD1pejjxaaX8fPmQ8+xfbRWz4r6zt7lnNzlO9nOZscdZNZ/bK+x0U79fXh\n", - "7NnZeMbVgRvHc2fn7kPG2ywKL/ue+WbLVak9OhJy3HfH0ZxpSW4/HA4785XJnl8Xstb8rPn6Lz9z\n", - "7ppxfWfIahNm/ZVtF7qnjFsf2bOy9bYYLDTDO5hvzfqzcTUHx/nKZtagxSCr45hVMLDMgnGRteVn\n", - "2Z6UzT80jdvT/XdfNGv2W2Vke1FGY2Z1XwjGtc36zvaNrJ5oX5Snxzlu73qmtGfR8WX+SZDxbtxe\n", - "bVSLVEVFRUVFRUXFIrFkFqnBYDBW0+77znyfR3RzdVhrsXac1QjKMiGX+VTmq3A9H532HQDOPmwf\n", - "kL7cQOOyaWe0mC+Zz0Q2htJyl2WXzzCupuI4LXAhfY/zkfIzs7//M/B4xllJrHna8pb5QJSymNGf\n", - "9Q2e6fzPN+eLzSuWwXy0haqvv3H0Z8i05QyZb135Xc975gNFPh2v+0xe5ls/z9Sqk83nOBoWgqw6\n", - "gn0/s3U+rsZcdotQzv24fW4hlpTyb1uest+X8vvj1mifv135d7an+9l96yLbazK+GOOswhlNfc93\n", - "/UvXLfR3yXnmvGRZ3jl+0+mXvFUzMzNj13fG03GoFqmKioqKioqKikXiv4WP1H/GSjDurnahyHxI\n", - "5rtTX6i2aytApmFYgx3nz9N3/57d7Wb8WCif5puTcb5g4/pcqL/GuLnp63Ocv9ZC/brcfx9tmV+a\n", - "6c58QUzTQp+9kDaZlSvzhRtnLXsmzxhnYR7H+3Fz1/feM7VIZjJsjdSyN59v1H/W2pnx0/31Wd8W\n", - "6vs2zufNr5ml5pnUVfQebTl5pnt3xpeS7sxSks3fOMtThmfi/5dZGBe6n46z/sz37IXudxmy2xRb\n", - "MP288v/2W86qiXgOx+1FtnSVz1mobC3ED7dEtUhVVFRUVFRUVCwSS2aRmpiYeMbWg/Lz7GTpE+S4\n", - "E6U1Ep/+/XmfJYZnZHlfxuXu8bPdPhtDyQN/Z1w047j2z8RSs1ALFMgiihZqDZovWsVa+jONEHPf\n", - "tkhkeXiGw2Gq3S40Imyc71iGZcuWdSK9Mo3Q2tq4qM2FanB9UXtZlXuPc6FzNJ/fRYaFytS4PQeY\n", - "X+ZTSVPmG/RMrSPZ/mKa5nsve+a4KD5bUXm17+h81uFxz8wivtzPOB8x0LeOMlrGyV5WU/LZkNHF\n", - "+jNm/VgGy2cv1hdoXLQjWKjvVPl/+0RlvHK9O/vBeo5cP6+0TC309gNka86oFqmKioqKioqKikWi\n", - "1tqrqKioqKioqBiDYa21V1FRUVFRUVHx7GLJfKTK2lyAu1Dev/zyyyOirfvDners7GwTJeD6ZtT8\n", - "efzxx0f6Wrt2bUREPPHEEyPtXVNs06ZNEdHmnthtt90ioq3NAy0zMzOdekzQT00pagQ5zwX3ydBO\n", - "nbiy7xKMgedRx+nUU09t7pehe8cdd4yINtfG+9///oiIOOOMM0b4smXLloiIWLdu3cj7ZR2/klae\n", - "7VxWl156aVMjDGT+OtRxoi4X+T640ya/SFb3y34ZJX9cUxB6oYEcPdBGjbDTTz89Ito58p0470M7\n", - "Y/W9/OTkZKe+oes4wcvnPOc5EdHy3LW27M9k3zmvi/I7jI/xXnTRRRHRyjk08oqcMwfQfuaZZ470\n", - "y7w7IqiscUhb1sEOO+wQEe2ao3YW9e3G+a1Qaw+eMyZocEbsD3/4w51aePAMeUfG4DnrwhE+0Mw6\n", - "gi+sC579yCOPRES7jqanpzty6/VuvxRkkf2CZ8Nz8ugwJq9Ry/rWrVub91z3ExrMO56BvEA78s+c\n", - "rlmzZoRf7KOso3K/4DvQgqxAN+NkXLvvvntERDz22GMR0a45ZNe087r99ttHRFv3rVwXfIf5Z89x\n", - "W/piHSC7zAHyguwiF/YN4nnUfTv55JMbXjn/EWCOWHPeD5kDXvl9QXbND74H/y+99NKmb2QPfjA3\n", - "lkXXffWaYy3CF/gI7Tx7jz32aJ7ndcF4XGvRfKE9NEMrfyM/n/zkJyMi4sQTT4yIrm/h448/3tB9\n", - "5ZVXRkR3j2Z8yAnPYO/KsGQHqbm5uY5TGAzlFXgDmp2dbQTcP65MDj9Sdo7kmYBn8/7GjRsjohV6\n", - "H/bKhQk9/DD6wORnjSvbwudOzMlY2TBKWmhLm8xp0I53CDrtzXNvzvyNIJabgQ9O48KYvXidmC9z\n", - "rmes8LVvrE4tQFsODNCf9Qkf2dQtXz6wlD/Q5iH0+UDE+DPHR/oEmcNjWdaIcfiHzn3QjoM3sOza\n", - "wRO+2FEUrFixonPgYzPKnOrhOZ+j7GQlZXzYYS7L9llwgPsC0FAeQspxmveMiUOAE1f2JeT0OKE7\n", - "O7S7ryy1ADT4B2ZycrKRd+D5skLkv3k2B4qHH3545BmWL/ZN+pmammr6YC81LaZ7nOM//EJ2s72O\n", - "g9js7OxYx2TPAe1RSBk3cALnzZs3j7zv/koH53GpeZA9eMl+wiE324uAD4vlXpfti7Tx3oX80J59\n", - "BdrMe9Yu/T366KMR0fKROYloZYTXhx56aGR8PAs4Ua1/w8wH+AUY2/Llyzvz798z9lT3MQ71aq+i\n", - "oqKioqKiYpFYMovU1NRUc7LcsGFDRLSnZGsknII5cZfWoCw9wa677hoRXTNgViKGkymnXGiBNsCp\n", - "eNOmTZ1rFFsSssKXaJ4+HXNCx5qG5pWZPkst0tdotjDYFM2VBOPMrGn0i+ZlzaUPDq33OF0gmnFk\n", - "iUrhhzX8+axjaDe0gX5kCWDlY+7uvffeiGi1JDQtAK3ICZrWihUrOtYuxonlgL95VqYdMQaXUrAs\n", - "lteR0AU940oEwdPMwgSfoMkWT1swZmZmOiHy0O91YVr4/I477uj93NeKtDefymejUZuHppv2jBf+\n", - "+RoWMJe0v++++yKi3Ud4jWh5inbLeob3Xks8ExqhGZ6j5QO+/+CDD0ZEaz3ZcccdO3sFz2TNsR6A\n", - "5cWyOy7hL1YE+n300UcbXtqSbqsocp3tc7Rj/La8WL522WWXhlZ4d//990dE19Jq0Bfj97qAj/Rr\n", - "/vRZX31dnNHAd30z4z3L7Zk7aLPFr/w/34EGXxsC7/+WTf+O0p45Ryax7Jdg3pAZ1hhz5N901jK0\n", - "2G3HFizG6n1j1apVHUuT9yy+k81nhmqRqqioqKioqKhYJJa0RAza7n777RcR7enPmjf39Gg2MzMz\n", - "HQdsgOWFU68tUtbE6If2nFhtNQGcnrds2dKxHPmUvueee0ZEV9vj9G4fKk7WnMDRrIA1mbm5uY7/\n", - "SEa3fWIYR5aQz4Uk7bRb9m/nWfuXjDvV2+/AFokDDjhghBZb0UoNBvrsyMgzrGEig0ceeWRERDz3\n", - "uc+NiFZ7xEIFsFDBn1LOzENbqGx5s7zQ3hpb1l9pBcksR2CnnXaKiK7lkvVijRTfBvsjAP89HA47\n", - "VgvWmuUfutFWkXf6xMpT9h3RdaZlrOWaps0DDzww8izWqjXSgw46aGS88Afrh9cofGb9eAwl35Eh\n", - "3sNKbhkFzAVj8LhtHUM+jjrqqJF+N27c2FlzBM3wTFtJsxJBbs+a9jpir2IvX7t2bbN2bEnjWfCD\n", - "vniGQTv4Yf+00goY0fJx+fLlzf+zBLP21+EV2r2O4HlWKNlYs2ZNQ0P5+xWRW8eZZzunl35GEe3c\n", - "0A4+sT7KsVp2vOa8Rm3Voi9+m72OXCCYdcLNRwnodTFiW3CBb5PgE7TYgsXc2DK1devWTt/jCocv\n", - "tEh3tUhVVFRUVFRUVCwSS2aR2rJlS8eXxqda4JP7ypUrO1FlAO2UkzCn1Uzzzsq6OGIGcHreeeed\n", - "G0uZ75sBWnEWteFnO5rLPkD2qVizZk1zirfvik/pjggCWeRDFq23kGKOCy306fFDs9vffvvtEdG1\n", - "joHyb/sZWbv3+Jkj/EvQ3GyxAfDRvnXD4bBjpcmKb2bjRGb5HhqXo/9AGXnp+cn8kDyvmcZli4Wt\n", - "i33zb23OkTAAixM8Z73beuB+kX/kwOHhEa3FINMsLefXX3/9CK3QkkXtATRbR572+es5kpg+LVuM\n", - "h+9Be7Z22RdtfV+2bFm6b8EXLFSZBduau63Otkjh34YFb+XKlR1rP8CiwP7pNZdFrdqSYSs7uPvu\n", - "u5v/Ww68LuC5LSnZunDEsX+rzPd77723s3/DuyzqjlfWYOZTy/fpl2fTvrRC2drHdx0RD5gjXh1R\n", - "Z1rgF3IFmKvSasz4WA/IB/Ppvi0P9n817TzTty6PP/54Z14dvZ75GI/DWIvUYDD408FgcP9gMPhh\n", - "8d4fDAaDuwaDwfee/vd/F5+dNRgMbhkMBjcOBoNfeEbUVFRUVFRUVFT8FGFsiZjBYPDqiHg8Iv58\n", - "OBwe9fR750TEpuFw+P+o7ZER8f9GxIsjYq+I+HJEHDocDufUrpaIqaioqKioqPipwaJLxAyHw2si\n", - "4tGej/o6/OWIuGo4HE4Ph8PbI2J9RLzkGdBZUVFRUVFRUfFTg/+Mj9Q7B4PBmyLiuxHxe8Ph8LGI\n", - "2DMiri3a3BVPWaY6ePvb3978n0go8kgQQUOK+JNOOikiWp+Rgw8+uLnzdfmJd7/73RHR9TOwz8cV\n", - "V1wx0jf39aS0546UfBgu+7Fq1arYa6+nhvbjH/84Itr74/POOy8i2lIoREzRHt8QchVRCoFU+Pa/\n", - "wO+JO2RKBJxyyinNuI4++uiIaCNk8Lcpy8mU4+T1Jz/5SUS099L0De2OmLzrrrsior2fLkvEODOx\n", - "/QUoEQEP+fzlL395RETceOONEdHKwWWXXTbSnjk57LDDRmh/4oknmrIplDbgrt5t8eWgb5er2Hvv\n", - "vUf4yP08fHnLW94SEa2MErV18803N+Ok/MBb3/rWiGjl4uCDD46IiJtuuikiWj8FaIHnzAVy4yhW\n", - "ZJ32y5cvb6INGSfzD19oi/wTpbh+/fqIaHn78Y9/PCJaPhIJRDQW7fHPKUtnILcHHnhgRLTrAr8Z\n", - "5Nzzz7rAtwUa6RvaQd/8M1ZkEd8HaHLJD9boCSecMELLPvvsExFt1Ba0fOxjHxtpT7/MEWPsK4Xh\n", - "HFOsf3xb2FugHT+cnXfeOSLaPcgliI4//vgRWpDFrVu3Nr5/zCflZ5AteH7nnXdGRLekEPsFa5kS\n", - "ONAOz5kj5hRa1q1b18ggvjCsf0p4IFv2kWGO2LtcUoRxupQO5Woo47Jt27Ymctp5jphPl6ui/T33\n", - "3DPyTNY/tCNPz3ve8yIi4j/+4z9GaCn3dHx6kC14CH8ohQTdLsPiihFeF/hp7b///hHR7kX089GP\n", - "frShG5k65JBDIqL1EWSP4XeR32f2fVcSwZcIWeR3lM+J4kQOB4NBw0Pvuewt0ODSWS5vZL9H3qe8\n", - "DWXinPl/+fLlzfjPPffciGjLDyFTzNF3v/vdkb5Z0xkWe5D6aESc+/T/3x8Rl0TEW5O2vdd4EBoR\n", - "ceihhzbMrKioqKioqKhYStx1112dVCwZFnWQGg6HD/D/wWDwiYj430//eXdE7FM03fvp9zp4+ctf\n", - "3mjqWIE4kdpLH+y7774R8dQJ9tZbb42IvEaYi/iicTriCw0KjcRaVJYJfccdd2y+y6ndtHBiRrNw\n", - "ThZHG9DeGc2zuoJzc3ONVkebLM8Hz4I/8C+LlETT5gSP1dC5OSLy+lWOmAPwEL6h/Tv3TznOiG5B\n", - "5r5oRs/jZz7zmYhorUL0ARxtQqQH3/fY4IPzE61cuTLlId+BD87UC1ybjHZosM7KXcqiI3ucg4px\n", - "8j5y4NxVAD4g/1hPHQULVqxY0bEsOMIRIJvwBRm21QAg98wdcmN+R3TXCtZNLC/Op8M4HBnJ36Yd\n", - "mstcRSXt5ZqGPkdIZvPvyLos6zRwxnCshI8//njnM/Yc12LMqjIgi8yVc7ZldQJ5feSRR9KoOqw5\n", - "rDEiuuCLaXfdP9Y76yLj4/bbb9+0dSFg4Ehp770GMohcsHfRv9fdxo0b070lq2fpSDnaO+IMfnnP\n", - "o59S1tnH+Q5WcX4v4C3g2bzP95krLHZuz/j5u68ObRb5zD7vdc3cMN8827cCwHwoI/K8t/i3hL7X\n", - "rFkThx9+eBxxxBEREXHttdfGfFhUHqnBYLCu+PNXI4KIvn+MiP8xGAymBoPBARFxSER8ezHPqKio\n", - "qKioqKj4746xFqnBYHBVRPxMROwyGAzujIhzIuJnB4PBMfHUtd1tEfH2iIjhcHj9YDD424i4PiJm\n", - "IuJ3hklY4Pbbb9/42/z93/99RET84i/+YkR0tV1Xhb/44oubU+hrX/ta09vbR5aLCY0En5hbbrkl\n", - "ItrTLtoyYDjXXXdd3HDDDRERcdxxx83bN/fQaAHHHHNMRHRzbnAyRyvCCsDJ3XXfVqxY0Tzzc5/7\n", - "XER078ABGgJ9wnvaWevlmV/84hcjIuL73/9+RET8+q//ekS01paIbm4Z193KLHVYoLjbfs1rXhMR\n", - "baZmwH072t+f/MmfjLR/yUvaeAZrbd/5zncior37ftnLXjbyOfLC/P/N3/xNREQce+yxEdH6HQBr\n", - "oiUfsyz73/jGN0ZoedOb3tRLK+OEb9dcc01EtH4bZHgHZZ4hfFvw8frZn/3ZkbZohtCNpe5XfuVX\n", - "IqJrecVCgd/aV77ylYiIeN3rXhcRbUZwsGzZssYn6pvf/GZERLz61a+OiO4aQj7wK8FfCVrwJQPw\n", - "EavK2WefHRFtFvqXvvSlI3REtDxj3qHJlQ2QY7Tdr371qxHxlLtBRFdTt9/Kt7/97ZEx4UsU0c4v\n", - "a+e2226LiIjXv/71I7QC5IfrBF6x2LO2gXPIYXVbuXJlx/KKls/6/9KXvhQRES984QsjomvBZpxo\n", - "8PAPWngFWFEY4y233NKsIdPiWwOsXOzpttTzN2vvBz/4QUS08mB5YZ+8++674+tf//pIG3zDgPN/\n", - "sVYPP/zwiOj+jtiic9VVV0XEqL9iiZ133rlZc+wt7Ln4tQLvLa5w4Xxszj6O7yT7Ysl3+uK36J/+\n", - "6Z8iovWz8zid04u+smzi/A6xp1999dUR0f7WlfLl2yH2Fp7BmgU8C5lDZtlvbE2FdvtgLVu2rFOp\n", - "ALq/9a1vRUTE1772tYhof+f6agX2YexBajgcvrHn7T+dp/0fRsQfLujpFRUVFRUVFRU/xVjSzOZY\n", - "ZH7t134tIlqtGS0fcLLk1Hzcccc1bfFRAWg7nMA5zdLOd9iOiECjd/03UN7XY92w9ua2aBScbjmR\n", - "+3RsvyxnabZlZ2ZmpvkOkUxZ1l++i+b4yle+cmT8aOQAzR3tCd7zar5DTzku+5sAngmPf/u3fzsi\n", - "Wj45Cy9aEJomkXPMMVpQ+Uw+e/Ob3zzyvrPkQys0/vzP/3xEtNqRaYGP9tfZbrvt0szjyPkb3/jG\n", - "kXG7Bhnyw+dEBPG35ausf4gG1VdnqxynaWGeLS/ML5YdonigxZGEc3NzjewRhYkGaR4ybiws0OLo\n", - "XcCcwetf/dVfHfm89DXB+uXakMyXLS+Mm7XGmkYePEfwCz5DM5atco3ybKwhWLnG1U5jnIyF8Vnz\n", - "/v/Ye9eYW8vq7nfM57DOLNfiqLgAAfEA1Wpt1HZr27Rvd/qlu2+/7N2DrSUK2MoqEFSgqIDCi0UM\n", - "Ym0ED0H7ptmJyU7eNk2a7jbdtam6baLiCVQOcmYBLl3KOj6HNfcH+N3zmr/7HmvyPpvmSZPx//Ks\n", - "Nec9r3tc4zrc1xj3GOPvuKWWo806pw3kZv2jp2xdYN3jgcz4M7kfHrkzzjij62cW82quPfrjucsY\n", - "0Y75Dr2Potdt27Z13hnaznTIeOPldJVwwLxnHV199dVTffA+eujQoW6e//Iv/3JE9LMUgZk+zC1o\n", - "T50zU//kT/5kqp12TNEJHnYy25g7jnmi31/96lcjYuKR5PloTw1jzfOBPcBct23b9I/YZ3ToZ4sr\n", - "/LsauWFmEGKlRqNRb49Gp+y1yEL/vC4yFNdeoVAoFAqFwhqxbh6p8XjcnTwz67+9NmJyEj3hhBO6\n", - "U7ctY07E/IbrsAp8inW2DZZpxinX1qTAGuXU6vfjnIQtkxm1AbLSDtYjVrDbH4/HnXxYsc7OA1xn\n", - "Dwwy2PLiOmT/xV/8xYiYeH9aa5o2sBz4Lf93tqE55PB6oEdbasjOX+YL82fI4kU+rkGWjA/PmS4Z\n", - "pxzX8T3zamlpqScH40acDVYOsS+ei+gR/TljKuPL2rt3b6dD2nTarrP6uI6xcHaa1yaWHNcPeVPp\n", - "P1Yr97JV57mG54qxsc7N14U3gLFoGebRkdca/bNHCthSba3YFow7f22Zt/MLHSELe0vmoTFrvfkB\n", - "vf7Rk70qo9GoN8+dbenfeo2Clls0YqIXZ5B6XbRt23vl2EB7KKxzx1w68zDjCV1ZWenF41huc7bS\n", - "T8bAemRvYj4hA7W+LPvS0lJ3D9cotPeKtojj4h4Zlysy48HFm4Lsrd7N2+eMaq9/5oOzwulLNl/4\n", - "nHXGPtLqhX6a3xJ4/zdPbsulGNGPTUYGxpI9/cCBA725gseZNti72FPsNc5QHqlCoVAoFAqFNWIm\n", - "195/yE2La69QKBQKhcJ/IqyZa69QKBQKhUKhMIx1i5G69NJLu/emvJ90bAQ8PvDngYWFhV5sy003\n", - "3RQRE34zxzL4ne6nP/3piJhwJzlTDtl4f3vttddGxISzauPGjd17YGcVXHPNNRER8e53v7snd8Tk\n", - "HTHvqakBBNcW3ztzkPvQ18suu6wXb+B39PBbwVcFXD/FXFuui+J2+f0tt9zSGx9A28gPdxZcS7Tp\n", - "/gH4jcz75ViypaWl7lo44mjLWUb8peaKed8c+0AfqHXl69sq7swxxodracs6dD/h2nKFa8D8gser\n", - "nS/c27GBGXcabTsWEL4y89tlQI/tejYXlsefMeJ7Zxrye4+p65UBPr/ppps6zi/AeHpvMY+X20I2\n", - "dA4fGuuItevYqvn5+Y5TjPF0zKP15DHiOv4S30IfsnXBXrW8vNwbzyuvvHKqf8jkfeC6666b6qf1\n", - "wV8+v+GGG6aub/vq+EvWBfMWeD/kd+Zmc90sxwzRfquXobjSiJyfCAkuAAAgAElEQVT3088iryP2\n", - "f68zZ9xx/dvf/vZ0D+Va+DA9d73fsWYZf/SIXrK4pRtvvLHrJ/ds4+kiJrqE9/OKK66YasPVx4nD\n", - "Yn55/Lm+nS88Q8m6NtMDQDbzvloWP099XvBcH41G3bVw7XnPddwq19PPDOWRKhQKhUKhUFgj1s0j\n", - "NRqNprIr2r8G17UnSz6zF8OeKp/qbZnye3Nu+Xet3BHPnKazCrwg80S4TgjI/s/vs/aH+pVdy735\n", - "nt85mwXY6rMFG9Eft6x//t7/d02v7HqAzO77sX47y4MH6JP1ktW6WVlZSbOq3K/MA+cxsVXsfrb/\n", - "z9aDwb2dZZWtC3sghu7N/+1pyWSxzrN7z/r/0LqwxT1rLtprZsvb84XrmB+Wre1L5oH2uLpt7z3Z\n", - "HM3m0YYNG3rz1tmazmLL9h7P3WxM0Vtr2Wfy+XP3M3sO8Lnr6h1rH/b4uu2hdRzR96YD6zUbm/b+\n", - "1qEzpoHnrvkfvRf7TYjXQzsXn+s6AFm9pQz2Pnr+tPuH90Hg/lp2P8My2S1Ttpbbazz3sqz9DOWR\n", - "KhQKhUKhUFgj1s0jFdF//5694/V1EXnNEWqN2OqzpQGwGh3HkNXLwBrasGFDalFm8Ik68yLxOfVD\n", - "HM/SwlYMcNv2tDl2KDvVZ16GVhaf4p+rRyqzbm2RDFk1bfvHsrwcK5XV7jIyj6T1CNq4PbfheIrM\n", - "yrEX1WOTxQYNeUeze7jNzPLm//6beSbG4/FMj2r2uXXs/9tLdCxPbmYJz9IHsDfQv7M+/LuhfnAP\n", - "x7wZjgHiL97yzGtsS340GqWxHvbmgczzDDIvAuDeXgPHkjdbe57n9oo6zs+6zzxVEbk3I6tJlXmN\n", - "XNvrWN6SdlyG2vS9Mg/trD39WM8Ar7lsXfu39tRkb0e8zo7lJXRNO9ewmuVVP9abmaHPs+8jco9k\n", - "9n2G8kgVCoVCoVAorBHrWtk8swafy/v6Wad7W7HOyvI9qcCK1UcmQfbuuJU9i6fh/5m1YthadL+H\n", - "LC9nsGQeE8fQzKomjFXoMRnqg709s/oJsliBzEOReSRa2T3uQ9ccSwZbXll8hysez83NpfM24yez\n", - "BYk31Ndl3tRWRnuzMkva/8/G39WCQRYz1f7fc2aWxynrr6+3zEOxRh43626Wx8Trwte7+rrXXStL\n", - "NnecKQUcr8j3mSfK86rltvS9vRdlPGUgiwWcNb+Q4fDhw+m+9z8bh+Jq3K6Y7jFqx2JWnKlje/wG\n", - "w/A8mvVWYnFxsecxckao5bbHPnvrkHHvDcVLzvIkzfLMHCsucejez2XdZZX8s0rlhpk0QBY7O+S5\n", - "n8XXNys2DJRHqlAoFAqFQmGNWNcYKVuPWeaRT7VthtCs98ZGdvL2yZRTreMa7LFo5X2u2QaZ58bv\n", - "dF135ljZbFlmmL+3jmd59rJMkFaWWdmLht/PW6YsFiqzJofunVl3s2IgZlnL1ltbv8mW06yMOMMe\n", - "hiweB7Qs6LMy3Wxxz8rCApn3aMgSzzxFWXaOPVb2PFh2z5NjeXrdz1n7QRYrk61p4L3pWGvSazCL\n", - "BXT/ZvHhuSZU2xaw5wxk8UrZ3M08WkPzIvOoZTGV2VhZ9swbZBnH43FvH5ilc3PvGW5nlud3YWHh\n", - "OekqIo8ZBL6X13QW/9Zek8UOHyv7tL139ny1xxMv01AmXlYfK9tzZ8UpeV0cKys6ey5mGdWzPLeg\n", - "PFKFQqFQKBQKa0Rx7RUKhUKhUCjMwDjh2lu3V3vvec97OvcZJQtcgsBl/FvqBF5r0AYl3KGIwW1I\n", - "0DiuRlyMn/nMZyKiT+Owb9++qXvxOeXqkeXIkSO9AnEEspvyw68ZkCVr2+m99JVDb0tv4VRp3JxP\n", - "P/30VNuU8OfeWcop9CPQMtAuAX1+7XjTTTd1bWevpPgNbdNPKHaQya8TLDuy8DvcyYcOHeroR0xV\n", - "YNc18+HGG2+ckgWgP9P0fPCDH4yIiIsvvnhKhqGimIw/VAV+lTOkw4gJFQrj7le79Je5jiybNm3q\n", - "9RO5aRuaBdpGD8wTgM6h2TDVg132yGLaj7bfXMv4m5aBVxTQM3FP0484kcCvvD784Q93/UQflA44\n", - "/vjjI2KSVMLeAi2H6ZgcAAsVDu1zT9oHKysrnU6giEJeqF64F3Po+uuvj4i+Dv26iT6Z3sbrZmFh\n", - "odOVKX/QMXIz/rPWP/rwaxiPf/v6kn6afop5y7Xbt2+fugf9pW3mC3P2pz/96dTvaCejw4qY6Bwd\n", - "QififdGv3ViD7C/o3M8VnmHot30G+FUkOmU90zZ6oc0XvehFU/qj35YdOByFPt94443dXHSAN/v6\n", - "C17wgojoU4S5cC//Z/5/9rOfnbqePjKvuG7Tpk0d/Yyfc1zjwtzei4CTu+inaZwsy+rqajdurCFf\n", - "axlMy5OhXu0VCoVCoVAorBHr5pE6cuRId4rHSsTCsJVnr8i9997bnZCzVElO2Fiie/bsiYi+Be4g\n", - "Ue7FSdTBZrR/+PDh+NGPfhQRk9PrySefPHWtA/J+8pOfdL9t2wKm7+D7zHuwcePG7t7ogdM5njXg\n", - "oNidO3dO9fvxxx+fup7+23KhndNOOy0Mp7hmAXvIams3S2e2F81euCFKCH6DFZdR4ThAk34zf5ib\n", - "gOuYu8yvE044oZsP7qeDjJFpx44dMQRkx+PifoN2/jC3+AxvB6ANLGb6x734634yj2bJ0qaa43lB\n", - "18w1t833eFy5R7b+0d/evXunvm9JTxk/1gVtMxaMF+Bz+o9syOwUdfQHGEPuw7xowXdek5bFxXKZ\n", - "J3x+4oknTl3P3GWOMjbbt2/v7RXezxgrjy+gLfTy1FNPTcnG/AEuB9EGertUCJ8fd9xxERFx+umn\n", - "R0TED3/4w8HrmQ8//vGPIyLiiSeemPr9CSecMCjLoUOHuv7RX68LywS87gG/dymGjN5kw4YN3WfI\n", - "gnze/xnnk046KSIizj333KnP6bf7yTxgDzjllFN6snANOmQ/dxA5cNC13x55jTJfmLM8b9FXq3fk\n", - "5jN+S/+yEkX2FiOLw5NY016TR48e7SWPmVKOvSXzOGcoj1ShUCgUCoXCGrFuHqlt27b1rHtO7D6R\n", - "clrGSjh8+HBnzdl7wUmSUymncizJzPLipE57nJYzL8DJJ5/c3ePBBx+c6gegf5yMuQene1tHfoeO\n", - "VZydjufm5rr+cJpvPWYtkBUdYmHaC2bwO6xF7ofl0crbkkpH9GOCAGOB5wIge0aFwvzAe8b9sEwj\n", - "+vEByIClYb0AxsReJYOxRF9Yfzt27JjSSSsf/cRLMKvAIh4WrH5k9+9avdNvrNIshRodMv4vfOEL\n", - "I2LiDQbIwJxGb8hgb9r27ds7XSPDLILboeKFEX2PhFOT7ckaSlF2XBFjk9GPZEVwM6+B95chfTPP\n", - "HdPlODPQltJo2+R6e0nwKrAvnHnmmRHxzNz32kIGPAWOBWUeAHteHOdny5750q5R5oG9V45fnVUM\n", - "0mn+zD17ESz76upqz+PiZ4tjoRwz5uvtdWV9eA8EmzZt6vTAtfTH+z9t0Pajjz4aEZP9zWOKbN7z\n", - "ua7dF13WgblE/y0L/WdenHXWWRER8dBDD0393rLQN55drIG2fZNO02/mg98y0bbjlnkm+bnI/2m3\n", - "3atanbRte43awzoL5ZEqFAqFQqFQWCPWzSN14MCB7mT5spe9LCImlqxPgZxEOeUuLCykcUb2/rgg\n", - "m0+vjstwuXlbR63lilxYXLYwOY3z154ay4LFYm8KMtoKWFlZ6Vm5WVyK44/4na094P9jUZgKoJUz\n", - "K6TmWLE2i6K9l9+dA8eK8Xcojs3WLZ5Lx1UBZKNN5iDWYOY1RCauf+SRR3oxMC7aZ4+TrSPm3pBV\n", - "297b7S8uLnbxM4438rX+3plS7ifxJ85m9NxdWlrqvqOtLM7Q8WiOU/CaRnb05piatn0XZLUHIbOk\n", - "AR5J9GTPG2OEhws90PfWm8a9acPeMVve9m4hG/e0p87xnci+urqa7mPO7mV9WOcusMhczQoVI0M7\n", - "p7NCovbMsB94TgJ7YvCe8nm2d23evLmLN7I3A9APxwxlVFP2VDkzdYjknrVpz5F16Di9733ve1My\n", - "e74gMzIxlnjo2jg55imyeM/1OrBMPE+RzfPLHlxkGSrgyrXI5FivbP1zb/fFb4J8feu5y4pgs88z\n", - "tzLPa4bySBUKhUKhUCisEevmkRqNRt1JkpM2J02fAk2guWPHjrREP9e6DP2sDBKfQJ31AtqTOPfA\n", - "42RZnOGAZZq9fzXxrD0cQ5lVtO134LZe/LljQjKdc5rHwzVEkTNEKt3+zWJlbA1k1AmA60zf0XrC\n", - "HDdDf7FeMjJSW9qmLwC0x/X83bNnTzqerqeTUZtgiWFpE8eUZT/S14WFhU4uLPCM2oR7OGMyyyAF\n", - "mVcVHDp0qGvD9X3skbTnra01E5HHJbQeuIjJemplNYk33+GJsteUMcq8xJ6LJsx1val2jNrxiZis\n", - "Ibw22Vzkd65t5Rg5e9/suWlhj7y9hda5ZcfDwOcZaW27pjNaJntDkDvTh2s2Od7JY8q+OxqNep6o\n", - "bG5lNcpmUSQx1+3BA4cPH+69UckyiB13BzJZAOuJdWFPb0Q+nvZUA2dtE5fq52smo+P92jHyM9eZ\n", - "00NvXto2/Gz3PkpfHFvcUssB+ofu8cB7Xc9CeaQKhUKhUCgU1oiiiCkUCoVCoVCYgYwipjxShUKh\n", - "UCgUCmvEusVIXX755b3aJM7agZvnD/7gDyJi8o55PB537y75DVxYV155ZUT0a3VwHfeEr+g973nP\n", - "1PXOwuD9PLxf8P6srq722uRdLDw+F154YURM3r8SZ+JK3uYgA67cba6td73rXT0ZzOP1gQ98ICIi\n", - "rrnmmojoxyM4ZgYOugsuuGBKFt6ZIwv3+8QnPhFXXHHF1GeAMeLvhz70oYiI+P3f//2I6Gcdua7I\n", - "X//1X0fEhD8R/To2YmVlpdMJfFWOWXH8DbxcjCvv1dGPY8qQHc4q9Ndm4nHtn/3Zn03p0NXnjdtu\n", - "uy0iJrxPzto03xV9pf35+flejBz9Zw1de+21EdHPmHJF/Ouuuy4iJuvC2Z4ef7j83vKWt3Tz2lX0\n", - "mfd33HHHVD+Bs3aQHe6siy66aOpzz0Xue9ttt3XjQ78c+8U96Cdzi3mSxUjBtfW+970vIvpxHPR1\n", - "fn6+myvmfeTezs6j7auvvjoiJtl37q/nYsbN2WbzwlfmeetYFmSE9w/eR8fnORaGfZcxYh6NRqNe\n", - "VtmnPvWpiIh4//vfHxHRqzpumVijV111VUT0Y0Rdd4h24X3btGlTJ4/nPXKzXzjGCyALeoQ/Ez06\n", - "PomxaLncHJfqfjD+PLsct+j4K66H39DxX9yP/3/0ox/tni1ZtqVl4Tnn2EqvUfgQ0UtbRTxiugaU\n", - "eT9de8txz+xdrIusthv/Z/zhRWUvb9vnnszz3/zN35zSmWOH+ZxnUYbySBUKhUKhUCisEevmkVpc\n", - "XOxVuOb051OyK1hv2bKlO6W7mrSzUVxPxnVEsP6oSWNeN/NbtfWXXCfFtTWQ17Vaspo21KOyZyer\n", - "x7K6utqzEFueqRboi8+591Dl2Yg+w7qzWtr27VFyzRrXKCGzzDWKqMnk6uJ4Im2Bct82w5J+0h8z\n", - "rztrg3HHkqLf/N7cavTNMm7ZsqV3LdyL1h33or/AnFK2NC17y/HIvZ0JA8zLxl97bA0+p3J+5lXb\n", - "vHlzJwNeHfppK5/P7Ymy5wUgK/PFmart9Z6DtjQzri3WKmsQD4W9B8wP9IFXhd+deuqp3bXcC3nN\n", - "Mej6N56DQ7WZWlgP9H1paamX4elaTWaAyNgHWLvm3nOWFxmUbbaWudEAdY7uu+++iJjsJawX2AIA\n", - "a83edOau9dO+AbCH0c8L+uV6YFkWnj2/zih0VuCBAwemsggj+l7A9tqIyZxyPbaWUzKin3HNHKT9\n", - "tq/s4+atdCV3YA5O72FZrachloG2b22//ExydrN/y/g7Kzx7dvn5urq62mub5zt7i88kMAHMQnmk\n", - "CoVCoVAoFNaIdfNItdxetqJtHXPS5tS4cePG7pTqa7FeXAU7s7g5DWMFcALHC2JrCrkPHTrUq2uR\n", - "8XiZzwlLwtYL97KlmTGLHz16tBdX4JgXwL2wBukvlqWzN+HtstXHSb3VJ207JsLeIAB/04tf/OIp\n", - "WbEk4C40HJ/jeiKtLFgjjmVyP201u7qwLVradaXfoezXc845Z6oNe7PM5g6sR3tZABb8ySef3OmQ\n", - "ftoasyfRtZxs1VPZnXa4PqvKvmvXrt4cZI3aO2oOSscnWpese7w9rq/UWt5mhHf1a1v1Xj/AngbA\n", - "+nnsscciYqIf+tTyyrF2XO/JMZKA/7tGFfq07PTbno02frP9LKJfN8u1vIArgmPJZ2M6FGOU1fqj\n", - "PprfAjiWFCAze5a9RV6jbSyavZ4Z+4TfXJivDTj+L/PYgH379vWqnjuW0P00o0X27HrRi140db0r\n", - "hbeeWrcJuCYbTzxW9uh7LrKncz3rzpXC27YyD5R1bk8tyLhZM6aN+fn5nrf753/+5yNi4gXle/bo\n", - "51rVoDxShUKhUCgUCmvEulY2d3wPJ/WM346T+Xg87k68rubLCZK/WAhYio4z4VTMO35O4lzvE2xr\n", - "TdqS9gnY8QSuip2x3BM746q8Q1VZs++sQ2dz2aLIqo+bWw+LvLUOsCis+4zf7uGHH46IPns9Xh4s\n", - "VcueYahasT1n5oEDzqR0Bqb16myUllvKbf/gBz+YugdtY2HZa8QczDJILQvtPProo52HiN+iS8B4\n", - "0QZzC69JxrVljj1kHIo1tGWczXOsVOYJ/XAGKbDeXBG7nS/Wlf9v69XjSL8yjzeeatpDz3hXW087\n", - "89teEXvNQOapQn/2Gtgz1zIJeHz4v70A/N86f/LJJyNisg/ye+aR911X7V9YWOjadn+Yc3i9mLPo\n", - "1jEvtLNr166ImIwJ86zVeduXxcXF3rrPeD89P7IK6KxZV+zOYjC3bt2aeua9r5kflfWUrU08dM4G\n", - "HIrXYt92NnMWI0dcr+eHPZmWxXuX48PaNp2Nnj0vmA9+HmbxWs7Abde25+K9994bEZP5jh5Y13hP\n", - "Z6E8UoVCoVAoFAprxLp5pFqL2TUqMi8QMSUrKyvpO1//hhNmls2Ehe0Yk8yCBaPRqFdrwqd0W21+\n", - "f2yvEdYOJ2pnJvpd8s6dO3vv7J2VAbAwaIO2bZkArHx7dOjzkF7Mr5SBfjqWCr04m8mZlLaOWu+Y\n", - "5cKaMa8f4HOsQcdbuD3iktBnWwPHlhTv2Znrjsfy+NN/e2Y8r0Ab3+YYFc9z+mevV2aBmxfM82uI\n", - "P89eQHPGGYwF3lG3CZABq9druZ1vztqdxd7u2CHzYHouO4uV+eD4lIi+l9Pck1lcFnpxtqbXKB4q\n", - "Z3kePXq053G2Xtx/ew3ZqxxLl3GQOV5rYWGhmw++J54oewPNjQboi/fFbN9tPXt+2+F90evEcUme\n", - "P5nnKYvB3Lp1a8+zzDVeF/S/rZcY0a/5BzKvqz02ERNduf+uKwbMyejnaMaf6bcz/G31yFzJYobd\n", - "tjNvXXcqe0a7j6urq6knjb9+thTXXqFQKBQKhcJ/MIprr1AoFAqFQmEGimuvUCgUCoVC4XnGusVI\n", - "vfe97+3eP/I+nnedxJTAzQTXEu8377///jjttNOm2jP/FJ42smmIvufdN1xIf/iHfxgRk3e41Krh\n", - "eu7J9fAbLS4udrE8bVxAxISvCK4t2ibuyPE1cErBFeSYKHMM0ddLL720y/B7xSteERGTd73oFI6o\n", - "888/PyIm9X+om3H//fdHxCR2Bu4k9Mi7cq5zNuNf/uVfxuWXXz4lH+/LXUfLvExk77361a+OiEmc\n", - "BhkmcC390R/9UURMYgfMobRhw4ZU566uzTtwX2/+PkCcAWP01re+dUoW2jt48GDXBm3DKUV8xnnn\n", - "nTfVb8YfTjn4rdA5c9AxIubD2rx5c69aOrE7cEpyLTom1ge9mIOQ69Ej8V6MMTIxpueff36nu1/6\n", - "pV+KiIgvf/nLU23Ab4ZemEvc2xlzzF3mIvd0BhKf33LLLd14OvaHeY/8cEq6bXOF8TvWnPkT0XOb\n", - "pWTeT/pPJW/2JO7FPIebE5lf+9rXRkTEN77xjYiYzFHaNx8i82Xjxo3dHoPc7FvojHuz7oH50Ji7\n", - "rFGynIhz/NznPhcRkz267St7NLpiLpo7k7WE/LTBuoAnlLnNHkesFf1nLsL9OTc311WmphYZ48Qa\n", - "evvb3x4Rkzn4C7/wCxER8W//9m9Tv4MPFa5F9iD0Q4Vs9u52D3Clccd2Mf7mQ3QNM8aKucsadTyv\n", - "Mwk//OEPd+PDnvPAAw9ERMTpp58eEZM9m+cc45/x2qEvxojraef1r399RER89atf7fp6++23R8SE\n", - "xxE4U9octDwv6Kdjic3Nad4/sG3btu63rCHmInWw+PuVr3wlIiZ7FGOUoTxShUKhUCgUCmvEunmk\n", - "2qqz/OXEnVUwbfnTsNoybh9O9a6D5OwUZ0a5nkxWfXjfvn29a51V4wquWYaQ+8nn6MH6aftoNm76\n", - "ndWR4vqM7RxgFfo6Vzpu23Rl+qwukDNj+P9QzZG2HbyFWKaPPPJIRExn7ZgTzJyBzmYCWJh4O/DY\n", - "2SLD4jIf2I9//OPe+BhZPRm3TTvmz/Pv2griWN6MM5aVr0V3szKIuCfeAmfMeR21Nc3w0uDNybgj\n", - "mUPOvvE6wtpHP4wV+mmvz7jSsmrHtIl3A/1guXr8nXHptd9awVlWkrkIAddxb2faZlxrrmZ/9OjR\n", - "3vjY+8c8B1kNPPQD0wG10TwXaRcZV1ZWemMBXOGb37K/e881e4DZC5yJS9/brGZ7yYEr4PtZ473I\n", - "zwv2oGxNLy8vd3tPy9Ma0a9/Rb9d4Z816D299YZHTMaUtYw3rZWXNlnPrFHr0HUY7RV3Rjr7rKvV\n", - "+3nTtuH54TEAbf3I9nvatiw+V7R7QFZNns/ZUzJuzgzlkSoUCoVCoVBYI9bNIzU/P9+dWr/1rW9F\n", - "RMQb3/jGiOhbpLYa9u7d250Y7Rmw9eJTvy01LBVO5GeccUZETKwGTu4Aa3Lfvn09T5Hfadtb5Arn\n", - "9tTQP36HTMSn2CIZj8e9GiWuvGtwPXEa9NOyY6k89NBDU/ceqlbsU74tAX/P52bapk6YK/y6hg0x\n", - "dMjezhd7Vlw91xYG1zPO6A8ZsvoqWGjwXR04cKDHEWZPEh6ITBbHHxDnxtjioQBDXpCsUjky0Aae\n", - "F8dMAfqXzdUhfjfu+bM/+7MREfG1r31t6l7AtdvuueeeiIh4yUteMnVv4PpBtIf+WlmYl4y79eC5\n", - "SBuMq9eNaxq5ho3jXdr5gtyOX3P9H8A6Zz2cffbZERHx9a9/vdf2kMx4BYY8o/SbOYVMeDHsBbB3\n", - "mBhMYkdcZd1r/Sc/+UlvrwV+m8Cc5f/2liEb4w/PITq3N6UdC1fazvoJXvOa10TExNOEvgDjzV6E\n", - "rOjcnuCtW7f2PMueBwAZrY/s7Qhzl6rczPUhFgeudQ0/16xq5Y7ovzXIvMbmiX3zm98cEZM5DXdn\n", - "xGSvccX+9o1TC+7pdcPnfkbTf+5jvbRw7ULm+V133TXV/1koj1ShUCgUCoXCGrGuXHt4kzjNO4YI\n", - "2BOzbdu27v2vLU5ndPFbTsY+lTrTLOMMAm2cg2MgDFdg9vtXe4Fc4ZcTu/nOwNGjR7s2sHIcEwS4\n", - "J/2zl8CWmd8zO16jtQL8zpt7ZZWq0SH6MMeePS/27BEzY1kjJhZkxlNoDjp79LConM0GGAsyjGj3\n", - "yJEjPe+FsxbxuDEX7Xlzf7HQGBvHArSxZXhxWBfm8fNc5LfWrdtmLbLOjsUogHzf/OY3I2Ji1Q9x\n", - "REZM1g3zgDllD4PjlYj34Xft3HW1c2Rij/Fewv/NuUZ/M0457umq9W37Gb9lVh2atukDmVWuiO++\n", - "MtfxhmzdurU3Ph5nr9mMr47+f+c734mI3ONtfs3t27d3/7YsznLmHo4hsuy0x9hYZsDYbNmypedZ\n", - "tReYNtEtmZV4UOw19PzBI82e5efFwYMHe17/7NmCPvwsYg3aU+MYXM/xdo+2dxvvL3uWPYyAcZ31\n", - "THaG+Xe/+92I6GfBRkyea9aDK9YDc1Qypshm2R2zy++2bt3ak5tr0I8ZPTIOWmPdDlIHDhzovS5C\n", - "MX6QMoFal3AW9GoqEE8Eu3YdsOkg0myyr66u9krX+9WOaRkYFBaUFwaDiQymcRnaYHgFZ1JST8bs\n", - "MJaV2bcrN3MvR/Q3VT8gsu+RnTYzlzcLB30cSy9+DeSNM0seoJ9sRr4nYD6gZ/5u27YtpV8g+NpU\n", - "N54vfkXjYEzLguwbNmzoHQD8SoLxo1+zCJEd+Oo+DR28fLDx2gKmYXHguzc7B8pyPfdrN1IHyZrG\n", - "KXvlaeqTtrRGC8bGD3W/2mj76deALvfg67nOhzuPUUYKPT8/35vnpghB7izA22PH4T+TxQ+viNyo\n", - "Q1fI5CQb70Xoj7nLGs1ekbKvzM3N9aitvIeavoeDog0qy8L1WRgCmJub6yU+eA0C03VZFq8LGyQm\n", - "Im8NDOax5zljZL2YSJj+ZhQ5loH5wuft62bTzpgIPSMtzozBLFwDvbf0QBlxNG0+/vjjU7/JnAFG\n", - "vdorFAqFQqFQWCOKIqZQKBQKhUJhBooiplAoFAqFQuF5xrrFSF1yySW9wEfe6fLO0yXi29L5LlYG\n", - "FQK0CQSB8n6Zd528E4V+4uKLL566jveuxF209BNt+0ePHu3e3fKemXezWQl/QP/oA7QMUK04uNBx\n", - "W8hy4YUXdvEAvJOmrAFpuZTChyKC9+4EbDuwHRqHd7zjHVP6Ih6FuA36fuutt3ZyO96AftIf5Ebn\n", - "gP45TfijH/1oRETs3r07IvqxZW2ROHSI3Lyrd2Ai/bQsyEywNoHhpgiCasEFC+fn57vxN82Oi9oB\n", - "5prpKriOoGqXxTAFTcRkPFzskGuRhbFwkT9kQefQmzgg1HGNUMq84x3v6HSM/I5VQC/o3PGMTrln\n", - "/V900UVTeqN9xqaVnX4ib1YwE8oHr1FTCjEn6aepM9pkA5+ThuwAACAASURBVPqMDqHC8BoDyMT1\n", - "H/zgByMiuuKq3NuxMFBhZPRGBw4c6FHbXH311RExWf+0yRrlL2PE+HMdsjNWplrh+jZInd/SD/YW\n", - "aFbYS4iRefDBB6fuwR7N/s+YcJ33MPTYzi/HwFjnrGf04qQKQD+RBThwmudIS0HleE3HwqEX5ovL\n", - "6iALMt52221T17M/oA/GgL3p1ltv7e1b/EU2dM7c8j7qWEL0Ce0Lz0XWA+22z2GeRaw5l1gg0Duj\n", - "QkIvzO1sj+Z6x8Xt27ev06mfLeiWPdcxYayLDOWRKhQKhUKhUFgj1s0jNTc3150OKcjnTBjgaP1H\n", - "HnmkO5XaysfKIXX4V37lVyJi4jVyOjOnYZ9yMxLb9nrkIhW+LckfMTkRu9SA0/eBiwNyQs8yZTZv\n", - "3tyluJLpiD6c5u9sC2TgHs7aQE9QZ6AfPm8zJTw+jKO9AgALFS/asUortDK7oCnttJY+/3Y/Z5Wz\n", - "ILMI3XsOAvefvr/gBS/olRxwgcFdu3ZN/T/LrLR3Cdmc/g62bt3aI+X1eKIPrFQIcSGhzahw6BP9\n", - "Zc26/U2bNnXjj7z2BgCXBXDWjceovUfEZL4w1kNF8zI9ZAX2GEcK0FKY17LQf6hSIH114cKIvmeW\n", - "Ncm8db+ZF6YnyTIlmV+seTw1GW1WxMTjxnzJ5hRzk/nOXxekNOjTvffe242T1z/jxl+yWiFG95g5\n", - "45I9y55bY25urtM5HljvofSLec54QiyelT9xqY6MImZlZaXniXJmcXttC3swM7oa5iT6RrY2/tm0\n", - "Oln2KnD2N3u1s7kBz13mtulbWtn5LYVVrR+XM+D/jA1zuC1r0AK9Mi/aAs5ZKQ57oP0cmYXySBUK\n", - "hUKhUCisEevmkVpYWOi8RhQ/I77HFganQ4qlHTx4sCs+Z48UlhKeKK6jjYzyhbiE73//+xExKVjm\n", - "0y4n1D179nSne07MFGcDrtmC5ZAV+/J7aCzUs846KyL6RRa3bNnSyf17v/d7ETEpbW/rBp1ixWB5\n", - "06ZrvaAX9EdxRdBavejElicWkU/1WAV8T2FWxsbWLpYHHj/K+FP0rfUaYEF5DrkYHsDjRn+wkvi9\n", - "ZWHs8HC2tAaZhYklhS7xHNgq9Bg5ZtCehtazyXhltXiQ7U1vetOULOjQsjMX0TmWWlY0d3Fxcape\n", - "Syu/de56OS7Q6La5tymFkLGt3WQ9MG9d/BMgG15jxsokrYA+4eGwJ7DdX/iOezBnXJgX2PuFd5z9\n", - "hf0RMF/wKtKH17zmNb29BY8Ba4d+3X333RHRX7v8nj3Idfssu+uXLS0t9doEjC97LBQnLooL+Jy5\n", - "es4550TEZAysNzwzR48e7TxLrFOPP/1g/Jgv7APsD8CeOWRhDKz3lZWVXjwav7XHCbldR4w2rc+2\n", - "+GnExGvkGmrIETHZM5jfzDHPc3sN8QKiRz8vGFM8tfaWtu3jIXLdK9eJMxhLxoaxzGTn2Ujfd+zY\n", - "0dsXHadpYnS/NchQHqlCoVAoFAqFNWLdPFIHDx7srDdO6qeeempE5BQBbTVeVwkGtvI51RPHZE8N\n", - "J2nHDrjqNsD62b9/f/cdVotjHpy1Muu0i0XBXzxYnJZtwRw4cKCzoLEsoHLwO297VrBes8rW9sg4\n", - "86SN+3KGg6scW4euTE1/bWn4eiw2rsOSbb2GzpAy7UT2jtxV6pkPWSwIIL7j6aef7umctunPnXfe\n", - "GRF51XXAnM0qfQPaaS14W/eWhcq9eF5NGAocr+Wq69bjeDzuUVxgebKWLIsplvhdRvlAe44lbPXD\n", - "vLQ3DEvca4j1zN6TUb+4fXui8Kq3XgPGkTmEde5sJWBaFn6HVzCLY6QPeMQ3btzY87zzW/ZBV5H2\n", - "vmlKLfaDLHbQ3pNt27b16FcA/8djwHhnNC7oFn2x5zGWzEnLcvjw4U5+V08HJhCn36zZjGoL/eHB\n", - "Yl4M0dZwbcYeAZyNip6Yk54vptixR7fVI+NCf/EwMb+tF5O5+xmczUVk5TreNrTPOsYbWVjHzDHv\n", - "d7SNzIwpHlrPL67nPjxHt2/f3rvWjBCuhu4xy1AeqUKhUCgUCoU1Yt08UktLS91p78wzz4yIiXWU\n", - "xTER1xGRW/N+/4ynxuSlgHtiYXKCzvjNODVv2bKlV9/JJ2ln/vG9a/i4T1g1/J4+DMUa0ZbjJBxP\n", - "Qf+xhltdtjICTv3EUGWeq/ZaX4PVYk8N32MN+R6OBcBSw/LkevrQtm9Lm3mArt1Px07xeywre0eQ\n", - "2V6FQ4cO9eRm/BxLx1yzLvk/831W5khbb6ytZ9X2x8AjZf6yjIPQJN4ea7C4uNi1hUeAfmRr1Zlu\n", - "GXecs0Ftsbdj5N+SfZdxrbm+nOsIeUzpE3sXnivaaS1vx6vZi+69hTlFv4ghov/um2MM2duw3Fuw\n", - "byET1/CbbI3StueyPVPIyFi88IUv7NWeA+b9cy0rj5HfWKAf5rKzpdt1cfbZZ0fEZAy85zpOz17O\n", - "TC9+k5Hx50X01wo6yojCaYPxNvE6sMff3qK2r8625DcZabE9ecwD4Llr4mzPj1Z2e+38NsBeYPqf\n", - "vS2yzs0P28ae2sPkPcVxqZW1VygUCoVCofAfjOLaKxQKhUKhUJiB4torFAqFQqFQeJ6xbjFSF1xw\n", - "QfduNKsnc8MNN0RExBVXXBER03WWeFfPe+A77rgjIiKuu+667pqIPnce///kJz851Tbf46Hj3TH/\n", - "hw/pd37ndzoZeS/OO3reC19zzTURMeFl4j2rY8CQ8bOf/ezU9X6fjwy8v4WD6Oqrr+4+cywQOuRa\n", - "eNxcT8cZJXBzoRdkdJVm/l5//fUpp6AB/xRtt/FFrWzmN4QnyllsbfYHnE/wj1l3jlej7fPPP39K\n", - "Rq7jPT79hAcNbiZne0RMdAVflfmtnI3HPZAFfiu/t2d9EBMA7xvzhTkQMYkfaMcnIuK9731vREzm\n", - "idcPa8t6BO09IiZ6/MxnPtP1lfHgHo4ng68Kvjpk9NiwRuHagzuL+WK+P/Rzww03dPxjHn/mt3nZ\n", - "aBs4fonYQvYX9OIaaS3PJHLDb2lmAmTweF544YVT96ZN4iDpL7ySb3vb26Y+Z89aWFjo+oHO2UvN\n", - "gUYWH/f6/Oc/PyU784QxdeZhyykXMRnTubm5XtYe/fR+4Xga5j1rzusfvdFH2mevg29xcXGxNz70\n", - "H65F5M5ih5CNffHaa6+d0gt7ufXDOrr88st7Vfb9bOJZBEcg/efeni+MJXs67aB7MlRZF9dee21v\n", - "X3R8IfdgnjNG5rM0WwXr6N3vfndETGJ0vT62bNnSXXvBBRdMyedMSGSEO4+56DqL6Md8eOyLjk0e\n", - "jUbdtZbbenFmMOOfoTxShUKhUCgUCmvEunmk9u/f31l71AfKajf55Do/P9+dHF1DhFMoJ0lOoFkW\n", - "E/fK6kU4a6et8IvFlbWBvGZMz+pCYS2ZS46+OvtjeXm5Z8XTpqsDYyHwvXnRLLstONchafWJXBnf\n", - "lGEONvpnLwLge48F7bT8ibagkYk2s1pf/EUfWWad9dv2xXPM3kJ7dSyLs908NuaJbCuI22J0jTJ7\n", - "LO1xySr+2juKfl2PZWVlpVe7K8tm5Z5Y822dl6Hr7dFztk6rd3tY7Q32HGL/cJ2kLHbUnyPDEK+g\n", - "a24xrngtzMpgbj2vWa9/Z22xX2zcuLE3V6yPWfujM28Zd+aN14U57bZt29bp2llVWZ055M/2EY+l\n", - "63SBlpOTdYwunRGObK6Xx1+Pt+c/MjBmQ3x59M/cklnWnvcqZPH19BOvEtc587SVN6sCbrk9vn5b\n", - "lNVjdK3EoSxfewlZ9222ZQva4C/9y2Qxhu5t2EOXcbNmKI9UoVAoFAqFwhqxbh6pvXv3didurBhb\n", - "wcAn19Fo1OMAAvzWnhROovZ2OU4DC8PvnUFrddtTZgvTp3FXrrU3DevJnGIZ19KOHTu6e9sDk9U/\n", - "Aa5o6+951232bmRrx4h7YRnYAjNsqc6qfcR15qKiffjAIibjh7x4O8ypB9rftm07Vg7QHnMWC/Wn\n", - "P/1pyhRvxnR79wBzmRgH1xXz+CP7oUOHUu4zYG+PLW3LjoeGOck8oKZZVq06oh8TZFCZHhkd12We\n", - "RMY049hrvW+ZRwpkFqatXJDpBQ8MGLK8XR/NHoms+jz9wYOZecfQB/tKqx/PW+I42SfsubenBv0h\n", - "I3+RxWub/aLlEaQ/3hd9T3u/vP+zHrgn1cQdSwTamoGuTeVrPTaZJx4w/q6FxVh5fj366KPdvkXl\n", - "edfFM8zOgMzZs8geLPrUshVkcgPPc+9N9h5mtb6Q1W8Rhp4FjnHyXAP+vo0FjOi/2UF/9rYOyWAP\n", - "o/udPZOM8kgVCoVCoVAorBHr5pE64YQTOp4yLFJnqwBOja3ng2vNEeb4C06anMRt7biiqfm8bA3i\n", - "kVhYWOhO1OYWs9ycmGd5JMwSz++RZej9O3I7K8nVY/GgZPEl7if/x5L1ab4dI1cN52/mHaNfjAmy\n", - "ZV5Aj6m9Dlh87W+x+viOzz238FQxrvzOmZIA/TFGrcfOcUm2yN0ve0u4jrFjXlmv7uuOHTs6Hbuy\n", - "O4BDzJ4F+m3Lm2wuxztlXuNNmzb15gH38rV4LaiCbA9cVtnYHsmhWBN7orynuG2us/fI2UnAXjHf\n", - "px1j9gfktpfI1i77IL/zGNoLSHvI0HqRWVMALyBtMB88D4CrSbsCflbFv43nY41kFblp27FO1gv7\n", - "quNvgPdFxmZpaambx+jSFbnpl/dPZ5wCez/QG3PSsrXzjX9nHkZkQZdmV/DvnM3pMWplRS5no7P2\n", - "7JF0FX6zLHhNc0/v6Y4jbj+zx8hZdoar8mcchl7L3Hs8HqfcvN5LnHU4C+WRKhQKhUKhUFgj1s0j\n", - "tWPHju7UyonbVjHghMqpecuWLallzGnU9YOybBwzRWfvfgHW9NatW3sZD1iEwLw99hJlnhfHc/F5\n", - "lrXTyu3YBsDp3RmG/M6WlPVmHqShscrisvy5M8HMSWYMZWe17Q69+3b/sMAz74jj9Bg75hOg/1jb\n", - "9GHjxo2p1866wir0GBHHgBVsr1imx61bt/Y8jZkXAH14jrlt1xuyN9WYm5vr5pgt71n95Ht0msVI\n", - "cL0ziI5l9bc1ZIZgTka8JK6BBGy5um5b66lhnJljIMsIo21kcYbokBcwYuIFwCNx5MiRnufFcWYg\n", - "iyVzPJd537x3OQ5qZWWlF1cD0O2sLF3grDTzImb7xtLSUm8tZdmJYGhODcHcgvzOnr3Nmzf3ajGx\n", - "p3hvsec5qzvWth0x0YMzDtsxQeeZN2+IO3Oov9matqwZj2z7b/dnlsfO6yZ7g2WZ2ozdbP9yLTt7\n", - "1WehPFKFQqFQKBQKa0Rx7RUKhUKhUCjMQHHtFQqFQqFQKDzPWLcYqcsuu6x7V8p7VWKMeI8JH9Ll\n", - "l18eEZP39k899VS8+MUvnmoP/iG40PyOlvgk3vXDtQMH0eOPPx4REWeeeebU73mPDY8T7W/cuLGL\n", - "O3BW1p//+Z9HxITzibgL4nRcw8WcYuiBWJI9e/ZExCRGBFkuvvjiLn6Gd/NkCN13330RMeHxg8fJ\n", - "NVsAcRbIAu8b9+R613z6+Mc/nnKKOe4GLiS4sx566KGIiDjvvPMiIuKee+6Zuh7eJ/iQiDVAH7zX\n", - "3rFjR9x4440REXHRRRdN6cExMsTh3HbbbRERHTcbY8H1ZCtSq4n5guzIQNbLyspKNxbmcbz//vsj\n", - "IuK1r31tRETcddddETGJnUEW5gvjTkygMw6RhTE97rjjepWluRZeNrgiv/SlL0VExG/8xm9ERMT3\n", - "v//9iJjEYSGL+RBZB86UgVfw8ssvH4wba/tpTjnmlrNfmVusf7j5XAEZvfC7j33sY91czLLL+D/6\n", - "oJ9ZTR5khGPt6quvnpKBNc18efrpp7v1yRpytp7lh68OPsRvfetbERFxxhlnREQ/ToPr0Qv6bWvg\n", - "mccR/k/W3Mte9rKImIyV5zl6ZF6hB+KX2NMYf9YRejh06FAvfsw6p23G2xmk7EXvf//7p2R0HKh5\n", - "QlkXJ554YjdvvSexR7P/O6bM8TWW5Qc/+EFERJxzzjkRMVk/7N2so7e97W1dv+in4xmZL/DbtewZ\n", - "EX0OUnSOHll3jM1ZZ501JdOHPvSh7tnCfGU8mZvmZmQ86b9jA5E929OZB+hjy5YtU8+tFsjNXorc\n", - "cO2xLzpWGH0gS7sXRUz2LK7bt29ft7cyz9G5q8SzpvhbXHuFQqFQKBQK/0FYN4/U/Px8ZzU9+eST\n", - "EdHPhAFYNFy3urqa1hxx1tVLX/rSiOiz3gMsETxcWFoPPvhgRPSrLCPLvn374tFHH42IvnUHsMh9\n", - "z4ybDouSUzCWDP12pszmzZu70/ib3vSmiIi49957I2J2JgweFeoo2WrmXs72Q6a27kiWGcVvZ2VM\n", - "ob/vfve7U/ewLFQ0ps+MDVZE2w+8HK7F5X66yrprVTnLgzFyJd/9+/f3xoe5hXcMKxDL+tRTT526\n", - "nvnC71rOsFZG0GYzUi+H8bTc9ly+8pWvjIiIL3/5yxExsQYB84e5h0zUfvLcXVlZ6axd5hp14py1\n", - "xhrjnowR+qEdkK2XoZpZrq7vLNWsRg3jigXNfmCPFnOZPr785S+PiMkcbGv3OPPVc8trlDbwKmJJ\n", - "I5NrGrkOz7e//e3u93gEAHIxjm94wxsiIuKf//mfB2Xhevp5yimnTP0/q2mGfp566qleljJABte8\n", - "y+J1mQ+MpecgbxNA66nAW2NuQcvNda33IqK/Ru0V4Q3Gv//7v0+1B7Zv397bM+lHlhGGp465yprO\n", - "MnFplz3g9NNPj4jpuci/2Xtcq8oV37nez7+s0jfzwlmg/G3bN6sG+wHw89I18ug313lPN8tHW/Hd\n", - "tf7oD3XWmAevetWrpu41C+WRKhQKhUKhUFgj1s0j1dZ0wELhZOpTIFYAFU1bq9LeC9rCysGy/PrX\n", - "vx4ReX2M0047LSImlqkr3AKs63vvvbc7zZu1ve1jxMRi4HtO+bZIuNfrXve6iIh44IEHpq7zaXpl\n", - "ZaXr56tf/eqIiPjKV74y1X9AG1i9yH7uuedGRN/CtOXG/x2/0/7WcQj833JjveBFw6rHGrTlTTu2\n", - "vBhrLLb2WiwN2srqgmAp8W4faxCr13qhfawcrKIXvOAFPa8f8v7Wb/3WlEyMjee5vaGuPm094nV4\n", - "/PHHZ3pe8Ob96q/+akT0OSVt7fI588R8f0O8X8iAXK4XBByPBhyXAuwV4ndDLPf2Xplr0xY1cwiL\n", - "lL0GT0RW08h9wXPXyspY0AZ/mVuMAcDzhId2KPapBWPAemDunnfeeb15iyfi7LPPjoiJ1f6d73wn\n", - "IiaxPoDv0QMyZ/xwjAXfLywsdHsz8gH0YM87a8nrAp2/5CUvmfqezzMv0/79+1PGBmDPCXx4tO11\n", - "gR7xGrJv0Efi2sDi4mInr+t+mQmDMaMt18nK+PBcC3GID5G9yF5jxtdeY3s7Abp1TBn/5zkEJ6dj\n", - "qiIm+zzPc+Ye+55rkgFzrGYwzyr6OO6443pyu1o6YC/O5ruxrgcpNmkedtngmUB28+bNPeoPwGTC\n", - "Fc0rLBYAbk/AJEVhvBrjwWFFtgXMhlyoQ2BzZ7IyIbxJIwuvDAkYd5AtOHz4cDfgX/ziFyNicvgi\n", - "4BCYToJNKSt22d6jBQukdb+6FL83Qv/frzj+9V//NSImurUs/J9D3K5duyJios+2fdpgbvlwnhVv\n", - "Q/ccAkypAvz6rU04sK5czPQLX/hCREw2a9PPmISV19IO9AftK0Bek7mApq9lw/inf/qniJhspD4g\n", - "cC8MDNP4GCsrK92cAujD488Y8ABgXDlI+OFFX0ziy//bNcp3pmVi3NxP08/w11Q6wNRU6Jt9hgNH\n", - "RL/YLQ8IF6IFftCSpJCRsxqveMUrIuIZ/XmvQAbG5G//9m8jok9mDNiLMVJYD8jufde/27lzZ+91\n", - "D3BRR8YvIwo2OTm/ZyxteKHX1vDIDgC0wZ5iouBsL0KWhx9+uOtvRH+/bPvDgz0rJIluXXjWFCqA\n", - "79nbcRp4jrfXoktk4dmSGdI2SB0w7z46LGHIOEI+G6OmcwOem+zppmcC/J/9gd9v3769dy16Yd2y\n", - "RrN+ZqhXe4VCoVAoFAprxLp5pI4cOdIrT8+J1K+lsGhaksbMq+OTN4GInDht7XKax8LwaylbXm2q\n", - "Jr9FFr+qsIXBX7wYtgLoH1YOejGRags+u/vuuyNiYkn5FM//CQBGBvprK8BWg2kI2lcYyIfOTBCb\n", - "BabyOoQxwtLIgqqxjtGj04Pbf9tCwiK3hcnnTsVnnO0F8qujNmjTbePdwP2PNw/PjS1HPHWmkMFi\n", - "ywJCt23b1htXW1KsKTwLeFCwTO0d82toe3T8um08HnfWHB4GfmOvjqlBaBOd+3pb5B7/1tWfvbpB\n", - "L9k8Rz/o2PMHeD7QV+Zuux852cKvOr230A/mpEtaZEkbXh/z8/O9AFwHnzPXsvF3sgmeTD637Ca3\n", - "3bRpUy9MAphOBJ1lnjcnlXhPcvttyAXfZd4uPmde4BXNyL/twTO5sZ8B7etbxgn5skQpvMt43P2a\n", - "GqAPPFEOym7XAnrgLQpzKqMIcmkiy26dc70paOij9672N97fLIuTbUxun4WhcH37TLfcXMP5wCEw\n", - "mefVKI9UoVAoFAqFwhpRFDGFQqFQKBQKM1AUMYVCoVAoFArPM9YtRmr37t29rATejZoi5vzzz4+I\n", - "yXvoNqWUNihVT/l53oU6IwgPHCXioXxwYUZnP3E9FDGbN2/uZVPxLhZaDmgWaNvxCNwL6gTK1QPi\n", - "HJwm/fGPfzwinimFT1wK7/qdzgt1CiX8iQUhRoL3z1x/3XXXRcSEloXvkdmxBp/4xCe6Ev5+V+2y\n", - "CJTw9xg5dR99QuMAXYFjItpCoOgQygenxruQHrKYfsa0LNwLehP043bbNkw/4fnhmEBoPKBOYdz9\n", - "Ph8gC1QI27dv7+RwDANto3PaRuceM/ToMfVY8n/W6LXXXttdS3yB40uuv/76iJjonO8dE+M1yrpw\n", - "bJTT3//iL/6iW3N8hh4cT4VeWM8u1eH0d+gqaN/rpo2NYS9yPxkjx/Ghww984AMREb1YM/YZ+sJ1\n", - "UMTQHmv76aef7u7JXuE1BNALcxedM8/RlzMwaQfqGehwaGfnzp09yi9kga4ki0ejv4wR+z9xgMiC\n", - "PrknFCToJWISp0hsINcynu973/siYrLeHY9H/z/4wQ9GxDOULxH9zDED2S+77LJuLFh7bemYVhb0\n", - "kmXpIQtjxPonlsop/C0FETrxHuu2mbvsXW6LsWIMkJ3nqJ8XzOXDhw93zyLaRm50yBh57/L6B4y/\n", - "KWJ41jmOc//+/d06RW6uRR/I7Ri5/18UMaPR6LTRaPT/jEaj74xGo2+PRqM/ffbz40ej0T+ORqPv\n", - "j0aj/3s0Gu1ofnPVaDS6ZzQafXc0Gv2vx7x7oVAoFAqFwn9izPJILUfEZePx+M7RaLQtIr46Go3+\n", - "MSLOj4h/HI/HN41Goysi4sqIuHI0Gp0bEf9HRJwbES+OiH8ajUYvG4/HvWIMR48e7Z0Yh2pwRPQz\n", - "BxYXF3tWHfCJ0taOT/mcajlJYw1kVBKtdWFr3pa162I4Hs2y872pJbLaPaurq73skSzbhM+dIZXR\n", - "FdjzkNHADCErzOnvLZsJMo1ZdWZaOdGZrTv/1hlVjJXroADXKWozSDKPnO9Ff114zlmOruXi+dPe\n", - "D3naNdKCuWQvsGsbAWeKzoqlPHDgQE/3rl0GGAN7x7I6SfSFecF9hormegw8/lkGIb/je9aHx8jr\n", - "wjQ+bZZfVnA0W8/uP3uT7wkYI8a2rX2V7a1ZTSe37cwyFzb1OrLsR48e7drI1hyw98+y4P1B1owU\n", - "HTAGzlxsv8s+Nzm3PXjMQe+3Ge3P008/3Sskia6yunDMG/SS7dHMTWdS2vPdwnuL38QYnh8mogYm\n", - "hXd2d3u9KaFmFR6l/6yHWfuiM3PBwsJCukeb4gnZnpc6UuPxeM94PL7z2X/vj4i745kD0v8WEZ97\n", - "9rLPRcR/ffbfvxUR/+d4PF4ej8cPRMS9EfH65yRJoVAoFAqFwn8yPOcYqdFo9JKIeG1EfCUiThmP\n", - "x088+9UTEXHKs/8+NSL+3+Znj8QzB68eNm3a1LMw+b9Px46lWVlZSYlMOd3ybpzaKtSJyqxBW4uc\n", - "rC1LS9dgyyerUeIaHFm9HL9/dpyHPTX79u3rWSucxm2NYQXwfh59YO1llbA5qfMX/bZ6971tWdoC\n", - "RZbMY2MvAO0zNhmJZfudLanMg+kYINebysYfGgfmyc6dO3s0C7zzpy1XIs5qsWANzbK8wZNPPtkj\n", - "trY3hLmH7vme8R+y3iOm11xE3ysAHnnkkZ5nwRaz2+R6t53FbyA78YtDVZNpuyUqbT/3+NvTypi4\n", - "Rhwg7sfxkb5Pe409Z1l8GjEurH/GFBky6iR70TZs2NCT23OK32QxM8xv5jvXM6b2SBCLCqPE8ccf\n", - "n1aepm6cx4K2/XlGODzEbOA+mbjWbVCzzyTN7HPWOX1xTCqye0238bz2RHld0JZrfrnyN2Cvoj4d\n", - "88Wenhauqp/RMmX/zzy7MIK4jh3zotULjA1Uk+c75J7lNfTzxXMRPXteLC8v9/YtqKHQsb28z7WO\n", - "1HM6SD37Wu//iohLxuPx060w4/F4PKOcweB3X/rSlzoFnHLKKR0VRaFQKBQKhcJ64oknnugF8GeY\n", - "eZAajUaL8cwh6r+Px+P/wT1Go9ELx+PxntFo9KKIePLZzx+NiPZEtOvZz3p4/etf31kHS0tLsbS0\n", - "1J0gfdr16Xk0Gg1WNW5/y/dYr1mMlGMAHKdktJlGyMO9MtJigEWRvSN3nJbfCfukvm3btp53a+i9\n", - "eNsfe3uw6oYqVbef26LTYToi+ta9K9dbFmCL3dfbO4ReXH25/cwegkwvrh4+y4KlPZMhLywspFXz\n", - "7VHM4hIYG7wezqiy16jNXGUcs8rTtoI9H7I4JmS3587z5bjjjuvmL3+zrEPgKsjZ+vfnGelxK6fl\n", - "4/OsCjLXO07D97DHk7+szVZ2r2frLvOkcB1ZvpnXqFq7aQAAIABJREFUyJXAW49XFtPmPSSLS2Ke\n", - "eL+gT0Ok1RETj/fhw4dTwle8FOZDHCKhjpisB9acuRYzz07ExOs5xMjQtslvHJ/q+WLvmO89FMdG\n", - "fxwDlcXrOMM8i3u0DOwBjFk7X7zn8l22F3Evrwv+7zGy5+5Yn8OqgD6QzR58y55lDmfnhSzud0g+\n", - "v01ZXFyM7du3x8tf/vKIiLjzzjsH+wdmZe2NIuIzEXHXeDz+aPPV30bEW5/991sj4n80n//OaDTa\n", - "MBqNzoyIcyLi348pQaFQKBQKhcJ/UszySP0vEfGWiPjmaDT6+rOfXRURH4qIz49Go7dFxAMR8b9H\n", - "RIzH47tGo9HnI+KuiFiJiD8ZJ6bR3Nxcd7o1b55PpH6POxqNerEJgJOy45FsibhtfmdrwVZjK4Pj\n", - "ELJsNGdMZTEvGd+V39uD1kLxKdwWg2NHzCXofmZ8Vo6xaJF5pHyt68ccqybPUL8dOzbkHXPbWVya\n", - "M+iwOGdlq/G7Nh7BcnJvz/NZcNzFrBipxcXFnhWaxRk5xiXLNsoyTTM+rDbm0V7MzMJ0tlmWtWvL\n", - "3DWf2rnrGDDXtrJVjz4yXWeeLXv+zEXZymmvnuOrsn4yt+wFA9ZX64X1+NjjMCsLN/MOZ3uYPZaH\n", - "Dx9OvUD23jF+5usDjrVyXSbD+8mQ/CCLmTRPouG1nu2LGzdu7I1/9jbF85nvs0w573HEBbvOXntN\n", - "Fr/qtnkWOf7V/KDAHi70MBRj5DpgeC75PMt2BcieeeqcWdqOsftpjyvwM2oWjnmQGo/H/xa51+q/\n", - "JL/5bxHx357T3QuFQqFQKBT+E6O49gqFQqFQKBRmoLj2CoVCoVAoFJ5nrBvX3iWXXNK9y6SWTVsH\n", - "JSLihhtuiIiICy64ICKmo/z9btOcYq7E6lggeJng/XHmA9knvMflerh5FhcXu3ofxGVQQwNenpbz\n", - "KaIfK0P/4Te76KKLpj7HW+iYIDiFdu/e3enMlZjpD5xCcKfRf3TuzDrLzueu8UE8w8c//vGOC8l1\n", - "j/x+mTGCg8zVZB1LZj40x7vBLbZhw4aOCwsuNFecdmVmdIhe6A9xBo7vgCfKHHR8v7S01I0XOkeH\n", - "ribsOCxkYS469sH8ZnDWcf3q6uoUp1XEZO7ceuutETHhqyL2gXFnXM21xjpyvAKycz1z96qrrurV\n", - "+XJMSMs/1rbNmsvmImOKvpzF0/KEca3jk9w2fIX001mqjoWCP5Hxd02btr4We4XnSlYnBx2+613v\n", - "mvqc69mD2F9uu+22KdkZe/R46NChrp/Mlbe85S1T9+Z7foOMt99+e0T056JjaxhrZPH+smPHjl6G\n", - "L/x9cMoxV70eGCvm4tvf/vYpGV0rjd996lOfiojJuhuqp0W/Wc/o3DW/HK/lfjIWroHk+fXHf/zH\n", - "vUxwzzG4WT1f0ItjDGnb3Hzs6eagu+WWWzouRO+L3MNyIwufm9OVezJG7OnuK/fbv39/jwuR/X/n\n", - "zp0RMZkP5olEdsfGOePe+67rr62srHTyIPd73/veqbZYD8jCOQA+zAzlkSoUCoVCoVBYI9bNI7Vh\n", - "w4YeV06W5eV6KSsrK2mFZVtctOkMIbdNe+Zoy2p3jEajmZxyzi4AWaVe18uxxW1ZWj04QyHLRnEV\n", - "ZJDp3F4x2m37lI3FrPg789Vlesmy+YY8X86ecr+zujDAmZO+3hlmrbWYcSdaP0M6bGU3x1bG0cb1\n", - "Bw8e7K2djHMukyHTuWv9ZFheXu5lgmXZhlh9eHK9D2T11dC5OReHKpvbU5TVE6Nfbjur+J/VqRrS\n", - "o9ex6wh5vri+1Kzq087UbDOPs2wj173KxspZj7Nq5Fnfhw4dSutf0abrjWX7CL/PZLYstNtykbJW\n", - "vCd5vbgmYJZxiNfHb0aGMo5Zz86sdj8zT1tWu82MGq6VOLT+vOc42xJkHv1sjDxnycQbygp0lia/\n", - "YV/I9OJneFYB3X1t974sCxOdz+KgzVAeqUKhUCgUCoU1Yt08UgsLC71TrGtWAJ9g21oWrufh2hKz\n", - "GLcdt8Tpl6rCPvW2XFzm5clYq7m366dkFXltkbhau2Vvv8ssKd5DZ7yGtl5cA8jxa+0Y2fPi/vhz\n", - "68lchLby7EWh8i8ytHPAuqVt19ECWHWMjeeNr3eNpLbmS1Zl3x7XzMoxa7s9UbamuH7btm3dNVld\n", - "FL43h2JmoRmMv2s4gbZPLQNBK6eRVW72fLFH1rFYbZ9bb0R7TVbZ3DGGjruwx9KVnj3GrScIWexB\n", - "c7+A49U87w3P9bZKdeYdRRbXCcIDB9xve+wz73Orv6wKuvdN7kWbsFEA68NeJnsN+f7QoUO9eEP3\n", - "i9/yvb3kmaeOdtGj68q1fUU3eLGyNcc8Zm3aQ5/t//yO+9CXdk1abvOdZswWjh3M+FO9LuzRPNY+\n", - "QxwSz6jsLYDHMHu7knnR5ubmUs+6PXPM2axWWe/3z+mqQqFQKBQKhUIP6+aRgl8vos8pl8XCcNo/\n", - "cuTIzArOfseZeYEcE+VsA3ukWvZ3Wxo+GbuyueNYfEp3TIE9N9n7+rYt+m0d+j09v82qSduit5ek\n", - "fafuuJRZ1WA9FraWsvE3L5wzs9p+2TJqKy63sJVnPr/Mm+Lqwxs2bJjJy+asJI+/vT6z9IqMmzZt\n", - "6s1FzxV7AcyQ7rbtJUA2zwfL0vY345Sz19RjYI+UM6Rc6brVexZXYg8CMKcaay7jLGQdWQ9DsWSO\n", - "/cpiJt1PV1XOLG/HxoDV1dWZcSbZXAWMJ/2zxZ5511rZM+8F/bTX2zEtbX8icg5G93+Im5JxsUcC\n", - "Wbw32wMPnGHIfOD3nssR/Yw3kMX30obvnXlTs9jaId5Hx9Nlnnd7ZvnecWqAmCjPXe95EX3vlfc3\n", - "jxHeM3v2maOeL/b8td5Fz9ssHpXPn2udzfJIFQqFQqFQKKwR6+aRak/XjmfJrm3jMjLL2J4CkLG5\n", - "2+IyB11mBbZxCBlHoGMXzLGUZe3ZwkDGoYwLe9wsA7BlAAM7MIeS43lsNVqOiNkxMUaWjWQrwN4U\n", - "e8faMXVb2fwwGCt7NLN4HXubFhYWerrnGmfTZPFaIKuBlMWatfVyHCtnWeypybzAgHYz7woYj8c9\n", - "3WVzxjFPLUdc+ztgazHLyGvbslcsi9fj/xlfl5FllA2tacd0gUznXIfOZ8V3As+rIdmZa7bqM1mG\n", - "dNt+PjT+rYyLi4vpWstqUtkLAhyf4/i0LL6z9dRmnHKW3+vC/fTatEfKz4s2LsdzxLJwnfcFx/0B\n", - "Z9bRHl7X1gNmT7S9o/aWuVZb9pwEXsPH2lf4zPWgzHcLPP7ePzIO2qHnUZZt6Odn5nnLUB6pQqFQ\n", - "KBQKhTWiuPYKhUKhUCgUZqC49gqFQqFQKBSeZ6xbjNS1117bZcD5Hb95v975zndGxPR7fkf6wylm\n", - "/iln+AB4v+AU8vt3vxs179toNOrFLvEbZKFtx3Y4BgCuNXh/HIfguJeWU8jZMo4XgMfLvH+ON2p5\n", - "mSIirrjiiqnrndUEbr755o7fLAP9ZjzRC6CGjWMB4ObietcuamNy6Kf5p9w/89txPXEFjL+zPs3l\n", - "6Pozq6ur3bjBV3XhhRdO9S+Lw4L3633ve19E9GOqnOVG+y0fmuMEkAUeL+Yt1/l65hjXs+acYeO1\n", - "ylzfvXt3ryab4ybo5+WXXz71OW0zBswXuLZaTsH2esep3XzzzT3uPMd0mA+R8besjvWAa4/2aY99\n", - "ps04zTgFHZ8E4HE7//zzI6Jfq82xUbR/9dVXR0Q/xqhdo+iQ8WeMvC48ntl+4SzIj3zkIxEx2S9a\n", - "Ljb6ST9om7nluCXLAr+Z+TA9pvwOLjdkmZubSzPbWP/wuDoz2GsUnXtdZPsuc/3iiy/u5muWxYoO\n", - "vS4cg0t/mS+eX64nhb5uueWWbjy9b3kNsf7Zuxy35n7ecccdXT9bGcmwb9cd3JnI7XH0+KJz82d6\n", - "LXtfZE1bz22Mmdt2vJX1ApdrhvJIFQqFQqFQKKwR65q1x6nYXiNnPlD5tM2C49/OtnEmiLMNMrj6\n", - "sE+7oD09u017vfh/lp1lSzOrpgvskVldXU3rgWRZNdZPlinhejvH4sPKMqKALQPaxgvCX7iWDGq9\n", - "uErxUKYUWTRtXaMhGTIZrTfrxRxSrdfA44ncZhZ3ZhBwlp69QQbt7t+/v1szruoLqBaNjGRtZhmh\n", - "Tz75ZET06ynZMwEOHTrUy8bxfAW0xbrOMumAM6LMg9nKnvWH32QceV4XrhINnEE3VMPJ/3Y2XVaL\n", - "yWvRHnrDlb3bzFv/5oc//OHUtYxR1namD2dBAjwQtHvkyJG0ev6sDErrxePujG2Pdfvmgv66GjrI\n", - "sludrQp+9KMfTf1/+/btETE8FyOmK8Z7f8gqvntOZnsX64c56EyzVr/InVV69zywd2sW117GrWcG\n", - "iLYN1yoDHhP+b17M7Pos07K9N+BZxG+YH357MAvrdpAajUY90k0Kb2UPmPaVh8sUgOxBwsB6wrAB\n", - "eBJnhwIWxsGDB3sEtkN9HPp/JosnTObab2V3UbLsQED5fbu6M0Jg7ulio0MP98zlmuGEE06IiMlB\n", - "w0UwDeaD03rRT0sRwmHF9BxZMcRsw8yuZ74hS0u544cucrUHnrY/GaWMX79lNA4nnnhiRDwzFmxk\n", - "2abLPEcf6D6bW/SF/tnQ8LrbuXNnJ4N1npEQuzhkJktG5uqHfNu2X9Fm1CZu24d099MPBg4LfjXY\n", - "fpa9ivLc2rVrV0RMHnqzUrA9XzzfWiAX4856zmhWOGgzZ138NHvA0OeTTjqp90oKsIdmpUaGSgi0\n", - "cBmZLKW9fcZkdDVQgVkvWTkZDk6MO9e7wC3YvHlz77VYRj/kOcqazcofoEdCZBgrz/32WlPgZOVS\n", - "0BPjyd7DPPBehB4x2Phr47Bt02vJr52BDTPGINO5X6W3z3Zf+6IXvSgiIh5//PGI6I+rD94Z6tVe\n", - "oVAoFAqFwhqxbh6pxx57rLMWbBVmRMGtlcxpMysk6dN9VpAto23xX9AGyNoNnL3as2XpEznAI+Pi\n", - "eWCI5JQTsz0GWWFO+u9+WxZO/XxuK7CV7ViFAIfAeGLF2LNgPfp1pYN28YRE9OkBMgJsgOXkVxaZ\n", - "xxOZmbvopSXhBqeeeuqUTBl5LbjvvvumZMa7lhWfpf9bt25NXxODk08+eUoG69gy4cF0Ab8sYHb7\n", - "9u09LybwvMWCtiU66/Urc/JYBT/bYOf23lmxX79etEfKv7MX7VgebHvk/Hoso7dywDPwPR566KEp\n", - "mbDcjx492mv7lFNOiYh+Acns1Z499YxZhgcffHCqvW3btqWUH/bIzSooigyZx81j9Nhjj3X/Nhmz\n", - "9eJwAj83fP1JJ50UEX1vyFCgf8Qzr1SH9syIvk7Zx9Chn0nZHt2+To0YnuvHH3/81HdOkLLcpk5x\n", - "HzxG6CUrZN3q0Z7KrMgx8J7l9WRZMhqsIY8UOrQ3dNabKaM8UoVCoVAoFAprxLp5pCL6AeFZiqWD\n", - "0jds2DCT+NeUGVnqsa39jCrDaE+qyJCVqs/oRjKvEeAEnlEKzM3N9d67O23f97JFYroVYD0cy7OT\n", - "ee/8vX9rCzQL8M9ILodoCDLi42xuZQTIWeC/41Ja6yijthmKWWi/B1nqbRZ0OhTf4JgGYFoFe1wy\n", - "guxsPj2XIMyM8sJzzzrPYh7s4RgiorUnwWNyLA9z+33mPbRHKiP3beG9KpMti+vMZAcew6NHj/bG\n", - "03F32X7gNr0usnH3mmxlyCiCHK+T9c/xOu6DMVTCJpvn7o+9hf6ez/ECeY/2XD98+HDvGZN5Xl0m\n", - "wcjGyGM1FNeTrd/M45LNk+y56z5YxlamLJA700u2VzkGCljGthSK70lsnM8JzzVJrZPxOV1VKBQK\n", - "hUKhUOihKGIKhUKhUCgUZqAoYgqFQqFQKBSeZ6xbjNTu3bt7dSR4B0qNns985jMRMSnjz3vLbdu2\n", - "9WprUH7+yiuvjIjJu07HX7gU/jve8Y6I6NdTclbLpz71qYiYpiswbQr9+PSnPx0Rk7L5fk/szDmX\n", - "q+d719kC1157bUQ8U2o/K+JGv00/QD+zehnQMkBX49ga10+6+eabe9QGwDEw0CbQtscGWYg7gMbh\n", - "oosumtKLMy2Wl5e7ftI2cBE3/poiCFn5i0zIAv0EfXUcwsGDB7v5DJ3I+9///im9eH6jW6hzmC+O\n", - "kXBGye233x4REe9+97u7dpz5SuwOtBzvete7ptr0vCHmAyoEaBw8Zz1GtH/llVf24iZckNHUKaY3\n", - "om2ymVhHUD44Xof/E+fw0Y9+NC699NKIyCmCAPPcsrifpqvgesdhtHFwUFUwV7K6YWRpMbcYT+I1\n", - "0HGbGRox2YvYLzz2rfy0DUUI+jAtE/245pprIiLiqquu6vrTts284nfMXfZR0MbK0M/Pfe5zU3LP\n", - "in2BCgU9Ahe05f/MXZ4XmzZt6sUyUWuJuUXb6NA6RxbmC88Xj4nrK7EfXXrppb0YL3TJvKWfplkx\n", - "TJ3jNep6e8j4iU98orf/Z0V+2aPZcx1D6thT5iJ6cRYga3nTpk0dLRN7rte/n73MLeYLOs5iDqFD\n", - "4vohuifGh/XMmmOeoBfmic8LGcojVSgUCoVCobBGrJtHamFhoWclcJJ25gNVdrGiNm/e3LPaAKd8\n", - "U1vY+wE41WJptZWqI3Liw6Wlpe60jSx4SoAzPPg7VJG5vadrOyG76/MsLy9PydP+1v10fQzq57i/\n", - "mSyMDb9r4YwO5M0qVbuGldvOquaahoHftdfThj1KWfVsZ8RRV4p55OrDjDXft9WHs4ww7gHtCm0w\n", - "r4Gz+1w/JaviPx6Pu/GlKrY9MKbO4f+0QZ0Zy04/gakf2uuRHw8Ef13Lx3MR+hLXAHM/naW5d+/e\n", - "qfZauZ1tmHmmXOPNnoas1pu9IczFdk0729DVpLN6ObSFXriX54vnB/vPaDTqtc3YMF9NtjwrO8nz\n", - "JssobImr6a91aLoSk1W7n6YesqcbfQL62GbSZnXlTJjMs4j+0hbge+ac6xgOrVFk4C9tZFl4zhzM\n", - "stP8XOAv6659HqFzU4PRP3vY7UUzu4ifi+gXvbDX0Veq9rdtcA9X/Pezy5mRrsZvWTKC9aGsPeqI\n", - "ITf7P3J778pQHqlCoVAoFAqFNWLdPFJ79+7tTn+cuDn9ZbxPnCZbj5RPr1jWVGbGAuGU7uvNHZXV\n", - "bAJPPPFERETs2bOna5uqrvZIufIsJ2m/w7bscNHxOyr1ulrs8vJyr1ZGpkNO2OYGe/GLXxwRfUsN\n", - "C8aWjPmO2rZmkTgDx1kBuOPskbDViBWBPtvr0RH3QA/I2/LyRUze4TOu6PG0006LiL6FSXvIytzc\n", - "u3dvb27hMWHu0RbzxVWV0a2rCmfWNN6iffv2df2mn/Yw2WNy5plnRsREH/Z2MjeR2WvQY7u8vNyb\n", - "1+jIOkcvzC1kytYR/WQO8/+hueh6SbP47aj4bg/sU089NfU5oI+MNfdhLFsPBh4lE+ayRu1hQKfo\n", - "hXujRzyzgMr53Jt589hjj/XWFvemDfrNuDMmlsX7Jv3z3LXnZnl5OeVlcywMfGfMk4xA1x59vM/2\n", - "pphIOGKyzu1hRmeMK2sOnXuMGFPmCbKhD+8BrbfYHmqv56yW4SzvqN8SsLbbvtqTyr6fVfxnPO3V\n", - "MecqQAY8UVx/1llnRcS0Zwdd+RlF/73+mavmTRzySEf0Pb7tfdxf5DbDATJ4Xmcoj1ShUCgUCoXC\n", - "GrFuHqnjjjuusyQ4aXP682kXKwDrct++fZ03K6uai0WJpWEOLsPs4FmlWmQ87bTTOv6qjGvPXjO8\n", - "Hshka4c+ccLGAn/00UcHZYno82whi3mc8FDQNqd7PA3IBPg/7eMlG6qaa0vL/8+yUGxpoj9bGOaa\n", - "Qq9Y7q1nD/lo27/NOOW4nvG1vgwsWcboyJEjaRVk2nKb/NbXZzFCWbX2bdu2df1gnOxhsneU/toT\n", - "53vSJ1cAHrImnVWJFWpZ+Jy/9jB6Hdkjh+z8vh1TZ9u5MrPnLx4X7uF4TY8/XjM+d5xHu47oF14g\n", - "dJ9l8TH38DQ5jskeDPZFOPfaDClfS/8Zi3vvvTcinvGsR/T3RceKsU/Qrvcue1GXlpZ6sZDAvI9e\n", - "m54vHgvHVnld4KkYjUbdb+ifvaOuls4Y0V/2GED/7fnHo+F18dOf/rT3POMe3s9pkzlo76/noueV\n", - "PXHtM4Dv7DlzrCdgbgGzS9izB+w9Zc9rx9S8hKwdjyvAy+UYSXvNgWMT24ryHgv6w77JPuo41Vko\n", - "j1ShUCgUCoXCGrGuHilne/k9LHAti6Wlpc6CsEfK3itOo5xafSLlpO7TbsYpxIm7zVICtjCxjOzd\n", - "yjiXsA44qXOKH4oFinjGunCGXOZB8ftl7p0xhvs9tms9tcis/wy2atE5Vp2tXSwr+uAxaseUfzuL\n", - "JPOOYYG4FhhjkXk8XXdm06ZNPQ8TVptrzaBzy+KsNVt9Wcbp3NxcJze6sizOYsUTQ/+cnZLFDvJ7\n", - "62VhYaHHrYdlaQuTNedMOrwaGR+a18EQ16D3FPOcec2ic+8PjssDrtnTZqn5emeZZZ5Z4AxD1+5x\n", - "hhj95/o2gzTLCHMcG/1mHQD3C70hi/cB1kvbx1nxpr4u42bM+M/YD+zxar2mmQcNmN9uqCZXC9f2\n", - "sx68ZldWVnoZjRnvK7Iwx/xczPTI9czlIQ+Wa3Zl8abA+mJuZc9Re7S4H3O2nbuWhTbZu7Lnhz1N\n", - "lgmYJ7Ddu7wG/Qxh7qA7e0czlEeqUCgUCoVCYY0orr1CoVAoFAqFGSiuvUKhUCgUCoXnGesWI/We\n", - "97yne5fJ+1O/M4YPZ/fu3RExneXh983w8sDLlVVH5XdwhJlrid8RS8A7cXPWbdiwoYtDcTwWcr/z\n", - "ne+MiH4cEvEo5lqDI4r2yCRw5gmcQpdddln3Xt3Zem4bvbjGht8vwxMGj5PjmBzH9slPfjKuvvrq\n", - "wX4CfoPO0YtjHJAdmeCUgg+J+Dfae+ELX9j1/QMf+MCU3PTfla75C+8Tsjv+wllOjD8cVIDMzaNH\n", - "j3Zzxrxs9JM5yHznXnAKwhPI9+jDtbDg8oNTqq1kzfymn+ZxZG6RVUP/yBiFO+v888+PiMm4M7+Y\n", - "kwBZdu/e3YuraitMR0R8+MMfjogJ7x+yOibQXGusf8cOMUbtXIevDJ0584nfonO4+cyIwN7kucv1\n", - "wHvWli1bOl6uK664YkoGZ52Zx9E8fs468l6HHs3dePTo0W6PQRa40JhbxMa4ojd7i/XoOkTeF7m+\n", - "jY1BN1zLemb9W4eOx+N6dM7Y0TfHlLb7YsQz+m5jGFtZmIvmCXW2svd05iKxUMTMkv1Klt8dd9wR\n", - "Ec/wyrlt1hJteL/wfu9sT+Yi17s6Pe3z+4985CMdFyJtOYMYXbIueF4wPxgj/o9ekMV8mObk3Lp1\n", - "a/dsYfwtL79hznnvciyYs/0Yf7ffxtSyvuknHJSsLWcGm5s1Q3mkCoVCoVAoFNaIdfNIRUT84Ac/\n", - "iIiJlYSl4QwCsrnOOeeciHimlgt1olyRl1M/Frf5i7Iqu5xeH3zwwYiYnFCpuguw5J588slOLk6x\n", - "zlxAFjwJWC/mLQLIhqeF03CW5ddmZeANwrNgviqzuNNfV0YHWZ2YIU4uWx9ZxhTwvc0P58q2zBP0\n", - "8jM/8zNTv3/88cd7bZsbDHj8s5o09mAAxo56QmCo3oirAFMPBavI/aRemGvetBxqLdrMQWcleq6w\n", - "Tl7+8pdHxMQDgSWdZeGcffbZETGxZNErsoLxeNzLmGPcrRvGhHF31pYz61zDBhmcldPek9+YG80e\n", - "WPTCunZFeLMPME9Yy+bHa693NhJWf1ajztlaXsv29LpmFvdu+d0AMrz61a+OiMk8+d73vjfVD8B4\n", - "O7uXfnu+oOd2rFzfCHAvdG7PflYXyGwVzB/XzOPztr4abXuP9noZ4i1swZyjYjf3+v73vz/Y1z17\n", - "9vQ8tMjkPdr7IM8wfue3LPbQ+C1Nm3HGPV/xildExGTeU0/MWb4Z7529wcD8sdybMW7XKN/5GZ1V\n", - "fHcmtvfoLOPQss7Pz/eeRbTNnmQuyqzupFEeqUKhUCgUCoU1Yt08Uk899VSvBoeri4NXvepVETHx\n", - "Ajz55JOdF8IxCpxCfRI2HxHgBM3JHEv7vPPOi4h+JdyWs85VXn3apYKvLQ8sKHtLiLfhFAzHHu3b\n", - "mtqxY0fnxcNrgwzZqd7WoGOfAH3DSuJ3Q3VZzCjuWAd7sdAHbVJd+SUveUlE9Mf/ta99bURM9IlM\n", - "eCWx9Nt+OMbBlZqBLXfXPLK1g2XHvdtaKBl3ItdSu+mlL33pMWXhd6627fFv477sDfS6+LVf+7Up\n", - "Gb74xS9GxMTjap3j/cXCRuff/e53p2QCq6ur3XxGR8wxrz3mFv3hd+jDtXiQDUvWzACt18CeV37r\n", - "ekgAq5h17pgQzwe8oshuvsBWFlvOrBPkNl+d+e3or71fAFnZR9uYNK/nN7/5zREx0e3nP//5qd96\n", - "n3OcntknvHc7xmTDhg3pXKQ/jnXhHh5/Kr2z1+HZRU/uK/OorbZvbwagH7TFXsXYtHtLxESPXP+F\n", - "L3whIvrV/MHy8nI3x3h+ZW8k+D/rHz68rMp+VpcKfbRr9A1veENETLycyM09mdeWhTnrZ13Gk4eH\n", - "Gz2y1w95atknXD/O+6L3cNdN877ouF7+v2PHjt6zyHUDGfes7liG8kgVCoVCoVAorBHr5pE66aST\n", - "uvfMnOYz3iesIuKXnnjiiUG29YjJSRmrhTaxamy9cPLmpPpzP/dzEdGv9As4LZ944omd3FgntnY4\n", - "5eKR4N5Yf/YCYLljSdDHrJr0pk2b4v7774+IiY5g/ranxdYwejPrNaBPwO+MW8v7f/b0Tj8efvjh\n", - "KVnwONnbgSx43bDMhjyY9AMr0DJmFb9t3TgOB2BxIRPzZDwe9/SABUU/me9YdbZ2uXdbPT9iYrF5\n", - "jBiDTZs2pdXAwSOPPBIRE08Uuuavx/uuu+6a+txcdY4FWVhY6MWCOL4G0H8yAC27vUCubM4azLyp\n", - "EZN9wFmmXnOMGZ4lV5H29Xz/wAMPRMRknjgg3WG3AAAgAElEQVQWp5U740H0fOFz+mX9OF6H33vN\n", - "79u3r6cTvNv/8A//MNUWvzUcU+qYqYyzso3n8pwCzGfHRNIfzwfGjjGCWzDzSIDV1dVOJ8xBrwt7\n", - "ElkPWRV6Yov+/u//fureeJk9pieccELn9UVnmScN3bH+WQfsWa6y7bgv+uLYzIiIb3zjGxER8bWv\n", - "fS0iJnrI3gLQtiu/I5O9qa5gjjdtCIw3/bLXy2PkjFq8fqwTe8ec7ZrNj/be5lp0hfNZKI9UoVAo\n", - "FAqFwhqxbh6pubm57nTrGk+Zhcrp8Pjjj08zwpx9gWeCz+3V4eSNRWVr2ifSNtbGlnaWEcbp3Rly\n", - "tnqc1eOTtu/34x//uNMNFoB579xP148ZysJrZff3Q1kbHoNZXHsGsQPO/ACMAdaCreP2fq5JhaWB\n", - "NeP+tLxcrQzA13MdMQVtzR+PpzO8mIvMTXswbQ3RL8c/WZb5+fkeZ5ytXTxSyIL8joWw7PaeOuYE\n", - "bNy4sbvWXotsPNu6cO5PC8c70Z7/tvKZG5I2HPOGrpHduveas9cIL4K56NprHRNlvkuApc4e5HH3\n", - "GNEuXgCuP3jwYG/vIDuPfjL+rpsG0LVrvWU8keZNbDPpshgmez2GxjNi4sHBI+W153XEXj4/P997\n", - "xjgWzHyYriPo9f/tb3976v9ktWYZqlu3bu0+cyaw41iR27Xg+OvrvV/y12MfEXH33XdHxKT/7EVD\n", - "10b0vUbU8ENfQ1nKEZP1kPH/RfTHyx5mt+09iOuy84I9Uvzu8OHDvWu95/jez/VtS3mkCoVCoVAo\n", - "FNaI4torFAqFQqFQmIHi2isUCoVCoVB4nrFuMVJ/+qd/2nvPzvt33rPC4wWnEO8vn3766S4Dinew\n", - "cEpxLe/qiTtydWC41uBxa/l4IibZfry3hg/rqquuiohnMmNom7gT3sUiC23zXpZ3/GSGcE+4s+B9\n", - "Mk8c4HN4oi699NJezJKrPcNXBdcSsvLum4xC+glfERxEhjnpPvaxj3U6b+u3tLIgI1xL5vFy1gnx\n", - "FeZOoj3qrLTcbIwn15ozzTVr0DnXO8uLv8jGXER2xo5YgocffribkzfccENEPDPHW1mIu3AGHLxP\n", - "novAcXrMRa7fv39/JydzEh3deOONETFZF44R4l78hVMK3kdnjiILf2+//faIeIZry3FFrhZMP+Hx\n", - "QxbiNdw2/WQueu5xHevp+uuv7+RmLjomht+wLhhPZKctx1bBKed1wZwkzu/QoUPd3GL8GQsyZF2r\n", - "in7CncfaZE2SIXj66adHxDS/YauXNtaIueZ9y3pwTB17C9x8yOhaccTKmJuTMT18+HAv/gq9ILf3\n", - "C/4iO+ufec4aRteOg/Rc37p1a69qOvc01x7PFtchYww+9KEPRcSE9412PLbM+Zaz0DGvjsdBL3AK\n", - "sl6IS6IPZHF6v2hjhyMmtRBPO+20iIi45pprejpHZ9n6Z54z7oyh6w8yv+CVRGZft3379m580Ln3\n", - "CcezIou5FgF7L5mU6BzOUtdZG4/H3b/h8UTuNr6wlY3ajqy5DOt2kFpeXu4UR/DgnXfeGRF5yjGK\n", - "2bNnTxd4R0cNNtDvfOc7ETFZfE6LdwCgN3UXzWxTTJmwDiYHTFoWBgGfTM4zzjhjsJ/0n4OXU3NB\n", - "GzjnoGkfwvz/N77xjRER8Td/8zcR0Q+qc3A2fbRMLbwouaevNbElcMAvyOh9TLwZMRlPNh/mCcH4\n", - "HJAB/WYuMlaUlXBxQC9OCrfec889aXFY6zajQnE6rykTMjLoAwcOdGuIgzLB5b7WAaoO+DUyMuSh\n", - "deTkiixg2yUnTBViWZgXbNIve9nLImKYIgRdu/TIK1/5yin5gfvvopg+eDpdGhlIyW5DJZzWTb85\n", - "GJlmCH3dd999ETEposgBnb4AZKV9HuabN2/uye216AeeqXFsWAKTFwM/oNv90fscoD/MA4zdjMaL\n", - "/vrgQEkSY2FhodMp44QugQ+1Tvd3MVkHI1sfQ3RY9AtdOp3fsKFIsWjv/8jI97/7u78bEZNnVlt+\n", - "wgHplMPIKH9cYNVUbF6jzCvuSR+4T1uCgP6jK/rJwcjPBRMmM5bsC5bdhT3bMZx1tti1a1dERHzz\n", - "m9+MiP7zP0O92isUCoVCoVBYI9bNI7Vly5bOO8Ap0GS9AKuJE/ndd9/d/ZYTNXApe9zEnER9qucE\n", - "zSn2da97XURMrOghclba+cpXvhIRE+v83HPPnbqWEzdeM79mMmz9YeW4PARYXl7uTuXoI6OlwWKg\n", - "qOlv//ZvR0TEa17zmojoW7tYAZzm6Ruft2OEXMiLzrMyD/YK2NPgYm8mwW1pWQwsKP7imckIVBl3\n", - "vASvf/3rI2IyF50uS7tQFFHQbteuXb1CksjNHHMJAVv16JR7ohfmj+cuety+fXt3D+S3R4q2sd6R\n", - "OytUaWJpPC4mSG2BpWkaFfoBXJDU3hDTbHBPdM/axLuApzeiT2wLJQb3siXNdfTXKeb2ApqQG1mG\n", - "+sI16Jy55+K4wJQ3rDWKZmKJA/TIvMCjv3fv3t5e5FITyII3z/sF/eQefM9+kMnCfY477rie9xf4\n", - "lZ9ly8ol8GrLJRjsfWvpofBEsz6ycjYAvTCPICO2LPyOfpuwG4xGo166vktnAOYFsrI3o8fMa0Sf\n", - "mIO8bfiXf/mXMFx6g7VlHdpbjEfKBazbfrYy8jv+tmPqucLzHxns9WPN8qxnr+aZ5X3Rexa/e+yx\n", - "x3p7DTqkLaixKLDqtwwZyiNVKBQKhUKhsEasm0dqfn6+Ox1S5IwTpC01Tuqcas8888zO+rd3B8uA\n", - "eAusOdqwBcLJGwveNDU+qbcWKfIji9vGUqBNB0naOrKFhrfJhffA/Px8z9vjwnkA3fLOGm8aMtib\n", - "gmWBNYB+7BWKmOgKixKZ+JvFa9E212VF3rgXlgz3QR8t7QvX0l/+0j97HEyUes8990REP1YO0H/a\n", - "Ze4uLy+nRK5Y8XhqHANlMO72qjpwug2I5Z2+44+AKU9ML2G6GnseLatjRzZs2NDdAy8u/bVV56KX\n", - "eI3oXzYPkBWvKmi9TMxFk2xnlrdj6RhXvAUZLQdrmDXN560H014+x51Yp/yfmCLmFnMxK3yL/tiP\n", - "HnjggZ4OPe+Rm/55/B0zxr5BOx5TJ2ksLCx03gjLgh7QtYsIZwVcTd90LE99xDOeHbxY6CYr9sj4\n", - "sVez9rJ+OqaW+WDZV1dXO3ldWNI653MIhfEau9+AdYQX+u/+7u8iIuLXf/3Xp2SMmIwn42fiaOvF\n", - "xPB4xeln5h1DH+wP6L2NY7RnHj3wG7ft5CuSLpCd+Q/oN7LjZVxdXZ2So72WsSHeDLkzmiOjPFKF\n", - "QqFQKBQKa8S6Zu1xMjWNi8Gpkfe0J5100iAlQ9sGf32Szt6/QyxJtlZWbr9NA8dybNPwW5guAWuY\n", - "/mRxKVhUWEUZgWbExErl1D1E4dJ+jpcAq95Zbr4ey8Wn/iFgOfJb+uMxcr+xBo5FQhuR67l9X+/U\n", - "YjwLpmkAWHX2QHEv65H2uR5y7I0bN6bZhlg39qxmsR1chyWKXjxGbao289fxWMDePPplSxX494y/\n", - "U+1bOLPTZN2G1wOwHj3eeFPoa3s94+cM2Ixsl34zVsjO/60Xk3ejj6G4N+Ya/XQKebYXMe54bLDY\n", - "nUHq9cX3O3fu7MX2oUNk4N6Z19D7iNdNllnHfZaWlrp+ep47jpExYxyz2DHLzPUZddKBAwc6by77\n", - "gNcQOnR/iOuzFzjzojumECwvL/eyb1taqRbIQCYw8VnsNd6L0DnzBL0QvzlUbNvxehk5N8Drj2eP\n", - "scjmC2PO2jSdV8Rk3EwNlZEQM5fZk2fR1ADaZ+/yWm77Q0wc+7kzYmehPFKFQqFQKBQKa0RRxBQK\n", - "hUKhUCjMQFHEFAqFQqFQKDzPWLcYqUsuuSR9D8n71ltvvTUiJtQJXDc3N9f9Fo8aVAVQfjgOhffL\n", - "vMumLD90Aq7k/dBDD0XE5B3qX/3VX01dPx6Pu3e1vE/nt9BmuLS9s1LojyliXCeFd8f0hdL5l1xy\n", - "SdcvX0vb0AlAEUA8gmt2IDsl/7keELfhOIabb7650wnI4gUYI/TimjyuJ9P2s72O9/r0ZWFhoUcn\n", - "YE+ra1FxPXPL39O2r4f2g+/barxcy7y13K6zxTt7rs/oitA5Y2BajqNHj3Zz0VloUJswt9qsqrZt\n", - "5gvXmzonq3wP7cPu3bu7+e3YF+JMrHPXA+N67ul+ohdn93H9TTfd1FG+oOtsjjHPadt7kGOJPBf5\n", - "/tRTT42ISezJgQMH4tOf/vTUtcBxOKZOMRWO4zb5/JOf/GRE9Glc2ngmryHvoYwR8Zv8lv0CWdCb\n", - "q4gz1nfccUf8f+2da7BmZ1Xn1z6nz+n0adOJhEBISNIhFy4BCh0GPljWTOkUhVWWjh+8UKUDFBpK\n", - "IyGWaIxUzIUEAxijSCo3MsiMM4yXKS0vpQNWUeqgXE0EEgIJ5kYMwcSG9PX0OTl7PnT/9vu8v/2u\n", - "Pl3HTp8R1r+q6/R5z36fvZ71XPaz1l5r/SMmVDttxi4ycC3z3DRLZGERU8ccvv322yPiEP1Q2w5x\n", - "OMie7eltvxxnhSzsc45nI8YHPUEp4rnoKv7ch3VBX1s4htT7hTMDvZdBh8Vex/Xeu5DtPe95z+hZ\n", - "5JpW7X4eMdnnHANIzBTfs16Qhb4xllu2bBnWHHRlvtaxUzxHkcV7lfck9EhfPSbz8/OD3Fxryifa\n", - "dtY+6yhDeaQKhUKhUCgUNohN80itra2NrL4sg8Iny/3794+qxYKWuDNiYkmRjZNlkJmclYwJV0Jt\n", - "5XcGR5Zd52y8LOPQdUI4DWMFHCmDwDx3mUeGv3O6RyZnp/h7jJE5m44GzjYxASpjaI4kf9+1jfi9\n", - "zcZwdlLGd2ZZ6B+WqetR+Xr/3LNnT1qR3dZuxkGYeaJ8L1+/srIy+o4rD7uOmj1SHv+MODuzkvu+\n", - "H3lSszpZXDerSn77fffTnGveF2bJ7zazmkPrZQC5nayO0Cx+M3uLM48t85jPyZSito1ltx5N6tzC\n", - "njnLlPGE8pN+mgHBaOek94xMJjxv7HPeB51x6fa8j7aef3tF/V10Zv0wtzyHPVeR2VmioP2+97ts\n", - "P3d9LHuR3R4y2evatu854jVk2Gtmz9R6Y8C9nYHbtuHahRnLAvdmfeB9917v6y1L3/cz10bEeG8F\n", - "2fWj647qqkKhUCgUCoXCCJvqkbL1nFkNPi3u379/ONX6NMpp1pVWOdW7IjMeJ+pI+F26udlof3l5\n", - "eVTF1XLakkJW11Vx21xHH7O6U0tLSyNdoVNbTsjKaZ7TfVZNFthSm4VZjOet3LZ23Q9X1/b19kg5\n", - "JqCVPfNuZv3jc9eosgcPMF88RgcOHBjVKWnfzbffzfqZVd+35xO0enTMm+eiq6nj7aCSczaGnru2\n", - "ksHS0tJwD7x41H1z2/ZqueJ35tnNxqTdA5jfjktzTEjWz/Xmrmt70Vdz11mu9h6uJwSYH8gK39ed\n", - "d9459blBO22cZ1ZHLqsG7jFCFj5nvhA76vGf5cHJPC6u2cbeaz6/rO3M2w7amFTz8Xk8kYUxgbct\n", - "W0eeR8w3PJGeX33fj7zd3oMBv3OdPZjeg10h3/HA7Vg4RtifZ/US6S9to2vPH+a/5wt7QHtfrznv\n", - "51lNO3tH8Qbam+x45zYG0223vIwRkzOIvWXroTxShUKhUCgUChvEpnmkWi4mWwuZFdCeHh1nA3ya\n", - "x+LGyrE3CAuLkzMnUk7o5kNqecKwQjJL2R4Jv3c2sorOzsYA+/btG1kfbSZbC/rB3zmZm/cMZBXA\n", - "Z1Ufzyr1Zlx7tvayGCCAF8DxXM6sa2UBGT+ZZXQ2Uza/iLXjPsj29NNPj+YKXi7uwd/5PHuX77iE\n", - "LPaljTHMsnGAM7vchsc7iynKYip27949iktzrIvhWJFsXTh2zJZ6K1ObJdT+xCq1pcm9M2+R55M5\n", - "PmGih4tyliU7q+p5xHi+swcxFnhqsor/fJ+xaj38WfV/V2S3xxEwzz0X6V/m2Wvni6vAA8aI9XD3\n", - "3XdHxGSvzngfszls0PelpaVBLnsS3U/6he75fT3vF8j2rq7rUm+P178z0ZmL9sgAe1FdKbyVyc8g\n", - "Z1R6/Tt21OwK1gPPV65jDHlGts9d2kZuczJaX4wFsrPvey4DZHTm3axYSmchOs7sSKwiLcojVSgU\n", - "CoVCobBBbJpHqu/7kcci4/Fyhknf96OMP5B5f2x5At+bkzrvfLO4lzbGK8tksozrZb6ZS+tIvGZ8\n", - "3+zVtlLaa9u2rA+fvJ1xxOl+VpwC1zgDZj3MshCO9Lm9JLM8WfbQefzXixFwPJLni9thniwvL4/a\n", - "tpXuuXa0YJ5lcSlra2uj7CuPJ7Jgnbm/hq1Ge38syyy+Q8f4GfZkZpmCRsYO38KeFnt3/V1z65mz\n", - "D5i7z7K0fV3PQ225s6w8Z3sCc3G288sehiwGzB4H4HF3/bgs/qudT5kH3rFwfCfjfbPOvc94TNv9\n", - "FT1k3lG+i1cE2dD5rJin9qfnl9dTuxdmHHLA8VzOTssyKz0XZ2XWZfui408tt59d9CHjXnQWPD9b\n", - "2R3HvN7+6H3kSGuu/bs9dV3XjdaQ+w2yjMAM5ZEqFAqFQqFQ2CCKa69QKBQKhUJhHRTXXqFQKBQK\n", - "hcIxxqbFSF1yySUjnjjzY8EpBI9PGzPE+2Ui+s0R54wgZyfRdsbN5ffSXA9n2cGDB4e/OdMHviLa\n", - "dkyEs4/e9773RcSE98f1eAAZJi1PGO98yT5AJr5rvjKyKNAb77CpzcH1yOL6IYD73XrrrXH55ZdH\n", - "xDir0PEn73rXu2a27Tg0Mj5uuummKdndbvu+Gy4kdO4qya4tAkcYPF7MD67nOuIUzEHlLMYTTjhh\n", - "+A5zhWuB46toA34zrueevp4xgw8PPS4tLY3iDOg/cwseP2fd8D2ymhgjdM711Efy/IJX7qd/+qeH\n", - "eDFnSO3atWtKL+bCYryZi8gEdxp6yeIdGbObb7556CfrPIsBYg3BKcj8cPwO33vPe94TEZP5hf64\n", - "N33uum7o59vf/vapNlzpnn2B8YQPjzXqODXuwXxBdsaijT1hbr373e+OiDHvI2vPsWBwkKFzMwI4\n", - "g87rDv1t2bJlGEf6iw6Ztx4j7kU/aZs16v2TOe7nBe0vLi4O37HcHv8sFsj8mchivbFmrZc3velN\n", - "oyxdx76yhmbpsL0H96SfjKnHxrFjN9xww8DLyB7Cuia2lvnOfsH6dwwp16F79mjvi85A37Zt24hr\n", - "j/0iq7bPfGG/sM79jIaD0s+j9nnr8bzooosiYlLDjExZxoxMWmTPUB6pQqFQKBQKhQ1i0zxSBw8e\n", - "HPG+YZEeiVOO72Y1J1xriDY5ibeVhyPGnGzOJLEnps1ys5fLnhW+y+nfJ29nbeAVQnZXcPUpf9++\n", - "fSPvjD1wwLWb8ALYogLIcNppp03J7nohbRtZhdksM4J7YAVkWV6MneuGoO/WM+X+813kNqccOmWs\n", - "sGKc3QbMI4eX8KSTThrp0BmVVIvm8yeeeGLm9fbkeU4C9LBjx47hHugaSwrYinNtIreNV+RrX/ta\n", - "REy8SngLzCuIDiIm89ZrC/A5Y8Jc5HO+D5hHeF5c463NyLJV7gwmy0J/0B99cD0c4Jp2rtnTzl1n\n", - "SLlmjfcW5p5/IpvXNGPgMZmbmxvVs0KHrqljqx2YbcKZVt5H6RP62LZt26ALZ8x5fjvzLcvazGR2\n", - "llfrXbLusorV6MUeLMviMUQvGSvH8vLysHZcsf3UU0+d+p05xDxnPLPMOtf4soe2BePltwbInVXN\n", - "z6rJOxOTdtGP+WHbMXINQ9e2yuoR+meWKem12/IMup/ck+ccle0Zq6OtcF4eqUKhUCgUCoUNYtM8\n", - "Uk8//fRw2lvPA8UJu62V5EqkwFYxnD9Y/3iHgBmn16s+3r6XtTXv75jXytaOLUysIn5yqkdme3ye\n", - "9axnjaq8OhYAICundK7HOsCqBTCy2/OAFdF6Uxzr4FiGrP4RcP0UeyRc48vtttYO38WjQrVk5lBW\n", - "/8h1oWxpWlbXYTpw4MDIaqM/WJi2ej3vGQs+Zy5n17c8b8jLuHiutN6K9rrMU4O+PF/Qh+fLCSec\n", - "MIpx8XfALI7EiMk8t4fBHkjXQGrnU1ajLVujrJ9nP/vZETHRKf3H4wjomytgz6qVxXjTlmsx2TsA\n", - "XFWa/rm+kr1CbZyWdYgstGGvRVYXiH1kvdpdrvHTzg979ZAFryn73CwvZ8R4r3I8kvc69Lq6ujry\n", - "THqe0xbf8duC7C0D4HrHNYKnn3560LV5TR0Dyxz0swvZMo+kY8aQvZXFjB/Im+1zrMVWlxHjZ5Tb\n", - "tzfVnsr2/7Rhz2T2RsJr2zF4IHsWzqpQ4Lci6N5vf9ZDeaQKhUKhUCgUNohN80ht3bp1dBKdVQU1\n", - "YlyFteu6tAoyp1euJcYDy9KnVywOWx7OIACcVFdWVkbxOOtVngVYA7byMqvhSBXDfSq3987wu3xX\n", - "dAZYT86M4X2/rcyIsZXqatuA7zqbESuGewBXmUUmfm9jkxx/gVcnyxDEenGMFG1aj1iJfv/e9/2o\n", - "bfpBm3zH/QV40dCX9ZB5EZjj7TVZ5WnmL9/FIvX1WMfAnhv00PbVXgx+2qtjDjlktscBIJs9MHyv\n", - "1aM9C85Ksg7RB2PD/kE7vt7WMXq1tzRiXHnf8VpZXApwfInHyJ4rsLq6mvI+Ois1YzZgjTFP7HW2\n", - "Z4ffmbP79+9P9y2udaYk88L98T5qfriMxWF1dXXkKcv4DumvM+sMZ1LSPrLQDti5c+fIG8i4eo2x\n", - "TpiTeOyy2CHWg/cuV4pv5WU9oHMzgQA8itzbP+2xwZNjD50rx0eMs1az7E3LYu48YJ1nleEXFhZG\n", - "4//P//zPU/1iDNiLHceaoTxShUKhUCgUChvEpnmk5ubmRrECnAIdC+CYm4WFhdTC8O+cTvFM2MJ0\n", - "7Ig55TJs3bp1OPH6nazbNps3p3bHa3E65gTOSTt7F7y0tDR8RkaYLQ7A+3g+dyyQrWNO4nzPXqFZ\n", - "cW3WfZZ949o0jvOyNY2euXf2fr5tC1nIwsCCcj8dC+F6U87acKZm65HwvLVlyHx3DTSDOeoYQs/J\n", - "Nu4L+Z3J437SFnNzliclYpJR5Hi9jCdu3759w7jZumVdA3TGPHcM0Kw4k1ZGczuytttrncmUZWHx\n", - "Oda996Qs+4372GPZts//PV+zbEbWmr0dGQedvYyt191tG7Piy1pkcxm4T8w/Z/lF5DFSs+ZQ2xaw\n", - "t93jb7AXtnKjQ3s7uZfnh+PyADIzVlyHbNb70tLS4Hmyh7GdtxFjD7U9UZlHEplY0/aSRkz2+2z/\n", - "y3j/HNebPR+9RzuzrpUle044yxVkbyQy2HvWjqn3JnTujErWfZZxbpRHqlAoFAqFQmGDKK69QqFQ\n", - "KBQKhXWQce1t2qu9Sy+9dBQYituRn5TZp+R/GwiIW5Q2oEKg/DzuPIIfCYbDrUyZfUrE8zmvG+yO\n", - "pnQ+lAILCwuDS93uYa6FrgZ3KNfj/uYnpfAp4+8AWBf/Qy8/93M/l7rJcYNef/31ETEp4Y+sLgeA\n", - "bpGdMvvAKau426+66qqB2iB7BcN4ovM3v/nNETEZE9zOgH5bdu7tgMb9+/cP1CZQhLjEhOkIrrnm\n", - "moiY0A/MSl9vsR5dRfsKCB0it93qDpr91V/91am2XfTTOmeuQynSvmaxS/3aa6+d6ifz25QY3Asq\n", - "HOgn/CrQ9CxXXHHF0L5TwJGL8aSfjBHz3MkXzEXGCFomu+r5neuvuuqq0V7BKxhc98z7D37wgxEx\n", - "2Vu89/h1QkZvQx/Q69zc3ED5gtxOADG11HXXXRcRYyokZPErn4zeyq8EI6b3iohxGQTPtXe84x0R\n", - "EXHZZZdNXe+wAvTL/EKPzOlt27aNXosxt5i3flXj127Iznxh3L2OkIX9oqV9YS5a98xF1qhLDQDu\n", - "Yeok9ML3kIF5dvXVV0fEoTFyCQD2Pfpx5ZVXRsRkz/W8dkFn+sl+4dfRfi37rne9a+hnW8S37Qfj\n", - "iyw8R10M1K9TTW/jV+ptwgG0LMwV1hh7S7ufR0zmC88LJ0ggO7+bxs2JFfPz84M8zK1sX2Ss0As6\n", - "z1Cv9gqFQqFQKBQ2iE0tyIk15yAzn6htJfR9nwamucDakYo3RkwsKE7oBAauF+A3Pz8/CkTNing6\n", - "QNmEyoATNNcRfM7J256bNujegcwOKnTRS/pHILCDR91/l0Fog2ptxa8H0zVkFCgGeuE+s7xxLlvh\n", - "ueMATxf7BMjm+WIvYet9s1fLwcDAHgTgoHt+x6uSFTZdWVkZBct6PF2Q0N5UzxfadnLBLFqeiEP6\n", - "9ppbbz64LIQD4Nu223vyO/Oh7avv7aD5tlRExHgssP6zJAzaQQaTY7fB5+jOBRWzhBD3AdibAkxL\n", - "gyxzc3Oj8QcusJmVYPBe5SD+9fa61dXVdJ7Tb6512Q/vcw74PVLCS/v3/fv3j/Yr68XlD+w9ss49\n", - "90xaPevNgMt08F3KPQAn4WSB4f49KwvRFvy0BzUj6QYO6Pfea9mc5JMRbrdtONEn2zccwO61l1HE\n", - "zCo2nD3/1+vfeiiPVKFQKBQKhcIGsWkeqfbU6dN/RrXRkvdysswsb6warN3s/TGgbTxSyGLy19Zr\n", - "ZovTqdAmnXWhQlsY9AlLxfE3s7wGfn8+q0hl2xbWC54ZEwEDk1zaG9BaO5bL3oqM8JJ7u/BcVtLC\n", - "VDktZRBAXq61Nev54lIDjpXIUvFnUaZklhQWt+emvZ0uXcCczIilTccQMdGN5cYS5SffoTxERqDL\n", - "9S5E6XW0srIy8qRlhKjZ/MhKVNhzndGWtPA4YRF7/F3s0mS0WZHZLAar9TIhN/11CQl7ARxbyL0z\n", - "75L1Sx+feOKJ0fibsoPvEK/jvcjlPawXg+va+9j7C6w7+osOM6Jgl5HxegDtvmsvb+YFdJHfjJaH\n", - "dthfkJl15DXdjoO9H96beFZ5f8uKQ7v4ruOdWj36LcB6FCieUy7BkxGo23NpKq32b455y2h87B2z\n", - "7FlZEOACsC3QoT2R6xFoG0f0SHVdd9CkT/0AACAASURBVGbXdR/tuu7urus+33XdJYc/v6rruq90\n", - "XXfn4X/f13zn8q7r7uu67t6u615zVFIUCoVCoVAo/BvEeh6plYj4ub7v7+q67tsi4jNd130kIvqI\n", - "+PW+73+9vbjrupdExI9GxEsi4oyI+Muu6y7o+350rFtYWBgVrHRGEDCJ465du9J4KhcQw2oxdQjA\n", - "QsGyuP/+++nLIQXodNwWMITY18W82j5GTE71Jmu17KYxwSJxITewd+/eUdaNs8kAv1Nok3s5RsDg\n", - "e+sRLrfy2bNoWUxPgHWHdZAVA8TCpfDgrKKIpkKgTVMWGI7Xoh1nbzpDBn0sLy+PvBemyKCftsSA\n", - "KQ3cTlbIbmFhYRRH5CKYWbxF5gXCW8Dn6Ad9zppfLk6YefUyQt2MtDYbM/clYmy9Q1rtuByAd9B0\n", - "G7OKGkZM9ODioczNdu/K4g4z6ih7pJgvnjeGZX3Oc54z8l7Yw+Z1b++OPRCODbIe0W+7r2QxUqZC\n", - "8T0d1+ixs1fI7TOPtmzZMvSbcTbZNvA9s33O1CnMG54Bnqtbt24dFZ41iTlwbCyFRbnOMvK5vWjo\n", - "o6WYQifIxzxm/O2pM3UQHjd7pgHzx5Q5Jhhv5WafIG6R/mZxz1nRZO9dmad6fn4+jdcD6Bi9ZB5Y\n", - "44geqb7vv9r3/V2H/78nIr4Qhw5IERGz8sV/MCI+1Pf9St/3D0bE/RHxqqOSpFAoFAqFQuHfGI46\n", - "Rqrrup0R8R0R8fGI+K6IeEvXdf8lIj4dET/f9/3XI+L0w38HX4nJwWv6xs2pMXsnCma9S3W8ETAh\n", - "Yha35Htx6sWycMl7Y35+fvS+eD2L0V6dLHbIlseRstk4MTvLJvOOuC1nTPie9irNIrnN3idntZks\n", - "C7rGQvWYesxc86O1bK07gLyWERmcKQRsqVt/rVWUyW2L2hkubst0LllWZJuJStt4bw1nz9g76jpB\n", - "wDQ+eLpm1RWyhZwR4jqmw8TRtuqd1ekM1FkWqDN2sgxCZ7l6rNxPxz06O6mV3d5ct5F52kycm8XI\n", - "AGRkHczNzaXE716/9iBksjj2JfOast8uLy+PdONrHX/lDEFjFlXYrOvbNe49N9tbPVZZViJt2ztC\n", - "u7OywrzWsrnljFD3wR4sj6nj2Nq3DNaZPVMZpZDftthrCjymXqtHok7i3nio3M/s+eJaeCCj9Vlc\n", - "XBxd6zVm4vWjjZE6qoPU4dd6fxARb+37fk/XdTdHxDWH//yOiLghIt6UfH3mDvaxj31sEPK0006L\n", - "5z//+UclcKFQKBQKhcIziUcffTT+6Z/+6aiuXZcipuu6hYj404j4877vf2PG33dGxJ/0ff+yrut+\n", - "KSKi7/vrD//tLyLiyr7vP6HvFEVMoVAoFAqFfzPIKGLWy9rrIuKOiLinPUR1Xfe85rIfiojPHf7/\n", - "H0fEj3Vdt9h13TkRcX5EfPJfI3ihUCgUCoXC/69Y79Xed0XEj0fEZ7uuu/PwZ78cEa/ruu4Vcei1\n", - "3QMR8eaIiL7v7+m67vci4p6IWI2In+kTl9cb3/jGUTyHq2nDWQa/UfsO1e9BzT/Ge9esPgS8P+a3\n", - "4p0x7RN3cNttt0XEhD9v+/btQ1ZEm7kVEfE7v/M7ETHm8XI9DD6Haw+uJd6301+yPLjPb/zGoTPt\n", - "JZdcMrxnJ5bHlcvhiHrDG94QEZM6Wa7Mzb3gIIJrCz0QG+NYgJtuumnEhWUORd5Rv/e9742ICUcU\n", - "uiauAlnoC7xf6AV9O4uj67qBO+snfuInpv7mTDDzIZo7K4tfgj8t40NbXFwc6ZC54hgwzwPahiPM\n", - "MUGu+WVutu3bt6d1ojxvgXnr0D1zC52TGYU+0QuyIctb3/rWUaYf+gCsUfPhZTFAN99889T1Hkv6\n", - "yhq45ZZbhn46I5Q5hvz0E64tV4l2zJy51gB7Vcu3yfibI9I1uej37bffHhETfkNnnNI2GaToxfsF\n", - "7Z5wwgkjTjG439AH65n+ck/2Reai9xPznXmut7ElrvNG2+ZORBbmFHqin+aUs+z0/wMf+EBETPPE\n", - "IYOrhbNfwLXKeLvSN7KwRzNfzCSBDHy/5XJlHOkf2efMHfN4Iqtr4XkfhYOObDfu7Xp7733ve0c8\n", - "roC2GWf6yXPUGaTOYmNMf/Inf3Kqj+izHSN04rbJfHQ8HnuXeQJZB+yLtAM3H2sUfbSZhrTN3OJa\n", - "dOhnL/1h78pwxINU3/f/N2Z7rf78CN95Z0S884h3LRQKhUKhUPgmwKZVNt+7d+9wCiSTKKu66iyE\n", - "1dXVwTp1tkHGf8fJ2JkSzi7gJJpF67cVX10VNeNx4ie8X7Y4M7iuivs6Nzc3ygTJqj7zOfoxX1XG\n", - "teYMI8amzU6xxZRlRgBnafATC8NWj3mtkOn000+faq/9G3PqzDPPjIhJPSHXhXJdIPd/vczDNqMk\n", - "q/PkOZfx1T3++OMRMZkfzJcs47D1hLoCvbMN7QVD1ixri7WGvrgXOjfaNetsLK8LxuLss8+OiMkY\n", - "0X/XNPMcdQ2kdoxc4d8ZXfZ6uRI+88ZeIMPVo2dl1qJrvMDI/dhjj0XEeK9Ch+gLmbLsP9cya7M9\n", - "vVfQJllYzlbO6k4B1l6WQUZ9OuoN7dixY5ABj4Nl8d5Ff61Le2T90y89CBBeWloa5iv3chaaueTc\n", - "pmXxc4f2Mv7Ehx56aPjswgsvjIiJt4Z6WsB117hHxvvp/RY9Z3ta+ze+C4uG939noSJTVkeM6/0m\n", - "Z1bmprMLW29uxHjvymqgoT/XBrPXvK3bZh2iO9a559Z6NeyGex7VVYVCoVAoFAqFETbNIzU/Px/P\n", - "fe5zI+JQ+YOIiC996UsRMea3o/LpAw88EBGHLJpXvvKVETHN+RYxOUm67gn3cB0RTrNYPZzQsZpt\n", - "qXF6Pv3004eTLtXQsagst2tTveAFL4iIsaXGCRurB8ttVl2QiEMeC6rgYs3T3zPOmC7fhVVMf7kX\n", - "FoYtTPSA5epKuK3es9pMs2rrRExqHTEW6JrfbZFgYX7xi1+MiIkn48UvfvHo/siFl2Pnzp0RMRkL\n", - "65x7oR/G9OGHH57qt4GsjO0pp5wyiuFxHBL9xBPrGmdY9cjM+kCPfB8g88LCwuDl4BrrEL3Qn698\n", - "5StTstjyxgPB3GbesI7MXH/aaacNujW3YGZJU/IES53v0xfAvfF2sD98+ctfDsMxPbZy7b1gHbCO\n", - "6B+yuZ+AsbNnqp2L7Cl4FpHlwQcfnLo3YL543TPXHFNqfkjm39zc3KiyPfdmjhFvSD8dE0b/HH/F\n", - "fmAvAOuAvp533nnDdz1O7KHolj0lqzuFHhhDxor2LUvLE+r9354UdIcHhbmXcbkyB3lW0TdYLrzv\n", - "Pv7444Nu2ffPPffciIj45Cen87DQLbLSr4ceeigixnOXdpkXyMLabucL1953330RcSi1P2Kyh6IH\n", - "y+LaVo5jAnzOWLFGPZfbtlwNP6uTxt7E9fZQZt5U72mLi4sjzxvznPmbMResh/JIFQqFQqFQKGwQ\n", - "m+aR2rp162BZZDxPgBM6VvJjjz02eBh8ksby5vRuziRbO1ggGceWPRJYT7t27RpO7VzrmCfk5rTO\n", - "qRevgU/1GQcXJ2/H6xw4cGDor9/tOubF79vdX9/TFaxtkbTIKhdnnEd47rIq3PYaEufAfGHM8Bq1\n", - "niD6iUVkndp6xRrC64WVbM4ly+6snq7rRjqkbawaewk8X/BAOYYss47avpobyuPkKvJYd7OY4iMm\n", - "esLDQL8feeSRmdfv2bNn5NVwrALgOtYwus8qPjMWeFOIZ5hVZR89uP98blnwXGaV/42sGrfjPlq5\n", - "mYvIOSu2q/3csSCu0g4YS8YGS71lXQB8l++wB+G9cTwNexX7i/fozLNDe60nxmOBN4x7cg/HKQHH\n", - "ovJ7Fr9y1llnRcQhvTBnnI0H2FPs7ci4FpGRdcGaRR9e4+ecc84wD/BiOdYPoHP2Na5jf7M3nb2H\n", - "PjJv6AM/IyY6Zi9FJn5msaMgi38FzF1XK/czsm0LXZkz1ePK/PdzYdb6b9t1RmXf9yMPI2D8+Q76\n", - "csxbhvJIFQqFQqFQKGwQm+aR2r59+3D64wSZZUpw2sUKiBjHDwDacC0b7pFxp5mxHmTZDHv27Bks\n", - "Ar+zdduuG2KrxW1zIvcp36fpr3/96yNvRWZRO17FtYr8nhk9YYFgFWE1tJad+ZeyjA5gfjMs14zv\n", - "C1nOP//8iJiMlbM7W3kZR2LHsCyIcchkw7pDNus84/3r+37kYeJ3vFxYOZklTZwF495yp0XkHGQL\n", - "CwspozwgHof5gjcwq+HEvLA3mHlgT93Kysogr7kBvaaYQ8wD4jXQC1Y+4J7mOUO2dj05K9HeHVvU\n", - "/J170gesf4+3YwozvrO233gauDazdn0vxxpm3GzcBw/fwsLCKJ7GNamcMZ1xy6E3zyvrkTWKHtq3\n", - "Bh5/exjttbDXCNnpE/MHfXkfIHbw5JNPHu7VZvK1cNa21737SZ+QFe+Xs2bBjh07hucD8xSvruVm\n", - "TPwWwPyxAJ3zd9a0M+fa/iM38VrrvQXxs8rZe8DPIdc1nAU/kzKWFdYibbP3MHezfdEe3a1bt6Z7\n", - "L3I6NuxoufbKI1UoFAqFQqGwQazLtfeM3LS49gqFQqFQKPwbwoa49gqFQqFQKBQKOTYtRurSSy8d\n", - "ZXWQ3dJyZ0VMOKjaeARXjTZ3HlkHXOdsPri24CtyfBbvSnmnDtcO3Ezbtm0b3qNyL2SBIwguLD73\n", - "u3/eYcNBZN4v3iE7RgaupYsvvnj0bt8VyeFxgn/KsVGu3XLTTTdFRAz8ecT30Fcy5nh/f+ONN8bP\n", - "/uzPRkSMMsccEwS/FRx6WeYgMnE93FyOwWprhdHPt7/97VPyEl9DPAZjxfi/8Y1vjIhJnBbxbFxH\n", - "RhR6Yb547LuuGz5jPK+66qqIGPMTOvYB2c21Z45Gvkf7jOlJJ5001K8hJsy8f7RtLkFnq9E23Fzm\n", - "YiT+BFkYy6uuumpUmZ64LDKCzLXnGlZe/7feemtETNY/cRfEShJ7xH1uuummEeebY5n4CacY+4Wz\n", - "MV19nvF//etfP3XdrDo5rM93vvOdU20Rb+K4E8YIvjJnMaEfPm953Nq/g5WVlUEuZIHfzCwJjoFE\n", - "Fta/9wvmJGudMUWPbYwYbfMd9mjmreMz21iW9nrWHO0xZ7kO3TOm7Bftd9qq720/kZt7E2fkmFn0\n", - "yJ7kyv8ZB+Hll18+yuj0/oXc9BN4v2P+Iwt7F/F97NXsdchyww03DPegP6wZc9BaFlfbRwb6C0+o\n", - "x9R7Xdd1w7z9qZ/6qan+MY7mWrUsGVsHeqV95q4r/j/99NODXHCtXnPNNRExeVYx/sSUsVbh2sxQ\n", - "HqlCoVAoFAqFDWJTK5tzqnWlWleIxkJts1wyNmrXUcLDYP4qYNZuvsep2F4krOG1tbXhxGuOJLdt\n", - "Ky6ryeQsJ9rD4rAlu7S0NPSXfnKSdlaFMzqwWoCzGamvw/c+//nPR8Qkg6LN8sl4zYAzH7D2GBMq\n", - "eVO5njozwBWM0R/WYFtlnTbxMFFFmv7iBQFY/bRB2/TTc9HZjIzZSSedlNaRog3GxPMd0B/mnD16\n", - "tsjwDj3vec8b5kFWm82eBVeodtYeY8TfaZ/6Q7P0QpvMDXTo7CR7rsiEQn/O9EEPeN1Yw85EavuB\n", - "DOarzPjquM5eYMvC+mGusz7MpNC2Qb+oDwScQebMIWc1eYz8eas/jz9zy8wEyJhlVnru4TV0hqpr\n", - "Y+3Zs2foj/tpb5+51LIq+6wfsluzOkJtbTfmSlYnjP2ANpCZuesYYvYm9MfzgEy8WRnKzqpEHxlH\n", - "HLpEJvZ/y8K+iSeKtwXmPYwYZ62jDz73c5Rx9PPPbzIAMvjZRl/a55G9uWZdWI9T0vMq40N1Dckt\n", - "W7aMnrk855iT7G9Uhz9alEeqUCgUCoVCYYPYNI/UqaeeOlhJ9957b0REvOhFL4qIvGYJXoalpaXh\n", - "Ha9Pr1jknLA5cbqCudu2JwprwWzhnMj37NkTd999d0RMTv62dvguljSneKwa83hxPbK8/OUvj4hx\n", - "DBZ46qmnBvmxTlxZFnBqp2YPMriys/sJN9M//MM/RMSkMu6s+iCuHWLeQ4D15qrQ8LpltUf4HFmJ\n", - "B2q9I4wvnqi77rorIiY1h+wdYWzo7yc+8YmImFhJrtbtmAvqyOzevXvkkULX9NM1yzx38W7QP+Ys\n", - "3kbLQr+ffPLJ+Pu///up/p933nlT1zKHkIWaXFivni9YqqwDdM+atUfi0UcfHf7mNeXxtBcHK5DP\n", - "bR3Tf+bspz71qYiY6K/lN3PcneMNXf+KNQfnGGMEr6PXKO0iK94RvE3tOmLNMU+Zk3CtGY5vBMjk\n", - "uWtPTltvKav2zFi89KUvnZLJ3m48OfaOI0NW0wi93HfffWlFdtpARjyrHjuAPvAaoD+45dw+7Zx4\n", - "4onDnERey826YB0gG/PecxGvErp+4QtfGBF5rac9e/aMKtDbWwq4p72otGmvoeM/P/OZz0TEuA5b\n", - "xGScmc/IhOfNnLX2vDKX7WkCrtfYjkHE9LPR8ZlcQ//81sgxop7bHn9zN7asFn6GfuELX4iIyV5t\n", - "PtS2OvyRUB6pQqFQKBQKhQ1i0zxSBw8eHLxKnH6dnQJcnfgb3/jG8JnfM3Pi9ntlx04ALEruzXtX\n", - "rF9bDZx22xgj3pNncjt+AM+C28bCsKeGuIRZHgyz1wPHSPBdZMCzxD19qr/zzjsjYmJpY8licbYW\n", - "huMpuAf9thfQcVrI7ng24Gq6tIvsracGCxRPA23itfAY0aZ5rOin9UJfGRv0vGvXrlHcEG0yRlhe\n", - "WOCGPU7OkMl4Ir/61a8O93rZy14WEWPvKDp1NegsLonfXREbC919XV5eHtYMOms9RS3wAqAX7oHX\n", - "0F4APDoPPfRQREwsVrxurTXtTGDaYj44zoh70t+MBw9gqeKFdnZw+z3uyfpln2DPsnVsyxwdey37\n", - "evMrLi8vj+YtcvPTmXKeLx4jV4D3GCFrW70947ez15/fzZEG8Ao4c9BrELTrxPPUexFjRH9pk/HN\n", - "+ELxYLCf2DvY3p9rkCVjqqB/zGH2ReaJ28Y7Rmwpc5D9pdU797LHiH3OsrDPMYbMLXt6ATIyd9HH\n", - "LK469ECb7F3ZePJMZ/0gmxkgAH1ztuOWLVtG44nu2EuZa8zzrBK6UR6pQqFQKBQKhQ1i0zxSrVfp\n", - "+c9/fkSMedIAp8L2fTendr9P5xTOKZe2sHp9IrUl4TorPlFjuSwuLg7xMZx8M56+jEPOstsqpL+c\n", - "wN3O2tracI+2nlHbH9+L/mCBcHp323gXOKFj5aCvWTx3fieNXiwLlrSz/fjcemH8HedjazNinIWC\n", - "RyrzdjIv+Iklko2dOR7tVZ0lNxYV8rquEMDT4gwi4PmFbIuLi4P3h+/Y88Ln5vFCFvoBsOKYg20m\n", - "1Kz2FxYWhn62MQkRYy+AsxMvuOCCiMh17ixOxog9oI3XymK91uO3pP/IlMVG2IpumeUjpmNHnJ3q\n", - "Nee9yJmUXOfYM4CezA+4bdu2kQ5bjtCIyTx2DTfLgsfC7XhM0cOsvc7XmluNuYTuMln4HC8C8D3b\n", - "GCNnPmbcaejDHGuWnXXBGs30APbv3z+MD/dg3tpT52eVYw399oV2aa/1vERMr1HWOZ9lWbqWxXu4\n", - "+TTdPjLyzHK9vfbe1kvGKZnVpuI67+n2Drexeta53w4x35G/lftIKIqYQqFQKBQKhXVQFDGFQqFQ\n", - "KBQKxxib9mrv6quvHlxwTgtt6UciJtQpbcl8Bzv+2q/9WkRM6CRwG7oAHS48KEKgE7CL20FzlJ+H\n", - "DuXEE08cXKm4GOkHbf/iL/5iREzcg7x2wJ1IP7keehPTEwCXt//5n//5QV6CJnGl4mo1FQpAH1yH\n", - "7imF/8M//MNT9yT40q8Cb7311pEO7fbmJ3JfccUVU587NZtxRhZK/rt4YvsaCzoBxh8dM/7cg/6a\n", - "ZoVXgNkr0euuuy4iIt7whjdMyc7rrC1btgz9Nl2NaSSYN8jGGF122WVT/WvT2SMmcxFaDsZodXV1\n", - "eLWHax1ZWBdQYWSvQein6YpMy4HOGQv6esUVVwzBscjN6zG+Sz+RBfgVGHqi7Te96U1TfWJs/bri\n", - "xhtvHNFDuDgorwluvvnmiJisf/YL1ijrg7nI/ILeBriI5NatW4d5y3giL207SBa9vO51r4uIcdAw\n", - "+jN1FhRUyNomY3j82bdayo6IyZziu+gFSiEC5WmP+U5/oc6BOoU+Pfnkk6PXaVCbIItpR9jDTG/F\n", - "fGnXWsRkTFnbyI5e9u/fP6w9lzNAL6x/EhpYawQ2cy/ahjoJ+LUSY8te95a3vGX0+hdZPM9Zcy76\n", - "y/cZM88X9EjihAOkr7322tGaQw9OPvFz1OUPnJyA7NC+uNAzMm3ZsmXYW5CF9esi2ugFiiDmi0Nf\n", - "GHf09IEPfCAiJs8LQN8OHDgwXPv+978/IibrmfAB+ofcHqMM5ZEqFAqFQqFQ2CA2tfwBFiunQFIQ\n", - "HcjGqZgT61NPPTUEhTko1IGXWDmcLB2gbHJi/o6F4qA8ZHv2s5893Bu5HRTLSbu10iImFoOpE+gn\n", - "Vo1L5rto2tra2qATLAHkd5Coi9ohe0adgWx8TnvcL0sLbvtnjxpw4KKDaR24zT3xXBAYfPbZZ0fE\n", - "9Jh6HBk/xsYlBugHHim+R3HQrFApsreUCNl4MhcZV5IUbGHRT9ph/pDm7OKQ9OXgwYMj74WDRx1s\n", - "TOE5ZHEgq1PqTYHiQPiDBw8O4+0iiL7Wn+PJwsL0GrWnCmtxVgB5Rq9C/5wkYavfpUa8vzim1POh\n", - "DWblb6xb99Nzy9Y//XTwMXBBQ2R+6KGHRp7HlrolYrIvkujjuci9HGxrImJAu/x99+7dI/JlwHgy\n", - "Jsxj5o33DZdq8F6U7TOrq6ujgrNeQ+iFv5sSJ0tOsn7sTW+v5zPGPyvdQ5v8Hb2Z5gZwT6fszyrg\n", - "7H3PSTkuOWCqJM/NrAiqr8vKQrTX0E+XZHE/XciTe7qAp98utfuN178L9SK/x2I9lEeqUCgUCoVC\n", - "YYPYNI/Uvn37RkSrWMkuWMjpsI1J8rt+X5udan3ydhEwvCFYLngD3P7y8vIoJigrc0Cb9rTYUrOH\n", - "xqS8s07TtsYyD5OL4NE/TuJuB6sPS8akyBlBccQ4vdtevSyGCivZxMIA2W39tpady1jQJl6hrOQE\n", - "euD76N6wpdrGVtlbYWoYk/jaSuT7eNywGh3vB9p0amLYuNZWGl4ee/+4zp4XW8Ws1YzMdHl5OSVX\n", - "trfDFBhY0PQv82CYYBrvUdtX5ESXljfLUs6Icu3ZNWlrGxsVMb0u7Ellf2NP8Ty3V4N7sx+aSJWx\n", - "Zr60hQ69V5gIG08Nc5ICvQY6R1bT+wCvyb179w7jm1E+oRdkygi0HTPIuGfrAr33fT98NytnA+wd\n", - "y7yeJrN30UzP3YMHD448L455BI4/Nem1dY7MLpY7y7PnuFKX+fH8d4yhCzp7H7W3iP2Iudvup3zX\n", - "ZNu+N0AvlsWxZG7fXvTFxcU0RtTzP5snGcojVSgUCoVCobBBbJpHKmKc7WbPk8Fp+JRTThlZIYDT\n", - "J224VH1W8p2TObK4uCTgvl/72teGtrMYBtMHYOXQD1sB/I5l6RL3tnbakzuWYkYn4kJzfo9uD4wt\n", - "EMd3tO/I/V7cbVgWW0P0Dz1mVDu2HpxxOKtfAI+LrUDaJIaK2Dja8RhldEZra2sjbwcyuNAi45YR\n", - "S5ucE5kdUwHm5+eH8WP+2qozXY8Lz3ldZIVasyJ4q6urg2eBtjM6CffPOrWnju8zb/CK2kPT9sOF\n", - "abNCss6owoJGpsxr6GzHWbEUjtd09pX3C9MPseaYu77eJOjM2eXl5ZTiBuBJ9XowGEsTStuD7XiU\n", - "7du3D/2xV89xKMjvuEPg7F6u91iD9i2Ds68ycl50jF7aDPEWjlfi+1nhxrm5ufTZ472Fv/sZ5DjF\n", - "7Pusi1myON7WcluH3ovsZfZeZ+ooP6va9l1oNCse6+tdDDR7vvB3x23NWqP0jzmK/DyLjrYgZ3mk\n", - "CoVCoVAoFDaITfVIcYq1t8An91k1LDgp+pTOSdt0E7Tptm2Rmuw0s9hWVlaGmIf1qA1o0+TLWWYN\n", - "9zT5pK2CtbW1oW1nbWWgLVsi1iMy4unAGsRaauMebP27zSzzIbMsbGkxRnyOBwsZ2zgGk8465i2L\n", - "7cqodrJ4H1MtLCwsjPrZUri0bWVzylY+HijumXmk+r4f5iJeDFuE9qQQ85LRMiALVqBrAnmezc3N\n", - "DTpjfExxAmzlEk+RxZn4nrTnjKm2DcubzUHTTziuwt4RfreH19e1f0OXJvHNvKPeu1hzs9Z/24eW\n", - "MsYeg8z7la1/2nR8SpbN5rW/bdu2EckwQFf2Ejo7D9iD75hU7xez+mk6GuA3GI7bdHyX6UdcC8l6\n", - "7Pt+FJ/FNfbU0g9+Ms+RzWvO8cCuq9WuI79xOdrnRBaDnF2fEUi3Y+T93rFSWeyYvWTZmuZ6e8QX\n", - "FhZSz5q9ZFkMdobySBUKhUKhUChsEMW1VygUCoVCobAOimuvUCgUCoVC4Rhj02Kk3vrWt47eeRvw\n", - "27zlLW+JiOl3xc5OMs8S70X5u98N33rrrREx4U7yO3Te0/L59ddfHxETHp/23bczmW677baImHDt\n", - "udq043iQBQ4i7unMQWSCg+iiiy4a4mb8jhegF3ToGAe/877hhhsiIufm8vvsO+64Y+BlcpwZPxln\n", - "+LjgtzLHlutt0U84qNo6ORHTXEtcC3cScSmuycLPD37wgxERcckll0TEJJ7A8QmMKTxRb3vb26au\n", - "Q5a9e/cO8RT0k/Fk3IhhcCwg85y56L/TF3QOlxt6jxjXZuJaxp/xJB7J9W/oDxxhF1100VQ76Bp9\n", - "EGN1++23R8QhbjbmCG0yN5ENvjr47Rx/wLpgjrEu4H0DfM/xjXfccccwz13TytfCEWd+M48/7ZiD\n", - "jHnEmLcxaNdee21ETPYK5M0ygeAIY245ptJ1cZCF+UL7yLJr165BHtYFOmSeIwvxSdyLvQu9uOab\n", - "Y0zgfbvyyisjYqLnAwcOjPZSrWEuGgAAHeZJREFUc+cxT5DbzwPmCzyhyO7YF/YLxpRnwMLCwtAW\n", - "44mu0At7kXkbHX/D+md+ITOZo/xOViC8gm9729tGMT6ugs+15qBz7Bvrg+vhoHSFe/rAfW655ZYR\n", - "1x5y009ibL0unGELzPvK3HXMEb9v27Zt2BfZc90WYFxpm+co/XHsKXpiXfAMMLvDtm3bhnFi3rIv\n", - "Ojaaec6+h14ylEeqUCgUCoVCYYPYNI/U6urqyCJxJgzAWsSSe/jhh4e6D8973vOmrnWmmK0583hx\n", - "8nSWVlYhPeMaihifrM2xx+/0B+8AQDbqpKznPWpP2FQ3pp/OZHGlaqweZDNc4wPLwlmR7d+cXeUx\n", - "cD/RB5WeL7jggpmym4vrwQcfjIhx7ZdWFrxc6AUeqp07d061jQXtrK0sOwn9YR22f88yo/CGMn/x\n", - "1GR1pNrsq4iJVeisvdYDiG5spQEsTmTBIj3zzDMjYpydxL25jv5eeOGFETHhaAMLCwsjDizXc3Hb\n", - "6APZmRfmQ3OdMmSZ1dfMW8HvzgjCijcHnb1pgDF11f5ZVZqz2l7MW2cn0g/676zUbL6gD37O2pvo\n", - "D9cwrugczkVgTjmvC2eY0kc8nWtra0M/XCWaNljX9qBYfvTF310x3WOKJ+Ib3/jGsL+x13rP9T18\n", - "b/fTnih4Vl/xildExOyMY7MrMO6upu3sXPT20EMPRcTYg2svqj2As3D33XdHxESXr371qyNiXF9r\n", - "1v4WkWc/ev9wrbBZcN0s+u22eI7gBc8YRAB6M3fr/Px8WhfQ2bfZ/p+hPFKFQqFQKBQKG8SmeaSe\n", - "9axnDZbWvffeGxERZ599dkRMexgiJl4FrJ2zzz578F7Yo2KeoawyK+DkjCxYLHiFbE23p9sHHngg\n", - "IiZVUW154WnBIjnjjDMiYmJx2sLAYuFkfv7550dExKOPPjqlBzA3NzfUD8K6NxM8wErhNE9b6MkV\n", - "nPk+MmGhnHfeeSPZXWvmSDx8bVuMJ94NLA6/22YsvvjFL0ZExIte9KKIiDjnnHMiYqLfiEn/sbTp\n", - "N9faIrWXBw4yPDieN65ThFV5//33j3i5Wg9qe21WuR+4kjN68XxBz9u3b48vf/nLETHx0Jo7j3Xx\n", - "j//4jxER8T3f8z1T92AeAXRK/1/72tdGxMSDhSXeykx/mVPo1nMRi5y1a743j5Hj0fBIsp5m1ddy\n", - "9fDMq2u+vxe+8IURMfFMMB8A+nI9Nsbs1FNPHclg7y5yZ54D12zLKn4jI3Oevu3evXu0Bhkvxv+l\n", - "L31pREzWM2PgtpHZNbts2TO//JYhYsyFRz+41pXNPXcZI1gHkJn91rySLaMAHmh0blnM1+a9x2uO\n", - "+UAVcdYFY+l1tHfv3mEtMa7IZK5F7sXebE+mPZh42Znb7DOzeGUZf9bQD/zAD0TEZN/nGQPQg2s4\n", - "sq9m/Km0jwyzmBYc44h+GAN7pF3Ti3tlPLGuacV8auP2gOOXaYszSMYTaZRHqlAoFAqFQmGD2DSP\n", - "1L59+war3+9AfcLE8sCK2rlz53D6xpoBruDKqZSTpasscx3Wgqsn2yPB9Vu3bh2sT3PjAXOP+ZTu\n", - "9/GOscJjg+fLPGF79+4dTuuc4rMTtOMnspgxQDtYclhD9Ln1BLpCbVvte1a/uB5LAY9UVh2Y6777\n", - "u787IiachZ///OcjYtoiNV8jnkvGwl49X8+9XD0d+N3//fffHxGHrEF79dADn2PlZFX5+d0eTq63\n", - "tdvOTTxuWKmtly5iYqUxnszv++67LyLGMRIveMELpmTB00VsiD01XdcN8tOWsw4tC/c499xzI2Ki\n", - "c3sN6CdzHI8kc7FdF+iK7zi+yl5jZ5rSL/Ri69hZrI7TavuKp8zZps6cA96baIu+eG3TV+ZoVkk+\n", - "YjIHv/M7vzMiJrFueCLs2benzp4G74tmWNiyZcswLhlfqTMpzRcK0DnrnnmCx99vDdDvjh07BnlZ\n", - "O9aNM+LMb+p4HMaUvYj9Ag+V9bJjx45hnjojzOuCfqNznknMWcvCGjdHK/1v9wDe9vg5gYfSOndm\n", - "Of10xhzwnsbf2Zvb671WkJt9w+vfHj2zMWRce/Yy+vnZ9g99eO/NOH2N8kgVCoVCoVAobBCb6pEy\n", - "RxveguydOifL+++/f8QcDziNY1Fw2uVU6/fSnF6xpMySnXGQHTx4cDjdOzYEcPI2n5Vr3ABbVrzX\n", - "5nO/Iz/55JMHa5QTtWPDLIuzGrOTt70L9JUxaL0pzs5zXIH7ye94JABxGq6z41owWKLcp42pM1M4\n", - "lhDxFY5j4npzCLqmEfDvzKtv//ZvH/Ub3SKfvZ2+nrmGB9IeHXskmBcHDhwYxinzApin0NaurTrP\n", - "/0ceeWRKdqPv+8Fq9Vz0GrIlST9Y/7Msx4jJvDBvYuuRzHi6zL0H7D1FL3gRvL+wnzj2albWnr1g\n", - "/I4XPdsvaIN7ZXPRHh1+Li4upnFptIknijVnzzT6QtfMG/rguCTvF33fD3uFvbrm2OQ7XJ9l+XJv\n", - "xijj8mtjpCyD15C/65gpy4LHAg8wc9bZzWBhYWH0GeOfeersJbdn0/10DNWsPZp+owf2UHs93U+u\n", - "N9+hY+RcG8uZu21fudaxXNnzg7b8/My4+bx/tNdncwUgE3sNeloP5ZEqFAqFQqFQ2CCKa69QKBQK\n", - "hUJhHRTXXqFQKBQKhcIxxqbFSF188cUjPjvex/JO+N3vfndETPhw2kwcv4OFOwdOId6nko1CjRre\n", - "Q8PjA6eQMwlcE4nrW24evkOcAXFWcArRNv3kvSvvsrkXPE7moOLevLfl3TGcVRdffPGIG8zxI+a3\n", - "4p7Iyvt6+guPE/0kvoOMGarsIuNtt9028Cw5C83xRozRZZddNnU9MQ/UzSLuAD0ii+M+iMnZs2fP\n", - "0E9zpxE/QAYkcwvuJHifXKsEvaBfOOvgieO9e5tpaO48dM41jD91cJAJvcDN5phAYgGor3TddddN\n", - "tf/UU08N2XiufwQXHpxi9I97u0YV4w+Pm6uTO6as5SB0fBZtIws6hMePOAx0jQysD/NhAfMFgt/6\n", - "rd8a8XhlFc3hWuN6x0Y4wwret5bfMGLM4Xjw4MFBJ17/zh7yfsHcoi2uQ4/E46EXOMjQd5vFR9wR\n", - "c9F8mMDVpZkvrFHH0JAVSuwI/GbmcpubmxvkRxb6aQ5S9hLHDJlr1TFVzrjzPtq22XK+RUz4Kr3n\n", - "OkuNPrifjCl7FfsKY4Aef+EXfmG4tzOn6T/rgvlivTiuB72wLpx5hkzEVP3mb/7mILfjF5lT3PP9\n", - "739/REy488zF6XhYuFmZX+YTZI0fOHBgtEcD2kY//N4+52a17XpR5lt1zOHc3NywBumn1zNrkuvY\n", - "m2655ZY4EsojVSgUCoVCobBBbJpH6oQTThjx22BpOJuFv3PCbqvwOguDk7Vr+HCqz7LTnL3j+jOg\n", - "zQbj1Jpx/3CtmaXpp9vOTuZ835kSi4uLo8xALAbX1zKcvWZvkqsyO6PSGYQReRVpW5rmPzMPFrVN\n", - "AHp0vS7Pi/ZvWIFY2syDLPPNbN/OtASuidVam86q4XfmiTO+snnurCasOuu85ZxjvLmX5TR3FDrl\n", - "pz0Vrk6O5cocnpWZiTVO5WZ7VgH9QEZ+4gXwGjVvHh4uZGwz6zwHgbOJADrmHpkHA2QxpfSpzWq0\n", - "p918ddaLM06Zq9kYOZuprfHjucLcor/OuvN8cZvMQT53Zq31Nj8/P6qflLXtzEfDWZ7mMDRaDwQ6\n", - "ZP17L7JOmYPr9ROZmIvIYj2urq6O3iigj2xvcdZdVrurvUfEpMYb7bfrgrXC84KsTT5vK/JH5Nmu\n", - "5l4EyGiGEHtLIybrG/nor984APrtzEj2pox9hHu2NQF9D2cKsm44Y2Rz0iiPVKFQKBQKhcIGsWke\n", - "qeXl5VElU+I8XMHZlt2jjz46fEa8icHJk9geTr0+YbpODCdpLA17dlqPBrWJqPqcVeTl9M71WC+8\n", - "jwV+T28PDVYhmJ+fH/RAtWe+C/cacKyLKxbbm0LtI3TOCd0esLZ/wO+ybQViURK/xjttdPsXf/EX\n", - "U9fbi3TPPfdMyfLyl798dG/6yzhS98UVvF01Gh43ONds9boOE/r5l3/5l5HF6JiYH/mRH4mIiI9+\n", - "9KMRMdYL13MPYoCQxZ5Pxmhubi4++clPRsQkFtBV1rHeiG15zWteExERn/rUp6ZkBMwT7knlZvRx\n", - "1llnjWR3DTbXoAG2brk3Y0RVcYCVyE/i9IjXaT0e9tK46r5rGrXei7af3MuVze1xYN6gp1aP9m7b\n", - "kvZ42lvkmEF76lhHzBdqfZ111lmjeW7vH5Wu/+7v/m6qv8B6NJ+fvQDM3dZr6O8As0zY0+zrWVf2\n", - "XOIltWeX3xcXF4c9Bt1m/WSOsm6ymlb2En7/939/RER8/OMfj4jxfrG2tjbIw7OE9Ww4lo49hjno\n", - "Zxd6Y05/9rOfjYiIF7/4xVN9i5jojjFhDjLfzW/rGFDXNsuYE+j/q1/96oiY8KO2b1MYCz7jHvbg\n", - "A3su7bnOvM+MNfvEgw8+OHpGO64MtgxzC66H8kgVCoVCoVAobBCb5pHaunXrcOLmdGsGZsCJE4/M\n", - "zp07B8va3hBOt5w8OVFSJdweKMApFg8GFodPsO2JnHtlvEz29mAdZVkqnObpJ/3GUplVZRvdwaGF\n", - "NZ/FSHCKR4ZZsU4RMcoGRB9c31o7tuqBLXHA+MJThxeIMXU76BnLDK8LFnirF8dyYHn5HT7gc8cn\n", - "MU9cyZvvo4fWUvPcYmzoFx6bz33ucxEx9uo4lgLgDbTsXDc/Pz+Kp7IObUG+8pWvjIiIv/mbv4mI\n", - "sXeU7/M566KNy2qxsrIyeNBok/HCgnQ/zQiArr2m0Stj5LnYepmyeELHtrRytzIiM/20F4i5bP43\n", - "1nbrPcX6N98YPzNPCuOKt4D+ZlW4aQ99nHLKKVNxpK3cZAC+6lWviojJXLRHAlkYU8d5eo6aT3DP\n", - "nj3DPc3LSH8YZ1es9tzy53gY8CJkXoaTTjpp8AI5Y85gbX3pS1+aatNvAVhH6B49fvrTn555fSsb\n", - "c4Q2PLeY5/ydMczi+9jb0C9zvq0uD/g/vKb8ZG+y3NzTeztjYQ+239zgiaL91kPO+JhthHt4/OkX\n", - "/fX+YNBXvteuecc8Mu68LWLN8abLHukMm3aQ2rt37zBIuPTbv7Ww63dhYWFY+CgXMEgMiqkt/MAA\n", - "bFIoku+7/TYIl6BaJp1dkgyaJx2bthcGsvtVoEsyzMLdd98dEZOAQzZ4wKT1QQPZvTHSDnrxq772\n", - "IeADk4PBDcYTPXzsYx+LiMli9GspB2mz0M4888yImH5dRxvcm/7aVQ14yHGPl7zkJREx2dQywmWT\n", - "Y8/NzY2u9WH1z/7szyJiojtvCP6cV8ZZ0D5junXr1njZy1421V8/SJEBXX34wx+OiImefAjkcx5W\n", - "9M0k1mDHjh1Tqc4R44BVYIJY2qQ/1gvXo3teY9MXjKSI/EGJ7nwwZs0xp5DVwbduB30x/rTb6oV9\n", - "DF16E/ehzqn37fi2sgH0zL7THsz9YPOhizVHf7zm0DWfmyDZ4087yPic5zxn6I8PjC5JwVy1boED\n", - "/5mTtJMdAr7+9a8PD8JZpNLtPV3Ggn54X6TfPPw/8pGPRMTkMGPaq5WVlWGc2UNp03OVOcS89oEi\n", - "o6dCpu/93u+duq7tK/s4hznWDM/DzPB2WQfr3tczFnZItAaGX6daH97nGBPmuYPVDSd5tc8yryHm\n", - "FM9y5GcMsgB/o17tFQqFQqFQKGwQRRFTKBQKhUKhsA6KIqZQKBQKhULhGGNTKWJ4b8p7Sd6N8g70\n", - "+uuvj4gxvcH8/PwQR0Ew5Ic+9KGImJTw512og4NNswL9AO9neZfOu1NkvOaaayJikqo/Nzc3ii9A\n", - "PqhtKLPPO1velTu24fd///en+pkV5rTsl1566egdLv3k81/5lV+Z0gufI4PjjmgbigjejfM99ML7\n", - "/Pe9731DyX8HkTIG6JC2oSvhHbcDm+n3tddeO/Sz7T9jxfv+r371q0NJAV9rGiL6C+UD40n/0J9T\n", - "1JElo0Jo5f7t3/7tKVnoJ/dGh8SGQG1gqh2nrBOHAC0D1Alt2y5Sx7XI4mB6ficoFLoKZLHOia1g\n", - "Xvzpn/5pRByiWkFurmVdoCNTeDhI2rEQUIpA42K9uK/XX3/9aPytH/rNGoUKx6n3rA9iPX73d383\n", - "IiY6z+b44uLiIDdzhX6ZnoM2oOWBIoY5Zz0yb66++uqp9kEbc4JOoJPx+GdB94y/ZWduE+dDO5al\n", - "LQrq2E7aZvyZz6ZnyuitZgUPt6Cv6HF5eXn4DvOV8YUihLnleC4SWpiLUMq8+c1vjohJELLLrXA9\n", - "6+6yyy4bxc6ia74D/ZjpzQC/I9sdd9wREZNnlwPAie/hPjfeeOPQT/TBvYmlY13/yZ/8SUSM91Hg\n", - "hIl3vOMdERFx+eWXT90Tmdv9lzVH2y6GafoZ9kU/0902v7One48mjnHLli1D27fddltETOaKE1mI\n", - "U+T8wNzNUB6pQqFQKBQKhQ1i0zxSa2trwwmUApxk2Dnzwdlqp59++nCydFo3p1NbAS7+CbCG7LHA\n", - "2nUGQXvC5h7IQFqu5cYKxrKkoKDT2V08EKuBwpwuVLq2tjbK/KOIn/sPnGGIZ4nMqbbtiHHRNGRu\n", - "M5BsUSCTs04Af3fBTqwAZ5BwLxcHBC4+GjHRHbKRueF0VvrnQnuUZnDBV1tN4PTTTx+8OsDUHswD\n", - "MsKyNF57AR5++OGIyDNUIyZWOpYlcyZrG/1ceOGFETHO2rLHhbmNF5C1CtosHuRGR1lKOLrH60OW\n", - "qte/vcTolfXQFs3zfHXquLP2TIXEGPG5M6U8p50m384Lr3/2CbwAHiPrnAwpU0UZptrat29fmhHI\n", - "NYwnxSHvuuuumbKga/TmMgruK7Kurq4ONCQuauhsTpO5u3SFiwkzD0jhZ96AliaI7zgDGphAGO8F\n", - "+4VLd5hQGi86RYG9LtpsXnSPLFnbgPnCmvPeZQ83MpHB7fIqbT8pyEoG7F//9V9PXecyH36b4j3a\n", - "zxt+R+Z272I92DPr54fh613mAFiP7dsU79umbeL5xl7uMcpQHqlCoVAoFAqFDWLTPFLbt28fvVfm\n", - "BO46Uj6hdl03WCOul+L6HyZ8zE67XIdFgrVrS512FxYWhrY4xdryNrUNtZ0cCwA4WaOPtuBixLhu\n", - "xvz8/IhOgOKW7if9wnoxPYc9e7bouY7PW2/IrOKM7Xcz0lpkpnYXsts75vbwSGHpPvXUUwNFimt2\n", - "AbxAruXjujguROd6TI6laa2frJCgC3Py0541e/YsS1aoc2lpaUQmmtXLQef2zNqKc+FN5t655547\n", - "df3f/u3fDn11PBWW93rkvBkxOMAqdh9NpDyrLRfotSx4Wkw/wk/r0X1wHaqWIgS5ucaeNVvSru1m\n", - "MtqMWNZ7Xd/3KV2V4+5YQ+sVKkYPeFy8Rh07s7q6OrTpvch1fjwfsvpzfM5axaPnvQsZlpeXB13z\n", - "Ha9/kzkzXygoSa06t809GW/Wxaw3AS4S63EDJmd3XTbrhc8Zd37aAxYx8SghHzXqoJOhEClwjSfX\n", - "hrMsGQ0YXtW2rqHjFb0XZV5fe2azmDnaRZ/tOrOcjo3i78idFaw2yiNVKBQKhUKhsEFsmkdq9+7d\n", - "o2wtV6E2sNieeOKJKc9QC1tBWAyZp4I2XT2dU7ItjDbmgjgDrFefpE3wiYWOd8wxVbae+Z3MRFvT\n", - "7f3w6nzmM5+JiLH1yrXoC53z7trWEf028eOsCsH0z++4M527+rwpEdarbI1XBW9h21f6acsDSzSr\n", - "Du2sxAsuuCAixpaXvYR8/8knn0zv6Tawdhw7gr5MXowsBjLPzc0N2VRY6ZnczCl0/olPfCIixvoC\n", - "XI8ngnuS1QROPPHEYVzpF2Nh0mnHUDGOGTkzfaE99gm+18rexse0v2c0RvYCcm/moL3MrqqM5c2c\n", - "bPcj00wRV4TcWRV22mZfYV147jrWBJx88smjtYc+WuL3iHGsJLCH1nuSx9Qej6WlpSFGxx4pU1/Z\n", - "i+oxok1TZUHSa68xY7S8vDzogXWRUX6Z+sYE08DxOXiX/+qv/ipmYe/evaNK7mbyACa5N9WLx9me\n", - "TWRlfrXeUce8EQNK/JX3C78FcTxbNqaOB53lXfRao+0so9RV502x5r2L8Xf888GDB0fPOXTIvXku\n", - "osMiLS4UCoVCoVB4hrFpHqldu3YN72lNVugYKU6L/NyzZ8/oPTtwLI/rCdmD5WwNZ5Rk7+sXFhZG\n", - "XjFbgY6n4R6ZF4h7+Z60a49Xa3E5xsEWo/u/srISjzzyyODJsKVmriETjM6Ca6o4tgUwNq574rpi\n", - "lh0ZsczsqWqvtSVtDxJwrSPX5fJYOFOk9fRkMXLcm78z/ieeeOKQwdn23/EJWdwT1tLc3NzI+vJc\n", - "9Hqxl9QeJvrn2m6OMWmv9zjhgfGaow3XnLFHDuAdyfgSW+sYa9XxKM6IBY8//niceeaZoxgye2SA\n", - "9QFmcbNZV96bvObs9WFN402xLLb624w5W/XmyrNHIYvv89jhZcr2G2JW9+3bN9oH3E/08dhjj8UZ\n", - "Z5wxtJkRTqNzsjxZu/YatbyJs4jeW3ic7QWyXpgf3l/43NmMJ5xwwmgPyjwveCD5nJ9+hoFMT64R\n", - "2Pbbc4Zn0iOPPDIVD2YvEHM545UF/N116lrZHQvn2Kf19uBsPlkGc75u2bIlnbfMIa9jr7kMm+aR\n", - "cppo4fijxmDzQWmDwuag1sDmg9eMhc0DCQ2FjaG49gqFQqFQKBTWQXHtFQqFQqFQKBxj1EGqUCgU\n", - "CoVCYYPYlFd7hUKhUCgUCt8MKI9UoVAoFAqFwgZRB6lCoVAoFAqFDeK4H6S6rntt13X3dl13X9d1\n", - "lx3v+3+rouu6B7uu+2zXdXd2XffJw589q+u6j3Rd96Wu6z7cdd3J67VTOHp0Xfdfu657vOu6zzWf\n", - "pTrvuu7yw+vi3q7rXrM5Un9zIRmDq7qu+8rhtXBn13Xf1/ytxuAYouu6M7uu+2jXdXd3Xff5rusu\n", - "Ofx5rYPjhCOMQa2DY4TjGiPVdd18RHwxIv5TRDwaEZ+KiNf1ff+F4ybEtyi6rnsgIv5d3/f/0nz2\n", - "7oh4ou/7dx8+1H573/e/tGlCfpOh67rvjog9EfHf+r5/2eHPZuq867qXRMT/jIh/HxFnRMRfRsQF\n", - "fd/P5m4pHBWSMbgyInb3ff/rurbG4Bij67rTIuK0vu/v6rru2yLiMxHxnyPijVHr4LjgCGPwI1Hr\n", - "4JjgeHukXhUR9/d9/2Df9ysR8b8i4gePswzfynANjB+IiA8e/v8H49DiKhwj9H3/NxGxSx9nOv/B\n", - "iPhQ3/crfd8/GBH3x6H1UvhXIBmDiPFaiKgxOObo+/6rfd/fdfj/eyLiC3Ho4Vzr4DjhCGMQUevg\n", - "mOB4H6TOiIi2lPBXYjKghWcWfUT8Zdd1n+667qcOf/bcvu8fP/z/xyPiubO/WjiGyHR+ehxaD6DW\n", - "xjOLt3Rd9w9d193RvFaqMXgG0XXdzoj4joj4RNQ62BQ0Y/Dxwx/VOjgGON4Hqaq1sHn4rr7vvyMi\n", - "vi8iLj78ymNAf+gdb43PccRR6LzG45nBzRFxTkS8IiIei4gbjnBtjcExwOFXSv87It7a9/3u9m+1\n", - "Do4PDo/BH8ShMdgTtQ6OGY73QerRiDiz+f3MmD75Fp4h9H3/2OGf/xwRfxiHXLWPH35/Hl3XPS8i\n", - "vrZ5En7LINO518bzD39WOMbo+/5r/WFExPtj8tqixuAZQNd1C3HoEPXf+77/o8Mf1zo4jmjG4HcY\n", - "g1oHxw7H+yD16Yg4v+u6nV3XLUbEj0bEHx9nGb7l0HXdUtd1Jx7+//aIeE1EfC4O6f71hy97fUT8\n", - "0ewWCscQmc7/OCJ+rOu6xa7rzomI8yPik5sg3zc9Dj+4wQ/FobUQUWNwzNF1XRcRd0TEPX3f/0bz\n", - "p1oHxwnZGNQ6OHbYcjxv1vf9atd1PxsR/yci5iPijsrYOy54bkT84aH1FFsi4n/0ff/hrus+HRG/\n", - "13XdmyLiwTiUxVE4Rui67kMR8R8i4tld1z0SEb8SEdfHDJ33fX9P13W/FxH3RMRqRPxMX7QD/2rM\n", - "GIMrI+I/dl33ijj0uuKBiHhzRI3BM4Tviogfj4jPdl135+HPLo9aB8cTs8bglyPidbUOjg2KIqZQ\n", - "KBQKhUJhg6jK5oVCoVAoFAobRB2kCoVCoVAoFDaIOkgVCoVCoVAobBB1kCoUCoVCoVDYIOogVSgU\n", - "CoVCobBB1EGqUCgUCoVCYYOog1ShUCgUCoXCBlEHqUKhUCgUCoUN4v8BaJ+sNGqpC6EAAAAASUVO\n", - "RK5CYII=\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "filters = net.params['conv2'][0].data\n", - "vis_square(filters[:48].reshape(48**2, 5, 5))" + "* That should be much faster!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The second layer output, `conv2` (rectified, only the first 36 of 256 channels)" + "### 5. Examining intermediate output\n", + "\n", + "* A net is not just a black box; let's take a look at some of the parameters and intermediate activations.\n", + "\n", + "First we'll see how to read out the structure of the net in terms of activation and parameter shapes.\n", + "\n", + "* For each layer, let's look at the activation shapes, which typically have the form `(batch_size, channel_dim, height, width)`.\n", + "\n", + " The activations are exposed as an `OrderedDict`, `net.blobs`." ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJNCAYAAAARaCA+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3VuMHdd97/l/SSSbZLN5b7LJ5k0kRTISJdMWJcuyjizL\n", - "ythGjNgxjBMYuSGTGQxwkMyDHWSceZjIQBBMBnCekpMXjwPDmOOZIIkNx4EhObElHkqmJFIiJd7v\n", - "tya7m5fmXbyIrHkQe+lXS13F6rXrtnd/P4Dhf3HXrqpdu3Z1af3X+q8ojmMDAADA+NxX9wEAAAC0\n", - "Ix6iAAAAAvAQBQAAEICHKAAAgAA8RAEAAATgIQoAACBA4Q9RURR9IYqivVEUHYii6H8revsAAABN\n", - "EBVZJyqKovvNbJ+ZPW9mA2b2ppl9PY7jPYXtBAAAoAGKbol6wswOxnF8NI7jW2b2/5rZlwveBwAA\n", - "QO0mFby9fjM7IcsnzeyTukIURZRIBwAAbSOO42isfy/6IarWB6Q1a9YkloeGhlx88eLF1Pf19PSM\n", - "uY19+/Yl1rty5UpLx7dixYrE8smTJ138/vvvp75v+fLlLj527Fjqevfff/+Y24uiMb/70s2fP9/F\n", - "/vmfNOnDS2/69Oku9tPL+r7bt2+n7mvu3Lljbu/ChQuJ9dK+wylTppjZB+dt0qRJNmPGjDHf09XV\n", - "lXjftGnTXKzXW9HnXD+Tmdm1a9cK3X670uulr68v8drly5ddvGDBAhfPmjUrsd57773n4v379+fa\n", - "78KFC108Z86cxGt79+7NtQ11330fJgX0d2xmduvWrVzbmDlzpou7u7tdfPr06cR6S5cudfGlS5dc\n", - "nHWPVP5vVI/3zp07ubaR9n4zs97eXhcPDg6mvm/27Nku9n/nSu/vek34v2Vd1vMyefLk1G3rPSnr\n", - "s+v9afHixYnXdu7cOeZ79Pv0v5u67ukTzV/8xV+Ymdm3v/3t1HWK7hP1pJm9EMfxF+4u/7mZ3Ynj\n", - "+K9lndIetPQPs1n2g0maefPmufjcuXMtH1Nd9Hst8wen58ss+R3oQ8VEEHLO/Rv0l770JRf/6Ec/\n", - "avmYfud3fsfF+h8FW7dubXnbWVatWuVi/WO3bdu2Qvej5/zxxx9PvKYPRyMjIy7WP5BmYf9x9IUv\n", - "fMHF+ofZzOzVV18d9/aqtG7dOheHPPAV/RDVRPrgpdeRWdjfFX3Q1msxL/+c8xBVjdHzHkVRaktU\n", - "0X2itprZg1EUrYiiaIqZ/baZ/aTgfQAAANSu0HReHMfvR1H0x2b2opndb2b/NyPzAABAJyq6T5TF\n", - "cfwzM/tZ0dsFAABoksIfouoUkqv2tXM/qKpo53u/w/P27durPpy25nca3r17d6Hb1879p06dKnTb\n", - "WW7cuOHioj9TGu0wbZbsb/av//qvLvb7uIQ4e/asi4u471QppB9UlnbqB6UDDIaHh1PXSxukMx5T\n", - "p051cUg/KLQHpn0BAAAIwEMUAABAgI5K5zWdXyfq6NGjtRxHiEWLFrlY67i8++67dRxO4y1ZsiSx\n", - "rDXBsvi1yfLQ7+PMmTOJ17773e+6+Lnnnhv3tkPl/bx56ZDutLIsfq0gTe8VnXLTUg1ZdYQmAq1J\n", - "pWkwv5RECE2JaWkGM7MdO3a4OG+pHq3r5pdnefTRR138q1/9Ktf2nn32WRf7pTLKLiOCZqAlCgAA\n", - "IAAPUQAAAAFI51WonUax+HTqCH8aiSb43Oc+5+L/+I//qGy/mh5Qfjor7xQVIfwUnrp69aqLW522\n", - "qAyf/exnXfzLX/4ydT1N1+iUPOrIkSOJZf295Z06JYtOC6KjD2/evNnyttuZTqOj11sRtNL39evX\n", - "E6+FzLah02atXr068Zp2TfD3lebll18e9zHg3oqYfSSEPwVRHrREAQAABOAhCgAAIAAPUQAAAAGi\n", - "kLxySzuMomp32CBV5nn1e+3EGb8/+clPJpZ37drl4rr6/uQ957/xG7/h4n/7t38r9ZhUWp+eOv3B\n", - "H/yBi7///e+P+/16zvXzmZlNmTLFxUVcE3mrXXc6/2+Glngo+p6Wp7SFz++nWESF+qr09fW5eHBw\n", - "0MX+Z+/Ee7rOfuFfR3X1Oxw971EUWRzHY550WqIAAAAC8BAFAAAQoJZ03mjzbxHDjjG2pqfznnzy\n", - "SRefOHHCxQMDA6nvCWnar1Lec66V6/20WhPLR4TQlEqZ6ZQqr3OtgK7XrG/u3LkuPn/+fKnHVAf/\n", - "t6ezGVy+fNnFRZQ7SEtv+bSauV/yo2mTyvsV7rXMh1Y512unU9N5msLTmRe0FEWdSOcBAACUhIco\n", - "AACAALWk8zZs2GBmZjt37ky8VlVV0rpo1Wqz4itXq7Q0hz9yRSvzVnktaAqgiSksHUmZ97oMSS3N\n", - "nDkzsazfx0SvhJ1H1ui8tPO3Zs2axPL+/ftz7Stroud2panlvBOi+/eJxx9/3MVvv/22i2/fvp1Y\n", - "T1NzFy9edHFWunflypUuPnv2bOK1IiY4LpKfplu2bJmLr1275mL//GWlKdPe0ynpvKaPeCWdBwAA\n", - "UBIeogAAAALwEAUAABBg0r1XKd7ChQvN7KOzrmuevBP5s8+X2ScqTVOq9zaxH5Sqqn+e369Dh8fr\n", - "d1XX96bHY9aMIfvz588f89/9GQG0T47G/n0nr6lTp44Zaz+2dlNEGYKRkREX+/2glPYJ1e/Q7xur\n", - "9G9Cd3d34rW8faLKLI2ydu1aF/t9erQMBv0bx9bEflDjRUsUAABAAB6iAAAAAtSSzhtNTXR6+s5H\n", - "ky7uRdNl999/f41H8gG/BEPedF6ZFcv9tM4oHUaedQyhMyXofrMq67eTvKnIrGtRU3NZqTO9/+Xt\n", - "ylBEtfGiU3haSmPfvn2Fbhvth5YoAACAADxEAQAABKglndeEET51uHLlSt2HgAbIO0Ft1kinquSt\n", - "Yu0rczRh3slJi04p6mirO3fupK7X9CrMKm8Xg6xrUe9rel4OHz4cfmA1yxp96U8ajomNligAAIAA\n", - "PEQBAAAE4CEKAAAgQFT08M977jCK4tEhsf6s3O2qp6cnsXz58uUx1/OHCZfZ50W/106Z8TsvrQxf\n", - "ZT+0djrnfvX8pvXXmzJlSmI5re9OE8659oEyS1bm3r9/v4tXrlyZWE+rhQ8NDZV0dMXz/2aUed61\n", - "rEQR1dWzfP7zn3fxiy++WOq+xqvKc44PjZ73KIosjuMxTzotUQAAAAF4iAIAAAhQSzqv0h1OUE1I\n", - "c1TpySefdPGuXbtcnJZaLUPR5/yzn/2si998883Ea01Lv5Xtvvs+/O89HUZf5XWulapXrVrl4qyq\n", - "2np8v//7v594bcuWLS7evHlzEYdYiaJTS7NmzUos6+TfWoU+9G+Vbn/OnDkuXrhwYWI9vW807ffV\n", - "lHSeptn1d1jVhO1VI50HAABQEh6iAAAAAtRSsRwf0MldL126VOORtJ81a9YklnUi0CpTeGX65S9/\n", - "6eLJkyfXeCT109SBP3KvKvp7Xbx4sYv9kXWPP/64i3/zN39zzPeYmf3iF78o+hAbxR8Bmlbpu+iJ\n", - "6L/yla8klvW3c+DAARe//vrrhe53Ishb4X4ioSUKAAAgAA9RAAAAAXiIAgAACECfqBrdunWr7kNo\n", - "vHnz5rm4t7fXxadPn06sV3S/ilZNnz49saxDtUNwrXxIq1hXSfti6TE89thjifWef/55F+vw+u9/\n", - "//uJ9d56662iD7FR/GHvrV7Dy5YtSyxrP1I9z2+//XZivWPHjrW0XyALLVEAAAABeIgCAAAIQDqv\n", - "Ru+9917dh9B4fX19Y/5709J3vo0bNyaWN23aVNOR1E/PxdatW4O2MXfu3KIOJ5hOLDx16lQX+yUX\n", - "RkZGXPzGG2+4+Ec/+lGJR9c8169fL3R7x48fT33twoULhe4LyIuWKAAAgAA8RAEAAASoJZ03Onli\n", - "1ZMfo/3oCBx/RF6TaWXkiW7//v0uXr9+feK1nTt35tqGXgd1TXY6PDzs4h07drjYT+dpGuull14q\n", - "9BhWrlzp4sOHDxe67Ynm/vvvTyzrJNdljoZdtGhRYrmd7mv4KFqiAAAAAvAQBQAAEICHKAAAgAC1\n", - "9IkaHSqsQ4EnIq2yq/n58+fP13E4jaTXSF19YUJU2c+hv78/9bWBgYHKjiON9mfK2wfKN23aNBdf\n", - "vny55WMKcebMGRfrZ3r44YcT682YMcPFN27cKPQYtMwCWrNq1arEsvbdK5pWW+f+3lloiQIAAAjA\n", - "QxQAAECAWtJ5/tDSiUorlmsKAB+6cuVK3YcQZPLkyYnlModMa8pz0qTOnIRgwYIFLq4rnac0Tadp\n", - "eTOz27dvV7Lfdqb3uyp/4/Pnz3dx3lkP/BRqSHX0rGrraG+0RAEAAATgIQoAACBALW3/Z8+erWO3\n", - "jdPT0+PiTmmmxwfKTN/5rl27Vtm+6tLkz3jz5s3E8tDQkIv1Nx6ahpw3b56LT506FbSNpglJ4c2Z\n", - "Myd1G3l/b1evXnVx3gngmVlj/Lq6ulzc6X/baIkCAAAIwEMUAABAAB6iAAAAAnTmeOg2sXTpUhcP\n", - "Dg66uF2H9aM8GzduTCxv3bq1piOpR5Nnuj948GBiWctbzJ0718WhfaL+03/6Ty7+8Y9/HLSNTlDE\n", - "DBd5+0Gp6dOnJ5bzlkaYyLQfmZY0KrP8R11oiQIAAAjAQxQAAEAA0nk10qZlTeehOH51fG1mvnPn\n", - "TtWHE2zq1KmFbs+vbN5Okzs3jZ9m0vRPyHldvnx5Yrm3tzfswCaQdevWudj/rWzfvn3c21u5cqWL\n", - "Q8tK6KTZ+p36Fc878d7vl/3oZLREAQAABOAhCgAAIADpvBrt37+/7kPoeO02GkQn2h0eHnbx5s2b\n", - "C92Pn2bq7u52sVZ1xviFTFCrvvrVryaWixiVpqIocnGV1bg1zakV6PXaM0umL48ePZq6vdWrV7v4\n", - "0qVLLt67d28rh2lmZjNnznTx4cOHg7ah3TWKOCY0Ey1RAAAAAXiIAgAACMBDFAAAQIBa+kSN5uTL\n", - "zsdr5WCNmzIjPLODw6f9oKq0YsUKF+/atauWY2jV/PnzE8s61F37FRXR5+u++z78788ihnMvWbLE\n", - "xbNnz0689s///M+5tqGfX+93frX3Mu87PT09LvY/x7lz58Z8j/99XL9+fcz1/LIcfqX4VmWVSQDS\n", - "0BIFAAAQgIcoAACAALWk86pKY2nT8kQetq2ToJ4/f77GI0FTtWsKT33ta19LLB85csTFRZeIKLra\n", - "/fr16118/PjxxGv+chqdGNev1J+Hlj4wy3+fnjdv3pjv8e81mo7TMgZnzpxJrJdWlqTsqvpaXmTT\n", - "pk3jfr+fvkwrdaHnyyxZ4iHvd43moCUKAAAgAA9RAAAAATqqYrmmrcySTdo3btxoefvLli1zcRHN\n", - "rppuvHz5csvbS5M22iXUY4895mKtymtmtnv37kL3BeTlp6MGBgZcXGU6P6QiuKbzfvrTnwbtt6ur\n", - "y8U6Oi/v7z+0m4XuK2syXa1YrhXGmyIkhaf8e2Eaf5Ri2qjFvDQ16n/XZf5dwQdoiQIAAAjAQxQA\n", - "AEAAHqIAAAACtH2fqGnTprm4r68v8ZrOxL18+XIXv/POO4n10ioOax8oM7MpU6aM+/h02Ks/LFor\n", - "DGufrSIqIKu8Fdr1fC1evDjx2qxZs8Z8bcuWLS0eXTM9/PDDLj527JiLr1y5UsfhBNN+gWlDx9uN\n", - "XovqxRdfTCwfPny4isP5iDVr1rh43759ud6zc+dOF+/duzdov1p1XssBaLX2MmT1g1JNmSmiLEX0\n", - "u82rv7/fxatWrXKx/zdGr6u0kgt10vIOdZUh0j6M/t+9PGiJAgAACMBDFAAAQICo6klwoyiKmXgX\n", - "AAC0gyiKLI7jaKzXaIkCAAAIwEMUAABAgFpG561bty7x/6O04rhWcT179mxiPR2BoKPfPvaxjyXW\n", - "e+WVV1wcMopMK3Obmc2ZM8fFWn1XRwiame3YscPFOkLIH3WnVYo11hELZsmJO7XKuT8qRkfhaNVj\n", - "v5IzyqFp6rrOuV6XZp05IkoncNV7gz96Vn8rOjJRJ+r16QjVKqtq6288dKJdvQ/dunWr5e2l8btj\n", - "pF3rWsncPyatrp53VJuOSDNLjsbetm1brm0UTY9paGgo8VqR5z3vOS+b3l8effRRFy9dujSx3vDw\n", - "sIt1dPPRo0fLOzgLmy0gS55t0BIFAAAQgIcoAACAADxEAQAABKilT9Ro36Ks/hva12HPnj2J9TS3\n", - "rtWL/Tzxrl27WjrO/fv3J5YfeeSRMY/Pn4X7xIkTubav1WRPnz7tYj+/PGPGjDFf0383q7ZiLrJl\n", - "9QcpU5V9oKqsNrx69ep77suvyH7+/Plx76foflBaRfy++5L/zar9JbU/qPYnGY/33nvPxQsXLnSx\n", - "31enaFrlWSv6Z1X3z3uv0r5izz33XOI1rcZfZZ8o3a/2zy2671kT6f1F++ROnTo1sZ7+RqusRF5H\n", - "+SRaogAAAALwEAUAABCglnTeaJOgP+Rf03HaTOpPqqipkYGBARfrhL5mZpcvX27pOP336/Hu3r17\n", - "zH8PpSlBv2SCNovrsO3e3t7EemkTs6J6VaXv6lRlM/3BgwfvuY6WIDH7aJq9DjqRtd99QdN2oSm8\n", - "NJrCKzu1fOrUqUK3pzQFqilKM7MjR46Utl+9B2ua1CyZNtZuGBONpvOy/lbq9eaXISnib2fdaIkC\n", - "AAAIwEMUAABAgFrSeaPNsP5oFa3+qmkrP02nzfQ6UqLsKq4HDhxwcZnNkDpSxyx5nrTZVD+72UfT\n", - "BUCrdEYAs+SsADojgE9H7mlqxJ99oEhaBdssmd7OqlJeJk1f+OnGrNFrRaoytVxE5XWlo74uXLiQ\n", - "eM3v9lCkIo59+fLlLtaq3Z3i+vXrY8YTDS1RAAAAAXiIAgAACFBLOm80JfXuu+8m/l2bUDW156cU\n", - "dLRJ1gSkRSszJaBF+VatWpV4TQsAagrg+PHjifX8gmeoj/9dlNncvWjRIhfnHS3k/6Y0VaJp4eef\n", - "fz6x3j/90z/l2r6mkKocxac0fabnv8qitGfOnHGx/3uti14vOsKqiEKFy5Ytc7EWEw2lXTn8FFta\n", - "oeUiPkcRKdBOTOHho2iJAgAACMBDFAAAQAAeogAAAALU0idqlD9hqJYQ0OH7WRVjdfi/X9m8nehk\n", - "wn75BK0+rBNA+iUOdFg56uVXiS6zT1RI1WR/uLjSayxvHyhfmSVA/Im3R/mVs3W4vQ6HX7BgQWK9\n", - "vBOG56WlFrRfUNY5r1LRVbb1PlT0JLx6HfmlbrRPlH7XE2G2ADQHLVEAAAABeIgCAAAIUGs6z6dD\n", - "j3fs2JG6XloKr52rpmoKRSdVNksOldVz5Jd0SEtzoHqtTn49EWmara+vL/GalkPJW+lbU0v6fZT9\n", - "3eh+y5ycN4um9ssuMaHdK/KWcdAZKbK+D72n+ff3kZERF+vkxCdPnsx1DE0RUp4h7/lD+WiJAgAA\n", - "CMBDFAAAQIBa0nmjTZF+M3Pe0XVp62ll73ajlY39UTxpzbX+en6lc9THnwxaRxmFjGDyJ1vViuNF\n", - "j7bKsmTJEhcXkTbRkWzDw8Njxu3GH3VcBx2t1kSafsv6O6ApuzfffDOxnk7wu27dOhe3WzpP09g6\n", - "EjvL5z73ORfrKEX/d6Pb0/uEf8/Q0cQTbXRjqyP8aYkCAAAIwEMUAABAAB6iAAAAAtSSOB8dpt/O\n", - "FcaLFjJM9dy5c4nliZbLbjItWVEEv2q/v1yVkP4m2ufD77OhJTvQmnnz5rlY+3lUKe/Qey3bkvV3\n", - "IOtzPP744y7Wkg7//u//fs/jrIL295s7d66L/f5IIfeKRx55xMXLli1zsfYhM0vOAvLOO++42O+H\n", - "pn87mvB3RK9ls+R1oNeV9tE0S57LrPIic+bMcbF+T4ODg+M+VlqiAAAAAvAQBQAAEKCWdN7ocG+/\n", - "qZb03vj4za7tPCwc7ae3t9fFWqLD14TrciIM4V6xYoWLNdWf9d0UTScj9st8aKol73eQNbmxLuf9\n", - "jM8884yLN23alOs9ofQzahkCP50X0pVDt6Ep8d27dyfWO3jwoIv37t077v1USc+RP9m0lvPRyvX6\n", - "+cZDy5BoKjgELVEAAAABeIgCAAAIUGtZW9J3xWrnCZhRjvXr17t4z549Li6iqnaVaaJWdWIKz5+k\n", - "WUdmaYX8Kumo0ax0Xl56T/Mn5926dauLt2/fnmt7O3fuHPcxhNLuKkXPKqCfXdOBhw4dKnQ/RZs5\n", - "c2ZiWa9TrbLvjx7MW8k9L53dpNWZTmiJAgAACMBDFAAAQAAeogAAAAI0e6pvjEvTZ25H9arsA1I3\n", - "LblgluwHpUOk81q0aFFiueh+La3y+xhdvHjRxXVVtNfh9lnV6HVYud//Rc2ePdvFfhVrLeMwMDCQ\n", - "6/jOnz+fa70iRFHkYv1uirBjxw4X+33Fmsz/rrVvZrv26aUlCgAAIAAPUQAAAAHI/zSQVlc2yz88\n", - "uxOHcQN5+de/Tk4aks5rWvrO1+rQ7DplpfCUpv38yXW1mnldEy5nKfN+3IQUnp7zGTNmJF7TdLKW\n", - "MiqitErTNO/KAwAAaAM8RAEAAASYMOm8rq4uF2eNGsmiE3xqc3RW5WZtcs7blBnaDNzOzftAXjrq\n", - "SfkzIGglZ00L+evVNZKt6dLOc5V0FJpfoV1HI4dUQ8f46WhJjX066Xinfze0RAEAAATgIQoAACAA\n", - "D1EAAAABJkyfqNB+UEqrzmp/iyw6DLTs4Z1nz54tdftob1OnTnVxu1YHNksf3u3PEH/y5EkX62/P\n", - "71uzbNkyF+/bt6+IQ6yFlnRYuXKli/2+ktu3b8+1PT3PftmVIuUt6eL3rQnpA5r1OSgRc29aKkT7\n", - "Fvq/yU7vB6VoiQIAAAjAQxQAAECACZPOK4KWNXj//fdT19OhwVU2EdMcjSwhKTwtDWJWTFq8LP71\n", - "n5Y+HxwcTCxrimfOnDkuvnLlSmI9Tc038TxoqmXt2rUu9qtJa9mVbdu25dp2mfeWvNv203ch5WOm\n", - "TJni4rxV04s2bdq0xHK7ltigpM4HaIkCAAAIwEMUAABAANJ543Dz5s1c62kKRJuqO3HyxSr19PS4\n", - "OO/oSIyfpreamLZavHjxmP/uVyLPe73oRMNZafqm0/Tjnj17XOyPRhwaGqrsmFql6Tf/+9WK2XlH\n", - "JteVwlNLly5NLO/fv7+mI0ERaIkCAAAIwEMUAABAAB6iAAAAAkRp1X9L22EUVbvDGugQ1rqGr+r3\n", - "2oTZ2CeCJp7zkGHgOpTf74dStOnTp7v44x//uIu1T4+Z2fnz58d8f9Y5176JWX275s6de8/9tDOt\n", - "VG/WerV6/29G2rXuV5BnSPwH/D5qfsmNseQ95yjW6HmPosjiOB7zpNMSBQAAEICHKAAAgACk80rQ\n", - "hKH4TUwtdTrO+b2tWLEisXz06NGWthdyzhctWpRY1pIOWu6AGQA+pKlRPx3Yrte6pq3N8qeu9Rpu\n", - "9frNi3RePUjnAQAAlISHKAAAgABULC+BTvhJZW1kWbBgQWJ59erVLt67d6+LO2XUWBHpD39C3fHS\n", - "lB3SacqoiZXrVUgXilmzZiWWR0ZGcr2vu7s7/4Gh49ESBQAAEICHKAAAgAA8RAEAAASgT1SG0Eq/\n", - "VZeNQPsaHh7OXMZHzZ8/P9e/37x508Uh1bL9itu6vVarfjfRwoULE8tDQ0Mtbc8vJVFmX7Qq+54e\n", - "O3Zs3O+ZN2+ei8+dO1fk4RRO+2m+//77idc6pW9mkWiJAgAACMBDFAAAQADSeRlCm+zzTChZBobe\n", - "IkvIxNg6Oa9ZWHO+bmPZsmWp62nqYOnSpYnXfvWrX7n4+PHjY77fH4avaQkdrn/x4sV7HPEH/IrW\n", - "Wqlay09kva/sCZyL1Gr6zqeV4Jso73Xgu3Llyrjf09vb6+ImpvOmTJniYv29+l1adL26/s41TfBD\n", - "VBRFR83skpndNrNbcRw/EUXRXDP7/8xsuZkdNbP/HMfxhQKOEwAAoFFaSefFZvZsHMcfj+P4ibv/\n", - "9i0z+3kcx2vM7D/uLgMAAHSc4AmIoyg6YmYb4zg+J/+218w+E8fxUBRFfWb2chzH67z3MXStJA89\n", - "9JCLd+3a5WImq6xG0RMQ+03pKm+qWZvfdXRZFh3ldvbs2dT1NH28fv36xGuHDh3KtY1WMelz9fJO\n", - "hhs6urnpNE1c1Wjasicg1tSrVn/XiafNzO6//34Xa4X3q1evFno8TVH2BMSxmf17FEVboyj6n+/+\n", - "28I4jkcT60NmtnDstwIAALS3VjqWfzqO49NRFPWa2c/vtkI5cRzHtDoBAIBOFfwQFcfx6bv/fyaK\n", - "oh+Z2RNmNhRFUV8cx4NRFC0yMyoHAgCAtvPCCy/cc52gPlFRFE03s/vjOL4cRVG3mb1kZt82s+fN\n", - "7Fwcx38dRdG3zGx2HMff8t5L61RJPvaxj7l4+/btLqavyIf0HJ08edLFfk5f+w/pb8T/vWj/Aa2K\n", - "rRWKzcw++clPjrkvv5/IG2+8kf0BYH19fS7WKthc59UI7Z8T0j+vCfz+fnrsR44ccfGtW7dKO4as\n", - "cz5nzhwX+5X5b9++XdoxFa2J10eePlGhLVELzexHd7/ISWb2/8Rx/FIURVvN7B+jKPoju1viIHD7\n", - "AAAAjRb0EBXH8REz2zDGv5+3D1qjAAAAOhoVyzvI4cOH6z6ExtGmbjOzJ5980sWaVjt69GhiPa3G\n", - "q5W0/ebyxYsXj7lff/Lan/3sZ/kOuGGeeuqpxPJrr71W05F8iErJ7akJKZq8VftXr17tYr9q/7Zt\n", - "21ysZRz8Cu3Xrl0LPs57WblypYv1M4VWYW+Cdqrur5g7DwAAIAAPUQAAAAFI53WQy5cvj/s9mu7S\n", - "ZuFTp04FHcP06dNdXGZzdl7+6Lf9+/e7WEfT6Eg9M7MLFz6c8rG/v9/F/mgXfxTeKD89mGb27Nmp\n", - "+y2CjuIJGYlbdvquadcLWqMVrUNHhuk1q/ekIq6PvBNv6+/SH7mrxxE640ertOtGu0547dNuE+2E\n", - "ligAAIAAPEQBAAAE4CEKAAAgQK19onp7exPLmq++cuVK1YdjZslceFb/FB3arnl7s+QM9lXy+9eM\n", - "mjFjhov986p9erQStF+lV3P/mnf3h/9q1VntV/X2228n1iu6708aLWlgZrZq1SoXa7+lhx9+OLFe\n", - "d3e3i1ddgqajAAAgAElEQVSsWOHi48ePJ9abP3/+mPv1Z7DX/lfah6GI86DlFHTbWdv3z4vO1v7K\n", - "K6+k7mvdunUu1s/oz2av/WF06Lff7yGkXIFeY6jfsmXLXKzX4qRJyT8vBw4ccLHfz0jpfUz7R2X1\n", - "iXrooYdcvHv37nsc8Qf8/oz629H7pN+vUu+nIf1Qi1ZmPyi9D5olf8tV3cP943jggQdcrH3wzJLX\n", - "1cGDB8s/MKMlCgAAIAgPUQAAAAGCJiBuaYdRFNc1LBQAAGA8siYgpiUKAAAgAA9RAAAAAWoZnacj\n", - "LlCcJUuWuPjEiRMuLuJ86wi1vNW41d/8zd8kll988cUx46ItXLgwsTw0NNTS9rIqjGuauuxrXCvN\n", - "62fcu3dvrvf39PQklkNGGRVRnbpVVZ5z/e51tGXWSLNOkTUiTUd26jXhT8Kt6+koTf83tWjRIhfr\n", - "aLDTp08n1tN96UjRBQsWJNZbs2aNi/W78ids18nFdb/6XZslz4Xyu6no+3TkuZ4H/5jOnj3r4o9/\n", - "/OMu/pd/+ZfEe/gbWo08XY9oiQIAAAjAQxQAAEAAHqIAAAAC1FqxHMV65JFHxv0erbidVaU3pB+U\n", - "+sY3vpFY/spXvpLrfdOnT3dxyCzufh8ora6s/RT86rt+P4i09bRvktI+FVnby8uvDK/9KPbv3z/u\n", - "7fmzBYT0iaqrH1RdtNr9u+++W+ORVC9rBgm9Dm7evOli/X2ZJfvxaNV5v4q93nv09zUwMJBYT/sP\n", - "Ke2/aZa8x2nla7+/S9r17P829HMcOXIkdXvaT0v7W/lVwPXz62dM63uFZqElCgAAIAAPUQAAAAFI\n", - "53WQRx99dNzvSWsSL9uPf/zjXOtpCm/jxo0u3r59e2I9nQQ6KzXlTyA8yh92vHz5chcfO3YsdXsj\n", - "IyNj/nur6TufP5nrjRs3WtqeP7wbH+VPdKwpWk1bTXSantK0lU/TXVqWQycPNjM7f/68izW156f9\n", - "0pw5cyaxrL9fnUDbX08njtf7Sda9QdOc/r1Aj13vs/49V/elv3M9D0XbsGFDYtm/nyI/WqIAAAAC\n", - "8BAFAAAQgHReB9Fm4Xbyx3/8xy7+27/929T1tm7dmvqapvA0DZM37eKnxzQFELK9Iugoo7ypDBTH\n", - "H63lj8zsdJrGuu++9P/eTqvk7o/OS6sw/sADDyTW01Fpmn6fN29eYj39Xeq+7ty5k1hv8+bNLtZ0\n", - "mX+/9I93lD/qTo9Jj10ro5uZvfHGG2Nuz6f71c+k5yiLfjf+Z89L9+WPzC5S0TNIFOHTn/60i0Pu\n", - "s7REAQAABOAhCgAAIAAPUQAAAAHoE9VB/FnTi6T9I1odXu/77ne/6+LvfOc7ide0X8qf/dmf5dqe\n", - "9lvyyz6888474z6+kH5QoRXLtbqy5udPnjw57mMogpaVMDPbu3evi7OqWCsdEt7T05N4befOnbm2\n", - "of1pqqqU7u+nzL4iTZT3d679eBYsWOBiv9yB/ga0f5lfakD7Kmk/KL/Mh1YzP336dOrxaRXwTZs2\n", - "ubi/vz+xnv729Nj9PlE6W0BIH6Yseq/xS2yk0X5Qs2bNSrym17D+XusqaVBlH6i8f7NeffXVlvZD\n", - "SxQAAEAAHqIAAAACkM7rIGlppyJSIUWn8JSmSb75zW+mrrdkyRIX501vhaTvipA3fec3v2tKIOsz\n", - "asojbWh2Ed56663Ect4h1EuXLnWxVp3Pqv6epQmTHYcOH59I+vr6XOxPBKzfoZYk8WcY0N+O/h78\n", - "iuC6rPe+RYsWJdbTdF7eibs1lbZ48eLEazpMX++Lp06dSqyn6SRNc/r3hrRZDzR1ntcXvvCFxLKW\n", - "P/jhD3847u3ltXbt2sSyfqf+eSmTTlj/yCOPuPjXf/3XE+v95V/+ZWH7pCUKAAAgAA9RAAAAAUjn\n", - "dRBtqlbajO6PcKmqErY/ciVkpFNdI9SKoOkBrcjsp0nzfsYyU3gqNIV14sSJXOvNnTvXxVEUufjc\n", - "uXNB+y1T2uTV+JDea/yK4JrS0u93cHAwdRtaEdy/Z+iIPL2P+SNjNcWj6S3/+HSUoKYHe3t7E+vp\n", - "iEG9r128eDGxnr6m17lPR1WHprtHbdmyJbGsKa0y7du3r5L93It2HXj99dddXOb9hJYoAACAADxE\n", - "AQAABOAhCgAAIAB9ojrI6tWr77lOEX2gNmzY4OK8lW8nWrVnrX5slszJnz9/vuXtVzXretG0f4pZ\n", - "sv+L36cE7UEr0mvfP/83kFa53v/etT+dVhXXPlVmZkePHnWx9oXJGlKvZVL8a9GvnD5K+0CZJT+j\n", - "9r/SCupmyf6n+hv1j0/7ArbK71PVah+rdqPfjfZrO3jwYGn7pCUKAAAgAA9RAAAAAUjndZCsYbRF\n", - "0hSeDtc3yz8pbV00jaDDnUNTSX5KYNTZs2eDtpdXO6XwlKZd0Bk0HaVpZv9eoBW4NTXnVzbXa0Qn\n", - "KvZLEoRM+KvVwjUdmMW/ZrUkgX52//PqxMV63/FL0aTde9LuLUgXMll8q2iJAgAACMBDFAAAQADS\n", - "eR0kbSJLTbllpdu0mfrSpUu59ll2+q7oiXZ1YkxN54XSyZ2LUNWoO39SVU2bkHLDeOiIX01b+akV\n", - "HSGl6W6/G4Leh/S6PHDgQGK94eHhcR/r0NBQrvX0d+2/R1/T0WD+qFsdkaufUd9jln4fIp3XHmiJ\n", - "AgAACMBDFAAAQAAeogAAAALQJ6qDpM1UnbffUt5+UFUqosJ6mjt37rjYHz6dt/+V9rFSfnXlvP03\n", - "tKKyVjYuup9SVlVnYDz0N6p9mHp7e1Pfo1XJ/SH/Wum7q6srdb0yaT9S/7enpRq0/5beT8ySfcIO\n", - "HTrkYv18Wfsq4vNqv6pO7Ouo59+snr9htEQBAAAE4CEKAAAgAOm8DuI3E7cjvwpxVZW5iyifoEKG\n", - "X5slh353YvM7Oo+m8zRN3N3dnVhPh/brsH6/hIBW+tY0u39vKDO9p2lEjc2S96SsmQ708+p58T+H\n", - "TtSs93AtFxHqueeec/Ebb7zh4tD7U9P45TFI5wEAALQJHqIAAAACtH/+B07RKak6ZKXvQiqqtxsd\n", - "3dQEOsGqWTLVApgl03k6EtgfrabpKU116aTAZsmK4Jp2qjK9rfv1ZyXQVKSOzvUrkff397tYz8WZ\n", - "M2cS6+nn199XERXLf/rTn7a8jTw0JWmWvG/4n7dIeSeRLhMtUQAAAAF4iAIAAAjAQxQAAEAA+kSh\n", - "bRTRD0qHF5dZPsGfmV2Xy6zCXjS/n8eNGzfGvQ397JMnT255e2gWLVGgfYn6+voS62m5Ah3K7/8O\n", - "/X54o/xrMW8f0Dlz5rh4ZGQk13uUX0pBj+P8+fOp79N+QkuXLnWxX+JAfwNaFsJfr8m0NMtEQ0sU\n", - "AABAAB6iAAAAApDO6yD+JLrjpUOQ0ybWbXfadL5x40YXb926tdD9+MO7/eUm0zTM4OBgy9vTz076\n", - "rvPcvn3bxfr9Hj9+PLGeprT0XqUT9ZolyyRomijvjAz+pLSaFtOJwf10oC5ryj20G4GmDlesWOFi\n", - "v3SBlgDwz0Wn8UshaPry2LFjVR9OIWiJAgAACMBDFAAAQADSeW3Mr6TrN5WOV6em8JRWBNYUno7g\n", - "MQsbxZNXlZXXQ1K0mk4B7iVttOnAwEBiWUey6XXpT/CrFbxDRn3529NlTS2njQI0S/4GQqv066hF\n", - "raw9b968xHp6/rQqu6Ye25mmcf2RmO2awlO0RAEAAATgIQoAACAAD1EAAAAB6BPVxnRosVl29Vxk\n", - "K7MPlK/sflAqpH8TfaIwHv59aJRfzkKXtQr4jBkzEutphXsta5C30r/2qfK3oXFvb29ivX379rk4\n", - "tB9UGu0f5pd+SLsf5P0dzp4928UXLlwIOLriaT80/Rxl32e1v9m5c+dK3dcoWqIAAAAC8BAFAAAQ\n", - "gHReB8k7ISeKo03pTVR0WgLwhdx3NOWWN8XjVyzX9J5OCuxXBNfXNPXob6/o+6cen6bZ8v4mtdxB\n", - "lqak8JSWj6iyq0RVKTxFSxQAAEAAHqIAAAACkM7rIH4F83akTe9mnT8h50TjV5PWSaC1KX7v3r2V\n", - "HVPT+NXzNa0zkSdw9q8dndRXz4uf0tF7iG7Dr1iu956iU3shafUmpuny8iuTdzJaogAAAALwEAUA\n", - "ABCAhygAAIAA9InqIJ3QX6Ld+kC1c7+FOnR3dyeWDx065OLBwcGqD6eR/KH3Tf9d5x2Kn5f2TdL7\n", - "gV/ZXM+TVsXOOp7Jkye7WKummyVLIzShXIxWbkd5tF9myN8fviUAAIAAPEQBAAAEIJ3Xxvwhuv4Q\n", - "YBRj2bJlLj579mzitaJTGc8884yLd+3a5eKyK/FqakRTbhcvXix0P0ySfW9nzpyp+xBqlZZS8Sfk\n", - "1arnmvryS0TopLR6nWdV0tZyMWkTLJetnbo26Dk2Sx775cuXqz6ccdm6dWtL76clCgAAIAAPUQAA\n", - "AAFI57Uxvwru8ePHazqSzqbn9fd+7/cSr506darQfW3atKnQ7eWlk6VOnTrVxUWn84BQ/mg6XdaR\n", - "dZp+NzPr7+938bRp01zsj6w9efLkmPu9dOlSYlnTe3fu3LnXYQfTdGUonSBd06H6ey+C391gyZIl\n", - "Lv7Upz7l4pdeeqnQ/TYBLVEAAAABeIgCAAAIwEMUAABAAPpEdRC/ou+oJgzXzWvmzJmJZb8/Qqt0\n", - "KK729+nr60usd/r0aRfrOfvBD36QWG/+/PmFHl8T1FWtWb/7rO99wYIFVRwO2oiWGvGH1OvvXKu/\n", - "L1y4MLGeli/RPj5+5fAi+iq1Sss4ZJVqqGtGBe1fltbXrFPQEgUAABCAhygAAIAApPM6iA7lVYsX\n", - "L3axpqnM8g911Yk7y2zOLjp950ur/B3a5OxXMM9D0wNFD5Hu6elJLF+/ft3Feb+3sr+DVver1zOq\n", - "0U6T4Q4MDCSW9d6ln8OvgK4lEzQ92MQuEFkpPIyPztDgl9HIo31+GQAAAA3CQxQAAEAA0nkdRJsl\n", - "1YkTJ8a9rVmzZiWWy6xcvWbNGhfv37+/tP00RdEpPK1KXPRoHE2FmDVjZFJdI44mMj9N3E6OHj1a\n", - "9yE0gt4ndJSiWX0jcpsgJIWnaIkCAAAIwEMUAABAAB6iAAAAAtAnqkKTJiVPt5YX0Grjfn46bYjt\n", - "hg0bEstFDv0usw+Ur8x+UH7Zh8HBQRfXNXRZZzjPW1ohq29SmX2EmtAHykefqOo1cZg/xoffTTlo\n", - "iQIAAAjAQxQAAECAWtJ5n/3sZ83M7Omnn078e29vr4s1nbRo0aLEelEUuViHi8dxnFhPJ97V9fxU\n", - "Vdq+jhw5klhPq8ROnz7dxf6kuX4l3FE6+a1/THPnznXx1KlTx3y/WTKt4084/Nxzz6W+ryw6bNYs\n", - "+Tn0WJctW5ZYTycJ3bp1q4unTZuWWE/LH2zbti31OPQ70NSDX7147dq1LtZ06qFDh1K3XYTnn3/e\n", - "xZrOO3z4cGK97du3u1greBedVlu3bl1iWUtavP7666nve+qpp1z82muvjXu//kTPeo1oevrdd99N\n", - "rKfD1OuqqD6RaeV71O+Tn/yki/U3tHnz5joOx774xS8mlleuXOniv/u7v0t932/91m+5WP/e6n2w\n", - "bPq3yf97kQctUQAAAAF4iAIAAAgQ+Smw0ncYRXHV+wQAAAgRRZHFcRyN9RotUQAAAAF4iAIAAAjA\n", - "QxQAAECAWkocaIkClEP7nWlpBb/y9fDw8JjvyUuHxpuZzZkzx8XLly938YkTJxLr+UP7R/llG3T7\n", - "Otu2X1ZCl/VzaFkKM7NTp06NuV+fllrQbfvD67WMhpZtaPo13tXVlbqsn8m/JvTza4mOUFoqRIfR\n", - "+/tNuzb135t+zptCz1PWbz5tPf89nPfy+edc7+nnz5+v+nAmjDx/E2mJAgAACMBDFAAAQAAmIJ4A\n", - "NFXjVwRvtdyE//758+e7WFM1aek7n1/tPa36+40bNxLLU6ZMcbE2b4c2desk0P6E0Kqnpydo+3Xz\n", - "z5+/XJVr166Vtm2tRKzfkz9jQd5JoNP4VfvzTvT6mc98xsVvvfWWizUtbBY2YXUWTenfvHnTxfob\n", - "8l9Ds/jdMlAfWqIAAAAC8BAFAAAQoJZ03qpVq8zM7Pjx44l/b3WSVR0ZZpacyPf06dMtbbud6YS8\n", - "fpN9q3QSX7PqJof1U2yattNRfGXzUy9oDr2/6HXvj+xsVd70nU7ObWb2yiuv5HpfWgrv0UcfTSy/\n", - "8847ubaXlqYjfdc+ND2t96Ay0+MYGy1RAAAAAXiIAgAACFBLOm/SpA92qwXDzMwGBwfHva1169a5\n", - "+MEHH0y8pim8iZzO0yZeP/3WKj81MjQ05OJDhw4Vui+1cePGxPLKlStdrGmNvXv3lnYMaB9aQPTc\n", - "uXO53qOj+8ySKcGDBw+O+xiyRoqOdnEwy/+7qTJtjWbRa1FTe6TzqkdLFAAAQAAeogAAAALwEAUA\n", - "ABCglj5Ro0Pu/Uq/2p8mbyVt7fPiDzUO6WPVznp7e8f8dy1xUPRklf73pH2udL9F0z5QZmZr1qxx\n", - "cd6h3loCQye/HQ//Gh6lfXDMyj0XuLesqvNpdHJus/R7kv9daz/NXbt25dpXSP/BvO/xS7/4k3Kj\n", - "/ehsEHpvue++ZLvIRO4LXBVaogAAAALwEAUAABCglnTeaFOkPzx+/fr1LtYmypdffjmxXlpzdDun\n", - "TLq7u13sV27PW0n4zJkzY/57FEXhB3YPmoIte1/9/f0u7uvrS7ymw9bzljUo4ljTtuGXYNi9e7eL\n", - "i6hyrhOQtlrpH2PLm+Jdvnx5YrnM30BeK1ascLFOYGxmtnnz5nFvT9NHqJ+mkPVe4H9P2t0gb2V9\n", - "jA8tUQAAAAF4iAIAAAhQSzpvtKrqnTt3Ev8+f/58Fy9atMjFGzZsSKynE3fqNvwRW6OV0c2aMUpB\n", - "P5NZsmL7rFmzXHzlypXEepqmO3Xq1Lj3q+kebfr1XytC3lGVeemkrZ/+9Kdd7I+I8lO+eYSM2PKl\n", - "pXx05F8ZSOGVQ1PG/ujetO4Chw8fLvWY0vhpxGPHjrlY0+xHjx4N2r5WxaYSdrPotagjoi9evJhY\n", - "z/9bguLREgUAABCAhygAAIAAPEQBAAAEqKVP1PHjx83so0P3d+7c6eIZM2a4uKurK7Ge35dq1Ouv\n", - "v17UIRZG+yAtXrw48ZoOOdVctt9X5+zZsy0dgw579auaa9+iffv2tbSfLNo/zSyZx8+ybNkyF2s1\n", - "3jfffDOxXt7K0Gn8Pkzat0v7H/nXXlq/Kr+adBFlDVA+7Zs4MDDQ8vYee+wxF2/btq3l7SntA+Ur\n", - "or+flkYYvWejGfT+pPdFv8+r9mvLe8/F+NASBQAAEICHKAAAgAC1pPPyVODWoZntPExTU0FFN+fn\n", - "pcPw/QmI/QkryxLalKwpCx2q7ZdSSCutMG3atMRyWpojdALiNCdPnix0eyjOE088kVg+ceKEi7Wy\n", - "fKg//MM/dHHeSdC/853vuPib3/xmy8eQl6Z7/JT22rVrXVxEahPF0Vk7tKuA322g6PsaPoqWKAAA\n", - "gAA8RAEAAASIiq4wfc8dRlG1O5yg9HttwoSoRfM/k47+q6uad6ef8yYKOef+JK2a4q3yfvhHf/RH\n", - "Ln744Ydd/I1vfCPX+3WSYbPwyuTj5Z8jrvXy+ed84cKFLh4eHq76cCaM0fMeRZHFcTzmhU5LFAAA\n", - "QAAeogAAAALwEAUAABCAPlEdqmn9c3p6ehLLOrT63Llz496eVlo3S37GuirzNu2cTwRNOOd+H6tr\n", - "166NuZ5e82b5Sr00EX2iquefc62sf+nSpaoPZ8KgTxQAAEBJeIgCAAAIUEvF8lbNmzfPxTqJ7+3b\n", - "t+s4HKR46qmnXLxgwYLEazqs/MUXXxz3tvmu0RR++k5nAdAJq/2UdkgaGzCrthQHstESBQAAEICH\n", - "KAAAgABtmc7rxGZwrT585syZxGtXr17NtY3u7u4iD6llmnLr7+9PvKZpjtWrV7v44MGDLe83LZ2C\n", - "iaWrq8vFN27cSF1PU81FVH9Ou+Y68b6FepDOaw5aogAAAALwEAUAABCAhygAAIAAVCxvoOXLlyeW\n", - "tTr32bNnXexXqp08ebKLtRpyEyoKa78nM7NPfOITY663bdu2xPKhQ4dKO6YQ2s/GLHmetS9ME875\n", - "RJBVsby3t9fFfj9DhKNiefX8cz5t2jQXX79+verDmTCoWA4AAFASHqIAAAAC1FLiYPHixWZmdurU\n", - "qTp233jHjh0Let+tW7cKPpLiHD9+PLH8yCOPuFgncJ0zZ05iPW221irndckaKo9mKbq8BaUz0BSU\n", - "OGgOWqIAAAAC8BAFAAAQoJZ0no5owsSgKTszs0mTPrz0hoaGXOyPxmtCCg/t6cqVK4Vur9NTeKPd\n", - "LEbR3aK56FbQHJktUVEUfS+KoqEoit6Vf5sbRdHPoyjaH0XRS1EUzZbX/jyKogNRFO2Nouh/KPPA\n", - "AQAA6nSvdN4/mNkXvH/7lpn9PI7jNWb2H3eXLYqih8zst83sobvv+a9RFJEuBAAAHSnzISeO4/9u\n", - "ZiPeP/+mmX3/bvx9M/vK3fjLZvbDOI5vxXF81MwOmtkTxR0qAABAc4T0iVoYx/FoJ5YhM1t4N15s\n", - "ZltkvZNm1j/WBm7fvh2wW7SzCxcuJJZPnDjh4pGRkTFjoBXab0Sr/vtlNHQWgE4xa9YsF1+8eDHX\n", - "e+gDBYxfS+m2+INiFVkFKyhmAQAAOlJIS9RQFEV9cRwPRlG0yMyG7/77gJktlfWW3P23j2DEFQAA\n", - "aLIXXnjhnuvccwLiKIpWmNm/xnH8yN3l/8vMzsVx/NdRFH3LzGbHcfytux3L/5t90A+q38z+3cxW\n", - "x94OoiiK58+fb2ad2YzeFFkTszbBmjVrXDx16lQX79mzJ7Fek6uw+5p+zjtR3nOur1HtuTVNmYBY\n", - "U7R6DO+//34dh1OqppzziSbPBMSZLVFRFP3QzD5jZvOjKDphZv+Hmf2fZvaPURT9kZkdNbP/fHdn\n", - "u6Mo+kcz221m75vZf/EfoAAAADpF5kNUHMdfT3np+ZT1/8rM/qrVgwIAAGi6WiqWV5XG0yrZ2vx5\n", - "9erVSvaPdJrC6+npcfGDDz6YWO/w4cMuvn79evkHdlfTJj7GvS1fvjyxrBN50yjeebSC/MyZM12c\n", - "dzQiUASKYQIAAATgIQoAACAAD1EAAAAB7lnioPAdRhGdE8YwadKkMWOz9L5Aq1atSiyPlo4wM9uy\n", - "5cPi8U0cDqt9GPr6+lys/djMkpXOr1y5Mua/m7U+rHnp0qWJZT2Offv25doGJQ6qxzlvjV7n165d\n", - "y/UehttXzz/n9913X+prKE6eEge0RAEAAATgIQoAACBALem80XRVXZVl/ZSRVr69fPlyZcexaNEi\n", - "F/f3fzhXc3d3d2K9/fv3u3hwcNDF/nenZQN0WH7Tm9vnzZvn4t7e3sRrXV1dLtZJi8+fP9/yfjX9\n", - "qcOlQ7dPaql6nPPq+fcd/c0yC0VxpkyZ4mKdTNuMa70qpPMAAABKwkMUAABAgFrSeU8//bSZmZ06\n", - "dSrxmo4O0aqzN2/eTKynaavZs2e7eGBgoNBjbWftlObQ0Yh+ijdk4lhN186ZMyfxml47IyMjLi4i\n", - "PdhO57xT6DnXKvNm1Va4n0j836HOMnDw4MGqD2dCYERkPUjnAQAAlISHKAAAgAA8RAEAAASYdO9V\n", - "ijdaoVqH+Jsl+8a8/fbbLt67d29ivatXr44Zoz1l5fe1L4D2f/Mrlk+ePNnFWVWY6TfXuZYvX55Y\n", - "zltpfsaMGS7WqvjIx+/bCkwktEQBAAAE4CEKAAAgQC3pvMOHD5tZMmVnxkSKE8nDDz/s4tu3b7t4\n", - "aGgosZ5OtKkVxvU9ZsnSCFRNnphCU/vtmsLTWQ7M6ktV5524GOhEtEQBAAAE4CEKAAAgQC0Vyyvd\n", - "4QSVt3q2Tr7sp8jKNGvWLBdrdfosS5cudfG5c+cSrzUhpUDF8upN5HOuowrNqktLUj27epzzelCx\n", - "HAAAoCQ8RAEAAATgIQoAACBALSUOUJ/RavGj5s2b52ItDeCXGiha3n5Q6vz58y5uQh8oM7Np06bV\n", - "fQhoGP1NPfjggy7esmVLy9vW661dSzMAnYSWKAAAgAA8RAEAAASoJZ032iT93nvvBb1fJ5u9detW\n", - "rvfoUH6tgu2bOXOmi/0h//o+3Z4//FRTVXmPL685c+a4WNMGYx3HKJ3oWSuFm5n19vaO+f6RkZHE\n", - "epreO3HihIv9UgNl0nNetqlTp7rYH0quFixYUMXhoI3obyIk5eYPX9ffZeg9M4TeX6r8nQPthJYo\n", - "AACAADxEAQAABKilYjkTDQMAgHZAxXIAAICC8RAFAAAQgIcoAACAALWUOBjvDNTTp09PLLdardrf\n", - "3q/92q+5uLu728UDAwOJ9U6dOuXikKHGTz/9dGJZSyYcP37cxQsXLkyst23bNhe///77Lp47d25i\n", - "vfnz57t43759LmbG72poXz/OeTWKOOc6lF9/10VXxQ+9j3V1dbl4ypQpLr58+XKu9+t7zMxu3rzp\n", - "4uXLl7vYr76/d+/eMbfn92nlWi+ff85nzZrl4kuXLuXahpbvyfsen15Leh11Cv83kOc3SksUAABA\n", - "AB6iAAAAArTFBMRFN6v729N0WV6rV6928cGDB3O9Z/PmzePej1myQrum83RCXrPmTMqLZArGzOzG\n", - "jRs1HcnEodX8zT5adT+NThKsv6+tW7cWc2B3hf4+tVK/dj3wf/96H9K0RFbXg+vXr7vYP39atX/S\n", - "pLb4UzFhaLeTvKm50BSemj17touHh4db3l7ThHTToSUKAAAgAA9RAAAAAWijDZQ3hRfi6NGjQe/T\n", - "pvk0fppJm/AHBwfHvU9Na5qZnT592sVXr151saYGzPIdaztbtWpVYlnTIfr9FtHEjg/4k2tryuPY\n", - "sWMu9kedbdmyxcU6IXfZnnzySRcfOHDAxf5kv5qa09f80cMqb1pCJxbX2Mxs48aNLq5y8m/cm38f\n", - "r8rnP/95F//gBz+obL8h3WdC6Ij53O8p4TgAAAA6Hg9RAAAAAXiIAgAACECfKI9WC/crh7/zzjst\n", - "bebKW4cAACAASURBVHvFihWJ5dC+T+Ol/ZH8Ph8nTpwY9/Y0P+0Ps9Z+UCpvHyj/HOn2m9h/SIf8\n", - "Kr8PmPZrWbx4sYu1fIVZcoi9VqS+c+dOS8c5Efh9ndatW+fir33tay7+yU9+klhPf9dnzpwp6eg+\n", - "SvsZZX2/Wq360KFDLe+3v7/fxVn9qvTewPXXLHV9H3WVutD+jmX2iQo5r7REAQAABOAhCgAAIEBH\n", - "pfNmzJiRWL5165aL81aMzhryqxM4pg07NkumZFRV6Tvfo48+6mKdmHg8dJJWrVRbdIot9BwtW7bM\n", - "xVpmwU+XaZrNT0XmoRN/mplduHBhzPX8/eq1o5N4+s3jWtVar1+q0d/b2bNnE8s6Q8CSJUtc3JTU\n", - "1KuvvpprPb2v6fWW9Tk0lemnlvW1N99808V+qtC//6E59N5Qpaz0b5H0GjX76N/Ysvi/lTxoiQIA\n", - "AAjAQxQAAECAjkrnXblypdTta+qqiSPF0mjaStNyZslzptVa/clImzbZ5Pr16xPLO3fuHHM9v9lb\n", - "02KacvMr1aalfzUVZ2YWRdGY6508eTKxrBWkdaSinw7U46iryb5KOkLt9u3bpe1Hq5KHNNn79Hsq\n", - "Oz2oI17z7kt/8/551deOHz/e4tGhDlqNP++1qPcqHfE5HocPHw5633g98sgjieW33nqrkv2GzKRB\n", - "SxQAAEAAHqIAAAAC8BAFAAAQoKP6RPn9eEZGRnK9T4c/+31Zmsyvlq3D/JUO+fcriq9du3bM9xQ9\n", - "pN7/bubOnevivFWYp0+f7uK0PlDjoX2O/L5OWnpAS1bkrWjtDwWuamhwuymzH5TKKp3x2GOPufjt\n", - "t992cVb/Er0Wy+6LGTK8O6sPY1XDxVEe7dOUt59caD8oVWa1cOWXK9I+pU1DSxQAAEAAHqIAAAAC\n", - "NCqdp014mnbK2wypKSKz/Om8VlN4Wr3crLqmR394fFr17LRJgc3CK5iPl/9d5P1uVN4Uo6Yo/f2k\n", - "pTlu3rw57uNBZ9B0ct7USNkpvDr4ZT70XGgpCtRv0aJFLtb0bNrfgHaX9TesbrREAQAABOAhCgAA\n", - "IECj0nnaRK6Vtf00Tlq6LO8or6IVkb5LGw2G8dMRdEzci3tpegqkq6vLxXknUg+RlcqsahQl8tHR\n", - "zk1Ptfb19bl4cHAw13v89N3FixcLPaYi0RIFAAAQgIcoAACAADxEAQAABGhUnyilwza1f5RZuSUE\n", - "tEyCznZeNvpBFafK702r3QNlyHtv6O/vd7EOgd+6dWvhx4R66d/EpvdXu379+rjf0/TPpGiJAgAA\n", - "CMBDFAAAQIDGpvNUlRNmVpkKqoqmKC9fvpx4TSfhDTFz5szE8qVLl1raXlNo9ebe3l4XDw0NJdZL\n", - "G16s7zHLP3GxouxFcVasWOHiEydOJF5reupAj09Tdv6k1lp1n9IenW3hwoUubnqJjpDja6cJ22mJ\n", - "AgAACMBDFAAAQIC2SOehNXlTlDqix0/zaXqgp6fHxX56sEyaIstKjy1YsMDFaRMO34umQP0Unjp2\n", - "7NiY/66TIJuZdXd3u/jo0aOp29MUXhRF9zrMtuOnP7Ua9+TJk12s58Gs9ZT+8ePHXZx3kuEm0kna\n", - "ffqbCEkfo33EcVz3IZSKdB4AAECH4yEKAAAgAA9RAAAAATqqT9T06dMTy9oPhT4C93b69Olc6xUx\n", - "fNqvQj/K7/ui32ne7zC0H5Q6e/ZsrvXS+i1p/zKzZF+grDIQ2kdIZy5vtRRFU/jlBHT2Ae0TpbPU\n", - "++uFXH9N7Ael/b40zqrwvH///lKPCe0h7/WsMyqcPHmyrMMpnP/3wS9L0iS0RAEAAATgIQoAACBA\n", - "o9J5GzdudHHIpJl+M3/eiQ+1OrWmEcqulK7DlTVdc+PGjdL2OWvWrMSypozKpGkqs2Rzrabs/Gbc\n", - "MtMXs2fPdvHUqVMTrw0ODubaRtpQY922WbLiuFZ5969ZXa8TSxz49PxpisL/7er10ynVuL/61a+6\n", - "WEtlvPnmm4n19Lx0+tB25JO3tExV9/eJjJYoAACAADxEAQAABGhUOi8khZdlypQpLs5K7WlzeZWT\n", - "HV+5cqWS/SxevNjFp06dqmSfZsl0pf9ZW03T+ek3TZHlHZ1X5sSdfipOr0VNX2oq2SyZytWRbFev\n", - "Xi36EBtHU1U6ma5ZZ4xOXLNmTWJ59+7dLt65c+e4t+dXdS9zkuqJkFpuJ363jDRVzihRpHb6vdMS\n", - "BQAAEICHKAAAgAA8RAEAAARoVJ+ovLQadFaV7bwlDjpdlf2gVNF9vrQvkVa3NiumSnmRsvo6aX+f\n", - "rFIIev3629P1yuzbVSUtXeD3eWunPhJp/N9hq78PnZHBrNzh7JRWaJaBgYG6DyGT3q9CZgvo6ekp\n", - "8nBKRUsUAABAAB6iAAAAArRlOi/vRLkTjT8BcxV0Yl2zj04w2+r2Vq9e7WJN477yyist7edeent7\n", - "XZw18bE/zHyU34StQ8T1e/K/M01TapP4ggULEutpqm/79u0uLnOYe9k0ZeRfR+38uUYVnd72J2lO\n", - "S+cV/RtF/ZpecqLVCb/9CdybjJYoAACAADxEAQAABGjLdF5eaSMEOrV5u46JWf00U95Uq040rFXi\n", - "/e9CK3UfPXrUxUWPFtKK4mbZKTyVlmby03RaUV0ruU+bNi2x3nvvvedi/T79tKGm8/S1Jqa99Lv2\n", - "R9mlVXL3z59+350yGjGEnq++vr7Ea/r7UHXd37KubbTmgQceqPsQSjU0NFT3IeRGSxQAAEAAHqIA\n", - "AAAC8BAFAAAQoKP7RKUNsyy6j4A/3LRdq/tqX7Gurq7Ea2n9c0LLTWg/qCwnT54M2v54aRXxIvgV\n", - "t7V/nvZryarMrdevf83qa7q9Jlbp19+H/5vUPlxZ/RbbtWK5lqwo4jPodToyMtLy9spEH6jyzJ07\n", - "t+5DKNWePXvqPoTcaIkCAAAIwEMUAABAgLZM5+kQ8aKrAIdo1/SdT1NGWeUSQobR+9WV01IR/sTC\n", - "daVxdPi4ft758+cn1ks7F/39/YllnYBY06H672bJ86IpT3/Iv6a+ml69OK1sg1l6JfdLly4l1tNS\n", - "F+2k6JITev01fRJalKedSgAov5RMWjeKpqeqFS1RAAAAAXiIAgAACNCW6bwmpPCawE+R+amhJsnb\n", - "PFtl+q67u9vFfrpocHBwzPecPXs2seyPrhs1a9as1PU0/eunrQ4fPuziy5cvu1gnRDZLpr78JvIm\n", - "81OPOgovbYaBdqbf9VNPPZV4Tb+3l19+Odf2dIaA3bt3t3ZwbaZTZ5oIsXnz5roPIUiV35nOEuHf\n", - "Z4tESxQAAEAAHqIAAAAC8BAFAAAQoC37RIXQvhh1lSTQ0gxmZqtWrXLxokWLXOwf369+9SsXa27X\n", - "7yfjL3eCMstZFJGfT6sQfv78+dT1tP+Vn6vXfm3aZ0bLIvjba3ofwazyBNr3qarq9HV57bXXEsvT\n", - "pk0b9zaaWOpB+//p8fnlSlqtYO7fPy9evNjS9trZzp076z6EIFX2idLfF32iAAAAGoaHKAAAgABR\n", - "1amtKIpy7TArjaOTL2rz4ERu3vXp99r0itYh/NICTZh4V8/5N77xjcRrWrrg9ddfd7HfvH3mzBkX\n", - "azrPn3BUK3/r76NTSgPk1enXeRGyykr09PS42E95pKVe/L8ZWioka6aDvHS2AD2mIrbdrvxzzrV+\n", - "b9oFInTmgNHzHkWRxXE85kmnJQoAACAAD1EAAAABGjs6L2vEkT/yCR9YuHBh5fv0qwjPmzfPxcPD\n", - "w7m2sXbtWhfv27cvdT0dfaiVm83Mdu3alWtfVdm7d29i+cCBAy5Oq4bu08k5L1y4kHhNR/F1ygTY\n", - "KId/fWhqo4iJXotOs+X9fTSdjk7U1JI/alFT8LNnz3ZxHffzpvAnevdnisij6Mm/09ASBQAAEICH\n", - "KAAAgAA8RAEAAARobImDdtLV1ZVY1v4qVdJZq7XcA8Nhq6G/pQcffDDx2sGDB6s+nAmhiSUO9H6g\n", - "xxRahkPLEFy+fDn8wArCcPt8tO+Txv7fCz1/WtpHS0z41fybcM6131JIn6UsGzduTCxv3bq10O3n\n", - "RYkDAACAkvAQBQAAEKCxJQ7aSV3pO1+ZkyzWRSuTN6EqeV7Tp09PLGvFcS3RoSlYs2TqRq8rvxK5\n", - "DpnW9IpWPPfNmTPHxX4JkVu3bqW+L41+Rh2abZZMX+i2s86LVmi/777kf9/pOcs7+WraOS+bfm9P\n", - "Pvmki7ds2ZLr/Z/4xCcSy365jIlES6j4v4GmlfbQSutmyXScTszsTyKtv2VN0+nvwZf2+6pSmedf\n", - "y7s0HS1RAAAAAXiIAgAACEA6D43ip3FCUniaAkibRPVedFJVv/k9j6VLlyaWp02b5mIdOblo0aLE\n", - "epruyvrs2uyv58xP6WqTu6YA/PU03ZWVntb047Jly1zspxS0WrCmK/x0nqYB9Rz5o480NZe3QnYT\n", - "ZjbIO5pOz9GSJUsSr7311luFHlNV/HRU2khKfz0doabXtn+NZaWu6+CnoPJef/o+/c3rPcinr/mz\n", - "GZRJ760PPPCAi8+dO5f6Hr1n+Oco7R6Xlcosgm6/1dQhLVEAAAABeIgCAAAIwEMUAABAgFoqljdt\n", - "aCoAAMBYqFgOAABQMB6iAAAAAtRS4mB02GqVaT0dZrlhw4bEa5s2bXJxb2+vi0OH0OowUN3Xtm3b\n", - "ch2fP/w8b+XldevWuXjPnj0u1krVK1euTH3/gQMHXBw60akO2df46NGjifXyDv999tlnXbxr1y4X\n", - "+9+NDlldsWJF6nojIyO59qvD7d97773U9XSIvm67rglCFyxYkFjW72DHjh2p79NJUUMq8PvD8v0J\n", - "U/NYu3ati/ft25e63jPPPOPiV155xcVNmJR1IvDv27NmzXKxlrDwy4to2Y+sYeV5K9Lnpb+BefPm\n", - "ufjIkSOJ9UJKmej2/Kr9eg8dHh4e97ZV1qTPaRMYmyX/Fuk2/HIRev/U2Qy0VEkWf+YFrd6u14R/\n", - "HvRvnT+LQh5+SRy/qn2r8jyj0BIFAAAQgIcoAACAALWk8+oYnffQQw+5WNNWviKq4H7xi190sVYi\n", - "zkrnZU0enLci7ac+9akx/z1rYldtXg1N4anTp0+PGYd6+eWXc62n6YH9+/e3vN+sFJ6qslpwHn46\n", - "T1ObWem8kBSepnFOnTo17vf7slJ4anBwsOV9oTh6zWn6x0+dDw0NuVir9petv7/fxTqheRETx+vn\n", - "8NPJVU2Yrn9PQ+/heWcBSOP//cr6e1akotN3IWiJAgAACMBDFAAAQIC2nIBYe/vnbYbUptW8qRpf\n", - "2qSFy5cvT6ynzbo//vGPg/al8jZZ/sM//IOLv/e977lYm7DPnj2beE+ro0ZQDR0taJZ+DfujHlev\n", - "Xl3aMVWZklFFpGtxb5qu1cmrfToyU6/TgYGBxHp6bYaMxMrLT2nr/U8/RxHdSjR96Y9Q078DZX5e\n", - "1IuWKAAAgAA8RAEAAATgIQoAACBAW/aJChmO2d3d7eK8w9K1PIFZsh9UT0+Pi//0T/80sd6f/Mmf\n", - "5Nr+U0895eLXXnst13ta5feJqmoY7kTj9yHxKwSPdxt+9ec0/jW7d+/ece8X1dPK0nm/67JpXyLt\n", - "D+rTe6Gu5/cRqqoPnV8N/dixYy7WvklFn2e/YnlaH1q/zEzeWRTQTLREAQAABOAhCgAAIECj0nlF\n", - "N2nrxL3+BKl5ZE2++KUvfcnFv/jFL8a9bbPiU3h+M/Eo/RxNqPDaFGWmUELSd6Hb0LSBXvNmZtu3\n", - "b2/5ONT69etdHDJRbOiEoZoa0glly6RD/M2SE3n7E2q3qikpPKUVxv0yLkqrU+sEuH4ZjlarYufl\n", - "d9eoalYBv7yIfqdaSZx7cGehJQoAACAAD1EAAAABoqonA46iqLId6uiSrFFo8+fPd7E/eq1d6ffa\n", - "1dXlYn/0VlVN7BOBnnN/MtIyaarLn1S11UlWn3nmmcTypk2bWtpeXppqNUueT/28586dG3OdMuj2\n", - "65hEvWp6/9SJrPfs2ZNY74EHHnCxpvP8dLR/7xl14sSJxHJVk9cWTf+OmCVT15rqy+omksa/3tKu\n", - "dT+dr6lM0ojjN3reoyiyOI7HPOm0RAEAAATgIQoAACAAD1EAAAABGlXioGhpQ/59ndIPKo1Wy/Wr\n", - "6uowbj0PRQzRnwiq7PuUpug+JNr/ZWBgINd7/PPQap+hadOmJZa10rQ/lLwqE6EflNK+Z371caXl\n", - "HrTchl8iQmeNmDdvnov9fjzt1CdKr3vtD2aWLBER0g8qhN/viX5Q5aMlCgAAIAAPUQAAAAHaIp3n\n", - "V8vVCSWV35z6qU99ysU6+eUbb7yRa7+a1jDLX6W4t7fXxWfOnMn1nrxWrVrl4kOHDo37/cPDw4ll\n", - "Te/ptpm49kNZlc3TUjz+EP3HH3/cxVu2bCnw6Iq3ePFiF+etqr9gwYLEsqYyQmj6rin0/tLE4yua\n", - "3iu0lIRPSxfkLfOh14dW8243Wtagr68v8ZpeI9o9oszUXlXV2TuVX6YiD1qiAAAAAvAQBQAAEKCW\n", - "dN5o82/eZs28ozX8Jvaf//zn4zswM/vc5z7n4rfeemvc7zcrPoWnzeIhKbws2vxLU/DYQiaH1SrO\n", - "Ztmjm5ombwpv8uTJLvYnBW41nddEEyGFl8ZPT6u0+7ifptP1dISlPxKzneh58UeDa/pXR0i30+jD\n", - "iSZkpD4tUQAAAAF4iAIAAAjAQxQAAECAzD5RURR9z8x+w8yG4zh+5O6/vWBm/5OZjXb8+d/jOP7Z\n", - "3df+3Mz+RzO7bWb/axzHL4213dG+FHn7RI2MjORarwg7d+7Mtd/169eP+Z4y5K2U3NXVVepxID+/\n", - "T9SOHTtqOpLyrFy50sWDg4M1HgnKtnTp0tTXtBK53tP9vk7af0jLIoT0OWwKPfYbN24kXksbLk+f\n", - "qM5yr5aofzCzL3j/FpvZ38Rx/PG7/xt9gHrIzH7bzB66+57/GkURLV0AAKAjZT7kxHH8381srOaY\n", - "saqofdnMfhjH8a04jo+a2UEze6LlIwQAAGig0BIHfxJF0e+b2VYz+2YcxxfMbLGZaSnmk2bWP9ab\n", - "33vvvcDdluPTn/60i1999dXU9XQYd1YKTyfh1KGtZfObk1Gfa9euJZY7cci/pnj2799f45GgbIcP\n", - "H059raenx8XaBWLq1KmJ9bQkhqb2quyuUTS9v+usGGbJdJ5/LtA5QtJtf29mD5jZBjM7bWbfyVh3\n", - "Yk17DgAAJoxxt0TFcewmVIqi6Ltm9q93FwfMTHsfLrn7bwAAAG3lhRdeuOc6436IiqJoURzHp+8u\n", - "/paZvXs3/omZ/bcoiv7GPkjjPWhm+Wb6rZg/ii0thaejTszMTp8+PeZ6fjVqRl/gwIEDdR9CKXRS\n", - "7unTp7vY/01dv369qkNCBbJGCOv9T9Nb/n1RlzXdrZPzmiW7Q1y9etXFd+7cGccRl0fTkhr7o831\n", - "XGg6z5+YOe/oa5TPrzo/+hD17W9/O/U99ypx8EMz+4yZzY+i6ISZ/YWZPRtF0Qb7IFV3xMz+FzOz\n", - "OI53R1H0j2a228zeN7P/EnN1AACADpX5EBXH8dfH+OfvZaz/V2b2V60eFAAAQNNRxwkAACBAaImD\n", - "xtC+GHmH+OddT0sfmJm99NKYBdjpA9Uw2pdN+1RUaXh4+N4rtaG+vj4X67B3v/8gfaImDq1Mrvdj\n", - "LWNgluzr1N//YfWbuXPnJtbTvkQnTpxw8cBAM8Yp6efSz57VZ0v7ffl9xfzSCKhPSL87WqIAAAAC\n", - "8BAFAAAQoO3Tef6QxFZ97GMfc/HLL79c6LZRjbpSeO3EL0mQN8W9Z88eF2sagorME5dWLNeUmz8p\n", - "9ZUrV8Z8z6xZsxLraTqviRNb66TDOgA9K4WtZQ38Egdob7REAQAABOAhCgAAIEDbp/OKnsx4x44d\n", - "hW4PaApNfedN382ePTuxfOHChTHXmzSp7W8lCKTXiKaqzp07l1hPl3UU1EMPPZRYT68lHbl37Nix\n", - "xHp11XLW1LWmIv2K5fqajuDWSv9m6b8ptAdaogAAAALwEAUAABCAhygAAIAAtXRkGM2bMz8xUJ1l\n", - "y5a5+OjRo7ne4w8/T+u/sWLFisTyzp07x3VsPq1obdacatX4qMmTJ7s4rXq5WbIEgFYinzdvXmK9\n", - "OXPmuFirnGdtry6XL192sV9uR/t9aUV/v0L7yMiIi4vu44vy0RIFAAAQgIcoAACAALWk80aHeFJZ\n", - "GqhO3omyNTWX9RudMWOGi/1h260ifdc+NAWllcj99FZaCtlPES9YsMDFmipcsmRJYr2DBw+O+1iL\n", - "oKUMzp8/72K/e4pOVKxVzjUFaEYKr93REgUAABCAhygAAIAAtaTzmpbG0xEgOvkl0EnypvN01NOZ\n", - "M2dS19MRdJrWMEuORmra7x3F0u9aR+f5Vex7e3tdrNeYprrMkteppgSbch3lTb8dOnSo5CNBE9AS\n", - "BQAAEICHKAAAgAA8RAEAAASYkFOv69BTM/pBYWLQCso+rUw+ODiYa3val6Wu4eao38WLF12sw/z9\n", - "yty6nl47fl8n7Qel/VVHZ7oAmoSWKAAAgAA8RAEAAASYMOk8nbzyxo0bNR4JJoLZs2cnltMm7q1S\n", - "Vjrv2rVrubahFaSvXLnS8jEpHR5PFef2odeBfm+3bt1KrJdWsXzq1KmJZf2tFF0JHygaLVEAAAAB\n", - "eIgCAAAIMGHSeVWm8HSkk45IKZqmKM3MvvzlL5e2L4yPn6JoOj/1kme9rFF8K1eudLGOvhoaGkp9\n", - "T94U3vr163Othw/o/cgs/z1JR8k98cQTqetpOi9rQt40Wr3cLJn200mHs9LRQF1oiQIAAAjAQxQA\n", - "AEAAHqIAAAACtH2fKJ0ZPGvG+Sr5Of7xWrFiRWJZ+xZk9WfYvXt3S/udCLSPxcmTJ0vbj85E3878\n", - "IeZppRD6+/sTy7/7u7/r4r//+78v9Jh27txZ6PY6kX5v/v1kz549LtbZGvyyHMuWLRsz9r3//vsu\n", - "1j5zfr9ALY+R1Qevp6fHxZcvX3Zx3kr6QJVoiQIAAAjAQxQAAECAtkjnPfPMM4llHQKrTdUjIyOJ\n", - "9bSZuUqt7jetsu+9pFXF1mb6JlTOrtKcOXMSyzr0Xodj563YnVfR26tL3s/hn2dNGdWVZp806cPb\n", - "W5n3guXLlyeWjx07Vtq+8tLfvKbEzJKV4XVSX7+EgKb6/G2oU6dOubiINHZWGQygaWiJAgAACMBD\n", - "FAAAQIAob1XZwnYYRW6Ha9euTbymzbjaRL5gwYLEeps3b3axHn+ro+JCPf3004nlLVu2uLiulKKe\n", - "l/vvv9/F/oiZTkk7NYGec02TtBv9vQ0PD+d6z9KlSxPLJ06cKPSY0mSd87lz57pYq6b7v8nbt2+P\n", - "e79azXsiVNJet26dizVVa9be13q78P9OT+RzriNPp0yZknhNf9v6u/R/4/o3Uf8G+n8fR2dRiKLI\n", - "4jge86TTEgUAABCAhygAAIAAPEQBAAAEqKXEwde//nUzMzty5Eji3/ft2+fipg/FX716tYu174VZ\n", - "ff2g0mhu2O8DpbnhkL4hGJtfJTq0bEWrdKj7o48+6uJNmzalvufKlSsu7urqSrx248aNMd+TNQS+\n", - "LlrComhF94PSfh5N7KdY1/UL+PT3UfRvxZ95IQ9aogAAAALwEAUAABCglnTeaCVcLQVQJx0mqVV6\n", - "s2gz4k9+8pPCj6kqmsJrekqhnWzYsCGxXFc6RNNOWlk6i6an/QrUaem8Jqbfy6xYrmnOtHMyHk3/\n", - "vdVVPqaJtOK7Don3Z8xA+zl06NC430NLFAAAQAAeogAAAALUks4bGBioY7eOX11Zm+YPHjyY+r5n\n", - "n33WxS+//HLqelpNVie8zdtU2NPTk1iuauRT01MK7STvpLtPPvlkYjktxe1P8Js3dZD32l64cKGL\n", - "tUp53vR2qDJTyDqCdu/evanraTpfK0NPnjw5sZ6mORcvXuzi7u7uxHppVd41vei/T/el1dDNzF59\n", - "9VUX6/fhz5Tw8Y9/3MW3bt1ysT9Kcffu3WMen39f1mts0aJFY77HrPjUZtPp9+h/V5h4uAIAAAAC\n", - "8BAFAAAQoLaHqIsXL9a1awBoKxNhkmOgHUX+7NCl7zCK4jiO7YUXXrAXXnih0n0D98J1iSbiukQT\n", - "TZTrMooii+M4Gus10nkAAAABeIgCAAAIUEs6r9IdAgAAtCAtnVf5QxQAAEAnIJ0HAP9/e3fvIlcZ\n", - "hmH8uomkUAQRIX4FTBHBVNkmjYipwqYx2vhRpRAR/KjVRi1ttBJtjJJCImkiacREK7uwEDQQgwZc\n", - "SCRsLPwDEngszrs4rjsiB2de2XP9mjnnPQfmGbjn4WHOzBlJGsEhSpIkaQSHKEmSpBG6DFFJVpNc\n", - "SfJzkjd61CABJFlP8kOSi0kutLV7k5xP8lOSc0nu6V2ndrYknybZSHJpZm1uDpO81frnlSRH+lSt\n", - "nW5OLt9Ncr31zItJjs4cm1wulz5EJdkFfAisAgeAF5I8tuw6pKaAw1W1UlWH2tqbwPmqehT4tu1L\n", - "i/QZQ0+ctW0OkxwAnmPon6vAR0m8qqBF2C6XBXzQeuZKVX0F081ljxd4CLhaVetVdQv4AjjWoQ5p\n", - "09afrj4FnGzbJ4Gnl1uOpqaqvgN+37I8L4fHgFNVdauq1oGrDH1V+k/NySX8vWfCRHPZY4h6CLg2\n", - "s3+9rUk9FPBNkrUkL7W1PVW10bY3gD19StPEzcvhgwx9c5M9VMv2epLvk5yYucw8yVz2GKK8MZX+\n", - "Tx6vqhXgKPBqkidmD9ZwIzUzq67+RQ7NqJblY2AfcBC4Abz/D+fu+Fz2GKJ+BfbO7O/lr9OrtDRV\n", - "daM9/gacYfj4eSPJ/QBJHgBu9qtQEzYvh1t76MNtTVq4qrpZDfAJf16ym2QuewxRa8D+JI8k2c3w\n", - "RbSzHerQxCW5M8ndbfsu4AhwiSGPx9tpx4Ev+1SoiZuXw7PA80l2J9kH7AcudKhPE9QG+k3PMPRM\n", - "mGgu71j2E1bV7SSvAV8Du4ATVfXjsuuQGL5jciYJDO+Fz6vqXJI14HSSF4F14Nl+JWoKkpwCE+Fx\n", - "pAAAAGlJREFUngTuS3INeBt4j21yWFWXk5wGLgO3gVfK/+/SAmyTy3eAw0kOMlyq+wV4GaabS/87\n", - "T5IkaYQdfw8HSZKkRXCIkiRJGsEhSpIkaQSHKEmSpBEcoiRJkkZwiJIkSRrBIUqSJGmEPwDOrQm6\n", - "MQ8HvQAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "data\t(50, 3, 227, 227)\n", + "conv1\t(50, 96, 55, 55)\n", + "pool1\t(50, 96, 27, 27)\n", + "norm1\t(50, 96, 27, 27)\n", + "conv2\t(50, 256, 27, 27)\n", + "pool2\t(50, 256, 13, 13)\n", + "norm2\t(50, 256, 13, 13)\n", + "conv3\t(50, 384, 13, 13)\n", + "conv4\t(50, 384, 13, 13)\n", + "conv5\t(50, 256, 13, 13)\n", + "pool5\t(50, 256, 6, 6)\n", + "fc6\t(50, 4096)\n", + "fc7\t(50, 4096)\n", + "fc8\t(50, 1000)\n", + "prob\t(50, 1000)\n" + ] } ], "source": [ - "feat = net.blobs['conv2'].data[0, :36]\n", - "vis_square(feat, padval=1)" + "# for each layer, show the output shape\n", + "for layer_name, blob in net.blobs.iteritems():\n", + " print layer_name + '\\t' + str(blob.data.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The third layer output, `conv3` (rectified, all 384 channels)" + "* Now look at the parameter shapes. The parameters are exposed as another `OrderedDict`, `net.params`. We need to index the resulting values with either `[0]` for weights or `[1]` for biases.\n", + "\n", + " The param shapes typically have the form `(output_channels, input_channels, filter_height, filter_width)` (for the weights) and the 1-dimensional shape `(output_channels,)` (for the biases)." ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsnWuwZVV1tt+tCGLQGENEuTaXbqDtbrq5NgEEFFGQaKRi\n", - "vlgVKxgvMWpiiKl8ookcYzTBsqiUGiSJxKh8CSZGUVNFQBAQL9BCS9PQdNMgGlBjLhoTNcZL9veD\n", - "fs46+z1n9Jxr7bXPPg3j+bPP3mfvdZlzzLnWeNcYYw6Gw6GSJEmSJEmS9jxq2geQJEmSJEmyq5I3\n", - "UkmSJEmSJB3JG6kkSZIkSZKO5I1UkiRJkiRJR/JGKkmSJEmSpCN5I5UkSZIkSdKRidxIDQaD5wwG\n", - "g62DwWD7YDD4v5PYR5IkSZIkybQZ9F1HajAYPFrSNklnSPqqpC9IetFwOLy71x0lSZIkSZJMmUko\n", - "UsdLunc4HH55OBz+UNIVkp4/gf0kSZIkSZJMlUncSO0n6YE57x/c8VmSJEmSJMnDit0msM3is8LB\n", - "YJDr0iRJkiRJssswHA4HC30+iRupr0o6YM77A/SQKjXC4x//eP34xz+WJD3ucY/THnvsoRUrVkiS\n", - "/uu//mv2O5L04he/WJK05557SpI2bNggSfr6178uSXrwwYc2/5M/+ZOSpN12e+i01q1bJ0mamZnZ\n", - "6QH/9E//tCTpp37qpyRJX/nKVyRJj3rUQ4LdU57ylJHPncHgoba98MILd7q/xz3ucZKk733veyOf\n", - "77vvvpKkb3/725Kk7373uzs9Xs7z/PPPlyS9613vkiQ9/elPlyT9+7//+8jx/+hHP5IkfelLX5Ik\n", - "fe1rX5Mk7bXXXpKk73//+3rMYx6j//7v/5YkHXbYYZKadnzsYx8rSfr5n//5nZ7fYx7zGEnSD3/4\n", - "w50ePzzpSU+SJH3zm99c8P/sh9dnP/vZkqQHHnhgZH+0/7Zt20Z+v8cee0iS/uM//mPk8/Xr10tq\n", - "+n358uWSpCc+8Ykj+4s44IADRn7/r//6r5Iae2W/9OO9995bdX6w2267affdd59nJ7WsWrVqdjtS\n", - "Yw8vfelLF9xf32Avr3/96xfcH+326Ec/WpL0L//yLyP/P/DAAyVJ//mf/ylpfv85tPcFF1ygiy66\n", - "SJJmbbktkQ1zTt///vclNed04403SpKuv/56Sc05rV27duT3t912W6fjgchWJsVS3d9ee+2lxz/+\n", - "8bNzf1uYa1/xildIkv7yL/9SUnMtqZ27HOYgjzlmDn7Tm94kSbr44oslNbY9KabVf1dccYWk5tp7\n", - "1FFHSWrm7r/5m7+RJL373e+W1FxbuRfgGssc8cIXvlCSdNBBB418n++99a1vlTS/3/bb76GHYF/9\n", - "6lc7nc/ee++tH/zgB7P9dOqpp86O9YWYxKO9WyUtHwwGywaDwe6S/o+kj/uXnvCEJ2ivvfbSXnvt\n", - "NTsRJkmSJEmSTJvdd9999u/TTz99p9/tXZEaDoc/GgwGr5F0taRHS7psoYy9r3/967N38U94whNG\n", - "/ocHjyeKgnLIIYdIkv7pn/5JUnN3Cl/+8pclNV4ld8UlUHjw5FEo7r777pHtRqBElECBcaXh3/7t\n", - "3yRJP/MzPyOprEj5/lAcUGTYPooEXhj7pz3/53/+Z3Yb9IXU9AfelN/to9yhoOGt8xopTM5cQ537\n", - "nu07N9xww7zj3hmRKrFp06aR97T3aaedtuDx/OAHP5DUtBFeDl4UKgXHhTdEO7q3ijIZ8aMf/WhW\n", - "RezCPffcI6kZB/RLW1wxjLxuh/YClL7vfOc7kqSnPvWpkmJFinaPjnvlypUj2/vWt741+z/Ouasi\n", - "FSkSP/ETPyGp6Wtg7lizZo2kRmnANuhHxtL//u//7nT/++yzj6RGZasdS9MGxQC1lvP47Gc/K0n6\n", - "53/+5wV/53NAiT322ENPeMITZvvc+8PhOL7xjW9Imj+3cI2h31Hj2S5PO0pEYwN1FZ785CdLatqJ\n", - "uZi5tGQfwNwyaWWrLdgr/c344DwZ61yjeEricE1jTmWs8wpRe3WdPxmnpTnamcSjPQ2Hw6skXbWz\n", - "7zzqUY8qTsjJ4sAFLUmSZCnT9gKXJIvBRG6kahgOh7NeG94X3glKCqC08MrzU+IQ7rvvPknN3Wuk\n", - "aERwl4vy5O9L4K2W8PN173muZ70z8F4c7uLxClCuUAQ81oSYM/dq7rzzTkmNN3HwwQeP/B/FAW8A\n", - "b4zPuaunf5j88BLuuusuSfO9VI4nUgX6uuHjuLEXtzfAO+U4+T7eFMcL7l2uXr1aUuOtc161Xue4\n", - "cJxd9+dqyN577y2piQmLQMkCtzvsK1IjopgywM4WUgtcDeuKKwze13DrrbeGxyI1yoHHfdEn3jau\n", - "nLgHvlThPJjDUNcjJQoiZzqasx71qEfp+9///ryYtQhvP+JC4aSTTlrwd1u2bJHU2DxzAWo0++Vp\n", - "Atck5jr2g/IEbI//M6dht6jjjA2uEcxRzC3YkSudtU9HJgVjH+WNccPczzWwBKo158V5+9Mr3x77\n", - "Lz3Vcbgmo2DSrrWKaS4RkyRJkiRJ0pGpKVIHHHDArMeM8sHd5/777y9JOuKIIyQ1Xg3KDd4KsShE\n", - "8HNXz108cPcfeXfc1aLokBVWgrvYSEnC2+CulvPjPdmJUTYfEAtGO0TB+dxNoxhwXigL7jW7UsFd\n", - "OO2It8jn4Hf70d0/mTAcL14b5+1EShscd9xxkqT7779fUqMQ4cXXgtfG7yMvif/jVdFetAf9i/eF\n", - "90w/0q+8bt++XVK98tgVV2XaKlJ4vx5nUKtE1cZkdVWPUAEWOq+uWVeOKyWR4lSKoUE5YAwzd2Fz\n", - "UUbipG0kom3iD0oNNo8qiw0xl0ftFClSjDlvH5Q6FC9sMsqo9rnJ7YOxybWBpxtsj+PgGsWY57jY\n", - "P+9RMvmdzy3M4Ywtrjke08c1DGUGJQsFlN8vlrpdy5FHHimpmau5Rh9++OGS5qvVEVw7GOv0O9c4\n", - "nhbRf8QB83SIax5zOP3O3M01gGsO/YXixffp9xKpSCVJkiRJknRkaorUd7/73VlvgefN3M1zl42X\n", - "wP/xevACPv3pT0tqvDfuYj3mpfS8FK+A11pK2WN4n9z94qm7IlKqF+R30X6X7HfrZELg5UQ1V2hf\n", - "7uLxHvG6uDvvmvXl+62NOSuBlz8307ANeDkQZXhx/Hh/tAeKIl4o3o/3I7+jfyLlbNIZOO614u3i\n", - "zfGe8+JzvGfshM+xQz8fvG9XMB1+z/fb1svyuJi5cS/YatsYiUmBp0uboKZGSgxzF7btCkpt5mQJ\n", - "+pq+oA2jWLAIbANVllcyoFG4yLhF8YEouyqas2hHFCnmrkiRio4XUInJdHXbYm7YunWrpPnxkkA/\n", - "8X2UDlf4+H0ptstr0JXiBmHaChXty1MdFCjaAfuohXhalC0/P66FjHvec+1l/8z52Df277UbufZh\n", - "V7UxXalIJUmSJEmSdGRqitS3v/3tWW8ELwvPlLtaPP7oLvvmm2+W1DxH9ro+0NZ743ioW8VdqysZ\n", - "tdvBc+eumrtmjx+IYkbYDjFGrrjhBXkNm1IMCgoWx0PsEnfnXRWfSeHZnSg5HLd7t6VK616J3KGd\n", - "sUvahfYu1Soiw6fk5U+6nf38OS/aDW+O8+F4UCmo24T9eQV5348rUq500R7YZ1tFCjWA7c7NrPGq\n", - "8pMGDzbyXJmLmENq56JI1aNStNdRou1Ldac8E5XvM1baZjx7Vh71tFACSu3TFtR2j1Ns+3vAdsis\n", - "5ThRgLBZbDV6CoHdMWZQNHxu8bhZ7KGv2L5oLoniHsfF25/z5VrENdNj3fhe6akO7e7KLvCeccC9\n", - "AnMadk1/ROUzXFH0bMkSqUglSZIkSZJ0ZGqK1J577jl79z93zT2pUWhqn/dyt4k31darAleKeA5P\n", - "Jkpb8DY4P/fOuGsvKUe+5p17L9yNo3yV6iJxfngFxG34eeJFo/iVjq9vbwdoN481w3uI9ht5wZ5B\n", - "FWWSuFLStlo2MXd4u+BeKt5WKWuxL/w8eI+9Yvcoliip2F1UG4j/u/3hJfM5rx4rVVpTD1zZmuul\n", - "1nqQ0HZ9SIdziI4dW3U1m8+9Jhu2HNk0MSbMcbQdtoMt83viEj0OkjhT+pw+JTusLbQfcwXnx3bb\n", - "qvkR2NKyZcsktY+79HbF9hnrrly44hfB+Xq2JXOMw3mgTPWlSEWZ6fSLX5O8nlntqhHgc6yvckG7\n", - "esZ97bXC63L577iG8jlzq8dKet2vaC73dqlVPFORSpIkSZIk6chUFSlfE467P+5a8bJKz9e5e+R3\n", - "kRews2ORmhgQ3pM50nXdLq/H5AoK/y/VuSIDAsUsUtzYjnvHeD8oMcQWse6RP1fm7t3XmovoW4ny\n", - "6sO+bhnHVcqyjBRNvEavV1b7+1pob69m7PaEF4yygv0tVpyPx+1w3rySaYV6E8Xv8LlneeJtY0du\n", - "V22VOLxUjm+uctg23mxcJaBUd4lz9DmMMeYZmxw/bR2pl2yXV+ZQn8OwIa+ng01625eyySLYDrbC\n", - "eqicV18V2tkOY5bzob5SCR/rtC/tHq2N6DUAGTO8xwY5Hq5lPrZ8TNN/tZXa2+LZn658YjeMqbaK\n", - "lMP5oYz6OqTE0DH3lrItfa7wuRN74Dw9+472xz6juQZl2ZXC2mtAKlJJkiRJkiQdmZoitddee816\n", - "A3hr3E16pkTkzXA37TVQvLJ5Ce5yiRvgOWrXuj7czRJrwvbdA+c9d+fsD6UIuCtGSSFmBWgHz3YE\n", - "7spRPmgfvAVfT4z2ZD+1XkrtCvcOz+89awzca8J7w35qM0DAszvZr3v/eO38P6rIHkH/Y0+RHbu3\n", - "OGklypUv7ILzw874HseHXdAufj70j6s8nBf7YXx4bFYt7Bcvcu76Yn3FmtRCG+KBe0Yntos66XGM\n", - "tCk2jc248gS0JSo1cwa/pw+wIeYC2oWYokj56BqnRx+S7eZjsy98jHh2Vqn/PQbMFUOOl7mPdmZu\n", - "4fc+d3I8PA1BGazNVuy6jihzJcpmlJVWWvOwLxiLzB3MKeyf+mLEjZYUKcYJ12bvP86bdqcdvfYi\n", - "cwbjxeccnvZ4jGLt06hUpJIkSZIkSToyNUXqyU9+8ry7QJQYvAuvcO6QhebeYNe6PHiHnlVXAk8b\n", - "orgI7oK9HhJeVZT54zFUvqI42yk9X3dvmLt4vFRfL8prcwDrGlGDhvP3DA28AjKNeO8VraMqxuDr\n", - "SnG+XtW2lMHD9/Bi8JL43dq1a0e+7+st1SpGtCvtVFqjblIVzSM4Pvrba+D48aCS0B6RasHnbi94\n", - "5/we757+QK3xNSIjOB7sgN8vtO+uuMqJJ+zZZ+vWrZPUjC0qZDMG+D1zGmuOAf9nbPA7bMz3x1jx\n", - "CuGMabYTVUantllEyVYjPDOZ9mqr4pbwONC2c/5nPvMZSdIZZ5whab6ixRztcZ+MZWwZuGah4nJc\n", - "vHoNOWzXswG7qtAeA+T2P24F/LZgf9g114g777xT0vx46BJ33HHHyOsJJ5wgSTrrrLMkzV+dwWvj\n", - "YS9ca7w9uHbR/h7HWlvjLhWpJEmSJEmSjkxNkfrmN785e7fO3St31Xgz0fNe7j75Ht4Aio17DQ7b\n", - "9btNvNBSFprXTXIPGk8ZL9WVIhQBvkf9pqgqsStymzdvltTcnXMepbvn22+/feS4UGaimKpICeSu\n", - "3zMyPPaG7MKTTz5ZUtNOeNMcTy20D+2F91Va241+xRvkd3iTUY0bvFCO22vERBBfgVeD1xmtk1Zb\n", - "P6kv3M5471WXUaZ83alIQfMMJ/BaLoCijPfIdiM75rgOPvhgSfNrIc09h3FhbLAP5hS3FfqONds8\n", - "kxQ1kznDlQ+273GREVF22qRquNWC6uxZg1u2bBn5HjEr2MTc+LYauEa8733v636wc8D2iIWiX9yG\n", - "Tz31VEnScccdJ6kZ0zfddJOkuNagx9jwu7ZKXW38ad8KYFs2bNggaX4F+Y997GOSxq/bdsstt0hq\n", - "FCmuUcxh2J33o7cb49ufivn7WqUwFakkSZIkSZKOTE2R+t73vjf73BNP1JWpUhbWF77whQW/R+zL\n", - "2WefLanxqD37C+8VDxivom3dJPe0vbaL4woEd8HEevndNXfPKEnRXTLZb7Qn54nXy/bYPvulSjDt\n", - "TnvwvNjjD9zr8Wq5vPoK7V1ryriCyPF7xgprI+J90P6eleaxYB4XgtdEe6FClLwTYnU4v8997nOS\n", - "5mf4RL9D8aIfPTaO2jyRV0rs3KGHHiqpqVjvWaye2eL9i33TTq5YlWKYfDyi0HF+tIOfX0lR9X7k\n", - "+3PX2jvyyCMlNWOZtuW7nBNzRKSSLV++XFKjKHhmLZCl5jaEzaLQeMYiqrQrNF4Hp6816mrxOQtV\n", - "meNhjqKPaVcfo/SpZy/yvSiGa7EhZqrEVVddNfLalbbqM0ofNl/KIus7S9JhPGGnPqeV4j377m/m\n", - "Kq+TxpyHPfpTC+zas/rIIvTtlkhFKkmSJEmSpCODxY7ql6TBYDCcmZlZ9P0mSZIkSZK0ZWZmRsPh\n", - "cMH00FSkkiRJkiRJOjK1GKnFUKTYx2KpX9Pa37XXXitpfuwR8RjEqPB8nlo0PE8nXoPn38SPkIHE\n", - "ds877zxJ0jve8Y4F9we+JiDP99mer1AfPVd/uPYfcQ+vetWrRvbn2aAloixAh3547WtfK0n65Cc/\n", - "KanJsOH/xK/Qr/vss8/IdoiL8HpdxP8Qo8V6ZtTlatueXdcdm5mZmY0jpI2JVyR2gpgjxsRdd901\n", - "si/iz7BhYpxokze/+c2SpHe+852z+1wM2M973/teSU2WH8fHWPa+OfbYYyU1WWm0D9BO/B5bOPfc\n", - "cyVJl156qaSmXtaBBx4oqcnKoj4Qx4HtElPFnELMCu1PzAr9Q1bcYrfnjTfeKKmJPWKOJH6PMcmc\n", - "ScYocZnE+WIfxNL5ahO/9Eu/JKlpl7e97W2SmrnXV/Wg3bZu3Spp/ligPZlLiavEzl/4whdKki65\n", - "5BJJTcwf/ev1yrADrhmeaeurG3j23fr16yVJf/AHfyCpGUe0E7GHGzduHDkPjpt2efDBB7UzGJfn\n", - "n3++pMW3l4hUpJIkSZIkSToyNUVqKUG1Ybwprxo8qZW5+wKvzusycfeO94A3SqYRXsDTnvY0SY0X\n", - "RTZklEVFNhveFttnO7QjXjBKBd4xypSvYwXjrkDeF5PKnJqbZTYXvFC8RbxH+suJlCjUBezCa/VQ\n", - "iwhvMqphFNXXcvBe8Z6pqeSV4msZZ5y95z3v6fzbGmhzX/NrsXCPvbQqQFR3CrzvGZMoUmTyeq0v\n", - "lCj2z6tniDLWPWuPDNtp1z0ia682m4ysrkg9Lo0ZMqR9TUagfclwjeZCjpc5nVevo+YZ21S253PG\n", - "Luo2ilPULyhgfJ85C0XKM4o5n02bNi24PV83s8S066VFpCKVJEmSJEnSkVSk1Nw1RzU4qIeEt7bU\n", - "IEYFBcq9DLwaFCHqAuH5E6+A94nXiHLitU/ce+M9x4GSwvb4HC/LvWQqiOPte3XoaTGpGj5RFWRX\n", - "G6JK9yVQomhP6k/BpBW/xa59tJgQNzatc0RZqF2VflxQOJgriIVCZWZsY7vYHMfp63B6DBtzFrDd\n", - "xZpro5psxPYwVnzMRMpIqXJ3SUGEtmM0Wq0D5YxrAUqT18Sj30oKIefHHFOrKEbjhePzNQkjuipS\n", - "K1askNSMG2LdePpUWoOyRCpSSZIkSZIkHdmlFKlJxSrhJURrttWuAD0tUHq4q/cqzniBKD9eAZ1M\n", - "H89wQllypY67ehQrfofX4zFZJe+S/eCdlCrLL1Vq15EiU6dE2xpvtRkwk475qz0/p23W4kLUZjJ2\n", - "hWPzavBtQfEoVYJ2FkuJApQLYomoms9xoB67LdH+ZGuhSPA9fu9zCyr2YhEpJcyhbW2xNPY9hqwv\n", - "ovMgOxUlsWtMmmdd0r/jVirn2lW7jmlXNZ3YNcYdCt64ShSkIpUkSZIkSdKRXUqRmnTWHM/Lufvm\n", - "7nXSMTu+Jlxbrwzlh/pPrqyhCPnacsQnROs/8bl7jb6itntZKB4oE1FWGNvluFDU2q4IP21QgHju\n", - "fs899+z0+5HySdwI3pnHp5TAiyamD/w98QLUwOkb7Lgt9Dvtg9fYJl5m0is1eEZkV3aVODJUTmKX\n", - "UCBQBiIlwZULVyn5v8fqtFXoJsWkssMmtbYg/cHcC7wfd21DfudPIxijJVDExr2WekxdLZ7NyLWr\n", - "r5i8VKSSJEmSJEk6MjVFarfddive9eOhc9eI8oHy4lV8xwVvkxXkuYudtCJFO3SND3AvI8pEca+i\n", - "FG+B1+39hJeDgkTtEbxXauxQBTlSpPCiUCDo76VarysC7zqq9O64PbkCirJE7JhnREVgP1QW5/so\n", - "nhApYn1R2w6OqxtLJXtzLq7mtoUxw1zDGPQxy5iqbUuPVyyBzXEc0X74HrblthlBbBQxKK6y8uoK\n", - "ysOdSSuR0TWV9kYtpl/bjjGuIcwptTFf2DNzuyuRUFKuus5djFt+z37OOeccSePXn0tFKkmSJEmS\n", - "pCNTU6RqnkHzXH3VqlUjv+laX6cECglKFwoJr5GyMm1q79KjGial8/MMJbxxvBu8WrxLnpvXxjqh\n", - "xLDdXc1LbeudeXuSWXPQQQeNfI4Xh2pRW2mc/nQvENpmodKfkULpLHbm1WIyrqKAjdNHzHGsXQeR\n", - "QhRlXLb11FEWSr+jr13F5rhdOWOVCI6PpwdAJWyUua6xSNTz4lrA+XBcUdzntJnUtQu8PV3pZK7m\n", - "tavq6zFHJagIH8E1oJQNW5vdF8H5Yi9Umh83hisVqSRJkiRJko4s6aw9vC8UIlaOnnRlZryZ6Lny\n", - "pDIvusLdfFvFjPMqeYXuheOF4tXQTr6ie/Qc3Ln//vslNcpHrfKyVGhbW4j1qgAvGgUPhQuvvm3t\n", - "FxQn2t9jpGq9YvoVFYHjiSqzPxIYd+wTy8QrY6mWKH6w63GV5lLi7IiJwibIruP32BgxUZGixvew\n", - "+a4ZnihjKAnsz219qbHYNfJoJ+Zm2qlrrBHH75nb44L9do2vLIHdYi/sz9cc7EoqUkmSJEmSJB1Z\n", - "0rfvKCw8F8Uzx4vzFcnHBS+Ru1XuUvGeiGvoqxpqX3T1RrlLb/vcHi8ERcqVKLaLUlaC9qS+0VJd\n", - "4bsv3BvkfIkbwd5QA4gH8TXzIugflFWv4VPrRXo2Yl/e567MuBmlzF1eM2vc2B76ijGJTfH5mjVr\n", - "JM1fzaAEipPbAMfpc0+kKKA2M6dj06y20BbOg1fU4EkpGn2x2BnJroB5pnTXpyzY1bgV/mHSFfs5\n", - "Xu4ZeOrBOBm3X1KRSpIkSZIk6ciSVqTI+Nh///1HPuduuu8quH73zt0q3tdSrGsjdb+bL/2OuAiP\n", - "6SEGB8XJFRa+f8ghh1QdBzVn1q5dK6l9RshSoTaWyWPZsGPsjFfiPWqrB9NfePtkz3n9Kep91SqR\n", - "9OdStf/FxKvEt4W+JHsPhaA2k5L9E9vhoHTheXtGKWOV15LKiErK9hibePgcdxT7w/45XzKHWY0B\n", - "lX9cJl3Rvi8mXcON/gL6ibneFST6p1aR4vhd8dxVIL4Te8m19pIkSZIkSabMklakwFexHzfCvhbu\n", - "upe6J46XynNfvN5SvEDJCyE2zZWrY489VlKjJKGgoIR4JXrqI3ktEeJFqC573HHHjWxvV6OrndBf\n", - "XquHDBMym0oqAvExePt4W+6lto1rQG2oVU2wA6hVP3YFiOnpaqP0DX3LXFabzYUtRIoUNojHzdzA\n", - "+1I9H4e5lxgSr+jOeUQ16lCZvb1QYXe1VQzGpVZd7orP1ajOPvZcWayF7bAf7HmxQE3viq8V2de9\n", - "RCpSSZIkSZIkHdklFCnn4IMPltTUH+Kumrv9vp677yrgNeIt9J254l7junXrJDUxUl5Hyb1rFCr3\n", - "hqkqy+fE9Fx//fWSpPPOO6+Pw180UH7axqzde++9kpp+9AwpvMdaRYf2xFtEqYK2leO96nYJlEpY\n", - "TCWKmI9JZX6OG+OCcsM6lF75u0Qp285jhSLlqi3YJDZOPGCpDhUquVekZk5xFZe5gv9z/MR+oYrW\n", - "KikoYuwHBW1aLPb+o7HXV2zTpLPtnHHbj7kPO+prnkhFKkmSJEmSpCNTU6SWLVs2mw1EFhPPK32F\n", - "Zu4eUZr4nXs1eKPRWl9RjRVgu57NRDbUuOv8TAqPXSH2iPbAK+F8S8+F+R3n7WvIbdmyRZL0xS9+\n", - "UVLTf9Th2nvvvSU17Rh53XfeeefI62LB+aBg9hWnQbuV4g+8rhPthnfP8dFvkQrC58TNsF3UgqjK\n", - "82tf+1pJ0kc+8hFJ8+NfUHyXL18uqYl5YpwxDhgvmzdvHnn9uZ/7OUmNXaBURplV2Bn793XA8Hq9\n", - "qjZQf0yafA0y1EPPZK2F47vvvvsk7TrZZj53+Bp8qNPeN9g0tskrNvHAAw+MfJ8xSVwltnfkkUdK\n", - "amzv2muv3enxcq1gbGDjbSvJj4tnIBMPeumll0pqlDbsgPdHHHGEpKY9PKMXtdnPq7bWXF/4eKN/\n", - "uQb7qiBtr6E+p/p4QSFlznBF2mPzsEfaDbtlDsaeiaWqVe9TkUqSJEmSJOnIYBoe0WAwGM7MzCz6\n", - "fpMkSZIkSdoyMzOj4XC4YMpzKlJJkiRJkiQdmVqM1OWXXz6bocHq8jyn5Dk8sTg8xzz00EMlNc/h\n", - "yejg+SjPNffbbz9J0tOe9jRJD91JLgbs5xOf+ISk+c9fyaaiUvvhhx8uaX4mCs+TqcJKrAjtwvP/\n", - "U089VZL0p3/6p5LiDB1qb/jK176WYe358Uq7lzJ3usJ+3vKWt0hq4iSIpSG+wuMCyBrjeTmxWsQO\n", - "8RycfkCVffnLXz6y3wiey9OvxHNs27ZNUn17sJ+3ve1tkuZnOzIuOH7+z/kRi8bxE3fD+PDtef8B\n", - "/UhsE9sljgPIgKJdb7311gXPa/369ZKk5zznOZKkN7/5zSPHSdwEx0e8ETWPPGaO/ua8XEWnH97w\n", - "hjfMxj4w1jy+iqw5xhrHSiwOY5GxxPcYMx57s9hzS9f9RdmMUabpuPtrC/u5/PLLJTU2CGRoExtE\n", - "xu8zn/lMSU1m6YYNGyQ1MUP0O3ZBXOFrXvOakf1OGvZz5ZVXSpJuv/12SY0dMbeRlcn5M2ffdddd\n", - "kubH/BDSw/x5AAAgAElEQVRTxdzGWDn//PMlSVdccYWkJuuSMcecQk1A2umzn/2spOYaxDWaduMa\n", - "xHggluuMM84YOc9JMXesS9Jf/dVfSWrOn2sdx8c1ljmO8+PaTBwo7XLbbbdJamKjmJvOPffcnR5X\n", - "KlJJkiRJkiQdmZoihdoiNRWYUZy4y+au2dd1wrvgrhEvC4Wl64rifbFp0yZJcQbR1q1bJZUzTyK2\n", - "b98uqVGkSrVi8MKj6sNtwXvBm4oUGPeWSuAF4S2Ar2xP5lS0VhzH43XGAO8crw/vsBavQH7HHXe0\n", - "+r0TVbWOsh05f8+ia8uaNWskNV7vWWedNbJdxhc1j17wghdIarLzNm7cKKnx/vEWf+EXfkFS4wW7\n", - "guRZo6gMeLcOmUu0k6snc9sPlfKGG26Q1HimZBPRdoCtsI/Pf/7zI+fC7xjLp59+uiRp1apVkrpX\n", - "iC6B8lVb8bxENBctdh0gx7PaGPsoC8xtrgjy1AHb4XrCeTL38D3mIObOaeFzNWPB1V3qb5XwjGPP\n", - "WOdaE0HmNZm6QHtjfxyP76+2Dhr9wSsZyRwvcz/j0a8pjE9XKr2umtclwz7YHvaOvdA+KLOcH0pW\n", - "7fmlIpUkSZIkSdKRqSlSg8Fg1hvBo0Zx4K519erVkpq7SbwJvA4ULO6aURq6rp9D7AleEUpZ2/WE\n", - "eE7NcbqXQDxG13WKvA7R0UcfLanxLiadiYn3HSlCUKtEAV5QtGYdz69LeG0ah365++67F/z/pKtj\n", - "98W4dc1QeFFwGTf0G14Zdvqxj31MUhPDhFeJl0iMU+1ajw7j7YQTThj5nO0RB7Oz9eLoO44FUCY8\n", - "nixSI/FQiRHxdSxhUmONvhm3kjpzGdsZdx3LvscGcz0wdukfFARX5rgm0E6+bihzLjEuKBBt5yQH\n", - "9ZU6WG23R9wuYxf74Tw5XmKmUNVRhek/5khqsN1zzz2S5q9zWYJ29TmXfuZ4OE9XpGpXLeD3UXtx\n", - "/lHtO/q5dj1T5iS2G43TaDzzdMuVuohUpJIkSZIkSToyNUXq0Y9+9LxYJ3+OiheJN0hshnsfviJ1\n", - "V08dL4u7epSXtsoR3gTPX7mr5+4fLwLvhrttYpjwhv25Ld/jbhnwtkreMc+h+R5eal9xGH3hK8w7\n", - "tNu4awpGsV2LrUT1dT4R7vUD54n3hr2hYuB1EycQxQtgV9gpqoKv8VeC+BG8Urxw2mVuXOVcFjq/\n", - "SNGJ2sJh7qGNOCdeDznkEElNWzGGaINx1xckbs1tsa2tMFcyp6EIdI3p6nts+JzlsTMR/n+UBWyW\n", - "TFpss6Sel2BsrFy5UlIzB7dVpFDafDUK8Ax2rh1cA70iviuMfq0qPf3g6Qb7Yb/Ev0ZPVQDFdlwY\n", - "8+w32p8rVp45zvn40ym/pnKvEPUD9lIbb52KVJIkSZIkSUempkjttddes94DXgP1gLjLxpt68MEH\n", - "JcUriHP3yd1017gC7vo5jq5Zbni9HK97f6VMCs9eo52iu+fazAJX8saF45zUdoFYHbwJ+qmtgsN2\n", - "6N9pZyxBdB4otagdXVWOSKlknOB1elZsbTwN/Y/3hzdH5pWvtUf/sl8+x7tk/2Tk+Nqbbu+oD1Kj\n", - "FBBHxT6IrSjZKmPOY6MYw67eetv1Bcfrqh7KQa3tY+Oe3RQRxaiUvt9VqfJ4VupDoaQwB5eeMnj7\n", - "ez/Rr7XZcA5zB+3ftXYeipLDWEeJ8bGJGst58L2SPRNHjCLFfhhjKEDEFPI58YrR9rnGMbYhWleT\n", - "70eZvK58+bWF9nAFDPujP6I5i3GAkoyCWVrntVZxTEUqSZIkSZKkI1NTpHbffffZWBjPRPDMgLm/\n", - "kRpvw1cUxxvlLrsteEccD3fHbb2uceMQqODMq5+P11l6uOFeEN4MXmcpK5NsUJ5vE9dC1hfKDl6O\n", - "e1VLhWgctCVS3hg3eHMov3hpbVUMxp9768RgEQPlXj3jjd+jSjDO6acou5C4obmfeZ9iO6V4QGzH\n", - "V08A5iCYVFwb23WlZVz1l7aN+tbPLwJlg7mJ9uL4aEcUtUixQ2UG4kdRJPzpQm38KzZMzBE20lWF\n", - "RqHBvrz+VS3MZdg+9kg7+DUG5Wauje8Mt3ufQ/w9Yx7Fq20Wno8P1GG3L2IO6b9S3HEUB+3ZuJwv\n", - "/YFdRtcIrgF9k4pUkiRJkiRJR6amSH3rW9+afU7J3SZ343hj3D1zF+veJHfTHkdQe/fu+HNfvKO2\n", - "tVc8xsfh+T81KvB2ovpHeJF8z+tI1UJ79x3PUYu3a5RJ414T60y5N+kKJRDP4N5V37FcuwqRMopd\n", - "+1p2beuw4Z0ybt2rxu4YF4zXqLaRe7N8n+1gP3j1c+3F4ybxUFEmXOXi/+wTBYBzGTf7zkHBqW1j\n", - "339thi0VwHnF9plzUP98LijNXUA7R6opNudKgX/fFT2Ok1gmfu8KUCk+k3bjd8yZXTO6UV5Kq0iU\n", - "iGJuvJYisUC0j2dqR3jskSt+ESU7Z7yUvhc9DfJ4yK64HbBdtzfqdXHtqIV5AruqHQ+pSCVJkiRJ\n", - "knRkaorUt7/97dm7bjxN7i65++VuMIpD8GrDXiW2Lb7eT5R1V4vXuAAUM2JHSpkk7lWTvdQWtoNX\n", - "MW4MTtt28fiHCPe6o/50bxS7ocpvFNOGAlOqVfNwBztAvfEV32vB691///0lNf0MHjeDGlOrrvj4\n", - "IU4CRXOuyoCqzBjjPXME50o2GKomygyvxHq4BzxuZexxVdFaj57jJmsLFdzXFHT6HhMcbxRT5Ofj\n", - "FcvBx3JJGcEGUaeZq7Zt21Zz2FOD8ye7b9zVCxiTjBnPiEepKz11oT05Hto/UqA8e682szyCcep2\n", - "4Iob3+uqfHFt4PjJPC6RilSSJEmSJElHpqZISY136JW7uUvGmyR2g7thVyi4+yQbqG1FZSBrkLvs\n", - "rkoUyg93x3j6eODc7XKcUSVvsvN4Ps5r1xgpPPiuMWRObfwI549XWqrBUutNRFWRo+PyjCWPn3ik\n", - "QSYN3qZnCNVW0cbbRa3xTCu8Xa/63baiPt6or8M2VwHjmBm7PlfwXcYc58aY5JXfe12lcSt7j7uK\n", - "QG3MC8fJ+RIbxRzbdW6DqF6QwxznNf4iZY/j5pX28v2Ujp/9oLzw6vbAHMs1ZqnA8dLftB/nXZst\n", - "yvc8hoj2rK0bxrXXsx/96Qj7of15j93VXjP8aQ52QNbdaaedJmm+AoVdcq3knqBU2d5jJZkbWX+3\n", - "RCpSSZIkSZIkHZmaIjUYDObFUnAXy10k3gKxQXgp7lWgIPE8mEyVrqBQcBfd9XmrxyVwV++V2Dnu\n", - "TZs2SWrOk/Pibpq7c7L3ukJsVlsvoSv0K+04buZGiSg70bMi8ZbGjXvZVcEOUWKJY0AJLq0QQDvj\n", - "5fIe+6J9vT/aqjIeH+Hjf6794oHj0Xu8I0oUc4yvDu8xVahtHPPq1atbHXvf1MZ/ct5eef3ee++V\n", - "VK9oRIpN7RjGtmhv2pcx508P+D/tTj/WrsEHKDm+Bhv9CktldQOHMdX2vB2vuRbNxSWFkePxNfE8\n", - "Rorfu2LY9hrj8crgWZPYMbGAKGSsXlE7t6NIoZ6jfHFtRqGKSEUqSZIkSZKkI1NTpIbD4ezdMl4C\n", - "z1/xRnwF7KiWBneP3FWyvdJdZIQrZW0VINb58ro6KCLE6nD37lmKfD9a6y+qN1VLbcXqcfHn5LXr\n", - "Q7Xdvns7rkR53At4PaOHC5wXdrR27doFv4d3SX8wvvgdSjBeIeOQWCcy29gfr6gB2L9704xPVJ5S\n", - "3BHb837i+FeuXDn7GcfMZxwrHiq2wVzj2+SYUJNdXavN4okYd33KWgUFBemOO+6Q1LTx9ddf32p/\n", - "eORbtmxp9TuH46b9OH+PD2WuxRYZu9gAykgpRoq5FSVyUpXiJwVjpmu8L3AtO/LIIyU110jal3Zi\n", - "TDLWuQb7cVCRnPb3rMJSv9T2X2TnnvHNPQR24+fB+UYwD0RzUG1m+8PrCpIkSZIkSbKITDVrj6qj\n", - "eCXcTXIXyV0xz83xiKloDniRbA8vk+qmUJtpgsJVG8vhNVJK3hveAPshBmqpPq/vSimLrq/tlzjh\n", - "hBMkSTfffPPI511XcO8bnut7fSSorWoMxxxzjKQmfuH4449f8Hsovnh1vHpVb9QAXw8MZfP2228f\n", - "2S7j9eijj5Y03+t3hau0hiLKF+OX+YL2OvbYY2e/yxziMUCMUWIsfO00wAP91Kc+JalRvfDMOdZz\n", - "zjlnwWMt4WuOlWJfXDEjZql2rkDVxpP3Nc6i1QEgakfOA6WvBDEsJ554oqRmDvcxTEyV1zVqW0+J\n", - "48RmplUzbq5tdmHcOcprBqLA0D6MZRQnsjv9//weu2NuqW1X7I85pJQlGSlWrmDSv9gNr77fqF4W\n", - "dsnajM6GDRskSWefffZOjzcVqSRJkiRJko5MVZFyTxjILDnwwAMlNV4hK1RH4PnefffdkqTnPe95\n", - "kprqts961rMkNV4ad8XcdXP3z92wrw3G3TxeaZR5UoLfo1z5c1juknm+vXXrVkmNd1hb+6MrZD1y\n", - "vn6Xv9jUKokO8R3j1v7pCt4TXiH24s/t+T9qg9ch49WVWAclyGO/8BqJ92F7ZImWxpXXisEOI1Xk\n", - "4x//uKRGkeL3fJ/+qF23jPPgODkfXqnSfdppp816lowtfuvxW3jc1ImhD4g/ZC7wmm9eoZlz41g4\n", - "N89kRH2jbxlb7tEztjkuzzLj+Olr3nP8vkpCaY04YsmijEjmwBUrVkiaXymdufr++++X1LQbts75\n", - "cHzMzdgy54dShcqIrXLcXmuwBP3OeXEeHmOzfv16SY0SQ/8w1zD3oWCi3HFcbJ9rDFmdHgcIXlOv\n", - "6+oStbF2KHlc6+hfrrmc95o1ayQ1qxps37595Pecp69egB3CIYccImn+mKdd2c7mzZsXPH76DTvg\n", - "d7Sjj4fSNYHtR5XbmQPHJRWpJEmSJEmSjgwmXdNnwZ0OBsOZmZlF32+SJEmSJElbZmZmNBwOBwv9\n", - "LxWpJEmSJEmSjkwtRmoxFCn2sVjq11LdH5kjxH945g7xG6iTvh4Xn//+7/++JOltb3ubpPqsRl85\n", - "3PF1lYhLufDCCyVJl1xyiaQ4e43aQb5eEpQyk8Dbk+Pg+Dm+KLssgvbleT3xMb/2a782sr9Jw37e\n", - "8pa3SJqfGUO8A/Ee2AtxDvyf99H6VcSGnX/++ZKkP/mTP5HUxEd4JhjtQfwN2/V6aR6r6LF7MzMz\n", - "s+cYZen46u7EqBBrROwPteCiODD28973vldSOX5tXNjf29/+dklN35WyuqIq/w5jhDZ+3eteJ0m6\n", - "/PLLJTWxUJOC82NuIUaMWCBswW3O41M9I5QYMI/1edGLXjSy30kzrWsD7Un9LmLWWK8SzjzzTEnS\n", - "8uXLJUk33nijpMauiY1i7DGu6I9XvepVI/udNLXt+bM/+7OSmtivT3/605KauZiMYLJPiX3zelel\n", - "/aQilSRJkiRJ0pGpZu0tNtQ+ISMED3vVqlWSGm/mr//6ryU1Cgd36e614d1eeeWVEz/2ceA8o7pL\n", - "ZFrceuutVdtru1ZaqQaMe9VtV3r3TCqH/mp73K7QoV7g1dVmA+K9kZHSdS3I008/XVL76tRO1J5k\n", - "Wt12222S5vdDqfYLeCZalDEDKFSR6gDYyc7qh/laYLQ1n6NwcIyeGYnHDai39LXXnUL5mrQiBbVZ\n", - "a1Bbh4ix4QrPpJWo6DhqK6lH54cNkU3IHORZXw93aE8yXqMsv2uuuUZSM5eiWKHIMo4Yq6Vai4wL\n", - "lF/G31FHHTXyPZQfFDPmCsYn/cdchFJcC7UDsQcy9n29W89qLV1znFSkkiRJkiRJOrJLKlIeU1ML\n", - "tUB4RVFCaeC5OnESxE143SgUnrYVp4G7cBQGaqvgNfSdSYlXgfKEd038AN5GrSLFdvBK+gYvBrxy\n", - "vIP3g5pALR2e69O/tSuB0+94W6gY1Hnad999JTXek8dkUXMHO8O7wRtm+7WgruDN8Tyfdnruc58r\n", - "SXrXu94lafxK8hxn21iwElHcEkRKFGAHO6udg23T9oxV2pC2wSP1PgK+h02xHbehUmXkcSnZfom2\n", - "nvWk1p7D5ksV2X39TJ4KtK23RP+yX/q5tPbawxXatRQvytqM2J1XBqc9Syp/VEGc7THH8HTI66Ax\n", - "7rBfj6ushe1Si5F2YA5vWzE/IhWpJEmSJEmSjuySilRfa6R5hXDiIfBauCsndoPIf7wjvN+2lcZ9\n", - "5WzPqGj7HLgE1Vt9ZexS1eOIWmWnK67IebVmB++H33lF/LZxHvQv2/MK9njt7u2jgOF1sX+PsUL5\n", - "rAVliNgo2uOUU04Z2W6tEoU644oT3ir/x/sstX8tXdc7w2tlvO0s5oo2x+NE5eI3KEusw8lYZ4x7\n", - "ZXP6mFeOBSYdG9VWUQLagawkz9JatmyZpPlqqis/tYoQ6jZjj7HC+qf0vStSvpag23C0X54mRDaF\n", - "rXhMWdtVKPqmq8I2Lm2vmdgdShSZy7R322sA7c41j/NHaXKlkLmXCunMTV0VJJ9DiPfs61qWilSS\n", - "JEmSJElHlrQihQKE1zKuUkNsD4oA6/lwt8tzdJ7PclfMXbOvm0UWoK9FVgsxRnjL7LfkbbUFL9C9\n", - "wXvuuafT9toqWONSq7TghdOOXWN8fM06Xomdo799nTW8HFQKjgevDu+461qJ2CFKEetV3XLLLa22\n", - "E7UL8Q54r9STOuKIIyQ15+UqRi0odW2zJ6kXhbpCOy9kF3icZB+5ooQnjELj58i+6CNUasaOx++h\n", - "uEyKrjE9tAOKnNfFYbulNdv8fCOI7zzmmGMkNe2JGh7NGaWx7ccN1I5jbKEk+vY8tmbaitRiK1EQ\n", - "tWMJroG0NxAvWsrk9bptfJ/jQRFCBUdx4prYV8weCjSKKXPxpz71qZH9diUVqSRJkiRJko4saUWK\n", - "u1LuIlGAuHusralCVpqvVM3dLnfFeJ98jvfiFb69npQfR+3K3Hi5bBclhXiD6667rub0qonqH+Hp\n", - "9x2btdjg/QDt2bbuE/EA9KN773hjqBkoRMRi4XWxP7xQttO1lg3e9/HHHy+p6S9UB167xtUAChte\n", - "Pt5iKauuhGdBRuPD/8/4oP1qFMqS6oUazCvxbV59njmINnUbmrTC4NvHs6/N7GWuZM7ysYBKv23b\n", - "tgV/X8qyA9rpgx/8YNX3a4ls2ZW1yCZcMelL5XewWdp1GmvY7ozoWlWCMc/TGp7G0O6RIoXixJyF\n", - "MogyibrN3MLcvX37dkmNnXPtHjfbkkrtHFdptY22pCKVJEmSJEnSkSWtSKEUkTVEdhuxKhs3bqza\n", - "DoqBV1n1uAn2xysxMB4f4d6QZxHVeiPubXJXTkZN33fNHu+AMoJXsKuDV4r3Q7/VKlGAd0k/unKJ\n", - "V4vCSQwf9oDXhjdHP+MNda3zRLVnvDns+sgjj5TUeH9U8x0XqgD3TUmp5XyIu0EdQglsg681Rx/R\n", - "dvQp+6Jv8LT7yhDuC+Yub0PaKKq3g0LncyAqP+rmtGJ42oIt1MZwQdd6RJ49xhhnzH3xi1+UVB/T\n", - "45X2a5W/ttBOHCc16Npy++23S5LOOOMMSU1WbFRLkfhj5lBiD10RY5xFcw1269mdXeHa3VcmMox1\n", - "IzUYDL4s6T8l/VjSD4fD4fGDweBJkj4k6SBJX5b0i8PhcOdrRCRJkiRJkuyCjKtIDSWdNhwO5wZP\n", - "vF7SJ4fD4dsHg8H/3fH+9WPtZMddLcoPd/O1K5v7c3avB8R28TZQgvBa3SvleygT/ty9pIB4BgXb\n", - "I7MA+lKiorpBtFvXLKylBv2EvRDj0xZUCV7xeulX+hs7wssjxs6rAXM82G3XrD3UFLxqFLFxY6KW\n", - "GqgjtDvtyPm2yWp1xQLFhbHvFZyjDNelAsqIry/ZNruJ88OWfM3BaRFVkHdqn0YQY4Ny0lV9J46U\n", - "scZTA5SStvbCXIJ9Yn+0v8/VfI/XtpnMZN2hAJXWv3RQcOgXxqTHe/rcx3hrqxwC/dX197XwlAs7\n", - "aRvj1ode5mf4PEnv3/H3+yX9fA/7SJIkSZIkWXL0oUhdOxgMfizpz4bD4V9I2mc4HH5jx/+/IWmf\n", - "Mfcxe1fLK3e9teB1EUeAZ8/dOl4F79mPP7elOirKB7/rmqHB82ueJ+M99V0tOaobhPdHu7TN6Fhq\n", - "eHbXuODl0994gVHldV7pTxRNvED6oWscCkqp18tiPIy7xt5SAaXJY6JQ/NpkXtHWvsaY15cqUVon\n", - "cLGgz33tulIsl8ft8YqqijI3bUWq7dxeYtxMU2Ds0u68bxtzxdzkawrSP/Snz9mM/bbnw/GxH9Rc\n", - "5rC2WYxkd6Koud1Fc28phs/x2n20lyuxfcHc0pVxb6ROGg6HXx8MBj8j6ZODwWDr3H8Oh8PhYDBY\n", - "WnmgSZIkSZIklbA8V8RYN1LD4fDrO17/dTAYfFTS8ZK+MRgMnjIcDv95MBg8VdLCYf0twKtsWxEZ\n", - "uGvm+SexR14Bm8wCvFT38LlrRTFiu229VPeCOR5ibajZMWl47jyp7KzFBm/Fn8u3VQw9JsrjElCq\n", - "eI8C5XEE/M7jJ7oqUihbeGeeLdg1JmypgTdKXAfeeJdxgXqH2outoy7zytimT5kLYKnUBXIbrIVY\n", - "FuYeVo3wytPTzlLsex1Pj1ftqijSbow56h0xd3fN1AZ+jzLoREqUx1369rlmuhLUVvlj+yiWXifK\n", - "98ecxDUWu6W9SnbG8dHeKIHTigc9/fTTZ2tRLUTnGKnBYPC4wWDw+B1//4SkMyVtlvRxSb+y42u/\n", - "IunKrvtIkiRJkiRZyoyjSO0j6aM7PJndJP2/4XB4zWAwuFXS3w4Gg5dqR/mDcQ+yqxIFUSYOVVZr\n", - "Y0v8rn5cJYeYJOpjcZe+WLVcSusk7arQrmQ4ta0ZgtfKdvCG8G7JJOF7HjtV6r+uNVFQScju9MyZ\n", - "h4uy6DGIKFRd5gH6zF/xeLER+ppK586kKmI7rjaixsGhhx4qqfH0PaaJOc7XAKTt2B5KFAoBv5t2\n", - "jFRUJ6srqJqo1ShxbSGz2WsJto1LZMxiT8wZPtfU4pm8Eb5aB9TOjVyjeEXB9Ww6jyelPzm/WkWJ\n", - "82FNTOy1L7vom843UsPh8H5Jaxf4/JuSzhjnoJIkSZIkSXYFlnRl864QD1HCK1iXPF7uxomJQQno\n", - "mkmAd4yXiHewdevW8DdJzGGHHSapUW7w7qjCS/XqEsQjYBduT/Q7sXXEzNV6p10VKY4H74z99h1X\n", - "AniTZHf2VdesFmIGa73uhcAD9jYiniyquDwtvIYZqjlg09gybeOvxH6hQKBkeYVzVGn2E8XodKVt\n", - "nOLJJ58sqZkbsTkUkFrVFdV29erVkpr+7lIdf+7xRHCeRx11lCRp06ZNC34vitGKahKWqB0TKI4e\n", - "Z1kLcwDtwHiJYp04T9R53tfaAUox18Zxn0pNmlxrL0mSJEmSpCNTVaTwlrj79LXuqCbLXTTeJTU3\n", - "uHvnLhlP/cQTTxzZD94ZK7x7HAJKEHftXlNixYoVkpr4Ae6y8f78uXNb8C67KhWcl3vVtTVH8Da8\n", - "6jNxGIvtDXi13BK0P/1x8MEHS2r6q1aJgnPOOUdSY5eoAF7zhXa7//77JTXtRgwV78kWxV6J2+gK\n", - "3i7eaF/rUDmuCiwWvh4cqlEX5Y0+jFStcZUoFI7Fije89dZbJc2PbWEMeH0pbBaVG8XpwAMPlDQ/\n", - "m6+vrCjmDiqA33nnnVW/ox199Yrly5dLapQmjhPbQKniqQHfx4b5PirnCSecIKlRsblGMGaJZULJ\n", - "uueee3Z63CtXrpQ0/xrjClOk0DEn0F/RGnZArBdzXCnel/bsutYg10T240qpw5yLvbXNBqVfPXvW\n", - "4emQK6rMzYwL2onxznZpd/of++N97XhIRSpJkiRJkqQjg2nURxkMBsOZmZlF32+SJEmSJElbZmZm\n", - "NBwOF1z0LxWpJEmSJEmSjkwtRmoxFCn28dGPflRSE1tCtt5JJ50kSdq8ebOk5rn1M57xDEnNc31q\n", - "iBAPQQYCsUPEZp1//vkj+yU+g+e1PJ+OanewrlBp3R+ex//iLz5UoouV0DkO4gB4DsxzfuInjj/+\n", - "+JH98EpcAPEkfJ9Yqxe84AWSpGuvvVZS0z4e00I7Et9A3ADP73kO7Stt88p+X/7yl0uavK1w3L/3\n", - "e7+3KPsD9uP7o914nr9q1SpJ0n777SdJuvrqq0e+T9wI/eDxKMQJXHDBBZKkyy67TFJjn8TG0R9k\n", - "I0ZxDR4Dhr3Qz8QyvfSlL13w/CbFzMzM2Psi5gJbjMZq1HeTgv1cddVVkpq+JlaGmJy/+7u/k9TM\n", - "cS972cskNbFC1113naQmZoTfMfaZ6/hddH7YlNsIY6mU5QYc5xvf+EZJ0hVXXCGpiXliP/QLtsUc\n", - "wdxK3KLbLjbK75iDzjvvPEnSpZdeKinOvGY/vkZeKXYH6KcLL7xQUnt7Yf/EnJVik6DWPrED2rF0\n", - "Xm43tDPn9xd/8ReSmhgpMp6ZyzzO0a8ZxCR57bjDDz9cUhPrx3lxvGT3EdvE+4suukhSMye+8pWv\n", - "lNTExvE5+ye7lbmWa77XZXNSkUqSJEmSJOnIw7KOlOMZEHgpZMB4JsPnP/95SfPX9ooqVkeeO3fF\n", - "vs5QRKRE4dXglXlmBooRXtWGDRskNd4e50sGycc//vEF94PSxd06dYpQ8lCk8DZr163Cq8Cr+spX\n", - "vjJyXA51nxaLWu95UtAutIdnkuGdUaMGr5R+p79oV19p3e2TfmNctM2o8ZXp6V+8Ra92vJSgbVDP\n", - "OGbGytq1D9UYRsVtWxV/0pAFR2YqSgyZo0Cf4knjcVO5/cgjj5TUZEaTvVR7vpHNtB1LPgcwh3m2\n", - "m6+D2helzOZoVQzwseaMG4NMdiHHWatI1XL00UdLapSikiJVyuD2NfJQryO74Jrm9cGwL36PfXqN\n", - "RZ6+cG0lu5Jrr19z//7v/17S/PVJyfZ85jOfOfI7nhKVSEUqSZIkSZKkI0takcL74rl9V6L6M5EX\n", - "0Xa1ebxbh7tqXnke3NarwmukSu+2bdtG/v+5z31O0nylqu26RBzXli1bJMUV1r0iO3fvPD93ryWK\n", - "PxBeDWgAACAASURBVPCaKvx+GpmkbSAWDa/LvR6v5VMC+8C7dW8fr4lYOLwk4gFQiPDOSrViJlUJ\n", - "HftbyooUtoWiA8w11IxjDCw1vF4U7xm7fI5N3HDDDQtuhz7yGnluO8Tnedydr2HXFff4161bJ0m6\n", - "++67JTX95YpErYrqqrxTW8ndt0PsDzFqt912W9V2IqL2jPqvLxiz1N1CwWQ88HSAa0wJroXYH3YV\n", - "XfOiSvXE7JUULa+pd8QRR0hq+gnFi2t5pOihznPt8npTHEdEKlJJkiRJkiQdWdKKFNV38aDxvtpW\n", - "qm67VldtFV6IYp+8Sq5nlJA1xWtUPRdFjrt7zgfIuOCuv2v1WrzD7du3S2q8Fa+cjfdEzJh7DcR6\n", - "RcoSygteMdshW22pK1J4K3g73v9RLF0EdhLZEfEixPThNWE3/D6K9/DK+3jTperJbaE/USqXAigO\n", - "jA1UvLPPPltSM8fw+Sc+8QlJ89XoviqYt117ziHGieNgLN53332S5sevRRATgu0QNxcpB14hmjmo\n", - "pPg4ntXnMVkoFD4W+D7787nDM575HnNjNDZKqjHnjX1wLcKuSk8tUAgjiHHzOYN4SOZij5tECWOu\n", - "j+aOkjrOtZT2I052zZo1ktqv++rr1vpaeyVoV88Mjn7PtYS5jO/R/7UxZdgTChd2Q8xkKlJJkiRJ\n", - "kiQTYkkrUnhftTU7IqK18Np6UxHRit18zt1ulO1EvAa1K66//voFt4didcghh4x8TgYOXhvKRVvw\n", - "5vDS8SY89gov5d5775XUeJl8r+Rtc5x837MAx127cNKgMPp6Xl4Xq5ZS7R0UJOJV8CLx3rHjCI9Z\n", - "m1T7em2fpYArLJ5BSwwIaiiKi9PXWnrYBipvtDZaBL/DVphjapUowOaYm7Ahj1lydR41vWucndu4\n", - "90+kgLBfVxjBM55LKm0tKB5sn+OvtYfSuqHR8RGHedZZZ0lq+utDH/qQpEaJKtkP+0c9J44SmOOJ\n", - "gfI17qJMchRah37CLts+HaFfGZ/YZ6QsUfeJfuGV8VC7lia/w26YM2vnslSkkiRJkiRJOrKkFSnq\n", - "GI1L9Jya58zcfUfKUolISSjVIMGrIzOjNhPFMzvYTskr5Tk/x+PfR/Gitgheqj9/p14RtK0dU4oh\n", - "alvXaLHxrDS8xa6U2g8vybPy8M5LCphnJk0qaw/vbynHuJEB+Z73vEdSo0CtX79eUuPBE0MUZRWN\n", - "C0pCqQ6R46vau5oeVRx3GNOoncyRxOQsFh7vCVEs2bh1pEoKUe1x1FKKkYqgFmA0V5ZqEoIrTE6U\n", - "HVeqF8Vx+dzFdnil3WqVIaCfaf9ozmL7XNP8uGozp4Hvc630+OCIVKSSJEmSJEk6sqQVqa64QhDd\n", - "DfP815WZ6Dm8w91q5HXgbU1agYmyGD32hniQKK4CL4JYLbIF3evtK7YsIqrtMun91kIsVN9ZbxEo\n", - "kF1r9rjXiL3WZtK0peTNLgVcaUJlPeOMMyQ1cYiTUqSA7ChWUygpH8wVXqcHahUp4ihZp5Hq+JNW\n", - "EzlelCGPQeG9x5W2VaLIaGUORNEgVqgW5njmRI8xKtF1rhpX5a6FpzKsv4odfvGLX5TUtJfHKDFH\n", - "R3ML/Uw/RtfgaE732npRLBj7Yb8cL9cyYtmI6eKV+F6H8U67RDGTTipSSZIkSZIkHVmSilT0XJq7\n", - "Se5ia7P5otih6PlprfeDVxV5D20zcmrhuTZwHnzumT1AteYoJgfvlN97TQ/A68XLaBvn0ZWlUjG7\n", - "1uuPoL2mBf3ZtgJ7LbVe3FJm0rZGnSCy5Gizkk15rAhzD7+nb/kefeyKAHMAlayZI/uKS41AeaB9\n", - "PYPU6xB5dqPPta5kuO15peq2sTo+V0arN0R0zfasnUvJ7usa30sFea/RyDWQWEHqfXlMko8T3vNa\n", - "smdikVz55drj9bu8/zh/7B5F058qca9Qqivl9lN7DU9FKkmSJEmSpCNTU6Qe+9jHhrFD0fNXFJdS\n", - "rIjfRUaR974ulcPdcLQiOl5J5D30vVI5Shz1i4C7aOICqE3iXlOpThFexC233CKped5M9V2gPd1b\n", - "dG+E4y15Je5F+P5gqcTecL4l+yj9vi21sXuOe/2uXrRVpEpe+aSyAicJFZ1p40nFj7GGGTXBqEhe\n", - "q27S9ygzeOi8Z+zQB9HcxPfdpmqPozb+00GNZe5w28QWfU5BCcFmmbOYY/gdyozXC4O2Y5W5lOPw\n", - "+E2Op+1Tj74Yd6xxLSUmilgw+pdYIep7+Zj3p0a0N+ddirmLjp92pR+jdsTeeeUahz1zbUGRio6H\n", - "/mWlAOY49lvKvkxFKkmSJEmSpCNTU6Se+MQnhsoSd5VefZfPuVuNPGKUGX+Pt8LvPdbFFZuoxonf\n", - "LXs1YOCuFu+L4/Xn+vzf4xscfudeIO3kK2+TVYbXyl01lcu3bds2sn+e5/vzdn8uzXFyHK5QtfVu\n", - "Pcaqa+2VxYJ+6Br/UFubxMGeUGZrM8pcwcIO29b/8t9H1Na4WUqgLhKHydjoGxQRxlBbhQQPGxvk\n", - "lTmIdQ7pc7IR3aOnbtaJJ54oqclSrO27ruowyh/78TnWbdUVBL5PO9BfKEfMeVFF6q5ZiYxZlA/W\n", - "2Cupw34t6pu+4nDJYF+3bp2kxl7op9r+dgWpFC8ZxayxWgcxW8Qj+/c9Zs4VSWKoIFL1sSvmAWop\n", - "Mq5K2ZepSCVJkiRJknRkaorUsmXL5lUf9efMPK/kuS3Pw8k0iPDIfOISqB3BfvAWuOukqi9339zV\n", - "clfN/lkbDy+I9w6KF3fF3NV63SevdVLijjvukNSsw8Tx4t2yHVc+aGf3trmL564cr7a0sjnnV6o+\n", - "i3cY/R8vg/93rZe02HT1brtmN6LceRYlCiPt56qCe63EC0wqDmhXAnXPs8KoodY39D1zQaR6Rxx0\n", - "0EGSmr5jTLMd99ijzEyUG7L0PCYEfOx2XSMQmGuYW1wxQGGK1F7OG/UdUL+Zo2vX2KuN9WLMEJsF\n", - "pd+R9bar8I//+I+Smmtm2xg47NPrbdFvvj23I/qP7XBtQSm66aabRr6PwoT9Yk+uiPk13O81+D7j\n", - "AiXXFd+IVKSSJEmSJEk6MjVFatu2bcXn8ShL3J3iPdXWjwJXDrgLxuvk+as/B0YZ4fv831dEj2rO\n", - "cBfOaxT70zbewL1GvKTbbrut1Xb4HV45Xmcp9gZFrTbGpqTAeExW2/6dFnhDeO20J5lYfVdgR4mi\n", - "PfGSiG9hzUbHvb5JVYZnHE27TlYNxLqsWLFCUqPmlurMdIUM2GOPPVZS00Zt49RQ1RmD9CXqMGOn\n", - "NLeyribfR4FAlX/Ws54lab6KPG5MDtlf4MpAKe4QRWPz5s2SGmWKubxtRmvt+fC9tmp527X9lhoc\n", - "P8odim0pG5S5CbvEvvgdNQ29/YmNOvTQQyU1cx7j1SuSo3x5LCB2gELFtbeksHGPwT0DWYvPec5z\n", - "dvq7VKSSJEmSJEk6MjVFas8995y9yyRWyesO4elzV8xdptfx4f9f+tKXRr4HkdeBN8Nzf56Poizg\n", - "7blC43V0arOnXHkitgVFiLtrzgcly+MePBOEdiQugN/hRXB+PK/nbpt4BLw5jo/Pwb3Stl70pNfv\n", - "mhbevtjZpM4Xbxi7xw7x7qYN573YayF2yYzCM0WJQuFpW9GceEIUIDxgPmdskgV0wgknSGoUIb7P\n", - "9/CAaUOPY/vMZz7T6vhKoEjtKiowcI1gzuxas+/MM88ceY+iwfZRyLyOEnM21yiUFs8mxA6mBfXK\n", - "AIWIay2xalzDmNu5JqC6sx3OG3tBCQLil3nKQL+wHeYItsN7zw5kLcgHHnhAUjNO/FpLvC/H7Zn5\n", - "XqEdBZQsReZs5nLGIf1XWwk/FakkSZIkSZKODKahFgwGg+HMzMyi7zdJkiRJkqQtMzMzGg6HC0rW\n", - "qUglSZIkSZJ0ZGoxUjMzM7N1oqK14bpC7Mgb3vCG2X11wdd5KsF+PvjBD0qSnv70p0tq4i94Ps3z\n", - "dp7v8/yX58bEb7B/zofnvWRAnHLKKSP7nRRkHL361a9elP0B+5n0/ogXeOMb3yhJeve73y2peW5P\n", - "Jolna4JnpETVqokTIIPkd37ndyRJb33rWyU1dsbzfPbvGTJkxFC/jGxN4mo4H2L9iIOgHa+55hpJ\n", - "0u233y5p/rpYp59+uqTG7q6++uqR/a9du1ZSM159xXjsl/ZcTHu5+OKLJTWxEJ69Q+yDZ+fwf7Lp\n", - "iAsk9oI4LL7/spe9bHafO4N4RzIrIxuqObe5r8R0eM07bIy+95gS5iC+H8WzsZ+3v/3tkpo+jeJN\n", - "X/ziF0uSXvnKV0qSfvd3f1eS9PnPf15Skx1JNhbHtXHjxpH9vfOd75TUtDsxK8QFbtq0aeS4yaai\n", - "36677jpJzZihHRhLxLws1twCvr81a9ZIamKwovhH2p05g+97FhrxvWS4v+QlL5EkffjDHx45Dr5P\n", - "DBgxSOyXazLZcXyfdsTuyG5lPP36r//6yPlNCr8WYZ+lWCbGxUknnSSpmRPJsKZWJfcinhlfOq9U\n", - "pJIkSZIkSToyNUVKmlwF676Ura7xYyhJKAMoTWR3oURxt89dPl4T3gVex1FHHSWpyQCZ9PpNzqRq\n", - "6/QNNUzaZhX69/FmUTNKKkJtFWy8RVesyN7EO8JLjNYLw57wHl1V4H1UmR7vM/LiyCgjqxW7w+vH\n", - "K0S14XjHXYk+Wk+rDb76O5794YcfPvJ/jhn4Pp4onj9tjefdNiORc1m9erWkpg1RViBa3T4C23Bb\n", - "Yu28fffdV5L0t3/7tyP/R23E896wYcPI/6N1IEv1llDhn//850tq5i5slPpZzI1kTTkoiZ415xXh\n", - "gUrcEaXVGaYFq1M4KKVd8X7i/Et1xbCjSE3nmuS0tdtx8WtR7VzB+OY83C5ot6510lKRSpIkSZIk\n", - "6chUFalpE61DNS54W/fff//I9vGqvLpqtOYZv8OLxqvAS05G8ZXgS0RVh/H2264zFYFShlLq1Ztd\n", - "eUKhXLlypSTprrvuktTYDzVSovMkDgY7ce/fa784XlvGV3QnnojjHFeJguXLl0tqVBvOF+U6UjHm\n", - "4h4qCovX+3Giz2lL1Omu6yTSh8ccc4ykJr6NzyOFIiJSiamrQztw/ihz/A7V0XGPvK06SCwJyhHK\n", - "2GGHHSap6cNovdRIEUDdH5eulcapN4XtM4Zc0avliCOOkDS/0jtqL9emtqtI+JzlSmpX++0LxhP1\n", - "0lDha5/++FqHzHG164Z6ewOKMbFUV111VdX2IBWpJEmSJEmSjjwiFSm8M+76UQr4HI+4a2wQXg8Z\n", - "JzyXbRtzRXwB3jReBTE1beF48DL7UlyWCq5IEQvE83GPE4i87VI8AXEeKE2luBm8ySj+AS+I/iE2\n", - "ifd4YWQ8YV94l8TM4ZVxfChGDmoI8SjYAcoPx+vqAN9jnERKLsfdFqoSn3baaSOff+ADH+i0Pak5\n", - "Zm+bWpgbaJtaz9dBcSI2i7izGpWtDdg+NkUf0g7YoKuI2NS4a8MRT4itkoGK0sLqE77GHkRjKYrd\n", - "aUvX+DviWplToliyWlCaHLLHUL7YTxSHybWB/vQK72SL9qVItc1kd4h98zXzavEK/F3Ho0MmNOOF\n", - "OTeKDXNSkUqSJEmSJOnII1KRwsv0GBPu2vG4u4KSxHNg9sfzYc/YicA7JD6A36OEtMXPl+3hJUTg\n", - "VS51UJJoL2qG8Bw+Uprw/sDjEVAo8aJRMvFa8PZRMNuu+4WXRf+gVnhsFIob+8frR8lhO56h4uBV\n", - "0u+cB/vn/GkXYrpQOTgOj/XCLqNswxJ43ShQKK99eJ20DTZfS0mdrMUzbr3+E3FvkVID9BV9hO2h\n", - "tKCY+BzBXMT5uxJGLTRX7FzxqIXjYw7Ddtg+tsvYLMFx0B+LvSIH6is128aN2fKxA74WXmku8X5x\n", - "xYk4x0gBa8u0103tuqZiCX9aUBtnC6lIJUmSJEmSdOQRqUhF4EWNW3uEu3a8Ra82TCZLyUvAO+U5\n", - "OTEveNcoX12prYnT1ot3fEX7SdUPQ5kBlBtqCBFn4fsv1Q7By6Mf6Ve8VPqlq7fkKgRepMdzsD+U\n", - "G5SyKPYqimEiY4p4Heze94dXjD3zPeIb3P48u7Qr/J5XFOJx6sPRxm1rjPWFnwsKC+dUazvEn2HL\n", - "fj6ujgIxIChf/J52iWKHuipSZLVho8Tq8L5W0WHO5BXlDLWV84jiPTl+lLGuGc8+1j2bs237RNlm\n", - "zGH0SymGzseG28O4damWGszpfYP6f/TRR3f6fSpSSZIkSZIkHVkSitSk6jm1xevXdAUviQwWlBhi\n", - "S2qfM/OcFgWAuAe8r3EVqVpKMVQlUD66xnZFoNS5okSNFuJS8Po84wNqvUlXDfgd+0EtaPt83e2e\n", - "OBe8Sa/jxGspdihqH1d2ovOPMqX4PmsQeszUuPbioCpE/VeDZ1pOC9rO1zesBUUEdRR1m+1FCgax\n", - "PU972tMkNXMSryhI9KUfb1fw9FGUqI2GSu11fYghQ7HieOg3nhbUZjuyPd9uW/gd7cXYQunrqkjR\n", - "b2wP5bL2/Jh7+J1nXdZmF9LOnrHL72uzHT3Gq+21FMUxylIcN6s0grmOeYL9RLFsTipSSZIkSZIk\n", - "HVkSitS0lSjoa40+vBYUA+ISUJJq98N2qGHiygfgnbaN0fF6RBG1tTRK9BWf4hlAvKLkkGVIZXn6\n", - "oTYmzL1PYD94aXiVURYoEB+CohLFctEP9AveLjFTteC9Yy8eL4OSSU0fj4Er2QPHz3Zd5WlbqymC\n", - "rEGOdxxFKlpVYLHBVsZZT1Car7BhQ1GdH2yWMYiyRSwO22FsQV9ZWtu3bx/ZL7E9bjvYLN/jKQHH\n", - "33YuQllBJfXzqc2WRAlj7uW1rT25kkV/0A4oQ9hr6bg4fo+5g9oMdJQXYoQ4LhTFWjw+2HH1Gntl\n", - "PVnGOufvqrifD3Yy7rj2emu0ZypSSZIkSZIkE2ZJKFLTgrthFIi+FCn3yH1lear81nrYK1askNRU\n", - "pEZ5gVKlafBK7rWK1Lh1tfomUt5cGeJ7tDdej9fxIm4DIuUKb4vt8j7KQiQeBW+YOA2PW3Dvh/3z\n", - "eW1MFODd1sYDeSYZXllJQSSGy9UMj7NpC+3D+ld9KJkoQF4zbLFB/et6TnjO2AiKRaS4OKiJHitE\n", - "vJuD6orNt80yBOYszp+YragdmJuYs3zNwCgOj//TDh6r42MCm2d7pX5hLBKT1DbDm/7jvLBH2hOl\n", - "i+PYsmWLpLjmH9tjzPk1oK067PWr2vYzxxNlQmM/tDvra65atUpSeQWCtvGnbeF828Z5piKVJEmS\n", - "JEnSkVSk1J8SBXhfPL9GeeJ5btvMA74feUttsx55Po/3gxcQtcOkqsnWUltHCC/xmc98pqT5yk+U\n", - "wULGEtCetLuvSeegGN5+++2Smowk+rsUZ0C/sl/aGzWA/dcqUnjjKHEeY+VeHUoZihL/L8UHcJzE\n", - "saB2jJu1R39zvn1m2tXGyU2KUsxLCa9jRB/T5p7ZCa4ouS2hIPgYwwbGjWNFeTjuuOMkNTFTDmPB\n", - "xyrHRwyNj1ng+GkXxhBZcD6XYbO1CiHtMG6tQa49jHn6g1fmaLLXopi6UsxZ26w5v1a1pdSOzKH0\n", - "A/G/KHPM4dE6t/50pO/xTPu3VYxTkUqSJEmSJOnII0qRwjvhLta9n1qvC28CT5xXwMsg4+Cee+6R\n", - "1D12hOyqDRs2SGq8sle+8pWSmiy10vNjzg+lDOWipPT0rdiVcG+07f6pTUOMEv1w3XXXLfh9Vwlo\n", - "J7x8jx0ClB68X/oXtaA24wUvi5pAeKMen+JeMP3uihP2wXpmfn4oUNgt3iDjwtd2dIUJ5YqYPeyd\n", - "34+rYNLO9FufilTfNa7GBdWTeDBsj7Hs9Ym2bdsmqVFSsBkUBI+rA8YUWXEen0nNOycae/RJredO\n", - "DMyaNWskNXGJXkcKm0eBwQYYW7XrOKKkoXhEGaZtlTZsn/Zsq4jQTx6X63Mzqjb9f+utty64PWoM\n", - "ck1iFQeoHTtt4yrHhfOnfzkPxift7BnNnlXaV4Yw+8Ge6Zfa7acilSRJkiRJ0pFHhCKFB85dJ94J\n", - "3kTb9Xt8fSW/a+W5tnt9Xj+oFq+l4VliUbxARJS5s1Q47LDDxvo93gs1Z7oqgcRllPrtjjvukNQo\n", - "SVRxxssqgX1ij65weq0gvHli3FyRIpsOZcjX20JJIh4BxQq75v9eGZ0YMK87hf1hl5xPVzy7NIqX\n", - "6AI2X5vpWoLtoDR430c1yYC5A6WFto3qOrktRkpFtB8Umlqi424bQ8L3r7rqKknS1VdfLWm+eknt\n", - "t65zJaBsuO34cdM/qLKMYX6PCsz/XTEjpubMM8+UJK1fv16SdN9990mab1+orRs3bpQ0f25nzmI/\n", - "1KAjxotVIqLz8diz2orr+++/v6TG7nw/feMxX74/lLmDDjpIUqPu+/n0XZuQfsusvSRJkiRJkkXi\n", - "EaFIcXfJ3SyeLkoFd/940jxfr82S8uymqD5UbRXdtvgagXi1eMt+F4+X6SvS+zpe4O8hyqwZF46r\n", - "LagBtAfnfeCBB0pqlK5apagEMVj0J++JXfra174mKV43ClCM8H5RfvASiXki/gHFiP16LBPvo5Xf\n", - "P/axj0mKvVUUIbbnVbF5xat2aqtP00545dhllHkGPo7aKKt9VzZHwWAOwHaJRcIWmWs4VmyCtqQN\n", - "8NQ5t9rKyiW61gVibuA8SuogfeOxRNRDQr2MzouYMVekmJuZo0pZc2vXrpXUZFBjSz73nnDCCZKa\n", - "rEKPwcKW6R+Om/PDhrEDxlxUWw6idSwZAyhQtD+KmCs3Xtm7awwgSuW4czjtgb1jD7Qb7cl72hs1\n", - "HHuhwjqxYvR/28r2bN/nOq4VjAeOm3Zvq4KnIpUkSZIkSdKRQV9rKbXa6WAwnJmZWfT9JkmSJEmS\n", - "tGVmZkbD4XDBNL5UpJIkSZIkSToytRipNoqUV+CufY7LPmr3RWYLtVmWLVsmqcmKop5T1/3VVuh2\n", - "iKsgngIVkf1ceumlkpo4BuIBaCfP6gLPynJ4Lk3cx5ve9KaR/RK7w36J7yA2CGhX4hE2b948sn+e\n", - "T/Ocn1iv3/zN35Qk/fEf//HI+fNKHAr7bZ1psWP/tO8FF1wwcn6TJrIX7P3000+X1NS/8pg94jSi\n", - "uBfOjxix8847b2R/Xl3Z15mqrZhP+2EvvL7whS9c8PyI6+hadyqKkXrjG9+oK664QlJjg7QR2U+s\n", - "8QaMccD2iPEg5sUrZr/61a+W1KzbiO0yxtkO8ZecM9sh/o0sK2rEMbaplk/dqNe85jWSYtuMYkG6\n", - "wn7+8A//UFJ/2VEONupzy6TA5i+88MJW+xu3fdnPP/zDP0hqsi19DGPbz33ucyVJV155paT51wzs\n", - "gxqF0f6mPZc93PYXkYpUkiRJkiRJR3aJrL3Fqnfk9XrwDsb1xshEQXnB6ywpXLDffvtJarwSV3zI\n", - "TEFJw9OnJktEpEQde+yxkhpv+vrrr1/we1FmCtlleNOc780337zg90teXpRp1TW7Dzj/pVbtGjWE\n", - "DJ0oe7Sk5HB+UdYg/eI1XRhv1HCh+rRXNMe+vA5bqS7buJlznnm1UK0jam1x7vzmiCOOkNTYNm2M\n", - "qoqixP9RPcnicZunDfg/tsRYJIOX7CPamt+hXDH30CeoyFF2F9AnzFVsZ9yxAaW5r6Rql2j7Oyqj\n", - "c1xkA9bSNSY4WuuuLW77tB9j2Wu6PeMZz5AkXXvttZKk0047TVKjWkeKVDJK2/Vo25KKVJIkSZIk\n", - "SUd2CUUKbw7vy+Mfxl3bCwWAu3y2z3pXbVfQjraPV4MyRXxGqc4QNS+iGhrEWbBeFnEcXStCuzdb\n", - "277UUmHdMGKiPvCBD0hq4kSIraJ2Cd407TyNTNJpgupBu2MPbfsPr4t4DtSRtlWiUXgYX9gpKg0K\n", - "GXZBTRheu64c3wfUKaLuDuoaqidzCbW2sLl169aNfI82o74Q2/HK4KjEvkYXyhBqHrXLUBzoK2Jd\n", - "UCpQsGqrw9MHHO9irZUG1GbDdvusQr8QzKGRjbWt1Vd7DUGxZLusY0k/UvutBPbHXB0pctdcc40k\n", - "6UUvepEk6eUvf7mk5lrw2c9+tmp/49I1rrcEsWpeP6qvWoTOpJQoSEUqSZIkSZKkI7uEIoWX6d5O\n", - "5EV4Jk4JPO2TTz5ZUuMV4mXhhfJ5bUwNd/PcdRNfwd29e53EOhEXgbdDvES0/hHeMHf54yoCHGfb\n", - "KrJUhUVR+dVf/VVJjTJFrNhHPvIRSY3iB480JQqiKs/RyuN40dgX3+N9235zsEvUGbaH6oF9oXzy\n", - "OXbdt/faBjzPW265ZcH/o4YSn8ixoxi5Ck2cX+TRUs2eWBUUIeamKLaGWB8yKsniom1RLlhjrARz\n", - "wGLH+7E22bhPBWphLqRyudM2likaY46rusyRbc/bxyZPQfzaxv4+8YlPSJJOOeUUSY1iQ+YzcA3r\n", - "aw7Fjic1ljkfrgmo3FEcbV+gRLPfvmIJU5FKkiRJkiTpyNQUqac+9amzigsxSXjCvo5S7XN3PHWU\n", - "nVp47oyHTYwPcQt/9md/Jin29kpr0aHUAMqWr8nnGTp4wdHafb4fYpSidZlqIQ6AWBtfU68EtXeo\n", - "sXPOOedIarLALrvsMkmNEtN2+9OGjCzPnuyKe7WMC+zYY/T4PnE72G/tGoKrVq2S1HixeLfE8uH1\n", - "4pXivREnwv5cAUO55f/TgBgZ4s5QDjjXSK3jc84Rzx6PnLFIGwEKCH2EwhFlotKnjFXmNpQotkNW\n", - "X0lhIKPX14gjNqsWX7OtlsVSooC5iVfiTVF2ahU86JqR3TbuEDzDtLSWItdCYqq4NjmM1XFjjBi7\n", - "jBfib/t+WoCdca1CYSwpUsw5bWF8ML7ZbypSSZIkSZIkU2ZqitQee+wx6wWV6s6UQBFC0Wr7XBcv\n", - "AS8Or8YzOvDM8UJRUvjc4e6X7/nz+9qMCP7P812/K+f48a7whlEs8FK6eo9tvRw/TuJOvDK9r2yO\n", - "Nz7pDItx6at6dERJHUD1wBt3NcK34/1Hf+DlgnvZ2C9VuF0hQ00hhhGiuleTguOUmiw7PqOtC73y\n", - "lAAAIABJREFUOFZUXzx4r8OER86YY+xG50SMEIoWthzNaez/c5/73Mh+OV7GqGcHOsx1qOj0Ncd7\n", - "zDHHSJof10aMkavck8qWmhS0N+3JXEK7eGYpRE8PukLWYq0a7DFZpZg2vo9ywnlTy43fc57jKiwo\n", - "USh8nl3XF1Typz/Wr19f9buuMVv8DvuPVvvoSipSSZIkSZIkHZmaIvWd73xnVqHhLrrr3TR34ygZ\n", - "xOjUgneGd8NzabxKXvFiPRsvqrzuMSYoRsRHnHTSSSOfs3+8G86D/+O9ovgA3ixeJe3K8XEceBul\n", - "mCuozQDCC2S79IdXWEe5oL2ooePP9z0jZakxaUUK78njKfASqc5Nu3n2I6AkeX/X9j/9yn6wS94v\n", - "VFFcmm839Dffx17Hrc8Gc7NUOTdiO3zdScYiah82SNsy9rFVPGay6PyYidXhe15vKAKFjONibKIA\n", - "lLLPsEHOg+8Tw8XxeIYw2YK+WkFbT5/tc7xdY42Y02qh/2hfbIrzQ6mhzpIrUj53jgvn7U8rIlAs\n", - "24JdokCiRmM3KI/jxpuSfcr2J61U0j9f+MIXOv3e10Dk/P110tmsqUglSZIkSZJ0ZGqKVGkNqS50\n", - "VQrIvvLn13ipeH1RhkUUP4HX6V4RmUR4L9xV47lHmQl4B64E4B2yPbxizwRqe1ce1VhBoaNd3Evn\n", - "vDdu3CipOT+OB6WEGjq0B9mNc2NeHongbbsdoBrQ3l5R3KEfvH+wI1eKHM8uRd2h/1A/iNtwBRTw\n", - "ClED3C7HZe744ljc1jkmFAEyL1GkaBNil3zb0eoD/I62QKGojfNjbFDfyhWmSOHAFuh7xiptiu3w\n", - "f/qMGDCy/TxD2oniOLEdFBL22/apQm0FcsCWaG/2z3lh85FN97Vmnh9P7XZR4GoreXtskmd50j99\n", - "V7Tva2xGuIKHfdGvpWxG8PbBLplraN9J17ZLRSpJkiRJkqQju0Rl80nDXStKCDVoiGUqZdC4N4B3\n", - "iPfrMSx4S2RNUV+JbEG8FVcMIsWN5+R4zyhUkVdWC9v1OlgodXgT7AcVgFcyI/g+61PhLdAueFnE\n", - "hE06Bmmp4c/5weMdvNo2dod36tuJat1g56VaOOzPs1PZPvt3r9C9c+wDbxxFs6/1tRZSf1xJ8crf\n", - "jG3ivrrWBeJcvbo85xop716TizZBKeL4brzxxgV/z/48a4s+o688c7ZtHR7mIPfoUc7ou9oK4U7b\n", - "3/n5EROFDXBc2KbHbkUZrm1ZuXKlpPZKB/biMXW1CgxPP4hhYv99r3E46Tk4UvDa2qcrZ9gTr4tV\n", - "5ywVqSRJkiRJko48ohUpvAKP4cGb5O4Y74f/UzsE79EVGzz0Uu0NvCcUGq99Uns3jTfL+RCnMK6n\n", - "H3kNfE47eW0WvATOj/gPnn8TF3H33XdLkrZs2SKpe9XaXZ1Spo0rNyg87tVix14fysGuau2D7RKP\n", - "ggpCDSUnqlGEl4sX3VdG0Nx6W4yFKG6RsUF1dxSXUswmMVWuXKE6o976fiJQvWlb+oS5pFTviLkl\n", - "ysBEoWHOYsy1jWWiPaNMYI67a9Ze1/pExMKdeOKJkpp29HVKXVnpK0aK2LK2sUn0F2O47VMD7A21\n", - "vxTjtqsxbh0s5ibscbFWzUhFKkmSJEmSpCMPC0XKPXZf6wvvDq+RDBa8Ca9lgjfrz7/xyIn5wbuI\n", - "vN9SlhxxC3gXXSuQex2qvjIio+fknBdeH+3KfukP2hcvkDgAvA5iwmjnSWdWLBW87lgUn4PS4l6V\n", - "1wvDq62N8ynFY3B8KLH0i8dkdV3LcZI1XUoKAQoIWXjr1q2r2m60rqLbOupgqbo7cwcKlFceH7fe\n", - "ETZBXxOfiCJVq8xQn4l2wyZR1Jhb+47RqcUzQmnPaO7qK2aG9mirqo5bUZu50+MCfRWOXZVxj59r\n", - "M+OJuSzKuu2LVKSSJEmSJEk68rBQpMhgwBvhPXC3jheIEuRr9LFOFxkzKD14oygueBWluAAyB7g7\n", - "9tgQFJ1NmzbtdDt8j+34c2Tee7wEXlrfCoDXuIm8dbx0+oX2wEvuu6ZLX/Tl3WFXrGyOAkftolpK\n", - "Xm/U/hG+AjpeG/2EnaJi+FqSqBIouR4/s9jMja2rVWPJxGUsd81wRZWjDxhz2D7qN7bE/mhDqv57\n", - "rFHbmKMoS439cL5tt8vvfW7xWmfTUkKuuuoqSc0Y6XstvYjaLDvHM7g5Xub4Uv0mV6KIP122bJmk\n", - "/rISYVJr7U0Kf0rStR5WFP8bkYpUkiRJkiRJR6amSB122GGz3g7eIHeRZCKU7ia5C8fD5nk5ihJ4\n", - "7A1313hneOKefdcVvFJqnLAfFCXO25UlvEqyAtkO3+P83DvAWyQrjrtpFAfiF2rXWCMbkf4oxXsA\n", - "d+8oGLxn3TPiFvCaUDzwbjnOuVlYi4HHIJEJRMV1r4OEAoP6Qf+S2cV5+PmxH/fevV5YrZeKGkCF\n", - "eI7H+8tr9VADh+1iF3j1vh4Ydoia4soviifqDHY4KVD0sLNx4onGrbXm2VeR7Xq1ftq6VNk7WpvN\n", - "a83RF8wh9ClzB2PP1cUSrDkYMa24Rmza4wh5qoD6u9TwdVGJu6VffC5g7btISaR/aYdDDjmk1+Nt\n", - "q0TRL9gj8co+Tpi7UHL9KdFxxx0nqbmG0r+uvjM+iA/llTmB9mbO4Pc+p/p6r7R3rcKXilSSJEmS\n", - "JElHBtN49jkYDIYzMzOLvt8kSZIkSZK2zMzMaDgcLliKPxWpJEmSJEmSjhRjpAaDwV9Keq6kfxkO\n", - "h6t3fPYkSR+SdJCkL0v6xeFw+B87/neBpF+V9GNJvzkcDq9ZaLvvfOc752UwdMUzC4jt+a3f+i1J\n", - "0sUXXyypnGnB81m258+leU7Lc1diXXju+4Y3vEHSQ3euC+ExUsBaexx/aW0/nv9ecMEFkprzI1aG\n", - "diV2xWOjeG7N+fF9znvvvfeW1Dx/Jibmda97naQmVobjJHaI2LTbbrtNUhPr9YxnPGPkONgf7cAa\n", - "e17pnerT11zzkAl5ZpRXsaZ/eE5O/InXCeO8fD2m8847T1Lcf87JJ58sqcm69DiUUlYi++GVDBza\n", - "gfPCbsDth5o+POfHHj1Wyvc3abrub82aNZKa8Yp90F9RXNPMzIwuu+wySU12EzZCzIbH4zGWiU3h\n", - "d/QhbehxYa94xSskSX/0R38kqbF1jpHve30lvscYIwYJG6UODn2MDf3yL/+yJOmWW26R1Ky3yP5O\n", - "OeUUSc0qAYz93/iN35DUjJmrr75akrR161ZJTQwOx3P00UdLasbeYtvKFVdcIalpN2KwGFscJ3Mm\n", - "/ee1+JjbsCFe+Zz9/fmf/7mkZm7BDsi4JU4S2J/H2HicHu1PvOBv//ZvS5Le8Y53SGrmKvqX42Ju\n", - "pnJ7LbQL58m1yDPNsTPs++abb5bU2MG5554rqbFT7I1rI3M8cw77Iz60ZC/ERvF7j0smrpS6T1E2\n", - "KPt53/veJ2l+LB/bH7dSOnb2kpe8ZKffq1Gk3ifpOfbZ6yV9cjgcrpB03Y73GgwGKyX9H0krd/zm\n", - "ksFgkKpXkiRJkiQPS4qK1HA4vGkwGCyzj58n6dQdf79f0g166Gbq+ZL+Zjgc/lDSlweDwb2Sjpd0\n", - "s2+3LzVqxzGOvHdPvLbmR6kWCt5OaXvctXv9pGOPPVZSo+TgBZEZEGUNuuJ2wAEHjPyfzA+8KLyc\n", - "qP4QXpXvj+PwWjZeS4PaN/fee6+kpt3I9sPLYS09vOxPf/rTkhov86yzzpLUrNm2ceNGSU374RXj\n", - "7XlmC3jVWrw6r0DPcbJ92tXrbOFFlvqZ9nrzm98sqbE7vNj3v//9C24fLwc4n8i+OB/UFdQI+uXw\n", - "ww+X1PR7tAbetKAfeUV5o19uuukmSY1X/exnP1tSM0fQv9g37YV3i51JcbV1xho2gHpHX7stMDa8\n", - "77x6PP93xSOq9M2Y4dUhuwjFw+ck1EnO3dXgyy+/fOQ48Mg5vg996EOS5itxjMlSFuGkQanBNjzj\n", - "1FdvYE5l7Hi70j6MIc/6cuUHtdOVKIgyaKNafT6WS5nobZUoiOqnffjDH5Y0/3x8NRDAfqL/O664\n", - "lcDOvL14iuRrT5aIauiNq0RBKWsVuqpF+wyHQ67C35BEvYF9JT0453sPStqv4z6SJEmSJEmWNGPX\n", - "kRoOh8PBYLCz1L9doyRqBbWxLygOrvjgJXIXz3P/O++8c8Ht4KFzd85dtj+P91gu3kfeBN6Ge59U\n", - "4CYmBSXAt4P3gzfgsU2A937JJZeMHBdeJF60q5OuKKIy4K3hZXrsE+DVc1wcJ94t54cqQTuDVw8G\n", - "V6o4Pz7n9Y477pAUe6muoOIFez0nwN6oqeKxeUAcRN+qAioICl/bSuoeC8fxcbzYGf/n/Ol32pEa\n", - "QfS7153bGZGHiw0wtkq15FwN5T19SmyGKyoca2n72D7bc0WDMUYb4MGjULntXHTRRZKauQab4XfH\n", - "HHPMyHnMrRI/SaLVA1xJKGWVo0ZGYxbbi87L10asVWKwG7YbXRNQ6SN8TintnzFY+0TH65fB+vXr\n", - "JTVj2VX92jUEvY5YaTUNnp7wylMJrpmo6cSdlvqf2Kxa5WhSdFWkvjEYDJ4iSYPB4KmS0CO/Kmnu\n", - "c6f9d3yWJEmSJEmyy3H99dfv9P9dFamPS/oVSRfteL1yzud/PRgMLtZDj/SWS9qw0Ab23HPP0ItY\n", - "qqxevVpSk8kQgZfH3TqeNUoO3ikeNp+790TmBO3EdjxuALxqsWd7Ad4CcQPc1ePlsv3IKyHWBQUh\n", - "yg4EV8xQooj5ca/UvccoA4d1zJzPfOYzC35Oth7eI/vFy4MoK8zbjf7y9b7oz8g7i+IZXPHk+Pg+\n", - "7Uu/Yj8cbxSXMy7YA2pLW0UKe8c7pt08XoR+pio17YZ6gWpC+3h801xK6yXSV7UVxsE9cNqescAY\n", - "8u+hJq5bt05S01dkuAIqZ+TRf+lLX5LUxFlii6weEKnH/5+9N4+17KrOfb8lckmL9PR0Fcg1Drgt\n", - "u9yUm7JdtjG24UIIoXGkEHwheoQ4QAIJGBkSSILfgdCJToGrBEJCnhMSEEgI0xiDyw1l3JSbsss2\n", - "bqCuYhK4Ckn+uUprKVj7/WH/ap39nTPOnHOttc8+jsdPso7rnL3Xmmt2a45vjjGmQ3noU4wprsfc\n", - "U0t01l8EfR2lDFp9W0rtRvv76QXg6rfXH30LBY8+SP8qlbdUH644RnMuCk7rGHf/Vurd/UdL0YLM\n", - "1ZTPoxKBMe79lzmLdxn3QYGiP6NAcV33SXQ2S4k6//zztWfPnvDvNekPPq1HHMv/a9d135V0qaT3\n", - "Svps13UX6dH0B5I0m83u67rus5Luk/QDSa+dPVZOO0ySJEmSJGmkJmrvfwR/+u/B598t6d2l626m\n", - "GlWylkrWK7Aq54w/31cG9u2xdtzyZrWNlYNSgnWFFUmkBeXGyo1OeMdawEqOzsHCijrmmGMk9YoB\n", - "1g5tE+VMofxYN1jhkdXnYIXcdtttc+UGP9/o2GOPldTXC+WKfKQc6pd9eNoNa8eVu+i5sbKwpviJ\n", - "NUVUGedEoUhdc801c9dxfwruj1LnZ9cBSg39GWt20bYK/YHcQ6342Ys8X9Rf3JplXLp6wHNTH1Jf\n", - "l9yLMYWy4Ke6M8ZqT4mP1GCIFBIiWcEjbyFSooCIWcYqfbg2ygncTxLLPvKpKUG9lyKGwZUooH3G\n", - "nrfJnOYKSiu1ykjEVNHpQ9VmHzPUK9GN+BfSfiiRzGm8Q5gDmEt5B7l/aaTmM958nDGHucpOvUXR\n", - "q1uNzPGUJEmSJEkykNFRe48FPDID8PlASYhyuwCrY/LgYCV4tBrZhX2/GasIHyCsAz7HKhzli9U/\n", - "VgHWnlvFfhK8n4zu8Dn23bG6sOypJ6wLtyLYV+f33IestCXrCWWD+1IOrCMvN8/P57GCUDqwoqhf\n", - "lAqUN7eOaW+s8dWKhtTXf61KgVLG/c444wxJvXV10003SVqbNRu8H0RWHf3YI83ox9Qj7YOyN9Sa\n", - "drAK8ZGLok0dMu6jEqC01UTbrQY1hkgons/rU1rb5tQZbcp3qVOPmuJnFBE7lqEKA8/hpy+0Kvw3\n", - "33yzJGnHjh2S1kYjtlLyq6xlqvoF5oRWRcqjGPlJv2DMlqLomMMXDXOa+6l6lCjtw1zDXMmcx1iK\n", - "djPcf9PV9eid40ot45D7c2IA7c8csdWVKEhFKkmSJEmSZCCPC0WKVa/7QvHv0n68n2XGqhkrxxUi\n", - "v57fF6vGo7KA1Tvfc98oX6X777FOI38NPudZkrHOXflw6zmy0lzZKYE1gzWCsueKDPd3nzGiDX0/\n", - "P4J6IUIFRYR8RjA0lw71iiJJlCfnl5G53f0KoJRJPfIrob2wJqmvoX4hJVAGUQJLSi7qD/3DVZ9a\n", - "PIu4q0pSPJa9T2GBo5YxRzBmoroeqpjQ5tyHcuIT1Jr7i+vws+S75XB/VE3aYqi/XVRfrdSeQoFi\n", - "hP8kCgtzhO8+RESRta7GoyzRb6hv/BpR2Sk/fZ05CvxdUPLfpd/4+a7uP8lcXjumeC7KQ7uvPiWg\n", - "Bu8vpTnYof/t379f0lp/4alwFZtxR72Tt2ooqUglSZIkSZIM5HGhSPnqm1W9WwH4cLg1g9WBUkGE\n", - "C993KxgrJ8p+WxuJwOfc98nhOp69OILroFzge8LzcF+sIfefwCrj9+6n4WcDRlBvWFv4+Hi7sM/P\n", - "/j7l5t+1VhDWKu3hUXjgOWOoz9pcOfgO0Y/wW+A6U/mB8ByRn8zYyCeHdsVqJKdRCdqX7zM+hvqP\n", - "YHW3Rm+uhjan79A2tXmJWsHypswoKfRh1MoSUd8Z2qfoozz3VGeUlUA99fqsVcTYJUBp4PzJVlyJ\n", - "8szijClXs4m65PNRTjSfs+n7PCf14L5N+OEyRnh38XlXpGhH91GLzg3lc1yP5yi9O/zvY33ifO6l\n", - "vkp5rVqhHsk9iG/bVLn3UpFKkiRJkiQZyONCkWL1H+VfwqKNovtQqrAKPEIjysyN9cFPVtsoU6Vo\n", - "Klb7WF2uUPn9eD7Pvuvl477s6/Nv8ix51uFSbhCeD6sW3yDOnItA8cKPACvErZzIamn1y8Aq8/xf\n", - "bgXzXF5/+CFE0XzUG+0Q+Q61ZgaPwCpGQcPPYFEcfvjhknoVx0+Uj3D/DurV84XVgl8TCmaUz60G\n", - "+mzJEo+Ico45PDtjbahvUwSZ1VthrmAOZAwuGvrQUIWPOYHow6H+gD7Gfa71PGQoRfQ9/FujdiTj\n", - "PKBqc1/6D3MZ9cJ9UN6Y43kXoQbzLuI6rs57VCrlpN2Zg4f6JI1VpByPvJ4K5maUKZS6qXyxUpFK\n", - "kiRJkiQZyONCkfK8TYBygGUc+QdgdWBNuPXjq2f+zb6z52nCaiBqDGsI3yP3dfF8T9H9sA7cFyU6\n", - "mZxyoLRgBWHF+DlgQDn5iQ8Z1mytzwpnEpIDxaMAwZ93bLbiknqA9eb9pfQ9niPyvYLW6MYI2nlo\n", - "NupWUD1acw7xecYZ+bXoJ6gAtXmlyMjPCQND/GPos1yDSMuSyokiACgG9JVaXyXGOGPIcf88oA49\n", - "1xtE+YQiyP3GHIOaHBHNUa1M5SdYG50X4UqS5zdiboyi7HwOd3zu9bmTMeDnjjI3e7Qg+P08XxS4\n", - "4uJKKM83VNGMznMdCuWd2r8TnyjGL+MmqrdWUpFKkiRJkiQZyONCkYpWt1gVrEojRaqUJ8fx/WoU\n", - "Fqw4FA+silKUG+UiX5JbxZ4Dp9bfA6sXq9qjq/zkcC8Pygv77PjsRAqYQ73cc889kvrnG+o7U4Ln\n", - "5LloDyKoAKvefev4vEd6ofxh9fB7IkS4Hkqat99Q6Ee16sNYeA7P5F/C6xF/BdqDeiopUvRPxjPR\n", - "syh/hx122EHFwM9+o6/RRvRZ+kKksnkkr/dNlBzGMn5jJd+R0hl/0Rg+88wzJfVjjXJxf9omyuoP\n", - "qNvUC3WPKrxt27Z1v7eZZ6RuBq6M+TuAfuR+fh4pXQv1h28T9e3KEQop/ZfdAtqz9rQCcvT55z3v\n", - "1FAFqPV0ghKML3Y3/LQN5oxWON/VTwS49dZbhxd2FalIJUmSJEmSDORxoUiVWFTuFM8azOrarRjP\n", - "W4R1gB8H0VLke3IrFouc72PdYC1HChFKBtYJ9y1FTFx77bWSegUJsKJqrdavfOUrknrrPIqgQD3w\n", - "DPDu31Aqt7czfgdu5WCNH3bYYZL6esSfgfLSHvz0aLxzzz137vuUf6rIqKlyrJTATwPrttWfguhQ\n", - "t35R1Gqj/1ACiU6kPqn/M84446AigwVPn0JNow3JZk+fjfqO++D4uX6MrSiPj0NfRs31KKuSDxJK\n", - "xp49eza8Twnq/utf//rc7/fu3StJWllZGXX9rQLKG5Ge9957b9P3UQZpN8YC7VPym8QHDTyfU9Tv\n", - "mDN4Z3j+qVoi9Zu5cGx0nCtZKGzMFZSfcUL/jfxbiRz3dxLXHVpeFCl+Tu3blYpUkiRJkiTJQB4X\n", - "ilTJB8mz2UagEKH8sMrG6oFvf/vbc/9GOYh8jqLzpfg9+7hYR+4/gdWBgoJVixUTZQxHGePzPD+f\n", - "c98f8Ky6UOsbBVgHjkftoS64IjXWmsKqpH7PPvtsSb3vDe2IiuFqRslP4ctf/rKkPk8W/YD6/JVf\n", - "+ZVR5d8seM4oitPx9rv88ssljT+PDfUGn8X1fBdRoMhY7Cqvny7f2od8rJLDiuszF1BWt9i9DwMW\n", - "PBGJ9E2y5IP/e9H4WW9EWOLXRn2gxkZnlqHMHHfccZLW+ikCcyx+q6j1fK412g8Fieu2qrj4QqGq\n", - "8rOWaK6E6Hnov/xs9dMFFEaHfj/1bsz27dsl9bsVnnMxwvN3EYk71RmOztRRgalIJUmSJEmSDKSb\n", - "OoNo1U27bvafZQ8+SZIkSZL/3KysrGg2m62bwj4VqSRJkiRJkoEszUdqZWXl4P41qljkKwRR1l58\n", - "Vzxj9Bvf+EZJ0i233DL3dyJv8GN45jOfKan3d/jSl74kSdqxY4ckaefOnXPlY/+WaCOyI+Pf4Gob\n", - "PlpEjuCDA/hVEJkQ+VE43Oe9732vpL4eazN+4/eAT0tU/5Trd37nd+buu2i4z8c//nFJ9WfU1Z5/\n", - "BkTtveENb5AkffKTn5TUR6fRT/GXiPI2Rb54+IPg64U/wPOf/3xJcX2+6EUvktT7ruFzBa95zWsk\n", - "9b5c11133brXIefQRRddtOH9pob7tN4Pnz9+ls7Sw+fs9a9//Zp7eSbqofiZbNzn/e9//9z1fez9\n", - "6q/+qqT+3EnPW+M+Qc7qZ1t93yi6D58mfJKY+4CxTh/Ehwc/Pua0Sy+9dO5+i8b7Cn6d+AhNxUte\n", - "8hJJva/WVh8Li74f78JW/1bAh+2SSy6RJP3hH/6hpH5OpX+WfMWIouNdw7uZfk40H75NF154oaTN\n", - "r8+IVKSSJEmSJEkGstSoPRQfrD1WrVGEQqQEEG3FqtbzG1155ZUbluO2226T1GdpRVHAGqJcKBwe\n", - "fcfnUKQcruflgpISV+L444+X1K/WseBLikytYuNRgiiAU52cXYLIq9pzvmqfC6LIFdqtNtIn8jdE\n", - "xSDXUG1mcKLl/LooZKgPX/jCFza8zqIiX1qJ8oE5z372syX1SlykSBHptrp/ou4ypqjrSJFC9cIC\n", - "xjJ3BYo+72O1NAaw2KPzFVELI0UqinqKxgB1G9UxdeoKQa3aWwIlAmWB52pVmFDv/fPRGYQobX6u\n", - "qqvEU2Vmpz25fu1pEluNoUoU+Nzi70jPERcpxLSXR9MxLrlOdKbhsklFKkmSJEmSZCBLVaSuv/76\n", - "Sa6DLwurYaygCy64oOr7WBNu+aNwsbrG+sQqZd+2lkVHSGLdcp8oi69njQUybmNV4gsW+fxsFpST\n", - "dop8kbBK+T1qgytOWLWoF+7XgnI4tZVJ/6n1YUORImcPoMzhM1XKDD6039EfUOTG+hu5ShL5B6FI\n", - "R8rikUceKalXH8hOLrUrRuCWuVu+0Vl8Je644w5JazOYU5ebPZZqc+a14v6r+AMyl/gpBCUihS4a\n", - "kzyPz2m0G/U/Vv3nOXbt2iWpz+vlGfAfr/BuYe71uQl/4tq8WKjvKMtbVflLRSpJkiRJkmQg/yky\n", - "m5NpujZLK5EKWPaRtYQFHe33EomDj1JEtK/fivttAPv+PL9b4ViHWPKUhzPK8EHheyXFYaxV10pk\n", - "nTooLzxfZO3TDpHP3VTtFVG7z49fCf0TNYF+WHtGXe1J8Q6Kz0knnTT376lOTI/6WZQd21nPf4ho\n", - "tNpT6aM29rHGdaM+E3H//fdL6tU9IkpRQz2qrsRZZ50lqVdeKI9HAjPHUccoMlMrUUQ8f+QjH5Ek\n", - "3X777ZL6jNp/+qd/uuH3ozPPpppjaF8UjVYfG/z6UFLweWOuTCVqHj9f1v1aUZiIRi1lPud6zMl+\n", - "LupWIRWpJEmSJEmSgfynUKRazwvCKoQowsXzMpFrxfNeRVYJVhCWPNZQq1XI9/GB8jPqUCYinyis\n", - "V6wqVvcoeYAVHkXEbHVoF6zv2nxcztjcKiVozxKoCfz0iKRaULacUvQlvodEdEXXGcrQfoV/ET9X\n", - "l+voo4+e+xt9wf0bsZT9HEWPQmIMb9u2be46EPkbAtc7/fTTJfWWOH5nrdFyKFBu+TvMWfiqUO6o\n", - "nDxH5E+HgkZfZGxQ935+JPUWKVKeWy36+1goB3N+q68WkeXM2fhPRueEPt6hfiPllt/j98k7MVLN\n", - "3TdxrALIeOFdzhw3lsfGGzJJkiRJkmQLslRFCoWklLm4FvZPfRXr+7Ge2bwE+Wr4HqtiVtNuPbHq\n", - "RUEi+ojft/qsYA1SX55bpeS3QXnJl0V5icqDKDJiar+KyNcrojVT+djvRzl/pqI2r5MrmEMVqciv\n", - "oDaijfvX+qpFeLsPjYSjPfFbcv+g1ddGaWLsoaTgs4EFzRjjc4wBxg5j1vtsqS24D9dBBR6qaGBB\n", - "l9qOclJXKElReUvP4ZHL8LnPfU5SP5egUEVRWYwtyhfN/cy13K92rnYYM9y3dS7juVHs0idqY6gv\n", - "V0r9FA1+4jMVvRPpt8yZY3dHaP+p8qZBKlJJkiRJkiQDWaoixWq0VaGIwIpxq8MVI6yFQHXZAAAg\n", - "AElEQVRCfu/RQ4cffrikPtIGawS/BhQg/BDc54rrYuWhhPDv1ufF14fPR5EuJf76r/9aktaccQj4\n", - "jwy9fi2t7VyrJKEAkuOF7xHBRZRliVofJvobn5/aWqU9sMJa/TsAtcXBT2Bq6yzC+z3jtNUnjXFE\n", - "tOxqhdbP03RfKZ8buGfp3rRtazZ/nhnVrHTmWInW+9P3x541WPJDJZ9SidpyMLcOVaLAM9y3jiHm\n", - "XsbK1Op8LVHuvK0G/d0jqD0HHXNz6V3gGemJmhzL1O2YilSSJEmSJMlAlqZI/dAP/dBgJSqKNmIf\n", - "1X1QiNAB7osV6tYK1hfXIWsvn+PfRMu5fwEKAuVkNc79eF4+57k0ovrAKh5qpZXyInnm8KlYVDZl\n", - "hxPvUQjJk9XqW1Xrg+T9oBbvjxH0Q8o/NB+UqwD0f3wHUXRq82ZhFbae4ef+SiifHglWApWAel89\n", - "flAymBvoy9xjaB9E2YhOP4j6DH2xts2nZqwSBWP9FFuJ/OdQGqnv2vakX9SeKgCMDVc4p9pFqZ0b\n", - "PUP7VoXdDsqJksTc4pG/JV9B1HTmmkVFUo8lFakkSZIkSZKBLE2R+uEf/uHB1mFk/dVmw3UrAh8X\n", - "V6QAS9rPZsMa9VwoWG+cJYZViKKEJc19aq0a7j82qiyyKqPzqoZC/VAfQ/M61YJ1g0KB38ZRRx0l\n", - "qT8bcb0or9WguNCfvD7oJ9Rjawb0qL25L9Ycvnzbt2+XtPbsu1rcLwdVZWj5UbJaFSnvtx79WgtW\n", - "Kd/H6pX6NkO9w5IfqwhxL7eIS5GUlGdoRmavs2X5ykw1J4yFvspcSLuUlB3aoVVRI0rSdyWY21p9\n", - "1pyovChgPNdmKYFjYU7gHcnz8W/eiVDqx7Qb7V3rv7rZpCKVJEmSJEkykKUpUg8//PBgK6fVgl1t\n", - "sUq9lccqmdU+q2VXttynCmUF68gjCbA+eT6+x2raV9esyj06z8vL6n5o/h3gOVE2vH6mgudfdBQg\n", - "YC2eeuqpktbWZ+3+uvvVOLRXa0Z9iKxL+oWfE0d/oh/WKlLUx2mnnTb3e/pRq28XDP0e/Zh+wU+s\n", - "/Vq1BYUYJXj1PIJCQdvT9/jOUDhzrXWs8CxT+bdt9agtotvo40PPzKNNvU/Qd5nDqNfa3Q1yAtbC\n", - "fRmTHgW6KJireE7qoVUF3myoLxQ15l7GDbsGJ554oqR+ziv1E8YBavhWIxWpJEmSJEmSgSxNkXro\n", - "oYcOnlu0aErKgVuNvt/OPji+NW4lesZnrFd8XFAQOPfKz7grwf3uueeeuXK24idoY+VMlVk+YrOy\n", - "AbtPFnmlUA5rc/jwuakinhyPXMGKf+Yznympb2d+/8IXvlCSdN9990mS9u3bJ2ltFBztyXlzWN/k\n", - "RXOGKsKtkU9E8mClAv2RemYcRv4uqAEobXxvdbZjH+uMRfzkUIGpyxL0IVROr7OhfplT4TnsXAFo\n", - "JbL4Ud1LcykKQ6sfn8NzefSXZ6hnTqVd/Lnpc5GPTi1E7zHHtPoVDgXfPp57sxSpoeeN0v6MN+r9\n", - "jjvukLR2Lq7192XMbxVfPScVqSRJkiRJkoEsNbP5ZuWEcGUByx2fE6wUVtPs72MNHXnkkXOfx/8C\n", - "a/Wkk06auz4+JB4dNlTh4ARyyj30nK6f/umfHvS9xwpYN1/72tck9dY5ClykpHgkSKviMpYzzzxT\n", - "Um+F8xwoNNdee60k6Yorrpj7HuqBK2233367pF6NQcF81rOeNaqcWMdu9VMOyu1qBKqBR22iOLnC\n", - "Gvm7MH74/N69e+eu+6IXveigvxVjlUhN2hhlpZT/ic+jRhO9NVQNnsqnhrkIxYBn9+z0nMtJmzAn\n", - "lXxtPKcdlJQo1MUDBw5IGq/AkbWe0whoB/qG93nmcPom5SHilbl4qF8jbLYiQvsuSh2PGJpLkLFO\n", - "/Xs+N/A5gnHL+ZmcwuH+pEP9MxdNKlJJkiRJkiQDWaoi5aAIsYqttWrIaM2ql4zWEb7KxZqLzhyL\n", - "9vs54Zx932OOOUZSb816uXg+9osj+Pxhhx0mqd9v9pPkoTbrMNYCn0fxqI2cWBbkT6I/0D+oZ/wH\n", - "sBb5PdYN30M5cavb1YLTTz997vd8nvriJ/WFtUg7uUKD9Uz5jj322Ln7YcXzXPiscR1+4idA+2HF\n", - "uXXO52lvf176Jb5T3J/+gxXs9eV+Ifhg+ZmZrlhFmdlL45v7ez1vpCrgV+aZrDkfkzrctm3b3N+x\n", - "dHkWno02RI1zn46dO3dK0kF/T/cloi4i/0jakO9Rh9QZyhJwn5LCxVyGGks5hipFKGHuv0Z90SeZ\n", - "E6kv5hbmZH7PGPVdCfwEUfmZe3neKFIaBcvzRVHvnt8IjjvuuLnno33oD4xJrhep1dQzcwPPN9RX\n", - "DcWR/sq/eZ5FKzNDd4vwJaSdKCcKMO80dnNoX/w6gbGOkrjo/FEeQR/1s4hUpJIkSZIkSQbSLSMv\n", - "Sdd1s5WVlU2/b5IkSZIkSSsrKyuazWbrOo+lIpUkSZIkSTKQpflIvf3tbz+4nwrso+PPUAv77vhU\n", - "sL/7hje8QZL0J3/yJ5J6Xw/8HNj/Zp8f/wH2w0vZcvFlIjrqda97naRHVq6rYX+bvD/kJImu5yoh\n", - "/gf4CrF/e9FFF0mS3ve+90lafBQkz7VZaqLfj3b2DPTuA4SfDPVFxBX+J/gZeHtQn5v9fG9/+9vn\n", - "ykf74x/h7Ypfjp+sjv8Kz+s+c8tqv0984hOS4jxe+LJ5RneH/FvR+FlZWal+NuaAUjQUbcLcQJu8\n", - "9a1vPXjPzYD7vOMd75BUnpvo4z//8z8vSbrqqqskxXWMrxA+Tv58iz7jb9lzC+Dnii8PPmn33nvv\n", - "3OeYY/B7jKId8f152cteNnc/fIbof94PX/nKV0rqI5Ddf5e5EF8++gP+la31ecEFF0iSLr/88qrP\n", - "O9H9asfZ0Pv9xV/8haQ+ys/BF8vnHuqPesNHKopmLdVjKlJJkiRJkiQDWZoi9bSnPU3nn3++pF6J\n", - "8sgOj3hg1YgChBXAqp8opK985Stz34usMK6HIlWrRAFKUSnaDUWBn1i1HgESWXuUCyuIn379oaDM\n", - "jD3JHEonsQ+F+n7qU58qqW9/twaxEok+8/xFKFooVmOjFXft2jX3b/Ib1YL1S7+m3ogE4npYSx4d\n", - "iDWG9cd1yN6NOrEsShnlS0oURErUehB5iSWP6kUdkeeGqBxUPeoeJYo6p45POOGE6jIsAuYO5ooo\n", - "r9GrX/1qSX3dl+rYFReHOZL7+2kOU0HfpZ0Y24wF5jpvJ37SriiIHn1VygzOXMEYi6IcPYI4wjPP\n", - "QykfFX8nh6ArUvydfsnzOyhWpdM0xp5FGVGrRKHQsXsTKXxO9Dnqg+dHpWfc+NqC35fyy0WkIpUk\n", - "SZIkSTKQpSlS3/nOd/Tnf/7nknplqOQbxWqV1SSrRvLToGi50hOtMslNgnXF50qw2sUaqf0eUD5y\n", - "rHA9rK5ov/fb3/72oPuVmEqJgqmVKMBKxXqK8gmhiEVWGMoGis7Q86tQTp/3vOdJ6q2vu+66S1J9\n", - "DhmUMfoDVjdWElYt5bzuuusk9dY7VjT5obgemey9PdwnCcVq0WcikmXcM/4D/d99Faln/HRK+dKk\n", - "tYqJn7WGhU8bYbli4XIP6mSzTmEowRzIHMDc50rNpz71KUm9Je7wvFyvdFpCqW/g78o5kNCao87V\n", - "YxQwFCXaizmAXQjyETF3uk9X7f0ZU14e+iB9M8qt5qw+B7IFxvi5554rqffdeuCBByT1YwmfqEg5\n", - "KylRvHv37NlTVS73GZwK3s2tSlA0LvGN4txS8pNFz0kesW9961tN94dUpJIkSZIkSQay1MzmWBG1\n", - "+7NYI644YeGyOndKq1yui9Xj+/RYt1juroTgP1ALVoqflM31+TsRNM7UClKJE088cdT3sXr8/KVW\n", - "aEcUpejcM6zHSOHEykUBGZo1l35z2WWXSer7S6REYc2hhEHk40V9UU7PuuzZjYm8oj+ikLki5dbk\n", - "Zp1kHylRQLnI/M5zEHHWAs9MHbivDG2Ahc+cgoWLWs33+XdtpmMHBQn/RuaU1rFAn6YvcV1v40iJ\n", - "AspRUvdKCgQZyIlY/vjHPy6p9+tr9T9kDJF5/v7775fUz4WMCcrF9d1fkHcKn3d1N8Kz51OvKFzM\n", - "zbXRizXq6Xowh+DvS6TuU57ylLnr+juPuaIW3kGl/jKURUXtgWf4Z87wkwVQYF/+8pdLkl784hdL\n", - "kt797ndLkvbv37/u9WvrMxWpJEmSJEmSgSxNkfrxH//xg5YnCgNKgu+TQ+T7RBQX+/i11oL7GmF9\n", - "YOVgxXK9aFXdul/MffgeJ5zXKjaueLBqjnyG3BrGqsEqLvlH4HMzFPL/UI9DI12wNrBC8O9wX6FS\n", - "lBhWGM/FdYDfu58F555xfeo7UkId2smjLvFV4n70c+qh1j+HfoXChZXJeW7gStZmK5wRtAP12RKl\n", - "57hPCW3ovi20KUoPygdjBKUDlXDo2WkeZTUU96dz1Zoz5/y8yS996UuS+r7AXOM+IT72SooUc8vJ\n", - "J58897M1ctXLjyLlfnF+ziZzAWMq8qNjDvKzEh1UU8/NRn3T/pEa7rT6X3IfovUY01yHOQQfoNtv\n", - "v33u+7R3LbRrKVptqB9lSZHivuQ7u/baayXVR4V6P4jahfxYvEPYBfrmN7+54fU2OtdzNalIJUmS\n", - "JEmSDGRpitTDDz98cNWPdYQi5VYQViF/Z5WIvwKrZVbjJUUCuD9Wmp9I7deJrIuh0U5Y3EQMYDWX\n", - "TvZ2q7i0asbKYPVPPWJ9skpnNc+qnPrxHCat1OYJArcmsdJQHrES/UR2+k3JmuG52Tf3fXBXIbgu\n", - "1qFHjdZCP6W/e3n4O+3A/dwPIIL+irVFFF+UY2azod/RXu7XgwqE9eoqCO1dU++0EddCyUBt5tqU\n", - "yTNFY0nTFozxReVPqqWU3R0Lm7kRlY8+h/IW+S5F+XUiyPyN8heps0SQMpZdCQB8VSKfFWCOop1Q\n", - "1aPyUl8llZN6o28ytzLnMDe4UhTRqkjRLtdff/265cK/E8XV8XeRK038m+hV2i+qN96NjM3Wd11t\n", - "vqzdu3dLalfHfW6McjTyLmM8R5nK8a2rnXMhFakkSZIkSZKBLE2Reuihhw7uR/tqGWsRS519c6wC\n", - "LG8sVDI4Y63VRiBwH1av+NpgnUbKlvvODM2bhLXMqp9/l/wShioM1BM/I3g+fkYKme8nLwraA+ua\n", - "56fd3NouEZ1bBSiSHk03NOstYM1FGe393C3uH/kMOvjLuNW5bB8o2qvkX4QKgbX97Gc/W1Kfm6jW\n", - "X0Hq5wpXKxlTKAVY5LQp96Dvo1ZSp2PPmuO6WPilPD/R93k+xiD/5jl4vhtuuGHd62Chn3322ZKk\n", - "G2+8UdLaOQcLP4rsZCy9613vkhQrTaittVGPpdMRmHOmnnsYc9Qj9eG5zVDHUeB8TEeUziyM/k57\n", - "8pN3nOfpcgWMqEp84fA9Y47hHVc6VYOIYJTHqfNI1c5xjj+/t4NH1JeiKGvb0UlFKkmSJEmSZCBL\n", - "zSPFqph9bl8N+r9RbrCS8L1h3xslwVfLWEFEP/nf2TfF/6GkaGHpo9SMzTSONYiywnNiBbolvui8\n", - "P17vrsxgLW6W7w31wv417YdChRLl1kakIGFFHjhwQNJaVSCKMMFaHApWl/cX+iX9GOXGoxRrcQVx\n", - "qII2Fa31RnkZ39QbVnPkB7HePfkMfYVr06ex4L3vuIWO5evqZS3MGSgZEN0/gjkOlZHnoq/Ql73P\n", - "uHrM50t5cmrLxfWjCGLao1bJYM6ujY4bS23Gbuo9Upcd7/v0qygKznPMRSo7Y4N+CV4e5jLah88z\n", - "hk455RRJa6P/gPpgTqLcter/oimdl8p4r1Wahs6VqUglSZIkSZIMZKmKFNYR++Bu7aG8sNokVwhW\n", - "D99HscDKcl8MPleyNvAxiawwlBj3OWF1PxaUKM6P4mw9Z2guG6CeUEJaFS6e18+RWlQWW3zlsOpR\n", - "KKivyGrFWsEPBtx/xiN56IfUD88zVpGi3r3/UP/0O8+iTXlq253nY9ws2oetRGt/QDGMIsBqrEss\n", - "feoWSxPVmb9727oS5RnOh/Zt9xPjuq1jGUXKiaKpGCOuIDBmyNszFhSPc845R1Lvh0neLNoBxYW+\n", - "HUW1jZ3jWqH9mdt4HvqavzvoB7x7ojk0OjUhUj54blemHO7n7er383J6zkCiKfHZczWb73O6gI+9\n", - "ZUcEl/pJNFdE49198mrn/FSkkiRJkiRJBrI0ReoJT3jCwdUzq0qsJ1aBWNQoElgvfA/rklVnZC3W\n", - "7o9idbBKdyUDHx23osbuF3M/Mr3j9/Dggw+u+/mxkUMoetQr5XcrCWvDT0Rn1T40wqEVnhe/CxQd\n", - "slLT7iiKPEeUEZw8S2QP5jwvQPly3zCuRz9ojYYjqhQ/A6CeaXfql+eIlNbSffDFcj+KrQqKJtbz\n", - "GFWCtqNvlKKCIjWVPo6CNNQ/0cvDs7VGP7Wqk6W5iT7t0YCt3HvvvZL6evaM6yhQ7uMVsdkqKvVK\n", - "PZTyJTGH0n7R510hYqxHihT9jTHLLkwplx9zis95Xi7eXdQ/ShTRfFGEts/1rf1wUeArxviln0UR\n", - "vrQHP0s+gLX+z6lIJUmSJEmSDGSpmc19NYg147/HukEJwEL3fEhDc1EAq+vIKvMow6l8gVjtu69P\n", - "ZP3WWrFRLhaui9UXWUfcx8+nipSoRZ3wjVXm5ylhVWGFuQIT1R85Vcim68oj98OqIdcKChh+FH5O\n", - "WQR50E477bR1y4V1h1WJVYxCi3LI87tS5jBOuK5HirVS8gOZCvoP9e+KcwvUIZYnY4C2Q/3zscfn\n", - "8VHBYqcPnHjiic1lkfoxxpisPT/RoY9PrQSg+g7ND+R5jpxbbrllWMEmJvLpoT9QD1EUGDAWSnOe\n", - "z72l+uXv5GtCXYanPe1pknplj34QKWJEoDMn+DsGP8TWsb1sJQr8nN1SrjnWDlF9+VxX7Zda9akk\n", - "SZIkSZJkDUuN2vPcJq5EsQ/N51hFuo+Q5xeK9tex+LHUUS74Pfv8Hi2EdXv00UdL6pUvrBZ8aoaC\n", - "0nHYYYdJ6q3XSGGrzWXD6hqrm+fgPoAfRZRFuPWsvKm566675v6N1UF7uZUV5bJx8DtwKxq1YPv2\n", - "7ZKknTt3Sur7IXm/ajn55JMl9daQKyzUP+XwiK5SdKJz6623rvv76HypEotWovz8OFcIUZHwbaO+\n", - "qE/G/2r4LMoSSoTnJOOeWO5kVSeTs6vQYy3xoUoUtGR330xqfXlqKUX1odKiJDFmeEfQvmT2pk9F\n", - "ihTqZxRl53AqR4naTO4Oc3F0tiNjJopIBvpvNHcse24fS20eNsY1c0c0p9E/Wue8VKSSJEmSJEkG\n", - "sjRF6id+4icO7m/iA4VChA8IVgVKCkqN+/Twd1bxrqywGiU6DqvQM4lj+fr+9KGHHiqpV6CwEvxE\n", - "bvDzf7ycXBdlyfM6RVaCW2ElojPdyH7M/YaeFbhZoDTir0J+KKwvrAeep2S10w+4jvscUW/0P9qT\n", - "ctRarUB/cYXRlUxXUvn8WN+/VlBxeH6stCivk7OeQiT1UZL4+WAlY1V6ziPqmYgirE7GP+NutQ8f\n", - "dcoYI2+O+z9SRr7L5/k+90BhYeygRjKnOMwp3Ae1+5BDDpHU9zV8rnhmzzM1NDKU66E633PPPZL6\n", - "OYb710ZGou5yXRQf5i7aIFKOmPOISGZsUa/R/T03IPXhudWoZ8YYY4jnp57xKSrlZ2Iu5Lr85H70\n", - "Qdqr5CPlf+f+0WkRnlMRpY9+QP1F0WRbfS6fmkhpo996xLPnDGRcRpHrtaQilSRJkiRJMpBubE6i\n", - "QTftutlQf40kSZIkSZLNZGVlRbPZbN1U56lIJUmSJEmSDGRpPlIrKysHo9WIPBi6v4vvEPvW7Jui\n", - "epXUryOPPFJS74txxRVXzP0dPwd8cSK/hdr7RdSeQO73e+c73ymp34/H94d64bwrIK8RUW+uSuIn\n", - "wn4y7VL7fEcccYSk3tfL951r8xKNrc9S5E90v8suu0xS3874ReCXgJ+I++bVQvu89rWvnbtvBL6E\n", - "/Ny7d2/T/YD7fPCDH5S0tl6i86daod+96U1vmrvv2OtHedH4/aWXXjq4rzglH6WxfbOV0v2mipoj\n", - "MvllL3uZJOnOO++U1PuQnHDCCZL6eiGXH36k+I4x9okgZQ7lc/wbf098WpjLGGulaCzwvhX1FYjq\n", - "k7mPdxPl2LNnz7rXwZeJn/g+eUR6aexNDff7/d//fUn175Sh/cjrkzmO9uPdRP3iuxbB3I3fK3MK\n", - "/eSXf/mXJUkf+tCHJK31+cNHjn5a8u/k3ct9Pc9UaZynIpUkSZIkSTKQpeaRqo0CKlFrtUQQ2cOq\n", - "2fPalM5dGgurdJS01uzCHhlSivb65je/ueH1SnmlIrACKU8UAUHUHNF1HsHiJ24TeRFFaESZ5rEm\n", - "W60/rkO5aA+PMBqqrPjZhSWw3qPnQEWgnH7CuxO161T+ktF4HHt9j6hqyfnSGgXHHNAaNbcsaiN5\n", - "S6AYwTXXXCOpb9Mbbrhh3e/dfvvtVdeP1FQsfsayzwElXJFq/T7RdMzFlKN01ppn46ePehQmLFqJ\n", - "cpgTqA+iLKO5eao8YERJUn8oc7Xnfno9MfejSEGUgZ7dllr8zETKXRvFt9SF1FaBwcfCLgpvH3pQ\n", - "I99DnmSBhvzJZF3baFwnYmwILGkGGFS1kxL3LSWro9MyCFyG9xduKYkhLxEfVB7qWgvtUtpKqz0q\n", - "yBeCUZK9CJ7ft2iBeistoGDoMSBbBRaWhIKvXkh5m9CGvECoI09pQts897nPlbR2rNOGQ40/krse\n", - "OHBgTZnXgxcxiUFLUH6OEKlNGAnMKT73scVVMr5aiVJkRCluSvicx1YPC6PSAgGjif7DnFJKWEk7\n", - "+ruD+377299e93ulrcepwGhjAUPi2Vp+6qd+SlKfMqcV2pH+7As6T9ETpQ7y6y2a1vvk1l6SJEmS\n", - "JMlAtqQihcV5zjnnSOqtSBJ3RkfAgFs77izO35EfHawZv8/QZHl8j1UuVsLP/MzPSOqtZxwzS8pC\n", - "7bEDrc7r4FZL7ZE0JUjq12rVl6z3sQqLHxvB1mZpK6r2kGa3brh+LZESBX6odAnac6x1F1nVUX9B\n", - "1fEjcFpBPVhPKfW+wBaB92m2QxmLzAUESlx11VWS+rbCgvY5gb7DdSK18cEHH5RUf/QExwrVuhWw\n", - "Tc7c1Qpbd1deeaUk6YwzzpC0uIPIh26ZeqLT6ADv0nFhEDmp0660WwTq/fe//31Ja+fmqP42K3Em\n", - "5UNxbFWkhipR0e4NSjBBC7QfW8alw6K3ymHJTipSSZIkSZIkA1mqIoWFijXk1iT72uxXR6t4D0F1\n", - "RQqrgNUsfhORIlWylvh76z43Vg8KAv4S/D6yZvk89ykpCThOYkUPtSpgqOJD/VAed34fegyGM/b7\n", - "/nyt/iUR9NupDv1FbSBNB34rHGlUy1QH30b9PnJ8rj10me+jGu3fv3/dz62nGPrvonvedNNNknqf\n", - "IhSO3bt3S1qrCvvhsEDfKfm9tSo7tc7bfv3IF8iVCdT9Eq3+fK20OsmjIDGnoAQyx6FAMuZKxyt5\n", - "f+F6hOczt7hytWvXrrnPf/nLX567/9g5dyp4B9A/okObS1DfvHsiv1V8nLxecRLnOnyOfkk77du3\n", - "b8P7b9UjcFKRSpIkSZIkGchSFanIWnQPfw+rd1Ca/PPg4djsZ49l6OoYK6+2HOy7oySUFBisMbc+\n", - "sJ5aD8Et+RlEUD9+P/xQIkVwKLWJPjeLUrRhK/5cUeRLiUVHDLWWx6HeIiVqCpgzIjUPixnVdKzC\n", - "QDTXovumH5pM9NhLX/pSSX0UWaRIeUQwKv9UKqbTegA4CmCtotaaBJa52d8Z1Cv9gWi2yIeKdxWp\n", - "XpYF/ZgxOTTyHF8m0jygJLn/JrsnPgeg1KH00j9J6IpvFFGi7kdL+03lIzXVbgikIpUkSZIkSTKQ\n", - "pSpSUR4e/BXYF8VCrY1C86ghV6qwgsYeWcGqtlV5aL2fK3euEKE0sapn9e8RPJudDC4C/4OhSlcE\n", - "PnfUR6vv0GOFsTl9Fu1nMNQPYyuAIkN0EXmE8OUZGum46MSeqJP4fOHTxX1Rf/lchCsxrT5MrZHC\n", - "PkdNrZa2zrXUF8oH/eG0006T1D8fc1ikSDHX1kZYLwreCeTU83ct78Df+I3fkNTPLdddd92G10M5\n", - "ckWKdyvtyHhBoUIRjaItUbpckaLcrRHKEVMlH4ZUpJIkSZIkSQayNEXqSU960pq8QqyOsWawDviJ\n", - "dRD5VrH6daWDdO+eUXvsqpTVc6uy0rpP7dYZygvwHPwe68NX/WN9V4AIjKF+E1MrUYAVuCh/jqHg\n", - "p7LoCKitgo/Pqf0RpgT1mzFJ3+YZFn081FRQx54ZHAv+rrvuktSuMLUqcK0Rvt4nlh2V5bsLKHQo\n", - "k5SPf5fm8KF5vaYCZTI65QHliEN+UX4iRYr6iA4d5l3LO5Z/+7FbDgqwHwEDzO1THYU0tf9qKlJJ\n", - "kiRJkiQDWZoi9WM/9mMHrUFWmayOWfWSVdj3XSNY/XpkDN+bOisq92mNPGk9UBPlC2sPJQ+wejbL\n", - "N4UDXbHOavMDLZqpFLda6G9Y/dFhvVNZpWN9+mBoxvuhML4XpUiV5oWNQOXmJ326VRlhDnCLfCgo\n", - "TLVRflj6bvHTV4iWOuSQQza8jh+oPbUviePKQOQ3O7Tvcz3aZ6gSEZ2ZF0GfnzoyuRV8tCJFijmA\n", - "Q37pd5Q/qq8o4pwoQRQklF7u43M0ShS+fVF98Ryt787NojgDdV33Z13X/X3Xdfes+t1K13Xf67ru\n", - "zkf/+9lVf3tr13UHuq57oOu65y6q4EmSJEmSJMumRpH6/yT9T0l/sep3M0kfms1mH1r9wa7rtkt6\n", - "qaTtkg6RdHXXdUfPZrM15t2//du/HbQ6sIKwWP0srtIJ3igkWKbui4JVxyqb6xPBMtRSxsppVUKi\n", - "Vb5HrPj+MvmY3CrDJ2izFCmUF9qFco71AcLqmDq6cGj+rBL4j5BTJlKkpvLZms3lJe0AACAASURB\n", - "VEodYBwsKorTFaLIL2IqxvjV0DcYY7QpPiM+59DWURnGnk3nFv0YtU3q5zbmupKysmPHjrl/L9rH\n", - "xyOsPQ8WczWKIQpT7Zg6/PDDJfXtfMstt2z4eXx0UD687x555JGS+ndKdAqC764sC3Z9ShB997zn\n", - "PU9Sny8qytfFHOLPh/Lkp3HwjqR9+Tt+vShh99xzj9aD64wdD4uiWKrZbPYNSev12vU0thdL+vRs\n", - "NvuP2Wz2HUn/S9Lpo0qYJEmSJEmyRRnjI/WbXdf9P5Jul3TJbDb7P5L+m6S9qz7zPT2iTK1h9UoZ\n", - "RYPVP6tc/AxYjeIz5UT7v4BVwz35yXVrs+QCq2oUmdK5WChXpWg1t6w9AgfcCsB6mjoSIQIFEAUJ\n", - "62SoIoWVgRU+Va4QrFj616Io+d5N7RtU8l8oMXV2bax0rHPOAgT3xcLajRTmMdDmtUoA+XBQgkoR\n", - "vZ7hHIsaP0H6Lud58vmSPxoW+bOf/ey58rfmDIv6Bkqa5+dxPO/R1H6lDrkCgTkVP1CiJv2cUvpw\n", - "bTvzbonagTm0pHQxV9FeP/mTPylprW/PspUoiOZk3/3AR4qxW9rdiPxiqQfeye7bhjJKxnfakc9F\n", - "192KEb+rGaqTfVTSYZJOkvR3kj64wWcX662YJEmSJEmyJAaZ/rPZ7ODyu+u6P5X0pUf/+b8lHbrq\n", - "o0999Hdr+O53vxvmonBYpbKf3mqJ8z32ybEiPCtrLShMWGslHylXojyvju/L8/vouq5Q4QfAuUVT\n", - "45E8WIluJaD0tebecSXO/UyI6KAdazOWozZMdbZixGbnGhqrPB533HGSpO9973uSeisfxbc1dxDW\n", - "Pu3oUaVOSYkisoxcPS20KgEoFMxFKDo333xz1ff5PJY8ai1Ky7XXXispfhbmIqKXKAf+fKUz/piL\n", - "UMmjORJlgrGM+utzzI033ihJOumkkyT1bbmoHGg+h/D8jFnmRvoo7VXbzrXRdrX+h63Re5uN+5xF\n", - "/c7nXJSkj33sY6Pu77tDUb1u375dUj/XbFYEcS1Pe9rT9NBDDx3s91FeLRikSHVdt9rj8ucl4SH2\n", - "RUkXdl33xK7rDpN0lKRbh9wjSZIkSZJkGax2CTn//PM3/GxRkeq67tOSzpX0X7uu+66k/1fSeV3X\n", - "naRHtu0elPQaSZrNZvd1XfdZSfdJ+oGk186CJekTnvCEgwUt7X96ThaUm7PPPltSvwpnNew+T9wH\n", - "6+tb3/qWpOEnuqNEDVW0gOfAOsDKal2do3gdccQRknprjutH1lt0rhV+Jli7rkjRXuxzc3+UI/wc\n", - "sHpRIGgnj0xy69l9mvDboN0crFbKQ/mwpiMfOp7Pzx+rPe+Lz2EtU98eodLqkxTdn+tRXtq1NXM4\n", - "/cvPoERN8SzO1D/1i0JM/VG/njOmFZ5jbA6mFrDE8XNErat9Bvo+qhxlJ29TpAjQhvguMReV1DpU\n", - "VnyduD8/vQ8wFvk96vUdd9yx7vV9rOD/Rl+jb9NWjGHGLNM9v/ecZfiU0efcR4rP8XPoHP14xX3a\n", - "6C+0X6REDqWUadzb38/cY/eB3zMuxpaPfs54bI3YjqIxI4oLqdls9j/W+fWfbfD5d0t6d1MpkiRJ\n", - "kiRJHoN0i85cu+5Nu262srKy6fdNkiRJkiRpZWVlRbPZbN3U6lszu1WSJEmSJMljgKWdtbeysnLQ\n", - "JyPyYSn5fnjmb4/2QvX60IceScDuvhf41rB/zH4vKl2trwb7wG9729skSQ8++KCk3j+CyAT8H/Ct\n", - "OvrooyX1vl5Ef1Ef+MRQLnxVvvrVr0qSLr744rnnXDTcp/V+0flZzvHHHy+pjx57zWtes+H92Acf\n", - "66sG3OeP/uiPJPX+M54raCzUx+/93u/N3beW0rlj+LW4ryD3ufLKKyXFWZ7PO+88Sb1fAbmMGI/k\n", - "SKI/e4Z0ItAuuuiiufu2go9blD8OGB+/9Vu/pcsvv1ySdPfdd0vq6+icc86RJL3nPe+RJL3+9a+X\n", - "JO3bt0+SdOGFF0rqMztTZnyR8P/Cp+dVr3qVJOmDH3wk80spS/wv/MIvSJKuv/56SWvzDhG9hz+d\n", - "5zPysUfUk/ua1BKdIrC6Llffzxnq/+f43EmUI9fHR4qf1AsZ2M866yxJ0l133SWpb0/eLfht8g7B\n", - "d+2SSy6R1D9fNKaiCFLai/5Ae3o7MHf4WKA/1ebpOuaYYyRJBw4ckBT78PFOe8Mb3jB3v4idO3dK\n", - "6n2C/F1c67PU+m6gn9F+N9xwg6T+Xcm7AP9Zn+P9fvjx0h9L+eBoN/7O8/nZjPz9N3/zNzd8nlSk\n", - "kiRJkiRJBrI0RepJT3rSwdUwESTkbCDSgPOuohwOP/dzPyeptwLIzorVAZGy5FbfUMXBrQOUJqKe\n", - "sNw9nxS/p3ysxnmepzzlKZJ664VVfGtU07nnniupX2Xv3r177u9Rdt6pqLWWUT48u7JDeRd1hptH\n", - "otAvhp5A70T1Ucr4jQKHFRtFNHn/d0oRKfv375e09pwurPooehJq88NF0N+x5kuK1GqrnrI7KEG/\n", - "/uu/LqlXrIB7XHPNNZJ6JcozpbsyUZvPiJxdHpFKJnMs8I9+9KNV1zvjjDMktZ/KAMw13qdrc4gx\n", - "lzAWaTPKg9LEHBZFL/rcydzGXBnlxkOB4qdDffOzRDSmUUW9/JST/sFc5FFq0Vxdq0ShnDAnlaJJ\n", - "S3OT5xsjahQV+UtfeiQl5KmnniqpV/7YBfnbv/3buevRvsB1mTuiOQqlifaJlEAUMZSm6B1FJDhz\n", - "NYokiqvXN6o6awDKQ/1w/9rowVSkkiRJkiRJBrI0Reqf//mfD/pqOFhtpZOrsQJYNQ61zkpE/gQR\n", - "vj+LleKrbqzZz33uc3O/57nJAcPqGSWj9rR79stR+li1A9YDChrW6Gbm8VmPUj1jdZROAi/52GBN\n", - "eeZzrou1Rj3RXrXKHdfHmiopK1j37Pe7akK7kEU7svbob5HyVVLysN48v5Zf3zP8l6A/RueZkcOJ\n", - "v9Mf3R8HXy1UHPxGavA6BVRaV0NLilOtOrl37yNHkP7sz/6sJOm5z32uJOllL3uZpF7lc9Uaxchx\n", - "paJ0jqeD2sdcizJQO7e43ypjhlxjxx57rKR+7qnNUs916OP4rNxzzyM5nzc7yjxS6Kg/z09Um38M\n", - "9ZkxHD0XiSBr322lXHIoaPQX+jcK1Atf+EJJvUJDv3UlijHo56IyRumXpXNBo1Mq6DfsSjEHUO+O\n", - "+1DxDo3ODIzmAdYSkdIZkYpUkiRJkiTJQJamSG0EVkDJgofIcgbPpN1q1fA9jz5j1euRK6y+US54\n", - "Hj8HKYLrUk6s1ZJC4NYQlj0/UZ5Y3ROh5M+D8jGVT9DU1O5bl/pPZG3WRgGWIm9az/jDHyTqJ1i/\n", - "pSy9JasYpS3ylaJ+sQpRLagv/HqIGMOfqJQRPlKiwP1sUF1QiVDSsLqjqMMxRGoodVbqe6U6QIVH\n", - "mUKRuOKKK9b9fJQ5mr499JxHFIVI8aqFvu9+cfSZKCIbXNFgzLQqWRHM/a0qO+pppOrWnj2IyuyU\n", - "lChgtyJSVlCFUZhKUZSMQcYU/RVlCB/Dkm8ZqrnPodQX9cN4KY0Lf7dyf547Ot8VPLM+uwFcz/tn\n", - "7TuktLaAVKSSJEmSJEkGslRFyi1d4N+l6CJW36x2o7xTU/n8uHUSWYNY1jwHCkLJOgNW5zwX5ef5\n", - "nNp9eT+5nHxXkbUQWUtRuzlT5ZqJGGptQtR+tfmLaGes19I5aSWFj/41Nl8VvnUoot6ukXUbEY1P\n", - "r/da/5oI+glWPPUa+TOsR23fbKX2zLfaOkCZQgWOlKfoOVABh0IfLKmEJfC58b7gc43jczb4eZUO\n", - "eaFQVIj0dZh78C+9//77Ja0de9FYp15QehhTtUoURHNMq8ofzfGtvnGMDxRW6qf1bDveaZEfc200\n", - "K/i7leu72h8phPRD5k4UKN4RqNv4WFFv0e4DilatYpuKVJIkSZIkyUCWpkg9/elPP7jqIxstFimr\n", - "yNJqm8+z2iQXRkkZcIaeOB0pLvhIUQ5+RpELDlaMn4ReqyTUZuJmP5ysuZ4zJbKaaq39RSlRsKjo\n", - "Qqxerh9F6HjumAjqF2s2Kndk3beClY+i49cb6xdD3rdWqxMi1YhxgnIb5aNCzUC5XT1PRJF+EPkT\n", - "DsV9VFohGo3M1/jJobRE5YzU6Vpq57qovlDQSj4k5D6jbWkfFCXPq0Wf5XPMQe67xpjiHfKNb3xD\n", - "Uv9cRA2SDwglwxW40lxGOY844ghJ/dxcW39Rvxj6zhkK7chP9+NlLOH7xLvAxySw64OyBcwt9M+h\n", - "cwTjivaln0R+pz43M+55DvprKR8VeD2VSEUqSZIkSZJkIEtTpI466qiDq2BWtaxysUqwKrHk2S9l\n", - "lcr+rispredOYRV4RnLP3eE+LpTPc8+gBFEOVtO+uuX7KCDs16J08G+u5xEu4FYj9Vnra8PzbNUo\n", - "vRJTlxt/CDKEl/JVldQNz64bfR4rbCy0O0qaK1Ilfx/6GfUQZfM+5ZRTJPURNrX5tSIVgHGCisF1\n", - "3apnfG6krEVq6FRKFIxV95jb8DVhTot8fyCKBquFPlGKJI7qy+fACPIloRjQ9lzXFSl2Fyif52DD\n", - "b5bM1Sgf7EbQd4866ihJ/ZhiDPscUcq75Bnfp1KQNluJor55BzGGmAt411EuFLjSnORqPMoP7Uj7\n", - "tT4vY552Z1zQ7k6Ur4p3MIqa96sI+kX6SCVJkiRJkiyYpSlSs9lsTXQaq0lWjx7RgvKELwnWEN9n\n", - "1R1ZvKwuo8zPRJpgiXtUmFszlNdXwSgCrPpR2Pg3++ysiska6xE/vmqOctxQjzx/bR4kwFqY2lrf\n", - "LGinqaxG9ycoKVL+Pa/H2lw4WO/0c/pjq9KGYlTKcxbBuMAqJIO4qyRYnZxxORbGPdmxUZ49qzJs\n", - "llW/EWMVKcY8/mC1kb1j/ehQR8f6WkXnYqKYMTd5eemj3rdRIFDloxxtRBx7BmveDbQLfRnlpTUi\n", - "FsVwbHTjokGpcYWNdyRzEvVNu/s7EJ8y6jXKPA4+BnlX0y+4Pu88n3toJz7v/YTvMU7w4XKYi/z6\n", - "rf7Sft/a8ZGKVJIkSZIkyUCWpkg9/PDDB/dfWfV5pmgsUlbHWClEPGC9oUiw2o5yufD3kg9Va64Q\n", - "h/J7niuUBs8tEkV2YEXwvJFi5IpJawQROWnwTXms+kpNpVDQr2gnrF38Oagft5ZL7cP3o/bBj4Rx\n", - "QX+h39fmKEKZqz2fK8ojRj1EfglD/R8iKDcqBvXL+EeRrVFOsayp61qlJ8Jzw3mZh0I5a303gL5U\n", - "ikKMxjK/Z+6k7Us+Q0Cbcx3aiPpgLinVj9+P6zEGeD7qh3Jyf+qL9qEv+99rz0mNGBqVORWe+duJ\n", - "+jfvVurRxzh+jb7rU+tn7H679Ev3c6Y9UQR918aVKMrB31EEo3cS5XefrbG7LLWnkaQilSRJkiRJ\n", - "MpClKVL/+I//eNB68IgBcN8fVqVYLawW+Ttn0i0b9mk9OgrLvjbPE9YayhwnYZNrBqZSjsjRUboe\n", - "1ufQc75KRCd8R4zNBO4Q9Yh15dF2btWVsmnzefprFAnj+/me04XIJHyVprKSI2sVX0GyQjuMX1SV\n", - "seei+X2pb6xaxr/fZ73+QtQWbTJWkaLNXIUcm0eKfEg8Y23kI32OOQXfIle0orFMneFbwpyK+lnC\n", - "FSzK4z4x0ZhgLHhmbBQUnsejzIA+y/Pzb8pPe+CrxXOWzqncqrRGogP9gfpwnzXaAd8ydidQlEr4\n", - "O8Bz69GeKJ/cBwUpmjPoT8x5vNujyHV+z/PwfdYUtYqk7waUolIhFakkSZIkSZKBLE2R+ru/+7uD\n", - "q9HIxwKrxK0RFAhWt1gti446I6qqFAlAObD6/FwpLG4iFbByeS7P+cFzokx5DpmpzhWrzeKKNTGV\n", - "IoX1gzVAlNhYhp675u3G80b+IyhHpRPTS2f3OVjPWHcoMlh3teqB4z5RkV9O5CtI3rPnPe95kqQ7\n", - "77xzw/u1+tzxfO5XEbXjer/HAsdCPe644yT1Ea1RNBhgiZZURD43VJFCOWMsRZmbHfcnbT1FgPuh\n", - "QLT2JdqUuuf5icYr+c9FOdVQqGjzKOcZf6e+qA9yv20V/07GylCi/Ej+d+rfFRT3raJ+aRfmFuZg\n", - "7hMpP46/A/zdxb8j5dLf4cxJKMj8nX7leccAxdF998DnbuZAV/qoR/pdKXP/wetVfSpJkiRJkiRZ\n", - "w9IUqRrrPFqFs8qN8ss47KOP9ZOotdpQDtiXZVXNM2MFsJqPziNiH/uGG26QJN11111z120FK8P3\n", - "jz1KqhY/B8kz0NeCden5oCA6eR1rj3r1eiwpUfj2eNTjLbfcMnc9lEQURLe2FuUrBm61D1Wi4OlP\n", - "f7qk9nxj8IIXvEBSX2+l529VB77whS9IWmuNRqxWPc466yxJfZ4h6g7Ls7ZvoqjUZkBuBYUMFXPP\n", - "nj1N3/dIUtoC5Yyf9BXKiaruaiv14menRdCmPqf6GXwoXhGu5HH+Z62KPNYv78QTT5TU18vtt98u\n", - "qexLxRjCb/XGG2+U1D9Pa/RbRGmXwCPR/X7us4TazpjyqEio9dXzsY2iRD9gbuadRb/w00l4Tnyh\n", - "+DvPg9LGdR1y7nm5Udo8qtPfeVF/q41ITkUqSZIkSZJkIEtTpKQ+1wirYVaJrD7Z5/RcF6xWXcFg\n", - "v9z9DDzrKZYuq+mhZ4Thq+Tfx0qLcmSwCuZ5PIN6xNhcKKzu3cJv9a8o+Yix6sd3iPvye6wDsjl7\n", - "xvebb75ZkvSc5zxHUm/1UU4yX0OtMglHHnnkXPm8v3g2X1cdsKpot0VnPUZ18DMlh+JnO9ben/H5\n", - "yU9+UtL47NoO8wH1Sr9BXaFdNrLSGYsoCq19O4K6b/VziyAb/NCs8B/+8IcHfa80dj33WClPlUPb\n", - "eGRxLYw1ftLnUINRzLydI5j7UWbc1+0lL3mJpF4Fja5Hn2QOPvnkkyX1Coora/STkq9RVL9nn322\n", - "pF6tp159zLqvnONRbIwpnnOsYublph4iJRKFhzMT+elEc3o09qPdJuZm2sGjBvk3PlFeH3nWXpIk\n", - "SZIkyYLplhHd0HXdbGVlZdPvmyRJkiRJ0srKyopms9m6ElUqUkmSJEmSJANZmo/UysrKmqy6kf8B\n", - "kQb8ZP+cfXP+7fukqF6bpX5t1fvt3LlTUh+R4pQyU5N75OKLL5Ykvfe975UknX/++ZL6feXdu3fP\n", - "fY99fnyQiLqjvYlcYl8dHzT271/72tdKkm666SZJ0lVXXTV3ffwW8AOIovrwHyj5wlGP73znO+ee\n", - "K8LzTbX6SnG/97znPZL6iLMDBw5I6iO6tm/fLql/nquvvlpS7/9DOYhuxB/E/T2i/kI9Ep0Y5e5p\n", - "hft87GMfkyQdffTRknq/D/xL3PcQHzb8GuiXlA//BvwtqJ+zzz5bn/rUpyTFvhqlTOTucxKdQ1ga\n", - "e3yPspGN3tmxY4ekvi3xDaFO6INbdW4ZivuXcp9PfOITknr/SaDd3ve+90mSvv71r0uSLr/88rnP\n", - "nXfeeZKkO+64Q1Lsx8f9PvCBD0gqR4aOxeuTaEF85OjT7gd70UUXSerHDP6jvPuYm9lZwufo137t\n", - "1+buFzE0157jz4cvm0fv4QdL1CMwTvFZOuWUUyT1cyDvEPxjL7zwQknSRz/6UUn93M8cgU9j5GuF\n", - "f6yfY0o/8/NFX/WqV63/4I+SilSSJEmSJMlAlqZIHXrooeEqHFgtY61hnfE9VuGsQlkF33333ete\n", - "j1Uwq9Cpo462Ki9+8Ysl9Vl/UU62bdsmqY+CjBSp6MT7K6+8UlKvhDhYh9ddd93c/WHv3r2S+hwu\n", - "WAlu/Ud5imi/qB2jiJAStZEsU53xh0JHRJVnSCcCiuf0SDQ/UT3Kwh1Rqsex0K6oDzynn9QOKE0o\n", - "aswP/ETJ5DlXX4e6i6J7ShnIPfrJ+2IJ1D3mrlKkLeof+W6e8YxnSOpzmZVUTup2UWfItUbt1RKV\n", - "15UooN3e8Y53SFqbSw2FB8UCtdMzv/vYiPIE8dz+joHWs9scFBrqNboeY5qxyRxN5DC7CTxHa14z\n", - "n9tRUBk/HtFcq1z5mPV6jqL6UHJpX49a9Ihq3mEoUh71GUG7+Pimn1HP0Ry1ptxVn0qSJEmSJEnW\n", - "sDRF6h/+4R8O+iNgVTn8Hl8qfCbYV/ZVLvurEaUsu1PtF5dgNYwSUZs9dSj4Z7h1i/WO9RYRWfFH\n", - "HHGEpN4qov5Qgr72ta9Jin2zAKUC68/rH9+aW2+9dcPrtIL16vvoY61wsvVi7ZRy9/A5rGfPfQOl\n", - "s/xg6LlvwPOTv8tzC0XjJPInAj6PdY1640SqBGClUh+rrX5XE0t5dsbieYLczwwV/NJLL5XUn06w\n", - "b98+Sf0zMAb89AM/64t/48PBGKSNIlU56lP8HiWCUxTAxwI5/lB4aHPmgFLb0Xd4Dld1+X00J0ZZ\n", - "/f3c0sjPj+cF3hn0Gz8rjuclxxlzEedL+thwojxE3k7RnHPttddKWtsPqH98zfCrHKscoowyhoe+\n", - "C+n3fJ92451OJnKHuQF/Z/o5/cF92YaeKlGakyE6289JRSpJkiRJkmQgS1OkfvCDHxy05ny1jXXD\n", - "yeh+ojMWqFstYyMvFq1EAc9dOkdpLFhpkZVae//IqqL+sYqofxSpkrUGnvmcKDQo7ae3+rFAFNEx\n", - "1qo74YQTJNVnd0ZBojy0WwnaZepccDx/pC5g1btVF7UDKgG+eED/wwqtVQL5O/MAypm0Vo1zJcqz\n", - "po8dg1jMnvkasGix9N/0pjdJ6v0D3/zmN899Ht+hk046SdLaOY0xh5Llka4RKCsO10dhcbw+3T8P\n", - "/8Zjjz1WUt8no7FFvUe+J/SRWv9Gxsr9998vqY9qc/zUDEBBpP78HcDzoiS2+s5E9Y5PF5nKKZ8r\n", - "LCg5KKv+faLTUOCi/oxfMfUfqdb4sbpvVCsorPRXykl7ofC5bxPwe8Z49G7nPj53+NxY+65gnEbt\n", - "FpGKVJIkSZIkyUCWpkg98YlPPLg/zWqSVaOvTskrQ26QoQrEkDJK431OHFbnWMuLyi6PFcLq2v0b\n", - "yEtU8h2jXRysYiIp2KcHrKvoTELwk8ldkbjtttvW/R5K5qL8X4aCX0PpnK2I2oggrj/VeXJO5KdS\n", - "618APA8+eliXPq7wn3BfO4d+VKvcrYa+uGvXLklrfYtKPj4OljNl8r7L2HjjG9849/vILxT2799f\n", - "df/aSEssbc+1RhsMnePw6ULJQa1kDvfcgNRPFFXl5StRO1ZQYrx98dEq7UZQfygdlBOfqcjnx5UU\n", - "rkPkKX9nro6i+HyO453himc0ZlFM6f9EWuN3Sj20KlHRu4HxQH1R/yhwvFvxU412L0r+w1wHxY76\n", - "dCXKo1spl49X5ijq05XAiFSkkiRJkiRJBrI0Rerf//3fQyUEJYNoM1bPWDtYFYtSjIDVO6vaaN+/\n", - "lVardyhYg1jb7uuEVViqR1c8qBciK6ifKOKm5E+AVUD0INYZoLz4dbEWUChL1gvXxY+ArMCeI2Ys\n", - "lANfPz+xvUQpcglol6lz/ZCPDV8vlELqG7WE8euqiFup+HmU8nPx3KXoW6xNnr8lnxd9HsuUZxra\n", - "B1AEsPi5fkkpKfk0eV+NiMYsigdtV5sbrRWUEpQ35pho1wAVMVLSUIaG+v+h9kenZDi19cKcR3/x\n", - "XZRaGNO8A5gb6Ee1Edz4hBFtSf/z0z0ApYmfRBZPlQsvgnc244v6pl35yZh3BY/6pt/4uKK/RD5U\n", - "9AfGE+UpjT/m0trdjlSkkiRJkiRJBrI0RaoGVtdf/epXJfXKyaJX0YAPUKsHP6te9lsX5QNVgtU/\n", - "kRiRYkHkURTd56BYsA/Oav+YY46RtDbfU5TTxXPKUM+unGFVuF8FnyspOChDWDfsx2PFlPxVWkEF\n", - "wLcP67PWl4nvl84GhKhdW3MoUY+oIChJfm4WvnUedQeuRtT6NGIllrISR76UNWCRU6ZWnxwHS5o2\n", - "myrDOH1y6FyHglLK21MCpSNSkFAaqIcoCgv4XMm3a+ic6Rm/S3Na7W4G7wLPV1Vqb49Ij8ZMa8Q4\n", - "5cZfkTkyyrPl1Oaki2AMRkouczvKIHMREbYPPvigpH5ujHYtWAOwe+CKVDRH0k6MS75f61PInFrb\n", - "P1KRSpIkSZIkGciWVqRgaPbSqUAJq1UUsKZQTLDCaiNMpiZSLLCC3CepBFYWq3wgp0wtKBvkoMHK\n", - "cx8y7oOPGlZylE/MOfTQQyX1VhKKFIrd1PnDUBFqrRn3UatVoiKwTlFdav1A6N/UJxnpqR/P61ab\n", - "9bdWkcJaL7WHP0/LGYGMzbFKFHi0nvu6lOYM/P+iZxqa54rvM7Y9ItLrOFJ1S2omajblL6mEU/mz\n", - "RuVFcaw9b7LWrxC1HOWEdimNrWhumiryHF8p5tDNimjnPpGPmPcv3n20G/2gpDwyPqLcdRHeLtRT\n", - "rYrdqnanIpUkSZIkSTKQx4QitejovAiUJHx/SmfGAVYoq/ZWJYp93UX7gmENtNYr5cLK5TpYg7VR\n", - "Z0Tp4avEPrrnX8LfgSgx2oX7lqxProf17CwqDxN+KiX/Ga9/P4uRf9f2o9qIJcetWe5LfWOFY5Vj\n", - "JU6dYb3Vql7vzD7KiDpH3aGwoNSUcrmh4NCHougg/CG5Lvf1vDyoq/yMIpepA++b7hcYqXeorq5E\n", - "RYoUfdXVYL+/z8X0iVo/vKl8yEpKz9Qqs/tZcv/W56H+8DtkLvUca7XQbrTTWDW7lVpFz5VVlKzS\n", - "9+lXtadkAOOZcTvEn7KFVKSSJEmSJEkG8phQpPC9KWXgnhryV7XmmKk9hylis6ISsVaj3CMRRIZg\n", - "HbPq91wdUbSeQ2QNUW6uSHnUJPfH6sAqiyJWsPaI5KA9sVJqI11qISvuEUccIUnat2+fpHrrFWsf\n", - "1cFVlbFEOVuicniEG5E31N+yolJhPfWBOqMO3VJHGcAijhQO/Pii0+eBOuJ69Cn3IaEPluayyO+L\n", - "vlXy72MOQQ1FjWUs3HTTTXOf53OR7xjl9vtRr34+5n82mINq1fYI6pH+Co4G6gAAIABJREFUwruC\n", - "MwYZ47U+fC996Usl9XPaFVdc0VQe5nD8H1HcOFuwBOOsBPXmUbNA//R3EUpb664B7cN9avOyOYz/\n", - "EqlIJUmSJEmSDOQxoUhhRW0WRHmhjLTuzy4qi/BQsHpQIrBWn/70p0sqW8coPoD1yfVY9XOiN89f\n", - "q0gBnyfrLmANooD4vnrJWsEX6957713371P7SKHIsb8/NEIMq4r2oX4ZD0PHRWv/JAcRVh0Zz++8\n", - "886q72ONlrIvo96gQBOhU/KZWt1/XTnwKB/PXVaKCMZS5nOMmQhUPPqoq9OlUw1K/mbUBWOB5+Cn\n", - "K1lEupZyxXGKRERJZd8sFb0Ec/fUp0egxPFOGKoOo/xwRp9HPqOY7NmzZ+7fDmo37Up/az3fEyWM\n", - "69TOVfQ36rsE4xIFCwWN/l7r21U6+87zW1F/7ucZwfe4D3NuiVSkkiRJkiRJBvKYUKQ229oZa80s\n", - "OkIgilLzDOH4c2D1HH/88ZKk66+/XlK9b5Bbx5FCd/fdd1ddL4J6Q0Hy30cRHiUrivraLKWQTPKf\n", - "+9znJK31qxnqQ9d6Zl9E5FfjvlMoUKg4KG0oeLU+i6eddpqkvr9FipTnpuFk+NJ9VtevZ3Onz6Cq\n", - "ovKV+owrPMwJ60UIrsb7KGMHy7akbntf9eu5glby8eI61OHf/M3fbHj/iKly+fF81O9Ufn+MKT8V\n", - "Yez1qF/qbewcQl9lDKLCo5zWjin64+c//3lJfX8mX9KZZ5657veof/dtuvHGG6vuC/S3aCyjmDEX\n", - "op7TPnyf8tT6j3p06HOe8xxJvWrOeOWdEWVwj5RL5kCU5euuu06SdO65525YrlSkkiRJkiRJBvKY\n", - "UKQ8dweKy9DIic0Ci57yYmm3+rawj80qO7KKqQ+vFyJ98D3ZsWOHpHrramgeLPabURRRHPg99YE1\n", - "EvnClCJISlFjQ7NDA89DBAfWJFYk/6Y+I2ub547yWW021D9WIj8pJ/nTeB78L+hP1AfWcKR03XDD\n", - "DU3lwq+n9ozL1YoUZXBfCeYQ9xdkrKC40Ib0RVdZW9VxrlPrZznVnMbcc99990mqP0fTIbKXucfz\n", - "bwFzFOWnnlEI+DvqJmN2Kv9XlCP6Ti308QceeGDd64E/L32z1b8ShYZ6QNGhf6KU4DNEPRHtR444\n", - "fPUoB/2ZsenwfeakVv/ViKi+eU4HVTraDWnNGUkEMXNMlM+M+WDXrl2S+n5M+/mZiK3tmopUkiRJ\n", - "kiTJQLpl5IDpum62srKy6fdNkiRJkiRpZWVlRbPZbF0nvFSkkiRJkiRJBrI0H6mNFCnyCEUe9w4R\n", - "CH7GGPfwe+HbMTSCxWF/+7d/+7clSZ/61Kck9ZEEY8HPAz8D/Dhe+cpXSpI+8pGPSKqPwmOfGN+j\n", - "yN+B/Xv8BahHIkvIPcN+9j333CNJesUrXiFJOueccyRJr3nNa+bKja/WGWecIUk6cOCApD4qDZWU\n", - "+vT227Ztm6S+3vfv3z/3d3zA8EO45ZZb1q0Hz6R+4YUXSpL++I//WFLZj+DlL3+5pL4eqE+iJHfu\n", - "3Cmp96XCD4d/R/1zUXCfd77znZL69sAHjPr08+Ecj2jCrwM/BPyILr74YknS+9///rnP+7l1jEf6\n", - "r/uWEfHG5z3nDOV529vepg984ANzn4Wpz+v0tqMM3Icxdeqpp879G58lYKx5TjZ+0ofpm0RlMUb4\n", - "O/5t1BVj9LbbbpPU++XR1vzk/vgyvepVr5IkffGLX5x7vkXBGXbc98/+7M8k9T4s9BWe0yNL6Qv4\n", - "6tCXGNv4YDGW8cf83d/9XUmLfz58ky655BJJ0oc//GFJvQ+O99MTTzxRUv9OI2oM6F9833eU/F00\n", - "9vlKec04M5A5/rLLLpMknXTSSZJ6ny3akdxzjPFnPetZkvp3HP0W3y8fD7wrLrjgAkmbP3dGpCKV\n", - "JEmSJEkykC0ZtYf1EJ1r5GeltZ52jwU9lSLluUtay1OC5/SID2g9K27v3r0b/h0rKcrbdPXVV0uK\n", - "FUOsEqxBjw5EkfFyEEGD1RHB9Yhc4XpYp1j/UT4v2gur1SM0SooM/NVf/ZUk6ZRTTpn7PcoT16F9\n", - "3KpeFt4eqCmlCKpf/MVflCR99rOfnfu952LxyCGsUaxpvw9RlagmrkidddZZc/dxRWp1P40yO0+l\n", - "REVQBld3USSiCFksfc/3BB6h+5nPfGZ0WTeCXGG1EZNj8bkSZYk5HoWJevF8Q55TjzkdBQPljT7e\n", - "6hNM/UdnH5bwzOWlMcZ9yMPkbN++XdJaFR6iqLWhlOrL84vRbuwqHXvssZL69uCMR6JI/cxIxjjt\n", - "TlQe/XGqvGNTk4pUkiRJkiTJQLakIoV1x/6556rAyhuaQZxVNMoUigarZxQDFJOSz5bnKfIT36cm\n", - "ytczFurDM6M7WHcoD5GV9dWvfnXD+6E8cj/PShuBNUPma8/tU/JNw8rifp6/qtVqjZTN0vllreD/\n", - "goKG9YY/Cf4RJUWU/okfBtYv1n6U8yg66R2rnft7fTKeGEfus4aqEGXsp52i5xqinpR8P6ai5GfH\n", - "2IkyrUeq8KJgLJE/atFEcxlzC0pilPkaxYnroFjwe/7N7gZjpZbWs+ucViUUhYa5F39QzrfkOSNF\n", - "qhXmgiiHH6o9Y4/+ypjjHQ2o7lwXNZ7nQqXn+fDFY873dw7thdJVm2GfdmP8LHqcpyKVJEmSJEky\n", - "kC2pSGGNsBpHCfJIlqGgQGF18ZP97JNPPllSv4pl9e2KFP4E7qM0NpP2smBfmsigCFdgPIoLarM0\n", - "t1obnn16aDZo2g2lZChYa09+8pMl1Z+g3gpRjpwbh9pB9m36dQnqjahMrMDjjjtuw+999KMfXff3\n", - "KEkoUu7ngxWKKuBqEL5ukRJ58803S4rPKFzt41arUrdaqJGChcWO/6L/nbpFIXG/T76PCugKxqLP\n", - "7XRK6p4rGCgGPAdtX+tTFN2PuSBSxf1zzAm8G5iD+T7+d62+Tq62o3SgwhKZe9VVV637/da5gHeM\n", - "v2uYW0qnPLTCmI36Gf3VffwYc65e8zn3U6UefY6P6ofrM0cxx5R2Y6KM80MV6NpTKFKRSpIkSZIk\n", - "GciWVKSw3lCKOMma/fvWVT5WE1aK7wdzPX6SzwirwyMvIFKeWD37Kj+KQtwqtJ6JBihRHk1ZAmUF\n", - "K5F2Ovroozf8Hj5yWMelff4S9LexLLpdiXjBX+K8886T1OeaiaztkoLLOCMPWCs8d+THQv9gXDko\n", - "a5H/ClapR8euR+sZWbVEliw+IqiSfq4k/ny0jfcRfHhqfWmmzodVwvNP8ZwoD4xh5sgXvvCFknp1\n", - "FH/F2rP+UMVRSlCUqD/v43zOz/SjnihXNIeX8HbnuVGzN8uHjbEf+YUOxedqzyvGeKqNlqM+GKv0\n", - "d65XW1+UCwXL3+EOf+cdy/jgOrVKFP2P/lJb3lSkkiRJkiRJBrIlFSn2QdkXJqqILL2t0VBY3ET/\n", - "oWBE+61YU/wke6uDdYKvlJff4b74E3iWXs+LhVXLvu/YHCEoRqyyh0b/YQVSHqwPrEBW/zwvPjDs\n", - "p3Nfnt/zApWixrCSsYapz9ZM8vg7jI3MAawnfHnov9QH1l2k3JTAN42fu3fvllRWwtyqcj8Cyhtd\n", - "B+uMdvdItKG5Xeg3WJlHHXWUpN5n7Rvf+IaktePM70+/HnLvsdE8RE+VFIKojqh7FJ/SdWi7RSlS\n", - "jE3Kg5KAKujwXPiIOaWcaa4gMma4P741KA20F2OWvEr0XeZM/PKo35Kv1VAefPDBhVzXYQyQ+Zx+\n", - "MnXOQnZlUGZa51Tam90c2pd+Vbt78K1vfWvu38z1UWQv73jmYO7vKnfUj4F3C8pc7ekqqUglSZIk\n", - "SZIMZEsqUlgTf/AHfzDJ9TyvE1YN1k5plYwl7nBmnCtSkXLE77EisPSxwvg9q3cUqqmy1WLpo1BE\n", - "yk8JrA7K5fWJQoAVSCSPK2BRlJ5bqbQPyiA+P1gdWBH4YdT6aEVKFH4vtX4dDvWLoul+H0MVKac1\n", - "KhIoB/XsUXYOVmBrBn2IolspF+2AjxZRu9yXccm//WzN1f3FfSlc9YWp8sqgDHhfijKZO/QVsvpH\n", - "50LC2Cg+5pxo7PlzjPX7a1WCUET83EU/cw8/SeYAlCfGFsoD/WGo/2RElDNtUbjPl78zpoKxNXSO\n", - "8qg9lFPmcNqxVlGlnlGc3D+auYKIY8aj+896pHdUb+yOUM+1GQJSkUqSJEmSJBnIllSkpob9dWB1\n", - "ir8BvhlYP56PJ1Iu8LOI8ttEoNyw/8pq21fNU0eE+L5zRMl/BCUh2m92qzmySrE6XQHy6Cz8JbCW\n", - "sJIpH6pDrQoA0QnqNdFhQ+5D5nj38RkbdVjCFanWzPtRxFkt0fjhevykP0X5sKhHlMkaRYqxuag6\n", - "jvLW1ILljsKyaEq52qaOPKXta8emn0vJXMmY5Druj+kZ0GkPfj/1mOa6i1akKDe7HygyQ8/+K8E4\n", - "GepTRrvxk/aiPVrnaPqPq9fAeOd+nquOXRDmCt6pxx9/vKS+v7ALxhoAld7XDhGpSCVJkiRJkgzk\n", - "caFIuY8Tq07211ml4svBPqlbP67UED011IfJo9XYl62N4FkUWPyRMjDUVybCfZE8MsMjMLBSsU6I\n", - "sGi1prFy+D64NeZRiq1Qj6gjbuWUsgvX3p/rch9UGVegajPIQ210J6qKR6j5uAKs1Fo/BPwhUCAZ\n", - "L6vbzxUClINSHTv4LPHs9FFXnnjmoWOC8tRGPo7tiyXGnhpB+bgOYzbyN/SxHuVtchij1Btzpfv7\n", - "UU/ReaBD4Z1B+ccqkxEeYU7keW00WSutc4PvxvBv2t/PM+XvtUoe/YfdCD/vk3r3iHTmCBQn3g38\n", - "nnr1/ua7FLVzXypSSZIkSZIkA3lcKFJRBAKrZZQNfFiIboui/Ry3tGvxnDDf/e53JbUrK1P7f5A9\n", - "l9W9R0oM3Z+vtdr8+igtWDn4C5ABHau+1R+D/GReb26VoRBy/aF5k2hfp1QfWGWRCuGZ2V3JRNFb\n", - "NNSL524p5eli/ET9A9WHXDIowbTTaoWPZ0Uh4m+tSgFlLn2/1efDYezWntbQ6o8JtacquHofnaMZ\n", - "4f6npfu5/x7lLJ1XSh+nL6AceHvQFxd1ZuGxxx4rSdq1a5ck6S//8i8nuS5znT8XuwX33ntv1XVQ\n", - "a/EBKuHRdIcffrikfq684447JPU+R34+J/3Z84cxxzJ3+3mtpfLzbnbFEWWSucB9sag/FEn6M/6Y\n", - "Pu7ot/S/zGyeJEmSJEmyYB6TihQe97UZzkv7yVivKDFYSUTTtWZ3rcVXzygOrcoSviNjc4qgxLHK\n", - "bz3TsMRQ/wGsHJQq/BJQQLiunwdWYt++fZJ6a+ecc86RtDb3EPfBWh+qSEXQfljj3Iffo4T6c2Ft\n", - "kzn+gQceWPf6991336TljcCKfv7znz/3e1ds/bw4rGys3muuuUZSP/5QlDlT0FmtYOKPheXa6vMB\n", - "zC0oXFEka3T2W8mHCcULxaaUywtafaMYO7UqN8/Dc/D9Wsuc+mcsRiosoABA6xzG5ykvCgbKw9Bc\n", - "cLXQjvfff/+k1+W0Bq6PsuL1VSJS9kq7GNx327ZtkqRzzz1XUn9eJvXuuz2MWdqfdmActp5ripLG\n", - "XE0GfeZsxgPvaMrDO5z6wresxFBfulSkkiRJkiRJBvKYVKQWdW4Sq2Z8MVh9e96fElgTpczhWAOR\n", - "EsVq+vTTT5fUW8NjrbgSJaXP9++Hgl8BVkdklfPcKGRYWexzo3Acdthhknpl7a677trw/pG16jln\n", - "8K8Y62fhkSWAosbzEI1GvURWJSoDVlSkOtRm8cZ/wcsDUVQe0B9oR5Rj94FyPwysXqxVj7gpsXo8\n", - "uH8Y10RZIoIyUlhoe1QyFBbapKRGRorRSSedJKlXTK6//npJvao4VbZ7p1XdRlGA2pxj1C+qrmeW\n", - "jtTSof6lQH3zk/r0SNxF8fnPf34h1+W0BsY0ZzpG9Rjhiin9mXdolGGcXRKUtltvvVXS2neNR3Yf\n", - "OHBAUj8XcB/mktpchnDDDTdIku6++25J/Tv6vPPOk9TPyb5rNDaynHdc7TmeqUglSZIkSZIMZEsr\n", - "UljI7M9+5jOfkVTvT9AKq232dUv7+xGcSI4yQu4LrssqHt8t9qNZXaNAkHGdyBCs6NaM59F+OOXB\n", - "mqw9/2jqbL6upHhumciKQTEcSmTNTO0D5fdz3Hri37SbRy3ye9QXrouSQ//xaEOIInmivGGcFYha\n", - "c8opp0iS9uzZM/c57kdE0Qte8IK5v0c+cl/72tckxYpdidVWN0oSz4z/GHWH2hz5duCnRd3S1xkb\n", - "Q3O7cY4g5aDPR+d4RrzrXe+S1CsFWPyohcwVJ5xwgqRereT+jC1XNpgLUJRuuummuXI6nr+HuZrr\n", - "UM/UP23kfczzVvF5oE+hRrtqixJFOWg/YCxTrtrotWUT+QO2wrsHVdozvjsoVihKtE/tOxfljJ9j\n", - "YfyVfB3pj5SXfsM4r909IRKceqiNUE9FKkmSJEmSZCDdVKegN92062YrKyubft8kSZIkSZJWVlZW\n", - "NJvN1j20MRWpJEmSJEmSgSzNR+pd73pXMa9Qa1ZdB9WrpH7hX4BPx9e//nVJa6P18L+IovhK9xsb\n", - "7eYn29c+31Rs1ft5vSz6fmOhH7zlLW+RJF1++eWSen8OfL/wecJHkFwo+APwEz8b6gEfJfoZ133z\n", - "m98safPbj2zP+C3RTtQDvolR9KnnnXLwz3n1q1+95tlKfQNfnih6jL975GbUV0499VRJfdvs3bt3\n", - "7u/4IxJhij8c/pj4r/GTyNLXve51c/fDl8h9Vzw7PHV+xhlnzP0en5MHH3xw7vfMhZdccokk6T3v\n", - "eY+k3mcEnyvu8+QnP3nu/lGksvdZ2gNfp4svvliSdNVVV0nq/SLpE0SAkj+IOZgoMdrl/PPPn7su\n", - "fnzud3jppZdK2npz2WPtfkSo/9Iv/VLT/UrjrsSy6jMiFakkSZIkSZKBLE2ROuSQQ4qRAETSlDJs\n", - "t56x5mCxkwGajNKuPHleHaw0jzSJiM7JOuSQQyT10VlRNNrYE9+xNnm+2myvnldpqzFWiYpAgaRd\n", - "sGo9kgPFiM9hVQPtjj+iR9FRfrL2Av2SCJ5SHivUgakz0pOzBaXWYZzynG5lenZjImmIBiTHEhnN\n", - "nUiJor7Xy3WEEoWCEUV+lixij6R1UFhQmlDPfe5gjrjooovmvnfZZZfNfQ6VjrnMo9ogmjtd5ec6\n", - "N95447qfdzxilag9fx5XO0sZtykX+ZGozygnHmOPuYdoP85oiyJrPXO272ZMHXEMY3dPABWan1GU\n", - "oZ++sCx8bEbvYqIqUWzJo7ZV4MxA+hu5FP3MwIhUpJIkSZIkSQayNEWq5hTzkmWNb4QrRUOJMmHv\n", - "2LFDUm+d4gfAarw210RkDe3cuVNSb/2hSJEDBCstirAs+W4BFvzZZ58tqVe4SvW3jMjOFlAkUAg9\n", - "RxD5vEpnLjpenyiH3t74sbjSBG6l1lqRrX4EYxVLB8WopFzyOdQFVzCpL7dW8e1C8eKkebJFl7J9\n", - "Mz7WUyewgFG7UKQ4T7NWjeU6kRqI0uJ+XihigFLi51l6PieUJlTj1jxTY/F5mTZjDogUl9pzNL3v\n", - "ew41+hBzUm3Gd1dw6BP8HLtrUSKqF1cUmavpJ9Qb9ev9FiWR5yBPFgpnpOJuFq5IRfVLu5YUu+hM\n", - "y0Vz4oknSuqVVhQpz/QfsaEi1XXdoV3XXdd13b1d132z67rXP/r7/7vrut1d132767qruq77v1Z9\n", - "561d1x3ouu6BruueO+ShkiRJkiRJHguUFKn/kPTG2Wy2v+u6n5C0r+u63ZJeKWn3bDZ7X9d1vy3p\n", - "LZLe0nXddkkvlbRd0iGSru667ujZbLZGill9ynLtKhQrje96llyPWBmLR6a4IoV15b4tEZFigPKB\n", - "tQy1Z+hRPqze6DwmrLtPf/rTG14Pf49apa0ESljtCfQeCVQCpQ/FiP1uIqPI6tyqSDlRfdAfIn+W\n", - "Eu5ngtXWGtESKT8lGH+Un35Ke5WyQbtyRsQUYOX5yeq0D+MYH8XaMw0ZNxvNG0QwYulz6gBlvvPO\n", - "OyWVLeXo/MzIV4X7kDUftfuVr3zlhvcBrjf0NPqhuJo4tYLjY8gVMHyoPIN8ySeI399+++2S1pab\n", - "OQLVGvg3ylj0LjrmmGMk9dGVtX3UfcCYC9lNcV835uirr7563eegH6IElc6/XDS1Eej4R0b1Rj3h\n", - "Q8U7dardphIofIxvomYnOWtvNpt9fzab7X/0//9F0v16ZIH0Ikl//ujH/lzSBY/+/4slfXo2m/3H\n", - "bDb7jqT/Jen0ukdJkiRJkiR5bFHtI9V13dMlnSzpFklPns1mODD9vSQkhP8maXXilO/pkYXXGlZb\n", - "gKyqsWQj/4WSdTY2YsJB2brtttsk9fvT+D9gLaDgODwXq/aTTz5ZUv98WPpY1qx++cn3/Lmw2oDV\n", - "PlYU5eN7+FmUzisCtxr9foCVSJ6f0onbtXm0ak+cB6xIfM3oR7SXn6XXiitNlO+ss86StPYsOvIm\n", - "OShF3l9Kvm1OyTqvVRF4Dqwx2oV+VIrEop/h00e/Rjn2z/n45XOoBfhE1vp6Uc71+gt9EhWSOuc7\n", - "WJyUIfLFQWXj+94XUD9pQz+DDpWYnyga9AX6Kj9RoTdbiYLWsTcW97FBUXKFpdavsNT3/br++Ujd\n", - "pN0Z65Sn5Gvn9Unfpp/Q7p5bLVK/6a+8O5jbeS5Xg/n71P6TgMIGz3jGMyT1uyKMK/q/z/3u34sv\n", - "o9cb4yXyGRybS5D643lQKmvPZqxaSD26rfc5SW+YzWb/vFr+nc1ms67rNtqTW/dvqyv0Bz/4Qeio\n", - "myRJkiRJspn867/+68GFWekQ6eLqpeu6/6JHFlGfnM1mlz/667/vuu4ps9ns+13X/ZQknDn+t6RD\n", - "V339qY/+bg1PecpTDuYEYfUX7fPW5uiYOkcIViVWAIs9FpJYU1GeJX8eyu++T1iprIbJfRP5Ovlz\n", - "Ug6scMrJ74lu4vqteYai56u1Emt9o6BVocGK5LmI/qL93GpqxZUa1Al+71ZhCdppKFPljmHc0R+5\n", - "LtZyyUePSQarEyvS64H6d/8T/IaImPF8bLRnqV7XG/dY4NQ1bXX//fdL6lW92qgw5iDPU4SPi48p\n", - "FCX6PnWDbxbPSnmijOBj+0oJb5NIkeK5eZ6hpzOU8LaO/P3wWaL+o/Kg0LA7wFwLtX6g+/fvr/qc\n", - "475ezO3UN+Uj8pddA3yh6C/UP59ntwQlBiXr6KOPnrsff6f/4qPk7V377nQ/ZPdxYy70dwZzi+8O\n", - "+FzvSizPS/midh6rSLma/vDDD+tHfuRHDr6zzz///INZ8tejFLXXSfqEpPtms9kfrPrTFyW94tH/\n", - "f4Wky1f9/sKu657Ydd1hko6SdGvbIyVJkiRJkjw2KClSZ0v6JUl3d11356O/e6uk90r6bNd1F0n6\n", - "jqRflKTZbHZf13WflXSfpB9Ieu0s2HT+0R/90YNKCdYZChWrSlbjWLSR1eZMtc/P/i0KB9aFKyy1\n", - "UYL79u3b8O9EL1EvEb5qxxrGlwkrFquc8g2tl2h/feooybGQUwUr6eabb5bU+12Mxa04zinjvK9S\n", - "bjSs6kVlV4ZaXzSsU8pT8heKoP39J9BffSogMof7UR6scaL6du/e3VQeqe+zPBOWPmWhDRnjfA5/\n", - "L+qOPk7buU9PpO5yP29rroc/YUlti7K6TwX1gOXt5UVh8M9NNfbdpcMjfBlTrkihQJx55pmS+rw/\n", - "HuVFO4xVpaeC+uUnyqir3oxhlCh89fDtQxWn//F9V6tRhmgv96OlXmgHrz9Xery9fZeId5grcZSX\n", - "8UaEbglXmKLxQH622rnL++9NN90kqZ97qO/afFYbLqRms9kNilWr/x58592S3l119yRJkiRJkscw\n", - "S/Pw/qd/+qc11p6v/lgtsqqu3c+dyq+A1TX78Kyqyfc0tbUYnT/l+PNjFVA/ni0XK3xoTpjIx2mr\n", - "KFGAdXXHHXdIWusP0UrkD0B90P78vbbfLfp8rFr/FVQYrNBSv4vAz4Tv449SKg9qB/0UBRo/kjGR\n", - "ayhSfs4hMIZQhrgnkZ7kn6Jta3PFQWTJ0vZT5WgbiysKPkegctM21AP12qpekj+J+ve5hfu4j5nj\n", - "pz+Uxt7U508OhXbHN4j6RRFiDkOJov95PfBO8t0Cb4/Ib5F2dqWKfzM2GcuR75GXC6XJ+z/tyfPu\n", - "2rVLUu8bFs3Vte/Y1jxa+M/6+Z8ohFyvOgK66e5JkiRJkiTJQZamSHVdd3BViJXmfgtYi62+JVMp\n", - "Jb4Kx2pFIbv77rslrY02KoH15KttrIHWKDfAqmHVzzlBWAO1SgXPg9WzaD+NqcC64KfnamnNkuv9\n", - "yPuf/73m/Ehpbb9qjZyZCs9nVcoDFoHVSo4d72f0d6xUxg/jmkz2Rx111Fy5vvGNbwwqz2o8Sslh\n", - "rGGRTnW2XXS/0liibijH0CikoXgmZ6KZGFMoKkP9LbkObe3qJWOAdqM8jGH6DHMdCpmXm/qjL/H3\n", - "1tMCpoaxQDtTHo+8BhRDFBKUmyii1ue4SGX2iHN8sqgn2qWkUntuQhS16F1D1N4FF1ww97mxuwet\n", - "Kr+Xm3rA5w5lLTp/10lFKkmSJEmSZCBLU6T+5V/+5aBnP74a7AtjbaCk1O7Dc9Ya+65Ts2PHDkl9\n", - "9CDWk5/5VwKrA2uDn1HUUy1Yj6yuqVfPIF3KcF57jtRWB38XrCSee2j9lpTCkqKEYuUnivv3plKo\n", - "SlmNGW9k7x2aG4j7oGhF5XbFDqsYaxjrnCjLVv+b9YiUISxt8u5giW9WZu8oNx7lLSlRU2Ws9ghP\n", - "9zWhPuiz3latMBajSE4/8w5/VFcOPbqN3QKizOiDHrnsysVmRx7zziudSsBcTj8hop13TeS74/VJ\n", - "/4rmLvf35N1L+Vp9j6j/0lzCiQNTnaU31geOtcO2bdsk9eez1pKKVJIkSZIkyUCWpkg99NBDB1fD\n", - "KDRYK6zC3Z/AIwjcmosycE8F1otH3LjCUIL9frLzEsGBFeAZ1LEE/rmGAAAgAElEQVTCPHoR/PfU\n", - "C9Yd1lat9cr3aI/orL2tCpEXnoul1uqMToCPfNsg+j0+QKgIfh4WaojndRpL1N48H9YtSh0RU5Sj\n", - "pEz+/+2da6ymV3Xf/4/SREprJC6FAMaOx8Y2M77fnQzOACIEx1HBgAA3KKg1VaQUg4IDrklSHyBI\n", - "yFEQxpEiSNwowU2aKMjGkJAaw8Dg+2U8HmMPvqAxCsbBbWmkonwh8PTDnJ+f86456+z97Pd2Zvz/\n", - "fXnPeS/PZd+evf57rbXZV4vcNmTij2pFzClDe+I++Z9+T8TcPIkKBfljZr1fZwZ9q6Q8YSlHZrV3\n", - "Wkk5iD5L0+4ByO95zdRx+jBtJ64yUH58L9sFosSiI49rV0vom4zp9Nmx11u7ukB9xLFoLLV+lrPK\n", - "7TcriCblWVHaQzFiRcoYY4wxppGlKVJr12yZxTIrZg+waHWV1mtLe4NNC7lLYob1GDGSgcUdFSUU\n", - "p2wdGyWDaEauAygvFJO4f1HtOjfXhfKHooPisCim3cB627ZtkoZ2xX3UgoIUlUAUyUx5yvxxaMcc\n", - "L7brsfm9yJ3T2t7x9UMNQCFDlSHLbwY+d6961askDdeP3wNZpiO0f+oXtYPy5rpQtO6+e/67S+F7\n", - "QpvPrr0E94ZlG9V12iI+IZkShUWMElObWXnezCsPU1T3KT/GPNRJ6oe2T0Tx2AhnxoZF0ZpRPfrP\n", - "tjLWx2msEjV2bC0x7Z55tbs6RN72trdJGsZCnnm1zyIrUsYYY4wxjSxNkfrpn/7pg3Zox9IlxwjK\n", - "SimrMFYfylDmVwBxP6cSWEFYzvhEYYHHdX6sqa1bt0o62ArFOq1dh+U6M98ZygulikgXZveUB3vC\n", - "YQXG686i+qLvGcoVs3XKn/NgBUUrNkajZZFHlPNYOD73h3JYu0cjoAJwXyh+kEVbRrBuyMtFuUQr\n", - "s9QOo8/WtMor/Yz2wXGjLxPErN/0V6xX+mdUSgElNe6bFqP08FfKjjNPWpWomHOtlA+HtpT5ksQ6\n", - "GBsRPC1Z1GLmN9h6/MzSpy2hzMXoPMp5LPRFfKpK0MaJ6oz+kXEvxayeuI8M+iBjAGMDfYXfo7DQ\n", - "fjhffCbEsZo8WpQjfRblj/OWoudQBBmbab8xF10rPJPx08SXrNYn7Jd+6ZckDWMj5VPqP5Qnz3LG\n", - "Itpp7W4VVqSMMcYYYxrplrEG33Vdv7KysvDzGmOMMcaMZWVlRX3fr5sawIqUMcYYY0wjS/ORmoUi\n", - "xXo3vkdxvZhzXHfddZKG9eOxOSKA9WDW91lHJRqL811//fWShozR7EGGDxHvsz6OjxDvk1eHyAH8\n", - "A/j8kUcekSRdfvnlE+dlPZfoMo4bywWfL6Ik+Zz7iXv+cd/ve9/7Js530kknSRrW9fEfYL0ZtXP7\n", - "9u0T58FniXV/osU4H/sc/fZv/7Yk6eqrr5Y0rOvjO8fvuQ7Oy/o95Uv5xWzKr371qyUNvmPvete7\n", - "JEkf/ehHJQ1+Cpwn5nSpjajh/BwPPwXKcVHqLOf51Kc+JUk69thjJQ2+bNzf/v37JQ3+CfgE4g9E\n", - "/+H+6YeUC/+/5S1vmTjvvFlZWdGNN94oSdqzZ8/EZ/QlfF6oc9oS/nr4gcU2ut651r5GduzYIWno\n", - "gzECkbaMP+Odd9657nHwHbnyyis3PN+sifeHXx1jDH2pdR9OfG7oi7/1W78laRir8TXLorAYk2LU\n", - "H2MbYwB+s4wF+CleccUVE/dH/fM9fp+t2HBdnI++wvVwvfgXXnrppZKGsSX6/uAbxNif5VIjd9ut\n", - "t9667uf0wauuumri/ubNssayu+66S5J0xx13SBraZ5Z5H58z/DZj/jHq9eyzz5Yk7d69W5L0gQ98\n", - "YMPrsSJljDHGGNPI0hQpKc8UjUKB8hNnjURgYBFHxSV62mMlTLuHHNFG0QqKMBsmCgnrAuWqlJOF\n", - "z1EGOG8W3RWVEr6PMhCvN4v6ohxjXqO4QztEhYd6xFrkfu+77z5JB2ekx9omsoJ6yyI1KFfqMWbA\n", - "j9YkakDMScJ5okIE2Z6HlM/YPFete9jNC1SYmG8sg3rM9r6L7QkFdhlEJQpQc2krMWqOvtUavRch\n", - "qmvv3r3rfn7JJZdIypUoqI0amjdcB9FdY7Pvx4zZ9InYx2JfzfpONgbHtshYVIreYqxg7EPBjH0E\n", - "RYPVBdRz7g/ljuuIUZzZ2MaYko3xqMelnH61Ps+sOtBXUWJZ7XjZy14mabgv9p5rjSJ961vfKkna\n", - "tWuXpKE/Qm1uPMZ4+MpXviKpPgKfqNgsQpn2Rr+tzWdlRcoYY4wxppGlKlLZ+joKS5ajItufKTtu\n", - "NvssEfPtYLXEnB8R/B+wmshVgTXDcUrKVlRKMn8B1vfj98dm/YV4X5kVFXNtxPLCqsGK4TgcH6uO\n", - "42RKXWYVYBWTcyRm8c2sM9oH1le2E3sG9zl25/Jsp3msMa6/1u8EK7aUGT3LDTQv5r3DwDSgZkdF\n", - "alb7GwI+VrENnnzyyZKkBx54QJJ02223bXicuC9jzMU2NideCdp2ZNrM5pnqGym1nSz3HMRdCGLe\n", - "pRJcV1SiGMvww+SZElXt1lUPro/7i6D+4xOUkf0+wn3STt/85jdLkt7whjdIGsaWz3/+85KmX82J\n", - "YzPlxrOgVnmNu4jMqt1HSs/miBUpY4wxxphGlqZIveAFL3hGaYjWBQpD5ptT2k9n2r3aIEa1RWUL\n", - "65CoJogKStxLsLSOjVITdwrP7pfjZYrHtMT7A+6f9W58srAuiHygPLDqmO1jlfCKAlkbDRez9Y6F\n", - "8471Q8mUqFe84hWSBl+uqHq0WuEZtXv0RZWB7MQlf5cYGVW7D1bJjyPL7s37qAot5RIVmwh+h7OC\n", - "vhH9xyjzuD8mY90tt9xSdfzoYxMzV8/aIkcdXRaZwpa1PaLcaMuM/ai6tW0Iv1xAqWFMJUoOHzzG\n", - "4re//e0bHvfiiy+e+J9nWrYHXqa08ewoKSXZ77N+QXu6//77JQ3PVlZ9UKSmhTGaZ0T0kSqN+aWM\n", - "+MvGipQxxhhjTCNLm95tZCkweyXaK1KKgoqWeowYyfaNYn2ZvERbtmyRNETWREUKRSMqDVk0VG1E\n", - "RVSiSsSdqmMOlLGWPcdBkciisPgcRYfrxheM3CiUE/9j/bCvFlYm1lpUiKLVH9fXW/1bsHJnFRkV\n", - "/Sg2C7H+a/1dom9VbQRLjKyJqkEsb9rRtm3bJA31G6Ndayi1BVQvxgj6butu86Vrw/+O6yrtG1qC\n", - "vsWYRtlRp2PKShrqguuLYxTKGgrPtL4yERQoIO9S3B8zqx98zuIecDfffLOk+sjUqJID7eMjH/mI\n", - "pOEZcdFFF214PJSs6O8Y/SFLxLGuVq3PjhNz4FHflBevEfoNz4ZM+QLGclZXiDqMuQSBsSbeL/Ds\n", - "WFRE8FjfQytSxhhjjDGNbM4FxxmDVZHlrQJmoTGzeLSGsNKYrUalalY+SnFdO/OBwg+Dz7FSsQp2\n", - "7tw56ryUE8eJCgOgvPB9rBTOS7mdd955614P38fawcqOik603lqtskjcwb0WlBNUAKxUFCmsZJS3\n", - "aNUs2w+llljvlFPJTyP6PkXVIfpHcDyyf7dmy64h88ucNbTRWfswMSagJHCeVt8RjpMpAShqs/a7\n", - "hFg++OjUwqrFOeecI0l69NFHm64jy4QNZFyHP/zDP9zw+5TX3/7t305c3xNPPDHquqgPMuCjCI5d\n", - "ZeB6SlGPEcZmokfpq5mihuLFs4PVBNpRFj0Zd/uIz1yOO8+xYS1j+60VKWOMMcaYRg5JRSr6XJTA\n", - "WkMRyXxEUCjIbrxv3z5Jw+w/5iiBOHseGz0XZ+EoGygAzNZRnuJegcz+8Z9AIcO6G3s9WKcoCVl0\n", - "GOUVI4koZ5QXfNqIQOJ+eeW6UDJiXqdZKVARrKNaax7ljfKNViHZf1nPP/300yUdnPsly9Wz2aDc\n", - "S3nbIrE8oyKV5b9ahLUZfWDmBZZ7lguvFRQF2iIK1VglB6JaH+tuXkpUxticfyhq+LFmPlylaLnN\n", - "TlwdaY30zZQoxiRWBVCg4j6vtT54KDqM5Yz9Jf/m+GwFfN3iWDIvaiOUwYqUMcYYY0wjh6QihdVR\n", - "m9k5KhrMNrGA4++ZtcfoIqyf0no6uTLI/ZGBYnPKKadIGqxYMqOTswRlKipRgNWLVcH3sSaJPqz1\n", - "H+D3WHElazdG+mD1YUWwVyL1wCy/VI6AikA9Reu5NeIqRiwBVg/tAwWU72dWEVbiMcccI2nwL0Cp\n", - "4jpr8z8tm1L7zYjKUvSZmpfCWMPYLPaRqL5mMIbMWmVDhWcMo89P26ayPQgXTa2CFzOKzzoz/bKg\n", - "faE0MvZkKvisoK8TFccYRv6z2kjkqJDyyrOE+8l8pWjPmTK5qDxSY58pVqSMMcYYYxo5JBUp1m+j\n", - "D1EG67UoPqwDoxxFZST67GRgFcUM7LV7m5FNl4zY3BfXh29KyRpg3RmrAusSBYXIiahIZfm0sPJi\n", - "pEctzObZGR3rIipmkVL2Xcqb++M1u48SZ555pqSDrSN8nLD6sYIyfxLUAP4nDxnfp14pl9Yd1BdN\n", - "q5oSrebYH8bWUwZ+IxtZ6aVM5/OC89FWaCNj7z0qYNFnCZ+SaZW27PibFcbcWv+9WavAY/10a6F9\n", - "oHrTjtgXdN489thjkoZnytgoSMZAnmG0S+6n5KOYRctNu/owb6xIGWOMMcY0ckgpUnGWXlKiIvgt\n", - "8IqPElYj1h/Rb1HxiEoP6/kxEqE2MgTrj1k6Vg4+Ullm9wgKEtYZvjkoQJnFnlnHWBNYB2OtAHxg\n", - "KBfOUzpOdj2UD1YJ/9MOaBdZREmWPyzzscOKwtrnPnjFGo6/4/wocCiJUYFaVC6UWRGzIpes+2hV\n", - "Ul6z9u+g/2+kmEZFh77dmtE8U5uzTMjUdUmJirsvAJm+AXWZyOPYNku58jL4HZmol0VtJvJaJYr6\n", - "RxWeNn8Y9cSzg/aTRQtmUWglOO6iFRjaAX11rJJL/6LcGQMZM0o59LL6pxx5ts2bsUq2FSljjDHG\n", - "mEYOKUWKWenYyBJmx8y2sRqx2jguVgWKRIwuQjHC1wqLOFq9tdYgs36i8bB28HW68cYbq47D97/9\n", - "7W9LGiIvsLrH5mahHIi247rI6F0iRiyRFwvI+RLJrPZo7VFfvJas06w+yDKcZabHdy76n2R+EZzn\n", - "a1/7mqQh6rLE2H2dSlD/UckbC/2Fdl+7B2SWi+iEE06YeL81C3U8z3pRgHFPMSCCld/ee++9o86Z\n", - "RRzib8m9YsnyPteT9cVMKYlqW8yFh2KBBc33a8cgFC9+h9/mooj+pXFsZ+wp9fUs7w9jSqZ0xPKl\n", - "3rK+SP3SdkuKxax9zs4++2xJg8/UrPNildopyl5WD6yCEK3HcdgLEcUzy6SfgdK1devWifdRqGYd\n", - "bRqjFktYkTLGGGOMaeSQUKSwRpiVjvW1wCrBOsTayGbz2V5hXAezbpQSrKaxoCBh1WAN/P3f//2o\n", - "40RfKnx1WqPZAEWi9f5Q2jjO2J3pM7DysGawdrDKUeiwnvAfifVKdF60PksRUJkVijVcq0QB9UQ5\n", - "x2hQ1IfayCOsQKzGqAjWZnlG1SgpUUSdYvVHVYPfx/23gHo799xzJUm7d++eOP8rX/lKSdKtt946\n", - "8bv1yqOUW44My7P218L3gzZJXaL4UBfUTfTByNpUjCjmd5Qh56Wtc1+1KjR9J+b5aYXrqS3fE088\n", - "ceL/uAtD5nsU4dkw1qcoKoGlqLKo9KFcjN1Dbyw8gzjPWCWKdvNzP/dzkob2wtjH6kMWIU4k8hln\n", - "nCHp4HYMXBftE3X8Na95jaShX6AklaIeL7roIklDuzr++OMlDf3s2GOPlTQ7RYr+umPHDklWpIwx\n", - "xhhj5s7SFKnnP//51bNIrJNaH42MViuUWXuWWXzaHC5YybyOhXw6MVN39A8oreezw/hxxx0nabDO\n", - "8D9o5fHHH5/q9xncD1Zo/D+zTlm/x6qJGewzou9PSSFib0TKD2stWrUx6hO/DcofhQfrHNUg+o2Q\n", - "Ayb6L0Qrc1Z+FZQbVj3Xl9U3voW8wqmnnipJuvDCCyVJr3rVqyQNVi/1GBWp9SjVyayVKCxvxgjK\n", - "nlf8KKMvSG00UMwuz5jJ8WkjWPZjLXP2E6UNMlagJPCKYoVvEAoBaiq+Z/yPH2SpPqKSc9ZZZ038\n", - "vgSrDKjL3H9UmWvV+cxnhz4Y23bmA0XfrB1bSnA/Y/0o8UkiZx5jH+VBfWf7zwLt8I477pA03F9U\n", - "l3k/jlGMgbTbuFsGYyuvJ5988sT3uD4ULZTU+ExG6aI9oLTVwhhGudRm2rciZYwxxhjTSDerLMOj\n", - "Ttp1/crKysLPa4wxxhgzlpWVFfV9v+5mm1akjDHGGGMaWZqP1Kc+9amDcnuwHhl9KCKsm0bfkgiq\n", - "13XXXTdx3JgLI4twwS8gRgKxTs26Od/Dx+PTn/60pCHCgPuKWV137dolaVhnJqN5jGQg/w7Xz3Vf\n", - "cMEFkqRrr7124nPWkYmmgoceekjS4CNDNBe+UURgsJ4dd4R/05veNHG+af1NSrlEqL9rrrlG0uBv\n", - "UFrPrz1+jFT6tV/7tYnzAj5LWa4f/ACIQKKdUJ74VUTfKM7zoQ99SNLQLolAYr0+tgfaI/4hWU4X\n", - "Pue6f/d3f3fd+5uWWD60v/e///1TnY9yyPpnjJhaWVl55lytGb5LcK9XXHHFM+dcBJxn7PlKUYy1\n", - "54vHoW7imIY/W9x1Ap8cvk8EL33mkksukSR9+MMfljT4wOCbk4315FWivu+55x5JQ5+Pvmjcx+/8\n", - "zu9M3N+84Lo++MEPLuR8lPNVV10lSfr85z8vqbxLBn2VcmesoE/jh4vPHM9gcuaNbZ/4ReKjF33N\n", - "6NtErUZ/19b+0ErpPFakjDHGGGMaWZoitV6m2ZISBSUlKoIVyayW35dyrZSim7CEo1XG3mq8MrvG\n", - "GoqRH6VcFVhllE+MoovKEApFKfKFaC5eY1bkqOSgSE2rRMU9CkvZbWPkUi2l41K/pXqOmeuj2oE1\n", - "hRVOzhcUJSJIUJZi5A1+itxn6X5RBUoZ3WOW7XkRlbrWTOqRUv+MkT9rIWKSXG2toNpS1zGvUy2Z\n", - "OooCUKuyjmWsElV7HOoGNZ37y/Y/pY3HXHKxfmir9J3SWM/n3/jGNyQNbR6Vmc/p47WRtrV7/kXi\n", - "LgXkXVoU0ee5duzcuXOnJOnjH/+4pIP7NM9OIudRu1vZu3fvhp/POy/XrLEiZYwxxhjTyNIUqRe9\n", - "6EXV1h3ZRvEhuuuuu0adCytw1jlksnxF+IjE/bZa8/fEPEm1O2BnVjB+CViPWJfT7owOpezG7NmX\n", - "KWal7MKLAsWD7LnkC0NRi1YV1jYKFIoRihbZfb/4xS/O87KfoXXvvugPM3Yn9GmzY9eyUcRxpkRR\n", - "N7VjT5bpeSyxDzKm4Ws0L0Vq3qAA4Wc5dv/EmBkbalcnUKIiqL/44pQUECi1i9LebvhL0vfYBWNZ\n", - "7N+/v+p77Dl55ZVXrvs5PlI8y0pK77S7ahxqWJEyxhhjjGlkaYrU008/Xb0DNEoOVtxYRQqrD6UI\n", - "hSfOloniQpmp9S+IVhV+D1gvnK91PyD8NDhO3LEc5YSoL15ZH8faZb+k7du3S5IefvhhSXnGaNb7\n", - "KT+gHLN9sPAJyxSpUjnU7giegVVIe6ndLymCfwWqBP4gpeNFq5Z6yPaVwtqjvONeefOG+qUdoayh\n", - "LGJdlzL40+64n3nT4v/DmEMb4Zo5FveYZayeFdPuZlAiy8Q9a8gs3aqoZbsPMIbQB6PvVdyTLyMq\n", - "UdR3RmnsKY1dsY+w28D555+/4e8yaiPUM+IzrqQu33bbbeu+j5JL+T344IOjzptBBnO+T2T5oYYV\n", - "KWOMMcaYRpamSEn1ygOWeauPEb9HScGKiTlmOD7WTi0xao+ID3xFsPBbd+zGCkLhif4D+I4xu+fz\n", - "aCUy2y/N+lHUsFqiFVayjkp+BvOywoH6rS3vGJUXof2gwLWqFfghRPC5IhqTfkE9tkbd1eZS4n5i\n", - "lNxYn0LaK34rr33ta0f9fiy1/h9ridFYUSVElZ63IlVLq7/gOeecI2kYE2688caZXdNaok/QtKDK\n", - "oubv3r173e9t3bpV0nCf9NHPfvazGx6/du+7ki9URlR84lg9VmHie+x/+q1vfWvD71N+EJW71rEE\n", - "dR91HWUqU9mBZyOKUyzPzMdtLPh14hOHUhqjROeFFSljjDHGmEaWqkjVglXWupM2s3As7loLPYs8\n", - "wOrAZybm1EBRiDtfx0zTJUWO62YHa6yNaKXis4O1gHLSmtUZ6y6zMktWTUlxmlV0YImStQS16/lR\n", - "pSCrMhntKTcyv0eyDOlYrfhXxB3SMz+SjLgzO/nMMsYePwMFcFFqTklJrAGLuTanWGTaDOqnnXaa\n", - "pMGXJtZF9IeshTaGknDWWWdJOjjDdasPDirqli1bJA3+ltQ9bRClgDGD81Fu8f4Yc0rRf/g+1Ubj\n", - "QW20ZqxP/Ai5j6ydxD4bx8pWX6eSEgUxhxvPnlJOthIoUIyV2bOBPkk5cP7WXIDAsy8qbrSj+KzN\n", - "lCh2++B3Y9tPhhUpY4wxxphGDglFCuXm9ttvb/o9s1Re8ZUqrX9nSgVWBrPjaAVgvcTzYcWUop8i\n", - "WM28ZpmjS7N+ImFQtLj/+LuSv8O0uUHG5vKZN1jXYznzzDMlDfto3X///ZKGLMFx/Z+oyegrRXug\n", - "naMmtGYPRhVoVXAzSvnBOO9GGcfHgL9SZv2To2et9VnaFxGIhMVCRVEpqXeRaffy49ozpWLsWAG0\n", - "aXx9sjbOGJad/8gjj5Q0ZLQG6pryjiok/1NHKDSor6ilWU68ZfuoUe6MtYzlpbExKoqLiryFGElN\n", - "pvZpFSnqn7326JvRByzuIkJ/mjYSG6UrtmP6H6/4RmUwNs06p6QVKWOMMcaYRjaFIsWsH+uFWW6c\n", - "/bfOIpnFYh1gqaMstVoNzPKzdXCud1qfJWbzKF2tETJcF9ZCyUpojVwpwXGxxue9F1yJVqsffxN2\n", - "MEcFIZIoKlIlaymqKFxXjASi/Hg/8wco5Vka699D/yztg4biOC2l9rne57X+d8cff7yk4d6ntdhb\n", - "iUrPrEDtjT4lkdJ9o0LyPdokdY86jQ9NHEsZy/Fh4fv4L8Z9Q2FWUYCM/bWZ0iP0IcbAsdeV3d+i\n", - "iBHlrZCPjHpGkYrEnIrU+7SKFO0ty4QPJf/cPXv2THUdGVakjDHGGGMa2RSKFLN+Zs/4FM1qB2gU\n", - "LyxwfIQ4D1bsWGsjs3K4H6wv1vtbo6OwBnltta5idmCsikyZyJSokq9MCfJbbZZ9mFoVMRSpz33u\n", - "c5KkU045RdLgixbJfMJKihBWLWpArUIY6zsyNkcR7bf0u2mjALlf2mV2vPV8Amv3BcRSpu/zf9wn\n", - "kbqp3YVhs4BKiSIz1vcLGHPoq9EHjXLC5ywqUiUlobRn27SMHSuz9lP7bIj7VC7b1yvbfWIsjPVE\n", - "iGcqOPcf9+bj99NG75XGymU9U6xIGWOMMcY0sikUKWAWj1VIFuJp18uxirCu4vr+tD46KFuA1cpx\n", - "8QdotWb5Hdbe2Fk3VhYZy0888URJg6U/dt04ixqsZVqrpAR+Ia3tJuYnovxQSmIUGb5P5JU69thj\n", - "JeV+I9n5ojULqADRl6u0wzoRKplVPDafF+WJlZlZu9NmE6ZdtihbqKwl3x/Kjqg9LF3u7etf//rE\n", - "9zeLEpW1kQh1j18blNpMhLEyq2vKmSi8jFnlKmuFei5dx7TPglgvs4pgbaU1M36Edkd7yJQhxjrG\n", - "LMbAo48+WtL0Y39JZZ81cZ/ZDCtSxhhjjDGNLFWRwgeCWTzKDrNXrINsj7KMmH+HWXS2Xo8Vy2x6\n", - "7Lp2VGiybMGtWZDZL4vyqPVNQkHBOti2bZukQfHDPyG7nizip3Wn90UxVoki1wrEDPQl65+8URdd\n", - "dJGkwbevNhqU89EuUTAp/9Z1/9ZoxAza86ys3FbIbURW7VtvvfWZz2qj7x555BFJB7f9VtV3XkR1\n", - "tNQWYW2ZSIOiNPa+Sn2d8ma/z2mj5AA/THxtyPPVWi/0ydbM4rXwDKO8UamXxbSKGM8QlBnGJJ7R\n", - "2V55jJ3syrFopm2HY3dTsSJljDHGGNPIUhWpGBHDOjuWea31BeyQfcIJJ0y8j/LCLBkFCaWG/7Em\n", - "xuaVIuIHyPODssB9tvoWsct95qeAwsT94cNDOeLfgZKFFVnykZlVLpdIbWTVvMDKwl8iKpRZJu3s\n", - "fazdG264QdJQX7VkeZko/6weZqWaxPLIwBpFJSGzO4raAw88IKleFWpVaDn/Rr+LfZu6e+UrXylJ\n", - "euc73ylp6KMxWu8Tn/iEJOk73/nOqGubNdPWcVSmZg1jyO7du2d6XMaq6M/aSq0S1epfSTuLOeTi\n", - "6giZwWcdrZiNqdFHbiyMCYxR9L3MD7K0G0Er+PeW9k9985vfLGlYVbrppptGnYexED/X2rHJipQx\n", - "xhhjTCObImov5nnCyhmrWGA9Risgzo6ZvRNRgBWCclObM4Z8QS984Qsn3idfULTwxypsXFdUvCJY\n", - "CdwX5ci6NjlkiM6jvFnnjnA/rT5jJWalRKE6sMM99Uy0Z4T7jtbmtP4ccPPNN0s6uJ5L0Xvz9tvI\n", - "YO8/ygUrOV4n5Yt19vKXv1zSYH3SzrEaS/2G/lWy9mj3sf1xPnLarAWfEOo4qq4oNPwW5YNM57TN\n", - "ZStRsyL6s22W6EPGqNJ+kpkKf/7550uS7rzzzqmugzHkta997cT1MCbgS0e7IFcc/+NDxrMgRvbG\n", - "9sfx8Z2KEeUob7Rx3i/VG+039l0ykk8L/QH/xMx3btZKFGTnIxoTf1Aym4/1q2asodwz368MK1LG\n", - "GGOMMY10y4hO6bquX1lZWfh5jTHGGGPGsrKyor7vu/U+syJljDHGGNPI0nyk1ipS5HzAJ6jkmZ9B\n", - "hALZUzlHq/oV95UqMe35xhLPx/o7PiX4icTcJhEilvgd5cd6P+vzV1555cT55k1Wnvgc4ZODH0Mk\n", - "u29y03BftDfOg1/JX/3VX0k6OM8Tx6W94Zfw6KOPTnwfH1tnzHgAACAASURBVDX8BvDfedOb3iRp\n", - "8I/gvBdeeOHEdX7xi1+UNOQR++Vf/mVJ0tVXXz3xPfrNeeedJ0natWvXesWxsPZJDqDLLrtMkvTR\n", - "j35U0lCuRC7h25flmsHvhPujXeKDRn1Qv1dccYV+//d/X9Lgg0OZ448Vc7D96q/+qqQh0vL222+X\n", - "NPgP8jvqHJ+Vd7/73ZKGsqzNON7KsseWw/V81157rSTpjDPOkDREntKmiPIkoza7GNAn8bVjLKHd\n", - "0edp8/SF7P6IWM+i4cjTVdozEb/Fyy+/XJJ0zTXXSBr6Dj5F7I24d+9eSYNfL32Nz7/1rW9NHD/m\n", - "93rooYcm7mts/WV+kCXi+bLIY/o394FPHde/Y8cOScMYRP1n58uwImWMMcYY08imiNrDiotZfMeS\n", - "7TDeyti9yDIWtXN8lsm6tAM4VlCMplv2/lgR8nOh+JTKM7tvFCSU0Aj1NTZyoxasxgsuuEDSYMWi\n", - "ikQrkPrJIpRQxsj+TGQNis5tt902q0uvIqo+WJu8Pvnkk5IGKzKDKEIUU6zmyHr1WLunFxZorGuU\n", - "Byj14WzsabW4Ydp9LQ9ViAxlDKYvZ5GvjA3f//731/2cMSOOkaj2MV9S3NUBJZLzZ/m52CUBhakU\n", - "NRf3pIuKFApSKdKZPkBuN8jGcBSZO+64Y+J9yiPbvYC+Xeq7tbkCZxURnt0nY0iM4kNh5PNMiarF\n", - "ipQxxhhjTCObwtypzSZLfqPMh6p2D7pFwawfsp2rs735ImN3boeSj9S8M4zPSpHD2sRvpXYfJMBn\n", - "CesyUxHmvcN4tMJQXLiv+DnXk11XfB9/ilKOnmWBKlDaCxClLWufKHtr87iV1Nd47Ex1RAnCF4Yc\n", - "bBlZTizqgjot+bhEUCyebTDGUceZckEGavpypkhlbY33UXsZU2hzDz74oKQ8N12k9L3oS8f5UHj4\n", - "nzGbdsXuCRnkvYrtKz5TUbxQbLP+UtqdoLRas+hdK2gn1CfPVFR6nkHRh3HsLiYZVqSMMcYYYxrZ\n", - "FIpUyZ+BCIKzzjpLkvS5z31uLtfx/ve/X9KwboyVQMbqWlCOsD5Kvlu1ma1ZR8+sK9bJsWawjrBq\n", - "UYQWnUl71r5h3H/0YygRlbyS/8C8INoQyBpMvdWCD1S0VrFKx6ofi6akVGbqAtYm/ii1e/tJgxKF\n", - "WpeNPfSlWos1U9UZA7jmCG0hy9w8bZ4/7jf6Am12qJeSIlVSVhgzSz5L1M+2bdskDX6KPANOPfVU\n", - "SUOUWwRfOPwTUWziXndREaHtopzwOUoU98/xS6s20bcvEhWpLNo0a49Q8pGiHPCHbKXkY0j94lPH\n", - "dZPhnHpgNYJ+yn1nEcPAakEJK1LGGGOMMY1sCkWqBBb7vLOwo0SxbxFW61hFiuvESsqs0bGUlDvW\n", - "yePsHStk+/btkqStW7dKkr761a9OHHez+ZiVGLtDe+2eelnEyryp9e+Bkt/EZiHz7aN/jVGUpMH/\n", - "Ait6rb9GKVqItl7qS/g21frGYPFyXPog6maMCsLSzvIGwVg/QMBCP+eccyQNY9Cf/umfNh1v0dAX\n", - "uP9s7C/VI20kU+JQ688991xJgwpK/fA+oOaTMw6ob5QOjlv7zMpWLXif3GuMYdEvEuWqtNcdSiv3\n", - "R1Tg2AjlUrTdrJ7VjB1ZVCaf79u3T1K7z1eE+ssihSNWpIwxxhhjGjkkFCmYdr21BLlBshwhY4nr\n", - "yK1Rd5FSvq0sooJ8QpTjshSNWZUDYD1gLS5j/8gxPPbYY5Kkk046aclXshi2bNkiacgCjV9QFulW\n", - "gt9xvLXQFjLLNO5+kEFbKkXNoV5iKUdfE5Sg0047TdLQ52rHstboJ3yB8PVBmTpUwJeFsWysogDU\n", - "I/Ue83JxfF6JCGfspp5QDqMSFeE6GeNihDnnR2lDGeL64pjM//QZvodSQvvguCXfJZQrvs/qC/dH\n", - "O+bzTMnLIufx85w2JyTQ1/Fxi4pUbb64sYzNIWlFyhhjjDGmkUNKkTpUiNYGVsOslJJpM7jPW4kq\n", - "7Z046/VzrDWiv6JKUOsbBa1KSS2t+7ERQYK/AFZkyc9m2cT7jf2C/8kJRIQU1v1XvvKVdY8Da63w\n", - "kp8ZbeWEE06QNPiUEDUFKDpY8BlY4NxD9DMkimhtrqu1lHLIcdxW6Gt33333VMdZNPg/Tqts0GYo\n", - "36wNoW5SHygyROmVojfjvpCMPTGXG+0lKm60wyz6k3aUPUtQjkr+nfg2UQ58n1c+b/XrPeWUUyQN\n", - "e/JB62oSzzoidKMiyLOW617WaoQVKWOMMcaYRqxIzQFmxcz6sW5mtUP8tFbqvCHPU2vEUS2UJ+WN\n", - "8pT5U5BzpGRdzjvXTsmPIQPlCet1VntBzhusaKx2rFXUG/oD1jqqEdZ5lmeKSKYx0Y6xTx599NGS\n", - "hjIl/wyUoqCog8yCR43NoqKI6qPNRp+Peaujm5WY+XtaUIiiwkVfpE3S9+PeehGUJhQTojz5HeeL\n", - "PnaxvaAu08bxgWIMjdF59Al8hjj/UUcdJamsTnN97DHH96NiVMr9lz3DogI4bYbz0moO9ZDlnKsl\n", - "i/YtKdLP/H6qsxtjjDHGPIuxIrUOWAsxQqI2Q3ec3bL+jMXdGoECm12R4r7H5kUaC+WAlZlZr2Qr\n", - "Zp39y1/+8lyvq0SrIkm5jlWisHqhdmf2WYESSL+KOWi4H3ItocJgbVLPvI96QL8ak6kf3yeUCMqG\n", - "Y0ZFqgT3goJA2cY920q/x4cqKlKlfD2HK4y1KDqxDYzdnYHjxF0hqB/aJn2zpHAwlqNsohxxXVx/\n", - "PB/XTz1T7ygufD+2Tz5nrEMpZdcPFKmSjxS+VzyDsvbVuvsF94fSRX+oXQ0oHTcyq6i9OCaSF652\n", - "jLQiZYwxxhjTyGGlSGHBlnaVL3HmmWdKGnxusIZK+xhFmP0za86UhNq8SszqZ70jPOvtWCGUX6sV\n", - "wex+1hnCYznhz8B1Z1YL69yoDmR9JnoxKkTTRkWWIKqx9DnXEcsfa4n2XoqIidb1ohUpzpPtKRit\n", - "X/yJaOf4n8Ss5NR/i68Yx0aJaPWLY2zgOFEtLvWdmNcnQl0fLpT2V4zQNqJfIW2q1ocsK18UH3zl\n", - "iN6M6jb1i08bfYrz06a5v2wPRcYwjsfvOA4KEWo+7ZLyoq1TLjGX2nHHHbfufUboQ5yf++U6YgR0\n", - "bX2hdPE7yr31WUL9ZPXHs4Axgv60f/9+SQe3Dz7nelCgsz0Qa7EiZYwxxhjTyIaKVNd1R0n6c0kv\n", - "ktRL+nTf95/sum5F0rskkSDog33ff3H1N1dK+o+SfiTpPX3fj9uobgqmVaIAJQkFamweImbPrH8z\n", - "O2fdOFoptbkvTjzxxInjR1AymMXX5otidh4jPmqtB2b5WFvUQ62PVLY+HcEPICqDMbIlwnU88sgj\n", - "kgarDvUgWiNZ1t5ZUcqNg28ekTWRabM9L0qJghiBhBXMDvEZMRt1vN/1lKhSXibgWLT57373uxt+\n", - "PyMqCPTBUhtCFSU32K5du9b9HlFahwslZQOVlVfaTFQMGTNQqkqKIgpkHNMY61GYUHdj26I9MfbQ\n", - "hzguYyAKSHY9tH2eKZwHRQwlK0a/cZ+xD3Ad+P6Nzf+EShyh/HmW1K7GRF/B6Hs2lpgTMIPrLK1O\n", - "MOZn991KaWnvh5J+s+/7PV3XHSHpvq7rvqQDk6qP933/8bVf7rpum6S3Sdom6UhJt3Rdd0Lf94sd\n", - "uY0xxhhjFsCGE6m+7/9R0j+u/v2Druv26cAESZLWM6vfIOkv+77/oaQnuq57XNK5ku4cc1FY7ERZ\n", - "Ye0x+85yu2AVMKtv5b777pvq9zFyh3VrfHSiIlUCJYZyyaxtrJyYFRdi1lyukx3Av/CFL4y6Lq4H\n", - "qwzrvFbxYF2b68BKyHzAyDs0dq8+fodfAFZSZrXQ7uYFfg07duxY9/NMiYJpcwstWpGK1iz9uWTl\n", - "Yq3TX1B7NlKIa6ONUKBQu6ZVs+lTUYlCgWCvPdoi2dtLdXG455GK/ojUA0odygjlFPMTlZQolJzz\n", - "zz9f0sH+hCg8t99++8RxM+LnHJ96Z8zP1PzYzhgz2RORZxvHQZVFpWfsy+4b/8K3vOUtG95HCa5z\n", - "bL+gfUeftlaVn2dfSWnL8rRFps03lVHtI9V13TGSztAwKbqs67oHuq67ruu6566+91JJazWz72iY\n", - "eBljjDHGHFZURe2tLuv9jaT3ripTfyTpw6sff0TSH0i6NPl59eY3KBFYHWP9FpjNt+bAGBuhkIHy\n", - "w2yeyAAUEc4Ts9vyO6wPrFlm0czqS7kzMkUqvo91NdYHDFCEyLM1lqx+435lgEJRq0ShTMb1c+47\n", - "81X6+Z//eUlD5mzqJe6HRaZu1t2xrrk+6vmxxx6buP5f+IVfqLr+eYMPHwoR14c1yX3UZimmPKIP\n", - "X1RUURmIrMmgXFEIuS7UimnysVGX+M1FUGmx/MdG7AJlGzNg4zNSyls1dgykjDlf7VhGnWV+a9RF\n", - "a14r+kxU1WMEK9eBEkeUHJHFjH1ZvUXYUxGFJypg1AP7PKIW4zdKnibaC2oxY3Mcq6jvUm67CGMF\n", - "14dyxn2jcDGWxTGN16jm8/ss4zl9iXZCedDXnnrqqarrj1B+rbsv0E8oP+4vRvzOC9phbYR8cSLV\n", - "dd1PSvqspOv7vr9Rkvq+f3rN538i6fOr/z4p6ag1P3/Z6nvGGGOMMYcEP/7xj58RH3bu3Lnhd7uN\n", - "rPvuwLT6zyT9n77vf3PN+y/p+/6p1b9/U9I5fd//+1Vn87/QAb+oIyXdIunlfThJ13X9ysrK+Dsz\n", - "xhhjjFkwKysr6vt+3WWMkiK1XdI7JO3tuu7+1fc+KOmSrutO14Flu/2Sfl2S+r5/uOu6v5b0sKR/\n", - "kfQbcRJljDHGGHO4sKEiNbeTdt26Jx0bjRXBFwPfmF/5lV+RdGAmuRZ8Q8ZGEsQ9vqJvEOf55Cc/\n", - "KWnwJ8C/AF8ncsjgK7Jnz551z8f6POu1rJ+TW+UDH/iAJOnaa6+VNKzXxyy1kVLulejrwyv3F8uT\n", - "dWRk0LFRYax740dBOXGeP/7jP5Y0+JTxPcqPiA3uB/8B7iPu+4QfCH4R3N9rXvMaSdLHPvYxSbmv\n", - "HefFryDuC1bru5OVZwb9Y8uWLZIOzmo8q/OdfPLJkoZ2tHv37onP6V+UAxFH2fk+9KEPSRr8Vfg9\n", - "vnmx/RPNSL/56le/Kmnw3+A41CPt5+yzz64uy2nJypI2tnXrVkmDTw3+kvTl008/XdIQIZyNeUQi\n", - "X3755eueb17E++O+8LnJ/CJ/8Rd/UdLQJrI2StuiLVx66aUT55sVcZcFxuRSXzjppJMkHVx/jEH4\n", - "AJVy2EE8H/VPVN7Xv/51SQfnW8JPMz5D+P/444+XNDz78MeMz77ox4kfbqt/a4TzXH/99ZIG3zbG\n", - "XsZEfK6oj7PPPnviOIzljHU8cxlbeWZfdtllE+fl/hgbuS98yyhn4P4Zg3h2UL/47uEb9973vndD\n", - "RcqZzY0xxhhjGlnaXntHHHHEMxEOWGNE58RIFSxfFJZMaSECprTHW1SisPqy/FSA4hP304qUclVg\n", - "3ZT2XGvNvlqKrMmUKCI4SlYKVjXlzOweBWfsfkrUZxZtiOKDEsX18zv2RnzwwQcl5eUfsxFzPqLH\n", - "UKRKUZ8x1w3lNe+cP/STaaNKS1C/WT6rsfnQuG7aBf2Ifh1BAcv646OPPjrxyvVE63YZ0MYyhQnF\n", - "AaWmpL6XxprIrPYbjXBf2diAek7dlqIR6SulCGTUcxSOsSos111SyRlbUHZQOx966CFJwxjHakJU\n", - "n2N0GvWWtXGiDrPdFaCUU44+hUIWxz6UP1T6qNpz36X6yohRkGRYj7n7Ioxhd91114bHr23HPPMY\n", - "E2LkMGM69cT3Y3Qr79MO7rjjjqrzW5EyxhhjjGlkaYrUejNNFBpev/nNb6bfXQ+Updo95gCLFoWi\n", - "pCwwa2VWPzZbKvl24mweLr74YknSPffcI6msTMU8UPiM1JYb58PaLClSWE+81voJZJQUNI7PK1Yc\n", - "r1hBtWC9oYDeeeeoxPvPgLU5Kz+DDNoJVn/JSp0WlCD8V2KuHNp9KQ9UhPLGSuY19teSMhz30xur\n", - "gK5HTdb0GlApY/6e2Bdrx4ySah3hPG984xslDWUb+1AttX6rKBuolFmfRimI+3JmkM8rU6u5T9rM\n", - "l7/85Q2Pl8H1o3xFtZXrZazh+1mepFK+I37XmmcJKBeelVGx41kW6z0qM61kSl9JaZwXrJJQ/owR\n", - "5KWivKK/LatUjOUoZaXVLbAiZYwxxhjTyNIUqfXAox9LH+Wg1uIsWbIZWG1YkxdddJGkwRJn3ZVZ\n", - "P7Tu21PKFst91+78Hq0KFLZaRQrFg9n72HKPcN0xW27tdZT8GbjfVmvq7rvvljR+p3TIdmKfF1hT\n", - "RKtlWbZjxnXUkCxTfAbWNwrv6173OkmDWoO1mVnT0a+H49C+sPpQW/BHqPXTiDsgZMruGDK/sxg9\n", - "lGWIBu6VNn/WWWdJGnxTvva1r426rujrUcvf/d3fSZLOPfdcSUP011hFqjaCmkzcpb5bOxYAyhCK\n", - "AWMTkaU33HDDxHGJYhu7KhGj4mgP9CXer1Uss7GTsYO9FmkXe/fuHXW9kbFK6rRKFGS7QywLrof6\n", - "ZE5AFCb3jXK3b98+SUO7grHt1IqUMcYYY0wjS1Okuq47yNrBwseqY8duIiWYbZI3KePEE09suiYs\n", - "ZSxuosFq93WqBeuNWS9KAuXB+TK/gAgKHrky4u9Kfg5YyXEW38pYJQpQXjKlI+bHGpt3jPVuyomo\n", - "0bF+KDH/VKb4UJ58b2x5ABFDKGjHHXecpIPzN1Hvsb3WKptAOXNfKJtY2agOHJfzxtwrgK8VVh+q\n", - "DvXIcehv3Oftt9++7vVRHqhEs4C2EKHuSkoUKhl1jNJwwQUXSBrKiDKt3a1+bE42oGxvvfVWScOY\n", - "Oi9q9zelnOjjpahExkr6Or4v3Nc111wjafAbbN0bjnpDeaLNogiOVbgyWPVgDCqtGtT64dL3Mn9N\n", - "/BN5trXuRwv00aOPPnqq40wL9ROfpbSXWN6MQShTjJWUB3MNxoNSvwcrUsYYY4wxjSxNkdpIRSBK\n", - "DasKxSWzrFEamCVn1mUJrDZmoazPM+uOlj7W0djz4dNBhAj/o8hhhWY+PHFHcf5nlh3Xyyk/LHgi\n", - "iu69915JQ/nxeVQeapUxoJ7GKjCUe1y/x7qgPGgX/F8b+YJShpVHrpjMisusQa6vFK03rR8Cygvt\n", - "i5wmJZ+n2C7HqhpYr7QL/DfwryF6kFf8DTI/Ddo1fZ7/saJj1CX+L1leM9ov1nyr0jdLaIO0VRQN\n", - "lAzqYGyUVmsbwrKmrLHIua6xka6zItZVbduk7aBQwfve9z5JB0cDjoXfM6ag3GT+iJHajOe0h6jK\n", - "ZtT64ZbqE98sXhkL8T2rfYZRvoxN8Vk0b2IUXXzWUA/8T/9hTrFt2zZJgxJ6yy23SBoUZMayOKco\n", - "YUXKGGOMMaaRTRW1B8x2mTWinDCL5nOsLd5nVt2a+ZnZZ1y3J3IjkkULlda1YyZmrCxm9/h4cT3R\n", - "2ojKXFSQIvisoMDgY8PvmKUzC0d5a7WGuW6UjVrrN1u3xxrFmkdxweqI6+QliMKkXjM/haz+an3m\n", - "4v5OpdwqMZcR7Qsrsjb6jvZFeY31kaIfYcVF65rr4f6w2rP2Qrvk+1jB9LPo61byH6L+KZ955/Ea\n", - "A3VH36JtUZZjc4C15rWiTzAWUmcoVSgjs1Lzxkbcxt0RWuF89B3GntpdIWiDlFOW96sEfa707MFH\n", - "DGWQNj82Y3stcV9S4D657qhgUk/02Rg9WburwayJ+bli+415orjP2267TdIw9md+wMwtGKtrn4FW\n", - "pIwxxhhjGtlUihSzQXyHmP0y60RR4XvRh4f15taIBM7zwhe+UNLgG8UsOGZUzma1pdwvWC1YA1hz\n", - "/E9enSxiIPMhKkEerNNOO03SkOOGHbPvv//+dY8/lrE+VbWU8kdh3WJ94/MW926EWUXiZNB+uN5M\n", - "kaL+ecWKpL3F90tRlShI8bi1EPmUWfX0M5SrUnvhvunX3AfWOTmOOG+p/TAuUM+tkW3SoGTgIzGt\n", - "QoOChHrIvbbumzltBC1+ZqeffrqkYayYlRIVfWaou2w/T4i7I7RCBC1jJm29trxpu4wVjCFcV+2z\n", - "hDbIs4I2HRVIFCjayazGyhhBC/yPgsT56bv0IT7nfqlP7idT2qIyVdq3tla5zIgKLfXFK0oi94ni\n", - "yH1lueoYi8hDhspeu7plRcoYY4wxppFNpUixPouvELNmZsfMKpnNss6M9ZMpD7VgOXMc8lhxPbXW\n", - "ScknhevFBwerIfqKZBEDcZaM1VDrT4FisXXr1onjTWPZrwWrYFGZv4HyG2v1TOunEfNbwWOPPSap\n", - "nCsn5mXCOorUZrmmX9B/xt4fik8EnzL8LWp9xaJyTPunHXK8M844Q9JQjvTD6KNF/iz6R2lfs42g\n", - "raIGZ/degrrhXuI9l9oidURfxL+wVbFAEaAtZRGxs4K6QOGb936QwPlYRRibxZ9Vju3bt0/8nvpk\n", - "TC354fGMinssRhjbqYfaHHglSu2EPsd5GbNob/H+uB9U4troQX7HWEY51K6aRIWpFNVIv2Ws4zrH\n", - "RtLj17x7925JQz0SQVzCipQxxhhjTCObSpEClAxmo8yamVXzeeZzgpXRCrNo1knHKislRQormOgk\n", - "1pWZFXOf2X5N0aocm8sDpYScJ1gLMbJjWjLrHmt71lYy1il+EyWFMuYUidRGA2ZWE/VYUoRQDaIS\n", - "RdQd58fHqLRfGooUKshYdYDrRunh/qJPUm290b6w9rEWsca53qj8ZjmXsL6pt7GZ6dcy9l4yaCv0\n", - "fSx8LHRU0qgm8z6KCn2COmhViYm24rrwGZo2o3UkZu3HV4n7bPUNK0G5MYbxLNizZ8+o41DutFHa\n", - "eowMjv6xEeqdvp6ppJQLY/usx9yMuFpRymfGGNOqiDJWAO2kpMAxFtQqi/SPV7ziFZKGCPhszKNf\n", - "xLkDvl7UN/dPfe7YsWPD67AiZYwxxhjTyKZUpKKFH/f8Ks2Sp/XNwfcDS5dotlpqz0/uEDJE44PC\n", - "/e7atavqOK3ZkmO22yyiYVZgHTPbr/UPKPkdAOVQm5H94Ycfnvj/4osvnvh/Wv8FrCSsnUxBRUGL\n", - "mfW5H1QNIoGwku677751j0d7ReEZ2z6A31OetOvW3Eb0J8qB46IsocLgl1FS8hgPWvdXW0um/sac\n", - "dRH6LHl4HnjgAUlD28NXCSUi+u/xGlVGzofCMxbUbq4fFZjI3VmD+owSU7tHWSsoQPjIlPpYiYce\n", - "ekjSwbtKoBjFthh3g+D7jK1ZtFdUt1HUGBuzdrhoWpUoFLtWhZf7rz0/ChTtG79f+h3lzZgV20cW\n", - "XclYVfLRAitSxhhjjDGNLE2R6rputMVfO0sdm5U2wnXdfffdTb+vXd/F2sH3hd8xq8fqKc3ux0Yo\n", - "YD2iXDz44IOS6nekb6U1Z0ytdUt5oVC0KifQmiH/zDPPlCSdeuqpkqQvfOELG34faxjwlUJJoj3S\n", - "PvAjQMmJ7YPrblWiIPMjGAvXH/sv7ZydC1DkUKZQaksRQ7OMDsVnhj5SOja+UCeccIKkwdeGOqRu\n", - "aJsxz06pjY3NARbh+rkvOOmkkyQNYxBjQa0FnjHv3GxAedI2Wn2xGFsYKxhLY74tlDZ8bOJ+mzHq\n", - "Las32kXMUzVtvrBFQbuhHcf7nFaJLOUfi1BPsf5px+ecc46koX5R8RlbXv/610uSPvOZz0ycnzlE\n", - "7bPVipQxxhhjTCNLU6Rq1CisPCxhZp/kdmAWOtYK4jhYGSUFC+uHLMH8jii7mE+nNtIGCx1rEOuU\n", - "dXNm/TFSpHWH88i8/CUy4o7aWAXRKo9789VGzxGtiVVB+aHc1CoqZIHGhw1rMbbZ6O9CvXB+FL6x\n", - "ymtUkqK1GrNmL4pps1CXog3jfbbkIqKNsY8ldYLvRdbm8QeLkabUMX56UXmgronwxSLneCg+KBko\n", - "Ehxv//79kg7uA7TZWCb4btB3UCfxx8Pvj1xb3Dev+HQxtqI68v7YCOB5Q/2x/yhjMPdDffE+9UCf\n", - "pPwZc6IqWqtkoUzUKhTZMyD27Xn7kgHtg3bD2MizK/qLRig/xthZZ8hvhf7E2BLHmJ07d0oa2jf3\n", - "zzP1pptukjT4Ccd+WLsKZkXKGGOMMaaRblaZVUedtOv6lZWVhZ/XGGOMMWYsKysr6vt+3eUgK1LG\n", - "GGOMMY0szUdqrSKFz9HY6LPacyxK/ao9X8nnB78HcsA8+uijG57v937v9yQN67z4VWQ+YDG3DH4C\n", - "cd+x6Pvznve8Z8P7MsYYY55tWJEyxhhjjGlkqZnNiYghGyn5ZMZCpAlZgIlY2ayUIh1QgMj9kilS\n", - "8Xgxb1IWjUhumSxHztgd1I0xxphnK1akjDHGGGMaWaoihQ9OloGZnCn49PBK/hyylJLFdFZKynnn\n", - "nTdx/i996UtTHQ/fpZipOoOcF+SpaiXmOTLGGGPMbLEiZYwxxhjTyFIVKYiZrIEsxSg4+AJ997vf\n", - "Xff7s8r4TXZUdnJvhQzlZIXlfoiqIzoPXyh8u9jHKWZZHouVKGOMMWa+WJEyxhhjjGlkUyhSRN3F\n", - "fW3YByruQp+B8tMKyhDKFopSaY+wCL9jnyf21WLvNYg7geNDtXv3bknSz/7sz0oa9ulC0VrU/kzG\n", - "GGOM2RgrUsYYY4wxjSxNkTriiCOeUZB4Jfou23EZpQelZt++fRO/I5N3K+wIzfnZgX0s/I48Tlkm\n", - "czKKx+vGJ+zb3/62pCFakfucNy996UslDUog5WKMMcaYSaxIGWOMMcY0sjRF6nnPe55+9KMfSRry\n", - "HfEawWcJpQTfIpQelJpp9+ojmm5ayGdF1BzXGUGhyjKMo0xRLplSN2vIkE7+K3yzjDHGGDOJFSlj\n", - "jDHGmEaWpkit9RdC+cBXKGY6J/qN6D7yLPEKi1JsSsT8TdNG2X3/+9+f+P85z3nOVMeLxAzo+HZl\n", - "e/UZY4wx5gBWpIwxxhhjGlmaIsV+edIQFbb2vfX4e1kaUwAABjpJREFUp3/6J0mDz1FUpNgbLyo4\n", - "reCbVdobD58tyKL0poXjEsUXQdlDWYrRdnzOdZ166qkT/+/Zs2fd484qY7wxxhhzuGFFyhhjjDGm\n", - "kaUpUs997nP1z//8z5IGpQSefPLJif+jkpJF1z3xxBMbnpMM47U+SyUlCl70ohdN/B99pFCSiH5r\n", - "9eXi/p9++umJ98nDFaMZeR8Fi+viOjgeUXr4qKFAEVWJb5oxxhhjJrEiZYwxxhjTyNIUqf379z+T\n", - "PwnFqaQAoaRkeZlKoBzhO8Qrx2vN4H3UUUdN/B+VHxQhlB+i5F7ykpdIGhSyWqUqZjg/5phjJs6L\n", - "oke0YzwPn/N/KTovRlEaY4wx5gBWpIwxxhhjGlmaIrU2mze+UhnkTUI5yTKBZ6B4odC8+MUvljT4\n", - "EKHM8PqCF7xA0qBQxfPxO5QgXiP4GJHpPML9sDdfq+8Ue/ZFZYlM79/73veajmuMMcaYjbEiZYwx\n", - "xhjTyNIUqbWgAOH7E6PyHn/88arjoOzE/FLs0XfcccdJkrZs2SJpiEZ76qmnJA1Rb/yeKEAUMaL+\n", - "TjvtNEmDghTPV8tYZS1j1hnI8ekieo/8XWYx7N+//5k2apaP62Pz4LrYXLg+DmBFyphNRimNh1ks\n", - "ro/Ng+tic+H6OMDSFKkdO3bo1a9+9ULO9Y53vGPDz1GqIueff37T+VZWVpp+18q059u5c+fC6sIY\n", - "Y4w5nLAiZYwxxhjTSFebvXumJ+26xZ/UGGOMMaaRvu/X3Xh2KRMpY4wxxpjDAS/tGWOMMcY04omU\n", - "McYYY0wjC59IdV33+q7rvtl13WNd112x6PMbqeu6J7qu29t13f1d1929+t7zu677Utd1j3Zdd3PX\n", - "dc9d9nUejnRd99+6rvte13UPrnkvLfuu665c7Svf7Lrudcu56sOXpD5Wuq77zmr/uL/rugvXfOb6\n", - "mCNd1x3Vdd3Oruse6rruG13XvWf1ffeRBbNBXbh/BBbqI9V13U9IekTSayU9KekeSZf0fb9vYRdh\n", - "1HXdfkln9X3//TXvXS3pf/d9f/XqBPd5fd//l6Vd5GFK13UXSPqBpD/v+/6U1ffWLfuu67ZJ+gtJ\n", - "50g6UtItkk7o+/7HS7r8w46kPq6S9P/6vv94+K7rY850XfdiSS/u+35P13VHSLpP0hsl/Qe5jyyU\n", - "DerirXL/mGDRitS5kh7v+/6Jvu9/KOl/SHrDgq/BHCBGH/w7SX+2+vef6UCHMTOm7/uvS/q/4e2s\n", - "7N8g6S/7vv9h3/dPSHpcB/qQmRFJfUgH9w/J9TF3+r7/x77v96z+/QNJ+3Tgoew+smA2qAvJ/WOC\n", - "RU+kjpT0D2v+/46GijGLo5d0S9d193Zd959W3/uZvu/Z3fh7kn5mOZf2rCQr+5fqQB8B95fFcVnX\n", - "dQ90XXfdmmUk18cC6bruGElnSLpL7iNLZU1d3Ln6lvvHGhY9kXKuhc3B9r7vz5B0oaT/vLq88Qz9\n", - "gfVe19USqCh718v8+SNJWySdLukpSX+wwXddH3NgdSnps5Le2/f9xOar7iOLZbUu/kYH6uIHcv84\n", - "iEVPpJ6UdNSa/4/S5AzWLIC+759aff1fkm7QAfn1e6tr4uq67iWSnl7eFT7ryMo+9peXrb5n5kjf\n", - "90/3q0j6Ew3LE66PBdB13U/qwCTqM33f37j6tvvIElhTF9dTF+4fB7PoidS9ko7vuu6Yrut+StLb\n", - "JN204Gt4VtN13b/uuu45q3//G0mvk/SgDtTDO1e/9k5JN65/BDMHsrK/SdLbu677qa7rtkg6XtLd\n", - "S7i+ZxWrD2q4WAf6h+T6mDtd13WSrpP0cN/3n1jzkfvIgsnqwv3jYBa6aXHf9//Sdd27Jf1PST8h\n", - "6TpH7C2cn5F0w4E+on8l6b/3fX9z13X3SvrrrusulfSEDkRmmBnTdd1fStoh6d92XfcPkv6rpI9p\n", - "nbLv+/7hruv+WtLDkv5F0m/03opgpqxTH1dJelXXdafrwLLEfkm/Lrk+FsR2Se+QtLfruvtX37tS\n", - "7iPLYL26+KCkS9w/JvEWMcYYY4wxjTizuTHGGGNMI55IGWOMMcY04omUMcYYY0wjnkgZY4wxxjTi\n", - "iZQxxhhjTCOeSBljjDHGNOKJlDHGGGNMI55IGWOMMcY08v8BGKNoaFbqcjsAAAAASUVORK5CYII=\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "conv1\t(96, 3, 11, 11) (96,)\n", + "conv2\t(256, 48, 5, 5) (256,)\n", + "conv3\t(384, 256, 3, 3) (384,)\n", + "conv4\t(384, 192, 3, 3) (384,)\n", + "conv5\t(256, 192, 3, 3) (256,)\n", + "fc6\t(4096, 9216) (4096,)\n", + "fc7\t(4096, 4096) (4096,)\n", + "fc8\t(1000, 4096) (1000,)\n" + ] } ], "source": [ - "feat = net.blobs['conv3'].data[0]\n", - "vis_square(feat, padval=0.5)" + "for layer_name, param in net.params.iteritems():\n", + " print layer_name + '\\t' + str(param[0].data.shape), str(param[1].data.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The fourth layer output, `conv4` (rectified, all 384 channels)" + "* Since we're dealing with four-dimensional data here, we'll define a helper function for visualizing sets of rectangular heatmaps." ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 15, "metadata": { "collapsed": false }, - "outputs": [ - { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvXvQZVV19vtsTbxHEy+A3OluupsGBJHCexEqVuqzEv0S\n", - "K/V9aGlSGsuYxBK1SOSYiK8GRVNENIZEy8o5ieU5+BkrWqlUWQaUEFEJcpVuaGiguSNijOaeiNnn\n", - "D/j16v287+x5WWvtvd/u8ftnd+9377XmmnPMudd41hhjTqbTqYIgCIIgCIJ6HrPoBgRBEARBEKxX\n", - "4kYqCIIgCIKgkbiRCoIgCIIgaCRupIIgCIIgCBqJG6kgCIIgCIJG4kYqCIIgCIKgkVFupCaTyf+Y\n", - "TCY7J5PJrslk8s4xzhEEQRAEQbBoJkPXkZpMJo+VdIukl0m6T9I3Jb16Op3ePOiJgiAIgiAIFswY\n", - "itRpkm6bTqd3TqfTH0r6jKT/OcJ5giAIgiAIFsoYN1KHSbpnr//f++h7QRAEQRAE+xU/NsIxs88K\n", - "J5NJ7EsTBEEQBMG6YTqdTtZ6f4wbqfskHbHX/4/QI6pUlp/4iZ+QJP37v/+7JOnhhx+WJD31qU+V\n", - "JD3xiU+UJH3ve9+b+fxjH/vYmfd/9KMfSZJWVlZmXkvP/8///M9Fn3f8fBs2bJAk3XHHHU3HS/HM\n", - "Zz5TkvSWt7xl5nxjU9qfxx9/vCRp27ZtkqS/+Iu/mPn7kUceKUl64IEHJEk//OEPe51vKDjP+9//\n", - "fkmd3cE//MM/jHK+ZRu/yeSRtYL58E//9E+DnO8nf/InJUnf//73Zz6HvTBfvv71r0uSfvzHf1yS\n", - "tGXLFknSjh07JEnf/e53JUlPecpTJHXz/+1vf7s+9rGPSZKe/OQnS5L+4z/+Q5L0ne98Z+acBx98\n", - "sCTpMY95RJTHFp/2tKdJkv7rv/5LkvTf//3fevjhh/fMOfrkta99rSTpwgsvlCT94Ac/mDn+qaee\n", - "Kkl6/OMfL0n62te+NvP3zZs3S5L+9V//daZ9zIWf+qmfkiQddNBBkqRXv/rVkpbHVg499FBJ0v33\n", - "31913KOPPlqS9I//+I+Sun5b1Fz44Ac/KKmzE+yGcfmxH3vkJ5I1q3QtZ9yf8YxnSJLe9KY3zZw3\n", - "BbbMb92//Mu/FJ3PGas/n/SkJ0nqro9xXNa1DGjvf/7nf868zxqS6+fTTz9dl19+efLvYzzau1rS\n", - "sZPJ5OjJZPI4Sf9b0l+NcJ4gCIIgCIJROeOMM/b598EVqel0+vBkMnmLpC9JeqykP01l7HE3iEfK\n", - "3S53uShSeI14ibziFfH67W9/W5J09913N7Wdu1ZXpGgnlHoJQytRgEdeC94VXhLXgfc1FHh1P/Mz\n", - "PyNJ2r17t6ROiTjkkEMktY9TK3h7KJY5sDOUkVawK+wYxXVZoZ0pO0epq1WqXImC++67T5L0rGc9\n", - "S1KnQNFvqBZu97SPdUN6REGSurFL9fWDDz645vvMfY4D9MkTnvCENd93+L7PLdYS2sc1uSpLO579\n", - "7GevefwU2Dh90qqu56hVooA1yBW8ZcHHi98g1rBSUD5q+4m1CQXU5yBK1aLWELL8U08Rlg3mJwov\n", - "9whw+OGHS5J27tzZ6zxjPNrTdDr9oqQvjnHsIAiCIAiCZWGUG6lSuPvmFSWKWCfuyv/t3/5NUncX\n", - "zudQPoh3cC+yFvd4USJQvPDuWp9bLwo8e7yZlDc+FMQSffOb35TU9RvjefPNdSXFHve4x0nqvPhW\n", - "UFKwnxR4W0N5Xf5cftnJKXatMVMpiJ0iHggvkvn30EMPrfk99zalzmNmrUBBwnawQVQw5+lPf7qk\n", - "1WsBSgVrjp8PiKHCZom9AdYoYrJStuEqZimMHe3g/Lzfd43sC4rZskA8YA7GHVvjN4ffpptuumnQ\n", - "dt177yNhxaxZzI1aZWxomFfLNo4psHdXoqCvEgWxRUwQBEEQBEEjC1OknvrUp+7xunhuzvNoFCky\n", - "WdyrA+42ed7uGQ99QZG49dZbBzneosDrnZcygpf2hS98QVL/bLe+SlTf4+C1Dr0LwKLwzDReUS3w\n", - "glFn+Dv2UzuexOtgFw7qzJ133impU7w88w51hnnv81/qYpBcUeK7rDkoVb62cE7/Pm1yG3B1mr7y\n", - "46JQpfrAQQFrVUUZO7LNWEtzcZs5BYy/YyOpuLcUjPGyUBprxDjzes89j5RKHEuZ4bcQuxtaBT5Q\n", - "GOppRo5QpIIgCIIgCBpZmCL1tKc9bY8HjCKFF1cag0RGBLEUxFrUZlnN6651WcllgtQqfHhpjIcr\n", - "GNSSmbd3irKEfeS8fZQbvPBcbFXp+RetbOUyppgHeMWoPLXxOpBSlAGl69prr505L3B+7AnFGvZe\n", - "L1CaUKs8Zgr1C2WKTEEUhrvuumufbfUsOI854lpoBxmyrHGo26UKQ2vGKH3I3CXOM6dIpWKomNPY\n", - "AGtmLestXhBSGb+lGcCLorROUi1jrWHEgnndt1YYN35zXM1mLSlVilOEIhUEQRAEQdDIwhSphx9+\n", - "eM9drddUqYW7Sry+2rgCvDZiOWhXaa0Tz+RZb9Bf3L2jnODV4s2WwnG85g7/X1R/cZ2lmTqeOeUx\n", - "OrV4LOBQDK10oRowH3OKEtfF+d1LL+0v1Be+z/Hwpkvshjnr8V+AMkX21d41qFrg2v082A5ZgsQ8\n", - "1Y6917ArBVvH06YvW2uAeYb1stdCGxrfRWPoXQ5ScD5q7zGOrXW8hmLo7E/WMObTUGCnvi4w//nt\n", - "D0UqCIIgCIJgQSxMkdr7jpZ/lyoFDnELeA21z+G5GyXTBeWEOADuZvEm/W586MrgrXh2VKmCkvOS\n", - "a/vTFQmPNUrV8Bmb2usgIwm77OuFedxOLbTDlb7DDjtMknTbbbf1aF0H7cspUd6u1HWVKma58Snp\n", - "t1TNKQebv+WWW4o+D9gyoJLh6fJ/roX3iU0q9Xx9DaqFdriCNFSWWalt7C+MVSE+BQoUiiYKZ23s\n", - "0LLXPOQ3wffNHBoUWN9dYqiYvVCkgiAIgiAIGlmYIvXEJz5xj1fIXSiKUqlXCTxX5W6z9nmn78/l\n", - "MUM8R8ULW9bME2JM8F6GqsxNlV3IKQzErJGBQcYECk8uM2pZGDqLs2+GD/09VHwP9I3dytkZ7cwp\n", - "tzllOjWvW5TsnGefqjPlMRyuUqIEoWBwzbUZj4xF65gwB4lvZA1j7z7WsNbYkPWy11qO1Dg7ubk7\n", - "dHYc9kI/kzG8KDV/bIjda1Vgc7AGcR7mQ+29RopQpIIgCIIgCBpZaIyU7wPFXX1tFhL7HuENuoKS\n", - "Ay8TBcoVJ7yDZa8Zgnc8tGKGogS5ccHL9XEl06W0jlMwC3ZI7aPWHeYd98qHzirk+DlFiutDySQ2\n", - "MZch1hJzRjyk16RK7ZEHbrOeoco1sLcXc+e4446T1GVC5pQLxqB1LrMGHn/88ZK6NY692vpmKe0v\n", - "DBXrNXScLPXO+C0cqq7SsuG/WWNVcOc8zFfm11BPHUKRCoIgCIIgaGRhitSPfvSjPZ4msTN4lsT4\n", - "lHoLmzdvnvn+3XffPfN3vMxU1t0xxxwjqfMq8fC5O172DBWe9+L14mXzXBgFaNeuXZK668JLJeaG\n", - "jKQtW7ZI6u7et27d2tQuvDQyT+hfKlQP9Xz6QMG9N9SNvl4cKgoxiihBQ9WKKVWMUC5RllFNmLct\n", - "CqZnsrIWEDvE3/H8yYCkAjlzadOmTZJWq7O0iePQl1wzfeg11EpjaRiTVpiDVFhvrdW3rIxVm62U\n", - "VMXzvngNtf1dvR9bkfK9K7GboeqhhSIVBEEQBEHQyMIUqcc//vF7Yj3wDh988EFJ5QoQ3tpRRx0l\n", - "qfM6N27cOPM5IvVz3hiZNuvtefSLXvQiSV3tEbLiPG6Du3IULBQAvB+8VvqBceB7L33pSyWt9vLx\n", - "sj1OgLt9+p0Yqb571rXC9aaqXq8XiJ9ozRBC8c15gXyOfmN8GX+PL0qR86Y5/uGHHy6pU1C9HprX\n", - "8sG+mf97g4rKsTkWawavXDtqLrFTN9xww8zxvC3edo8H5Dh4vrfffrukTn2nD/mex0Lx977xb5yP\n", - "623du29ZYTywVfpzXgrV2HGzpbtrwHod37HH64gjjpC0evcSfotST0d4mpIjFKkgCIIgCIJGFqZI\n", - "HXXUUXuUDOIP8LBRRvDiUDT87v+MM86QJJ188smS0tVnPQaEOAnuTvFs8Zz5HMfzGhSeAeD1fHif\n", - "bMKUV+k7qrc+B6c9O3bskNRVa/a9y1CIyIri7yiB9DPtQLHh+yhSfJ/+IbaKzxNvwveouN16fcTA\n", - "EbdSC94qit0999wz8/exqumORa2X2orHFjK+td4jmWOuoKHW8OpVw71+G9/nFa9yLS98586da7aF\n", - "c51wwgmSOvUadZysNo+dYA6jVqMCP//5z5ckbd++febzvrs8/yf+0FXdb33rW2tee25PN/oMtZC5\n", - "t2HDhpnrYo058cQTZ47vKv16UTQYR35DeMUmSustedwmYPuuLKIGk5XJ2kGcqSsYrbt1pKBdKJ/Y\n", - "F9dRuy9qLZwnVfORGEMUVtZ8vsf4+Pyin7Bn1mz6l/7n/VJ8f07/baJdqUoBpdmYoUgFQRAEQRA0\n", - "Mhlqx/iqk04m05WVlbmfNwiCIAiCoJaVlRVNp9M1JcZQpIIgCIIgCBpZWIzUPBQpzvGJT3xCUvd8\n", - "e+zzffzjH5fUPUd3+tY+4bnuOeecI0l63/veJ6mLATryyCMldc/9/+7v/k5SF4/Bc3xinq644gpJ\n", - "3fNunvezLxfxFb/0S78kSbr00kslSVddddXM5zi+x7oQ08L18nza3yd+hBim3/qt35KUthVq+hC7\n", - "47Fo/J2YolS2IHEQb33rWyVJH/3oRyV1sTmMV+sO8B5bx/ne8IY3SJIuuugiSeV1tYhvIc6AOAL6\n", - "PZVNRz/+3u/9nqQu3mKoWiqp833oQx+aaR/zglg78GxZz7BJtRO7f/Ob3zyXdUXqru3888+X1MWE\n", - "EJPEXPAYi+c85zmSujH8+7//+5m/00fElnAczpe7PuZqaw0w2vXOd75TknThhRdKWp2VyJwg69Ez\n", - "P4lNYcy8PVwn/fXa175WknTeeedJ6jI4mYOpKvesZbTb4x+Zex4HedZZZ0mSLr74YkldXOlYMG6X\n", - "XXaZpK4/6Rdsn3hS+pkYPNZKYtpYoz0Dl+t8+ctfLkn68Ic/LGl1HC52uW3btpnzsaYDazL9S0Y4\n", - "40H86plnnjlznaUw/rSLLNMcpfNhKLLzbi6tCIIgCIIg2A9ZmCI1T0rvcocCL8q9BTJi8MTxKsj4\n", - "QWniNdVur7OFV4MHj0KEJ+/1kvBqPv/5z695fNpF5o8redddd93McfFSoLVieSrTKgXeaaruF+3O\n", - "7VfmmUpD17lyb90zeehv/3vqulIZL2TS4L3yvl+/Z3GODefx8+XqtZXuB5dSfhcBfZvK9iE7DwXA\n", - "Ye6jFtbuicf3U9/LKVY+Rp4hWlq7LJftxBrmY+d1obDdlK3magOidqOoeEzwHXfcsc/vDw1rC+NP\n", - "+31/WPr5y1/+8prHwT7YlYPsTq4XRSpXKdyz8ADV/JRTTpHUZYT72tiq0sP+srtFKFJBEARBEASN\n", - "HBCKVF/PO1VjIodXQeY5MJ441VYdf56Pt8Dzfq+R4u3Dy8BbQPEovfun7g/xB+4t4d3hdQ613xXP\n", - "y0trd+CtpsYlp0SBK3zEb3gtFNQG+hslq7ZCOv0F2CfHqbVX+h1lEG8XhbK1Uj9e71gV4LFnvN87\n", - "77yz6Tjen/PEbazU5lzZYayY6yhGtR57SonCJrDZRe0uAPST95fbmlfXr63mz9qQquI/7z3siF/k\n", - "t4FXxj+3pgFrEGs036u1FxRH1jziSn1/1FQtRGoQHuiEIhUEQRAEQdDIAaFI5SBmyTMkeO7sVYcd\n", - "r2yei8nCg8b7QjGiKi3PowFlKfU8Gu+FSvAoRnineCm0E+8jlcXI5/m7x0B5jA/XQzta959yZSYH\n", - "19E3Bs6VQ9+3y71WvHrGy+3FvUk/vseneKZRX7wCeCtkfaKS0M6hFCrUAewVhap2B/gWJRT1k6wk\n", - "bJ051EpOTcVmsS3mKDbHXCrdx7CUUltAgVg0jAdj2/pUge+hOrfWTeQpwQte8IKZ97/2ta9VHQdl\n", - "h9iwVhWftZynE6i5tbs0+K4FrGlkXe7atUtSejeFee1puOyEIhUEQRAEQdDIulSkWp+Xp8ATfvGL\n", - "XyypixG6++67JUm/+Zu/uc/v1+6n5HuI5eoc1YJy5cfD+80pRng3KBKuqLgXwvN5YmroT49PyHmV\n", - "peOJt4SqgBLUag+MB9BPqeNhf1wn8QTUM7r55pslra4VAx6TVYvvBVlLaa0hYqu4Dq43lylVyyLi\n", - "LFBdU7EzraTiBelzbBdVk88xV1GEcjaCIoGSgKJVGl+YAhteNPRTrvZfqYrZdwcP5gD2wh6NtVAf\n", - "C3tojQtE2WRfWhQur+GXm+usdb6G83/iY3l/rJiyVjW6Fp7+0E/Mu777l4YiFQRBEARB0Mi6UKRQ\n", - "APDSWmNwUlBN9pJLLpHUKRyld9+1XiDxD0PHQbhSk/K2c5lFeDcHH3ywpM7rAVe68PZ4xcum//oq\n", - "MA7eFd477WtVpDzGLffc33eGpz1cJ3EKKTv1/q/NjuPzrdRWvd60aZOkbnz5/tD2uwiG9oA9PtFV\n", - "yVT2k7cH20q1DxtADcfTRhFzDxsFLLemeQZkzpbHotTGx1YwnKuvvnrmtRbicfvWX+K62cWCNd+V\n", - "t9xcR13GXvmt5beEtQrFqK/imWJe40j/8Bs21FOtUKSCIAiCIAgaWReKFDEo3DW31sXJwb5XPBcm\n", - "g2Fez2+B5++1GUQoK8Q20V7iQWq9SrzXnHeI14r3g6JTq0SV1qPifBzfK5MD/YD90A/urXsMWE4Z\n", - "IksQb4Z+wrvzfvY4BW8v3l+pIoViOjYvetGLJHWZbV/5ylckjadE+T5upbF1ywRj36rg4PFjsylQ\n", - "NLAt+iplQ6XqeqoKfg7Ua2yGuLevf/3r+/xebXzpesczfFOgbPq+mowHc5A1hzXR50qpEondcRx+\n", - "a5mLHGdRCuVQjLXLSShSQRAEQRAEjawLRWpsJQpQQjgfGSO5jI++MStOq+LgShBeAxk9tft24YXk\n", - "YqpckWpVEEprkjAeHpPkoHDwmlIU/bxe5yv1ef7O/2kH3+eV/uf8vs9arf1wXM6XGp++2X14b9/8\n", - "5jclra4nNjT0A/3Fa98aQGuBesucQBkhhqU1k3Ao9Szn8fN3nwt94xFLK7M72Nju3bsllXv+qTHd\n", - "X5WqXEYw6vRJJ50kqVPP2ROQOcHaQ6wP4+ZrGYpWSpGi/1lTaB/HoT3MTY43VGzR/kIoUkEQBEEQ\n", - "BI2sC0VqbCUKiDfAG+KuO+cdDl0NuPU5rtf6wGtprf2BIpW7flcOxoLrw4tifIgnwXvieT/qAOpC\n", - "yo7cC+c4nIfzclyvSo0yRH973SX6EUXKvfBUjFcK7DOXkVOrQDo33XSTpOEV1xT0uyttKHh9M532\n", - "Bpsl4/Owww6T1HnirYoUa0hrDImruzn4HLbZ9/ytVeuxtZ07d0pavRaU1seCVmUsxdj7RpbC+KT6\n", - "gXGkvpTvvUfcp8fEpdTu2srj/nlXBkOJWptQpIIgCIIgCBpZF4pUaSXmvuAl+M7cufN61te8wbv2\n", - "eAnaxfPvWmWqVNGif/pWvc31N+/j/RIfcMwxx0jqnt/j1ZXGmrmiSP9xPq+h4nWz+D7KEt4vqoB7\n", - "wV6Lxe0nlxlT2s9DZdb4XopjVTdGcUJhxK49q3EItYLYE86BeknGbilUSOZ4biu1CgiVr1HKSqvI\n", - "Y6t9Y4v6qo/MBc/gre0HxrwvrAlkQteO79CUPr2g3ti2bdskdYoTawP9g/1SR4y4SCjt95Ry5ZX3\n", - "g7UJRSoIgiAIgqCRdaFIja1EAYoC3iAeODtsl4JXWJplRHVavJDa59ooBMQA8Rwbz71VmfjWt75V\n", - "9Dm8vr5Ze16d2fH9yfi/V1SvBa8O6E/6LbXfF+P87Gc/e+b/xNekYpRc0fHxwWtNVRGed12zvrFW\n", - "pRAb6NWaURaHjJvBVqnizzXW9ik2iyLVd88u1ppcXagUXlm9Ft93shbGkLlQ2x5i1Y466qiZ76G0\n", - "UFuvdK670rjommSl52dNIosUpXDXrl2SurXBlSJX4b2fUmsHShfZrNgf/08pUot+GrMsRC8EQRAE\n", - "QRA0si4Uqb5wd5/zaPGCUARQCnK1OPzuvrbeDRW3W3HFbmwFwesTkSlCv9HPuevyqrup7DXiATgP\n", - "44JyRe2aVMXynKLpXn+pt0ssFf2AHdQqgK545vazmvf+YvMG9QB7GLt+ldTep65W9lXPUQZq49Bq\n", - "VfAUHmPTCkrKEUccIUm64YYbJOWvi7nAdaDSe9xhLWNVtC7djQFKM9D5zcK+uO7c2pCzP+zLsxj5\n", - "nmfGomCldjMYyl6c1NpN1uKyEYpUEARBEARBI+tSkfL9hxzPXMl5C9xVc/eL94K3wXPilNfqd814\n", - "0p5JgxdAe8hO4nPs+I6yc+211655Pry9FHiBeBsoNbkaLig/fJ92UE8I3KtEeUp5S3hXjBvepitI\n", - "xKs4KFz0E9fF9aDA+fP6Uu/VvS3GBQWMTCrOz3HpH+yEeJlNmzZJ6saTz5dWIOd79Cf2gh1yPo6L\n", - "vdEeMr2IMfJMJfZFo98YH1dD3F6Yb4wfxydzjb/33YuP73u9sGWEMcd2iZdjTOlj/p5ai7Zu3SpJ\n", - "OvHEEyV1awYVrQEbZwx9/0aP78vFWHEcjouN9YX2Y9O1ChtKFCy6/lMK1rTSGmf8BuRipfitod8Y\n", - "J9Yi/p5TUvk8c8nVfcaJfWVdVceeDznkkJl2s5Yde+yxM+cjvpjx8qcWnnntYH9kK3q8bC6Gj7+z\n", - "NpXGLvKbx/igjD7vec/b5/cgFKkgCIIgCIJGJkPuX1V80slkurKyMvfzBkEQBEEQ1LKysqLpdLpm\n", - "obZQpIIgCIIgCBpZWIzUysrKnliQvjEVxHagrhGzcdZZZ0mSPvnJT0rqns/yPJTz3nbbbTPHO/74\n", - "42eO5zFCPC/muTXPgX/5l39ZkvSpT31KknTPPfdI6mqj8LyX8/E896d/+qcldc+fL7/88pnzAzEw\n", - "xPC88Y1vlCR94QtfmLk+njNzfbfeeuvMcX7u535OUlcb5Otf/7qk7jk2mRFcJzEqZ555piTpox/9\n", - "6Mz3UxDLxfPpXNYkz++JC3jXu94lSfrc5z4nqYsv8crzZO1x/C1btkjq+pesL6+VwnN6rvMXfuEX\n", - "JD1imzVwncQVlFZU5zy58/G8P1VlmPPnMoI4D/1JLJVnWxLfQDVo4hW4Lvob+yL+h7gg+uHss8+W\n", - "1NkLxycuw/e0zMH4EdPFK/Pvd3/3d/dcG5/FBoj94Bqwda+8zdrB32mbz8VXv/rVkqQ//MM/nOkL\n", - "YK5jW8ReUGOMdjGXicnwWBtqar3hDW+QVG6bHjNVC+f52Mc+JqmL1yNuDttgDrF2nXHGGZK6fr3+\n", - "+usldXGnHhvz0pe+VFK3Buau7+ijj5bUjZfHUtGvnD91/ZznvPPOk7R6fGuzA1m7fL9TjvPOd75z\n", - "5rxj49eXis3LZXv6fquprMDStWwoas/HvCZ+lbhe5m1uDcqdJxSpIAiCIAiCRhaatddXiQL3HjyT\n", - "wbOQ8IpStUV27Nixz/PhfeGluZeFEsV5yZryrDKO88UvfnGf5wPa71lYKEh4Q7SLjCIHRcGvH+8Y\n", - "L5rve/aW/z9VSyWnkHA+2kG7vTYJ3gI7opNJgpfh2YK58cuBAoTXgqKIt+sKJioC7UlRW3MGuP5U\n", - "xffa45Ghg3eJXaKWYJccl/GgqvLdd98tqbMPvHHswpVHlGf6CTtFCaNadS5ek7/zfcZp7/Nt3759\n", - "n8cArtVJVbFPwbVhw/QpfcKYsSaRRcVrTq2trW+FwnD66adLki699NKZv9fuW5pSVxkz5ytf+Yqk\n", - "bg1hLUzxt3/7t5I6RSoHay39iirJ0wHWQmw1p8i17obgsAbl6jzNm9z1oc6ndqXAnua1u0gtXg8r\n", - "BfPMsxGHygwORSoIgiAIgqCRdVlHKocrVNxtcteKUuJ367m4Au5+8Sa5W0/VP4K+Xo/H9ngcBbVm\n", - "uD6vO+R4zBdQAwQFguN5hXL3WmqvD2+S6/Dve/+j9PA92ofXu3Pnzqrze2ybK0mujOCNpeyC/sjV\n", - "hmm1g9xxa5VdVA68e8bZz4MX9+Uvf3nN46CioMpwXFdXOD6qDSqC16WC1E4EXueN+bi3IpyrMeek\n", - "5jxzgT5g7FwVZC1xj51roDI07UGF5bx+Le5Zp1TIFPQlaxKqndcPKlXuaum75yAqZyr+0mvtHXPM\n", - "MZK68UMtLR1/joetuaLEWp/a2461hDVyWZWbFOzmgZ3wW+LzIqcsLora/iZmD4baKzAUqSAIgiAI\n", - "gkb2S0XKIXaDu9dU7E7uebrHIHnGSulxakH5Sj1/53y0A28il1Xnx8fLw7tKVQwvxTOfAG89dT2u\n", - "KOI1EttDe1r3KMTLTMXmuBKC4pPaC3C9QYaYZxbVgtqCaoJy6jBe9DN26vOE+UWcSyqOCdZS+GgT\n", - "yg7nTHmu3gbmAmuGn8PVy1xMDHOAa+OVjEnahbrq8Xetc88VJ2zXK6UvG6jorF2sSfQj40mcKP3P\n", - "+/RXKh7RK2P73nMcB7sgSxDIACZbkOOn7Cs1J5YF+ps1lrnJ2r/s9tL3aY/HibYqiqFIBUEQBEEQ\n", - "NHJAKFK1d5l4b9yt87wfZQUvib/zfDlH7V0v3gxxA/zfY2LwkvG2UGpK93/CC8ML59X3PKsltbdf\n", - "zot3lQCvCIWidL+qFB6/4ePhChoKVa4OVoq+NX3AY4daswCxC15bFSlUFD+u42oC7fV2oyLllChY\n", - "67qZI7y27tGGR048Hm1n7gOxVK5yY+Oofygb3me0D5vO1fXJkfq+11saitqYtByeJcgaQowXcxNF\n", - "z6FOEMdxVd7bic26gskrdoRig10QM5SrGdc6t+YFa5//pmEvqT3x9jeYf7n9aFOEIhUEQRAEQdDI\n", - "AaFI4aV59VnP5vNYjtIdo/1zKFTc7aMYEfuBl5rzvPFm+D4ZInj4wPVAqxeOF0LdJK6r9XhD1WjB\n", - "q3RFiHH+xp14AAAgAElEQVStBS+S/vXMqKH3n3RvtlQpdPz6W/sXe2ptB5ClR+waipnjStRQrKVs\n", - "+i4Htfj3+D/n8mtIxcB4XSEUFOrXAAoJcXv0JWtEbfYbawEqqKurKDYei9XKUEoUpBQB1iBXBJ3a\n", - "uM6cAnHVVVdJ6tbEeTGUspoDe2Yt5P/Yfavqvd5oVaIgFKkgCIIgCIJGFqpI9Y2UL8U9Yrw1zotS\n", - "xJ5lvJ/y2vAuiXvwu1m8CN+fCAWFu3zPlkNx8P7Aq8XbJDMJ3Gv1/ZHcm0CZc4+eOA9qi/jed4vC\n", - "FSNX4Oiv0ngEavfQ7368oeE8QylBfaGfXJGr9TqJXeN7qZ0C+saJpGLM1jquZ131xRUdn+ullceZ\n", - "a6wprqYSi+VV/Wvj8vh8SpFDHaWeVSrWaNmg33N1tRgPVPtUTTLIxaShuLEbxLxinnyt90zXoZRA\n", - "lE/OR//Rz8QA8lRgLGVsvROKVBAEQRAEQSMLVaS8wvFQpCp649V4LAfvczde6nUQU+TKDs/p8dT9\n", - "eb1nw3E+PG/3nvD08Qq8v4j58XiOFKnYIo8vQUnx2itj44ob4+l78Xkl91I78npGOUWxLyh9eHeL\n", - "xq+3b/wD9pfy+hkv79ecGkC2Kv3mCvFaGWOpulBDx71B695q3h72kRxKHU3t2sBalIs1WlZyCh0K\n", - "IjaW+3zOLlh7fM0Ym9LdEvrC3EWBwk68Nhz9EIrU2oQiFQRBEARB0MhCFamx7ra99gVeqSsuvI/3\n", - "ltszz6H9HqPE+65IuVcIubt8YoCIrfG4DLzw0kwV2ufeOtmGeHPEjs0b9xLxjvDWUSL4P9ddak/Y\n", - "Acd1BTNVp4rP1dZW4TxD7evUl9Z6WClQjrhO1BVAAeb6XYFN2T/KZKq92Cv7q0mr50ZfJYq4Sc/s\n", - "HRqO3zd7CPy66StioqgMvuy4eo4tsSam+muo35YDpY4SCiXZidg5sWGp+MfgEZZjZQ+CIAiCIFiH\n", - "HBB1pFASPFsJjxiFojSbyrOwPJbGs4zwmjyTpDS+guw5lBhvJ++jCODduuLmx6PdfN5joYhtGcpL\n", - "LiW3pyCkFKUcrqB4XS7+jldLv7DTPP2/txKyL5773OdK6vrdK9PPG+zX7QgFkvmA3aRqGdFP1Dej\n", - "n8gEAs8exdtlHvi8hFzdrbWyfVtrizmMFXGJ2N5Qx3foO64ZRSlVmytHqrI5WXvrBc/CxBbGzvQ+\n", - "0GANZC6zBq/XWLp5E4pUEARBEARBIweEIkXMi++71Johg0JDnEFqh3i8y1QF7VJQMPBOPaaE/btQ\n", - "Djgfn8/tYE9WGechjoL9pOZd1da9IK6PSvBcJ16pK0o5vHYOx33Zy14mSTrppJMkdfaBN0ycCf1X\n", - "qkihAnAc1I5FQUV+VyRdkeJ9FL8HHnhA0uqYNY7jtW6AcfJ9zDx7Dzgfiih7RzprxfnUxsZ43Sbm\n", - "bEoVHSv7DxXb48ZOPvnkQc+zLKoovPjFL676fOlaRC08YuboT/q3FuYMleF37dolqVP61rtCRsV9\n", - "FClio1gLcvW49hf4LaHOWum4hiIVBEEQBEHQyEIVKerD5HbQrgXvAVyJAryUofeSc28PL7ZvpgyK\n", - "gMNxvQpzynugfdx9076hvFS8/NYK3q6Y3XXXXZLStVX6tttVBpQmzz7jemqrZl966aWSVo/Porj9\n", - "9tslrY59Km0fdo+Sl9szEsXTSWVE4QWnvrcvahWjvlXmh6pTRTtQ6VD7atVWBwXG91RzUAFRXcH3\n", - "mPP4t1TVeYc1wWsH+lMBdotgDm7YsEFSlzXmCpPjew1yPaiobnPYGp8nUxTbo19OPfXUmetgLeb7\n", - "i1KkaA/ji6IEXA/jzvVgt/yf6+e3kjWX/kbJ5HyM96Iyu8eCNbB2rQ5FKgiCIAiCoJGFKVKbNm3a\n", - "8xzSlRG8Ct8jD68C743sH+6WeX+sCtJrVVKWVu8Af8IJJ0iStm/fLqlThvCOuPsn1or/c7fPdXNd\n", - "XD9emHupubtn+pP+pr2eDUhMVN+K3ng7HBfvhXbnapK4d5+KkRmLW2+9dc33S/dVc5ZFiYJ5x7zh\n", - "tXp2H9A/zBPsx9Uir77McYZQUpkjter0aaedJqlTL135Qamgral9IcmA9DUwF1fJGsjxfb9OV4q8\n", - "r+hL1gKPIcopWW5LrC2swShA3q++n+npp58uafW+oqimOSUK+Htqn1S/Ps8Y9ePT/zfeeKOkrn+p\n", - "OTjvfUjpX8bba7O5vdBvXsuN3yLexy5QAokj9fHn+D5nD3RCkQqCIAiCIGhkMlYWyj5POplMV1ZW\n", - "5n7eIAiCIAiCWlZWVjSdTtcsJBeKVBAEQRAEQSMLi5H67Gc/u+q5K7ERPH8le4vYHp5H89zdY6d4\n", - "rs5zX56759QvzuvPm2vhPLnz0d5UpfIctPc973mPJOnjH/+4pC52i3gH4hBSewhyvR6XQSwT/cA4\n", - "vP71r5ckvfe975353ljQj6XnIxandV+o0vFLQdwB45mrCN/3fLWsl/MRY4g9k2UI2CfrBHZ87rnn\n", - "6qKLLpK0OjsL2yZmxGtYbdu2bebvxAsC2U9Ut//FX/xFSd3cY8yJwWGOe40ttwmuhe9h4/z/0EMP\n", - "nTnfosaO9qRivEphjnIcYqLe/e53z5xvbDjPFVdcIamLCWLt2Lx5s6Que43Mct5nD0Yypvke/6e/\n", - "+NzrXve6mfOODef5yEc+Ikk6/PDDJXVZmNjrddddJ2l13C91pchOZJ5s2bJFUhfvSM2/F77whZKk\n", - "P/uzP5O0OuPZYxCZs8cdd5yk7jcqlcHPbzrtOOecc2auc2xy5wlFKgiCIAiCoJGFKVLf/va392QK\n", - "cHeaqsXBXTDeGxkZeKR4OSg8pVl7XgMGL2vjxo0zx+PunXo57lV67Q7u/rk+9445Lt9zRYpaKnzf\n", - "s8W88jdZbe795vYF8/4mA8MzMfz8846rKz3fUNloVC/Gi/IK5p6FR7YlagXjhr1gt1Q4H3on9daM\n", - "sxQomtjBvLP8yHZNZax51uneVchTGZ65SuU33XTTzP8d5oBng2ELqeN7/STWKtYostKwCfqa/7fu\n", - "jYeK71X8WxkqO62v7aMMtmbQOihI1MdiLWZcvAZhaX/yG9G3Tllf6G/f75LrSu0E4DULmRc7d+6U\n", - "1NmD7wyQmj+prE0UqFz237JnB4YiFQRBEARB0MjCFKknPelJq/aGS3HLLbdI6pQYV4S8pkWq2ipe\n", - "IYoQSgGKEV4OihKfwwv1+k08B/dK3HjFqbtovJSUt4KXkPK63IvwPeHw2Gv3HUvhXgbH71tvamhS\n", - "9Zo8piYHXirXnfOGGMerrrpqn3/H3nOxUznwyhlv1AeP62kFdaV1b0iH9jLPiNNABUgpXv4+85f4\n", - "jVSl+33BNfmxS1VPV3FT32PtYG6iDmOL1I3yueQxIrVzjPOmFCnUbo9hWS8wfuxBeP311/c6HoqN\n", - "21Cr4oXSyLj57gHzJrVHnj/VKIX+5zfPK9PX7mWYit91mD+ugJUytJLphCIVBEEQBEHQyMIUqYMP\n", - "PniPN4fXlPP83ZPnrhoFiuewxE44HvPhd+t4EVdffbWk7u4aD532epahP//FK+T92pii3N5ljlcz\n", - "Tnn4xx9/vCTp2GOPldQpbcSkpPD2L5sSlaO2snhfxShFam+5WvCeUaSGUqIcvL/UXpWlMA+82nZt\n", - "7BXzCu/y/vvvnznuvmCu+t5ztbhy4RnFtIXYJl8jeGXNYw1jLXJq1w7aRyyLs16VKCD+cOvWrZK6\n", - "eMbdu3dLql+bUopI6xo31L6x7IGHPaHioqCVngeFDLvgt8t34ygFJZVxcGVrKBXbKd3TMQVrRyhS\n", - "QRAEQRAES8bCFKmHH3541V55PG8tzXTwWi3crabuirl75pW71JR3yl0w7aR93M1zPrwHQCHjPO71\n", - "0L7nP//5M/9HIcLTLvVGc9l5gLKGMjKW8rLe8PFbVmjnUMpWDuZVX2/Q7SyV4ZaDeep7Oe7tZaZi\n", - "oLxWXC30gdsKqh1KgdfJQVHAkydTFwWKsUT14/gcZywPuhbPcF40KDL0F7XHbrjhhoW1aUh8jnst\n", - "tVLoH//tap0H/KZ57Uag7lYpqf1rnb4ZyTyVQEFmDRoqjjgUqSAIgiAIgkYWpkh973vf2+NV+A7m\n", - "pYoUd5m84jX5823uwt2r5NXPjzfL3arXV/LMBM/m43Pf+c531mw3x+dzRx55pKTubh8v1mt5pCh9\n", - "nk98BArZelGk+nrDOSVnXgpPX1Lt9KzNoVSDsdSQ1jgK5jnqDfNw77pxudin1nPzPffkmUOsFcxd\n", - "YqBoI2sQyhRznawuj9OE1qyvI444QlIXQ0SdrNr4S1gWJYo1mvHgeuj3oWuqrXeYM/SH23Gt2kw8\n", - "JjFbXrOxVuGZV4067ILfAtrNPUjfemuhSAVBEARBEDSyMEVK6ryIoSooc5ed2s+KbB/iE7hLxdOn\n", - "flDpebi7xcsEMhpy2UQ333yzpK5yNgoWXkJt/aNS1osSBX29YcZnvShPtXi2amsM0ljQ/9SeIYYQ\n", - "xas29grVhuOksnT3hrnoVf9LbYvvuSLFNTAGroqzpnHtfB4lhVpa2GaqRlwtKAe0Y+hq+g4KG2si\n", - "a/rQtsjxUaa8Nltr7M+y0XffUODpDnZF/zFevj8oMX/8hqV+K/hN6vub7fHGY0F7mWfUoqOf+ypS\n", - "vW6kJpPJnZL+SdKPJP1wOp2eNplMni7p/0g6StKdkv7XdDoddxYHQRAEQRAsgL6K1FTST0+n0+/t\n", - "9d45ki6ZTqe/P5lM3vno/8/xL04mk1U7iveFu1u/S+a5MN4nd7/+/LgUvC28H8+aKz1eqgosXihe\n", - "19CKFFDlmP7Bi132fY1qSe2/tr8xtDee2wOzFLxcMmZQZ1qzAfGSU/N9X/SNnXEP3f+f2gWAa8UW\n", - "uWbmGnMQpYA577sm1EIG8NjQD4z1UUcdJamLzRoKbNFr+gH9t97V59oK4SlSNdwAxdKfDuXqTPlu\n", - "Da2MrUQBaxlrBfZRmvGePf4Ax/CWvFLSnz/67z+X9AsDnCMIgiAIgmDpGEKRunQymfxI0iem0+kn\n", - "JR08nU5JDXlQ0sFrfnE63XM3SMxS31gY7r7dS+QulFfuTrn7JhYpVdMi5TnzOX+OzfFz2XTc1ZMB\n", - "QawH3x9LSeF8VDrnPL6z/f7C/prBg9fo3uSygWrA/MG+W9UDrpf5My+vVlq911cuC9AzcLlmlCav\n", - "hedjONZebUOpjQ4xOKiPQ+9xRsYm/cR48Nuxv8RIDRVbxm+azxGvtM/5XO1Ngd30XVsZP377ON7Q\n", - "v30+r1g7hooX7nsj9eLpdPrAZDJ5lqRLJpPJzL4E0+l0OplM1rw7+sEPfjAzaGOVlg+CIAiCIGjl\n", - "sssu2+ffe929TKfTBx59fWgymXxe0mmSHpxMJodMp9NvTyaTZ0tas5jSE57whD2e6HQ6nal03hc/\n", - "jlc894wdqg2XVlkFrx8Fpc9dUzuEj31TibeBklZarypYLvD+c/WjWuMAhlIrUHQ9/sL37SoFRZU4\n", - "ojvuuKP4u9RsI1M2B9k9vLoHnovP8s/TF4wV8ZDEJ/oYjhUfObQSBazpXPdQlaMd+gUlg6capTUI\n", - "50XrnnapfktV7k/hvyWeIe+/lfQj7+cUp6HUYNaoeWWU19rlGWecocsvvzz59+Y7l8lk8qTJZPIT\n", - "j/77yZJ+VtKNkv5K0q88+rFfkfSF1nMEQRAEQRAsM32kj4Mlff7RO8kfk/T/TqfTv5lMJldL+uxk\n", - "MvlVPVr+YK0vP+5xj1u1l5e/lnpjKEl4d17XCc+duARqZ/A9dmpP7Yzud90HHXSQJGnz5s2Suuw3\n", - "P19tXADt4fvEAwwNcQt4Ja3VjoNhcCUUO2Z+oFK4iuCxUdgxXjDqACrMonDlldotrd4sSvBacRrs\n", - "ucZc5jPM2S1btkjqPG4+554+Y8JaRAyJKwy1c5wxxvNnjUupicRUrRcYC65rrPg1bPvQQw+V1I3n\n", - "WDFlrZTuOuGk7KG2bpN/PleXKhevyNrk++S2wnxgvg2VRTdvmm+kptPpbkknr/H+9yS9rE+jgiAI\n", - "giAI1gMLi/DeO8AcD7M0281BaeJu2WOXNm7cKKnzhN3L47l6qnYHx+Pumbt8drrmLp59rWqzkHxX\n", - "e+Ilhob+Zp8hlIxlz2qjJg39zXjQb4zr4YcfLqnz5tgJnnHFvlAX6G/PxJo3xPyQNYlawbgwTrQ3\n", - "FVvEvlFObQzS0KB4Ms/6Zszs2LFD0tqKLTbuajbKEx45NoIt+ZxlrpfGUqXwjF/WNo/RwCPHlrHR\n", - "5zznOU3nZU3kuOyvWRtjUwpziz3+xs6e8+MzV5ZlT8ChQElFCaUCd6nShxrN2sDa4hXhsUevZ4ad\n", - "oPwdcsghM99zBal0Nw6+x5rN/8dWFD07kH5kTfV+LmX/yBUNgiAIgiBYAAtTpL7//e/vuRskzqA0\n", - "U8DBe+Mu+Pbbb5ckvfSlL5XUecDcleO1cFfN3afXmvA4BsCr5Lju3ZVmxHD3y10+xxvLq+Kum+te\n", - "L7FRKFHg44G37ePhrw797HEuZGihXgydeYTqANgLXhneIN4TXiLfQ1HcufORaiOMo8fYcVxip1K4\n", - "SoHdp+pSEWNHP7FHJAoRChvkqn/Xwnxfa1x37969z+8ypq5GMjdSqh54jJR7sq6m+155jAlKFZ/3\n", - "eDiuLaWIMcaslXyedqBIMVc4H/GhjFlOmeJ41IXymC6uH9Uf26SfUZNRGlAssK2cAsH4eN0r5jyv\n", - "zrLuO1mL27rXYmPupn4zfQ9CPs9awTj69xln7Jd+R7nlNVfp38FusSvf+7K1Ij1rlu+aQHtY41P2\n", - "gJLK2sY9QWmccihSQRAEQRAEjUwW8Ux5MplMV1ZW5n7eIAiCIAiCWlZWVjSdTtdMKwxFKgiCIAiC\n", - "oJGFxUidd955e56vE8NBfEJtxDyR/8SW8Fz0jW98o6RH7iTnAef59Kc/LUm69957Z9ozFDzvPvfc\n", - "c2fOC8QpEF9AxhLfe/nLXy6pi0+45ZZbJK2uguvPlTnPH/3RH0nqnh8T30H8BfEJjCvPvXkejgrK\n", - "cX2fMZ5vv+Md71jz+saC83zhC4/UkGXcvF/oT/qXzBjiCog/IQ6A6+T5O3EOv/EbvzFz3rHhPO9/\n", - "//tn2gHEKRDjRHyEVw6nVhP24XE8HOc973nPzHnHZmVlRe973/skdTbGGPi+hEDsiSvzXHuqajzX\n", - "dMEFF0gqr3mHLXH80pgQzpeb67SXvcq4PuYkNugxR7Sf988666w1zzcWnOeDH/ygpPI1k2wyYnxK\n", - "fzs432c+85mZ97l+YrvY9YFXfrOOOeaYmXYSm8dcYJxZA9/85jfPnHdsUvbieDwl1+O/zWSSeywV\n", - "MW9nn322JOlDH/qQpM7eOF7fCv3EdBEDVdufzLfWDPXceUKRCoIgCIIgaGRhitTDDz+8x2tCiWjd\n", - "IZysJc94qQWvru9+TShrY+0blMsKTO2gzfcuvfRSSemMDZSlVF2tlNfH+Xj1bDK8FBSbVFbYWPtz\n", - "lYKySeYR40h/4V35q9flwnvieyiArZkpQ5GqQUM7UVJTbN++fZ9/X2Qtn5TiVLsmlHqutZ427WCt\n", - "6WsLrDW5bEOv4bWs1K6Z999/f6/zsda4ik79phtvvFFSt5bxSsasg8LD95cd7M9rL9Iv2HdqPrj9\n", - "872h13CvgF7L2LUSQ5EKgiAIgiBoZGGK1N7gnXE3T20QYi1yHi53062KFlBL4qabbpp5/+CDD5ZU\n", - "Xndp3l4f/Yc3tW3btpl2XHHFFTOfTylB9CPVlInt8TpOeFsoSw41Pah7hLdHLBv/57iLVqAcvM3c\n", - "vlSQGm/sGS97rL0T9xe8Cvj+zFi2wP6f1HVijhLDQzwiNplaC2pJjR3toLbfspFa21AOc+qsQywO\n", - "v1nLXmmdpw+nn366pC62i+uuHbex63e1Vj4nlpDfctZsYidT++yWEopUEARBEARBI0uhSPGc2+/e\n", - "S+/miYto3Wkb7rvvvpn/c/dauwP70PtY5eDuH2/Ivc5SUJBQUvBKfK+21Lj4nnZkugB7yY1NrjJ3\n", - "jr5eOtePtzev6543qWrefY831Hw+EMH2yCQ95ZRTJHVxbV/96lclDadEMdfI8uIpAllvy6Y250DB\n", - "a1WS+B5PL2p/O+YNaz2K1GmnnSZJuvLKKyVpTxZsKWOrya1rAr9NL3nJSySt/o0KRSoIgiAIgmBB\n", - "LFSRwnvBq6lVULjL5K6a556le905/vyVvcS4e/Xn6YvCs+nweoiV4v+1XhWKFK9kSLhX5dmAgDdS\n", - "qsj1VY5S8Jwe76VWIWRfMd+PDMUv52Vjf3ye5/McpzWDhJo5xLLdeuutTcdhb8fUPmU5mG/YSd/M\n", - "KUCRql0HPOPoQIQ1ijFFUcCWx8ok3rp1q6ROAcP2eR07W2osWpU0ftNye+AtC/ymfeUrX5HUrcX8\n", - "lnoNvRzLer1cD1mKxEO33is4oUgFQRAEQRA0sjBF6jGPecwej913hC6N+EcBoV4P9M3eox20D4Vj\n", - "aLhurqP0+bI/J6Z99APtrq254Tu0c9deWyunNMtyaCUKPKYrRSrGh370SuvEgRDzlPPu6bdNmzZJ\n", - "6q9s4iVv2LBBUuf91T7fx2t2UM7w3jg+iiT9xPv081D11zzLsTQeotZr3p/AJplz2Ag2Wqta1sb0\n", - "oICxVqDiY2MoYtdff72k4RSA0ozuVrDp2rWP3y7W5EXXjCvl85///MzrvPAK+2PBuHzjG9+Q1FVq\n", - "57eobztCkQqCIAiCIGhkYa7ck5/85D137XiUtYoUcNePl5KqyF0K3ghZa/x/aFCMOH5pnSq/a/bY\n", - "JLzS2ngI7tLxwrhbH1qRI0aH/l1U3aCU4uGxTMRy0R/UmqG/Ul4xGSHsy9U3loe6VvRba6ZJqoYR\n", - "Sm5qDz5/n34aKu4GhYv1oFSRKq33tQz03fPLcVUVFdXVXpQh4tpSmaS17WLNolbdli1bJHUKFZmr\n", - "/L9vnClrO3NprHpc2Lzv35qDObKebHJISpUdrwDP05Cxa+1RF4tXnhb0tc9QpIIgCIIgCBpZmCL1\n", - "lKc8ZY/SkcqQ4K4VxQnvwPdCw5NFGUjFgOTA2+H7Q2UjpSCThh3ZW8Eb5bXv82YUD7yLoSu148WO\n", - "tRdhX2iXK1P0A15nLj6DzzPOfav9cr6+NU9S/Z5SBudVC4j5N1Y25yIZWokCPPlcZioqH+1I0bp2\n", - "YOvYODbPWjrUXGft77vG50AZmXdNwPVO6S4j/KbzG8tv/bxhfFv38INQpIIgCIIgCBpZmCL1pCc9\n", - "aY934TFOniXE3SLP991DxpPu68FynHnviebZYbUxQ3jw3F3jpaJg1D7nx3vleChTfSGeY9l3oMe+\n", - "6D/Gh9gxxilX2Zt+QzGNSt37Brsfyt6WibHq65SuFShNtXvHlcLTBdZoxpC1qHWPNGCusZaVHg+F\n", - "hLlbqnzQr+xu4btepOC3igzYsbPRxoLrqK0NyDiVwryY99rIbxz29N3vfrfX8fa/FSsIgiAIgmBO\n", - "LEyReuxjH7tHieJul7t3PH6UAd9R2p+/rvdYir7tx2vyGBPqIeElXHXVVfs8DjVpTjrpJEnDxVzB\n", - "elFkuF739mk/Xgz9nbou+h8vmMrky1r9F57+9KdLStfjwp74HJXuWxVV8MyzYDio0j8WrOWo3q5o\n", - "lKrhzBkUA/9N4Lip3RUcn5uuZHkcLk9FaAcZt2Tg5tZCaryRib3scz0FSl5t9mFrHGhuLR0a7Ag7\n", - "C0UqCIIgCIJgQSxMkXr44Yf3PHf2GCEyS1CqiFkaq4ptiqF3tx8L7q5dSaE/S2NO6F9ea+v51MI4\n", - "U2sGezj66KNHOV8peJV33HGHpE7hY0d77AIvJuVt49UyLowD1Z8XBcqjxwKimFFTharY/jnGyxmq\n", - "Htiyz7dgNazVPC3w3QFK8YrgKBwoR7yWxn3mMk5Za7yOEWsg18V5U5XOWYOp9E6dIub8K1/5yn22\n", - "Y9Gw1vObQb/WzulWBW7eGdzYD8pb36zaUKSCIAiCIAgaWZgihbe/N6k95+atRMGyesa+tyDPsVFK\n", - "8Jpof2mGC8ehSjHxAp7pgzKD93jzzTdLWj1O1MfyWDjg8/58elHjDXilHoeBt4J3mosfIC7Fvdh5\n", - "10zxyvyprFRquuTqp2FXpXEqYzPP/iQrbX+ltfo+ys7GjRsldZXU77777qrjpGxvqOw/55ZbbpG0\n", - "eq1nzbryyiuLjoPyNa+aayly9bVST1lYm9l1gv/XZlj7XMSeULxc8aE9vM9v/5FHHjnzfdZS7KoV\n", - "lMMTTjhBUjefifdEUawlFKkgCIIgCIJGFqZIHXTQQXtiNQ4//HBJqxUV7g6pkstzVGp0sK8T+/UQ\n", - "Y+OKxubNmyV1njjf5zwoC763GooKMSMcFy+L98nogFQMCs9hOT7n9/byORQfPpeqqJ3aN6uVa6+9\n", - "duZ8Dt5BzvvKVbdNHb/vflx9SXnRpZlPuf2mfEd4vECe22M32Dt2QGwScQx4edgT8wQvEqUPb6u1\n", - "vcwD5hleHN5vab9s27ZNknTYYYdJ6q4TxRO7Zh4yD1DUOC/9xbyYZ/VpVyG3bt0qqWsrVftRjRkr\n", - "qtET80Pfcc18jrHm/z529AXXTl+6SootpFR1xhLPv29mrs8Z2tO3Cv/YLOqpAzbM3GMu88oa4QoJ\n", - "f2fciLfEnjz+EgWHtYA1JpVdx9wrnVOsPYCChJ1i38wP7NmzJfmtYK3BHlEosee+6jO/Wdu3b585\n", - "D8dvJRSpIAiCIAiCRiaLiEeZTCbTlZWVuZ83CIIgCIKglpWVFU2n0zWD0EKRCoIgCIIgaGRhMVLz\n", - "UKQ4x8UXXyypi19IZVvxPNkrNBO7xfNUvu8xPpzvggsukJSuOTIUnG9e6t56Ox/jyXj53oEeF7Ko\n", - "68NeqFBPXADxMrST9hMrRXwHnyc+wfeqhF//9V+fOe/YcJ7zzz9f0upK6FwPcR/g8Rn0A/MQFd13\n", - "Pnj729+evLZctXayeXJxf/TtOeecI0n6wAc+IKmL3yIWhDEj9oO1gO8TQ0UcHJ/jGhljanu94hWv\n", - "kLy2rVYAACAASURBVDT/sbvwwgslDZ8tB8zFc889V5L0kY98RFJ9Re1aFjXXL7roIkn5jFevAcj/\n", - "eU1l3hJj9I53vEOS9N73vldSN2d870GH2DnmoM8X5ipxwKwxb33rW2euc2iIxaIuGef53Oc+J6lb\n", - "A4g9Y17deOONkrp+fOELXyipu/5du3ZJ6uadx6Dt3r1bknTmmWfus32hSAVBEARBEDSyMEVKWh25\n", - "3woZC7y60oCXmfNyvJ4Rd6fcneNt5qq9krFAe7hr533ullu9PM+UCNYGL98VjmXbkZ3MK1QI7CNV\n", - "x4vsN/eiUnYxVMXxVvCi8W59PPBuyTiito97mcxPzxLcex7RF64is9akFKmcEuV7sAEKE33Mcfg8\n", - "NddYe1AiuGaypLgG381h0bXsSm3HsxBL8bm4aFsdG2waO8B+UESxU/qF8UdRpX9SipTD3MHO2DuQ\n", - "NYanNKyVrCG0i3Ywr1Be+fu8sjJTFfJZM0855RRJXSa/31Mwv3y3CfqHNRVFj/4urbgeilQQBEEQ\n", - "BEEjC1Wk+ipR4HvEOa07Urvn7PVtUvvyeG0YXqlV0Vr3JrW/FHfZY8UxrDeIjcJ783HK1U2aN9gH\n", - "YB+oFk6q2vKmTZskdfaJPaDO1HLyySfPtIf5SnxBaf2oXKygK7bEcWDnjFPJPli01eeYq3ql4JnS\n", - "BreZXK00roHaXlzDzp071/y8z/HSfTKdU089deY49CmKwpe+9CVJeQXJbXNs6O/WNXto6H9i1Rjv\n", - "3Lin8LUbpYXzUOOQNcxrFOaeqvhc5/MoTdgByhcKGe3YsWOHpNUKIzUTsR/U4UWPE9dFe5lnrFX0\n", - "Hyo3MVFeNwrFDcWO/indey8UqSAIgiAIgkYWqkjNi9YdnR2eY+d2NG/drydH6nlt7X5I+yuMD0oK\n", - "SgiV2rGDZVOkiNshaw8lyuMRcs/rUWG4rr47quONUr0b7xU1pVSRysH1szMBiprv05Wbd2NALApt\n", - "QjEAPFdiK3zu4/nmFAyPgek7dqjUxIwce+yxkqQbbrhBUnksU6nKzfGwXZQRjzvNcc899xR9ziuy\n", - "M05DKyRcD7Fu2ODVV1/ddDyPeaPfUFCY86wFnnFcW4GbmD2P4fO9C5nbqRg11kx/HXufS8+gd3yt\n", - "ox+xA/7OuKXWEK/8zmtp5n0oUkEQBEEQBI0sTJF6ylOesue586233trrWLnaF0PFYi16Z+8Uy6Ks\n", - "LBrUArxvFJM77rhj5v+ejblofG88XvH68E5zexCiuOGdY69ep6kUjoMChcox1l6I7NeGCoAKxHxe\n", - "xPxDMWAsPG6NrB/6GBvLxXURD0bWEcoAsR4oBK02et1110nqPPprrrlGUqf6jQX9gEJXq0iVQoYn\n", - "qiX1goZWpFCAiB3qW98qZ8PE9PA5z/L0GDJXWPz/zFns12MIUXKYayn1m/Ni79jtWL89tMNr47lC\n", - "6vXasHfGqdTe6WcUNjKpS+dfKFJBEARBEASNLEyRevzjH1/8/J27aTIZPDYjtzP0omuxBPMB7584\n", - "FSp+u5fqFbVrM5PwyvDiUFJawatyZcorsaNSoLB6nAvfJ1asNfOL72/cuFFS5xVSc2asmDzvhz47\n", - "snvWETE7tWsBaw6ePWMAHI8xS3noKAoch2wjlAeulXYzBq3xnah42CgeO+0fawzph7HrQfkcGSoO\n", - "NsVQldZzCg4KiispKJgoQ1yvK1CuePl4+6vHADFP3P54JYaLz6HUAUok9sbna/sPu2WNZh76OHsc\n", - "qce/lto5axvzk+svzXgORSoIgiAIgqCRhSlSJd4md6HcZXK3CyhTeIWRvXZggz184xvfkNR5a+6l\n", - "+XPvWpUCRciVnlyF/RR473wPUJRKM7iwfzK1UD1qYwRpD6/UXknVPhoK778+uFrXqkqjfKRiW1A9\n", - "UwoM7SCOE/UT1dRjiDyLqy/erg0bNkjqbGOomCmOh5JAf7UqgTmIaaH9fbMc50VpzA1KEmo6axuK\n", - "SSqbzO3e658xtzwbLlcpnbmPGs9vsbcDZYjx53O1ihT2kssuRTliLfbv1cZw0Q8oYdhzjlCkgiAI\n", - "giAIGlnqOlLc1fpduddyCfZvavfx4nk3doIXhXrg1O4PhhdG3ILvTF57PD7v8Td4ja3eNt5rbWVz\n", - "vOabbrpJ0uosWLxOjk9/94V+8LgP2t+3P/rAGnT77bfPvJ+LBfK6PcRxFu/h1VjZHOhTMqQ3b94s\n", - "qYs1GUqRIrMUBYDrHav2V2tl8UVTGstFViLX6Xs6lsLaxPd8rSoFe7355psldePtSi2f43ytT4no\n", - "J98D0Mcde6MdnB9lCkWpdL75WhOKVBAEQRAEwcgstSKVqgmyXp6HLzvLVk8pBe0s9cZcESKzwxUp\n", - "vP1SrwPwgvCSyMhqrWiP4obCRbtqlS3A28SLbY05ciUKLw2Fr7Tqb1/wLpcx+7Y0Bgg1HdUx9XkU\n", - "K8aubzYaY0Zlbv4/VAwWkLnKXFtEFfoxod+Ym2NfH3OfGCDWmlqFkjWFNYvr8OOVxhLxPdZk/g/e\n", - "L7WKFPaD8kT7uBfw337mn2dvMn+Isy7da5PPkx3pTwlShCIVBEEQBEHQyFIrUrBt2zZJXczGonec\n", - "3l9YdiUKXFHh/+6NpHDlBC+H77cqNmRc9fXuvR14h61xDWSI4U25slQL3ifVfvH2Sr28/QmUHXDb\n", - "SSlUXtcmZXO+z2DfTGRXNcmeuvPOO3sdNwVzEeVj7PpO84I5wLiQNVgLcYW5GoooSajdxABhD7SD\n", - "8eU3EQULWAM8O5Tvo4CWqssnnXSSpE6x8b0RfY2q/Y3h+8wX5gP94Nn+zDevmYeyRC280rWKfmHN\n", - "jTpSQRAEQRAEI7MuFCmUqFa4yxwqpoO75JS3RQyJV9+tPU7wCHiD9BNeWK5qNePuXozXVmmtwjxU\n", - "5tBzn/tcSdKJJ54oqfM6PUuNPSlT9uL11vDKWvfag5T9lsZr1MZhLDNeb8evCUXA15pUTIp78ChG\n", - "Q1XSZuyZK9jsWGsOttIa37essMaQrYYKXft0hDmZUqTYw+7II4+U1P2WMG5XXHGFpPRvmdsT7UWB\n", - "5DpQxmhP6W8jn3MlbCh8reE8rOVeS9LjST3brjamjH4mm7X0KUAoUkEQBEEQBI2sC0UK8Oq4+/QI\n", - "fZQF94ZSXmIrOW+uNHsrlKgyUjFIuUwpvIuxsstK61sR70ANH9+fCu909+7dkjovD+8LL5J4h5Td\n", - "oHJceumlkjo1gviCF7/4xZK6+ZKre0VMFDVteEWVwXukfXi9nulCJg7tZjxTCpX3a00dsdqaY7W4\n", - "Cklfck0pD5YxoH0cxz8/tEqNDVD/auw1Z3/NqGYNIfuyNS4yty8nsVfXXHONJOnoo4+W1NlJLtbH\n", - "59Rtt90mqav1xtzlN7F0v1v44he/uM+/980E96cDzAf634/LWsr73CPwNIj+LI0z5ekX44syfPrp\n", - "p+/ze6FIBUEQBEEQNLIwRWrjxo17vDPuJrmbxSP3Pb/wdPk/3hVeEHfj7o0OXTMlmC+1KgPeFmoB\n", - "SgrPy71KrisoJ5xwgqROkSHOgOw3vDqeoxPThHdHZtdxxx03832y6Ry8KleqgOunUjvHoR2pGC/m\n", - "lWcYER/hihX95RkwKE5407xynMMPP3ymne4Vk3FEOzmex2ugwHFe+hsv0sdvrdhHYkwYW85B3+Fh\n", - "8nfUQq6dviLWgrEDtxU8Zq/dha0yBjmVmj5kTGhHawwKY8H3c6osfetZX/Qx/eCxXqzBHN9VYD5H\n", - "v5HtxXHpL2Du3HXXXWu208/PdaZiz1Ct+RxZaq0wLr63WynMNZQt8L3vWFv6Vp73bD2vPF8K10s7\n", - "U8oOMVfYHfOReZfKIMbuma+ME9+nn12RuvrqqyV118Vx+H+rMlab1RqKVBAEQRAEQSOTRWRXTCaT\n", - "6crKytzPGwRBEARBUMvKyoqm0+maBeBCkQqCIAiCIGhkYTFSKysro2fYoHq1ql+19W84z/ve9z5J\n", - "0nOe8xxJ3XNhnvsS28JxPUaF5+d8z6vYHnHEEZKkV73qVZKkT33qU5K6uALiPogLIW6B58e8TxwD\n", - "8Rs8h+Y5vcfMcH0XX3yxpK7GyYYNGyR1z8cvueQSSV0GxOte9zpJ0sknnyxJ+pu/+RtJXbwBz8G5\n", - "Ts5HFd1Pf/rTkroquqnn88TYlNZ3op94Lv+2t71NkvTe975X0vi1cOjPCy64QFI6jgU7JE7lgQce\n", - "6HU+nw+54zM+/P2OO+6Q1MUeeqbO1q1bJUlnnnnmmucbi5WVFX3sYx+T1MVoeKYv8Wy1Y0tsD2P0\n", - "rne9a8855wHn+fCHPyypi5Mji4s5wxgxJh5jQxZYLgar79qZwtdU1r6zzjpLknT++edL6tYSYrZY\n", - "E31uY5vEQRKLQ+wWawLn4+9vectbJEkf/OAHJXVrM7FcrImtNeZoN/GBY/VnitK1hZgnfhNa9wvl\n", - "fBdeeKGkrv+5/qFZVH+mCEUqCIIgCIKgkYXWkcp5hXgrXk14XrRWYuYun+wvMgDwnvCueB/lBy+S\n", - "jAru6lFOOC7eMaAI4ZUeeuihkjrlyvdDooI23tk3v/lNSatr4WzZskWSdMstt8x8HwWHduHN4SX7\n", - "TtxUFqemyZVXXjnzPdrJdXklcuwkVwOkttI46oRX/p533GAuowo7bFWicuSOj3qR2l/MM2N27tw5\n", - "YOvqYOw8uwu1FZtN2UqqDo5nDC8K2u1V74F6QV7RGbWX90uzAZmjqcxnsuxQMpijrEFkI/J3X4t8\n", - "LzOuC0WHv6fmPmuFZ+kx/hwnVTeJ/uO1776UMJYSU0tubcGeW5UohzV/vezjOhShSAVBEARBEDSy\n", - "1JXNh1Ki8DLxVvoqDsQhoOi4t8T/qXGBAsXzerw73s/VCvGaKn63T0Xs+++/f+Z1165dklZ7Ydu3\n", - "b5fU1VZJeU8oSO69ct2u6OA9usLzpS99SVKnBqBs4K1Si4frci+K/ubvqRozraz3PeD2l73sXvKS\n", - "l0jq9hMDFFdis/YFtozCgKKCrec89JQnvWyedm4NwxaYY8zZXB+i5EBOkUJlR0lireFpAv9PVfT2\n", - "Okecn7WS8/M51havQ+WxVKxFxE7xvaGUF8j1z4HGsihx8yYUqSAIgiAIgkaWWpEaiqG9SO66czE7\n", - "KC1+l15bDdfjNlzx8WrLkIoDKd0Pi+P6cWg/SpVXccabJKsPL9D7AW+O9nAeV8By+0v1zf70OI31\n", - "Bu1fFkWqdsd1wA6ImSPOhrifElyBIhvJK3en4r1S+H6HQ9G6t14ulgeFyCuP5/A1LaW00L+p+EKe\n", - "JtSMndTFPDFeVL33uElfIxgX3uf6uW7+37pGoIDRn+wfiSo/NBs3bpTUtXuRcYdBnlCkgiAIgiAI\n", - "GjkgFKmhKc0Ow5tDieG1VgFxRc0VpVS2Vd9YsJTX6/sheXYe7cspdihbnIf+wUv3dpR61SlS8QyL\n", - "zsTqy7K1n1pFrZAJRrwMMX0loEARK+NZW6ikxOuVxF1JnY2jxAxFrRJVCmsGyk4qGzFHSpFibSEe\n", - "MxUDVQuZv15bD1tIrSmuULFGsRa5claLrz3EbI2lAt9+++2jHDcFChjzhDjUsRQ3xuf444+X1PVj\n", - "zVxfJkKRCoIgCIIgaCQUqRFJeX8oI613+35cjx8YipT354oY8RBk6KAg5bIuiX0iDsBr3eTaAXg3\n", - "OW8bpWu9Z9hwHR4X0qpu0H9kR+J919blYtyOPPLIpnYQE7V582ZJnUKJHV177bXZYzAXyFLDVolp\n", - "oVYZNpdTOgAFwrPaWqE9KGRDx8CgGA2dpebQj+xCQL+zBqDgldoS/UJlc2yczObcOAEKB3MdpbJ2\n", - "/Lg+sv+wH+bMNddcU3W8ZcV3tRhLiQLGh3GhX8k0Lx3nZSEUqSAIgiAIgkZCkepBrn4Pz/eB5894\n", - "WXhLtVl8rtjMO1sL5YPXVPZersYKXgfVjqmk7v2BApOKBSqN+6C9vofgegPlBjWDeIbSyueMC68e\n", - "h9Javw27xIuvxWsKEedUczz3ZBljPGzUNj5XG1/W6ikfdthhkrr9Nxk75gxZhGOpy2NBrBmZlqwF\n", - "qIm1MVmeEc3cz1ViZ20lForxxoaIuaqFuUHcH9eL0kdWodfq6ws2zxwd+vgOu2zMC9Yaxpvx4npD\n", - "kQqCIAiCIDhACEWqB7msOJ7/AsoR3metEgV9M1D6gvLA9ePV433iXZTGItEPeCH+PWKnUl5paZwL\n", - "xx0qziXF2NWO6Wf2QKxVkOhP4lGo++VKYm2VYh//WsjYQV3ALsjiK8HVK/5PTEtt3NdQ+D6ZjAGK\n", - "mavX84J+aV2LUEEZe9a21lpivpdgafv4HP3oaxCKTu2cZC5wfGJ4UKT4O2sKClhfUNCYm1x/38zl\n", - "ZYFxYrzpz7GeEvBbPJbiG4pUEARBEARBI6FI7YNcLE1OkcLjJyYKL63v81+vs5Si7x5sqarLeGF4\n", - "jSgX/J/rLr37J14EL8xVg5wXWVsva6z90hjnvvW7cuQqvefAu2a8sHPGmXGYd7wO404tIeJPauKY\n", - "XAnhu631n+gr9qzLxeqkIAaF43js1tgxMClalSigcjmxQ9hOq7JAe/g+/c/xUzbJuPvcZi1CASSr\n", - "sBS/Pr7PmsfahX0NpUgxF/2pBvuq9h23RUM/8huD0sbTFtamoWrkjb2WhSIVBEEQBEHQSChSa4BH\n", - "jFfQ6l3hJeHx83/usmuPW7unmlczrlWmctmIvOJNENuC143CkNvX7LjjjpPUVdclCw04bioTiH7J\n", - "ZdDgNeI1e5ZYX1rVilZa41tQRPEKsRPGE++9ldb4GMCeUBNqvHw8XF5RB2lT7d529C193beyOTaH\n", - "DfP/9R77gs2gVlNHqlV9p99RJp71rGdJWq0sEJvk2XqATfP31vG77bbbJK3O/sOOhs56Y26ylrH2\n", - "ja1EDa0ElZ7P911dtt0acoQiFQRBEARB0EgoUmuAF9VaKZpYGbw0r69Uu9ce4I2wv1WOvvt4pWKJ\n", - "iAvg+vAC8SbwonJKFOCNEIeAsuTn43PELTBOXnsmBd5pag/BVlytGCsGC+gP97ZL4ydQzugHFB/6\n", - "v2/mDNWef/Znf7bp+9gP11kT14KKyrXQR8TZtV5b37g0YG8/5k5rzS5o3UMvBWpyLfQ7a06pKulZ\n", - "lv4UACUolQnKOLsSBih9ZIX1VY19vErX4lboh3nVCpy3EsQcZ5zIRF5vhCIVBEEQBEHQyLpQpPC6\n", - "uCtH4RkrO6pvBg1eDzuiD62ALBriFdhTjVgW3xGeeAIUEs/Go0YK+1il6kHhbbrChvLH9+jnVLYi\n", - "3t3QdjPvDBrfP42q0qXt8P7FCx3KTvtmpaIwllZq3xvGHlvDdoizwyZTCgrfc1tFQepbg4zzoSAx\n", - "B2rXnNz+kh5XyHm4jpSS4sqbK16eRYaCxRrgMWCAWovajMrIWgKMC59HAUpl7mKzKdWS8eZ4rVX3\n", - "U4ytPs+74vi8IeZt7L39xiYUqSAIgiAIgkaWUpHC6yO+AY8Z7xKvBeUHLwOvsm/WUV9QSvAafedx\n", - "lJGcAsD3jznmmJn33SucN9ddd52kzqvFK0MRwbvg/ZQXyOeJ7SFWh/8ff/zxklarBHzP92nC60wp\n", - "TqVKlFdSp/21MWeoAvTDUPEHXiUbr96rTENp1exc/6VAjUAVwP5T0B7Ok1KwiIVDxaA/+T7jv3d7\n", - "XcViH0fmEjEZqHiePcccxQaI3eDaaEMrrFHYku93WBrDlVMfN2zYIKnb44+xJW6xNLbnBS94gaSu\n", - "r7E5roN20D/0H3sK0l/YLApLqn4Wx/dMZ89iA34LXH1mfJkbnlkMvm8ltkY/oYRxfNYojkPVfa+h\n", - "hwK4Y8cO7YtnPvOZkuoziFHx6R/sfqhYqr4V71PQXpRCryfFOLjqPjRc38EHHyypf6xbKFJBEARB\n", - "EASNTMauwrzmSSeT6crKytzPGwRBEARBUMvKyoqm0+mahchCkQqCIAiCIGgkGyM1mUz+b0k/J+k7\n", - "0+n0xEffe7qk/yPpKEl3Svpf0+n0+4/+7f+S9AZJP5L01ul0+jdrHfeiiy7a8zyazBCeL19//fWS\n", - "uniBTZs2SepiKYh74HtHH320pO75Ns+bX//610uSPve5z0nqns8SY8Rzf2q78Nx069atkrrn+Pyd\n", - "7/tzfNrxyle+UtIjd64lpLLUSuE8vNIuMl1oH3ESXA+xJx43wt9RKXnOT8zLa17zGknSH//xH0ta\n", - "nU3H/z0ziP4hboFxvf322yV1sUg8Nyeu4dWvfrUk6f3vf//MddNvxBzxynlof21MEv34l3/5lzPX\n", - "Q7vY+Z3aNrSTcSd+46tf/aqkzr6IwyDW7b777pMkvepVr5IkfeADH5AknXDCCZJWV+HmuMQNMK4e\n", - "gwVul5z3ec97niTp8ssvn7kO+on5g73z/y1btsych0wb2kP8CRlc/P9tb3ubJOlP/uRPZr7H+NA+\n", - "xhN7w56Yx3zeY6OclZWV4rnXF597++v5PvnJT0rqbBZYE0466SRJnW1gU15xnGxAxpK1njpQv/qr\n", - "vzpzXvBYtVo4PjZFrNg555yz5vlKycW0sRYTB8t5+C3i+6y5ZECzxhBLRj96bB1rg2elcl7Wltz1\n", - "cV7m3vbt2/f5eYfxOfvss/d5vlT8Jb89XA9rCtfpsVr0W9/xqyV3nhJF6v+R9D/svXMkXTKdTjdL\n", - "+vKj/9dkMtkm6X9L2vbod/54MpmE6hUEQRAEwX5JVpGaTqdfnUwmR9vbr5R0+qP//nNJf6tHbqb+\n", - "p6SLp9PpDyXdOZlMbpN0mqQr/bgPPfTQqsrX3FX7XT5ejuMZN+4hA8pHypN1cvVrPMMC76qWvvV2\n", - "HM8C5HpT/cddvnubkKrtwXlQSvw6Ut5aLjOCz3stG7wyXsmQ8Uwc/o7iliO1Nx8KGcol7fJ+wn7/\n", - "9E//dJ/nQQkCr4mD93XttdcWtbsU+gmvjnagQPn+Xbzyd+YXGUJkazKfPCOKeeHjTv+6csb5sB+O\n", - "k8o8Kp2/JcwrO2i9k5pLzJEbb7xR0uoMStZEMm1diSBbK1e1vu8ehLn6RMwN1g5sNJehm8uuxL58\n", - "TaY/mBP81mCHvhalfiPob58TtfXIGJdTTjlF0mpFiqxE3/8USscnFYvN+JC96P3uWYN9d10Yi1a1\n", - "6ODpdMoMe1DSwY/++1BJe/8K3ivpsMZzBEEQBEEQLDW960hNp9PpZDLZV+pfcVpgq8eZ82p4nu/H\n", - "r93pmue4eMzcLffdER7Gqt0xNHhtqaq+rV5DqnoxXk/K+yF+gFikHMRtpEBxoWaM162qhZg1XlPe\n", - "3VBgp9g9cRNwxRVXrPk9t2PmFXEdjs+b1Lgzz3J2kauBUxJTSExMTolAMeGV2JSh5x4xJNgmSo7v\n", - "ArCsoPZ6f2IrjAnX5TX+UsoOsT1um0PBHPcaaw7jjW0yd/qSsiNsl7k1dGX02lp3rKmsvYyrx2GO\n", - "zdBPZ+ZNqyL14GQyOUSSJpPJsyV959H375N0xF6fO/zR94IgCIIgCNYdl1122T7/3qpI/ZWkX5H0\n", - "oUdfv7DX+//fZDL5sB55pHespKtKD1qrEHlFZXDP2is74yV6TEgO7vZ9v62hqsm2esN4UR7r4tT2\n", - "L+QqVS8a+t9jq1LgBebiCfru/4QdojqgcKUgOxDlyyvGM85U40WJw5v2eB+8PK/0n5o3pTXlUH2I\n", - "A8kpwkPFNZR4raVjhkLBtYylAnsVejIo57XLPZmg2GDtforYjvcrawJrK7bJWOfG3DNuh4Y1oVRF\n", - "TlVIbyWlrmMP2B1zGOWn7z6vtU9H6P9LLrlEUrcGMB9yFddz6r6DnfBbinLJ61h4hQCeDpSO9xln\n", - "nLEn23ktSsofXKxHAsufOZlM7pF0rqQPSvrsZDL5VT1a/kCSptPpTZPJ5LOSbpL0sKTfmC6i4mcQ\n", - "BEEQBMEcKMnae3XiTy9LfP4Dkj5QcnKek3P3XquYpDxh7vb3apOk7u7f94CjvhH1qXLgGXOXS2xT\n", - "K2QsUO+JeI2UV+NQA4Trc+WD91u9P8ZpfyOVXUiWGl5ZTklKgd3RfyhBKWWFeA7fq5DPY2fUa0It\n", - "oH1egwXvy73GlJKEl5YDOyrNjhzKyx8SPP++CkAO+pTaXIzl2OcFFABsr1aRStmE70NZqzpiQ7m5\n", - "hc2jgHEejwXy+DlsrrZdQ9lqan9R2sl48JszVKyUZ5Cz9qeui/f9/F53K0WtAsZaxPnmtTZgR9Sy\n", - "G5qo8RQEQRAEQdBI76y9PuDxc5eOklSqxDi+IzlwF8zds98N84rX40qA4xWv+9a34Tl07Q7g/v0U\n", - "fe/6qX2yv4GS5+NMvAL2gkLUOs54xdhXzq6wP9QE7Jfv0+7du3dLku6+++41j4ci5tmOfWOWSuNg\n", - "gP7sWxNoPZNSXlrjFku54YYbJHVrYy2pMca2SlXMFB75QTvpF9RTFAXWImwJBeaggw6S1P12kBnL\n", - "bwpPD1xFdcVmaGXI43O9dhvKJHPc25OqdZfClbrc2k/7vO4Vvym5OVtrt62/7X0ZOyswFKkgCIIg\n", - "CIJGFqpIcffdtw4T3gsxI+7l4Mnzd85LjEiqsjdeEO3zfY043lC1R5aVvnfzuef0i8L3FgRvJ/bV\n", - "qkjh1aFgprxe3if+hPNxftrJ32+99dY12w+8715g35i+Wmoz4nL7mO0Lj8FYdlhD+io7KXKZvIvG\n", - "6xSxlmLzjCdzAQUE2+Z95qxnpPK51J59rE2uCA2VaerXx/k9btHttXSOur3XPj2g3/ieZ/6ul3mU\n", - "Y+yswFCkgiAIgiAIGlmoIoXXgcfcGidAlhXKkXsdeLheD4nzphQX9+JSsSv7y1370JCNSD+P9Xzc\n", - "M3pKve+UvfE+3lpttWCHOAdeU+oD/YN3yHXgJXtWXg7s1O3b60otG33UgNq5yJpx5JFHSurU6bHn\n", - "NJXOUblzlcD3VzwjmDnnKqvXymPcfI4Sb4sNcRx+azxWzPejHEo1T8UR0m5XnHxXC4+hSuG/QbV2\n", - "i3K33iuLL5pQpIIgCIIgCBpZqCKFF8FddGvtTrwM38kbPIbKs/tQAHIxMK5scb5l3ZF6KDzz6XYl\n", - "uQAAIABJREFUpJTWLMRaWp9/4w17XAF2gZfWd3yJk3jGM54habUyh30yD9ybboXj1FYfLoV5RNVu\n", - "Ys7cu23NGEudb8hYOzIgvXbXWFArbvPmzZK6OkIHmhIFbpu+ljM3WIMYe7LLUI9ReuhHbJC12n9r\n", - "wL/Xdxy4nlTFfJQ1V6RaY9iG+u0ZK2v0QCEUqSAIgiAIgkYWqkjhqXNXjXfQWluF73kWoO9j5HV5\n", - "crE7HBcFwxWvvnWkxob+aFU4WrO8hoohq62lUkoqWxSVArug/a1779F/HmMH2HkqixD7rbUzvGs/\n", - "nlf+d0qz5tjHzVUdahcBmVSlyqHvxwVjKFLzqjAO9CmKSipjeL3Amsga2bc/GXvGmLWWOYDS5HOX\n", - "fvVdMjwGLaUQ+fteKb0UflOOPvpoSV1mLYyteHqWYClcL2tVxEzVEYpUEARBEARBI0tRRwrwQLkr\n", - "LlWkiMXh+56VRAwM8Qj8vTRjgXZ4Zg3ZgUNno+EdoCT0fW7fN9amNQbJM2FalQRXAIci5T0zntiH\n", - "V1uuVUpRHW655RZJ6etJZfPllCjP+HF27twpSXr5y18uqVOSbr/9dkmdfaAsEfN05ZVXrnk8qkhv\n", - "3LhRknTzzTdLSu+9V+uFp+y95Di1NajILJ1XPB97fTFWy65m52BOHHzwwZLqFSmfSx6viE2hSjM3\n", - "UaR4RYnxCvK5tRnFijnEXGeOsmZ5O1PqqGfe+vm9TpbTV8VvjbXi+vz7y1IDkH4jQ3/ZCEUqCIIg\n", - "CIKgkYUqUr4Tc+teXP493+GcfZdcWXElCu8GxcpjYvB28SbwfvoqJp4NSEwJCkVux3a8qpT3xfE3\n", - "bdokqVNa8B5zsT+tledbn7P7c/7cDvFDc++99w56PLfP0n7BG8QbS9WkQUnCq/Tqz67Q3nTTTZKk\n", - "Bx54YOZ96lTlYuKYR5dddpmkzp7GIhUztRZca06RYk6kFCn+jjJAVfrWCuTMaa6FOetq97KRU2FR\n", - "iqjDhc3edtttkvLKSm5twya94rbTaoNeId3jdbED5gRqLeN45513zhyPftqxY4ek9D6eqUzavjFU\n", - "KUWKceE3hjWf/5944omSun5mzX3JS14iSbr//vslSdu3b9/n+TlealeFWjge4xGKVBAEQRAEwX7G\n", - "QhWpeeHKF56tZ7PxmlJo3IOHlMJQ+nzZ24GCkfPWIHfXT/voh9osNI+xwksj+8u9KNrj8QV4YcRT\n", - "4J3xfbwgzyrzfbf4vMcG+d6NtBPvn//zd/rXlY7WWKihwev1mDnG0+015c0+9NBDM///2te+ts/z\n", - "5uIsatUTVAtUg1Q2oXvN2FGNIuVzDcXJ91BDWQBXCrzPuYbWfTXHVu3GIjcH7r777pnXoaCfXelC\n", - "RWetcKWIuY4N0X7WPrchbJ1xZm1g/J/1rGfNnJ81hONyXtrF31N73hGnS005B+XT61DRPtaslOKa\n", - "mrvMC1/zmcvXXHPNzHUB8Y+lMYTHHHOMpNX9wHV5PDPjx+fpH/qfHQD4TUTZhaOOOkpSZw+MB2s4\n", - "32P8U/HCfI92ofKXzvdQpIIgCIIgCBqZ9M3oajrpZDJdWVmZ+3mDIAiCIAhqWVlZ0XQ6XTNgOBSp\n", - "IAiCIAiCRhYWIzWmIsVz1Te96U2jn2tvOA8ZDkBGCM9bP//5z0vqnnefeuqpkrrn8bt27ZLUxXds\n", - "3bpVUpexwPF5Hv3Xf/3Xkrrn7jz35nk0z515n/gBjkdsDc/RvbYKz69f8YpXzFzn2HCe3//935fU\n", - "PfdOPe8vhTgYntvTL7/92789c176h37kvPRLKmbHaxnR35yHzLKzzz5bkvQHf/AHM98nHofx5/+o\n", - "x2ShYlfEkXiFdNrNdb7+9a+fOZ/3H/3C8bAv6k2RzUj2JzFMxA56fAX9OE97ueCCCySlM4CJfWAM\n", - "PQaC/xPbQeyL1/35nd/5nT3nnAec5xOf+ISkrs+poM1Yc93EfGAznm2ITRFz8vM///OSpIsuumjm\n", - "fJ/5zGckddlcjDFrhseH0k/er8wVtxGfC/Puz09+8pOS8hXmfU57HSvWBl9TsLe3vOUtkqTzzz9f\n", - "Utc/9D/26FmA/JYR+0S8I+ejvzkO53/Na14jSTrvvPMkdePF54hTpbYdvO51r5PU2dFXv/pVSd08\n", - "8Exi2v22t71N0vjjx/ne/e53S5I+/vGPS+rskzUMu6KfsNPaTHKu99xzz93356qOGgRBEARBEOxh\n", - "v8zay9UcGYpU/aYvfvGLkrq7Yf6OF+jZeFdfffWaxycTBm+CfZt2794tSfq1X/u1mf/jpXI+Xv0u\n", - "HG+JWi+Q2pMPr2pRDF05nv70bDbAC0GR8rpKOfuiH/EOySzhe3iZfj73Fskk43h8j+My7l7zyLP9\n", - "+Dx4LRng+yhenP+0006TJB1++OGSugw0VI5cZheK67e+9a2Z87tKgp1t3rx5pn1k3PA9lDi8zjvu\n", - "uGPPMXJt8Wyq0ozARWdwgmcOu4IBuYxfFAZePbMZqIpfitcyy9FaO3AoSvc69Cw5z/QGt2nPdiMb\n", - "z9cU7wfmvD/dcFg7WOO95p5nOqf2FgTmgT/VANYarnve88Lb7dfLdQ6VJVta0T0UqSAIgiAIgkb2\n", - "S0WqdV8g7t5Ld8BO/d3jCaD27p3n3157w+/Kvc4SypcrF7kMTWK06D/Ok9oXatnYsGGDpM5rb93H\n", - "jOtHEcQbpT9y1Yc5L5/D20ztOejqAEoZdogil/Iic/vLeRVllC3OR3tRxPBG8daJlfJaPShGrmz5\n", - "HprYH/abiy0j1o/+47rxPmnvWhXva2MgvC0pVXYoUCdRxlorpQ9Nao884uXcRvcX+taMq6lxJnVK\n", - "Cbad2luPtTunLDInmbOuxPiawJxJ7RaBGp1S60v3sJwX9F/f/Wj7EopUEARBEARBI/ulIuUecSlk\n", - "SaEY5PZ4I0bDvTRiXFCmUhkuOXiejsLC92kn4LHjLXA+Xku9a47vlaUXfbdfCgoKipxnbNRCv6KA\n", - "1O6sjpeLfaA+eOV2vEpXslCkcgprrXLq1Zs5L//3OINLLrlk5vsvetGLJHV24nh7Syuhc35eDzro\n", - "oJl2uLftle33RanSNHZdPTz+VmoVkFJQAx1seL2sAbUQB1irSLX+xrjylFK3S3e1SO22UQvKjsfl\n", - "LjvLYpehSAVBEARBEDSyXypS7hHj4eY8d2KRSu/GU5/jfO615LyeQw45RFLnYZfWvuDvPO8nZiV1\n", - "t+573Llywt/pR5S3WlAUjj/+eEldBorXLhkKz1xB+alVpIjROe644yR1XlptnAgxZ4cddpikLrYI\n", - "xQzoZ+yGmKpSRdHHx2OW3A7YV8t58MEH13yf/qN9kNrB3vEMpRQodjfccIOk1fErZPXR/7SnJKtz\n", - "ETs4jAFxbNg4tprKuivFxxZQE1vjDXO0KjvQN8apVmUG5uyyKCLg48jaw9MRFE36jVg91ppUliBz\n", - "ne97PbEDnVCkgiAIgiAIGtkvFSmn1ButvbtOxX64opAC74FMHjxuvp+q4eLeF7FRpV4SihP483j6\n", - "C2/RP18KXjPtSu2IPhatlc9d4WvNWqRffad3V0w5Pv3N+PJ+Tg3wmCu/7qGyLukXKuWXKpXE3+Ri\n", - "pbD7VG0hYg+xb4/lOxDwiuFDZVGlxobYsrHw66mlbx2j0vi9oWAtZc4yV/sqfjzN8LhF1nKP9yz9\n", - "TUQ9p59pP+/n1ljWHtT42qxP382iVUEcm1CkgiAIgiAIGjkgFKl5V1/Fy+EumufLZNtxF08MDRW0\n", - "8c5yd/nuTbi3kSOXEeJZhn37z6vjLjsoIsTsoKTVekN8nmwz7CIVa8TnUabwLnNVelP1qaBvHIpD\n", - "PM4RRxwhKV0LB4aKT8JuOV9pjNYyQX0gXrG1XIZwilZFBZvAZlJKQali5Huvla5F66VG3VC4wjeU\n", - "DaPK+vFSsXM5JZP9NLETdtXgPB7Pm4K/91X+WAuHfqpRk/m7L0KRCoIgCIIgaGRduHR97xr7esQ5\n", - "j9shdsRjpfACuKsnSwrvDe/M9+bj+3gH7nXg5QyVQUG7UaRaqy/3zahZNNgN/dvqPWO/Ke/es9oY\n", - "Z1emvMI6eB2xsWE8XXEdW5HyfdxSmWbLCPsUUn2fsU3tlZciVe+pFlcvU3GVxLbkYIxrY31a4xiH\n", - "IrVf6ljQT8x5n9u5tTL1W4hS4+NaG+OGEvW85z1PUlenCkUKULpy7c2p5TnGzg4cKuYqFKkgCIIg\n", - "CIJG1oUitehI/aHuhj0OwbO1iIXBO/S6Q3xu7P5whaT1Of56VaK4Xrw5/t+qrDBuKFKeBekZKT7O\n", - "rkx5nAD2kvKqW73tlKJIe4h9yylhHqM1lFKZyu5bRlB3GdNFZbKmSM3xUiVhvc71eWd+sqZzXtYU\n", - "+s9jmsjuY01mTfKnBGR8+9rCrgleH8rXNOqToZiyxyLt4fOowN7usVn2OnChSAVBEARBEDSyLhSp\n", - "ReGZLaWkMhT8rhov9dBDD535O1VoURo8a8s9/KGfH+MFoaBQv+dAAa+P6/esulo8/sHjFogT4dX/\n", - "zv+Jj+Fzbk+peIjWGjVklnmtG69Vk9vHztWOobxYYhFzWY3LwEMPPSSpUxbw7Ev3VIOxFACvRQa1\n", - "cXe5mCNshzXSa6zNm751rHK4uk+lcdZw5hS27Pbg+7mm+pXfEP+tIjPcFSneR8HilbWetYb2MYc9\n", - "U3f79u1rtudAIxSpIAiCIAiCRkKRWgOeK/PcuTazpnT/JRQp9nIrfQ7sXgftJfaE5+e0w5WFlIKF\n", - "l4T3gze6Hjz+IcHrx/vzasC1WaSoEeA7trtixHkYP7xDvEa8eL6Hd4mXmNt3jXHmOlIqB3biihL2\n", - "xl6KfH/Xrl2SViuYtM/38sv1Y26PzGWPm1gL1OZWhoqPRInBxlLKDH3M2sLYMyZuu/53b6+vXWMr\n", - "Qjmo7XffffeNcvxUhi124HvduU0zt3K/KaldMFw9BtZ24m9ZW5jrxD/eddddM59n7Wodt9anPMtO\n", - "KFJBEARBEASNhCK1Btw1u3LgUJHcP1d7t903YwRvIRVvUVoHinbPqx7RoiDuAKUnVZtnrOf/rsyk\n", - "FELiSHhNKU233XZb1fmPOeYYSZ2agP26N4wKgbdKLBSKJd40e++Bqy733nvvmu3IqSspJQpq9+1a\n", - "D2CLKAU+p0888URJXZ+SbcX3UPnoG95nrMjG8orV1A9yqGCNIuJ7xZE5iWrNWsYc4/98Hhvi/8ce\n", - "e2yyL+ZB7dOGWjyedceOHVXf77srROr6+E3w3wbPIPa523fOtSpRKGuLzuBPEYpUEARBEARBIwtT\n", - "pJ7xjGfs8XjxYH2/JjxS7mLJCEEx4X28rv+fvXcNtqys7n7/y5jXSplKjtGEcIcGmqa5XwSiKIdo\n", - "QI0xJ5oYY2leU4oxQcErclHYwdCiIkYUbyXRJCZaWpbXilGCSAKxBWmu3dxBFMuYT+fDqfKDb9U6\n", - "H+DH3Ovfe+zneeaca6/dMn5V1KL3mmvO5z7n+M8xxsPfee8NJ554oqTu6Zosw77bPNYT5+H6WFdH\n", - "HXWUpM5yx0dkx44dM9db65wqa5UDpQTv16NstnxPP2Ld0u/Uo1Qfxgfn9wzk4AoLVr775vTN5cO4\n", - "YLxhfRIhEyl7i/YLuf/++6uOc+UMWtuLfka1oP6oKb4/G+MEnz5XpvBdRC1ZZD4plBzqQtkZw3ff\n", - "fbekWF3jePzINm7cKKlTA13tww8NaFPOg38aaxNzAlUThcst+6uuumrF8uG/6bsq4L/G313VRcHy\n", - "nGGu0OCDsyhcDXafIY+ULfkforRxPP2wKKIIYNZgjzDftm3bquejXejf1n08GT++Bpciz/1ev95I\n", - "RSpJkiRJkqQnk0VEvkwmk+nS0tKaXzdJkiRJkqSVpaUlTafTFZP1pSKVJEmSJEnSk4X5SK2FIsU1\n", - "LrroIklxxADRd5s2bZIkXXPNNYOud/nll0vqIhzclwc/hsgHBd8b9/3g/TJ+GS972ctmrjtvuM5a\n", - "X+8973mPpPYM3bxPxz+jFPHB9bZs2SKp6zd/f4+PTl/fKsp1zjnnSJLe//73S+r8BvC54t/4weB3\n", - "4eODdsE/w/Og4RfxR3/0RzP1HAvPbI7fxAUXXDCX60UsLS2t+djEp4RP5ih9jP8nvjJEqeGbQhQX\n", - "Yw2fItYIfFKe97znzVyXPdHwMRoazYTfKL5cZ5xxhiTpn/7pn2b+zpjE14oxGUF9yOhNvib3I43W\n", - "Ft9loBTJGeG7A7z97W+XVL43kIOPNcDry5zDJ877wef6pZdeKqmbu54Jnhxx7l/p+3/iH0iOOn5P\n", - "/7z1rW+VVJ57HB/t41nLWPeG0i4J+BIyPt/73vdK6tqNiGT8lj3qER84jn/ggQckdeOLtRdfReYv\n", - "99qIVKSSJEmSJEl68rjII1XKXUEenX333XfF77H+eHotUdo/i6d/j/CAyLrEKiL3Sy1YHb5vk5cn\n", - "2iPQWevstIcccoikzorAasK6xZrA+iVSivbC2qaevoee5wGLsgjz+82bN0vqlCKyCqMEcf4oi7Xv\n", - "a+b975nkKSf1iaIaaRe3Kl2RGhu3HheZtTiaU/Pi6quvllSeO/Rp7dz1sYMiBUSPMeb7KlIeIenn\n", - "QRHz/FC16jDKU6REOZ5xnbHVup+ojwPO4+WmflH/lXLwlcaZzw3fJcDnMvUsjSdfo/rup0l/s1ef\n", - "rx0oNLTDvPM4lXy2vXwoekSRcq/zPQ6Be5/fA2lPIq73228/SfU5FVORSpIkSZIk6cm6UKTc4h6K\n", - "586o5X/+538kdVYX78dbc2VEYP0ccMABkjofFt6Xo3iVrAvPk8XTOOfj95wXKyLKXxQpMNFeZ2ut\n", - "OKDwUX63Kqgn1jkwnvAj4f047US7+M7oEbQHoGCiRHH+m266adXzeDlLYC0yfhgnlL+0Z55beZyn\n", - "rxU7L5hnnq0bdaZm3LnFP2/23ntvSfFeZ/NirKzujF2UFR8TKGl8osoy1kt5lTh/SaWHaC0q7cuI\n", - "6ox6jcrsuxP4GsjcwPfG98Ucit87qF+0ttb269i5A1F2UNtRfnzvvRL4G1MP7sWMq6H3DsYT0J6+\n", - "9+PQXH30W21OyFSkkiRJkiRJerIuFKmxc1m1WvzgPlBjZ0zmaRnlC+uHp//ap3V/SuZpvGRNRfXB\n", - "n8Ctxr4RMmNDRnqsIqwN90/A+vHM5/wbhYr2j96jR9A++LlQDqwXrCXOH9E6rlBIsfaYL4ybyBcr\n", - "ggiyRWeVdugvz5rcYsXW7isZRca2gjqM/x5jMlJWWmkdo/DCF75QknTbbbdJ6jKUOz5W/XqotfQB\n", - "Y622fkOVs5JSRAQz/n/XX3+9pPp9Mmt3U+iLK3yudPDWw8etZ4QvgULYN+qO8cF1Kbf7a5ZgHrgS\n", - "Odb+rf6s4PdOxq/Pa49OZO2OlDbmRbXfcNVRSZIkSZIkyU6sC0WK98U8BbcqVL7XHtbmeoUIlr6R\n", - "EH2tPNqX9j744IMldU/1tX4Maw3WQ0k9IIcIVp9H743lgxe1U62vVa1i6uMafxSsx75WHuONdqJ9\n", - "x7Iah+J7YM4D6hz5qtRCX5R8hfoSrQ0e3eb8+Z//uSTppJNOkiSdcMIJknbeuw88khhcDaQ8tYpU\n", - "3ygvxiblihQpFBMUBOZ8xFrvg+r4mI4U1NZy9r0noNQw9z3KsRUUHu7BHlE9NOqvtEZxj/N25br8\n", - "vuRHjW8Y/polUpFKkiRJkiTpycIUqSc84QmPWYO838X64H01T+Ul68ffexKVtF7BCugbXTg08gHr\n", - "m3ZdZN6fGrAKSn4M+FLhAzR2zhOsZM7vO6jTr6gTrnIwPmsVU7cSUdSGKkeUl35fL0pUBNGRY/p0\n", - "jaW+Rr5H86a0Jl555ZWSOpW05DvGWHXVNspaH0FErOencoWFuROpxIzNH/zgB6teDwXki1/84szv\n", - "Ihaxt+x6hjVyLPXX85GhlI3lMxhF5daq2JSjVB6+r40CTkUqSZIkSZKkJwtTpJ70pCft9N7Uc0LU\n", - "+rSU8iStN1rrNzb4QaDktUZmrDW1yt1a+NZInTWNMsW4RTFD4cE6xqpxf4FaOG9kRbkvVYnaSJT1\n", - "gu8D1xql+Hjkm9/85sxniciPkLcFrBG+K4D75nj+IaLSfF/IsZUhzs91fQ+7ZG1AefS3HmNRUoha\n", - "18II1hgU1hKpSCVJkiRJkvRkYYrUz372s50ycPf11XFFBStqvTJUARpaP3zIaPd5W/goN/hptEak\n", - "uE/ZUGvWM2jX+sswPokg4t9uhXnGcawjPj0yqhSBhXXt0XX4GKLYsOO5E2VXXu9QL6//GOB3xdhf\n", - "LznT1hu//du/Lalbsxg7pahHV7hcVWbtH2vXiOi6iwZF7vEC7T6vXRNK/YraP1SR4t5Ye69JRSpJ\n", - "kiRJkqQn6yKP1NhRY2PtQ7VeGRqViFWJEsN7Z7IIs0/VWAzN3eKZrodG41FPdvh+8MEHm35PZApW\n", - "NooJ5WI8Y6W7VePZpPFVi5Qi+od93XbbbTdJ3ThAHbjvvvtWPM96j8p0iGpEMWT8jJkDiHPhAzH2\n", - "Hmu7GviWeBvzd2j1QWLsRX6Ou9rYbGW9+5+ODZnNGSesRWPlWSuNt7HUdu41jPPi8aNcNUmSJEmS\n", - "5HHIulCkoHV/occrQ60cfJZQNLAi8OkZW5FCQcG3C1+pWuUQq5hyAtFnrVFoKHGcr68/BdY0VgvK\n", - "E+/no/frKFBQikTBmmOvPa6HckOk1K7i+1SC/vQozDHHJW3KXKBPdrWIxlpKewsypnxORpnNUZhK\n", - "EbVr/XYAhRFFYWxFqDUT/q6etwp/Tt/XNIJ2517O2spa26pMuf+or9WUD6WK8ep7/bWycePGmeuX\n", - "SEUqSZIkSZKkJwtTpJ74xCc+9vQ61JL2p9a+GcNrQbnBOsNKqT1+KEMjEnha5zy0W+1eca2gKKG8\n", - "tO5QjjVEOd3qbAXFM4pyK0F/Y/088MADVb/D6t9nn31m/l5SQaj3PffcI6nb8Z52bbX66YexIpvw\n", - "ZcJKHxpVSvk4n/uUjQHnZm7Sp62KFHUfqnywZrGWUS6P8OxLKbdaZLm7gsB5aD+Uh1blYl4wt+64\n", - "445Rz/u0pz1NUhfFSEZ75tDY+apQEGln1qxNmzZJku66665Rr8e4Y01jDhPdum3btqrz8DvPIM6a\n", - "3apI+bOB/5s1lXYiSpK3LX0VKd+z8cUvfvGqx6cilSRJkiRJ0pOFKVK/8iu/slNGc6ywVh8pfHCw\n", - "htyXhmgn9mLDinRFpqQY8TtyZHA81wdXoMbe820oRHfhq+QKwNigdKGEtWb2ditm3lYv1oxHLDEu\n", - "sboYP26N8j1WOudB9fDcMlhVvr+TK49Yh4ceeuhMOTmu1sfwyCOPlCT96Ec/ktSNZ1SRWsUQK/ak\n", - "k06StLOPWF8o/9i+eiuBmlfaiy4CpWKoIkXbRfmYWiEylb3o+vrqRErWPCIppXYfJIf6RrA2t0L7\n", - "eR6tUv+U3lZEMK4OOuggSdJPf/pTSfOLcnzBC14wc73rr79eUrsaTPu7EjQvXznmLf1CO5XYc889\n", - "Z37nUbut8yUVqSRJkiRJkp4sTJH6tV/7tZ3y4PCJdVfa+RulCQsbXEngKZ6nTCzwWsu5FAHiO8Bj\n", - "DZI1GYUC5cKz/bqVgbJwwAEHSJJ+/OMfS+qUGJSxVlCE+D3txL/H9isArBraca33vypFLHlkxtFH\n", - "Hy2pKy/9xXhh/NRav67UeNZf9/VyBZOIMuaL+x9wfqL6aG+ULa83/gooY4xXxgPWGf5CXJfx7zsR\n", - "oPTyd+r5rGc9S1I3zvEvob1R7Dgv44L6007uF8G84Ljl88Gjg9x/krbG4qcNKGPkU4Gy4GsLdZ8X\n", - "ff1HWRtZS/r6P85LSaA9fS+zkhLFGGJOMgZQJkq7NHheIMZDSelxxZBxMC8FjHufZwofKx+T8+//\n", - "/u+Supx6999/v6T2fUuZbwcffLCkbg3x/mKu0z7eD4cccoikndcGXyv97QbfM67oL87raym/p105\n", - "jnWhVp1PRSpJkiRJkqQnk0XkuZhMJtOlpaU1v26SJEmSJEkrS0tLmk6nK6YESEUqSZIkSZKkJwvz\n", - "kapRpI477jhJXXRRrUe+X6N0Ld7neu6IWngf++Y3v7nqen2zvDpeP97r4tdQeu9PVufayIza9uwL\n", - "763xB+A6W7Zsmfne/TboP6IR3ceI9+b4NbiPFj5Ub33rW2eu6/mW+D0+QJz3+OOPl9T5NeCnwft3\n", - "+gEfJvwO3vjGN0qSLr74Ykk77/9Wej/P+aLoNvxJ8BM466yzJEnve9/7ZuqFfxA+dO5Ps8cee8xc\n", - "76abblrxeu5z97rXvU6SdPnll0vq/EzwU/F8XCWfSGCPRN/H69xzz9Wll14qqRvb+DB5PhuuGfmA\n", - "lPIi+VxgbOJvRl1Zu/y8tBHlwheE3/H9XnvtJUl60YteJKkbK0QK04cl36AIfFroO8Yc9briiisk\n", - "Dd+LsBSN5+0ZRaCyxvWNsoyuV4J+oL9ao9lK1/O1z3FfP4f25d7y2te+VpL0oQ99SFJ8r+EeyzyI\n", - "8lORuw5/XS8n9frYxz42U073OfQ57/3L/OD7KK8b1/vABz4wU/7aCPlSe0fXi0hFKkmSJEmSpCcL\n", - "3WsPD3oUAVecsNJalahWnv70p0vqlIaHHnpo5vtSNtnWTOpYrb/3e78nSfrc5z438z3ZebF6PLrQ\n", - "82QBCkltefpmjEapwXqOrIDaDNooHVirbiXw+yiCiHpgtfnvff8lV6RclYii/Nwa5Lxbt25dsVxu\n", - "baGOEDEGvs9ZbaRIqf8ilcIjkDwflYNCVYpy5Xs/zq1S2hHFrFaJAo5HlVmeq6fUZyhMJd/Q1lxl\n", - "tKVH8EbnRXFhrrpSw1iIcpmhEA3NfO4RoL52jLV/Y20+rCiXIO114oknSpKuvvrqUcpHfaPxwBpG\n", - "eU4++WRJXZTbUGUMSspIqZ60r9ejNI5RmEo527gnlvKGUY5IeSxFZVJeH/fgUZes+aztkXLqil6t\n", - "ElXLQh+kSpvO8qomgsamcfomK7vtttsk7SzDs9ATbh09SLV2Cud59atfPXOdT33qU5IPTw4qAAAg\n", - "AElEQVTKi3G0keK8QmMdFu/SIlLbHxwXna90ntrFrHa7gOhBikW+tl7Rg6Q/yPXdKHesRK+ekBN4\n", - "4PcQ4RKlB3nOF5WfB6RnPOMZkqQbb7xR0s6pBvi9bwItdQ+H0WamY8+V1rWHG0Z0Y8IoitYWbkiM\n", - "VefYY4+V1D0E1yY39Rvx0OSqULtNVvQ97cQaHT1YeLJl+iU6vvRAzdzFmP/yl78sqT2p8Lyh3byf\n", - "+Xv0qnrspLcYAEMTtfIKlzU7egBjnpRePXv/8+zAg1nfrWQeK8egXydJkiRJkjyOWZgitdtuuz32\n", - "lExSs9ZtFtxa4ilzJQt1NZA33ark1UkpKV1fefkzn/mMpE65qE1+N7Ys2UptyoxaKx2FLTovCofL\n", - "7A5O0VHywdpEoJF1gpVU+0oUtYBxjfXk43OszYNrKV0Pqx4llv6h/FESSlQH3zLJYVxEViTbVDzv\n", - "ec9b9bpcbyXVJDo3FvpYTst9KVnszPHSXHNljTah7ejDv//7v5ckXXfddU3lHLptVKtTbwnmEnPI\n", - "1Vxv17FeTfr5x94aJ4LEqv62pBbG+9A0R7W/H6td6GfWHsahl4N53qoIR24IfUlFKkmSJEmSpCcL\n", - "U6R+/vOf77SFxlD6PmX6dgo46fKUywaOteCHgTUQKU28n64NLS45Rtb6IdRublsC5cKtBxSEaCNW\n", - "/z1b6HAeLxfn8e0BHJQowuPZOugrX/nKqr9D6YLIiuX6+LShTEXWkCusHNfXyo+s8AjGg2+SHI0f\n", - "FF1+h9N7tNWM45uQR3CeaPsMVBN8F0vrA6pHDawN1BX1jL5di42SW2hdy6gXbYwidcwxx0iKFamh\n", - "mwVHjK2e49NCOX0u8G/fLLi0TdRY5eq7/RVzjP477bTTJEl/+7d/K0natm2bpC51yS233LLieXyu\n", - "w9B6j62acw96/vOfL6m7x6KwRuMmCiRaNKlIJUmSJEmS9GRhitTPfvazx0Iqsbp4SuXpfK18gXha\n", - "R2nYc889JXWJB1sVMxSV0u9QNDzRY4nIkq+N4hqqRGHtoQTQfkR5YQVTnxtuuGHm99SXJHdYc1iN\n", - "kcJQay0THl8bVl9rbaEIUn98/Kg/45ZyRkn0+lqtrdF9vkEoROMSfyH6h3bhurXjpuTr6Jtmc36U\n", - "W/q/lAaCdiY9SQ2MSeY6iQZbUzCsV2jLr33ta5K6+pZSyDC2S6rvvCkpR9QjUvmZc3wyB+bth0i5\n", - "+/pQUT7q/cUvflFS1x+85Shd39X12k2ZI1DBGUdjRQrTPmyOvKuTilSSJEmSJElPFqpIARYoVgQW\n", - "P8oG+aTG8rB3HnzwQUnd07bnwcHnBt+pUjlak/nV1gslYa0iRiK4PooM/edRaSQWxRpCYUChob/5\n", - "fl79Oxb4srHNiFvFbq0xjlxxXOsoPVekojxPjC/K2VcRrrVaUZQoH9Y0yjTXj1QKj4Zsgd+iRBG5\n", - "+4vCAw88IEm68sorJZX9yFC5oxx1a0VJdeb7yCcJtZOxxFo87znnSYHH4gtf+ELVcbSLzxH6vaRm\n", - "057c66gPazj34NpkwbVs37591PMtilSkkiRJkiRJerLQzOaAJewWPlYF/gz4VI0V5QduQfv5+Z7o\n", - "skUrJ4v2Y3AfMPqJ/EtYLSiKbAFDvjAUKf/donL61IJVW6sIctx6iSyBknU+dH6VrFb3HaOdGNf+\n", - "e7bUKfnN1ICaiH8eytSic7O1Urv9Et+j8nmkLaBoRP6XQ6mNFC59j8LCRuXsEkF9UMl5qxHllKsl\n", - "aq+IsfNW1cKc8i2Dau8VjCfK7xHX8xoXJcaKMJ83qUglSZIkSZL0ZF0oUpHCw9PxUKuiL7w35j37\n", - "ov0HYNHlcL8DrAWP8sKnjKy8HhlFvy/KiutL7T5b60WJcmvS96GLjnellnGH9Rr9vqRoeWQV48X9\n", - "Y1CiUZEiPFKp5tr4Xa3V/pR9QTlz6MNaf0xUvWgfT+buvHyJxjovqjWf7itVm8usFsbL0DxR84Y5\n", - "FPlplmAtZjzxyVuitfbrBL8Ht8z1taSoSE0mk7+fTCY/nUwmty/729JkMnl4Mpnc/Oh/z1/23bmT\n", - "yeTeyWRy12QyOXVeBU+SJEmSJFk0NY93n5L0IUn/uOxvU0mXTafTy5YfOJlMNkv6U0mbJe0p6d8n\n", - "k8nG6XTayzTHp2ZRkCUW6ybaY42n5rVirfw5UAIiKyAqh+8LFSmOQ3fcHouWzNhSu4+av+fH126t\n", - "QI0Aoioj6zqKumMeDLX2yR5OO0TtiUJ1++23r/g9tIwj97NatLobga9L1DatOcXuueeewWUaAjnm\n", - "avepLHH33Xev+HfaZSzlgjlSUvRqac0ZOJTaKDvmdIu/4VrAWoS6v17fXhTvCNPp9D8lreQFvJJm\n", - "+IeSPjudTn8+nU5/IOk+SccPKmGSJEmSJMk6Zchj+xsmk8mfS/q+pLdMp9P/V9IekrYuO+ZhPaJM\n", - "rQkbNmyQ1OVQaQXlgPfBT33qUyV1T8XRnniliIKx36+X9k2KMmq30jdnCH4nRLqUfFxaIfP8WLl/\n", - "XFnD+hyqiLp/AlbyWiuYHg1Jf6DkjJWtGDxyyGG+lNq3Noqzdq9KaeccWfggoZL1nTNjz3F8QnzP\n", - "OFgv/ncl2MuQMTGWIhWBT89YygWKYKty+Vu/9VuSdq7v2P3GXGatHqqwuv/i0D36ht6L5rU3Yi2l\n", - "tQz6Ru19VNL+ko6S9BNJ71/l2HFzFSRJkiRJkqwTeilS0+n0scfsyWTySUlfe/SfP5a097JD93r0\n", - "b6vyhCc8QU94whMeU4KwwvDlQCHgqZtoMOfhhx9uqMXOkPeIcvAUXfKJGfp9idb36uvlPTJKR0lZ\n", - "KOVq8fq3KBB9oNwokh7ZFSkpboWiSLliudY5i3w88O+xlCiP8qPd1jOo1uQ4o8woU7V4JGMtrHGl\n", - "TN6tuySMjSserb/DD27ecxbGXvtYc1rVb8ox7/xLroAOzTxOf/VtR+7Z+Kr1PQ97C47tR4s/LP1S\n", - "Urx4FrjmmmtWPa7XHX4ymey+7J9/JAlv0K9KetlkMvlfk8lkf0kHSbrBf79TIRacYDJJkiRJkmQ5\n", - "T37yk/XkJz9Zp5xyyqrHFc2oyWTyWUknS3raZDL5kaQLJf3fk8nkKD3y2u5BSX8pSdPpdMdkMvm8\n", - "pB2S/o+kv55WpEn2HBX4wPh72kiJgtLTLz5QfPI0j5/EcccdJ6l7msZqLUXIuFWJdbv33o+Ic313\n", - "uMaqw3odmuulr3U5b3gPjfXnvkWuxM1bcSspaOw/RSQS/U9uIoZ8ZIW78ub+NVhjnBel1P0XOJ7r\n", - "osiSr8t9/oDxtO+++0rqxgPzDgXQ/Tu4LuUnzxNWKPVFmSuB/wzRsffee6+keqWMcUN5a3D/tKHR\n", - "bIzFyJcJpYqyYgljPJZ8hlrqNg/o29o1g/L6WI3WrHn5C9ZmJGetYa64Usj3tW8D+H10XVeqWCv6\n", - "+k6Nnd+JOUy/tb4NqZ27zH3q7WtlrRIV7cNJ/3v/cb1a8abWT7b4IDWdTv9shT///SrHb5G0perq\n", - "SZIkSZIkuzCTsfetq7roZDJdWlpa8+smSZIkSZK0srS0pOl0umKq+HROSpIkSZIk6cnCNq6pUaRK\n", - "O5yXfH64xrzVL8r5jne8Y+Z6+NCMHbHC++vzzjtv5nqt4LdRigzCf+D888+XJF1yySWSuvfO1J+I\n", - "D96T1+6Yznt43mvj+/PmN79ZkvSJT3xiphwPPfTQzO/x1cE3bfv27TPf8z5+//33lyRt3bpVK0E7\n", - "cj3epxNlx3t1fKRuvfXWmd97lKn/nnbG5+mlL32pJOnTn/60pC6rMO0R+WrhF8D4970o3feI9nr7\n", - "298+U0/8OfARxF+nNVKM8Uj/MV/PPPPMmeuVKM33EktLS7r44osldW3kbYjPBEq8Z5knDxFwHsrG\n", - "GDzjjDMkSZdd9sjmDkQD0Racx9cm91vjvPiVUS7+jo/G2WefLUmP1S/KXcfv3I+uFfrsfe97n6TY\n", - "T5S5EGX8pl0Ya4wt1ghfWz70oQ9JivdAPPbYYyV1uydEPmaUC79afJN87aR+fF/KCdgX2pPoL+Yk\n", - "/YuPD7kQiRKknRgv3FM4jjWDT9ag17/+9TPXjcAvmLX8jjvumPn+sMMOk9T5C0fjieuwltGe1I9+\n", - "9nbGV8x3EWEtYe1kLWX+ev0Y94yz1sz/4Hm4aO/TTz991d+lIpUkSZIkSdKThSlSk8nksac/z7fj\n", - "T+ERfZ86xyYqJ1F7RGGxP9Qee+whSXrmM58pSfrCF76w6vk9T0/k1xZlV8aqcGujVnnwSAysTKwY\n", - "6k//tUYFch6sFv89ShDWlrPffvvNfLoi9Tu/8zuSOqXnpptumimvg4oR5XuKco8wHkvjcseOHTP/\n", - "phxcr5STiOtH5UANoZ+ienikUN+syK7ytObJwromirCUs2U1otxlUXSPK1AO0VvMKc/Sz5hy9bWU\n", - "H4q2Yu6gQGBRo5R5n/i+jc6mTZtmvvc96Vqz9pfGcmnvOcZCNCa8HtQvgjUgys+EOk0/efk84pd+\n", - "oBw+lseGdmfN8/HIv6Pxg1IXveWI2jnKME6kL/cIznvSSSdJ6vrf7x3g/cD5/J7o1/W3ST4euTdR\n", - "btojWqOGRrRH5axVKFORSpIkSZIk6cnCFKnpdPrY0x4WeGum5bH3COuLW1FYqdu2bVvx+D/8wz+U\n", - "JH3kIx+RJL3hDW+QJH34wx9e8XjqiTUZWYluHaBIYMX13Q/MlYvIdyd6endFLbKq8XtwKG+U+wNr\n", - "HqXJwSrlPCUro5Snin7A1+muu+6SVG/lez/5OB6qtJZyvnB9lFL8AHxctPosYS16TqWSlY//RUnF\n", - "qcHHKtemz2r37kI1JtM5ZcefDJhjKFLR2KEcnv3exyJt4BmYoTR3yb9D+Z2S36Krocy5KM9RlP0f\n", - "UB5YgzxzPCoklFTyG254JL9zNMZZe0s5B8HbMxqj+BJ9//vfrzpvBOMvyg9Ge1EuH699801Fax7t\n", - "xPhkrl977bWSymual4fxw3zDd8vbFZ+o6O2FK4VQmyuy1dctUu9r/XxTkUqSJEmSJOnJwhQpqXua\n", - "nXem6r5PqbW4olDKBnvfffdJkj7/+c9L6hSNEiXrwJUMyoUfSN8Intp9xLBCXFnCujjrrLMkdVb9\n", - "FVdcIanLxB2BtRT5BURKFkTKYARWdhQRRD+QCfy5z32uJOlzn/tc1fl9vLi1VrI6S9GqKI+R1cv1\n", - "mXee9ZdoTvah43sUJ8YvoKIwv7w+tf4mrfuZrQZRP8x9z7hNG0SqNsfxe8Y25wXazM/D74kUxVep\n", - "VEd8uShv65wlgtMjOaGkLvr3pb5jDkSKFL5ekWXvfy/dC0pqK2vB2G8rWBPwHWJN/M53vtN0Htop\n", - "uhexhtcqp7WU+rF1j8novPQPSpf709JuKFUlmF+16jjzztuX+YT6jtLLWum+hFB770tFKkmSJEmS\n", - "pCcLVaTWinkpUeBP5aWn2KuuukpS9x56LEUOaxalwhWHWnhKp92wKkpwPc9PhVVx9dVXS5Je/OIX\n", - "zxzv+F57tGfJqqrdX6tESRGiXfCXGOo34VZ7aX8v72eHdiCC6cEHH5z53vcVA6w9+h9/Ho6PVA6s\n", - "QKLvhrb/GHgZPCIShYkx6r45RB/RFnyPeowKydzwscnvWuce5WIMRErPWlGacyV/PnxhItXYoyZR\n", - "DqI1m7HPmEOdRcEpqfalqMCIO++8U1I3xj3yNsIjjZlzkeLUN3IWWHvXC6jVjCOUPdqldh9axkXp\n", - "3hqNR59PnK/0NiSj9pIkSZIkSebM40KRmjd9c47wdD1UkUI5cCUFa9lzx5Tev3sW2taoLT7dyuc9\n", - "/M033ywpti48Ugkro2TdowJg5fbtl9bM3rVE7/mJnkNFwb/D60u7RL5PQL/j4+THY52535BHaKGU\n", - "uV8Q7YNCxTjhd4y39QSKFG1b8j3iOOrEnPGx4ccB52dM0hclXxT3a/Tzomj0jXAk632tj0oJ32UA\n", - "UBzwobrtttuqzlfqF8Yq0Yl81tI3zxCKGipv5D8JzDH6H5hTkdJI/0Z5zxyPiO4b1Tc27oPEvHHf\n", - "Kda+Uj/SDrVvRxyPxqv1Paz1tUtFKkmSJEmSpCe7hCJV+3S+XqjNJ+R5d/h3q7XI0z/+Alwfa4Dv\n", - "a9+/Y7V59uUSKCjRUzxWOe/JycPk2YfdiqvtdxQd2rPVPwVqrX3KiR9IKSIrakf6Bys2UupoV/Iu\n", - "RWA9Ex3p7YfyhNKElcwn/c688wg4V6QAKx3VYxG4hQ4ly5IxQ9vTp7RFNAYjyxaVztuIOchcwBeL\n", - "8kV5d2Cov2e0O0BffEyjRr7gBS+Q1I1p2jPKQQelfhqq3nu7liKsgbW19vpcx89LO0SgnNSued5e\n", - "Ua69tcYjg51SxvuI1uOHwtueEuuj1ZMkSZIkSXZB1rUitXnzZkmdlcP7eCxjFIC1fkodm5KVVoL3\n", - "zig8vEfGOkE5IdtxrV8Bv6+NdMGvI1JUiNBgj0HPagxuxdRmZO+bJ6svtOdQnyoUMKLwSqpDKS8a\n", - "7Ydy5VYrfglY2ShR/N33l6N+qBmRDxTlj/ZBg3nuZ9bXR4Q6o8LVZkJvHXP0DXPW+4bvozk01Aem\n", - "NuN3K/T5CSecIKlbO2hXVOiha93Yaz1rZWmvNtY2FMRafHyU1lKi7mojkN1nrjT35o3P7b5znHZi\n", - "3Mxr3ILvOAC1Cm4qUkmSJEmSJD1Z14oUT/NYukSAeDRStDP1egert2R1lHzEeOonEsQjlIh6I6tr\n", - "tK8QeC6O2uyuWNOenwi4HtZWVB/3K1gv7/0drJeovq3Qj1hjkXVcyrUDlMvbD4WP/vIcS8w78k8R\n", - "aUaW7sjKRC3x/vPxOw8lCrCIfdf42t0NOJ61huPJN+N9MlQBi8ASr/W3rGVeUV30Kf55qM977733\n", - "zKdnxW9l7IzlPudQdKL+4bhaldzLy9yIVFkUu1plycu51qq84/Xp69PGvKOdaqNVWesiRcwjk1lL\n", - "icbkWYN+qvUPXp93qCRJkiRJkl2Ada1I8dTIe0reY+6zzz6S4r3XdhVqrYfaCA4/DmvAc5a0+hm0\n", - "Rr+VnuJdOSvRN1oThQV1YmxrDWtnqJVM+/JZ8qOo9cnCinOrDKsO9YB+4LqUgwgy1BF8qKIcOlzH\n", - "/WCw+uYVdbvcekftxP8LJclzjEXst99+kjpfHzJa05ZjR71FMIc8y/9Q+mZcL8Faffvtt0vqLP9D\n", - "DjlEUqfwXXPNNaNeN6JWgWTssFaW5jJqfa0i5XDPon38eoxPFJLWzPbz3rd2rUENx3cs6p9ohwEf\n", - "5zw70M746dIffnwqUkmSJEmSJHNmXStS+BAde+yxkjqrZ9OmTZLqs+UOzQZcoq8Pz9gWemR9oTj0\n", - "9bdo9WmJlCaUDYiyIpcgWi7a+41xg/VBVNrY1vBYGdA9v9dYe0PS395//J1+QmHC6vOoTqwyFKnI\n", - "zyVSe1rHOdGnWOPuQ+h+DsutVFRIV45qLUuUKCKGWWMii7V2TUEhi/ZHdCLFYiitmcBbYayRLwmL\n", - "f+gecq3UziHat7ada/svgvHCmsT5GJ+MX/yAUVRrfduiexF+itwLmVvME/ptqGpfqwS2wvkitd7v\n", - "OT7eUMW5B3GPOPHEEyXF+6XWzu9UpJIkSZIkSXqyrhUprD9/r88O7FdffXXVebCKeLrn6dz3taqF\n", - "p1sseM/E7bgFDWuV/4r6rfX7c6yugw46SJJ0+OGHS+qiByMroESkRAHWFblHShnHF41ndh+LSAny\n", - "cYe1F6kVHE8OnVaFqdYfB6URK5F+xldrx44dkla3zpmL+OR4pvBod/iTTjpJknTkkUdK6nxZUN9Q\n", - "DNxC9f0TKRtrzMaNGyV1FjAKF8ejDqL2Uf71GqlaCyrid77zHUldBGiJeb89cEoR02ODAhWtxXyP\n", - "/+JYUZbMWZ+70Xzoy9hKFPda7tW15/f29ZyI/gyAb59T+9Zh156tSZIkSZIkC2RdK1JYoHwOBauQ\n", - "9/dY4K2K1MEHHywpVrR8/6bIquDpGsXMd8bmaXionwRWR22G8hK0Y+RzRX08Ooz375TDo7+wyrEW\n", - "+tIa6eKgiKBgok7U9gOqAnvd1UYEoeB5ni3GSeSfgRVPpA/qC34CtWpAidKO94z7vv4wzEeU5tr8\n", - "Zcuh7jfccIOknRUHouDwlaDNaUPyH23fvl2SdOutt86c12GuUmeuR5/R9vgDMgfYjxBlijnBWsLc\n", - "97akvK1r1lpDvZj7UXm9j0tK1FrVn3HCZ19lyPNB4ZNUejvgmb25PhGx+H8yTvh76e3IvBl71wLq\n", - "HSlRtddjPDIfeQZgvkbKnPv1RqQilSRJkiRJ0pPJPLMMhxedTKZLS0trft0kSZIkSZJWlpaWNJ1O\n", - "V0zslopUkiRJkiRJTxbmI7Vly5a5R5GherWqX30jR7jOxz/+cUnSEUccIanzh2BPQCJ3UAM9TxZR\n", - "iUQaHHXUUZK69+J8/8IXvnDmuvOG62zZskVS1068X478CPDzKPU3uXbwkXrta187c9154+MF/w38\n", - "DtxHiXxmHtmFrxftQb3dZ47rXH755TPn5/29Zzl2fwgH/xHKjf8OfgSvfvWrZ647b7w98Tcgoo6o\n", - "PNoNfxLqQT3xLWMc4aPH+MN/4qUvfak++MEPSurakDmEfxdtzLWYgz52KSu+Kvh/Uebzzjtvpm6U\n", - "2ffPxO/LlX8ifvGZoo6MfepKOc844wxJ0kc+8hFJ3ZjAn44x6BGtlJ928DXtwAMPlNTNPcrzspe9\n", - "bKZ+DrtMuN8c5yGjOf6FDzzwwIrnYW6dffbZkqRPfvKTkroM89T/2muvXfH3jAHagesx5slJxnX4\n", - "/vTTT5fUrdX0F+ehv/j3vffeK6nrJ9qT69Bv7h+Ln+Sf/MmfSJLe/e53S+rGvPtNEj3KXMdHDxjX\n", - "RNJGEbH027ve9a4VrwMedVqC431OnnvuuTPXnTdc56Mf/aikbp65LxXjm/nt45A9IPkdfsrR9SJS\n", - "kUqSJEmSJOnJwhSp1faQQqG56aabVvz+tNNOk9Ttw+MZzrFS+oL14tYbVhLRXNHTPNYsShJWDVYG\n", - "VjHWH1FmWEEoGChZlAcrb9F5kSgnESi0Q6SU1CqPtMvY2Zz7Qr9G0XIog05r9miUI37HuKO/jznm\n", - "GEnSd7/7XUk7t/Pzn/98SV0uFPI9cV7Ug1ZardUIVAUUNuanR30yv1B1OJ72oB/4HeddPt+ZK1ig\n", - "rDMeHYYl7Tm1UBM9whTFIVJdUShQplA+XImirFF+GspLn3kUluezQoGKLOlS3h2iFPfff/+Z65eI\n", - "IjgZqygn3/ve91Y9DwoOEPH7rGc9a+bvnCfKLE++MId2RD3mrQBwDwEfD56HDHwcMFY9mpB/o0iV\n", - "3nIwd6P+ZO4zzko52kpraevcHroW9IW57vVhLYjqGSlRwL166L69qUglSZIkSZL0ZGGK1GpP5pES\n", - "BTzlRxmWh2ZX9ZwcWMhu1UZP51g199xzj6ROWUJx4Om4lJuEcmCdYAUuWpHyTNj4RcDQ7MRjZ9td\n", - "73h/oryQ84R+Z7wzLk8++WRJ0qGHHipJ+sY3vjFzHsZha14tfPFQZ+6+++6Z87WCMobVGJ0HpRdQ\n", - "csH3AVvpfCgHWOoc4yqhl8H9yfieTxSAKMqZMUtbu4p52GGHSeqyt7MGoHigUHEe5pjXmTWIseD+\n", - "Za35jrDIGVNDM32TybwWV1epj2firs2O7zB3PHdgLb6LhStxGzZskNQpkr4PJeOmFp8DDsoaKv+i\n", - "84mtVQb6kuIUESlRwHweqrSlIpUkSZIkSdKTdZ3ZPGLr1q2S4gzYY+1PRGQM1kytUsLTsysBWA+t\n", - "5fOIm/XiQ4RV5L4uRNthfROJgz9GMotH+rgqEvlo4R9Tux9ULSiMRNc997nPldTtjdiqOqDoUk/q\n", - "hfrhKg9WOSoR44x/M3/4XK6IMhZbI4JdgXLI0B3B9chg7qBUMCfYfxLliT6kTlzPfYg4Hp8Ovu+r\n", - "wrOWoAz1VX764n1PeehH2iXykSnB8Sh7rYpbaVzsvvvuM9dh30zGw9h7z6EcLlqJWi+wb2tp1wUg\n", - "ipN5ytueyMeONadEKlJJkiRJkiQ92SUVKYjeaw7dqw14P4+ViDJU8gHiOCJGeKpt3TuM6xNh5EpB\n", - "K/hqsVcgUXfuW1OCemAl0g7Um7+T54pcHkSuRJBzpa8VR/2IHPrmN78paTyFcl64VYVfBRFjkU+c\n", - "55hx8H9BUa2FvS3pB3KtYL1t3LhRUucDWAJfK+qFykB9I2ufv6PQuT8Q83x5/fgOn5ax1bq+oPTg\n", - "s4H/V+S/hqLhUXSuzrnK17dcrGm026JgbWEtoXx9FSnGMGOQyNCxuPPOOyV1SpEroX32i5S6uUvk\n", - "LkrXtm3bms7D+Bk6Tlrxe7D7Mx933HGSurWatz/k9XKFiLXQ7w219wrueeQPI9KfPTUjRap2f9pU\n", - "pJIkSZIkSXqyMEXql3/5l8OnSaKRnvOc50jqLPYrr7xSUuer4dYUyshYkQRYF1iPWMRYC55FGFy5\n", - "8gzZrfBeH2UFJakVnrpRGPpGKvA7Pn2H9H/913+V1L3Hp/+IcIkiKbCW+lrF9NOzn/1sSZ018dWv\n", - "frXX+dYK2o1xS3vW+qtE1rorOa3lIVqPSCf6Z/PmzU3nwz8FXy/Gc1Q/+p9xg2rDeGLdoN7LrX7K\n", - "jkXMHB66JpR2ma9VTKg7dYoij/28QN1pI9aYvpGy9ClrWmuU2dhQX9ZKV6igtr74fuGnNzb4zfLW\n", - "wOm7ly3j47rrrutXMLv+WilR4LnjHObnH/zBH0jq1G4f7xA9K0S5Cx1Ua54dUPYi/1MofQ+pSCVJ\n", - "kiRJkvRkYYrUau82eYrFGkFpwDeI99JYtG6VjBUpwVMzvklkwS1ZGZ57hKfsvnsL4iNTyuJaC0/l\n", - "Y+HWOhFKfNJ/pRwuWGG12ZUdFCjaGx81fK/IGrwoIlXD/XiwsmrHC2qCR65gLbs13wrlwS+n1m8A\n", - "UF1QpqgXVjzz9/jjj5fU+TOQR8tz5rjiu9wHjnN5xuqhUHfP6wS1c9IjXEv49QpFo0oAACAASURB\n", - "VFCM6HPf8w0LutU3jDUrUgTWCupBOVDfWUNQLmqVN9qBe0LrGlzaJ5TyscZ4RvLWufKLQimqkLcS\n", - "r3nNayR1a/+8FFEUOfw/a/07a0lFKkmSJEmSpCfrMmqPPcz+8z//U1K3hxj5o1CifCfqsfBd6D1q\n", - "r6R4YaW4soIS0bqHGVYV1uxa53op4VFxWHGUszWbcF+/AiJzsF7JAoz1sWhFCgXFrdQoYzfjrRR1\n", - "GKkcWGG1uVAccuSg7jCuW339sNKj8U75uB7zBiXL1Qfag/pFKtGYUOe1uNZK1wX6gLHEWGFM8T0K\n", - "E8oAigprmqt7pb0E1wrK4TnzUOCiPehKcB6/V5TWYto/+r3/28dJyQfu8QpRiA7jM5r7fcHfszWC\n", - "uZZUpJIkSZIkSXqyLhUplIwovxFWRCl6ri9YGb7vFdZe6T27Kw5YfSglKF6t0VSct68P0VpB/5DF\n", - "ubV/+iqMWIFY21jljJNFQ708x4qPg9b6l1SEvtGZKHyMO3zOWqNGS+VDWUIx9BxCkQpUyjo9Jq2q\n", - "6ligPIHvP+hRiaiTqMKRYoLqyxyhTyPfFr6f9z6YzA3fK9HrXQv1I0+Rv00oraWlTOgoJ/STvy3o\n", - "6xf7eGVsJQrol7F9JyEVqSRJkiRJkp6sS0WqBBZ2bY6HElEOGN/zi316fP8rByuE/bCwsjwbce1T\n", - "N9YO54neL68XsCqwAql3rXLQ1w+F6DLaByVqaOQM0ZeMu74KCNbwWu+T1VfhQ30garWvdV3rd0M/\n", - "oWQyv0uK5lrsPbko3yGPvkNJos70CRa353hz3CKnbzmfKypRtGKrn6fD75fvkyjtnHuPOexZ7ftm\n", - "OPf6DY3wRvlbLz5muzq1e+YNhbxirVG0EalIJUmSJEmS9GSXVKR4X79WEREoEJ7JOwKrhKddIk14\n", - "396qSHhuHHJhkBW2FZQiz9Uydm4N6t2q4PRVPlCkyF+FkjHU6kAVGCsnTKsVjLXbd7z39Wvhd0TS\n", - "ME7uvffepvPURh+iFqDY7rPPPpI6ZThSoNfLfno1uLpXisB1xYexQ1uwNvTtY/zS+PQ8UihS9CFz\n", - "mZx+tH2rDxnX8RxnKF98z1pLLr1WJYr2/fKXvyypa8/DDjus6TwRqNX333//KOd7vLHvvvvO/Ju3\n", - "CX0jt0sQtTfW2yxIRSpJkiRJkqQnu6QiNXbkSG0UHNZMaX8f9rRDQcLC7uvLQfl4r9t3rz3A74Cd\n", - "r+cFUV/uvzEvsIq/973vzVx3rCjHsTLmt4IfRq2y4/TNVo0agerBOG4dNyh5nCeqxy233CKpU+AY\n", - "7yWFci18pMbCfZtaQZmZl5+dt6XnhKPPHnrooUHXYSy4ynvTTTdJ6hQDrjs0dx4q9djQj0Pbw+nr\n", - "C7arMbTdSntgOrV787WSilSSJEmSJElP1oUiNfTpG0t5w4YNksq5P5xapaTWqsF6wscDCxvrjlwu\n", - "vFePovdQjp797GdLko466ihJsc9PqR3JA0RUFPsd8VTfN1rOFQaUDOq52267Seqs6XmzqJw/fUG5\n", - "83LTX+TQwepCjSgpU8yLzZs39yqXR4eWolUj8LHCGiwpez/60Y8kdeOcf/8iMFRNx8eDuc4nawt7\n", - "ltUqOPioRDny+mYSr8Wz7jMHXA3tC2PPox3HgnuN5/saCv2BT9paqeGe+X690zcn49ikIpUkSZIk\n", - "SdKTyby841e96GQyXVpaWvPrJkmSJEmStLK0tKTpdLqiw20qUkmSJEmSJD1ZmI/Uu971rvB9Nbk5\n", - "8BEij4xDxEf0/hjV633ve9/M8ZEPFb5Ihx9+uCTpu9/9rqQumoi/U258OPBLOP/882euO2+4Tuv1\n", - "dt99d0lduUsRRLyHfuc73ylJes973iOp81/gfT7HRe2Lbxb5kPDJ8igtcu286EUvkiRdfPHFksp+\n", - "AuTHcr8OyhXlxOHvb37zmyV17el+I5STf7u/C+XHz8N9mPCjwHfsrLPOkiRddNFFknaOkIrAVyk6\n", - "jnbAzwEfuLPPPnumfvOCecZ8IO8U84j5Qzswr9ihfdu2bZI6fyDWA9oHXyv+/Wd/9meSHmkXr9t+\n", - "++0nqfOhYMx7bjOuxZhmbDI26Dt8SP7iL/5C0s5tWcr4fcopp8xcf+vWrSse5/mmzjnnHEnSlVde\n", - "KanzG/NyeWZoxix+iswh2pC+oty0A2266LWMOcVY9jUAP1T+7pnbfVcI5uaFF14oSXr/+98vqcuH\n", - "xdzyuRrt0cbY9FxmtDffv+IVr1ixfvg/MpZrM3tH/rCsbRdccMHM9aJI2SOOOEJSt5Z5PizGFWuI\n", - "7z8LUf8xriIfNcbboYceKkm67rrrZr5nHvzmb/6mpG7NO/300yU98hyx/Ly0Z6ufNNDvvlcla2dE\n", - "KlJJkiRJkiQ9WZgi9au/+qthZABP91iDUVRTbQSGZ8mN+I//+A9JXdZerBOe4rFmsZK4PtbHrkKk\n", - "mER4rhe35rG+S1F/5NfyfsN6wJrwfqqNWKmNMMKqwUrDqnVccSrlICllUEft8P3F6IfaSKvScd4O\n", - "pYii1qjZ0vHeX3fccYekOP8UCpTDeOEz4oorrpAkveUtb9npOzJ2l6J6or5FEWLMo2wAbUvfRtfZ\n", - "a6+9JHVKz+c///lVyxNFa/mYZOxESgZ9RAQm54sUiqH5mobie/+hZHg70A8oKl//+tdXPB9rF2uT\n", - "zwVXkjxfFmu7K1KcN8rRxpgt3XNQ51F+SqCSczy7NxDhG+0iEa31vO2J+p23F3fddVdV+QAlDkWK\n", - "cvmawbyLdm2gvtwb2L8W6E/6l3t2390guA7zozbvVCpSSZIkSZIkPVmYIlVj/WJlkT8JJcgVotJT\n", - "I1ZNbYbrz372s5Kkk046aebvPFVjNZFXaqzM2WtFa26WkpVKu2ClRX1b6nMUnbFypmANQWSdlPJO\n", - "uepQC+MC6wwrh/fva0Wp3K25dVqPn3der9WszqH5ZbyurjpiMZfaGEv6G9/4hiTp29/+9qrHR3MA\n", - "nx3aFLUeVRe/UsYc5UJ5QOV3v0jqgc/KWPiaUFLBPft91LfM7VJuP87XuqZQTlePgfOVfHFK9yb3\n", - "3astl+9RWOtb5fiec54pvFWJYm3ztzrkLIzuJfhPOiiBnM/vtZ51gHHdd94zTiln7ZqfilSSJEmS\n", - "JElPFqZItby75GkV64Dor1rPfKyi1n12iCDAWuMpF2uQOrS+hwWUtjvvvFPS8Cy+a0Wk0LiV1Art\n", - "2LqXHNBP+KOgAqCYuZWCf4P7STgcV5v1F2sZ9YD39YvKvtuqmDLPPv7xj0vq5sE999wjSbrqqqtW\n", - "/T31hnnvF4a1uha4RV1bN+bKl770pVWPYwxHGdBdIWEN5PwoDCgUPuYov1vyXK8283rtvo8oN8yJ\n", - "WkUKmDv+d+pdugf0zZOIksKc77vPZWk3gFIErsNaVvLH7Av91PetAO0z9n649LP7S3o5uTf3zTTP\n", - "Pah1D79UpJIkSZIkSXqyLvbaqwVri6dE3seWlBzem/a1Tni6Zs8yrCT8EPru5I7SRmRIKTppvYDV\n", - "QrtHigv14jisqVJ/eWRULeQieclLXiKpi1S68cYbJUk33HDDzPGoCZEi5f4vpahErBgiaDivW7Nr\n", - "HRnVOu6ZZzfffLMk6cADD5Qk/emf/qkk6frrr5cUtwe5m8D3UxubIbszUNaNGzdK6nxCfJ/BiJKa\n", - "CSgb+CB5bjz+7lFXPhfcJ8jnUkkdH2snC8YyPlklH5++anVftR/6qsDMZRQP+qfWlwncT9MjXksK\n", - "F/e46B7TVymLIAdd3/0t3eeLe1pUftqHdonuDYwDXzuZV1yPt09RXrUSlId7O/eAEqlIJUmSJEmS\n", - "9GSXUqQAK+Hoo4+WtHN2YM971FcxcrAijznmGEk7Wxt92VWUKMB6wF8DK8StBXyVNm3aJKlTOr72\n", - "ta+tev6+7bpjxw5J0kEHHSSps9ai/EUlsEI9q7LXE9XgyCOPlNRZm5SH9mJcjmU9zpv3vve9M/+m\n", - "H0uKIvWGvv4KtUS5c2pgrJx66qmSOt+TWkXK+zTyLWEMRf51tf6b0VqG6oeSUlJPh8J1yDgdKTX4\n", - "gRJ9tausdbyFoF6tShS4okaeotpdJVBKWcvwpx1b1WZuH3vssZI6RQpFpzV6j/kQRYcSgY9CGmWO\n", - "B+41Pq4Zf6wxnI952errxO9QWqM8YU4qUkmSJEmSJD3ZJRWp0ntvtwo9b09fhYqnYZ7SS3v9/aKC\n", - "tVaKWELBw4+ktt37WtNYf//8z//c6/cOETVebrcG8SE67LDDZspBpAnHM14if5GSP8SiabVKwbMR\n", - "j02fPG777ruvJOmQQw6R1FngvtdYCSxvFKFoLajtW8/IXOsjxBjDQi/l04n2iOP3JbDwqT+KBpnk\n", - "8RPEsmdOD1WkIp+gvrneIjh/a6R3dB5ojWZD1SfDuKu9Y0G7PvTQQ5K68YRy1EoUjYjv0oYNGyR1\n", - "PlnMO/djBdZO8qb5dVC6uCex9vJ9pFpTHt6W0N+MWxTEEqlIJUmSJEmS9GRhitSTnvSk3tYDVlZt\n", - "Lg2sQayooRY/VhfnXetM1YumNndOX/+Ceft3lPD36nxG78uxdvDtYu8+rDvyLzFu3WeI8YMa8OMf\n", - "/3iEWnQMze81lHn3Zx//FSJK2auM/QBLOcIcFKiSKo1ljEUd7QvZmnPLo8CwrEuqfaR0uX9pCaII\n", - "UQRcSUORoP6tPitO5F8YtX9rniaHewWKY6s/nueRai0H95qrr75a0vi56Ohv/EG5Hv2HctsK9WRN\n", - "pNwokiii5IBj7YuUUp4V3H+W8/p44jjqxbxjfqMMUr97771XUte/qOieEy8iFakkSZIkSZKeLEyR\n", - "qvWGX43a99dY/L7zObRGUfF7nroXlbH6F5VF+whhpUU5YJy7775bknTwwQdLkvbee29J3fhgvETj\n", - "BIVqXuNo0VGC8+7PPoobGZApW6tvVCsoGvgSRYpUSfFA4fD8RqyFtYoHvje0AxZ6676IjK0onxZv\n", - "DfA1GSuPVVSO2r/XgprK3Gz1i+17fZQ7+tWvx+4eRLvRrqVM6g7nxUeQT67fV5HCR472QjVmnDEf\n", - "UKBYW/GduvXWW2fOhzLkb7FYo+kn5o/vr4tiyvG+xvu8Q5Gr9e9MRSpJkiRJkqQnC1OkxvCbqPWN\n", - "4OnTrSa35mrhaZsIG3xhknEgQmVs8F3iPX3ko+eZ27GqPWLEIUoR64dPsmdzHs+2y7iszZK9qzHv\n", - "qFbff64GFKhStJ3TN0s7Y65v1n6/Pha3KyUlHyvPk+MZrMfeF5Hyosy4z0xfaqP0uF5fVRSFD+WE\n", - "dq8dL333nOM6kc8eqjc+ftDq4waeNw2Vt3U8oDyyVtLurIWMA/7NdTietR+/UpQi7tFeP/rhwQcf\n", - "nPm3q/zUg3s+a63vFAAcX8pvBalIJUmSJEmS9GRhitRkMim+Lx/LeuGpl6dlnkb9vXKtf4H7Rs17\n", - "d/vHG+T2aAVfOPqTCKaTTjpJUmdVlrJWo5b63o4lxQhfKSJReL/Oe3rGS20kSFIHOWNWAwsYhQDL\n", - "ttWCd18K+tJ9MyIiXyzGPApO5EOFAsOn+4fh++S5zABflKjNWtXDUn4sxjxzjzU4iriu9UGqjfhm\n", - "Lej7BsT3xxzDt3c5+FWydjgeXUn7EF3nDFW1UYSive1KcC9k7cPnzucN+bBYG8nnxvzx41FOGUfA\n", - "WykfL9H48LdPQ/dyhFSkkiRJkiRJerLQPFKlp12syNbcLm41RD5MNZbsSvh76ccbUa6Psajdcdvx\n", - "nC/kJqGcN998c9V5qB/7XN1+++2SOmsNq8Z99J7+9KdL6jKcYyVhRfK7IXvD1eC5hfCHWRTHHXec\n", - "JOn73/9+r9+jYkTztcZHyn1VGCt91U+/dl/Fg7F+wgknSIqVCWAMcj0sapQTPqO2Ys3Fn89p3Rex\n", - "5HtEu6NclXyGeAvRqowxxzyvUGsUYsRYGdMdf5vB2kW0nO8mcN5550mSvvnNb0pqzzlHJvFI8WQ8\n", - "0l+tPn2t/p7ud1oaT37eqB61jBXRnIpUkiRJkiRJTxamSNVYHFh7WBf4rJSYt88SUVgoEn0zR0eW\n", - "Nk/pY1lTEbyfxgrCmitZBUQ+0M70jys2nB8/EvcnQdkjy7Tn+IBof60IrCisXyIzaiNoPKKD8mL9\n", - "RO/V8ftgvyjGB+2K9TivXDqAEsd88XxYEd7OnGfoXnmHH364JOm2226TtPP4IifOaaedJqlT0PAn\n", - "Itpy+/btkqQbb7xRUqeeoBxKO+9n6EoFigxj3lVvj8pjjEf+mvjDeV4qh/PyPaohaxxRfSWfDc5D\n", - "3zJWmZP0Xeu+jShznGdsaN/SHK5Va4844ghJ3RrKW4fWCGrWctqTccPYwufM1y6UHfwtb7nlFkk7\n", - "16+064VHjTEuiAxHmeK8jLe+mdpLCg5KJ+Om73VKsOZTX8a9/31X8T9ORSpJkiRJkqQnk3lbxyte\n", - "dDKZLi0trfl1kyRJkiRJWllaWtJ0Op2s9F0qUkmSJEmSJD1ZmI/Uli1bHnsP2+oD4+C/gE8O/leo\n", - "Xp/73Ock7bwvEf4F+CngWxNFQuBv4bks8Am68MILZ64LnoW3FDkB3i68N+aTCI6LLrpIUucrQuQP\n", - "/gMcjw/PgQceKKnzD8CnB/8PfFLwB+B3b3vb2yRJl112maTOXwP/DjjmmGMkSXfccYeknf00at9/\n", - "0458jpVXrHS9T3ziE5I6XzXan3GBv4fvYE5/Uj/8TfD5wUcLf4BXvepVkqT3v//9M9/TrpFPF9eL\n", - "xinX8yy/Z5xxxkw95w3X+ehHPyqpGwfRTgLMQ3ztiCxj3jA/n/a0p818jx/Keeedp0svvVRSN1dp\n", - "Qx+DtDHnYozTp/jEkIUe3xHm5AUXXCBJj12P83M+j+wlKo+xQ9nxQWFs4y/m2fdpy3/5l3+ZOb/7\n", - "fjFm8bHBd8uz6eP7g28Qn/hKvelNb5IkXXLJJTPnb4V60W74pDE2mQvUb8uWLTP14Hs+yejNHKPd\n", - "aS9fUziPRyP+5V/+5cx1542vZev9ep53LYI8Xeecc44k6Yorrpj5nUezMh6Y661+wMzr888/X1J3\n", - "72Nt4J5HuciQ7nC8PzMw/5k/+GWW2jEVqSRJkiRJkp4sTJFabiEO3Q8JqwxFxhUSoo6wBrFmfD+j\n", - "Ur4qnlpbn6JdkSplxyXvDlFLWPBYWx4JgkLxzGc+U1JnPWJVYM1hJfA90YJYo7QfmcCJOiOPErgV\n", - "62zbtm3V+kVKFEpYlHl8XkqUg1LpEVY+PjjOc70wnhknKFVYU57ZHKsN5atkBUZZocHzWzE+Wjng\n", - "gAMkxdm4a/H5GFEaV4xjb7/l6wYqKsdGUVMcR5/yb8YYyhDn8T7yMkGUY44+pS1c4eG6paz7RKVF\n", - "eY0Yc6U1KsqM7WN8aNSWz9nSGs/3kVrPWkg0G/3mewhSD45fhC/weqA1ehNqI5w9hxvXidZ4FCDu\n", - "NVu3bp35nrkd5WXzaH/mI2sG46A0j6LoWMZ7a6RyKlJJkiRJkiQ9WZgitZy+SpTjViagzGDF8RTr\n", - "T728F3V/gqG4NYRvC+/78aXZtGnTzPUjXxJ/2ucpnf2IsDaxRryefO9WKdfl6Z4dtYdmj631gWvN\n", - "0jsv6A+sGxQmFKhSFmu3wrHCqL+Pd85fmzOlNcsy12+FcYtC6vPIrcl5g++U58Vi3ko7t6H3Bb5R\n", - "rBWufjGXPK/QUPAXHEppDo3tR0h70a7+OZTWfSdREvBdYWwzVvHxGjsTOWOfz7HvESWoV2tOxbEy\n", - "d0d4O/j+pA7zy99y4DfMPfA73/nOmMXcidJuCa2sukpMJpO9J5PJNZPJZPtkMrljMpmc+ejff2My\n", - "mVw1mUzumUwm35pMJv/Xst+cO5lM7p1MJndNJpNTRyllkiRJkiTJOqSkSP1c0pum0+ktk8nkVyXd\n", - "NJlMrpL0F5Kumk6n751MJm+XdI6kcyaTyWZJfypps6Q9Jf37ZDLZOJ1OBz0WY2X9/u//viTpK1/5\n", - "yorHocg4/r6U9+i+0/S8rIxo3yHKi4KGUuE+N44rGjzlo6SQkRpFqjbbL1Ym5yeywfdDaqVWkeL6\n", - "+D8sChQO+g0fKaxz6oFiVdpXiu+xKr0d5rWPF/Tdsf6BBx6Y+TzyyCMlxZEwEbVRqhFEwpEhHTUC\n", - "lvtBeUQocwK/MY+Oow99juAjwXlc+VgUzG3a0scSCg/lPfjggyV1CkDrPo+0F36ezAEioPvCmBiq\n", - "+Hl/1PrjtfLyl79ckvTKV75SkvSP//iPkqRPfvKTc7me07rfLKyVXynUzhP3wcLvs1Xl5nqltZhx\n", - "xj2tpESxbtQqf6uO4ul0+t/T6fSWR////5N0px55QHqRpH949LB/kPT/PPr/fyjps9Pp9OfT6fQH\n", - "ku6TdHxVSZIkSZIkSXYxqn2kJpPJfpKOlvQ9SbtNp1Me/X8qabdH/38PScsfKR/WIw9eg/irv/or\n", - "SdJLXvISSdK3vvUtSe3WFfA0WvId4SmX41wJqo2IKOVNKkUrOW7FYW2zbxPKGu+Ba0EZ4ame+nu5\n", - "qTdP7SUrsNUqipSLeeeRAiI3+KT/PWdPa0QTOUpq974bC9+7sC+33nrrqt8zzvEjgVY/GAf1gvHt\n", - "8201pcujfBjbKCzs2cbY51yRZVvaO23ecP1I3fU1hBxxfWGMk5eHdnMlgD5njpRUWo+gdrge/TKW\n", - "Eogq3ArRaccee6ykbiz+wz88oifU7B27nmGO+luaVhifrWsj44Z+r4Xysia4Lxn94tF9JSL/5Igq\n", - "XfXR13pflHTWdDqdmSHTR0q82ih/fMadJkmSJEmyy3PNNdes+n3RNJ5MJr+sRx6i/mk6nX750T//\n", - "dDKZ/PZ0Ov3vyWSyuySci34sae9lP9/r0b+tiluw/v4UnyaUF3xY3K8BK8mtHFeOaiNOeJrl92QD\n", - "JkcL71s9b4/TN2qq9Xzu11Eql0P7YC1ifUZKnGcr9n7Diqu1ArwcTq0SVeuTRRSY59yh/lwP62ao\n", - "LxNKlI93xivlHdsPp6+PVAnvd8ofKZh9wSeKdsFPB5aPC792NPbwybjxxhsl1c+VsSKM+8IaRGb0\n", - "ecMa4EqFKwGsla1jN/KRoo+H5rEai8985jOSpNtuu02S9N3vflfSeEoUyl7pfLUZx1s5+eSTJXW5\n", - "4/7t3/5NUqe8lcoDjJe+/XbYYYdJ6uZla3Qoa3SpHfH7rc0zdsopp+jaa68Nvy9F7U0kXSlpx3Q6\n", - "/btlX31V0v9+9P//t6QvL/v7yyaTyf+aTCb7SzpI0jBtOUmSJEmSZJ1SUqSeKekVkm6bTCY3P/q3\n", - "cyVdIunzk8nk1ZJ+IOmlkjSdTndMJpPPS9oh6f9I+utphYnC03XkS8FeeVim+Oa4IoUV48oFT599\n", - "o4Y4nysxKEO+j1P0+1pQLrDwXVmJntJRgIbuXYhCw/lc0fD9ryJoHyKkoqzPTl9FBl8az9weEWWr\n", - "pr70K/UsWVmewd6h39xHir+Xft+XoRFWDn4IPg7pN7eWh6o4Ph76+m+sREmJWiu/vFp8n8954z4r\n", - "qPDuF9k6Z5lL0Vhv9VGppe/cor5XXXXVmMV5jFpli6jNsRQplDDWPHIHltZq7g1+z+4bXQisVX3z\n", - "lJXmKc8OlLt1l5KIVR+kptPpdYpVq+cGv9kiacvAciVJkiRJkqx71kVmc4gyRpNXabfdHgkOjHwu\n", - "ot/7e1wUG6yokjWFYoGixXWwjMfK8gs8Vdf6tqBk4EuGFVnKwB3hiklfHy/fw3BeigvQDyhThx56\n", - "qKROdfD8XJH15BFHKJ0lpa9UL6zwyPqcV7uUxkHrflxEg9bmJ2v11QPGcYu/RW1das+NBcvYGsuC\n", - "7Uut8kPurdK+jCWYC6wB7Ic5lNq1d2wW7eM2lLHVZfqVcU3Ed+mehu/h2App7ZoS4YoUazYKFOvD\n", - "mKq2lHvtJUmSJEmS9GZdKVIlUAawEiM8EiTaMRpKO06Dfz+2EuXUnh8fMD5RsminVn8DrFkihMbK\n", - "FlxSXLCOUB6dKLKF/mZ8sIchESDsKVjKGA++tx4+QZ7ttjViB2tpXv4fESVlE1WgVs2p9XWDvtmr\n", - "I7UIP5GVdmivVXFr1T/m4Fh77g2lttz49XmmaVRrFIiSIsT18I1ibm7YsEFSl/W+FfcDTeroq1rT\n", - "f+7XylxnTePtDdF7KFSRstkakb3WML5Yq1kfhvpyOetjdUiSJEmSJNkF2aUUKZ6KS+9lW/cyQ+mo\n", - "zeWx3sBaxu8D6wNrlPqUouyA/EpYndddd914hV0FrOPIpwbFBJWA+mJF8T31xafN91oswfmw2nmf\n", - "jkKCNc04rPWb8X3Q1goibCJor9oM6K3zYyy/FKI/jzvuOEldLp/lypT7PpT2/ipF5dG3a91nEbX+\n", - "Zp4pmn97HqhaWDvw0Rm6RtKXtWvSWJQirH/RQE1n7Ynam3xRGzdunPl7pPCW3h6sFbUqOvcM3jKM\n", - "nZ8sFakkSZIkSZKe7FKKFHmkWq2KUs6Nsd+XOvNWujg//g9ch/fXrYoA5yOnSN/8W32J2gkfJY9q\n", - "pP9QJkrZeEugUuCLQ5Qa6gTjD+WPdi7lMMEaOvDAAweVr5Vav6F5jU9XhPvmOXv6058uqRufNeoM\n", - "qur9998/83f6uFaZqT2uT6RhC6yBJfAXdJWxNeoQ5Yg5xhimD1sjcVFH2Z1i6D6MrezqUXuteNQp\n", - "48LVe/x/ydzuUW4RQ6NCh1Lbn7V7QDq1vpGpSCVJkiRJkvRkl1KkeL/fmgNird/DO1iFWLVERNx9\n", - "9929zocSAjxl//jHj2xrONRKYB8vzuPKAU/pfLoS4zln8KugHSg/0WscX7JqsZ44bmjepWgvQKw3\n", - "rGZ8plCmsOrcF62UA4XrDN17rpVa5SfKDI+iFUWR4lOHguftwDghmvJHP/pRddmlzheNdrv99tsl\n", - "1dUr2pOOOg1VjtwHa957w9VG8qIw0HZ9fbxQefGFoY8ZG61zkOOJpGVOrRXzjrTuS8mXLwIfKNrR\n", - "I2rpNyKWS/dQ5gVr40qRscvLWdo9IgJfLM4/ViSz+82W/G0jRQtFjkj4jJb9hAAAIABJREFUEqlI\n", - "JUmSJEmS9GSXUqQct7J4Km99uh26N10JrEMUDKxEFA9yddTiebTwe4jyPfn7bsqDnwj/xgrBiudp\n", - "3n3SsEawTrHyyD9FOYiW853i+eR3tDuKSOSrw3k2bdo0U65aJY76oZRRfhQOIDdOZB3Sbx6953m3\n", - "onq4InPwwQfP/I5+wreP9sL6ZNxzfRQ/rKcjjjhCUufbVvIj4Dy0p5e7ZMVzfvrBowSxPvfff/+Z\n", - "40v5ychM73tromashPsjRmWnD7FgKTuWeu1awNwq+WG6ZTvvDOnUO1IMave/pB1dwUBVp0+3bdsm\n", - "qVvLornDGs2n7zpRS18FZ9F4pm1X+pizkZIKrDXMXeacvx1gXDOeUZxoPz/e1x5+x9rDWsW48ntt\n", - "lK/Kueeee1b9vhbKy5rO9bl3uSLF2wTWbBRS+oP6subUvs1KRSpJkiRJkqQnk0U80U8mk+nS0tKa\n", - "XzdJkiRJkqSVpaUlTafTFZ0NU5FKkiRJkiTpycJ8pC677LJwnx7e/+K/0DcvEKoXn7w/xX+A9/77\n", - "7befpM5fIPIp4f0274vxKcEv4IILLpi53rzx+kXU7iU41vXGgutcfPHFkjq/DN6Lk/PEfXuOOeYY\n", - "SZ3PFOOMdsCXC/8BfvfGN75x5nqotXvuuaekLjoS/wHer3t2X/f94fe8d2d8vfzlL5ck/d3f/Z2k\n", - "nX2siGgp+YPwPXnEqC/+AJSb8fnBD35Q0s7+DfiocR38eNxnyv0g8LvAX4N/n3322ZKkj3zkI5Ji\n", - "X0Daj/L0zXt2/vnn6/LLL5fU1Rmfh5KfVykyEZj7b3rTmyTtPBeGzjXWGPqCerzlLW+ZuR59Tdsx\n", - "VqIoK3xCPI8OYw6fJXx0Xv/6189cD5hr9FHtGw3GIlGN1JOx+453vEOS9OEPf3imXu7D5jnt9t13\n", - "X0lde+CrRX8++9nPltStGZznj//4j1esHz5bzFnuCUMjv7nOli1bJHXt4fciIltpZ/wpaS98gdxv\n", - "0H3i3v72t0vq5h7lZ1y6fy7XpT/dD5Hr0S533HGHpM7378wzz5ypZyu0e8nXkHZgLbvoooskdT5m\n", - "tGt0L8e/Ft8pX2O5N7jPGvULy7Xqt0mSJEmSJEnIwhSp1Sw2vosiZ7BCSnl7HJ5OPdtvbXSTW7dE\n", - "Sqx15u9WvK3ZqwxrpxQ91ZfWrMcRRJZgjXgeLc6PIoKC6RFLKCwoH1iBnr3WowlpvyjSqtR+WMGR\n", - "wkM5sb5dVeDvUe4XrEjqgfVNu/k88nZhHDMvSnmesG6x4mgvPr1/SlGpZM3um3V6eXtSttYs7bX5\n", - "hUoW89DM2fSF7w3mMBbo4yhSGQUt2r0B5YG5WsrR13cu+3mj9maser6jqPzcA/xewPlRHlgbSlFm\n", - "HIdiQ33HykXIHEWZ8zlUitbbsWOHpE4hKkWoR3PP/86cp/4O1/HvfTzUKktO7fG+lqGk0p4eIe5Q\n", - "T78ev2Pt5Tq15UpFKkmSJEmSpCcLU6RW25cMy533+g7+A30VKX9abc1GjA/KUJ+jI488UlJnZcxr\n", - "rzOnNo8PuMJQC/4ibrXU7tgNWHEoKZFSibVU2k8JK5Bx5L56fv7WTPoR+H2Q98mJlE3Ke+yxx0ra\n", - "eQdz2pnsxb4PmuO5j5iLrXtOun8M1iEKGuC3ELXj0GzgyxXFee+lFlnsUNpvsURtpmjmFGuQX5e1\n", - "84QTTpDU5UaL/E2ZA5EF7tn4h7ZzNCYYO9SPsVGrmDnuE+RjEx8fFCfmForNajnL+kB9KAeKIfWt\n", - "9TmrzZWIQoQPGep4lEcqGr+o1ZwP5cbbkzWO8TZvGLeUw1V5H6e1ChPjpvaenIpUkiRJkiRJT9Z1\n", - "ZnPfYwurpJQVtbTbfWtW3CgDOR7+fX2kyAp89NFHS5I+/elP9zpPK0S71dJ3bzi3mk455RRJXf9h\n", - "HZWgP4nCcwUDKwTfL46/9tprVzwfv/eImYih/hEoeqgZkZWDVeX188z4Rx11lKQuMuUb3/jGzPHu\n", - "Z4L1D8wrrLOhyirQnj4fKEdUPyeKMItgHvahdVeDvnvDsYZ49FSJSFWkrSMfGPY/ZC6UfJtQIqK1\n", - "E8s+2rOPaC7U1lJ7Rn5/vI2IxgjtQYZt2mH79u0rHo8C58oFcB3qzRxjXHB8q89PBFFjrKl8MkdR\n", - "eqLrRfcudg/weyP1o19or9Y1nePdt83XxigSH2oz6tfCuKUcQ9fqkj9qRCpSSZIkSZIkPVmXihRW\n", - "wYYNGyR11gI+UaWnWd/ry2nN5h5ZfUMteRSbAw88cNB55s1Y+4KRm+POO+9s+h39iZXgfiRYv+TE\n", - "YY82rFFXvrBisG5L+31xfay7Vv8QL3dkrZf8a1DYbrjhhpnzRqCAufXpv0PRKe1VWKKkINHOJUWq\n", - "dV617lW5nNb9NUs+UhF9y1i7z6HD2CcKrDRm6ZPSbvfR2lka207k4+P7grrCgbJWq6rj24Mi6PcG\n", - "7xcUR9qBcvZVpDxCnPOg2rqiEkG5Ih+66K1I5FuGslUbWR3lR/PfRedh7p966qmSpFtuuWXmsxZX\n", - "FMfG16ZIgXVSkUqSJEmSJOnJwhSpX//1Xw+jhLBqeFrnKRzrquRr4dZOa5RYLaX3wSVQGFqjD3c1\n", - "sGZ++MMfSmq3KrCCSkrF17/+dUmdP0DJByuyMrEi8WXyHdNbQVUo/b424qv2/T3nc6XIrd9aX6Ra\n", - "H6eIWiW4NqfTIhgalTfv67nPV+2ax5giiqyVsXyIUDR4KzF0jfU57AqR49Ff5Czsm2vPc9SVcrRF\n", - "lKI5o3Zi/Pjcc+WItQn/RD8fvlslH8FobeAeTHuiULUqUn3X4FZQniMfRScVqSRJkiRJkp4sTJFa\n", - "zTrFiuLp1q0BnhJrLeO1ys/Ul1I22xKtUYhjUbou1g25RbBy8D+g/0pRj7U+Mxy3devWquMjXJFC\n", - "IaE+fbM70061Vs5YuN8KVjL1qq3P0HxPtTmSYFHjejXWs1omtft8OX19wMYCZQvFwucic5C5Tn+U\n", - "fH0efPBBSV2kdAS/x18Q/8G+amzftYIoSJQ5yh8pjCg+rrjVKprMsZICSHQhc9kVt+hey1sifPfG\n", - "ypA/L1pzJ6YilSRJkiRJ0pOFmR+rPZHyFM37ZJ5+eX/faqHytN73KbiUmXnekQQl5m2xu9XRel2O\n", - "Q4kio3irQlECa3zo3n7+Ht5zzfDZqk5gNS96vMxboY1yEbX6N0T+GoukVh2dl19mCd8rrjVfz6LH\n", - "JtDOjCVXh93vsJQ7kDHk+1g6vjdflLuuL7VrB3nA8CliDY1yKDLOfDeQoQql42+HWpWbe++9V1Ln\n", - "azVv1bnvPOT40riCVKSSJEmSJEl6si4VKcA6AJ62eVrkHLU5MErHkWPELeAoFwfn7QtP4+RXGpIP\n", - "Zx7wNN7Xp4dosM2bN0uSDjjgAEld/w3NWzQvXIH0DOh9rTz8F9bKz4bxPFShayVSMFvrvZ6UKIjq\n", - "5gxVolz9rAU1HwWllH/Iqd1tYN54PcAVwdrM7VBSY5nb0b1gKLVrgO+hiEJFxG2kNPo9E8ZSSH3t\n", - "6+szhvJJ7r++0Ywl+taX9i/lGIRUpJIkSZIkSXqyLjObOzy9+o7ZtbvV1+6UHVkfvKd2q46n8b4K\n", - "Be+FsX5QpFr3/5oXWE1DM7hjRVEf2nm9KA6uMnjWX6waPlvf5z/lKU+R1PVz1J5cD6s1ynaM/0Yp\n", - "IgdF0Mvr1mmUtbgv+Of8IuI5t8ZuO2DuRap3ybeE6LfSLg/OWkVFYel7/inGvud9oj18TWQu1Coj\n", - "pbmLgofvD9evvYeUqC0n48wzzh900EGS6n3fGD+o7JFiVYLxxl55KJetig/1QhmsVXhL+HgZ6tPG\n", - "GpmZzZMkSZIkSebMLqFI8XTJnm+t78VrYWdurBEUsBNPPFGSdOutt84cP5ZihDVLNBtKQ60PkStY\n", - "KCBDrSiexodG8jzwwAMz5xvLChkL70esN6wbrBMUw1r14alPfaqkTmmi/lGWZMZzaVy15oZx/PzU\n", - "x3PQRP4kqBye7w3mrTTWlnMtGFuJcqKs8yVlBb9L1hT6ZOia6XmdgDWCtbmU6TzqMxQUFKgoMze0\n", - "Kg++pjI3+aTdSnvf9cWj9lgjXClC+TnkkEMkdf3G8bX7bXIvoB3pJ+5x1DNqR9Ys8m+hNqNItSqe\n", - "Dz/8sKSun4fu6sF4ZE1DUSQ6k3amX+ln2iPKYehvIUqsrztakiRJkiTJLsQuoUhB7Q7jZKNt5cAD\n", - "D5TUWXFkl523zwfvu/vmJ/L3uGO9z8cKHOo3we/vuOOOwWVaC1CkPLsxPnklFQK/Daw+fsdnaW+7\n", - "eSsskaKFdRfVD+sTH8Uo0sateSKOaE/qx7zyaNVSFmky5WOll3IDjQERwygFrfA75jptTSTrXXfd\n", - "NbSIM9CmrGVY5CgCfYkUqQ0bNkjq+o63B9GuDZGlX+v3OhbMBcaS7/1WG7VVC+o2a2Lks4SKv3Hj\n", - "RkndnCTDee2aHPnS0X8oVnyPQsO9iPoz/l3BaY3opt8ZH61QXvBxGClMPDuwdoytJKcilSRJkiRJ\n", - "0pOFKVJPecpTHrPYfUdo37Wep0x8a/w9L0/Tvj9TK/hAYUVx/rGtkoi++YV4f+3ZeyO/ApQFlBcU\n", - "LLcS+b7kh0A7odxw/ZKfhGf6xmr233mUZmQVl8DKQgnhOu7TgxXnPl20B+eh3rzvpx4oUrQn1k9r\n", - "hEspo36JaCeAKKdMyUqr9bPB6oOf/OQnKx4XWeO+87pfr0VVoe/22WcfSV2da6Oe6Gv6uK/azRxl\n", - "7qHa4dNRS20+INYS6jmWyuljhD464ogjZr4/+OCDJXXtj8JSC/XkE1p9l7i3MBeiNY4x536K5Dni\n", - "uLvvvltS/zlZ+zvW0P/6r/+a+V2rkoMKjKLEWs4na8Pee+8tqVvTuB5KDvdk34vR12oUUNZCvqc9\n", - "KUdt5DPji9+3ZlIHxn9p7aB8PHtk1F6SJEmSJMmcmSxiZ/XJZDJdWlpa8+smSZIkSZK0srS0pOl0\n", - "uqJElYpUkiRJkiRJTxbmIzVPRYr3queee64k6ZJLLpHU+Tr1ze6KnwTvl/HV4b06deITXxHet/J+\n", - "mffPJb8F94fAXwO/ije84Q0z1wOipCLflFqIYuT9+Kte9SpJ0rvf/W5JO++b5Du0Q5SpnffP9Av+\n", - "D7wHf+tb3yqpfax4HqiovWlfjnvb2942c73aKMra/czIToxP2oUXXiipG5/ui8Y4xq8GfwNUZOpD\n", - "/1Bejwyi/S+44AJJ0qWXXiqp6zf8KPgd9fV6Ux6uX/LToR0/+MEPSupy4NDPtEPkcxW1P/3LJ/nf\n", - "Tj31VF188cWSumg4Im/Ju+MRk5TJ8xZ5NBJtSJu/8Y1vlCRt2bJFUjeWvS6er8ep9XnyteWoo46a\n", - "KSfRZn59/AEpB9F81Nd3i6B+p59+uiTpC1/4gqTOT5UxWvJ/BM7P2omfI9fHp+Z1r3udJOmjH/2o\n", - "pJ1zreHDQ395dB1jAR821njaFd8X+unMM8+UtPPaQj9zXGnuR358/j33oosuukhSfQ7CUgZ4v6fQ\n", - "33/9138tqVuriXZzv1TWLG9v/FWjiFj6AZ8t1rIrrrhi5u8cR30ZP76PqeNzn/6lX84++2xJ0t/8\n", - "zd/M1DvK0eflbn0GKN2DUpFKkiRJkiTpyS6VR6oWtw54im19Cj3uuOMkdZEvWO48XfO0HO3QjnUT\n", - "RUOh+Nx3330rfu9RcFiLHrnh0WRYX0MVKaxzV1q8fUtRfZH1hbLhvx+aVRhrp5QpPMpei/VeG63Y\n", - "Wl73S4yu43mSsBJRVTwfFOPRI4M8+zDl9eNKqkjfrNhE+7XmN4usVcrNJ7l1pE4FRukgysqVKOYe\n", - "UDbfs4trEHX3wx/+cOZ39CVzztuINYByucXcGsmJcnT44YdL6sbA7bffvuLxKEGe88tzeaHgefnI\n", - "YF1SWyNoj2iM+1yIcpyhpEVjiH6KcpvVjr1apYi8WZQrmhvMWWBNRxmKyguR8kf/ucruOdlcgeJe\n", - "RDtHUWml6EDGtUfxuZJEu7dGjfrcj6IdGT+l3HzQ+gwQ7XXppCKVJEmSJEnSk4UpUk984hOr9wxz\n", - "Iusueq8bPc2W9qS7+eabJcWWcan8UZZViJQowCrwp3m34lx5qc2RU4KcG+4vwlM61nSpHUp+IGR9\n", - "pr1arfSIvnsh1ipMrUpUZOVhpUZ7K+Lzdthhh0nqrMGtW7dKirNBY21iPTuMo74Z9SPcSsXPo7QH\n", - "H+VFbUFpaskEjwV/3XXXSYrHJmOba7r/F5YrChBj3vu8lLsOZYw+5PyuHNTiPjwQ1TPKLA7sdcZc\n", - "8T6qtfQjSlHhnheIdqb9UVJoX46nHVr3dYzeHtRCeVB5S/mxfE7RT6Vch5FfqUN7RW89uL6/zeD8\n", - "0VpbWgv4nd+bGO+Um3LNe7eGee15WXveVKSSJEmSJEl6sjBF6pd+6Zd6K1KRBd6651bJB2aohd43\n", - "RxfWZu3O5vhneHbeodA/WOWA9V7K0ks0G9ZPpMhgnWEttu7fBCWfs4ihViqgcGLF1PZDSZHC163k\n", - "80ZUIO2H71xktdOvjLfI927oXotYpyXli/mCvw7WNspbxPLs4CgGjF36gjJEfnlY2L6vImMXBcst\n", - "+JLvEG2KKjvU/w+oB+fvq74CfexrlmeoHhsfW96enokbX7VjjjlGkrR9+3ZJZeWNMe4+L6yZtJ+3\n", - "oytDlMOjBh0/L9C++J5F1PZnaW4y1yiP+/71heg3vxfzloh+5N7EfKy9p40N0bsonYyDvnv+OalI\n", - "JUmSJEmS9GRhilSLaoIli8WPdTfUF2joU/nYnHbaaZI636xaPwrag/bBShhq/eL/4YoN77s9WtD9\n", - "KShHSZnjfIyJ2kgJByvP/VZKqoErJFjhtGtJ0YHayCDOD/fcc0/V7yLod/qbcqNwRf4JUXmJ5Dr5\n", - "5JMlSTfeeKOkstUPWPFAf0Z5xpwvfelLVdeB5co2ljJtggVayi9Dmfw4xjQqn/u2lCI3PdJ3qC8H\n", - "ihjnRaXsq+5DpNR5DrOIWp8ex9fwkk8WUZMoCe6PF0H9/Hj6Naqf1wf1E7/OHTt2rHo9V5lZM1pV\n", - "a8fzc0XKCv1JPcbyVYrWDq7HOKW+HkU7dLz25fjjj5fUzddUpJIkSZIkSRbMLpFHCmuRp3u3eMcG\n", - "i94zSM8bnuKxAiNFyhUirDism7EiGLAuPEKI9i9FztT6iHlm7r7+GGMrjKV+R3HzXDEl3Orv69+C\n", - "P8/mzZslSffee6+krh1oR5TDVrDWUPhqcT8i6juW756zXA1izKHU1KqEkaLC2Iyy46NMoJTU5kty\n", - "6COuF409Lw/l7asIAeVm7YNaP9Fav8mhoC73zWvlimLrmGQu0N74ALmSRrv59VCSht7D6K/99ttP\n", - "0s651RzGH2v50Ejd6B7jUbDUn/HMdfsqUrUKpMPbipJvWl9SkUqSJEmSJOnJLqFIOUMjVEqMlceo\n", - "FXK6lHyEPFM1VgDWJO0z1EcKq8mj6LBuxuoHt+L7RjuORWtkydCoP/ezweoqWW2MA46j/z26r1Ul\n", - "QPnFd2uoH0Gr1ct4rh0Hy4+rzcRNLjqUIOZc5PMStSF5hEp9xZiKIiE9uipSpPgeFZQ5iDISRTSX\n", - "QL0k3xXUriHrzd/Uod1q13aUIxQrj7ZD6Ywyg4P3I2spanIps3kJV52jfsBXiXFKO5Tmtvs3uj+r\n", - "K2ucn+85P+NoqCo977dRfVmfpUqSJEmSJNkF2CUVqbEgAqPv+/axQUnYuHHjqse5lePvoceKiMCK\n", - "c8UF62Is5Yhyr1drIwKrcq+99pLURYi1+tShSHm+pVIEE+MFqzRSI1oVIcpRspYj/xCn1QptHVfL\n", - "/aBq5zJ+fah41AElwlXJSHWsnWvMpaitsPyJbrrrrrtWPI41i5xh+Krwu76KVFS/eWWMHkqtagvR\n", - "vqGRqo7ay/GuZKFERf6cKEQ+juifsdZo5ihzkWhVQImiPKw1XJ/xHkXA87toTfP243zML8b7WPmj\n", - "5v02qi+71p0rSZIkSZJkHfG4VKR4aubpvK8ihdXSut9TBFaCZ6h2i979FrBSyYEzlo8X53UfKf49\n", - "lpWBdYkiNa/orrFxvxbGVasixe+x/vh3SfkrReqAR2KNBeOspA6U/EiGUtq3bCVoM889FikJQ3c5\n", - "cL9HV6ZYg0pqHIoDc5C2bY2sdFBX5zVW+hJFI9Ln5DyjHdjdonYN9HxjwPmi85Qii2lH7xf+7hHR\n", - "Q9X9kirM9Rhn3PtKc4fy1a5pHlXHWj7Wfp5j7UIxNqlIJUmSJEmS9ORxqUjxdN7XnwBQosby7eGp\n", - "H5+P2vfoXJ+nfX8P3jeihsggt8rcp2noe+vaXD/rDcqNNdjXWqJ/fB+osXzQPJP6WNQqh/P2a1ie\n", - "x6t1THKcq4vRcX2p9SssrUn0JWOOOY6ShgLSmouNepfUQ/fHHIrPGT8/a5mr/rQD/omUm3oQAe14\n", - "/aK3CaVM+CXoR4+wpj74JEXjYax2phy0C2sM48XL57T6yHE+rx/1pj59fe/GutdyHsbDUKUsFakk\n", - "SZIkSZKePC4VKfwLsN4OOuggSV3+HLIU14J/wViUdhZ3UEawmtnpmvr0VaTIrO5WG+/513vumLUC\n", - "VaCvauHti7VGO7f6vLkqQ0SPU8o9Mxb42rkfylgsVxm8D2ojC2nzyDIdGmXVN1u/Q18x51G6aNu+\n", - "18FXDP/MiLF3edh///1n/s1eif/93/8taee5wdjed999Z/798MMPSyrX3xWgee9a4bsK1O6xR7lQ\n", - "pyMFp3aNiCKvuQdGEezRmnbEEUdIkm677baZv0eKEQoin30Vqb5rLNf1fGIoaL4nYiupSCVJkiRJ\n", - "kvTkcaVIeQZprBesnr4ZnBe1kzXg8+X7GA2NqsMqdMgKjXI39D0zuU54n9/3PThWB1YLVgc5dqL6\n", - "9AW1w8cTimDJDwLcKqYfOX+tknPSSSdJ6hTX++67T1IXyeRgjbUqUj6PovNC5HcURfKU/JywornO\n", - "YYcd9th39DVt3lo39/8by4eillIU1/bt2yV1cxxfoLEiaFvXsqG+PO7LVFKUGBPsK8n110suQMfL\n", - "Rblrx1OpX0vnYY7svffekrr2ZXxzz4uu43+nvVEOPaLb/V2Z41wfZbivDxpKZCsog5SXe8FQJQpS\n", - "kUqSJEmSJOnJulakUCp4CiXbL5EaKCK1VpRb0Dwdc53IGuJpOsr03Ncaas3OC67Y+Pt2lAjHc9B4\n", - "bpFasDIoB0/77ofC+3vf5wnlCQXJ+6Xve3D8CVBy8PtozfNV8kugvviT4J+BdYhvWW3U3aZNmyR1\n", - "1qP7PVAO1BUUGcbPMcccI0k64YQTJEl33nmnpK6/o6jIyCpEcUQdac3r5e1NO3Be/DH22GMPSZ3i\n", - "dvfdd1ddj9+vtN8XawNjjb3wSjBmaFvmBv+mb13VJI8Rljp97wqNq2yR6uaZpH2ucx0iFV1xc/Wx\n", - "lFEdDjzwQEk7r0XPec5zJEkPPvigpG6sMzYjJcr3gaSvXEFx/z3WepQC2p9P2sMjUX0t43vOx/W9\n", - "flzfM8XTjlyP3Sb4PXPH7yEedeljmbnNGsM9J1KEmDuRUskcj5QV6sN1uC7nY/zUKpq+1vv4ZPwD\n", - "44B23m+//SR148DzfkUKMuO+79sfyluKEO+b1ysVqSRJkiRJkp5MxspV03TRyWS6tLS05tdNkiRJ\n", - "kiRpZWlpSdPpdMVEa6lIJUmSJEmS9GRhPlKrKVL48PA+199v4x9A/iaiozzq7p3vfKck6QMf+MDM\n", - "790XivNxncinBn8Ifw/sdeKT9+H4gvzkJz+ZuQ7w3tl9wRy+p55vectbJEkXX3yxpO69c18fo1Je\n", - "Ier1nve8Z9Xj8PmJ6lGLt2fEKaecMlOerVu3znzPe3rPKtx6PfwoeM/uai6+Y7R/pPYyrs8+++xV\n", - "r4dP0dAsy0Syve51r5u5nu8rV1Kna3368DO48MILZ65XSykSzP0YmGfnnXfeY3N99913l9TNOeb0\n", - "WAo8dbrkkksklX1M8BHZsGGDpM6P0dcifF722WcfSdLtt98uSbrgggskSe9617skdWsKa8L9998v\n", - "qasveHQV39MO+PacfPLJkjofo9/93d+VtPPaSc69o48+WpL07W9/W1IXfcfcP/zww2f+fsMNN8xc\n", - "j3oypl7xildIisfKAQccIKnzBXJfJCI3o2gsroev1Wte8xpJ0sc+9jFJnZ+m+23Sry960YskSddf\n", - "f72kne8R9IPvZcdxZ5555qr1G4rvmXf++efP9XoO17nssssk1fulshbiIxWtLYx31oQzzjhDkvSp\n", - "T31KUjeu+d73oozuVZFPFO3JPHzlK1+5aj1SkUqSJEmSJOnJuozaQ7GJoneIxvI96Uo5NaLsr1hX\n", - "3/rWt1b9PVZGpEgBT8NYynxG9eFpOVJw+D3Rgx7l5rk8sPKwjohyQoFwqxV46o+sPi9vxFAlKso7\n", - "FIFis2PHjhW/p30iJaqWUp6x2twwtZnKh+4FCVHEVmuOpdqImZLqU8rGXMpJhLqDmrP8erQZcwVl\n", - "aqy2dGqjneiDW2+9ddXjXO10dZkxxphnbEeRt/yd83nfUC6OcyXH282P8zxQrC2sOShRfj7KgVJU\n", - "gnozdhz6mzxNDmPKM3zTf6ypfKJi8/1Xv/rVVcvnkdIoMr42R3g0YhQxTD1pD9Y06ueZ6Wkv2pvy\n", - "+D0EJZHxgLLnOeN8jfPM7Sg4d9xxx4r1Yzz79binR3B9Xxv4XbQ2lda4aK2inrVrdSpSSZIkSZIk\n", - "PVmYIvUbv/Ebj1kHPL235qup3a+nZI3y3r60czrvU0u5JlxR8/fXrfBUjDXoma4pL9aD5/bgd9Ge\n", - "a+Te8f2XIp+yEvj2cD36CWsiyrQNrZnNsRojH57S9daaWmWnpHYwf/BbiZTAsfZ5KxFlPMfKxhoe\n", - "qg65H8tyK5Ux4BYx4AtEfiR8j9Yb+Da50kSfozRgkUeWd0klRSH4wQ9+IKk8NunjaO1lzOLbBa7M\n", - "4CtWCwpYlE0fv8joHsLvvNzRrgIlSvcK1uxaRYN+iNr1rLPOkiTm3A+kAAAeOklEQVQ94xnPkCS9\n", - "7W1vW/E4b2fKidLp44G5xJ6HKESMg/+/vXOL1bQq7/h/hWq0SEAOHcYZyIzhEMdUFDKjiSFgAqYa\n", - "g/SCWhsSLZaYCEqMMVQTy45cWE1UqBfERhq1UqrB4DGkggEsFzCAjAOMQCfM6ECYmQJqJNEEm9WL\n", - "/f3m2/vZe+31vus77b3n/7vZ+zu9h3V61/Nfz/Ms2l/8HUpifLaVfKO4rtJekTVKx6UfxHbbdVWj\n", - "NGZRH139ja1IGWOMMcY0MjNF6rWvfe0Sz3h2ksZK2LFjh6ShsvHggw9KKs9OW7OSEtWEr9R99923\n", - "7PeYTXc9fsyay+/7+qZgJZVm71xPLXtxzPqL9cism8/junqkZo3hQ9YabdbVioOu2atLYJW0cvXV\n", - "V0saZhbndUl5Kfl59OXSSy+VNFQvRvVNG5VS+8SPgr+jKlJE+sQoSalsocLZZ58tSbrsssskSQ88\n", - "8IAk6cc//nHTtZT2C2yFMRHfLqLxgPPUxoS+0Jdj3UR/NtTwksVf8m/ldcyM3XX/y9p9onDgm1Xy\n", - "GYsKQ1SkKN/SM4YxnSi9kvLZ+iwqgQJUi+SN/q+xXXL/tDOeAXfccUen8wPPgFhO7DYSidfR+myI\n", - "7a7UDrs+Q2rPYsbWGlakjDHGGGMamZkidfjw4SPWALP3aB0Q8XHhhRdKGu4pds899yx7zNbZP7Pj\n", - "p556asXv9d0pmlk8ESC1WXhp/y2sh7iXXFewHkqKVYxmq/mq1Wb7s8iWPwqjWvVYW29729sk1RWX\n", - "vopbCfxCukY+zQrKB+uX9ltTUGvHa1H2UKB+9KMfSRpdxaNPtt5LhL5e8/Ho6h/aFRSuGIUF3Cf+\n", - "pF2j0SL8blz+o8B1cZ1d9w+lnOmTtYhSIptrYwZjYN8I5BKf+9znJEn33nuvpO7+xH33GY1Qrigz\n", - "KIjsudiVWM41Sr5Lsc/Hz+MztDbW1JTkrsqZFSljjDHGmEZmpkj1seBKChTUfHZQhEqzc2bZtWgx\n", - "ZtNdMzwTLYb1ULvnUoQA5+XzGFmCXwBEa6wWtUX58D1m6aV1/q55fkr3y07qNQVwtUM9/PSnP5Uk\n", - "3XTTTVM9PxFb41K4JgXth37QNfdSiaigLlRHaHvR/w/I44RfXa1PMrZEVQ1qfaEvKE21XHW0PSz3\n", - "2q72NRgz2L0BaFsoPaMqHCgItIm+6noERWv79u2ShmN5a844fJDIGRfHzlq9RFB0RoVnTsl/t0RU\n", - "AHnGdW23qOuUQy06rrT7B0pSVyWVdlFSnKC0esMzEbW+VXl2HiljjDHGmAmzKjOb96WmuNRmlczW\n", - "u/pcdM0DREQAyk4rzLqxnuOsHGsR64DvdY0kImoRKw4rYNOmTZL652GK5Yj1fNFFF0ka+hlQ7jE7\n", - "8lqB+5y1stY371br8Vv3cKT91yLc8MPAT6fkhxF/vzDypmv+l66KeG1sGVVdK1Hz8Yn+ZqMSc9VF\n", - "KGPqsFUBY+xEkRo1YpbrQUmCGE1XWkWIygxRiSXlpO99jyuaE2WLvtjVRwmFhrG2tQ93feZFRYo+\n", - "TT139V1DSeI4lGPN/zbulxtzLval69hqRcoYY4wxppGZKVKvetWrJmbNxXXb2nnwzC/lwIh0zR3D\n", - "9/pmbC/BLDtaS8zSWc8uXRc7pGO9kaMGxaCU3bVv5AlWG4oNPlHkXhmXUjdr+uYDmxS19j1q5BAK\n", - "EVZi34gd2lXNGo6RV/ip1PwqFlqp0YIcNZ8PljRl3NUyH5WulvS4FA8oRaPRl2lLo47dHGfUCF+u\n", - "Y9euXZKGCh0qOz5TvB8jauP5ua5x5YHqmim9Bu2OXShQamqrLSUfolbfPvpoaQznfLxP++S85FSs\n", - "7VvKfZ188smShvfbddWo79hcqu+uPl1WpIwxxhhjGpmZIpVSWpJhe1z0tRr75oDhukv+E1ixREy0\n", - "rtPGWTLnjdfL/dYiavAb4HhYF6X7b80+i1XC8bHy2M+rlEXZtFErx1Fz9aDytOYuIiq05h9BJN2W\n", - "LVskdVfSFkbtRfWXNogF3nffQa4FSpmsx01XFbtm2Y8LMq2jMKA6d41gjowrvxKgrlNfMc9VySeL\n", - "92P+LhSsUaMUY0R1Kyg5XB/PgpoiVVq96FtvlA/9iXYQ2ynPcr5P+XG+0047bdHvSv1x7969y74/\n", - "LoUvQvnyrOY8vF/DipQxxhhjTCMzU6T+8Ic/HPG5YN0zzv5RZPD853utOUJKMAtltnzgwIEVv1+z\n", - "zPHxGDVjNlYR1hVRdKX1X6yN2vo+uXGwGkqRKDHioy+xvoj+wwrpGsFhRmNUXy4Uy1Zlq28WbNpb\n", - "V/+UhX5R0feDe29tw9NSoCIoQHHvtEkTFZQYEYziQN9GGem76wNtigjeUYltJkYzMtYwxgPKSvQ1\n", - "w8dqVEWqb8RzCcqZtt7VVyhG3Lb6+NGvyF1HeUVlMe51yXmpF575rT5ak/KrjmMU99d1rmFFyhhj\n", - "jDGmkRUVqZTSaZK+KekvJGVJ/5pz/peU0pykf5DEdPvTOec7Br/5lKQrJP2fpI/lnH+y3LGPO+64\n", - "I9YO69bMAlEsTjnlFElDq4j1YGa1UUlh/bbV9wYrsKZI1SxlFCGspNYIEKyhmIMjKl1xll46D7Nu\n", - "ypMoOq4zRi2OOvvHisKKMZOhtuP9uGi1Ikt+PCU/Ddpd1/a3UE2IPhcln6nV6p+Hjw/XOW1FKrYh\n", - "VMi4Fx2KT6vCgVKI3+SoMOaVMtBDzaeoa6RoV0ZVtIDy4pnYVR2OOQJjxHltb8EIfZZIXo4PjPkx\n", - "WpB+SM691t0YRl3lKVGKfu36zK4t7b0s6eM5510ppddIejildKfmJ1Vfyjl/aeGXU0rbJL1P0jZJ\n", - "myTdlVI6K+fclgXMGGOMMWYVs+JEKud8UNLBwf8vpZR+qfkJkiQtlwTovZJuzTm/LGl/SmmvpB2S\n", - "7o9fPP744zvno8Fzntl9ydO/1cpEqcEXqwTWQG3dm1k+s9yueadKMPtHecDHCbpGHWIVkFsFq6Cm\n", - "wEW65iLZt29fr+NOmq7115eYs2ba4GcyK5+zWvsutZOSmtE3e3QX6xZfEfLSoBKPWmbkSONesJi5\n", - "h1of4TrOOeccSUP1GUWKvQFnBRGXRPAy9rZmyI6MqnpTr2TUJs/S7t27l/1+10jk2nWNK89UV558\n", - "8klJw7Gra7Qmqw8oiKy6RJ8rfAFLOwOcfvrpkoZjDT5x8VlUUlC7Knwcj+urRbxzf6MqiKXy5Nlb\n", - "o7OPVEppi6S3aDgp+mhK6RcppZtTSngovk7SwtnRMxpOvIwxxhhj1hWdovYGy3q3SbpmoEzdJOmz\n", - "g4+vl/RFSR8q/HzZKXsXNQqFCUWK2X/JAi35TtXAmnzkkUcWvY+l3Rp1hDXHcVjn7muFxfXwuC7d\n", - "l9adsAHfqlKuDxiX1dpKVKDGrUShbpApnnY3rkz2Xakpf6PuQE99syci1iJqS01pRWVBrcHKwxru\n", - "m9updHxp2Fdi5CzXSL6hcUGdcx7Gpq7qM2Na7Et999DDd4UyjWNkbb9EFJ04NsXdDXjNmBajsmgb\n", - "1Ekpmo96og+1goJB+Y+aZyhmNo+KYvTrpbxow9Q7Y3TMQ9R3dSJmAu/rc8UzJ+bPYixkbEDJozw5\n", - "D88+fs/qB/Uan+OlsS8qXYzNKE4xQp9yrilSnI8xJWZcp13TT0tzh5JyzJyiRnUilVJ6haTvSvpW\n", - "zvl7kpRzPrzg869J+uHg5bOSFsaXbh68Z4wxxhizZmBCeffdd6/4vbTSGm+an9Z9Q9ILOeePL3h/\n", - "Y875ucH/H5e0Pef8dwNn8//QvF/UJkl3STojh5OklPLc3Fz/uzLGGGOMmTJzc3PKOS+7QWxNkXq7\n", - "pMsl7U4pse71aUnvTym9WfPLdvskfViScs57UkrfkbRH0p8kfSROoowxxhhj1gsrKlITO2lK+YQT\n", - "TjgSMUM0Wswfw3op66SsX8f9huJeYKz3Xn755ZLmZ5ILfxejhVinL63nx/XXEpzn85///IrfjxEf\n", - "XX27+B33fe211y4676ThPPztu5M46+1dfYji+cZ9/Nr5aEcxfxdRmdx/yceHeopZl/GT+MxnPrPo\n", - "fJOCdnPddddN5XzAeb7yla9IGvZj/EfwgYz9BH8M/Bvo1zHDOuMD8vtVV12l66+/XlJ7hGxX+rZN\n", - "iP5ifc/32c/Ou6biQ4IPzeHD894WNf9L2m4t0zXnm3Z53nDDDZKWRlOW+hJjOr49+MDwPm2F6+dZ\n", - "cc011yw6L2M85RMjwN/znvdIGkalPfzww4s+ZwzHt43rp21ynhtvvFHScKzn+uL+rdQPz0aeUeSD\n", - "ok/Qt7kv7pPzffWrX5U09NelnVBOnI92+cY3vlHSsJx37dolqTy2Uu6f/OQnF52371jc9ft9xzLq\n", - "hftszV81Nze3oiLlzObGGGOMMY3MbK+9hUoYlma0enh/27ZtkoaRC1i2pX20StFkJeurtk8UljFR\n", - "S1gtKDFR1ePz2p540DXKkN+VjosVhvUSI3SwRsZF30zXk45mG/fxS5GlXSOzSurApK37yKxX10vt\n", - "vVRfqDVY2aVIJZSthblepl22fRk1MzN9muP0PR5jRNe8O9Muz9LYVupLjOmjZqrn+KXz80wpRTxz\n", - "/tpYXrqPUi5AlK1SvrOY0b30+1qGfNrRAw88sOznpb5aUuPj6k+tHXUdu+NYUouC7PpsHTUflRUp\n", - "Y4wxxphGZqZILZyZx9kkO3ST4+Liiy+WNFRUmDWXcsKMmkskghIFMXdKJO5H1TXzeImuWXSZ/XM+\n", - "rAWyL7/73e+WJN13332ShhY9e+zFvfaOdmLunKjwTctaX+37w9XA1wxrH7+QkhWKv0QtZw7WI8rV\n", - "cuB7EpWAHTt2SJJ27ty54jnWG2SmruWAg1L5Ab43tNGYx6qmhMQcedPOwYYSgbpeUtlrufdi3jLu\n", - "K+YgxKeIvsDrUTPso8rGeqqtjkyKUXPDdWXUMZi5As9IfML6YkXKGGOMMaaRmSlSp5xyStEHhdk8\n", - "s3t8opjlnn322ZLKVlXfWSr7D0HNiqrteM7nk7Kuajt/R2sAy/3pp5+WJJ1//vmShlYQCtV6pXX9\n", - "m3aEtTfqfk6lqNFaxAoKLaw1ZYryI5sxVnJJcerabyjHlTLol5SU7du3SxoqKqjco6rHNWoZxvtS\n", - "ajsxQzfn7etTVVPB6SNER7EnG5mz+bzknznt3Q8oD0A5Y4yAmv9njPSO5crvY+b2qFDVlCiUPtpp\n", - "bV/UWF+cr6Ys1uA4XX2eJkWspxq1iHiiFLtmMC9hRcoYY4wxppGZKVIr+TGRK4PZ8/79+yUNZ6Pn\n", - "nnvuWK+F2Sg5WWqKVA2sjHFFS8Xj9I2WQ8H42c9+Jkl69NFHJfXfk3CtghXaN+9VzPs0KWoKDPW0\n", - "1pQoQFHmL/2s775jEcqtJTfMvffeK2noozKq2lgCZegTn/iEJOmSSy6RNMx/c+edd/Y6Hj5OtImS\n", - "7wsqO0oJY9LBgwd7na/WNlG/d+/evegv1PYpjXU/Lr/SEnEsjVFvK/nbLaQW6Q2tkdMoWai59JmS\n", - "IlVqB+OK1J6271oJlLWu1BRP8meN6kNmRcoYY4wxppGZKVIrWaGldVysxtpu930hP9W41utnnbcn\n", - "Eq27qERt2rRJkvTss+tzf+nWCBJ8esigXYvcqVHzrSux2tpTX+KOBZQDak2rIkU7JvtzHx577LGm\n", - "c/aFe/3hD+f3dUcJu//++5uOh1pfo+ZLMy2iT1KNSfuoRVCgJhVlFtXvrmp4VLxWS33Omr7RjTWf\n", - "sEOHDklqG0MWYkXKGGOMMaaRVZHZvC9EhIwrAgbfjVGzDq9V3vSmN0kaWviT8heZNV3bC34dtAd8\n", - "6PCnmVaOFHj9618vSTrzzDMlDVWNtQJWOAoUVmL0u2jtz30jeWbBnj17pnq+1ZJ7rJTfaLVA25lU\n", - "OdHmjzaIzG3d267EuKM8UXjxzeuaszFiRcoYY4wxppGZTZdb/UWkoU/FuGanrdlf2YNv3HvYTQt8\n", - "o7AaukasrFWwjmuKEhEy+M5htYxqXZILppaxO4JCRj6ptaZIRT+Zkt9M3/7cN4LnaGLaChB1yl/q\n", - "BmUM36c47tdy4k2aSY95jCHTYrWM4eNWolqp5ejjmc9fvt+3/6yOUjfGGGOMWYPMTJE6/vjjj3jM\n", - "l8BawVJFiSL3w7jWtVt9XlAY1poiheLCLBz/jfXuI9bVSsJq5vvjyqGCj1XfciavGT5SKGvT3j+r\n", - "FcoRtQIlN1qDXaEcY9ZuM2RcbbZrri+UJ8Zm+hB1U1qB4PvrlVFWXlpgdcXM07X8mWu05gz0CGSM\n", - "McYY08jMFKkuM+doaWIVTSqqrO9+Ql13UF9tTHvdflrUIkXIFULUZwmUzhhFNmo+JxSUvr5Av/rV\n", - "ryQN74/9oR566KGRrmdaELUXy7HVNzEqyGsham+tQjQT+Xt4TZ0xRuI/SJ9hjK7V7azVxNWSsbtE\n", - "3z3yVmt05KSoRdnRDtkRgNUjnvEoouQMfPzxx5uuw4qUMcYYY0wjM1Okav5R0lBZwBcJa4jZJHmP\n", - "uloVpfV+LFoyWD/zzDOdjgd9s/f2BWtv2uvtaw18Z6hnrOGzzjpLkvSGN7xBkvT9739/xeNMKuKk\n", - "VUml3vFt27Ztm6S1o0jF/dN+/etfS1qqZvRt39TzpPdCHCe13egnTd+97GIWeiz7qDTFMZXXNUWq\n", - "ps6iIvfNaF0iroTgbzit3HmbN2+W1P0ZwzMJJaXvPqvrna6rBDzj47Oadk1/aF11sCJljDHGGNPI\n", - "zBSpLioSs0N8l7BesB76KkHRamKHbaKI8J3pOyvFSpsU41Kiajk11gv4XWB942fQur/ZqKCYtEbU\n", - "YE1xP+ecc44k6dxzz5Uk/fznPx/1EifKli1bJC1tx/hz1PJqcf/0S1SOt771rZLWhs8f9zBqLjLG\n", - "rLgXW1f67mUXI0yffPLJRa9RWKLSRV3XFKeozBE9hfIybrU/qs3T3sWhr3/ket3/tJVWn7qSPzNK\n", - "56hjqBUpY4wxxphGZqZIbdy4sWqJYp3gI4X1gK8IFu3BgwebrgFLlr32WtdHo9XQNffKpIkK1FpV\n", - "orr6dWBt4ldB9N1TTz0lqX9EC+0MK6hVBaAdtLYH+sm3v/1tScP7G/e+U5MCJY5+jDrD9dNO8XGj\n", - "Hrlvfo86wu9QdxaOI0Th8N0NGzZIGiokKB20Ker2wIEDne6Fa+0Kx0f1ZqxphTbI2Ng1ErWVkood\n", - "fUvoa7FuKG/GxPh669ati44bVcuoWJ166qmShvdPW+LZwPtPP/10p/ur+XDh08b991WwYub2vjkL\n", - "x7Wf7LSIfZsxj7GUdtr3fshTxhgybkYtZytSxhhjjDGNpFFz4zSdNKU8Nzc39fMaY4wxxvRlbm5O\n", - "OedlnfasSBljjDHGNDIzH6nbbrttiQ8EuTJ4n2gfwI8BFY31Uvwi8EPAj+CKK66QJF1//fWShhEv\n", - "ZDFlXXT37t2LznPGGWdIGvrUxJwf+CWwzo+/xQc/+EFJ0s0337zoeiM33nijJOmee+6RJN1+++2L\n", - "Pr/44oslDf0PYrTZpk2bJElXXnmlJOnLX/6ypKGfAlFq+DfgV8A6f/QJ4/pZz6YeWJfGT4D7M8YY\n", - "Y8w8VqSMMcYYYxqZmSL1/PPPV6Pt9u/fv+Ln5IAg1wjKEcoMoLSQTZ3vlzJY1/bQi1l2Y/RhLQLo\n", - "lltukSTt3Llz2c/PO+88SdKtt9667Ocxt0vMdouSxl8iTUpZcYmoiPVBOfbdC80YY4w5WrAiZYwx\n", - "xhjTyMwUqT/+8Y9HfIzIOdKa56i2bxW5LVBk8Knqm9OjRMwtg89XSfEqKVH4fHFd+CpF4nXX9oar\n", - "RWbGfD4x39Kk9p4zxhhj1jpWpIwxxhhjGpmZIvXSSy+NnPG5KzEbLQrWuBSpmL22dW88fK2+/vWv\n", - "Syr7JsXd7mvn4/ul7/E+UYz4kM0ix5gxxhizlrAiZYwxxhjTyMwUqeXUDvbaGlUpwkep9j6vUWD6\n", - "Rqfxe3ywYNR9kcgfVdqzr6svGddXU6yoi7hvlTHGGGNWxoqUMcYYY0wjM1OkjjvuuCX5mFqj9iIx\n", - "ygwfJpQnIHM3ChjRal19g4j+iz5Lkb47S5NJHIWs1YeM+6j9nvxaJ510UtN5jDHGmKMVK1LGGGOM\n", - "MY3MTJE66aSTlihS0ZcHJYc99EqZ0FGGUJxiHiTyR6EcsRddVJJQZPAR4i970eG7BGQY5/wl8FWK\n", - "11WC45YykXcFJYo8XTVfKftGGWOMMf2wImWMMcYY08jMFKljjz32iDJUUmrw8akpJSeffLKkoQLz\n", - "4osvLvs9Pn/1q18taWlG8qhAnX766Ys+f+KJJxa9xhcrXl/Mw9RViYKaElWKSozgk4XP1QsvvLDi\n", - "972nnjHGGNMPK1LGGGOMMY3MTJF67rnnjkTT1RQpMn6X4HP2qqtF//3ud7+TJJ144omL3sdnCl8p\n", - "8iqVFC7Alyte96SImdS7QvmgPI3qg2WMMcYc7ViRMsYYY4xpZGaK1G9/+9slikjffEuAYoQSVYtO\n", - "I28UmdTxlYpK1v79+xcdv0QtT1NUykqKGb5M+FyVvtc38ztKG8ffu3dvr98bY4wxZnmsSBljjDHG\n", - "NDIzRWo5/5xR96jrqtSg+Dz//POShlF6v/nNbxZ9ji9VjdJ1kzmd/FN8Dx8n8jtxfpQxrmNcHD58\n", - "WNLSjO/GGGOMGQ0rUsYYY4wxjcxMkRqF6PNDlByKT1dFhwziKFD8vm/eJ5Sn+Doel/xVGzZskDRU\n", - "vIgOjJnTxwU+Wpyf+4v3ecIJJ0jSkozzxhhjjFkeK1LGGGOMMY2sKkUKRQSfoUOHDkla6ttDlBwZ\n", - "zfE1wucpKkTx+OyNx+/x13r88cc7XefGjRslDaP+Nm/evOjzkm8VyhnRgNBVQeuaJytChnYyyeOj\n", - "hVJ26NAhHXPMMUfux4rUbNm3b5+2bt0668swA1wfqwfXxerC9TGPFSkzspO/GS9xom1mi+tj9eC6\n", - "WF24PuaZmSJ1wQUX6B3veMdUzjU3N9fpe5dddtlUzzcuRj3f3XffPbW6MMYYY9YTVqSMMcYYYxpJ\n", - "k94XbtmTpjT9kxpjjDHGNJJzTsu9P5OJlDHGGGPMesBLe8YYY4wxjXgiZYwxxhjTyNQnUimlv0op\n", - "PZFS+p+U0rXTPr+RUkr7U0q7U0qPpJR2Dt47MaV0Z0rpqZTST1JKJ8z6OtcjKaV/SykdSik9uuC9\n", - "YtmnlD416CtPpJTeOZurXr8U6mMupfTMoH88klJ614LPXB8TJKV0Wkrp7pTS4ymlx1JKHxu87z4y\n", - "ZVaoC/ePwFR9pFJKx0h6UtJFkp6V9KCk9+ecfzm1izBKKe2TdF7O+cUF731B0vM55y8MJrivzTn/\n", - "48wucp2SUjpf0kuSvplz/svBe8uWfUppm6T/kLRd0iZJd0k6K+fsxF9jolAf10n6fc75S+G7ro8J\n", - "k1I6VdKpOeddKaXXSHpY0qWS/l7uI1Nlhbr4G7l/LGLaitQOSXtzzvtzzi9L+k9J753yNZh5YvTB\n", - "JZK+Mfj/G5rvMGbM5Jz/W1JMZV8q+/dKujXn/HLOeb+kvZrvQ2ZMFOpDWto/JNfHxMk5H8w57xr8\n", - "/5KkX2r+oew+MmVWqAvJ/WMR055IbZJ0YMHrZzSsGDM9sqS7UkoPpZSuHLy3Ied8aPD/IUkbZnNp\n", - "RyWlsn+d5vsIuL9Mj4+mlH6RUrp5wTKS62OKpJS2SHqLpAfkPjJTFtTF/YO33D8WMO2JlHMtrA7e\n", - "nnN+i6R3SbpqsLxxhDy/3uu6mgEdyt71MnlukrRV0pslPSfpiyt81/UxAQZLSd+VdE3O+fcLP3Mf\n", - "mS6DurhN83Xxktw/ljDtidSzkk5b8Po0LZ7BmimQc35u8Pd/Jd2uefn10GBNXCmljZIOz+4KjzpK\n", - "ZR/7y+bBe2aC5JwP5wGSvqbh8oTrYwqklF6h+UnUv+ecvzd4231kBiyoi29RF+4fS5n2ROohSWem\n", - "lLaklF4p6X2SfjDlaziqSSn9eUrpuMH/x0p6p6RHNV8PHxh87QOSvrf8EcwEKJX9DyT9bUrplSml\n", - "rZLOlLRzBtd3VDF4UMNfa75/SK6PiZNSSpJulrQn53zDgo/cR6ZMqS7cP5Yy1U2Lc85/SildLem/\n", - "JB0j6WZH7E2dDZJun+8j+jNJt+Scf5JSekjSd1JKH5K0X/ORGWbMpJRulXSBpJNTSgck/ZOkf9Yy\n", - "ZZ9z3pNS+o6kPZL+JOkj2VsRjJVl6uM6SRemlN6s+WWJfZI+LLk+psTbJV0uaXdK6ZHBe5+S+8gs\n", - "WK4uPi3p/e4fi/EWMcYYY4wxjTizuTHGGGNMI55IGWOMMcY04omUMcYYY0wjnkgZY4wxxjTiiZQx\n", - "xhhjTCOeSBljjDHGNOKJlDHGGGNMI55IGWOMMcY08v87vVmfz9SwBgAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "feat = net.blobs['conv4'].data[0]\n", - "vis_square(feat, padval=0.5)" + "def vis_square(data):\n", + " \"\"\"Take an array of shape (n, height, width) or (n, height, width, 3)\n", + " and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)\"\"\"\n", + " \n", + " # normalize data for display\n", + " data = (data - data.min()) / (data.max() - data.min())\n", + " \n", + " # force the number of filters to be square\n", + " n = int(np.ceil(np.sqrt(data.shape[0])))\n", + " padding = (((0, n ** 2 - data.shape[0]),\n", + " (0, 1), (0, 1)) # add some space between filters\n", + " + ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one)\n", + " data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white)\n", + " \n", + " # tile the filters into an image\n", + " data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))\n", + " data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])\n", + " \n", + " plt.imshow(data); plt.axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The fifth layer output, `conv5` (rectified, all 256 channels)" + "* First we'll look at the first layer filters, `conv1`" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmMXdd17/nfEUWRLM7FKhZZHDUPLcu2HDg2XgBbL0Hw\n", - "AmR4iYOkAwSdP/JHA+5uJ51AkB14uIITDw3HaSCIjaT7OfFrdAYjhuP8Y9hOolY8QLFlJ9ZEDTQH\n", - "cagqVpHFSRQlUTr9h7j2XZd1eId9z3jv9wMYOt5VrLvrDqfOWWvttZM0TQUAAIDB3VD1BAAAAJqK\n", - "CykAAIBIXEgBAABE4kIKAAAgEhdSAAAAkbiQAgAAiFTIhVSSJP8lSZJnkyR5IUmSh4p4DAAAgKol\n", - "efeRSpJklaTnJP2MpBOSvi/pN9I0PZDrAwEAAFSsiIjUOyUdTNP0SJqmr0n6W0m/VMDjAAAAVKqI\n", - "C6ldko65/3/86hgAAMBIubGAn9kzV5gkCfvSAACAxkjTNMkaL+JC6oSkPe7/79GbUam+TExMhONL\n", - "ly5d9/uSpP37DFrn1Wq1Mo+rwFyyMZdszCWbPX5V87jxxvap9MMf/nCuc7GffeXKlYH/bdXPi8dc\n", - "sg06l5tuuikcv/HGG5I6/26uW7dOknTmzJkw9tprr133561fvz4cP/jggwPNZfXq1WE+ly9fliS9\n", - "/vrrff3bXur0Gr3nPe/Ro48+et2vF3Eh9bik25Mk2S/ppKRfl/Qb/f7jbhdPHpstA6iLmIucOvxs\n", - "NM+rr766YsxfKG3YsGHFWDd2MRbjtdde6/txmuyBBx4o90IqTdMrSZL8r5K+LmmVpP/Gij0AADCK\n", - "iohIKU3Tr0n6WhE/G20WwvXH/u7CQq32X5TvrW99azi2FM3TTz8dxnht0CQ33PDm+qRhohgx9u3b\n", - "J0nas6ddNWKfncOHD4ex06dPlzqvunj55Zczjwf9t4hDZ3MAAIBIhUSkUI61a9eGY7tTtPy49GYh\n", - "oETUo0qrVq0Kx1bX54tFeW1QV3ZOGWZhT15uu+02SdI999wTxpaWliR1FlWPa0QK1SIiBQAAEIkL\n", - "KQAAgEhjldqzVFfTWajdLztdXl6uajro4sknnwzH47BMuF++aNh64Jw7dy6Mzc/Plz4ndNq4caMk\n", - "afPmzWHMzj2Li4thrN+WNcP4wQ9+IElaWFgIY5YWn5ubK/zxgW6ISAEAAEQaq4iU7z7cZGvWrJHU\n", - "2ZHWlrDm1VV2UL4Vw9TUlCTppZdeCmO+IHScEIXqZO/d7du3h7EtW7ZIkl555ZVK5oRs58+fl9S5\n", - "YMLOob4AvQxnz57t+C/qwZ/3bfGTb41x4cKFFWOjiIgUAABAJC6kAAAAIo1GrqtPo9LB1YrmfR8p\n", - "S49U1UfFes5I7V4zdUilVtWJuZu77rorHNv8nnnmmaqmUyp7b/gUtKWAfQEzqmev1bim5XvxpRV2\n", - "rvMLJsaBT/vefPPNkqRt27aFsRdeeEGSdPTo0TA2ivvkEpECAACIVH3IAAOz5ca+Q/bFixermo6k\n", - "zkJh6zhch0Jr6/RuRY9SdXdE+/fvlyTde++9Ycxet5MnT4axUS6otZ3rDx06FMbstan6TtW3R8la\n", - "tFGnqCaq56Mx1sLDZz3svT7KfCbCfl9/LrPjqj/bRSMiBQAAEIkLKQAAgEhjldqzHjZNZ2kH3828\n", - "6rTDlStXMo+rZr1wquIXBMzOzkrqfB9agfW49VCq+nXxrIO3LdiQ2gXwPj3t08MYDT41Neg51PfJ\n", - "sy7r45DO8/zn49SpU5I6P9vj8nwQkQIAAIg0VhEpX5w9CqqOQqE3/xpZ4bvvCm13taPSmqOJLNK0\n", - "adOmFV/jMzbahnl9/YKEqnaUqJqPONl5Lauw3Bfmj+JzRUQKAAAgEhdSAAAAkcYqtUexKMrmQ99W\n", - "mOkXCdSp6HrcnThxouop5MIXUANF8mk6O9f5dKn11/ILbPz5b1TwiQMAAIg0VhGpJvNX9Lak3i+t\n", - "t2ibdT2X2gV+fk8oi4qsW7cujE1OThYwY1zL9pvyxeaHDx+uajq1YXetfm9GInXx6rDHJcaDj37a\n", - "+87/XbJ994hIAQAAIBMXUgAAAJGIAdfI9PS0pHY4VGr3F9q6dWsYs5SdL/Sz7sx+w1vrUeRDrdbL\n", - "yIdkfUdnFMdv1DuuLMS/ffv2MLZv3z5Jnf1nLFXtU3xHjhyR1Pl+HeUNnmONSzfpPPg0e7eNdX0f\n", - "pM2bN6/4fnufjmKPpG7882J92Hbt2hXG7Lka9T55RKQAAAAiJd2uwgt70CRJW61W6Y8LAAAwqFar\n", - "pTRNk6yvEZECAACIxIUUAABApMqKzatM7fnHrjrFyFyy1XUuf/InfyJJOnfuXK6P4Yv/szZStQ23\n", - "/+AP/iBzXlXwj//xj39cUnXFtjaXqp8TPwfm0snm8Id/+Idh7MqVK5XOpU7PC3PpZHP49Kc/HcaK\n", - "Klr351/fY9E8+OCD3f997jMCAAAYE7Q/QFe+I63xS4attYIfs6v7y5cvhzHrXr169eowtrCwIKkz\n", - "iuG7sNdRUUvLs6JQZTxuXsZt2XdRbAn5KHd2ryoKhWbyf0eyZLUDGpRF/KX27h/+b1ovRKQAAAAi\n", - "cSEFAAAQqRGpvV6FuCjOK6+80vXrlorwnaqtm+2JEyfCmIVnz5w5E8ayQrHWjb2umtyh13fMt+7g\n", - "p0+fDmN16hJuG6COWxqo1+cNGDe2a4eUnfK2cpFhUnu+n6aVUfgdQXohIgUAABCpcREpu/rkzq0e\n", - "rIjc9gmU2vv5LS0thbGLFy9KahfyXY9/resoj8LGqvg5W6THXj+pHW2r6rPl9+2y4k8iUsB4s+i0\n", - "1M6A+LGsxU39slYH/txjn8GshVbXU++/WgAAADXGhRQAAECkRqT2fHjfwm2+74OF4urea2cUzc/P\n", - "S2qn7qR2/43FxcUV3++7xloqyYdp/etaR01M6RlfTF51YbnvJ2bvCf/c1j3FC6Ac/lyVtdjM//0Y\n", - "lF1b+GJzM0ianbMVAABApEZEpHwhmN2p+qvFrKvJMtiVsBXASe35+avoJhfMZnV39c+3Ffj1W+iX\n", - "FZHydxnD3F2gOfyig6wFCLwPVvJRvF6LNjBe/N/IJkfNs/RqeTTM39dunyMiUgAAACXgQgoAACBS\n", - "rePnVng8OzsbxizcduHChUrm5Dt4T05OSuoMLdpGvE1O53l5p02zUoU+dBvTC6Qb65N06dKlXH/u\n", - "KLKFHHXoZTQqn588lZ3asx0Kpqamwpid3/ziElTPp8LtHMtnqH/++bO/R4MsfCIiBQAAEKnWEams\n", - "K+qqIws+omJz8R28q55f3S0vL3f9et4tLOr0elihfR3267O7ra1bt4YxuyvzeySOA+vEX/coS9kF\n", - "5haZtBYnUv33wiyTL/C2yH1Ve8H6v0ujFonyv5tFZf3fCTuXDfO3w7dbsfOBf317/vvoRwYAABhz\n", - "XEgBAABEqnVqz8KkvidT3sXIg7JiS6nZG9hWparQdx3UIaVndu7cKUlav359GKtjassXfBa1c0HV\n", - "55R+lZ3aa8rzUgdZi2jKNMp9xXzvwaJSez6Nt3btWkmD/a0iIgUAABCp1hEp468WreXA3NxcVdMJ\n", - "7OrYL52sw9Jx1IcvYrQO+L51R5nRzKy7Ll+YWlVLkSz2vJXx/NSxONffhdtr5SNEZUY3fbSlql0k\n", - "6sheF6n9vFS1uGWUsyJ+QYw5f/58OM4jGuh/ni2o8K9vL0SkAAAAInEhBQAAEKkRqT0f0q5TsbLN\n", - "xXccJrUHz4edN27cKKnz/XL69GlJ5byvffjfUkM+FeHD21Wr0+e8Cj51V/UiBdJ52eipVQ6/2Czr\n", - "Oc+7JMHOk4MUrxORAgAAiNSIiJS/Cq3TXYBdsRa1LBv1Y/uP+de8W8Rgy5Yt4diiU77ou9/Ii0Wz\n", - "8nLy5ElJcYXWgxRhXsueg+np6TDmI3TGPuf+bhTA+KmqDccgLSWISAEAAETiQgoAACBSZam9G2+8\n", - "sSNFYEXavtOydSz14f2sNNrExISkzpTDmTNnrvt9ZfC9pSyV4wvR/e9ZR1V1bd+7d2+pjzcoK87u\n", - "N+zr035WtBvThTiroDKrF5Qd+3RZ1uP1m9KzVJwvOM5KM1rfp16pStsQ1H8WszoT9/u+yzvlCaDz\n", - "b2nVHe6b0COLiBQAAECkpIqlrUmSpK1Wq/THBQAAGFSr1VKapplt1IlIAQAAROJCCgAAIFJlxeZf\n", - "+cpXOgpYrYjXF7YtLCxI6iwotWJk/31LS0uSOgtiszYetMLZ3/md3wljVacY/ePXaS6f/OQnJXU+\n", - "p1Yg7F8PKy72xdBZCwKyiowvXrwoKbsw+gMf+EDmvKrgH/8v/uIvJHV2BLffN68NS9esWSNJ2rFj\n", - "Rxg7fvy4JOkjH/lI5ryqUMf3btXz8HNgLp2YSzbmki2PufhFX/0usLENw/1CoV5zICIFAAAQqbKI\n", - "1JUrVzoiERZhsjtvz7cyyGprYGwZtdSOPvml33Xqil53WXsGWuQlptt01Uto82JR0iKX5Npzf/To\n", - "0cIeAwBGXczODTF7WxKRAgAAiMSFFAAAQKTKUnvHjx/vSPdkpZIGlVXknMfPxfVZQbRPm2Z14R4V\n", - "Teiyez3btm0Lx6dPn65wJsBgtm/fLkmanZ0NY7ZY5eDBg5XMCTBEpAAAACJVFpE6d+5cVQ+NHFl7\n", - "iZmZmTBm7Sh8of+pU6fKnRgCa1fxlre8JYzZsuBDhw6FMX8M1Int/ekXFFmE1RaASKMdDUf/7Jy3\n", - "efPmMGbvk157nWbt/dkLESkAAIBIXEgBAABEqiy1h2L40PcgoclYJ0+elNQZUrdu6PTtGs4NN7Tv\n", - "c6yDfAx7bZ5++ukwZn3WSLmiCax/oN9pwY5jegVhtNkiM98TytLDvVJ7k5OTkqT5+fm+H4+IFAAA\n", - "QKTKIlKrV6/ueWWI7vw+QtPT05I6o0BlRKQssuHbAti8aD0xHH/3nQffkZ7PHprEziWLi4thrMmt\n", - "SDAc2w9Pau/f6lu62N++mDYv69evH/jfEJECAACIxIUUAABApMpSe3mnLcaR3/R5eXlZUvmbA2/Y\n", - "sEFSZ9dsK/48f/58GCsjzThq8v6MTE1NhWNL88Vs0Ini2Gfa+rNJ9EbySOd1uu222yS1O79L0oED\n", - "ByS1/yaMIr+oype45CHmbygRKQAAgEiVRaRYsjq8OkQTbIm+v0OwwlAfMSszIrVp06ZwbHewvvB9\n", - "XN97fiGCvTY+6lV2NBMr2SIA/9mxz9gwLTAwmixyafsOSqMdiTL+74kvPM+Dz6T0i4gUAABAJC6k\n", - "AAAAItHZHEOxMKhPRVjKsapUxJo1a8KxzS+vdJ51x21i0atP3VnfMf8azc3NlT4nZLt06VLVU6gl\n", - "+/xJ7XOOT/OMW/rzqaeeqnoKlfDnMutEnpeYMhQiUgAAAJGISGEoVsTtl2hb8V9Vxcs++mRz8Xeq\n", - "w3T1bnLbDr9339atWyVl70XVxGgbxoN/D9v7ddyiUOg8D8cUh3cTsyMHESkAAIBIXEgBAABEIrWH\n", - "XPhQq6XTqupz5fslzczMSMqveLfJaQSfFrG+M76wkpQe6s4vatm4caOkzvcwm3GPnzp0/iciBQAA\n", - "EImIFHIxMTERji2yUVVEyt+hHjt2rJI5DMrvrWZF+r6NQ0wB5LV8VO748eOSml08j2LZPpq+a3bV\n", - "/EIS+0wQhULViEgBAABE4kIKAAAgEqm9Evli36L4zYOtMLrITXrXr1/f8ViSND8/L6kzbWQ9X/xY\n", - "Ewu37TXM2lT2xhvbH6ckSST17nFiBbM+NWo/b/v27WEsayNSe+59cf21jy9lp+/GdePmLPTPylZU\n", - "Ss93J+/3Obc0o0+BD/p6+VQ5mqNXiUO382Av1hXd9zy08+8gfRCJSAEAAERKqig2TZIkbbVapT8u\n", - "AADAoFqtltI0TbK+RkQKAAAgEhdSAAAAkSorNq8ytecfu6p5WMHlRz7ykei55N1nqA7PS9bjf+5z\n", - "n5PUWXBdVO8YXzBuBeUPPfRQGPujP/ojSZ0Fs2VuzlzX16guc6l6Hn4OdZrLxz/+8RVf8wtTbDcC\n", - "3yXaPmNWkCu13+u9dgqwz5E/Rz344IMdc6pSHV+jOs3lz/7sz8KYFfWfOXMm18fqtSBm0OfF/7wt\n", - "W7ZIyl6kE6PXHIhIAQAARKL9wYB8xGKYJeR5LLXOIwrVBEtLS5LKaZfgX9Os19fu0ummPJy8o6no\n", - "Lut843ce6LYLQUwkwj47tNloJt/6oqgdKnpFpAblf4a1ldm1a1cYs1Y0/v2cV4sPIlIAAACRuJAC\n", - "AACIRGpvQFbEJklnz56VRPi6aNZptomd0NHJPj/33XdfGDt8+LCkzpC7pRN4zYHyFbnhvC1y8JvL\n", - "5+3kyZMdjyW1y3KKKMsgIgUAABCp1hEpW2JuS3Ol4vZ/6pcVPg/LF9qhO6ISo8M+035fLNsryzt2\n", - "7FhpcwJ68efrW2+9VVLnvn9zc3OSpNOnT0c/ht+/s+rFLH5f2LzPv/a8FRmRsizRwYMHC3sMj4gU\n", - "AABAJC6kAAAAItU6tWeFqdPT02HMQnbz8/NhrOp0X4wqNotuKlJ7+bPCy7IXSljqY5gUCFA2n3az\n", - "1JRP7W3dulVSZ8p60B0Pss5zfgcF+5tRxvnQF2nnvXNDE/9e90JECgAAIFKtI1Ld7l793QCA3nxR\n", - "98zMjCTp3LlzYYwoEZDNF0bbsd/lwgwTycnqPp/HDhgxiox6jWKGgYgUAABAJC6kAAAAItU6tddN\n", - "3gVw/cpr02KgbD7tULUdO3aEY9shwKdPRjH8P47q9J7Ly6lTpyRJk5OTK742MTERjm2T3CYqo4+V\n", - "LzXwRfpNREQKAAAg0lARqSRJjkg6L+l1Sa+lafrOJEkmJf2dpH2Sjkj6tTRNzw45z9ogCoWmeuWV\n", - "V8Kx3VVXtRR527ZtK479Xandzfv999AcFrkfxYiULdDYuHFjGLPoii8Ot9YFVRWMD6PI9jz23vA7\n", - "lox7RCqV9N40Td+epuk7r459UNI30zS9Q9I/X/3/AAAAIyeP1N61m8b9oqQvXj3+oqT/msNjAAAA\n", - "1M6wxeappH9KkuR1SX+epun/JWkmTdOFq19fkDQz5GMAyIFPS1edbrhw4UI4np2dldTeycAjtddM\n", - "9l4bxS7WlvZaXl4OY5cuXZLUmT6v+jNWV9Yl3m+MbJtCN3XHj2EvpP5TmqZzSZJMS/pmkiTP+i+m\n", - "aZomSdLMZwYAAKCHoS6k0jSdu/rfxSRJviLpnZIWkiTZkabpfJIkOyWdymGegV3FVrU82hfIrVmz\n", - "RlJ7+TY6+TsOw7L26vi7vc2bN0vqjAzZ18tYUOHv3Dds2LBiftzNo+78e9hYZArXZ9EnH22ueyTq\n", - "kUce6fr16BqpJEkmkiTZePV4vaSflfSkpH+U9FtXv+23JP1D7GMAAABU6YEHHuj69WEiUjOSvnL1\n", - "6vJGSf9vmqbfSJLkcUlfSpLkt3W1/cEQjwEAAFBb0RdSaZoelvS2jPEzkn5mmEldy/frsOOFhYUw\n", - "VmYawD+WpUCseE4qpyNsU/hwrW0y/fLLL1c1nbHn35v2Pq6qU7//HNkuBb4weX5+vrS5ADH858U+\n", - "R00qXbDSC9+NvQyjmP6kszkAAECkRuy155dFWxdkXyTrj4vm76St2LCJUagyomg+ImWPR0SqHuy1\n", - "sUih1L6bts7NRbKWB1L7jtgv2mjSnT3Gk98rziJSw5zfbNGFVE7bCOu8bv9FPCJSAAAAkbiQAgAA\n", - "iNSI1N6xY8cyj/Mw6MaS/vvs2PpiSPXvh2HKTkc2fVPKUZO1qWyZizaOHDkSjk+cOCGpXXRe9lyA\n", - "GHmn38o+J9vjlZHKH3VEpAAAACIlVURQkiRJW61W6Y8LAAAwqFarpTRNk6yvEZECAACIxIUUAABA\n", - "pMqKzatM7fnH/uM//mNJ0quvvhrGrIfNpk2bwph1sfXf54+N789kfBGtsQ2PP/ShD2XOqwr+8es4\n", - "F9+3pczi9bo+L5/+9KclVdeby8/lM5/5jKT8C3D77Xdmc6n69fFzYC6dmEs25pKtjnO5HiJSAAAA\n", - "kRrR/qBI3bqinz59euCf1++y7axoFrqzvaHwpjp1iS+qE3MTdw0YxuTkpCTpzJkzXb/PPgtFdoAf\n", - "tDUMUDdl7SXKXyYAAIBIXEgBAABEGvvUXlXh66Z0QK+TMjenboKNGzdK4nkZJbZLgt+o3c5NPs2Z\n", - "tYAlb/fee68kaWZmJoxZF/oDBw6EMTaYRt1Y6nvnzp1hzBYrLS0thTF/PNTj5fJTAAAAxtDYR6Ss\n", - "GK3siJTfn28U+KK+7du3S5IWFhbCGAWrQG9nz56V1BnlqTp67VtQrF27VlLnwo9xiEj58/Wdd94p\n", - "Sbr55pvDmEUIn3jiiTAWs1gJ+bD3bFYU1+8vmhciUgAAAJG4kAIAAIg09qm9V155pZLHrTpcn7c7\n", - "7rgjHL/jHe+QJD355JNh7JlnnpFU//5Z1nFeai9EqCuKzEdPnVLgL7zwgiTp6NGjYcx68RTZkycP\n", - "PvU4MTEhabi+a/58bT2+fCGzpTeLSBuhP/4137ZtmyRpeno6jFna/Ny5c/k/du4/EQAAYEw0LiJl\n", - "V5r+yn9ubq6q6eCqw4cPh2N7bXz0qe7RHeMjlFn7JgLj4tKlSx3/LZIv5rY9ToeJHPh9OTdv3iyp\n", - "c0HMME6dOiWpMyJsj1HmHqDolLVAw5/DswrQ80JECgAAIBIXUgAAAJEal9qzXhB5pYos3Od/nj1G\n", - "kRseNiXV1S9fyPkf//EfFc4kP+O2Ye6427BhQzi2fkk+vcT7oTi+mDuPzbh92s1+dt6vn59nVRuI\n", - "Wwd8K6TGm+bn5yV1fn6LTFETkQIAAIjUuIiUFfPlVdRny93tDlRqL0H2Y3kvNfdLNWMVGTEDxo3/\n", - "DFn0gihU+fJukXLx4sVcf16dFLGUfxRYFLKMhRISESkAAIBoXEgBAABEalxqL2+WxvPFjpZ28wXh\n", - "lkbLK4WWR8qAdB6QH1tkIo3ezgMYTbxP64GIFAAAQKSxj0jZslXfFdW6W/sxfwxgtBHtBdAvIlIA\n", - "AACRuJACAACINPapPeM3qzX0kAHGky04scUoAHA9RKQAAAAiEZECAHXuZGA7HtA5enRMTEyU+nhZ\n", - "+6laG52tW7eWOhcUi4gUAABAJC6kAAAAIpHaAzDWNmzYIEmanZ0NY1lF5mWm+fym5qtXr5bU2cV6\n", - "0I19t2zZEo7Pnj0rqXPT802bNnV8TRq8d57NU2o/pzfddNOK70uSJBwX1Zl73bp14Xjjxo2SOp+D\n", - "MmS9h2xsfn5+xdd86tHm+tJLL4Ux+538e8M2ZD5//nwOM0YsIlIAAACRkir26kmSJG21WqU/LgAA\n", - "wKBarZbSNE2yvkZECgAAIBIXUgAAAJEqKzavMrXnH7vqFGPMXKw/SVYxoy9EtLRtr/St/ZuPfvSj\n", - "A8+lKE1/jYrCXLLZ41c9Dz+HOs3lz//8z8OY7eLgC5TL2KS5js/L3/7t34axqakpSdLly5fD2PLy\n", - "siTp5MmTYcw2ul+/fn0Ys0J7v0OGjVnhvSRt375dUrtIXJJ+8zd/s2NOVbI5fPKTnwxjWbt+FMUv\n", - "EnjooYc65lSlXnMgIgUAABCJ9gcN1G3/r0GXLMf+G9MtOoZi2XJpfwdtr6W/s7M76GH4JetZS9qb\n", - "zJb+j/ISct9l216/IqNQTTkvzM3NheNDhw5J6r+1hG9NkMU+d/59tbi4KKn++7hWsQhNGrytR10Q\n", - "kQIAAIjEhRQAAEAkUnsYSt1D96Ps0qVL1/1aHuk8z4f6yyw+LcPk5KQkaefOnWHsueeeq2o6hfAp\n", - "rDI+s005LxTZrT4rvVn3lJ6pKsXmSwiahIgUAABAJCJS6GiZAIybM2fOSGrvyTaKmhIhuh5bPOFb\n", - "DlgLAb/Yomp+vzwr6vf7FzbFmjVrwnG3CPS2bdvCsUXBu0XKe/H7NTYJf0EBAAAicSEFAAAQidQe\n", - "tHbt2qqnUBgrXvTF0pbCuXDhQiVzqopP4e7du1dSZ1H6wsJC6XOqA+vzM8p9pJpu69atkqTZ2dkw\n", - "Zqk9vzBg0P5H/aaw+uV/RlbJhI0N07uvDL4PXbfnxRelD5PSM1X1rxoWESkAAIBIRKSGcOONbz59\n", - "ZexThThZdzhWEDpuESl7v0rtKGRTlmOjfJs3b5bUGbWxz0ze7TV6sb3ufDdxi4YME8WIiQxZEXlW\n", - "iwBf1N+r83md9Rud63UOtQicP/d0a61Qp4UDgyAiBQAAEIkLKQAAgEik9oYwKim9Ufk9+lVkN+M6\n", - "8ykaK9Qd1wLzuqpTMbIVePui6bJTetfK+7Pbb2rbPwf99t3LSjnW4XXtR8zrPDU1Janz+bHfd2lp\n", - "KZ+J1RQRKQAAgEhEpDB2nc3LLGj0rSWqLqS0KJRUfaH9hg0bwrGf17izO/isu/qyWfTHR6yrft9U\n", - "xb8Go7bXZF7sM+0Ly23XgFE3Xn9BAQAAcsSFFAAAQCRSewh9UZC/qtN5XlO7Bo+jOhQlLy8vVz2F\n", - "Wur3c2RpfZ/qsn9bp/NClpjUshXu+993XBCRAgAAiDR+l45YwXfjBcpAR/Xm8G0z7Fwxbi1TYqxa\n", - "tUpSMxdTxESkrNh8x44dYczeJ6NedE5ECgAAIBIXUgAAAJFI7aHRm2uimeqY2vO9rWzDXp+SqLqr\n", - "d1V83yQWpvRv3M6rlsr0pSLjkgImIgUAABCJiBSA3PRbpFqH5f3X2r9/fzjetGmTpM476nGNSHmv\n", - "vvpq1VNACWJ2uzh69Kgk6cSJE2FsXPY1JSIFAAAQiQspAACASKT2gAJYUe66devCmKWJYopQfSF0\n", - "nW3dujUcnz59Ovrn2PNXZippbm4uHJ88eVJSvfrf+ELvJqfYrChZaqeQ/OID64zti5bz6Mq/evXq\n", - "oX/GuPCbrdvr4NPx9lwmSRLGbFHCuBXZS0SkAAAAoiVV7L+VJEnaarVKf1wAAIBBtVotpWmaZH2N\n", - "iBQAAEAkLqQAAAAiVVZsXmVqzz92t3n4Qro8UqC+WNQKLh966KG+5tIvv8Go70jcD//4X/jCFyR1\n", - "Fmhu3LhRkrRz584w9v3vf1+StLS0FMZ+6qd+SpK0b9++MPboo49K6izeXb9+vSTp1ltvDWNW5Pje\n", - "9743jH3XPGmmAAAgAElEQVT84x+XJG3bti2MnTp1SlJn4arN9fLly91+zb5t375dkvT+978/jFWd\n", - "ku73vVuGOs6l6nn4OQwzl6xi35hu8KP2vOSljnN5+OGHw1gVJTd+LnV6Xuo0l+shIgUAABCpsojU\n", - "mjVrOiI+eUURrmUdimMeI++7gjKWLA8ahboeu/udmJgIY/Z8+DtjH4kyjz32mCTpwIEDYSxrKfyW\n", - "LVskdd59Z/08uyO3KFTW1649zkPW4w3Kom7SeC4LLtvMzEw4ts+C/xzbZzCvLuX23s37/JX1uVte\n", - "Xs71MRDH2jPkvY9cVVEoDI+IFAAAQCQupAAAACJVltrLKwXVy/nz50t5nFFjXZ59t2czNTXV9d9a\n", - "yLtXZ+tLly5Jko4dOxbG/PEoIJ1XLr/4wEoHfEfmvNO/RaX2/CKPqjZ4zurOX9UmtJs3b6708b28\n", - "U3rjwNKh0mg+f0SkAAAAIrHXHjJ1K6jM667Qitb9z6vq7hujwS9csOiUj1KdPXtWUn4LP2wPxLwX\n", - "kiwsLIRj24+ubPY7Zf1u/jnNO8pnbrnllnB85513Suo8P9hr+cILL4SxqvdG9K8V57I2iyhKw+3B\n", - "WVdEpAAAACJxIQUAABCJ1F6fLJTt+wJZGsEXtBfVD6tsVmjqw9N2HNNhOYsVm3s+ZQAMyi9isV5R\n", - "/j2V9yIXew8XWUBbxxSR7wFoz29RhfySND09LUnaunVrGLOFMCdPngxjVaf26vha1cGo/F28HiJS\n", - "AAAAkYhI9cmWI9t+c1J7XztfjJnVTbmJ7M7K791nv2ded572HPk9CP2dLjAo3zYg67OYd9TEIlGj\n", - "uKS7m8nJyXBsEeq8O6/7SNPRo0clSRcuXFjxfX4PzjLbp/jzli068KqOjtXJqLeBISIFAAAQiQsp\n", - "AACASKT2+mRpAl80Z+H8vIqv68R+N5/as+JP3yslK9Q+KF+gWcZzWVQ3alTPd1C219m/p+zrefV9\n", - "slThKBcZ79mzJxxnFZYX9btbnyipvQH67OxsGNuxY4ekzgJ0K73I47zUi/+97X3lU8vWET6vDbJR\n", - "X0SkAAAAIhGR6pMVrPqCShtremF5lqxuyhal8i0grDjcPwf2b/u9U/VFm2UUJRbViRlx7D3ko5/2\n", - "nhhmr8ysz6ePWOWhqM++//zZcdkF7RZ92rRpUxiziIs/D5YRjbPdD/y+fxMTE5I6X1MbKyMi5V97\n", - "ezx/LrOIKBGp0UdECgAAIBIXUgAAAJFI7Q0oK4U1iqkiC5f7vk5WoOs7Dlso23eM7jfUb2mCmZmZ\n", - "4SY7oFFcHNBklkLyhbqxxeD+tb148aKkzs9s3qm4Mj77VfWost/Nbypu/aP8nMr4PNl5xheWG1+U\n", - "bq95GXwq2hau+DSepRkx+ohIAQAARCIiNSAfobFutn4Zfd57eRXFF4xnzdnuOH10ye7m/d2oRRH8\n", - "z+h37y37t34umzdv7u8XwMiw91PerTRsHzxfjOyLlWP5QnBbbp/3575O7RT8nphbtmxZ8fUyIlL2\n", - "nGctSPDzK7ODdlZ2wsvaSxSjiYgUAABAJC6kAAAAIpHaG5APufsizKaw1Nn09HQYyyrQ9IW/xlIw\n", - "vVJ2ltqz/0rZxcM2duTIkRWPMW6yNmv26YJRXNBQBP+c2fsvq8/QMBvK+nNAnVJwRfG9vKynVNnl\n", - "DJY+9I9lr2VVrwH9oWCISAEAAEQiIlWRrIiPjRVZvGlRNN+BNyvaYXd5WRGiXnvU9bt03X72wsJC\n", - "X99fJ77bsy06sKXhUrtw+sUXXwxj3Zbe33fffeHYlnj714jC1f749569T4uMnnSLbPmIbFERRd86\n", - "xKJx/n2TB78YxN7D/ncrY2cHK3L3LQWs8Nw+f0BViEgBAABE4kIKAAAgUuNSe4NuiFtXWek7C1X7\n", - "dFreYXMLjfsUSNZzSSFltltvvVVSZ2rWUkdZr+nU1FQ4th43/rm3vkZ+E1hLv/r0Sd6b7Y6qpaWl\n", - "rl+P7Zgew6d67TX1n2d77YfZmNmn3bJ2I8iDX1RT1QIbe978uerUqVOSpKNHj1YyJ8AQkQIAAIiU\n", - "lFEouOJBkyRttVqlPy4AAMCgWq2W0jTNDPcSkQIAAIjEhRQAAECkyipYq0zt+ceuOsXY71x8x+Zu\n", - "hfa+0HTQtG0Tn5cy9DsXX/hrr1FeRftWSPzhD384jH3qU59a8X3WJ8l6UUntYma/iMHeJ36T6LNn\n", - "z/Y1Fyui/sAHPhDG6vIa/emf/mkYs+fA9ymzBR2+/5O9Vr64347952nt2rWSsguufV+x3/u93+uY\n", - "U5VsDv3Opd/zzDBz+au/+qsVX/OLMuy1OXToUBizzaHf/va3r/g+36vNekr5XlrWa+uFF14IY/be\n", - "beJrVCTmkq3XHHpGpJIk+UKSJAtJkjzpxiaTJPlmkiTPJ0nyjSRJtrivfShJkheSJHk2SZKfHWby\n", - "AAAAddZPROovJf2ppP/uxj4o6Ztpmv4fSZI8dPX/fzBJknsk/bqkeyTtkvRPSZLckabpULc2vntv\n", - "Vhdsu1sf5X3a+r07rGLxgFTsnWxTWHuDImS9t20pf1YUMiu6ktVWo98olDfMPnVF860E7PmxLvPX\n", - "Hl/Ldx/P6kTerSv6MC0M6sR/di0K1O05i+EjSPZ4fr/NLDaHf/3Xf+36fbZvqP897HWr8/sWzdYz\n", - "IpWm6bckLV8z/IuSvnj1+IuS/uvV41+S9Ddpmr6WpukRSQclvTOfqQIAANRLbLH5TJqmFhpakGQh\n", - "o1lJx933HdebkSkAAICRM3SxeZqmaZIk3fJJQ+eabMNKqV0c6zsUW1id0G11br/99nC8Z88eSZ3p\n", - "kaefflpSuxsxhpfV7dlYikPKf6PevFmXeF8gHJsm9d3li9z8exzkndIzeXde7/Wz/WcBxbHzvi8h\n", - "sOfe/72u+/koRmxEaiFJkh2SlCTJTkn21/GEpD3u+3ZfHQMAAGicRx55pOvXYyNS/yjptyR9+up/\n", - "/8GN/3WSJJ/Vmym92yV9L/IxAn9HYQWQthRZki5dujTsQ2BIc3Nz4diWIPvCdyJR5ar7Xol+Acn0\n", - "9LSkdmsCSTp27Jikwd839t6TiER4fm/IqiN19npL7SxCXnsg2qIXHw23LEaRi0HQPt/719Jeh6oW\n", - "QQ3D9sKUpAceeECPPvrodb+354VUkiR/I+k9kqaSJDkm6aOSPiXpS0mS/LakI5J+TZLSNH0mSZIv\n", - "SXpG0hVJ70+b+AwCAAD0oeeFVJqmv3GdL/3Mdb7/E5I+McykAAAAmqCyzuaD8L2jrO+NTwMUWbx4\n", - "Ld8vyTpZ++K5vELUTeP76PzgBz+ocCbjo8nB3sXFxXBsKTgfSl9evrbjyuDsszqufc08X8hfdWrP\n", - "d9O318YXKF++fFlSXMmGvea+9MO6ppPqLdb8/Lyk0enn6P/W9/zeAucBAAAw0hoRkZqYmFhx7O+q\n", - "sroQF8XfTdleXqdPnw5j4xqRwmiySIaP+ubxHvdRIisCzqMY2M+NSFRbnQqt/fnaok/+/WXvuZiI\n", - "lGUH/M+zhRcsSiqWRZTtNZXaf6d9hNB/PQ+2wCTviOMgkTUiUgAAAJG4kAIAAIjUiNRe1gaUPlRd\n", - "ZjrNpxTPnTvX8V9cn3Wnj9kkF9UhVY28+cU5dh736b5Binyvxy/EWFpakjSa7+Vt27ZJ6lxM4Hv6\n", - "lckWgPnyF0u35VWAbhuw+/dLUYsnBunATkQKAAAgUiMiUv7K0K4+/V2LFbLlXcSWxRe0sZy2O3+X\n", - "ZB3py45IZbWoGJXluVhpFAvMrXDan/PKXGCTNx8tyvo98n4NLYoxiqyQ3i94qoq1wMl6vov8W1mH\n", - "vfuISAEAAETiQgoAACBSI1J7vpjM+kj5LsgWHi4jtVcV38n9xhvffNnq1Bsmiy/uPH78eGmP60PL\n", - "9j7x6bwyUnuWjimj+7i9HyTSlnkUKg/CUsd5FzJbKtwfW9G01OzUnn+/ZvHnOjNo+sZ6/EnS3r17\n", - "JeWf/vK9qqraZaBOvbHsM1BkKrWuuzkQkQIAAIjUiIiUZ1fgq1evDmN1vUrNk7/Ttjs2fzdS9+eg\n", - "zPn5u3W7ky27ILGM39eWPvvf14r5/R253SH6iMag/Puvzu+1HTt2hGOL2PpIhC2A2LRpUxizz1Gv\n", - "u3tr4eG/zx4j70iYX0Jui2nq/LwPwne5zmLF5sM8p75g3Yqg847i+R037Pwy7hFhqXORUd7n3bou\n", - "JiEiBQAAEIkLKQAAgEiNS+0Z303cF/2NKusXcu0xuhvlBQiWsssqol1eXg7HPo0Vq64h9WstLi6G\n", - "46xUjhXE+jRnr+JnY+ecrBRb3s/PmTNnwrGlworq4Fy2Xr3k8vg9/d+Honae8Cks+xvk075N+czk\n", - "7ejRo+F4VNLRvRCRAgAAiNTYiJRnxddVRR82bNgQjm0OFB3G8YsI8jAqd/FZ+r3TtmLbcRATre33\n", - "s1rm3bX/PZq8R1zW53l+fr6CmeTPvx+sMN4XyI9rRKrpUSiLUPsFH70QkQIAAIjEhRQAAECkylJ7\n", - "a9as6QipW2FoVpdm3+nWCmx9CNUK/XyKzfq7+IJT//U8WK8eH8och5Sefz3y6BPi+8pMTk4O/fPG\n", - "RR026+yHf03ts+rTHvZZzUph+c/5zp07JXWG3PNOBdfFqJxT8kqtW88mX+Bt6c+qPgdlb8BeJt9Z\n", - "3/6G+kJ6+zvt/16XUVqzZ8+eFWO2e4VfoNFvzzz7W3b77beHMTvPDPK5IyIFAAAQKamiMCxJkrTV\n", - "apX+uAAAAINqtVpK0zSz1xIRKQAAgEhcSAEAAESqrNi8ytSef+yqU4xNn4sV++bdr2mY5+Wuu+4K\n", - "x4cPH5aUXZBqRYWSNDc3V8hc8sZcstnjVz0PP4dBP0NScZ+jmOfFConzKnZv8mtUZH+oOj4vDz/8\n", - "cBirqi9UHZ+X6yEiBQAAEGkkOpuPq127doXjEydOrPi63ekWuZQ6qwWE3+/MzM7OSpJOnjyZ6+Nn\n", - "efHFF8Nx1t2ULcFv8rJyjA7f/qPqTvy+vUC3yIvf39SiNVl7G+bFHq+q6Ig/1168eFFS536WZmpq\n", - "Khz3uwS/jprYndz+xkjtlipZuz/4925evycRKQAAgEhEpBosKwrl2d2tz+/nzfZx849hzfMsWuWP\n", - "y4hI+Tt8a/Lomz3a/OyuBdXavXu3pM4Gh3bXPw4uXLhQ9RSCfvf183fyZUQvqo6QHDt2rOvX169f\n", - "L6l9bpHa0b0m75XYJH5/yv3790vqPI9YhsZ/3nr9De0XESkAAIBIXEgBAABEIrXXJ9uT51d+5VfC\n", - "2PT0tKTO0O1XvvIVSdLCwkKJs+su7+W6Xrf9lXwxd14h1H74FFHW725pgiJTnujO7+V1yy23SOrc\n", - "y+vxxx8vfU6IU+T5pSmsTMCXC9i+sCiHT6vawgfbh09q/13IWgw1LP6SAAAARGpERMrv9m5X+Vbk\n", - "LJWzjN2Wv959991h7Jd/+ZcldV7hHj16VJL0ta99rfA5ZfF3QUUuR+5HVUWWve6QfeQD5bKFAHv3\n", - "7g1j9tk6dOhQJXOywtTJyckwZkvXfSuNMtjn1y+jtyjHOBXgj4K8z79Vt4CoO2sgK7XP8T4iZREr\n", - "yy5J+f2NIiIFAAAQiQspAACASI1I7flQpvXr8GE8C3kXmbKxlN3Xv/71FWO+L0W3PduKZGkJ30Op\n", - "jJ5NwCBscYJPh8/Pz0vK7kJcBjuXWD8rqd1zpuzUnvFFy1V3O68DW5zg02XjlqK3vlRZ+4ai8zNj\n", - "7w2furMSIZ/Cz6uHGxEpAACASI2ISPmrRiss90XV3Zbg58XuhL7zne+EMX9chZmZmXBsd9VZ+z8B\n", - "dXPq1KnM4yocPHhQknT69OkwVlXXezvPUFjeyaJyZZzr64oO6d35iHZWFNc+30V8tohIAQAAROJC\n", - "CgAAIFIjUnu+2HzcCgy78eFLC2uOc+gbGAZp8frivEb/qF76XZRRRLE+ESkAAIBIjYhIIdvLL79c\n", - "9RQAAA3h2waVsSPIuCAiBQAAEIkLKQAAgEik9hrMp/aso7l1ZJbaYVxSgGgqv8EoHZ1RB3aO9akx\n", - "2xC3qv5jvdjnyHYGkaQzZ85UNZ2RQ0QKAAAgEhGpEWGd3qempsLYDTe8eZ3s99yjwBB1sG/fvnBs\n", - "3bxtLyyp/T4+fvx4GPvxj39c0uxQN/be8DtaWPTHL3t/4403Cp+LRfq3bdsWxizSY/uvSsWda+28\n", - "LvX/+1rGIqurt89ijDL7PYvYu5KIFAAAQCQupAAAACKR2hsRFm62EK4fA+rmlltuCcfT09OSpNnZ\n", - "2TBmheULCwvlTgy1ZKm9ycnJMHb+/HlJ0vz8fBgrY+eLjRs3SuosozBFlk5YWtM+L1I7VZeVskuS\n", - "ZMW/zdr42BegN5kV/Evt94lPBVtn+CJKXYhIAQAARBqJkIVdfY7zck5/5W3s7mOcC8ytMNMXZVrU\n", - "bvv27WHsxRdfLHdiY+6FF14Ix7ZPpC8st8/ys88+W+7EUEtWWO4jTtbWpez9VxcXFyV1RvyzIj2D\n", - "8udwW4Dh2ZiPwNk5zBeg21x8dqJbW4azZ89GzrhefBF51nNg75Mi/h4SkQIAAIjEhRQAAECkxAqw\n", - "Sn3QJElbrVbpjwsAADCoVqulNE2TrK8RkQIAAIhUWbF5PxGpn//5n5cknTp1Kox973vfW/F9+/fv\n", - "l9RZhHf58uW+HrvqyFhec7GlrsNEGEfxeckDc8kWMxcr0M274NMev+rnxM+BuXQa5bncdNNNkvov\n", - "OrcWCpL0+7//+7nOZRhNeY3WrVsXjovaS9a3hXjwwQe7fi8RKQAAgEhcSAEAAESqdR+p3bt3S5Le\n", - "9773hbEdO3ZIkp5//vkw9u53v1uSdOLEiTD2jW98I9e5vOtd75LU2XOjTj1uLNTpUyZ59DYB8jTO\n", - "Pc0wugY91164cKGgmYyHrHTenXfeGY7f/va3S2r3qJPa/b983zHbCN12UvC69d66FhEpAACASLWO\n", - "SD3yyCOSpOeeey6MHT16VFJnsdmWLVskSU8//XRhc/mJn/gJSdL999+/Yi6PPvpoGDty5Iikzj3C\n", - "iiqG88ru7gvEWLNmjaTsO0DPinf9fmZ+jywUzxbx+O7QdYrCV2316tXh2HfVRrk2bdokSfqFX/iF\n", - "MPae97xHUueOFrYQ67HHHgtjX/ziFyVJc3NzQ82BiBQAAEAkLqQAAAAi1Tq1Zyk9n9rLcuDAAUnt\n", - "XkpFsEI1XyRoaQeffrCNV30PijJSe2WytIvU/t2XlpbCGEXu9WKhb0vVSO3PihVbStLFixcLn4vf\n", - "XLUbNtyuxvT0dDi23jk//dM/HcasfOJzn/tcGPvnf/7nQubi3yt2XKf3w8TERDj2Rc0ol523Tp8+\n", - "HcbsfepTrva3ypfB5LVhMxEpAACASLWOSPXLF5QV5Stf+Yok6e/+7u/6+n5fiDhqXn/99XB8/vx5\n", - "SUSh6szunO+6664wZgXEPgpVRkRq0IjCqEVz684Xlu/Zs0dS57LyzZs3S5K++tWvFj4Xf14v4xw/\n", - "KKJQ9WDvjb/8y78MY7aoxXZSkKRVq1ZJ6swq5bXXMBEpAACASFxIAQAARBqJ1F4ZBk1djXJfER8O\n", - "7dUPCNWzzbwff/zxMGYF6GWnoAf9XAzSXXhUWbqt20bsebHFMpL05S9/WZL0L//yL2HM5vDNb36z\n", - "8LkAsezvUll/n4hIAQAARCIi1Se7g7fi6nFW9yJQZDt06FDVUxgY769y+WjzX//1X0sa7eg6kAci\n", - "UgAAAJG4kAIAAIhEaq9P/XZkHjdWrEz4H0WwDcmlduHouPWW6rfI3LrV59Ubh8800B+uDgAAACIR\n", - "keqT7cnjI1MUwra7xXL3iiJMTk6GY2uFMG4RqX7lFYkCMBgiUgAAAJG4kAIAAIhEam9ApPM68Xyg\n", - "SNu3bw/Hc3NzFc4E17Nu3TpJpFwxvohIAQAARCIihaG8/vrrVU8BI2jbtm2SOguoFxcXq5oOrjE7\n", - "OxuObaFJGRGpG29s/8m6cuWKJGlmZiaMLS0tSeK8hHIRkQIAAIjEhRQAAECkRqT2rFeR1C5stJ4y\n", - "knTTTTdJanc+Rnk2bNggqTMFw8bOg7NNsaX28zfKPcuyUjSedek+d+5cGLt06VLxE0Owdu1aSdK+\n", - "ffvC2NTUlKT2eViSvv3tbxc+l40bN0qS7rzzzhXz85+ThYWF6MdYs2aNpN5/R+zx/HNg579+36N2\n", - "3sRoICIFAAAQqRERKV84uHXrVkmdV/R2RxsTkbK7mn73s+rXxMREOB7lO+lXX31VUv7PX11ZdLRX\n", - "Mavd3U5PT4cxW8rvo0t2d3v69OkwZhGpUYtCeVlRKM+Khi9evFjGdEaCvZfyet/YZ/q5554LY0eO\n", - "HJHUjhj67yvShQsXJEnHjx8PY7YPo+06MSzbN9T/HbG/M37nBhvz53iLSNnP8HwRvp0v7e9OXfnf\n", - "Y8eOHZI6s0BnzpwZ6Of5v9e7d++WJD3//PNhzN5PTV0kQEQKAAAgEhdSAAAAkZIqNrpMkiRttVql\n", - "Py4AAMCgWq2W0jRNsr5GRAoAACBSZcXmVUak/GP3Ow9rsWDFglXOpSjMJVvT5zJO792q5+Hn0O9c\n", - "9uzZE46t0PnUqVMrvi+mHUaTn5csk5OT4diKn2MWGfU7F3tt3vve94axF198UZL06KOPhjFrz7B3\n", - "794w9vTTT+c6lzI0eS6++H/nzp2SpB//+Me5zuV6iEgBAABE4kIKAAAgUiP6SPXL+opI+fUWMdYX\n", - "KO/0SAzr8eG7Q3fbMLTI5wX153vgoD6sS/gtt9wSxqxfku/NZCkL39vn2LFjZUyxdgbtXzQs66zv\n", - "03QnT55c8X2WZrT+Zyif7zRvqdjNmzeHsR/+8IeFPTYRKQAAgEiNi0hZh1TfAdW6JBcZbbE7RS/v\n", - "TsL9sghDv5EGolDjrYoWJ+jNohc+2pEV0bBO93Xvhj2K7Ln30Qzf1d3Y34Bh9vqLYX8PfTRmcXGx\n", - "1DnUhd+X89ChQ5LK29OQiBQAAEAkLqQAAAAi1Tq1Zxu+zszMhDEr9vb9RF544QVJnRu/5s0KPv0G\n", - "xKO8qWwTWVH9z/3cz4Ux2yj43/7t38KYHZPyQpWseLzfjZlHZWNw2/hbauYmtVWfN2677bZwfP/9\n", - "90vqXGxkm0z7TYHHgd8I/bvf/a6kuB5jMYhIAQAARKp1RMqiCXfffXcYyyosLzISZXwkCvVky8l3\n", - "7NgRxu69996Or0nlRDCNRVWldgTClkpLnQWSRdu/f384tufj+PHjYWx+fr60uaAdjfEdy7vxnZub\n", - "fD7yBcC2iIfofv98ZNKeP78YynYyGGdlRaIMESkAAIBIXEgBAABEqnVqz1IwPkxn4e28NiNsItsg\n", - "07qtS+0UUb/dzvO2e/fucGz9bnzaqIxC2YMHD0pqFxpK7XSVL7wsI6VnfH8Xe+9ab5qy+Q73liJf\n", - "v359GLPXbVSKmuvO0ln9piGanM7z/O4QpPQG58+rVuLiz/U+BYxyEJECAACIVOuIlN25WKQBb7Ln\n", - "xUek7M6uzCiU5++C7rjjDkmde4h961vfklTO/LJaHVTFR79sn7B+l7vnzUfl7D3klwwDZajqHFWk\n", - "bdu2SepcXLK8vCyp2G7ntmDB78NIRLl8RKQAAAAicSEFAAAQqdapPWSz4tSye2V0c/To0XBsaT5f\n", - "SFqnuZbJ94yq2qgUKwN14DeR3rVrV8d/pfbCnyJTe3v27JHUuZDEPudzc3NhrMwFNuOIiBQAAEAk\n", - "IlLIhY84HT58WFLnnlq2P5UvkB/XKBWA5vN77ln03S/eKKq1Q5Ik4XjTpk2SpFtvvXXFvHzEjIhU\n", - "sYhIAQAAROp5IZUkyReSJFlIkuRJN9ZKkuR4kiT/fvV/P+e+9qEkSV5IkuTZJEl+tqiJAwAAVK2f\n", - "1N5fSvpTSf/djaWSPpum6Wf9NyZJco+kX5d0j6Rdkv4pSZI70jSlfe0YsZSeDy1v3bpVUucGraT2\n", - "gPHjU1M+PdY0/vy1tLQkqTO1V9TiDv+cWc+o1157LYzZzhd+DMXqGZFK0/RbkpYzvpRkjP2SpL9J\n", - "0/S1NE2PSDoo6Z1DzRAAAKCmhik2/9+SJPmfJD0u6ffTND0raVbSY+57juvNyFRu7G7GRzusu6vf\n", - "wwnVsc7Fk5OTYcwiUVXtMwc0gZ3XfNTBltH7sSa3sti8eXM4tr3ims7Oa/7vUhnRNtslYXFxMYxZ\n", - "YfmBAwcKf3y8KbbY/POSbpb0Nklzkv64y/c2N3YLAADQRdSFVJqmp9KrJP3faqfvTkja475199Ux\n", - "AACAxnnkkUe6fj0qtZckyc40Ta1t6i9LshV9/yjpr5Mk+azeTOndLul7MY/h+d5D1i/Db9JoqSS/\n", - "KSvK5cP1loqwjTwlaffu3ZKkEyfa19WPPeazwBgn/jNt6Xr/mbaURZOLkftlCzEk6a1vfaukzoJs\n", - "c/LkyXD83HPPFT8x9M06i/veUbZJeZGOHDnS8d+y2Dl+XDY9f+CBB/Too49e9+s9L6SSJPkbSe+R\n", - "NJUkyTFJH5P03iRJ3qY303aHJf3PkpSm6TNJknxJ0jOSrkh6fzoOZ0IAADCWel5IpWn6GxnDX+jy\n", - "/Z+Q9IlhJnWtDRs2hGPbt8gXLQ+zzNOiJv5OYnl55SJFW9Jvhe3oNDMzE46tyPzuu+8OY7fccouk\n", - "8Wt54KMNWe+rceU/RxbNvHDhQhgbp/sv/76wSJPfFcDOb6OyUKPfRUG+VYqdn30xt0VD+o2K+H+b\n", - "N2tD4KOqddpnM29ZEdNxRmdzAACASFxIAQAAREqqCKEnSZK2Wq3SHxcAAGBQrVZLaZpm5jSJSAEA\n", - "AEQaprP5UKqMSPnHrjoyVtVc/PJzK2b96Ec/WslcsvAaZWMu2ezxq56Hn0MT5+ILsq2AOos/f/S7\n", - "gKTJz0svtmjp3LlzYazfIvgmPi9WbL5v374w1q0Fw/79+8Pxiy++KKlzgdcwc7EC/yL3Fuw1ByJS\n", - "AAAAkbiQAgAAiFRZag/10SvEitEzMTEhqTMcXmRoHM3QLZ0ntTta23+lcnrDWcoxa372Xpba/cny\n", - "nvILYpUAAB2fSURBVJPvabVx40ZJnWk823x5XPoMWmrX+jpez/bt2yVJe/fuDWOnTp2S1P/G275n\n", - "VdbiuDqct4hIAQAARGpcRMo6/t50001hzPbaK9ttt90mqb3PkiQdOnRIUjn7LA1j3DqMo7OQ+Pbb\n", - "b5fUeYdvRaBVfZ4grVu3TlLnXXad9jMbtJt4Xu644w5J7WiQd/r06XBc1J5zPiqS1WF+XCJRplfk\n", - "0likzu8TOWhX9LxaNNnfaZtTnohIAQAAROJCCgAAIFLjUnsWQvXphzL6SBhfZHnrrbdKaqf4pHbI\n", - "s+6pPYwfH47/0Y9+VOFM4PkyBSvO9Ru1WyrixIkT5U6sT5aqyXuXDHsuJGnXrl2SpN27d4cxe7xv\n", - "fetbYazflNOgfN+sfouk0d6g2grMpeJeo15mZmYkSZs2bQpjVs4wLCJSAAAAkRoXkcpS1fJHX7xr\n", - "6lQYCsSwCK9Uj6XFo87u2qV29MnftS8uLhY+B4u0+6hSvwXURe3XaguLpPb78PDhw2HMonZWoF8k\n", - "P5c6sWigj5hVtSCgm6wC/bxYV3n/9zgrevvcc89J6owA54WIFAAAQCQupAAAACKNRGqvTD5c+u1v\n", - "f1tSu4hNkp599tnS54Q4vifNhQsXKpxJvfjnhUUT5bJu2b5rdhmsc3eddjmYm5sLx5b+9D2jpqam\n", - "JHUW5luX87wLwut6frC0alUF3LOzs+HYirj938hjx45JKrZvob02/rx1yy23SGr3dfR8Kr0bv7Cs\n", - "FyJSAAAAkYhIDcHujvxdUlP47rK+uHic1PUusyrWzsMXGRORGg/93qVXJescu7S0JKmz2NyiIrQo\n", - "KIfvWL68vCyp/J0R7L2bd1f7QYr1iUgBAABE4kIKAAAgEqm9MRXTLwajx4pzJWn9+vWSpIWFhaqm\n", - "A/TNyhM2b94cxiwdMz8/X8mcxtk4b3ZORAoAACASESkQkRpjvijXCketaBSoM79nGsaXtb/wC6jK\n", - "XkhERAoAACASF1IAAACRSO2hFBZ2nZ6eDmOnTp2qajrIYH15gLqxLtN+c17rZO07m5OWHj8XL16U\n", - "VG2ql4gUAABAJCJSOVi1alU4vummmySN91LQLPv27ZNUThHgli1bwvHZs2cLfzwAxbLok9/X1Pba\n", - "886fP1/anFAvVb72RKQAAAAicSEFAAAQidReDnwfJlJ62S5fviyp2A2ed+/eLamz0zGpvXzccEP7\n", - "nmvt2rW5/mwrJB5kk9Drse7skvTSSy8N/fPyYhuDv/HGG2HM5upLA2wDXr9ZtH12PHs9/M+zBR1+\n", - "14JB1bVMwQqJb7755jBmz8FTTz0Vxubm5sqdGGrD95Ea5jMQg4gUAABAJCJSKEUZe18dP35cUufd\n", - "SNad+6iwonofLbLl4Vu3bg1j1r38yJEjff3c7du3h2Pbi88vMc/7bi+PSJSpUxTKs0iTL4h99dVX\n", - "JXVGUC3yYsXVUjuK6yPfFsVbXFwMY3m8Lv4xXnvttaF/Xl6OHj3a8V+pHeWr0zxRnbxb6/gIVy9E\n", - "pAAAACJxIQUAABApKbsoS5KSJElbrVbpjwsAADCoVqulNE0z831EpAAAACJVVmw+bETKd6+2AlO/\n", - "dNcKObOKjP1jVx0ZYy7Z6jqXhx9+WFL+Bde21Fxqv3d7zaXf58UKxW1PqmFZEebHPvaxgedSFHv8\n", - "qufh51CnuXz2s58NY1kdoIcp3Lb3l/9M2KIHv/edvV/q9Lwwl05NnIu912xBh9R+j2f9/e/3XJs1\n", - "l+shIgUAABCJCykAAIBIje0jldWxmn4iKFpRizP6DTHH6PdzYT2Mem3+mcdz4PtSWc+kpaWlMDZO\n", - "n2VLq0nF/d69XtNhHjcrZVzXfl4YPfbe9X2k9u/fL6mz0/3CwoKkznNtXn0GiUgBAABEamxECriW\n", - "LTZ429veFsYuXLggSXr++ecrmVMdvPLKK319X6+oRZ7uvPPOcGx7JPp9GA8cOLBibFSNU/QN+bJo\n", - "5q5du8KYFfifO3eukjmVzaJJPvpk541t27aFsR07dkjK3l2AiBQAAEBFuJACAACIVOvU3ihvODsq\n", - "rKeQ9fLwx2WHlq0/iN909+abb5bUTvFJnSHgceI3N7Zi7zLTeV5WOsu/h9auXVvmdPpSxvnIeuHY\n", - "psRS53sX1bNz3q233hrG7FznN5Eug70XZ2dnw5ilsB577LFS51I1v+H2yy+/LKm9kf31+IUewyAi\n", - "BQAAEKnWEak6RaLsDvnKlSthzI793aP/+jiwpfCXL18OY/64THYXYoXKknTvvfdKkvbt2xfGxi0i\n", - "tXfvXknS+973vhVjn/nMZ8LYiRMnSpvTE088seLYR6Gqeg91U8a+pPY+9eeUp556qvDHRf/sfXDw\n", - "4MGKZ9KOwnz3u9+teCbNlNdCDyJSAAAAkbiQAgAAiFTr1F6dWKGp3xjRikDHLZ1Xd0eOHAnHVky9\n", - "c+fOimZTvcnJSUnS/fffH8as8+9dd90VxspM7WWpYzrPKyO19+yzzxb+GADyRUQKAAAgEhGpPl26\n", - "dKnqKSDCmTNnOv47jqyY+/Of/3wYsyjq9773vUrmBABFs1YVUrERZSJSAAAAkbiQAgAAiERqDxhx\n", - "1o+NXjMYhC2ssf5sQNOUsUBEIiIFAAAQjYgUAGCFvLo+A2Xw++aV/d4lIgUAABCJCykAAIBIpPYA\n", - "ACusWbNGUuduDpYy8akT+/rFixcLn8srr7xS2GOg2TZu3BiOy+4bSEQKAAAg0khFpNauXRuO675v\n", - "F4ozMTERjl9//XVJ3MkCg7I7/FtuuWXF2PHjx8PYwYMHC5+LfY6B66ly9woiUgAAAJG4kAIAAIjU\n", - "iNTeli1bwvG2bdskdabxzOLiYjgmtTe+Xn311XBsqYgbb2y/1W0D6rK63qIa1lcmr54yds7xxdeW\n", - "Mq77puYxPXY2bdokSZqZmQlju3btktTe9FqSnn766Tym2JV/PKBuiEgBAABEqiwidcMNN4Q9wHrZ\n", - "vHlzOJ6ampLUWXy4vLwsSTp16lSOM0RT+bvXrCLzcY1EVdn5tyw33XRTYT87SRJJ0oULF8JYUyIl\n", - "Ma/3wsLCirGTJ09e92solkUIvfPnz/f1by2T4//mWuTe3teIR0QKAAAgEhdSAAAAkZIq0hxJkqSt\n", - "Vqv0xwUAABhUq9VSmqaZeVAiUgAAAJEqKzbPMyJlxXK9omuTk5OSpA984AOFzCOGf/xh5jI9PS3p\n", - "zSJ+M2hBaF5zyUPec/EFlYNGYUf5eRlGHefS7zxWrVq1Yiyv7tmDzqVIzCXbqM3Ft6iw81vM4qtR\n", - "e156sVYmL7/8cl9zuR4iUgAAAJG4kAIAAIhU687m99xzj6TOXkBLS0uSOsPw69evl9Q7leX7v4yC\n", - "DRs2hOP7779fUucGovR6aRvX3lFNZR3p/Xt8bm4ut5/vO933u6G1pc377X+XlzIft669xnbv3i2p\n", - "c8cK+1vge4f5XQ3GiU9V23t7mHKGGPY61P018OcUO8/0Su31QkQKAAAgUq0jUqdPn5bUeZdkV9b+\n", - "arvfffXqdIeVB38n/f3vf1+SdObMmaqmU0tVRREwuF/91V8Nx3v27JEkffWrXy3ksfqNQvkiXjsP\n", - "HT9+vJA5Se336zvf+c4wZvv4PfHEE4U9rvH7CNbpfGnRjv3794cx6+rtI+/2N6MpHefzYh3npXaU\n", - "xe8Icvbs2UIe10cDLSuSFTmen58Px/1+9opy8eLFcJzX3wUiUgAAAJG4kAIAAIhU69Te4uKiJOm2\n", - "224LY3v37pUkHTp0KIz5sOE48aF3UnrZSOkNzqd3hi3CHIT1QpPa4Xf/OS+TpZDe8Y53hLETJ05I\n", - "Kja1Z+/Xxx57rLDH6MbSiHWT9T6w9wib1Xcqc1HVfffdF45/8id/UpI0Ozsbxo4cOSJJ+vKXvxzG\n", - "inq9JiYmwnG39/HatWvDcV5pRiJSAAAAkWodkbK7M3+leeedd0riLqRurNBQkvbt2yepXQAvFXsX\n", - "P67yLqTftWuXpOIKU3v5/Oc/X8njZrFInL+zteLmUZZXd/du1qxZs+K43+e2qgglsvno03vf+15J\n", - "nRmkJ598UpL04x//OIx94xvfKGQut99+ezi2RSK+7YNF6p555pkw1u9CtV6ISAEAAETiQgoAACBS\n", - "rVN7xhfPWWjXhwpRPd+bw/rtbNmyJYyR2stfHik9nza3nzduPXiyWG+ir33ta2HMd0MfVdaDSGp3\n", - "qM4r/WH8+7buXbCzWLFy03+PPPgSGysJ8M/F1NSUpM4C76L4RTJ33323pM7P7FNPPSWpXRKRJyJS\n", - "AAAAkRpxi+WjT0Si6un555/PPEa9+WLqui59L4K/U+03AldmpK7sfdJMGcXmvm1Lnbqn98uiLD7i\n", - "btGOcWPF5JL093//95KkAwcOhDF7H/vO60XtyXf48OFwbJ8ZH021v0tFtHQhIgUAABCJCykAAIBI\n", - "jUjtAUCeKKjP9tJLL1U9hUxWBO87UVdV4L20tCSpc4HNuPLvl69//euSpB/+8IdhbOfOnZI6Xyvr\n", - "8XTs2LFc5+I3r/bHZSAiBQAAEImIFADUTJkF5k1giwPqUJxuBcx5t4VoOovyzs3NhTGL2llkSurs\n", - "bD8qiEgBAABE4kIKAAAgEqk9AEA0KwT3O1DkzbpWb9q0KYwtLy9LGo/NpJvKUrF+cYe9bqOEiBQA\n", - "AEAkIlIA0IetW7dKGs076mFs2LBBUrERKeuGvW3btjBmkTC/20URXasxGHutpHYXeGsZIY1mBJGI\n", - "FAAAQCQupAAAACKR2quRVatWSSpn41DgeiYmJsLxOGxk3O8mquvXr5dEak9qp9Wkzm7jRTly5Iik\n", - "zhSR9SNq4vnSzvWjyPf6svPHKKbzPCJSAAAAkSqLSK1evbpnl1q7A3zjjTfC2CgXEzbxzmrc9Bu9\n", - "KMMNN7x5H+Q/H8OwO/zVq1cP/G+TJJGU3ZHb333b85fX59gedxj2PPZy/PjxoR9rVFiBudTZybpo\n", - "fn+7Ju51Z3/TRrG7t/HngDNnzgz98/xnfJiO/3mfLzt+du4/EQAAYExwIQUAABApqWJzzCRJ0lar\n", - "VfrjAgAADKrVailN08xaAiJSAAAAkSorNn/44YeHKhwbho+GVR0ZYy7ZYuZihZwvvfRS5XPply0j\n", - "94Wz3T4XTX+NimKPX/U8/ByYSyfmkm3QufjFEdY53C/eGKbDfJOflyL1mgMRKQAAgEhcSAEAAESq\n", - "LLW3Zs0aXb58uaqHxwi6++67JUnz8/NhLKv3z+bNmyVJ586dK2diXRS50Ws/bryxfQq4cuVKaY/n\n", - "u6fXpeuxpYal/NPDTeZTSUX04MFg/GtgvQftnCaVe07x7w3rETeOf9eJSAEAAESqLCKVR0diwDt4\n", - "8GBf31eHSFRdlBGFynq8Ue7sPIx7771XkvTud787jD355JOSpMcee6ySOfmoZR06+lfNFoj4RSFV\n", - "dVk/ffp0JY9r/HtjdnZWUmen+1HeicTrGpFKkmRPkiSPJEnydJIkTyVJ8oGr45NJknwzSZLnkyT5\n", - "RpIkW9y/+VCSJC8kSfJskiQ/W/QvAAAAUJVeqb3XJP3vaZr+D5LeJel/SZLkbkkflPTNNE3vkPTP\n", - "V/+/kiS5R9KvS7pH0n+R9LkkSUgfAgCAkdQ1tZem6byk+avHF5MkOSBpl6RflPSeq9/2RUn/n968\n", - "mPolSX+Tpulrko4kSXJQ0jslrYhJj0vID+U5e/Zs1VNAnxYXF3P5OT61MKw6FJhfunRJkrR27dow\n", - "5o+rQDqvU9ULROrE+lhJ0smTJyVRbN5VkiT7Jb1d0r9JmknTdOHqlxYkzVw9npXkl0kd15sXXgAA\n", - "ACOnr9u5JEk2SPqypN9J0/SCLxRP0zRNkqRbi/Lo9uV2t1l2QSyAZqhqd4SiWLTDL5wgAoK6OnPm\n", - "TDgex0iU6RmRSpJktd68iPp/0jT9h6vDC0mS7Lj69Z2STl0dPyFpj/vnu6+OAQAANM4jjzzS9eu9\n", - "Vu0lkv6bpGfSNP0/3Zf+UdJvXT3+LUn/4Mb/xyRJbkqS5GZJt0v6XsS8AQAAKvfAAw90/Xqv1N5/\n", - "kvSbkp5IkuTfr459SNKnJH0pSZLflnRE0q9JUpqmzyRJ8iVJz0i6Iun96RCxd1J69Tcz82Z5nO+j\n", - "Uoei3W6sG28ZXZq3b98ejnfv3i2ps9v6qVOnVvwb9M86O48Ke2+eONEO5C8vL0uSVq1aFcZG7fdG\n", - "sVavXi1Jeu2113L9ueOczvN6rdr7tq4ftfqZ6/ybT0j6xJDzAgAAqL3KOptjNNjdcpOWSJcRibJ9\n", - "p+64444wdvPNN0vq3BfLijWJvkKSFhYWOv4L5CHvSBQ60SwTAAAgEhdSAAAAkUjtYShNSumVKavj\n", - "thVm+q9NT09L6kzllJF6BIBhrV+/Phxv3bpVUnvBhNQ+l83Pz4exUSxjICIFAAAQaWQjUkUt98yy\n", - "bt26cGxX236pclFLRK/pMF/IY2A4/nWx94Ef27hxo6T2+1WSjh07tuL7AKBu/N+gXbve3A3OR5zO\n", - "nTsnqTNyZWOjhIgUAABAJC6kAAAAIo1saq+olN6aNWvCsRXXWUhTaoctX3nllTBmqZq8bdu2LRzb\n", - "xqa+0M/md/LkyUIeH9d36dIlSZ0dqO29s2XLljA2MTEhqXPzzxdffLGMKQLAUPyOFnau86UsVuLi\n", - "z3mk9gAAABCMbESqKL5obtOmTZI6C4XtaryMq24fCbMrfx+lstYERKSq41sZWKuDffv2hTHbd+/l\n", - "l18ud2IAkCPbzcHv3GB/G/3+oqOIiBQAAEAkLqQAAAAiVZbaW79+vV566aUV477/ki/UrQs/PysU\n", - "9t29T58+LamcVI31IJLavax8Ud+PfvSjwueA7nzHcuvuu2HDhjC2uLgoSTpx4kS5ExsDlob3n0Xr\n", - "Kk9H/vqy3kR59VGzRR5+ARDyMTMzE453794tSdq+fXsYm5qakiQ9/fTTYcyOR6lPHhEpAACASJVF\n", - "pK53d1DHKJRnEQR/XFWH8e985zvh2KJjPmJ2/vz5oR+D7unDOXr0aDi2pcLf//73w5i9Rnm8Vuhc\n", - "+GEtKPz7lkjU4PxzagXFfol73udsiyT6n2vtbGL2abP5E5HKn19U9fjjj0tqL6qR2lEq/3dzFP+O\n", - "EJECAACIxIUUAABApKSKMFuSJGmr1Sr9cQEAAAbVarWUpmmS9TUiUgAAAJEqKzavMiLlH7vqyFiR\n", - "c7Eiy373HRyV5yXvFhqj8rzkrY5z6Xce9913Xzi2AuZnnnlmxff5vTWtS32vz9OgcylS1lxsP07f\n", - "dT9vtkjFP38f/OAHV8ylGytsl7ovEvC7TWTt95al7q9RVWwOn/rUp8JYr+ey6LnU6Xm5HiJSAAAA\n", - "kbiQAgAAiMSmxX2yjRjL2Ix4GH7DSFtI0G9qr6767XRsKT3f+6qbflMH6K2MdFGe/GtvG337z/by\n", - "8rIk6Y477ghj9h7JSgE2SRmvkX1Wh0kL+X5E3Tr/33777eHY+rEdOnQo+nHrznoGSu1eaXnr93Xz\n", - "51r7TI1jvy4iUgAAAJGISPWpqoK7Qfm76l27dkmSLly4EMaa2FW23zn3W1hu+60hP/1GOSz6Y3tS\n", - "VsW6MF9PVgfvY8eOFTonSVq7dq2kzgLqs2fPSqr/rg95s6jg9dhz5SM09lyNsqKiUDEsEi1JW7du\n", - "ldQ5v3HZsYGIFAAAQCQupAAAACKR4+hTEwvoFhYWJBWbzrNiQ1/waeH1U6dOFfa4w4jZ+DSWhbul\n", - "3qmKPPki0KmpKUmdaaqXX35ZUrnPhST95//8nyV1FgP/4Ac/kNSZznrLW94iSfr3f//3MFbmZ9AK\n", - "y5999tnSHlNqv0bDlBL4TYazWCqsTikiz967vd6b9hwtLS2Fsaak9nyvuybz6eb5+XlJ7fS91LxF\n", - "KLGISAEAAEQiIjXCyog2WOTgd3/3d8OY3SE+9NBDYayJRe55KDMK5fmC+k2bNknqbPFgr4dvl2F3\n", - "j0XO2d6Ts7OzYcwiUn5+o7YgwH6fMj6TvT5rFqF88cUXC5vDhg0bJEkXL14c+N8Oeq54/vnnB36M\n", - "qo3ywoGqF5JI0rve9S5J0rp168LY3NycpGKizESkAAAAInEhBQAAEGm04ucF6re79rg5c+aMJGlx\n", - "cTGMWQ+ePXv2hLEi0wjX8oWcN998c8ecJOnAgQOSRvu19MXm9tpk9XTxfcfKKIC1XkxZKS7fgf+H\n", - "P/yhpNFJgZRZ1N/rscp438ek9K61cePGcGyLNmyRhNS92znGmy2k8Oe0Ihc/EZECAACIRESqT6Mc\n", - "vRjG8ePHJUkf+9jHwphFEara489HMayru49IjcNr6SNS/XYXLiP6YwsRerUysMiDFS1LnR36ES+P\n", - "aFEZ/Dzt/dzENjQo3xNPPFHq4xGRAgAAiMSFFAAAQCRSe8hFXTd1tu7u48an9qxj+EsvvVTVdALr\n", - "MdMrRWOp2C1btoQxm/+od0kuWlNSe/49QkoPdUZECgAAIBIRKWAE+YJ6K9iuQ0Sq34Jx60jsO69b\n", - "q4Z+i+eRrapFIOPAL7cfldYd6I2IFAAAQCQupAAAACKR2gNGkC/O9d2g68I6VUvtTZJXr14dxmxT\n", - "Y9tgV5Lm5+dLmh0Qx7+HLc3nN+PGaCIiBQAAEImIFDDi6lic7e/Sb7jhzfu5iYmJFWM+CmVd0YG6\n", - "qmsbGBSLiBQAAEAkLqQAAAAikdoDULqsnlY+3Wf9pv7/9u4nNI4yjOP490djCf4BMSZRa6A9VLBe\n", - "mksRiqS5lPRi9eIfEHoQEfyLp9qL5uhF8SB6MUoRqRSkpRexVXLwZAlEW02LFgy0UtNAzEFyycLj\n", - "YWZ0stmVOtmd6ez+PpedfWeZeZMnz87DO5P3zWZCv1n5h31vxfmS8vMMZbcyt7IYc34G+2w2eM8C\n", - "blYuj0iZmZmZFXRLj0hlD5xmrwCNRqOq7phZGwMDyVfJVvIzP03D8vIyAGtra//rGJ0ahcpGtrZy\n", - "vPzo0/DwMLDx95PtLzIilU0LkZ89O3vQOT9K1crg4OCGz3dDtkbi6upqR47XiXi0MjIy8s/2ysoK\n", - "UM41ZmhoqCPHyVYtaDXFgqddKI9HpMzMzMwKciFlZmZmVpDyi5uWdlIpJiYmmJycLP3cVp3Z2VnH\n", - "vI843v3HMe8v/RTv6elpIqLlfXOPSJmZmZkVVNmIVOknNTMzMyuo3YhUJYWUmZmZWS/wrT0zMzOz\n", - "glxImZmZmRVUSSElaUrSZUm/SjpaRR+suyQtSrogaV7S+bTtHknnJP0i6ayku6vupxUn6RNJS5Iu\n", - "5traxljSsTTnL0s6WE2vrag28Z6WdC3N83lJh3L7HO8akzQmaVbSz5J+kvRa2u4cb1J6ISVpG/AB\n", - "MAXsAZ6V9HDZ/bCuC+BARIxHxL607U3gXEQ8BHybvrf6+pQkj/NaxljSHuBpkpyfAj6U5BHxemkV\n", - "7wDeS/N8PCK+Ase7R6wDb0TEI8CjwMvptdo53qSKH3IfcCUiFiNiHfgCOFxBP6z7mv/D4XHgeLp9\n", - "HHii3O5YJ0XEd8CfTc3tYnwYOBER6xGxCFwh+S6wmmgTb9ic5+B4115E/BERP6TbfwGXgB04xzep\n", - "opDaAVzNvb+WtllvCeAbSXOSXkjbRiNiKd1eAkar6Zp1UbsYP0CS6xnnfe94VdKPkmZyt3kc7x4i\n", - "aScwDnyPc3yTKgopz7fQH/ZHxDhwiGRI+LH8zkjm3fDfQg+7iRg7/vX3EbAL2AtcB979j8863jUk\n", - "6U7gS+D1iNiwwrZzPFFFIfU7MJZ7P8bGKtZ6QERcT1+XgVMkQ7xLku4DkHQ/cKO6HlqXtItxc94/\n", - "mLZZjUXEjUgBH/PvrRzHuwdIuo2kiPosIk6nzc7xJlUUUnPAbkk7JW0neTjtTAX9sC6RdLuku9Lt\n", - "O4CDwEWSOB9JP3YEON36CFZj7WJ8BnhG0nZJu4DdwPkK+mcdlF5IM0+S5Dk43rUnScAMsBAR7+d2\n", - "OcebDJR9wohoSHoF+BrYBsxExKWy+2FdNQqcSvKQAeDziDgraQ44Kel5YBF4qrou2lZJOgFMAPdK\n", - "ugq8BbxDixhHxIKkk8AC0ABeCi+rUCst4v02cEDSXpJbOL8BL4Lj3SP2A88BFyTNp23HcI5v4iVi\n", - "zMzMzArqizkezMzMzLrBhZSZmZlZQS6kzMzMzApyIWVmZmZWkAspMzMzs4JcSJmZmZkV5ELKzMzM\n", - "rCAXUmZmZmYF/Q0kXnLFpKb3UQAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJNCAYAAAARaCA+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmQbdd5nrf2dOaeu++Mi4sZIAiCIgnKFCWKkkmJiRWX\nklhlp+xyVSouy3Ek2dZEABxAkAQoUaKHuOKqxLbsKs+uisqSIkWWLFOkbHOeQZCYL+489O3x9Jn2\nlB+Mf3zf+6L6aMtuVyrv82+tWmefPay99u4+z3pXVNd1EEIIIYQQfzji/9I7IIQQQgjx/0X0EiWE\nEEII0QC9RAkhhBBCNEAvUUIIIYQQDdBLlBBCCCFEA/QSJYQQQgjRAL1ECSGEEEI0QC9RQgghhBAN\n0EuUEEIIIUQD0qP+wvc99vMQkR61OracZPC5Ok6wLrF1eT6FNsWU1I0ntqLENuztMk3tfv7yJ34Z\n2nzog4/hB90RTw5G0GRvOMT9rEpTjlK8XK1W25TbnQ60icm5a2V2W1GIoM1HPvIU1P3M//ITpjwr\ncmgzHuHxRZHdfpziNY4iPOuZ6xtpu41tMtxW8NvCwwsf/0U8vic/+iFTrqsK2tRYFerSXuQyL6FN\nUZK6orDbyXHjRY7nOI7tAfnzG0IIf+Pv/K9Q9/ijj5tymmGfIpchtNx5768sQ5vF5SWom7p7cvPK\nZWhz9fx5qBvu7dvvb+E1/nv/8J+a8gc+9GFoU1d4zoM7V1m7BU2yDvazdtv2xSwlY1Jx+DWekjFp\n6sekEMKTT3zQlD/+ceyvSYT7kLXcvZ2QcYPeM/a81KRPBTKWzMYzW57OoE1R4coYj/7cz5jyL//S\nx6HNvusHIYRw6/qmKR+QsXNlfQXqFldsXbvbhTZJixzfzF6/8cEY2lQl3rcfe/qjpvzzP//z0Kbb\nwb7XymxdQq5flNibtCY37WiI4/Do4MCUqxKvS0KucRTZffj4J7AvPv74+6Audv2zxk2HyT5ev8Gg\nZ8rLZ45Bmxe+/AzUtUr7BQ++4xFo87nP/geou+30aVN+4n1P4o7Sp4j+EyWEEEII0Qi9RAkhhBBC\nNEAvUUIIIYQQDThyJyqQ347DxPoAcYZtsn4f6npLi7ZND3/jLojT4n8X3t/chDY18asC2XXPbIZO\nxP7Oninv7e7iB4lf0V+13snKxga06bnf9dlbcVzj7975zHoLBXE5GGVhz0tMfotvE8ckdb/zZ50e\ntGEnOHF+XJLhtr0fEEIIlTvmOJ7v7wXvCBUF7hPziGrXr+OkgDYVcUWC86TyEj/n3bgQQojcJZ33\nr6GR8zmSGH/m975VCCFMEueBkOu+uIweyvKadRlS4jZNxuiYjJ03xDw7T4tc47SN1ypt2T7kfa8Q\n+HnxbtNwewvaDHfw3p7m9rqXxI2L5riCBRk78xq3lbsxL07xc9Mc+5nfhyjBMSkmdfnMOnuzGTp8\n+Qy/D7ZNPMnJiDitbvtt4q91+wNSZ8fKinhakzF+H4yVOd7HzImCNmQcLsm9PXMOZELaJE4uSsi5\nS1Lsw7UTdCsieCZE/anDHM8H0oVLd+46bXyOt9dXoe65z3zVlL/7zBlo85YffifU/f2/9gumfP8b\nH4Y2r3vkzVD37c98GermRf+JEkIIIYRogF6ihBBCCCEaoJcoIYQQQogGHLkTlZPMm9r9xs0ydqry\nBtQtrtnfUlfOnII2C8fRI+ovLZjyYBF/P98nvkNOfp+Hz+0fQN3ByDofbedyhRDC+mnc9xPnzpry\nKsnmKZ07crC9B20OiKdRFe63ceL+MLz7k7bxt3i2pdr9zl4RV435AT7jhqhjIU6I11O7XCriTTE6\nLmeL+R1pil6WzyMaj0jeE/HOcudXTGbEySAuVeoOpyZ+ByNxHyyJq+LdnxDQC2H36PLqGtQtbayb\n8mrvJLSZjNF3Grosta3ZNWjjGe9jP4+IhzIe2Vya2QTP+d4u3kfbm3ZMmJB8IpZL1Vu09/tgFR2Q\n/uIC1HlSku3kfaQQ2L2G22K5cLXzq2LWhmQIlewLfJsS9xO/H+sOSIbQdGod2oUVHE97C+hcJt7H\nIx4TUeHC7MDuO/Wf5rj9WCYT0eNC5ITHlLh+NbhMuO2U5Ev5PjQriGvIxhLi3nkiMjinrg/dvIA5\ncW/4wbdB3f71W6b8r/63fwRt/vqn/znUffGHP2nK//gjfwvafPi3fgXqvvXlr0DdvOg/UUIIIYQQ\nDdBLlBBCCCFEA/QSJYQQQgjRAL1ECSGEEEI04MjF8owskDt1YmJOFuMcbaE0euPVV025+/yL0Ob4\nHeegbv3cbaacEgmx10fRcxqhUOxhct2x2+3ihqfvuQvanLnrDqhbGNh92L9+E9pcOX/FlG/dwDYj\nIrsXzuL0izm/FoVbcDglQXcVC4dz5wXFyBBqInX6OhbWyBZYzgsrQqet+bp6zwW2ZiTcMyXBdoUL\nL5xMSLAmoXSSajFjQX4sgNO3mS8sNXPBkv77QwhhMsJ92HWBtJvXcKIHWwx30U2GOO4mS4QQwqnb\nse/7xVNzsmgvfIYI6pMh9v3Rvl3UdkqCPKfk+iVuQd6lFRTEB0RyXjt1wpQXyOd6g8PFcub7VjX5\nO7iy++nv2RBCiGIiVfspIUy8Jv0sn7rtE9E8JxMmPLMRjvszdt2TwxeQ7g9wslDl5GsfahlCCDU7\nPi/vE6+8lc0zfpIAVzaZpnTtiHGfuvGUTQIIZDJNr2ufv1VFJpGQINaSSPHwORJUunDCTjYZbu9A\nm69++jNQ96N/4X8w5c/9xiehza888Qmo+8n/42lT/rF/+gZo8x/++b+Guvsewnbzov9ECSGEEEI0\nQC9RQgghhBAN0EuUEEIIIUQD9BIlhBBCCNGAIxfLe8soXg5c3XSEq7qnLRT3Zhdtu+uvnoc2W5cu\nQd3GeSt6b9yJYmtnFdPBkzYK6J4Tt92GdedOuzYo18YVioEXv/ZtU/7253Gl6cvnL7oN4T71SCJ7\nZ8Ge85pFgTNcmm5EIn4TmpRr5U8meqcR7nya2nYJS+9lu+lOhJeCXwu/Inya4dZrYsD7lG/2bQkR\nPWN3PplEylKUfVVEc+KRXt9N7PDfH0KYTvH+K51we/PKFWgzPkCJuzuwq7YvLON9tbi2AnUnz9r7\naLi7DW08bTIZpNXCiSwr6zZFvdvHleWzLt7rHSd/95bw+/pkVYF+326LydLjPZIc7cjJqgIV6S9+\nVQHmBMdkYkfp6qpAJojEeN/6RP2I3JEFkbhxO3heWNJ5x4nkvQFev3YPr/vMrQ5QHuC2R+TZUzqj\nPyVjCbu3PTW5kVnYuz/vVOn2+0BWbahy3HjipfwMrydbsaAmAjrsEjmWm9fshJS734IC96d+9beg\n7iuftc+6H//oz0GbJ/8C1r3nL/9ZU/6zT/4VaPPZf/LbUPfOO38M6uZF/4kSQgghhGiAXqKEEEII\nIRqglyghhBBCiAYcuRM1neJvq92+DThcO41ewfKxDahbO3nclH34ZgghbJJVo3c3bVBgVeBv/0sn\nT0BdexF9Ls/GCfxcK7G/4V/4+rPQ5qWvfBPrXLu9LQwq66/afVq/7Qy0WVjDcL+Wc39yEujIiN1v\n/zHxmKKEhMO1bUBlq4UhnSxs0686HhMnitlAsfMPWCAnI2s7l2KC3kTBJBN3HrKMhYLiAcYu5DRJ\nmXOC18afh4hcB0ar4/aLrbxO6ioXArp76xa0uXbhAtQ987kvmPLy+hq0uevh10Ndv2t9o5W1Y9DG\n0+p2oS7podvUdnULa7hPGQlrHCwvmXJ3AV2cmPxdOh3acM+bVzEQd+vadajzsEBV1jci19eZN1Uy\nt9CNARFxfyoS0jmd2pDMhIVK+sBKwpiENVZEGuo4r2+BeGitNo4vpQ91JuP+iISsem0wnStYE2H3\naE3CNsva1pXEUarcOMyyktl+ztz3sX2KqT96eNjmwtIS1F09b53kKxfRpfyeH/5+qPvsH3zOlE/+\nd38S2rzjj78d6v7N3/+Xpvzwu94GbZZu/yLUDa9vQt286D9RQgghhBAN0EuUEEIIIUQD9BIlhBBC\nCNEAvUQJIYQQQjTgyMXyyRjFvZmTDtmK0UyOPnH/vaa8fBLl0w0iWm9evmr3aRdDAgNb3ZqECXqG\nt7ag7tVvWGn0wre+DW2uvPAK1MUuoPLUvRgKeuKcDe7skmBNJmx7YbM+3PsMIYTQccKmF9RDCCGf\nMdnVdrU4RfGaiawgaJM27C+BOHViORG2Gd5jZcJ9XaOwGbvj8+Gi32lDhG3f1dnxMWvUiZ4RCThl\n+OBAtu3+EplA4fZzdDCEJntkhfYrr1rZ/PmvfAPatLsYjNhbtmJ5i4Q8erpEBvcTIUIIod237WLS\nh2si0u5tW5l+8/JFaLNzFQXx7et2IstoiONIEh1+fAUJ2yyIHO1PFVOCqxw/58X1kkjPEQlnLaZu\n8CD9vJwjbHMyxqDLmExy6C7YvtFfIGMe2f7wwAaaHgwn0KYg56XlJW4i5bMJNh4WQsrG5tKFpeZE\nys/cPtVkfGNjrJ84MyXXhfX9kvQzzzTHwNgTt9mJVlcuoFjeTnCsvOv195jyK2TSyvqZk1C3e9U+\nfw92sE+t3Y6B2GM3+eMPg/4TJYQQQgjRAL1ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDjlwsT4ns\n5lc139nchTajEQpwy+s2qbZPpOqlMyiRJU4s3b+BaaV1TuRoZgE6rl+4BHXb16xY6ldZDyGE2193\nL9Qdv91K44snSGpzat+D/Yrq36nDJGD/+jxvCm+rY1OhMyJQdyLclv9c2mLiNb7Tp16gJKnfTPQs\nnRCetbDfMbzEWZKV0FkCtF/5PC9I0jkRdYPbFjkUesxeZGVSPqNy+xWR+zHNUPQerNp7bf30KWiz\nfRNTzHdvbpvy9St4f6y8hJNGVtyKAWSReqBL0skj+kF7Tcc7OBlkcoCS7GRoZfohEekPdvfw29xs\nhd4Ak879/cFg4wZTqL0E7JO6QwihZn049xN8iFhOv8/1dTLJIc/JGOQYj/Gcd/t4TRfcBAI2bhwQ\neX97017nfXKtOh3s+5mTttlkBX8fM5iwXcPMkhD84Mya5O7apOQasxHdj6cpuVYRSZxn+w77NEVR\nP+nb7R87fRza7N3A+6iMbH85/sA6tElP4/Pw5ue/bsrj63hv91YxWT3fw74wL/pPlBBCCCFEA/QS\nJYQQQgjRAL1ECSGEEEI04MidKBp+5wIcWYDcAfnNcjaxQVqDFfyts7uAv6nHbesktBZIsOYIwwQj\nErzoYYF4bedA9FdXoM0KWd2+s2hD5aZkNe/RrvXH2ErvCXNqvEcw5+t04sIvSS4qDXBMnFfA3Di6\narxb0ZwdX6hw56vaXoeK+UiEqfPHaqKhsG0Vrm94R+o72yLegjsvEC76GviwPe86vDb2grHPMcck\nSa2zs37iBLQZ340eSrtjw/Uq4vVs3bwJda2u/b5O73Bn6MrLGFh7sIe+xci5MMxjmk3Qz/GuEXPj\nWm0M7lzZsPd2VaJ3M54jyDefYnBgRYQZH6jK3Cbm8JSuz/p7KIQQSNZmqEv/OWyUzOHUlAG/b8EF\na4YQQsd5Ut7zC4E/L0bguZHrR9zQ1HmnzCfj8Z4Wpi3W5Jj9Jc3JWJK5EFKuDOI++XYZGYdbxFcd\nx+g7edIU+/X0wI6nCdn20jF8bt+6dM2Ur7yIwbZ3338Xbuusda6ukRDrZeJSDduHH99rof9ECSGE\nEEI0QC9RQgghhBAN0EuUEEIIIUQD9BIlhBBCCNGAIxfLQ4kSYOyMu1ab7BYx5yonNI6JTMhWn858\nmGCKMmjUImF0ZJVxT9JGUa/ftTJdu0tCATso3A2d3D4jYWbefE7JqucsjBIl5/nCGiMnQpfkcyWR\n62dudfQowfNLgyadZVkz05sEKnqBeTo9fFJACCEULmyzIKGrNTlmH9KZz/k5L5bXbewH9Jq6e4ZN\nHmAUU7ufNQmQjWK8/1K3+nuHCL/HzpyBOu/g7m9jkO6EBMSOnQScESHVw8IvaxLymLlzt7qGYZ9x\njBM9gpf5ySQAFuqaOtk8YvfjHEG+5Qzv/4j8HewnNbCJEH7MDSGEKrfXge1RTM1yW5fQfn743+st\nEnTZ7WIwqXexRwc4LrOwzeDOQ7eD4z4TrecJ0pxn/EzJhJspC0J1dWxCig849UGpIXABvo69kI77\nzQKU/TjFILsJx8yeYTFJBV09uWHK169hIPaV81egbuOcDQHeJZ/b38IxaJ7x5bXQf6KEEEIIIRqg\nlyghhBBCiAboJUoIIYQQogF6iRJCCCGEaMCRi+U1Sc9lybiemLzv+SRZluw6IYJh1fEyNsqESQsT\nksuarYvttk1SYtPMCYxEhJ4Qab10IiRLl/bSuF8xPgSenu23xFKqGZmXZMk5iTIiKzoxOSbyInMz\nsyh1TVjCL/lg5MRLMsGA4dOWWfoyU0gjJ3az1N9A0rpz/7mM3JIVXj+/D0w+ZXghNRAhnSVAxx17\nP8QpHt/iGsrYUyeNRwnea15oDiGE6cwK4UzU95w8dzvUZWSih5eHW10UjBMi8+PMBzx3symK7L4L\nleR48ymec09JEssjYuUWYyvvFmQyT0QTy207NiLEZOxKE9dnI5LMP0eifpuI+kuLOIGh5a5fPsLz\nGZNr42V6NmGDpoq7w5lnAgyDpfXXZBKOn9zCnimRu9/ZucvIPQrPOnb/s5UV5ng+RDER2d3mU5II\nP5uQCVNuotXqxjI0mUywX29t2sklg+VFaJOTz7F7cl70nyghhBBCiAboJUoIIYQQogF6iRJCCCGE\naEDEV6T+z8qRf6EQQgghxB8Bmqiq/0QJIYQQQjRAL1FCCCGEEA3QS5QQQgghRAP0EiWEEEII0YAj\nD9t89MmfhzpvmrOVySn+g0SSjyOyLaeH0dWuif4eu8C4pz/4NLR5/PHH8Ovcyu79bg/aXHzuFajb\nuO2YKXcW8XM3L18z5aUOtolImOjErfqdRNgVPvr0R6DuZ3/OHl9ZYbhgPiWBqj4kM8LQtaSFoYf+\n3LFg1DYJcItquw9xjfv00Q99GOre98QH7XbIPIjxcAh1LRd2x1akL9iK7S5srypJWCsNBbSduCox\njPKpj30M6j70pL2m+WQf2uRkpfVyZutY+F6rgwG1iQ9VTTAAMIrxc5DSR5zODz35qCn/zOM4trQS\nPHeZu48zEgDKRqDKBSqW5JxXJNO1cNc09uGUIYSKhGY+/ZEnTPn9j78P2mQkHXJS2ODA1uIA2uze\n2oO62IWOnrv7Lmhz7dnnoG7r0hVTXr/tDLTpLOG49P73fcCUn/jwU9AmifGe8UM6C9KtChyXKteO\n5EyGOsZrk/h7DT8WUtLPnnjCji8ffPQD0GZ3axvqBsfXTXnj9pPQ5sorL5lyORpBm4WVFaibuPDb\npCIh1j4cOmBg81NPfxTafOCx9+Ln3HAWkb4/IwHcaWr3oUPCRBMSTJy658rB3g60GQ+x77e7dgx6\n+uMfhzavhf4TJYQQQgjRAL1ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDjlwsj1jop5PPmOjtRdr/\nuDXX6LBNf6cOzEAaRAp4sZRRENl0obdkyrO9A2jDVn9fPLZhysNdlBArt4J5sowy4TQn4rw75mq+\nUxCilhX32gkKo/1llKpbPVvXXcDPZW38XOwuVnGAK9kXRIT2K4PnI/wcYza27QYLuAp47/hxqNu/\nZa/NcBeF7d6gD3Vp24rWeY79J5/iCuOtlv1cQmRQipOo0x5Kx0zwHw/t31vVDPdpNELhvu1k8yhC\niTTOiEyf+b4wzyry2IljMhEhcc0SIgVXRHb1tz/xmemEFBjPcAAKlTdwCWyOTEkmTPits0kAowPs\nnxvrdpzq9VH43752Herq0n7jihOjQwhhf4Jjnqdwk11CCCFp4yOq5fpnZ4Bt/D6FEEKZ23NVlfh9\nBfmc71aR70AhzLUOR6tLxrccv2/HTRY6eddt0GawvmzKl5+5AW16/QWo6/bsuDvawXs2IpN+4vTw\n+4/cDqF0k2nqCs95Tfpnu2Pv204bx6RyhtuaOMF+coD9ro7IeEO2Py/6T5QQQgghRAP0EiWEEEII\n0QC9RAkhhBBCNODInSj607FzmaieQ50ov3GydeZJuXbU06IK1uE/fDNvqu9+h770wiXcNAlUHBy3\nv3tffflVaJO6r+t00WPYH6JLFVJ76dM5naiFRfs7e9JB5yQjTk3mwgR9gF0IIcx2MRhturNryuPt\nXWyTo5/jwz1rloJIaLlwz5vXb0GbhSV0DRbW1ux+HqBrUBIvK3KnKiUOSE3i/SbumFvxHFJGCKF2\njkJKrlVM3DSfAVpnxOsb435OnaMQx+ivpRV6YD7kNAFHikDCTCPiH3m5iCgZbFPBj17z+ZYhxO4L\nuBc6x/WDAFL+fd4Ny4m8VRLna/WEDfeNiK9z6zyOXcduO23KgzX0Mm+8hPeRZzLEPlXmGM46nlgX\npkPcrYwEMVbuulcxjl0+VDaEEPLa9s+4wm3Ta+po9fFea5Hg5avPvWjKsyGOG8fvOGfKm69egDY7\nmzehbvW0DUJtkedFTlyjrD78/y05GWO9Y8aCPLskpHdxwfp57OwejIgL65zZ2RhDSNMeeT61sC/M\ni/4TJYQQQgjRAL1ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDjlwspzYmZGaiRlYRgzJi6XPwuXmD\nOx3MUZ9DHmQrS2cuzO8mCaw7+Ya7oa7nhPSdi1egzTEX/BiTFelZgFwbfM35xOTSreadoNsXij0U\nIWcuEHO6h2F/+9sowE/2bTvi1oakh3Jmd8mGZLb6GHTJ8GF0XRJGeesqBtsduHDNhbUlaBOIvDib\n2JDVTowTDDrk+GIXJjojMiijcGGeCdmnrI2iZ9+tbj8akdXfyf0xqaxgX8ywb7DAyNrdo9kc92xM\nQhBZAKefbBKTcSRl23Jxguy+qr2BH3CyCbtSORG98fvZWIbt0sTe3BMS1hrjABBW11dNeefbKCtv\nXcSx66G3PWLK7UXsr2MSiOthYZtsVCoOrCw8IxM2ugO8b32gYkIm86QtnMBQ5PYercnkoXKOiQFV\nC/vL8bvOQt3Xf/9zpnz5mVegzVsetM+LtdvOQJvrzz4HdZN9OzGnO8BxqszxvMwz7yEv8Ph8kC2b\n+NQhoaAtJ6CP93HS0XB7C+qmvm+QUODOMvaNTGGbQgghhBBHi16ihBBCCCEaoJcoIYQQQogG6CVK\nCCGEEKIBRy6WUz3UWWtMHqZSJSQIkzY0xNx9AbHm5klWZzBxbrZnZbcdIsl91723Q914Z8+Wb2Fa\n9+C+e005J5JuSY4mdsJtNIfYGkIIHXdxqgMikRPRc7xr9320gxL5jIilkROfe8soQg6cEBsCJgFH\nAWVJxs2rdgX1lVXc9j0PPQB1u1v2Wm2R46vJOucjd64Ohph0vraxAXWZE4NZUj7DJ/hmLRwCygQl\nyyi1wm1vAc/njEjx3rMuSPp6RRK1q8IKobM5Do/NM2ETUuLUyfQksjwmn6v98ZEV6WcFpq9X/iQQ\nab1k0eOwA2ycIttyceu5E6NDCGGwvAh1rdT2qSsvnCffhxxzcvSkxPMyJuMEQs55gduqnCzs76EQ\nQhjv7UGdl8Y7fRTg2x0UyyMnR7PVD9gEJs/+Po7fD7/xHqhbXLeJ79/85BegzRve9X2mvHTqNLTZ\nvHAR6mrXP0sy6SAh9wO7jzxsgkbmnocdkk6epmSVBnf/j8m52yaJ7P5uSMk17g5QZK/ZsgVzov9E\nCSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDjt6JokGafol49vvy4e971FhiHpOvYm1oSOehuxD6Pfy9\n9eaFy3Y7bQw4PH3nOah78VOfN+Vigm7D0vE1+10HuBI6W+o9Suz5rEv8bZyxf9MGTU7G6COM9tFH\nyN2K23WC17O3tgx1/TXrJPUWSVAaWQk9n9pzVZLQNcbaMesfPfuVr0GbV7/9PNS98a1vM+XVuzA8\ndVSj37E/tOfqJvEYrl6+DHUbx46ZcqszX1hcObPnJR/hKudZhMNCmlmHJmnhOQ8J8c5c+GvZwv2c\njjB4tXZeD/NQPK2EDGdE5fCBsTXZbxaoWBS2riQjTk28kMp7isQ/LOc4PuaKMkmp8q4WCRxdWsZ7\nrdizPt6ti9jvVk6gI7hw0t4zV2+iqxKI9+apSvTJIuLLhNgedFHguDgdY7hnVVsXtbWH/hNzdjp9\nW5dk2IfncdpuXcfzEg8w9PTNP/Q9pvwvn/670Ob8558x5XM/8EZoky2g95a4vlcFPOehwj6cZHiu\noA0J7u24EMsWCbVMiEuZT+1zbPfWLWgzOUB/tLdk+/VgCR1a6kTNoSS+FvpPlBBCCCFEA/QSJYQQ\nQgjRAL1ECSGEEEI0QC9RQgghhBANOHKxnCnjUDeHC/7aWzscv615tzJPniHJ0Qs3b1ih8Ngdt0Gb\nHgnpvPh1KzAPloh4fdxKnS986QruEwmaTJ0lX5TzhVHu7Vg5k8muJRF8O24/WUDmYH0N6haWnBxJ\nVgqfEIm0LKzwzoRfxqoTtt/z5/4UtPndf/GrUPev/sE/NOX77n8dtDnzwL1Qd/zeO035xFlcjf2V\nb70Adbcu2evMQkEZZWHP1WSfGJUV1nVd348WUM6MEhRL49SFnnZIhyGXpnDBqzUJYoXNkGTdihxL\n7b7Qi+YhhFCV+Lkit3XE1w5ZxiR1+7mK9OFyevjxseDgkt1/tT2+JCOTOLo4QWP7sh2nxvs46eAY\nmQCTtOwx79/CoNmkPvz+W1xBETom0r+fnFTmeP1GQ5zwMp16Af3wAOcQQihdeGjCwiHneDbkJBT0\n1ZdehLoH3/lmUz71f/4OtPnmH9hJR2ffjAHAvQE+Lybbm6a81EexfX8Xx9M4Ody8TmI8L5F7QETk\nST4d42So8S27n9tbKJYHch0W3XOl3cdxKsvwmMfk2syL/hMlhBBCCNEAvUQJIYQQQjRAL1FCCCGE\nEA3QS5QQQgghRAOOXCxnJjLIZkTSq1nq9hwJ4jWVB+0H+QrVc+wnYTZDQXQ0scmqD/6xB/Fz27hK\n9bVXLpkF2mjtAAAgAElEQVTyvY+8AdqUzmQf72D68waRuCu/Ovqcia19JzB3l1FQ7Sz2oa69YCXH\nrEuSa0nibTGx+7m3twNtxkNMrq2cLBwnKBMyPvdbnzTl7/tTPwJtfupvfRTqfv/XfsuUv/x//R60\nufFvPwV1vS9+3ZTvetProc3t952Dur5bnXz78jVow/AScEGE5vGQJIg7GbogCdtpD1PM/V9pNZl0\nEMfYF3yiPlvpwMMnfjAx2dZ50TyEEEoipAc/OYGtasDGCLdjTFoPPtWcUNNVFHDfI3c8aQv7Pjud\nt65cN+Wkg59bve0E1I3dqgV7uziWtdqHJ163yEoOMesvfvYO2c8WOebSpXWzZwqbiODHkojMHoqY\n4e/okpT/V57B1Q/ue/1Dpvzwu/8YtPnKb/57U77yLArqy8dRLL+waYXtivT9tIXnfFYePvGhJvea\nf9wXM0yXn+zjmL61ZSc5zHJccaK/jGnknYF99mR9nLBVkYddPpVYLoQQQghxpOglSgghhBCiAXqJ\nEkIIIYRowNGHbbJ0Rpcix90j8r7nHAHmP9Ef/93nWIgd1SvmcLDGEwyoy/rWB1hzwZMhhHDhm/ib\ntl/Z/fQDd0Kb7Zs2hKyY4G/H3R46J8O9PVNuzekM9VdtIF7cRdchIqucz5x7MxnjeRoNMXRtuGl/\nL5+NMAguI7/ht7xfFZPVygnHjtuwzV953y9Bm7d9/t1Q90M//mOmfO8bH4I2r37lm1D38peeNeVn\nP/8FaHPt0iWoO/f6+0x5sIJ+AKPtQl2LhARN5ujnjCb22swqdCR6BVk1vm2/L0nJfUy8nsTft/Ec\nf+8R1SgnwZbB3Vc+EDCEECoSDlk6t2k2YyGdWOdVJurUzNE9a3IOmCflB7RWhvdovoce4YFzmVZO\nYfitv/9DCGHP+ZyzEXovXeI7eVhYIxu//XjNPCbwpkIIqQtZZOeOOlFV5srETYsPl0oHiytQd/Pq\nZai7+OJLpnzq9XdAm1eftW02yRhxaukeqOt2rMM6nWDHy1jAaTi8gybkQRo7n6zwLm7gDqZv11/E\nfre4iv2zt2THwZgEAM/Is2c2kRMlhBBCCHGk6CVKCCGEEKIBeokSQgghhGiAXqKEEEIIIRpw9GGb\nxM6GzDMmE1Kr24tsRPij0rgT0qlFjpVU4nQwYXp5Y92UMyKtvvz8RahbOmkl594ahqddf+m8bdPF\ncDEfvhdCCMEH/rXme5+eOee43MPjDbsoiPvAupyIfGw19rqy172XYZftkJDHyl34Op5jVkAI4eEf\nfrspn77zdmjzG3/3n0Pdtz73FVN+g9vOd7Z1Guoe+uPfY8p3baFk+eqzz0Hd5RdeMeUV11deCx+k\nFxOJtM5QLJ9N3YQFEg45m+J1j53EnbWxf7LJJl7sjsk940mYeE2uu/eCmUxMw2fd/Z8SebmK8HyW\nwZ6DhIj0VX54/2SngGSehtiNnzEZt9gEjTi1n+sPcLJCQaTq4Y6dpJLSAMfDJ67U7KSzKieg1xHK\nwzURoSs/EYmcl4IGodpiRM5BMsfwmXVxnGqRSTg3zttnwcoJDDg9cfcpU57uo8w/3sOxJHMTiKoC\n+0HJwqfnGT/pfWQ/x8Tygoz7fkzPOjhudAdkIos7vukInzPjET6zCrbvc6L/RAkhhBBCNEAvUUII\nIYQQDdBLlBBCCCFEA47ciWKBav636pi4DUmMroH/wZw7S/hbp2/Htsw43IgKoSKuyPK6DQUb3sQF\nF3dv3YS6U/dYH+eALG68t2c9lE4ff3efTPD3cv/6HM3pDNVuoc2ELLzJ3IbauzHkerbIvrfa1hmI\nSjy/FXHo/LWK5vDZQgjhU//GLhx8/xtwQeD/8aM/C3Xnv/otU75+8Tq0ef7aJtSlHetzLJLFoo+d\nuw3qRs53mM25gCbcf0SqqRPifKRu0V7iEJRkkVLIuiT+U5qh0xK5/kFDeh35hHkN2M+80pITD4aF\nZnqViS0k7MeyEELInfORsuDQep4wWPY3L1mY3TtDJDy1GGN/id0Y0CJ+JTu+auoW6GWhmXP8ve7P\n03fA6xe7ZNKaBSpTx8WFLNPnDAs0ddsiLtxrrH5tv498rNXBINTpgR2vp2McvztLdqysczze6Yi4\nqS58MsvQVSsK/D4WEOuJybOvduN1meMYEcd47lodu5Bw3MZnQ2eAjrBfBHk6Jc8+wpyPP/7Z5h8V\nQgghhPj/L3qJEkIIIYRogF6ihBBCCCEaoJcoIYQQQogGRPMESP4n5si/UAghhBDijwDVz/WfKCGE\nEEKIBuglSgghhBCiAXqJEkIIIYRogF6ihBBCCCEacOSJ5Y++91Go8yvE9xYxnbQ/GEBd5ZJ4Z1Nc\nkTovZlDn089nM5LoS1ay7nRsuutTH3kK2rz//R+AuplLDB+srUGb4eY1qPPpq8fP3Q5tXvzal035\n1Lk7oE2SYiL05oULprx4HFcKf/KJJ6Du0cfs9eOrnmNdktjk8R5LJ+/giubFzKYTs+s5O8BkXtwH\n7Oq/8Esfg7rHH3/clMduhfoQQlg9eRzqBifsNT3/3HPQphhi/zx26owpVyRpuSAr0vvk34Q4j089\nhcf3wcces9thE0t8NHcIIXJxyzFpw/oCfA6/DROhA8vhRp7+hadN+dGfxiR5uoZB4VKUSQp+OcN+\nhlsjCc3kfEap7Xtxin0xbWNy9S994hOm/Fd+6q/i95ET5a8Nu8RJilcibdm6bh8Ty/0YGEIIsUuz\nLmaYEt1u4TH/7M/asfLx970P2kTkAP1ZZ/2nTfYzc6sf+IT2EEK4cQVXGtjd3DLlE6dOQpvFFVxp\n4HF3r33sE38T2hTkmTUdutUIxji+jQ+Gtg1ZsSAjaej9xRVbXsVnUdLGc+fDyN//cz8DbT70QXz2\ndbr2nGekH7DVAabu/puQ1PYDksheujGoLHDbaQufM3Fin7V/g1yr10L/iRJCCCGEaIBeooQQQggh\nGqCXKCGEEEKIBhy5E9Xu4u+tp+84a8rlGH2ECy+eh7p999txu4+/AXd6+Lt+5IwL/7ttCCGsLC5B\n3WQ0hDpPkuLv7KXzeNIWngPvaYQQQuTchu4S7tNw1/4u3O6ha8Scr8qt+s08DUa7a387jsjq4cUY\nV+revrZpyjcnuE8Ly7gq99op62qtrK5Am5qcl4OJdQ2mwxG0YfQXFk25GuNv6s9++ktQ991/8odM\n+U3vfDu0+Xe/8dtQd+Xl86Z8+uxZaFNHuJJ91rWe28TdC6+F12Nq4jax5eYrJ9Z41+m1Pgffz5rE\neHzehamrwzN6Z2yFeNKucL4FDxzGurRlz3mS4rjBXC7v+sUZOopJcvj9VxHnjCh0oY7tUUfE/WHX\nPc3suJQxdyvBz9XuXJGvo94ZbIc0iUjfTyL7ffkMr/t4hvd7smzP+9KJDWizceYM1L3wjW+a8qWX\nX4E268PDnw11hQeYJHh8wZ3jhDwvWrl91jGHLyqxD/s+xG7ZhFzj18iZNOQFcWFdnffuQgghIz5g\ny/lcrTZe46yF99F4bN2wPCdOVIrnM4qb/z9J/4kSQgghhGiAXqKEEEIIIRqglyghhBBCiAboJUoI\nIYQQogFHLpbHxOF85rM2MPLa5avQZvXEOtTd8eA9pjxwUnAIIUQ1inupC4ebknC4q69egbq6RLnN\nExMB1oeJthf62GaIwWFJx0rxCysL0Gbnmg3pbBGxfDpF6bicumM53NsNIYTQadt96izisaRtPOcL\nx6z8fYOc34svvQh155973pRX1rEfnCIydm/V9oVOF+VFxji3YuIdb7gX2lx69gWo+7f/+NdN+c9/\nFIMR3/yD3wt1X/ydT5ny3s4WtGFybX/NhvuxCQUMvy2itYaKOuO2siJBk8z9TpxlzLbtpfUQQoi9\nyHq41xpaRIRmAjyE+5E2KZG/MyeIt3solnupO4QQUtgvPOslkXI9OZGHfSBvCCF4Vzlhwzyzv915\nSFPcdosEFVbOCI+IIV4zA96RsCBGIo3XTpiuiXA/JeGMw+191waDLu9540NQ98gPvsOUv7WM4/CL\nX38W6gAi87c62M+mU1tX5Xjdi9we38E+jvExmawQufE7IjdWm4jsRTHHA4Ldo/6YiUgfkTBo/4yO\nmQwe4T75SSJxwH4QyD0ak/DZedF/ooQQQgghGqCXKCGEEEKIBuglSgghhBCiAXqJEkIIIYRowJGL\n5dev34S6wYZNqn7Pu74H2qwdPwZ1W9dvmfKtCyik71xHUffmJdtub7gHbY7dht934vZTUOeJYjyl\nPkl5sEzS0PdQLO93rSzcJeL8xAmFbZK+vr2L58CvYB4lc5i7IYTJjpUcW322WjqmxB+/3yYB3/fd\nKHBuXsYV1F/8shU2r714Gdo8/8wzULdyzAroS+u4Wjljf3vHlJPXo1j+th/9Qaj7B4/ZVb8/+6u/\nB23e/qd/COpO3HG7KU/3MWm5GKFYOrxpr+nKKeyvjMSlgxdE+KUJ107YZCnfMUk69mJ3zWKpGW4X\n4jnS0KMM2zBxNmrbe4SlFWdkIkLqVrePiAjNd9NWliRFmQninoKlL5PUZr8TTAlm5xPGBNKmrllE\nuqsj/WeOwPkQEbm308aJK6VfbYFcvzLHfrZ11Y4vm5fweTHc3IW6N7zju0359Y88Am1YCj20IfcH\nTSN3Cd7VFOVoP0GkIMcbSJ1P6/fXPIQQMjJ5IDr88Og5L93hFSzVnMw2q+E5im3Yc6bjVv5g9z+j\nZhMt5kT/iRJCCCGEaIBeooQQQgghGqCXKCGEEEKIBhy5E3X7gw9A3dox66vsXkOH56u/82tQt+P8\nqoisFD6t0SM4c985U37bj74d2iwsL0Pd5RcvQp0nIuu4F26/en30LXISthlOHTdF72SEEEIxsoFx\nKfmNvWZeSOl/O56PvR27Wnm6h11o++o21N28ZOtO338btDl99x1Yd89dprx1FT2G8994Gep2b1hf\nbjxG740xddfh1edegjbv/NH3QN3rvv9hU/7sb/0baHPfW18PdYOB9eNq8ndNfxHrdi7fMOWD3R1o\nw6idnFJWeH9EMfo5czlRpBN5hwZCNAO/Z/zm58mCjcn9wXyZhYHts0kLg0rjjIRYOu+lKNBVqwo8\nn94HYrmTMTnnsB0iFlG3yQUcMk+LnZeWOz4flPqdfWDXytaVBXFjSCCmJ59i+GXWH0Dd0saK3wNo\nMz0YQ13urs3LJCDzG3/wGajbc8+ZR37k3dDm7vvwueahZ4CFs2a2f0YkoLJyx8zCTCvir/lzzO5j\n389D4PctbJtc99R5fGNUPkNNEnir2p6XlNyPLEw0dQHVzMVjxzz3A5Cg/0QJIYQQQjRAL1FCCCGE\nEA3QS5QQQgghRAP0EiWEEEII0YAjF8t3r9yAum99+vOmvH0VQxcXyMrZZ+61AY6rd5yANve8BWXe\nEydtaOa3v/hNaPOpX/t9qJsdoPgIkNfSonISNwldm5GVuhO3ujUTBX3oGhV+2arxfltzhBl+Z2N2\n3ydTFDiLEa68fuO8FcLPf+N5aHP8Trx+px+wsvnxc6ehzZ0Pvw7qdm5aGXT3+ia0Yaws2QkF3/p3\nX4Y2PnwvhBD+6//5z5ry3/5LH4A2z3/uK1B35iErzm+P8dx1Sd/vr9n9zMd4HRi1m2hRVyiDVmzF\ndtc9EiK7QuhiwP7IAhwjsrp9VHsB/vCQzlYfzxMLDk0SL+6iSFuyEFK3nzFZfb4iAnXq9qFOmGJ8\nuHhNoaGZdj8zEsiZEXk4Sd15obI79g1/zCxQMZ9hvwbIxKCta9egbjq2Y+WJc2egzZm774S6Ox+y\n8vfG6ePQ5qu/92mo+/aXv2rKeYmTB97yQ++EOg8LKmWjbu2uKQuD9SGSTCxnMxgqt+9lgdelJMdX\nz/GqMJ3iMyy451NWYr+j+a3uQcoE8Thi94zdzzrC/a7JvRbNNXWFo/9ECSGEEEI0QC9RQgghhBAN\n0EuUEEIIIUQD9BIlhBBCCNGAoxfLXfprCCEcP21XoH/zu94KbVbPoASYLdik4SRGae3iN16Eun/0\n/v/dlK88/yq0uffND0Hd/W99EOo8TMptu1WxS9ImJ15b4laJL0iib6djtz0eoWBM05CdvMjSkBnL\nJ9btPs1IavMExcRu116rbZcoHkIIl77yCtRd+dYFU147cwzabJw7id+3bL+vv7gEbRhrJ+32X/nm\nC9Dm9/7Zr0Pdn/npHzflR37kB6HN+W9iXzx2t5ViYyImT4d43VMnNdft+cRkkKqJfMpWm6/8hAVi\nxLI0ay9js72kcq0XPYlc6/FidAg80bv0Ui4RmktS5wXfTobfl2WHS9U+Nf4734f3DMB8fyblu2OO\nySSAdI5zFRMpn40SkMhOJrfMSJq1p9XCfZqRhOvrr9hx4uYVXMVg7/57oe7132ufKz/wp/9baHP6\nrtuh7nO/+XumfPnl89Dm6yTpPPzUT5liRfpUiMhEIHf/JWQViih115RdK5IEDvOJ2EQkUlfOMe+I\nJc77BP88a0ObPMfzkrvJCZ0urvLRauPz3t/uLCmf3dvJHOPLa6H/RAkhhBBCNEAvUUIIIYQQDdBL\nlBBCCCFEA47cibr9dXdDXX/NrtQ9nkyhzTMkEHPzlSumfOkbL0Gbqy9dhLq733i/Kf/4Uz8NbdbP\nbEDdxVdwWwDxQjLnTpRTPL6MOAqp81dGwwNo01m05y4n5y4l78qJ9znmdKKq2v7u3erj7/XZMq68\nvnzKns9Ts7PQZn9zF+puXbPhrLPdIbS5/hxel67bh8HqIrRhjGb2/D3wloehzRc/jf7DM3/wBVP+\nrh98O7TZuowhsnubW6acJGRF8xID8arSBT+SwEhGmlm3ICGaBguj85oUWwg9ED/HC0/Uf6Krqjs/\nh3zO4z2KEDDoMgQW5Ef8pxL3KXJ9Pyf5kQUJHJyO7edYMGJVzyGdEL8rIf6ad5lYG5at6wNNc6Jp\nkdMJjklJ/afDxxfWYnF1Berazq+8+ire/1/6JIZmvvqSdane+q53QpvbHnwA6rrLdh+e+RTe/1de\nehnqPN4PCiGEknUidz+k3n8KIWTOkwJHKoQQk7vNb4v5QTMSjBq3WPCqg4xTPkQ6Z/fHBF2qrG3H\nqdm0B21YAHfiOvaM+FZEQwsJ69hzov9ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQD9BIlhBBCCNGA\nIxfL9/Z2oO7CKzbscrSD8nB+gEJa10lyb3z7m6DNn3v8L0Hd2YfuMuXnv/kctPn0v/4k1I12ndiN\nmw45kUZTF7Y5G2IgJg1Uc7LbeA/F8t6yFaaZtF6y0DUfwFfNEfYXQpiO7T5MRpiG51chDyGE2Eny\nnS6Kgt0Ty1B3eqVvymNy7kbDPdxRJ8kOt/DcMQ4O7PGsr+MEg9vvuQvqnvl9K5t+17u/F9qcvA8/\nN3HScX8FZckZES99fylYkB+h1bbnc0aCX4uSrMYO4Zf4Oaae+uBHJjSzcMY5sj0BFhJYEck5ceGz\nCZO6K5Rkc3etpjO8LlNyP0DgZ0TOVHL4UJyQ0Ezazk1S8SGh36kk58oFExY5O+s4vs2cHJ0TgZrP\nRLDk5FpFGR7zgpPNewMcS666Z0oIIVx87nlT/t3rN6DNg297BOrO3mvv29tedz+0mWdeAOvFJZnA\ngOGsZLKSC1nu9PEcFGN8Fvj7sSSzB6jsPkf/bLVwcks+s9tn90wxwTE9dWNeUeCYRObggHBf+XTR\n79RCDZsTMy/6T5QQQgghRAP0EiWEEEII0QC9RAkhhBBCNEAvUUIIIYQQDThysXwyRNltoW9l1+Mb\nx6HNYHkJ6vqrVqZLB7hC9MXrV6Dud5/6TVPevY6y+8nTJ6Hu1OlTUOeJiHCbOuHugIjQLFHby26T\nfZRWvWQ5JYnldYznJes4CXA+MzJkIA8ywRhl0OnMioGj/W1oMxvvQ12c2H3Pungs/Raeu7qYJ0UZ\nSdzhbG/jfp68E9PWr7xkRdZL38b0/P4y7ufe7JYpR8yDJE5u7RLm4zkSoUMIodWyScAxkdbrkonB\nlWsz347W7n5gnmdNJOfISbhMPoft5Nj32QoCE7fafEVE2jxHkdUnThfkPFVEFM467pwzI3YOszUl\nqxpkRLz2KySwFHwvGDOqCu+Zihyzv7e8oB5CmEssj2M8loJI6uORnSTS7Xagzdn77oS63oJ9zmxd\n34Q2r3ztG1C36wT0k+duhzaLa2tQ5/H3bAghlDTF3PU9ctNkqR2HBws4IWVK+pTvCyURtmdjFL1j\n0q89fXd+Qwhh5iY6JRPsd6MD/L7aTW4pyefGZKJF7SYsxSk5ByTdnU1AmRf9J0oIIYQQogF6iRJC\nCCGEaIBeooQQQgghGnDkThT73dSnZhU1/k587cZlqJtcti7DbIiBivUMf8s9tXHClO9/3eugDcmn\nDOMDDAH1sMzDtgsqm+zjb8AZCZ+sXVDZbIjfnzrfopjhuWtneJn9WamJ/8Dwq81XbEX6CPch9Z4G\nWzW7xn0oS+uv1DUJgiMhdj5gsJovpzAkzjXwLlcIIRwQ5WPjzDFTzsnncvK7ftqx4XAzshI6C2L1\nLkWSzPf3UOKctph5NgG/r3b3JNVemB/nrnNJ+gv7nFdo5llkfXcTwxN96GoIIUxGY9cE+ysLOIyc\ns9MZDKBNkpKgWXeO0zY6PPPEiZbsHmWqinNo4givMVvJHnaBeEwxCe6MnHvD3KZ6DicqSjCskV0/\n7xYd7OO42B10oe6Uc5kWltCz3d/egrrpnq27fh73aWkdHVqEhB4TT8qfqnKG35c7r4+5Vaxf+wDn\ncobjzYQ4URmN0rUsLDInyl7TrndxA38WjF1obZGTkOU93Pc6t+clIs++jNx//vn0h0H/iRJCCCGE\naIBeooQQQgghGqCXKCGEEEKIBuglSgghhBCiAdE8wt9/Yo78C4UQQggh/gjQ2R/6T5QQQgghRAP0\nEiWEEEII0QC9RAkhhBBCNEAvUUIIIYQQDTjyxPK/9tM/gTuRtU15aXUd2iytrULdwuKKrSAxyvs7\nu1A3dWmou7cwpXbi2oSAqbu//Lf+OrT5qz/5k1C3duK4KS8ur0Cb2QgTWS+//LLdz50dsu1Tpjwg\nq4kvrWPdzs3rpjzZuQVtfvETfxPqHnvvY6bM0pdTsrp2yyVzp21MFE4yTMoOsT3nJYmEL9nK8rlt\nl48n0OZDH3gc6h57zNZlJNGb2YWRq43nidgOIdQ0OtpSkQT/yvXFiqz0/tRHfgHqfuIv/rj9HEk6\nHpPEYn80S6vL0GZ5He/R/tKiKafkGs9Iyn7hVlXPc2zzxPvfZ8qPPf4BaJOSFdtjl+6edXGfoohc\nP9f1fPpzCDzB31+aMp9Cm7LEfvCRD3/IlH/xE78IbYZbOL5tXrpqyrEbX0MIYf3MGdzPyJ6rVh9X\nUZgOt6EuFLa/kFDzUNd4rj7s+uf73/sotIlS3FjmUvcnEzyfM9JfWm5ViF4fE+fLKY4T+9v2HGdd\nTN1ud/Acf+iJJ0358ccfgzatHkvPtv2xTfaz4/YhSnCcGk/wWIqpvVYFOU8VWW3B99kPP/E0tHn0\n8Q9CXe3Ga/ZfmzjCWr8PBdmnGbnuowP73GYT59odPOe9nj3nv/R3/jbZU47+EyWEEEII0QC9RAkh\nhBBCNEAvUUIIIYQQDThyJypL8bfj/qL1K9aOH8M2A1xxu3LexNaNTWizdf061O3ctO0mB7gKuF+x\nPYQQ+suLUOeZjtGlms7sb9Npm6xWTlwf/5vvbIS/cbdb9rfchDg8REcI04ndz3yCHgyjnNp9qgpc\nSXtGvJCxc0yyDnGiWnheWm3nUrXQX2ll+Lk6s9cvrebr6lP32zv7Td37TyHgXyPUqSE5s6m7XswB\nqavD3ZuCnHPGcM/6HePRAbTJiX/Q7dkV2hPiGnUX0N1od/3n8PrlBd4zzC06jMnBPlYyh66ydQlx\n+CJy3evSe2i47Zq4aQn0T7ye7Hx6SnJOsi76Hb6b5TleTyb2eVcsBPy+nDhDdWG33yaOWVEd7v5F\n5BZtt/F5MRra8Xp3iH14aR290/UN+1xhPtnNyzdxvzK774vr+BzIidfnGZHnzLVXL0Dd7nX7fBre\nQg9ttmfvmTbx3paPoaPYW7HP0dYCem/tJTy+rEN8Vd8mwWtc+D5U4/jG3ELfrzPinLV7+Azxn8tn\n+HwKpC9O57h+r4X+EyWEEEII0QC9RAkhhBBCNEAvUUIIIYQQDdBLlBBCCCFEA45cLB8QaW3JBUQu\nrmA4ZD5F8Wv7hg2IvP7qJWhz7cJFqBsN90y5ReTFJRIcyAIGPbMpSpzeY2PBoZMUpdjRvq1jwaFx\naqXVFpHt2iTQzcunXtJ/LaYuwI0FXU6J6OmFVOLfhoJI6l45bBGRlgnN3b4Vmg/XWv/jPtjjYRI5\nE5FjH3ZHxF0mm9duzxIiWcK2QwhVbk9gNOcRHgx3XRmvVZf0l+5Cx5X70KbNJgu44MA4wXstybAP\nxbntC2V5eHgpyewLw128r4Z79v4vSeCoD2v9f7/BlLIMr4sPggwhhO7Anqt2nwixGblH/beTU9Ai\nYbeJmxQzIaGLFRHuey5cszPA++pg6wbU1aW/Z/Aa13OEz/pA3hBCGB3ghJe9PXtNuys4Lp+99y6o\nm2zZbV369svQpqhwDDp9/zlT7pAxdnKAY7Pn7gfuh7rFYxgsvbhm5e+YjDfDoRXLt6/hpKr9TQxQ\nnhy4vsCCLkm4byjmmeiBY5CfrMCyhXFCA5mowyblkHExSe29lufzieWjIZmUMif6T5QQQgghRAP0\nEiWEEEII0QC9RAkhhBBCNEAvUUIIIYQQDTh6sXyZrPQ+sLJ5MUGx7aZbmTyEEM5/+3lTvvIyioK7\n2yjcdZ1A2VtESXawhrIiq/PUJFXYi8hM2CzIitSTAyv9jvcx8TZ1achpCyXEtIWX2afElkQ0ZfQX\n7b5PyX5XJZEQXQJ0zmRXIuVPR1YGnTgpOIQQRrsodXacbJ6mJCWeULpVzdkK40wQLyN7zFR6ZAJl\nYqCwxi0AACAASURBVLeVEok0yUidSzovmAxK8CJ7t48S8AqZ+LB2bMOU+wsL0Iad4zi2+5kTYZtK\n3C6lnYveljseRHE3n2L/9KsRsKT8lKxYwBLDPRk7B667+JXmQwghzw+/fhWZjdFhYrkfAw7wc5MR\nCtvdRTsOZ2S1+5qcl9zdt60+jqfRHH+vF2SSytb2FtR1Bnb8vvP1eN3TGPv1s5/9jClfOY9p4Q+8\n7fVQd+qO06Z8sIvjcFkSgdnx4teew8r4eaiKOrYPrdx2EtqcuPM2U169+zZos3bXGagb7djxc4+s\n8jEiSe7T4eErWrC0fk/JVgKo8N7O3TMkJkY6u0d9IHqcsRUgcL8iMjbPi/4TJYQQQgjRAL1ECSGE\nEEI0QC9RQgghhBANOHInKkvxt+rCraC8fe0KtHnpm9+Guksv2t+Td25huFjWxt9NF5atz7Fx9hS0\nOXYWf4deXFqCOs+MrBqdO98oJiF9LExs7FYrn4zxd+nI/VbMfB3vgIQQQh28czKfU7PswuHY6uXF\nDN2mmXOgpuRYJiT4cezCEgsSnsZ+i0+ck8TOC8OHhyYlXqtZhcdXRPZzHRI8GSVktXIXRtnqoFPD\nVrL3Ttu0QPeHsX7yhCl32xhw2Bmg79R1dTFZNX40wfOSzGz/nJE2E+LVebdwStwmT0b2qdND/7Dn\n7n8W1uodvhBCGLn7cUa8otkU++d0bPs+C5Ccp3v6cSSEEFhEp3cSWbAmG0u828RCJeMU/+4eu+Pr\nku9LUhyDPNskHDLO8MR4B2p1FQMrP/Prvw91X//3nzflu74LAzkf+r434465XbjwPLq3Q+JJwWaI\nd3OLuL5XX7YB0TcvYIj0/u62KXtHMoQQFtfxvJy466wpr589DW2W1tH9bXfRc/P4Z0oIIZTOd6pY\nP6cJnLZhRe7HirhUtXdYSb9LiefKXOJ50X+ihBBCCCEaoJcoIYQQQogG6CVKCCGEEKIBeokSQggh\nhGjAkYvlLOlquLNjytcuXoY21y9hMNrowK3mPUCxdO0EynV3PXifKZ++GwXD3jJK5AWRxoEazTm/\nqjoT8CqysnRd2joW/Jg5obAmAh6TZH3wI/t+RgdWesdjSYkI7YMKRwcokecscNTLvCSocDLCOvh+\nFgDKcP2zKFCEZucqivw1JiGdMQl+c5tqk4DDfhfrvFjerlAQZ9xx772m3CXCaF7gZIGpC7uMIhw6\nWCDmcGyvX13guZtRady2q8h18Fx47iWoi8kI1+ra/ulDJkMIoWL3qJt0kJPxoJiyiRa5a4PHG/tE\nTkJN+l1KJqn4bUUkwDUmx+cnbXS6PWjD6vzx1eReS7tzhN0SOfrcXXdD3cYJGyL53Oe+BW2+8Duf\ngrqVE3ZM/4Ef+2Foc8fr7oG6z/32H5jypRdR9N7YOA51nnve8hDUveNPvQfq1k/biU69Ht7/By78\ncu/KDWizc+0m1N26YeX9AzIOT6c46aCc4/nAgoI9/nkVAoZRhxBgYGTPtZiMsdUcgbgpEfzZJIp5\n0X+ihBBCCCEaoJcoIYQQQogG6CVKCCGEEKIBeokSQgghhGjAkYvlEyKy7d2y6avbN1GSy6coD/cW\nrBS7enwN2tx+P0rj5+61smJnESXy6Rjlz53NHajzMEE0zaw4VxUopJYk5TdrudRtIsR5YZoJ1ExZ\n9QnCxIenRG6V+haRyAereD77Tt5NMhRNSyI0+7Rln+IeQgiTIfaN0b6ddDDdx37HqJxYnpP0deYu\nRnHpK6CNl/lDCKHdsUJ4WZLE+QTPVRzsTmRktXLGyjErwCZkBYGJS5cPIYTSpWyz5PHR7h7U7WxZ\nkdXL2SEEPvHBCagZEag9+2TFgiLH+9hfUyZes3stadlr5ft0CCH0+yjqd1ru+pFjmU3xnHuYNBsz\naTw5/FxF5Jz7iR0++TwEPmnEDzB+EkkIfDKNZ2FpBeoGC1h36dlXTPkz//fvQJskwTH2Hf/9f2PK\nD//A26DN81/GlTE+99v/zpRbKYreKyePQZ3n87/1SaibEYnbp3UvrGI/6yzbVPH+Iqbu99tk1QR3\n3Uu2WgBZFSKUh4vl7BlS+ZU4SL9jaf1+FQq2KgVsO4RQu3ExIuMw+8KYjLHzov9ECSGEEEI0QC9R\nQgghhBAN0EuUEEIIIUQDjtyJ8sGaIYSwvblpyvkMfyf2/lMIISyu2d+FT507A21O3I51nQW7ivtw\niL7MrvO0Qghh6+YW1HmyNoYeZpmtm5BV3Jlj0nF+RZt8Dn5iZqGdLBzSBYAmLJWQsHnV+mpJhk7G\n/j66MUsbG6a84sohhNBbwN/1vU/WddcuhBCmJICzu2+3VY4Pd05CCCFzq9SXM/wtnvlr3jWY5Xg9\nE+ItFc4RYt4L89yqYPchncODCSGEVtuFJUZ4/dpt3M+ZOw/727vQZmsTw/32duw9ExOPISV+XK9n\n9zPrHR4mWpGwz3KGdfu37L6Ph/vQZrSP7p333HokoK87IE7Uou2z/aVlaDPPKvLMUWJ13jecJ8gz\nhBCqwm6L+YdsU4lzvkri1LD99HS6eP/v3UTP7cWvftN+X4Hj4lvf871Q98gPf58p75Dx/Pf+2W9C\n3Y2L1035e//Eu6BN0jvcqbnrgXuhbkxcze2r9vv2Xt2ENpvPXTRl5vBlJKSzv+L64gr2xXYPA1XT\nuFn/hDYVGTtL3LbfVk0+F8fE2XPObkVcrrzAbc2R0fma6D9RQgghhBAN0EuUEEIIIUQD9BIlhBBC\nCNEAvUQJIYQQQjTgyMXyKRV8rfzFgsNYkObiig1iGxBJLiLBaKORDRjb3UJJducmiuUTIjB7mCQb\nuXCvgz0UWafjw8NE+yQE0YeL1STMsCCSM+wjERMZN65eM+WcrEhfkjBRvwo3E3CX1vEaLyzZ4M4O\nkR5ZiGXpvq+Vzhem1u/a/lKUKK0WBVqIhQsKZauOpzneboWTHHMi5U5JIJ73PONkPnm4yN1+hvnE\neR/EOBlhf52QPlzkts+2fPBk4EGhPoS03T78+rWJ6D1YwokISyurpsxE6JyEX5Yze+6m5BzkpO/H\nri9UM3LPVIeLuxHJO2RhsInrC2zyR9rCvug/VxZk2zERmN019YG1Icz313pFhN9bmzgOF26/7nvz\nA9Dm4Xc8AnW5mxzx+7/6u9Dm+a9g2Oab3v4WUz5+x0los7l5Heo88QI+i06Qbd3zA99typ0OBpy2\n3XOG3cejHXzO+MlR0zGK7TMy3uRTvDYeOoGhsnU1neRweNhuHNiELRY+be/Rkk2qIvdRnM6ZNk3Q\nf6KEEEIIIRqglyghhBBCiAboJUoIIYQQogF6iRJCCCGEaMCRi+U1iQZtd60Q2olRHs6IWNpyImmc\noXyWz1D0HLqU2K1rN6ANk0ZjIu/BPpHE8uDSV4dbKEuy1O3OwAr2CwVK45UTWVnKcNpBoRHSZYkw\nykjcCvT++0MIYTbG/Zy4/dq9junWl154CepaTqDsL+PkgYVVXOm974Ti3gAFY0bqhMZWircIT452\nEi6RF1nf96L3hEy8iANKj6mTKlmiL2N/16fJ43Wvyc4fuBT66YSsPk+Mza5LTWZiObtnOu5zSXq4\neL24ugp13R5KuT03WaG/uAhtMiJe++T/nCSkTw7w/stn9pr6eyGEEMb7h09aCeQS51MyacRNZGm1\n8BwkJIE6cv2M7dNkhNJx6rafJGTb9eH9czbGPuVF4RBCGKzYcfHsPWehTUImknzp337BlL/xH74K\nbe5/+EGou/tNrzPl/SGuyMCeF55bV1E+v3z+FagbT+yYWlVs3HcTREgyt5fPQwih1bfP1g55NqTk\nXkvjw1cMYGNQ7iepkAkUaULSyP24G+EYOCOrEfj+Qub3hIjI7RUR0OdF/4kSQgghhGiAXqKEEEII\nIRqglyghhBBCiAYcuRMVZ/iV3pOI2G/qJDAu69rAxjjC34BHQ/ytevfWlmtDPCLyetmaI/Ava2Hg\nXxTsvhcT/I07H6Pb4H+59auzh4BhjWkLf+9NIhKQl1mPwXsNr0V/yfoj0QIGo/oQ1BBCCC6Aj4V0\njogXNnWeREkC+fZ3iGPmtj8eo7vFaDmvrtshYZTMbXIBnOQnfBry5t2iaQvdA+9phRBCXdtrGrON\nE3yQng8JDSGEQPoLBH4S2aDbR5cximy/apPjy8jx+eC+igSAwmfItkc5Ht/+pnMgN9HPq4mHFiX2\nmNst9EkSMnCkiTs+5oARRwm+P8I2xYz4Mu7apG3mdxGvz3khRMUJWYbXuN22Y15Z4L1dEbcJ9ilg\nG/IoCMdOnjDlTh/HoJeeRb/yZVd3+uwZaPPAm94Adbt79vmwvbkJbfrdw58N3S6eu8EA+1BUu7BU\nct09SYTXuCRjUF3bcTAn93FF+ob3ARkZCT32n6qY30kcrMh9sijZ+I3f5++RlIQQs7F5zqxpiv4T\nJYQQQgjRAL1ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDIrba/H9mjvwLhRBCCCH+CBAlXf+JEkII\nIYRohF6ihBBCCCEaoJcoIYQQQogG6CVKCCGEEKIBR55Y/oH3vx/qfDpxCJiYOtzZh7pialOMV0+d\nhjYdt2J7CCEc7O2a8nSEq3K32Krxbjc/8pGnoMmTT34Q6mqXQLu7i98XkcTptY0NU+50MVX81jW7\nMvjBAa6E3lvAVer96t3jCX7uF57+GNT9zM/9tCmzNO1ORlKpY/u+HsXs/Z2k2cZ2+wlJpY9qvFaJ\n+1y3h0nyP/5X/yLUvfe97zXlg32SZk+O+dS5c6bcW1iANnvbO1A33bd9Ye8WpiHnU7w2nYHt1+0B\nft9TT30E6v7y//QXTHl8cABtDvawf/qE+Zhcv5Qk6nfceWfnpd0jKdjuc2kb+/5TH7X33+MfxOON\nyFiSunjiiqW209Xf7edK0igmCclF7vaBRCYn5Hx+1I0lT37wQ7htsu+JG0+ZDVuSBOrarSrAzl2c\n4tamue0bO/s4Vo/HuBrBP/yVf2LKjz/6KLSJSAp9cKsWJOQI4xaez61Nu1LFmXvuhjY3XrqE28rs\n9rtr+EypyDF/5GO/aMrvf/y90KYmaeQ+1ZtdP59qXkeY6B+n5Pq526jdw7Es6+I5L933PfaX8Dn3\n6Ifw2V66lRWiFp67mozfkXsedQo8v4Ecc+WS2yvyXI1q/JxP8H/6F34Jv+810H+ihBBCCCEaoJco\nIYQQQogG6CVKCCGEEKIBR+5EFWSF6JZbqjtJ0a1IW1g32rG+yh5Zjb1NVpZv960PNDogrsoUV41u\nsd/nHWWJx7d9yzpY/WVcdfz4yZNQF+V2H5776regzdC5Bve88UFo0+31oW7rml3Jnq3qzvArxLPk\n1KLC35xzt4o7W5mcra5dRHa/iHISavJ9obLnjq0ezmi1bT/b25phI3KNk9T+PZK2sa8wX8afv7JC\nx4WtoN7uWmeoO8A+RaEumm9Cl393+0T6S411lbvueY73VVxgXVq1Xfnw/lmx7ZBjKUrbX+qSeEXE\niazcdajo8RLXyJVj0vfnCT1mLaKY7Ke/Vuz4EvxcnNi+X0fEqSF9OHGOSZwRz6buQB1sm7iGzN2K\nI9uH8xLv/5UeeqCXt1+2+0Qc0yTD+6Oa2TEgJu5fTvbTE5H/WdTM53JVvOu77yO3LPtY5PoGGxcL\n8sHJDO8tDxkWwXeKyTmIidcXT+wzM4nQC60T7C+1ux/YqM98zipq/v8k/SdKCCGEEKIBeokSQggh\nhGiAXqKEEEIIIRqglyghhBBCiAYcuVgO1lwIYAv7gL4QAgSshRDCbmlF8oPtXWizdAxD3gbH1005\nn6CEeLCDsvk8r5zDIYYzDtaWTfnMmRPQZvvyDah7/mvPmnLVwsv1lnd/nym3uyjSv/jlZ6Eun0xM\neWljDdpQnJiYEUE1EEmvcsJ0WaNM6MXdEEJIY2srdsg5YEqnl7EnsylpRT7n7PaCiNBVit/YcqJ3\nb4Ay/5CEWHoveDqeQJvZBOvWnADf7h0u7oaAgZFRQjo1ES/9eaFiMhGK6f3u94nNKHBX1QdBMmoS\nokeHOPd1/PtJnQvui0nHYyK0bxgRsTyh+2CpyAQKJh3Dpsi26T3jXWV6Hx8u07dbKGxnRMbGfSIH\nU+I+ZO58bk8xMPbs2h1Qt3/zlimnXbxnIjKBaeo+t967E9qMiLyPEEme9TOYiUA25foCm5cQBzJ5\nx5XzCZ7znDxrmTTuqWO816LYnuMsIed8fAvq4sI+RyN2s5F+5scpNiKw6+A/94dB/4kSQgghhGiA\nXqKEEEIIIRqglyghhBBCiAboJUoIIYQQogFHLpbXFQpcXlqriOy6sLECda1LV0355oXr0GawhKvG\nD9bstnpLy9BmuI+y4jzuoE9DDyGEjXX7fRe/9TK0ufzKq1C3fGbDlO9965ugTexEvRe+9A1oU+yh\n7L56wsr15VxiJKbLZyQxmUl6UW27WkEk4KIkErcTKLMExc+YdOPICc0VEdkZdW6/L5+ikM5umtj1\nWV8OIYSYiLNlbtOQh2RCAxPLvWhNpW6CT+JukzT7moiXUeKTgPEat0hKe+ZE3ayD90dCpOPUpRF7\nIZ7BZOmSiNA+kZ1JuUwz9asRMBeV7WbhBzjS9+Pk8MTrqsYvZLJ54neCJTSTg/aTPxIiJjP526et\nZyRJmn2fJybycF6QSRwdO3lmeAMn5SysLUHddNuOgzW5Vt1lnGR09cvPmPJ9y/hMuUZStwGaio3H\nVwY/dmEbv+JDHLHzS/pL6bZNJPIwIxMY5hCvy4jc/04sj8nEi+pgGzc2ceNgD1dkKGm/dvtJjXsi\n3M8xceW10H+ihBBCCCEaoJcoIYQQQogG6CVKCCGEEKIBR+5EFcUM6urI7kZO/JzFVfwdeuPsMVO+\n8hJ6RTdeuQh1q2dOm3J3lfhWbQz8zCfoFnkGfQy7vPbKBVPe3cLfgE+87i6o27jrdlMuY3RHbr5g\nj68eosPTIauVj0bW+cpIiCUjgd+Tmf+En/M/qUfE78iY1wPbIk4Gi1Rz/gEL95yHssSDycjv7P5o\nvAv0WnV+P1nYZkl8i6xtr2mSznf9Wi5g0IeEhhBCm4TddqfWV4tYcCBxFLwGkqR4DhIW+AkdBpt4\nmDOUkLBP73wRTZP6VeCBMVeFhJD6AM6aeVrsHPg2xEspyb5XPqi0JN4U8XP89qknSbwlH1YKTtZ3\nNoZ1sB38XE6cryyzfT8for/aWkG3Kbg+nJPw27U7zkDd5y/bUOc+CTSuSQAvwpy2w+8jFgbrx1jq\nMTKHrnBOVMXuWfK5OZyoOkbfMUutJ5XmJEx4iC5zCLZd1F6HFlWCzzV/a0U0gBdhGbnzov9ECSGE\nEEI0QC9RQgghhBAN0EuUEEIIIUQD9BIlhBBCCNGAIxfLY2Jx1i7cqyABYAlZsfnU3Xal7qsvoUR+\n6bnzULdz9ZopD4hY3m7j95UVSvGe8e4+1E3GY1Nev+M2aNNZ34C6rGWDEJMhip67r1wx5VuXL+G2\nj2Gg4ql77zbllY01aMPwoq4P2nutOg8L5ItI36hcCBoLnouIWJ44Abas5gzbdNtnjiwTqL0cHZMV\nzZlU7Vdxn82wjzGx1AdbJnOGbfb6ti+wEMuaCL4zd48mZJ9YWKpfbT4m22YBjuwcHwYLHPTBmiGg\nfBpHKIOz/fTXoazxeLl/6/cLG7Hv8zAZnAUHerHc30Mh8PMbJ3a/8pzcV+Tvbt/XIybJzyHusrzR\nkvSpzG0/H+FkmkAmyrQHVnzeOn8Z2jz0poehbrg/MuV6imMJ62ceFugYkesH8xeIXB8HL5/jZmjA\nqati8jkbv+e5G+MEhfvMi93716BNPdqCutQ9k+suhm3WEY6ntb8nSYZmTSdHNP9/kv4TJYQQQgjR\nAL1ECSGEEEI0QC9RQgghhBAN0EuUEEIIIUQDjlwsZ9GgYydexx0UxiZjFG5X1m2K+dkH7oQ218+j\nbH7tVZsgvn4bptTGGQp/yfTw0zWeouS4cPKEKfdWUeLu9VD+zvatJPfFX/0daPPcl75gyg+9+63Q\n5q0/+m6oG6ysmvLXPv0ZaMNxachElqzJu7mXclkqLl2I3PWXgqWTEyG99Ps1ZyJt7b4vzXBlcpbI\n7L+uIinjswn2jenU9uuKJKSTEGxIjq/mSIQOIYTMC+lEdvdp6CGE4Od6xESIZasRlLk7PjJpJJ9h\ninHk5dY5/txjfaok6eBepk3JJIeUnPTcSatxTfpBSe4Htw+Y+k/S0ClMkj989XkqyRP5G0Rkaskf\nvp+0D0eHj51s3GC+du0E+LjEzw0PxlC3ctaOw9uvkkk4JK0/dUL6bB8T0pOErEbgqNnqDmRggskt\nVHr2kwdYCyZQJ64N6z9kY4d3s5Cy45vYiVbFPqaTx21yfAtWLC8STEMvZmSn3Ilgk3LYyfLj/h8G\n/SdKCCGEEKIBeokSQgghhGiAXqKEEEIIIRpw5E5UQlayH+/smnK5vQttFnaWoK6/aMO9lk4dgzbH\nbj8BddvX7fb3Nm9Cm2wJv68mDoQn7eHq4QurNkgzLvD3181nXoK6Z//g86Z89cIr0OY9P/FnTPm/\n+sk/D22uXbkBdb/79/6FKe+RNox5fjn2YX8h4OLvRKWiK5p7V4T9xl0wr8D/Ns52lBA5FyZtoROV\ndfD3+eBcg5y4P9MpCaN0n+v00Y1LUxLu6Vwm5pMwvO/U7qAD0iX7UAe7nyyksyLBiLOp9Z2mI/Sf\nmAxXl9Ypm8dZYNoGC5X0wXrUJyEdJnZ9j61sTx1B50mxINZsnnBRGoLIdtR9rCJSHflcSUIdYRfY\n/ef9P9ImJt4ZbJvUsdzOvLL9rN/HIMbdTQxwHJy0LurOixj8OCG+0+KpdVMekTbzhMOyPsUqwWUi\n4ZDQF+b017yDVRPHlLp+c4RRxhXe/9Vkx7aJ0RWtBvjMLDvWdy7Y84J4oAkcz3wj/x8ha1P/iRJC\nCCGEaIJeooQQQgghGqCXKCGEEEKIBuglSgghhBCiAUculvd7KOVO+lYQHw5H0GbrCoqCHRdQuXZ8\nBdqcuf9eqJuOnzHl0f4OtFkkoWtZygRNy4qTyEMI4eC63fedS7h6+M41lBwXT1jh7k/89PugzcM/\n8gOm/JVPfR7a/MZf/xWoS2ZWAnzkXd8PbRggzhKRlge/eUF8vvd3vzp6HJGQx0CERu9mUvFyju9j\noaAsqNCJ0MWM7BMRIb3omXWIyJ7h9+UzG9zZbhPZnZC1rFje6RKxnAS/Jpn9XErOQTHDsM2xE/Uj\nIoiWBZ6rfGbPex0dLj3PSpRWM2YmO1E3z0lIaEGCH12nKkmgakT09lZqh9lOwgJcDx9bInKvpUxo\ndqJ+UeO5K4mpyyRjT0X2AUNOWULm4fd7SUI6MxIGOxnbvt93z48QQjjY2oe6bNmOp3ELJ9OMrt2C\nuoWTNpj4YDyENskc4jwL1izJufKXlE64mUNkh8DaEEBIZxMTWD8LyeETO9Ia76Pg6qoMz1PUw4kB\nZWTHMxbgGrOJFu65wsJa2XmZd+IRQ/+JEkIIIYRogF6ihBBCCCEaoJcoIYQQQogG6CVKCCGEEKIB\nRy6W1wFlzO7Ayq2TCQpqo509qNu5biXAbh/l2sHqGtZtuBWiS/y+fIKptGkHBUbP7nWUFfdu/T/t\nvVnMNUl+pxURuZzzLt9Sa1dXl93u7pke222PBzQzgAGh4QIGCQ0XRkIILtCAMBphTNsed1dX9eJ2\n716amfFscIMsjUBzg+SLESAQixBeQDYyZtxeeqmuXmqv7/ve7ZyTGRFclG/i/38+vznZ9jtt6ffc\nZSgyT2RmZJx83/PEL9p2bo/9ZX/PX/yzruzp935Xs330xOOuzi/9wi8227/63/3Prs5taPcP/tC/\n2WzXzfVi6x/UbLaWr/Nu9gNPkeRvKwZyIjQI20bUtSujPwwrMNLq7DZFPYQQLs5a2bSASHuAtO48\ntefT9SCWj76/ZJN+vot+MgZRTHp2zv56JpCcrcBMYnkmn9jcU5sI/9bnUap4tAX+4Iarg7++0wIh\nPUO6/EhtKuZegX97PPj+sjEi+Zh8nVSvH4pJAi6QMm7nbER62AB7iemZqfB51nvu4ZkhQdx/vj8/\nEu7teL058dduPvfjdzTy9+bUC80Xr/gJTLfN6hWHg/8Oo5Rv9/lwfjQRwd4uPLINLL/20//gWObg\nhe4x2dgLzi8FEMvNZIW48d9Fc/Lf29UkuZNcjzn8dlWBAteX9sM4+WXoP1FCCCGEECvQS5QQQggh\nxAr0EiWEEEIIsYIbd6JoJfKNcT6OT/3vppdn3vl48Gobknl8y68GfXrqwwQfeertzfb+wX1XZ572\nrqwsCDibZ7/fE8882WxvIMhzBi/j5a+3AZxv/N+/6eq88eI3m+3v/2e9W/WuP/u9ruzcnN83v/gV\nV4ewQWwYZgZBms53gjq5QHih6S4d7FfAs3G9bJkW4rJDKYxys/Vl49gGVJJLleF3d5t52JswzBBC\n6CGg7mCcqC76a0fkKf+h2yFwaKZTNwoNHRTcZ1aNR0eB+ktbVsAdscwHP0bMIGplc5PnyYd9Dsmf\n38Z4PSejdzmGwffFjfHcthsIM10QtkmuGoXd2keNnhlSQKoJ5aR7xW6h8eWgv/YLgoozuY09jBPG\nIwyD9wjLwR+rGt9xgJDO8zf9d8GRcUrpmYkkyNnPh1BZGifKAj/HBXdSwjF8X4EB5UvgUOROWbpw\n5cpybM+5UF+ka1BsyLL/PGqR77IwJlEb4FhL0X+ihBBCCCFWoJcoIYQQQogV6CVKCCGEEGIFeokS\nQgghhFhBXBpC+EfIjX+gEEIIIcS3ABr/+k+UEEIIIcQK9BIlhBBCCLECvUQJIYQQQqxAL1FCCCGE\nECu48cTyZz/0YVeWS5tY2kWf/ropPkU5pbaMkqsPlRJh29OuxftiQ/AJ0CelTWR99nM/6+p86Kd+\n0pXZCNiOVqSnxFmTRtxBbGs1+1VYsT1Bcu1sVtcm3f8TH/u8K3v+Q8812zH7HXMP52faTtcg6KVz\nYQAAIABJREFUz/4ex6G9f/PBp/6W2d+rO4/cbbYf3Pdp1p/77Kdd2Q/9xD9stuvWf967xi+4sj81\n/Haz/WR53dV5c/82V/b78/e07aw+zfpu51OUN2XXbN+Ld12dz3/yOVf2sWfbskP0Q0CBlOiS23sT\nK6QvQ9+zq6rTX222D4cQQjRrtEPIcPj4Jz7TbH/yr37WV4J+Zp+Rjh7H5NtUzPBik89DCCHBwapL\nW4cV6eHaPf+32rHyuY/6sSUWf2E6UxYn36YE+0WTGN6BR1vtuBFCyGPb9hm+VfLgr9UnP/YzzfbH\nPvK8qzPAxKdkVncYIM2e0sHtOFjgPhS4D7lrT8gfOYQZxuaf/unPNds/8cGPuzox+bbTygaW3q7k\nAM8QfYfZsk3y97Ovfr9tbZ//v/a5v+3qfOzn/kNXFu1XMnxe6mC1hdSWddDvKoTg28tQoVKB155i\ndvz4X/sH/uAPQf+JEkIIIYRYgV6ihBBCCCFWoJcoIYQQQogV3LgTFeA3596sgN2D/7SJfoXosWu9\nkAncnxCOXMllOW22c/SrgFdwBvoEq9vb/eA3/Gh+LycHBGO8jAgygYPRmVXj7UrsIYQwg2NW3Srg\n8PkLqOACdB04WHP7AZk8BvBQkjn+gKuew0rvxtUqsEI8kU3/POq8S/X2/gVX9u7+S832Zu/NiW9O\n73VlL87f1WwXKzuEEJ4pX3Nlj/atc3UV/XUhknFFuo3v+4X+tkrGLShwPeHZ9n+nkTcFu63ojxH6\nQSRxwn5UR+dCDkY22+DPgLthLx097DgmuEpwX2CcskNAP8M1uPL9ZTD1oCuGksBfye3Nqhu4duDn\nuM8vvk7M0BGMEzXTsw3jcLFjFfTXSt8hpoNG6MMwDPrPB1+O+v5s+geNb8XUGeG+DAW+L8x3wQDf\nFz30/bQglPuQT11ZNPe0AydqLuCvmXG+gjdV4b5Xc0ErfbEW/9oDX5GL0X+ihBBCCCFWoJcoIYQQ\nQogV6CVKCCGEEGIFeokSQgghhFjBjYvlKODlViwbohfNtnHvyo7DebMNmZmhr34/a/Odg5yZXUpY\nCPMCeZf80N4I4hSwZkMJQ/BuJAVUWuewgCgYwZpLVpZcIEaGEELsrPQIlaCwGBF5GPz1rSCkb47a\niQHn5z54spJwb9rQp2Xi9Z101m6Hl12dx+IbriyZLvvS7l2uzm9e/nlfNv+FZvsd2xddnaPx//Jl\npp0JZFAimb+bKvTzMnrZPJuhohwg3A/E4N4a4vB5bpLDWw39JybRAEDBhWYCQwTZNY/+XIoJXsU6\ncB+iOeeUfZv6+foHMJLcC+eX5vbipb2/5v3l1pWNlyb0GNpZe5C/T2wQK4TmLjB3UwZ5eAaJ28jC\niZJYMWTVSsc0kQWeBzue0ffMgg47g7QeQW4/mMkQBSZH2HG/BzmbxvRkvh820F9HEvyXmNcHGGPt\nOYMgHvHaTaYOjPHwPVoWiOUVAqJpgsZS9J8oIYQQQogV6CVKCCGEEGIFeokSQgghhFjBzYdtwm/c\n1hk4BP/bKpVtzO/XQ/S/xW+j/w12bxa67Tr/2+oueC9kV673atBbMuFw9PMrLS5sS2gh4WzOD9Zg\nDnOGMDO7wOtCJ6oYL4N2m8FtCMZ3igO4HOAjWCfi/iveR7r95KOubNi096pcXh+UGkIIp/2bzfaj\n6TVXZ4SgyVcPTzfb/+/+L7o6v777QVf2cnxns/3u6YuuzjEEftqrlxfewGR8hwg+We0gfLZv7w0Z\nWHG6gM9rj4/6CoQJuoW14fP8gcgZhEBF42UUCIfMpz7cd39swn234PBAAGc0Kxf3B9/PyVvyB/fX\nCbQQtyhxN/txq7/0Zd2DdvHreIBQwtGPJUNt3dQM42nor3f26C965yOFEKLpRAUcFxtw/Ba2Hrib\nFO5pjkUOz4IsSowb7YK/79k6UdCvO/Pc0ueTQzeashFcI1rQ2TqtRJ3IiWr70Dz7a9fR99Ngnn8I\nDi3g0C4aBim8FNq1FP0nSgghhBBiBXqJEkIIIYRYgV6ihBBCCCFWoJcoIYQQQogV3LhYXuG9LRth\n+yLcdXUe9I+4slt1a7bPXZ0xeKG4t4FjwQdyzgUkZ1pF3YBeW7QyNomJXgLsuvb2QE5hCMUKhhSU\ndv3q4UtWIQ/BB5VRlmEBYXO7be9xBvm8T15ovrzf3tOrCy9Zv+c7vs+V5UN73893y8TyTdcKxcfJ\n9408+8fmzbkVy79yeI+rcxZvubKnuq832+8Jv+fqPJbedGVn5obl6K8d0e3a80swBKTNiSubjWye\nIby0QL+24jOF5tHz4OotefZopXd61oxIXo52rs4EYvl0uy27OoLPG0FMntprvD33D/IYNn6/BZDP\nnIx0bOX+EEJIGYZ+I5LHCfoU3IdonrU0w7Ndrn/+qJ0Zje22rIMJN7iXK1w66C3YjQZCQ4EdKcJy\nNs9WBrm+cyG2/jg9BGna774I3xf0XRRgAoojw5hgDh873+9qpglF5p5COHOAkFwbdlvpi43CSyFY\ndin6T5QQQgghxAr0EiWEEEIIsQK9RAkhhBBCrEAvUUIIIYQQK7hxsTyBSndVWyHt9fCYq/P67Ms2\nJsn5mfoVV+eZ9HVXtjUi+Un1EimZiRnNbgOlbl/vAIZI0qGx8sCHCyUsSK7tIXnYVlwiDgbfdvIp\nh9FLstHIn/tzEP5Pvcj64PVWqr4D6eRv/65nXNn/87/8cvv5IGcugcLXaeLDq/mpZvs8nbo6T25f\ncGXf2/9Ws/19/a+7Ov3wwJWdp3e027OXwYnRSL958n2/HqBs2x6/gnyeIZO5mP5h+3QIIMkG/zzQ\n5Aj3+fR40urzQ9v3ytb3xWnrZfPdSVu2O/VJy3Pv+1kyCeXJTIgJgScrWGiMQHE+2W1IpR9JijdJ\n7ri0gj8/q/ei1L1keIFbzLnjZnILjLkZkseTSbiulMJNjTd9j9PJr++fOKkK6tlFPSoc200MgjoJ\nTsZ+/0aog4/akplHcDJu0ogdEEIIFSZVlGgk9ckfvEu0MobpwzC24MoY0K6l6D9RQgghhBAr0EuU\nEEIIIcQK9BIlhBBCCLGCG3eixujDEqd01Gzvq3djvlbf4cqKCbHre/8b6SPVBxUe1daJGqt3Imb4\n3XQfvMvgG0VF9jd1//tuAt+qGp+jzH4/d6zof+PGFbDtb+ELnSj72h1hJW3yCg779ppbP+Fh+9l2\nvvN9f9rVOXv1vit77SutC/fO736vPzjQ2csZ/SNymX1o5oN8u9k+Smeuzjs3Pkjzz/f/R1sneW/q\nlc77gC+XJ5vtq+LbRCTjLfVXPqC2H7yj0A1t3++23okqgQI4235dwakp+Xpfbcnq7IVkFfKkUltv\ntjc9hJDBGZqGtmwa/X4TOFF9bPv6vIPP665//sAAQe+ldO3Fmgc4NgSMlty2M22880WOWTkyjhmM\nwzldf48ThQKT15Os2wTeC2Usmv5B3Y7cIt+vwOtZoFyS0xYjBYXacOYF+1EDYIi1qljBC+WLlhAz\njentA0iKYoVg67mY4FcQrmYI24ym79ntEHwgZwghxAX982HoP1FCCCGEECvQS5QQQgghxAr0EiWE\nEEIIsQK9RAkhhBBCrODGxfLHN/dc2cnUyuZnEL71zfqEK3uQW+GWwuEiCNvRpNFZ+fWtMn+saYHc\nGuFYVo6k8DTKgkzBtpNCCY24C59P7mA0xyKhEjHyJ+2VaTV2YzQOg5eQ88GLrCenrcC8AaH5hf/P\nC9tD3x5/OPV9itiEVrhNIGyeBS9xX8TjZvuRjZ/Q8O7ht13ZM0MrklcQ/F+Ovu+/Ud7WFszL7p+V\nVNPsBeMOZPNxbM+Pno8IoY4+jdXvl+iZMdfByrYE3Stakd6W2XDKhxaaNE/wWgN4wm6/Cgm18xIz\nGR5kCuDN1t6Frl8ChN0awb4D4ZcGqmJk+nkLzz8I9xaacEN/5hfTN2xfeasQb2qz1cPklgITc+yx\ncDLNksePjg1t723QLBwqGdGaBPwZ9py69p4e4Jrbzw8hhLokaJoCK01ZzX7cn/d+wlY5mE4LHT3D\nRITUtf263+xdnW70k9v6wT8PS9F/ooQQQgghVqCXKCGEEEKIFeglSgghhBBiBXqJEkIIIYRYwT+F\nxPILV3bat4nTBaROWuX8tdimNj8aX3d1BohI3ZtjVZCc95BUXSDF3NWh4GEjJpLoTQuK24okpAaT\nTlxB/Mx2WfCHtGEJ0ch8OUOOMkidTiQHkZZWXt8ctyL54YHvP/dfe8OV3X3y8fbjFibSdibNdi4+\nPf9BfcSVXabTZvsk+b7YRS8v3o9t0vlrwR/7q/U9ruy1qZ1UcUr3ASibVhCvs5f5O4rdn4xw3/vr\nEkjUdQnwIK1Cn422fyyJLMfnkx7Itl6XIRF68s9/v2/POff+oS0TJJYbmbbbkS0N19NWAXm4I7Hc\n9HW78kEIIdQeRNqtebZh3Ijwd7ddkQHc4RDgWjnSMmG7mP6CLjh1FzuhAPoGBn/37UXOcA1oAoNl\npNRtGNNjtZOFYPw2x6J5EDT5Y57bY0/wCpDhuvRLEudB/rZp5DVDh4VnzYrl+XDk6swVXl86syLD\n7CXyLSSrx+zrLUX/iRJCCCGEWIFeooQQQgghVqCXKCGEEEKIFdy4E3XV+d/+t6n1LZ6YX/E79v59\n7/G5DTTEQL7qXZHd0HohB/jhfd/7hLpCTpIB1RTzWz+t3B1BUppN+OSS4NAEv11XcI2K+U09JRIZ\nPMVLLq5OgnOJxmPgNevhWOZaXT544OuAi3PyaBuIWcoyZ6iz3gLc8qn4a2Wv+hj8581wjV82oZkv\n1ne6Ol+fvtMfK7eu2O38dd9Q4GD6fjnyYXS0srt1b2Lx+0XwCG0AJgUjUtArBhpeA+qIJMeYZ6Ye\nwH/a+ed/Y52r7H0y0rKS8UC6nf+8uF/w/GHwJFQz9UoH7g88DmUwIY90cJA+7bhb6fnvrnei6OPI\nxLHPO4376N4tqGPDaEPw/YrCkhd8NYQeeij1cut4oQprbnLNC8M2rQ8IzyMGKC8Iuw0Udm1dMQoX\nJWfP7DaDx1Rn/y5Ru/bZKhE8tARBs2nZ9wOh/0QJIYQQQqxAL1FCCCGEECvQS5QQQgghxAr0EiWE\nEEIIsYIbF8vvhxNXFo1JN3Z+ZflNPnNlt41EPQcvmk1QdjCmXoHEuoorgy+wByFwrKs2oBLkOhDn\nXbgmpMp1RvjDlexB3LPH6hac2lsfcP0K4yRe5tmEoEFY4wyirr0uh72vszn2xxqOWjH4/PIcWuoZ\njXHbgZB+K3q53XqXt+s9XwWC5h7UR5vtXTh1dY5mL0c+Or/UbD8dvuHbBEybdsX0Eo59JZLwTfck\n77tScF9pJU7K7CORPdpnZoG5G6GfO7E1hBBNiOQIYnmC7L00tyfdj7SyPDTMjAkJJNke2mApic4P\nPtBch0rj1oKxhJIn7USWP6hoKsHH0Rhk60DYZt9BO227oA550OBeQxtISLeTI/yBCqYsG2Z/fjbc\nN4QQSs1m2/czO87bCTghhIfY7nYSgK9BEz0WZImyWG5mC9CtwlkOsS2zE6FCCKHCtbOH7wpMxppg\nYlC//lVI/4kSQgghhFiBXqKEEEIIIVaglyghhBBCiBXoJUoIIYQQYgVxyerTf8Tc+AcKIYQQQnwL\n4OwW/SdKCCGEEGIFeokSQgghhFiBXqKEEEIIIVZw42Gbz/7Mj/jCQxuWmCB4Ll75gKz+6qjZ7s6P\nfJ0Lvxp72JvPo5y0wa/0XMd25foP/rc/5uo895EPwMFaIoSn9Z0/51pM6BqE9B1sKCAtI99DaF4y\nQWVwET7zyU+5so+//8NtG8Gp6+HdvLdhdLP/ebmHpEIbdJfpvZ9WsjfbkAMXPvD3fsqVPfvRj7TH\niRTECsGoJlSuQB06Vkhtvy4QdJmrD5VLoQ0djcHv99lPfMKVfeCnnm22bRDsW8f2ZbMLE4SATFcS\nQjSlFGLbQRhksaGAEA756Z/6TLP9sc//u65Oyj7cN5hxIxwgcHS/dUUxt88oBvJ2/j7UsQ0PjqMf\nW1LvA4aff+7vN9sfffYnXZ1N9KmgQ7hqto/qla9TfWitvQu182PnvkKgqgk0niN9rfh7/Nc/+beb\n7Q9+xp8f5oTaz4f7UGBcckMj9P2u+LbPD9px/7i/7du098/7Rz/30Wb7J571z6MNfg4hhBzaMeEy\n++++Q2nLaoBATlcSQjLj/gDj/kABoCb0+L/8xI+6Ov/1D/vvdhd+Gf3zUeDZtl8FM6T7HiAke9+3\n1+Wq99duhlDXQ2zrffqTH3d1Hob+EyWEEEIIsQK9RAkhhBBCrEAvUUIIIYQQK9BLlBBCCCHECm5c\nLMeVyIdWNqsg28XZC2Jl19YjYTtMXhBNRiylldBj8aJnRQPd7ujb4GTh4kW6CquAWxEyBX8N8q6V\nRre3QaSLXmTth/acC0myQO3MtQKpewapMxsxcOj85+UZ+oYVk0lo9h6kW3U8c06aIxmZP4LUHUDi\n7Mwq6nQ17crrb9Vr90sd3GMQ7t2i7XnZ/XMOJ/VFuFSdkTGtSP9W2fXtJGkdur7bMcbrzy9WmEQy\ngyB+aMvKpRfL6xWU5fb4dtJDCCHE0UvcXTLnDH+6ZjvRAzgkL8lX1xFCiKYsF3/sONNkBXM+cI/p\ngS+mt9tJAUuxE2lCYLHcji8zjF09SMdOnM9wLpMvG1L7fdEX/4zurvz3hWVMXqqmGS+T+R4bgr8u\nViSf4dlLtt+FEKK5pxWOHaAvdgtuKVw6d//AIcfv+2K+L2boCBNMYNibiToH+D4mIf2AkyGWof9E\nCSGEEEKsQC9RQgghhBAr0EuUEEIIIcQK9BIlhBBCCLGCGxfLw0DppEZ2qyDgZUjYNUJ6BPG7grhX\np1Y+Y2fVy4MB0k9dmyhh15wyCn+gIm+PWpH0wTf3rs68b4+VINk1gHhpQ1utwP0wspEAwWsNCc4l\n99cLjR1I3NW85xffDUIP9zgebFL2svMLpl3280MIIZJQnNv9epJrweHsTAJ0HuDzEkyqcPHLC8V5\nuxelhcPzkEwnpskY2PntwXA3eEZtn10gtiZIdq57GOJMGnm8vOOqTOe3XNlshPQEkyPC5r5vgxF1\nU/ITPUI/+jLDLnpxPsPg1dX2+CP0YUqJt5MqaBxOtJ+RnJ2g/tbRoGxJHVrFwNSABOoexuo8tYNH\nBrF8A8/aaPrndAGJ8yCbWzoYvBIJzSZNPtEgaxP94R5PcH72WaPnuMA9rvP196+DvmgnkiSakJKo\nnWb8hmsw2UlOIYRD317PXe8l8glW9Zi665+/h6H/RAkhhBBCrEAvUUIIIYQQK9BLlBBCCCHECm4+\nbBM8AhvWFmlVZ/g9OW7agLO8hWDNI/APDm1ZJG+ih3bCb7CuDoVWmjLrl4QQQj/Cb+pz267z1x+4\nKpuj9rfcDk4Ff603r88UPEfY36pBRwoTJLPVbVuWtyQIXR9Gl3bgd/iF7MPGhKxFcKkI62rRHadg\nVOe9QZjhQAGHU9sXpwp+0OhdmNkGHEKoHFFM2xN8HgXiRdNhKGyTgjRdR6NARXiunBOBwY/m0JPv\n/HGikN42PHF/durq7B887soOh9ZRTJ0PWNze8e3sJuMyFu82ukBeYEp+fCOPaBfazr4Jfr8OwoST\n9R1hKMMgTeN4klOz7K91X6vAfbfBr+SBVnBop337rG3G2/7Y0Iems3aA6bK/nn2ke9MyRn/f6bsu\nJOsI+zqTuQ8URkmjl/WWEoVfY1Tw9dDXowtQJd8KjpVNvQm8tz14b5fOiYL7CWGbs8I2hRBCCCFu\nFr1ECSGEEEKsQC9RQgghhBAr0EuUEEIIIcQKblwsryCW19hKlRkc2R4sR+v35nzh6sQZgtiMqJeu\nvBRYacXtAST1a9oUQgidkX4LiII9hO2dv9oebHfpD373qXa//tgfe977c6lGKCaBk4hWvAaRvvb+\nWFfH7bXbPer3O9vCdTHtOjrzwuitN3yHMTmsoZ8Xhm0mK1CDeE0iqxHEU4ZAvgsfxJjMIzhC3wjB\nh0Faj/yAYqnH3vcKq79HaIOdMNHD318kwEI0oq+Bcq09NhzaAmGbGSTgPLVl88GL5VfnJ77sqhXS\nN1t/DYYjPwaVyYRRwpi0xOU9VBgY45ErsmG+V9AXu3Tl9zNtoL+wc/BtyEbKrTDJYcnwggGu1F/M\nsWjSwQRjXt+3EzS247GrM98782Xn7ZgzHD/qmzlf/1U6QsgqBVRGE8DbRd+vbV5zgolBuUKbzOeN\n0KVSgO8LELtdHfryM+2kiQkzhE9bkXwPM6auoGw3tNfqKvk6tYfPW/b1h+g/UUIIIYQQK9BLlBBC\nCCHECvQSJYQQQgixAr1ECSGEEEKs4ObFclixOZhVzjHBFMzLaETkmv07YQahONqU5p7SgmG/BCnb\nBnDkQsnt8Y+2XmjsQBA9f9NIjiAh3n6sFemmcA6fD0nZRo62q3s/jN4eC9pUO/95+ai9Bq/d8V3v\npbuQBDy1x39b8GL50SWsNm8mMAwLU3jtaugRVnUvlPJtBc0EEenVl83nr7e7UeI9PBFp016rDiYm\nELblHaxojnqvEVcjPAoJ5HZ3NiSRgzVuL4NNTCciZPPXDEOcKcsTJBjPVGZWpIdhI2e4BlaYBkk3\nwX2w1OST63fQX4pNX+58v0uQkF5rK8WP8Gxn6PvZXPcMkzFoXPR1KLGcngdzMErY73xfGPv2mcnn\nkBx/7q9Lqe3YPBw96T/wzE8osGzgoSlw2+1YNVdY/cDMAuhglYgdjPs22ZxWz8AnjeLrDfTdTun1\nrk0wUedgksavIHn8avRjnk0s3w8gluMyFAsnHgH6T5QQQgghxAr0EiWEEEIIsQK9RAkhhBBCrODG\nnagCv93avL9EwZrw2/Fsfs+tAcLMCgRw2sDBzrs4CZwIFEEs8Bt+b1ab3ozefzp7w7f98rxdaf3O\nE76dm9P24l3eBxeHAiPNb8cFfncnrLdQ4HfwHsqyKXsAv4O/AeFpo7nHd3toZwQnyhx++V8LdgV1\n+jxwN0yo2zT4sMZ4fNeVJdNfCnp33t2opf08G9D3MOzjR8Ga5Jgk85CSq8Jhm2Y/cNPSQM+abdL1\nTgYHxoJLaZ7jrvfPTD/6a56mtp91GwhU7XeurO9tiiWNgden/c3wHAdw9nZmPLMBqyGEkGcIqEyt\nY7Kt/hpEeB5iWBC2iaarAX1AeB5MX0xwDYbB+zLTg/benETvpl5BoHEY2rDbW6dPuCrnL73q9zOM\n8GxXCts051xhXLRuaqTnKvhrsLdhqeQskdu44PbljoJ028/L0A+s/xRCCJdmTLjc+HO5ICfKuKIT\nyHiRPLCy7PuP0H+ihBBCCCFWoJcoIYQQQogV6CVKCCGEEGIFeokSQgghhFjBjYvlJGfXzsqnIAqT\n7Da0glgqXoQkL7FmI7uB6FkPXla0gYNEhKjCvms/77DzEuCDe77tvVkl/vRR3yYbVLrfgVgevYBX\nD+1+LOV6ygJRcM5eLE1ze85HO3+d7l76Y3VGoNxeQTshLNHKtEtC30IAcRak3FL8NbYBhxXC/ur2\njivrjBSLkyoGP6GgGHN+iXj91o5tPcy+hBDJYmRe6ueLgPtQQSh2jvoC8TphkC/cq6F91vrNA1fn\n6AT64tjeq/HIH3tz4ieypI2RzZMX0itMjnB1SBC3wZohhBw2po5/PjKsZF9zu98cr1ydIYNwb28f\nuco0ELs6/pq7YOQQQjETOxIEJdYdXOPJCv7+ulzufdl73vu+Zrs79+eyf/VlV2bpISi4x++Ltp3V\nXWAW/F0deGa62vZhO46EAOGwIYR5QRjzDBJ3NvvNcJgdBGJejm1fJIn8AgKGL80kLvpu7+Ha9d/C\n/5P0nyghhBBCiBXoJUoIIYQQYgV6iRJCCCGEWIFeooQQQgghVnDzYrlNTA1egIskAYP4XKyQ3sMK\n3CCtxU0r+CWSF0FI66YFMi1IebG257y7AsEQUluH2+2xjm77Yx92rbQ677w0BwHprpk9JIgTc7GJ\n3nDt4DptLtp6T0Dy+NHVpSuLud3vzpk/9rinNrTXfGkgrfUnK95P/3m2t8ywX+k3rqwzfb2DSRU1\n+b5h5VoSRIlkJGPbNx9GNReQks7rgvRj0sMp6NyJ6wtWkY8g7obeC/5pY8Ty0zNfpwNpPJtJAJ2X\nl4djn1gejVheelhZAVLTHdn3jQh9qpprNwdYkaGjhGtTtlBk783kFk6Evv78MljHsYNJKub8KOT/\ncA73bzhttvd+DkA4feQ7XNndk8eb7S//7//I1TmByQKWhOK8b3xnJlpU+F/H1nw/zdV/PgXc24ct\nw/dxAUE8Lfh/ywxj0GTk/T18z1wOvg+fmcT5y9H34R18Z86dnXAD4xSMsWHhih2E/hMlhBBCCLEC\nvUQJIYQQQqxAL1FCCCGEECu4cSeKHJNqHRr4bZWC2GwGGf12jCZFZ37DB/8BFsAOM/x+bCGfK5ug\nwgw/v3ajb3vXtb/dksdwedEG4pFDEOF3aBteGnEFdY/N7SuFgjX9NdhetGVj9p93x652H0IIJuB0\nmMHJuIDzs37FwrBN6/Uk8DsKSDyuBbAfuVR2BfpKga6wOrp9RMgrIlK1ThT4XXQw+9xSHfAWa2cC\ncSlsE55b62AtyvYEOYae7dq3jlLagv8IjlI1fT114FaMEPLYmc/roJ0k9hiG4IMuMwTbuluFXgiE\n5Jqvgw4GwQQ+ib01qUBY8oKvmlr8Te7AB5wm453BeNOlY1c2pJP2OPCsPXL6qCu797u/02yfv/Rl\nV+fx73uHK7PMMMZGCog1t5SCSnszvgzwgEwU5Oka4I9dYEzo4T5YDvDdc+ja/a6gzhV4iwcTpHmA\nsM8K7pYdlzo4vx7ShEc5UUIIIYQQN4teooQQQgghVqCXKCGEEEKIFeglSgghhBBiBTculkcQy92b\nHKSEUYCbD/yDYEQQNlPfym11BKlsAgmYpF8DyZHZCrcoGEMA59gKcBWCEcvctr0bfJ1eV7uDAAAg\nAElEQVQOxORiVzRfKCYPxskj6ZHk6N6EZoYdSJbUTivlg3ue4F71pg3QfZBqpiJkkBBD8Y2oRmBM\nMAmBJz6YSQ602j0I28GEHtaFYuS8M0Gz8KyVCQI/zbNWsU2+qNj7Dvc4wrXqxrYs02wMu0/y4nUa\nSJw323aGSgghTF4Qt4GDhSYdgGzeDeZYg3/WcXKLoc4gdUd/ztYsjyAFZzT1W5mXA1WvDy/sIfhx\nycSVBEGe095fly627ex7L8DbOiGEkK/atlMo8OHeG67s7MUXm+3Tx3w45OnTT7oyC01S6TEQ047N\nIEebvriFyUMVxi576GxnCoUQengtqBHGQcME4Zd7I5bvOn9f9p0P0jyEVjYvMMmBvg/t+wU92jR/\naUGW70PRf6KEEEIIIVaglyghhBBCiBXoJUoIIYQQYgV6iRJCCCGEWEHEdOI/Xm78A4UQQgghvgVw\n3QT9J0oIIYQQYgV6iRJCCCGEWIFeooQQQgghVnDjYZv/3n/0S66sFLOSPfzyOPQ+VG4znrXbwwPY\n79KVdUN7LFodvY8+MG4wZR/96c+7Oj/2uf/AldmAQQrpi6CK2QWoqU4X3ZLtHgqoNCvSx+LDzD79\n3N9zZb/w888327vJf+Dl3n+gzcy72vnwtowhlu35zRDkaeu8hdkPggr/q7/p79/nP/vZ9ii0yjoE\nB3aDeZR6CIKzdUIIObX1CgQOzvBA7E1Y6gwBmR/7z3/Elb3//T/WbE/7nf+84sP9OrPS+vb4xNU5\nPjl1ZUem3vHWB+tlaHs27Sqzfx4/+OG2L/7oX3/O1aHnwS/+DqGZkOpazX2vcF+oK3adDX71x+5h\nx8/97M8028995O/4NmUfRpns8WEle1rdPpmg0Jz9eHrx4Buu7I3XXmi2r67uuzoj3Pdf/G9+tdn+\nzKf+Y1endP45yjZM1Aa6hhBqhmDi2vbhPPnQzGnvx8HZjo3mOCGEkGffhp//m+2z9vOf+HHfTgjE\n7M39O4LEyKG3fRHq+I4eTDZzyDDeZAjgtQHRP/z8f+GqPPfcs65sO7bXan9+4eq8duWf7ff+me9u\nti++/IKr82DyY9f46GPNdrInHEIIFEJqviQ/8anP+P0egv4TJYQQQgixAr1ECSGEEEKsQC9RQggh\nhBAr0EuUEEIIIcQKblwszyAwz/mo2S64erg/1lCMpIarZHvxcjSrvXcklicQ/hasZN3BatrZiIEd\nrmQP77OmWqq+TjRCHFyCEEHODGYF864u6wpW/j4c/DUpJCaa8+ugTV1Hq4ebVbl7f+1wAe7Yfl6E\niQLE4artUyl4MTHC/aulbXsEsTWCkFrNdZihH1iRNoQQshPLQaAEdhetLHzYeTlzAgnfSuNxe+Tq\n9Mmf8zi059wPXubtoj/nycjtNOnAEkHOjvBAON+W5HPoZznbPuXbnUDmtc9ognuc6ME1VBDwa/b3\n3Y6fODkCJj7Ypsfk++vR9tiVnR63fWOIfszdHPn9LDC8PSSZ2fQFOj/IRYxmsgB9z0wwDjqxvMBY\niWNey/nOtynBM7Mxh6J2boPti/7zpuL3y9lMuIEdaSiJnDPZHgue0YMZS0rv+9RT3/mkK7t85fVm\n+5sv+gkNT/2FP+fKihHJp4vXXZ0KE3xiv/7/SfpPlBBCCCHECvQSJYQQQgixAr1ECSGEEEKsQC9R\nQgghhBAruHGxnFJ+s0nPLiCxperl72q0Q5TIOy/ObuK52c9LxwlkRZKMHSDzWdm0kCQL1yVVIx2S\ncG8PRQHbdGwjR7IM7pnm9gPAaw21gPxtrktPEjmc32wlWZKH4Zrbkrrw74V514rlPU1WAOk4VJsA\nDzI/SKvViqUgKxcwbou1P6/3rkMIIRx2bYL/5cW5qwO3IQyjEefhAzuQM21S9bDxYjklzlth2gqj\nRIV+0MMkANhzQR04P5rtQvslIwHDtRvS9f2T+rmVpUMIoRgpv0ZfZ1owBsHHhRR98vit08eb7dsn\nt10dl+gPJEhRJ2m8N/erwH2gWzMvmBhQghefp9Kec51BTL5+zlGIyU+qirhj2y5ascCOix2kmtME\nhoN51iYYp+blhn/DfvLfo8+8493N9hd+8x+7OndgskK9aMepu9/1jKvTHfu+eO8f/26zffuWnwBz\ngKGZBP+l6D9RQgghhBAr0EuUEEIIIcQK9BIlhBBCCLGCG3eiOvCP7G/FFFjX9d53Gvq92b50dcb+\nzJVtu7ZegmDNCD8Ck8vg6oBblMxv2hSamcADq9nWgdXKXe4crF4Oq5yn2l5zWvWcyNk4USBOTOCv\nVHPOxZ7cQ7CHzxkcAnAbsjn+DKGg+Hn7q3YbfJJ58ufcTeb8IHQ1khdiymqAkE5Yab0zfYo8NKKa\nfkahp5Sr15vQTHJcyCuwvkpGhwfK7H1f4HzRSvaVngfzeRiQCX3KOnvkjpGzZz9vgM9b8tdsD/tl\naENnbiCdC7qF7vPAXwv+ORpNtb4jj3CB8wV+EJyybyc4QwXG7xrbvkDxuxnGwXlqx8oye7cpQd+z\n0BDUReifC+pU80CMg69Dz8zefD8dZujn0BuXfDs89bbHXdkrX3yh2X7zgXcw/7l//X2u7Dd+6X9o\ntoenn3B1ysWFK+tLe5HTKfhWk3+XWOJcPgz9J0oIIYQQYgV6iRJCCCGEWIFeooQQQgghVqCXKCGE\nEEKIFdy4WG5l8BB82F6FgLXN4IW07diuSL/tHrg6R52Xz8aulYcDhLxRtlgCQdPSVR/WVg/2+CSy\nkjx8faNithKpl0HBBQ3VhG0maDdhVxS3onIIIUQIDrQyfSGPD0xdK8mSP02rh9u/D5asQh5CCMUE\nxnFQob+g1YqzIJaniWTz9roXCl3svchqr19d+CgfmYC6cfTKKMnmR8e32iZ10M/h/k2H9nmvIHDO\nOx+Imw+t/HnY+3HDfT6U2f4aAq94744F+zkpHsYDzPa04xt0/kgGtSFBm/D8rFiO4rw/vntGoE7X\nnUDDelOHAocXpDVCHbqe0TyTEa5BIsHf9BBywQuET5ZixPJCY+X1E1cw0BjOL5sJGh1MwplN46/A\nkq804cYMoCSRU3hpxjG2JcGEm9/7ciuW/0v/zg+5Oq/8zpdc2Qu/8/vN9l/+N/5VV+fLv/Krrmw8\nase3PPh7lc9BSId6S9F/ooQQQgghVqCXKCGEEEKIFeglSgghhBBiBXqJEkIIIYRYwY2L5f1w5Qs7\nkzKavEhnJfIQQjgeHphtSCy3EnkIYehaSTXCCtgZMlopWdmSKAHW+XaQWAzJym5VdYigTbW9hRHa\n3YEsGYxYHuqyrlBMlDRdExQ2rawInimdnyXSez99Huy5hDK3e84w6YBE1jm09SiBHucl5Ha/CFJn\npJXs7cEoPhs4vX2n2e5AgCfJsh/aCQuJxHLoC/vzdkLIHu7xtPPSuE2mt/2OoMRykmTtagQJOiPt\n508PnkeIEO/NpRpQoF4glkMZ9UU3H2WGBwSM7Wh3hHYm2C9Fm7oP94FWGjDQ/aOo7GQlbuga1AZ7\ngnQ9K6zukHN7fsWOnQvBFS8g5d8+IjMJ6V0ru9PKEbSKgZ0w0VE/QJn/+v75jRe/7sre9y//C832\n4d59V+fX/tH/6Mp+8N/+K832/tJ/t3/9977oyn7gX/tLbZteetXVGWlVEVq5YSH6T5QQQgghxAr0\nEiWEEEIIsQK9RAkhhBBCrODGnaiu98F6vVlPu0s+OWwzeCfKBnD2nf/dNPV+xeaUTBkEKjo/IIQQ\nu+svV5ogGNFm9JH6A7/FR+NJDeR3uN93fRsL+k7tfhTMRgzmt2PIjwwBVh23KZmoP4Af4MIESSuA\ntlfrky11osx+iRwz6Acu0JBC9MBR6Oz9A/cAF4g39ToK6QRO795uto+2fpXzfoQ+bE7osPPP1f7S\n+4dXZ8aJuvJ1pr1/3qPpQ0uePXKyClxPe6XwcQTHxAYORvi8cePbeWvblh2N8KxjVGhLyZRQC16W\nuVcUHAqClx/zIOSxFn/fazSOEg1wC75pEgaOkuvTblPfh6a7wN9gt0MIFV3Ytixj2Ob1UB/GfmZ6\naKbQzLltE49v4N7ZQ0HXSNX7awN9IRruPvmEK4smBfR3f+O3XJ0f+Fd+0JVtH2ndzV/77/8nV+dP\n/TM/4MqyOcHL199wdR75zmdc2cWVD+Bciv4TJYQQQgixAr1ECSGEEEKsQC9RQgghhBAr0EuUEEII\nIcQKblwsH0As74yYSGL5djx3ZUNqRfK+86F9MUHImwnzJKnTrhQeAourjmnjivrQirr1AGJp9jJv\nNCFvNlgzhABeKYULwqrcdiX0fsG5BS9QJ5A6CwjU9hJH2I9WXu+MFFsmkF0pbO96zxs52GBCCKOM\nEMxmZV665piHaa8VXINIAqy9LgvDNrdHrUh+dHLL1zn2srkNQr0I/nm0wZohhHB1cdZsP3jjTb/f\nlR8ThqF9HjbQTgcY+DTpwOYL0qUjx9keCvzw8Nipl46ffqxt+/HW95/9wY95rk3weXTXq7GqKSCT\n9rTPH14DKjMXkMbObskTCEGlFcczE+6J4jx8npnEkSF0MUJ/KeZC5EzP6PXnd5hhTIB6ViSfQHaf\nTNtx7gmU9eZa9RA03cPEoAknNZjPg3Hxpa98pdl+9/ve6+pkaOlv/Z+/3Gy/68+829U5ffIxV/aF\n32zF9be/42lXZwrLApSXov9ECSGEEEKsQC9RQgghhBAr0EuUEEIIIcQK9BIlhBBCCLGCGxfLt5Qq\nHtsU3CF5QXyTvLQ6dq2MmUAYoxXaLRVsyZl2W7CSdQBBvOZtWzBtXZ0un/r9TPp5Cv7YziikleyD\nTxmOLrX9erE1BEhNXmJ1h+CuHV1JSiy2h++HJXK9l7FRPgUOtgvR6UE7rYyJqfR4fjZFmYRYX2Rl\nzLygn4cQQj+04vO49RMhhtHL0fOhnaBB0jFNvDjs2oTySyOahxDCtPPP+zy2z0i38c+MpYNU5Y4E\n6muPxOdiJzncOvbP45N3vZT/HU89cu1+9878igyWSOMbnHMxHYZkaRrKOiOgUx2a/GGfrQEuMMzP\n8G2iryMQxGeT8p0wkN3364NJGs+FVneghPv2evYwWamDe2OZIqx0AOPSVP7w7RBCKDbVHD6e7p/t\nGyTu4+hMq1AYdhd+NYLHnn57sz3D+X7jSy+4sqdNqvh47O/nC7/3Jf95jz/ebCf4vri875+1oV//\nKqT/RAkhhBBCrEAvUUIIIYQQK9BLlBBCCCHECm7ciep77z90oS0bITRz6Lyz04X2t2lymzhC0pw2\neES0mjf/fmzqTLDf1L6rJvSmTvzB5tavKBC22Zl20irrIUIIaWgDDsuCsL+3drThkBRUuuRAEKwH\nv5cX4z+w2nS9p/GQHR02xI58Elr93QaM4m/sdCgXCgohpNAXbfLi0qy4akIzpz3cd/BC8jT/odsh\nhFALuCLmdIben9+8JNB0QafqQNSinMlojlXh+SeXqjdtR/eHXCNTr4dK3YLzg0sX9tVfc+cWQh0K\nGLZF5FvR+GLHYfJ8Ejwz7tgwvhUItrT9k8IvKzhReW6dKAov7uAbY4ztWFnBH13y34g5eNew0jU2\n41mlMciOCSCGRSjrTEsjhG1GuAZ1gXPZ936cskc6e82H7d599BFXlrbtd+Q3v/Z1V+fklv/O3Jqy\nszfvuzqbwd+HtETaewj6T5QQQgghxAr0EiWEEEIIsQK9RAkhhBBCrEAvUUIIIYQQK7h5sTz5FdtH\nE67ZRZAXI8iRqU0YiyTpkaxog/RA6iTBd9FKz9ULjSkemRJfh6TxFI0AV72451bAhlA0kuRTMmUL\nViEPIYTOCNMJUt5gMfaQrbyLIXr+WFYsLyCRz/CBNjRvOoBwD+xMMynEMkMSax9tHX/szlYKwRnh\nGEJKYXumCRRiRxyuzCQDuA9T76+VDVndXV74Y4Ok3vWtIHp867arEyGAtzdhm8MWgmYNCcT2RDK/\nuZ4UIGkl8hBCGDor5fo6V3ANXnujlVsvL/yzvtv7cdF9/sY/x3P2behMu3AsgzRYd84krWNgpBmH\nYb/h+qzGkKAvVhrzip0Y4NuUZxgHsw3phHYGPwnHXz64BjT5w3A5w9ctTWoyz/JMYbtu4oyvQ4G4\nnbnvI0xyoAla+AGGCINeNQPVBkIzZ3huLx/ca7ZvgUTeb7wgfn6/DfMdBz9uRJj0Mx3gvi9E/4kS\nQgghhFiBXqKEEEIIIVaglyghhBBCiBXoJUoIIYQQYgVx6er2f4Tc+AcKIYQQQnwL4Owr/SdKCCGE\nEGIFeokSQgghhFiBXqKEEEIIIVZw42GbH/7AR1xZOrQBdRECyMLG/xw5vL0N7ptHH3h2ceWD/Gb7\neZBmljKE0Zkgy09/9LOuznOf+JArM1l0ocBlpxW+g1n5nC6LXeW8gxW/u+IDAEdTtpmvXJ3nf/bn\nXNl/9nfe37YJFDdamTyYMqxCYXvFng+sVg4rxNsjpeiDPD//I3/Dlf30B9v+eRj9focNJGluTSho\n8nUoazOZW5P2sLL8HgLjdm29OPmDf+RvfNSV/ehnP9nuZztn8EGeIQSXoBqhEp2fXcfdBd2GEAYI\nrawmgA8yF8PPPv+pZvv9H/tJVyeCxmBLqA66oqadHaQZJko4NEGlefbPYwy+7HMf/4Vm+/kP+vtJ\n7SymDRQzO8Pfz8U8I5vO73l36+/f1vT1w+z762sXPmTx5z7zsWb7ox/w969QuGffdgbIvsX9sg0U\nhlDJakOIqQz2K53f7/PP/3iz/dyHnoM2uaJQ7bgP30WTeSDuXfk2XU1bV2b77O2Nf/5vw/i27dt6\nP/Wpj7s6n/mJH3dl/Xnbhu1936bxzJdVEyI7bXxfnG77Z2Z/2tY7bGGsHuE7xAR8f/jT/rvvYeg/\nUUIIIYQQK9BLlBBCCCHECvQSJYQQQgixAr1ECSGEEEKs4MbF8hBB3DPCX73yElmdvFwXz1pZsdzx\nghqKnuV6yTk4oTkse+UECTCasgryNwnTXtoGSdY2Hk4mwfl1RvjtghcMiRrsuYBkSde82s+DcwFx\n3l6CRHlnJAFbSR1XJvcchvY67I5BXjz2K37vT83124K8SDL2rn0etpcwoeEc7qk51lBhYgJgV1qP\nxd/3HuTvZPosTSiw/TyEEGK0Ex9IvIb9bLfur3/4IkjBCR5a94iQ3Bt8m7rOyPzQ7+yq9SF4UTh1\n/l6lBf3TPesh8MNtDuWE6hBChvOL5gEcQSw/hjJ71Q/Zi+W7nW+mJYEC38HNKYf2YEMHE3U6uqmm\nD8N1wUkV5lLFDoR02M0ywsyLCaz4rjffTz1M/rCfD32/XPh7PJe23h7G3Cuw3SP1M9sGGINqPmq2\n88UtV2e6d9uV1UN7rHLi+0YZHvj9xvO2YOv3y9XL5jC3ZTH6T5QQQgghxAr0EiWEEEIIsQK9RAkh\nhBBCrEAvUUIIIYQQK7hxsTyCdBxN+mrZe/ErX3gzMZ220lo6OXJ1epIOrUU2g7hHgugC+6zCe6kT\n50ECnCNIeUbmRfV0tuKur9JFL0IP5vw6ikMHolEoIySBZ5Bk7VUhiZzcxWTEywjCP3nlVngn152o\nfSsizkdeLD/c9WWXd0xq8zHJ7r5ovGrPp9yHtGDYb5jaPtTnZY9yNH2xh0kONBnDPg9WNP+DQvhA\ns4nmLtxTc/8W9U5IqWbR2+wGWnBKdD1NUnYhQZXGiLb1kdLC+eluqHRfYEJItuMpHQsk9TG2/fou\nTKp4/NgfbW/68Buzb+duur5/pgQTGqofu3ozeGRM3QeZPlrhHe4V9KFg+gKmjC/4boD5GmGAAbvv\n2opHA8jn5l5tBv/5GRp6f9deA0qun+C1gFLvLcVNMYD0dZTP/USEWto2FJgAY48dQgh2WMIVNVzJ\nQ1bZWIj+EyWEEEIIsQK9RAkhhBBCrEAvUUIIIYQQK7hxJ6rCatd2Ve4AHlO+AP/grPWk0l0f5JWO\n/W+wvQm7KyDjVPh9vpB8Y/ejFeFN0QyBo7TqeLFOFPyo3hsvY4B2D9OV329uy7p64eog9mTAPaCc\nO1srQbYn5PiF0YRRpuyvHcWEVntP+4W/eQ9tI6bBeyHTLf+JF3fb+3B25PtrtAGgIYTTsb3HY/F+\nQH/p2zBuTL/eLwtL9Sl9vkpdECKJDgHs5xwh6C/4eaah5He4zxr8tSuT71TWCyNNizwpe8oUmkmp\nfdWE+83FtynBmOCOA9c80nhjvUW4viM8gKdD6x89sfX97tbgP+/qvG37bufHsv10/fkFCEHswLmM\nrp7/vAiOqe2fGRwe9nrM8SlgGPwcSwbvlL4vBnOfx85fg1ubtg/dOQEPlRyzB+2xr2ZwlOAZnWDs\nsoAKF6LxuxL0qXB65oq60rarHnknum4vfdnGOHTwpUJuYaUvrYXoP1FCCCGEECvQS5QQQgghxAr0\nEiWEEEIIsQK9RAkhhBBCrODGxfLQQUDW2Daj22xdHZI4bShnufLSWhr9saKTuMFoBkluyUrrFJrn\nRE8IKiQt2MqtCQzYvrZt30w+nO7o4MW9bW5FPSsAPozOyJl1ptBFEGBze13Gg+96m3MvdY7nrSyc\nDhDWCs7qYWzPpxwviYsLoVjB0HefcOj9sXZGQN8NIHWSRDqbAMcOxMsRTtAIt5HSS4nc1iOpm0Rk\nt5I9/fkFj4ftsiRsVxBubR7tkr/2JgprhT2je47JiKXJJiY0Fy4CBr+6cF049oL7R2IyfqB5/np4\nHo96P048ZqTfu5DyWg7+nO9fts/o/Ssv+O8ziN4GCnmNELLYx3bcp/7TwYhqr0KmcNa0gZa1989O\negiBA1QtGYKCZ+ov5vDg8odbppmPbP35jpRebB7I1/yco7CHyTs0TljmASbTmLDieBcmMFkZPIRQ\njMg+j37MnU/8WDkfmbDk0bcbboOfiPRPgP4TJYQQQgixAr1ECSGEEEKsQC9RQgghhBAr0EuUEEII\nIcQKblwsp9WYk0ksT0deTBxunfpjBZMEfOVTTfsjf4qdWfGaBNEM8qBdWZ7oQFbMRnIsi2RXn0ac\nQKAcjJA6zj7FdTzcc2W9kelr8tecsEHH6BvOXkwcJpPMfeFF082b3uLevH7cHmcP0iOkzcZTkzx+\n9xwa6knFHD/DfYF04s7US3syRn3f70y9CNeukglp+tAS8TOEEA679rr00Kd6Ei/N8SOsPh97eD5M\nsyj1H3xiH4y/IPCabPcCgrHTykmIp8Ryu4IANhyKbNo6fOCUr0+cx1BzWjHAbkM6+UnvJeA7m7Yv\ndCDcv7nz4vWrZ+1ze2/vn+Oarv+qybAiwwDPTDLjfgfPo081h1UTnPD/kGRuk0JPEy8owN9S4F5l\nSvA3Y8mDKxr32/Mb4XkcQJa+awT0/QwrgUC/npbMWxn9vZpSO94UmHBT/EIjodq+AN1nhmPZ+QsZ\nxrICN2vJpLGHof9ECSGEEEKsQC9RQgghhBAr0EuUEEIIIcQKbt6Jgt+4iw3gHMHPAU8qmt+vnXsQ\nQqh7Clk0p42ruF/vKBF0fhjmZ8DsQuOrJPA7OvPbf199cFkX/e/eNqBuSdhfCD40M4CP4LyiEEK3\nb/cbziFs880jV3b80p322Ge+TtlA2x9vA0bj4K8Lkcxq8+kC/KcHfr+joT2fBCGdNqg0hBBOjOO1\nvfKf13vVL9SD6Rv04z+w37UBdYXcPxgVovFHUufvcb/kbzJaQR1FIteCaw9NjlKEdlLoqdsP+rXd\njUIeIQ/X+2oYkHm99EWBquTnVOPwdMnvN0LocTXP7f1LX+eb933Hfu2qfSavsu9AW3geLKmD8Evw\nAau7yDDmZh/E2HXGoYWb1UEftp8XaYwnl8pArlGFfjaZw8+z/+4rF+2xDtl/z93aQOCo8frIm9rg\n43i99AW33YVYlsHfF+s2h+Ad4QzOkntvCH7YoFZXCsSmINuF6D9RQgghhBAr0EuUEEIIIcQK9BIl\nhBBCCLECvUQJIYQQQqzgn0LYppfIfAgZhJkNIIhaX7OD8C1r6dGxSCxfsLo2UUE6tPKgFcbfKoN2\nmsCxyAZ8g7+6IcyjtzpTbmuW7vpV1t86WHvtIoifaQYZ24RtdgeQzy+9QNmdtWGb6d5t36YehPuN\nCZV8ZNnfC92VEb0HHy5YQSxPsRUmjyHkNUHQ7PbQtmtz4T9vgOsyHNqybl52/6wgGhMEFcKlSiaB\nEwMqISzRyt4UKrugW2MQo9tn8Ne8zNAmuw1tQpHW1OMxgtpp9ushAJjkaFuHgicxYNSGZnrK7M/5\norR9aMoQrHnhJ3Zcmr43QrjnEQQjujZB8CQFE2eTOhpBjo4wYcIK/Sn6dubiBW07qYKCPDNNRDB0\n0M4AIav2/GaYNHJe7JhAkjUF6drvFJpAQWGi14vzGcJ27X2Y6ZpDO5MJD82QtouTYux3K3w/0Zl8\nC1mb+k+UEEIIIcQa9BIlhBBCCLECvUQJIYQQQqzgxp2oRN6EDYOE3/kr/N5aZ/vbLfz+CYFqMdsQ\nSw/kdi7J+3vI763twTr6vR4XPDW/4UOwXjafmMHhod+hS98eKy9YIDSEEKJJYqwUMge/X9tg1AAL\nNVNvLCb5rQ4LQ9fsYrEL/17ozAKrG1iNl0JXO+OKlYH8FVj4ct/2hWHv71+38x5KtzdOBCxcTBwf\nt/uNEABIuY/2KlA4awd+lV8YGcIhwRF0wYTgO1rIm6q04Ll9/sgLIwfElOEQQa6Yue+F5MoFK9jS\nwtCTGwODu4Fz9p+3AwVr7tq+d7H3/e5s79076ySdDN4remR7/f2rYG8VGBRyMG3Axbd9O22XihBQ\n2Se/n3Vv7Lj8VhPIRjWfD/fdBqOGEEJvzofWH7eu2J68qYNv59b4wHjpqHDJAstwXWw2Mw37tNC1\nXQCcvCkKenYjFQacwm7L1m9H9J8oIYQQQogV6CVKCCGEEGIFeokSQgghhFiBXqKEEEIIIVZw82I5\niHQ2pC+C1Z3I2DSrfkcIrEOJzK7KDVVodXQqc3VQPjfnRyJt9atb2xBAWsXdhYYQnnsAAA7kSURB\nVG2SFdz5sMZsDL8Cq90jVhBfEMIWgpcjc+9FzOnkypV1d9tky9j5/Sr04vzIRfv5R/sFrQwh7dvr\n0JMIbW3JEEI4tEJqTb6dQwdhdKavUwhp2kFwpwnpTL77MFbMBymfwjatIE4roc8L0mhxogfIn1Ys\nxUbZ45B8Cs+MrUdhmxQKbE8v0gQYtM3NeANtyhCk6dpEgYoksptCkuRnEKj3JhD3bIKxGu7VdtOe\nz8noO+PxeP35VZiQkukryqWl+oteIgjw5j73cM2n7Nve2TEVJuos+X8E9Y2UIBCzs3X8sfemCTNc\nO1snhBC67npJnkZ0DAo1cN6okeTh6PT8u8zMBc9VCH7SD31n1wgTGBZM7HgY+k+UEEIIIcQK9BIl\nhBBCCLECvUQJIYQQQqxAL1FCCCGEECu4cbE8QKpwsuIe+KGU8uukMdzP23XRiMGJ0tBBtM4LxNk8\ngBhsRNJKci143dWs8D3DtbMp0RmESvKgq3l/LgsTy638meBcKIHaua0bSFG/7WXeObVC+PCIbyem\nRJ+0acT19NJXAvr99X1xKL4Nh6lte4Vo3g76ohW0E8i8Xfb3NJiEYvDYmY21VkGqJmHTTcbw7SQ5\nOtkbj0ng1/eXQpMqDODIh5nOxTwzKNeSkGoLSLalNGvTifj5uP78nGwfQqgoxJr0fEgCn+BYk5n9\nMYPQPPo5KqFP7X0/GuiaLxCTQTqm8czeGppQQOnnbmIA7JeiTzFnYdrsR53PVaJCf12sxF0hcb6z\nB8P5PTRhoj02fF2FEdqJE7vsp3XXS+o4zwvKUnf95Aj7HfZWmb3JMDkCUv6Xzqsi9J8oIYQQQogV\n6CVKCCGEEGIFeokSQgghhFhB9Kus/7Fz4x8ohBBCCPEtgGKY/hMlhBBCCLECvUQJIYQQQqxAL1FC\nCCGEECvQS5QQQgghxApuPGzz3//hz7qy464NazsZ967OneOdK9set/tRGF2B1a1tehqtjj5lCkFr\nvbKPffRTrs5/+slPujKbg1jsMt0hhAxhdNkEnFUIDvOhgBQc6IrCaII8aaXwv/uTz7qy5z74wXY/\nSGvLcKxpau/pU6d3XJ2vfumLruyJ731fsz2/eubq7M7OXVn3+HGzXYsP0fvUxz/tyj783HPtfpCC\nmulvD3Ov7GribxX6xy2ZcLgu+9RMG7r6VsV2c4Iwuk9/6uOu7D/5mfb+2eDJEHiRerP4e0gUWAf9\nbLDZd3BsGxwaQnDPaIIdP/XJ9vn7yAefd3UoNDOZk8nJx/1l23Aoy0e+T81HfuyqowlPhHtVoLv8\nrb/6932hEOLbCv0nSgghhBBiBXqJEkIIIYRYgV6ihBBCCCFWoJcoIYQQQogV3LhYfnbpy6pZqPtk\n4y3LLSwtPRohFFzXsAOR1S6KTauHzxlWjS7Xr7Q+zl42TUZIzzMcJ4FZ2re3Z4J3XiukJmhjX6FN\nuS3ryGwFat+2YXt07Op89atfc2Xv+u53N9tnL77h6ux7v2L7o297qtn+wq/8tqtz611PurLudNts\nT2/4iQlENYJ/Kb4DVbscfPCruBdY+r2rXhpP9lj5AI3ybShGTq4LH2W78nmE1e4LiNZWgAc3Ggvt\nI9mRcE8HM/2xg3Za4uyvQZxoYknbqgRVytbfq5jawStGeI7hWFZcr4UmiJBxL4T4dkf/iRJCCCGE\nWIFeooQQQgghVqCXKCGEEEKIFdy4E3W19+LS8dCWbUdfZ+N1mdCH1iPI4PVUcFOqERcKBPJhWOKC\nd84OnCQfPgkBgCBTTMW0E0I6bTMrJGuSg5GMCBLB/SEGcyPefNW7TaeP3nJld4/bsl/+wq+6Ot/7\nb/0lV3bx4ivN9r2XX3J13vNX/nlX9pXf/t1m+xjuMXN9vRR934il3a+DrtJbGS+EMOSrZrvMENaI\nulp7/9Kw8O8hcx0qeD0Fzq+a/SCDNARS/UwfThBiGylsM1sn6nr6HfTzM+/sxd2m2a4DtOnOhS8z\nIcCZUmw78N5MWU4wmPFNFkJ8m6P/RAkhhBBCrEAvUUIIIYQQK9BLlBBCCCHECvQSJYQQQgixghsX\nyzdbX3ZsykYQPStYqzWagEOQwcFjdaGZHVjAkKcYnMUNDCCWVxvciZKzF7t7o9NWEJOtSJ7g2D1l\nApqygS4UcGnSUrvt6Oo88fQTruyLv/5bzfbJ04+5Ok++4xlX9r/+w19stt/9L36/qzMl3/azr7YC\n+qPf8y5XhyhOFoZ7TkU2wHH297M7nPv9Lu+1dUDwzxBoWtNRs13SskfZ9nTbD0IIIVOYqLksJIiP\n0PdGk4A7zF6qTgcQu41oba8vMV7BNXjj1BXV+4+02xsKqAW5/ri9f90d36YCgaoeCE9dsJcQ4tsP\n/SdKCCGEEGIFeokSQgghhFiBXqKEEEIIIVaglyghhBBCiBXcuFh+69RLlSfHbVkfvZxpE5NDCGEy\n8ucM7mmhFHMnbJO0Cu+XII27vUDK7YxYnqBNqfg2dN1kjgNieWeOTWJ5Bml9bq9xWqi29mM7C+Do\neOPqvP7CN/yOpp3f+f3f46r8/q/9hivbHLci8jv+3He7Or/8v/2KK3vqbU8127VbknkdQrRp3TSX\nABK9kxHC+zK5Ov3ei+X54n673XtRPxyf+P1MvdJ7+Zyw/SxRyjiktvembID9trO/LqN5lIcdSOR7\n/6xZvz+61H9POsBxdkeubD5vZfNCbTr2ieX9oe2L8+T7VJ68OJ9NKnyEsaVbGqgvhPi2Qv+JEkII\nIYRYgV6ihBBCCCFWoJcoIYQQQogV3LgTdefI+znHNuwOVkefwCOKtX0HBPUHQzOz8YYgazNk8J8W\naBmuTSE4HQgb1UM4oz3WXL1nk93HgcSzIGwzgedDdH1b7/LeA18H9rv7zNPN9isvvuLqDLu9K3vX\nD/zpZvurX/maq7OxYaYhhEff3gZ+vvTqy9AqTzT3psLfGbVCR7MBiuXgahQKjN0Yl+nklqszn97x\nn9a1bloZvJtGWJeJ/CfqQ3a/DQiI/c4faTS+0wa8pQIhmdEE6Yb++hDLCOMGdA3Iul12DdzBDr7d\nae+dNhugWhI9a4rbFOJPIvpPlBBCCCHECvQSJYQQQgixAr1ECSGEEEKsQC9RQgghhBAruHGxfAMp\nfRtjOWeQyEv2unIyIXYYrAmrsVvRO4JE6mTwEEJEAdW0CfxQ24YheEm2L74s7c35YfBjuzlHf53m\n5G9zMTtGlF091YR0WhE7hBBOHn3Elb326pvN9jD4Nj3xtidc2Te+9vVm+/j4SVfn7uP+887u3Wu2\ne7gGRDTWMfr2cM7RisEQ7lmsRB5CyNvbbZ3jU1dnHn1gZDH3OUNYK5FMsCyFsw5wqK05PQzW9LMc\nwrA3YbA7f12GyUvxxbSrLji/PPr7kk/Adp/b0NPa+0kA4ejSt8me3gzBqHuYIGLuFQXb1l5/zwrx\nJxE9uUIIIYQQK9BLlBBCCCHECvQSJYQQQgixAr1ECSGEEEKs4MbFckoHt2m9NlE8hBCqszpDGEyE\neIHE4gpmsD0SpXUXijpf4O4OkxdLRyPAd5BmPWSfRr6xsjm105RliFXfJ7+y/NS3t34GAZ+wtYaN\nP/bllU8et/L+7bteoH71ZZ8qfvRIm+CdbJJ1COHyzEvAW3P8lJaJ19XG3kN/LXCtrAidoZ112Lqy\nOZnk8c7L5yWCwGxSsGP215wYzH1IEL5OYrlNuO9gv+i7cIhmQkjcw3UBr9smliceOBrKkT9QvX3u\nyvKmfa7S4BtejryQnkeTPA7PY60wpM7txePxhlLwhRDf7ug/UUIIIYQQK9BLlBBCCCHECvQSJYQQ\nQgixgpt3oqJ3jWyOHvlPFIhpwycruFSpQLCd8SsKrqDuj0VtsGwyfJ5pw0ABhzOUmXbBpQvVhDrO\ncC4x+SDPaEMX+4VdwfhAaHJAKug4tO7U7urK1elG71elbVt29cA7LkfHPqzRynf5EsQbIJpQzgpu\nU6CyzuwHfaVGCj01ZZ33nyjwMxmHpi50aqJ5tqzrFEIICdqejCtWJ38NcobQWtNfZvo8evxMJmdc\n4Ozljb8G8x3fz2Jufafc+b5RfFd0TpR1OUMIIVEirrkuhfrPQidRCPHthf4TJYQQQgixAr1ECSGE\nEEKsQC9RQgghhBAr0EuUEEIIIcQKblwsx8RKa5aTDA4hkm5ldzh0hP2s+91BECO434veOCk00zaT\nwgzBYw2dFXUppM8I4gOEErrrFPwljvPSsD/bBpCQIfR0MtflaDhxdfLeX7vpqpWAN1sfWFlhv8Oh\nlen7heK89YILCuJwjU01CgXNdCyzHWd/LhGk8WqCWMlVRtwkDl8Fp1mYEEnqLTV1rmxv++wIEzag\nEXaiQ11wfhnqTFt/PZN5Hjqw6zOUFdOFaKJJzf4a2MZHOHaEMU8I8e2P/hMlhBBCCLECvUQJIYQQ\nQqxAL1FCCCGEECvQS5QQQgghxApuXiwHqToYIbUmL2xSnm800moEJbaAVN0ZC7en1dhBNl+Smrw5\n7H0bYnt+ffYJ4n3xZZ2x2yNcvGqvAbSRJOdk1GA6XyKaNlEy95y9dtwftUncefYp0dPsr93m9q12\nvwmU5tlfu7RpU8wrGdSEEZoLKP+V/vYwfXa2kdshhAp2tBXXE9zjDtoek03BXnb/7CQDmnhhE7ZD\nCCG7yR/UF6Gd5vLBox1q5481V3NPMdbctJFGCdgv28+Lvk8V8sPNvcmwsgJNivF/q8LEhLR0YocQ\n4tsJ/SdKCCGEEGIFeokSQgghhFiBXqKEEEIIIVYQK6VK/vFy4x8ohBBCCPEtgFK0/hMlhBBCCLEC\nvUQJIYQQQqxAL1FCCCGEECvQS5QQQgghxApuPmzzIXKWEEIIIcSfJPSfKCGEEEKIFeglSgghhBBi\nBXqJEkIIIYRYgV6ihBBCCCFWoJcoIYQQQogV6CVKCCGEEGIFeokSQgghhFiBXqKEEEIIIVaglygh\nhBBCiBXoJUoIIYQQYgV6iRJCCCGEWIFeooQQQgghVqCXKCGEEEKIFeglSgghhBBiBXqJEkIIIYRY\ngV6ihBBCCCFWoJcoIYQQQogV6CVKCCGEEGIFeokSQgghhFiBXqKEEEIIIVbw/wPsXGYtEDecEQAA\nAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -11786,334 +559,30 @@ } ], "source": [ - "feat = net.blobs['conv5'].data[0]\n", - "vis_square(feat, padval=0.5)" + "# the parameters are a list of [weights, biases]\n", + "filters = net.params['conv1'][0].data\n", + "vis_square(filters.transpose(0, 2, 3, 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The fifth layer after pooling, `pool5`" + "* The first layer output, `conv1` (rectified responses of the filters above, first 36 only)" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJMCAYAAADaNPObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmMXfd14PlzWPvG2lhciquojSIVWZsj27GgcqA4GseQ\n", - "nX9sB4ghpNMBgo67Y4+nZSuDNKQ/0tM20OMMMsgf44kNJZioo0k7XgYtWEuz5FYUWZJlmSEliqTF\n", - "EllkVZFVxdr3qt/8wZJC1u+U9OPv3nfvfa++H8CweHiXU/fe997hrXPPU+ecAAAA4NpsyjsBAACA\n", - "ckQRBQAAEIEiCgAAIAJFFAAAQASKKAAAgAgUUQAAABFSL6JU9QFVPa6qJ1X1a2lvHwAAoAg0zTlR\n", - "qlolIm+JyP0ick5EXhGR33HOvZnaTgAAAAqgOuXt/aqInHLO9YmIqOp/EZHPiMh7RZSqMt0TAACU\n", - "DeecWvG0i6idInL2ij/3i8g9axdS1XeTElWVhoYGb0MzMzNe7N31rhR6J81aztpeFpLk0tHREbSc\n", - "dfzm5ubeN5dHH31UHn300bI8LmlLkstdd90VtNzPfvazkueStqLkklce1dX+W+bi4mKquVj7WFpa\n", - "Clo37eOyaZPf8bGyslLyXD7+8Y+/79+/8847snfvXnnzTf+XHCMjI6nmkrbQXGpra71YfX29F2tu\n", - "bvZiFy9eDNre1NRUUC5NTU1e7F0LCwvvbXt6enrd5T5Ikc/R++WRdhEVVNFcmSBfOwMAAIqit7dX\n", - "ent7g5ZNu4g6JyK7r/jzbrl8N+oqa+9EAQAAFEFPT4/09PS89+fHHnts3WXTLqJeFZEbVXWfiJwX\n", - "kc+LyO+sXWjtnSjrV0+W0LtWNTU1QcsVnVVgWrfXGxsbvVhVVZUXs36dd6UrLxogbTfffHPQcm+9\n", - "9VaJM4kX+mu1ou/DsmfPHi9mvQdZvyoKfQ8Pdccdd7zv33d1dcmuXbvk/Pnz3t9Zv84rRwsLC0Gx\n", - "iYmJoO1Zv3YO9UG/pkuy7XKXahHlnFtS1S+JyI9FpEpE/oon88oHRRSAcrBr1668UwBEJP07UeKc\n", - "e0pEnkp7uwAAAEXCxHIAAIAIFFEAAAARUv91XhFYc1bKkTX/w5rXYc36yKK5cvfu3R+8kIicPXv2\n", - "gxdKyGq4t4TOuEniyJEjXuzGG2/0YgcPHvRib7zxRklyylpdXZ0XC+1jKXJjObKZ3XP48OGg5QYG\n", - "Bkqcif2ea33GjI+PlzyXvFifRR/96EeD1n322We9WCWNNuJOFAAAQASKKAAAgAgUUQAAABEoogAA\n", - "ACJURgf2Glk0D6NYzYFW46MldLpvEh/+8Ie92HXXXefFrOb/Smkst66NJF9OmqbQByLGxsa82OTk\n", - "ZNrpFMaZM2fyTuE9R48eLfk+Qr9c2fr2B+tbImZnZ72YNWG8HIU+uLMRcWQAAAAiUEQBAABEoIgC\n", - "AACIQBEFAAAQoSIby2tra/NOIRVWE6vVnJtXI31/f38u+7Vk0TAeympyt6Y8W42olcJqqH3ppZdy\n", - "yKRy0eybDes9d25uzotVShO5ZXFx0YtZ38xgHYO2tjYvdunSpXQSKwBehQAAABEoogAAACJQRAEA\n", - "AESgiAIAAIhQkY3l5ThV+MCBA16sqakpaN3x8XEvNjMz48W6u7uvPTFcM6sJ02qkHBgYyCKdXNTV\n", - "1Xkxa5K7xXpIIM1p2mfPnk1tW3mqrq7It+/MWFP1renkra2tQetWcmP50tKSF9uxY4cXs46V9QDN\n", - "yy+/nE5iBcCdKAAAgAgUUQAAABEoogAAACJQRAEAAERQq0GupDtUdVnvEwAAIIaqinPO/9oJ4U4U\n", - "AABAFIooAACACBRRAAAAESiiAAAAIuQy8lbV7M+6yqZNfn23srISvU+rmT0kj1Ioei719fVezJpE\n", - "e+ONNwbt4/Tp017MmrI+NTXlxYp0XNra2ryY9XOEsq5xawr1/Py8Fws9Ltdff33Qcr/85S+DlrOO\n", - "i5Xz8vJy0PZCp26vnZhc9NdQaC6bN2/2YtbE9ixySZuVS01NjRezpmFnkUuRjgu52LlYnzvWZPi5\n", - "ubmgfVifbdaUeuuzaD3ciQIAAIhAEQUAABCBIgoAACACRRQAAECEXBrLQzQ0NHgxqxHXarq1Gs8Q\n", - "zjqmjY2NXqyjoyNoe1bTcjlOrb+WZsMQ1oMSeV27dXV1Xsy6DiyhTeRWE7XFujYmJyeD1i03oce4\n", - "UmTRRI7KYT14Ultb68VCG8ut7VmN5deCO1EAAAARKKIAAAAiUEQBAABEoIgCAACIUIjGcqtRrKur\n", - "y4tZTZhZNGYeOHAgaLnh4eGgWNFZE2sHBwe92PT0dND2rAbq0EnVoazGd8vMzEz0PkIbqIvEauq3\n", - "msiRj9CHOCxJrmVL2tPtkb7Q126lPLAwNjbmxawHzEJZ7+FJ39e5EwUAABCBIgoAACACRRQAAEAE\n", - "iigAAIAIhWgsT6JI08krpZnPmhhtTYQNnRLb2dkZvW45sqbtW2ZnZ0ucicjevXu9WFNTkxezprGf\n", - "OXMm1VwmJiaClrMeNElTc3OzF0t7Gj0qR+hE6ywePLEe+qlkLS0tXsw6zqGv35qaGi8W+n69Hu5E\n", - "AQAARKCIAgAAiEARBQAAEIEiCgAAIEIhGsut5vAiNWn39fV5MavZMHSC90YzMjJS8n2kPb05iS1b\n", - "tgQtd+7cOS9mTXdPor6+PtXtpS3J9OFYRXqowWpqtaZSZ5Hz22+/XfJ9lKPQ11AW7/+Li4sl30eR\n", - "WA+BhD6gkhXuRAEAAESgiAIAAIhAEQUAABCBIgoAACBCLo3la5vFGhsbvWWsqaRWU11HR4cXS7sJ\n", - "02r2tRrLrYbQ6upC9O5fE+tnS3sa7549e1LdXhZaW1u92Pj4uBdLMlXYmtBrsZpdrXMUOhXdanLv\n", - "6uoKWtdqDremou/YsSNoexcuXPBi1msr1tLSUmrbSso6P1lMsrdY31SAYj0wlMVUdOu9Ja+HMcbG\n", - "xrxYkvNhNaUnfb1xJwoAACACRRQAAEAEiigAAIAIFFEAAAARNOtmQlV1NDACAIByoKrinDOfGOJO\n", - "FAAAQASKKAAAgAgUUQAAABEoogAAACLkMk77jjvuuOrPU1NT3jJrp5qvp7+/34tZU11HR0e9WJLJ\n", - "0klYjfVFyqW9vd2LWZO0rUnu8/PzXsyaSG8tNzg46MWKdFx27tzpxayJujMzM0H7sKZwb9++3Yv1\n", - "9fV5sdDj0tnZ6cVGRkaC1rUU5dotSh4i5LKeJLncfvvtQcu9/vrrJc8lbeRiS5JL6DeDWN9W0NDQ\n", - "4MVC38NFuBMFAAAQhSIKAAAgAkUUAABABIooAACACLk0lp8+ffqqP4+Pj+eRRsWora31YgsLC9Hb\n", - "s5ql29ravFhHR4cXGx4e9mJnzpyJzqVIzp8/n+r2rOb6s2fPRm/Pav5f+xDHep599tno/QJps97T\n", - "rCZj65qfnJwsSU4oLuuBHIv1IFpra2uifXMnCgAAIAJFFAAAQASKKAAAgAgUUQAAABFyaSy/lmmg\n", - "uNqOHTuClhsYGEh1v1azptX8aU3hRjasc3Ts2DEvZk30Rz6sxmjLRmuWDn0YxZpAXck+9rGPBS33\n", - "4osvljiTbFhN3/X19V5sdnY2eh9NTU3R64pwJwoAACAKRRQAAEAEiigAAIAIFFEAAAARcmksd87l\n", - "sduKYE0Tz+J4btrk19tWY3lejZ5dXV1ezHqAYXp6OnofVVVVXiztJu2VlZVUt2edNysGFMnFixe9\n", - "WE1NjRdL8s0MKE/V1X7ZMjQ0FL29ubm5JOlwJwoAACAGRRQAAEAEiigAAIAIFFEAAAARcmks32hT\n", - "ZtOUZDJrEhMTE16ssbExh0xs1hRbK5aksbwctbe3By03ODjoxZhsXnobbRJ5KOubDzZv3uzFRkZG\n", - "vFjaD2cUSaVMIg9lfe40Nzenuo/h4eFE63MnCgAAIAJFFAAAQASKKAAAgAgUUQAAABFyaSzfSLKY\n", - "Dm1NDreaK5M09FtTYkNlMek7C9ZxtqYoW6yp8lZjfkNDQ9D2mpqavJg1oX1qaipoe+V4PmJVyvWY\n", - "NqthN/T6CRV67JM8tGI1paM8We+51rd2hOro6PBiSafecycKAAAgAkUUAABABIooAACACFFFlKru\n", - "VtXDqnpMVY+q6r9bjXeo6jOqekJVn1bVtnTTBQAAKAa1Gl4/cCXV7SKy3Tn3uqo2i8jPROSzIvJ7\n", - "IjLsnPumqn5NRNqdc19fs66L2ScAAEDWVFWcc2r9XdSdKOfcoHPu9dX/nhKRN0Vkp4g8KCKPry72\n", - "uFwurAAAACpO4p4oVd0nIneIyE9FZJtzbmj1r4ZEZFvS7QMAABRRojlRq7/K+68i8sfOuUnVf7nb\n", - "5Zxzqmr+3u7RRx997797enqkp6cnSRoAAACp6O3tld7e3qBlo3qiRERUtUZE/j8Reco59+erseMi\n", - "0uOcG1TVHSJy2Dl3YM169EQBAICy8H49UVF3ovTyLae/EpE33i2gVv1QRB4SkW+s/v/310soa1bh\n", - "FprHli1bvJg1NdWaCG5N6LWWC83FmsY7Pz8ftK4lyXFJm5XLtm3+b4QvXLiQ6n6tKeHW9G9rubm5\n", - "uVRzsRT9HFm5tLX5D+bedtttXuz06dNe7Ny5c15s7QT+cjwmWUh7Mr5ldHTUi1kT9K1p50U6LuRi\n", - "57J161YvdvHixeh9WFPHrc9Aa3K9dVys2KFDh4Jy6evr82LWdXotN3pif533ayLyuyJyRFV/vhp7\n", - "RET+k4g8qaq/LyJ9IvK5yO0DAAAUWlQR5Zx7QdZvSr8/Ph0AAIDywMRyAACACBRRAAAAERKNOEhL\n", - "Z2enF+vq6vJiVjPaqVOnSpJTWtY2xCaVpIm8HFlNrGmbnZ0NWi6LJvK0VVeHvcSt11YS1gMVFqsh\n", - "Gemyru/Qaz7U9PR0qtvLi9UEbT0QYTl69KgXC33PqKmp8WLWZ4fVfJ22ycnJVLdXX1/vxSYmJqK3\n", - "ZzV9hx7nxcXF6P2uhztRAAAAESiiAAAAIlBEAQAARKCIAgAAiFCIxvKiC51ObuErbpJJu+F5o9mz\n", - "Z0/Qcm+//Xaq+x0ZGfFiJ06c8GLWayvthzFQelZD9kZjTekfHBwMWreSr3mrGT7tB0ryfMCMO1EA\n", - "AAARKKIAAAAiUEQBAABEoIgCAACIUIjGcqsJ1YoBKF/79u3zYtZk83Pnznmxvr6+EmSEtFRKY/nC\n", - "woIXs741wfp56+rqovebxSTyUGl/K0alfysBd6IAAAAiUEQBAABEoIgCAACIQBEFAAAQoRCN5Zbu\n", - "7u6g5c6fP1/iTESam5uDlrOmL280DQ0NQcvNzs6WOBOIhF+TNTU1XmxxcTHVXEJfRyg/U1NTeadQ\n", - "MhcuXPBiVhN52g3ZaQt9/fEtG9eGO1EAAAARKKIAAAAiUEQBAABEoIgCAACIUNjG8q1btwYtl6Sx\n", - "3JqWbE2OXVpait5HkVjNw3ntg8by/FjTltva2rzYxYsXU93vpk1h/2azJpYDRWJ9TiRprreavtNu\n", - "1rc+77JgNeZXEu5EAQAARKCIAgAAiEARBQAAEIEiCgAAIIJmPZ1UVR0TUQEAQDlQVXHOqfV33IkC\n", - "AACIQBEFAAAQgSIKAAAgAkUUAABAhFwmlqua/VklZTWzb9682YtZ05ytieXz8/PR+52bm/NieRwT\n", - "ETu/IuVinaPJyclccuG42Lm0tLR4sSTTlq2p94uLix+YR5HOT2gunZ2dXsyahm29Z1ixJLl88pOf\n", - "DFru2Wef9WIrKyup5pI2crFVSi67d+/2Yk1NTV5seHg4KHYtD79xJwoAACACRRQAAEAEiigAAIAI\n", - "FFEAAAARcmksL4qFhQUvlnZzbl5Neln44he/GLTc3/3d33kx69hbsmiWbmxsLPk+KlmSJnLL2iZy\n", - "ZMNq6Lds2uT/29tqLM+ClUuS17P1fv3AAw8Erfv66697sYGBgehcYLPOeUdHR9C61oNjSXEnCgAA\n", - "IAJFFAAAQASKKAAAgAgUUQAAABEK21huTfK1msKSNO5ZTYTV1f4hsSaWh7Ka4DaaqqqqvFOoOFk0\n", - "3Feq5uZmL1ZfX+/FxsfHvVjaTe8jIyOpbi+Jf/zHfwxaLsn7ofWea03ft469xZpK3draeu2JrQr9\n", - "hom8tLW1ebGxsbEcMimW0IciQq+ra8EnPAAAQASKKAAAgAgUUQAAABEoogAAACKo1UhX0h2qBu3Q\n", - "ahi0YhcuXAjar/VzdnV1eTGradKayBzaXGk1vFnTukMnm6fd+G4dl7ymrJOLjVzSzSPtxvKiHBOR\n", - "8szFemAo9BsNLNb5tR7EKPpxsaTdWF6O14sldEr9zMxMVC6qKs45MxnuRAEAAESgiAIAAIhAEQUA\n", - "ABCBIgoAACBCYRvL02b9nFu2bPFiy8vLXixJY3loLuXYzJc2crGRS+nzqKur82Lz8/O55JIEudjI\n", - "xUYuNhrLAQAASowiCgAAIAJFFAAAQASKKAAAgAj++OsNZGRkJO8UAGTspptuClpuaGjIi1lTzJPY\n", - "tMn/d6z1LQdW023oVG9ryrW1X2vy9crKSlB+HR0dQblYjcJJHm5qaGjwYrt3747eXhJVVVVezPpW\n", - "DEt3d3f0fs+fPx+9LpLjThQAAEAEiigAAIAIFFEAAAARKKIAAAAi5DKxPOt9AgAAxGBiOQAAQMoo\n", - "ogAAACJQRAEAAESgiAIAAIiQy8Rya2ptqVnN7HnkIRKeizUBN3R7oftYXl5ONRdre6HK8Rxlwcql\n", - "qakpaLnZ2dno/dbV1Xmxubk5L1Zur+ebb745aLm33nqr5LmkzcrFmuA9ODjoxZaWlqL3a70/WNsr\n", - "0nG59957vZh1fb/55ptezJra3tjY6MW2bt3qxX7+8597sSIdl/r6ei82Pz+f6n6tSfMzMzNerEjH\n", - "ZT3ciQIAAIhAEQUAABCBIgoAACACRRQAAECEXBrLESZJk7bFauYLlXYuabMaEJubm4PWnZycTDud\n", - "krOaMC379u0LWq6vr8+Lpd1MinwMDAx4sbRfz2lv7+677w5a7mc/+5kXC20KfuWVV7xY6DVvNZFb\n", - "jhw5ErRckVifE6HvpSMjI2mnU3jciQIAAIhAEQUAABCBIgoAACACRRQAAEAEGssDVFeHHaYkE3+R\n", - "vtDmz3JsLA9lTR/e6EInkWdh0yb/37ErKyup7iO06Xv//v1By7399ttJ0ik063zU1tZ6MasB3Vq3\n", - "UiwsLHgxqwHdmtA+Njbmxa5lInjRVe5ZBwAAKCGKKAAAgAgUUQAAABEoogAAACLQWB6gUhrGQxvk\n", - "y5HVqDg+Pp5DJnYz99zcXA6ZiExNTeWyX4s19bhI+RVFFs3mRffqq6+WfB9JmsNDm/VDH24pkomJ\n", - "CS9mXX/btm0L2t6FCxcS51Rk3IkCAACIQBEFAAAQgSIKAAAgAkUUAABAhMrtNMaGl1czd177tfT3\n", - "9+edQuFYDe6tra1ebHR01IvNzs6mmkuRGsbPnTuXdwq5s85HkV7PWQh9sGHnzp1B2zt16lTinIqM\n", - "O1EAAAARKKIAAAAiJCqiVLVKVX+uqj9a/XOHqj6jqidU9WlVbUsnTQAAgGJJeifqj0XkDRF5d9Lh\n", - "10XkGefcTSLy3OqfAQAAKk50Y7mq7hKRT4nIn4nI/7waflBE7lv978dFpFcopArDmkSLZGpra71Y\n", - "Q0ODF7Om3k9PT3sxq+m56Do7O73YyMiIF5uZmfFi1vGzLCwsXHti69i3b58X27x5sxezzlnajeWW\n", - "PI6JiD3BOzSXUDU1NV7M+rYBayK4tVzoPrJQKdP3rSnr1rUROrW90iW5E/UtEfn3InJl2/4259zQ\n", - "6n8PiUjYXHgAAIAyE1VEqeqnReSCc+7nIqLWMu7yPxvC/ukAAABQZmJ/nfcxEXlQVT8lIvUisllV\n", - "/0ZEhlR1u3NuUFV3iEhlf/MgAACoKL29vdLb2xu0bFQR5Zz7ExH5ExERVb1PRP4X59wXVfWbIvKQ\n", - "iHxj9f+/H7N9AACAPPT09EhPT897f37sscfWXVZDm/XW3cDlIuqrzrkHVbVDRJ4UkT0i0icin3PO\n", - "ja1Z3iXdJwAAQBZUVZxzZutS4iIqIhmKKAAAUBber4hiYjkAAEAEiigAAIAIFFEAAAARoieWJ7F2\n", - "ovPc3Fyq27emD4+Pj3sxVf9XnFYsSQ+XNb3amtxs7TdUXV2dF7MmzFqsn+2OO+7wYjt27PBik5OT\n", - "Xmzv3r1e7Pnnn/diN9xwgxc7fPiwF9u2zZ/XGjp5PfS62rp1qxcbGhryYqHnqKmpyYtZ08lDWeco\n", - "yfWSRFFysfLYuXOnF7OOu/VeEKqtzf860EuXLnmx0GNiXd8W63q0JDk/ra2tQcuFHr+0c0ly3pLk\n", - "Ul3tf0xa0+yT5LJpk38/I4ve4bRfz9axsljHryjvLSLXduy5EwUAABCBIgoAACACRRQAAEAEiigA\n", - "AIAIuTSWp91IvlZo47HFavDr7OwMWvfCBf+rAmdnZ6NzCRXaRB7qxIkTXqy/v9+LDQ8Pe7EXXnjB\n", - "i1nNuGfPng3KxTqmaUt7H0mayBGvvr7ei9XW1nqxJA3Kzc3N0etWirQbrQ8ePOjFfuM3fiNo3e99\n", - "73teLPS9JZT1s1mfE5aVlZWg5SplAHXowwkjIyMlziQ73IkCAACIQBEFAAAQgSIKAAAgAkUUAABA\n", - "hFway4uspqbGi4U2k168eNGLlWPDoDUlNknzeui0+LRZjcaWUj/ogGxYzb5pN/lb3zaQROgk8ixY\n", - "3/RQVVUVtFzazdyhrG8+SDsX6+GErq6uoHXPnTuXai5FtxHfS7kTBQAAEIEiCgAAIAJFFAAAQASK\n", - "KAAAgAg0lq9hNVBvtAnUVtO31XBfV1fnxRYXF72Y1Zy6c+fOyOxQrqxJ142NjUHrJvkWgjSl/e0A\n", - "VjO8FUsyETyU1TBuve4vXbqU6n7feOMNL2Y1c2/fvj3V/YayrlvYNtpnpQh3ogAAAKJQRAEAAESg\n", - "iAIAAIhAEQUAABCBjrk1rAnjoVNYizSdvLW11YuFTtm1LC8vezGr6dQ6BlZjZlNTU3QuoYo+Pddq\n", - "4LeaiiuZdb1YDyeEsNazrtFQ1rloaGiI3l6olZWVku/DYn2zQEdHhxfLosndemjFauofGRkpeS6W\n", - "tJvrUb421js2AABASiiiAAAAIlBEAQAARKCIAgAAiFDYxvLQBtssmjCthstQoY2tzc3NXmxqaip6\n", - "v0lYzb5JJjUvLCx4sb6+vujt5eXAgQNezGqan5yc9GKjo6Ne7K677vJi1qTmSmE1JFvHqiis95bQ\n", - "9xvrIQ7rNRQ6iX3//v1eLEnTvMU6F9b1Hdv4fy2sbzmwms2zMDMzk8t+UR64EwUAABCBIgoAACAC\n", - "RRQAAEAEiigAAIAImvWUbVV1RZrsDQAAsB5VFeec/xUTwp0oAACAKBRRAAAAESiiAAAAIlBEAQAA\n", - "RMhlYrmq2Z91lZtvvtmLWQ3pw8PDXsyaDm2tG5JHKYTmYk1ttyYmW+uGNu8nOS73339/0HJHjhzx\n", - "YhcuXEg1l7SF5tLU1OTFrHM0OzsbtN/QCdENDQ1erKWlxYtZE7GtdcfGxrxYR0eHFxsZGfFioefI\n", - "mrBtTWifnp7+wG1Z5+fGG2/0YtbPdenSJS9mHff6+vqg/VrfaFD069Z6b7Gu5SQT5a1cPvzhDwet\n", - "29jYGLTcmTNnvNi2bdu82EsvveTFin6OspAkl927d3sx61sJrM9ja3p/0Y/LergTBQAAEIEiCgAA\n", - "IAJFFAAAQASKKAAAgAi5NJaHsBrKrJjVEJo2q2HXkqQJ02I1KFuYAJ+fkCboa2E1Zlqsxkzr9WEt\n", - "Z8UsVkNoEtbDInV1dV7s7NmzXsx6EGGtwcFBLzY1NRWU2/LyshcLPU5FZzWMW9dt2u9fFmsfFy9e\n", - "9GKh157V/N/W1nbtiWHDsl4f14I7UQAAABEoogAAACJQRAEAAESgiAIAAIhQ2MZya9KwxWoITVtX\n", - "V1fQclk0ZhbJs88+68Vo6syG9TBB6FR0izU5PO1pwadPn/Zi1vR0a6I4AJEdO3YELTcwMFDiTOz3\n", - "oKqqKi9mfVNB6EMb1vas94zQB0hKgTtRAAAAESiiAAAAIlBEAQAARKCIAgAAiFDYxnKr8WzTJr/m\n", - "y6KxfHx8vOT7sIROUk17anYSodPdQx8cCLVly5ag5YaHh1Pdb2jzddpT5a1J/aHTzi0LCwtJ0gli\n", - "XadpXrtZ/AxJpxuvZb1erJh13Yb+vEV6f7De1638rEn21rpWk3Ha32KR12sctsXFxVS3l/T1wZ0o\n", - "AACACBRRAAAAESiiAAAAIlBEAQAARCirxnKriTALIyMjuezXaq60FKlxtL+/P+8UNoSOjg4vtrKy\n", - "ErRuaHO99SBHkW3fvt2LzczMBK1rHRNr+n7aTa2tra1erL6+PtV9FEk5/myh38JgPYAU+poMlcUk\n", - "8lChDfxJpolbzfqh086zUl7vkgAAAAVBEQUAABCBIgoAACACRRQAAECEXBrL1zZMh04dtyb0Ws3X\n", - "VtNtEu3t7UHLTU5OerEkU6RHR0ej101b6ATh0Km93d3diXO6Ul5T5Ys0pTjtid1JmmI7OzuDlrNe\n", - "M11dXV4sZCL9xYsXvdjs7KwXC22Ita6ptM+39Rq3mq+zmMaeRE1NTdBy1jcVWO8jVjO39WDRpUuX\n", - "vNirr74alEvarAcx0m4sz4I1Md96oGJwcNCLpd30vXPnTi9mXQfW68h6WOTWW2/1Yjt27IjM7jLu\n", - "RAEAAESgiAIAAIhAEQUAABCBIgoAACCCZt0Yq6quSM24AAAA61FVcc6p9XfciQIAAIhAEQUAABCB\n", - "IgoAACACRRQAAECEXCaWq5r9WSVlNbPnkYdIslysCa4XLlwIWteaOhuay9atW4P2Ebrc0aNHo3Ox\n", - "HDhwwIv19/d7MWsa78DAQKq5pK1Sctm1a1fQctZ5SzOPtIXmYl17FmuKe9q51NbWBm3Pes+wJnNb\n", - "3zqR5BxZyyV5ICk0l927dwdtL/TnOHPmTHQuWbBysc5vFg+DhR4X69surG85sKanW6+tc+fOBeWy\n", - "Hu5EAQAARKCIAgAAiEARBQAAEIEiCgAAIEIujeUhOjo6gpYbHR1Ndb/79+/3Yj/4wQ+C1n344Ye9\n", - "2FNPPZWLiRC7AAAgAElEQVQ4pytZTXBVVVVeLO1GwImJCS9mNSCGNpanLbS5PknTLsLV19d7sXvv\n", - "vTdo3SeeeCLtdK5y5513Bi332muvpbpf69rbtm2bF2tsbPRiQ0NDqeaysLAQvW5eTcZZOHv2bNBy\n", - "e/bsKXEm6TfXhyr6N4rU1NQELVddnU15w50oAACACBRRAAAAESiiAAAAIhS2J6qpqSloubm5OS82\n", - "MzOTdjqFYQ3btFi9U0lYx9liDdHMQtq9cahcoUM/0+6JqhQrKysl34c1mNQa6JnXe701RDNt1kBU\n", - "a4AkRJaWloKWK0WfFHeiAAAAIlBEAQAARKCIAgAAiEARBQAAEEGzHqylqkE7tAbOWUMlp6envZjV\n", - "+Fj0b84OzSXtxvJKOS5pIxdbUXJJkkd7e3vQcpcuXSp5LmmrlFysYa2hD7eknUvaQnNJMmwztIF6\n", - "cXExaL9ZCD0uocM2rWHQFqtZf20uqirOOfPAcCcKAAAgAkUUAABABIooAACACNFFlKq2qerfq+qb\n", - "qvqGqt6jqh2q+oyqnlDVp1W1Lc1kAQAAiiK6sVxVHxeR551z31HVahFpEpH/VUSGnXPfVNWviUi7\n", - "c+7ra9bL5Suiy7Gx0GJNcu/s7Axa15qyWynHJW3kYkuSy969e73Yvn37gtZ9/vnnU8sjbeRiS5JL\n", - "R0dH0HJjY2NeLO0Hi7Zv3+7FrPfhd955x4tZk7RDcwltjLZ+3tDjNzIyEpRLFtK+dq0GdKuRPiSX\n", - "1BvLVbVVRO51zn1ndYdLzrlxEXlQRB5fXexxEflszPYBAACKLvbXedeJyEVV/a6qvqaq31bVJhHZ\n", - "5pwbWl1mSES2pZIlAABAwcR+G1+1iNwpIl9yzr2iqn8uIlf92s455/L61R0AAECM3t5e6e3tDVo2\n", - "tojqF5F+59wrq3/+exF5REQGVXW7c25QVXeIyIXI7QMAAGSup6dHenp63vvzY489tu6yUUXUapF0\n", - "VlVvcs6dEJH7ReTY6v8eEpFvrP7/92O2v57QZrnR0dE0d1sodXV1Xsya7r7RWE2YtbW1Xmzr1q1e\n", - "zGq4R/ruueceL9bd3e3FrAnCaxvLUdn27NkTtJw1xXxmZibVXLZs2ZLq9izWt3F0dXUFrRs6yd1q\n", - "QC9H1udd6LGyvsnDav6/FrF3okRE/q2I/D+qWisivxSR3xORKhF5UlV/X0T6RORzibIDAAAoqOgi\n", - "yjn3CxH5sPFX98enAwAAUB6YWA4AABCBIgoAACBC9MTy6B2quqz3CQAAECP1ieUAAAAbHUUUAABA\n", - "BIooAACACBRRAAAAEZIM24ymenV/1h/+4R96y1jTjY8cORK0/W9961tezGpmX5uHiMiXvvQlL3bn\n", - "nXd6sXfeeceLPf74416sr68vOhdL6HTy0Km9SXJJG7nYyjEXa7J+6PasCdHnz5+PyiMLlZLLgQMH\n", - "gpY7fvx4yXNJW5JcampqgtZdWFjwYi0tLV5sYmIiOpe0Ff0cWZ93f/RHf+TF7rvvPi9mTWj/p3/6\n", - "Jy/2F3/xF15sampq3TzX4k4UAABABIooAACACBRRAAAAESiiAAAAIuTSWL7W4cOHvdhbb73lxW6/\n", - "/fYs0gliNb9WV5f+cIY2jKetu7s7aLm1DcDIzvbt273YJz/5yaB1//qv/zrVXDZtCvv32fLycqr7\n", - "RZjdu3d7sTfffDNo3YceesiLJbl+rGvFii0tLUXvI4nQh3msxvLJycm009lQZmdnS76P6enpROtz\n", - "JwoAACACRRQAAEAEiigAAIAIFFEAAAAR1JoSWtIdqma7w1Whk1k3b94ctD1r6qw12XZxcTE6lyyE\n", - "5tLc3By0vWuZ9BqbSxbKMZcsGstDc7FeCxbr9WFNeV7boFuO5ydUfX29F5ubm0s1F6ux/MyZM0H7\n", - "CG0sr+RzlAS52JLk0tTU5MWqqqq8mNXob+13bUxVxTlnJsOdKAAAgAgUUQAAABEoogAAACJQRAEA\n", - "AESgsXyNtra2oO2NjY2VPJcshOZiNbtaQhtgk+SSBXKxZZHL/v37vdjaqcKDg4MlzyNUXo3l1j5W\n", - "Vlaicwl9MCbURrtuQ5GLrci50FgOAACQMoooAACACBRRAAAAESiiAAAAIlTnnUDRWA3jmzZRawKl\n", - "0NnZ6cW2bt3qxQYGBrJIpxCSTCdPwmoi7+7uDlr3/PnzqeZSXe1/NFnXimVoaCjVXID3Q3UAAAAQ\n", - "gSIKAAAgAkUUAABABIooAACACIVtLN+9e3fQcrOzs15seHg4aN3QycDWFGBLY2OjF5uZmQlat+jq\n", - "6uqClksysbzoqqqqvJjVAHvo0KHofbz++uvR6xaddaysicRWw/TFixdLklM5S/uBl5tvvtmLhb4P\n", - "p91Yfvvtt3sx6/3VEtpY3tzcHLRce3t70HITExNezJoCX3TWOV/7jQEiIqOjo17MOqa7du3yYidP\n", - "nozMrni4EwUAABCBIgoAACACRRQAAEAEiigAAIAImvbU2w/coarLep8AAAAxVFWcc/5TMMKdKAAA\n", - "gCgUUQAAABEoogAAACJQRAEAAETIZWK5NaV4rdBpstYU5LGxMS9mNbNbebS0tATt15rgGjrZPDQX\n", - "a9qt9fNaU9vb2tq8WJLjkgVysYXmUltbG7S9hYWFkudSakXJQyQ8l/vuuy9oe2+//XbQcmfPno3O\n", - "JQtJcuno6AhazpqanSSXL37xi0Hbe+2114KWO3bsWHQulq6urqDlQif8l+P10tnZ6cU++9nPejFr\n", - "KvpPfvKT6FzWw50oAACACBRRAAAAESiiAAAAIlBEAQAARMhlYvna2KFDh7zlDh486MWWlpa8mNUo\n", - "NjIy4sVCm9YaGxu9mGVubs6Lpd1YnoVyzOWGG27wYo888kjQPh5++GEvluR6sXR3dwctd/78+aDl\n", - "kuRy9913By336quvljyXNBUlD5HwXLZs2RK0vZmZmejlin5crAdexsfHc8kl9LhYyyX53EzyPnfn\n", - "nXd6MevBoh/96Eep5pKF0Fysh6vuvfdeL7a8vOzFYhvLmVgOAACQMoooAACACBRRAAAAESiiAAAA\n", - "IuQysTxNVlNwEqFNnVmwpqfX1dV5MWt6utVsmLZPf/rTQcs999xzXiyL/PKyefPmoOVCG8uzUF9f\n", - "78WshycQb3JyMmi5qqqqEmeCa2E1PB84cCBo3ePHj0fv13r9WddQ6HVVKawHzA4fPpxDJpdxJwoA\n", - "ACACRRQAAEAEiigAAIAIFFEAAAARCjGxPAvlOJnVaiK3ms0vXbrkxaxprUlysaTdWF6O58jS3Nwc\n", - "tNzU1FTJc7Em8C8sLHgxq1kz7VzSVJQ8RMhlPZWSi/XQxSc+8YmgdZ966qnoXKzYF77whaD9njx5\n", - "0otZ30pQKecobUwsBwAAKDGKKAAAgAgUUQAAABEoogAAACIUdmK51VBmNfhZDdRW42w5mp+fD4rl\n", - "5cUXX/RiHR0dXqyzs9OL9ff3lySnIghtGM9CkSbww2e9p1kTy62m23I8t21tbV5sbGwsh0zCWcc+\n", - "9EGMLFjXELLDnSgAAIAIFFEAAAARKKIAAAAiUEQBAABEKGxj+S233OLFampqvJg1+frEiRNB+7Aa\n", - "nkObHEMngleym266yYv91m/9VtC6f/qnf5p2OoXR3t7uxayp8huN9XqzjI6OerGsv1mhFKzr4vbb\n", - "bw9a9/z5817srbfeSpxTEWza5P9bvra2Nmjdubk5L5Z2o7X1MI81ETxt1jVvXQfW8Tty5EiquVif\n", - "vYuLi6nuo1xxJwoAACACRRQAAEAEiigAAIAIFFEAAAARNOuGTVV1ldAkCgAAKp+qinPO/xoV4U4U\n", - "AABAFIooAACACBRRAAAAESiiAAAAIuQysVzV7M+6SlVVlRezpthaE8stVjN7SB4iIjfccIMXa2tr\n", - "82Jvv/22FwudvhyaSxJ1dXVezJr4m0UulryOi6VScvnQhz4UtJw15d96bRXluBQlD5FkuTQ0NHgx\n", - "axL00tJSqrmETvW23oct09PT0blYfu3Xfi1ouZGRES92/Pjx6Fysn7e5udmLVVf7H53j4+NezDpv\n", - "5Xjt7tu3L2h7e/bsCVruJz/5SVAu1jR269hbrxnrMzr0G0mu5eE37kQBAABEoIgCAACIQBEFAAAQ\n", - "gSIKAAAgQi6N5WmqqanxYlaTWRKHDh3yYrt27fJiVpO21Viel/n5+bxTADYs68GY/fv3B6177Nix\n", - "VHMJbXjO4sGTHTt2eLGDBw8GrfvKK6+kmktjY6MXW1lZ8WJWQ3sWQh8IsM5bEn19fUHLWU3fSVjX\n", - "5NatW4PWtR4I2Lx5sxc7c+bMtSd2Be5EAQAARKCIAgAAiEARBQAAEIEiCgAAIEJhG8uXl5e9WOh0\n", - "8ryEThXOi9XYutG0tLR4scnJyRwyycYvfvELL3b99dd7se7ubi/2y1/+siQ5bVQLCwtebHh4OIdM\n", - "7EnQVgO15VqmOcc6ffq0F7MahZEN6/3BatK2PgNPnTqVai7Ww2TW9WxdQ5akzfDciQIAAIhAEQUA\n", - "ABCBIgoAACBCdBGlqo+o6jFV/WdV/VtVrVPVDlV9RlVPqOrTqup/jTIAAEAF0JgmQVXdJyL/XURu\n", - "cc7Nq+rfich/E5FDIjLsnPumqn5NRNqdc19fs27puxIN1s+Z9uTdUHnlYjWWW1PMN9pxsVRyLrfd\n", - "dlvQckeOHCl5LrGKkocIuawn7VxuvfXWoOWOHj1a8lySqJRcGhoavFiSh79Cc7EeDrIkeWBobS6q\n", - "Ks4588DE3omaEJFFEWlU1WoRaRSR8yLyoIg8vrrM4yLy2cjtAwAAFFpUEeWcGxWR/ywiZ+Ry8TTm\n", - "nHtGRLY554ZWFxsSkW2pZAkAAFAwUQMSVPV6EfmyiOwTkXER+X9V9XevXMY55/L61R0AAECM3t5e\n", - "6e3tDVo2dsrU3SLyonNuREREVb8nIh8VkUFV3e6cG1TVHSJyIXL7AAAAmevp6ZGenp73/vzYY4+t\n", - "u2xsEXVcRP5UVRtEZE5E7heRl0VkWkQeEpFvrP7/9yO3X3hWU52lSFPWrYnJadu3b1/Qcn19fanu\n", - "t63NfxB0bGws1X1UivPnz+edAvC+Dhw44MWs1zjyk9dnW15N+OuJKqKcc79Q1b8WkVdFZEVEXhOR\n", - "/0tEWkTkSVX9fRHpE5HPpZQnAABAoUR/aYxz7psi8s014VG5fFcKAACgojGxHAAAIAJFFAAAQITo\n", - "X+cBedm1a5cXa21t9WITExNebGVlpSQ5ZW3Hjh1erL293YvNzMx4Maup33ogYPv27VG5rae6Ouzt\n", - "ZmlpKWr7TU1NXmx6ejpqW0lt3rzZi1kPo1jnzJrcPDo66sWGh4cjsxOpqqryYtY3GuTVPHzdddd5\n", - "sU2b/H/zj4+PZ5EOCqS+vj5oOev935K0UZ07UQAAABEoogAAACJQRAEAAESgiAIAAIigVhNjSXeo\n", - "6rLeJwAAQAxVFeec2YHOnSgAAIAIFFEAAAARKKIAAAAiUEQBAABEyGVieeyE0La2Ni82NzfnxRYW\n", - "FrzY8vJyankkZTXWk0t4Lta05dtvv92LTU5OerETJ05E52JNTE7ykIQ1Idq6dkOPS3Nzc9B+rZ/D\n", - "Yh0/a+J76PXymc98Jmi5F154wYuNjIxc9edyvG5ramqCtre4uJhqLtY0f2sSeeh+revMupbXnjOR\n", - "4p+jLCTJxfpmAYv1rQRp55K20Fysb6zYsmWLF7Mm+luT/61vdbiW93XuRAEAAESgiAIAAIhAEQUA\n", - "ABCBIgoAACBCLo3la4U2uo6NjZU4E5H6+vqg5ZaWloJilcJq8Nu8eXPQuuPj46nmYjWxXnfddUHr\n", - "hjaWW9KetG81kSfR0dHhxb7yla8ErRu6XBZCX4OlZr0vWY31oazG7VtvvTVo3aNHj0bvd2JiInpd\n", - "y9TUVKrbK7obbrghaLlTp06VOBOR7u7uoOVCG8vL0cDAQN4pXIU7UQAAABEoogAAACJQRAEAAESg\n", - "iAIAAIhQiMbyJM2aabOaSa0J2ZXcRG6xmqrTbhgPZU1btibXbzRWY/ndd9+dQya2H/zgB17MaiIv\n", - "yrlM+0EClKcsGsZDvfjii3mnkDvr20fOnTsXtG4pXtPciQIAAIhAEQUAABCBIgoAACACRRQAAEAE\n", - "zbp5UlVz6da0fk5rCncWyMVGLrbQXKyHIj7ykY94MeuhiJdffjnVXEqtKHmIVE4uDQ0NXsx6iCOL\n", - "XNJGLrZyzKWmpiZoe9b7XGi9s3Y5VRXnnHlguBMFAAAQgSIKAAAgAkUUAABABIooAACACGXfWB46\n", - "8bgcG+iyUCm5NDY2ejFrsu38/HzJc0kbuRQ3D5HKyeVjH/uYF2tpafFi/f39XuzYsWOp5lJXV+fF\n", - "Ql+7lko5R2krx1ysb2awjI6OppYLjeUAAAApo4gCAACIQBEFAAAQgSIKAAAgQnUeO107WXllZcVb\n", - "5p577gna1tTUlBezmhxR2axGVMvCwoIXy/rhiixZ030XFxdzyKT0amtrvZh1vkO1t7cnSacwQq+B\n", - "bdu2ebGdO3d6MWsSdNrvudZDIRvN5s2bg5abmJjwYp2dnV7M+pwtR0kaxkuBO1EAAAARKKIAAAAi\n", - "UEQBAABEoIgCAACIkMvE8kpu5AUAAJWDieUAAAApo4gCAACIQBEFAAAQgSIKAAAgQi4Ty1Wv7s86\n", - "ePBg0HojIyNBy1nTeK111+aRFauxPjSX3/zN3wxa7sc//nHJc0lbklzWTsFfT+jU3ko5LmlLO5ev\n", - "fOUrQct961vfisojdJJ9W1ubF7Mmfff393uxJMfkIx/5SNByL730UtByobkkmYYdKslx+fjHPx60\n", - "3MmTJ73Y0NBQqrmkLUku3d3dXqy62v8Yt87b2NhYdC7WtwHceeedXmxgYMCLDQ4OerH5+fnoXEI1\n", - "Nzd7sZaWFi9m5XwtD79xJwoAACACRRQAAEAEiigAAIAIFFEAAAARcmksX8tq+v7Upz4VtO73vvc9\n", - "LzY+Pp44p6J65ZVX8k7hPb/9278dtNw//MM/lDiTjcdqpA9tmt+5c2fQcufOnbumnIrIamC1hDYy\n", - "W43lCGc1tCdpXt9ozp8/78WshyLS9sADD3ixP/uzPwta96tf/aoXe/rpp6Nz+dCHPuTFtm3b5sWs\n", - "5vCf/vSn0ftdD3eiAAAAIlBEAQAARKCIAgAAiEARBQAAEKEQjeXWhNlQldxEbhkdHc07hfdYE53z\n", - "EtpUjWJZO4k8bdY0Z8vMzExJ81hPKRpdK8ELL7yQdwrvufXWW4OWO3r0aIkzsVmTyIukvr4+1e01\n", - "NDR4sV/5lV8JWrcUD2ZxJwoAACACRRQAAEAEiigAAIAIFFEAAAARCtFYbvnud7+bdwr4AE8++WTe\n", - "KWxYSRrpK2ESedqeeuqpvFPI1PLyci77DZ1O3t7e7sVmZ2e92NzcXOKc8MGee+45L3bgwAEvpqpe\n", - "zJqynsTp06e9mDWd3Lo2StGEz50oAACACBRRAAAAESiiAAAAIlBEAQAARFCrIaukO1TNdoerrJ/T\n", - "aoLLArnYyMVGLvnkYTU3X7p0KZdcQmWRy44dO7zYwMBAqrncddddQcu98cYbXsxqQN9o5yhUklxq\n", - "a2u92L59+4LWPXHiRKq5pG1tLqoqzjkzGe5EAQAARKCIAgAAiEARBQAAEIEiCgAAIEIuE8tramqu\n", - "+rPVoGaZnp4uRTqFUFVV5cXymioMm3WdLiws5JCJyKZN/r9/QqeY19XVebH6+novNj4+HrQ9q/nT\n", - "2p7FagIO3UcsKzdrunFTU5MXsxrLK5nVRI5wHR0deaeQqZmZGS8WOqXeYr3uQx+GS/IeeS24EwUA\n", - "ABCBIgoAACACRRQAAEAEiigAAIAIuUwsz3qfAAAAMZhYDgAAkDKKKAAAgAgUUQAAABEoogAAACLk\n", - "MrG8sbHxqj+HTi1OwmpmT3MK8rUgF1toLnfffXfQ9k6ePBm0nDWZO+3j0tLSErTc5ORkyXOprvZf\n", - "9ktLS0HrhuZi7aO9vd2LXbx4MWi/sXlYrEnkltBvSEiSyx/8wR8ELfftb3+75LmEfnNE6JT+cnxv\n", - "sVivXWt7U1NTqeZiTdzu7u4O2kd/f3+quVjXxq5du7zYwMCAFwv9fC/69bIe7kQBAABEoIgCAACI\n", - "QBEFAAAQgSIKAAAgQi6N5WtZTaiW0OZXVLZTp04FLWc1jOfFahjPSxavo7T3EfoeUW7q6+vzTgEF\n", - "tbKy4sVCG8bTtmXLllz2Ww64EwUAABCBIgoAACDC+xZRqvodVR1S1X++Itahqs+o6glVfVpV2674\n", - "u0dU9aSqHlfVT5YycQAAgDx90J2o74rIA2tiXxeRZ5xzN4nIc6t/FlU9KCKfF5GDq+v8papypwsA\n", - "AFSk9+3WdM79D1Xdtyb8oIjct/rfj4tIr1wupD4jIk845xZFpE9VT4nIr4rIS2u3u3aCaaU2jVaS\n", - "bdu2BS03NDRU4kxExsbGgpazJv5arAbOUNYk389//vNB6z7xxBNerJIfnoidTi5ybROEP0joJPIs\n", - "hD4kUVVV5cWWl5dTzSV0EvlGU6SHQkLV1NR4scXFxejtjY6OBi03NzcXvY9yFXOnaJtz7t1PyiER\n", - "effTtVtErnx0oF9EdibIDQAAoLAS/brNXf7n4fv9EzG9fz4CAAAUSMzv0YZUdbtzblBVd4jIhdX4\n", - "ORHZfcVyu1ZjAAAAZaG3t1d6e3uDlo0pon4oIg+JyDdW///7V8T/VlX/d7n8a7wbReTliO0DAADk\n", - "oqenR3p6et7782OPPbbusu9bRKnqE3K5iXyLqp4Vkf8gIv9JRJ5U1d8XkT4R+ZyIiHPuDVV9UkTe\n", - "EJElEfk3LrAbNEkzrdVAl4WGhgYvZv24aTfaqWrQftN26dKlku8jbUkaxkMleShi//79XuzkyZNJ\n", - "0qlYaTdRF8VTTz2VdwqoQEmayC3W+9yhQ4e8mPVZbj08UaRvk0jqg57O+511/ur+dZb/jyLyH5Mm\n", - "BQAAUHTMcQIAAIhAEQUAABCBIgoAACACo8ID3HTTTV6so6PDiw0PD3ux0InEoe644w4v1tnZ6cWs\n", - "6cPPP/989H6ZZhyuubnZi+3du9eLtba2ejEaywGUA+t9znrQa35+3otVUmM5d6IAAAAiUEQBAABE\n", - "oIgCAACIQBEFAAAQIZfG8qampqv+bE31Dp1QnPZkVktjY2PQcmlPJ7dYTeRtbW1e7MKFC14sVF5T\n", - "0cvRzMxMqtvjOMdb+74iYr8/8JCEzWoKrq2t9WJJ3q8tVoOytb3Z2dno7SEZ67V1yy23eLEtW7Z4\n", - "sWPHjnmxo0ePppNYAXAnCgAAIAJFFAAAQASKKAAAgAgUUQAAABE060ZWVXU0zwIAgHKgquKc85+4\n", - "Eu5EAQAARKGIAgAAiEARBQAAEIEiCgAAIEIuE8utidilZjWzW3m0trYGbW98fLzkuYTauXNn0HLn\n", - "zp0reS5JWLls2uTX+VYsNGdrXWuCddGPS5Fyqaqq8mLt7e1B2xsZGUktD+uY3H333V6spaXFi126\n", - "dClov6+//np0LhbrGwgsoccp9PysrKwEbS9UfX29F7MmjFvHJfT9a+/evUHLvfjii16s6K8hK5fQ\n", - "b8pI8q0JVi4NDQ1ezJr839XVFZTLxMREdC5FOkfr4U4UAABABIooAACACBRRAAAAESiiAAAAIuTS\n", - "WF5kc3NzeadQSLfddpsX+/KXv+zFhoeHvdjDDz8cvV+rwW95eTlo3erqfC5vq6k6tHE5ieuvvz5o\n", - "udHR0aDlQnO2mpR//dd/PWjdgYGBoOVeeOGFoOXWevXVV4OWO3DgQNT212Nde0tLS6nuo6amJmi5\n", - "Xbt2ebEzZ86kmkuS11rodRbaWF4kVlN/qCQN40lYn4GhP0foNZm2T3ziE0HLHT58OPV9cycKAAAg\n", - "AkUUAABABIooAACACBRRAAAAEWgsX8OaXl101iTyvOTVWHjDDTd4sdraWi/25ptvljyXLJrIiy7t\n", - "JupSO378eC77jZ3YLnJtU5WLzJqQbT2c8c4773ixIr33WUIfgik66+cYHBzMIZPi4U4UAABABIoo\n", - "AACACBRRAAAAESiiAAAAImjWzYmqmks3pPVzqmoOmVROLvX19V7MakBcXFwseS7btm3zYlZj+dmz\n", - "Z0ueS9pCc7GOgWVoaKjkuezbty9oe2NjY14sZML2+Ph4UB5ZKPq10tHR4cWyePgh9LjU1dV5sZaW\n", - "Fi82Pz/vxSYnJ1PNJVToBG/r/bDo1wu5+LmoqjjnzGS4EwUAABCBIgoAACACRRQAAEAEiigAAIAI\n", - "TCxHtLm5ubxTeE+SZmmkr6+vz4tZU6itJvItW7Z4MaYjxyv6BH2rYdyKFUnoNzNUysRyrI87UQAA\n", - "ABEoogAAACJQRAEAAESgiAIAAIhQiMbyTZv8Ws6KLS0tZZEOUJbyaq6vrvbfRqzX6sLCQtD2hoeH\n", - "g2JrWc2+odPyk6xr2b59uxezJjKHnjOr2T60adn6ZoG0Hwppa2tLdXtpnw/L1q1bvdiFCxeC1g09\n", - "fp2dndeU0wdpbm72YtbrKvS1huS4EwUAABCBIgoAACACRRQAAEAEiigAAIAIajU7lnSHqi7rfQIA\n", - "AMRQVXHOqfV3ud6J6u3tzXP3WIPzURyci2LhfBQL56M4Nvq5oIjCezgfxcG5KBbOR7FwPopjo58L\n", - "eqIAAAAiUEQBAABEyKWxPNMdAgAAJLBeY3nmRRQAAEAl4Nd5AAAAESiiAAAAIlBEAQAARMiliFLV\n", - "B1T1uKqeVNWv5ZHDRqaqu1X1sKoeU9WjqvrvVuMdqvqMqp5Q1adVtS3vXDcKVa1S1Z+r6o9W/8y5\n", - "yImqtqnq36vqm6r6hqrew/nIj6o+svpe9c+q+reqWsf5yI6qfkdVh1T1n6+IrXv8V8/XydXP+E/m\n", - "k3V2Mi+iVLVKRP5PEXlARA6KyO+o6i1Z57HBLYrIV5xzh0TkIyLyR6vn4Osi8oxz7iYReW71z8jG\n", - "H4vIGyLy7pMenIv8/B8i8t+cc7eIyG0iclw4H7lQ1X0i8gcicqdz7ldEpEpEviCcjyx9Vy5/Xl/J\n", - "PAveniIAAAMgSURBVP6qelBEPi+XP9sfEJG/VNWK/o1XHj/cr4rIKedcn3NuUUT+i4h8Joc8Nizn\n", - "3KBz7vXV/54SkTdFZKeIPCgij68u9riIfDafDDcWVd0lIp8Skf9bRN59jJZzkQNVbRWRe51z3xER\n", - "cc4tOefGhfORlwm5/I++RlWtFpFGETkvnI/MOOf+h4hcWhNe7/h/RkSecM4tOuf6ROSUXP7Mr1h5\n", - "FFE7ReTsFX/uX40hB6v/0rtDRH4qItucc0OrfzUkIttySmuj+ZaI/HsRWbkixrnIx3UiclFVv6uq\n", - "r6nqt1W1STgfuXDOjYrIfxaRM3K5eBpzzj0jnI+8rXf8u+XyZ/q7Kv7zPY8iisFUBaGqzSLyX0Xk\n", - "j51zk1f+nbs8QIxzVWKq+mkRueCc+7n8y12oq3AuMlUtIneKyF865+4UkWlZ86sizkd2VPV6Efmy\n", - "iOyTyx/Qzar6u1cuw/nIV8Dxr+hzk0cRdU5Edl/x591ydeWKDKhqjVwuoP7GOff91fCQqm5f/fsd\n", - "InIhr/w2kI+JyIOqelpEnhCRX1fVvxHORV76RaTfOffK6p//Xi4XVYOcj1zcLSIvOudGnHNLIvI9\n", - "EfmocD7ytt7709rP912rsYqVRxH1qojcqKr7VLVWLjeh/TCHPDYsVVUR+SsRecM59+dX/NUPReSh\n", - "1f9+SES+v3ZdpMs59yfOud3OuevkcsPsf3fOfVE4F7lwzg2KyFlVvWk1dL+IHBORHwnnIw/HReQj\n", - "qtqw+r51v1x+AIPzka/13p9+KCJfUNVaVb1ORG4UkZdzyC8zuXzti6r+TyLy53L5SYu/cs79b5kn\n", - "sYGp6sdF5CcickT+5VbrI3L5Yn9SRPaISJ+IfM45N5ZHjhuRqt4nIl91zj2oqh3CuciFqn5ILjf5\n", - "14rIL0Xk9+TyexXnIweq+rBc/qBeEZHXRORfi0iLcD4yoapPiMh9IrJFLvc//QcR+YGsc/xV9U9E\n", - "5F+JyJJcbhX5cQ5pZ4bvzgMAAIhQ0fMbAAAASoUiCgAAIAJFFAAAQASKKAAAgAgUUQAAABEoogAA\n", - "ACJQRAEAAET4/wEtHY5P7rJ1tgAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAJOCAYAAAB8y+mTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVmsnWd5Nnyvedh77cnb23biKY5xppI4sRNCEigmFNLS\nMpSWqQWaFlGplTipkHrQg6JKPekkVepZUfVBUaqoFQFBCxQKgRA5NJMz4STO4Nixt2Nv73HtNa/1\nH6z/utf1Ps+93vXunfzf5pee62Tb652e+bmf655SvV5PAgICAgICAgICNo70VhcgICAgICAgIOD/\nrwiCVEBAQEBAQEDAJhEEqYCAgICAgICATSIIUgEBAQEBAQEBm0QQpAICAgICAgICNokgSAUEBAQE\nBAQEbBJBkAoICAgICAgI2CSCIBUQEBAQEBAQsEkEQSogICAgICAgYJMIglRAQEBAQEBAwCaR3YqP\nplKp2Lw02Wy/WN1uN/KXMT4+Lq1WC+8TEZF6va7Xc7mcXms2myIikk735cZer+d9Q0Sk0+lsojZ9\njI2NRcq+vLzs3ZPNZrWsKDsjk8l45cD9o1L58H2oZ7fb1edwPSlSqZQ+i3Kl02mz3MViUUSi7Q9w\nWfL5vIiI9od7Hf+3+tuC1V5o//HxcRERWVlZMd/ntmsmk3lT/e/Wg8cYrlnvH1ZXjKeZmRm9b2Vl\nRUQGY6der2ubTkxMiIjI2tqa9gPqeODAAf33qVOn9Bt4pt1ui4jI+vq6lhVl7/V63tjJ5XKyb98+\nfUZE5NVXX/XqkEqltB6oZ6PRkNnZWRERKZVKQ5+dnZ2Vm266SURELly4ICIizzzzjF5HOXO5nPb1\npUuXYsc52mp6elpWV1cj5eKxWy6XRaTfPvPz8957du/eLSKDfqjVatq3GJPoKxGRe+65R0RETpw4\nIefPn4+8a9S4Q/tVq1Xv2l133SWHDx8WEZHXX39dRERee+01eeyxx4a+D9i/f7+84x3vEBHR+3ls\nAF/4whf0+vPPPy8i/TEGYP5ks1n9N9o0l8uZ6wXGFvoDY0hk0PblclkmJydFROSll17yno1bR0UG\nYwvX0+l0ZN0ZVibMBcaHP/xh+dGPfiQi0X4FpqamRKS/5qP/8Z5sNqu/NRoN73uFQkHrw+3qYnJy\nUveUUWs6vgfwPrAZ4Dv4m3R9HvU+lGnYmo/xgb28Xq9veI3Gt3iecX3c37hcDPrNbPQtEaRGwR3M\nlUpFFxI0+Nramk4WDJxCoaCD1Zpg3Fm4fuDAAREROXPmjNnQVge7m6bIYKFDp3NZuF54FmCBhQcJ\nBhG+wc9aZXozAkE6nfbebQmY/F4WYlwBCouhSHSDshYyty7DJikWHqDdbnv1HB8f1036zJkzWk73\nnZlMRtuL2z5OMOMxicUP7+U+5G+xUBVXN7wP32o0Girk7N27V0RElpaWvE2fDwmXLl2K1E9ksMAf\nPXpU78OmlE6nI4s4fkNZrb7Ce4vFoi7q2MAZLDBjk+RFGHMkbnHPZrO6saAvGWiLbDYr27ZtG/oe\nBuZ8tVrVcqGdx8bGZGFhQUQGG/vb3/52ue6660RE5MEHH9Tvnj17VkREbrjhBhERuXz5sgpcXCfU\n+Qtf+IKIiPzt3/6tJ0gVi0VPSGIBxBKggMcee0weeughEen3sYjIddddp4Ip6mMBwqeIv/EylpeX\ndZxMT0+LiJgbfqfTiQjfIv1xgH/z/MG/ISQePHhQhTi0fa1Wi1wX6Qt6eJbLbB3QrrjiChERWVxc\n1HoA6JdsNqvtjPE0PT2tzwAPPvigvq9SqYhIdNwvLS2JSF94q9VqIiIqBNZqNW8fQHtx2bdt22YK\nsoC7/g0D7y/uGsfgNcsCysVr4ZsVoNxyxb03m81qf8YJwKlUyjuo8rhD//L4s+bom805vOWClCvt\nlstlb6Kurq5qY2EBWFtb00GLa8ViUTdxPuW4kjuzBS+//LKI9Ac+GhOnDus03uv1YgeUezJlFItF\nHaD4Ri6X08nJC587eHiTw0ZkCYsWm+UC7cVMkzXZ48DfgUDLAoZ1cnMxOTmpfW0JfyhnKpXSiWDV\nCfVIpVIeu2EJf8P6kE/XIv3JZ51Q0e5xC9Ww69bERT150mMDhdBUrVaVRYk7uabTaRUOMK46nY5u\n4Fwm9BcwaqHkxdUSoN7//veLiKhQ8dRTT2mb79q1y/uuu2GJRBlF1NNid4EdO3bI3NxcbLkBCAJY\nN0QG8/DQoUOe4PHII4/I5z//eREZsFBf+9rX9DqEVzBmLlxG9w//8A/l4Ycfjtyzc+dObUv0dbFY\nHMq0iAwOf1i7REQuXrwoIiJ/8id/Ir/4xS9EZLCe8AYPsJAb963Tp0/rs6NYbXeOVqtVHds4EDSb\nTR0f6Nft27fLr/zKr4jIgHXs9Xpy+vRpERG5+uqrRaTPzl6+fFlEoussxjsLhzgwHDt2TET6fYn6\n8hxwD0/1el2FIJRvaWnJO5xYmJqa0rbCs4cOHVLBm/cklAFzYHJyMpZ9jBOoGdYczmQyXj15TbXu\nw7VhbD7KDwFzbW3NW5fiSIhh92HscNni2MJer+ftHXEaD/5Gr9cbKmTielIEG6mAgICAgICAgE1i\nyxkp99S+tramJwswL4uLixGVnkhUr4q/6+vrKr2yBO6eDAuFgp4OcApYXl7Wk431LMCnIktyxb+L\nxaKn8qrX6/obnz5wcgSD0G639WSDsmQyGT05xp0gR8FqN/e6SNSey1L34L6pqSltD/fUOwrLy8vm\nKddV/bAu2zoloM+HUcBxNkqMJNR1NpuNqJXwXBJ16tjYmDKmKGutVtPyWUwJmIb19XXvxMfvAzsy\nPT2tzBFOz9VqVU/FXFecmrnsGJdQl83Pz5s2hug3fOvmm29W5uCpp56KfEdkoEITGcxhHsfoczBX\n7XY7oq50gTVi9+7diVUOsOWbm5uTkydPRq5BPeMCbBMYk23btul8BUM4Cn/1V38lIiJ///d/rwwJ\nVIWTk5MRGyCRPgPzyiuviEiUjUP5rVM9TuulUkn27NkjIgPbp1qtJtu3bxeRwXhiezJrTQVeeeUV\nUz1iwTr949+vvfaaiIi84x3v0HmDMXnq1Cm59957RSRqBwegfcrlsmeP2el0lNXBOMVYEhG1bdq7\nd6+WAeD6XHnllSLSV9mBYWegz2+88UYR6a9JripuZWVFbRqxJp47d07LzIwUwAyQ1a9ALpczbVCT\ngNWu+Ea73dbfWG3ofmN8fNxTsfEafO7cORHpjzvUhddHd8yMmqvW+s7vcNto1PviNA8M1n5sRoUZ\nGKmAgICAgICAgE1iyxkpC+7J+8CBA3r6w4mKpWhmIlwJ2DLmZuYKp4RMJqMsAE7ZrEPF38uXL+tJ\nHwxCs9n07ltaWtJTDr7BNiGWzts64bKhN6RmsAbr6+sRg2eR/qktzqZhlLSNb1jsDrMx+IuTF67j\nGnvhud9lnbfLFvZ6PZNxYwNRkSibEWffVS6X9Ru4j081zMZYRuGubUGn01Ebn42eENkRAO2bSqVk\n586dIjI4STNbgrKyAT+XHfMBWF1d1fGB+qyuruoYBOu5urpqjjcwRzhZX7x4UU/U+Ntut9VmCCzU\n7OysMkjs6Yb6wm5nZmbGK3OhUNA5h7nfaDTMOQLDY8zBSqVishgWMP8mJia0D7FevP3tb5ef/OQn\nIhIdW7AtQ7lWVla0v+Js1RiPPvqoiPTtdN773veKyMC+yZqjN9xwg7b18ePH9XeMN8so+dprrxUR\nkW984xvmuATDiP5/+eWXde6CgdmzZ4+WB2vhMPsvF7lczrNlsebxI488ov+GV+a5c+fkgQceEJGo\nYbkLZnT2798vIn2PT7ZvEumvrR//+MdFROT+++8XEXv+sJE77NRKpZKORbRLsVjUsQOG64477tDv\ngVmrVqvyvve9T0REvvnNb4pIVMNi2fqg7EtLS9o3WKd4DR61bru2xu4z1hqJclj2SC5byWBHFWbW\nk2CYJ2cc8K18Pu+xYr1eT8tv2Z26f7nMjDdrSL+lgtQozwGAjSrZENA1lrXA4QCY1kTjW3SqtaGy\nETvUABh0O3fu1EWJBywmp3UfOpMHB5BOp3UyYyOvVqueepPVhyjzMKNEVtO5k44Fxjj63rqWyWQ8\nrxn2zLIGqPWeOGPzbre7aeGl1+t5giXTt+wUwOoRfN/tG8tLUWQgfMfR881mU5/l92LTxEKayWT0\ntx07doiIbXBtlaPZbOozqNv8/LyOWVZ7WMD4gVBUq9U01AHKZ6nBH3vssVgvMfSvNT5LpZK2B4Q7\nS8BAG4sMVApnzpxJvNljHLzwwgveuLznnnu0bCy8oM4QBFutltZloxvCAw88IL//+78vIiK33367\niIi8+OKL3n3Hjx/XdQ6CxdLSkqfqzOfzui792q/9moiIfOtb3zLbGMI51H4ifhvPz89ruTDfvv/9\n75t1gSADdDodfR/GxuXLlz21Oq9ZJ06c0N8gnGKt53UF/cZrJTw5JycnzYMjBCiuv2uqsLi4qKo6\nqKNrtZq+75prrhGR/hiAMAyw08Att9wiIiKPP/64hojAAeOll17yhJFMJqPXX3jhBRHpr+loc4S0\nePLJJ7W+o4zNLccW6xBreSYDw4Qcy6M7ieCUTqe97yWdM+xJzgKoKxCmUqlYh7CkDjRY85vNpu4D\nG/F+D6q9gICAgICAgIBNYksZKTd4ZBLwyTyJyz6zD5YLZNx32VgOtDKfinDt/PnzejLECbbb7eoz\noHbn5+c9KbvVain7wIyOyzbs2LFDWQVIyu12W12/cc0yCBexDew24u6Ov3gnJHg+wXHdLLoV72PX\nWpfuLhQKeophKj+OieLgjK77bK1W05NeXIwxRtxpq1AoaLuhXSYmJrwgmBY6nY7Z5jht4pTd6XT0\nN6gUrKCVFrjP0X4XL170YlpZLvEiA0aI2wiqOlbjgtlAG5w9ezZRyIu5uTk1+kWZpqamTJWyayCf\nz+e1LMPUanGu0oDVB5YhsMhgPjMjgLbZaMiQn/3sZ/KRj3xERPpBHkVEvvzlL3v3sfE55vfBgwc9\nRqrZbGooBPw9dOiQ/O///q+I2ME8OWyF68I+Pz+vaxUYomFwY3d1u11P7TI+Pu4xjDt27NCwBkC9\nXtf+HOa+j/ry+irSVymjvVzVmIjIb/7mb4qIyLe//W0ds2AwFxYWNBYYwOs72KW5uTlVQ4JFY+N1\nnptgGK+66iotu6vh6HQ6ykSxcToYXYyv97///RonjEMwJAW3pauV4X2RYy5xTDm8w+0TNqthJsxl\nxaxnU6mUpz4UEW+/4Gfj5vIo43D+lhsnstPpJIpVlQSBkQoICAgICAgI2CS23Nicw8SLDA+c5bIK\nVgRvy+aKg29yWgHru24wT05DY4GDg7on2nw+r+9m12qWhlE+l83g4Jv4O8wO5I033tDvifRPoWij\nYZK620bpdNqzHygWi3oCwqkynU5rG1kuqXFhCDjAIsOyVXPbktMjoEwcfA/lsxiCN5P6xRpP1jeG\nuc67sAKBcgR8i9HByTUpstmsjgmcdpmVGxVUEewo21KBueK6YxywMXwcI8XhMlzWq9vtegEAhzGQ\nKBeYmosXL5p2IRvFM888Y4ZbACuG8uXz+Q0zUYznnntOREQ+8IEPiEif+QHzYQF9ib/DwKEd3LQ8\nDOs32Jtdc801EWcEkT7TxTaqQFxgSsyHiYkJvQ+/VatVL+Dl7Oystil/H79xuid2GBLprw3uN3hO\nseMGxhT6slKpyNNPPy0iA5uvxcVFueOOO0RE5Mc//rGI9NveHY8cSsFypAFzymsPbK5eeOGFiPOS\nC8yjb3/725FUTBtlTXhNT2ozZGXZcPeGpEzTMO2Iu6eyLRWuFYtFzxg+n897WTaGhfCJY7M4bYz7\nWy6Xiw1GOgy/NIIUwI3AaVIwMVigcvPlWZFq0+m0NoyVvoW9y9wNvN1uazRkTFI2BMZCsGPHDp0Q\ncbGeOB9VXLRrrgfAsUCsmEpMUSZVl1oTDbBUHb1eL1Y9Zk30OO8PkWhsIrzD7UMrlg4bBaLsY2Nj\nqsbgmCabDf9vCfAigzFoxX+Ko9+5LGiXubk5fV9czsJR4CjmKANUGZlMRsuP9rH699ChQ16U8FOn\nTkWMfUVE7r77bq07VBmjjE9ZAEf5MB8vXrzopcywxsva2ppehzrKhdu+Sfv+tddeU09EqFgbjYYK\nEWjfVCqV2Ljdwte//nURGRibv+9971MvRmz6Y2NjuoGO8kjEnINa6Morr9SYUUk9qXBfu91WoQUC\npOXtJhI1/HeB+bi0tKRCE9rv0qVLKrRgXq+trXlZBUQGfcee1fg3xt+JEyfk5ptvFpGBd2S3O8jr\nCa+8/fv3e+rx6elpFYiQCujVV19VIQiekCdPnoz10OS9AfPMcuqAwHzXXXepyi4O2WxWx+JGc6WK\n2HsMr4uWMGTNlyQpXdhMhx1vsJbxM2gbdkRw95NhjjRJ0O12PRUl73G8z7qH/1Gx0oYhqPYCAgIC\nAgICAjaJLWekAEsStih0/GZFTU2n054ah6VTZnJc1oMlZmYGcDrBb9lsVv+N09rCwoLpqumCT+Nx\n0dO5XJZBHiR6/saw+CFxiDutMzPIkcaTuMcy4piBYrHoxXgSiXc7tdyAOSoxYDF/cX3DeaY4B6H7\nPVYVcpnxTFxy0WGhINCmcUxUoVCIOBkAYBDAatVqNc1rBhfr119/XdVW3B5grMAMNBoNZWBRj3q9\nrkwNonvPzs5qPB28Ny4fnsiAwTx37pye7q0T5ihHAKit0PZJTstJsLa2piwXGJ2zZ89q/4NZ2Qwz\nwECd/+Ef/kFERN7znvdov15//fUiInLrrbcqwx3HSKXTaWXHfv7zn4tIPwwC5kMcdu7cGYn3hW9B\n5QiWxYo1tm3bNi8WGIPbCGqqI0eOiEifNXKZIR73bCDvGmnze/kaxiBYr6mpKWVysDYdPXrU+y6r\n5zicAdSonIAY45u1GlamAcxNzJ+JiQlP5V2v1814We76lEqlIvM6KXj9Eok6ucQxLpth7tFfzFCi\nvp1OR9WuaL9hewjATkxWmB53r7HU+mzgz/usxcBtloFyERipgICAgICAgIBN4peGkQJ6vZ5n8Gih\n3W6r9Mr2ThbrYLll4llIu+vr67HfxampXq+bp2+cVJhNsZgaXMf9VnBILjtH/I4LarZZOyAA7cbG\nhjgNsVGwhTgmiq+5gTsbjYZXbjZKh4t1u9022xwu2sxEWe67VkZxNxRDoVCIRKp3gbHRbDZNphT1\nTGqIjHovLCzEnorw3fHxcdMYGs/ymEW7Yexw+6BdKpWKjmmcIFdWVpRpAOuaSqXUXgfsx1NPPaW5\n4JKe6NAu7XY7lnGMG8dsw8FZAtx7Rr3HwhtvvKGna9gbFYtFmZ2d1XLjtyS44YYblPGw1hPYQ73y\nyivaNliTpqamErXr3NycskoIGHr06FFlAVB2a9wMax+UGWMCkd0ZmUzGC2Fg5enjb2BcHT161Atu\nyQATt3v3brXTwnsrlYrHEPd6PS/34Q033KDrBerx05/+1Mvh2W63zfGCMrhhaVD3YVhZWVHmEnOr\nVCp5YSgeffRR+exnPysig/atVqten4+aK8PgGmS/WbhtxCEiUKd6ve59L5PJeIGAee8C+53L5SIB\ngAHXbq7dbnt7ZSqV8vYnHoe8vrvZDCyNAodxcLNpxCH1ZjfgzSCVSsV+NC4diAV3gxaJj+BqeXJZ\nFKyVeLhUKnlpPoYBE9FSXzFGeSyK9BeRJCogF+6gGIU3473A1Koba4nfjcjHlhE5R51n4DragAW9\nUcKLm9Kn2+0mUlGy96QlGHJMFoDVx29WDSQyUClls9nYyOHA2NiY3HbbbSIyGJ8/+9nP9DqMyRcW\nFt7UQgu1tmVMGgdOCGupK1zP2STgvsGY2MxmwmoF4Nd//ddFZKBiazQaZsw2F5/4xCc0npPl9RaH\nYrEYiSknYmdA2L9/vwoo2JgXFha07SCIPPnkk943xsbGdINnj0AIzZhTrvpPxI4Tl0qlEjm53HLL\nLSqEQ/Bpt9ueJ182m9XfOKk7+hN9dOTIEU8wq1QqWjcuPw4YnIYI3+DN1V1/hnkcIwE11NwivvA6\nMTGh/cHvxXcRb8rqo2GmDxtd0639jtc2huX4ZAFzBdfr9boe+rgtOYExymIlP3bNKjKZjLc+ZLNZ\nL6F0o9Ew52Hc/r8ZUFnNRg+qvYCAgICAgICATeKXTrUn4kvDo2IBsbqMGQuRaMgBPqXiRACpd2Vl\nxVPtWazFMFd3jhgt0qc8rejkrus0143fx+EbuEx8H+e34lNKkqjtLlyVWLPZNBNhunRrOp3WdrIo\nWAau86kTTJN14uP2QFsy42AxUW6Ov+np6VhG0Mq/B1gMIerMv71Vpx4LVmJRCxjPU1NTWl9LHYrT\nMYdJ2Ez5MQ82ymizwSifPuMS3QKs2mP2gw1d3XAaG8kpZjFkYPDA1Pz85z9PVOepqalYA2GLRedr\n7tph3Xfu3DnNy/aZz3xGRER+67d+SxkcXLNQrVa9073IQLXH85zj74kMH4tWBGz33meffVadF1hN\nx3kc8Q0Y/bPqzu1fjicHTE1NaWwsOF6cO3dO3wOj/ueff96bI5xZAetFKpWKJEkGwPQilMXx48eV\nieLYV2DgWeOBsYHwIdaYbDabkXV2szHSOCPFqHhSSeezO7bT6bSnwuacsa7jgEh0v7AYZGtvs9Tk\n7j7V7XZj1zRLzWjBNXeJQ2CkAgICAgICAgI2iV9KRgrAacYy8OPTKTNSrm0On4g4bIDrzloqlVTa\nZYkVBnFgTNiN0pJ6+ZTl5je6cOGCeTJwM6Qz2F7HYkBchoiN75IaxjJY+o+TxK3QC6NsxtzotZ1O\nJ5aJYlbOtT3g8qHu5XJZT/I4CV2+fNk7ffF4ijuh5XI5HQtss2O50VqOApsFnzzdIKxWGd1n0Ebc\ntugjsBDlclntkWDw2ul0EpU/aVYBET/IaKPRUPsVyz3b6geUOZfLedGTM5mMGcSRr7tlzWazOj6s\ncBoMGOrDluXEiROxTjDAiRMnNLK8ZbDNzg5unYdFiGd7OZE+U4NvIGo212eUnRnmK2wIG42GxzS0\n220ta1KbRHbucOdyo9FQuy7U5+LFi8oW7dixQ0T6ayUM8jlyuRtA8ZlnnpFDhw6JyCALwJkzZ3Td\nBjPF7BjmRbFY9EKZ9Hq9SCBokT4TZrF3bk6+gwcPajgDhAo5fvy4tyY1m019lu1orQjigMu8bhRJ\ntBPWHLaybIj4rM6wKPrunsAaE15rXHviVCrlsbLDGKS4INdWAFJ+T1zgTo6oPgq/1IIUYHnj9Xo9\nrzNHGWHjPqZRrc5hVRW8g1hlxIZzIvbCYhmHivjCVbvd1ndbIfWtDYY9FuJUPxvZ1JMYHvK3OY6H\ntXkBuK9UKnmb1rDNF8+w16AbK4Y3M9TT2oAsQ9FRQgnXEWOKBRXLOylpW8ep0zCuCoWCp8IapibC\nWMU4XV9fj6TAEOkLTSgz1AyVSiUilLrlg2Eux+kBrEVz586dpsCAPkQ7cgy3UdQ6ysAx3Nx5WywW\nI31jxV9z6zYq0SkDhuJQ1UxMTCQSpI4fP+4lxGWgPycmJlSwZO9KxPiCITh7uKJdFhYWdINHmbZt\n26bvgVH81NSUl8aIvVTduEMusC4Ni3Lugue01c5YBzhtEKd3EYlmKeBxgjJAPfjyyy+b6Wpcr85M\nJqPzAerLUqkUiZcmEh1jOLydP39e28Baf7C+cL0hULETE0fHd9NC8ZzHxl2r1SJ7wmYyHiQBCxOu\nWciwNRpthPHHCYAZ7nrH+wULyFbd0NdYl1dXV2PnrbVGW1lAGC4Zk0qlPEE6SUT1oNoLCAgICAgI\nCNgkfmkYKcugmRkRK1Ipn2hE7OTAY2Nj+qx1wgGs35hl4OsceVYkSn+ifMNy3rnMRSqVUomX73fj\nZWzGOHgYS2IZ5yWNv+PWk/+N8rPbK04T1WrVU/Nwu4CKLxQK6rLMTJ978rZCU2zfvt2LuFytVvWU\ny263blsySzGKKXHr3el0PCN3C8Vi0VMVssE9J3BGf+BUls/nzRxvYDM4DgrHnsJvaCuwFdYJkN2L\noTKy3N+LxaLHkE1OTpqMFNqSx3bcCQ9tUSqVIvkDRfqn92HxowA3+j/PFawTKysrWi7X7d4FxiWz\n2UnBkbNFoiw1yrW0tOS9c2xsTNsfY/fUqVOmGgURstFP3C+Ih7R3716PkWJGMul434yxc5whMMq0\na9cubRf8tm/fPl2vcS2VSul1RO3ft29fJDq4+130X6lUijB+Iv2x4o7F9fV1ZalYZYzvQoX6/PPP\ne8wqq1LRtjCYFxmsXZxFgXNMuvlka7Waso/1et1UL74ViHPMGAa0L483rEUwvp+fn48kjcZzeBZt\nOj4+rn3NTLyrmq5UKl68Pt7jhuUAxHfdvS2fz3t9yKpdV/MUh8BIBQQEBAQEBARsEr80jBTA+fIs\nXTtLhxzRXCRqLwEJkzPG8+nTPRHkcjn9NyRqzr/E5XOZCw6cxidwN3o2fw+wDOT4G1ZUdL7fPXmn\n02llInCacWEZ5yU1MoyLHstwJX0+cQG7du1SxuWll14SkeEG8i4DUq/Xtb3QzsxGgc2oVCpqcMqw\n+iGOjWOjb5wYLdsChstITkxMeHZ1/BtOaPl8XvsVfyuVip7QcLLdu3evnnjB1HQ6Hdm1a5eI+DnD\nRGwmChHi0+m0ZzPiMhm4D7ZWaAsL7LLNp2zr5Mh2UCJRuzjcnyRIp+sezwA7wYFN3VxgLtCvBw4c\nEBGRJ554Qq+xrZIF15bqk5/8pHz1q1/17nNZ1GuuuUaeffZZERn0P9sRMUuI3HgIGGrZDlos2igj\newbaDeuK5SDCYKN0tpEUsW39lpaWNMwE6nb69GmPLeQ2eOyxx0RE5NChQ9qH6HOOlI15fu2110bs\nCEX67YNnbrrpJhHpOwmg3cBgMfvNrLDrJLR9+3aP9WLGkZ1sMOdQ30KhoH1nRdKuVquJbdSApFoG\nXseGBbBGuQH3nWwD+8Mf/lBE+nZs7n28zqKezDShb6w1Iolt4jBYAZJbrZbJjo8a3xa2XJCyPBXi\n0rygM0tL+WfKAAAgAElEQVSlkk7KOMPxdDqtjYW/lifP+Pi4TmYIUHNzc5Gov3gfqwhEhhsBcioC\nt74WXeiqDBmsFuCFyv2t1+vpgjFKDRKHUca4nKTZHYyFQsETmlqtljchz58/r0ajTJlbgPEtnr10\n6ZK2E3+LDRP5L4OTWnLkXSsJtuvV0W63tb9HqVpdFcHExISWFc+Wy2X9DeN3ZmZGn8EYq1arXl0q\nlYpuMthg2EgXqh2RgeEs7m+1WiqA3nrrrSLS7w8sZM8995xXH7TB+vq6eldBAHITwopEY1rh/vn5\nea07VAGdTseL/8YG/NiErXm7b9++yGKNceKmMBGx0xWNUpcgajbG6cLCggpQbuRtBs8BtNvnPvc5\nU5ACIKx96lOfki996UsiMhjbHC8JC/3U1JSq9r7yla9omVzngFwupwmZ+VCRxAsvn89rEuQ4lezs\n7Kx+11rbRkWxR3/de++9IiLyL//yL55wy0I92uOFF17QwwQEUvSVyOCQ8MMf/lAj/iPBMwOC6Gc/\n+1ntI4yXqakpFXi4TNgvIDwNiwmG+cjrOt4HIXV5edkTrnK5nPb11VdfrYfNpEgaE8oyQWGHmyQq\nv3q97sXLOnv2rJm02B13lkkAe0Lz+ok1kL0sk9ZzozHvcBgPqr2AgICAgICAgP8PsSWMFBuHW4bl\n7km0Vqt5zBXn9sFpx1Ixdbtdk1oFIO0uLi6qlHvHHXeISFS1x/n/cNJnFsiS2vE+jpHhqiP5FADW\nYGFhwZPam82mR63PzMxoWTgK7ygD2jhYRv9ALpeLRD7HX87Px2VhsIE3+mlqaioSw0jEZh04+eXN\nN98sIv2TNd4HdoGZDfd5/obVV9bY4Zgi1jOjTmq4jn4rFot6WkMb8djGWOTI1ujfubk5L5bWuXPn\ntF0wVyYmJpRFZUbSYjnvueceEZHIid5S5aF9b7zxRhHpszQoA8pksbKcHBwsATPJGONnz57VfoNa\nUsTvE465xLGlmIEB64A8c9xHPB8wji11CSJfMyuHfGqNRkPLGKdq4DmAMp88eTI2H90f/dEfiYjI\nnXfe6V2z1A1XXHGFsh1gmkqlkveNpaUljWuENrjqqquUwYG6ynLgaLVaWs+43G6Li4seo4J3ikTH\nB36z2uC///u/RaSvtnaN9Rloj7GxMWUEOasEygqG+/DhwxrlHIwUr2/XXnutiIjcd999+huPA4t9\ndpmUhYUFb43mOuJ7e/bskTNnzohIVJuCvrGi3p85c0bZRwu8P7LjiVsGvj/OyHzU2uYmtOe1jYH1\nhPcI7P+sJgXrifWO13KsA5ylJGn4Ei5nktAJfM9GVImBkQoICAgICAgI2CS2hJHiU7Sbs4ttCzho\nnWsPJSJeJHLLzoWfgVRcKBQ8piGfz6t9CJgotktit38r75L7GzMrnOsNJ2DrBM8na3yX2TScciBl\nX7582WOuer2enmysCNkcWsHKHxd3EhnmJu3m4rKQTqc9pspiPzhSNe7fuXOn2iGwsW9cfiYOcppE\nx59Kpcy25HLhvqTBNy2nCYxj9EGtVlNXd/wdHx/XsYjT6czMjLYvxollA9fr9fRZDvCHtkaZpqen\n9bQO9/GlpSXTMP+3f/u3RWTQpo8++qj2EeycGDiV79ixQ+uL8d5qtfQbYCb4JItxuLKy4hmO5/N5\nz4HDPTWiPCgDs1DsyIDycDuD0bAiGfNJFYyfZfweZ5D9p3/6p14UbgbK5xosi4jccsst8vjjj0d+\nW1lZ0b7j8CBgXrAWnT17Vh1okDNw3759HoPQarXMwMewXwLjZLHGHBWf34F2Bpty6tQp/c1iA8Eu\n1Wo1nY9oF4thZ6N5rJm1Wk0++tGPiojIN77xDRERefLJJ7V8+G6hUNA5BOP+u+66Sx566CEREXXd\n379/v7JsXG+X4SiXy5GI5igL24Lhu25gT94LLWav2WzGMnS8xiRZ7/h+tnd132Hl6RPxtQ48FzAH\nDx8+rLkE0XfNZjPCgIr05yIb9ov0x6KrhRqWBYODQ6M+Vn5V9APqxizVRvLSWthSY/NareZN3Eaj\n4anieMLzNddDL51Om1Syi2HX3GSqzWbTC11frVZ18rIxHBYt3oxdgSCTyeiAw6ZZq9U8Q0wWJnkD\nx0KBa5ahN+4VsZPuWlSzyMYT17J6Nm4QcjwvLBqYaO12W9sI6iXLaJkpdN44EUuGjTBRp7h24Xpz\nYkp3XORyuUTpb4Z5OAKs0nTbqlAoeLGlLl26pIIP3reyshKrqsXYXV5eNgVUF91u1zPsx+LOOHDg\ngI7Pp59+Wn+HwAA1suXNymkeIDytr6/r+ywDZGxsKysrKtDgL7+PDf5ZgIfRMPcl2t+qHzbLHTt2\n6AZmtR8ElWKx6HnZMTCPtm3bFknAC0DwsTz+/vqv/1pERN71rnd577WEu3q9rt5rWBOWlpZUTcVz\nCe2P96yvr3uCzKg1gJONW96arrqXD4aYo7fffrsKGbz5Yg5gTExPT+tYgBEzmzJAVQwVrsigj9bW\n1uSpp54SkajKxvXam5yc9ATfhx56SI4cOSIiA8/AdDodiXwuEu1TGIwvLi6q0wzq6NZTpD8GoCZH\nH/EeBwGKo6Jz/TYKFjasccTmIxbYIUfETrvGsbGwPyKpswusqdhb9+3bZ5ojWGY/7hoel1bNhXXw\ncdXVlne55UXpIqj2AgICAgICAgI2idRGXQLfCmSz2Z5IX5qMi3URF3uE1XhsnOeGFximhnHz+HAE\nbEjU7olApM+m4ATMEXddA8FhMTlcF9Fh6kgXhUJB62YxasPy4sWFVBjlvo8Tg3vScGGdVNzypFIp\nPf1xEk/rnTjR4rsLCwt6yoBR4jCGBn2Islh1KxaL3vVsNuuxT8yycL3YKFwk2i74jRlJsDZsNM/5\nvPBdNrTk74n0GSCXkRQZjN+kiaMRHuDgwYNKsbNRNfochrbnz5833ZOhPkJfuWon1HejTCfmfDqd\n3lCsI5H+WAOrxIas6AeEYLBUZ/l8XuuEZ5n9BOswPT2t+fficOONN6paw1q/Pv7xj4uIyP333+9d\nm56eVqN5mBlYhq979+7VfH6YC8ePH9d6Yi68+uqraiCP8VypVHR+wfB5WJwud36n02llkMGeZLPZ\nSEw+3O+u6+Pj49rOcSE29uzZ44WwqFQq3trLOQMBDgHCKkUwddAGPPzww/obR+B2tRqZTEbnMIcU\nAd7//veLiMj3v/99/S1OhSsiHttaKBS0fdGX27Zt0z7hOlrZJd6Magrv4TLE5YnlXLVx3y2VSqq5\n4HokyV03Ctx+KDMz4UmjtccZ5jObSePY9LgIjFRAQEBAQEBAwCaxJTZSnN/Mzd/E0h9nJ3clS2Y/\nrMCdHD3VMoK0Tl8uM7SysqK2DLifT8lsD+XqVfm0wGUHE8V6dYsZcn8bxkK40j23lSWNb0Rat5gv\nNgbEO9x2y+fzypAw8+OeqtmgEGzV6uqqF1CQgfbnd8HmyuqHbDbrGS3X63Uvcrh1Sup2u9rHbDhu\nBYC1XJbdLOJszMvMFcps9QfKvLq6arKKloE/6oR2WVpaUiYUJ2uOHA6k02m1D0H53FxZIv1xjzaN\niwK8UTZKxGZvLCSN2sz3wh7JyrvVbreVaRrmLi7Sb0urr637MaatOr3tbW8TETvo744dO+S9732v\niNjZFYBKpaJlhv3X0aNH9TfM3+npaWVCUZYLFy6o4TkYmmGMlNuPVvt0Oh0v5ymHU+D1zn3fzp07\nldnigKpg1pghxHX8VqvVPDunyclJXSdgg3TgwAEdy7/zO78jIv1QG+74PnDggBfVf319PdaRBkzU\nsWPHNEwG2xW5IWPYsBy/sf0k28+xLa2LjbBQbqgYtjdEf3D/W/PLzXMnMujXSqWiewPs8XhtQPnz\n+byyxng3s8euYT6XmdvIDbLNdRzWLhwmB3/dscg2ZBthzrZEtZdKpWI/6i5U2WzWM9y2ym2pyTKZ\njLepM7DZ1Ot1bVRX/TYMHMsGZWU62ErpYhnQYQBaiSDZo8JNQyMSXaDcZ1gojYsB4z6D8qMfeBKg\nnu6g5H8PixxvbbpYKECZl8tl/QYWlGaz+aaitLtgahqw+oZVo+69eI+IPSE5+SWrAN34RZtJR2CB\nF0r3G5cvX/bGdqfTMVVnMIKFeuHMmTPewjQxMaEbGtRCo+aKBW5H60CAdmNVC8aildaCEzbjvnK5\n7Anwu3fv1sWehU7UwepzjgUWJ+gDs7OzKlhYSXWR2uV73/uedy2fz8uXv/xlERH5n//5HxEZxFdi\nHD58WNVjUGFdf/31Wr6f/OQneg19zWpNqPswB5977jlzXbU2N6j2IASmUimN9I3fKpWKF4NqYmJC\nxxbWrkajEYlyLxJVoWHMrq6uavmwGXOGA57TUK1hv1hbW9PvWp6mlpnA0aNHRWQQ3Z6fteYOG8gD\nO3bs0H2Cjf/dtaFWq3mq0ampKXVssDzI0+m0Jzyw40vSg0ySgwGXK5fLeUI3q1MBToLupsFiTE9P\nR5K4i/T7DfOQU3LhNzaedw/8nBg5LrZhUtMDxwA9qPYCAgICAgICAt5KbGn4AzYU41Ovy3o0m82I\noSP+uiwVu9NbUrmlQoMUbcWYyWazesqCwW06nfZcda2YJywBM9vDsaxE+qcoV6K22CA+LVguvVai\nUGah8D4+tbFa1X2m0+lEVKt41qWpLYPsTqejbYR+GKY2wDdwchkbG9N7mfLlthHpn1LxXZwmOWm1\nRVOzGg/vQX/xaYrVwy6Tx7mdmCJG+a0TPZcFZd4ME2U5X/B8cK/xeHcTPFvfB0MgMjAiX11d9Qxs\nDxw4oPci/o77vSSIi6nGiXY5PhAw7NSNeqFf9+7dGykjnnGTYxcKBWVmsNZwvVlt5MI62V66dGlo\nAm6RQaR0C81mU0NTgHlhIFZRvV7XtoHaMp1Oqws+3PfX19dN13msHa7BLaNQKGiePmbWXEZ3ZmZG\nmSisRdu3b1dGCu8eGxvT+crsjRsWhuNmcYYA1BeqwIMHDyrLxmWCkTfCJKyurnrrxd13361sk8U0\n4VqhUNDrvNa443ZxcVHuuusuERGNRXXhwoVIUnCR/toFZobXddfwvdfrmWEeAM4CAgxTa+HbvL4D\nvN8OyxfI9/F6gr+cVJmTQrtsMM8VPLu8vGyqDYG4XJD1et1bd3iN5nyX1j7Fhva4z1UbJlHxBUYq\nICAgICAgIGCT+KWxkUqqpwXYziVOb53JZEx30TgjXY7qC4DpKhaLKuXiHWwLwHAN9iyp2NIts9Qe\nl5vLyovnnpQsGynLvRdgO6eN5jUaBdeNetgJaLOw2lckGtQU37eMKZOEEigWi3qf1eccdgOn683Y\nd7nzoVQqqc0YmLpWqxWJ6i/S7z+cDPGXjZktJgfv3b17t56e0QbPPfecRlSGXcx1112nv7HdB9ga\n2Br9315bmEGErdTtt99u2hehrJgDjUZDn4ERNoJ7MsbGxjwj3VHjGH0zPT0dG8yT8b73vU9EBkwY\nB3i89957RaRvX+VGiT927Ji8/e1vF5FBTrlXX301YpwdByuUCRguN4CryKCPr7vuOmVSONen9Wyc\nowDbp1rPWqwnAvMiXEImk9E1GvOIQ2PArk9kwIBxpHt37nGAZNjKra+vx66LYPHOnTun85DZG3aQ\nEem3N1gRdk5BW46NjWlfo91yuZyXPcFypLAYU372rVjfed/hwNbuPpvP5/V7PMbwDJhTjqjOBvnW\nfujmKmVGiqOeu6GRUqlUrBMBG7lT+5k2Ului2uPo5BxFXCQay4IFEPzGaiYAgggbm1sUJhvkWQsG\n3skRy/E87rNUIryhsqrFLbMVH6harXpJhjudjlc+a4Lwe3B/vV43ow4DPJABLlecoXoqlfJUgNxf\no+JhuZM5qRCVzWbNUP5YjHiyYDJbxsgAL4xot2w2a6qYLI8/y7gRbc7XrPe5fdNsNr1+Za9HoNFo\n6PjEwtztdr1UQhMTE150dzbS5G9h04IA0W63dcOF6oFjSOG3p59+2hQOXZo8LrvAZjBMYHE9f0UG\nY+3cuXNmtgOUlQ8RmMfYLK05V61WPQeJUePYXQeSAEIcjwOo9PAe7gPUjSPCI17T2tqaqRqKKyvD\nzT5gCYO8BrLhNoQbFk7QplZmAk4b5KqUc7mcbrTs3IDncc0yExEZGNojndf58+dNJwm3P1m1FBe/\nioGycyxCOB+gLiKD/l1bW9PfeI9BW1pzydoPrN8sVTvvn5iv1lpkwXLgajQa3lppjSXLRIVjJFpk\nCM8BN2l5t9uNCKP8fRf4Xtw+xYfxjRzyg2ovICAgICAgIGCT2BJGCtIwx9MALKm42+16SXXT6bRH\nwTI9Gmegxol7LYNcKw4TMzVxRrUsqVv34XTH9+HUwTGLLHd619jYojCtNuV3W/GoRAZ9wobW7gnD\nShDJJyWLdrXicnBZ4toSzABHCWe1G04vlqqAVVju9W6368We4VMKR0d3DSO5fdEfzWbTPDFa/WAl\nwXbrzkwtwKcyVkuBCWA3b7cNmNbmdsR78Fur1dI2hTqQT6749zBVpWvQPoyRQt3cXJl8rdfrecyp\nRcNXKhXTkBrvefXVV7UdeP6gv8HKsUMA6jc9Pe2xIul0WkM/WFGuASsUi+U8MQwIYWC56qN8VntU\nq1VVK2EscALoUbDMJPCeuFxvr7/+uhklHGMAbEyz2YwN/YFxd8MNN3hOAtu2bVM2jFlB18h5bGzM\n0ySIDNYlvGNubs7LJsCsJ9gxLicz3RYOHz4sIv0kyag/5hkY3W3btqlzANp7ZmYmEu4HZcdcKpfL\n3p7GxtJoAx7bQDqd9nKt8loZt1eKiGc+YK1rvBcx3HXM0hDVarUIO4Vr7rrNawKvwW5uXpGoFgXv\nc81l+N2oW5xpSBwCIxUQEBAQEBAQsElsafgDDhvAgTbZyAtwbXO63a5n3Mbv4bxA1ukEiAsiid/5\n77BcPG49rKCPXAZmOPBuy3iZvwEpnPXrbviIWq1mMjRsE8QZ4AH3GYt94vrwqckNdVCpVCJGvO4z\n/JvL+HCZ40IElMtlLT+79rrtazFrrVbL6xtm57h8bnTyWq3mhb9gjDr5u6e2QqHghYYYZueA9sA3\n3IjYbpmZlQObwIEAwcbwnHLZpGFhK1ywPWFcG4yNjenp2bK1scZIHMvcaDRMWwZ8Y3FxMWKwD2DO\nIcwD3OlFBm7+sAlilEqlWGYG4NAuwEaM78EqMesFI2krzxhw+fJlZTkOHDggIn3XebArzFZZgUVR\nN2akYOfE4TEsgImCsT7nyuNyoixg6DiyOfD666/re+DYMD8/74UtsYJDtlqtWDsY9MOZM2ciAZnx\nPoxjsF68DmEsceBgXkvY+QLltMoCu0Ss+el0WuuBiO7z8/P6jYmJCZOlRll573Cda5iN4Wfdf3Om\nETbcRttwPbEG4v5h2gVrT8V8ZvtotrWKg9sGvB5j7LbbbU/DwoGKLaY8zvksziAd2FJBSsQvJMdx\nwGLYbrf1N25IV4jIZrNKIWORGNUxLBBYBuiumo899IZ5u7n1st5rxTvCwrGwsKDPo/xstGi9e5RX\nH9Dr9VQAwLNu2bg+jFwuF6uOQVmtKMHDooRzueLgemNVq1VPFTuMgnWvD1OnueCxaHlIAsVi0VPZ\nWeD4YGjHsbExL0VMNps1k26Piuov0u8jVqeK9McGNgxedLCgYQxyGyT1LgN48cK8tbwod+3apWXh\nb6Bclvcu96urPh5mEIr5z44bLPhik0R0b/bQi4v1VSqVEsUASyqAMlDPt73tbWYZMP9/8YtfiEh/\n3LnfuXjxoqqNYGy+vr6u7fbHf/zHIiLyn//5n6YgFaeu5Jh11rqKhOIQoKampkyVM77BqkAkX4Y6\nb2lpSYVcjPdrrrlGPfjgwbZjxw5PZcrJ6zl+FYRDK44gZ4jAeIEANzMzo2VmQ+oka269XtcxhvFX\nrVZ1M+cMAZiPcPDg+l66dEmN5K3v8ZoQF8eNCQE3nRo/y2sB5jPAB1HeQ+K+yx7xmLNYy0cZdfM3\nMI45zqKr7rMw6hvsaWi1wSgE1V5AQEBAQEBAwCax5YwU58wRiZ4mcNpKpVKeoXUul/Mo/3a7racs\npk5dOnh9fd100YxjTDh2ELuLonxu5HURn4lKpVIe/VksFvXfOMlxrCp8d2VlxVRx4N04vVlJQUVs\n9QjXF+UCo9dqtfQEbLFsQDqdThQ2oNPpxMYKi2Ptcrmc9p3FdrF7e1zcLc5l5bJUU1NT+m5mOi16\n1x0nXH8+PbngfG64z3L3ZYcGPnG6+Q3ZPR/l7Ha7+m60RbVa9SJ+ZzIZrS+YobW1tQ3HlOH2ZmNf\nXHPfd+bMmYgbOMqOuqEec3NzWj68t1wua91G5faz4mQxcwG1KMrCxs34hsU+Xb58WfPavdXAHJ6d\nnZWnn37au+4mc3fbEdfQn4iyLTKYD1BX7t+/X9dKbhf0A9S+rD4Ga9NqtTxG6tChQ56qee/evfLU\nU0+JSD+KuIjID3/4Q72OsAW7du3Stsd437Nnjzc3huW9BGPCTkdoKw7Z4OZQnZqaiiQmBnAfWCiL\n6WBVNgOs3d/8zd+IiMiXvvSlSFYMlA//5phWyKKB355//vkIY+WqDS1mmtXOaMt6va79bzlQ4Zl6\nvR4JOYT749hV9Ekul/PMKqzwIRyOhvcXLoNbN95bLSYa74vL/JDL5UwWlTOM8N+NIjBSAQEBAQEB\nAQGbxJYwUhyF2Q0eKOJL2myr4hrpiUTDBkB6xXU2SmZ3eYu5cO2N2G0UkmoqlfIM2tlIl11YWVrH\nOyw2ww3IWa/X9VTEBvX4LtsL4Td2l7ZYDsuAmgMo4hnYV/B9HPTRjfptMRiWoT0bxlrsEwctdEM6\ndLtdbRs2gsRJxArBgPs4rx4bpbtl4Hoz3HpYUexTqZS2VZxNHrMoXHcwJhinVk45BtqlWCxGQmGg\nfGwAive6jE+z2dS6jWJ3ALbDskKEuOPKQqPR8E74bGjLbugu0zlsbLNNmBssU8Q+ZaIPX3zxRRER\n+djHPqasCO63TuLdblf7znW7f7NAv128eDHRO63QCCKDtQDr4q5du5QV+fM//3MREfnEJz4h73zn\nO0VE5IEHHtBnsRZZfXjVVVeJSN943WXqzp8/r+Py6NGjItLPVQe7HjBRhw8f1tAAaOe5uTktH8bx\nG2+8of1/0003iYjIiRMn1JYKufTm5+e94JZzc3PKjoFxEhmMc4Q+qdfrXriHQqGgYwfsba1W89aL\nZrNpjjXgy1/+soj0bdF+4zd+Q0QG83ZiYkJz6LFtHpioD33oQyIi8q1vfUt/S6fTnpNDNpv19jHO\ntcqwDMFx3zBWfCNotVqefRjbYY0qE9YEDmht7QNxsJhDZrCwTsTlueU9P2nOUJEtFqQ4FhQmJgsg\nroAhMlgAORYHb16u8d36+ropfKGB44Qcq+N4Y+NYVG6E6VarFYnPg2vuJsf1w6Lz6quveptbLpfT\nd+NZvoeNJd22cN/jqtasAbh7927tE05WabUJG+pxfUUkYlyNZ6GSuHz5ske3WxHVhzkCuGAq2aJ+\nLe8+BjZGtPPy8rK3ofAYYkHTEqDcxWt8fNzbgMbHx3Wx54nrqnaz2ayXvJfHIkd0dwV9vpc9jeIi\n4DPYwxRlwfe4nTFf0Y7DHAzcsc1tZ3kIcdR+S8Cw1MGc7DVOKMG3H3/88UhaDxF7gxEZCF+jHFni\nwNkT0Mfo/5dffjlWxeBG9HeB9oLq7F3vepfcf//9kWceeOAB+b3f+z0RiRp9Qy3IXtIYO1inLK9M\nnheWyQDG0JNPPqkR2iFEnDhxQu9nVRbUcmwUD2EXhvQwCBcZjJlisahjmzdNN35VoVDw5nej0fD2\nHSuifrVajTVuxje+9rWvyY033igiomrOpaUlfR/S1iwvL+v7vvWtb4mIyG233aZpfrrdrpcEm4kD\nhksIVCoVr+/YYYDHEfZKNrjGv9F+jUbDIwmazaa33/H3LHWfNX5HCUtu3dgMgtczVw3e6/XMJMRo\nU0tlaGU/GIag2gsICAgICAgI2CS2hJHCqTOfz+upjw2GIVkyE4VTGCRSVsWA1eAI0zg9NxqNiJpP\nJErFW278VqJDwMrdxgkW8T7LRbjb7Xou4r1eT38Dvb1//37PsNCiThlsmG+dGC22iPPlod1AV3Nu\nLstQnU/UbjyVbDar9DlT6/geqHDL+JrZJ+6HOFdjduO14qW4JyCOdg5WqVQqRcoqYkd+F7FzNrHK\nEeAxyN9iVKvV2JAJHDMoSYgFPiVzhHY3j+TY2FjseGJg7uH+RqMRy8AlzVEVpxqzjPZXV1dNd28e\nG2AvkPCWv2M5RaAeJ06cMI3IYQCO7168eNF0eHAxLIE2gHE6OzurLEBcxHJGXGRwZq45vMQ999wj\nIiLf/e53RaQ/Th5//HERGTDhJ0+e9MqcTqe9+DsccdsCzyMrrhuSKoORuuWWW7QsbHwNZgi/pVIp\nVe3h2WPHjsmPfvQjERkw3a+99prWCfn1JicnvX5j9pbVg7jPGp+odzabjR23qPd9992nISdQloWF\nBX0Wc6ZWq8ntt98uIoME1U888YS+d3x83DM/GLYOuGzR8vKyrkX43tramvYJa1GsWIYAx7FznVzY\nVIBhjSd3DvMazcbhLqysHI1GQ+fSZlTscflALfOFYQiMVEBAQEBAQEDAJpHaSLTdt+yjqdTQj87M\nzOjJDNL/7t27IxnCReyccpVKRX9jtgCB4nAisMAnSDbgc5kGzm8UJ6mylM0nmyS2PtlsVl1hYa9h\nwbK5cdvFtTcqlUqewXi73TZP+tDf4yTE91k2FHFgloyNpeNOBNYzDKvMSRH3rGWbx2Vyy2LlVePc\niFYd2Y7ItV9iRicuqjcHCmQ7NZQFJ3S2mwNTODc3p6dPN98YY3JyMmJvKDJ87MLGCPPj3Llz5jtR\nVtjA1Ot1r60zmYxX906n4xkWs8MKM42o+9jYmDIzFlOG9+VyOe0n7l/0E6KEP/PMM55d35vBwYMH\nlcPEANUAACAASURBVPWCDc2okzXWhmq16tlx5XI5+cQnPiEiIkeOHBERke985zva1rC/qVaraleJ\nQMAwAh8GRNyuVCrK/GFs3XDDDfLcc88NfRb9wc4Gn/rUp0Skz9rATgvv45AMcMZgRgbM+fr6us4z\nPFsul711qtlsemORtQbMHlvsvWtny3PPgrVH3HbbbSLSZ5rwbq4bynz11VeLyCDCvkifuUSbu2v6\nm4WVR5QjgidhZoZl8thoGbjf3CC9bJvFzJWrccjn87rOYX5Uq1VdTzgsBJcfz7pR1h1bT7PRt0S1\nx/Ee3AHHgxMVeemllzzjwlqtpgsBGotpSTT01NSUJ0AxNckdZ3nyuR3HYfnjQsj3ej0zASh7p/G9\n/N12u60CFEfyBlDmtbU1L6ZVvV7Xd1v06DADSUugcNM2sMBgeaxY6lm0DbcvGw8DvGm6iUEtQY/7\nkN/B33PB/eVSyaVSSZ9lw0w3NZEV08oydnbrB7gGmew5xBs9RwLG99361ut1fR+/lwULF1hgrPQi\nw4Cyjrof7YL7hi28aNO4JL69Xi8St0ikv9ngUIR3nDlzJtIu2OzR9pcvX/YEKB7H2OCvvPJKU5CA\nUMOqbrdfh6WXSgr0f9KNCPW1jOELhYIerthwH9HQYYT//PPPaxvApICBNeTaa69VA2/01x133BEx\nEBcRee655+TQoUMiMvCou/7661W4Qvvw+nPfffeJSF+1yImORURuv/12VXHxum4dimG8/uijj4pI\nNGUXZ12wPNzcZN4cKZvVYSxAcX2G4dixYyIi8oMf/ECFJRiO87rMcwr9inWXPRxdswORvnDlzjVe\nK1GnYrHoja21tTUvjQoL8Oz1bIHXepGo6QnPR7fN2fSE29CNss6mDJb5DWD1Ybvd1vbirCcsGLmw\n4khZcamGIaj2AgICAgICAgI2iS1hpCDhcbJKnJTX1taUOmdpG0wUpMRmsxlRWeAaJFo+kXJ0W5Eo\nW2EZrY4yaLXcPF2VHce8YdrSjTDL9DLewXGJcBLK5XJmzjC8DycwZoP4hMHsGNoQ5ec4XSyFu4wb\nn57ARPHpnk/qbswrpo0ttSCrrtzTicUMMcPFRtBxYINrqO/4pIw2YAoYz+C+RqNhMgdxajwGTnIo\n+8rKinniYSNOlMU9SXHIDiuyPlRPpVLJy1FVr9f1u3Gn63q9nogpSaVSpoPBRgEWip0wMG97vZ7O\nAawbLksHBheqogcffND7xsTEhI5fvLtQKJiu1QDXyc372el0vBN6UqyuriqDFJdBQGSwRlpMM8Ah\nZcCeXH/99fJf//Vf+j0XYJpYPcPrk1UOrNFW+TAXWNWH715zzTX6bqiu2DwBRuLHjx/33Nqnp6c9\n7cKVV14ZSY4s0u8DN/l2t9s1w+DgN14rXSYim81q/6Lso8wJuO5QSWIf4rGE933gAx+Q733veyIy\naA8262i3214cKStXooVRKmgO++Ky7Pl83kvS3u12tV0xZzjuG8YBr5W8P7rrTTqd9hgwiwljbRBr\nElDWpIwu3nHDDTeomhw5DTmsRVLGXiQwUgEBAQEBAQEBm8aWGptbASoto7Vh2cZxesUJgyVIXGu3\n23qd3cGTSMXDXJhdva9l+C4yYB9Q9mFtbdlSAZZhK4xTu92uZ/A4ytg8Kay6W4HpLAzrL8sGzWW9\nCoVCrDGglTMKyGazEZuIjWCY0TxsaGCQ+9RTT3ltOjY2pidaDtmAvsP427Fjh9YDdXNZVbduGEOp\nVMobY0n744orrojkqMT3kxhLJzU2nZubU4NsRJU+ffp0ItuhmZkZr/2ShlBgcLiSP/uzPxMRkb/7\nu7/z7uP2QPunUimPBRSxjYZh84LflpaWlNnY6Gl2YmJCmQowF8MYPaxpYBAs55mJiQm59957RWRg\n3Pzcc8/Jv//7v4vI4OQt4s+93bt3R2zBhuHAgQM6lxGclNcXDizMwT5FokbTbmBOxr59+zymSWTg\n0LBr1y4REXnsscf0PWgPnlNoMzZyZxsdl3HjEDWWkTue3bVrl9n+7ni59tprPfsvkYFBOZyocrmc\nRo7HHDh16pR88YtfFBGRf/zHf9Rn49Z0joDODKcVfHOjQFuNjY1pW+IvlwXls2wHM5lMJNCyC2bs\nrcDDAGsj0E+siUF98Y5CoeAFRk0aLqFSqfBa+ctjbA6wwGQJDEyXY0PDIpPJZHTCYEFgLzZcy2az\nKnhgAqdSKU991+12I+ldRKIdzQbQuM6dZVH7Ls3PmzUmeCqVUmEIbZBOp7WeHGcJg4cp3Y16rnGi\nTtSjUCh4cU247layYY5yyyl/8BvHPxKxE+Ky194o1YgrXFuCb7vdjt3A8I2pqSltL7QFC16oW7lc\n1rbGfTMzMzrGUB9Wp7Kw4wo+HLsFQjP3G6c6AuJURUmFjUwmo/XDd3kTYdUoRz4W6bezFa/IBadO\ncdVDw4A5vba2tinBKQ5xsZ7OnTunQh/WiUKhoOVhJwvMSd6csbFCSKjX67Hxd+LAJgocO8ua10lU\nGL1eTw4fPiwiA+++f/7nfza9f/EeeOeyEGUJEcDLL7/s/cZCPWLgZTIZb7Ni7ykWoK6//noRGajE\nTp8+rXG9UL6HHnpI6wHhid+Dww7PM7RtsVj0TAZEBvMe435mZkbnPNedDzQifQN9q4/e/e53i4ho\nbKuTJ0/qeoI6Pvroo14ftlotPYDg2uTkpApQV1xxhdeHxWJR2xzla7VaQyPyu2DPYZF+u7n7SDab\n9ZyDrEOqtf+wyhvgPYAP1tbhGXMP11ZXVz0Tj06n4yXLtrC+vq7OCxA0k3oaJpnbQbUXEBAQEBAQ\nELBJbCkjxaoYMC/M2nD+MDACzFy48X5arZaepCA1s5snwNKzRd1bTBTQ6XT0Xj6RuMzB+Pi4Ss84\nlfV6Pf2epdJhNs5lgVKplHdqZ3UEG01b7A6k/6WlJS8+j5U8mE9wTKOi/HzSdKlaNgpkVsZtaytp\nqBWTya0z7nPbY9u2bfoerjvaEuNgaWnJ6y+oV0SiEaHdd7AqlR0kUGZWFbj1GHVSTKqO5ATE6Bs+\nNaFN8b7FxUWPGchkMh5r2Ov1vNgt1ji11KClUknbNCllHmeUPioy+CiAvo97P6PdbusJneEyWzw+\nwVzceeedmpR3o6jX61507auvvlpVhRySASfpOKav3W5r5HDU58SJEzo+UG92hsE4FvFDWCSNE3fz\nzTfLI488IiIDBmlxcVGdhFjjcMcdd4iIyMMPPywifeYMTBTmYSaTUWN0/P3whz8s3/zmN0VE5Pvf\n/76IRFWAWGtarZaGwUD/saNGXI63XC5nakcwtvHeQqGgYSN4fwETBRVkq9XS9YRVfO644tyxwI03\n3hjJz8f9hDJhzHBmC5dp5rAwnB2B91eRvpYEY4uNzq3o9C44nhOve3GMumVqw7/FmR5wcnPIAfjb\narWUvYuLts75C0eZ34xCYKQCAgICAgICAjaJLWGk2GaJGRCRqK0SUCwW9bTBxmiQmjmgIaR6nOjK\n5bLex7Y8HC5gGEYF2ouT0NmuBN9lWxV+B04VnBPMLVer1VKWALYcb7zxhrYVrnU6Hc81VSQa9RVl\nwHuq1aqewjjTO8pjZXZn/bYV1dtqN7QXM1MuSzMsyjpg5bnD/ZY9RyaTMd3VXTALhfetr697UeAZ\n3MdWBPK4gK0WcOLcv3+/MkEYu/wt2NeJ2OPXzeDONmtsB+jaw7VaLc9Y3+oD/g11nJyc1GffiojL\nV111ldo+8Pizxoblog97HzZu5vtdNqzdbuvYQj6306dPe/Zh7XZbg0Kib5LapAyDG9l+7969yuow\nI4XvxTGXMzMzur7+9Kc/FRE7QwDnLWSWFad6jKFut5vIRoTtpmBjdujQIQ3OCePwlZUVZaKAN954\nQ/bs2SMiA5avVqvJhz/8YRERZaG++c1vesbrp0+f1iCjMP5mg2vMIw6XYq0hwPr6uo5ji9lHqIh0\nOq3hJawwBGBEtm/frnkfYejPdqrYuxYWFjxb3tdeey2idbEYU0vb4o6PpCE5eBzwnHKjv4tE7UPd\ncrD9rJX7FOC9xGUJU6mUtj87yLjBsAuFgo5P9PWoXJDcPsOclrh8SbAlghQPPDfeB8OKns0LIAa8\ntZChcXnD4Bgg7gaRyWQiHld8vws3/UAul4v1JuNYSegkqCAvXLigC+go41zchw1mdnZW28ba6K2k\nus1mUwcht6UlhKANMYGOHDmiCzurN11VLKdH4bpZA9MVNlh9yBQsxgnH5MJvTAG7k4BT+mDR4iTI\nqMcwodmKU+S2C6tnGHEClCXUYeFYWFiIjTYNrK6uKqXPghLawzLc5DgtVhT4jSb+xDsuXbqUSHBM\nGgWcI0wzXI8ljv/EsDIIALt27TIN6NGHMFoellLKjRm2tLSkmzMEkCSJjYdh27ZtnhqHyxeHd77z\nnVp+eO9dunRJBRmU74UXXtC25PUV7XLTTTeJSH88JEkKe/HiRc/UgtsPQkQmk5GPfexjIiJy//33\n63UkJkZfzszMeJHmK5WKegkC11xzjb4ba+rKyooavMM7bm1tTdsP656VYmt5eVnbHgLzmTNnIk4z\nIn2B0xWg9uzZE0m6jHbBWEXbszABg/oTJ05ou0EwPHv2rB6arCTJ2Ww2ogoD8BvWk7W1NY06f9dd\nd4lIXxD9wQ9+IMPAYw3j3ep/jkmIOYD7isWitpvlgYd/83rBMRXdeI35fF7/zWYplgc+1g60ea/X\n03ZhFSDGqJXNBLDWFxdBtRcQEBAQEBAQsElsSRypdDrdE+mfICDVW1Fn6X516X388cdFJHqyZddP\n/GblyQHl2G63vSjWTO3ziWEjLuYiA2Ygm83qiZXZG9cw24oFlE6nPYNhzmXE7BIbCov0JWtm1jim\nB67jGY674UZVLpfLymJY7IgFvLfdbntsAif5ZPbEVQPlcjkvblEul1O2gxPYAhYNbQHqkvn5ec/I\nkOMlWUwe/xanIkS/sQs2g1Www+ph1YGNw1n1CMSFj0ilUqrGtQw4k+aJw/wpFApeqJDdu3druaH+\n2EhIADdpKTssAKVSyWu/VCoVCemA59HXb7zxhjcWd+3apeW3mFgYPF+6dCnW+BR1P3jwoPYF/iaN\nOm3hIx/5iLYlIpInxb/927/JRz7yEREZqIrb7bb+G4beMNYeBsTcyWazemrHWspjiBlCa64gHMBP\nfvITEYm6nHPSYnf9Z/VXXLwpEfFy/PGzYOIajYZqOMAapdNpcy7FxQ5DOU+fPm3GHcNvUNPx2onv\nLy0tRdguvN8dizxva7WaFwsqqQp9mAOPa1RfLpe9cBDMFiFkyPLysjlvksKNJ8hOM2wMn+QdItG5\nLrIxlRz6k9W9loaLymM2emCkAgICAgICAgI2iS2xkcLJm09tOImUy2U9HXBmezBRwMTEhBqX8Snc\nzavHGcjZRRRgOxErA7WLbDbr5VviHHrMgFmSN77HjJnFnrmn+VKppN+1WDKcmKrVqn6D24WZEjef\nUaFQ0LrgRFWtVlUyR3/l83ktF4ctcE+T4+PjXrgAtsPg8ruMmcVm9Xo9L2Aow82ALhJlaFBWtltx\nM4E3Gg39N59I3Xxf+XzeDAkAtmYUg4myWvY/zEixwSbKYkXPx9iJc57I5/OenRjn7uKce3GMHrcV\n2henwUqlonXbaHDKQqEQybEn0jccdYOD7ty502PWOBK1SNRhA9cBsDLNZtPLCMDA2rF//361tbGA\n+l555ZXyi1/8QkSigXvdPh4V2gO2G0tLS5EI5BvBBz/4QTXO5jkF2x7MaQ5/YAFu9/l8Xm12wFKd\nPHnSY9y4rcBcvPzyy/LEE09E7stkMtpfDz30kIhEDYbvvvtuEZFIOAn0G7M299xzj4iIfPe731Um\nCtixY4cyUmCE8vm8jhkExuQQGVYuUqw5lUpFv4t3jI2NmXZ2WIMwvnjNx9rQ7XaViULbXn311V5e\nyF6vF2HW4uzuwHClUildn9C/POY4ZAvq4obQEbHtHNmhAO/hjASuRoffh72cmSaL9eK9GfMe/bGy\nsuI5DLRarUiuSJTFypvp5qrksEpoo6mpKb0OBjGJ1m5LBCle7LF4YAFfX1/31BTtdtvbCBYXFzVW\nBxoym83qIggjPk4eyWoBvI83PisxrrvZ8KDkgeN6E/DgYLWZ+76ZmRmtJ+hg9uTDe1qtlg4EbCac\n/oYNO3Ed7xOJbm4otxsZXCQ6aFzqt9FoaBwVtHkqlfI2zrW1Nb2P6+tS0ZlMxhSC0E/oD1ZrYeIy\ntcvPoq15jEHQgzfRNddc4xmtWml+0um0jks3MrhIdPFNaqQdl3KIVSaWAwL3u0i/TSE4MNWONuDF\nxBLC3IVqmHE14MYVExm0c7VajfUOgufS7OxsZFyK9PsH9cA3VldXtVxYDzgeFjaOubk5XUO4Lpbq\nARtfq9XSd6JdrMjRliDFzgb8XjyLMbF9+3adI8AolQM2ylOnTiVWpwNHjhwRkf7cgYCCyOZsAI31\n8aqrrtL0JBjb1157rQqE7EmIdkP59+zZ4yVO5sMFNtzbb79do0kDzWbT87z74he/qBG8IUDt3btX\nY1DhHZOTk/K5z31ORET+z//5PyISNRhHn1oCYqvV0jqxQf2JEydEJKraw1jEfdPT01p3vNuN2A3g\nQIDxVyqVdA23BC94l549e1b3LPQLm2ZYkel37tzpOSANc/RAf6EMV1xxhdYJQp91iJqYmNB9AMJz\nvV736sICIzteuOnbMpmMrk9sjgIwiYHfMS/S6bS2O9Y2juHHa6V1oE2SEosdsDB/La9gF0G1FxAQ\nEBAQEBCwSWyJsfmOHTt6In3pL04VAhaiVCp5tOaRI0fkscce855xDQX379+vTERczJ319XUv/IGI\nTS+6htkMsC4zMzN6KomLfTM2NharZnizwDdZTWq5vQNsiI7T16gI0zj54lQ0zMU9Lj6UZajKp163\nrTlPHxsou2UdllA6KaxEywDT5BgTSDz64osvvql4Sji1Y9yfP39eDWdxMmy1Wnp65hM11LzsPsz5\npUSiEe5RD5yEGblcTq+jT8fHx7W++Nb6+rqyHcxO3HnnnSIySGTLqnv87XQ6Wj60N0dtxhoxPz+v\nz3D8Odx3/PhxjUc0KvkuWCyMDVbfAO95z3vkxz/+ceQ3Lj/aoFwueyzVwYMHlVGJW+OOHTum/fDd\n7343tsxx+OQnPykifdXYP/3TP4nI4ES9tLTkJZe9/vrr9fSN9Wd6elrv4/GEuYf6spkBmIlSqaTM\nBec+A3PIbCfGLO6fn5/3DMoPHz6s4Q9ccw2RgcZhZWXFy7U2Pj6u38A1ax247bbblIFD/zGLgm+c\nOnVKQ0qgTdmxyUJcIvo3i7ikxbOzszqesGatrKwkKsf09LS2G8ZEp9PRdYQdpVz13TAmLI59Ajh8\nUFxCYwbWidnZ2UhsSXwTawKujY2N6RgE25vJZLRuuP/y5cteeCMuvwRj84CAgICAgICAtxZbwkil\nUqke/VtEBpJjp9NRqZj1lZDwOW8dAKOwbDarelCcONlOAb9Z+a2sXHZOmb3vMtx8bpxXj6VsN7gX\nS96wHanVauYJwjJKt8D3WacXnARhc/Paa6+ZzIabjyyTySj7hHYdHx+PBLgT6evak0bzdr/LpwSL\nOYsLEcB1x7OcQw3jZGVlxTMAnZiY0LaycsDx2AFQhpmZGWVh2GHBPTGOyh+HMb5jxw657rrrRETk\n6aefFpH+qR0hQHBaXFxc1NM6mIFyuaxjGnOh2WxGMgeI9PsP30ObgrkVGdh6lMtlz1ZgampK+5pz\nmsHol8cnGAlml1y7M44gjzJ1u13TpiQOvV5P88yBkVpaWjJzp7mYmJjQ63v37hWRvh2Ja+PDRtqY\nH8Vi0bORm5yc1Drx/e64PXbsmPzqr/6qiIj85V/+pf4+apy7+IM/+AMR6TM6jz766NAyjwLaCvNj\n2FqDunMYCmZoRaL2S7fccouIiDzxxBPemvTpT39avv71r4uIKKN45swZHVuYc9u3b9e8ewx+xgU0\nDo1GQ9cG1m4giv2zzz6r9XLZlrm5OY/1EhmwrLCj4xAv1n0Yk5zhAu04NzenfcQOPfgtlUp59ldW\nmw8D7uMsGwDGfdI128LOnTt1rKB9U6mUN054fefQM8xEi/TbxdL8xAX9jdsfC4VCZP0X6c9LrIu8\nV1ttOYqR2tKkxel0Wjc59hxCg/AgwYDCoOTKYvByjCQWoNBxltcDR1eNE5bi0pVwmhS+z41pxQkg\nGehE9oSBkINnz58/HzFQB7Axoj2GGRazAT8GEv5OT0/r80xJu5t+t9v1DJJZ6MA7OJEkvjE+Ph4R\ntET6/YYNCAs4RyC2PPSsDYb7wa27pUqysLKyov1lCZWoR6/Xi6QkQj3QXzwuMelRj6mpKW1T9OH4\n+LjnAZfJZLQ9IKAdOHBAVXtQpy0uLkb6XaSvykA9OAI7Fh4W+DBXXIGZ68HGnByXyF2QG42GObbj\nDNjRl7lczhOuhgkQrmdlt9uNCKyYQziULC0t6QbEHpOump+FLPQNG5rjfbOzs7qRYT2x1KqsJoSK\nSEQ8QeD1118315akAhQid8MTDYbmjGFClKW2dgWpRqNhCv+YAwx3TKytrWnbw+v69ttvV285tBuE\nKBHb2BdYXl42D6dxMY3Q55xUl2GlMHE3/+XlZZ3fXD6MbUt9yXuX67CQTqe136BO50MM+vLFF1/U\ng+v6+roppHGkdbwbZeT64j7UjYVc9Nv27dtV8OQYiPhunKDF5ec4gWhDblOORyfSn3soA49JjDus\nj/l8PpJgGdd4/8dvrpF7o9FQlR4OnxwtngU4t6/RJnEIqr2AgICAgICAgE1iS1V7HNUbkma5XNYT\nFKTOZrOp97FU7CZitcARq/n0MUpV5wKScq/X84xgOd8c3++e5Hbv3q1SOE4vzWZzpDE3EBdRG3Bj\n1bg0erFY1DKMygeGGCeo+5kzZyKJK0WicXxwSuXTPbM7Li2bz+f1tMHPWCdlK+9inCE4JwB1TxgT\nExOecWOtVtNv4HRSqVT032AIkqqber2e1g3j+LrrrtMxi98KhUJExSXSD9lh5XvCt8G6DDPIdMf2\nzp07dezwqRnsCdqRjXkZKDNO2el0Wplh4KmnnkqcBWCjwHcnJiYiqniR/lhCO8zPz0dy8In0+w0n\nSqwr+Xxe3xkXgZzVfcCVV16pp388y2ofjp4PHDt2TET6Yxfu9nw/Inz/x3/8h4iIGqlvBF/5yldE\nROTHP/6xfO1rX9vw8y44Xg+3tQuMMVZvjwIikWMdu3TpkrcWDYu55a6BzKy4qjbG5OSkN5dFBmwh\nGIwLFy5o3cHOcRJ5qNc5DyB+O3nypBrNg3XjGGmsLsVaxHn1LFhrPtp8bm7OnLNgXMBmiQxUl5uB\nGyOv3W7r2sHxstz5b+29SXNtiohnjpB0feFI6WircrlsmmzgG9jXlpaWlPnHupfJZJhJDsbmAQEB\nAQEBAQFvJbaEkSqVSj0ROxyBSDwjgWt8koR+tdPpeJGyM5mMKcm6hmmpVEolb5zALPZhIxGLkxiM\nWs+OjY3pyRsn3JMnT3qsjBUcUCRqD4X2cG2WRKKMBLu7xpUVJ3nOho4+4UB2SQNUxrkJc2BJDhAo\nErX7icuDx3ZWSU9CcbAyxpfLZR0TGIscUBKnTjbI5BxfOFWiL+v1eiK2lYF2TKVSkfyMIlG7HrTj\ntm3bPCNdy9akXC7rGETZJycn9VkEX3zppZfMfH9udno26ueM8Kgnxj3btHCQ1Ti3aMvAfxjAWHKE\nZtegOJ1Oa/lR1nQ6rUwFwIw5+pznJUJAPPLII1p+tvX49Kc/LSIDxvRf//VfE9VhenpaWaAvfelL\nItI3lP+Lv/gLEbEZZ7YxcvObbQboo7GxscRz3sWdd96pTCmzSVbYAxe8HsflmxQZhBQBu8BjicMv\nYO7hfcViUcfGXXfdJSIiDz/8sH6Xyxnn7s8suRuUNJvN6r1g0C9fvqzrNgeqxhqeSqV0LGJts9bR\n8fFxzwEllUrpWOX5mHSNxLwB27u8vBwJHu2Cg1e7xuYi4pWF+5DntBtMempqKmIHJ9JfY7CW4b6F\nhYVYZnUURhmbb6lqL5PJxMZu4vhArhHx5OSkp2JLErkU70tS7z179uhCxZsne4KIRI3mUZZhKiAM\nBKRRYONTFrzivBMYbvylsbExbatsNqtl5LZ0veLc6yLRBSCptyDDjb81Pj6u9DXH/bAW3zgVpmUI\nboHvc9MKcILquFha7O2GiT0+Pq5thPuWl5f1Pnz3woULqmpAVO9Lly55Auva2ppueKxuhJDL88Nd\npHkDT2qcDNx11106Zl555RUR6W/+brseOXJEqW5gcnJSn0VSXY6vZqWGQD1mZ2d1biTdeJN6zDYa\njcSCFNoXm+Dly5dNzyz0K+ZjvV6P1AXfR7/yRmapozE+jh49KiJ9FeDHP/5xERkYHt93332J6vDu\nd79bkwFjY/7gBz+o8aigImShjtvSit0WB+t+9MmePXt0fnOqDmt9t9rFOjhgjnJGCjemVbFYjKS9\nQVkgoFhI6ukGHDx4UCOLY8xOTk56gmq5XI6kGhGJtj3WEG4LLgubt4j4QpG7NvP+6d7jfgcYta9w\nHESUD2s4R1F32473FbyD9x9eEyD8oSyjEiAn9WDF+9LptOcF2Ov1dL6y4JWEQMDz/y+Cai8gICAg\nICAg4K3EloQ/gPHd4uKid8oZFYka0mk6nTYNRV2XeXaZhNTJcV8gHbNUjFPo+fPntVycmNdSp7l0\n8rDYIzhBgImanZ3V+uKUsGfPHi8mihWh3WorPsVYlH2v14s1GsVfNirHNzifElCpVPQ3dmHl/Hwi\nfbUFToxoc84nxqwX+hh9xE4J+K1cLnsqIjYiRjvs3btXVSYoE0dFByYmJiIJZ0X6bIXrcjzsFMvh\nAgDEwbFc4jl3l3uq3L59u6c+arfbOp42q0IRGcRIKpVKmhnATU7NKBQK3hy9fPmyqluYBbZOprfS\npgAAIABJREFUdXgGKgorEbhI1LFEpN9HmMus2rHYqY2qpsrlso5FjANrrqIceEakX0dXlcSncaBS\nqahKlMeQGxV9YmJCjdGt0AUWYJy+d+9eZaRYRYSTuZtMXGQQef/ll1/2+maU80mcU8zFixfNJLQA\nswpoDx5XaEsr96mlquPE8W6YkZMnT2psLoRdWF1dVWaYE0IjETOMwyuVisfystYAYQump6e1HlBv\n87zk8YQ16bbbbhORvooXawPWi0KhoPXFfBwfH4+o6d0xxomCMZ5brZbXXvyc1TeYkxxhHJoYiy1y\nyyES3VfAZi0uLpqsmKs54mTUQCqV8ozNR2GU9saSF8BIc8YHN/J+kvU2MFIBAQEBAQEBAZvEljBS\n7CaLUxGk4mFsFAf+w19Xr57NZj2DMut9jUZDJXk2SrMM3QDLiI/tbFz7kDfeeEPLBzfUs2fPevr5\nS5cuefY6Z86cUWkc9bVcei0G4MorrzSDIILxKRQKphsoB2UTETP7fCaT8YI41mq1WEN79E2lUolE\nlHXLxf2EEwBOWZZr7fr6uncy4uBxALuSs2s6noXenN3VAR6n6Dc23Gbja9hEcN3QzmAXX3rpJbPt\nAdQ3nU5reTYa3VskalOCv5yRXaSfTR5jK87OqlAoaPmZ2XCDJYoM7HTQ5la+tlqt5jEmBw4c0P6A\nvVav1/Oixbv/3ix6vZ7WxXLZZ/YE38PYbbfbep3zjDGLKTI6UwJYkZtuukntpZKGD0DeN9d2TaTf\nL1gDeaxxrk0XbAPDY1okylKh36xxUi6XvfIXCoVIYE+8A7+h/WZnZ5Ut4DnqBvDtdrv6DLNt+Dcz\nHVagSmaiAIxRsMbc52z3ijUOdmz79+/XcY55WywWdW1gJxqU5ZFHHhGR/n5gzR98D/176tQpueKK\nK0SkP6etPQB7Bs9NBAhF/3MEb4yNyclJL1+iFdA4n8+befCw34F9mp6e1jWL12Csi2g/y6CdDcFZ\nM4I5hT5kpx62XY6THbC+l0ol7ROU5dKlS8p285zHmIgLjeJiS4zNd+3a1ROxNy/LK45j7VheWKM8\nnFzPsAMHDuiCjWvT09NmioE4o+Q4lEolfYYXHjeCay6XM40KXSNnjkSNTl9dXY14Q4j4wpWVIgbP\nYyG+ePGiVwaO94HJDINLF5bx/TDPGReucXAul9N6wlgbiUxHIZfLaftiUllqvFHAgpbNZrUsbvTc\nUej1eipYoB2t9BYigzE96jDhgucKL5CucWg2m40k9MQ34ow8sWm+4x3v0Jg5aMdhxsmIp4Nxsry8\nrGMNbdrr9bxEp5lMxhSaANQtk8m8ZV57LsrlsmcMzHMOaDabSvmjbgsLC9pe2MRWV1e1b+La+fOf\n/7x86EMfEhGR3/3d3xWR0Ua18Bw7cOCAfPWrX41c27lzp24ElpE51hUWclGPXq+nZcZv1WpV68aJ\n2wG01a233qrrOSf2tdSLrsEzJ5nlueqqlId5RwO8zmOcf+YznxGRfqolqLItg+uPfvSjIiLyne98\nR/uXU524ewvvSQy3zFNTU97hyTJUtxyg9u/fr8JTNptVoQXtu337dm0vV2AVGZgWrK+va/tbDgMY\nG2zeEHfg473B2h8x1/fu3auCDO574okntCzoo3Q67ZmHTE1N6X0bdaSxxsmw+FWoLx+AUFbM5ZWV\nFRbCg7F5QEBAQEBAQMBbiS0Nf8DGbQDHfWLp2WWd2DgPYIod13bu3KknJVarWSclXL/11ltFpC/5\nv/jii1oGkf6pB0aLOBksLCwoi2C5avIJKElYA8uIPGnIBs4tJxKNgivSl65dCT+fz+tpDszA+Pi4\nx0AUCgUtf1KVE/qtUql4J3NmVNBurVbLZH04urVIf5zghAxDZVDnLjAmQDOvr69r3TjSOP4NupdP\nx6waBXBqm5mZ0TbinHw33XRTpOxPP/206aiQBKxWxSlqfHzcCy/Apzv0fbFY9JwICoWCGsSyMTdO\niXfffbeI9PsD7C1YS2sMFYtFVUnADZ5ZTrw3l8ttmCGMAzuT1Ov1TTNSHB/MMmjn38DqYDxx/CCO\nAu+qIXjOYxwfO3ZMx9GDDz64oTKzUwrKks1m9X18KnfZ7LW1NS9Ok7W+cE49XLfWl1QqpQw3zAJY\njYfycZgMzoiAscLrchx7wizZKCN5kf4cRRtg3PM6A/XRrl27InkaRfptBTUPG4djDlh5+NjBxDVf\nYEbKbTORqIbFirNnaRk46XeStXkUuweMj49HElOjHu5Y4ZAocQmyp6amtN2SMu9guMbHx3X/xzrK\nLBM0J+vr6x6jls/n1dEGfckaHfwtFAqeMfz27dvZeSAwUgEBAQEBAQEBbyW2hJESkS35aEBAQEBA\nQEDAJmEyUlvitWdRkqMEuiRG3xMTE0orbiYdyEYTGcdhfHxcPVBgMJg0grDIQK3JRucbeR5waWA2\nprOiZrMRoRtbistjRUVH+YYZ7rp1m5iYUCNuTl3BMWIANwkle3WwGhfUL947LKG0a5xvxc2ysHPn\nTk81YBkyWobPXBam762xDdWFazzP2LZtm6oIeGy4KpFhxrzD7kdZ3XqgnFxXqFVTqZSWJencG9Xm\n+C5S7FjOIPye9fX1Tav2NoKk68RbuZ4kRVITgLfiOyISUc27apJRUbb5XTz/8V53HHG8Lusb/BvG\nMhuJW55hbkaHdDrtxSLk63yfm7aq1Wp5620mk/EifrdaLc+0I5vNeh6VbPzP6zbUVtZY/7/V/xvF\nRudCJpPx0uxYdRtW3yTfs54dZpQ+Uj6JvRoQEBAQEBAQEDAUW8JIAalUSk/mbKQJYzSOR5HE7Xxl\nZcVz87bilgxDEmk5k8koKwOwcR2+f/fdd6uRHIxvN8Ioob54xno2n89H8owBcYbsVkwey5V3mKSP\nUxOYDQ4vwKc21y2fAUNMK5aK5VgwzDDSHRPFYtELqZHP5/VZ9D/H/eL74pgoPim7303KwHB78jvc\nmFucUwwGwe122+vXhYUF02nCKjsiMj/77LPedYxZ9xmUGeXm5OAATselUkkNdnGdjYAt1g19MGxe\nWGymBYtBSIo4w3KeA5aBbxx4zG40p91m4DImIjajmzR8x6gTfZK10lprUqmUV1b+DW3FbJE1vyxG\nylpzMDa63W6ivmPmh3NbumWwmCaLRRsWA81iuIaVxy1XHN4MG2WFHkryjEi/7paj1WZZ2VGskDWe\n+Td3vloaDB5jSdeaYdgSQYopTDcYYLPZjGSAF9lYtmZswljUa7XaW+IlxKollJknMzoAQsKrr76q\nAds2833UI+7Zubk5LQOEzlEeG6w6A6zJM4zidO9lLyyUmQVLS9CDp8qFCxdMockdzBxQkr/Pniry\n/7D3ZT1yXdfVu+au6olkcxIpyrJkG04sJw8O8pKnIK/5wQFiI4CBIAESA7EjxYoiKRopUSQlDj3V\n/D30t06v2nedoaqbajk464XNutO5Z7rnrL323qZNP6+//noIosfwz1gsFsl+hkki15Zsrsp5fwFY\nwCnvH7TrW2+9JQMKqo+1b7fZbBYWWojNxcH9SiZos/M24r7BnlwYc/gA8UIK9cJ9w8eiiYGTcKvF\nCOaJTZBqGzWplk60+/v7YSyuGwenFGqhFyvfuh/ITT4oatHpFy8pM4y/luMMpX7DNRi/PI45fYx/\ntlrkqA8zL6TUxxxjj/shl8/XgTIfqvPWOZ5CqbkvtihJAe+sArKa5ds7do46j5M0K3OfKmts8+rB\n77vJ4q+a9ioqKioqKioqNsSVMFLMQvhV33g8buzgbt++3RA5L5fLsLvFCvLFixeBMbisWDWKlo8x\nOGbnMVk4Ns8mKCn/aDQKdVXCRHko8TDT1F6A3mq1Qv0jNhKblBS1qwTUiJRt1mQbd3d3Gzub5XIZ\nWCeO9eOTpM7n8wbDhXLG3p1NlWoHgndSUeoVEIMm9kwWoaLMgGpz/Nbr9Rrphcy0SFuxZ2DrfvWr\nX5mZTjnEgIicY3+hftrtdmMXfnh4GMYjmDUGjt24cSOwbBx7LcU+c5ur80oZNSC2Q/csATOhPAZS\nO1XMU0+fPg1xa9AX2ex8ESF6iunMRX+/LJQyTSmTIzMJqXdigbmaxzwjwWlecH6/3w+/cVuq98Bx\nZr+UEBz1zE4nHM+N/+Vyqv4aM6+nmK1SlDI+yvyVg0ovpdIQsUPSun0e53O/9s5HseflnqWYXN9O\nJfVeGamKioqKioqKig1xpWLz0uiqFFV0ZYeD3ENgAabTaTLp4iY7tVIhccl577zzTljlgiGYTCbJ\nSLApnJycrNRNCXjlzUJMf3y5XAZmgyMZe/2a2XnkWT4PYOYALAfKrMSNKYE7o9PphL6gWCL0CWZU\neJfi9TmKCel0OtJN2YNZCu4HSpPhd1I8BlI6rG+//bZ4R+qZFXYm+Pd//3czM/vZz35mH3zwgZnp\ncaEYKYDrBNHMP/jggxARGGNQ6ex2d3cbYRLYRZ13gTjO7YtyqcTnuM4svRONHVP1kAproe7D/ZkT\nZput9nc1DpmlTM0n6vlq1/4qoTSGvm8zo6KYJr6XEqDHzvf3YycS/r/ZeX30+30pNvbsQ6fTSTJG\n/G6+Lfk9+LqUaD72TniG0oJdFlL9NxeOxvdB7tuoc3b0SiH2bqn3TTFmubrKzRFslSnFlSykmP6E\nuQIdZjabyQ8ywJ0Wod5hSrh//35oOFTG6elpMD+lJpmYuNp/3EoXfwqz2Sy874MHD8zs7CPizZHf\nfPNNUSOmkqGanQmUgXVFtcPhUC4E8CHjzNjcdin4BLCK0lfJMnd2dhq/K887Tq2DZ3HqBSyCeHAr\njy8sEufzeWgH3I/fEQLq09PTcO/UopgXUmpygqOCSnkxnU4b5tt+vy8TdXtnCNWXkKLEvxOAxe7t\n27eTi3W+t0+FYdYU0L948aLRh5SIdHt7OyyguHz4m5+VWrxuArR1bEGjPnj4jese74L+dPPmzZX+\nCOAZpZu2lChYfURy3lilZpCLePKlTHulz4uZX9QCCmCvZ7SD8pTj35SgHffB3LFYLBqx3mIek4Ba\nFKlFHf/rFzYXhWpD9pT081OsT+J6jBWeU9U8m0LpmFV9m38rFYznnH82mUOqaa+ioqKioqKiYkNc\nCSOFlWq73Q4rWl7de0p/OByG45xQEBGP4XatkqTGVsWeHVE7+16vF56L1e6tW7fC7rokWSbjk08+\nCWYwFuni2fitlFJk5g4M197eXlhlx4TWHmoFvrOz04jJZHa+gmdzS0oYz7FYVKyjXCwhVS4zLa6/\nfv16YEPA1sXiQ3kxKoOpXS9K536CPnRychLOU/2IkQo9sS5dHds5oc/D9M1mMJT597//fTB/MrsI\nYJyhv5qdjzPu94gFtrW1Jc2evl1fvnwp+yUYMoyto6OjINzme6APoVzb29sbZTHwUKxSKZRpitsS\n7fHVV1+FccqhOjxTUvp8Ni+h/l68eBHug/vm7pdyUS/dqSs2hpmBnHnO9/1Y3CQ/bpfLZajflGl2\nNps1mKMYW4H7cJnxG+aS+XweWFHcV4UFUe/OwnElCci58a8Lrkt+jjJ1rjuWUC9cvpQoPMbUlXzz\nlFk91of8eZuYD9dBZaQqKioqKioqKjbElTBSbH/FihC7J45EjdXswcFBOA+7j/39/ZDLDozIy5cv\nw+4AbM2zZ8/C6hS7wel0unJNDCon0qeffhqiTf/t3/6tmZ3pqP7hH/4h+96np6eNKOC8Il4n8KgH\ndrjtdjvoUlKu+Ix1VupKA6TO9bmzODQBIxX9GedzGzLr4XcxfH/cZ3t7O+wiuZyeBTDT4Rvwm9IA\nMDuqon4r+OOsuUNfVNqn8Xjc6DPT6TSpg0LZ+/1+eCceH3/+539uZma//e1vo+XlMB5golg3hf7Q\nbrdXxrDZGROi2BDPYHIQUY7UnhoPaNOdnZ0LjRuA+wZHmi8VrfodstJS3rp1K4xTDuNQUv5YPke0\nP/fFTZk1f++LXssaHw4H4Fkqrj8+Xwnz1bVeX6cwnU6lpkkxHL7+lstlGD88N6hcgN6BJxa2IMW2\n8f/5fdcNqspQZfWR4HPia6VL80wyo1SbF3OiUd+E0n6pnJhKA4FugitNWsxUIibXyWTSaHSkWDFb\njX305Zdfmtl5I06n0zAJqg9+SgjcbreTnkoMfFzgAZVajMVQ2ohYDD179qwxMbMwkkWQGOw502PM\npIfnAexNxBO22aopNlUus3PTEOpvd3c31J1agHAkbXxg/fPNzH7+85+bmdn777/fiDPEJkCuPyw2\neaHgo7C32+3QL5XYkwWX6NPrftQXi0UwU8EENxqNGh/Bk5MTaQb1EwZPXsqkyeVD/1ALSGA+nzcm\nNHVfLhP60Lffftt4D06jwfdFP7h//76ZndVtKjYae6ldtqdaaSTy3CLLxwp7/Pix/eIXvzAznarH\nx0BjqFhvZk0vK3Ve7gPJ71NqEsndC/dQJhhv7lEmGf6dF1cqPlMJ5vN5wwmDPfS4LP654/FYtol/\nNy4fI+WZzCJ3f+1FP/SlgutSbzw+H9/K1NiLLaJ8P+c+i348Go2Kv6ve63U6nUoT+7r1WeqEYVZN\nexUVFRUVFRUVG+NKGSn+m8MWYIfMuwQvMoxFDl93d4qV9c7OztrRyHMrZr/DiK3QwaJAvLizsxPK\nxe7jMKewWJ8TOwPY6fP7qNV1StQ4Ho/lDtm7mvKuE+C8VnzMM33MbPB9PZs1GAwkdcxMlNlqzLDU\nO/K9gZ2dnQZjuVgskuZIgN93Xfp9sVgEejyVNHkymTR242onr0TOzLDgWU+fPrV3333XzM5MdWar\noSIQSf7o6EgKxgEuC9g7Dq2g3hdlhJicTfxgHO/evWsffvhh9D7c/zYxeawbwbkUKoIz16VnoniO\n4HFWyiYoEbE6T6HEpH/R+EV+HlD1zeYvNa+wCciHJihNRszmOY5czrn4AJQR7ZEz8ar2SJ2nzGqM\nGLtXGkdOPY+dfszO6qDEoSD2jcBciTpiQbsyyeKb1O12pXOSv3YdK48K1aCciWJCd34uX7NOv6+M\nVEVFRUVFRUXFhrjSyOZqtdhut4PbNv7tdDpBz/Hw4cO1npETvLH2hoNumpnduXMn6FZSQUJjwE4U\nq96tra2g++A8gdiZ43zOoQfX9J2dHXvnnXfM7Hy1/tFHHzWe2e12wy4h9t5qte7DGnS7Xan3wQ7O\n55litFqtxrU/+clPGuVlpgPtwHqEVKRvs6ZeSu1Ob926JZlG1CGHLVDvgrZR2iz0k/F4vLZmgwFW\nEe2vysHi5ZSWhoG22traCnXIdY4dHJ7Pz+BnpZ7D/QHlRt/OXcv3wHlol9u3bydDXQCbMkrrXlfK\nYKldLGcBUPf1jB+3F5+nxMGpgJx8ntpl+2vVXBkb3yUMjXqusi7EBNn8PP439bwUvMPSdDpdYVTM\nzurAhySI3defx8w0EJsXvA5rUx1aKZSlZt1nsmOYvx/rnYF+v98IH6SYptFotBJA22w1z+VFWGP1\njspRIXdNDleykFIfcoCFpxAn7+zshEbCx0aZemAa8/dWi6A7d+6Y2fkkfXp6GoTduE+/3w8mNnSI\n5fI8dQoWd4vFQk6G+A0Lwr/5m78Jg/jf/u3fzOxsYYj3xQdoMBg00mfs7e3ZT3/605Vn8ESqPLT8\nuSVQpgl1n5RJYTqdNq599OhREBKz8wAWBagD/uhwqgH/Ttvb22FRzeYA3w4//vGP5UIK5YbQ++Tk\nRH5sVB/1wt5NzUsA2pgjDPtn3Lx5M8T1YhF+arJHf+b6xlhgup8Xz/43bo/Ux9jsfLzywhD9kheu\nqCuMBSXkR3yqHDaJIRXLYpDCJikp0J6Yq/g8FvijXrFoVyZeJZpVC5CYmUaVTy2aSswapXOJMvvz\n9d6cp8rkr0sJtzf5APr7rdMvvLmSP/6pOSRWLx5+UbypiTW2mCgx46prp9NpIxac2uwor93RaBTG\nfepbnvNSVA4yKbkJ46IifoVq2quoqKioqKio2BBXatpjRoV3QmAVYFZjswFHQvc7Wo4xhBVySmBm\nds4CjUajwERxOAXsEll0jOdhRX18fNwwu9y8eTPcG8wAvxu7gHtTnNqRvnjxomHWPD4+blwTEyzn\nhIU+X17MHIA6TgmjuV2BxWLREJvfvHmzEVWb25VFhN7Mk6JsGSwgVzFZUrFqckxTykU4B0WZgy0a\nDAYNxo+FsdzvUzto9F1+N25fnz9wNpuFvu2fxeA2Qv12Op3AvIKROjo6snv37pnZOSPFOcpwDxUR\n/fDwMPyuGIuUWDeHHOuQE6h68DkcYdyzowcHB2FO4520eobKW6iei/PYWcf3nRyboeI55c5LQTm0\nKPMcm25STI66H/eJV8EwrINU/+S4Wcq8GQv94H/bRGyeQomjQaxcrVarIRWIzUWeWWfrEDNRPsRK\nrCxIko55h2UVMTN07D2UQ4P67pXkOayMVEVFRUVFRUXFhrhSjZTZ6q7JbFXsBw3S6elpWBVyEC+f\ni6vUZXI4HDY0GOPxeCUnGYCVN8IQ9Hq9cC129N1uN5SZdVpeWP7P//zPKyybWVyX4LVPrLnyrqcl\nSO30eMeqWBbeVeCdle6Mdwb+2na73QgvwPdAW8aAukTZ+VowHLzLR3u99957IQI+GDFmCpT7LteF\nt/2zgJp3Ueu6zHI9+2vG43FDoPz8+fOg10MYDNX+LBjH+Nnb2ws6MTX2WLzODBj+9Tos3qGBCWHt\nIAPsFGsa0NYs+lW7Sp/hgB0gSgXGmyDHiij4aPeKBXr69GnjNxaWg33q9XrhbxVok4HnMYOlIqCn\nsG6fNdMsRUpfo3SxXm/Jx3OMcykDvC67uA68xism9FdaqhR7oti7q2Ld1Dvx/A5wOAUut+q3qbGu\ngPmp0+mErCKffvppOF6qhyqpQ2VdKNHNXalpj8EeEN7ccnp6GhqH42Fg8sIH5vj4eEWIa3Y2geNa\nfFhSEc5jUII4fLj7/X4jGfHJyUmY9DHZnZycJKl6YDQahYUAyv7y5Uu50NsEJSJDHgw8mTOVi98A\n5f3D5Qd8Gh8+7+TkRHqlQciMa9jkhL/Z5MTxt1LxwdQCPhUNN0bFq49CCWILaTbVmJ31tZIBrRL8\nxqhp9F88o9TLjh0zYJpV3mc41+zc4YK9MlUsoFTssslkIk2Ol2ny8CgZK2bND0Hso+pxenraMFtz\nZGa0OY8pZUpSDibKdOaviyHnMVVqWlfX+fpgEzo/19efWkjx/XJeipcJjoqeW/j4RX9MbuIXZrwI\nu8h7KPNWrF0xN+e8CVPpW7jdVD/C3/huT6fT8E3m5ylBObKJ8Pt4UzbP5etuEjbt19W0V1FRUVFR\nUVGxIX4wjBQjJYTjFTB2cPi32+02xH6xGDRqRY1I2W+//baZnUXMVrGaPJhtUbFvsBvf2tqyDz74\nwMy0aYx3JLgnzsuxEWBgDg4OQhmUiDfGPqmcbXgm1xEYBphnFLvHu19cu7e3F5g5vp9nNszOY0rB\nFNdut6VrONgJ705vZvb666+bmdknn3zSqLvBYLCST89MC8uZ4eLQBNgpKaFlqQmI60Dl0APQJ/b3\n9xvCfHWe2gnnGFgIpAeDQTAb8g5N7SoVU1caa42ZXLPVyNFszvPm4dlsVpTs9VVCmd/V7p5/4/Jz\nUmazszrHXMExuVIMMd8b40LFWlMsAN8vxZht4jyRYpD8uf55Hp1OR5YZYPZYsSelfWJT5kr1w1g8\nrBK2g6/l8xVLnoO6jy8Ln8fHUiY2vlYxsJ7t4rmDLUT4PmGuiZXds/KxNvLyIK43QLFUFwkB4VEZ\nqYqKioqKioqKDfGDZKQ2xTp59sBYQPvEkcOxEo5FUce1AAc8VAwYVuNPnjxJ7tqZQShZBbdarSAy\nPTg4MLMz0SmYC5W7iwFdF5cJjAmzO6x3Qh3jWl8eszOGAyJjdqdXuiolUMaOBYzUtWvXGqETzNKu\nsnxfznXG78PXql2MYhVUADiuq1y7+ZADZs1o8cyEMdv22muvmdlqTjxfFpVvissH4T2Ce/r3BDhY\nHuoS5Tw8PGwwIJ1OJxmBXO3gFcvKefjwDPS1Fy9eNPrxaDSKRr73SIl3c8LeFGvD7AmOcxuiXYfD\nYahLdt/GvVWoCYDrillUvPumzg6MWBgPf2/lIMHnKfE4/z/l7MLAXMSsjWILLjvydSlS2pmczkmx\nQUoDV/q8dc7hZ8bA+i8/TrkdWLOIORJzzMOHD1d0S4DXGytLkv879Q6qLrms/l6psbJpf/iTXkjh\ngwtzzzpRaWFmQqM+e/bMfv3rX6/8pnDr1i37+7//ezM7j748n8/lxw348ssvs/dlrDMZYhGUM0Gi\nw/PiCmYBXkilzEy7u7sNLyFOneI/Enwee4QB165dC3UDvP322w1x9HA4bCRn7nQ6YUAoMxnf19+P\n6xeT9enpaagjlHOxWDQWUOpDwFBJjteFqvvnz5/bm2++aWbnCykVc4uhxoVaSKFPcNl54sO7P3jw\nwMzMPvzww4a5cG9vr7GQUibUUvCClSOv+8n1+Pg4iFZzUO2uTLJsflXxjTxYGA3woohjryFBdMpM\na7Yaj0o9j++LspqVxzRTnroxkbY32SlwehSMmVhcJLWQUh9SnOcXVHyeSgulsEmst9h9UBb/keY5\nid9RCemBlHcfC9pLF4ybLARUTK6cSdEnljc774MgIPb39+0v//Ivzez8+/T06dMw3yDGnJk1HILU\nc19//fXgMAbTeM48pxbruQWtR8ncVU17FRUVFRUVFRUb4k+akUqZElJotVoNhsOsjDF65513wnn/\n9E//FK4D84IV7vHxcVi1lzJRrxJqVa1cppU5y8cWMjs3/Zids13KxMKxcTxU7KiPPvooCHKBO3fu\nNJgrNt0xg4N7vv/+++G5Pr4Y7yZ5R4V7cr+CWQn32N7eboiDzawRYVqh0+lItonz/Zmd7YqUm78X\nZ3Y6nWJzEICy7+7uhndCP9ja2mqwAAzVXjj/+vXrDfMr7/bAYB0cHITzVPmUswbH+lLDgu96AAAg\nAElEQVT9KBdSZN24NetIBMxWd7G5uE+If8MicVzP7476Us4J/FwVC2zdMjMUc+2viZn1vGmPWSqW\nB/i5KCbSVlDPUCyQxyYu8aVlAWKMni+fCg8TO29dRipnoubz2FSL31LzCd+3tCy//e1vo8eVdMaH\nXzA7/9Y8f/68kWw+lnQ4Jbjn8qXqKDX2PCojVVFRUVFRUVGxIf6kGSkF7O45arIHr0KxCxwMBlLQ\nDJbi/v37Zmb2H//xHzIwJnbFvNvaJDP9qwKzRagj1q+olT12p/iX3xs75tguBjsC1B/rsKD/YJ0O\ndh3j8TjsOsDyvPfee437dzodGckegTtRPi4bR3/2GpRut9tg6DgEBMD/53v74Ja43kznB2OATeBd\nVIpN4uf7nVcuFMOHH35oZmavvfZao/6UlopZsJQjRey90O/QHnfv3m2MM9ZSgQkZjUahzzBLopgy\n7tsp/Q23B8qtAjvyTn1dvZFqN87DifNYJI7fUL/Xrl0LLDbGKu+KmX1CmdfJcsDlNjt/X877mROv\n+3ZotVorWQzMVhmplOiX2aJcqI0SpkEhxyqo6OS5PJtKSK/E8Oo8Pq7KgP/jbxUOIlYuj5xLP/7m\nOsq1f6q98BtbYpipVdf4PJ0qH66/j3pPlC3l0JBjmpT2Nof/cwspJVoEuIOi4fABHwwGjXhE8/k8\nHMe1sejiqXguOfh0MDFTxbr0fQw+sjh3Wk7f4almLiOE9js7O8kPrDJ7KAEtynR0dNRYcIzH40bn\n//GPf2x/+MMfGvdR3oQA15t/hho0w+GwIarme7D5TVH1/mM9nU6llyLE40h/8PjxY2nqQN9Skwn/\n5j9y6t04oTAodh4zWOyw9xwWVSxyR3/57rvvGpPXixcvghAc40Z5kqqUPWyyYfi+5pOlpj4Y/H5q\nIk599FMTeMqDjY93u90w5tSHCsLc3//+9+E33oCoSM/qg+FjrqmEsurjmqpHD9+ncpG+UyYqNvel\nTF2qTi/LTMfjN3VPXmR5jzReTCoROaDMmzETVeoafnapCUv1O47DpLx/gdJsFqou+Rl+rlwulw2p\nDTsRKA9CvtbLIPgZCrkF0kaC/bWvqKioqKioqKioMLM/EUZqb28v7MZAF8ZEcZ4R6vV6Ieo3drsn\nJyfBjTKVh83snLFS4QWwQj84OMhGaY1d2+/3Q3RvPOvRo0eS+UL5YZYyO39fduMHlBmE7wPEYneo\nPF6pXSwwGo2k673f7fBOGSbW58+fr7iLA9h1gJVTbBSu91Au7IrV85Tz0dFRgwWcz+eSbVMiadVH\nU+ZeMHX9fl8yCLgfmygBJaTmfIMe4/E4MGDA8fFxcM+HuP/mzZuhT+Hffr/fCLswHo9lP0dZ0Z8f\nPXoU6pmTTfvdLr8bm8Z8u3W73Y1M6ErMD/Du3YcDyblb828qWwAf98/74x//2CgLrmm32w3Ts9rd\nDwaDBqPNfTZl9uXfFMOuYiPxMSX69kwIMxfM7vB7evB9U89NsSk5pgmInePn8vl8HvqOCh/Ac0RK\nSM/v5vuL6lP+/+vGWlrXTMrtlRpnXA7MmctlWaR0lTtSxSqLMaapCOiq76QE+Tn2LobKSFVUVFRU\nVFRUbIg/CUZqa2srsDBgbdhFmAMo+hU6C1mVNieFdrudDJyH58ZYLeVKDGYNYt7lchl2f2BihsOh\nZKR8EDReWSuWh5/LO1K1S8CuAHWqWBGzpn15MpnI3a7aOfrd/3w+D+8Onc5wOGzsqIfDYQiJwMyf\nf+61a9dkW6BPsMZE7TJ8brf5fJ4MpscocRtut9srgRNxPx/0c2trqxEkczKZSCYKUAJp/KuYnPF4\nHMYDM1e+b127di2MAdxP6QBjgm+0q4qiz+2Sqj8WwypB+CYodfNW7QWkxK2qnzBbqfRXiiVVgQ+V\nWNaL2H35cq7wOA/Py+XuS90nd75iiBUrovRfnn3i816llkpdj3mHtVL+eUrzFYPvYzw3KI2UEqqr\n/qnKE5ujlU5wHWbGLP7dMVv9rnD5/Hel1NkgBl8fqq8x1H3X6TM/6IUUXu7o6KhhArp582YQjEMY\ne3p62miQdWJNQXz705/+1MzOYge9++67ZnbeOVhoC8QqHIs/LIrm83n4WEJc12qdx8ZhEXhKFKg+\npLgH071s2uNFkZ+I+/1+4+O7WCxWzBkoi7+3WpSdnJw0TCcxrxP/oeJ3e+ONN8zM7LPPPgveeAAL\nD4GbN282zFgxjyoVQ8uLw7l8PkGyh6rz1MIHG4KXL1827skfMT6GhSAvlH078PksCPcf6U6nE/og\np0tCX8V9Y5Havah/NpuFOkJbcjJifi7Kz+VDXaWSYHMEcfTJ+XwuBf7c1inKH4hN1qoNU5Mut4f/\nsHPbvPnmm2amk2qrOtoEKtkzysDzGNepF1CXRgNXEcZLP3bqGl6cqgVITpR+WSL0FPycyYsT3oB5\nKYDqxyq2lF/slC4A1m07/z4lKImx1Ov1wnHM3+PxOOksxYts71yR2xDEHEtKcNH+Uk17FRUVFRUV\nFRUb4soZKbA2nJMNK1CsZieTSdipgn0aDocrLIzZavwdxcBgd71YLCR1jWeA1fjss88aq+fSHSLv\n5NVqF8/a29sLOxaONI0VPO7z3XffyWfDNAaGo9PpJGP79Hq9Bhszn88bZVR5xlRcHeVabdaM9D2d\nTmX4Bk5I68FmPNSX2m3hHsqsx9HEefek7oO6VKyIejdmO1X095RZCOdx/aF+ptPpijkLQL/kMAmK\nNQR4p+yZGg6TgFAWCt99951sNzxX9Uk8q9vthuMw6W1vbzfq17NKZlrkev369cCY8Y4+F7tNmTBy\nMYJwbx8fLOY4gudye/kE4FzWTz75xMxWTdnMsuE83IPrvpTp4bL4fhIT2avYZypcQU6sHjtWyi4p\n1kZdz9G/+VmlJqAUo8P3S70v6laF7IjlsVMmwJRZMFcGxmXkFGT478lsNkvObQD3MXYCSjGXfB+f\nkHsdpNhgIMYCqvNyqIxURUVFRUVFRcWGuFJGioVnYCQGg0FDa8Gu38DJyUk2xxagGAmlpcBO+T//\n8z/N7GIr+93d3bALV/fBbycnJ4EJAbMyGo0CC4DfWq1WKB/eYzAYhDpioTKuUc/d3d2VeQZZO2G2\nGmSSBY8pRop3J75tdnd3G3q1wWCQ1LBhR3L9+vVkXSLoo8/HF4PaZbMYXolveaeiyqwCcuJ+d+7c\nMbNV5gfsEjMSrMNTjBTaRoUzwPnsXIF/+V1Z2+BZFL4Wxw4PD5OsSEowzIwUoNi+xWLROI+vTQnL\nOVirWTqsAT8vBTU3qPdUDBKPGaUn9IzZZDJpaEG4HbhMim1PvR/nLVM771SAxZLwEP4375gREzv7\nfpJjjdS1AAvQ+fxSV3f1tz8vVz7WSqVE3SkxfAkuQ/eVqssYlA4ql1PSQ+WWBGJhLYB1v8Oqj6l7\n5+67jtbsShZSHMnbp6k4OTlJRsi9LHhPruVyWRwxPCW0g9lFvRuDqXv/weNJiU1juAYebM+fP096\nYynvCeXVoRZDDEWPKvNBSkD98uXLhnBXCb4VlBMBQ5kFUebZbCbFnko8jvriQc/3wX394Ox2u+G4\nmlhSH3X1XtPpNJh2mRJH/eF9Oeo4kKPYcY/ZbNZ4j/F43KiXWFoW9aHddKKfz+dhHPKmx5vGYpM2\n91kf24djFOUmRD+uS02AygFFlbXf7zecAnLzTi7emX835VyhTCcsBAZyIneeQ1JmppQZj81uXAcp\nc4/azPC1eI9Sk2fpAq4UPK8oLzEFFcNJLeC4XUu+g7EFUknMKLXAi5l2Uwso3hjgnsqbVMX9Spni\n+Br1LQLUtVwv6trU/UpQTXsVFRUVFRUVFRviShgprAyV+7ZZc0XZ7/dXxOhm5ZTiaDRqmEl4t6VE\norn7wXSGUAwcpwf3efbsWXKnCdZjZ2cnCOi5DHhfju8EFgAr/sFgEO6DZ8Vy/alEkqgXlXyXdyKK\nfWI6G+wJM0M+XMXh4WFjF6RMGL1eb8VkknonIJU0Wbm18zW8I1HR4XENC64R/RtieOXYYHa+k+ZQ\nF74OptNp0ozC7BjqF3XaarUadTOdTmWUdSDXz1EGHpeKuUC5OC6UZ0D6/X6x+d33g+Vy2aiP8Xgs\nwxHwDtKbHJgtZCgmJxXLRkEJt1U+PIDzVwLMRHgzvdm5aX8ymYTyIezLkydPGmWMucv79+Uy83hT\nJpsSV/eYiTfGSsV+U6FW+B08Y8Hm0lR7lZrxNkHOzO2/VTFhu4ojxcdSZk3FhKViRqm5SF0bi5sG\ncN/gTAWAzwzA16ccQ2JOTCmZDKBYNOWAoKQq6rcSVEaqoqKioqKiomJDXAkjhd0suwOn3HI5txeu\nnc1mcteH3ZqP1G2mxaOlTBRwfHwcrkWOPLOmm3JuJ46dPO/oGV4f1u12wzPAYPX7/cA+pLJ1x47z\ns/BOnuHCc/Cb2mFAGwU9D+8IUA/tdrvBnrB+SWUHZ6bG6xs44GEuCjOuTTE+Kto5h5LgZ/g26/V6\nob7ASJid1wuYpJjAV0WvxjOUPsk7AcSgcqOpfqA0DezS7a+Zz+fJ/sQMC8KbcB5BLyJX2N7ebjBq\nJycnK2E+UBbui17rp8Z3TKCsdtyeLRwMBqGtVfl5TsK1rOFBe6a0Klzn6HeLxSKMQ862UBqQsWSX\nrbQvigmJQb2Tn8e4L8bYMz7fl50dX/y162pqXwUzlWJ++F8/n3GfZDYopbkqFen78mx6rRKqs57Q\nO+twHkyMBbOmNUDVG4dEWbdtcqEO1PhIsa65edbsihZSMAUdHR0lBdkAT6iYxPb398PEguOdTmcl\nOrhZfkGzLtrtdoi4jWd98803jcl1k0SqDLXA8o18enraSFrM8bUULctQgmZl3sK7qY9qv9+XXmTe\nPKfAolWVToe9N9VCm8XyZqv0slo0qQGED99oNGr0xfl8vjIBmJ2lTMH7slcUoExdwGg0arSrioNj\n1hSWM3CPO3fuhDLzYhfjAYvE6XSaNH8os0fOI009F2DTPTY27ADx85//3MzM3n///UZZ8CwW+vME\njo0R3i2W8igF5UmlTGzKm5ATLPNHTpkKVSqnlBnaT/T8G5vB2bypPjKpuE9qIc+iX1XnJXNZu91u\nnKf6WuwDrRZB/je12FALrph5S+GyBOe4l19g8ObJl4mfnxN/p57JYFO2evdSEbxa5KTqlSPbq7lc\nRXpX/Yrn1JJvSOwd/Hvy/ZSAXzkTrfP8atqrqKioqKioqNgQV8JI5XbHcO9Xu3GsFhULMpvNVqJh\nXwZg9oDo88aNG6EMSMjK5sOYScwDK++tra1wv1xE7RTYbVyZ35SrKZshsMNn9s+Lqnd3dwMTwat7\nMCQsjFZQ9KlnmlQcJBWNXSXn5fsBKp4PtwdMRVz3bH7Bu6D+mFFi85cSGfv2vH379kpEa7PVvIRc\nf55pVKzL9evXQ2wqvJMKxcBMA/cDnyyZgf6uBOtM46sdrnLPZ/z4xz82M81IMavgd7bMDuYcENTc\notqIy+8TK8dcyf0OlU0YOScHfz8OnZDaqXOZ2VyeMlcAOXNqaQwlZoB9f2QTIJdBmd0Um6FiT6XY\nJz6n1JR3meyTAjPs7MiDv9lM79kzZQJk6Qv+X1KGVCYF1UYpKLNbjt3j+ZXDrZjFQ8H4b2Uu9IhC\nauyp9zBrssCxkCI5VEaqoqKioqKiomJDXAkjBaZpe3s7CLaxWj88PCxiZkrdmmPA7lS5AwOtVivs\ngsFctFqt4M4Odia2yk6tZCESPzo6CoLcBw8emJneqTNy76hYBNYOKR2UX60Ph8MGu3d8fNxY9c9m\ns1CXzKKgbXinoX7Du6PNx+Nx4/1iAduUnsO3BYvXlWiQn5FiEFHOZ8+eNbRly+VyJWxEDKzB4r6L\n+9y9e9fMzL7++uuGeF319SdPnjRYDO4TKlgm5wnE+7KOUNW572e5scXsjGKOfvOb35iZ2V/8xV+Y\nmdkf/vCHxjn9fr8xfiaTSZgvWHCtkNOhqF2nb/eYm7d/RkzQXrqTB5QDQspRgpFqE85SwPWiNH7+\nmHJbV+/LOjEuk2JZPEul8tHlXPv9+TG8ahbKP0tp0XzbdTqdtbW0nU6nKFAkz4sM74SRY1lKy8X3\nwb3x7pPJpEij3Ol0GmNvkxAEXKaSMR/TjnlnpxIN5pUspNh0g4mW40RhIYBJc3t7O0ycPk0KY2dn\nJ1yDhvnmm29ChaQ+Dvv7+417cwPnIkan3lOBBwW88F577TUzM/vrv/5r+5//+R8zs5Ck1ez8Y45G\n5w8zzBLtdjvUn/KUwHuZrdYhm9HMzkTVGARs8vDJVFVsHBYoM3iAmZ21KxbVnIgXdZ1a2Kj3UILX\nra2tFVONB98bixb1PBXjC2VXFLqZNTzWnj592ngnHvRYULEoPTXhPX/+vJFAWXmicFJq7gdoa4xB\nnkzYfASUiofZlKrGAN4d/f7NN98MJk+APTXZ/IpNTMzk6ReWHP1dJV1mc59KxKq8Jtksb3ZW92pz\no0yJ/n7KecKs2TYKuY+NMhWizGbaEcd7O6qo7b6seIZf/K0jqlbmOyUYXndR/31CjVWek7gefR0t\nl0u52FUR63NQC9USZxO16MgtSrisqQXHZUQQj8WWAnJeiv7dWfahkPu+M6ppr6KioqKioqJiQ1xp\n0mKzZjylXq9nBwcHZnYeE+rk5CQI0HPRrrH7w87/4OCg4RJ/dHQUzuNdu99RdLvdhjno+Pg4mWgX\niO3kAJU4+N133zWzM7d2jl6N8734nnfbLIJWjJOKycRAPeB5X331VUN8y8fxbr1eL5SBd8Co/1Qi\nVi4fi7qVeQlg4abfAakd4XQ6lfUBcF2oXHsAlx0Cb7XjU3ntuN18GZfLZejvYGgePHgQ6pzL59tj\nuVw2wilwPYMR477GJkhmXnE/FYXZu/vHzAcA2n46nYa/gZ2dnTB+kGT6zp07jTpgsxCYYmbqYrtz\nZQ5U8FGYYztvZYJBvfE8oESrvr9z27CDgU+qrmKuxaBYJz/ftVqtcB5YMuWso6DmMDW3cXtxrCdv\nnjNrslOLxaIhhuaQJyrHX4lL/vcNFSqg2+023OiV80cMF3mnUvOhErer8BjcDql7KjaY5RWKHVMy\nDd93YrGlVBgc/92OhfvwzDaXb53EzJWRqqioqKioqKjYEFfKSKnI29PpNOxK8a/ZuU4CK8jBYNCw\n5x8eHiaF1hxkDLt7rGxVqIXT09NwLe57fHwsmRDsvDkf3qZBQR89ehQYqTt37oRngFlQQm/e/aoV\nNBg9jswOdLvdldxVAHRLn376qZmdMRyoJ2ZHsCNIsXtbW1uNHbrKDs67FLWLUCEPgFhUWg4o6qEE\nvjExbew3jjrNDAj6bypIqHqXzz//PPzNjBMYLvw2m80agmHWJfHOSrnsK/G/escSlorB40wFkfV4\n9OhRYM8YPvzB8fFxKKsPxgsoDY3fxQ4Gg0ZbcCR1Pp9z9pnpkCL83JTmQoVdOD09bfTL2D38GOj1\nekntJo9L/KbqX2ly1HOVzk6Vm9kWFcLAa3jUM9W45OCgzAAyixW73/cF3w/YnT4VGNOHOgCUED8F\npaVilp/7tqqvVH47ZpVUTkt8i/C9K2VVY7nxUnNuKtgo9xOA64Wf5ecn1vqtwwJeyUIKH+GDg4Mw\nuWCREBOseU++drsdJlOO4KzgE7GORqNQ0bEULQAajD9e/li32w1lwcdua2urKGlxv9+369evrxzj\nRJzojJzclhMkl0Z1fvz4sZmtLoaAmKkG1wA8MLgzoj25jfykwIsm7qBYIPMHUS08PH0bi8KsJigV\naRfg+FVoY7QhA/XMdDXXGSeXjT1jOByGSQYL25cvX4Z3V5HmGWqTgH6H8vGiHfe5ceNGw5SsJqCY\nJyw7FgDeC8isaVZrt9uNTcRsNrNr166Z2bl5qdfryXGItubzUb/37t0zs2adoD5SkzgvaLgd/Htw\nW3N9pSh/9B3lERuLfcYeoTjPT/p8LWcuSH0w1MIntliOgb1eS5IXc5n5Wn6WX/jk0tDkBNJ8H/z7\nfSymUuZtNkcpYbkS1/s50wuk1fhSmyC/QFVxuubzuWybEqh+H/sW4blsSldmt3VNmCo+FHsLp9pG\n9R1fnnVRTXsVFRUVFRUVFRviShipkjxyZuer2P39/UbcmMViEXZ9avfJ4kovUOXIvGrngl3lcDgM\n9wHbwrsJpgA9nb5YLJJ5BHHecDgMu2Ksjr/66quwO00J1jnSuP/dTIthvfgXUCJD1BtYI2YXeOfg\nTWfz+bwh5uc2Ynd2lIsjfad2CSmqW+1mYqEYPGLRrj17cvv2bfvss89Wztvf319hEwCYRr/66isz\n07tGs1UnCLNVQTazcyqHlh9Lw+FQsrceXC/sOKDgr2exsRJ9os05Jlgqfx3H/2JTNfob6pEF0rGd\nqwq34M/l8qvxo8SwPC5SLFDKjD8ajUK74vx+vx9CnDBb4HfUzBp78XLsXRXblnIRjzFIqXhZfA/l\nSKHOU4LxXFwjfy2g5gMlSv8+kAvj4McCg8sMsEPIcrlsjE8l8C+VD3Q6nQZzxRH6lRksFwrFn8cJ\nvtmpI9dvUygRgCvpQYx98u/BJlbfbilURqqioqKioqKiYkNcqdg8p0/C6joXxRhgUS0LbaFf4eCF\nancF3RL+bbfbYUWtxNAsqvSrWBXegAF377t374b3hCbpyZMnjRV6p9MJ7AiCjj548CDUDXRPd+/e\nDc/+8MMPk2UA+v1+Y4XPdanenXf+KD/YLt5Rqxx+YExYG8OBAr2Og7U7XC8lmg0WPKu8egwfoV3l\nFOOdJs7nXSDXEXIVgpHisBAc3R/lYQG1DzOB6xlK03R0dLQS3BT381oK3s1yu6k69WwrR8fn8/zu\nLpZ/zdc/16kKR8B9B2MYrOD169dXgtb6HTq71vuAm2bnLFxMM1ISSFDtpnu9XqPPqqj9k8mk2M3a\nB7TNgZko9QyvS4mxAtBwYl7hd2P4HTxrfJQAna8rFVKrMnv9T2nwSsWCravR8c/1UbMVM6UcIFQZ\nfDgF3z+vX78e3l19b1LPiDnZKKapNMq+Z8yYnVWOD+oZqf6pGNMYUqJ5QLGZqi+WaKauZCGFgckT\nICqt3+83zELsnYRJf7lcNoSgw+EwfJCxwHj58mX4sOBD+uLFi1A5+M3svCPg4z6ZTIpEkMoLiCNq\nK2AhdefOHXvvvffM7DwJstl5x8LH+M6dO6G+MGhevHgRyo/F4unpaZjklGj6yZMnDU+/09PTUL9s\n4lMLj1RiYpWskidzb2rgjo37KTH3bDYLf/Nix0+EPIGyByHaGn0ntpDy97tx40ZYjOBa1UYqdY7/\n218D8EJKxdoBOIYSwMJt9lz17X56eppMDYG6Oj4+TqbRyVHc3tul3+83PHlYcA+Mx+NGFHj2omOT\nHsYo7hFrS/6g+QlUmXFjEzQLu81W062o8zAPqAjyarFm1mwT1Y9zjiWpxZgyp8QSHqt+7D/SHCkf\niEW9V4u0lPmrRMAd+13dV6HEjJhDqTlSee2peSG2wORr/XVKaqE29cpsyMgtXvyxGPw38Pr1641s\nIRzXj+UaJea+3CKX0775ROCMlIdtjSNVUVFRUVFRUfE940oYKcRIGgwGwUUbO/5utxvYGs435WNT\nLJfLwHCk4kj1er3AKrA7Pxgcjl/DoQbwjBRwba/XC2wRdpAx0SmitePdvvzyy1BmsD0cTgGr4k8/\n/TScx/GE8BvqVFG2ZtqFnFfcysU9F9cE91ArdrBOzH556leZkmKJlFMmJ8WcoUw7OzuhLEpozzke\nObq62Wp/QdswC8jPU2EcELmb2QpfV9xP8PyDg4OVGGr8PmarMbzA1rz55pvh+TAlMrwYlQXXKRNA\nv99v5JtU7Bhfj/N3d3cbO0J+X/TZw8PD4hx0zFiZNRmplMmR20EJqD3rOZvNGuJ1rje+X8opJBdj\nSpkU2fnCbDUvmAr3wWMZ85LKv6ieqUIspHbjMVYtZ6YCPDuqwh+oEAExQbZ/ljIBqjJdBjPF92u3\n26HemJ31zB+XLxcnKhUeQVkFFotmPsIYfB2piPXL5TKMB47bmDLj4t3Z4sTwfWqxWMh4iKUhETAf\ncvw85ZCh7qfiEyrHqxwqI1VRUVFRUVFRsSGuhJHCbptXsfwvdmPY8SGytoePzKwQ2yli14wd7mAw\nWNFp4f6pAHpgztrtdthdg2GLaTegefrRj35kZmdRrLHrZJYMu0noE5gBUO+Ee7DmRrnYo7xmmr3i\nXY53DffCXsDrQ3hnw4wE3gXl6vV6DXaMI5EzwECwXobd7P1vwPHx8UpeMw8VXBP3mEwmoV05iCmu\n4ff2OdTMzvsCs314N6UhA7A7Y4zH4xUtk9lZ2AU8g+ulRMPDehjFPHL4EN8e8/m8SCvX7XYlOwbw\ntZ7hYgaTmTPPenkoHZES7vsdNbMdXC6f35DHDO9sUValS2G9ngo269ur3++H8ax26rgHvyuPM6/r\nUi7dymkmF+E6B880sYu9EvMqjRT/35+nzo+xFSVsxkVDI/jyKR0Y/87MVEro7jVfuCZlDci9byrq\nu+8vHimtLz/fs5gxa4U/j3NQcn9PMXR8LMWOr/vbus5M4dzsGa8AmAR3dnYaUacPDw9DpXLD4jws\nXg4PD8OCQcWOSYGpZExY3W43fKxhfut2u2FS5SjMr7322kqZX7x40ZiYY4sOpHxh+h3voUxF6Dgn\nJyfJgY/GPjo6kg3PMYhU5/YLEDOzt956y8zMPv74YzPTVO18Pg8mVtQRi+/Ze8+bzvhjjjKpWEYc\nC8w/20zHB2PTCMrHH3U2K5mdmaGwWOI+ifvxB9V7hrInCkep98JonlhUbC7g9PS0Ib7m9wRu3rwZ\nFlK5FEEpTxReAPuPg9qkKDMtrjezpLMDn8eLCfQN9i7EWPniiy8a7xAz/fkYb8rUoRYWvGBMTdJM\n/SszswJ7IiqzoP+w8L14gc6LYJTTi/nNrGEWXi6baX7Mmh9XZUbieGN8nu9PKrR36k0AACAASURB\nVD6UMrHFNncliyVuN2VSUs/9vqE8CH35YotJgOtMeYYDsUU9p9Qxi5v7fBR+PkdFTE85TfB3hfuO\nH+vD4TDckxPb4xoeK36Bz32MzfClqWi4rPg35iRhdj6+1bfRo5r2KioqKioqKio2xJUwUoiD1O12\n7euvvzaz89XfYDBYCVNgdpZX64033gjXmJn98Y9/lLnHwAikEieqVejz58/D7hM74YODg3A9WI39\n/f3AFnzyySdmtuoSnwPYLlz7+PHjwHaw+yZMPlih7+7uBnMKflM52XiXzCYiFtAralXdCyEkmG5F\n26AMs9mssRtnc5rKv8fhCLjdzbRZZTabNUw5zO4oChZtdHJyYvfv3zczC2EmuD4Afi6bJTksQwyD\nwSA8m+sx5SLOdesZ1W+//baRf1ExiY8fPy5O1JpKUMzviPNUdO8cfJiJmPkNY0nFvuFr0A4pM6KH\n302aNVkCDokBcIgVZQZnoT3mllSMKWaueEedig+WYlHU+bGkxblQCGY6LAT31xjbof7vz1eiahUP\nKSVAjwnGU3Gk2DTmGa6LmvFKoRi4EuE7g820yrEA6Pf7Yazh26XYJ64jZrhwDR/zTimdTmclT56/\nH0tflIkY9/EZIvy7++TrLGhP1R+HweF6U4nW/d+lfaLEtFcZqYqKioqKioqKDXGlGikOjIkV7mg0\nCqtYnPfw4cOwC2RxLhgL7Fg5TxvvXkt3JXguNBkPHz4MzACCeu7s7IR7s36i5Bm3b98O5cP7cBgH\nsDeKaTs5OVkRxpeAmQ4lJEW9xfQdvAMB/I4/5va8v79vZqtR6b2eg9kHtfNCnU4mk8YOiHVTaseA\nftLtdhts0k9+8pMQ9T0VLbrb7crdM8A6rJTuh495bRbfl3VR0KNBj/fVV181Mqmzfur11183M7OP\nPvpIMkIoF9pF1f3JyUlgHDmkiAdrfbjf4xroGDl8BEPlDASYTXn06JGZnbPMk8kklC+WPw73ZHYp\npZFivZvKoeev5TGvoqfzPfy1/H/MXTxnKVdt1qX48nEYB0YqF2CK3YmJg0vhGYmYWDglQFflY8ZJ\nBRb15/PfKUH7JkjN86y9VYxUSsun7snWg2632zg+mUzCOOZneL0u/4a2Yf0SM06+7Tj4Kj/f6+q4\nDbm9vJNQLNtBKlo/31eFNVAsNICycPgQFe6Dz1+HhQeuZCGFSY7NZCj8y5cvGwLca9euBW83jgmD\nToYJ16wp3r1161aY9JlWLMFisQiLm7ffftvMzj6e//u//2tmq6aJkkF68+ZN+9d//VczO48xtAnW\nFdebrQ5cFbPJn8fiW9T5G2+8EVJzAIqeHw6HMq0P2oY/9LxYApSJxXduFjvzRwyLJnzwHjx4YL/7\n3e9Wrv3www/D9Tww/QKk0+k0PAO3t7cbC0GmtRW4jrAwwX35OiyMOHYTR95HHYAm537Pf+Na5fGl\n+ilHnEd/Z2cIv4jlPoT7cWwpLDBjqZ187DNeFKkPOTs5+A9HzOyUEn/HxNf80TLT46zT6YRncF9L\nLV4UuP6USdR/HJTjzXQ6bTjr+DLE3lFFJ+f4O2rzlIOKMO7LkBJXowxcTn+eMh/5+8QWhP7Zmyys\nUov2fr/fiO7P53HdetO5SgjMYnM2dfF91SKHvUT9eaoMPFa8AJ3LoGJjKUcArnu/EVNmcF68pBY5\nbC7H3MbfEG+C5PvlYqmp39YxC1fTXkVFRUVFRUXFhrjSpMXj8bghKL1x40b4jXcnEHTz7tW7g45G\no7Bqxs663W6vzUQxsDKH6/xsNkvGxknhiy++WDHHfJ9Q9CeLeP1uTbFV165dC4wUh2fArgNMCe+O\n+RloL44z5MWSZs2wAQzsRJ4/fy53DGBSUH6YUMzOTU5Pnz5tmOLa7XbDXNVutxtmqJjpI5WPDvdg\nF3ZOoOvNQrwrUoJsPu6TQqvI28xwqP6Hd+MYZNjV9fv9Rl9Ihdfga3N1lTIjxSh23HudPFh8T7NV\nMwQfQ9/ivuhZSrXb5jZXjg/cTzlGGaDMy5554cTi7GSBa5ih9ZkZ2JySi/RcytKk2B1lsuPrPEMz\nn89XzKSxZ6nwByq8QKx8pQxDKXPl63Q6ncqxkXqnnAA9VZexcvkyxNpXlcvPubE8eEpq4VlRZtYV\nFFuUYhz5d56f1DUpRxCuU98OyjxbgspIVVRUVFRUVFRsiCthpL755pvwt99hdDqdECIA2gjWfzBS\nQlAgdm0pUC6EaUhpL3K4rCBx2L3du3evoYNhdomDKfLKW63WldbC3/vNN9+0P/zhDyu/3bhxI+zM\nWeCN54HNULqFbrfbaDMO3MlAn1DiZ34Pv4vgcAQIVMiuvwCLEdkF2GuZuGxgg1IC4xwmk0loJwjB\nmYVSfYbLjvJ4ETv/rXJoMXCPO3fuNBip3d3dZNgBjoqM/qIYW9ZtoI04QCtrH83O3jsV8oL7eGrX\nq7Qn/Dvvin2f4DLkcs+xlgXXeq1fq9VqsAUc1kIJo3lc+t2zcjNXiPXJTcXXSv+lyh5jUVD3qB/W\nQylGl+/nWVul1/HH/X1yiInkY+fgWYpRTIn7LwpuB+6fnvGL9XvMXzg+nU6LWS/fp9jioHSv/Fwf\n6qDT6cjMGvyesbLExr5yMEnNzRxMeJP2uVLTntn5C+OD9/z587Bo+b6hFhgwDbFIGB91NHqpua7V\natm9e/fMbDVBMToDPvRsvmQBLK7BZPz5558Xv1tuklGdjBP/mpn9+te/btTR8fFxQ2SohI/8wQDU\nIBgOh2HgMM2sBqcaYByp3MxW+lLqYzifzxvpQMzO+wSeyx99jsbtP7hm5wsj9G31keA0OVjEdLvd\nhkmR/1aTDS+gfMLb6XQqRaSA+hD4Z/rfcD0WT9PpNJhVY956Zmf93jsxsHckFgS7u7srJmAznYhY\n1SmXW3kTcawdtQBQIv2c2UB9gPziJrcAUfdSaW24H/s+zX0nhW632/CYXiyaSYHXQUpYzn/7/saL\nK4aqU2924YUUP+uyFiu5Mq1zXqlJMbbhLjGn8t8sBPdjgNP3pOKYLZfLRhaDmPBdOQRh3uFvpP9O\nsHyAx7pfcLEXIM9j6tvlF+s8jjjyO8aKirLvx1sK1bRXUVFRUVFRUbEhrpyRumx4t/ZWq1UcLkCt\nbL1w9/79+2GVq8xMDC9UffbsWRC+I5wD2B4+/4033miwJrwr2ETsjpU8RxpP7XaHw2FgNPg9cRwr\n/sPDw8ZORpkMmV3CO6vEzs+fP2/EfRoMBo38YcoE2Ov1ApugHAxUMk3enYCJ4l2RZ2nUrpJNgMwG\n+Gt5l6UYJ9VPFeuBf2Psg2LcUgJ+L2JmnJ6eNhgargMWu6OPob+o+Frcj7nPefZmMpk0coYxmNVg\nNgNscU6k78vA4HxfSniqYugAPO+k4khxP2CWwOxsbPm+oNqaWQVgNpvJmGaeuWITay4CumfgVJ3F\n6ta73fP1m0TPT+GyTWeMV8VwlT4r9nxlvksxV9yHUqJ0vkeJnEWVbz6fS2uNP/f09FRmL1Bzm/9m\n8Njn+QJ9S7HsqdAniuEq6Z+VkaqoqKioqKio2BCt73OlDXQ6naXZZjsR6E729/cbgcfm83nQF6nc\ncan7LZdLuXrGSpUDh5beG6zTuloqRm6X5YORbW1thTAEo9HI/vjHP5rZqtiXwwAAnnVQjE+/32+4\nVqsyKps8t/Vbb71lZmYff/xx+I1t36lo4ypnE/Daa6812Dp26VdQ9nJmEj2TVxrsjwXI0Alw5GB1\nrWpjrhf/3MFg0NAWxQD9F+p0Nps1njscDuVOjsuPdwOQA/Ozzz6zu3fvmtl5G73//vuNcrAeCvWs\nNF+sReNypvL4sTszoII4KnYk1rc92AUfKA3BoFyrY6yiYpU8OAjqZUDVSy7SM9cfkGKuNhF/XwZi\nTgceKjyD0mZdJdgRoUQPZ9bUXynNaqyOlLbUByPNBQxl+G8Nj4GUjpXnXiVez9WFyrlZcr5jqaSA\n7UpMexehclmUXgosHNCAs9ksLHIQsfxf/uVf5EIHlY1j68StgeAZzzo8PAzJihXQwNevXw8dCguG\n4XDYEAy/ePEidCL8e3x8nHyPfr/fmHz7/f6KOYOfwb+ZrS6W/G8AL8JUWysxMibio6OjUFYv1jZb\nHSxeHI46iIHpY08lc8Jejp7t62o+nxdHDPeIfZRULBOchwXc9vZ2KAvOG4/HRZ6g7KWIOtvZ2Wmk\ngZnP53KB4s2CXD6uAzwDCymF2WwW+jZfy9HVAbQnC/79+/o6TXksAdxW3pmAn7tcLhuC19ls1kiW\nzeC29H2MF9eoAzbtKS88jAv2qOKI6vibPflK4nT5svp6UfXHHzm/mFTxnHILqZTQ/lUIxkvuF5vr\nSr5ZOceBywZLBZSjj4L3TFbHGOzNrBaWvNBPSQCUXAJ9dzweZ+Ov4R19iquTk5NkahhvNufy+ffE\nM1Ibrxiqaa+ioqKioqKiYkP8nxKbt9vtsIPDzrvb7YYVKCeKxSoT+cA4tpUC7tvr9YpMdNeuXVuJ\nsYN7pKhLFt+iXLzy988dDodhNY5/OVq4Wqlvb2/L/Ed+d83XMpWMnQBMnYoZVILmTqcT6oNZB4SD\nUKY67Fj4GcqNWrnY4lls1sNvp6enK0yU2Wp7cP35XQlHOy+llFXuNrW755hGvp/EzJPKlOVDA/A5\nzN7BFIcEzteuXWuMg93d3cYOjt2VWTyOfoX4b71eTwqKFWOB3Sz6BjMr/G7KvMn9Td3bs6jL5bJR\nv8xscXumWJ0UO2rWNFm2Wq1GLjbe8ftzzbQJk+/rQwns7e0lI8srETnGMuc0VOxoik1iU7GCYkpS\nJu3LZnJKc6gpgfxFQh7wfdT/L2oyVHOPEpv7MAAx05kvj5qf2MlBOdekhOM8BnBcjWsuA7eDCiXj\n5S2tVmtFwuDLyVD5AVWYkRwqI1VRUVFRUVFRsSF+MIwUVrFbW1thBcjMhQK0RyxAxSoXu7Lnz5/L\nFaWKeA6dBlakh4eHduvWLTMz+9nPfmZmWkCr0G635bklwb1SAQ3NzlfgzEhhR3/9+vVwXkzE6oWs\nfB6v9L3Q+vT0NPy2jkYNZVbhCiB45za6efOmmen2h/7m5cuXjXdX7uVbW1vhPkp/o4TOsMM/fvxY\naloA9L8cm4nynZ6eJhku3vn5IHkcGE+FreCdld9Bcp42QEUxjumJlFAVZcG78fXoL7EowT6Exmw2\nKxJN884adTYej1fGVIolTAm8F4tFI3TKZDIJTBMHYVXtgPIr1ot376XiYO4zZqvMEMbHkydPGuxD\njC33QVq5DpgNRpmZvQW4fyihcum7qfttChaHlwrZS4+VskSl2iilMboIRqNRaAfUfUzjo5wWVH/3\nUFkH1L2YWVVzKr5L3333XSgrviXj8XglHynKjvthbdBqtUL/5XdDXaYyHLAwX4UywXhjdmydLCZX\n4rXX7/eXZmeD28cMMluNuwRAMI4YRK1WK0zYmMRS3lklQMP+8pe/NDOzH/3oR8H88Y//+I9mZvZf\n//Vf4fxf/OIX4TpMVGisJ0+e2H//939fqDxm54u73d3d8J6YLBeLRfgYoX64A85ms3AuD3Yv4lbC\nTk4rkqO4vfBUxZGaTqeSKkW9oR+8fPkyLJZg3uQys+kH7cUiaNQ/zBW8eFLmCqaFU9Q0I0X58iSG\nv3lhyNGcca8UdczJXD0NHbt2XZMjNiLD4XBl0QygDdm7DxsVeGDypiH1/JwXGHvKqMWr8trjelEf\ntdL6AFTMtRxSSVL5N8xfnBnAJ+ztdrth7LGDjFq8pKI649j+/v7K4taj1ITFZkkWt+PYZcWDipXv\nIufFyubrfpPF0/f9DVUOP4BKmdTpdBrygk3Kz/0kFUONf/NzJfcTZdpH3z05OUl+Vxg+jRePi9xi\nKFU+nsuprLKTVdNeRUVFRUVFRcWGuBJGqtVqNR7Kq0/sOrHSHI1GYZUIhiVF410WOIlrKop5t9sN\n1CVMAV9++eXaVLcC5zJDfeC35XLZEHb7fFl+93L37t2Qf453rn5lzpHNFdQuX+3A2a3dmxfMznfo\nuM9isWi0La7z13qXed6NsUku5R7LZVVsB+6DY8p1VjEDbIZiurokVhGbXZjRU1HCcR/1jup9UlGv\nt7a2ilgYLt+DBw/MLJ73UQlfU0JvhndhVlG7mTnlnbKKHM6mAi+Wj0WnV04YGH/erOKfu65YWfVJ\nPuadCJgZ4ms9g8hl5HAOOC/mBOF/U0wCm0vXZXUUcuxTKTvlz1exoFRMMPVuMTPduu950fAI3mQ3\nGAyS+ShVWXl8eNZzPB7LWEvoJ+w44hNOj8fj8O3D2BoMBjK3pwc7iXEezpQpUUkelGMLW4q8haU0\nrIUrf2WkKioqKioqKiouE1fCSJnZ1YeHraioqKioqKgoxw8nsjlTnKk4OCl0u92G+JY9lkAzzmaz\naAoKfj6Lg1NxXcw0TQmKM5XehO9TKuxUYfnXWfymhImqXP662HnrxoVhqLQslwFFt5dS8DnR97pg\nM5NCLgWIN28rrzaOGZbyeoulISkF2kvFwwLY4QJlUWWKtZESlgNsylbjSo3h1Hssl83EpBdFqu/D\nfJ1Lcr4uXnvttWCKRZtMJpOi/r69vR36DpxOVJ3s7e01HFZS0oFNUDpuc44KbN5aN+J3CheZGzaZ\nk2LOLP57x2bJ3PulxOFwruB7s4RC1SULu/kcs9U5bd1xxnKeVLzGlBmc73NZ35dc/VbTXkVFRUVF\nRUXFhvjBiM0j5zX+ZhGch3L9VPdjF0fsyth1mgXLJSxVjr0pjWSrVtGbMFMq+nfpjpGf58sT20n5\n8pSyQG+++WbYdXz77bdF5XtVWEc8WuL6m2OkgHa73WCnuK/BiWE2m8m4Wj7XGuffw2/9fj/EvPri\niy+K3lGB4z8pJg2MlMrDx/C7We8gETufx3csKrWqc/wGZmsymVyIkeI4bmZpNtBsNe6Tupd/lxwD\nglAgi8Ui9An0oW63m3QSAXZ2dsL4VlkFcL+9vb3wDJRTxTGL1XtJlPDc2MuxD77M0+m0+JpUWVL3\nuCjLy88zy4cR4HJxnZbOvan4YMDW1lY4b5NQQujnniVlxPJi+jrudruN+IDT6bQ4krsHs3f8d6oN\n2ckil7S4MlIVFRUVFRUVFRviBxPZnFennoWJ7Vj9alyxUVtbW418VLwKVSvzUi1FahegMsPz/Xx0\nZwZrAThQGJCz1/sd1TrgiNq5XF3+ebH/x/DFF18ExiW3gyzdYfryKV3FOsFG1f3VjrVUM+Z/WywW\nYeeGcA6TyST8hvxn9+/fD/2Xd3oc+Tr2vpPJJDBRf/d3f2dmZr/5zW+S5VTvm2NFmQHz5WQXa38/\n1juq8BBcVxfRCXIuQ/8e7A7OwLtwLsDUfKOAeyimiQPB+vJ6cF5DlMVja2uriJFSYUYYKgfZugxM\nao6IgVkA325cLjUPoP36/X5oV84agOOlOdSY6fDu+VwXJYEoY4gxqx4cSkCdy9YW9BPU1dHR0YqO\n2Ewzanx/sK3tdjuMY7ZuqPcC46qihDNSrDG3ude3cXlZN4nzoItutVoNFlWN+U6nk2yndXRxV27a\nUx/7i9DuqajEKokrD7iSj3Wv12sMUo5RwlApIkrQbrfD/XgBpT4EsesBn2qkFDlhJ1BqEtsk7gqj\nVDzIMXb431S5UueVxjIpMe1xUlAup/q44jgmsW63G/o2ynJyciIFuSo+EB83M/vJT35iH3zwQeN9\nfBym2MfWRxPm+sGCsN/vhxRAwK1bt2QKJHyoUnG21FjwH+tSc6rf0PT7fbkAQYoo1MO6qZHMzuvq\n5s2bIYYbm1r8B3ITsxEyG5idL74vMo+yyThmosVxs8sXm5utmmLxLD9H55yAgFLB+EXMjPyM0phg\npRuDTeQa6He7u7uhb6uMBano37G+iPfjNDMqBVjJ5oTnMR7XWMzhvOfPnxd/Q9B/OUmzn7PMVr/h\nsXeskc0rKioqKioqKl4hrty0V+LO2u/3GyvH+Xy+YoIDUiK5XI4vFTnYMxwxZsK7gfLOZt0o7FzO\n3M4Uq2vOWaiSEa+LizI5qWvUM3K7Ix+ZOfZunmlQSXxLy7lcLovrsKQeuM9ydGKUD6JlVQez2azh\nPs9mIXaKwPUqZ2CK1WRmFTR5r9eTYwo7b4jYnz59GuqKI83fuHHDzM6dCY6Pj2U4AFzL/VhF7Ue5\nSpIcx6CS7+ZMylwWP+/k+pV6N44w7sHzXSlgIv/mm29CnbO4PZc/0uzsXf27xdgoTlYNlMwJihla\nLpeSkVSsssoggD6IOlOOK4qN4gj3KRMPszLI4fns2bOGuY+vTfWJmONSSuS+iUgfZf7uu+/CmHvj\njTfM7Izd8fPEyclJo9/FTJjeoUSxY9PpVM75qC+f2xTXmJ3VJcYc/t3b2wtzUY5dVP3cv1u/32+M\ni+Vy2ZDllHw3KiNVUVFRUVFRUbEhrpyRSgEryJiNNrWbVKt6rI57vd5KbrfYeSx4U/fGypV3T/6+\nHiUixNxOg3cGOK9EYLoOlB4hVobS+3k2iXd6uRALQGqnrnZ18/m8wTTmdhhKJJsT2ZfWh2/3k5OT\n0Cew210ulzIYnb9Wib/Nzt8vxT58/vnnQVcDHROzsnCJv3fvXrg3doPc76B3un79ejiO504mk4Yg\n+ujoKGi9eCzguejH/X6/oXdcLs9zSzKrdRk6z9FoJNkXH/6Ehcw5Nsvj6dOngS1CP1bjtpTBbrVa\nDWHx8fHxSm5K/x4pLBaLUOe5EBboqxdBSmNopuvBa2oXi0VgNpmdVX3Cs94qjIMCM4R4FutYuWwp\nbWZuDklpeGPlU/WhgHJz+cEqYnzl+gg7k/jvXex74cePYiRPT08DM8T5U/15L168COehnx4eHjbq\njdsV35ytra1GsNHJZLLyDQc2seT8oBdSKeToUT7uFy+5iSrnrea9ABV6vV4jVtV4PG6YntRA4oSN\naFSOfaUSipZ6R6yDEo/FGNQE4M1zF7mfEgxzLDD20El98HIiw9IF0rofc74vygch8/b29oqXmyqX\nR8xEZLbaTznJKOK+8D18f3r48GHoi1h4TSaTsNDjhReu4clQmSn9xN1ut8M1/FHkxMRmZ22K52GB\ndtF4Pqij7e3tINIGhsNh48PIgvzUc1W5Xr58aW+//baZnZufVLvlEs8C7HWE+8xmM7n4SQnGFVIb\nvW63u9EYNlt9X9xjOp02ypfbUHF7wMyb855jDz5/nmpfP7+YpRNaczJf1Yaxud4fZzE5v1PKC5sX\nEyWi+sViIRfx7D3vn5v77pXMr2qOMTvffOHf0Wi0kqwc//rzeAzwvzjOC2C8ExZhx8fHocyIzTYc\nDsPYxHuWeL9X015FRUVFRUVFxYb4k2GkSilMgFfWMQGhWXpX2ev1ZAyLlDBasQApoSrT2vwMv+qP\nMXDKFdbvqDZBzkX3IgyN2tUp016KDeLypUxxzFKpsqlnsClwXTflUihmDWA2hlESf8Xfx2zVDZnH\ngrpGjRVcC/Hy7du3Q3uBDWAhfS7Gjn8+mzKZzfK74263m4wtcxEoxkZFCVfhKhRibDB2yrn+BBMg\nTKwx5spHfzbT81JpKJMSts1Fel4LpXMISzdy9wF47mWnJL4n/6Zy1anx+PLly8a8vr29HcybX331\nVTgXbAeHyVAMjH9Gu91umIz9eUpor1hKfz5/x3h+9AwYs0V8D5zHITu8wD4XLgdOIjFmzTu05JxJ\nmCVDf2fTLsfVMzvrz3gPfhZ+Q3s9f/48tKFnxJLlyZ5RUVFRUVFRUVEh8YNkpDj/HaDYB+9CrMIV\n8G9YUU+n00agSrXDmU6n4RqI3FRE4G63G46nAoHmWA8OcpbSNJQyNRfBOuzTuuDdBHYqLK4uYX9S\nOzV/bYqRKhWMX3YdAIvFouGC2+l0JKuwabli/eHhw4dmZvbOO++Ymdm7774bjjFT6HfU33zzTWPn\nymDtiHLp5sjCeIZnEDiSc04UvEkEfwBj+eTkJLA72IEeHR01WLH5fF7ESClHgFarZV9++aWZrebL\nU8g5rfjnYL4YDAYbB57kXGuYg9vtdmO+y81PseeZrc7HqZ1+7B1S9cHsiApyC0sC2A51r8FgEFhI\n7rO+DiaTidQK+fm/NBAol38T8Lso8bWyoqCN0Q/UuFXM6nw+Dw4NzAax5hHn+XHd7/fD36wDRvgO\nzv+YChTK5fT9WH1n18EmeQZ/kAupUq8VFY8EYPOWpzBjEVcBfNgmk8nKxG529rHD3+iIo9HIHj16\nFL2filujjuU8ZZRA0X/QYp5cOajI3Oui1PzFAtlUGXNePaXwC9WY+VAJI/2H9DIWqR4+mvh4PE6a\nj3Peh37hw30CC1eOJvz555+bmdmdO3dWFhZ4lhqPqZQKeJ/BYNBIL2HWFNWyMBuT2MHBQcOjU3lK\npeqhBNz/UhHhcaz0YzcajYJwXqXMyX0klNemR7fbbYhvt7e3k2YR9LHRaCSfgQ8k2lyVs9PprP2x\nucjHbV1vW+WMwzGNlCMHcHJyEj7qcD5Q84XZucNDKu5cLK1Sar6NvW9q8wLw9y7nAcmOTGarbZ3b\nrPu/+Tw1RlDXynlmZ2en0Y9z87zyDExdU+qUwnWsHNdiqKa9ioqKioqKiooN8YNkpIBUXAqmb5k1\nSDEqvPL2O8zFYhF2Y8otlHd5fnWtkofG3qckzkir1VphwHC+Eigqk+cm7M1lmK5KQxjwe/jcZTH2\nqaR8ObOmMimUiuZflWnP7Ly/sfnYxyozOy83+m6pwwWLQ9GPeYeGNnjx4kVDpHnz5s3ArGCs5ISg\nOL63txd2uamQDerY06dP7dq1ayvlizlcXCTMB+qXY1kpKJFuCnt7e6HeFPORukdpHDm1y+aYRyqO\nGIvJPXPJZrdUzsPZbFZkdrkslI69XOJZz8oMBoOVEAw4B0xUKkTBzs5OI4Exf5OUMxOLtlOx+S7K\neuM++J4tl0v5TfPjjy01OVmFz6iwtbXVcGjp9/tJ6xKeG2NfU5IMhp+zMvw0vgAAIABJREFUOp1O\nQ7jPuUpT+TI3Na9WRqqioqKioqKiYkO0XuVOO/rQVmvth162+zmAXVmr1cpGzfbPz5WptMwpHQ7r\nevz92B4eQ0o0+H1D6X5SAUXVjpBt8urdfH0oMX8sKJxHaSgGfw2esWmdK1fonZ2dRq49zhUWuw/K\noupe/aZ20l7DpdpPjZ+tra2wC0T0dMW2xNqPGTWzuHaSxa1Ks5EC72a9xqbdbgdNGeo5phnzeOut\nt+zjjz9e+U3psSaTSaOfc7uqumE3dLTJvXv3zOw80rzZeeiEmM7Fs62dTieEn8CuPcacK3f6Ulwk\n9+WmephSJlExwKosb7/9djgOjWEpm9HpdBr1p9ojFgKitM7xLhwcel0nAZTXbDVQaIpRUw5hPLY4\nH61ZXi8I9Hq9ZHBlZa0C2u12YOhg7Xnx4oXsJ0DEIiIr/Qdt2kt9IEvBnUiZwVScETQ0T5gpjyke\nBDxJqGvQiHi3yWTSKBcvmlRsES6vfy7jVQijLwLlKck0MM7xsYLM9IJLDVz+sJutToY8EZR4beZM\ni5exuFcTvFqEqWS/4/G4KLJ9zLlC/Yb78OSJ8qlo8dx+PtbO6elpg3aPLepS5txc6o91+zmbVlLm\nRTb3ezNODjlPUh6v3osx1heV9zGi02MB9MEHH4T69fKAXPlarVYws6T69EU3s+rZfnFV6hDC4MjW\nfv7kdCDchuydaHZWV17UzQsf1O2HH34YFtmp/qf6bKlH4jpmJjV+ODYf3p1N2Wrjjj6jTPK8APKb\nidFo1Bgb3F6qXFx2vwHi7zan9MEciPNUTCiOaccLL0gOcE273W58N1VssZJ2qKa9ioqKioqKiooN\n8YNmpGI7ODO9a18ul41dXY425J0Q/la5yZQrpGID1OoV53GMEmXC4P+nqEsVQVqZv0rcZS8TOYam\nRGivGAlmkNT9uB1Kdg/rithL7rPp/UrNFSr+knpfxRbt7u4mTTW5iNCqLJ5VmkwmK/3c7IwxY+G5\nmRaWMtuSMvvwHBArX2n9l7KJPj9kaWiWXPiCFBsYKxMYEJhnmFVgMTHu7eOTeaANAeXQ8n1Bmas8\nY6LYHTbdq3AfDJiZ0YaTySS07507d8xsNUq5si6waUw5XTDjsw4uEkOKoaw4ykzv/wbwfhyj0dcr\nMzmo++Pj4zDuAXbgQF/j7ASc8Ni/P9ezSm6O4zzf8ZxU8r1Q/X2xWDRMjyqvpEdlpCoqKioqKioq\nNsQPmpECmKHJ6aZKVvacvZx3a1gh847aa2lYCMp6Er+jarfbDXdQ3sHwDtzvRHMCT94le8Zs04Cc\nl4GYqNVMa8ZYFMo2chWd3oPrI5epnrUCsfutg8t2fMjp78zO6g9hNjgfncd8Pg/MBfrb4eFhUi+D\nHboSr6uQEtxG/tlm527Xsd07a61wnddmKczn8waLYrZ+Py9x0gDQd8Da5UI/AN4xwIN30Z6dWiwW\n4XlK2M9AO6gAmUrPxTrQEp3Y94FSpw7FSCmrRew9WMyPf/EdYCbKzyetViu0B66NMY4lcw3XfUoD\nuw6UhYPHhXe44e+Osqxw3/H1yqwN1zXGu3p3zDGLxaLRL9vtdiOkCzuOcLn8+ON5CGOF5yzFPvHc\n6p+xXDaDqpbgShZSKQ84/p0rocRLhDsHTxioYKaK/QeDB2kq7svp6Wmj/KrR5/N5+Hh5KhNl4H/V\nu3AdzGazhgfEbDa7tKStlw1Py6uYIvzBgGkiF3UeUB9zNs/iuevEjPJlZ7Mb30MtckqSYOe801JC\n6tFoFCYRtYDie+A8lbBTASYPVX/L5VK+m48js1wuQ1tiEaHinPE4UyYbjvui6vIy4hetswBOeQml\noLxsOa6WiuvD16pNhBK8Iwo3PMcYqcTXpWZws6aDTG4hum7kfX5fJVvg+/p77u/vh0VkziMV40Yt\nHFSyeWC5XIbfYQIcjUb29ddfy/fDNTHMZrNkHXG/KfEu9teqBYg3f3a73cb8ube310g51G63w/jH\nIvL4+DjpLZx7dw/2ouY5klOmcZn8tUDKLMye0K9i41BNexUVFRUVFRUVG+JKGClFx/IOTK2oAWap\nVFwlv3tid9bUqn65XNobb7xhZue7xcePHzdiaCyXyyCc5YjPXlS3WCwaK+herxfux3FpFF3tV825\nOFf8DNyPxX+XbY4qFZYDaqe3WCwaAtAY4+BZkdFoFOqQdxYlu4xcTJmUGF0xKlyuFJbLpdwp+/6u\nyjcej+3+/ftmZiHxLbN3HG9MJbzFvZUAGTt65Ta+XC5DG+Eeh4eHDXdwJfBUEaGVKVuBj6XYvnWS\nwm4CPLsk952/DuMf88WtW7fso48+WjlPhYC4ceNGiAHFUCwWzLiIxs1Q/Wnduup0OtKxIGVO9XOm\n2apcQplTgFSfUGXnsnA5UVYwduz4ELuP2Rk7i/Gg4n7h3fb390PMrk36n5+nNkk2HzN1poTW/nqz\n8/K/ePGiIRVptVqh3vDvzs6OdHxAu0J6sLe3F1hA1Z8ZaC+Mt1jmEoCtPSoau7IQpQBG0mw1TpvZ\n2XjMoTJSFRUVFRUVFRUb4ko1UmarjIuZziytdtYxKDtqKmo2hLHHx8f22WefmZkFZip2LVzJOUt4\nSZRW3ikB7NbOK2qVB8uDXUkBZupUsLJNdj4Km+iNVHuqnbSvD6Wb2tvbk8Jff22MffJlKc0Ozlog\nFSYjFRiTmUZmWbyuj5lV3vGBkcCO7/T0VLI1KQYn5crLDhIM9HfkvuNdO7MAXu82HA4bLErp7l0J\nX/m5fB6CUr4KbDpWuB5R/ty7g3Hc398PkeBTGI1GoX+wFkTp0jYF64NyAYoB1YfU3MYshHfMiZXF\ngx2C+P74Tc0vKag50+z83T/55BMzO9NK+XHL+kmGmt/9HBJrI58TltHv95MC75TVgDW3yrkKUP3/\n8PBQfq+9FeXrr79u6JO5LGC6u91umGNKdZEc+d9rqZiV43kZf7PgnllWlAXA3FXCRl9pipjSj3rO\nU487m0oHUgpv9rh7925SUHjr1i0zO0t/oZ6DhsN9eZByg/mPa6vVaiwIOTotX+cHM99PeTvmzFr+\nmWblcZ9y8G2iYoCUtuHt27fDJJmKkB2LPePFvMq7L/Z+Je+uhOpqsba1tRXqQE0Yqg7YeyslUFfA\ntX/2Z39m77777sqxWN9Q5kg/Vra3txsCVDX537p1ayWNiUfKI9HsfOODsnhnAhxPiWFzyDkOrJvW\nCFALS8Zf/dVfmZnZkydPwgcbUJuJ69ev28HBgZmdRdpeB4PBYKN0IR68QUul8uGPNT6gytMQ6PV6\nK3GGgFRiefYk83HJVJn29vaSH8ncAkmd79u9dEzx3MD9L5U4WQmoY0j1WbRHp9MpWjSoeUy9+8HB\nQWgvyBF4XuTYUhxZ3qw8g4ACe9GreuEFl990qAV/p9PhsSJXvNW0V1FRUVFRUVGxIX7QSYtV3huO\n7ozj6+6stra2GoJcvh92L6puFIPw+uuv26NHj1Z+U8lymVEqjZCc2x2Xir43ofdLWacUC6TuoaLJ\nc5gEJR70O9FYmAS1g/NlUDsWxUKV7jBjsZbAFnz77bfRspid7wgBxVzG2t+bCDg2SmpXt7+/H9if\nL774onH89ddfN7Mzet7H+opFHYeoGsJS1UY7Ozvh3fGeiqnZ398PdL/qLwCzBcvlMpgfcS2jJERF\nDJftrKHw9ttvm5nZxx9/3HjO7u5ug6Xb29sLfYfjICl4BiTHxpSilJHiNuS8mvwvY3t7O/QJ7m+Y\nB3CNehYzJjh/a2srMNgQSs/nc/vlL39pZucM6Oeffx4kA8zip8YU96tN+0kJC+5ZExUqgEMJAFy/\nnEsvF3ohBR+ep9Vq5t/LAXnzbt68aQ8fPjSz87rsdDpJ5wDgspjVHKg+KiNVUVFRUVFRUXGZuBJG\nqtPpLM3iOdQ2XdUrpmET92h2wcSKG7ujwWBQLB4t0WnFdGLKpp3KNxgTGV6G4DS1W4qVP8dEAesG\nnGNWLxW5WZWJ82CpsAZATrBZwsBxkE4WYXtXXi4n2JSjo6NGIEh+ho9czu8W01Wo9yhhaN555x17\n7733Vq7d2dmRkbtRLg4cee/ePTOzsOM0O98V436TyUQK+NV7Ajh/Nput6BxURHAgNx5TQRlTx8ya\nUccHg0F4Duu1lAYs1Q5geYbDYYNB2t/fD+3K7uVKg4TncvlTzHspuN+vO2+zBgmaO2YmlUOI17Sw\nUJ2v8+FoZrNZeAZHg8dx/La/vx8YDmY1wWyhjabTaVEGhhxU8E3+hqn5sXROvwiLyjqidRlc1hap\nNizNDlCqc07l8WR4/eQ69ZJjpK5kIdVut5dmeQpTgb0F8Pe6H9QYMOlDDJuLooznM+2OCfey6EZ+\n35SADvALx8tYSHFZmMrPlcXDf4yuXbvWiC/CJp1YGczOqHo285np2Excxlw0YbW4Snn8+fubrUZm\nVjGZgNTHczAYNOKq8AeQRbWpeDTe888D1DovitgTtaSsAG9iMGEdHR2F+sCH/NmzZ404Q2wWSonE\nFY3P/V0J/EsxGo1k5HAgt5BS90t9MFQ9A2zq9V5FjBs3boRnoC4nk0m4niPcY1GqYq+lNjFqo8SL\nRnbQWNdzjJ+hFiOq3/nFy2AwKHIsUO/BJkCeQ0o3dxy7LXZ+bg7h9y5dmK07p3N7rUtc5BzCMNaH\nw2EjKj0nMsZcPZ1OQ13judy3faqYWJkVSr9JahOWQzXtVVRUVFRUVFS8Ilyp2FzlBVJMQg45s4ZH\nzg0ZYNMedu+lcUlicYl8/A0VsZx3AbndgqeD+V4q/MEmyO00U6au3O7ORwzO7S5VmIQU86JMuznW\ns3RHqpgwYLlcrpgV/HOVODQWK8bsbNfmTV29Xq+RQwvPQRnMVpkcNT7eeecdM7OVcAgoU7/fl2Ml\n5YaOZ/T7/dCeqo3YRb1E0B67D3ARRmp7e7uRo3A+nzfGq3JDV1AJoBkQlvtI52ZnbuO4NzsqeHCe\nOQ6dgh0++g7XC7dXSpScArNPHK/HC7JzbugMVb/qN89ScQ7P3LjlfmkWj8PG72l2xpyn5n2ey1Mx\nrRRUmWPzbUpszmVR3w6WNfh758rjWSLv4FECmFXNmnM8Z+MotS7x/OTfib8NQMzigPkEz1VrCP6O\nWmWkKioqKioqKiouFz/o8AcMz7yoIGkxd3WsOnkljBUydrYczC/FVvV6vbC6x/NPT0831gfgnmZp\nTRa7tavs1XgWr9Bns1mDASnVpa0TuNOXgZ/DOqESlo3LivNz7vFqF5VzSU4JsnNB7nJaKxzzjBT3\nT5XzLqdpwr25P3O7+2s58J3Kv+ehWJTt7e3AhKUCaeI5/hl+N650Tt1uN5Rf6YoUa8BMnWKQ+Fq/\ny1WBYJlNQH9i7Qa77JcwN4PBQIq5UZfQSCFQIWM4HIb+gfrgOkP793q9oG/D+b1eLzwX1+zs7IS/\neY7BO6G9YmyAYh98f9uECWStHO7NzgJqfihhi7vdbqijVNDPUqgwA2quWS6bee6Yvcuxcql5kdln\nFTi49B2YGeLvhC9fbk5V5VP593I6Y39v1lRtmlVge3tb5m5lETyOoa55HlB6xB+k2Ly1ZmTz2Hkp\nwd66MTLUM27cuBE6BSd2VXS1j6TrTWx4rjcVqAmBvVPWEZard/KJH0uRa5vUwpF/V+fxIPX1piYj\nBSXmjcWWUmVed3EVW4AC/jg/Qy2QcGw4HDbeI9euOW82PxG0Wi3pFQVwnLNUDCBewKUW3pyKwVP2\n/X4//KbaCuWcTCaN/qe8BTlNEnuxcsJu/7HnxQYL9335eQwrkzKXIbVYY5Rs1trtdlhoqdQZyKjw\n7NmzUIdYgGxtbYX3xLV7e3uh3rjspfGc/EeJExnjPVS6KkZqAaRE37wJVOCxivdFWyqnEzWXqbGS\n2+ykEDPnls4rqbmm0+k0vgk8/6T6p0K73Q71xXXuNzkxZ4NUW6OPc1nx22AwCH0Rz+K+zdlAfKww\nRZ5wVHRuy9JNsYJqhyo2r6ioqKioqKh4RfiTNe1xlGO16lTxTZgtWjd+EZvffKTyVquZG68UKVZj\nHcRcXFPCxHXjjFykrMwWcVum3PdTUCaiWHyj3E7PbNUstIl51oMZKd7Z+vvxTpPNsJ6xVGyrqoOc\nSTZlPmSTEotrfVyinDMBjzdlJlPXlIpuU6EuuA0RW+bk5KTBfHU6HRk6JcVs8Dnr9gUlqs9BMVd4\n99u3b5vZqlkQ9TccDkP5wVh2u91wH54PvKmGRcn4bTAYhGs4ej7OQz/ibBEx1gnHfP0xw7Fu9PnY\nnOTjQ3FZS++pTI+ptu/3+w2zm4oqrsqhWM2YwxLPE748vV6v2HEH4PdF/fO1vj74PBV9HogxV8wC\nx65dBz7K+nQ6LbY4+DItl+fxvHCP8XhcGamKioqKioqKileFHwwjlbLxql174t7hGrN8/qMcC7FJ\n4EkzzazEhJsKqZ0ZBxQDYqJpH1Yip9PalIEpga9LDqqqdi653G5AaRT73Lut209Sx5Ur/jp5oVLh\nArj+VB8DVF9j1iWlJ2OGiDVP+K2kHzNLqpipdZ0OcmxQjAVUUOOL83yZXSyormLtFAMbu1Y5D9y5\ncyfcx8zsm2++aVzLzgF499lsJjVZigVUgUeVYw7A7Ihn8nJBMJUjSul8y2VHmXFtjolJaQxj4O9T\nSfnW1VualQd9xfXD4bDxrlzn3imK/y6tX2bjFHLv5JnB7yMv3mAwaGiDVciG2HeFvydmZ+1CfUUy\nUl314/cFNvekJvXYR9Z3lOXyPJw9T5C5yRdQE0uJ4NrFmWjct1Twxl5Piub1FHusTH6h5MuT6kgX\nWUDlBpUXSbJQVIHNEPg7tcDkjz4PJO+ZEau/0n4CqEHK8JHDWVzPda/MVZhw2MSDa1QKEGCxWDQW\nYSoGTc6kzceVGDnnYWh2Np7QTqhzjtek6ozvq8ZUyuSFZ/Lz+N2VswH/xiauGNhcye2lTLalqaQ8\n2OzGiwPUR6rOW61Wo45i3njKw0zNCSWLv+Vy2ZjDc/NLaiPHf3OdqjhNbHL09+DneS9FRm7uwruV\nOu2o83KSAV9+/23y767iYPG7lZpHefzgPXkDXjIvxuI/8qIaz/Lfw1IHI4VWqxmLcjweN+JmqflW\nmdqVPKgo5uRGpa+oqKioqKioqLh60x67JJuV57JaB9iJAOoZaudq1hS5t1rNSORm65shQJdPp9Ns\nCAO+ry8Tfo+5Dft3ipWrNLKw3y3FxOEpk6lipBT7xFDOBgqpnSWzHZ7NXEdsXmL+ZNEi2mY8Hq/t\nlsumKr8z4phmKdNNjJ5XZvBS+JgssbAJyLGXyp+osL29nYwBpBix5XK5srs2i79Tak5g8apnWa5d\nuxaemdqpbiJKBwaDQSPB6unpaahLPF/V+WAwsNdee83MzB49etQoJ5tp/bup8CE5xwI1Z6rQBNwX\nlft+CeOcq1NmdktCF3Aom5TE4FXAz63KGSdWFlXnKv8m1703na7DAqFe2fSo+kmsnPxOXAZmgFNy\nk1y2Ex+xntnR1Pe43W43EqjH+ksVm1dUVFRUVFRUvCJcOSPlwQG2UDYWjKsVqRKq847OvyNrENiG\nWyoEF+9TdE1sVexX1GqnyyLN0vKx5qE0/EFK94XymuW1Y6rOlVZFoTT3XIqtY3dqL25VbtLsMpti\nzNR9WJfGdn9f5ypCeyzvo9I5pcaAYmjQx7k+lN4k51yR0p2l8oyZNfVc/X7fbty4YWZmX3/9deN8\nRkp8y+/G44IjY6eA+UHpjlKC/IODA3v69Gny3psCLMpoNAp1CSZPZTZQdd7pdOzBgwdmZvbixQsz\nO8vXh2uZqVnXgUbNs4odAZitZlYBUE4iuYDKm7CnJWDLiNdccaidXJ35/lc6V8dCHSh2j+vU3z/G\nKvr6XywWDael+XzeiDC+XC7XEuVfFDn2qRT7+/tmZithP1IZSZgRU7lvaZxJRupKFlKdTmf5//9t\niF9zH1ee9EuoSUVN83M2oXRZOGeW90RQg6HUtMNImcFiHTA10aUWNOt4SgLqPVNljS3U1ILWp1tZ\nLpdFgmc8m+/Hk9a6cWuUV4fqO0rQzFHMeZGAQY9jPBEiHhI+ioy9vb3G76XJsnnSVEmV142UzOCN\nEKdeMDtrq/v375vZ+eLq2bNnjXuo9xiNRuEjF4uv4zdhZvlYV2Y6srkyifb7/bU/kqXAAnOxWAQH\nBdU2gIqk3W637d69e2Z23rc/+eSTcBwR02NJeFPjQcWq4zG17nxRYiJn5GLMcfng6IH3mE6nSdlI\nKs5VSbnMVtNCqdQkvFhMEQJqE8DXoHzcF0uBOXMymcjvoprLeDzgucBleOGxI9UmplUf17HUMzjm\nvACvTsxPLKGxatqrqKioqKioqLhc/OBMe2bnK17eJaiVr8pvVyqaBpjuU0JmRYmK91mbYVIrZRbL\nqbxKKZOOSpCqcu3FzJDeXdTfK1XulFAwxdqsI1RXx1L3TolNeSefY8dK2lPtbJRpz+ycdfj222/N\nbFVUffPmTTMze/LkSeO6mAkQsYUgLDZLswrr7rxLzS4KPC7AhLBZ7Fe/+pWZmf3ud7+T5fT9YDab\nBaYBdeH7q2cuzc4E4maa+cKY6/V6K+ZHs7jjS4olBEr7DodTwE54Mplkc/GZnfVjb3Zpt9t29+5d\nMzs3X3700UfhOCeW9dHJzdLvrtgMZpxT4xHt0ul0kmMvZWbu9XqSYUdbl5r9VDYDlnqk+nkpe8PH\nUkwTj1Ufry3GNjELiHunIpEr602v12uEBmi326H9S5Op5+YE75SiQvso5GQw6h5wxpjP541xsbW1\nJeOg+bH38uXLxjEW8FtlpCoqKioqKioqLhdXwkh1u92l2argDeWYTqfFTMimKN0tliInNk/t1ErZ\nLOXqWhIFXu3gShmfkkjauWjiwDo7dF/mWI6yFKsXC3GB8/216j1iQnXfnjFGCkzIuq7/169fDzuq\nVGRzBnZjvKMCYm3k6yqmGfBM7Sau/eizu7u7DX3Om2++GZgqVX6OXI2dcowd8WEDzHQAU79r39ra\nKs7T6AOtKuT6O+ssvf7z9PQ0OaY4sKQSxkKDBkbj2bNnDWZ2a2sr1CH3z5SzhooInmKkYmLzi4Qa\nKNEb9fv90KfxjrPZbGNmtUQIzs82W51/PNufC6VycHBgZmc6tlRQ01brPPgqsydo69LQKqij0tx8\nCrksFSXXm6W/NYxUtoCdnR3JWJdEWVdt7axBPxyxea/XCwspXwlqkt7f3w8TLM6PCS0V9adMgJ5u\nvWh6kU0RW0hh8sc7xsqWit8R89orEYLHvLDWRcrUynWpFnxKbM50dGqCYqwrKFeTYYn3ntmqecGn\nrhiPx7I+fPlu3rwZzHt4b048m8JoNAofOo5wnfK8K03gzWXPbQ7MzurFLzqUV5HZubkM56lJdH9/\nXy5Kuc6ViVqZVnz075jpVPUFb+qITb4lm6t+v98wz8RMiqhX9gxT9QTTHu53cnISysL3xkIf/WUy\nmTT6NKc14uf6jyab3VQfY8C5AqZRjgK/LnjRBMT6WAkua5Ot5rHSuVWlZ+K//ebO/+3nV7URVXXU\n7XaDJILPx3NV0nJ+vv8W8XNjZTUrX/DFxpOPHbe9vR2+n1g3sBmeNy7+2xHzjqX6qKa9ioqKioqK\niorLxA9GbM47SU91x3aSfuXNZhfFduRcoql8jWvV8VTdbRLxm5kJteJPicRjwmIfLTcm7My5iZrF\n6ypVRzmzpVr9A6WmRyAX74WZBNV3gFKGhsvky8p1yqwGfsPOT0Wdns/nwYX94cOH4TiE6thlMTPg\n46Ix1K6dse77KuSewczUrVu3zMzs8ePHjfN4fCuRK+6D3/h9efzz7j/FTqh4VP69+BgzoSkWpdfr\nJeO+cUgM3C8lXjc7byfUCzNNfA6E/WjP7777TprlwAyBuVKmDu7bauzhGRzxHWOP+6diYNHWh4eH\nyXlHOQExlMXBz2cx0xOLx3HsMq0PMbbS1wtbREojm3e73eSYxVg5PT0NbQ08ffo0KYJn9pHZSbOz\nvu1NZ8qqwdISgKUn/n1KsK5ZNhVPEuUxM+l4wfVD11ZGqqKioqKioqLiMtHNn/L9gFftqZ0eVsLM\n+LBoLhUgjFezJcLDmB6mZAUdi4qtXDp5B+fBDE0q1xWHjMCuk+sxJ1pUAm/vHhtjXnxZ1Y5VMU2x\nkA6pHTCLEVEfXG9e3KqCk/q/PXIiRyUsV0D5wdTs7u4GNinlvjudTgMTxWEcEDIBu6zpdBravdSF\nXYF1LrFggGZpd3CVq47HCteZck1mPQ+Ad+LnQ0OF3bYvr9cWKu1IKryJh2onJfD2dZMLL8G795L5\nhLUbSmOoygIW6uTkJNQX2mmxWCSDm/py8t+DwaDxvs+fP29oX5iV5bkLz+Oo/eq5KnSLCnHgQ8Uw\nWD+jNEGxwK4lKNFNlmpbh8Nh6NuqPlRZcwwyO0P4aPwcdgXzSa/XC6woj2cfSibGXHodq6rHXH3E\n+jSOratf4/kE5VMOEMxMK7Y7hysx7Q2Hw6WZ9tBjupIHkF/4cNyN0rhFADf6ZSdJ5ufn4qSocpmd\nTVRoRH4PUPYYUMrDyQPPUfF1+Lkp01AKOa+uFM2roDx9YiZSDHBvUkC5zOKxYkqgFn+xydcvXpbL\nZaN8vlwxxBL2przFsICYzWZyoiuJAt/pdMI7pz6upZ6aOJehkpFyu3kRuNl5fK2XL1+G8isR/nK5\nXIkl4+/Dz/XR6dvt8yS+m5h2NomQb3bWbnhOyguQU2fhWSp1R7fbDSZgNp2hHriuUlBeoHju9evX\ng+cl15mqN1zDY29dE7IyQSlTJc5bLpehHdbdVGwCHtObPk+NKb9A95vTbrcb2gnPG4/HjWTp/X5f\nblRUveIZvEHzfWV7eztccxn1qjboHEeON/RKkoHzvFce/3Z6ehrKXJLQ2qOa9ioqKioqKv4fe2/W\nI1lWXY/vmCPHyqy5qpvupoHGZmiwAYFsS8gPf/0+gR/9CS352baRqecLAAAgAElEQVSEkJENRgKE\noBszQ8/V1TVX5RCZERn/h/Q6uWLfdYYbGdXZwFkvlRV3OtM995y19167ouI54UKdzUsVphWYEmdH\ndb+K7XQ60vyxLEvBKHXSVbm7eKeWWhmnktFubW2FHQartvKK25vJcs7hOWdzdZ4PP42ZKJXJzj8D\nz4lB7fy5fRX173dZh4eHUk7B4zyh0PP5PDAD6KPDw8PGOGdzH+8Q/a5JOaOyOYCBpLXvvPPOQl1i\n9WSUMKbz+TzpqMrne9PzeDwO5gP81ul0GkzZ9vZ2aBcui1cpv3btWnBa53KBvVNq5ix1wHUqZZUU\ny1aids5g9hn1i5lMzBZN2ejDWIDJSy+9tPDbZDKx9957L3pvPJ+ZUFbg9ybF7e3tYGZWsiUMZg7N\nFhmp0m9Pbuz6fithd3CdMgsqWZUcO47zMD5xD5WlQCUMNztjSvi5aCPua25zHh98bRugrEpLbTgc\nBvaP3yWV+9QfY53D3Lzt66YwGo1kBo9l0e12g2YX6nZ8fCzntspIVVRUVFRUVFQ8J3xi5A8YfkXI\nodWl/gtqB8G2Y8UCeftrqVCc2nnP5/NilgusE4d2w/aP8q+trYXysf9MihUbDocNh13eXTF7V8pE\nlDAbMXFDVVZWeEbdSxAThUtJRKBvlG9J6jlm7WUw2HYPP4bJZNLwKSgVFFxfXw/txm3E/kP+mPIj\nAWJsW0nIeanSc7fbbWRkZ58gLldb3xJmalmZGW2uchDys9CW+Hc4HIZyoe25nil/rslk0nr8ArEx\n6+ci9mNMMVLj8di+9KUvmdlZPse7d+9K5tI77LMjuJKZYX8yn7csxkgpKKV51I3npNQcw/6Hylcy\npfRfipy/K8DzAMYizo+F3as5WPnuoF2YxfK+fB5KbJqzXeAc9X1C3+A95HM4GAZlZGaq7RzJzt8q\no0IpuwbfYRbrBaOKMcbjWEmecM5d71/n/MQ+OcrmnCLGa1TE1J8j9zEzHSHBdPSyqrlmZQu3mPYR\np3IwK3dEVVAfvlgKBnb69sdjEXAqGs/TscpJdzabNcyPw+Gw8ZLm7ncelFL/PE6UflXbiSAFXkip\npLkpB1U296m6gY7mSBw84+nTp63p/VRQBEdv8vkl0Zs8JvE3jwtMgD5ljIei2mP0O56t2ggYDodh\nzKKdlYN/bnxioRpLqr4s1tfXQz24TCVOsltbW/blL3/ZzMzeffddMzN7++23G/fgBSjqeHR0lAwO\nUGk51EJKvTMqITub2nEu11FpeJU8gxXucwtzv3HY2NiQ755/HpvVgDbuActot3nzHb+HJaZ2j5RL\nBhZUo9EoLMiZiOAx48t3nlRSDPQh3rPpdNpqE8zo9XqN9uN+wbuA5/DxXq/HbVNNexUVFRUVFRUV\nq8Qn0rQHKAc17GJHo1Gg7bGy5hUwr5RTq3WlI7MMS+JX422S+XrKkTVeVH4zgHdFMadpNlP64zm2\nxVPwMTpYhayncrulEHMALSlzLIwWwDiK1aOtGS+1Y2V2BIiZqH347tHRkWxTz/xdv37d7t69u/CM\n9fX1UM9lQpM5KAHIqcTj/JRZFWYBxT5xf6h68zM988PXcltyzjB2QsY16Du1w1VSIcxE+ICRXq+3\nNCOl2u3GjRvh2WDUSiVbbt26ZZ/5zGfMzOyXv/ylmZ06PCv1b4WSpMCMnGnPs5Nc19R9u91uMFvD\nZMOJh1NJaxXW1tYac6RSQFeIqY5785xyGYklPk+x6Oq7xyw1s1AYE3hf+Dc2L+KefAzPxrWcHzT3\n/WSpCZTZmx6fB3KZPMxOTdaoG2sqek0zzDVmZ8w0M1eoh2PlKyNVUVFRUVFRUbFKXAgjNRqN5maL\nq16WI1BqxUqgMOdo7Z/BzE9qV9dWioGxjNhXSmixLXinMRgMGsxWrL9L2lIJqDJivmI45n9r41CY\nQqrsyneMy3qe8Z9zNvcsIO9O2T/Fj/ft7e0wflToMcC+aIqtUA63qTIz48O7t5JwdRXSzeMPWF9f\nD2Xmeis5EuUwnhLhZd8Ydoz27+La2lr4jesECQOUhZ1XAcUwsC+i2jGnGHEVqHL79u3QZ+zjVeJX\n85WvfCXMJz/4wQ/M7HSMlTpBe6ZB+UMx8Nv29naYo2O+QjjGTssoiwLal7M2+O9ALMdjqs1Tx5Q0\nBtcz1Qfb29tJKQu0wdHRUcNPTNUhVre2Dv6l86xySvfHzfLitW3Fac0W+9jstP1Kyry1tRW+mzFr\nQQmYYfftyjIU9kl0NleTofrwzWYze+GFF8zsrOM4mSuf7zt2e3s7dKiKElLKvMpZO2fa8WCHPI7o\nwfVMC/sPEOvhcAoOUJH47dmzZ41n+5fGv3SlEVdsMklR0rGXVOlf+QksVpYUUjpW6sOsnKCXGfNt\n+5+d67l9/H3W19fDuOQoO39vPo+BZKT46I/H44YqPk/IbZ1cVeSdqkcMKnKQU9yYxWl6/M7RrCmz\nAUdNoZ7KRLi9vS31nnAtnlGqucXmeWViL41IxAJjZ2cnOPiqDWQK3/72t+3OnTtmZvarX/0q/I4N\nHsqS07vKlVnNlUBqjPF8kTIZxaLAFJQ5GOXBsaOjI5k8WG3uUhGr3gyPe6fgg11Go1HjXeZ2YTOs\nN93xfdjcy+VRSbBxHN/Rvb29sABR7ZZre7wrvFH3mxgeE5wWqGSRMxgMwtzBi3/cp9Q1A+Vk0yOb\ndpW2GMAuJlVHqqKioqKioqLiOeFCnc1jTr90nplpc18bsxCcprFSLlUfLnV8NlveRJRjZVI7hG63\nG5zvsavwbIZnpNpIDrRlYRhK6TlF+eZ2Qm0ZJt7t+ufGHKNL2JpShWR2fOY2KzXj4hrsqPf29hq6\nP8z23bp1y8zMPvjgg8A+qBBl3kmWtkGqXZQmELOtqd0991FqXGGMHx0dhb5UZjc2p6qE1inncGbt\nVKLb1LuwtrbWYBj4vNy48mrs3W43mHJL5zgwk9/4xjfspz/9qZmdmQW5LCltsWWgzEzLZKnImQM9\nUkxnLr8iM8W+/My682++DIPBIPQrK5KDyUNQRakkQuw7wHOXZz03NzdDXVPtx6YpNQenAlt4noDz\nv1Jrj7F7PkBqGVY7B38f5WbAcwMn81ZtjneJg7/AEFtlpCoqKioqKioqVotPjPyB8uHxdnj+Te34\n2FchFY7c7XYbsgF8n2UcoM9zLXYEKPt4PA7lwwqeQzqxA3r69GlgfCBAeHx8HMpy9epVe/PNN81M\nC+YBKlQ/FqKLsrKzbsp5s1QdmMu2bN6oTqcjc+2VOj+WnKd2tnw+j1nvLMs2+VRQwuXLl8MOCIyP\n2Rnrk2JCX3/9dfvZz35mZukxye+Z8ofhMvt3Re0+lWPsaDRq+BvxbjHVBkrqgPHiiy+a2SkzxSHO\nXmTw5OSkiBnZ3d0NLAI7Zit2A+DccyoYoATD4bDhW6IU8HN45ZVXzOx0nnjjjTeWKssyYL8flqGI\nQbEx7P+nxuIyATzqO+GZl5gzdyq/qZobOChCzaPqPSx10mZ2DNcoZXP8vbGx0VCd73a7jXoqP8Ht\n7W053pXfH/sS4Vmp+Rrz2MnJSeMZ7AuGssfyJfo1wXg8DgwTyyD5jBl8b2BrayvUAxaCDz74QH7H\nPpHO5oPBIDwUjYCOjr0sXiWcFWgBlQ5mOByGjstpd3gzRMykiBctRY/3er2FCASUBdL1uO+jR49W\nErkWQyrCo602UuyaUoq2NNFt6QK6dDIq1Yfy5Ss1OaiFhVqcqrIMh8PwoeCJ7ebNm2ZmwXGYwUlB\n8XFgTRiMfXZy9RMplxll2t3dZQrbzOLOwSkTETt4YgJF3fj9hilrPB6H+7DjvV8Uz2azRmqX0WgU\nyn9wcCCdYAGOREObsxM++l1pUKVSTp3n/b1y5UqYH84TtQsn4gcPHiQXf6sGjyGlip6ac3H+7du3\nQxtgnIzH48biNBZwkUJpH6nFE4PTAZktF9EN8Lu3TIQ4rt3a2gr1wyYrtglk5W6z03ogGwLK4N99\nDyRDf/fddxvz3draWiPAIxbZ6B3GOR0Qz4+YY3CszUJ61ajO5hUVFRUVFRUVzwmfGNMeh3H63WRO\nv4ju2wi93NzcDCtfrJSZfQKWUYE+j95UDmATsBNaNvmm3/nkGB3ewaWo5pwqMZA7T+1EfFmZ3WnL\nhCltpBgD5+vLzpI5J0n/m9KRykE56IPBfPDggXTs9s9nbSnWqkHdUjv64XDY2FVy2LBy5kyZPLjt\n8X5funRJOqsyg8zPZ+TMqvP5vGF65nsy+5RiKFQ/rALqudeuXQu/MSNQyvLiPAQbKFmY2HX+3jx/\nMvvoAymGw2F4LtpZ5V9UwUSKCb1+/Xp4HvIDbm9vBxblo48+ajwXfZlrH9SHzeVKKykl8cJlZuaq\nJHCk0zlLNt1W8dsrqqMMKtceyj8ajcJ4R5s+ffo0tBebwXzAxvb2dphjWAEf7wFbdlIK+bmxW+ri\nUeI+EAPeYTb7twXrThJTWRmpioqKioqKiopV4kIZqbW1tbAqVbZprGxv3LgRVtLvvfee4VocZ8HN\ntv4KHBLpWR8lzpbbZfG1is3I2eJjuHHjRtjJc5mYeTNrMleekVJ+X74uuK4k75ZXUjdrt/NSuxPl\nsKmuU2UBcIyVigG1s1H92u/3Gw6eqswqh97JyUkI22dfjxKhzatXr4bdonou2lmponMZFNOYExvE\nbtazeP5+HsPhsOG/xGXFtewQziHZ3v9hY2NjQcQvBS6zF9r9uKGYMg6P9+W6dOlSuAZyBTlZGAbu\nDZ+6t956S85FnoVR7NhoNFoQQTbLs6kpH8w28GOW2ZaUTAeH9rf9lsVkUFLgOdHLm8xms0aeOx67\nOL9DQs+ACoCKSSIoQU5/L7Ozb83a2lqYg7g8q/DxAxTTyHVahhGKPcesfV+Px2MpBwMGDuuL6XQa\n2oiZfSr/J8fZnE17mPigUbG/vx8WA6UpP1ImKH7RcihJNXJyciKpX0A9C+VjR2qg1GzJz8G/6+vr\ngVZG2be2tsJL0+v1GhGQsft6B281mY/H4/DB47biCC++h3+GcrBM0eilL3ouiICTFZulF0Uog1m5\nppV6xtHRUTiPzXOs0o26QdGaqXbUHQ6hjx8/biTf5cgZtdjg+pZqZPnoGfxulv+ooh6YlDi1Sw5o\nK5jm9vf3G/UcDodh0cnjhSfr837QY+CIWr/5y2lGQZfm2bNnjfbf2NgIYwImrGVcBV599VUzO11I\nAal5jMcOPizLZBrgoAm/+FILFZ5DclDZLlIbB3wUWQE79S5fvXo1zJUcVZpaxKYiCNX8rr4/59Gx\nwz1xn48TKlH0Mu4tPuKvNHk0AxsHTveGPjk+Pg6/pcy4akEbQ3U2r6ioqKioqKh4TrhQRiqWjBir\nXKVO3HblurW1Fc6FiUflOmIo80DMvGSWVz1P3cOsyaj1+/2wq/cMENdDKTD7MnjWTDFDXAemZf3O\nSOWDUqwSm9243EoXhE1cZotMhNpNKChGUunRsBOxN5Nxsko8T41PpZrL7cwh+34MKOaK24TNs2on\n73dZZukxmNIBOz4+luyD2nGn3rkUA/P48eMFMyTOQ99wDi3PFsbMWynn9pjkRApqfLLDNcqNsjDL\ny1BtxNo5ZtqBfjgcBg04sCOl8gU8FsFI3b17N4zZUkfsHAPic8Wxkj8HBuEdRlspx2BlAsqZ7jEm\nu93uApMbw6VLl4KDND9Lsd9+Hjg4OGjMHZy/Eu/o48eP5RxSAq6bkptR8i8MZuzbspd43s7OThgn\nXG70IQeYeMfyHGuJccXah+xy4plmnit5TDDbaVb+XjDQN6PRKJg6oRfH7Zf71lRGqqKioqKioqLi\nOeFCGKl+vz83W3TOY2dUOs/MTlfR3v9mfX09rJqx89vf35e7dg8O882trrEa5120Z7Nu3rwZVvfs\nw6Fs4z7D/HA4DLt/zgHly98mtyBw5cqV4KCuduop/yBmWTjsvq3gJaCckWN1gq8NdjExnwLl84Sy\ncP8qoU3vVK2c67e2thrO+5ubmzLc2bcLsyM5PwJ/PObknkKprxfqrbKcMwvFAoR+95zzO0T/jUYj\nKXXgoWQSVI7EHNowUuy3iOe1Bd5lZqlYLR4M6N27d5PluHbtmpmdqiqXAH5zx8fHYd6Bz8jBwUEY\ns2q8sTyEfwdiArSp95tZA9+Gg8GgEbK/qu8Ny9yoeytGuvS+PnhGKZLzmGTWFc/ld8kzK1wmNcZz\nTCHut76+3nhvptOpZP7xHH42rgEL1el0wv3asKKpsgJg8g4ODhrngnFEWc1O3y2wijnFdFyDeXmZ\nMYZ7dLvdUCe8K7PZjKVQPjnO5sPhcG522lilar4qUgp/pybazc3NIvXXK1euhKiZHNpO8Ao8OfGC\n0Sz+8sNpGQP/6dOnMnkrwztuxz7mqcmSIw0xiWNglSblVGbEmGm3FOol9kr50+lUqnCnFoR8fxzn\nxV1qgcIq3Eq7yz+LP/68+FOTLqdA8GVXKVhSYNVxjKGdnZ2GmrRK1dLv9xdMITGsr6+H89D2sQWL\nXzzHyuzfOY56LF1IxT4sCugHYDabNRIjczQe+prTPHEb+TQl6+vr9sr/pXf5xS9+kS27mdlnPvMZ\nMzvtNyxUOZVQKpFtadJiZXIC2NzDEWYp80gqopc/pMuoVyvzMYB+5ojE0kWCes/RV3/84x9bl7MU\nMX0qr0d1XmfzktQ7/K7wYsOb4tj8yd+kZYJ5/HlwFdjb25N9DGAc9Hq9UDf+9mPs49/Hjx8X6zNW\n015FRUVFRUVFxXPChcsfqISdHjFzCt3PzE5XjctSunwf/MuhlbHnxY6x6RGr8tI8URsbG8W7p5zD\nu5eIyLEVvEvxStqK7VC/KV0lZt44NFmZWJU+i2/zUj0v5VzPeRrBEBwdHcm2UeOJnam5HfjfyWQS\n/mZzrmdUmGVRLBkzCKWhxn73nzMVshO+YoZSz+VdXsqMx3XD3/j35ORkwbHX7HT8qfdMMSpsolK7\ndM/4dTqdpCmPg018jjWG0onjZ6bmVlx769Yte+mll8zM7Pvf/370fAYYqTt37jQSWcec4VPgdlaB\nPqyxg3856wTu4bNKzGaz5BzJ775il5fNHMGMON7V/f39Rp8rDbfRaNRwQVCBN1wPdsL3ZsbRaNR4\nv81MmuTU3AXwseclf9Dr9RYsB7Fy5VDab211rAaDgXTsP48Olp+3j4+Pw5hBPQ4ODnicVEaqoqKi\noqKiomKVuHBGymN3dzesMOGHw7t2rMLZdyEVdsr+HLxT9zv0k5OTopXtcDhsOL6XSh2Mx+MFZ1SU\nXe1s1aoe18CGPp/PAyuSC5Ut3b2oXYLaGaVYwJjongoX9v4AsXxKJcrcMaTkNBieEVK+XqxYzwKZ\n/p4xfx2/i43tOv15OVV5roO/djqdJhX1cWw2mwX2AUwH+wR5eQCzxXBwLhfO80EkPn8Y39eXiZ2g\nzRb7HMzVZDJZULb2be532DjPv59ra2sNwVMWVV2F+jMDAsRXr14N70rK74bzm0Eu4aOPPjpXnk+v\nws159Rhg5dA+ShaG210xXCmh3xg8c3VyciIDH1QuOxyHX+nDhw8bfbi7uxtC4XPlSPmOsl+kgnr3\nFCuXY3J8PdfX1xdYE9xX+VCm7pcKHOL+UtYFFiBGW+O8WJCFlz8ozVwwn8/l2Gkrl8MBZOgzXl+o\n9s/5SF3IQqrb7QYdKTQCT8QqokY5K7KTotkilZxz3FaDCAMex7a3t8PggBMuUtTweaPRKHx44Iw9\nHA6DqWOZyc472nkn4BQw0T59+lSm+vDPUBFrZtpBtMQxvtPphL7hRJdeF+bw8DA5yaTMeLxYK40m\nwwvJ2lcoP3+48ZGLmapYqRzwk+B8Pl+IJm2DmM6MStmjooR8fTkaB2Y8Hp8M9Dk+nqWJe3MfJe5T\n73AdAy/YzOKJtIE2UXtsvgfUB+N5AeN+MBgUB9ykwKZ7pUOkPtIqSbe/lts09YFhs1au/UpMP7EI\nwlViOBw2vhdqHmI9sZwLQglU6jH+qLNuk1okcpnxLnHkrQqGUNemEo+31U1UePnll8P3C3PDhx9+\nGObcGzdumNmpeRvPxpxwcHAQ1gTLBCT5hd5sNity9+n1emHe5AUalaGa9ioqKioqKioqVokLYaTM\n7EIeWlFRUVFRUVGxJCojVVFRUVFRUVGxSvTzp6weqwrbLBHG/Dhs7f55ZnGhSu+8qhwZWV23lDGM\ntUXK2bytGvZ0OpX18rm4Yo7qnEsO8KJwSq4g138cEu+Vu3OyAUregB3blYO68h3zod8c0PBJgMoz\ntko2+rzvWUlf58q8TK69jwOr8Ln6uOcxICfwmgtmUZInJbIQ53Xub9vmsaAPAD5tmCdKxSR5DlFO\n4MuMjZyDP7CsfEQOq547FDjATNWj1C821a+5d4qfm6vvhSykVgW1gPIvYqnmznA4bO3UpgZv6kNV\nqu6am0SUSvgyKutcHj9RMJSzKS9AfOJHs+YCiTVAAKUPptpSlQX3NFt05oYOEvelj66MRfoA7ISp\nor78R6PT6RRHoKwCuUnfQ0VCtvkQlEz255lYY5EySlF7Ffg4PgT8jNJ0VCnE9JhUFG2sPKnjsfNj\nc1HpgjU1lyn19JxeU2mKKo4mKwFv3tR8p9T91cbR36/T6WTrhOemUjFxNF6q/LEy+DpxFGjbccnP\nOs/CNxUNrrQDGakk7dxu3L6p7zHfw3/PSsZ6Ne1VVFRUVFRUVCyJTzQjlVqRcsJG1kEpWf2bNc0z\ns9nM/u7v/s7MyhWGUxo/vJNXFOwyNG8qDFmBQ7sZahfhc4UxVG4n3un5EPzRaNQIx+92u0EuACG7\nz549kxpPnsqNta/fbe7s7IQwWzwD5eH6solS1ZflNxTDpNo/pdO0KqhdbAmtHWMSY/dN/R1DSgMr\nV75VjfdStGGjlO5X2/aIsUklZSllBp9H+6dQco1i5WazWdacjvP8s0rNm1/84hftzTffjJbF/87P\nKB1rrGmVwnA4bMwJylzK91JMSM6EBeR06fid8uVnnUM+5tkdbkvUQ7Heuf7KjWO+T6w+6j3rdDqN\nhNzMeqbasfQ8jwsX5Pw4NFtWCdVJMZTQnqy/wmhLwccmek+Zdjqd1ronqYSjN2/etDt37iz8ppLL\nckJcn3rGbNEU6LVRuJ2VvZwF3tA37IcFHyos7tSkxPR3LqGtT5LK16Csz8Nfp+RdaWO2WtavIvdR\nAmITn3ruKuaBVbc5Z4LnzUTpB20VJr3ShdQybbqK++V8pBS8jhhfWzo3pcqnFi+5j3ppInqUj012\n50lvo9w0cte2bXO1cMuNz7bjbmtrK8yLLKTtteLU+6NMjwrquxK7X8ofKje21TxG59aovYqKioqK\nioqKVeLCGakSxCJH4FjMyTRL0w8ofP3rXzczs09/+tNmZvYv//IvyfNLIwewUler+06nmUA1Vt9l\nHEb9Kjy2M8NxmKjYNJfa6XHiT7WrQxuNRqMFlXOz+O4Dz8POdX9/X6pcA1CTf/ToUSPp7sbGRqgL\n7yBV8uXSSEn/DLVTOg87smpnaK4vyjQej7PK4qtAyW5WHec2KN3dl7Z5rH1TaZlSTsvqnRoMBmFM\nlPZlaRRtW9Nd7NxVsYD+WalnqHdPvT+5cnJbpRzQVVn5Hr7fYm2Wsi7w3OTVyWMm3tS4itVHmdja\nQj1XJQJXYPNr6l28du2amZ2mMFJ9V8r+lTLwPlCq1DxbOufzd9QqI1VRUVFRUVFRsVpcOCPVVusi\np2mUggq3Rf1zuyJgZ2enwXDkHKRzvlJgVCAFkCsH5wDK9V/p7kWxQIBilVL90OmcyQHkZCj87oT7\ngXdPyNnEORkBZoh8v3IOPX6mb+N+v98Ie1U7Fk4KnGI/P24fKXVM7T5T/m65Z+TO9wmolylz2/nA\n79TPw0gt6+vCuSD5/NS156k7X4trUqHsOS2otliGHVFMD49F3/b8DPbvLG1Lxfz755udvSN4rur7\n+XzeYMRVO+ckDLhsqVyk/N6qebYtI9XGL8nP2/w8f33sGPDaa6/Zb37zm8Z5vs3575QP7MnJSfCv\nzeWnLGVyUxqIjJyP1IUvpM4Dr/HTxuOekxniWtzv1q1bZnY6kD/66KNWZeJB4jvlxo0bIaosFSVn\nlhYhUwOfk/DyS9xGC8Ns8WOCDyOcwrms3rzFiGV4LxGFHA6H4Tw2L/qoOL72+vXrZnaabVx9DP1v\nnPCY718SXbO2ttYwia3atPc8kBIRVQKqqQ98zJTl+7yNY/YqHKifx0KqBFx3DppQSYFTDsqqfKXm\nvk996lNmZvbOO+/Iei27kMo58y5jZsqZvUrKjOf1ej25qPHzhXI25udyX5WYc80sOT8ySt4fdR7r\n2J1nIaXuzdfnNLdKTWxeJzCmSVhiYi19Lp/H6wHlXM/mZfzry6jGHSd4tmraq6ioqKioqKhYLT7R\nOlIAryZ556BWsaUMG3aQ2H2Yna2gEb4ZW6HD/IWd0Gg0ClRjahfz5MkTufpXzJqniJnWZn0otRtb\nRndH6SD5XSdDMU4psxE7padMrGZWxBYNBgPb3t42s1MmymwxJJnP8+VZX19fSEmDsgDKGVL99nFo\nRym0DWvngAYus9rx+/DznOYNMJ1OG89dhklqG26/DKMeuyZ171z5gVh6JLPFditJu2J21l/Hx8dJ\n5/Xd3V0zO2WkPPuwSrNe7Pk5cPv58ZNj6lKh+NPptMFwsZmZdYRU+dX7j28CzxuqzikmStVXsUI8\nZ/r7nEc2wyP1rcS3SJlTlWnS7Gw+RPkPDg4a377RaGRf+tKXzMzsJz/5ycIzzfKmdPXc1Hcq9e6x\nGZzNuJ7Nms1moW4qY0cMlZGqqKioqKioqFgSn0gfKb/rUKqp6rzYsdLdKxzZvDN5DsPhMKyUsUvJ\n5fHJOZYu43Rr1qxjiT2902mKjMbaPCVxgGfEdhgppgcYDoeBuVLOy+ijk5OTcJ+UWKLyh2J2TImD\nljI+3mGU63ORSYt9+dsk5yxFyTWlIniM87AdzHCeB8s43E46lnsAACAASURBVKeY5mXETX1ZcnIV\nn//8583M7Fe/+tXKEv+WoNRfJ1emVUgxcHv7XJ+xMikZlLbSM219eebzecOpO/adUu22jI9UCssE\nObADuC8X0KZ9U5IIpe2bqkduLlKIsHKy0T+Rpj1fwZi5rHRQl5oDfNLi3d3dYMZDtNhkMlmIMEP5\nSpJjDofDhZQ0gBoASr7fU7EpZ8026HSaqVDUB6Hf78t6piKGXnzxRTMze/vtt8Nik7N6Y7EE1fPp\ndLqQQsY/AxPj5cuXQyCAiuhTDuvoL45I5D73L7NyLO/1eqEeSncFmiwXCT8WeBHLFDYnZzbTfa7M\npcuoBKdMYm0mXI9Sh/Y2aHs/NhsAHAWqkPrQK2fuUs0d/3cJllnELPsM9byYSakUPnKRo4vVeYAa\nX7lkuW2hHNs5Yo6hnqeiGEvBqa7a6iuqcnP5Vdt5xfpLly6FtGBArH1TgQCp7zwf53v4Z6gFX6/X\nk8eXGoPFZ1ZUVFRUVFRUVCzgE2naA7DCPTw8TOZgymnjlDyDdzAw90yn05U6ErcJ8y5Bya79PDSw\n3+mpRJe5UHIwTswWoc3ZgZav80yJciI8OTmxK1eumJnZ/fv3G89ntV6MD3bW9WMmx7LA9Dmfz5PS\nDqj30dHRhZiZ1LX8N+rIJk9uHxXU4csQy931vOeSXOg0M2BtcR6JgJhCckrug0PsUwwNoAIuGKs2\n7ZXeo+380uk0c32eZ15Uz+33+413VLkqjEaj0A+Y/9nJOWViK02gnCtzqs9jz1iFae8872ubLBA8\n15stMquslK6sGilTZ+nz+V5+zlfzRS4Qxar8QUVFRUVFRUXFavGJZqTOg9yOSjFRpfDX8m5HraJL\ncwvlUOJA6bHs7qVUpTfm38LMjAdCtSFOaqbDWpXvGOfVU8J5KUFOZQcvFYJTrKdyvlTOox8ncv4m\n/Jt6B5QoINcphtwOva1kQ+yc1PGPm5Hi0OlVOHbzGPLjLcYC4jyw6A8fPlzKmTZVlhSWYaRK2CfF\n2uTOwxwym80aSvPs15Oqd7fblUEzqXrk7rdK5or/zrU5jrPPEDM5Xq1dSQ6U+nKNx+OGKO1oNAo+\nqDyvL/MdS11b6rgPqMwg6nwlbG0RRupPYiF1nsGI683OBhHT5GjAwWAgF0OlWkGpiScXFeEXWm3q\nmxvoq4zwYAXv1CIiFp2IyR7tfHx8nFyUAsqsETN1+MXVV7/6VfvpT3+arVvuI82mwpKXlE1iq0Jb\nM19Kr4sd6bn/Us9QC9fcYm0V9cihbaRkG7PGstFa/K6k+iG2gPMfjNiH++rVq2Zmdu/evcZzGaUK\n6SXHGKucX/zzSxYqsfqWpvsprWcqlch5xnMujZBq35RTdSli70BJ9onzLg69eVtlAVF1Z5PtKuaQ\nNvNANe1VVFRUVFRUVDwnfCLlDzxiq3VlnkmFVgLs4Mn3UDmRFOuhTHVqRc07ZUDt6v39Yqt9Vebn\nySj6tozpq/jyxhK2op6ge1WYstrpTSaThsSBaiOvSWVWnsQ11o4wnbDUAbNO/tmrVCP2KOnrWE4x\nj4ODA2nCUHUDUtIXMTYrpYOTQ4rt4v+3bfMc9Q+Umnn8Nb6cMRMN4M14GxsbDSmWWDlV8m1lii1h\nEHiHvsqgmPMi5ZAdY5zwe86iwMygvx+/02qMlSa89eB3NPWu8jiN5RRcti9i1/lxos7j+V0ps7My\nPAe3mC2a5FKSQcqqcnx8bC+88IKZmb333ntmdtqWOO7lLczKMwgo1lidF0NlpCoqKioqKioqlsSf\nhI8UQ60csQJmv5TULjVmG005KoMRYYGxlB0eZVTPNrOF1XvKUb3tLpDrxk6wbZxB/fNSdnwuf4qF\nKmWGdnZ2gjgndjvMDDIr53dzg8GgIbp59erV4D/CdUvViXdPJQq+Cs/T2fw8YwLIOZHn8iGmdvqr\nYi7a3qdNm5c6t6dC9VPva47dYWxtbZmZ2dOnT81M+6DE/FLYd8+sndO8L39OAkS9M6vwkVLjM+ds\nro6p8uX8+s4jnbNsrs02grYKy7T5MnNG6ny0G8aaGpsbGxsLshIeaL+jo6Oi7zHnTVXlW4VVILY2\nyPlI/UmY9nq9nlwgoXJtBzI7SHMUAzqMqUl0jldoNdO0YWxAmZ1+mP3Chl/wTAcG5JzXlcmToSaP\nlMM4t5U/7/j4uEHzcn8gsTC3n3o+2ojbFAuap0+f2uXLlxfuwwtWtNFoNGpEgsScQtUCCb8pB9/c\nB/fj3JDkzC5+QlGmrOl02jhP1Tf2YfYL2/l8Lj9abcH3e56mJLWw9BMwzwkl9zCzhVQxJR+6brfb\nMG/nXBn4uYhixUKKy5vSqoqVP4XzBPwwfFli8543k7IrA2vc4TcuH4JYcF5sni2dX9X86N8Bvl9q\njo4tRFV75Ex7Jebv+bwZbc3n8Pyt3muFkoWnN0/jGaXfbW5r/0xuZ57T+HyG2hAq9yD1bVD386im\nvYqKioqKioqKJfGJY6RizrJqd8dq02anrAbMQjnWRu00PU1+5coVuar2it/T6TSsYlkp16u1rq2t\nhfxxpaYzhdR5JbtMlBUrfOWkzeq1DK/ZMRqNwn14hwFzRY6Jws4RjNM777wTjvEODPdhHSlv2t3f\n31+ggf092raz2skpjEajsONdZtdeamYqcQDmnSvvolNsZyqZNLOyfFz1ZVtGKseSpMwfSnm9zfNS\n7ZYC71gVe6sYc0A5kXO2gJQMRWwspnI7tnXwj5nTVqnqHStLSb5RhmKLgMFgIPUB/fxups1AKZcM\nBZV1I/euqsAhBc+2xI7nfvNtxGXF37PZrHUCY1V+tPP29rbduXNn4bqUFSQG3JvdSFLX5tqS/8+M\nH+7nrUYlpvLKSFVUVFRUVFRULIkLYaTUbpbt4Wr17FeF/X6/sfMFG2WmHSj5+ew/Yna6IsUu9+bN\nm2ZmjdU07oeVKvLIdTqdwDSpnRB8fTjfHO9OSnd3vt3Y+a6UDRgMBg0/IiWj0Ov1pB3c+0H1+/3G\n/YbDYXCcZeB+169fNzOzu3fvhmNoG3aCZobrxo0bZqZZCWVr//KXv2xmZj/5yU/Cb7yr9Ds8JQTK\n7csO6CpgYBmVXiDHROXOYaidZgzXrl0zs7Nxzn5CqPf6+vrCDh5QYyOVNzHHPqXqqX5LMT8xqLGT\nypuY80Hk/5fs5Le3t0N7qPECdhZzSQ7dbtfefvvtxu/LOt3G2tEzLjnxSIWcU7W/p8rnlnP0B1T5\nLl++HFjtHBOC9+Kjjz4Kvyl/whQwH08mk6i0Qaz8sfst69AfCzry+UFjyuYpdk2xRZgv9vf37etf\n/7qZmf3oRz8Kz8Q1KfFqsyZjfnR0lFRFzwXIqPPUuPNBOMpi43EhC6nU5KWSGjJSVKJSnVYUtVJA\n7na79uTJEzM76yTlgMoLDF64wZTF5jKUkRdQGAg8KaU+eNzpnC7C7LSt/AKq1+stSNt7qMiHk5OT\n5ETB/eXbgyd9paHDgEM5FlD9fj+Y6j744INwHhaofG/0CZtG/HNYrRuRengO14NfZrUAxQeNf+M+\nYodiM5MLjVLkPkC5j0jpx0ttXhCJioUUm8nwL9dNLSa5nD4JsnIO9eVSx9tCfRxymxP/vJgeUVuT\nUwqPHj1aSMTugfE+GAzs1q1bZmZhoaQ01+bzudw4pbTAgFj2AdU3ft5R8xWbSfg3IBdE4H9jM1Op\nQzYwm80aZrwHDx4sBBF5IG3Vo0ePwneA54ZUEIsau7E2ikFtOvgaFbzA851/b/naWJt7LSsFFbmq\nrjk6OgpReEgm/+DBg7CAUuB5IhU9yZvZ1IYVZeJvHNeDSRNVBzPdbxgHKVTTXkVFRUVFRUXFkrhQ\nHamc5hKjVLNDhTiqFXUJmNJjuu/11183s7PdzgcffBCYktTKejQahfuklHIV5bgs0A5gE8x0G/qc\nd2pVz/S4oljR9qVJXNFWZovmSm9CeOWVV+z+/fsL5x0eHgZpBeU8ivocHx832pp3cgyUH2NNmfH4\nvByT5HeJbe/hy1Z6rmcXYxIGygTkWYft7e2wQ2dH/xRKnUjbosTM4IMM1DWxgBa/Y1VO39yWzOS0\nrTO/b5492d7eDjn0fv/735vZKZuLdy33jBIzv5I3UfXNOZZzu5S0qTLjndcsmAJY8L29vWLzK+aY\n1ByhWB4OxffssS+rkt9JmWQ5VD+lDVgaCJB7l1SZ/XO4/Axu89S1mGdv3LgR6o7xzmuDVC7F8Xgs\nn1MSHMBMPZBTwLeIjlRlpCoqKioqKioqlsSFK5unMnLzqtKvfNl/qa1zJV/LuwqskDkn3Hl21z60\nslTd2yztWK5kIbykAcAO0eo47lHiV8GOx57BMtOsodo5sg8UWCWwHmwHx9jY3t6WLAjaSDkvsr/W\nskrPZtrJ1L8zynavfEZKn6ueUcpIxZgGdV5bh9e2z8ghxSrwO9rG70mJ6aVUwtsq73O5uO7enyfm\n5KqcW8HuYmetntuGWW+r1q3qwf1bEjAQk0vJPc8jxuDEzuN5G4ixCiXv92g0CteXjju+R6r9UvdT\n/rgxdgnlZ3FL1E2VIeYT2lYOppQZTPkYclBXKitCzKqREn/me5TOaWosZqRR5KR+IQupbrcbHtr2\n+Sp9R8xR1CM1cecaHwOw0+mEzsNvbIpjh7dUdAKX3ZtM1EvF5WvzAiiK2UM9j5GKlMiViyd1Nl2a\nxaPdcA3ahaNnADYz8uSgtGJS4H5IpSRQ9QV4okopW5dGHanjubQSvjxmOlUGHMxVm5rpiQXOozCv\nxiL52qKtedOsWTfvgOw3YZ1OM6m2cjydzWaNj6rq/5zppO3HaTgcLuj4oEwlH98YfD1yZU4tvGJO\n6UDJ/BKD+mguU9/cxxzAPAbHcg5w8ffy91PP8s9V0eBmZZsNtVBmc94ybc7l84FAucV4LuBCQdWT\n08Bw2UuwChcB1QY8nks3k9W0V1FRUVFRUVHxnHDhpj36Lfyd2wnEsLu7aw8fPjQz7ciu7qHyyGFX\nsbm5GUxP77//frhmmV0TrvPPYHME70T8DiLGGCnVYa63373wbjyl5xXbiaSocL4HrmFzX4py5mMI\n/caOkRkzzrmHa2AqfPLkSTIoIbVjYr0XHh+qjVLjiIMSltmlt4Uqi3c23t3dDfIcrDuE32BSiplB\nS8a7Ggcxs1COGU4dyzmbt21zfl6JGVeVsdSUEGPCUmjrtqDm0RjbkZoHgFwSZOVoXVrG0vNT7h88\nf7KbA2eYMFuU9lDPZVcFnMdMfE66wGyR1eZ5LWeRKIXqw7ZK5KhHzkSdY204eAD/ppj6V155xcxO\nWW1oDGLuVbqDg8EglDkVNJFLZFzSFlyfWMAF9VNlpCoqKioqKioqVokLYaRGo9HcbHGlqVbWOX8n\ntaMqcV5fRpkXWFtbC9er7N9s9y/ZReb8k1Lg3WIs5Nn7L+X8CBg5nyfAs0BKKC62C/QhxuPxODwP\ndWEmL5erqcRHSvk0TadT6eANKPYhtZM/DyMVG4sp/yCFXBi8bz/uD95xpnak7NeTUqLO1S2F0nmA\n/SDaskVtUOK0HDsP4L4pcb5WPh458PkpZqu0fdU1yp8n5yRe8p6VhvGbNfN/cluBdWVRZPzGuTnx\nm8rIwGVOBdQw1Dyb8sdRzJ/PtuC/X5xlg5+rfKhK3gHlE8hI9W+v12vMi7PZLDnelL9WygLAz16G\nuc5ZYFLn53ykLty0B8c/mORiKKES/+/eC+cxeEDzgge/qYkMlC/uF1NWXcZx1oOj0FRaBnZuN8tP\n2uxoy05/JZEKZotmQjy3NDLP14kXuSriAmXa2NgIEXxqcsOzBoNBMOlxYmQVTQiohUVO9yulW5Zq\nx1Iz0zJmodRvakLm39A+0+lUpr8pGRvKRKXSS5ynHv44nq82Rfyu+DbPfRyA3IYmZ5os0eTi8zg4\npfR9bGsSzfWrcilImWeUGZSjimP6RwxVH1WnmElRffhKF6IerJEGxDaBqXqo53E5Vd3wm/qAqwUw\nJx7nBQv+LjURlpoUU2OSvyu5717JOI7Ns6Ubx5Kx3WY8qWPV2byioqKioqKi4jnhwhkpzwjEdkWp\nsE0c6/f7jd1n6Y4UzzFLU+esGZRjM8CAgFGJOZum5AX4fn7VnqPdcX9+Hqs/58xkapetGKlVSE6o\nMqWer2jjnHK8clCNOZ6bLVLrqTB5RoodKcWqzV/qHWAGJuds7E12MR02vjdQogXF9V2G2WV2yuul\n8XuTY6tLFLdzztdty1xqslNl4fG5jLlRHU8FhCinapWbszSwgJ+5ikwOXPYUE+JzZTJ4bCvJm9zz\nc33oy5S6NjYPKNNdLkjIz0XMKjFQZy/Jwc+IWYMANZ8oa0Bbh/vzsPdqHM/n84VxDnjmz7VVZaQq\nKioqKioqKlaJC2Gk+v3+3GwxT45yhsbfSjk65mgNvxmswJXzIB/P+SC0tSmjHqUsWE4+oO0O3Tso\n+t1Lzu8ntzsuES00a4p4qhx6KI+ZdtwvcbhmKOf1mE+O90HLKWADLEaZYqmUP0/pDt2Xtc21pard\npc/g9svJYSifhlI17hLkdvzz+bzBSOXELdvmmYupjitGzY/tWKh2qs39c/i8UnYsJjOifKQA1QYp\nRqrb7SYlFhQUQ8y+QyX+K+p4G4ZTPRcoze/6PN+BUhHUnJ9Y6h3OsZSl30AvpxLrN8/4dLvd8N7i\nt+l0Gp6bkj9g5BT9U5YYHh+q3Dkfqb768XkDHcLJBlMTJDckm3YAfpnxIVVOcoBS0mWVbTYVeuq6\n2+2GwYZrJ5NJo9OV06JZM4pOOVxz2ZXzN09ifqLIDTpF8/P1qYnESeWb2aI5lSPmfH/GBi9/ZPx5\nCsrkAKi6xxbKSKwJZ9PSCVRFleYmGH5uW0drtbFIXZs6v+QZpcdQJx4Pvj9yJgC+V8l5JRG9fnym\n5gG+Dzvzpj7guXKmlO35488bx5QzN9fHP1st/hRimxM1dpQJCFAfc/5/KpVMakGAunioRaw3M8cc\nwUuit9lko9qvdOGj3gGey9sudtkNIxWhZ1YW5BBbJPj78SYb8+PJyUn4jvGYVXOfJy3UHK3eqZOT\nkwZR4gkBX15+V1GWlP5bbMO/ig2eWTXtVVRUVFRUVFQsjQt1NgedZ3bGJvDKcVkFcYZa2f5fGRb+\njYUhL/M8s9P6pFiWnAnLn7dsPyka2JvdOh2d0ymlQ6TqppzmuU0Vw7Uspb65uWnPnj1bqBszjal2\ni5kZvSoxX8tsG3ZrzKgC3I5tnc1LzXg5el7dt8TUkWOGUs68bGbiceD78ryOxUqSA+Cdcso8x2hr\nzs/lwUzlbuTzcmO8JCBkmbZsqx0XMwsCan7hey2jeeXvl0uoft450kPNUynzcKpNlwm7Z6i6lZr2\nUmbrfr8f/i6V3WBLTSrIga/z1/LfKogI8ixPnz6V3wYFxaJ6lkohJ0OBMh0fH1dl84qKioqKioqK\n54UL8ZFicUisCOEk/uzZsyInWXb6ZZE7rESRsf7DDz8M1/AuT+2gUkwUX8tq2DimfJSwm0yJqins\n7OwEtiUVmsy7Yz7Gwp4enU4nMEbKFg+wvZyZKSV4ieNqd4027ff7jeOz2UzeL+UnlVIgVuySGkOD\nwSAcZ/Ystbvi83w9mPVkllWhhE2KOcinxk6KUcmFyat7KKT8a7g+3D6+L2O7y1JWAectwxqXBpik\nfHvatJHyGQMwJ0wmExlwoZT8lZP7eeoGcB1XIUOQYkJyz1Xn8xyn+n9ZPzz+LZURIednF5McMYtb\nI1KBLcziqP7k/2PsxKwAZqf+Tp49j31bU/OC+sbl/CtLfUIx9mM+vP5aFaiA8XR0dCQDELzVJcbE\necuKZ8EVLsS01+1252anhUZSYK8wyxgOhwvmGzOtXG22mNQWWDZBqIoCi8HL3ne73YUIrth5s9ks\nfHyxSLh//37j/jHnu9xA9QOPIyDVgpUXYSVmMkZOa8l/lJSyMIPPT5nTSnWxgLW1tfDioiy8ME/d\nW01KDBUI8HGiTaRUCWKJh4G2pg4VtbNMPRSU43Fp+Usd43NlTY07/ljy4kltJvy4O0/6jpxpN6es\nXrL4ZnNKapOQS27NSJlxUyjdOMRQqqhdAnZBUMmB22xo/EJAzS/r6+uNb5a6H89j/E3y/aAIi2VT\nmgH+PjmdyGWws7NjZmffi9Io+hioDatpr6KioqKioqJilbgQ0x7vEjwjocxVR0dHknr1O6l+v7/A\nRJnFdZr8TuXk5CQ8lyUW2OQYq4eiamMra2VCQxmYiXr11VfNzOydd94JbYD2SDnS5XZOMaoZuwSw\nY3t7e3bz5k0zM7tz546ZLebTwnOU+jezWQy/C3vy5EmjX5U+TL/fb7BFvENXTFSKDVL9pcwk3W63\n0V6sfcZImQZW7QybQsy5vjSPnP8tFq6e2rWnGKlVmI48UtR7zCxT4sha6qheCnY94DlJscopk6iq\nx6rGVttABlXG2DtsFpd7UaxYadv7cimV6tg9YgweIyanoOADVpgdYmY0pfWmJHli+mUoK+Yf9Z1i\nywqex3OYagN2v4HViJk1Ne5UP6hvVUlGhfF4HNpSzbeqP/Dt2tjYCEmqcTyW3UE53Ke+STFURqqi\noqKioqKiYklcqPxBLOM6VtlYFW9sbEi/IX++WXoHonwRSoFV6nw+b6xsz2szBlDfy5cv2wcffLBw\nbDgchuemnJL5PpPJpOEboXYn0+m0sTu4evWq3bt3b+G+pXkL+TzV5uzvdOnSJTOzsIMwSytoK5G5\nWN1juHTp0sLzcP9UP7LDvZeFUP2g/HVwLv+rpATU+TFn3VhAQewafz3KsCyUJAKQc3xmLMvaeSd8\nDtE2yys0p5S+S57ty8y/KX/IXKh87Pmqr8/ju+PvHStTLhNCSv4g9gw48+I3ZnG5/5SPqQrjz+XV\nPC86nU4joCb2XGZy8Hw/FnNMGDuQKwkarvuyY7XX60kZglKkxir72fogDQ7MUs9lRs/7Ravz+/1+\nuIbHKcYYvkNcTrTpdDpdYKxwP5Udg94NOdAvxLQHc5lK0ru1tRUispTJC87kDx8+DL+xSQGDEI3O\nUWzcQF7OXjnamZ01sDLZMLzaOSvaqkmGy+zp/g8++CA8F/dQSsn8MqI+BwcHyYmP24Dvl1ogXb16\n1czM7t27l4wcVOXitsffaPO1tbWwoOHJxk/oMS0whZJFwf7+fqMeSrWdF4RqUafKhJc6Bk+J59J8\npCbcmIM3T7Q45qMKVWQLY5lFVi6CB2UvdbAt+RjGjrEZPBVxpyI9Sz9OuTqpyDvfnsqVQS242CzI\n9Sktc6otl1lI+3Eec+pPZUdQQS7KXM9gs5fZ4nymFsWxhM0p+HZeX18Pc5Z6v7mOfvHH9VWpZJS5\nnL+LqXkvFxWJ5/EGA2UpHeODwSCUC32yu7sriY2S7BS5jTiPoZSbBi+uvKlwPp831haj0agxtniR\ny6mbUmmDYqimvYqKioqKioqKJXGhpj2zs5UlqLj9/X25yr5+/bqZmd29e9fMFndAKXNOTJ8jpf2B\nFa5iKdbX18O12C0oRW21g2Tw7sRTvzk6nZFLVqnyN/FOBdeqsiqlck815xTGVd/gWaPRqJGPUI3H\nNoxUya6ImSYVTMC6ZErfpiRxc8y0p1DCKuRMO6tqP7537H7quDKvL2N6Oo8JkBkagGVI/O9m52Ok\ncmib2UCZcZReTsw0mcKyZtyY+dgzPmon3+v1ku8h3CUmk4lMQK/Kohhd7+S+qv7j56acwxmsho1y\n+rHKEjSpMcfvLTs849ytra3AlDELzSxmrHyTyUSOT+VqAfAYwryJ5x4dHTX6WrGUw+FQftuWfffY\n7Mrm1JTSu2KalMZkxJG+yh9UVFRUVFRUVKwSF8pI8U5erSDh92N2pmSd2xHkRPfwLwtUmp2uZvHs\nElaDEdu1lQiYxcJaS8NyFeDgfXx83HD6Pjw8TIaO8k4wJf2QcgiP1df3sWLeuO6p+8XavCSgIMZS\nelE4Hp/sJ4Z2wTG1u+MxlmJRYj5SivEp9SNS411BOaCW7giXZTja1APjBf/y2FRjYz6fL4zz1PNS\nz82Vn58XQ6wt2dHVLC9rwFilUKR/XuyZOdaTj6UYM2aLvF+KmZ7/fV/yc3P5Ln1d2gjLlji0l7K8\n/Nwc66LqVJrfMPc+puZyQPW1D+Ywy1tM+Fuy7DyBMWKW9qUzO6s7+xV7Vu487wpbWCzCSF3IQurS\npUtzs9NO9Q6Z165dC9FiXDYVKeWdbnlwg8Lke+c++qmEnUDsxfDRQmoRFouyKOmD2EDw7XL79m17\n//33G/fmhSNeAvWR5jbwi5LSMphZQ7Geow5zSUiBZZR0c+YRM22KY6Vf1tRCkAHfF6q5jx49CteD\nEkd9eUI+TwQRX1tyn9gCExsG7vvnbSri8ZJTz/blVIEoufuoyMEclOZRSkuJj6cWnbEFiFJ1Ts0x\n/p64T+xa/o0X1LkAhRIoZ2meC5X5K/UOp5Kcc9AE1x9zEmv8pPqtTZ3wDP9cni9KTehtIzAvX74c\n5o6Yg7xyjE5FM3MAknfI7na7xe4jXG6zxfaFefbw8DCayYCv6fV6Ded1heFwKDcbANdbjW2gdO5V\n43R3d9fMTkkcKms17VVUVFRUVFRUrBIXatrb3t5uSB0wwGpMJpMGq6R2DhsbG2EFyhSmX5XG8qoB\nOcezEjAdXJrEM5WQVyGX943DdvHc3d3dBekILq/Z2Ypc5ati5/WUU6iiwlm7iXeinrVhZ/iUZpTa\nJfJuh8tVsiuK5UFDn7BDvdc1UTR/zLSXMqelzsupbOeQCsjgvvfKzPO5VnVW4zg1ttuyBW2oeGZH\nPCOVM1emGBBfHo9UyHmMRS2RDynVRsq1EctfpHb3pVCO78zk+Od2Ok2F9jb9mmJ11FyZGn+KITRr\nsotq3mO2jecQ/946E5CZLZrBeGyAycGzUpYRXIv/K4kAZttxPMfkcwYP3E8x9T4gKGf+V/2GunMA\nAp+37LjsdDrBbIm2VIFNZs0chSo4hSU72D2kOptXFJsGhgAAIABJREFUVFRUVFRUVDwnXAgjNRqN\n5mZpP5YSwDlPsVBglTqdTnhOyom8dMef21GlmBqzxd2a2WLeIhUyq3bCyibMjENK2fxTn/pUyN8H\ncDgu38/vpObzuWRP1C7c+1cpvyR+LjtDKgZJ7YI8y8JsUWrXtLu7G8qaYv9Go1EYMxhbzOhx32Bn\nw+KqJf46bRSrS5yD+X6pXGY5Z9kUg9RGUb1U1RkoZW8VlOQE79BTkicnJzo/pEe3m85Un3r/+R3g\ndsk5PwPLsuNtggiWaXNc5xmO6XRa5LPI40mdz7I0KX+YVMh7qR9gqWN5LhNCKvdm7P0pZW3ZCV6F\n8uM+KAMzPspfGNjc3AzXcg5czM2YZxWDtIwzN7+rql9hucAxDpTi/sz5VZY8X1kIlMixfZKczTuk\nI4VGUErkTNHBwRd4/Phxo+OGw2FjUWLW1KriYzyx+ReDJ02ljqxMMWpAnMfZ2JfH3xsTj08fg/P9\nwqdNaoBUmg0gNkF73a9Y+UuSQnO9UhNUzGxZep5fmKlUMmoSVB/I4+PjhpkshhIzWZtotxRWYaaL\noUQLJhcFdh6ohZSi9s2amyqVgkmBMxGo90JFGCrTuNes889VEVylC66SD8uqNo5sUvLzSc5xm8vp\nF1Cxhb5/R3kzVpIeKgY11wBqIcqpthioE9p2PB6H82IBSDi/dJ7wJqplkOt/mE6Pjo6i+oy+LCXt\ndl6UzBkqeIqvWcZdopr2KioqKioqKiqeEy4k1x4756ldk89NNBgMFkLNzbSWBe9gwIg8ePAg3E+x\nGGoXk1ML9ytb3hX5cO/YfbBzYSZMtUUqN1rO2TxGf6dCdGGSm81mckfoqeTt7e1AA/MuWpXLO/H1\ner3ARLEpMLXrUCwanvvw4cPGTkntgLlsqRx/CicnJ40d//HxsV27ds3MzD766KNwbgnzonZyKhii\nVP4g5xStkoKq4xzWXuoMnwrZV2XJsW3LyF8AOTOJl13JOZvz/VjjBkjJEKRM8RzQwsA7EjEvJFGi\n5J67V1u2MJccmvX61DV+ruH/87zCTJTZ6TuoLBgp82FKm0lBzY/MRjFL7ufwmPm8bS7AHCOtdJd4\n3Pnz+B1WLCq7PCDoi39T40mxVP58Pp6q23A4bOTI7XR0PtwUUi4I6n2cTqdLsWiVkaqoqKioqKio\nWBIX4iM1GAzmZqcr/ZLduFnakRWYzWZ25coVMztjn/herLILpoePe5+W0WjU2FGcnKRz6Cm03d1x\npmr1DJWjCvC+Xt5WHGM2SsKyvdinv5aZuhJ/BeWXwCG9amfNYpiqH/xzuR6vvvqqmZ2yRsrJ3Ksw\nK2dZZmh4d6p2aCU+DGo31uk0xWZLr2VflbasQxv/pdQ7oMKLl1FM99eW+Ov4XbZytOfjzI7HpDwY\nLBGREhfN+V+kfP0UVFh+m2ADj9wYa+v4zPdjZ2glAXP79m0zO/Of5LB7ZiG9n5gKWPHX4FkxIUyu\nU6mDdC7AgAEWBfdl8VLV3hyk4sdfrL6pQCT+neeuEv8lNSa2t7eTPl7oo8PDQ+mk7bGM4r+6Fn2+\nu7sb2g1zumrfGKObCw4DPpHO5r1eb252WrlUkkRgNBqFBub0HYpOB7jTVZJeABQxRyLwcdXQaoJn\nxVicn1Is5ug9H1WknOVSjrJcD08t+5duY2Mj1IWvZ3l9PE/1TWoS59Q0fhG0tbXVWLx0u80kpGbp\nj4wqE/d7asL7+te/bmZmP/rRjxo6NLwAyUX++QleLTp5EZGauNVvsRQMJR831aarclRPXZtzLF02\nVUTsuYA3FaqPSy4C0WwxgTYfW7YtY87Lfu6IRX/597nUcTemh6bKuYo+UfX1OnB8/OSkmTGBHbe5\nzKp8qTIrs1tqjOfSxpRCma2WScJbEuHIfw8GA5mNwwdNdLvdBTcZM51ah5FKwdPv90O5UurkvV6v\n0Q6z2Uz2oWovNrf5YynE3Gr8gntjYyO8X7mMC9XZvKKioqKioqLiOeHC5Q8USpMGp8xHWN2PRqOw\nAgaL0e12w4pbmXhwLZse25pYzMp2JTENldIdUo4Z4N2Lmc5/xWVQu7rLly+b2anjPrcN/uUQXvyr\nWKVUQuGcKRB9iOezKjqbFlEGLjPKgnKyRgrAzIAafypvFcBmF8g5PH36NGnay/VvaW66FEPD91I0\nvrqmZNwpx12z5jtSqtCdO8b9oRzQlVOtuicQM4l59omZQR5/KiikVK7C4/Lly/bgwYPG78syUjiX\nEbtuFfITXF9+R1COlGlfSZ+k5FA2NzfD75gvTk5O5HfCK36fR44mJqvjnxVjW/xzWQYD2NraCnVT\nDCarq/uMDh6pMmBe7Pf7YWxx3kKe19tgc3Mz9Hvba0vHNuYBXIN/UQ/l+K4sHqp91LepjY5UZaQq\nKioqKioqKpbEhTNSKR8gdtgDwC4cHx+HlTmkDtixlIUggZs3b5qZ2Z07dxrHYv466jzlm8W7DZRF\nOe56Bewc66agHOiYzWIHWe/EGbMZp4Qa0b4ffvihXb161czM7t27F85Tea/UeR5KUV3VczabJZ3I\nAWaGeIfxj//4j2Zm9t3vftfMzG7cuGEffvhh9NpcWdQx35/sr5OTDSj1UXleatfLsp+4j1neoZl3\nz/g7l1+shJn2ciRtRQr5ub5+yq9PibRynVL9qliq2P1K1f0VStlMhbbjietbcg2/89xXsBAwE4U2\nYHmDV155xczM/vjHP0bLPhwOwzyRyvtWqiofc8w/jzxHCV5++WV76623Gr+z9SElDpwK3GgDZveB\n3d1dMztj91UmAp6jWX4h9z6jbr6sMbbdS3qoa9sI0Kq+/kQ6myNqz8waDr5KK2J7ezu8GKWqtTzI\n/YTc7/fDcX6pUw7eypk75bgZ60yvitzpdBqLHFZZZqXskoWej/TwizkVCaKcm3kxBgfv+/fvhwUN\n2uPx48fyRfNtzu2r6Hv10cTLv76+3vigKSn/fr8vF0NeByXWfmpiLPmYxzSDPL3Mx0vfO5VQeJkI\nOPxdmig0tfhrA++0qiKglHOoGqfc5/w+cpTnKhdS6r1g3bSUqTVmtvSmdlbATznG+rKqe8eeq47n\nUpyUIhVBFpvHAKXqrcw3qc0WpwDKzY8l43g4HIaylOhxxYCN5OHhYagzuzsoM7haeKu65xavqQVe\nygy5trbWiPjlTTY21I8ePZIpxbz5M1Y2FfQFIgB9pL7zpdHMOfBizWtW8jzLm+Nq2quoqKioqKio\neE64cNPe88b6+npwIFO7orbImYAU1E4o5XitrmXWg++TY8pSO8YcA+MdxllJHav20WgUjiv2hsui\nwnvRDtiBxHSz8AxOjIpy830927WzsxNU8VOMjmJAFDU9n88XEt3G7hczM5Wa9lJ9w0yc2nV6hpPL\njDrGNGq8Ka5UNy1mKkwlLU4xOoPBIJlrDcfm8/mCg7/S7Mnp2pidtlVKdkPlTVS74xLWyF9bGlyz\nKgkJ3KvU1JGS7GD2TrEJvo953HG9fR7UUukRRlsWj8FK86lxws7raj578cUXzexsPr53754MlFFl\nV3MNA3Mlxmen00m2G9cdYxuYTCahTnh/2KLA3x0VqIL7KSmdZcyI3nVjNBotBC/hXyU9xNqHZovS\nSDwHegsGW5JSciQuOKAyUhUVFRUVFRUVq8SFMFLdbndudmpH5txk/3dM5kTyu43d3d3ANGA1O5/P\nw4q2xIlwBfUIz/CinzFHRr+LQdnNFjOao54pPwa1eo4pmyt2hG3BWJFzPjzfXi+99JK9/fbb0fIw\nPOPG/hIpx032l4Bv05MnTxZ8J8wWd0ApdVpmpBipcHXF8qlwa8Uk4DyWZ1BgO70Xt1OZ5dmXTjEX\nqszKj4h3iSkmRPlSpHxQYjIe6hl+XOX8ofgeaneP40dHR9IvLeUzwmXF38rHQzkoK+HWnB+OKotn\nu84zJ8f8sM4z96VY1JL5xUyryi/j+KxUzPHOMZOoBIYVSgMafB8pdkT53nLOOGbRMD+iHur5nolH\nH7JcgZoTztO+pfDfu16vJ9+bku+w8jH9uNclucCBT6SzOZv2WN/IbDGyjVNx+CSe/PFXExruwQ7I\nuUWV11/he7bt4JiOjHLM5mtSz0ilzOCPAP/mF5a8sCiNOkktVGILX1+XXq8XFkYPHz4M1yP6g38D\nmO7lRZUHL9oU1a0+VOygjrp51fThcNhom5wZR2kaqfO4TUsXOanxoZ6R0lwqHcelJqCY87IfO0oV\nmSPX2Lymyqo0y1I6Ur1eT2oJ+fsx9Z+b/DkCCfVI6RapKFuVPJoTKadMYoCKeuV+yCUCL40CTS3C\n1EKqdCwCObM6R3H769fW1sLYUgvanHNyLCOEKiOXfzQaJR2u8bwrV66EsY3zR6NR6GuVwgzXxtKl\npRavrLWVi97016tv73mgzPhcfoW28x476XNAjf/mdzqdxjqhTSRsdTavqKioqKioqHhOuFDT3tbW\nlmQYFEpCOjkUlp3NlKOo3xnGVqZ+l6BMcVw+7yDHYEd1vi/YFrBuaufFYdeluyiuJ5I5KyYshlIl\ncrAOPvw1BnYoToW7AltbW+He2G2x4zvvYhCiyzpi3kGV9YFUKKz6DYiphPv3qI2mUWn+NeVEHrtH\nDGz68mwmM47cpiUs1jK54HJQ7eLrzs9VbV76PGZFSiUMUoxZzLTP5TJbdIbnepckno6povv+jOXf\nW4XsAreFypjAjK9ZPKm2d17mDAzM8vh5u9/vF0nixN6pVIAB1yf1/WEnZ8zJHJCirvGahkpqY21t\nLdyP3Ud4nGJuw2/KapAbs6tCiQsAA/qDLBGRA9oA38Bnz57J+QvjHOfv7e1Jtkt9t3E/lsGojFRF\nRUVFRUVFxXNCP3/K6oHVXSkbpdgCXu3m8gP533n3qXZjbHP1uzHeYXDeuZjt38zs2rVrZmYLatrY\nUb3wwgv23nvvLTyD/Ui4rdiRGed5QTHelXOZ1E4lx/JxzizUU4lppu7NDIF3Rrx9+3ZSoZh3Nnie\nej7vMLxKtPJzYnFPDg7ALocd/f2OVfmCMLxTvKoPX+vyOJmZZsI4BFf5zbCYq+8PtSON+WsBOR+F\nFEuhdn4phivGLsZkJbhMzEIrxHbFvowqbFzdl5WZ1b35GowdFaqv+p+duUsYgxir5MH5Abm/VN+l\nZBtyDuuKqfVjUY2rfr8vGSGMSxxTzusbGxtJRgqs+traWmDv+B1NXcvfnBS7zPNFyp+UoYIrAOVP\nxN8ihhpbav709+v1euGZubL6+8UkgEqYX2ZHeR7245jPw7dkY2MjzO/q+8NzNe7DmTDQ5vwN8esK\nvp+vfwoX7mwOsJI2R2SYxScJ/5FTVLJyMmPgpdra2mpl9vLwzo39fj9Ql1gw5qJnlKMtOp3pT36h\ncA0PLKUjBZOXj5LE+X4cKKdFnvRT6QdiJkxApY9BmdfX1xuTw8bGRrieF3eqP7/whS+YmdkvfvGL\n8Js3USqF3G63G0yscMaPpbBJBQwAMdOeMn8A3EZqMZLS3FJ6XfzBL03B4ifrTqezYFpD2ZXZzX/4\nlIq5WVoLiPvKtxWPSWV2zplTuczLag6pj0gsHQwW5lxGPBebopgeknfIj6FUg0pBRR+WLpr9nMrv\nVOqbwhFwagOHNuN7cLqXErN6v99vRO1xn8HN4f79++E3jmBGWyqtPNYp82mhdnd3ZdCMfwabADEO\nut1uw4XCm/vwfuG3nZ2dMH7aJgfnZ3O0OMBBSm0jPXlM+o2vWpTm9PD4mP+t3++HuQALs7W1tdAn\nqUAqHjuq/xnVtFdRUVFRUVFR8Zxwobn2Op1Ow/Ewp6R7nh0YwCv93P04v5DZ4uqZnVyV4nIK2F2s\nr69LnSOFEmc+dsg1W0y8aRZXtC7JdcThuGzWjJlAzHTovQobVyGpYPT6/X7Y6aWcQ81OExKbnZlR\nmUFQUgtgRw4ODlpT0+z8XeJsrpgL5WSKcpst7qQVQ+uZGe5/ZkkVq1SqLZTKI5lyXubz+JhnpDY2\nNsJ57Kzr5wZuK2YFVa495VSfCwf3O3QFrlOqj9iJnNsAu34c8zkkgZTcB8OzDsyitg1AUPIROT0s\nzCVXrlyRDG1KeoTHnR/Hin3a2toKx9m9wjOEV65cWWCbfFlUjje2YKjvz87OjpnpuQPjWDHY3OfM\nPvJ8jOejfCjTdDpdkAjBnMdlBZgpS8l9cH19/s3cNxX1mEwmjTbKacEppCSIOEhM3YNZd4xFfC94\nHLLjeEluybW1tdAn/O5VRqqioqKioqKi4jnhQn2kBoNBY2XLu0pmi/wOSK12x+Nxg2Fip2lmcryE\nwGg0auRQ6/f7xQ7x5wHvQPB87/jODqPsx8K7BLOm3INnpMyau0R2xFMifmybV6KgyufB7+5556hE\n4dQ4/OpXv2pmZj/96U8bx3gHxCyL38mz425KLoBFX5k5Y2d0/KYyhisHT7+7Z9kFbh/FAqTahdkY\nJXwKpHaDMcFYgMeB70sVSs5skWINcb/xeBx29aqOiuXh+7366qtmZvb73/++cXxvby/cE887PDxs\n1DMmiVDqKAzk2Gx/nNWplZ8b79BTfjyA8vXK+SfGHJlxnr8mNk68I73yTSuVxIg9w9dtZ2cnvNe5\n8gF4Vx4+fChZFJS7tM9zgTdAyg+w1+s1/KvMrMEQzWaz8O5Np9NGTrxut5v0N4uVG+XDGPQ+yXxe\nzN+oNCuCr5t672ICpegbBGs9e/ZMBk2UIDZOSuUgcozUhS6kYtoeKfBkV0LFm2nFWG82iA1o/yFl\npBR3d3d3Q4QBf+TwN5tGfPnxEprpFzEFduZj0ymo6cePH8t2y0VaAX4RlnNGTH3YedLnly9l1uCB\n7xeRSm04VqZUJGdOXdcvFJQ5hRdXpeA2SH3Uc6lfPDY2NkJZMf54UQcMh8Pw8eLNhx8v3Faqr5TJ\nk/XXUuZv0PNPnz5t9MPly5fD3yg7K/XzApTbz0+WpR9udV5sEabGjP/QqgwNavHiyw+grzkqN/Uh\nSJnBuW6qrYDY9wFZAND2bIpVSI3TmHnbtwvPF9xXPGZwP/VhLinL+vr6grnN7PRdQF+irR48eCDd\nF9AurLbuF7YbGxuhrEoTEP12cnKyEKGNMmAjwgsyFX1WushaFfw7sLm52Uhoz+XJLbL92M6lkil1\nVcB4OTg4SKZY4wAoWixX015FRUVFRUVFxSpxIYyUmV3IQysqKioqKioqlkRlpCoqKioqKioqVokL\nUTZv6zvycaBNDrBPEnLOct6hVLU9q+ayT8ayeZlYEI9zRS2LbrcbfGzYOdTbt1955ZXgc4AcVnt7\new3xS84Yngr5ZWdO+EaYLYp4om64D4tg+mtPTk6KnVpVWdCm8Hd78OBBkQxIv98PTrecgxD+Tegb\npTSslNcHg4F9/vOfNzOzF1980czM/u3f/i1ZBvTL0dFR8COBtMivfvWrxvmj0ci+9rWvmdmZWv2b\nb77ZOG8wGIR7P3nyJOr0bHbmk8E+XrkQbHW81DdzlVDh5ezPoYIXuN9SecaUT1jK34TPYz+rVPg7\n+2v5HHrsK4N6bGxsBL8UvDP8DPgLPX36NPyNehweHoZgA0ie3L17tzFfxAJWgNu3b4fn+gwMV69e\nDU7fOO+jjz4KYwLtd/369TAXAWtrayGYAO177969hkwLB0p1u93wfrKvnxeCzuVp5LaP+YiZnbUv\nzxfLoMRvSY3tra0te+2118zs7Bvy61//Ojtf555ltpiHL+WDzDkUY3I74dzk0T8RrGJi48S4zzNS\nL5WWZRmULlBSHxiVkoTvzQ68ePn4fDjH48N8cnISoo3Os4DiNDPoW57AUX4sLO7fvy91eXw0DI8T\npa/FOizeuZF1mtAGsZfbJ7DOKUdz3fDhQ3LTd955J5QbE/hwOAyLiJgekdlpGiKcxxMjp2PwUNkA\nWG8Gx3/7299Gn8vgiFSUJbWhWltbC+MqpSB/fHxsn/rUp5LP9rpaMQdv5YSsJmVWfTaLR1niA/v+\n+++bWflmTTm5K+0rvldK/dtsMYoZZUl9lEqc8UvOR1nQ5/v7+wtK9Wanuk9vvfXWQj0uXbq0sGEw\n00lpeSGFaw8PD+2FF15YeAaPe36XfRtwQACculEOvpazMqBu6+vroQyYC1XwC+t1+SwEZmeBHuPx\nOLTfjRs35DuulLmxUcEY39vba0Tora+vh+McdYgFA9rtpZdesrfffrvx3FKo8a6yImDhi2/v06dP\n7YMPPjAzC5G6t2/fDuNEAW3BTu6p93d9fT30LdK0Mdp8o6tpr6KioqKioqJiSfxZMFJYdcZUu0vA\nu+znSd2DOv049KkYzC55poTbDDskzrsEdDqdsMMCW9DtdsPOLSfVADobz/jwww8Xdqq4n9/5xnbx\n2NVhpxYzm+F6dZzNCyn2DGWaTCZF2jhcvlxSbexe0Q97e3vheWA19vf3A8vHZkS0KcOr7H/pS1+y\n3/zmN43z0F8w+zHUbgx93ul0wi6VVflhinvnnXfMbJEFYLMq2iVFl/d6vdCvKbZtPB4HnZlSKHV1\nJcXR6/Ua80nOhA4MBoPARH372982M7P//M//LCqfekYuwTDrfoHN9JpVfE1M3T1VBtYb8mNZjRd+\nLsrH16Jtb9y40WAaHj9+HPr15ZdfNjOz3/3ud/LeYG1//vOfh9/AlP7TP/2TmZ0yDsgzyvntfPlZ\nPZ3/xZwFc9Mbb7zRuPaFF14IcyHKh1B7BmeDYCYR9+G6oR/w3WCwaZf/9d+tl156KczbeCf39/ft\nS1/6kpmZvfvuu2a2+C7jvMuXLyf1ssB+Xb16daF/UvBj5+DgILxzbAKGSdSPlxjQVs+ePWswgmru\nf/jwYRgLXkKDUcJMVUaqoqKioqKiomJJ/FkwUlipLuPEzs53fvX/PBip8+QIXAVyPhpYufMKHrsx\nFlUDVLbzfr/fYJWm06nMf+Vt8sfHx0X5CrvdrvTX4jKYnTp74hk4j5lLjBm12zJbdBTn82Ngp3Tv\nC8BsG7cvlwvg3HlmZp/97Gdl+/kxura21vC/yImmqvbDjg6O3rgPysk+ImanzNDf/u3fmplJnwrU\nYzQahWuVbxZweHhof/jDH8ws3jdmp6rHalxymZVjtGdPuSzMIHoBWoZSZFcsbykTpcQZGSqrgBIM\nVv5QnCcR56fUqZU/lPKbS5WPgZ3+tWvXAtOAsXv//n37whe+YGZmv/jFL8IxLw5rdjZPKH8p9Vyw\nVK+99lpgpMCOsbMxGMperyeFTPE8BFkwI4V73Lx5M4wDlJn9q4DpdLogIosyoY3QzoeHh6FcakwM\nBoOG6KZqg7fffrvB7j18+DD4nn3rW98yM7PvfOc7jbHA/omKucT8sLe3F+6d8mOKAfVjSwjGLPKm\nXr58OZtrFSi1+PhMCCn2O4U/mYVUiUf+Mo7NKslo6WInVyYVtVWivH1epKh6/pjjX7NFc5GHWlyx\nwy3MS3iZ9/f3F6JIzE7bAH+jDabTaUNZnhcGmCDZ7KJSazDQ1pxOAefiZRmNRjK9EMqAyWttbS28\nsPiYx54LapgXUgArGqMNuC1xb2Viw0T1yiuvNI51Op3GIoOj+9B+Dx48CJORSl2hVMmR/JkXUuzw\nj3pign769GkoCz5YDFx769Ytufj22Nvbk6ZitBGetbW11YiKYqg5gdv+6tWrZrboPMzpZbyjOv/N\nHzFvOuAxi/7Y3Nxs1J0XQ3gvVCJeVRcenz5tEf/GZeYIPb+AZrV7fj9KP14Ybz4ll9nZGMMC3ezM\nLHRwcBAi1Rj4qHLEHN4/vG+TySQ5nn75y1+amdk///M/23//93+b2VkbvfTSS2GsYnxubGyEsY36\n3rx5M4wxNX+jnm+88Yb9/d//vZmZffe73zUzsw8++CC8I/xe+Lbc2NgI4wTtcu/evdAP/B4CnCII\nY3YymchIafVOYowhGvby5cuh/1Vfo3yXL18O8wkv5PEOpaK9R6NRaF9etGAsokzr6+uNMjx48CBE\n+r700ktmdhrJh+chpdiPf/zjcA3m3m63KzeMqAfmgWVRTXsVFRUVFRUVFUviT46RAlal+cSrZn9P\nzuOlwHpC3rHY/212ulLnBMDPCylm7uTkpOH8zOHb2H1ybjTs/o+PjxuMy3w+DztCZr3Ujho7GqVb\ng/bY3NxsmN3m83myvVDWnZ2dhhwA7yBRJrW7Y+B47Dw8D7uYjY2NUCemwtG+YC76/f7C32anbYE2\nV+H+KWdJhdlsFhhCmBXu3r27wOCkgDIo51aU5fDwMDj4vv7662Z2ugP/zne+kyyX2elu25uNsJs2\nWzTjeIzHY/v0pz9tZmfhys+ePTtXeDbMpSztgTJwDjjF7uJ8xSBxHjyM5xhz4oNbjo6OQvtzklZv\nXt7f329ILPCuO2WeUzv0Z8+eLTitA6WSDT5YR7E3zJhhPtja2pJsgf+NWWO+DyewNjt93zAPgNX8\n3e9+F57ncxbysyaTSXjvwZ595StfCYzUD37wg4XnmJ2xt2+++aYMfODxDXjn5r29vcA64729d+9e\n8v1XSYQ3NzcbJtaTkxM5f+LeqFu32w3zO5hfHsc4n1lw1rECg4RrY64IkCtBHzFbxontP/vZz5rZ\nosQKnODx761bt0L5UZZXX301jAkfWIU2Qj188MU3v/nNMJ9AfoFz38ZQGamKioqKioqKiiXxJ8NI\nPa8M1uyI6oUbSxHbsWFnxjugZZ3NO51Ow/GVHeTbQPl9eHDoNzM+eLbabQDcHtjVDQaDsDv0wpeM\nyWTSUJ1mvx8wIWtra2GHjx0N7N0epQrtpedhd6dE3BieuZhOp6FOvDu+deuWmWnJCQAhyur+jOFw\nGHbA2PXeuXOn4SgcE4fEb9h1XrlyRcpLsLAfritRQe52u8EfBv22sbHR8IdQ5WNhVjASOckNBWZP\nuG/wvBxr7McJtwtnEMB9sJPncHWA2VZmkPAOoEzb29vBzyjn++L9ofgaL7JrtrhD94zg5uam9MNT\nYwdlVs7/LH8BsEikb5ft7e3Gc09OThr+S9fwElbeAAAgAElEQVSuXWu0QbfbbYyL73//+/bNb37T\nzM7kOd55552Gg79yMGd2XjHOYAXffPNN6aysHMBT3xj0AUtFxN5VH5gzGAwajOBwOAysmWIu4ZM1\nmUwa44OtFWBmNjY2AusENmg8Hof+UlYcDlRBG37uc58zs9MxgXYHGziZTAIThT5XrNydO3dCmf/3\nf//XzE6/DZ515Pqq4BV8z46OjkLgA9oxZZUC/mQWUs8LvCgB2IEOC4G2uk8cPcWTa9tFGpfJp3nJ\naR/FkHJGx4BWzobT6bTYWd7TwbH286YEXmiib7gseHF7vV6jLJcuXQoTGU88qo1UG6BvWIcHv/HE\njMUDypxb5LNDvR8TnOJELU7xEqci17g+4/G4sQBgUwf+5ehIBuqJsly/fl2aF7wi8GAwKDY/ejVm\nNiOi7Orjc3BwECZXKFcvs8Hi9BhqHOTSJPnxFPvg+Xd9a2srjG/uTx95pfSrnjx5IqNAU6luuA5e\nDX02mzXMSzw/oSzPnj1rmB5jEYz4nfvEl5k3O3juzs5OYwEyn88bpvXZbLaQDshsMRqP6wvAjPTO\nO++Ev2G6OTw8bCykjo+Pw9jGu/fDH/6wUV8Guzuo8Yh3itsR9+Z+w3yChcatW7fkBkoB44CV3lG3\nBw8ehDmN20a5caDNWZvRz7MnJyf2V3/1V2a2aO7z+nXsMM6bDtQP7/J4PLa//uu/NrOzhfZ//dd/\nheel5hV+F9HO+/v7jXf0hRdeyG58zU7bD/3t5/kUqmmvoqKioqKiomJJ/MUzUpznzJtiTk5OAoXJ\nKsFYrSvqH7sTzgXHuwD/WxtGyVPNpQrbjGW0tnwC4hIos4dHzCk9BSXTwOVL1Y8ZPezWmEZn9WU8\nA7scllDwasLsRJ5yij8+Pm4wITs7OzJ/F6B+U2C9GezWscvb3t5eSPxqlleBR/+9//77DTPJP/zD\nP4S/EZpeGvzBUgHY+T9+/DiMaW+C8PBjcFk5EZW9wLMnSsE7lgdPaTL5NmZnc5Zd8DkP+ZnMmPg2\n5v/nZGGUycb363w+XwgEAXwiXpaK8debLdYb4xK/xfLF+X7k8/BezmazBjug5EZibfHv//7vC/+/\ndeuW/frXvzazxfGAAIrvfe97ZhZ3GfBl7XQ6sn5gn1CPW7duBUdmZn587s5lrA38fQLjOJ/P5TwC\ntoitB15FXJlxJ5NJaDe+1pvGr1+/3kj2zGAGHmwR2LTzYDgcNuZhZtEgiaHQ7XYbciQlqIxURUVF\nRUVFRcWS+ItlpLyvCq/kYaft9XoNwbvRaBSuZZVdFbIP8C7fO10u43zOIaKrQK/XW9i9mJ3WF7uT\ntrv+mCggdvzYpXImeGBrayv4pbGysXJkhpM2yvf48WPpkO/DwIfD4YJIptlpv6KvOeTcK98eHBw0\ndordbrdIzoJD2H1b4D4xxBx8vbgqi6FCBuGNN96QavEIt1a7RrQFswvwGXjxxRftRz/60cLx0jHy\n6NGjsGNFG9y/fz8wApA32Nvbk/ITOA/vTYkjKMCMk3rvvFwFK5srqRD29Uq9x2CrBoNBaFcwBOvr\n66HfleM82jXmfK+YJg+l7s7q/izJ4eUeWNohx4D5ZzAQJKLG2t7eXtJ3FONub2+vaJxdunQpsB1c\nFrBFcK7m9w19NJlMWs+rYKxeeumlxnjkAAOwaV/84hcDIwWw9AD6wNfVC/YqdpSzGKBOX/nKV4Lo\nZsqHSyHG7rHTvdnpXIN+Qt0ePnwY5mhf3xhSvqDj8TjZ//iGbW9vN/J5zmazMLcAipnK+dbG8Be7\nkMKHh18a33AcyaOc0pmKx/2YpveT23Q6PdcCypdzGepXXTObzYI5iBeYKXOBovk5JYmP+BuPx2FQ\n48VlEwZHjuADyqY2fPRh6hiNRmFxxSYTX2aO4OA29xR8LDUArmW1Zr+4KjVr8bW4Zm9vL7QfJiJl\ndhuNRkmnR44+g/4KnvXuu++GfodJaXt7uxGlyuNYlQGqwt///vfDB4NN2SXgRKHc5j5y7datW3Ih\nheM5LTAFtJFKEWTWjLJUpj0+Dzg5OZGaTYAylwHKZMf6dUpRnRdPKcd3FXnFc5E3Jc5mM6lppeDr\nospiVuaou7+/39At29jYaJjV2fHZa9IxPve5z4WFFOYIXtDgvmw+xgf80qVLjQ8sO02zKRFtgwCY\n3d3dxrhS5Xvw4IG9+uqrZnamgTWZTEKdUF/fdn6jxf3KQH+y1pJPUMwZH3LwOlj9fr8xX96/fz+Y\n6lGPx48fh/kGSuRPnjwJ74pa7KbQ7/fDYtIv5MzO5vfHjx83TO0PHjwIaX2ggL63txciOP1zuFwl\nLjTVtFdRUVFRUVFRsST+YhkprDYVlecpb7OznUWMacK5ii1iJ+dlHMSfF7geflfA7A2H1rOau9mi\nuUo56bETtld/H41GwbTl1dHNNM2rQo05tNebPcfjscwVWIqUBgzut0wIPutxsbnFbHF3zwmj1e6e\nFZnNTnfPoNOVOQ/O3Hfv3g1h46hjv98Pu0+f29DszBz17NmzBQYRUHn8PCaTyYI53QM7TaWs3ul0\nGsmclwGPbW4b/16rY/53/J9N/2andVNyBR4nJyeN3fOjR48azBCzD0rqgHfPPqCA2WW+FtdwvynH\ncg/FPrHbAl+DOmGs7e7uNhTej46OGrn2uP9x/s7OTiMzgDIJYvxzGzDQV0qSZTAYBFMd2G/uN/5G\ngG1Bm/3xj3+0L37xiwvnKXz44YdBvoPhszGwLIGZng85m4TZomkPx37961/ba6+9ZmZnAR7z+Ty8\nS8y2ewkYNZf3+/0wj6CtOp1OeO/hUrC3txdYMZ5XlIkVbcg5XHEN+unZs2fBfPftb3/bzE7z6qFd\n2BUFfcf9D/YJv21tbTXkd1j/zZsHU6iMVEVFRUVFRUXFkviLZaT8DpKh2CQ+5neYvAtQuaw4R1aJ\nz8DHBeVroXZSzDS19cvikGh/7dHRUZGT9mAwCG2udpjs9Ot37Sq/GcsfKEdagBk4perdForhODw8\nDD4W2KFdunQp7O4Q0DAcDpOisKw+jLZK5dd6/PhxI+8eyzjEVOdxHp7Bu7USJ11uO35n8DeYCxXW\nriRKOp3OUuxUidBm6hjKzfUwW2wjf83h4WFjB6ycvmezmVQ79/51jFQwhPLNY2Csceh3Tk5B9bX/\njfuVRSmVA7+fhz/66KPA7sBR+vj4eMEp3OyMYWHwmFRyH16IlMFsKiuDA9wuf//3f29mZj//+c/D\n/XANGLX9/f1GGfb39xviu71erzFX+T5I+dVyEIsXVd3f3w8ipAjkMTsbv8gPePfu3dAnmHcODw8b\n36xOp9Nw3J7P56Hd8fxutxvaGP1148aNcD8cYxaVrTwoA9i79957L1wDFfObN28GYU+eu9APapyi\nnY+OjhptzPVog7/YhRSAhh4OhwvKwmaLZjx8eGez2YLcvdnpAPd0Ki+uMBnmHIYvCqWLI6Z+lcnL\nR8KZLTpr+w976XPVBDIcDhsOnfyRTplQ5/N5Izqp3++HyRz1iKl/nweeijdrKrhvbm6GNmTTngKP\nX9QDY0wtIlmJHAs3To+gHKO5PcxOzTNY1PFiSLWVdw5lJ2c2FbCyNP+L9jBbXCSwQ/gyC6mSsZc7\nhz9efrzxWGQtKDa3mZ3WUzmqK2dlv1kzs2ASQx9yBCHfV5kZfQRp7J1RC8aYmTKHvb29MLZ5Y6A+\nXn5scxRlSsuP1cDVQir2LpmdjjFOmYNrEXWId2o2m4VFHJshf/e735mZhTQjv/jFLxoBHPP5PNSd\n00L59p9MJgt9WOIWwt8n7jfvnM1uEGgjTtKNYA5emHFkMO7NmT9SGz0868MPP2yMt+l0GtoBbfrg\nwYMQcKH6CyZDdhnBHHL9+vVwHHXrdrthXvSJileBatqrqKioqKioqFgSf/GMFNDpdBYSyZqdrlyx\nuwN1rsx+rL/CFLoPQ07thP5U4OvETA7a6uDgIOxePNNgpnfA2FkfHx+H3Wlqh9uGKULfoSzMrDE4\niWoJmC3yIbM5qN0Qns+SDRgzbdgC0N+4lrWA0Aa3b9+W6r+4D3bZrH3Ez/TluXHjhtT6Umyi3+HG\ntGHYrInrUA92Ok/pb8VQmlmAMx/gX3+tkg3gcnPIvnK09+NNJTfG9WaLqtNgojiQQ7FZ/r3l8aLG\nFteRXRO43h7Kod1jMpk0WNbj42OpvA1mCczp48ePG1IhKn/au+++G+YTZmU595zZInPBwL3ZuRvO\n1ewUjbEIJob7jU1o/v3p9/uN70rMUoEy7+3ttbIc8L8M1H1nZ6chQ3Lp0qWGOv1gMAjvK9rg+Pg4\nuCPk3j0/FmLzNtqaNRpRrpRJk7UD2d0AYwz9sbW11XAeb5s/N4XKSFVUVFRUVFRULIk/K0YqJqCX\nAlasvHpXdnfelXn2YTAYNJw05/P5gn3WbLU22WURE85TSO0sOQxY7Rj8jnowGIQdEI5du3YthBBj\n5/j+++9L5fBS8Thf9vF4vJBPz+y0H1jOIlZHBvpyOByGemCHw34EuR2a8tnwZWCfOyUmyvBjam9v\nL+zg2YcDz4N/yrNnz8KODDvwfr8ffoNPyB/+8IfGM1Vo/7Vr16R6scrxB4ZGsS7cfoqV80wiB3+0\nQeodYN8cNRdwcAPK5RlpxdodHx8HMcCf/vSnjed5lfJcmU9OTpL+TTmHej/u+D1j30E1R6aUyNkh\nHHMl+n9/fz8cB+MQY4bYZxD1wW8Q6FX9w75+wOXLlxvO5bu7u/K5AMtCKJYHTut4Z7a2tsI8ptgO\nlmzwEgxbW1vhHWcfLfy9t7cnAzCWxaNHj8I8gecqVpDZYoiHvvzyywvlMjttK99fr7/+eqjzj3/8\n41CnFNBHHAijfD1ZUNu/F8+ePWuIG5dmQNjZ2Qn3xrepJP/fn9VCiqOJSsEvHDs1emBS6nQ6YQLi\nNBroOJ5g/GTzSVhIlZoylOZVr9drmBdUndhpkaMYvcnuzp07gSLOARMn+uvhw4cN50GzJlXOtHrb\naLvhcBjqi5drb28vOxmk7ud1mszO6HuUlZMb84JQAZM9+mNvb88+//nPm9lZG/CkjkmBE7FC9Zgd\nRlOK5Tl9L6DT6YRxAFPH0dFRI+2SmTUWouPxuJFA9enTp40F73Q6lZG3vhy+LiWbhNls1nA85s0a\n/mXTqVJDRh91Op2wgOLIMb8wOz4+bqTWUAsXjvhTpsVcfVUSZN/vx8fHDfPmYDCQJhqchzE+mUxC\nuTgtlB/LHDjCZUZkGKKy1tfXG9GMauOys7MT2g2biddee83+53/+Z+E87iPoLP3ud78Liyulh8Qf\nZLQVfnvllVfCRx/jRS1EJ5NJKBeu3draCosIrhPemzt37qw88AXvOlTHEdmXw1tvvRUWYWx299F4\nb731Vqgn+lzNHa+//rr97Gc/W/gtlmkC4LnDb9DN0tpPePf29vbCWMWCcDKZhL/xb0mAWDXtVVRU\nVFRUVFQsiT8rRqpEkygGpUEUU/XFcd4h4Nk+ISv/nVJ8zj33eSDlPMoJe4HxeNzIKcimLrA3T548\naTiUKs2O0vJduXIltDXnx8K9sdtRZTZLh3fH+hhlbrsLjDFHZou5uADW7uHnowzsCOqlBEajUbgf\nytnr9cIuF8eYafB5s8zOduN//OMfg6aMMk0gh99vf/vbwDD4vF6+Hqgb2uXJkycNZpDZTzaR453C\n+FJ9tb29vfA7M8e4xivHs+lU5YwEptNp2EEr8zyPE2+yVbndrl27Fu6ndtxcD8/UqrofHx8vSCug\nTL7NDw8PG/pLvu4AjyOzRbZNzXvA5uZmaA+VFYHHuGcvWd2fZQPAHHCYPID6qna8detWYKTAZCvW\nksf4pz71KTM7NWl/73vfW6hHr9dbYHC53IzLly+HpMx4/vr6engOO/z7d57HFZeL3UNW/V3wmTy+\n9a1vNVi7GCCPwCrgvnxPnjyROS0BjMkrV67Y//t//8/MzP7jP/5joWwlaPvd5zHjvwnMPrWxIFVG\nqqKioqKioqJiSfxZMVKliOWKwuqZBdaw2sWx8XgsV8s+rJh3i8zOeLVzBs6fTqfhealntVm1c7Z0\n7DbZLwV/w7asdpCKUTs+Pm5cyztW77xqduYvcXh4KFf9LBBndrr7UbtgZlzwDNWu/hmq/zm3UyqH\nHvvh8T3Ujt9jc3MzKHczlJ8HmD+c3+/37fr162Z2xkj1er2GL8DGxkY4zjsv+NywjwLGOc6bTqfB\nL+SXv/xloyzf+MY3zOyUkcJvuIdyCFW+a+PxuCF3wO3Iwrep7AN8X95Fphy2WagSfagcrXEt+/op\n8U0WV/Xjcz6fN9ii+/fv28svv2xmp/4jKAvuw/2hHNp9kAsrOCsFdJR9MBg0nOGV4zi/J+wH5tvy\n0qVLgZEA1tbWwviEEjk/T/mislgvwE7GXkRyMpkEnzUc47GEMcbvBBykP/vZzzb8yJhF/cxnPmNm\niz5QOJ+FYPHva6+91vAp4vbDWHvhhRca7O6rr74ahDuB2FyOd3M8HrdW3C79ToA9Y2mKtkx8t9sN\nvpm/+tWvzGzR5xLzD78/aKPf//73YQzgHbh8+XKor2f+VgmvgM5tpQRwY/iTWUh5PR1OF9EWKqJG\npXmIKRajYeFIx0kScS1PQBx9hAmFE8WiM5n6TUX6pRZXsfPY5KGUwFPgl0qZ7Lz+kopiYwVaTsuC\nDzeo9el0GiYZ3C/2UvskyDngY7O2ttZQrJ/P5+GFxVjY3t5eSLpsplNwjEaj4rKo6DtMHlioHh8f\nN57BzpyAmlj7/X5YLPFHBh8+Hido1x/96Edmpk2PZmcpJBjomxdffNHMdHQfA+1y+/bt8HFTgPny\n7t27Yezwx82bo+7fv59U2eZFMy82OKiCz+ffvLI06uHVtdl0yk7naH+M8fv374fIKKVmjkXE5z//\n+dAneAYv6ric/j5sivOuCvw3z0/KaZ7hFxGs5wTcv38/fEgZuB/G0MOHD8OHGwufZ8+ehX7nsaHU\nuPFc5bSM+rC2FD7kP/nJT+yb3/ymmZn98Ic/bFyLMcbvHco3m80aC8ejo6NGGe7duxdMiTDxHRwc\nNBbUL774YmMhxfMGFqR3794Nzz04OEhGSipwpokSzSRub8xJnIxYgccLnvG1r33NzM4i9czOvhfX\nr19fyKRgdrapYBwcHAQtMBVIwUC/43usNnVmZ2PQz/Nm6cVmiUm1mvYqKioqKioqKpbEnwwj5RN7\nxlaJJXQm78bUeRxS7E0AfA0rNPvcbb1er6EtdXJyEnaQTBt6J06+thSKweJdI+8cfLgoX4PdU7/f\nD7sSVvPFPVO7FE5CiXqyUzprOGF3wPQtmyEB7A7/5m/+xsxOdz9vvPGGmaX7fG1tLTyXzZZcJ5TZ\nm3b29/dDGbwejtlZO7JuTUrr5eDgQOprYeeF3WfMyV3pvABgMxRzZXa244Y2yhe/+MVgmsAOfjwe\nR53Gzc6Ss5ot5t0zs8YO22yRRYGzLkwoMWDXzrtvZsl83rKTkxPZVjwmMGaZMVXMoWKJUo7xLAvg\nGeGTk5MwjrHT5xB3jGe+PwIp9vf3G2Xh3Tgz3b58R0dHjdB6PofnCf++KEmOyWTSyA/J+fy4vkrK\nRJlH0AaszwNGClIHXH68Z5y4WznKc55ITnQLgOlR+Nd//VczM/v//n/2vqxJsqu6eueclVlZ89Dq\nbnWXBqRGtDWAZGMsIwYZjMGBI+zAfnA4wi+8+lf4zS+2wy84eLPDDvwAtokAYxNCHrAghJAEgtaI\n1OqWeqiuKatyqJy+h/zWrnX32fdmdknQ6PvOemkpK/Pec890z15777V/67f0M4zH+fPnE7pfIuP5\nbBNLLl++LL//+78vIkeM1Pb2dvCuunz5ckKjSiS5//E4YC2PRqNAzyhNAR9g9yyzomlgRhJ7Je+f\nrEVnCxQvLS3pPEGb6/V6ICFw48YNufPOO0UkOdYAz138ZlIwOe4LSYZms+n2C8IkwKJvbm6mVlW4\nWURGKiIiIiIiIiLimHjPMFLApBiUm61HZAUmRY6ssUKhoFYA/K79fj9h/YuMT9vW8ioUCpkp01bU\nk3GzwpH2HoDH2lUqFVel1zJlXuyTiASB6l6sWqVScauzT5um6gWoY3xeeuklEUmyM5zubS0MTk0H\nC8BsB1t8HqvA42nbx3EHHDOWhmazGVjyuVxO2wCLygtIT7MkbRweP7/H1OHvjUZD2SQwBK+++qpa\nrpA6eOutt9QyZ+kJy1J4lh3PGzz3pMBRjOv8/HwQlMoV6+0zpoHTsjkmyAuwZsbK/o0/s3FVhUIh\nEVeJ72FNsaAo4jR4jNHnGIednR2dq57kwCQFdDA5YJRbrdZEhXzcC8+E8WSWgpl1mwBQKBRcZXuA\nawKi/RxjZJWnmc3g4H/0kbfmMV71et19D6B9zM7Y/f/NN98MGEwPg8FAY3tYFsSyxsPhMGC1X3nl\nFQ2+ZpYcf+e+4DG2MVLTvicODg70nYX512w23b2S54zIeH8Ee8Z7oZW6YHkIj5nE9zc2NlwmynoN\n+L+zAuDPnTuniTFgftfX13XueIrmqOHYaDR0z8W9ms2miqB6wsFpeM8dpN4tZG3AHMnvBWxy9o9I\nMqMCg12pVFw3HjBtoVVu53GD6xmTAva8zB3OovMOSDaYdxJdypkZOLTCrbW9vR1M3NXVVf07b1Q2\niyktY88Gik4CF5lGH3j9xoWbs15QQFo5C7xU09TBRcZ9ytmkgH0p5XI5vQ5rNwHYUOfm5twN7/3v\nf7/eT8QvClur1dTAyMok8g733iHRQ7PZDIobsyvLuo4t2MXuZVnatnnlUURCpfx8Ph+sFXZle24Z\ndtPhIHDu3DkRGWdH4pCBsTk8PNTfei9Se8BEu9AfNouWf4M5wer5XsA9cHh4GNyXQxn4+nhOgF27\nrO5t+3RpaUnXNWul2eSUra2twCVWKpWCg9TS0pK7HhHA/8UvflFERL70pS8F86BSqehhA4cDz93d\n7/eDosXValWefPJJbZfIeJ56yT3e3PDWCx+ejltRQeTocHPy5EkRGbtV0desc4U5wwHe6GscOryE\nG5Gj+YvnXFpa0v0DfZj2DsM8QWmq3d1d7aOsg8yFCxcC44QLMntECdZKs9nUPsWcrFQqQXWHaRBd\nexERERERERERx8QtZ6SOo4n0bsBLL7cWweHhYWC1cUo0/lYoFFz2CffgIEgrCzCp0PK0/eIFyjKY\niuf6d2gz2u0F18PyOjw8dJWjsxSNcdIfjUZB/Tu2mDmQEpYALKC9vb2A1vVStcvlcqY6fJbCuUjY\nL9O6Inu9nlo+HtNoLWuRZEFUWNSTmLwsPS+Me61W0/tx/wGsoeM9n00I8OZTq9VSNfSsAPhJAMNW\nLpcDCp7nFf5llWisC7b4RcIxHgwGQa04z6XN+kuYO6VSKQjc53nFv/UKbXsaSvg93BFzc3P6TDyu\nGDvMiW63m2CEcF2PCbPB8Pl8XtvAc8ym5TPYkrfXY/kI7zfA8vKyuoO537JqlyHYeGtrS/uU9aG8\nwHeLdrudySbwPmX3iatXr+o92GUHeK5ZsC1cMw73WFtb03nAjBLuy+8Nuy/V6/VEX2WFDTA7b+cd\ns60Yj2KxqHMMLv56va4aUNgbWKcNzH6j0dCx5jkLthVSNjMzM/Lwww+LSHK+c1C4iO8WXFhY0Pvi\nXrlczp2rln28ePGism14NmYVvcQxvIuKxaIyazfDAEZGKiIiIiIiIiLimLjljJQNyPxFgxknyzSx\nNctxGjYWIJ/P62c4PReLxURwJn5rg4NZZfmdYFJAHLMPHntmLTNP/VvEt+rt94rFohtMb9miUqmk\n/eCd/rPiaTzrbFI9P7as7XOw2B/+ZQub46bwGx43W7dKRAL20UvjnwRPER5WIDOEHEzMbA3+RX/B\notvc3AyCg+v1ugZiIhj2xIkT8uabbwbtglXJaeFZDIcHsF+ecjkzHp4CNtcgY9i4Pm9O8Nz2xtBj\nWJmhscHIpVJJv5vFiLICuhUEZdTrdbX+IVfhiYPi+Ww/2H3Hq0FZLpcDqQlOHOHnsTFhafUswU6i\nLSwPgDm7tLSkQcGelIrHdIEhaLVaQeD7wsJCwGZeuXJF+83D1772NREZsxVWvPHSpUuyvr4uIkfr\njQGGw9ub9vb2Asaq3+8r2857HNclFRnvB/Z76+vrKqPggZ+dGWnIPGAt9/v9IC6t3+8H0jOLi4u6\n7sFceYKiBwcHGsuEtctintgvVldXlQnCM+3v7+t4ZnlbeEwx7yzjab+LNl25ckXbg/FaXl5OtB+w\nVTSazab2FYLOp4mxveUHqXfjEPFO4LkWvc2Qg1ex8bDrAYPMGULe4SZLg+oXAVZX94K0+TCRFZCb\nhbRDnQ26Z/VnoFgsBgdadrHwOGGRwEV0/fr1qeaTp2Jdr9e1LXxIw7gyBTytuxVuCl6I78SVzYd5\nwM6nbrcbuLcqlUrCPStytMmKHPUfU/a4rjc3V1dX3Q0eG+S0BynOfrRtrtVquvnipc5ji/lgXTi4\nDo+hPYCw+4NdRTa7zyvzwu323GpZRbC5fXiW3d3doBg1b/T832g/Z53ZteLNK2/dcqUBL8g+K1TA\ny3BdX1/Xly8Cmr0XkGeA8RyzWkkiSde0va/nJhwOh/oC5yw028/YPywwRpyMYY0iD9vb29p+Pih5\nRpP9rN/v68sc8/7g4CDQTWO02+0gy67VaqmBhP1nc3MzoZAv4q/r7e1tVxXcrufhcKhjjeet1WpB\n4snW1pauHxxK9vb23ELTWWAXZdb+icPr4uJiIhlBZLyHWMPt4OBA+5WLuWPusMtzEqJrLyIiIiIi\nIiLimLjljNQ0DMe7DS/VmdOG+XuWgudiquwKsG4Bpsn5XxtAO0kH591ClhYHt99jawDWOskKMOff\ncbC5peU9a5cDd+E+KhQKAVNSrVbVCocFNmkuMQtoCx6nBRZmuZxZZT+r/iE/pw1uZLcQwC4RtgZt\nwWvvt+VyWfsKFhpLInh9BKtydnZW75O0KAQAACAASURBVI0AUM/i7/V6bn0srJVpC5+iz7lwL8Br\nEX3AxXJZ74gpfxsY7en48BzzdJ94vKw1zskh3vPxnMB/e8Hm6KN+v68MCe8daW4MkWQtMW8NeXpo\n3ne8PvcSZDzXvb0v3wN9trOz47qFALjf2E3Gc9+yLbOzs0GfX716NWBZeF1wf9si2Gk12fA9DlDG\nXpQVQtHpdHTewb129epVfXZupxckb13cOzs7iXp5Nsmk2+3qfZgNslUb+L+5QoPtS89NOglYw9Vq\nNXAfDgYDbTP3C/qDPRPTuM8mMVJYl9vb27q+MMbValXbgnnFlUu8/T9tfrhtm/qbERERERERERER\nCdxyRurnBU+IC/BSq9mK8wJdPWFOZnHYj2vh/SYrfffnAS/uxwuCRvtYAZ2ZELZUAVhS3FewfGAp\nHSeZwFZ/Z3ipxAzPcuEkAg/enPHkHmDReHFbHPuQVY/Q60evLcyIsCo57msrmc/MzLjK0WgXsy54\nDp4HuAd+6/VtGnvHbRCZzEixfAizbPw3kSOWolqtupYrx9VYdoLZE49N4ABqq2zOf8cz8Xgw6+Wx\nWXZsWVDU6xtmtTEH8S8zCGzJW8vcYym95Ar+nScL4sWJegwrwPFEsOS5nh8zUxyXKJJkpJgRsTE3\nKysrGtvHgdl2LXEfMEuFWCvEvqTFpnqfewkP3u/uuOMOETlidFmigq9rFf5Z/Jevh98uLCy4+wlY\nMy+gHWAPDMZ1fn4+CJjf29tzr2PjnA4PDwPmitvq7b24/40bN3T/4jYhSJ/FZDk2TiTJGnvrh5Nx\n7N85tplZNMwF/G1nZ+dY9ff+nz1ITQo69g5G1o1XLBaDgxRn3rHmkp2orEvDG5V3kLIbmUe7vlO8\nGyrclUol0BliNwQ2mXeagZlVUHZa9fTjBHN7bjLv8GU3+EKhoJtNWtHoNHjj0e12dUPjwExspCj6\n+dprrwVtL5VKgbJ5u90Osk/L5bLeA3PD05vy5mGlUnFfpviNl4XHsK6/NH0tAAc+u7GKhEkRaIP3\nQvAOO2mGkf07v0Cty4mvyQcQW2h9UmYt7wO2/d688q7X6/UCN673PX65clJCloI/rynP9YjvYd7x\nGPKh0ipgMxDEvLq66mbGWffc/v5+sF9448dzbJLxat8Do9EoqFzhBVeLHBXl5iLe6A/8dnl5OThI\nraysuCV28BtPF+u2227T32CeeGPoGUMHBwfqFsRhbDgc6rzjLDarc4dkBwYXgs/CYDDQQxjvSVj3\nGF/WVwN6vV5QKNo+kwW/q3EQZD1DPBMfFu27BW7dLETXXkRERERERETEMfGeYKQmqX8fB54SsWWf\nisViZiFbz+Jj6twyEl7aMOsXsWXo6RK9E0wqWmq1kzzrotvtup97dLdlJTjdml0T1qXDgeVefcOs\n2m74Pa4tkl64mduF33nK9t717fe4RhXDc+1YLR7PFTMajQI2YzAYBOwY9zv3KfclnsOmb1cqlcBF\nORgM9JmzXLJp7kj8BpZfGqDT4+lTeTUfwcpxwXB8NhwOE6yTp0tmGaETJ06oK4rnh+fatf3W7/eD\nsfbkBXisuc4drF1mx7K0p2y/iBzNSy/om7/r6Vx512PpDKsCz//NBcuzXCvsOsHzehpgniwA+tYL\nLOZ5xfVQ7V7ujd8kpphZKE8OwhZQXllZcdc82BowUxcuXFB9Iy6+beEVKma2dWtrK5CGGI1GAXM5\niRVi9zCYKGZqWGUc97AscavVSsgZHBcY//n5+UDnrtPpBMHrItmeJo+F5vcoWECPkeQKAkiCgC7a\nNExbZKQiIiIiIiIiIo6J9wQjNRgMMoPHPbC4XlZquidNwCnMNvaJrQkb72Rh78sMjCcACjSbTRVT\nw4l/WpmINNFMtlytMBnXAPQCvNlitqwSB+nyc3ineCso2ev1gtgnT8i02+1O/fxWhsIb/263q6wI\nLByOWeB5YNuSpkTvzTHrs2fRQvR92tyBheTFpeC6zEiwMCMzm/jXsq21Wi0QROz1emple/EGXqwP\nxzvZtnixfrlcTgNLPUYK1ifLW3DAcJbaPp6f21oqlbQvYeFeuXIlsF45Vo3Xvx1/jkHJEuvkfYIT\nB2ycFgcZ835i7+vNE35unu+W8ej1egGDMBgMphIU5VgV3O/w8DCIkcrlcsq8oDbd6dOn9b85rgyW\nvqc+zqwXfoO5yIwUPpudnQ0CrHl9op38jB6DzvutXd885uiDer3uxnDhs8cff1xExowUM4giybmB\n/26323L69GkRORLL5eBqFhTle2EtYW5fv35dWVu0eWlpKZEMIJKcT8wq4R5o140bN4L+aLfbQRKG\nJ67M1+G9CJ+Bhdvf39cxAfvFSQlAsVjUNWcliESOxv0LX/iCfOUrXwnaYr/HYKYb83NaGReR98hB\nSuTdLSHD9C27EqyLrVQquWrH0yiW22vj/ydtiAAmN2/W0xwmJn2H3ZVZtOzCwoK2i7/nldaw9Lmn\nIzUcDnVhey9i7+DgIUtHZFrldREJKGyRI2qY9a6wsK3+k8jR2OTzeZfmt4c6vBhEkocXe8BkFws/\nD/4bv11dXdVgU7S50Wjo/dAmnu8InDw8PHSz+7ICoq1RwW3m58TzpM31rPI4mAcrKytBQeTZ2Vn3\ngOcljLBbDZs469fgmfEC9UpSeIG73W43oSwukjxseAHtXGzYGh28r/GYW60d3p/YHW4PYfxC48ML\n2ocX5WAwCDIgOdsW2NvbC9yp3AZgZmYmcJnwGvP0kNhlxwc8XN+u8eeee06zrJAZ6GWpcekXL3kh\nLZMbbbJrwHODpu1TL7zwgoiInD17Vj+zVQDm5+e1sC8bE7gvu5Ywht1uN2gXjyGyBUulkvYJvr+1\ntRUQEXwwQ9/3+31dB3xow3zysuLQH/V6Xf/OLjSruZbP53Xf5PmJPp6U6Yzr2DUtcnRAvnjxonzs\nYx8TEZHvfOc7wXW8wtOY2+vr6zpvca9ptB6jay8iIiIiIiIi4ph4zzBSgBc8mIU0V4DHonhuEqb5\n8VurxcISBlnuPmaksqh4vh9O2VwE2cM0Aasi41O9xzrAYkFK7Pb2dkJ9W8QP4pydndXPcV1W1/Yk\nETjQ2rbFCwT0CsvydbICyycB7oJCoRCoIefzeW0/f2ZdOqxi7aUpo32eS6FerysrcvHiRf0c3+W5\ngb6Cxeml5TYaDbUIYbW12221FjkVO6uemgcuFOzJUDDjloXLly+LiJ8qDnjrttfrueveK9gLeKzS\naDRSppSZKPQR+j6NGUT/gsFMY21smzy9qXK57Cat2Psyk4M5wS4Hzw2B9VsoFNQKZxePZWs4yYGZ\nKftMXpB7q9UKmJ5ms6nsCkIGuB9ffPFFERmn8YMVwbNtb28r84fnaDab6v4C4+S1ZX5+Xv/uzSOe\ns3hO9AGHkQD8XBjnNDYf4/aNb3xDREQ+/vGPyxNPPJH4zvXr1+V973ufiCQZKYwNuzxxn5mZGfed\ngrn6k5/8RESSelO4zt7enrpdMd93dnbcMA7sGZhPd911l4Yj8HWxB2G+7e/va7gE3iHD4VDXCsa1\n0+kE92i321PL1UwT+P3UU0/JF7/4RX12EZFnnnlG/462Ly8vJ6QQRMYsoHX7T9O2yEhFRERERERE\nRBwT7zlG6t2SQfDieTzVX0/Z2gso9Wrt2WukMSaeyKUNSp8UIzYtG1OpVNQSgIXBzwS2QOSIiWK1\naRvT5ClNTwrOQ3941sW04+sxVxxXwaxilkXhWZZsjdt+zeVybjyUJ0lghRvZJ89BmDYQlMX+WCXc\nxmmxOCyzXmgLGKu9vT39O8Zrfn4+YE/TFOJtnBj3KfctntcGsVtgjiFO5Pbbbw8Cz/f393Wu4bpp\ndcC8OCOeY5Z9LpVKATvIkgi4Bsfc8Rq1EguNRkNZG2acvPRty54cHh4GCRy8HgH+fzA1m5ub7jrw\n2DH7bIVCQde/x/J7UhGcbOCxI+gPDmwHA8p75WOPPSYiIk8++aSIjONSEOuHMe/1esqicSKIXcvn\nzp2TH//4x4nPeJ5MqpeGvuLf2L2W+4WFQD0gtggMyPLychBE3u12XXkT/DdiA3n+DYfDYM5y7UmA\nn4PrDGIM0ZadnR1tKzNTuAczttj/wZzz2GDdFgoFnW/eWvHqVzKLj73Ce6cCzBROeh9+6UtfEhGR\nj370oyKSjLnEM7bbbV2vHJeWNrZZeM8dpN5t2OBUET+4jF133gvHvlg8lwxro3h6OXyvd1LM2boj\ncW+0xRa/TWuHLVPBitYcmH2zKuyTCiNngQ8OXjA/kOWuyufzuijRlkajoc/JLyAuLovvY/F5gfcM\n/NaqIoscjdGNGzf0etiA+KCGDa3b7U7MWMP/20yZcrmsmwNvithYvPkCNBoN/Y2nz8JAW6cte4QX\nC5TaGazXlhaQ7cF+zpmDOFjyywcbqJfJJ5IdjI7nbTabQWkakfClxC/CrDIaHPSNZ2d3FMZtZmYm\noQGGz6wrztO+S+s/nm/oFz7c2LYyoEuEgHCRo5c0+nZ3d1cz+ezvRHxtKYbVp/O+f3BwILfddpuI\niKsWDtTr9WA/TtvfgUl6fNYwe+mll9StxsB84jVv5xXPF6880u7ubmCs8Xy3yRoiR270kydPqssO\nfSVy1F+e24+f7eTJk4m2sm4iniOtjzC3OFzCJqhwggwfNm/2vfif//mfIjI+QOLQDAOiVCppW9DX\n3uF0GkTXXkRERERERETEMfH/PSOF07NX2FFEglMx6xJ57Ii9Ll/Dq+uVy+UCBeSbcV966b2edgoz\naqyFIpIsrAkqvtvtBoVr2dpmq91aUF56fLlcDtKe7X/jt547zQbzT6vl5IFrSvEYeoHCHtvmsV0s\n8wB4rijWyREZW21oi2cFsvWEa6NNXgA/W1PMJNqaXayRlVUTkFOYuTisZxl6ystZwN9tejjua2Uh\nRI7mLJ7D1iyzGA6HavWjbyqVij4zrHZPj6jRaARjmMvlEkH8gHVjspq4l2SQtQZ4jXrsONa3Nw+Z\nufJ0rhg2QL1UKiWkP/AdG2bAlRcYNq2cZQjuvvtuERmPAVy7YEKYkeLrgjHh57Bj9PbbbwfJMJNY\nLaBSqQS6Y6yV5z3jJG0huLrOnz8vIiI//vGP3XECg8ShCPgeFz7G/F5eXnaZEvyeGTjLrJ44cUL3\nNuwnb731lj4nWKhSqRTIS/D7jlXvwU7BjXv16tWEzAe+bxl9kfB9yPMOYL0p3J+V8rPekffcc48y\nb2CUr1y5ErCxvO9lyS5Mg8hIRUREREREREQcE7eUkUpTHQemTel/t+5rq6p7AprsC/ZU0YFJ9QGz\nLM2bER/1TtK2nlfaNfm3sKg9ViZL2XwwGCQkGkTGloNls7z7c6wSCwt6FuGkeKSbxSQmA0BbEOfA\nfnU8W7Va1etNSs+Fnx6/ZSubxx/9y2yCrfvGfcpWI9qMGKTbbrstwU6JJIPSs2KavLiYNIE6WKc3\nG6xZrVaDeVwsFtWaxb+7u7uaYo01mjaOHPSNdnvxTmA79vf3g/XHFQbwG0/BmQUlOVbK7l8sdcJ7\nmg325jgXtGlmZkbvwWOCvvEkFLgenf3+4eFhwLbzdRGIvLOzo99DWjszSAzIWYCR4r0EbArvi2BC\nVldX9Te8Z9k+FQlrbV69elXZLsRepdW+tPAU2rkNLMhoWfw0sFguYPe+fD4f7LMPP/ywPP300yJy\ntI4ODg50frNcCQN7L7PBdv1duXJF5zEzTp43wAbnVyqVgNEVOZpTYOLz+Xywx3C/efGJzDjbZzs4\nONB5ydUvpvE6cHINyy/Y3xYKBTl37pyIjBXo8b0zZ86IiMgbb7wx8V76LFN/8+eASZ3ybh+gsu7L\nAZm8AdqDFB+umPK2dKEXvO6pQI9Go4DmfbfAm6qXDcFaUFyGQyS5CTLtbQ805XI5UcZAZLyQ8Rt2\nFVqKu1qt6maVFRw+Go3cA1QWBe/BBnWLJN1k1pW0vr6u/eIFrSLQc3d311XBtcUv8/m8/oZfxtbt\nJhLOfaa1efO3/cIvKlxjeXk5oMT39vZu+mXjZeAAvOHe7EGK3b5c+BYvc958sb5spiOAFwX/Bv2A\nwxD3JSuI47nYlYTf4IVRr9eDIN69vT33kOEFy6L9fA87f70i6F52Kbsj+WXDGlVAlkozJ2twAD2e\nAdfBs7GrmOFlQAE4KHGGJuYVZx+iv/k5+CCCgwO7EZH9iYMUlyvKAs8xXkf22UajUWDwpQEvYTzj\n0tJSMHZeMhGvRfQFv8gvXboUFAPn8Uf/8rV5XlkX9STVfqzHTqejawTP1mw29cCF/YyDtDFejUYj\nKEbM8Iw0DgXBbzm0wDP6rAF05coVnR9o0+Hhoc5j7DHb29s6T3Cg6nQ6OsceeOABERkr6k9CdO1F\nRERERERERBwT77lg85+Xu4+vaVNiGRz4zBa6R5PawE3vND3JvflugVWbYQ2jXWy9e64kDjJF/+PZ\nWP6AmTf8hl029r7HqZ/IsgXWOiyXy3oPrvFkGZq0wEI7Pqw07s07WHRpyutgKWCZM3PJyuVcDBbP\nYV07bGHD8veCmHu9npv4YFPY2bWDPkurFzgNY1qr1QJGdxI4HdkqTPN/o5+LxaIG5KfNnSzXRFYB\ncP4Ma2BhYUEtftaegVzDa6+9JiJjFgxsjefC8FgMXme233is8d8sdYB56ulTFQoFrfPGjIYNQGYG\nDv3DRasBZu84qcRzM6HvmTGFKxb1y7ifMYalUkldT2BWWJ0crNHm5qb25UMPPSQiIt/61rfceWvH\nmIP/GVydQMQvtC2S1FDKwiOPPCIiIl//+tdFZDw3rATE/v5+IM8AZXKRpLvam0/AiRMnAikJlmfB\n/ba3twOZhG63q+8E/Hvt2jW9N+QNGo2GKtBjP3zwwQeV4cKzLSwsKJuFedXtdrUvvZAH3vfAtoEJ\n5eoj6PvRaJS654kcMWYXL14MCkqz+5jZKjwT5uypU6d0n0BfYA5nITJSERERERERERHHxHuOkZqW\nibrZOmIMVkDOCkrn73uMFNeUw2e2/b8INkokGbcC64DTSmGxcNA3Wwcik/ty2u/BgkhLo/fAfcjX\n4L/djDgoxgbxHP1+X/soqzo8Y1K8hFfjzcZLzMzMqJVog1xFfNVpZrPsPB+NRmqJ4jdbW1sBK4d7\nixz1n8eOen3hWe21Wi1g1tISLmydPo5PA5gJAfr9vrJULGQIRs22B3+38X88Pz0hTWB/f1+/e889\n94jIWGCRmSiRJIvGNeNsvCT3hxcM780xXIMtccwJb64PBoPAGseziBz1Cz+v9+yc7GDbwNIZDMhY\ncM1FO/67u7uB0vfi4mIQfM1t4n2U9w4AjAlLwVjpB66lyeyy7cPTp09ru7x16DEiDLDQttYo/41j\nszj2EnMC9xc5YqJqtVrQ1v39fVdyAs+MPpidndX+YiYM8xZjWa/X9R6QnuB2g3V99tlngzXHc5v7\nftrkIKuevr29rb/l2pZgsbHX8B4BBvPs2bM61ngOHgdcjxPH0BcXL17UscFvbWyah/fcQeqdKGrf\nLDh7ygtA5w0Qk5EPYdZFyJsrJoKXJTct0uhqD9xmuwkOBoNUrRnG3NycbnDo+9FopC8jzz3DbgN7\nD6ZvuV9sH/GmyUHuXmYba2OJJLOn2HWCa3svnWnBKrzehuEFCGO8bJkeBpfl4Gezh0mRoxcOv0Ts\nC3lzc1M3B9y/Xq8H5Tu8w39aoWW79rgANWeNev3Ch3XAHuC8gxRfm7OncCAUCV1YfB1eK5iXeM5u\nt6vXwff7/b5u3C+99JLeF2PGmXz2ZbOwsBAE+ObzeTf71AtKt39jTR7uF0/XCPPDU8jGoZ3H2tPp\nwX29PSbt5WhLztRqtSAwfzAYBJlv165dC9xCrVZL3Ut4od19993qyoKrUORoD8UcPzg40HHjsQQ4\necbuhWtra7oncJ9Ou8/CVYR1ydl07J7zsk2xHjFeS0tLiWLPdj2wGj/QbDZ1TuCQduLECd2LvKQZ\ntLXb7bpF170sTZsRure3p/MCrjBOrmDNOm9dYx3iEJ7P57W/uFi7PfTPzs5qf2EeNJtNPfzANcpE\nAt/ftoUTTCaVpmJE115ERERERERExDHxnmOkpk2tZkvD032aFjgB43rFYjGg7Fn7iP9mdXo8V+E7\nYdVuJlibLUyvrewaEhmnzCOtGHj11VddBeeswsr4frlc1vt6tf6AarUauB49dW0PtVpN28BWsxfE\nC3CtKNsHpVJJLRpOB85qv6eDw+DUYL6uyJFWFTNSDFuMOJ/Pq7XI18lS/+X6iWgDp8vDIs2i5Eej\nUSLdHv+C7YCFmKap5a0/KxFSKpVcXTUuzow28/Xs/sAWp+fGw/cffPBBefbZZ0Uk6f6wc9oLsi4U\nCjoOzEzZAsqcCJDFAnE/sEvWWs+cwo57VSoVd4/MqrWHNnU6nSAh5PDw0GXKvIQCsCOY9ydPngzc\n1qVSye1DXI9rDELhG4wUjzMngvDeBqCvuIAykLVvVqtV9++T6seJiHzyk59U9ya+t729rW3g/Qfr\nm4Pxbd8zk+itR9a0Q993u129DvYE1pH61V/9VREZu2Et683SCdb9auGFzqCNuO/KyoquOXy2vb0d\nML/tdluZN8yXRqOh85JrluIeYJ96vZ6uVzBH7XZbxxuuz9XV1cALVCqV3CB+WzA+TTePERmpiIiI\niIiIiIhj4j3HSB0Hnppw1vc8i5mDRG08FCt+878cxIt/p63CPi1sm9PkFGz6axpgfd64cSNT/ZsV\nlfEbtphhheH50phEW1/Qs/imFeRMezbPovBqFHpts7EAaWymlcQQ8cfWKlEzYL15VdtFQmaNWQFu\nn9dXds7u7e1pH4AVbTQaas1CUNB7Ru85qtWqywx41/DaZ1XMR6NRQvDUAtew4pBg2by0aw46t0zw\ns88+G9Qe4+sAaerOmHscT4Lx5HVh5w+3j/9mpVhYRBbX498yi+ExzvZ6HDCO+9ZqtYAdq9Vqwbqa\nVLUBbAUHLHNAsze3WF5CZDwPXn755cR3WNqC9xPME2ZwwDqAVffYYQ+dTkf3IGbi0G9ZlQseeeQR\n+au/+isROZqHHLPEfe8lf2DdY122Wi2N+0oTZMXnLCyMfRuJNLu7u8rWPPPMMyJylCgh4otI43oc\nE8jg6h/4vq020Ov1glglZiMxp/v9fkJOJ+15vXi9XC6n6xXzgGPLEO9WKpUSsXsi4/7z9hYA88lL\nZrF4Tx+kptWU4k1XZLLLwStGzBlJXqaUPax5elPc5knZH9MC7cJizefzrgI1b4aYGKAue72ebkys\ncgw6mLVHvDIg1uVQKpX0+TjLBv2GvmL3J8MGPHuHK3Yp4jlLpZJuQlkBhcVi8aaLVE5yB3sFp9My\n3kT8wwE2O55j2PA4KJ5dnxhLfM8LJhWR4OXabrf1xYRrVKvVTPc3NiAO1scLgwOLvYBVYDAYuONq\nD7vdbjeg9g8PD4M1b1/y+H8eh6zSOqw9gz7k4tG2XWxI4SXNek3YY/L5fFDEm5MrOCzA9gdn93pG\nCq8Pq+GWz+fdl7Tdx7zMRe5LvPg4YBjXSztEYU9gd5UNeK9UKjpH4ZJptVq6HlDu5Wc/+5keSnEN\nfgmj71999dWEa1IkefjDv3x4yTKiNjc3g3mSy+WCDDcPOzs7ej/0QbPZ1EOBzTgTOVrXrBOWpbnE\n4EManu22227T/kWbe71eoKV2+vTpIITi7rvvVlce+h6aZHy9RqPhZnTbTMm9vT29H76/vLwcHP64\nQDH6vlwuB4epNCPbGpje93q9nn7OxvHGxoaI+IXTgWkSsaJrLyIiIiIiIiLimMj9onSMEjfN5X7x\nN70JsMvEWrNpmiuWkWLGBJZ8LpcLgu9yuVxAk5ZKpYAO5jp3HmOW9hnShGEtFAoFtXyygn7n5uYy\naU8P6KN6vR4wbl7dP77/O9H98twV/LdbMce9QtYifko6wCrGsJphtb/yyiv6GQJLr169qhYV2KW0\nMYM1jDFqNps6FznoHKxYluuxVColmCg8F6xYtkgtCoVCEAxrry0yZjfwPQTh7+/vJ9LBAV4jtphq\nuVzWPsH1WNUdWFtb0/ZjLs7NzSXYKeDUqVMiInL58mUREfnQhz4kL7zwQuLZGTzfbVA1uw6z3Mcc\nlO7V7sPzMFvAbIWn8WPBxWNZUZ2lJETG1j3GHWO8vr6u/cduLQvuZ+Azn/mMfOMb3xARkQ9/+MMi\nMmaksHdhjm9ubgas17Vr1xKVF0TGrAe7FUWSteA4qBv9z+w8F7LG81hXMctbIDC7Wq1qADeYKZ5n\nYPNbrVawT6UlmHB1CcsczszM6F4ANrhSqehnHJqBz7i49X333SciokkWXPuU2w2WEIxOWjFfq2nl\n4fTp0+quBPu1t7fn1rmE/AX2tnfLi3Mc0Jp0I88jIxURERERERERcUy8p2Okpg2gtmBhPPa7W6FA\nttDYh4vTOv/Wux7HLQEssIff2e/1+/3A+pwUqG6vy20W8Zk0WI6FQiHwM09io9BmjquxwmhpYIub\n46Vs+7OUnvlvXtyHx3DBopufn1cLjWOMbDxKt9vVayN+ZjAYqBXO8Rfoy0mBibDq0L5CoaBjw32O\n+3G8EeY7Bx7bIF37G5Ex64ExgSXv1VT0hPcqlYr2AadaM2MhkmTgPCYK44a4O36Ora2tIC6O155X\nH4xZVV5ztg5hu90OWMBCoaB9hOe4du1aEEPpsVHFYlEtbjARP/jBD/TvuBeLG3Jfs6yAyJilQH/x\n3Lbsc6fTccU37RppNpvKYoKlGAwGbqyVZafy+bw+O+ba/v6+zkWupefJtuAemGuzs7OBIKY3x5iZ\nRJvPnj0bsOkcl4m/cTwU2u4xwTxH0KaHH35Ynn76aRHx6xbiOvv7+4EiPLcF8+CZZ54JPATMEPLa\nt3t4q9UK9iwb1G/XdafT0XkCtqvdbus8BpN0+fJlbS+zYmCi+HqIGcRYF4vFoJ5fGjwmysYEXrp0\nSZ8Z8573aJ6fYBWnkR+41XjPK674jQAAIABJREFUHaS8wws6ml9iPFGt240PQ15wONOfWQcp1ofh\nAw/+tTR+LpfTxcSL1Qb48md8DwALZTgcalswAUulUqBfw+D2vxNVdZtlYWG1YliJnP+GBc595FG4\nVtWbD4Yc1I/28GaE3+IlnMvllPbGdbwisgyeG2grB5hbrTIPHFAK8ObIJUzgzuJipvg7U/ZchBjA\nIdHrRy9xgEt62Ofd2NjQEhysEI+5hT69ceOG++zWZbe3txckYbDaMbvDMT/5pYXfcBFmngvWZcKu\nbE/jzVOJ5wMNuwNxfRya4ZpoNBo6Dtznnl4SwIdOLwnGfjY7O+tmvtrD0NLSUiJrCt9B//Oaxz5g\n1eBFjuZJrVYLkhJGo1FgmN24cUNdNnihcsKA57ZEP//4xz/WzzC+r776qn7mKUtb9yqDs169agBA\nuVwOClBXKpUgm3FmZiYITOd5hvvxXPOAv83MzAQH4H6/HwTx28oA3l7rVZrAAQRr5MyZM3oYmpS9\nyPpc7xSVSiVIpOh2u9o+Tl6x3+NDpDdnvDJEXt+zvhr6nOcuFPU525fbym3KQnTtRUREREREREQc\nE7+UjBROkczycFo+/oYTN8sLACwBYJWoPVkDPrF6bJEHL32b9aYsI8SsF5+e8T1YsPl8PnBh8bWY\nisdvOJjQXo9xM7pVsEARBM31rfBZtVoNatl1u91A6+jw8NCtewVLJCvFtF6va7+xRWWtGE6tZ1eG\ndbuyrg6+Nz8/r/3mFQXm4NGs+nFZSCsyizYjpXtra8vVxvLU3dEfGKtut6v34efA35mRwPW8dnl1\nEzHmrPEES+7q1asuc2D1objmIp6bLX58L82yt+vRrjEweQjcZQ0gb+7js8XFxcBFxAHKaGu5XNY+\n5DR5y9DUarXMKgz8HPa3rN3D68fuWeVyOdA5a7VaibRytM+uLw5u9nS40P88/zDvvISQwWCgvwUj\n1ev1ErpgImN2BKwH+p7njce64u/sBuW9F8wq14wDwJJ54R83btwICtIWi8WAgVhYWHDnI4Khs3Bw\ncBC47FgPiZlzrqjAfwOy2C7vPYVxndY1Ny1YUd9Tjgd47Xn7I8amWCxqW9FXXCM1K4RlaWkpOBvs\n7+8HSTPs4kd4wc7Ojs6zLM3EaRAZqYiIiIiIiIiIY+KXhpHidH8vxseKpHl1n7zYh9FopKd1vq61\nZDkAfdJnHjzmyAZwl8tlPXFzvIE9ZTPDxvX6rKWZ9ltPOC8r7b5er+vfcW0OKIb1ceeddyoTgXE4\nODgIGJBmszkVQ+PFDLHgIcNaPJ7UwezsrPYvW7mT1NXTUCwWA0u+UCgkFHlxfcu88H+jfxYXFzWA\nGf3NgbuYE+VyWa127m9PFNBjCSzDVKlU1PrjmBJYvt5YYczffvttDTZG345GI2VAwVLt7e25zBbX\n9sM1bA1KZr081XaAGUKgXC4n2g+Wha1OjnURGc9Tm6q9t7eXqH8nkpwvrLxvGV9PLDNNJsWuV547\n6D/veoeHh8H3uL+hYs2JKjbmi+ElkywuLibUw0WSsVnoA09hWsSPucRaYeVt+zdmiDF+HCPDiTeW\nNRY5GiewkSx9gHlqn0tkPPYIrsZ1eS56MaYcm4X7/PZv/7aIjJkfK/3AcawMOyZeQkKaeC3ACt7T\nAnPozjvv1GdlpXnMI7TH2zN5bmfFXHGMsQeM/8zMTDBXWe4Da3l2djYhmYB/WdEc98UaRu1LPgfg\nudfX1/U9kaVYPw1+aQ5SXtYZwAcGprft5GKXmBcYyy8dr3gw7sEaNFjMWRkh7LLjbCybsdBut3XQ\nsUA4M4z7wAtex2/swZDvweDPeONB5hYXCMV3sXB2d3dv+uDhAcHIIkcLB8/k0aneIcpTIPael9vL\nyQG2ZAk/bxa8LEA+XGPTTGs3gA1+YWEhSCIYDAbqduDAcrzoQZ1fuXJl6iLV9kAzPz/vHnKwqWbR\n2oVCQV0YOIQ1Gg3d3PDC2NracgOA7UF0ZWXFDXwGME9nZ2eDNdXpdAIjgV0iIskDlEhyQ+Zr4wCF\nMdzf39frcJtZ28tiUsFxnjPcZpGk4WXnIv+/VzaGgb7EQaHf7wfuFk6QwDxtt9vy4IMPikhSR8i2\nndeU9xxAvV53s7bsGLPyPtq+sLCgYQMcuG3B+wCvBfQLf8Z6ZCLjsbKB+VtbW+pOR9A5B7l7riUU\n/f3qV7+qn3G5FcwXb26z9hbeMUDamLN2l93H+v1+kFE5CZizFy5c0Kw+1unyCmhPg0ajEQS+iyTV\n5tFm4Gc/+5mIjOeOPchwZiPrdWF+8Bq1LnnuS0+xnMcV/40Ddz6f13mEQPRpsgajay8iIiIiIiIi\n4pi45YwUToR82rap5B4lzpQhW644TbLlaqUOWKcF4FM0u12sOrlnhVYqFbXu8RzswmA2yAY+V6vV\ngO3igGZWfLWMRLFYDKxe/u+04rEcNP5uAtZRrVZT6xGWPBfT9drFOijTMi8A+qBYLOq1Ycltb29P\nVStpeXlZf4u2cwICW/zAtEq7H/jAB0RkTKHbgqhpEhRgE5jFy1Kiz0qK6Pf7Aet07tw5te6yaO21\ntTVtgyeX8NJLL+l/gw3yUtIBZpCy9H481W6uAoBrWHYE/ZlVo44DgPn7uBbLAXhMlO1r/i36YBJD\ncO7cOREZMwM2HMELIvcC0Eulko4dMziYO+wKRL+xmj2YKK/emMdIoF+8Prnrrrvk+eefz3xmAO0H\nk+B5IbzxZ2AdcRUFMGLsymYGDO3nOYG9nsfLehJ4z0dfMbi4spXL4bkC9rPVagVB/fyMrHrPa9P2\n07SFmNMwbRA6J3iJjPcB67JdXl7WPv/hD38oIsl9xQv2z5Lh4X2W5zb6/8KFC6nXm5ubSzBMIuN+\nxryF7lez2dT+x9rikBG4EadBZKQiIiIiIiIiIo6JW85IWcG0NNVrWwme61axKKFNheT/5pO1tSrZ\nssX1yuWyMhscbGqRJqpp47XYyuIK7bBAOCWf1dXRFhbixL2sIGO1WnVr6YFN4Odk1otju0T8uKRy\nuaxWB/ql1WppHAKsujRrHJagZxF6wagcX2XTbRuNRhBovb29rdZNVoxCr9cLgpq9OCHvGjMzMwGD\nMDs7GyilixwFP7Iat2VSvNgqjvVDX83NzalVx32UxUR5sWiIY3rggQfk29/+dupvgfX1dWVZeN6B\n1WQWA8+C5/XmUKfTCZIwRCSI9RgOhzrWHFxtxSO5cryIH79jBUCZoWHYAHRWzeYgWGtdMyPFdek8\nJhTBzWxRW/FN7iNc9+DgIJBx6Ha7QTAySzag31jqwJMIYAFLAGPIsWNZweY25sf2C7M8rJouMmZW\nsmoAeorufF3LWM3Pz2scKDNSmMd43nK5rMzgU089pd+za4r3M0+8FnUWRSRgTBksFcLinCJ+ZQKe\n76z+//MCMz/MqNm9ygtwv3HjRlAf9O23385ku7EXvfXWW5n7GDOD2BP4HgCusbe3F7B1pVJJ2+/F\nTfH8wzzB2pqm5uwtP0hZtxYfmmzBYPxdZDyonk6ThXcw48XnqZ1jMXMGlqdcbNvEbbbPJOK7I/kQ\nxs9pD1fsjvQKtvKGyoHWAA4Fi4uLCVpcZDwG3mTBwsfk7fV6uqlkLZByuaz3yFogy8vLeh30a7Va\n1RcaH9DwTGgnfzZtYCS/ALOyYfBSbzQaunHivrxwgU6n476MkAGDse71elO5A+v1ekL/RCQZBDkt\nvL5HAOXBwYH78rO4++67g1IO1WrVdStgzuK6aQcpO3eq1arOMcyvfD6v6wbjViwW3WfyXr5oQ6fT\nSSjQi/hrbjAYBDpYPF/s3sDgQxnGiMv44GV4eHio2ZhZRh3fjxX1vQxim5XW6/USCv4i40QFjDsO\n1ZwxywHlmO9sRHgB9zYby9s/OLyB+54Ltov4Sul4PhHf2GClfO8g6pVqsskzS0tLGmzOyNpPPBcV\n+rFUKgXFktOAeeKFOfC+zfPIzr0HH3xQ24P7djqdIAwlrUC1LYJcr9f1Nzxe0yTmiByt97Nnz4qI\nyB133OG64OyzLS0tBUbxYDAI2s1hBDeLtL0TbeDyYShjhPcQl7VKQ3TtRUREREREREQcE7eckQLY\nXWKL0LKEgVeslosIWzcep1Gyu8wyOaxBhb81m003ENIGQTLlzG4I1mTC/S1lz5pWzKh5Qe02gNHT\nm/IsV5EjVmlnZyczyA8sHNeDygoe9jApLRxglxO7TnA/Hmv0If6t1+tBSvek4Ekea8scLC4u6n/D\nck2rO2XZLK4j6Lkm2e2bJZOQlco8TcA8YINlGawqDcs1K2D98PBQqXxeC1kyFZ7VjjZ1u91g3KrV\napA63+/3g/lZKpUCliuXyyWsdqsz5GnB8W94HngSJ/ge+p9V2FkzyLqfOKCdXRNWh82zlDmwHBiN\nRtqHXNPOzhV29+Nfri1p5SFsv1iUy2WXbbLj7z2HxzLNzMzo/OD72T1tMBi4Ol0Ar0HrPtzb29O9\ngJk4uDcZXOcPsAwXeys4sNwijTUGO4Z6fvxMvEZtwW3+HrcBePbZZ+Xee+8VEUnIkfC+JJJMXvL0\nGjEnDw4OpmafsgAZl0cffVQ+85nPiMiR1MG1a9d0P8FnH/vYxxLvL5HxHoI5+8Ybb7zjNuXz+UTB\nZpFkMD/+bbVaymaDmQIjm3n9d9zCiIiIiIiIiIj/T5HLimH5ud00l9ObwrLguB5PndxazZ46ucfu\ncAwCp1FbC4hji5jpsQwSB4zzfe31OA6LA+Rt4KYnC+DFQImEgYzdbletHY6l4LgvxLKkCYnivrCk\nPSvxZsE1AFnpGf3AytHTxDeVy+WpWS6A41KsYnyv10vUdBJJr5WH34At6na7qZIFjNFoJA899JCI\njGMFRESeeOKJQCWaWVQbT2JhmVCOQWFZjTRpAL4G+/294FGwaevr69pHHFOFmDBmNsCUgCXx5g8z\nP4An7cCfecHGQKlUSgTmc00/wIrb9vv9IMiXg8NZwd2LSwQ4dshejwPVgZWVlUCVnNkWMANp4pZW\nNZuRJRUgcjQ2GGsOGEdgNsuioC38DB5jiv6ZnZ11Y+JsEpE3J7gtfF+vDYA3J5hxRj9kXePMmTP6\nLBi3fr8fMM48NxBTxWrg3j34GllzbRIQZ8kxmOjDkydPaswms7x2LnDMJdYAi9v+MgGs0ezsrPZr\nlqehXC67iV4eM4h9AGMzNzen4zBJSoLmrRvxf0sOUiJyS24aEREREREREXFMuAep6NqLiIiIiIiI\niDgmbkmweZaicVqRRwC03MrKipuKDrcR9EGg3mvvj2KGCKTsdDoubWvdfWm0IWDrV4kc1Vq7cuVK\nZiCwp7+D+1er1YTLQWRyEd6FhQWlrr0+92oOpbkV+b78W/4Na3FY6n2Sy2kSslwXXno20+k2uJnd\nRjawlO+Vz+f1N5gvCECcBE4s4H7ziht74wjXJOZaWuCudfewq/hm5RJEQvXkfD6vfcSp2jZYeWlp\nSduC+cuJDUy7Z9WMw/dKpZL2EbfJ1gLj4OrhcKjri2uU4Tqe64nvD7eCpymGumTtdnuq5IszZ864\nyQpeUVi7rofDofYHu67+5E/+RESO9qcnnnjCvbetUTgcDuWee+4RkaM+8LR07rvvPnn00UdFROTv\n/u7vRMR3ia2urupehYBhT5rCSxZpt9tBmAbvB3BBLi0t6TiwKxFjhO9dunTJTXz40Ic+JCIiP/jB\nD/SzLBcx/tbv97XdHKiO8YAOGNfk43eJ3d953WZpZYkcjRun5OO+7XY7scZFpqsBZ69t1yPjOGEd\nrAOJfvUkh96J54v30Wmuw6El+P5x9kLGpPtGRioiIiIiIiIi4pj4pZE/8GrreLWdJlW7xqmYGSFY\nTziVzszMKEvEAZaW4eLAWBvUK5KsjYWTOd/3/PnzIpKsXu+lHdvnZcuZA6RhqUxSWsV10gLMJ1kj\ngCcUyoyBSNLi8pSH+f/BHHl94OE41gyYKE/8NEt1mH9jVc9Fklakx45lMY0MG2w8MzOjcxr9MhqN\nNDD15MmTIjIOhrTjztY9B1yjDZj39957rzILLJDn9a9li4bDYWDxe2KHW1tbbtC6xWg00jHi/rVs\nUb/fD8RL0+auba/I0Vr32IpisahsA9Z/r9dTIcH7779fRJKMDwJez507F4hb8rOAKfn85z8vf/3X\nfx3c22NhrDgw2iiSrM/2H//xH4k2Lyws6P04td4mLVSrVZ1jWXvHcDh0g74t6vV6IFLIrDYnd4Dp\n8VhXGwDP/726uqptBra3t3UPASuXtt4wRvAybG5u6nziChGeeDGA8d3Y2JDf+q3fEhGRv/3bvw2+\nh71weXlZJRZ4P+VaoICXOIJ2YS2wcv20welcFYHnvpWISJPJ8ZI+rDA2s3Ye08NzJ2u9en3OQrQ2\n+apYLGpbMC+5Mgiel+ex977mZDJ7XxYg9ZLP0nBLDlLei4g/w2LxFjFcK5ztlPUiWF1d1QmKIoRc\n4gJYX1/Xz7xDgpctyNkC9kVQq9V0YLFh8AEC96jVajpwXjFh3GNtbU03GX5evCxZERb09ySVXe4r\nr5SD/d7s7GyiBIaIrwtkr402e4c1W5ZDxJ8fWVldnHFhDyCs8eO5x/i63j0APlxZmlzkyDXAL/9p\nDoLtdls3SZQ9KBQK6j7Cv7fffrsekLEGer2eu0YAzMlnnnlGP3v44YdFRORHP/qRW/B2Grert6kX\ni0Wd514mDG+unro7l0JCO3hjFPFdD1z6Ae0QSbpx7Wbf7/f1BYu27u7u6sv5d37nd0Rk3G/24PHi\niy/qcwKcVYoXeLFY1L5++umnE/fm+/LzMTA2WB+5XC5Yz+fOnZNPfvKTIiLy53/+58E1+KCCg1bW\nXNze3paf/vSniXZ6WF9fd3WugGndKKyEbbWCXnzxRfn0pz8tIkdrYHt7OxF2kdW+b33rWyIi8sd/\n/MciIvLNb35T5x33i90TSqWSu3d9/etfT70fxujtt98Ofnvy5Eldo7z/2+9tbGzoekG/sLbhJLD7\ni+c+PgP4et57DICxUyqVErpLIuO1inWGA/XCwoL2ZdYYsX5VlptxOBwG+0xa5radb6w7OclgyYKn\nDZj63amuGBEREREREREREeCWMFJ8IgR7AmthOBxmugiyaqSVSiW57777RETkueeeE5Gx1WFPoGtr\na2rlwMpnNihNbRjttS5Aj+m4/fbb1f3Iljnux8GmntUByxzBqc1m070PrA/0S6FQUCvBY6QmBs2R\nbpZlp9KUrbOsVwb6A8GZvV7P1csBg8jMhXXPeYWiGWzNgD1DsCarBPPcsPPEK/DMVDID9+A2MyUt\nkgwwR192u12dbzxeNjD1jTfe0N+DsWWFdrSPA1Qx71jDC+uiXq8HbutcLpdZcDgL/X4/qFF1/vx5\nZYHxvCdPntT1zesc45tVi9CzJO1aRV+jD7imHF/7hz/8of4dwN8xTz/96U/LV77ylcT1R6NREIy+\ntramzw5L+Cc/+Ylbf9FzrXkFWG3CALs68Nn29nbAjjGgX7a1tTVVDbirV6/quGdZ4XNzc67atLeP\n2bqed9xxhwZqo7/feOMNOX36tIgceQ1ERItqY82fOnUqwcZaYN6x6xlB85/73Ofke9/7nogcjQHv\np2Aod3Z2dAzBgPCz8hjAFYxwjqWlpaCo9urqqrbVC2lA8HqtVpsY8pClsO2tDeyL1WpV3wlo1/7+\nfkLlXCS5n3hrBuBxxhz35rqIryNm5wnv5awDibXJHoVpapVOYpzYxWfbMjMzk/DuTItbGiNVLBb1\nReEtDExKkaMJwC8jW0rmgQceSNDo9ntWhJGvy6JwnMmFCYjFyZudF0ewsbGhbcKGywcNuJwmFWDE\ngoXPPW1yINYLz9ZsNlWiPw1ZLieOybLf58/wzDwZOSvG3oPjzfCC5/FFVtFLL72UWcSV/997Dq6W\nDti5Va/X9VDlHczsc4sk50yWj90Djz8WMcfA4GXIWUqe+4zLj9h2eBsf5me5XA7cZN71+fnxktjb\n23PjEfHyh5jjzs6OZoLhcHz9+vXgQHhwcBBklRUKBW0rDtnD4TB4+ZfLZe0rzLnd3V3XpYxNeGlp\nSecb9w3WF8fu4L/xss5ymzKGw6Fm9eFlfvnyZX258Nz2gL6GW5DLlqAP1tbW5PHHHxeRozIlL774\novzFX/xFartwYPj4xz8eZPjV6/VE6Ro8h41lOn/+vK4fxIm9+eabQbkV76XEwJzlZ0N5k4sXL7ph\nDdZAKxQK2hYY4GykckiG3RsuXLiga88bV8zPRqMRhCCwSwn7yx/8wR/ousBBa2trSz7wgQ+IiMgL\nL7wgImPD5dSpU8H9sFdykW5c2zuULCws6LVvFp1Oxx2vaQ8MXua6hff+5vJMWQZ8sVgM3s3D4VDH\nid81GHcucmxFczmMxHMfshFt3Yw3a0Dqsx7rVxEREREREREREbeWkeKAUgasSZzQ+TSN0+na2lpg\nxXBGErsoYBXbsiX8GWfFMfsAupVpVViOnoUDi86zKvL5fEDfzs7O6v04Y8bq5Yj4Vhj672YKO3qF\nk205Di4hwKwSrHp2JbJbFrAWSK1W0+fEszErwi6KSWyJ/YytT1uYcjgcTmVllMtl13XqwbPgpmEv\neK7Dym21Wvo55uzdd9+tlirrgOG+WcHalUpF+88rWcGMFOY77l+pVLSv8O+pU6fUosYcazabysxi\nDS4uLiorg/W6v78fjGWarg4+Z/bLsgqHh4cBa1wqlRLjwQGx+C3uA9ZrOBzKr//6r4uIyH/9138l\n+gDPJzK5CDaQz+eVmcN9d3d3td2T3GrYK973vveJiF9I99q1azq3P/GJT2j7PC09APd95JFHgr70\nCkB7pZhmZ2d1XNHPno6Wl901KUgX1zt79qz2NRi9RqOhAfLYo1mXyyvpgWe8cuVKsJe/8sor8tGP\nflREJFGEG+8aDjFAP4NJfPnll4P5+frrr6uLkrXcoKvFsP1VKpX0vmANm82m3HnnnWEn/V+srKxk\nZlx6iRie1h8wqSQWXwu/nRTCYdmdNJbeJoT0er1grpRKpaDcW7fbDcadM/m4SLgteTY3N5fQlhMZ\n97nVQDw8PNTP7P6Y+ewTvxEREREREREREeHiljJSHsvACqmeRYPga2aj2BoHIwRra3Z2VlkWnOg5\nDgCWer/fd0+eYErYuocF4qkDZ2E4HOqzseYKTr5sbeMzWED1ej04jVcqlSAw3yuWOgnMSHEgtR0f\ntEnED65miQBrjaSlrt51110iIvLUU09ltjFLwgDMZbPZ1D7EuG1ubgbzyGO8CoVCEBiZZlF5z3Kz\nyr3MjmJc8W+lUlF2CnNtUlFNWJitVkt/g7lt44gA25etVkv7AJbc5cuXdS2BMWm1Wsr+oo9u3LgR\nBGEXi0W9ryeRgXFYWVnRWD/07auvvupazZ7quAc8W7PZVOsffcosFdgHXkdg1Cal2oPhqlQqOt/Q\nH81mU+MrcW2WWGFgjSM262Mf+5gGw6OPut2usjaIs5xUzBv7QLPZ1OfEWtjY2FDmC2PiXeupp57S\n6yAg2xuDwWCgc4ZVpb15h7aA0RmNRtp/CL5mVm7aoF9er94+YfUERY7mNHsKsNbALs3OzmqbwVz9\n+7//u34f8YLNZnOqvbfX6+k7iJXu8T6Bx+Ouu+6S73//+yIyZtS4soDFpLhSy+54exuz3vZzkdCT\nwX/jSg5Yb51OJ2CB+D2bFavb6/Uyq1lw0H8WY8QSOVl7KOZLpVLR/XNSQXvGL40gJzAcDoNAPJEj\nmtXb3BCsydQvNrlSqRQcNlgPCfCq0s/NzQXuqIWFhaAN5XJZX+Zo5+bmppthiHZh4c7OzgbUf6FQ\nCFyD3gJdWVkJaGMvo8zC00mxQmcevL+lBRnaeywuLmof8sS0QZAPPvigZsHwy9dSzhzcyoc5zJms\nDBdOLADSKsZnLWbenNLET/lfvkbW4u92u1O7GT3ANTUJXrKE95yYq9CjqlQq6oJB33e73eCZ+P+z\nDpqbm5s637Hx8mEHG3OlUtE249CRViaJDzToSw5Ah5vSOzzghTZpDNhAw6HgU5/6lIiIfPe739X7\noc1p4IBjkfGBC0Yf9pO77rpLv4dg80klQuxeI3JkdO7s7GgZFWSzpQH3w3qcZEhgXdZqNR0fnlc4\nNPGLDe3CPOC+Rz/yPMX377jjDj1gem5OLhX1jW98Q0SSGdgICoeReNttt2kb2Cj/+Mc/LiJHIq3s\nUsIexhmiwNzcnD4ni0mjj9A+3n/wt62trcQ7ZBphSN6LmGDAWkS/5nK5RHkXEf/gy2VZOAvZin7m\n8/mgzNNgMND+QJtKpVIwj3K5nO7XuN7BwUGmkZD23sH18Oyc7Y3feOXo0OZOpzO1+Gni3jf9i4iI\niIiIiIiICBH5JWSk8vm8UqWwGguFgrJAfOK3bg8+TVu5fcba2ppaG2CSONgQn9XrdbVy4HpgawJY\nWlqSP/zDPxQRkb/8y78UkfGp156aG41GUPSWNU9gQbKV7blEAGajPC2aNFh2YDQa6b3BZrB1BUuD\nLUKPncqijTc2NtQa4r5mdWORZJA+W9zoJ9y3VqsFEgb831l0LLs/wSrwWGUFaTLbxsGN3vh4qb+W\nparX63o/L4gcVtkkNw4jqzird230/bQJC91uV8eQLWbc1ysUivWYy+X0vz0Wg90HXlKChyxLnV0J\naOsdd9whzz//vIj4jBYYHI+5FElqT4mM1wx+g3GdmZnR5+SKBF5fYz6xbASA6507d07+53/+R0SO\nGKxJQbDYx/b29tSFhGu//vrr6iL88Ic/LCLp7nXsDTYRIQ0Yy06n4zK6du9AO0R8zaYs145ltAG8\nG7wQBLCp29vbOgdRAubJJ58M5kS9XldXIwexo/8xH5aXl1UHC/3N+xkSEmq1mu7deK8tLi5qW9Fn\nnOxw4sSJ1LJoDI9BSgv6n3Y/sWAPAe9x6GNmku2eVigU9DfoN64Mgu+zhMG0YRNepY609gPoa55r\nk0qJeYiMVERERERERERo1PjhAAAgAElEQVTEMfFLx0gVCoXAMmZfK9BoNPTkyDEh1hrnUzfSSzlF\nla0/K255+fJlVyUaQPDlww8/rEwUkMZQ2OBbtqg8sUR8f3FxUS0ltjDARHlsBv42DWwByVKpFMga\nMEOUFZToneT39vbcYElYjrD0WLSQn9M+36lTpzTg2Yv1yYpv8Wqz8b3Qz16sl6eEns/nM9kBLzUZ\n/zabTY0ZYQV224dp1iP6lNnArNgZrA+uBYm5/dnPflbbAkv5Zz/7WaDaPRqNggQO3Ju/x0kMPDbT\nyFEsLy/rGOL7zBCl1Q+z8JiQ4XCosUdgBqZRTQcsozYcDgOm6fXXX1fZAMzxfr+ve9C07B/2gm9/\n+9vaDxxr6Em2AFgz+/v7AdshclTo+I/+6I9EZBzg7TF0eM5JjIid271eT+cCYmB2d3d1PoGRePvt\nt1MDjtOA5+D2Pvjgg9pOluqw4CQhjBGCuvn7iIsql8vyb//2byJyFOfE/c0sqg245t/gub2i3/1+\nX/cxjukFe3YzcZM2Riptb7JyQIPBYCoBTf475h8ruCOhwrvG4eHh1EyYlbdhcAC8Xf+FQiEIkOd3\nD88ZrHvuW9t/0zBTuZvNNno3kMvlprqp92LGpCwWi255kawSMlkU9okTJ3SC80KzysyT7uF9H5Tu\n1atXdYGxhoYHZG7wS8e6OE6fPq0L39MYOXnypL4oJgWm2oOUdzio1+uJl5pIMkiSgxa52DLajhc2\nH3zQHzyh0V/YUDy32z333KMHKc/96VWWB7xsMo8SnzYDkq8HpBVpngblcln7FwcWDr5kFxqXEMHf\n0KesFoz5gc84OzYLZ86c0b6E23hnZydzU0cw7+rqahC4ezPAc2LMDw8PE2roIsm9od1uB33OrgT8\ne+rUKTl//ryIiFYB4EQVDlD2YEtXVCoV+cIXviAiRwezr371q/r93/iN3xCRcZYa2odDCc877B1e\ndlGhUNC1hH2v3+8nNIzSsLa2pv0GFyTP69/7vd8TkfGL/rvf/W7we9wD4HuxZlFWpQQYdQcHB1O5\nqDY2NoKs6EajofOd90JkR+Kwdvr0aXWDAufPn9eknqwSZMViUTMHcZD68pe/rGONue09Q6FQ0FI3\nuEer1dI+4OBqfC8rM3R2djYYN5HsA0YavGL0x4VXBSINcC/jOer1eiIRRGQ8JzhMQmT8jNbwvpki\nzh6sS35Sxh+Dntft9Ojai4iIiIiIiIg4Jn7pXHteMdpcLqcnW5zq0wJQs7SnQN8yWI0ZbjY+vYMB\ng0XQbrf1HlygEtaiDSYXSdKGUIkG/TkYDNwgc1g0OJUze4Dn6ff7LhMF62lazR2RIxaGXQU2UNST\nViiVSomUWpEkS4Bn47bAgmy1WtqXXEMRljksTA7YhGV74cIFtQ5hXfPcgdvVsz6nlSGYVPzSu8Y0\n8hOTwPQ3rs3B5viXdb1YCsJjUrzgV1ugOJ/P69iAFbl48WKCrREZrw87Ru12W3+D63H/eawhM5g2\nCN9TJx6NRscKkLWW+6VLl/QzrO+DgwOdo3DTcaUEhg2qrdVqytpBKoCB9cEJKNi/NjY29L5sbWPd\n4HusMA3LutlsTiV14VVUYED+IG3uYn2xe9AL8LesB+sS4RnPnDkzFSM1HA4TTD6u7zGheDaw+MxG\nIZD9hRdecJ/Pukb7/b6GfsD1yer53Ha4RP/xH/9RnxvrC2ugUqkELMpoNNL7eckHnLo/rZRJFvi5\nrVae/W8LlhJgWNbbkytgXUcgbR5ibnOtV2+tW+aKawZymz3Nq2kKHnMbPIX4NERGKiIiIiIiIiLi\nmPilY6TS/OywimyMhP0eTrZgcubn55W18VJxcb39/X21rnHavnLlSiIewV4PVuj+/r5rKeE6fApH\nsClXpLcnZRZ78xgTFi2z9+IaeZPgBUFP6zNmpsReg8cQ/TcYDDTWgllDK0In4stZAMxEot+8vsK9\nWHyVA7K9mAHLqB3HH5+lPuxhUrwB5pU3v7jKvdcHXCndq/1og76Hw2HAhM7MzARq/KPRKJAm8OI1\neF7j7+VyWa/DY8lMlMjYmp2Uvj0NBoNBIM43HA41NoWZKTwnmBdPiZwTEHis0W8e64HYsnw+r/MS\n1z04OAjYJwbWdS6X09/gvl4MX6VS0TUJNqNSqQRrkwWI0T5mGoFOp6Njwgyh/d5oNAokLHhe47fX\nrl2bKq7r4sWLGqsEeGzG8vKyfg7pARHRGCTERXE8Icdoog+YnbUJKJVKRdcSiyd7zBpX1BAZvxu8\nPcF6NRjox93d3anYkEngPWFSXJUna2D34Xw+PxVT1u123Tp43r6OZ87acz32KS2pK+s6WUlRzKLa\ntmfhl+Yg5T0cPuv3+0rBYkFi4osk6VlbtNYLSBc5CgDnxYcFxlpM9lCyu7urZU2gZpzP510XG9wp\n2LQ/+MEPyre+9a3ge3wYwfWygnnx/Z2dncA9g98fF1mHMK8oMbeT/84bCYAJyYvQO0jZDYqzteAi\n4JIu3osWY/j5z39e/v7v/z5x/16vF+hmeQeatEOWzQz13NH8GyCr8LKFd+jHCwiftdtt/R5ebOVy\nWft8UlkZAC/rbrcbHF64b7M2p2mzfJiu58B3exD05j+r2d8MrHoxA/vDmTNn1K2JNtrgVFwLn7Ox\nBoVsuJcYmM9ra2vBYen69evaDxzUjf0L92LtO4zJvffeGxQ47na7mn2MuX39+nXN/uJDk8VgMFDj\nkAPgcVDBffP5fGbmJRssdh5vb2/r3pAVCtBqtfTgyAcve718Pi8bGxsicrQf8/Nl7Wdra2uBK07k\nqM+9NcBAJh//DsYD9uX9/f3gAMelwtLeTwDm2DupdMCYtE6nWV+cGczziFXORcZ7kVfNwkuk4d+I\njOcd65GJJMfB0//j/TZr3L09mo2t47w/o2svIiIiIiIiIuKYuCWM1LSKpRxoba1KdhvgtF4ul10r\n3DIIJ06cUIsPVt7S0pJL1dqT7fnz5wMrkC1qrkFkT/ceRVitVgMr1Tu9l0ol7TdYmrVazbUsJwXk\n2v7nkzz/zT77JLcfy0KAJWRGigMJLWDB1ev1oPZgmo6I/bxYLCozA+sU2jK2/da9wHPRY4OymCYG\nj52d354uVRq876Gt6Ktisahjzf0MyxfPOxwO1W2NvmeXF48b18TC97zxAqvAViOel61KT9kY831a\nNzKQz+c1OBzs0TS0e5Y2Dtq3vb2tbDau6blDRZJ1/ETGSun4LbfVyoK0221lWZhJ5rABtMW2z1vn\nd9xxR7AX8W8ArhnJLIu3D3MdMpEx2w+2Br+dmZnJHDteA9aFzgrYmCfD4TBIOmG3G/YS9kJgDl2/\nft1ldaxO19mzZ7VfufadXWcbGxvB/tPtdoN3A0vBYE7yOkH72P2KOZKmxu6B3aXvRiILsy1Wa2k4\nHLqaTNbdx9/z5oGnh8jwmD77G/4tnrtUKun3JtV7tExTsVgM9gF29+I5bnZPAiIjFRERERERERFx\nTNzyGCmOkxBJiu5xXJS1ij1F01KplFACFxmfbGE5QISPrTjENOzu7gan0QceeECee+65xPU8C7Be\nrwcxUsvLy0GA4u7urjIhsFI6nU5majjue/36dW1rmqU8LWwwJadle0wIB7J7YoWe0JkHWBFeoDf+\nmwMzOTgdDATiNbygxcXFRe0vKKT/7//+r/6dLfAsVsmLr+A2W2ajVCrps2UFm6clUnhptng2LyFg\nkjI45hba3Gg0dMx5nmI+caIBGAFYhGlWcJbAJq63t7cXsHve3CiXywGbxfFQzKxh7qfVZLRoNBpB\nYKwnoLq9va3XQYxRtVp1nxPMCALML1y4oLU2OSAc90Bf7u/va6wSxIH/9V//VfsoK6bNY13SGH2P\nveJYQPwW3wODycw/2KBOpxOMWaFQ0PXI8Bguj5nGfoE102g0tC+xvuv1uvab1y82TlXkSFqGa5D+\n7u/+roiM+8+yVPw9jPnrr7+ubCvHUXqVFSCPALaK56Gt5SqSzUSVy2X9PaR0ms2m7oG7u7tTsdmT\nkle8a3BwNcaLYxYxTlYJ3QLzGNIzvV5Px5X3M+uZGA6HriCnTUDhz5jNtOcAPhtMYpq8Z8EejnU+\nTXzaLTlIeUrlvFFgML3MAH5RWQ2Qg4MDzdbAy+Tg4ECDvr1DEIKX+YVx7tw5ETmi2vm/PfcfDyRe\nTrVaLdCheeyxx+TLX/6yiPjuNAYGkXWppjlAFQqFhPq7Bxuo5xVn5QXJWThYJDiozMzM6OLkoHnW\nOAKwMTIta4stz8zM6LOjzy9duqR6K9hoPe2h3d1dbR/AiQP8Us/abPA97gN2ddnfVioVfaasDDM+\nMHjFlb1NDt8/e/ZsUGCbMz7xclpcXNQXBK7traM777xTXwQM/AZjMDs7qy99JE0899xzOtY2o8v2\ngX2mYrGon3k0vRdQyiVHPGSN5fr6+lQHqVwupy9szLHHH39cNYIY1mhqtVoabI5n6Xa7GgTNCt14\npvvuu09Exn2JdcrjYfWFms1mkMDx3//93+4z24zaw8NDV08NY4dxqNfrwW89XTwuugukua29vc0q\nfW9vbwdJMwcHB+5hCYcM9MvCwoLu+Vz6C8BaSSvIjLYgm/ratWvav3bPERHNJLzvvvsS5axExgdC\nzCHOQvOqXdixnJub0/0d75hCoaDt99xk3qHpnVQqmaQc7h1GvEQJr/wR773eOvY+w7Mw0eAlrXjP\nAXjGM7/PrH4VJwLcjGZddO1FRERERERERBwTt9S156UZ1mo19/RtA2NbrVbAuGxsbOhpeNqipo89\n9piIiDz55JP62Sc/+UkREfmbv/kb/cyruQbman9/P1Dw9VTFn3/++cDiZ3cKTuULCwuZrhM898zM\nTGBtr66u6imbqeSsIHLPFVCv190iybAIYY3Nzc0FAbT2N7bdfNLH9cAcPfroo2o98jVgwbGLD0wj\nGILDw8PADcDzgC0qO8fYuuMadUCWGrrnovSem9XiWTvI1v0TSQbdiiStPLghRI6YPzBTzWYzYIs4\nRRxzgtkPWPSXLl3S9jEz8M///M+J56nX60F6Po8p2pTL5fRz9N/NBHNaizCt9uG9994bfMYB+bY2\npre/1Ot17UMw1/fdd5+yu8xE2zGemZnRfmXmB4wKM1I2WP7kyZPuWvmVX/kVERF5//vfLyIi3/zm\nN3XOoM/TUuexBsCOc1Fgz0XN6xzsia2vx1hfXw/W2cmTJxNSMiLjvdruT9zPwGg00vmJvnjppZcS\nTJTIuL4mrod5xGywp1ztSVgwHnroIRE5qnDBtQazmJWnn35aP8NYeoxcvV4PtMjm5uYSwegiSW8D\nxsNLRPp5gL0H6EsvcJuZerueeX1g7bXb7YB9TgN+w8krViaB3Z9czQKfYe4WCoUgoJ2Ta/jckbUv\n4f7TuFQjIxURERERERERcUzcUkaqXq8HVlW73Q78vCx0xhYprJhXXnlFRManaS9+xQtWhBXBTNTn\nP/95ETliolj9ly0rxDfAEuZK78Di4qKe0u+//34RGfvpcRqGxdfpdIIU52azGVi9p0+fVosPVoz3\nXIPBwLVUOXjQWm4ei8KBtlm+Yo4fYGbLa4MXL2GtzoWFBTfwHSwBs0SIYWDrEPf9yEc+IiLiVrOv\nVCpBzIgXIJsmcgoLietz2b/xdbg2Hv4b83hlZSUIyLT/bcE1IW0MF98PGA6HykBh7nzwgx+UZ555\nRkSORGlzuZx7X8SqgfljAT38Ozc3FwRND4dDbRfW28LCQoI9Exn3I9g4MI87OzsB29ZqtYJq8vv7\n+/Liiy8GbUZb2DoFbrvttkTsHL5vrf/XXntN+4sDiu0eMxwOlb3ANWZmZrRfOdYH8xh932g0glqG\nIkcMyU9/+lP9DAysF1fKwLzEPsXP6sWPIE7xrbfe0n5FDJQXP/nyyy8HIsLValXFPDGf5+bmAmb+\n4OBA5wTHzaDN2Mu5nzEGr7/+ejC3c7mcW9sRQf1PPPGEiIznHTwIiKW6evWq3HHHHSIiKtrLQLIQ\n77PMLgJYy2m14cCKoZ97vZ5ek4Ug8U5AX/A+ffvttwdeirR4KC/o30oYiIQyLxyD5N2Haygy6wzg\n75OSYTCerPLvJYlhv/EYWxZ9BSbd92alDW6mosItPUjZxSgyHjRsuujIUqkUvPzn5+eDicX6H6z4\nbINDOeAVOHnypC5ioNvtBtR+tVqVX/u1XxORZHFMwKoeixxRtbVaTScRvwyzqEOvqCVPGFCiuEba\n5upNIi76azMH0yYd2sEKxMCkQEf0DdrvuWq+/e1vK83N88PLnLDlFQqFgo615wICVldX9SVnExaO\nA95M+MDF2VD2Huira9eu6UGFs90ArAWeJ5iLg8EgcOOVSiV94XIQPlPcIuPNC0HkmDN8qMWL/JVX\nXtE+RX9XKhV9QXrK9aDYh8OhHizQZp5XvKbx3+ir9fV1PQDwvLJrPp/Pu/sIDmneZlir1fSlioQQ\nzxW/s7MT7B2cTYj102g0giSUdrutBzz0c6PRkGeffVZExq46kXFmsOfGx8GXg7oxf7AnTQLat7a2\n5gaN2wLfb731VvAyyufzgWu01WoFh85XXnklUcRZZNx/mDOsHYbrwEXd6XSCvfe+++7TAybmlbem\n9/b2gtCEjY2N4KC8v78vjz76qIiI/OQnPxGRsevzn/7pn4JrYt3A5f3222+7SUZWn3B9fV33OBy4\nNjc39bCGNvF42wLY/Bmj2WxmBu4DXgB1WhB51nuH3Vpe0eVpXY54LrT98PBQx5HLvmFuT6ux5Wmf\n8d6SVQKMNaZY93HS97MQXXsREREREREREcdE7p2kSx4Xt99++0hkfPL2LEHQsrCUvXTl1dVV/Ttr\nG+GEyfSxPeGXy+VMdxV+e/bs2cBS+tznPqe0PDNg0KhCGvTS0pI+G+r67e/vT6Qf0Wacsjn1G8Gj\nsLZZc4v7x0sX5VM4Tt2clmutK1bu9eClJjO1b68nIoEWlEjoNjp16lSQWr20tOSmb3OQtEiS4WLG\nzKYab2xsqMWIPuh2u4GbjNmMLFcR9xWu1263tc85sQBWIFPTGDvME3Z5e9IF3phPWy3AA65Xq9WU\nDcPzPvbYY7p+2IVqC9NyPUz0z+rqqo4DB7dbrZput+tazHCtYH3v7e3pfLJMHK5jrUd2sQMrKytB\nILgNCMb90Tc8/6y8SD6f17XuWcVg9+6///6AAXnwwQflRz/6kYgcsc/cVzzWmO+PPPKIiPghBRwC\nANx7772u+xPAGlxcXNR1yAHolvXw1Pu535nJsb9ZWFjQ9Y+5cdttt+k+gr2/3W5rG7Dv8bsCbe50\nOspmnDx5Uj/DnPXYHW6n7atPfepT8tnPflZERP7sz/5MRJIhHt4exu+fxx9/XESO1opXaFlE5OGH\nH058TyRcw7ZoNuYd5uI0TEkWbDD3cDjM7C/cr1KpuJU8PCV/D17lCOybrCfpeUWy9jnvut7fsyod\niPhsFn3X7fTISEVEREREREREHBO3hJGamZkZifhpyNVqNYjnYHhxGt5J1NZSw29EkrEqCFjf3t7W\nVNjvfOc7wX0RuLm1tRX4cc+dOxd8xpYIYlamVSSfmZkJ+oDVs7NgA2mtxZiWUmslGObn51OtKZEj\n2QKOvWB2yWOkYAGxvxwsFqwAjvHCuK6urqpl5gWA8vetpEa/3w8sjDSGy4KTHLj/rKU1Nzen7cEc\n63Q6mRYjB2t7lhf6D9fL5/M6lzlAFWOJ6xWLxURQKPrAg8dsZQHW+MHBQWYgpnddqE6/9dZbgSXI\nNRLxbDY2aRp4ysdsKQO1Wk3biHlsmWeR8XxFv/KeYasOMGtj0/NFjmRSHnroIfmHf/iHxD3OnTun\n+wP69Hvf+15wr2KxqG0F45MmMmnB8zML1WpVxwH9t7W1pc/i7WO8v3DigciYDbZ71sbGhjKE3hiD\nfdre3g4UsIvForK7nuTBpHhHjAP+/drXvhZ857HHHtNqCNx2vHfwL+/3H/jAB0TkyBsh4jNODFyH\nmVXbH7Ozs4l4Kjw7PuM+53egx8hYBulmAqkt+L5AmsQQGEYwwBwPB+/BJHmBrOB5FjnmagxWKT0t\nYB3979UbTBFLdjf1WxJsjgf2MkKKxWJmIBsemGlez23FByh0Fi9wLEBQ+7VazT1AYUHgxesFw127\ndk0PHTgYMDz3DNrMarhoH7v22I1nUa/XdULhGnyI8oJSK5VKov9FxpMM4+BlY9jf45ktMNm4mC7D\nm8zYPBCQef369USgM19XJHmQsgfo4XCof+dNyS7yra2tYNPluQOUy2XtK7tYvecW8cfJy5jhNltX\nIpc4YOVyG6w/GAyCPjg8PHQ3HnzGWTH47Sc+8Qm9P0oiYf5dunRJr80Ha1s+wcs45Mwr667la7Ra\nrSDg2lNAFwldwWngAqv2IN1qtbQ/+ICBccCzz83NucYE2oM9aG1tTX8LdxU/Lw5A7XY7mNsXLlyQ\nP/3TPxURP1EE9zpz5oweZF5++eXMZ7fY29sLMvSuXLkSvMC4kDGrnXO2pki6Mjz6GX3G+kTYF69d\nu5bIWBZJHnwwD4bDYaI8Cj7DAcSbT7jO/Py8/gaHpsuXL2tiAa9hrCn8e/nyZXcNZx3SODsTLspJ\nQdN2bnvzeX9/P0EIeKEW0+o0TaoOkIZcLheUhjk8PEyUlREZ9x/WAPqKM8i9uY3vYU6KSKJANlex\nwL2sccgHaRgB/X4/2Kc5KYXLVWUlGdkC3lmIrr2IiIiIiIiIiGPilsofeMrVbJmytc0BpyJJ+g6n\nz3K5nFBzxnVx6uRTsU1t7HQ6rtUBGhoBoCsrK0ptoz4TB4fCatza2grSwb30d3Y94TTOLiUGrHGw\nVK1WK3CTsC4RB9l6bUCfb29v63U4WHoaVCqVoH4cBy1PglWExzOIJPXB7PdFQouh3+8nClza73mB\nwFngYpqYq56OkOc+FAnndKlUCuQq9vb2Eq4L207AS38eDoeBm4nTwdmSBI3uuTT/5V/+JbUPlpaW\nlEWB9MXVq1fdNHmsH/QPzzUwhYVCQeclrpHL5dQFgLnNFiUH+MJyh6XOhXYZvLdYFmswGLisnXWn\nF4tFVRaHbIGIBJbt5uam7gVYP8yYII2/3+8HTAWrXGepiXc6HV0X7NLz5h3AbAaeE32Zy+UCVmcw\nGOgzYbw4GBv96M2h0Wik9/CCw5mVBZuNPb1QKLjVBDBe7FJkfSuR8RjZvarX62ngORii5eVlnVvw\nQtx///3y/PPPi8jRfre1tSUf/OAH9X4i4/FDX3rhGVwvD0C/TZKe8BhPzK+1tbVE/3v1S6dJMmEl\ncgb60FO75300S8cJ3+t2u3odjDuzwWCddnZ2AjkYT5sr7Vk9JtTzFmA+cULLzarE34zuVGSkIiIi\nIiIiIiKOiVvCSHnsk3fqxSmaBTk5nsTGJbRarUQqqsjYYsXJF9/r9/t6KoalMRgMAsG3j3zkI6qC\n64nCgYkqlUpqxXCgKGIjPDE3nOh7vZ6e6mGVHxwcuBYmTtToFw4cR1+kBbTDWmLryIuDYpVej6Gz\nzFa32w0UjVmM1GNZOA0V1gT6aHZ2NqjizsHrbNF7dZKyLC/+HtdqEknGSHH77LzkuCmuYm9VuEVC\n8Uj2+wP1ej0hVoj2ZlVD5zRkK3gpcmQlMpOH8cdnbJ1h/HZ2doL+29raku9///tBH3jq6ZYZ4Fga\nLxaJ6wmCLUY/1ut1/S36bHZ2NlBFt7AxSCJH/QGW4s0338yMe2DhU6xJu6+gjSLj+Yn2QMKi0WgE\nDMjbb78dKDi3Wi3dRyCM6QWH53I5lV1h4Dreuvf6KEuFm9P8vTqomO+NRsOVrcGzeYwUS9VgHvNe\ninH3+hnPxmsU3/PkbVgwFLVUvQoHvBaZ2bH9PDs7K2fOnBERnz1hVh0io9inrl27pv2GZ+QYXaBe\nrweB0d1uV+fYwcFBEM+TFmNsWXkvSJvjMJkR935j2aHhcJh4f+EzTzAV9wCzVi6Xdezwt1qtpvsT\nJIW63W4iYYT/ZYxGo0RCBj5Du9JkgSw4ScXGtE7jnbklByl2q1j1Z5FwMbGGEr8wcJ2sAxkH32LT\nuXz5cqJkCt9L5IhKfvrpp7VdWEhczgHXW19fTxygAA7Os8DLxDuw8IREO+fn5wNKvdPpJDYUkfHg\nc7AvwAsDfc6uFW6PfT4+vNgNdn5+Ppho/B3WX8LCYeVde2A8PDzU8eQDNx9asuAFGU5D0XqFLD33\nH1+f22QLaIscHTp5s7EUfJpWFxeAxr1wHfS315a07JksVyvm1eLiorqo8OLb2dnRTQ7zaWtrK8gW\nYrcQ2pDW77YwMoMP6BZZhbwB228iRy4i3JcPDAAffIBCoaDJG15CASuq49DA2Za4H+7P7g8YWaur\nqzoncPjz+q3VarmHF1bEngYwpLifuFAxxt1z38GtxvpaHni/sJUh2u12Qr8OsOENImGWIJdE4vls\nDy8MHIq8+XTx4kU9eKN9Xh//5m/+ZqJUTxparZa+p1gLEfsYntE7cHQ6nUAF/vr167r2PF2/NGML\nc5DddHZtevuEN+/y+bzbd/awwZl82CeKxWKgHH54eBjs4c1m0117WYH0vP9wog2ANrBCuy0Oz+3z\nqk9EZfOIiIiIiIiIiF8AbgkjxamesMw4qM6eWJmN8VLIGZxmKzI+deJEycGVNr1c5Oj0itMxp+B6\nhUVhISCtlrGysqKWBe7FLhH8y3WG+NmsNcbthOXCp2e2VvAcafWbYLHAwk8LVPSsXWsVzczMBKm7\n3C48JysaM2ywJI89+i+Xy7n0qmUVvWfJ5/PBZ+wSzVK5Tatt5QW0e64Qy46Vy+WEW1ZkbJ16aeh4\npkk6b5YZqNVqCXelyHjMrAWZz+cDlm97e1t+8IMfBM/L4yByvLqEWJd7e3tT/x6sCbtmPZkEHn8E\nD3vgepkWc3NzgVV8eHioQbK4L7cdfX/ixImEKwdtxTNz0gzWHu61urqaSPoQGc8Ty1p4bBzLpEyr\nCeZJQHgMNvY9z1q6O0EAACAASURBVGXjsRknT57UvYH3A6/umxf0a9PpRUJ3ZbVadZlVjCfYr93d\n3UxZAe4rXM9jieAKfu655xJVLNJQq9X0PcXuJtsGDpBmRtd+jxXEvedmTwInSqSx0hbW5cg6bNgT\n0uaTV39v2uBsDv0QSb7HWToha5/guWr3T37n8/vEsmOTGPNpZA/0N1N/MyIiIiIiIiIiIoFbKn+w\ntLSUGbwHS2N3dzeokzMzMxMwBmfPntUUbcCLqeFgTg7mQ3ovrL9+v+8GbHrqsDbOaTQaBSyK15Z+\nv68+fhajs9ZYrVbT6+F7LADHVbZh9bKFw/f2Akot85HL5VwffFaMEged2zg3jicB2KrxlOgnWTiw\nbLJENT3UarXAKmZmEG31YnhqtZq2kWMCPOvFxoccHh4GbCB+zxiNRmo1c9wExgP93Gw2gznG1+Lx\nm9ZKtfAs3FKppOOLPhsOh3o/r3I8x9zgmdB2vj7PG6//baIKMz8i09Ua9OJ7BoOBBopDRb/b7eoY\nQ9iRGTvMobW1NWU0WCwV/YGYxG63q3sMvvfmm2/qPLFsNWN+fj5Io+c5B1mDSdUTOAYN7UKf8/Wx\nHvv9fsDWsBAw8NZbb+n1gFKppM/JjBSel2NC7T1YNgC/XVlZCebiwcGBvkO8lHkPGOd+v6/34HmD\n+ZvFQnmB3oVCQfuNf2vV4rlP8f6Zm5tTjwmvgSxWZjQaBXPFsj0iyRgpHgdmJ7Ngx5qThGxclEhS\nJBRjgmfnPRr9x/1oE6rSwF4e9DmukyZzYK/JgeXczzfDRAG39CDFL1wMhFdkVuQo6wjuoX6/H0xk\ndg9yQCMCADHp9vb2dMLxoQ2bEBfEtAckDm7jttkNYzgcZi4CPHe/39eN3aPvsel4OktcMBibwxtv\nvOFOJF5wnhvN9mWlUgle0rZkAb4HZD3vpCBxVnq3CskeuIwOtwWbAtOz9uWalSEq4mdoYr54YzQa\njdw+t66kTqej/cDzynv5o424xszMjB4s+YVnMyZvRrkY/cwZK2gLl1iwGy0r4duAevvf+Dte9Feu\nXMkMGsecW1xc1LXJbg3W5MK9+JDmKZ9b93FaH2H+8nhh3WHNMTDmOzs7GlyMNnMZHc52w96G/aLV\naulvMNbeiy1t/aAN2E88TMoCxYuI9xgE2Y9Go6Ac1Obmpu6pDNzDKw8FsPGG55xkAGEPfO211zKv\nPa3LGG7YwWAQJFLMzc3Jm2++OfEa3v7TbDbdccCc9JKJYJSxAYm5xOEkS0tLUwU9c5s4i83qPnHg\nPlAoFHRf4gBuz6C1JWdGo5E7hlnJIx6y3GpeQhAHr+MZV1ZWtM0cvmJd2ZPeSXZ/zGz3xG9ERERE\nRERERES4uKWMVKFQUAsNabfr6+tugKA9Ffd6vaCGHtPacJddu3YtSGmtVqt6ovX0dNjCtSdpPinD\nKl5aWnJ1X2zx2EKhEMgtVKvVREFctAmWAfqCA9X5ZA7LkF2asDQ8dxo/E7vTrKXX7/enKuybprGB\nz1mBGvAsC1gOlUrFtepsUOVoNArGhiloW/CU4VlHrCbPlpWVFfACzPP5fCYT5LFVaMPp06czVccB\nThtnBhO/YesJf0c/csFr9HO5XA602QaDQSIIXmQyw8XP5rEF+DtYgEcffVTbgMBwz/r0tNcYzH54\nc8tT9UZ/1Gq1YA5sb2/r3/mZ0DfeGP6f9r7kR66zevvU0DV2t6t6sNtuDx3HiR3HCc4AsQRZRPwI\nQQiBxAKxYseSPRL8CUj8AazYAMoKZUEgkTIoQZigJMrsoBgcO+2h2+6unqu6ht+i9Jx67vueul1p\n+L7+Puk8m7arbt37zvec50xsusUZBOf0GzduJByJcT36ykXC9zIliwzfZyEzaOGHP/yh/P73v48+\nR59wPvIesFwaeA+Gc2YFk1hZvcvlcuS60ev1EjmWRJI1+fhcx1zDJFYqlcyUBeF5ITIYc+yPYrGo\nn+F9gVqTDLZC7OWIbLEyX/va10RE5LXXXkvck/+22211bgcTVa/XdR/cu3fPzHyPvvB6snIoheAx\n58zg1n7Hva1ae/t1GeC2s/Ujjf3qdDr6m9BxnPuxl3kb4OAfrjFrBaLtBWekHA6Hw+FwOPaJA2Gk\nIE3OzMxEWgwcPRlPPPGEOnly8jVIpyyBQoOznNjT6vn1er2RGBiRgc0bfkmffvqpfgetllk1aBJW\nCCv7zVhVyaE5t1otfS5rebgnszHsiGcBkvv8/LyI9NM3WIwUwNpO+Bm3BezY5uZmFI7NfeOM9WHS\nte3t7aFpB7gNXKke2gQzE3x9WooFgH29uNo42oXPKpWKas3QWDh4wWo75n9qako1TIwH+/UxML5g\nSZeWliJWpF6v61rGnLOfWFptqXa7HSWjy+VyERtcKpX0+1ErzIOd6Xa7+hu06Y033tDr2Sk97Hcm\nk4lYozNnzihzjXaGc4nxvXDhgoj09zrOAvZz4/p9Iv19xvXAgDAsn9kJDh/H/GPflstlZVxwD/ZV\nwnhwZmYLeFY+nzfTZITVHSzcvn1bvv/974uIyB//+Ef9PKyv2el0Ii2cA1oY4dwMS9CJe+Pc5nP5\n/PnzIiJy5coVvR+YpkwmE63fcrms44uzenNzU/ccM4Ahs1IqlaJzuNvt6lzze4f9XPkv92eYnx/G\nD5Uu3n77bXnhhRdEZPD+mZmZ0evAQubz+ei8XllZ0TP65s2bEUvItecsJgf95UAl7ns417lczkx8\nvJcvEcAMI54Rppfhz6y2c/oDi/VKY9mwNjhtBL9bQ1ax3W7r2hmWGFlkNB+pAxGk0CFLaKrVatop\npPd/+eWX9XvOXssHlEh/sixHzTAaRyQ22Rw/fnzoSy0EDg0IUGyKCjPIitg5hoByuRwJk+fOnYty\nU+Xz+WgjnThxQiM9rM1uCT6tVitR4FakP36WuYsFI/wWsIrCcj/3OnBE+mMUmlNZOGBYETKh6ZSv\nGWXxiwwEFV5X2MwbGxuRQ+bRo0ejFwsLsdZzLYdSoFAo6Esdf1dWVlRgQLtqtZq+WLgsDEediiTz\nA3Hb8RnmKpPJREJTWlki7iebD/l7KwoHsMoNPfLII9r2sEB1pVJRp1u0k8u+sFnNGnO8sM+fP6//\nhrDR6XQ0gzuXA8F1/CLFusQ4nzhxQs3oUODOnj2rztno3/r6up47QK/X0z3HL7E0gZdzaGF/WXuV\nCy2HL5tXXnlFfv7zn4uIyDvvvCMiSUdmtGV+fj5SJu/duxcJnXgOY3V1NYo+vnPnjl5nKbbA5OSk\n9olfaBhzzuiPNcHthLCBSDnOEwehfm1tLSpAztFnAJdOYYwaERgqMRcvXtSC1xxtDQUU/Z2YmIjW\n6dbWVqKQffiyLxQKiWz9IsngkLRzp1wu6zsDYz8sB1WY4TubzUaFu3d2dr50UWCAFda9nNLDQvX8\n3uOovbS8gKFyzGBFaZSC0Pq7Pa9wOBwOh8PhcJjIjCJt/dcfmsn0RJLh9GAGGo2GUpKsAf3P//yP\niAzYqUOHDqkEbEmxuEez2YyoSXaMhDbzxRdfaNFQhL9axVnxe5GB1jE2NjZU6hcZaEUWA3fkyJEo\ndJ1NACHjIDJgfk6ePBlpeuVyOZFHKix0KyJRODNrcPyMkOLudDpRvqdMJpPIOYO/aeYzXNfpdDQ/\nDxg4rt2HMbC0RIuR4rWcFibN6461P+47+h0ylw8//LB8+OGHQ/vGOVIsk2PorGrVfRMZmEIw77y+\nwnkREXnooYdEpD+OoXM109oMK39ViGw2G9VhtK4rlUo6r1ZuFsBySq7Vato+zsMEcKb+cJ+xqZVD\nnIGjR48qWwTT3eTkpFy5ckVE7PxlFsCATU5OKiMFU002m9Xvsa7u3r2r5wnnCsKeS2NoxsbGIrN1\nt9s1zQ/333+/iAzGehirjvv89Kc/FRGR3/zmN5FpZ35+XhlQnBE3b9409wjA5wtSRITpHBhzc3Py\n4IMPiojI66+/LiJ9li9MOZDL5RL5nkTstB/5fF4/Z3cItNlitzEW4+PjuhYtJoZTgODePAahKWts\nbCx63k9+8hP57W9/m7hORHQMcPazewrWzdjYmBa05j7DuX5U1r1UKun6RD+uXbsWFWnndcd1+kKG\n0zqzOFs7xqXVaqWmMUirKsHvH4vhxj3K5XKCUcP9wsLow0x34T4blo6GPjMH3Rkph8PhcDgcjn3i\nQNMfsLQKybxUKkUa63PPPScvvviiiAx8PIYlvAwT8rEDHzTSmzdv6nVcfy/UuFqtlskghHXL1tfX\nU/1SwhDgEKHEPzU1pZoDa66cGRffheGg29vbqWGb5XI5NUMy8OCDDypLxE76oUPkxMRE5EQ/Pj6u\n7AVCehcXF1VT4TQDoZ9Oo9GI0lrw/UOGSCSpETKLNQyc/RdzXiwWE2PIfUG7RIYnCYVGw5oP2gp2\n6e7du5F2xWsY7Ojs7KwyJphr1tot7fmjjz7Sf4MB4azjAK/TUdho3mesSYa+GTxmXLsNcwjGxxq/\n1dVVXe9hygCRgUY6Pj4e7bNwz4a+WGCjROx9iPYxc41zotFo6P3BrmA9cFvb7bZ+jn7cvXtXmQPM\nR6VSGeqUzajX69o/jOsw9iFkg4cB4/HKK6+IiMilS5f038DGxkbE8lp1/4aBfcZEbDZ4bW1NmSjA\nSiKZy+WUVWLfOIy5FRjE9TPDwKJqtap7E2PbbDbNvRQmmxw2tnhemu/aSy+9pGwx71HsZd6bmEtm\n5/i8GyUYKp/P6znLSSt5H4TAdTwP7CeEdyXGzQqaYt+8vXyl0oJW2B+Lg5JE+msRY8wJvK1aqniH\nWG3FfLFvK7f5y/hGAQcqSPEGPX78uIgkqWm8gCBEiQxozw8++CAhGInYDnlTU1NKV/N34Qu8VqtF\n+UisLOYzMzP6PP7OKrHCBXtF+odxKJgtLy9Hh6FlAuQIR17k+Dd+y7lg8JIQicupMDjPkHV48L/D\nTWIVEuUFyvltcGjxszCWnPeFKXWR5Nhai9vKQIt7MOUMNBqNRPSnSH9cQH+zUBD+lgVvfr4VZID7\n8P04qkskKVjg3tYzrl+/ruYAjB8L2fjOiu4ZhlEodoYlkHEmcvwefer1errP8Kxjx46p2Qj9+Oij\njyKBoVgsRlFWKysrqSZbEXt9h+bxRqNhKlJ4+eKFdeTIkahYuZWzaGtrS9fxmTNn9HPsGzw/n89H\npvZh6zkseG4hm83qvdOqADA++OADEREzJ9HY2JieGXDcLhaLCWVoGDhYB2PB5y3vN/QdwUSvvvqq\nnDp1SkQG+fDa7bYKUFwFIiy7wxm1sSYmJiYSwSMidlCE5UCeyWQiZS2bzaYKk2mCweLioq6r5557\nTkT6wpWl7KJdCPK5e/eutoFN2EC1Wo0Uxq2trdQAH4xlLpfTNlglzwDew4wwIrXb7UYuAPtBmIGd\n/221z4o0ZMd3fFetVqOM5tb9yuVydB6OUozZTXsOh8PhcDgc+8SBMlIiA9aEqUdonaFWITLQqMLf\niPTZJ2iY0NT4HlZBR4TT7lV/DdrL8vLySEUNe71e5JQe3lOkrwVbEn9Y8HZnZ0clcysfFhwz8/m8\njgEzRbgfmzfA2rDmaLEOljY3rD8iSQkeGjxn6QUmJia072ySw3O5f2GmYqs+17Ds6SG63W5kKmHn\nRga0QB7zcG7YCd/KUQbtbWZmRs0fYD2y2aze+7777hORZDoAZmA4X5lIX3vCb/k7OKVytmAO+eZx\nYORyuageFT5HPwEOtxfpszzh/ZgNxH0XFxcjZmNmZkavw3ppNpsmu4R24bmVSiXV6TabzaoWzjmc\nwBzx3guZDcsUyGPA+wssIGesB0PDTrOc3kFkuBNs2BaLmZqcnNS1aLHYabD2x+7urqakePPNN7U/\nDzzwgIikM1K9Xi8RuCOS3KNcuQBjhNyAU1NTkQN/u93Wcwdzvb29ncjdJdLfgwsLCyIyYGiZkbX6\nibXGexX7rNPpRCxhPp839w/AKSrwPQfRYI2xZcUC+gvrDLOfp0+f1pQoAKc6sSpuoE9swmQmLGSi\nstlsxDTxHuQs+1ZwEvrOARIWUw+EuQZFBuNrVb/IZDJm4EvIgHF6FvTNMvFx6hn003oXjwJnpBwO\nh8PhcDj2iQNhpDj8HhoGpOdcLqeaAvtwwG7MYaKhMzLfjzU9SLEs4YepDqxq5qxRpbFQVrZjlsDT\nkoyxBIzw4XK5HGmYJ0+eVGdFdlgNa4ENk6ghmTMrAkxMTER+NSsrK8pscIhwqP2nhURze9hfC9jZ\n2Yl8XtiWzbDYkzB8l2sxYcy5viEwNTUVsZmzs7OpmYOxPjY2NvTfzLCBEeT7hlm9Q38bXIP1y3W+\nLNYRa5Ydt6FhYk9lMhmTnQiDEvL5fOTnJBL7A1ipJ9ip38pKjLHndZDm68PrkbVU7KUnn3xSRPoa\n8VtvvSUiA1+PVquVqkXOz8/r2uJ0FBgjfl7ot5LJZPQ5+I73MrR39qEB07iwsKBzh7/dbjeV2QCY\n9bWc74HJycmE8/uXAe9bZljRJ2aAMb5WLVLgiy++UBYG4DZjDI4dO6bMFu+3tDQUXBMS44a9VygU\nUscSe3V9fT0aQw6a4HuErLvlZ8ng6zGWvCbT2EKsydnZWd0H7GwO5vSDDz6IAn2sgBFmz/aqkxnW\nmWu329F5ziw1vmO/JGazQqd1iynmseSzI2SnhqUgCNmnsbGxiHXc3t6O2lCpVCL2d3d3V9+bFmMF\nDKsQwjgQQYo7FFKI/MLkf4eboFKpaOeZlg2vm56ejvISHTp0SBcrnE4tJ9JOp6OThANrZWUlQeWK\nDH9h4FBKK8DKCxACSzabjSKIOOKDMw0/9thjIiJy+fJl/f7kyZMiIgkqmF9KoJjxXEuIuHv3rpo9\neR5CobBUKum9cY9SqaQvdtDtlvDXbDZVwGJThmWCDYUmNsNZjvH4WygUok06MzMTvQwsSp+FCF6z\n4Qt3bm7ONHvAwRb3vX37tvYN/WZhEvfd2dnRQwvC9b1793TNoj9nz56Vf/7znyKSNEMhagrXN5vN\nyLE2rSQCw1IghmUuT1MYnnjiCRHpv1ARkQgsLCzo3MAcViqVdNx4bQN4MedyOX3BW1hbW1OTBEcQ\npjnkh6ZbkYEQ0Wq19Nk4hLkSAdbB+fPno1xgGxsb5voNweOYpsCVy2UdtzRTNgNtEhm4PbCwDkEV\nc7ywsKCCwF5Ot5yXTqQ/PuFYclZsnHGZTCaaj/n5eTUR4rmHDh2K9jcX0GXwOyENoSl71Fx0Fur1\nus4DFCqrcLOIaGZ9jNXVq1fVqZ9zR8FFZdR2WK4ZLNBY6ylt3/I7kMcjHFdrbfCZz2W3wjFvt9vR\n70ulkj7XUtbTctUVi0U97yAjbG5u6ljivXbt2rVUAQoYZdzdtOdwOBwOh8OxTxwoI3Xo0CGTlg81\ngVqtlqByRZJStkWXh1lgRQYU5tzcnD7Xej6Hn0LyxXWVSiWRr0Qk6WiH366uriojlKYVdbtdLXCJ\n/n788cf6PZuKvvOd74iIyJ/+9Cf9LHRArlar+lxmIaCJIBMyg8cS/a3VapFzI+cKwb13d3ej/k1O\nTiprxu0KM7iLDDQGsAWbm5upda3SnEcttFqtyARsUbUrKytR4ddCoaAsEWvMYXqCfD5vZpQOgyU4\nlw2vS3yGfjNLyWYvXpci/WKvYBgwL8vLy8r4sOOoVacL32NcmC2wTOSAlXm/UqlEjsW7u7s6N3As\nFpEobQmnccActFqtkcKOw1xkocNzr9dLODqLJM0LVtoVXMfrHWt3bm5OWUK0+5NPPtE+4Vk8b2Ah\nt7e3tX9puXZGNXnNzs7qHI6a5Rprktc65pKLbwPLy8tmJQQrfQLGCON35MiRKBT/iy++iPbr/Px8\ntH9u3ryp6x1zwPP87LPPiojIX/7yF/0t5mBpaSmat2EI67UePXpUTfDMRISsNp/5+Ds+Ph69d+7c\nuaP3xtn7ySef6Phz8FTIrszMzCTM/SEKhYLuP7S11Wrp3kVbh7GaaAO7Q+DfaDObRNNMhVaqIL6e\nTYHhddZY7pWLKu2dagWqZLNZPcvwN5PJ6BiwOdRyz9kLzkg5HA6Hw+Fw7BMHmv6A2R1IkFbiMf4/\nJMjV1dVEDS6RvvRsOUSGtckQasvfdTodM6EY178T6Uv5oURdKpVUkocmUqlUlAkBm2bZc8+dO6ca\nEGuxYX2rer2udQaBU6dORWHDmUxGJW5ozjwenCUYfWd2BFK4xQawJsmskeWgCN+I8FkMrvHH9ZLS\nbNKs3afdjxGyWKwl8/yHGki1Wo3867j+YlhfbxjYOR3zinW6tbWlfd/LbwnzBAfUGzduRKwXs0Vp\n2XpbrVaUhJUdVa3fhpn1uc2j+lyJDJgo3K9YLCrjYvlDsM9NiEwmY9blA9bW1iJfpfHxcX2elWkc\n+7Ddbuv9OJ0K+xkBWFN8DqB/GPN6vR6xBffu3UvVgMH8jI2NRezKxsaGMkh7ZUxHm8EqWeNs3WNj\nY0PXOdbs0tJS4mwRSQaxYKzYyRq/XVtb0z7hXLTYwGazGfmtcnb/V199VUSS6x3geRslVY2IRH50\nDMtywgkoOfAiZJDK5bJ+D/+5TCaTYKLwDLCoODv5HLR8ENvtdqr/LQNzgr2eyWT0bMNayGQyJpMT\nnt2cZBlnQ7PZjM5ZTpaalkE+l8uZTuThvPJz2ckdASHwfZqYmNC+YW1tbm7q8zjzO84UrBMruGYU\nHKggZU0cb3BQtZubm/Loo4+KyOAgWF1d1cHEATDMsQ9Zc+HEZ1GOLEhZNDqXvQA4SzkONHx/8uRJ\ndUBNw+HDh1UYguO7RaFWq1XdNLju2rVrZnFOHEZhIVARSbQJbWWh1Ir4wOGSyWSivE9YxIxGoxHN\n6zATLhYyb6TwhckRehxFFbbZEsDGxsYioYtNSTz/adQ1Nlo+n9d5Rzu3t7fN4tIYX34hYH1bLzIW\ndvBvtG98fFznGsJTqVRSIY0dc0NzlRV1xKUkeA4wpnwockkNkWQGbIxtr9dLKDn4DC9w/F1aWtJ1\njDGw8n+VSiX9Hu2bnJzUNliRgSJ2ZCSu5bxaAITSVqulLzr+HmsCDvyXL18289thfbBTNcYDz5+d\nndWzCn0qFAq6nyEo8UGO+9ZqtSgClgv2ppWFEhmsGY6SDvdLpVIxTWFYv3iulftufHw8ypHGwhUr\notbLH8EIOLOsc7xer+uaQJsmJibUjYD3b5qpM63I+b1796LqE9xXDhbB9zh7p6eno2hgNlulOTY3\nGo0okpyVceu3Vu4o/jeXihrFqdpykbAEUT7j2OT5ZUurpAlZPJc487lcFeeJSssVxUC7rDMa4P6G\npeDS4KY9h8PhcDgcjn3iQBgpSPyLi4sqWfJfSPjQSi5evCj/+Mc/ovuEBYpZk+TvoK0x+xD+VmSg\nIVumBEj3zPxAUu50OqrR4L6ffPJJlAvIYgYmJydVIue2hPlhWGq32syA9s8mTID7xLWpOHO7SNIU\nh/GbnZ2NNFEeD9R7u3r1akRdcy0wy+EWayKbzZp5XIA0E0a3242cc7PZrGox7KyNe7JWHmpfjUYj\nYr1mZ2cT2ebRN2ZPAcw11kSpVNK2wDTCrAI0eQ7zxv1WV1eHFvxl9Ho9ZaJgTmk2m3ofrqUY5mtj\nShxjMSz9AcYA41iv13XMOewaTMheFQYwr7z3MKYY+zD/GZ7Ba8JqLz6D07SVquKRRx4xP8e+xvhZ\nDtn8PbCxsaHzDoZhbm5O2RP8nZub0/Gy2CDct1Ao6JnAYdxgZtLSH3D9Ta7dhjZgPqanp82gibAt\nVrqUf//733oe8r4AOFgoTO1SrVbV5YDPl9Dk+d5770WBIplMJqpBOjY2pmPKNf7SWGO0KQywAcIc\nacwyI8DByum1tbWl1pT3338/0U6RZC5EjClMVKurq4lr2bQlkhxLPjM5gz+AswBZ4CuViu7/f/3r\nXyKSzKuFOdzZ2UnU58NnYRoKZt4ATnVg1U0F2HzI73A2G4r0x82qBYv9z2dWmN292+2atS/DfcF5\nB9PaHPVhzyscDofD4XA4HCYOhJGykoZBO7p161aCnRDph05De4EEX61W5e23307cl6VyaDYLCwsJ\nnxiRvmSP79nnJsxiXCwWVau0bPawaX/++ecqwUOjmZqa0j5B8p+amlJNBqkM3n33XdO3h2uJifQd\ndMPklaxZQYtZWloymagw1JUxPT0dMU0cBopxZfaJnZYBaD2ffvpplNaAQ/Ch3TEjxbXboDGwTwvW\nCbff8mniwAORpKaOmmF37941a52FiTF3d3ejVAzNZtNkAS1NFusDfhM8xha7hDXOGcvx/OnpaR1r\nK40DxuXkyZP6PG5TyKwxsB+HJanEc/CMYrGYSB4qMjzMHAwhxpmze3PocbjGpqamUpmoUVEoFHTc\nLYd4MN1Hjhwx2UysSyQ+nZ6e1rWYllGdtWLg6tWrmgEf3x0/flz3q+UrwiwPNGWMUafT0bVorSfA\nCvTY3NyMWKz19XUN0f/ss8+i33C9trCtVnWEdrsd+f2IDM4EjHeYwkWkv8ZClv/GjRtRgES9Xo98\nldj3lhPbhqkYRAbnpnW+A1YQC4f7Y8xef/11/R4+dVeuXFG/VIstZXYTc8i1ITkhZ3h2D3tvWIFC\n2J97pYOwYPnfhc781tq1PuPs9MwgWWMzqs9WGAzT7XZNpg6wPsMaazabI6VdCXGgzuZHjhzRBcrU\nPwYGVGmr1dKXA/6CThWxTXFhIUuRgdM5v2B4kVglIsLIEatYrkWhttvtRIZakSQd/PTTT4tIPydU\neNjwi4qdtkOTwokTJ9RcwXl6LODg2d7ejmjqzc3NyAF0d3c3EaWD58N8x4cfDsZ3331XP8NhgDZP\nTU3pi4zL7oT0fbPZVLOXZSbbKwoHawBrhzcjmy3Cl+owkyHGCH28detWdO2wrN6Wsz+EJfRjaWkp\nyoYskhSMRZLmKMssif3w3nvv6Wc4HEQG/UXbrUzuIgPaG4dJs9nU53DJG7QZgkGj0TDzzYQvVz7o\nLYEU4AMf7MMP8AAAF3BJREFUY//000+rGQKZ/nu9XmqQADvGW7mdcHZcuXJFvve974mIyAsvvKD9\nxUsSe/nOnTty6dIlERH561//qteFjracQwt7YWNjQ//NJYz2irgDcKah7VevXtX2pwmbOzs70RnJ\nZhK8wO/cuaNlXs6fPy8i/SCGUGC0BEheS2xq4SLjIv11x2eCSDIq7lvf+paIiLz00ks6RlbOqosX\nL4qIJJRpqzwLm6rRd1zXbrfNccO4hOW3RAYm+VqtpuZILi+GfcjZ+62zAc+A6bHT6WiUI7+HOKO+\nZXbF2LDAjTG3BCBWivA97sG5ljBfrVZr5OoGoyi7e5Wt4XZa1SzCMjS8//m9HM4hB/Cgv5OTkzr/\nvGbwfnzooYdEZOASkAY37TkcDofD4XDsE5lRQxX/mygUCj2RpHQKmj+Xy6kUCc2FqbZvfOMbIiLy\nxhtvaL0ihH4fPXo0qu3WbrdVwoSUzRo1JFwO48fzhknP0Eog3S8uLqYW9GR2AYwOtPxcLqfaHBc8\nhSkBDEEmk9Hvv/rVr4qIyDvvvJMo6CnSl56Z0UOWdA4/xjhwQdRQ6+Citmwug8bKaRQefvhhERH5\n8MMP9VlgAcDCVavVSDsdFrKdFvJrZXq2wm7ZRBGatZiq59+Gpl2GVX8N/cjn85HW2ev1lBWD1rm2\ntjbUmZUxPT0dMaHnzp1TVoTNG+G8nTp1SttvmSvQ32KxmJrug68f5Yxgh+b/BBhTrr9nmaqfeeYZ\nEenXjsR6+cUvfhGt2Z2dHWXmQgd+kWRQyje/+U0RGTgFM/v0zjvviEifXcBvOGeUZTrFOYGz4bPP\nPlP2gvNvWeZjfIaxP3r0qM479v+nn36q82+ZxwCuW5hWV40RstbDgPuWSqVErjWRZDFnIJPJ6N7E\nud1sNlOZZuyjdrudKOIrkmQ4MedTU1NR4ABfhzO4UqkkWHQgrCBgWSFExDwL/xOE76Rh4LxkaSZd\ngJ3Uce7NzMzoPIEJH8ZQ4/zCeme2Deu+WCzq+Fo56PB+73a7CYuESH9ewxqU7LzOBYhxRuM8LpVK\n+p5IM8/+p6CxMfNqOCPlcDgcDofDsU8cCCOVz+d7In3NBQ7ZYSIzRiaTUS0Bf69cuSInT54UkYFG\nvbKyYtbO+spXviIiollnWcMAw8E1ufBZq9WKNLL5+XnVSOGnYSW3O336tDIIzKL88pe/FBGRX//6\n1yKSdBj9PwHML5itYc8KfZU4w/yTTz4pIn3HXIt5s2oAhhp6oVCI6hptbW2pxsJaGGff5TaFCDU4\nDk1HJfXFxUVlLjEf4+PjpuNpGiMVZprn9onE2lyv14sy6vN9oL3VajX9jP354AOCNlvsXLVaVbYT\n98CaHAXQMNHvSqWSyEYdguc0DKRgphNjf/bsWWVPsL+ff/55vQ4+CJy1m5OIYs3iuc1mU8fZaif7\nQeA3mUxG9ybGqlgsmv4mP/rRj0RE5A9/+IN+Bqdh+HDu7OyoXxgn/8R4hMk/RQZn1tramo4Nxp6d\nuuGXtLi4GLGER48e1d/cd999+nw8x0rdwEDfMT6svfM6DdcxMwNgNrhv+I6ZdfydnJyM/LDGxsaU\nYWJ2F2c5xjSfz0eBCq1WS8c5jYlhn0Vr3+L5jz/+eMJBHNeDUcF489nOdWCxDqy1iASjXHMV+2x8\nfFz/DT+rQ4cOKcOF+7FvcK/XU18dMLTDko6GKYV436RhYmIiSkNgnZOcsgfza70rvww46Sba/GWB\nPX/27Fmdb7SPGXjML/eNE3xibaGPOzs7ezJSB+JsztEfYY6nsbExnURQ9t1uV53C4DAuMig4+ve/\n/11/i4WO346NjSn1GhaeFEmaNfDbNFPH2NhY9LKyiriyozkfPL/61a9EJN3RViRZUkFkeGRD6EQ6\nzMTCn1m0fSisjI+P6/OYGrY2FjY239cqTIlFzcIV7o3xsIpasoDEwlN4OHAUGzsPhk7/Vlb0QqEQ\nbV4WkPnQwtpCm9vttpmjxpqvcN6H0dGWySHE5uZm5DR/5swZbQsO4XK5rHMDgWBtbU33Adb7+vq6\naV4Is51Xq1X9Da8b/BtO9tevX4/KGhUKBX3u5cuX9XMcpFBSbt26lRoVt5cZJDQjiwwc9zOZjDoF\noy23b9825wIvdt4/XPRUpP+S432K52I82EzLZTFCcGQtfouXZ6fT0Rc35rLRaJjO0hhDzNvy8rL2\nnYsVY7/ABGkJY5OTkwlhSSR6sWi/cWZhfLh4LCuTVmbzsGA4n9G8B0MBamxsTM08mL9ms6nKH5ST\nra2tyC3g8uXLkQJZq9V0HKyoOAhyy8vL+m8IPjzn2L9zc3MquOG+LHjhnTQ+Pi5vvfWWiCQDAoBM\nJhOtT+47lxyycjxhTcBMV6vV9P7o5+Lioq7jNKfwvTKIs2DOOeXwl82BIv354jI7AM4EjmIM3+Gs\n2OB+165d0/WJz3gPYh1YJer43vhrBTuEcNOew+FwOBwOxz5xIIwUJPROp6OSKhfnhcYAaXtiYkKl\nYIT5nz59WmlRlmJD9mEYwvBILpZrORZbLA40ue3tbZWA2fExDAfncHRGKGUfOXIkoovZAZlZKGhy\nGNPl5eWE4z7AGmSoxbMmhflgpoPHwcqxgXlgDY7D7EX64xwGDxSLRf0efUrLcyQyYPzW19e1T1xs\nGvNq5QxKy4DNjtsYAyvLLt+H8/BYNHuYu2svTQ7r48c//rFqYQg64Lw/mNe1tTV18Mee4aLU/wm4\noHBYo4rzeuG66elpZT0wbocOHVLmB2Oxvb0dreOZmRllymBym5+fV5MYxoBZoVGL0RaLxYgF7PV6\n+jykIcnn84nUEeE48LPDQACrwOqRI0d0PPi7tIzxYL+KxaKyOzh3OICDNWoLOAuwhvL5vK49NnWF\naS2s4IXV1dUoHQ0Xt2YwExUijeV/9NFHoxqJzIhjDc3Pz+tcIg3G7u5ulO1cZJAfDFYLqw3NZlPX\nIMylVlF3Zl3BCh0/ftyshBGaEuFQLzIY+7GxMWVb0Ucrbxej1+uZNUhDlorzoWGOGo2GMnmjOKcz\nKpVKlMqGK4NgbPhsw2fFYjFaY/w9/g4rUo89h7+ZTEafy3NpmemxJiwLCjPwIUqlUiL7e9j2YXBG\nyuFwOBwOh2OfOBBn80wm0xPpa0zwAQCrsLi4+F93vg79YWq1mkrtnDQR9mNI7awBsGMhkiqCabh+\n/bpqJcwMhb9dWVlR6ZsZLrSPnTAtHxDO6i7Sl+Q5RBfXgEGanJxUzSetGjprDtZ6SHPwHJZJN6wz\nmM/ndYxYSwizK7P/zajgKuf4N/vXYPy5En2o3YkM/FEsXxl2RA/9W6z79Xq9aE0Ui0XNrs5MKPo7\nSj1JkSTTyGtBRMx+WeD1wP4Lwxz7+bmZTEZ/w8wE9gXW9ueffz4yc5QGjP39998fJa+s1Wrarpdf\nfllZLGbMMJ9czT1kVIrFojrGI7ybU1VYSX8BHg/09/z58yZTC3YF/bBSO1y4cEHvg3mv1+vy+OOP\ni8gg6ert27d1/zDzAeCMm5qa0rUP1oh9KdGm1dXViB3nTM/McIXVFdLOF5HBmpicnJRvf/vbiTa/\n9tpr2l+cwceOHVP/JgQiVCoVPZ8487/FgCFIAGkher2euZeeeuopERmMqZWwWGSwdpAO480339Tv\nOCVPeO6JDNgRZmKstoQoFAraX64Zys7/YV24YcAZjn6ErOoowJlVrVajwAPL35aZa+scsBg/BtYi\nnjssvQr6hnmbmZlRqxL2+ebmpo41/u5lIWD8P+lsjg4/8cQT8sYbb4z0G46WGIZqtaqTAqEjm81G\nDnRra2smNc0FLkOwqQ2TxE7nYaSEyGCC8SxuOy88dmBEP0Ar4jDnUjfWAkC/2Qy310LhApBpRSOt\njLFcINQSpEJhuN1uqynUolvZ8dHKCxUebmyGwJhvbm6afcaLAnM47L6hgMTPSHPMt0wLIoPxw4ug\n1+ulRlchcqnb7SpdbR20/Pywv+VyWYUJzhOGNYj+Li0tqVAwqjK112FtRd5C0GMlBYItZ23GWCGy\nls1lOEDDQtgW8BzM+b/+9S99jhWtAzSbTQ1K4dxtGJu0vvd6vWgM19fXo7OqWq2aAk+IfD4fma27\n3a6uM5iB1tfX5dlnnxURW5BiEzpe8BB8rIoOmUwmMj1yfiBcl8/no73CChW+q9frun5ZcPjzn/8s\nIoPzcG5uTufEKnINWAo2FwIHLly4YK4VRC5yYIsVTGCdZ2GVBwbcTbhcDSNcB+VyOdrXXHybnZ2x\nVzY2NqKiyNxvLsQbVg7o9XpmcAj2Ciu4YWHfRqOhc4P9OKp5sFAoRKbxXq8XReOySwZHAXIwD48T\nt69UKmn78Iy7d+/uq8xL+IxwD6bBTXsOh8PhcDgc+8SBMFJgi5iNssLHAStUOJvNan4gSOY3btxQ\n6Toty+n4+HikyV+6dMkMJQ7px/vvv18d2qFBnD17VjOIs7YbFqEUiVmvw4cPa1uZFg5ro4WFl0NA\nambpmR0teXz3olRxn7AwpUjSPIK/0Do4E+2o9Zksx3fcj0OnOZeQSHIOWeMLmYGLFy9G5kM2Q3Cb\nQvMEU+d4hpUzjMeRxz/NzIZnlctl/T073GItIN3H+vq60vHoI9ejgsa5vb1tOl8CPH9gruBcyfUa\nkdNme3tb1yJYhVwuF2XSBtuIdqEPuI6dadEPXFev15UtxFyVSqUvbeINn432s6kBfbeA/Y81xkXG\nR60Rhr3OLgM/+MEPRKS/TlDHLw2VSiVas41GQ89LHpcwKzqDC0uH+6xeryt7DcZ0fn4+KgC8vr5u\nMiXhXmEGAGtseXk5ERghkjRlY380Go2IbcE44Dci/XkL83DxOY+z33pflMtlHVMOdrJY1PBcXFhY\n0HMbjJTFmNZqNV3H7ArAuQpF+mMLNwKM4+3bt/V+PN5p+RWtjPWceobXedinUqlksn4A3l3FYlHf\nI1auJX5fY9w5KMEyIe5nXwM8hvyX2zeMjcIZxcFsYT68ra2tRJ5DkdH2vjNSDofD4XA4HPvEgTBS\n0ITZ3mwxUQxIjlyjClouS96hQ1qtVlPtwHLMhA36xIkT8re//S3xW/YFYM0fEjqcSRGCPqyfkMon\nJycjzavRaJhO2GAE0NZWq6U1qqDdMfPA6RfAmDBrcOLECRHp14VCX9Ik+EKhkEjyCeBaDg0NHQpZ\nmwZDsLOzEyXiq9VqUSZobj/Q6XT0Ply9HOA5D8OPreSBFoO0u7sbsQBcFwrIZDKq2YDB4Paypv71\nr39dRJK+dBgj3Nfy1+F2WWuLs3aHNQMPHTqk/bDqPnJ/8FtmojC+WDvsA8eMbbi2LTZXZOCXwslu\nQyaR/Q8xPqurq/ob+I6xhgtmYnx8PJHyBPuZMzOjz2nZkjmZLzRWMOdfBpZDLM4u/N0LTz31lDLc\nYJxKpZJZT4/rromImezy3r170TqrVCqRQ/u9e/ei+ouzs7N6ToPVrlar5toC2CeNfRpF+usgzXcT\n/T1x4oT2BfdotVomM48zGswP/OwY29vb0fg988wz6mTOzAnmCWcIB5ikpWm5efNm5OszMzOjZxIz\nzmkBLXyWs5UCaxsYNbAkn89HofzWuVOv17WfYJyazWYqw83A2uF0KTinMTfW+pyYmNBx5aAZrAWk\npsjn89ouzM3du3f1N9Z7DAEwuVxO2T2cB7du3YpYOSsFCCekHoYDEaTSNiEDB9nCwoKZ4yU8RDj7\nNw6C1dVV0zkOixYvoOeffz665tixY1F+k/vuu09zmADDItcg+HBRYhwinIcDixqbb35+Xhcg06BW\n+Y+wYLDIQJhgwcAytYUClUiyYHMYIcP35PIJ1guKiyQDobOoNW5WMMHW1pb2CRtyY2PDDEB49NFH\nRURUKL5+/XqUTZqFCdx3ZWUlEgas0grNZlNpeSCXyyUKcAKI7MFa42AI6yBDWwqFgnngAHiWpXxY\naz2bzep88V7By4CFD8w1xnSY8IEXD+731FNP6UGFF9b29nZqkWb094EHHtBxQfuXl5f1RWHlxhp2\nX5Sdwfj2er2oXATvBSvKCvgyUT1pwL69dOmSRolxVncAZ9Hhw4ejYuPsjMzgzN3DsLGxEa39ra2t\nyCzIlSYAHiust1KplFCuQuDlNDU1pXNsmXhwj9nZWb03lBRrzllJ4f7gTOA1gXMR+5EL7aJk2O3b\nt6N2VSqVaA/dvn07yus3Pj6ubYAgyi9hzqgdniunTp3S9wraks1m9RlQnrPZbOI8Cdtw7tw5HWtr\n30PZ6XQ60fe5XE6VHJxxy8vLprsH3lVhuTGRZBQofmspVXyeQTDhQJ/Q/L67u6tnjyUYo2+5XE7v\nw7nvMCeWaRSkgshg7rAWO52OtmGvSFSGm/YcDofD4XA49okDYaQsWhNSar1eV0kUWpbFRs3MzESZ\nT5nq5BpG0DqhfWxvb+u1aaGNzEZ997vf1fuF2uQw5zZoY2DgSqVSRP02Gg3VqNCP69evJ5xVRfqS\nNyhn3LdYLCoTxc7LlnYKbaZSqej4MiMVMkGtVisykzGzAUl+WHZlfM55rKzCvmmaNGudaB+0oWKx\nGNWKQl/4b6fTMXPdWHmB8O+9Um1gLMGYck0x7uOZM2dEZKBds7aPtkxOTkaZz60xKRQK+ps0E9Xh\nw4eVMcPzPv/8c11jVoHVvfp74cIFERnMaavVStS6EhF58cUXo9+dOHFCNUdopDs7O6odYy4/++yz\niBEqlUr6W87UDG0dGuTExETiPMG+4dxd4fyXy2Xd98zqheYaK2O5BSsAgYFaoHfu3FGTZJjbTmSw\ndi5fvqxaNqdQwW+ZeeH6csOQzWYjpiGN8WRYTNLu7m6krT/88MPKjnHdNwtYR5jfO3fu6DpKy280\nzHka+4b3NPoHszBXi8C+YFMfzPDXr19XFoPN5SEDykXugW63q2uV+445xD4/evSo5g+zampiXAqF\ngrbFCkBAug4RSdTcgxUjbSw7nY7pbI6zgFOAhNnLLaaWP8N5USqV1HrDBdKxPrCXR02/wvvM6hv2\nwDBndqy78N0ath/jjz06imnPGSmHw+FwOByOfeJAMps/9thjPZG+NJ6WNZttqNDGIIlynSQOV4bE\nCq3esvlOTU1F2hJnyOXaUshai3b+7ne/S+0bqo6vrq7q/SwJGOA6dwDb2iEds6Zh+Ttx9m7Yvnd3\nd9VeDfaEncOhUU1MTJjjFToAdrvdiKWamJhIOIoDoTNytVqNfHpOnjyp7WMWhpPLiSSTUnJ4O9rP\nbABC+eEg2el0Io2HMwYzIxDWX2w2mzpWPBYYI659FzIXvV4v0tonJyd17jBmeyW5tIA5qFQqOq9Y\nG5bvEDMrGJ8zZ86otgtWs16vJ5y4Rfps8LCMwoxCoaD7lf2T/m+A02X87Gc/ExGR999/X0REPv74\nY2VtOEt0mE5DJPahYxYVcz0xMZGajdpiOtP8sIYB7UP6Cz4nRjlXRAb7J5PJpDJr7DuGf3N6kxC1\nWk3Pa3w/zJ8krPu2s7MTBWt8GbDzvUh/D4R+MDMzM3pvXHf69GnTxxRAtvUrV65EzJWFhYUFPe+w\nHra2thJ15kT6axPnXlqW/1qtps/DdRwAw7/FmNdqtdS1CPA6tpIdf1lUq1W9D5+92D+jnBchkEAX\nzNrS0pLOA+aQfWqxtnO5nLLT2GfNZjNKYdDpdHQM0U4OuOCalpgvyAjBO8Rc6AciSInIgTzU4XA4\nHA6HY58wBSk37TkcDofD4XDsEwfibC5DpDqHw+FwOByO/5/gjJTD4XA4HA7HPuGClMPhcDgcDsc+\n4YKUw+FwOBwOxz7hgpTD4XA4HA7HPuGClMPhcDgcDsc+4YKUw+FwOBwOxz7hgpTD4XA4HA7HPuGC\nlMPhcDgcDsc+4YKUw+FwOBwOxz7hgpTD4XA4HA7HPuGClMPhcDgcDsc+4YKUw+FwOBwOxz7hgpTD\n4XA4HA7HPuGClMPhcDgcDsc+4YKUw+FwOBwOxz7hgpTD4XA4HA7HPuGClMPhcDgcDsc+4YKUw+Fw\nOBwOxz7hgpTD4XA4HA7HPuGClMPhcDgcDsc+8b8WSdak53HiVQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -12121,416 +590,29 @@ } ], "source": [ - "feat = net.blobs['pool5'].data[0]\n", - "vis_square(feat, padval=1)" + "feat = net.blobs['conv1'].data[0, :36]\n", + "vis_square(feat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The first fully connected layer, `fc6` (rectified)\n", - "\n", - "We show the output values and the histogram of the positive values" + "* The fifth layer after pooling, `pool5`" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJPCAYAAACgtar/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xv8LEdd5//3OzdCEpIQAyeBBBKQICCQgITI9RAIBJQQ\n", - "RIEoGFkWXUVAVCTghYOiXBQVxXVXIRhZhPUHSww3ySHyVXA1LEsCIVwi/kBByQkriCDLLpjaP6Yn\n", - "ZzKne6YvVd3V3a/n43EeZ74zPVXV1bfPVFVXO4QgAAAAxHPQ0AUAAACYGgIsAACAyAiwAAAAIiPA\n", - "AgAAiIwACwAAIDICLAAAgMhqBVi2j7X9Ztsft/0x2/e3fZztvbavs3257WNTFxYAAGAM6rZgvUrS\n", - "O0MId5N0L0mfkHSRpL0hhNMkXVH8DQAAMHveNtGo7WMkXRVCuNPa+5+Q9NAQwj7bJ0jaCSF8W7qi\n", - "AgAAjEOdFqxTJX3B9utsf8j279s+UtKuEMK+Ypl9knYlKyUAAMCI1AmwDpF0H0n/MYRwH0n/qrXu\n", - "wLBoBuOZOwAAAFoET9t8TtLnQgj/o/j7zZJeIOl62yeEEK63faKkG9a/aJugCwAAjEYIwTHS2Rpg\n", - "FQHUZ22fFkK4TtIjJF1b/LtQ0suL/y9NWdAxsb0nhLBn6HL0jfWeF9Z7XljveZnxekdrGKrTgiVJ\n", - "z5L0BtuHSfpbSU+TdLCkP7b9dEmfkfTEWIUCAAAYs1oBVgjhw5LuV/LRI+IWBwAAYPyYyT2NnaEL\n", - "MJCdoQswkJ2hCzCQnaELMJCdoQswkJ2hCzCQnaELMJCdoQswdlvnweqUuB3mOAYLAACMT8y4hRYs\n", - "AACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAgGztGroM\n", - "wJQQYAHADNiyrTMqPrutpOt7LhIwaQRYADAPZ0n6UMVnt+izIMAcEGABwDwcNnQBgDkhwAIAAIiM\n", - "AAsAACAyAiwAAIDICLAAAAAiI8ACAACIjAALAAAgMgIsAACAyAiwAAAAIiPAAgAAiIwACwAAIDIC\n", - "LAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAs2XrbFs/PnQ5AEwPARaAOXu5pN8euhAApocACwAA\n", - "IDICLABzFoYuAIBpIsACAACI7JA6C9n+jKR/kfRvkr4RQjjT9nGS/qukO0r6jKQnhhD+OVE5ASAF\n", - "WrAWqAcgsrotWEHS7hDCGSGEM4v3LpK0N4RwmqQrir8BAOPjoQsATE2TLsL1A/A8SZcUry+RdH6U\n", - "EgGozZZtvX/ocowYLTcAkmjSgvUe2x+0/YzivV0hhH3F632SdkUvHYA6Hjh0AQAAN1drDJakB4YQ\n", - "Pm/7NpL22v7E6ochhGCbX4IAAACqGWCFED5f/P8F22+VdKakfbZPCCFcb/tESTeUfdf2npU/d0II\n", - "O92KDADR8MMQmDHbuyXtTpJ2CJvPL7aPkHRwCOErto+UdLmkF0t6hKR/CiG83PZFko4NIVy09t0Q\n", - "QmDwJJCILUu6MQQGKbdh668knbVaf7aeIemVIejo4UoWn62HStop21dsnSzp79mPMHcx45Y6LVi7\n", - "JL3V9nL5N4QQLrf9QUl/bPvpKqZpiFEgAOhR2S/MB0i6Vd8FGRgteUBkWwOsEMKnJZ1e8v4XtWjF\n", - "AoCxIrBYoOUKiIyZ3IFxs3RTVyEAIBMEWAAAAJERYAEAAERGgAVgzhiDBSAJAiwAAIDICLAAzBkt\n", - "WAvZ14Ots4cuA9AEARaAOcs+sMBNd8leMXQ5gCYIsIBx89r/mDhbt7T13NjJRk4PmD0CrImxFWyd\n", - "MnQ5ACTzIEm/PnQhAGxGgDVNpw5dAADJTLJbs/hxOLdHFGHCCLAAzFlZsJJ7d9kkA6zCcUMXAIiF\n", - "AGuacr9AAGhvygEWMBkEWADmrCxYyT2ASVG+3NeZZ25idAiwgHHjgtNN7oFFmTGWGZgdAixgGgi0\n", - "5oMACxgBAiwAAAE6EBkBFgCMy41DFwDAdgRY08SvUaCeMXa3jbHMwOwQYGXA1h1s3TlikofZOjpi\n", - "egDyMccAix+NGB0CrDxcKelTEdP7PUlfjpgeMFVjDFbmOE3DEoEWRoMAKw9HRE7vpMjpIV9ccLoZ\n", - "S2CxaoxlBmaHACtDtv7A1h8MXQ6MCoEWAGSEACtPFxb/AGBdihYsAnQgMgIsALi53IMNugiBESDA\n", - "ykPuJ3RgqsYYrIyxzF1xjsToEGABmLMxPux5zhONEmhhNAiw8jDGkzyAYXBuAEaAACtf/FJDHewn\n", - "3RCsLFAPQGQEWMA0NAq0bD3E1s+kKgySIhgCRoAAC5inn5f08qELgVYIsIAR6DXAsvV9tn6xzzxH\n", - "oqz1gZNoj2wdbGvX0OVAFnLvdmUeLGAE+m7B+jktfjljpGy9zNZbhy5HAj8q6fqhC4HejfGHzBjL\n", - "3JXX/geyRxdhHsZ0wvwBSecPXYgEaL2apzHewZt7+ZKy9SxbZw5dDmAbAixg3Nr+oqclAGP1W5Je\n", - "NHQhgG1qBVi2D7Z9le23FX8fZ3uv7etsX2772Jr5zfqXF4DsjPGclKLMY6wHIGt1W7CeI+lj2n8Q\n", - "XiRpbwjhNElXFH9jHjgR56lpixTbcbzmPJM7MBpbAyzbJ0l6jKTXaP9J/DxJlxSvL9E0x+T0ie4a\n", - "IB+5H48Ex8AI1GnB+g1Jz9PNfzXtCiHsK17vEwOEgbHJPYhAtTkGWOyvGJ1DNn1o+7sl3RBCuMr2\n", - "7rJlQgjBduUBb3vP/r/efpT0Xa0KOnFjvJMJmAKOs4WxBDBjKSdGoohtdqdIe2OAJekBks6z/RhJ\n", - "h0s62vbrJe2zfUII4XrbJ0q6oSqBEMKe5WubrsQGOJEA6Y3xxw3nBiCSEMKOpJ3l37aj3aG6sYsw\n", - "hPDCEMLJIYRTJT1Z0p+FEJ4q6TJJFxaLXSjp0pr55X7iwnZsw7y0vdiyHQEgoabzYC1Pyi+TdI7t\n", - "6ySdXfwNYDi0arRDoLlAPQCRbesivEkI4c8l/Xnx+ouSHpGqUDPEswjRNwIyAEiImdzRma1g615D\n", - "lwPzZOtwO+oPktyDz9n8+LL1cFuPVv7bZNSKc/h9hi7H1BBg6aad68gBizCFE+bJQxcAs3WLoQuA\n", - "ZN4u6Z0rfxNopXOXoQswNX0HWDkHEkcMXYA5sPWDtq4duhx9smVbxw1dDpTiLsJ0aQKzRgsWmup6\n", - "8XmUpLvHKEhXtr5g6049ZPVdkv6ph3yayD2I6Av1ACAJAizM2fGS7tFDPimfdNC25YEWC2ALW8fb\n", - "us3Q5egJPzYiq30XIZIa9GJn65AQ9M0hy4DOCJjaGeNFJUWZc62Hoffr/6nF8JG5BFmIiBasAdm6\n", - "1NZJQ5dD0jdsfUdPeQ19wgS2YR/F0u20aOkGGiPAGtbjJD1YeQy0PbHn/IAc5Npyg4Xl9hkq6CXY\n", - "RmuzvYvQ1j1t/cPQ5Vhl66P2TRO4TvXAvmkfsHU/W6cMUQhb9xsi3zEqpjG51dDlwE2mem6oY87r\n", - "jpGZcwvWmVo0/+bkHpIePnQhtugaJFuSbN1e0gdU/zmWsb1noHzH6uihC9CjbH4IAj1iv49szgEW\n", - "hvW54n8O6m74Rd/NaPc/O+q2Zz8CIiPAygPPIhw5W0fYOnPocgDYz9bRNjP9YxhzDrBqBzDFQfqA\n", - "lIXB6D1P0pWSZOtgWy/pOX9aINrhh8zCVOvhy5Je0+H7HFdobbaD3Bv6eUl/mTD9JPVi60hb902R\n", - "Ng5w2MrrYyX97FAFQWdcVPPTZZt8a7RSAA3MuQVrI1sH2Tq7+HOsE7L+rKQPRk5zrEFyn7hAj0en\n", - "/dnWGfbNgus+zHn/mvO6p8a5PTICrGoPkXRF8XqsB3WKsQdjrQsghQ9J+g8D5c2xOEHFw+EPHroc\n", - "6G7OAda2aJ0dPCJb59j6b0OXIxdF9+1/HrocKNX0lzyDqBHTHkn/Z+hCoLs5B1g5GdMv0bbNyE+W\n", - "9Hjlt65DNYt/u6QfjpDOTfVp69Yr3dq1vzdzdItgkyGOk/sowg98W3ewdVGE8qAlAizMXe0TaNF0\n", - "n/NDX39O+7u1gdkqfmxcO3Q5BvY0SS8duhBzNuhdhLaeauucnsuQo87PIrR1vK1dkcqT0phbDL5H\n", - "0g01lhviVy8tUu2U7Y/UZX6abpM7Sbp7ioJM2JjPzVkaugXrDyX93sBlqGMMF8wPSPpkioKsifKo\n", - "nJG67dAFaKNoeTtp7W1OpuM15mNoMmw929bpQ5cD+Ro6wBrS1C4wJ0o6ZuhCjFCK/WCoC2BVvt8n\n", - "6bN9FmRExnweSL6fFdPVPDZ1Pg3kFFy+StILhi4E8jXnAAuYi1uXvJfThWrsxhykbXMfSZcNXYgB\n", - "cZygNQKs/c5a+7vPA4tnEQ5nSidQ9pk4qMf9uEYALfGonP1m8yvN1q/Y+nctv35i1MKgqykFiEOI\n", - "cU5iG2AKcr4+jxK/Tqqt7mypT6B979gvUPuxA7ds+b1cL0JzGINVprd9ztZhtvb0lR/Ss3Vq31n2\n", - "nB/Q2ZwDLKJ1TEnTC1CfF6y7SHpRj/k1EWOahqHOJYMEHbZuIen/7yu7nvLJjq1Hd/juD+nAYS/o\n", - "2ZwDrG1me2AnsrwI5VavuZUH2Gbofbb1dcPWBXangHTode/TOzt893WSzo1VELSTQ4A1pwOmCnWA\n", - "GEbdKmvrm7aO7znbUdfZCN2r4fJV24fthuzlEGCNAQFQPHM4MY5hDFaaAlgn2QdcROuW62BJt49c\n", - "pNpsHVG0rsxhHx27wff1CWK/jyyHuwhz3ai5liuWzg8TnYixb+fcLjR/IunDQxeipbYT9f6q3f3u\n", - "Wlvn2tltTwAtzbkFa9uFta8TXdUv5tQX/r7vAlriAjI/OQexscp2Qt0Fbf2WrW8r+ehdkk6LVJ6p\n", - "4HwhydaDCb7HJ4cWrLlbP2hc8T7SmFI953B8/d+S96ZUxzE8S9KTIqRzQL3aOrPLIPKML+K5lqsv\n", - "fyHpzKELgWY2Bli2D7d9pe2rbX/M9kuL94+zvdf2dbYvt31szfzmfpCkRN3mY6iHg+ewD5QFWDlr\n", - "NE2DrWDrkITlqWPTdr5ngjTbJWj9st05kMzhR0MuWg3rsHV6xoHzpG0MsEIIX5f0sBDC6Vrc/fEw\n", - "2w+SdJGkvSGE0yRdUfw9Zal3ztX0p35CyW39citP72wdbuvpkZL7RqR0+tJm+899/GLd8+ELteHa\n", - "UMynlSrvMatax7brfpWk+9VYbvbnwti2dhGGEL5WvDxMixPLlySdJ+mS4v1LJJ1fMz82YH1N62os\n", - "dTurE6St8yW9ZsCy1PFQxSvj2AIsDMDWmZK+PnQ5ZuTQoQswR1sDLNsH2b5a0j5J7w0hXCtpVwhh\n", - "X7HIPkm7EpYxlVwCkq3lsPV8W3/SR2EQ3WOHLkDPcjmuupjCOqQUo37q3nUZ7QeZre+OlVZi7H8T\n", - "sXUsQQjhRkmn2z5G0rttP2zt82CbmXnbs7Y/9/Apkr59SzqHRysRxmTux8+cjXnb91p2WwdLelvf\n", - "+UY25rLPUu3BmiGEL9t+h6T7Stpn+4QQwvW2T5R0Q9X3bO/Z/9dlR8/vBz3WzO0kMYb1jVnGMazv\n", - "qlitBWNb77qGXq8cHrFFi9KE2d4taXeKtDcGWLaPl/TNEMI/276lpHMkvVjSZZIulPTy4v9Lq9II\n", - "IezZn17ps5HGsPP2eXCPoT7aGPpE3ac5resU5b79UpZvvUU9V2MoY1uxB7nXNeU6rRRC2JG0s/zb\n", - "drQH028bg3WipD8rxmBdKeltIYQrJL1M0jm2r5N0dvE32jlE5QfOobbqTn8xJnM7iPta36Yn31R3\n", - "ro5t+8Yq72jW29atbb3U1vuHLksLbecJ7BKcjGLb2rrS1qOHLgf229iCFUK4RtJ9St7/oqRHtMgv\n", - "px01l7L8oaSvVHz2QUnf2mNZ6ghqd7LKpb7Rv15ahGw5hMHuvs291WvVz+jA6RP6Ln9VfofYOiYE\n", - "fXnLcn3quwxV++S2cpwp6TFaPBEAGcjhUTk5HEA5Wa2POw5WinRy2d59lSOX9V03pYA31zpGc78o\n", - "6Z8TpJt8f7d1sK0jU+eD8eBROXkYU71wMcPUjeV4LDsWj6jxva7rl/IcsP6M1By2Rd0yvFjSVxOW\n", - "g3PvyPQdYJXtIDkcQNswyL273E4OKeu5z5n5XfEaDdg6RtIDOiSRy3H7W0MXIJGu+3Yfx8Zdesgj\n", - "pVz24clIHmDZepOts1Lng95wEDaTa9BDuRaW+/MeSW/ukE6f5R5628U4B3Rdh1ZlaPlMvlzOeUNv\n", - "dzTURwvWkyT9VfG60YNVE8vloJHyOHBS10dO9T1Vc6/jLsfR6g0/ORyPQ8lt3YeasqBNXrnVHQaW\n", - "wyD3XA11sMwt36FMbX2nsj5tgsTJ34IfWc5jsFLlPYXjYwrrMCs5BFhjOMGxY3c3pzocQ5A8huOu\n", - "D7XqwdajbN2jazqR9TEDf2UeLbvbxqjutk095Uc29W3rj2wez7YNdxFW67OsoeI10pl7PWdzsl6T\n", - "a7n+VNLrN3yea7lzVTeIiH2cpp4Ffy4ukHTy0IXIXQ53EQ7lgAPX1n+29bQhCjMibU94cw9oUunz\n", - "jsW2cjru69hWj2NbnylIHXht0vdxNdRxnOv5Y7Ry6CLM6WT1w5J+rHidU7n6EOXgsvVIW0fHSGtD\n", - "HmfZOidScpxU8lL2w+cWNb87l2N2kDvwerJetljdZV3qbOt3bT1IW56MEsFc9u/JoIswDznMZRTr\n", - "pP1uST/RMa1t3ibp8o5ptH2mWZO0+1YrX1u3lPSgxGVZ1fW4/7qtB0cpyYFyurM5C7ZuaW+8NqQ8\n", - "dsbqfZIenzgPHvY8Mjm0YPW2UW2dt+XEUfnV6IXJlK2TbH1hwyJtn5PFSTmtJvX6Y5IO7Zyh9Tu2\n", - "frfOol3zknS7xOnXkSwfW2d0/P4P2XpspOJ8TdJPRUqrStuWqSEmHO078Mj6BxrqS92kuW7oCPlP\n", - "JN1L0jU1lp1rP/jdJR0/cBm2iVFHfc3knqNYx/2yO/1HI6U3hL6nhajyoRbfWS3H6yRdH6EcyzRz\n", - "ecj8HB/GncLc138QOQxyz3Wi0bk+HidV0B3W/s9Fn4+yQX5y2x/7kMM6Vx0XOZRtXS6D3OkiHJkc\n", - "ugiRh+XBdXDifAg4ZsDWO2z9et/ZRkpnjheaJnWXwyzqfW6jKZyz5rhPD663AKuYlC67jZzhZHlD\n", - "97+3bcFa3ba51WmZvsaE5dBCtl6GPo7Dx0j6vh7y6dMY9uvYNq1znzeIrL8/5Rndc+3VQUM5tGCN\n", - "YaOm3uFzOujbtmClHpxarxBWsHWnPvLaVIyB818XpTxF3R4RI61N2fT0nS6G3r5D55+lLTOLT+Fx\n", - "SkmnmuiYPkrkEGDlaq6D3Le1YA1dvjp21VimrzFhUztp3bLBsmNY9zFP09C2nDkcw3W7/pqU9X/b\n", - "2d+g0wVB0sjkMA9Wrs2hc91RYwxyL6u7mCf13INfS713P09lf81lQDGq5fyw5yY/AOqawj5ZJ02O\n", - "hcj6DLCsPC4C62WIcWtzV5127EgX8r4Guccw1IlgDHPo1NFXmeYyf9CU5DrYfV3TfavLmMsx7Vc5\n", - "nm9mK4cuwqF3iNsOnP+6oQe5t90nxtYi2Lo8xVike9dMO7f17tMYLmZNzj9znCz33w+cf6xH5YxJ\n", - "inVuczMMOsqhi3AMpnwwNzXUHC25yWUixhjGfhNH7PSjn6dsHZTRHct11m9Z1vMSlaFpXTwzSSnq\n", - "CZJk6yhbLxiwHHWkDsLQQA4tWF1aEo63dauGX8sxyFutg8HKZ+sZki6OkVTLz/rUx0zufaxrLvVZ\n", - "pk0dpwhu7mLrTbHTbegfJb06Ulp9To9wY0/5b/OSAfJc92BJv7L23hN7zH8Kd0LOSt9jsGJv5H1a\n", - "PPj3wMwWJ9VNz1ub0g4X64T3/QnzGqS+bZ1cPNwY1VJtm+W+ckD6to6w9QuJ8l33GElParB8igBi\n", - "l6QzI6eZMtDp9ckLK6176+sU+1E5YxhHeVN+tr6w8vzc1N18U7omZiGHFqwuDpJ0csVn10l6To9l\n", - "iSXXuyrHls/S30t65YbPs2kBsvWLth6eIOmYE422ee5gWR3fT9KLay7bJZ9tabYZg5WrE3rOr059\n", - "nD5AnrENud2Pj5R/7vvuJOUQYKW84G7qPiRav7m6B2BVvW2byT1mt1nTbfctJe+lPOG0TfvnJf10\n", - "hzzbDo5tUt5farDsGI6xXB72nKuyLsIY6tZh3fmypmSocVRTrtNB9N1FuP8P68495l1WjkFvR7b1\n", - "/pU/x7Rj51DWKcypVYs9imkzqrQZi5f19thgKkFXqi66tvl3Xa7t8qty2SensA6zMmQL1qeK/6dy\n", - "YmrqgRXvj/UX9bYy5HaAZz/I3dZxkr7Z4Ctt1ym3bdNUlxa6sa97G03WOafJoWMYQ9m73Kk9x/05\n", - "Wzl0EQ4lpx1xDAf90pjKOnZH1lim0fawFSTdvV1xokox3cdTO3x3VZuy9Xk+6eMu1WXam7oIU+Q/\n", - "xIPJt8mhDHX9eMX7nLcH0HeAVXY315h23s5s2dZtNi3SW2FuLuZ22DQG68APrFvb2ps4/zbLpMx/\n", - "yHxPa/m98kzjdmO+s8N3fytaKTab4sWq7y7b9fxiB40/GCkdqf/tPcX9a5b6HoP1HT3mt81Qdw+d\n", - "K+mGiOnF0nWQexd3l/SIBOmiH3+28rprl9KJHcoRawbsMcxAn1ouj6NqG/g9u2Y6YxAj+JxVQ0Yu\n", - "cugizP3XfmwpnvbeZJxOKjkdwEOXZWytkF3r60Err8d2IetzX6nT0tdH/TVZ51wmGo2V9xjmwaqS\n", - "ut5zWc/JyCHAkiTZutjW5T1kleNOFCpej0ndQe5lyzVd5xjPPexjlvE+L0SbpmkYWup9uq9f9l3H\n", - "YJ1h67AG+eVgsEk2t8h1X48hRZ0nqS9bR6RIdyq2Bli2T7b9XtvX2v6o7WcX7x9ne6/t62xfbvvY\n", - "jmV5nKRzOqZRR+Xs0gMa08miyXPMpqbNLeQ51MW2gcNdy3jQltnyN42/O9jWIzvmv03sbdAlvW2t\n", - "WEPvL02maehjvqbYM7m3MfS1Yuh9osqjJP3r0IXIWZ0WrG9Iem4I4R6SzpL0TNt3k3SRpL0hhNMk\n", - "XVH8vcnY5r2ZW9dlX60MMfLZlsacg8Ayrdd1wyNM1v2n4v+m2/dsSe9u+J2YcriAt83rtfbGpxTE\n", - "cLP6sfVLkv4mYX45Hpe5DHLPrW5OGroAudsaYIUQrg8hXF28/qqkj0u6vRZPWb+kWOwSSeenKmQi\n", - "U3pERgxDrmOuQXZbQ1xsu4hR/3co/m9angPOQXbl46+2qcr7jIbpDLk/Nqm/J0r64RZ5NPkBsr7s\n", - "2UozjrRpUNF2G7U5Xg5vmVdsY26Fm6VGY7Bsn6LFyepKSbtCCPuKj/Zp8TDTNnJtKWKHbGbbo3Lq\n", - "fDY11nz2o0MipnV0xLQk6QcaLt+mBWGq23mq6zU4Wy+wa91ZH+OcySSlA6gdYNk+StJbJD0nhPCV\n", - "1c9CCEFsnFjGWo9jC1j7mMn9Zq/t3uZpairGCXxrgGXrjrYOsqPfXJNDF06sMuTyg3N5fKSaaLTt\n", - "d9tOWXDA8rb+2m40X1bsbfMrkn6q5P3czpWSJFuH2Eyn00StE53tQ7UIrl4fQri0eHuf7ROKz09U\n", - "5dxOe4p/t/h5aadTYauKV2uhA8eSxLgTrY0Yd9FNzZDr32fez+oxr1V9zI59aI20z5T0dkl/lSD/\n", - "tuZ+7G0z9LMIU+Z/f0mPTZh+W7mOwfouKeqE0Fmwvdv2nuW/mGnXuYvQkl4r6WMhhN9c+egySRcW\n", - "ry+UdOn6dxf2FP/+z0uk3WUL9HUAx54pOKYc7jqrux26jn3oY5B7k5ncU9T3ENuwS7dsnTvFtqWx\n", - "bMHa1rrzUC0CrVpsPaTusk0VY71ymvxYKm9peYGtL9VdvoauzyKcq1wmX20jSJKtN9p6fMs0spnW\n", - "KaYQwk4IYc/yX8y061TYAyU9RdLDbF9V/DtX0ssknWP7Oi0GPr6sZRm6XuiazpvS5kIf84KZ6wmr\n", - "zRQEbZaJUZeHbl9kWorm+cOK14+1ddu1RWKOgWojVf5/3mBZS5Kt41darDf5r6p+6Hpl+n2y9Zta\n", - "dCV1nQZnVZOpF/6iKEfsdb9VxfuxpxBZT2eIbs1YYpT9yYr7GCFsUOcuwveHEA4KIZweQjij+Pen\n", - "IYQvhhAeEUI4LYTwyBDCP/dR4BKpdvq+nsE1FV3qq+l3d0mSrb+0S28VTrXtHlNzueU2vm/EvP+b\n", - "pI8Vry+T9Py1z5/ZIe0Y+2TZ/E5DzTn3BdW7q7ntHWopj+H1tC/cskzqur1yw2dd6uEeFWn1PT8W\n", - "9qNOI+v7WYSbpJ69tukBnHtXXWybHkC9qqp8Q2zfB6g8iEl1x8x3N1z+r3Tgg5Xbup+kO6/8fQdb\n", - "p2r/um66867PfWrTswhjtsKUpb/qhMjpDSWnsaJ9yKnu1/V1HFW14pV1H/+MrSenLxLayKFPddMj\n", - "VJp8f5tcxmCVlbequbxPr42YVtO7rKY2yH11Xes8f66N75X0qZrLbhs4HKMO6ty88XuNEvQBrRxN\n", - "dKn3Ic8RQ5+fquRWrmTlsXV6xZ2ufdVBk3xeLumlNZajdWoAOQRYXdW9cLcKsGzdtXGJtiTZ8fOh\n", - "jeFAbTKRom09WtLPNc3E1mkJxqY0cZCkuyXOo+5xU7Zc67opun4/2vb7ShPY5nhspnqmZtcfvm2l\n", - "eKzTWWp2/r9K9YcD1GLrmAjnijGPH5ulHLoIU47TWM3zmJb5fVQNdk5bj7N1z7rLIws/0/J7n5T0\n", - "QlvPXnu/z5NZjO6BxuW19Z4Gi2/qNlymd/ra521uZOij5bBvfd9lXffv2Pn1lW9dtyh5r8u2+GeV\n", - "j6erI5fgKJdyjMYUWrC27vS2ztL+ebqa7iRNT9SXav9z2cqMoQVok7YDgzd9HrtO+jwRvETSq/rK\n", - "rGhtu9lba//35eEV74eS13XKFnturJRdhClbEsZ0ERuyRSX5edTWUetvdUzy9hX53HSHcGGoa0TT\n", - "fMd+LUtuCgFWnS7C1QHcTQ+Svn65LZXttJ13ZDva40fqlGXTs7tyuYCEtf9jSrmOf9TiOznO35O6\n", - "C2rULVhUtAEhAAAgAElEQVS2jtj0ccXrKFlX/B07n1TTMVRpk35fPRFvlnRdjeW61FG0+Qdt/fvi\n", - "71zO5dnKIcDq65ElY1a5HrZesfXLi8kavxypLHXuIvyJkrFrfW6LOf2yWr0A1u12STnIvc1YrfUy\n", - "bFqXTWmuahpgrY5la3unbAy2da6kf91SlhoJ6WRbv9ry67kfQ223xdBBSpn7Srrjyt91j+MmYu67\n", - "663oqJDTGKy2cj8RrIt92/UzaizT9kHcXRw3QJ5Ldeowl7tKu2oyPnDZdV3aelBxQ0fqekp1/DYN\n", - "sFa7PFPuE3XSPrlBepvq73sk/XSDtFblMgZrbOf3FLbV/Sn24BMNo0QOLVgpbRpcO9RM7nO6oB9i\n", - "67K1t+dwwkzZhVOVV50Hrv/I2nfWbZqnqu561B2Lt95FuD52q81+EmuQex/jpPbYpT9CmgYYbcoS\n", - "69zXR4tKb4Pebf2Era+nSj+x7xu6ADhQ9gGWrVvYrScoHHswszSGoKSsjMdo/8NUN425ib1+c33W\n", - "Wt0bEHIYd5bqwr00hu2aeoqNLsZQf03U2afur/K7B/vWpot6WwtWk6k56praPhJd9gGWpIulyged\n", - "tpEk6LL1AFufq7Fom7vthpw/ZV3TiV1TlKFp3mX6GvvX+GRp609tXZyoPGWazBu27fOm2znlzQax\n", - "xdiHt7Vu3vSeratrpHekHWXOpjbTNLzU1vNa5le1vevuB233l87b0Natu6axLYu1vx9X8X6XNNGD\n", - "HMZgbTtQ7rzl8036PGk/UBW34TZU5+I8pOWdJIfbevXK+xzA5drUy6O0/6S6Lb0YY6Q2pdEl/eM3\n", - "fBZz2o6p7nv3Vr0fXO/YlIjdaQzmprp9lqQXRk435225LNsXe863zZ3DKeS8bbKUQwtW1wvEzb5n\n", - "6472xu6oNvkMtWPluEMvy3QXbX7AcONuuorHU7QRo0WmizpjsFLM/ZVDQL5ahsMql0pT/30dL7Hy\n", - "SdFaXeZva+S7Lf++xhLWHYNWVZ6fsDc+eLxOGVJ5SeL0kZlBAqzEjxe5XVmWJe/lcDGqa0xl7eLf\n", - "hi5AAqnHl60OEu86EL1LWbuOqZrLPj7Ej6YjW3wnl+3RtL5+UtJtUxREw9fJ0FNMrKdxUYQ0Jy2n\n", - "Wzvb7gB9zBA+5gNLilv+thfnPutw0/imixSnK7du/qnXO0bwUqeMXR68vKrNXbxtlu+iTStOm2P0\n", - "tyXdJ0I6Kay3KPVVriGPlxR3bLYx1Dxsuaz/ZPQZYFV1m3Sd0bnOSW99EsOYecRW9qiRTcay03c5\n", - "scX0XC1+4f5LT/nlsH1iTDuwPt1GmzQ2LR/j5J77+MV1Z9RYZgzr0Ubbrsi2AfqYjLn7HCuGGoNV\n", - "Z4xK/cSs+1b0u3dKNnJ6ddONWjc9ajuvTQpNAlNL2h05/9rruGGCQOvmE05uuyClqtcnRk4v6iNS\n", - "ivGWp3ZJoyzZLZ/fzz6gFbTt3bXbPk8RSLS5ZT/2/tX3ua3rfnaoph3U1TH39W8sh0HuSzdtPFth\n", - "7eGX2773QUnnbUpzRZtfQEMHOl27QYco/5B1NvT2auI5Fe/fWtJf9lmQCr/ecPkH11yuzUDrKifW\n", - "SDOmd0l6Q9WHtu7QIe1Hav/6VGbRIf26+u4arJLLRf0vNHxdDJ0/GsqhBavqvbotUsvvlQVkQw8K\n", - "jJVukgPL1rG2Pr7yVorJ6Op8f8iT6NCTbm6aymBVVVd6mzFYVX/HmOrhVg2Xr5oHa/CufFvfsyH9\n", - "Tdvh72yd1DLbl0h6ccvvdtH3xbvu9o59V2Pb753V8nsx9XI9s/VMWw/rkBcKQ82D1Xpgrq3D4xSn\n", - "kZgX4SYHSerA446Svm3l75gHcJOLeOo77XL5FZzSAfVqb20JqfxuQnUCxMEmkVzzFkmyW3Uhr0+N\n", - "sJR7K0Rf0zSkzOfeidLt6zwy1I++Zb6vlvSylmlgRQ5dhNtmcl7fqP/bvtnYlKZdZG3GCg01yD1W\n", - "vr8aKZ0upnIRr/P9lOta65e/reMl/WPFMjkMot0UBLvk8zZptrWezntbfKfuEIem6faVZoxWzaG8\n", - "K1G6jerC1hNsXZA6H+Qrhy7Cqr7+TSeBoyvSGoM2d0t1PclWjQn5+Yj5jG07dC1vrEH95yQqx6Zn\n", - "qt3YIP3YcwqtX7i3/cBa/16Z2OOFctqXh2p9TR2Ut03v+cX/Q3ft1/FHijsL+9D75Rx6AqLKrosw\n", - "0SSkZa1CQw1yjz22pEvZnrD2d8x+9yhdobZ+x9a1HcuSolVwXdsWz/vaOsFuNRlkLHWDnLbqjl1a\n", - "6muG8yptuq/qlu/o7Ytgg5/q+P3cxuXeJkGaZWKUfegAb3Ry6CJcWv9lW3djxt7pl4N0c4jWcyhD\n", - "lW3b55fX/m67LmdLunvL7y6lDtq7+ryk19RctipAaXKnaYrWidg/QqZ6Mv/71T9a/qBs/B1b92r4\n", - "lbrn46G2U9N8W4/77ZBnHcc1KEeMm1DQoxy6CNffS3HgNFn+rg3Ta2pM00M0sb5e37H295jWpY5N\n", - "XdqueH+TE7oVp1HrSt/dK5smz13+fWziMsTQ5cHzbcXaVndsmGbquqwK8lvlm/jxa30bal1y/kE/\n", - "SkM9KqfOxSBmt1gvvxIjpZvbNAZ9aHIL8Tsipd9XnfZ1sjxC0lM6pjFE92lVnmPb57vc+djHul4m\n", - "6QMdvj+lAGas2AYjM9QYrMbLFZOP3rHko7GdiLfZ1LpXpu/1H6rrdukxLfJuWqddDTFeaLekQ1um\n", - "ccC2svUke5AWm1rs0vm2hjwXpNrmMdfpzA2fVf2wzfWi3rReYt8IMTbB7vw80alda5MbWwtW2aSM\n", - "TYOPoQe5N8l3TDt0TieunMoSW5sJObfNC1aWxpuKf0PYuN8XF4qP6sBzxRjvIhxiXz2/xjJjOvdI\n", - "0z7ml7qOwfrWAfOfpZzGYFV9NtTAvibdVk3uAGtSphx36Lbz43R93M+Y9Nk61uYHQwqp77RdXb9v\n", - "qfyib7ora+j6yNl31lhmLC1ZMdVex4hjvureRbvM9yl2rQC5fgGmNX4tKzncRVj1a7pxy5Sth9dY\n", - "vlNXZYWvqv4jQtoYalLLJvq4U62uSV1ca54AY4xZ7GMetLaz7Netgxtqptc1r3Vt6+6pdumdZF3T\n", - "jWVZF4+peDB57Fn3Y+4PY9B0SpLXS3pdorJsM/S+ODo5zIN1ytrDUdseOPeU9J619/qcjbjJw6mb\n", - "fj6Vk4nUz7o06TbLbcLCPm7gqOvbE6RZJ/AOFe+vft6+ANaP2bUfSl072Zbfe52kp234vGyi1yHO\n", - "B29U3Hny1nXt5t32vZy7kVP86F/HPFgD6HMM1qY7iX5e7efBqkqzTRpVzouUjlT/RCDl+Yuhyfax\n", - "lG0TdK6DXo+JlM7qBIbr+1HdH1YpAqw6Um+T35H0l4nziCXWI3di6HTHo60vSvp0jTymonJdbP1i\n", - "zPQ6fndKdZ6VPgOsl2z5vOsFr2nTcpOWpJTdf5uMaccfS1lzvety0/J1gu717121IY+zG+RdV+zj\n", - "tklX4lj2vTFa/2Hcpev/1sW/pt8rM8QzGjs/EcLWoVpMl3F4g3w75dkAx1FkfXYR3m3ldZO7COtu\n", - "9LLnq+X4bL02ZcppgHib/Jq02jX1vR2+20XXC36fXRU5njibdt9vagFvI8c6GVKd823KOls+yaDt\n", - "GL1tctlnjpJ0eoR0YuJYSGRrgGX7Ytv7bF+z8t5xtvfavs725babzsK86c6Jtgd43SkZetuZbD3S\n", - "1k+vv90gia51kkJud0F2nVyzlpJuzj4Gjtcx1pPj0OXe1N01dNly0PcPt+8v/m97nPUxjqlVOrZe\n", - "HSnPLraNa6ybhiKkMxt1WrBeJ+nctfcukrQ3hHCapCuKv7s6oOXK1t104CNXJOnkkvdy7EL4JUm/\n", - "2vA7OY67quPta39XBbW5HJxDD3Kv2zW2nl6XLpqUYv4wKvvOpsftNEl3Ux7Yr6xFK6f6ilWW1Ts4\n", - "t6XZ9lzxzEhpDtGFHzuNWdkaYIUQ3ifpS2tvnyfpkuL1Jao3cd2qOifjMyV9z3pxiv/fVfK9g0ve\n", - "G+Mdebme0Nro+1flUpOLa19j/upKUZ4cg/ZNv4aPlw54asPYj4WYplAXuaxD1XjEMinK3KZHIPY5\n", - "IpdtMTltB7nvCiHsK17vk7Sr4ffrdBHubZjmz9bMZz2/McixrG27Cvs4mEvzsHUXld/23ibNnLpt\n", - "Y+V5lK37haD/kTD/Ot0M75R0ywR51/0OF5xyVcfVwZJuDKF5a4ytEEKr+m76RIPY27Rtej8cMa22\n", - "qq7XQ/0gnqzOdxGGEILtDQfWnuL/fzpVeoIWj0wr1TU6H1rKu1pGUSf2AS2OuZV7T8l7P9J3IWwd\n", - "pv13U61r2+oaI2D4OUkPbbB8XU0D7G3BVYxu0k1jsLBfnW33TS32nV9ukG7d1pRbNEhzDH40Qhpd\n", - "99vvtHV8CPpfEcoyerZ3a0Ng0kXbAGuf7RNCCNfbPlEbZ0/es3zxd5JOKV63vRg0fZjtGLsIK9n6\n", - "gRD0hqHLscG9V143uajW2ia2/qlmOR5t64Eh7B//VtweXba/153jbNOYoE3Lli33a5KeVTOfdW2e\n", - "RVhXnxezpheJ2MGQJd01cppzULUd7tVrKdrPF9fnIPe6QxX6mqZh9ftP0mI+uBjpjloIYUfSzvJv\n", - "2y+KlXbbaRouk3Rh8fpCSZfW+E7dC+6mz55XI5+6acUWK69Ndzz+l0h59KWsTrrU06ZHiqz6OUmv\n", - "WHvvU5KeuPJ31wt2l+b09fFFXfKNdaLvKvVYs21Ba1OW1PTu57mz+g1QNnlQw/RyDSJoRZ2wOtM0\n", - "vFHSf5d0V9uftf00SS+TdI7t67QYJPiyGnk9ZFM2Fa/XnVgjnzKDTNPQ0qbxaTlZjqH4gTbfq/ww\n", - "zazvQbrZ45i2lqOF1W6tLrNvV7W6nlCx/HI9ctxHlpIcc7b+oMPX6wbrc1E1RGNKN93ENGRdlOXd\n", - "ZbhPXzfizM7WjRJCuKDio0d0yHd9Az1d++9U7OtOjc4XJFtHqnzAYKyLXc4XzaWqVrX1oLZul1qK\n", - "sTEx9qltXYTPXXn9BxHya2rok17qQeNl+8SFJe/VdecNnw1dl9sMWb5YE4FWrUPfXY05anO338Up\n", - "CiLdNLb2slTpT1mfM7mvSnkyTnrysfUIW7cr/vw1SX9bvE7ZSpb7Cb9Km1+/Y1nXTeW83YbPuqSb\n", - "U5p9509LyvDKugjbbouhfkTl0sW5VNaSWpV219bqbd+ryvctWkybhIaGCrA26Rp8bVunrgfGXkmv\n", - "LF6nHsMx6IXE1qG2/tbWU+xGdwgdkFTF623LxjKmJ8k3vTHjCakKMiJj6VbPWdW5bLVuYz41oe9z\n", - "W4z8mt5gVCfPO9Zcrmm6Tb7XdBwnP3BqmkIL1vqJNNY65bTTDXWxOErSnbSYY+yFLb7f5ldlin1y\n", - "yAtwjJPnt3XMJ+q62qVPUqh7TE8l8Ln39kVG5aU1lvk+1dx+icZS9u1pa3+vBqFTWL91B09ku2Vj\n", - "qADrURs+63pBSt2C1We6uVyMYnbbrqe1PiC8rwO8az6pHiRe9tmHW2eU5oR5n7KsNhVjw3J16zGX\n", - "Y2Gp7TQB2bF1mjaPSbvZ4jWX23Ye/qGa6QwlSHpGmy/ajbvTbtq3bf2ayp9KIqW7oWWZ7p+qfCJU\n", - "qdnEvygMFWD94YbPUo/B+paa6XR53lmOg7Rjq1OmsmXW37t7i3SbStFFmOM2qTJ0WWO0WPfZCjZ0\n", - "fVUqxn9WXYDb+qSkk6qybJlm39eWukMPYo3V2vT5lR3K8VPaPvQk5f75nyrevyJhnpM1tjFYdU6s\n", - "29Yp1VxSKQbh5nKib9MVul4f683tm5aNrSzNWyXIp0zZ/tjng8lz2IemuE7r+irTP0j6sZrLtglE\n", - "p3buys1yupg2194hW91XsW1rGluA9Z01vl93nWIPtt64vK3vsVtf1HPrHqnjIEl/0uJ7uR68bbu2\n", - "uuYTQ+yyVs3JlVKfQWnublNzuSHrJcdrS0xD1G2q3p25HT+9yfEg6Lqxy9bp+R3TrNLkwvUWNR93\n", - "kGNgVff5iEdIum/J+0nuIrR1N1vHV3ycoh67dDX01UqXKq+yboSYN64MrU15g60jopekJVt3l/Sb\n", - "NRf/xqak1v7u67Eu2zO4+fjCse1jY5bjdSlLcwmwHtAxzSpNu85+sGU+Yz95NAmq2q7rx1Td/Vv1\n", - "9PgctV3/NpMTxpQ6wMr9GDhG0r8OXYgVD0uUbqxB7jE02SeajsFKHUSs1s96marGwy0NPcY392Mx\n", - "G3MJsNrYtBO33cG/o+HyOe7IqW9C6LL9qu502d0hzaW+fsm3rd+cW5BW8+/rbqQoF6HiaQ113LJY\n", - "fui6bqPsmPteW2d1SLN2PXSoszbfe5Wt74qQdsrtXPWDsGmQmMrQ+Y8GAVa1pheslDvd2Jtk2/zS\n", - "zF2Xcva5PXOozxhlGOoYmMMDocvuSry1pNeq/Q+LJufhGAFW3TSeJOnHW+aXSjbdrohrzgFWypP+\n", - "VJ5FuOkXU9v6K5sDbdOJcug6WIr5K7vv1qY+6jD1yd+SZOtbe8i7S3pTvwjGmuag7bJt5bSPSJuv\n", - "U32f86a+zw5migHWUDtLWZAwldtilxe3w5X+1u/1ZZd5/26LfFOqWw/3bJhu7O6SofcdKW4Z/kZM\n", - "ephym66n/Wst02lybVmfbLiuHPbtFHL5UVllqvUe3RQDrD7GYJUt03e3YR/WW7Denjif9der/kOi\n", - "vHPR9aQ69DQGbVvl6gbOq+uX83mrTV23DWKG0Ko7y974va+1LMuQwzIOTZj3jRXvx1zfNnMbPjBi\n", - "/rOQ84mqrT6fRdiXoX7RrF807rbyWVmZYtzJllO9r0p1cltPv9euDFs/qfQtQpvKcErivBFX1bZM\n", - "9UzYTVJO07AtvbpPBKmdvt3rDO5t0vrJ4v/cW9iyQYAVT1m5h5xJOYZNrXKpWuxyWv8hpLijatN+\n", - "+Eqp8bPTmhrbfsEYrIUuP4xuOg8nvLNyyB9uKYKdx0ZMM6Up7eNJTT3AOs7WHyXI5xBbt1V1M2vd\n", - "yTjL5NTVGKtVpcktzznuk9Lwvx63if0suaaS57PhQh3rx82UpFr/Nl2EXJAPVHaeG/o832r5DRM8\n", - "z16OF7OuO9nqLcf3lXTBARlYD1G3ySe/V9I+DTtDeB82BVjvSpBPVV5j8+qhC9DQgxKnH+uO3SYB\n", - "/1B3Yk1h/13qUoebJtKMZcjzRswfnXV/kKceptDW4RHTmpRDhi7AilsX//fRRfjnij/rcqxf0U0f\n", - "DpzSpotG2RiEtuWcWoD1jx2+23n9bX37Wnrb0rxZgFXcLdo425afNUl/mU6dY3zKLVg5HiPr9d3H\n", - "MZ1yrq3U+8+mnoo+nsqwLa1TG6RVNSh/9qbQgrW+I9T9fspfC11+zea0TZquR5MunFWrrY45Xjyk\n", - "uOM9Ut/xd7fti2z0GxHKsCrWNh1DC1Yux2+KsXxNvrdaD6nuuHtqonT7kONQkFV1HyguSfe19YVY\n", - "hZmSXE4Gq/oa5L4tn6a/kmNfRLa916fU+W/qTsi1JWLb88I26XvAdtM6PCFBGbrqs4uwy9jJHM+p\n", - "Q1itw99PlMdqEDC2LsJNY7D6Xpcf6fj9+0mMwyqT48kg9YDqpW3r3qUcsU7uh9o6WCu30ds629ZR\n", - "HdJvU5bU26SP8RpdrZfr+xss2yWfseij3Mv9pM8WrKatt2PdfrGtHtP3HqwU+9294fJDbse2PQFN\n", - "BEmy9QBJryjNzLpFxPxmaYoBVt112rZc07qJNQZrPZ2nS7rzyt9/LOkrLdJtVgjrnmp+0fiFltmt\n", - "dhHmuE+Wid3N1+XO001yuIsw9his9fRS3kXY9AfbWPbfOpq0pm8ag5WqTprsV7EnSY55nVrfr/sM\n", - "7v5yw2dfrni/zvEH5XkyyCXAavorOVbX3nq5br32d+sJ7mw9u8HiR4sWrE1SBxSx0s6hPmN3n/c5\n", - "yJ0WrHo2jcEqe5h07Dxj1/u2/afrtXPT9aIq7T4HuUuqbMEiwKqJAKtbOVLc7VF7m9g6QdIxDdJ+\n", - "VcOy9HXR6HSitPUTEctSmU2iZWN+N1djHoOVYwtWX/tIk6c1rFst410jlGVbHrG9JXHeq99fb73O\n", - "8bq8ydjK25scK2ZMg9y3pbfs5/6XjulU+YsGy7bRVwvWpi7COnnHvuutjtiD7+vWda4tWH206DUJ\n", - "YvpuwVruw1MMkFfFGuMaw5B1nbIFq6rFL/oYrEhyjCOykGPF9BVgxU5n0y+SW7VMp+zvVevdh9sT\n", - "bzbHUV8nsIMqXuekrxasIdPOXZN1HyrAynX/ratt+Yd4FuGQuq5fTjO5dzXWcieX40GQS4BVpxwp\n", - "dqzUO+vJNZerGlSconzZBFi2Xmzrog7fP17Sni5F6Ph52fJ9nAD7aMHKeZD7ctLmXC42bdd/2/HX\n", - "poswldTnpU1Wn7XYZsqWNmN2+x6DNURak0KAVa1OObYNzo4xk3vqSSk3GaKLsMuA2Id0+O7SL0h6\n", - "UYfvf2eEMmwyxpPZ2Aa5t7lwL/fbD9z0xXHe5r7t+LtzxfubBrmnkksX4ctbfL9NgPXwFvn0Icc4\n", - "Igs5Vkzqi3ld9+qSl61T1O5RRLlvkxQTf2664yiXiUZTn8xTPY/MGr4Oy26ueG/DNKxhpkLYdIyv\n", - "Pkh+eazfaeW9/y9JidLa9lSFupPQDt1qmlrMMVh1f8g+qmOesXAXYU05PYtwqevGinVL8M/WWGbT\n", - "L91Pt8w3p521rxasbLoIM9BnN0HMtDd995QO6Zbl0Wf3/ab98Ukrr8vOO10fWVQl5T7Q9vw5xBis\n", - "LLoIW2rTghVTzCcd5HTNykqOF7OuG+vXopSinqHHYLWeE6um9Qva7ZRmnWN1EaY01pPIWMu9bnWa\n", - "hnVDBZ2rn+X4Y7WN1WtC348b6kuMR0HFDLBSTTKcytxuaGgtx4oZy04mpfkFVSsdW98aKb+N2az9\n", - "L608tqdFOlX6mJSwL6lb+3JtwepD1Ris2K0BXcZgjV3b9RjTGKzTbX3bQHkv9X0XYcpWpxzjiCx0\n", - "qhjb59r+hO2/sf38SGU6L1I6fag4EV/WZPLPdXW3yWGJ05cadxHuNCzKTUYeYO3ETCxGgLW+X/52\n", - "++JsslOVZyqNxmDZOiTCJLQl67VT9tlUWrA2HH87TdLJ/S7CI+svulP25sZ90Na3SDp00yI13xvQ\n", - "TtUHdBHW1DrAsn2wpFdLOleLB2leYDvGmIM6Y5/qSr3hK+rvii4BVt0yt33gc5MAJlaA1eQuwhx+\n", - "DZV1jWxYh51t342pzT5dNxhvmPZO03J0VbU/Vl2s7qzuk9BuCrBW5fbDoO0djG0DrKjdRrZ+0NYd\n", - "ti3WJY/6dsre3LZ+79ryeVnZ+wzSa5yndmT3Ot5xcrocBGdK+lQI4TMhhG9IepOkx8Up1misXrhS\n", - "DaqtSrftWLO6FwKrcYBV6S5bPt/UgpVqoHCuYrRgbXtGZgp9tlikzmu1G7xuXmUXxyF/LOxq+b22\n", - "geIh9s3Oh13X/RJJP71lmVQ3ZdSxbaza/bZ8v2yoxSvbFyeZOvWUw4/iLHWJmG8v6bMrf39O0v27\n", - "Fac+W8fWWGxTE23jtEveX22puu/+lwdvqtdtTdPrB17V8tt+3UnSESXv1ak3aTH7/NeL1227I5e2\n", - "zSu12hp3TM1tu1WHdG6xZVtL1XWysWWxSLdsNv3ldt/W8lDnmF3dZ5rUwXKdyvabbQ4tq+9Y21KL\n", - "el1ug/VjouwYOUJrTzpoUJbVqRbqtkaXbfejI67/avnrtE4d3TDNpdW/6zz1YbnMEyT9ra17Nsl/\n", - "i23nyqNWyt+01+Cm8q2k0WR86erTOdocL6uatjYevmm/qvjsVrr5PnpUzX2zbJn1erplka9DGHxK\n", - "mKw4hHb1YfsJks4NITyj+Pspku4fQnjWyjJUNgAAGI0QQpRW8i4tWP+gmz925WQtWrFuEquQAAAA\n", - "Y9Kl7/SDku5i+xTbh2kx6d5lcYoFAAAwXq1bsEII37T945LercXAyNeGED4erWQAAAAj1XoMFgAA\n", - "AMolub0y0QSk2bD9GdsfsX2V7Q8U7x1ne6/t62xfbvvYleVfUNTFJ2w/criSN2P7Ytv7bF+z8l7j\n", - "9bR9X9vXFJ+VPfg3KxXrvcf254ptfpXtR698NpX1Ptn2e21fa/ujtp9dvD/pbb5hvSe9zW0fbvtK\n", - "21fb/pjtlxbvT317V633pLf3ku2Di/V7W/H3pLf3Usl6p9/eIYSo/7ToLvyUFg94PVTS1ZLuFjuf\n", - "If9p8SDn49bee4WknyleP1/Sy4rXdy/q4NCiTj4l6aCh16Hmej5Y0hmSrmm5nssW0g9IOrN4/U4t\n", - "7j4dfP0arveLJP1kybJTWu8TJJ1evD5K0ie1mIds0tt8w3rPYZsfUfx/iKS/lvSgqW/vDes9+e1d\n", - "lPMnJb1B0mXF35Pf3hXrnXx7p2jBmssEpOt3SJ6nxeR4Kv4/v3j9OElvDCF8I4TwGS021pm9lLCj\n", - "EML7JH1p7e0m63l/2ydKulUI4QPFcn+48p0sVay3VD7p3pTW+/oQwtXF669K+rgW891NeptvWG9p\n", - "+tv8a8XLw7T4cfwlTXx7S5XrLU18e9s+SdJjJL1G+9d18tu7Yr1XJ9NeFW29UwRYZROQ3r5i2bEK\n", - "kt5j+4O2n1G8tyuEsK94vU/7Z1K+nW4+fcXY66Ppeq6//w8a7/o/y/aHbb92pRl9kutt+xQtWvGu\n", - "1Iy2+cp6/3Xx1qS3ue2DbF+txXZ9bwjhWs1ge1estzTx7a3Fo6OeJ+nGlfcmv71Vvt5Bibd3igBr\n", - "DqPmHxhCOEPSoyU90/aDVz8Mi/bDTfUwiTqqsZ5T8ruSTpV0uqTPK8/HWkRh+yhJb5H0nBDCV1Y/\n", - "m/I2L9b7zVqs91c1g20eQrgxhHC6pJMkPcT2w9Y+n+T2Llnv3Zr49rb93ZJuCCFcpYpH4Exxe29Y\n", - "7+TbO0WAtXUC0rELIXy++P8Lkt6qRZffPtsnSFLRlHhDsfh6fZxUvDdWTdbzc8X7J629P7r1DyHc\n", - "EF70LhgAABTnSURBVApaNDMvu3kntd62D9UiuHp9COHS4u3Jb/OV9f4vy/WeyzaXpBDClyW9Q4tH\n", - "fk1+ey+trPd3zGB7P0DSebY/LemNks62/XpNf3uXrfcf9rG9UwRYk56A1PYRtm9VvD5S0iMlXaPF\n", - "Ol5YLHahpOXF6TJJT7Z9mO1TtXjw8Qc0Xo3WM4RwvaR/sX1/25b01JXvjEZx4ll6vBbbXJrQehfl\n", - "fK2kj4UQfnPlo0lv86r1nvo2t338slvE9i0lnSPpKk1/e5eu9zLIKExue4cQXhhCODmEcKqkJ0v6\n", - "sxDCUzXx7V2x3j/Yy/G9aQR8239adJ19UovBYS9IkcdQ/7RoUry6+PfR5fpJOk7SeyRdJ+lySceu\n", - "fOeFRV18QtKjhl6HBuv6Rkn/KOn/ajGu7mlt1lOLX8XXFJ/91tDr1WK9/50WAxo/IunDxUG1a4Lr\n", - "/SAtxihcrcWF9ipJ5059m1es96Onvs0l3VPSh4r1/oik5xXvT317V633pLf3Wh08VPvvppv09l5b\n", - "790r6/361NubiUYBAAAiSzLRKAAAwJwRYAEAAERGgAUAABAZARYAAEBkBFgAAACREWABAABERoAF\n", - "AAAQGQEWAABAZARYAAAAkRFgAQAAREaABQAAEBkBFgAAQGQEWAAAAJERYAEAAERGgAUAABAZARYA\n", - "AEBkBFgAAACREWABAABERoAFAAAQGQEWAABAZARYAAAAkRFgAQAAREaABQAAEBkBFgAAQGQEWAAA\n", - "AJERYAEAAERGgAUAABAZARYAAEBkBFgAAACREWABAABERoAFAAAQGQEWAABAZARYAAAAkW0MsGwf\n", - "bvtK21fb/pjtlxbvH2d7r+3rbF9u+9h+igsAAJA/hxA2L2AfEUL4mu1DJL1f0k9LOk/S/wohvML2\n", - "8yXdOoRwUfriAgAA5G9rF2EI4WvFy8MkHSzpS1oEWJcU718i6fwkpQMAABihrQGW7YNsXy1pn6T3\n", - "hhCulbQrhLCvWGSfpF0JywgAADAqh2xbIIRwo6TTbR8j6d22H7b2ebBd2s9Y9T4AAECOQgiOkc7W\n", - "AGslwy/bfoek+0raZ/uEEML1tk+UdMOG70UpKOqxvSeEsGfocswJdd4/6rx/1Hn/qPP+xWwY2nYX\n", - "4fHLOwRt31LSOZKuknSZpAuLxS6UdGmsAgEAAIzdthasEyVdYvsgLYKx14cQrrB9laQ/tv10SZ+R\n", - "9MS0xQQAABiPjQFWCOEaSfcpef+Lkh6RqlDoZGfoAszQztAFmKGdoQswQztDF2CGdoYuANrbOg9W\n", - "p8TtwBgsAAAwBjHjFh6VAwAAEBkBFgAAQGQEWAAAAJERYAEAAERGgAUAABAZARYAAEBkBFgAAACR\n", - "EWABAABERoAFAAAQGQEWAABAZARYAAAAkW182HMKtksffsgzCwEAwFT0HmAtrMdYxFYAAGA66CIE\n", - "AACIjAALAAAgMgIsAACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgGmgcrvaoJTSUmNQUAAGlN\n", - "NsBaKIuxiK0AAEBadBECAABERoAFAAAQGQEWAABAZARYAAAAkRFgAQAAREaABQAAEBkBFgAAQGQE\n", - "WAAAAJERYAEAAERGgAUAABDZ1gDL9sm232v7Wtsftf3s4v09tj9n+6ri37npiwsAAJA/h1D5TOTF\n", - "AvYJkk4IIVxt+yhJ/1PS+ZKeKOkrIYRf3/DdsP5g5cVDmNfzdPQHMJfnkyYvAAAwfmVxS1tbH/Yc\n", - "Qrhe0vXF66/a/rik2y/LEqMQAAAAU9JoDJbtUySdIemvi7eeZfvDtl9r+9jIZQMAABilrS1YS0X3\n", - "4JslPadoyfpdSb9YfPxLkl4p6ekl39uz8udO65ICAABEZHu3pN1J0t42BqsowKGS3i7pXSGE3yz5\n", - "/BRJbwsh3HPtfcZgAQCAUYg5BqvOXYSW9FpJH1sNrmyfuLLY4yVdE6NAAAAAY1fnLsIHSfoLSR/R\n", - "/iahF0q6QNLpxXuflvQjIYR9a9+lBQsAAIxCzBasWl2ErRMnwAIAACPRaxchAAAAmiHAAgAAiIwA\n", - "CwAAIDICLAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAAIDICLAAAAAiI8ACAACIjAALAAAgMgIs\n", - "AACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAAIDICLAA\n", - "AAAiI8ACAACIjAALAAAgMgIsAACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgOSZ2B7YemzgMA\n", - "ACAnDiGkS9wO0hlf3v/OFw+V/u4IaT1PK4Tg+HmXrVv8vLpYlPNAOZURAIA5sB1iXX97CLBW03+T\n", - "pAtEgLVfeTnzKiMAAHMQM8BiDBYAAEBkBFgAAACRbQ2wbJ9s+722r7X9UdvPLt4/zvZe29fZvtz2\n", - "semLCwAAkL86LVjfkPTcEMI9JJ0l6Zm27ybpIkl7QwinSbqi+BsAAGD2tgZYIYTrQwhXF6+/Kunj\n", - "km4v6TxJlxSLXSLp/FSFBAAAGJNGY7BsnyLpDElXStoVQthXfLRP0q6oJQMAABip2gGW7aMkvUXS\n", - "c0IIX1n9LCzmekg33wMAAMCI1JrJ3fahWgRXrw8hXFq8vc/2CSGE622fKOmG8m/vWXl9Y/uSTkDV\n", - "pKIAAKB/tndL2p0k7W0Tjdq2FmOs/imE8NyV919RvPdy2xdJOjaEcNHad5lodDXniklFmWgUAIDh\n", - "xZxotE4L1gMlPUXSR2xfVbz3Akkvk/THtp8u6TOSnhijQAAAAGO3NcAKIbxf1WO1HhG3OAAAAOPH\n", - "TO4AAACREWABAABERoAFAAAQGQEWAABAZLXmwRpK1bxRw06zUC63MjHNAwAAw8k6wFoomzdqSOVz\n", - "aw0rtzoCAGDe6CIEAACIjAALAAAgMgIsAACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMhGMA/W\n", - "dpsmAAUAAOjbJAKsBSbbBAAAeaCLEAAAIDICLAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAAIDI\n", - "JjRNQ31l82aFEKLO6zCWubmqyhm7PgAAmJNZBlj9zZk1lrm5xlJOAADGgS5CAACAyAiwAAAAIiPA\n", - "AgAAiIwACwAAIDICLAAAgMgIsAAAACIjwAIAAIhslPNgjWUSzy6YABQAgPEaZYA1j4kxy+KrKa4n\n", - "AADTQxchAABAZFsDLNsX295n+5qV9/bY/pztq4p/56YtJgAAwHjUacF6naT1ACpI+vUQwhnFvz+N\n", - "XzQAAIBx2hpghRDeJ+lLJR8xIAgAAKBElzFYz7L9YduvtX1stBIBAACMXNsA63clnSrpdEmfl/TK\n", - "aCUCAAAYuVbTNIQQbli+tv0aSW+rXnrPyusbK5fKbW6r3MqzlGu52mCuLwDAkGzvlrQ7RdqtAizb\n", - "J4YQPl/8+XhJ11QvvWfl9Zs2pJrjvE85zreVY5m6mNr6AADGIoSwI2ln+bftF8VKe2uAZfuNkh4q\n", - "6Xjbn5X0Ikm7bZ+uxdXx05J+JFaBAAAAxm5rgBVCuKDk7YsTlAUAAGASmMkdAAAgMgIsAACAyAiw\n", - "AAAAIiPAAgAAiKzVNA1TNKX5pYaW2/xWm7Ytc24BAFIgwLoJ8zHFlVt95jjPGgBgqugiBAAAiIwA\n", - "CwAAIDICLAAAgMgIsAAAACIjwAIAAIiMAAsAACAyAiwAAIDImAcLvclxMteyMq1PPprbxKkAgPwR\n", - "YKFHuU0+KtUvU45lBwDkii5CAACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgIsAAAACJjmgaU\n", - "6jI/1JByLBMAYH4IsFCh7fxQm5btC3NWAQCGRRchAABAZARYAAAAkRFgAQAAREaABQAAEBkBFgAA\n", - "QGQEWAAAAJERYAEAAETGPFgYLSYVBQDkigALI8ekogCA/NBFCAAAEBkBFgAAQGRbAyzbF9veZ/ua\n", - "lfeOs73X9nW2L7d9bNpiAgAAjEedFqzXSTp37b2LJO0NIZwm6YribwAAAKhGgBVCeJ+kL629fZ6k\n", - "S4rXl0g6P3K5AAAARqvtGKxdIYR9xet9knZFKg8AAMDodZ6mIYQQNs9HtGfl9Y1ds8tWbnMy5VYe\n", - "xFW1fUMIzFMBADXZ3i1pd4q02wZY+2yfEEK43vaJkm6oXnTPyus3tcxuDHKbj6msPGXX5KHLifZy\n", - "2+cAYFxCCDuSdpZ/235RrLTbdhFeJunC4vWFki6NUxwAAIDxqzNNwxsl/XdJd7X9WdtPk/QySefY\n", - "vk7S2cXfAAAAUI0uwhDCBRUfPSJyWQAAACaBmdwBAAAiI8ACAACIjAALAAAgMgIsAACAyDpPNIr5\n", - "YPJSAADqIcBCA0xsCQBAHXQRAgAAREaABQAAEBkBFgAAQGQEWAAAAJERYAEAAERGgAUAABAZ0zRg\n", - "FJiDCwAwJgRYGBHm4QIAjANdhAAAAJERYAEAAERGgAUAABAZARYAAEBkBFgAAACREWABAABERoAF\n", - "AAAQGfNgAWvqTmpatlwIodbkXFV51P1+XygnALRDgAUcoO6Epl0nPh3LxKmUEwCaoosQAAAgMgIs\n", - "AACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMiYpgHZqTsP1RR1mVurT7HLyTxWAKaGAAsZKrvW\n", - "zuU6O5a5nFKUcyzrDgDb0UUIAAAQGQEWAABAZJ26CG1/RtK/SPo3Sd8IIZwZo1AAAABj1nUMVpC0\n", - "O4TwxRiFAQAAmIIYXYSMRAUAAFjRNcAKkt5j+4O2nxGjQAAAAGPXtYvwgSGEz9u+jaS9tj8RQnhf\n", - "jIIBAACMVacAK4Tw+eL/L9h+q6QzJa0FWHtWXt/YJTsgeykmSW2S5lgmKu1Ll/qoO/lp10lSu+ZT\n", - "Ny8mcwUOZHu3pN1J0g6h3fXA9hGSDg4hfMX2kZIul/TiEMLlK8uEm08e+CZJF6h8QsGqySXrLFv3\n", - "vbGkOeayzznNPMvefYb14fJpFqTELWfdMqUqe7186ufVtZzAHNgOsY6JLi1YuyS91fYynTesBlcA\n", - "AABz1TrACiF8WtLpEcsCAAAwCczkDgAAEBkBFgAAQGQEWAAAAJERYAEAAETWdaJRABi1FHOXpUy3\n", - "bl5MvwAMiwALACrnGkuRZtl8XV2lSBNAF3QRAgAAREaABQAAEBkBFgAAQGQEWAAAAJERYAEAAERG\n", - "gAUAABAZ0zQAM7NpfqbYcyf1ORdUXTmWKYWh1rPP/asvVes01vVBPwiwgFlKMe9T3bxSzQVV11zm\n", - "jMqpjvvOP4W57DeIhS5CAACAyAiwAAAAIiPAAgAAiIwACwAAIDICLAAAgMgIsAAAACIjwAIAAIiM\n", - "ebAARNHXxJZDTxQ6dP5jVlZ3bSfrnOKEpnMwp+1GgAUgkqEnL+0LE062F7vupjih6RzMY7vRRQgA\n", - "ABAZARYAAEBkBFgAAACREWABAABERoAFAAAQGQEWAABAZEzTAExck3mbcpvjKbfy9GnoecXW5ySq\n", - "u1wOYs631Wc+TbZ53XzGtN2mhgALmLwmcw/lNsfTPObLKdfXtmhSx7ntH1WGqrsY+ZSl2TWfsWy3\n", - "aaGLEAAAIDICLAAAgMg6BVi2z7X9Cdt/Y/v5sQoFAAAwZq0DLNsHS3q1pHMl3V3SBbbvFqtgaGtn\n", - "6ALM0M7QBZihnaELAPRgZ+gCoIMuLVhnSvpUCOEzIYRvSHqTpMfFKRba2xm6ADO0M3QBZmhn6AIA\n", - "PdgZugDooEuAdXtJn135+3PFewAAALPWZZqGmvN1nP3l/a+vP0zSLTvkCQAAkD2H0G4uO9tnSdoT\n", - "Qji3+PsFkm4MIbx8ZZnZThIIAADGJ9YkrF0CrEMkfVLSwyX9o6QPSLoghPDxGAUDAAAYq9ZdhCGE\n", - "b9r+cUnvlnSwpNcSXAEAAHRowQIAAEC5JDO5MwFperYvtr3P9jUr7x1ne6/t62xfbvvYIcs4NbZP\n", - "tv1e29fa/qjtZxfvU++J2D7c9pW2r7b9MdsvLd6nzhOzfbDtq2y/rfibOk/I9mdsf6So8w8U71Hn\n", - "Cdk+1vabbX+8OL/cP2adRw+wmIC0N6/Too5XXSRpbwjhNElXFH8jnm9Iem4I4R6SzpL0zGLfpt4T\n", - "CSF8XdLDQginS7qXpIfZfpCo8z48R9LHtP+Oceo8rSBpdwjhjBDCmcV71Hlar5L0zhDC3bQ4v3xC\n", - "Ees8RQsWE5D2IITwPklfWnv7PEmXFK8vkXR+r4WauBDC9SGEq4vXX5X0cS3mfqPeEwohfK14eZgW\n", - "4z2/JOo8KdsnSXqMpNdIWt5RRZ2nt373GnWeiO1jJD04hHCxtBhXHkL4siLWeYoAiwlIh7MrhLCv\n", - "eL1P0q4hCzNltk+RdIakK0W9J2X7INtXa1G37w0hXCvqPLXfkPQ8STeuvEedpxUkvcf2B20/o3iP\n", - "Ok/nVElfsP062x+y/fu2j1TEOk8RYDFqPgNhcfcC2yIB20dJeouk54QQvrL6GfUeXwjhxqKL8CRJ\n", - "D7H9sLXPqfOIbH+3pBtCCFfpwBYVSdR5Ig8MIZwh6dFaDD948OqH1Hl0h0i6j6T/GEK4j6R/1Vp3\n", - "YNc6TxFg/YOkk1f+PlmLViykt8/2CZJk+0RJNwxcnsmxfagWwdXrQwiXFm9T7z0omu//X3t3r5pF\n", - "EEdh/DkWASNpJG3EFNoFCzubgETBJqWxkeA1WGlhm8ImN2AVJCBCNGJrYasgGLQThQQMpPEO/haz\n", - "EiEgCDMI5vnBsl8v7HKqw+7OvK+Bq5j5SNeA1SRfgW3gepItzHyoqvo+rY+AHdrnNmY+zgFwUFXv\n", - "pv3ntMJ12CvzEQXrPXApycUkM8AasDvgOjppF1iftteBF3/4rf5SkgBPgM9VtfnbKXMfJMn8r1E8\n", - "Sc4CN4APmPkwVfWwqhaqahG4A7ypqruY+TBJZpPMTdvngJvAHmY+TFUdAvtJLk+HVoBPwCs6ZT5k\n", - "Hqwkt4BNjicg3eh+kVMuyTawDMzT3hM/Al4Cz4ALwDfgdlX9+Ff3+L+ZRq+9BT5y/Nj4Ae1fDMx9\n", - "gCRLtA9Nz0zLVlU9TnIeMx8uyTJwv6pWzXycJIu0p1bQXl09raoNMx8ryRXaQI4Z4Atwj9ZbumTu\n", - "RKOSJEmdDZloVJIk6TSzYEmSJHVmwZIkSerMgiVJktSZBUuSJKkzC5YkSVJnFixJkqTOLFiSJEmd\n", - "/QRSxC44KICduwAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAJMCAYAAADaNPObAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3UtsHed1OPB7RfFNSRSp98NWHCdWbDexHQdJ0wRBijYN\n2gJtV+0m6KpAgXbRoECALrrsOosuuyjaTdAuUgRdGC0cGAlcN02c1DXk+Blb0Yt6kBQpUiRFUsx/\n0aBo9R398+mbuXOHV7/fzgffzBzOnXvv0fjMud2f/exnHQAAHsyeficAALAbKaIAAAooogAACiii\nAAAKKKIAAAooogAACiiiAAAKKKIAAArsbfqAe/bsSaZ7jo+PJ+vW1taSWLfbTWK5w0KjddH+mlAl\nl5mZmax10fnb2NioNZe6DUoun/zkJ7PW/fCHP+x5LnVrSy79ymPv3vQjc2trq9ZcomNsb29nbVv3\nedmzJ/139s7OTs9z+dznPpe17s0330xiCwsLteZSt9xcRkZGktjY2FgSm5qaSmI3btzI2t/q6mpW\nLpOTk0kscvv27ax1kba/Rp1OJ0zGnSgAgAKKKACAAoooAIACjfdERf+vMerfyd02Mjw8/EA5tVX0\n/4OjHoWJiYkkNjQ0lMSinihoyhNPPJG17u233+5xJuVye5PafozII488ksSiz6Co3yb3MzzXs88+\nm7XuypUrSSzqidqNNjc3s2K3bt3K2l/Uu5erSq/ToHMnCgCggCIKAKCAIgoAoIAiCgCgQOON5U2I\nhtXtRtEQtWjoWTQwrYnmytOnT2etu3jxYo8ziRvuI7mDAqt4/fXXk9hHPvKRJPbkk08msR//+Mc9\nyalpo6OjSezUqVNZ27a5sZxmBiC+9NJLWevm5uZ6nEn8mRt9xywvL/c8l36Jvot++Zd/OWvbF198\nMYnlPiS2G7gTBQBQQBEFAFBAEQUAUEARBQBQYDA6sO/RRPMw7WoOjBofI7nTfav41Kc+lcQ+9KEP\nJbGo+X9QGsuja6MtU49zH4hYWlpKYisrK3Wn0xoXLlzodwr/49y5cz0/RvQwSvTdEf36Q/QrEevr\n60ksmjC+G+U+uPMwcmYAAAooogAACiiiAAAKKKIAAAoMZGP5yMhIv1OoRdTEGjXn9quR/tKlS305\nbqSJhvFcUZN7NOU5akQdFFFD7fe+970+ZDK4NPs2I/rM3djYSGKD0kQe2draSmLRLzNE52B6ejqJ\n3bx5s57EWsC7EACggCIKAKCAIgoAoIAiCgCgwEA2lu/GqcJnz55NYpOTk1nbLi8vJ7G1tbUkduLE\niQdPjAcWNWFGjZRzc3NNpNMXo6OjSSya5B6JHhKoc5r2xYsXa9tXP+3dO5Af342JpupH08kPHDiQ\nte0gN5Zvb28nsePHjyex6FxFD9B8//vfryexFnAnCgCggCIKAKCAIgoAoIAiCgCgQDdqkOuxxg8I\nAFBB+rMTHXeiAACKKKIAAAooogAACiiiAAAKND7yttsNe7MSe/ak9d3Ozk7xcaMG+txc6tb2XMbG\nxpJYNIn2Ix/5SNYxPvjggyQWTVlfXV1NYm06L9PT00ks+jtyRdd4NIX6zp07SSz3vHz4wx/OWveT\nn/wka110XqKc7969m7W/3Knb905Mbvt7KDeX/fv3J7FoYnsTudQtymV4eDiJRdOwm8ilTedFLnEu\n0fdONBl+Y2Mj6xjRd1s0pT76Lrofd6IAAAooogAACiiiAAAKKKIAAAo03liea3x8PIlFjbhR023U\neEa+6JxOTEwksZmZmaz9RU3LfZiUX9mDNBvmiB6U6Ne1Ozo6msSi6yCS20QeNVFHomtjZWUla9vd\nJvccD4ommsgZHNGDJyMjI0kst7E82l/UWP4g3IkCACigiAIAKKCIAgAooIgCACjQisbyqFHs8OHD\nSSxqwmyiMfPs2bNZ6+bn57NibRdNrL169WoSu337dtb+ogbq3EnVuaLG98ja2lrxMXIbqNskauqP\nmsjpj9yHOCJVruVI3dPtqV/ue3dQHlhYWlpKYtEDZrmiz/Cqn+vuRAEAFFBEAQAUUEQBABRQRAEA\nFGhFY3kVbZpOPijNfNHE6GgibO6U2NnZ2eJtd6No2n5kfX29x5l0Oo8++mgSm5ycTGLRNPYLFy7U\nmsutW7ey1kUPmtRpamoqidU9jZ7BkTvRuokHT6KHfgbZvn37klh0nnPfv8PDw0ks9/P6ftyJAgAo\noIgCACigiAIAKKCIAgAo0IrG8qg5vE1N2ufPn09iUbNh7gTvh83CwkLPj1H39OYqDh06lLXu8uXL\nSSya7l7F2NhYrfurW5Xpw6Xa9FBD1NQaTaVuIuf333+/58fYjXLfQ018/m9tbfX8GG0SPQSS+4BK\nU9yJAgAooIgCACigiAIAKKCIAgAo0HhjedQoNjExkcSiqaRRU93MzEwSq7sJM2r2jRrLo4bQvXtb\n0bv/QKK/re5pvI888kit+2vCgQMHktjy8nISqzJVOJrQG4maXaPXKHcqetTkfvjw4axto+bwaCr6\n8ePHs/Z3/fr1JBa9t0ptb2/Xtq+qoteniUn2keiXCmjXA0NNTEWPPlv69TDG0tJSEqvyekRN6VXf\nb+5EAQAUUEQBABRQRAEAFFBEAQAU6PahmVD3IgCwm4RPDLkTBQBQQBEFAFBAEQUAUEARBQBQoPFx\n2s8++2wSW11dTWLRZPPIpUuXklg01XVxcTGJVZksXUXUzN+mXA4ePJjEokna0ST3O3fuJLFoIn20\n7urVq0msTefl5MmTSSyaqLu2tpZ1jGgK97Fjx5LY+fPnk1jueZmdnU1iCwsLWdtG2nLttiWPTkcu\n91Mll2eeeSZr3WuvvdbzXOoml1iVXHJ/GST6tYLx8fEklvsZ3um4EwUAUEQRBQBQQBEFAFBAEQUA\nUKDxxvIPPvggiS0vLzedxkAZGRlJYpubm8X7i5qlp6enk9jMzEwSm5+fT2IXLlwozqVNrly5Uuv+\noub6ixcvFu8vav6PHuSIvPjii8XHhbpFn2lRk3F0za+srPQkJ9oreiAnEj2IduDAgUrHdicKAKCA\nIgoAoIAiCgCggCIKAKBA443lDzIJlNTx48ez1s3NzdV63KhZM2r+jKZw04zoNXrjjTeSWDTRn/6I\nGqMjD1uzdO7DKNEE6kH22c9+NmvdK6+80uNMmhE1fY+NjSWx9fX14mNMTk4Wb9vpuBMFAFBEEQUA\nUEARBQBQQBEFAFCg8cbyn/3sZ00fcqBE08SbOKd79qT1dtRY3q9Gz8OHDyex6CGG27dvFx9jaGgo\nidXdpL2zs1Pr/qLXLYpBm9y4cSOJDQ8PJ7Eqv8zA7rR3b1q2XLt2rXh/GxsbVdJxJwoAoIQiCgCg\ngCIKAKCAIgoAoEDjjeUP24TZulWZzFrFrVu3ktjExEQfMolFU2yjWJXG8t3o4MGDWeuuXr2axEw2\n772HbRJ5ruiXD/bv35/EFhYWkljdD2e0yaBMIs8Vfe9MTU3Veoz5+flK27sTBQBQQBEFAFBAEQUA\nUEARBQBQoPHG8odNE9Oho8nhUXNllab+aEpsriYmfTchOs/RFOVINFU+aswfHx/P2t/k5GQSiya0\nr66uZu1vN74epQbleqxb1LCbe/3kyj33VR5aiZrS2Z2iz9zoVztyzczMJLGqU+/diQIAKKCIAgAo\noIgCACigiAIAKNCNGl57rPEDAgBU0I2C7kQBABRQRAEAFFBEAQAUUEQBABRofGJ5txv2ZvVc1ECf\nm8uhQ4eSWDQ1NZoIHk3ojdbl5hJN471z507WtpEq56VuUS5Hjx5NYtevX6/1uNGU8Gj6d7RuY2Oj\n1lwibX+Nolymp6eT2Mc//vEk9sEHHySxy5cvJ7F7J/DvxnPShLon40cWFxeTWDRBP5p23qbzIpc4\nlyNHjiSxGzduFB8jmjoefQdGk+uj8xLFnnrqqaxczp8/n8Si6/RBHrhzJwoAoIAiCgCggCIKAKCA\nIgoAoEDjjeWR2dnZJHb48OEkFjWjvffeez3JqS73NsRWVaWJfDeKmljrtr6+nrWuiSbyuu3dm/cW\nj95bVUQPVESihmTqFV3fudd8rtu3b9e6v36JmqCjByIi586dS2K5nxnDw8NJLPruiJqv67ayslLr\n/sbGxpLYrVu3ivcXNX3nnuetra3i496PO1EAAAUUUQAABRRRAAAFFFEAAAVa0VjedrnTySMPMvmU\nVN0Nzw+bRx55JGvd+++/X+txFxYWktg777yTxKL3Vt0PY9B7UUP2wyaa0n/16tWsbQf5mo+a4et+\noKSfD5i5EwUAUEARBQBQQBEFAFBAEQUAUKAVjeVRE2oUA3avM2fOJLFosvnly5eT2Pnz53uQEXUZ\nlMbyzc3NJBb9akL0946OjhYft4lJ5Lnq/lWMQf9VAneiAAAKKKIAAAooogAACiiiAAAKtKKxPHLi\nxImsdVeuXOlxJp3O1NRU1rpo+vLDZnx8PGvd+vp6jzOh08m/JoeHh5PY1tZWrbnkvo/YfVZXV/ud\nQs9cv349iUVN5HU3ZNct9/3nVzYejDtRAAAFFFEAAAUUUQAABRRRAAAFWttYfuTIkax1VRrLo2nJ\n0eTY7e3t4mO0SdQ83K9jaCzvn2ja8vT0dBK7ceNGrcfdsyfv32zRxHJok+h7okpzfdT0XXezfvR9\n14SoMX+QuBMFAFBAEQUAUEARBQBQQBEFAFCg24fppMahAgC7STcKuhMFAFBAEQUAUEARBQBQQBEF\nAFCg8Ynl3W7Ym9VzUQP9/v37k1g0zTmaWH7nzp3i425sbCSxNp2XNuUSvUYrKyt9ycV5iXPZt29f\nEqsybTmaer+1tfUL82jT65Oby+zsbBKLpmFHnxlRrEouX/rSl7LWvfjii0lsZ2en1lzqJpfYoORy\n+vTpJDY5OZnE5ufns2IP8sCdO1EAAAUUUQAABRRRAAAFFFEAAAUabyxvk83NzSRWd3Nuv5r0mvCV\nr3wla90//MM/JLHo3EeaaJaemJjo+TEGWZUm8si9TeQ0I2roj+zZk/7bO2osb0KUS5X3c/R5/eUv\nfzlr29deey2Jzc3NFedCLHrNZ2ZmsraNHhyryp0oAIACiigAgAKKKACAAoooAIACrW0sjyb5Rk1h\nVRr3oibCvXvTUxJNLM8VNcE9bIaGhvqdwsBpouF+UE1NTSWxsbGxJLa8vJzE6m56X1hYqHV/Vfzb\nv/1b1roqn4fRZ240fT8695FoKvWBAwcePLGfy/2FiX6Znp5OYktLS33IpF1yH4rIva4ehG94AIAC\niigAgAKKKACAAoooAIAC3aiRrqcH7HazDhg1DEax69evZx03+jsPHz6cxKKmyWgic25zZdTwFk3r\nzp1sXnfje3Re+jVlXS4xudSbR92N5W05J53O7swlemAo9xcNItHrGz2I0fbzEqm7sXw3Xi+R3Cn1\na2trxbl0Op0wGXeiAAAKKKIAAAooogAACiiiAAAKtLaxvG7R33no0KEkdvfu3SRWpbE8N5fd2MxX\nN7nE5NL7PEZHR5PYnTt3+pJLFXKJySUml5jGcgCAHlNEAQAUUEQBABRQRAEAFEjHXz9EFhYW+p0C\n0LCPfvSjWeuuXbuWxKIp5lXs2ZP+Ozb6lYOo0TV3qnc05To6bjT5emdnJyu/mZmZrFyiRuEqDzeN\nj48nsdOnTxfvr4qhoaEkFv0qRuTEiRPFx71y5UrxtlTnThQAQAFFFABAAUUUAEABRRQAQIHGJ5Z3\nOp2+TCwHAChkYjkAQF0UUQAABRRRAAAFFFEAAAUan1geTaxtQtRA3/Zcogm4ufvLPcbdu3drzSXa\nX67d+Bo1IcplcnIya936+nrxcUdHR5PYxsZGEuvHeany+jzxxBNZ695+++2e51K3KJdogvfVq1eT\n2Pb2dvFxo8+HaH9tOi+f//znk1h0fb/55ptJLJraPjExkcSOHDmSxP7zP/8zibXpvIyNjSWxO3fu\n1HrcaNL82tpaEmvTebkfd6IAAAooogAACiiiAAAKKKIAAAo03lhOvipN2pGomS9X3bnULWpAnJqa\nytp2ZWWl7nR6LmrCjJw5cyZr3fnz55NY3c2k9Mfc3FwSq/v9XPf+nn/++ax1P/zhD5NYblPwD37w\ngySWe81HTeSR119/PWtdm0TfE7mfpQsLC3Wn03ruRAEAFFBEAQAUUEQBABRQRAEAFNBYnmHv3rzT\nVGXiL/XLbf7cjY3luaLpww+73EnkTdizJ/137M7OTq3HyG36fuyxx7LWvf/++1XSabXo9RgZGUli\nUQN6tO2g2NzcTGJRA3o0oX1paSmJPchE8LYb3FcdAKCHFFEAAAUUUQAABRRRAAAFNJZnGJSG8dwG\n+d0oalRcXl7uQyZxM/fGxkYfMul0VldX+3LcSDT1uE35tUUTzeZt9+qrr/b8GFWaw3Ob9XMfbmmT\nW7duJbHo+jt69GjW/q5fv145pzZzJwoAoIAiCgCggCIKAKCAIgoAoMDgdhrz0OtXM3e/jhu5dOlS\nv1NonajB/cCBA0lscXExia2vr9eaS5saxi9fvtzvFPouej3a9H5uQu6DDSdPnsza33vvvVc5pzZz\nJwoAoIAiCgCggCIKAKCAIgoAoIDG8odINImWakZGRpLY+Ph4Eoum3t++fTuJRU3PbTc7O5vEFhYW\nktja2loSi85fZHNz88ETu48zZ84ksf379yex6DWru7E80o9z0unEE7xzc8k1PDycxKJfG4gmgkfr\nco/RhEGZvh9NWY+ujdyp7YPOnSgAgAKKKACAAoooAIACiigAgALd3Ga9GjV+QACACrpR0J0oAIAC\niigAgAKKKACAAoooAIACjU8sj6Y5b2xs1HqMaPrw8vJyEut20z6xKFal+T76e6PJzdFxc42Ojiax\naMJsJPrbnn322SR2/PjxJLayspLEHn300ST2ne98J4k9/vjjSeyll15KYkePHk1iuZPXc6+rI0eO\nJLFr164lsdzXaHJyMolF08lzRa9RleulirbkEuVx8uTJJBad9+izINf09HQSu3nzZhLLPSfR9R2J\nrsdIldfnwIEDWetyz1/duVR53arksndv+jUZTbOvksuePen9jCYe+qr7/Rydq0h0/try2dLpPNi5\ndycKAKCAIgoAoIAiCgCggCIKAKBA443ldTeRR3IbjyNRg9/s7GzWttevX09i6+vrxbnkym0iz/XO\nO+8ksUuXLiWx+fn5JPbyyy8nsagZ9+LFi1m5ROe0bnUfo0oTOeXGxsaS2MjISBKr0qA8NTVVvO2g\nqLvR+sknn0xiv/7rv5617Te/+c0klvvZkiv626LvicjOzk7Wuj78ckhP5D6csLCw0ONMmuNOFABA\nAUUUAEABRRQAQAFFFABAgcYby9tueHg4ieU2k964cSOJ7caGwWhKbJXm9dxp8XWLGo0jTTzsQO9F\nzb51N/lHvzZQRe4k8iZEv/QwNDSUta7uZu5c0S8f1J1L9HDC4cOHs7a9fPlyrbm03cP4WepOFABA\nAUUUAEABRRQAQAFFFABAAY3l94gaqB+2CdRR03fUcD86OprEtra2kljUnHry5MnC7NitoknXExMT\nWdtW+RWCOtX96wBRM3wUqzIRPFfUMB6972/evFnrcX/84x8nsaiZ+9ixY7UeN1d03RJ72L4rOx13\nogAAiiiiAAAKKKIAAAooogAACuiYu0c0YTx3CmubppMfOHAgieVO2Y3cvXs3iUVNp9E5iBozJycn\ni3PJ1fbpuVEDf9RUPMii6yV6OCFHtF10jeaKXovx8fHi/eXa2dnp+TEi0S8LzMzMJLEmmtyjh1ai\npv6FhYWe5xKpu7me3evh+sQGAKiJIgoAoIAiCgCggCIKAKBAaxvLcxtsm2jCjBouc+U2tk5NTSWx\n1dXV4uNWETX7VpnUvLm5mcTOnz9fvL9+OXv2bBKLmuZXVlaS2OLiYhL75Cc/mcSiSc2DImpIjs5V\nW0SfLbmfN9FDHNF7KHcS+2OPPZbEqjTNR6LXIrq+Sxv/H0T0KwdRs3kT1tbW+nJcdgd3ogAACiii\nAAAKKKIAAAooogAACnT7MGW7PWO9AQB+sfQnJjruRAEAFFFEAQAUUEQBABRQRAEAFGh8Ynm3G/Zm\nJZ544okkFjXBz8/PJ7FoOnS0bW4udcvNJZraHk1MjrbNfWCgynn5tV/7tax1r7/+ehK7fv16rbnU\nLTeXycnJJBa9Ruvr61nHzZ0QPT4+nsT27duXxKKJ2NG2S0tLSWxmZiaJLSwsJLHc1yiasB1NaL99\n+/Yv3Ff0+nzkIx9JYtHfdfPmzSQWnfexsbGs40a/aND26zb6bImu5SoT5aNcPvWpT2VtOzExkbXu\nwoULSezo0aNJ7Hvf+14Sa/tr1IQquZw+fTqJRb9KEH0fR9P7235e7sedKACAAoooAIACiigAgAKK\nKACAAo03lueKGsqiWNQQWreoYTdSpQkzEjUoR/owdZ6fy2mCfhBRY2YkasyM3h/RuigWiRpCq4ge\nFhkdHU1iFy9eTGLRgwj3unr1ahJbXV3Nyu3u3btJLPc8tV3UMB5dt3V/fkWiY9y4cSOJ5V57UfP/\n9PT0gyfGQyt6fzwId6IAAAooogAACiiiAAAKKKIAAAq0trE8mjQciRpC63b48OGsdU00ZrbJiy++\nmMQ0dTYjepggdyp6JJocXve04A8++CCJRdPTo4niQKdz/PjxrHVzc3M9ziT+DBoaGkpi0S8V5D60\nEe0v+szIfYCkF9yJAgAooIgCACigiAIAKKCIAgAo0NrG8qjxbM+etOZrorF8eXm558eI5E5SrXtq\ndhW5091zHxzIdejQoax18/PztR43t/m67qny0aT+3Gnnkc3NzSrpZImu0zqv3Sb+hqrTje8VvV+i\nWHTd5v69bfp8iD7Xo/yiSfbRtlGTcd2/YtGv9zixra2tWvdX9f3hThQAQAFFFABAAUUUAEABRRQA\nQIFd1VgeNRE2YWFhoS/HjZorI21qHL106VK/U3gozMzMJLGdnZ2sbXOb66MHOdrs2LFjSWxtbS1r\n2+icRNP3625qPXDgQBIbGxur9Rhtshv/ttxfYYgeQMp9T+ZqYhJ5rtwG/irTxKNm/dxp503ZXZ+S\nAAAtoYgCACigiAIAKKCIAgAo0HhjedQsnTt1PJrQG+0varqt4uDBg1nrVlZWkliVKdKLi4vF29Yt\nd4Jw7tTeEydOVM7pf+vXVPk2TSmue2J3labY2dnZrHXRe+bw4cNJLGci/Y0bN5LY+vp6EsttiI2u\nqbpf7+g9HjVfNzGNvYrh4eGsddEvFUSfI1Ezd/Rg0c2bN5PYq6++mpVL3aIHMepuLG9CNDE/eqDi\n6tWrSazupu+TJ08mseg6iN5H0cMiTz/9dBI7fvx4YXb/zZ0oAIACiigAgAKKKACAAoooAIAC3T40\nxranExcA4BfrRkF3ogAACiiiAAAKKKIAAAooogAACjQ+sbzbDXuzei5qoN+NuUQTXK9fv561bTR1\nNjeXI0eOZB0jd925c+eKc4mcPXs2iV26dCmJRdN45+bmas2lboOSy6lTp7LWRa9bnXnULTeX6NqL\nRFPc685lZGQka3/RZ0Y0mTv61Ykqr1G0rspDULm5nD59Omt/uX/HhQsXinNpQpRL9Po28QBa7nmJ\nfu0i+pWDaHp69N66fPlyVi73404UAEABRRQAQAFFFABAAUUUAECBxhvLc83MzGStW1xcrPW4jz32\nWBL71re+lbXt1772tST2wgsvVM7pf4ua4IaGhpJY3Y2At27dSmJRA2JuY3ndcpvrqzTtkm9sbCyJ\nff7zn8/a9hvf+Ebd6fwfzz33XNa6H/3oR7UeN7r2jh49msQmJiaS2LVr12rNZXNzs3jbfjUZN+Hi\nxYtZ6x555JEeZ1J/c32ufp37XMPDw1nr9u5tprxxJwoAoIAiCgCggCIKAKBAa3uiJicns9ZtbGwk\nsbW1tbrTaY1o2GYk6p2qIjrPkWiIZhPq7o1jcOUO/ay7J2pQ7Ozs9PwY0WDSaKBnvz7royGadYsG\nokYDJOl0tre3s9b1ok/KnSgAgAKKKACAAoooAIACiigAgALdpgdrdbvdrANGA+eioZK3b99OYlHj\nY9t/OTs3l7obywflvNRNLrG25FIlj4MHD2atu3nzZs9zqdug5BINa819uKXuXOqWm0uVYZu5DdRb\nW1tZx21C7nnJHbYZDYOORM369znP4YlxJwoAoIAiCgCggCIKAKCAIgoAoEBrG8vrthsbCyPRJPfZ\n2dmsbaMpu4NyXuoml1iVXB599NEkdubMmaxtv/Od79SWR93kEquSy8zMTNa6paWlJFb3g0XHjh1L\nYtHn8E9/+tMkFk3Szs0ltzE6+ntzz9/CwkJWLk2o+9qNGtCjRvrcXDoaywEA6qOIAgAooIgCACig\niAIAKJA31rQlcpvlFhcXe5xJ/4yOjiaxaLr7wyZqwhwZGUliR44cSWJRwz31+/SnP53ETpw4kcSi\nCcL3NpYz2B555JGsddEU87W1tVpzOXToUK37i0S/xnH48OGsbXMnuUcN6LtR9H2Xe66iX/KImv8f\nhDtRAAAFFFEAAAUUUQAABRRRAAAFGp9Y3ul0+jKxHACgkInlAAB1UUQBABRQRAEAFFBEAQAUaHxi\nebeb9mb98R//cRKLphu//vrrWcf4+te/nsSiBvoolz/90z9NYs8991wS++lPf5rE/u7v/i6JnT9/\nvjiXSO508typvVVyqZtcYrsxl2iyfu7+ognRV65cKcqjCYOSy9mzZ7PWvfXWWz3PpW5VchkeHs7a\ndnNzM4nt27cvid26das4l7q1/TWKvu/+5E/+JIl94QtfSGLRhPZ///d/T2J//dd/ncRWV1fvm+e9\n3IkCACigiAIAKKCIAgAooIgCACjQeGN55KWXXkpib7/9dhJ75plnmkgnS9T8undv709nbsN43U6c\nOJG17t4GYJpz7NixJPalL30pa9u///u/rzWXPXvy/n129+7dWo9LntOnTyexN998M2vbP/zDP0xi\nVa6f6FqJYtvb28XHqCL3YZ6osXxlZaXudB4q6+vrPT/G7du3K23vThQAQAFFFABAAUUUAEABRRQA\nQIFuNCXotdrEAAAXHElEQVS0pwfsdps94M/lTmbdv39/1v6iqbPRZNutra3iXJqQm8vU1FTW/h5k\n0mtpLk3Yjbk00Viem0v0XohE749oyvO9Dbq78fXJNTY2lsQ2NjZqzSVqLL9w4ULWMXIbywf5NapC\nLrEquUxOTiaxoaGhJBY1+kfHvU9dFCbjThQAQAFFFABAAUUUAEABRRQAQAGN5feYnp7O2t/S0lLP\nc2lCbi5Rs2sktwG2Si5NkEusiVwee+yxJHbvVOGrV6/2PI9c/Wosj46xs7NTnEvugzG5HrbrNpdc\nYm3PpaOxHACgPoooAIACiigAgAKKKACAAnv7nUDbRA3je/aoNaEXZmdnk9iRI0eS2NzcXBPptEKV\n6eRVRE3kJ06cyNr2ypUrteayd2/61RRdK5Fr167Vmgv8/6gOAAAKKKIAAAooogAACiiiAAAKtLax\n/PTp01nr1tfXk9j8/HzWtrmTgaMpwJGJiYkktra2lrVt242OjmatqzKxvO2GhoaSWNQA+9RTTxUf\n47XXXivetu2icxVNJI4apm/cuNGTnHazuh94eeKJJ5JY7udw3Y3lzzzzTBKLPl8juY3lU1NTWesO\nHjyYte7WrVtJLJoC33bRa37vLwZ0Op3O4uJiEovO6alTp5LYu+++W5hd+7gTBQBQQBEFAFBAEQUA\nUEARBQBQoFv31NsMjR8QAKCC9CmYjjtRAABFFFEAAAUUUQAABRRRAAAFGp9YHk0ojuROk42mIC8t\nLSWxqIE+ymXfvn1Zx40muOZONs/NJZp2G/290dT26enpJFblvDRBLrHcXEZGRrL2t7m52fNceq0t\neXQ6+bl84QtfyNrf+++/n7Xu4sWLxbk0oUouMzMzWeuiqdlVcvnKV76Stb8f/ehHWeveeOON4lwi\nhw8fzlqXO+F/N14vs7OzSex3f/d3k1g0Ff273/1ucS73404UAEABRRQAQAFFFABAAUUUAECBxieW\nd7vd5IBPPfVUsu7JJ59MYtvb20ksahRbWFhIYrlNaxMTE0kssrGxkcTqbixvwm7M5fHHH09if/EX\nf5F1jK997WtJrMr1Ejlx4kTWuitXrmStq5LL888/n7Xu1Vdf7XkudWpLHp1Ofi6HDh3K2t/a2lrx\nurafl+iBl+Xl5b7kknteonVVvjerfM4999xzSSx6sOif//mfa82lCbm5RA9Xff7zn09id+/eTWIV\nG8tNLAcAqIsiCgCggCIKAKCAIgoAoEDjE8vrFjUFV5Hb1NmEaHr66OhoEoump0fNhnX77d/+7ax1\n3/72t5NYE/n1y/79+7PW5TaWN2FsbCyJRQ9PUG5lZSVr3dDQUI8z4UFETcZnz57N2vatt94qPm70\n/ouuodzralBED5i99NJLfcjkv7kTBQBQQBEFAFBAEQUAUEARBQBQoBUTy5uwGyezRk3kUbP5zZs3\nk1g0rbVKLpG6G8t342sUmZqaylq3urra81yiCfybm5tJLGrWrDuXOrUlj05HLvczKLlED1188Ytf\nzNr2hRdeKM4liv3BH/xB1nHffffdJBb9KsGgvEZ1M7EcAKDHFFEAAAUUUQAABRRRAAAFWjuxPGoo\nixr8ogbqqHF2N7pz505WrF9eeeWVJDYzM5PEZmdnk9ilS5d6klMb5DaMN6FNE/hJRZ9p0cTyqNF1\nN76209PTSWxpaakPmeSLzn3ugxhNiK4hmuNOFABAAUUUAEABRRQAQAFFFABAgdY2ln/sYx9LYsPD\nw0ksmnz9zjvvZB0janjObXLMnQg+yD760Y8msd/6rd/K2vYv//Iv606nNQ4ePJjEoqnyD5vo/RZZ\nXFxMYk3/skIvRNfFM888k7XtlStXktjbb79dOac22LMn/bf8yMhI1rYbGxtJrO5G6+hhnmgieN2i\naz66DqLz9/rrr9eaS/Tdu7W1Vesxdit3ogAACiiiAAAKKKIAAAooogAACnT70LC5+ztEAYCHSfoz\nKh13ogAAiiiiAAAKKKIAAAooogAACjQ+sbzbDXuzEkNDQ0ksmmIbTSyPRA30ubk8/vjjSWx6ejqJ\nvf/++0ksd/pybi5VjI6OJrFo4m8TuUT6dV4ig5LLJz7xiax10ZT/6L3VlvPSljw6nWq5jI+PJ7Fo\nEvT29natueRO9Y4+hyO3b98uziXyK7/yK1nrFhYWkthbb71VnEv0905NTSWxvXvTr87l5eUkFr1u\nu/HaPXPmTNb+Hnnkkax13/3ud7NyiaaxR+c+es9E39G5v0jyIA/cuRMFAFBAEQUAUEARBQBQQBEF\nAFCg8cbyug0PDyexqMmsiqeeeiqJnTp1KolFTdpRY3m/3Llzp98pwEMrejDmsccey9r2jTfeqDWX\n3IbnJh48OX78eBJ78skns7b9wQ9+UGsuExMTSWxnZyeJRQ3tTch9ICB63ao4f/581rqo6buK6Jo8\ncuRI1rbRAwH79+9PYhcuXHjwxP4Xd6IAAAooogAACiiiAAAKKKIAAAq0trH87t27SSx3Onm/5E4V\n7peosfVhs2/fviS2srLSh0ya8V//9V9J7MMf/nASO3HiRBL7yU9+0pOcHlabm5tJbH5+vg+ZxJOg\nowbqyINMcy71wQcfJLGoUZhmRJ8PUZN29B343nvv1ZpL9DBZdD1H11CkajO8O1EAAAUUUQAABRRR\nAAAFFFEAAAW6TTQJ/p8DdrvNHvDnor+z7sm7ufqVS9RYHk0xf9jOS2SQc/n4xz+ete7111/veS6l\n2pJHpyOX+6k7l6effjpr3blz53qeSxWDksv4+HgSq/LwV24u0cNBkSoPDN2nLgpPjDtRAAAFFFEA\nAAUUUQAABRRRAAAFWjuxvO2iprpIm6asRxOT63bmzJmsdefPn6/1uNPT00lsaWmp1mMMiitXrvQ7\nBfj/Onv2bBKL3uP0T7++2/rVhH8/7kQBABRQRAEAFFBEAQAUUEQBABTQWM6uc+rUqSR24MCBJHbr\n1q0ktrOz05Ocmnb8+PEkdvDgwSS2traWxKKm/uiBgGPHjhXldj979+Z93Gxvbxftf3JyMondvn27\naF9V7d+/P4lFD6NEr1k0LXlxcTGJzc/PF2bX6QwNDSWx6BcN+tU8/KEPfSiJ7dmT/pt/eXm5iXRo\nkbGxsax10ed/pGqjujtRAAAFFFEAAAUUUQAABRRRAAAFulETY481fkAAgArCDnR3ogAACiiiAAAK\nKKIAAAooogAACjQ+sbzKdNDp6ekktrGxkcQ2NzeT2N27d2vNpYqomV8u+blE05afeeaZJLayspLE\n3nnnneJcoonJVR7MiCZER9du7nmZmprKOm70d0Si8xdNfM+9Xn7nd34na93LL7+cxBYWFv7Pf+/G\n63Z4eDhrf1tbW7XmEk3zjyaR5x43us6ia/ne16zTaf9r1IQquUS/LBCJfpWg7lzqlptL9IsVhw4d\nSmLRRP9o8n/0qw4P8rnuThQAQAFFFABAAUUUAEABRRQAQIHGG8sjuY2uS0tLPc6k0xkbG8tat729\nnRUbFFGD3/79+7O2XV5erjWXqIn1Qx/6UNa2uY3lkbqn+0dN5FXMzMwksa9+9atZ2+aua0Lue7DX\nos+lqLE+V9S4/fTTT2dte+7cueLj3rp1q3jbyOrqaq37a7vHH388a917773X40w6nRMnTmSty20s\n343m5ub6ncL/4U4UAEABRRQAQAFFFABAAUUUAECBVjSWV2nWrFvUTBpNyB7kJvJI1FRdd8N4rmja\ncjS5/mETNZY///zzfcgk9q1vfSuJRU3kbXkt636QgN2piYbxXK+88kq/U+i76NdHLl++nLVtL97T\n7kQBABRQRAEAFFBEAQAUUEQBABToNt082e12+9KtGf2d0RTuJsglJpdYbi7RQxGf+cxnklj0UMT3\nv//9WnPptbbk0ekMTi7j4+NJLHqIo4lc6iaX2G7MZXh4OGt/0edcbr1zn3XhiXEnCgCggCIKAKCA\nIgoAoIAiCgCgwK5vLM+deLwbG+iaMCi5TExMJLFosu2dO3d6nkvd5NLePDqdwcnls5/9bBLbt29f\nErt06VISe+ONN2rNZXR0NInlvncjg/Ia1W035hL9MkNkcXGx1lw6GssBAOqjiAIAKKCIAgAooIgC\nACiwt+kDRlOVd3Z2ktinP/3prP2trq4msajJkcEWNaJGNjc3k1jTD1c0KZruu7W11YdMem9kZCSJ\nRa93roMHD1ZJpzVyr4GjR48msZMnTyaxaBJ03Z+50UMhD5v9+/dnrbt161YSm52dTWLR9+xuVKVh\nvBfciQIAKKCIAgAooIgCACigiAIAKND4xPJOpzO4XbwAwCAysRwAoC6KKACAAoooAIACiigAgAKN\nTyzvdtPerCeffDJr24WFhax10TTeaNsolyZEzfy5ufzGb/xG1rp/+Zd/6XkudauSSzQJP5I7tXdQ\nzkvd6s7lq1/9ata6r3/960V55E6yn56eTmLRpO9Lly4lsSrn5DOf+UzWuu9973tZ63JzqTINO1eV\n8/K5z30ua927776bxK5du1ZrLnWrksuJEyeS2N696dd49LotLS0V5xL9GsBzzz2XxObm5pLY1atX\nk9idO3eKc8k1NTWVxPbt25fEopwf5IE7d6IAAAooogAACiiiAAAKKKIAAAo03lgeiZq+f/M3fzNr\n229+85tJbHl5uXJObfWDH/yg3yn8j9/7vd/LWvdP//RPPc7k4RM10uc2zZ88eTJr3eXLlx8opzaK\nGlgjuY3MUWM5+aKG9irN6w+bK1euJLHooYi6ffnLX05if/VXf5W17Z//+Z8nsX/9138tzuUTn/hE\nEjt69GgSi5rD/+M//qP4uPfjThQAQAFFFABAAUUUAEABRRQAQIFWNJZHE2ZzDXITeWRxcbHfKfyP\naKJzv+Q2VdMu904ir1s0zTmytrbW0zzupxeNroPg5Zdf7ncK/+Ppp5/OWnfu3LkeZxKLJpG3ydjY\nWK37Gx8fT2K/9Eu/lLVtLx7McicKAKCAIgoAoIAiCgCggCIKAKBAKxrLI3/7t3/b7xT4Bf7xH/+x\n3yk8tKo00g/CJPK6vfDCC/1OoVF3797ty3Fzp5MfPHgwia2vryexjY2Nyjnxi337299OYmfPnk1i\n3W43iUVT1qv44IMPklg0nTy6NnrRhO9OFABAAUUUAEABRRQAQAFFFABAgW7UkNXTA3a7zR7w56K/\nM2qCa4JcYnKJyaU/eUTNzTdv3uxLLrmayOX48eNJbG5urtZcPvnJT2at+/GPf5zEogb0h+01ylUl\nl5GRkSR25syZrG3feeedWnOp233qojAZd6IAAAooogAACiiiAAAKKKIAAAo0PrF8eHg4iUUNapHb\nt2/XnU5rDA0NJbF+TRUmFl2nm5ubfcik09mzJ/33T+4U89HR0SQ2NjaWxJaXl7P2FzV/RvuLRE3A\nuccoFeUWTTeenJxMYlFj+SCLmsjJNzMz0+8UGrW2tpbEcqfUR6L3fe7DcFU+Ix+EO1EAAAUUUQAA\nBRRRAAAFFFEAAAUan1je6XT6MrEcAKCQieUAAHVRRAEAFFBEAQAUUEQBABRofGL5xMREEsudWlxF\n1EBf5xTkByGXWG4uzz//fNb+3n333ax10WTuus/Lvn37statrKz0PJe9e9O3/fb2dta2ublExzh4\n8GASu3HjRtZxS/OIRJPII7m/kFAllz/6oz/KWvc3f/M3Pc8l95cjcqf078bPlkj03o32t7q6Wmsu\n0cTtEydOZB3j0qVLteYSXRunTp1KYnNzc0ks9/u97dfL/bgTBQBQQBEFAFBAEQUAUEARBQBQoPHG\n8kjUhBrJbX5lsL333ntZ66KG8X6JGsb7pYn3Ud3HyP2M2G3Gxsb6nQIttbOzk8RyG8brdujQob4c\ndzdwJwoAoIAiCgCggCIKAKCAIgoAoEDj3ZrR9NJBbRodJEePHs1ad+3atR5n0uksLS1lrYsm/kai\nBs5c0STf3//938/a9hvf+EYSG+SHJ0qnk3c6DzZB+BfJnUTehNyHJIaGhpLY3bt3a80ldxL5w6ZN\nD4XkGh4eTmJbW1vF+1tcXMxat7GxUXyM3cqdKACAAoooAIACiigAgAKKKACAAq3o6K7STBs10DVh\nfHw8iUXNr3U32nW73azj1u3mzZs9P0bdqjSM56ryUMRjjz2WxN59990q6Qysupuo2+KFF17odwoM\noCpN5JHoc+6pp55KYtF3efTwRJt+TaIqd6IAAAooogAACiiiAAAKKKIAAAq0orG87T760Y8msZmZ\nmSQ2Pz+fxHInEud69tlnk9js7GwSi6YPf+c73yk+rmnG+aamppLYo48+msQOHDiQxDSWA7tB9DkX\nPeh1586dJKaxHADgIaeIAgAooIgCACigiAIAKNB4Y/nk5GQSi6Z6504ornsya2RiYiJrXd3TySNR\nE/n09HQSu379evEx+jUVfTdaW1urdX/Oc7nosyX6fPCQRCxqCh4ZGUliVT6vI1GDcrS/9fX14v1R\nTfTe+tjHPpbEDh06lMTeeOONJHbu3Ll6EmsBd6IAAAooogAACiiiAAAKKKIAAAp0+9DIqnMWANhN\n0ieuOu5EAQAUUUQBABRQRAEAFFBEAQAUaHxieTQNuwlRA32Uy4EDB7L2t7y83PNccp08eTJr3eXL\nl3ueSxVRLnv2pHV+FMvNOdo2mmDd9vPSplyGhoaS2MGDB7P2t7CwUFse0Tl5/vnnk9i+ffuS2M2b\nN7OO+9prrxXnEol+gSCSe55yX5+dnZ2s/eUaGxtLYtGE8ei85H5+Pfroo1nrXnnllSTW9vdQlEvu\nL2VU+dWEKJfx8fEkFk3+P3z4cFYut27dKs6lTa/R/bgTBQBQQBEFAFBAEQUAUEARBQBQoPHG8rbb\n2Njodwqt9PGPfzyJ/dmf/VkSm5+fT2Jf+9rXio8bNfjdvXs3a9u9e/tzeUdN1bmNy1V8+MMfzlq3\nuLiYtS4356hJ+Vd/9Veztp2bm8ta9/LLL2etu9err76ate7s2bNF+7+f6Nrb3t6u9RjDw8NZ606d\nOpXELly4UGsuVd5ruddZbmN5m0RN/bmqNIxXEX0H5v4duddk3b74xS9mrXvppZdqP7Y7UQAABRRR\nAAAFFFEAAAUUUQAABTSW3yOaXt120STyfulXY+Hjjz+exEZGRpLYm2++2fNcmmgib7u6m6h77a23\n3urLcUsntnc6DzZVuc2iCdnRwxk//elPk1ibPvsiuQ/BtF30d1y9erUPmbSPO1EAAAUUUQAABRRR\nAAAFFFEAAAW6TTcndrvdvnRDRn9nt9vtQyaDk8vY2FgSixoQt7a2ep7L0aNHk1jUWH7x4sWe51K3\n3FyicxC5du1az3M5c+ZM1v6WlpaSWM6E7eXl5aw8mtD2a2VmZiaJNfHwQ+55GR0dTWL79u1LYnfu\n3EliKysrteaSK3eCd/R52PbrRS73fWgjTMadKACAAoooAIACiigAgAKKKACAAiaWU2xjY6PfKfyP\nKs3S1O/8+fNJLJpCHTWRHzp0KImZjlyu7RP0o4bxKNYmub/MMCgTy7k/d6IAAAooogAACiiiAAAK\nKKIAAAq0orF8z560loti29vbTaQDu1K/muv37k0/RqL36ubmZtb+5ufns2L3ipp9c6flV9k2cuzY\nsSQWTUHOfc2iZvvcpuXolwXqfihkenq61v3V/XpEjhw5ksSuX7+etW3u+ZudnX2gnH6RqampJBa9\nr3Lfa1TnThQAQAFFFABAAUUUAEABRRQAQIFu1OzYY40fEACggm4UdCcKAKCAIgoAoIAiCgCggCIK\nAKBAPyaWh81ZAAC7iTtRAAAFFFEAAAUUUQAABRRRAAAFFFEAAAUUUQAABRRRAAAFFFEAAAUUUQAA\nBRRRAAAFFFEAAAUUUQAABRRRAAAFFFEAAAUUUQAABRRRAAAFFFEAAAUUUQAABRRRAAAFFFEAAAX+\nHzreW7zFsFB/AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -12538,361 +620,31 @@ } ], "source": [ - "feat = net.blobs['fc6'].data[0]\n", - "plt.subplot(2, 1, 1)\n", - "plt.plot(feat.flat)\n", - "plt.subplot(2, 1, 2)\n", - "_ = plt.hist(feat.flat[feat.flat > 0], bins=100)" + "feat = net.blobs['pool5'].data[0]\n", + "vis_square(feat)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The second fully connected layer, `fc7` (rectified)" + "* The first fully connected layer, `fc6` (rectified)\n", + "\n", + " We show the output values and the histogram of the positive values" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlcAAAJPCAYAAABRvvFyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xv0LGdd5/vPJ3dygRADOzGJJsgdkWRxNyAb5BJw5OaI\n", - "okBE5CAiIJ6jgs6Y7XgDR5DjcMRZQ4KRYXB00JyIoyYoP424JKIJCTcjZ5JlgskOs4gKXkGe80dX\n", - "79TuXdVdl29VPdX9fq211+5fd9VT37p/+3mefsopJQEAACDGUVMHAAAAsE1IrgAAAAKRXAEAAAQi\n", - "uQIAAAhEcgUAABCI5AoAACDQ2uTK9jm2P2D7Y7Y/avs1xfun2b7a9k22r7J96jjhAgAA5M3rxrmy\n", - "fYakM1JK19s+WdKfSXqupJdK+t8ppZ+x/UOS7p1Sev0oEQMAAGRsbc1VSumOlNL1xevPS/qEpLMk\n", - "PVvS5cVkl2uRcAEAAOy8xn2ubJ8r6QJJH5K0L6V0sPjooKR94ZEBAADMUKPkqmgSfK+k16aUPlf+\n", - "LC3aFXmGDgAAgKRjNk1g+1gtEqt3pZSuKN4+aPuMlNIdts+UdGfFfCRcAABgNlJKjihnbXJl25Iu\n", - "lfTxlNJbSx9dKeliSW8q/r+iYvawIOfE9oGU0oGp4xgb671bWO/dwnrvlh1e77BKoU3NghdKepGk\n", - "J9u+rvh3kaQ3Snqa7ZskPaX4GwCAWbGVbH3z1HFgu6ytuUop/ZHqE7CnxocDAMDovlrSr00dBLYH\n", - "I7TH25s6gInsTR3ARPamDmAie1MHMJG9qQOYyN7UAUxkb+oAJrI3dQBzt3YQ0V4F22kX+1wBAObD\n", - "VpL0H1LSJVPHgmlF5i3UXAEAAAQiuQIAAAhEcgUAABCI5AoAACAQyRUAAEAgkisAAIBAJFcAAACB\n", - "SK4AAAACkVwBAAAEIrkCAAAIRHIFAAAQiOQKAAAgEMkVAABAIJIrAACAQCRXAAAAgUiuAAAAApFc\n", - "AQAABCK5AgAACERyBQAAEIjkCgAAIBDJFQAAQCCSKwAAgEAkVwAAAIFIrgAAAAKRXAEAAAQiuQIA\n", - "AAhEcgUAABCI5AoAACAQyRWwZWwdZ+sRU8cBALuK5KqCrSfY+oWp4wA6+m5J108dBADsKpKrai+T\n", - "9MqpgwA6usfUAQDALiO5AgAACERyBQAAEIjkCgAAIBDJVbU0dQAAAGCeSK4AAJBk61hbJ04dB+aP\n", - "5AoAgIVLJX126iAwfyRXAAAsPEzS8VMHgfkjuQIAAAhEcgXMGP1DACA/JFfATNl6qqS/nzoOAMDh\n", - "SK6qMRQD5uCsqQMAAByJ5AoAACAQyRUAAEAgkisAAIBAJFcAAACBSK4AAAACkVxV49eCAACgE5Ir\n", - "zJKt420dN3UcAACsIrnCXN0g6XemDgIAgFXHTB0A0NEDJd136iAAAFhFzRUAAEAgkisAAIBAG5Mr\n", - "25fZPmj7xtJ7B2zfZvu64t9Fw4YJAAAwD01qrt4paTV5SpLeklK6oPi3bR2LGYoBAAB0sjG5Sild\n", - "I+muio8cHw4AAMC89elz9WrbH7F9qe1TwyLKA4kjAADopOtQDG+X9B+K1z8u6c2SXrY6ke0DpT/3\n", - "Ukp7HZcHAAAQxvZ+SfuHKLtTcpVSunP52vY7JP1mzXQHuoU1OfpcAQCwxYoKn73l37YviSq7U7Og\n", - "7TNLfz5P0o110wIAAOySjTVXtt8j6UmSTrd9q6RLJO23fb4WNTw3S3rFoFECAADMxMbkKqX0woq3\n", - "LxsglpzQLDgP/PAAAJAdRmgHAAAIRHJVjRqReaCGEUAWbP2yrQdPHQfyQHIFAEB/L5b0nKmDQB5I\n", - "rqpRIwIAADohuQIAAAhEctWCrStt/cHUceAQ+sYBALLT9fE3266uWfBpkk4YMxAAADAv1Fxhzugb\n", - "BwDIDslVNZqbAABAJyRXAAAAgUiuqtHcBAAAOiG5wmhsvdLW+6aOAwCAIfFrQYzp2yQ9YeogAAAY\n", - "EjVX1WgWBAAAnZBcAQAABCK5qsZQDMNguwIAth7JVTskBwAAYC2Sq2r0uQIAAJ2QXLVD0tVP9Paj\n", - "JhEAkB2SK4yJZAgAsPVIrqolSbJ1f1tXTB0MalGTCADIDsnVek+T9JypgwAAAPNBcgUAABCI5AoA\n", - "gEzYer6tN0wdB/ohuVqPDth52/X9Q58zYPv8uKSfmjoI9ENyBczXrieXAJAlkqv1qBnIG/sHQCS+\n", - "sFSw9SybbdMGyVW1ups2BxeQKVuPt/X/TR0HsIV+S9LpUwcxJyRX1bzyf1ZsPdTWg6eOA8jM10m6\n", - "39RBYNaoDUeIY6YOYGZyOfE+JumLko6dOhAAAHA4aq6q5ZJEYb0saxYBYAtxX2yB5ArAtuDiDyAL\n", - "JFcYU3RNEzdTAEB2SK7ayakZKqdYAABAgeSqGjUiw2C7AgC2HslVtbpaoZySgyNisXWNrQdNEQwA\n", - "YKvldP/LHsnVdnmCFmP95Cq6KZOmUZRx8QeQBZKralykZ8TWF2y9duo4JsBxCmw5W/9i6xFTx4F2\n", - "SK5mwNa9qt4ePZB8HSPpUUMvxNZRdlYD73IMYDC2vszW06aOAzpW0tdMHQTaIblab/XmNfrNzNZX\n", - "SfqbsZc7kOialrFrbt4m6TMjLxOYyo9KumrqIIA5IrnK3z1r3p9jk9Dca1oeKenUqYMAgAnM8Z4z\n", - "GZKranUHEQcXkC/OT2wrju2ZIbmqtqxh4YDO29xrwgCgCa51M0NytV7OB3TOsWEcJP8AkCGSq2p1\n", - "Ny1Lkq1jMvvVGABge/FFamZmm1zZ+hZbx060+D1J10y07CVONrYBtZcAxrLr19tWZptcSfoVLUYk\n", - "H9Py4LpQ0uNGWiY3UKAZLv4AsjDn5AoAACA7JFfV5vANeI41WnOMGQCAVkiuquWUBMwh0ZtKTvsJ\n", - "AABJJFdtTXEzr1vmHJOuOcacM7YnsBtyONdziGE2SK6qcRAhO7aeYuvC8luTBZMnzlsAWWCspna4\n", - "ePcTnQzs2v74PUmfl3TK1IFgJ2xl8m7rbEmfTmnnrh8YETVX+Vs7oCkAoJVbJT1l6iCw3TYmV7Yv\n", - "s33Q9o2l906zfbXtm2xfZfvUYcMcXU7faEiiAEwhp+tgtHtOHcBc2NyDumhSc/VOSRetvPd6SVen\n", - "lB6oRVPF66MDm5hX/l99PwdzvPBFx+ya1wCwTWqvnbYebeuEMYPBZhuTq5TSNZLuWnn72ZIuL15f\n", - "Lum5wXEB2GyOCfaQ2B7YVuu+PF4r6TUTLRs1uva52pdSOli8PihpX1A8ueFiHWvIk5R9BWBXjfGc\n", - "XZKsFnp3aE8pJW3fja1ufXJaTw70vPbHFDgGgN2w6VrHtSAzXYdiOGj7jJTSHbbPlHRn1US2D5T+\n", - "3Esp7XVc3lQ4YIGJ2PoxSb+Ukm6eOhZgh23tfdD2fkn7hyi7a3J1paSLJb2p+P+KqolSSgc6lo/N\n", - "dr3WZtXWXgB22I9K+qKkH586EADbp6jw2Vv+bfuSqLKbDMXwHkl/LOlBtm+1/VJJb5T0NNs3aTFe\n", - "yBujAspETmNLkTTUY9ugjC8csTi/IHEcdLKx5iql9MKaj54aHEtOOJjmhxsrgF01xj2L+2ILjNCe\n", - "v5xq0ZAXEkoMieML6Ijkqh0uNnlhfwBbwtYf2nr11HFkasprHV/kOyC5qpbTTbvuwM4pxhwcPXUA\n", - "E+Cih23yRI03IDXnDgZFcoVtcahvoK3jpwwE2BIkIPMx5L7iOOhg7snV2Dt9ioOMGqp6dfvjn2x9\n", - "7aiRAD3ZOtPeyRrYKXBdbY8kq4W5J1dDyenEqzugOdDXO3PqAAbCfq+X03nbxV9LWfU5mvv2RAyu\n", - "OR3MPbka6uTnYBoG2zUWN7/tc5+pA9gRva9Ftn7O1n+OCAbbZ+7J1dBWT8CcbmY5xYLxsN8xFr4M\n", - "rfc9kv6PqYMosK8yQ3KFOdv1RCPbC6qtk2w9ceo4gBq7fu1oI9vrTM5IrqrNYeDOnGJpigtaf3PZ\n", - "76+T9IdTB4FeOF/zkcO+mMu1JwskV+vlcEBvk0Mnp6372fpMVHnbytYrbV04dRwddH0ofB+cr2hq\n", - "668dgdhWHZBcrcdBNZyHSzpdkmy9xNZPTBxPrn5B0k+V/iaBCGDrLFtvmzoOIAj3qsyQXFWru4Hl\n", - "dGPLKZa+/r2kH5k6COyUZ0l61dRBDMXWo2zt61tMSDB52qbrJzI09+RqqJN/my8qO8fWk+3ZH+tL\n", - "5WOTGwTq/KmkS6cOYsvtyn1iV9Yz1LbccHYRB3zz5OL3JT1pyEBwBI7P6fUd7X2bk3eOz/bYZi3M\n", - "Pbka++Sfw8G1zRfEPlof67YusPWYIYLpobx/53A8joljvyFbt9l6QYf5kq1HDxHTDI15vG1aFs8W\n", - "zMzck6uh5HSRbntg79KJMPS6/rGkDw28DGAKZ6l7be6DIwOZSE7XeGyhuSdXu5RIrOLiAGBIu3x9\n", - "BXqZRXJl61xbD5k6Dk2T0GxTEjXmxTpiu3Fz6Y5tBxSK5tR7TR1HR5zLHcwiuZL0QUkfr3h/qMRj\n", - "DgkNB/x6u7B95nCcYr62+fia4vpw8oBl78L1blbmklwdN/Ly6g7UKQ7gbTppoi/W23zxR3scD0A8\n", - "r/yPBuaSXAFtcaOdFhfi+dvmfTi368Pc4t15oyRXtu60dY8hih6gTOnuAzmHi8scRotvasztOcSy\n", - "ctjmrnkNYHtxrs/MWDVX95F06kjLwu5oc8GhgzuApdVz+RxbfzPIgsb5MRbjXGVm7s2CY9ck9F6e\n", - "rafa+t9tZmn5/lzMPf6p5FB7ht2wS8fag6XWv+Zreg2r+jFWW7u0L7bC3JOroQ1xQF8o6cvazmTr\n", - "+AFiGVtOIxo3QQLY3RTbjhsQmuJYaY4O7R3MPbkaemevlj/lwfVPtk6YcPnRhr64beuFgAc3S7J1\n", - "tK3vzSCO59l66dRxrGPr2219tsus4cHkq8u5tLPnHzabe3K1FWz9s61/12DS8oNY53hiR1+sh94G\n", - "q+XPcZtvq3Ml/aepg5D0DkmXTR3EBk+QdO+pg8jMtiWO27Y+szeX5KruwNmWm91xkh45dRBbZohm\n", - "wRwuYHN5cHPOsXVm61hbPzd1HEE27aNtub6in608l4c2l+RqbHO4qBxT0w9rDrFHaXXS2zppqECw\n", - "M75c0vdNHURDF00dQMaolcag5pJc1R34Y2fUuZ2Ar6p4z7Y+YuvfRi/M1rk9i5hy+z1C0ucnXH4U\n", - "vkXWy+38zN2m7cWxlo8pj206tHcwl+SKnVqt7heEXyPpGQMs72b7sH5fbU05AObpAWVs7c3b1olT\n", - "xwCMKOL6k9N9KadYoPkkV7ngAN5tOez/VPO6M1tnSfr7iLLKxQaXB8yGrbfZ+uGp4xiDrSfbeu/U\n", - "ceRmLsnVNj0CZpZs3T+4yIh916aMrTlWbN3PDhmYcOmegWVhe2zNOVNh6OvPqyS9NmAZOdj0Rek4\n", - "SaeMEciczCW5QnPhF0Rb50v6y+hig8vLbXlDsRa/LI18pMa2bBugq21OJIdmsf2OMHlyZesuW2d0\n", - "nb3Hcn/K1q1d58/YEDfKIR66vZGtv9vQMX/sQWRzk3N82Y7QbutUKayPWc77YJNNsc953TaZW5+r\n", - "3Du0k1ytmDy50uKBzl81wXKfKOnsms9ohjzcEBeR8rasa3I8RdLjB1jelGXkaFvXq85tkt46dRBA\n", - "CzknwtuchHeWQ3LVx9g3BQ6i+W6DLnGvHl85rPuuJUJDqBzvzNaP2HpAy7LmvD/mHHs0Hn/THc2C\n", - "FeaeXA0th2rfbb2h57Bem+QYY44xbYufkPRdLeeZ8/4IHaHd1vG2Ht4jnjHNLRnIoVlwnbltz8HN\n", - "Pbma84VtVdS65HyQb9P+ygH7GkNquw+/X9INQwQygLn1ucoZ26FCLslV75uErV+39eCIYEpyvnnV\n", - "ya6Tt60ftPXJlbebbtuoTpRz3JdoZ4p9vHaZtt5p681jBVPju2vej95ekw1Ea+sBdq+HUx+xLYpm\n", - "4mzGb7J10pp4hrzub+rQTrNghVySq02aHDjPk/TMgeMY8gDauk70tk4pfpn1NEkPUvxDh9uUEbG8\n", - "HPZFUsd1sfU7tl4cHM+u27QvvkPtmxrR3k2SfrnH/FXn9kskPb/lPEO6v9bHM6Ucro1ZmUtyVafT\n", - "DrX1g2r2LSuH6s4cYihrE88fSPoL9TvxcuprkMO+6PMIoWdIesGGMrE7QvtcZeDkFtNG9HHdlfMm\n", - "518qZuuYqQNoKLqz95tGXt6YcrogfpUOH/27vP3GjjOn7dLXoOti6z6SjkpJB/sUExVP5rbpuMrB\n", - "WNtzjONzV84BmgUrzCW52pWDdJMm24EnmMfJ9YIRvW9X1/NaSffWYgw6rDfn82zT8T3Fuk21PdPK\n", - "/23mGUOO+6q87FyvlZOZe7PgLsjtoK08iW0dZ+uymnmq1mEOj79ZnSeHfRH+4GYduZ5nSLpXUNl9\n", - "3d9uvJ457J85mXNimA1br6z5KPJ4nDp5qozB1mlatFBw7q3IJbnatGO2rrN3C11PqrG3zZmSXjry\n", - "Msf+lpnLzWgOx33Utpri6Q1tTL4vbH3RruxLh3qR14Nv2/D5Nvtv0uS/hs1SLsnVJrkcpBtPSFsP\n", - "tfWVAy1/qs6Wfcuq2m7blOyMaehHEeXmX6cOYINJjsFimIBlQnW0pEd3KKbrl9oh9VqmrafYekKT\n", - "SQNjGewYsHV6y1gGCWPNZ8s+tTlfQyaRdZ8rW+dp/S9Acry5fkzSLZLOm2j5Qx/kUdt8Ds2CuZvr\n", - "vmgj9+RqKj8h6ZOSfrVHGTn+CqzPMvcX//5BNY84WmOIx99EXIvvuXkSSfPqq7YTcq+5+oAWI/52\n", - "3nG2bGtf19k3/F3nuI7Li7CMMdm6Pai5YBtOnG1Yh9mz9e22HtRiltyTq6yPKzvrxLk3W6+09QdT\n", - "Lb74P+QYqDkvsj6+UC/35OrogDK+WdIdLefpe0DncEGzFh2Tn9hoYus0W+esKauP7C8Qts5r8Fy0\n", - "HNYjhxiaqDtm/qsWtS5NtUmupmhqbvML3tzM5Vha5/mSvm7lvRNt/Y8N82W17rbuIR3xFAtJ+tLY\n", - "sVRY9wv0ZXxZbc8c5J5cLdVdnJrs0Pv0WO6h8m29T9LxDecb6mI65EX6f0r6qxFjGLo/Q5Iku/GI\n", - "xsta0iFiiTTlWGFT6FxzZet3ez4SBYFsPdjWKzZMFnVMf9OmcAZabld19+JJ4rL1WltvbzApzYI1\n", - "5pJc1RnzZvcNIy4rQtuD/csCy2pi6MfRLMt/SINppepa0hySqSpDj3OVkz7Ngk+X9NCW87TdFk2m\n", - "z7Uz8tgjtP+IpF/cME2u51yViGfifsDW4xosY+xxrl6ju59JOad9ko1ckqscf7UidT+opjwYl9tq\n", - "0F8L2vrUhotCWQ6Pv+ECUW+IbdOoTFuPtvV3aybp2+fKxXL2t5m+bflbKut1sye/f0Vsn/2SnrXm\n", - "85y/+EjUXNXqdXDavsX2Dbavs31tVFBVixqw7CEMddLn0L/jLFu3aDH+0Kb+XOtiiWgWjCh/3fSr\n", - "7+VwAUnKI44+yvE/StIpa6bt3aG9eHj4B/qWs4VmexzZ+kbF/tihz7aouw5ty8Pi1yG5qtE3CUiS\n", - "9qeULkgpPSYioBVzfbBoDslg5LYpl/UwqfU4XlW1aUNvo4g+FXWj0d9h6wc6lBfBquhgausoWydM\n", - "E9Kg+g4Um9TuWBuiWbD1sW7reLvxz/DXLaNPs2DOHthz/ojr41C16vcbYBl9rOvQTnJVI6KGZYwT\n", - "dKoHKXc9YLrEFX1w5nDhzOkCFrGc5TbdJzUaqHBMl0j6xwbTNR7x3Nattn6ye0hZaNp03dVQ59ll\n", - "kv52oLIx7X1rk/KXpMkHMkU3ETVX77f9Ydsvjwioonxp/ANniuU2+eYZOarwokDr1GIsnKbr2meb\n", - "5PSg08aKWqGcvplVxfLghvO2eRjz2eqeROZysf/ZqQNQt2Px/iMsI9e+rk2M8aOO8q/Fbetetk63\n", - "9aiGMWxLs2CT7hc5xJmVvsnVhSmlCyQ9U9KrbDcaU2lkb5tgmTncWNYe7Pah0fnv0mIssLWT17zu\n", - "E8vYJ2OfJuYc9udSuZmLC1q8tvs6933Qp1kwp+N+at8o6W8k/YKkP10zXZdtNuftTHJVo9fjb1JK\n", - "txf/f8b2b0h6jKRrlp/bPrB4dYmkqx4v/fGvd11UnzgnENks2Hbd17WPLz6wHiHp+tI0Z3ZYTptY\n", - "2n7WdLo2CdGcmijXyf5CbOtiLY6pOpsS/3tJh56plrvs98cAcjgP+mq7Dsvj+dgWZURup6l/GVln\n", - "1seC7f1S418St9I5ubJ9oqSjU0qfs32SFmPK/Fh5mpTSgcW0ukQ68Mc94uwziOjgioEK/z4l/cvy\n", - "rcjia153mX/pjJZl9N3Ooc2spUf6DNlRuWxZIzv187vq/q57byq/1HP+y6TGg7+W5ZpAj3Hc5NCF\n", - "IeKJGmOJ2F5VNcip4vM+sSw/25RcDbn/t7ZDe0ppT9Le8m/bl0SV3Scb3ifpGtvXS/qQpPellK5a\n", - "M33kz+ablDmmz0p6c+nvXL9ldNU1wVu3X5vu86rpHtthvj7HyvJn/FMdb6vLzeW4H0qbfmHRdqlZ\n", - "MLrmZduue02NcT7mvm1zPw9G17nmKqV0s6TzowIpHlr5zSkd9tyxOd1EvmLqAApDj8009qCerY6B\n", - "HsMRVK1Xjsdfl2/G2bF1tqRP13w8pwt1ox+Z2Po/Je2lpD8bKI6woUZafB69PGm6fT/EciPH8hvt\n", - "XC+ec1j+grNu2Tk8+zBLg2fDLZ7K/gpJP17z2ZwutlLsiZDDzbRvDH2qjl9nt2pu2IYb9qrV7d94\n", - "XWydFR9OiFvVrelvaEM1C/6spNcPUPYm755gmX2MdY0bowm5y/hmdfP0HPC7/hmbth628mvo90o6\n", - "rWHRs24WHNKYVY2bqqfXjbY7aJ8rW19h65GB5Q7V52rsZfctM6o56+QW09ZdFLr8WjCXC0bddmwS\n", - "320ZPCakTt2+ymW71yol/LnHuu6XwOfYjYfwiJDTtorscxVRzqahePrWMn7W1tfXfLba6tJ4LLyS\n", - "nPZtFnK66HapXow6uK+Q9OGgsqQZN9eMqM3JeGzN+0Of0JP1dbL1Hlu/VfHRSS3KGHzIBltn2npj\n", - "y9mGGkduzAv8F4v/c27qOoKtf7IPdef4N5I+YevEKWOSlMNzAof4ctWl3+cgNVeF+3acb2s7tA9p\n", - "jAO66QW0quZqrB0XfZHvsl3bjBAeVV7Tstc2C9p6rKrHE1u3/9qsS11yFbk9ord/YzU3ludq/QNd\n", - "V63bxkMmhc+W9EMd521SI53beGhzd7yO7Cvb9stL3fuWWnUFKVsOVrtNI5K36Ve6qebqs/3DGaSf\n", - "K0lVjVyaBaX1NVdzOJH6ilrH1VoB23q6rTf1KHNTbN+pxbfgoRwXUMbkx5CtB9mVVe7/aq8d16nv\n", - "r2nD170Ytf4lfYtpOk3HG/YYJr25lJp6xuwOMMSyls2sOfW5yumY+4eAMqK6d5RRc1Vj6qrYshx/\n", - "dTDEwTi0qmW/TtIPjh1ISd8Tr+6b9dx8UtKf13y2rrmvbkDUTcdZ1fkddWyeI+nynmXkOH5dZI1v\n", - "m2m6el2Hedr+AvfhLcvNKSmpU3dOlUX3R+vyq8DI2iYXj/G5YMO8bc4BkqsavUZob6jpwVGVXA3e\n", - "Z2QgfX5RF1XuUNusTQxRF9mI4zTip+oR6xOxLm0vuK+2Dz3UOadzqe6Xj1XN0K1+JdnDHBKDKkNu\n", - "mxtsPTAl/eUIy9rI1nOkw36ANHdjDcVgSY/Q4gveXI/z2RgjuVratDO7/FowV11qBIccU6bJN8/K\n", - "C6atkySdEhJR3nJuJujbLPhz0qGnB+SkSXLVxhQ3/SbLHDKuLsdkl3nK94q+v2xbp8m2uqJH+ZHm\n", - "Npq/1a0VgGbBDsZMrjbJqVmw0QFj6/iU9M8jxNNG1SCifX4N9Ac6/Fti1Ym2qXlnqBNv6BM66fB1\n", - "++qBl1enrto+fJydkbVpUsupL05ZdLNg41+D9jDVcTF1E+o6QwzC2nT6Jh3aI2wsy9Y9JT2wxfzL\n", - "7ZZTF6Ms5PJrwU3jXE1lU+x/GLisXJsFH9Rj3tVm3XL8Xdr168qP0OQXjaF9v2z9la2Xd5m14r25\n", - "jDAvbe4zNuW34Km32WtbDpq7NHXcUlAibOueGQ9+W8kO+dGNNGw/3ybn2z1alr2c98UNlr9Tcv+1\n", - "YPSzr6I9auLlV+l6gevTcXKMb31R8+bkHElPHrD8NrWMwwRgPcDWU1be/tYOsfQ+Xup+cWjrDLtz\n", - "Lf7U16CxmgXHLP+/S7otIpARVSXEtceGrX22/n75p/rXXH1fg2mG2O9TH//Zyqkqb+wbdISpl99E\n", - "TjH27Ts0pLEuEl06yVc19XZZVpt5o/yypN+r+azJN+kx9v3t6v5r2qnPr6mXX3ZYLLZObzGERrmW\n", - "u+tgl2Pr0yx/P1V31xiyeZDkakS5NAvOVaMTwdbX2rozYBldmwXnvg/mHn9fdQnZpu2S+3aLrrna\n", - "1Hy8rox9LWJpa4h+XF2mbTtP3y9Dn5H0LR3nnYO59bnqer9v0iyIFaPXXNn68qLTXKPJG5aZUw2c\n", - "JB1j68tKfz9e0n1GWnbf/k2bdEnwhnrcSaSxLhJdHonRttzvaFn2VPul7rzt9cXA1hUr518bbWsj\n", - "cvmVaa/j11aq6OvVtk9c1fRNk9apb9Ktlm/rfl3KtPWfbH1nm2VlJOfrd3YGTUpsXV/+s/j/05Le\n", - "E7yoHDvD/0xQOREXnakuXFEn4+xPalvX1nz03LpZSq/bPoZkOfhh11rPHLWJ/zk68hEvTcsYqq/i\n", - "0GVGxNG031nXGtOph62IXO6rG0xTtR2+V9JrK6arq10d9deCHeabOinO1tA1Po9Q9Y5ZbVPPbQdF\n", - "1LQMsW3b3BzWffuPviHM4cY96jFm66KVTtKPrpn0+CbFdQyj6QjtuSXfTWqu2sSc9fFp6yW2zi6/\n", - "1Wb2LovsME/ncm3dt+h7lfN+CPmlY8NlTIU+VyMaozntjIAymu7A6B099ckgDfNto48u5VaNyxR+\n", - "c7R1c98yAuZZ+m1Jzwgus62q2q+cLoZj/2J0lE7Btl5g6/9pUebl6vYYm0bxBM1T1rbp9KCk5zcs\n", - "e+prbuSnufsoAAAgAElEQVTyI58KMeSx26fvZk7Xk6yMkVz9dPF/eQc9SpKi+161mC4bdueLalN9\n", - "D/6hqqWH+HZ+bosyV839InFexXu5nw9taqXqakWaNJ+OvR1eLel7Sn/n3qE9smN2nXUPJt8GVUlQ\n", - "5H68SLr7mYC2nm+37sd7VMuYmpj7dXMwU/9a8G9Lr3d1J72lxbRdfjEV/cugPh3a52bTCP1/b+vU\n", - "yDJrpmsyT9XI3rknV02uPzn0ORl7uWPHmUM3garuDP2CaD4MRFUcXedbN3+TpLQu8f1+Se8svf/e\n", - "4r02+u7n3K8nWZnsV3YND/y2J9qFXWJZI4eDaarxl9osv2mNQW5NnGVdRjg/UdKZA8TSNI5NtTZV\n", - "F+2cEt0+NVdD1+6MUVZEuZE1V9t2821zfxujz1XV8pavx1iuFT+eZE7Xk6yMWXO17uIYVZ3/TS2n\n", - "3ySHi8XU33pblVeTNC9rVXJOruauahs1fW9I6y6+TWLp2h8kh3Xvaqqaq6ha7j79MueQCFeVPVSC\n", - "mvv2ILmqkdv4ULssl/FyNukSwzPDo9gs15O+S//BJkMxbEomGiU5tn5R0gkbo2uuSzNJ9HMSy+tX\n", - "99y+qWv25vQ8xa4do8c2ZrNg2/lXz90xtukQX25zvc5ObsrkKrcTsWyKQS+jljXFwT70dhrjIjmn\n", - "i8Rhsdp6jqSHV0xXuw1sueZhs6/oGVsbIQlTyaZ+apb0rg7ltvk8wlQd2qPWrU85kedhl2bBppom\n", - "R3XLmOL+N0Tz45yum6Oa8sHNOSdXETqvn62jbR0bGcyI1tWWNNomtv7c1lvjQqqMZU6etPL36nZ8\n", - "waEP3PgC/jpJ/1y8HnLbdGkWrKqR6/PNvjxN3XhjrbdBcY7eu+18dcXVvG4zX1fL+0DTsr6n5pfe\n", - "EbFMXVPTpWa5/HffZebcLLjpCw1Kpvy14BySqzFjLB+kvybpLwYoN2L+Phf+pvNeIOlpHZe5xEm/\n", - "/qL9kDWfDRVDm8/G1iWWi8OjaK9x3HblsDityig8TtI3RMQ0sLk0C0YstwlXLLfpfHW4ztYguRpO\n", - "n4Pu0eo+blH0N5+o/hhdyuozX641pUM/57EuoaqsCbV1pqQ3N1qY9YrgGtUj4rf1H3X4I4HqagSm\n", - "uHGultFkdP2mxnjQ+utryh+qM3b1RA7vU1fnH1pM27cbQZ9mwTFrrnK5Dm69MZKrOTy0t05onxBb\n", - "z5N0oEeZUU4JLi/nby9HjLVl6922HlQzXaRNyc8QyuU3Ob+/UdUjyd9doHWhrZdJ+kVJX90ynrbN\n", - "gv9Xy/K7fOGoMvUxPGZ/nF3pc9VF11ryJtvwh4OXG/XFt3ab23qppPuvKXPq/ZWtpg/q7KNpzVWO\n", - "Oyn6IvfQEWJo8q1wU6fedeVV9aka+2bQxLrYvk3Snyuu6XUqET+JbzLNWyQ9psF0bTVppmhz42/z\n", - "68k2n+Usss9VX7n1uRpy+V1aZL6z9HrosQGblF31/uo0l0n64Joyc7xvZyGXZsHcdlBEPGPVhDSx\n", - "Gkub5oy2N6Rcb2Cblj3E/qoq8x4dR45uqmkNSFXN6tj7p08zRZ++f30MtY1qE0Nbjy5qvaPkXHM1\n", - "lTG7T3yNFgMQ911+22tW3/t9VYy53buzkctQDJOdjDXt/9E4ABc630htfaPdqqa1smbUzmJst28d\n", - "sOy251XOCW+Tads0dcy1Y+4vSfr1ms8ia4vG7p9ZlsujspquQ10y3HT+8jAoXftcvX7NZ1W6Xg/m\n", - "et5MKpc+VydI+tkRYmkrqs/VmDewUZvobJ2nw59rt3H5xfhKbceguVLSE1vMU6euirvtRaLPoK9n\n", - "t1xWG02Pu6rzsktTR5+L65DJ35ySzNXlj10rF30fmHMNR9dmwYjuG0MLqSW29U22/ktAPFstl2bB\n", - "qsEMsZBFDd8a/0uLPkxt/LOkNwYs+15rPltevFYfrPy4gOX29TPB5XVJipaGaCoYYt6Ivii9zh9b\n", - "D5b0lT3LONnWXaW/q5rox+7DOEbNVd++TEOLWvcu67mueXyQJm1bjyw6qzdZ3up73y3pu4rXXwqK\n", - "bevk1KE9RxHV3Kuv22p784v+RtS2vKYX2AcElblJ21+fRWqz7bqs4+kbyomqsVnXxDZ0crVpmrq+\n", - "m22HNmiyrz7RYJpN7qPDE/5/arH8Kjk1C66WN/Q8Uvz1rkuzYJf56+YZqz/mz0h6iqR3rpmmibnU\n", - "SI6OEdqHE3XCTL2dIvfbqOvSso9W6+KL/1+yaRq78tE0EV5Q8V6f5GrsY23Ix5O07TsS2aG47w1n\n", - "qpqrqHKjvpS2WebYorfhqDVXE82/U3Lp0N7VycUgiEPJ4WCaW9+RdULa/Fv4rs2THNL1htikU2lV\n", - "ErQq8ubepMwTGkzTpOypku3VfiDPUs1AqT2X0ziGBu83HfNr6D5Xq/O0ffyNNEwfxSn1PZ77zD9F\n", - "zVWbadbNl/t+ncwYzYJNdD2gLteRfWq6WD1AoodiGKrT7xSJVJtmmrGWWafcJ2ubLwJdfrn0ogbT\n", - "DK3NxX5TIvNbkt7bY3ldjo8cfnnaxdB9rtreoLtMN5QpmgXXzZdTzVWVbb6u9jJmh/Z11ahdd3pE\n", - "YrVu+VHfrAf7dm/rNPuwTrY5H+xHrIt9qAalid/vsexN22Wsca7qDNHfJaIpbdO0U98Mm7i+wTRT\n", - "r0fY42+KX+O2mqXLYjrMM7oBx24bqrvEkN1nqLka0RjJ1YNr3p+yr0dTOcS1bjslLb6t3zJaNJu1\n", - "3Wb3HqDMydj6tH3ocRFDNe+8aM1n5XKanN9Db9u2j79pOk3V+3XLOq3F8tro0vzXtqzDJ7K8kjBU\n", - "zdf2uj5GzVVTU92so7fBJnX76JU9l79pmY8vXkfXvGHFGMnVw2re/7dVcRQPh33bsCGNbsixgKJq\n", - "75oqx1O1Xv/YcN5uC+/+TXTTEAxRTeRfLun8oLLqfOPK331qXofuY3LBms+OUvNzY+hmk7VxtDzu\n", - "wm7Qts6WtK/02bskfaznsrr0uTq5w3LKpk6ahpp+db6+8/9kzft3v9H9GvhwSW+tK7eBNl9odt6Y\n", - "fa5Wd8wP1nz2fZIebOsKxT51fkpNDuSuI/52eTr73LStjaly0YbPz+1YbpQu+60qYWxbI9y1Brnp\n", - "tPfoWcZYzSKblnPfDvN0nb483S2Sji79/URJX7GhzKiaq/K+u7ZmWU3KqXtvXRlNRTxfM8JYSVwf\n", - "TZqL1+47W0+X9NTSZyRXNabs0L7pon71WIGsMeYJ0OSb+dy/OUR09hxqn0zd5ypKn+Sqiz61zH2S\n", - "uT438BzVHStH17y/TtMkaNP0q8+/G0vkedM2qZuiWdBr5svtmH7Nyt9zuv+MaspfuxxV8zonbQ7s\n", - "yIOsXNambbM6Qm7bZ6qNKSKOqGPlOUHlyK5tmq1dX1uXNJ22hyYJSNua0abzNXFYGbYe2bOMXGox\n", - "+va56luDuOkc6dIs2CaWPl8CU0AcZWvLsvVlbaZvsJwxjrGIL6ltzuvye19Y+SyXZ0JmZ8pBRFcz\n", - "9ykNMRTDiba+qkcMS11vfm2naWqKfTVEzdUTJcnWo+za8ZGauk+HeQ70XGadtjWdY9d0rSvrKWum\n", - "adu0XnfMr2umXCzI+oYGy1pbRObz1yXYnZdr668kPb3io6Fvum3XddX3dFxu3+4Yq+ddSM2VrePs\n", - "w571WhbxA5fV5Ao1qLkazjdL+lRAOZtufo8OWEZXUyRa0cfKn2r9r+/G0mdbdu2v12e5UTVXTcs5\n", - "q8HyN637qRXlVHlfw9H9u2yDpvOM+cisLuuxGt85xb/V8rokbnNoFuybDPW5jq1bxrskfabDfE2X\n", - "+y8r7y1bTqi5WjFlUlMem2nqmqs6OcQ1akfJlTGzoo3Z56rNA0WPU+zF4dc6zBN1rPWp5WtbO9RX\n", - "m+TvIz3KWGrSh6hvk1yEoZsF68rI4XonjdgsGLjsPjGvm7fqs3esmf6hqq+dLZf1tS2WV37viyuf\n", - "0SxYI5cao1xO6qEMORRDtFs2PFJoqItI0/maHrNzf1p7m1/KtvkW3bbPVdtljl1GtKNW/m/FVpLW\n", - "fkEZ40HDozcLril/6ptv3TodZR82xMXQy1s33boa3Krj8DvaBFSzzCYJWBWSqIam7HNVlkuSt2qI\n", - "i02feceqWWg7wnNTXW4EXaffmFytjBcz9UVjqpqrLJIrW3dJekDP5bfu0G4fkcTWJVdtjt1zat4/\n", - "NI+tMzZN01BkzVXfctqUvU6bc7HrjxheLOmOiun6ng/RzYKR98aIc72uf/LU18/s5JLUTP0NNqQz\n", - "YU91yUDbKuOhRS+zbSfLyD4rU9TCDW3TD0X6dmiPVF7eqZK+esM0m8ro4vSVvyOSqzrlX8I9c810\n", - "EX1j2nxe92vBrteevttqjGbB+274PGo5TaZvW3PVVdWXi6Ml7V83zQqSq4ZySa5yiWMoTQ68LsnV\n", - "d3aIJTdtL0pNj5W2yVWSJFv3tvU1LeeNUK7FiUr6qrbVLjcLNlneoeTK1pNtXbtm3i7xj9G/adM5\n", - "sprE1sV0WDkdj8vK83DAZ/4dsajg6Z8btLzoGq6uy3ySpB/oMT9JVQ2aBauN0S9iVZPkarWcNkM9\n", - "DKHtdurahDFUzdVq50xJ+nnVd54um/LmuM5YzYIRrMP3U9WQGJG1yq2SKy1G9X/0yvt9Re+TLknf\n", - "tzecfnWdm26DqmOwzdAFY/5oYrmssZsFm37JGTq5Wh2kdtPxRM1VQ7kkNbk2sSz7R4zxGJ665GqK\n", - "fbRuMMeN+2rNt9Ku3/431cZEWC5j4zhIAy9f6jYq91J5+xyoWs6aB/+O3XSzWsajAspYp8mxsxzj\n", - "qmtisUmTm3DfrgBtY23aLDhGc120XJeTS81Vl2mqkFytyCW5GjyODQN6bhrA86E9F9/kwPvXDTH0\n", - "8f6W07+39IvBugHp1hnyJh1d7S4t9s9yXKMhym9bXp/zoTzvsxosK/dmwcjtXLVd77Xy9/KXfkP0\n", - "uSrPE9VZvGtt8Go55f/ryin/ve6atq6mo2qaPtr2L+tbXtT8WfS5WrPcptNQc1Ujl2bBMb5dnD/C\n", - "MupUdST8fVvfXXqrS7NgU3/WYZ6oG3xZRLPgUMfsMrnq0/RRp+7xOHWGGmBw+XlUn66+xo6jqkbw\n", - "Yw3LjzrumjxqZuhmwVW/1LDsLtsgslm3i7bJzlTNgnVyq7miWbChXGquRmsWtHXuwItoepA9WYtR\n", - "3Je6dGhvatm8eVhZtk5YN09N894YfUbWTTPUsdKn5mrTefS9Lcvr0yzYttmo7bbtexOqi6OrNnH8\n", - "botph665Wjfvv29YVt21pu12XQ6BsSmZikwcos7j6OdJrhvjr8kyvs3WvVvOsy7GHIZiKM8/xKPi\n", - "tlIuydUocdh6uKSb28wStOgmVeNDJld1/nHD511v8tE1V5vKiNCnuSb6+B2i1nBpteZq7GaTtmVF\n", - "JuqntShryj5XL+9Q3qb3upQVsQ2GbhbcZIzlHF1azn0lvazBPE37s0VeW6rKavJDA5oFO+i842xf\n", - "ZPuTtv/S9g81maXjZ5HWPv5izQNbW8T3ga7zD9ks2KW24Sip0fPVCnur80rSKQ1mbHuD7dJs10bL\n", - "b+d7fZZVt9whmwVXp+mYXL0w4pmWEc2CQ107ampt9qpikK1T7VZN3ENe8wb4ZePeyt9N55tds+CK\n", - "veWLddfCY1ssZ2nTeHSy9UJJz2hZbtNl1i276jgvO5RE2fp6kVzV6viIBx8t6W1a/FT5oZJeaPsh\n", - "PeIYo9mnSV+T9xX/r/48t2n5kv6g6zftKWqu1jlG1ReUTRchqV2T4pQ1J1VaJm97beZpashmQSuk\n", - "WfDPx0quhk6S69TU2uzVTX+X2jX/Rh3HVeVUDWnRpazSNthb+bu33JKrGnvLF5uSq7ImiUaTJtf/\n", - "Jun7G5RVy9b/sg89mL7FdWXvsGJqJvpKkVTValEzcZjHSPpUSukWSbL9K5KeI+kTHcv70Y7zDW2s\n", - "fgHScL8W/EpJr+pQ1jHqfpE+qmbers2CUbU6TXSpGYvuOzRks+DqsromtxHnxrdIenxAOUPo0ufq\n", - "KxqUO0bNVZMHVFfZ1FTVpRboe4r//3PHsvqqW07bpCC65mqMCgVJOk/SLxavq64NqzVjm2IpbzfX\n", - "vA91T67OknRr6e/bJD12wzz3tGt/NXW/0uuq59odLy2q3jcFtmaaUySdXPPZoY7dxfzLsY6W/9cu\n", - "t7S8e1Qtu3hvebFbveiVx1Q6oTR/eX3LMd+rbv1K7y+nXy7r7NJk97YrB848SUc+KPg0Vdemldeh\n", - "bpiGe6v6RK7at/dcvlhZt3Jn+3LzYnl7rtvfJ6v5Taa8jU/cUO5Sed/V7ZdTmhyzhfL5cUSH2A3l\n", - "lGPZtLwTV6Ypb6Oqee+hw/dFEeeJhx0vm9az5vN7SHrQ+nDvPi5XylgeE+XmuOMrPm9q9Vi5tw4/\n", - "FlaHbKia57DzYfV81uIHLD+/jG9lfVbPpSN+bFJMf1zNNCeVyrtPRaxNLI/jh0r6oKQ/Wvm8fFye\n", - "vGaf38vW54rXD6yZ5lT7sHVZrv89VaxXw3Nn3Y9ylsv5kha1Nv9Sen+5T05c+Vuryy5erx5PJ+nu\n", - "L5Anq3Qd093XkxM2XJ+WTlyZv7GKOKu23XLbVo3XeKhmrJinKo7lfIf2TancoZ5DO3tOqX3Cafub\n", - "JF2UUnp58feLJD02pfTq0jRksgAAYDZSSiE1iV1rrj6tw5/8fo4WtVeHRAUIAAAwJ137dnxY0gNs\n", - "n2v7OC36TlwZFxYAAMA8daq5Sil90fb3ajEo39GSLk0pde3MDgAAsDU69bkCAABAtUF+1t5hgNFZ\n", - "sX2L7RtsX2f72uK902xfbfsm21fZLv2Kw28otsUnbT99usjbsX2Z7YO2byy913o9bT/S9o3FZ//3\n", - "2OvRVs16H7B9W7HPr7P9zNJns19v2+fY/oDtj9n+qO3XFO9v9f5es97bvr9PsP0h29fb/rjtny7e\n", - "3/b9XbfeW72/l2wfXazfbxZ/b/X+XqpY7+H3d0op9J8WzYSfknSuFj9VvV7SQ6KXM+U/LR6hc9rK\n", - "ez8j6QeL1z8k6Y3F64cW2+DYYpt8StJRU69Dw/V8oqQLJN3YcT2XNaPXSnpM8fp/avFL08nXr+V6\n", - "XyLp+yum3Yr1lnSGpPOL1ydL+gtJD9n2/b1mvbd6fxcxnlj8f4ykP5H0hG3f32vWe+v3dxHn90t6\n", - "t6Qri7+3fn/XrPfg+3uImqtDA4ymlL4gaTnA6LZZ/TXksyVdXry+XNJzi9fPkfSelNIX0mLQ1U9p\n", - "sY2yl1K6RouRp8varOdjbZ8p6ZSU0rXFdL9cmidLNestVQ+wtxXrnVK6I6V0ffH681oMCHyWtnx/\n", - "r1lvaYv3tySllP6heHmcFl+K79KW72+pdr2lLd/fts+W9CxJ79Dd67r1+7tmveue2BK23kMkV1UD\n", - "jJ5VM+1cJUnvt/1h28uHrO5LKR0sXh+UtK94/eU6fJiKuW+Ptuu5+v6nNd/1f7Xtj9i+tFR9vnXr\n", - "bftcLWruPqQd2t+l9f6T4q2t3t+2j7J9vRb79QMppY9pB/Z3zXpLW76/Jf2cpB/Q4YNDb/3+VvV6\n", - "Jw28v4dIrnahh/yFKaULJD1T0qtsP7H8YVrUG67bDluxjRqs5zZ5uxaPkjhf0u2S3jxtOMOwfbKk\n", - "90p6bUrpc+XPtnl/F+v9P7RY789rB/Z3SulLKaXztXiKw9fZfvLK51u5vyvWe7+2fH/b/jeS7kwp\n", - "XaeaR9xs4/5es96D7+8hkquNA4zOXUrp9uL/z0j6DS2a+Q7aPkOSiirEO4vJV7fH2cV7c9VmPW8r\n", - "3j975f3ZrX9K6c5U0KJ6edm0uzXrbftYLRKrd6WUrije3vr9XVrv/7pc713Y30sppb+V9FuSHqkd\n", - "2N9LpfV+1A7s76+V9GzbN0t6j6Sn2H6Xtn9/V633L4+xv4dIrrZ6gFHbJ9o+pXh9kqSnS7pRi3W8\n", - "uJjsYknLm9OVkr7V9nG2z5P0AC06xs1Vq/VMKd0h6e9sP9a2Jb24NM9sFBeepedpsc+lLVnvIsZL\n", - "JX08pfTW0kdbvb/r1nsH9vfpy6YQ2/eQ9DRJ12n793flei8TjMLW7e+U0g+nlM5JKZ0n6Vsl/X5K\n", - "6cXa8v1ds94vGeX8Xtfbves/LZrL/kKLzmBvGGIZU/3Toirx+uLfR5frp8WDjt8v6SZJV0k6tTTP\n", - "Dxfb4pOSnjH1OrRY1/dI+mstHnh6q6SXdllPLb4R31h89vNTr1eH9f5OLTow3iDpI8VJtW+b1luL\n", - "X0x9qTiuryv+XbTt+7tmvZ+5A/v74ZL+vFjvGyT9QPH+tu/vuvXe6v29sg2epLt/NbfV+3tlvfeX\n", - "1vtdQ+9vBhEFAAAINMggogAAALuK5AoAACAQyRUAAEAgkisAAIBAJFcAAACBSK4AAAACkVwBAAAE\n", - "IrkCAAAIRHIFAAAQiOQKAAAgEMkVAABAIJIrAACAQCRXAAAAgUiuAAAAApFcAQAABCK5AgAACERy\n", - "BQAAEIjkCgAAIBDJFQAAQCCSKwAAgEAkVwAAAIFIrgAAAAKRXAEAAAQiuQIAAAhEcgUAABCI5AoA\n", - "ACAQyRUAAEAgkisAAIBAJFcAAACBSK4AAAACkVwBAAAEIrkCAAAIRHIFAAAQaG1yZfsc2x+w/THb\n", - "H7X9muL9A7Zvs31d8e+iccIFAADIm1NK9R/aZ0g6I6V0ve2TJf2ZpOdKeoGkz6WU3jJOmAAAAPNw\n", - "zLoPU0p3SLqjeP1525+QdFbxsQeODQAAYHYa97myfa6kCyT9SfHWq21/xPaltk8dIDYAAIDZWdss\n", - "eGiiRZPgnqSfSCldYfu+kj5TfPzjks5MKb1sZZ7NBQMAAGQipRTSKrcxubJ9rKT3SfrtlNJbKz4/\n", - "V9JvppQevvJ+klbL/klJB96Y0hfe0CdobB/bB1JKB6aOA/njWEEbHC9oynaKSq42/VrQki6V9PFy\n", - "YmX7zNJkz5N0Y0QwAAAAc7e2Q7ukCyW9SNINtq8r3vthSS+0fb4WVVM3S3rFcCECAADMx6ZfC/6R\n", - "qmu3fnuYcLDD9qYOALOxN3UAmJW9qQPA7mGEdmQhpbQ3dQyYB44VtMHxgimQXAEAAAQiuQIAAAhE\n", - "cgUAABCI5AoAACAQyRUAAEAgkisAAIBAJFcAAACBSK4AAAACkVwBAAAEIrkCAAAIRHIFAAAQiOQK\n", - "AAAgEMkVAABAIJIrAACAQCRXAAAAgUiuAAAAApFcAQAABCK5AgAACERyBQAAEIjkCgAAIBDJFQAA\n", - "QCCSKwAAgEAkVwAAAIFIrgAAAAKRXAEAAAQiuQIAAAhEcgUAABCI5AoAACAQyRUAAEAgkisAAIBA\n", - "JFcAAACBSK4AAAACkVwBAAAEIrkCAAAIRHIFAAAQiOQKAAAgEMkVAABAIJIrAACAQCRXAAAAgUiu\n", - "AAAAAq1NrmyfY/sDtj9m+6O2X1O8f5rtq23fZPsq26eOEy4AAEDeNtVcfUHS61JKD5P0OEmvsv0Q\n", - "Sa+XdHVK6YGSfq/4GwAAYOetTa5SSneklK4vXn9e0icknSXp2ZIuLya7XNJzhwwSAABgLhr3ubJ9\n", - "rqQLJH1I0r6U0sHio4OS9oVHBgAAMEONkivbJ0t6r6TXppQ+V/4spZQkpQFiAwAAmJ1jNk1g+1gt\n", - "Eqt3pZSuKN4+aPuMlNIdts+UdGf13AdKr/f3ChQAACCK7f0aKDlZm1zZtqRLJX08pfTW0kdXSrpY\n", - "0puK/6+omF2HJ1eS9MGOYQIAAMRJKe1J2lv+bfuSqLI31VxdKOlFkm6wfV3x3hskvVHSr9p+maRb\n", - "JL0gKiAAAIA5W5tcpZT+SPX9sp4aHw4AAMC8MUI7AABAIJIrAACAQCRXAAAAgUiuAAAAApFcAQAA\n", - "BCK5AgAACLRxhPZdYrvyMT4pJY8dCwAAmCeSqyOs5lfkVQAAoDmaBQEAAAKRXAEAAAQiuQIAAAhE\n", - "cgUAABCI5AoAACAQyRUAAEAgkisAAIBAJFcAAACBtmYQ0brR1SVGWAcAAOPZmuRqoSq/Iq8CAADj\n", - "oVkQAAAgEMkVAABAIJIrAACAQCRXAAAAgUiuAAAAApFcAQAABCK5AgAACERyBQAAECjrQUSjRl2v\n", - "KodR2wEAwBCyTq4WIkZdXy2DvAoAAAyDZkEAAIBAJFcAAACBSK4AAAACkVwBAAAEIrkCAAAIRHIF\n", - "AAAQiOQKAAAgEMkVAABAoGwGEV03GnuO6uJl5HcAAHZbNsnVwtxGUp9bvAAAYGg0CwIAAAQiuQIA\n", - "AAhEcgUAABCI5AoAACDQxuTK9mW2D9q+sfTeAdu32b6u+HfRsGECAADMQ5Oaq3dKWk2ekqS3pJQu\n", - "KP79TnxoAAAA87MxuUopXSPproqPGHcAAABgRZ8+V6+2/RHbl9o+NSwiAACAGeuaXL1d0nmSzpd0\n", - "u6Q3h0UEAAAwY51GaE8p3bl8bfsdkn6zesoDpdf7uywKAAAgnO39Gig56ZRc2T4zpXR78efzJN1Y\n", - "PeWBlb8/2GVxAAAAoVJKe5L2ln/bviSq7I3Jle33SHqSpNNt3yrpEkn7bZ+vxa8Gb5b0iqiAAAAA\n", - "5mxjcpVSemHF25cNEAsAAMDsMUI7AABAIJIrAACAQCRXAAAAgUiuAAAAApFcAQAABCK5AgAACNRp\n", - "EFHUs52q3k8pucl0VdMCAID5ILkKV5Uz1eVKbaYFAABzQLMgAABAIJIrAACAQCRXAAAAgUiuAAAA\n", - "ApFcAQAABCK5AgAACERyBQAAEIjkCgAAINAEydUXX287rf4bP475q9qObf9NvQ4AAGybiUZoZ2Ty\n", - "OKvb0hXv1b3PNgcAIBrNggAAAIFIrgAAAAKRXAEAAAQiuQIAAAhEcgUAABCI5AoAACAQyRUAAEAg\n", - "kisAAIBAEw0iOj1GJ1+o2w4pJUYYBQCgg51NrhglfontAABAJJoFAQAAApFcAQAABCK5AgAACERy\n", - "BQAAEIjkCgAAIBDJFQAAQCCSKwAAgEAkVwAAAIF2eBBRRGg70v0QI7+vi4GR5gEAYyO5QoDV3MYV\n", - "74zGqzoAAAiBSURBVC3fHyuGoZcHAEA1mgUBAAACkVwBAAAEIrkCAAAIRHIFAAAQaGNyZfsy2wdt\n", - "31h67zTbV9u+yfZVtk8dNkwAAIB5aFJz9U5JF62893pJV6eUHijp94q/AQAAdt7G5CqldI2ku1be\n", - "fraky4vXl0t6bnBcAAAAs9S1z9W+lNLB4vVBSfuC4gEAAJi13oOIppRS/QjZB0qv9/dd1GHajgw+\n", - "l2XVLW/qkcbH3gYAAAzJ9n5FJyeFrsnVQdtnpJTusH2mpDurJzuw8vcHOy6uStWo4EOZerTxXEYa\n", - "ZxR0AMB2SCntSdpb/m37kqiyuzYLXinp4uL1xZKuiAkHAABg3poMxfAeSX8s6UG2b7X9UklvlPQ0\n", - "2zdJekrxNwAAwM7b2CyYUnphzUdPDY4FAABg9hihHQAAIBDJFQAAQCCSKwAAgEAkVwAAAIFIrgAA\n", - "AAL1HqEdGMK6EeGnHq0eAIB1SK6QMUaEBwDMD82CAAAAgUiuAAAAApFcAQAABCK5AgAACERyBQAA\n", - "EIjkCgAAIBDJFQAAQCCSKwAAgEAkVwAAAIEYoX0k6x7nkqO5xVunaj2aPj6HR/AAALoguRrN6n06\n", - "93vz3OKt03c9eAQPAKAdmgUBAAACkVwBAAAEIrkCAAAIRHIFAAAQiOQKAAAgEMkVAABAIJIrAACA\n", - "QCRXAAAAgUiuAAAAApFcAQAABCK5AgAACERyBQAAEIjkCgAAIBDJFQAAQCCSKwAAgEAkVwAAAIFI\n", - "rgAAAAKRXAEAAAQ6ZuoA0IztNHUMEbZlPZqqW9+UkseOBQAwDpKr2ai6R8/x/ly3Hqvvz3Hd6mzz\n", - "ugEAVtEsCAAAEIjkCgAAIBDJFQAAQKBefa5s3yLp7yT9q6QvpJQeExEUAADAXPXt0J4k7U8pfTYi\n", - "GAAAgLmLaBbkp08AAACFvslVkvR+2x+2/fKIgAAAAOasb7PghSml223fR9LVtj+ZUromIjAAAIA5\n", - "6pVcpZRuL/7/jO3fkPQYSaXk6kBp6v19FgUc0neU9yFGTW8bU9MY1pXLKO95Y3R+IG+292ug5MQp\n", - "dbtP2T5R0tEppc/ZPknSVZJ+LKV0VfF5OnJk6p+U9O/UbpRupt3uafOJrTqx6T/tWDEgL9X7jv0G\n", - "5Mp2ijo/+9Rc7ZP0G7aX5bx7mVgBAADsqs7JVUrpZknnB8YCAAAwe4zQDgAAEIjkCgAAIBDJFQAA\n", - "QCCSKwAAgEAkVwAAAIFIrgAAAAL1ffwNgC3HKPEA0A7JFYAG6kafBwCsolkQAAAgEMkVAABAIJIr\n", - "AACAQCRXAAAAgUiuAAAAApFcAQAABCK5AgAACERyBQAAEIhBRIHCupHIc1QVb9MR0xl1HQCGQ3IF\n", - "HLKab+SeY/SNl1HXAWAINAsCAAAEIrkCAAAIRHIFAAAQiOQKAAAgEMkVAABAIJIrAACAQCRXAAAA\n", - "gUiuAAAAApFcAQAABGKEdqCDoR6VM0S5bcvsE0OXeXN83E7Ojweqi23quDCNnI/VXUZyBXQy1KNy\n", - "cih3qMfqzO1xOznHO7dHNWFYOR+ru4lmQQAAgEAkVwAAAIFIrgAAAAKRXAEAAAQiuQIAAAhEcgUA\n", - "ABCI5AoAACAQyRUAAEAgBhEF0FnEiPJVZVSNLD3UqPh1yxvKUCOsR2yfPjG0GSm87ajiY45KP9SI\n", - "50NuH9SbaluSXAHoIWKk8L6jxzcdET6XUeKHiiGH7dCm3LYxjDkq/Ry3D+qNvy1pFgQAAAhEcgUA\n", - "ABCI5AoAACBQ5+TK9kW2P2n7L23/UGRQAAAAc9UpubJ9tKS3SbpI0kMlvdD2QyIDw67ZmzoAzMbe\n", - "1AFgRmzvnzoG7J6uNVePkfSplNItKaUvSPoVSc+JCwu7Z2/qADAbe1MHgHnZP3UA2D1dk6uzJN1a\n", - "+vu24j0AAICd1nWcq4aD1T3lbw//++YTJB3fcZkAAADZc0rtB/W1/ThJB1JKFxV/v0HSl1JKbypN\n", - "M9hoygAAANGiRm3vmlwdI+kvJH29pL+WdK2kF6aUPhERFAAAwFx1ahZMKX3R9vdK+l1JR0u6lMQK\n", - "AACgY80VAAAAqg0yQjsDjKIN27fYvsH2dbavnToe5MP2ZbYP2r6x9N5ptq+2fZPtq2yfOmWMyEfN\n", - "8XLA9m3F9eU62xdNGSPyYPsc2x+w/THbH7X9muL9kOtLeHLFAKPoIEnan1K6IKX0mKmDQVbeqcW1\n", - "pOz1kq5OKT1Q0u8VfwNS9fGSJL2luL5ckFL6nQniQn6+IOl1KaWHSXqcpFcVuUrI9WWImisGGEUX\n", - "Ib/QwHZJKV0j6a6Vt58t6fLi9eWSnjtqUMhWzfEicX3BipTSHSml64vXn5f0CS3G6wy5vgyRXDHA\n", - "KNpKkt5v+8O2Xz51MMjevpTSweL1QUn7pgwGs/Bq2x+xfSnNyFhl+1xJF0j6kIKuL0MkV/SQR1sX\n", - "ppQukPRMLapmnzh1QJiHtPhFDtccrPN2SedJOl/S7ZLePG04yIntkyW9V9JrU0qfK3/W5/oyRHL1\n", - "aUnnlP4+R4vaK6BSSun24v/PSPoNLZqWgToHbZ8hSbbPlHTnxPEgYymlO1NB0jvE9QUF28dqkVi9\n", - "K6V0RfF2yPVliOTqw5IeYPtc28dJ+hZJVw6wHGwB2yfaPqV4fZKkp0u6cf1c2HFXSrq4eH2xpCvW\n", - "TIsdV9wgl54nri+QZNuSLpX08ZTSW0sfhVxfBhnnyvYzJb1Vdw8w+tPhC8FWsH2eFrVV0mJQ23dz\n", - "vGDJ9nskPUnS6Vr0f/hRSf+vpF+V9BWSbpH0gpTS30wVI/JRcbxcImm/Fk2CSdLNkl5R6lODHWX7\n", - "CZL+UNINurvp7w1aPHGm9/WFQUQBAAACDTKIKAAAwK4iuQIAAAhEcgUAABCI5AoAACAQyRUAAEAg\n", - "kisAAIBAJFcAAACBSK4AAAAC/f9A40wIgLpJlQAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJPCAYAAACgtar/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XncHFWd7/Hvj8WLKwwjBlRmcFS8LjMD6IBeXB4UHEAH\ncZzrFWeUwXV8KeCGgqIEFQFX3McFMSKyCIowgiQCD4sIYUkgEDCABBIhT4iEhBCWhJz7R3eTTqe6\nu5Zzqk5Vfd6vV17pp7v6nFOntl+fc+qUOecEAAAAfzapugAAAABNQ4AFAADgGQEWAACAZwRYAAAA\nnhFgAQAAeEaABQAA4FmqAMvMtjKzM83sZjObb2a7mdnWZjbLzBaY2Uwz2yp0YQEAAOogbQvWNySd\n55x7oaR/kHSLpMMlzXLO7Sjpwu7fAAAArWfjJho1sy0lzXHO/d3A+7dIeo1zbsrMtpU06Zz73+GK\nCgAAUA9pWrCeI+leMzvJzK4zsx+a2ZMlTXPOTXWXmZI0LVgpAQAAaiRNgLWZpF0kfdc5t4ukBzXQ\nHeg6zWA8cwcAAECd4GmcxZIWO+eu7v59pqQjJC0xs22dc0vMbDtJSwe/aGYEXQAAoDacc+YjnbEt\nWM65JZIWmdmO3bf2lHSTpHMlHdh970BJZw/5fuv+HXXUUZWXgfVmvVlv1pv1Zr1Z72z/fErTgiVJ\nB0s6xcyeIOl2SQdJ2lTSGWb2bkkLJb3Va8kAAABqKlWA5Zy7XtI/JXy0p9/iAAAA1B8zuQcwMTFR\ndREqwXq3C+vdLqx3u7R1vX0aOw9WocTNXMj0AQAAfDEzubIGuQMAACAbAiwAAADPCLAAAAA8I8AC\nAADwjAALAADAMwIsAAAAzwiwAAAAPCPAAgAA8IwACwCgqamqSwA0CwEWALSAc9KcOcmfLV0qbbtt\nueUBmo4ACwBa4MorpV12Sf7skUfKLQvQBgRYANACjz5adQmAdiHAAgAA8IwACwAAwDMCLAAAAM8I\nsAAAADwjwAIAAPCMAAsAAMAzAiwAAADPCLAAAAA8I8ACAADwjAALAADAMwIsAAAAzwiwAAAAPCPA\nAgAA8IwACwAAwDMCLACtddFF0re/XXUpADQRARaA1vrkJ6WDD666FACaiAALAADAMwIsAK1lVnUJ\nADQVARYAAIBnm6VZyMwWSlop6TFJa5xzu5rZ1pJOl/S3khZKeqtz7v5A5QQA72jB6qAeAP/StmA5\nSRPOuZ2dc7t23ztc0izn3I6SLuz+DQCoGeeqLgHQPFm6CAd/4+wnaUb39QxJ+3spEYDUnJNe+cqq\nS1FftNwACCVLC9bvzOwaM3tv971pzrmp7uspSdO8lw7AWL//fdUlAAAMSjUGS9Luzrl7zGwbSbPM\n7Jb+D51zzsxoZAYAAFDKAMs5d0/3/3vN7FeSdpU0ZWbbOueWmNl2kpYmfXf69OmPv56YmNDExETR\nMgOAF3QRAu02OTmpycnJIGmbGzO60cyeJGlT59wDZvZkSTMlHS1pT0l/cc4db2aHS9rKOXf4wHfd\nuPQB5OectMkmDFLO6xWvkK68csP6++EPpY99TFq5srpyhXDJJdLERPK+smiR9Dd/w34EmJmcc15+\neqVpwZom6VfW+am3maRTnHMzzewaSWeY2bvVnabBR4EAoCxJLVhXXCE98ED5ZakSLXmAf2MDLOfc\nHZJ2Snj/PnVasQCglggsOmi5AvxjJnegxnoXRi6QABAXAiwAAADPCLAAAAA8I8AC0FqMwQIQCgEW\nAACAZwRYAFqLFqyOOtTDRRdVXQIgGwIsAK1Vh8ACnbtkX/e6qksBZEOABdQY0zS0z0MPSV//ut80\n2X8A/wiwGsZMWriw6lIACOXyy6WPfrTqUgAYhwCrge64o+oSAAilqd2aZu17RBGajQALQGslBSux\nd5c1NcCSpPvuq7oEgD8EWA0U+wUCQH5NDrCAJiHAAtBaScFK7AFMiPLFvs7czIE6IsACaowLTjGx\nBxZJ6lhmoI0IsIAGINBqDwIsoB4IsACg5QjQAf8IsACgRjbhrA3UAodqA/FrFEinjt1tdSwz0EYE\nWBG46y7p9tv9pffoo9LKlf7SAxCPNgZY/GhEHRFgRWC33aTnPc9feu97n7Tllv7SA5qqjsFKG6dp\n6CHQQp0QYEVg9Wq/6S1e7Dc9xIsLTjF1CSz61bHMQBsRYEXoP/+z8w9Ii0ALAOJCgBWhGTM6/wBg\nUIgWLAJ0wD8CLADoE3uwQRchUA8EWBGI/YQONFUdg5U6lrkozpGoIwIsAK1Vx4c9t3miUQIt1EmL\nD9V41PEkD6AanBuAeiDAihS/1JAG+0kxBCsd1APgHwEW0ABZA61LL5W+9KUwZUFYBENAPRBgAS30\n+c9Ln/xk1aVAHgRYQD2UGmD94hfSZz9bZo71kNT6wEm0XI89Jk1NVV0KxCD2blfmwQLqodQA6wtf\n6PxyRn0dfrj05jdXXQr/vvc9adttqy4FylbHHzJ1LHNRvQCQQBB1QhdhBOp0wjzlFOnss6suhX+0\nXrVTHe/gjb18oX3rW9Ls2VWXAhiPAAuosby/6GkJQF0dcoh09NFVlwIYL1WAZWabmtkcMzu3+/fW\nZjbLzBaY2Uwz2ypdOkWKCgB+1fGcFKLMdawHIHZpW7AOlTRfUu937+GSZjnndpR0YfdvtAAn4jhl\nbZFiO9ZXm2dyB+pk7KFqZs+WtK+kH0nqnZb3kzSj+3qGpP2DlK4l6K4B4hH78UhwDNRDmt9CX5d0\nmKR1fe9Nc871hgVPSZrmu2AAwok9iMBwbQyw2F9RR5uN+tDM3ihpqXNujplNJC3jnHNmNnT3nz59\n+uOvV62akJSYTKvV8U4moAk4zjrqEsDUpZyoj8nJSU1OTgZJe2SAJen/SNrPzPaVtIWkp5nZyZKm\nzGxb59wSM9tO0tJhCfQHWE28vT8UTiRAeHX8ccO5AfBnYmJCExMTj/99tMdbVEd2ETrnPuWc2945\n9xxJb5N0kXPuHZLOkXRgd7EDJaUKnWI/cWE8tmFc8l5s2Y4AEFbW+1F6p/PjJO1lZgskvbb7N4CK\n0KqRD4FmB/UA+Deui/BxzrlLJF3SfX2fpD1DFapteBYhykZABgBhMaMKCjOTbrih6lKgrR5+2O8P\nktiDzzb9+LrwQun88+PfJnVnJl13XdWlaB4CLHV2rgcfrDb/ulu0qOoSoK0eeaTqEiCUN75R2nff\n9X8TaIVz661Vl6B5Sg2wYg4kVq+uugTt8NOfSi9+cdWlKJdz0n33VV0KJOEuwnBpAm1HCxYyKXrx\nueACaf58P2UpapttpD/9KXw+v/mN9Nd/HT6fLGIPIspCPQAIhQALrbVsmXTTTeHzmZoav0xeeVse\naLEAxlu2TLr33qpLUQ5+bPiX+i5ChFP1xW7tWmkz9oRaq3ofqqs6XlRClDnWeqh6v37pSzvDR9oS\nZMEvWrAqtP/+0uLFVZdC2nxz6Zprysmr6hMmMA77KHruvrvTigXkQYBVoV//WrrssjgG2t5zT7n5\nATGIteUGHb3tU1XQS7CNIlp7F+G8edKznlV1KTb0kpdIv/td53VTD+z+feDqq6WFC6spx9VXV5Nv\nHZlJDzxQdSnQ09RzQxptXnfUT2tbsGbP7jT/xuSmmzoT68WsaJDcO0H++c/Srrt2ukmrsCfPIchk\n5cqqS1CemH4IAmVhv/evtQEWqvXsZ3f+56Auhl/0xdR5//O57dmPAP8IsCLAswjrb/XqTqsogHis\nXMlM/6hOawOsLAHMypXSFVeEKwvq78tflnbbrfP6scekI48sN39aIPLhh0xHU+thyy2l97wn//c5\nrlBEawe5Z/H5z0u77x4u/VD18uCD0rXXhkkbG3r00fWv779fOuaY6sqCYrioxqfINrntNn/lALJo\nbQvWOOvWSRdd1Hm9dm21ZcnrmGOkl73Mb5p1DZLLxAW6Poruz3PmbBhcl6HN+1eb1z00zu3+EWAN\nceml0ute13ld14M6xNiDutYFEMIuu0j//d/V5M2x2EzOdYYZoP5aG2CNi9bZwf2aNUv613+tuhTx\nePBB6f3vr7oUSJL1lzyDqOHT9OnS//pfVZcCPrQ2wIpJnX6J5m1GPu006Ve/im9dq2oWv/FG6Qc/\nKJ5Of30uX76+WzvL99qMbhGMUsVxct11fn7g33WXdNxxxdNBfgRYaLUsJ1Dn4n7o6xe+sL5bG2iz\n5culF7+46lJU66STpCOOqLoU7VbpXYQnn9zpOmo7H88iXLZMmpryU56Q6txicNZZ0jOeMX65Kn71\n0iKVT9L+SF3GJ+s2+dOfpPnzw5Slqep8bo5VpS1Y73yn9L73VVmCdOpwwdx1V+kFLwhTln6+HpVT\nRzG3Xo3inLR48YbvcTKtrzofQ03yzW9Kc+dWXQrErLVdhE27wNxzj7RiRdWlqJ8Q+0FVF8Bh+f7i\nF9L225dblrqo83mgjP1s3Trp3HPD55NWTMHloYdKxx5bdSkQs9YGWEBbLF++8XsxXajqrs5B2jjX\nXSftt1/VpagOxwmKIMDquvLKDf8u88DiWYTVadIJlH3GD+pxvXXrqi4BUF88KqerTb/SPvUp6cc/\nzvfde+7xWxYU06QAsQo+zklsAzRBzNfnuqIFa4j+nS30CbTsHfvYY/OPHXjooXzfi/Ui1IYxWEnK\n3OcefbQzeSKa4447ys0v1vMHMEprAyyidTRJ1gtQmResW2+Vjj66vPyy8DFNQ1XnkqqCjkcekf7u\n78rJq82B1fnn5//uT36y8bAXlK+1AdY4bT6wQ+hdhGKr19jKA4xT9T5bZFzWqacWC0irXvcy7btv\n/u8edJD029/6KwvyqTzAatMBMwx1AB/q3iq72WadCXPLVPc6q5sbbsi2/LDtw3ZDHVQeYNUBAZA/\nbTgx1mEMViiLF298EU1brscek/78Z/9lSmv16s7+2YZ9tO5i2Nebhv3ev8rvIox1o8ZaLl98PEy0\nCeq+nWO70LzpTdI//mPVpcgn70S9hx3m5+7a3/42vu0JIL/WtmCNu7CWdaIb9os59IW/7LuAeriA\ntE/MQayvsi1Zkn7ZQw6Rbrll4/f32UdasMBPeZqC80XHZZdRF3VUeQtW2w0eNL2/OZjK0aR6juH4\nesITNn6vSXXsw7e+JZ1+evF0kup19uxmDiKPtVxlefWrO9sW9TIywDKzLczsKjOba2bzzezY7vtb\nm9ksM1tgZjPNbKs0mbX9IAmJuo1HVQ8Hj2EfSAqwYpZ1mgYzae3acOVJY1T55s3zn2Zen/508UAy\nhh8Nscg7rGPu3DjODW00MsByzj0saQ/n3E6S/kHSHmb2SkmHS5rlnNtR0oXdvxsr9M7Zn37TTyix\nrV9s5anCww9LJ57oJ63NN/eTTlnybP+2j19Mez784hel444b/vkjj4TLu86GrWPedd95Z+nqq8cv\nx7nQv7FdhM651d2XT5C0qaTlkvaTNKP7/gxJ+6fJjA2YXta6qkvdtu0EefbZ0nveU11Z0rjkEn9l\nrFuAhWrMni1tsUXVpWiPNWuqLkE7jQ2wzGwTM5sraUrSxc65myRNc85NdReZkjQtYBmDiCUgSVOO\n44/v3J2F+jn33KpLUK5YjqsimrAOIfmon7R3Xfr8QfY//+MvrZDY/5pjs3ELOOfWSdrJzLaUdIGZ\n7THwuTOz3IdBG1o0RnFu/HMPf/Yz6cYbR6fz8MN+y4V6aPvx02Z13vZll/2xx6R/+RfqDOUaG2D1\nOOdWmNlvJL1U0pSZbeucW2Jm20laOux70/ue8rpy5YSkibxlRQO07SRRh/X1WcY6rG8/X60FdVvv\ntKperxgesUWLUrNNTk5qcnIySNojAywze7qktc65+83siZL2knS0pHMkHSjp+O7/Zw9Loz/ASno2\nUh123jIP7jrURx5Vn6jL1KZ1baLYt1/I8g22qMeqDmXMy/cg97SaXKejTExMaGJi4vG/j/b4ZPpx\nY7C2k3RRdwzWVZLOdc5dKOk4SXuZ2QJJr+3+jRzWrk0+cNaske6/v/zyhNa2g7is9c168g1152rd\ntq+v8tZpvZcvl444QnrlK6suSXZ55wksEpzUZdvutpt0/vlVlwL9RrZgOefmSdol4f37JO2ZNbOY\ndtRYyvLOd0pPfWryZy97mXTbbeWWZxyzfCerWOob5SurRShP60sbuwi/9KWNp08ou/zD8lu7tvPI\noi23HL1cmcouw7B9clw5Zs+Wzjuv80QAxKHyR+XEcADFpL8+7ryzunKEEsv2LvOiH6MmBbyx1jGy\n++xnpa1STVudTRn7+2OPSQ8+GD4f1AePyolAneqFixmari7HY9KxuHr1xu8NKrp+Ic8Bg89IjWFb\npC3DUUdJT3lKuHJw7q2fUgOspB0khgNoHAa5FxfbySFkPZc5M39/XrHVcZ2sWCFdcUX+78dy3B5y\nSNUlCKPovl3GsXHrreHzCCmWfbhJggdYb3ubdOWVoXNBWTgIs4k16KFcHb39efp06d/+LX86ZZa7\n6m3n4xxQdB3ylqHO40er3u7ILniAdfrp0ite0Xmd9cGqIcVy0EhxHDih6yOm+m6qttdxkeOo/wHO\nMRyPVYlt3auasiBPXrHVHapX+SD3WFV1sLQt36o0bX2bsj55gsQ23ILvU8xjsELl3YTjownr0DaV\nB1h1OMGxYxfXpjqsQ5Bch+OuDGnr4YILpJtuKp6OT2XMwD8qj7Yc02m3begpP2Kq77e/ncezpcFd\nhEOUWdb+vOpUR3XW9nqO6WTdL9Zy7b239I53DP881nLHKm0Q4fs4DT0Lfluceqq0aFHVpYhf5XcR\nViXpwH3/+6WTTiq/LHWS94TX9oAmlDLvWMwrpuM+jXH1WLf1aYLQgdcoZR9XVR3HsZ4/6qzyLsKY\nTlY/+IH03e92XsdUrjL4OrhmzpRWrvST1jBXXinNmuUnLU4qcUnaHo88ku67bTlmq7oDrwyDZfPV\nXVakztJ89/LLN7xRIoS27N9NQhdhBGKYy8jXSfuf/1k64YTi5RnlX/5Fev3ri6WR95lmWdIuW9p8\nH3qoc0EoS9HjfostpMsu81OWQTHd2RyLhx6S1q0b/nnIY6euXvUq6Ve/CpsHD3uun8pbsMrcqOec\nM/rEMUybTiSLF0vbbDP887zPyeKkHFaWev3udzsPEy/qgx+UPvCB8cv52OZ33x02/TRC5jNnTrHv\n/+Qn0rnneimKnvQk6atf9ZPWMHlbpqqYcLTswCP2H2hIb+TDnn2rOkJ+05uk66+X/uEfxi/b1n7w\n+fOlZcuqLcM4PuqorJncY+SrK6PXnf697/lJrwplTwsxzC67FCvHQQdJ225bvBy9NGN5yHwbH8Yd\nQtvXvyqVD3KvaubmmAayVh1U9Qs1jiBtvZetzEfZID6x7Y9liGGdhx0XMZRtUCyD3OkirJ/KuwgR\nh97B9dhjYfMh4GiHN7xB+uhHy83T177VxgtNlrqLYRb1MrdRE85ZbdynY1BagOVcnBs5toOn6v73\nvC1Y/ds2tjpNUtaYsBhayAbLUMZxeN550i9+ET6fMtVhv/at7IlG047NavKM7jw+rjkqb8Gqw0YN\nvcPHdNDnbcEKPTg1LTPpT38qJ69hYtqekt+WndWr/aQ1TJ6yll3fVW/fqvOP1aiZxZvwOKXQU02w\nX/lXeYAVq7YOch/XglV1+dKYmhq/TFljwpp20nroofTL1mHd6zxNQ95yxnAMp+36y1LWJz4x/ht0\niiBIqp/K58GKtTm0rTuqj0HuSXXn86Qee/BbxZQUTdlfYxlQjOFifthzlh8AaTVhn0yTJseCf6WO\nwYrhIjBYBh+3NhcVw9Ptyxrk7kNVJ4I6zKGTRlllasv8QU0S62D3QVn3rSI/euq0X8V4vmmzyrsI\nq94hli6tNv9BVQ9yzzMRq1S/FsGiYzKuvz5d2rGtd5nqcDHLcv5p42S5P/pRtfn7elROnYRY5zw3\nw6C4yrsI66DJB3NWVc3REptYJmL0oe43cfhOP8R5at26eI6RNOvXK+s554QpQ9a6+M53wpQjjV59\nrVolHXtsdeVII3QQhmwqb8EqslGXLZMeeCDbd2IM8vrroMry/fCH0rveVTydsm/tzqOMmdzLWNdY\n6jNJnjoOsV1uvVV629v8p5vFM58pfehDftIqc3qETRKuEFXsc0ceWX6egy67TPrUpzZ874wzysu/\nCXdCtk2t58GaNq3z4N8kt946+nlrTdrhfJ3wfv7zcHlVVd+LFoUZ+NokobZNb19JSn/1aulznwuT\n76DzzpNOPz398iECiKkpafZsv2mGDHTKfvLCsB8lvh+VU4dxlP35bbPN+mEbobv5mnRNjEXlLVhF\nrFvXuYAm2XFH6RvfKLc8PsR6V2Xd8un5m7+RPvax4Z/H1AL02c9KF17oP12fE43mee5gUh1ffbV0\n1FHpli2Sz7g084zBitWSJeXml6Y+5s4tP0/fqtzuy5b5yT/2fbepKg+wQl5wR3UfEq1vKO0BOKze\nxs3k7rPbLOu2+8tfhpcnhLxpf/7z0le+kj/PvINjs5T3M59Jv2wdjrFYHvYcq6QuQh/S1mHa+bKa\npKpxVE2u06qU2kXY7/bby8o5uRxV3478yleuf12nHTuGsjZhTq206jBtxjB5xuLFvj2GaUrQFaqL\nLm/+RZfLu3y/WPbJJqxD21TWgvW853X+b8qJKavf/z75/br+oh5XhtgO8DoMcr/vPmmzzdIvn3ed\nYts2WRVpoav7uueRZZ1jmhzahzqUvcid2m3cn2NWeRdhVWLaEetw0PfUqax19+CD45fJuj3MpPnz\n85XHpxDTfZx8cv7v9stTtjLPJ2XcpdpLe1QXYYj8q3gw+TgxlCGtb387+X3O29UoNcBKupurTjuv\nD85J9947+vMq+NwOo8ZgJVm+XNprr7D551kmZP5V5rtgQb7vDeOzG3PfffN/95BD/JVjlCZerMru\nsh3Mz3fQ+NOf+klHKn97N3H/aqtSx2Bdc01ZuY1X1d1Dv/2t9Ixn+EvPl6KD3IuYP1/63e/8p4ty\nvPa1618X7VK655785fA1A3YdZqAPLZbHUeUN/L75zXTp1IGP4LNtDRmxqLyLMPZf+76FeNp7lnE6\nocR0AFddlrq1Qhatr8svX/+6bheyMveVNC19ZdRflnWOZaJRX3nXYR6sYULXeyzr2SSVB1g973qX\n9PrXh88nxp2ov0wxli+NtIPck5bLus4+nntYxizjZV6IRk3TULXQ+3RZv+yLjsGaM0d69NH0+cWg\nykk2R4l1X/chRJ2Hqq/Vq8Ok2xRjAywz297MLjazm8zsRjM7pPv+1mY2y8wWmNlMM9uqSEF+/Wtp\n1qwiKaQzanbpqtTpZJHlOWZNk+cW8hjqYtzA4aJlXLdu9Gz5o9J/7DFp5sxi+Y/jexsUSW9cK1bV\n+0uWaRrKmK/J90zueVR9rah6nxjmggukJz+56lLELU0L1hpJH3HOvVjSyyV90MxeKOlwSbOccztK\nurD791B1m/embV2XZbUy+MhnXBptDgKT+LgQjkvjv/6r83/W7XvRRdI//3P2cvkSwwU8b17vfvfo\npxT4MFg/n/mM9Pznh8svxuMylkHusdXN4sVVlyB+YwMs59wS59zc7utVkm6W9CxJ+0ma0V1shqT9\nQxUyhCY9IsOHKtcx1iA7ryoutkX4qP+77ur8n7U8vees9Rv2+KtxhuU9Z062dKrcH7PU3xlnSD/4\nQfY8svwAGVz2oovCjCPNGlTk3UZ5jpeHH86Xl291boVrq0xjsMxsB0k7S7pK0jTn3FT3oylJ0/IU\nINaWInbIbMY9KifNZ03jXHv2o7Vr/aW1cqW/tCTplFOyLZ+nBaGp27mp6xWDY49Nd2e9j3Mmk5RW\nI3WAZWZPkXSWpEOdcxs85c855yS16NIZTl138roFrGXM5D74uqx5mrLycQJPE2DdeWenxSqp1aqI\nGLpwfJUhlh+cveMj1ESjeb+bd8qCpOVf/vJs82X53jaf+pT01a9u/H5s58qetWuZTierVDf4m9nm\n6gRXJzvnzu6+PWVm2zrnlpjZdpKWJn97uiTpc5+TpInuP3+yDjxOOxYo1InOx110TVPl+peZ97e+\ntfH8PGUoY3bsNWvGpz17tvSBD3Qevv2lL/kvQx5tP/bGqfpZhCHzv+oqafvtpXe+M1weecQ6Bus3\nv5H237/6cvg2OTmpycnJIGmPDbDMzCSdKGm+c+6Evo/OkXSgpOO7/5+d8HX1AqzPfEY65pik9DOV\nNzffMwX7FMNdZ2m3Q9GxD2UMcs8yk3uI+q5iGxbplk1zp9i4NHotWONady65JNut3Zdemn7ZrBYt\nimvyYym5/o49thOQLl+ebvlxij6LsK1imXw1j17ZDzhAeutbpTe/OXsavlueYzExMaGJiYnH/z76\n6KO9pZ2mi3B3Sf8haQ8zm9P9t7ek4yTtZWYLJL22+3dmRS90WedNyXOh93nBjPWElWcKgjzL+KjL\nXmtJm6xdu34OpXPPlZYu3fjzKoXK/zWvSb9sb99atizdfvb//t/wh66PSr9MH/5wpyvp/vv9pZll\n6oVXvzr5/aIeeCD5fd9TiAymU0W3pi8+yn7aaX4fI4TR0txFeLlzbhPn3E7OuZ27/37rnLvPOben\nc25H59zrnXMeTwHphdrpy3oGV1MUqa+s353q3lqx++7JtwqH2nbnnZduud42vvZaf3n/679KL3pR\n5/V++0nHH7/h59/5Tv60feyTSfM7VTXn3DbbSGcPaU/vl/cOtZDH8GDaM2aMXiZ03e622/DPitTD\nTTclp1X2/FhYjzr1r9RnEY4SevbarAdw7F11vo16AHW/YeWrYvtecUVyEBPqjpn/+Z9sy7/iFRs/\nWDmvq6+Wbr99/d933SXdccf6dR11512Z+9SoZxH6bIVJSr/fkiV+06tKTGNFyxBT3Q8q6zga1oqX\nVDdf+lKnVQpxqvxROaMeoZLl++PEMgYrqbzDmsvL9O53+0sr611WTRvk3r+uaZ4/l8eZZ0rPe172\n8khhBr2nuXnjfe/LluZgK0cWReq9ynNE1eenYWIrV8jyzJ2bPN6orDrIks8nPykdccT45Widqkbl\nAVZRaS+QAkKLAAAgAElEQVTceQOsP/4xe5lGGZd/bCeyQXU4ULNMpOicdP750he+kD2fBQuq3V7r\n1kk33xw2j7THTdJyRepm8WLpJS/J//0QgW2Mx2aoZ2oW/eGbV4jHOl15Zbbz/847px8OkNaKFcXr\nss7jx9qq8i7CkOM0+vNcsSJffi95Sbad89e/lubNS788qpd3yoAXvED64hc3nnqhzJOZj+6BPOXd\nc8/0y47qNuyZO3fDv/PcyFBGy2HZyr7LOu3fvvMrK9+0Hnlk4/eKbIuttkoeT5dGLMFRLOWok9q3\nYKXZ6a+8UnrGMzqvs+4kWU/U+++//rlsSerQAjRK3oHBoz73XSdlngiOPFI69NDy8jv//A3/rqrr\n+8ILk9/v35ZZWkFe8YriZeoXsoswZEtCnS5iVbaolHEeXbVqw7+LlvnPf05+v/8OYam6a0TWfOt+\nLStD7QOsNF2E/QO4sx4kZf1y60naaX3syL4eP5KmLKOe3RXLBaS3HqFbTn17+9uzfyfG+XtCd0HV\nvQVr1Fxhvrphx6Xd/7fvfEJNxzBMnvTL6on4t3+Tdtxx/HJF6sjn/IM/+lHx8rRF5QFWWY8sqbNR\n6/GJT4z//qWXSltu6acsae4iPOGEjceulbkt2vTLqv8CmLbbJeQg9zxjtQbLMGpdRqXZL2uA1T+W\nLe+dsj44J/32t9KTnzy6LGksWiQddli+78Z+DOXdFlUHKUmuvbbzGKmetMdxFj733cFWdAwXzRis\nvGI/EQzyfdv1D384fpnevFFluu++8vPsSVOHsdxVWlSW8ve6roe1HiTd0BG6nkIdv1kDrP4uz5D7\nRJq0Fy1Kn96o+vvlL6WvfCV9Wv1iGYNVt/N7COPqfuHC6icaRrLKW7BCGjW4tqqZ3Nt0QV+7tjMp\nZr82nDBDduEMy8tsfN1+//ujyzRqnqq065F2LN5gF+Hg2K08+4mvQe5ljJOaPj35R0jWACNPWXyd\n+8poUSlz0PsJJ0hbbBEu/ZB+8YuqS4Ak0QdYjzySf4LCugczPXUISpLKuGJF57Eu/Z8nbRPf69fW\nZ62lvQEhhnFnoS7cPXXYrqGn2CiiDvWXRZp96qqrku8eLFueLupxLVhZpuZIq2n7SAjRB1jvepf0\nV3/lL71QQdcVV0jPfvb45fLcbVfl/CmDsk7sGqIMWfNOUtbYvzwny7337uz3IcqTJMu8YeM+z7qd\nQ95s4JuPfXhc62b/ezvtND69Bx/0M2dTnmkajjhC+vKX8+U3bHun3Q/y7i8+tmHSQ7d9Gizjr3+d\n/H6RNFGOysdgjTtQ+h8PklWZJ+3f/374bbhZpLk4V6lXpocflj70ofXvcwAny1MvF1yw/qQ6Lj0f\nY6RGpVEk/WXLhn/mc9qOpu5711+f7gfXG94wOp0iYzBH1e23vtWZB85nujFvy17Ztt663Hzz3Dkc\nQszbJlaVt2AVvUAMfu/OO0d3R+XJp6odK8YdulemW28d/YDhPN10SY+nyMNHi0wRacZghZj7K4aA\nvL8M/XP7DApR/2UdL77yCdFaneS5zx2f77j8yxpLmHYM2rDynHDC6AePpylDKEceGTZ9xKeSACvk\njnz33enyi+FilFadylrEpptWXQL/Qo8v6x8kXnQgepGyFh1T1ZZ9vIofTQ8+mP07sWyPrPX1ta9J\nS5eGKUvVdVL1FBODaRx3XPE0m26zqgvQk3cHKGOG8DofWJLf8ue9OJdZh6Pq67jj/HTlps0/9Hr7\nCF7SlLHIg5f75bmLN8/yReRpxclzjB58sHTddcXTCWGwRamsclV5vIS4YzOPquZhi2X9m6S0AGtY\nt0nRGZ3TnPQGJzH0mYdvSY8aGaUuO32RE5tPX/965xfu055WTn4xbB8f0w4MTreRJ41Ry/s4ucc+\nfnHQnDnjl6nDeuSRtysyb4BeJ3XuPseGKu8i9LHhr73W/6MxQu2QWS52dToo8s5rE0KWwNQ5aXLS\nb/5Z1nHY7dXObTjh5LgLUqh6PeMMv+n5fkSKmXTHHcXSGDSuTFdfvXEraN67a8d9HiKQyHPLvu/9\nq+xzW9H81qxpdlCXRtvXP4/KB7n3DLbcjBogO/i9l71MOuec0Wn25PkFVHWgU7QbtIryV1lnVW+v\nLL7xjeT3ly+Xdt+93LIk+ehHsy1/2WXplssz0HqYe+4Zn6ZP++wj/fu/D//8rrvypz1z5vr1GaaM\n/bvsrsFhYrmov/rV1ddF1fkju8pbsIa9l7ZFqve9pICs6kGBvtINdWDdf7/0wheu/zvEZHRpvl/l\nSbTqSTdHTWXQb1hXep4xWMP+9jHVwwMPZFt+2DxYMXTl//KXw9MftR3+9m+lxYvz5XnkkdJRR+X7\nbhFlX7zTbm/fdzXm/d6VV+b7nk9lXc++/W3p4ovz54X1KpkHq8jA3Icf9lOeLHxehLMcJKEDjzvv\nlG65Zf3fPg/gLBfx0HfaxfIrOKSkeh3XEjLqu6GkCRCrnESy31ve0vk/Txfy4NQIPbG3QpQ1TUPI\nfK6/Pky6ZZ1HqvrR18v34IOlww/PlwY2VHkX4biZnAc36hOfuOHYlKxdZHnGClU1yN1Xvocd5ied\nIppyEU/z/ZDrmvaX/7Jl0jOfmbxMDINoRwXBzuXbPqHuGt5jj+zfSTvEIWu6ZaXpo1WzKvvsEybd\nrHVx1lnSqaeGzwfxqryLcFhf/6iTwMqVyWnVQZ67pYqeZIeNCfn85/3lU7ftULS8vgb1z5oVphyj\nnqm2SYaj3vecQoMX7rSPykkT0PraB2Pal6tqfQ0dlOdN7/jjO/9X3bWfxtvf7ncW9qr3yzb0BPgW\nXRdhiJ0oqVWoqkHuvseWFCnbWWdt+LfPfndfXaEf/KD04hcXK0uIVsFBeVs8r71WWrIk32SQvqQN\ncvJKO3ZpsDzjlgslT/dV2vL1/zhEdl/9arHvxzYu9957/aeZxEfZqw7w6qjyLsKewV+2aTem752+\nN0g3hmg9hjIMM277fPrTG/6dd10uukiaPz/fd3tCB+1Fbbed9J73pFt2WICS5U7TEK0Tvn+ENPVk\n/jd/s+HfZQ3mv+GGbMunPR9XtZ2y5ltk3G/ePNO477705fBxEwrKVXkX4eB7IQ6cLMv/8Y/Z0suq\nTtNDZDG4Xtdcs+HfdVqXNEZ1afd/lnZ7L1nitzyjPiu7e2XU5Lm9v++/P2wZfCjy4Pm8fG2rO+/M\nlmbouhwW5Jd9d2CMqlqXmH/Q11Ulj8pJczHw2S1W1q9EH+nGNo1BGbKs3xve4Cf9suq0rJPl6tXS\nz35WLI0quk+H5Vm3fb7InY9lrOt++0m77pr/+00KYOqKbVA/lYzByrOc2Ya/wvrfb5JRrXtJyl7/\nqrpue847L3veWeu0qCrGC01OdmabziNpW51+ejUtNmklzbdV5bkg1Db3uU6zZw//bNgP21gv6lnr\nxfeNEHVjVvx5ok271pahVi1YSZMyZg0+qh7kniXfOu3QMZ24YiqLb3km5Bw3L1hSGm97W+dfFcbt\n9zfdJL3kJRufK+p4F2EV++rZZ49fpk7nHqnZx3xP0TFYt91WXf5tFc0YrGGfVTWwL8sJJssdYFnK\nFOMOnXd+nKKP+6mTMlvH8vxgCCH0nbb96/eXvwz/bu+urKrrI2Z/+MP4ZerSkuVTFefmtHfR9vzs\nZ+kC5KJlgB+V30U47Nd0npapCy8cv3zRrsokT3lK+keE5FHVpJZZlHGnWt6y1F2auvMxZrGMedDy\nzrKftg6e8Yx06RXNa1Deujv55OQ7yYqm60uvLs47L/nB5L5n3fe5P9RB1ilJ3vEO6aCDwpVnlKr3\nxTqqfB6shQs3nAgz74Ezb560554bvlfmbMRZHk6d9fOmnEykctYlS7dZbBMWlnEDR1o33ug/zTSB\nt1nYcYff/W76h1KnlXc7HHSQdNJJwz9Pmui1ivPBAQeEfT5d6LsIY+5GDvGjfxDzYFWjtDFYo+4k\n+vzn88+DNSzNPGkMc845ftKR0p8IpDh/MWTZPjEPLI21bCtW+EmnfwLDwf1o3bp0aYQIsNIIvU0+\n+EFp993D5uGLr0fu+FD0jsett5ae85zxeTTFqHX57Gf9plfku02q89iUFmAdeeToz4te8LI2LWdp\nSQrZ/TdKnXb8upQ11rsuRy2fJuge/N7OOw/P46KL0uedlu/jNktXYl32vToa/GFcpOt/+fLOv6zf\nS1LFMxp9PBFizZrOdBkPP5w+36J5psVx5F9pXYQ337z+dZa7CNNu9KTnq8X4bD3fD7EtO2DIk1+W\nVruszjwz/3eLKHrBL7OrIsYTZ9bu+1Et4HnEWCdVSnO+DVlnvScZ5B2jN04s+8yqVdLcucXT8Ylj\nIZyxAZaZ/djMpsxsXt97W5vZLDNbYGYzzWyrLJmOunMi7wGedkqGMnemmTOlr3wluUxpFK2TEGK7\nC7Lo5Jpp5f3lHjoAruvJsepyj+ruqrpsMSj7h9vPf975P+9xVsY4przpfOhDfvIsYty4xrRpSBwf\nWaRpwTpJ0t4D7x0uaZZzbkdJF3b/LiSp5ermmzd+5IokLVq08XsxdiF85jPSYYdl+06M467SeOMb\nN/x7WFAby8FZ9SD3tF1jg+kV6aIJyecPo6TvjHrcTpZ005ar7ZJatGKqL19l6b+Dc1yaec8V3/mO\nnzSr6ML3nUbbjB2D5Zy7zMx2GHh7P0mv6b6eIWlSGYKsNCfj2bOlq67a8LPezrjPPhun8dhjG6dV\nxzvyYj2h5VH2r8qeLBfXssb8pRWiPDEG7aN+DS9bFm8gGYMm1EUs6zBsPGKSEGXO0yPg+xwRy7Zo\noryD3Kc556a6r6ckTcvy5TRdhHvtla1AxxyTLp/B/OogxrLm7Sos42Aelsettybf9p4nzZi6bX3l\nuWqVdPXV0j/9U7j803Qz7Luv9NBD/vNO+x0uOMmG1ctjj3XGwOZpjcnbdZX1iQa+t2ne9H7wA39p\n5TU1lfx+VT+Im6zwXYTOOWdmI6p8uiTpT3+SpInuv6R0Nvy/bkLe1VKXOvnlLzf8O7ZyT5++8Xvf\n/37pxdCjj66/m2pQ3lZXHwHDF74gXXJJ2ItRmrTHBVc+WrdGjcHCemm23WabdfadT386fbppW1Me\neSR9mnXwve8VT6PofvuHP3RaiZ/+9OJlaYLJyUlNTk4GSTtvgDVlZts655aY2XaSRrQLTJck7bDD\n+oc1570YZH2YbR27CEc55RTp3/+96lIMd/31619nuaim3SZ//dfpljv/fOn3v99w/NuaNckzUaed\n42zUmKBRyyYt9/GPS9/6Vrp8BuV5FmFaZV7Msl4kfAdDzkl//KPfNNtg2Ha44YZyy5F3vrgyB7mn\nHapQ1jQN/d8//fTOfHA+0q27iYkJTUxMPP730Ucf7S3tvNM0nCPpwO7rAyWNfTpS2gvuqM++/OVU\nZUuVlm++8hp1x+N//IefPMqSVCdF6mnUI0X6feEL0ic+seF7z3uedMYZ6/8uesEu0pze+6HhI19f\nJ/qiQo81Gxe0ZuWcdP/9xdNpE+equQsvyeWXZ0sv1iCCVtRmSzNNw6mSrpD0AjNbZGYHSTpO0l5m\ntkDSa7t/j3TppcM/Sxt83XPPuFySVTVNQx6jxqfFpFfOU07J9728n+dhtuHjmELk09+tVWT27WGt\nrkuWJC/fP5YlVqGOuf/8z/zfTRust8WwIRpNuunGpyrrIinvpNb5Iun5XL7N0txFeMCQj/Yc8v5Y\ngxvoxBOlv/qr5M98CBW0PPhg8oBBXxe7mC+aPcNa1QaD2rRdaiHGxoS4RXmwjF//+vrXRS78eVV9\n0gs9aDxpn5gxI396t98+/LOq63KcKsvnayLQYetQdldjjPLc7feud4Upi9QZW7vffuHSb7LSZnLv\nF/JkHPrk87vfSXff3Xn98Y9Lz31u53XIVrLYT/jD5Pn1W5d1HVXO3v7hO92Y0iw7f1pSqpfURZh3\nW1T1IyqWLs6epJbUYWkXba0e971h+b7lLZ1pk5BdJQHWKEWDr3EPsi16YOy1l/Sxj3Vehx7DUfWF\nZM2aTgD5s59lu0NoUIgB71nU6UnyWW/MOOuscGWpi7p0q8ds2Lmsv259PjWh7HObj/yy3mCUJs87\n7yyvi25c4DZKnYbZxKT2LViDJ9JxAVZaMe10VV0sVq3qTK9xzDHSF7+Y/ft5flX62n7jylFWnfo4\ned5yS7F8fK9r0pMU0h7TTQl8+u+YbYIjjhi/zC9+Ec+Dictw0kkb/t0fhDZh/QY99lgz16tKlQRY\nF1ww/LOiF6TQLVhlphvLxchnt+1gWoMDwss6wIvmE+pB4kmf/eM/hskrr+uuy5bPqO2fth5jORZ6\n8k4TEKMFC0aPSeuXdn8adx7+yU/SpVMVM+mHP8z33auvzp5Xz8c/nvxUEincDS29dPfeO3kiVCnb\nxL9Yr5IA653vHP5Z6DFYf/lLunSKPO8sxkHavqUpU5ppGubPz55uViG6CGPcJsNUXVYfLdZltoJV\nXV+j3H338AtwXi94gbR4cfJneesiREv0KGmHHvgaqzXq8113zV+Or351/NCTkPvnf/1X8vuve124\nPJusVmOw0pxYxx3YoeaSCjEIN5YTfZ6u0MH6GGxuH7Wsb0lpPvCA/3ySJO2PZT6YPIZ9qInrNKis\nMj3rWdJ3v5tu2TyBaNPOXbHpTReTJwCtstXdZznapFYB1h/+MP77aXdc34Otxy3/y1/mv6jH1j2S\nxrp10pvelP17sR68ebu2iubjg++yDpuTK6Qyg9LY3XtvuuWqrJeyW7DKVkXdhurdadvxU6ZaBVhp\nJB3Yxx9fLM1hsly43vKW7OMOYgys0j4fcfVq6dprN34/1F2EN9/ceb5WkhD1WKSrocypGELkldSN\n4PPGlarlKa9ZZ5+Pxfz50oc/nG7ZzTcf/lneHxZlbPPQLd9IFuN1KVatCLCuuKJYmsNk7Tr76U/z\n5VP3k0eWoCrvur7oRcO7f4c9PT5Gedc/z+SEPoUOsGI/BlaskJ785KpLsd7FF4dJ19cgdx+y7BNZ\nx2CFDiL662ewTMPGw/VUPcY39mMxJq0IsPIYtRPn3cGvuSbb8jHuyKFvQiiy/Ybd6eLjQell/ZLP\nW78xtyD151/W3Ui+LkIPPphuud56VV3XeSQdc2eeKV15Zf408wQ/IfPo+fCHpd/8pnjaIbfzsB+E\nWYPEUKrOv04IsHKUo6xun566N8mWcbItW5Fylrk9Y6hPH2Wo6hhowwOhk+5KXL5ceve78/+wyHIe\n9hFgpU3jtNOkb387X36hxNTtCr9aG2CFPOk35VmEo34x5a2/pDnQRp0oq66DHp+/sstubSqjDkOf\n/Hvp33Zb+LyLpNf0i6CvaQ7yLptXTPuINPo6VfY5r+n7bJUaF2BVtbMkBQlNuS22l//DD4e/9Xtw\n2d7fH/hA9nxDSlsP8+ZlS9d3d0nV+47vMjz/+Ux6GHKbDqb98Y/nSydLC9bgZMNpxbBvhxDLj8ph\nmlrvITQuwCpjDFbSMmV3G5ZhsAXrjW8Mm8/g637//d9h8o5F0ZNq1dMY5G2VSxs4969fjFMAFBkf\nkzeIqULe7qxR33vSk/KVpcphGWvWhMt7kyFXZZ/rm2duw9//3l/+bUGAFagcPlX1i2bwonHzzes/\nSyqTjzvZYqr3fqFOboPpl92V8bWvhW8RGlWGhQvD5g2/hm3LUM+ETVuWso+btE8EyZJ+mTO450nr\na1/r/B97C1tMCLA8SSp3lTMp+zCqVS5Ui11M61+FEHdUjdoPP/YxafbsfHmmVbf9gjFYHUV+GI2a\nhsCXKn+4hQh2zj3XX5ohNWkfD63RAdZ990lvf7v/fNaulZYuHd7MmnYyzrTlqnpcWehxcf2fx9j9\nI1X/63Ec38+Sy6rKbkhfP26aJNT65+ki5IK8saTzXNXn+bzLD5vgGQ0MsPpvOb72WunUUzde5tJL\ni00+eeaZ0rRp1c4QXoZRAdY++/jPZ1hedfOhD1Vdgmwuvzxs+r7u2M0S8Fd1J1YT9t+eInVYdgtW\n2fXu80dn2h/koYcp5PXww/7SaprNqi5Az/Llnf/L6CJ8zWv8z7rs61d01ocDhzTqopE0BiFvOZsW\nYD3zmfm/62P9b7xxw/TGpTkYYOU5YeYd5J4l/V46aY7xJrdgxXiMDNZ3Gcd0yLm2Qu8/o3oqyngq\nw7i07rgjfVrDBuWjAS1YgztC2u+H/LVQ5NdsTF1kWdcjSxdOv/5WxxgvHpLf8R6h7/jrvxkhj498\npHgZ+vnapnVowYrl+A0xli/L9/rrIdQddyefHCbdMsQ4FKRf2geKS52eom228VeeJql9gDXI10Sj\nWX8l+76IjHuvTKHzH9WdEGtLxLjnhY1S9oDtrHW4ZIn/MhRVZhdhkbGTsQRYVeuvw/e+N0we/UFA\n3boIR43BKntdvv/9Yt+/+mrGYQ3TuAAr7ffHnQiLlMPXyX3Nmk7rTv9t9BddJK1alT/9PGUJvU3K\nGK9R1GC5fv7z9MsWyacuyih3bz8pswUra+ttXbefb/3H9PXXV1eOnvnzsy1f5XbM2xOQRe/4uOIK\n6ROfSF7mkUf85ddWjQuw0v6CHLdc1l+ivsZgDaZz4onS7bev//utb5We+tTs6WY1b172i8bnPpcv\nr/4uwrq0APju5ity5+koMdxF6HsM1mB6Ie8izPqDrS77bxpZWtNHjcEKVSdZ9ivfkyT7vE4N7tdl\nBne77z78sy23TH4/zfGHDgKsAuUIMZP7YLl6g/97ikxw981vpl925UpasEYJHVD4SjuG+vTdfV7m\nIHdasNIZNQYr6WHSvvP0Xe/j9p+iQeOo68WwtMsc5C4Nb8EiwEqPAKtAOULc7ZHlwF2yRFqxIv3y\nhx6arSxlXTSKnihPOMFfWYbxOcg91HdjVecxWDG2YJW1j2R5WsOg/jL+8Y9+yjMqD9/e8pawefd/\nf7D1um6toHUrb5laG2D5GOQ+Lr3egfO0pxVLZ5hXvzr9snmU1YI1qoswTd6+73pLw/fg+7R1HWsL\nVhktelmCmLJbsHr7cBMD5H6+xrj6UGVdh2zBGtbiF2IMlg8EWMO1NsDync6oXyQPPJAvnaS/+w12\nH6aRZY6jsk5g/XUd68FaVgtWlWnHLsu6VxVgxbr/ppW3/FU8i7BKRdcvppnci6pructAgFWgHCF2\nrNA766JF6cuR1KoSonwxBVhHHSUdd1z+7y9bJk2fnv/7IVqwyjgBltGCFfMg97Vrsy0fWt71H3f8\n5ekiDCX0eWmU/nrKM2VLnjG7ZY/BqiKtpiHAKlCOcYOzfczkHnpSylGq6CIsMiD20kvzf7fnc5+T\njj46//f/8IfiZRiljiezug1yz3Ph7u23u+66/r063uY+7vjrv6O536hB7qHE0kX4yU9m/36eAOvC\nC7PnU4aqfxTHrHEBlq+D7oYbiuW1cOH6X7VZxLizJnV/+jTqjqNYJhoNfTIP9Twy56qvw6SbK/bY\nI1sazlUzFcKo+u5/kHzvWP/Tn9a/93//b5gyhTTuqQppJ6GtutU0NJ9jsNL+kL3ggmJ5+sJdhOlF\n8yzCnqIby9ctwcccM36ZUb90n/OcfPnGtLOW1YIVUxdh1crsJvCZ9rgfGz5k2R99D6xPcvrp618n\nnXeKPrJomJD7QN7zZxVjsGLpIswjTwuWTz6fdBDTNSs2jWvB+vjH/ZQjjarHYBWZEyuNwQva3XeH\nWWdfXYQh1fUkUtdyD+qfpmFQVUFn/2d5Wqtj1B84lP24obL4eBSUzwAr1CTDobTthoYiGhdglSnE\nL6i06dx2m5/8RklqMeh/bE/WdIYpY1LCsoRu7Yu1BasMw8Zg+W4NKDIGq+7yrkedxmDNnSvdcks1\nefeUfRdhyFYnAqzhCgVYZra3md1iZreaWY6hfhs75xwfqZRj2Il4xYrJ3Gmm3VkffTRs+lKeLsLJ\njKXpqH+ANektJR8B1uB+efDBxco03GRinqFkHYO1dm3xSWiT12tyo8+a0oI1+vibTJ1O7HcRPvhg\nlqUnN3pn3D74l790niU7TNVdhOlMJr5LF2F6uQMsM9tU0rcl7S3pRZIOMLMXFi1QmrFPaYXe8MMO\nsiIBVtoy533gc5YAxleAleUuwhh+DSV1jYxeh8mR3/Upzz6dNhjPnvZk1i8UMmx/HHaxuv324pPQ\njgqw+sX2wyDvHYx5Ayzf3UY//al0112jlynvwj650Tvj1m+ffUZ/nlT2MoP0dOepyVLHOzZRkRas\nXSXd5pxb6JxbI+k0SW/yU6x66L9whRpUOyzdvGPN0l4InPM3yP3WW0d/PqoFK9RA4Vj5aMEa94zM\nEMpssQidV383eNq8ki6OVf5YmJrK9728geLatRueD4uu+4EHSl/5yuhlQt2Ukca4sWpXXz36+0lD\nLT72sWJlCiFNPcXwozhWRe4ifJak/mkrF0varVhx0rv//vHLjGqizZP24Pv9zwG89tp0+Y5rmh48\n8IYtP+7XnSStXr3xe2nqTerMPr/FFp3Xebsje8bNK9XfGrdiRfoyjpM3nUceGb2tpeF1Mq5l8f77\nk2fT7233cS0PaX7l9u8zWeqgt05J+804a9Yk5+VrW65atX4bDB4TScfI6tUbP+kgbVn6p1pI+6zP\npO2+cqW/9ZfWp5WmdWrlymxpJv2d5qkPvWXOOkt67nOlefOy5T/KuHPlqlXry5vlmazShuXrpZFl\nfGn/0znyHC/9srY2Pvzw6P0q6bMHHthwH+2vu1GSlhmsp97fMUwJExtzOUN5M3uLpL2dc+/t/v0f\nknZzzh3ctwyNhwAAoDacc15CxSItWH+WtH3f39ur04r1OF+FBAAAqJMiY7CukfR8M9vBzJ4g6f9J\nqtE9gAAAAGHkbsFyzq01sw9JukDSppJOdM61bEgyAADAxnKPwQIAAECyIDO5h5iANCZmttDMbjCz\nOWY2u/ve1mY2y8wWmNlMM9uqb/kjunVxi5m9vrqSZ2NmPzazKTOb1/de5vU0s5ea2bzuZ98oez2y\nGt4Q1O8AABf9SURBVLLe081scXebzzGzffo+a8p6b29mF5vZTWZ2o5kd0n2/0dt8xHo3epub2RZm\ndpWZzTWz+WZ2bPf9pm/vYevd6O3dY2abdtfv3O7fjd7ePQnrHX57O+e8/lOnu/A2STtI2lzSXEkv\n9J1Plf8k3SFp64H3viTpE93Xn5R0XPf1i7p1sHm3Tm6TtEnV65ByPV8laWdJ83KuZ6+FdLakXbuv\nz1Pn7tPK1y/jeh8l6aMJyzZpvbeVtFP39VMk/VHSC5u+zUesdxu2+ZO6/28m6UpJr2z69h6x3o3f\n3t1yflTSKZLO6f7d+O09ZL2Db+8QLVhtmYB08A7J/STN6L6eIWn/7us3STrVObfGObdQnY21aykl\nLMg5d5mkgdmEMq3nbma2naSnOudmd5f7ad93ojRkvaWNt7nUrPVe4pyb2329StLN6sx31+htPmK9\npeZv894sTk9Q58fxcjV8e0tD11tq+PY2s2dL2lfSj7R+XRu/vYestynw9g4RYCVNQPqsIcvWlZP0\nOzO7xsze231vmnOuN3/ylKRp3dfP1IbTV9S9PrKu5+D7f1Z91/9gM7vezE7sa0Zv5Hqb2Q7qtOJd\npRZt8771vrL7VqO3uZltYmZz1dmuFzvnblILtveQ9ZYavr0lfV3SYZL6519v/PZW8no7Bd7eIQKs\nNoya3905t7OkfSR90Mxe1f+h67QfjqqHRtRRivVsku9Jeo6knSTdI+mr1RYnHDN7iqSzJB3qnHug\n/7Mmb/Puep+pznqvUgu2uXNunXNuJ0nPlvRqM9tj4PNGbu+E9Z5Qw7e3mb1R0lLn3Bwlt9w0cnuP\nWO/g2ztEgDV2AtK6c87d0/3/Xkm/UqfLb8rMtpWkblPi0u7ig/Xx7O57dZVlPRd333/2wPu1W3/n\n3FLXpU4zc6+bt1HrbWabqxNcneycO7v7duO3ed96/6y33m3Z5pLknFsh6TeSXqoWbO+evvV+WQu2\n9/+RtJ+Z3SHpVEmvNbOT1fztnbTePy1je4cIsBo9AamZPcnMntp9/WRJr5c0T511PLC72IGSehen\ncyS9zcyeYGbPkfR8dQbK1VWm9XTOLZG00sx2MzOT9I6+79RG98TT82Z1trnUoPXulvNESfOdcyf0\nfdTobT5svZu+zc3s6b1uETN7oqS9JM1R87d34nr3goyuxm1v59ynnHPbO+eeI+ltki5yzr1DDd/e\nQ9b7naUc36NGwOf9p07X2R/VGRx2RIg8qvqnTpPi3O6/G3vrJ2lrSb+TtEDSTElb9X3nU926uEXS\nP1e9DhnW9VRJd0t6VJ1xdQflWU91fhXP6372zarXK8d6v0udAY03SLq+e1BNa+B6v1KdMQpz1bnQ\nzpG0d9O3+ZD13qfp21zS30u6rrveN0g6rPt+07f3sPVu9PYeqIPXaP3ddI3e3gPrPdG33ieH3t5M\nNAoAAOBZkIlGAQAA2owACwAAwDMCLAAAAM8IsAAAADwjwAIAAPCMAAsAAMAzAiwAAADPCLAAAAA8\nI8ACAADwjAALAADAMwIsAAAAzwiwAAAAPCPAAgAA8IwACwAAwDMCLAAAAM8IsAAAADwjwAIAAPCM\nAAsAAMAzAiwAAADPCLAAAAA8I8ACAADwjAALAADAMwIsAAAAzwiwAAAAPCPAAgAA8IwACwAAwDMC\nLAAAAM8IsAAAADwjwAIAAPCMAAsAAMAzAiwAAADPCLAAAAA8I8ACAADwbGSAZWZbmNlVZjbXzOab\n2bHd97c2s1lmtsDMZprZVuUUFwAAIH7mnBu9gNmTnHOrzWwzSZdL+rik/SQtc859ycw+KemvnHOH\nhy8uAABA/MZ2ETrnVndfPkHSppKWqxNgzei+P0PS/kFKBwAAUENjAywz28TM5kqaknSxc+4mSdOc\nc1PdRaYkTQtYRgAAgFrZbNwCzrl1knYysy0lXWBmewx87swssZ9x2PsAAAAxcs6Zj3RS30XonFsh\n6TeSXippysy2lSQz207S0hHf41+J/4466qjKy9C2f9Q5dd6Gf9Q5dd6Gfz6Nu4vw6b07BM3siZL2\nkjRH0jmSDuwudqCks72WCgAAoMbGdRFuJ2mGmW2iTjB2snPuQjObI+kMM3u3pIWS3hq2mAAAAPUx\nMsByzs2TtEvC+/dJ2jNUoZDfxMRE1UVoHeq8fNR5+ajz8lHn9TZ2HqxCiZu5kOkDAAD4YmZyZQ9y\nBwAAQDoEWAAAAJ4RYAEAAHhGgAUAAOAZARYAAIBnBFgAAACeEWABAAB4RoAFAADgGQEWAACAZwRY\nAAAAnhFgAQAAeDbyYc8hmCU/4odnFgIAgKYoPcDqGAymvDxXEQAAIAp0EQIAAHhGgAUAAOAZARYA\nAIBnBFgAAACeEWABAAB4RoAFAADgGQEWAACAZxXNgxXesAlNJSY1BQAAYTU2wOpICqSY1BQAAIRF\nFyEAAIBnBFgAAACeEWABAAB4RoAFAADgGQEWAACAZwRYAAAAnhFgAQAAeEaABQAA4BkBFgAAgGcE\nWAAAAJ6NDbDMbHszu9jMbjKzG83skO77081ssZnN6f7bO3xxAQAA4mfjHnxsZttK2tY5N9fMniLp\nWkn7S3qrpAecc18b8V03mH7nIcyDeZr3BzAn5xMmLwAAUH9mJuecl4cWj33Ys3NuiaQl3derzOxm\nSc/qlcVHIQAAAJok0xgsM9tB0s6Sruy+dbCZXW9mJ5rZVp7LBgAAUEtjW7B6ut2DZ0o6tNuS9T1J\nn+t+/HlJX5X07sHvTZ8+/fHXExMTBYoKAADgz+TkpCYnJ4OkPXYMliSZ2eaS/kfS+c65ExI+30HS\nuc65vx94nzFYAACgFnyOwUpzF6FJOlHS/P7gysy261vszZLm+SgQAABA3aW5i/CVki6VdIPWNwl9\nStIBknbqvneHpPc756YGvksLFgAAqAWfLVipughzJ06ABQAAaqLULkIAAABkQ4AFAADgGQEWAACA\nZwRYAAAAnhFgAQAAeEaABQAA4BkBFgAAgGcEWAAAAJ4RYAEAAHhGgAUAAOAZARYAAIBnBFgAAACe\nEWABAAB4RoAFAADgGQEWAACAZwRYAAAAnhFgAQAAeEaABQAA4BkBFgAAgGcEWAAAAJ4RYAEAAHhG\ngAUAAOAZARYAAIBnBFgAAACeEWABAAB4RoAFAADgGQEWAACAZwRYAAAAnm0WOoNLLrkkdBYAAABR\nMedcuMTN3JZbvvrxv9esWarVq2+RNJinyXc5zCwhnzB5FdEp58ZiKiMAAG1gZnLOJV+Ys6YVOsDa\nMMg5TdIBIsBaL7mccZURAIA28BlgMQYLAADAMwIsAAAAz8YGWGa2vZldbGY3mdmNZnZI9/2tzWyW\nmS0ws5lmtlX44gIAAMQvTQvWGkkfcc69WNLLJX3QzF4o6XBJs5xzO0q6sPs3AABA640NsJxzS5xz\nc7uvV0m6WdKzJO0naUZ3sRmS9g9VSAAAgDrJNAbLzHaQtLOkqyRNc85NdT+akjTNa8kAAABqKnWA\nZWZPkXSWpEOdcw/0f+Y6cwowrwAAAIBSzuRuZpurE1yd7Jw7u/v2lJlt65xbYmbbSVqa/O3pfa/X\n5S9pAwybVBQAAJRvcnJSk5OTQdIeO9GodaKCGZL+4pz7SN/7X+q+d7yZHS5pK+fc4QPfZaLR/pyH\nTCrKRKMAAFTP50SjaVqwdpf0H5JuMLM53feOkHScpDPM7N2SFkp6q48CAQAA1N3YAMs5d7mGj9Xa\n029xAAAA6o+Z3AEAADwjwAIAAPCMAAsAAMAzAiwAAADPUs2DVZVh80ZVO81CstjKxDQPAABUJ+oA\nqyNp3qgqJc+tVa3Y6ggAgHajixAAAMAzAiwAAADPCLAAAAA8I8ACAADwjAALAADAMwIsAAAAzwiw\nAAAAPKvBPFjjjZoAFAAAoGyNCLA6mGwTAADEgS5CAAAAzwiwAAAAPCPAAgAA8IwACwAAwDMCLAAA\nAM8IsAAAADxr0DQN6SXNm+Xc4DQP/vOI0bBy+q4PAADapJUBVnlzZtVlbq66lBMAgHqgixAAAMAz\nAiwAAADPCLAAAAA8I8ACAADwjAALAADAMwIsAAAAzwiwAAAAPKvlPFh1mcSzCCYABQCgvmoZYLVj\nYsykQKqJ6wkAQPPQRQgAAODZ2ADLzH5sZlNmNq/vvelmttjM5nT/7R22mAAAAPWRpgXrJEmDAZST\n9DXn3M7df7/1XzQAAIB6GhtgOecuk7Q84SMGBAEAACQoMgbrYDO73sxONLOtvJUIAACg5vIGWN+T\n9BxJO0m6R9JXvZUIAACg5nJN0+CcW9p7bWY/knTu8KWn971eN3Sp2Oa2iq08PbGWKw/m+gIAVGly\nclKTk5NB0rY0FzMz20HSuc65v+/+vZ1z7p7u649I+ifn3NsTvuc2nM/pNEkHKHkeq2HzPqVZNu17\nw5cdrIfOxT99mvm/X7zsadZnmGHlLCPIqTJvAAAGmZmcc15aMsa2YJnZqZJeI+npZrZI0lGSJsxs\nJ3WujndIer+PwgAAADTB2ADLOXdAwts/DlAWAACARmAmdwAAAM8IsAAAADwjwAIAAPCMAAsAAMCz\nXPNgNVGT5peqWmzzW43atkwJAQAIgQDrcUnzSyG/2Opz2LxiAAD4RxchAACAZwRYAAAAnhFgAQAA\neEaABQAA4BkBFgAAgGcEWAAAAJ4RYAEAAHjGPFgoTYyTuSaVaXDy0dgmTgUAxI8ACyWKbfJRKX2Z\nYiw7ACBWdBECAAB4RoAFAADgGQEWAACAZwRYAAAAnhFgAQAAeEaABQAA4BnTNCBRkfmhqhRjmQAA\n7UOAhSHyzg81atmyMGcVAKBadBECAAB4RoAFAADgGQEWAACAZwRYAAAAnhFgAQAAeEaABQAA4BkB\nFgAAgGfMg4XaYlJRAECsCLBQc0wqCgCID12EAAAAnhFgAQAAeDY2wDKzH5vZlJnN63tvazObZWYL\nzGymmW0VtpgAAAD1kaYF6yRJew+8d7ikWc65HSVd2P0bAAAAShFgOecuk7R84O39JM3ovp4haX/P\n5QIAAKitvGOwpjnnprqvpyRN81QeAACA2is8TYNzzpnZ4L3yfab3vV5XNLtoxTYnU2zlgV/Dtq9z\nIw5FAMAGJicnNTk5GSRtS3NCNrMdJJ3rnPv77t+3SJpwzi0xs+0kXeyc+98J33MbzlN0mqQDlDx3\nUVI5kt4v8l5d0oyz7IP7Suci77+caYOE5PyLr3u69UxfzhBiLBMA1J2ZyTnnpYUibxfhOZIO7L4+\nUNLZPgoDAADQBGmmaThV0hWSXmBmi8zsIEnHSdrLzBZIem33bwAAACjFGCzn3AFDPtrTc1kAAAAa\ngZncAQAAPCPAAgAA8IwACwAAwDMCLAAAAM8KTzSK9mDyUgAA0iHAQgZJE3gCAIBBdBECAAB4RoAF\nAADgGQEWAACAZwRYAAAAnhFgAQAAeEaABQAA4BnTNKAWmIMLAFAnBFioEebhAgDUA12EAAAAnhFg\nAQAAeEaABQAA4BkBFgAAgGcEWAAAAJ4RYAEAAHhGgAUAAOAZ82ABA9JOapq0nHODc3VlyyPt98tC\nOQEgHwIsYCNpJzQtOvFpXSZOpZwAkBVdhAAAAJ4RYAEAAHhGgAUAAOAZARYAAIBnBFgAAACeEWAB\nAAB4xjQNiE7aeaiaqMjcWmXyXU7msQLQNARYiFDSRbUtQVdd5nIKUc66rDsAjEcXIQAAgGcEWAAA\nAJ4V6iI0s4WSVkp6TNIa59yuPgoFAABQZ0XHYDlJE865+3wUBgAAoAl8dBEyEhUAAKBP0QDLSfqd\nmV1jZu/1USAAAIC6K9pFuLtz7h4z20bSLDO7xTl3mY+CAQAA1FWhAMs5d0/3/3vN7FeSdpU0EGBN\n73u9rkh2QPRCTJKaJc26TFRaliL1kXby06KTpBbNJ21eTOYKbGxyclKTk5NB0ra8B5eZPUnSps65\nB8zsyZJmSjraOTezbxm34eSBp0k6QMkTCg6bXDLNsmnfq0uadS57m9OMs+zFZ1ivLp9sQYrfcqYt\nU6iyp8snfV5Fywm0gZnJOefll3KRFqxpkn7V/VW0maRT+oMrAACAtsodYDnn7pC0k8eyAAAANAIz\nuQMAAHhGgAUAAOAZARYAAIBnBFgAAACeFZ1oFABqLcTcZSHTTZsX0y8A1SLAAoChc42FSDNpvq6i\nQqQJoAi6CAEAADwjwAIAAPCMAAsAAMAzAiwAAADPCLAAAAA8I8ACAADwjGkagJYZNT+T77mTypwL\nKq0YyxRCVetZ5v5VlmHrVNf1QTkIsIBWCjHvU9q8Qs0FlVZb5oyKqY7Lzj+Etuw38IUuQgAAAM8I\nsAAAADwjwAIAAPCMAAsAAMAzAiwAAADPCLAAAAA8I8ACAADwjHmwAHhR1sSWVU8UWnX+dZZUd3kn\n62zihKZt0KbtRoAFwJOqJy8tCxNO5ue77po4oWkbtGO70UUIAADgGQEWAACAZwRYAAAAnhFgAQAA\neEaABQAA4BkBFgAAgGdM0wA0XJZ5m2Kb4ym28pSp6nnFBuckSrtcDHzOt1VmPlm2edp86rTdmoYA\nC2i8LHMPxTbHUzvmy0lW1rbIUsex7R/DVFV3PvJJSrNoPnXZbs1CFyEAAIBnBFgAAACeFQqwzGxv\nM7vFzG41s0/6KhQAAECd5Q6wzGxTSd+WtLekF0k6wMxe6KtgyGuy6gK00GTVBWihyaoLAJRgsuoC\noIAiLVi7SrrNObfQObdG0mmS3uSnWMhvsuoCtNBk1QVoocmqCwCUYLLqAqCAIgHWsyQt6vt7cfc9\nAACAVisyTUOqSTSe9rR/efz1mjV/1kMPFcgRAACgBizvZGNm9nJJ051ze3f/PkLSOufc8X3LMJMZ\nAACoDeecl4nCigRYm0n6o6TXSbpb0mxJBzjnbvZRMAAAgLrK3UXonFtrZh+SdIGkTSWdSHAFAABQ\noAULAAAAyYLM5M4EpOGZ2Y/NbMrM5vW9t7WZzTKzBWY208y2qrKMTWNm25vZxWZ2k5ndaGaHdN+n\n3gMxsy3M7Cozm2tm883s2O771HlgZrapmc0xs3O7f1PnAZnZQjO7oVvns7vvUecBmdlWZnammd3c\nPb/s5rPOvQdYTEBampPUqeN+h0ua5ZzbUdKF3b/hzxpJH3HOvVjSyyV9sLtvU++BOOcelrSHc24n\nSf8gaQ8ze6Wo8zIcKmm+1t8xTp2H5SRNOOd2ds7t2n2POg/rG5LOc869UJ3zyy3yWOchWrCYgLQE\nzrnLJC0feHs/STO6r2dI2r/UQjWcc26Jc25u9/UqSTerM/cb9R6Qc2519+UT1BnvuVzUeVBm9mxJ\n+0r6kaTeHVXUeXiDd69R54GY2ZaSXuWc+7HUGVfunFshj3UeIsBiAtLqTHPOTXVfT0maVmVhmszM\ndpC0s6SrRL0HZWabmNlcder2YufcTaLOQ/u6pMMkret7jzoPy0n6nZldY2bv7b5HnYfzHEn3mtlJ\nZnadmf3QzJ4sj3UeIsBi1HwEXOfuBbZFAGb2FElnSTrUOfdA/2fUu3/OuXXdLsJnS3q1me0x8Dl1\n7pGZvVHSUufcHG3coiKJOg9kd+fczpL2UWf4wav6P6TOvdtM0i6Svuuc20XSgxroDixa5yECrD9L\n2r7v7+3VacVCeFNmtq0kmdn/b++OVasI4iiMf0cwoMFG0lgoptBOLOxsAqKCTUq1keAzpNLCNoVN\nXsDqIgERjBFbC1sFQdFOFAwYtPEN/hazEkEQhBkDyfeD5e7uvbDLqQ6zO3NPAN/2+H72nSSHaeVq\nVlWb02lz/w+m4fvnwAXMfKSLwHKST8AGcCnJDDMfqqq+Tp/fgSe0123MfJxtYLuqXk3Hj2mFa6dX\n5iMK1mvgTJLTSeaAG8DWgOvoT1vAyrS/Amz+5bf6R0kCPAA+VNX6b1+Z+yBJFn7N4klyBLgCvMHM\nh6mqu1V1sqoWgZvAi6q6hZkPk+RokmPT/jxwFXiHmQ9TVTvAlyRnp1OXgffAMzplPmQdrCTXgHV2\nFyBd636RAy7JBrAELNCeE98DngKPgFPAZ+B6Vf3Yq3vcb6bZay+Bt+wOG9+h/YuBuQ+Q5BztRdND\n0zarqvtJjmPmwyVZAlaratnMx0mySBu1gvbo6mFVrZn5WEnO0yZyzAEfgdu03tIlcxcalSRJ6mzI\nQqOSJEkHmQVLkiSpMwuWJElSZxYsSZKkzixYkiRJnVmwJEmSOrNgSZIkdWbBkiRJ6uwn1Ih/WWGw\nFLIAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -12900,7 +652,7 @@ } ], "source": [ - "feat = net.blobs['fc7'].data[0]\n", + "feat = net.blobs['fc6'].data[0]\n", "plt.subplot(2, 1, 1)\n", "plt.plot(feat.flat)\n", "plt.subplot(2, 1, 2)\n", @@ -12911,12 +663,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The final probability output, `prob`" + "* The final probability output, `prob`" ] }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 20, "metadata": { "collapsed": false }, @@ -12924,191 +676,18 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 38, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAmEAAAJPCAYAAAA0UwMNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2Q7md93/fPV0fGMuLZphYWcnBAtoEB29iVabCdg00Y\n", - "hXEsppkxCD+kDkNoU9m0zXQI6YyR23/atJ0kDgmRXcVJXGJNkgKRW4jASc+YOg4gm4BjJCoFa6oH\n", - "TDDgBzyxfRR9+8d9L9xa7e6955zdvX6r6/WaObN7P+7vnN+59/fe6/rd11Z3BwCAk3XZ6A0AAJiR\n", - "CAMAGECEAQAMIMIAAAYQYQAAA4gwAIABtkZYVV1fVXdX1T1V9eY9br+hqj5aVR+pql+pqu/euO2+\n", - "qvrY+rYPHfXGAwCcVnXQOmFVdSbJJ5K8IsmDST6c5MbuvmvjPld29++vP39Rknd19/PWl38jybd2\n", - "9+eO768AAHD6bBsJuy7Jvd19X3efT3Jbkhs277ATYGtPSvJbu56jLnkrAQAeZ7ZF2NVJ7t+4/MD6\n", - "ukepqldX1V1J3pvkxzZu6iS/UFV3VtUbLnVjAQAeLy7fcvuhfqdRd787ybur6juT/GySb1jf9LLu\n", - "/lRVPTPJ+6vq7u7+wMVvLgDA48O2CHswyTUbl6/JajRsT939gaq6vKq+srs/292fWl//map6V1bT\n", - "m4+KsKryyysBgFOju4/kVKttEXZnkmur6jlJHkrymiQ3bt6hqp6b5JPd3VX1kvXGfbaqnpjkTHf/\n", - "XlVdmeSVSX5iry9yVH8ZTl5V3dzdN4/eDi6cfXe62X+nm/13eh3l4NGBEdbdD1fVTUnuSHImya3d\n", - "fVdVvXF9+y1J/mySH66q80m+kOS164dfleSdVbXzdd7R3e87qg0HADjNto2Epbvfm9UJ95vX3bLx\n", - "+V9N8lf3eNwnk3zzEWwjAMDjjhXzuVTnRm8AF+3c6A3gkpwbvQFcknOjN4DxDlys9UQ2oKqdEwYA\n", - "nAZH2S1GwgAABhBhAAADiDAAgAFEGADAACIMAGAAEQYAMIAIAwAYQIQBAAwgwgAABhBhAAADiDAA\n", - "gAFEGADAACIMAGAAEQYAMIAIAwAYQIQBAAwgwgAABhBhAAADiDAAgAFEGADAACIMAGAAEQYAMIAI\n", - "AwAYQIQBAAwgwgAABhBhAAADiDAAgAFEGADAACIMAGAAEQYAMIAIAwAYQIQBAAwgwgAABhBhAAAD\n", - "iDAAgAFEGADAACIMAGAAEQYAMIAIAwAYQIQBAAwgwgAABhBhAAADiDAAgAFEGADAACIMAGAAEQYA\n", - "MIAIAwAYQIQBAAwgwgAABhBhAAADiDAAgAFEGADAACIMAGAAEcZUqvLfVeUto7cDAKq7x25AVXd3\n", - "Dd0IplGVTtLdfgAB4MIdZbc4EDEj0Q/AcCIMAGAAEQYAMIAIAwAYQIQxm7HvRAGANRHGbEQYAIsg\n", - "wpiNCANgEUQYsxFhACyCCGM2IgyARRBhAAADiDBmYyQMgEUQYczmkdEbAACJCGM+RsIAWAQRBgAw\n", - "wNYIq6rrq+ruqrqnqt68x+03VNVHq+ojVfUrVfXdh30sDGAkDIBFqO79j0lVdSbJJ5K8IsmDST6c\n", - "5MbuvmvjPld29++vP39Rknd19/MO89j1Y7q762j/WrC3qnwhyZXd8X8OgAt2lN2ybSTsuiT3dvd9\n", - "3X0+yW1Jbti8w06ArT0pyW8d9rEwgJEwABZhW4RdneT+jcsPrK97lKp6dVXdleS9SX7sQh4LJ0yE\n", - "AbAI2yLsUAes7n53dz8/yZ9J8rNVZaqHpRJhACzC5VtufzDJNRuXr8lqRGtP3f2Bqro8yTPW9zvU\n", - "Y6vq5o2L57r73JbtgoslwgA4tKo6m+TssTz3lhPzL8/q5PrvSfJQkg/lsSfmPzfJJ7u7q+olSf5x\n", - "dz/3MI9dP96J+ZyYqvx2kqc6MR+Ai3GU3XLgSFh3P1xVNyW5I8mZJLd2911V9cb17bck+bNJfriq\n", - "zif5QpLXHvTYo9houARWzAdgEQ4cCTuRDTASxgmqymeTPMNIGAAX4ySXqAAA4BiIMGbjxHwAFkGE\n", - "MRsRBsAiiDBmI8IAWAQRxmxEGACLIMKYjQgDYBFEGLMRYQAsgggDABhAhDEbK+YDsAgijNmYjgRg\n", - "EUQYsxFhACyCCAMAGECEMRsjYQAsgghjNiIMgEUQYcxGhAGwCCKM2YgwABZBhDEbEQbAIogwAIAB\n", - "RBizsWI+AIsgwpiN6UgAFkGEMRsRBsAiiDAAgAFEGLMxEgbAIogwZiPCAFgEEcZsRBgAiyDCmI0I\n", - "A2ARRBizEWEALIIIYzYiDIBFEGHMRoQBsAgijNmIMAAWQYQxGxEGwCKIMACAAUQYs3lk9AYAQCLC\n", - "mI/pSAAWQYQxGxEGwCKIMACAAUQYszESBsAiiDBmI8IAWAQRxmxEGACLIMKYjQgDYBFEGLMRYQAs\n", - "gggDABhAhDEbK+YDsAgijNmYjgRgEUQYsxFhACyCCAMAGECEMRsjYQAsgghjNiIMgEUQYcxGhAGw\n", - "CCKM2YgwABZBhDEbEQbAIogwZiPCAFgEEcZsRBgAiyDCmI0IA2ARRBizEWEALIIIAwAYQIQxGyNh\n", - "ACyCCGM2j4zeAABIRBjzMRIGwCKIMACAAUQYszESBsAiiDBmI8IAWAQRxmxEGACLIMKYjQgDYBFE\n", - "GLMRYQAsgghjNiIMgEUQYQAAA4gwZmPFfAAWQYQxG9ORACyCCAMAGECEMRsjYQAswtYIq6rrq+ru\n", - "qrqnqt68x+0/UFUfraqPVdUvVdWLN267b339R6rqQ0e98XARRBgAi3D5QTdW1Zkkb0vyiiQPJvlw\n", - "Vd3e3Xdt3O2TSb6ru3+nqq5P8lNJXrq+rZOc7e7PHf2mw0URYQAswraRsOuS3Nvd93X3+SS3Jblh\n", - "8w7d/cvd/Tvrix9M8uxdz1FHsqVwNEQYAIuwLcKuTnL/xuUH1tft5/VJ3rNxuZP8QlXdWVVvuLhN\n", - "hCMlwgBYhAOnI3MBB6yqenmSP5/kZRtXv6y7P1VVz0zy/qq6u7s/sMdjb964eK67zx3268IFEmEA\n", - "HFpVnU1y9jiee1uEPZjkmo3L12Q1GvYo65PxfzrJ9d39+Z3ru/tT64+fqap3ZTW9+ZgI6+6bL3jL\n", - "4eKIMAAObT0wdG7nclW99aiee9t05J1Jrq2q51TVE5K8Jsntm3eoqq9N8s4kP9jd925c/8SqevL6\n", - "8yuTvDLJrx3VhsNFEmEALMKBI2Hd/XBV3ZTkjiRnktza3XdV1RvXt9+S5MeTPD3J26sqSc5393VJ\n", - "rkryzvV1lyd5R3e/79j+JnA4IgyARajuscekquru9g5KTkRV3pHkdd3etQvAhTvKbrFiPrMxEgbA\n", - "IogwZvPI6A0AgESEMR8jYQAsgghjSlXOCQNgLBHGrEQYAEOJMGZTuz4CwBAijFmJMACGEmHMyv99\n", - "AIZyIGJWRsIAGEqEMRvnhAGwCCKMWYkwAIYSYcxKhAEwlAhjNjvx5f8+AEM5EDErI2EADCXCmJUI\n", - "A2AoEcZsxBcAiyDCmJUYA2AoEQYAMIAIAwAYQIQxGyvmA7AIIgwAYAARxqyMhAEwlAhjNuILgEUQ\n", - "YQAAA4gwZmVEDIChRBgAwAAijNlYogKARRBhAAADiDAAgAFEGLMxHQnAIogwAIABRBizMhIGwFAi\n", - "DABgABHGbIyAAbAIIoxZiTEAhhJhAAADiDBmY4kKABZBhAEADCDCAAAGEGHMynQkAEOJMGYjvgBY\n", - "BBHGrMQYAEOJMACAAUQYszECBsAiiDBmJcYAGEqEAQAMIMKYjRXzAVgEEQYAMIAIAwAYQIQxK9OR\n", - "AAwlwpiN+AJgEUQYsxJjAAwlwgAABhBhzMYIGACLIMKYlRgDYCgRBgAwgAhjVkbCABhKhDEb8QXA\n", - "IogwAIABRBizMiIGwFAijNmILwAWQYQxKzEGwFAiDABgABEGADCACGM2tesjAAwhwgAABhBhzMpI\n", - "GABDiTBmI74AWAQRBgAwgAhjVkbEABhqa4RV1fVVdXdV3VNVb97j9h+oqo9W1ceq6peq6sWHfSwM\n", - "IL4AWIQDI6yqziR5W5Lrk7wgyY1V9fxdd/tkku/q7hcn+R+S/NQFPBZGEWMADLVtJOy6JPd2933d\n", - "fT7JbUlu2LxDd/9yd//O+uIHkzz7sI8FAJjVtgi7Osn9G5cfWF+3n9cnec9FPhYAYBqXb7m9D/tE\n", - "VfXyJH8+ycsu9LFwgqyYD8AibIuwB5Ncs3H5mqxGtB5lfTL+Tye5vrs/fyGPXT/+5o2L57r73Jbt\n", - "AgA4dlV1NsnZY3nu7v0HrKrq8iSfSPI9SR5K8qEkN3b3XRv3+dok/yLJD3b3v7qQx67v191tVIIT\n", - "UZX3JPnTSb6xO58YvT0AnC5H2S0HjoR198NVdVOSO5KcSXJrd99VVW9c335Lkh9P8vQkb6+qJDnf\n", - "3dft99ij2Gi4BIIfgEU4cCTsRDbASBgnqCrvzWrZFCNhAFywo+wWK+YzK+EPwFAiDABgABHGbCxR\n", - "AcAiiDAAgAFEGADAACKM2ZiOBGARRBgAwAAijFkZCQNgKBEGADCACGM2RsAAWAQRxqzEGABDiTAA\n", - "gAFEGLOxRAUAiyDCAAAGEGEAAAOIMGZlOhKAoUQYsxFfACyCCGNWYgyAoUQYAMAAIozZGAEDYBFE\n", - "GLMSYwAMJcIAAAYQYczGivkALIIIAwAYQIQBAAwgwpiV6UgAhhJhzEZ8AbAIIoxZiTEAhhJhAAAD\n", - "iDBmYwQMgEUQYcxKjAEwlAgDABhAhDErI2EADCXCmI34AmARRBgAwAAijFkZEQNgKBHGbMQXAIsg\n", - "wpiVGANgKBEGADCACAMAGECEMZva9REAhhBhAAADiDBmZSQMgKFEGLMRXwAsgggDABhAhDErI2IA\n", - "DCXCmI34AmARRBizEmMADCXCAAAGEGEAAAOIMGZjxXwAFkGEMaMevQEAIMKYlZEwAIYSYcymYiQM\n", - "gAUQYcyoYyQMgMFEGADAACKMGZmOBGA4EcZsds4JMx0JwFAijBkZCQNgOBHGrIyEATCUCGM2lqgA\n", - "YBFEGDMSYQAMJ8KYlelIAIYSYczISBgAw4kwZmOJCgAWQYQxIyNhAAwnwgAABhBhzMZ0JACLIMKY\n", - "kelIAIYTYczKSBgAQ4kwZmQkDIDhtkZYVV1fVXdX1T1V9eY9bv/GqvrlqvqDqvpLu267r6o+VlUf\n", - "qaoPHeWGw0UyAgbAIlx+0I1VdSbJ25K8IsmDST5cVbd3910bd/tskh9N8uo9nqKTnO3uzx3R9sJR\n", - "cGI+AMNtGwm7Lsm93X1fd59PcluSGzbv0N2f6e47k5zf5zkc7Fga05EADLctwq5Ocv/G5QfW1x1W\n", - "J/mFqrqzqt5woRsHx8ASFQAswoHTkbn0EYOXdfenquqZSd5fVXd39wcu8TnhUhkJA2C4bRH2YJJr\n", - "Ni5fk9Vo2KF096fWHz9TVe/KanrzMRFWVTdvXDzX3ecO+zUAAI5LVZ1NcvY4nntbhN2Z5Nqqek6S\n", - "h5K8JsmN+9z3UdM7VfXEJGe6+/eq6sokr0zyE3s9sLtvPvwmwyUxHQnAoa0Hhs7tXK6qtx7Vcx8Y\n", - "Yd39cFXdlOSOJGeS3Nrdd1XVG9e331JVVyX5cJKnJHmkqt6U5AVJ/qMk76yqna/zju5+31FtOFwC\n", - "05EADFfdY49HVdXdbVSCE1GVX81qWv2HuvPPRm8PAKfLUXaLFfOZkZEwAIYTYczGqCsAiyDCmJET\n", - "8wEYToQxI9ORAAwnwpiNJSoAWAQRxoyMhAEwnAgDABhAhDEr05EADCXCmM3OOWEAMJQIY0ZOzAdg\n", - "OBHGjIyEATCcCGM2RsAAWAQRxoxMRwIwnAhjRqYjARhOhDErI2EADCXCmI0lKgBYBBHGjEQYAMOJ\n", - "MGZlOhKAoUQYszEdCcAiiDBmZIkKAIYTYczISBgAw4kwZmMEDIBFEGHMyHQkAMOJMGZkOhKA4UQY\n", - "szISBsBQIozZWKICgEUQYcxIhAEwnAhjVqYjARhKhDEb05EALIIIY0aWqABgOBHGjIyEATCcCAMA\n", - "GECEMZudc8JMRwIwlAhjRqYjARhOhDErI2EADCXCmI0lKgBYBBHGjDrJZVV52ugNAWBeIoxZfWeS\n", - "/330RgAwLxHGjDrJVyS5YvSGADAvEcZsLFEBwCKIMGa0E2FCDIBhRBizEmEADCXCmM3mdKQIA2AY\n", - "EcaMnBMGwHAijFkZCQNgKBHGbHamIy+LCANgIBHGrIyEATCUCGNGzgkDYDgRxoy8OxKA4UQYs7FE\n", - "BQCLIMKY0c6J+QAwjAMRMzMSBsAwIozZmI4EYBFEGDOyThgAw4kwZiXAABhKhDEj05EADCfCmE1t\n", - "fBRhAAwjwpiRFfMBGE6EMSMn5gMwnAhjNpaoAGARRBgzEmEADCfCmJUAA2AoEcasjIQBMJQIYzbO\n", - "CQNgEUQYMxJhAAwnwpjRzhIVADCMAxGzqX0+B4ATJcKYkelIAIYTYczIdCQAwzkQMSsjYQAMJcKY\n", - "jSUqAFiErRFWVddX1d1VdU9VvXmP27+xqn65qv6gqv7ShTwWBhFhAAx3YIRV1Zkkb0tyfZIXJLmx\n", - "qp6/626fTfKjSf6Xi3gsjCLAABhq20jYdUnu7e77uvt8ktuS3LB5h+7+THffmeT8hT4WTkpVvqEq\n", - "X54vTUdeFiEGwEDbIuzqJPdvXH5gfd1hXMpj4ai9Lcl3rD83HQnAcJdvub0v4bkP/diqunnj4rnu\n", - "PncJXxf2cmb9JxFhABxSVZ1NcvY4nntbhD2Y5JqNy9dkNaJ1GId+bHfffMjnhItVefQUpAADYKv1\n", - "wNC5nctV9dajeu5t05F3Jrm2qp5TVU9I8pokt+9z390HtQt5LBy3nQhLjIQBsAAHjoR198NVdVOS\n", - "O7Kayrm1u++qqjeub7+lqq5K8uEkT0nySFW9KckLuvsLez32OP8ycIDN6BJhAAxX3Zdy2tcRbEBV\n", - "d7eDIceqKr+Y5H9O8neSfCTJVUme3J1vGLphAJwqR9ktVsxnFpvnhFmiAoDhRBgz2TwnLBFhAAwk\n", - "wpjF7nPAnBMGwFAijFnsNR0JAMM4EDELS1QAsCgijFmIMAAWRYQxi80I27kMAMOIMGZRG3+MhAEw\n", - "nAhjFrunI60TBsBQIoxZ7DUdKcIAGEaEMZPNJSoEGABDiTBm4Rd4A7AoIoxZmI4EYFFEGLOwThgA\n", - "iyLCmMXuX1skwAAYSoQxC0tUALAoIoxZ7J5+NB0JwFAijFmYjgRgUUQYs3BiPgCLIsKYhSUqAFgU\n", - "EcZMNqcjnZgPwFAijFnsXjEfAIYSYczCdCQAiyLCmIV1wgBYFBHGLPZaokKEATCMCGMWu88JE2AA\n", - "DCXCmIVzwgBYFBHGLExHArAoIoxZ7LViPgAMI8KYielIABbj8tEbACdk94n5fgABYCgRxiw2zwlL\n", - "jIIBMJjRAGbhnDAAFsVIGLMQYQAsighjFrXxR4QBMJzpSGbhd0cCsCgijFnsXjEfAIZyUGIWfm0R\n", - "AIsiwpjJ5q8tMh0JwFAijFnsXqxVgAEwlAhjFnstUSHEABhGhDGLvVbMv6Iqf2vcJgEwMxHGLPZb\n", - "rPVPjdkcAGYnwpjFfueEmZIEYAgRxiz2WqJi8yMAnCgRxiw2zwnrjeu9BgAYwgGIWew+J2zzegA4\n", - "cSKMmYgwABZDhDGLyt5rg4kwAIYQYcxiv+lIrwEAhnAAYhbOCQNgUUQYs9jv3ZEiDIAhRBiz2L1Y\n", - "6w6vAQCGcABiFrsXa928HgBOnAhjFvtFmNcAAEM4ADELK+YDsCgOQMzEEhUALIYDELNwYj4Ai+IA\n", - "xCw2pyN3Xw8AJ06EMYv9Fms9M2BbAECEMQ2/tgiARXEAYhaWqABgURyAmEVt/PFriwAYToQxC+eE\n", - "AbAoIoxZmI4EYFEcgJjJXivmm44EYAgRxiz2W6wVAIYQYcxiv3PCAGAIEcYs9jsnDACGcFBiJnud\n", - "EwYAQ2yNsKq6vqrurqp7qurN+9znJ9e3f7SqvmXj+vuq6mNV9ZGq+tBRbjgcVtUXzwUzHQnAYlx+\n", - "0I1VdSbJ25K8IsmDST5cVbd3910b93lVkud197VV9e1J3p7kpeubO8nZ7v7csWw9HE7t+ggAw20b\n", - "Cbsuyb3dfV93n09yW5Ibdt3n+5L8/STp7g8meVpVffXG7Q58jLY5EmY6EoBF2BZhVye5f+PyA+vr\n", - "DnufTvILVXVnVb3hUjYULsGB05Eb05UAcGIOnI7M4UcM9juIfUd3P1RVz0zy/qq6u7s/cPjNgyO1\n", - "3w8dRscAOHHbIuzBJNdsXL4mq5Gug+7z7PV16e6H1h8/U1Xvymp68zERVlU3b1w8193nDrHtcFib\n", - "54TtFVyXJXnkRLcIgFOhqs4mOXscz70twu5Mcm1VPSfJQ0lek+TGXfe5PclNSW6rqpcm+e3u/nRV\n", - "PTHJme7+vaq6Mskrk/zEXl+ku2++6L8BbLft3ZGmIwHY03pg6NzO5ap661E994ER1t0PV9VNSe5I\n", - "cibJrd19V1W9cX37Ld39nqp6VVXdm+T3k/zI+uFXJXlnVe18nXd09/uOasPhAogwABanuseeClNV\n", - "3d0OghybqlyR5N8nuSfJH89qRPa/37jLFd35wxHbBsDpcpTdYsV8ZrBtiQqvAwBOnIMPM9i9WKvp\n", - "SACGE2HMYPc5YfvdDgAnRoQxg23TkSIMgBMnwpjJfu+O9DoA4MQ5+DCDbb/A20gYACdOhDED64QB\n", - "sDgijBk4JwyAxRFhzGDbSJjXAQAnzsGHGViiAoDFEWHMwGKtACyOCGMGTswHYHFEGDOoJI9k///v\n", - "XgcAnDgHH2bxH2IkDIAFEWHMoPLoCNvrdgA4USKMGWybjhRhAJw4EcYMdo+EWScMgOEcfJjBToSd\n", - "OeB2ADhRIowZbI6EdZyYD8ACiDBmsHNO2H6x5XUAwIlz8GEGOxF20O0AcKJEGDPYjLCK6UgAFkCE\n", - "MYO9wmv37QBwokQYs+h9Pk+8DgAYwMGHGeyMhO03GmYkDIATJ8KYwU6E7XdyvggD4MSJMGawO8Kc\n", - "mA/AcCKMGWybjvQ6AODEOfgwg90RZiQMgOFEGDNwThgAiyPCmMFOZIkwABZDhDGDbdORXgcAnDgH\n", - "H2ZhnTAAFkWEMQNLVACwOCKMGVgxH4DFEWHMYNu7I70OADhxDj7MwHQkAIsjwpiB6UgAFkeEMQMr\n", - "5gOwOCKMGTgnDIDFcfBhBlbMB2BxRBizMB0JwKKIMGaw7cR8rwMATpyDDzOwRAUAiyPCmMG2E/NF\n", - "GAAnToQxA+uEAbA4IowZbFsnzOsAgBPn4MMMTEcCsDgijBlYMR+AxRFhzMBirQAsjghjFtYJA2BR\n", - "HHyYgelIABZHhDEDJ+YDsDgijBnsjrA/2uN2ADhRIowZ7I6wP9x1u9cBACfOwYcZ7D4n7A/2uB0A\n", - "TpQIYwa7I2z3SJgIA+DEiTBmsHs60kgYwBZVeVVVvnf0djyeiTBmsG0kzOsA4LFeluQ7Rm/E49nl\n", - "ozcATpDpSIDDuyLJmdEb8XgmwpiB6UiAC/flEWHHSoQxg21LVIgwgMcyEnbMRBgzcE4YwIUTYcdM\n", - "hDED05EAF06EHTMRxgysEwZw4UTYMTMNw6lWlddU5Wnb7paDV8z3OgB4rCvWfzgmDj6cdm9J8i1b\n", - "7rMTYV+xvvzwHrcD8Ggi7JiJME67p67/HGQnwp6UJN1fHBHbvJ2BqvJVo7cBeIxLirCq/M2qrd+f\n", - "pybCOO2esv6zp6r8iSSvyyrCnrzf3Y5hu7gw9/hmDYtzqSNhr0vynKPZlMcnEcapVZXK9pGw70ry\n", - "Z9af7xdhx/I6qMpzq/J7x/HcjydVeWKSpyV55uhtgR1VubIqf2r0dgx20RFWlcuSPD3JM450ix5n\n", - "RBin2Vdk9c6dfUfCsjqwf2U2piP3cFwjYV+X5ElV+ddVecsxfY3Hg6/a9RGW4GVJ/trojThOVfmZ\n", - "LacCXMpI2FOz+t4qwg6wNcKq6vqquruq7qmqN+9zn59c3/7RqvqWC3ksXIKn7vq4l51vMJ1VsP3R\n", - "Hvc5rgjb+ebzTUledExf4/HgK3d9hCW4KsnXjN6I47KeSfj+JN9wwN2+fP3nYjx910f2cGCEVdWZ\n", - "JG9Lcn2SFyS5saqev+s+r0ryvO6+NslfSPL2wz6Wo1d10S+Yi/x6dfYkv94uOyNgT6nK66ryp/e4\n", - "z2aEJfni9OCbNu5zXBH21euPfy/Jq6ry+sM+sCo/UZWXH8tWffFrDN13m7ZGWFVeXiVkNy1o/z1e\n", - "PSvJ06uO592BC9h/T0vyxCTPPuA+lzIS9oxdH4eqyrOq8vdHb8du20bCrktyb3ff193nk9yW5IZd\n", - "9/m+ZPUX6+4PJnlaVV11yMdyhKryzCQPHlWIVeXphzhZ+uxRfK2LtDkS9tok/+ke99k5z2gnwr6Q\n", - "JN35yY37HNe0/FcneWtWUxpPTQ4fYUleneSVx7FRG84e8/Mf1mFGwv6bJD98AttySaryZUf8fAe9\n", - "/s4e5dd6vKjKk9fTbJf6w9VV64/PutRt2sfZY3rew3r2ro97uSLJFRf5b7moCEvy0iQ/cFxRfbG2\n", - "HXyuTnL/xuUH1tcd5j5fc4jHcrReltWB7FuP6Pn+VpK/uXOhKk87ypG2qlxWlR+pyhMu8imesvHx\n", - "m5J8867nvzrJC9cXr1x/3OtE+eMcCft0kgfXl1+8Pln1QOsD+fOTvOSYtuvIVeWvVOV1F/nwx0RY\n", - "1WNW6X5JjunfoyovqjrwHbZPrsrXH+J5bkzyi0e4Xd+b5ONVp/M3m1SljjpKD+nlSf6zZO99VpWv\n", - "rMr3HOJ5duLr8TolefWuj4+y/n93WZL/kGzfj+s3Iv3jquzMeO1MQ15yhK2f+1JHwl+c1SkpL9x2\n", - "x5O07cW9ez2l/VzSQawqP38pjz8Fnp7kjyX56BE/7+7987ysVoP/qar8VlZDzU9P8old99trf+11\n", - "3XckeaQq/9f6a31bks9X5d717WeSN72o6qKj7ylZheOPVeVTWb3YL8RVWUXOS7P6ie2ZVblj/Txn\n", - "sgqzJ67vuxNh9+zxPDdVffEdlEfp25L8n0k+t778hCTvrdrzvLRNVyT5fJL/eOPf/hj8F19flW9b\n", - "X6isvuFBEI0uAAAF1UlEQVTufDzM55vXPS/JH61D5DCuyGr/fybJc5N8NqufUr85q3NQ/mRVfmn9\n", - "+eez+n/80n2+Vxz0/eeyrP6ffGa9jf82j/21VS9P8sDG/+sdO//u1yZ5VlV+MasD1sNJ/t0eX+ub\n", - "s/o/+M/XX+ORXNq+e2FWI7nvr1qN4D7af/71u157+/07PDGrkdg/zJf+L56E5yW5qir/T1bHmidl\n", - "9WaaTx3isU/PatT6/CG/1h/L6jV+PquRnT9I8g+r8tA+2/XHq/L+HLx/XprVQMKtG/83dv6NL8vq\n", - "h91fyZcWf64kX7t+zCN5tCett2vje/GjXn87XpTkN7L3D4tH7dlJfjfJ91fl2j1uP5Pk32f19/un\n", - "VXk4q9fs+fX1u70wq3+Xf1qVT2T1b/FbSb53/X1sLwf9+2/e9pIkX1aVDx1w/22+KavX7U+vjzd1\n", - "kX+OVHXv/29QVS9NcnN3X7++/JYkj3T3/7Rxn7+T5Fx337a+fHeSP5nVO8MOfOz6+mM6wAAAHL3u\n", - "PpIg2zYSdmeSa6vqOUkeSvKa5DE/6d6e5KYkt62j7be7+9NV9dlDPPbI/iIAAKfJgRHW3Q9X1U1J\n", - "7shqaPLW7r6rqt64vv2W7n5PVb2qqu5N8vtJfuSgxx7nXwYA4LQ4cDoSAIDjMXTFfIu5LltVXVNV\n", - "/3dV/XpV/Zuq+rH19c+oqvdX1f9bVe+rqqdtPOYt6/15d1Ud9xILbFFVZ6rqI1X18+vL9t0pUVVP\n", - "q6p/UlV3VdXHq+rb7b/TY70/fr2qfq2q/mFVfbn9t0xV9Xer6tNV9Wsb113wvqqqb13v73uq6m8c\n", - "5msPizCLuZ4K55P81939wqzeKfRfrvfRX07y/u7++iT/fH05VfWCrM79e0FW+/VvV5VfjTXWm5J8\n", - "PF96p5F9d3r8jSTv6e7nZ/X2+rtj/50K63Oh35DkJd39oqxOyXlt7L+l+pms/t03Xci+2jm3/e1J\n", - "Xr9evP7aqtr9nI8xcidbzHXhuvs3u/tfrz//QpK7snqL/hcX6F1/fPX68xuS/Fx3n+/u+5Lcm9V+\n", - "ZoCqenaSVyX53/Klt1bbd6dAVT01yXd2999NVufYdvfvxP47LX43qx9in1hVl2e1TMhDsf8Wqbs/\n", - "kNVSOJsuZF99e1U9K8mTu3tnGY1/sPGYfY2MsMMsBMtCrH+y+5YkH0zy1d396fVNn86Xfj3P12S1\n", - "H3fYp2P9tST/bR69ZpF9dzp8XZLPVNXPVNWvVtVPV9WVsf9Ohe7+XJL/Ncn/l1V8/XZ3vz/232ly\n", - "oftq9/UP5hD7cGSEeUfAKVFVT0ryfyR5U3c/ahHBXr2z47AL7nFCqup7k/y77v5I9llg0L5btMuz\n", - "WqDyb3f3S7J65/lf3ryD/bdcVfXcJP9VkudkdXB+UlX94OZ97L/T4xD76qKNjLAHk1yzcfmaPLoi\n", - "WYCq+rKsAuxnu/vd66s/vf79oFkPwe6sHr57nz47X/qVPZysP5Hk+6rqN5L8XJLvrqqfjX13WjyQ\n", - "5IHu/vD68j/JKsp+0/47Fb4tyb/s7s9298NJ3pnkP4n9d5pcyPfKB9bXP3vX9Vv34cgI++JCsFX1\n", - "hKxOdLt94Pawy/pkw1uTfLy7//rGTbcn+XPrz/9ckndvXP/aqnpCVX1dVr/u5VJ+zQQXqbv/Sndf\n", - "091fl9UJwf+iu38o9t2p0N2/meT+qtr5/YevSPLrSX4+9t9pcHeSl1bVV6y/j74iqzfI2H+nxwV9\n", - "r1y/Zn93/S7mSvJDG4/Z17BfDGsx11PhZUl+MMnHquoj6+vekuR/TPKPqur1Se5L8v1J0t0fr6p/\n", - "lNU3m4eT/MW2EN1S7OwH++70+NEk71j/kPpvs1oI+0zsv8Xr7o9W1T/IarDhkSS/muSnkjw59t/i\n", - "VNXPZfXrFr+qqu5P8uO5uO+VfzHJ38vqd6S+p7v/2davbT8DAJw865AAAAwgwgAABhBhAAADiDAA\n", - "gAFEGADAACIMAGAAEQYAMIAIAwAY4P8Hf+iH2xY5ngUAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAADICAYAAAC6TEOmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzVJREFUeJzt3X2MXPV97/HPh12c4AdCHgiktiMTYh4chSb0yvheQjKN\nKHJpGkdBKkEhVCnlIvU6yb2qIje3Uu5at1Xa6qJLUxTq5LoNAW5olRjqSDgGGqZCCWCbEh53wRti\nsI1tzJO54Kddz/f+cc6wZ2dn58x6Z3bOWb9fkjXn6Tf7G/u3M/7M93fOcUQIAAAAAFB+J/W6AwAA\nAACAziDgAQAAAMAsQcADAAAAgFmCgAcAAAAAswQBDwAAAABmCQIeAAAAAMwSuQHP9krbQ7a3217T\nZP8q24/ZftT2I7Y/ndm3w/bj6b4tne48AAAAAGCMW90Hz3afpGckXSppt6Stkq6KiMHMMfMi4q10\n+aOS7oyID6frv5b0WxHxavdeAgAAAABAyq/gLZc0HBE7ImJE0h2SVmUPqIe71HxJLzc8h6fdSwAA\nAABArryAt1DSzsz6rnTbOLY/Z3tQ0iZJX83sCkn32d5m+7rpdhYAAAAAMLn+nP2Tz9/MHhRxl6S7\nbF8i6VZJ56a7Lo6IPbZPl3Sv7aGIeCDb1nZbPwMAAAAAZquI6MjMx7yAt1vS4sz6YiVVvMk69YDt\nftvvjYhXImJPun2/7TuVTPl8oEm7qfccmAEDAwMaGBjodTeACRibKCrGJoqM8Ymisjt3VlveFM1t\nkpbaXmJ7jqQrJW1s6MzZTntk+0JJiohXbM+1vSDdPk/SZZKe6FjPAQAAAADjtKzgRcSo7dWSNkvq\nk7Q+IgZtX5/uXyfpCknX2B6R9KakL6TNz5S0Ic1+/ZJuj4h7uvMyAAAAAAB5UzQVEZuUXDwlu21d\nZvlvJP1Nk3bPSfpYB/oI9EylUul1F4CmGJsoKsYmiozxiRNBy/vgzUgH7Oh1HwAAAACgV2x37CIr\neefgAQAAAABKgoAHAAAAALMEAQ8AAAAAZgkCHgAAAADMEgQ8AAAAAJglCHgAAAAAMEsQ8AAAAABg\nliDgAQAAAMAsQcADAAAAgFmCgAcAAAAAswQBDwAAAABmCQIegLYcPNjrHgAAACAPAQ9Arpdfln7z\nN3vdCwAAAOQh4AHIdfiw9Nprve4FAAAA8uQGPNsrbQ/Z3m57TZP9q2w/ZvtR24/Y/nS7bQGUQ60m\nHT3a614AAAAgjyNi8p12n6RnJF0qabekrZKuiojBzDHzIuKtdPmjku6MiA+30zZtE636AKD3nn9e\nOvfcpJIHAACAzrKtiHAnniuvgrdc0nBE7IiIEUl3SFqVPaAe7lLzJb3cblsA5VCv4PFdDAAAQLHl\nBbyFknZm1nel28ax/Tnbg5I2SfrqVNoCKL6I5M+xY73uCQAAAFrpz9nf1vf1EXGXpLtsXyLpVtvn\nTaUTAwMDby9XKhVVKpWpNAfQZbVa8nj0qNSf964BAACAlqrVqqrValeeO+8cvBWSBiJiZbr+DUm1\niPjrFm1+pWR65tJ22nIOHlB827dL55yTXEnztNN63RsAAIDZZSbPwdsmaantJbbnSLpS0saGzpxt\n2+nyhZIUEa+00xZAOWQreAAAACiulpOtImLU9mpJmyX1SVofEYO2r0/3r5N0haRrbI9IelPSF1q1\n7d5LAdAt9SI7AQ8AAKDYWk7RnJEOMEUTKLynn5Y+8hHpV7+SPvShXvcGAABgdpnJKZoAQAUPAACg\nJAh4AHJxDh4AAEA5EPAA5KKCBwAAUA4EPAC5qOABAACUAwEPQC4qeAAAAOVAwAOQqx7wjhzpbT8A\nAADQGgEPQC6maAIAAJQDAQ9ALqZoAgAAlAMBD0AuKngAAADlQMADkIsKHgAAQDkQ8ADkooIHAABQ\nDgQ8ALmo4AEAAJQDAQ9ALip4AAAA5UDAA5CLCh4AAEA5EPAA5KKCBwAAUA65Ac/2SttDtrfbXtNk\n/xdtP2b7cds/t31BZt+OdPujtrd0uvMAZgYVPAAAgHLob7XTdp+kmyRdKmm3pK22N0bEYOaw5yR9\nMiIO2F4p6buSVqT7QlIlIl7tfNcBzBQqeAAAAOWQV8FbLmk4InZExIikOyStyh4QEQ9GxIF09WFJ\nixqewx3pKYCeoYIHAABQDnkBb6GknZn1Xem2yVwr6e7Meki6z/Y229cdXxcB9BoVPAAAgHJoOUVT\nSUBri+3flvRHki7ObL44IvbYPl3SvbaHIuKBxrYDAwNvL1cqFVUqlXZ/LIAZQAUPAACgc6rVqqrV\nalee2xGTZzjbKyQNRMTKdP0bkmoR8dcNx10gaYOklRExPMlz/Q9Jb0bEDQ3bo1UfAPTepk3S5ZdL\n11wj3XJLr3sDAAAwu9hWRHTk1La8KZrbJC21vcT2HElXStrY0JkPKgl3V2fDne25theky/MkXSbp\niU50GsDMooIHAABQDi2naEbEqO3VkjZL6pO0PiIGbV+f7l8n6ZuS3i3pZtuSNBIRyyWdKWlDuq1f\n0u0RcU/XXgmAriHgAQAAlEPeOXiKiE2SNjVsW5dZ/mNJf9yk3XOSPtaBPgLoMS6yAgAAUA65NzoH\ngAhpzhzpyJFe9wQAAACtEPAA5KrVpJNPlo4d63VPAAAA0AoBD0CuCKm/f2yqJgAAAIqJgAcgV60m\n9fUR8AAAAIqOgAcgVwQBDwAAoAwIeABy1WpM0QQAACgDAh6AXFTwAAAAyoGAByAXFTwAAIByIOAB\nyEUFDwAAoBwIeAByUcEDAAAoBwIegFxU8AAAAMqBgAcgFxU8AACAciDgAchFBQ8AAKAcCHgAckVQ\nwQMAACgDAh6AXLUaFTwAAIAyyA14tlfaHrK93faaJvu/aPsx24/b/rntC9ptC6AcqOABAACUQ8uA\nZ7tP0k2SVkpaJukq2+c3HPacpE9GxAWS/qek706hLYASoIIHAABQDnkVvOWShiNiR0SMSLpD0qrs\nARHxYEQcSFcflrSo3bYAyoEKHgAAQDnkBbyFknZm1nel2yZzraS7j7MtgIKiggcAAFAO/Tn7o90n\nsv3bkv5I0sVTbTswMPD2cqVSUaVSabcpgBlABQ8AAKBzqtWqqtVqV547L+DtlrQ4s75YSSVunPTC\nKt+TtDIiXptKW2l8wANQPFTwAAAAOqexqLV27dqOPXfeFM1tkpbaXmJ7jqQrJW3MHmD7g5I2SLo6\nIoan0hZAOXCjcwAAgHJoWcGLiFHbqyVtltQnaX1EDNq+Pt2/TtI3Jb1b0s22JWkkIpZP1raLrwVA\nl9RqTNEEAAAoA0e0fapcdzpgR6/7AKC1G2+UHnpIuv9+ad++XvcGAABgdrGtiHAnniv3RucAQAUP\nAACgHAh4AHJxDh4AAEA5EPAA5KKCBwAAUA4EPAC5qOABAACUAwEPQC4qeAAAAOVAwAOQiwoeAABA\nORDwAOSKoIIHAABQBgQ8ALlqNSp4AAAAZUDAA5CLCh4AAEA5EPAA5KKCBwAAUA4EPAC5qOABAACU\nAwEPQK5aTTopfbeI6G1fAAAAMDkCHoBcEUnAO+kkqngAAABFRsADkKtWk2wCHgAAQNER8ADkiiDg\nAQAAlEFuwLO90vaQ7e221zTZf57tB20ftv2nDft22H7c9qO2t3Sy4wBmTv0cPAIeAABAsfW32mm7\nT9JNki6VtFvSVtsbI2Iwc9grkr4i6XNNniIkVSLi1Q71F0APUMEDAAAoh7wK3nJJwxGxIyJGJN0h\naVX2gIjYHxHbJI1M8hyefjcB9BIVPAAAgHLIC3gLJe3MrO9Kt7UrJN1ne5vt66baOQDFQAUPAACg\nHFpO0VQS0Kbj4ojYY/t0SffaHoqIBxoPGhgYeHu5UqmoUqlM88cC6CQqeAAAAJ1TrVZVrVa78tx5\nAW+3pMWZ9cVKqnhtiYg96eN+23cqmfLZMuABKB4qeAAAAJ3TWNRau3Ztx547b4rmNklLbS+xPUfS\nlZI2TnLsuHPtbM+1vSBdnifpMklPTLO/AHqACh4AAEA5tKzgRcSo7dWSNkvqk7Q+IgZtX5/uX2f7\nTElbJZ0qqWb7a5KWSXq/pA226z/n9oi4p3svBUC3UMEDAAAoh7wpmoqITZI2NWxbl1neq/HTOOve\nlPSx6XYQQO9FUMEDAAAog9wbnQNArUYFDwAAoAwIeAByUcEDAAAoBwIegFxU8AAAAMqBgAcgFxU8\nAACAciDgAchFBQ8AAKAcCHgAclHBAwAAKAcCHoBcVPAAAADKgYAHIFfjjc6vvVZ6+ule9woAAACN\nCHgActVq46doDg1Je/f2ulcAAABoRMADkKuxgjc6mvwBAABAsRDwAORqrOCNjkrHjvW6VwAAAGhE\nwAOQq7GCd+wYFTwAAIAiIuAByNWsgkfAAwAAKB4CHoBczc7BY4omAABA8RDwAORqvNE5UzQBAACK\nKTfg2V5pe8j2dttrmuw/z/aDtg/b/tOptAVQDo03OqeCBwAAUEwtA57tPkk3SVopaZmkq2yf33DY\nK5K+Iul/HUdbACXQWMHjHDwAAIBiyqvgLZc0HBE7ImJE0h2SVmUPiIj9EbFN0shU2wIoh8YKHlM0\nAQAAiikv4C2UtDOzvivd1o7ptAXQYxs2SOvWJcvNKnhM0QQAACie/pz9MY3nbrvtwMDA28uVSkWV\nSmUaPxZAJzz7rLRrV7Lc7Bw8KngAAADHp1qtqlqtduW58wLebkmLM+uLlVTi2tF222zAA1AMo6PS\nwYPJMufgAQAAdE5jUWvt2rUde+68KZrbJC21vcT2HElXSto4ybGeRlsABTMyMhbwmp2DxxRNAACA\n4mlZwYuIUdurJW2W1CdpfUQM2r4+3b/O9pmStko6VVLN9tckLYuIN5u17eaLAdA5o6PSoUPJMhU8\nAACAcsiboqmI2CRpU8O2dZnlvRo/FbNlWwDl0KqCx0VWAAAAiin3RucATkyN5+DVA96xY2MhDwAA\nAMVCwAPQ1MjI2BTNWm1siuZIesdLAh4AAEDxEPAANDVZBe/o0WQbUzQBAACKh4AHoKnsRVao4AEA\nAJQDAQ9AU9mLrFDBAwAAKAcCHoCmslM0sxW8esCjggcAAFA8BDwATdUvshLRvIJHwAMAACgeAh6A\npkZHk2B35Mj4G53Xz8FjiiYAAEDxEPAANFUPcocOjb/Reb2Cd+iQdMMNvesfAAAAJiLgAWiqPgXz\n4MHxFbx6wNu7V/qLv+hd/wAAADARAQ9AU/UK3sGD4yt42e31sAcAAIBiIOABaKpewatfaKWxgkfA\nAwAAKB4CHoCmJqvgZc/BGx1N9gEAAKAYCHgAmhodld75zokVvHrwe+ut5JEqHgAAQHEQ8AA0NTIi\nnXrq5BW8+k3QCXgAAADFkRvwbK+0PWR7u+01kxzz7XT/Y7Y/ntm+w/bjth+1vaWTHQfQXaOjYwGv\n2Tl4hw4lj0eO9K6PAAAAGK+/1U7bfZJuknSppN2SttreGBGDmWMul/ThiFhq+yJJN0take4OSZWI\neLUrvQfQNVTwAAAAyievgrdc0nBE7IiIEUl3SFrVcMxnJd0iSRHxsKTTbJ+R2e9OdRbAzKlX8A4f\nTip4jbdJqF9lk4AHAABQHHkBb6GknZn1Xem2do8JSffZ3mb7uul0FMDMGh2V5s9PAl6tNnGKZh1T\nNAEAAIqj5RRNJQGtHZNV6T4RES/aPl3SvbaHIuKBxoMGBgbeXq5UKqpUKm3+WADdMjIiLVgwdhXN\n7BTNOXPGgh4VPAAAgKmpVquqVqtdee68gLdb0uLM+mIlFbpWxyxKtykiXkwf99u+U8mUz5YBD0Ax\njI4mAa+xgjcyIr3jHQQ8AACA49VY1Fq7dm3HnjtviuY2SUttL7E9R9KVkjY2HLNR0jWSZHuFpNcj\nYp/tubYXpNvnSbpM0hMd6zmArqpX8BrPwTt6NAl4dQQ8AACA4mhZwYuIUdurJW2W1CdpfUQM2r4+\n3b8uIu62fbntYUlvSfpy2vxMSRts13/O7RFxT7deCIDOqp+D99prE2+TkA14nIMHAABQHHlTNBUR\nmyRtati2rmF9dZN2z0n62HQ7CKA36hW8PXvG3yZhZER65zvHjqOCBwAAUBy5NzoHcGLKnoPXqoJH\nwAMAACgOAh6ApkZGxt8mYbJz8JiiCQAAUBwEPAAT1GrJ47x5Y7dJyFbwmKIJAABQTAQ8ABOMjEj9\n/UmQa6zg1W+TUEfAAwAAKA4CHoAJRkelk0+WTjkl/xw8pmgCAAAUBwEPwATZCt6hQ5Ofg9fXRwUP\nAACgSAh4ACaoV/DqUzSzFbzsbRIWLCDgAQAAFAkBD8AE9QpefYrmZBW8BQuYogkAAFAkBDwAE4yO\njr/ISraCd+zY+IBHBQ8AAKA4CHgAJshO0Ww8B08am6I5fz4BDwAAoEgIeAAmaLxNQsT4gFev4BHw\nAAAAioWAB2CCxtsk1GpjUzQlzsEDAAAoKgIegAnqFbz+/mT96NGkgvf+9yfrXEUTAIByOXy41z3A\nTCHgAZigXsGTkjB38GBSvVu6NNk2Z07ySMADAKD4XnxROvvs5JQLzH4EPAAT1Ct4UjJN89ixpIJX\nD3h9fcn++fOZogkAQNE99VQS8l56qdc9wUzIDXi2V9oesr3d9ppJjvl2uv8x2x+fSlugyKrVaq+7\nMC2bN0s/+9nU22UrePXz7U46SXrXu5Ll/fuTkEcFr3fKPjYxezE2UWQn6vgcGkoen3mmO89/9CjV\nwSJpGfBs90m6SdJKScskXWX7/IZjLpf04YhYKuk/S7q53bZA0ZX9g+CGG6Rvf7v940dGpC99SXr1\n1bEK3u7dyeOpp44d9+tfJ/uLFPAOH5b+7u+S6aTbtiWPs1nZx2ajK66QtmzpdS/QCbNtbGL6Dh+W\n/u3fet2LxGwZny+/PLXP32eeSb6YrQe9Tvv856Xvfa87z42py6vgLZc0HBE7ImJE0h2SVjUc81lJ\nt0hSRDws6TTbZ7bZFiegCOlf/mXmT/Z9440T6wTjt96SHnxQuv/+5EPghRekb30rmW45mY0bpdtu\nk269dSzgSdKKFckUTSl5PPXU4k3RvPVW6etfl973PmnVKunaa6W//MvkQ3A6Hn5YuvFGvpmUkqup\ndsPgoLRhg/T3f99+mxdekNatO/H+XWq13nx5ESEdODDzPxfdEyE98kj3fq+zvvMd6Xd+R3r++e7/\nrBPB6Kj0qU9Ja6YwN25oSPrkJ6dfwYuY+L770kvST38q/eAH03vuotm/X/rzPy/n/x37c/YvlLQz\ns75L0kVtHLNQ0m+00VaS9Pu/305XMVvs3y8ND0tnnCGdddbM/MyIJOyccoq0bFkSTvr6ku179kjv\nfrc0d+7Eds88k3wAdkOtJj35pLRo0Vh1zB4fpLKPU3XggHThhckb02WXjVXdfvSjJAT19SXTLutv\n1i++KO3aJX3xi9I//VPyYVz3mc+MLb/xRnKRlZ/8JPl7e+SRYvwOb92afHFw7rnSe96TnEz+4IPS\n978vnXfe8T/vli3Jv89tt0mnn578vU0mL2x0cv/wsPTQQzP3s19+Wdq+XbrkktZ/B8fj+eeTyvGP\nf5y8P9TVasl/HN773rEpw3W//GXyeNttSSW5Vktew3Qfj6fNSScl465+ddk8r7+e/B4tXjz1v6vn\nnkvC7Sc+Mfm/w2TvGcf7XiIl7w9PPpn8B7E+bXsyzz6bVNFPFBHJv+eRI8mVhpv9Pff6i4hjx5Lf\n4blzk9+lo0elQ4eS//QvXSotXJj/HAcOJOPgvPOmPpZ+8Qvpd383+Sz60IfGf4E407r5uT5TXn9d\nmjcvCVTDw+21eeih5Eveb30r+R09Hvv2Je+9H/ygdP7547d//vPJKSG/93vTe69px9Gjyes+55yJ\nnw2dNDSUvJY770xec+O4bfZ7fbzbPvCB4+9nM44W7zq2r5C0MiKuS9evlnRRRHwlc8xPJP1VRPw8\nXb9P0hpJS/LapttPsO9fAQAAAGC8iOhIPM77DmW3pOx3jIuVVOJaHbMoPebkNtp27IUAAAAAwIku\n7xy8bZKW2l5ie46kKyVtbDhmo6RrJMn2CkmvR8S+NtsCAAAAADqkZQUvIkZtr5a0WVKfpPURMWj7\n+nT/uoi42/bltoclvSXpy63advPFAAAAAMCJrOU5eAAAAACA8si90Xk3cSN09JLtxbbvt/2U7Sdt\nfzXd/h7b99p+1vY9tk/LtPlGOl6HbF/Wu97jRGC7z/aj6cWsGJsoDNun2f6R7UHbT9u+iPGJIkjH\n2lO2n7D9f22/g7GJXrD9D7b32X4is23KY9H2b6Xjebvtv23nZ/cs4HEjdBTAiKT/FhEfkbRC0n9J\nx+CfSbo3Is6R9K/pumwvU3Iu6TIl4/Y7tnv6JQlmva9JelpSfaoFYxNF8beS7o6I8yVdIGlIjE/0\nmO0lkq6TdGFEfFTJKUJfEGMTvfGPSsZV1lTGYv1ClDdLujYiliq5vknjc07Qy0HMjdDRUxGxNyJ+\nmS6/KWlQyT0cPyvplvSwWyR9Ll1eJemHETESETskDSsZx0DH2V4k6XJJ/0dS/U2esYmes/0uSZdE\nxD9IyTn3EXFAjE/03htKvryda7tf0lxJL4qxiR6IiAckvdaweSpj8SLbH5C0ICK2pMf9INNmUr0M\neJPdIB2Ycem3fh+X9LCkM9IrwUrSPklnpMu/ofG3+mDMopv+t6SvS6pltjE2UQRnSdpv+x9t/7vt\n79meJ8YneiwiXpV0g6QXlAS71yPiXjE2URxTHYuN23erjTHay4DH1V1QCLbnS/qxpK9FxP/L7ovk\nKkStxirjGB1n+zOSXoqIRzVWvRuHsYke6pd0oaTvRMSFSq6g/WfZAxif6AXbZ0v6r5KWKPmP8Xzb\nV2ePYWyiKNoYi8etlwGvnZuoA11l+2Ql4e7WiLgr3bzP9pnp/g9Ieind3jhmF6XbgE77T5I+a/vX\nkn4o6dO2bxVjE8WwS9KuiNiarv9ISeDby/hEj/0HSb+IiFciYlTSBkn/UYxNFMdUPsd3pdsXNWzP\nHaO9DHjcCB09lZ68ul7S0xFxY2bXRkl/mC7/oaS7Mtu/YHuO7bMkLZW0RUCHRcR/j4jFEXGWkgsE\n/CwiviTGJgogIvZK2mn7nHTTpZKekvQTMT7RW0OSVtg+Jf2Mv1TJhaoYmyiKKX2Op++3b6RXKrak\nL2XaTKrljc67iRuhowAulnS1pMdtP5pu+4akv5L0z7avlbRD0h9IUkQ8bfuflXxYjEr6k+BGkpgZ\n9XHG2ERRfEXS7ekXtL+S9GUln+WMT/RMRDxm+wdKigg1Sf8u6buSFoixiRlm+4eSPiXpfbZ3Svqm\nju9z/E8kfV/SKUquXvzT3J/NOAYAAACA2YF7fQAAAADALEHAAwAAAIBZgoAHAAAAALMEAQ8AAAAA\nZgkCHgAAAADMEgQ8AAAAAJglCHgAAAAAMEv8f6u7ZzVYZbnsAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -13117,6 +696,7 @@ ], "source": [ "feat = net.blobs['prob'].data[0]\n", + "plt.figure(figsize=(15, 3))\n", "plt.plot(feat.flat)" ] }, @@ -13124,38 +704,51 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's see the top 5 predicted labels." + "Note the cluster of strong predictions; the labels are sorted semantically. The top peaks correspond to the top predicted labels, as shown above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6. Try your own image\n", + "\n", + "Now we'll grab an image from the web and classify it using the steps above.\n", + "\n", + "* Try setting `my_image_url` to any JPEG image URL." ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": null, "metadata": { "collapsed": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['n02123045 tabby, tabby cat' 'n02123159 tiger cat'\n", - " 'n02124075 Egyptian cat' 'n02119022 red fox, Vulpes vulpes'\n", - " 'n02127052 lynx, catamount']\n" - ] - } - ], + "outputs": [], "source": [ - "# load labels\n", - "imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'\n", - "try:\n", - " labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", - "except:\n", - " !../data/ilsvrc12/get_ilsvrc_aux.sh\n", - " labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\\t')\n", + "# download an image\n", + "my_image_url = \"...\" # paste your URL here\n", + "# for example:\n", + "# my_image_url = \"https://upload.wikimedia.org/wikipedia/commons/b/be/Orang_Utan%2C_Semenggok_Forest_Reserve%2C_Sarawak%2C_Borneo%2C_Malaysia.JPG\"\n", + "!wget -O image.jpg $my_image_url\n", + "\n", + "# transform it and copy it into the net\n", + "image = caffe.io.load_image('image.jpg')\n", + "net.blobs['data'].data[...] = transformer.preprocess('data', image)\n", + "\n", + "# perform classification\n", + "net.forward()\n", + "\n", + "# obtain the output probabilities\n", + "output_prob = net.blobs['prob'].data[0]\n", + "\n", + "# sort top five predictions from softmax output\n", + "top_inds = output_prob.argsort()[::-1][:5]\n", + "\n", + "plt.imshow(image)\n", "\n", - "# sort top k predictions from softmax output\n", - "top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]\n", - "print labels[top_k]" + "print 'probabilities and labels:'\n", + "zip(output_prob[top_inds], labels[top_inds])" ] } ], @@ -13178,7 +771,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.9" + "version": "2.7.10" }, "priority": 1 }, diff --git a/examples/01-learning-lenet.ipynb b/examples/01-learning-lenet.ipynb index 3562c7ada..1c328260d 100644 --- a/examples/01-learning-lenet.ipynb +++ b/examples/01-learning-lenet.ipynb @@ -4,11 +4,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Python solving with LeNet\n", + "# Solving in Python with LeNet\n", "\n", "In this example, we'll explore learning with Caffe in Python, using the fully-exposed `Solver` interface." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Set up the Python environment: we'll use the `pylab` import for numpy and plot inline." + ] + }, { "cell_type": "code", "execution_count": 1, @@ -17,8 +31,15 @@ }, "outputs": [], "source": [ - "import os\n", - "os.chdir('..')" + "from pylab import *\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Import `caffe`, adding it to `sys.path` if needed. Make sure you've built pycaffe." ] }, { @@ -29,19 +50,18 @@ }, "outputs": [], "source": [ - "import sys\n", - "sys.path.insert(0, './python')\n", - "import caffe\n", + "caffe_root = '../' # this file should be run from {caffe_root}/examples (otherwise change this line)\n", "\n", - "from pylab import *\n", - "%matplotlib inline" + "import sys\n", + "sys.path.insert(0, caffe_root + 'python')\n", + "import caffe" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We'll be running the provided LeNet example (make sure you've downloaded the data and created the databases, as below)." + "* We'll be using the provided LeNet example data and networks (make sure you've downloaded the data and created the databases, as below)." ] }, { @@ -56,72 +76,36 @@ "output_type": "stream", "text": [ "Downloading...\n", - "--2015-06-30 14:41:56-- http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", - "Resolving yann.lecun.com... 128.122.47.89\n", - "Connecting to yann.lecun.com|128.122.47.89|:80... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 9912422 (9.5M) [application/x-gzip]\n", - "Saving to: 'train-images-idx3-ubyte.gz'\n", - "\n", - "train-images-idx3-u 100%[=====================>] 9.45M 146KB/s in 57s \n", - "\n", - "2015-06-30 14:42:53 (171 KB/s) - 'train-images-idx3-ubyte.gz' saved [9912422/9912422]\n", - "\n", - "--2015-06-30 14:42:53-- http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", - "Resolving yann.lecun.com... 128.122.47.89\n", - "Connecting to yann.lecun.com|128.122.47.89|:80... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 28881 (28K) [application/x-gzip]\n", - "Saving to: 'train-labels-idx1-ubyte.gz'\n", - "\n", - "train-labels-idx1-u 100%[=====================>] 28.20K 107KB/s in 0.3s \n", - "\n", - "2015-06-30 14:42:53 (107 KB/s) - 'train-labels-idx1-ubyte.gz' saved [28881/28881]\n", - "\n", - "--2015-06-30 14:42:53-- http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", - "Resolving yann.lecun.com... 128.122.47.89\n", - "Connecting to yann.lecun.com|128.122.47.89|:80... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 1648877 (1.6M) [application/x-gzip]\n", - "Saving to: 't10k-images-idx3-ubyte.gz'\n", - "\n", - "t10k-images-idx3-ub 100%[=====================>] 1.57M 205KB/s in 8.2s \n", - "\n", - "2015-06-30 14:43:02 (197 KB/s) - 't10k-images-idx3-ubyte.gz' saved [1648877/1648877]\n", - "\n", - "--2015-06-30 14:43:02-- http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", - "Resolving yann.lecun.com... 128.122.47.89\n", - "Connecting to yann.lecun.com|128.122.47.89|:80... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 4542 (4.4K) [application/x-gzip]\n", - "Saving to: 't10k-labels-idx1-ubyte.gz'\n", - "\n", - "t10k-labels-idx1-ub 100%[=====================>] 4.44K 26.9KB/s in 0.2s \n", - "\n", - "2015-06-30 14:43:02 (26.9 KB/s) - 't10k-labels-idx1-ubyte.gz' saved [4542/4542]\n", - "\n", - "Unzipping...\n", - "Done.\n", "Creating lmdb...\n", "Done.\n" ] } ], "source": [ - "# Download and prepare data\n", + "# run scripts from caffe root\n", + "import os\n", + "os.chdir(caffe_root)\n", + "# Download data\n", "!data/mnist/get_mnist.sh\n", - "!examples/mnist/create_mnist.sh" + "# Prepare data\n", + "!examples/mnist/create_mnist.sh\n", + "# back to examples\n", + "os.chdir('examples')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We need two external files to help out:\n", - "* the net prototxt, defining the architecture and pointing to the train/test data\n", - "* the solver prototxt, defining the learning parameters\n", + "### 2. Creating the net \n", + "\n", + "Now let's make a variant of LeNet, the classic 1989 convnet architecture.\n", "\n", - "We start with the net. We'll write the net in a succinct and natural way as Python code that serializes to Caffe's protobuf model format.\n", + "We'll need two external files to help out:\n", + "* the net `prototxt`, defining the architecture and pointing to the train/test data\n", + "* the solver `prototxt`, defining the learning parameters\n", + "\n", + "We start by creating the net. We'll write the net in a succinct and natural way as Python code that serializes to Caffe's protobuf model format.\n", "\n", "This network expects to read from pregenerated LMDBs, but reading directly from `ndarray`s is also possible using `MemoryDataLayer`." ] @@ -134,36 +118,38 @@ }, "outputs": [], "source": [ - "from caffe import layers as L\n", - "from caffe import params as P\n", + "from caffe import layers as L, params as P\n", "\n", "def lenet(lmdb, batch_size):\n", " # our version of LeNet: a series of linear and simple nonlinear transformations\n", " n = caffe.NetSpec()\n", + " \n", " n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,\n", " transform_param=dict(scale=1./255), ntop=2)\n", + " \n", " n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))\n", " n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)\n", " n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))\n", " n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)\n", - " n.ip1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))\n", - " n.relu1 = L.ReLU(n.ip1, in_place=True)\n", - " n.ip2 = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))\n", - " n.loss = L.SoftmaxWithLoss(n.ip2, n.label)\n", + " n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))\n", + " n.relu1 = L.ReLU(n.fc1, in_place=True)\n", + " n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))\n", + " n.loss = L.SoftmaxWithLoss(n.score, n.label)\n", + " \n", " return n.to_proto()\n", " \n", - "with open('examples/mnist/lenet_auto_train.prototxt', 'w') as f:\n", - " f.write(str(lenet('examples/mnist/mnist_train_lmdb', 64)))\n", + "with open('mnist/lenet_auto_train.prototxt', 'w') as f:\n", + " f.write(str(lenet('mnist/mnist_train_lmdb', 64)))\n", " \n", - "with open('examples/mnist/lenet_auto_test.prototxt', 'w') as f:\n", - " f.write(str(lenet('examples/mnist/mnist_test_lmdb', 100)))" + "with open('mnist/lenet_auto_test.prototxt', 'w') as f:\n", + " f.write(str(lenet('mnist/mnist_test_lmdb', 100)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The net has been written to disk in more verbose but human-readable serialization format using Google's protobuf library. You can read, write, and modify this description directly. Let's take a look at the train net." + "The net has been written to disk in a more verbose but human-readable serialization format using Google's protobuf library. You can read, write, and modify this description directly. Let's take a look at the train net." ] }, { @@ -186,7 +172,7 @@ " scale: 0.00392156862745\r\n", " }\r\n", " data_param {\r\n", - " source: \"examples/mnist/mnist_train_lmdb\"\r\n", + " source: \"mnist/mnist_train_lmdb\"\r\n", " batch_size: 64\r\n", " backend: LMDB\r\n", " }\r\n", @@ -240,10 +226,10 @@ " }\r\n", "}\r\n", "layer {\r\n", - " name: \"ip1\"\r\n", + " name: \"fc1\"\r\n", " type: \"InnerProduct\"\r\n", " bottom: \"pool2\"\r\n", - " top: \"ip1\"\r\n", + " top: \"fc1\"\r\n", " inner_product_param {\r\n", " num_output: 500\r\n", " weight_filler {\r\n", @@ -254,14 +240,14 @@ "layer {\r\n", " name: \"relu1\"\r\n", " type: \"ReLU\"\r\n", - " bottom: \"ip1\"\r\n", - " top: \"ip1\"\r\n", + " bottom: \"fc1\"\r\n", + " top: \"fc1\"\r\n", "}\r\n", "layer {\r\n", - " name: \"ip2\"\r\n", + " name: \"score\"\r\n", " type: \"InnerProduct\"\r\n", - " bottom: \"ip1\"\r\n", - " top: \"ip2\"\r\n", + " bottom: \"fc1\"\r\n", + " top: \"score\"\r\n", " inner_product_param {\r\n", " num_output: 10\r\n", " weight_filler {\r\n", @@ -272,7 +258,7 @@ "layer {\r\n", " name: \"loss\"\r\n", " type: \"SoftmaxWithLoss\"\r\n", - " bottom: \"ip2\"\r\n", + " bottom: \"score\"\r\n", " bottom: \"label\"\r\n", " top: \"loss\"\r\n", "}\r\n" @@ -280,14 +266,14 @@ } ], "source": [ - "!cat examples/mnist/lenet_auto_train.prototxt" + "!cat mnist/lenet_auto_train.prototxt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now let's see the learning parameters, which are also written as a `prototxt` file. We're using SGD with momentum, weight decay, and a specific learning rate schedule." + "Now let's see the learning parameters, which are also written as a `prototxt` file (already provided on disk). We're using SGD with momentum, weight decay, and a specific learning rate schedule." ] }, { @@ -302,8 +288,8 @@ "output_type": "stream", "text": [ "# The train/test net protocol buffer definition\r\n", - "train_net: \"examples/mnist/lenet_auto_train.prototxt\"\r\n", - "test_net: \"examples/mnist/lenet_auto_test.prototxt\"\r\n", + "train_net: \"mnist/lenet_auto_train.prototxt\"\r\n", + "test_net: \"mnist/lenet_auto_test.prototxt\"\r\n", "# test_iter specifies how many forward passes the test should carry out.\r\n", "# In the case of MNIST, we have test batch size 100 and 100 test iterations,\r\n", "# covering the full 10,000 testing images.\r\n", @@ -324,39 +310,44 @@ "max_iter: 10000\r\n", "# snapshot intermediate results\r\n", "snapshot: 5000\r\n", - "snapshot_prefix: \"examples/mnist/lenet\"\r\n" + "snapshot_prefix: \"mnist/lenet\"\r\n" ] } ], "source": [ - "!cat examples/mnist/lenet_auto_solver.prototxt" + "!cat mnist/lenet_auto_solver.prototxt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's pick a device and load the solver. We'll use SGD (with momentum), but Adagrad and Nesterov's accelerated gradient are also available." + "### 3. Loading and checking the solver\n", + "\n", + "* Let's pick a device and load the solver. We'll use SGD (with momentum), but other methods (such as Adagrad and Nesterov's accelerated gradient) are also available." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": true + "collapsed": false }, "outputs": [], "source": [ "caffe.set_device(0)\n", "caffe.set_mode_gpu()\n", - "solver = caffe.SGDSolver('examples/mnist/lenet_auto_solver.prototxt')" + "\n", + "### load the solver and create train and test nets\n", + "solver = None # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)\n", + "solver = caffe.SGDSolver('mnist/lenet_auto_solver.prototxt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "To get an idea of the architecture of our net, we can check the dimensions of the intermediate features (blobs) and parameters (these will also be useful to refer to when manipulating data later)." + "* To get an idea of the architecture of our net, we can check the dimensions of the intermediate features (blobs) and parameters (these will also be useful to refer to when manipulating data later)." ] }, { @@ -376,8 +367,8 @@ " ('pool1', (64, 20, 12, 12)),\n", " ('conv2', (64, 50, 8, 8)),\n", " ('pool2', (64, 50, 4, 4)),\n", - " ('ip1', (64, 500)),\n", - " ('ip2', (64, 10)),\n", + " ('fc1', (64, 500)),\n", + " ('score', (64, 10)),\n", " ('loss', ())]" ] }, @@ -403,8 +394,8 @@ "text/plain": [ "[('conv1', (20, 1, 5, 5)),\n", " ('conv2', (50, 20, 5, 5)),\n", - " ('ip1', (500, 800)),\n", - " ('ip2', (10, 500))]" + " ('fc1', (500, 800)),\n", + " ('score', (10, 500))]" ] }, "execution_count": 9, @@ -413,7 +404,7 @@ } ], "source": [ - "# just print the weight sizes (not biases)\n", + "# just print the weight sizes (we'll omit the biases)\n", "[(k, v[0].data.shape) for k, v in solver.net.params.items()]" ] }, @@ -421,7 +412,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Before taking off, let's check that everything is loaded as we expect. We'll run a forward pass on the train and test nets and check that they contain our data." + "* Before taking off, let's check that everything is loaded as we expect. We'll run a forward pass on the train and test nets and check that they contain our data." ] }, { @@ -434,7 +425,7 @@ { "data": { "text/plain": [ - "{'loss': array(2.301163673400879, dtype=float32)}" + "{'loss': array(2.365971088409424, dtype=float32)}" ] }, "execution_count": 10, @@ -458,216 +449,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "[ 5. 0. 4. 1. 9. 2. 1. 3.]\n" + "train labels: [ 5. 0. 4. 1. 9. 2. 1. 3.]\n" ] }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAWwAAABKCAYAAACfHW4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJztvXlQW1me5/s5EhJaECAJhEBgdrMbDNjgtNNOp7d02pk1\n", - "mVlZW1dWd0XH9ERMzxIzEzE1M3/M1HvzIt68iZjpF9HRPdFvpqeqZ6ajJyozy5VbpZ1e0k4n6R0w\n", - "JBizrwIJxCYJgQTc9wfcW+D0KiOwK+8ngkBcJN2jo3N/95zf+f5+PyFJEioqKioqzz6arW6AioqK\n", - "isrjoRpsFRUVlecE1WCrqKioPCeoBltFRUXlOUE12CoqKirPCarBVlFRUXlOiNpgCyFeEUJ0CCG6\n", - "hBA/28hGqaioqKh8ExGNDlsIoQXuAoeBEeAG8ENJku5sbPNUVFRUVGSinWHvBrolSeqXJCkC/G/g\n", - "OxvXLBUVFRWVe4nWYLuAoTV/D68eU1FRUVGJEXFRvu6RfhQhhBrzrqKiohIFkiSJ+x2PdoY9AmSt\n", - "+TuLlVm2ioqKikqMiNZg3wQKhRA5Qgg98H3gw41rloqKiorKvUTlEpEkaVEI8Y+AM4AW+GtVIaKi\n", - "oqISW6KS9SkvFqIfmAWWgIgkSbvX/O9b7cPWaDRotVr0ej06nQ6tVkskEiEcDhOJRFheXkZNbaui\n", - "8js0Gg3x8fHEx8ej1WpZXl5mfn6ehYUFlpeXt7p5m8qDfNjRbjoq7wu8JEnS5FO+z+8dVquVnJwc\n", - "amtrqaqqwuFw0NLSwq1bt2hpaWFsbIxwOLzVzVRReWZITk7m2LFj7Nmzh/z8fLxeL2fOnOHs2bPM\n", - "zMywuLi41U3ccp7WYAPc906wUQgh0Gq1aLVa5Vh8fDwulwuj0UhcXBwmkwm3243P5yM/P5+MjAyS\n", - "k5NZXl7G4/EwMDBAf38/8/PzsWwqAFqtloSEBGpqanjppZeoqqqitLQUu91OdnY227ZtIz09nVOn\n", - "TjExMRHz9jwNcXFxWK1WCgoKsNvtNDU1MTExwcLCwlY3DYPBQHZ2Nrm5uTidToQQdHV10dHRwfT0\n", - "tHpxPwKNRkNcXBxarZakpCSSkpLQ6/WMj4/j9Xo3fUar1+txOBwcOHCAgwcPkpubi8/nw+Px0NjY\n", - "SDAYfCa+0/j4eAwGA0IIEhISSE1NZfv27RiNxge+JhKJMDExQVdXF/39/U/Vtxsxwz4nhFgC/kqS\n", - "pP8a7RsJ8Tu7r9FoEEIoxtpoNGIwGJT/22w2jh49isPhwGw2k56ezrlz52hqauLHP/4xL7/8MiUl\n", - "JYTDYb744gtOnTrF+++/H3ODLYQgPj6ebdu28dprr/GTn/wEo9GIRrOyt1tZWUlxcTElJSVcvnwZ\n", - "n8/31G4R+b2BDb/IDAYDBQUFvPPOO1RVVfHzn/+cW7dubbnB1mg0JCcnc/jwYb773e+yf/9+NBoN\n", - "v/jFL/jLv/xL2tvbn4mL+1lDvqY0Gg0GgwGj0YjRaKSoqIiioiISExO5fv06DQ0Nm+6GMJlMZGRk\n", - "UF1djcvlQqvVkpqaSnp6Oqmpqbjd7k1ry72s7Ter1UpqaiparZbs7Gzq6ur46U9/Slpa2gOvZb/f\n", - "z61bt/jlL3/J6OjoU/Xt0xrsvZIkjQohUoGzQogOSZIuP+mbaLVaEhMT0ev1GAwGXC4XLpcLh8OB\n", - "wWAgNzeX7Oxs5fk6nY60tDTi4+MRQhCJRFhcXKS4uJgDBw7gdDrx+/14PB46Ozvp7e3dFCNjs9ko\n", - "Li7mhz/8Ifv371fuxIuLi4TDYZaXl5XPKs8gJicno/Znx8fHk5mZSWJiIktLS3R1dREKhTbs8+h0\n", - "OrKyVtSbQ0NDRCKRDXvvpyE7O5v6+npOnDjB9u3bkSRJ3RN4DEwmE+np6ezevZv8/HxcLhdpaWlY\n", - "rVYsFgtxcXHk5eVhtVo5d+4cU1NTm9a2hYUFfD4f3d3dOBwOZdw9CyQmJpKenk55eTk7duygoKAA\n", - "jUaD3W7H5XKRlJSEJEkPHH8Gg4HS0lJOnDgBwPnz5xkfH4/qenoqgy1J0ujq73EhxClWQtafyGAb\n", - "DAYcDgd1dXXY7XZlxiwb7Pj4eLKyssjMzLzv6/1+P7dv3yYcDmMwGPB6vYyPjzM7O8vo6CjXr1+P\n", - "qcGWl5Zms5nKykoOHjzIoUOHyMrKIi4uDkmSCIVCTExMMDw8jMvlUlYIRqOR1tZWBgcHo2pffHy8\n", - "4gIKh8MMDw9vqMHW6/U4nU5MJhORSARJktathLaK1NRUSkpKKCkpwW63b1m7ZPeX3W7HZrORmJiI\n", - "2WwmPj4eAI/Hw+joKOFwGKPRiE6nU8bmRn5PDyM+Ph6LxYLT6SQnJ4fi4mLq6urIzc3F4XBgsViU\n", - "VZrsYgyFQrS2tjI3N7dpq6lIJILf72dkZISZmZlnymBnZWWxd+9e9u7dS1lZmdI2eYUihHjoZCEu\n", - "Lo7U1FRqa2sJh8N0dnYSCAQ212ALIUyAVpIkvxDCDBwF/o8nfZ/k5GR27tzJz372M7Zv3664PuQL\n", - "8GEXoiRJzMzMcPr0afr7+wmHw5w7d45AIMDMzAyBQACPx8PExETMZl/yRZubm8uJEyd4++23SU1N\n", - "RafTKc8JBAJ0d3fz4YcfcvDgQd58803+9E//lJKSEt59910++OCDqA12Xl4excXFhEIhLl26tGGf\n", - "SwhBXFwcNpuN1NRUYGXgPQuYTCasVquiJtgq9Ho927Zto66ujrq6OkpLS8nOzlb66+zZs3z66adM\n", - "TU2Rnp5OYmIiX375Je3t7YyMjGxKGy0WC9u3b+fVV1/lwIEDVFZWEh8fj0ajYWlpCZ/PRzAYBMDl\n", - "cpGZmUltbS3Z2dmbul+xuLjI3Nwck5OTzM3Nbco5H5eKigrefvttqqursVgsUU8OsrOzWV5e5vTp\n", - "07jdbmZnZ5/4PR55BQoh/jtwAvBKklSxeswGfADsEkKEWYly/J+SJH32pA0IhUJMTU0xNzenuAzu\n", - "RzgcxuPxEAwG0Wg0uFwudDod09PT3Lhxg+7ubpaWlgAUF8Ti4iLz8/MxXSrv3LmTl19+merqakpL\n", - "S7HZbGi12nVfanJyMi6XC5PJxOTkJH19fbhcLqxWKxkZGeuM+5NgMpmoqanBbrfT2dm5UR8JWFn5\n", - "OJ1O9uzZg8VioaWlBbfbjd/v39DzPAnyaqu+vp69e/eSkJCA3++nv7+fjz/+mMuXL2+a6yYzM5Md\n", - "O3Zw4sQJSktLcblcJCcnEwqF6OnpwWg0kpubyzvvvKPMsJeWlkhISCAcDsfUYOt0Oux2Oy+88ALV\n", - "1dWUlZUpm7OysZ6bm6Ovr49f/epXeL1e0tPT+ZM/+RNSU1OxWCxYLBb0en3M2ni/NicmJpKRkUFS\n", - "UtKmnfdxGB8fp7e3l4qKCoQQLC8vMzc3R29vLwMDA8q1LtsZu91Oeno6GRkZymoLUPzgT7MafJwp\n", - "0y+APwf+x5pj/wr4SJKkF1dzYVslSfq/o2lAKBRifHyc9vZ2jEYjKSkphEKhdTO7hYUFPB4Ply5d\n", - "wuPxoNVqKSoqwul04vF46Ovro7+/P5rTR41Go8FkMrFjxw5OnjxJRUUFZrOZpaUl/H4/fr+fxcVF\n", - "MjIyFN98OBymv7+f1tZW7HY7RqORxMTEdRuHT4JerycrK2vdhuxG4XK5qKmpoaioCK/Xi9vtZmpq\n", - "ass2HI1GI06nk/3797Nnzx4KCgqIj49neHiY69ev8+tf/5re3l5CoVDMNhzlTXD5ez9x4gTHjh0j\n", - "OTmZ+fl5hoaG6OrqYmhoiISEBEpLSyktLSUxMZG4uDimpqYYHBzEYrHEpH0yiYmJbN++nRMnTlBX\n", - "V0dOTo6y37O8vMzCwgJ3797l0qVLfPTRR0xPT1NWVsaPf/xj4uLiMBgMGAyGTV1RyW7FtLQ0EhIS\n", - "lOPx8fEkJiZiMpmYn5/fks3k4eFhrly5QnJyMjabjeXlZQKBAO3t7XR2dn7DJZKWlkZxcTFHjx4l\n", - "NTVV6cdgMIjX62V6ejrq6+iR34gkSZeFEDn3HH4dOLD6+G+Ai6wY8ScmEokwOjrKhx9+iNvtJjMz\n", - "k8HBQV588UUOHz4MwPT0NC0tLfzFX/wF3d3daDQasrKy2LdvH+np6ZvmD1yLXq8nMzNT8aXKvqxw\n", - "OExfXx8tLS3Mzs7y/e9/H5PJhM/nY3BwkGAwSDgcZteuXcru89PccWPlu62pqeHtt9/GarXS29vL\n", - "xMTEliov7HY71dXVvPPOO5SVlSkbup2dnZw/f57BwUH8fn9MV1NCCEVOeOTIEb73ve9hsVhwu900\n", - "Nzfz4Ycf0tjYyPDwMDqdjrfeeos/+IM/oLy8nISEBCKRCENDQzHfzHO5XNTV1XHgwAEyMzPXrfgW\n", - "Fxfx+Xx8+umn/M3f/A1utxuz2RzT9jwOcXFxGI1GrFYrJpNJOW6z2cjJyWFoaIj5+fmo3AhPS09P\n", - "D2NjYzQ0NKDT6ZAkicXFRaanp+/bHqPRSGlpKYWFhVgsFuUGNDIyQlNTE11dXVGPgWhvoWmSJHlW\n", - "H3uAtCjfB0mSmJub4/bt24yPj5OUlITP52NxcRG73U5RURHd3d1cunRJ2ZCQlRcLCwskJCQwPT0d\n", - "7emjIjExkcLCQn7wgx9w4MABTCYTQgi8Xi9tbW28//77TE1NYbVa+eyzzxgfH6epqYmWlhYWFhbQ\n", - "aDSEQiEcDofi9/T7/czMzDxRG9LT0xW9+UZjMplISkpCq9Xi9Xrp7u7eUjnftm3b2L17N9nZ2Vgs\n", - "FhYXFxkdHaWxsZEbN24QCARirhJxuVxUVVVx8uRJ9uzZQ3x8PAMDA5w9e5bTp0/T0dGhaJhzcnIo\n", - "KCggOzsbvV5PKBRibGyMmzdvMjQ09OiTPQWZmZlUVlaSlJREXFycsurz+XwMDAxw8eJFLl26pARv\n", - "ORwOUlJStnSPYn5+Hq/XS3NzMw6HA6vVCkBxcTGvvvoq8/PzhMPhLTHYi4uL+P1+wuGwshpeXl4m\n", - "Eonc1/2WkpKCy+UiISFhXZ8Gg0F8Ph9zc3NRT36e+huSJEl62jB02afn9XqJi4tjYWFBuThycnII\n", - "BoPKBohsnGZmZp7IwG0EGo1GcUPs2rWLkydPsm3bNkUJ0tfXx5UrVzh9+jSwYmR8Ph/9/f3cuXOH\n", - "ubk5lpaWsFqtLCwskJycTH5+Pjt27GBiYuKJPo/NZiM3N5fk5GQCgcCGfUZ5s9FkMpGQkIBGo2Fq\n", - "aoqhoaEticyU3RB5eXns3r0bm82muBdu377N7du3Y+4O0+l0OBwOdu/ezbFjx/jOd76DXq9ncHCQ\n", - "q1evcvr0ac6fP6+Mz5SUFGpra6moqMDpdALgdru5ffs2ra2teL3emLZXdnu43W68Xi+zs7N4vV6G\n", - "h4fp6Ojg7NmzDA0NKZt7stJlKzdw5eCSL7/8koKCAsrLywHIyMhAo9Fw+/Zt2tratqRtkiSxtLT0\n", - "yM3QuLg4xR1VWVmJ1Wpdtz81Pj5Od3c3c3NzUU8uojXYHiGEU5KkMSFEOrAhI3BxcZHFxUUkSSIS\n", - "iSgbhrm5udTV1XHp0iUmJye3TG8bFxdHSkoK1dXVHDx4kJSUFMWfNTMzQ2trKzdv3mR6eppAIMDY\n", - "2BharXadDht+tzmh1WqxWq289NJLDA0Ncffu3cdui9PppKSkBIvFsqEuIY1GQ0JCAjabTTGOoVCI\n", - "2dlZZVN3M9FoNJjNZoqKiti1axd6vZ6FhQXGxsY4e/YsHR0dMW9DUlKSYqj379+PyWSitbWV8+fP\n", - "895779Hd3b1uczsxMZGXX36Z4uJi5T2am5s5deoUbrc75iuVxsZGAoEA/f39zMzM0NXVxdjYGJOT\n", - "k8zMzHxjhhcfH09CQsKWGmyA2dlZzp07R11dHa+//vqWtiUajEYjVVVVyj5LcnLyuj5ta2vjzJkz\n", - "T7VxH63B/hD4Q+D/Wf39m6hbsIa1hri7u5vPP/+cvLw8MjMzKS8vZ/v27QQCAXw+30ac7olYG113\n", - "+PBhdu7ciU6no7m5mStXruB2u+nr66O3t5f5+fkHLpdkZJ+irHVOTEx8ovYkJSXhdDrR6/UEAoEN\n", - "8zHLxqayshKTyaSsZEKh0KbfKI1GIxkZGRw5coT6+nqMRiPLy8sMDAzQ0NDArVu3GBsbi2kb8vLy\n", - "qK+v5/XXX6eyspK4uDj6+/u5dOkSH3/8Md3d3coyPS4uDrvdTnFxMTk5OSQlJREMBmltbeXSpUs0\n", - "NTVtiutmenqajo4OQqEQoVCIyclJgsGgMi7vxWq1kpmZGbVaaaNYXl5W9nieBb3/4yAH9pWUlFBW\n", - "VkZxcTF5eXnrxACLi4tMTk4qGvynmfg8jqzv71jZYEwRQgwB/xb4D8CvhBB/DPQD34u6BQ9gYGAA\n", - "SZIoLi7m2LFj5OTkUF9fz9LSkuJPDQQCioY01siG9fDhw7zwwgs4HA7FH3jq1CmGh4eVL+JRsjJ5\n", - "V1mW+awNtnhcjEYjSUlJaDQaZmZmGB0djUrOJrtAjEajoic/fvw4FRUVaDQa+vr6njqcNloSExMp\n", - "KirizTffpLKyUlmWtre3c/HiRbq6umLmFpO/m5KSEk6cOMHevXsxGAyMjo7y5Zdfcv78ea5du0Yk\n", - "EkGr1WKxWEhPT6e4uJj6+nqcTieSJOF2uzl79ixXrlxhcHAwJm29l3A4zMTExDdy1ZjNZqxW6zc2\n", - "urOyssjKykKv1xMOhwkEAgQCgWcmOdlWG28562ZCQgImk2ndtZqYmMiePXvYv38/u3btwm63K9LJ\n", - "5eVlpqenlT2gwcFBlpaWnuqG/Tgz7BArOa/vrtFh/xwoBsaBVKAeOB11K+7D0tISHo+Hd999F6vV\n", - "yne/+13eeustysrK6OjoYHBwkJs3b9La2ropMz/Z3yz7JcfHx/nlL3/JhQsX6OjoWDe4H3UHldu7\n", - "Ue2emppieHg4qgtMp9ORnJxMSUkJO3fupLa2lj179pCWlqYsUVtaWgiFQptusJ1OJ+Xl5eTm5pKY\n", - "mMjCwgLd3d189dVXfPnllxvqu78XWRFSXFzMnj17MJvNjIyM8NVXX/FXf/VXdHR0KNGfssvmJz/5\n", - "CdXV1WRnZ2Oz2ZSVwKeffrrhOvloKCgoUAJn1hrByspK0tPT0el0+Hw+urq66OrqYnJy65Jwrg31\n", - "3uqUA2azmYyMDHbt2kVJScm6KEyz2UxZWRkpKSmYTCa0Wq1irOfn57l+/Trnzp3j9u3b3L17Vxkz\n", - "0RKtDlsC/rMkSf856jM/AkmSmJ+fp6enhy+++AKHw0FlZSU1NTXk5eUxOTlJamoqer2e/v5+Zmdn\n", - "YzojKC4u5tChQ6SlpREKheju7ub69ev09PQ8cWTWWjlfLGcPCQkJmM1mhBBYrVZF+y3PqLdt20ZC\n", - "QgJGo5HU1FSSkpKUwAmdTsf8/DydnZ14PJ5NNdbx8fFkZGSwd+9eDh06hN1uJxgM0tvbywcffMBX\n", - "X33F+Ph4TGWGQgjlZuZwOIiLi6O9vZ3Tp08zPDyshBrLaRTy8/PZu3cvLpdL0VkPDQ0pqpBY3lwe\n", - "1H6tVovZbCY1NZXS0lL27NmjuHXWjruUlBQcDgeRSITGxkY++eQTPB7PluWO2WoDLSNvItbX13Pg\n", - "wAFKSkqUgDcZnU63TmstE4lEGBkZ4caNG5w9e5bR0dENkZ1Gq8OGGKdVhZWZ6szMDNeuXVOSJhUV\n", - "FVFWVqYsUeLi4rh48SI9PT2Mj49veBIgOal6RUUFBw8exGKxMDg4yJ07d+jt7Y1aUigba3mD9UmN\n", - "z9oZSHJyMjk5OUxMTKwzDGlpaYpKISsri9zcXEWqZzab2bFjBwaDgUgkQiAQYHh4GK/Xy/z8PAkJ\n", - "CYrSYDNlkxqNhqSkJOrr6zl8+DB79+5Fr9czMDBAW1sbH330EV1dXTFfrssuEZ1Oh06nQwjBxMQE\n", - "breb7OxsSkpKqK2tpby8nMzMTOx2O3q9XskfI/vam5qaNnXDdm1wT1paGunp6Wzfvp1jx45RVVVF\n", - "VlYW4XAYnU63LpJxcXGRqakpOjo6uHLlyqb42h/2GZ4FtFotdrudffv28aMf/YiUlJT7+vnvjXQE\n", - "FJ324OCg4sLdiEnP08j6/rEQ4ies1Hf8F5IkxeyqHhkZ4fPPP2diYoIjR45w6NAh8vPzKSsrw2Kx\n", - "YLPZOHfuHNeuXWN2dnZDZ14Gg4GSkhKKi4uVMPLR0VHa29ufKl2rbHBlSeOT+mJlHagkSezcuRO7\n", - "3c7IyMg6BUJaWhppaWkIIdYZk6mpKSYmJmhubmZ0dJShoSF6enrweDzYbDby8/OxWq1EIhG8Xu+m\n", - "hqObzWYKCgr46U9/SlVVlbJ8n5ubY3x8nOnp6U3Jay4HR4RCIYLBIGazmePHj1NdXY0kSRiNRiwW\n", - "CyaTiaWlJYLBIKFQSPFxBoNB+vv7n3qcPAnyTSYlJYWysjLeeecdCgsLsdlsyuRGzg/vcDjYtm2b\n", - "cjOClZtlZmYmFRUV+Hy+dcqmzeRZmWGv5WEr4vsdMxqNlJSUUFVVxa1bt+js7NyQHCnRGuz/Avyf\n", - "q4//PfCfgD9+6tY8gPn5ecbGxhTx/MTEBJWVlVRVVZGXl8fBgwfR6/UYjUYuXLiwoTNCrVZLcnIy\n", - "ycnJGI1GFhYW6Ovro7W19YnkdPLFlJWVRXV1NUajkZmZGSUoqKen54na1dPTw7lz59Dr9WRkZCi5\n", - "P9ZeYLKOemxsjOnpaWZmZhSjJxtt+cfj8Si+OoPBoAQLxDLU+37IyZSKioqw2WzK8YGBAW7evMns\n", - "7OymGBFZy9zS0sKZM2fYv38/KSkppKSkEAwGlfwSQ0ND+Hw+NBoNNTU15ObmAigh6pt1s5N97mlp\n", - "aezdu5fDhw9z4MABFhYWGBkZwePx4PF48Hq9zMzMsHfvXpKSkrBarYqLxGAwUF5eztzcHD6fj/b2\n", - "diYmJjY9de1awyhJkpJOOdYh/feytLTE1NQUN27cICEhgaKiIsLhMFNTU+v6RG6rnOsmJyeH9PR0\n", - "LBYLSUlJ6zIiPi3RFuFVdNdCiP8GfLQhrXkIi4uLirD+zp077Nixgz/6oz8iPz9fEaknJSXR2tqK\n", - "3+/fsCWorKKQfVRzc3NRzZzkrH61tbUcO3aMhIQE3G43N27c4MyZM/T19T1Ru9rb2xkbGyMQCFBe\n", - "Xk5GRsZ9nxcIBGhubmZwcJCRkRFFdng/8vLyqK2txW63Ew6HY+4nXou8lC8qKuLFF1/EbDavW4V0\n", - "dHTw1VdfbZoqSJIkFhYWuHr1KouLi9hsNvLy8pTIzzt37tDU1MRXX32Fz+fD6XTicDjIyMhACEFb\n", - "W9umJt03Go04HA5qamp46623eO2114hEIpw/f55PPvmEO3fu0N3djc/nIy0tDbvdzu7du5Vc6rLa\n", - "Rb5RjoyMIEkS7e3tBAIBJT4CVgxZrG+aa5VU8fHxFBQU4HQ6lcjNzbiByDbn/Pnz3L17l7q6OiUQ\n", - "7n6bh0lJSezbt4+TJ08qrsiNJiqDLYRIl3NhA28ArRvXpIcTiUTw+XzcvHmTgwcPsry8rCwD5Wou\n", - "fr8/JvpceZk8Nzf3RH5JOUDmwIEDvP766+zbt4+lpSVu377NxYsXlVD8J8Xv93Px4kVu3rz5QFmg\n", - "HJYcCoVYWFh4qO/X4XAoSZXkJFWbladFp9PhdDrZvn07hYWFyucJhUJ0dHTQ2dm5qTcQmcnJSa5e\n", - "vYrb7VZSEMjSt9nZWaanp7HZbLhcLoqKikhNTWV6elrRPscaeeVWXl7OoUOHOHr0KEVFRczPz9PV\n", - "1UVDQwMXLlxQxlh2djZ/+Id/yMsvv4zT6USj0dDW1sbdu3eV79/hcPCjH/2IyspKbt26xZdffonX\n", - "61XGzuTkZMwVJGtnsEajkfLycoqLi3E4HFEn/4+Wubk5BgcHmZmZIRKJPFAx5fF4mJ2dJT8/nxdf\n", - "fDEmbXmowRZCZLHio7YBWiHEFPAvgKNCiBOAHpgB9sakdWuQZ6ipqamkpKQoqRjXbt7Jy9hYfZny\n", - "zu/ExMRjnUPW52ZlZVFeXs7x48fZvn07k5OTXLlyhcuXL9Pc3Bz1Bo+cOGujMBgMJCYmotVqcbvd\n", - "fP3115tmsJOSkjh+/DgvvPCCIjGT/cC//e1vuX379qb5gteysLDA+Pg44+PjD3yO3W7HYrGQmJhI\n", - "fHw8CwsLdHV1PfQ1G4EQApPJRGFhIS+//DKvvPIK5eXlTE1NKTlWGhoaGBkZUaqevPDCC0qBjenp\n", - "adra2mhoaKCtrQ2Hw6EkM3M6nRQWFpKamorL5VIyzM3Pz3P58mUaGhpi9rm8Xi89PT24XC4l57lc\n", - "W7SsrEzRv28Wi4uLijb9Uc97Wtneo3jUDDsCHJMkqVkIkQDcAq6wosH+95Ik/cfV9Kp/TJTZ+h6F\n", - "RqNRVA05OTns3LlT8V2XlJQoviG/38/Q0BDd3d0xu/vLOuDHuRDlG4zsYz98+DA1NTUMDQ3x2Wef\n", - "8ed//ueblsQ+GkZHR+no6Ng0I2mz2XjnnXeorKxUIsQmJiZoamriV7/61RP7+DeTezej5ubm+Prr\n", - "r2P+/Wq1WlJSUnjllVd47bXXqKmpIRAIcP36dT744AOuX7/O5OSkUpno5MmTvPbaa2RmZuL3+2lr\n", - "a+MXv/gF165dY3h4WJF6yhLA3bt3K/p8rVar5KSfnZ2NqcHu7+/nxo0bSpEKmezsbGpqamhtbY15\n", - "Eig5b/Xj+u/lyVl5eTnp6ekxa9dDDbYkSWPA2OrjgBDiDuBiA9OrPgydTofNZqOsrIzq6molGZRc\n", - "tkrehFheXiYUCim+642+w8kXpLw0e5C/eC2FhYXs2bOHI0eOUFRURHJyMnfv3uXjjz/mo48+2pLw\n", - "+mcZ+aa8VmrW09NDQ0MDk5OTz3RR3bGxMTo7O2NeLONe8vLyePHFFzlx4gT5+fl4vV4++eQTLl26\n", - "xJ07d0hNTaW+vp7S0lIqKiooKCggISGBS5cucfPmTRobG2lra2N8fFyJexgeHmZmZoaOjg6amprY\n", - "vXs35eXlmM1mJicn+fTTT7l8+YnLtj4Rfr8fr9e7JTpw2cWUnp6O1WplYGCAYDD4SPdnTk4OdXV1\n", - "vP322+zcuTNm7XtsH/aqFnsncI0NTK96n/Og1+uxWq24XC5KS0upra1l586d5Ofnk5ycrMzAQqEQ\n", - "brdb0egd8pInAAAMP0lEQVReu3YtprvyOp1OadOOHTvweDyKy8BisZCSkqLUpayoqGDXrl3s2LGD\n", - "+Ph4vF4v165d48qVK7S3t8esjRtFfHw8ZrN5w3a3H0ZmZiZVVVVKon/Z6Lndbtra2ggEAlsiL3tc\n", - "tFrtN6oMbQaFhYUcPnyY4uJiEhIS8Hg8LC0tkZqaSnV1Nbm5uUpF9JycHPx+Px0dHZw+fZobN27Q\n", - "29u7boN+bfENuYTV2NgYd+/eVVRNX3zxRcw3U2V33JEjR0hOTlZu4ikpKYrkdHJycsO1+GazWcm/\n", - "LReeuDftxFq0Wi0GgwGr1Up9fT3Hjx9n9+7dpKSkKC7apaWlDdXgP5bBXnWHvA/809Uajsr/NiK9\n", - "6roGrUYX7dixg/379/PKK68oaUTXnBMAn89HS0sLv/71r2loaIhZ+K+sVpCXPfX19QQCAT7//HPF\n", - "h1xYWEh9fT27du0iJyeH1NRUDAYDExMT9Pb2cvv2bS5cuEBvb29M2riRCCGUG9Bm5EjetWsX3/ve\n", - "97DZbOvkXJOTkwwMDDwzOS0eRFpaGkVFRd8I+Y41JSUlHDp0SEkclpiYyEsvvcSBAwcwm804nU4l\n", - "0EOSJG7cuMH777/Pb37zG7xe7yNXA0NDQwwNDXH+/PmYf5a19PT0oNFoeOutt0hLS1PcIgUFBQC8\n", - "9957Si7vjSQlJYWamhreeOMN6urqWFpa4tatW4yPj983w2J8fDypqans3LmTkydP8uqrr2I0GpXQ\n", - "9HA4zMLCwjqFzdPyOMmfdKwY6/8pSZKclW9D06vKkVlyxN7Ro0fZsWMH+fn5OJ3OdRUx5Iv45s2b\n", - "NDc3097ezvDwcMw3eGSEEOTn52MymaioqGBmZgZJksjKylLkUiaTiWAwSF9fH93d3comzejo6KYX\n", - "W4iGtfrSWBogOay3sLBQUacsLS0xOzur5I72+/3P9OwafjczW7s62Azm5+fx+/0kJCSg0+mU7Iaw\n", - "sgHW1dWF2+1mcHCQnp4e7ty5Q0dHx6bnkY+GSCSi+MvXhoLHsn+rqqr4wQ9+QGVlJQ6Hg0AgwMGD\n", - "B8nJyblv0EtGRgYFBQUUFRWRl5en3LDHx8fp6+ujqamJzz77bEOLfzxKJSKAvwbaJUn6f9f866nT\n", - "q8r6ZqfTSVZWFikpKaSnp1NYWMiRI0fYtm2bMnMIhUL4fD7Gxsbo7u6mra2Nq1evKtWnY/klyuHx\n", - "U1NTzM7OYjabsdvtJCcnk52drWzKyVnQFhYWlJl/Y2PjuiRVzxNGo/Eb+Xw3Grkqe0ZGBhkZGcTF\n", - "xSnRlZ999hmtra3Mz88/8wZbzncu64Y3i97eXi5evEhhYSFWqxW9Xq+EmMt+9f7+fgYGBujq6lJS\n", - "Fzzr/QkrN6O7d+9SVFREdna2cjyW13pGRgYVFRVkZmYqs/p9+/ZRXl5+X3+60+lk27ZtpKWlodFo\n", - "mJ+fZ3p6Wkm53NjYSHt7+4aKIB41w94L/BhoEUI0rR7712xAelWNRoPRaGT//v288cYbSnSQXHV8\n", - "re9UNoC//e1vuX79Ol1dXYRCoU0R0IfDYQYGBuju7mZ4eFgJnpDdI3K9NiEEoVAIr9fLlStXePfd\n", - "dzlz5gzLy8vPxQVyL3a7nW3btsW0crY8BuQq3RqNBr/fz+DgIB988AGdnZ1bUjThSZmYmKCvr49I\n", - "JBLzVclaLl68SEdHB7W1tYoEb3Z2llu3btHY2Ijf71dkrrLa4VkM+74fwWCQq1evUlFRwe7du7ek\n", - "DWazmRdeeOGB/abRaJSfYDCIx+OhqamJ9957j9OnTzM/P7/h4/dRBnsAuAQ4WMnQ9/9JknQ62vSq\n", - "er1eqWNYWlqKy+WioqKC4uJiLBYLRqNRMRDy0ri1tZXLly9z9epVenp68Hq9BIPBTQuXXVpaYnp6\n", - "mosXLzI3N0d9fT21tbVs375duTCDwSAtLS3KMr6zs5Ourq4trYH4NMhGZzM2HO81cPJmTSQSeS6M\n", - "NaxUShkeHmZsbIzU1FS0Wi02mw2z2bwh+SMehFx559q1a3R0dGAwGNblwl5rqJ835BiDkZERxsfH\n", - "v1FuKxY0Njbyt3/7t9TX11NWVkZWVtZ9V5iLi4vMzs6ysLBAKBRScgutvfbn5uZi0vePo8P+Z2t1\n", - "2EKIs0SZXlUOMT148CAHDx7E5XIpqo+FhQVmZ2eVemc+n0+pkdjQ0EBLS4uy7NxMZMmgLH8aGxtj\n", - "fHyc4eFhJWBndnaW69evc+PGDdra2p55GdqDCIVCzMzMbJqhXCvHDAQCz0T17miQV1Z37tzB4XAo\n", - "ebTdbjeBQCBmxR/kgg4DAwMb/t5bjRwW3tzcTFpampIpz+12Rx0Z/CjkLJATExNKErm0tDQMBgPL\n", - "y8uKgmZqaoqBgQFmZ2eZmZlhcHCQ1tZW2traYi5HjFaHDVGkV5V1zLt27aKyslJxfcgbDHfu3KGn\n", - "p4elpSWuX7/OlStXmJ6eJhQKxTyC6FHMz88rd/sLFy6scxXIO8LhcFiZ1TyPjI2N0dHREbOw2ntZ\n", - "XFzE6/XS399Pf38/hYWFm3LeWOD3+zl//jxOp5N9+/Zx/PhxJYmS2+1+5pUuzxqyL/43v/kNZ86c\n", - "UQJZZOlhLIzi9PS0El0rV4h54403cLlcLC4u8vXXXys/jY2NSi4fOcJxM679aHTYV1nxbT9xetVA\n", - "IEBDQwMej4cPP/xQOS5/CT6fj6mpKSRJYnR0VCl79Sws6eQ8InIukd9HBgYG+OSTTxgaGlJULrGM\n", - "KJPdXhcuXGB0dBSr1apUGrq3vNWzztzcHM3NzZSVlZGfn09ubi779+8nGAxy+vRpxsfHnxsXz7PC\n", - "8vIyc3Nzm3a9yRMv2TjPzs7S1taGxWJZNy7Hx8fxeDwEg8FND+4Rj2MMV90hF4H/S5Kk3wghHKz4\n", - "r2ElvWq6JEl/fM9rtt7KqqhsEnKhi6NHj/Lmm29SV1fH/Pw8TU1N/Nmf/ZmyUa6i8jhIknRfD8aT\n", - "6LD/l6zD3or0qioqzzJy4jE5s93ExAT79u2jqqqK9PR0RkZGVIOt8tREpcPeyvSqKirPKnKV7I6O\n", - "Dk6dOkVraysGg4He3l7VWKtsCA91iQgh9gFfAC2sKEMA/g3wQ6Bq9Vgf8A/W5BaRX6u6RFRUVFSi\n", - "4EEukcfyYUeDarBVVFRUomPTDbaKioqKysYS+1A2FRUVFZUNQTXYKioqKs8JMTPYQohXhBAdQoiu\n", - "1TJiKqsIIfqFEC1CiCYhxPXVYzYhxFkhRKcQ4jMhRPKj3uf3ESHEfxdCeIQQrWuOPbBvhBD/enWM\n", - "dQghjm5Nq7eGB/TVz4UQw6tjq0kIcXzN/76VfSWEyBJCfC6EaBNCfC2E+Cerx5+/cSVnotrIH0AL\n", - "dAM5gA5oBkpica7n8YcVZY3tnmP/EfiXq49/BvyHrW7nFvXNi6xE1LY+qm+A0tWxpVsda92AZqs/\n", - "wxb31b8D/vl9nvut7SvACVStPk4A7gIlz+O4itUMezfQLUlSvyRJEeB/A9+J0bmeV+7dBX6dlfqY\n", - "rP7+e5vbnGcDSZIuA1P3HH5Q33wH+DtJkiKSJPWzcmFtTS7OLeABfQX3z/Pzre0rSZLGJElqXn0c\n", - "ANbWpn2uxlWsDLYLGFrz9zC/SxqlsqJfPyeEuCmE+Purx2JWJ/P3gAf1TQYrY0tGHWcr/GMhxG0h\n", - "xF+vWearfcVj16Z9ZvsqVgZb1Qo+nL2SJO0EjgN/KoRYlx5PWlmXqX14Hx6jb77t/fZfgFxWAttG\n", - "gf/0kOd+q/rq3tq0a//3vIyrWBnsESBrzd9ZrL9jfauRVsP6JUkaB06xstzyCCGcsBL6z1PWyfw9\n", - "40F9c+84y1w99q1FkiSvtArw3/jdUv5b3VcPq027+v/nYlzFymDfBAqFEDlCCD3wfVbqQH7rEUKY\n", - "hBCW1cdm4CgruVjkOpkQZZ3M32Me1DcfAj8QQuiFELlAIXB9C9r3zLBqeGTW5vn51vbVY9Smhedk\n", - "XD12PuwnQZKkRSHEPwLOsKIY+WtJku7E4lzPIWnAqdWyWHHA30qS9JkQ4iZPWSfz9wEhxN8BB4AU\n", - "IcQQ8G95QA1RSZLahRC/AtqBReAfrs4svxXcp6/+HfCSEGJdnh/41vfVE9WmfZb7Sg1NV1FRUXlO\n", - "UCMdVVRUVJ4TVIOtoqKi8pygGmwVFRWV5wTVYKuoqKg8J6gGW0VFReU5QTXYKioqKs8JqsFWUVFR\n", - "eU5QDbaKiorKc8L/DzAr6bE92WeRAAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAABKCAYAAACfHW4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztndlXW1ea9n+S0CwBkpAQCMw8jwZscOzYwWMcO6mVpFJd\nXV2u7rrpm/4D+rb/g77o1b1WX1X1Rd9UkkplqtixcUxsPGCbMWDMPAo0MWhAE6DvIuucgsQZbCMB\n/Z3fWtzIWGwdnf2cvd/3ed8tSyQSSEhISEjsf+R7PQAJCQkJiZ+HJNgSEhISBwRJsCUkJCQOCJJg\nS0hISBwQJMGWkJCQOCBIgi0hISFxQJAEW0JCQuKAIAm2hISExAFBEmwJCQmJA4Ik2BISEhIHhLRk\nvbFMJpNq3iUkJCRegEQiIXvW69IKW0JCQuKAIAm2hISExAFBEmwJCQmJA0LSYtj/vyOXy1EoFKhU\nKpRKJQqFgng8TiwWIx6Ps7W1hdTaVkLib8jlctRqNWq1GoVCwdbWFpFIhGg0ytbW1l4Pb18gCXaS\nMJlMFBYW0tLSQmNjIzabjYGBAR4/fszAwABLS0vEYrG9HqaExL4hMzOTCxcucOzYMUpKSnC73Vy7\ndo3r16+ztrbGxsbGXg9xz9n3gi2TyVAoFCgUCvE1tVqNw+FAq9WSlpaGTqfD6XTi8/koKSkhNzeX\nzMxMtra2cLlczMzMMD09TSQSSfp4FQoFBoOB5uZmXnvtNRobG6mursZisVBQUMChQ4fIycnho48+\nwuv1Jn08L0NaWhomk4nS0lIsFgu9vb14vV6i0eheDw2NRkNBQQFFRUXY7XZkMhljY2OMjIywuroq\nTe6fQC6Xk5aWhkKhICMjg4yMDFQqFR6PB7fbnfIVrUqlwmazcerUKdrb2ykqKsLn8+Fyuejp6SEU\nCu2L71StVqPRaJDJZBgMBqxWK+Xl5Wi12h/8P/F4HK/Xy9jYGNPT0y91bfeNYMtkf3OxyOVyZDKZ\nKNZarRaNRiP+u9ls5vz589hsNvR6PTk5Ody4cYPe3l5++9vfcvr0aaqqqojFYnz99dd89NFHfPjh\nh0kXbJlMhlqt5tChQ7z55pv87ne/Q6vVIpd/mypoaGigsrKSqqoqbt++jc/ne+mwiPDewK5PMo1G\nQ2lpKVeuXKGxsZF/+7d/4/Hjx3su2HK5nMzMTM6ePcsvf/lLTp48iVwu5w9/+AP/9V//xfDw8L6Y\n3PsNYU7J5XI0Gg1arRatVktFRQUVFRWkp6fT3d1NV1dXysMQOp2O3NxcmpqacDgcKBQKrFYrOTk5\nWK1WnE5nysbyXbZfN5PJhNVqRaFQUFBQQGtrK7///e/Jzs7+wbkcCAR4/Pgxf/zjH1lcXHypa7sv\nBFuhUJCeno5KpUKj0eBwOHA4HNhsNjQaDUVFRRQUFIi/r1Qqyc7ORq1WI5PJiMfjbGxsUFlZyalT\np7Db7QQCAVwuF6Ojo0xOTqZEZMxmM5WVlfz93/89J0+eFJ/EGxsbxGIxtra2xM8qrCCWl5dfOJ6t\nVqvJy8sjPT2dzc1NxsbGCIfDu/Z5lEol+fn5AMzNzRGPx3ftvV+GgoIC2trauHTpEuXl5SQSCSkn\n8DPQ6XTk5ORw9OhRSkpKcDgcZGdnYzKZMBqNpKWlUVxcjMlk4saNG6ysrKRsbNFoFJ/Px/j4ODab\nTbzv9gPp6enk5ORQW1tLfX09paWlyOVyLBYLDoeDjIwMEonED95/Go2G6upqLl26BEBHRwcej+eF\n5tOeC7ZGo8Fms9Ha2orFYhFXzIJgq9Vq8vPzycvLe+b/DwQC9Pf3E4vF0Gg0uN1uPB4Pfr+fxcVF\nuru7kyrYwtZSr9fT0NBAe3s7Z86cIT8/n7S0NBKJBOFwGK/Xy/z8PA6HQ9whaLVaBgcHmZ2dfaHx\nqdVqMQQUi8WYn5/fVcFWqVTY7XZ0Oh3xeJxEIrFjJ7RXWK1WqqqqqKqqwmKx7Nm4hPCXxWLBbDaT\nnp6OXq9HrVYD4HK5WFxcJBaLodVqUSqV4r25m9/Tj6FWqzEajdjtdgoLC6msrKS1tZWioiJsNhtG\no1HcpQkhxnA4zODgIOvr6ynbTcXjcQKBAAsLC6ytre0rwc7Pz+f48eMcP36cmpoacWzCDkUmk/3o\nYiEtLQ2r1UpLSwuxWIzR0VGCweDBFOzMzEwOHz7Mv/7rv1JeXi6GPoQJ+GMTMZFIsLa2xtWrV5me\nniYWi3Hjxg2CwSBra2sEg0FcLhderzdpqy9h0hYVFXHp0iXee+89rFYrSqVS/J1gMMj4+DiffPIJ\n7e3tvPPOO/zLv/wLVVVVvP/++3z88ccvLNjFxcVUVlYSDofp7Ozctc8lk8lIS0vDbDZjtVqBb2+8\n/YBOp8NkMolugr1CpVJx6NAhWltbaW1tpbq6moKCAvF6Xb9+nS+++IKVlRVycnJIT0/nzp07DA8P\ns7CwkJIxGo1GysvLeeONNzh16hQNDQ2o1Wrkcjmbm5v4fD5CoRAADoeDvLw8WlpaKCgoSGm+YmNj\ng/X1dZaXl1lfX0/J3/y51NXV8d5779HU1ITRaHzhxUFBQQFbW1tcvXoVp9OJ3+9/7vfY8xkYDodZ\nWVlhfX1dDBk8i1gshsvlIhQKIZfLcTgcKJVKVldXefjwIePj42xubgKIIYiNjQ0ikUhSt8qHDx/m\n9OnTNDU1UV1djdlsRqFQ7PhSMzMzcTgc6HQ6lpeXmZqawuFwYDKZyM3N3SHuz4NOp6O5uRmLxcLo\n6OhufSTg252P3W7n2LFjGI1GBgYGcDqdBAKBXf07z4Ow22pra+P48eMYDAYCgQDT09N89tln3L59\nO2Whm7y8POrr67l06RLV1dU4HA4yMzMJh8NMTEyg1WopKiriypUr4gp7c3MTg8FALBZLqmArlUos\nFguvvPIKTU1N1NTUiMlZQazX19eZmpriT3/6E263m5ycHP75n/8Zq9WK0WjEaDSiUqmSNsZnjTk9\nPZ3c3FwyMjJS9nd/Dh6Ph8nJSerq6pDJZGxtbbG+vs7k5CQzMzPiXBd0xmKxkJOTQ25urrjbAsQ4\n+MvsBveFYHs8HoaHh9FqtWRlZREOh3es7KLRKC6Xi87OTlwuFwqFgoqKCux2Oy6Xi6mpKaanp1M6\nbrlcjk6no76+nsuXL1NXV4der2dzc5NAIEAgEGBjY4Pc3FwxNh+LxZienmZwcBCLxYJWqyU9PX1H\n4vB5UKlU5Ofn70jI7hYOh4Pm5mYqKipwu904nU5WVlb2LOGo1Wqx2+2cPHmSY8eOUVpailqtZn5+\nnu7ubv785z8zOTlJOBxOWsJRSIIL3/ulS5e4cOECmZmZRCIR5ubmGBsbY25uDoPBQHV1NdXV1aSn\np5OWlsbKygqzs7MYjcakjE8gPT2d8vJyLl26RGtrK4WFhWK+Z2tri2g0ytOnT+ns7OTTTz9ldXWV\nmpoafvvb35KWloZGo0Gj0aR0RyWEFbOzszEYDOLrarWa9PR0dDodkUhkT5LJ8/Pz3Lt3j8zMTMxm\nM1tbWwSDQYaHhxkdHf1eSCQ7O5vKykrOnz+P1WoVr2MoFMLtdrO6uvrC82jPBTsej7O4uMgnn3yC\n0+kkLy+P2dlZXn31Vc6ePQvA6uoqAwMD/Od//ifj4+PI5XLy8/M5ceIEOTk5KYsHbkelUpGXlyfG\nUoVYViwWY2pqioGBAfx+P3/3d3+HTqfD5/MxOztLKBQiFotx5MgRMfv8Mk/cZMVum5ubee+99zCZ\nTExOTuL1evfUeWGxWGhqauLKlSvU1NSICd3R0VE6OjqYnZ0lEAgkdTclk8lEO+G5c+f41a9+hdFo\nxOl00tfXxyeffEJPTw/z8/MolUreffdd/uEf/oHa2loMBgPxeJy5ubmkJ/McDgetra2cOnWKvLy8\nHTu+jY0NfD4fX3zxBf/zP/+D0+lEr9cndTw/h7S0NLRaLSaTCZ1OJ75uNpspLCxkbm6OSCTyQmGE\nl2ViYoKlpSW6urpQKpUkEgk2NjZYXV195ni0Wi3V1dWUlZVhNBrFB9DCwgK9vb2MjY298D2w54Kd\nSCRYX1+nv78fj8dDRkYGPp+PjY0NLBYLFRUVjI+P09nZKSYkBOdFNBrFYDCwurqa0jGnp6dTVlbG\nr3/9a06dOoVOp0Mmk+F2uxkaGuLDDz9kZWUFk8nEl19+icfjobe3l4GBAaLRKHK5nHA4jM1mE+Oe\ngUCAtbW15xpDTk6O6DffbXQ6HRkZGSgUCtxuN+Pj43tq5zt06BBHjx6loKAAo9HIxsYGi4uL9PT0\n8PDhQ4LBYNJdIg6Hg8bGRi5fvsyxY8dQq9XMzMxw/fp1rl69ysjIiOhhLiwspLS0lIKCAlQqFeFw\nmKWlJR49esTc3FxSx5mXl0dDQwMZGRmkpaWJuz6fz8fMzAy3bt2is7NTLN6y2WxkZWXtaY4iEong\ndrvp6+vDZrNhMpkAqKys5I033iASiRCLxfZEsDc2NggEAsRiMXE3vLW1RTwef2b4LSsrC4fDgcFg\n2HFNQ6EQPp+P9fX1F1787LlgA2JMz+12k5aWRjQaFSdHYWEhoVBITIAI4rS2tvZcArcbyOVyMQxx\n5MgRLl++zKFDh0QnyNTUFPfu3ePq1avAtyLj8/mYnp7myZMnrK+vs7m5iclkIhqNkpmZSUlJCfX1\n9Xi93uf6PGazmaKiIjIzMwkGg7v2GYVko06nw2AwIJfLWVlZYW5ubk8qM4UwRHFxMUePHsVsNovh\nhf7+fvr7+5MeDlMqldhsNo4ePcqFCxf4xS9+gUqlYnZ2lvv373P16lU6OjrE+zMrK4uWlhbq6uqw\n2+0AOJ1O+vv7GRwcxO12J3W8QtjD6XTidrvx+/243W7m5+cZGRnh+vXrzM3Nick9wemylwlcobjk\nzp07lJaWUltbC0Bubi5yuZz+/n6Ghob2ZGyJRILNzc2fTIampaWJ4aiGhgZMJtOO/JTH42F8fJz1\n9fUXXlzsC8EW2NjYYGNjg0QiQTweFxOGRUVFtLa20tnZyfLy8p75bdPS0sjKyqKpqYn29naysrLE\neNba2hqDg4M8evSI1dVVgsEgS0tLKBSKHT5s+FtyQqFQYDKZeO2115ibm+Pp06c/eyx2u52qqiqM\nRuOuhoTkcjkGgwGz2SyKYzgcxu/3i0ndVCKXy9Hr9VRUVHDkyBFUKhXRaJSlpSWuX7/OyMhI0seQ\nkZEhCvXJkyfR6XQMDg7S0dHBBx98wPj4+I7kdnp6OqdPn6ayslJ8j76+Pj766COcTmfSdyo9PT0E\ng0Gmp6dZW1tjbGyMpaUllpeXWVtb+94KT61WYzAY9lSwAfx+Pzdu3KC1tZW33nprT8fyImi1Whob\nG8U8S2Zm5o5rOjQ0xLVr114qcb+vBHu7EI+Pj/PVV19RXFxMXl4etbW1lJeXEwwG8fl8KR/b9uq6\ns2fPcvjwYZRKJX19fdy7dw+n08nU1BSTk5NEIpEf3C4JCDFFweucnp7+XOPJyMjAbrejUqkIBoO7\nFmMWxKahoQGdTifuZMLhcMoflFqtltzcXM6dO0dbWxtarZatrS1mZmbo6uri8ePHLC0tJXUMxcXF\ntLW18dZbb9HQ0EBaWhrT09N0dnby2WefMT4+Lm7T09LSsFgsVFZWUlhYSEZGBqFQiMHBQTo7O+nt\n7U1J6GZ1dZWRkRHC4TDhcJjl5WVCoZB4X34Xk8lEXl7eC7uVdoutrS0xx7Mf/P4/B6Gwr6qqipqa\nGiorKykuLt5hBtjY2GB5eVn04L/MwmdfCfZ2ZmZmSCQSVFZWcuHCBQoLC2lra2Nzc1OMpwaDQdFD\nmmwEYT179iyvvPIKNptNjAd+9NFHzM/Pi1/ET9nKhKyyYPPZXmzxc9FqtWRkZCCXy1lbW2NxcfGF\n7GxCCESr1Yp+8osXL1JXV4dcLmdqauqly2lflPT0dCoqKnjnnXdoaGgQt6XDw8PcunWLsbGxpIXF\nhO+mqqqKS5cucfz4cTQaDYuLi9y5c4eOjg4ePHhAPB5HoVBgNBrJycmhsrKStrY27HY7iUQCp9PJ\n9evXuXfvHrOzs0kZ63eJxWJ4vd7v9arR6/WYTKbvJbrz8/PJz89HpVIRi8UIBoMEg8F905xsr8Vb\n6LppMBjQ6XQ75mp6ejrHjh3j5MmTHDlyBIvFIlont7a2WF1dFXNAs7OzbG5uvtQDe98K9ubmJi6X\ni/fffx+TycQvf/lL3n33XWpqahgZGWF2dpZHjx4xODiYkpWfEG8W4pIej4c//vGP3Lx5k5GRkR03\n9089QYXx7ta4V1ZWmJ+ff6EJplQqyczMpKqqisOHD9PS0sKxY8fIzs4Wt6gDAwOEw+GUC7bdbqe2\ntpaioiLS09OJRqOMj49z9+5d7ty5s6ux++8iOEIqKys5duwYer2ehYUF7t69y3//938zMjIiVn8K\nIZvf/e53NDU1UVBQgNlsFncCX3zxxa775F+E0tJSsXBmuwg2NDSQk5ODUqnE5/MxNjbG2NgYy8vL\nezbW7aXee91yQK/Xk5uby5EjR6iqqtpRhanX66mpqSErKwudTodCoRDFOhKJ0N3dzY0bN+jv7+fp\n06fiPfOi7FvBTiQSRCIRJiYm+Prrr7HZbDQ0NNDc3ExxcTHLy8tYrVZUKhXT09P4/f6krggqKys5\nc+YM2dnZhMNhxsfH6e7uZmJi4rkrs7bb+ZK5ejAYDOj1emQyGSaTSfR+CyvqQ4cOYTAY0Gq1WK1W\nMjIyxMIJpVJJJBJhdHQUl8uVUrFWq9Xk5uZy/Phxzpw5g8ViIRQKMTk5yccff8zdu3fxeDxJtRnK\nZDLxYWaz2UhLS2N4eJirV68yPz8vlhoLbRRKSko4fvw4DodD9FnPzc2JrpBkPlx+aPwKhQK9Xo/V\naqW6uppjx46JYZ3t911WVhY2m414PE5PTw+ff/45Lpdrz3rH7LVACwhJxLa2Nk6dOkVVVZVY8Cag\nVCp3eK0F4vE4CwsLPHz4kOvXr7O4uLgrttN9K9jw7Up1bW2NBw8eiE2TKioqqKmpEbcoaWlp3Lp1\ni4mJCTwez643ARKaqtfV1dHe3o7RaGR2dpYnT54wOTn5wpZCQayFBOvzis/2FUhmZiaFhYV4vd4d\nwpCdnS26FPLz8ykqKhKtenq9nvr6ejQaDfF4nGAwyPz8PG63m0gkgsFgEJ0GqbRNyuVyMjIyaGtr\n4+zZsxw/fhyVSsXMzAxDQ0N8+umnjI2NJX27LoRElEolSqUSmUyG1+vF6XRSUFBAVVUVLS0t1NbW\nkpeXh8ViQaVSif1jhFh7b29vShO224t7srOzycnJoby8nAsXLtDY2Eh+fj6xWAylUrmjknFjY4OV\nlRVGRka4d+9eSmLtP/YZ9gMKhQKLxcKJEyf4zW9+Q1ZW1jPj/N+tdAREn/bs7KwYwt2NRc++FmyB\nhYUFvvrqK7xeL+fOnePMmTOUlJRQU1OD0WjEbDZz48YNHjx4gN/v39WVl0ajoaqqisrKSrGMfHFx\nkeHh4Zdq1yoIrmBpfN5YrOADTSQSHD58GIvFwsLCwg4HQnZ2NtnZ2chksh1isrKygtfrpa+vj8XF\nRebm5piYmMDlcmE2mykpKcFkMhGPx3G73SktR9fr9ZSWlvL73/+exsZGcfu+vr6Ox+NhdXU1JX3N\nheKIcDhMKBRCr9dz8eJFmpqaSCQSaLVajEYjOp2Ozc1NQqEQ4XBYjHGGQiGmp6df+j55HoSHTFZW\nFjU1NVy5coWysjLMZrO4uBH6w9tsNg4dOiQ+jODbh2VeXh51dXX4fL4dzqZUsl9W2Nv5sR3xs17T\narVUVVXR2NjI48ePGR0d3ZUeKQdCsCORCEtLS6J53uv10tDQQGNjI8XFxbS3t6NSqdBqtdy8eXNX\nV4QKhYLMzEwyMzPRarVEo1GmpqYYHBx8LjudMJny8/NpampCq9WytrYmFgVNTEw817gmJia4ceMG\nKpWK3NxcsffH9gkm+KiXlpZYXV1lbW1NFD1BtIUfl8slxuo0Go1YLJDMUu9nITRTqqiowGw2i6/P\nzMzw6NEj/H5/SkRE8DIPDAxw7do1Tp48SVZWFllZWYRCIbG/xNzcHD6fD7lcTnNzM0VFRQBiiXqq\nHnZCzD07O5vjx49z9uxZTp06RTQaZWFhAZfLhcvlwu12s7a2xvHjx8nIyMBkMokhEo1GQ21tLevr\n6/h8PoaHh/F6vSlvXbtdGBOJhNhOOdkl/d9lc3OTlZUVHj58iMFgoKKiglgsxsrKyo5rIoxV6HVT\nWFhITk4ORqORjIyMHR0RX5YDIdjw7RZDMNY/efKE+vp6/umf/omSkhLRpJ6RkcHg4CCBQGDXtqCC\ni0KIUa2vr7/Qykno6tfS0sKFCxcwGAw4nU4ePnzItWvXmJqaeq5xDQ8Ps7S0RDAYpLa2ltzc3Gf+\nXjAYpK+vj9nZWRYWFkTb4bMoLi6mpaUFi8VCLBZLepx4O8JWvqKigldffRW9Xr9jFzIyMsLdu3dT\n5gpKJBJEo1Hu37/PxsYGZrOZ4uJisfLzyZMn9Pb2cvfuXXw+H3a7HZvNRm5uLjKZjKGhoZQ23ddq\ntdhsNpqbm3n33Xd58803icfjdHR08Pnnn/PkyRPGx8fx+XxkZ2djsVg4evSo2EtdcLsID8qFhQUS\niQTDw8MEg0GxPgK+FbJkPzS3O6nUajWlpaXY7XaxcjMVDxBBczo6Onj69Cmtra1iIdyzkocZGRmc\nOHGCy5cvi6HI3ebACLZAPB7H5/Px6NEj2tvb2draEreBwmkugUAgKf5cYZu8vr7+XHFJoUDm1KlT\nvPXWW5w4cYLNzU36+/u5deuWWIr/vAQCAW7dusWjR49+0BYolCWHw2Gi0eiPxn5tNpvYVEloUpWq\nPi1KpRK73U55eTllZWXi5wmHw4yMjDA6OprSB4jA8vIy9+/fx+l0ii0IBOub3+9ndXUVs9mMw+Gg\noqICq9XK6uqq6H1ONsLOrba2ljNnznD+/HkqKiqIRCKMjY3R1dXFzZs3xXusoKCAf/zHf+T06dPY\n7XbkcjlDQ0M8ffpU/P5tNhu/+c1vaGho4PHjx9y5cwe32y3eO8vLy0l3kGxfwWq1Wmpra6msrMRm\ns71w8/8XZX19ndnZWdbW1ojH4z/omHK5XPj9fkpKSnj11VeTMpYDI9jCCtVqtZKVlSW2YtyevBO2\nscn6MoXMr9fr/Vl/Q/Dn5ufnU1tby8WLFykvL2d5eZl79+5x+/Zt+vr6XjjBIzTO2i00Gg3p6eko\nFAqcTifffPNNygQ7IyODixcv8sorr4gWMyEO/Ne//pX+/v6UxYK3E41G8Xg8eDyeH/wdi8WC0Wgk\nPT0dtVpNNBplbGzsR//PbiCTydDpdJSVlXH69Glef/11amtrWVlZEXusdHV1sbCwIJ568sorr4gH\nbKyurjI0NERXVxdDQ0PYbDaxmZndbqesrAyr1YrD4RA7zEUiEW7fvk1XV1fSPpfb7WZiYgKHwyH2\nPBfOFq2pqRH976liY2ND9Kb/1O+9rG3vp9j3gi2Xy0VXQ2FhIYcPHxZj11VVVWJsKBAIMDc3x/j4\neNKe/oIP+OdMROEBI8TYz549S3NzM3Nzc3z55Zf8x3/8R8qa2L8Ii4uLjIyMpEwkzWYzV65coaGh\nQawQ83q99Pb28qc//em5Y/yp5LvJqPX1db755pukf78KhYKsrCxef/113nzzTZqbmwkGg3R3d/Px\nxx/T3d3N8vKyeDLR5cuXefPNN8nLyyMQCDA0NMQf/vAHHjx4wPz8vGj1FCyAR48eFf35CoVC7Env\n9/uTKtjT09M8fPhQPKRCoKCggObmZgYHB5PeBEroW/1z4/fC4qy2tpacnJykjWtfC7ZSqcRsNlNT\nU0NTU5PYDEo4tkpIQmxtbREOh8XY9W4/4YQJKWzNfihevJ2ysjKOHTvGuXPnqKioIDMzk6dPn/LZ\nZ5/x6aef7kl5/X5GeChvt5pNTEzQ1dXF8vLyvj5Ud2lpidHR0aQflvFdiouLefXVV7l06RIlJSW4\n3W4+//xzOjs7efLkCVarlba2Nqqrq6mrq6O0tBSDwUBnZyePHj2ip6eHoaEhPB6PWPcwPz/P2toa\nIyMj9Pb2cvToUWpra9Hr9SwvL/PFF19w+/btpH6uQCCA2+3eEx+4EGLKycnBZDIxMzNDKBT6yfBn\nYWEhra2tvPfeexw+fDhp49t3gi1Y0EwmEw6Hg+rqalpaWjh8+DAlJSVkZmaKK7BwOIzT6RQ9ug8e\nPEhqVl6pVIpjqq+vx+VyiSEDo9FIVlaWeC5lXV0dR44cob6+HrVajdvt5sGDB9y7d4/h4eGkjXG3\nUKvV6PX6Xctu/xh5eXk0NjaKjf4F0XM6nQwNDREMBvfEXvZzUSgU3ztlKBWUlZVx9uxZKisrMRgM\nuFwuNjc3sVqtNDU1UVRUJJ6IXlhYSCAQYGRkhKtXr/Lw4UMmJyd3JOi3H74hHGG1tLTE06dPRVfT\n119/nfRkqhCOO3fuHJmZmeJDPCsrS7ScLi8v77oXX6/Xi/23hYMnvtt2YjsKhQKNRoPJZKKtrY2L\nFy9y9OhRsrKyxBDt5ubmrnrw951gC9VF9fX1nDx5ktdff11sIyogTGifz8fAwAB//vOf6erqSlr5\nr+BWELY9bW1tBINBvvrqKzGGXFZWRltbG0eOHKGwsBCr1YpGo8Hr9TI5OUl/fz83b95kcnIyKWPc\nTWQymfgASkWP5CNHjvCrX/0Ks9m8w861vLzMzMzMvulp8UNkZ2dTUVHxvZLvZFNVVcWZM2fExmHp\n6em89tprnDp1Cr1ej91uFws9EokEDx8+5MMPP+Qvf/kLbrf7J3cDc3NzzM3N0dHRkfTPsp2JiQnk\ncjnvvvsu2dnZYliktLQUgA8++EDs5b2bZGVl0dzczNtvv01rayubm5s8fvwYj8fzzA6LarUaq9XK\n4cOHuXz5Mm+88QZarVYsTY/FYkSj0R0Om5dlXwi2UJklVOydP3+e+vp6SkpKsNvtO07EECbxo0eP\n6OvrY3h4mPn5+aQneARkMhklJSXodDrq6upYW1sjkUiQn58v2qV0Oh2hUIipqSnGx8fFJM3i4mLK\nD1t4EbYiJw0vAAAGlUlEQVT7S5MpQEJZb1lZmehO2dzcxO/3i72jA4HAvl5dw99WZtt3B6kgEokQ\nCAQwGAwolUqxuyF8mwAbGxvD6XQyOzvLxMQET548YWRkJOV95F+EeDwuxsu3l4In8/o2Njby61//\nmoaGBmw2G8FgkPb2dgoLC59Z9JKbm0tpaSkVFRUUFxeLD2yPx8PU1BS9vb18+eWXu3r4x54JtuBv\nttvt5Ofnk5WVRU5ODmVlZZw7d45Dhw6JK4dwOIzP52NpaYnx8XGGhoa4f/++ePp0Mr9EoTx+ZWUF\nv9+PXq/HYrGQmZlJQUGBmJQTuqBFo1Fx5d/T07OjSdVBQqvVfq+f724jnMqem5tLbm4uaWlpYnXl\nl19+yeDgIJFIZN8LttDvXPANp4rJyUlu3bpFWVkZJpMJlUollpgLcfXp6WlmZmYYGxsTWxfs9+sJ\n3z6Mnj59SkVFBQUFBeLryZzrubm51NXVkZeXJ67qT5w4QW1t7TPj6Xa7nUOHDpGdnY1cLicSibC6\nuiq2XO7p6WF4eHhXTRB7JthyuRytVsvJkyd5++23xeog4dTx7bFTQQD/+te/0t3dzdjYGOFwOCUG\n+lgsxszMDOPj48zPz4vFE0J4RDivTSaTEQ6Hcbvd3Lt3j/fff59r166xtbV1ICbId7FYLBw6dCip\nJ2cL94BwSrdcLicQCDA7O8vHH3/M6Ojonhya8Lx4vV6mpqaIx+NJ35Vs59atW4yMjNDS0iJa8Px+\nP48fP6anp4dAICDaXAW3w34s+34WoVCI+/fvU1dXx9GjR/dkDHq9nldeeeUHr5tcLhd/QqEQLpeL\n3t5ePvjgA65evUokEtn1+zelgq1SqcRzDKurq3E4HNTV1VFZWYnRaESr1YoCIWyNBwcHuX37Nvfv\n32diYgK3200oFEpZuezm5iarq6vcunWL9fV12traaGlpoby8XJyYoVCIgYEBcRs/OjrK2NjYnp6B\n+DIIopOKhON3BU5I1sTj8QMh1vDtSSnz8/MsLS1htVpRKBSYzWb0ev2u9I/4IYSTdx48eMDIyAga\njWZHL+ztQn3QEGoMFhYW8Hg83ztuKxn09PTwv//7v7S1tVFTU0N+fv4zd5gbGxv4/X6i0SjhcFjs\nLbR97q+vryfl2qdUsIUS0/b2dtrb23E4HKLrIxqN4vf7xfPOfD6feEZiV1cXAwMD4rYzlQiWQcH+\ntLS0hMfjYX5+XizY8fv9dHd38/DhQ4aGhva9De2HCIfDrK2tpUwot9sxg8Hgvji9+0UQdlZPnjzB\nZrOJfbSdTifBYDBphz8IBzrMzMzs+nvvNUJZeF9fH9nZ2WKnPKfT+cKVwT+F0AXS6/WKTeSys7PR\naDRsbW2JDpqVlRVmZmbw+/2sra0xOzvL4OAgQ0NDSbcjplSwBR/zkSNHaGhoEEMfQoLhyZMnTExM\nsLm5SXd3N/fu3WN1dZVwOJz0CqKfIhKJiE/7mzdv7ggVCBnhWCwmrmoOIktLS4yMjCStrPa7bGxs\n4Ha7mZ6eZnp6mrKyspT83WQQCATo6OjAbrdz4sQJLl68KDZRcjqd+97pst8QYvF/+ctfuHbtmljI\nIlgPkyGKq6urYnWtcELM22+/jcPhYGNjg2+++Ub86enpEXv5CBWOqZj7KRXsYDBIV1cXLpeLTz75\nRHxd+BJ8Ph8rKyskEgkWFxfFY6/2w5ZO6CMi9BL5v8jMzAyff/45c3NzosslmRVlQtjr5s2bLC4u\nYjKZxJOGvnu81X5nfX2dvr4+ampqKCkpoaioiJMnTxIKhbh69Soej+fAhHj2C1tbW6yvr6dsvgkL\nL0Gc/X4/Q0NDGI3GHfelx+PB5XIRCoVSXtwjS5YYymSyvVdZCYkUIRx0cf78ed555x1aW1uJRCL0\n9vby7//+72KiXELi55BIJJ6Zud4XPmwJiYOO0HhM6Gzn9Xo5ceIEjY2N5OTksLCwIAm2xEsjrbAl\nJHYR4Si7mpoaSktL0Wg0dHR0sLCw8H82lCax+/zQClsSbAkJCYl9RsoFW0JCQkJid0l+ZYSEhISE\nxK4gCbaEhITEAUESbAkJCYkDgiTYEhISEgcESbAlJCQkDgiSYEtISEgcECTBlpCQkDggSIItISEh\ncUCQBFtCQkLigCAJtoSEhMQBQRJsCQkJiQOCJNgSEhISBwRJsCUkJCQOCJJgS0hISBwQJMGWkJCQ\nOCBIgi0hISFxQJAEW0JCQuKAIAm2hISExAFBEmwJCQmJA4Ik2BISEhIHhP8H8pS7yD5yyasAAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -676,8 +465,8 @@ ], "source": [ "# we use a little trick to tile the first eight images\n", - "imshow(solver.net.blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray')\n", - "print solver.net.blobs['label'].data[:8]" + "imshow(solver.net.blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')\n", + "print 'train labels:', solver.net.blobs['label'].data[:8]" ] }, { @@ -691,204 +480,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "[ 7. 2. 1. 0. 4. 1. 4. 9.]\n" + "test labels: [ 7. 2. 1. 0. 4. 1. 4. 9.]\n" ] }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAWwAAABKCAYAAACfHW4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJztnWlwXNd153+3V3RjaaDR2Bs7sRMgQIKgKAokuIgUpcg2\n", - "q+QljstO4kpS9iQzlUlqMpkPSWZSlclM1SSTmg+umrI9ZWdGViS5ZMuyJVIUSJEUwA0QSew7QKCx\n", - "Aw2ggd4bbz4A7wncRABEo4Ho/apYbLzeTt9+fd695/7POUKSJFRUVFRUdj6aSBugoqKiorI+VIet\n", - "oqKisktQHbaKiorKLkF12CoqKiq7BNVhq6ioqOwSVIetoqKiskvYtMMWQrwkhOgUQvQIIf5iK41S\n", - "UVFRUXkUsRkdthBCC3QBpwAHcAv4bUmSOrbWPBUVFRUVmc3OsGuAXkmSBiVJCgBvAF/eOrNUVFRU\n", - "VB5msw47Axhe8/fI6jEVFRUVlTCh2+TznhpHEUKoOe8qKioqm0CSJPG445udYTuAzDV/Z7Iyy1ZR\n", - "UVFRCRObddi3gQIhRI4QwgB8HXh368xSUVFRUXmYTYVEJEkKCiH+GDgPaIEffdEUIlFRUeTm5mI2\n", - "mzEYDMTGxpKUlITVagVgYmKC0dFR5ubmGB8fZ3p6OsIWq6io7HY2JetTnizEILAAhICAJEk1a+77\n", - "VxvDNhqNpKWl8Vu/9VukpKQQHR2N3W6noqKCoqIiAD799FMaGxvp6enh2rVrNDc3s7y8HGHLn4xG\n", - "o8FkMmE0GvF6vfj9foLBYMTsEUKg1+sxGo3o9XoAgsEgHo+HQCAQMbtUVLaDJ8WwN7vpqLwuUCdJ\n", - "0uwzvs6u4tChQ7z66qscPXqU+Ph4dDodUVFRxMbGIl8Ac3NziYmJobS0FLfbTX9/PwsLCxF1gk9C\n", - "r9djtVp57bXXqK2t5fz58zQ0NNDV1RURe4QQGAwGqqurOXbsGPv378fv99PV1cXbb7/N4OAgS0tL\n", - "EbFNRSWSPKvDBnjsleBfI9HR0ZSVlXHmzBnOnDlDXl4eJpOJUCiE2+1mdnaW4eFhTCYTCQkJZGdn\n", - "k5CQQHl5OXfu3KGtrW3HOuzU1FSqqqo4cuQIra2tmM3miNmj0Wgwm81UVFTw6quvUlZWRiAQwG63\n", - "09HRgcvlipjD1mq1xMbGsmfPHhITE2lsbGRhYeGpz4uNjSU6Ohq3271jVgl6vZ7ExESKiopITU2l\n", - "p6eH4eFhpqen2Y7GJjqdDovFQllZGQCzs7OMjo6yuLiI3+9f9+totVqMRiMWiwW3243L5drRq9ln\n", - "4VlriUjARSHEbSHEH2yFQTsVIQSJiYl885vf5Ctf+QplZWVERUURDAZZWlrC4XBw+/ZtLly4QGNj\n", - "IyMjI2i1WqxWK8XFxezbtw+TyRTpj/FY9Ho9GRkZWCwWgsEgTqcTt9sdMXt0Oh0JCQmUlpZSXV2N\n", - "yWTCYrGQl5dHeXk5KSkpEbPNYDBgt9v5+te/zp//+Z+v25aUlBRKS0tJT08nJiYmzFauD5PJxN69\n", - "e/n+97/PP/7jP/LVr36VPXv2oNFoECL887Do6GgKCgr43ve+xx/+4R/y8ssvk5WVteHfSVRUFMnJ\n", - "yezbt4/MzEy0Wm1Y7RdCoNPp0Ov16PX6bRkrmWedYR+RJGlMCJEEfCiE6JQk6epWGLbTSEhIoKCg\n", - "gKqqKtLT0wkEAkxPT1NfX8/ly5eZnZ1lenoal8uF2Wzmtddew2KxkJycjMFgwGw2o9HszFpber1e\n", - "cSTz8/O0tLQwOjoaEVuMRiOZmZl84xvfoLq6OiI2fB5RUVEUFhaSlpa2IceQnp7O4cOHEUJw5coV\n", - "rly5EmZLPx+j0UhGRgavvfYalZWVxMfH85WvfIWRkRGamprCOkPVaDRERUXxyiuv8I1vfIOysjIc\n", - "DgdDQ0MsLCyse7Kg0WgwGo289NJLfOlLXyIlJYVf/epXTE5OMjs7G5bVrF6vx2azcfToUbKysvD5\n", - "fLz11ltMTExsy6z+mRy2JEljq/9PCSHeYSVlfV0OW46bJicnY7FY8Pv9hEIh/H4/09PTeDwe/H4/\n", - "Xq93RyxvYmJiSEtLIz09Hb1ez/j4OFevXuXdd9/l0qVLir1arZasrCy8Xq+yrPR4PMzPzxMKhSL8\n", - "KR7FaDSSlJREeXk5UVFRDAwM4HA4cLlc22qHwWBQxresrIxTp06Rl5f3wGPkmXdmZiYzMzMsLS3h\n", - "crm2bTUghMBkMlFcXExaWtqGLsA6nY74+Hjy8vIYHBxEq9WyvLy8LaGHxxEbG0tOTg7V1dXY7Xa0\n", - "Wi1xcXFERUWF1SatVovFYqG8vJxTp05x5MgRnE4n9+/fp6uri/n5+XWHi4xGI4WFhdTW1lJXV8fY\n", - "2BhCiLD4C9lR5+TkUFZWxsmTJ8nOzmZmZoaPPvqI6enpne2whRBmQCtJkksIEQ2cBv7zep9vMpmo\n", - "qKigrq6O8vJynE4nXq+XmZkZrl27hsPhYHZ2lomJiQ3Fs8KFyWQiLi4OrVaLy+WitbWVH/zgB7S2\n", - "tj4Qw4yPj+fYsWMcOHCAlJQUdDodY2NjdHR04PV6I/gJHo/FYmHPnj3U1dXhcrn49NNPIxIOiYmJ\n", - "4YUXXuDw4cPs37+f0tJSoqOjH3iM0WgkLy+PpaUlrFYrQ0NDdHV1cf/+/W2xUQiB2WympKSE1NRU\n", - "pqam1v1cp9PJxMQE1dXVJCQkYDAY8Pl8EXPYNpuNPXv2kJSUhMlkYn5+njt37jA4OEgwGAybXUaj\n", - "kaysLH73d3+X2tpalpeXuXnzJj/72c94//33N+T04uLiOHXqFAcOHECj0fD+++/T2NgYFgmt2Wxm\n", - "//79nDt3jtOnT2Oz2TAYDHR1dREXF4dOp9uWfYmnOmwhxI+BV4BJSZLKV49ZgV8CB4UQflayHP9Z\n", - "kqQL631ji8XCK6+8wuHDh0lPT1dm2D6fj0OHDrGwsMD8/DwOhwOfz7eu1wyFQiwuLtLR0UF7ezsT\n", - "ExNbNohjY2NcvnwZj8eDRqNhfHyc3t5ePB7PA48zm81UVlaSlZWlLJklSYrYD/NpxMbGKtLEnp4e\n", - "7t69+8hn2g7i4+N59dVX2bdvH1arFaPR+Mhj5Jir3W7nueeeY3x8nA8++IALFy4wOTkZ9h9MUlIS\n", - "JSUlFBYW4nK5aGpqWvfFTa/XExsbS2pqKgkJCej1+ohMRIQQaLVaSktLOXHiBLGxsQC43W6am5u5\n", - "f/9+WM9VeZVRWlpKUlISMzMzfPjhh7S3t2/YWefn53Py5EliYmJoamqisbGR4eHhpz95g5hMJrKz\n", - "szl37hyHDx8mMTFRiV3Hx8fz5S9/Gb1ez+3bt8MeEVjPDPv/AP8L+OmaY/8R+JUkSbWrtbATJEn6\n", - "rxt5Y1lnGwgEmJ+fx+v1KvK4goIC5Qcr3xcKhTAYDA/EDGVHGAwGlY2ShYUFrly5gt/v39Dy6mks\n", - "LCzQ3d2txKr8fj8ej+eBLychIYH8/HxKSkpISUlBkiRcLhfz8/O4XK4dGRJJTU2lqKgInU7H6Ogo\n", - "XV1d274SSE9Pp7q6moMHD5KTk/NYhyGHD6xWK0lJSQghmJ+fB8Dn8/HBBx8wOxsedakccy0tLaW2\n", - "thabzUZTUxMNDQ0sLi6u6zXi4uJIT0/HarViNpvRarVhsfVpaDQaYmNjlf0Ys9mMJEm43W7u3buH\n", - "w+EIy/vKG3WpqakUFhaSnp7O0tIS9+7do7m5ed17JvJ3UVJSwvHjx6moqGB0dJTm5ma6u7txOp1b\n", - "bntycjLl5eUcOnSIvLw8jEajco7GxcVx/PhxJEkiOjqawcFBxsfHmZubC8uF76kOW5Kkq0KInIcO\n", - "fwk4tnr7J8BlVpz4unE6nbz11ls0NzcTHx/P2NgYsbGxZGRkkJ2dTWFhIbm5uWRmZipSKKvVqiRR\n", - "AIrjdLlcmEwmoqOjkSQJv9/PxMQE7e3tWxqLlRUUwGNnzYWFhZw8eVLRYPv9fu7fv09vby/379/f\n", - "EaGdhykqKqK2tpZgMIjD4WBkZGTb7XzhhRf47ne/i81me+Imnt/vZ2lpCZ/PR0xMDBaLBavVyquv\n", - "vkp2djZNTU1hc9iy7PHFF1/ka1/7GsFgkKamJj766KN1n19ybD4qKiosNq4X+bPk5OSQkZGBRqNR\n", - "HHZnZyfj4+NheV+NRkNMTAz5+fmUl5djMplobGzkjTfeYHh4eN3nnGz/K6+8wne+8x1sNhu3bt2i\n", - "paVlSydoayksLOT48eOKgGAtJpOJffv2kZ+fz+nTp3n33Xc5f/48TU1NYQktbTaGnSJJ0sTq7Qlg\n", - "wzorr9dLR0cHDocDo9HI4uIiBoOBmJgYYmNjSU5OVjah5BlqZmbmA0vlYDCI1+tlamqKuro6Tp8+\n", - "jdFoJBAIhE2L+bjXjIqKIjMzk+PHj3PmzBkSExMJBoPKkv3evXsPbELuBGQ9cWZmJllZWXg8Hrxe\n", - "77baKW807tmzB7vdjl6vf+RC6Ha76ejooK+vD4fDgcfjITU1VZkhxsTEYLPZqKmpwev1MjQ0tOV2\n", - "xsbGUldXR0VFBcvLy/ziF7+gsbGRxcXFp55jspIhIyOD/Pz8iDtsk8lEWVkZGRkZyix/cnKS3t5e\n", - "lpaWwract1gsnD59mpdeeon9+/ezsLBAS0sLzc3NuN3udZ9zBoOBnJwccnJyiImJoa2tjYaGBpqb\n", - "m7dcm6/VaomJiaGkpISamhpiYmKUFbPb7cZqtWKz2dDr9cTFxZGdnc3JkycZGRmhvb2dpaWlLV9V\n", - "P3PijCRJ0mbS0AOBABMTE0xMTDz2frk+R2pqKi6XC5fLRUZGxgMOOxQKEQgE8Pv92O12Tpw4wfLy\n", - "MhMTExu6aj8rRqNRcSAVFRVotVqmpqbo6enh8uXL9PT07LhwiDxTkWOqcrLCdiX26HQ6rFYrhw8f\n", - "Zu/evSQmJqLVapEkieXlZQKBAIuLi4yMjPDhhx9y79497t+/j8/nIyMjg+rqanJycjCZTMTExFBX\n", - "V8fS0hJerxen00kgENiSC4/ZbMZut1NbW0tOTg5Op5OLFy/S3t6+rrEyGAxkZ2eTnZ1NYmIii4uL\n", - "uN3uiJ0PUVFRFBcXk5qaCqysFIeGhhTHGS5MJhOVlZVUVVWRlZVFd3c3Q0ND6155ajQaLBYLOTk5\n", - "HDx4kNzcXPx+Px9//DENDQ1huVDrdDqSkpLIy8tT3q+jo4O2tjbcbjd5eXmUlJRgs9mUXIGKigqq\n", - "q6tpa2tTkry28iK4WYc9IYRIlSRpXAiRBkxumUWrBAIB5ubmlA8sSRJLS0uPLJmjo6PZt28faWlp\n", - "iiKjra1tWzfP5GQK2ekIIRgZGeHmzZu0tbVtSE2wXciKi6SkJEKhkBJu2C7MZjP5+fl8+9vfprKy\n", - "koSEBGXGJ4ee2tvbaWxs5O2332ZkZASPx4MkSYyNjbG8vMzZs2dJTExUNrCNRiMajUbRxW+Fw7bb\n", - "7dTU1Ciz+cHBQQYHB9cdK42NjeXkyZMUFRXh9Xrp6+tjbGwsYnJVo9FIbm4uiYmJSJJEKBSipaWF\n", - "8+fPrytj81mR95xkvXUoFHrq9yTvd1VUVChZxrm5uYyNjfHmm29y9+7dsNgq5yfIobqhoSHeeOMN\n", - "3nzzTbRaLXv37qW2tpazZ8+Sm5tLfHw8sbGxnDhxAq1Wyz/90z/R19e3pXtCm3XY7wLfAf7b6v+/\n", - "2DKLVpFPprUzkYdnJQaDAZvNxssvv0xFRQVut5urV69y79495ubmtmW2WFlZSV1dHXV1deTn5+P1\n", - "eunv76e+vp4PP/yQmZmZHTe7hs9ORovFwtLSEtevX2dgYGDb3l+r1WI2m0lPTyc+Pl7ZNJ6dnaW3\n", - "t5cLFy7Q3t5Of38/Q0NDD4QfnE4nfX19XL16FaPRSFlZGQkJCdTU1BAMBunr68Pj8WzJEtlut1NZ\n", - "WYnNZmNkZITbt2+vW1NvMplIS0vj0KFDZGVlKRviXV1dYZXOPYn4+HhycnIoLCzEZrMp+z3j4+P0\n", - "9/eHfUUqf1551fHiiy8SHR2Nz+djaGiIkZFHS+onJCSQmppKeno6VVVVHDhwgNzcXBYXF+ns7GRy\n", - "cjJsEzM5nKXX65XfSEtLCxMTE2g0GuViIyte4uPjEUIQFRVFdHS0ohDbStYj6/sZKxuMNiHEMPBX\n", - "wN8DbwohvgsMAl/bUqvWSXx8PIWFhZw4cYK8vDwmJye5ceMGPT09YZ8tyvKoqqoqvvrVr1JSUoLZ\n", - "bGZ2dpbr169z6dIlbt++vSM3Gg0GA/Hx8eTn52OxWJiZmaGhoWFbHbY8flFRUUrs2uPx0NfXR319\n", - "Pa+//jpDQ0OPnZ34fD4mJia4cuUKdrtdiQ3n5eURCoVISkrakgJRGo2G9PR0SktLldl1Q0PDul9X\n", - "zo7du3cvVquV4eFhrl27Rm9vb0Rm11arlT179pCZmUlsbCx+v5/JyUnGx8fDtmErEwqFmJ2dxeVy\n", - "odFolBCmvPJoaWmhvb39keelpaWRl5dHfn4+2dnZJCUlEQgEaG1t5ebNm2GtKaPVaklISMBsNisX\n", - "FXnlFgqFGB8fJyoqSlGASZKEEAKv18vCwgJ+v3/Lv+f1zLA9rNS87lqjw/4boBiYApKA54APttSy\n", - "dZCfn88LL7xASkoKGo0Gl8vFxMTEuqVWz4KcGZaRkaHEUuWNxgsXLtDa2hqWL2wrsFqtlJSU8Pzz\n", - "z2OxWOjp6VF065HC7/cr8eq33noLh8PxuRc7j8dDe3s77e3tiu794R38Z0EuN5uSkqK8dl9fH9ev\n", - "X1+3k8jNzeXw4cMkJSUpn6+rqytiITKr1aps7gIsLi7S2NhIf39/2N/b5XJx7do1cnNzKS4uJi4u\n", - "DpvNhsViQZIkiouLHztTNhgMGI1GDAYDBoOBYDDI7OwsN27c4IMPPghrGMdsNlNVVYXdblcyXJub\n", - "mx8Iwcjh0ISEBOXYzMwMQ0NDuFyuLV/lb1aHLQH/IEnSP2ypNetErjJ28OBB6urqsFgstLa28v77\n", - "79Pd3b0tsTiLxcLLL79MTU2NUmLV4XBw9+5durq6mJmZ2ZHOGlYSQIqKisjIyCAQCDA2NobT6dzW\n", - "GLaMEAIhBE6nk9dff52LFy8yMDCA2+3+3PFbXl5W5J5+v1+Z3URHR1NTU8PU1NQzaXJl3XBcXBzR\n", - "0dEMDAxw//79DZ1bCQkJyo99bm6OsbExXC5XxCr1yfasdXzbtbLy+Xz09vby61//mqmpKdLS0khN\n", - "TSUjI4OioiIsFgsajYbBwcEHVlVy8tuLL76I2WxmaWmJkZERent7GRwcDOsKNhAIMDo6yvz8PHl5\n", - "eeTk5JCZmUlqaioWi4WUlBT27dtHRkYGOp0Ov9+PwWAgKSmJwsJCUlJSFEXJVrFZHTZEsKyq0Wgk\n", - "Pz+fAwcOUFVVRTAY5ObNm7z99tv09/eHfbNRlqOdO3eOAwcOYDAY8Pv9dHd309DQwNjYWESyBddL\n", - "UlISe/bswWKxMDg4qGzobecFRq4fLm/Syrr8jo71NS6SS7CazWZls1GOHxYWFnLr1q1ntlGj0aDT\n", - "6RQlhdPpRKPRPHWchBBoNBoSEhJIS0tDr9czPz/P2NhYRJy1XF88NTWV3NxcDAYDgUCA2dlZ7ty5\n", - "89jY8VYTDAaZmpri4sWL3Lx5E7vdTkFBAfv27SMQCGA0GpmYmODmzZsPaNu7u7uRJInq6mri4uJY\n", - "WFigra2NgYEBJXEqXHg8Hu7du8ehQ4c4ePAgdrudsrIyJicnSU9Pp6SkhL1792KxWJiensbtdmO3\n", - "20lNTWX//v0UFxczMzOzvQ77c/gTIcS3Wenv+GeSJM1tkU1PRZYmpaWlEQgE6Ovro7Ozk6GhoW2J\n", - "GaelpVFZWUl+fj7x8fH4fD76+/v5+OOP+fDDD7dlhv8sWCwWRVXjcDhoaWnZ9gtMXl4ezz33HGaz\n", - "eVNFkEwmE6WlpZSUlJCeno5Op2N5eZn5+XkuXLiwbsf/JCRJwufzMT09zdTUFDabDZvNhtlsfurs\n", - "f22SSEVFBSaTienpaQYGBiKyp2E0GsnJyaGqqorKykplprq0tITT6dzW715Wf3k8HkVJ9dZbbyGE\n", - "UPIn1m7o6nQ6SkpKkCSJ+fl5Ojs7eeedd2hpaQm7rV6vl97eXhwOB6FQiOTkZF577TVefPFFDAYD\n", - "JpMJjUaDw+Hgo48+oq+vj9///d+noKCApKQkamtrGR8f39J0+c067B8A/2X19t8C/wP47pZY9BQ0\n", - "Gg3R0dEUFxeTkpKixMba2trWlcjwLMgzleLiYmpra0lOTsZoNOJyuRgZGVEq3e3EJgXw2a53amoq\n", - "drsdj8dDb29vRBy23FJtI4kkGo0Gg8FAdHQ0OTk51NXVUVxcTFRUFBqNRsl6HRsbe+aLpqygmJub\n", - "Y25ujoyMDA4fPozT6aSjo+ORWZNOp1OaFMTExJCQkEBVVRVxcXHAZ5makVAMyVUOExMTFSWD0+lk\n", - "eHh42zXhy8vLD+jsnxbPr6ioUDIje3t7qa+vp7W1lZmZmbDbGgqFmJmZoampifr6eg4fPqyEcQCl\n", - "qFt9fT3Xrl1jfn6eAwcOKCuriooKmpublZozWzHOm23Cq+iuhRA/BH71zJasE5PJRHJyMsXFxSQk\n", - "JDA1NUV9fT1dXV1hX9LrdDoSExOprKzkhRdeIC4ujlAoxMLCAn19fVtabCocyPZnZWWRlpaG0+mk\n", - "t7eXnp6ebbdFDss8rsjTk9DpdNhsNrKysqiqqlLUQbDy45IbHm/Fj0PWC8/OzjI+Pk5eXh61tbWk\n", - "pqZy8eLFR+LjcpgsOTkZm81GUlIS2dnZyspBrj0TiWxXrVZLfHw8ZrNZkZqNjY3R2dm5IytIwmeT\n", - "o71793L8+HGio6Pp7Oykvr6eycnJbVmpLC8v4/V6uXHjBhqNBpvNRmFhIdHR0SwvL9Pe3s57773H\n", - "z3/+c8bHx4mPj+f27dtkZ2eTnp5OXl4eBQUFZGRkMDg4GDmHLYRIk2thA+eA8K9PViksLOTUqVMU\n", - "FRXh9/tpb2+nu7t7W664sbGxHD16lJqaGjIzMzEYDIyMjHDjxg3efffdZ16Ghxuz2Ux1dTWFhYWK\n", - "7eGWc20lchJKXV2dUsfZaDQqiRj19fW8++67W7qP0dbWxi9/+UsASkpKlLTux62iQqGQIlW0WCwP\n", - "dJYZGhri9u3bEWltJpcyzsjIUJxQV1fXhhQv243ZbKa0tJTnn3+e/fv3o9PpcLvdTw1HhQNZLhwV\n", - "FaXowL1eL5cuXXog18LlcvHRRx8pq5m8vDwOHDjAyMgI//Iv/7IlF8fPddhCiExWYtRWQCuEcAJ/\n", - "BpwWQrwCGIB54MgzW/IU5ALihw4d4uTJkyQmJnLnzh0++eQTJiYmtkXhEBMTw9GjR9m7d69Sq7mz\n", - "s5MPPviA1tbWHe/85IQFudrd3Nzcjv3BPkxBQQEHDx7k2LFj1NTUUFhYqNzn9/uZmpri3r17NDY2\n", - "4nQ6tywsNT4+zo0bNwiFQpSXl5Ofn09MTMwj1fZkna7X6yU2NpYDBw6Qk5OjrCAWFhaYmJjY9pCI\n", - "wWAgMTGRqqoqMjMzFccyNDREd3f3jp1hR0VFUVZWRkFBAXFxcQwPD3P//n2mpqa2PeTo8XgYHR3l\n", - "ypUrjIyMkJaWhs/no7Ozk8HBQaUMglzsraWlhZKSErKzs8nNzaWqqorz589vyXn5tBl2ADgjSdId\n", - "IUQM0AQ0sqLB/ltJkv77annV77LBan0bQS4cX15eTl1dHbW1tSwtLdHS0sKlS5e2rTtKTEwMhw8f\n", - "fqATSmtrK7/5zW9wOp2EQqFHUucfXgKvvV+WtOl0usc+LxAIbG0dgtWQiLykW1xcjIiUby3y55bH\n", - "QR4Lg8HwQG/Buro6fud3foe0tDRsNtsDr+H3+xkeHqavr2/LmxksLi7S09NDT08P9fX12O12UlJS\n", - "HqgaCSs641u3bik1b77//e9z9uxZrFYr8FnsdrtDImazWdkkT09Px+fz4XQ6GR0djVgbuPUQFRVF\n", - "UVERKSkpeDweWltb6ezsZGxs7OlPDgOysODzNOtyGG1oaIg7d+5w9OhRJVnJZrMxNjb2zDkin+uw\n", - "JUkaB8ZXby8KITqADLagvOpGMBgMpKenc+7cOSorK5WrW1tbW8TLlsoVBoPB4CNXz+XlZXw+n5IF\n", - "JW+ayT92efZTU1OjFJKHlS/e6XRy6dIlZmZmtmxGIdcRTktLUxJPIvUDkC9W8j85McFoNGK1Wjl7\n", - "9iwZGRlKQ9aMjAylWuPDddFnZ2f58Y9/TENDQ1htnpubw+fzMTIy8kh7sEAgoIRhgsGg0sJMxmKx\n", - "KF1qtnOfIzExUZnpCyHweDy0tbXtaGcNnynBbDYbMzMzShG13cDIyAjXr1+npqaGgwcPkpGRwdGj\n", - "R3G73c9c92TdMexVLXYVcIMtKK+6gfdlz549nDhxQskam5qa4pNPPqG9vT3iErri4mLOnTv32Nia\n", - "z+fD4XCwuLhIMBjEaDSSkpKizBD1ej0JCQns37//gXinJElKEfS7d+9uiVONjo4mJSWFzMxMLBYL\n", - "ExMTjziV7UTOBpO7r8TFxXHmzBlmZmaIj4/nxIkTpKWlKSoS2bE/XH51dnaWzs7ODRXB3yw+n29d\n", - "KxI5TrzWMcsz7O1GLj+r1+sJBoPMzc1x8+bNsFS32yoSExPZs2cP2dnZREdHMz4+Tmtr646/yMi4\n", - "XC4GBga4evUqKSkpVFVVcfz4cRwOh9KlarPnwroc9mo45OfAv1vt4ajct9nyqut8XzQaDbW1tfzR\n", - "H/0ReXl5uN1u+vv7+c1vfvPY2gPbwVqHcerUKU6dOvXYxy0sLHD9+nUcDgderxeLxcK+ffsoKyt7\n", - "6uvKnZ+Xlpa2xGHLPfxsNtuGlBnhor+/n8bGRvLz8zGbzVitVn7v937vEYf8cAhBPtHl4z09PRuq\n", - "77EdPLx6gJUfcbiaA3wesgxSlj3KNVj6+vq23Zb1kpeXx5EjR0hNTUWn0ynZjXNz25bq8UxIksTC\n", - "wgKXL1+mrKyM559/nlOnTtHV1cUnn3zy1LILn8d6ij/pWXHW/yxJklyVL+zlVWFFjiTXP5BrINy9\n", - "e5d33nmH/v7+bf+RejweOjo6SExMVLSYn4e8O19QUEAoFEKv1xMfHw981vJKdjyjo6MMDQ0pTYcX\n", - "FhZoamovsU04AAAJfUlEQVRicnJrhjY9PZ29e/diNpuZn5+nv7+frq6usDQsXQ9yGv9LL71EfHz8\n", - "ui4ioVAIt9utdNm+ePEibW1t9PX1hT3rbSPI3+va7zdSzStSUlKUlntut1uZBOxk+enapKq1Dax1\n", - "Oh0Gg4GoqCi8Xm9EmkWvFzmt/ZNPPsFut3Ps2DHKy8s5e/Ysv/jFLza9Af00lYgAfgS0S5L0P9fc\n", - "FfbyqnK9kMOHD1NWVobRaGRgYIDGxkauXr26bVrMtbhcLi5dugSsCPof3ig0Go1ER0djtVrR6XRK\n", - "k4D5+XmlVsfY2Bj3799XwhHyEtvhcDAwMMD4+Dh+v1+JlT6rQ5VXKRkZGZSWlmIymZiYmKCrq4vR\n", - "0dGIhkQ6Ojq4fv06brdbqS3x8GbeWnw+H93d3XR0dHDnzh3Onz+vdKHZSQ5IHnP5/IjEZqNsh6y7\n", - "NxgMzM3Nsbi4qPRI3alYrVbF5oWFBZxOJ4mJidhsNpKTk5Ekid7e3h29SpDzM1paWkhNTaW0tJSs\n", - "rCyOHj1KY2Mjc3Nzm7rgPG2GfQT4FnBPCPHp6rG/ZBvKq5rNZgoKCvje977H/v37mZ+f57333lPq\n", - "JEciHjgzM8NPfvIT+vr6eP7555U6GDJyd4rnnntOyXADGBwc5Pbt28qGk8vl4ubNmwwODir68YdV\n", - "BPLs7Fk/p1z83W63K1mBDoeDe/fusbS0FLGZn9vtpq+vj5/+9Kfs37+f5557jjNnzjxQ9exhFhYW\n", - "+Oijj3jvvfe4deuWUlN6J7Veg8/GXO6gEwgEtt1ByuVrY2NjSUxMRKfTKR2agsHgji1M9jCSJBEV\n", - "FUVVVRV79+6lsrISh8PBm2++uaMdtszQ0BA3btzglVdeobKyksrKSjIzM3E4HGFx2EPAx0AyKxX6\n", - "/rckSR9sR3nVnJwcnn/+eaV32/j4OL29vYyPj0dsdiBrLdva2pienn4gRgkrO9txcXGPNOucmZlh\n", - "ampK6TIi64ZdLlfYdbBrW24tLCzQ0dHBtWvX+OSTTyIa95XrX3d3dzM7O0t3dze9vb2Ul5dTVFRE\n", - "dnY2c3Nz9Pf3097ejtvtxuVycePGjW1t/7YZzGYz+/fvJy0tjcnJSW7evBmRpCpJkpibm2N0dJS0\n", - "tDSWlpa2VHW0HWRnZysJK4uLiwwODvLxxx/vGsWI1+tlYGCAH/7wh3zrW9+iurqaY8eOMTMzs6lw\n", - "53p02H+6VocthPiQMJZXlTuRyFlOSUlJSjnIqampbal1/TQ+rxflTiQUCjE4OMiVK1eUrjzd3d0R\n", - "DyMEg0Gmp6eZnp5maGiI0dFRenp62LdvH4WFhUxPT9PR0UFzczOLi4sEAgGmpqZ2/OaTrHdfWFjg\n", - "3r17vP/++3R1dW2rDfLKY3h4mObmZmw2G+Pj40xOTu54hz09PU1fXx9msxmtVqusVuSs4oaGhl2j\n", - "GJHP8YsXL1JWVkZVVRUHDx6kra2N5uZmfD7fhlY7m9VhQ5jKqxoMBnJzczl06BBHjhxRMgpVNofc\n", - "HaO+vp6GhgZFG75VTWq3CjldemBggF//+tdK9b1AIPBAAlEoFNrxy3k5kaepqYmPP/6Yu3fvRuQi\n", - "s7y8TGtrK8FgEK1Wq9i1k1cnAHfu3OGNN97A7/fj9XppbW3l8uXLjIyMMD8/z9LS0o6/6KxF7lE6\n", - "ODjI8PAw+fn5SlLQ6Ojohr6Pzeiwr7MS2w5LeVW5SajdbicuLg6tVqvsbns8nl31Re0kPB7Pjq7R\n", - "Lcd6Iz3r3wpmZ2d54403WFxc5P79+8zNzUXsc7lcLrq7u3nrrbdYXl5mdnZ2R6srYKUcQENDA9PT\n", - "08rKemhoSHHUO/2C/TiWl5e5desWFouF73znO5hMJmw224bFExvRYb/Nig57UQgRtvKqOp2O5ORk\n", - "pTGr3Gm6qamJqampHT87UFFZqyaKNPJ+SaTakm0Gl8uFy+XaFZuKG6Grqwufz0deXh7Dw8ObWuFu\n", - "RIf9f2Ud9naVV5XbV73zzju8/vrrjI6O7uhZooqKisqTCAQCDA0N8Xd/93cEAoEHZL3rRXyel1/V\n", - "Yf8EmJEk6U/XHFfKqwoh/hQ4KEnSNx967qYCpGazmaKiIkpKSrDb7czPz/Ppp59y9+5dpXefioqK\n", - "yr9mJEl67B7h0xz2C8AV4B4ryhCA/wT8NlC5emwA+KM1tUXk56qeVUVFRWUTbMphPwuqw1ZRUVHZ\n", - "HNvusFVUVFRUthbN0x+ioqKiorITUB22ioqKyi4hbA5bCPGSEKJTCNGz2kZMZRUhxKAQ4p4Q4lMh\n", - "xM3VY1YhxIdCiG4hxAUhRHyk7YwEQogfCyEmhBAta449cWyEEH+5eo51CiFOR8bqyPCEsfobIcTI\n", - "6rn1qRDi7Jr7vpBjJYTIFEJcEkK0CSFahRD/dvX47juvHq7duxX/AC3QC+QAeuAOUBKO99qN/1hR\n", - "1lgfOvbfgf+wevsvgL+PtJ0RGptaVjJqW542NkDp6rmlXz3XegFNpD9DhMfqr4F//5jHfmHHCkgF\n", - "KldvxwBdQMluPK/CNcOuAXolSRqUJCkAvAF8OUzvtVt5eBf4S6xo3ln9/yvba87OQJKkq4DzocNP\n", - "GpsvAz+TJCkgSdIgKz+smu2wcyfwhLGCx9f5+cKOlSRJ45Ik3Vm9vQis7U27q86rcDnsDGB4zd8j\n", - "fFY0SmVFv35RCHFbCPEHq8e2rU/mLuRJY5POyrklo55nK/yJEOKuEOJHa5b56lix7t60O3aswuWw\n", - "Va3g53NEkqQq4Czwb4QQtWvvlFbWZeoYPoZ1jM0Xfdx+AOSyktg2xkqdnyfxhRqrh3vTrr1vt5xX\n", - "4XLYDiBzzd+ZPHjF+kIjrab1S5I0BbzDynJrQgiRCiup/4SpT+Yu5Ulj8/B5Zl899oVFkqRJaRXg\n", - "h3y2lP9Cj9Xn9aZdvX9XnFfhcti3gQIhRI4QwgB8nZU+kF94hBBmIUTs6u1o4DTQwmd9MiFMfTJ3\n", - "MU8am3eBbwghDEKIXKAAuBkB+3YMq45H5hwr5xZ8gcdqHb1pYZecV+uuh70RJEkKCiH+GDjPimLk\n", - "R5IkbX+PpJ1JCvDOamsxHfD/JEm6IIS4TZj7ZO4GhBA/A44BNiHEMPBXPKGHqCRJ7UKIN4F2IAh8\n", - "f3Vm+YXgMWP110CdEOKBOj/whR+rDfWm3cljpaamq6ioqOwS1ExHFRUVlV2C6rBVVFRUdgmqw1ZR\n", - "UVHZJagOW0VFRWWXoDpsFRUVlV2C6rBVVFRUdgmqw1ZRUVHZJagOW0VFRWWX8P8BCxPUWfGXxrcA\n", - "AAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAABKCAYAAACfHW4mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztndlTm/d+/1/aN4SEECCQ2MS+L8Y4OMHGS+I4mbTHMznt\nmbbT02WmnXOu+zf0ttOr3nQ6016kaZxOTtOck9ixseMFbGyIzb6DAIFYBQjtEvpd5Pc88XZibCME\np89rxjdGiI8ePc/7+/18vp9FlkgkkJCQkJA4/MhTbYCEhISExN6QBFtCQkLiiCAJtoSEhMQRQRJs\nCQkJiSOCJNgSEhISRwRJsCUkJCSOCJJgS0hISBwRJMGWkJCQOCJIgi0hISFxRJAEW0JCQuKIoEzW\nG8tkMqnmXUJCQuI1SCQSshf9v7TDlpCQkDgiSIItISEhcURIWkjkDx2tVktxcTF6vR61Wo3RaCQr\nKwuLxQLA8vIyi4uLbG5u4vF4WFtbS7HFEhISRx1JsF8DjUaDzWbj3Llz5OTkYDAYcDgc1NfXU1FR\nAcD3339Pd3c3ExMT3Llzh42NDXZ3d1Ns+e9HLpej0+nQaDSEQiEikQixWCxl9shkMlQqFRqNBpVK\nBUAsFiMYDBKLxZDaAkv8X0QS7NfgxIkTfPTRR5w6dQqz2YxSqUSr1WI0GkUhKS4uJi0tjerqagKB\nANPT02xvb6dUBH8fKpUKi8XCxx9/THt7O1euXKGrq4uxsbGU2COTyVCr1bS0tHD69Gmam5uJRCKM\njY3x+eefMzs7i9/vT4ltEhKpRBLsV8BgMFBTU8OFCxe4cOECTqcTnU5HPB4nEAiwsbHB/Pw8Op2O\njIwMCgsLycjIoK6ujkePHjE0NHRoBdtms9HU1MTbb7/N4OAger0+ZfbI5XL0ej319fV89NFH1NTU\nEI1GcTgcjIyM4PP5UibYCoUCo9FIaWkpmZmZdHd3s729/dLfMxqNGAwGAoEAwWCQaDR6ANb+NCqV\niszMTCoqKrDZbExMTDA/P8/a2tqBeDBKpRKTyURNTQ0AGxsbLC4usrOzQyQS2fP7KBQKNBoNJpOJ\nQCCAz+c71N7smyAdOu4RmUxGZmYmf/Znf8bPfvYzampq0Gq1xGIx/H4/brebhw8fcvXqVbq7u1lY\nWEChUGCxWKisrKShoQGdTpfqj/FCVCoVdrsdk8lELBbD6/USCARSZo9SqSQjI4Pq6mpaWlrQ6XSY\nTCacTid1dXXk5OSkzDa1Wo3D4eBP//RP+Yd/+Ic925KTk0N1dTV5eXmkpaUl2cq9odPpqK2t5de/\n/jX/9E//xM9//nNKS0uRy+XIZC/MKttXDAYDZWVl/OpXv+Lv/u7v+OCDDygoKHjl50Sr1ZKdnU1D\nQwP5+fkoFIqk2i+TyVAqlahUKlQq1YFcKwFph71HMjIyKCsro6mpiby8PKLRKGtra3R2dnLz5k02\nNjZYW1vD5/Oh1+v5+OOPMZlMZGdno1ar0ev1yOWHc31UqVSikGxtbTEwMMDi4mJKbNFoNOTn5/OL\nX/yClpaWlNjwU2i1WsrLy8nNzX0lYcjLy6OtrQ2ZTMatW7e4detWki39aTQaDXa7nY8//pjGxkbM\nZjM/+9nPWFhYoLe3N6k7VLlcjlar5cMPP+QXv/gFNTU1uN1uXC4X29vbe94syOVyNBoN77//Pn/0\nR39ETk4O//u//8vKygobGxtJ8WZVKhVWq5VTp05RUFBAOBzm8uXLLC8vH8iuPmWCLcRNs7OzMZlM\nRCIR4vE4kUiEtbU1gsEgkUiEUCh0KNybtLQ0cnNzycvLQ6VS4fF4uH37Nl9++SU3btwQ7VUoFBQU\nFBAKhUS3MhgMsrW1RTweT/GneB6NRkNWVhZ1dXVotVpmZmZwu934fL4DtUOtVovXt6amhvPnz+N0\nOp96jbDzzs/PZ319Hb/fj8/nOzBvQCaTodPpqKysJDc395UWYKVSidlsxul0Mjs7i0KhYHd3N2WH\np0ajkaKiIlpaWnA4HCgUCtLT09FqtUm1SaFQYDKZqKur4/z587z99tt4vV7m5uYYGxtja2trz+Ei\njUZDeXk57e3tdHR0sLS0hEwmS4peCEJdVFRETU0N586do7CwkPX1da5fv87a2toftmDrdDrq6+vp\n6Oigrq4Or9dLKBRifX2dO3fu4Ha72djYYHl5+ZXiWcm0Nz09HYVCgc/nY3BwkH/5l39hcHDwqRim\n2Wzm9OnTHDt2jJycHJRKJUtLS4yMjBAKhVL4CV6MyWSitLSUjo4OfD4f33//fUrCIWlpabzzzju0\ntbXR3NxMdXU1BoPhqddoNBqcTid+vx+LxYLL5WJsbIy5ubkDsVEmk6HX66mqqsJms7G6urrn3/V6\nvSwvL9PS0kJGRgZqtZpwOJwywbZarZSWlpKVlYVOp2Nra4tHjx4xOzub1CwcjUZDQUEBf/VXf0V7\nezu7u7v09PTwn//5n3z99devJHrp6emcP3+eY8eOIZfL+frrr+nu7k5KCq1er6e5uZlLly7x3nvv\nYbVaUavVjI2NkZ6ejlKpPJBziZQJtslk4sMPP6StrY28vDxxhx0Ohzlx4gTb29tsbW3hdrsJh8N7\nes94PM7Ozg4jIyMMDw+zvLy8bxdxaWmJmzdvEgwGkcvleDweJicnCQaDT71Or9fT2NhIQUGB6DIn\nEolDm4ZmNBrF1MSJiQkeP3783Gc6CMxmMx999BENDQ1YLBY0Gs1zrxFirg6Hg7feeguPx8M333zD\n1atXWVlZSfoDk5WVRVVVFeXl5fh8Pnp7e/e8uKlUKoxGIzabjYyMDFQqVUo2IjKZDIVCQXV1NWfP\nnsVoNAIQCATo6+tjbm4uqfeq4GVUV1eTlZXF+vo63377LcPDw68s1iUlJZw7d460tDR6e3vp7u5m\nfn5+323W6XQUFhZy6dIl2trayMzMFGPXZrOZP/7jP0alUvHw4cOkRwRSJthCnm00GmVra4tQKCSm\nx5WVlYkPrPCzeDyOWq1+KmYoCGEsFhMPSra3t7l16xaRSOSV3KuXsb29zfj4uBirikQiBIPBp76c\njIwMSkpKqKqqIicnh0Qigc/nY2trC5/PdyhDIjabjYqKCpRKJYuLi4yNjR24J5CXl0dLSwvHjx+n\nqKjohYIhhA8sFgtZWVnIZDK2trYACIfDfPPNN2xsbCTFPiHmWl1dTXt7O1arld7eXrq6utjZ2dnT\ne6Snp5OXl4fFYkGv16NQKJJi68uQy+UYjUbxPEav15NIJAgEAvT39+N2u5Pyd4WDOpvNRnl5OXl5\nefj9fvr7++nr69vzmYnwXVRVVXHmzBnq6+tZXFykr6+P8fFxvF7vvtuenZ1NXV0dJ06cwOl0otFo\nxHs0PT2dM2fOkEgkMBgMzM7O4vF42NzcTMrClzLB9nq9XL58mb6+PsxmM0tLSxiNRux2O4WFhZSX\nl1NcXEx+fr6YCmWxWMQiCkAUTp/Ph06nw2AwkEgkiEQiLC8vMzw8vK+xWCGDAnjhrrm8vJxz586J\nOdiRSIS5uTkmJyeZm5s7FKGdZ6moqKC9vZ1YLIbb7WZhYeHA7XznnXf427/9W6xW6+89xItEIvj9\nfsLhMGlpaZhMJiwWCx999BGFhYX09vYmTbCFtMd3332XP/mTPyEWi9Hb28v169f3fH8JsXmtVpsU\nG/eK8FmKioqw2+3I5XJRsEdHR/F4PEn5u3K5nLS0NEpKSqirq0On09Hd3c2nn37K/Pz8nu85wf4P\nP/yQX/7yl1itVh48eMDAwMC+btCepLy8nDNnzogJBE+i0+loaGigpKSE9957jy+//JIrV67Q29ub\nlNBSygQ7FAoxMjKC2+1Go9Gws7ODWq0mLS0No9FIdna2eAgl7FDz8/OfcpVjsRihUIjV1VU6Ojp4\n77330Gg0RKPRpOVivug9tVot+fn5nDlzhgsXLpCZmUksFhNd9v7+/qcOIQ8DQj5xfn4+BQUFBINB\nQqHQgdopHDSWlpbicDhQqVTPLYSBQICRkRGmpqZwu90Eg0FsNpu4Q0xLS8NqtdLa2kooFMLlcu27\nnUajkY6ODurr69nd3eU3v/kN3d3d7OzsvPQeEzIZ7HY7JSUlKRdsnU5HTU0Ndrtd3OWvrKwwOTmJ\n3+9PmjtvMpl47733eP/992lubmZ7e5uBgQH6+voIBAJ7vufUajVFRUUUFRWRlpbG0NAQXV1d9PX1\n7XtuvkKhIC0tjaqqKlpbW0lLSxM95kAggMViwWq1olKpSE9Pp7CwkHPnzrGwsMDw8DB+v3/fveqU\nCXY0GmV5eZnl5eUX/lzoz2Gz2fD5fPh8Pux2+1OCHY/HiUajRCIRHA4HZ8+eZXd3l+Xl5Vdatd8U\njUYjCkh9fT0KhYLV1VUmJia4efMmExMThy4cIuxUhJiqUKxwUIU9SqUSi8VCW1sbtbW1ZGZmolAo\nSCQS7O7uEo1G2dnZYWFhgW+//Zb+/n7m5uYIh8PY7XZaWlooKipCp9ORlpZGR0cHfr+fUCiE1+sl\nGo3uy8Kj1+txOBy0t7dTVFSE1+vl2rVrDA8P7+laqdVqCgsLKSwsJDMzk52dHQKBQMruB61WS2Vl\nJTabDfjBU3S5XKJwJgudTkdjYyNNTU0UFBQwPj6Oy+Xas+cpl8sxmUwUFRVx/PhxiouLiUQifPfd\nd3R1dSVloVYqlWRlZeF0OsW/NzIywtDQEIFAAKfTSVVVFVarVawVqK+vp6WlhaGhIbHIaz8XwUOb\nhx2NRtnc3BQ/cCKRwO/3P+cyGwwGGhoayM3NFTMyhoaGDvTwTCimEERHJpOxsLBAT08PQ0NDr5RN\ncFAIGRdZWVnE43Ex3HBQ6PV6SkpK+Mu//EsaGxvJyMgQd3xC6Gl4eJju7m4+//xzFhYWCAaDJBIJ\nlpaW2N3d5eLFi2RmZooH2BqNBrlcLubF74dgOxwOWltbxd387Owss7Oze46VGo1Gzp07R0VFBaFQ\niKmpKZaWllKWrqrRaCguLiYzM5NEIkE8HmdgYIArV67sqWLzTRHOnIR863g8/tLvSTjvqq+vF6uM\ni4uLWVpa4rPPPuPx48dJsVWoTxBCdS6Xi08//ZTPPvsMhUJBbW0t7e3tXLx4keLiYsxmM0ajkbNn\nz6JQKPjnf/5npqam9vVM6NAKtnAzPbkTeXZXolarsVqtfPDBB9TX1xMIBLh9+zb9/f1sbm4eyG6x\nsbGRjo4OOjo6KCkpIRQKMT09TWdnJ99++y3r6+uHbncNP96MJpMJv9/PvXv3mJmZObC/r1Ao0Ov1\n5OXlYTabxUPjjY0NJicnuXr1KsPDw0xPT+NyuZ4KP3i9Xqamprh9+zYajYaamhoyMjJobW0lFosx\nNTVFMBjcFxfZ4XDQ2NiI1WplYWGBhw8f7jmnXqfTkZuby4kTJygoKBAPxMfGxlLSwMpsNlNUVER5\neTlWq1U87/F4PExPTyfdIxU+r+B1vPvuuxgMBsLhMC6Xi4WFhed+JyMjA5vNRl5eHk1NTRw7dozi\n4mJ2dnYYHR1lZWUlaRszIZylUqnEZ2RgYIDl5WXkcrm42AgZL2azGZlMhlarxWAwiBli+8mhFey9\nYDabKS8v5+zZszidTlZWVrh//z4TExNJ3y0K6VFNTU38/Oc/p6qqCr1ez8bGBvfu3ePGjRs8fPjw\nUB40qtVqzGYzJSUlmEwm1tfX6erqOlDBFq6fVqsVY9fBYJCpqSk6Ozv55JNPcLlcL9ydhMNhlpeX\nuXXrFg6HQ4wNO51O4vE4WVlZ+9IgSi6Xk5eXR3V1tbi77urq2vP7CtWxtbW1WCwW5ufnuXPnDpOT\nkynZXVssFkpLS8nPz8doNBKJRFhZWcHj8STtwFYgHo+zsbGBz+dDLpeLIUzB8xgYGGB4ePi538vN\nzcXpdFJSUkJhYSFZWVlEo1EGBwfp6elJak8ZhUJBRkYGer1eXFQEzy0ej+PxeNBqtWIGWCKRQCaT\nEQqF2N7eJhKJ7Pv3fKQFu6SkhHfeeYecnBzkcjk+n4/l5eU9p1q9CUJlmN1uF2OpwkHj1atXGRwc\nTMoXth9YLBaqqqo4efIkJpOJiYkJMW89VUQiETFeffnyZdxu908udsFgkOHhYYaHh8W892dP8N8E\nod1sTk6O+N5TU1Pcu3dvzyJRXFxMW1sbWVlZ4ucbGxtLWYjMYrGIh7sAOzs7dHd3Mz09nfS/7fP5\nuHPnDsXFxVRWVpKeno7VasVkMpFIJKisrHzhTlmtVqPRaFCr1ajVamKxGBsbG9y/f59vvvkmqWEc\nvV5PU1MTDodDrHDt6+t7KgQjhEMzMjLE/1tfX8flcuHz+fbdyz+Sgi10GTt+/DgdHR2YTCYGBwf5\n+uuvGR8fP5BYnMlk4oMPPqC1tVVssep2u3n8+DFjY2Osr68fSrGGHwpAKioqsNvtRKNRlpaW8Hq9\nBxrDFpDJZMhkMrxeL5988gnXrl1jZmaGQCDwk9dvd3dXTPeMRCLi7sZgMNDa2srq6uob5eQKecPp\n6ekYDAZmZmaYm5t7pXsrIyNDfNg3NzdZWlrC5/OlrFOfYM+TwndQnlU4HGZycpLf/va3rK6ukpub\ni81mw263U1FRgclkQi6XMzs7+5RXJRS/vfvuu+j1evx+PwsLC0xOTjI7O5tUDzYajbK4uMjW1hZO\np5OioiLy8/Ox2WyYTCZycnJoaGjAbrejVCqJRCKo1WqysrIoLy8nJydHzCjZL46kYGs0GkpKSjh2\n7BhNTU3EYjF6enr4/PPPmZ6eTvpho5COdunSJY4dO4ZarSYSiTA+Pk5XVxdLS0spqRbcK1lZWZSW\nlmIymZidnRUP9A5ygRH6hwuHtEJe/sjIyJ5+X2jBqtfrxcNGIX5YXl7OgwcP3thGuVyOUqkUMym8\nXi9yufyl10kmkyGXy8nIyCA3NxeVSsXW1hZLS0spEWuhv7jNZqO4uBi1Wk00GmVjY4NHjx69MHa8\n38RiMVZXV7l27Ro9PT04HA7KyspoaGggGo2i0WhYXl6mp6fnqdz28fFxEokELS0tpKens729zdDQ\nEDMzM2LhVLIIBoP09/dz4sQJjh8/jsPhoKamhpWVFfLy8qiqqqK2thaTycTa2hqBQACHw4HNZqO5\nuZnKykrW19clwRZSk3Jzc4lGo0xNTTE6OorL5TqQmHFubi6NjY2UlJRgNpsJh8NMT0/z3Xff8e23\n3x7IDv9NMJlMYlaN2+1mYGDgwBcYp9PJW2+9hV6vf60mSDqdjurqaqqqqsjLy0OpVLK7u8vW1hZX\nr17ds/D/PhKJBOFwmLW1NVZXV7FarVitVvR6/Ut3/08WidTX16PT6VhbW2NmZiYlZxoajYaioiKa\nmppobGwUd6p+vx+v13ug372Q/RUMBsVMqsuXLyOTycT6iScPdJVKJVVVVSQSCba2thgdHeWLL75g\nYGAg6baGQiEmJydxu93E43Gys7P5+OOPeffdd1Gr1eh0OuRyOW63m+vXrzM1NcXf/M3fUFZWRlZW\nFu3t7Xg8nn0tlz9ygi2XyzEYDFRWVpKTkyPGxoaGhvZUyPAmCDuVyspK2tvbyc7ORqPR4PP5WFhY\nEDvdHcYhBfDjqbfNZsPhcBAMBpmcnEyJYAsj1V6lkEQul6NWqzEYDBQVFdHR0UFlZSVarRa5XC5W\nvS4tLb3xoilkUGxubrK5uYndbqetrQ2v18vIyMhzuyalUikOKUhLSyMjI4OmpibS09OBHys1U5Ex\nJHQ5zMzMFDMZvF4v8/PzB54Tvru7+1Se/cvi+fX19WJl5OTkJJ2dnQwODrK+vp50W+PxOOvr6/T2\n9tLZ2UlbW5sYxgHEpm6dnZ3cuXOHra0tjh07JnpW9fX19PX1iT1n9uM6HznB1ul0ZGdnU1lZSUZG\nBqurq3R2djI2NpZ0l16pVJKZmUljYyPvvPMO6enpxONxtre3mZqa2tdmU8lAsL+goIDc3Fy8Xi+T\nk5NMTEwcuC1CWOZFTZ5+H0qlEqvVSkFBAU1NTWJ2EPzwcAkDj/fj4RDyhTc2NvB4PDidTtrb27HZ\nbFy7du25+LgQJsvOzsZqtZKVlUVhYaHoOQi9Z1JR7apQKDCbzej1ejHVbGlpidHR0UPZQRJ+3BzV\n1tZy5swZDAYDo6OjdHZ2srKyciCeyu7uLqFQiPv37yOXy7FarZSXl2MwGNjd3WV4eJivvvqK//7v\n/8bj8WA2m3n48CGFhYXk5eXhdDopKyvDbrczOzv7f1Owy8vLOX/+PBUVFUQiEYaHhxkfHz+QFddo\nNHLq1ClaW1vJz89HrVazsLDA/fv3+fLLL9/YDU82er2elpYWysvLRduTnc61nwhFKB0dHWIfZ41G\nIxZidHZ28uWXX+7rOcbQ0BD/8z//A0BVVZVY1v0iLyoej4upiiaT6anJMi6Xi4cPH6ZktJnQythu\nt4siNDY29koZLweNXq+nurqakydP0tzcjFKpJBAIvDQclQyEdGGtVivmgYdCIW7cuPFUrYXP5+P6\n9euiN+N0Ojl27BgLCwv813/9174sjkdGsIUG4idOnODcuXNkZmby6NEj7t69y/Ly8oFkOKSlpXHq\n1Clqa2vFXs2jo6N88803DA4OHnrxEwoWhG53m5ubh/aBfZaysjKOHz/O6dOnaW1tpby8XPxZJBJh\ndXWV/v5+uru78Xq9+xaW8ng83L9/n3g8Tl1dHSUlJaSlpT3XbU/I0w2FQhiNRo4dO0ZRUZHoQWxv\nb7O8vHzgIRG1Wk1mZiZNTU3k5+eLwuJyuRgfHz+0O2ytVktNTQ1lZWWkp6czPz/P3Nwcq6urBx5y\nDAaDLC4ucuvWLRYWFsjNzSUcDjM6Osrs7KzYBkFo9jYwMEBVVRWFhYUUFxfT1NTElStX9uW+PBKC\nLTSOr6uro6Ojg/b2dvx+PwMDA9y4cePApqOkpaXR1tb21CSUwcFBfve73+H1eonH48+Vzj/rAj/5\ncyGlTalUvvD3otHo/vYh+P8hEcGl29nZSUkq35MIn1u4DsK1UKvVT80W7Ojo4M///M/Jzc3FarU+\n9R6RSIT5+Xmmpqb2fZjBzs4OExMTTExM0NnZicPhICcn56mukfBDnvGDBw/Enje//vWvuXjxIhaL\nBfgxdnvQIRG9Xi8ekufl5REOh/F6vSwuLqZsDNxe0Gq1VFRUkJOTQzAYZHBwkNHRUZaWllJij5BY\n8FM560IYzeVy8ejRI06dOiUWK1mtVpaWlt64RuRICLZarSYvL49Lly7R2Ngorm5DQ0Mpb1sqdBiM\nxWLPrZ67u7uEw2GxCko4NBMedmH309raKjaShx++eK/Xy40bN1hfX9+3HYXQRzg3N1csPEnVAyAs\nVsI/oTBBo9FgsVi4ePEidrtdHMhqt9vFbo3P9kXf2Njg3/7t3+jq6kqqzZubm4TDYRYWFp4bDxaN\nRsUwTCwWE0eYCZhMJnFKzUGec2RmZoo7fZlMRjAYZGho6FCLNfyYCWa1WllfXxebqB0FFhYWuHfv\nHq2trRw/fhy73c6pU6cIBAJv3Pfk0Au2TCajtLSUs2fPilVjq6ur3L17l+Hh4ZSn0FVWVnLp0qUX\nxtbC4TBut5udnR1isRgajYacnBxxh6hSqcjIyKC5ufmpeGcikRCboD9+/HhfRNVgMJCTk0N+fj4m\nk4nl5eXnROUgEarBhOkr6enpXLhwgfX1dcxmM2fPniU3N1fMIhGE/dn2qxsbG4yOjr5SE/zXJRwO\n78kjEeLETwqzsMM+aIT2syqVilgsxubmJj09PUnpbrdfZGZmUlpaSmFhIQaDAY/Hw+Dg4KFfZAR8\nPh8zMzPcvn2bnJwcmpqaOHPmDG63W5xS9br3wqEWbKEAob29nb//+7/H6XQSCASYnp7md7/73Qt7\nDxwETwrG+fPnOX/+/Atft729zb1793C73YRCIUwmEw0NDdTU1Lz0fYXJz36/f18EW5jhZ7VaXykz\nI1lMT0/T3d1NSUkJer0ei8XCX//1Xz8nyM+GEIQbXfj/iYmJV+rvcRA86z3ADw9xsoYD/BRCGqSQ\n9ij0YJmamjpwW/aK0+nk7bffxmazoVQqxerGzc3NVJu2JxKJBNvb29y8eZOamhpOnjzJ+fPnGRsb\n4+7duy9tu/BTHGrBVigUYv8DoQfC48eP+eKLL5ienj7whzQYDDIyMkJmZqaYi/lTCKfzZWVlxONx\nVCoVZrMZ+HHklSA8i4uLuFwucejw9vY2vb29rKys7IvteXl51NbWotfr2draYnp6mrGxsaQMLN0L\nQhn/+++/j9ls3tMiEo/HCQQC4pTta9euMTQ0xNTUVNKr3l4F4Xt98vtN1fCKnJwcceReIBAQNwGH\nOf30yaKqJwdYK5VK1Go1Wq2WUCiUkmHRe0Uoa7979y4Oh4PTp09TV1fHxYsX+c1vfvPaB9CHVrCF\nfiFtbW3U1NSg0WiYmZmhu7ub27dvH1gu5pP4fD5u3LgB/JDQ/+xBoUajwWAwYLFYUCqV4pCAra0t\nsVfH0tISc3NzYjhCcLHdbjczMzN4PB4ikYgYK31TQRW8FLvdTnV1NTqdjuXlZcbGxlhcXExpSGRk\nZIR79+4RCATE3hLPHuY9STgcZnx8nJGRER49esSVK1fEKTSHSYCEay7cH6k4bBTsEPLu1Wo1m5ub\n7OzsiDNSDysWi0W0eXt7G6/XS2ZmJlarlezsbBKJBJOTk4faSxDqMwYGBrDZbFRXV1NQUMCpU6fo\n7u5mc3PztRacQyvYer2esrIyfvWrX9Hc3MzW1hZfffWV2Cc5FfHA9fV1/v3f/52pqSlOnjwp9sEQ\nEKZTvPXWW2KFG8Ds7CwPHz4UD5x8Ph89PT3Mzs6K+ePPZhEIu7M3/ZxC83eHwyFWBbrdbvr7+/H7\n/Snb+QUCAaampviP//gPmpubeeutt7hw4cJTXc+eZXt7m+vXr/PVV1/x4MEDsaf0YRq9Bj9ec2GC\nTjQaPXCBFNrXGo1GMjMzUSqV4oSmWCx2aBuTPUsikUCr1dLU1ERtbS2NjY243W4+++yzQy3YAi6X\ni/v37/Phhx/S2NhIY2Mj+fn5uN3uPyzBLioq4uTJk+LsNo/Hw+TkJB6PJ2W7AyHXcmhoiLW1tadi\nlPDDyXZpWtUAAAAD5klEQVR6evpzwzrX19dZXV0Vp4wIecM+ny/pebBPjtza3t5mZGSEO3fucPfu\n3ZTGfYX+1+Pj42xsbDA+Ps7k5CR1dXVUVFRQWFjI5uYm09PTDA8PEwgE8Pl83L9//0DHv70Oer2e\n5uZmcnNzWVlZoaenJyVFVYlEgs3NTRYXF8nNzcXv9+9r1tFBUFhYKBas7OzsMDs7y3fffXdkMkZC\noRAzMzP867/+K3/xF39BS0sLp0+fZn19/bXCnYdOsIVJJEKVU1ZWltgOcnV19UB6Xb+Mn5pFeRiJ\nx+PMzs5y69YtcSrP+Ph4ysMIsViMtbU11tbWcLlcLC4uMjExQUNDA+Xl5aytrTEyMkJfXx87OztE\no1FWV1cP/eGTkO++vb1Nf38/X3/9NWNjYwdqg+B5zM/P09fXh9VqxePxsLKycugFe21tjampKfR6\nPQqFQvRWhKrirq6uI5MxItzj165do6amhqamJo4fP87Q0BB9fX2Ew+FX8nYOnWCr1WqKi4s5ceIE\nb7/9tlhRKPF6CNMxOjs76erqEnPD92tI7X4hlEvPzMzw29/+Vuy+F41Gnyogisfjh96dFwp5ent7\n+e6773j8+HFKFpnd3V0GBweJxWIoFArRrsPsnQA8evSITz/9lEgkQigUYnBwkJs3b7KwsMDW1hZ+\nv//QLzpPIswonZ2dZX5+npKSErEoaHFx8ZW+j0Mn2MKQUIfDQXp6OgqFQjzdDgaDR+qLOkwEg8FD\n3aNbiPWmete/H2xsbPDpp5+ys7PD3Nwcm5ubKftcPp+P8fFxLl++zO7uLhsbG4c6uwJ+aAfQ1dXF\n2tqa6Fm7XC5RqA/7gv0idnd3efDgASaTiV/+8pfodDqsVusrJ08cOsFWKpVkZ2eLg1mFSdO9vb2s\nrq4e+t2BhMST2USpRjgvSdVYstfB5/Ph8/mOxKHiqzA2NkY4HMbpdDI/P/9aHu6hE+wnEcZXffHF\nF3zyyScsLi4e6l2ihISExO8jGo3icrn4x3/8R6LR6FNpvXtFlqw4pkwme6031uv1VFRUUFVVhcPh\nYGtri++//57Hjx+Ls/skJCQk/pBJJBKyF/3/oRNsCQkJif/rHLhgS0hISEjsL/KXv0RCQkJC4jAg\nCbaEhITEEUESbAkJCYkjgiTYEhISEkcESbAlJCQkjgiSYEtISEgcESTBlpCQkDgiSIItISEhcUSQ\nBFtCQkLiiCAJtoSEhMQRQRJsCQkJiSOCJNgSEhISRwRJsCUkJCSOCJJgS0hISBwRJMGWkJCQOCJI\ngi0hISFxRJAEW0JCQuKIIAm2hISExBFBEmwJCQmJI4Ik2BISEhJHhP8He1qvoaisZWYAAAAASUVO\nRK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -896,17 +495,19 @@ } ], "source": [ - "imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray')\n", - "print solver.test_nets[0].blobs['label'].data[:8]" + "imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')\n", + "print 'test labels:', solver.test_nets[0].blobs['label'].data[:8]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "### 4. Stepping the solver\n", + "\n", "Both train and test nets seem to be loading data, and to have correct labels.\n", "\n", - "Let's take one step of (minibatch) SGD and see what happens." + "* Let's take one step of (minibatch) SGD and see what happens." ] }, { @@ -937,7 +538,7 @@ { "data": { "text/plain": [ - "" + "(-0.5, 24.5, 19.5, -0.5)" ] }, "execution_count": 14, @@ -946,439 +547,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAATQAAAD7CAYAAADkSGhKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJztvV+obt113jfWOfvYcmSLEtvfJ/FZqnSR4siWsS8sG9Ii\n", - "XZSgEEiam8QCU18kJZg2LaUXcS6cpO1Fm4KMIYFQ6j84dew0UOy6hqRxikuNLxwLkkpuJepgCUup\n", - "8snQmqb6952zz+rFd8b5nv3s5xljzPfde7/7HL8DFnOuudaaa84xx/yNMdda797bvu9xlrOc5Swv\n", - "gzw4dQPOcpaznOWm5Ay0s5zlLC+NnIF2lrOc5aWRM9DOcpazvDRyBtpZznKWl0bOQDvLWc7y0sjF\n", - "bVW8bdv5e5CznOUstyL7vm+q/GCgbdv2kYj48Yh4GBE/se/73+BzfviHf/jadR//+Mfj+7//++Ph\n", - "w4fx4MGD5xvvP3jwIPZ9j6dPnz7fLi8vy/19369trnzbtufbs/7IsocPH8Y73vGO+KZv+qZ4xzve\n", - "cS2P28c+9rH40R/90Xjy5Ek8efIkLi8vn+fV9vjx43jjjTfijTfesPncf/z4saxX3ePp06dyzNw3\n", - "h5eXl891qdLMf+pTn4pv//Zvj4cPHz7fcuxUnnWJqSqrUszv+y77rvTy9OnTeNvb3hbf8A3fcCXN\n", - "Dfd/+Zd/OX7gB37gSv9U37iP2Ncun7ZdlUVEaTPYv8ePH8dXv/rV0fbrv/7r8b3f+73ynpzPfaV/\n", - "tY/zLeccpi4/SVl+9md/VtpxxIFLzm3bHkbE34qIj0TE+yPio9u2/dFD6jrLWc5ylpuSQ5+hfTAi\n", - "/vm+75/d9/1xRPy9iPjTN9es0wtGEqe4/ixvyn3R4221477072WRQ4H2WkR8DvY//6ysv/C10Wkn\n", - "l0N+EvbhD3/4qOvvu3zzN3/znd/zLvX4/ve//87bcZf9e9e73nVn9zqVHPoMbTQKv/mbv/k8/9pr\n", - "r8Vrr70W3/Zt32bX46rMHVPb88aBkeT6Xh3LfOclndHxc7kPfehDcXl5+fx89exudcN6qj5gf524\n", - "Y/m8EuvjNCLiW7/1W+WzTrdVz9CqZ2qT49wv3B48eBBPnz59/jxKPetS+9/5nd8p78E65vF5+vSp\n", - "fa7EeXyGi2m2N4/nczLe8PkxP0PG58VKRxlMTOwd5wbPE3WMr7sJ28/t9ddfj9dff71sc8qhQPsX\n", - "EfFu2H93vBmlXZHv+77vu3ahMyYFNr5m8iAfjYSFJ2llvG7QHWxue8N7YTtZt1Xbqz7nZEoIOLBV\n", - "LwEQdg8fPjzohUDXVjxWbQm16kE8nqvsUekJ9YEgUxDDLYGVKeY5jYhrLzgc3BBq2Sa2G6VTp3c1\n", - "f6p9zN+W7b/yyivxyiuvPL//Jz/5SWsXhwLt4xHxR7Zte29E/F8R8eci4qN8Ug4OSgWzLmKbXMOe\n", - "byI8WJPzOqix53RvWw8F20S4L25f1esmA4KLAcZl0+isixi6PlYgw3Z3byUrO0S9KFgwyLBtESHB\n", - "5aAWEVdApsCm3vJPYaYk26/yeW0HtdsC24ocBLR9359s2/YfRMT/FG9+tvGT+75/is9TCpzArIvC\n", - "VDmf76CmlDSBmIuSjtk6yLn7c9u4LyoSqvIclSnJ8xlcKkKbfLahUjVWbr+yE1y6Zf8QampZrJbJ\n", - "fG9nA5O+uWgMoYqfKyXIXHTmlqLOjjpQc18UyKpjkzlxqFNfkYO/Q9v3/R9ExD+ozlGKW424Vq5n\n", - "L8mTf1U5lRwCtUnE1tXJ969kNTJygESZRmjVktOl3D+eMOq8vN5tCl6TY84OcSzZzpzDyP1uqYlL\n", - "TvzWDCM1BTG35HRtqco7qPE+j9HUllfgtiK39kuBiHWguTpWtk4BEyVVHozTQ8B2qJdaGWQXHVVQ\n", - "q+plCLhnZ8e8FMA+ooNSoKsAxrrrXlrgtZU9Th2Ls3sXlXEacX3JqZabCmwVDCbzDfuEYJtAberU\n", - "V8G2IrcKNPcMzcFsUrayHSqsRGXANwWqm/JUCh6qvAKdGi8Wt7xU0Zq6N98XU+6vgpnqM8MM9zGS\n", - "cstMBTjWI7aBHdtUJtFZPkNzMOuWnO7r+tU5oeBVBQydAz7WmU/lXkVoCkbHgEwNovNcnVSR0k0N\n", - "nKq3q1/pFyd15xyUdBHQBGZuyelg5vrpxqKzkYTb5HkZX+fsBvWrjnGer5vALO/LwJq8FJjYSGXr\n", - "DDHVb+w/5vleq0582v5O7hxo7vW4846ovCnM3KBVE6S6rqrjNmBWwW3aJ5aJA6jqZBhUMJsuOTHv\n", - "DF+1qwI0w4yhVi01uyWn0o1yPiqN8BEatyEiSpgpqCEUqiiNdY/9YOeCY4N5B7W87i7s3slJIrTq\n", - "IWyew/kVsLl7R1z3JDyIU6jd9DZ94znxWl2ExbrCpWZGElxXljmAVUvODmYpqANeguHY8Pg5mOW5\n", - "k6WmisxclMZ2MMlzhMYQc0vOlaVm9emG0nflzCpoueM3bfMTW2e5N8/QnPfgc9I4pjBMqSKcCdQq\n", - "uEwGTj0MPeQ1dtefSkfOkbh6EWRYxxRqHcgwj5O+Woopx8b7+CyN295Fa6rNbAecThxR1uUghsci\n", - "Qj7878DWwaBz9txPBS0HukOAtmrzEznZklN5R+XV1eSsOjmBDr4ez/O4DlVfVSdCyr1Od57Vedru\n", - "tXw1eRhMrgzLGYY5XnjO6k+f8F6V00mY8RhPdK9sQPVT1eOuw7JqYq9MSuwj2zpHiNUbTXeMwTbR\n", - "heo39o9tAh2F0+kK5LFtqKeUyYsqlDuP0BzEVJqD7wxtAhdXhlCrAOfqruplWKnf4HXe9ljIsa5Y\n", - "GB58HRtVGnIHsO6NoUsnTmqiD35+NHFubCsuCmG9ZL3TTw9cRKkcNtpAl/IvCRhqeD+lG7fPbXKB\n", - "htNvJS7YWa2H5eRA66DGiovQwHFG5cCGIb+qM+L65wTd2xmGmvsx8QrUHORcm7gvEdeBjcITHoWN\n", - "rgOaghrXUy3pFCy68T1mYz3i8rrSgWpf5/RU/ytdKPup7Mp9aOvu38EM552DMJ7H+lD7TpSO7yXQ\n", - "Hj58eK1MhdkKbmqQWSbwcp5YPadhuE0nRBWhsUedAmy6LO08Wu5jRFYt4RHmaNRZPl1qpi4dHCpo\n", - "VGMw1cGhY9dFZBXQlON0k7KqNyLseHd21cHM2YdKlZ0o+2F9cB7r7XSQ17mVWScnfSlQPUeoPFlE\n", - "/axsYux5XZdOJoQD5hRqFbC6pVXVv07QuypR0Fl5fuackjNkF4lXEFIgUfZRjSfqlPvMunRAq9qT\n", - "kZ/Sv5NVW3BQw3ZX0ZnSUQUv1ZdqjrHgmKtjnX6cnPwtp3rTlGUcVSiZeGIFAhWduQkwuY+D2+pS\n", - "c/J6nvu2CjQ0VjaqLl8tMd1LAR5/JdPxZafhIOLGbnJ91SYFNFePahNeiymXdY6ycppVhOb0qjYX\n", - "0TvQdVBzzgFtsILmRE4OtApsx4CsA0+2D2GGiud1/ARgDqCHwqyKzNzErICmQOaiIxcld8/NcMO6\n", - "DpFO5xXIOkfk9IhtdnrEiagA1rWN24X7XK9bCUzsz7Vf9U/pppqr3XipPlVtwfQYuTdAm3qBiPot\n", - "5MpSjWHm4OYmg8pPlwfuj/dV0d10srCOWNAjYh7HyI1Xt8ScLlGqNrkxVhP4EIBUY5d9rvSH51Tg\n", - "6YCb96vOm0R/XR7H0elW6dLBDI/x1wErtjhZGazKvQYaDgamKQpkzniUIVUwqwbdTQYFtekLgOrF\n", - "AL6Kny5vWBIYnOI4OZCpt8/T52h4/0rUGLuJNoFFBzPnhCYw4/ZNoqlDgFSVTTfWsbMN1e60DQUz\n", - "9cnTpA1uvLt0KicFGu9XXr6C2XRz0FMww4lfgayadB3YJsvNyacaaqsmpoIbluNYqU8xpkDjccf7\n", - "O7tQbVXwmU74ia0w0KYyhZkrOxTSDhjYX6VnFSxUulBjo8CGkeYEZlgvt0vtr8jJgIb5CeQq6YxU\n", - "AYHbeQgg3X0YRu67IRedqfwq0JyeeKmZ56IOeBxWnpspoKmJ1Rm7G9cVHUwmrapnKiuwUvesbEe1\n", - "Hfc5X0nlLFjXDmjdJ06uPZ1upwHNVE4CtEw7Mk865wxXyarBqms7kDlgVf9BvXqexs/QViYww8vl\n", - "nV4qXXUGx8BU9anJUAGrglA3caZOaSrcTgeqzlbcMbwH6sqlHFljXp3jYI/92rbrP6jHeniedrDF\n", - "VYHa3LPYFbkXEZrLV52vrnMKcddNRU0AhNXjx4+v5R8/fnwl78o4z5ubxNguZ0ScsoGzEU/Amefn\n", - "OCMM9n23ERpPxMyzM6gi7Omm7tk5JdVmtgFu9yEwmwJtokMe08qBrW5qecm2xPNctZXnmoOXKl+R\n", - "kwOtK5sAjPPunghKd6zzEGikKgJjWHEetw5iHLXl/SdA67wp9mcFYggDBJmLEKYRxuqnK67fPFaq\n", - "Hdl+TlPHXR0pFbg6mE2A5trBZQyYDnArDgGXlwkzF3hMZAIw9YH9VO78p08Ra284qk8C+PzMT6O6\n", - "CcBSlFdXMFsBWwcyhhpPSsyryKcyPjZ+7J8DXNbPz1IwTY/NIFAg4zpX/yprpwu8Px9nmFURWgVj\n", - "F0l2MOugtiKd02JdKJgrvaQgyDhSU/PGzUtMeV7z29R7CTT3Ad6kw5nvILYCJXWdO0fVxYPuoKbA\n", - "5iK0CmZYNxpZN6G5D2ofverKUjPFPVvh8ZnCRy05Fcxw8qk6caxQXH+qpV6XHgqxDmoqGkPbVGXs\n", - "oFz0VI2tchhKXKSm5lQXSDiQ8c/npnKylwKcV8eUF1gB1+Saab0TmOFWgUwBjSMyPqYmMrYLy1CX\n", - "Ez1MQKaMXD1byUlUfaCs7slAq56jcSRVgafrZ7WUneQPhdgUaG6+KMfPeew/wm51rBGQHaCcjU1A\n", - "9sIDrdvvvkCfKFRtaoAq0KUwzBhqHbTcMYzIHNxWo4eq/+ohLkZpLu+8tnI8DlwOaqjLDgBVRKba\n", - "WIFI7XPbVD+y35Nt3/eyXw5oaOddqkDmwLYCNAVFBU+EEo8Jn18BTB1bkZM8Q2NxjZ7Qf7XDXG91\n", - "P5YqonDLxy5CU8tLlTqgubIKYgig1W/w8j5Tx3EI0FSk5q5nHTiduHYo+FQg665fjcbUMYSIA0jn\n", - "oFEPvL+yMcxc2/b9rbedCSN1bgcwBbkVOckztIlsm/5zxXnM7U+2vEZdy23AAcu0W3JOlpsINIYZ\n", - "56dAw7x6sKrgtmrgPEGyjmpCMQAqMEzecCJwuB2VMKRwCauAdtMwWwXa1M67OcA6ONSB5b6bQykM\n", - "MxT+MHuSrsi9BVrEfACrc13koOpwZSnKkNWS00Vq6sVB9fMnfsPZQYzbqhyB+65oxcDxHipKyHtV\n", - "IFBl6mNihkCe2wmO8QqUOvDy8ckS+SaAxtFNRBy0LFsZE3RgrM/Mp+DvgdGmUiYR2ksHNJ4wHJ11\n", - "UJvKFGQcoVUwu7i4KCM0VV7BTC27Kl3xfi4l0Sgy5Z+tYN86AOD92BM7oPFkUeCYTHo8/1CpIiv1\n", - "a4yu7SvAWgFa9X0W6r77rAkByGNd9Q/tTcEsBecH2oAaoynMXjigTQ3SAcdBbBqhYd0roFQRxZMn\n", - "T+Lhw4fx+PHjePDgwfiTDQc0XnbhBKiEveHTp/pbsWw7H0sjzHxXxjpU6aFAm0RNE5vhMZtEam5y\n", - "V0A7BmLqOEZGDDJ+xpRjUn0ixY4IHRnbztTGuO4KPAgqF4m9EEDrFKWOV8pXkcKKsPeYRGp4DEHG\n", - "S8MciDfeeOP5luDCMizPt5fdUgs/ql0d4Gw3wom/H6vq5TFQ11T1qKVMBQ4Hs2MnXQWxClxV2TEQ\n", - "c33k/nIUrKRy7rzPkVtCMu+hytR9+J4PHrz5v1gfPnwYFxcXz/NuYzC/EC8FlLDBVfsMs+o61/EJ\n", - "tKoyvB9HZwyzbduuRGAMMC5Ho1cTgJ8dOY/YQcbpNSLKyI/1Xt1blVUgcWVVVHaMQ+tA5e5bpTe1\n", - "VUBjZ1JBJveVXWPewS3vg/kuCs88Ao03BTiGVpVfkZNEaKtQc2DrDLsbbCyrBh7vx8BJoOV5CC21\n", - "zMTy7lkRl7n2d0bOusrobMVgOGpQ9+K8m6hTsB0LMWz3JEpzQLsNqKk2OKChg5hGasqe+VgHNleH\n", - "KptGaBcXF+XPnl5IoKnjCmrKU03qjfCDy2VdpKaijYSZUvp0uclA6yYRGpjqC/eZdYX9wGPumipq\n", - "cPdXxzqgOMCtRmbumAKr07OK2iqorQLM7bs+c9tXYMb5FYBheefo8fxJZMYR2mRbkXu15FSRmYOa\n", - "qy+iHtyp1+Jr814YnfH5+76Pl5u55JxM6FwWKmNkQ3dGoPSeE8bJFGiqTIHE1TnZ8FrVn6q/Dp4d\n", - "2Lr8KtwmTivHuoKYGnPOVxFVBTY1rhVo8Pru2Vker76RPAZmEfdgyenyuK8MuTPoiNmzpUmkhpOT\n", - "l5w8cVcjtJUJrX6yhFByBlDBbNu255MIj+/71WcpHCFNoMbXKqipcyqQqf64sq7uCkYduDqQqeMM\n", - "NJVOdOLG2QFMlU3h5o6rsml0lr8gcgHGCwc0PlblV71zNdG6iEyV4zGcBJeXl7J8JUJzRox57isa\n", - "3ARk3H7Oqz4yyPiH5pWusbzrm+rnJM997Mo6eHUAmoBsAkcHMF5qKr04UcDidBINuZ/GOYjxfvdW\n", - "EwGnvo3s0qmcdMmp8gpoE/ixrCqqC3XR+Bzknj59KkHmIrQ05E4XCCb+pgwjLewHtq0SvJbhhXmM\n", - "BJ2uXf3cFuWcDk3VvVzfqm0FdIfATcGLQcb2sAo3FmXzqROGU9q1is6qH5FnfvWzDdfGKj+Re7Pk\n", - "rKDVgc3JKsRcpMZtwSVa7j948CAuLy9biOExXupVesJ28A/KJ4OuJnulJwZZBTQUFREeAqmqvavH\n", - "ViG2GslNojkFsC5Cw/Z3usZ9BQQXpamfwvELgcnPk6bRWUZoVfu7skpOFqF1EQmfg+d2E8sNKKcq\n", - "GnOQY5ghyHBg3ScbCnAc7bk+cLsd5J10+uW6+ct0TA+RQwBW1ePKujxDBH85cejG17t9By+1cVud\n", - "zlIqgKk8RmlZpn5VwhEY5tX+ymcbtyV3HqFNjFoN6qEgw3w1yG5TbU+obdv1P0LplpvqmzQE2tS7\n", - "5jXK2PE6F8WoiYJeWkEN00OkGmPX/kPrVfWpiEj9DOymwDaNzCqgOV05qWy/cuoRIWGG0OOfLSmo\n", - "HRKhVeN5qNwq0L70pS+151SdcH99Ao0l4uqEZ2VxaJ3XKQ/jvJBqM0MlRf23Jn6OoiKjLnXLYqXH\n", - "DhAMPAdz9Tarin65zEG1a+9UpqDMCTVJO3Dx5zpoV1V+FWg58RMWmHK+WgqqsePnrxiBo506mLly\n", - "hhbm1acaK9H1VG4VaF/+8pfbc6olVxoQp+rP6TDM2ODQa0bEtYGp8lXEyNGO+rNADLVKD86jdtFj\n", - "3r/Ts4q2qgi1i16rMteubt9JFXVWZROYVUBjiPFxBTIVpWW7uk0BQwEsyxlgFdRwzNl2E2y5r5x7\n", - "BTcGL8MM24NAdWN3iKO78whtJSrpHsRineh9WGHoIRXQOOUyZ5S8pHj69Kn9F3RuWaHAovIuWmRx\n", - "dasxYH1PwaUmiosIJvByhtudW00ABloFMQc0BJkr5+Ua2iqXdY4R210t8xRUHNQqZ+PAgSuIauXS\n", - "tYshzHbsxpf1tCJ3HqFNPDt7dw6F1dJNhfWoOL5GeQ0HOfx7ZPn9GUM2z1H/3ISXnE4nuK90445N\n", - "REEM61P6V/eqwM9lLFNwTfenaQUwzjO0JoBjqKmILe0z2+VgxkBz4GB9Tx2Nswm3X61epu1T8HXj\n", - "6XQzlZNEaM6bV5O1C0dxEk6WIhPPxlGRgmRCzP3pbAc11f5phOTghP2roKXKXF6VrUQOE4N0kVWX\n", - "n6buzVsFNAcz3HfgctGZm7hcFuH/VLVzuh3I3LiijXBZBbMu78pyq5zWvQWaitCqyIiVkVJ5EjVQ\n", - "Ef36WylZ7WddvGTNPINM/eOTLkLr2lkZJQoC1+lnauQuVUsK97BatTHb2ZWvQqtKO5jxkhPhxVEZ\n", - "76edVFDj1UO2qwOaA1cHs25jW6jsZAKqSXCA+2hPVfSN820qJwXaJJydDE6E9jDVfmcQqHylXFxy\n", - "JsCq/xHgorNDDHIVangf1WenP3Us6+A3WWp/VVYgtXJs+gV7Ao3hxSBzz9AwGlPR2QRoPF4VGKbA\n", - "Wt0qeFYwW7Hdauxwvt1ZhLZt22cj4v+NiMuIeLzv+wf5HPcMbbpkcWtyzEf4/3CUaZXvjCTirf+/\n", - "iGWpdP4nKfw2Vr3pQl0o/UyN1QlDrTJUrovr5WMcoVVRT9VG1+5MO1CtQK77GQ63OSFWgY3HNdMu\n", - "Opv251AY4bVcj7KFLgJ056nU3Zvz2E+1r1ZEUzkmQtsj4sP7vv/f7gT1DK1aorhjqmzb/D8Mvskt\n", - "4q3v4ThqS6PG/yGALwh4q54LVLB1Hu7KYJB3R91wnWyo3A4lWA8DzX0Kwc6lk27CHwq3FaDheE3A\n", - "tu+7hZh7wznpQwWqCcB4zNT4sYOqgodJymOt8mre8vgjzO56yVlaqltyqg/vXBl7/uc3JmV0zxg4\n", - "j3VUhhMRzyMwhFkqnCM09akJ568psfGsh8CNjYlhhgbr2qOE68Ex4m217mpZdgjcViK07Au/BOCU\n", - "wYaRmYrWpkDjdAosBa8uzU1921Z9alHBrHOE03Jebt7ZkjPejND+8bZtlxHxX+/7/t/wCSpCmxgV\n", - "T5KnT5/GxcXFFe+VxpL7rOTJUrWCWObRw3OEhlBLoPFgqH2UyuAmEKsAgefwhjp6PqAD41HLTQbZ\n", - "o0ePngNtxaAZYBXcppFcRFj7qoCWwOIUAacisgps2KYKaEpHU2BNrlMQU4FFBzAX5au+VI4cz1FR\n", - "2oocA7Q/tu/7F7Zt+9aI+JVt2z697/uv4Qmvv/768/zb3/72+MZv/MayQjdxXcd5Hw0jFZFGh/Vw\n", - "yOsgURmaiz44Oso2cPv4+d/EG1bQ43LlbZ0XRj06yWNVvS76m0ZqzohduzrgscOrdJfH8JGBeh7K\n", - "/4kLnZXLO9BinlNul7KrCmaurAJhJXl/1fYEPp+/ImosU4e/8zu/E5/5zGdG9RwMtH3fv/As/b1t\n", - "234hIj4YEVeA9s53vvPadZMIhCe0A4iieQIMoZRAQcNw9+BjeC8lCj7VRMMy1YYuP9VhB7Ep0LhM\n", - "1ePg6yaN2uflVtUGB68KalX/8FGGAlj18zsFLhWh8/0rqKVOKsdZ5StoVePCbWGA4YsxnGcTOFbz\n", - "V5Xh9r73vS/e9773PT/nV3/1V+19DgLatm1/KCIe7vv+r7Zte3tE/PGI+E8nnViZiJU3VQqICKlk\n", - "hAeDJPfVM7ZqSVD1QXljhpmqg/vsdFBB2AGt2lCXSr8oVTQ2GbOVfWfsPO7TJf6kf+qfPTvIVdGY\n", - "+1xj2g43rk46mDmo8TFsSxVlOZi5+6nIE+/ntrtacr4aEb/wrHEXEfF3933/R3zSBGhqYkwGkQ0E\n", - "FazglRt+DIkwy7bxc5FKcPC4zs4bp6xCq4soV4HmjFm1NaMZfOayMn4VvHBs1L2xDQoc1fdfXX9Q\n", - "HMjUfgWvalJWdsU26xyO0muVKtBU4qDL46r2+Z6qzaruLsKeyEFA2/f9MxHx3d15FdDcBJhMEmiH\n", - "7Xin/LwGl4j4XAshWSnWTeDOaN21K9Cq9qsoircJfDNfLWPduCp7UB5cOSIVLVRQU9+Huf4wzPIa\n", - "92E0l02iMo4qJ4Jjmc6V7SZ1xPqsIOZsinVQzSccG3UfngPcBlVvNbZ3ArSpVEBzIKsmtRI2FqVE\n", - "pXRUGHpBFFde9QEn/kQ/q5vSkSurQIZlHcSwzEVnDq7Y10meQYZSAUR999cBjet++PChhZfaqqhi\n", - "MjGdTaO94vgwxJwuXZm7H+pAAY6PV3Osm7MINgUyzL8wQFNLI7XfQU15QJwMbuJgVMYKY9jhvuqL\n", - "Ao3qu9s/FGiTdAI39pwV0HLSrzxHU/1VZajviRPrQIYb90flM1qbgOwQoCmpJjw7RLbZzkEoJ455\n", - "NZewTIEM83gc26ycmesr30s5rLv+sLYUN2Au2qgiNJap51XXPn36NB4+fFh6TQZbdV4VkUy8pjM4\n", - "9tQVsBzEurwDmgObWm5W41f1nY/lpHWT1XlxBhj/UkP1A5eb2FcFLvcb3SnIOghVOppGK3y9A1jV\n", - "Bm5rBTV3/xx7XCpnXdU8XnUGTu4caO65mQJb95BZGc5Ku9jLbNv1v9nfwbKC0mq+259EXVPYTYHG\n", - "abXkVOOJ+u4mlZt4KMqLI9QQZvh37NT4ZVnCLeupIIbHOoBxeQV2LktbzP2JjfP8cDBzumW9TMpc\n", - "fxBq2PYKopi/l0BTz5GU0TuwqcnB4jpe7btBzy0N24HN9akD3LHw656LTeClUuUUVIoRWrV1E0ml\n", - "GBmoiceOpYIaf2bBdTDE8Pg0Qnvy5EkLMixj26tS1kFli2pucB2uXqXjvA87OhQ1t/I6nPNoWx3I\n", - "lP7uHdBUJxzEXORReW3ltSYT08FRgW1yHrY7wn+K0YEN61ZlHUQcWDqoqcnnyrpnaJP+qVTplaVa\n", - "ljiYXV5e/Q/3lb3kSwEFMoZaBzSlu+l483IdYebE6a0aEyUIp6nesO2ZX4FTN64rcnKgTYxfiVIu\n", - "5qdlqq2ubTyB+a804J+fUdA+dLKr+08Ax/d2efTKnXOofhfJZazTKsWoeDoBV7y3gg7+RjPb4p7D\n", - "uTeonQPobM5FQCoqUzpS109tudvPtjj7wD5MYKl0wHXxvOjqYzn5W05u9BRiKPxbsgpWqg0TQKT3\n", - "Tnjhj+bZuA+BGebVsSoKc2VVO7Cdla5Ylwytat85JtVnfN7Ck1a11e1jf3MJpPrpAMew4n0VcSiH\n", - "qfpd6ZihUYGMv9LHMcf6WXds652jc/rivma7J6ssrk+NXdaBLxamcufP0LrlWMqEzKvrazYANcAV\n", - "3PjvZeVfAEGD7/rW9dfpQBmKg5oyjkrX2K5OJiDjv0yyMrH597grYGOYdTamljYuCnNLJxchoXNT\n", - "yzIWFyFzJMlQS0EAZF14z87WVar66MDW2ZsT187pr3VYTr7kVGVOASudq+BYwWwCMt4uLi5k/ROY\n", - "qba5fAU6yo3XAAAgAElEQVQy1Z/pxvfr2uBAxsdU/ypBmGXq2sXlasOIRbUDgZH3q57nrICtA5lr\n", - "j2obAoxBhpIAUG1BnTi75zLXLpXm/Sdz2UWy3E7Vl05O9pZzQm8U9DrK+7FXwn28d6bTQa3g5pYe\n", - "NwEz1eZJe9VE7nTO91D5TKfRGT9Dmximi8y6Nqu+uiiNJduFUKuelzmgKVmBObfJLTu5XrZ57hfq\n", - "poroVZ7rcstNvk/laJzOOqc0lZN8hzZddqYwzDrFqH2nrGqgFch4iclAq6DgYNYZfh6fLhU6oCp9\n", - "OB0pnU2WndWyRe1n/3Lj50RKV127qwhN3b+ClxvzmxAX3SmQ4T5fg9dxOT9mcUDDjdvWAS3vh/fF\n", - "Midu7A7R8b36Dg3PUeI6WEVjeE83uJ0HY6jlrwzUAOP9sB0OdFPp2q10Wt1X6UuNCZdNQIZLThwj\n", - "1hXnJ0BVepleV4ENHeUkMnMT2e2re1bHqgjN6cBBwIGs2hCQqm1dX6b9V/M0+3EI1E7+DM1NMjY+\n", - "teRcuS/f23msbuD5JzPKI7p06rFW267yXVsmdbol+OT5WV7jlisq7aJ3pQsHLewLjw2OH++rt5wq\n", - "n+ejTTp753sovbAupjDLe2RUyxBgvaxCbeKInD4rcUGAgtqK3IufPuG5E7JXYMtBmEwA5ZEcxNTy\n", - "UoX2ri/Tfq48Y6giKndf1xbuvwP9aoSm9KWi2zRe169KZ9gvngAOBGoibtsmHyt0z9C4XW6sGWaq\n", - "PayjbH9OcP7lQ9ZZvRXsnDjaOS85K311YKtgrdpXOaOp3IuXAquG24XsDmrV/SceC3/QXj074DJ3\n", - "fLV/brIrI3CTTOVXvXcHMoxkVdTh9rF/XbTJbedz2dNX+sU2YIQ2WXIi1FSUxu3l8127+B4INn45\n", - "4NpZ2TmPN8Is81XbuvbiPKxAznIIxFBemA9rp+EsKjDr4/zKMwSGGT8bwnqrflTHKo/t7jNxDOpe\n", - "VZsc3JSxTz/bqICAG0+0ztExHNw48xf3SscqKmKouZcCHH2xPvkcbjuPdQUO9xmL+uUCjzM7CzW+\n", - "PM6VrlTeQZ/PVW1z47cqtwo0NfmrEJcVjuIIj2Vd5NJBy0Uh6eX5+ZmDm9t3E1L1ZQq0qtwJH3eG\n", - "vgIzdSz7UW24hHIwVuUYgfA5CDO3DOOooZuwnTidd2OB93IQSCgzoLNvWa6gphxzlWLegdeVqTHl\n", - "89U+trWLeDu5VaA9evToWtl0WVOFvLyPyxWejFmu4MnQqpZYeC8FMyxzEYXKT/qG11WTuLuvK1sZ\n", - "k84h8fgpI5+AogMEGzxDDGGmlmJq4iMksr4q3+lanYM6URBT16eo33FmXycgY8fTQY7boVLlmLG/\n", - "7hzVR+xDpxsnJwOaAhCXoXRhuYswquir2vB8VK6KyricwVKB5pAobSXl61Q9K/CaOIA8D2GWE4/7\n", - "rqIk1+6JPhlm7kfeeY0qQ3hxlK8iw0rv2K8KYtUEVm1BqOE3khOoOaDxOGO7uB94LNtRja+L9vge\n", - "7p5TuXOgoYK7fMok7HURWgW0KfSUVJCbwKYbYL4XXs/3OSavItgptDp9M8w4ulqRlagXnVDqT0HN\n", - "AbSCmCpX4iax2lflXA/mVVQ6gdnFxUUJMd7HtqjoiSNdZedVhNZB/YWI0FLJkzSl8hAo0+XjJFJz\n", - "EVoVqWEfM3UwQ5mCrbufK6tgUEVoq/rkLduPSyU0/i46c+1X/cVxwuUtw43rVWPLwHL5Sv/ZJxWJ\n", - "VyBz+uBoB9s/eX7Gdu0ghvuurawr5bgQvjjmDmJKdy8M0BBaVT6lC3mz3tUIrYrUugitEgZZBbgJ\n", - "zCaDyudMosRMVyE2BZwz1GMjNAeQFOeEJhGag5faJrICsgnMUBeZn8BsGoVjuWub6gfCrHNeTk+T\n", - "8enkZEDj8L0yGDXYXKaWTl1kVkVqXYRWiYKY2u8AVkGt21ftcOkqxDrvzkBTUHBt50nJ/an2sXwC\n", - "M/ebSAUyBTolDuKZViCrdFGN701EaGqMJzBDXTrwHwKmqt+V3DnQIjTUHNAcwLgs4vqSc+U52SER\n", - "mhrYCmAuyqgAVpVVx6YRoopsb2pLnbhIZyIKYmgb6jjqoAIYthEfaDuQTaDsHNUEZC5C47q4vwg0\n", - "1lM3H6o5wm11TkDpbTrOE8ezIrcKNP47YRG646o8xQHNRWiTgVMQW4nQKpn0zQFb9RnLKqAjULkt\n", - "XX41IpuejzpDMGD7UJxu1cRQEyVhgiDLCR9xfSnqnrVNojS2URWJuPFy46r2WS98LPun6uY5sfKG\n", - "Wtl9FamxLrpxdnPpXgOtWnJO8pUSuQxD625phKmDGD9LYOkm3wTcqq4JzDoDy/uo9qgyB/1DIIb7\n", - "PNEmEU4leC1CxJW5qKj6feQEZFnG39Z1UOucsnNalV10EVrn6Kst4vrPqpwuKzvLfCUO5C8E0Kbp\n", - "xDNgh7tvaxzMnBfDJWflUbh/043r6Ix3ZZtGwpMI7dCoLdvt/pz2MVLVwVDDaIO/UYu4/vvIDmQq\n", - "ClHjpcau2udr3Tl8/k1HaLkhMNX9+ZcYzmlNYOZ0tSoneYYWUT/g5cnuIMYTeAIyBTO37yK0yps4\n", - "eD14oH+f6AxZHUsjqkDG8Eh9VoA7BGgrHh4Borx3JVXbU9/uOoSagheDjO+n7s/nVhOvs9mb2E8d\n", - "K5s8dowRWt1H0a7/2GZV1tly9WeTlNz5X9tgUQbpDBajtjyOIFFLSpdeXFxcSauN76UiIde3buKi\n", - "UeAkdILRhmsPt2ua5zYjiNnYsayCdk6GrqwCV6W7HBvczzJlR5OJiDKZeIdurn7skwOB6pc6numx\n", - "/y8B61B/nhz/Dyqn7pjL878QXJGTA60SBTPMc1kFMBWNKagpwEVcf27AE86BYqWfHcxYF50hKli5\n", - "tIoqO5hxvqqPf2iN6bFgS1GOEMtVitdiqsqm0cUqyBxMurw7Pr2HE9cv3ioodekkvyL3AmiVcivj\n", - "5HMUvBzQusgMz933t57D8BfRCmwT4Wiiu5Yh5soV0Lo8g42jrg5sDoTTiKyCmmsn6q3SLerIQcyJ\n", - "g1oFpUMioQlsujmC+Wn9U7g5oFVwmkReDowvZISmJl6n2CqSyQitey7GW7f0zGtzQBNsOEmxbV37\n", - "VcSxEs3l+ZVhTgHp2sYgUzCbwm0SpVVRWeUwVpyHgpkD2yGAqGC2ArmVCcxOsYMu/izJwc3pAvvR\n", - "LSkVlKbLzBc2QuPJ544ro1VlKiKroq5umYnXJMByW31rNzlH9Y8NFo0RJ6OCmRJ1bAKgDmAOag5e\n", - "k2dorLdDoI96Q6jl8U5XfHwVZiuA47IK3JVjX4WxusbpQkVouFVL0ZUIjo+tyEmAhhNyxcicUeME\n", - "6h7wuwhNgQ2js1wS8aSuoNaBbAJCzDuoMdxQppHwFGgdwBTMphFbBTanr4kOGWqdnbH+qohmCqjV\n", - "fexztT9t8xRuXV3HAq0DnILaitz5X6xVRsEGpgasW3ZMYeaisSpKe/r06fO0e86j8iwKdCuT1QFs\n", - "Wubuo2AzjdQmYKvyTq8OZofqq5JjIOfg5MDlzsEJzACuIrXpppadrv88T6sl5wRe08iM0xW58wiN\n", - "vZDzDuyVUpyhT56TrR7DKA1hpqITbN9KVDZZWvA+6sYZJINM6RkjYwezDmLqBcAxEVkVqTn9Tvan\n", - "9R8a3XQwU3mX5vh2jtPNG9cXhhmfM61jGqEdE5ndywitAxpOKAc29tYun5OrA9bkuzMGmlpuTpac\n", - "rh9YxvlJlKfAhvrllPVc1emg5iDW6aSC2PRZmtNfpS91bTdGTm4KbNNUAU3NJR5PBSkXKToH5+yD\n", - "YYZgevLkSVxeXtpzcqvqeCkiNKdYFAUxNtAc8JU3mtMl6oMHD+Ly8vJGQcbHOe9S1KEqZx1jvvLC\n", - "LjpzEVoHsA5q3QsC1a5Kdx3UJmDs9MhlU2hUS04FtJzADLJ0qqqf2S6XTrdKBwxotexU0KogN31p\n", - "kIBXDpzl5EBzBHZhdzVhKqipzzO6N6JYZ0LNAXVVXLSm6q0iOydTPat7O/2ujEcXZXWO6hidTkCm\n", - "9itRDkEBYVLmYIjQyLnD0XVlN9g2dd+E4hRuCsIMsYzOGEBdfuUXBStykpcCHForL1AZPteXadax\n", - "bdvzFF/7svFkdHB5eXkNcJnfti0eP37cbk+ePIknT55cAwBGIjhZ0VDVRJyWqRT7inlnuOgIIuKK\n", - "7lJfT548eX5OFbnhMfWcxW2pP9Qn6hUnzuXl5VgXaF+sc4yAKpCnTeD9Ly4u7DJuJVJz57vntSp9\n", - "29veFl//9V//PH306NFz242I5/p94403rqw20M65LMcPx0DlM01bqfrWRWxqieoiRycnidAqiHFE\n", - "4bytqhevVSBTQEuYqYHOjSeZm3AJNF5SJdgQag5okyiG9aI2521ZH1lHti2PY6ifAEFYMdTUsX3f\n", - "rz00Vg+SEWhq8iioTeHPfUcbQpgxRDAydxHFJNLpop/KySiAcdmDBw/i0aNH8XVf93VX0gRajuXj\n", - "x4/ltVU+HdlkbBzc3eaW2+rYitz7CE1JFaVhhOaO41tL9YyMJ6oaROWtcqIhvFxeRaHdPk5ALmej\n", - "xz5PUtan+6CxmghclvVMHvwqqLnoDAGLelB57BMCHPuDx3Gc0FbU854KUnzP1bQDGZbh4xR+pJJj\n", - "gDY33RBoPD64n2PC/VB947k4gd6K3PsIja+txF2b5RhKd1EGGo2aXG7iqQhNgcwBzYEty9JIFdSw\n", - "3UpnCmLOiFyZmlguRc/LQFD7qNsqxei9cwJO8DjqQy2L3D5OUKXfymlU5dgXBTSVV3ac/csILaGD\n", - "emEd4X4CjZ+XccrPurhfbr+Cf6c7J/c6QuNOVZFHRFiQZd0uoug8IYOMU8zz9QwwTiuAqQ37ywaN\n", - "S2XWDepEjQcaJZdhOtUZA617VqKeqbnnbeksWGduH9Mu7575OOBXenXStYXHvINaN778+IXzztGh\n", - "o2G48daBxzmXVdh3cu8jNGc8PLlVKJtAwSUEGoQyEi6PiHKSqYfVeR91bwe0bstrsa8RHmpTQYPH\n", - "tvHDegS20pmaaAg0l0egVc/Y+E3axBlgeeZZb3xe6nmyrUoHYT5W6Rj3O2ehlsmTZ17VGPA+Bh1K\n", - "190xzqv9iZRA27btpyLiT0bEF/d9/8Czsj8cEf9dRPzrEfHZiPiz+77/vrr+JiI0Z0Quj8aO0OBJ\n", - "4LZnfbyydW/ocIDT0DAiVIBbBVq2C2GlYIZAcwaB5ahrfNidHpnf5naOgCM0Fem4yIcjQhclVrpT\n", - "44d6q9rLTkNFMM6pVDp2bar0OAFabu5RSETI5XoHPd668cg6pmPB5eo8LFuRLkL76Yj4mxHxd6Ds\n", - "RyLiV/Z9/6+2bfvLz/Z/RF18bISGIFPLSbePyo3oHxp3ZZMH2rgUSsAwwLiPU8NWE04dQ6iloEG4\n", - "fHrjLGOgvfHGG883vnfVZuWQXGTQLUtxUh0a3XL/1bMnZa/VPtuNKlP6Wnn0Uek7Iq6MUTqdiKvP\n", - "A/OzDWe3Lp2MR87Nzi66MgXwVSmBtu/7r23b9l4q/lMR8aFn+Z+JiP8lDNCOjdBwQDLSyTryutzP\n", - "lEPfY/MRUQ4klzPIEGYKbjiQPFF5gFE/2FaGGX6D1KURcSW6TD1mWU6Wr371q/G1r33t+bWTDcdk\n", - "slVLU86nsXdOAPur9OuW6gpuqpzvUeUZoG7rnAWWR8TzscE3m+lcc3xzHNVjEvcopVq2sv3nWEyA\n", - "zXm3X42Dk0Oeob267/vrz/KvR8Sr7sRjI7ScxBFv/fQjyxXMUDiim4hT3kqYjoPCIOPnMxw9sLHm\n", - "xMV9hhlPFgTaZLJFxPNIDF8mcIT2ta99Lb7yla9cq8PBg4HGY8V5F8WpfF6nIOUmv4qs8jg6ArQD\n", - "7pM61ukDN/cBq9qvgMb35u/O8HknR2jVpzHu27LuUUHq1sHZgVvpIOtFh7UiR70U2Pd937bNPh29\n", - "iQgNBb0O18mTXYHO5bv9lYFlqCmQcd9xciHoGGqqnwpmFxcX48m273s8fvz4SlSX/ciJkUD76le/\n", - "+rw+rJfvged0YzGFHPe9ilpUW9RynScTO4JDN7e0Uj+5Y6AeAjT3q4Dsc5Z97Wtfkx+Hu7x6POAe\n", - "GSh9un385QV/M5dQy3HiednJIUB7fdu2d+77/i+3bXtXRHzRnfhzP/dzz/Mf+MAH4ru+67si4up/\n", - "LkJo8cRP6bxwSqWALqKrwKcgkm3CtjuYdcsLtczgssq7O31kWzudVdd3gmCe6L0qq6A2bYe7f4oC\n", - "Der1JoDmIFctuyZwVlvVbwYRrzBY36kf1BPrsLOPiQ2pcXbjFRHx+uuvxxe/aDFzRQ4B2i9FxA9F\n", - "xN94lv6iO/EHf/AH28pc9IIdxqWQ88B5vJIuauuOde3mCdKF2RXAuIy/AFdAW5Hq/M55uHQiFcz4\n", - "HGyPG4sOxArefN1qVNTpZqK7SicrUUkXzaqoyumPIZv1p/6rep3tOyer8k4/r776arz66ltPtn7r\n", - "t37L6qP7bOPn480XAN+ybdvnIuKvRsR/GRF/f9u2Px/PPtsorq+qbyWV5CI0dY/K+FmqqEzlVX9w\n", - "sCP0cwQFoVWoqb8Uoq5z7ZxIF13w84zKMFF3q2nVPm7rMf1y/bwpkKnyia4OBZr6MqAKFlByhYHP\n", - "sRTI3OOirGMSbbIOjuUESveW86Pm0L89qbxrqCO/itAwVcrhpY8DWxeldRGaGgg8bxVoDmoKaO5P\n", - "HClDmRgJ64tTNeH5/EPlWLgdIwrU1RJ+BWiYr6DGesj8IUCbgIzfkOM48vji8pvrUGUKaMo5q+Dj\n", - "puVWfyngGsxkr45lfhKpOUOoDEQBbAVqvK8AVu1PYJbXdEvOQw2mgpmLAlel0u0EYui0uI3TdrnI\n", - "4RigYb0qj2mlmy6Cml5bwU199oNtzjmGb3vxOpybXJbnO5Ap/XAbVH5V7hxoCjxMfSxDRVeejyOH\n", - "CcRWYFbBogJaB7cKYpyfLjkPkQoUeJ8q6lUy1XHnRLJtHfS6CVP17RigqXtU963GagI0hPsKyNim\n", - "GWaZIqx4fmKkhhGagpjr8xT2q3KSCA2PK4hxVFZFZnyvQ5Yq3URzA6GMtgKaylcQ44m2suTk9k6k\n", - "MkS8D+tJ6b7Lq+VPFbFX+l/pn+qncy6HAk2VTSA2jc7YJlWE122sl+x31pcpLzMZZjg+KzqrxucY\n", - "ORnQWBHsFdjwUYFq6wyBB7KaTG6CVd6WJwf/NdDus4sqv22bXW5WS87pOLgy1TdeZqDOJuOgdN1d\n", - "U9Xr+q3gwn1i/a0ALSc/1+/u7RxO6oDt3kkFs2OWm6pP3C4HM/XTJ95f1cmhctIILc9Ry0wVmT14\n", - "4P9L0FQ6o1GgqyYEt8OBrAJaBTV+jlY9gzvU+yldqomPETPrjMfO6dWNA+u5a3+33/XR9W8CtDw+\n", - "uT/rs2vr6gpDRV/VLy34Hjy3EmrbtpUAy+M89lV/pzo4Rk7654NQeEIoz6Cghtere1XiorQKas6b\n", - "YyRVAY1TN6HcvoLiFOpTI6qgjecoIHXOogKbi4hdPyY2UPXtEKAd4zyq6xgyU7BVAKuWm3y/iKt/\n", - "PHQCMyzjutS4qL4r6B0j9+IZmkvRa6glZ3ePyjCOgRlPBJ4U/LMWTrsIbQVuatIdOibV5M19nhhK\n", - "p7jvzlMTbAXKDmQTmKg+3iTQVgRXJ1ymzuX7Omh1kEO9sJ7UKqmCGV7Douq/Kd0puVWgTbxMp4xq\n", - "4zCZvUXEW16n+rG6iy7cBM228n7VxwksFKzdZGUY4HIClw2uTqxL/QFFnAhd31x5BT8+XtXjylYn\n", - "hnNI6GyqMZk4jkpf1TW86nD347K8Vv2kqYrQXNvUWLC+c95hvnOU03KO+lflVoGmpINGSjWwCKnM\n", - "R8SVffZWqlwtmVwb2Wtx5MhtR4OrJrW7P16bZWg47EnRc1Zg5LJ936/9FQaGm3IGbgIoz66isckk\n", - "q0T1RwnXzTBTUXXnSBloKsrsJiZfo1YCmHdlaRc8XlOHtCJqzDkYWHUyKU5fq+0/WYQ29RQMMn6e\n", - "psA0nUQMI2d4Ci6ZImSyXMFzRWdoIAhrNGLUS/WiRE14hqL6/6IcrXVAxvq4/dU4YJnSxaGiQFuB\n", - "jP9KSQcyBzS8t4s+O6feRWU8ftVfonXOW+nLCY4n7x8KMCVuHq/IyZecTpwxTSItBhZfw3/hgyMQ\n", - "ZXA4iFlngqTKd5NWRWloLBVklcFjnQpivI9AU/8yTum5MmiGewU01guPYxftdNGZOk+Bjf8wZgcy\n", - "3J+AmduNZZVjn0At4vrf6zvUmVaioHZsfUqUfazIyYC2opDOYyY4FLiqMvx+BturQFLtY4TEMHMD\n", - "xEbJ9bo2OGhVk9vpmiM0hlkVoSmdueMVwFy+6/+qOLthqE1Axk4IIzHnZDlqxWMqnUI17VgtNQ8F\n", - "baVDd62KWKf1ODlkvO8caNOJkHlnUAyMCiCqjKOsvIeK9pS4ZR4DE6O0Y3XH5Svwqu6Tf4ue/1pp\n", - "9QxN3c8BehVmnHcw6Prq7G+y5MxzqzzbVjXOCs5VlNpFZphXz88qZ+p0syoOYpWjdqLafEiEebKX\n", - "Agi2KoKYRmRZVwU09RLBGaprd9WvBFpuhzxLuwlPulJPRmj8H+BVhMZjNcl3E7cbPzceSirAKRvC\n", - "t5v5O9kp0LB/CiLOCVQTl/tdQQ3boF4KqCgN00NkxVnyfTiQwfMqBtwroLnGpJG66IxhV8FMPadi\n", - "eLlJhe3sAKAGhNuX9508x3BerAvdnZc9NL/v+xWYqWUn609NbpdOIIZlEw891ac6p4vQ8Lyuf8qu\n", - "+HMGp3fus3Ic1VITbW4aoR0qDkZ8HPu1Er2xOAc6kZMsObOhXYO75Sameb/O46fxOK839RTch7xu\n", - "5TkGD3pnOJXH7Y5V16h/kIEwc6//1fjg/kr71KainEOMHNvLdqSeoXHfXIptRCfKz2adM8R+sq4r\n", - "2+T96hnasUBTEXIFMGXH0yibIXZI2+9FhIZ5lTLIMs/3qICmnmdVnnDSDwXmSYRWTUiu0wHBwdqV\n", - "YT+4TH2DNvlsI/tSTb4VuPLX7fzyhnXSCdtVBzNecuZ1mGKebSni+hvwPL+DmdJ1p9tMq2/QWM/V\n", - "GHSiQKX0rUDWjZsC2cpYp9zLt5wYTrvoDPfxfm6C437mua6qD065Cjwu/O/67wbRAWvly/CqTP1f\n", - "Rl5yYvt4nNQYHQI01F8V6bBelLjJWsEsXwrw+S6P7cNoUn0zqNrnwMY2WYFNQdE51A4OSlcOTnm+\n", - "ymN9K1Dja1ZhFnGClwJKHEyqgXSgw2cYbh+frSlIYpucMTqZQmYyyHyOgli1n3V0gHMgU5MEdYLt\n", - "Rj25Scxj6wx+avhd2aQd2B435m6fIwq3YdSkNv5v5djuzu5x/DhCUw51Agl1rrMddUxdq8p41aRS\n", - "toluPE/yF2s5dObySb2qHtVh3ne/NqiiQCedkVQGvvJJhwNaBzdsg8tXE60DMU8s/NnQxKA55ck/\n", - "cQhcH+dd39QSjSNC1L8aEwWlyX6XZ3t09p5p9YZT6crpX8kE1NPx5XrRrvH3xxHXA5IpkE8KNLU/\n", - "ua4bYBT1S4AVmKloBOtRA9WBA/en0gGtW2ZUaQde3HIiu2jBOaYJ4Fb6V9WDeQSP6hfv57iyuEid\n", - "oyuXTqCXZROgoY5dZF05s05/FbxcvhsLHBOEGIpaWa3IyYDGeT6fz2FwuMmkhKG2AjNnyEomkMAJ\n", - "VE16VffEqHBpyHU6o5tEMdjmlcnWtQXzk6hsCjQHywpuFdBUOUIIAebyHcwc0KofzEeEhJmK1Jx+\n", - "JvbBqYukJ2ONkZm6NuLq76FX5ORAc2XuOgZcBR4U/pMnE5ipJSEOCJdzqjwcpthmVx/uHwK0ru6b\n", - "BFo1HhPIrmxO55xihOaismOApp49umeSDjqqfajHSu8RIe9VwUKNS+UIFMxUm6djHRFX/v+nEzXP\n", - "OjkJ0DJVYFPXccfcMqcTDGenMGPo4D2dst0kVF4Nr+G885SuLlWvatu0vVivAxqPRxWhuX5yGyZt\n", - "Unpyx1aAnf2pxIGk26ZtYFusIjVsRxehdQ6gs4kqwlR258a6KkObYqc/kZMCrUsZHApiXWTn2oXQ\n", - "qmCmIg0Hs8mk5AhtJdqoIOZC/04PkwnPfeiisi5Cc/tOb5Vuu7xa3nRAyz50usPJjRt+BoP5KVxR\n", - "xwgx5YgjwkaAyslVMHNlrDd3v8lYZ9+4nG0n+4r1TuTkQHNluY8ww4FW+ZV2uU1959ZNRiUKYmwY\n", - "DLQu4pgAzRlApduVKIb1h/vq2NQzHwKrKn9I37B/kzHmyY0A49R9VtHpGCHGEVoecy8EJpETl01s\n", - "T/VbwdDt89xX++iIVuRkQJvmcx+9rYLaikwjs6pu58XcNlkGTCZmlWK+cxiYV21yk44dSAU2p69K\n", - "j9PU6YrLVBRa9U+13Yl7Zoa/unB/vcSBzdklAgzBlu2ofuHBuun0zec4ffE93bhymdOvCy5W5KRA\n", - "4313PsOMQbYKtLxmAjMXabjyFbjh9e5cPNYBjScEttOlEf5bLWXIqp6qbieTKKEqq4DmHIEC2zFA\n", - "40nNPyGrfhvr2oDj50CG+xH6OzQGmtNnNw4TmDHQHDhTFAN4HuY9V+f2Sf7rUwU13ncw43TSFlYU\n", - "K9ApVrVJyRRuHO1MIThNsc9uKciwdhELw2AKSjUmnbdVE88dmwAtj3cAYaC59rOoic1wy79i4u6p\n", - "8vv+1n88Q3t0YHPRWQc1pV+Vsh2qZTZHaO4+rNtsf/ZTzc0VOel/Tl8tr2DWgQ0V45aT3TLT1emi\n", - "KfY2CDKM0FaAVsEM8y7KVP2b3JujhyqtxpHHojvm9qd6S11PtxWpPtOo/hSTStkhZdsTXgk51HVG\n", - "aApiOF6drjuYKfCrb+0qcfMv5wmnCsQTOfl/Tj/m/JRVI+8mrvKm0xQ9Dnoe7h9HR6vtdAOuIjIX\n", - "nVXnOj3fVLSsxo/Luok2GfdslxpbjmouLy/btmM7+KF/9YmGajOmSo9KT2qloGyhGn+sa+owJvpD\n", - "qZNw3ZoAAB8OSURBVFZdzib5mKqnk5P/OP2QaEil6vwVKPDAqf1JyjDL1PVVtaFrPx9XOu02PA/D\n", - "fG6r0vchEKuEJ9ZEF5PzssxNRjUxsQ0sXDb5xqwbQ6WHLro9RN8OkHhfLK/mjdMl2g62s4JZBd1D\n", - "+nmvIrRjRBmMO65CaAeyVaApmKXnX4nQXJ/UZGDPnOkq2DqvWMHsWLBlfasb6knlI+ofqPPSifur\n", - "8rnfRWbKRiobTT1kWo3DVKfTcXXlzrGzDhlg1T2r6Kzreycnj9AOkWpy5/5q1FN5IDWgFdAUzCZ9\n", - "mUQhlfByZbrxA2jVRmxPBbNjwOaiBHY0DvCqLCNQFY2pVLXHgU3BbOV7MCUcLU0mt6rXRUUTeKk5\n", - "4YIB7G/akutX5UiraG5FTh6hTb2NO7ea+CueXi0RHMSqMhwgB7Osn6MS1WbXb9btamSGxleF/U7/\n", - "xwDMQRPzbgJlHq+pUgZaFaGt1Buhf/rULTuxf0onaEOVzpQTd7p2Y7sKt0p3aAdsW649eFyB7hA5\n", - "eYQ2UbCS6twKEB3IquXnBGir4iIMBzT0tGgAPBE6kHUG5KCDE4/P6+A2dXDdRFK6cdFUAo3r4Wdo\n", - "GKGpOlUZRnzd0rNqs9NR5VhwHDqYYZ7B6cDYjYHSY0KM/2ijg5eL2FR7p3KyCM0NpiqvPAmnHSAm\n", - "YHODV0UMCLRJpIMGNWk/16tgxnqvQNZtWI/StYoYDoWZG3c3gXgSV/kqQlMvBrivlY2pTxecQ6za\n", - "rPSgxoClAhnvV3ZTQa1aufCYsKjvyKYgO1ROFqGxp59KpfxMHci4TD3jqKI1Bz3cn7T/4cOH4/Zj\n", - "ykDisH4KK76e63U658gA5RAjdNGIczbqE4EKEh3QVITF/VV2k/tqyTr5ZOMQnXCf2CFy/dW4IzQ7\n", - "x1BFaKg3vrerdxKd8XkrcpIIreq889buelXegYzBpQDnorMp0Fx0kzBzxqP6gXpJ+OBHiJ1HVtGZ\n", - "i9bwetYtj9NU1LmdbVTRgHIclU1wPd1nFnhd5xC7evFcp4NOl5N5VF3bgU3pS21VXxW0Kpup7O7e\n", - "RmjsSTCNuLp8WYXYxLNk2g1SlarB7IA2maxdlMYpR1TcP2cUE7gp47pNUQDmMawmU+p5OqEnkRlH\n", - "aG7D45OlLNqIchJKH05P6jqGhrt+dZynzp4jtLQv165JJHaMPd76knPihSo4TferaGy6Kag5b+vg\n", - "5vqq2ocTmVMuU3UiFFHf1YYR3irUKoBMJ2W3n/fpIoOpOKA5EKn7T+ylivhw6+bDygRmm8LrK4c2\n", - "jcRX+o1ON1cOPF8727wJh3qrQPvyl798rWw6gTPtIihlNJMtBQc3BwFBwRMiB8wBDf/nI2/VYGE7\n", - "lOfO9uX/ksSU8+q+Kq8+21BjkX28uLi4dn43YVQfXb8RujhWDG4GWgdapf/sE/72Ev8s9CFAq5yd\n", - "6m+VdvrCfR7T6s9bZ58fPHhw5Qv/bGfm89jFxUU5f7INOU4XFxdX/tcp/s9TVd6dd6/+ScqXvvQl\n", - "e8yBbeodKlB1kFRQq34QyxCr9jkCqp5V5b1ZXBmDTAGtApuDXRUluSW18vQKZhOIuzFwk3KyXGK9\n", - "Yds48kuY4Y+9pzCbOl1sj4uiuAwjOlfG+q+glrDCKArhxh+DT8YC2zUB1iHbitx5hBYxg1mmDlgT\n", - "RUf4JQ0e58gAr8vBmj5Dw7p4ok+jNLWPhurAhsdU5KaOVcsOnLBoXG7ZUi1luv66CE1Jgqca9zxe\n", - "RWj7vl+J0BioDmxcruDGedXPaj/bnqkrw3p5hYG2nBuCLK/BP6LAf1Chi8zwXGWfbh/LVPSG56/I\n", - "vQFaB7WuLMUZCOfdNTjJMRSvojIFNK63muQuquF61GB3+Qp42VelW+wTfpKgIq+u/RNhmFU/oZku\n", - "ORFo7KC4f0+ePLlybAKvDnx4HPvo7KKzlS5CYyBfXFxcq5MfiyDAEGqpv+zbdMwq21O22G33aslZ\n", - "AW0FapO8i4ZUXl1XlXcQw2N57SRF6SDsjMEZR+URcauiM5zwl5eXz5+hYZu7/FR47NR9eAKxVBEd\n", - "R2jYN7SPKsqawMtt3MeVTemC9aYcAes0bXTlvtO5lvd2KwH1aKSC2L1ccn7lK1+5VsbgWom+KsFB\n", - "wzwrOweUr424+v868xr1jKyK2ro2qjKGgdp4yTmBGm8utGeAMcj4s4ZpvyJmY4hLqEqHCB1XtypT\n", - "S2sGNraX4VUBjqHlyrD97rlqpwPnKCpHwJEZLjU7eHbLTLRLnGPdNrXbPL4iJdC2bfupiPiTEfHF\n", - "fd8/8Kzsr0fEX4iI33t22l/Z9/0fquvdW041+OoYtaXcVx4Ay7I+5/0zz23IwapeAmDUxu3u9vHe\n", - "laFNQ3QHMJfnZQr3ld8CrgpDpBJ0OFWkUS051T04QsN+Kpi5h/uqDO/Z2TFGM268Kx0gGFnHeD7X\n", - "hW1GXTiYVc7IARiBxgGFKl9ZVaxIF6H9dET8zYj4O1C2R8SP7fv+Y13lFdA6qOWgR8yWcKwMfpCd\n", - "57GXx3K8Z7YlIsrlJue7qBPLUZSRsBesjEGBDFOXR2ArmF1cXDxPnzx5IsezE56I1TVq6Y/LJFxW\n", - "OZ1y/WrJiYB68uRJCTIGGjuvrh0IMIZZ9gehgjBS+sA6eC6oVQb2oYoOsR6WatWQH9YytNCOuWzl\n", - "8ciKlEDb9/3Xtm17r+rfpHL32cYhYToqXA2EmswMEjQiLOvyHI1NgOY21AHeyxnM1AAqkKkNz+OI\n", - "RS0381zVflfGk3AqOEY8Ofkh9STPesX+5rlcvxtnBtxUHww0hBnCIM91euh01gUKCmh4TyUVyBTQ\n", - "2HadPXd2feNLzkL+0rZt/25EfDwi/pN9339fndS9FOjA5iY6K2rbtucT9OnTtz4GTMlz1JvIPM4p\n", - "5hW8KrjhhMGJk3104iKyLlRXy8kE16NHj67BDMsw8uS/PvHkyZNrdVdRCZdhRIZQc4BD2OA1uPEk\n", - "n7SFJ28ez/HBKLCCGOdXhIHGMMtzIq7CKW2N9YL1sv5QWDc8b1Q9lf6UfSqgVXNV2bLbv+klp5K/\n", - "HRH/2bP8fx4RH4uIP69O7H4pUEUxmXakR6A9evRIvmbG6/AeVdSHA66emXVwywmSho9vQCfAZsOZ\n", - "PG9AmCG0Ms9pnq9eAjx58iQePXr0HGoYzfE44nhmXgFsNVJDXbHNKHtSKdfH5/CknjxWqIDmIh0V\n", - "lSHM3LW8oujuyaBS9VW2zvVW9sgvizgQqLYOZHcWoe37/kXo8E9ExP/ozv3EJz7xPP/KK6/EK6+8\n", - "UkZkXIYTwE0ON3grE6cL51fqOWY/ojaELmTnaE15O+UYOsPOtiqH4/rR9bM75iI6jrI6O+A6J/lJ\n", - "NLnanzzmbF1FYnzc1ckgQX0wYBKik005EKeziYNmoLGzZjtN+/z85z8fn//850f6Xwbatm3v2vf9\n", - "C892/0xEfNKd+x3f8R1X9t2A4nFzzzblydh5KpbJxMLzqgiz6+OknxXM0BBUBOegxobS6WkSQVd5\n", - "p+NJVLUCzC4aZHtRZZny5zf4iIIn7gR0auxdxDmBGJ+jXihU80OBSx3DiLKTmwBa9ZjlPe95T7zn\n", - "Pe95fr/f+I3fsG3pPtv4+Yj4UER8y7Ztn4uIvxYRH9627bvjzbedn4mIv+iur7yKSllJaqJ1MOuu\n", - "O1Qm0FoFWzfBKphVz9QqiHXRWNUnfIjurlP1HJJOpIriKv12DpIhxlsXvbmyym6yLhWxod4Ttnxt\n", - "2gf2A/ub46/6lvaBx/A+3bisAs3ZsbPXFenecn5UFP/UtHKnhM4jo3Te1UVl6rpVmURZK6BT/cT9\n", - "m4RZB7bKYFT73Xd2ri+HyDFwi9BLU5xoWd7l+boKbAy1yqYrgClbS72zLSfYsK4EUJY7qK1skzFQ\n", - "91H2O4Fa1Y6p3OovBfDNkZNqgqdMjbHzvBO4KcDgsZXI7JBopDKK6XKTP5ytojSnFwe1FbmNqIwF\n", - "J7nb72zFORLshxoXPNZFqB3AFNDwA1ucSwgtjNr4PsdAJO9RAcUFFB3IKkfNZTcaoR0rnUfncyup\n", - "IrGbiMx4QmA5G50qPwRqqo0uGnAGUH2XNl1+Vjpx/V/V66HpVBgqbC+ZOqBXERoCRE1i11bVlxWg\n", - "pXTP8dB2MaLDNlaRfgU0p+vKdhXMuEytFlzZitw60I4RNTDOI1SGOmmnAplqwyEAc8dW+9bBbPoy\n", - "QOmFJzNHZrjvdDp1IisQc7py5e7aylYULBTElON0bVaAQgB1QHP35jaoSLSK0DLqOgZorHOeb2hn\n", - "CmTKSVfXrcitLzlZVieDm3wdvKoJ2wlO2pVIrIMb51XbJiBjqKklp1qaOu/JMFP6wG+vFNR4cmFd\n", - "lR6mOnI6q85l25hs+OzIRWYIDtV/7Efl5CrAcT3O1hloCkR4jKO9KdA6veU5DkoV5DrwrcidR2g8\n", - "GXBgqsa7CYh1dMddG3lCT9vE9VTG2Rkt9yNTN/gcgVWRmfoGrTKWDtCq3RyFcN0TqFV5J5Px6QDG\n", - "+nAwUxN42tZJVMb53GedYprl+FZU9d1Bi99sKqBl/ZVec7+DmHOoHSynctIlZzURuo50HT9EIQpm\n", - "q5FYB4JJtOYmngJU9cV1tU10w33gXzsonaPeXB87qLnrDpUJyLKMYVZFaa6NlX2wTeH5eYxfpqkA\n", - "gPuVcHJvozuwKbipscF78s8IHbhWYcb3WZF7seR0EwSP3wbVXTTm2jKFm4JYBTalFzX5JktOBhpf\n", - "p3S00lcnDDOsczUS6yBYySE2xJOvghlPuq5fk0is029lK9nO/KE41+OA3W3uL32gU0OoYVsmKYOL\n", - "21qNZSUnfylQNdrB6VioVe1Sk7L7axrd8ax3Cjt3fhX13IRRrLQb76smnIOU6g+fMylTDkC1jdMJ\n", - "zCei+jg5h6M0zCuITNqBEHJ/yqqro4I9/l6Zy7CtCl4un/fF+1f5qZwMaOzB2cgm3rQDGd/DAUUZ\n", - "PqZoKGpbidacfhiO6U27+6q/8sHQcBMIIwwHzmmElvpCb451qP6qlPNqH8tWQKbEORLOd23Ee3OE\n", - "pACs7hURVyIeJ1x/Rurux/Td2DlHhW3PNNumQIfgciuESYTG+RU5eYQWMYvSKsBVyylsRw40GxkO\n", - "Grdn2+b/qHYCti4CYrCp+7PB4r2xjJcgCmo8Tl273Bih7jpwOZhVIHOTzpWpyTGZJFU7uzZiGxg6\n", - "3f266KyaS/mXLxBqbBvYp4lj4r6oiB/hlul0y+td9PzCAc01VhnfSrSG53NbXCTSGaD600AKYvxA\n", - "tgOCOw89X6ZssOqe1f0RYux1XVtVXagjt491qn66Y6yXKq/uN50czuGxHlz7JtLdQwlGOitw72BW\n", - "2X7Xbi7DPK4iOLjoXkxNYbYKtZMArYqGMN9FZi5Cq9qTA4D3qyZqhAYa1lUt9xgEbr+CWrapAqr6\n", - "+JXrdFDr2r3i2Ttoc5lKXZ7rdpNPTRB3PurB3W/S3k4q26x0xse5bNu2K3+XTDk9ZXNd+117VRnP\n", - "xeqzoYcPH8r5jPc8Jko7CdBwMDBKSFGQ6wCnIja8XzWx3L1TVpZ6VWTjIFFBLfuiIFotd3nJiRDD\n", - "+7tIlvcV0BTAHNQOgUQHus7Yu8gM61Rwr9p9E6L0xHbbpdu2XYvOpi+pDulPBTn1Bl6lVYTm4DaV\n", - "kwHNwSxlGp0pkDlPPIk03GRUD+FVGV6D9blJiWUIMN4OeQlRHWewTa9V46Sgpvp+E1DjtuP9Mt/Z\n", - "gpKqLW68lEwgi/1wUHM2pHSEfzq9ejHQtZ3bWM1NZU8dzKoPvKvAZUVOBjQ2TBVmTqIz932LagPC\n", - "aaXtDmgqXZm0HUQQcMpoq+Wnis4OAd/EETBglB5vOsX78v5kQlSgUv2t+o/3n0Kf++LawPdWbctn\n", - "rJPnZ1OwYZunkbD7RpK/l1QrKTe/V+XOgebors7LtFteVp9yZDvcpJwYmnuLqMq4DmVAaqI4mLk3\n", - "nW6ZOYVQJatAS3Fguw2ouQi/WrIwDFU7O5A5PXSRqls1qDzfp3JCEXHlP3U5G8F7VH1YaT/220GN\n", - "YaaAVs3dex+hVcpBmXSYv3XpqF55qCrvgKGgpvrd3edQmE2WoKr+leOHwFFB5JjUOQI34ZxT6yKl\n", - "qr+rzoEjnA5evL8yfvlCoHssoe416Udep4DHMOv+jFX+4YQJyF6IJWc3QapOTaI1p4Ru4lRlDmiu\n", - "rNODMnQFszwnIiTMKrBON4aP6/vqhFb9PQZiVdsqmHH/HFw6gKxIBbNKL6o93ZhG1B9+r/bDOQLX\n", - "x0wnkRn+eSu+Vwe4qdwq0JR0EZeDVPUtiwNfCg7KoZOrMii8j+szHlftnA6uCsW76KTSv2rnTYia\n", - "pJifOBgWjggmxo/XuPpdWyeiJn6VdzK1Nwc0d6zbn/av6281P91K6oUD2sXF9eqr71PcWxL1r61Y\n", - "USsK6CIBdc7EELp75xfSeL57tc0p/8Ng9ee2V/7KRuov28WOJNs30anSiXMgTsedLicwO2YiKKkc\n", - "b7Z7EomhqCgRj92kTB1uxPW+5kslbHN1D/dZBl/HOrtpuVWgZWiJcgjQ1PEV0kdcHcw0qA5sKs91\n", - "ZX3VvitXb4LUGyGEF0Nt8ue2K7hlu6qIt+qTMnY3kSqoOXFtqOyga3PVRrwWJx5O9HwsoM5V+929\n", - "+dhKBNWJq0vpScGMz3WiIrHuuXZ3j3sXod0E0CqYHRKdRXhYufA88yrlJU2WTfLVq20GFEdoq5GZ\n", - "23JMptHOBBI8oafLz65+BhpHlTgxDxE38TEyzLKc9AwMBbNJhOOO3RTgOrAdEuUqez40Qqvm0Iqc\n", - "DGgVwBzEuggtQlO9Mia3tFTHnTDUpin2dfJ2CKHGD1lVpMdG5oCmwKDg0MGMoxrU2wRwSq+cR91V\n", - "k/DQCZHXYn/UvflbRo76WabL0WPrmNyDRc0fjNK6+YTXTCJnZys3IS800FRY2xm0m2BuU9cq4cmn\n", - "2qOMpgIY7ncRmvt5yVRn1ZLTeWue9Or50EreAczpsoMa1nXoMysHdI7QVmHT2ZarcwWMnajo2+mx\n", - "c3Boa110xjBTzuNQOQnQFKymAHMG3Ck/4npYW4GMDbVStPNYPAF5vwKZSt1WLT2d51xZcnb9VTpe\n", - "hZrTa6XLyfFDhe2Eyw4VtyzH48rZTtuq6uqg2+lzmlaPAZwOOlnV+b2N0NwEVJ4Al04p1SBnugI0\n", - "lMpLZTqZeByhOYgx0FZeBjDQWH+T9uJWLYeyvhWo8bWr7VGTj8eqe07VSVXv5Gd0eC/Vnm5Zvtq2\n", - "VZk4iEl+4hQZ6FV0dkjf7n2EhrR3aWXQE1kBWqX8LOsintxchOaiMvXphnqpMHUGGKF1y4VKdwgy\n", - "1BGWcd4dc3rl8e4m1op00Qvv4/lq6ekgh7bj4Jbt4XZNYDeJ5pw9Z94FCRXsun3XDnaANyEn/Q5t\n", - "CjQ2ZgUMJZUyGVgKZPnBIg7QoTBT5d1LgG6ZWT1HY/BXQOu8M/ZX6VQt5fm425+ATDkxvEY5tUMm\n", - "yNR55TEHrgcPrr80wHZOYda1b0U654x6w/ZPHLPSucu7CM3J6jie9LONFaB1kJiImlgOaurPrkT4\n", - "h/+4P4Ew992BS70MmLwUUPByYJg4i07Hled3uuf9FajxeKgJdIzXZ/CoujA6Y4Ax1DgKmkC+gttU\n", - "uqjN9XMKMuX0qrZgfuIcV+VeA+1QZU4mD0Os+j2kkgpkFUAwVVFWF5lVIFNvOKtUGa/rX6bTybUy\n", - "CatnaLyvIjTVZlXvVBzEuBztRcEty/J4xNU/s81bFUE5uFYOVumE68ZzEMIYvVdzEccDZSXCxLl2\n", - "DMwibhlo6EmxzEVj6vmPMmzOO3ERAkKr+tNAmaolWooC2DSvIKaepXVbB3/st5o4CuBVdFXp3TkX\n", - "vi9PKNdu15fVSaQeM7i2V9DgutM+UIdufxrZoG6qyC1lJRhQ/UVBMOc5hwQUxzgXXimtyL35pYAq\n", - "Y0/cpWpCqrQDGKfZbjcoCDVlWFVU2kVhVVTmtgr21bJ7ssTpJrqLanic1LHJhFl1ZNxPd45qixJ2\n", - "EFOoTSDG+umcS9ZbPWpQDiIF4aU2bNdkXHicsb0TmKKuKsdTycmXnFW0FlErYmrY1RKz+5PaKqpA\n", - "o61g1m1VFKbA5j6gZQPGSNJNIBe5qHIWNwaVgVdREU5MFZ11Y10tZVR/XRvwPuq+zoGqicj7K3DG\n", - "P+Ve9SWlsgPWoQOM0gm30QHNjREHANW9FchwqT6Ve7HkdJHaTYibpApmDm4RcU3ZKTi4VZ9UH1ee\n", - "k1UvAFx0VoGM9aOgpvrJZV3qorFKj9WEUZPG7Xd51QZui7s/w6uL0lSdE+dcgSzrnb5Qw/uo1Yay\n", - "8Q5sru0KZpMAhG3jhVlyTiY8Kl9JZbBqicEgq2CGZWwYPOBV1MnwwWOTFwDT782U3iaTpHt+5qTy\n", - "0GqisrG6qKjasE7VRm5/BQPVHzXWDkS5z/pj0CXUHjx4EJeXl6WOqv6tRGgOaM4esM2cxz5jWyug\n", - "VTBz0arr26rcq2do6qXAxDhZYXysi8pcGQItnzeg8OAqsCkIZTqNzCZ/WaMzXGc8LjqrDMtFGqqM\n", - "AVZBbTU6475gn1QfJlBTWwUHBzBVxv3BFEUtOd2+itDYHtkZd2Dj86YptgnbyzBzcizMIk6w5Owg\n", - "hvspk4lWlavITIGuAhq+mkdho2eYMdCwrHoJsLL0VFsVwbBu3J9qVnVwZOEiF57wmHdl0+iM6+X+\n", - "cH5FHMhwfLFNFcA4cuP2T6Qbx2zT5E2nui/DC/Xn9O7KVCSGbe5gpoKS1TG8Fz99cvsR15eP00jC\n", - "XVPBy20JCL638uRqczBSX/5XbznVctN5Z9aF2meYKf2iVPByEKoAxh68A5mDGbeXx0pNpKpMQQ31\n", - "y49DJlCbgmzVYUfoJWfnGLjfKpri9rp8VZZ1VfWyPajrpnIvn6EpoPEbR5ZJhLYSmT19+ua/BcNz\n", - "qoneAUxFWwpm1eca7lmcm2xKLw7yrm+dh+yiKgUwvJajjWmEpmTSJxdBMMzU0k09p6yisnSE+A3a\n", - "5eVl2X6lF3densufOjGAJzB10dQKuNT1VdSm6nG2MpWTLjk7qLnojN98VIRX1ypIKZipj2+zrpQq\n", - "QqsiM04rsLk3m91bTtYF62WysVTQ6aKBCm7Tujup+oD35/uq+7uIGx+JcCSo7t+1/xBHjTKN0FSf\n", - "lVSRXCcTmKkxcDBfBdu9iNBcPiKuRGYJl/SGWba6BFEgc9FaFaFNJkAFMwW2KqKbgCzzLqI9BGJO\n", - "HHQ4gqmiM0yn0OqcF/ezu2/XN+d0+T4qSsvyKjJzfVDHVTunL4qOAdVEDoUZ13GMrH21dpaz3LIc\n", - "a9B/EOWss7fkzoH22c9+9q5veWfy27/926duwq3K7/7u7976PW4qWjhEPvOZz5zs3sfIVGef+tSn\n", - "brklp5cz0G5QXnagfe5zn7v1e5wy2rht27wtWE919ulPf/pW7n+f5LzkPMu9klNGaLcttwXrl1ln\n", - "q3IG2lnulZyfB63LWWdvyXaLXuOs5bOc5Sy3Ivu+y7D01oB2lrOc5Sx3Lecl51nOcpaXRs5AO8tZ\n", - "zvLSyJ0Bbdu2j2zb9ult235727a/fFf3vSvZtu2z27Z9Ytu2f7pt2z85dXuOlW3bfmrbtte3bfsk\n", - "lP3hbdt+Zdu2/3Pbtn+0bdu/dso2HiOmf39927bPPxvDf7pt20dO2cZDZdu2d2/b9qvbtv3v27b9\n", - "1rZt/+Gz8pdm/JzcCdC2bXsYEX8rIj4SEe+PiI9u2/ZH7+Ledyh7RHx43/fv2ff9g6duzA3IT8eb\n", - "44XyIxHxK/u+/xsR8T8/239RRfVvj4gfezaG37Pv+z88QbtuQh5HxH+87/t3RMT3R8S//2y+vUzj\n", - "J+WuIrQPRsQ/3/f9s/u+P46IvxcRf/qO7n2X8tJ8ELTv+69FxP9DxX8qIn7mWf5nIuLfudNG3aCY\n", - "/kW8BGO47/u/3Pf9nz3L/38R8amIeC1eovFzcldAey0i8DPzzz8re5lkj4h/vG3bx7dt+/dO3Zhb\n", - "klf3fX/9Wf71iHj1lI25JflL27b9b9u2/eTLsCTbtu29EfE9EfEb8Qdg/O4KaH8Qvg35Y/u+f09E\n", - "/Il4M8T/t07doNuU/c3vfV62cf3bEfG+iPjuiPhCRHzstM05TrZt+8aI+O8j4j/a9/1f4bGXdPzu\n", - "DGj/IiLeDfvvjjejtJdG9n3/wrP09yLiF+LNZfbLJq9v2/bOiIht294VEV88cXtuVPZ9/+L+TCLi\n", - "J+IFHsNt2x7FmzD7b/d9/8VnxS/1+EXcHdA+HhF/ZNu2927b9nUR8eci4pfu6N63Ltu2/aFt277p\n", - "Wf7tEfHHI+KT9VUvpPxSRPzQs/wPRcQvFue+cPJskqf8mXhBx3B788edPxkR/8e+7z8Oh17q8Yu4\n", - "w18KbNv2JyLixyPiYUT85L7v/8Wd3PgOZNu298WbUVnEm3808+++6P3btu3nI+JDEfEt8ebzlr8a\n", - "Ef9DRPz9iHhPRHw2Iv7svu+/f6o2HiOif38tIj4cby4394j4TET8RXjm9MLItm3/ZkT8rxHxiXhr\n", - "WflXIuKfxEsyfk7OP306y1nO8tLI+ZcCZznLWV4aOQPtLGc5y0sjZ6Cd5SxneWnkDLSznOUsL42c\n", - "gXaWs5zlpZEz0M5ylrO8NHIG2lnOcpaXRs5AO8tZzvLSyP8P5bdSohzrzUEAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATQAAAD7CAYAAADkSGhKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztne1y5DpsROkdb5JnzMPlNVO7Htv5kcJeuN0NNKixx+sr\nVKlEURI/QOAQlOTxw+vr6zrllFNO+Q7y494NOOWUU065lZxAO+WUU76NnEA75ZRTvo2cQDvllFO+\njZxAO+WUU76NnEA75ZRTvo08flTB//3f/02/B3l9fV0vLy9v9iwvn4v7qm2ttR4eHt5sVd6PHz/e\nnVP5Oa9L5/ZX6ZeXlz/9yv3DvNhHHVFPpNkxbpfLpTy+Xq/r+fnZ2jOdqe0WosrBsWf2EPv/+q//\nerP953/+57u82F5eXtbz8/OfMYo07vOYOvY50VvVZybX6/XNFmPFjrOtov3gPusf95g38VXm61Ue\nk//5n/+hSjojtFNOOeXbyAm0U0455dvICbRTvqzcatl6yufIVxivE2infFk5/yzv75KvMF4f9lJA\ndU49zEXJtMfzaiaoXgjgNer+TuIBb25XPBRlfaxeYlQvAirBdlYPl6uXBpfL5c+519fX9ePHj/Xy\n8kL1ptp3j1kZ2/CZjsQeinf2uyOsTJVX+ZDzcov5Dds7/XNtn5XHbGs6th8GtHiLh6I6V3V2LQ44\n5tg57YBs560c1j+FWbzFYfeyNJPqrVgFs3jDmd90RpvydWz8Msyrdrq6dCeQSX6Ui2++d9o3FTUJ\nVxMsE8cm8gSDXwSwOmOcFeA6uGH6oyTGLu8nctcIraP2Wu+hgUajXiOzdD52DKu7ppsx3SitKtOd\noaoIDcF2uVzeAe3l5aWctVlbdgz8MyO6qTMeifQwmqj0VrUnOzPez2ym8iW0AwSaAhtr49QPOnEm\npB1b+RJAY6JAhh1lUHPApmRnFu3610F8NwqpZlY00ipKC6AxqGG/ou7cPha1qWj4FqImg6ijs6md\ntlT3YkSY26Zsk5WDMHP2lR8hzLqIrJrMlC5uKajHHVDeZckZe2WYykAU1PDe2FfpyQCy9jNjzP1S\ny8zKAJ0BVO2sojMWmUX6crn8ARl+rOvqwJlNHedw+j+JWFm7dieqrh6WjvKmbcjtQD9hduYuOfO5\nj4aZO5lX8tdEaNU+CzOWzonyQMYe83aFRYfsmmmEtivM+DqoIcwy1J6fn+kszvrrjkdc6+R3szKL\nat1JoJNpOSwSU/pQ0VrXNgWwbvLMdaAtsPwqz5Vd22bBDMt35dMjtJBuyaVgxhwHDYYNyq2ghvVh\n+lZAq2DN0tWmlpt5yzDLUMt97sbDidSq/qFOs3T20tXR6fOIoD4wz6kP73fA1dkTgiy3TfnKLf3k\niOzW/+kRWnWuAlu1z9e6+yNhd24vOuARoLFoyAUbM0z1t54MarjcrPrfjUMnLDLLfa7EARuCRdV7\nC2EA7nRzJPLBrXuMEXXFc7Scp/yCtfEWKwrWr1vL3SI0RxyI4fWYPhqhYfTB9ll2gaac0GlbB+pu\n2YmfcSjDriI0F25HnHsilT6P1NlFlpPolUEj7nMBpuyq85HKL6pJdBdCR1cnrtwlQgtxGq6cxI3S\nWJ4bgSlRy4s45xok9pH1dxKFTkHGIrS4D/WT2zyJzKZwU1Ev23fS2cWudO3egVlINUEizPDXPqp2\nVr5SpbFsNYmrNruRGJs4d+SuQMtSLUMqh6/KcQwaIeAKg1nk70Ro2LcJLDCiQiixnw1SQHOXnJ3D\nVu1V6Y9YgnxkBLhWHbXG+Z024ATSRWpVO7u2VLDFvuS+Vm2eiCpvR28fBrROulBXzYIsrcqu6lGR\njcpT0s1ObIlQ/c4T60sH8C5K28ljuqzy2DlnHFgfqwj4qCAoct5OZJHLVXnTtjPbqdLuGHXjyqSK\nyFgUzfrR6VbpeweQHwa0qdE7s7cTlroOVUU3mHZkMptGXtTjzOKdk3XAqqBd6QvT6nw1YbA95qHj\nTCIDR5xlUfd8yq2HAVO1Q7WzmwxZPVWktRupqvY6kwJez9rt5E3krkBzgKMGqwPaJDqIfeV8rE7H\nSSpnQanA5oBssmEZWF6nL7zWPa72nT52wKYiAXdTZbF85ZjsXjX+Oe28AECduJNJ16d8Luub6RP7\n60wGE8BN5EsAzZnFsyjHn0LMzXMGNvYd1NhPN7uzJxoHgwf7eWUVmSl4OXpxQOaOc9V/1t/Q2QRq\nE+dj17L2qHZWDl2V1YFRbRlmWVdszCudYluqc0cnChdm3wpoSqGqbCcaqNLdcTWrTgcxLznj/qpf\n1eAioKolp7o/l8Pyq3pZO9g1bO/CfC1uB+ic6GhYvnLOPC67kYLjtFhWNTFWZeJ11Rhle6hAldvh\nTBhHQebA7MsDbWfWdo3eKaMDmCo3Gw4z0N3BdEU5QRd9OZvSVU5XEKpAVt3vAm2qq6ocNbnkyHkH\nZk49uSwFsnw/lqWO1+LROsIsf1w7gdakj7eG2V8JNAdqkzpvVV4Ig1k+58yo1YCiY+dZVNXD+n4U\nZi7UsL6qHTmvSiudY714XjklAoMd7zhebpOyhaqO3LZqr9IsL0deanJjURrbI+hYNHdElx8Js7Xu\nDDQHbk6ZWAbbs7xKYZ2TqHvylmd+tnV96upWkHLecrKycpmTtlXlKyfDY+wfAzqenxo8cxz8BCLX\nNXGsCkbsA1gHVO6eTYBrrXf2kP+mE8HV9Ysdd/C+BcymY3wXoHUg24GaG51hJJSlmoEV4NTm/okK\nK7OKWtR9zHiriIwBqIK/urdypKpedsx0UEUKjjDHcJ1tt45J+VWatdvRgZrkEGhZt1gPRm6sz1OI\nqXu7vIncHWhdmpWljicwW+u9sVSDVwFuB2ZskKsIyoFZF6nla5n+VLqL2Jxo0AEc1qvAhnpwo7XK\nidT3Xc4khHXke5UtsPJzHisT09gvFAa0fF3ozbH5nHYnB+e6Tg9/JdCq6KxzNnats0flqRmpm60q\n41cbLjkrkGE9jj53PqytJhDUndNebF/XhoeHh3fLcAQbOtcEZDldjUu+voMLOnllC85/WVd1Yr3q\nXNYPm9jy/49wYNHV6cBsel7luXI3oB2F2gRoVV5lsK50xpjP7ZTPpIqA4jjvqzap8rEeFklNN3Uv\nmzjUvhOcqFhfFUQqQLHyVbkMZhOnd8WZ5KeTULQJx6e7fgo0F2wT+VJAc6DmQIvV70RAzkDEOSwb\nDaBzYNX/W22qzxMnYu1Uf8S+AzKlw124VdDBce7uUecnjjrZsEw1fllf1ThVaRQ19kcm31v0/68D\n2gRqE7C57VHK6hRele+CTJ3bgValO+yT6p8Dtuofr0zaieVOpXI2B0Z4zimnOs55anOWnGrCjD6r\ntAuzfF+uQ/mGMzaOXbE/rMfrq+OJ3B1oyjEnYOsU7xivO4t0/az6U7X5KMxUeyZ9Vf1jMMOt++uE\nqv8BKHffSQUvlu4mNkd36MC4OVFJNaEwwOzCLPKxr6pOZVNKlwxmuHcg9tcCbRdsCLcQNTjqPMou\n3FQf1bmqX0fgpoywmz2Z3rDsnaWmGqsOvnFNBbUKcgxGmI/XqnNMR44+XVuqxkDBLKd3/CT31/Gh\nThyoVW+Tq7QrXwpojqOqvCyO4bLjbuasoFjNiEf6tgN4Jqyf8e/rKqdiMJs8Q0PdsLbHvgIX0zUb\nhwoW+foJwLo6nG36lpOBn+VPYMb0pnTJ7MmFWu4zwuxfDbSJs6/1foZAp8gGocDGDBHPsz5F2U57\nd8/tgA772EUKk7Fiz9RcoOEenYnBrYJcZfwdzBynmUBLObVy5G4csl6qcx3Msv4quOFYKH24ulF/\nJeNMOt8WaI4zI8iyYhTIsihDw/OqX2yGUzNdzrtV/xXMWB+UE+Y2sfY5EGP9VjCrdMjOVdegVGPH\nyuhg+REbKx/7raSzAXWM/UXfcMZKyQk0wymmQOuUgI7BZhtM5/PYn2wIlUMrA8Tz6nrnfqV7NaOy\nPmP/Yt/9WZUDNJVGYFUAwzw2RhXEnXsntlRFJpiu6mCTCkIm0myslf3guahLgWwCEWVD2G/2kqS6\nn+nDkbsCzXUM57q1tHHhb/gzJ+lmUbevLsjUOdV/VwesnqqPay36n6hyv7ox6f5uVOnJ0auCGxvD\n6GOXds/nc9NN/Q8A5fhqckU9oH5i78As+4lK53KxDjzX6Yq94WRAYyDDc67cDWiVg6pz1T/3WGu9\nM6KQHz9+vDl2lFQBrRrUCgJstlSG527svqqdaHDhLEon7tiw86wNrE0VuNQ1nVSRQz6PaaYrlrcD\nNjWhYB4CBnWDesExZ8fMLiZgq6TSNcLs+flZPpf+q4GGx0rxu87DBqdTTmV0uWw0LHaO9Qf75PSR\n9Y/BUPUnAysbSrzhzP1WkRrW5YAZ9cKOHXEBFv1gezed8/AaBSA8VhDD50bV/a+vr3/ePjPgKD1V\nx5Hn+ECVriYI1X/nxQjWgfW7cvd/NFxdl50ujgNk+TgPOnNMl/QVhNU1jpM6gHIhkYUZUf63ZqHf\nDK7sKLGPWbP6IJT9H4TKMHFsu7FWkwlzgOnedcwOMmybfneGZbNjppPuGKPt6piNq1oeVrbR2Ysb\nnbLxYGPnyN3+L+daHvQQapGXwZbLUzNBnO/q7CJGvNa9t6onH1dp7Adzrmy4eTmOEMtge35+/mO4\nzICVI2G5DHQYKSupHJ+l8d5qX93PrnGgtwu7qlzVB0zn7wenMHNBxqDWwc0FmTO+aqw7+TL/Ob0S\nBTAVoVVK3BUHZuq+bhmp4IVpJ0pDnSDcIh3weXh4kLMxc8xcZ04zqE2Xi53RxzFLd2VjuqvjCMgc\nJ3Z0WU0UuzBD+CiIvb6+WtEZgyKmT6AJyc6qIrSPBhnLc58NVZEfQs2BHMIsXn6w+8MpEGYYoVXL\niApi6pwjFTwwn93j7J28IyBzl56sTpaurot9FallO3DApo6nS85qMkS9O7qfyl2WnLeCHYvQYu8o\nrBP2HIhdg8dqwzo7cE2XnQi119fXd28lM8xiQqiA5gCmAtxEnAmpc3y2V+dUXgegI5vbFhalVfcy\nmKlz7FmXAtpk2YkAmy49bwG1u0Rok+cqFSAw4lDQYobdSQczBTdV/mTJ6URnWRBq+V6mw7z8XGu9\nMdZssMwBsD6EGFsmueKAg13L9qpcVg/edwRgzImZ/qr2ZL2pfY7OXJhhm9yNQayaANVk6MDsrwRa\nSGXwMbCd5AHL9TqGrtqUy9tdclbR2c6SUy01s9Gq+1hb8rWTmZc5B7apA1k15t19FRhYHeoaBbWj\n8HKd2NlXdh3pSWT28PAgx9iBmQMxF2Sdvh17YHL3JSczfhdm2THZ4FdpdtzJZMmJZbN2HllyRvuZ\nk2F9FeTWWnQ5UTks1s0gtwM11xHy/Wx8Owiw89W9O2DrdNe1Ge2ku5fBS4EO2zmJzHa3CfTVmDty\ntyXnTmMRYBi1sHon9TDYKLg6wK0g1gEnHzNhDhcww3urutbSz9CywVdAU1CrZAdoVdkVxFidHdS6\n/u46adferMuq3Wv9s+zsgJXBhhBjUENbcN92Tvr+UVD79AiNzTrObM6cW+V3dU/EhVnkqT6p5d4E\naqz/CLNYVlRloM7cN5wVvFj+NEqbGDTChu3Vueq+CmK32FS7VF4FN9ZGtQTNS8587WTJ+RkR2ZcF\nmmqIAtk0aguHuZWwtmCeug+Pq0iPRX0d1FT9bPAzzBCECnJhuN1HtQgr1gYWNWMa+8D6w/p5VBzQ\nTTcEhMpjIK3SKi/GF/9axoEZggzbvAMsx1aq/lVj9aWA9vPnT5rvRg476ZBOCa+vr39C9c4o8zJO\nlaWOMVrKaQQebs6va+R/UqL+YYmj206yYXX14rErCJYujQ5UQeTnz5/r8fFxXS6XNyB+fn5e1+uV\nLsk6x490tzyLY+XcyuEnNhF9u1wuf+qJvuLEiGXnbzlzfrQf/aR6JOH4ExsfNY5/FdA6Z6ucj51j\nUkUFlZKVUisjxH0GGIKsA5rKr2BS/QemTq8qMmD5Cl6qDSFsnDBP6dKFGnOMtda6XC7r8fFxPT4+\nvvlk5eXlZV2v1z/lPT8/S7Ax550s2bq+YbqbzLI9vLy8/OkjTj5xjbI3BbRc9o6/dMtOdf7LAu0/\n/uM/5DnXgSM/71lePocKUMc7AxH3sWOWjn2GmgKaSsex85to3TVK90pXOT+314nOMEKrxk+1oZtA\n3C3ac7lc3vyhfgAs0vm7LndfLcnUcoz1jU2ILtCen5/fBBAKSOp8jFVezh55DqbGB/OrKPvLAa2K\n0GLvOF6+p0pnUbNeTsdA7g5aNfPkj31jkAJiDGjuvovUIt91BqXDyojc6Ez9tJPqF6u3Op44EwN4\ndqDn5+c/5xm4qrwqast5Hcx2gZZtLCTbSCxDUfJEiXYZk4Bqn9N+5/oOaNgvR+665KwiBxZBdMcM\nXiqPDVgHKnXMDJYZSVybgZb7UYG7isKOQE1NCkovbnSWI7Rusura0LWtOlbpGAt2vgMZ5jvpKRAm\nPsLuCZihbaJddTqsxmJyjOnOj1hk6ciXANoOzJRUMwXuHYdgRp2hlJ+TOVEfGlHVPzS+DCpnuYcG\nrnSMbaykis5Yu9wJTNXljnEFB/d5l/uMqAJe9YC8ayeCp9NX6DufD93jy4nKrhjA2IRbSbYlR5yJ\n46+N0JTzTcWZ+dwZPKerpUXALLeBQZFtE1Fw6mBSgSU/EGa6ZJv7UmAaJe5MYJUj5v31ev3zWUrO\nj7x424kvBRTEJtGFen5WTaS5/06UlvPz80L2hrWbONU5d8/KY+W7E8NfB7TO8NfyqO/O1h3k2LXs\nzZVyRgUzlcf6wPJxOeks99xIbSJdfTttyFFGrgfrVbqp0qG7p6entdY/39zFuF6v1/X09PRnr+DV\nwc2BXrTHAVr02QVbBlm88cyTMApOZkz3FUS7tlX76Oe3Appj6EwqEExnwWpmz2n8W8eIygJsR9qi\n6szpKsJyI6TqONfXbZOXAgxqDMyVM6g8pnM1DnlijDGLdIDs9+/f6/fv34fe7k03Zg+RZsBgadR9\nfJ6SI1K0t6q8zt6mwYjKd5fquFzu5C5AqxTDHG0tbyaOfWU0qpzqOJ5JBMgeHv7/RxFRFDQVSKt9\nGHWGmguIatmJ6Vzf5XIhI/a2f9OXAgxsVQQXfXVmeUdCfzgBRfQSQPv169f69etXCbSsqx1gOeci\n3wHOWv98zhNR2fV6/bN8xgitgg/Tf7UawLQDuGxzDFwKahP5dKC5jpZn1RAFgEhPDaeTDLTY4sty\ndm0FL9V+N+0YmYrQqqioAgTqLL4+d6OzKp8dr7X3RrTrQ8Dser2+gXjk/f79e/369Wv97//+7xhg\nauwdaFVldkDPQMvLTIzQ1NLNCSi6FYBrb5i31l8ItGg4y58AbS0voolopoIXGkulLDynYJU3fDlQ\n7bsyu/btSNbTWm/14EK/A2EFnZzvRAhVOpfTSQfukA5eU6DtQC3yo82Rxv7kfAYrpbuJ/zkQw0nO\ngVq0B1+q5fSuD3w60JwOZ5JnJ+z2IZ0S2Hl1jzJkfKDZfTzJ8ibXsHZWfc7Qqu7pAHZr6eCC0GP3\nOXCqyt69fy3vkYbKn+TlNuMExPpVbWwpOH184UTkLjAzzHL7WXoqn/6PhqcR2hRmWPcUbioyY/BS\naSzHAViX7sCE7WWzN5aRv6dTTrkjLKpA2YnQ4vizZCeyqnTpHqOwPjO9sfzsU+rRw250ppacHczY\neP/4wf/Bz1S+VYSWQ1e8l8kEECpCYx9mYjkdyNjxpH1deq33MMN6GMg+K2rLUkVo7n1Z1GTXlefY\ngLOx+3MeS0/6l887Wwe1Cj4Ix+r5WXUc7c0Qy33A/Il8iQhNKSTKcSM0NNYqiqvAg3kMYmrPyuvq\nmogLsOo+dq5yxhAcUzbGTnSW71czNqtjZ+becYpucsvpI4DL5XfRGdp4Pq90WEVf7r6LxFyQ5bzc\nD9ZmTE/kLhHa5OGhG6HFnx3lZVTUp2DmQM2J0HKkNil/ItgPx+kcqSD2EREaOh47n6/LeZie1Lkj\nO/ByPvvIZWIetluBLOdVURRLOxCrgDYBHYPbWksuMb8s0LoIrXt+lpecsa+ghgqKrYrMME8ZnTJY\ntuzEOiq4dfpSOpxEaQ6UusjsVmBTfXQitF0oTdsTsmsT1bmu3NizqCzn57Y7EZsCTAe6Wzw/Yxu2\ntYPbRL58hIbgqiI0R4khncHmdAc1B2isruhf5OFgo0GrPqj2Y/ns/qxXhJq6b0eU4+F5B2qOobNo\nx5FuwnNgNonSVB0/frz9f7POZNBBbBK1udGXCzHcFMC+LNBUYyqAdS8FolzMi/wKYDnPhVm+nhkt\nvgzoIhzMq4w1t5vN2i50Oiiy/jOwHREGM3Y8gZpb55E+OJNbBbLKLhz7yBO4018GBwab7rmaev61\nu+RkvukeT+WuEVoHtbi+i9BwRuvgtpYXmeW0Y8zdZxssjX2JNjPgVdGDSrPJAOve+SKbieN8CKkO\nZgxqE9m5H3XBoITActKsfGYvWCdu+U1hBTIFpS7tAmwHZthW9qgon5/K3SO0CmprcafHCO3h4Z+X\nAhkKnUxhhlEZ26aGiwBTenRm9NxmBTKlB7Wp9hwVBpojULtVNJnLYzroIjP2axFswlB2gvUoYROD\ngpjyMwdyLswY1FTbcj5ew56nTeTTgaZmZdbhEHRQlC7aYuc6gOVjtqxEkMXfzuW6unQ3+KyfyqEy\n7JnzVMZRgawDxW4ExXRRtXMS+bFJw2lD1dYO+szmunJV2x27mEREFeim53aux/bmYzyXJ+FuImby\n6UDD8+4szByNzZKTn3/BctgxewGQf8kg/0jgEaA5RpNnrvx3cHmfwYaQUOBQeunGjh0ro1U6UBBm\nNlCBXt3bOYRrK1Oosbbn9nQTPlvO7S7xHBAdLRNf5LlAy/pSYJvIp//ndOwU7nOaGUdlVBOosbJU\n+Wp5mX8nDX8RNcpi6TiezHShEwdqWX95XwGOwQz3ClzqWIkaE3R6VQ5zBKXnqg2YvgXUJm2t+nf0\nOVW2p+6B/065VduiD+pYTeYMbu54hnzpCM2FGlsSdmBj5XRQy3UxmO0CLQwi8tTbXhaNMaiF7hTA\nWFpBrRPmoO6sqoBQ3c/shd3rzPDdmN8CaNGGrG/Vz9y3I+C5VQSnQKbORdsRYjnNxqeD20Q+PUJb\nawaz3DlmgN2r8gm0unPquVk+7iCW02EIr6+vbwwl+p+XmZGXn5epCC33gwEM24QO2Tkny1Ngq+pE\noFb1oG5yO/E48pT+WX9vAbEKbpWts3QGyCRa+4hvxjqQMdtlPs7g1oGL2U8ld3kpwPYqj0kFnC49\nMVQGMbX07CI0PA6I4Z7pJ84fidCyThFunZOyMazAps7nupmuc78VgJm9KLBVUGP9nmz4iY6rN3ff\nwav6tuwWEHNBx/JVnxi0u60DHsqXiNBYHhpnCIukcMm5s9R0DLgCWfz6aW4ntpv1IwYtQy33P6K0\nyFPPy3JeLpuBDEHhRiBsHCt4sbHMkGVAQxhVNjIBmSM7dsHarvQQaebkmKc+oUCgHAXZ7rM51hY2\nRh3glO3syl1eCuQ9y2OddKG0E425szF7IYBgy+3F9rM+BcgyzHJ6rSUjNBWxZR1miDGQZbA4EFOi\nZmolue6sH4RY7kuuJ1/HQJavcQFenVM2lsvM+0pHTF+Ypx7kuwD6qIitg2oeL+XjqKOuzonc5aXA\nFGYoVQR1a8Dhm9MuSsttxDYzPSDIEGZ4fQe1fK0yCHR05pyqvROpIBppzM+6Z3aCxwjGKs3k6GSH\nZTEdsL648Og+jJ3C6JbfmLGXV1nXnZ8fAZeSu0ZoCmZVB12Q3QJmDGrqpYD6Di23m+ki16NAFtd2\nMMOXArnuyngwQuna7G5KlH7Q8au6c78QkkwHXTumtqCgz/pXOXEFCrWfwuejv1tjz35VmumCje8u\n4L58hJaPHQPMwLkFzFi5eblZvRTIUgGt02PU70It7nONI8MMweaAYVe68VSSIaYitE632Gfsuxud\nTfTjgojBYgq3W4LMBZuCGR5XIGP6mshdXgowUYbZwQW3W0LMBRzWr/qHEgMWEHL67cAsl+1s2L4d\n+HblM13gZIXlK7A5oJpK5Yy3qItFJhUcHKg547oDrHwfK0OVq3RX2cCuPpXcBWgIrZBwzHizx6Ii\ntszL34BVoMnH0Y5q9lVtr+DW9TlLhhcrvzuOuqMsLHsXaEom0ML7quMsFdhiy3bDQMz2WKYCR5Sf\nn2sigHKe64RMZxW0qnRVzs64sH0Fqm78Oul8rhrvTu4aoalG5oiDvU1kD+MZtPIxpitosLYppePn\nIkycGb8bWDzGTzSw7snMjW2sAOTAcaqDMFqlD6WXfMz2mGZtCiDElstQYMvXuVJFN1UE5ixHWdks\nnduCaXaPOp6KM0lVwcRE13cDmmpkNhwGMgYzBrQMG3YutwGh0bVbRWlTI1eD6BpAFRFWAKtm4A5s\nHcAmEcJUOpCxPDYmHVxeX1/fgQwjs3z/TpTWPRvrPpx1lp3YV2wLpjswVhNdFma7eOw+IprK3Zac\noQw0xjCQDLQKZAxobI/piTOwCInBDJ9hKWHnugit2hjYJiBjBpvHobuuA5yjk0ofVaSGaZWHzsFA\nxmCGy9AMNbcfrD4Hbrtgy/Wx/mKeSneTVtVfZ5yYT1Zj7MinAy1DS+XHnj0Lq4CGyqmOc70szdqN\n6SpCyzDIkvveRWgd4AJk+cNbrMsFWXaQfD8ri92P12E7HMl9q6CPeXmPeQpkrA+45MQ/TVPXVv2p\n9K2eoTFITV8EsP6qPBeEHci7gCCPySTQmMiXeoaGsGMQU2BzQli23HTalfMZjBAwjgPjNQpiqt6X\nl5d3IIsy0fkmIItyc3ls34GsM37W/wpieL4DGdMd1q/AwmDG4FYJXtPpH2F2q88yKpmAzRUGM5Wn\nIrMjULvrW8613j+DyOkqQmOgqxRVAWOn/Qxm+UF93mNfM3g6eKJD48AHgPLehVnkBcDwuVGWrky8\nLh+zvatj1JUDMMxjomDSRWZupMLgW0HsFm803U3pQulmCjcGLjxmkdktoHb379BYg3OEhlFZteyM\ne5WC1GwvhCxfAAAgAElEQVSPos5VIGPgUcaTDVyV20VpoZ8MsSizgxk7DgknVnpSMFMg2xEGMoR5\n1kNOs+gM71POm/vOnp3tPkNzQcPgdgtgoahrXfA59XQ+yGCWr4n0VL7MW052XH2Hhr9ywb4ty8cs\nvRZ/aM3OVY6SB6mCGaunGjQGybXeLgtzRBZlT2CG/Wdt6pwH09jP6eye9ZPblHWQr8/7Kl31KS/1\nEGoIper5GWs/q68C2hGYTQFXXduVgf6xs1Urqx2565Kzm2Gdj2pzXtyPZbE9GzwGMryPzTY4MK4D\nI9i6LUv+CBnzHJhhOh93UMttV3lVf5UomFVQ69KqL7ntCDOVRrBNpALYZMnZATKfw7rZOaedzn2V\nTGDG7pnIXd5yuvvuA1ncqvJYGh3GdUQFtUr5u8bA2p5FPTPrgJb7rEDmRmq5fw7cOj2rsdmFGquj\nAgZbWqr+KgjHNaoNDDiVftn97DyWW51ztq5MJhW03Gfdu/JhQFONcoCj7t2ZdSqjcvfTwa+Mkenj\n6AAjmDpjV5Eo09G0P1VZbJ/rYWkU1AWDrts/1j4lKoLANnRAzfdmJ8/AZtEgG+MoCyf2ym5uYc9K\nVyoCY9+E3sLumXwY0Kqv2NfylgpKHHiwmZIZe7fP9ailQL6GtXUKA2dg0cAnchRMla6ceqtJQ0kX\n9WA9+RrXIXNdLoywfV1abRlq+SVPHmcWNa61JCiYXpS+HLAxXWRddzDDD9BVm49A7dMjNHXeMVK1\nnzg1gqrbV9GPGvQKbpXkmTkfM11hWaqd+Rmb0w42MTAdT/rX6dyZoLCfnXRtccqYRhBTm8Y68ENp\nBrLc/ww0jM6wfqVjNnF316h+sP5gBKmAVh1P5MsAjeWra1wHyLNHhgSWwfaYN/nbuXw/A4TqN4IM\n03hdPsYZnX0oq3SCbe2g4hh4dZ2CWSdO1K7O7UwwrlQg6yI0ls8iNAYyBJoqm/W3st8qr+q7ijzV\nkjjfk8tS7XfkbkBzr8niDggOYjWomGb7yav03DZsK6sXBQ0YB5fBLKezkecPZbMuXMjiNV0fnTK6\n8iqnwb7iNV2/jgCsi9Cc6Gy6xOom37hm5xlaTjs2vaufqn25jypvKncF2s71O4pHqEUeplW04A48\nK8eNPBBikZ/31T2Yzn89gEBkzq/0xvpwBBSsTKU/JqgjdW01cU1ArMBQ5au8DOTY8qQVzp/HTPU1\np51naGoymtq26lsFMQY11BWz9b8aaEeEGakCGDozc6KclyFROXjlKLuOqoDGwMTy8vdTcQ27h4nT\nR9WnCiCqzG5SwT7GNV1kVk1SnTC9d5FZla8gls+ttd4tOXNfWfudZ2h43xRqeI/qswIbQg3bdxRk\nIZ/+lrMzJOd85Qj5umpAc9rJm8xcTrmVw0Y651fRlQIcm/UxOmBt75y/m7WZTCKAIzDDOvM1k/Yy\n/eMxA15VVgYZlpvHCcuqbBmhwUCZr1eAqgAXeaxfrE/qDWd8EF9N1Ep3rtzlO7QKAhWpp46V81VZ\nypEms1c1+BMnYu2s8rLDZqfBOtmbTkeUkXf3TMufQp7BW0GY7SeAU2BjQGP3sL4oEKh7K6dmP1ev\ngBtSwWs60WA7VYTGlpxdWTty9yUnM9bqukgzA3XqqcpU105fCqjypnAL6ZaczLmzw7CZm4mj+5xX\n9V+Vs+MoKB3McrlOhIb5FVRYtOa0N7cHy8v7vNx0ZfIMbTpRx7VYFvaNgawC20fJ3YGWBSMNdU3s\nXUeq6qvS2SEmP7DHymH1VMIMkjlGdb9aeuAyBIUZ8xF9M4BNy1NLMKbzajKp4DbpVzc5sHYzEFeR\nmVPmWrNnaGvVunACBWWbbnTWAW3Xn9f6QKBdr1ea7ypzrfevpKtnA5iH4oTyTJGvr69v/vg94Pb4\n+Lh+/vz5p12qb13ezixZzZi5jdWWr7lcLutyuazHx8d1uVz+9C/yI2/6SxDqD67VjxhOpNJnTr++\nvv5pf97nPucN9ZfTz8/P63K5rOv1ui6Xy3jJuTsxVpLHKspe6x/IXa/Xdb1e1+/fv9fv37/fjDna\nBOZ1QQX2ufqPbPhDrE6ZO/JhQIvfJ2PiOr562NnNPNWSYPogMgYqQys7Q7QvjDX3pwPUZGP9VKLA\noX6zHh0dnX7yO114TVd33k9ETYwI/tfX13f9QZjlNJsM8JddLpeL/KfS1fPObuzzOdZXJgpoEQw8\nPz+vp6en9fT0tH79+rUul0s74akxqdqRg48MMsxDoE2g6chdIrQOaDgobE2OZcb1ShjknH0eqKgr\nHARn9DCWzsl3tolMy2YzNEtXfWH5GOF0gMPx7PqorsdjjEIU2AJo6PABMIw4ppOlsneV5/YtAy3q\nzRFTRGiPj4/2mOCLJDYmOa9bYuLWlVflVXK3CE1BLJ9DkOXlHXueFOnYd6DK6eo4jDfPtJfL5U+d\n2ehV9DH5vasKas6zM+Ysas8M2Z29VX+wr8qJptHAxLizvjqIIdB+/Pjno+QY18vl8i76qADG0hWw\nFMS6812EFkvOiNAmY6j0rsZBfUzL0l2ZU5CF3C1CYwBjgHPf4KzlRWisrG7DZ2gIs+fn5z/LT+W4\nzJHReCrQYT/c46wfJS5wHDgzmHW6cIDmGLha7mF09vj4+Oc5GMItYBZAe3l5+QMz/J4q19nBjInq\nUzcR5XQADfWY2/n09PQGeJMJ1B0XDDpUGp+fVeXvQO3TI7QOaHlTkdPuMzQGK/Z6WZ3L7Q0DeX19\nXY+Pj28iOCfS2YnSqmWzSjuO5sBJgUzBTYGri/jYeGI6SwWPGJO8bMZnhAG3AFqGVgBNLacqHbNz\nXfux7xXYEGjVM7SI0JTfsfomY5F91d2qMo9A7a4RmjNDVMvGXCbmZVFKVeFwNaOsxT9UzQaGm3qj\n1PUfHb3SAYJf9ZvlT8HKgKZgN4F71qNKu3YR+4iwFMRin6PsyjbwvNMGN52PO9gwoKGt5GdoAR0F\nyaPpqLOzwzh2x3kqd43QOmdZy1tSTYUZbLX+72CDUYmKCHDvlpsHFw2D5TkRZ047kUB2oApoOzCL\nLdej2oN2oGCdr8kwy+mAWzh+RNqOziZAU2NW7VUEhXldhBYwy2Vn6cAxAZsTsUa6AuoRqH16hFYt\nteIcEjwL5rPrGARVhMaejSDcMKpigGLLGXQePHZhxoDWwUwBG/NQV51+O4CxPPebpwqs2JYqCkUd\nYb0Istjyd4XKXlTEy8ZCtdM5rib8fB7tLZeVn/XlN/VdkJCPu+hpCh0VnXWRoxvIfHqElh+cozPn\naCgv6xy4qU7jzKCgVn0zE/CJetAx8rdM7I2a2hyQZV0oh1X9wn6o40oY8NjzsS46cz4JmUSKCjC4\nPTw82OORn4U6es55Ttrdcp+7TS3d85tEhFsH3ZzXgQbzJseTCcyVu0Vo8dA1BgZhhmEpU0q+J9J5\nn0VFMczB8avmKC/KDkf8+fPn+vnz55+/Gvj58+c7B2HpOO6Axp6huVv1pTamUT/VXgFNAa6LZNmS\nswKZAppKh81VEMv6uFXkxc5VL6ByXu67M+nhuag7+oR+5sAWfQ3Tk/3uOazbkbv8G7us9LXeRlcI\nIyfcRIPBfTcbMoNl4s6S6qG3imgc43X6z46dc6zPeXLIovqiQIf96ZbVTjq3JQMgtx37gukOnJU+\ncNLMoMjHeC63l9XFJnFnqyT8oJoYVd5RYb7L9Kfa7fg+yt7vyhyUriPsWAHJgVj1LZtqy45hVQ7K\njE/V3emn6lv3dq4DPeqA9YM9LmBgw/yJIyKEWDvYOLF7Md2dV9d3dXYAVvewc1Wec46NpxprJyLD\nfuM5dX8nKvJl7XLkLv85HQUjATUTqntYSO+CLd+Poupmzqmct+tznsnxPOZXcMe+O58d5AfFrA0s\nv+pvBzBWzsTBMcrINsLy8tgpuKj+YoSFdeX68tio43wPqwPPTUDG6sAyWRvcyLyqK+dV9l61EfOY\njlz5EkBbq4ZaCB7jwCnnVtEIm8VQKudkTqwcGvvK+h/1VddmY6y+nas+Q0GdoG5VpML0US2rq0jN\n0bmqM7epghlzNOV87JhBLdeFaXXM6nFgyHTS6U4BHvtU2b2yBUePrKxOlC7+qgitInQ+DlEdzHnO\nQ1cV2nZw68CGTt7NohO9sHaqCI19isJghg/AUc8sanLhriA2fTZYXcvgVUEtj0EHbAX5atJhdsv6\nN43QHD0xUdGqmiBRKttl7VETzaS9+b5Kh5V8mQgtxI1U2H0VyFhUoiBWRQOVg06fF3V9VXCvoFbB\nS0VyuX9VZKOgVS01u4iVgVMJu7eCGd6rymR5zMFwPDqIdfBizutEJZ1tdbqoIFbpbWeCrkQFNbn8\naZR2V6B10Uh3Lx530YvaOnGiFBV9OEbggq2D2CQyqyI01ndnU5Bz3mxO6gtdYBnowBVAVV8VXCr4\nOGBz7q/a302OKKws19a7fKa36t6unezeKchC7h6hOaFlN8NgxOVADCMeJlNHY87Lyoo6nTzV3w7g\n3fM0BXQVsdwSZqqeTiqAxTlMq7459bMoQY1P5ZAILJbGPu3oh7Url8ukq0fBq7p/Z4x3AYZyd6CF\nKKNh4FF5uxuWGW1A2OY9g9juJwpMD8xBsL0qUmNQY6CPa/JHreicqs8IsQ7uDPRKN50Oc14ViSiA\nVU7IRMFK2Wl1/SQ9kUlAgO129LEDtnvIlwFalioC6/ZHIMbEjcyqreunO+urPjJIdYBTzxRZlKBA\n1kVo7iccqOtuDDCPRWWTaKeCHbORHFmpMWLlVREapnftq7NpBnw1iTF9sLwjk0WWW0RpXxJoWRBW\nVV4Fru4cExWpxF5FIyqi6PrYRQIVwCuIOR/YhqEz43ZA1uV1DsmcpNIjOn7WVT5mZbrjwtqFUkVm\n7PxHRWhYV3cuAx/z8x7zUab5Xbvcc0ru8m/s3Fkol3MEbCpfGb0K0dVgY38RDAwarO544xhLwJyP\nEEJYVVGb0gMeu0ZYRUsqryrbcR52DUIsO2lVvwOyrj1Mqog7zrOoaCdC69qpbDin1SSt+uCOS5ee\ntHkKtQ8DWv4CHcWZrVlHnb3rvG5kxvKqejEvnlGptNId6uX19ZX+tBFCDvvl9DfrfOJMyrkq471l\neXEOwTbtzw50K6nsikXdLN3Vh7Yxaa8Dst1JZnIcUq1QJnpf64sATeVlQYiwdBWxYRrv65xdCYuM\nAlpdGxi4lF4wKuveXHZ9yn1zjaYbo0lZzn3TtuUoeAdarEx1HPXkce8E4ZXLVOec9k91PgWaW+cU\naBXIVB2dfKn/KcCOGYCqtIIIy9uFWL7/VtEZOiHqogKa84mKCzjUgQOwXZBFGaysKXhYdFNBrapL\nOXPl5PhLGiFZ5wxe7Ji1XZ2rRJ3vQHYLmHV5rM9HQBby6RGaclqWRmEO2UGt2qsyw0FUO5hU0ZkC\nW5zP0HKB5gKsmhCYOE7kAscFyREYVpHOFGIdvLr2IqSwXXhdZWOsPR18O6ng5fqgm9e1jcFMAW4i\ndwNapFne1MArqLE8do1qq2pTBxEGLkzjMoNFGvn8NErDtjJ9sf5i3g5wpo52C6hhvfijkV00gmU4\n+2znDIIMWs5Si0E5l30EIrtAm8LUGdNKFzs2cRegxd41HFe6CMxJ53aiUll7OphVaWX0bB/3VJFa\n9xxtMuNVEYKzdeVWjjoF3E59biRSOb2yDzY5KejmcwwYFcic9qs+sb5VoJ/CzLnmI5addwWas6/K\nYFI58M7yi9XHIj0EiLPszGVkB1CDqv42012CVn1W4O4M3ZEOUurcrlG7IM7XsrFmfcfr2K/m4r5b\nTqnoROndSVfHU6A5MHPg1d1zi2Xn3YCW08qYWLrKy8IU4Sgnl4vLP1aWG53FtficDWdwZTwYhXV7\nbKOrCzU+DiS68jC/i0Cq+6vzOG7d35MqR2fHVRvzHqM01Lfbrx3odOmun1UZznEWJ+K65bLzbp9t\n5P3RdBx3wJo8O4r8ylmrKEhBjJ3PbaiWv7is7D7ZcJec1XgokFX6wjKqa5z7XKOu6qucuKpDwTvG\nJD86yABjUOsk24KCD7Z1J+1AUulld2yYVCDbLfuuQMO0OufkOdGXCvOPrtujjEl0lh0B26bEfWbG\n4OqALaSbyVUe3t/lu1FG1U62ZGd1TKIRd2PlYFpFaK5+VFura7u8Sfud9impQF4tL4/44V2WnGiE\n3Tk2A+JybaoEvMed0eLeapm5Fn+2gnnTNlcA2/kWrVqSKlGG3k1MCo7TiCGXyWCGAHEAxtITQTtG\nfU70q4T1T0E82oR7N6107uR1QUN17gjIQj79bzmnIHJmOXWuKtuZ0aqBRZi9vPz//7jMz8cinV8A\nYN5kEF1wTcEX+mPQy7rpQF/BqsvvohHMY3ZUgaOzj+k4xF7pdPfD5w7SzqSu9DeZOCa6meod5RYg\nC7nLH6d34sCrmo2xDQ401Z4ZQy4/jDfOK4AhzBjMHcPZich2ozcHbKgnlacg5gKN1Y3Ovyus3SgY\neXQAm/xpGsvHPndQU5Ovq2dnEnfkVuOwK3f9tY0szCgZtJTgNWj4bMZRecwJsf0MZmutUYSmBlDl\n3xJe+DZUga3StwO3XahVe0wz2LBz2E4nL8rIkVDOd3Xd6ZtBLtu/0gfqhE3icR2uCiZAU3o8AjBW\nz3SSR7nrZxtT6WaqXD6DpipTORzmZckwy33didCcQXWdZwd0uY0KaEw33TlXrztAY46b813pIhIF\nsziuADZZcmJ5na3nfbY3Z2wmumZ+tatrFDVBdWNSyZdbcuIMu3svzm442Mz5nI0Zb5YjEVo1wEeB\n5m4hOa2imQngOpBNgcbauSusfAVKBAoDWZenIIb5LtTWemt3ClwTHU8mit1JBI+d8e7kbi8F2GyS\nZTJDsTIn9Tib6gtCTQEMYYaGl/cs7TpDtam/98SPfdXYVfqo4DTZOn3cEmoVwLB8FaEwaLHILKfz\nvWpMp3bvjBt7EVXBpKsP9bEjCr6Y58qXi9COiAOw6l7HyUIQBmGw1RtNzHMdNzvTrbdcbu4Xph19\nsWtwPwGaKgPbxvKy4LXdxNFBk00wDFxs2RllVZNTHE+hlsvB/k4nDBYYKGHnJj6I7aj8rpO7P0Or\nALQzoOycEuaMlaPlNmNf47owKIzGWF5lZFOgdeerrfpBykpXlT4VxCodu46G44pjPxUFOCVK3+qv\nOCZLzsib2H7Yn+r7w8PbP//CvlaAz+3Jfce00pELJMfvHPkybzmz7Bimgpqqz4FYGEK+hvUvl7/z\nDK3as9n3FhDrnKrTdQcl1Fl3jwu0nGYgQ9upnJz1iV2vykCIMZipa+J+NZE4MMN24/gpW1b6ZHpx\ndMAmP7xP6du1CVe+/JLTnanytZGOdnTwjD2m1bIw18vqmzxDU/VjXpTnzO5HgXZ07BigqrQDNDUG\nOY3t7vrhOEtVpgMxBrV8L5aD/VF2nvfO2Cn94jGe27EFBjE2XlU7vxzQlKiOqU46MHPhtZYGRz7n\nKFQZOgObyuscHfvTzew7YMvXVv3bnUUdOE1hFsfM2XKf2DkEUiXsWga0CmJ5wzZU41DZObYx/80w\n6ihPzGysqmNWp9IZg9hEVNu+DNDUfzRay5ux4zjvnTxUgutwFdzWqmfqfBwvCKo/Uq+MgkUdOBOz\ndNW2qu9R/mTWzvXHFmXhNvmxS4xCqsmq+l04BZTcpu65lrNXdeY93leNYT52JvGsEzUpB8x+/Pix\nLpeLZReVqIkkt8ERNVnnclw7zvIlgYbpfF+Vru53ylLlZANaSxv4WstyYCcyYPVWdbvRRzUDqwmh\nEwU1F2bsw1DsO+rDgVneVxvri5NWdTv1dcc4Zgxi7DoWleX/ZK/Grxtf1h7M60RBzI0CHfl0oHXw\n6JYe1fGRcqp72QAqQ8+/qKHeHjoDxgy4Apsj2I9q8sjn3XbmNk1ghv1iURkCjkHEWfo5wHGhU0WA\nR8pFiOe0iljzODKQMaCxenJ+LtfJ25VblbPWnYHmggjvPVpuFemx0F0pnBkr+0jV+XC1moHV9V0a\n9YMzIjNSFqXl86yt6IgMbAh5tuTM7eygxoBVQU3BJsp14MPGGoHZvdHEMtVxN26O3SLULpfLmzrU\nRO0CrPINZzL8CPmrgFYJK6sqRxlE1Q5nZsffRVtrScBFmQxgzJDzeSbOTMfKVQBj+lB1YvSEzxLj\n2gy2nM7ldZFJ1IGA6iK0buyi/Ml266hPQQ31o8Ypj1d+fpYjtFxnBTXVji6vEmXvt5IvBzQ8F+I6\nq7PP13dgw+vZ4KOBr/UeYtUsnMtSkckRYdEUpquNCRomtpEtLZ2XAkoP2G4FrGqZ6TzrijpdkGF0\n5kRpDtBU9OPCDCO0y+VCgaZsq2pHFZlVbazqUOem8mFAq96ouOCZRikMRg4sFdjQybB+ZuAVyBB2\nTBTUOplEtBj17EpndC7MqpcCLL1WH6EpsHVvNzuAVUCrrndhlnW6s0phS01cclb9U+W6UJvArPLp\nDppK7vaW09lj2ulwVUYVfUUegxuDGe4RWkycPwCP8tCBu5nZHXwGMyciq0TV7cIsR2gYGSi4dwDD\n8xVcKtioh/1d3VN45ryJVOPI4KZsNT8CYON6q6iMCdo42sBEvjzQ1pp3sINZPqccOeehs0Wb2CxX\nRWjMiKOsqs/sGPXRGZRabqprnaWnamOkXZjtfLZRRWiT8x1oVHkVNKdLWsxj49EJW3IGxHIabTVD\nrANKd+yKmqhYvVNQfnmgVUaer8H7nDRrF9uqQWOGH2W5QMN+dn1j7T5ynRuhqXNKP9lZu2dq+R5l\n7Ln9qHPnedoEMh28piBzYYbAQP0646Ois8vl8mZpiVDDSSPn5TpuAbXoVzeBTeVLAY3lqVmrK1sd\n30KU8aPTRv0O0KJc1eY84CradKSK+CZlqckln0Nw4RtOdKbYo1Ezo2egmr4AYGCJPaZ3YJbLzGV1\nefmcMx5sNcE+rI10jopjuR+63QHJEait9d62j5T1YUBTg9BFIY5xsfS0DSwcz1vO7yKADkTZ6J32\nqfPZ4BSIEABu2XH9y8v///eqh4eH9fz8/O4cOk4uC/dZj0znmIdlqDwFjdz/7Ljs4fjj4+ObB/rP\nz8/r8fGxhZcLNHYu2trZeO4rggmjr4eHh/Xz58/1+Pi4Hh8f/+RFmc/Pz+t6vb6bCCZ7taH9Z1tx\npQtApgHJXSI01WGlHAYyB2hK1Myl0s7g5rJZ21n0xu5hbcV2u8vKiWBbGcwmQEOn6/TMNiwLozhm\nL1k3YYOXy+XN9vLy8i4vw2zX4btjBrK8z2kXZg8PD+vx8fFNX/KE9vLysq7X61qLvxnuwOxu2A+0\nLVd2bDfLp0doWdhAqtmrUiIz7E6Yo6m9Y4iqz7ltuLzq7sVzleM75VRlZ4PG9ucoNbcD24TnphHa\nZGPRDfY/ro3/l8qAliM1F15VBKNgEW3N+yrtwkytLtb6x96iHfjZxnQ53p1Du3GPnbQrdwPa6+v7\nP2aOfAdmSrm5/KpeFUGw9E4fox5sCz6zcMrMsGDtwajQjfhQFMxii6WoA7RphFY5LTtGvUbdeXxz\nHy6Xy3p+fn6zD5jFvgOYG82o/KxXJpGvdNhFbfneKC9H1tfrVfpWl4fn2Tnsm/JJtq/yJvLpS86u\nwxMDUQNQlR8ycaK43o1MqvrZfSgqLyIlBBv2S0kH4LXezuoPD/882FeRYZU3jdDYg+s4DjAxPWNU\nxvSW3/LFPsMMn58xu3MiMnVO6VuN0wRmWB6OZc5zYeKcw2uq66pyXX925K4RWk5XRuIaUi63Axxz\n0Grp04X9qt+5Hdn4OifE4zx745uqfC6nO8HILgSXlnjsgI1BbQK2gFj0SUEtR2W5T7lvEZUh2DLU\nprbmTrJ5yVnpH/MnQHOe7TG4TtIdoKb7bgJAv3blLkDLhprz2KBMH2BGWdU+t9HZ2DOKcK7seF2E\nlvMciLHjDDOE5S408/1d+yo94fkpwNhx9DP0jXWotubzDGJsm4Bqei1KF2UyHarJ9fn5+c+LnOfn\n5zdti7zYOqlslh0zH875Fczc55MT+fQlZ36GhMJmlKqzFdGr9Fr6wTbLjz/sjT1GZJ3SK6C6xzmd\nnTz3z4nKWLlMP9j2fP1km0Zo1d8b5v6zPnUTEkKNlV9BKut6F2hVJIl2xyDGVgbX6/XPm8xoV/Ql\nPtvI1zA7mEgFPQU1TGcfRn/H9ETu8h1a3rpnENVbJ8xbSz+4ZA7L4MXS7O1YiFpuKshNoFZFWLl+\n1JuK0qoymb5YnooSJjCrIrTX11cKN5Ts0Cy6QcfH52cMSqz/LtyOAI3lOTCL9O/fv9+MeURi0b/r\n9bqenp7W09NTaQeOvSnpggkGNHebyN2AxkR1VpEb046xxTk1U7J9fsaS+4HPslSf8h7TqKsqnaMp\n5TDYPyXsvLO8Z8BSIHNhlqETQItJQ+kqL/Wxz9gOhFnU49oNy1fXVuPDJk0FtgpiqPc8fvGsMNoX\nS82np6f1+/fvd/bE0sw+HMBN9BXL5NjyMZ6byF3ecjKooeNUUFPH09lyrX52Qojk/uGzrLg29yn3\nLacROl0adZbbhXVMBPvX6b8CmjqevAR4fX19E5nlaJg5WdZlFSEizJRNVE5YjWU3geIYsvZmWCuI\nsSVnhkT8VcBab5ecT09P69evX239yt6U/rO4k0EGbQaY2k/k0/9zen54iZ1i+VVUtvMgtwMai4pi\n1nPqXMt7exTH1cynZtAKcmrfncsbA0RuewUPBTPnGL/ez88uWT5uKj8mnoAauwahegRo7BzTW5U3\nidBUxKZskIGI2R1e29krExf2zHd25MOApt6oMHCprXtudhRolZPH/uHhoQXoWv7nIt2AuVBiDsHO\nVWXg/dlBWDSWr+8iB4RVBbIKaApqFZSculikiJNDBlGOBBFSzMYw3x23bozVZIY2xO6pbM4BFZs8\nUVdTce3clU8HmorGcLter+ULAYTaUaApCFSRGXugzPaYRnHAytrZGXzVtwpomI+AU0tIB2Zq6yIy\nPEPF/3AAAA/CSURBVOfC6uHhoY3McjkKShXI8FhFd9Nx7EBWjX9na45UAMN0zuvgps5XgHfl05ec\nCl4O0Dq4reU/13Bh8fr69m8ZGcxuGULfytB3YZjhFVFZPmbQqvJYNKXypstNVh9rE74QUHDLOmGw\nwnMIserYsbmdsVY21J2f5KtrUF+Y79o+1jsBNMpdlpw5Sssww3QFMpW3Vg+1tXpw5GP2Krkqe2cg\nq7QDI/faqozqfH4W5YBEAYx909fBqwNatX94qCM0vEdFXU4abS8fo82pMe+AVo0XAkBdj2OsbNLJ\nU1BT0kVnVZsd+TLP0AJmee98RsCipbX6h5EuGDLQHFCyZaYLuinI1HXT6xFaVdoBWOQhvKr9dMmZ\n29KluxcBVYR2JJ3tkI1vlVeNU1UGO3Ztrru/AnIcY6Q2XaG4bVFy1yUng1j+splBpIKcC7W1eogh\n0KIuBbeoL6SCWDXI7kzrQiofqzTmVWDLoGAwc56NORDrwIZtYLqJJXNuC4Nbvp5FaLtQyzYY5eFY\nq7SzVXZTXcds7ojk/lYQcyb0qo+OfMkIrQJaBzIHamv5zyry87PJC4EqnaUauF2IOQBj90Qe9l2B\nzYXZJPJyl5wTp2cwY/3IfWdwYmkFL5aX9Yvj3I27O8aOjTmgYPbQ7R2orcV9Ae//a4CGbznxuVne\npgBzYRaG6DrE5BORkGmo7QL21sc5H/Nin5+fTWCm4Ja3+NlodV5FdBOHj/GrIrPYdiKxCm7MuTtH\nrWwAr0FYVjCooLYDD4RZB7Is2G42UXwpoE3fcrJtAjAXapGXjdkFWgW1XC4O6hRuTHYh1R1j+Rle\nbJ/L6UDG4NXlOdFaHjPsC9OF8+wM71ORmAs1hNtkjHG8Krh1AKugMAUG6hXzKqg5umA6nMqXWXIy\nyN0qGmN5YcgsWkOHUW84qw9sMV3lZXEM+cixAloAK86x/SQqq8Cl0pPPNqp2opNNIssKWrlMBiy1\nd8Z9agcMVh30sm5UnW4+ls+iUCdqUxDbgdlad/rTJ7bh5xy3XmJWUMsgizbGcfeJhpIdmDGpINSV\nq2Y5ZuBdtJHrqWDJNvXMigHQWabGOOX2V8eTLe45EpW5zqxk0t4MbKX3bkJDOCldqrxKOj/IaTZx\nTOUuz9DUd107X/3vQi4PZgZZdpbdsBcHohpUd8bs2lH10SmfneuckrXPdUSEXM53tiPC2qIiNKYL\nF1ZsUmC669rXAVg9t0T9TiLbibiT9w6gpvJlIjTnE41dgLHr2DOiuH+t9cZ4JxsaQwc3B5rV+Wn0\nyBzraFRROYYTNUxeNITTOnpl+Q54q6gs6wzTOzpjx7tAq54RsomgitCmkGP6VmPgyo5u7w60IwA7\nErmtVT8I3x2M6no22N0MXhlUvq8CWr5X1XXE6Lp9FaWp5agCWY6koj+oE6Yn1WZsiwJZB7OcxnHB\nMWYAcXXGgIa6qcBW1auOmVTRp+sDjkyjxbsCLSDW/Y1kt+1Ecmu9fRCOTqJgEceOMIBN7kdRYELH\nQ2hnp+vKd6O0blbvQKaOq+dscazGJeuGpbsoKC85me4U5DqJe6pJCvPU8y83Qst6xSUnE2YbU5hM\nQbbrB5XcPUKr/kbzKMCqvyIICSNGsKl7EHpKXJhVM50T7uP90Ze8hFb3h1MoiHVgq6KLnK6iM/Ws\nR0Vq+KzLGSvWZwXX3O8uQsNr2bio+iudreUBLfTgLtkngJpcW8FK2c9HwGytOwItA8d9KaDOT+9j\n4oBsZ5bpwOZETeo6BBGWzxxTOZlyWNUeduzCTEGlAhhbcuaJKPcZdVEJ1tuBTB0zYWPMdIT6WqsG\nWj4X106foU2AomyU6dvRR2dfR2B3lw9rqwht8nJg91qUbJzOrM9m406qyAFBU0FDlYuGkB2T1ZHL\nPjpbZueqjicw66K0GM+13v4f0dxXNYl1gD0KMpR8L4sGWZ4CGosoGfBV5IuQ7SbpSaSG9zsAu7Xc\n9bONAM30sw3nZUJ1TZaHh7f/SBedIO8rKGWpBjKfq6ImJggKVm4+zpsDSRWpIfRUG5Sz5rTjdApi\n2WnXevuZTXw72DmPAgm+bJiATU3elX7YhnrqYOZGaFm/lY7UeFfCorTuekdPWLYrd3+GhlBDAFVg\n6sCmjkMCZjGAOc2gFmmVr0TNWNWAMUNX5ao6VYSS68jpiUFj+6rznZNOn6PlOvHPsdBpWT8qqKHO\nnAgNn8M6Ous2B2hRb/WWE3WZJ9IsCKYJSLqJW13TyQSsIXcH2u6ycZpWQIu9ApmK0EI6he/ADEXB\nLOczA8Vj1odu1nbbt7NlB3WWmhihoS5QT1WfsB0BxjjXgY1JlFO14Qi82HHU60Rm7BkhSnWukiPg\nuqV8GNCqsLbbWBlOeiIs8sE8jJA6AFXwUnsnkmL1IMzY7FrpdafeXWF6VFESy6u2uB6F6dhtI5ts\nMthUXXFeHaOt7fZ5917VJhdik6jtXvJhQOtkZxBC8kyI4T7OQjlKy4OGz2XYLzrg3w/mGS8Li+yq\nfaSVc1QO6MBMAauaRKpPXG4JvKqsKsp09TvZunay67oJuDvOY7WWfl7kHrsTVmejIRlwU7mVnRwB\n56cDrYt0HKCt9T68x+cfCLHstBF+s1916ICG4X+I43CY1zlY53gI6coYpyC7Jcw6UFXXKCjsQqxz\nfNX+bhxuAbIdyLF2uDBTsrPkxHZMREXD7Fwnd4vQsiiAVUBbiz+zyNcruGWgMXAxyLFnEiEZDlkq\noOX78JgZKsKKgYvN2gxgTIed4R8FWweE7lo1YVRpB2Sqnu5cVW7VZgUy5bgd5BxRbWX1hEygNrEN\ntgRnde+UvdadgaYghs9GqkFUkRlz7ihrrVVGZ+q3uBh4QyYGwwbUcep8ji0zGWQRZqivLkLr2sJ0\nUIG5K5Ndg3l5XFW93YZtdvrTXeOW2UGN2TueX+u9/eyOo8p3wMLGqBMGMlXXXxOhqWjMWW525TJj\nj3RIFZ05z9ByG5XjZVGOqtrK7qkiMsfY8zF7Btk5xEeLA7Pch5yewA3LwHqq9nXArvImIMN78LzT\nZtXvHTm6DK3ux3NfMkLrnpNV6YAFG9Suzuzka713jDg/AVoFs5DOaDrjd9K5/QpmLOqr0mq56Up3\nnwP27p6cx/rowIydZ+2Z6oJdWwFvGp11x6otlU5c34z787lbT3DVEnQana31BZacmEaoTcpiMxxz\noPwMrYrI1EsB9QxtArTuvh2woHHkPIRYPDtjS3bWNlXnR0o1KVUQccDG9qoNXXl4rcrrJqBdqHX1\nVnbW+VgFMdfOnbIV2P6aJWcWBrO8V/eomYcNOEr32/XdSwGUAEUl2I4qksQ8FpWpPd7Dyo99/tgY\nHaDS30Sq8lzYKPhUsHE+RXGg5vTNhdtHQY21RaXX4tDAAEPBZldXTplH67rLZxtqj5u6nxmLs0TN\n5ydAy3msjcqoqzbk9BHnYlBj+mAgi0h1px1HIedIB/tbbKwv0/vZfZjHJpouEnGgxtKoM2wX1o+S\nfXIClx2bUKuKKO+vitDUzIB50/Kc65z/LMRgxj7bWIvPyJ04EUPeq2hMlc3S+Q+641hdXzmM0y/l\nZKq8ql62dzb8UQKVZsdH+4plO1BzIFY956qAzfqmbIlNkpUOXFEriIltV3IXoCmAdREaU26O2Bwl\nRNn4N4LO8zOEWWVYEz3swqzbs3a5z0R2ZttcBxvDiZF2gGXXTze872h5rKxsmwpGu87LdND1wV3y\nHq17IreC2Vpf6BlaBTS2zMQ8BklWT+zVLxRk2HV/7FvV4fZb3dM5XNaBawjTtlVGqsbs6KZEgUj9\nwEE+x34Iwf2fFpMfT3ABh7aaN7YS6PzCGVc2OeI4szF3JttKcNLOeawP2M6pfMm/5YwlEf7GVYZY\nNQiRr44daLG3mhjduQ5Z5VdRnnIKppMdmEX9nS47OQIvB2TsWAFJ/YqLc44By4Gegi2zVUdvFcyY\n/nJ5lVQRmrIBBi4GNRdsuc7qut2I79N/baMSNrBK0RluyqnVYEfZ3X/LQfBNDUz1sRMVbbCZDct0\n4VaV5QKOlbMDNXWvAgTLuyXcMF3l5baotBPNoK25+lSwDGETgpoQXaixc6y/VV/xGO9x/ITJ3Zec\nODjK2FmUhuk4n+9TaTdCyyDrlgEVUFk+62uWzkDwPgUzZxbv4NWVyfo0iTg6qYCmlpJsydktTxm0\n1J7BqotemOO6E2U1ETi6y8cd1PB+TFd9UhLtZBDeBRjK3d9y5s6xwWPwYvdiuZif0xlWzrO07JTq\n0w0FtSpPtU/12dHnRNgsXxk21lM5HNOl67woyqGq6KmDWvVsrSor52F7WBtVP5ges94q/bKxc8QZ\n53yu69+0rw7I3KBAyV2foeWILPJir5abHeTynuVFfZN/zuo+qJ0OVOfE3VLFGWzVJkxPHAPLv9XG\n+lQt31iUxkA03RgMFdywnepYncsgU/pQNrwr2Xe6SawDWU5Xdspgin3K12OeK58ONNZp1cl8TqVx\nIJSi0BimS0619MxlYttZX1jfcz6bHfHbMdSFKlsJ06+7V2UcBVnVB7Z862A2ic6qt6BVtMfaWEkV\nbaNNZn24Nq1Ah5PBdKwdcHdQw3q7vuS8idx9ybnW+2c/8XeGFcBwALDMTlGTTzaysaiZNNe1k87C\njCJDDfXCdIiiYHpEWP+VjiqnU46YhUVo1ScVLrjY/ep6lqf04uqu01Fl250ogDqRGbtHHTv3K1+t\nAoMvBbTJEoY1nC05K6jlctQMEOlbLTM7sHUgq2ZVpkOcBZmRKH12bXONW4ERN2d57gIPpQKRSk/e\ndLqQU7pBHUaf1OoE9YYRGtO9MzEyvcX1zHc6G6igxo5zuSzt2sVEvsRbzu68mlEq6lfp7oXA5FON\nHah1My0zgJyf90w/E2EG3IHN1cXOZMB0gVvOV6CqzqnIbhKdIdBQZ9gntiRTToyPF1SZ7jms14GZ\ngvMkr2rnjk85cvcfeKyMoJo11CB0QMOZ0PkGrZtFVN8qgHVwq4zGWXo77cD2TMGG1zpQY9fmPOxv\nthMGtGrp6T4jm0RleJ/SKY6HWv65Tjx1bNRj3jOYYV1O9OVGcqoOdxKcCJ8KTjnllC8l7sTyb5cT\naKec8hfIkQjt3yQn0E75VNl1zH+7Q58Rmicn0E75VNl1zH+7Q//bge7KCbRTTvkL5N8OdFceTkWd\ncsop30XOCO2UU075NnIC7ZRTTvk2cgLtlFNO+TZyAu2UU075NnIC7ZRTTvk2cgLtlFNO+TZyAu2U\nU075NnIC7ZRTTvk2cgLtlFNO+TZyAu2UU075NnIC7ZRTTvk2cgLtlFNO+TZyAu2UU075NnIC7ZRT\nTvk2cgLtlFNO+TZyAu2UU075NnIC7ZRTTvk2cgLtlFNO+TZyAu2UU075NnIC7ZRTTvk28n9AwRVK\nLtEpzAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1387,13 +558,15 @@ ], "source": [ "imshow(solver.net.params['conv1'][0].diff[:, 0].reshape(4, 5, 5, 5)\n", - " .transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray')" + " .transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray'); axis('off')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ + "### 5. Writing a custom training loop\n", + "\n", "Something is happening. Let's run the net for a while, keeping track of a few things as it goes.\n", "Note that this process will be the same as if training through the `caffe` binary. In particular:\n", "* logging will continue to happen as normal\n", @@ -1424,8 +597,8 @@ "Iteration 125 testing...\n", "Iteration 150 testing...\n", "Iteration 175 testing...\n", - "CPU times: user 12.3 s, sys: 3.96 s, total: 16.2 s\n", - "Wall time: 15.7 s\n" + "CPU times: user 12.6 s, sys: 2.4 s, total: 15 s\n", + "Wall time: 14.4 s\n" ] } ], @@ -1448,7 +621,7 @@ " # store the output on the first test batch\n", " # (start the forward pass at conv1 to avoid loading new data)\n", " solver.test_nets[0].forward(start='conv1')\n", - " output[it] = solver.test_nets[0].blobs['ip2'].data[:8]\n", + " output[it] = solver.test_nets[0].blobs['score'].data[:8]\n", " \n", " # run a full test every so often\n", " # (Caffe can also do this for us and write to a log, but we show here\n", @@ -1458,7 +631,7 @@ " correct = 0\n", " for test_it in range(100):\n", " solver.test_nets[0].forward()\n", - " correct += sum(solver.test_nets[0].blobs['ip2'].data.argmax(1)\n", + " correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)\n", " == solver.test_nets[0].blobs['label'].data)\n", " test_acc[it // test_interval] = correct / 1e4" ] @@ -1467,7 +640,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's plot the train loss and test accuracy." + "* Let's plot the train loss and test accuracy." ] }, { @@ -1480,7 +653,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 16, @@ -1489,331 +662,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEPCAYAAAAEfBBiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4HGWV/z9fwhK2JIRAgCTsYYkswsgiiwYBRVRwGxV1\n", - "dNRxcEGZUcdtVBhHZ3Abcf8xiruCjguigohIANmXQBISIAECYd9CSFgTOL8/zlvpun2r+1bf23V7\n", - "uefzPP10d9XbVe+t2/1+65z3vOfIzAiCIAiC0WadTncgCIIgGJuEAAVBEAQdIQQoCIIg6AghQEEQ\n", - "BEFHCAEKgiAIOkIIUBAEQdARKhMgSTMkXSjpRkkLJH2woM1sSSskzU2PT1XVnyAIgrGOpO9Lul/S\n", - "/CZtvi5psaQbJO1TZX/WrfDYq4F/NbPrJW0CXCvpfDNbVNfuIjM7psJ+BEEQBM4PgG8APy7aKelo\n", - "YGczmynpAOA7wIFVdaYyC8jM7jOz69PrVcAiYJuCpqqqD0EQBEENM7sEWN6kyTHAj1LbK4FJkqZW\n", - "1Z9RmQOStD2wD3Bl3S4DDkqm3jmSZo1Gf4IgCIJCpgHLcu/vAqZXdbIqXXAAJPfbr4ATkyWU5zpg\n", - "hpk9IenlwFnALlX3KQiCIGhIvVeqsnxtlQqQpPWAXwM/NbOz6veb2crc63MlfVvSZDN7pO44kbAu\n", - "CIJgGJhZK9McdwMzcu+np22VUJkASRJwOrDQzE5t0GYq8ICZmaT9AdWLT0aLFzFogqSTzezkTvej\n", - "H4hr2V7ieraXYdy8nw2cAJwp6UDgUTO7v/09c6q0gA4G3grMkzQ3bfsksC2AmZ0GvB54r6Q1wBPA\n", - "myrsTxAEwZhG0hnAi4EpkpYBJwHrgY/JZnaOpKMlLQEeB95RZX8qEyAz+xtDBDmY2beAb1XVhyAI\n", - "gqCGmR1Xos0Jo9EXiEwIY5U5ne5AHzGn0x3oM+Z0ugPB6KFeKEgnyWIOKAiCoDW6fewMCygIgiDo\n", - "CCFAQRAEQUcIAQqCIAg6QghQEARB0BFCgIIgCIKOEAIUBEEQdIQQoCAIgqAjhAAFQRCURdoAaQuk\n", - "8Z3uSj9QeTmGIAg6iCcF3hjP9/UU8DRmz3W2U6OMX4PxwITcY2Ld+0aP+nbrACuA1wEXjeaf0Y/0\n", - "TCYEsPXMWNPpvgTBqOKD50bApBYem+VeTwSeAVYDG+AD8WpcjBo9nh5i/0jbrKHMwFP720cqGhOA\n", - "Z3HheKzko1Hbp0v1vUvo9kwIvSRAJ5nx2U73JQhaonb33UggyjzWAI82eSxvsm8FZs/U9Wd9amLU\n", - "6DHU/pG0WYfGIrUeNdHYNO0fjlDkHysxe7r5P6o/CQFqA0mAVgHTzHis0/0Jxjju/98F2B3YgaEF\n", - "5TmaC0gzMVnRd4OntC4DhSl7vSFunWWishKz8HqMgG4XoF6aA7oB2A+4oNMdCcYI0kRcZOof04Db\n", - "gEXp+RHgdorFZAVmT41637sZF5U1eL2ZYAzTSwJ0BfBCQoCCduIuqakMFJhZ6XkCcBMuNIvwCr8u\n", - "OmarO9LfIOgjekmALqfi6nxBHyOtA2xPsUXzLC4sC9PzH9LzXWMuYizoeyQdBZwKjAO+Z2ZfqNu/\n", - "GfB9YEd8Xu6dZnZjJX3poTmgacA8YAszur/TQWeQ1gdmMlhkdgEepmbN1B5mD3ams0FQLfVzQJLG\n", - "ATcDRwB3A1cDx5nZolybLwGPmdl/StoV+JaZHVFF/3rGAjLjHokngJ2BxZ3uT9BhpE2A3RjsNtsO\n", - "uIOawPwJ+CpwE2YrO9PZIOga9geWmNlSAElnAsfiv5WM3YFTAMzsZknbS9rCKrhR6xkBSlyOzwOF\n", - "AI0VpC0odptNAW6hJjQ/w11oS/ouaiwI2sc0YFnu/V3AAXVtbgBeC/xN0v74Td10YMwLUBaI8ONO\n", - "dySoAHefHQgcCbwIt2rWoyYyC4Hz0+s7MHu2Qz0Ngq5E0mxgdpMmZaYvTgG+JmkuMB+Yi8+Ttp1e\n", - "E6BrgDd2uhNBm/AItN1xwTkSOBS3bs8HPo9/+e/rpZXnQdBJzGwOMCd7L+mkuiZ3AzNy72fgVlD+\n", - "GCuBd+aOcTu+3KDt9JoAzQP2kFjHjIhO6kWkLfEJ0Ex0ngX+jFu1/4jZQx3sXRD0O9cAMyVtD9yD\n", - "39Afl28gX//2pJk9I+ndwEVmtqqKzvSUAJmxQuIhYCdiHqg3kDYEDsHF5qV4KPQc3Mr5b2BxWDhB\n", - "MDqY2RpJJwDn4WHYp5vZIknHp/2n4a7vH3r0MQuAd1XVn54Jw85CCSXOBn5kxq873K2gCF9vszc1\n", - "C+dA3HL9My46V0V6lSAYHSIVT/u5AdgLQoC6Bmk6NcE5Ak9Bcz7wTeD1mK3oYO+CIOhSelGA5gFv\n", - "6XQnxjTSpnikTSY6W+Apks4HPoHZHZ3rXBAEvUIvuuB2Bc41Y8cOd2vs4NmLX0BNcPbBV1BnbrW5\n", - "kbImCLqPbnfB9aIAjcNTtW8dpRkqRNqJmuC8BF+8dn56XIzZEx3sXRAEJeh2Aeo5F5wZz0rcCOwB\n", - "XNbp/vQN0mRcaDLR2RAXm7OAEzC7t4O9C4KgD+k5AUpcARxOCNDw8awDL6QmOLsDf8NF5xvAjREe\n", - "HQRBlfScC87fcxBem2VWZMZuAWka8DrgZXjWgZupudUuixxqQdBfdLsLrlcFSHhqiNeaMbdzPesB\n", - "pM2B1+OrnfcCzgbOAS7A7OFOdi0IgmrpdgHqSRecGSbxc+DNEAI0CC9VcCwuOofiJQlOBf4U5aGD\n", - "IOgWetIC8m3MwsOAt428cIC0AfByXHSOwudzfg6cHXVwgmBsEhZQRZixUOIZvCjZwk73pyP4+pzD\n", - "cNF5Nb5I9wzgfeFeC4Kg21mnqgNLmiHpQkk3Slog6YMN2n1d0mJJN0jap8XTXAocNPLe9hCSkA5C\n", - "+gaeRv2/8ISBe2I2G7PTQnyCIOgFqrSAVgP/ambXy+ckrpV0fl3t8aOBnc1spqQDgO/gySvLchku\n", - "QN9rZ8e7Dq+bsxdu6bwJeAK3dA7FLLKCB0HQk1QmQGZ2H3Bfer1K0iJgGwbWHj8G+FFqc6WkSZKm\n", - "mtn9JU9zKfAvbex2dyHtjAvOccDGQFa/fV6s0QmCoNcZlTmgVPxoH+DKul1F9cmnA2UF6EZgK4kp\n", - "ZvRHITNpG2pForYF/g94N3B5iE4QBP1E5QKU3G+/Ak5sUFWvPkKjcJCVdHLu7Rwzm5PS8lyBu+HO\n", - "bkd/O4Kv1XkdLjp74+lv/h24MGrnBEHQr1QqQJLWw+v2/NTMzipoUl+ffHraNggzO7nBaS4DXkSv\n", - "CVDxWp2vEWt1giCoEElH4esCxwHfM7Mv1O2fAvwU2ArXiC+b2Q+r6EuVUXDC0+UsNLNTGzQ7G3hb\n", - "an8g8GgL8z8ZvwHeKnGBxM7D7vBoIG2A9GqkX+BC+2Y8mGA6Zm/E7KwQnyAIqkLSOLxQ5FF46e3j\n", - "JO1e1+wEYK6ZPR+v+/UV+ZKPtlOlBXQw8FZgnqQsW8En8XkNzOw0MztH0tGSlgCPA+9o9SRmzJfY\n", - "Fvgi8CHgfW3pfbvwf/hhuNjEWp0gCDrJ/sASM1sKICkLbMoHh92LR90CTAAetoqmAqqMgvsbJSws\n", - "Mzth5OfiGYmvAVdJnGjG6pEec0S49Xcg7l57Ax5ocQbwacwKXYxBEASjQFHg1wF1bb4L/FXSPcCm\n", - "+BhWCT2bCaEeM26XuAUvLXDOqHfARWdPamt1niTW6gRBMIpImo27zRpRJpL2k8D1ZjZbXpjyfEl7\n", - "WwUpvfpGgBI/B95CJwQIfoebrWeSudoibDoIglHEzOYAc7L3kk6qa1If+DUDt4LyHAR8Ph3vVkm3\n", - "A7sC17S5u72bjLS4HVsCi4EtzRi92jZSdt4pmHXW/RcEQZAYXMpG6+J1wA4H7gGuAo6ry1DzP8AK\n", - "M/sPSVOBa4G9zOyRdvevsii4TmDGA/gE2mhHw70EuCjEJwiCbiYFE5wAnIcncf6FmS2SdLyk41Oz\n", - "/wJeIOkG4C/AR6sQH+gzC8jbchbwUzN+VXG38ic9Hbges2+M2jmDIAiGoNvLMfSVBZS4CS/RMDp4\n", - "8MGReFnrIAiCoCT9KECLGE0Bgpn4dbx5FM8ZBEHQ8/SjAN0E1K/srRK3fnrBlxkEQdBF9KMA3Qzs\n", - "Ko3a33YE4X4LgiBomb4TIDMeBVbiK36rxUMaZwMXVH6uIAiCPqPvBCixiNFxw+0H3EnrCVSDIAjG\n", - "PP0qQKMVCXcEHicfBEEQtEgI0MiI8OsgCIJh0q8CtAivdVEdXlBuX+CSSs8TBEHQp/SrAC0A9pAG\n", - "lftuJy8Grsbs8QrPEQRB0Lf0qwDdl563qvAc4X4LgiAYAX0pQGYYMB+vz1MVEYAQBEEwAvpSgBLz\n", - "gT0qObK0DbANnqY8CIIgGAb9LEALqM4COgL4K2bPVnT8IAiCvqefBahKF1y434IgCEZI39UDqn2G\n", - "TfFghAlmtM9S8fILdwOHYnZr244bBEHQZqIeUIcwYyXwALBjmw89C3gauK3Nxw2CIKgcSUdJuknS\n", - "YkkfK9j/EUlz02O+pDWSJlXRl74VoEQV80BRfiEIgp5E0jjgm8BR+M30cZIG5M00sy+b2T5mtg/w\n", - "CWCOmT1aRX/6XYBuB7Zt8zFj/U8QBL3K/sASM1tqZquBM4Fjm7R/M3BGVZ3pdwF6ENiibUeT1gcO\n", - "Bf7atmMGQRCMHtOAZbn3d9GgdI2kjYCXAb+uqjPrVnXgLuFBPF9buzgQuAWzh9t4zCAIgrYgaTZe\n", - "o6wRrUwdvAr4W1XuNxgbAtQ+CyjCr4Mg6GLMbA4wJ3sv6aS6JncDM3LvZ+BWUBFvokL3G4QLrlVi\n", - "/icIgl7mGmCmpO3lUwpvBM6ubyRpIvAi4HdVdiYsoLJ4GOIewKVtOV4QBMEoY2ZrJJ0AnAeMA043\n", - "s0WSjk/7T0tNXw2cZ2ZPVtmfvl2I6p9jCnCLGZPb0IlXA+/D7KUjPlYQBMEoUPVCVEnjbAQpyfrd\n", - "BfcIMEFivTYcK9xvQRAEA1ks6UuShlUAtK8FyIzncBHavA2HiwCEIAiCgTwfWAx8T9KVko6XNKHs\n", - "h/tagBIPAVNGdARpW2Az4IZ2dCgIgqAfMLPHzOx/zewg4GPAZ4D7JP1I0s5DfX4sCFA7AhGOBC7A\n", - "7Lk29CcIgqAvkLSupGMlnQWcCnwFz7/5e+CcoT7f71Fw0B4BCvdbEATBYG7B1x190cwuy23/laQX\n", - "D/XhSi0gSd+XdL+k+Q32z5a0Ipd59VMVdGNkAiStAxxOBCAEQRDUs5eZvbNOfAAwsw8M9eGqXXA/\n", - "wLOuNuOiLPOqmX2ugj6M1ALaC3gUszvb1J8gCIJ+4Vv5Ug2SJkv6ftkPVypAZnYJsHyIZlUXSxqp\n", - "AEX4dRAEQTF753PFmdkjtJB/s9NBCAYcJOkGSecMN5Z8CB4EtpA4XBqccqIEIUBBEATFSNLk3JvJ\n", - "eIaFUnQ6COE6YIaZPSHp5cBZwC5tPkdmAb0NeKnEeDOeKvVJaTzwQuANbe5TEARBP/AV4HJJv8S9\n", - "WX8PfL7sh4cUIEmbAE+a2bOSdgV2Bc5NxYxGhJmtzL0+V9K3JU1OZlx9P07OvZ2Tsr6W4UFgOrA3\n", - "ngl2f+Dikp89GFhAhenIgyAIehUz+7Gka4GX4B6t15jZwrKfL2MBXQwcImkzPIHd1XgG1bcMo78D\n", - "kDQVeMDMTNL+eG66QeIDYGYnD/M0DwI7AxfhfX8x5QUowq+DIAiaYGY3SnoIGA+YpG2tZNBWmTkg\n", - "mdkTwGuBb5vZ3+NZoYf+oHQGcBmwq6Rlkt6ZUjUcn5q8Hpgv6Xp8EdObyhy3RbLicb/ERWjI2PQc\n", - "Mf8TBEHQAEnHSFoM3IavB1oKnFv680Nlw5Y0F3gf8FXgXUnt5pvZnsPtdKuMNKOrxN9wAX0GL0e7\n", - "uRnPDPGhzYHbgSmYNW8bBEHQhYxCNux5uPvtfDPbR9JhwD+Y2TvLfL6MBfQvwCeA3ybx2Qm4cNg9\n", - "7gBmHGLGA2Y8CiwBXlDiYy8BLgnxCYIgaMhqM3sIWCeVZriQcuMrUEKAzOwiMzvGzL4gzwrwoJl9\n", - "cAQd7jSXU+4ChfstCIK+Q9JRkm6StFjSxxq0mZ2y0yyQNKfJ4ZZL2hS4BPiZpK8Dq8r2ZUgBknSG\n", - "pAmSNgYWAIskfbTsCbqQu4BtSrSLAIQgCPoKSeOAb+IZamYBx0nava7NJOBbwKvMbA98rr4RxwJP\n", - "AP8K/An3ML2qbH/KuOBmmdljeInWc4HtgX8oe4Iu5B6GEiB3M44HbhyNDgVBEIwS+wNLzGxpWkpz\n", - "Ji4ied4M/NrM7gJILrZBSFoX+IOZPWtmq83sh2b2dTN7uKh9EWUEaF1J6+EC9PvU6e6v492Ye4Gt\n", - "h2hzJPAXeqFeeRAEQXmm4YFYGXelbXlmApMlXSjpGkmFBoeZrQGey+eCa5Uy64BOw0Pr5gEXS9oe\n", - "WDHcE3YBZQToCBhW2p4gCIJupsxN9Xp4PrfDgY3wTAdXmNnigraP40tp/oy74gCsbJzAkAJkZl8H\n", - "vp69l3QHHiHWqzR3wbmP9CVALwdaBEEwBpE0G5jdpMndwIzc+xm4FZRnGfCQmT0JPCnpYjyTTJEA\n", - "/SY98pT2HJVZBzQJOAl4Udo0B/ismY2aFdTOWHYJAU8BEwtzwkn7AT/E7HntOF8QBEGnqB8707zN\n", - "zbh1cw9wFXCcmS3KtdkND1R4GbABcCXwxlZS7JSljAvu+8B8PMmc8ACEH+ALO3sOM0ziPtwNd3tB\n", - "kwi/DoKgLzGzNZJOwNOqjQNON7NFWXYaMzvNzG6S9Cd82uU54LuNxEdS0RhqZrZjmf6UsYBuMLO9\n", - "h9pWJe1ezStxBfAhMwZV8UO6EPgyZn9s1/mCIAg6wShkQpiSezseD9ne3Mw+XebzZaLgnpR0aO6E\n", - "h1CbbOpViueBfK3TfpRPVhoEQTBmMbOHco+7zOxU4BVlP1/GBfce4MeSJqb3y4G3D6Ov3USjSLhD\n", - "gevIlYkIgiAIipH0d9SCDtbBs8y0ryCdmV0P7CVpQnr/2DD62W00ioSL7AdBEATl+Qo1AVqDL9kp\n", - "XcCzoQBJ+nDureW2C59k+p+Wutld3Estqi/PkbjFFwRBEAyBmc0eyeebzQFtCmySHpvmHtn7XuYe\n", - "kgtOSuaiF8fbDi9aFwRBEAyBpP/KZ0KQtJmkz5X+fC9km6kgCm5v4KfAF4APAAcaOg54A2avbtd5\n", - "giAIOskoRMFdb2bPr9s218z2KfP5MkEI/cg9uLXzZXzC7PnE+p8gCIJWWUfSeDN7CkDShsD6ZT88\n", - "VgXoYWBD4MfAw+K5f8QDEE7pZKeCIAh6jJ8BF0j6Pp6o4B34uFqKMemC82Pyb8B3gc1nceNVC9jj\n", - "ccF2kQE7CIJ+oWoXXDrHy/HUPuCluc8r/dkSmRDGA6/D6wBlFpOZ2Wdb7+rwqPoifkafXfImzrx9\n", - "li08sqpzBEEQjDajMAe0A3BfSlyaueCmmtnSMp8vkwnhd8AxwGq81OoqPAV33/BqzrLf86oHOt2P\n", - "IAiCHuNXwLO598+lbaUoMwc0zcxe1mqvegZpvd0ZP/3N/Px3hcXRgyAIgkaMM7Nnsjdm9nQqYFqK\n", - "MhbQZZL2GlbXeoP9VjDxkZvZrcy1CIIgCGo8JGltSe/0urCEdxFlLKBDgXektNtPp21mZv0iSkcu\n", - "YvcF+ALbIAiCoDzvAX4m6Zvp/V14yZ5SlBGglw+nVz3EkZdy8CV4kEUQBEFQEjNbAhwgaVN/a6ta\n", - "+XyzXHATUuLRfkg+WownWH3+d3n3qcAene5OEARBryHplcAsYLynCoWyUdLN5j3OSM/XAdcWPPqB\n", - "FwNX3sl2jxAuuCAIxgCSjpJ0k6TFkgbFXkmaLWmFpLnp8akmxzoNz379QXwh6hvwLDOlaGgBmdkr\n", - "0vP2ZQ/Wg2TlF1YSAhQEQZ8jaRzwTXzsuxu4WtLZZraorulFZnZMiUMeZGZ7SppnZv8h6SvAn8r2\n", - "p1QqHkmbATPxkqsAmFk/VA09Engbvq6p1zN8B0EQDMX+wJJsoaikM4FjgXoBKrt49cn0/ISkaXia\n", - "s63KdmZIAZL0bty8mgHMBQ4ELgdeUvYkXYk0HZiK/03bEBZQEAT9zzRgWe79XcABdW0MOEjSDbiV\n", - "9BEzW9jgeL9PBsqXqE3NfLdsZ8pYQCcC+wGXm9lhknYD/rvsCbqYw4G/YvYsYhUhQEEQ9D9lcl1e\n", - "B8wwsydSnrezgF0KD2b2n+nlryX9ERhvZo+W7UwZAXrKzJ6UREq7fZOkXcueoIvJl19YBWwiIWAC\n", - "8DIzftmxngVBEAwDSbOB2U2a3I17szJm4FbQWsxsZe71uZK+LWmymT3S7NypJMNTLfW3RDLSs/AU\n", - "2yfiVsNyYF0zO7qVE42EtifU81jBe4GDMLvNN/EUMAk4GPiqGf2y0DYIgjFK/dgpaV3gZnwsvwe4\n", - "CjguH4Qgrw79gJmZpP2BX1YVjDakBWS1CqEnS5qDWwiloxy6lD2AxzPxSazCAxE2BzbrSK+CIAgq\n", - "xMzWSDoBOA8vxnm6mS2SdHzafxrweuC9ktYATwBvqqo/TS2gpJYLzGy3qjpQhgosoA8Bu2D2ntom\n", - "lgKHAS8DvmLGxm07XxAEQQcYhXIMF5jZ4UNta0TTBJxmtga4WVLphUU9Qrb+J08WiLA5sJFUvqxs\n", - "EATBWELShpI2B7aQNDn32B6PtCtFmSCEycCNkq6iVgfIyixSSmVaX4H7E/ds0ObreL65J4B/NLO5\n", - "pXo+XKQNgEOAt9btyRajTk7vNwPur7QvQRAEvcnxeFzANgzMjLMSX+haijIC9CkGL0oqW7b6B8A3\n", - "aFAjXNLRwM5mNlPSAcB38HVGVXIgcDODIzryFhC4EIUABUEQ1GFmpwKnSvqAmX1juMcpUwPnFWY2\n", - "J/8ASkXAmdkleNRcI44BfpTaXglMShEYVZIPv86TBSHkLSCktYIUBEEQDOT+lAkbSZ+W9BtJ+5b9\n", - "cBkBOrJgW7tCsItW5U5v07Eb0UyAMgtoJbVIuGukKNUQBEFQwKfNbKWkQ/DQ7u8D/6/shxsKkKT3\n", - "SpoP7Cppfu6xFJg30l7nT1X3vqx7bxhn0mZ42vDLCvZmc0CbA0uAyRLr4Au1tqysT0EQBL3Ls+n5\n", - "lcB3zewPQOmS3M3mgH4OnAucAnyMmlCsNLOHh9HRIupX5U5P2wYh6eTc28wV2CqHAZdi9nTBvswC\n", - "mowL7GbAFDxWPtYFBUEQDOZuSf+Le5ZOkTSecp41oHk5hhXACipchAScDZwAnCnpQOBRMyuc+Dez\n", - "k9twviMZHH6dkc0BbQbcmp63TvsmN/hMEATBWOYN+NrJL5nZo5K2Bv6t7IdLlWMYLpLOwIu+TZG0\n", - "DDiJZJ6Z2Wlmdo6koyUtwUO831Flf/D1P438k6vwDAlP4tFvO1AToLCAgiAI6jCzxyU9iC9tWQys\n", - "wacwSlGpAJnZcSXanFBlH9biC6QmAPMbtFiFV/J7BI/c25daXYuwgIIgCOpIUyN/B+yKL7tZH/gJ\n", - "nlNzSEr76vqAI4ALMHuuwf6VuAA9jAtQ5oJ7hrCAgiAIingNXtDucQAzu5sWinuOJQFqFH6dsQoP\n", - "iHgYt4Im4wJ0MyFAQRAERTxtuZt6SS3l0BwbAiStg8eoNwpAABeg9am54DbDXXCLCBdcEARBEf8n\n", - "6TQ8icA/AxcA3yv74UrngLqI5wMPYbasSZtV6bneBfcXer38eBAEQQWY2ZckvRSfwtgFX5jazNM0\n", - "gLEiQEO538AvINQsoMwFdyNeHyMIgiDIIekLZvYx4M8F24ZkbLjgissv1LPWAjLjSeA5YFvcBRdz\n", - "QEEQBIN5acG20qna+l+ApA3xDNhzhmiZCVCWJXs5sBq4kxCgIAj6BElHSbpJ0mJJDS0VSftJWiPp\n", - "tQX72pKqbSy44A4B5uOZHZqR1TrK0gwtx2sUrQLWl9jAjKIUPkEQBD2BpHF4vZ4j8LRnV0s628wW\n", - "FbT7AvAnBufrhDalahsLAnQEQ8//YMZqiaepWUCPpO0m8QhuBd1XWS+DIAiqZ39giZktBZB0Jr6O\n", - "Z1Fduw8AvwL2KzpIu1K19b8LrlwAQsZKBlpA9+VedywUW2J9qfziriAIggYUlcAZUEJb0jRclL6T\n", - "NlVWoaC/LSBpCrATcGXJT3wAuD29Xo4rfPa6k/NAb8ZTW7y7g30IgqDLkTQbmN2kSRkxORX4uJmZ\n", - "JFHsgmsL/S1Avvj0YsxWl2lsxpm5t/cBD6TXmQuuU0yklhg1CIKgkFSmZk72XtJJdU3qS+DMwK2g\n", - "PH+HVygAL0nzckmrzezsdve33wWoFfdbPSfjodjQYRccMB6iNHgQBCPmGmCmPDnzPcAbgQFJo81s\n", - "x+y1pB8Av69CfKCf54BcvpvV/2mKGU/mot467YLbEL8TCYIgGDZmtgavwXYesBD4hZktknS8pONH\n", - "uz/9bAHtjP999dEdwyFLTtopxhMCFARBGzCzc/EQ6vy20xq0rbRGW/9aQFn2A7N2RHB0gwU0Serr\n", - "G4YgCMYY/SxAI5n/qafTAjQ+PUdW7iAI+ob+FCBpXeAwhjn/U0CnXXAbpudwwwVB0Df0pwB5GOFd\n", - "mLUrc8FyYAepYyKUWUARCRcEQd/QrwLUTvcbeOjiFcASide08bhl2RB4lrCAgiDoI/pVgMqUXyiN\n", - "GU+Z8U7geOA97TpuC4zHY/ZDgIIg6Bv6T4CkTXAX3EUVHP084CCJTSTGS7ywgnMUsSG+WjlccEEQ\n", - "9A39GNb7IuBazB4fsmWLmPGYxFV4ip+dgH/Bi9ZVzXjgNsICCoKgj+hHAWqr+62AP+Iluo8Apkis\n", - "Z0apXHMjICygIKhDYm9gnll12ZqDauk/F1z7AxDq+SPwVuByPGHptObN28J4XIDCAgqCGr8Fdu90\n", - "J4Lh018CJG0FTAeurfAstwB/Bj4L3AFsV+G5MjILKAQoCGpsTHgFepp+c8EdAVyIJ9yrhGTuvwxA\n", - "GjUByiyg+LEFQY2NiN9ET9NfFlD17rd6wgIKgg4gIVyAIj1VD9M/AuTlF6oOQKincgFKP7QNgHuB\n", - "CZGQNAgAWB8fv8IC6mH6R4B8MnI1sGQUzzkaFtD6wOoUafconU2KGgTdwkbpOQSoh+knAWpn+YWy\n", - "jIYAbQhcmI0AAAAgAElEQVQ8lV4/TLjhggBqAhQuuB6mnwRotOd/AO4EZkiNr6PEBInPj+Ac46kJ\n", - "0EOEAAUBhAU0bCQdJekmSYslfaxg/7GSbpA0V9K1kl5SVV/6Q4Ck9fAMCBeM5mnNeBxYBWzZpNm+\n", - "wCelYQvHhsCT6fVtxLqHYBSR2E7isE73o4CwgIaBpHHAN4GjgFnAcZLqx5S/mNneZrYP8I/A/1bV\n", - "n/4QIDgAuBWzhzpw7qHccLum5+H+iPMW0AV4GqC+R2JSp/sQAHA08MFOd6KAjfAbs7CAWmN/YImZ\n", - "LTWz1cCZwLH5BjYwjdkmuOelEvpFgDrhfstYSnMB2g1YxvCFI28BXQAcnnf5Sewpsekwj92VSMyg\n", - "2sXEQXm2ojvdvhvhSxPCAmqNafh4lHEXBdlcJL1a0iLgXCq8AekXARrt8Os8dwAnSnxb4nKJi+v2\n", - "7wacxvAFaK0FZMYy/G5k79z+rwHHAEhsILFF0UEkjpWYOcw+jDab4wNf0Hm6WYCWERbQACTNlnRy\n", - "9ihoUipIy8zOMrPdgVcBP2lnH/NUKkAlJrtmS1qRJrvmSvrUME4yEdgL+FsbujwcvgH8EFgEfAbY\n", - "X2KD3P5dgV8Bk6TmmbMlZkq8UWKv3Oa8BQQutEfk3m+Lpx8CeCPu3y3ivcDrmv8pXcOmwEbS2kqw\n", - "AEiM61B/xjJT6c5BfiM8KlTS2pL1Yx4zm2NmJ2ePgiZ3AzNy72fgVlCj410CrCupku9AZQJUcrIL\n", - "4CIz2yc9PjeMU80GrsDsyaEaVoEZS834rhnfMON83CLaGSD9MLYBbgX+CjSMJkmWy3zg48CHc7vy\n", - "c0CQE6DkiptB7Qu1Ez5gFDGdgZZTN5O5FNe6VyS2Am7sTHfGNFsBmzeL9OwQGwGP4yLUjQJZGRKv\n", - "HMH/4xpgpqTtJa2P37SePfD42km+sB9J+wKY2cMj6XMjqvxSDTnZldAIz9NJ91sRN+FuN4CZwG1m\n", - "rMEttAOafG4rYDHwSQaKSL0FNAc4JH0Bt8AXqmYCtF3aVsQ0GGBZdTODBIiBll4wemyFjxPdFhSy\n", - "EfAE8AhjTICAMxhmFn7zPJkn4MU1FwK/MLNFko6XdHxq9jpgvqS5uIv/TW3ocyFVpnUpmuyqH4AN\n", - "OEjSDbhp+BEzW9jieY4E3jzsXrafRdRCpXfFBQk8i3aRAGdMwed37megAA2wgMx4VGI5LjpbAs9Q\n", - "E6DtKfDXS2ySjrOjxHizARZVS6TUQOtWXAOpSIC2AjaWGGfGsxWeO0ik//VWeBqoKfhg3y1kAvQw\n", - "YygQIaXi2gTPiLJsiOaFmNm5eHBBfttpuddfBL44gm6WpkoBKjPZdR0ww8yekPRy4Cxgl6KGdRNq\n", - "c8xsDtIM/Idx/Ug720ZuojZHsxs1AVoMTYMAGglQvQUELma74l/Ea3PH3Y7kLjHjuVz7afgNwFO4\n", - "O/S6Fv6eevYDvgocPIJjDEUjAQL/m1dUeO6gxgT8BucO/Pt5S2e7M4CxagFNTM99IbpVuuCGnOwy\n", - "s5Vm9kR6fS6wnqTCC5ufWDOzOWnzEcAFmD1X9JkOkbeAdgNuTq/vBKbWT6zn2AIXoAfwSqvZ/6Z+\n", - "Doh0zF1xt9S1wKbJypmW2k6sa58J0A2MfB5oGrBfk7+jHWySnvPfha3Tc0+FnHdT5KHEKS32Zyv8\n", - "hqgb51mGZQGlSNFeDlrIXKEhQENQZrJram6ya39AZtaKmd/J9T+NuAnYNQnI3+F+VtI80B3Ajg0+\n", - "NwV4KLm2VlL7gjWygHbBBegOXOwPAB6k5i7JM52aAI10HmgysB7VBjRsilvQRRbQhArP21aSC+ta\n", - "ae1i5E7zUuB5LbTfCq/6uzYFlMR+FfRrOAzXAjoRj1btVTIB6oukxJUJUMnJrtfjk13XA6fSymSX\n", - "tA6+tqabAhAwYwXwGHA8bo1ck9u9hMZuuMwFB37XmQ24zSygGbhltQw4BF8U+xCDAxGm4yI1j5EL\n", - "RyYK+4/wOM3YFLiHYgHqJQtoCt7f53e6I4mJtDZYTyUnQBKTgasqtn7LMtw5oBlUEMwi8QJpVG6O\n", - "+soCqrS2TInJrm8B3xrm4fcEHsNs6bA7WB03AacA704VVDOazQNNAa5Mr7N5oAW4BbSyrm1mAd2P\n", - "i08mQHfgA169BTQNdw3eAOwlobp+tcJkPKy8agG6g4GD5Vb4gNMzFhA1a3dv4Bed7EhiEq0JUOaC\n", - "yyygmbntS9vaM9ZOsFvJIJNMgEQt6rQMW1JNRN8XgO/hEWpV0lcC1G2x/a3QbeHXeRbhP9xf121f\n", - "TFojVMAU3IUGAwMRiiygpfggMJOaBfRCahZQIxfc/bhrayRZBiYDf6J6AbqTwRbQEnrLAtoRT1bb\n", - "8fVXyR3YqgVU74LLAoS2rm8ocYjEV0fYzVOAd5ZsO1wLaEuaJw8eLpszcM67KsIF1yV04/xPxveB\n", - "dxXcybXigssEaNAcUJpPuh0fjO/DBWhj3GpoJEB3J6vnRtI8gMQbGvn0077fS3y3btfm+JqmbSQ2\n", - "qygPXWYBTU59ET7oLab3LKBzSAIksYU0KEBktNgIGMfwXHBZEELeAqpnJ0YutFvReCF1PcOdA5ra\n", - "wjlaYTKjJ0B3ExZQB5HG42HAF3a6K0WYca0ZlxTsGsoFVyRARRYQ+DzQ3UnksvUASykWoCwKDlyA\n", - "9kivPwR8Jw3wa5E4HPgKcDGeaSLPZNxSuw5fXPyIxA4N/qbhsgn+t2Q/sol4OPB9tMECkviixAtH\n", - "epwS7Ih/RydIbI6nbPrnBn3apGh7G8nunEdqAT1GgQWE/49GKq4TKH+DkRegVi2gLSrI7DAZmqfa\n", - "ahOT8LIsIUAd5IXAQsyWd7ojLZKFYr9A4kN1+1oVoFvS8aAmQHfg4rBWgCTWx7+sD6RNC4DnSayH\n", - "z6ONB16Taz8e+A7wfjyVUn3Bvcn4j/5M3KK7nBYj6yT2ltinSZMBFhC1gfAx2mMBvZDRyQqxI36N\n", - "5uGLkF9O48Se10vsVGFfMnEY6RzQ3ximAEm8bYiBfyLlbzAyAXp0qPPmzr8ePoA/QRvngVLux40Z\n", - "PQvodsIF11G62f3WkOQ6W4pHBn5acp+65MW1zHgiNW3qgkvMpbbGKBOgOxkcBbcNcF/OHZi54J6X\n", - "+vJvwOdyA8MHgYVmnG3Gk/gPPD/gTAYeMeM7ZrwfD5wYFNorMVHivQ0uxdvwKMFGFAnQvXgwRjtc\n", - "flMoHkTbzY743eoNwH/h/5tBApBEf0eoXIBW0Vpm63wU3Ba4BXQxwxCg9B3/UYPPZrRiAW2MC8kK\n", - "yovJFNydeC8tuuHqEgzXMxm30EfLArqdsIA6SjcHIAzF2/ConR8Cb03bskWoGWUsoDNJ7hwzHgEO\n", - "SwJW74LLu9+gJkD74SHif8LvprZJ+w/BB4qMpQysd5RZQPnjzSro3wuBb0scVbBvK5pHLmVh2OOT\n", - "BdduC6hyAcr1exkuQFPxpQZFA8f2eDRXlQPYJDx6sZQFlG5ItsQt5+X4d+QpPMCmoQDVu3NzZK7n\n", - "ZgP/cCygVcCGKYJuKLbEf1sP0EIgQkoUvLhJk83xG41NspvJCgkXXEfxTAm74a6fnsOMK814EPgx\n", - "8A/ph553v0EJC8gMy4dSmzEnvawXoB2oueow4+F0vFcD16RjLMUHQXCxuSP3+TuyfekucH38R5+x\n", - "kOLFjTvgg9W3C36UW9NAgNIAtkk6xyP4wLc1LkBrLSCJGcMpz5Cu92Sqt4C2w+foVgMXAacDl1Es\n", - "AJnlU6UATSQNXAVzfpI4sK79ZsDjZjydLPdHcbfvvTQWoPWg4RqhbDFus4G/5TmglHLqMcq54abi\n", - "4nP/EP2oZyY0/b5Nxn93dwHTJQ6V+GgLx2+FSfjveeOSotvV9J4AeUmDv2H2dKc7MkKux9PJH8xg\n", - "AXoA2DINFI0soEbUC9BeeJmHPAuAl1FbJLuUmpVTL0D5fZvh7rf8GqJFeOaH+h/njrgldTXwgbp9\n", - "W+FzYUV+7I2AZ9Kgl0U4FVlAv8RX9g9AYh2J4wqOmzEJ/95XLUCZ+w0zbjbjn2ic0mZH/LvQdgFK\n", - "wQ/gf/dD+M1H/SC/NXBxnTBtQW1ZAOmzi3EBKoqCm1j3XE8Wwl1oAeXCxFu1gGCIeSCJbdLxh2UB\n", - "UVvP1cjVtzn+v12G/w9fD7yrheO3wiT8d9GK67Fr6UUB6mX321rSIP4T3A03QIBStuon8AG/0RxQ\n", - "Ix7FXQHrpfd74y6gPFldnSyJ6x3A9ilEeF0GutiWUrOO6t1vmLESH6jqI+GyAfh/gdfW7ds6Hbco\n", - "Rc2m1BbeZhFOmQCtpDZ4TqfY8poG/Fxam4+vnim4oI+GAN1at61RxNZO+OR+WwVIXto8u/mYiH83\n", - "ikRwW9x6yd8QbEEtcAX8+3kLPoBvUXDDMZQA7ZqO0cgFNx7/7g1pAaVzr0/txmxF/XmTCzTjz/iN\n", - "XuZSfKCoHxJfbRAIkn23G7m9st/FnXggwqHALlIl640m4f/HVqP/upJeFKCeDEBowK9wV9hUBt5t\n", - "Qs0N15IFlFwS+bURezM4W/iNwIIUZAA1K2c74I46C2etCy4dsyhX343ALIndVKv6mgnQxfiPcWtY\n", - "O+G+Ee6OKhKgTWgsQI/hiVfXSduKRCaby3p7wT5wAVqIW5hVfv93xCeL8zyCZyuvnyfJwrVHFEVV\n", - "cNwdgK2T63QiPlA3EiAYaNlsycDv5DJgfnIpLmdwuqeJ+E3TxNSXcRL/mVtHtisuso0G5Qn4Iuky\n", - "LrgNgSdz39MB1kBKuHp1rv0MPFdi5oIbZAElUfsnKFwXN5QA5S2gPXFr70LgoNzxN5PasiA5BKhj\n", - "SDvi0S8LOt2VdmDGrbhL41gGuuBI27eldQsIarm7tsLvbO+u2382kC+RnolMvfsNBrrgBllAiYV4\n", - "8MJfgI+kgXBHvBjfajzQ4ZWp7VRcXBdRPA+Ut4AeBvbFk7reQM0FNwW/Wy4SoGzB6lsb+Oyn4AEO\n", - "K6k2w/PW1F33JPjPwqA5sZ3weaL6kPfSSLwAuLRucyZo21AbuB5mcCRc1i4vQPUuuLcAf0ivi+aB\n", - "JuLfncwS+Q3wIuCNaY3TrvjNSCMLaGI6bhkXXN79BoNdcNviNz1K554AvICaC65oDmgWfvNTZAHt\n", - "iN8EDmUBLQP+HrgKr4B8SK7N64DPD/WHNSPN+WzIwPnRnqa3BChzv5kNN49ZN/Jr/IdaL0B/xcuZ\n", - "tzoHBLV5oL2BG+rzvplxnxnn5TYtJWcB1R3rDmC7JCqNBOhG4CP4Hf8LU7vnzMjWaf0eeFV6nQUU\n", - "5CvH5ql3wX0cONVsrWhsmjvG7gV3/dsAF6T9hxccP3N3NppMbxf1FkTGAAsk9X8H/KZqJY0r2jYk\n", - "HePLwAvrFrTmBaiMBZQXhwEuODPW5L5HjQRoGR4JNx7/7h6Oh+m/FViN33Q0EqAJ+P9sgxKT6/UC\n", - "VD8fknkOJuN/+zO4ZZO3gKZKbC3xs3T99k/tirLV74DfAA1lAd2Ju4Yvwa29vADtwMgzMEwAHkte\n", - "juVN+tMUSUdJuknSYkkfK9j/Fkk3SJon6VJJla2Z6zUB6if3W8Zv0nO9AP0GnzsZjgV0Nx58UDT/\n", - "U8Sd+CC0PXUCZMbj+B3XljQWoMtxl8Mx+J3k8xjofjoXmJ2i4bI1PWsFKN2pbpfmoOoF6C58cIWa\n", - "BbQ1PrfxLIN/1Nuk4/8ELwFSz+aMngA9ULC9XgC2BlaasYra/6FVXoELxkIGFnTMBGgazQVoBv6d\n", - "aeaCy3Nfvm2abxyPW5YTSVZuCiQ5G/gwtfmjqekze0pr3aXk+vcYQ1tBQ1lAmXUzHf/br07n3Y2B\n", - "QQhvxKspvwB30Z1DnQWUC6dvJkB5CwhcgK4C9sxFgG7PyHIwQs2KhWG64CSNwxeYH4X/Vo+TVO9J\n", - "uA14kZntBfwnPo9bCb0jQH7hXkIfBCDUsRC/M7yvbvuNuOWzEa1bQP8DfAKfDB1SgJLIrMTvAust\n", - "IKgFIkzGB7D6z99kxuHJ4lkAvIEUAZb2L8f/nv2oWS9LgB0kTsQHrpuAzzJQgL4PHJ0rIf44PtBN\n", - "xwVkIYPdcFun411CccLU0bKA6ifxM+oHjnywQssClKLcTsVdqjcy0KqcgQ+K9S64IgvoKpq74PLU\n", - "X7sJuHBkQpBlUAC3fnfGF03n517+g4GLkbNj5ANNGjGUBZSdYwb+ty/DU0ftwMAw7DfhN09vwgXo\n", - "5wy2gLbFv0/301yAMgvoceCKtCZvPrU5pR2oRbYOl3oBGo4Lbn9giZktNbPV+HrCY/MNzOxyM8uq\n", - "Dl9JBeUrMnpHgGAf4H7M6uczeprk1jiYOv992v4bYE26k2zlmNfg2RZeSTkLCFx4DqBYgLI5okYW\n", - "UJ7L8TvL2+q2X4vP5WyFZ2Z4Che21+Hh1MfgFttaATLjHrNaGeh0TVbhd/n34MJdvwh2m7RvAbCT\n", - "xMZ1+/Or4YclQCnUe7EaJGJNg0yjAfxhPBBhssRJ+ER1dq2W0UIgQgou+A3wWzP+QK1OVMYMfADJ\n", - "W0BF2Rhm4FbCcAUoO3YWjZZlUMCMpXgqokyAsmq/e8CAtUcTaK8FtJqaBXQ3tSUHD6RzjMetnffg\n", - "VtDOwB9x11w+60EWTNPM4tgcX57wGDAjWbOkc2Ypp7aHtamAAJA4UuJ7Q/yteSZRK0c/3CCEadQs\n", - "NXAPw7Qm7d+FW4aV0EsC1Bfh10WYsTz5dev5Na273zI+if8AFpZsvxQPbS0SoGvx619GgC7DB/lG\n", - "ArQ1PoCB+8hnmzEfH6T2wgefVTRmJT7I3svA8ucZ2wD3mvEMbhHUF4NrhwW0PT5gbddg/0Q8Sqto\n", - "rVo2cLwYeC/u4liS9rVqAb0fv1aZH79IgK6gyRxQmq+ZhF//vDuzkQsRfEDP3xXnBWgStajFjI8A\n", - "v04BKY+lz24H7J8LupjIyCygvABNxa2P6dRuSK7GXZ1Z9NwDqU/z0uv5yWpZRi3qE9xyuZ3mA/5a\n", - "z0Bu3pPUh73kJcAn47+J/DV+Ea2VNclbQMvxG5mPShyWNZA0W9LJ2aPgGKXnzyUdhpfHGDRP1C56\n", - "SYD6cf5nKK7F3Y4tk6yH/RoMgkXcgd813luw73R8cd0ulLOAoFiA9iU3OJnxUCa8Ztyfzr8rgwvw\n", - "5XmMoQXonvT6Glz08rRDgLJs4o2slWbzJ5kAzMKzYWwPa+votCpA+wK/zN285OfVNsKjum7A73Ab\n", - "RcFl1XLvobwFdCsDXVWZ9ZIJQd4Fhxnnm61NZXM/Lr43p/7MrDtGmXRLRRZQvQvuWmouuLtxD0M+\n", - "Q/1ifJ4QvJDcn3N/W34eqLQFVLB9Hh6WvS0ubPU56PbF3dACkDimIEvFUbmgjHoX3Btwcf9w1t7M\n", - "5pjZydmjoE93M/B7O4OBqbrSebUX8F3gGKsw6XMvCdABsDbdzJggpdu5ZuiWbWEpsKzIEjPjAeAs\n", - "3JpoKkBmLMOtrpvqdi3Ef4gzKRY58B/swTQXoJX4AHEvbuHsmYVbpwnjidQGzmvwCeY8LQUhSKwv\n", - "8cG68OhMgBqJRTPrIROg3fGkr/emMu7gAtRKaYtZDLRwbwFmpr5mwnIXPshsjF+7+jmgbdN515aB\n", - "T5/PrlMRt+LuzWywbOiCK+ABPDpuAW6dZW64zAIajguu3gLKBChzwd1jxjIzXpFrc7iZu73N+IYZ\n", - "n8n9bXlxbWoBJesmn0g4zwL8f7Qz/vvKp9gCd8+Nx92SmwK/I1dTKQXlnAv8S9qUF6B5eKaRvYFD\n", - "G2QVKeIaYKak7SWtj7vLzx74N2lb3LX7VjNbUnCMttFLAnQ9Zs0GpmBk3JIejfhaeh7KAsKM55nV\n", - "8s+lbWvwH+RuNB6c5uMRdENZQOvig8pd+OCQJTzdCo++ykS0SIBanQP6Mv635y2tPfCBqpEF1CgA\n", - "AWoD2SzcgstzA75+ZUCKFRUUsUuiuys5oU9zEI+mfmUBCPfgVtbKdF3qBWgGLkAP4i6dcfhA93hy\n", - "Yw4iZb9YRe361QtQvQsuz/3UBOhK/MYSRhaEsNYCSqI4FQ86yCyge+oP0KQk/W0kCyjlxzsMF8pG\n", - "FlAj6ye7TtnfezsDowC3wsVnHi5yWfDIy3OH+DvcPfvxlKFhrQCZcYcZ/2zGvfiyg9dQAjNbA5yA\n", - "zxEvBH5hZoskHS8pCwr5DB7g8B1JcyVdVebYw6GXBGisud9Gm/MZnDJnLWZcj2cXWNaoTQmuTc/3\n", - "N9g/Lz0PZQFBzYo6jVo01TYMtK4W4muYsgSm2eC6PLXbusDlcUTu9XH4gPB7GFDAbg98Ynbbus9m\n", - "A+dQLrgpuHgMEKC0UPVScm7XNAjeI9VW1Se2Ax5Og1yebB5oBm7RPkatbAG4MGyZc+tsm9plGQ6m\n", - "0NyCy1hCzVWVCVBRFFw99+OWSZEADTcIIW8BZUEnN6XzZFGRZbkV2FFiN9wK+EeztRZQkZVRGBma\n", - "Yz4eYLOUgRbQPnhJldtwi2sW/r85OvfZ/fHFv/+Fe3/eQu3/mOcXFC85KMTMzjWzXc1sZzP777Tt\n", - "NDM7Lb3+JzPb3Mz2SY9W5qlaopcEqC8DELqF5O5rGvBgxo9bjcir41pgeS6sup4sb9lQFtCKXF9/\n", - "ARyc8p4NuNtNg+o8agsCN0ufXZMilVaQm0yXmAqcL61dDPoO3Mf+J5KrKK152RmfM9g299nxwJ1p\n", - "bUuzAfwRfPBZnsShnvPwRLEZWdLY30q8U+IlSTR3pzjA5CZyApS23ZP+1izP4H3UJtozFxzU3HDN\n", - "5n8yluDXAVp3wYEL0FxgtzRflXfBDbCAkhv0BokXp03N5oC2xK3glfjC0ieG+l7XcRtZwmP4dzP+\n", - "mLYvBzYrCKNuaAEl5uNCPcACwud/rkvbd8D/n6cDe+cs4P3w8Piv4gu5/wNP31XPH4ADMzecxAYj\n", - "DPceNXpJgCozA4NR4zIGu53yLASeY2gLKC8yjwNn4FZQ0d3ul4GvpXDs+qzjC6jN50AtZDZzt83C\n", - "8+hdQc0C2hmfW7mZgS64Q/FB9Pk0H8AfxoWy0XU4D3hZbgA5HL8DficeiPMjPH9g/fxPxqV4nai9\n", - "qQnQ3dTmDiDNFaXX21EToPvwAbKMAN3KQAF6jPIuuCeApUkMF+Nu18wCKio6+Np03B+ndU87UWAB\n", - "5dxvmcgtY3AaqqFYBHwB2MuMH2Qb083MUwV9G8oCyqz6pTS2gHbA/5/X4cJ3ZGqzP3B1ujm8Pt0A\n", - "DgoYSL+B66hF1H2RwRnou5LeESBfNBX0MGYsMuPgJvufxAfVZj/oxxgcxPAVPKT5gPp9Zvwad/V8\n", - "hdr8T0a9AO2bnmeleZdJ+CA2D3flTUrtF1Cr/ZL9hl6GD1B7MbQFBI3D4xfhc1wzU1qdfYG/mfFH\n", - "M44DTsJdoY0E6Of4xPXrKLCAErdQy5iwF7XcilmGg7IuuCILaHN8XGkUSn8vcGNunu6G1IeGFhAe\n", - "bv5hPBBmKf4/+L9sZ4r0fBbPGpLv+1205n7DjGfM+FxK/VRP0TzQDjQXucyqv52awIP/X+em7ZkL\n", - "biH+v3t1miPamMEZ1RtxNbVFrwfjgtT19I4ABWOFQ6ndNRaxksEiczvwLeAfKB5wPoAHI/ycwRZQ\n", - "vqTDvvgPeRZuBd1kxnPJ7Xgtfoe5B7VM4iuorbp/KV7ldk+GDkKABhZQmhw/D1+dfyheNPDxXJNf\n", - "AbNxt+KgY6TPfwwX5Gxx8z0MtoCyDOXrUgvDbdUFN2AOKAnBM/hC40aT/OfjCz8zsvVfeQtorQCl\n", - "DNLb4xFiH8UDTg40GxRlmVlfWcJRGIYADUGRAB3C4CSweRbj4fZZBoapEtNTX2/BBWh3PFrvVuBn\n", - "uIB8jmT9lOzb1cB+6aZldxi16NkREQIUdBVmPDrEj+4vuJDUcwq+lmlp0TFx6+iL1HLvgYdx11tA\n", - "P8UFqN7CuAIf2N+HzwlBWreT5n2m4z78zAIqHMBzizGbLRD+PC4gn8YjnPKffwz3+e9MExEz4//l\n", - "FkXezMC1HpkFtA8wN3e978Pdg6XngFQrJJdZWCto7H7DvMJqPrR3Hu4uzKLgspIbkng7LrhfT/N2\n", - "T5txaYPvRxYAkXfBzaO9mfMHCFCyfg/B3WaFpH6/PVl8mcAfA5xjxrP4d3ZrUuZ4s7Xre95Ga9MO\n", - "V+E3SPvjCYhbTd/VEXq+pGswtmi0LsqMJyT2gAHWQn7/s3gSxjwL8Yza6+CD1xb4nfbHGSxA5+NJ\n", - "P49MEYFQq4A5CxeKBbgwPElzF9b3GFyjKd/X2ySOxSOf/rWgyQ+Bl6TBakjMOL1uUyZAmRso4xI8\n", - "Hc1qPPii2TEfkXgOd7nVC1CjCLgiMgHKUjBlLriXA5/CU+X8tcRxsiwMW1KrRPuNFvpRhnoLaDc8\n", - "O3Wpeab0HV2NZwf/atr2tMTd5L5rZlwl8RoGr6Vrxp3AOFy8mllkXUVYQEHfYMaqFlwWmTWRVXPd\n", - "BxeFO/EMAgcxcFD4ixl75MSH1HY74N3A2emu8zY82q7RIk7M+HCDCLh8m6uAbcy4smD3BdTCl4fD\n", - "HbilcBA5AUrneh5uYV5R4jhZIEJpC6ge8wwYzwBPJVdnFoRwOPBDMy4o+T/Nu+CGmr8aLvUCdAgD\n", - "syuU4X58fc+fcttuY3BI/h/NSs//ZK7Xq3HLKQQoCHqEzA23L3Bd+iEvwqPemkXsgVtAH8Lza/0s\n", - "bZuHh1iPOGgmuQ6LtpvZ8NdjJWvwNjy/39y6ffcngSwz+F2Di++wBSgxD9YKcmYBHUZrmU+yUOz8\n", - "HFC7qRegQxmeAF1Yt37rXLycyUi5Gg/EuKwNxxoVwgUXjHUW4GG+++LzSOCWz94MLqldz524C+ol\n", - "uaiuedTCubuZW3DrbfFQDZvwUbzK6TSG74IDv2bZeqyV1AIhrm74icGswANN9qQgt1mbeAR4kcTH\n", - "cAt3Nh4s0ArLqBNWs7Xfu5FyJXCLWWUWYNsJCygY61yDzzd8G6+NAi5AN5dYdHsO8FIzbs5tu5bW\n", - "1550glvwyepnh3uAdBf/Ctxll93R/w+eOaIVsnLrpOeNgMutQSqgBjyK50z797r/Rzu5Cr9p3xJP\n", - "qAceZTUAAAbWSURBVDqX5umring3nuSzCv7MwEXMXY96obq1JDOznljZG/QWKYprXF5sJPYFjjDj\n", - "i8M83iYFKXK6ComjgVlma6vNdrIvU/Hgjp+m6/c0cJIZ/93CMfYANjVbm409oPvHzhCgIAi6ComH\n", - "gFealQqECJrQ7WNnuOCCIOg2/p5IvTUmCAsoCIKgT+n2sTMsoCAIgqAjVCpAko6SdJOkxZIK64pL\n", - "+nraf4OkXghfDYIg6FmGGpcl7SbpcklPSfpw0THaRWUCJGkcnvrkKDxVyXGSdq9rczSws5nNxFPI\n", - "f6eq/gQ1JM3udB/6hbiW7SWuZ7WUGZfxjPEfgOojJKu0gPYHlpjZUvNSCmcCx9a1OQavb4KZXQlM\n", - "kjSVoGpmd7oDfcTsTnegz5jd6Q70OUOOy2b2oJldAyPP5jEUVQrQNAaWb74rbRuqzXSCIAiCKigz\n", - "Lo8aVQpQ2fC6+giN7g/LC4Ig6E26anytMhfc3QwsWTyDwTma6ttMp0EaE0lddeF6HUkndboP/UJc\n", - "y/YS17NSyozLo0aVAnQNMFPS9nhVwjcCx9W1ORs4AThT0oHAo2Y2KJFhN8exB0EQ9BBlxuWMysfd\n", - "ygTIzNZIOgEvLzwOON3MFkk6Pu0/zczOkXS0pCV4IbF3VNWfIAiCsU6ZcVnSVngm8gnAc5JOBGaZ\n", - "2ap296cnMiEEQRAE/UdXZ0Ios5A1aI6kpZLmSZor6aq0bbKk8yXdIunPkiZ1up/diqTvS7pf0vzc\n", - "tobXT9In0vf1Jkkv7Uyvu5MG1/JkSXel7+dcSS/P7Ytr2QRJMyRdKOlGSQskfTBt75nvZ9cKUMkF\n", - "U8HQGDDbzPYxs/3Tto8D55vZLnh55493rHfdzw/w72CewusnaRbuU5+VPvNtSV37G+sARdfSgP9J\n", - "3899zOxciGtZktXAv5rZ84ADgfenMbJnvp/d/A8ts5A1KEf9ZOLaBcDp+dWj253ewcwuAZbXbW50\n", - "/Y4FzjCz1Wa2FFiCf48DGl5LKJ7sjms5BGZ2n5ldn16vwkvIT6OHvp/dLEBdtWCqhzHgL5KukfTu\n", - "tG1qLtrwfiCyT7RGo+u3DQNDWuM7W44PpFyQp+fcRXEtWyBFte2Dl+Xume9nNwtQREe0h4PNbB+8\n", - "7PT7JR2a32kehRLXepiUuH5xbZvzHWAH4PnAvcBXmrSNa1mApE2AXwMnmtmASrzd/v3sZgHqqgVT\n", - "vYqZ3ZueHwR+i5vc96dQSyRtDTzQuR72JI2uX+mF1YFjZg9YAvgeNZdQXMsSSFoPF5+fmNlZaXPP\n", - "fD+7WYDWLpiStD4+eXZ2h/vUU0jaSNKm6fXGwEuB+fh1fHtq9nbgrOIjBA1odP3OBt4kaX1JOwAz\n", - "icqeTUkDZMZr8O8nxLUcEkkCTgcWmtmpuV098/2sMhPCiGi0YKrD3eo1pgK/9e8p6wI/M7M/S7oG\n", - "+KWkdwFLgTd0rovdjaQzgBcDUyQtAz4DnELB9TOzhZJ+CSwE1gDvs1hot5aCa3kSMFvS83FX0O1A\n", - "tiAyruXQHAy8FZgnaW7a9gl66PsZC1GDIAiCjtDNLrggCIKgjwkBCoIgCDpCCFAQBEHQEUKAgiAI\n", - "go4QAhQEQRB0hBCgIAiCoCOEAAVjCkmXpuftJDWqBDncY3+y6FxBEBQT64CCMYmk2cCHzexVLXxm\n", - "XTNb02T/SjPbtB39C4KxQFhAwZhCUlZW+BTg0FQE7URJ60j6kqSrUmbmf07tZ0u6RNLvgAVp21kp\n", - "u/iCLMO4pFOADdPxfpI/l5wvSZovLw74htyx50j6P0mLJP10dK9GEHSWrk3FEwQVkZn8HwM+kllA\n", - "SXAeNbP9JW0A/E3Sn1PbfYDnmdkd6f07zGy5pA2BqyT9ysw+Lun9KfN4/bleC+wN7AVsAVwt6eK0\n", - "7/l4gbB7gUslHWxm4boLxgRhAQVjlfoiaC8F3pZyal0BTAZ2TvuuyokPwImSrgcux7MLzxziXIcA\n", - "P09Jnx8ALgL2wwXqKjO7J+Xkuh7YfgR/UxD0FGEBBUGNE8zs/PyGNFf0eN37w4EDzewpSRcC44c4\n", - "rjFY8DLr6OnctmeJ32QwhggLKBirrATyAQPnAe+TtC6ApF0kbVTwuQnA8iQ+uwEH5vatzj5fxyXA\n", - "G9M80xbAi/A0+EWlqINgzBB3W8FYI7M8bgCeTa60HwBfx91f16U6Kw/g9WnqK0r+CXiPpIXAzbgb\n", - "LuN/8dT415rZP2SfM7PfSnphOqcB/2ZmD0jancEVKSMsNRgzRBh2EARB0BHCBRcEQRB0hBCgIAiC\n", - "oCOEAAVBEAQdIQQoCIIg6AghQEEQBEFHCAEKgiAIOkIIUBAEQdARQoCCIAiCjvD/AXFRJnS871y9\n", - "AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEZCAYAAADR8/HkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmYFOW1h98DCMgmIELY90UUlKiogDqiMUQjehNv1CTG\nqNdrYlzijcaYFbObxMQYlxg1Jhq3xC0mkRhAR0VxQQFRdpB9Z9gX2c7941TZNT3VPTUz3dPTzXmf\np5/u6q7l6+rq71fnfOc7R1QVx3Ecx6lvGhW6AY7jOM6BiQuQ4ziOUxBcgBzHcZyC4ALkOI7jFAQX\nIMdxHKcguAA5juM4BcEFyHEcxykILkBO3hCRbSKyNXjsF5EdkeULa7G/chG5LMF6rYJjP1e7lhcf\nIvJ5EVkSfO+nRaRdlnVHiMibIrJFRGaIyMgM6/0x+N365K/lzoGMC5CTN1S1laq2VtXWwBLg0+Gy\nqj5am10mXO+zwFKgTEQ61eI4tUZEGtfn8YJjHgH8HvgC0AnYAdyVYd32wD+AW4BDgF8A/xCRtmnr\njQL6kPycO06NcQFy6h0RaSQi3xKRBSKyXkQeD+/YRaS5iPwleH9jcKfeUUR+ApwE3BFYULdnOcTF\nwH3Aq8AX0449SkReC/a9VEQuDt4/WERuFZHFIrJJRF4J2lImIsvS9rFYREYHr8eJyBMi8pCIbAYu\nFpHjRGRKcIyVIvI7ETkosv0RIjJBRDaIyOrgXHxMRLYHAhGu93ERWZtA1L4APKuqk1V1O/A94DMi\n0jJm3RHAalV9Uo2HgXXAZyLHbQLcDlwNSDXHdpxa4wLkFIKrgbHAyUBnYCNwZ/DZxUAboBvQHrgC\n2Kmq3wFeAb4WWFDXxO1YRHoG+/1r8PhS2mfPAb8FOgBHA9ODj38FDANODI57A7A/Q/vTrYKxwN9U\n9RDgEWAfcC1waLC/04Argza0BiYG7egM9AMmqepqoBz4XGS/FwGPquq+QMxGZGjPYGDGR41TXQR8\nCAzIsH46jYAjIsvXAS+p6syE2ztOrXABcgrBFcB3VXWlqu4BbgbOC+70d2Mdd//gDn2aqm6NbFvd\nHflFwJuquhx4ChgsIkcHn30emKCqj6vqPlWtUNUZItIIuAS4VlVXqep+VX1dVXcn/D6vqeqzAKq6\nS1XfUdU3g/0sAf4AnBKs+2lgpar+RlV3q+o2VX0r+OxBAostOBcXAA8F+22nqq9lOH4rYHPae1uA\n1jHrTgE6i8j5InJQYAH2AVoEx+0O/C/w/YTf3XFqjQuQUwh6AU8Hd/UbgVnAXqAj1uE+DzwmIitE\n5JbAJRRS3ZjEl4C/AajqBsyquDj4rDuwKGabDkBzYGGtvg0sjy6IyAAR+aeIrArccj/BRDVbGwD+\njglmL+ATwGZVnZrg+Nuw8ZwohwBb01cMzsm5wDeA1cAnMYss/A63AT9U1a0iEoq9u+GcvOAC5BSC\npcCY4K4+fLQIrI+9qvpDVT0CG6/4NCk3WlbxCVxU/YDvBp3/KswF9vnAolgK9I3ZdD2wK9g2ne0E\n1kFwjMbAYWnrpLfrbkxU+wVuue+Q+q8txSyOKqjqLkw8vxg8Hoz/plV4Hzgq0sa+QFNgXobjvKyq\nw1X1UOzcDgLeDD4eDfwyOHcrg/emiMgFCdviOIlxAXIKwe+Bn4pIDwAROUxExgavy0RkSNDRbwX2\nYGMqAGuIF5CQi4H/AIdjHfJRwJHAwcCngIeB00Xkv0WkiYgcKiJHqep+4I/Ar0Wks4g0FpETRSTs\nxJuLyJlBIMF3gWbVfL9WQdt3iMgg4KuRz/6FucCuFZFmItJaRIZHPn8QcweOJXC/JeBh4OwgwKIl\n8CPgySAgoQoiMixwv7XBxr6WquqE4OP+wFDs3IWuy08DzyRsi+MkxgXIKQS/BZ4F/iMiW7BxibAT\n/hhmBWzGrIhyUh3xb7GxogoRuS26QxFpDvw38DtVXRt5LA62/5KqLgPOxNxPG4BpWGcLcD0wE3gr\n+OxngKjqZiyA4D7MTbUNiEbFKVUtoOux8aYt2PjPY+E6wXjWJ4CzgVWYwJV9tDPVV7Hgh7eD9obf\nb2um+TqqOgv4CiZEazDBvTKy7d0icndkkxuwyLelWNj2f0X2tT5y7tYE7V4fWGeOk1MkXwXpgsHM\nBzG/vgJ/UNXb09Ypw/zeoU/8SVX9cV4a5DhFgohMBB5R1T8Wui1OaSEifwTOAtaq6pAM69yOeQx2\nAF9W1Wn5ak+T6lepNXuA61R1uoi0At4WkQmqOjttvZdUdWwe2+E4RYOIHAd8HDin0G1xSpIHgN+R\nYXxRRM7Exi77i8jx2HjmCflqTN5ccKq6WlWnB6+3AbOBLjGreoSN4wAi8mdgAvD1TOM3jlMXVPUV\nbN5dJsYCfw7WfQNoK3nMJpJPC+gjgrDSYcAbaR8pMEJEZgArgOsDf7bjHHCo6sXVr+U4eaUrlcc4\nl2OTwtfk42B5F6DA/fYENslvW9rH7wDdVXWHiHwKi7RJOnvbcRzHyT3pXqm85QPMqwAFYatPAn9R\n1SphnNEZ7qo6XkTuEpH2qlqRth9PiOg4jlMLVLUmwxwrsMnSId2C9/JC3saAglnU9wOzVPW2DOt0\nCmdbB3MhJF18QlTVHzl6/OAHPyh4G0rl4efSz2dDftSCZwkmfovICcAmtXD8vJBPC2gkNpv7XREJ\nw/i+DfQAUNV7gPOAr4rIXizkz2dbO47j5AkReRTLS9ghyPL+A+AgsD5ZVZ8LJl0vwLKAXJLP9uRN\ngFR1MtVYWKp6J6ksyI7jOE4eUdVqC0Gq6lX10RbwTAgHJGVlZYVuQsng5zK3+Pk8sMhbJoRcIiJa\nDO10HMdpSIgIWrMghHrFLSDHcRynILgAOY7jOAXBBchxHMcpCC5AjuM4TkFwAXIcx3EKgguQ4ziO\nUxBcgBzHcZyC4ALkOI7jFIR6qQfkOE49sH8/bNgAa9bYY+3a1OsPP4RDDoE2bew5fKQvN28O0mDn\nLdYvqrBrF2zdWvVx7LHQsWOhW1j0uAA5TkNmz56UkEQFJW55wwYTkU6d7NGxY+r1oYfCli2wZAls\n3px6bNlSeXnfvszilG05+rp1a2hUIOfK3r3xghE+tmzJ/nn6o0kT+z7ho00be/7xj12AcoCn4nGc\n+mbHjmSCsnatdYIdOlQWk3RxCR8dOsBBB9WtbR9+WFmU0gUqyWfbt0PLlsnEKn1ZteYiEX3s2QOt\nWlUWjXTxqMmjruezwDT0VDxFI0CbNytt2hS6JY4Tg6p1vEkEZc0a6ySrE5PwvfbtC2dN1JZ9+1LW\nRhIhiy6L1E04Dj7YXYgRXIBygIjo17+u/OY3hW6Jc8CwY4cJxrp18c/pr5s2rV5Mwkfr1t5JOvWC\nC1AOEBHt1El5+mk48cRCt8YpSnbtihePTM/79plwdOwIhx1W9XX0uVMnu/N2nAaGC1AOEBF98knl\nhhtg+nS7gXQOcHbvrl5Eos+7dsULSCZRadXKrRSn6IkTIBEZA9wGNAbuU9Vb0j5vB/wR6APsAi5V\n1ffz0r5iESBV5bLLbEzw978vdIucvKEKH3wAb70Fq1dndn1t354anI8TkHRxadPGBcU54EgXIBFp\nDMwFTgdWAG8BF6rq7Mg6vwS2qOqPRGQgcKeqnp6X9hWTAG3cCP37w+uvQ79+hW6VkxNUYe5ceOkl\nePlle96/H044Abp2zSwqbdsW3+C849QzMQJ0IvADVR0TLH8LQFV/Hlnnn8DPVXVysLwAOFFV1+W6\nfUU1D6hdO7jmGrj5ZnjooUK3xqkV+/fD+++b0ISic/DBcPLJMHq0/bh9+7q14jj5oSuwLLK8HDg+\nbZ0ZwGeAySIyHOgJdAMObAEC+PrXzfqZMwcGDSp0a5xq2bfPBu5C6+aVVyy0+JRT4Oyz4Ve/gp49\nC91KxykJysvLKS8vz7ZKEpfXz4Hfisg0YCYwDdhX99ZVpahccCFf+5qJ0HXXFbBRTjx79sDbb6es\nm1dfNVfaySeb6Jx8MnTpUuhWOs4BQYwL7gRgXMQFdxOwPz0QIW0fHwBDVHVbrttXdBYQwNCh8MYb\nhW6FA1h02Ztvpiyc1183F9opp8Cll8IDD3jKEsdpOEwF+otIL2AlcD5wYXQFETkE2Kmqu0XkcuCl\nfIgPFKkADRkC991X6FYcoOzYAVOmpCycqVNh8GCzbK65Bv76VxuscxynwaGqe0XkKuB5LAz7flWd\nLSJXBJ/fAwwG/iQiCrwHXJav9hSlC27LFujc2Z4bNy5gww4EtmyB115LBQ28+y4cdVTKnTZypE/M\ncpwGik9EzQFxyUh79YIJEyws28khGzdaoEDoUps921LPn3KKPU44AVq0KHQrHcdJQEMXoKJ0wYG5\n4WbOdAGqM+vWpcTm5Zdh0SITmZNPhl//GoYPh2bNCt1Kx3FKkKIXoM98ptAtKTJWrUq50156CVau\nNDfaKadYioljjin6FPSO4xQHRS1ATz5Z6FYUEQsXwg9/CP/4Ryok+vLLbTzHB9IcxykARS1A48YV\nuhVFwNKlVr3xqafg6qstz9ohhxS6VY7jOBRtMq2BA2HZMtiWl+j0EmDVKhOcYcMsaee8efCDH7j4\nOI7TYChaATroIPj4x23eoxNh3Tq4/no44ggrkjZ7Nvz0p5b+xnEcpwFRtAIEMGoUTJ5c6FY0EDZu\nhO98xxLk7doF770Ht97qWQgcx2mwFLUAnXSSTVk5oNmyxYIL+ve3WjnvvAN33OH51hzHafAUtQCN\nGGFpyPbsKXRLCsD27XDLLZaVdcEC80Xee69nlnYcp2goagFq1w5697ab/gOGXbvgtttMeN55x+by\nPPigV+hzHKfoyJsAiUh3EXlRRN4XkfdE5JoM690uIvNFZIaIDKvpcU466QAZB9q9G+6+24TmxRfh\n3/+Gxx+Hww8vdMscx3FqRT4toD3Adap6BHAC8DURqdRbisiZQD9V7Q/8L3B3TQ9y8skwaVIumttA\n2bvXShoMHAjPPgtPPw1//7tNIHUcxyli8iZAqrpaVacHr7cBs4H0kfGxwJ+Ddd4A2opIp5oc56yz\nLFnzmjU5aHRDYt8+ePhhK3Xw4IPwl7/A+PFw3HGFbpnjOE5OqJcxoKD40TAgvYxcXH3ybjXZd6tW\ncO651j+XBPv3W46hoUPhzjstP9uLL1q+NsdxnBIi76l4RKQV8ARwbYaqeumpwmPrQ4yL5N0pKyuj\nrKzso+VLLoGrroL/+z+QBpt4vBpU4V//gu99Dxo1gl/9CsaMKeIv5DiOk5281gMSkYOAfwLjVfW2\nmM9/D5Sr6mPB8hzgFFVdk7ZelXpAUfbvt7H5v/7VStcUFaowcaIJz/bt8KMfwTnnuPA4jlNn4uoB\nicgY4DasIup9qnpL2ucdgL8AH8OMlF+p6p/y0b58RsEJcD8wK058Ap4FvhSsfwKwKV18ktCoEVx0\nkQ2ZFBUvv2xZqa++Gq67DmbMMH+ii4/jOHlARBoDdwBjsNLbF6YHhwFXAdNU9WigDLhVRPLiLcvn\nGNBI4IvAqSIyLXh8SkSuiNQffw5YJCILgHuAK2t7sAsvtKjkffty0vb88vrr8IlPwJe/DP/zP5Y2\n5/zzTUkdx3Hyx3BggaouVtU9wGPAOWnrrALaBK/bABtUdW8+GpO3MSBVnUwCgVPVq3JxvEGDoFMn\nMypOPTUXe8wD06aZq+3dd+35y1/24m+O49QncYFfx6etcy/wgoisBFoDn8tXY4q2HlAcF1wAjz3W\nAAXo/fetFMJrr8G3v21Rbl7m2nGcHFNeXk55eXm2VZIM+n8bmK6qZSLSF5ggIkep6tZctDFKXoMQ\nckV1QQghS5ZYRenVq6FJQ5DWefPg5pstyOCb34SvfhVatCh0qxzHOUBID0IIxtrHqeqYYPkmYH80\nEEFEngN+oqqvBsuTgBtVdWqu21dSgw49e1oJnIJPSv3gA7j0Upu7M3iwJQv9xjdcfBzHKTRTgf4i\n0ktEmgLnY8FgUeYApwMEiQEGAovy0ZiSEiCAzp1h5coCHXz5crNyjj0WunWD+fOtRk/r1gVqkOM4\nToogmOAq4HlgFvC4qs6OBocBPwWOFZEZwETgm6pakY/2NARHVU7p3NmqUdc7P/2pFYC7/HJzvR16\naAEa4TiOkx1VHQ+MT3vvnsjr9cDZ9dGWkhOgLl0KYAHt3Ak/+5mVv+5Wo0xCjuM4Bywl6YKrdwto\n8mTLTu3i4ziOk5iSE6AuXQogQBMmwOmn1/NBHcdxipuSE6CCBCFMnOgC5DiOU0NKUoDq1QJavx4W\nLoTj0ycTO47jONkoOQGq9yCESZOsLKun1HEcx6kRJSdAnTqZUbI3L6nzYpg40RKLOo7jODWi5ASo\nSRNo3x7Wrq2Hg6l6AILjOE4tKTkBgnqMhFu4EPbsgcPTy2k4juM41VGSAlRvgQih9eMF5BzHcWpM\nSQpQvQUiePi14zhOrSlJAaoXC2jfPnjxRRcgx3GcWlKyApR3C+jtt83U6tw5zwdyHMcpTUpSgLp1\ng6eftujo11/P00Hc/eY4jlMnSlKAPvUpq3rdrh28+mqeDjJhgs//cRzHqQMlKUAHHQQnnQTDhsG6\ndXk4wPbt8NZblgHBcRzHqRUlKUAhHTpYVoScM3kyfPzjXunUcZyiQ0TGiMgcEZkvIjfGfH69iEwL\nHjNFZK+ItM1HW0pagA47LE8WkGc/cBynCBGRxsAdwBhgMHChiFSaSa+qv1LVYao6DLgJKFfVTflo\nT0kLUN4sIA9AcBynOBkOLFDVxaq6B3gMOCfL+p8HHs1XY0pagPJiAa1ZA4sXw/DhOd6x4zhO3ukK\nLIssLw/eq4KItAA+CTyZr8Y0ydeOGwJ5sYBeeAFOOcWynjqO4zQgysvLKS8vz7aK1mB3ZwOT8+V+\nAxDVmrSnMIiI1qad+/dDs2awY0cOy/VcdpmF1111VY526DiOkx9EBFWVyPIJwDhVHRMs3wTsV9Vb\nYrZ9GnhcVR/LV/tK2gXXqJHNBaqoyNEOvfyC4zjFzVSgv4j0EpGmwPnAs+kricghwMnA3/PZmJIW\nIMjxOND8+SZCAwfmaIeO4zj1h6ruBa4CngdmYRbObBG5QkSuiKx6LvC8qu7MZ3tKfiAjp+NAXn7B\ncZwiR1XHA+PT3rsnbfnPwJ+r25eINFbVfbVti1tANcHDrx3HcaLMF5Ffisjg2mxc8gKUMwto714o\nL3cBchzHSXE0MB+4T0TeCFx5bZJuXPIClDMLaOpU6N4dOnXKwc4cx3GKH1Xdoqp/UNURwI3A94HV\nIvJnEelX3fYlL0A5s4AmTvTs147jOBFEpImInCMizwC3AbcCfYB/AM9Vt33JC1DOLCAPv3Ycx0ln\nHpbK5xeqerSq/lpVV6vqE1ikXVbyGgUnIn8EzgLWquqQmM/LsDjzRcFbT6rqj3PZhpxYQNu2WQVU\nL7/gOI4TZaiqbov7QFWvrm7jfFtAD2BZV7PxUph5NdfiAykLaM8eWLGiljt55RU49lho2TKnbXMc\nxyly7oyWahCR9oHhkYi8CpCqvgJsrGa1vE6qCS2gG26AT36yljtx95vjOE4cR0VzxalqBfDxpBsX\negxIgREiMkNEnqttLHk2OnSAlSvhiSfMAlq1qhY78QAEx3GcOERE2kcW2gONk25caAF6B+iuqkcB\nvwOeyfUBDj4YOnaE++6D0aNh0qQa7mD1ali2DI45JtdNcxzHKXZuBaaIyI9E5MfAFOCXSTeuNghB\nRFoBO1V1n4gMBAYC44NiRnVCVbdGXo8XkbtEpH1gxlVi3LhxH70uKyujrKws8XE++MCE6IMPzJj5\n4hdr0MhJk6CszMsvOI7jpKGqD4rI28BozKP1X6o6K+n21ZZjEJF3gFFAO+BV4C1gt6p+IdEBRHoB\n/8gQBdcJi5BTERkO/FVVe8WsV6tyDOnMnw+nnmoGTeJ0bpdcAscdB1deWefjO47j1Cfp5RjyeJxO\nQHOCekOqujTJdklccKKqO4DPAHep6n8DRyZs1KPAa8BAEVkmIpemZV09D5gpItOxSUwXJNlvbenX\nDxo3hrlzE27g5Rccx3EyIiJjRWQ+NpWmHFhMWqLTbCTyK4nIicAXgMuCtxKNHanqhdV8fidwZ5J9\n5QIRs4BefhkGDUqwwdy5plj9++e9bY7jOEXIj4ETgQmqOkxETgUuSrpxEiH5OnAT8LSqvi8ifYEX\na9XUBsCAATYWlAgvv+A4jpONPaq6HmgUlGZ4ETg26cbVCpCqvqSqY1X1FhFpBKxT1Wvq0OCC0r07\nLE3kncTLLziOU3KIyBgRmSMi80XkxgzrlInINBF5T0TKs+xuo4i0Bl4BHhaR24HYzAhxVCtAIvKo\niLQRkZbAe8BsEflm0gM0NHr0SChAe/bASy/BaaflvU2O4zj1gYg0Bu7AMtQMBi4UkcPT1mmLDY2c\nrapHYmP1mTgH2AFcB/wbWACcnbQ9SVxwg1V1C1aidTzQixr4+BoaiQXorbegVy+bROQ4jlMaDAcW\nqOriYCrNY5iIRPk8lpdzOUDgYquCiDQB/qmq+1R1j6r+SVVvV9UNSRuTRICaiMhBmAD9I2h03WOi\nC0TXrpYNYe/ealb07AeO45QeXYFlkeXlwXtR+gPtReRFEZkqIrEGh6ruBfZHc8HVlCRRcPdgoXXv\nAi8H83o21/aAhaZpU0tQumqVjQdlZMIE+O53661djuM49UAS4+EgLJ/baUALLNPB66o6P2bd7dhU\nmv9grjgATRonUK0AqertwO3hsogswWa9Fi3du9tk1IwCtHUrTJsGJ51Ur+1yHMepC+Xl5ZSXl2db\nZQUQ7fm6Y1ZQlGXAelXdCewUkZeBo7DS2+k8FTyiJPaQJcmE0Bb4ARAWwykHfqiq9WYF5SoTQsjn\nPgef+QxckGna6z//Cb/+NbzwQs6O6TiOU9+kZ0IIxm3mYtbNSuBN4EJVnR1ZZxAWqPBJoBnwBnB+\nTVLsJCWJC+6PwEzgv7HSCRdhdX4+k+vG1BfVBiJ4+LXjOCWIqu4VkauwaqWNgftVdXaYnUZV71HV\nOSLyb2zYZT9wbybxEZG4WZWqqn2StCeJBTQjyFad9b18kmsL6PbbYd48uOOODCsceSQ88IDlgHMc\nxylS8p0LTkQ6RBabYyHbh6rq95JsnyQKbqeIfDQYIiKjSA02FSVZLaCVK+3x8cQ1lRzHcQ5IVHV9\n5LFcVW8Dzkq6fRIX3FeAB0XkkGB5I3BxLdraYAiDEGKZNMkKBzVOXFPJcRzngEREjiEVdNAIS8OT\nuPNMEgU3HRgqIm2C5S21aGeDokcPWLIEbroJHnvMni+9NCj549mvHcdxknIrKQHai03Z+VzSjTMK\nkIh8I7KokfcFG2T6dY2a2YDo0AF27YLXXoN774VvfMPyjV7+P2oBCN//fqGb6DiO0+BR1bK6bJ/N\nAmpNEWc8yIaIGTrHHWcTU88+G9asAWbPhmbNoG/fQjfRcRynwSMiPwV+oaqbguV2wDdUNdEs/owC\npKrjctLCBsrIkanXrVrBpk14+QXHcZyacaaqfjtcUNWNInIWkEiAEhWWK3VatYJt2/D8b47jODWj\nkYg0DxdE5GCgadKNE1VELXVatoRdW/dYqdQHHih0cxzHcYqFh4FJIvJHLFHBJcCDSTd2AcIsoM5L\n37Cxnw4dqt/AcRzHIShU+i6W2gcsTdvzSbevVoAC8+qzWB2gcH1V1R/WsK0NllatYOCyifBZd785\njuMkRUR6A+WqOj5YPlhEeqnq4iTbJxkD+jswFtiDlVrdhqXgLhlatYKj1vr8H8dxnBryBLAvsrw/\neC8RSVxwXVX1kzVtVTHRhi302f4ujBpV6KY4juMUE41VdXe4oKofBgVME5HEAnpNRIbWqmlFwmHv\nlzO92fFw8MGFborjOE4xsV5EPirpHbyOLeEdRxIL6CTgkiDt9ofBe6qqJSNKh7w1kfLGpzOy+lUd\nx3GcFF8BHhaRsLbAcqxkTyKSlGPoFfd+0kGmXJDrcgzp7Bs0mLKlD/HKjmPydgzHcZz6Jt/lGCLH\naY0ZJttqsl22XHBtgsSjRZ98NCvLl9No/Vpe33U0+/dDI5+a6ziOkxgR+TQwGGguQRaZpFHS2brb\nR4Pnd4C3Yx6lwaRJyOjRHNS8MTt3FroxjuM4+UVExojIHBGZLyI3xnxeJiKbRWRa8MiYVkdE7sGy\nX1+DTUT9HNAzaVuy5YI7K3julXRnRUmQ/61VuaXj2boVHnwQvvnNQjfMcRwnt4hIY+AO4HRgBfCW\niDyrqrPTVn1JVccm2OUIVR0iIu+q6s0icivw76TtSeRwEpF2IjJcRE4OH0kP0KDRoPzC6ad/lA9u\nxgz4858L3TDHcZy8MBxYoKqLVXUP8BhwTsx6SceNQr/RDhHpitUE+ljSxiTJhHA5Zl51B6YBJwBT\ngNFJD9Jgee89SwTXpw+tWsH27bBhA1RUFLphjuM4eaErEK0HvRw4Pm0dBUaIyAzMSrpeVWdl2N8/\nghIMvyQ1NHNv0sYkCcO+FjgOmKKqp4rIIOBnSQ/QoAmsH0hlxF6/3gRI1asyOI5TciQJJ34H6K6q\nO0TkU8AzwIDYnan+KHj5pIj8C2ge1gZKQhIB2qWqO0UEEWmuqnNEZGDSAzRoJk6ESy4BKgvQ7t2w\nY4cZR47jOMVCeXk55eXl2VZZgXmzQrpjVtBHqOrWyOvxInKXiLRX1ay+IVXdBeyqSXuTCNDywMR6\nBpggIhuxut/Fze7d8MorFnFAZQECs4JcgBzHKSbKysooKyv7aPnmm29OX2Uq0D+Y37kSOB+4MLqC\niHQC1qqqishwbL5oXgYmqhUgVT03eDlORMqBNtQgyqHB8vrrMGAAHHookBKgDRvs44oK6N49y/aO\n4zhFhqruFZGrgOeBxsD9qjpbRK4IPr8HOA/4qojsBXYAF+SrPVkFSESaAO+p6qCgceX5aki9M2FC\npeqnUQuoUSMPRHAcpzQJSieMT3vvnsjrO4E7k+xLRCap6mnVvZeJrGHYqroXmCsiiScWFQ2RAAQw\nd1soQL16uQA5juNkIqj7cyhwmIi0jzx6YZF2iUgyBtQeeF9E3iRVB0iTTFIKyrSehfkTh2RY53bg\nU5ip92UUT3DSAAAgAElEQVRVnZao5XVh82YLwR6ZSj8atYCGDnUBchzHycIVWIR0FypnxtmKTXRN\nRBIB+i5VJyUlzQz6APA7MtQIF5EzgX6q2l9EjgfuxuYZ5ZcXX4QTT4TmzT96q1UrWL7cBKh/fxcg\nx3GcTKjqbcBtInK1qv6utvtJkgnhLFUtjz6AMxM28hVgY5ZVxgJ/DtZ9A2gbRGDkl4kTK43/gAnQ\nmjXQpAl07eoC5DiOk4A1QSZsROR7IvKUiHw86cZJBOgTMe8lEqAExM3K7ZajfWdmQtXy261aweLF\n0KEDtG/vAuQ4jpOA76nqVhEZBZwG/BH4fdKNMwqQiHxVRGYCA0VkZuSxGHi3rq2OHiptOX+FfwCW\nLjV1OeqoSm+3agVLlrgAOY7j1IB9wfOngXtV9Z9A4pLc2caAHsFC9X4O3EhKKLaq6oZaNDSO9Fm5\n3YL3qjBu3LiPXqdPtqoRkybBaadVKfzTqhWsXAlHHukC5DiOk5AVIvIHzFP2cxFpTsIk15C9HMNm\nYDN5nIQEPAtcBTwmIicAm1R1TdyKUQGqEzHuNzABApuX6gLkOI6TiM8BnwR+qaqbRKQzcEPSjZNE\nwdUaEXkUOAXoICLLgB8QmGeqeo+qPiciZ4rIAizE+5J8tof9+80C+lnVXKqhALkLznEcJxmqul1E\n1gGjgPlYOYYFSbfPqwCp6oUJ1rkqn22oxMyZ0KYN9Kw6rzbM++YC5DiOkwwRGQccAwzEpt00BR4C\nRmbZ7CMS++pKgrTsB1GiFlCLFrB3L+zaBUcfDatW1WMbHcdxiof/wgrabQdQ1RVA66QbH3gC9Im4\nqPLKY0AiZgW98opVSF22LHYTx3GcA50PVXV/uCAiNaohcOAI0Icfwquvwqmnxn7crBk0bmwWEJgA\nPfqovQ5LNDiO4ziV+JuI3IMlEfhfYBJwX9KN8zoG1KCYMgUOPxzatYv9WMSsoKgAPfWUre4C5DiO\nUxVV/aWInIHlgBuATUydkHT7A0eAMoRfRznxxFQNoPbtLTnpl77kAuQ4jhOHiNyiqjcC/4l5r1oO\nHBdclgCEkPHjTXjAnk84Afr2dQFyHMfJwBkx7yVO1XZgCNDGjTBrFowYkXiTHj1g7FhzybkAOY5T\nKojIGBGZIyLzRSSjpSIix4nIXhH5TMxnOUnVdmC44F580Wr/NGuWeJMw8cJTT7kAOY5TGohIY6xe\nz+lY2rO3RORZVZ0ds94twL+pmq8TcpSq7cAQoCzh15mQ4HS6BeQ4TgkxHFigqosBROQxbB7P7LT1\nrgaeAI6L20muUrUdGC64BAEImTjsMFi3LsftcRzHKQxxJXAqldAWka6YKN0dvJW3CgWlbwEtXmwl\nuIfEVgSvFreAHMcpFsrLyykvL8+2ShIxuQ34lqqqiAjxLricIKr5Lb+TC0REa93O+++3BKSPPFKr\nzffutcrdH35oE1Udx3GKBRFBVSWyfAIwTlXHBMs3AftV9ZbIOotIiU4HYAdwuao+m+v2lb4FNGEC\nnBEXKZiMJk0sf+mmTZamx3Ecp4iZCvQXkV7ASuB8oFLSaFXtE74WkQeAf+RDfKDUx4DC8gu1HP8J\ncTec4zilgKruxWqwPQ/MAh5X1dkicoWIXFHf7SltC2jGDJtR2qNHnXYTCtDAgTlql+M4ToFQ1fFY\nCHX0vXsyrJvXGm2lbQElyH6QBLeAHMdxck9pC9CECTWe/xOHC5DjOE7uKV0B2rXLMmCXldV5Vx06\n+Fwgx3GcXFO6AvTaa3DkkdC2bZ135RaQ4zhO7ildAapD9oN0QgF69lkbVnIcx3HqTulGwU2cCLfe\nmpNddegAL70E//qX5Yh7++1U3SDHcRyndpSmAG3YAHPnWkGfHNCxIyxfDs8/D6+/bkXqJk70zAiO\n4zh1oTRdcC++CKNGQdOmOdnd8cfDe+/B6NFw442Wluehh3Kya8dxnAOW0hSgWpRfyIZIahJq48bw\nq1/B978PO3fm7BBZ+fBDy6fqOI5TSpSmAOUwACGOESPg2GPhjjvydohKPPIIfP3r9XMsx3Gc+qL0\nBGjRIti+3UKw88h3vgP33pvXQ3zExo2wZEn9HMtxHKe+KD0BCtPvSN5KWABwxBGwdCns25fXwwCw\nbRusWJH/4ziO49QnpStAeaZ5c8tzunJl3g/F9u0mQEVQuslxHCcxpSVA+/fDCy/UiwAB9O4NH3yQ\nfZ3du2060u9/b97B2rBtm4mQByI4jlNKlJYATZsGhx0G3brVy+F697aK39mYOxduuQUefhhuvz3z\neps3Z05bt22bPR/obrgD/fs7TqlRWgKU4/Dr6ujVq3oLaPVqGDIELr4Ytm7Nvt7kyfFutu3b7flA\n7oCXL7f5WI7jlA6lJUB5Dr9OJ4kLbs0a+NjHoHXr7AK0aZMFNGzZUvWzbdssG8OBLEDr1rkL0nFy\ngYiMEZE5IjJfRG6M+fwcEZkhItNE5G0RGZ2vtpSOAO3cCW+8AaecUm+HTCpAnTolEyCAioqqn23f\nDgMGHNgCVFEBO3Z4IEZ9s3ixVbV3SgMRaQzcAYwBBgMXisjhaatNVNWjVHUY8GXgD/lqT+kI0Kuv\nwtChcMgh9XbIUIBU4VOfsjxx6axeXXcB2rbNMjEsX56bdhcjFRUWY/Lhh4VuyYHF88/Db39b6FY4\nOWQ4sEBVF6vqHuAx4JzoCqq6PbLYCshbMZrSEaB6dr+BxTqsXg1Tp1rw3dVXWycZpSYuOLA8qumE\nAnSgW0BgVpBTf1RU2DXslAxdgWWR5eXBe5UQkXNFZDYwHrgmX40pnWzYEyfW+63aQQdBly7wi1/A\ndddZyYaHHrKAg5CkFtDGjfacyQU3cCA8+mhu219MhOdnxw6bf+XUDxUVdg07xUF5eTnl5eXZVknk\nxFbVZ4BnROQk4CFgYN1bV5W8CpCIjAFuAxoD96nqLWmflwF/B8IZMk+q6o9rfKD162HBgoKESfXu\nDU8+CdOnw3/9F3z2s3DBBdCsmX3uFlDNWb/eRPxf/0q9Fwrz9u3x2zj5IRQg1bwnF3FyQFlZGWWR\n+Rw333xz+iorgGg1s+6YFRSLqr4iIk1E5FBVjemd6kbeXHAJB7sAXlLVYcGj5uID5v866SQzSeqZ\n3r3h8MMt1Pr44+35L39JfR4NQoiLcAvZtMnu7NMtIFXrdHv3NivgQBgDWbUKXn658nvugisMFRU2\nmbohRiDu2VPoFhQlU4H+ItJLRJoC5wPPRlcQkb4idrshIh8HyIf4QH7HgKod7Aqo+31VPc//iVJW\nZpmqw7vDb33LXHL79tljwwabG9u8uS3v3h2/n02boG/fqhbQrl1W1qhpU7OkVq3K69dpEGzZYlZf\nVGzdAioM4XlviG64Y4+tPgrVqYyq7gWuAp4HZgGPq+psEblCRK4IVvssMFNEpgG/BS7IV3vyKUBJ\nBrsUGBHEnD8nIoNrfBTVggQghHzpS3D55anlk082S+aZZ8yV1K4dNGliApXNDbdpE/TpU9UC2rYN\nWra01127HhiRcOE5iopxRYWdR7eA6peKCgssDQUoPcimkKxcCQsXFroVxYeqjlfVgaraT1V/Frx3\nj6reE7z+haoeGXilTlLVt/LVlnyOASUZ7HoH6K6qO0TkU8AzwIC4FceNG/fR60p+zkWL7FZ5cM21\nKx+IwGWXwVNPQb9+5n4LCQXo0EOrbrdxIxxzjI0lRdm2DVq1stejRsETT9hzKRMVoC5d7PXGjSbA\nbgHVLxUV9tdas8bEv08fG4tsCOXot26FZcuqX89puORTgKod7FLVrZHX40XkLhFpr6pVYsGiAlSJ\n0PppQCOko0bBT36SGv8Jqc4C6tvXhrOibN+esoD+7/+sDMRNN1Xeb0hYObVjx9x8j0KRyQLq1cst\noLqwc6e5gmvyV6mosDluq1fDvHl2TVdUmFu5kOzebdf7geARKGXy6YJLMtjVKTLYNRyQOPHJSgHH\nfzIxYICNY0ybZuM2IW3aVC9A6WNAUQuoc2f4/Ofh17+O38ejj8LXvlb39hea8Bytj0x/q6gwC8gF\nqPaMHRs/WToTYcn53r1NgGbPtuW1a2t3/FxGcYbXiAtQcZM3AUo42HUeNtg1HQvXrtlg1759ZjKc\ndloOW153GjWyst1PP53MAlLNPgYUChDADTfAPffEp6SZN6/uf8ibbjKXy//9H7z7bt32VVvSLaAP\nP7SIp44di9sFF36PQrFyZc2CWCoqbDzzYx8zAZozx95ft67mx1a1qQThfK66EkaUuguuuMlrJoQE\ng113BoNdR6vqCFWtwf0Z8M47ZhaEAwUNiBEjLDVdEgHatcvcIp07mxBFB3qjLjiAnj3tOe6PvGBB\n3aPk3nsPLrrIRO/MMy27Q6555RWbtJuJrVttjCG0gDZutI6wZcvitoBuusluHgrFxo01E4ANG+y8\nd+pkrrc5cywQpDYW0Pr1di3HzXOrDeE1UtMbrr/+tbC/gVOZ4k7F0wDdbyEjR9pz1AWXSYA2boS2\nbe3P3apV5TkX6RYQWAqgOHfGwoUmQHVJ2Ll6tRmUP/wh/Oc/9kjKnj3JSpQ/9ZQFU2Ri61bo0SPV\nWYV34i1aFLcFNHduYcPoaypA6RbQ7NkW+lwbAQqv17hMH7VhyxYL8qmpBfTGG/Dvf+emDYXi6KNz\ndx4LTXELUAHDr6vj2GNNUJJYQJs2Wbg22B8+epe4fXtVAYoLx1Y1C0g1cyezbZuNEaW7gX7965Rw\nhJkbwKytpUuTC9p11yXLhrRmTfZS5lu32rhDaAFVVNj5KXYLaMmSVMaL+mbnTrO0a3L8qACtXAnz\n51uATW1ccLkWoK1bLShl165UwcYkrF4N77+fmzYUgv37zTVeXSHMYqF4BWjHDnjzzXotv1ATWrSw\nOUKHR3I/ZBOgtm3t9aGHVv6TRucBhUQtoOnT7W5wwwZzSfTpk/ku+zvfgbvuSvnywYTsG9+w/ama\nOIRRdC1bmvglSUapamNe8+dXv24SAerVK94CKlYBUrVOI1djIDUlPG5tLKCOHVPXRe/etbOAwhum\nXFpAbdpk9gZkYvVq8xTs2pWbdtQ3mzfbtVQqY1/FK0CvvALDhlmv3kC5/35zJYUkEaD0dDxxLrio\nBXT11fCnP5n107evjSPFCdCrr8Lf/gZnnGHReSFTptjzsmXWObVoYaG6Ib162Z17yK5dNpbRu7fd\nGY8da+2dPt1EZenS6s5K9QK0ZUtVCygcAwpdcOvWFVdtoA0brO3FKEBNm9rz4Ydb+HVDcMFt3Wr/\np27datYZr15tnom5c3PTjvomPH+lEv1XvAI0cWKDdb9lIqkFlO6Cy2YBzZ1rnsiFC80n3rlzfNqU\nX/4SfvQjGD06swCFmbuj9OpV2dwvL4d//MMyPbz5pn2nW26Bf/7T9p1UgFatyjyrPt0CCoMQohbQ\nZz9bOVlpyLZtFgDS0MRpyRILNCm0ANXGBQd2szFokFlBtXXBdeqUWwFq0wa6d69ZZ7x6tV0fs2ZV\n/SzJ+GWhCf8TLkCFpgEHIGQiWxBCdAwoqQVUUWH7e/llGyDOZgG9/z6ceKIZjVEBeu01G69atqzy\n+E9Iz56VBWjNGtvHUUeZdfeLX8C991oC1iuvrF6A9uyxTrBly8rzfKKEY0BRF1y7dpWDEFavNqsu\nncWLTVQz7RssCCJq1eWLffvse6xYYe0aMKB+BWjPHrOOISXitbGAwK6Lww83AYqzgNatg8mTM+9r\nxQpL1JvLMOzQAkraGX/4oV1bJ50UPw40erTV9spF2/KVIijsG9wFV0jWrrUshMcdV+iW1IjaWEDZ\nouDmzoUjjzTL55FHUhZQugDt2mUXbL9+Jh7Tp5uFsHMnzJxpZSRCCyhdgNJdcOnZHbp2hUsvtW3H\njrVOd/NmW/7Od6p+13Xr7Dt2757ZDbd1q33HrVth797KLrjQAtqwIWW9RQn/mAsWxO8b4De/ibee\ncs306SY8kyfb87BhmTvgfJTamD/fbgrCwJQ+feKPv307nHtu1fejAvTNb8LZZ2d2wU2YAD/Okss+\nFKB8WEBJO+O1a01Ajzwy3gKaOdMye9WVv/wFrr227vuJo6LC/n9uARWSF16w4IMClF+oC0kFKOri\niHPBhRbQ3Lk2ue8TnzA9zmQBzZ9vd+JNm1oH0qqVdYhvv22TTgcOzOyCi7OA0tf57nfhscfs5+jR\nw/b18svw059WFYJw+y5dsgvQIYeY1VNRUTUIIRS5qVOrRvSFnVG2YIjly1Oz+vPJpEnW5tdes3N4\n9NH2W8e5B4891n6PXLJihd1kbN5s57BPn3gX3Jw58Pe/Vw3wiArQJz9pv1n79vb7pJ/3TZuqituO\nHanzvHx5bgWoNhZQeIM1eHBVC6iiwtqfizD5efMqB/rkkooKGDrULaDC0oDDr7ORqSZQVIAGD7Y7\nsZA4C+jQQ61jmT49JUCQ2QKaNatyNF7ohpsyxfzh4V1knAsu3QKKE6m2bS1fGJgALV1qbWvVCu67\nr/K61QlQWP+odWvo0MFcaelBCBs3mkD17Fk1W8OyZVYMMJMFtH+/dcxxd8C55oUX4CtfMQFassR+\nq7iM3uvWZXYp1oXQqlq50s5ZWFMqXQDDAfn03yMqQCGNGtn1l+7ijJtj9Mgj8LnP2ffdudOuz2wC\n9MQTdq6SEFpAtRGgAQPs94iW+wivl1yUnZg/324I81G7a8MGE6AwarXYKT4BKnD5hboQtYCiIhGd\nB3TssZbgYe9eW44TIBHrwF94wTq1kSPhv//b/lxxNYNmz66cLPzooy0c+1e/MrdKKEBxLrjQAgov\n9jiRitK9uwnQjBlmGf3pT5XvlqsToO3bLQqvceOUNThnju03tIA2bLDPRoyo6oZbtszGujIJ0Lp1\nJkL5toB277bO9PrrTexmzTIxb9u2akcdimG+BahzZxOQMMdbSChA6W7AOAGCeDdcnAC99JJl1njj\nDbPao1MMNm6sGgr97LPZM2RECS2gTp2SR+WF13fTpmYNRm9eFi60c5PJAspUxyvkpZdSrvN58+wY\n2dzAtaWiwkQ32xhqMVF8ArRggfUggwYVuiU1JhSgmTOtQ33kEbtLWrIkZQG1bWsXWNgpxbngwNaZ\nOdMEqHlzSzESpvOJE6CoBXTSSSYSzzxjOt6pk4ngkiVVrZs2bcyiCP9ccS64KKELbsYMOP98u9t8\nNpKCNhSwrl1Td3Hz5qU+D8NrwTqsxx+35yOOSAUhrF9v1tGJJ8YL0OjRmV1wK1bYGMCWLfmdFPr6\n6/bbdO5srqeFC03M27Wr2lG//z6cemryu/+khIKyYkUq0CXu+HPmmPs0qQDFRcKFAhTeqKhap3zs\nsWYFd+1aOcDmuuvg7rsr72PDhuQuutACCq3kJHWKojdYX/wi/O53qc8WLDDLIk6ANmww93Y2vvc9\nu1b37LFrsKwsP264iorUGGopuOGKT4AaYPmFpIQC9MIL1uFcf7110B07WjnvkOHDLcQZ4i0gsD80\nQP/+ld9v29bu1qIpa9JdcGecYZ3+iSfacqNGZpG88068dRMNxa5OgLp3t/1s22Yd7pVXVs6OkG4B\nTZpkHfVFF9kfPSpAHTrAH/+YKvgXBiFUZwGdeqoJUJyLYvlya+Phh9fNCqpu9v0LL5gQgrWzTRv7\nbTIJ0Nix9rslCWPPxq5dKTfvihV2fYQWUChA6cI7d65dC1EB2rXL2hN37cVFwm3caGNz4XlZssS2\nv+YaePJJu17DMT1VO2b6mNeGDclzxYUWUNOm9pxEuKICdOWV8NxzqaCDBQvsxizOBbdkiV032SZB\nr1xpNxAffGA3h0OH5k+A2revmesxHREZIyJzRGS+iNwY8/kXgiKh74rIqyIytK7tzkTxCVARhl+H\ntG5tf9AXX7TIsfJy+POfbQ5Nmzap9dIFKJMF1KOHWQVRQiso/CPt3Wt/ruoMxu7d7U8dJy49e9qf\nMIxI69Ah83569LDvN3SoteW882zbN96wz9MF6K9/hR/8wDqrn/60qgXUuLGVoACz9D780Dq/Qw81\n8V6zJuXWVLU/5dFH23JcZ7Z8uZ27ugjQ0qV2jrPNh5k7184BmAD16mXnI5MAHXGErVcbKyicv6Jq\n5/vGoEtZscICRVeuTIWyp7sA9+83sT711Mou0UWLUm1OJ5MLLvr80ksWJ/TJT9pv1rWrWdLNmtnN\n0YIFVYsvZrOAzjuv8vmOXidJ3XBRAWrbFq64wubHgbVn1Kh4Cyjs6DO551TtXE+ZYjd2AwbY/y0f\nAhQmiK3pBNwQEWkM3AGMAQYDF4rI4WmrLQJOVtWhwI+AP9St1ZkpLgHau9d6twZWfiEpTZrYH3DS\nJPtzDhhgpno6UQGKywUH9oceODD+OFE33KJF9qdLF6p0ugelA+OK2fXta3+sMIS6SZYyhj16WIcT\nikCTJuZuufVWWw6DGLp0sY786afhkkvgwgvtGNGOpXt3+MIXLOAAzFI7+GD743XoYMuDBqXclRs2\n2Plt1cru/ON88KEADR5c+0CEX/7Sbgyy5RRbuTKVpP3ss1PzceIskFCARo6s2TjQli2WlaJ1a7jq\nKgv/nTw51bGHAhS64Nq3ryqAy5fb+R00qLIFNG9e5usrkwsuOtH25ZetPH3HjuaG69bN3m/f3qyE\n7dvt2oyOR2USoJ07be5WdP5amIonbE9NBQjg61+3GloVFXatjBhh7U+P8IuOpcWxaZNZYhUVdv77\n97fzmY9sC6EFVNMJuBGGAwtUdbGq7gEeA86JrqCqU1Q1TIn8BtCtLm3ORnEJ0Ntv25WcbRS8gdO6\ntXVM2SpIHHWUdQDbt2ceA/r0p82FF0e3bimX2XvvJatW3r27depxke1Dh9p4U3Xut/DY4XcIuewy\nc0ktWpTaRzgrvm9fs7D69rVOIHStgHWq6eMELVqYAIVlzaMhtcuWpYS0X7/4caC6WkCrV8PDD5vL\nLJsArViR+o2bNbPIQ6gqAGvX2n1V587mBstUMO6tt+ChhyrfhX//+yaiU6fa9XLppTYO8f771omu\nXw8f/3h2F9ycOSY04ZhcyNy5doMUR1yHv2mTnft0Cwjs5iOcZ9S+vX2X/v1t/+E53LfP9hEnQHPn\nmpURvWGI3qiktydMzJtOugAddpj9j+64w24owkCJ9O9WnQW0YoVdU8cfbzcBAwbYOZ0zJ/eRalEX\n3NKlduzZs2s0f6krELWdlgfvZeIy4LnatbZ68lmSO/cUsfstpHXreKsnSrNmZkFcdJEJQpzF0bdv\n5oHRESPsDvSLX7SOYNSo6tvVvXtmcRk61DIeJBGg5s1tndACAvvOl18Ot92W2keYKfz8822dPn1M\nNDdvTnUsIuaCi9Kypf3xTjjBlo84ItUxRQWoOguoe/faWUB33GEuwf79M2+vWtkCihJ1ge3Zk7J+\nRKzTiptBf999Nql35EjL/Td+vHV2Tzxhf4lBg2xi7YwZZm20aWMuz8MOM4s0WxDC3Lm2fboAzZtX\neVwySrduNq4TZeNGE7uKCrOAly5N3ficfHJqvfbtzbrv189+5+nTrc1hAEOcAM2ebdZuKFa7d5tg\nhTkL0wVoxgwYM8YEI3QhqsZHeX7lKzaFoG/fyu7rrpEuecUKs6ozWUDhzcaJJ8Lzz5sAtW9v1vqq\nVZlvNletshu7M86I/zyd/ftTEbMDBsCXv2y/f7t2ZlXOnw+LFpVTXl6ebTeJJVFETgUuBUYm3aam\nFJcFVKTh11FatzZ/e3U8+aR5Gq+7rubHGD3aPJWQvGBsv36VE6dGOfxw6xjjouTimDDBOqMoV19t\nd4cbN6bGkL72tdT4TsuW9qedMyd7ftkWLaxzC/dxxBHxFtCoURbAkG7lhALUp491HDWdq/HOOzau\nEefC+9a3bH+bN5vAxn2PUADefNNcX9/+tn0HsLvv3bsr14N67z0LZ3/lFXND/fjHlsnhjTdMzMKx\nvYMOso4cLOru+eetEw3dsY0aWYedPgYUTmYO1wujybJZQOkTOfftM0u9Z0/b98qV1tE3iuld2rVL\nCdDRR6fchRs22O8SBilEmT3bRCw836H1E4pLmK07ZNUqW44GdGzbZuunu7NHjrR29+tny3FRpCtW\nwDHHZLaAVq60cz1ihC2HgUHVjQM995xFzyVl82Zrf5MmJnYffpgqFBhOPSgrK2PcuHEfPWJYAXSP\nLHfHrKBKBIEH9wJjVTVvCaSKR4C2bzdfQ/R2qgi59VZz31RH587WQf/sZzU/xpFH2p3S229bh5su\nBnGccUbmInHNmtkdYnl5MgEaMqTq4HWXLnDOOSYyoUX3ne9U3l+/fubnr06Aoi64TAJ0xhkW1DB6\ndMqqCIMUuna1NnTpUtWPXl00VRhFFz0uWAd3yy3Wca9YUfkOOkooQK+9Zu6fE06Az3zGPhOpOvF3\nxozUeCHAxRfbGOJvfmMD83EceaQVXQsH/tu1S4VTp7vgZs+2jvLgg61zi85lyTQG1KOHdYbhfjZt\nMqsrzDUXdshxtG9vd/1xAtS1q4lWerTZ7NmWfPb99+03DEOwQ9ItoDAAJxxHBXNNxnkMROwmILRC\nwuJ7UZYvt7G0bC64Ll3MYuzfP3UN9u2b3TX2wQcmqknddOlh8U2bpl736ZPYDTcV6C8ivUSkKXA+\n8Gx0BRHpATwFfFFV8zCbKUXxCNDLL9ttSNyIfBExenT1AQF1pVEj67S+/33T62xBAyEi2dt11FFm\n2dRl+O2GG7J7UPv2tQ4p2rmk07KlhQiHAtSrl/0xt2ypLEBgLswLLrAxG7DOMQxSgFTBvZBt22z7\nMIT9hz+0CMUo4TE6dzZrJRyMD8eb5s3L7H6DlAC9/ba5iX7zG7OoQtKzj6fP4Wrd2r7X3/5mk4/j\nGDLE7tVCEejSJTXROeqCU7XzHY7XhW64cJJopt+6UaPKVlC6ey+bALdvb2Ne/frZcd9916yuDRvM\nqk1Pxhueg5NOsg531arK44RQNQpuzRpbNxSghx6ySMvHH49v0+c/b644yGwBhdGEcYSC26aN/f6h\n2xq6hs8AABB7SURBVDiMHs3E4sV2zUWj2R580Mby4sg0Lwssy0UoQEuWZI7QVNW9wFXA88As4HFV\nnS0iV4jIFcFq3wfaAXeLyDQReTN+b3WneASoCMsvFJLRo83Ez1XA4NChNqidxALKxODB5obLRL9+\n9uevzgKClAsujISbMsXuUYYMqbz+2WenEo+G7reQMG1QyIwZdvcdCsC//20dV3iHum2buT3atzfB\nHjw45eILJ9POm1c5ACGd0AJ5++14yzRdgGbNqhpEcs01JqyZgkvCcxCKQDgHByq74JYtM9dd586p\n9VasSIUSZ5tqF7UAw5LyoQBlE+CwA+3Xz9Zv08Z+g3BuV3pBxr17zYIdMCB1zCQW0OjRJkBbtlhi\n0AkTks1dT7eAtmxJzXvPZgHFCW51AvTBB3ZDFboWZ8yw4pBPPBE/5yg8R3FELaCf/MSmN2RCVcer\n6kBV7aeqPwveu0dV7wle/4+qHqqqw4LH8Mx7qxvFJUBFHoBQn4TjTLkUIKibAFVH6IfPJkBhRGD0\nTnDwYBuQHTs2FW0WMmqUucXWrq0qQOkdRBjmG/6RFy60TueFF2w53D7smKNWwNy51nmFFlAmC6Bt\nW9vPkiWpsZ8o1VlAYJ3No49mFohBg0yYq7OA3nmn8vnq0iWVZT3T+E/IEUfY+BSkBsaTWkDNmqU+\n79fPzvP69da5pltAixZZuw4+OCVA6RZQugCtWWPuzXfesXHA009PFgkKVS2g8Lt06VK9Cy6d6PUV\njtdE+eAD69Lef9/G0c4/3yZtH3NMagw3SjYLqE8f2x/YdZz+P2ioFI8ALV2aGmV1qmXQILj99uR/\nvOqoDwEKffTVWUBt2lT2fw8ZYm61X/yi6vpNm5oIjx8PDzxQuYJHugU0bZoJ3KJFdpe9dau54cLJ\niukuvmgE3rx51uklsYBC8YkLee/dO9WR7N5tr6sTg3QOPti2CcU2XYDCsZtp0ypbYV27mnhmG/8J\nOfLIzC646saA+vZNBSiE4ffh3X26AEUFOAz8SGIBhZF9N99s4fxJSbeAQgE69FBzzabn0YPM3zcq\nQI88YlGpIbt22Xf+xCfsO73+ul0Pn/88nHmmeS927DB3ayh81QnQokUWWTlrVur/2tApHgEqK0s2\nmOEAdnd89dW5y1jUpYt1BNEOONckFaB0N8SVV9oEwLj5UgBnnWUDzXPm2HNInACddZbdkS9aZH/q\niy6yzmHduqoCNGRIKp1MVICydcChEGQKDIlaQAsWWBubNYtfNxt/+1sqXmf06NQge9u2qQ4+/U65\nZ0+bd3XffTWzgOLGgDIJ8LBh8D//k1oOLaBMAjRrVsp1NmSIuVo3bap8jRxyiAlDmNw0DPUfPtx+\nr5NOyv5donTubKIfphSKWr1xAQp792Z2TXfrZuKxd6+516ZMSU1yXbLE2jZkiAn5M89YXS5ICdC4\nceY6vPzyVIh6JgHq2NEE6803bb/FMlRePALk4z8FRcQ6g0w+6FzQtq2N7VTngktvQ8uW2S2zM8+0\nzumRR1JzR6DyHeru3SZQ555r4rNwoQlis2YmFmFEYdSFN2qUdR7r1pnbatQo62xmzszcAbdoYXe6\nxxwT/3lUgOLcb0k58siUhVVWZhklwDrYxo2tM0wXoIsvtvDtBx+ML1AXpWtXcyutW1ezIIQ+fSpP\nLejbt6oARSvh3nVXKmp05EgTm9/+tvI1IlLZCgrn+3z1q5ZwtCY3YX362I3EqFF2wxH9Lp07Vw1E\nWLPGrtm4e+Ow/tbKlXZNhCVUwESud++UFf300ykBGjzYxp0eeMCCSVautHM2YUJmARKxtj/5ZPG4\n36CYBMjHfw4IvvCF7JmHW7TInosujo99zDqK9ACF0AIKZ9n36mUdd1SAwMTi7berWkDNm9t90QMP\nWGcf5qdbuDCzAIlYJ5JJgMIosU2bqiaRzQUHHWTRkVddZWMpvXunPmvSxEKjzzjD3HjZEEmNydQk\nCCGdbC64q66yEPXQkmvUCO6/385veqRkGAkXlt1u397mxoTZGJIiAn/4g7nCTjnFLIrwpqNzZxOk\nsWNTgS3ZrD1IlTN5910LiAnLli9ebNdbWOdq797U5O3Qe3HXXXbsxx4z8Ro9OhWyH0fv3jZXzAUo\nH6SnfXZKkttuy3z3DPEWUBLi7lBbtkzVVQmtgXAMZsGCygL0zjtVBQisM/rtb1Muq/A5jCyLY/z4\nzJ1EdC5Qeh2nXHHxxdZJH310/GTRpBxzjLknoxbQ+vVmYWWzYqPEWUAVFTZP6o03qs6DGzjQXITp\nk7lDCygsu12X7yViJci/+lUrJRIN5vjFL8yd9vWvm9UczivLRM+eJmL791vYfChAoQUE9hufe25l\nS+3661Nh9gMGwD332HhWz56Zj9Wnj103LkD5oAjLLzi5Z+DA3Mai9Ohhf9pQgFq1srvryZNTApTJ\nBQfm3lu9OjVoP2CAuV2iQRLpDBuW/XLu3dtSKE2eHB8pV1eaNLGxnuhYTG047TSLEAyj4Jo2NQs1\nW4ecTtu2ZknOn185DHvSJLvbj5ub9sUvZhagJOmiknLDDea2Da2ozp3NhfbsszZ2de219jjnnMz7\n6NnT5pINGWJjUZMnm8UdFaAbb6xZoEQm+vSx52ISIB/Vd4qK0E+eK3r0sLGfv/0N/vMfe69vXxsj\nCQWoXz+7y1+1qqoFdNhhloIlagHVpAOOo1cvuwP+0Y+SZbGoDbkIzz/lFBODYcNSwRXt2yd3v4X0\n7WtWQtQCevllm++UlI4d7ffp0CG3uYovvDD1+tRT7QblqKOsmnBZmVkm2dxiPXtaFOVXv2rXWvPm\nZl2HLjhInguuOvr0SSUVLhZcgJwDmp49Ldpo1KjUGFGfPub+Cd0djRpZJzt1aqpybZTbbzchglQR\nurpw7bXwv/9r41ENmbZtbYxqypTKYd41FeB+/WyQ/uCDTYDWrDFrM9tkynSGD7exuI4d8zdVYORI\ne4BZpmvXVu+Y6dHD5viE19Z559lw9rp1lcffcsHJJ8Odd+Z2n/nGBcg5oOnRw4IOnnkm9V6fPvZ+\n1I12zDHWMcZ1OFGXR8eOlqWgLlRX/rkhcdppVl4hFOZ27WpnAYXjemFC2qFDU6KWhDPOsLIfRx9d\nf9VakowKhDcx4bycW281q2rChNwLZZs2FuhQTBTPGJDj5IFRo8zXH7U2+vZNZWUIOe64lMvESRG6\n8upiAaULENQ85/Ahh5gV9Oij+Z0sXVN69rTIw+hY3rHHWiFBH9Z2C8g5wDn++Kp1bz77WQvhjXLe\neUVbiDevjBxp4h1aQBdfXPPQ8REjUrWbDj7Y5l7VJun9pz9t82UaUr3KVq3suyWNCjzQEM11yb48\nICJaDO10HKfunHVWajynJixcaJbrCy8kq7l1ICAiqGqDtbVcgBzHKRnGjIF7781vyqhiwgUoB7gA\nOY7j1JyGLkB5DUIQkTEiMkdE5ovIjRnWuT34fIaIFNEUKsdxnOKjun5ZRAaJyBQR2SUi38hnW/Im\nQCLSGLgDGAMMBi4UkcPT1jkT6Keq/YH/Be7OV3ucFOXl5YVuQsng5zK3+PnML0n6ZWADcDXwq3y3\nJ58W0HBggaouVtU9wGNAetKKscCfAVT1DaCtiDSgIMrSxP/kucPPZW7x85l3qu2XVXWdqk4F9uS7\nMfkUoK5ApNo5y4P3qlsnLduW4ziOkyOS9Mv1Rj4FKGnUQPoAmUcbOI7j5IcG1b/mcyLqCiAaDNkd\nU9ts63QL3quC+LThnHLzzTcXugklg5/L3OLnM68k6ZfrjXwK0FSgv4j0AlYC5wMXpq3zLHAV8JiI\nnABsUtU16TtqyGGEjuM4RUSSfjkk7/1u3gRIVfeKyFXA80Bj4H5VnS0iVwSf36Oqz4nImSKyANgO\nXJKv9jiO4xzoJOmXReRjwFtAG2C/iFwLDFbVbbluT1FMRHUcx3FKjwadDTvJRFYnOyKyWETeFZFp\nIvJm8F57EZkgIvNE5D8iElPlxgEQkT+KyBoRmRl5L+P5E5Gbgut1jojkqNRYaZDhXI4TkeXB9TlN\nRD4V+czPZRZEpLuIvCgi74vIeyJyTfB+0VyfDVaAEk6YcqpHgTJVHaaqw4P3vgVMUNUBwKRg2Ynn\nAewajBJ7/kRkMOZTHxxsc5eINNj/WAGIO5cK/Dq4Poep6njwc5mQPcB1qnoEcALwtaCPLJrrsyH/\noEkmsjrJSB9M/GgCcPB8bv02p3hQ1VeAjWlvZzp/5wCPquoeVV0MLMCuY4eM5xLiB7v9XFaDqq5W\n1enB623AbGxOT9Fcnw1ZgBrUhKkiRoGJIjJVRC4P3usUiTZcA3j2iZqR6fx1oXJIq1+zybg6yAV5\nf8Rd5OeyBgRRbcOANyii67MhC5BHR+SGkao6DPgUZqKfFP0wSDPu57qWJDh/fm6zczfQGzgaWAXc\nmmVdP5cxiEgr4EngWlXdGv2soV+fDVmAGtSEqWJFVVcFz+uApzGTe00QaomIdAbWFq6FRUmm85d4\nYrVjqOpaDQDuI+US8nOZABE5CBOfh1T1meDtork+G7IAfTRhSkSaYoNnzxa4TUWFiLQQkdbB65bA\nGcBM7DxeHKx2MfBM/B6cDGQ6f88CF4hIUxHpDfQH3ixA+4qGoIMM+S/s+gQ/l9Uilh7mfmCWqt4W\n+ahors98ZkKoE5kmTBW4WcVGJ+DpII1RE+BhVf2PiEwF/ioilwGLgc8VrokNGxF5FDgF6CAiy4Dv\nAz8n5vyp/n97dxBiVRmGcfz/hJAKtQhc5yLFEGpaGIYVA4E7Ny1qk0EbCQ1clGRt2gruXLZxkbTQ\noNypLaxMionScphoFW0KZqMgQqHyujjfwcv11mClRz3/32a459xzvpnDDM983z3nfWspyVFgCbgG\n7LaT4k0zruUHwHySObqloF+B/oFIr+XKtgGvAT8lOde2vcd99Pvpg6iSpEHcy0twkqQHmAEkSRqE\nASRJGoQBJEkahAEkSRqEASRJGoQBpFFJcrZ9fTzJ33WC/Lfnfn/WWJJm8zkgjVKSeeDtqtpxG8es\nqqpr/7D/clU98n98f9IYOAPSqCTp2wofAF5oTdD2JnkoycEkC60y8672/vkkZ5IcBxbbts9adfHF\nvsJ4kgPAmna+jybHSudgkgvpmgO+MnHuL5IcS/JzkiN392pIw7pnS/FId0g/5X8XeKefAbXAuVRV\nzyZ5GPg6yan23meAzVX1W3v9RlVdTLIGWEjySVXtT7KnVR6fHutl4GngKWAd8F2Sr9q+OboGYX8A\nZ5NsqyqX7jQKzoA0VtNN0LYDr7eaWt8CjwFPtH0LE+EDsDfJeeAbuurCG1YY63ng41b0eRn4EthC\nF1ALVfV7q8l1Hlj/H34m6b7iDEi66a2q+nxyQ/us6MrU65eArVX1Z5LTwOoVzlvcGnj97OiviW3X\n8W9SI+IMSGN1GZi8YeAksDvJKoAkG5OsnXHco8DFFj6bgK0T+672x085A7zaPmdaB7xIVwZ/Vitq\naTT8b0tj0888fgSut6W0w8AhuuWvH1qflWW6/jTTHSVPAG8mWQJ+oVuG631IVxr/+6ra2R9XVZ8m\nea6NWcC+qlpO8iS3dqT0tlSNhrdhS5IG4RKcJGkQBpAkaRAGkCRpEAaQJGkQBpAkaRAGkCRpEAaQ\nJGkQBpAkaRA3ABGGQ9Z+SfjXAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1827,7 +678,8 @@ "ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')\n", "ax1.set_xlabel('iteration')\n", "ax1.set_ylabel('train loss')\n", - "ax2.set_ylabel('test accuracy')" + "ax2.set_ylabel('test accuracy')\n", + "ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))" ] }, { @@ -1836,7 +688,7 @@ "source": [ "The loss seems to have dropped quickly and coverged (except for stochasticity), while the accuracy rose correspondingly. Hooray!\n", "\n", - "Since we saved the results on the first test batch, we can watch how our prediction scores evolved. We'll plot time on the $x$ axis and each possible label on the $y$, with lightness indicating confidence." + "* Since we saved the results on the first test batch, we can watch how our prediction scores evolved. We'll plot time on the $x$ axis and each possible label on the $y$, with lightness indicating confidence." ] }, { @@ -1849,109 +701,9 @@ "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAFZtJREFUeJztnVtsY8d5x//f4Z2H94skaiXvemUbsAsD9otbwA2ahyCw\n", - "USBpXxoYKFD0EvShN7QPddyHJo9pgAZF+1CgiB30hqRFCxfpQ1vbRQukD724sGOnaydZY8XVihJF\n", - "iXfykDwipw/kNzuHklbiRRRJzQ8Y8OgsdXYk/vXNN9988w0JIaDRjIJx1R3QLB5aNJqR0aLRjIwW\n", - "jWZktGg0I6NFoxmZsUVDRC8R0cdE9CMienWandLMNzROnIaIXAB+AOAzAHYB/A+AV4QQH023e5p5\n", - "ZFxL8wKAu0KIbSGEDeDbAD4/vW5p5hn3mN93A8CO8vUDAD+uvoGIdKh5wRFC0Gn3x7U0WhDXmHFF\n", - "swtgU/l6E31ro7kGjCuadwE8SUS3iMgL4AsAvjO9bmnmmbF8GiHEMRH9OoB/AeAC8LqeOV0fxppy\n", - "X+jB2hFeeKbtCGuuMVo0mpHRotGMjBaNZmS0aDQjo0WjGRktGs3IaNFoRkaLRjMyWjSakdGi0YzM\n", - "uElYAAAi2gZQBdAFYAshXphGpzTzzUSiQT8Z69NCiOI0OqNZDKYxPJ26EqpZXiYVjQDwDhG9S0Rf\n", - "nEaHNPPPpMPTi0KIPSJKA3ibiD4WQnx3Gh3TzC8TWRohxN7gtQDgTfS3tmiWnEl2WAaJKDy4NgF8\n", - "FsCH0+qYZn6ZZHhaBfAmEfFz/loI8dZUeqWZaxYyR9gwDBARiEheq/eY0342IQSEEOj1evJafR9f\n", - "D79eR87KEZ7UEZ45hmHA5/PB6/XC6/XC5/PB7/fD7/fL+71ez9FUAfR6PbTbbdk6nY58D7+/2+2i\n", - "2+3Ka42ThRSN1+tFKBSSLRKJyBYIBNDtdnF8fOz48NmidLtd1Go11Ot11Go1NBqNE++3bVs2LZqT\n", - "LJxoiAg+nw+hUAjxeBzxeBzpdBqpVAqpVAqRSASdTkd+6MfHxw6LY9s2isUiisUifD4f3G63QyS2\n", - "bYOIpMA0J1k40RiGAb/fj0gkgmQyidXVVWQyGaytrWFtbQ2xWAydTkc227YdQ5Vt2wiHwwgGg3I4\n", - "U9/f6XRgWZZsbvfV/IrUIVX1wYaH26vwuRZONC6XC6ZpIplMYmNjAxsbG9LKsKVhC8Ov6i/7+PgY\n", - "wWAQ8XgcKysrqFarDstk2zaazSYsy0Kz2USr1Zr5zzjsk7VaLViWJV/55+I2a+EspGhCoRBSqRQ2\n", - "Nzdx69YtxGIxxGIxRKNRmKZ5wpFVZ0m9Xg/xeBzNZhONRgOWZTkExqLhZlnWzH9G9rG41Wo1lMtl\n", - "2ZrNJtrttnyvFs05GIbhsDSPP/44QqEQTNNEKBSC3+8/MZ0eNucsDvUvlj8oVTQsqlnDfWMLeHh4\n", - "iHw+D4/Hg16vJ8MK3W4XnU5n5v1bSNH4fD6Ew2HpBPOU2+/3w+v1noi78C/5rFe2Sr1eD8fHxw4r\n", - "02w2Hc9Sv28aqP1jbNuW4YB2u41IJCIF0263Hf7ZNPtyURZONDxlzufzyGazMAwDgUBANq/XK4cn\n", - "FoPL5XI0t9sNt9strw3DgGEYcLlcMlDo9XpBRHC73Sd8DH4/t1E4zbFVA5SGYZwYLrvdLlqtFlqt\n", - "lhyWhBBot9taNBeBRVMoFLC9vQ3bthEMBmXj2RCb9263C6/XC4/HI199Pp+cOfG1eo+I4PV64Xa7\n", - "4ff7Hf5Ft9t1CO6is6vhAKMq7GFBs8VT36OK5vj4GO12G7VabWTRToOFFE29Xkc+n4dhGGg0GggG\n", - "gzBNE6Zpwuv1yl9wq9WCbduO4cvv9ztEFgwGZZBQCOH48PhaFWGn05HRaBbheZzmU6nN7XbD4/HI\n", - "V36vao3UCHar1UK9XkexWJxP0RDRGwB+GsCBEOLZwb0EgL8BcBPANoCfE0KUL7GfEhbN4eEhjo+P\n", - "Ua1WpWBYNOrsx7ZtBAKBU0XCjWM77GSy1fF4PPB4PNJJBh4KgIezi4pmuPH/xT4NWzW/339iDc22\n", - "bTQaDdTrdTQaDZTLZWlV53V4+iaAPwHwF8q9LwF4WwjxtUHh6S8N2qXDUV3LsmAYBrrdLprNJur1\n", - "Ovx+P9xuN9rttsOU8/oUi0H1gQKBAMLhMEKhkHzlD499JI6PcKxk+PvPY3g2xw4uW65oNCrjTMlk\n", - "Eh6Px7Egy8MVW5l2uy19nbkM7gkhvktEt4Zufw7ATw2u/xzAv2NGoun1euh0Omg2m/Ja9VdcLpdj\n", - "Ot3tdh2mn9+r+jfBYFBao+FXv9/vsFzNZhOmaTos13l/7cPRXFXU7XYbmUwGt27dgmEYCIfDICK4\n", - "XC4YhiG/7yzRXAXj+jSrQoj84DqPfm7NTGBLw3+xPPvhXzJbH3W9SZ3p8PtU53PYGWZRmKaJQCDg\n", - "GBoajYZjaDNN80KiUfujRnhbrRa2trZgGAZCoRAymYx0rvm57DgPi0ZdUpglEzvCQggxy/p6LBrb\n", - "tqfyPPYnuHk8HhkoZPHU63XHqng4HHYMaeehCkZdFmDhCCEQj8dx48YNdDod+Hw+EJGcjrNg2u22\n", - "jB91Op0rWUIAxhdNnojWhBD7RJQBcDDNTs0S1TFlc99ut6Uvoa5F8QfVbrfhcrkuvBI+PDzxB81T\n", - "fHUBlf0Znmp3Oh3UajVUKhUUi0UUCgWUSiXU63V0Op2FEs13APwCgD8YvP7D1Hp0BfR6PQAPBdRq\n", - "taRgWq2WdFjb7Ta63S7a7bacOnOw7VEMz5zUBDKObpumCb/fL0WjLm3w2tPR0REKhQKKxSLq9bqM\n", - "Ds+ai0y5v4W+05sioh0Avw/gqwD+loh+GYMp92V28rIZjomw49lqteByuRxBNp6xqBZnlP8HAEKh\n", - "kHTCI5GIw9K43W45NLGjzKJRLY1lWVK8s+Yis6dXzvinz0y5L1fGcF4Kx2TOYtJZi8fjQTQaRSAQ\n", - "QCwWQyQScVgaFm273Ua9Xke1WpWiOTw8RKVSkYHBubQ0mskZToAPh8NIpVLY2NjA5uYmNjc3kUql\n", - "YJomDMNAq9VCtVrF0dERjo6OkMvlcHR0hFqtJpdGeIZ4FWjRzAB1uu9yuRyieeKJJ5DJZJBOpxEK\n", - "hWAYBjqdDqrVKg4ODrC7u4tcLofDw0MpGrYwV7VTQotmBnCwjqf1nETGokkkEjKBTBVNoVDAzs6O\n", - "tDQ8Y+Kptk73XGJYNByRVi3N1taWdIy9Xq8UDa/k7+zsYG9vzyGaq05416KZARyL4SjyysoK4vG4\n", - "XGDlPB52gDkJSw0AztN2Gi2aGcD7tJLJJJLJJNLp9Kmi4ak8x4RarZZMbmcLMw87PrVoZgAH8FKp\n", - "FDKZDFZWVhCLxRAKhaRo1BgR5+6oa1RXuao9jC7UOAN4eEomk1hfXz8xPPECpbqafZalmQe0pbkE\n", - "htNBE4kE0uk01tfXsbm5idXVVcRiMZlw1Ww2UalUUK1WUalUcPfuXezs7KBQKKBer0vRXNUC5Ymf\n", - "76o7sIyo6RZ+vx+JRAIrKyvIZDLY3NxEMpmUEWEigmVZODw8xN7eHnK5HO7fv4+dnR0Zm+HF0nkZ\n", - "nrRoLgEWDaegDosmHA4jEAhIS8OiyWazuHv3LnK5HPb39x2W5iojwMOMmyP8FQC/AqAweNtrQoh/\n", - "vqxOLhqc72uaJqLRqBTN+vo6HnvsMRmP4ZROVTR37txBoVCQuylrtdq5a2Gz5iKO8DcBvDR0TwD4\n", - "uhDi+UHTglFg0fCGvmg0KlexOU+n3W7LJPFyuYxKpSJbvV6X24XnYTgaZtwcYUDXDz4Tj8eDQCAg\n", - "K1vwKjZbGDXtodVqnRAO58pwWuu8McmU+zeI6HtE9DoRxabWoyXA7XbLXQ6JRAKRSERuOeH0TU57\n", - "GBZMtVpFo9FAq9WaW0szrmj+FMDjAJ4DsAfgD6fWoyWARROJRORi5GmiUYcnFs4iiGas2ZMQQuYE\n", - "E9E3APzj1Hq0gAwXFPB6vQgGg9Kn4dkSR35brRYqlQry+Tzy+Tz29vZQKpXQbDYdaQ/zKBhgTEsz\n", - "SCZnfha6frBjcxuLhi1NJBKRG/lYNOVyWRYx2NvbQ7FYlHu55lkwwHg5wl8G8Gkieg79WdQ9AL96\n", - "qb2cc4bL0w6Lhi3NsGj29/cdouGikfNejnbcHOE3LqEvCw0Lx+VynTk8qaLh4SmbzeLo6EhWuLrK\n", - "jLyLoiPCU4CXC3hv9+rqKpLJpBSMz+eT23G73a7D+eUAHtfSm3fBAFo0U8Hn8yEajSIajSIWi8mc\n", - "X05/APor2JZlodvtOgJ5alxmXmdLw2jRTAHev7SysiJL1HKiVTgcdmyntSzrxBSbZ03ztlxwFlo0\n", - "U4BFk06nsbm56RANF0vi2Mtpywbq9lptaZYUtWCA2+1GKpXC2toaNjY2cPPmTayuriIajUpfhh3f\n", - "g4MD5PN57O/vy12S87R6fVG0aMbA4/FIx9fv98u0hxs3buCxxx5DPB5HJBKRh3s0m01HXGZ/fx/l\n", - "chmWZS2EZRlGi2YMPB6PnFKHw2Gk02mHpeFKWlx6rdlsolQqYX9/H/fv33dYGi2aawAROVaxuVx+\n", - "JpORogEe7g8fFk02m0WxWESlUtGiWWY4cMdRX66Yzgd5rK+vI5VKIRwOw+v1yqJLnP5wVlxmUWZL\n", - "w2jRXAAWy/BebD6bYWNjA4lEQtbfOz4+hmVZsuxaqVRyzJjmfRX7PLRoLoAqGN5Wm06n5bZarsoZ\n", - "DAZl6oNlWbJEiCoa1cospaUhok30S8GuoL84+WdCiD++yjrCVwFbGq7JFwqFpGiefPJJWZuPdxdw\n", - "QaRarSYPJFOFw/UC5301+yzOS42wAfy2EOLHAPwEgF8joqfxsI7wUwD+FTMqB3sVGIaBYDAoT315\n", - "4okncPPmTWQyGXm+lN/vl7kynJFXLBaRz+exs7ODfD4v82WGK48uIo+0NEKIfQD7g+s6EX0E4Aau\n", - "sI7wrFATq8LhMNbW1qTje/v2bayvryMej8ttKABknbxKpYLDw0Pkcjlsb29jb28P5XJZVvJcdC7s\n", - "0wySy58H8F+4wjrCs0AVDNf3XVtbw9bWFra2tuTRh4lEAn6/33FgarfblbVldnd3sb29jcPDQxSL\n", - "xYWdYg9zIdEQUQjA3wP4LSFEbejs65nWEZ41bGlWV1extbWFZ599Vq5o8y5J3szGvky1WnVYmlqt\n", - "Jhcsr4VoiMiDvmD+UgjBpV+Xpo7waagVzrkMPgfy0um0LG/P+5hs25b7sCuVCnK5HA4ODhxBPE59\n", - "WAYe6QhT36S8DuCOEOKPlH/iOsLAEtQRHsYwDFmylY/64SrmoVBICobLwVqWhVKphFwuh08++QQP\n", - "HjzAwcGBXF+66rMMps15luZFAD8P4AMiem9w7zUsWR1hFXV6zSe2qKIJh8OOk+mAvmiKxSJyuRzu\n", - "3buH3d1dHBwcSCvDDvIiz5hUzps9/QfOtkZLU0d4GA7ieb1eh2hYOOqyAnDS0hQKBbkf27KspREL\n", - "oyPCgGMzPi8TxONxxGIxJBIJrK+vI5FIwDRNuN3uE4e/7+/vy8YxmVqtJh3kZRIMoEUDwLlM4PV6\n", - "ZcUqzpG5ffs2VldXYZomgL5lUbfRZrNZ7O7uIp/PyyqcfKrdMnLtRTO8RBAIBJBIJHDjxg0Zl+Hc\n", - "X9M0IYSQwxHvkLx//76cMR0dHcnV7UXZXTAq1140AKRo2IdJJBLY2NjAU089hWeeecZxRibw0PHd\n", - "3d1FNpvF/fv3HZaGh6RFS+O8KNdeNLwjkkURi8Uc50mmUqkTJ+PycYjlclmeisK7CjhJfBktDKNF\n", - "Mzgdl8uCpNNppFIpuWeJj9PhYwwByMgvlwrhEmc8HC2zYAAtGgAn6/yyaEzTlEE8jhADD0XTaDTk\n", - "ZjdOqroOXHvRsKXhqlVra2uO3ZF8niTHZLiq+GmWRotmiVFPzOUttYlEAqurqzLfV82TUVETxvkc\n", - "g2WL+J7HtRMNn47Lzq1aspWTxJPJpCxBrznJtRQNb3ZTa8ik02kZzOOFSZ/Pd9XdnUvOW+XeJKJ/\n", - "I6L/I6LvE9FvDu5/hYgeENF7gzZcMnau4ZKtoVAI0WhUnoxy2nYUzUnOszScI/z+IBHrf4nobTys\n", - "I/z1S+/hlOHhSRVNJBKRp9aGQiGHzwM4T9NlX0Y9R/I6TLNVxs0RBha0jrA6PLFoQqEQAoGAPEZH\n", - "nV4DkALhbSfqARfqscvXRTgXLtSo5Aj/5+DWwtYR5pKtLBr1eGMWjTrNVs9g4qSqTqcjE6sWfXfB\n", - "qFxINIOh6e/QzxGuY4HrCKuWxjRNRCKRUy0Ni4aHJj4nWxXNdZtqM6PkCP8V5wgveh1h9SBSn88H\n", - "j8cDt9stxcIi6PV6cneB2tRzsnk1+6oOVr8KzttheWqOMBFlhBB7gy+Xqo4wO7sshE6n4yhGxBvg\n", - "+DymZrO5dDnA5zFOjvDvAXhlmesId7tdeSRgs9lEoVBANpvFvXv3cO/ePRwdHcmm1svTlgaPzBH+\n", - "p8vpznzAorEsC/V6HQcHB8hms/joo49w584deRgpny953abd1y4iDDhTG0qlkoz+ulwu2LaNZrMp\n", - "W61WQzabxc7ODnZ3d7G3t+eYfl+XRUqVaycarudbKpXkRrdGo4HDw0Ps7u4iHo87zmKyLAsPHjzA\n", - "gwcPUC6Xr+2MSYUu6wef1626XMlKTd9cW1uT602maTpWrzudDkqlEkqlEorFIsrlsiMus8x+jBDi\n", - "1ADutRMNT7d5w5tt244NcG632yEINbDHDXhY73eZrY0WjWZkzhLNJMcRaq4pWjSakbm04UmzvGhL\n", - "oxkZLRrNyFyqaIjoJSL6mIh+RESvTuF520T0wSDF9L/H+P43iChPRB8q9xJE9DYR/ZCI3holN+iM\n", - "542dCvuI9Nqx+nhp6bq8ZjLtBsAF4C6AWwA8AN4H8PSEz7wHIDHB938K/USyD5V7XwPwu4PrVwF8\n", - "dcLnfRnA74zZvzUAzw2uQwB+AODpcfv4iOeN3UchxKVamhcA3BVCbAshbADfBvD5KTx37DRTIcR3\n", - "AZSGbn8O/bK2GLz+zITPA8bsoxBiXwjx/uC6DkAtwTtyHx/xvLH7CFzu8HQDwI7y9QM87PC4CADv\n", - "ENG7RPTFCZ/FXEZ524lTYaddgnea6bqXKZrLmMu/KIR4HsDL6FdP/9Q0Hy76dnzSfk+cCjtcgnfS\n", - "Pk47XfcyRbMLYFP5ehN9azM2YpAtKIQoAHgT/SFwUvJEtAb0MxIxYXlbIcSBGADgG6P28VEleMfp\n", - "41npupP08TJF8y6AJ4noFhF5AXwB/VKyY0FEQSIKD65NAJ/FdNJMp1redvChMiOlwk67BO+j0nXH\n", - "7SOAy5s9DTz2l9H32O8CeG3CZz2O/gzsfQDfH+d5AL4FIAegg76/9YsAEgDeAfBDAG8BiE3wvF9C\n", - "/9SaDwB8b/Dhro7wvJ8E0Bv8jO8N2kvj9vGM5708SR+FEHoZQTM6OiKsGRktGs3IaNFoRkaLRjMy\n", - "WjSakdGi0YyMFo1mZLRoNCPz/yU19i71FpCwAAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFZtJREFUeJztnVtsY8d5x//f4Z2H94skaiXvemUbsAsD9otbwA2ahyCw\nUSBpXxoYKFD0EvShN7QPddyHJo9pgAZF+1CgiB30hqRFCxfpQ1vbRQukD724sGOnaydZY8XVihJF\niXfykDwipw/kNzuHklbiRRRJzQ8Y8OgsdXYk/vXNN9988w0JIaDRjIJx1R3QLB5aNJqR0aLRjIwW\njWZktGg0I6NFoxmZsUVDRC8R0cdE9CMienWandLMNzROnIaIXAB+AOAzAHYB/A+AV4QQH023e5p5\nZFxL8wKAu0KIbSGEDeDbAD4/vW5p5hn3mN93A8CO8vUDAD+uvoGIdKh5wRFC0Gn3x7U0WhDXmHFF\nswtgU/l6E31ro7kGjCuadwE8SUS3iMgL4AsAvjO9bmnmmbF8GiHEMRH9OoB/AeAC8LqeOV0fxppy\nX+jB2hFeeKbtCGuuMVo0mpHRotGMjBaNZmS0aDQjo0WjGRktGs3IaNFoRkaLRjMyWjSakdGi0YzM\nuElYAAAi2gZQBdAFYAshXphGpzTzzUSiQT8Z69NCiOI0OqNZDKYxPJ26EqpZXiYVjQDwDhG9S0Rf\nnEaHNPPPpMPTi0KIPSJKA3ibiD4WQnx3Gh3TzC8TWRohxN7gtQDgTfS3tmiWnEl2WAaJKDy4NgF8\nFsCH0+qYZn6ZZHhaBfAmEfFz/loI8dZUeqWZaxYyR9gwDBARiEheq/eY0342IQSEEOj1evJafR9f\nD79eR87KEZ7UEZ45hmHA5/PB6/XC6/XC5/PB7/fD7/fL+71ez9FUAfR6PbTbbdk6nY58D7+/2+2i\n2+3Ka42ThRSN1+tFKBSSLRKJyBYIBNDtdnF8fOz48NmidLtd1Go11Ot11Go1NBqNE++3bVs2LZqT\nLJxoiAg+nw+hUAjxeBzxeBzpdBqpVAqpVAqRSASdTkd+6MfHxw6LY9s2isUiisUifD4f3G63QyS2\nbYOIpMA0J1k40RiGAb/fj0gkgmQyidXVVWQyGaytrWFtbQ2xWAydTkc227YdQ5Vt2wiHwwgGg3I4\nU9/f6XRgWZZsbvfV/IrUIVX1wYaH26vwuRZONC6XC6ZpIplMYmNjAxsbG9LKsKVhC8Ov6i/7+PgY\nwWAQ8XgcKysrqFarDstk2zaazSYsy0Kz2USr1Zr5zzjsk7VaLViWJV/55+I2a+EspGhCoRBSqRQ2\nNzdx69YtxGIxxGIxRKNRmKZ5wpFVZ0m9Xg/xeBzNZhONRgOWZTkExqLhZlnWzH9G9rG41Wo1lMtl\n2ZrNJtrttnyvFs05GIbhsDSPP/44QqEQTNNEKBSC3+8/MZ0eNucsDvUvlj8oVTQsqlnDfWMLeHh4\niHw+D4/Hg16vJ8MK3W4XnU5n5v1bSNH4fD6Ew2HpBPOU2+/3w+v1noi78C/5rFe2Sr1eD8fHxw4r\n02w2Hc9Sv28aqP1jbNuW4YB2u41IJCIF0263Hf7ZNPtyURZONDxlzufzyGazMAwDgUBANq/XK4cn\nFoPL5XI0t9sNt9strw3DgGEYcLlcMlDo9XpBRHC73Sd8DH4/t1E4zbFVA5SGYZwYLrvdLlqtFlqt\nlhyWhBBot9taNBeBRVMoFLC9vQ3bthEMBmXj2RCb9263C6/XC4/HI199Pp+cOfG1eo+I4PV64Xa7\n4ff7Hf5Ft9t1CO6is6vhAKMq7GFBs8VT36OK5vj4GO12G7VabWTRToOFFE29Xkc+n4dhGGg0GggG\ngzBNE6Zpwuv1yl9wq9WCbduO4cvv9ztEFgwGZZBQCOH48PhaFWGn05HRaBbheZzmU6nN7XbD4/HI\nV36vao3UCHar1UK9XkexWJxP0RDRGwB+GsCBEOLZwb0EgL8BcBPANoCfE0KUL7GfEhbN4eEhjo+P\nUa1WpWBYNOrsx7ZtBAKBU0XCjWM77GSy1fF4PPB4PNJJBh4KgIezi4pmuPH/xT4NWzW/339iDc22\nbTQaDdTrdTQaDZTLZWlV53V4+iaAPwHwF8q9LwF4WwjxtUHh6S8N2qXDUV3LsmAYBrrdLprNJur1\nOvx+P9xuN9rttsOU8/oUi0H1gQKBAMLhMEKhkHzlD499JI6PcKxk+PvPY3g2xw4uW65oNCrjTMlk\nEh6Px7Egy8MVW5l2uy19nbkM7gkhvktEt4Zufw7ATw2u/xzAv2NGoun1euh0Omg2m/Ja9VdcLpdj\nOt3tdh2mn9+r+jfBYFBao+FXv9/vsFzNZhOmaTos13l/7cPRXFXU7XYbmUwGt27dgmEYCIfDICK4\nXC4YhiG/7yzRXAXj+jSrQoj84DqPfm7NTGBLw3+xPPvhXzJbH3W9SZ3p8PtU53PYGWZRmKaJQCDg\nGBoajYZjaDNN80KiUfujRnhbrRa2trZgGAZCoRAymYx0rvm57DgPi0ZdUpglEzvCQggxy/p6LBrb\ntqfyPPYnuHk8HhkoZPHU63XHqng4HHYMaeehCkZdFmDhCCEQj8dx48YNdDod+Hw+EJGcjrNg2u22\njB91Op0rWUIAxhdNnojWhBD7RJQBcDDNTs0S1TFlc99ut6Uvoa5F8QfVbrfhcrkuvBI+PDzxB81T\nfHUBlf0Znmp3Oh3UajVUKhUUi0UUCgWUSiXU63V0Op2FEs13APwCgD8YvP7D1Hp0BfR6PQAPBdRq\ntaRgWq2WdFjb7Ta63S7a7bacOnOw7VEMz5zUBDKObpumCb/fL0WjLm3w2tPR0REKhQKKxSLq9bqM\nDs+ai0y5v4W+05sioh0Avw/gqwD+loh+GYMp92V28rIZjomw49lqteByuRxBNp6xqBZnlP8HAEKh\nkHTCI5GIw9K43W45NLGjzKJRLY1lWVK8s+Yis6dXzvinz0y5L1fGcF4Kx2TOYtJZi8fjQTQaRSAQ\nQCwWQyQScVgaFm273Ua9Xke1WpWiOTw8RKVSkYHBubQ0mskZToAPh8NIpVLY2NjA5uYmNjc3kUql\nYJomDMNAq9VCtVrF0dERjo6OkMvlcHR0hFqtJpdGeIZ4FWjRzAB1uu9yuRyieeKJJ5DJZJBOpxEK\nhWAYBjqdDqrVKg4ODrC7u4tcLofDw0MpGrYwV7VTQotmBnCwjqf1nETGokkkEjKBTBVNoVDAzs6O\ntDQ8Y+Kptk73XGJYNByRVi3N1taWdIy9Xq8UDa/k7+zsYG9vzyGaq05416KZARyL4SjyysoK4vG4\nXGDlPB52gDkJSw0AztN2Gi2aGcD7tJLJJJLJJNLp9Kmi4ak8x4RarZZMbmcLMw87PrVoZgAH8FKp\nFDKZDFZWVhCLxRAKhaRo1BgR5+6oa1RXuao9jC7UOAN4eEomk1hfXz8xPPECpbqafZalmQe0pbkE\nhtNBE4kE0uk01tfXsbm5idXVVcRiMZlw1Ww2UalUUK1WUalUcPfuXezs7KBQKKBer0vRXNUC5Ymf\n76o7sIyo6RZ+vx+JRAIrKyvIZDLY3NxEMpmUEWEigmVZODw8xN7eHnK5HO7fv4+dnR0Zm+HF0nkZ\nnrRoLgEWDaegDosmHA4jEAhIS8OiyWazuHv3LnK5HPb39x2W5iojwMOMmyP8FQC/AqAweNtrQoh/\nvqxOLhqc72uaJqLRqBTN+vo6HnvsMRmP4ZROVTR37txBoVCQuylrtdq5a2Gz5iKO8DcBvDR0TwD4\nuhDi+UHTglFg0fCGvmg0KlexOU+n3W7LJPFyuYxKpSJbvV6X24XnYTgaZtwcYUDXDz4Tj8eDQCAg\nK1vwKjZbGDXtodVqnRAO58pwWuu8McmU+zeI6HtE9DoRxabWoyXA7XbLXQ6JRAKRSERuOeH0TU57\nGBZMtVpFo9FAq9WaW0szrmj+FMDjAJ4DsAfgD6fWoyWARROJRORi5GmiUYcnFs4iiGas2ZMQQuYE\nE9E3APzj1Hq0gAwXFPB6vQgGg9Kn4dkSR35brRYqlQry+Tzy+Tz29vZQKpXQbDYdaQ/zKBhgTEsz\nSCZnfha6frBjcxuLhi1NJBKRG/lYNOVyWRYx2NvbQ7FYlHu55lkwwHg5wl8G8Gkieg79WdQ9AL96\nqb2cc4bL0w6Lhi3NsGj29/cdouGikfNejnbcHOE3LqEvCw0Lx+VynTk8qaLh4SmbzeLo6EhWuLrK\njLyLoiPCU4CXC3hv9+rqKpLJpBSMz+eT23G73a7D+eUAHtfSm3fBAFo0U8Hn8yEajSIajSIWi8mc\nX05/APor2JZlodvtOgJ5alxmXmdLw2jRTAHev7SysiJL1HKiVTgcdmyntSzrxBSbZ03ztlxwFlo0\nU4BFk06nsbm56RANF0vi2Mtpywbq9lptaZYUtWCA2+1GKpXC2toaNjY2cPPmTayuriIajUpfhh3f\ng4MD5PN57O/vy12S87R6fVG0aMbA4/FIx9fv98u0hxs3buCxxx5DPB5HJBKRh3s0m01HXGZ/fx/l\nchmWZS2EZRlGi2YMPB6PnFKHw2Gk02mHpeFKWlx6rdlsolQqYX9/H/fv33dYGi2aawAROVaxuVx+\nJpORogEe7g8fFk02m0WxWESlUtGiWWY4cMdRX66Yzgd5rK+vI5VKIRwOw+v1yqJLnP5wVlxmUWZL\nw2jRXAAWy/BebD6bYWNjA4lEQtbfOz4+hmVZsuxaqVRyzJjmfRX7PLRoLoAqGN5Wm06n5bZarsoZ\nDAZl6oNlWbJEiCoa1cospaUhok30S8GuoL84+WdCiD++yjrCVwFbGq7JFwqFpGiefPJJWZuPdxdw\nQaRarSYPJFOFw/UC5301+yzOS42wAfy2EOLHAPwEgF8joqfxsI7wUwD+FTMqB3sVGIaBYDAoT315\n4okncPPmTWQyGXm+lN/vl7kynJFXLBaRz+exs7ODfD4v82WGK48uIo+0NEKIfQD7g+s6EX0E4Aau\nsI7wrFATq8LhMNbW1qTje/v2bayvryMej8ttKABknbxKpYLDw0Pkcjlsb29jb28P5XJZVvJcdC7s\n0wySy58H8F+4wjrCs0AVDNf3XVtbw9bWFra2tuTRh4lEAn6/33FgarfblbVldnd3sb29jcPDQxSL\nxYWdYg9zIdEQUQjA3wP4LSFEbejs65nWEZ41bGlWV1extbWFZ599Vq5o8y5J3szGvky1WnVYmlqt\nJhcsr4VoiMiDvmD+UgjBpV+Xpo7waagVzrkMPgfy0um0LG/P+5hs25b7sCuVCnK5HA4ODhxBPE59\nWAYe6QhT36S8DuCOEOKPlH/iOsLAEtQRHsYwDFmylY/64SrmoVBICobLwVqWhVKphFwuh08++QQP\nHjzAwcGBXF+66rMMps15luZFAD8P4AMiem9w7zUsWR1hFXV6zSe2qKIJh8OOk+mAvmiKxSJyuRzu\n3buH3d1dHBwcSCvDDvIiz5hUzps9/QfOtkZLU0d4GA7ieb1eh2hYOOqyAnDS0hQKBbkf27KspREL\noyPCgGMzPi8TxONxxGIxJBIJrK+vI5FIwDRNuN3uE4e/7+/vy8YxmVqtJh3kZRIMoEUDwLlM4PV6\nZcUqzpG5ffs2VldXYZomgL5lUbfRZrNZ7O7uIp/PyyqcfKrdMnLtRTO8RBAIBJBIJHDjxg0Zl+Hc\nX9M0IYSQwxHvkLx//76cMR0dHcnV7UXZXTAq1140AKRo2IdJJBLY2NjAU089hWeeecZxRibw0PHd\n3d1FNpvF/fv3HZaGh6RFS+O8KNdeNLwjkkURi8Uc50mmUqkTJ+PycYjlclmeisK7CjhJfBktDKNF\nMzgdl8uCpNNppFIpuWeJj9PhYwwByMgvlwrhEmc8HC2zYAAtGgAn6/yyaEzTlEE8jhADD0XTaDTk\nZjdOqroOXHvRsKXhqlVra2uO3ZF8niTHZLiq+GmWRotmiVFPzOUttYlEAqurqzLfV82TUVETxvkc\ng2WL+J7HtRMNn47Lzq1aspWTxJPJpCxBrznJtRQNb3ZTa8ik02kZzOOFSZ/Pd9XdnUvOW+XeJKJ/\nI6L/I6LvE9FvDu5/hYgeENF7gzZcMnau4ZKtoVAI0WhUnoxy2nYUzUnOszScI/z+IBHrf4nobTys\nI/z1S+/hlOHhSRVNJBKRp9aGQiGHzwM4T9NlX0Y9R/I6TLNVxs0RBha0jrA6PLFoQqEQAoGAPEZH\nnV4DkALhbSfqARfqscvXRTgXLtSo5Aj/5+DWwtYR5pKtLBr1eGMWjTrNVs9g4qSqTqcjE6sWfXfB\nqFxINIOh6e/QzxGuY4HrCKuWxjRNRCKRUy0Ni4aHJj4nWxXNdZtqM6PkCP8V5wgveh1h9SBSn88H\nj8cDt9stxcIi6PV6cneB2tRzsnk1+6oOVr8KzttheWqOMBFlhBB7gy+Xqo4wO7sshE6n4yhGxBvg\n+DymZrO5dDnA5zFOjvDvAXhlmesId7tdeSRgs9lEoVBANpvFvXv3cO/ePRwdHcmm1svTlgaPzBH+\np8vpznzAorEsC/V6HQcHB8hms/joo49w584deRgpny953abd1y4iDDhTG0qlkoz+ulwu2LaNZrMp\nW61WQzabxc7ODnZ3d7G3t+eYfl+XRUqVaycarudbKpXkRrdGo4HDw0Ps7u4iHo87zmKyLAsPHjzA\ngwcPUC6Xr+2MSYUu6wef1626XMlKTd9cW1uT602maTpWrzudDkqlEkqlEorFIsrlsiMus8x+jBDi\n1ADutRMNT7d5w5tt244NcG632yEINbDHDXhY73eZrY0WjWZkzhLNJMcRaq4pWjSakbm04UmzvGhL\noxkZLRrNyFyqaIjoJSL6mIh+RESvTuF520T0wSDF9L/H+P43iChPRB8q9xJE9DYR/ZCI3holN+iM\n542dCvuI9Nqx+nhp6bq8ZjLtBsAF4C6AWwA8AN4H8PSEz7wHIDHB938K/USyD5V7XwPwu4PrVwF8\ndcLnfRnA74zZvzUAzw2uQwB+AODpcfv4iOeN3UchxKVamhcA3BVCbAshbADfBvD5KTx37DRTIcR3\nAZSGbn8O/bK2GLz+zITPA8bsoxBiXwjx/uC6DkAtwTtyHx/xvLH7CFzu8HQDwI7y9QM87PC4CADv\nENG7RPTFCZ/FXEZ524lTYaddgnea6bqXKZrLmMu/KIR4HsDL6FdP/9Q0Hy76dnzSfk+cCjtcgnfS\nPk47XfcyRbMLYFP5ehN9azM2YpAtKIQoAHgT/SFwUvJEtAb0MxIxYXlbIcSBGADgG6P28VEleMfp\n41npupP08TJF8y6AJ4noFhF5AXwB/VKyY0FEQSIKD65NAJ/FdNJMp1redvChMiOlwk67BO+j0nXH\n7SOAy5s9DTz2l9H32O8CeG3CZz2O/gzsfQDfH+d5AL4FIAegg76/9YsAEgDeAfBDAG8BiE3wvF9C\n/9SaDwB8b/Dhro7wvJ8E0Bv8jO8N2kvj9vGM5708SR+FEHoZQTM6OiKsGRktGs3IaNFoRkaLRjMy\nWjSakdGi0YyMFo1mZLRoNCPz/yU19i71FpCwAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1959,94 +711,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEjpJREFUeJzt3X+QXXV5x/HPJ793ITSAiWyysaEttsBoDRFYEEGq7VBG\n", - "0bZWpa1S27HTUQulyojMtH+1o5XpiI7TzlgoCv5qqxZ1WhFaU0TsJhASfiQBsUNawq9N24DEZZMl\n", - "PP3j3oRls5s9T06+e84N79dMhnvOfe73fO/5nnv34Zxzv48jQgAAADh0c5ruAAAAQK8joQIAAKiJ\n", - "hAoAAKAmEioAAICaSKgAAABqIqECAACoaV6TG7fNnA0AAKBnRISnWl80obJ9gaRrJM2VdG1E/OXk\n", - "mEsvvfSA1w0PD2toaOhF60rOl5Vpe+/evcX60QZz5lQ/aWlPeUxp3bp1OvPMMw9Xlw6rzPg9//zz\n", - "Rdp97rnnisRmxk6S5s6de8C6jRs3avXq1QesX7BgQbF+VLVnz57KsaOjo6m2x8bGKseOj49Xjs0c\n", - "F5nYqcZOkh566CGddNJJB6xfuHBh5bb7+voqxy5atKhI7Lx51f80TbcvpjPd99ZUMn8bMsfF7t27\n", - "D1i3YcMGrVmz5oD1mWNzuranU7fP02nD92wpa9eunfa5Ypf8bM+V9BlJF0g6RdLFtk8utT0AAICm\n", - "lLyH6gxJP4qIbRExLukrkt5acHsAAACNKJlQrZD0yITl7d11MxocHCzSIcyOFSsqDTNa6IQTTmi6\n", - "C6jhuOOOa7oLOEQDAwNNdwE1lUyoDvmmJxKq3sb49S6+1Hvb8ccf33QXcIiWL1/edBdQU8mb0h+V\n", - "tHLC8kp1zlK9yPDw8P7Hg4OD/DEGAACtsHPnTj311FOVYksmVHdJOsn2KkmPSXqnpIsnB03+NR8A\n", - "AEAbHHvssTr22GP3L2/btm3a2GIJVUQ8Z/uDkr6jzrQJ10XE1lLbAwAAaErReagi4tuSvl1yGwAA\n", - "AE1rdKZ0qR0TdWUmFis1wWim3Uxs5r1J5SZka0Os1I79XGqywOxnKdN2ZoLRUpOcZmTbzeyLTGxm\n", - "MtKM7OSpmcksMxNlZvqRaTczEWl2X5SayLnUhL3ZYzmzP0rFZiZmzcRmxzoTn/1bMuX2arcAAADw\n", - "EkdCBQAAUBMJFQAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQ\n", - "EwkVAABATY3X8svU8ek1baj7V7LtUnUYMzWVsn0oue96TWbftaE+X0mZ4yLznZWpX1eqxqNUrnZc\n", - "ps+ZdsfGxirHZvdF5lguVb+uv7+/cuyiRYsqx0q5OoiZ2Pnz51eOzey3TJ3JTKyUO+ZaX8vP9krb\n", - "a21vtn2/7UtLbg8AAKAJpU8PjUu6PCI22T5a0gbbt0bE1sLbBQAAmDVFz1BFxBMRsan7eJekrZKW\n", - "l9wmAADAbJu1m9Jtr5K0WtK62domAADAbJiVhKp7ue+rki7rnqkCAAA4YhT/iZ3t+ZK+JukLEXHT\n", - "5OeHh4f3Px4cHNTg4GDpLgEAAMxoZGREIyMjlWKLJlTu/MbxOklbIuKaqWKGhoZKdgEAAOCQLFu2\n", - "TMuWLdu/vHnz5mljS1/ye52k35F0vu2N3X8XFN4mAADArCp6hioivi9mYwcAAEc4kh0AAICaGq/7\n", - "UnW69+yU80eykvuiVBmANsRm4zPlEzIlRkrFltRrJXuy5W8y7y9zXCxYsKBybF9fX+XYo446qnKs\n", - "lCsbkpEp+7Jnz57KsaOjo5Vjn3322cqxUq7ESOb7IlMiZsmSJZVjFy9eXDlWypXAyeyLUmOSic2W\n", - "GcrEH47vOM5QAQAA1ERCBQAAUBMJFQAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1\n", - "kVABAADUREIFAABQU+OlZ6qWcchMC9+WMhml+pwpF1BSpgRHJjajZBmevXv3Vo7NlkQo0YdsuZVM\n", - "fOaYK1WyJzPW2c9I5vOXKaGSGb9S+03KjXXm/WVid+/eXTk2Mx6Zki9SrhxQZkwyfR4bG6scu2vX\n", - "rsqxUv57oKrM5y9T6ihTKmfhwoWVY6VypcamM+07sf0bkkLSVD2KiPh6lQ3YnivpLknbI+Ith9RL\n", - "AACAFjtYavgWdRKq6VRKqCRdJmmLpFyFRwAAgB4xbUIVEb9bt3Hbg5IulPQXkv6kbnsAAABtNONF\n", - "Q9sn2L7O9s3d5VNs/37F9j8p6QpJ7bjpBwAAoIAqd2F9TtItkpZ3lx+SdPlML7L9ZkkjEbFRU9+H\n", - "BQAAcESocnv9yyLi721fKUkRMW67ys8IzpZ0ke0LJS2SdIztGyLiPRODhoeH9z8eHBzU4OBg9d4D\n", - "AAAUsmPHDu3YsaNSbJWEapft4/ct2B6S9PRML4qIqyRd1X3NeZI+PDmZkqShoaFKHQUAAJhNS5cu\n", - "1dKlS/cvb926ddrYKgnVhyR9S9LP2P6BpKWS3n4I/WrH5FAAAACH2YwJVURssH2upJ9X516oByMi\n", - "NYthRNwm6bZD6yIAAEC7zZhQ2e6T9H5J56hzlul2238TEdWnegUAADiCVbnkd4OkH0v6tDpnqH5L\n", - "0o2SfrNgvwAAAHpGlYTq1Ig4ZcLyd21vOVwdqFoLqmQtv1JtZ2IzNYdK1q/LyNRLK1VfMVMrTcr1\n", - "OROb7UdVmTpX2fpumdpVmX5k6ruNjo5Wji1Vjy4rs98ydeMydcqytQozx0amNl5/f3+RPmS0pbZp\n", - "5pjLjHXmsyfl9kem7UxsppZf5rjItFu67alU+Wa42/ZZ+xa6v/LbUHvLAAAAR4iDFUe+b0LMHbYf\n", - "UeceqldIenAW+gYAANATZiqODAAAgBkcrDjytonLtpepM+M5AAAAJqhSHPki2w9JeliduaS2Sfp2\n", - "4X4BAAD0jCo3pf+5pLMk/TAiTpT0RknrivYKAACgh1RJqMYj4n8kzbE9NyLWSnpt4X4BAAD0jCoT\n", - "S+y0vVjS7ZK+aHtE0q6y3QIAAOgdVc5QvU3SqKTLJd0s6UfiF4AAAAD7VSmOvO9s1F5JnyvaGwAA\n", - "gB50sIk9d6kzkedUIiKOORwdyJSTqCpbmqVUWZRMP0qVRMkq1Y/MOGfGI1vypQ39yPQhE7t79+7K\n", - "sdm2Sx1zpY637Gd6bKx6rfdMbGZMSrUrteP7pVQZpUwpIKlc6a7MfhsfH68cmy2jlGm7VHm0UmWt\n", - "SpaeORylkQ42D9XRdRu3vUTStZJOVSc5+72IGK7bLgAAQJvkqi7mfUrSv0TE223Pk3RU4e0BAADM\n", - "umIJle2fkvT6iLhEkiLiOUlPl9oeAABAU3IXn3NOlLTD9vW277b9t7b7C24PAACgESUTqnmSTpP0\n", - "1xFxmqSfSLqy4PYAAAAaUfIequ2StkfEnd3lr2qKhGrDhg37Hw8MDGj58uUFuwQAAFDN+Ph45V9O\n", - "FkuoIuIJ24/YfmVE/FDSmyRtnhy3Zs2aUl0AAAA4ZPPnz3/RdA0Hm96k9K/8/kidcjULJP2npPcW\n", - "3h4AAMCsK5pQRcQ9kk4vuQ0AAICmlbwpHQAA4CWh9CW/GVWd7r3UtPeZPmTbLtVuqdiSbWf2xYIF\n", - "CyrHLlq0qHKsJC1cuLBIbKZ8QqlSR9mxzvQ5Myb9/dVnR1myZEnl2MWLF1eOPeqo3BzCmfjMfsso\n", - "+bnOKFVGKVOaJfN9kS1HUqrUSeYzUqr8jdSeck5Nt5tVtR8H+5vDGSoAAICaSKgAAABqIqECAACo\n", - "iYQKAACgJhIqAACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGpqvPRM1Sn4S5ZaKDX9\n", - "fqbdTCmCTGzJaf1L9SOz3zKlL0r2I9NuqZIv2XIWmfc3Pj5eOTYzJqXaLVmSqFRppMwxlD3uM+Vk\n", - "SrW7Z8+eyrGZ4yJ73GfaLlUup2RpnUx85rso8xnJHMuljotsfKYf0yl6hsr2R21vtn2f7S/Zrj4i\n", - "AAAAPaJYQmV7laT3STotIl4laa6kd5XaHgAAQFNKXvL7saRxSf2290rql/Rowe0BAAA0otgZqoj4\n", - "P0l/Jem/JT0m6amI+NdS2wMAAGhKyUt+PyvpjyWtkrRc0tG2f7vU9gAAAJpS8pLfayX9ICL+V5Js\n", - "f13S2ZK+ODHozjvv3P94+fLlWrFiRcEuAQAAVPP444/riSeeqBRbMqF6QNKf2u6TNCbpTZLWTw46\n", - "/fTTC3YBAADg0AwMDGhgYGD/8qZNm6aNLXkP1T2SbpB0l6R7u6s/W2p7AAAATSk6sWdEfELSJ0pu\n", - "AwAAoGmUngEAAKiJhAoAAKCmxmv5ZWoaHclK1dwrWcuvlExtrkwtqqzMsZnpR6bdTA3LkjW/MkrV\n", - "QMzst2wtv/7+/sqxmVp+Y2NjlWNHR0eLxErl9nNfX1+R2Mz4ZWuwZY7PzOcvs98ydfEyx2a2H5la\n", - "jKXqoJaqMynlxq/qd/j1118//fYqbw0AAABTIqECAACoiYQKAACgJhIqAACAmkioAAAAaiKhAgAA\n", - "qKmVCdX27dub7gJqYPx618MPP9x0F1DDtm3bmu4CDtEDDzzQdBdQUysTqkcffbTpLqAGEqreRULV\n", - "20ioehcJVe9rZUIFAADQS0ioAAAAanKTpUls915dFAAA8JIVEVPWR2s0oQIAADgScMkPAACgJhIq\n", - "AACAmlqXUNm+wPYDth+y/ZGm+4Pp2f4720/avm/CuuNs32r7h7Zvsb2kyT5ierZX2l5re7Pt+21f\n", - "2l3PGLac7UW219neZHuL7Y911zN2PcT2XNsbbX+ru8z49bBWJVS250r6jKQLJJ0i6WLbJzfbKxzE\n", - "9eqM1URXSro1Il4p6d+6y2incUmXR8SpkoYkfaD7eWMMWy4ixiSdHxGvkfRqSefbPkeMXa+5TNIW\n", - "SftuZmb8elirEipJZ0j6UURsi4hxSV+R9NaG+4RpRMTtknZOWn2RpM93H39e0ttmtVOoLCKeiIhN\n", - "3ce7JG2VtEKMYU+IiNHuwwWS5qrzWWTseoTtQUkXSrpW0r5fjTF+PaxtCdUKSY9MWN7eXYfe8fKI\n", - "eLL7+ElJL2+yM6jG9ipJqyWtE2PYE2zPsb1JnTFaGxGbxdj1kk9KukLS8xPWMX49rG0JFXM4HEGi\n", - "MycHY9pyto+W9DVJl0XEMxOfYwzbKyKe717yG5R0ru3zJz3P2LWU7TdLGomIjXrh7NSLMH69p20J\n", - "1aOSVk5YXqnOWSr0jidtnyBJtgckjTTcHxyE7fnqJFM3RsRN3dWMYQ+JiKcl/bOkNWLsesXZki6y\n", - "/bCkL0v6Jds3ivHraW1LqO6SdJLtVbYXSHqnpG823CfkfFPSJd3Hl0i66SCxaJBtS7pO0paIuGbC\n", - "U4xhy9l+2b5fgNnuk/TLkjaKsesJEXFVRKyMiBMlvUvSdyPi3WL8elrrZkq3/auSrlHnJsvrIuJj\n", - "DXcJ07D9ZUnnSXqZOtf7/0zSNyT9g6RXSNom6R0R8VRTfcT0ur8K+56ke/XCpYWPSlovxrDVbL9K\n", - "nZuW53T/3RgRV9s+ToxdT7F9nqQPRcRFjF9va11CBQAA0GvadskPAACg55BQAQAA1ERCBQAAUBMJ\n", - "FQAAQE0kVAAAADWRUAEAANREQgWgcbbv6P73p21ffJjbvmqqbQHA4cQ8VABaw/Yb1Jnk8C2J18yL\n", - "iOcO8vwzEbH4cPQPAKbDGSoAjbO9q/vw45Jeb3uj7ctsz7F9te31tu+x/Qfd+DfYvt32NyTd3113\n", - "k+27bN9v+33ddR+X1Ndt78aJ23LH1bbvs32v7XdMaPvfbf+j7a22vzC7ewNAL5rXdAcAQC+UvvmI\n", - "pA/vO0PVTaCeiogzbC+U9H3bt3RjV0s6NSL+q7v83ojY2a1tt972VyPiStsfiIjVU2zr1yX9oqRX\n", - "S1oq6U7b3+s+9xpJp0h6XNIdtl8XEVwqBDAtzlABaBNPWv4VSe+xvVHSsKTjJP1c97n1E5IpSbrM\n", - "9iZJ/yFppaSTZtjWOZK+FB0jkm6TdLo6Cdf6iHgsOvdEbJK0qsZ7AvASwBkqAG33wYi4deKK7r1W\n", - "P5m0/EZJQxExZnutpEUztBs6MIHbd/Zq94R1e8V3JYAZcIYKQJs8I2niDeTfkfR+2/MkyfYrbfdP\n", - "8bpjJO3sJlO/IGlownPj+14/ye2S3tm9T2uppHMlrdeBSRYAzIj/6wLQBvvODN0jaW/30t31kj6t\n", - "zuW2u21b0oikX+vGT/yJ8s2S/tD2FkkPqnPZb5/PSrrX9oaIePe+10XEP9k+q7vNkHRFRIzYPnlS\n", - "25piGQBehGkTAAAAauKSHwAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADU\n", - "REIFAABQ0/8Dsw8TC+BipngAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEnpJREFUeJzt3X+QXXV5x/HPJ9nd7C4kYQghy4/Q0BZbkwESqgwggqjt\nUEbQtlakVK3t2OmolVJlRGbav9rR6nSkjtPOWKg/8FdbFdRpQWililiJQDYJCT+kYwqBkvA7LJBk\nE57+ce+GZZPNnicn3z33wPs1w3DPuc9+z3fP99yzT8459/s4IgQAAIADN6fpDgAAALQdCRUAAEBN\nJFQAAAA1kVABAADUREIFAABQEwkVAABATX1Nbtw2czYAAIDWiAjva33RhMr2uZKulDRX0lUR8TdT\nYy6++OK9fm7dunU66aSTprZVqJdSZi6uF154oVg/qsr0t+R+m8769et14oknvmRdqfnOsu2WGuvd\nu3cXaXfXrl2VY+fOnVs5VpL6+/v3Wrdx40YtX758r/UDAwOV2+3rK3Naef755yvHbt++PdX2s88+\nWzl2fHy8cmxm/DLHxXT7+IEHHtBxxx231/rM+A0NDVWOHRwcLBKbOYayx31G5nyxc+fOyrH7OoY2\nbNigFStW7LU+eyzX7cfBiM0c95l93AvzZq5evXra94rd8rM9V9JnJZ0rabmki2y/utT2AAAAmlLy\nGapTJd0fEZsiYlzS1yW9teD2AAAAGlEyoTpG0oOTljd3181oyZIlRTqE2XHkkUc23QUcoMWLFzfd\nBdSwcOHCpruAA8Rnr/1KJlQHfLOThKrdGL/24qTebiRU7cU/RNuv5EPpD0laOml5qTpXqV5i3bp1\ne14vWbKEP8YAAKAnbNu2Tdu2basUWzKhul3SCbaXSXpY0oWSLpoaNPXbfAAAAL1gwYIFWrBgwZ7l\nhx9+eNrYYglVROyy/UFJ31Nn2oSrI+LuUtsDAABoStF5qCLieknXl9wGAABA0xqdKV2qPgHYnDnV\nn5/PxEq5yS9LTiJXVWYSyexEaJkJ2UpN9JaJzewLqX2TuGZ+v8x+k3ITAGYmF8y0m4nNyI5dqUlc\nS01wmD3uM0pNBpw5L8+bN69ybPacnOlHL0w6WXIyy1Lnw1L7rVc+19Ohlh8AAEBNJFQAAAA1kVAB\nAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAAQE0kVAAAADWRUAEAANTUeC2/\nqjWbStWXyuqF2k7ZWoUZmf3c11fm8ClZuyojsy8ysaVqV2XrXGVqV5WqH1mqRmf2GCpVGy9zXJSs\nO9YL561MnzO1I7M1LEvVFc3EZuoPZs+zmTqImdjBwcHKsZnfLxObzQMyn6mqtWmvv/76ad8reoXK\n9lLbN9veYPsu2x8quT0AAIAmlL5CNS7p0ogYtX2opDts3xQRdxfeLgAAwKwpeoUqIh6JiNHu6zFJ\nd0s6uuQ2AQAAZtusPZRue5mkVZJum61tAgAAzIZZSai6t/u+IemS7pUqAACAl43i3/Kz3S/pm5K+\nHBHXTX1/dHR0z+uRkRGNjIyU7hIAAMCMHn/8cT3xxBOVYosmVO58x/FqSRsj4sp9xaxcubJkFwAA\nAA7IokWLtGjRoj3L999//7SxpW/5vU7S70s6x/aa7n/nFt4mAADArCp6hSoifiRmYwcAAC9zJDsA\nAAA1NV56poSSpUsybZcql1Oy9Eym7cy0/qX6nN3HmfhSZVEysaVKl2TbLhVb6rjI7otMfOb3y5TV\n6O/vrxybKQOSjc/0o9Rxnyk989xzz1WOlaSdO3cWic2M9dDQUOXY4eHhyrFSrpzMwMBA5dhSfxsy\nJXsy4yFJO3bsOOj9aKz0DAAAwCsBCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAA\nNZFQAQAA1ERCBQAAUBMJFQAAQE2Nl56pWsqlZMmXUqUkMjK/X7asRql+ZPZbyXJAGaX2c6nSLKXK\nZGTjM+UhMvr6qp+CMrHZkjaZsX7++ecrx2ZKX5Q63kq2nfk87d69u0hs9nxYqh+Zz0gmNnvuLFXy\nLCPzd7Jkf2e7H9OeoWz/jqSQtK+tRER8q8oGbM+VdLukzRFx/gH1EgAAoIft759856uTUE2nUkIl\n6RJJGyXNr9opAACANpk2oYqIP6jbuO1jJZ0n6a8l/Xnd9gAAAHrRjA8a2B6xfbXtG7rLy23/UcX2\nPy3pMknlHvoBAABoWJUnN78g6UZJR3eXfybp0pl+yPZbJG2NiDXa93NYAAAALwtVvjZzRET8s+3L\nJSkixm1X+YrCGZIusH2epEFJC2x/KSLePTlo7dq1e14vWbJEIyMj1XsPAABQyDPPPKOxsbFKsVUS\nqjHbiyYWbJ8m6emZfigirpB0Rfdnzpb0kanJlCSdfPLJlToKAAAwm+bPn6/581/8Tt2WLVumja2S\nUH1Y0ncl/aLtH0taLOntB9Cv3piICAAA4CCbMaGKiDtsnyXpV9R5FureiBjPbCQifiDpBwfWRQAA\ngN42Y0Jle0jS+yWdqc5Vplts/0NEbC/dOQAAgDaocsvvS5K2SfqMOleofk/SNZJ+t2C/AAAAWqNK\nQrUiIpZPWv6+7Y0HqwPbtx/8C13ZmjyZul+9UCcpW6csI1MXKxObqYlVqj5Ytu1SsZnxGxgYKNKu\nJA0ODhZpO3NcZOoJZs4V2bqGGZn6YJMfZp3J8PBw5diS56FS9Twz+y3Th1J1JrNKHZ/ZWoWZfZcZ\nk8z5Yt68eUVi+/v7K8dm46uea0dHR6d9r8pZ8k7bp08sdL/ld0elLQMAALwC7K848vpJMbfaflCd\nZ6iOk3TvLPQNAACgFWYqjgwAAIAZ7K848qbJy7aPVGfGcwAAAExSpTjyBbZ/Junn6swltUnS9YX7\nBQAA0BpVHkr/K0mnS7ovIo6X9CZJtxXtFQAAQItUSajGI+IxSXNsz42ImyW9pnC/AAAAWqPKPFRP\n2p4v6RZJX7G9VVK10ssAAACvAFWuUL1N0nOSLpV0g6T7xTcAAQAA9qhSHHniatRuSV8o2hsAAIAW\n2t/EnmPqTOS5LxERCw5GBw455JBKcZnp9LMybWfKAJRqN1uKoJRMOZKS5XIyMqVqSpXWycSOjVW/\nu16yREVm/EqVDdmxY0eRdqVc2ZBM2+Pj45VjS/5+pfqcOZYzZWpKlgPrhfNWZr9lxkPKHUelxrrU\nuSVTKicb39dX5QmoGdqY7o2IOLRu47YPk3SVpBXqJGd/GBE/qdsuAABAL6mfku3f30n694h4u+0+\nSdUuRwEAALRIsYTK9kJJr4+I90hSROyS9HSp7QEAADSl5IMtx0t61Pbnbd9p+x9tDxfcHgAAQCNK\nJlR9kk6R9PcRcYqkZyVdXnB7AAAAjSj5DNVmSZsj4qfd5W9oHwnVmjVr9rweGRnRUUcdVbBLAAAA\n1ezatavyNxyLJVQR8YjtB22/KiLuk/RmSRumxq1atapUFwAAAA5YX1/fS6ZU2N9UE6W/5fen6pSr\nGZD0P5LeW3h7AAAAs65oQhURayW9tuQ2AAAAmtYb01cDAAC0WOlbfjOqWjYgM4V8tlxApu1MmYNS\n7ZYsnVCqDEAmdt68eZVjh4aGKsdK0uDgYOXYgYGByrGZ/ZYpA1KqtIeUG5PMfp4/f37l2EWLFlWO\nPeywwyrHLliQq4w1PFx9RpdMWY1MaY82lp8qdd7KnAMysZLU399fOTZTjiTTj+xnNSNzbJQ6F2Vi\nM0qWnql6fO7v+OEKFQAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIF\nAABQEwkVAABATSRUAAAANTVeeqbqFPWZEg7Zae8zpSQysZnyAiVLEWSUKvGT+f0y45cpnVCy7Uy7\nmdIXmfI3mXal3Jhk9sXOnTsbj82UGMrGlyqNVKrUkZQ7b2WO5e3bt1eOHRsbqxybOd9nfjcpdyxn\n2s4cF5mSNpnjIhtfqjxapvxNqXOAlDuOMrHTKXqFyvbHbG+wvd72V23nii4BAAC0QLGEyvYySe+T\ndEpEnChprqR3ltoeAABAU0re8tsmaVzSsO3dkoYlPVRwewAAAI0odoUqIp6Q9LeSHpD0sKSnIuI/\nSm0PAACgKSVv+f2SpD+TtEzS0ZIOtX1xqe0BAAA0peQtv9dI+nFEPC5Jtr8l6QxJX5kcNDo6uuf1\nyMiIRkZGCnYJAACgmkcffVSPPfZYpdiSCdU9kv7C9pCk7ZLeLGn11KCVK1cW7AIAAMCBWbx4sRYv\nXrxn+Z577pk2tuQzVGslfUnS7ZLWdVd/rtT2AAAAmlJ0Ys+I+KSkT5bcBgAAQNMoPQMAAFATCRUA\nAEBNjdfyq1orKVNfKlvLr20yNZWyNb9K6ZUaiJn9kamJlelHpn5Wpg8l69dlanPt2LGjSGzmGMrW\nPzvkkEMqxy5cuLBIPzLnrWzdsUx8pj5f5hgaHh4u0m6mXqKUG+tMPzJjnTmWM589KTfWmdp4pc7h\nmXNytl5ppmZi1bavvfbaad/rjb+2AAAALUZCBQAAUBMJFQAAQE0kVAAAADWRUAEAANREQgUAAFBT\nTyZUjzzySNNdQA2MX3s9+OCDTXcBNWzatKnpLuAA3XvvvU13ATX1ZEK1ZcuWpruAGkio2mvz5s1N\ndwE1kFC113333dd0F1BTTyZUAAAAbUJCBQAAUJMz08kf9I3bzW0cAAAgKSL2WVun0YQKAADg5YBb\nfgAAADWRUAEAANTUcwmV7XNt32P7Z7Y/2nR/MD3b/2R7i+31k9Ydbvsm2/fZvtH2YU32EdOzvdT2\nzbY32L7L9oe66xnDHmd70PZttkdtb7T98e56xq5FbM+1vcb2d7vLjF+L9VRCZXuupM9KOlfSckkX\n2X51s73CfnxenbGa7HJJN0XEqyT9Z3cZvWlc0qURsULSaZI+0P28MYY9LiK2SzonIlZKOknSObbP\nFGPXNpdI2ihp4mFmxq/FeiqhknSqpPsjYlNEjEv6uqS3NtwnTCMibpH05JTVF0j6Yvf1FyW9bVY7\nhcoi4pGIGO2+HpN0t6RjxBi2QkQ81305IGmuOp9Fxq4lbB8r6TxJV0ma+NYY49divZZQHSNpcu2L\nzd11aI8lETEx1f0WSUua7Ayqsb1M0ipJt4kxbAXbc2yPqjNGN0fEBjF2bfJpSZdJemHSOsavxXot\noWIOh5eR6MzJwZj2ONuHSvqmpEsi4pnJ7zGGvSsiXuje8jtW0lm2z5nyPmPXo2y/RdLWiFijF69O\nvQTj1z69llA9JGnppOWl6lylQntssT0iSbaPkrS14f5gP2z3q5NMXRMR13VXM4YtEhFPS/o3Sb8m\nxq4tzpB0ge2fS/qapDfavkaMX6v1WkJ1u6QTbC+zPSDpQknfabhPyPmOpPd0X79H0nX7iUWDbFvS\n1ZI2RsSVk95iDHuc7SMmvgFme0jSr0taI8auFSLiiohYGhHHS3qnpO9HxLvE+LVaz82Ubvs3JV2p\nzkOWV0fExxvuEqZh+2uSzpZ0hDr3+/9S0rcl/Yuk4yRtkvSOiHiqqT5iet1vhf1Q0jq9eGvhY5JW\nizHsabZPVOeh5Tnd/66JiE/ZPlyMXavYPlvShyPiAsav3XouoQIAAGibXrvlBwAA0DokVAAAADWR\nUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABaJztW7v//wXbFx3ktq/Y17YA4GBiHioAPcP2G9SZ\n5PD8xM/0RcSu/bz/TETMPxj9A4DpcIUKQONsj3VffkLS622vsX2J7Tm2P2V7te21tv+4G/8G27fY\n/raku7rrrrN9u+27bL+vu+4Tkoa67V0zeVvu+JTt9bbX2X7HpLb/y/a/2r7b9pdnd28AaKO+pjsA\nAHqx9M1HJX1k4gpVN4F6KiJOtT1P0o9s39iNXSVpRUT8b3f5vRHxZLe23Wrb34iIy21/ICJW7WNb\nvy3pZEknSVos6ae2f9h9b6Wk5ZL+T9Kttl8XEdwqBDAtrlAB6CWesvwbkt5te42kn0g6XNIvd99b\nPSmZkqRLbI9K+m9JSyWdMMO2zpT01ejYKukHkl6rTsK1OiIejs4zEaOSltX4nQC8AnCFCkCv+2BE\n3DR5RfdZq2enLL9J0mkRsd32zZIGZ2g3tHcCN3H1asekdbvFuRLADLhCBaCXPCNp8gPk35P0ftt9\nkmT7VbaH9/FzCyQ92U2mflXSaZPeG5/4+SlukXRh9zmtxZLOkrRaeydZADAj/tUFoBdMXBlaK2l3\n99bd5yV9Rp3bbXfatqStkn6rGz/5K8o3SPoT2xsl3avObb8Jn5O0zvYdEfGuiZ+LiGttn97dZki6\nLCK22n71lLa1j2UAeAmmTQAAAKiJW34AAAA1kVABAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA\n1ERCBQAAUBMJFQAAQE3/D63jLyWOsr2WAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2054,124 +721,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGPlJREFUeJztXUlsbNlZ/v6a53myy37Pft1B6kiRkk1YJFGyiKKOkJKw\n", - "IYqEFAWEWDAJFjRhQWAXIhEhWCAg6SgMSkCgoICESAeBaBYMjbrTHUgP7nbZZbuq7JrnW9NhUfWf\n", - "Pve6bNfk91zl+0lHVa7yuz717lf//59/JCEETJiYB5YnvQET6weTNCbmhkkaE3PDJI2JuWGSxsTc\n", - "MEljYm4sTBoiepaIXieit4jouVVuysTdBi3ipyEiK4A3AHwcwCmA/wbwOSHEj1a7PRN3EYtKmg8C\n", - "OBBCZIQQfQDfBvDp1W3LxF2GbcF/lwaQVX4+AfDj6i8QkelqXnMIIWja64tKGpMQ9xiLkuYUwK7y\n", - "8y7G0sbEPcCipHkJwHuIaI+IHAA+C+C7q9uWibuMhWwaIcSAiH4RwD8BsAL4unlyuj9Y6Mg904VN\n", - "Q3jtsWpD2MQ9hkkaE3PDJI2JubGoc2+tYbVa5bJYLCDSq24ikq/zc3UZMRwOMRqN5ONoNIIQAkII\n", - "+bP6/rrj3pHGYrHA7XbD7XbD4/HA7XZLcgBjwthsNt1yOp1wuVxwOp1wOp2XrtnpdHSr3+/rlqZp\n", - "6Ha7cq17Xva9Iw0RweVyIRQKIRwOIxgM6iSLxWKR5HA4HHC5XPD5fPD5fPD7/fB6vZeuWavVUK1W\n", - "UavVUKvV0Ol00O125WO9Xkej0cBoNIKmaSZp1g1EBLfbjVAohGQyiXg8riOM1WqVEsjj8cDj8SAc\n", - "DiMSiSAcDiMcDl+65vn5Oc7Pz3FxcYHz83M0m03dstlsEEKg2+0+gU+8emw8aVjdWK1W2Gw2uFwu\n", - "RKNRJJNJpNNpbG1t6ewVJo3H44HX64XX60U0GkUkEkEsFkMkErn0N1hiBQIBeL1e1Ot1KV3q9Tos\n", - "FgsGgwFarRasVisASGmzjlJn40ljsVjg8/kQCAQQCAQQCoWQTqexvb2N7e1tJBIJnaRh9eRyueTy\n", - "+/3weDxSYhjhcDjg9/sxGAxARPD7/QgEAlLSEBF6vR6azSaq1Sp6vZ7OeF433AvS+P1+pFIpuba2\n", - "tpBMJrG1tYVYLCYNYSaOzWaD3W6Xy+Vywe12w263T/0bDocDPp8PFosFLpcLrVZLt1jKVCoVuFwu\n", - "AEC/38dgMJAnrXXCxpPGarXC5/MhkUhgf38fe3t7SCaTSCQSSCQSiEajAKA7PbHEISLd8fw6ScOE\n", - "CQQCaLfb6HQ6usdKpYJCoQCXy4XhcCiP4+uIpUhDRBkAdQBDAH0hxAdXsallwDea7Rifz4d4PI7t\n", - "7W08fPgQTz31FKLRKKLRKGKxGEKh0KVrsI+FCcLSoN/vo9fr6QjGy263S/K43W7dEbtUKiGfzyMU\n", - "CsHn80EIASLCaDRCr9d7rP8/q8CykkYA+JgQoryKzawCrI7YholEInjqqafw4MEDqY4CgYC0UaZh\n", - "OBzKNRgMJFl6vR76/b40mHk5HA65nE4nLBYL7Ha7JIfX60UoFEIkEkEikYDdbketVsNwOESn07mX\n", - "6mlqJPRJwWq1wu/3I5lMIpVKYXt7G7u7uzrSsHNvGmlYbahEabfbuqXaO3a7XZ6y2Ihmuwh41xAP\n", - "BoPy1AZAEsbojV4HrELSfJ+IhgD+WAjxpyvY01Jg0qRSKTx69Aj7+/vS+E2lUojFYroj+DQMh0Pp\n", - "ye10OqjVaqjX66jVamg0GtL5xw5APjU5HA65B7aN7Ha7jjSJRAL9fl86/e4jaT4khMgRURzAC0T0\n", - "uhDixVVsbB4YbQu/3494PI7d3V08evRI2i/RaBSBQEBnr7AKUtXRNCO2Wq3KR/U47nK5MBgMpJTh\n", - "UxT7h9iZyMf+cDiMer1+paRbByy1ayFEbvJ4QUTfwbi05bGSRo0V2e126YsJh8PS4A0EAvImCSEu\n", - "2SvsjOPFBiyHARqNhlzNZlNnwzgcDjx48EAayHw0Z0nGxFGP8izppgU/1wELk4aIPACsQogGEXkB\n", - "fALA76xsZ7PvQ3p6nU4n/H4/gsGgjjRGG2Y4HEp7pdPpoFAoIJfLIZfLoVAoQNM0uZg86lJvvt1u\n", - "R7/fBxHJkIPL5YLD4dBJGzaeVcKogdJ1wjKSJgngO5MPbQPwl0KI761kV3OAVZLT6YTX651KGr7B\n", - "qqRhwjSbTeTzebzzzjs4ODjA4eGhJJR6YlIf1bQKfnS73QiHw0ilUlL18d9T/T2qpFlHwgBLkEYI\n", - "cQjg/Svcy0LgG+JwOKTtwBFpPnarGA6H6Ha7aDabaDQaqFarODs7QyaTwVtvvYU33nhDqi1+ZHXG\n", - "bn9VYlitVmxtbaFWq6HVaqHX60m1pTrvVN+PalOtI9bTEjNAtRccDoe0KfibrN70Xq+Hi4sLGZEu\n", - "FArIZDI4OztDpVKBpmnSMOZHNakKAFwulwxqejweeSoLBoPwer1SPXFwko3rRqOBcrmMer2OdruN\n", - "fr+/luRZe9Ko9gKTRrUbWB2xaul0Ori4uMDx8TGOjo6QzWZRKBRwfn6OarWKbrd7KdNOlQ5EBKfT\n", - "KR2HrJKi0SiCwSA8Hg+cTqeOuP1+H51OB/V6HaVSCbVazSTNk4YxyGi0GdiGYbV0cXGBbDaLN998\n", - "E2+//bYujYEz64xqRL25TqcTwWAQ8XhcBkFVSWM8HV0ladYxhABsCGmMMBq67MntdDqoVqvI5/PI\n", - "ZrM4PDzEwcHBJaP3OrCkYV9QOp1GIpFAJBJBIBCAy+XSBTx5P5qmodVqoV6vo9VqSTVoSponACEE\n", - "er2eTHCyWq3wer2wWq3QNA35fF4XPGw0Gjg8PEQul0OtVpNE4cjzLHA4HDKelEgkEA6H4fV6ZcBy\n", - "XU9Fs2LtScPGbbvdlnaIxWJBr9dDtVpFOByWUoTDAoVCAYVCQZKGDeV5SRMOhyVpfD4fnE6nzju9\n", - "qVh70rCk4aTtTqcDTdNQq9WQz+fh9XplVcBgMECv19N5eHu9ngxSzkoaDlKGQiHE43GEQiGdpGFs\n", - "KnE2gjRMCmBsFHO8iE8xxlQH47oJarWC1WqF2+2G3+9HKBRCLBaTUW72Aqt5OMC7dVHGta5Ye9IY\n", - "oaY2ENGlG6b6bGaRLFzy4na7pX+Gj9gc03I6nfLEBOASOflkxks1hNcRG0caYHzT+BtvtVqvrHic\n", - "VR1xGmcoFEIoFLrkl2GHIqsm9YivaZo80vMyT093DEwM9uayXWH0uczqymdJEwwGkUgkZHKXMXpu\n", - "s9l0pNE0De12Wx6z1cU+mo2VNET0PICfAHAuhHjf5LUIgL8C8BBABsBPCSGqt7jPubCszaDmALMN\n", - "Ew6HkUwm8eDBA0kav98vy3rZ5mEbi31EXHXJ0qbZbELTtLlU5F3DLAkd3wDwrOG13wDwghDixwD8\n", - "8+TnjQBHzT0ejy5Fc2trCw8ePMDe3h5SqRTC4bAkDAAp3fr9PprNJkqlEs7OznB4eIjT01OUSiVZ\n", - "zmKMZa0bbiTNJBOvYnj5UwC+OXn+TQCfWfG+niiYNIFAQKZobm9vY2dnB3t7e9ja2kIoFILb7ZYq\n", - "iY1sLopTSXN2diZJY+wssY5Y1KZJCiEKk+cFjHNrNgKqpOH0zEQiga2tLezu7uLhw4fyJMUhAyYB\n", - "n5aMpCkUCiiXyzrSrCthgBUYwkIIsWn99YzqKZFIIJVKIZ1OY3d3V1fGy3aMGklvNBoolUrI5XI4\n", - "OjpCpVKRke1N6FGzKGkKRJQSQuSJaAvA+So39aRhs9l0SV2qL2Zamma/39eV4RaLRZRKJZmI3mw2\n", - "0e121/aIbcSimc3fBfD5yfPPA/i71WznyYNPTE6nEx6PRxb/M2mmxZY49lWtVmXLkXK5jHK5rCPN\n", - "TRH0dcEsR+5vAfgogBgRZQH8FoAvA/hrIvpZTI7ct7nJxw3ufjWNNNNiSyxpqtUqLi4udJJGDYpu\n", - "iqS5kTRCiM9d8dbHV7yXJwZVehhVE/eccblcsNvtl5yFQghomoZmsymL/Jk03B1r3W0YIzbOIzwv\n", - "LBYLvF4vfD4fvF4vAoEAdnZ2sLOzg3Q6jZ2dHcTjcQQCAdlvj9MsOOXi7OwMJycnyGazOD4+Ri6X\n", - "Q7VaRafTecKf7nZw70nDTYg4RMDHa7WfTSgUQjAY1JGm1WrJOBKT5ujoCJlMRqqmdSzunwX3njRc\n", - "oJ9MJmX/mng8LlcsFpNRbqfTKfN3WB1VKhXkcjmcnJzg+PgYmUwGzWYTrVZrY3rsGXHvSUNEOtI8\n", - "88wzusaMoVDoUs4v2zDlcllWZ56eniKbzSKTyehqw01JsyEwtn/lTp5cnakavmqYABgbwK1WC+Vy\n", - "WSao5/P5qR7fTSQMcA9Jo9ZJqZWZbAxzr2DVL2PMw2Epk8/ncXR0hEKhgGq1qvP4btqJScW9Iw0A\n", - "XXEdd/JU68D5NZY0akkux5bK5bIME1SrVUka1RdjSpoNglpcZ1RPgUBAV3jHpBFCyMR0VT0dHx+j\n", - "3W7L7hLr2OJ1Xtw70vBpibuPx2Ix2fHT7/frsvBYNTFReLHjrtFooNPpyNqpTVZJKu4tabhjOefI\n", - "JBIJ+P1+KV3U05LaOLpSqch67GazKQdocHLVfcC9JA03cnz06BGefvppJJNJnaQxpj2wpKlUKjg/\n", - "P5eShgOR69x9fBHcGOUmoueJqEBErymv/TYRnRDRy5NlTAe9s2APMJPmve99L/b39yVpuIHAdX6Z\n", - "YrEoScPFeaZ60uMbAP4QwJ8prwkAXxVCfPVWdrVCcCYeG7dsz3BogPNljP1kePV6PZRKJRQKBZye\n", - "niKTyciS3k2Y3bQIZolyv0hEe1PeWouaUzV9k0f2qFNTfD6frgkRVxNwv712u41isYhcLic9vqye\n", - "NjVMcBOWaS/5S0T0AyL6OhFd7hV/R8D9fbn2OhqNSknj9/ulpOEmRMC7/WTY+C0Wi8jn8zIomc/n\n", - "TdIsgD8CsI9xz70cgN9b2Y5WDCaNmvMbiUQQCoWkpFHVE/tjuAESJ1YxaTKZjEmaRf6REOJcTADg\n", - "axj3D74zUPv28lidSCSCVCqly4/hagJj+iaXorTbbdkUiUtsuZfNulcULIOFSDNJJmf8JIDXrvrd\n", - "x41psSWfz4doNCrLUBKJhAwXTCMNG8CsorgJtUqY+3JSmoZFcoS/BOBjRPR+jE9RhwB+/lZ3OSfU\n", - "vr089S0ajcrhGolEQkoalSw8TodrsdX2a6qU2fTY0k1YNEf4+VvYy8rAHl1VPUWjUaRSKezu7sr+\n", - "wty5ygi1Z1+r1dL5Yu6LA+86bJxHmCe8caOhSCSCZDIph5aqbVtVw5frsDVNk4bv6ekpjo+PpV9G\n", - "07Qn/fHuBDaWNOpQLm7ZypPdeOQOH7FZqrA6KhQKODs7QzabxdHRkfQA39fTkhEbRxqehMJzt9Pp\n", - "tI40fr9f16aenXncR6ZSqeikjJrza0qaMTaONDzcgkmzs7Mj1RN34VT7z6jH61qthmKxeEnSzNOf\n", - "7z5g40mTTqd1dUvGGUtCCLTbbZTLZZyenuLk5ASnp6coFotoNBrQNG0jmiuuEhtLGm53tr29LSUM\n", - "jwtUwaQpFos4OTnBwcEB8vm8rp/MOo9Dvg1sHGm4R54qaTidc9owdq4uKJVKyGazePvtt2WyFZOG\n", - "f++++mWM2DjSTFNP6jAvI0aj0SVJwy3xWTWZZNFj40hjHP13VU8ZFWq7WFZH6nXmhbGLqPF1da/G\n", - "x2l7NL7PSe88jGzezuiDwUA3cnFeL/fGkWYRGIm27AQ4lk6q8cxE5Ef+u4C+eG+aNFTfs1gssnKC\n", - "Uztmmbqrfg4+KdZqNVSrVWiaduWYomkwSQPoCGO323U3fBHSGFukTbsZqlRhMnC87Kr9sYoNBAKI\n", - "xWJybPQ0A98IdQ+1Wg2FQkEeAtRU1aUlDRHtYpzmmcA4OPknQog/uOt9hOcB37yrJM0isFgs0qdz\n", - "07dXJcxVA1HV92w2GwKBgJw1lU6nZTeL66Duo1gsAgA6nQ7K5bJsiTJrXO0mSdMH8KtCiFeIyAfg\n", - "f4joBQBfwLiP8FeI6DmM+wivZS9hbgCQSCSwv78vh3NwWcoiDj11PLPq52EJpKoaridXl1FFqZLG\n", - "ZrPJ8AhXUcwraZxOp2zD3263YbfbdTOxbvrM15JGCJEHkJ88bxLRjwCkMe4j/NHJr30TwL9iTUlj\n", - "sVgQDAaxs7MDIQT8fr9uassiUe1WqyVDD9xwWh2mygRgEng8HtlUyefzTSWNurh8mGc1zGLTAO8S\n", - "x263S2L3ej3Y7XbZVZ2/LNdhZptmklz+AQD/iQ3qI8ykEULA5/Nhe3tbZ88s4tRjA5MfeQ4CSzA+\n", - "1bENpQ7rCIVCl+waVYXyOETumaM2wJ4FQgg4HA6dRGVJxnXqN2Em0kxU098C+BUhREPVueveR5gN\n", - "S6/Xi1QqdamnzCJ2TalUQrFYlIu/0dxn2DgOOhKJyAZK8Xh8KmmMezb2Mr4J6udg9aSWE3N7/llc\n", - "DLNk7tkxJsyfCyG49eud7SPMUWt1YLs6RXeaKL/q9WX2AEBmDvLNMUoa3lcwGJRNlILBoLxxsxLW\n", - "OABNtZ+mqddKpYJGo6HLSLy4uEChUJgpkn/T6YkAfB3A/wkhfl95i/sI/y7uWB9h/ta0222Z6sBi\n", - "nMfs3Da4zkoIAZvNdq1Nw4NauSeO2j1UfWRMIxJ/SbhzhSpFeFSjilqthlwuh/PzcznymcdGd7vd\n", - "G0c/3/Q/+CEAPw3gVSJ6efLaF3GH+wirtde1Wg3lchmBQECWsjwO8IxLm80Gt9t9abqdUb04HA6Z\n", - "GMYOQP4ss6jKwWCAdrsth5DxOGleRmnTaDSk6lSHy08j2DTcdHr6d1xdsXAn+wgzadjrWalUdLVP\n", - "jwNceOd2uy85zVSPMHDZyGXSGH1F15GH50vV63UpOZrNplzG0xDP+ORmTOrgsqVJs44YjUZyPkE2\n", - "m4XNZpP/KSy+543VGI+8qqNtmrrjagiGmsTV7/flqeyq0xkP5+DfV22Uab/PRX28+LjPk+2MpNE0\n", - "TQ4s47a23DLlXpJmOByi0Wggn88DGH+rUqmUPALHYjEAl4OF10FtIMB+lXlsJJZ86k1k+2aaocrk\n", - "ZjWjHtmntcrvdru6pktcPcHORePfYMnEf4ftISb0Tdg40oxGIzQaDRCRTgyzyK7X67q29rOQhj21\n", - "LpdLGoyj0UjaLDeBc5B5L3xiYUPVCN4nLyYBd0o3SgOOWvP7KsGmNVtiSaZ6vudpzLRxpBkOh1Id\n", - "XVxcwO12y65VXGY7D2mISEoWj8cDj8eD0WgkbZZZwJ20yuUyzs/PL0kC47ebc5VLpRLK5bKs8rzK\n", - "sFVTO4z20LQY2lW/M6szc+NIo9YxAeMbxmOQiQiaps1NGvXI7na7Ua1WUS6XUSwWEQ6Hb7wGO/t4\n", - "QguThSWD8aayq4CXao91u90nnnq6caQxQgiBTqeDarUKItIZwrOqJ0524mMx57Hw400wDnNnHwqr\n", - "BSNYIqqlMzz+5y5kEW48aUajkSRKr9dDrVYDMJsBzL9nTE1Q7ZtZ0hLUCDL36OM1LWeHKz15qW3z\n", - "7wLotph7V+JRaq7MoumbRnVmPILfBGNqxFXOO4aaBDbNTnlcEEJM/WZtPGlMLI6rSLNM+zQT9xQm\n", - "aUzMjWtJQ0S7RPQvRPS/RPRDIvrlyetr20fYxPK41qYhohSAlJojDOAzGEe1G+KaPsKmTbP+uMqm\n", - "WTRHGFiTPsImVo+ZbRolR/g/Ji+tRR9hE6vHTKSZqKa/wThHuIk16iNsYvW40U8zyRH+BwD/aEj5\n", - "5Pf3APy9EOJ9htdNm2bNsZCf5qocYbrDfYRN3D5uOj19GMC/AXgV47JcAPhNAJ/DWDXJPsJKHRT/\n", - "W1PSrDnMMIKJuWGGEUysDCZpTMwNkzQm5oZJGhNzwySNiblhksbE3DBJY2Ju3JqfxsTmwpQ0JuaG\n", - "SRoTc+NWSUNEzxLR60T01qQL6LLXyxDRq5MU0/9a4N8/T0QFInpNeS1CRC8Q0ZtE9L15coOuuN7C\n", - "qbDXpNcutMdbS9e9rq53mQXACuAAwB4AO4BXADyz5DUPAUSW+PcfwTiR7DXlta8A+PXJ8+cAfHnJ\n", - "630JwK8tuL8UgPdPnvsAvAHgmUX3eM31Ft6jEOJWJc0HARwIITJCiD6AbwP49Aquu3CaqRDiRQAV\n", - "w8ufwritLSaPn1nyesCCexRC5IUQr0yeNwGoLXjn3uM111t4j8Dtqqc0gKzy8wne3fCiEAC+T0Qv\n", - "EdHPLXktxm20t106FVZJr11JC95VpuveJmlu4yz/ISHEBwB8EsAvENFHVnlxMZbjy+576VRYMrTg\n", - "XXaPq07XvU3SnALYVX7exVjaLAwhRG7yeAHgOxirwGVRmJTqcEbiUu1thRDnYgIAX5t3j3RNC95F\n", - "9qhc7y/4esvu8TZJ8xKA9xDRHhE5AHwW41ayC4GIPETknzz3AvgEVpNmyu1tgRW0t10mFfaq9NpF\n", - "93hr6brLnGZmsN4/ibHFfgDgi0teax/jE9grAH64yPUAfAvAGYAexvbWFwBEAHwfwJsAvgcgtMT1\n", - "fgbjqTWvAvjB5OYm57jehwGMJp/x5cl6dtE9XnG9Ty6zRyGEGUYwMT9Mj7CJuWGSxsTcMEljYm6Y\n", - "pDExN0zSmJgbJmlMzA2TNCbmhkkaE3Pj/wFJ7Hv45ZreFAAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGPlJREFUeJztXUlsbNlZ/v6a53myy37Pft1B6kiRkk1YJFGyiKKOkJKw\nIYqEFAWEWDAJFjRhQWAXIhEhWCAg6SgMSkCgoICESAeBaBYMjbrTHUgP7nbZZbuq7JrnW9NhUfWf\nPve6bNfk91zl+0lHVa7yuz717lf//59/JCEETJiYB5YnvQET6weTNCbmhkkaE3PDJI2JuWGSxsTc\nMEljYm4sTBoiepaIXieit4jouVVuysTdBi3ipyEiK4A3AHwcwCmA/wbwOSHEj1a7PRN3EYtKmg8C\nOBBCZIQQfQDfBvDp1W3LxF2GbcF/lwaQVX4+AfDj6i8QkelqXnMIIWja64tKGpMQ9xiLkuYUwK7y\n8y7G0sbEPcCipHkJwHuIaI+IHAA+C+C7q9uWibuMhWwaIcSAiH4RwD8BsAL4unlyuj9Y6Mg904VN\nQ3jtsWpD2MQ9hkkaE3PDJI2JubGoc2+tYbVa5bJYLCDSq24ikq/zc3UZMRwOMRqN5ONoNIIQAkII\n+bP6/rrj3pHGYrHA7XbD7XbD4/HA7XZLcgBjwthsNt1yOp1wuVxwOp1wOp2XrtnpdHSr3+/rlqZp\n6Ha7cq17Xva9Iw0RweVyIRQKIRwOIxgM6iSLxWKR5HA4HHC5XPD5fPD5fPD7/fB6vZeuWavVUK1W\nUavVUKvV0Ol00O125WO9Xkej0cBoNIKmaSZp1g1EBLfbjVAohGQyiXg8riOM1WqVEsjj8cDj8SAc\nDiMSiSAcDiMcDl+65vn5Oc7Pz3FxcYHz83M0m03dstlsEEKg2+0+gU+8emw8aVjdWK1W2Gw2uFwu\nRKNRJJNJpNNpbG1t6ewVJo3H44HX64XX60U0GkUkEkEsFkMkErn0N1hiBQIBeL1e1Ot1KV3q9Tos\nFgsGgwFarRasVisASGmzjlJn40ljsVjg8/kQCAQQCAQQCoWQTqexvb2N7e1tJBIJnaRh9eRyueTy\n+/3weDxSYhjhcDjg9/sxGAxARPD7/QgEAlLSEBF6vR6azSaq1Sp6vZ7OeF433AvS+P1+pFIpuba2\ntpBMJrG1tYVYLCYNYSaOzWaD3W6Xy+Vywe12w263T/0bDocDPp8PFosFLpcLrVZLt1jKVCoVuFwu\nAEC/38dgMJAnrXXCxpPGarXC5/MhkUhgf38fe3t7SCaTSCQSSCQSiEajAKA7PbHEISLd8fw6ScOE\nCQQCaLfb6HQ6usdKpYJCoQCXy4XhcCiP4+uIpUhDRBkAdQBDAH0hxAdXsallwDea7Rifz4d4PI7t\n7W08fPgQTz31FKLRKKLRKGKxGEKh0KVrsI+FCcLSoN/vo9fr6QjGy263S/K43W7dEbtUKiGfzyMU\nCsHn80EIASLCaDRCr9d7rP8/q8CykkYA+JgQoryKzawCrI7YholEInjqqafw4MEDqY4CgYC0UaZh\nOBzKNRgMJFl6vR76/b40mHk5HA65nE4nLBYL7Ha7JIfX60UoFEIkEkEikYDdbketVsNwOESn07mX\n6mlqJPRJwWq1wu/3I5lMIpVKYXt7G7u7uzrSsHNvGmlYbahEabfbuqXaO3a7XZ6y2Ihmuwh41xAP\nBoPy1AZAEsbojV4HrELSfJ+IhgD+WAjxpyvY01Jg0qRSKTx69Aj7+/vS+E2lUojFYroj+DQMh0Pp\nye10OqjVaqjX66jVamg0GtL5xw5APjU5HA65B7aN7Ha7jjSJRAL9fl86/e4jaT4khMgRURzAC0T0\nuhDixVVsbB4YbQu/3494PI7d3V08evRI2i/RaBSBQEBnr7AKUtXRNCO2Wq3KR/U47nK5MBgMpJTh\nUxT7h9iZyMf+cDiMer1+paRbByy1ayFEbvJ4QUTfwbi05bGSRo0V2e126YsJh8PS4A0EAvImCSEu\n2SvsjOPFBiyHARqNhlzNZlNnwzgcDjx48EAayHw0Z0nGxFGP8izppgU/1wELk4aIPACsQogGEXkB\nfALA76xsZ7PvQ3p6nU4n/H4/gsGgjjRGG2Y4HEp7pdPpoFAoIJfLIZfLoVAoQNM0uZg86lJvvt1u\nR7/fBxHJkIPL5YLD4dBJGzaeVcKogdJ1wjKSJgngO5MPbQPwl0KI761kV3OAVZLT6YTX651KGr7B\nqqRhwjSbTeTzebzzzjs4ODjA4eGhJJR6YlIf1bQKfnS73QiHw0ilUlL18d9T/T2qpFlHwgBLkEYI\ncQjg/Svcy0LgG+JwOKTtwBFpPnarGA6H6Ha7aDabaDQaqFarODs7QyaTwVtvvYU33nhDqi1+ZHXG\nbn9VYlitVmxtbaFWq6HVaqHX60m1pTrvVN+PalOtI9bTEjNAtRccDoe0KfibrN70Xq+Hi4sLGZEu\nFArIZDI4OztDpVKBpmnSMOZHNakKAFwulwxqejweeSoLBoPwer1SPXFwko3rRqOBcrmMer2OdruN\nfr+/luRZe9Ko9gKTRrUbWB2xaul0Ori4uMDx8TGOjo6QzWZRKBRwfn6OarWKbrd7KdNOlQ5EBKfT\nKR2HrJKi0SiCwSA8Hg+cTqeOuP1+H51OB/V6HaVSCbVazSTNk4YxyGi0GdiGYbV0cXGBbDaLN998\nE2+//bYujYEz64xqRL25TqcTwWAQ8XhcBkFVSWM8HV0ladYxhABsCGmMMBq67MntdDqoVqvI5/PI\nZrM4PDzEwcHBJaP3OrCkYV9QOp1GIpFAJBJBIBCAy+XSBTx5P5qmodVqoV6vo9VqSTVoSponACEE\ner2eTHCyWq3wer2wWq3QNA35fF4XPGw0Gjg8PEQul0OtVpNE4cjzLHA4HDKelEgkEA6H4fV6ZcBy\nXU9Fs2LtScPGbbvdlnaIxWJBr9dDtVpFOByWUoTDAoVCAYVCQZKGDeV5SRMOhyVpfD4fnE6nzju9\nqVh70rCk4aTtTqcDTdNQq9WQz+fh9XplVcBgMECv19N5eHu9ngxSzkoaDlKGQiHE43GEQiGdpGFs\nKnE2gjRMCmBsFHO8iE8xxlQH47oJarWC1WqF2+2G3+9HKBRCLBaTUW72Aqt5OMC7dVHGta5Ye9IY\noaY2ENGlG6b6bGaRLFzy4na7pX+Gj9gc03I6nfLEBOASOflkxks1hNcRG0caYHzT+BtvtVqvrHic\nVR1xGmcoFEIoFLrkl2GHIqsm9YivaZo80vMyT093DEwM9uayXWH0uczqymdJEwwGkUgkZHKXMXpu\ns9l0pNE0De12Wx6z1cU+mo2VNET0PICfAHAuhHjf5LUIgL8C8BBABsBPCSGqt7jPubCszaDmALMN\nEw6HkUwm8eDBA0kav98vy3rZ5mEbi31EXHXJ0qbZbELTtLlU5F3DLAkd3wDwrOG13wDwghDixwD8\n8+TnjQBHzT0ejy5Fc2trCw8ePMDe3h5SqRTC4bAkDAAp3fr9PprNJkqlEs7OznB4eIjT01OUSiVZ\nzmKMZa0bbiTNJBOvYnj5UwC+OXn+TQCfWfG+niiYNIFAQKZobm9vY2dnB3t7e9ja2kIoFILb7ZYq\niY1sLopTSXN2diZJY+wssY5Y1KZJCiEKk+cFjHNrNgKqpOH0zEQiga2tLezu7uLhw4fyJMUhAyYB\nn5aMpCkUCiiXyzrSrCthgBUYwkIIsWn99YzqKZFIIJVKIZ1OY3d3V1fGy3aMGklvNBoolUrI5XI4\nOjpCpVKRke1N6FGzKGkKRJQSQuSJaAvA+So39aRhs9l0SV2qL2Zamma/39eV4RaLRZRKJZmI3mw2\n0e121/aIbcSimc3fBfD5yfPPA/i71WznyYNPTE6nEx6PRxb/M2mmxZY49lWtVmXLkXK5jHK5rCPN\nTRH0dcEsR+5vAfgogBgRZQH8FoAvA/hrIvpZTI7ct7nJxw3ufjWNNNNiSyxpqtUqLi4udJJGDYpu\niqS5kTRCiM9d8dbHV7yXJwZVehhVE/eccblcsNvtl5yFQghomoZmsymL/Jk03B1r3W0YIzbOIzwv\nLBYLvF4vfD4fvF4vAoEAdnZ2sLOzg3Q6jZ2dHcTjcQQCAdlvj9MsOOXi7OwMJycnyGazOD4+Ri6X\nQ7VaRafTecKf7nZw70nDTYg4RMDHa7WfTSgUQjAY1JGm1WrJOBKT5ujoCJlMRqqmdSzunwX3njRc\noJ9MJmX/mng8LlcsFpNRbqfTKfN3WB1VKhXkcjmcnJzg+PgYmUwGzWYTrVZrY3rsGXHvSUNEOtI8\n88wzusaMoVDoUs4v2zDlcllWZ56eniKbzSKTyehqw01JsyEwtn/lTp5cnakavmqYABgbwK1WC+Vy\nWSao5/P5qR7fTSQMcA9Jo9ZJqZWZbAxzr2DVL2PMw2Epk8/ncXR0hEKhgGq1qvP4btqJScW9Iw0A\nXXEdd/JU68D5NZY0akkux5bK5bIME1SrVUka1RdjSpoNglpcZ1RPgUBAV3jHpBFCyMR0VT0dHx+j\n3W7L7hLr2OJ1Xtw70vBpibuPx2Ix2fHT7/frsvBYNTFReLHjrtFooNPpyNqpTVZJKu4tabhjOefI\nJBIJ+P1+KV3U05LaOLpSqch67GazKQdocHLVfcC9JA03cnz06BGefvppJJNJnaQxpj2wpKlUKjg/\nP5eShgOR69x9fBHcGOUmoueJqEBErymv/TYRnRDRy5NlTAe9s2APMJPmve99L/b39yVpuIHAdX6Z\nYrEoScPFeaZ60uMbAP4QwJ8prwkAXxVCfPVWdrVCcCYeG7dsz3BogPNljP1kePV6PZRKJRQKBZye\nniKTyciS3k2Y3bQIZolyv0hEe1PeWouaUzV9k0f2qFNTfD6frgkRVxNwv712u41isYhcLic9vqye\nNjVMcBOWaS/5S0T0AyL6OhFd7hV/R8D9fbn2OhqNSknj9/ulpOEmRMC7/WTY+C0Wi8jn8zIomc/n\nTdIsgD8CsI9xz70cgN9b2Y5WDCaNmvMbiUQQCoWkpFHVE/tjuAESJ1YxaTKZjEmaRf6REOJcTADg\naxj3D74zUPv28lidSCSCVCqly4/hagJj+iaXorTbbdkUiUtsuZfNulcULIOFSDNJJmf8JIDXrvrd\nx41psSWfz4doNCrLUBKJhAwXTCMNG8CsorgJtUqY+3JSmoZFcoS/BOBjRPR+jE9RhwB+/lZ3OSfU\nvr089S0ajcrhGolEQkoalSw8TodrsdX2a6qU2fTY0k1YNEf4+VvYy8rAHl1VPUWjUaRSKezu7sr+\nwty5ygi1Z1+r1dL5Yu6LA+86bJxHmCe8caOhSCSCZDIph5aqbVtVw5frsDVNk4bv6ekpjo+PpV9G\n07Qn/fHuBDaWNOpQLm7ZypPdeOQOH7FZqrA6KhQKODs7QzabxdHRkfQA39fTkhEbRxqehMJzt9Pp\ntI40fr9f16aenXncR6ZSqeikjJrza0qaMTaONDzcgkmzs7Mj1RN34VT7z6jH61qthmKxeEnSzNOf\n7z5g40mTTqd1dUvGGUtCCLTbbZTLZZyenuLk5ASnp6coFotoNBrQNG0jmiuuEhtLGm53tr29LSUM\njwtUwaQpFos4OTnBwcEB8vm8rp/MOo9Dvg1sHGm4R54qaTidc9owdq4uKJVKyGazePvtt2WyFZOG\nf++++mWM2DjSTFNP6jAvI0aj0SVJwy3xWTWZZNFj40hjHP13VU8ZFWq7WFZH6nXmhbGLqPF1da/G\nx2l7NL7PSe88jGzezuiDwUA3cnFeL/fGkWYRGIm27AQ4lk6q8cxE5Ef+u4C+eG+aNFTfs1gssnKC\nUztmmbqrfg4+KdZqNVSrVWiaduWYomkwSQPoCGO323U3fBHSGFukTbsZqlRhMnC87Kr9sYoNBAKI\nxWJybPQ0A98IdQ+1Wg2FQkEeAtRU1aUlDRHtYpzmmcA4OPknQog/uOt9hOcB37yrJM0isFgs0qdz\n07dXJcxVA1HV92w2GwKBgJw1lU6nZTeL66Duo1gsAgA6nQ7K5bJsiTJrXO0mSdMH8KtCiFeIyAfg\nf4joBQBfwLiP8FeI6DmM+wivZS9hbgCQSCSwv78vh3NwWcoiDj11PLPq52EJpKoaridXl1FFqZLG\nZrPJ8AhXUcwraZxOp2zD3263YbfbdTOxbvrM15JGCJEHkJ88bxLRjwCkMe4j/NHJr30TwL9iTUlj\nsVgQDAaxs7MDIQT8fr9uassiUe1WqyVDD9xwWh2mygRgEng8HtlUyefzTSWNurh8mGc1zGLTAO8S\nx263S2L3ej3Y7XbZVZ2/LNdhZptmklz+AQD/iQ3qI8ykEULA5/Nhe3tbZ88s4tRjA5MfeQ4CSzA+\n1bENpQ7rCIVCl+waVYXyOETumaM2wJ4FQgg4HA6dRGVJxnXqN2Em0kxU098C+BUhREPVueveR5gN\nS6/Xi1QqdamnzCJ2TalUQrFYlIu/0dxn2DgOOhKJyAZK8Xh8KmmMezb2Mr4J6udg9aSWE3N7/llc\nDLNk7tkxJsyfCyG49eud7SPMUWt1YLs6RXeaKL/q9WX2AEBmDvLNMUoa3lcwGJRNlILBoLxxsxLW\nOABNtZ+mqddKpYJGo6HLSLy4uEChUJgpkn/T6YkAfB3A/wkhfl95i/sI/y7uWB9h/ta0222Z6sBi\nnMfs3Da4zkoIAZvNdq1Nw4NauSeO2j1UfWRMIxJ/SbhzhSpFeFSjilqthlwuh/PzcznymcdGd7vd\nG0c/3/Q/+CEAPw3gVSJ6efLaF3GH+wirtde1Wg3lchmBQECWsjwO8IxLm80Gt9t9abqdUb04HA6Z\nGMYOQP4ss6jKwWCAdrsth5DxOGleRmnTaDSk6lSHy08j2DTcdHr6d1xdsXAn+wgzadjrWalUdLVP\njwNceOd2uy85zVSPMHDZyGXSGH1F15GH50vV63UpOZrNplzG0xDP+ORmTOrgsqVJs44YjUZyPkE2\nm4XNZpP/KSy+543VGI+8qqNtmrrjagiGmsTV7/flqeyq0xkP5+DfV22Uab/PRX28+LjPk+2MpNE0\nTQ4s47a23DLlXpJmOByi0Wggn88DGH+rUqmUPALHYjEAl4OF10FtIMB+lXlsJJZ86k1k+2aaocrk\nZjWjHtmntcrvdru6pktcPcHORePfYMnEf4ftISb0Tdg40oxGIzQaDRCRTgyzyK7X67q29rOQhj21\nLpdLGoyj0UjaLDeBc5B5L3xiYUPVCN4nLyYBd0o3SgOOWvP7KsGmNVtiSaZ6vudpzLRxpBkOh1Id\nXVxcwO12y65VXGY7D2mISEoWj8cDj8eD0WgkbZZZwJ20yuUyzs/PL0kC47ebc5VLpRLK5bKs8rzK\nsFVTO4z20LQY2lW/M6szc+NIo9YxAeMbxmOQiQiaps1NGvXI7na7Ua1WUS6XUSwWEQ6Hb7wGO/t4\nQguThSWD8aayq4CXao91u90nnnq6caQxQgiBTqeDarUKItIZwrOqJ0524mMx57Hw400wDnNnHwqr\nBSNYIqqlMzz+5y5kEW48aUajkSRKr9dDrVYDMJsBzL9nTE1Q7ZtZ0hLUCDL36OM1LWeHKz15qW3z\n7wLotph7V+JRaq7MoumbRnVmPILfBGNqxFXOO4aaBDbNTnlcEEJM/WZtPGlMLI6rSLNM+zQT9xQm\naUzMjWtJQ0S7RPQvRPS/RPRDIvrlyetr20fYxPK41qYhohSAlJojDOAzGEe1G+KaPsKmTbP+uMqm\nWTRHGFiTPsImVo+ZbRolR/g/Ji+tRR9hE6vHTKSZqKa/wThHuIk16iNsYvW40U8zyRH+BwD/aEj5\n5Pf3APy9EOJ9htdNm2bNsZCf5qocYbrDfYRN3D5uOj19GMC/AXgV47JcAPhNAJ/DWDXJPsJKHRT/\nW1PSrDnMMIKJuWGGEUysDCZpTMwNkzQm5oZJGhNzwySNiblhksbE3DBJY2Ju3JqfxsTmwpQ0JuaG\nSRoTc+NWSUNEzxLR60T01qQL6LLXyxDRq5MU0/9a4N8/T0QFInpNeS1CRC8Q0ZtE9L15coOuuN7C\nqbDXpNcutMdbS9e9rq53mQXACuAAwB4AO4BXADyz5DUPAUSW+PcfwTiR7DXlta8A+PXJ8+cAfHnJ\n630JwK8tuL8UgPdPnvsAvAHgmUX3eM31Ft6jEOJWJc0HARwIITJCiD6AbwP49Aquu3CaqRDiRQAV\nw8ufwritLSaPn1nyesCCexRC5IUQr0yeNwGoLXjn3uM111t4j8Dtqqc0gKzy8wne3fCiEAC+T0Qv\nEdHPLXktxm20t106FVZJr11JC95VpuveJmlu4yz/ISHEBwB8EsAvENFHVnlxMZbjy+576VRYMrTg\nXXaPq07XvU3SnALYVX7exVjaLAwhRG7yeAHgOxirwGVRmJTqcEbiUu1thRDnYgIAX5t3j3RNC95F\n9qhc7y/4esvu8TZJ8xKA9xDRHhE5AHwW41ayC4GIPETknzz3AvgEVpNmyu1tgRW0t10mFfaq9NpF\n93hr6brLnGZmsN4/ibHFfgDgi0teax/jE9grAH64yPUAfAvAGYAexvbWFwBEAHwfwJsAvgcgtMT1\nfgbjqTWvAvjB5OYm57jehwGMJp/x5cl6dtE9XnG9Ty6zRyGEGUYwMT9Mj7CJuWGSxsTcMEljYm6Y\npDExN0zSmJgbJmlMzA2TNCbmhkkaE3Pj/wFJ7Hv45ZreFAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2179,98 +731,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEx1JREFUeJzt3X2QXXV9x/HPJ4+bZPOglUqV2BsabAVNg1UHfEzQdigj\n", - "aFur0Fap7djpqJUSdURm2vGPMlqdjg/jtDNWqoAibdWiTqtCYaNRkQhmCU8+pAMFFEhLMdnN4yb5\n", - "9o97N1mS3ezvuye/vffi+zWT4T5895zvnt+5Z7+cc+7v64gQAAAAZm5OtxMAAADodxRUAAAADVFQ\n", - "AQAANERBBQAA0BAFFQAAQEMUVAAAAA3N6+bKbTNnAwAA6BsR4cler1pQ2T5X0kckzZX0yYj426Nj\n", - "3ve+9x3zc0NDQ1q/fn3N1J4gMxfXoUOHKmZSxp50LCc1Z07uJGQmfqo8br75Zp1zzjknfLknQmas\n", - "Dxw4UBx78ODB4tixsbEqsfPnzy+OlaSBgYFjXpvqs7dkyZLi5S5cuLA4dt688kPQ3r17i2N3795d\n", - "HCtJo6OjVfLI7BeZ2AULFkz6+i233KKzzz77mNcHBweLl71ixYri2OXLlxfHLl26tDg2sw9Nth8f\n", - "T+ZzkjkW7du3rzh2z549x7x23XXX6cILLzzm9V27dhUvV8rt+/v3768Sm9mXa86Fmfm7M3fu3KK4\n", - "DRs2TL2+4rUl2Z4r6eOSzpV0uqSLbD+n1voAAAC6peY9VC+StC0i7o+IMUnXSXpNxfUBAAB0Rc2C\n", - "6pmSHpzw/KHOa9NqtVo18sEsWbVqVbdTwAzx2etvp5xySrdTwAw997nP7XYKaKhmQTXjC6P8Qe5v\n", - "jF//Yuz628qVK7udAmaIgqr/1bwp/SeSJn66V6p9luoJhoaGDj9utVoc0AEAQE/Ytm2btm3bVhRb\n", - "s6C6TdJptluSfirpDZIuOjpoNr/NBwAAUGr16tVavXr14ec33HDDlLHVCqqIOGD77ZK+rva0CVdG\n", - "xL211gcAANAtVeehioivSvpqzXUAAAB0W1dnSpfKJ9PKTlCZ0QuTdWb0yraoNUlmRs2JS2tNUFlr\n", - "/LIT5GXiM7GTTVp4ImS2cXaS01qTTmYme6w5+W0mPjMxZGbi2R07dhTHZiaSLf0bMi5zjMtMZpk5\n", - "xmViM9tYqjOZZdZUE89OJvNZrTnWmQl7p0IvPwAAgIYoqAAAABqioAIAAGiIggoAAKAhCioAAICG\n", - "KKgAAAAaoqACAABoiIIKAACgIQoqAACAhiioAAAAGqKgAgAAaKjrvfxK+w5lelFl+1xl+gPVyiOb\n", - "c7eXm1Urj2z/ukwemZ5YmT5ztXrSZfpnSfXGJPN5yvx+mR562V5+mTEZHBwsjl28eHFxbM0enQcP\n", - "HiyOrXXcyvRVGxkZKY7N/G41ZbZFZr9YtmxZKo/ly5cXx2Z6WC5atKg4tleO95k+iKV9Gzds2DDl\n", - "e1XPUNleaXvI9t2277L9jprrAwAA6IbaZ6jGJF0aEcO2ByXdbvvGiLi38noBAABmTdUzVBHxSEQM\n", - "dx6PSrpX0jNqrhMAAGC2zdpN6bZbks6UdOtsrRMAAGA2zEpB1bnc93lJl3TOVAEAADxpVP+Wn+35\n", - "kr4g6TMRcf3R7990002HH69atUqnnnpq7ZQAAACmtWnTJm3atKko1tmvIWa4/d3JqyQ9FhGXTvJ+\n", - "XHHFFaXLyqy3OLbmspk24Yhe+Rot0yYcwbQJRzBtwhFMmzAzTJtwRK8c72tMm7B06VJFxKS/YO1L\n", - "fi+R9EeS1tve0vl3buV1AgAAzKqql/wi4ltiNnYAAPAkR7EDAADQUNdbz5TKXDuteU09k0et2My9\n", - "CNlrzrW2c+a+moya98tl7mnJ/H61YjP7RVatZde616L0fohxBw4cKI7N7BeZe7mWLFlSHJu5T0bK\n", - "3V+XGevdu3cXx+7atas4dseOHcWxO3fuLI6VcmOd2RYrVqwojj355JOLY0866aTiWEkaGBgojs38\n", - "fqOj5V/Qz+wXmdh9+/YVx0q548CJOMZxhgoAAKAhCioAAICGKKgAAAAaoqACAABoiIIKAACgIQoq\n", - "AACAhiioAAAAGqKgAgAAaIiCCgAAoCEKKgAAgIa63nqmtA1Ar7RbqRWbaeNSs8VIRi+0A8q2Lsnk\n", - "PDY2VhybaWeRid2zZ09xbKa1R3bZmRYOtdrJZGS2sZT7TGW2WyaPTJuhefNyh+5MHpn2Hpn9Its2\n", - "pFSmZY+Ua82SaTOUkWnjkm2tk9k/M8e4zGek1r6c3e8z43cijltTZmf79ySFpMnWEhHxxZIV2J4r\n", - "6TZJD0XE+TPKEgAAoIcdr9w7X+2CaipFBZWkSyTdI2lpaVIAAAD9ZMqCKiL+uOnCbZ8i6TxJV0ja\n", - "0HR5AAAAvWjaC4y2T7Z9pe2vdZ6fbvtPC5f/YUnvltQbN/0AAABUUHLH1qcl3SDpGZ3nP5Z06XQ/\n", - "ZPvVkrZHxBZNfh8WAADAk0LJLfNPi4h/tn2ZJEXEmO2Sr4y8WNIFts+TNCBpme2rI+JNE4OGhoYO\n", - "P261Wlq1alV59gAAAJXs3bu3+BuqJQXVqO1fGH9i+yxJO6b7oYi4XNLlnZ95haR3HV1MSdL69euL\n", - "EgUAAJhNAwMDT5hqY2RkZMrYkoLqnZK+IulU29+RdJKk180gr9zkUAAAAH1i2oIqIm63/XJJv6r2\n", - "vVA/jIjy2cDay/iGpG/MLEUAAIDeNm1BZXuRpLdKeqnaZ5k22f6HiNhbOzkAAIB+UHLJ72pJOyV9\n", - "TO0zVH8g6RpJv18xLwAAgL5RUlCdERGnT3h+s+17TlQCpb12Mj15avbyqyXTRygTm+mpJOW2c60+\n", - "STXHOqNWT7rMmAwODhbHLly4MJXHokWLimMXLFhQHJvp21irn2C2b1xmn8tsi8w2zvSky+6bmfhs\n", - "H8RS2WNRqWy+mf0zs9127Jj2u1qHZfpuZvflTH++jFo99zL7Rba34vz580947MUXXzzleyXZfd/2\n", - "2eNPOt/yu71ozQAAAD8Hjtcc+c4JMd+2/aDa91A9S9IPZyE3AACAvjBdc2QAAABM43jNke+f+Nz2\n", - "L6o94zkAAAAmKGmOfIHtH0u6T+25pO6X9NXKeQEAAPSNkpvS/0bS2ZJ+FBGrJL1S0q1VswIAAOgj\n", - "JQXVWET8r6Q5tudGxJCkF1TOCwAAoG+UTBbxuO2lkjZJ+qzt7ZJG66YFAADQP0rOUL1W0m5Jl0r6\n", - "mqRt4huAAAAAh5U0Rx4/G3VQ0qerZgMAANCHjjex56jaE3lOJiJi2YlIoLRtQK2WKFJu6vtaLWJ6\n", - "RaaVy6FDh6ost1abmqxa7RMyv1+mRcXIyEhxbDaPWu1WBgbKZ2J5ylOeUiUHKde+JNPaIxObaV2S\n", - "bbdSq71HZvwysYsXLy6OzeybUu5zndkWmZY2NT/Xo6Pld+Rk2trUOoZn9otse61M65lMHlM53jxU\n", - "5U3EpmB7haRPSjpD7eLsTyLiu02XCwAA0EvKS/WZ+aik/4iI19meJ6m8+ycAAECfqFZQ2V4u6WUR\n", - "cbEkRcQBSeXntAEAAPpEvRtQpFWS/sf2p2x/3/Y/2i6/MA4AANAnahZU8yQ9X9LfR8TzJe2SdFnF\n", - "9QEAAHRFzXuoHpL0UER8r/P885qkoNq4cePhx61WS61Wq2JKAAAAZYaHhzU8PFwUW62giohHbD9o\n", - "+9kR8SNJr5J099Fx69atq5UCAADAjK1du1Zr1649/Pyqq66aMrb2t/z+Qu12NQsk/ZekN1deHwAA\n", - "wKyrWlBFxB2SXlhzHQAAAN1W86Z0AACAnwu1L/lNq0brkMwU+VKuZUAtmZxrtYfJxme2Wy+0qcku\n", - "O/P77d+/vzh2586dxbGZdiSZlhOStHv37uLYTIuKzHbLtA3JHCsyrVak3H6UaSezZ8+e4tjMNs7k\n", - "IOX2z0zOtWIzn9Ps35Bara0yrUtqtbWS6rVpy2y3TMuXTA6Z7TaT+KY4QwUAANAQBRUAAEBDFFQA\n", - "AAANUVABAAA0REEFAADQEAUVAABAQxRUAAAADVFQAQAANERBBQAA0BAFFQAAQENdbz2TbY1SItuO\n", - "JKPWVP2Z9gKZ5Wbb8NRqW5BRq01NTZltcdpppxXHLlmypDg20+4hK9PqJNPmJLPcAwcOFMeuWLGi\n", - "OFaSli1bViU2m0epTJsaKbftMp+/zPhlWh1l9qHs8T6z7IzFixcXx2ba1AwODqbyyMRncs4cizL7\n", - "UGa/GBkZKY7NLru0NdJ555035XtVz1DZfq/tu23fafta2wtrrg8AAKAbqhVUtluS3iLp+RHxPElz\n", - "JV1Ya30AAADdUvOS305JY5IW2z4oabGkn1RcHwAAQFdUO0MVEf8n6e8kPSDpp5J+FhH/WWt9AAAA\n", - "3VLzkt+vSPpLSS1Jz5A0aPsPa60PAACgW2pe8nuBpO9ExGOSZPuLkl4s6bMTgzZu3Hj4cavVUqvV\n", - "qpgSAABAma1bt2rr1q1FsTULqh9I+ivbiyTtlfQqSZuPDlq3bl3FFAAAAGZmzZo1WrNmzeHn1157\n", - "7ZSxNe+hukPS1ZJukzRe3n2i1voAAAC6perEnhHxQUkfrLkOAACAbqP1DAAAQEMUVAAAAA11vZff\n", - "vHllKWR6tmX7u2XiDx48WGW5tWIz+Ur1+uhl8sjEZnqJZZfdC2PSK30NM73j9u7dWxxb2j9Lym2L\n", - "bJ/JTB/ETO+4HTt2FMc+9thjVWKl3Phl9s/Mdlu4sLzzWGa5mX1IqtfXMLPPZbZFpt+eVP43Vcpt\n", - "i5p/d2rJbItM7FQ4QwUAANAQBRUAAEBDFFQAAAANUVABAAA0REEFAADQEAUVAABAQz1ZUN13333d\n", - "TgENPPDAA91OATP08MMPdzsFNJCZHgG9hbHrfxRUOOEoqPrXI4880u0U0MD+/fu7nQJmiIKq//Vk\n", - "QQUAANBPKKgAAAAacs12FdOu3O7eygEAAJIiYtL+U10tqAAAAJ4MuOQHAADQEAUVAABAQz1XUNk+\n", - "1/YPbP/Y9nu6nQ+mZvufbD9q+84Jrz3V9o22f2T7BtsrupkjpmZ7pe0h23fbvsv2OzqvM4Y9zvaA\n", - "7VttD9u+x/b7O68zdn3E9lzbW2x/pfOc8etjPVVQ2Z4r6eOSzpV0uqSLbD+nu1nhOD6l9lhNdJmk\n", - "GyPi2ZJu6jxHbxqTdGlEnCHpLElv63zeGMMeFxF7Ja2PiLWS1khab/ulYuz6zSWS7pE0fjMz49fH\n", - "eqqgkvQiSdsi4v6IGJN0naTXdDknTCEiNkl6/KiXL5B0VefxVZJeO6tJoVhEPBIRw53Ho5LulfRM\n", - "MYZ9ISJ2dx4ukDRX7c8iY9cnbJ8i6TxJn5Q0/q0xxq+P9VpB9UxJD054/lDnNfSPp0fEo53Hj0p6\n", - "ejeTQRnbLUlnSrpVjGFfsD3H9rDaYzQUEXeLsesnH5b0bkmHJrzG+PWxXiuomMPhSSTac3Iwpj3O\n", - "9qCkL0i6JCJGJr7HGPauiDjUueR3iqSX215/1PuMXY+y/WpJ2yNii46cnXoCxq//9FpB9RNJKyc8\n", - "X6n2WSr0j0dtnyxJtn9J0vYu54PjsD1f7WLqmoi4vvMyY9hHImKHpH+X9Bti7PrFiyVdYPs+SZ+T\n", - "dI7ta8T49bVeK6huk3Sa7ZbtBZLeIOnLXc4JOV+WdHHn8cWSrj9OLLrItiVdKemeiPjIhLcYwx5n\n", - "+2nj3wCzvUjSb0raIsauL0TE5RGxMiJWSbpQ0s0R8UYxfn2t52ZKt/3bkj6i9k2WV0bE+7ucEqZg\n", - "+3OSXiHpaWpf7/9rSV+S9C+SniXpfkmvj4ifdStHTK3zrbBvStqqI5cW3itpsxjDnmb7eWrftDyn\n", - "8++aiPiQ7aeKsesrtl8h6Z0RcQHj1996rqACAADoN712yQ8AAKDvUFABAAA0REEFAADQEAUVAABA\n", - "QxRUAAAADVFQAQAANERBBaDrbH+7899ftn3RCV725ZOtCwBOJOahAtAzbK9Te5LD8xM/My8iDhzn\n", - "/ZGIWHoi8gOAqXCGCkDX2R7tPPyApJfZ3mL7EttzbH/I9mbbd9j+s078OtubbH9J0l2d1663fZvt\n", - "u2y/pfPaByQt6izvmonrctuHbN9pe6vt109Y9kbb/2r7Xtufmd2tAaAfzet2AgCgI61v3iPpXeNn\n", - "qDoF1M8i4kW2F0r6lu0bOrFnSjojIv678/zNEfF4p7fdZtufj4jLbL8tIs6cZF2/K+nXJa2RdJKk\n", - "79n+Zue9tZJOl/SwpG/bfklEcKkQwJQ4QwWgl/io578l6U22t0j6rqSnSlrdeW/zhGJKki6xPSzp\n", - "FkkrJZ02zbpeKunaaNsu6RuSXqh2wbU5In4a7XsihiW1GvxOAH4OcIYKQK97e0TcOPGFzr1Wu456\n", - "/kpJZ0XEXttDkgamWW7o2AJu/OzVvgmvHRTHSgDT4AwVgF4yImniDeRfl/RW2/MkyfazbS+e5OeW\n", - "SXq8U0z9mqSzJrw3Nv7zR9kk6Q2d+7ROkvRySZt1bJEFANPi/7oA9ILxM0N3SDrYuXT3KUkfU/ty\n", - "2/dtW9J2Sb/TiZ/4FeWvSfpz2/dI+qHal/3GfULSVtu3R8Qbx38uIv7N9tmddYakd0fEdtvPOWrZ\n", - "muQ5ADwB0yYAAAA0xCU/AACAhiioAAAAGqKgAgAAaIiCCgAAoCEKKgAAgIYoqAAAABqioAIAAGiI\n", - "ggoAAKCh/wcQESvdP72F3wAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEs1JREFUeJzt3X+QXWV9x/HPJ782mwTKWKhWjWQJ0kgmVqw6+BOJFqmD\naFsrQouUdux01EqpOiIz7T+2I9XpSB2nnbFQf6AoLVpQW4W0SwNiJYIJ5AfxRxVKtJLWkh8L2WSz\nfPvHvZssy97s892TZ++94f2ayXDPud99zrPnOffsl3POfb6OCAEAAGD25nW7AwAAAP2OhAoAAKAh\nEioAAICGSKgAAAAaIqECAABoiIQKAACgoQXd3Lht5mwAAAB9IyI83fqqCZXtcyVdLWm+pGsi4i+n\nxnzwgx980s8NDw9r7dq1T1g3f/784u3Om9cbF95qzfFlTzuWjWOPVtu33nqrzjnnnKPe7tFQq+3M\nWD/++OPFsePj48WxAwMDxbGd4r/61a/qvPPOe9L6pUuXVulHZjxGR0eLY/fv318cK0n79u0rjh0b\nGyuOzYxf5rhYtGjRtOtvueUWve51r3vS+sHBweK2ly1bVhybOS4yfVi4cGFx7IIFXb0ucEjmuJju\n+Lz++ut10UUXPWl95tjs1HYnBw8eLI7N/H61/vZl/7Zn4ktjL7300s5tFG8tyfZ8SR+XdK6k0yVd\naPt5tbYHAADQLTUv5bxE0g8i4oGIGJP0BUlvrLg9AACArqiZUD1L0kOTlne0181oaGioSocwN1au\nXNntLmCWTjvttG53AQ3w2etfa9as6XYX0FDNhGrWN1FJqPobJ/X+RULV30499dRudwGzRELV/2o+\nzfdjScsnLS9X6yrVEwwPDx96PTQ0RDIFAAB6wvbt27V9+/ai2JoJ1d2Snmt7haSfSLpA0oVTg6Z+\nmw8AAKAXrFq1SqtWrTq0fPPNN3eMrZZQRcRB2++SdIta0yZcGxH319oeAABAt1SdwCMivibpazW3\nAQAA0G1dnxEtM5ldqeykYrUmnawVW2sSSSk30Vum7VqTWWbHusZEb1Ju4tlaExGOjIyk4nft2lUc\ne+DAgeLYzDGUic3s4+xxkTk+M21nfr+an+tax3Km3cxxn5kEtNMkp53UPI5qqPE3ckKtY7nW5ym7\nLzJ/SzLnuE56Y0pxAACAPkZCBQAA0BAJFQAAQEMkVAAAAA2RUAEAADREQgUAANAQCRUAAEBDJFQA\nAAANkVABAAA0REIFAADQEAkVAABAQ12v5TcwMFAUl6kZlamLl1Wr5l5Gpp5RZr9JuTpXGZn9VnOs\ne6E+X6bdWvst23YmNlNbbfHixcWxS5cuLY5duHBhcaxUryZdZl/UPO4z8ZnfL3vMldq/f39xbLa+\nW63acZlad5njM1PXUMp9To477rji2CVLlhTHZo77msdbZqzHxsaK4q6++uqO71W9QmV7ue3bbG+1\nvcX2u2tuDwAAoBtqX6Eak3R5RGyyvUzSPbbXRcT9lbcLAAAwZ6peoYqIn0bEpvbrEUn3S3pmzW0C\nAADMtTl7KN32CklnSLprrrYJAAAwF+YkoWrf7rtR0mXtK1UAAADHjOrf8rO9UNIXJX02Im6a+v66\ndesOvT7llFO0cuXK2l0CAACY0fr163X77bcXxbrWV/slya3v6n5a0s8i4vJp3o+rrrqqqC2mTTgs\n81Xemvsig2kTZtcu0yYcxrQJhzFtwmFMm/BETJtwWI1pEwYGBhQR036gat/ye7mk35F0tu2N7X/n\nVt4mAADAnKp6yy8iviFmYwcAAMc4kh0AAICGul56Znx8vCiu9P7mbGTus9Z85qwX+lBrX9R61qLm\nsySZZ50ysbWelck+S9ILz7XVen6i9LwyodZnqtbxVlqya0LmmZ3MmNTy6KOPFsfu2bMn1fbo6Ghx\nbOZZrszxmXkuKvNMVLbtzHGROT4z56IDBw4Ux2bGIxt/NHIMrlABAAA0REIFAADQEAkVAABAQyRU\nAAAADZFQAQAANERCBQAA0BAJFQAAQEMkVAAAAA2RUAEAADREQgUAANBQ12sMZEtE1JApD5EtdVIq\nM1V/rVgpV4IjM3aZftQsBZSJr9XnTLuZ0gmPPfZYcWw2PtOPWiWJapW+yMZnyqJkymrUPBdmxqTW\nOa7WuSXr4MGDxbGZPmfazfx+/XiOq9WHXtcxobL9m5JC0nSfroiIL5VswPZ8SXdL2hERb5hVLwEA\nAHrYka5QvUGthKqTooRK0mWStkk6rrRTAAAA/aRjQhURv9u0cdvPlvR6SX8h6U+atgcAANCLZnyA\nwfYzbF9r++vt5dNt/35h+x+V9D5Jx85NUgAAgClKngj9lKRbJT2zvfx9SZfP9EO2z5O0MyI2avrn\nsAAAAI4JJd/yOzEibrB9hSRFxJjtkq8zvEzS+bZfL2mxpONtfyYi3jY5aHh4+NDroaEhDQ0Nlfce\nAACgkn379ml0dLQotiShGrH98xMLts+UtHumH4qIKyVd2f6ZsyS9d2oyJUlr164t6igAAMBcGhwc\n1ODg4KHl3bs7pz8lCdV7JH1F0im2vynpJElvnkW/cpNpAAAA9IkZE6qIuMf2qyT9klrPQn03IsYy\nG4mI9ZLWz66LAAAAvW3GhMr2oKR3SHqFWleZ7rD9txFRdlMRAADgGFdyy+8zkvZI+phaV6guknSd\npN+q2C8AAIC+UZJQrY6I0yctD9vedrQ6sG/fvqPV1CGZ+mBSrnZVpu1a7S5cuLA4tqaaNQVLZetc\nZWTGpNb4LV26tDh2wYJcac5Mbbxax1ym1t3YWPmTBqXfypmQ+awuWrSoOHbZsmXFsccff3xxbGbs\npHo16Wqp2d/MuSiznzO1MTN/9zKfESm3PzLHfeb8kjlfZGKzf9szbZf+fhdffHHH90p69x3bL51Y\naH/L756iLQMAADwFHKk48uZJMXfafkitZ6ieI+m7c9A3AACAvjBTcWQAAADM4EjFkR+YvGz7F9Sa\n8RwAAACTlBRHPt/29yX9SK25pB6Q9LXK/QIAAOgbJQ+l/7mkl0r6XkQMSXqNpLuq9goAAKCPlCRU\nYxHxv5Lm2Z4fEbdJelHlfgEAAPSNkokXHrF9nKQ7JH3O9k5JI3W7BQAA0D9KrlC9SdJjki6X9HVJ\nPxDfAAQAADikpDjyxNWocUmfqtobAACAPnSkiT1H1JrIczoREeV1Eo7UgcLp3jNT5GdlyhxkyhbU\nardX9EIZnuxxUWtMMrGZ0hCZEio1yzIMDAwUx2ZKs2RKe2RKX5xwwgnFsVm1zkW7d++u0q6UOzYy\nx3JmX9Q63pYsWVIcK+WOz0xsZh/XOgdIubI2mbYzpZ8y59maJbAy8YODg6m2p3OkeajKi1B1YPsE\nSddIWq1WcvZ7EfGtpu0CAAD0klw11by/lvQvEfFm2wsklVd6BQAA6BPVEirbPyfplRFxiSRFxEFJ\n9a5pAwAAdEnuoYucIUn/Y/uTtr9j++9s5252AwAA9IGaCdUCSS+U9DcR8UJJj0q6ouL2AAAAuqLm\nM1Q7JO2IiG+3l2/UNAnV+vXrD70++eSTtWLFiopdAgAAKLN582Zt2bKlKLZaQhURP7X9kO3TIuJ7\nkl4raevUuLPOOqtWFwAAAGZtzZo1WrNmzaHlG264oWNs7W/5/ZFa5WoWSfpPSZdW3h4AAMCcq5pQ\nRcS9kl5ccxsAAADdVvOhdAAAgKeE2rf8ZlRa5qBm6ZmabdeQKQ0xPj6eajsTXyu2ZhmeTEmETHmI\nTLmHTImRXbt2FceOjIzMHDRJL5SdyJSGyMRmyllkZcY6MyaZ8Thw4EBxrJQbv8xxnz2/lKpVkkjK\nlYjJxGaOz2yZqIxafx9qlSTKxGY/15n4ozEmXKECAABoiIQKAACgIRIqAACAhkioAAAAGiKhAgAA\naIiECgAAoCESKgAAgIZIqAAAABoioQIAAGiIhAoAAKChrpeeGRgYKIqrWbokE1+rLEpmivxMiYNs\nWZ1aJR8y7WZKl2THo9ZxlOnz4sWLq8SWfpYmZEotZPZFpixKJjZTPmVwcLA4NhufiV22bFlxbGas\nsyU4MuOX2c+ZMjx79+4tjs2W1snIlNbJfEaWLl1aHFvreJOkJUuWFMfWKudU63yxf//+4lgpdyyX\nxl5wwQUd36t6hcr2B2xvtb3Z9vW2c2d8AACAPlAtobK9QtLbJb0wItZImi/prbW2BwAA0C01b/nt\nkTQmaYntcUlLJP244vYAAAC6otoVqoj4P0l/Jem/JP1E0q6I+Nda2wMAAOiWmrf8Vkr6Y0krJD1T\n0jLbv11rewAAAN1S85bfiyR9MyJ+Jkm2vyTpZZI+NzloeHj40OuhoSENDQ1V7BIAAECZrVu3atu2\nbUWxNROq7ZL+1PagpFFJr5W0YWrQ2rVrK3YBAABgdlavXq3Vq1cfWr7xxhs7xtZ8hupeSZ+RdLek\n+9qrP1FrewAAAN1SdWLPiPiwpA/X3AYAAEC3UXoGAACgIRIqAACAhrpey6+0llDN+m69IFNjLhNb\nU61acJmxztRqknJ1vGqNSeb3y9RizNRWzLadqaG1Z8+e4tiRkZHi2NHR0eLY7Dkgs+8y9c8yx0Wm\nLl5mv2XjM7GZPmfGJHNuydY1rFW/rtb5MHssZ86JmTp6mX5kzi2Z2Mw+zsZnj6Npt9e4BQAAgKc4\nEioAAICGSKgAAAAaIqECAABoiIQKAACgIRIqAACAhnoyofrhD3/Y7S6ggQcffLDbXcAs7dixo9td\nQAOZKSvQWzLTgqA3kVDhqCOh6l8kVP1t79693e4CZomEqv/1ZEIFAADQT0ioAAAAGnKmDMZR37jd\nvY0DAAAkRcS09XK6mlABAAAcC7jlBwAA0BAJFQAAQEM9l1DZPtf2dtvft/3+bvcHndn+e9sP2948\nad3TbK+z/T3bt9o+oZt9RGe2l9u+zfZW21tsv7u9njHscbYX277L9ibb22x/qL2esesjtufb3mj7\nK+1lxq+P9VRCZXu+pI9LOlfS6ZIutP287vYKR/BJtcZqsiskrYuI0yT9W3sZvWlM0uURsVrSmZLe\n2f68MYY9LiJGJZ0dES+Q9HxJZ9t+hRi7fnOZpG2SJh5mZvz6WE8lVJJeIukHEfFARIxJ+oKkN3a5\nT+ggIu6Q9MiU1edL+nT79aclvWlOO4ViEfHTiNjUfj0i6X5JzxJj2Bci4rH2y0WS5qv1WWTs+oTt\nZ0t6vaRrJE18a4zx62O9llA9S9JDk5Z3tNehfzw9Ih5uv35Y0tO72RmUsb1C0hmS7hJj2Bdsz7O9\nSa0xui0itoqx6ycflfQ+SY9PWsf49bFeS6iYw+EYEq05ORjTHmd7maQvSrosIp5Qu4Qx7F0R8Xj7\nlt+zJb3K9tlT3mfsepTt8yTtjIiNOnx16gkYv/7TawnVjyUtn7S8XK2rVOgfD9t+hiTZ/kVJO7vc\nHxyB7YVqJVPXRcRN7dWMYR+JiN2S/lnSr4ix6xcvk3S+7R9J+ryktbavE+PX13otobpb0nNtr7C9\nSNIFkr7c5T4h58uSLmm/vkTSTUeIRRfZtqRrJW2LiKsnvcUY9jjbJ058A8z2oKRflbRRjF1fiIgr\nI2J5RAxJequk4Yi4WIxfX+u5mdJt/5qkq9V6yPLaiPhQl7uEDmx/XtJZkk5U637/n0m6WdI/SHqO\npAckvSUidnWrj+is/a2w2yXdp8O3Fj4gaYMYw55me41aDy3Pa/+7LiI+YvtpYuz6iu2zJL0nIs5n\n/PpbzyVUAAAA/abXbvkBAAD0HRIqAACAhkioAAAAGiKhAgAAaIiECgAAoCESKgAAgIZIqAB0ne07\n2/892faFR7ntK6fbFgAcTcxDBaBn2H61WpMcviHxMwsi4uAR3t8bEccdjf4BQCdcoQLQdbZH2i+v\nkvRK2xttX2Z7nu2P2N5g+17bf9COf7XtO2zfLGlLe91Ntu+2vcX229vrrpI02G7vusnbcstHbG+2\nfZ/tt0xq+99t/6Pt+21/dm73BoB+tKDbHQAAHS59835J7524QtVOoHZFxEtsD0j6hu1b27FnSFod\nEQ+2ly+NiEfate022L4xIq6w/c6IOGOabf2GpF+W9HxJJ0n6tu3b2++9QNLpkv5b0p22Xx4R3CoE\n0BFXqAD0Ek9ZPkfS22xvlPQtSU+TdGr7vQ2TkilJusz2Jkn/IWm5pOfOsK1XSLo+WnZKWi/pxWol\nXBsi4ifReiZik6QVDX4nAE8BXKEC0OveFRHrJq9oP2v16JTl10g6MyJGbd8mafEM7YaenMBNXL3a\nP2nduDhXApgBV6gA9JK9kiY/QH6LpHfYXiBJtk+zvWSanzte0iPtZGqVpDMnvTc28fNT3CHpgvZz\nWidJepWkDXpykgUAM+L/ugD0gokrQ/dKGm/fuvukpI+pdbvtO7YtaaekX2/HT/6K8tcl/aHtbZK+\nq9ZtvwmfkHSf7Xsi4uKJn4uIf7L90vY2Q9L7ImKn7edNaVvTLAPAEzBtAgAAQEPc8gMAAGiIhAoA\nAKAhEioAAICGSKgAAAAaIqECAABoiIQKAACgIRIqAACAhkioAAAAGvp/6983wnU6mjQAAAAASUVO\nRK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2278,84 +741,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEBVJREFUeJztnVuMJNdZx39f36d6+rI9O7PDrveSlQKysSX7xSA5EREK\n", - "0fqFwEsiS0hRgIgHboIHTHiJHyMkIsQLEoqNwkWJEMgoIAG2ERJBKIDROnYgjmPJK8/sXHd2unu6\n", - "p+99eOg+h+qanktX12Snqs5PKk13zXTpm93/fOec73zfd0QphcUyC4lHbYAlfFjRWGbGisYyM1Y0\n", - "lpmxorHMjBWNZWZ8i0ZE7ojIuyLyAxF5MUijLBcb8ROnEZEk8H3gk8B94L+AF5RS3wvWPMtFxK+n\n", - "eRZ4Xyl1TynVA74BfDo4sywXmZTPz10D1lzv14GfcP+AiNhQc8hRSsm0+349jRVEjPErmvvAddf7\n", - "64y8jSUG+BXNm8BHReSWiGSAzwLfDM4sy0XG15xGKdUXkV8D/glIAi/blVN88LXkPtOD7UQ49AQ9\n", - "EbbEGCsay8xY0VhmxorGMjNWNJaZsaKxzIwVjWVm/G5YWk5ARMwFkE6nzZVKpRgOhwwGA/r9PoPB\n", - "wLzXXy86VjTnQCKRIJlMkkwmSaVSlMtlKpWKuVqtFo1Gw1ytVmviGg6Hj/pXOBErmnMgkUgYz5LJ\n", - "ZFhZWeHWrVvcvHmTmzdvUqvV2N3dNdf+/j7VahWlFO12+1GbfypWNOeA9jDZbJZcLsfKygq3b9/m\n", - "qaee4sknn2RnZ4e1tTU+/PBDstks6XQapRSdTscMaReZuUQjIveAOjAAekqpZ4MwKuwkEgkymQy5\n", - "XA7HcahUKly9epXbt2/zxBNPUCqVEBE6nQ4HBwc0m03q9TqpVCr6omGUjPUJpdTDIIyJCslkknQ6\n", - "zcLCAouLiywsLJDJZEgmkwAMh0P6/T69Xo9Op0Ov16Pf7zMcDglDbX0QS+6L/6fxQyaZTJLJZE4U\n", - "zWAwoNfr0e126Xa7RjRhYF7RKOANEXlTRL4QhEFR4CyiOc7ThIF5h6fnlFKbIrIMvC4i7yqlvhWE\n", - "YWFGiyaXy02IJpFIoJQyXqbdbnN4eEir1aLX6zEYDKI/PCmlNsdfd4FXGZW2xB49EXZ7mnQ6TSKR\n", - "YDgc0ul0aDabVKtVHjx4QLVapdls0u12oy0aEXFEpDB+nQc+BbwTlGFhxj085fN5IxoRYTAY0O12\n", - "aTab1Go19vb2qNVqRjRhYJ7h6Qrw6niJmAL+Uin1WiBWhRzvnCaXyxnRuD1NrVbjwYMHNJtN+v0+\n", - "/X4/FJ7Gt2iUUh8ATwdoS2jRsRW93+QWTLlcxnEcUqmUCeC1Wi2azSYHBwfUarVQRIHd2IhwACQS\n", - "CVKplNlvKhaLVCoVVlZWuHr1KoVCgVQqRavVMtsGjUYjNHMYL1Y0AaCDeZlMhkwmQ6lUYmlpiStX\n", - "rnDt2jVEBKWU8TAPHz6k0WjQ6XQetem+sPk0AeBeYufzeUql0oSnKZVKJJNJ42m0aMLqaaxoAkB7\n", - "Gi2aQqHApUuXWFpaYmVlhcXFRUSEZrMZieHJiiYAdCqE3qDM5XJkMhkTmxkMBrRaLZMSsb+/H6q4\n", - "jBcrmgDQniabzeI4jokA68nxNNFoTxNGrGgCQHuabDbLwsICuVzO5MlME03YIsBerGgCQE+EHceh\n", - "UCjgOA7ZbNbkx/T7fVqtFvV6nb29PSsaC+RyOUqlEisrK9y4cYPl5WXy+TyJRMIE8w4PD01A7/Dw\n", - "kE6nQ7/ff9Sm+8KKJgCy2SzFYpGVlRUee+wxLl++PCEavZutE8kPDw/pdruh2dX2YoN7AZDNZimV\n", - "SiwvL3Pjxg2KxSKLi4skk8ljPY3OoQkjp3oaEXlFRLZF5B3XvYqIvC4i74nIayJSPl8zLx7u2qZc\n", - "LkexWGR5eZmrV69SqVRwHGfC02jh6JKVMHuaswxPfwrc8dz7XeB1pdSPAv88fh8b9F6TjgIvLCzg\n", - "OI4J7DmOM5F0pdM7dUGcvsIoGDiDaMaZePue2z8LfG38+mvAzwVs14XmONEsLi5SKBQmMvXcInFX\n", - "UiqlQisav3OaK0qp7fHrbUa5NbHBLRp3spX2NDphXCllcn+93iasgoEAJsJKKRW3/nq6GE4LxnEc\n", - "Mzzl83k6nc4RwXivMON3yb0tIqsAIvIjwE5wJl18UqmUSRovlUrk83lyuRyp1OhvUM9jdMWBu9A/\n", - "CvgVzTeBz41ffw7422DMufiIyIRoyuWySenUEWB3Vwi3aMI8JLk5y5L768C/Az8mImsi8nngy8DP\n", - "iMh7wE+P38cGr6dxiwame5qwT37dnDqnUUq9cMy3PhmwLaFBF/fn83nK5TL5fN7sNcHRYriwVVCe\n", - "ho0I+2BaiYq7grLT6VCv19nd3WV7e5udnR2TQB4FT2P3nnzg7gqhJ8Fe0dRqNdNSZHt7m2q1Grqq\n", - "g+OwovGBN71T1zVp0XS7XeNp1tbWIudp7PA0I3r1dNLw1G63jWjW19d58OCBFU3c0GmbqVSKdDpN\n", - "uVw2SeOrq6uUSiUymQyDwYBGo2GK4KrVKvv7+xwcHJgi/yhgRXMKIkIymSSbzZp2aLrSYHl5mdXV\n", - "VfL5/BHR1Ov1I6IJS9ntaVjRnAEdl9Gbkl5Pk0gkTHF/o9GgXq9PeBqdCmE9TYxwx2WKxeJETdPq\n", - "6qrJmdGX19P0er3Qp0O4saunM6A9TaFQoFwuUygUTEDP20Lk8PCQdrs9EdCLSiRYY0VzCiIy0XTx\n", - "0qVLFIvFIxUHw+GQbrdLq9U6IpqoCceK5gy4PY0WjTs+Yz2Nh2NyhF8SkXURuTu+vOmgkUJ7Gu/w\n", - "5N6kHAwGdDqdqaKJmnD85ggr4CtKqWfG1z8Gb9rFQC+5j+uhB9Dr9Tg8PDSdrXQxXK/Xi4xQ3PjN\n", - "EYYY9Q8+rcWrWzTestsoMs+c5tdF5Dsi8nLUS1i8u9reDcper2e6de7u7lKr1UxBXBTxK5o/Bj7C\n", - "qOfeJvAHgVl0ATlteNITYDs8nYBSakeNAb5KxPoH6/Oa3GUqOhpcKpVYWFiY6AbRaDSo1Wo8fPjQ\n", - "iEZXUUYRX6IZJ5Nrfp6I9Q/Wk1/dR08PS4VCgWKxSC6XM6LRVZP1ep39/X2zox3l4enUbYRxjvBP\n", - "AZdFZA34EvAJEXma0SrqA+BXztXKHzLTPI0Wje6fl0wmTQsR7Wm0aHSKZ1SHJ785wq+cgy0XAl2f\n", - "7fY0enjSonGfP9npdI4MT1HZYzoOu2E5hUwmw+LiotmgrFQqE1sHrVbLzGfa7TbNZpN2uz2xMRll\n", - "7DaCBxEhm82yuLhIpVLhypUrLC0tUSqVcBzHbBv0ej3T3Uo3KYpSbdNJWNF40G3qC4UCS0tLrK6u\n", - "srS0ZDxNOp0GmGiJ1mw2Q93ZalasaKZwkqfJZDLApGjcniYOWNFMwdvi1d2pUzOt7DbqcxmNFY0H\n", - "ETnSf0b3BNanrejJrj5uJ0yHlgaBFc0U3KLJZrNmn0lvG7i7W+ljBK1oYo7X06TTaVKp1FTRuIcm\n", - "K5qY4k7vdCdduROu+v0+7XabRqNBtVql0WjQbrft6inOpNNpHMcx5zZ5l9vu/Bl9BmWUNyi92Iiw\n", - "B+1pHMcx0WCdDqE9jRaNbluvl91xEc2JnkZErovIv4jI/4jId0XkN8b3I91HeJqn0Tk0gIkGa09T\n", - "r9cjVXZ7GqcNTz3gt5RSPw78JPCrIvI4Eesj7E2yyufz5ggefaLKtImwXnbbibALpdSWUuqt8esG\n", - "8D3gGhHqI6yHI90OTbeodx/2pRsA6DhN3DnznEZEbgHPAP9BxPoIu2u1S6WS6TquRaPza7SniTtn\n", - "Eo2ILAJ/A/ymUurA/RcX9j7C3m6duvGiWzTucxAsZ8vcSzMSzJ8rpXTr120RWVVKbYW9j/C01ZKu\n", - "oNSCUUqZeYtO8Ww2m+YonrAfkDErp62eBHgZ+F+l1B+6vhWpPsKZTMZ06tQ72nq15C651amd7h40\n", - "tVrNJGHFJbh3mqd5DvgF4G0RuTu+90VGfYP/SkR+CbgHfObcLDxndP6M4ziUy2UuX748kXAFGNHo\n", - "I3jcgqlWq3S7XVOGGwdOFI1S6t843htFoo+wFo0+hN0tGj08DYdDE5txexktnKiceXBWYhkRdk9o\n", - "dXtXLZpKpWKO35kWAa5WqxNDkq44iMNcRhNL0cBk1YHucqVFoyPAqVQKpZSpoNRlt97TbrVg4iKc\n", - "WIpGJ1q5RaNjNJcuXZrqaZrNpinw157GXQwXF8FAjEWjhTPN0+jewHoi3O12TYH/tFrtOAkGYioa\n", - "L1pAWkR6SBIRut0u1WqVvb09tre32dzcZG9vj0ajYQ4DixuxFI32Dvryns+klDKrJRFhZ2eHra0t\n", - "Njc3WV9fNzvbnU7nUf8qj4RYikbjFY1bOJp+v29OU9nY2OD+/fsmwBfVAv/TiK1o9LDijrG4S1L0\n", - "1el0jGg2Nze5f/8+vV7PXHEklqJxz0OGwyHNZpO9vT02NjZwHMcIRx/ytba2xtbWFvv7+zQajdgF\n", - "87zEUjQavRFZr9fZ2NggkUhwcHBghipdorK5ucnOzg4HBweR7NY5K7EVjf4PHwwG1Go1RIRms8nW\n", - "1taRw9f1lkGj0TClt3EVDICc9MuLyHXgz4AVRg2M/kQp9Uci8hLwy8Du+Ee/6G0LG5YcG50aoWub\n", - "3IeX6q/uOY7elIyDaJRSUxOIThPNKrCqlHprnIj134xSOz8DHCilvnLCZ6P/rxpxjhPNabvcW8DW\n", - "+HVDRHSOMMSoj7BlkjMnvbpyhL89vhWbPsKWSc4kmvHQ9NeMcoQbxKyPsGWSE+c0YHKE/x74B0/K\n", - "p/7+LeDvlFJPee7bOU3IOW5O4ytHOOp9hC0nc9rq6WPAvwJvM1pyA/we8AKjocn0EXbVQenPWk8T\n", - "cnwtuefBiib8+BqeLJZpWNFYZsaKxjIzVjSWmbGiscyMFY1lZqxoLDNzbnEaS3SxnsYyM1Y0lpk5\n", - "V9GIyB0ReVdEfiAiLwbwvHsi8raI3BWR//Tx+VdEZFtE3nHd893e9pjnvSQi62Mb74rInRmeF2gL\n", - "3hOe59tG4Gi1YVAXkATeB24BaeAt4PE5n/kBUJnj8x9nlEj2juve7wO/M379IvDlOZ/3JeC3fdq3\n", - "Cjw9fr0IfB943K+NJzzPt41KqXP1NM8C7yul7imlesA3gE8H8FzfaaZKqW8B+57bvtvbHvM88Gmj\n", - "CrgF7wnP820jnO/wdA1Yc71f5/8N9osC3hCRN0XkC3M+S3Me7W3nToUNugVvkOm65yma81jLP6eU\n", - "egZ4nlH39I8H+XA18uPz2j13Kqy3Be+8NgadrnueorkPXHe9v87I2/hGKbU5/roLvMpoCJyX7XGp\n", - "js5InKu9rVJqR40BvjqrjSe14PVjo+t5f6GfN6+N5ymaN4GPisgtEckAn2XUStYXIuKISGH8Og98\n", - "imDSTANtbztPKmzQLXjPLV13ntXMGWbvzzOasb/PqApznmd9hNEK7C3gu36eB3wd2AC6jOZbnwcq\n", - "wBvAe8BrQHmO5/0io4rUt4HvjP9zr8zwvI8Bw/HveHd83fFr4zHPe34eG5VSdhvBMjs2ImyZGSsa\n", - "y8xY0VhmxorGMjNWNJaZsaKxzIwVjWVmrGgsM/N/z4EQsKT2Kt0AAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEBVJREFUeJztnVuMJNdZx39f36d6+rI9O7PDrveSlQKysSX7xSA5EREK\n0fqFwEsiS0hRgIgHboIHTHiJHyMkIsQLEoqNwkWJEMgoIAG2ERJBKIDROnYgjmPJK8/sXHd2unu6\np+99eOg+h+qanktX12Snqs5PKk13zXTpm93/fOec73zfd0QphcUyC4lHbYAlfFjRWGbGisYyM1Y0\nlpmxorHMjBWNZWZ8i0ZE7ojIuyLyAxF5MUijLBcb8ROnEZEk8H3gk8B94L+AF5RS3wvWPMtFxK+n\neRZ4Xyl1TynVA74BfDo4sywXmZTPz10D1lzv14GfcP+AiNhQc8hRSsm0+349jRVEjPErmvvAddf7\n64y8jSUG+BXNm8BHReSWiGSAzwLfDM4sy0XG15xGKdUXkV8D/glIAi/blVN88LXkPtOD7UQ49AQ9\nEbbEGCsay8xY0VhmxorGMjNWNJaZsaKxzIwVjWVm/G5YWk5ARMwFkE6nzZVKpRgOhwwGA/r9PoPB\nwLzXXy86VjTnQCKRIJlMkkwmSaVSlMtlKpWKuVqtFo1Gw1ytVmviGg6Hj/pXOBErmnMgkUgYz5LJ\nZFhZWeHWrVvcvHmTmzdvUqvV2N3dNdf+/j7VahWlFO12+1GbfypWNOeA9jDZbJZcLsfKygq3b9/m\nqaee4sknn2RnZ4e1tTU+/PBDstks6XQapRSdTscMaReZuUQjIveAOjAAekqpZ4MwKuwkEgkymQy5\nXA7HcahUKly9epXbt2/zxBNPUCqVEBE6nQ4HBwc0m03q9TqpVCr6omGUjPUJpdTDIIyJCslkknQ6\nzcLCAouLiywsLJDJZEgmkwAMh0P6/T69Xo9Op0Ov16Pf7zMcDglDbX0QS+6L/6fxQyaZTJLJZE4U\nzWAwoNfr0e126Xa7RjRhYF7RKOANEXlTRL4QhEFR4CyiOc7ThIF5h6fnlFKbIrIMvC4i7yqlvhWE\nYWFGiyaXy02IJpFIoJQyXqbdbnN4eEir1aLX6zEYDKI/PCmlNsdfd4FXGZW2xB49EXZ7mnQ6TSKR\nYDgc0ul0aDabVKtVHjx4QLVapdls0u12oy0aEXFEpDB+nQc+BbwTlGFhxj085fN5IxoRYTAY0O12\naTab1Go19vb2qNVqRjRhYJ7h6Qrw6niJmAL+Uin1WiBWhRzvnCaXyxnRuD1NrVbjwYMHNJtN+v0+\n/X4/FJ7Gt2iUUh8ATwdoS2jRsRW93+QWTLlcxnEcUqmUCeC1Wi2azSYHBwfUarVQRIHd2IhwACQS\nCVKplNlvKhaLVCoVVlZWuHr1KoVCgVQqRavVMtsGjUYjNHMYL1Y0AaCDeZlMhkwmQ6lUYmlpiStX\nrnDt2jVEBKWU8TAPHz6k0WjQ6XQetem+sPk0AeBeYufzeUql0oSnKZVKJJNJ42m0aMLqaaxoAkB7\nGi2aQqHApUuXWFpaYmVlhcXFRUSEZrMZieHJiiYAdCqE3qDM5XJkMhkTmxkMBrRaLZMSsb+/H6q4\njBcrmgDQniabzeI4jokA68nxNNFoTxNGrGgCQHuabDbLwsICuVzO5MlME03YIsBerGgCQE+EHceh\nUCjgOA7ZbNbkx/T7fVqtFvV6nb29PSsaC+RyOUqlEisrK9y4cYPl5WXy+TyJRMIE8w4PD01A7/Dw\nkE6nQ7/ff9Sm+8KKJgCy2SzFYpGVlRUee+wxLl++PCEavZutE8kPDw/pdruh2dX2YoN7AZDNZimV\nSiwvL3Pjxg2KxSKLi4skk8ljPY3OoQkjp3oaEXlFRLZF5B3XvYqIvC4i74nIayJSPl8zLx7u2qZc\nLkexWGR5eZmrV69SqVRwHGfC02jh6JKVMHuaswxPfwrc8dz7XeB1pdSPAv88fh8b9F6TjgIvLCzg\nOI4J7DmOM5F0pdM7dUGcvsIoGDiDaMaZePue2z8LfG38+mvAzwVs14XmONEsLi5SKBQmMvXcInFX\nUiqlQisav3OaK0qp7fHrbUa5NbHBLRp3spX2NDphXCllcn+93iasgoEAJsJKKRW3/nq6GE4LxnEc\nMzzl83k6nc4RwXivMON3yb0tIqsAIvIjwE5wJl18UqmUSRovlUrk83lyuRyp1OhvUM9jdMWBu9A/\nCvgVzTeBz41ffw7422DMufiIyIRoyuWySenUEWB3Vwi3aMI8JLk5y5L768C/Az8mImsi8nngy8DP\niMh7wE+P38cGr6dxiwame5qwT37dnDqnUUq9cMy3PhmwLaFBF/fn83nK5TL5fN7sNcHRYriwVVCe\nho0I+2BaiYq7grLT6VCv19nd3WV7e5udnR2TQB4FT2P3nnzg7gqhJ8Fe0dRqNdNSZHt7m2q1Grqq\ng+OwovGBN71T1zVp0XS7XeNp1tbWIudp7PA0I3r1dNLw1G63jWjW19d58OCBFU3c0GmbqVSKdDpN\nuVw2SeOrq6uUSiUymQyDwYBGo2GK4KrVKvv7+xwcHJgi/yhgRXMKIkIymSSbzZp2aLrSYHl5mdXV\nVfL5/BHR1Ov1I6IJS9ntaVjRnAEdl9Gbkl5Pk0gkTHF/o9GgXq9PeBqdCmE9TYxwx2WKxeJETdPq\n6qrJmdGX19P0er3Qp0O4saunM6A9TaFQoFwuUygUTEDP20Lk8PCQdrs9EdCLSiRYY0VzCiIy0XTx\n0qVLFIvFIxUHw+GQbrdLq9U6IpqoCceK5gy4PY0WjTs+Yz2Nh2NyhF8SkXURuTu+vOmgkUJ7Gu/w\n5N6kHAwGdDqdqaKJmnD85ggr4CtKqWfG1z8Gb9rFQC+5j+uhB9Dr9Tg8PDSdrXQxXK/Xi4xQ3PjN\nEYYY9Q8+rcWrWzTestsoMs+c5tdF5Dsi8nLUS1i8u9reDcper2e6de7u7lKr1UxBXBTxK5o/Bj7C\nqOfeJvAHgVl0ATlteNITYDs8nYBSakeNAb5KxPoH6/Oa3GUqOhpcKpVYWFiY6AbRaDSo1Wo8fPjQ\niEZXUUYRX6IZJ5Nrfp6I9Q/Wk1/dR08PS4VCgWKxSC6XM6LRVZP1ep39/X2zox3l4enUbYRxjvBP\nAZdFZA34EvAJEXma0SrqA+BXztXKHzLTPI0Wje6fl0wmTQsR7Wm0aHSKZ1SHJ785wq+cgy0XAl2f\n7fY0enjSonGfP9npdI4MT1HZYzoOu2E5hUwmw+LiotmgrFQqE1sHrVbLzGfa7TbNZpN2uz2xMRll\n7DaCBxEhm82yuLhIpVLhypUrLC0tUSqVcBzHbBv0ej3T3Uo3KYpSbdNJWNF40G3qC4UCS0tLrK6u\nsrS0ZDxNOp0GmGiJ1mw2Q93ZalasaKZwkqfJZDLApGjcniYOWNFMwdvi1d2pUzOt7DbqcxmNFY0H\nETnSf0b3BNanrejJrj5uJ0yHlgaBFc0U3KLJZrNmn0lvG7i7W+ljBK1oYo7X06TTaVKp1FTRuIcm\nK5qY4k7vdCdduROu+v0+7XabRqNBtVql0WjQbrft6inOpNNpHMcx5zZ5l9vu/Bl9BmWUNyi92Iiw\nB+1pHMcx0WCdDqE9jRaNbluvl91xEc2JnkZErovIv4jI/4jId0XkN8b3I91HeJqn0Tk0gIkGa09T\nr9cjVXZ7GqcNTz3gt5RSPw78JPCrIvI4Eesj7E2yyufz5ggefaLKtImwXnbbibALpdSWUuqt8esG\n8D3gGhHqI6yHI90OTbeodx/2pRsA6DhN3DnznEZEbgHPAP9BxPoIu2u1S6WS6TquRaPza7SniTtn\nEo2ILAJ/A/ymUurA/RcX9j7C3m6duvGiWzTucxAsZ8vcSzMSzJ8rpXTr120RWVVKbYW9j/C01ZKu\noNSCUUqZeYtO8Ww2m+YonrAfkDErp62eBHgZ+F+l1B+6vhWpPsKZTMZ06tQ72nq15C651amd7h40\ntVrNJGHFJbh3mqd5DvgF4G0RuTu+90VGfYP/SkR+CbgHfObcLDxndP6M4ziUy2UuX748kXAFGNHo\nI3jcgqlWq3S7XVOGGwdOFI1S6t843htFoo+wFo0+hN0tGj08DYdDE5txexktnKiceXBWYhkRdk9o\ndXtXLZpKpWKO35kWAa5WqxNDkq44iMNcRhNL0cBk1YHucqVFoyPAqVQKpZSpoNRlt97TbrVg4iKc\nWIpGJ1q5RaNjNJcuXZrqaZrNpinw157GXQwXF8FAjEWjhTPN0+jewHoi3O12TYH/tFrtOAkGYioa\nL1pAWkR6SBIRut0u1WqVvb09tre32dzcZG9vj0ajYQ4DixuxFI32Dvryns+klDKrJRFhZ2eHra0t\nNjc3WV9fNzvbnU7nUf8qj4RYikbjFY1bOJp+v29OU9nY2OD+/fsmwBfVAv/TiK1o9LDijrG4S1L0\n1el0jGg2Nze5f/8+vV7PXHEklqJxz0OGwyHNZpO9vT02NjZwHMcIRx/ytba2xtbWFvv7+zQajdgF\n87zEUjQavRFZr9fZ2NggkUhwcHBghipdorK5ucnOzg4HBweR7NY5K7EVjf4PHwwG1Go1RIRms8nW\n1taRw9f1lkGj0TClt3EVDICc9MuLyHXgz4AVRg2M/kQp9Uci8hLwy8Du+Ee/6G0LG5YcG50aoWub\n3IeX6q/uOY7elIyDaJRSUxOIThPNKrCqlHprnIj134xSOz8DHCilvnLCZ6P/rxpxjhPNabvcW8DW\n+HVDRHSOMMSoj7BlkjMnvbpyhL89vhWbPsKWSc4kmvHQ9NeMcoQbxKyPsGWSE+c0YHKE/x74B0/K\np/7+LeDvlFJPee7bOU3IOW5O4ytHOOp9hC0nc9rq6WPAvwJvM1pyA/we8AKjocn0EXbVQenPWk8T\ncnwtuefBiib8+BqeLJZpWNFYZsaKxjIzVjSWmbGiscyMFY1lZqxoLDNzbnEaS3SxnsYyM1Y0lpk5\nV9GIyB0ReVdEfiAiLwbwvHsi8raI3BWR//Tx+VdEZFtE3nHd893e9pjnvSQi62Mb74rInRmeF2gL\n3hOe59tG4Gi1YVAXkATeB24BaeAt4PE5n/kBUJnj8x9nlEj2juve7wO/M379IvDlOZ/3JeC3fdq3\nCjw9fr0IfB943K+NJzzPt41KqXP1NM8C7yul7imlesA3gE8H8FzfaaZKqW8B+57bvtvbHvM88Gmj\nCrgF7wnP820jnO/wdA1Yc71f5/8N9osC3hCRN0XkC3M+S3Me7W3nToUNugVvkOm65yma81jLP6eU\negZ4nlH39I8H+XA18uPz2j13Kqy3Be+8NgadrnueorkPXHe9v87I2/hGKbU5/roLvMpoCJyX7XGp\njs5InKu9rVJqR40BvjqrjSe14PVjo+t5f6GfN6+N5ymaN4GPisgtEckAn2XUStYXIuKISGH8Og98\nimDSTANtbztPKmzQLXjPLV13ntXMGWbvzzOasb/PqApznmd9hNEK7C3gu36eB3wd2AC6jOZbnwcq\nwBvAe8BrQHmO5/0io4rUt4HvjP9zr8zwvI8Bw/HveHd83fFr4zHPe34eG5VSdhvBMjs2ImyZGSsa\ny8xY0VhmxorGMjNWNJaZsaKxzIwVjWVmrGgsM/N/z4EQsKT2Kt0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2363,95 +751,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEn9JREFUeJzt3X+QXfVZx/HPJz9IsiSQwYRsAqmJChoyLQRbBiiFYquD\n", - "TKFVaykqxerUcdraiC1Tyoz+pdPajlPsdHSmgrTQXyqttB2FghYDpZYU2A2QpIQ4RIH8MpjQ/Nqw\n", - "SR7/uHfDZtnNnmdPvnvPDe/XTCb3nPvcc773fM8999lzzv0+jggBAABg4qZ0ugEAAADdjoQKAACg\n", - "JhIqAACAmkioAAAAaiKhAgAAqImECgAAoKZpnVy5bcZsAAAAXSMiPNr8ogmV7Ssk3SJpqqRbI+Iv\n", - "R8Zcd911r3rdmjVrdO655x41LzNeVnZsrcOHD5+wsSWNtZ3Xr1+vZcuWHTWv1Ps7ePBg5VhJGhwc\n", - "rBx74MCByrEvv/xykeUODAxUjj0eduzYoXnz5r1qvj3q8WNUU6ZUP/Gd6ev9+/cXic3GZ/o6s38e\n", - "OnSocuxY/RERoz43bVr1Q/2MGTMqx5500kmVYzNtyOxDmVgpty9nvkvq9vW+ffvU09PzqvmZY1a2\n", - "HZn3l/mslvy+zsj0ddXYYx2/i13ysz1V0uclXSHpHEnX2l527FcBAAB0n5L3UF0gaWNEbIqIQUlf\n", - "l/TOgusDAADoiJIJ1RmSnhs2/Xx73rgWLFhQpEGYHKNdMkJ3GO2SA4Dypk+f3ukmoKaSCdWEL4z2\n", - "9vYez3Zgks2fP7/TTcAEkVB1t8w9I2gWEqruV/Km9BckLR42vVits1RHWbNmzZHHCxYsIJkCAACN\n", - "cPjw4co35JdMqB6VdJbtJZI2S7pG0rUjg0b+mg8AAKAJpkyZctQvSY/1a9xiCVVEHLT9YUnfVWvY\n", - "hNsiYn2p9QEAAHRK0XGoIuIeSfeUXAcAAECndXSkdKn6IHJNGeht6tSpRWIzbc4MkJdpg1RuW5R6\n", - "f9kbOTODFmZiZ86cWSQ28/4ygyxm4zPtyMRm9qHMdsvenN2EQXgz2y3zGZFyfT1r1qzKsZnPSGa5\n", - "c+bMqRyb3RaZgSSbMBBwdpDazLE2+/1QYrmlvkekMgMHn3HG2IMVUMsPAACgJhIqAACAmkioAAAA\n", - "aiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioAAICaSKgAAABq6ngtv0xN\n", - "o1Kydb86vdxua4OUq5+VkanVJOW2R6nYUrUYszXNMg4dOlRkuZn3l6l1l635lYnP1K/L1NDL7EPZ\n", - "/f7gwYOVYzOf1UxsZh/au3dv5djsd0imHaViM/typgaiJPX09BRZdmZfznyuS35HZfrkeOQiRc9Q\n", - "2V5s+wHba20/ZfsjJdcHAADQCaXPUA1KuiEi+m3PlvSY7fsjYn3h9QIAAEyaomeoImJrRPS3H++R\n", - "tF7SopLrBAAAmGyTdlO67SWSVkh6ZLLWCQAAMBkmJaFqX+67S9LK9pkqAACAE0bxX/nZni7pG5K+\n", - "HBF3j3y+v7//yOPe3l719vaWbhIAAMC4nn32WW3atKlSbNGEyq3fQ94maV1E3DJazHnnnVeyCQAA\n", - "ABOydOlSLV269Mj0qlWrxowtfcnvzZJ+R9Lltvva/64ovE4AAIBJVfQMVUR8X4zGDgAATnAkOwAA\n", - "ADV1vPRM1WHnm1JCJaNUuZVSy83KtCNbCqTUckvtR5myL6XaMDg4WGS5JWX2oUz5lGypnEwpl0z/\n", - "ZUqMzJw5s3LsnDlzKsdKubIhGZk+yWzjkqVLSpU7ypR8mTt3buXYU089tXKslHt/mWPG7t27K8fu\n", - "2VP9x/z79u2rHDswMFA5VsqVk8nsy2PhDBUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRU\n", - "AAAANZFQAQAA1ERCBQAAUBMJFQAAQE0kVAAAADV1vPRM1dIhmRIVJUuzlGpHpixDJrYpZWqaUjoo\n", - "sz0y5UtKleDIlE7IlmXIlJ3IbLdM6YtMbKa8T1amhFGpMjWZ8jAzZsyoHJtV6lhUqvRMtgxPpkRM\n", - "pvRM5hiwefPmyrEbN26sHCvljhmlvksy/ZfZ77PHgEx8ps1jrm+sJ2z/hqSQNNoRISLim1VWYHuq\n", - "pEclPR8RV02olQAAAA12rPTtKrUSqrFUSqgkrZS0TlLuzwgAAIAuMWZCFRG/W3fhts+UdKWkv5D0\n", - "J3WXBwAA0ETj3jhgu9f2bbbvbU+fY/v3Ky7/s5JulFT9Qi0AAECXqXIn5hcl3SdpUXv6GUk3jPci\n", - "2++QtD0i+jT6fVgAAAAnhCq3wM+LiH+wfZMkRcSg7So/Z7hY0tW2r5Q0U9Iptu+IiPcND+rr6zvy\n", - "uLe3VwsXLqzeegAAgEI2b96sLVu2VIqtklDtsf1TQxO2L5T00ngvioibJd3cfs1lkj42MpmSpBUr\n", - "VlRqKAAAwGRatGiRFi1adGR6+EmgkaokVB+V9B1JP2P7B5LmS3r3BNrVjAGRAAAAjrNxE6qIeMz2\n", - "pZJ+Xq17oZ6OiOojAraWsUrSqok1EQAAoNnGTahsz5L0QUmXqHWW6SHbfxsRuWGZAQAATlBVLvnd\n", - "Ieknkj6n1hmq35J0p6TfLNguAACArlEloVoeEecMm/6e7XXHqwFV64mVrEmXqWfUBJm6YyVr6DWh\n", - "Pl+27zLxme1cqs7c7Nmzi7Uh8/4ysZlaYvv27ascm6lVmFmuVK4+X6ZPMrUj9+7dWzk2K9OOjMw+\n", - "lDne7969O9WOzPvLtGP//v2VYw8cOFA5NlMjUMq9v1LHuMxyMzX0st85mTZnagqOpcq7ftz2RUMT\n", - "7V/5PVZ7zQAAACeIYxVHfnJYzMO2n1PrHqrXSXp6EtoGAADQFcYrjgwAAIBxHKs48qbh07ZPV2vE\n", - "cwAAAAxTpTjy1bafkfSsWmNJbZJ0T+F2AQAAdI0qN6X/uaSLJG2IiKWS3ibpkaKtAgAA6CJVEqrB\n", - "iNghaYrtqRHxgKQ3Fm4XAABA16gySMNO23MkPSTpK7a3S9pTtlkAAADdo8oZqndJ2ifpBkn3Stoo\n", - "fgEIAABwRJXiyENnow5J+mLR1gAAAHShYw3suUetgTxHExFxyvFowPTp0yvFNaXcSimlSuuULKuT\n", - "aXOp2EzZAqncfpSJLbUtMiVfsjLbORM7Z86cyrGnnFL9kJPdLzKlQDKxVUtrlYzNKlWSaObM6qPu\n", - "ZEqGlCy5lJEp+ZLZhzIllyYSX1XmM1Wq5Eu2PEzV/EKqvn8++OCDYz53rHGoqhcRG4PtuZJulbRc\n", - "reTs9yLih3WXCwAA0CRlKrq+4q8l/WtEvNv2NEknF14fAADApCuWUNk+VdJbIuJ6SYqIg5JeKrU+\n", - "AACATilzMbllqaT/tX277cdt/53tnoLrAwAA6IiSCdU0SedL+puIOF/SXkk3FVwfAABAR5S8h+p5\n", - "Sc9HxI/a03dplISqr6/vyOPe3l4tXLiwYJMAAACq2bJli7Zu3VoptlhCFRFbbT9n++yI2CDp7ZLW\n", - "joxbsWJFqSYAAABM2MKFC4860dPf3z9mbOlf+f2RWuVqTpL0X5LeX3h9AAAAk65oQhURayS9qeQ6\n", - "AAAAOq3kTekAAACvCaUv+Y2ragmFUmVAsvGlyhY0RRPKyWS2cbbsRKZ8QqlyMqXKnBw8eLBybDY+\n", - "8/4yfTJr1qzKsZnSJdkSFZkSOBmltnG2VFWmLEqmrE2m3FFmuaVKcWVljkU9PdVHBZo7d27l2KaU\n", - "Uit1DMhs46aUGhtzfbWXAAAA8BpHQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABA\n", - "TSRUAAAANZFQAQAA1ERCBQAAUFPHS89ULa3RlNIzpcoAZIfUL6VUGZ5M7OHDhyvHZkqzZJUqfzFj\n", - "xozKsZkSFdmySJntnCkbkumTTOmSPXv2VI49+eSTK8dK5UrgZMqRZMrDZLablOvrzLEoU2IkU4Yn\n", - "E5vZblJuX85st8y2yMRmyyiVWnYmNtMne/furRy7f//+yrFS2dJdoyl6hsr2J2yvtf2k7a/arv5N\n", - "AgAA0CWKJVS2l0j6gKTzI+L1kqZKem+p9QEAAHRKyUt+P5E0KKnH9iFJPZJeKLg+AACAjih2hioi\n", - "/k/SX0n6H0mbJe2KiH8rtT4AAIBOKXnJ72cl/bGkJZIWSZpt+7dLrQ8AAKBTSl7ye6OkH0TEi5Jk\n", - "+5uSLpb0leFBa9euPfJ4/vz5Ov300ws2CQAAoJodO3boxRdfrBRbMqH6saQ/tT1L0oCkt0taPTJo\n", - "+fLlBZsAAAAwMfPmzdO8efOOTG/YsGHM2JL3UK2RdIekRyU90Z79hVLrAwAA6JSiA3tGxKclfbrk\n", - "OgAAADqN0jMAAAA1kVABAADU1PFaflVrbmXqqpWqwSblat2VbEdVmVpUUq7N2RpaJZab3caZ+FK1\n", - "CgcGBirHZmpRZWv5NaF+ZKbNmbp4JesaZvpvx44dlWN3795dOTZT11A6PnXKRjN9+vTKsZkaiJm6\n", - "cZn+kPLHxKoyn6dMPc+S+3Kmjl7muFyqbmNWpk8y+/JYOEMFAABQEwkVAABATSRUAAAANZFQAQAA\n", - "1ERCBQAAUBMJFQAAQE2NTKi2bNnS6Saghq1bt3a6CZggPnvdbefOnZ1uAiYoM8QGmqmRCRVfyN1t\n", - "27ZtnW4CJojPXnfbtWtXp5uACSKh6n6NTKgAAAC6CQkVAABATe5keRTbna/NAgAAUFFEjFqDrqMJ\n", - "FQAAwImAS34AAAA1kVABAADU1LiEyvYVtn9s+xnbH+90ezA2239ve5vtJ4fNO832/bY32L7P9txO\n", - "thFjs73Y9gO219p+yvZH2vPpw4azPdP2I7b7ba+z/cn2fPqui9iearvP9nfa0/RfF2tUQmV7qqTP\n", - "S7pC0jmSrrW9rLOtwjHcrlZfDXeTpPsj4mxJ/96eRjMNSrohIpZLulDSh9qfN/qw4SJiQNLlEXGe\n", - "pDdIutz2JaLvus1KSeskDd3MTP91sUYlVJIukLQxIjZFxKCkr0t6Z4fbhDFExEOSRg7NfLWkL7Uf\n", - "f0nSuya1UagsIrZGRH/78R5J6yWdIfqwK0TEvvbDkyRNVeuzSN91CdtnSrpS0q2Shn41Rv91saYl\n", - "VGdIem7Y9PPteegeCyJiaKj0bZIWdLIxqMb2EkkrJD0i+rAr2J5iu1+tPnogItaKvusmn5V0o6TD\n", - "w+bRf12saQkVYzicQKI1Jgd92nC2Z0v6hqSVEbF7+HP0YXNFxOH2Jb8zJV1q+/IRz9N3DWX7HZK2\n", - "R0SfXjk7dRT6r/s0LaF6QdLiYdOL1TpLhe6xzXavJNleKGl7h9uDY7A9Xa1k6s6IuLs9mz7sIhHx\n", - "kqR/kfSLou+6xcWSrrb9rKSvSfol23eK/utqTUuoHpV0lu0ltk+SdI2kb3e4Tcj5tqTr24+vl3T3\n", - "MWLRQbYt6TZJ6yLilmFP0YcNZ3ve0C/AbM+S9MuS+kTfdYWIuDkiFkfEUknvlfS9iLhO9F9Xa9xI\n", - "6bZ/VdItat1keVtEfLLDTcIYbH9N0mWS5ql1vf/PJH1L0j9Kep2kTZLeExG7OtVGjK39q7AHJT2h\n", - "Vy4tfELSatGHjWb79WrdtDyl/e/OiPiM7dNE33UV25dJ+mhEXE3/dbfGJVQAAADdpmmX/AAAALoO\n", - "CRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRUADrO9sPt/3/a9rXHedk3j7YuADieGIcK\n", - "QGPYfqtagxxelXjNtIg4eIznd0fEnOPRPgAYC2eoAHSc7T3th5+S9BbbfbZX2p5i+zO2V9teY/sP\n", - "2vFvtf2Q7W9Jeqo9727bj9p+yvYH2vM+JWlWe3l3Dl+XWz5j+0nbT9h+z7Bl/4ftf7K93vaXJ3dr\n", - "AOhG0zrdAADQK6VvPi7pY0NnqNoJ1K6IuMD2DEnft31fO3aFpOUR8d/t6fdHxM52bbvVtu+KiJts\n", - "fygiVoyyrl+XdK6kN0iaL+lHth9sP3eepHMkbZH0sO03RwSXCgGMiTNUAJrEI6Z/RdL7bPdJ+qGk\n", - "0yT9XPu51cOSKUlaabtf0n9KWizprHHWdYmkr0bLdkmrJL1JrYRrdURsjtY9Ef2SltR4TwBeAzhD\n", - "BaDpPhwR9w+f0b7Xau+I6bdJujAiBmw/IGnmOMsNvTqBGzp7dWDYvEPiWAlgHJyhAtAkuyUNv4H8\n", - "u5I+aHuaJNk+23bPKK87RdLOdjL1C5IuHPbc4NDrR3hI0jXt+7TmS7pU0mq9OskCgHHxVxeAJhg6\n", - "M7RG0qH2pbvbJX1Orcttj9u2pO2Sfq0dP/wnyvdK+kPb6yQ9rdZlvyFfkPSE7cci4rqh10XEP9u+\n", - "qL3OkHRjRGy3vWzEsjXKNAAchWETAAAAauKSHwAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBN\n", - "JFQAAAA1kVABAADUREIFAABQ0/8DDbzgL6GT1HEAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEkhJREFUeJzt3XuwXWV5x/HfL5eTK8bQJCYniQ2h0BJGKwQhIIJU26GM\noG2tSFultkOno9aUKiMy0/7VjlamIzpOO2OhKHhrixZ1WhBaKCKWxBwSCCRyaaQlSXOhBUzI9SRP\n/9g74eRwLus5K+/Ze8H3M8Ow197Pftd71rv22k/WWvt9HBECAADA2E3odAcAAACajoQKAACgJhIq\nAACAmkioAAAAaiKhAgAAqImECgAAoKZJnVy5beZsAAAAjRERHur5ogmV7Ysl3SBpoqQbI+IvB8dc\nddVVL3tfX1+fli9fPub1ZufWOnToUJG2Dx8+XCS2VH+zbQ/X5w0bNmjZsmXHPNff31+53VKxknTg\nwIHKsQcPHizS7r59+yrH7t+/v3Jsdqztlx8Tnn32Wc2ZM+dlz0+cODHVdlWZ/W3v3r2VYzPbONt2\nZqwz+2dmWww1dlJrHxjqtUmTqh/qe3p6KsdOnjy5cmymDxnDbYvhZD4nmdjM+A21X+zfv19Tpkyp\nFDuSzHdJqW1Ran7L7FiXaHuk74Vil/xsT5T0BUkXS1om6Qrbp5VaHwAAQKeUvIfqbElPRcTTEXFQ\n0jckvavg+gAAADqiZEK1UNIzA5Y3t58b1YIFC4p0CONj7ty5ne4Cxmj69Omd7gLwqlTqsjrGT8mE\naswXUXt7e49nPzDOSKiai4Sq2UreY4KySt1jhvFTcgS3SFo8YHmxWmepjtHX13f08YIFC0imAABA\nVzh8+HDlm+xLJlRrJJ1ie4mkrZIul3TF4KA6v+YDAAAoZcKEYy/kjfQrymIJVUT02/6IpO+pNW3C\nTRGxsdT6AAAAOqXoRduIuEPSHSXXAQAA0GmNuQsuc8Ne9tcSpdrOtDv4tGIn2s3K3ACbic30OTOx\noCRNnTq1SOyMGTMqx2Zu/M5MspiJlXLbOROb+YxkYjN/X/YYkPn7St34XeozIpWb2DMTO9SklcOZ\nOXNmkXalcr+mKzU5cyY2249MbGai4+MxQXTddrPxVSfsPfnkk4d9jVp+AAAANZFQAQAA1ERCBQAA\nUBMJFQAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQU8dr+VWt\na1aqflZWpjZQf39/5diIKBJbUqYfper+ZfeLUm1n6oNl6rCVHOtSbWfqxmVqMWZis/tFpp5YqbqG\nmfHI9LekzLbI9HnPnj2VYzPHWSlXk65UbEa29mCpeqXTpk2rHJs5BpSs05v5TFWt5TeSomeobC+2\nfa/tx2w/avujJdcHAADQCaXPUB2UdHVErLM9U1Kf7bsjYmPh9QIAAIybomeoImJbRKxrP94taaOk\n3pLrBAAAGG/jdlO67SWSzpC0arzWCQAAMB7GJaFqX+67TdLK9pkqAACAV4ziv/KzPVnSNyV9JSJu\nH/z6gw8+ePTxokWLtGjRotJdAgAAGNWmTZu0adOmSrFFEyq3frt8k6QNEXHDUDErVqwo2QUAAIAx\nWbp0qZYuXXp0+Z577hk2tvQlv7dI+h1JF9le2/7v4sLrBAAAGFdFz1BFxA/EbOwAAOAVjmQHAACg\npo6XnsmWDSihW8o4VNUt5UiaWHomI1NWoxv6XHI/7oaSPZl2MyWipHL7fakyNVOmTKkcm43v6emp\nHJvpc6bdzHbLlKmRyu3LmdIspWKl3FiXKueU+fxlSvZkx3r//v2VY7u+9AwAAMCrAQkVAABATSRU\nAAAANZFQAQAA1ERCBQAAUBMJFQAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNHS89k5kavpRS\nJUZKlbPIlBjJliPJ9CNTXqAbtkVWqbYzf1+mHMK+fftS/ch89jLlITIypS8mTap+uMp8pqXc5zqz\n3bIlcKrKlHzJyoxJdjtXVbKkVEbm7+uWEmaZz0lGqZI9pfahbNvHY58bdsvb/g1JIWmotUREfKvK\nCmxPlLRG0uaIuHRMvQQAAOhiI6Wyl6qVUA2nUkIlaaWkDZJOqNopAACAJhk2oYqI363buO1Fki6R\n9BeS/qRuewAAAN1o1AuMtufbvsn2ne3lZbZ/v2L7n5V0jaTuuLgMAABQQJU7tr4k6S5Jve3lJyVd\nPdqbbL9T0o6IWKuh78MCAAB4Rajyc4A5EfH3tq+VpIg4aLu/wvvOk3SZ7UskTZX0Gtu3RMQHBgb1\n9fUdfbxgwQL19vYKAACg03bs2KGdO3dWiq2SUO22/TNHFmyvkPTCaG+KiOskXdd+z4WSPj44mZKk\n5cuXV+ooAADAeJo3b57mzZt3dHnjxo3DxlZJqD4m6buSltr+oaS5kt4zhn5Vn3wHAACgQUZNqCKi\nz/YFkn5erXuhHo+I1Cx/EXGfpPvG1kUAAIDuNmpCZXuapA9JOl+ts0z32/6biMhNywwAAPAKVeWS\n3y2Sfirp82qdofotSbdK+s2C/QIAAGiMKgnV6RGxbMDyPbY3HLcOFKg71MQ6UN3S50ztsUztqlJ1\n/7K10krVFMzIjPXs2bOL9EEqV0Mrs90ydfEydQ337NlTOVbK9XnGjBmVY3t6eirHTp06tXJstpZf\nyc9Up/uQ2S+ybWeOcZl9LtPnbB3NTJ8zx6LMd3UmNrMvZ49ZmbaPRy5SpXcP2T73yEL7V359I8QD\nAAC8qoxUHHn9gJgHbD+j1j1Ur5f0+Dj0DQAAoBFGK44MAACAUYxUHPnpgcu256k14zkAAAAGqFIc\n+TLbT0r6iVpzST0t6Y7C/QIAAGiMKjel/7mkcyU9EREnSXq7pFVFewUAANAgVRKqgxHxrKQJtidG\nxL2SzircLwAAgMaoMvHCc7ZPkHS/pK/a3iFpd9luAQAANEeVM1TvlrRH0tWS7pT0lPgFIAAAwFFV\niiMfORt1SNKXivYGAACggUaa2HO3WhN5DiUi4jXHpQMVp3svVQZEKleKoL+/v0i7mdgmypQXyJbg\nKLXtSpXVePHFF8fSnUpKbedSpSQmT55cOXbWrFmVY6VceY9Sx4vdu6vfSZE9HpbaPzPtZsa65DEg\nsx9l2p4+fXrl2Mw2zpRnknJlbUp9R2VK2mS2cWbssvHTpk1LtT2Ukeahmlm3cduvlXSjpNPVSs5+\nLyIerNsuAABANzn+lYmP9TlJ/xIR77E9SVL1qqIAAAANUSyhsj1L0lsj4kpJioh+SS+UWh8AAECn\nVL9QnXeSpJ22b7b9kO2/tV39IjMAAEBDlEyoJkk6U9JfR8SZkl6UdG3B9QEAAHREyXuoNkvaHBE/\nai/fpiESqlWrXqpis3DhQi1atKhglwAAAKrZtm2btm/fXim2WEIVEdtsP2P71Ih4QtI7JD02OO6c\nc84p1QUAAIAxmz9/vubPn390ef369cPGlv6V3x+pVa6mR9J/Svpg4fUBAACMu6IJVUQ8LOnNJdcB\nAADQaSVvSgcAAHhVKH3Jb1RVp77PTGWfVaqsRjeUiClZsqdU26XKkUj5MhVVlSons2/fvsqx2RIV\nmT5nZMYkU64jUxpiypQplWMlqaenp3JspkxNZvwyZUAysVK50laZY0DmGF61JJmUGzupXAmcTD8y\n7Wa/RzJjktmPMseLzN9XqkyNlNuPMrHD4QwVAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAAQE0k\nVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1dbz0TNVp8jPT3pcst5JRakr9Jk7VnylFkBm/\n7FiXKsGRMXv27MqxmRIq2TI8mf0oU6IiUwInE3vgwIHKsdlSVZn9c9asWZVj58+fXzk2W0IlI7Mv\nZ7bz3r17K8fu2rWrcmymZE9WtmxPVZl9LvNZnTp1aqofmf2o1PdO5vu61DFAypWJ2rNnT6rtoRQ9\nQ2X7k7Yfs73e9tds5wpsAQAANECxhMr2EklXSTozIt4gaaKk95VaHwAAQKeUvOT3U0kHJU23fUjS\ndElbCq4PAACgI4qdoYqI/5P0V5L+W9JWSc9HxL+WWh8AAECnlLzkd7KkP5a0RFKvpJm2f7vU+gAA\nADql5CW/syT9MCL+V5Jsf0vSeZK+OjBozZo1Rx/39vaqt7e3YJcAAACq2bJli7Zu3VoptmRC9WNJ\nf2p7mqR9kt4hafXgoLPOOqtgFwAAAMZm4cKFWrhw4dHlgSeBBit5D9XDkm6RtEbSI+2nv1hqfQAA\nAJ1SdGLPiPiMpM+UXAcAAECnUXoGAACgJhIqAACAmjpey69qDa1MLapMHaFukakvlak7lq1plqmV\nlOlHRqY+X6ZWk9QdtfwyMvUSs7XgMvXEMp+pTH23TM22zFhn9/uStdWqyhwDsnXHMts503amDlvm\n85TZ77PjkYnP7BelajFm65VmPieZ432p79WStWkz8Zl9bjicoQIAAKiJhAoAAKAmEioAAICaSKgA\nAABqIqECAACoiYQKAACgpq5MqLZs2dLpLqCGqoUk0X02b97c6S6ghp07d3a6CxijHTt2dLoLqKkr\nEyq+kJuN8Wsu/jHTbCRUzUVC1XxdmVABAAA0CQkVAABATc5Oa39cV253buUAAABJETFkvZyOJlQA\nAACvBFzyAwAAqImECgAAoKauS6hsX2z7x7aftP2JTvcHw7P9d7a3214/4LkTbd9t+wnbd9l+bSf7\niOHZXmz7XtuP2X7U9kfbzzOGXc72VNurbK+zvcH2p9rPM3YNYnui7bW2v9teZvwarKsSKtsTJX1B\n0sWSlkm6wvZpne0VRnCzWmM10LWS7o6IUyX9W3sZ3emgpKsj4nRJKyR9uP15Ywy7XETsk3RRRLxJ\n0hslXWT7fDF2TbNS0gZJR25mZvwarKsSKklnS3oqIp6OiIOSviHpXR3uE4YREfdLem7Q05dJ+nL7\n8ZclvXtcO4XKImJbRKxrP94taaOkhWIMGyEi9rQf9kiaqNZnkbFrCNuLJF0i6UZJR341xvg1WLcl\nVAslPTNgeXP7OTTH6yJie/vxdkmv62RnUI3tJZLOkLRKjGEj2J5ge51aY3RvRDwmxq5JPivpGkmH\nBzzH+DVYtyVUzOHwChKtOTkY0y5ne6akb0paGRG7Br7GGHaviDjcvuS3SNIFti8a9Dpj16Vsv1PS\njohYq5fOTh2D8WuebkuotkhaPGB5sVpnqdAc223PlyTbCyRRoKqL2Z6sVjJ1a0Tc3n6aMWyQiHhB\n0j9LWi7GrinOk3SZ7Z9I+rqkX7J9qxi/Ruu2hGqNpFNsL7HdI+lySd/pcJ+Q8x1JV7YfXynp9hFi\n0UG2LekmSRsi4oYBLzGGXc72nCO/ALM9TdIvS1orxq4RIuK6iFgcESdJep+keyLi/WL8Gq3rZkq3\n/auSblDrJsubIuJTHe4ShmH765IulDRHrev9fybp25L+QdLrJT0t6b0R8Xyn+ojhtX8V9n1Jj+il\nSwuflLRajGFXs/0GtW5antD+79aIuN72iWLsGsX2hZI+FhGXMX7N1nUJFQAAQNN02yU/AACAxiGh\nAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhApAx9l+oP3/n7V9xXFu+7qh1gUAxxPzUAHo\nGrbfptYkh5cm3jMpIvpHeH1XRJxwPPoHAMPhDBWAjrO9u/3w05Leanut7ZW2J9i+3vZq2w/b/oN2\n/Nts32/725IebT93u+01th+1fVX7uU9LmtZu79aB63LL9bbX237E9nsHtP3vtv/R9kbbXxnfrQGg\niSZ1ugMAoJdK33xC0sePnKFqJ1DPR8TZtqdI+oHtu9qxZ0g6PSL+q738wYh4rl3bbrXt2yLiWtsf\njogzhljXr0v6RUlvlDRX0o9sf7/92pskLZP0P5IesP2WiOBSIYBhcYYKQDfxoOVfkfQB22slPSjp\nREk/135t9YBkSpJW2l4n6T8kLZZ0yijrOl/S16Jlh6T7JL1ZrYRrdURsjdY9EeskLanxNwF4FeAM\nFYBu95GIuHvgE+17rV4ctPx2SSsiYp/teyVNHaXd0MsTuCNnr/YPeO6QOFYCGAVnqAB0k12SBt5A\n/j1JH7I9SZJsn2p7+hDve42k59rJ1C9IWjHgtYNH3j/I/ZIub9+nNVfSBZJW6+VJFgCMin91AegG\nR84MPSzpUPvS3c2SPq/W5baHbFvSDkm/1o4f+BPlOyX9oe0Nkh5X67LfEV+U9Ijtvoh4/5H3RcQ/\n2T63vc6QdE1E7LB92qC2NcQyAByDaRMAAABq4pIfAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAA\nQE0kVAAAADWRUAEAANREQgUAAFDT/wMd8Optey5//QAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2459,131 +761,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGlxJREFUeJztnVls49t93z+Hi7iJu0Rq44xm5l4bAVzAfnEfnKB5CIJr\n", - "FEjSlwYGChTpgj50Q/vQJH1o/JgGaFC0D0Xb2EE3JC1auEgKtLUNtIj70DYOfGNf9/pO7r3SSENR\n", - "JCVS3ClS5OmD+Ds+5FALN4nS/L/AwZ/L8Mwh/1/9zm8/SmuNAweTwHXfC3Dw8OCQxsHEcEjjYGI4\n", - "pHEwMRzSOJgYDmkcTIypSaOUek8p9SOl1J8opX55notysNxQ0/hplFJu4CPgZ4As8IfAV7TWH853\n", - "eQ6WEdNKmi8CH2ut97XWXeB3gZ+f37IcLDM8U35uGzi0nr8G/rT9D5RSjqv5gUNrrca9Pq2kcQjx\n", - "FmNa0mSBjPU8w6W0cfAWYFrSfBd4Vym1q5RaAX4R+L35LcvBMmMqnUZrfaGU+hvAfwfcwNccy+nt\n", - "wVQm960mdhThB495K8IO3mI4pHEwMRzSOJgYDmkcTAyHNA4mhkMaBxPDIY2DiTFtwPLRQ6kfuyjc\n", - "brcZHo8Hl8tlhtvtRmtNv99Ha43WmouLC3q9HhcXF1xcXJjXAR5DyZBDmjFQSpnhcrkIhUKsrq6a\n", - "q9/vJxAImKuQo9vtcnFxQbVaNaNSqdDr9ej1evT7fXq93n1/vZnhkGYMbMK43W5WV1dZW1szIxqN\n", - "Do3z83Pa7Tbn5+ecn5+Ty+XI5XIcHx/T6XTodDqGVA5pHimEMKOkyWQy7OzskEqlWF9fN6PZbNJo\n", - "NMw1Go3i9XrpdruUy2Uzb6/XQyn14LeomUijlNoHqkAP6GqtvziPRd03bCnj9XpZXV0lmUyyvb3N\n", - "8+fP2djYIJ1Os7GxQSqVotFo0Gg0qNfrNBoN+v0+zWaTcrnM6uqqIcrFxcV9f7W5YFZJo4Gf1lqX\n", - "5rGYZYBsTUKYlZUVQqEQsViMtbU1Njc3icfjrK6u4vV6gUtFeWVlhUAggFKKSCRCNBolHo+TSCRw\n", - "u90AXFxc0G63325JM8DYSOhDhi1lfD7fEGk2NjYIhUKEQiFWVlaAH5NGKYXH4yESiRCLxYjH4yST\n", - "SSNlWq3WPX+z+WAekubbSqke8M+11v9yDmu6d7hcLjweDx6PZ4g06+vrbG5u4vV68Xg8eL1etNa4\n", - "3W5DGJ/PZ0iTSCRIJpN0u13a7Ta1Wm3IlH+omJU0X9Ja55RS68C3lFI/0lp/Zx4Lu2vIzXS5XHi9\n", - "Xvx+P6urq0NSQ7abUYjSLPMEg0FjnofDYarVKj6fz2xTDx0zkUZrnRtci0qpb3BZ2vLgSCM3XaRF\n", - "NBo15nUqleLJkyckk0mCweB9L3UpMEuFZVApFR48DgE/C/xgXgu7S4i15PF4WFlZIRKJkE6n2d3d\n", - "5bOf/SyZTIa1tTUCgcCN87wNmEXSpIFvDH4oD/DvtNbfnMuq7hC2eS2kiUajbGxssLu7yzvvvMP6\n", - "+rojaSxMTRqt9R7w+Tmu5c5gb0di+cgIBoPGStrZ2WF3d5dwOGzCB9dBa/2GN1kUZjHffT6fiUfJ\n", - "Z0bHsuOt8wgrpfD7/UPxo2AwSDAYJBAIEA6Hef78Odvb26ytrREOhwkGg7dSZGV7sq2uaDRKu92m\n", - "2+3S7/dRStHpdExAs9fr0e12Tdyq2+0uPXHeOtK4XC78fv9Q7CgSiRAOhwmHw0SjUXZ2dgxpIpGI\n", - "kRK3tX7cbjd+v9+QxiaMx+Oh3W7T6XQ4Pz+n0+nQarVot9u0Wi263e6Cf4HZ8daRRiRNNBo1MSQx\n", - "p2VITEkkjWw1N5FGtqdRSWMTxufz0Wg0aLVatFotms3mg/MYv5WkCQQCxGIx0uk029vbJJNJMxKJ\n", - "hAkDRCKRqZRfj8eD3+8nHA5zfn4+5PsJhUJDcap6vW7CEeI1lhjVsuo4bx1pXC4XwWCQRCLBzs4O\n", - "z58/N9tTJBIxRJnGGSc6jdfrJRgMmq0mEAgQiUSGIuH2tVgscnx8jMfj4eLigvPz86FErmUjzltH\n", - "GvHYrq2tsbOzw4sXL4YSqvx+Pz6fD5/Ph8cz3c8jpAFYWVkxEkf0GNmW5BoOh3G73SY63mg0TG5O\n", - "r9dzSHPfkEy8ZDJpJI3EmcREttM7J4HoNEIar9dLKBQymXsiPYQ4ovyKGd5qtSiXy4YkvV6PTqez\n", - "iJ9hJrwVpLFzev1+P5FIhGQyycbGBpnMZceUWXJ4hSzy2O1243K5TBRcIP9GpIhk/ImEqdVqlMtl\n", - "4+tZ1sj4oyeN2+025nQ4HGZtbY3d3V3W19cJBoMmQcq+Tgo7sdxOMJdhk9Z2+glB4/E4Ozs79Pt9\n", - "/H4/2WyW168v2/3U6/WlSxF99KRxuVxEIhE2NjbY2Nhge3t7iDTAG8SZFFprkzg+bsj25/V6h+Jc\n", - "8jgejxvCJBIJVldX0VpTr9c5Pj6e908yMx49aUTSbG5u8uLFC54/f87Ozs5CJI3oLfJYrjKv6Ehi\n", - "govESSQSBAIBkskkmUwGr9drCLOM6RQ3kkYp9XXgzwIFrfWfGryWAP498BTYB/681vpsgeucCHLj\n", - "7Uy6dDrNs2fP+MxnPkMikTA3ahqMbj8SBpAhiq+tAPf7feDNNAyllEncEjSbTV6/fk0sFjPkWqbY\n", - "1G0kzW8D/xT419ZrvwJ8S2v9G4PG078yGPcOsV5kSxDfi9QtiQ9Git5GFeDb3JTRkhWxhGSIlSQj\n", - "EAiY+JbEuGT4/f43pJsksycSCTY3N/H5fEP/pxDwvnAjabTW31FK7Y68/HPAnxk8/lfA/2SJSOPx\n", - "eMwNiUajRgmWGyaksS0e+3oTzs/PqdVqVKtVarXakHe30WgMkebi4oJQKGQi5aurq8RiMWKxGAA+\n", - "n28saUKhkCGN2+2mWq0CLIUJPq1Ok9Za5weP81zm1iwFRNJIuqaEA0TSBAIBVlZW8Hq9M0maWq3G\n", - "yckJp6enVCoVU00pFZVSddnr9Yy3WdbSbrcBjPl/HWk2NjaMTtTpdJbCmppZEdZa62XpryfWiF12\n", - "kkgkiMViRCIRQ5rbShr7ua1TNJtNzs7OKBaL5HI5SqUS5XKZs7MzSqXSUAig1+sN5RnHYjG01kaP\n", - "6ff7byi7Xq+XcDhMMplka2vLzNVsNqlUKm+Y9XeNaUmTV0ptaK2PlVKbQGGei5oEdjWkOO+SySSb\n", - "m5vGxM5kMqRSKaLRKD6fzyiXkgw+CttcFq9st9s1JbavX78mm82aIduUbFm25WQPqUoIBoPEYjGa\n", - "zabZbkQ5drlc+Hw+otEo6XSaXq9nzHVZc61We8M5CHfXXGBa0vwe8BeBfzi4/ue5rWgKiN9D3PeJ\n", - "RILt7W2ePXvG06dPTapDJBK5NWnson47wFiv1zk8POT169fm2mw2h2JJNumk5qnT6dBut02saW1t\n", - "jUajQafTeSP1wufzEYvF6PV6ZiuV8IbL5aJUKpkGA7JGwV0Q5zYm9+9wqfSuKaUOgX8A/DrwH5RS\n", - "f5mByb3IRd6wvqFqSCHN1tYWL1684MWLF0MeYYley1/2KMTnIjda9JezszMzDg8POTg4MEMkkIxR\n", - "k1wkQqvVol6vk0gkODs7M5JGAqOjksbr9RKJRFhZWTEE11oby08IfdeR8NtYT1+54q2fmfNapoZd\n", - "SSCk2dzcZHd3l3fffdfk6MpfrO3HEdg3WdITRDKcnZ1xcnLCyckJxWLRkGV/f5+Dg4Mhb/A4JVXM\n", - "8kajgd/vJ5VKUalUqNfrnJ+fm3waIcbKygoej4dwOEy/3zfv2zpMr9ej0WiYP4C73KIehUfY7idj\n", - "u+ltolwnWUTEi95ydnZGuVw2yu3oNZ/PUyqVzFZ0k1IqZJJtpF6vUyqVyOfzHB4eEo/HjSS0Qw39\n", - "fh+Xy2WSxjY2Nsx36Ha71Ot1yuWykYzifV40cR4FaQRXVQLI86tCBKKgik6Sy+U4OjoyPWbEFyPX\n", - "s7MzKpUKzWbT3CghzzjITZXHtVqNUqnE8fGxybXp9XrGqSdrFZdAIBAgHo+brEORMqVSiUAgQKfT\n", - "Md/tunXMC4+GNKOSxiaN/d4o7OL8er1OpVIhl8uxt7fH3t4e+/v7Q7kvrVZryDsr29F1N8oOaF5c\n", - "XAyRRspihDB2/Euufr+fWCxmrp1Oh3K5TC6XIxAI0Gq1zP9xF3jwpBklwyhpxmXf2QFKiR1Jgb7c\n", - "jL29PT788EM++uijoe1rmmoB0XcEsj0FAgFDbOmBI+SziSPebVl7q9Uil8sRjUaNs1K2v7uo8nzw\n", - "pJkGtu+k0+lQLBYpFArk83mOj485ODigWCxSq9WGPLvzEvsi2arVqgl1yJZXrVYJBoNDmYTLVu77\n", - "1pHG9ptIzdHJyQnZbJbDw0MODw/J5XIUi0Xq9bqJWo9Ki1lgk8btdhOPxymXy1SrVer1OsDMecqL\n", - "xPKtaMGwTepWq0WtVqNYLJLNZvn000/59NNPjT+mVquZisd5KpjdbpdWq2WSyePxuJE0tVrNmN52\n", - "s6RlwltHGsCQptFoUKlUjKTZ29vj5cuXQ4ruIioeRdL0+32j1NqkEY/1ysrKlUQdp9zfFbkeJWmu\n", - "+yH7/T7VatW0bT06OmJ/f59sNku5XDalJrIl3ee6bVLYmYXSDmV9fZ1MJoPH4zHEsy26ReFRkgbe\n", - "tKoEWmuq1SpHR0e8fPmSTz75hGKxSLFYNKQR5XfRpBlH7nHrHk1JlVqqVCpFJpMxFmOn06FarS68\n", - "HvzRkWYcUewUCJE02WyWjz76iA8++MC0dG02myYz7i6cZLK2cWGN6ySNpFWkUikT5RbCXBWEnSem\n", - "zRH+KvBXgOLgn/2q1vq/LWqR02Lcnt/v96lUKoY077///ht5M/eJ20oaaWAgfqZqtUqhULiTRPTb\n", - "0PK3gfdGXtPAb2qtvzAY90YY+y9vfX2ddDpNPB4nFApda66K1LmPhCZJRw2HwyQSCZOcJRmG4rAT\n", - "AowmiYlUEasvl8tRLpdNWGPRuJE0+rJbZ3nMW0thB0pALxqNsr6+zsbGBolEglAoZFq2jhv3CSFN\n", - "JBIxlRE2aezk93HZhUKaQqHAwcEBR0dHQwHURWOWDfBvKqX+WCn1NaVUbG4rmhB2kyIhzW0kzX3C\n", - "6/UOkSYejw81V7pJ0pyfnxtJc3h4OESapZA0V+CfAc+47LmXA/7R3FY0Iez67IcmaSQPWCRNNBod\n", - "kjS2fnKdpMlms5yenppzGRa+/mk+pLU2OcFKqd8Cfn9uK5oQotNIInkymSQSiZhg4H2tScxgO4dZ\n", - "EqYSiQTr6+tsbW2RyWSMHhYIBMZaP6P6l/Tnk5jYXVp7MCVplFKbetB4Gvhz3GP/YHF2SasySWjy\n", - "+/33VtIqKaj2GQt2QlgymSSVSg2RRlIfrktBHW1ZctdkEUyTI/xrwE8rpT7PpRW1B/y1ha7yGowr\n", - "WRG94L4kjUgW+3wFaZYk1RLpdJqtrS2ePHliiH6dpLFrqUTS2Jl6d7n1Tpsj/PUFrGUqjEoaqdH2\n", - "+/33uj3ZSWB221nJYRZJ8+TJE6N/XRWctJPdbcKMugzuCstpXkwIW4cQPeI+I8M+n8+U4MqhGlJT\n", - "HolEePr0Kdvb24bgkkhuVxzYhGg0Gqauqlarsbe3Z3wzrVbLHHd4V7GyR0GaZYM4G9fW1ox1ZI9U\n", - "KkUqlSIWiw0RRgg/WmQnllKhUKBYLPLq1StjMUkZzLwTxa6DQ5oFQOqWUqmUOfPSHuFw2BztI6a1\n", - "LR1HKyQqlQr5fJ6DgwNevXrF0dERx8fHxjfT6XTmmiR2ExzSLAB2WW0mk2F7e5utrS0z7C5Y44KV\n", - "dsmLOPLy+Tz7+/u8fPmSQqFgEsXsLudLbXI7GIa0MBFFN5PJ8OTJEzY3N0mlUsTj8aH+xDdFovv9\n", - "viFMs9mkXq9TrVY5Ozvj9PSUs7Mz0zb2PlrGPkrS3LUSHAqFTFt88UrLibrJZJJoNGpaxN4GYikJ\n", - "aaSGXBoM1Ot1c0jHQ+oasdS46x8yFAqRSqXY3d1ld3fXHFsoZy2IlLltvq9IGrv+W6SNlPOKz8Yh\n", - "zQPF6uoqqVSKZ8+e8bnPfc7Ej+RUXemGPomksbcn2+QWSTNJE6Z541GSZpxyab832ilr9H3x3IoX\n", - "1/b9jJvz3Xff5Z133uHJkyek0+mhz/r9ftMu5LrSYBvtdptyuUw2m+Xo6IhXr15RKBRMKufS99x7\n", - "SBiXOjl6kyTsEAwGTWrC6Pv29hKLxYba3o+LZ0kDpc3NTRKJhCGJHW+ynXc3EafdbnNycsKrV694\n", - "+fIl2WyW4+Nj0zDpvvGoSDOK6yRNMBg0YQcbbrebra0ttre32d7efuMc7nGhCdvbG4lEhoKVoxHu\n", - "20gaKeA7ODjgww8/pFAomO1p6UmjlMpw2Qo2xWVw8l9orf+JeiB9hEcfy/PrJI3H4yGTyZgt5/nz\n", - "50NnXI6edwAYCSTkuGo9t7XqhDT7+/v88Ic/NH327tKBdx1ukjRd4O9ord9XSq0Cf6SU+hbwSyxJ\n", - "H2HpNNVoNCiXy5yenhKJRNBa4/V68fl8Q/9eKWVM5KdPn74xn9vtNrGh9fV10wBaAopXKbOjVQOy\n", - "tttgtHl1qVQyVpJ0qVgmXEsarfUxcDx4XFdKfQhss0R9hPv9Pu12m0qlQrFYJBaL0e12TUbf6Mlw\n", - "LpeLcDhMOp1Ga004HH7j/fX1ddPYUdIuRYkdR4TRagGYrMVsp9MxZTT1ep1isUi1Wh1qwrhMuLVO\n", - "oy4bUH8B+D8sUR/hUdKsrq6a9hx263iBUopwOIzWmlAoRDr946XLjbcj1NLv7jp9xCbMNJJG+gOX\n", - "SiVKpRLFYpFKpbK051neijSDrek/AX9ba12zfzyt77ePcL/fNx0YisXiUKdyaZpow+VyGT9KKpUa\n", - "ynyT66gCK1iUpOl2u9RqNU5PTzk+Pn74kkYp5eWSMP9Gay2tX5emj7DoNNJdSvrTSRPEi4uLIR+L\n", - "Umqom6bMYV9nWYsQxz7/abRFrH1I2Pn5OScnJ+TzeZP+IA2tm83mw5M06vJX/Rrw/7TW/9h6a2n6\n", - "CEtJqijCfr+f9fX1ofiMLTkWGZeSue1On5KmaSeDS4TabgApXc/L5TLFYvFO65gmxU2S5kvAXwC+\n", - "r5T63uC1X2WJ+gjLX269XjfnKJ2dnb0R1LvLjlKjOb2jkuX4+JijoyMz7IM55FqtVh8mabTW/4ur\n", - "a6OWoo+w1AFJzY/b7aZSqZgD06WrpuSvLHot9vYkEkZiSNI9NJ/Ps7e3x8cff8wnn3xCo9Ew/XCE\n", - "6DIeHGkeAuzOVoBptpjP58lms0YxtmNBtt9lnsnnIslsE3o0v7dWq5mO57lcjkKhQLvdNucvCFHs\n", - "U+mWDY+CNPJXrZSi1WpxenpKNpvF7/fT7XZNaqVc7bGIioXz83MqlQqlUonT01Ojq4jeIo0hT05O\n", - "3sjxtfsSLysePGkAE4+RDt9iRQE0Gg2i0agpsJcqTGnZMer8mwWyPQlp8vk8R0dHpmmSJIaLxKnX\n", - "66b+etTCWoby4avw4Eljm7WiT5RKJQBzOHoymTRVAc1mE8B0k1oEhDR2Vwdp15bL5Ux7NluyyHex\n", - "v9ey4sGTBob9LHa7VVGS7Vzber1uXpPsOEldsHv32qkQdinsOBMahmNP0skhl8uRz+cpFotmm5KT\n", - "5x4yHgVpbEiBfKvVAjBZ/XIqW6lUolarUalUKJfLpFIpkxAuB6OK4uz3+00vO/tgU/v8J5Fctjkv\n", - "JnUul+Pk5MSYz+M81A8Rj5Y0UnQmUqZarbKyskIgEBjK7C8UCibZSq4Sm5K2rEJC0UVEsRXnnA2l\n", - "FKenp0NDSLPoBop3hUdJGtlK2u320FGFkoAl5zcVCgXW1tZIp9NDTQ/FGSjnEYxKqnw+b0ahUDAK\n", - "sMB20tVqNeOjua/qgXnj0ZEGuNZctQ/VEgki3ctF75EjkMXiEokiQ6wgGaOQKgK52r2JHwMeJWmu\n", - "g2xfzWZzqG5aTpArFAqmikB0HPvMbTnexx4C27knyrb4YKRA35E0DxBiUQFmC2s2m5TLZQKBgOni\n", - "4PP5THqn3HyJHdlSRHJe7O1p9IhlGcvssJsE6jrmX5Mj/FVu6CN8nzk2N2FUzxmXCG6/P5rmYB+h\n", - "PI4IVzUaWmaH3ThorcdGeG8izQawYecIA7/AZVS7prX+zWs++3B+HQdjcRVpps0RhiXpI+zg7nHr\n", - "XAErR/h/D15aij7CDu4etyLNYGv6j1zmCNdZoj7CDu4e1+o0YHKE/wvwX0dSPuX9XeD39eCwDet1\n", - "R6d54LhKp7lW0lyVIzxIJhfcax9hB3ePm6ynnwT+APg+lyY3wN8HvsLl1mT6CFt1UPJZR9I8cExl\n", - "cs8ChzQPH1NtTw4cjINDGgcTwyGNg4nhkMbBxHBI42BiOKRxMDEc0jiYGAvz0zh4vHAkjYOJ4ZDG\n", - "wcRYKGmUUu8ppX6klPqTQRfQWefbV0p9Xyn1PaXU/53i819XSuWVUj+wXksopb6llHqplPrmJLlB\n", - "V8z3VaXU68Eav6eUem+C+TJKqf+hlPqhUuoDpdTfmmWN18w39RqB8fms8xiAG/gY2AW8wPvAT8w4\n", - "5x6QmOHzP8VlItkPrNd+A/h7g8e/DPz6jPP9GvB3p1zfBvD5weNV4CPgJ6Zd4zXzTb1GrfVCJc0X\n", - "gY+11vta6y7wu8DPz2HeqdNMtdbfAcojL/8cl21tGVx/Ycb5YMo1aq2PtdbvDx7XAbsF78RrvGa+\n", - "qdcIi92etoFD6/lrfrzgaaGBbyulvquU+qszziVYRHvbmVNh592Cd57puoskzSJs+S9prb8AfBn4\n", - "60qpn5rn5PpSjs+67plTYUdb8M66xnmn6y6SNFkgYz3PcCltpobWOje4FoFvcLkFzor8oFRHMhJn\n", - "am+rtS7oAYDfmnSN17XgnWaN1nz/VuabdY2LJM13gXeVUrtKqRXgF7lsJTsVlFJBpVR48DgE/Czz\n", - "STOV9rYwh/a2s6TC3qIF70RrXFi67izWzC209y9zqbF/zGUV5ixzPePSAnsf+GCa+YDfAY6ADpf6\n", - "1i8BCeDbwEvgm0Bshvn+EpcVqd8H/nhwc9MTzPeTQH/wHb83GO9Nu8Yr5vvyLGvUWjthBAeTw/EI\n", - "O5gYDmkcTAyHNA4mhkMaBxPDIY2DieGQxsHEcEjjYGI4pHEwMf4/w2zPGHuGeikAAAAASUVORK5C\n", - "YII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGlxJREFUeJztnVls49t93z+Hi7iJu0Rq44xm5l4bAVzAfnEfnKB5CIJr\nFEjSlwYGChTpgj50Q/vQJH1o/JgGaFC0D0Xb2EE3JC1auEgKtLUNtIj70DYOfGNf9/pO7r3SSENR\nJCVS3ClS5OmD+Ds+5FALN4nS/L/AwZ/L8Mwh/1/9zm8/SmuNAweTwHXfC3Dw8OCQxsHEcEjjYGI4\npHEwMRzSOJgYDmkcTIypSaOUek8p9SOl1J8opX55notysNxQ0/hplFJu4CPgZ4As8IfAV7TWH853\neQ6WEdNKmi8CH2ut97XWXeB3gZ+f37IcLDM8U35uGzi0nr8G/rT9D5RSjqv5gUNrrca9Pq2kcQjx\nFmNa0mSBjPU8w6W0cfAWYFrSfBd4Vym1q5RaAX4R+L35LcvBMmMqnUZrfaGU+hvAfwfcwNccy+nt\nwVQm960mdhThB495K8IO3mI4pHEwMRzSOJgYDmkcTAyHNA4mhkMaBxPDIY2DiTFtwPLRQ6kfuyjc\nbrcZHo8Hl8tlhtvtRmtNv99Ha43WmouLC3q9HhcXF1xcXJjXAR5DyZBDmjFQSpnhcrkIhUKsrq6a\nq9/vJxAImKuQo9vtcnFxQbVaNaNSqdDr9ej1evT7fXq93n1/vZnhkGYMbMK43W5WV1dZW1szIxqN\nDo3z83Pa7Tbn5+ecn5+Ty+XI5XIcHx/T6XTodDqGVA5pHimEMKOkyWQy7OzskEqlWF9fN6PZbNJo\nNMw1Go3i9XrpdruUy2Uzb6/XQyn14LeomUijlNoHqkAP6GqtvziPRd03bCnj9XpZXV0lmUyyvb3N\n8+fP2djYIJ1Os7GxQSqVotFo0Gg0qNfrNBoN+v0+zWaTcrnM6uqqIcrFxcV9f7W5YFZJo4Gf1lqX\n5rGYZYBsTUKYlZUVQqEQsViMtbU1Njc3icfjrK6u4vV6gUtFeWVlhUAggFKKSCRCNBolHo+TSCRw\nu90AXFxc0G63325JM8DYSOhDhi1lfD7fEGk2NjYIhUKEQiFWVlaAH5NGKYXH4yESiRCLxYjH4yST\nSSNlWq3WPX+z+WAekubbSqke8M+11v9yDmu6d7hcLjweDx6PZ4g06+vrbG5u4vV68Xg8eL1etNa4\n3W5DGJ/PZ0iTSCRIJpN0u13a7Ta1Wm3IlH+omJU0X9Ja55RS68C3lFI/0lp/Zx4Lu2vIzXS5XHi9\nXvx+P6urq0NSQ7abUYjSLPMEg0FjnofDYarVKj6fz2xTDx0zkUZrnRtci0qpb3BZ2vLgSCM3XaRF\nNBo15nUqleLJkyckk0mCweB9L3UpMEuFZVApFR48DgE/C/xgXgu7S4i15PF4WFlZIRKJkE6n2d3d\n5bOf/SyZTIa1tTUCgcCN87wNmEXSpIFvDH4oD/DvtNbfnMuq7hC2eS2kiUajbGxssLu7yzvvvMP6\n+rojaSxMTRqt9R7w+Tmu5c5gb0di+cgIBoPGStrZ2WF3d5dwOGzCB9dBa/2GN1kUZjHffT6fiUfJ\nZ0bHsuOt8wgrpfD7/UPxo2AwSDAYJBAIEA6Hef78Odvb26ytrREOhwkGg7dSZGV7sq2uaDRKu92m\n2+3S7/dRStHpdExAs9fr0e12Tdyq2+0uPXHeOtK4XC78fv9Q7CgSiRAOhwmHw0SjUXZ2dgxpIpGI\nkRK3tX7cbjd+v9+QxiaMx+Oh3W7T6XQ4Pz+n0+nQarVot9u0Wi263e6Cf4HZ8daRRiRNNBo1MSQx\np2VITEkkjWw1N5FGtqdRSWMTxufz0Wg0aLVatFotms3mg/MYv5WkCQQCxGIx0uk029vbJJNJMxKJ\nhAkDRCKRqZRfj8eD3+8nHA5zfn4+5PsJhUJDcap6vW7CEeI1lhjVsuo4bx1pXC4XwWCQRCLBzs4O\nz58/N9tTJBIxRJnGGSc6jdfrJRgMmq0mEAgQiUSGIuH2tVgscnx8jMfj4eLigvPz86FErmUjzltH\nGvHYrq2tsbOzw4sXL4YSqvx+Pz6fD5/Ph8cz3c8jpAFYWVkxEkf0GNmW5BoOh3G73SY63mg0TG5O\nr9dzSHPfkEy8ZDJpJI3EmcREttM7J4HoNEIar9dLKBQymXsiPYQ4ovyKGd5qtSiXy4YkvV6PTqez\niJ9hJrwVpLFzev1+P5FIhGQyycbGBpnMZceUWXJ4hSzy2O1243K5TBRcIP9GpIhk/ImEqdVqlMtl\n4+tZ1sj4oyeN2+025nQ4HGZtbY3d3V3W19cJBoMmQcq+Tgo7sdxOMJdhk9Z2+glB4/E4Ozs79Pt9\n/H4/2WyW168v2/3U6/WlSxF99KRxuVxEIhE2NjbY2Nhge3t7iDTAG8SZFFprkzg+bsj25/V6h+Jc\n8jgejxvCJBIJVldX0VpTr9c5Pj6e908yMx49aUTSbG5u8uLFC54/f87Ozs5CJI3oLfJYrjKv6Ehi\ngovESSQSBAIBkskkmUwGr9drCLOM6RQ3kkYp9XXgzwIFrfWfGryWAP498BTYB/681vpsgeucCHLj\n7Uy6dDrNs2fP+MxnPkMikTA3ahqMbj8SBpAhiq+tAPf7feDNNAyllEncEjSbTV6/fk0sFjPkWqbY\n1G0kzW8D/xT419ZrvwJ8S2v9G4PG078yGPcOsV5kSxDfi9QtiQ9Git5GFeDb3JTRkhWxhGSIlSQj\nEAiY+JbEuGT4/f43pJsksycSCTY3N/H5fEP/pxDwvnAjabTW31FK7Y68/HPAnxk8/lfA/2SJSOPx\neMwNiUajRgmWGyaksS0e+3oTzs/PqdVqVKtVarXakHe30WgMkebi4oJQKGQi5aurq8RiMWKxGAA+\nn28saUKhkCGN2+2mWq0CLIUJPq1Ok9Za5weP81zm1iwFRNJIuqaEA0TSBAIBVlZW8Hq9M0maWq3G\nyckJp6enVCoVU00pFZVSddnr9Yy3WdbSbrcBjPl/HWk2NjaMTtTpdJbCmppZEdZa62XpryfWiF12\nkkgkiMViRCIRQ5rbShr7ua1TNJtNzs7OKBaL5HI5SqUS5XKZs7MzSqXSUAig1+sN5RnHYjG01kaP\n6ff7byi7Xq+XcDhMMplka2vLzNVsNqlUKm+Y9XeNaUmTV0ptaK2PlVKbQGGei5oEdjWkOO+SySSb\nm5vGxM5kMqRSKaLRKD6fzyiXkgw+CttcFq9st9s1JbavX78mm82aIduUbFm25WQPqUoIBoPEYjGa\nzabZbkQ5drlc+Hw+otEo6XSaXq9nzHVZc61We8M5CHfXXGBa0vwe8BeBfzi4/ue5rWgKiN9D3PeJ\nRILt7W2ePXvG06dPTapDJBK5NWnson47wFiv1zk8POT169fm2mw2h2JJNumk5qnT6dBut02saW1t\njUajQafTeSP1wufzEYvF6PV6ZiuV8IbL5aJUKpkGA7JGwV0Q5zYm9+9wqfSuKaUOgX8A/DrwH5RS\nf5mByb3IRd6wvqFqSCHN1tYWL1684MWLF0MeYYley1/2KMTnIjda9JezszMzDg8POTg4MEMkkIxR\nk1wkQqvVol6vk0gkODs7M5JGAqOjksbr9RKJRFhZWTEE11oby08IfdeR8NtYT1+54q2fmfNapoZd\nSSCk2dzcZHd3l3fffdfk6MpfrO3HEdg3WdITRDKcnZ1xcnLCyckJxWLRkGV/f5+Dg4Mhb/A4JVXM\n8kajgd/vJ5VKUalUqNfrnJ+fm3waIcbKygoej4dwOEy/3zfv2zpMr9ej0WiYP4C73KIehUfY7idj\nu+ltolwnWUTEi95ydnZGuVw2yu3oNZ/PUyqVzFZ0k1IqZJJtpF6vUyqVyOfzHB4eEo/HjSS0Qw39\nfh+Xy2WSxjY2Nsx36Ha71Ot1yuWykYzifV40cR4FaQRXVQLI86tCBKKgik6Sy+U4OjoyPWbEFyPX\ns7MzKpUKzWbT3CghzzjITZXHtVqNUqnE8fGxybXp9XrGqSdrFZdAIBAgHo+brEORMqVSiUAgQKfT\nMd/tunXMC4+GNKOSxiaN/d4o7OL8er1OpVIhl8uxt7fH3t4e+/v7Q7kvrVZryDsr29F1N8oOaF5c\nXAyRRspihDB2/Euufr+fWCxmrp1Oh3K5TC6XIxAI0Gq1zP9xF3jwpBklwyhpxmXf2QFKiR1Jgb7c\njL29PT788EM++uijoe1rmmoB0XcEsj0FAgFDbOmBI+SziSPebVl7q9Uil8sRjUaNs1K2v7uo8nzw\npJkGtu+k0+lQLBYpFArk83mOj485ODigWCxSq9WGPLvzEvsi2arVqgl1yJZXrVYJBoNDmYTLVu77\n1pHG9ptIzdHJyQnZbJbDw0MODw/J5XIUi0Xq9bqJWo9Ki1lgk8btdhOPxymXy1SrVer1OsDMecqL\nxPKtaMGwTepWq0WtVqNYLJLNZvn000/59NNPjT+mVquZisd5KpjdbpdWq2WSyePxuJE0tVrNmN52\ns6RlwltHGsCQptFoUKlUjKTZ29vj5cuXQ4ruIioeRdL0+32j1NqkEY/1ysrKlUQdp9zfFbkeJWmu\n+yH7/T7VatW0bT06OmJ/f59sNku5XDalJrIl3ee6bVLYmYXSDmV9fZ1MJoPH4zHEsy26ReFRkgbe\ntKoEWmuq1SpHR0e8fPmSTz75hGKxSLFYNKQR5XfRpBlH7nHrHk1JlVqqVCpFJpMxFmOn06FarS68\nHvzRkWYcUewUCJE02WyWjz76iA8++MC0dG02myYz7i6cZLK2cWGN6ySNpFWkUikT5RbCXBWEnSem\nzRH+KvBXgOLgn/2q1vq/LWqR02Lcnt/v96lUKoY077///ht5M/eJ20oaaWAgfqZqtUqhULiTRPTb\n0PK3gfdGXtPAb2qtvzAY90YY+y9vfX2ddDpNPB4nFApda66K1LmPhCZJRw2HwyQSCZOcJRmG4rAT\nAowmiYlUEasvl8tRLpdNWGPRuJE0+rJbZ3nMW0thB0pALxqNsr6+zsbGBolEglAoZFq2jhv3CSFN\nJBIxlRE2aezk93HZhUKaQqHAwcEBR0dHQwHURWOWDfBvKqX+WCn1NaVUbG4rmhB2kyIhzW0kzX3C\n6/UOkSYejw81V7pJ0pyfnxtJc3h4OESapZA0V+CfAc+47LmXA/7R3FY0Iez67IcmaSQPWCRNNBod\nkjS2fnKdpMlms5yenppzGRa+/mk+pLU2OcFKqd8Cfn9uK5oQotNIInkymSQSiZhg4H2tScxgO4dZ\nEqYSiQTr6+tsbW2RyWSMHhYIBMZaP6P6l/Tnk5jYXVp7MCVplFKbetB4Gvhz3GP/YHF2SasySWjy\n+/33VtIqKaj2GQt2QlgymSSVSg2RRlIfrktBHW1ZctdkEUyTI/xrwE8rpT7PpRW1B/y1ha7yGowr\nWRG94L4kjUgW+3wFaZYk1RLpdJqtrS2ePHliiH6dpLFrqUTS2Jl6d7n1Tpsj/PUFrGUqjEoaqdH2\n+/33uj3ZSWB221nJYRZJ8+TJE6N/XRWctJPdbcKMugzuCstpXkwIW4cQPeI+I8M+n8+U4MqhGlJT\nHolEePr0Kdvb24bgkkhuVxzYhGg0Gqauqlarsbe3Z3wzrVbLHHd4V7GyR0GaZYM4G9fW1ox1ZI9U\nKkUqlSIWiw0RRgg/WmQnllKhUKBYLPLq1StjMUkZzLwTxa6DQ5oFQOqWUqmUOfPSHuFw2BztI6a1\nLR1HKyQqlQr5fJ6DgwNevXrF0dERx8fHxjfT6XTmmiR2ExzSLAB2WW0mk2F7e5utrS0z7C5Y44KV\ndsmLOPLy+Tz7+/u8fPmSQqFgEsXsLudLbXI7GIa0MBFFN5PJ8OTJEzY3N0mlUsTj8aH+xDdFovv9\nviFMs9mkXq9TrVY5Ozvj9PSUs7Mz0zb2PlrGPkrS3LUSHAqFTFt88UrLibrJZJJoNGpaxN4GYikJ\naaSGXBoM1Ot1c0jHQ+oasdS46x8yFAqRSqXY3d1ld3fXHFsoZy2IlLltvq9IGrv+W6SNlPOKz8Yh\nzQPF6uoqqVSKZ8+e8bnPfc7Ej+RUXemGPomksbcn2+QWSTNJE6Z541GSZpxyab832ilr9H3x3IoX\n1/b9jJvz3Xff5Z133uHJkyek0+mhz/r9ftMu5LrSYBvtdptyuUw2m+Xo6IhXr15RKBRMKufS99x7\nSBiXOjl6kyTsEAwGTWrC6Pv29hKLxYba3o+LZ0kDpc3NTRKJhCGJHW+ynXc3EafdbnNycsKrV694\n+fIl2WyW4+Nj0zDpvvGoSDOK6yRNMBg0YQcbbrebra0ttre32d7efuMc7nGhCdvbG4lEhoKVoxHu\n20gaKeA7ODjgww8/pFAomO1p6UmjlMpw2Qo2xWVw8l9orf+JeiB9hEcfy/PrJI3H4yGTyZgt5/nz\n50NnXI6edwAYCSTkuGo9t7XqhDT7+/v88Ic/NH327tKBdx1ukjRd4O9ord9XSq0Cf6SU+hbwSyxJ\nH2HpNNVoNCiXy5yenhKJRNBa4/V68fl8Q/9eKWVM5KdPn74xn9vtNrGh9fV10wBaAopXKbOjVQOy\ntttgtHl1qVQyVpJ0qVgmXEsarfUxcDx4XFdKfQhss0R9hPv9Pu12m0qlQrFYJBaL0e12TUbf6Mlw\nLpeLcDhMOp1Ga004HH7j/fX1ddPYUdIuRYkdR4TRagGYrMVsp9MxZTT1ep1isUi1Wh1qwrhMuLVO\noy4bUH8B+D8sUR/hUdKsrq6a9hx263iBUopwOIzWmlAoRDr946XLjbcj1NLv7jp9xCbMNJJG+gOX\nSiVKpRLFYpFKpbK051neijSDrek/AX9ba12zfzyt77ePcL/fNx0YisXiUKdyaZpow+VyGT9KKpUa\nynyT66gCK1iUpOl2u9RqNU5PTzk+Pn74kkYp5eWSMP9Gay2tX5emj7DoNNJdSvrTSRPEi4uLIR+L\nUmqom6bMYV9nWYsQxz7/abRFrH1I2Pn5OScnJ+TzeZP+IA2tm83mw5M06vJX/Rrw/7TW/9h6a2n6\nCEtJqijCfr+f9fX1ofiMLTkWGZeSue1On5KmaSeDS4TabgApXc/L5TLFYvFO65gmxU2S5kvAXwC+\nr5T63uC1X2WJ+gjLX269XjfnKJ2dnb0R1LvLjlKjOb2jkuX4+JijoyMz7IM55FqtVh8mabTW/4ur\na6OWoo+w1AFJzY/b7aZSqZgD06WrpuSvLHot9vYkEkZiSNI9NJ/Ps7e3x8cff8wnn3xCo9Ew/XCE\n6DIeHGkeAuzOVoBptpjP58lms0YxtmNBtt9lnsnnIslsE3o0v7dWq5mO57lcjkKhQLvdNucvCFHs\nU+mWDY+CNPJXrZSi1WpxenpKNpvF7/fT7XZNaqVc7bGIioXz83MqlQqlUonT01Ojq4jeIo0hT05O\n3sjxtfsSLysePGkAE4+RDt9iRQE0Gg2i0agpsJcqTGnZMer8mwWyPQlp8vk8R0dHpmmSJIaLxKnX\n66b+etTCWoby4avw4Eljm7WiT5RKJQBzOHoymTRVAc1mE8B0k1oEhDR2Vwdp15bL5Ux7NluyyHex\nv9ey4sGTBob9LHa7VVGS7Vzber1uXpPsOEldsHv32qkQdinsOBMahmNP0skhl8uRz+cpFotmm5KT\n5x4yHgVpbEiBfKvVAjBZ/XIqW6lUolarUalUKJfLpFIpkxAuB6OK4uz3+00vO/tgU/v8J5Fctjkv\nJnUul+Pk5MSYz+M81A8Rj5Y0UnQmUqZarbKyskIgEBjK7C8UCibZSq4Sm5K2rEJC0UVEsRXnnA2l\nFKenp0NDSLPoBop3hUdJGtlK2u320FGFkoAl5zcVCgXW1tZIp9NDTQ/FGSjnEYxKqnw+b0ahUDAK\nsMB20tVqNeOjua/qgXnj0ZEGuNZctQ/VEgki3ctF75EjkMXiEokiQ6wgGaOQKgK52r2JHwMeJWmu\ng2xfzWZzqG5aTpArFAqmikB0HPvMbTnexx4C27knyrb4YKRA35E0DxBiUQFmC2s2m5TLZQKBgOni\n4PP5THqn3HyJHdlSRHJe7O1p9IhlGcvssJsE6jrmX5Mj/FVu6CN8nzk2N2FUzxmXCG6/P5rmYB+h\nPI4IVzUaWmaH3ThorcdGeG8izQawYecIA7/AZVS7prX+zWs++3B+HQdjcRVpps0RhiXpI+zg7nHr\nXAErR/h/D15aij7CDu4etyLNYGv6j1zmCNdZoj7CDu4e1+o0YHKE/wvwX0dSPuX9XeD39eCwDet1\nR6d54LhKp7lW0lyVIzxIJhfcax9hB3ePm6ynnwT+APg+lyY3wN8HvsLl1mT6CFt1UPJZR9I8cExl\ncs8ChzQPH1NtTw4cjINDGgcTwyGNg4nhkMbBxHBI42BiOKRxMDEc0jiYGAvz0zh4vHAkjYOJ4ZDG\nwcRYKGmUUu8ppX6klPqTQRfQWefbV0p9Xyn1PaXU/53i819XSuWVUj+wXksopb6llHqplPrmJLlB\nV8z3VaXU68Eav6eUem+C+TJKqf+hlPqhUuoDpdTfmmWN18w39RqB8fms8xiAG/gY2AW8wPvAT8w4\n5x6QmOHzP8VlItkPrNd+A/h7g8e/DPz6jPP9GvB3p1zfBvD5weNV4CPgJ6Zd4zXzTb1GrfVCJc0X\ngY+11vta6y7wu8DPz2HeqdNMtdbfAcojL/8cl21tGVx/Ycb5YMo1aq2PtdbvDx7XAbsF78RrvGa+\nqdcIi92etoFD6/lrfrzgaaGBbyulvquU+qszziVYRHvbmVNh592Cd57puoskzSJs+S9prb8AfBn4\n60qpn5rn5PpSjs+67plTYUdb8M66xnmn6y6SNFkgYz3PcCltpobWOje4FoFvcLkFzor8oFRHMhJn\nam+rtS7oAYDfmnSN17XgnWaN1nz/VuabdY2LJM13gXeVUrtKqRXgF7lsJTsVlFJBpVR48DgE/Czz\nSTOV9rYwh/a2s6TC3qIF70RrXFi67izWzC209y9zqbF/zGUV5ixzPePSAnsf+GCa+YDfAY6ADpf6\n1i8BCeDbwEvgm0Bshvn+EpcVqd8H/nhwc9MTzPeTQH/wHb83GO9Nu8Yr5vvyLGvUWjthBAeTw/EI\nO5gYDmkcTAyHNA4mhkMaBxPDIY2DieGQxsHEcEjjYGI4pHEwMf4/w2zPGHuGeikAAAAASUVORK5C\nYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2591,96 +771,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEqlJREFUeJzt3X2QXXV9x/HPJ5unTUICFKoFdjcWYitBa6gygAkP1RbK\n", - "aLStBWmr1HbsdNSaUmUMzLR/tSPIdKSO085YqAI+QdWiTiuBVioLYiKQ8BTkoSNNAoWkFDbPybJ8\n", - "+8e9Cctmb/Z89+S3997wfs0w3nPud3/nd8/v3JOv55z7+zoiBAAAgMmb1u4OAAAAdDsSKgAAgJpI\n", - "qAAAAGoioQIAAKiJhAoAAKAmEioAAICaprdz47aZswEAAHSNiPB464smVLbPl3SNpB5J10bEVWNj\n", - "Lr/88gP+bnBwUMuWLXvVumnTql9Ms8f9rIdEpu1SsZl9MX16bogz8a1iV61apfPOO2/S7Zb8fJm2\n", - "MzLj9/LLL1eOzcwT19vbWzlWkubMmXPAuptvvlkXXnjhAevnzZtXq91WZs6cWTl27969lWN37dpV\n", - "OVaSdu7cWaQfmbHOxLbaxzfddJMuuuiiA9YfccQRlds+6qijKsceeeSRlWPnz59fOTZzLM+ePbty\n", - "rCTNmDEjFV/Vnj17KseOd7xdeeWVWrly5QHrt2/fnurHjh07Ksfu3r27SOzw8HDl2FLnw6yq5/Bz\n", - "zjmn5XvFbvnZ7pH0BUnnSzpZ0sW231RqewAAAO1S8hmq0yQ9GRFPRcSwpG9Iem/B7QEAALRFyYTq\n", - "eEkbRy1vaq6bUH9/f5EOYWqceOKJ7e4CJmnx4sXt7gJqYPy619KlS9vdBdRUMqGa9M3OgYGBQ9kP\n", - "TLGTTjqp3V3AJPEPcnc75ZRT2t0FTBIJVfcr+VD605L6Ri33qXGV6lUGBwf3v+7v7yeZAgAAHWHt\n", - "2rVat25dpdiSCdW9khbZXijpGUkXSbp4bNDYX/MBAAB0giVLlmjJkiX7l6+//vqWscUSqoh4yfbH\n", - "Ja1SY9qE6yLi0VLbAwAAaJei81BFxPclfb/kNgAAANqtrTOlS9Un9RoZGancZnbyr1KT73VCbGa/\n", - "SdJLL73UVbElP19mP5f6fJnJAjMTTmbbLtWPUpNkltwXmQkOM+1mPl9JpSa/7enpqRybmfA1299S\n", - "3+tOON9L5SZGzrSbmTz1UEwm3UqpCZdboZYfAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAAQE0k\n", - "VAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADU1PZaftnaPOicml+ZfmTqK2ZiM7W2\n", - "OkWmJlamFlUmViq3n0sdF6VqzGVl6syVOr8NDw8Xiy9VZy5zDO3cubNIu1nZurBVzZo1q3Jsb29v\n", - "qu1M/OzZsyvHZvqcUWofS2VqrF511VUt3yt6hrLdZ/sO24/Yftj2J0puDwAAoB1KXx4alnRpRKyz\n", - "PU/SfbZvj4hHC28XAABgyhS9QhURz0bEuubr7ZIelXRcyW0CAABMtSl7KMH2QklLJK2eqm0CAABM\n", - "hSlJqJq3+74paUXzShUAAMBho/hP7GzPkPQtSV+JiFvGvn/nnXfufz0wMKCBgYHSXQIAAJjQhg0b\n", - "tGHDhkqxRRMqN37HfZ2k9RFxzXgxZ511VskuAAAATEp/f7/6+/v3L999990tY0vf8nuHpD+QdK7t\n", - "tc3/zi+8TQAAgClV9ApVRNwlZmMHAACHOZIdAACAmtpe96VTyqhUVaqESqk+lGw7M3bZsihVlSxd\n", - "lCl1kont6ekp0m72uzQyMlI5NrOfS5WeybS7d+/eyrFSrkRFpu0ZM2ZUjs2UDJk/f37lWCl3zGWO\n", - "i0yJmB07dlSO3b17d5FYKTd+mX0xd+7cyrGZ8cuOdaZETOY7NTQ0VDl2165dlWMz47dnz57KsVJu\n", - "/A7Fv6tcoQIAAKiJhAoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACgJhIqAACAmkioAAAAaiKh\n", - "AgAAqImECgAAoKauKT1TqpxFSaXKapT8fKVKxHRCaRYp9/lKjV+pEirDw8OVY7PxmRIOpUr2ZMYu\n", - "U0pGyo1JptxKph+Zz5c97jNjXarsSyY2c7xlSvZIudIsmTHJlNbZsmVL5ditW7dWjpVyY505PjPn\n", - "w8zxOXPmzMqxmVJOUtl/S8bTMqGy/TuSQtJ4R1RExLerbMB2j6R7JW2KiPdMqpcAAAAd7GBXqN6j\n", - "RkLVSqWEStIKSeslHVG1UwAAAN2kZUIVEX9Yt3HbJ0i6QNLfSPqLuu0BAAB0oglvGtp+ve3rbN/a\n", - "XD7Z9h9XbP9zki6TVP0BBQAAgC5T5SmsL0u6TdJxzeUnJF060R/ZfrekzRGxVuM/hwUAAHBYqPIr\n", - "v2Mi4ibbKyUpIoZtV/lpwJmSltu+QNJsSfNt3xARHxoddNddd+1/3d/fr/7+/uq9BwAAKGRoaKjy\n", - "Ly2rJFTbbf/cvgXbp0samuiPIuIKSVc0/+ZsSZ8am0xJ0tKlSyt1FAAAYCotWLBACxYs2L/89NNP\n", - "t4ytklB9UtL3JP2i7R9JOlbS+yfRr86YHAoAAOAQmzChioj7bJ8l6ZfUeBbqsYhIzSAYET+U9MPJ\n", - "dREAAKCzTZhQ2e6V9FFJS9W4yjRo+x8iovq0twAAAIexKrf8bpC0VdLn1bhC9XuSbpT0uwX7BQAA\n", - "0DWqJFSLI+LkUcs/sL3+UHWgav2cUjXYsvGl6uhNn169rGLJml+l2s60W6qeYFapsc7Ulzr66KMr\n", - "x2ZqYmXjMzW0MnXYMvXdMnXHsrX8MmMye/bsyrFz5sypHDtv3rzKsdnvSOa7WqpuY6lzXKYOYza+\n", - "VC2/Xbt2VY7N1ugsNX6ZGoiZ2My5JVvLL3PMVY1dvnx5y/eq7M37bZ+xb6H5K7/7Km0ZAADgNeBg\n", - "xZEfGhVzt+2NajxD1S/psSnoGwAAQFeYqDgyAAAAJnCw4shPjV62/fNqzHgOAACAUaoUR15u+wlJ\n", - "P1NjLqmnJH2/cL8AAAC6RpWH0v9a0hmSHo+IN0h6p6TVRXsFAADQRaokVMMR8b+SptnuiYg7JL2t\n", - "cL8AAAC6RpWJF16wfYSkQUlftb1Z0vay3QIAAOgeVa5QvU/STkmXSrpV0pPiF4AAAAD7VSmOvO9q\n", - "1IikLxftDQAAQBc62MSe29WYyHM8ERHzD0UHqpaeyEyR343lVjpFptxKpoRDpt1u3G+Z0iWZ0hDb\n", - "tm2rHJstt5LZz5kSDpmSNqXazZRxkXLlPTJlQ4aGhor0IVuOpNT5s9SYZMr7lCxHktkXmfNhJjZT\n", - "nknKlcDJHEeZPmfOh5ljKFteq0TpmYO20eqNiMidkcZh+0hJ10parEZy9kcR8eO67QIAAHSS+inZ\n", - "wf2dpH+LiPfbni5pbuHtAQAATLliCZXtBZKWRcQlkhQRL0mqfv0bAACgS+QeNsp5g6Qttr9k+37b\n", - "/2h7TsHtAQAAtEXJhGq6pFMl/X1EnCpph6SVBbcHAADQFiWfodokaVNE/KS5/E2Nk1Ddc889+1+f\n", - "cMIJ6uvrK9glAACAap544gk9+eSTlWKLJVQR8aztjbbfGBGPS3qXpEfGxp1xxhmlugAAADBpixYt\n", - "0qJFi/Yvr1q1qmVs6V/5/Zka5WpmSvovSR8uvD0AAIApVzShiogHJL295DYAAADareRD6QAAAK8J\n", - "pW/5TSg7lXwV2dIlpUqdZEvgdIJMeYGMUqVnMiUOpHKlgzL7befOnUVi9+7dWzlWypWqyXy+zD6e\n", - "M6f6TCqZciTZ80omPnMs79mzp3JsZjwyfZBy45c5jjKfL9Nu5rtXsvRMJjZzLGf6XPIc1wmxJcvw\n", - "ZI6j7HdqPN33Lz4AAECHIaECAACoiYQKAACgJhIqAACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAA\n", - "gJpIqAAAAGoioQIAAKip7aVnSpV9yShVFqVUGZdS0/p3ikyJiuHh4VTbIyMjbY/NlDnJlFuZO3du\n", - "5Vgp1+fMfs6UI8mU1tm6dWvl2EwZEEnq7e0t0vb8+fMrx2bOQyXLDGX2RabdTNmQTLtZpc4vme9T\n", - "pvRM5hwg5cavVGyp8ky7du2qHCuVK6PUStErVLYvt/2I7Ydsf832rJLbAwAAaIdiCZXthZI+IunU\n", - "iHizpB5JHyi1PQAAgHYpectvq6RhSXNsj0iaI+npgtsDAABoi2JXqCLi/yT9raQNkp6R9GJE/Hup\n", - "7QEAALRLyVt+J0r6c0kLJR0naZ7t3y+1PQAAgHYpecvvbZJ+FBHPS5Ltb0s6U9JXRwcNDg7uf93f\n", - "36+BgYGCXQIAAKhm48aN2rRpU6XYkgnVTyX9pe1eSbslvUvSmrFBy5YtK9gFAACAyenr61NfX9/+\n", - "5dWrV7eMLfkM1QOSbpB0r6QHm6u/WGp7AAAA7VJ0Ys+I+Kykz5bcBgAAQLtRegYAAKAmEioAAICa\n", - "2l7Lr2rNn0xtoEzs4S5by69U7b9S41fy802fXv3rkanPl/l8mfpg2X2RqQmZqWGZaTcTm6kllhkP\n", - "SZo1q3pVrMy+eP755yvHDg0NVY7dvn175VipXG28TJ25TGxmPDI1AqXcd6rUeStzDGXr3WY+X+Y4\n", - "2rZtW+XYTvn3OnN+mTdvXv3t1W4BAADgNY6ECgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKCm\n", - "jkyoNmzY0O4uoIaNGze2uwuYJMauu23evLndXcAkPfPMM+3uAmoiocIhV7UyNzoPY9fdtmzZ0u4u\n", - "YJJIqLpfRyZUAAAA3YSECgAAoCa3s0yLbWrEAACArhER49YDamtCBQAAcDjglh8AAEBNJFQAAAA1\n", - "dVxCZft82z+1/YTtT7e7P2jN9j/Zfs72Q6PWHW37dtuP277N9pHt7CNas91n+w7bj9h+2PYnmusZ\n", - "ww5ne7bt1bbX2V5v+zPN9YxdF7HdY3ut7e81lxm/LtZRCZXtHklfkHS+pJMlXWz7Te3tFQ7iS2qM\n", - "1WgrJd0eEW+U9B/NZXSmYUmXRsRiSadL+ljz+8YYdriI2C3p3Ih4q6S3SDrX9lIxdt1mhaT1kvY9\n", - "zMz4dbGOSqgknSbpyYh4KiKGJX1D0nvb3Ce0EBGDkl4Ys3q5pOubr6+X9L4p7RQqi4hnI2Jd8/V2\n", - "SY9KOl6MYVeIiJ3NlzMl9ajxXWTsuoTtEyRdIOlaSft+Ncb4dbFOS6iOlzS69sWm5jp0j9dFxHPN\n", - "189Jel07O4NqbC+UtETSajGGXcH2NNvr1BijOyLiETF23eRzki6T9PKodYxfF+u0hIo5HA4j0ZiT\n", - "gzHtcLbnSfqWpBURsW30e4xh54qIl5u3/E6QdJbtc8e8z9h1KNvvlrQ5ItbqlatTr8L4dZ9OS6ie\n", - "ltQ3arlPjatU6B7P2X69JNn+BUlUa+1gtmeokUzdGBG3NFczhl0kIoYk/aukXxVj1y3OlLTc9s8k\n", - "fV3Sr9m+UYxfV+u0hOpeSYtsL7Q9U9JFkr7b5j4h57uSLmm+vkTSLQeJRRvZtqTrJK2PiGtGvcUY\n", - "djjbx+z7BZjtXkm/LmmtGLuuEBFXRERfRLxB0gck/SAiPijGr6t13Ezptn9T0jVqPGR5XUR8ps1d\n", - "Qgu2vy7pbEnHqHG//68kfUfSzZL6JT0l6cKIeLFdfURrzV+F3SnpQb1ya+FySWvEGHY0229W46Hl\n", - "ac3/boyIq20fLcauq9g+W9InI2I549fdOi6hAgAA6DaddssPAACg65BQAQAA1ERCBQAAUBMJFQAA\n", - "QE0kVAAAADWRUAEAANREQgWg7Wzf3fzfAdsXH+K2rxhvWwBwKDEPFYCOYfscNSY5fE/ib6ZHxEsH\n", - "eX9bRBxxKPoHAK1whQpA29ne3nx5paRlttfaXmF7mu2rba+x/YDtP2nGn2N70PZ3JD3cXHeL7Xtt\n", - "P2z7I811V0rqbbZ34+htueFq2w/ZftD2haPa/k/b/2z7Udtfmdq9AaAbTW93BwBAr5S++bSkT+27\n", - "QtVMoF6MiNNsz5J0l+3bmrFLJC2OiP9uLn84Il5o1rZbY/ubEbHS9sciYsk42/ptSb8i6S2SjpX0\n", - "E9t3Nt97q6STJf2PpLttvyMiuFUIoCWuUAHoJB6z/BuSPmR7raQfSzpa0knN99aMSqYkaYXtdZLu\n", - "kdQnadEE21oq6WvRsFnSDyW9XY2Ea01EPBONZyLWSVpY4zMBeA3gChWATvfxiLh99Irms1Y7xiy/\n", - "U9LpEbHb9h2SZk/QbujABG7f1as9o9aNiHMlgAlwhQpAJ9kmafQD5KskfdT2dEmy/Ubbc8b5u/mS\n", - "XmgmU78s6fRR7w3v+/sxBiVd1HxO61hJZ0laowOTLACYEP+vC0An2Hdl6AFJI81bd1+S9Hk1brfd\n", - "b9uSNkv6rWb86J8o3yrpT22vl/SYGrf99vmipAdt3xcRH9z3dxHxL7bPaG4zJF0WEZttv2lM2xpn\n", - "GQBehWkTAAAAauKWHwAAQE0kVAAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIF\n", - "AABQ0/8DEfw5JxfRlIgAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEpVJREFUeJzt3X+QXXV5x/HPJ5tkswsEh4ZqwdgsN9AAoxCrgAoqVQJ1\nBGlrRdoqlY6djlopVUbMDP2rVat2pOK0M5YfIv5qizYKLSRpTRGxJgIJvwIYcGlBCykQMOSXS3j6\nx70Jy2Y3e549+e65N7xfMwz3nPvs+X73fM89++Scc7+PI0IAAACYuhlNdwAAAKDXkVABAADUREIF\nAABQEwkVAABATSRUAAAANZFQAQAA1DSzycZtM2cDAADoGRHh8dYXTahsnyHpUkl9ki6PiL8eG/PZ\nz352j59bvny5Tj/99BesmzGj+sW0TGyWPe5+nNbYzO/X19dXOTYbP1HssmXLdPbZZ79gXanxK/n7\ndcsxV1V/f38qfnBwcI91V199tc4777w91h9wwAGVtzswMFA5NrPffvGLXxSJlaTt27dXjn322Wcr\nx5aa52/OnDnjrr/yyit1/vnn77E+M35z584tEjve8TaRzLE8a9asyrElZY6L8Y63T3ziE1q6dOke\n63fs2JHqx8jISOOxO3furBxbUubvalVHHnnkhO8V+ytgu0/SFySdIekYSefaPrpUewAAAE0p+c/q\nEyQ9EBEPRcSIpG9IekfB9gAAABpRMqE6XNLDo5Yf6aybVKvVKtIhTI9FixY13QVM0XHHHdd0F1DD\n4sWLm+4CpuiUU05puguoqWRCNeWHBxYuXLgv+4FpRkLVu44//vimu4AaSKh6FwlV7yv5UPpPJc0f\ntTxf7atUL7B8+fLdr1utFskUAADoCqtXr9bq1asrxZZMqG6VdKTtBZJ+JukcSeeODRr7bT4AAIBu\ncOKJJ+rEE0/cvXzZZZdNGFssoYqIZ21/SNJytadNuCIi7i3VHgAAQFOKzkMVETdIuqFkGwAAAE1r\ndKZ0qfpkYSUm6JqKzER9pWIzk6ZlJpuTyk30VmpSxkwfpNz+yOznUrGZ3y8zOWU2fuvWrUW2m4kt\ntd+y8aViSx2bkvTcc8+l4qvKnLcy5/DMZJ3ZSXUz/Si13zKyk8Nmfr/MtjP7IhNbqg/Z+H0xGWnz\n0zsDAAD0OBIqAACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAm\nEioAAICaSKgAAABqaryWX19fX6W4bqnll1GqnlGmdtXMmbkhztTQysjWoyq13cxx1A3HXKl6kFKu\ndlypmmZVP/9S/ljOyOyLUsdQqXqe2fhsbbwSfShV41EqV98ts93MPp49e3blWEnq7++vHDs4OFg5\nds6cOZVjM5/rkufkzPhVrSF7ySWXTPhe0StUtufbXmX7Htt32/5wyfYAAACaUPoK1YikCyNine0D\nJd1me2VE3Fu4XQAAgGlT9ApVRDwaEes6r5+RdK+kw0q2CQAAMN2m7aF02wskLZa0erraBAAAmA7T\nklB1bvddK+mCzpUqAACA/Ubxb/nZniXpm5K+EhHLxr6/YsWK3a9brZZarVbpLgEAAExqeHhYw8PD\nlWKLJlRuf8fxCknrI+LS8WKWLFlSsgsAAABTMjQ0pKGhod3Lq1atmjC29C2/N0j6A0mn2l7b+e+M\nwm0CAABMq6JXqCLi+2I2dgAAsJ8j2QEAAKip8dIzJUpaZEtwlCrvUapcR0klS52U0A3lYaRcqYVS\npT2yx1upMkMZpcYvU0pGKlfWJvP7ZfqQLUeSGevMsZyROT63bt1aOXbz5s2pfmzbtq1y7I4dOyrH\nZsZ6YGCgcmymPIyUKz2TOY4y563M34bMZ7VqeZipxGfPGePhChUAAEBNJFQAAAA1kVABAADUREIF\nAABQEwkVAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAAQE0kVAAAADU1XnqmVMmHjEzJgFKlMjJl\nGUqWvylVeqZUmZrseHRDqZpMHzKlE7JlGbZv3145dl+UZRhPN5REkXLHZ6YsSqZ0yc6dOyvHZmW2\nnSkxkjm/ZPpQarslt535jGRiSx4X3XC+L3lOzhzL++L8MmE2Y/t3JIWk8X7biIhvVWnAdp+kWyU9\nEhFnTqmXAAAAXWxvl4fOVDuhmkilhErSBZLWSzqoaqcAAAB6yYQJVUT8Yd2N2365pLdJ+itJf153\newAAAN1o0huMtl9m+wrbN3aWj7H9RxW3/zlJF0nKPcgDAADQQ6o8sfUlSSskHdZZ3iDpwsl+yPbb\nJW2MiLUa/zksAACA/UKVr9jNi4h/tH2xJEXEiO0qX1F4vaSzbL9N0hxJc21/OSLeOzpo+fLlu1+3\nWi0tXLiweu8BAAAKefzxx/XEE09Uiq2SUD1j+5d2Ldg+SdLTk/1QRCyVtLTzM2+S9NGxyZQknX76\n6ZU6CgAAMJ3mzZunefPm7V7esGHDhLFVEqqPSLpO0hG2fyDpUEnvnEK/ykxEBAAA0LBJE6qIuM32\nGyX9mtrPQt0fESOZRiLiJkk3Ta2LAAAA3W3ShMr2gKQPSDpZ7atMN9v++4ioPs0yAADAfqzKLb8v\nS/q5pM+rfYXq9yRdI+l3C/YLAACgZ1RJqI6NiGNGLX/X9vp91YFMXayquqU2UKkagZk+ZGX6Uao+\nX0bJPpQak0z9yoMPPrhIH6Rc7apSNTdL1TTL1NDL6u/vrxw7MDBQOXbu3LmVY0ueAzK17jL96IYa\ngVmZc8C2bdsqx2bqbmbraGbOiZnPdea4LxWbPQ/Nnj27cmzV8+H1118/4XtVjvDbbb9u10LnW363\nVWoZAADgRWBvxZHvGhVzi+2H1X6G6hWS7p+GvgEAAPSEyYojAwAAYBJ7K4780Ohl27+s9oznAAAA\nGKVKceSzbG+QNKz2XFIPSbqhcL8AAAB6RpWH0v9S0usk/TgihiS9RdLqor0CAADoIVUSqpGIeFzS\nDNt9EbFK0msK9wsAAKBnVJnUYZPtgyTdLOmrtjdKeqZstwAAAHpHlStUZ0vaKulCSTdKekB8AxAA\nAGC3KsWRd12N2inpS0V7AwAA0IP2NrHnM2pP5DmeiIjqdRL2IjM1fFUlS8+UkikXkInN7otSJVRK\nlXHJluAoue9K9CFToiLb31LlZGbNmlU5tsTnX8qVfJHKlTDKbPfJJ5+sHJspzZJVqpRL5njLlEXK\nngMy/SjV58xxnz02MyVwtmzZUjk2UwInc3yWLIFVakwmsrd5qA6su3HbL5F0uaRj1U7Ozo+IH9bd\nLgAAQDcp80/U5/2tpH+LiHfaninpgMLtAQAATLtiCZXtgyWdEhHnSVJEPCvp6VLtAQAANCV38zln\nSNL/2b7K9u22/8H2YMH2AAAAGlEyoZop6dWS/i4iXi1pi6SLC7YHAADQiJLPUD0i6ZGI+FFn+VqN\nk1CtXLly9+sjjjhCrVarYJcAAACque+++3T//fdXii2WUEXEo7Yftn1URPxY0lsl3TM27rTTTivV\nBQAAgClbtGiRFi1atHv5uuuumzC29Lf8/lTtcjWzJT0o6X2F2wMAAJh2RROqiLhD0mtLtgEAANC0\nkg+lAwAAvCiUvuU3qarT6mfKC2RLcGTiS8WWKn1RUsnyF1VlSgtI5crlZMoybN++vXJspozEyMhI\n5VipXImR/v7+yrEHHli9IMMBB1SfFzhbeiZTdiKznzPjlykzlB3rzGc1E1uqlFPmGMqWDMmURsqc\nLzL9yJy35syZUzlWyv1+mXNA5hxXqpRaVrYsUe32prU1AACA/RAJFQAAQE0kVAAAADWRUAEAANRE\nQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATY2Xnqk6BX9mivxsSZRSpRZKlWXI\nltYpJVv2papMaZZs+ZRSpRYy282UhsiUs8iUZpFyx1HmM5IpobJp06bKsRs3bqwcmyldIuX2c2bb\nmRI4mRIjg4ODlWOl3LkocyxnPqtbtmypHLt169bKsdnSJdmyPVWVKpdT8ljOnItKlVLLjMeOHTsq\nx0q5c/i+OC6KXqGy/XHb99i+y/bXbOeODAAAgB5QLKGyvUDS+yW9OiJeKalP0rtLtQcAANCUkrf8\nfi5pRNKg7Z2SBiX9tGB7AAAAjSh2hSoinpT0N5L+R9LPJD0VEf9eqj0AAICmlLzl15L0Z5IWSDpM\n0oG2f79UewAAAE0pecvvNZJ+EBFPSJLtb0l6vaSvjg5asWLF7tetVkutVqtglwAAAKoZHh7W8PBw\npdiSCdV9ki6xPSBpu6S3SlozNmjJkiUFuwAAADA1Q0NDGhoa2r28atWqCWNLPkN1h6QvS7pV0p2d\n1V8s1R4AAEBTik7sGRGflvTpkm0AAAA0jdIzAAAANZFQAQAA1NR4Lb8ZM6rldNn6fKV0Q829qvus\ntFK1nTK/X7aOVyZ+5szqH49MbKljKHu8ZfqcqYmV+axm6mdlasxl6glKuX2ROT4z+y1TFy8TK+Vq\noG3btq1ybDfUxcvUQJSkgw46qMi2M8dQRvYclxnrzZs3F+lH5jOSqQmb3ceZmpf7Yvy64y8zAABA\nDyOhAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKipKxOqBx54oOkuoIaf/OQnTXcBU8Rnr7dV\nLeKK7rNhw4amu4CaujKhevDBB5vuAmogoepdfPZ6GwlV7yKh6n1dmVABAAD0EhIqAACAmpyd1n6f\nNm431zgAAEBSRIxb56vRhAoAAGB/wC0/AACAmkioAAAAauq6hMr2Gbbvs73B9sea7g8mZvtK24/Z\nvmvUukNsr7T9Y9srbL+kyT5iYrbn215l+x7bd9v+cGc9Y9jlbM+xvdr2OtvrbX+ys56x6yG2+2yv\ntX1dZ5nx62FdlVDZ7pP0BUlnSDpG0rm2j262V9iLq9Qeq9EulrQyIo6S9B+dZXSnEUkXRsSxkk6S\n9MHO540x7HIRsV3SqRFxvKRXSTrV9sli7HrNBZLWS9r1MDPj18O6KqGSdIKkByLioYgYkfQNSe9o\nuE+YQETcLGnTmNVnSbq68/pqSWdPa6dQWUQ8GhHrOq+fkXSvpMPFGPaEiNjaeTlbUp/an0XGrkfY\nfrmkt0m6XNKub40xfj2s2xKqwyU9PGr5kc469I6XRsRjndePSXppk51BNbYXSFosabUYw55ge4bt\ndWqP0aqIuEeMXS/5nKSLJD03ah3j18O6LaFiDof9SLTn5GBMu5ztAyV9U9IFEbF59HuMYfeKiOc6\nt/xeLumNtk8d8z5j16Vsv13SxohYq+evTr0A49d7ui2h+qmk+aOW56t9lQq94zHbL5Mk278iaWPD\n/cFe2J6ldjJ1TUQs66xmDHtIRDwt6V8l/boYu17xekln2R6W9HVJv2H7GjF+Pa3bEqpbJR1pe4Ht\n2ZLOkfSdhvuEnO9IOq/z+jxJy/YSiwbZtqQrJK2PiEtHvcUYdjnb83Z9A8z2gKTTJK0VY9cTImJp\nRMyPiCFJ75b03Yh4jxi/ntZ1M6Xb/k1Jl6r9kOUVEfHJhruECdj+uqQ3SZqn9v3+v5D0bUn/JOkV\nkh6S9K6IeKqpPmJinW+FfU/SnXr+1sLHJa0RY9jVbL9S7YeWZ3T+uyYiPmP7EDF2PcX2myR9JCLO\nYvx6W9clVAAAAL2m2275AQAA9BwSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioAAICaSKgANM72\nLZ3//6rtc/fxtpeO1xYA7EvMQwWga9h+s9qTHJ6Z+JmZEfHsXt7fHBEH7Yv+AcBEuEIFoHG2n+m8\n/JSkU2yvtX2B7Rm2P2N7je07bP9xJ/7Ntm+2/W1Jd3fWLbN9q+27bb+/s+5TkgY627tmdFtu+4zt\nu2zfaftdo7b9n7b/2fa9tr8yvXsDQC+a2XQHAEDPl775mKSP7rpC1UmgnoqIE2z3S/q+7RWd2MWS\njo2I/+4svy8iNnVq262xfW1EXGz7gxGxeJy2flvScZJeJelQST+y/b3Oe8dLOkbS/0q6xfYbIoJb\nhQAmxBUqAN3EY5aXSHqv7bWSfijpEEkLO++tGZVMSdIFttdJ+i9J8yUdOUlbJ0v6WrRtlHSTpNeq\nnXCtiYifRfuZiHWSFtT4nQC8CHCFCkC3+1BErBy9ovOs1ZYxy2+RdFJEbLe9StKcSbYb2jOB23X1\naseodTvFuRLAJLhCBaCbbJY0+gHy5ZI+YHumJNk+yvbgOD83V9KmTjK1SNJJo94b2fXzY9ws6ZzO\nc1qHSnqjpDXaM8kCgEnxry4A3WDXlaE7JO3s3Lq7StLn1b7ddrttS9oo6bc68aO/onyjpD+xvV7S\n/Wrf9tvli5LutH1bRLxn189FxL/Yfl2nzZB0UURstH30mG1rnGUAeAGmTQAAAKiJW34AAAA1kVAB\nAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA1ERCBQAAUBMJFQAAQE3/D0sx8rDOhLA/AAAAAElF\nTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2688,109 +781,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAFYRJREFUeJztnVuMZHldxz+/ut+7q+89072zs8Oa8EACL/gARB4IWWIi\n", - "+qIhMRpE44OiURMRHwSjD0gCMb4QlV2Dl4BGAwETFTAa8cHLml12UXbZTRimZ/tW3VXVdb//fej6\n", - "/ffUmeqeruq6nJo5n+Skbl2nf931rd//8rscMcbg4zMKgXkb4LN4+KLxGRlfND4j44vGZ2R80fiM\n", - "jC8an5EZWzQi8oyIvCIir4nIxyZplI+3kXH2aUQkCLwKvA94A/hv4EPGmO9O1jwfLzKup3kn8Lox\n", - "5q4xpg18Cfjg5Mzy8TKhMd93E9hzPL4P/LDzB0TE32pecIwxMuz5cT2NL4jHmHFF8waw63i8y7m3\n", - "8XkMGFc0zwNPi8iTIhIBfgr46uTM8vEyY81pjDEdEfll4J+AIPCsv3J6fBhryX2lE/sT4YVn0hNh\n", - "n8cYXzQ+I+OLxmdkfNH4jIwvGp+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZMZNwgJARO4C\n", - "JaALtI0x75yEUdNGROwRCAQIBoOEQiGCwSDBYJB2u02n07G3s7AnEAhYmwCMMWhc0H1/3lxLNJwn\n", - "Y73XGJOfhDGzQEQIhUL2CIfDLC0tkclkyGQyJBIJ8vm8PQqFwtRtCoVCRCIRwuEwkUiEXq9Ht9ul\n", - "2+3S6XTs416vR6/Xm7twrisagKGRUC8TDAaJRCLEYjHi8ThbW1tsb2+ztbXF6uoqd+/e5e7du7Tb\n", - "7ZmIJhgMWlsSiQTdbpd2u02r1aLVatFutxERK6B5MwlP800R6QJ/bIz50wnYNFXU00SjURKJBOl0\n", - "mu3tbe7cucNb3vIWbt68STwep91uk8/PxoGGQiFisRjpdJpMJkOn06Fer9NoNOywBXhCMHB90bzL\n", - "GHMgIuvAN0TkFWPMtyZh2DTRDymRSLC0tMT6+jo7Ozs89dRT3Lp1i0KhwBtvvEE8Hp+pPalUimw2\n", - "S6fTIRaLUa/Xqdfr1Go16vU6xhja7fZiD0/GmIP+bU5Evsx5aYunRSMihMNh4vE4mUyGbDZLJpMh\n", - "Ho8TDocfmJDOglAoZO1ZXV214tCjWCySz+cREZrN5tw9ztiiEZEEEDTGlEUkCbwf+N2JWTYlVDSJ\n", - "RMKKJpVKDYhm1sJxDk8rKysEg0G7Yur1euRyOUSERqNBsViciU2X2nuN924CX+7/Y0PAXxljvj4R\n", - "q6aIiBCJRB7wNIlEgkgkMnMvA4OeZmVlhVgsZrcCAoEA0WiUZrNJsVgkEJj/1trYojHGfB94+wRt\n", - "mQnDPE06nZ7r8BQIBAiHw8RiMZLJJMlkkmg0SjQaJRKJ0G63OT09JR6PW/vmOa+ZxJJ7IVARqKfR\n", - "SfDKygrpdJpYLEYoNJ9/R6/Xo91uU6/XqVQqBINBwuEwwWCQeDxOPB4nGo3a5wKBgB2+5iGe+fu6\n", - "GeAUTCAQIBKJkEwmB0QTj8fnJpput0ur1aJer1Mul2k0GvR6PTtsOUUTCoXm4g2dPBaiAQbCBupp\n", - "nMPTPD2NUzSVSoVGo0G32yUYDJJIJIZ6mnkK57EYnlQs7rnD0tIS2WzWzh0AG2+a5XZ9r9ej0+nQ\n", - "arVoNBq0220AuzWgoolEIlY0ML841CMvGp34RiIRIpEI6XSa5eVlG29Kp9MD3/RGo0GhUKBSqdgP\n", - "bxY2qqg1DhWNRu0GpIpGg6o6p5kXj41oNK6jgtEjnU5TLpft0HB2dkY+n6dardJqtWZmozPaHg6H\n", - "iUaj1uZhw1Ov1/PnNNPCKZpUKsXy8vKAp0mlUoRCIVqtFmdnZxwdHVlPM0vRiIgVzTBPo1Fw95xm\n", - "HjySnsa5WgoGg0SjURvXWVtbI5vNWi+j8SUdlg4ODsjn8zMdnnRY0mFUBaORb53P6Mpp3qunR040\n", - "KhQ94vE4a2tr3Lx5kxs3bnDjxg1u3rzJ0tISgUCAer3O2dkZJycn7O/vs7e3x9HREaVSiWazOROb\n", - "3bGn5eVlksmk3aH2Go+caODNfJlIJEIqlbKieeqpp3jiiSdYXV0lk8kQCASo1WpWNAcHB9y7d49i\n", - "sThX0SwtLQ2ENbzGIycazZfR+FI6nbapD3fu3OHOnTtWUCJiPU0ul7OeRlMRfE8znIeKRkSeA34U\n", - "ODbGvK3/3Arw18At4C7wk8aY+YdfeVM0zr2YtbU1bty4wa1bt7h9+7bNiGu1WpTLZQqFAicnJxwd\n", - "HbG/v29TK7vd7szsdQYsve5prrJ6+jPgGddzvwV8wxjzQ8A/9x97gkAgQDweJ5vNsr29ze7uLhsb\n", - "GywtLRGPxxERarUauVyOu3fv8sorr3Dv3j1yuRzVanUmubi6xNY8Zc0iTKVSAxP0cDi8mKLpZ+K5\n", - "E2V/DPhC//4XgB+fsF1jEwgESCQSZLNZtra22N3dZXNzk+XlZWKx2AOiefXVV7l37x4nJydUKhUr\n", - "mmkGA937Mrono6LR/J5QKORJ0Yw7p9k0xhz17x9xnlvjCS7zNE7RnJyc8IMf/IDXX3+d4+Nj62mm\n", - "LRgYXOEN8zSpVMq+7lxae0VA154IG2PMvPvrOf+poVCIZDLJysoKW1tb7Ozs2NVSLBYDsKK5d+8e\n", - "r732GuVymUqlYoenaaNeRvdldOdXE8vj8fhA6sMshDwK44rmSES2jDGHIrINHE/SqFHQIKSuiDKZ\n", - "DGtra6yurrK6uko2myWRSBAMBm0gslarUa1WqVQqNoTQarVmIhjAbjam02nS6fQDw6eWsGjwtFwu\n", - "U6vVbDBTa6LmlSs8rmi+Cvws8Af9269MzKIRERGi0ajNeFtZWWFtbc0KJ5vN2jyUbrdLo9EYEI2G\n", - "C1qt1sw+hEgkYld1a2trbG9vs7y8bCfqnU6HRqNBo9GgXq9TKpWoVqs0Gg06nc7Mo/BurrLk/iLw\n", - "I8CaiOwBvwN8CvgbEfkI/SX3NI28DM2h1bjS+vr6A55G/8FaT+QWjX5zZ+lpMpkMGxsb7OzssLm5\n", - "STabtcNnp9Oh2WxSrVYpl8vW0zSbTetpPC0aY8yHLnjpfRO2ZSw0fdMZW1LR6J6HfmtbrdYDgqlU\n", - "KjO31yma3d1dtra2hnqaSqVCsVjk7OzMJmepaOaZ7rnwO8LO4UlFs7S0NLCjqpt4xWKRk5MTTk9P\n", - "Zx6QdB7OVNONjQ1WVlasvQCtVotSqcTx8TGHh4ccHBxQKBSo1WpzFww8AqJxDk8qmuXl5YEdVf0Q\n", - "NL6kUexZpT44N/JCoZBdWq+urrKxsWFrr9TeZrPJ2dkZx8fH7O3tWZt1dTfvldTCi0Y9jVM0F3ka\n", - "FY16mlmLRld4bk/jDBsANJtNSqUSuVxuQDROTwN+uufYaKL4VUSTy+Xmmi+jnSqSyaSNM62vr5NM\n", - "Jm0+DbwpmuPjY+7fv8/R0RHFYvEB0cyLhRSNsymRe0c1nU7bb20wGKTX69FoNGwkex6eJhwOk0ql\n", - "yGQytuGAM5Kt6ZvaVkRXTaVSiWKxaPeSvFD8DwsoGmcpim7sOWM3GuzTD8MYQ6PRGJjT6A7wrDyN\n", - "esLV1VXW1tasaBKJhK3q1AZG3W7Xru6cotGVky+aMVHBuGM3usPq9DS6fHV6mmazaTf0ZoGKZmVl\n", - "he3t7Qc8DTDQxGiYp9FNPV80Y+IM+A3zNDrhVLevnkZFM2ucotna2npg3tVutwdKc1U0Z2dndo/G\n", - "SyykaODBWqFwOGyPXq9nd371n1+r1WbSdHEYaqOKW8tRtOhNBdNoNKhWqwOxMC94FjcLKZqLunNq\n", - "xn6z2aTRaNBsNsnn83blMas5jBv36slZwwRviqbZbNrApJdFs3B1T27BuNMMnJ5G0zjPzs6o1+tz\n", - "9zSaBuEsR3FGtTWYqiulWcXCRuWhohGR50TkSERedjz3SRG5LyIv9A93OujUcQpHd1rdoikWi+Ry\n", - "Oc94Gq1nusjTuIcnr0x83YybI2yAzxpj3tE//nHypg3HmZikyd9aOF+r1QbEod0h3AVnWqU4rUw4\n", - "Z7WkVndqDbmGOZLJpM0B7na7dmhyp0EspGguyBGGOfYPVtHo3oaKplqtWtE4A5mzFo27mF9Fk81m\n", - "B5bb0WjUikaX2qVSiUqlYocoL3KdOc1HReTbIvKsiCxPzKIrcJFo1NN0Oh0byEwmkyQSCWKx2AP1\n", - "0LP0NJrvo2XBzjCH29NoGsTCepoL+Bxwm/OeewfAZyZm0RVwDk9u0VSr1Qs9jWbwOSeh0+Ci4ckZ\n", - "hR8mmmq1+kDujBdFM9aS2xhjc4JF5PPA1yZm0dV+/4C30d1UTbbSzT3dC1lbW2NnZ4dqtWpLcfVo\n", - "NBoj/35n501nFwdnaENtiEQi3Lp1i42NDVtlMEyszhyZeac+PIyxRCMi29p4GvgJ4OXLfn6SGGNs\n", - "d0u3t2k2mzSbzYFWqvF4nPX1dWq1GsYYEokExWLRHuVyeWQbnBuJejjzZbTzg97evn2bjY0Nksnk\n", - "lf4+rzNOjvAngPeKyNs5X0V9H/jFqVrpQr+J6tqdQ1Sj0bB9eLWt6vr6Or1ej2g0yvLyMsfHx/YY\n", - "5/oH2gZED6dXcbYK0d+/vb3N5uYmqVRqaDvXhz32GuPmCD83BVuujDMJySka9TTdbteKJp1OY4yx\n", - "gllfX7dJT7qSGhWdXOttPB5/QEjOQ7tuJZPJC+dR7mHJy8JZyDCCE61jKhQKHB4eEo1G7Ra8czkL\n", - "5x4im80OTJSXl0df+KkX0Vv3cKSHvq6T8YtqszudzkDLk0KhQLVapdlselI8j4xo8vk8+/v7ADZq\n", - "LCL0ej27UtK5R6/Xs00bNzY2Rv6d6qH01jmncXazcovoopaz7XbbCv/o6IjT01PK5bInLp4xjIUX\n", - "jSYt6VVKNGajy15tCJBIJAZax2vfmnFzapzDiDMGNmz1pIK6aOXUarWoVCpWNMVi0fbH8T3NFFBP\n", - "o1n89XodYGAVo3MaTbtMp9PX6lnnvL6lc9dWz+eMgzmHpIt+n3qaYrHI8fEx5XLZFu/5opkCWjnZ\n", - "bDZtADOXy9lhqFqtks1mWVlZsVdccV7kdJyJsPYb1lu3PSpMvXUvz93icU7onc2vvXC9ymEsvGiA\n", - "gckuwMnJifVAp6enLC0tDbSBdX+Io2CMsZWZmmvsRvOA9dA6c80Jvui8zgucenmDb+FFo99SeLNd\n", - "fLfbtYLRchHtTp5OpwfmNpqjOwqFQmFgg9DNzs4OTzzxBLVajV6vRzabxRhDKBQikUgM9TTu6L1X\n", - "BQOPkGhUOCJiwwVa4pJKpQYO3VfRmNSo5HI5Tk5O7OHm6aeftoJRUapgLvs7VDBeXDE5WXjRwOBG\n", - "mN5XEWnE2zn3ce7WjuppjDEUi0UKhQKlUolarfbAz2jgVFM13IX7btzpoM45jRez9x4J0VyGUyyA\n", - "jSg7Y0ajUqlULs0EdMbDdOmse0fDcF8dxtnUyItD1SMvGsDmBmsVoztCPSrOi6wPw52yoambVxFN\n", - "IpGwO9Z6noUSjYjsAn8ObHAenPwTY8wfebmPsBvnnKfVag1MQsfdp3lY+oJbNM5mRMNw1m8lk0m7\n", - "E+z0kF7iYZ6mDfyaMeZFEUkB/yMi3wA+zHkf4U+LyMc47yPsmV7CbmYdBBx1JeTOQnTu1XiRS32z\n", - "MebQGPNi/34F+C5wEw/3EfYSV/Vk7moE55DmtaEJRpjTiMiTwDuA/8TDfYS9xrA+wG4xuYvltEbL\n", - "iysnuKJo+kPT3wG/aowpO/9oL/QRXgQuiz/p/MVZLAd4dlf4KsVyYc4F8xfGGG39eiQiW/3X59pH\n", - "eFG4bF7lruPy+q7wpaKR86/Fs8D/GWP+0PGS9hGGOfcRXgQWIRtvFB42PL0L+GngJRF5of/cx/FQ\n", - "H2Evc9HwsujiuVQ0xph/52Jv5Ik+wj6z57HYEZ41zs4WFyV7OYesRah1cuKLZko4W6G4xeMWipcn\n", - "vcNYuP40i8CwHjoX5dA4V0qLIhxfNFPiKp7GmT+zSMLxh6cpoBde1YbY6XSaWCxm+xprIFIPZ9t9\n", - "XzSPKe5unnrBDG1Rq4VxpVKJUqnE/v6+bWPvi+YxRa9/kM1m2dzctL2N9UJl1WqVQqFALpfj+PjY\n", - "XmWlXq/7onlc0foq9TTRaNRWZGrSe6FQ4ODggPv37w94Gq+mQzjxRTMDms2mjVp3Oh329/e5f/8+\n", - "e3t77O3tDVRV+p7mMUWzBOv1uq3Jdiab64W/9NAk9Uaj4YvmccXZQ0+vcZDP5+2Ry+XsfEavB67V\n", - "mgsvmktyhD8J/DyQ6//ox2fZFtbrqKdR0ZyenrK/v8/BwYGdv+TzeQqFAvl83g5d87xs8iiMmyOs\n", - "fYQ/O3ULF5BGo0GxWOTw8JBMJsPJyQlHR0ccHh5yeHg4sNyuVqsLIRQnD4tyHwKH/fsVEdEcYZhj\n", - "H2GvU6vVyOVyhMNh2u02pVKJQqFgD683l34Y4+QI/wfneTYfFZGfAZ4HfsOrJSzzoFqtcnx8TLPZ\n", - "pFAoDPQ4rtVqD62b8jpyFaX3h6Z/BX7fGPMVEdngzfnM7wHbxpiPuN6zeF+hCaGVm1rF6bxYvLMr\n", - "hNfrto0xQ0eTh4qmnyP898A/uFI+9fUnga8ZY97mev6xFc2jwkWiGStHuJ9Mrsy0j7DP/LnU04jI\n", - "u4F/A17ifMUE8NvAhzhvcW/7CDvqoPS9vqdZcMYensbFF83iM9bw5OMzDF80PiPji8ZnZHzR+IyM\n", - "LxqfkfFF4zMyvmh8RmZq+zQ+jy6+p/EZGV80PiMzVdGIyDMi8oqIvNbvAnrd890VkZdE5AUR+a8x\n", - "3v+ciByJyMuO51ZE5Bsi8j0R+foo1xi/4HyfFJH7fRtfEJFnRjjfroj8i4j8r4h8R0R+5To2XnK+\n", - "sW0Ehl/adxIHEAReB54EwsCLwFuvec7vAyvXeP97OE8ke9nx3KeB3+zf/xjwqWue7xPAr49p3xbw\n", - "9v79FPAq8NZxbbzkfGPbaIyZqqd5J/C6MeauMaYNfAn44ATOO3aaqTHmW0DB9fTY7W0vOB+MaaOZ\n", - "cAveS843to0w3eHpJrDneHyfNw0eFwN8U0SeF5FfuOa5lGm0t/2oiHxbRJ4dZbhzMukWvK503WvZ\n", - "OE3RTGMt/y5jzDuADwC/JCLvmeTJzbkfv67dnwNuc55vdAB8ZtQTuFvwXtfG/vn+tn++ynVtnKZo\n", - "3gB2HY93Ofc2Y2OMOejf5oAvcz4EXpeJtrc1xhybPsDnR7Vx0i14Hef7Sz3fdW2cpmieB54WkSdF\n", - "JAL8FOetZMdCRBIiku7fTwLvZzJpphNtb3udVNhJt+CdWrrudVYzV5i9f4DzGfvrnFdhXudctzlf\n", - "gb0IfGec8wFfBPaBFufzrQ8DK8A3ge8BXweWr3G+n+O8IvUl4Nv9D3dzhPO9G+j1/8YX+scz49p4\n", - "wfk+cB0bjTF+GMFndPwdYZ+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZHzR+IzM/wMn9Av6\n", - "T5UJ3wAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFYRJREFUeJztnVuMZHldxz+/ut+7q+89072zs8Oa8EACL/gARB4IWWIi\n+qIhMRpE44OiURMRHwSjD0gCMb4QlV2Dl4BGAwETFTAa8cHLml12UXbZTRimZ/tW3VXVdb//fej6\n/ffUmeqeruq6nJo5n+Skbl2nf931rd//8rscMcbg4zMKgXkb4LN4+KLxGRlfND4j44vGZ2R80fiM\njC8an5EZWzQi8oyIvCIir4nIxyZplI+3kXH2aUQkCLwKvA94A/hv4EPGmO9O1jwfLzKup3kn8Lox\n5q4xpg18Cfjg5Mzy8TKhMd93E9hzPL4P/LDzB0TE32pecIwxMuz5cT2NL4jHmHFF8waw63i8y7m3\n8XkMGFc0zwNPi8iTIhIBfgr46uTM8vEyY81pjDEdEfll4J+AIPCsv3J6fBhryX2lE/sT4YVn0hNh\nn8cYXzQ+I+OLxmdkfNH4jIwvGp+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZMZNwgJARO4C\nJaALtI0x75yEUdNGROwRCAQIBoOEQiGCwSDBYJB2u02n07G3s7AnEAhYmwCMMWhc0H1/3lxLNJwn\nY73XGJOfhDGzQEQIhUL2CIfDLC0tkclkyGQyJBIJ8vm8PQqFwtRtCoVCRCIRwuEwkUiEXq9Ht9ul\n2+3S6XTs416vR6/Xm7twrisagKGRUC8TDAaJRCLEYjHi8ThbW1tsb2+ztbXF6uoqd+/e5e7du7Tb\n7ZmIJhgMWlsSiQTdbpd2u02r1aLVatFutxERK6B5MwlP800R6QJ/bIz50wnYNFXU00SjURKJBOl0\nmu3tbe7cucNb3vIWbt68STwep91uk8/PxoGGQiFisRjpdJpMJkOn06Fer9NoNOywBXhCMHB90bzL\nGHMgIuvAN0TkFWPMtyZh2DTRDymRSLC0tMT6+jo7Ozs89dRT3Lp1i0KhwBtvvEE8Hp+pPalUimw2\nS6fTIRaLUa/Xqdfr1Go16vU6xhja7fZiD0/GmIP+bU5Evsx5aYunRSMihMNh4vE4mUyGbDZLJpMh\nHo8TDocfmJDOglAoZO1ZXV214tCjWCySz+cREZrN5tw9ztiiEZEEEDTGlEUkCbwf+N2JWTYlVDSJ\nRMKKJpVKDYhm1sJxDk8rKysEg0G7Yur1euRyOUSERqNBsViciU2X2nuN924CX+7/Y0PAXxljvj4R\nq6aIiBCJRB7wNIlEgkgkMnMvA4OeZmVlhVgsZrcCAoEA0WiUZrNJsVgkEJj/1trYojHGfB94+wRt\nmQnDPE06nZ7r8BQIBAiHw8RiMZLJJMlkkmg0SjQaJRKJ0G63OT09JR6PW/vmOa+ZxJJ7IVARqKfR\nSfDKygrpdJpYLEYoNJ9/R6/Xo91uU6/XqVQqBINBwuEwwWCQeDxOPB4nGo3a5wKBgB2+5iGe+fu6\nGeAUTCAQIBKJkEwmB0QTj8fnJpput0ur1aJer1Mul2k0GvR6PTtsOUUTCoXm4g2dPBaiAQbCBupp\nnMPTPD2NUzSVSoVGo0G32yUYDJJIJIZ6mnkK57EYnlQs7rnD0tIS2WzWzh0AG2+a5XZ9r9ej0+nQ\narVoNBq0220AuzWgoolEIlY0ML841CMvGp34RiIRIpEI6XSa5eVlG29Kp9MD3/RGo0GhUKBSqdgP\nbxY2qqg1DhWNRu0GpIpGg6o6p5kXj41oNK6jgtEjnU5TLpft0HB2dkY+n6dardJqtWZmozPaHg6H\niUaj1uZhw1Ov1/PnNNPCKZpUKsXy8vKAp0mlUoRCIVqtFmdnZxwdHVlPM0vRiIgVzTBPo1Fw95xm\nHjySnsa5WgoGg0SjURvXWVtbI5vNWi+j8SUdlg4ODsjn8zMdnnRY0mFUBaORb53P6Mpp3qunR040\nKhQ94vE4a2tr3Lx5kxs3bnDjxg1u3rzJ0tISgUCAer3O2dkZJycn7O/vs7e3x9HREaVSiWazOROb\n3bGn5eVlksmk3aH2Go+caODNfJlIJEIqlbKieeqpp3jiiSdYXV0lk8kQCASo1WpWNAcHB9y7d49i\nsThX0SwtLQ2ENbzGIycazZfR+FI6nbapD3fu3OHOnTtWUCJiPU0ul7OeRlMRfE8znIeKRkSeA34U\nODbGvK3/3Arw18At4C7wk8aY+YdfeVM0zr2YtbU1bty4wa1bt7h9+7bNiGu1WpTLZQqFAicnJxwd\nHbG/v29TK7vd7szsdQYsve5prrJ6+jPgGddzvwV8wxjzQ8A/9x97gkAgQDweJ5vNsr29ze7uLhsb\nGywtLRGPxxERarUauVyOu3fv8sorr3Dv3j1yuRzVanUmubi6xNY8Zc0iTKVSAxP0cDi8mKLpZ+K5\nE2V/DPhC//4XgB+fsF1jEwgESCQSZLNZtra22N3dZXNzk+XlZWKx2AOiefXVV7l37x4nJydUKhUr\nmmkGA937Mrono6LR/J5QKORJ0Yw7p9k0xhz17x9xnlvjCS7zNE7RnJyc8IMf/IDXX3+d4+Nj62mm\nLRgYXOEN8zSpVMq+7lxae0VA154IG2PMvPvrOf+poVCIZDLJysoKW1tb7Ozs2NVSLBYDsKK5d+8e\nr732GuVymUqlYoenaaNeRvdldOdXE8vj8fhA6sMshDwK44rmSES2jDGHIrINHE/SqFHQIKSuiDKZ\nDGtra6yurrK6uko2myWRSBAMBm0gslarUa1WqVQqNoTQarVmIhjAbjam02nS6fQDw6eWsGjwtFwu\nU6vVbDBTa6LmlSs8rmi+Cvws8Af9269MzKIRERGi0ajNeFtZWWFtbc0KJ5vN2jyUbrdLo9EYEI2G\nC1qt1sw+hEgkYld1a2trbG9vs7y8bCfqnU6HRqNBo9GgXq9TKpWoVqs0Gg06nc7Mo/BurrLk/iLw\nI8CaiOwBvwN8CvgbEfkI/SX3NI28DM2h1bjS+vr6A55G/8FaT+QWjX5zZ+lpMpkMGxsb7OzssLm5\nSTabtcNnp9Oh2WxSrVYpl8vW0zSbTetpPC0aY8yHLnjpfRO2ZSw0fdMZW1LR6J6HfmtbrdYDgqlU\nKjO31yma3d1dtra2hnqaSqVCsVjk7OzMJmepaOaZ7rnwO8LO4UlFs7S0NLCjqpt4xWKRk5MTTk9P\nZx6QdB7OVNONjQ1WVlasvQCtVotSqcTx8TGHh4ccHBxQKBSo1WpzFww8AqJxDk8qmuXl5YEdVf0Q\nNL6kUexZpT44N/JCoZBdWq+urrKxsWFrr9TeZrPJ2dkZx8fH7O3tWZt1dTfvldTCi0Y9jVM0F3ka\nFY16mlmLRld4bk/jDBsANJtNSqUSuVxuQDROTwN+uufYaKL4VUSTy+Xmmi+jnSqSyaSNM62vr5NM\nJm0+DbwpmuPjY+7fv8/R0RHFYvEB0cyLhRSNsymRe0c1nU7bb20wGKTX69FoNGwkex6eJhwOk0ql\nyGQytuGAM5Kt6ZvaVkRXTaVSiWKxaPeSvFD8DwsoGmcpim7sOWM3GuzTD8MYQ6PRGJjT6A7wrDyN\nesLV1VXW1tasaBKJhK3q1AZG3W7Xru6cotGVky+aMVHBuGM3usPq9DS6fHV6mmazaTf0ZoGKZmVl\nhe3t7Qc8DTDQxGiYp9FNPV80Y+IM+A3zNDrhVLevnkZFM2ucotna2npg3tVutwdKc1U0Z2dndo/G\nSyykaODBWqFwOGyPXq9nd371n1+r1WbSdHEYaqOKW8tRtOhNBdNoNKhWqwOxMC94FjcLKZqLunNq\nxn6z2aTRaNBsNsnn83blMas5jBv36slZwwRviqbZbNrApJdFs3B1T27BuNMMnJ5G0zjPzs6o1+tz\n9zSaBuEsR3FGtTWYqiulWcXCRuWhohGR50TkSERedjz3SRG5LyIv9A93OujUcQpHd1rdoikWi+Ry\nOc94Gq1nusjTuIcnr0x83YybI2yAzxpj3tE//nHypg3HmZikyd9aOF+r1QbEod0h3AVnWqU4rUw4\nZ7WkVndqDbmGOZLJpM0B7na7dmhyp0EspGguyBGGOfYPVtHo3oaKplqtWtE4A5mzFo27mF9Fk81m\nB5bb0WjUikaX2qVSiUqlYocoL3KdOc1HReTbIvKsiCxPzKIrcJFo1NN0Oh0byEwmkyQSCWKx2AP1\n0LP0NJrvo2XBzjCH29NoGsTCepoL+Bxwm/OeewfAZyZm0RVwDk9u0VSr1Qs9jWbwOSeh0+Ci4ckZ\nhR8mmmq1+kDujBdFM9aS2xhjc4JF5PPA1yZm0dV+/4C30d1UTbbSzT3dC1lbW2NnZ4dqtWpLcfVo\nNBoj/35n501nFwdnaENtiEQi3Lp1i42NDVtlMEyszhyZeac+PIyxRCMi29p4GvgJ4OXLfn6SGGNs\nd0u3t2k2mzSbzYFWqvF4nPX1dWq1GsYYEokExWLRHuVyeWQbnBuJejjzZbTzg97evn2bjY0Nksnk\nlf4+rzNOjvAngPeKyNs5X0V9H/jFqVrpQr+J6tqdQ1Sj0bB9eLWt6vr6Or1ej2g0yvLyMsfHx/YY\n5/oH2gZED6dXcbYK0d+/vb3N5uYmqVRqaDvXhz32GuPmCD83BVuujDMJySka9TTdbteKJp1OY4yx\ngllfX7dJT7qSGhWdXOttPB5/QEjOQ7tuJZPJC+dR7mHJy8JZyDCCE61jKhQKHB4eEo1G7Ra8czkL\n5x4im80OTJSXl0df+KkX0Vv3cKSHvq6T8YtqszudzkDLk0KhQLVapdlselI8j4xo8vk8+/v7ADZq\nLCL0ej27UtK5R6/Xs00bNzY2Rv6d6qH01jmncXazcovoopaz7XbbCv/o6IjT01PK5bInLp4xjIUX\njSYt6VVKNGajy15tCJBIJAZax2vfmnFzapzDiDMGNmz1pIK6aOXUarWoVCpWNMVi0fbH8T3NFFBP\no1n89XodYGAVo3MaTbtMp9PX6lnnvL6lc9dWz+eMgzmHpIt+n3qaYrHI8fEx5XLZFu/5opkCWjnZ\nbDZtADOXy9lhqFqtks1mWVlZsVdccV7kdJyJsPYb1lu3PSpMvXUvz93icU7onc2vvXC9ymEsvGiA\ngckuwMnJifVAp6enLC0tDbSBdX+Io2CMsZWZmmvsRvOA9dA6c80Jvui8zgucenmDb+FFo99SeLNd\nfLfbtYLRchHtTp5OpwfmNpqjOwqFQmFgg9DNzs4OTzzxBLVajV6vRzabxRhDKBQikUgM9TTu6L1X\nBQOPkGhUOCJiwwVa4pJKpQYO3VfRmNSo5HI5Tk5O7OHm6aeftoJRUapgLvs7VDBeXDE5WXjRwOBG\nmN5XEWnE2zn3ce7WjuppjDEUi0UKhQKlUolarfbAz2jgVFM13IX7btzpoM45jRez9x4J0VyGUyyA\njSg7Y0ajUqlULs0EdMbDdOmse0fDcF8dxtnUyItD1SMvGsDmBmsVoztCPSrOi6wPw52yoambVxFN\nIpGwO9Z6noUSjYjsAn8ObHAenPwTY8wfebmPsBvnnKfVag1MQsfdp3lY+oJbNM5mRMNw1m8lk0m7\nE+z0kF7iYZ6mDfyaMeZFEUkB/yMi3wA+zHkf4U+LyMc47yPsmV7CbmYdBBx1JeTOQnTu1XiRS32z\nMebQGPNi/34F+C5wEw/3EfYSV/Vk7moE55DmtaEJRpjTiMiTwDuA/8TDfYS9xrA+wG4xuYvltEbL\niysnuKJo+kPT3wG/aowpO/9oL/QRXgQuiz/p/MVZLAd4dlf4KsVyYc4F8xfGGG39eiQiW/3X59pH\neFG4bF7lruPy+q7wpaKR86/Fs8D/GWP+0PGS9hGGOfcRXgQWIRtvFB42PL0L+GngJRF5of/cx/FQ\nH2Evc9HwsujiuVQ0xph/52Jv5Ik+wj6z57HYEZ41zs4WFyV7OYesRah1cuKLZko4W6G4xeMWipcn\nvcNYuP40i8CwHjoX5dA4V0qLIhxfNFPiKp7GmT+zSMLxh6cpoBde1YbY6XSaWCxm+xprIFIPZ9t9\nXzSPKe5unnrBDG1Rq4VxpVKJUqnE/v6+bWPvi+YxRa9/kM1m2dzctL2N9UJl1WqVQqFALpfj+PjY\nXmWlXq/7onlc0foq9TTRaNRWZGrSe6FQ4ODggPv37w94Gq+mQzjxRTMDms2mjVp3Oh329/e5f/8+\ne3t77O3tDVRV+p7mMUWzBOv1uq3Jdiab64W/9NAk9Uaj4YvmccXZQ0+vcZDP5+2Ry+XsfEavB67V\nmgsvmktyhD8J/DyQ6//ox2fZFtbrqKdR0ZyenrK/v8/BwYGdv+TzeQqFAvl83g5d87xs8iiMmyOs\nfYQ/O3ULF5BGo0GxWOTw8JBMJsPJyQlHR0ccHh5yeHg4sNyuVqsLIRQnD4tyHwKH/fsVEdEcYZhj\nH2GvU6vVyOVyhMNh2u02pVKJQqFgD683l34Y4+QI/wfneTYfFZGfAZ4HfsOrJSzzoFqtcnx8TLPZ\npFAoDPQ4rtVqD62b8jpyFaX3h6Z/BX7fGPMVEdngzfnM7wHbxpiPuN6zeF+hCaGVm1rF6bxYvLMr\nhNfrto0xQ0eTh4qmnyP898A/uFI+9fUnga8ZY97mev6xFc2jwkWiGStHuJ9Mrsy0j7DP/LnU04jI\nu4F/A17ifMUE8NvAhzhvcW/7CDvqoPS9vqdZcMYensbFF83iM9bw5OMzDF80PiPji8ZnZHzR+IyM\nLxqfkfFF4zMyvmh8RmZq+zQ+jy6+p/EZGV80PiMzVdGIyDMi8oqIvNbvAnrd890VkZdE5AUR+a8x\n3v+ciByJyMuO51ZE5Bsi8j0R+foo1xi/4HyfFJH7fRtfEJFnRjjfroj8i4j8r4h8R0R+5To2XnK+\nsW0Ehl/adxIHEAReB54EwsCLwFuvec7vAyvXeP97OE8ke9nx3KeB3+zf/xjwqWue7xPAr49p3xbw\n9v79FPAq8NZxbbzkfGPbaIyZqqd5J/C6MeauMaYNfAn44ATOO3aaqTHmW0DB9fTY7W0vOB+MaaOZ\ncAveS843to0w3eHpJrDneHyfNw0eFwN8U0SeF5FfuOa5lGm0t/2oiHxbRJ4dZbhzMukWvK503WvZ\nOE3RTGMt/y5jzDuADwC/JCLvmeTJzbkfv67dnwNuc55vdAB8ZtQTuFvwXtfG/vn+tn++ynVtnKZo\n3gB2HY93Ofc2Y2OMOejf5oAvcz4EXpeJtrc1xhybPsDnR7Vx0i14Hef7Sz3fdW2cpmieB54WkSdF\nJAL8FOetZMdCRBIiku7fTwLvZzJpphNtb3udVNhJt+CdWrrudVYzV5i9f4DzGfvrnFdhXudctzlf\ngb0IfGec8wFfBPaBFufzrQ8DK8A3ge8BXweWr3G+n+O8IvUl4Nv9D3dzhPO9G+j1/8YX+scz49p4\nwfk+cB0bjTF+GMFndPwdYZ+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZHzR+IzM/wMn9Av6\nT5UJ3wAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2798,96 +791,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEr9JREFUeJzt3X+wXGV9x/HPJ79vQoJaaCwYmx83psJohYqDv6IUwwRG\n", - "0LZWpa1S27HTUWtK1RGZKX+1amU6UsdpZ6zUH6hIqxZ1KDEpgkGthB8JEBJ+hAktYE1aCprLzQ03\n", - "4ds/dhOvl7u5z/eePHd3w/s1w7Bn97vPefY8Z8/95pyzz9cRIQAAAEzdjG53AAAAoN+RUAEAADRE\n", - "QgUAANAQCRUAAEBDJFQAAAANkVABAAA0NKubK7fNnA0AAKBvRIQner5qQmV7raQrJM2U9NmI+Jvx\n", - "MZdffvkz3rdhwwadc845Nbs2Zb0wb5c94VhOaMaM3EnIo9H29ddfr3PPPbdRP0plxyMTf+DAgSqx\n", - "o6OjVWJnz55dHNspfuPGjVqzZs0znh8YGChud86cOcWxmf1teHi4OHZoaKg4VpL27t1bHLtv377i\n", - "2Mz4ZfahTmN966236owzznjG83Pnzi1ue/78+cWxCxcuLI6ttQ/NmpX7MzZz5szi2MzxYmRkpDh2\n", - "on2o09+97L6c2T8zfc7EPvXUU8WxBw8erBJby9VXX93xtWqX/GzPlPRpSWslnSLpQtsvrrU+AACA\n", - "bql5D9UrJO2MiIciYlTSVyW9qeL6AAAAuqJmQnWypIfHLD/Sfm5SK1asqNIhTI/BwcFudwFTtHz5\n", - "8m53AQ2cdNJJ3e4Cpoi/e/2vZkI15ZuN2LH628qVK7vdBUwR373+dvLJRf9mRQ/iu9f/at6U/qik\n", - "JWOWl6h1luoXbNiw4fDjFStWsFMBAICesHv3bu3Zs6cotmZCdZuklbaXSvqxpLdJunB8UK/+mg8A\n", - "ADy7LV68WIsXLz68vG3bto6x1RKqiDhg+32SvqPWtAlXRsSOWusDAADolqrzUEXE9ZKur7kOAACA\n", - "buvqTOlS+SRrmQnWspM9ZiYLe/rpp4tjMxP1ZdrN9DczsaDUGxNU1oqV6m27TLuZSe8yk+nt37+/\n", - "OFaqNwFg5vNl+lxrG0vNJ2XsJPP5MseAmjKTrdaaZDgzEWl2Ys+MzJj0QqyUm7g0s+0y7c6bN684\n", - "NjPWmQlfpdw+dzQmn6aWHwAAQEMkVAAAAA2RUAEAADREQgUAANAQCRUAAEBDJFQAAAANkVABAAA0\n", - "REIFAADQEAkVAABAQyRUAAAADZFQAQAANNT1Wn6ltaCORp2dTjL1jDK1qzIy7WZqFdbqb02Zz1ez\n", - "/lmtOlCZ/S3TbqbWllRvO2draZbKfL7s8SLzPZk9e3ZxbKamWWa7ZWtY1qqZWKv255NPPlkcm63b\n", - "mPl8tWrIZvahTK07qXfq6JWqWdcws3+Wxq5bt67ja1XPUNleYvtG2/fY3mb7/TXXBwAA0A21z1CN\n", - "Sro4IrbaPk7S7bY3RsSOyusFAACYNlXPUEXETyJia/vxkKQdkk6quU4AAIDpNm03pdteKuk0SbdM\n", - "1zoBAACmw7QkVO3LfV+TtK59pgoAAOCYUf1XfrZnS/q6pC9FxLXjX1+/fv3hx4ODgxocHKzdJQAA\n", - "gEk98MAD2rlzZ1Fs1YTKrd8iXylpe0RcMVHM2rVra3YBAABgSlauXKmVK1ceXh57Emi82pf8Xi3p\n", - "DySdZXtL+z8yKAAAcEypeoYqIr4vZmMHAADHOJIdAACAhrpeeiYzNXwvqFXqpFaJg2wZkF4p+3Is\n", - "q1VGKVuOJFOCI9N25jud6UMmdmRkpDhWyn2+zH6fGetMyZAFCxYUx0q5sj2Zz5fZzvv27SuOzZSe\n", - "GR4eLo6V6pWemT9/fnHsc5/73OLYRYsWFcdKubI2tcY6U+ooE5s9xmWORUejZBZnqAAAABoioQIA\n", - "AGiIhAoAAKAhEioAAICGSKgAAAAaIqECAABoiIQKAACgIRIqAACAhkioAAAAGiKhAgAAaKjrpWdm\n", - "zSrrwtGYFr4T21Vie0G2zEnm85WOnZQrhzBnzpzi2Llz5xbHZvuRKdeR2c6ZPmfGI/sdybSd2W4D\n", - "AwPFsZlyHZnYzNhl4zOlS2qVnsls46zM53vqqaeKYzMlRjKypVky2y6z32e+f5nSOk888URxrFSv\n", - "jFJGrWN49nif+V6Xxl5zzTUdX+v4F9H270gKSRMddSMivlGyctszJd0m6ZGIOL/kPQAAAP3kSKcY\n", - "zlcroeqkKKGStE7SdkkLSzsFAADQTzomVBHxh00bt/0CSedJ+mtJf9G0PQAAgF406QV+28+3faXt\n", - "9e3lU2z/cWH7n5T0IUl1LtQCAAD0gJI7Jj8vaYOkk9rLD0i6eLI32X6jpD0RsUUT34cFAABwTCj5\n", - "mdYJEXGN7UskKSJGbR8oeN+rJF1g+zxJ8yQtsv3FiHjn2KD169cffjw4OKjBwcHy3gMAAFSyadMm\n", - "bdq0qSi2JKEasv1LhxZsnynpp5O9KSIulXRp+z2vk/TB8cmUJK1du7aoowAAANNp9erVWr169eHl\n", - "j370ox1jSxKqD0j6tqTltn8o6URJb5lCv+pNJAUAANBFkyZUEXG77dWSVql1L9R9EVE+c1irje9J\n", - "+t7UuggAANDbJk2obA9Ieo+k16h1lulm2/8QESO1OwcAANAPSi75fVHSzyR9Sq0zVL8n6SpJv1ux\n", - "XwAAAH2jJKE6NSJOGbP8Xdvbj1YHSutGZWoOZWuaZeJr9aNWjcCatQdr1pkrla1FlalTlmk7025G\n", - "piZWpraiVK9WYaaWWKamWS/UjZNy2zkzfplafjVrm9balzP7UObzZfY3qd7n27dvX3FsZl/OHuMy\n", - "2y5zDKhVc6/W9ynbdvb4OZGSPfwO2688tND+ld/tjdcMAABwjDhSceS7x8T8wPbDat1D9UJJ901D\n", - "3wAAAPrCZMWRAQAAMIkjFUd+aOyy7V9Wa8ZzAAAAjFFSHPkC2w9I2qXWXFIPSbq+cr8AAAD6RslN\n", - "6X8l6ZWS7o+IZZLOlnRL1V4BAAD0kZKEajQi/lfSDNszI+JGSS+v3C8AAIC+UTLxwuO2F0q6WdKX\n", - "be+RNFS3WwAAAP2j5AzVmyUNS7pY0npJO8UvAAEAAA4rKY586GzUQUmfr9obAACAPnSkiT2H1JrI\n", - "cyIREYuORgdKS0Rkypxky61k4jPlE3qhNEuvqFUCJ1M6QcqNX63YjMx+kS2pkWk78/kWLSo/NJxw\n", - "wgnFsbNnzy6OzZaoyJQCyZQ6OXDgQHFsplxOpr9SvWNcZjvPnz+/SrvZkiGZ+My2yHz/MmM9PDxc\n", - "HCvVK+eUKYGT2d8y45E5Bki5vw/ZtidypHmojmvauO3nSPqspFPVSs7+KCJ+1LRdAACAXtK8GuCR\n", - "/Z2kf4uIt9ieJWlB5fUBAABMu2oJle3jJb02Ii6SpIg4IOmntdYHAADQLXVu/GhZJul/bH/O9h22\n", - "/9F2+UV0AACAPlEzoZol6XRJfx8Rp0t6UtIlFdcHAADQFTXvoXpE0iMRcWt7+WuaIKG64YYbDj9e\n", - "tmyZli9fXrFLAAAAZe677z7df//9RbHVEqqI+Inth22/KCLul/QGSfeMjzv77LNrdQEAAGDKVq1a\n", - "pVWrVh1evu666zrG1v6V35+pVa5mjqQHJb2r8voAAACmXdWEKiLulHRGzXUAAAB0W82b0gEAAJ4V\n", - "al/ym1Tp1P41S8/UKifTC7G9IlPmpGa5gFplJzJlGUZGRqrEZvog5cpO7Nu3rzg2M36ZciTz5s0r\n", - "js2UfJFypU6yZW1KZfa3gYGBVNuZ719mv8jEDg0NTR7UltkW2fJTmfjM8SIzJpnj1nHH5YqWZEo/\n", - "1VLrb1TNEm1Ho23OUAEAADREQgUAANAQCRUAAEBDJFQAAAANkVABAAA0REIFAADQEAkVAABAQyRU\n", - "AAAADZFQAQAANERCBQAA0NAxWXqmV2Smss98vky7Nafqz6hVmiVbYuTgwYNV2s58vlplTrIlODL2\n", - "799fHDs8PFwc+9hjjxXHjo6OFscuWLCgOFbKlQ3JxGb6kfmuZvf7bFmiGu3W+j5lj3GZfTnTdqac\n", - "TK2SNlKuRFOm7Uy7tY73mRJY2bYzZZQ6qXqGyvZHbN9j+27bX7E9t+b6AAAAuqFaQmV7qaR3Szo9\n", - "Il4iaaakt9daHwAAQLfUvOT3M0mjkubbPihpvqRHK64PAACgK6qdoYqI/5P0t5L+S9KPJT0REf9e\n", - "a30AAADdUvOS3wpJfy5pqaSTJB1n+/drrQ8AAKBbal7ye7mkH0bEY5Jk+xuSXiXpy2ODNm7cePjx\n", - "8uXLtWLFiopdAgAAKLNr1y7t2rWrKLZmQnWvpL+0PSBpRNIbJG0eH7RmzZqKXQAAAJiaZcuWadmy\n", - "ZYeXb7rppo6xNe+hulPSFyXdJumu9tOfqbU+AACAbqk6sWdEfELSJ2quAwAAoNsoPQMAANAQCRUA\n", - "AEBDXa/lV6NGX6/Ur8t8tkzto1p1/7Iy/Sit2Sjl6tdlamJJuT5n2s7EZmru1eqDlKs9ltmPMjX3\n", - "Mvt95vNla/kdf/zxxbGZ+meZWmJ79+4tjh0aGiqOlXpjOy9cuLBKu9n6bpl6npn9PvO9zuxDixYt\n", - "Ko6VpLlzyyu8ZeorZrZb5hiQic30QaozfpdddlnH1zhDBQAA0BAJFQAAQEMkVAAAAA2RUAEAADRE\n", - "QgUAANAQCRUAAEBDPZlQPfjgg93uAhrYuXNnt7uAKdqxY0e3u4AGGL/+dccdd3S7C2iIhApHHePX\n", - "v/iD3N/uvffebncBU7Rly5ZudwEN9WRCBQAA0E9IqAAAABpyN8u02O6NGjEAAAAFImLCGmZdTagA\n", - "AACOBVzyAwAAaIiECgAAoKGeS6hsr7V9r+0HbH+42/1BZ7b/yfZu23ePee55tjfavt/2BtvP6WYf\n", - "0ZntJbZvtH2P7W22399+njHscbbn2b7F9lbb221/rP08Y9dHbM+0vcX2t9vLjF8f66mEyvZMSZ+W\n", - "tFbSKZIutP3i7vYKR/A5tcZqrEskbYyIF0m6ob2M3jQq6eKIOFXSmZLe2/6+MYY9LiJGJJ0VES+T\n", - "9FJJZ9l+jRi7frNO0nZJh25mZvz6WE8lVJJeIWlnRDwUEaOSvirpTV3uEzqIiJslPT7u6QskfaH9\n", - "+AuS3jytnUKxiPhJRGxtPx6StEPSyWIM+0JEDLcfzpE0U63vImPXJ2y/QNJ5kj4r6dCvxhi/PtZr\n", - "CdXJkh4es/xI+zn0j8URsbv9eLekxd3sDMrYXirpNEm3iDHsC7Zn2N6q1hjdGBH3iLHrJ5+U9CFJ\n", - "T495jvHrY72WUDGHwzEkWnNyMKY9zvZxkr4uaV1E7B37GmPYuyLi6fYlvxdIWm37rHGvM3Y9yvYb\n", - "Je2JiC36+dmpX8D49Z9eS6gelbRkzPIStc5SoX/stv18SbL9K5L2dLk/OALbs9VKpq6KiGvbTzOG\n", - "fSQifirpOkm/IcauX7xK0gW2d0m6WtJv2r5KjF9f67WE6jZJK20vtT1H0tskfavLfULOtyRd1H58\n", - "kaRrjxCLLrJtSVdK2h4RV4x5iTHscbZPOPQLMNsDktZI2iLGri9ExKURsSQilkl6u6TvRsQ7xPj1\n", - "tZ6bKd32uZKuUOsmyysj4mNd7hI6sH21pNdJOkGt6/2XSfqmpH+W9EJJD0l6a0Q80a0+orP2r8I2\n", - "SbpLP7+08BFJm8UY9jTbL1HrpuUZ7f+uiojLbT9PjF1fsf06SR+IiAsYv/7WcwkVAABAv+m1S34A\n", - "AAB9h4QKAACgIRIqAACAhkioAAAAGiKhAgAAaIiECgAAoCESKgBdZ/sH7f//qu0Lj3Lbl060LgA4\n", - "mpiHCkDPsP16tSY5PD/xnlkRceAIr++NiIVHo38A0AlnqAB0ne2h9sOPS3qt7S2219meYfty25tt\n", - "32n7T9rxr7d9s+1vStrWfu5a27fZ3mb73e3nPi5poN3eVWPX5ZbLbd9t+y7bbx3T9k22/8X2Dttf\n", - "mt6tAaAfzep2BwBAPy9982FJHzx0hqqdQD0REa+wPVfS921vaMeeJunUiPjP9vK7IuLxdm27zba/\n", - "FhGX2H5vRJw2wbp+W9KvS3qppBMl3Wp7U/u1l0k6RdJ/S/qB7VdHBJcKAXTEGSoAvcTjls+R9E7b\n", - "WyT9SNLzJA22X9s8JpmSpHW2t0r6D0lLJK2cZF2vkfSVaNkj6XuSzlAr4docET+O1j0RWyUtbfCZ\n", - "ADwLcIYKQK97X0RsHPtE+16rJ8ctny3pzIgYsX2jpHmTtBt6ZgJ36OzV/jHPHRTHSgCT4AwVgF6y\n", - "V9LYG8i/I+k9tmdJku0X2Z4/wfsWSXq8nUz9mqQzx7w2euj949ws6W3t+7ROlLRa0mY9M8kCgEnx\n", - "ry4AveDQmaE7JR1sX7r7nKRPqXW57Q7blrRH0m+148f+RHm9pD+1vV3SfWpd9jvkM5Lusn17RLzj\n", - "0Psi4l9tv7K9zpD0oYjYY/vF49rWBMsA8AuYNgEAAKAhLvkBAAA0REIFAADQEAkVAABAQyRUAAAA\n", - "DZFQAQAANERCBQAA0BAJFQAAQEMkVAAAAA39PxShDsSnYXpyAAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEoBJREFUeJzt3X+QXXV5x/HPJ5tANr8QCtUCa5N2Ny0wWqHKACKRajth\nR9C2VqStUtux00FrSpURmaH/0I5WpwM4TjtYKAr+aosWdbqJ0JpGRCACSUgIktAJbQKF9EfALMmG\nTfL0j3sTls1u9jw5+e69B9+vmQz3nPvs+X73fs85+3DOud/HESEAAAAcuRmd7gAAAEDTkVABAADU\nREIFAABQEwkVAABATSRUAAAANZFQAQAA1DSzk43bZs4GAADQGBHhidYXTahsL5V0g6QeSTdHxF+O\nj7nxxhsP+bnly5froosuetm6GTO4mNYUQ0NDGhwc7HQ3JpSZd23//v1FYvfu3VskdubM3OE8a9as\nQ9atWLFCS5cuPWT97NmzK2/3mGOOqRybGY8XXnihSGw2fs+ePZVjM+O3b9++yrGTjfV9992nc889\n95D1mfGbM2dO5di5c+dWjs30IbMv9/T0VI4taXR0tHLsiy++eMi6yc6bu3fvTvVjom1PJrN/Zvb7\nzL5c6jxbyvXXXz/pe8WyFNs9kj4naamk0yVdZvu0Uu0BAAB0SsnLPmdLeiIinoyIUUlfk/TOgu0B\nAAB0RMmE6hRJW8csb2uvm1J/f3+RDmF6DAwMdLoLOEIce8126qmndroLOEKcN5uvZEJ1xA+cs2M1\nG+PXXCRUzdbX19fpLuAIcd5svpIPpT8laezR3afWVaqXWb58+cHX/f397FQAAKArbN26Vdu2HZK6\nTKhkQvWgpAHbCyU9LelSSZeNDxr/bT4AAIBu0NfX97Irv/fff/+kscUSqojYa/vDkr6j1rQJt0TE\nY6XaAwAA6JSi81BFxHJJy6cMBAAAaLCOzpTeRJmJCEtNIpmZNC0zcZuUmxSuVGxmArnMdqVyk2qW\nis38fiMjI5VjpdxklsPDw0X6kZm0MLPfZyZZzMbXncBxMqX2ISl3fsmct0rJTA6bndgzM0l0qc/C\nnnCi7aPSh8y2M7GZfahUHzKxUrm/15Nh+nEAAICaSKgAAABqIqECAACoiYQKAACgJhIqAACAmkio\nAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKip47X8qtZVytRfytb7KaVULb+ZM6sP\n27HHHls5VpLmzp1bOTbz+5Uak8x+ke1HpkZYqf2zZC2qTG28zLYzn1tmX87Ud8vKHH+Zsc78fpk+\nZGv5ZeJL1f3L1EDctWtXke1Kuc8is+3smFSV2Yek3HGSOd/39vZWjs2cA0rW8itxTF1xxRWTvlf0\nCpXtPtsrbT9qe4Ptj5RsDwAAoBNKX6EalXRlRKy1PU/SQ7bvjojHCrcLAAAwbYpeoYqIZyJibfv1\nsKTHJJ1csk0AAIDpNm0PpdteKOlMSQ9MV5sAAADTYVoSqvbtvjskLWtfqQIAAHjFKP4tP9uzJH1d\n0pci4s7x7w8NDR18PTAwoIGBgdJdAgAAmNKmTZu0adOmSrFFEyq3vuN4i6SNEXHDRDGDg4MluwAA\nAHBEFi9erMWLFx9cHnsRaLzSt/zeLOl3JV1oe03739LCbQIAAEyroleoIuL7YjZ2AADwCkeyAwAA\nUFPHS89ULV1QqkxGNj677RK6oQ9Sblr/UuVWsrqhXE5GqdIe2W1njr9SpUsy233xxRcrx2bjS+2f\nmf0tW1IqE58tdVLCyMhI5djh4dwXx/fs2VMkNlOSKFMeZs6cOZVjpVwJnEzszp07K8eWOlazx3Vm\n/LLnz4lwhQoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACgJhIqAACAmkioAAAAaiKhAgAAqImE\nCgAAoCYSKgAAgJo6XmOg6tT3mbIMmRIAktTT01M5NlOWIduPErLlUzLxpcYk8xlny2TMmjWrSGym\ntEem7ETmM86Ue5ByJVQyx0hvb2/l2AULFhSJzfRByo1fpvxFpmRP5jPO7EMlt53ZbreU+MqMSSY2\nU8Ylc6xmj+vMmJRSqmxX9m9qib87N9100+TbmOwN278pKSRN9MlERHyjSuO2eyQ9KGlbRFxc5WcA\nAACa5HAp2cVqJVSTqZRQSVomaaOk+VU7BQAA0CSTJlQR8Xt1N277VEmDkv5C0p/W3R4AAEA3mvIG\no+3X2L7F9or28um2/6Di9q+XdJWk3E1gAACABqnyxNYXJN0l6eT28mZJV071Q7bfIWl7RKzRxM9h\nAQAAvCJUeaz9xIj4e9tXS1JEjNqu8nWG8yRdYntQ0mxJC2zfFhHvHxu0YsWKg6/7+/vV399fvfcA\nAACFrFq1SqtWraoUWyWhGrb9UwcWbJ8j6fmpfigirpF0Tftnlkj62PhkSpKWLl1aqaMAAADTacmS\nJVqyZMnB5euuu27S2CoJ1UclfVvSz9n+gaSTJL37CPpVbmIRAACADpoyoYqIh2xfIOkX1HoW6vGI\nGM00EhGrJFW7ZgYAANAwUyZUtnslXSHpfLWuMt1j+28iYqR05wAAAJqgyi2/2yT9WNJn1bpC9duS\nbpf0WwX7BQAA0BhVEqozIuL0Mcvftb3xaHVgz549leIytZ2y9X5K1a8rVeuuVB+k3Odcqh5VqT6U\nVGr/nD17duXYUvWzpFyfM2NS9fjPxo6M5C6gZ/qcqR+ZqYs3b968yrElj+tMTbpMP0od15n9QsrV\n58v0effu3ZVjS9WDlHJ9zuzLmXNRpjZmqTqo2fijUXu3yhYetn3ugYX2t/weqt0yAADAK8ThiiOv\nHxNzr+2taj1D9VpJj09D3wAAABphquLIAAAAmMLhiiM/OXbZ9k+rNeM5AAAAxqhSHPkS25slbVFr\nLqknJS0v3C8AAIDGqPJQ+p9LOlfSpohYJOltkh4o2isAAIAGqZJQjUbE/0iaYbsnIlZKemPhfgEA\nADRGlUkodtieL+keSV+2vV3ScNluAQAANEeVK1TvkrRL0pWSVkh6QnwDEAAA4KAqxZEPXI3aJ+kL\nRXsDAADQQIeb2HNYrYk8JxIRseBodCBTbqFpMiUASm03W6KiVLmcbojtFqX2i6xZs2ZVji1ZHqKq\nzOeW/YxHR0crx5Yqd5Qp+ZKJlXJ9zpRFyciUOenp6akcmz0HZLad6XNGZjyyZZQyJXAyZXsy+1zm\n9ytVvkjKle05Gn9LDjcPVe1Mx/arJN0s6Qy1krPfj4j7624XAACgm5RJv19yo6ShiHi37ZmS5hZu\nDwAAYNoVS6hsHyfpLRFxuSRFxF5Jz5dqDwAAoFNKPoCySNJ/277V9sO2/9b2nILtAQAAdETJhGqm\npLMk/XVEnCXpBUlXF2wPAACgI0o+Q7VN0raI+GF7+Q5NkFANDQ0dfD0wMKCBgYGCXQIAAKhm8+bN\n2rx5c6XYYglVRDxje6vtxRGxSdLbJT06Pm5wcLBUFwAAAI7Y+As9y5cvnzS29Lf8/litcjXHSPp3\nSR8o3B4AAMC0K5pQRcQ6SW8q2QYAAECnNW+aaQAAgC5T+pbflKpODZ+ZFj5bbqVp5UtKlb6QclP7\nZ6b1z5QtyIxHtsxJqVISmd9veHh46qC2Xbt2VY7NlgzJli+pKjMmc+dWn+s3E5splSPlyvBkynVk\nxjozfplSOVLunFHq/JI5rmfPnl0kVsqNdanyTJnz0IIFuSpvc+ZUn52o1Dm85N+ojJJ5w4Tt1d4C\nAADATzgSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACgJhIq\nAACAmjpeeqanp6dSXGaK/ExsNj5TmqWUzBT52f5mtp2Z1j/Tj0yJg2y5lUzJjkyJkUyfS5WzyGxX\nypW/yHxumXI5O3bsqBybGY9s6ZlMfKbUSaYMSCZ2/vz5lWOlcueMkZGRyrGZ/SJTsmfnzp2VY6V8\n2Z6qSh2rvb29qX5k4jNlokqVcSl1Ti697YkUvUJl+xO2H7W93vZXbOfOcgAAAA1QLKGyvVDSByWd\nFRGvk9Qj6b2l2gMAAOiUkrf8fixpVNIc2/skzZH0VMH2AAAAOqLYFaqI+D9JfyXpPyU9Lem5iPiX\nUu0BAAB0Sslbfj8v6U8kLZR0sqR5tn+nVHsAAACdUvKW3xsl/SAi/leSbH9D0nmSvjw2aGho6ODr\ngYEBDQwMFOwSAABANVu2bNGWLVsqxZZMqH4k6VrbvZJGJL1d0urxQYODgwW7AAAAcGQWLVqkRYsW\nHVxeuXLlpLEln6FaJ+k2SQ9KeqS9+vOl2gMAAOiUohN7RsSnJX26ZBsAAACdRukZAACAmkioAAAA\naup4Lb+q9u/fXyQ2K1PPKCNT+6hq/cPsdqXc71eyH1Vl6zZm9o1MnzOxpWr5ZWrBZbed+dx2795d\nOTZTCy4z1pkaZZJ03HHHVY49/vjji/Qj8/tlPrdsfGb8MjUsM+eWzL48d+7cyrGSNG/evMqxmbp4\nmeM6Uy8xe47L1KQrNdYZmf0i+/c3MyZVY6+99tpJ3+MKFQAAQE0kVAAAADWRUAEAANREQgUAAFAT\nCRUAAEBNJFQAAAA1dWVCtXnz5k53ATVs2rSp013AEVq/fn2nu4Aa1q1b1+ku4AitXn1IqVs0DAkV\njjrGr7k2bNjQ6S6gBhKq5iKhar6uTKgAAACahIQKAACgJmemwD/qjdudaxwAACApIiasNdbRhAoA\nAOCVgFt+AAAANZFQAQAA1NR1CZXtpbZ/ZHuz7Y93uj+YnO2/s/2s7fVj1p1g+27bm2zfZftVnewj\nJme7z/ZK24/a3mD7I+31jGGXsz3b9gO219reaPuT7fWMXYPY7rG9xva328uMX4N1VUJlu0fS5yQt\nlXS6pMtsn9bZXuEwblVrrMa6WtLdEbFY0r+2l9GdRiVdGRFnSDpH0ofaxxtj2OUiYkTShRHxBkmv\nl3Sh7fPF2DXNMkkbJR14mJnxa7CuSqgknS3piYh4MiJGJX1N0js73CdMIiLukbRj3OpLJH2x/fqL\nkt41rZ1CZRHxTESsbb8elvSYpFPEGDZCROxqvzxGUo9axyJj1xC2T5U0KOlmSQe+Ncb4NVi3JVSn\nSNo6Znlbex2a49UR8Wz79bOSXt3JzqAa2wslnSnpATGGjWB7hu21ao3Ryoh4VIxdk1wv6SpJ+8es\nY/warNsSKuZweAWJ1pwcjGmXsz1P0tclLYuInWPfYwy7V0Tsb9/yO1XSBbYvHPc+Y9elbL9D0vaI\nWKOXrk69DOPXPN2WUD0lqW/Mcp9aV6nQHM/afo0k2f4ZSds73B8chu1ZaiVTt0fEne3VjGGDRMTz\nkv5Z0i+LsWuK8yRdYnuLpK9K+hXbt4vxa7RuS6gelDRge6HtYyRdKulbHe4Tcr4l6fL268sl3XmY\nWHSQbUu6RdLGiLhhzFuMYZezfeKBb4DZ7pX0q5LWiLFrhIi4JiL6ImKRpPdK+m5EvE+MX6N13Uzp\nti+SdINaD1neEhGf7HCXMAnbX5W0RNKJat3v/zNJ35T0D5JeK+lJSe+JiOc61UdMrv2tsO9JekQv\n3Vr4hKTVYgy7mu3XqfXQ8oz2v9sj4jO2TxBj1yi2l0j6aERcwvg1W9clVAAAAE3Tbbf8AAAAGoeE\nCgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioAHWf73vZ/f9b2ZUd529dM1BYAHE3MQwWg\na9h+q1qTHF6c+JmZEbH3MO/vjIj5R6N/ADAZrlAB6Djbw+2Xn5L0FttrbC+zPcP2Z2yvtr3O9h+2\n499q+x7b35S0ob3uTtsP2t5g+4PtdZ+S1Nve3u1j23LLZ2yvt/2I7feM2fa/2f5H24/Z/tL0fhoA\nmmhmpzsAAHqp9M3HJX3swBWqdgL1XEScbftYSd+3fVc79kxJZ0TEf7SXPxARO9q17VbbviMirrb9\noYg4c4K2fkPSL0l6vaSTJP3Q9vfa771B0umS/kvSvbbfHBHcKgQwKa5QAegmHrf8a5Leb3uNpPsl\nnSCpv/3e6jHJlCQts71W0n2S+iQNTNHW+ZK+Ei3bJa2S9Ca1Eq7VEfF0tJ6JWCtpYY3fCcBPAK5Q\nAeh2H46Iu8euaD9r9cK45bdJOiciRmyvlDR7iu2GDk3gDly92jNm3T5xrgQwBa5QAegmOyWNfYD8\nO5KusD1Tkmwvtj1ngp9bIGlHO5n6RUnnjHlv9MDPj3OPpEvbz2mdJOkCSat1aJIFAFPi/7oAdIMD\nV4bWSdrXvnV3q6TPqnW77WHblrRd0q+348d+RXmFpD+yvVHS42rd9jvg85Iesf1QRLzvwM9FxD/Z\nPrfdZki6KiK22z5t3LY1wTIAvAzTJgAAANTELT8AAICaSKgAAABqIqECAACoiYQKAACgJhIqAACA\nmkioAAAAaiKhAgAAqImECgAAoKb/B3fcHurPRSGqAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2895,89 +801,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAES9JREFUeJztnVmMpNdVx3+nq6prX3qbnvG4x4tmsEYRkv1ikJyICIVo\n", - "/ELghcgSUmQC4gECgkiY8BIjeIiQEiFeIiA2CosSIZCjBAmwjQIYIRYjb4E4jqVZPNPdM91de9fe\n", - "fXmoOt/c/qZ6qaU9VfXdn/Sp9qvTM3+du5zlE2MMDscgzN1vAxzThxONY2CcaBwD40TjGBgnGsfA\n", - "ONE4BmZo0YjIFRF5V0R+KCLPjdMox2Qjw5zTiEgI+AHwCeAW8N/AM8aY74/XPMckMqyneRJ43xhz\n", - "zRjTBr4JfGp8ZjkmmfCQvzsPfGC9vgn8mP0FEXFHzVOOMUb6vT+sp3GCCDDDiuYWsGa9XqPrbRwB\n", - "YFjRvA5cEpGHRWQe+DTw7fGZ5ZhkhlrTGGM6IvKrwD8CIeAFt3MKDkNtuU80sFsITz3jXgg7AowT\n", - "jWNgnGgcA+NE4xgYJxrHwDjROAbGicYxME40joFxonEMjBONY2CcaBwDM2wSFgAicg0oA3tA2xjz\n", - "5DiMmnbm5uYQEe8xHA4TCoUIh8OEw2H29vYOXPv7+weuSS+VHkk0dJOxPm6MyY/DmFkhHA4zPz9P\n", - "NBplfn6eTCZDJpMhm82SyWSo1+tUq1Xvqtfr1Ot1Go0G9XrdG2dSxTOqaAD6RkKDTCQSIZFIkEgk\n", - "SKVSnD17lnPnznHu3DkeeOABisUiW1tb3Llzh62tLUqlEqVSCYBms8ne3h4AIjKRwhmHp3lVRPaA\n", - "PzbG/OkYbJp6wuEw8XicbDZLNptlbW2NixcvcunSJS5evMjt27e5ceMG169f97wRQKvVolKpTPwU\n", - "NaponjLGbIjICvCKiLxrjHltHIZNGyJ3HW40GiWVSrG4uMjKygpra2s8+uijPPbYY1y+fJnFxUVi\n", - "sRihUMj7bbvdplqteusgmNHpyRiz0XvcEpGX6Ja2BE40/oVvKpViZWWFBx98kAsXLrC2tsby8jKJ\n", - "RAIRIR6Ps7CwwPnz573fNJtNisUioVCITqcDzKBoRCQBhIwxFRFJAp8Efndslk0RKphQKEQoFCKd\n", - "Tnse5tKlS6yurrK0tEQymUREiMViLCwsICIkEglarRaFQoH19XVCoZC3lpnFNc0q8FLPlYaBvzLG\n", - "vDwWq6YMEfG21KFQiFQqxfLysica3TWpp1HRJBIJlpeXqVarrK+vk0qlPNFMqmBgBNEYY64Cj4/R\n", - "lqlFvUwkEmF+fp50Os3i4iKrq6usra0Rj8e9LbiIEIlECIVCxONxjDEsLi6SSqWIRqPedKXXJDKO\n", - "LXfgCYfDxGIx4vE4iUSCdDpNKpUiHo8TjUaJRCKEw2Hm5roH8O12m2azSbPZpNVqkc/nqVarNBoN\n", - "77DPGDN7nsZxl1AoRCwWI5VKkU6nyWQyJJPJvqLRnVKtVqNSqVCtVsnn81QqFU80xpiJ3nY70YyB\n", - "cDhMNBolmUySzWZJp9Mkk0kSiQTRaJRwOOwtlqHraXZ3dymVSuTzeU80erA3yYIBJ5qxoCfAmUyG\n", - "paUlcrmcNz3p+sVGPU2hUODOnTsHPI0tmEkVjhPNEOgCVR/j8Ti5XM5b+K6urpLL5YjFYn0Xs+pp\n", - "isWiJ5pqtUqz2Zx4wYATzdDYOxxbNA899NAB0fRDReP3NM1mc+KnJnCiGRoVzNzc3AHRXLhwgaWl\n", - "JbLZ7JGeplarHelpJhknmiFQseilwcmVlRXOnz/vbbmj0Wjf359keppknGiGQA/y9EqlUt52O5VK\n", - "ebsmewFsi6HdblOv1ymXyxQKBcrlMrVajXa77UQzq4RCIebn54nFYt5W2xaOpjvoVltRQahoKpUK\n", - "+XyecrlMvV53opll1NPEYjEv0coWjcag9FzGPt01xhwQTaFQoFqt0ul0vOSrSefYxHIReVFEbovI\n", - "O9Z7iyLyioi8JyIvi0judM2cLEKhENFolHg87k1JyWTSO9CLxWL3nM8YY7yc4Far5aV8lkolL4Qw\n", - "LZ7mJNUIfwZc8b3328ArxpgfAf6p9zoQiAjz8/MkEglyuRzLy8vkcjmSySTz8/OH7pYajQbVapVC\n", - "oUClUpmq6cjPsaLpZeIVfG//NPD13vOvAz8zZrsmGj0B1h1TNpslkUgQiUT6fn9vb+/AdGSvYaaR\n", - "Ydc0q8aY273nt+nm1gSGSCRCMpn0PM1xoul0Op6nKZVKVCqVqdot+Rm5WM50/+rp+8tHwPY0tmg0\n", - "QdyPvcXe2dmhVCoFUjS3ReQsgIicA+6Mz6TJR/NnUqkU2WyWVCp1IFEc7u6Y9vf3qdfrFItFNjY2\n", - "uH79Ouvr6xQKBer1eqBE823gM73nnwG+NR5zpgM7FUIXwbFYjHC4O9urYPRqNBoUCgU2Nze5evUq\n", - "Gxsb5PN5arXabIpGRL4B/DvwmIh8ICLPAl8CfkpE3gN+svc6MBzmaVQ0it/TbG5ucu3atan3NMcu\n", - "hI0xzxzy0SfGbMtEo1vpubk572BPRZNMJg8kW9lTkzHmgGhu3LhBsVj0ynFnUjQOvML9cDhMJBI5\n", - "UJetouk3PWlBv+YE64FerVaj1Wp5qZ3ThhPNMWjXh2g0SiwWIxaLeYLRS2NQtmjsLhC65a7Vap6H\n", - "UdFMI040J0DXMBqY9HeB0JCBf/e0v7/P3t7eAU+zu7tLvV73QgrO08wo9m7J9jB6+UMHtqfpdDr3\n", - "TE+tVus+/SXjwYnmBGiAUmua+uXL2LRaLXZ3d71ra2uLcrlMs9n8kC0/HZxojkHXNBqkPIloms2m\n", - "F2fK5/Nsb297OcDTOB35caI5AX5Po2W2R3maSqXC9vY2m5ubbG9vUy6XaTQaMyEa16jxBOiaxu9p\n", - "/Id5iopmZ2eHjY0NTzRuegoQmt6pSVcanFRP4w8baHBye3ub9fV1Nz0FDW0jctj0JCL3dOes1WqU\n", - "SiW2t7fv8TRONAHBnp76VRvYZzKacKWiWV9fp1gsep5mFhg2R/h5EbkpIm/0Ln866Eyh09NhC2Fb\n", - "NJ1O5x7RzJqnGTZH2ABfMcY80bv+Yfym3T/8XSByuRyLi4ssLy9z5swZFhYWvJxgOHiYpyfA/h40\n", - "nU6H/f39+/yXjYeTRLlfE5GH+3w0mW2aRsQfa0okEiwsLLC0tMTKygpnzpzxqg80vdPvafQUuNVq\n", - "0Ww2abfbU9FC5KSMsuX+nIi8JSIvzFoJix1rymaznmiO8jRaomILxhbNLHmaYUXzVeARuj33NoAv\n", - "j82i+4x6mn6iWVlZ8TpCDOJpAjc99cMY4+UEi8jXgO+MzaIJwG68qJdWTGrVJNxNzLKrDez7HUxr\n", - "4vhxDOVpesnkys8C7xz23WnE7gtspz30Ewzg7Ziq1aq3vW40Gl4T6VnjWE/TyxH+CWBZRD4Avgh8\n", - "XEQep7uLugr88qla+SFj9wXWy24/70+FUE8zK8VwxzFsjvCLp2DLxHCUpzms7NZf0F+v1+l0OjM5\n", - "PbkTYR92rXY2m2VpaYlMJuM1XYT+JSpaCLexscHOzo7XpGgWcaLpg7/sNpfLkUgk+uYAG2Oo1Wpe\n", - "gFJjTbMUNvDjRONDPY2KRgv8D9tia12THTbY2dmhXC7TarXc9BQUbNH0K/A/KkC5sbHhFfk7TzPD\n", - "2Pdr0vWMNpLudwLsjzHV63WvbX2pVGJ3d5dmsxncLXcQsO/VZAcq9c5wmnhlexq7ykBrmnZ3d72d\n", - "k4rGTU8ziHoYPY+xRaOeJhqNejfGAPrWM6loKpWKF2ua1mK44wi8aOCup9GOnVqjraKxpy/gnnom\n", - "u3pyGm5cOipONPSva9JEK7utqz5qDz1dw2gf4Far5W3FZ5nAi8Yf1dZ7NdldIGy0pau2qZ+FzlaD\n", - "EnjRQPcwzy679Zeo+IWjotEDPVs0QeDIKLeIrInId0Xkf0XkeyLya733Z6aPsO1ptLhfPY1WG/hR\n", - "0ZRKpXs8TRA4LjWiDfyGMeYjwI8DvyIil5mxPsK6e9Ibl9r5M3B44vjW1pZ3AjzLh3l+jhSNMWbT\n", - "GPNm73kV+D5wnhnrI9wvqm1HtP2pnPa9mm7dujVzFZTHceI1TS+5/AngP5mxPsL98mfsqcluG9Lp\n", - "dA7cdufmzZuUy+WZKlE5jhOJRkRSwN8Cv26MqfjuLGJEZGr/pex7N+kUdZin0QM9WzS3bt2i0Wh4\n", - "+cBB4CTFchG6gvkLY4y2fp2pPsKHbblDodCB9YwKQ0+B9STYLlMJAsftngR4Afg/Y8wfWh/NTB9h\n", - "ESESiRCPx8lkMiwsLHgtXu2wga5nGo3GgbIUDRfM+imwzXHT01PAzwNvi8gbvfe+QLdv8F+LyGeB\n", - "a8DPnZqFHwLatj6dTrOwsOCV3uo5jYrGLklptVqed1HRBIUjRWOM+TcO90Yz0Ue4n6dJp9MHWrz6\n", - "A5R+T2Nn8QWBQDc10jveanu0eDzu9QSORCKHntOod1EPo4IJimgCGUawA5D2+YzeLU4DlXadk783\n", - "sC2UIAkGAuxp7Juxa1qEFv1r7oz/HpR263p/crl+LwgE0tModgLWqJ4mSATa0yj2QleL9e1u4v6k\n", - "K7t1SBAJrKexpxT73gWVSsVLytLDOhWNZumpcIIqmsB6GkVF02w2+97wQkMI6oXspHEnmoDiF43e\n", - "/ti+S4rtafSzIIUN/AR+etrf3/dqsbe3t0mlUgAHKhQ0D7hSqRzoPeNEE0B0R1Sr1SgUCqyvrwN4\n", - "gtDPd3Z22NnZ8XrPaJDSiSZAGGMOpD3UajXy+TzGmANFbvqdYrHoXX7RBG27DceIRkTWgD8HztBt\n", - "YPQnxpg/EpHngV8Etnpf/cK0tYW1p6darQbg9ZgxxnjT09zcHJVKxUu0sstVnKfpj+YIv9lLxPof\n", - "EXmFu32Ev3LqFp4yWpKiTYja7bZXjTA3N+clXWkFpSZg7e7uTv3NvobluCj3JrDZe14VEc0Rhhnq\n", - "I6y7I+ge+hWLRcLhMJ1Ox0vj1POZRqPhTVNBFY2cdE7u5Qj/C/AR4PPAs0AJeB34vDGm6Pv+1Ez2\n", - "dufOUCjkNZfW+yCoB9JHO2uvXq/fb/NPDWNMX8dwItH0pqZ/Bn7fGPMtETnD3fXM7wHnjDGf9f1m\n", - "akRjR701VUK7SITD4XuClBpC0PSIWWVo0fRyhP8O+Htfyqd+/jDwHWPMj/renxrROPpzmGiGyhGe\n", - "9T7CjqM50tOIyEeBfwXeprtjAvgd4Bm6Le69PsJWHZT+1nmaKWekNc0wONFMP0NNTw5HP5xoHAPj\n", - "ROMYGCcax8A40TgGxonGMTBONI6BObVzGsfs4jyNY2CcaBwDc6qiEZErIvKuiPxQRJ4bw3jXRORt\n", - "EXlDRP5riN+/KCK3ReQd672h29seMt7zInKzZ+MbInJlgPHG2oL3iPGGthG499Z647qAEPA+8DAQ\n", - "Ad4ELo845lVgcYTff4xus8l3rPf+APit3vPngC+NON4Xgd8c0r6zwOO95yngB8DlYW08YryhbTTG\n", - "nKqneRJ43xhzzRjTBr4JfGoM4w6dZmqMeQ0o+N4eur3tIePBkDaaMbfgPWK8oW2E052ezgMfWK9v\n", - "ctfgYTHAqyLyuoj80ohjKafR3vZzIvKWiLwwbDf3cbfgtcb7j1FtPE3RnMZe/iljzBPA03S7p39s\n", - "nIObrh8f1e6vAo/QzTfaAL486AD+Fryj2tgb729641VHtfE0RXMLWLNer9H1NkNjjNnoPW4BL9Gd\n", - "AkdlrO1tjTF3TA/ga4PaOO4WvNZ4f6njjWrjaYrmdeCSiDwsIvPAp+m2kh0KEUmISLr3PAl8kvGk\n", - "mY61ve0oqbDjbsF7aum6o+xmTrB6f5ruiv19ulWYo4z1CN0d2JvA94YZD/gGsA606K63ngUWgVeB\n", - "94CXgdwI4/0C3YrUt4G3ev+5qwOM91Fgv/c3vtG7rgxr4yHjPT2KjcYYF0ZwDI47EXYMjBONY2Cc\n", - "aBwD40TjGBgnGsfAONE4BsaJxjEwTjSOgfl/g7yNWl4b+UcAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAES9JREFUeJztnVmMpNdVx3+nq6prX3qbnvG4x4tmsEYRkv1ikJyICIVo\n/ELghcgSUmQC4gECgkiY8BIjeIiQEiFeIiA2CosSIZCjBAmwjQIYIRYjb4E4jqVZPNPdM91de9fe\nfXmoOt/c/qZ6qaU9VfXdn/Sp9qvTM3+du5zlE2MMDscgzN1vAxzThxONY2CcaBwD40TjGBgnGsfA\nONE4BmZo0YjIFRF5V0R+KCLPjdMox2Qjw5zTiEgI+AHwCeAW8N/AM8aY74/XPMckMqyneRJ43xhz\nzRjTBr4JfGp8ZjkmmfCQvzsPfGC9vgn8mP0FEXFHzVOOMUb6vT+sp3GCCDDDiuYWsGa9XqPrbRwB\nYFjRvA5cEpGHRWQe+DTw7fGZ5ZhkhlrTGGM6IvKrwD8CIeAFt3MKDkNtuU80sFsITz3jXgg7AowT\njWNgnGgcA+NE4xgYJxrHwDjROAbGicYxME40joFxonEMjBONY2CcaBwDM2wSFgAicg0oA3tA2xjz\n5DiMmnbm5uYQEe8xHA4TCoUIh8OEw2H29vYOXPv7+weuSS+VHkk0dJOxPm6MyY/DmFkhHA4zPz9P\nNBplfn6eTCZDJpMhm82SyWSo1+tUq1Xvqtfr1Ot1Go0G9XrdG2dSxTOqaAD6RkKDTCQSIZFIkEgk\nSKVSnD17lnPnznHu3DkeeOABisUiW1tb3Llzh62tLUqlEqVSCYBms8ne3h4AIjKRwhmHp3lVRPaA\nPzbG/OkYbJp6wuEw8XicbDZLNptlbW2NixcvcunSJS5evMjt27e5ceMG169f97wRQKvVolKpTPwU\nNaponjLGbIjICvCKiLxrjHltHIZNGyJ3HW40GiWVSrG4uMjKygpra2s8+uijPPbYY1y+fJnFxUVi\nsRihUMj7bbvdplqteusgmNHpyRiz0XvcEpGX6Ja2BE40/oVvKpViZWWFBx98kAsXLrC2tsby8jKJ\nRAIRIR6Ps7CwwPnz573fNJtNisUioVCITqcDzKBoRCQBhIwxFRFJAp8Efndslk0RKphQKEQoFCKd\nTnse5tKlS6yurrK0tEQymUREiMViLCwsICIkEglarRaFQoH19XVCoZC3lpnFNc0q8FLPlYaBvzLG\nvDwWq6YMEfG21KFQiFQqxfLysica3TWpp1HRJBIJlpeXqVarrK+vk0qlPNFMqmBgBNEYY64Cj4/R\nlqlFvUwkEmF+fp50Os3i4iKrq6usra0Rj8e9LbiIEIlECIVCxONxjDEsLi6SSqWIRqPedKXXJDKO\nLXfgCYfDxGIx4vE4iUSCdDpNKpUiHo8TjUaJRCKEw2Hm5roH8O12m2azSbPZpNVqkc/nqVarNBoN\n77DPGDN7nsZxl1AoRCwWI5VKkU6nyWQyJJPJvqLRnVKtVqNSqVCtVsnn81QqFU80xpiJ3nY70YyB\ncDhMNBolmUySzWZJp9Mkk0kSiQTRaJRwOOwtlqHraXZ3dymVSuTzeU80erA3yYIBJ5qxoCfAmUyG\npaUlcrmcNz3p+sVGPU2hUODOnTsHPI0tmEkVjhPNEOgCVR/j8Ti5XM5b+K6urpLL5YjFYn0Xs+pp\nisWiJ5pqtUqz2Zx4wYATzdDYOxxbNA899NAB0fRDReP3NM1mc+KnJnCiGRoVzNzc3AHRXLhwgaWl\nJbLZ7JGeplarHelpJhknmiFQseilwcmVlRXOnz/vbbmj0Wjf359keppknGiGQA/y9EqlUt52O5VK\nebsmewFsi6HdblOv1ymXyxQKBcrlMrVajXa77UQzq4RCIebn54nFYt5W2xaOpjvoVltRQahoKpUK\n+XyecrlMvV53opll1NPEYjEv0coWjcag9FzGPt01xhwQTaFQoFqt0ul0vOSrSefYxHIReVFEbovI\nO9Z7iyLyioi8JyIvi0judM2cLEKhENFolHg87k1JyWTSO9CLxWL3nM8YY7yc4Far5aV8lkolL4Qw\nLZ7mJNUIfwZc8b3328ArxpgfAf6p9zoQiAjz8/MkEglyuRzLy8vkcjmSySTz8/OH7pYajQbVapVC\noUClUpmq6cjPsaLpZeIVfG//NPD13vOvAz8zZrsmGj0B1h1TNpslkUgQiUT6fn9vb+/AdGSvYaaR\nYdc0q8aY273nt+nm1gSGSCRCMpn0PM1xoul0Op6nKZVKVCqVqdot+Rm5WM50/+rp+8tHwPY0tmg0\nQdyPvcXe2dmhVCoFUjS3ReQsgIicA+6Mz6TJR/NnUqkU2WyWVCp1IFEc7u6Y9vf3qdfrFItFNjY2\nuH79Ouvr6xQKBer1eqBE823gM73nnwG+NR5zpgM7FUIXwbFYjHC4O9urYPRqNBoUCgU2Nze5evUq\nGxsb5PN5arXabIpGRL4B/DvwmIh8ICLPAl8CfkpE3gN+svc6MBzmaVQ0it/TbG5ucu3atan3NMcu\nhI0xzxzy0SfGbMtEo1vpubk572BPRZNMJg8kW9lTkzHmgGhu3LhBsVj0ynFnUjQOvML9cDhMJBI5\nUJetouk3PWlBv+YE64FerVaj1Wp5qZ3ThhPNMWjXh2g0SiwWIxaLeYLRS2NQtmjsLhC65a7Vap6H\nUdFMI040J0DXMBqY9HeB0JCBf/e0v7/P3t7eAU+zu7tLvV73QgrO08wo9m7J9jB6+UMHtqfpdDr3\nTE+tVus+/SXjwYnmBGiAUmua+uXL2LRaLXZ3d71ra2uLcrlMs9n8kC0/HZxojkHXNBqkPIloms2m\nF2fK5/Nsb297OcDTOB35caI5AX5Po2W2R3maSqXC9vY2m5ubbG9vUy6XaTQaMyEa16jxBOiaxu9p\n/Id5iopmZ2eHjY0NTzRuegoQmt6pSVcanFRP4w8baHBye3ub9fV1Nz0FDW0jctj0JCL3dOes1WqU\nSiW2t7fv8TRONAHBnp76VRvYZzKacKWiWV9fp1gsep5mFhg2R/h5EbkpIm/0Ln866Eyh09NhC2Fb\nNJ1O5x7RzJqnGTZH2ABfMcY80bv+Yfym3T/8XSByuRyLi4ssLy9z5swZFhYWvJxgOHiYpyfA/h40\nnU6H/f39+/yXjYeTRLlfE5GH+3w0mW2aRsQfa0okEiwsLLC0tMTKygpnzpzxqg80vdPvafQUuNVq\n0Ww2abfbU9FC5KSMsuX+nIi8JSIvzFoJix1rymaznmiO8jRaomILxhbNLHmaYUXzVeARuj33NoAv\nj82i+4x6mn6iWVlZ8TpCDOJpAjc99cMY4+UEi8jXgO+MzaIJwG68qJdWTGrVJNxNzLKrDez7HUxr\n4vhxDOVpesnkys8C7xz23WnE7gtspz30Ewzg7Ziq1aq3vW40Gl4T6VnjWE/TyxH+CWBZRD4Avgh8\nXEQep7uLugr88qla+SFj9wXWy24/70+FUE8zK8VwxzFsjvCLp2DLxHCUpzms7NZf0F+v1+l0OjM5\nPbkTYR92rXY2m2VpaYlMJuM1XYT+JSpaCLexscHOzo7XpGgWcaLpg7/sNpfLkUgk+uYAG2Oo1Wpe\ngFJjTbMUNvDjRONDPY2KRgv8D9tia12THTbY2dmhXC7TarXc9BQUbNH0K/A/KkC5sbHhFfk7TzPD\n2Pdr0vWMNpLudwLsjzHV63WvbX2pVGJ3d5dmsxncLXcQsO/VZAcq9c5wmnhlexq7ykBrmnZ3d72d\nk4rGTU8ziHoYPY+xRaOeJhqNejfGAPrWM6loKpWKF2ua1mK44wi8aOCup9GOnVqjraKxpy/gnnom\nu3pyGm5cOipONPSva9JEK7utqz5qDz1dw2gf4Far5W3FZ5nAi8Yf1dZ7NdldIGy0pau2qZ+FzlaD\nEnjRQPcwzy679Zeo+IWjotEDPVs0QeDIKLeIrInId0Xkf0XkeyLya733Z6aPsO1ptLhfPY1WG/hR\n0ZRKpXs8TRA4LjWiDfyGMeYjwI8DvyIil5mxPsK6e9Ibl9r5M3B44vjW1pZ3AjzLh3l+jhSNMWbT\nGPNm73kV+D5wnhnrI9wvqm1HtP2pnPa9mm7dujVzFZTHceI1TS+5/AngP5mxPsL98mfsqcluG9Lp\ndA7cdufmzZuUy+WZKlE5jhOJRkRSwN8Cv26MqfjuLGJEZGr/pex7N+kUdZin0QM9WzS3bt2i0Wh4\n+cBB4CTFchG6gvkLY4y2fp2pPsKHbblDodCB9YwKQ0+B9STYLlMJAsftngR4Afg/Y8wfWh/NTB9h\nESESiRCPx8lkMiwsLHgtXu2wga5nGo3GgbIUDRfM+imwzXHT01PAzwNvi8gbvfe+QLdv8F+LyGeB\na8DPnZqFHwLatj6dTrOwsOCV3uo5jYrGLklptVqed1HRBIUjRWOM+TcO90Yz0Ue4n6dJp9MHWrz6\nA5R+T2Nn8QWBQDc10jveanu0eDzu9QSORCKHntOod1EPo4IJimgCGUawA5D2+YzeLU4DlXadk783\nsC2UIAkGAuxp7Juxa1qEFv1r7oz/HpR263p/crl+LwgE0tModgLWqJ4mSATa0yj2QleL9e1u4v6k\nK7t1SBAJrKexpxT73gWVSsVLytLDOhWNZumpcIIqmsB6GkVF02w2+97wQkMI6oXspHEnmoDiF43e\n/ti+S4rtafSzIIUN/AR+etrf3/dqsbe3t0mlUgAHKhQ0D7hSqRzoPeNEE0B0R1Sr1SgUCqyvrwN4\ngtDPd3Z22NnZ8XrPaJDSiSZAGGMOpD3UajXy+TzGmANFbvqdYrHoXX7RBG27DceIRkTWgD8HztBt\nYPQnxpg/EpHngV8Etnpf/cK0tYW1p6darQbg9ZgxxnjT09zcHJVKxUu0sstVnKfpj+YIv9lLxPof\nEXmFu32Ev3LqFp4yWpKiTYja7bZXjTA3N+clXWkFpSZg7e7uTv3NvobluCj3JrDZe14VEc0Rhhnq\nI6y7I+ge+hWLRcLhMJ1Ox0vj1POZRqPhTVNBFY2cdE7u5Qj/C/AR4PPAs0AJeB34vDGm6Pv+1Ez2\ndufOUCjkNZfW+yCoB9JHO2uvXq/fb/NPDWNMX8dwItH0pqZ/Bn7fGPMtETnD3fXM7wHnjDGf9f1m\nakRjR701VUK7SITD4XuClBpC0PSIWWVo0fRyhP8O+Htfyqd+/jDwHWPMj/renxrROPpzmGiGyhGe\n9T7CjqM50tOIyEeBfwXeprtjAvgd4Bm6Le69PsJWHZT+1nmaKWekNc0wONFMP0NNTw5HP5xoHAPj\nROMYGCcax8A40TgGxonGMTBONI6BObVzGsfs4jyNY2CcaBwDc6qiEZErIvKuiPxQRJ4bw3jXRORt\nEXlDRP5riN+/KCK3ReQd672h29seMt7zInKzZ+MbInJlgPHG2oL3iPGGthG499Z647qAEPA+8DAQ\nAd4ELo845lVgcYTff4xus8l3rPf+APit3vPngC+NON4Xgd8c0r6zwOO95yngB8DlYW08YryhbTTG\nnKqneRJ43xhzzRjTBr4JfGoM4w6dZmqMeQ0o+N4eur3tIePBkDaaMbfgPWK8oW2E052ezgMfWK9v\nctfgYTHAqyLyuoj80ohjKafR3vZzIvKWiLwwbDf3cbfgtcb7j1FtPE3RnMZe/iljzBPA03S7p39s\nnIObrh8f1e6vAo/QzTfaAL486AD+Fryj2tgb729641VHtfE0RXMLWLNer9H1NkNjjNnoPW4BL9Gd\nAkdlrO1tjTF3TA/ga4PaOO4WvNZ4f6njjWrjaYrmdeCSiDwsIvPAp+m2kh0KEUmISLr3PAl8kvGk\nmY61ve0oqbDjbsF7aum6o+xmTrB6f5ruiv19ulWYo4z1CN0d2JvA94YZD/gGsA606K63ngUWgVeB\n94CXgdwI4/0C3YrUt4G3ev+5qwOM91Fgv/c3vtG7rgxr4yHjPT2KjcYYF0ZwDI47EXYMjBONY2Cc\naBwD40TjGBgnGsfAONE4BsaJxjEwTjSOgfl/g7yNWl4b+UcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -2985,96 +811,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEptJREFUeJzt3X2QXfVdx/HPJ89PJExMFrJJaqKCQobaRGCAUii2OsgU\n", - "WrWWorZYmTpOWxuxZUqZ0b90Wttxip2OzlSQFvqk0grtKBS0QCm1hJAEQkIDOETJ4xKEkMfNZvfr\n", - "H/du2Cy72fPNyW/vveH9mslwz7nfe85vz+/cc7+ch9/XESEAAAAcvwmtbgAAAECnI6ECAACoiYQK\n", - "AACgJhIqAACAmkioAAAAaiKhAgAAqGlSK1dumzEbAABAx4gIjzS/aEJl+3JJN0uaKOmWiPjr4THX\n", - "XXfd6z63Zs0arVix4qh5AwMDhVqZW3Z/f3+R2IxMe7PjjGXiR4vdsGGDli1bdtS8zLbI/H2HDx+u\n", - "HJuN7+3trRx78ODBIrGHDh2qHHsiviMvvvii5s+f/7r5EydOrLwMe8RjzYgybd6/f3/l2Mw2zi47\n", - "s19k9rfMd2TChJEvLgwMDIz43qRJ1Q/1U6dOrRw7ZcqUyrGTJ0+uHDva31c3NitzPMz030j7xb59\n", - "+zRz5sxKsdllj6bUcbnkb1QpVfejYx2Ti+2JtidK+pKkyyWdLeka22eVWh8AAECrlLyH6nxJz0XE\n", - "5ojok/QtSe8uuD4AAICWKJlQLZT0wpDpLc15Y1qwYEGRBmF8jHTJCJ1hxowZrW4CashcbkV7yVwS\n", - "RXsqmVAd94VREqrO1tXV1eom4DiNdA8HOgcJVefK3I+G9lTypvStkhYPmV6sxlmqo6xZs+bI6wUL\n", - "FpBMAQCAtjAwMFD5JvuSCdVqSWfYXiJpm6SrJV0zPGj403wAAADtYMKECUc9AXisp/yKJVQRcdj2\n", - "xyR9X41hE26NiKdLrQ8AAKBVio5DFRH3SLqn5DoAAABaraUjpUvVB5wrOdBbJj5z02dmMMRSsdlt\n", - "UWrZmeVmBiHMPhmTGbRw2rRpRWIzbcj8fdmbWksNypiJzewXme2WVWpw38xyS+73mb7O7MuZ5Wae\n", - "IJ09e3bl2Mx2k3IDSfb19VWOLTW474EDByrHSrnfqFK/q5k+ycRmjhdS7rtatU8WLhx9sAJq+QEA\n", - "ANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA1ERCBQAA\n", - "UBMJFQAAQE0tr+V36NChSnHZmnSlZOoklVpuphZVqfa2i8y2yOq0uo3ZOlcZmZp0GaXqg2W3Raav\n", - "MzUFM7GZNmRqlEnS4cOHK8dm+rpUXbx9+/ZVjq36GzIosy0ysZk+yezLmRqI2fhMbGZfznz/Sv5G\n", - "Zfokux+NpGiWYnux7Qdsb7D9lO2Pl1wfAABAK5Q+Q9Un6fqIWGd7lqTHbd8fEU8XXi8AAMC4KXqG\n", - "KiJ2RMS65uu9kp6W1F1ynQAAAONt3G5Msr1E0nJJj47XOgEAAMbDuCRUzct9d0pa2TxTBQAAcNIo\n", - "/pSf7cmSvi3paxFx1/D3165de+T16aefrgULFpRuEgAAwJief/55bd68uVJs0YTKjechb5W0MSJu\n", - "Hilm+fLlJZsAAABwXJYuXaqlS5cemX7wwQdHjS19ye+tkn5f0mW21zb/XV54nQAAAOOq6BmqiPiR\n", - "GI0dAACc5Eh2AAAAamp56ZmS5TI6SaaEQ6nYrEyJilKlCEqWGClV9iVTbqVkWYZMO0r1X6ltkSkZ\n", - "IuW+J5llZ8qtZMqAzJ49u3KsVK4ETqZcRyb24MGDlWMPHDhQOTYrs9/PnDmzcuzcuXMrx86ZM6dy\n", - "rJT7TmX2z1dffbVy7N691R/mz5QZyuwXktTb21s5NrMtRsMZKgAAgJpIqAAAAGoioQIAAKiJhAoA\n", - "AKAmEioAAICaSKgAAABqIqECAACoiYQKAACgJhIqAACAmkioAAAAamp56ZlJk6o1IVPmpGS5lYxM\n", - "m0vFZpXadv39/ZVjS5Zbyfx9mTZnypFk+i9TriNTZkHKlVooVWYoE1v1WHE8Mu3I7BeZMiBTpkwp\n", - "EltSZluU2oeyZXgyJWIyJXsyJXC2bt1aOTZTmkXKHTNK/a5m+m/y5MmVY7PHgPEubTdq62z/tqSQ\n", - "NNKvW0TEd6qswPZESaslbYmIK4+rlQAAAG3sWOnelWokVKOplFBJWilpo6RTqjYKAACgk4yaUEXE\n", - "H9RduO1Fkq6Q9FeS/qzu8gAAANrRmBf4bZ9u+1bb9zanz7Z9XcXlf0HSDZLK3fQDAADQYlXumPyK\n", - "pPskdTenn5V0/Vgfsv0uST0RsVYj34cFAABwUqhyy/y8iPgn2zdKUkT02a7ySNNFkq6yfYWkaZJm\n", - "2749Ij44NOixxx478rq7u1sLFy6s3noAAIBCtmzZUvmpzCoJ1V7bPzM4YfsCSbvH+lBE3CTppuZn\n", - "LpX0yeHJlCSdd955lRoKAAAwnhYtWqRFixYdmR56Emi4KgnVJyR9T9LP2f6xpPmS3nsc7WqPwaEA\n", - "AABOsDETqoh43PYlkn5RjXuhNkVE9REBG8t4SNJDx9dEAACA9jZmQmV7uqSPSLpYjbNMD9v++4g4\n", - "WLpxAAAAnaDKJb/bJb0q6YtqnKH6XUl3SPqdgu0CAADoGFUSqmURcfaQ6R/Y3niiGnDwYLUTXSXr\n", - "82WWXSo2U7+uVGzJZZfqv2xdw1I1E0v19SmnVC8wcOqpp1aOlXJ15jKxmVpi+/fvLxJb9bgyKFOT\n", - "LqNUTbOszP6ZqUuZkdmHMt+97du3p9qR6evMdiu1f2b7o9SxKFNHr9SxJRMr5dp8IupjVmndGtsX\n", - "Dk40n/J7vPaaAQAAThLHKo68fkjMI7ZfUOMeqjdJ2jQObQMAAOgIYxVHBgAAwBiOVRx589Bp211q\n", - "jHgOAACAIaoUR77K9rOSnldjLKnNku4p3C4AAICOUeWm9L+UdKGkZyJiqaR3SHq0aKsAAAA6SJWE\n", - "qi8idkmaYHtiRDwg6dzC7QIAAOgYVQZpeNn2KZIelvR12z2S9pZtFgAAQOeocobqPZL2S7pe0r2S\n", - "nhNPAAIAABxRpTjy4NmofklfKdoaAACADnSsgT33qjGQ50giImafiAZUHe69ZLmVjFIlVNqh/E02\n", - "PlMeolSZmmwpgoxSZUNKbeNsuZV2KI2UKfeQic3uF5ltl4nt7e0tstxMeR+p3DEjs52nTp1aOTZT\n", - "MiQTK+XanNkW06dPrxxbar+QcvtG5vhSqk8y+0W2PEwmftq0+qNCHWscqll1F277VEm3SFqmRnL2\n", - "hxHxk7rLBQAAaCe51D7vbyX9e0S81/YkSTMLrw8AAGDcFUuobM+R9LaIuFaSIuKwpN2l1gcAANAq\n", - "5W5AkZZKetH2bbbX2P4H2zMKrg8AAKAlSiZUkyStkPR3EbFC0j5JNxZcHwAAQEuUvIdqi6QtEfFY\n", - "c/pOjZBQrV69+sjr7u5udXd3F2wSAABANbt27dKuXbsqxRZLqCJih+0XbJ8ZEc9IeqekDcPjzj2X\n", - "KjYAAKD9zJs3T/PmzTsyvWnTplFjSz/l9ydqlKuZIum/JX2o8PoAAADGXdGEKiKekHReyXUAAAC0\n", - "Wsmb0gEAAN4QSl/yG9OBAwcqxWXKWWTLTpQqVVOqLEqpMi7tIlO2IFPyRcqVkym1X2TKTmRLjGT0\n", - "9/cXWW6mT2bMqD6SSqY0RKacRTY+s1/09fWl2lFKpq8zbc6URTl8+HDl2IzscTYTn4nNlDnJHrdK\n", - "KfX7kDnOlorNxlft67vvvnv0ZVReGwAAAEZEQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQ\n", - "EwkVAABATSRUAAAANZFQAQAA1ERCBQAAUFPLS89ULUeQKQEwMDCQakOmlEQmNtOOUmVqSsqUiMnI\n", - "lEPIlL6Qyu5HVWVKqMyZM6dybHYfyvx9mRI4mdj9+/dXjt29e3fl2OnTp1eOlXIlcDLLnjlzZuXY\n", - "THmYbEmiTDmZUiWJMqVnMn9ftkRUZtmZY1HmeJgpiZIto5Qpa5Mpl5NpR2Z/27t3b+XYffv2VY7N\n", - "tuNElIkq+itu+9O2N9heb/sbtnN7BgAAQAcollDZXiLpw5JWRMQ5kiZKen+p9QEAALRKyUt+r0rq\n", - "kzTDdr+kGZK2FlwfAABASxQ7QxUR/yfpbyT9r6Rtkl6JiP8otT4AAIBWKXnJ7+cl/amkJZK6Jc2y\n", - "/Xul1gcAANAqJS/5nSvpxxHxkiTZ/o6kiyR9fWjQ+vXrj7zu6urSaaedVrBJAAAA1fT09Kinp6dS\n", - "bMmE6qeS/tz2dEkHJb1T0qrhQeecc07BJgAAAByfrq4udXV1HZnesGHDqLEl76F6QtLtklZLerI5\n", - "+8ul1gcAANAqRQf2jIjPSfpcyXUAAAC0WucNzw0AANBmSKgAAABqanktv6q1rjI1lUrVYMPRMtu5\n", - "VJ9kl5upU5apjZepzZWpJZapf5at5Zep+ZVZdqnlZmroZfpDytU0yxyLdu7cWTk2U6twz549lWOl\n", - "cvX5MvXdMjUsM8vN1vPM9F+2TmBVpertSbmagr29vZVjM3X02qF2pJQ7vsyaNav++movAQAA4A2O\n", - "hAoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACgprZMqLZt29bqJqCG7du3t7oJOE5btmxpdRNQ\n", - "w65du1rdBBwnjpudry0TKnaszkb/da6tW7e2ugmo4aWXXmp1E3CcduzY0eomoKa2TKgAAAA6CQkV\n", - "AABATc4Mw3/CV263buUAAABJETFiTaKWJlQAAAAnAy75AQAA1ERCBQAAUFPbJVS2L7f9U9vP2v5U\n", - "q9uD0dn+R9s7ba8fMm+u7fttP2P7PtuntrKNGJ3txbYfsL3B9lO2P96cTx+2OdvTbD9qe53tjbY/\n", - "05xP33UQ2xNtr7X9veY0/dfB2iqhsj1R0pckXS7pbEnX2D6rta3CMdymRl8NdaOk+yPiTEn/2ZxG\n", - "e+qTdH1ELJN0gaSPNr9v9GGbi4iDki6LiLdIerOky2xfLPqu06yUtFHS4M3M9F8Ha6uEStL5kp6L\n", - "iM0R0SfpW5Le3eI2YRQR8bCkl4fNvkrSV5uvvyrpPePaKFQWETsiYl3z9V5JT0taKPqwI0TE/ubL\n", - "KZImqvFdpO86hO1Fkq6QdIukwafG6L8O1m4J1UJJLwyZ3tKch85xWkTsbL7eKem0VjYG1dheImm5\n", - "pEdFH3YE2xNsr1Ojjx6IiA2i7zrJFyTdIGlgyDz6r4O1W0LFGA4nkWiMyUGftjnbsyR9W9LKiNgz\n", - "9D36sH1FxEDzkt8iSZfYvmzY+/Rdm7L9Lkk9EbFWr52dOgr913naLaHaKmnxkOnFapylQufYaft0\n", - "SbK9QFJPi9uDY7A9WY1k6o6IuKs5mz7sIBGxW9K/SfoV0Xed4iJJV9l+XtI3Jf2q7TtE/3W0dkuo\n", - "Vks6w/YS21MkXS3puy1uE3K+K+na5utrJd11jFi0kG1LulXSxoi4echb9GGbsz1v8Akw29Ml/Zqk\n", - "taLvOkJE3BQRiyNiqaT3S/pBRHxA9F9Ha7uR0m3/hqSb1bjJ8taI+EyLm4RR2P6mpEslzVPjev9f\n", - "SLpb0j9LepOkzZLeFxGvtKqNGF3zqbAfSnpSr11a+LSkVaIP25rtc9S4aXlC898dEfF523NF33UU\n", - "25dK+kREXEX/dba2S6gAAAA6Tbtd8gMAAOg4JFQAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAA\n", - "NZFQAWg52480//uztq85wcu+aaR1AcCJxDhUANqG7berMcjhlYnPTIqIw8d4f09EnHIi2gcAo+EM\n", - "FYCWs723+fKzkt5me63tlbYn2P687VW2n7D9R834t9t+2Pbdkp5qzrvL9mrbT9n+cHPeZyVNby7v\n", - "jqHrcsPnba+3/aTt9w1Z9oO2/8X207a/Nr5bA0AnmtTqBgCAXit98ylJnxw8Q9VMoF6JiPNtT5X0\n", - "I9v3NWOXS1oWEf/TnP5QRLzcrG23yvadEXGj7Y9GxPIR1vVbkn5Z0pslzZf0mO0fNt97i6SzJW2X\n", - "9Ijtt0YElwoBjIozVADaiYdN/7qkD9peK+knkuZK+oXme6uGJFOStNL2Okn/JWmxpDPGWNfFkr4R\n", - "DT2SHpJ0nhoJ16qI2BaNeyLWSVpS428C8AbAGSoA7e5jEXH/0BnNe632DZt+h6QLIuKg7QckTRtj\n", - "uaHXJ3CDZ696h8zrF8dKAGPgDBWAdrJH0tAbyL8v6SO2J0mS7TNtzxjhc7MlvdxMpn5J0gVD3usb\n", - "/PwwD0u6unmf1nxJl0hapdcnWQAwJv6vC0A7GDwz9ISk/ualu9skfVGNy21rbFtSj6TfbMYPfUT5\n", - "Xkl/bHujpE1qXPYb9GVJT9p+PCI+MPi5iPhX2xc21xmSboiIHttnDVu2RpgGgKMwbAIAAEBNXPID\n", - "AACoiYQKAACgJhIqAACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGr6f7xE4rRkFyo0\n", - "AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEnNJREFUeJzt3X2QXfVdx/HPJw+bzSZBiIQ22WxMFFDItBZsMgQoFFsd\nZAqtWktRW6xOHaatjdgypczoXzqtZZxip6MzFaSFPqm00naUJy1QGigJkPCQUJ4mmAcSgoaHPG2y\nSb7+ce+GzbKbPd+c/e29N32/ZhjuOfe7v/Pb8zv37DfnnPv7OiIEAACAozep1R0AAADodCRUAAAA\nNZFQAQAA1ERCBQAAUBMJFQAAQE0kVAAAADVNaeXGbTNnAwAA6BgR4ZHWF02obF8o6TpJkyVdHxF/\nOzzmiiuueMPPrVq1SkuWLDlsXWa+rOzcWpn4/fv3F2n3wIEDlWMPHjxYJHa82l67dq0WL1582LrM\nfisVK0kDAwOVY/ft21cktr+/v0hs9ri333hOeOmllzRnzpw3rJ80qfrF7JHaHU3muN+zZ0/l2Mx+\ny7a9d+/eyrGZ4zOzL0Ybj4MHD4743pQp1U/1XV1dRWIzfcgcQ1ml/pZkxm+k46K/v1/d3d2VYser\nH6X2RbvMb1niODrS35Bit/xsT5b0ZUkXSjpd0mW2Tyu1PQAAgFYp+QzVUknPRsTzETEg6duS3ltw\newAAAC1RMqHqlbRxyPKm5roxzZs3r0iHMDFGumWEztDT09PqLqCGkrfKUFbmlijaU8mE6qhvovb2\nVsq70KZOOumkVncBR2nGjBmt7gJqIKHqXCRUna/kCG6W1DdkuU+Nq1SHWbVq1aHX8+bNI5kCAABt\n4eDBg5Ufsi+ZUD0k6RTbCyW9IOlSSZcNDxr+bT4AAIB2MPxbs0f6JnyxhCoi9tv+hKQ71Jg24YaI\neLLU9gAAAFql6E3biLhN0m0ltwEAANBqLX8KrupDlFOnTq3c5uTJk1N9yDwMmGm7VLuZ2MyEjCVl\n+lFqH0vStGnTKsdOnz69cmzm23GZ2Ex/M5MsSrkxKRWbGevMvsge95mHuUs9+F3ys1pqYs/MeTkz\nfjNnzqwcmz3uSz38nZkUue4koOPVdmYCzsykyKUmqs60m42vOjnzySefPOp77fHXFgAAoIORUAEA\nANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA1ERCBQAA\nUFPLa/lVrdlUqn5WVqb2UdXaQFmZ2kft1HZVmZpm2eMiE98Ote7aYTyk3HGfqZWWic3UgsvK1Etr\nh1qa2eMiU9Os1Ocv04f+/v7KsdnzbKYm3d69e4u0W+rzJJWrV9rd3V05ttQ5IPt5mui/10WvUNnu\ns3237bW2n7D9yZLbAwAAaIXSV6gGJF0ZEWtsz5T0sO27IuLJwtsFAACYMEWvUEXE1ohY03y9U9KT\nkuaV3CYAAMBEm7CH0m0vlHSGpAcnapsAAAATYUISqubtvlskLW9eqQIAADhmFP+Wn+2pkr4j6esR\ncevw91esWHHodV9fnxYsWFC6SwAAAGNav3691q9fXym2aELlxndqb5C0LiKuGynmnHPOKdkFAACA\no7Jo0SItWrTo0PI999wzamzpW37nSPpDSRfYXt3878LC2wQAAJhQRa9QRcSPxWzsAADgGEeyAwAA\nUFPLS89Une49U+IgM918Vsm2S/ShXfZFZvxKxbZLP9qlHEkppcq4ZMqRZMqcSOU+J5njIlOCI1MG\nJBufKV2SGb/M75cpA7J79+7KsVKuREypkj2Zki+ZWCk31lOnTq0cW6pkVmasM6WApNw5YzzK23GF\nCgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACgJhIq\nAACAmjqm9ExJmSn1S5XAyUzVX6rdkm2X+v2yJUNK7rsSMp+PTJmFbHymXEfm85QpR9LV1VWkD1Lu\nc50pf5EpXVKyfFEmPlOOJFN6ppSS5adKKdmHUmNS6u9kqXazbY9HSbBRz2a2f1dSSBrpN4iI+G6V\nDdieLOkhSZsi4uKj6iUAAEAbO9I/Dy9WI6EaTaWEStJySeskzaraKQAAgE4yakIVEX9Ut3Hb8yVd\nJOlvJP1F3fYAAADa0Zg3DW2/2fYNtm9vLp9u+08qtv9FSVdJav3DKAAAAIVUeQrrq5LulDSvufyM\npCvH+iHb75G0LSJWa+TnsAAAAI4JVb5ic2JE/IvtqyUpIgZs76/wc2dLusT2RZK6JR1n+6aI+PDQ\noFWrVh16PW/ePPX29lbvPQAAQCFbtmzRli1bKsVWSah22v75wQXbZ0l6dawfiohrJF3T/JnzJX16\neDIlSUuWLKnUUQAAgIk0d+5czZ0799Dy6tWrR42tklB9StIPJP2i7fslzZH0/qPoV27CIAAAgA4x\nZkIVEQ/bPk/SL6vxLNRTEVF9lr9GG/dKuvfouggAANDexkyobE+X9DFJ56pxlek+2/8YEblpmQEA\nAI5RVW753STpNUlfUuMK1e9LulnS7xXsFwAAQMeoklAtjojThyz/0Pa6cetAopZXVSXrJJVqO9Nu\nqXqCUq5+XaZOWSa2VB+ybWdqYmX2c2b8Zs6cWTk2q1S9rcw+LlVPcM+ePZVjpVyfe3p6Ksdm6g92\nd3dXjs3Wa8scn/v3V/kSd15mH2f6kK0HmzmOMn3evXt35dhMPchMf6XcObFU3c1MbOZYzh73mfjx\nyEWq7M1HbC8bXGh+y+/h2lsGAAA4RhypOPLjQ2JW2N6oxjNUCyQ9NQF9AwAA6AhjFUcGAADAGI5U\nHPn5ocu2T1JjxnMAAAAMUaU48iW2n5G0Xo25pJ6XdFvhfgEAAHSMKg+l/7WkZZKejohFkt4l6cGi\nvQIAAOggVRKqgYj4X0mTbE+OiLslvb1wvwAAADpGlYkXXrY9S9J9kr5he5uknWW7BQAA0DmqXKF6\nn6Tdkq6UdLukZ8U3AAEAAA6pUhx58GrUAUlfLdobAACADnSkiT13qjGR50giIo4blw4UKD3TieVW\nMn0uFZuNL1kCp6pM6YSszHGRUaqsRra/mX2XKeGQOS4yn5HMfsuWqMj0IzMmmXIkmfHLjnWpsi+Z\n/ZYZk8yxmT0HlOrH1KlTK8eWKvsk5cralCzxU1UmB8iUcpJyY5Ip/TSaI81DVbuImO3jJV0vabEa\nydkfR8RP6rYLAADQTsb/8tDh/l7Sf0bE+21PkTSj8PYAAAAmXLGEyvbPSXpHRFwuSRGxX9KrpbYH\nAADQKuUeQJEWSXrJ9o22H7H9T7Z7Cm4PAACgJUomVFMknSnpHyLiTEm7JF1dcHsAAAAtUfIZqk2S\nNkXEqubyLRohoXrggQcOvZ4/f776+voKdgkAAKCa7du3a/v27ZViiyVUEbHV9kbbp0bE05LeLWnt\n8Lhly5aV6gIAAMBRmz17tmbPnn1o+bnnnhs1tvS3/P5MjXI1XZKek/SRwtsDAACYcEUTqoh4VNKS\nktsAAABotZIPpQMAAPxMKH3Lb0wDAwOV4jJT9Wdis/GZsgWZ2JLlZDJKtl1VZr9lSgtk287IlODY\ntWtX5dj+/v7KsVU/S4MyZScypUsyYzJr1qzKsTNmVJ8XOFtGYtq0aZVjM/ttz549lWMz45fpg5T7\nXGeO5VIy41HyHJD525Dpc6acTMlSaqXKDJUqrZM9f2fK2lQ9ju64445R3+MKFQAAQE0kVAAAADWR\nUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAANbW89EzVafVL\nlkPITO2fLWtTVamSNtn+lir7Umq/ZcsylCrBkWn3+OOPrxybKaHS1dVVOTYrU6Ji7969RWL37dtX\nOTZboiITnxmTE044oXJsqdIlUu5YzpTA2b17d+XY1157rXJsZqyzZXgyx1zmvJUp+ZL5rGY/1z09\nPZVjS/0tyeyLzFhnSnFJudJPO3bsSLU9kqJXqGx/1vZa24/b/qbt6mcMAACADlEsobK9UNJHJZ0Z\nEW+RNFnSB0ttDwAAoFVK3vJ7TdKApB7bByT1SNpccHsAAAAtUewKVURsl/R3kjZIekHSKxHxX6W2\nBwAA0Colb/n9kqQ/l7RQ0jxJM23/QantAQAAtErJW35vl3R/RPyfJNn+rqSzJX1jaNDKlSsPve7t\n7VVvb2/BLgEAAFSzYcMGbdy4sVJsyYTqp5L+0vZ0Sf2S3i1p5fCgpUuXFuwCAADA0VmwYIEWLFhw\naPn+++8fNbbkM1SPSrpJ0kOSHmuu/kqp7QEAALRK0Yk9I+ILkr5QchsAAACtRukZAACAmkioAAAA\namp5Lb+q9YFK1WDLtp2RqX2U6XOmjlepGnqSNGVKmcOn5Fhn4jP1qDIyY5LZx5lacFKuFmNmX2Tq\nu2XqeGVqzGVr3WX23fTp0yvHZsY68/vt2rWrcqyUq4GWqX+WqYuXkTk2s8d9ptZdpu1sTcGqsueh\nzHGUGb92OB9ma3RmzgPjUQuVK1QAAAA1kVABAADUREIFAABQEwkVAABATSRUAAAANZFQAQAA1NSW\nCdWmTZta3QXUwPh1rg0bNrS6C6hhy5Ytre4CjtLmzZtb3QXU1JYJFQdWZ2P8OlfVqupoT1u3bm11\nF3CUOG92vrZMqAAAADoJCRUAAEBNLlV2pdLG7dZtHAAAICkiRqyX09KECgAA4FjALT8AAICaSKgA\nAABqaruEyvaFtn9q+xnbn2l1fzA62/9s+0Xbjw9ZN9v2Xbaftn2n7eNb2UeMznaf7bttr7X9hO1P\nNtczhm3OdrftB22vsb3O9uea6xm7DmJ7su3Vtn/QXGb8OlhbJVS2J0v6sqQLJZ0u6TLbp7W2VziC\nG9UYq6GulnRXRJwq6b+by2hPA5KujIjFks6S9PHm540xbHMR0S/pgoh4m6S3SrrA9rli7DrNcknr\nJA0+zMz4dbC2SqgkLZX0bEQ8HxEDkr4t6b0t7hNGERH3SXp52OpLJH2t+fprkt43oZ1CZRGxNSLW\nNF/vlPSkpF4xhh0hInY3X3ZJmqzGZ5Gx6xC250u6SNL1kga/Ncb4dbB2S6h6JQ2dqnlTcx06x5si\n4sXm6xclvamVnUE1thdKOkPSg2IMO4LtSbbXqDFGd0fEWjF2neSLkq6SdHDIOsavg7VbQsUcDseQ\naMzJwZi2OdszJX1H0vKI2DH0PcawfUXEweYtv/mSzrN9wbD3Gbs2Zfs9krZFxGq9fnXqMIxf52m3\nhGqzpL4hy31qXKVC53jR9pslyfZcSdta3B8cge2paiRTN0fErc3VjGEHiYhXJf2HpF8TY9cpzpZ0\nie31kr4l6ddt3yzGr6O1W0L1kKRTbC+03SXpUknfb3GfkPN9SZc3X18u6dYjxKKFbFvSDZLWRcR1\nQ95iDNuc7RMHvwFme7qk35C0WoxdR4iIayKiLyIWSfqgpB9GxIfE+HW0tpsp3fZvSbpOjYcsb4iI\nz7W4SxiF7W9JOl/SiWrc7/8rSd+T9K+SFkh6XtIHIuKVVvURo2t+K+xHkh7T67cWPitppRjDtmb7\nLWo8tDyp+d/NEXGt7dli7DqK7fMlfSoiLmH8OlvbJVQAAACdpt1u+QEAAHQcEioAAICaSKgAAABq\nIqECAACoiYQKAACgJhIqAACAmkioALSc7RXN//+C7cvGue1rRtoWAIwn5qEC0DZsv1ONSQ4vTvzM\nlIjYf4T3d0TErPHoHwCMhitUAFrO9s7my89Leoft1baX255k+1rbK20/avtPm/HvtH2f7e9JeqK5\n7lbbD9l+wvZHm+s+L2l6s72bh27LDdfaftz2Y7Y/MKTte2z/m+0nbX99YvcGgE40pdUdAAC9Xvrm\nM5I+PXiFqplAvRIRS21Pk/Rj23c2Y8+QtDgi/qe5/JGIeLlZ226l7Vsi4mrbH4+IM0bY1u9I+lVJ\nb5U0R9Iq2z9qvvc2SadL2iJphe1zIoJbhQBGxRUqAO3Ew5Z/U9KHba+W9BNJsyWd3Hxv5ZBkSpKW\n214j6QFJfZJOGWNb50r6ZjRsk3SvpCVqJFwrI+KFaDwTsUbSwhq/E4CfAVyhAtDuPhERdw1d0XzW\natew5XdJOisi+m3fLal7jHZDb0zgBq9e7R2y7oA4VwIYA1eoALSTHZKGPkB+h6SP2Z4iSbZPtd0z\nws8dJ+nlZjL1K5LOGvLewODPD3OfpEubz2nNkXSepJV6Y5IFAGPiX10A2sHglaFHJR1o3rq7UdKX\n1Ljd9ohtS9om6beb8UO/ony7pCtsr5P0lBq3/QZ9RdJjth+OiA8N/lxE/LvtZc1thqSrImKb7dOG\nta0RlgHgMEybAAAAUBO3/AAAAGoioQIAAKiJhAoAAKAmEioAAICaSKgAAABqIqECAACoiYQKAACg\nJhIqAACAmv4fGZAJwEI7dFcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3082,124 +821,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGNNJREFUeJztnVmM7Fldxz+na1+6qrqW7q5ebt+ZuTMDTEzgBU2AyAMh\n", - "Q0xAXyQkRoNofFA0SiLig6D4gCYQow9EZYlbQKOBgInKYETxwQUzw4CyzMxdeu/au/a1jw9dv8Op\n", - "ukvfWrvrzv+bnPyram7/51TVt37n9/ud3+97lNYaBw5GwdJlT8DB4sEhjYOR4ZDGwchwSONgZDik\n", - "cTAyHNI4GBljk0Yp9axS6rtKqZeUUh+c5qQcXG2ocfI0SikX8D3gbcAB8N/Ae7TW35nu9BxcRYxr\n", - "ad4IvKy1vq217gCfB941vWk5uMpwj/l3m8Ce9Xwf+GH7HyilnFTzgkNrre71+riWxiHEqxjjkuYA\n", - "2Laeb3NubRy8CjAuab4BPKmUuq6U8gLvBr40vWk5uMoYy6fRWneVUr8E/BPgAj7tRE6vHowVcj/U\n", - "jR1HeOExbUfYwasYDmkcjAyHNA5GhkMaByPDIY2DkeGQxsHIcEjjYGQ4pHEwMhzSOBgZDmkcjAyH\n", - "NA5GxrhFWAAopW4DZaAHdLTWb5zGpKYNpdTAY7fbjcvlMtezszO01macnZ0NDHkd4LLamIffg1KK\n", - "paUllFID87bnOitMRBrOi7HeqrUuTGMys4J8wEtLS7jdbiKRCMvLy0QiEUKhEN1ul06nY0az2aTR\n", - "aNBsNmk2m5ydndHr9cz1MuZvE8XtduPxeMzo9Xq0220zzs7OzN/OgkCTkgbgnjuhVwXyQbtcLlwu\n", - "Fz6fj5WVFdbX10mn0yQSCUOORqNBo9GgXC5zenpKuVwGoNPpoJSi0+lc6nuQ4fV6CQQCZnQ6Her1\n", - "OrVajV6vN3OrOA1L81WlVA/4Y631n05hTlOHUsosRz6fj3g8zvb2Nk888QRbW1tUq1UzKpUK2WwW\n", - "j8cDQLvdNkvDZViZ4fcgxA+FQoTDYZaXl2m1Wiil6PV6tFqtAeLMApOS5k1a6yOlVAp4Tin1Xa31\n", - "16cxsUkhX/TS0hI+n8/8KiORCOl0mu3tbR5//HF2dnY4PT01lqVUKqG1pt1uU61WzRcl/sNlvAeP\n", - "x4PP5zMjHA4TjUaJRqNEIhHq9TpKKbrdLvV63SylskxNm0ATkUZrfdS/ZpVSX+C8teXSSSNfsFIK\n", - "r9dLIpEglUqRSqVYXV1lZ2eH7e1tVldXiUQixlfpdrs0m03c7vOPRZ53Oh263e6ArzBLDPswy8vL\n", - "xONxEokEiUSCSCRCOBw2o1gs4vP50FpTr9cH3k+32536/MYmjVIqCLi01hWlVAh4O/DbU5vZmLA/\n", - "bDHliUSCnZ0dHnvsMa5du0YqlSKZTJJKpYhEIvR6PTqdDu12m3q9bpambrdLq9Wi2+2aX++83oPt\n", - "w4TDYdLpNNeuXePatWtEo1GCwSDBYJBAIMDJyQlnZ2fU63Xy+bx5L1rrmSxVk1iaNeALfRPqBv5K\n", - "a/2VqcxqQgyv/0KaZ555hqeffppQKEQwGCQUCuHz+cyH3Gq18Pv9d1kaCWXnRRpgwHlfXl5mfX2d\n", - "J598kte97nXEYrG7lqt6vU6xWOTg4IBGo2EIM4sldWzSaK1vAa+f4lwmgu3D2D5ANBollUoZx/ep\n", - "p54a+BVrrc1VTLodfrfb7bm/F3HavV4vXq/XRHs7Ozs89dRTRCIRQ6qlpSWq1SqRSIRAIIDH45m5\n", - "DzaNkPvSIR+QECYWi5mRSqXY2dkhlUoRDodxu920221DiGazyeHhIUdHR2bs7e2Ry+Wo1+uX8n68\n", - "Xi/Ly8tmbGxskEwmiUajBAIBAOr1ukkV7O7ucnx8TLFYpFar0Wq1aLfbM4uiFp409vrvcrnw+/2s\n", - "rKyQTqdJp9Nsbm5y/fp1VldXCYfDuFwuut2uCa9LpRJ7e3tm7O/vk8/nKRQKl0qaSCRinPeNjQ1S\n", - "qZTxZTqdDrVazcxTSFMoFKjVajSbTeOHOaS5D4bzMLFYjI2NDR5//HEee+wx1tbWjKVxuVx0Oh2q\n", - "1Sq5XI5MJsPu7i63bt3i1q1b3Llzx/yCm83mpbwfmzTb29tsbm4a0tjJvGw2y97e3j0tjR1yTxsL\n", - "Txo7te71evH7/cRiMeMDPPHEEyanEQqFWFpaotPpUKlUyOVyHBwcmA/+9u3b3Llz59Leh/ggfr+f\n", - "aDTK6uoqW1tbrK+vE4/HCYVCuN1uut2uSULu7u5ycHBANpulVCrRaDRm7octPGkAY2ECgYDxAyKR\n", - "yABZfD4fLpcLrTWNRoNiscjR0RG7u7tkMhlOT09ptVqXMn+JkmREo1ESiQRra2tsbW2RSCRMlFcs\n", - "FsnlcuRyObLZLNlslkKhQKVSodVqzWVDdeFJI7vWPp+PYDBoCBOJRIjFYkSjURNJyY62kOb4+Jjd\n", - "3V1yudylkkYceImWIpEIiUSC9fV1tra2CIVCZu+rVCoNECaTyVAoFKhWq2ZZmjUeOdLIfoxtaexf\n", - "ca/Xo9FoUCqVjKWpVqvGF7gM2GkC2eqIx+Osra2xubmJy+WiVqtRr9ep1+sDpMlmsxSLRVqtlkOa\n", - "izCcl/H7/YRCIWNlpPwhHA4P1Ma0Wi0qlQqFQoFMJsPh4eFAXmbe81dK4fF4CAQCZlsgHo+bjPXa\n", - "2ppJD7TbbbM85fN5MyqVCr1eb+YblYKFI81wAZLs+MqvU/ZmAoEAbrebs7MzY0mq1SrFYpG9vT2y\n", - "2SyVSoVOp2O2COZVYDXsw9h7Y6lUihs3brCxsWGSeN1u15Rs5PN5isUi1WrVhNZ2sdg8sHCkgcEU\n", - "u9frJRgM3pc0vV6PWq1GJpMhl8txfHxsknfVapVOpzP3D932YTweD/F4nM3NTbO3tLW1RTqdJhKJ\n", - "mLzSMGkqlQqNRmNgX2weVXuw4KSxfRkhjZ05tS1NNpvlzp077O7uGksjpLFLPecBl8s14MMIaW7c\n", - "uMFrXvMaEokEsVjsoUgjlhLmV4p6IWmUUp8BfgzIaK1/qP9aHPhrYAe4Dfyk1ro0w3na8xn40CVi\n", - "isViJBIJkskkkUgEv99vHF8hzd7eHq+88gonJyfk83lqtdpMSgcuwrAfFo/HSafTXL9+naefftps\n", - "d3g8HrTWtFotarUap6enA6Sxl6e5zv8h/s1ngWeHXvsN4Dmt9VPAP/efzwUul4tQKDSwCSklD5ub\n", - "m6ytrRGJRPB4PCaJd3p6SrFYJJ/Pm/C6Xq9fWvmmXX0nDnsoFCIQCOD1eg1RTk9POTk54fj4eOAq\n", - "zu+88jLDuNDSaK2/rpS6PvTyO4Ef7T/+M+BrzIk4LpeLcDhMMpk0db6bm5tmpFIpPB4PbrfbRB3D\n", - "pKlUKtTr9UuxMvCDZGQoFCIajRrS+P1+Q5pms2lCbJswJycnZo9pXiH2XfMf8+/WtNYn/ccnnNfW\n", - "zAVLS0uEQiGSySRbW1vs7OyYzcl0Os3KyoqpWJM9pmHSNJtNWq3WlbI0wWDQkKbVatFsNs28hTCZ\n", - "TIaTkxMT9Q13HswLEzvCWms9T309l8tFMBgkHo+zsbHBtWvXWFtbMyMSiVCpVIw1qVarpva3UCiQ\n", - "z+dNOeS8CsXt8k1gwBdbWVkhGo0SDofN8iSbpaVSiePj4wErc5klG4JxSXOilFrXWh8rpdJAZpqT\n", - "ehjcby2XCjuxNFI7Yye/Zh0p2Yk7ON+A9Pv9BAIB/H4/6+vrbGxsmJFOp4nH4wSDQZRSNJtNCoUC\n", - "BwcHvPLKK2Z/rFqtXmpHhGBc0nwJ+Bng9/rXL05tRmPCJoNdgSc1vhJlzCu0tpOQgUBgoDAsnU4P\n", - "kCaZTLKyskIgEEApRaPRoFAosL+/z0svvcTx8TH5fJ5qtXopy9EwHibk/hznTm9SKbUH/BbwMeBv\n", - "lFLvox9yz3KSF8EmgVgau1hcugmGk2AzlMMdKA4LBoOsrKyYJVTIsrm5ycbGhtnuENLYluall14i\n", - "n8+bRr6FsDRa6/fc5z+9bcpzGQvDhLFJIxZGliX5Iu3Hw71BYx5lNPDYrt+VFIHkYiQ1YFsbr9dr\n", - "+soBY2kODw+5efOm6fS8KljIjPCDIG2rwWDQEGdzc9NU6IdCobsa/GWHWGprR4Xb7R4YUuIgY9iH\n", - "SSaTpqhKEnh2z3ipVDIh9VU8N/2RI400yEmVnpj7s7MzU3RuR09SBVcul6lUKlSr1ZH/n+Lo2g6v\n", - "9CQFAgHTpCdDCsUk8yu+lyxBUrZ5WSH1RXgkSePxeAx5JFnmdrsJh8Osrq4asojagpQa5HI50yg3\n", - "CuxuRxk2MeLxOCsrK8TjceLxuMnHyIaldEVI9rpUKlGtVk3D21XDQpPG9kPksU0WwCwBktupVCrG\n", - "15EOysPDQ4LBoGmSGxVSIWhfZUi/tT2G+5FkiSyXy+RyuQFL45BmCrAr705OTvD7/abJX9LxduQC\n", - "5z5HIBCg1+uZTUwZIiNiF3OPCrEuouQgVxnBYBCfz2dIOexTCVkODw/Z39/n4ODAbBU4y9MUIDW+\n", - "QhrZLZZlwC7vhB8sV36/HzhvD7G/sF6vh8/nIxKJkEwmp+LT+Hy+u557vV4zJ0k+Si5JOiMODw+5\n", - "ffs2h4eHJsx2LM0UYJPG7XYbVYWVlRXq9Trtdtv8om31K2lZHc4Ka62JRCImcppG9CTDlmiTq1LK\n", - "kEb6x21Lc/v2bVP361iaKcEmjSTr4vE4q6urA2GqXd0nX6LP57srpyKY5y9aSCMbk8OkOT09NZGU\n", - "Q5opQGttPnCXy8Xp6SlHR0f4/X601hQKhbuWBilokqu9hMhyZQs02vp1D7MTbveGdzodEz3Jddjx\n", - "FcUq2VCVUL9Wq9FoNMwO/DxLUEfBQpKm0+kMZHaPjo6MoM/x8bHJj0iuRHIn8ppENJIIlP0qCcWl\n", - "CF2+yItQq9XMqFarA8m8cDh8T9KIFo7kh6RFRUgjKYGriIUkjRRPiTOptaZWq5HL5Uxtiq1BIzUr\n", - "y8vLRKNRo6MXCATu2naQGpxisUihUKBUuriKtVgsDowbN24AGDGiYdiWRso4qtXqAGnmXew+Csat\n", - "Ef4I8HNAtv/PPqS1/sdZTdKGkEaI02g0qNVqZLPZgYo4O8kmSbWVlRWSyaQJsWOxmLmnkEa09gqF\n", - "gil8ughS6yKj2+0SDodZX1+/55cupKnVapTLZcrl8l2kucp4GEvzWeCPgD+3XtPAJ7TWn5jJrEaA\n", - "XT8jkPyMvWlpZ1wlxD06OiIejw+Ev51Oh0KhYEaxWLxwDpLFlUL14T4qe9ui1+tRLBbJZDIcHByw\n", - "v7/P4eHhlc7LDGPcGmG4QvrBNnHEzzk7OxvY06lWq8anyeVy7O/vm/pc+wsV7ZpRfBopH202m/ds\n", - "vLPFoaWJP5PJsLe3x82bN029TL1ev5LL0TAm8Wner5T6ac4Pdv/AvFpYhmFr4dkRkERYEqHYCt92\n", - "8k0cYTuCkvzJKHkb29kdLvYSAovAtSQm9/f3uXXrFoVCwXRIPMqk+STwO/3HHwU+DrxvKjMaA+KT\n", - "CGRrwMa98jP306QbtbZmOCNsE1lEoWVTslarGUuzv7/PzZs3zeakhNlXHWORRmttvEOl1KeAL09t\n", - "RlPC8Bc+y1+waOTZOn8icQKYzgLZTRcRonK5bHSK5yk5OynGIo1SKi3C08BPAN+a3pQWDxKJSTnn\n", - "+vo6sVjM7He1Wi3TWSAbkrlcjnK5TLvdvqfzfJUxTo3wh4G3KqVez3kUdQv4hZnO8opDpGfX1ta4\n", - "fv36XaSxlbdu3rzJ4eGhUa2QRN6iEAbGrxH+zAzmsrCwLc21a9cGSCOVgyKiJBuSInkm0q2LhIXL\n", - "CF8FSBQme1m2AJF0eUrxl123I86w7C3NS4Ro2nBIMwakElCG1P6KTyNbGCJ1Mpw8XCT/5V5wSDMG\n", - "pHBdNP1swqytrZmWFBFVsjPTw201iwiHNCNCKgGDwSCxWMwsTba1sZOMYmnsDVFb8mwR4ZBmDAhp\n", - "RH3L1iqWsxds/0UOIZPd7GazOdOzC2YNhzRjQNQ4ZQd9eXnZlJMCRu5M9q+KxaI5uU52s+XYwEWE\n", - "Q5oxIDXHYmnsY3MAc3ZBuVweqMuRgivZ2LwsUaVJ4ZBmDIilGSaNfbiYCCtKeYWQxhaHhMs753sS\n", - "OKQZA/dankQY8uzsbKBYXPaZpFh8kfaY7oeHEWp0MITh5WmYNI1Gg9PTU7OTLQd2NJvNhbQsw3As\n", - "zYiwZemFNKKXN3z2QjabfSRJ80BLo5TaVkr9i1Lqf5VS31ZK/XL/9bhS6jml1PeVUl9RSsXmM92r\n", - "AQm57eXJ5/OxtLRkSHM/S/Mo4KLlqQP8qtb6GeBHgF9USr2WS9QRvgwISaLRqJE6k7OxRVzRbrlt\n", - "t9sm5BYFCBGKfhQszQOXJ631MXDcf1xVSn0H2OQSdYTnDfvQDulwECn9YDA4IE0iFYRSmyylptIu\n", - "vKh5mWE8tE/TLy5/A/CfXKKO8GVABAKkFSaVShGLxQiFQqZDU6Iiux5YSGOLRT7ylkaglAoDfwf8\n", - "ita6MtQDPVcd4XlDLM3y8jKJRIJ0Ok0ymSQWixEMBvF6vYYMdhmEbWmktfdRIAw8XOWeh3PC/IXW\n", - "WqRfL11HeJ4Q0iSTSaOZJ2G2FI7b8mfVatUcQGpbF1uE2h5298Ii5HAuip4U8Gng/7TWf2D9J9ER\n", - "hiuiIzwr2JYmmUySTqdJJBIsLy8bta1OpzOQAS6Xy3cd2GGfHS7FW16v12jXiGzK/TokrhIusjRv\n", - "An4KeFEp9Xz/tQ9xxXSEZw3xaRKJBBsbG/ckjew13Ys0tq6wLRUrQ0omhltxriouip7+nftboyuh\n", - "IzxriIafbWlERmTY0sjZmOVy2RzgJfcY1suxdXNEAWMRCANORvihIF+4dGfaywkMhtoirmjndoY1\n", - "cWSpEjLVajWjHnFVxRltOKSZATweD6FQyEjbh0KhgfPChyv75ORe6SO/6s6wQ5opYFjDzy4HbbVa\n", - "rKysmKMSk8mkadMVy+Tz+YyY0qPgCDsYESJ0LZZGaz1wiMbGxoZxnBuNhjm7qVqtksvlHNK8WuB2\n", - "u40sbSwWw+VyDTwXSxOJRPD5fCZ7LMJGktNxHOFXESSPI1YmFouZRF+9Xjc5GXF6S6US+XzejKOj\n", - "IwqFwiMvNeLAgtfrNYdjBIPBu9Q+7VNe6vW6kRqRowbl2OR6vX7lnWBwSDMVSAgeDAYHBBblKod1\n", - "5HK5AX2ag4MD9vb2zHmbV1WhfBgOaR4Cw+KNtg8ie0f2LrfdFNfpdMjlcmSzWTOOjo7IZDLm8Ay5\n", - "n11wfpXhkOYCiD6xHA/o9/tN6CyJOFusWvSBbW3hUqk0MMSXkWo+u+tyEeCQ5gIIafL5vJFGs4/V\n", - "cblcxuGVIb1OoitsC1MPX6Wib5FEAR5IGqXUNudSsKucCxj9idb6Dy9TR3je0FrTaDTI5/MAZimR\n", - "SCkQCBgtYDmh7uTkxJylfXx8bEQf5Tq8fC1aD9RFlkZqhF/oF2L9j1LqOa6QjvA8ID6NUopOpzNw\n", - "bpMcvWOPTCYzMERexK7esx3lRcO4NcJwhXSEZw0RrxanVyRERFpfcjKyTA0fKSj+yrwOk5811MNO\n", - "vl8j/K/AM8AHgPcCp9xHR/hRKgGVsyZlDJ8iJ5GP5GZsEsnxO3YYDpMd6TwvaK3vaRgeijT9pelr\n", - "wO9qrb+olFrlB/7MR4G01vp9Q39zdT+NEWGXMSil7jr4azgvYyug20vQIhDFxtik6dcI/z3wD0Ml\n", - "n/LfrwNflsM2rNcX45NxcF/cjzRj1Qj3i8kFr3od4VcbHmhplFJvBv4NeJHziAngN4H3AAM6wlYf\n", - "lPytY2kWHBP5NOPAIc3iY6zlyYGDe8EhjYOR4ZDGwchwSONgZDikcTAyHNI4GBkOaRyMjJnlaRw8\n", - "unAsjYOR4ZDGwciYKWmUUs8qpb6rlHpJKfXBKdzvtlLqRaXU80qp/xrj7z+jlDpRSn3Lem1sedv7\n", - "3O8jSqn9/hyfV0o9O8L9pirB+4D7jT1H4O7m9WkNwAW8DFwHPMALwGsnvOctID7B37+Fc7HJb1mv\n", - "/T7w6/3HHwQ+NuH9Pgz82pjzWwde338cBr4HvHbcOT7gfmPPUWs9U0vzRuBlrfVtrXUH+Dzwrinc\n", - "d+wyU63114Hi0Mvv5FzWlv71xye8H4w5R631sdb6hf7jKmBL8I48xwfcb+w5wmyXp01gz3q+zw8m\n", - "PC408FWl1DeUUj8/4b0Es5C3fb9S6ptKqU+Pq+Y+bQle637/MekcZ0maWcTyb9JavwF4B+fq6W+Z\n", - "5s31uR2fdN6fBB7jvN7oCPj4qDcYluCddI79+/1t/37VSec4S9IcANvW823Orc3Y0Fof9a9Z4Auc\n", - "L4GT4kQptQ6mInEieVutdUb3AXxq1Dk+SIJ3nDla9/tLud+kc5wlab4BPKmUuq6U8gLv5lxKdiwo\n", - "pYJKqeX+4xDwdqZTZjpVedtJSmGnLcE7s3LdSaKZh/De38G5x/4y512Yk9zrMc4jsBeAb49zP+Bz\n", - "wCHQ5tzfei8QB74KfB/4ChCb4H4/y3lH6ovAN/tf7toI93szcNZ/j8/3x7PjzvE+93vHJHPUWjvb\n", - "CA5Gh5MRdjAyHNI4GBkOaRyMDIc0DkaGQxoHI8MhjYOR4ZDGwchwSONgZPw/UDzRgG/E2K8AAAAA\n", - "SUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGNNJREFUeJztnVmM7Fldxz+na1+6qrqW7q5ebt+ZuTMDTEzgBU2AyAMh\nQ0xAXyQkRoNofFA0SiLig6D4gCYQow9EZYlbQKOBgInKYETxwQUzw4CyzMxdeu/au/a1jw9dv8Op\nukvfWrvrzv+bnPyram7/51TVt37n9/ud3+97lNYaBw5GwdJlT8DB4sEhjYOR4ZDGwchwSONgZDik\ncTAyHNI4GBljk0Yp9axS6rtKqZeUUh+c5qQcXG2ocfI0SikX8D3gbcAB8N/Ae7TW35nu9BxcRYxr\nad4IvKy1vq217gCfB941vWk5uMpwj/l3m8Ce9Xwf+GH7HyilnFTzgkNrre71+riWxiHEqxjjkuYA\n2Laeb3NubRy8CjAuab4BPKmUuq6U8gLvBr40vWk5uMoYy6fRWneVUr8E/BPgAj7tRE6vHowVcj/U\njR1HeOExbUfYwasYDmkcjAyHNA5GhkMaByPDIY2DkeGQxsHIcEjjYGQ4pHEwMhzSOBgZDmkcjAyH\nNA5GxrhFWAAopW4DZaAHdLTWb5zGpKYNpdTAY7fbjcvlMtezszO01macnZ0NDHkd4LLamIffg1KK\npaUllFID87bnOitMRBrOi7HeqrUuTGMys4J8wEtLS7jdbiKRCMvLy0QiEUKhEN1ul06nY0az2aTR\naNBsNmk2m5ydndHr9cz1MuZvE8XtduPxeMzo9Xq0220zzs7OzN/OgkCTkgbgnjuhVwXyQbtcLlwu\nFz6fj5WVFdbX10mn0yQSCUOORqNBo9GgXC5zenpKuVwGoNPpoJSi0+lc6nuQ4fV6CQQCZnQ6Her1\nOrVajV6vN3OrOA1L81WlVA/4Y631n05hTlOHUsosRz6fj3g8zvb2Nk888QRbW1tUq1UzKpUK2WwW\nj8cDQLvdNkvDZViZ4fcgxA+FQoTDYZaXl2m1Wiil6PV6tFqtAeLMApOS5k1a6yOlVAp4Tin1Xa31\n16cxsUkhX/TS0hI+n8/8KiORCOl0mu3tbR5//HF2dnY4PT01lqVUKqG1pt1uU61WzRcl/sNlvAeP\nx4PP5zMjHA4TjUaJRqNEIhHq9TpKKbrdLvV63SylskxNm0ATkUZrfdS/ZpVSX+C8teXSSSNfsFIK\nr9dLIpEglUqRSqVYXV1lZ2eH7e1tVldXiUQixlfpdrs0m03c7vOPRZ53Oh263e6ArzBLDPswy8vL\nxONxEokEiUSCSCRCOBw2o1gs4vP50FpTr9cH3k+32536/MYmjVIqCLi01hWlVAh4O/DbU5vZmLA/\nbDHliUSCnZ0dHnvsMa5du0YqlSKZTJJKpYhEIvR6PTqdDu12m3q9bpambrdLq9Wi2+2aX++83oPt\nw4TDYdLpNNeuXePatWtEo1GCwSDBYJBAIMDJyQlnZ2fU63Xy+bx5L1rrmSxVk1iaNeALfRPqBv5K\na/2VqcxqQgyv/0KaZ555hqeffppQKEQwGCQUCuHz+cyH3Gq18Pv9d1kaCWXnRRpgwHlfXl5mfX2d\nJ598kte97nXEYrG7lqt6vU6xWOTg4IBGo2EIM4sldWzSaK1vAa+f4lwmgu3D2D5ANBollUoZx/ep\np54a+BVrrc1VTLodfrfb7bm/F3HavV4vXq/XRHs7Ozs89dRTRCIRQ6qlpSWq1SqRSIRAIIDH45m5\nDzaNkPvSIR+QECYWi5mRSqXY2dkhlUoRDodxu920221DiGazyeHhIUdHR2bs7e2Ry+Wo1+uX8n68\nXi/Ly8tmbGxskEwmiUajBAIBAOr1ukkV7O7ucnx8TLFYpFar0Wq1aLfbM4uiFp409vrvcrnw+/2s\nrKyQTqdJp9Nsbm5y/fp1VldXCYfDuFwuut2uCa9LpRJ7e3tm7O/vk8/nKRQKl0qaSCRinPeNjQ1S\nqZTxZTqdDrVazcxTSFMoFKjVajSbTeOHOaS5D4bzMLFYjI2NDR5//HEee+wx1tbWjKVxuVx0Oh2q\n1Sq5XI5MJsPu7i63bt3i1q1b3Llzx/yCm83mpbwfmzTb29tsbm4a0tjJvGw2y97e3j0tjR1yTxsL\nTxo7te71evH7/cRiMeMDPPHEEyanEQqFWFpaotPpUKlUyOVyHBwcmA/+9u3b3Llz59Leh/ggfr+f\naDTK6uoqW1tbrK+vE4/HCYVCuN1uut2uSULu7u5ycHBANpulVCrRaDRm7octPGkAY2ECgYDxAyKR\nyABZfD4fLpcLrTWNRoNiscjR0RG7u7tkMhlOT09ptVqXMn+JkmREo1ESiQRra2tsbW2RSCRMlFcs\nFsnlcuRyObLZLNlslkKhQKVSodVqzWVDdeFJI7vWPp+PYDBoCBOJRIjFYkSjURNJyY62kOb4+Jjd\n3V1yudylkkYceImWIpEIiUSC9fV1tra2CIVCZu+rVCoNECaTyVAoFKhWq2ZZmjUeOdLIfoxtaexf\nca/Xo9FoUCqVjKWpVqvGF7gM2GkC2eqIx+Osra2xubmJy+WiVqtRr9ep1+sDpMlmsxSLRVqtlkOa\nizCcl/H7/YRCIWNlpPwhHA4P1Ma0Wi0qlQqFQoFMJsPh4eFAXmbe81dK4fF4CAQCZlsgHo+bjPXa\n2ppJD7TbbbM85fN5MyqVCr1eb+YblYKFI81wAZLs+MqvU/ZmAoEAbrebs7MzY0mq1SrFYpG9vT2y\n2SyVSoVOp2O2COZVYDXsw9h7Y6lUihs3brCxsWGSeN1u15Rs5PN5isUi1WrVhNZ2sdg8sHCkgcEU\nu9frJRgM3pc0vV6PWq1GJpMhl8txfHxsknfVapVOpzP3D932YTweD/F4nM3NTbO3tLW1RTqdJhKJ\nmLzSMGkqlQqNRmNgX2weVXuw4KSxfRkhjZ05tS1NNpvlzp077O7uGksjpLFLPecBl8s14MMIaW7c\nuMFrXvMaEokEsVjsoUgjlhLmV4p6IWmUUp8BfgzIaK1/qP9aHPhrYAe4Dfyk1ro0w3na8xn40CVi\nisViJBIJkskkkUgEv99vHF8hzd7eHq+88gonJyfk83lqtdpMSgcuwrAfFo/HSafTXL9+naefftps\nd3g8HrTWtFotarUap6enA6Sxl6e5zv8h/s1ngWeHXvsN4Dmt9VPAP/efzwUul4tQKDSwCSklD5ub\nm6ytrRGJRPB4PCaJd3p6SrFYJJ/Pm/C6Xq9fWvmmXX0nDnsoFCIQCOD1eg1RTk9POTk54fj4eOAq\nzu+88jLDuNDSaK2/rpS6PvTyO4Ef7T/+M+BrzIk4LpeLcDhMMpk0db6bm5tmpFIpPB4PbrfbRB3D\npKlUKtTr9UuxMvCDZGQoFCIajRrS+P1+Q5pms2lCbJswJycnZo9pXiH2XfMf8+/WtNYn/ccnnNfW\nzAVLS0uEQiGSySRbW1vs7OyYzcl0Os3KyoqpWJM9pmHSNJtNWq3WlbI0wWDQkKbVatFsNs28hTCZ\nTIaTkxMT9Q13HswLEzvCWms9T309l8tFMBgkHo+zsbHBtWvXWFtbMyMSiVCpVIw1qVarpva3UCiQ\nz+dNOeS8CsXt8k1gwBdbWVkhGo0SDofN8iSbpaVSiePj4wErc5klG4JxSXOilFrXWh8rpdJAZpqT\nehjcby2XCjuxNFI7Yye/Zh0p2Yk7ON+A9Pv9BAIB/H4/6+vrbGxsmJFOp4nH4wSDQZRSNJtNCoUC\nBwcHvPLKK2Z/rFqtXmpHhGBc0nwJ+Bng9/rXL05tRmPCJoNdgSc1vhJlzCu0tpOQgUBgoDAsnU4P\nkCaZTLKyskIgEEApRaPRoFAosL+/z0svvcTx8TH5fJ5qtXopy9EwHibk/hznTm9SKbUH/BbwMeBv\nlFLvox9yz3KSF8EmgVgau1hcugmGk2AzlMMdKA4LBoOsrKyYJVTIsrm5ycbGhtnuENLYluall14i\nn8+bRr6FsDRa6/fc5z+9bcpzGQvDhLFJIxZGliX5Iu3Hw71BYx5lNPDYrt+VFIHkYiQ1YFsbr9dr\n+soBY2kODw+5efOm6fS8KljIjPCDIG2rwWDQEGdzc9NU6IdCobsa/GWHWGprR4Xb7R4YUuIgY9iH\nSSaTpqhKEnh2z3ipVDIh9VU8N/2RI400yEmVnpj7s7MzU3RuR09SBVcul6lUKlSr1ZH/n+Lo2g6v\n9CQFAgHTpCdDCsUk8yu+lyxBUrZ5WSH1RXgkSePxeAx5JFnmdrsJh8Osrq4asojagpQa5HI50yg3\nCuxuRxk2MeLxOCsrK8TjceLxuMnHyIaldEVI9rpUKlGtVk3D21XDQpPG9kPksU0WwCwBktupVCrG\n15EOysPDQ4LBoGmSGxVSIWhfZUi/tT2G+5FkiSyXy+RyuQFL45BmCrAr705OTvD7/abJX9LxduQC\n5z5HIBCg1+uZTUwZIiNiF3OPCrEuouQgVxnBYBCfz2dIOexTCVkODw/Z39/n4ODAbBU4y9MUIDW+\nQhrZLZZlwC7vhB8sV36/HzhvD7G/sF6vh8/nIxKJkEwmp+LT+Hy+u557vV4zJ0k+Si5JOiMODw+5\nffs2h4eHJsx2LM0UYJPG7XYbVYWVlRXq9Trtdtv8om31K2lZHc4Ka62JRCImcppG9CTDlmiTq1LK\nkEb6x21Lc/v2bVP361iaKcEmjSTr4vE4q6urA2GqXd0nX6LP57srpyKY5y9aSCMbk8OkOT09NZGU\nQ5opQGttPnCXy8Xp6SlHR0f4/X601hQKhbuWBilokqu9hMhyZQs02vp1D7MTbveGdzodEz3Jddjx\nFcUq2VCVUL9Wq9FoNMwO/DxLUEfBQpKm0+kMZHaPjo6MoM/x8bHJj0iuRHIn8ppENJIIlP0qCcWl\nCF2+yItQq9XMqFarA8m8cDh8T9KIFo7kh6RFRUgjKYGriIUkjRRPiTOptaZWq5HL5Uxtiq1BIzUr\ny8vLRKNRo6MXCATu2naQGpxisUihUKBUuriKtVgsDowbN24AGDGiYdiWRso4qtXqAGnmXew+Csat\nEf4I8HNAtv/PPqS1/sdZTdKGkEaI02g0qNVqZLPZgYo4O8kmSbWVlRWSyaQJsWOxmLmnkEa09gqF\ngil8ughS6yKj2+0SDodZX1+/55cupKnVapTLZcrl8l2kucp4GEvzWeCPgD+3XtPAJ7TWn5jJrEaA\nXT8jkPyMvWlpZ1wlxD06OiIejw+Ev51Oh0KhYEaxWLxwDpLFlUL14T4qe9ui1+tRLBbJZDIcHByw\nv7/P4eHhlc7LDGPcGmG4QvrBNnHEzzk7OxvY06lWq8anyeVy7O/vm/pc+wsV7ZpRfBopH202m/ds\nvLPFoaWJP5PJsLe3x82bN029TL1ev5LL0TAm8Wner5T6ac4Pdv/AvFpYhmFr4dkRkERYEqHYCt92\n8k0cYTuCkvzJKHkb29kdLvYSAovAtSQm9/f3uXXrFoVCwXRIPMqk+STwO/3HHwU+DrxvKjMaA+KT\nCGRrwMa98jP306QbtbZmOCNsE1lEoWVTslarGUuzv7/PzZs3zeakhNlXHWORRmttvEOl1KeAL09t\nRlPC8Bc+y1+waOTZOn8icQKYzgLZTRcRonK5bHSK5yk5OynGIo1SKi3C08BPAN+a3pQWDxKJSTnn\n+vo6sVjM7He1Wi3TWSAbkrlcjnK5TLvdvqfzfJUxTo3wh4G3KqVez3kUdQv4hZnO8opDpGfX1ta4\nfv36XaSxlbdu3rzJ4eGhUa2QRN6iEAbGrxH+zAzmsrCwLc21a9cGSCOVgyKiJBuSInkm0q2LhIXL\nCF8FSBQme1m2AJF0eUrxl123I86w7C3NS4Ro2nBIMwakElCG1P6KTyNbGCJ1Mpw8XCT/5V5wSDMG\npHBdNP1swqytrZmWFBFVsjPTw201iwiHNCNCKgGDwSCxWMwsTba1sZOMYmnsDVFb8mwR4ZBmDAhp\nRH3L1iqWsxds/0UOIZPd7GazOdOzC2YNhzRjQNQ4ZQd9eXnZlJMCRu5M9q+KxaI5uU52s+XYwEWE\nQ5oxIDXHYmnsY3MAc3ZBuVweqMuRgivZ2LwsUaVJ4ZBmDIilGSaNfbiYCCtKeYWQxhaHhMs753sS\nOKQZA/dankQY8uzsbKBYXPaZpFh8kfaY7oeHEWp0MITh5WmYNI1Gg9PTU7OTLQd2NJvNhbQsw3As\nzYiwZemFNKKXN3z2QjabfSRJ80BLo5TaVkr9i1Lqf5VS31ZK/XL/9bhS6jml1PeVUl9RSsXmM92r\nAQm57eXJ5/OxtLRkSHM/S/Mo4KLlqQP8qtb6GeBHgF9USr2WS9QRvgwISaLRqJE6k7OxRVzRbrlt\nt9sm5BYFCBGKfhQszQOXJ631MXDcf1xVSn0H2OQSdYTnDfvQDulwECn9YDA4IE0iFYRSmyylptIu\nvKh5mWE8tE/TLy5/A/CfXKKO8GVABAKkFSaVShGLxQiFQqZDU6Iiux5YSGOLRT7ylkaglAoDfwf8\nita6MtQDPVcd4XlDLM3y8jKJRIJ0Ok0ymSQWixEMBvF6vYYMdhmEbWmktfdRIAw8XOWeh3PC/IXW\nWqRfL11HeJ4Q0iSTSaOZJ2G2FI7b8mfVatUcQGpbF1uE2h5298Ii5HAuip4U8Gng/7TWf2D9J9ER\nhiuiIzwr2JYmmUySTqdJJBIsLy8bta1OpzOQAS6Xy3cd2GGfHS7FW16v12jXiGzK/TokrhIusjRv\nAn4KeFEp9Xz/tQ9xxXSEZw3xaRKJBBsbG/ckjew13Ys0tq6wLRUrQ0omhltxriouip7+nftboyuh\nIzxriIafbWlERmTY0sjZmOVy2RzgJfcY1suxdXNEAWMRCANORvihIF+4dGfaywkMhtoirmjndoY1\ncWSpEjLVajWjHnFVxRltOKSZATweD6FQyEjbh0KhgfPChyv75ORe6SO/6s6wQ5opYFjDzy4HbbVa\nrKysmKMSk8mkadMVy+Tz+YyY0qPgCDsYESJ0LZZGaz1wiMbGxoZxnBuNhjm7qVqtksvlHNK8WuB2\nu40sbSwWw+VyDTwXSxOJRPD5fCZ7LMJGktNxHOFXESSPI1YmFouZRF+9Xjc5GXF6S6US+XzejKOj\nIwqFwiMvNeLAgtfrNYdjBIPBu9Q+7VNe6vW6kRqRowbl2OR6vX7lnWBwSDMVSAgeDAYHBBblKod1\n5HK5AX2ag4MD9vb2zHmbV1WhfBgOaR4Cw+KNtg8ie0f2LrfdFNfpdMjlcmSzWTOOjo7IZDLm8Ay5\nn11wfpXhkOYCiD6xHA/o9/tN6CyJOFusWvSBbW3hUqk0MMSXkWo+u+tyEeCQ5gIIafL5vJFGs4/V\ncblcxuGVIb1OoitsC1MPX6Wib5FEAR5IGqXUNudSsKucCxj9idb6Dy9TR3je0FrTaDTI5/MAZimR\nSCkQCBgtYDmh7uTkxJylfXx8bEQf5Tq8fC1aD9RFlkZqhF/oF2L9j1LqOa6QjvA8ID6NUopOpzNw\nbpMcvWOPTCYzMERexK7esx3lRcO4NcJwhXSEZw0RrxanVyRERFpfcjKyTA0fKSj+yrwOk5811MNO\nvl8j/K/AM8AHgPcCp9xHR/hRKgGVsyZlDJ8iJ5GP5GZsEsnxO3YYDpMd6TwvaK3vaRgeijT9pelr\nwO9qrb+olFrlB/7MR4G01vp9Q39zdT+NEWGXMSil7jr4azgvYyug20vQIhDFxtik6dcI/z3wD0Ml\nn/LfrwNflsM2rNcX45NxcF/cjzRj1Qj3i8kFr3od4VcbHmhplFJvBv4NeJHziAngN4H3AAM6wlYf\nlPytY2kWHBP5NOPAIc3iY6zlyYGDe8EhjYOR4ZDGwchwSONgZDikcTAyHNI4GBkOaRyMjJnlaRw8\nunAsjYOR4ZDGwciYKWmUUs8qpb6rlHpJKfXBKdzvtlLqRaXU80qp/xrj7z+jlDpRSn3Lem1sedv7\n3O8jSqn9/hyfV0o9O8L9pirB+4D7jT1H4O7m9WkNwAW8DFwHPMALwGsnvOctID7B37+Fc7HJb1mv\n/T7w6/3HHwQ+NuH9Pgz82pjzWwde338cBr4HvHbcOT7gfmPPUWs9U0vzRuBlrfVtrXUH+Dzwrinc\nd+wyU63114Hi0Mvv5FzWlv71xye8H4w5R631sdb6hf7jKmBL8I48xwfcb+w5wmyXp01gz3q+zw8m\nPC408FWl1DeUUj8/4b0Es5C3fb9S6ptKqU+Pq+Y+bQle637/MekcZ0maWcTyb9JavwF4B+fq6W+Z\n5s31uR2fdN6fBB7jvN7oCPj4qDcYluCddI79+/1t/37VSec4S9IcANvW823Orc3Y0Fof9a9Z4Auc\nL4GT4kQptQ6mInEieVutdUb3AXxq1Dk+SIJ3nDla9/tLud+kc5wlab4BPKmUuq6U8gLv5lxKdiwo\npYJKqeX+4xDwdqZTZjpVedtJSmGnLcE7s3LdSaKZh/De38G5x/4y512Yk9zrMc4jsBeAb49zP+Bz\nwCHQ5tzfei8QB74KfB/4ChCb4H4/y3lH6ovAN/tf7toI93szcNZ/j8/3x7PjzvE+93vHJHPUWjvb\nCA5Gh5MRdjAyHNI4GBkOaRyMDIc0DkaGQxoHI8MhjYOR4ZDGwchwSONgZPw/UDzRgG/E2K8AAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3207,97 +831,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEvtJREFUeJzt3X+QXXV5x/HPJxuS7OYXQwNYdbNLG20loxWrDoKYpNoO\n", - "ZQRta1XaqrUdOx21UqqOyNj+4bSj1elIHaadsVB/4K+2alGmVaQ1iRFKIpgQSFAMYyhoZQkkkt3N\n", - "j014+se9G5ewN3uePfnuuTe+XzMM95z73HO+93zPOfvknHO/jyNCAAAAmL15TTcAAACg15FQAQAA\n", - "1ERCBQAAUBMJFQAAQE0kVAAAADWRUAEAANQ0v8mV22bMBgAA0DMiwtPNL5pQ2b5Y0jWS+iRdFxF/\n", - "e3zM+973vqd8buPGjVqzZs2s13v06NFUfGYsrieeeKJIbC+OB2ZPu0/p1ltv1YUXXviked2wjSXp\n", - "yJEjlWMPHz5cJPbgwYNFYufNy11w7uvre8q8HTt2aPXq1U+Zf9ppp9VabieZY3V0dLRy7N69eyvH\n", - "StK+ffsqx46Pj1eOPXToUOXYzD7UaRvv379fS5cufcr8TP8NDAxUju3v768cu2jRosqx8+dX/9OU\n", - "2d+kzuet6WTOF5ljdbp9aGRkRGeddVal2BM5cOBA5dhS57iJiYnKsZlzQPZv+1wrdsvPdp+kayVd\n", - "LOlcSZfbfk6p9QEAADSl5DNUL5a0KyJ2R8SEpM9LelXB9QEAADSiZEL1DEkPTpl+qD1vRkNDQ0Ua\n", - "hLkxODjYdBMwS2eeeWbTTUANCxYsaLoJmKXFixc33QTUVDKhmvVDQcPDwyexGZhrK1eubLoJmKXp\n", - "nuFA71i4cGHTTcAskVD1vpIPpf9Q0tRLFYNqXaV6ko0bNx57PTQ0RDIFAAB6TsmE6g5Jz7I9LOlH\n", - "kl4n6fLjg+r8mg8AAKAbFEuoIuKI7bdLulmtYROuj4h7S60PAACgKUXHoYqIr0r6asl1AAAANK3R\n", - "kdKl6r9KyQwMmRkUTsoNDpkZWKzXlivlBrLLDN6WWW4mtuT3KzUYaalB77IDAJYadLJUbEZ2uZlt\n", - "UWrgxMyAk9kBbTP7UeYYGRsbqxybOS9nBhfNDFoq5Y7rUuetkue4zGCry5cvrxybGTg4M4hrpq+z\n", - "v2LNHFNV94sNGzZ0fI9afgAAADWRUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFAABQ\n", - "EwkVAABATSRUAAAANZFQAQAA1ERCBQAAUFPjtfyq1qTK1OTJytQoKtWOUnXjMsuVcnWjStUHy3y/\n", - "bM22UjUTs9u5RBuyMjUFS9X9y/RHqWMk246+vr7KsZn6dZlj5ODBg5VjpVz9wcx+UWofeuyxxyrH\n", - "ZrdFqZp7mf0zU38wU5tPytXGK1WfL7PcUucWqdzfnU6KXqGyPWh7ve0dtu+x/Y6S6wMAAGhC6StU\n", - "E5KujIhttpdIutP2LRFxb+H1AgAAzJmiV6gi4scRsa39elTSvZKeXnKdAAAAc23OHkq3PSzpPEmb\n", - "52qdAAAAc2FOEqr27b4vSLqifaUKAADglFH8V362T5P0RUmfjogbj39//fr1x14PDw/rnHPOKd0k\n", - "AACAGY2Ojmp0tNp1oKIJlVtjDFwvaWdEXDNdzLp160o2AQAAYFaWLFmiJUuWHJseGRnpGFv6lt+F\n", - "kv5A0jrbW9v/XVx4nQAAAHOq6BWqiPiWGI0dAACc4kh2AAAAamq89Eym5EM3KFVipFtKl2RK62TK\n", - "aixYsKBybKZsQSZWyn2/UiVGSn2/TJkFKbdvlCpJlGlDydIsmRIqpUqMLF68uHLs8uXLK8dK0sKF\n", - "CyvHZr7f+Ph4kdj9+/dXjn388ccrx0rl/uYsW7ascuzZZ59dJFbKlYjJHH+ZPhkbGysSmymhJOVK\n", - "1VTdFtu3b+/4HleoAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAAAGoioQIAAKiJhAoAAKAmEioA\n", - "AICaSKgAAABqIqECAACoqfHSM1VlyiFky7iUKgWSKXNSqvRMpiSKlCu3kvl+mdIzpWKlXCmQTF9n\n", - "tlu2zVVlywxllCqhUio2u99n4jOlSzL7xcDAQOXYzLaQcueXTImfQ4cOFYnNHHtnnHFG5VgpV7an\n", - "v78/teyqRkdHK8fu2bMntezMds7InO9L7cuZ5Uq581bV73fttdd2fK/jWcT270gKSdOtJSLiS1VW\n", - "brtP0h2SHoqIS6t8BgAAoJec6J9ll6qVUHVSKaGSdIWknZKWVm0UAABAL+mYUEXEH9ZduO1nSrpE\n", - "0t9I+ou6ywMAAOhGM96otv0029fb/lp7+lzbf1xx+R+R9G5J5R7uAAAAaFiVJ/8+Ienrkp7env6+\n", - "pCtn+pDtV0oaiYitmv45LAAAgFNClZ+2rIiIf7F9lSRFxITtKj8DuUDSZbYvkbRI0jLbn4qIN04N\n", - "2rhx47HXQ0NDGh4ertx4AACAUjZs2KANGzZUiq2SUI3a/rnJCdvnS/rJTB+KiKslXd3+zBpJ7zo+\n", - "mZKkNWvWVGooAADAXFq7dq3Wrl17bPr9739/x9gqCdU7Jd0k6Rds3ybpTEmvmUW7ygy0BAAA0LAZ\n", - "E6qIuNP2yyT9klrPQn0vIiYyK4mIjZI2zhgIAADQg2ZMqGz3S3qrpJeqdZVpk+1/jIiDpRsHAADQ\n", - "C6rc8vuUpMclfVStK1S/J+kGSb9bsF0AAAA9o0pCtToizp0y/Q3bO09WA6rWjcrUosrWNCu17Exs\n", - "qRqBmdisbqhVmO3rTHymplkmNmPRokWVYzN1q6RcnblMrbvDhw9Xjh0bG6scm6lRdvBg7gJ6qbqU\n", - "CxcurBybqWmWPa4z55fMsZppR4m6alL+2MvUYsy0I1OfL7MvZ89xme+X6ZPMuSiz32fOLdk6qJll\n", - "Z75fJ1WOsu/YfsnkRPtXfnfWXjMAAMAp4kTFke+eEnOr7QfVeoZqpaTvzUHbAAAAesJMxZEBAAAw\n", - "gxMVR949ddr2WWqNeA4AAIApqhRHvsz29yX9QK2xpHZL+mrhdgEAAPSMKg+l/7Wkl0i6LyLOkfRy\n", - "SZuLtgoAAKCHVEmoJiJij6R5tvsiYr2kFxZuFwAAQM+oMkjDXttLJW2S9BnbI5KqD7gBAABwiqty\n", - "herVksYlXSnpa5J2iV8AAgAAHFOlOPLk1aijkj5RtDUAAAA96EQDe46qNZDndCIilp2MBpQoSZIp\n", - "qdEtMtuhVBkXqVxpnUw5hFLLzcaXKkmUacP4+Hjl2Ew5i2w7MiU4MsdfpiRKqfJMUq4EziOPPFI5\n", - "NlMC58CBA0WWK5U7v2RKe/T391eOzZQYKVlyKRObOZ4y/ZfZN6XcOaNUmaFM/2ViM/uQlNs3MuVy\n", - "OjnROFRL6i7c9umSrpO0Wq3k7I8i4va6ywUAAOgm1f95MTt/L+k/I+I1tudLql79EwAAoEcUS6hs\n", - "L5d0UUS8SZIi4oikn5RaHwAAQFOqP5SQd46kR2x/3PZ3bP+T7YGC6wMAAGhEyYRqvqQXSPqHiHiB\n", - "pDFJVxVcHwAAQCNKPkP1kKSHIuLb7ekvaJqEatOmTcder1y5UkNDQwWbBAAAUM2ePXv06KOPVoot\n", - "llBFxI9tP2j72RFxn6RXSNpxfNxFF11UqgkAAACztmLFCq1YseLY9H333dcxtvSv/P5MrXI1CyTd\n", - "L+nNhdcHAAAw54omVBFxl6QXlVwHAABA00o+lA4AAPAzofQtvxkdOXKkUlzJshOlyl+UanPJbZGR\n", - "WXYmNlPOYtGiRZVjpVx5gUzZgsz3y5SIOXz4cOXYqsfSpEzZicw+l9nGy5cvrxy7dOnSyrFLluQK\n", - "PSxeXH3M4cy2mJiYSLWjlExppMz+mSmhki2NVFWmP7LxmdIzmXNR5hyXPYdnjuvM/pk5v3RDCTOp\n", - "TPmwm266qeN7XKECAACoiYQKAACgJhIqAACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAAgJpIqAAA\n", - "AGoioQIAAKiJhAoAAKCmxkvPVB0aPjM8fcmh+ksMZS/lShyUaq9UrgROph3j4+OVY/ft21c5Vsr1\n", - "SbaUS1WZEhWlSuVIuTIOmRI4pcqRZMpkZMrUSLlSNQMDA5Vjly1bVjm2VMkQqdz5M9PmTF9njr1s\n", - "6ZlMOzLbbcGCBZVjS5bX6u/vLxKbOUZK7ReZvw3ZZZ+M0khFr1DZfq/tHbbvtv1Z29X/OgAAAPSI\n", - "YgmV7WFJb5H0goh4rqQ+Sa8vtT4AAICmlLzl97ikCUkDto9KGpD0w4LrAwAAaESxK1QR8Zikv5P0\n", - "v5J+JGlfRPxXqfUBAAA0peQtv1+U9OeShiU9XdIS279fan0AAABNKXnL74WSbouIRyXJ9pckXSDp\n", - "M1ODbrvttmOvBwcHNTg4WLBJAAAA1ezatUu7du2qFFsyofqupL+03S/poKRXSNpyfNAFF1xQsAkA\n", - "AACzs2rVKq1aterY9M0339wxtuQzVHdJ+pSkOyRtb8/+WKn1AQAANKXowJ4R8SFJHyq5DgAAgKZR\n", - "egYAAKAmEioAAICaGq/ll6mLVUqp+nWZ2FJtyMosO1N/MPP9StUSyy47U0cvU28rU8crUx+sZM2v\n", - "zH6RqX+WkdkWmbpjknT66adXjs2cszK1x/bu3Vs5NlvDMlMbL1MTMlOrMFNfMdN/+/fvrxwr5eog\n", - "Zs4vmeM68/0y+2a2HZn988CBA5Vjx8bGirQhU1NUKldPtxOuUAEAANREQgUAAFATCRUAAEBNJFQA\n", - "AAA1kVABAADUREIFAABQU1cmVLt37266Cajh/vvvb7oJmKXt27fPHISuRf/1rttvv73pJqCmrkyo\n", - "HnjggaabgBpIqHoXf5B7G/3XuzZv3tx0E1BTVyZUAAAAvYSECgAAoCZnS3ec1JXbza0cAAAgKSKm\n", - "rWHWaEIFAABwKuCWHwAAQE0kVAAAADV1XUJl+2Lb37X9fdvvabo96Mz2P9t+2PbdU+adYfsW2/fZ\n", - "/rrt05tsIzqzPWh7ve0dtu+x/Y72fPqwy9leZHuz7W22d9r+QHs+fddDbPfZ3mr7pvY0/dfDuiqh\n", - "st0n6VpJF0s6V9Lltp/TbKtwAh9Xq6+mukrSLRHxbEn/3Z5Gd5qQdGVErJZ0vqS3tY83+rDLRcRB\n", - "Sesi4vmSnidpne2Xir7rNVdI2ilp8mFm+q+HdVVCJenFknZFxO6ImJD0eUmvarhN6CAiNknae9zs\n", - "yyR9sv36k5JePaeNQmUR8eOI2NZ+PSrpXknPEH3YEyJivP1ygaQ+tY5F+q5H2H6mpEskXSdp8ldj\n", - "9F8P67aE6hmSHpwy/VB7HnrH2RHxcPv1w5LObrIxqMb2sKTzJG0WfdgTbM+zvU2tPlofETtE3/WS\n", - "j0h6t6Qnpsyj/3pYtyVUjOFwConWmBz0aZezvUTSFyVdERH7p75HH3aviHiifcvvmZJeZnvdce/T\n", - "d13K9isljUTEVv306tST0H+9p9sSqh9KGpwyPajWVSr0jodtP02SbP+8pJGG24MTsH2aWsnUDRFx\n", - "Y3s2fdhDIuInkv5D0q+KvusVF0i6zPYPJH1O0q/ZvkH0X0/rtoTqDknPsj1se4Gk10n6SsNtQs5X\n", - "JL2p/fpNkm48QSwaZNuSrpe0MyKumfIWfdjlbK+Y/AWY7X5Jvy5pq+i7nhARV0fEYEScI+n1kr4R\n", - "EW8Q/dfTum6kdNu/KekatR6yvD4iPtBwk9CB7c9JWiNphVr3+/9K0pcl/auklZJ2S3ptROxrqo3o\n", - "rP2rsG9K2q6f3lp4r6Qtog+7mu3nqvXQ8rz2fzdExIdtnyH6rqfYXiPpnRFxGf3X27ouoQIAAOg1\n", - "3XbLDwAAoOeQUAEAANREQgUAAFATCRUAAEBNJFQAAAA1kVABAADUREIFoHG2b23/f8j25Sd52VdP\n", - "ty4AOJkYhwpA17C9Vq1BDi9NfGZ+RBw5wfv7I2LpyWgfAHTCFSoAjbM92n75QUkX2d5q+wrb82x/\n", - "2PYW23fZ/pN2/Frbm2x/WdI97Xk32r7D9j2239Ke90FJ/e3l3TB1XW75sO27bW+3/dopy95g+99s\n", - "32v703O7NQD0ovlNNwAA9NPSN++R9K7JK1TtBGpfRLzY9kJJ37L99XbseZJWR8QD7ek3R8Tedm27\n", - "Lba/EBFX2X5bRJw3zbp+W9KvSHqepDMlfdv2N9vvPV/SuZL+T9Ktti+MCG4VAuiIK1QAuomPm/4N\n", - "SW+0vVXS7ZLOkLSq/d6WKcmUJF1he5uk/5E0KOlZM6zrpZI+Gy0jkjZKepFaCdeWiPhRtJ6J2CZp\n", - "uMZ3AvAzgCtUALrd2yPilqkz2s9ajR03/XJJ50fEQdvrJS2aYbmhpyZwk1evDk2Zd1ScKwHMgCtU\n", - "ALrJfklTHyC/WdJbbc+XJNvPtj0wzeeWSdrbTqZ+WdL5U96bmPz8cTZJel37Oa0zJb1M0hY9NckC\n", - "gBnxry4A3WDyytBdko62b919XNJH1brd9h3bljQi6bfa8VN/ovw1SX9qe6ek76l122/SxyRtt31n\n", - "RLxh8nMR8e+2X9JeZ0h6d0SM2H7OccvWNNMA8CQMmwAAAFATt/wAAABqIqECAACoiYQKAACgJhIq\n", - "AACAmkioAAAAaiKhAgAAqImECgAAoCYSKgAAgJr+H9OLZ8u3dMr8AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEzBJREFUeJzt3XuwXWV5x/HfL/eTGzGEatVcqbaQ0YpVB0UkgHSoo2hb\nq9JWre3Y6ag1peqIjO2MM+1odTpSx2lnLNQL3tqKRZ1WJQUSY6jEYMIlCQoV2qBIQhPIOblxSJ7+\nsXfC4eTsnPc5K+/Ze8fvZ4Zhr7WfvdZ71vuedZ6stfb7OCIEAACAiZvS7QYAAAD0OxIqAACAhkio\nAAAAGiKhAgAAaIiECgAAoCESKgAAgIamdXPntpmzAQAA9I2I8FjrqyZUti+VdLWkqZKuiYi/GR3z\nwQ9+8LjPrVu3ThdccMHobWX2m2rnkSNHimMz83ZltpuJzag5z1inNm/YsEHnnXfeU9YdPny48XbH\n8sQTTxTHZuMff/zx4tjh4eHi2AMHDhTHHjx4sDh26tSpxbGd4rdv366zzjrruPWzZs0q3u6UKeUX\nvjP98eijj1aJzcbv27evOPbQoUPFsZnx1qmv9+/fr9mzZx+3fsaMGcXbHuvzJyN25syZxbGZsZwZ\nb1LunJiJzfT1WOeARx55RIsWLTpufWa8SblzRmbMZX6+zO91rb993VDtlp/tqZI+KelSSWdLutz2\n8WdqAACAPlfzGaqXSLovIh6IiGFJX5b02or7AwAA6IqaCdWzJO0Ysfxge924li5dWqVBmByLFy/u\ndhMwQWPdckD/mD59erebgAnK3D5Fb6qZUE344Z1ly5adxGZgsi1ZsqTbTcAEnXHGGd1uAhogoepf\nJFT9r+ZD6T+RNPJSxWK1rlI9xbp16469Xrp0KckUAADoOzUTqk2SnmN7maSfSnqjpMtHB43+Nh8A\nAEC/qZZQRcQTtt8l6dtqTZtwbURsr7U/AACAbqk6D1VEfFPSN2vuAwAAoNu6OlN6RmbytuzEntkJ\nEWu0o9aEodmJLzMTVGZiM5PC1ZpAbiLxpTL9l5lkMTPuM5P0SdLQ0FBx7M6dO4tjMxMRZiYhzKg5\nLjK/19OmlZ9ia50vpNzEurUmns08MD9nzpzi2Mzvk5Trk8xxzmx33rx5VWKl/N+/UjUniS6VGcdS\nrs2l54CtW7d2fI9afgAAAA2RUAEAADREQgUAANAQCRUAAEBDJFQAAAANkVABAAA0REIFAADQEAkV\nAABAQyRUAAAADZFQAQAANERCBQAA0FDXa/nNnTu3KK5mnatMfCY2U3eoVi2/mnUNZ86cWRybqeNV\nOiakfG2nXpDpv0x9vuyxyNRMzLSjVs2vTK207LGoVVMwU4sxU08wW7cxU3czc+wyYzkz3gYHB6vE\nSrljlxkX2T4plTl3SrnzcqZm4sDAQHFsps21/uZIdevejqXqFSrbi23fYnur7bttv7vm/gAAALqh\n9hWqYUlXRMQW23Ml3W57TURsr7xfAACASVP1ClVE/CwitrRfD0naLumZNfcJAAAw2SbtoXTbyySd\nI+m2ydonAADAZJiUhKp9u+8rkla3r1QBAACcMqp/y8/2dEnXS/p8RNww+v01a9Yce71ixQqdeeaZ\ntZsEAAAwrr179xZ/k7RqQuXWd/avlbQtIq4eK+aSSy6p2QQAAIAJmT9/vubPn39s+aGHHuoYW/uW\n33mSfl/ShbY3t/+7tPI+AQAAJlXVK1QR8V0xGzsAADjFkewAAAA01PXSM6VT+2dLqNSSKauRaXMm\nNlOCIytTMiBzLDLlBTKyx6LWcc78fJnYTHt7pQxPps2Z0iyZ8ZYtA3Iyyk6MJfPz1SrPJEmzZ88u\njs2UGMmM5cyxyJR8eeyxx4pjJenAgQPFsZlxlPn5Mv03b9684lgp19eZUi6Zvs78PmX6Y//+/cWx\nkjQ0VD6pQOmY27RpU8f3uEIFAADQEAkVAABAQyRUAAAADZFQAQAANERCBQAA0BAJFQAAQEMkVAAA\nAA2RUAEAADREQgUAANAQCRUAAEBDXS89c+jQoZO+zUwJAClXYiQTm2nHkSNHimNrlfaYSHypWmVc\nMuU6JGnGjBnFsZk2z5o1q0psptxKtvRMpjxEZlzMmTOnOPZpT3taceyCBQuqtEHKjaNMWZTMMc6M\n+8wYym47U46kVqmqWrE1t53p68z5Pvt7nemTWiWzMrG1/jbU2vbq1as776/TG7Z/W1JIGuuvd0TE\nV0t2bnuqpE2SHoyI15R8BgAAoJ+cKH17jVoJVSdFCZWk1ZK2ScpVeAQAAOgTHROqiPiDphu3/WxJ\nr5L015L+vOn2AAAAetG4D0bYfobta21/q718tu0/Ktz+xyW9T1L5DWMAAIA+U/Kk6Wck3Sjpme3l\neyVdMd6HbL9a0s6I2Kyxn8MCAAA4JZQ8Ar8oIv7Z9pWSFBHDtku+zvAySZfZfpWkWZLm2/5cRLxl\nZND69euPvV6yZImWLl1a3noAAIBK1q5dq7Vr1xbFliRUQ7ZPP7pg+1xJj433oYi4StJV7c9cIOm9\no5MpSTr//POLGgoAADCZVq1apVWrVh1b/tCHPtQxtiSheo+kb0haYftWSWdIev0E2pWbLAQAAKBP\njJtQRcTttl8h6ZfVehbqhxExnNlJRKyTtG5iTQQAAOht4yZUtgckvUPSy9W6yrTe9j9ERPl0wQAA\nAKewklt+n5O0V9In1LpC9buSrpP0OxXbBQAA0DdKEqqVEXH2iOWbbW+r1aCTIVPrTqpXrylT/ywT\nm61nlJH5+TLHLVP/LFPnKhM7kfgaMvWl5s6dWxybrcNYq2birl27imPvueee4thM3c/9+/cXx2Zl\njkWm/zK1CrM1LDMyvyOZMZc5L2fq12X7OrPtzLEYHBwsjs2cD4eHU0/YpM7LmXE0e/bsKrEDAwPF\nsZk6k9n4TJ3XTkp+G35g+6VHF9rf8ru98Z4BAABOEScqjnzXiJgNtneo9QzVEkk/nIS2AQAA9IXx\niiMDAABgHCcqjvzAyGXbv6DWjOcAAAAYoaQ48mW275V0v1pzST0g6ZuV2wUAANA3Sh5K/ytJL5X0\no4hYLuliSbdVbRUAAEAfKUmohiPiEUlTbE+NiFskvahyuwAAAPpGyYQ4e2zPk7Re0hds75Q0VLdZ\nAAAA/aPkCtXrJO2XdIWkb0m6T3wDEAAA4JiS4shHr0YdlvSZqq0BAADoQyea2HNIrYk8xxIRMf9k\nNCBTmqGWWqVOMrGZki+9UD5Fypf4qbHdbLmVXui/TKmMPXv2FMdmSmpIuWOXKZeT2W6mzY8//nhx\nbLZcR6ZPMm3OtCMTmzkWUq7NmbIome1mxlBGdruZkksnoxzJWDLnlkzJJSk3ljPjKHOOy8j036xZ\nuZmbMtvOlMvpuL9Ob0RE40zH9gJJ10haqVZy9ocR8b2m2wUAAOgldf7J8KS/k/QfEfF629Mkzam8\nPwAAgElXLaGyfZqk8yPirZIUEU9IeqzW/gAAALol9wBKznJJu2x/2vYPbP+j7eY3KQEAAHpMzYRq\nmqQXSvr7iHihpH2Srqy4PwAAgK6o+QzVg5IejIjvt5e/ojESqptuuunY6+XLl2vFihUVmwQAAFBm\n9+7d2r17d1FstYQqIn5me4ft50bEjyS9UtLW0XEXX3xxrSYAAABM2MKFC7Vw4cJjyz/+8Y87xtb+\nlt+fqlWuZoak/5b0tsr7AwAAmHRVE6qIuEPSi2vuAwAAoNtqPpQOAADwc6H2Lb9xlZY5yJSzyJYj\nqbXtbDv6TUSnykTNTJ8+vTg2W4pg5syZxbG1SqgMDg4Wx9YqIyHl2pwp15Ep4bBo0aLi2JHPMYzn\ntNNOK46Vcm3OlALJ9HVmu9m+rlVyKSMzhubMKZ8DemBgINWOzDkgU7qk1rklKzM2MmWGMuOzVim1\n7N+czHEuLXl24403dt5f8d4AAAAwJhIqAACAhkioAAAAGiKhAgAAaIiECgAAoCESKgAAgIZIqAAA\nABoioQIAAGiIhAoAAKAhEioAAICGul56prTMSKZMRs2yDLX0SkmbTHmITGymzcPDw8WxmdIsUq4k\nQqYdmfGZKZczd+7c4tgFCxYUx0rlpRak3LE4cOBAceyOHTuKY++9997i2Mxxk3KlTjKxmRI48+bN\nq7JdKdfXmbGc6eu9e/cWx+7atas4Nnv+zozljEz5osw5ILNdKTc+M+3IlPjJlIipdW7JbjubN4yl\n6hUq2x+wvdX2Xba/aLu82BEAAECfqJZQ2V4m6e2SXhgRz5M0VdKbau0PAACgW2re8tsraVjSbNuH\nJc2W9JOK+wMAAOiKaleoImK3pL+V9L+Sfirp0Yj4z1r7AwAA6Jaat/zOlPRnkpZJeqakubZ/r9b+\nAAAAuqXmLb8XSbo1Iv5Pkmx/VdLLJH1hZNDNN9987PXy5cu1fPnyik0CAAAos3XrVm3btq0otmZC\ndY+kv7A9IOmgpFdK2jg66KKLLqrYBAAAgIlZuXKlVq5ceWz5+uuv7xhb8xmqOyR9TtImSXe2V3+q\n1v4AAAC6perEnhHxUUkfrbkPAACAbqP0DAAAQEMkVAAAAA11vZZfaY2pTL2mXqjNJ0nTppUf3kyt\nu8x2M/X2svGldRil3M+XqTuWqc0n5WpMZdqR6ZMZM2YUx9aqGyflasdljtvBgweLYzO1uWrVS5Sk\nhQsXFscuWrSoSjsydceGhoaKYyVp3759xbGZmnuZcX/66acXx2bGfWYcS7mal5makDNnlldWy/yN\nytYezNQ3HRwcLI49dOhQcWzm58sct8y4kOqdlzvhChUAAEBDJFQAAAANkVABAAA0REIFAADQEAkV\nAABAQyRUAAAADfVkQnX//fd3uwlo4L777ut2EzBBW7Zs6XYT0MCmTZu63QRM0IYNG7rdBDREQoWT\njoSqf5FQ9TcSqv516623drsJaKgnEyoAAIB+QkIFAADQkDMlJU76zu3u7RwAACApIsasS9bVhAoA\nAOBUwC0/AACAhkioAAAAGuq5hMr2pbbvsX2v7fd3uz3ozPY/2X7Y9l0j1i20vcb2j2zfaHtBN9uI\nzmwvtn2L7a2277b97vZ6+rDH2Z5l+zbbW2xvs/3h9nr6ro/Ynmp7s+1vtJfpvz7WUwmV7amSPinp\nUklnS7rc9lndbRVO4NNq9dVIV0paExHPlXRTexm9aVjSFRGxUtK5kt7Z/n2jD3tcRByUdGFEvEDS\n8yVdaPvlou/6zWpJ2yQdfZiZ/utjPZVQSXqJpPsi4oGIGJb0ZUmv7XKb0EFErJe0Z9TqyyR9tv36\ns5JeN6mNQrGI+FlEbGm/HpK0XdKzRB/2hYjY3345Q9JUtX4X6bs+YfvZkl4l6RpJR781Rv/1sV5L\nqJ4laceI5Qfb69A/nh4RD7dfPyzp6d1sDMrYXibpHEm3iT7sC7an2N6iVh/dEhFbRd/1k49Lep+k\nIyPW0X99rNcSKuZwOIVEa04O+rTH2Z4r6XpJqyNicOR79GHviogj7Vt+z5b0CtsXjnqfvutRtl8t\naWdEbNaTV6eegv7rP72WUP1E0uIRy4vVukqF/vGw7WdIku1flLSzy+3BCdierlYydV1E3NBeTR/2\nkYh4TNK/S/o10Xf94mWSLrN9v6QvSbrI9nWi//paryVUmyQ9x/Yy2zMkvVHS17vcJuR8XdJb26/f\nKumGE8Sii2xb0rWStkXE1SPeog97nO1FR78BZntA0iWSNou+6wsRcVVELI6I5ZLeJOnmiHiz6L++\n1nMzpdv+DUlXq/WQ5bUR8eEuNwkd2P6SpAskLVLrfv9fSvqapH+RtETSA5LeEBGPdquN6Kz9rbDv\nSLpTT95a+ICkjaIPe5rt56n10PKU9n/XRcTHbC8UfddXbF8g6T0RcRn91996LqECAADoN712yw8A\nAKDvkFABAAA0REIFAADQEAkVAABAQyRUAAAADZFQAQAANERCBaDrbG9o/3+p7ctP8ravGmtfAHAy\nMQ8VgJ5he5Vakxy+JvGZaRHxxAneH4yIeSejfQDQCVeoAHSd7aH2y49IOt/2ZturbU+x/THbG23f\nYfuP2/GrbK+3/TVJd7fX3WB7k+27bb+9ve4jkgba27tu5L7c8jHbd9m+0/YbRmx7re1/tb3d9ucn\n92gA6EfTut0AANCTpW/eL+m9R69QtROoRyPiJbZnSvqu7RvbsedIWhkR/9NefltE7GnXttto+ysR\ncaXtd0bEOWPs67ck/aqk50s6Q9L3bX+n/d4LJJ0t6SFJG2yfFxHcKgTQEVeoAPQSj1r+dUlvsb1Z\n0vckLZT0S+33No5IpiRpte0tkv5L0mJJzxlnXy+X9MVo2SlpnaQXq5VwbYyIn0brmYgtkpY1+JkA\n/BzgChWAXveuiFgzckX7Wat9o5YvlnRuRBy0fYukWeNsN3R8Anf06tWhEesOi3MlgHFwhQpALxmU\nNPIB8m9LeoftaZJk+7m2Z4/xufmS9rSTqV+RdO6I94aPfn6U9ZLe2H5O6wxJr5C0UccnWQAwLv7V\nBaAXHL0ydIekw+1bd5+W9Am1brf9wLYl7ZT0m+34kV9R/pakP7G9TdIP1brtd9SnJN1p+/aIePPR\nz0XEv9l+aXufIel9EbHT9lmjtq0xlgHgKZg2AQAAoCFu+QEAADREQgUAANAQCRUAAEBDJFQAAAAN\nkVABAAA0REIFAADQEAkVAABAQyRUAAAADf0/YU4Xc1hImMcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3305,123 +841,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGLBJREFUeJztnVtsY+tVx3+ft+/29i224yQzk+lp+9AHpNOX8lAq+lBV\n", - "p0Jq4YWqEgKVUvEABQESbXmgBV5KJSoED0ioLeKmFgQqKi/QVgKpPHA5qKcXzqVnTjOTjJ2L49jx\n", - "/f7xYK9vtj3JnLHjTOxk/6WtOJ5k5zv1v+tb31r/9d9Ka40LF7PAc9ULcLF6cEnjYma4pHExM1zS\n", - "uJgZLmlczAyXNC5mxtykUUq9oJR6VSn1ulLqk4tclIvlhpqnTqOUsoDXgPcBeeB/gI9orV9Z7PJc\n", - "LCPmjTTvAu5pre9rrXvAV4EPLW5ZLpYZ3jl/bwvYc3z/EPhx5w8opdxS84pDa63Oen/eSOMS4gZj\n", - "XtLkgduO728zijYubgDmJc2LwNuVUneVUn7gw8DXF7csF8uMuXIarXVfKfWrwL8CFvAl9+R0czDX\n", - "kfupbuwmwiuPRSfCLm4wXNK4mBkuaVzMDJc0LmaGSxoXM8MljYuZ4ZLGxcxwSeNiZrikcTEzXNK4\n", - "mBkuaVzMjHlFWAAope4DVWAA9LTW71rEolwsNy5EGkZirPdqrU8WsRgXq4FFbE9ndkJdXF9clDQa\n", - "+JZS6kWl1McXsSAXy4+Lbk/v1lrvK6UywDeVUq9qrb+9iIU9ayj1KGBaloXH48Hj8WBZlvl3+ZnB\n", - "YGCufr9/Jeu9SlyINFrr/fHXolLqa4xGW1aONEIIpRSWZREOh4lEIkQiEcLhMJZl4fV6sSwLy7I4\n", - "PT01V7VaRYRsN8XrZ27SKKXCgKW1rimlIsD7gd9b2MqeIZRSJrJ4vV5s22ZtbY21tTVSqRR+v99c\n", - "Pp+PQqFAoVBgOBxSq9WAEWGUUjeCOBeJNOvA18Yh2wv8rdb6GwtZ1TOGkEYiim3bZDIZtra22Nzc\n", - "JBQKmSsQCBAOhxkOh1SrVTweD8PhEHAjzZtCa70DPL/AtTwzeDwesx15PB4TQXw+H6FQiHQ6zcbG\n", - "Bnfu3OHOnTtmuwqHwwSDQdrtNuVymXw+j8fjmSDLTSDORRPhlYNSCr/fTyAQIBAIEAwGsW2baDSK\n", - "bdvEYjE2NjbY2Nhgc3OTXC5nfi4QCOD3+4lEIoRCIfx+v0mUh8Mhg8Hgiv/rng1uJGkCgcAESdLp\n", - "NOl0mrW1NfNVrmQyaaKQz+fDsiyi0aghjdc7+p9QcpqbgBtJGr/fTzQaJZVKsba2xq1bt9ja2mJr\n", - "a4uNjQ0TeeSSJFm2NSFNIBDAsiyGw+FEbnPdcWNII1HAsixCoRDxeHwid9ne3mZ7e5vbt2+brUu2\n", - "IyeGwyHRaNQcySORCJ1Oh06nAzCxRV3X/OZGkMZZrAsEAsTjcbLZrEl0c7kcmUyGWCxGMBjE5/Ph\n", - "9XrP3G6UUoRCIVKpFFtbW7ztbW8z9ZrT01OGwyHD4RCttfl63XDtSTN9nA4GgyQSCdbX17lz5w5v\n", - "fetbSSaTpFIpYrGY2XKEaGchHA6bba3VanFwcMDR0RHD4ZBWq2WqxcC1TI6vPWkAU7Tz+/0Eg0ET\n", - "aW7fvs1zzz1njtORSIRAIGCIdl5i64w0Wmt8Ph9aa1qtFicno4a/1vpaRhm4AaSR1oAQJhqNkkgk\n", - "yGQybG5ucvv2bbMdyVfBeR96KBQimUzS7/fx+XwMBgM6nQ71ep1yuUyn06Hb7dLr9UyVWK7rkCzf\n", - "CNJI4huPx8lkMmSzWRKJBOFw2ByjLct6qiOzUgqfz0ckEqHf7+PxeOh2u+Yovra2Rr1eN1etVqPd\n", - "bpur0+msfAX52pPG4/GYPCabzbKxsWFIEwqF8Hq9E8dpwZM+UCnwyfHd4/EQiURYW1tjc3OTk5MT\n", - "SqWS+epMlHu93sT9V5E4N4I0oVDIJL+3bt0im80Sj8cJh8OGNE7pw5tBIo3Ue4QwzWaTRqPBwcEB\n", - "hUKBg4MD03qQiFSv11eaMPAUpFFKfRn4KeBIa/1j4/dSwN8B28B94Ge11pVLXOfMEAJMk2Zra4t0\n", - "Ok08HjeRxonztg65n2xP0qcCiMViRlszGAxIpVKmACjbXq/Xo1armWKg3GsVifM0keYvgD8F/srx\n", - "3qeAb2qtPz82nv7U+LpyOGUOQhjbtkkmk2QyGdbX10kmk0SjUXw+HzApqhoMBqbWInUWIYkky+f9\n", - "TelDhcNhEokEnU4HrTX9fp9ms0m5XDYnrcFgsJKEgacgjdb620qpu1NvfxD4yfHrvwT+nSUhDTw6\n", - "YktdRk5M6XSa9fV1YrEYkUjEfID9fp9er0e326Xb7T5GoGAwaKQRTyKNvJbIJoQTwsjfFMIMh8OV\n", - "jDbz5jTrWuvD8etDRtqapYB8gFKXOSvSCAmckabb7dJqtWi32/R6PUOkwWCAbdtmWzrvb8KjynM4\n", - "HDaEiUQiVCoVDg8PDWn6/b4hzSoW/y6cCGut9bL561mWhc/nIxAIEAqFiEajxONx1tbWyGQyZiuR\n", - "JmO326XZbFKv12k0GqbG0u12TZ4ipAmFQhP5jTN3EkiuJEf9YrFIPp/Htm1CoZDJaVaRMDA/aQ6V\n", - "Ujmt9YFSagM4WuSiLgKlFF6v1yjsRPsiPSUhSr/fN1+Pjo4oFosUi0VKpZIhivxMKpUyHfFUKkUw\n", - "GDTRSk5GTiLKa5/Ph1KKeDxOLpfjueeeo9PpcHx8TKVSoVwuUy6XJ7arVdiq5iXN14FfAP5w/PWf\n", - "FraiC8JZAZYoEw6HCQQCppDX7/fpdrt0Oh2azSb7+/vs7u7y4MED8vn8RMMRMDob0dokEglzxePx\n", - "iQanHN8lKfZ4PMRiMXK5HO12G4/HQz6fJ5/Po7U2kW2Vos/THLm/wijpTSul9oDfBT4H/L1S6mOM\n", - "j9yXuchZcVakEdJIpOl0OjQaDU5PT9nf3+eNN97gtdde44033jD3ke0nk8lMXOvr67TbbWBU6JPo\n", - "IMdrIY5IQSXSeDweotEowWDQEKZYLJqItyri9Kc5PX3knH9634LXshBMRxqnNFMKedO9okKhwM7O\n", - "Dq+88govv/zyxJHd6/VSKpVMhVd6SwDBYJBYLGYIIomycyQGwLZt4FHPajAYUKvVODw8xOfz0ev1\n", - "VqovdS0rws4PbfrSWtNutzk9PeXo6Ij9/X1KpRK1Wo1ut2vuIQ3GwWBAu92mVqvh9XoZDodEIhFi\n", - "sRipVIpWqzVxWnPKPqdfO+s/sgU6r1XBtSQNPCLOdItgOBzSbrepVCocHR2Rz+cpFosTpJEPUP6f\n", - "L6SR343FYiSTSWq1Gs1m0xDmrEgx3eGeLh5Ok2cVcC1J4yTMWY3IVqtlIk0+n+f4+PjcSKO1Np1p\n", - "IU8qlSKbzVKv12m1WuZoL0nstMh8Oso4ibNqhIEbQhoncYQE1WqVYrHI/v4+Jycn1Ov1xyKNvBZZ\n", - "g9x7fX2dSqVCvV6n3W6buo6QYLrx+WaRxkmeVcC1I43ogG3bJpVKkclkTEdbElWfz0c4HCYej5NK\n", - "pcxJarp5eRamE23bts2R/jxNjiTezWaTWq1mIpS0LJz1mVUgzrWzT3OOqEjrQARXUksR0kgya9s2\n", - "wWDwqUgDk0d65wyU1GZg8sOXNkWz2aRardJoNAxppIC4KoU9uIakebNII6RyRppYLHamTOI8SKQJ\n", - "h8MTkea833+zSCMV4VUhzbXbnpwTlKlUymhnzoo08XjcFNjO62BP3xsmI41t26YG5Iw0TjgjTa1W\n", - "o9FomFxItqdVwrUjjSS6tVqNk5MTisUiXq/XkAQe/9BFfRcOh40fjfNyjuX6/X62t7dZX1/Htu0J\n", - "5Z9UdqeP+9LtTqVS9Ho96vU6p6enlEolIpEI7XbbJMnXoo2wapAWQb1e5+TkxESZeDxupgPOIo2T\n", - "OE4vGtmG5IpEIty9e5dsNott22bLk7+ttZ44sTlzLPn71WqVUqlkdD2A0Q6vQm5z7UijtTZa3HK5\n", - "TDQaNUP+EgWENDJS6yRMJBIxXWzpZMskg1zb29uGNF6vd6LWMhgMJpqVgCGNbJ3lcpnDw0NisZjx\n", - "upFIJeRZZsyrEf4s8EtAcfxjn9Za/8tlLXIWSKSR7SkYDJJOp2k2m+YDEUWfCK1s256wS3POaUej\n", - "UdPdzmQyrK2tkc1mzRiviKokNxEPPmfj0e/3G8LEYjFKpRKpVIp4PG5GYQaDwcSc1DJjXo2wBr6g\n", - "tf7CpazqAtBa0+v1aLVaVKtVwuEwtVpt4rQCj4gzGAzIZrO0Wi2jfXFqZSTSiAwiHo8TjUaxLItO\n", - "p0OlUqHRaBgBV71eNxYmcsm6JMqJhlgG9iSRlrHeZce8GmFYUv9g2Z6azSaWZREIBEyPqNPpGBWe\n", - "kMbj8ZDL5bAsC9u2zYco+Ywzp5FIJCKrTqdDv9/n+PjYXKVSiWw2Sy6XI5fLTRg8yu8JEcWiTeQa\n", - "Qtxlx0Vymk8opX6e0YPdf2tZRlickQZG1V8hjUQaIY3kNqJzyWazhmxnnZ6ETGItIuO3+/v7PHz4\n", - "kHw+z97eHnfv3qXb7eL1eo2pgAzVOWWg6XSaRqNhphUqlcq1Js2fAb8/fv0HwB8BH1vIii4IIQ2M\n", - "TiQej+ex7UmIIKSIRqNn5hHy3vQHWalU6Pf7Znva399nZ2eHe/fu8frrr9NqtYzhYy6Xm2g9OI//\n", - "mUyGfr9vuu7BYPD6kkZrbTTBSqkvAv+8sBUtAE6Vv3ywBwcH7OzsmGqx2KfJeO20cAoekUakofK1\n", - "WCxyfHxsvu7u7pLP5ymVSjQaDWq1mtEAHx8fG1WeRBnZGm3bpt1uk0gkzFpkAM/ZzFw2zEUapdSG\n", - "GE8DPwN8f3FLujjk6Asj0oikU2oi2WyWbDZr5rzPklAA5hgspzG59vf32d/fN6O3Qp6TkxMzmlut\n", - "Vg1pJNKEQqEJ8ti2Tb/fJx6Pm5qNTCv0+31DtmU7Tc2jEf4M8F6l1POMTlE7wC9f6ipngFOGIElx\n", - "pVKhUCiglKLT6ZiEMxKJkEgkzO86db1OiJRCEt3d3V329vbY3d3l4cOHxiFCGpFS8T05OeH4+Bif\n", - "z0cwGDTSC/leZKASaaT5KfUkGeRbNsyrEf7yJaxlYZgO6ZVKBY/HYyrF4vKQyWRMYuyMMtO1Eok0\n", - "x8fHFAoFHjx4wM7ODj/60Y/Y2dl5bKy3Xq9PRBqJKs46kWxDXq+XRCIxEWm63a4hzDLWba5dRXga\n", - "Em0ajYbZggqFgnG9krFb8QkOBAKPVXjz+TwPHz5kb2+PfD5PoVCYUPtNC6mcGmSZgJBBu0gkYo7Y\n", - "sj1KR15cLYLBIJXK6DAqIvZlwo0gjfMIrrXm4OCAQCAAQKvVeqz/5ExC+/0+e3t7Zjva29vj+PiY\n", - "crlMq9U6U3kneZTMWEm9SPQ3Mrgnx3jpyOdyOer1uulndbtdqtXq0jUxbwxpADNqK4SRXCWZTJor\n", - "Ho9PbDW9Xo+9vT0ePHjAgwcP2N3dNflLs9mc0AULhDTS0ZYoI+PB0j6Q0WFx0Go0Gmat3W6XWq12\n", - "rlnkVeLGkEb6Os1mE3iUp0gFN5PJmERWTi4inpIoc//+fXZ3d41BgKjuptFut+n3+9TrdSzLMltQ\n", - "IpEglUpNmAn4/X6zPckaJcIcHR25pLkqTOtvJSFWSpmI0m63jZzCaVDU7/cpFApmzEW0L0+qoUgS\n", - "K/UikXmWy2WKxeLE6clpLGDbNp1Ox0QikaBalrVUUws3gjTTcOY4MtctUoqzchoZ1G80GhPD+ufB\n", - "SVJxpWg0GoY0slXJKUlyHul4y0nKaYQ9PblwlbhxpHHmOFLCbzQaVCoV06CcHnBrNpu0Wi1jLC33\n", - "edKH5zQtkshWqVQoFotG0O4kjUg1gMdII/qcqyaL4MaSpt/vmyLfWW2E6dmnWQbbztoOncRMpVJm\n", - "zkoqxJKcS89KSON80suytBRuHGng2buJ93o908X2eDxG8F4qlSZ8+JRSxu7NacJkWRbNZtOc1q46\n", - "4txI0jxr9Ho9U1wcDAYkk8mJZ0qJvaxTvyMegZubm3i9XsrlsikcXnXEcUnzDCCRZjAY0Gq1SCQS\n", - "Ew8kSyaTRm8sxtYindjc3DTbo5giXTWeSBql1G1GMs8so+bkn2ut/0StgI/wMkEMH9vtNkopQxq5\n", - "pM0gNrXSSJXaUa/XM62JpScN0AN+Q2v9klIqCvyvUuqbwEdZUh/hZYTTNUIKjKenp+YkJbUaEYP5\n", - "/X5isZgRaUmJQH7nqo0DnkgarfUBcDB+XVdKvQJsseQ+wsuMadcKsXULh8PGJcvn8xmtjc/nMxXi\n", - "4+NjU0cSMl2FdOKpc5qxuPydwH+xxD7CywqndNRJGq21sVVrNpuGKDKIF4vFaLValEolIyTrdrtG\n", - "IHYVp6mnIs14a/pH4Ne11rUpSeTS+QgvM5yRBjDOWrlcziTL0mIQkVa9Xufg4IBEIkEkEqHVak3o\n", - "bZ41nka552NEmL/WWov169L6CK8CJCkWXY0o/A4PDzk4ODDP0pRLbPqz2Sybm5tYlmUmF8RMSfAs\n", - "os6bnZ4U8CXgZa31Hzv+aWl9hFcBIrmQmou0FwqFghltEZ9iEYbF43HW19fZ3t424zeDwWCiH/as\n", - "tqk3izTvBn4O+J5S6jvj9z7NkvsILzvEekRmt8U0Umzw5d/kFOX3+w1pxMZNCHNycjJhKXvlkUZr\n", - "/R+cb3y0lD7CqwAhi+hnJNLIeIvMfcfjcbTWE5EGMHKLUqlkrE7kOP8sNMVuRfgKML2VtNttYz/i\n", - "NFxKp9NGIyzmAVprI9ByRqYnicIWDZc0SwBpM5TLZfMshXQ6TbVapdlsmnHeaDRq+lCJRMI890Eq\n", - "zSKEdyPNDcB0QzORSFAul80MumxbYkAgNiUSaeRZCzKOc9lwSbMEENKIEUAymaRSqRjS+P1+YyIQ\n", - "CAQ4OTkxA3bhcNicoJ6VIZJLmiWAJMYSLZxu6rFYjPX1dRKJBMlk0kQbeVpeNptlMBiYKOVUF14W\n", - "XNIsAeS4LB92tVo1s1n9fp/T01Nu3bqFZVnGfcu2bTKZDLdu3QIetSdOT08vfb0uaZYAzsc6D4dD\n", - "arUaBwcH5hE/nU7HJMgbGxtm7CWdTlOv143tSbVaPdeWdpFwSbMEmJZOyFSlPBNKa21cupxd8HQ6\n", - "Ta/Xm2iAPgu9jUuaJYFTjC7uEiJ+Fy1xtVo1BgZyBM9kMqZuIyO/Z82XLxIuaZYQkhDLtEKr1TKe\n", - "N+KYpbUmGAySTCYnjuAinZBin3jcLBIuaZYQTp2MzF2JfUmlUjFqv2AwaOo2TjetdrtNp9O5NH+b\n", - "J26ASqnbSql/U0r9n1LqB0qpXxu//1ml1EOl1HfG1wsLX9kNhnzYkq9MR5pms2kijcyHT7tpybzU\n", - "ZRT75tUIL62P8HXA9LBdq9UyvoGJRIJut0s6nTZ5jbhPSOSRaU1R+C0a82qEYUl9hK8j2u02pVKJ\n", - "vb09AOOJLM6kcuqSSc1AIGD+/SoijYFDI/yfjHQ2S+kjfB0hpNH60cPfPR6PKfBNG2o7H1x/GaR5\n", - "qkP9eGv6B0Ya4TojH+G3AM8D+4x8hF1cEuTYvbe3x6uvvsq9e/coFArmGeESacTCxGkccCWRxqER\n", - "/hvRCOsl9xG+bpB6jViWHB0dUSgUWFtbIx6P02q1ODo6olKpPPaYw8uQScylEV52H+HrCKcnTrVa\n", - "pVAo4Pf7zfH66OiIYrHI4eGheU6mRKFFYx6N8O8AH1lWH+HrCCdhtNbUajUKhQKdTsc4oosxdrVa\n", - "NY+EluLgoqEuS+XlzkItFs7cxPmEGL/fP+Fw7nz21EWds7TWZyZELmlcnIvzSHP1FgQuVg4uaVzM\n", - "DJc0LmaGSxoXM8MljYuZ4ZLGxcy4tCO3i+sLN9K4mBkuaVzMjEsljVLqBaXUq0qp18cuoBe9332l\n", - "1PfGEtP/nuP3v6yUOlRKfd/xXkop9U2l1A+VUt9QSiWedI+nuN/cUtgnyGvnWuOlyXWdfv+LvAAL\n", - "uAfcBXzAS8A7LnjPHSB1gd9/DyMh2fcd730e+O3x608Cn7vg/T4D/Oac68sBz49fR4HXgHfMu8Yn\n", - "3G/uNWqtLzXSvAu4p7W+r7XuAV8FPrSA+86tKtJafxsoT739QUa2toy//vQF7wdzrlFrfaC1fmn8\n", - "ug44LXhnXuMT7jf3GuFyt6ctYM/x/UMeLXheaOBbSqkXlVIfv+C9BJdhb/sJpdR3lVJfmmW7c2LR\n", - "FrxTct0LrfEySXMZZ/l3a63fCXwA+BWl1HsWeXM9iuMXXfeFpbDTFrwXXeOi5bqXSZo8cNvx/W1G\n", - "0WZu6LFaUGtdBL7GaAu8KA6VUjkYKRK5oL2t1vpIjwF8cdY1PsmCd541nifXvcgaL5M0LwJvV0rd\n", - "VUr5gQ8zspKdC0qpsFLKHr+OAO9nMTJTsbeFBdjbjj9UwUxS2Kew4J1pjU+S6867RuDyTk/jjP0D\n", - "jDL2e8CnL3ivtzA6gb0E/GCe+wFfAQpAl1G+9VEgBXwL+CHwDSBxgfv9IqOn1nwP+O74w12f4X4/\n", - "AQzH/43fGV8vzLvGc+73gYusUWvtthFczA63IuxiZrikcTEzXNK4mBkuaVzMDJc0LmaGSxoXM8Ml\n", - "jYuZ4ZLGxcz4f041SDwzkyB1AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGLBJREFUeJztnVtsY+tVx3+ft+/29i224yQzk+lp+9AHpNOX8lAq+lBV\np0Jq4YWqEgKVUvEABQESbXmgBV5KJSoED0ioLeKmFgQqKi/QVgKpPHA5qKcXzqVnTjOTjJ2L49jx\n/f7xYK9vtj3JnLHjTOxk/6WtOJ5k5zv1v+tb31r/9d9Ka40LF7PAc9ULcLF6cEnjYma4pHExM1zS\nuJgZLmlczAyXNC5mxtykUUq9oJR6VSn1ulLqk4tclIvlhpqnTqOUsoDXgPcBeeB/gI9orV9Z7PJc\nLCPmjTTvAu5pre9rrXvAV4EPLW5ZLpYZ3jl/bwvYc3z/EPhx5w8opdxS84pDa63Oen/eSOMS4gZj\nXtLkgduO728zijYubgDmJc2LwNuVUneVUn7gw8DXF7csF8uMuXIarXVfKfWrwL8CFvAl9+R0czDX\nkfupbuwmwiuPRSfCLm4wXNK4mBkuaVzMDJc0LmaGSxoXM8MljYuZ4ZLGxcxwSeNiZrikcTEzXNK4\nmBkuaVzMjHlFWAAope4DVWAA9LTW71rEolwsNy5EGkZirPdqrU8WsRgXq4FFbE9ndkJdXF9clDQa\n+JZS6kWl1McXsSAXy4+Lbk/v1lrvK6UywDeVUq9qrb+9iIU9ayj1KGBaloXH48Hj8WBZlvl3+ZnB\nYGCufr9/Jeu9SlyINFrr/fHXolLqa4xGW1aONEIIpRSWZREOh4lEIkQiEcLhMJZl4fV6sSwLy7I4\nPT01V7VaRYRsN8XrZ27SKKXCgKW1rimlIsD7gd9b2MqeIZRSJrJ4vV5s22ZtbY21tTVSqRR+v99c\nPp+PQqFAoVBgOBxSq9WAEWGUUjeCOBeJNOvA18Yh2wv8rdb6GwtZ1TOGkEYiim3bZDIZtra22Nzc\nJBQKmSsQCBAOhxkOh1SrVTweD8PhEHAjzZtCa70DPL/AtTwzeDwesx15PB4TQXw+H6FQiHQ6zcbG\nBnfu3OHOnTtmuwqHwwSDQdrtNuVymXw+j8fjmSDLTSDORRPhlYNSCr/fTyAQIBAIEAwGsW2baDSK\nbdvEYjE2NjbY2Nhgc3OTXC5nfi4QCOD3+4lEIoRCIfx+v0mUh8Mhg8Hgiv/rng1uJGkCgcAESdLp\nNOl0mrW1NfNVrmQyaaKQz+fDsiyi0aghjdc7+p9QcpqbgBtJGr/fTzQaJZVKsba2xq1bt9ja2mJr\na4uNjQ0TeeSSJFm2NSFNIBDAsiyGw+FEbnPdcWNII1HAsixCoRDxeHwid9ne3mZ7e5vbt2+brUu2\nIyeGwyHRaNQcySORCJ1Oh06nAzCxRV3X/OZGkMZZrAsEAsTjcbLZrEl0c7kcmUyGWCxGMBjE5/Ph\n9XrP3G6UUoRCIVKpFFtbW7ztbW8z9ZrT01OGwyHD4RCttfl63XDtSTN9nA4GgyQSCdbX17lz5w5v\nfetbSSaTpFIpYrGY2XKEaGchHA6bba3VanFwcMDR0RHD4ZBWq2WqxcC1TI6vPWkAU7Tz+/0Eg0ET\naW7fvs1zzz1njtORSIRAIGCIdl5i64w0Wmt8Ph9aa1qtFicno4a/1vpaRhm4AaSR1oAQJhqNkkgk\nyGQybG5ucvv2bbMdyVfBeR96KBQimUzS7/fx+XwMBgM6nQ71ep1yuUyn06Hb7dLr9UyVWK7rkCzf\nCNJI4huPx8lkMmSzWRKJBOFw2ByjLct6qiOzUgqfz0ckEqHf7+PxeOh2u+Yovra2Rr1eN1etVqPd\nbpur0+msfAX52pPG4/GYPCabzbKxsWFIEwqF8Hq9E8dpwZM+UCnwyfHd4/EQiURYW1tjc3OTk5MT\nSqWS+epMlHu93sT9V5E4N4I0oVDIJL+3bt0im80Sj8cJh8OGNE7pw5tBIo3Ue4QwzWaTRqPBwcEB\nhUKBg4MD03qQiFSv11eaMPAUpFFKfRn4KeBIa/1j4/dSwN8B28B94Ge11pVLXOfMEAJMk2Zra4t0\nOk08HjeRxonztg65n2xP0qcCiMViRlszGAxIpVKmACjbXq/Xo1armWKg3GsVifM0keYvgD8F/srx\n3qeAb2qtPz82nv7U+LpyOGUOQhjbtkkmk2QyGdbX10kmk0SjUXw+HzApqhoMBqbWInUWIYkky+f9\nTelDhcNhEokEnU4HrTX9fp9ms0m5XDYnrcFgsJKEgacgjdb620qpu1NvfxD4yfHrvwT+nSUhDTw6\nYktdRk5M6XSa9fV1YrEYkUjEfID9fp9er0e326Xb7T5GoGAwaKQRTyKNvJbIJoQTwsjfFMIMh8OV\njDbz5jTrWuvD8etDRtqapYB8gFKXOSvSCAmckabb7dJqtWi32/R6PUOkwWCAbdtmWzrvb8KjynM4\nHDaEiUQiVCoVDg8PDWn6/b4hzSoW/y6cCGut9bL561mWhc/nIxAIEAqFiEajxONx1tbWyGQyZiuR\nJmO326XZbFKv12k0GqbG0u12TZ4ipAmFQhP5jTN3EkiuJEf9YrFIPp/Htm1CoZDJaVaRMDA/aQ6V\nUjmt9YFSagM4WuSiLgKlFF6v1yjsRPsiPSUhSr/fN1+Pjo4oFosUi0VKpZIhivxMKpUyHfFUKkUw\nGDTRSk5GTiLKa5/Ph1KKeDxOLpfjueeeo9PpcHx8TKVSoVwuUy6XJ7arVdiq5iXN14FfAP5w/PWf\nFraiC8JZAZYoEw6HCQQCppDX7/fpdrt0Oh2azSb7+/vs7u7y4MED8vn8RMMRMDob0dokEglzxePx\niQanHN8lKfZ4PMRiMXK5HO12G4/HQz6fJ5/Po7U2kW2Vos/THLm/wijpTSul9oDfBT4H/L1S6mOM\nj9yXuchZcVakEdJIpOl0OjQaDU5PT9nf3+eNN97gtdde44033jD3ke0nk8lMXOvr67TbbWBU6JPo\nIMdrIY5IQSXSeDweotEowWDQEKZYLJqItyri9Kc5PX3knH9634LXshBMRxqnNFMKedO9okKhwM7O\nDq+88govv/zyxJHd6/VSKpVMhVd6SwDBYJBYLGYIIomycyQGwLZt4FHPajAYUKvVODw8xOfz0ev1\nVqovdS0rws4PbfrSWtNutzk9PeXo6Ij9/X1KpRK1Wo1ut2vuIQ3GwWBAu92mVqvh9XoZDodEIhFi\nsRipVIpWqzVxWnPKPqdfO+s/sgU6r1XBtSQNPCLOdItgOBzSbrepVCocHR2Rz+cpFosTpJEPUP6f\nL6SR343FYiSTSWq1Gs1m0xDmrEgx3eGeLh5Ok2cVcC1J4yTMWY3IVqtlIk0+n+f4+PjcSKO1Np1p\nIU8qlSKbzVKv12m1WuZoL0nstMh8Oso4ibNqhIEbQhoncYQE1WqVYrHI/v4+Jycn1Ov1xyKNvBZZ\ng9x7fX2dSqVCvV6n3W6buo6QYLrx+WaRxkmeVcC1I43ogG3bJpVKkclkTEdbElWfz0c4HCYej5NK\npcxJarp5eRamE23bts2R/jxNjiTezWaTWq1mIpS0LJz1mVUgzrWzT3OOqEjrQARXUksR0kgya9s2\nwWDwqUgDk0d65wyU1GZg8sOXNkWz2aRardJoNAxppIC4KoU9uIakebNII6RyRppYLHamTOI8SKQJ\nh8MTkea833+zSCMV4VUhzbXbnpwTlKlUymhnzoo08XjcFNjO62BP3xsmI41t26YG5Iw0TjgjTa1W\no9FomFxItqdVwrUjjSS6tVqNk5MTisUiXq/XkAQe/9BFfRcOh40fjfNyjuX6/X62t7dZX1/Htu0J\n5Z9UdqeP+9LtTqVS9Ho96vU6p6enlEolIpEI7XbbJMnXoo2wapAWQb1e5+TkxESZeDxupgPOIo2T\nOE4vGtmG5IpEIty9e5dsNott22bLk7+ttZ44sTlzLPn71WqVUqlkdD2A0Q6vQm5z7UijtTZa3HK5\nTDQaNUP+EgWENDJS6yRMJBIxXWzpZMskg1zb29uGNF6vd6LWMhgMJpqVgCGNbJ3lcpnDw0NisZjx\nupFIJeRZZsyrEf4s8EtAcfxjn9Za/8tlLXIWSKSR7SkYDJJOp2k2m+YDEUWfCK1s256wS3POaUej\nUdPdzmQyrK2tkc1mzRiviKokNxEPPmfj0e/3G8LEYjFKpRKpVIp4PG5GYQaDwcSc1DJjXo2wBr6g\ntf7CpazqAtBa0+v1aLVaVKtVwuEwtVpt4rQCj4gzGAzIZrO0Wi2jfXFqZSTSiAwiHo8TjUaxLItO\np0OlUqHRaBgBV71eNxYmcsm6JMqJhlgG9iSRlrHeZce8GmFYUv9g2Z6azSaWZREIBEyPqNPpGBWe\nkMbj8ZDL5bAsC9u2zYco+Ywzp5FIJCKrTqdDv9/n+PjYXKVSiWw2Sy6XI5fLTRg8yu8JEcWiTeQa\nQtxlx0Vymk8opX6e0YPdf2tZRlickQZG1V8hjUQaIY3kNqJzyWazhmxnnZ6ETGItIuO3+/v7PHz4\nkHw+z97eHnfv3qXb7eL1eo2pgAzVOWWg6XSaRqNhphUqlcq1Js2fAb8/fv0HwB8BH1vIii4IIQ2M\nTiQej+ex7UmIIKSIRqNn5hHy3vQHWalU6Pf7Znva399nZ2eHe/fu8frrr9NqtYzhYy6Xm2g9OI//\nmUyGfr9vuu7BYPD6kkZrbTTBSqkvAv+8sBUtAE6Vv3ywBwcH7OzsmGqx2KfJeO20cAoekUakofK1\nWCxyfHxsvu7u7pLP5ymVSjQaDWq1mtEAHx8fG1WeRBnZGm3bpt1uk0gkzFpkAM/ZzFw2zEUapdSG\nGE8DPwN8f3FLujjk6Asj0oikU2oi2WyWbDZr5rzPklAA5hgspzG59vf32d/fN6O3Qp6TkxMzmlut\nVg1pJNKEQqEJ8ti2Tb/fJx6Pm5qNTCv0+31DtmU7Tc2jEf4M8F6l1POMTlE7wC9f6ipngFOGIElx\npVKhUCiglKLT6ZiEMxKJkEgkzO86db1OiJRCEt3d3V329vbY3d3l4cOHxiFCGpFS8T05OeH4+Bif\nz0cwGDTSC/leZKASaaT5KfUkGeRbNsyrEf7yJaxlYZgO6ZVKBY/HYyrF4vKQyWRMYuyMMtO1Eok0\nx8fHFAoFHjx4wM7ODj/60Y/Y2dl5bKy3Xq9PRBqJKs46kWxDXq+XRCIxEWm63a4hzDLWba5dRXga\nEm0ajYbZggqFgnG9krFb8QkOBAKPVXjz+TwPHz5kb2+PfD5PoVCYUPtNC6mcGmSZgJBBu0gkYo7Y\nsj1KR15cLYLBIJXK6DAqIvZlwo0gjfMIrrXm4OCAQCAAQKvVeqz/5ExC+/0+e3t7Zjva29vj+PiY\ncrlMq9U6U3kneZTMWEm9SPQ3Mrgnx3jpyOdyOer1uulndbtdqtXq0jUxbwxpADNqK4SRXCWZTJor\nHo9PbDW9Xo+9vT0ePHjAgwcP2N3dNflLs9mc0AULhDTS0ZYoI+PB0j6Q0WFx0Go0Gmat3W6XWq12\nrlnkVeLGkEb6Os1mE3iUp0gFN5PJmERWTi4inpIoc//+fXZ3d41BgKjuptFut+n3+9TrdSzLMltQ\nIpEglUpNmAn4/X6zPckaJcIcHR25pLkqTOtvJSFWSpmI0m63jZzCaVDU7/cpFApmzEW0L0+qoUgS\nK/UikXmWy2WKxeLE6clpLGDbNp1Ox0QikaBalrVUUws3gjTTcOY4MtctUoqzchoZ1G80GhPD+ufB\nSVJxpWg0GoY0slXJKUlyHul4y0nKaYQ9PblwlbhxpHHmOFLCbzQaVCoV06CcHnBrNpu0Wi1jLC33\nedKH5zQtkshWqVQoFotG0O4kjUg1gMdII/qcqyaL4MaSpt/vmyLfWW2E6dmnWQbbztoOncRMpVJm\nzkoqxJKcS89KSON80suytBRuHGng2buJ93o908X2eDxG8F4qlSZ8+JRSxu7NacJkWRbNZtOc1q46\n4txI0jxr9Ho9U1wcDAYkk8mJZ0qJvaxTvyMegZubm3i9XsrlsikcXnXEcUnzDCCRZjAY0Gq1SCQS\nEw8kSyaTRm8sxtYindjc3DTbo5giXTWeSBql1G1GMs8so+bkn2ut/0StgI/wMkEMH9vtNkopQxq5\npM0gNrXSSJXaUa/XM62JpScN0AN+Q2v9klIqCvyvUuqbwEdZUh/hZYTTNUIKjKenp+YkJbUaEYP5\n/X5isZgRaUmJQH7nqo0DnkgarfUBcDB+XVdKvQJsseQ+wsuMadcKsXULh8PGJcvn8xmtjc/nMxXi\n4+NjU0cSMl2FdOKpc5qxuPydwH+xxD7CywqndNRJGq21sVVrNpuGKDKIF4vFaLValEolIyTrdrtG\nIHYVp6mnIs14a/pH4Ne11rUpSeTS+QgvM5yRBjDOWrlcziTL0mIQkVa9Xufg4IBEIkEkEqHVak3o\nbZ41nka552NEmL/WWov169L6CK8CJCkWXY0o/A4PDzk4ODDP0pRLbPqz2Sybm5tYlmUmF8RMSfAs\nos6bnZ4U8CXgZa31Hzv+aWl9hFcBIrmQmou0FwqFghltEZ9iEYbF43HW19fZ3t424zeDwWCiH/as\ntqk3izTvBn4O+J5S6jvj9z7NkvsILzvEekRmt8U0Umzw5d/kFOX3+w1pxMZNCHNycjJhKXvlkUZr\n/R+cb3y0lD7CqwAhi+hnJNLIeIvMfcfjcbTWE5EGMHKLUqlkrE7kOP8sNMVuRfgKML2VtNttYz/i\nNFxKp9NGIyzmAVprI9ByRqYnicIWDZc0SwBpM5TLZfMshXQ6TbVapdlsmnHeaDRq+lCJRMI890Eq\nzSKEdyPNDcB0QzORSFAul80MumxbYkAgNiUSaeRZCzKOc9lwSbMEENKIEUAymaRSqRjS+P1+YyIQ\nCAQ4OTkxA3bhcNicoJ6VIZJLmiWAJMYSLZxu6rFYjPX1dRKJBMlk0kQbeVpeNptlMBiYKOVUF14W\nXNIsAeS4LB92tVo1s1n9fp/T01Nu3bqFZVnGfcu2bTKZDLdu3QIetSdOT08vfb0uaZYAzsc6D4dD\narUaBwcH5hE/nU7HJMgbGxtm7CWdTlOv143tSbVaPdeWdpFwSbMEmJZOyFSlPBNKa21cupxd8HQ6\nTa/Xm2iAPgu9jUuaJYFTjC7uEiJ+Fy1xtVo1BgZyBM9kMqZuIyO/Z82XLxIuaZYQkhDLtEKr1TKe\nN+KYpbUmGAySTCYnjuAinZBin3jcLBIuaZYQTp2MzF2JfUmlUjFqv2AwaOo2TjetdrtNp9O5NH+b\nJ26ASqnbSql/U0r9n1LqB0qpXxu//1ml1EOl1HfG1wsLX9kNhnzYkq9MR5pms2kijcyHT7tpybzU\nZRT75tUIL62P8HXA9LBdq9UyvoGJRIJut0s6nTZ5jbhPSOSRaU1R+C0a82qEYUl9hK8j2u02pVKJ\nvb09AOOJLM6kcuqSSc1AIGD+/SoijYFDI/yfjHQ2S+kjfB0hpNH60cPfPR6PKfBNG2o7H1x/GaR5\nqkP9eGv6B0Ya4TojH+G3AM8D+4x8hF1cEuTYvbe3x6uvvsq9e/coFArmGeESacTCxGkccCWRxqER\n/hvRCOsl9xG+bpB6jViWHB0dUSgUWFtbIx6P02q1ODo6olKpPPaYw8uQScylEV52H+HrCKcnTrVa\npVAo4Pf7zfH66OiIYrHI4eGheU6mRKFFYx6N8O8AH1lWH+HrCCdhtNbUajUKhQKdTsc4oosxdrVa\nNY+EluLgoqEuS+XlzkItFs7cxPmEGL/fP+Fw7nz21EWds7TWZyZELmlcnIvzSHP1FgQuVg4uaVzM\nDJc0LmaGSxoXM8MljYuZ4ZLGxcy4tCO3i+sLN9K4mBkuaVzMjEsljVLqBaXUq0qp18cuoBe9332l\n1PfGEtP/nuP3v6yUOlRKfd/xXkop9U2l1A+VUt9QSiWedI+nuN/cUtgnyGvnWuOlyXWdfv+LvAAL\nuAfcBXzAS8A7LnjPHSB1gd9/DyMh2fcd730e+O3x608Cn7vg/T4D/Oac68sBz49fR4HXgHfMu8Yn\n3G/uNWqtLzXSvAu4p7W+r7XuAV8FPrSA+86tKtJafxsoT739QUa2toy//vQF7wdzrlFrfaC1fmn8\nug44LXhnXuMT7jf3GuFyt6ctYM/x/UMeLXheaOBbSqkXlVIfv+C9BJdhb/sJpdR3lVJfmmW7c2LR\nFrxTct0LrfEySXMZZ/l3a63fCXwA+BWl1HsWeXM9iuMXXfeFpbDTFrwXXeOi5bqXSZo8cNvx/W1G\n0WZu6LFaUGtdBL7GaAu8KA6VUjkYKRK5oL2t1vpIjwF8cdY1PsmCd541nifXvcgaL5M0LwJvV0rd\nVUr5gQ8zspKdC0qpsFLKHr+OAO9nMTJTsbeFBdjbjj9UwUxS2Kew4J1pjU+S6867RuDyTk/jjP0D\njDL2e8CnL3ivtzA6gb0E/GCe+wFfAQpAl1G+9VEgBXwL+CHwDSBxgfv9IqOn1nwP+O74w12f4X4/\nAQzH/43fGV8vzLvGc+73gYusUWvtthFczA63IuxiZrikcTEzXNK4mBkuaVzMDJc0LmaGSxoXM8Ml\njYuZ4ZLGxcz4f041SDwzkyB1AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3429,99 +851,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAE2tJREFUeJzt3XuwXWV5x/HfLwm5kavBBDSHRKi0wsSKVbkoIFU6lFG0\n", - "rVVpq9Z27HTUSqk6Ik77VztanY7oMO1opSp4oa1a1Gm9pDWQaDARTEJCUKCaNhFISi6cnFxPwtM/\n", - "9k48nJyT8z5Zec/eO34/Mwx7rf3std693rX2ebIu7+OIEAAAAE7chE43AAAAoNeRUAEAADREQgUA\n", - "ANAQCRUAAEBDJFQAAAANkVABAAA0NKmTK7fNmA0AAKBnRIRHml81obJ9taSbJU2U9KmI+NvhMR/4\n", - "wAeO+dzy5ct1+eWXP23eU089VamVuWV3Q2xNEyY0P2m5cuVKXXrppU+bV+v7HT58OBU/ODhYHLt/\n", - "//4qsXv37i2O3bNnT3HsxIkTi2MladKkYw//hx56SOedd94x86dOnVq83NNOO604NrNf7Nq1qzh2\n", - "+/btxbHZ+P7+/uLYffv2Fcdm9qHRtvGhQ4dG7Ndp06YVL3v27NnFsbNmzSqOnTFjRnFsrf1Nyv3G\n", - "HTp0qDg2c6wODAwcM2/r1q1asGDBMfN3795dvNxsOw4ePFglNvM7m/kNqDlupj1ijpRqQ7VLfrYn\n", - "SrpF0tWSzpd0ne3n1VofAABAp9S8h+olkh6JiE0RMSjpDkmvqbg+AACAjqiZUD1b0uYh01va88a0\n", - "aNGiKg3C+Ojr6+t0E3CC5s2b1+kmoIGTcckenXH66ad3ugloqObRd8IXO0moehsJVe8ioeptJFS9\n", - "K3OPGbpTzZvSfyZp6F/WPrXOUj3N8uXLj75etGgRyRQAAOgKmRvhayZU90p6ru3Fkh6V9AZJ1w0P\n", - "Gv40HwAAQDcY/vTf8RKsaglVRByy/U5J31Jr2IRbI+LBWusDAADolKrjUEXENyR9o+Y6AAAAOq2j\n", - "I6VL5YOylQ66JeUH/6o1sFit2JoDhmYGyswMeldrudnvl4nP3OCbGYhwypQpxbHTp08vjs1sN0k6\n", - "cOBAcWxmsMDMcjODBdYc1C+znTMy+0VmfzsZg7iOJtPmzHIzx17m9z4rs89l9uXM8Zfpv8ygrFLu\n", - "acHMoKiZPsn8xtUcxDXT5tLBSO+6665R3+OREAAAgIZIqAAAABoioQIAAGiIhAoAAKAhEioAAICG\n", - "SKgAAAAaIqECAABoiIQKAACgIRIqAACAhkioAAAAGiKhAgAAaKjjtfwytZLQkq1fV0umTlKt2lyZ\n", - "GoFSvfqDterMZeq7ZepnSbl6YpnYTL2tTH9ktkXNGo+16jZm9qFMPTpJ2r9/f3Fspk9K659JuTY/\n", - "+uijxbGZ7ybV+w3I7EOZ+nwzZswojpWkmTNnFsfOmjWrOLZWXcpaNW+l3D6XrYU6kqpnqGz32V5m\n", - "+wHbG2y/q+b6AAAAOqH2GapBSTdExFrbMyTdZ3tpRDxYeb0AAADjpuoZqoh4PCLWtl8PSHpQ0rNq\n", - "rhMAAGC8jdtN6bYXS7pQ0qrxWicAAMB4GJeEqn2570uSrm+fqQIAADhlVH/Kz/Zpkr4s6XMRcefw\n", - "91esWHH09dlnn61FixbVbhIAAMCYdu7cqV27dhXFVk2o3HpW/lZJGyPi5pFiLrvssppNAAAAOCFz\n", - "587V3Llzj05v2rRp1Njal/xeKukPJF1pe037v6srrxMAAGBcVT1DFRHfFaOxAwCAUxzJDgAAQEMd\n", - "Lz0zefLkorhapUukukPf11hupsRBtgRHpmRAphxJZrkZmTZIuf1o0qTywyMTW2u7ZUsnZMpq1IrN\n", - "7PeZ5e7bt684VsqVUMnsQ5kyPLNnzy6OnTdvXnGslCt1krFnz57i2P7+/uLYHTt2VImVcqVqMvvc\n", - "nDlzimMzD18tXLiwOFbKlarJfL/SG7Ml6cknnyyO3b17d3FsZn+Tcn1d+rdy2bJlo77HGSoAAICG\n", - "SKgAAAAaIqECAABoiIQKAACgIRIqAACAhkioAAAAGiKhAgAAaIiECgAAoCESKgAAgIZIqAAAABrq\n", - "eOmZ6dOnF8XVLLdSq6xNrXIymeVmv1um1EkmNlOCo1aslCsRk9l2mdhM6ZlMaYiDBw8Wx2aXnenr\n", - "008/vTh25syZxbGlvxVSviRRaQksqV6Zmkx5mMw2lnJ9feDAgeLYTGmPbDmgUmeeeWYqPlO2J1PG\n", - "JSNTxuWxxx5LLTtTniWzL2eOv3PPPbc4ttZvgCRNmTIlFV/iE5/4xKjvjfrXxfbvSApJI/0iRER8\n", - "pWTltidKulfSloh4dclnAAAAesnx/rn+arUSqtEUJVSSrpe0UVJ5GgoAANBDRk2oIuIPmy7c9kJJ\n", - "10j6G0l/0XR5AAAA3WjMGyNsn2n7VtvfbE+fb/uPC5f/UUnvlZS7qQkAAKCHlNxp+hlJ35b0rPb0\n", - "w5JuGOtDtl8laVtErNHI92EBAACcEkoeeTojIv7Z9o2SFBGDtg8VfO5SSdfavkbSVEmzbN8WEW8e\n", - "GrR06dKjr88555zU0wEAAAC1rFq1SqtXry6KLUmoBmwffc7U9sWSnhzrQxFxk6Sb2p+5QtJ7hidT\n", - "knTVVVcVNRQAAGA8XXTRRbrooouOTt9yyy2jxpYkVO+W9HVJ59heKemZkl53Au0qHzwJAACgh4yZ\n", - "UEXEfbYvl/TLat0L9eOIKB8NrLWMuyXdfWJNBAAA6G5jJlS2p0l6u6SXqXWWaYXtf4iI8iFyAQAA\n", - "TmEll/xuk9Qv6eNqnaH6PUm3S/rdiu0CAADoGSUJ1QURcf6Q6e/Y3niyGlBad6hWrbvayy6VqfmV\n", - "qUeXrWmWkWnzoUMlD4a2ZLZxpu5YVq2+zvTJrFmzimMzNbGkXF2sTK27TF/v3r27OHb79u3FsXv3\n", - "7i2OlXL7cqY+WKbm3uzZs4tjd+zYURwr5WoxZn4PM/typu5mpj8ef/zx4lhJ2rx5cyq+VKZPMvt9\n", - "pl6ilDv+MvtF5vcic4xkYjO/QzXbMZqSrflD25ccmWg/5Xdf4zUDAACcIo5XHHn9kJjv2d6s1j1U\n", - "Z0v68Ti0DQAAoCeMVRwZAAAAYzheceRNQ6dtz1drxHMAAAAMUVIc+VrbD0v6qVpjSW2S9I3K7QIA\n", - "AOgZJTel/7WkSyQ9FBHPkfQKSauqtgoAAKCHlCRUgxHxhKQJtidGxDJJL6rcLgAAgJ5RMqDRTtsz\n", - "Ja2Q9Hnb2yQN1G0WAABA7yg5Q/VaSXsl3SDpm5IeEU8AAgAAHFVSHPnI2ajDkj5TtTUAAAA96HgD\n", - "ew6oNZDnSCIiymtiHEdpmYPMEPndUm4lE1urzEnNMjy1SvbU2hbZZWf2uUxsxsBA+dX1TMkJKbd/\n", - "ZsqGTJs2rcpyM2UnMiVfpFwpkK1btxbHlpbWyrYhW1qn1nGd6ZMZM2YUx2b2oWw5kkzprsxxnSmD\n", - "1d/fXxybLTO0a9eu4tjBwcHi2My2yBzXmZI2mVgpV05m6tTmo0Idbxyq8r1/FLbnSPqUpAvUSs7+\n", - "KCK+33S5AAAA3aQ8VT8xH5P0HxHxOtuTJOX+2QgAANADqiVUtmdLuiwi3iJJEXFI0pO11gcAANAp\n", - "dW78aHmOpP+z/WnbP7T9j7ZzF0ABAAB6QM2EapKkF0r6+4h4oaQ9km6suD4AAICOqHkP1RZJWyLi\n", - "B+3pL2mEhOruu+8++nrRokVavHhxxSYBAACU2bx5s7Zs2VIUWy2hiojHbW+2fV5EPCTplZIeGB53\n", - "xRVX1GoCAADACevr61NfX9/R6VWrRi9lXPspvz9Tq1zNZEn/LemtldcHAAAw7qomVBGxTtKLa64D\n", - "AACg02relA4AAPALofYlv47IlE6Q6pWTqdWGbliuVK9ETKZ0ULZcQKYkQmbbHT58uDg2U2KkZjmS\n", - "gwcPFsdmjqnMNp4zZ05x7MyZM4tjsyUqMmVRMmVtMuVIMvtQ9tjLLHvfvn3FsZl9LrPcWttNypWe\n", - "ycTOmlVejW3+/PlV2iDlSsRkylVlt3M3qFUSbNT1jevaAAAATkEkVAAAAA2RUAEAADREQgUAANAQ\n", - "CRUAAEBDJFQAAAANkVABAAA0REIFAADQEAkVAABAQyRUAAAADXW89MzAwEBRXM0SKplSJ5mh7DOx\n", - "tdqQLVFR6/tlZMpOlO4/R2S2R61SC5kyJwsWLCiOnTx5cqodmXIy+/fvL46tVY5k27ZtxbGZkjZS\n", - "br/IlMA566yzqrQhc4xIuRIjGbVK2gwODhbHZkodZZedkSlJNGXKlOLYTEmbbPzcuXOrxGb25czv\n", - "RaYUl5Tb57J/S0ZS9QyV7ffbfsD2ettfsF2+FwEAAPSIagmV7cWS3ibphRGxRNJESW+stT4AAIBO\n", - "qXnJr1/SoKTptg9Lmi7pZxXXBwAA0BHVzlBFxA5JfyfpfyU9KmlXRPxnrfUBAAB0Ss1LfudK+nNJ\n", - "iyU9S9IM279fa30AAACdUvOS34skrYyI7ZJk+yuSLpX0+aFB99xzz9HXCxcuVF9fX8UmAQAAlFm/\n", - "fr02bNhQFFszofqRpL+0PU3SfkmvlLR6eNAll1xSsQkAAAAnZsmSJVqyZMnR6TvuuGPU2Jr3UK2T\n", - "dJukeyXd3579yVrrAwAA6JSqA3tGxIclfbjmOgAAADqN0jMAAAANkVABAAA01PFafvPnzy+Ky9ak\n", - "y8jUCeyGWne1livltkWm/mCtNmTq0Um5bZepjTdt2rTi2Mx2y9T8mjp1anGslKs9lumTTN24zHFd\n", - "s/7ZGWecURybqcWYqT32xBNPFMdu3769OFbK1a+bNKn8z0JmO2fqK2aW29/fXxwr1atrmPm9yHy/\n", - "efPmpdqRqW1Yq+5mZrmZ9mbqaErS7Nmzi2Ozv58j4QwVAABAQyRUAAAADZFQAQAANERCBQAA0BAJ\n", - "FQAAQEMkVAAAAA11ZUL1k5/8pNNNQAMPP/xwp5uAE7R27dpONwENrFu3rtNNwAlauXJlp5uAhkio\n", - "cNI98sgjnW4CThB/kHsb/de7SKh6X1cmVAAAAL2EhAoAAKAh1yzpMubK7c6tHAAAICkiRqzF1dGE\n", - "CgAA4FTAJT8AAICGSKgAAAAa6rqEyvbVtn9k+2Hb7+t0ezA62/9ke6vt9UPmPcP2UtsP2f627Tmd\n", - "bCNGZ7vP9jLbD9jeYPtd7fn0YZezPdX2KttrbW+0/cH2fPquh9ieaHuN7a+3p+m/HtZVCZXtiZJu\n", - "kXS1pPMlXWf7eZ1tFY7j02r11VA3SloaEedJ+q/2NLrToKQbIuICSRdLekf7eKMPu1xE7Jd0ZUS8\n", - "QNLzJV1p+2Wi73rN9ZI2SjpyMzP918O6KqGS9BJJj0TEpogYlHSHpNd0uE0YRUSskLRz2OxrJX22\n", - "/fqzkl47ro1CsYh4PCLWtl8PSHpQ0rNFH/aEiNjbfjlZ0kS1jkX6rkfYXijpGkmfknTkqTH6r4d1\n", - "W0L1bEmbh0xvac9D71gQEVvbr7dKWtDJxqCM7cWSLpS0SvRhT7A9wfZatfpoWUQ8IPqul3xU0nsl\n", - "PTVkHv3Xw7otoWIMh1NItMbkoE+7nO0Zkr4s6fqI2D30Pfqwe0XEU+1LfgslXW77ymHv03ddyvar\n", - "JG2LiDX6+dmpp6H/ek+3JVQ/k9Q3ZLpPrbNU6B1bbZ8pSbbPkrStw+3Bcdg+Ta1k6vaIuLM9mz7s\n", - "IRHxpKR/l/Rrou96xaWSrrX9U0lflPTrtm8X/dfTui2hulfSc20vtj1Z0hskfa3DbULO1yS9pf36\n", - "LZLuPE4sOsi2Jd0qaWNE3DzkLfqwy9k+48gTYLanSbpK0hrRdz0hIm6KiL6IeI6kN0r6TkS8SfRf\n", - "T+u6kdJt/6akm9W6yfLWiPhgh5uEUdj+oqQrJJ2h1vX+v5L0VUn/IulsSZskvT4idnWqjRhd+6mw\n", - "5ZLu188vLbxf0mrRh13N9hK1blqe0P7v9oj4iO1niL7rKbavkPTuiLiW/uttXZdQAQAA9Jpuu+QH\n", - "AADQc0ioAAAAGiKhAgAAaIiECgAAoCESKgAAgIZIqAAAABoioQLQcba/1/7/ItvXneRl3zTSugDg\n", - "ZGIcKgBdw/bL1Rrk8NWJz0yKiEPHeX93RMw8Ge0DgNFwhgpAx9keaL/8kKTLbK+xfb3tCbY/Ynu1\n", - "7XW2/6Qd/3LbK2x/VdKG9rw7bd9re4Ptt7XnfUjStPbybh+6Lrd8xPZ62/fbfv2QZd9l+19tP2j7\n", - "c+O7NQD0okmdbgAA6Oelb94n6T1HzlC1E6hdEfES21Mkfdf2t9uxF0q6ICL+pz391ojY2a5tt9r2\n", - "lyLiRtvviIgLR1jXb0v6VUnPl/RMST+wvbz93gsknS/pMUnfs/3SiOBSIYBRcYYKQDfxsOnfkPRm\n", - "22skfV/SMyT9Uvu91UOSKUm63vZaSfdI6pP03DHW9TJJX4iWbZLulvRitRKu1RHxaLTuiVgraXGD\n", - "7wTgFwBnqAB0u3dGxNKhM9r3Wu0ZNv0KSRdHxH7byyRNHWO5oWMTuCNnrw4MmXdY/FYCGANnqAB0\n", - "k92Sht5A/i1Jb7c9SZJsn2d7+gifmyVpZzuZ+hVJFw95b/DI54dZIekN7fu0ninpckmrdWySBQBj\n", - "4l9dALrBkTND6yQdbl+6+7Skj6t1ue2Hti1pm6TfascPfUT5m5L+1PZGST9W67LfEZ+UdL/t+yLi\n", - "TUc+FxH/ZvuS9jpD0nsjYpvt5w1btkaYBoCnYdgEAACAhrjkBwAA0BAJFQAAQEMkVAAAAA2RUAEA\n", - "ADREQgUAANAQCRUAAEBDJFQAAAANkVABAAA09P8W4xDCBDf4RgAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE5dJREFUeJzt3XuwXWV5x/HfL8lJcpJDEkJCbDiHhlJthNGKFSHBG9V2\nqKNoW6vSVq3t2OmolabqiMy0f7Wj1emIDtPOWCkq3tqqRZzWC62gSGICmAshxAty1ZJA7ic3cnn6\nx96Jh+ScnPfJynv23vH7mclkr7Wfvda717vWypO11n4fR4QAAABw8iZ1ugEAAAC9joQKAACgIRIq\nAACAhkioAAAAGiKhAgAAaIiECgAAoKEpnVy5bcZsAAAAPSMiPNr8qgmV7SskXSdpsqRPRMQ/HBuz\nbNmy4z63YsUKLVmy5GnzJk0qv5hmj/pdx5QZi+vw4cMdj605dtip2BZ33XWXLr744qLY0Rw6dKg4\n9uDBg8Wx2finnnqqOHb//v3FsXv37i2O3bNnT3HslCm5w7mvr++4eQ888IDOP//84+b39/cXL3fy\n5MnFsZn9YsuWLcWx27dvL46VpK1btxbHDg8PF8fu27evODazv02dOnXU+QcPHhx1P8j036xZs4pj\nzzjjjOLYGTNmFMdm9uXsfl9Lpq9H24eeeOIJzZ8//7j5u3fvrtaOzHkrs39mzrM1/z3L5AKlOcaJ\ntkO1W362J0u6XtIVki6QdJXtZ9daHwAAQKfUfIbqhZJ+HBEPRcQBSV+Q9JqK6wMAAOiImgnVOZIe\nHTH9WHveuAYHB6s0CBNj4cKFnW4CTtKZZ57Z6SaggcyjEegumVui6E41j76TvjE6NDR0KtuBCXbO\nOUV5M7rQ3LlzO90ENEBC1btmzpzZ6SagoZpP8/1U0sjMaEitq1RPs2LFiqOvBwcHSaYAAEBXOHz4\ncPGPZ2omVHdLeqbtRZJ+JukNkq46NujYX/MBAAB0g0mTJj3tyu+JfuVXLaGKiIO23ynpG2oNm3BD\nRNxfa30AAACdUnUAj4j4mqSv1VwHAABAp3V8RLTSAcAygwVmYqXcg5y1YjMyA6EdOHAgtezMgGy1\nBsnMtDkzCKiU23aZ/sv8QiczcGKt/pByA1Tu2LGjOLbWwKWZ/sgMGCpJAwMDxbFjDao5msy+XHNw\n3xoDHEq5gSEzbcgMGJo932cGAs30SWa5me9XU6avaw3WWWsAbCnX5tJ9ee3atWO+x09CAAAAGiKh\nAgAAaIiECgAAoCESKgAAgIZIqAAAABoioQIAAGiIhAoAAKAhEioAAICGSKgAAAAaIqECAABoiIQK\nAACgoY7X8iuti5WpA5VVq5ZQpo5QNyw3u+xa7ai1LWq2I6NWDcRsXcN9+/YVx2banKkPVquGXna/\nqFWTLlNnLtN/2e+XqSmYrRNYKrONt2zZUhyb2Y+lesdfJjazD02bNq04VpJmzpxZHJupKVjrWM2c\nL7J1G2vWxxxN1StUtods32b7Ptvrbb+r5voAAAA6ofYVqgOSlkXEGtsDku6xfWtE3F95vQAAABOm\n6hWqiHg8Ita0Xw9Lul/SwprrBAAAmGgT9lC67UWSLpK0cqLWCQAAMBEmJKFq3+77oqSr21eqAAAA\nThvVf+Vnu0/SlyR9JiJuPvb95cuXH309NDSkoaGh2k0CAAAY1/DwsIaHy64DVU2o3Ppt6A2SNkTE\ndaPFLF26tGYTAAAATsrAwMDThozYvHnzmLG1b/ldJumPJV1ue3X7zxWV1wkAADChql6hiojvitHY\nAQDAaY5kBwAAoKGOl57JDiVfolbphKwpU+ps3r6+virLlXLbLjOsf41+PpnlZko+ZPov045MqYWM\nTOkLqV5fZ0qoZLZFpg179+4tjpVypVky7ch8v8xxnSkZko2fMWNGcWyt/X7nzp3FsU8++WRxrKTi\nB4wlaffu3cWxmW0xa9as4tizzjqrOFbqjr7OlPfZs2dPceyuXbuKY6XcflS6X6xbt27M97hCBQAA\n0BAJFQAAQEMkVAAAAA2RUAEAADREQgUAANAQCRUAAEBDJFQAAAANkVABAAA0REIFAADQEAkVAABA\nQx0vPZMp+VAqW44kU/Jh+vTpxbGZMieZMiCZ0h5ZtUrEZMpOZEq+ZMv7ZPo6s+zMfjF16tTi2EyZ\nk3379hXHStL+/ftT8aUGBgaKY+fOnVslNlNSQ8r1SaYcSWYbZ46RadOmFcdml53ZlzPHU63yRVmZ\nZWfOy5nST5k2ZLdFpk8y/0Zl/m2oFdsN5/sbb7xx7GWM9Ybt35cUkkbb4hERXy5Zue3Jku6W9FhE\nvLrkMwAAAL3kRCnZq9VKqMZSlFBJulrSBkm5ap4AAAA9YsyEKiL+pOnCbQ9KeqWkv5f0102XBwAA\n0I3GvbFu+xm2b7D99fb0Bbb/rHD5H5H0XknlN88BAAB6TMmTip+U9E1JC9vTP5K0bLwP2X6VpM0R\nsVqjP4cFAABwWih5rH1eRPyb7WskKSIO2D5Y8Lmlkq60/UpJ0yXNsv3piHjzyKAVK1YcfT04OKih\noaHy1gMAAFSycuVKrVq1qii2JKEatn3WkQnbl0raMd6HIuJaSde2P/NSSe85NpmSpCVLlhQ1FAAA\nYCJdcskluuSSS45OX3/99WPGliRU75b0VUm/Ynu5pPmSXncS7Sof0AMAAKCHjJtQRcQ9tl8i6dfU\nehbqBxGRGo0zIr4t6dsn10QAAIDuNm5CZbtf0tslvUitq0x32P7niMgNywwAAHCaKrnl92lJOyV9\nTK0rVH8o6SZJf1CxXQAAAD2jJKG6MCIuGDH9LdsbajWoE2rVjcrUz8rUM6pVq0nK1a7K1ObKxGbq\nO2ZrQWbq3WX6b3h4uDg2Uzduzpw5xbH9/f3FsZI0a9as4thMmzN27dpVHLtly5bi2J07d55Mc4pk\ntsXs2bOLY+fNm1ccm93vax1/mWMkc245eLDkh+Qte/bsKY6Vct8vs922bt1aHJs5X2RrdGa+X2Zf\nztTHzNTznDlzZnFs9hyXiT8V57iSo+H7to/+FK/9K797Gq8ZAADgNHGi4sj3joi50/ajaj1Dda6k\nH0xA2wAAAHrCeMWRAQAAMI4TFUd+aOS07bPVGvEcAAAAI5QUR77S9o8kPajWWFIPSfpa5XYBAAD0\njJKH0v9O0hJJP4yI8yS9XNLKqq0CAADoISUJ1YGIeFLSJNuTI+I2SS+o3C4AAICeUTIO1TbbZ0i6\nQ9JnbW+WVD6IBgAAwGmu5ArVayXtkbRM0tcl/Vj8AhAAAOCokuLIR65GHZL0yaqtAQAA6EEnGthz\nWK2BPEcTEVFet+IEMiVXSmXLrWRKzzz11FPFsbXKuGSWm90WmfhM32VKVNSKlXLbOSPTJ5n97fHH\nHz+Z5hTJlFqYPr18xJRp06YVx2a2Ra1jRJL27t1bHJs5B2TanCkxkmmDlCtHktkWmf6bMqXkCZOW\nWucWKbffZ/blzLlz//79xbG7d+8ujpVy5ZwyZXsy5YAy+31mG2fOQ9n4TGmdsZxoHKryYjxjsD1H\n0ickXahWcvanEfG9pssFAADoJuX/ZTg5H5X03xHxOttTJJVXQQQAAOgR1RIq27MlvTgi3iJJEXFQ\n0o5a6wMAAOiU3M3nnPMkPWH7Rtvft/0vtpvfpAQAAOgyNROqKZKeL+mfIuL5knZLuqbi+gAAADqi\n5jNUj0l6LCLuak9/UaMkVHfeeefR10NDQzr33HMrNgkAAKDMpk2btHnz5qLYaglVRDxu+1Hbz4qI\nH0p6haT7jo277LLLajUBAADgpC1YsEALFiw4Or1+/foxY2v/yu8v1SpXM1XSA5LeWnl9AAAAE65q\nQhURayVdXHMdAAAAnVbzoXQAAIBfCLVv+Y2rdAj+TCmCbLmVjMyya8XWKmkj5UpJZMpZZGT6OlO2\nQJL6+vqyzSmSKRuyZcuW4tht27YVx2ZLVGTKX2T2z/7+/uLY+fPnF8fOmzevOHb27NnFsZI0Z86c\n4thMaZZM/2XKyWT2N6le2ZBa563McZ0tGZIpPZM5F82cWT5udWa52TJKmfNyZj/KxGbanP1+GbXK\nHY2FK1QAAAANkVABAAA0REIFAADQEAkVAABAQyRUAAAADZFQAQAANERCBQAA0BAJFQAAQEMkVAAA\nAA2RUAEAADTU8dIzpWUAMqUTsiVRMuVWaskMez9pUr08OFOWIVMeIlOiomb5mz179hTHZkqBZNqc\nKaFy3nnnFcdmS3Bk+iSzLYaHh4tjM/2Ric2UnJBy22JgYKA4dnBwsDh21qxZxbGZ4zQrsy/v3Lmz\nODZTcinT19nSJZl9OSNTeiYTm9kvpFwZpcw5I3O+z5QvypTAyuwX2WVnSkqNpeoVKtvvt32f7Xtt\nf852rvAaAABAD6iWUNleJOltkp4fEc+RNFnSG2utDwAAoFNq3vLbKemApBm2D0maIemnFdcHAADQ\nEdWuUEXEVkn/KOkRST+TtD0i/qfW+gAAADql5i2/8yX9laRFkhZKGrD9R7XWBwAA0Ck1b/m9QNLy\niNgiSba/LGmppM+ODFq+fPnR10NDQxoaGqrYJAAAgDIbN27Uxo0bi2JrJlQbJf2N7X5J+yS9QtKq\nY4OWLl1asQkAAAAnZ/HixVq8ePHR6VtuuWXM2JrPUK2V9GlJd0ta15798VrrAwAA6JSqA3tGxIck\nfajmOgAAADqN0jMAAAANkVABAAA01DO1/GrK1NHL1PzK1NzLxPb19RXHZr6blKuBlum7Wts4W4cx\nE59pc6ZPMjWxMnW8zjzzzOJYSZo9e3YqvtTu3buLYzO1uTL1PPv7+4tjJenss88ujl24cGGVdmS+\nX6aGnpTrkx07dhTHZmrS1aprmKldJ0lz584tjs0cI5njOlN/MFuvNFNLc/v27cWxmbp4terjZvOF\nWuflsXCFCgAAoCESKgAAgIZIqAAAABoioQIAAGiIhAoAAKAhEioAAICGujKhevjhhzvdBDTwk5/8\npNNNwElavXp1p5uABlatOq5cKnrE7bff3ukmoKGuTKgeeeSRTjcBDTz44IOdbgJO0po1azrdBDRA\nQtW7SKh6X1cmVAAAAL2EhAoAAKAhZ4bAP+Urtzu3cgAAgKSIGLU+WkcTKgAAgNMBt/wAAAAaIqEC\nAABoqOsSKttX2N5o+0e239fp9mBstv/V9ibb946YN9f2rbZ/aPubtud0so0Ym+0h27fZvs/2etvv\nas+nD7uc7em2V9peY3uD7Q+059N3PcT2ZNurbX+1PU3/9bCuSqhsT5Z0vaQrJF0g6Srbz+5sq3AC\nN6rVVyNdI+nWiHiWpP9tT6M7HZC0LCIulHSppHe0jzf6sMtFxD5Jl0fE8yQ9V9Lltl8k+q7XXC1p\ng6QjDzPTfz2sqxIqSS+U9OOIeCgiDkj6gqTXdLhNGENE3CFp2zGzr5T0qfbrT0l67YQ2CsUi4vGI\nWNN+PSzpfknniD7sCRGxp/1yqqTJah2L9F2PsD0o6ZWSPiHpyK/G6L8e1m0J1TmSHh0x/Vh7HnrH\ngojY1H69SdKCTjYGZWwvknSRpJWiD3uC7Um216jVR7dFxH2i73rJRyS9V9LhEfPovx7WbQkVYzic\nRqI1Jgd92uVsD0j6kqSrI2LXyPfow+4VEYfbt/wGJb3E9uXHvE/fdSnbr5K0OSJW6+dXp56G/us9\n3ZZQ/VTS0IjpIbWuUqF3bLL9DEmy/UuSNne4PTgB231qJVM3RcTN7dn0YQ+JiB2S/kvSb4i+6xVL\nJV1p+0FJn5f0m7ZvEv3X07otobpb0jNtL7I9VdIbJN3S4TYh5xZJb2m/foukm08Qiw6ybUk3SNoQ\nEdeNeIs+7HK25x35BZjtfkm/JWm16LueEBHXRsRQRJwn6Y2SvhURbxL919O6bqR0278j6Tq1HrK8\nISI+0OEmYQy2Py/ppZLmqXW//28lfUXSv0s6V9JDkl4fEds71UaMrf2rsO9IWqef31p4v6RVog+7\nmu3nqPXQ8qT2n5si4sO254q+6ym2Xyrp3RFxJf3X27ouoQIAAOg13XbLDwAAoOeQUAEAADREQgUA\nANAQCRUAAEBDJFQAAAANkVABAAA0REIFoONs39n++5dtX3WKl33taOsCgFOJcagAdA3bL1NrkMNX\nJz4zJSIOnuD9XRFxxqloHwCMhStUADrO9nD75Qclvdj2attX255k+8O2V9lea/vP2/Evs32H7a9I\nWt+ed7Ptu22vt/229rwPSupvL++mketyy4dt32t7ne3Xj1j27bb/w/b9tj8zsVsDQC+a0ukGAIB+\nXvrmfZLec+QKVTuB2h4RL7Q9TdJ3bX+zHXuRpAsj4uH29FsjYlu7tt0q21+MiGtsvyMiLhplXb8n\n6dclPVfSfEl32f5O+73nSbpA0v9JutP2ZRHBrUIAY+IKFYBu4mOmf1vSm22vlvQ9SXMl/Wr7vVUj\nkilJutr2GkkrJA1JeuY463qRpM9Fy2ZJ35Z0sVoJ16qI+Fm0nolYI2lRg+8E4BcAV6gAdLt3RsSt\nI2e0n7Xafcz0yyVdGhH7bN8mafo4yw0dn8AduXq1f8S8Q+JcCWAcXKEC0E12SRr5APk3JL3d9hRJ\nsv0s2zNG+dwsSdvaydRiSZeOeO/Akc8f4w5Jb2g/pzVf0kskrdLxSRYAjIv/dQHoBkeuDK2VdKh9\n6+5GSR9T63bb921b0mZJv9uOH/kT5a9L+gvbGyT9QK3bfkd8XNI62/dExJuOfC4i/tP2kvY6Q9J7\nI2Kz7Wcfs2yNMg0AT8OwCQAAAA1xyw8AAKAhEioAAICGSKgAAAAaIqECAABoiIQKAACgIRIqAACA\nhkioAAAAGiKhAgAAaOj/AYSDQCwV4p2TAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3544,7 +876,7 @@ "source": [ "We started with little idea about any of these digits, and ended up with correct classifications for each. If you've been following along, you'll see the last digit is the most difficult, a slanted \"9\" that's (understandably) most confused with \"4\".\n", "\n", - "Note that these are the \"raw\" output scores rather than the softmax-computed probability vectors. The latter, shown below, make it easier to see the confidence of our net (but harder to see the scores for less likely digits)." + "* Note that these are the \"raw\" output scores rather than the softmax-computed probability vectors. The latter, shown below, make it easier to see the confidence of our net (but harder to see the scores for less likely digits)." ] }, { @@ -3557,109 +889,9 @@ "outputs": [ { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAFZtJREFUeJztnVtsY8d5x//f4Z2H94skaiXvemUbsAsD9otbwA2ahyCw\n", - "USBpXxoYKFD0EvShN7QPddyHJo9pgAZF+1CgiB30hqRFCxfpQ1vbRQukD724sGOnaydZY8XVihJF\n", - "iXfykDwipw/kNzuHklbiRRRJzQ8Y8OgsdXYk/vXNN9988w0JIaDRjIJx1R3QLB5aNJqR0aLRjIwW\n", - "jWZktGg0I6NFoxmZsUVDRC8R0cdE9CMienWandLMNzROnIaIXAB+AOAzAHYB/A+AV4QQH023e5p5\n", - "ZFxL8wKAu0KIbSGEDeDbAD4/vW5p5hn3mN93A8CO8vUDAD+uvoGIdKh5wRFC0Gn3x7U0WhDXmHFF\n", - "swtgU/l6E31ro7kGjCuadwE8SUS3iMgL4AsAvjO9bmnmmbF8GiHEMRH9OoB/AeAC8LqeOV0fxppy\n", - "X+jB2hFeeKbtCGuuMVo0mpHRotGMjBaNZmS0aDQjo0WjGRktGs3IaNFoRkaLRjMyWjSakdGi0YzM\n", - "uElYAAAi2gZQBdAFYAshXphGpzTzzUSiQT8Z69NCiOI0OqNZDKYxPJ26EqpZXiYVjQDwDhG9S0Rf\n", - "nEaHNPPPpMPTi0KIPSJKA3ibiD4WQnx3Gh3TzC8TWRohxN7gtQDgTfS3tmiWnEl2WAaJKDy4NgF8\n", - "FsCH0+qYZn6ZZHhaBfAmEfFz/loI8dZUeqWZaxYyR9gwDBARiEheq/eY0342IQSEEOj1evJafR9f\n", - "D79eR87KEZ7UEZ45hmHA5/PB6/XC6/XC5/PB7/fD7/fL+71ez9FUAfR6PbTbbdk6nY58D7+/2+2i\n", - "2+3Ka42ThRSN1+tFKBSSLRKJyBYIBNDtdnF8fOz48NmidLtd1Go11Ot11Go1NBqNE++3bVs2LZqT\n", - "LJxoiAg+nw+hUAjxeBzxeBzpdBqpVAqpVAqRSASdTkd+6MfHxw6LY9s2isUiisUifD4f3G63QyS2\n", - "bYOIpMA0J1k40RiGAb/fj0gkgmQyidXVVWQyGaytrWFtbQ2xWAydTkc227YdQ5Vt2wiHwwgGg3I4\n", - "U9/f6XRgWZZsbvfV/IrUIVX1wYaH26vwuRZONC6XC6ZpIplMYmNjAxsbG9LKsKVhC8Ov6i/7+PgY\n", - "wWAQ8XgcKysrqFarDstk2zaazSYsy0Kz2USr1Zr5zzjsk7VaLViWJV/55+I2a+EspGhCoRBSqRQ2\n", - "Nzdx69YtxGIxxGIxRKNRmKZ5wpFVZ0m9Xg/xeBzNZhONRgOWZTkExqLhZlnWzH9G9rG41Wo1lMtl\n", - "2ZrNJtrttnyvFs05GIbhsDSPP/44QqEQTNNEKBSC3+8/MZ0eNucsDvUvlj8oVTQsqlnDfWMLeHh4\n", - "iHw+D4/Hg16vJ8MK3W4XnU5n5v1bSNH4fD6Ew2HpBPOU2+/3w+v1noi78C/5rFe2Sr1eD8fHxw4r\n", - "02w2Hc9Sv28aqP1jbNuW4YB2u41IJCIF0263Hf7ZNPtyURZONDxlzufzyGazMAwDgUBANq/XK4cn\n", - "FoPL5XI0t9sNt9strw3DgGEYcLlcMlDo9XpBRHC73Sd8DH4/t1E4zbFVA5SGYZwYLrvdLlqtFlqt\n", - "lhyWhBBot9taNBeBRVMoFLC9vQ3bthEMBmXj2RCb9263C6/XC4/HI199Pp+cOfG1eo+I4PV64Xa7\n", - "4ff7Hf5Ft9t1CO6is6vhAKMq7GFBs8VT36OK5vj4GO12G7VabWTRToOFFE29Xkc+n4dhGGg0GggG\n", - "gzBNE6Zpwuv1yl9wq9WCbduO4cvv9ztEFgwGZZBQCOH48PhaFWGn05HRaBbheZzmU6nN7XbD4/HI\n", - "V36vao3UCHar1UK9XkexWJxP0RDRGwB+GsCBEOLZwb0EgL8BcBPANoCfE0KUL7GfEhbN4eEhjo+P\n", - "Ua1WpWBYNOrsx7ZtBAKBU0XCjWM77GSy1fF4PPB4PNJJBh4KgIezi4pmuPH/xT4NWzW/339iDc22\n", - "bTQaDdTrdTQaDZTLZWlV53V4+iaAPwHwF8q9LwF4WwjxtUHh6S8N2qXDUV3LsmAYBrrdLprNJur1\n", - "Ovx+P9xuN9rttsOU8/oUi0H1gQKBAMLhMEKhkHzlD499JI6PcKxk+PvPY3g2xw4uW65oNCrjTMlk\n", - "Eh6Px7Egy8MVW5l2uy19nbkM7gkhvktEt4Zufw7ATw2u/xzAv2NGoun1euh0Omg2m/Ja9VdcLpdj\n", - "Ot3tdh2mn9+r+jfBYFBao+FXv9/vsFzNZhOmaTos13l/7cPRXFXU7XYbmUwGt27dgmEYCIfDICK4\n", - "XC4YhiG/7yzRXAXj+jSrQoj84DqPfm7NTGBLw3+xPPvhXzJbH3W9SZ3p8PtU53PYGWZRmKaJQCDg\n", - "GBoajYZjaDNN80KiUfujRnhbrRa2trZgGAZCoRAymYx0rvm57DgPi0ZdUpglEzvCQggxy/p6LBrb\n", - "tqfyPPYnuHk8HhkoZPHU63XHqng4HHYMaeehCkZdFmDhCCEQj8dx48YNdDod+Hw+EJGcjrNg2u22\n", - "jB91Op0rWUIAxhdNnojWhBD7RJQBcDDNTs0S1TFlc99ut6Uvoa5F8QfVbrfhcrkuvBI+PDzxB81T\n", - "fHUBlf0Znmp3Oh3UajVUKhUUi0UUCgWUSiXU63V0Op2FEs13APwCgD8YvP7D1Hp0BfR6PQAPBdRq\n", - "taRgWq2WdFjb7Ta63S7a7bacOnOw7VEMz5zUBDKObpumCb/fL0WjLm3w2tPR0REKhQKKxSLq9bqM\n", - "Ds+ai0y5v4W+05sioh0Avw/gqwD+loh+GYMp92V28rIZjomw49lqteByuRxBNp6xqBZnlP8HAEKh\n", - "kHTCI5GIw9K43W45NLGjzKJRLY1lWVK8s+Yis6dXzvinz0y5L1fGcF4Kx2TOYtJZi8fjQTQaRSAQ\n", - "QCwWQyQScVgaFm273Ua9Xke1WpWiOTw8RKVSkYHBubQ0mskZToAPh8NIpVLY2NjA5uYmNjc3kUql\n", - "YJomDMNAq9VCtVrF0dERjo6OkMvlcHR0hFqtJpdGeIZ4FWjRzAB1uu9yuRyieeKJJ5DJZJBOpxEK\n", - "hWAYBjqdDqrVKg4ODrC7u4tcLofDw0MpGrYwV7VTQotmBnCwjqf1nETGokkkEjKBTBVNoVDAzs6O\n", - "tDQ8Y+Kptk73XGJYNByRVi3N1taWdIy9Xq8UDa/k7+zsYG9vzyGaq05416KZARyL4SjyysoK4vG4\n", - "XGDlPB52gDkJSw0AztN2Gi2aGcD7tJLJJJLJJNLp9Kmi4ak8x4RarZZMbmcLMw87PrVoZgAH8FKp\n", - "FDKZDFZWVhCLxRAKhaRo1BgR5+6oa1RXuao9jC7UOAN4eEomk1hfXz8xPPECpbqafZalmQe0pbkE\n", - "htNBE4kE0uk01tfXsbm5idXVVcRiMZlw1Ww2UalUUK1WUalUcPfuXezs7KBQKKBer0vRXNUC5Ymf\n", - "76o7sIyo6RZ+vx+JRAIrKyvIZDLY3NxEMpmUEWEigmVZODw8xN7eHnK5HO7fv4+dnR0Zm+HF0nkZ\n", - "nrRoLgEWDaegDosmHA4jEAhIS8OiyWazuHv3LnK5HPb39x2W5iojwMOMmyP8FQC/AqAweNtrQoh/\n", - "vqxOLhqc72uaJqLRqBTN+vo6HnvsMRmP4ZROVTR37txBoVCQuylrtdq5a2Gz5iKO8DcBvDR0TwD4\n", - "uhDi+UHTglFg0fCGvmg0KlexOU+n3W7LJPFyuYxKpSJbvV6X24XnYTgaZtwcYUDXDz4Tj8eDQCAg\n", - "K1vwKjZbGDXtodVqnRAO58pwWuu8McmU+zeI6HtE9DoRxabWoyXA7XbLXQ6JRAKRSERuOeH0TU57\n", - "GBZMtVpFo9FAq9WaW0szrmj+FMDjAJ4DsAfgD6fWoyWARROJRORi5GmiUYcnFs4iiGas2ZMQQuYE\n", - "E9E3APzj1Hq0gAwXFPB6vQgGg9Kn4dkSR35brRYqlQry+Tzy+Tz29vZQKpXQbDYdaQ/zKBhgTEsz\n", - "SCZnfha6frBjcxuLhi1NJBKRG/lYNOVyWRYx2NvbQ7FYlHu55lkwwHg5wl8G8Gkieg79WdQ9AL96\n", - "qb2cc4bL0w6Lhi3NsGj29/cdouGikfNejnbcHOE3LqEvCw0Lx+VynTk8qaLh4SmbzeLo6EhWuLrK\n", - "jLyLoiPCU4CXC3hv9+rqKpLJpBSMz+eT23G73a7D+eUAHtfSm3fBAFo0U8Hn8yEajSIajSIWi8mc\n", - "X05/APor2JZlodvtOgJ5alxmXmdLw2jRTAHev7SysiJL1HKiVTgcdmyntSzrxBSbZ03ztlxwFlo0\n", - "U4BFk06nsbm56RANF0vi2Mtpywbq9lptaZYUtWCA2+1GKpXC2toaNjY2cPPmTayuriIajUpfhh3f\n", - "g4MD5PN57O/vy12S87R6fVG0aMbA4/FIx9fv98u0hxs3buCxxx5DPB5HJBKRh3s0m01HXGZ/fx/l\n", - "chmWZS2EZRlGi2YMPB6PnFKHw2Gk02mHpeFKWlx6rdlsolQqYX9/H/fv33dYGi2aawAROVaxuVx+\n", - "JpORogEe7g8fFk02m0WxWESlUtGiWWY4cMdRX66Yzgd5rK+vI5VKIRwOw+v1yqJLnP5wVlxmUWZL\n", - "w2jRXAAWy/BebD6bYWNjA4lEQtbfOz4+hmVZsuxaqVRyzJjmfRX7PLRoLoAqGN5Wm06n5bZarsoZ\n", - "DAZl6oNlWbJEiCoa1cospaUhok30S8GuoL84+WdCiD++yjrCVwFbGq7JFwqFpGiefPJJWZuPdxdw\n", - "QaRarSYPJFOFw/UC5301+yzOS42wAfy2EOLHAPwEgF8joqfxsI7wUwD+FTMqB3sVGIaBYDAoT315\n", - "4okncPPmTWQyGXm+lN/vl7kynJFXLBaRz+exs7ODfD4v82WGK48uIo+0NEKIfQD7g+s6EX0E4Aau\n", - "sI7wrFATq8LhMNbW1qTje/v2bayvryMej8ttKABknbxKpYLDw0Pkcjlsb29jb28P5XJZVvJcdC7s\n", - "0wySy58H8F+4wjrCs0AVDNf3XVtbw9bWFra2tuTRh4lEAn6/33FgarfblbVldnd3sb29jcPDQxSL\n", - "xYWdYg9zIdEQUQjA3wP4LSFEbejs65nWEZ41bGlWV1extbWFZ599Vq5o8y5J3szGvky1WnVYmlqt\n", - "Jhcsr4VoiMiDvmD+UgjBpV+Xpo7waagVzrkMPgfy0um0LG/P+5hs25b7sCuVCnK5HA4ODhxBPE59\n", - "WAYe6QhT36S8DuCOEOKPlH/iOsLAEtQRHsYwDFmylY/64SrmoVBICobLwVqWhVKphFwuh08++QQP\n", - "HjzAwcGBXF+66rMMps15luZFAD8P4AMiem9w7zUsWR1hFXV6zSe2qKIJh8OOk+mAvmiKxSJyuRzu\n", - "3buH3d1dHBwcSCvDDvIiz5hUzps9/QfOtkZLU0d4GA7ieb1eh2hYOOqyAnDS0hQKBbkf27KspREL\n", - "oyPCgGMzPi8TxONxxGIxJBIJrK+vI5FIwDRNuN3uE4e/7+/vy8YxmVqtJh3kZRIMoEUDwLlM4PV6\n", - "ZcUqzpG5ffs2VldXYZomgL5lUbfRZrNZ7O7uIp/PyyqcfKrdMnLtRTO8RBAIBJBIJHDjxg0Zl+Hc\n", - "X9M0IYSQwxHvkLx//76cMR0dHcnV7UXZXTAq1140AKRo2IdJJBLY2NjAU089hWeeecZxRibw0PHd\n", - "3d1FNpvF/fv3HZaGh6RFS+O8KNdeNLwjkkURi8Uc50mmUqkTJ+PycYjlclmeisK7CjhJfBktDKNF\n", - "Mzgdl8uCpNNppFIpuWeJj9PhYwwByMgvlwrhEmc8HC2zYAAtGgAn6/yyaEzTlEE8jhADD0XTaDTk\n", - "ZjdOqroOXHvRsKXhqlVra2uO3ZF8niTHZLiq+GmWRotmiVFPzOUttYlEAqurqzLfV82TUVETxvkc\n", - "g2WL+J7HtRMNn47Lzq1aspWTxJPJpCxBrznJtRQNb3ZTa8ik02kZzOOFSZ/Pd9XdnUvOW+XeJKJ/\n", - "I6L/I6LvE9FvDu5/hYgeENF7gzZcMnau4ZKtoVAI0WhUnoxy2nYUzUnOszScI/z+IBHrf4nobTys\n", - "I/z1S+/hlOHhSRVNJBKRp9aGQiGHzwM4T9NlX0Y9R/I6TLNVxs0RBha0jrA6PLFoQqEQAoGAPEZH\n", - "nV4DkALhbSfqARfqscvXRTgXLtSo5Aj/5+DWwtYR5pKtLBr1eGMWjTrNVs9g4qSqTqcjE6sWfXfB\n", - "qFxINIOh6e/QzxGuY4HrCKuWxjRNRCKRUy0Ni4aHJj4nWxXNdZtqM6PkCP8V5wgveh1h9SBSn88H\n", - "j8cDt9stxcIi6PV6cneB2tRzsnk1+6oOVr8KzttheWqOMBFlhBB7gy+Xqo4wO7sshE6n4yhGxBvg\n", - "+DymZrO5dDnA5zFOjvDvAXhlmesId7tdeSRgs9lEoVBANpvFvXv3cO/ePRwdHcmm1svTlgaPzBH+\n", - "p8vpznzAorEsC/V6HQcHB8hms/joo49w584deRgpny953abd1y4iDDhTG0qlkoz+ulwu2LaNZrMp\n", - "W61WQzabxc7ODnZ3d7G3t+eYfl+XRUqVaycarudbKpXkRrdGo4HDw0Ps7u4iHo87zmKyLAsPHjzA\n", - "gwcPUC6Xr+2MSYUu6wef1626XMlKTd9cW1uT602maTpWrzudDkqlEkqlEorFIsrlsiMus8x+jBDi\n", - "1ADutRMNT7d5w5tt244NcG632yEINbDHDXhY73eZrY0WjWZkzhLNJMcRaq4pWjSakbm04UmzvGhL\n", - "oxkZLRrNyFyqaIjoJSL6mIh+RESvTuF520T0wSDF9L/H+P43iChPRB8q9xJE9DYR/ZCI3holN+iM\n", - "542dCvuI9Nqx+nhp6bq8ZjLtBsAF4C6AWwA8AN4H8PSEz7wHIDHB938K/USyD5V7XwPwu4PrVwF8\n", - "dcLnfRnA74zZvzUAzw2uQwB+AODpcfv4iOeN3UchxKVamhcA3BVCbAshbADfBvD5KTx37DRTIcR3\n", - "AZSGbn8O/bK2GLz+zITPA8bsoxBiXwjx/uC6DkAtwTtyHx/xvLH7CFzu8HQDwI7y9QM87PC4CADv\n", - "ENG7RPTFCZ/FXEZ524lTYaddgnea6bqXKZrLmMu/KIR4HsDL6FdP/9Q0Hy76dnzSfk+cCjtcgnfS\n", - "Pk47XfcyRbMLYFP5ehN9azM2YpAtKIQoAHgT/SFwUvJEtAb0MxIxYXlbIcSBGADgG6P28VEleMfp\n", - "41npupP08TJF8y6AJ4noFhF5AXwB/VKyY0FEQSIKD65NAJ/FdNJMp1redvChMiOlwk67BO+j0nXH\n", - "7SOAy5s9DTz2l9H32O8CeG3CZz2O/gzsfQDfH+d5AL4FIAegg76/9YsAEgDeAfBDAG8BiE3wvF9C\n", - "/9SaDwB8b/Dhro7wvJ8E0Bv8jO8N2kvj9vGM5708SR+FEHoZQTM6OiKsGRktGs3IaNFoRkaLRjMy\n", - "WjSakdGi0YyMFo1mZLRoNCPz/yU19i71FpCwAAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFZtJREFUeJztnVtsY8d5x//f4Z2H94skaiXvemUbsAsD9otbwA2ahyCw\nUSBpXxoYKFD0EvShN7QPddyHJo9pgAZF+1CgiB30hqRFCxfpQ1vbRQukD724sGOnaydZY8XVihJF\niXfykDwipw/kNzuHklbiRRRJzQ8Y8OgsdXYk/vXNN9988w0JIaDRjIJx1R3QLB5aNJqR0aLRjIwW\njWZktGg0I6NFoxmZsUVDRC8R0cdE9CMienWandLMNzROnIaIXAB+AOAzAHYB/A+AV4QQH023e5p5\nZFxL8wKAu0KIbSGEDeDbAD4/vW5p5hn3mN93A8CO8vUDAD+uvoGIdKh5wRFC0Gn3x7U0WhDXmHFF\nswtgU/l6E31ro7kGjCuadwE8SUS3iMgL4AsAvjO9bmnmmbF8GiHEMRH9OoB/AeAC8LqeOV0fxppy\nX+jB2hFeeKbtCGuuMVo0mpHRotGMjBaNZmS0aDQjo0WjGRktGs3IaNFoRkaLRjMyWjSakdGi0YzM\nuElYAAAi2gZQBdAFYAshXphGpzTzzUSiQT8Z69NCiOI0OqNZDKYxPJ26EqpZXiYVjQDwDhG9S0Rf\nnEaHNPPPpMPTi0KIPSJKA3ibiD4WQnx3Gh3TzC8TWRohxN7gtQDgTfS3tmiWnEl2WAaJKDy4NgF8\nFsCH0+qYZn6ZZHhaBfAmEfFz/loI8dZUeqWZaxYyR9gwDBARiEheq/eY0342IQSEEOj1evJafR9f\nD79eR87KEZ7UEZ45hmHA5/PB6/XC6/XC5/PB7/fD7/fL+71ez9FUAfR6PbTbbdk6nY58D7+/2+2i\n2+3Ka42ThRSN1+tFKBSSLRKJyBYIBNDtdnF8fOz48NmidLtd1Go11Ot11Go1NBqNE++3bVs2LZqT\nLJxoiAg+nw+hUAjxeBzxeBzpdBqpVAqpVAqRSASdTkd+6MfHxw6LY9s2isUiisUifD4f3G63QyS2\nbYOIpMA0J1k40RiGAb/fj0gkgmQyidXVVWQyGaytrWFtbQ2xWAydTkc227YdQ5Vt2wiHwwgGg3I4\nU9/f6XRgWZZsbvfV/IrUIVX1wYaH26vwuRZONC6XC6ZpIplMYmNjAxsbG9LKsKVhC8Ov6i/7+PgY\nwWAQ8XgcKysrqFarDstk2zaazSYsy0Kz2USr1Zr5zzjsk7VaLViWJV/55+I2a+EspGhCoRBSqRQ2\nNzdx69YtxGIxxGIxRKNRmKZ5wpFVZ0m9Xg/xeBzNZhONRgOWZTkExqLhZlnWzH9G9rG41Wo1lMtl\n2ZrNJtrttnyvFs05GIbhsDSPP/44QqEQTNNEKBSC3+8/MZ0eNucsDvUvlj8oVTQsqlnDfWMLeHh4\niHw+D4/Hg16vJ8MK3W4XnU5n5v1bSNH4fD6Ew2HpBPOU2+/3w+v1noi78C/5rFe2Sr1eD8fHxw4r\n02w2Hc9Sv28aqP1jbNuW4YB2u41IJCIF0263Hf7ZNPtyURZONDxlzufzyGazMAwDgUBANq/XK4cn\nFoPL5XI0t9sNt9strw3DgGEYcLlcMlDo9XpBRHC73Sd8DH4/t1E4zbFVA5SGYZwYLrvdLlqtFlqt\nlhyWhBBot9taNBeBRVMoFLC9vQ3bthEMBmXj2RCb9263C6/XC4/HI199Pp+cOfG1eo+I4PV64Xa7\n4ff7Hf5Ft9t1CO6is6vhAKMq7GFBs8VT36OK5vj4GO12G7VabWTRToOFFE29Xkc+n4dhGGg0GggG\ngzBNE6Zpwuv1yl9wq9WCbduO4cvv9ztEFgwGZZBQCOH48PhaFWGn05HRaBbheZzmU6nN7XbD4/HI\nV36vao3UCHar1UK9XkexWJxP0RDRGwB+GsCBEOLZwb0EgL8BcBPANoCfE0KUL7GfEhbN4eEhjo+P\nUa1WpWBYNOrsx7ZtBAKBU0XCjWM77GSy1fF4PPB4PNJJBh4KgIezi4pmuPH/xT4NWzW/339iDc22\nbTQaDdTrdTQaDZTLZWlV53V4+iaAPwHwF8q9LwF4WwjxtUHh6S8N2qXDUV3LsmAYBrrdLprNJur1\nOvx+P9xuN9rttsOU8/oUi0H1gQKBAMLhMEKhkHzlD499JI6PcKxk+PvPY3g2xw4uW65oNCrjTMlk\nEh6Px7Egy8MVW5l2uy19nbkM7gkhvktEt4Zufw7ATw2u/xzAv2NGoun1euh0Omg2m/Ja9VdcLpdj\nOt3tdh2mn9+r+jfBYFBao+FXv9/vsFzNZhOmaTos13l/7cPRXFXU7XYbmUwGt27dgmEYCIfDICK4\nXC4YhiG/7yzRXAXj+jSrQoj84DqPfm7NTGBLw3+xPPvhXzJbH3W9SZ3p8PtU53PYGWZRmKaJQCDg\nGBoajYZjaDNN80KiUfujRnhbrRa2trZgGAZCoRAymYx0rvm57DgPi0ZdUpglEzvCQggxy/p6LBrb\ntqfyPPYnuHk8HhkoZPHU63XHqng4HHYMaeehCkZdFmDhCCEQj8dx48YNdDod+Hw+EJGcjrNg2u22\njB91Op0rWUIAxhdNnojWhBD7RJQBcDDNTs0S1TFlc99ut6Uvoa5F8QfVbrfhcrkuvBI+PDzxB81T\nfHUBlf0Znmp3Oh3UajVUKhUUi0UUCgWUSiXU63V0Op2FEs13APwCgD8YvP7D1Hp0BfR6PQAPBdRq\ntaRgWq2WdFjb7Ta63S7a7bacOnOw7VEMz5zUBDKObpumCb/fL0WjLm3w2tPR0REKhQKKxSLq9bqM\nDs+ai0y5v4W+05sioh0Avw/gqwD+loh+GYMp92V28rIZjomw49lqteByuRxBNp6xqBZnlP8HAEKh\nkHTCI5GIw9K43W45NLGjzKJRLY1lWVK8s+Yis6dXzvinz0y5L1fGcF4Kx2TOYtJZi8fjQTQaRSAQ\nQCwWQyQScVgaFm273Ua9Xke1WpWiOTw8RKVSkYHBubQ0mskZToAPh8NIpVLY2NjA5uYmNjc3kUql\nYJomDMNAq9VCtVrF0dERjo6OkMvlcHR0hFqtJpdGeIZ4FWjRzAB1uu9yuRyieeKJJ5DJZJBOpxEK\nhWAYBjqdDqrVKg4ODrC7u4tcLofDw0MpGrYwV7VTQotmBnCwjqf1nETGokkkEjKBTBVNoVDAzs6O\ntDQ8Y+Kptk73XGJYNByRVi3N1taWdIy9Xq8UDa/k7+zsYG9vzyGaq05416KZARyL4SjyysoK4vG4\nXGDlPB52gDkJSw0AztN2Gi2aGcD7tJLJJJLJJNLp9Kmi4ak8x4RarZZMbmcLMw87PrVoZgAH8FKp\nFDKZDFZWVhCLxRAKhaRo1BgR5+6oa1RXuao9jC7UOAN4eEomk1hfXz8xPPECpbqafZalmQe0pbkE\nhtNBE4kE0uk01tfXsbm5idXVVcRiMZlw1Ww2UalUUK1WUalUcPfuXezs7KBQKKBer0vRXNUC5Ymf\n76o7sIyo6RZ+vx+JRAIrKyvIZDLY3NxEMpmUEWEigmVZODw8xN7eHnK5HO7fv4+dnR0Zm+HF0nkZ\nnrRoLgEWDaegDosmHA4jEAhIS8OiyWazuHv3LnK5HPb39x2W5iojwMOMmyP8FQC/AqAweNtrQoh/\nvqxOLhqc72uaJqLRqBTN+vo6HnvsMRmP4ZROVTR37txBoVCQuylrtdq5a2Gz5iKO8DcBvDR0TwD4\nuhDi+UHTglFg0fCGvmg0KlexOU+n3W7LJPFyuYxKpSJbvV6X24XnYTgaZtwcYUDXDz4Tj8eDQCAg\nK1vwKjZbGDXtodVqnRAO58pwWuu8McmU+zeI6HtE9DoRxabWoyXA7XbLXQ6JRAKRSERuOeH0TU57\nGBZMtVpFo9FAq9WaW0szrmj+FMDjAJ4DsAfgD6fWoyWARROJRORi5GmiUYcnFs4iiGas2ZMQQuYE\nE9E3APzj1Hq0gAwXFPB6vQgGg9Kn4dkSR35brRYqlQry+Tzy+Tz29vZQKpXQbDYdaQ/zKBhgTEsz\nSCZnfha6frBjcxuLhi1NJBKRG/lYNOVyWRYx2NvbQ7FYlHu55lkwwHg5wl8G8Gkieg79WdQ9AL96\nqb2cc4bL0w6Lhi3NsGj29/cdouGikfNejnbcHOE3LqEvCw0Lx+VynTk8qaLh4SmbzeLo6EhWuLrK\njLyLoiPCU4CXC3hv9+rqKpLJpBSMz+eT23G73a7D+eUAHtfSm3fBAFo0U8Hn8yEajSIajSIWi8mc\nX05/APor2JZlodvtOgJ5alxmXmdLw2jRTAHev7SysiJL1HKiVTgcdmyntSzrxBSbZ03ztlxwFlo0\nU4BFk06nsbm56RANF0vi2Mtpywbq9lptaZYUtWCA2+1GKpXC2toaNjY2cPPmTayuriIajUpfhh3f\ng4MD5PN57O/vy12S87R6fVG0aMbA4/FIx9fv98u0hxs3buCxxx5DPB5HJBKRh3s0m01HXGZ/fx/l\nchmWZS2EZRlGi2YMPB6PnFKHw2Gk02mHpeFKWlx6rdlsolQqYX9/H/fv33dYGi2aawAROVaxuVx+\nJpORogEe7g8fFk02m0WxWESlUtGiWWY4cMdRX66Yzgd5rK+vI5VKIRwOw+v1yqJLnP5wVlxmUWZL\nw2jRXAAWy/BebD6bYWNjA4lEQtbfOz4+hmVZsuxaqVRyzJjmfRX7PLRoLoAqGN5Wm06n5bZarsoZ\nDAZl6oNlWbJEiCoa1cospaUhok30S8GuoL84+WdCiD++yjrCVwFbGq7JFwqFpGiefPJJWZuPdxdw\nQaRarSYPJFOFw/UC5301+yzOS42wAfy2EOLHAPwEgF8joqfxsI7wUwD+FTMqB3sVGIaBYDAoT315\n4okncPPmTWQyGXm+lN/vl7kynJFXLBaRz+exs7ODfD4v82WGK48uIo+0NEKIfQD7g+s6EX0E4Aau\nsI7wrFATq8LhMNbW1qTje/v2bayvryMej8ttKABknbxKpYLDw0Pkcjlsb29jb28P5XJZVvJcdC7s\n0wySy58H8F+4wjrCs0AVDNf3XVtbw9bWFra2tuTRh4lEAn6/33FgarfblbVldnd3sb29jcPDQxSL\nxYWdYg9zIdEQUQjA3wP4LSFEbejs65nWEZ41bGlWV1extbWFZ599Vq5o8y5J3szGvky1WnVYmlqt\nJhcsr4VoiMiDvmD+UgjBpV+Xpo7waagVzrkMPgfy0um0LG/P+5hs25b7sCuVCnK5HA4ODhxBPE59\nWAYe6QhT36S8DuCOEOKPlH/iOsLAEtQRHsYwDFmylY/64SrmoVBICobLwVqWhVKphFwuh08++QQP\nHjzAwcGBXF+66rMMps15luZFAD8P4AMiem9w7zUsWR1hFXV6zSe2qKIJh8OOk+mAvmiKxSJyuRzu\n3buH3d1dHBwcSCvDDvIiz5hUzps9/QfOtkZLU0d4GA7ieb1eh2hYOOqyAnDS0hQKBbkf27KspREL\noyPCgGMzPi8TxONxxGIxJBIJrK+vI5FIwDRNuN3uE4e/7+/vy8YxmVqtJh3kZRIMoEUDwLlM4PV6\nZcUqzpG5ffs2VldXYZomgL5lUbfRZrNZ7O7uIp/PyyqcfKrdMnLtRTO8RBAIBJBIJHDjxg0Zl+Hc\nX9M0IYSQwxHvkLx//76cMR0dHcnV7UXZXTAq1140AKRo2IdJJBLY2NjAU089hWeeecZxRibw0PHd\n3d1FNpvF/fv3HZaGh6RFS+O8KNdeNLwjkkURi8Uc50mmUqkTJ+PycYjlclmeisK7CjhJfBktDKNF\nMzgdl8uCpNNppFIpuWeJj9PhYwwByMgvlwrhEmc8HC2zYAAtGgAn6/yyaEzTlEE8jhADD0XTaDTk\nZjdOqroOXHvRsKXhqlVra2uO3ZF8niTHZLiq+GmWRotmiVFPzOUttYlEAqurqzLfV82TUVETxvkc\ng2WL+J7HtRMNn47Lzq1aspWTxJPJpCxBrznJtRQNb3ZTa8ik02kZzOOFSZ/Pd9XdnUvOW+XeJKJ/\nI6L/I6LvE9FvDu5/hYgeENF7gzZcMnau4ZKtoVAI0WhUnoxy2nYUzUnOszScI/z+IBHrf4nobTys\nI/z1S+/hlOHhSRVNJBKRp9aGQiGHzwM4T9NlX0Y9R/I6TLNVxs0RBha0jrA6PLFoQqEQAoGAPEZH\nnV4DkALhbSfqARfqscvXRTgXLtSo5Aj/5+DWwtYR5pKtLBr1eGMWjTrNVs9g4qSqTqcjE6sWfXfB\nqFxINIOh6e/QzxGuY4HrCKuWxjRNRCKRUy0Ni4aHJj4nWxXNdZtqM6PkCP8V5wgveh1h9SBSn88H\nj8cDt9stxcIi6PV6cneB2tRzsnk1+6oOVr8KzttheWqOMBFlhBB7gy+Xqo4wO7sshE6n4yhGxBvg\n+DymZrO5dDnA5zFOjvDvAXhlmesId7tdeSRgs9lEoVBANpvFvXv3cO/ePRwdHcmm1svTlgaPzBH+\np8vpznzAorEsC/V6HQcHB8hms/joo49w584deRgpny953abd1y4iDDhTG0qlkoz+ulwu2LaNZrMp\nW61WQzabxc7ODnZ3d7G3t+eYfl+XRUqVaycarudbKpXkRrdGo4HDw0Ps7u4iHo87zmKyLAsPHjzA\ngwcPUC6Xr+2MSYUu6wef1626XMlKTd9cW1uT602maTpWrzudDkqlEkqlEorFIsrlsiMus8x+jBDi\n1ADutRMNT7d5w5tt244NcG632yEINbDHDXhY73eZrY0WjWZkzhLNJMcRaq4pWjSakbm04UmzvGhL\noxkZLRrNyFyqaIjoJSL6mIh+RESvTuF520T0wSDF9L/H+P43iChPRB8q9xJE9DYR/ZCI3holN+iM\n542dCvuI9Nqx+nhp6bq8ZjLtBsAF4C6AWwA8AN4H8PSEz7wHIDHB938K/USyD5V7XwPwu4PrVwF8\ndcLnfRnA74zZvzUAzw2uQwB+AODpcfv4iOeN3UchxKVamhcA3BVCbAshbADfBvD5KTx37DRTIcR3\nAZSGbn8O/bK2GLz+zITPA8bsoxBiXwjx/uC6DkAtwTtyHx/xvLH7CFzu8HQDwI7y9QM87PC4CADv\nENG7RPTFCZ/FXEZ524lTYaddgnea6bqXKZrLmMu/KIR4HsDL6FdP/9Q0Hy76dnzSfk+cCjtcgnfS\nPk47XfcyRbMLYFP5ehN9azM2YpAtKIQoAHgT/SFwUvJEtAb0MxIxYXlbIcSBGADgG6P28VEleMfp\n41npupP08TJF8y6AJ4noFhF5AXwB/VKyY0FEQSIKD65NAJ/FdNJMp1redvChMiOlwk67BO+j0nXH\n7SOAy5s9DTz2l9H32O8CeG3CZz2O/gzsfQDfH+d5AL4FIAegg76/9YsAEgDeAfBDAG8BiE3wvF9C\n/9SaDwB8b/Dhro7wvJ8E0Bv8jO8N2kvj9vGM5708SR+FEHoZQTM6OiKsGRktGs3IaNFoRkaLRjMy\nWjSakdGi0YyMFo1mZLRoNCPz/yU19i71FpCwAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3667,81 +899,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAD0ZJREFUeJzt3XvQXVdZx/HvL2+ubUoh0oJA2lAFJR2QIjDlTgGdykDx\n", - "gkBFQHRwHEAqAgN0Rv/SAYdxqAyDM0jlUm4qYIFRLlUqFJCGQtNbys2h2oI0SkNoapO8SR7/OCfN\n", - "2/Am2Ts76z3npN/PzDs5e5/n7PXkrJPkyVr7rJWqQpIkSUdv2aQTkCRJmnUWVJIkSQNZUEmSJA1k\n", - "QSVJkjSQBZUkSdJAFlSSJEkDLZ9k40lcs0GSJM2Mqspi55sWVEnOBS4C5oB3VdVfHByzfv36n3jd\n", - "9u3bOfnkk4+63b5ra+3du7dJbJ889u3b1zm2j2TRfj9m8Yu54447OPHEE4/69X3e4927d/e69vz8\n", - "fOfYPXv2dI7t09fTvPZbVQ3+DEzz70+SWmk25ZdkDng7cC6wETg/ycNatSdJkjQpLe+heizwnaq6\n", - "qarmgQ8Dz2nYniRJ0kS0LKgeCNy84PiW8bkjWrVqVZOEtDRWrFgx6RQkSVpSLQuqo76RYvXq1ccy\n", - "Dy2xlStXTjoFHaVjcQ+dJN0Ttbwp/XvAwjvO1zMapbqb7du33/V41apVFlOSJGnmtCyorgIekmQD\n", - "8H3g+cD5BwcN+TafJEnSNGhWUFXVniSvBD7DaNmEi6vqxlbtSZIkTUrTdaiq6lPAp1q2IUmSNGkT\n", - "XSkd+i2e2FXfhQX7LKrZKrbVIqB9Fwzts6jmNLxvfX9/rRaddDFLSbpncy8/SZKkgSyoJEmSBrKg\n", - "kiRJGsiCSpIkaSALKkmSpIEsqCRJkgayoJIkSRrIgkqSJGkgCypJkqSBLKgkSZIGsqCSJEkaaOJ7\n", - "+a1atWrSKfTSZ8+2VrF99tvru8dcn2v3ie2zZ2Of2Pn5+c6x0G6fwCS98mih5X6C7lUoSYfXdIQq\n", - "yfoklye5Icn1SV7Vsj1JkqRJaD1CNQ+8uqo2J1kLfC3JZVV1Y+N2JUmSlkzTEaqq+kFVbR4/3gHc\n", - "CDygZZuSJElLbcluSk+yATgLuHKp2pQkSVoKS1JQjaf7PgJcMB6pkiRJOm40/5ZfkhXAR4H3V9Wl\n", - "Bz+/bdu2ux6vXr2aNWvWtE5JkiTpmGpaUGX0XfKLgS1VddFiMfe5z31apiBJktRc6ym/JwC/DZyT\n", - "5Orxz7mN25QkSVpSTUeoquqLuBq7JEk6zlnsSJIkDTTxrWe6bjPSZ2uPltuATMMWHC3fiz7xy5Z1\n", - "r8dXrFjRObbPljZ9t57pE99n65k+5ubmOsf2eY/75jsN2wy1eo8laak5QiVJkjSQBZUkSdJAFlSS\n", - "JEkDWVBJkiQNZEElSZI0kAWVJEnSQBZUkiRJA1lQSZIkDWRBJUmSNJAFlSRJ0kAT33pm5cqVneL6\n", - "bH3RdzuLVtvJtNraYxa362i1HVDLrXX6vM99YvtszdLns9nycz8NWy5J0jQ7ZEGV5DeAAhb7F6iq\n", - "6mNdGkgyB1wF3FJVzz6qLCVJkqbY4Uaons2ooDqUTgUVcAGwBTipa1KSJEmz5JAFVVX9ztCLJ3kQ\n", - "8Ezgz4E/Hno9SZKkaXTEm9KT3D/JxUk+PT7emOT3Ol7/rcDrgNm76UeSJKmjLt/yew/wWeAB4+Nv\n", - "A68+0ouSPAvYWlVXs/h9WJIkSceFLgXVfavq74C9AFU1D3T5mtLjgfOSfBf4EPC0JO87OOi22267\n", - "6+fOO+/skbokSdJ06LJswo4kP7X/IMnZwPYjvaiqLgQuHL/mKcBrq+rFB8etW7eue7aSJElTqEtB\n", - "9Rrgk8AZSb4MnAI89yjaciEbSZJ0XEqXBfuSLAd+jtG9UN8cT/sNbzypM844o1OsC3se4MKeB/RZ\n", - "JBNgfr77R7dPbKs+cWFPSZouVbXoP2hHHKFKsgZ4OfBERqNMVyT566raeWxTlCRJmk1dpvzeB/wY\n", - "eBujEarfAi4BfrNhXpIkSTOjS0F1ZlVtXHD8uSRbjlUCt99+e6e4PtMZfacnWl271TRJq+mzvlq9\n", - "F32mP/tO+fW59jT09bTo85k73t8LSVpMl2UTvp7kcfsPxt/y+1q7lCRJkmbL4TZHvm5BzJeS3Mzo\n", - "HqrTgG8uQW6SJEkz4UibI0uSJOkIDrc58k0Lj5OcCqxunZAkSdKs6bI58nlJvg18F/g8cBPwqcZ5\n", - "SZIkzYwuN6X/GfA44FtV9WDg6cCVTbOSJEmaIV0Kqvmq+l9gWZK5qroceHTjvCRJkmZGl3WotiU5\n", - "CbgC+ECSrcCOtmlJkiTNjiPu5ZdkLXAno9GsFwL3Aj5QVT8c3HhSp5xySqdYF/Y8wIU9D3Bhz+nj\n", - "eyHpeHbUe/lV1f7RqL3Ae45hTpIkSceFwy3suYPRQp6Lqaq617FIYNeuXZ3i+ozKTMsITh+tRnBa\n", - "jta1GtlrORrpqJMkqYXDrUO1dujFk9wbeBdwJqPi7Her6itDrytJkjRNutyUPsRfAf9cVc9Nshw4\n", - "sXF7kiRJS65ZQZXkZOBJVfUSgKraA2xv1Z4kSdKkdFmH6mg9GPifJO9O8vUkf5PkhIbtSZIkTUTL\n", - "gmo58CjgHVX1KOAO4A0N25MkSZqIlgXVLcAtVfXV8fFHGBVYd7Nz5867fvquKSRJkjQNmt1DVVU/\n", - "SHJzkodW1beAZwA3HBy3evXqVilIkiQtidbf8vtDRtvVrAT+A3hp4/YkSZKWXNOCqqquAR7Tsg1J\n", - "kqRJa3kPlSRJ0j1C6ym/IyewvFsKc3Nzx/ya+61YsaJz7MqVKyce2+e+szVr1nSO7XvtE07ovgrG\n", - "2rXdF94/7bTTOsdu3LixcyzA6aef3jl23bp1nWP7vG+7d+/uHDs/P985dtmyfv8/6vO5P+mkk5rE\n", - "rlq1qnPs8b79lKTpd7i/WxyhkiRJGsiCSpIkaSALKkmSpIEsqCRJkgayoJIkSRrIgkqSJGkgCypJ\n", - "kqSBLKgkSZIGsqCSJEkayIJKkiRpoJnZeqbPVhJV1SuHPtt77N27t3Psrl27Osf22Takz3vRJ9+W\n", - "+uSxc+fOJrEAe/bs6RzbJ+c+n7k+/dd3O5k+9u3b1yS2758/SToeNB2hSvLGJDckuS7JB5N037hL\n", - "kiRpRjQrqJJsAF4GPKqqHg7MAS9o1Z4kSdKktJzy+zEwD5yQZC9wAvC9hu1JkiRNRLMRqqq6DfhL\n", - "4L+A7wM/qqp/adWeJEnSpLSc8vsZ4I+ADcADgLVJXtiqPUmSpElpeVP6o4EvV9UPq2oP8DHg8QcH\n", - "7dix466f3bt3N0xHkiSpjZb3UH0D+JMka4CdwDOATQcHrV27tmEKkiRJ7bW8h+oa4H3AVcC149Pv\n", - "bNWeJEnSpGSSi/AlqVNPPbVrbJ/r9s2jc2yfhRZbxbqw59HFggt7LuTCnpLUX1Ut+pe4W89IkiQN\n", - "ZEElSZI00Mzs5ddSq+nEPrF9plRa7mvYauqqz3X7THPNzc11ju2bR6u+noZp477xfb6B2ye21bSq\n", - "JC01R6gkSZIGsqCSJEkayIJKkiRpIAsqSZKkgSyoJEmSBrKgkiRJGmgqC6pdu3ZNOgUN0Hf1ck2P\n", - "+fn5SacgSTPJgkrHnP03u/pszSNJOmAqCypJkqRZYkElSZI0UCa5nUMS95KQJEkzo6oW3WtsogWV\n", - "JEnS8cApP0mSpIEsqCRJkgaauoIqyblJvpHk20leP+l8dGhJ/jbJrUmuW3BuXZLLknwryWeT3HuS\n", - "OerQkqxPcnmSG5Jcn+RV4/P24ZRLsjrJlUk2J9mS5E3j8/bdDEkyl+TqJJ8cH9t/M2yqCqokc8Db\n", - "gXOBjcD5SR422ax0GO9m1FcLvQG4rKoeCvzr+FjTaR54dVWdCZwNvGL8580+nHJVtRM4p6oeCTwC\n", - "OCfJE7HvZs0FwBZg/83M9t8Mm6qCCngs8J2quqmq5oEPA8+ZcE46hKq6Ath20OnzgPeOH78X+NUl\n", - "TUqdVdUPqmrz+PEO4EbggdiHM6Gq/m/8cCUwx+jPon03I5I8CHgm8C5g/7fG7L8ZNm0F1QOBmxcc\n", - "3zI+p9lxv6q6dfz4VuB+k0xG3STZAJwFXIl9OBOSLEuymVEfXV5VN2DfzZK3Aq8D9i04Z//NsGkr\n", - "qFzD4ThSozU57NMpl2Qt8FHggqq6feFz9uH0qqp94ym/BwFPTnLOQc/bd1MqybOArVV1NQdGp+7G\n", - "/ps901ZQfQ9Yv+B4PaNRKs2OW5PcHyDJTwNbJ5yPDiPJCkbF1CVVden4tH04Q6pqO/BPwC9i382K\n", - "xwPnJfku8CHgaUkuwf6badNWUF0FPCTJhiQrgecDn5hwTurnE8BLxo9fAlx6mFhNUJIAFwNbquqi\n", - "BU/Zh1MuyX33fwMsyRrgl4Crse9mQlVdWFXrq+rBwAuAz1XVi7D/ZtrUrZSe5FeAixjdZHlxVb1p\n", - "winpEJJ8CHgKcF9G8/1/Cnwc+HvgNOAm4HlV9aNJ5ahDG38r7AvAtRyYWngjsAn7cKoleTijm5aX\n", - "jX8uqaq3JFmHfTdTkjwFeE1VnWf/zbapK6gkSZJmzbRN+UmSJM0cCypJkqSBLKgkSZIGsqCSJEka\n", - "yIJKkiRpIAsqSZKkgSyoJE1cki+Nfz09yfnH+NoXLtaWJB1LrkMlaWokeSqjRQ6f3eM1y6tqz2Ge\n", - "v72qTjoW+UnSoThCJWnikuwYP3wz8KQkVye5IMmyJG9JsinJNUl+fxz/1CRXJPk4cP343KVJrkpy\n", - "fZKXjc+9GVgzvt4lC9vKyFuSXJfk2iTPW3Dtf0vyD0luTPL+pX03JM2i5ZNOQJI4sPXN64HX7h+h\n", - "GhdQP6qqxyZZBXwxyWfHsWcBZ1bVf46PX1pV28Z7221K8pGqekOSV1TVWYu09evALwCPAE4Bvprk\n", - "C+PnHglsBP4b+FKSJ1SVU4WSDskRKknTJAcd/zLw4iRXA18B1gE/O35u04JiCuCCJJuBfwfWAw85\n", - "QltPBD5YI1uBzwOPYVRwbaqq79fonojNwIYBvydJ9wCOUEmadq+sqssWnhjfa3XHQcdPB86uqp1J\n", - "LgdWH+G6xU8WcPtHr3YtOLcX/66UdASOUEmaJrcDC28g/wzw8iTLAZI8NMkJi7zuXsC2cTH188DZ\n", - "C56b3//6g1wBPH98n9YpwJOBTfxkkSVJR+T/uiRNg/0jQ9cAe8dTd+8G3sZouu3rSQJsBX5tHL/w\n", - "K8qfBv4gyRbgm4ym/fZ7J3Btkq9V1Yv2v66q/jHJ48ZtFvC6qtqa5GEHXZtFjiXpblw2QZIkaSCn\n", - "/CRJkgayoJIkSRrIgkqSJGkgCypJkqSBLKgkSZIGsqCSJEkayIJKkiRpIAsqSZKkgf4fuHwpG022\n", - "rncAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD0JJREFUeJzt3X2Q3Vddx/H3J5tNtk3alEqEAsFQpUo7IEVgyjMFdCoD\nxQcEKgKig+MAUhEYoDP6lw4I41AYRmeQykN5UgELjApUqVBAGgpJn1KeHKotSKPYhnY1IQ9f/7h3\n2+2yyd5ffjl7703er5md3N/vnnvO2Xvu7n5zfud3vqkqJEmSdOTWjLsDkiRJ086ASpIkqScDKkmS\npJ4MqCRJknoyoJIkSerJgEqSJKmnteNsPIl7NkiSpKlRVVnufNOAKsl5wMXADPDOqvrTpWU2b978\nI6+bn59nw4YN9zi3Zk27ybSDBw82Kdtlj68u9XbRcp+xQ9W9Z88e5ubm7nGuy/d34MCBkcvu379/\n5LJd+9FqTCZZVZEs+7uiUx2SdLxpFqUkmQHeDpwHnAlckOQhrdqTJEkal5ZrqB4NfKuqbqqqfcCH\ngGc1bE+SJGksWgZU9wduXnR8y/DcimZnZ5t0SKtj7dqxLs2TJGnVtQyojnghxbp1645mP7TKDKim\nV9/1U5J0vGr5l+87wJZFx1sYzFLdw/z8/F2PZ2dnDaYkSdLUaRlQXQ08OMlW4LvAc4ELlhZaejef\nJEnStGkWUFXV/iQvBz7FYNuES6rqxlbtSZIkjUvGuWdMklpuH6rluA/VkRnHPlTLcR+q44f7UEk6\nlo1lY89RjPoHcWZmZuQ6uy6s7VK+Sz+66PJHqGXA0aV8l350KdsqaD2S8pIkjcJcfpIkST0ZUEmS\nJPVkQCVJktSTAZUkSVJPBlSSJEk9GVBJkiT1ZEAlSZLUkwGVJElSTwZUkiRJPRlQSZIk9WRAJUmS\n1NPYc/lt2LBhpHJd8u21zO/WKudeF13ei7Vruw1xlyTUrfLzdSnbMjnysZ73r9XnXpKOR01nqJJs\nSXJFkhuSXJ/kFS3bkyRJGofWM1T7gFdW1Y4kG4GvJLm8qm5s3K4kSdKqaTpDVVXfq6odw8d3AjcC\n92vZpiRJ0mpbtUXpSbYCZwNXrVabkiRJq2FVAqrh5b4PAxcOZ6okSZKOGc3v8ksyC3wEeF9VXbb0\n+d27d9/1eP369czNzbXukiRJ0lHVNKDK4P7+S4CdVXXxcmU2bdrUsguSJEnNtb7k9zjgN4Bzk2wf\nfp3XuE1JkqRV1XSGqqo+j7uxS5KkY5zBjiRJUk9jTz3TQsvUM11Sl3RJEdOlbBdd34suqWda9blr\nOplWdbdKtzIzMzNy2S7j0eWzCe3SKJneR9LxyBkqSZKkngyoJEmSejKgkiRJ6smASpIkqScDKkmS\npJ4MqCRJknoyoJIkSerJgEqSJKknAypJkqSeDKgkSZJ6GnvqmS4pLUbVNSVKl1Qgs7OzI5dtldKm\nS/qUrulIuujyPrdKR9IydUmrurt85lumypmU91mSjgWHDKiS/CpQwHJ/NauqPjpKA0lmgKuBW6rq\nmUfUS0mSpAl2uBmqZzIIqA5lpIAKuBDYCZw0aqckSZKmySEDqqr6zb6VJ3kA8HTgT4A/6FufJEnS\nJFpxUXqS+ya5JMknh8dnJvntEet/C/AaoN1CHkmSpDEb5S6/dwOfBu43PP4m8MqVXpTkGcCuqtrO\n8uuwJEmSjgmjBFT3rqq/Bg4AVNU+YJRbjx4LnJ/k28AHgackee/SQnfcccddX3v37u3QdUmSpMkw\nyrYJdyb5sYWDJOcAu1d6UVVdBFw0fM2TgFdX1QuXljvpJNeqS5Kk6TZKQPUq4BPA6Um+CGwGnn0E\nbbmRjSRJOiZllA37kqwFfprBWqivDy/79W88qdNOO+1oVLW03k7lu2zsuWbN6JvLT+PGnl363GWD\nylbfX5ey0K7PXXT5fLbcfNONPSWpu6pa9pf4ijNUSU4AXgo8nsEs05VJ/qKq9hzdLkqSJE2nUS75\nvRf4AfA2BjNUvw5cCvxaw35JkiRNjVECqrOq6sxFx59JsvNodWB+fv5oVXWXrpf8upTvWveoulxK\nbKnLJbQul88moSxM32WuVp+3lnVPwvsmSattlL/iX03ymIWD4V1+X2nXJUmSpOlyuOTI1y0q84Uk\nNzNYQ/VA4Our0DdJkqSpsFJyZEmSJK3gcMmRb1p8nOTHgbnWHZIkSZo2oyRHPj/JN4FvA58FbgL+\nsXG/JEmSpsYoi9L/GHgM8I2qehDwVOCqpr2SJEmaIqMEVPuq6r+BNUlmquoK4JGN+yVJkjQ1RtmH\n6rYkJwFXAu9Psgu4s223JEmSpseKufySbAT+j8Fs1vOBk4H3V9X3ezee1Mknn9y3muXqbVbejT3v\nNgmbdbqx5+qYtvdNklo54lx+VbUwG3UAePdR7JMkSdIx4XAbe97JYCPP5VRVHZWppXvd614jlWv5\nP+QusxxdZnAOHjw49rItdZlVm4RZQOg+ozWqVrMyzgxJ0nQ43D5UG/tWnuQU4J3AWQyCs9+qqi/1\nrVeSJGmSjLIovY+3Av9QVc9OshbY0Lg9SZKkVdcsoEqyCXhCVb0IoKr2A7tbtSdJkjQuLW8texDw\nX0neleSrSf4yyYkN25MkSRqLlgHVWuARwJ9X1SOAeeB1DduTJEkai5ZrqG4BbqmqLw+PP8wyAdXt\nt99+1+O5uTnm5sy/LEmSpkuzgKqqvpfk5iRnVNU3gKcBNywtd8opp7TqgiRJ0qpofZff7zFIV7MO\n+DfgxY3bkyRJWnVNA6qqugZ4VMs2JEmSxm0yEshJkiRNsdaX/FY0MzMzUrl169aNXGeXsl3Ld1k0\nv379+rH3oesi/40bR98gv0vZU089deSyp59++shlzzjjjJHLAmzevHnkshs2jL4PbZc0PHv37m1S\ntmtKoi593rRp08hlu7xvs7OzI5edlETRko5fh/s95AyVJElSTwZUkiRJPRlQSZIk9WRAJUmS1JMB\nlSRJUk8GVJIkST0ZUEmSJPVkQCVJktSTAZUkSVJPBlSSJEk9jT31zA9/+MORys3Pz49c5/79+zv1\noUvKjqpqUrZLGpAuKTi69KFrP7qU7fIed0m3MurnZ8GBAwdGLts1lcuouoxfl7JdxgO6fTa6vG9d\nP3OSdCxoOkOV5PVJbkhyXZIPJBk9uZ0kSdKUaBZQJdkKvAR4RFU9FJgBnteqPUmSpHFpecnvB8A+\n4MQkB4ATge80bE+SJGksms1QVdX/AH8G/AfwXeD2qvqnVu1JkiSNS8tLfj8J/D6wFbgfsDHJ81u1\nJ0mSNC4tF6U/EvhiVX2/qvYDHwUeu7TQ7t277/ras2dPw+5IkiS10XIN1deAP0xyArAHeBqwbWmh\nTZs2NeyCJElSey3XUF0DvBe4Grh2ePodrdqTJEkal6Ybe1bVm4A3tWxDkiRp3Ew9I0mS1JMBlSRJ\nUk9jz+U3ar60Lvn5uubya5V7rEseti5541rl/ZsUk9LnVv3oUu/MzMzIZWdnZzv1o0vdrfIrmvdP\n0rHCGSpJkqSeDKgkSZJ6MqCSJEnqyYBKkiSpJwMqSZKkngyoJEmSeprIgKrLLdqaPF1um9dk6brl\niCRpwIBKR92+ffvG3QUdIQMqSToyExlQSZIkTRMDKkmSpJ4yztQPScw7IUmSpkZVLZs/bKwBlSRJ\n0rHAS36SJEk9GVBJkiT1NHEBVZLzknwtyTeTvHbc/dGhJfmrJLcmuW7RuVOTXJ7kG0k+neSUcfZR\nh5ZkS5IrktyQ5PokrxiedwwnXJK5JFcl2ZFkZ5I3DM87dlMkyUyS7Uk+MTx2/KbYRAVUSWaAtwPn\nAWcCFyR5yHh7pcN4F4OxWux1wOVVdQbwz8NjTaZ9wCur6izgHOBlw583x3DCVdUe4NyqejjwMODc\nJI/HsZs2FwI7gYXFzI7fFJuogAp4NPCtqrqpqvYBHwKeNeY+6RCq6krgtiWnzwfeM3z8HuCXVrVT\nGllVfa+qdgwf3wncCNwfx3AqVNX/Dh+uA2YY/Cw6dlMiyQOApwPvBBbuGnP8ptikBVT3B25edHzL\n8Jymx32q6tbh41uB+4yzMxpNkq3A2cBVOIZTIcmaJDsYjNEVVXUDjt00eQvwGuDgonOO3xSbtIDK\nPRyOITXYk8MxnXBJNgIfAS6sqjsWP+cYTq6qOji85PcA4IlJzl3yvGM3oZI8A9hVVdu5e3bqHhy/\n6TNpAdV3gC2LjrcwmKXS9Lg1yX0BkpwG7Bpzf3QYSWYZBFOXVtVlw9OO4RSpqt3A3wM/h2M3LR4L\nnJ/k28AHgackuRTHb6pNWkB1NfDgJFuTrAOeC3x8zH1SNx8HXjR8/CLgssOU1RglCXAJsLOqLl70\nlGM44ZLce+EOsCQnAD8PbMexmwpVdVFVbamqBwHPAz5TVS/A8ZtqE7dTepJfBC5msMjykqp6w5i7\npENI8kHgScC9GVzv/yPgY8DfAA8EbgKeU1W3j6uPOrThXWGfA67l7ksLrwe24RhOtCQPZbBoec3w\n69KqenOSU3HspkqSJwGvqqrzHb/pNnEBlSRJ0rSZtEt+kiRJU8eASpIkqScDKkmSpJ4MqCRJknoy\noJIkSerJgEqSJKknAypJY5fkC8N/fyLJBUe57ouWa0uSjib3oZI0MZI8mcEmh8/s8Jq1VbX/MM/f\nUVUnHY3+SdKhOEMlaeyS3Dl8+EbgCUm2J7kwyZokb06yLck1SX5nWP7JSa5M8jHg+uG5y5JcneT6\nJC8ZnnsjcMKwvksXt5WBNye5Lsm1SZ6zqO5/SfK3SW5M8r7VfTckTaO14+6AJHF36pvXAq9emKEa\nBlC3V9Wjk6wHPp/k08OyZwNnVdW/D49fXFW3DXPbbUvy4ap6XZKXVdXZy7T1K8DPAg8DNgNfTvK5\n4XMPB84E/hP4QpLHVZWXCiUdkjNUkiZJlhz/AvDCJNuBLwGnAj81fG7bomAK4MIkO4B/BbYAD16h\nrccDH6iBXcBngUcxCLi2VdV3a7AmYgewtcf3JOk44AyVpEn38qq6fPGJ4Vqr+SXHTwXOqao9Sa4A\n5laot/jRAG5h9mrvonMH8HelpBU4QyVpktwBLF5A/ingpUnWAiQ5I8mJy7zuZOC2YTD1M8A5i57b\nt/D6Ja4Enjtcp7UZeCKwjR8NsiRpRf6vS9IkWJgZugY4MLx09y7gbQwut301SYBdwC8Pyy++RfmT\nwO8m2Ql8ncFlvwXvAK5N8pWqesHC66rq75I8ZthmAa+pql1JHrKkbpY5lqR7cNsESZKknrzkJ0mS\n1JMBlSRJUk8GVJIkST0ZUEmSJPVkQCVJktSTAZUkSVJPBlSSJEk9GVBJkiT19P9ZTALeax5FvAAA\nAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3749,124 +909,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGPlJREFUeJztXUlsbNlZ/v6a53myy37Pft1B6kiRkk1YJFGyiKKOkJKw\n", - "IYqEFAWEWDAJFjRhQWAXIhEhWCAg6SgMSkCgoICESAeBaBYMjbrTHUgP7nbZZbuq7JrnW9NhUfWf\n", - "Pve6bNfk91zl+0lHVa7yuz717lf//59/JCEETJiYB5YnvQET6weTNCbmhkkaE3PDJI2JuWGSxsTc\n", - "MEljYm4sTBoiepaIXieit4jouVVuysTdBi3ipyEiK4A3AHwcwCmA/wbwOSHEj1a7PRN3EYtKmg8C\n", - "OBBCZIQQfQDfBvDp1W3LxF2GbcF/lwaQVX4+AfDj6i8QkelqXnMIIWja64tKGpMQ9xiLkuYUwK7y\n", - "8y7G0sbEPcCipHkJwHuIaI+IHAA+C+C7q9uWibuMhWwaIcSAiH4RwD8BsAL4unlyuj9Y6Mg904VN\n", - "Q3jtsWpD2MQ9hkkaE3PDJI2JubGoc2+tYbVa5bJYLCDSq24ikq/zc3UZMRwOMRqN5ONoNIIQAkII\n", - "+bP6/rrj3pHGYrHA7XbD7XbD4/HA7XZLcgBjwthsNt1yOp1wuVxwOp1wOp2XrtnpdHSr3+/rlqZp\n", - "6Ha7cq17Xva9Iw0RweVyIRQKIRwOIxgM6iSLxWKR5HA4HHC5XPD5fPD5fPD7/fB6vZeuWavVUK1W\n", - "UavVUKvV0Ol00O125WO9Xkej0cBoNIKmaSZp1g1EBLfbjVAohGQyiXg8riOM1WqVEsjj8cDj8SAc\n", - "DiMSiSAcDiMcDl+65vn5Oc7Pz3FxcYHz83M0m03dstlsEEKg2+0+gU+8emw8aVjdWK1W2Gw2uFwu\n", - "RKNRJJNJpNNpbG1t6ewVJo3H44HX64XX60U0GkUkEkEsFkMkErn0N1hiBQIBeL1e1Ot1KV3q9Tos\n", - "FgsGgwFarRasVisASGmzjlJn40ljsVjg8/kQCAQQCAQQCoWQTqexvb2N7e1tJBIJnaRh9eRyueTy\n", - "+/3weDxSYhjhcDjg9/sxGAxARPD7/QgEAlLSEBF6vR6azSaq1Sp6vZ7OeF433AvS+P1+pFIpuba2\n", - "tpBMJrG1tYVYLCYNYSaOzWaD3W6Xy+Vywe12w263T/0bDocDPp8PFosFLpcLrVZLt1jKVCoVuFwu\n", - "AEC/38dgMJAnrXXCxpPGarXC5/MhkUhgf38fe3t7SCaTSCQSSCQSiEajAKA7PbHEISLd8fw6ScOE\n", - "CQQCaLfb6HQ6usdKpYJCoQCXy4XhcCiP4+uIpUhDRBkAdQBDAH0hxAdXsallwDea7Rifz4d4PI7t\n", - "7W08fPgQTz31FKLRKKLRKGKxGEKh0KVrsI+FCcLSoN/vo9fr6QjGy263S/K43W7dEbtUKiGfzyMU\n", - "CsHn80EIASLCaDRCr9d7rP8/q8CykkYA+JgQoryKzawCrI7YholEInjqqafw4MEDqY4CgYC0UaZh\n", - "OBzKNRgMJFl6vR76/b40mHk5HA65nE4nLBYL7Ha7JIfX60UoFEIkEkEikYDdbketVsNwOESn07mX\n", - "6mlqJPRJwWq1wu/3I5lMIpVKYXt7G7u7uzrSsHNvGmlYbahEabfbuqXaO3a7XZ6y2Ihmuwh41xAP\n", - "BoPy1AZAEsbojV4HrELSfJ+IhgD+WAjxpyvY01Jg0qRSKTx69Aj7+/vS+E2lUojFYroj+DQMh0Pp\n", - "ye10OqjVaqjX66jVamg0GtL5xw5APjU5HA65B7aN7Ha7jjSJRAL9fl86/e4jaT4khMgRURzAC0T0\n", - "uhDixVVsbB4YbQu/3494PI7d3V08evRI2i/RaBSBQEBnr7AKUtXRNCO2Wq3KR/U47nK5MBgMpJTh\n", - "UxT7h9iZyMf+cDiMer1+paRbByy1ayFEbvJ4QUTfwbi05bGSRo0V2e126YsJh8PS4A0EAvImCSEu\n", - "2SvsjOPFBiyHARqNhlzNZlNnwzgcDjx48EAayHw0Z0nGxFGP8izppgU/1wELk4aIPACsQogGEXkB\n", - "fALA76xsZ7PvQ3p6nU4n/H4/gsGgjjRGG2Y4HEp7pdPpoFAoIJfLIZfLoVAoQNM0uZg86lJvvt1u\n", - "R7/fBxHJkIPL5YLD4dBJGzaeVcKogdJ1wjKSJgngO5MPbQPwl0KI761kV3OAVZLT6YTX651KGr7B\n", - "qqRhwjSbTeTzebzzzjs4ODjA4eGhJJR6YlIf1bQKfnS73QiHw0ilUlL18d9T/T2qpFlHwgBLkEYI\n", - "cQjg/Svcy0LgG+JwOKTtwBFpPnarGA6H6Ha7aDabaDQaqFarODs7QyaTwVtvvYU33nhDqi1+ZHXG\n", - "bn9VYlitVmxtbaFWq6HVaqHX60m1pTrvVN+PalOtI9bTEjNAtRccDoe0KfibrN70Xq+Hi4sLGZEu\n", - "FArIZDI4OztDpVKBpmnSMOZHNakKAFwulwxqejweeSoLBoPwer1SPXFwko3rRqOBcrmMer2OdruN\n", - "fr+/luRZe9Ko9gKTRrUbWB2xaul0Ori4uMDx8TGOjo6QzWZRKBRwfn6OarWKbrd7KdNOlQ5EBKfT\n", - "KR2HrJKi0SiCwSA8Hg+cTqeOuP1+H51OB/V6HaVSCbVazSTNk4YxyGi0GdiGYbV0cXGBbDaLN998\n", - "E2+//bYujYEz64xqRL25TqcTwWAQ8XhcBkFVSWM8HV0ladYxhABsCGmMMBq67MntdDqoVqvI5/PI\n", - "ZrM4PDzEwcHBJaP3OrCkYV9QOp1GIpFAJBJBIBCAy+XSBTx5P5qmodVqoV6vo9VqSTVoSponACEE\n", - "er2eTHCyWq3wer2wWq3QNA35fF4XPGw0Gjg8PEQul0OtVpNE4cjzLHA4HDKelEgkEA6H4fV6ZcBy\n", - "XU9Fs2LtScPGbbvdlnaIxWJBr9dDtVpFOByWUoTDAoVCAYVCQZKGDeV5SRMOhyVpfD4fnE6nzju9\n", - "qVh70rCk4aTtTqcDTdNQq9WQz+fh9XplVcBgMECv19N5eHu9ngxSzkoaDlKGQiHE43GEQiGdpGFs\n", - "KnE2gjRMCmBsFHO8iE8xxlQH47oJarWC1WqF2+2G3+9HKBRCLBaTUW72Aqt5OMC7dVHGta5Ye9IY\n", - "oaY2ENGlG6b6bGaRLFzy4na7pX+Gj9gc03I6nfLEBOASOflkxks1hNcRG0caYHzT+BtvtVqvrHic\n", - "VR1xGmcoFEIoFLrkl2GHIqsm9YivaZo80vMyT093DEwM9uayXWH0uczqymdJEwwGkUgkZHKXMXpu\n", - "s9l0pNE0De12Wx6z1cU+mo2VNET0PICfAHAuhHjf5LUIgL8C8BBABsBPCSGqt7jPubCszaDmALMN\n", - "Ew6HkUwm8eDBA0kav98vy3rZ5mEbi31EXHXJ0qbZbELTtLlU5F3DLAkd3wDwrOG13wDwghDixwD8\n", - "8+TnjQBHzT0ejy5Fc2trCw8ePMDe3h5SqRTC4bAkDAAp3fr9PprNJkqlEs7OznB4eIjT01OUSiVZ\n", - "zmKMZa0bbiTNJBOvYnj5UwC+OXn+TQCfWfG+niiYNIFAQKZobm9vY2dnB3t7e9ja2kIoFILb7ZYq\n", - "iY1sLopTSXN2diZJY+wssY5Y1KZJCiEKk+cFjHNrNgKqpOH0zEQiga2tLezu7uLhw4fyJMUhAyYB\n", - "n5aMpCkUCiiXyzrSrCthgBUYwkIIsWn99YzqKZFIIJVKIZ1OY3d3V1fGy3aMGklvNBoolUrI5XI4\n", - "OjpCpVKRke1N6FGzKGkKRJQSQuSJaAvA+So39aRhs9l0SV2qL2Zamma/39eV4RaLRZRKJZmI3mw2\n", - "0e121/aIbcSimc3fBfD5yfPPA/i71WznyYNPTE6nEx6PRxb/M2mmxZY49lWtVmXLkXK5jHK5rCPN\n", - "TRH0dcEsR+5vAfgogBgRZQH8FoAvA/hrIvpZTI7ct7nJxw3ufjWNNNNiSyxpqtUqLi4udJJGDYpu\n", - "iqS5kTRCiM9d8dbHV7yXJwZVehhVE/eccblcsNvtl5yFQghomoZmsymL/Jk03B1r3W0YIzbOIzwv\n", - "LBYLvF4vfD4fvF4vAoEAdnZ2sLOzg3Q6jZ2dHcTjcQQCAdlvj9MsOOXi7OwMJycnyGazOD4+Ri6X\n", - "Q7VaRafTecKf7nZw70nDTYg4RMDHa7WfTSgUQjAY1JGm1WrJOBKT5ujoCJlMRqqmdSzunwX3njRc\n", - "oJ9MJmX/mng8LlcsFpNRbqfTKfN3WB1VKhXkcjmcnJzg+PgYmUwGzWYTrVZrY3rsGXHvSUNEOtI8\n", - "88wzusaMoVDoUs4v2zDlcllWZ56eniKbzSKTyehqw01JsyEwtn/lTp5cnakavmqYABgbwK1WC+Vy\n", - "WSao5/P5qR7fTSQMcA9Jo9ZJqZWZbAxzr2DVL2PMw2Epk8/ncXR0hEKhgGq1qvP4btqJScW9Iw0A\n", - "XXEdd/JU68D5NZY0akkux5bK5bIME1SrVUka1RdjSpoNglpcZ1RPgUBAV3jHpBFCyMR0VT0dHx+j\n", - "3W7L7hLr2OJ1Xtw70vBpibuPx2Ix2fHT7/frsvBYNTFReLHjrtFooNPpyNqpTVZJKu4tabhjOefI\n", - "JBIJ+P1+KV3U05LaOLpSqch67GazKQdocHLVfcC9JA03cnz06BGefvppJJNJnaQxpj2wpKlUKjg/\n", - "P5eShgOR69x9fBHcGOUmoueJqEBErymv/TYRnRDRy5NlTAe9s2APMJPmve99L/b39yVpuIHAdX6Z\n", - "YrEoScPFeaZ60uMbAP4QwJ8prwkAXxVCfPVWdrVCcCYeG7dsz3BogPNljP1kePV6PZRKJRQKBZye\n", - "niKTyciS3k2Y3bQIZolyv0hEe1PeWouaUzV9k0f2qFNTfD6frgkRVxNwv712u41isYhcLic9vqye\n", - "NjVMcBOWaS/5S0T0AyL6OhFd7hV/R8D9fbn2OhqNSknj9/ulpOEmRMC7/WTY+C0Wi8jn8zIomc/n\n", - "TdIsgD8CsI9xz70cgN9b2Y5WDCaNmvMbiUQQCoWkpFHVE/tjuAESJ1YxaTKZjEmaRf6REOJcTADg\n", - "axj3D74zUPv28lidSCSCVCqly4/hagJj+iaXorTbbdkUiUtsuZfNulcULIOFSDNJJmf8JIDXrvrd\n", - "x41psSWfz4doNCrLUBKJhAwXTCMNG8CsorgJtUqY+3JSmoZFcoS/BOBjRPR+jE9RhwB+/lZ3OSfU\n", - "vr089S0ajcrhGolEQkoalSw8TodrsdX2a6qU2fTY0k1YNEf4+VvYy8rAHl1VPUWjUaRSKezu7sr+\n", - "wty5ygi1Z1+r1dL5Yu6LA+86bJxHmCe8caOhSCSCZDIph5aqbVtVw5frsDVNk4bv6ekpjo+PpV9G\n", - "07Qn/fHuBDaWNOpQLm7ZypPdeOQOH7FZqrA6KhQKODs7QzabxdHRkfQA39fTkhEbRxqehMJzt9Pp\n", - "tI40fr9f16aenXncR6ZSqeikjJrza0qaMTaONDzcgkmzs7Mj1RN34VT7z6jH61qthmKxeEnSzNOf\n", - "7z5g40mTTqd1dUvGGUtCCLTbbZTLZZyenuLk5ASnp6coFotoNBrQNG0jmiuuEhtLGm53tr29LSUM\n", - "jwtUwaQpFos4OTnBwcEB8vm8rp/MOo9Dvg1sHGm4R54qaTidc9owdq4uKJVKyGazePvtt2WyFZOG\n", - "f++++mWM2DjSTFNP6jAvI0aj0SVJwy3xWTWZZNFj40hjHP13VU8ZFWq7WFZH6nXmhbGLqPF1da/G\n", - "x2l7NL7PSe88jGzezuiDwUA3cnFeL/fGkWYRGIm27AQ4lk6q8cxE5Ef+u4C+eG+aNFTfs1gssnKC\n", - "Uztmmbqrfg4+KdZqNVSrVWiaduWYomkwSQPoCGO323U3fBHSGFukTbsZqlRhMnC87Kr9sYoNBAKI\n", - "xWJybPQ0A98IdQ+1Wg2FQkEeAtRU1aUlDRHtYpzmmcA4OPknQog/uOt9hOcB37yrJM0isFgs0qdz\n", - "07dXJcxVA1HV92w2GwKBgJw1lU6nZTeL66Duo1gsAgA6nQ7K5bJsiTJrXO0mSdMH8KtCiFeIyAfg\n", - "f4joBQBfwLiP8FeI6DmM+wivZS9hbgCQSCSwv78vh3NwWcoiDj11PLPq52EJpKoaridXl1FFqZLG\n", - "ZrPJ8AhXUcwraZxOp2zD3263YbfbdTOxbvrM15JGCJEHkJ88bxLRjwCkMe4j/NHJr30TwL9iTUlj\n", - "sVgQDAaxs7MDIQT8fr9uassiUe1WqyVDD9xwWh2mygRgEng8HtlUyefzTSWNurh8mGc1zGLTAO8S\n", - "x263S2L3ej3Y7XbZVZ2/LNdhZptmklz+AQD/iQ3qI8ykEULA5/Nhe3tbZ88s4tRjA5MfeQ4CSzA+\n", - "1bENpQ7rCIVCl+waVYXyOETumaM2wJ4FQgg4HA6dRGVJxnXqN2Em0kxU098C+BUhREPVueveR5gN\n", - "S6/Xi1QqdamnzCJ2TalUQrFYlIu/0dxn2DgOOhKJyAZK8Xh8KmmMezb2Mr4J6udg9aSWE3N7/llc\n", - "DLNk7tkxJsyfCyG49eud7SPMUWt1YLs6RXeaKL/q9WX2AEBmDvLNMUoa3lcwGJRNlILBoLxxsxLW\n", - "OABNtZ+mqddKpYJGo6HLSLy4uEChUJgpkn/T6YkAfB3A/wkhfl95i/sI/y7uWB9h/ta0222Z6sBi\n", - "nMfs3Da4zkoIAZvNdq1Nw4NauSeO2j1UfWRMIxJ/SbhzhSpFeFSjilqthlwuh/PzcznymcdGd7vd\n", - "G0c/3/Q/+CEAPw3gVSJ6efLaF3GH+wirtde1Wg3lchmBQECWsjwO8IxLm80Gt9t9abqdUb04HA6Z\n", - "GMYOQP4ss6jKwWCAdrsth5DxOGleRmnTaDSk6lSHy08j2DTcdHr6d1xdsXAn+wgzadjrWalUdLVP\n", - "jwNceOd2uy85zVSPMHDZyGXSGH1F15GH50vV63UpOZrNplzG0xDP+ORmTOrgsqVJs44YjUZyPkE2\n", - "m4XNZpP/KSy+543VGI+8qqNtmrrjagiGmsTV7/flqeyq0xkP5+DfV22Uab/PRX28+LjPk+2MpNE0\n", - "TQ4s47a23DLlXpJmOByi0Wggn88DGH+rUqmUPALHYjEAl4OF10FtIMB+lXlsJJZ86k1k+2aaocrk\n", - "ZjWjHtmntcrvdru6pktcPcHORePfYMnEf4ftISb0Tdg40oxGIzQaDRCRTgyzyK7X67q29rOQhj21\n", - "LpdLGoyj0UjaLDeBc5B5L3xiYUPVCN4nLyYBd0o3SgOOWvP7KsGmNVtiSaZ6vudpzLRxpBkOh1Id\n", - "XVxcwO12y65VXGY7D2mISEoWj8cDj8eD0WgkbZZZwJ20yuUyzs/PL0kC47ebc5VLpRLK5bKs8rzK\n", - "sFVTO4z20LQY2lW/M6szc+NIo9YxAeMbxmOQiQiaps1NGvXI7na7Ua1WUS6XUSwWEQ6Hb7wGO/t4\n", - "QguThSWD8aayq4CXao91u90nnnq6caQxQgiBTqeDarUKItIZwrOqJ0524mMx57Hw400wDnNnHwqr\n", - "BSNYIqqlMzz+5y5kEW48aUajkSRKr9dDrVYDMJsBzL9nTE1Q7ZtZ0hLUCDL36OM1LWeHKz15qW3z\n", - "7wLotph7V+JRaq7MoumbRnVmPILfBGNqxFXOO4aaBDbNTnlcEEJM/WZtPGlMLI6rSLNM+zQT9xQm\n", - "aUzMjWtJQ0S7RPQvRPS/RPRDIvrlyetr20fYxPK41qYhohSAlJojDOAzGEe1G+KaPsKmTbP+uMqm\n", - "WTRHGFiTPsImVo+ZbRolR/g/Ji+tRR9hE6vHTKSZqKa/wThHuIk16iNsYvW40U8zyRH+BwD/aEj5\n", - "5Pf3APy9EOJ9htdNm2bNsZCf5qocYbrDfYRN3D5uOj19GMC/AXgV47JcAPhNAJ/DWDXJPsJKHRT/\n", - "W1PSrDnMMIKJuWGGEUysDCZpTMwNkzQm5oZJGhNzwySNiblhksbE3DBJY2Ju3JqfxsTmwpQ0JuaG\n", - "SRoTc+NWSUNEzxLR60T01qQL6LLXyxDRq5MU0/9a4N8/T0QFInpNeS1CRC8Q0ZtE9L15coOuuN7C\n", - "qbDXpNcutMdbS9e9rq53mQXACuAAwB4AO4BXADyz5DUPAUSW+PcfwTiR7DXlta8A+PXJ8+cAfHnJ\n", - "630JwK8tuL8UgPdPnvsAvAHgmUX3eM31Ft6jEOJWJc0HARwIITJCiD6AbwP49Aquu3CaqRDiRQAV\n", - "w8ufwritLSaPn1nyesCCexRC5IUQr0yeNwGoLXjn3uM111t4j8Dtqqc0gKzy8wne3fCiEAC+T0Qv\n", - "EdHPLXktxm20t106FVZJr11JC95VpuveJmlu4yz/ISHEBwB8EsAvENFHVnlxMZbjy+576VRYMrTg\n", - "XXaPq07XvU3SnALYVX7exVjaLAwhRG7yeAHgOxirwGVRmJTqcEbiUu1thRDnYgIAX5t3j3RNC95F\n", - "9qhc7y/4esvu8TZJ8xKA9xDRHhE5AHwW41ayC4GIPETknzz3AvgEVpNmyu1tgRW0t10mFfaq9NpF\n", - "93hr6brLnGZmsN4/ibHFfgDgi0teax/jE9grAH64yPUAfAvAGYAexvbWFwBEAHwfwJsAvgcgtMT1\n", - "fgbjqTWvAvjB5OYm57jehwGMJp/x5cl6dtE9XnG9Ty6zRyGEGUYwMT9Mj7CJuWGSxsTcMEljYm6Y\n", - "pDExN0zSmJgbJmlMzA2TNCbmhkkaE3Pj/wFJ7Hv45ZreFAAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGPlJREFUeJztXUlsbNlZ/v6a53myy37Pft1B6kiRkk1YJFGyiKKOkJKw\nIYqEFAWEWDAJFjRhQWAXIhEhWCAg6SgMSkCgoICESAeBaBYMjbrTHUgP7nbZZbuq7JrnW9NhUfWf\nPve6bNfk91zl+0lHVa7yuz717lf//59/JCEETJiYB5YnvQET6weTNCbmhkkaE3PDJI2JuWGSxsTc\nMEljYm4sTBoiepaIXieit4jouVVuysTdBi3ipyEiK4A3AHwcwCmA/wbwOSHEj1a7PRN3EYtKmg8C\nOBBCZIQQfQDfBvDp1W3LxF2GbcF/lwaQVX4+AfDj6i8QkelqXnMIIWja64tKGpMQ9xiLkuYUwK7y\n8y7G0sbEPcCipHkJwHuIaI+IHAA+C+C7q9uWibuMhWwaIcSAiH4RwD8BsAL4unlyuj9Y6Mg904VN\nQ3jtsWpD2MQ9hkkaE3PDJI2JubGoc2+tYbVa5bJYLCDSq24ikq/zc3UZMRwOMRqN5ONoNIIQAkII\n+bP6/rrj3pHGYrHA7XbD7XbD4/HA7XZLcgBjwthsNt1yOp1wuVxwOp1wOp2XrtnpdHSr3+/rlqZp\n6Ha7cq17Xva9Iw0RweVyIRQKIRwOIxgM6iSLxWKR5HA4HHC5XPD5fPD5fPD7/fB6vZeuWavVUK1W\nUavVUKvV0Ol00O125WO9Xkej0cBoNIKmaSZp1g1EBLfbjVAohGQyiXg8riOM1WqVEsjj8cDj8SAc\nDiMSiSAcDiMcDl+65vn5Oc7Pz3FxcYHz83M0m03dstlsEEKg2+0+gU+8emw8aVjdWK1W2Gw2uFwu\nRKNRJJNJpNNpbG1t6ewVJo3H44HX64XX60U0GkUkEkEsFkMkErn0N1hiBQIBeL1e1Ot1KV3q9Tos\nFgsGgwFarRasVisASGmzjlJn40ljsVjg8/kQCAQQCAQQCoWQTqexvb2N7e1tJBIJnaRh9eRyueTy\n+/3weDxSYhjhcDjg9/sxGAxARPD7/QgEAlLSEBF6vR6azSaq1Sp6vZ7OeF433AvS+P1+pFIpuba2\ntpBMJrG1tYVYLCYNYSaOzWaD3W6Xy+Vywe12w263T/0bDocDPp8PFosFLpcLrVZLt1jKVCoVuFwu\nAEC/38dgMJAnrXXCxpPGarXC5/MhkUhgf38fe3t7SCaTSCQSSCQSiEajAKA7PbHEISLd8fw6ScOE\nCQQCaLfb6HQ6usdKpYJCoQCXy4XhcCiP4+uIpUhDRBkAdQBDAH0hxAdXsallwDea7Rifz4d4PI7t\n7W08fPgQTz31FKLRKKLRKGKxGEKh0KVrsI+FCcLSoN/vo9fr6QjGy263S/K43W7dEbtUKiGfzyMU\nCsHn80EIASLCaDRCr9d7rP8/q8CykkYA+JgQoryKzawCrI7YholEInjqqafw4MEDqY4CgYC0UaZh\nOBzKNRgMJFl6vR76/b40mHk5HA65nE4nLBYL7Ha7JIfX60UoFEIkEkEikYDdbketVsNwOESn07mX\n6mlqJPRJwWq1wu/3I5lMIpVKYXt7G7u7uzrSsHNvGmlYbahEabfbuqXaO3a7XZ6y2Ihmuwh41xAP\nBoPy1AZAEsbojV4HrELSfJ+IhgD+WAjxpyvY01Jg0qRSKTx69Aj7+/vS+E2lUojFYroj+DQMh0Pp\nye10OqjVaqjX66jVamg0GtL5xw5APjU5HA65B7aN7Ha7jjSJRAL9fl86/e4jaT4khMgRURzAC0T0\nuhDixVVsbB4YbQu/3494PI7d3V08evRI2i/RaBSBQEBnr7AKUtXRNCO2Wq3KR/U47nK5MBgMpJTh\nUxT7h9iZyMf+cDiMer1+paRbByy1ayFEbvJ4QUTfwbi05bGSRo0V2e126YsJh8PS4A0EAvImCSEu\n2SvsjOPFBiyHARqNhlzNZlNnwzgcDjx48EAayHw0Z0nGxFGP8izppgU/1wELk4aIPACsQogGEXkB\nfALA76xsZ7PvQ3p6nU4n/H4/gsGgjjRGG2Y4HEp7pdPpoFAoIJfLIZfLoVAoQNM0uZg86lJvvt1u\nR7/fBxHJkIPL5YLD4dBJGzaeVcKogdJ1wjKSJgngO5MPbQPwl0KI761kV3OAVZLT6YTX651KGr7B\nqqRhwjSbTeTzebzzzjs4ODjA4eGhJJR6YlIf1bQKfnS73QiHw0ilUlL18d9T/T2qpFlHwgBLkEYI\ncQjg/Svcy0LgG+JwOKTtwBFpPnarGA6H6Ha7aDabaDQaqFarODs7QyaTwVtvvYU33nhDqi1+ZHXG\nbn9VYlitVmxtbaFWq6HVaqHX60m1pTrvVN+PalOtI9bTEjNAtRccDoe0KfibrN70Xq+Hi4sLGZEu\nFArIZDI4OztDpVKBpmnSMOZHNakKAFwulwxqejweeSoLBoPwer1SPXFwko3rRqOBcrmMer2OdruN\nfr+/luRZe9Ko9gKTRrUbWB2xaul0Ori4uMDx8TGOjo6QzWZRKBRwfn6OarWKbrd7KdNOlQ5EBKfT\nKR2HrJKi0SiCwSA8Hg+cTqeOuP1+H51OB/V6HaVSCbVazSTNk4YxyGi0GdiGYbV0cXGBbDaLN998\nE2+//bYujYEz64xqRL25TqcTwWAQ8XhcBkFVSWM8HV0ladYxhABsCGmMMBq67MntdDqoVqvI5/PI\nZrM4PDzEwcHBJaP3OrCkYV9QOp1GIpFAJBJBIBCAy+XSBTx5P5qmodVqoV6vo9VqSTVoSponACEE\ner2eTHCyWq3wer2wWq3QNA35fF4XPGw0Gjg8PEQul0OtVpNE4cjzLHA4HDKelEgkEA6H4fV6ZcBy\nXU9Fs2LtScPGbbvdlnaIxWJBr9dDtVpFOByWUoTDAoVCAYVCQZKGDeV5SRMOhyVpfD4fnE6nzju9\nqVh70rCk4aTtTqcDTdNQq9WQz+fh9XplVcBgMECv19N5eHu9ngxSzkoaDlKGQiHE43GEQiGdpGFs\nKnE2gjRMCmBsFHO8iE8xxlQH47oJarWC1WqF2+2G3+9HKBRCLBaTUW72Aqt5OMC7dVHGta5Ye9IY\noaY2ENGlG6b6bGaRLFzy4na7pX+Gj9gc03I6nfLEBOASOflkxks1hNcRG0caYHzT+BtvtVqvrHic\nVR1xGmcoFEIoFLrkl2GHIqsm9YivaZo80vMyT093DEwM9uayXWH0uczqymdJEwwGkUgkZHKXMXpu\ns9l0pNE0De12Wx6z1cU+mo2VNET0PICfAHAuhHjf5LUIgL8C8BBABsBPCSGqt7jPubCszaDmALMN\nEw6HkUwm8eDBA0kav98vy3rZ5mEbi31EXHXJ0qbZbELTtLlU5F3DLAkd3wDwrOG13wDwghDixwD8\n8+TnjQBHzT0ejy5Fc2trCw8ePMDe3h5SqRTC4bAkDAAp3fr9PprNJkqlEs7OznB4eIjT01OUSiVZ\nzmKMZa0bbiTNJBOvYnj5UwC+OXn+TQCfWfG+niiYNIFAQKZobm9vY2dnB3t7e9ja2kIoFILb7ZYq\niY1sLopTSXN2diZJY+wssY5Y1KZJCiEKk+cFjHNrNgKqpOH0zEQiga2tLezu7uLhw4fyJMUhAyYB\nn5aMpCkUCiiXyzrSrCthgBUYwkIIsWn99YzqKZFIIJVKIZ1OY3d3V1fGy3aMGklvNBoolUrI5XI4\nOjpCpVKRke1N6FGzKGkKRJQSQuSJaAvA+So39aRhs9l0SV2qL2Zamma/39eV4RaLRZRKJZmI3mw2\n0e121/aIbcSimc3fBfD5yfPPA/i71WznyYNPTE6nEx6PRxb/M2mmxZY49lWtVmXLkXK5jHK5rCPN\nTRH0dcEsR+5vAfgogBgRZQH8FoAvA/hrIvpZTI7ct7nJxw3ufjWNNNNiSyxpqtUqLi4udJJGDYpu\niqS5kTRCiM9d8dbHV7yXJwZVehhVE/eccblcsNvtl5yFQghomoZmsymL/Jk03B1r3W0YIzbOIzwv\nLBYLvF4vfD4fvF4vAoEAdnZ2sLOzg3Q6jZ2dHcTjcQQCAdlvj9MsOOXi7OwMJycnyGazOD4+Ri6X\nQ7VaRafTecKf7nZw70nDTYg4RMDHa7WfTSgUQjAY1JGm1WrJOBKT5ujoCJlMRqqmdSzunwX3njRc\noJ9MJmX/mng8LlcsFpNRbqfTKfN3WB1VKhXkcjmcnJzg+PgYmUwGzWYTrVZrY3rsGXHvSUNEOtI8\n88wzusaMoVDoUs4v2zDlcllWZ56eniKbzSKTyehqw01JsyEwtn/lTp5cnakavmqYABgbwK1WC+Vy\nWSao5/P5qR7fTSQMcA9Jo9ZJqZWZbAxzr2DVL2PMw2Epk8/ncXR0hEKhgGq1qvP4btqJScW9Iw0A\nXXEdd/JU68D5NZY0akkux5bK5bIME1SrVUka1RdjSpoNglpcZ1RPgUBAV3jHpBFCyMR0VT0dHx+j\n3W7L7hLr2OJ1Xtw70vBpibuPx2Ix2fHT7/frsvBYNTFReLHjrtFooNPpyNqpTVZJKu4tabhjOefI\nJBIJ+P1+KV3U05LaOLpSqch67GazKQdocHLVfcC9JA03cnz06BGefvppJJNJnaQxpj2wpKlUKjg/\nP5eShgOR69x9fBHcGOUmoueJqEBErymv/TYRnRDRy5NlTAe9s2APMJPmve99L/b39yVpuIHAdX6Z\nYrEoScPFeaZ60uMbAP4QwJ8prwkAXxVCfPVWdrVCcCYeG7dsz3BogPNljP1kePV6PZRKJRQKBZye\nniKTyciS3k2Y3bQIZolyv0hEe1PeWouaUzV9k0f2qFNTfD6frgkRVxNwv712u41isYhcLic9vqye\nNjVMcBOWaS/5S0T0AyL6OhFd7hV/R8D9fbn2OhqNSknj9/ulpOEmRMC7/WTY+C0Wi8jn8zIomc/n\nTdIsgD8CsI9xz70cgN9b2Y5WDCaNmvMbiUQQCoWkpFHVE/tjuAESJ1YxaTKZjEmaRf6REOJcTADg\naxj3D74zUPv28lidSCSCVCqly4/hagJj+iaXorTbbdkUiUtsuZfNulcULIOFSDNJJmf8JIDXrvrd\nx41psSWfz4doNCrLUBKJhAwXTCMNG8CsorgJtUqY+3JSmoZFcoS/BOBjRPR+jE9RhwB+/lZ3OSfU\nvr089S0ajcrhGolEQkoalSw8TodrsdX2a6qU2fTY0k1YNEf4+VvYy8rAHl1VPUWjUaRSKezu7sr+\nwty5ygi1Z1+r1dL5Yu6LA+86bJxHmCe8caOhSCSCZDIph5aqbVtVw5frsDVNk4bv6ekpjo+PpV9G\n07Qn/fHuBDaWNOpQLm7ZypPdeOQOH7FZqrA6KhQKODs7QzabxdHRkfQA39fTkhEbRxqehMJzt9Pp\ntI40fr9f16aenXncR6ZSqeikjJrza0qaMTaONDzcgkmzs7Mj1RN34VT7z6jH61qthmKxeEnSzNOf\n7z5g40mTTqd1dUvGGUtCCLTbbZTLZZyenuLk5ASnp6coFotoNBrQNG0jmiuuEhtLGm53tr29LSUM\njwtUwaQpFos4OTnBwcEB8vm8rp/MOo9Dvg1sHGm4R54qaTidc9owdq4uKJVKyGazePvtt2WyFZOG\nf++++mWM2DjSTFNP6jAvI0aj0SVJwy3xWTWZZNFj40hjHP13VU8ZFWq7WFZH6nXmhbGLqPF1da/G\nx2l7NL7PSe88jGzezuiDwUA3cnFeL/fGkWYRGIm27AQ4lk6q8cxE5Ef+u4C+eG+aNFTfs1gssnKC\nUztmmbqrfg4+KdZqNVSrVWiaduWYomkwSQPoCGO323U3fBHSGFukTbsZqlRhMnC87Kr9sYoNBAKI\nxWJybPQ0A98IdQ+1Wg2FQkEeAtRU1aUlDRHtYpzmmcA4OPknQog/uOt9hOcB37yrJM0isFgs0qdz\n07dXJcxVA1HV92w2GwKBgJw1lU6nZTeL66Duo1gsAgA6nQ7K5bJsiTJrXO0mSdMH8KtCiFeIyAfg\nf4joBQBfwLiP8FeI6DmM+wivZS9hbgCQSCSwv78vh3NwWcoiDj11PLPq52EJpKoaridXl1FFqZLG\nZrPJ8AhXUcwraZxOp2zD3263YbfbdTOxbvrM15JGCJEHkJ88bxLRjwCkMe4j/NHJr30TwL9iTUlj\nsVgQDAaxs7MDIQT8fr9uassiUe1WqyVDD9xwWh2mygRgEng8HtlUyefzTSWNurh8mGc1zGLTAO8S\nx263S2L3ej3Y7XbZVZ2/LNdhZptmklz+AQD/iQ3qI8ykEULA5/Nhe3tbZ88s4tRjA5MfeQ4CSzA+\n1bENpQ7rCIVCl+waVYXyOETumaM2wJ4FQgg4HA6dRGVJxnXqN2Em0kxU098C+BUhREPVueveR5gN\nS6/Xi1QqdamnzCJ2TalUQrFYlIu/0dxn2DgOOhKJyAZK8Xh8KmmMezb2Mr4J6udg9aSWE3N7/llc\nDLNk7tkxJsyfCyG49eud7SPMUWt1YLs6RXeaKL/q9WX2AEBmDvLNMUoa3lcwGJRNlILBoLxxsxLW\nOABNtZ+mqddKpYJGo6HLSLy4uEChUJgpkn/T6YkAfB3A/wkhfl95i/sI/y7uWB9h/ta0222Z6sBi\nnMfs3Da4zkoIAZvNdq1Nw4NauSeO2j1UfWRMIxJ/SbhzhSpFeFSjilqthlwuh/PzcznymcdGd7vd\nG0c/3/Q/+CEAPw3gVSJ6efLaF3GH+wirtde1Wg3lchmBQECWsjwO8IxLm80Gt9t9abqdUb04HA6Z\nGMYOQP4ss6jKwWCAdrsth5DxOGleRmnTaDSk6lSHy08j2DTcdHr6d1xdsXAn+wgzadjrWalUdLVP\njwNceOd2uy85zVSPMHDZyGXSGH1F15GH50vV63UpOZrNplzG0xDP+ORmTOrgsqVJs44YjUZyPkE2\nm4XNZpP/KSy+543VGI+8qqNtmrrjagiGmsTV7/flqeyq0xkP5+DfV22Uab/PRX28+LjPk+2MpNE0\nTQ4s47a23DLlXpJmOByi0Wggn88DGH+rUqmUPALHYjEAl4OF10FtIMB+lXlsJJZ86k1k+2aaocrk\nZjWjHtmntcrvdru6pktcPcHORePfYMnEf4ftISb0Tdg40oxGIzQaDRCRTgyzyK7X67q29rOQhj21\nLpdLGoyj0UjaLDeBc5B5L3xiYUPVCN4nLyYBd0o3SgOOWvP7KsGmNVtiSaZ6vudpzLRxpBkOh1Id\nXVxcwO12y65VXGY7D2mISEoWj8cDj8eD0WgkbZZZwJ20yuUyzs/PL0kC47ebc5VLpRLK5bKs8rzK\nsFVTO4z20LQY2lW/M6szc+NIo9YxAeMbxmOQiQiaps1NGvXI7na7Ua1WUS6XUSwWEQ6Hb7wGO/t4\nQguThSWD8aayq4CXao91u90nnnq6caQxQgiBTqeDarUKItIZwrOqJ0524mMx57Hw400wDnNnHwqr\nBSNYIqqlMzz+5y5kEW48aUajkSRKr9dDrVYDMJsBzL9nTE1Q7ZtZ0hLUCDL36OM1LWeHKz15qW3z\n7wLotph7V+JRaq7MoumbRnVmPILfBGNqxFXOO4aaBDbNTnlcEEJM/WZtPGlMLI6rSLNM+zQT9xQm\naUzMjWtJQ0S7RPQvRPS/RPRDIvrlyetr20fYxPK41qYhohSAlJojDOAzGEe1G+KaPsKmTbP+uMqm\nWTRHGFiTPsImVo+ZbRolR/g/Ji+tRR9hE6vHTKSZqKa/wThHuIk16iNsYvW40U8zyRH+BwD/aEj5\n5Pf3APy9EOJ9htdNm2bNsZCf5qocYbrDfYRN3D5uOj19GMC/AXgV47JcAPhNAJ/DWDXJPsJKHRT/\nW1PSrDnMMIKJuWGGEUysDCZpTMwNkzQm5oZJGhNzwySNiblhksbE3DBJY2Ju3JqfxsTmwpQ0JuaG\nSRoTc+NWSUNEzxLR60T01qQL6LLXyxDRq5MU0/9a4N8/T0QFInpNeS1CRC8Q0ZtE9L15coOuuN7C\nqbDXpNcutMdbS9e9rq53mQXACuAAwB4AO4BXADyz5DUPAUSW+PcfwTiR7DXlta8A+PXJ8+cAfHnJ\n630JwK8tuL8UgPdPnvsAvAHgmUX3eM31Ft6jEOJWJc0HARwIITJCiD6AbwP49Aquu3CaqRDiRQAV\nw8ufwritLSaPn1nyesCCexRC5IUQr0yeNwGoLXjn3uM111t4j8Dtqqc0gKzy8wne3fCiEAC+T0Qv\nEdHPLXktxm20t106FVZJr11JC95VpuveJmlu4yz/ISHEBwB8EsAvENFHVnlxMZbjy+576VRYMrTg\nXXaPq07XvU3SnALYVX7exVjaLAwhRG7yeAHgOxirwGVRmJTqcEbiUu1thRDnYgIAX5t3j3RNC95F\n9qhc7y/4esvu8TZJ8xKA9xDRHhE5AHwW41ayC4GIPETknzz3AvgEVpNmyu1tgRW0t10mFfaq9NpF\n93hr6brLnGZmsN4/ibHFfgDgi0teax/jE9grAH64yPUAfAvAGYAexvbWFwBEAHwfwJsAvgcgtMT1\nfgbjqTWvAvjB5OYm57jehwGMJp/x5cl6dtE9XnG9Ty6zRyGEGUYwMT9Mj7CJuWGSxsTcMEljYm6Y\npDExN0zSmJgbJmlMzA2TNCbmhkkaE3Pj/wFJ7Hv45ZreFAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3874,92 +919,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEbZJREFUeJzt3X+QXeVdx/HPJ5vdTXaTGAIhIcliooIC01qwMEChKbQ6\n", - "2Cm0ai1FbbE6dZy2NmLLlDKjf+G0tuMUOx2dqSAt1FKVVtqO8kuLKaWUFEjCj1AgDigkkohJyO4m\n", - "2exuvv5xb8Jmsz+eJyfP3nvC+zWT4Z5zv/c8z73PuXe/nB/P1xEhAAAAHL1Zre4AAABA3ZFQAQAA\n", - "VERCBQAAUBEJFQAAQEUkVAAAABWRUAEAAFQ0u5WN22bOBgAAUBsR4YnWF02obF8m6UZJHZJuioi/\n", - "GB+zZMmSI143MDCgefPmHXW7uXNr5cQfOHAgtzvHvA/2hGM5oY6Ojqx+5MTPmjXxAc7du3drwYIF\n", - "R73dnPeXO9Y54zc0NJQcu3///iKxw8PDybE5n9tk8SMjI5o9+8ifhc7OzuTtzpkzJzl2orYmMzAw\n", - "kBybM3aSNDo6mhx7vM/dN9n3eiI53+vu7u7k2Pnz5yfH9vb2Jsfm9iPH4OBgcmx/f/8R6/bs2aOe\n", - "np4j1u/evTurHyMjI8mxx/u+PNOKnfKz3SHpS5Iuk3SmpKtsn1GqPQAAgFYpeQ3VeZI2R8QLETEs\n", - "6RuS3l2wPQAAgJYomVAtl/TimOWXmuum1dXVVaRDmBmlDqmjvJzTPQCOnZzT6mhPJX89j/rkLAlV\n", - "vZFQ1RcJFdAaJFT1V/Ki9C2S+sYs96lxlOowYy807erqIpkCAAC1UzKhekTSabZXStoq6UpJV40P\n", - "qnI3HwAAQDsollBFxIjtj0m6R41pE26OiKdLtQcAANAqReehioi7JN1Vsg0AAIBWcysn9rIdfX19\n", - "0weq7MWyOZ9BqQk420XOBIelJkPMiS05cWnOpJM5sTnvL2eywNzJLHMmAMwZ63aQMyGqlDfha05s\n", - "HSdOLPW7VWpC4tz+lhrrUtqhDzjcZDOlc0sPAABARSRUAAAAFZFQAQAAVERCBQAAUBEJFQAAQEUk\n", - "VAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUVLQ4corUGn2l6kDlxufUFCxZj6pE\n", - "H3L70Q51ynJrzOWMX059vjlz5iTHdnZ2JsfmvL/u7u7kWCmv3t2ePXuSY3t6epJjTzzxxOTYk08+\n", - "OTl2//79ybGStHDhwuTYVatWZW07Vc4+1Nvbm7XtnDqP8+fPT47t6upKjt2xY0dy7D333JMcu3Xr\n", - "1uRYKW9fzqmjl/O5XXrppcmxF198cXKsJC1btiw5Nmc/yvks5s6dmxyb87nlfEdypf4eTrXPFz1C\n", - "ZbvP9v22n7L9pO2Pl2wPAACgFUofoRqWdE1EbLA9T9Kjtu+LiKcLtwsAADBjih6hioiXI2JD8/GA\n", - "pKclpR+PBAAAqIEZuyjd9kpJZ0t6eKbaBAAAmAkzklA1T/fdIWlN80gVAADAcaP4XX62OyV9U9LX\n", - "IuLO8c/v2rXr0OM5c+YUvYofAAAg1dq1a7V27dqk2KIJlRv34N8saVNE3DhRTM7tygAAADNl9erV\n", - "Wr169aHlG264YdLY0qf83iLpdyRdYnt9899lhdsEAACYUUWPUEXED8Rs7AAA4DhHsgMAAFCRW1k+\n", - "xHaceuqpqbHJ2819TzlT6ueUAsnpR05sqT5IeZ9FTmyp0jq5282JzylTkxObMyYjIyPJsbnlVkqN\n", - "dY6c8cjpQ87nlqsdSi7llEXKjS+1f7bD/tYuckqC5Y51qb9nx/uY5IiICX+4OEIFAABQEQkVAABA\n", - "RSRUAAAAFZFQAQAAVERCBQAAUBEJFQAAQEUkVAAAABWRUAEAAFREQgUAAFARCRUAAEBFRYsjpxge\n", - "Hk6KKzlFfqkSMaVKLeTEliyTkbPtdik9U7eyGu0y1mgvqb+bRxuPsnL+nuXEorUmTahs/4akkDTR\n", - "X6yIiG+lNGC7Q9Ijkl6KiMuPqpcAAABtbKojVJerkVBNJimhkrRG0iZJ81M7BQAAUCeTJlQR8btV\n", - "N257haR3SvpzSX9SdXsAAADtaNqL0m0vtX2z7buby2fa/v3E7X9B0rWS8i5qAgAAqJGUu/y+Iule\n", - "Scuay89Juma6F9l+l6TtEbFeE1+HBQAAcFxISahOioh/kDQqSRExLCnl9qcLJV1h+3lJt0u61Pat\n", - "44P6+/sP/RsaGsroOgAAQHtImTZhwPaJBxdsny/p1eleFBHXS7q++ZrVkj4ZER8cHzd/PteqAwCA\n", - "ektJqD4h6buSfsb2DyUtlvTeo2iLSXIAAMBxySmTAdqeLenn1bgW6pnmab/qjdtxyimnJMUysefR\n", - "xTKx5+GY2BMAUEVETPiHZ9ojVLbnSvqIpIvUOMr0gO2/iYh9x7aLAAAA9ZRyyu9WSbslfVGNI1S/\n", - "Jek2Sb9ZsF8AAAC1kZJQnRURZ45Z/p7tTcesA7PTygnOmpVexzn31EfuKcIS/ejo6Gh5rJQ+Hu0S\n", - "mzvWpU7ZlqqVtnjx4uTYhQsXZm17xYoVybFLly5Njt22bVty7MaNG5Njt2zZkhy7c+fO5Nhcpfah\n", - "np6e5NjOzs7kWEnq6upKjs252zrnlHvO9zqnv4ODg8mxUt77y7Fnz57k2JzLCXJr+XHq/+ik7stT\n", - "fb4pWcpjti8Y0+j5kh5NahkAAOB1YKriyE+MiXnQ9otqXEN1qqRnZqBvAAAAtTBdcWQAAABMY6ri\n", - "yC+MXbZ9sqQ5pTsEAABQNynFka+w/Zyk5yWtlfSCpLsK9wsAAKA2Ui5Kv0HSBZKejYhVkt4u6eGi\n", - "vQIAAKiRlIRqOCJekTTLdkdE3C/pzYX7BQAAUBspE4PstD1f0gOS/t72dkkDZbsFAABQHylHqN4j\n", - "aY+kayTdLWmzuAMQAADgkGmPUEXEwaNRo5K+UrQ3AAAANeTJplG3PaDGRJ4TiYhYULlxO1JLa+SU\n", - "UMkpcZC77ZzYkuVy2kGpPueUs8gtwZGju7s7OTZnn8spfdHf358cOzCQdyY+pyxKzvtbtGhRcuyy\n", - "ZcuSY3NK5Sxfvjw5VpI2b96cHLthw4bk2JwyPDnli3K/e6V+t3K+I0uWLEmOPffcc5Njc/YhKW//\n", - "zPl9ySkns3bt2uTYhx56KDlWknbt2pUcm1PWph1+73Pl7Mup5Y727t2riJiw01PNQzUvuSeTsL1Q\n", - "0k2SzlIjOfu9iPhR1e0CAAC0k7xDOfn+StK/RsR7bc+W1Fu4PQAAgBlXLKGy/VOSLo6IqyUpIkYk\n", - "vVqqPQAAgFZJP8GYb5Wk/7V9i+3HbP+t7Z6C7QEAALREyYRqtqRzJP11RJwjaVDSdQXbAwAAaImS\n", - "11C9JOmliPhxc/kOTZBQDQ4OHnrc2dmZfKU9AABASaOjo8l3RBdLqCLiZdsv2j49Ip6V9A5JT42P\n", - "6+3lOnUAANB+Ojo6Dpt2ZKrpMUrf5fdHapSr6ZL0n5I+VLg9AACAGVc0oYqIjZLSZ2gDAACooZIX\n", - "pQMAALwuTFp6ZkYat2Pp0qWpsSX7UWzbqXLKgJSKlfJKEZSKzZE7djn7e6n3l1Oioo4liQDgeDZZ\n", - "6RmOUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFZFQAQAA\n", - "VERCBQAAUFHR4sgpUkt2tEvpmVmz0nPQnNju7u7k2Jz+5pYu6ejoSI6dPbvM7pNTmqVUSRspv2xP\n", - "qhNOOKFIbGdnZ1Y/du3alRy7Y8eO5NjBwcHk2KGhoeTY/fv3J8f29PQkx0pSagksSVqyZEly7LJl\n", - "y5Jj+/v7k2NfeeWV5FhJGh4eTo7du3dvcuzu3buLxOb8BuTK2Y9yzJ07Nzl2wYIFRbYr5f1u5fx+\n", - "5vze79u3Lzk2Z7/I2TelvM8i9W/lVN+lokeobH/a9lO2n7D9ddvpWQMAAEBNFEuobK+U9GFJ50TE\n", - "GyR1SHp/qfYAAABapeQpv92ShiX12B6V1CNpS8H2AAAAWqLYEaqI2CHpLyX9t6StknZFxL+Vag8A\n", - "AKBVSp7y+1lJfyxppaRlkubZ/u1S7QEAALRKyYvS3yzphxHxfxExIulbki4cHzQ4OHjoX6m7LwAA\n", - "AHIdOHBAo6Ojh/5NpeQ1VD+R9Ke250raJ+kdktaND+rt7S3YBQAAgKMzfvqjqaZiKHkN1UZJt0p6\n", - "RNLjzdVfLtUeAABAqxSd2DMiPifpcyXbAAAAaDVKzwAAAFREQgUAAFCRc2u9HdPG7ejr60uKzak5\n", - "lFuDLeczyInN6UeJmkNSfq27Uv0o9VmUHOtS222HWADA0YmICQvqcoQKAACgIhIqAACAikioAAAA\n", - "KiKhAgAAqIiECgAAoCISKgAAgIraMqHat29fq7uACnKnagAAoO7aMqEaGhpqdRdQAQkVAOD1pi0T\n", - "KgAAgDohoQIAAKio5aVnWtY4AABApslKz7Q0oQIAADgecMoPAACgIhIqAACAitouobJ9me2f2H7O\n", - "9qda3R9Mzvbf2d5m+4kx6xbZvs/2s7bvtb2wlX3E5Gz32b7f9lO2n7T98eZ6xrDN2Z5j+2HbG2xv\n", - "sv2Z5nrGrkZsd9heb/u7zWXGr8baKqGy3SHpS5Iuk3SmpKtsn9HaXmEKt6gxVmNdJ+m+iDhd0r83\n", - "l9GehiVdExFnSTpf0keb3zfGsM1FxD5Jl0TEmyS9UdIlti8SY1c3ayRtknTwYmbGr8baKqGSdJ6k\n", - "zRHxQkQMS/qGpHe3uE+YREQ8IGnnuNVXSPpq8/FXJb1nRjuFZBHxckRsaD4ekPS0pOViDGshIvY0\n", - "H3ZJ6lDju8jY1YTtFZLeKekmSQfvGmP8aqzdEqrlkl4cs/xScx3qY0lEbGs+3iZpSSs7gzS2V0o6\n", - "W9LDYgxrwfYs2xvUGKP7I+IpMXZ18gVJ10o6MGYd41dj7ZZQMYfDcSQac3Iwpm3O9jxJ35S0JiL6\n", - "xz7HGLaviDjQPOW3QtJbbV8y7nnGrk3Zfpek7RGxXq8dnToM41c/7ZZQbZHUN2a5T42jVKiPbbaX\n", - "SpLtUyRtb3F/MAXbnWokU7dFxJ3N1YxhjUTEq5L+RdIvibGriwslXWH7eUm3S7rU9m1i/Gqt3RKq\n", - "RySdZnul7S5JV0r6Tov7hDzfkXR18/HVku6cIhYtZNuSbpa0KSJuHPMUY9jmbJ908A4w23Ml/bKk\n", - "9WLsaiEiro+IvohYJen9kr4XER8Q41drbTdTuu1flXSjGhdZ3hwRn2lxlzAJ27dLWi3pJDXO9/+Z\n", - "pG9L+kdJp0p6QdL7ImJXq/qIyTXvCvu+pMf12qmFT0taJ8awrdl+gxoXLc9q/rstIj5ve5EYu1qx\n", - "vVrSJyLiCsav3touoQIAAKibdjvlBwAAUDskVAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAV\n", - "kVABaDnbDzb/+9O2rzrG275+orYA4FhiHioAbcP229SY5PDyjNfMjoiRKZ7vj4j5x6J/ADAZjlAB\n", - "aDnbA82Hn5V0se31ttfYnmX787bX2d5o+w+a8W+z/YDtb0t6srnuTtuP2H7S9oeb6z4raW5ze7eN\n", - "bcsNn7f9hO3Hbb9vzLb/w/Y/2X7a9tdm9tMAUEezW90BANBrpW8+JemTB49QNROoXRFxnu1uST+w\n", - "fW8z9mxJZ0XEfzWXPxQRO5u17dbZviMirrP90Yg4e4K2fl3SL0p6o6TFkn5s+/vN594k6UxJ/yPp\n", - "QdtviQhOFQKYFEeoALQTj1v+FUkftL1e0o8kLZL0c83n1o1JpiRpje0Nkh6S1CfptGnaukjS16Nh\n", - "u6S1ks5VI+FaFxFbo3FNxAZJKyu8JwCvAxyhAtDuPhYR941d0bzWanDc8tslnR8R+2zfL2nONNsN\n", - "HZnAHTx6NTRm3aj4rQQwDY5QAWgn/ZLGXkB+j6SP2J4tSbZPt90zwesWSNrZTKZ+QdL5Y54bPvj6\n", - "cR6QdGXzOq3Fkt4qaZ2OTLIAYFr8XxeAdnDwyNBGSaPNU3e3SPqiGqfbHrNtSdsl/VozfuwtyndL\n", - "+kPbmyQ9o8Zpv4O+LOlx249GxAcOvi4i/tn2Bc02Q9K1EbHd9hnjtq0JlgHgMEybAAAAUBGn/AAA\n", - "ACoioQIAAKiIhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACAiv4fPgLxE2ST8JkA\n", - "AAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEaRJREFUeJzt3X2wXVV5x/HfL/ct9yYhJA0vCYSGptDyohWqDCBKUNuh\njqBtrUhbpbZjp6PWlCojMtP+wbSjlelIHaedsVAUrNgWLeq0ILQliliJQAKEIC8daAM0pCEv3OTm\n5d7k6R/nBG5u7sta2Vn37H35fmbucM6+z9lr3bP2OXlYe+/1OCIEAACAwzer0x0AAABoOhIqAACA\nikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIq6O9m4bdZsAAAAjRERHm970YTK9sWSrpfUJemGiPiL\nsTFLly495HXbt2/X/PnzD9rW09OT3O6sWTN74i3n7+vuzhvinPe5q6tr3O0vvPCClixZctC2nD6X\nis2N37t3b5HYl19+OTl2165dybG9vb3JsZI0b968Q7Zt2rRJxx577CHbFy9enLzfhQsXJscODw8n\nx65bty459qWXXkqOlfLe55GRkeTY/fv3J8fmrAloj/t9rv379497jOcc9xN9rsfT19eXHDve8TaR\n4447Ljl2wYIFybHSxO9d1djBwcHk2I0bNx6ybevWreP+LVu2bEneryQNDQ0lx+7bty85ljUrp1Ys\n87DdJemLki6WdLqky22fVqo9AACATik5lXOOpKcj4tmIGJb0dUnvLtgeAABAR5RMqE6QtGHU8+fa\n26aUM42M+smZ2ke9zJkzp9NdQAU5p6hQL7Nnz+50F1BRyYTqsE+4cmA1GwlVc5FQNRsJVXP19/d3\nuguoqORF6c9LGn3F+VK1ZqkOsn379lce9/X1kUwBAIDGKZlQPSDpFNvLJL0g6TJJl48NGns3HwAA\nQNMUS6giYsT2xyR9V61lE26MiMdLtQcAANApRdehiog7JN1Rsg0AAIBOcycX67Idxx9/fFJszgKV\nuYtZllpIMmeBvFIXk+YsQpgbv2fPnuTYnAUcSy42l/M+12Ex0pzxyFlcVMobkzosZlkXTezzTMaF\n+Afj+CxvopXSZ/aS4gAAANOAhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACAikio\nAAAAKiKhAgAAqIiECgAAoCISKgAAgIqKFkdOMX/+/KS4np6e5H3m1Eo7nPhUpWoq5dS6y61rmGPu\n3LlF+tHb21tkv5LU39+fHDtnzpwisTl/386dO5Njc+s25ux7165dybE578XJJ5+cHLtixYrk2BNO\nOCE5VpL6+vqSY3PGL6fe5ebNm5Njc+s25nzHLVq0KDk2Z6yHhoaSY5955pnk2C1btiTHSnnHcs6Y\n5HwvL1++PDn2zDPPTI6VpBNPPDE5dsGCBcmxs2fPTo7N+V6uQ81bKf3f68k+S0VnqGwvtX2P7cds\nr7P98ZLtAQAAdELpGaphSVdGxFrbcyU9aPvuiHi8cLsAAADTpugMVURsjIi17cc7JD0uaUnJNgEA\nAKbbtF2UbnuZpLMk3T9dbQIAAEyHaUmo2qf7bpO0sj1TBQAAMGMUv8vPdo+kb0j6akTcPvb3o++i\nGBgY0MDAQOkuAQAATGnVqlVatWpVUmzRhMqtexxvlLQ+Iq4fLybnFl0AAIDpsmLFioOWbLn22msn\njC19yu/Nkn5b0kW217R/Li7cJgAAwLQqOkMVET8Qq7EDAIAZjmQHAACgIpcqj5LUuB0nnXTSEd/v\n/v37i8XnlBcopZNjNlrO+5ZT+iKnvECpskFSXrmjUiURco63nJIaUt5xlDPWObE571vOfnPL8OS8\nFzljUuqzmnu85ZT3yFGH8lolv5PrMH51KLeSGzvTRcS4g8IMFQAAQEUkVAAAABWRUAEAAFREQgUA\nAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFRUtjpxieHg4KS5n2fvcpfpz\nypf09vYmx5YqaZMTW5cyPDn7LVnioFS5lTqUcckda7x2pH7PYnpQ8mVmmjChsv3rkkLSeNlJRMQ3\nUxqw3SXpAUnPRcQlh9VLAACAGptshuoStRKqiSQlVJJWSlovaV5qpwAAAJpkwoQqIn6n6s5tnyjp\nnZL+XNIfV90fAABAHU158ZDt423faPvO9vPTbf9e4v4/L+kqSVzcAQAAZqyUq7G/LOkuSUvaz5+S\ndOVUL7L9LkmbImKNxr8OCwAAYEZISagWRcQ/SNonSRExLGkk4XXnS7rU9jOSbpX0Nts3jw0aHBx8\n5WfPnj0ZXQcAAKiHlGUTdtj+qQNPbJ8raftUL4qIayRd037NhZI+GREfHBs3bx7XqgMAgGZLSag+\nIek7kn7G9g8lHSPpvYfRFotpAACAGckpi4bZ7pb0c2pdC/VE+7Rf9cbtWLx4cVJsXRb2zIkttUjm\nyEjKGdf8PuTGs7Bn+f2ysCcA1EtEjJtkTDlDZbtf0kckXaDWLNO9tv8mInYf2S4CAAA0U8opv5sl\nvSzpC2rNUP2mpFsk/UbBfgEAADTGlKf8bK+PiNOn2nZYjdtx1FFHVd3NePvNis85jZez75z9dnen\nl1Xs6uoq0gcp79RVqdOUOUqe5soZ65zYnLE+5phjivRBknp6epJjc/q8Y8eO5NjNmzcnxw4NDSXH\n7t5djwn0nPdtzpw5ybE53wFS3uck570r9fnL+ftKfbdIed+fe/fuTY4tVbtVovbfdJjolF/K0fKQ\n7fMOPGnf5ffgkeoYAABA001WHPnRUTH32d6g1jVUJ0l6Yhr6BgAA0AhTFUcGAADAFCYrjvzs6Oe2\nj5U0u3SHAAAAmialOPKltp+S9Iyk70l6VtIdhfsFAADQGCkXpf+ZpPMkPRkRJ0t6u6T7i/YKAACg\nQVISquGI2Cxplu2uiLhH0hsL9wsAAKAxUhZJ2Wp7nqR7Jf297U2S0heaAQAAmOFSZqjeI2lI0pWS\n7pT0tLgDEAAA4BVTzlBFxIHZqH2Svly0NwAAAA00YekZ2zvUWshzPBERlWvG2I6FCxemxlZtbkI5\n5RNylvUvFVtSqXIrpUr25JbWyS3jkCrnGCoVm3sMlSqNlBOb0+ec9yL3+yJn3zmlTkqWGCmlDuVk\nZs9OX6Gnr68vqx9z585Njl2wYEFy7NFHH50cu3Xr1uTYDRs2JMdK0rZt25Jjh4eHk2Pr8m9UKanf\nGRExYemZydahSj/qJmD7aEk3SDpDreTsdyPiR1X3CwAAUCfp/yt5eP5K0r9GxHttd0tKr/4JAADQ\nEMUSKtvzJb0lIq6QpIgYkbS9VHsAAACdkncBSp6TJf2f7ZtsP2T7b20PFGwPAACgI0omVN2Szpb0\n1xFxtqSdkq4u2B4AAEBHlEyonpP0XET8uP38NrUSrIMMDQ298pNzxwEAAEBJ7bv6XvmZTLFrqCJi\no+0Ntk+NiCclvUPSY2PjBgY4CwgAAOpn7HIKkyVVpe/y+0O1ytX0SvovSR8q3B4AAMC0K5pQRcTD\nkt5Usg0AAIBOK3kNFQAAwGvChKVnpqVxO+bPn58Um1tipA5KlQ0pVbqk5L7rUragVDmgJr4XAIB8\nE5WeaV6WAgAAUDMkVAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkV\nAABARSRUAAAAFRUtjpxiYGAgKW5kZCR5nzmxUn55lhK6urqSY3t7e5Nj7XFXyD8i++7v70+O7e5O\nP9RyxmPv3r3JsZK0b9++5Ng9e/YU2W9fX19y7Lx585Jj586dmxwr5ZXA2bZtW5HY3bt3J8cODw8n\nx+Z8nqS84z7nWE79fpPyxi/378t577Zv354cOzg4mByb+1lNVZdSTj09PcmxOd8BOcdmrlKfv5zv\nw5zYOoz1ZH0oOkNl+9O2H7P9qO2v2U4/igAAABqiWEJle5mkD0s6OyJeJ6lL0vtLtQcAANApJU/5\nvSxpWNKA7X2SBiQ9X7A9AACAjig2QxURWyT9paT/kfSCpG0R8W+l2gMAAOiUkqf8lkv6I0nLJC2R\nNNf2b5VqDwAAoFNKXpT+Rkk/jIiXImJE0jclnT82aHBw8JWfnLuqAAAASoqIg34mU/Iaqp9I+hPb\n/ZJ2S3qHpNVjg3JuCwcAAJguY5ce6siyCRHxsKSbJT0g6ZH25i+Vag8AAKBTii7sGRGfk/S5km0A\nAAB0GqVnAAAAKiKhAgAAqMidrI1jO5YvX54Uu3PnzuT9lqzvVodaQrn1+UrJ6UfO+5ZTy69k3cac\n2Jy/r1RsSU3sMwCUEBHj/uPHDBUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFdUy\nodq1a1enu4AKhoeHO90FHCaWPACAw0NChSMud20o1AcJFQAcnlomVAAAAE1CQgUAAFBRx0vPdKxx\nAACATBOVnuloQgUAADATcMoPAACgIhIqAACAimqXUNm+2PZPbD9l+1Od7g8mZvvvbL9o+9FR2xba\nvtv2k7bvsn10J/uIidleavse24/ZXmf74+3tjGHN2Z5t+37ba22vt/2Z9nbGrkFsd9leY/s77eeM\nX4PVKqGy3SXpi5IulnS6pMttn9bZXmESN6k1VqNdLenuiDhV0r+3n6OehiVdGRFnSDpX0kfbnzfG\nsOYiYrekiyLiDZJeL+ki2xeIsWualZLWSzpwMTPj12C1SqgknSPp6Yh4NiKGJX1d0rs73CdMICLu\nlbR1zOZLJX2l/fgrkt4zrZ1CsojYGBFr2493SHpc0gliDBshIobaD3sldan1WWTsGsL2iZLeKekG\nSQfuGmP8GqxuCdUJkjaMev5cexua47iIeLH9+EVJx3WyM0hje5mksyTdL8awEWzPsr1WrTG6JyIe\nE2PXJJ+XdJWk/aO2MX4NVreEijUcZpBorcnBmNac7bmSviFpZUQMjv4dY1hfEbG/fcrvRElvtX3R\nmN8zdjVl+12SNkXEGr06O3UQxq956pZQPS9p6ajnS9WapUJzvGj7eEmyvVjSpg73B5Ow3aNWMnVL\nRNze3swYNkhEbJf0L5J+UYxdU5wv6VLbz0i6VdLbbN8ixq/R6pZQPSDpFNvLbPdKukzStzvcJ+T5\ntqQr2o+vkHT7JLHoINuWdKOk9RFx/ahfMYY1Z3vRgTvAbPdL+iVJa8TYNUJEXBMRSyPiZEnvl/Qf\nEfEBMX6NVruV0m3/iqTr1brI8saI+EyHu4QJ2L5V0oWSFql1vv9PJX1L0j9KOknSs5LeFxHbOtVH\nTKx9V9j3JT2iV08tfFrSajGGtWb7dWpdtDyr/XNLRFxne6EYu0axfaGkT0TEpYxfs9UuoQIAAGia\nup3yAwAAaBwSKgAAgIpIqAAAACoioQIAAKiIhAoAAKAiEioAAICKSKgAdJzt+9r//Wnblx/hfV8z\nXlsAcCSxDhWA2rC9Qq1FDi/JeE13RIxM8vvBiJh3JPoHABNhhgpAx9ne0X74WUlvsb3G9krbs2xf\nZ3u17Ydt/347foXte21/S9K69rbbbT9ge53tD7e3fVZSf3t/t4xuyy3X2X7U9iO23zdq36ts/5Pt\nx21/dXrfDQBN1N3pDgCAXi198ylJnzwwQ9VOoLZFxDm2+yT9wPZd7dizJJ0REf/dfv6hiNjarm23\n2vZtEXG17Y9GxFnjtPVrkn5B0uslHSPpx7a/3/7dGySdLul/Jd1n+80RwalCABNihgpAnXjM81+W\n9EHbayT9SNJCST/b/t3qUcmUJK20vVbSf0paKumUKdq6QNLXomWTpO9JepNaCdfqiHghWtdErJW0\nrMLfBOA1gBkqAHX3sYi4e/SG9rVWO8c8f7ukcyNit+17JM2eYr+hQxO4A7NXe0Zt2ye+KwFMgRkq\nAHUyKGn0BeTflfQR292SZPtU2wPjvO4oSVvbydTPSzp31O+GD7x+jHslXda+TusYSW+VtFqHJlkA\nMCX+rwtAHRyYGXpY0r72qbubJH1BrdNtD9m2pE2SfrUdP/oW5Tsl/YHt9ZKeUOu03wFfkvSI7Qcj\n4gMHXhcR/2z7vHabIemqiNhk+7Qx+9Y4zwHgICybAAAAUBGn/AAAACoioQIAAKiIhAoAAKAiEioA\nAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACAiv4fx4jmrtCJPWEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3967,84 +929,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEBVJREFUeJztnVuMJNdZx39f36d6+rI9O7PDrveSlQKysSX7xSA5EREK\n", - "0fqFwEsiS0hRgIgHboIHTHiJHyMkIsQLEoqNwkWJEMgoIAG2ERJBKIDROnYgjmPJK8/sXHd2unu6\n", - "p+99eOg+h+qanktX12Snqs5PKk13zXTpm93/fOec73zfd0QphcUyC4lHbYAlfFjRWGbGisYyM1Y0\n", - "lpmxorHMjBWNZWZ8i0ZE7ojIuyLyAxF5MUijLBcb8ROnEZEk8H3gk8B94L+AF5RS3wvWPMtFxK+n\n", - "eRZ4Xyl1TynVA74BfDo4sywXmZTPz10D1lzv14GfcP+AiNhQc8hRSsm0+349jRVEjPErmvvAddf7\n", - "64y8jSUG+BXNm8BHReSWiGSAzwLfDM4sy0XG15xGKdUXkV8D/glIAi/blVN88LXkPtOD7UQ49AQ9\n", - "EbbEGCsay8xY0VhmxorGMjNWNJaZsaKxzIwVjWVm/G5YWk5ARMwFkE6nzZVKpRgOhwwGA/r9PoPB\n", - "wLzXXy86VjTnQCKRIJlMkkwmSaVSlMtlKpWKuVqtFo1Gw1ytVmviGg6Hj/pXOBErmnMgkUgYz5LJ\n", - "ZFhZWeHWrVvcvHmTmzdvUqvV2N3dNdf+/j7VahWlFO12+1GbfypWNOeA9jDZbJZcLsfKygq3b9/m\n", - "qaee4sknn2RnZ4e1tTU+/PBDstks6XQapRSdTscMaReZuUQjIveAOjAAekqpZ4MwKuwkEgkymQy5\n", - "XA7HcahUKly9epXbt2/zxBNPUCqVEBE6nQ4HBwc0m03q9TqpVCr6omGUjPUJpdTDIIyJCslkknQ6\n", - "zcLCAouLiywsLJDJZEgmkwAMh0P6/T69Xo9Op0Ov16Pf7zMcDglDbX0QS+6L/6fxQyaZTJLJZE4U\n", - "zWAwoNfr0e126Xa7RjRhYF7RKOANEXlTRL4QhEFR4CyiOc7ThIF5h6fnlFKbIrIMvC4i7yqlvhWE\n", - "YWFGiyaXy02IJpFIoJQyXqbdbnN4eEir1aLX6zEYDKI/PCmlNsdfd4FXGZW2xB49EXZ7mnQ6TSKR\n", - "YDgc0ul0aDabVKtVHjx4QLVapdls0u12oy0aEXFEpDB+nQc+BbwTlGFhxj085fN5IxoRYTAY0O12\n", - "aTab1Go19vb2qNVqRjRhYJ7h6Qrw6niJmAL+Uin1WiBWhRzvnCaXyxnRuD1NrVbjwYMHNJtN+v0+\n", - "/X4/FJ7Gt2iUUh8ATwdoS2jRsRW93+QWTLlcxnEcUqmUCeC1Wi2azSYHBwfUarVQRIHd2IhwACQS\n", - "CVKplNlvKhaLVCoVVlZWuHr1KoVCgVQqRavVMtsGjUYjNHMYL1Y0AaCDeZlMhkwmQ6lUYmlpiStX\n", - "rnDt2jVEBKWU8TAPHz6k0WjQ6XQetem+sPk0AeBeYufzeUql0oSnKZVKJJNJ42m0aMLqaaxoAkB7\n", - "Gi2aQqHApUuXWFpaYmVlhcXFRUSEZrMZieHJiiYAdCqE3qDM5XJkMhkTmxkMBrRaLZMSsb+/H6q4\n", - "jBcrmgDQniabzeI4jokA68nxNNFoTxNGrGgCQHuabDbLwsICuVzO5MlME03YIsBerGgCQE+EHceh\n", - "UCjgOA7ZbNbkx/T7fVqtFvV6nb29PSsaC+RyOUqlEisrK9y4cYPl5WXy+TyJRMIE8w4PD01A7/Dw\n", - "kE6nQ7/ff9Sm+8KKJgCy2SzFYpGVlRUee+wxLl++PCEavZutE8kPDw/pdruh2dX2YoN7AZDNZimV\n", - "SiwvL3Pjxg2KxSKLi4skk8ljPY3OoQkjp3oaEXlFRLZF5B3XvYqIvC4i74nIayJSPl8zLx7u2qZc\n", - "LkexWGR5eZmrV69SqVRwHGfC02jh6JKVMHuaswxPfwrc8dz7XeB1pdSPAv88fh8b9F6TjgIvLCzg\n", - "OI4J7DmOM5F0pdM7dUGcvsIoGDiDaMaZePue2z8LfG38+mvAzwVs14XmONEsLi5SKBQmMvXcInFX\n", - "UiqlQisav3OaK0qp7fHrbUa5NbHBLRp3spX2NDphXCllcn+93iasgoEAJsJKKRW3/nq6GE4LxnEc\n", - "Mzzl83k6nc4RwXivMON3yb0tIqsAIvIjwE5wJl18UqmUSRovlUrk83lyuRyp1OhvUM9jdMWBu9A/\n", - "CvgVzTeBz41ffw7422DMufiIyIRoyuWySenUEWB3Vwi3aMI8JLk5y5L768C/Az8mImsi8nngy8DP\n", - "iMh7wE+P38cGr6dxiwame5qwT37dnDqnUUq9cMy3PhmwLaFBF/fn83nK5TL5fN7sNcHRYriwVVCe\n", - "ho0I+2BaiYq7grLT6VCv19nd3WV7e5udnR2TQB4FT2P3nnzg7gqhJ8Fe0dRqNdNSZHt7m2q1Grqq\n", - "g+OwovGBN71T1zVp0XS7XeNp1tbWIudp7PA0I3r1dNLw1G63jWjW19d58OCBFU3c0GmbqVSKdDpN\n", - "uVw2SeOrq6uUSiUymQyDwYBGo2GK4KrVKvv7+xwcHJgi/yhgRXMKIkIymSSbzZp2aLrSYHl5mdXV\n", - "VfL5/BHR1Ov1I6IJS9ntaVjRnAEdl9Gbkl5Pk0gkTHF/o9GgXq9PeBqdCmE9TYxwx2WKxeJETdPq\n", - "6qrJmdGX19P0er3Qp0O4saunM6A9TaFQoFwuUygUTEDP20Lk8PCQdrs9EdCLSiRYY0VzCiIy0XTx\n", - "0qVLFIvFIxUHw+GQbrdLq9U6IpqoCceK5gy4PY0WjTs+Yz2Nh2NyhF8SkXURuTu+vOmgkUJ7Gu/w\n", - "5N6kHAwGdDqdqaKJmnD85ggr4CtKqWfG1z8Gb9rFQC+5j+uhB9Dr9Tg8PDSdrXQxXK/Xi4xQ3PjN\n", - "EYYY9Q8+rcWrWzTestsoMs+c5tdF5Dsi8nLUS1i8u9reDcper2e6de7u7lKr1UxBXBTxK5o/Bj7C\n", - "qOfeJvAHgVl0ATlteNITYDs8nYBSakeNAb5KxPoH6/Oa3GUqOhpcKpVYWFiY6AbRaDSo1Wo8fPjQ\n", - "iEZXUUYRX6IZJ5Nrfp6I9Q/Wk1/dR08PS4VCgWKxSC6XM6LRVZP1ep39/X2zox3l4enUbYRxjvBP\n", - "AZdFZA34EvAJEXma0SrqA+BXztXKHzLTPI0Wje6fl0wmTQsR7Wm0aHSKZ1SHJ785wq+cgy0XAl2f\n", - "7fY0enjSonGfP9npdI4MT1HZYzoOu2E5hUwmw+LiotmgrFQqE1sHrVbLzGfa7TbNZpN2uz2xMRll\n", - "7DaCBxEhm82yuLhIpVLhypUrLC0tUSqVcBzHbBv0ej3T3Uo3KYpSbdNJWNF40G3qC4UCS0tLrK6u\n", - "srS0ZDxNOp0GmGiJ1mw2Q93ZalasaKZwkqfJZDLApGjcniYOWNFMwdvi1d2pUzOt7DbqcxmNFY0H\n", - "ETnSf0b3BNanrejJrj5uJ0yHlgaBFc0U3KLJZrNmn0lvG7i7W+ljBK1oYo7X06TTaVKp1FTRuIcm\n", - "K5qY4k7vdCdduROu+v0+7XabRqNBtVql0WjQbrft6inOpNNpHMcx5zZ5l9vu/Bl9BmWUNyi92Iiw\n", - "B+1pHMcx0WCdDqE9jRaNbluvl91xEc2JnkZErovIv4jI/4jId0XkN8b3I91HeJqn0Tk0gIkGa09T\n", - "r9cjVXZ7GqcNTz3gt5RSPw78JPCrIvI4Eesj7E2yyufz5ggefaLKtImwXnbbibALpdSWUuqt8esG\n", - "8D3gGhHqI6yHI90OTbeodx/2pRsA6DhN3DnznEZEbgHPAP9BxPoIu2u1S6WS6TquRaPza7SniTtn\n", - "Eo2ILAJ/A/ymUurA/RcX9j7C3m6duvGiWzTucxAsZ8vcSzMSzJ8rpXTr120RWVVKbYW9j/C01ZKu\n", - "oNSCUUqZeYtO8Ww2m+YonrAfkDErp62eBHgZ+F+l1B+6vhWpPsKZTMZ06tQ72nq15C651amd7h40\n", - "tVrNJGHFJbh3mqd5DvgF4G0RuTu+90VGfYP/SkR+CbgHfObcLDxndP6M4ziUy2UuX748kXAFGNHo\n", - "I3jcgqlWq3S7XVOGGwdOFI1S6t843htFoo+wFo0+hN0tGj08DYdDE5txexktnKiceXBWYhkRdk9o\n", - "dXtXLZpKpWKO35kWAa5WqxNDkq44iMNcRhNL0cBk1YHucqVFoyPAqVQKpZSpoNRlt97TbrVg4iKc\n", - "WIpGJ1q5RaNjNJcuXZrqaZrNpinw157GXQwXF8FAjEWjhTPN0+jewHoi3O12TYH/tFrtOAkGYioa\n", - "L1pAWkR6SBIRut0u1WqVvb09tre32dzcZG9vj0ajYQ4DixuxFI32Dvryns+klDKrJRFhZ2eHra0t\n", - "Njc3WV9fNzvbnU7nUf8qj4RYikbjFY1bOJp+v29OU9nY2OD+/fsmwBfVAv/TiK1o9LDijrG4S1L0\n", - "1el0jGg2Nze5f/8+vV7PXHEklqJxz0OGwyHNZpO9vT02NjZwHMcIRx/ytba2xtbWFvv7+zQajdgF\n", - "87zEUjQavRFZr9fZ2NggkUhwcHBghipdorK5ucnOzg4HBweR7NY5K7EVjf4PHwwG1Go1RIRms8nW\n", - "1taRw9f1lkGj0TClt3EVDICc9MuLyHXgz4AVRg2M/kQp9Uci8hLwy8Du+Ee/6G0LG5YcG50aoWub\n", - "3IeX6q/uOY7elIyDaJRSUxOIThPNKrCqlHprnIj134xSOz8DHCilvnLCZ6P/rxpxjhPNabvcW8DW\n", - "+HVDRHSOMMSoj7BlkjMnvbpyhL89vhWbPsKWSc4kmvHQ9NeMcoQbxKyPsGWSE+c0YHKE/x74B0/K\n", - "p/7+LeDvlFJPee7bOU3IOW5O4ytHOOp9hC0nc9rq6WPAvwJvM1pyA/we8AKjocn0EXbVQenPWk8T\n", - "cnwtuefBiib8+BqeLJZpWNFYZsaKxjIzVjSWmbGiscyMFY1lZqxoLDNzbnEaS3SxnsYyM1Y0lpk5\n", - "V9GIyB0ReVdEfiAiLwbwvHsi8raI3BWR//Tx+VdEZFtE3nHd893e9pjnvSQi62Mb74rInRmeF2gL\n", - "3hOe59tG4Gi1YVAXkATeB24BaeAt4PE5n/kBUJnj8x9nlEj2juve7wO/M379IvDlOZ/3JeC3fdq3\n", - "Cjw9fr0IfB943K+NJzzPt41KqXP1NM8C7yul7imlesA3gE8H8FzfaaZKqW8B+57bvtvbHvM88Gmj\n", - "CrgF7wnP820jnO/wdA1Yc71f5/8N9osC3hCRN0XkC3M+S3Me7W3nToUNugVvkOm65yma81jLP6eU\n", - "egZ4nlH39I8H+XA18uPz2j13Kqy3Be+8NgadrnueorkPXHe9v87I2/hGKbU5/roLvMpoCJyX7XGp\n", - "js5InKu9rVJqR40BvjqrjSe14PVjo+t5f6GfN6+N5ymaN4GPisgtEckAn2XUStYXIuKISGH8Og98\n", - "imDSTANtbztPKmzQLXjPLV13ntXMGWbvzzOasb/PqApznmd9hNEK7C3gu36eB3wd2AC6jOZbnwcq\n", - "wBvAe8BrQHmO5/0io4rUt4HvjP9zr8zwvI8Bw/HveHd83fFr4zHPe34eG5VSdhvBMjs2ImyZGSsa\n", - "y8xY0VhmxorGMjNWNJaZsaKxzIwVjWVmrGgsM/N/z4EQsKT2Kt0AAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEBVJREFUeJztnVuMJNdZx39f36d6+rI9O7PDrveSlQKysSX7xSA5EREK\n0fqFwEsiS0hRgIgHboIHTHiJHyMkIsQLEoqNwkWJEMgoIAG2ERJBKIDROnYgjmPJK8/sXHd2unu6\np+99eOg+h+qanktX12Snqs5PKk13zXTpm93/fOec73zfd0QphcUyC4lHbYAlfFjRWGbGisYyM1Y0\nlpmxorHMjBWNZWZ8i0ZE7ojIuyLyAxF5MUijLBcb8ROnEZEk8H3gk8B94L+AF5RS3wvWPMtFxK+n\neRZ4Xyl1TynVA74BfDo4sywXmZTPz10D1lzv14GfcP+AiNhQc8hRSsm0+349jRVEjPErmvvAddf7\n64y8jSUG+BXNm8BHReSWiGSAzwLfDM4sy0XG15xGKdUXkV8D/glIAi/blVN88LXkPtOD7UQ49AQ9\nEbbEGCsay8xY0VhmxorGMjNWNJaZsaKxzIwVjWVm/G5YWk5ARMwFkE6nzZVKpRgOhwwGA/r9PoPB\nwLzXXy86VjTnQCKRIJlMkkwmSaVSlMtlKpWKuVqtFo1Gw1ytVmviGg6Hj/pXOBErmnMgkUgYz5LJ\nZFhZWeHWrVvcvHmTmzdvUqvV2N3dNdf+/j7VahWlFO12+1GbfypWNOeA9jDZbJZcLsfKygq3b9/m\nqaee4sknn2RnZ4e1tTU+/PBDstks6XQapRSdTscMaReZuUQjIveAOjAAekqpZ4MwKuwkEgkymQy5\nXA7HcahUKly9epXbt2/zxBNPUCqVEBE6nQ4HBwc0m03q9TqpVCr6omGUjPUJpdTDIIyJCslkknQ6\nzcLCAouLiywsLJDJZEgmkwAMh0P6/T69Xo9Op0Ov16Pf7zMcDglDbX0QS+6L/6fxQyaZTJLJZE4U\nzWAwoNfr0e126Xa7RjRhYF7RKOANEXlTRL4QhEFR4CyiOc7ThIF5h6fnlFKbIrIMvC4i7yqlvhWE\nYWFGiyaXy02IJpFIoJQyXqbdbnN4eEir1aLX6zEYDKI/PCmlNsdfd4FXGZW2xB49EXZ7mnQ6TSKR\nYDgc0ul0aDabVKtVHjx4QLVapdls0u12oy0aEXFEpDB+nQc+BbwTlGFhxj085fN5IxoRYTAY0O12\naTab1Go19vb2qNVqRjRhYJ7h6Qrw6niJmAL+Uin1WiBWhRzvnCaXyxnRuD1NrVbjwYMHNJtN+v0+\n/X4/FJ7Gt2iUUh8ATwdoS2jRsRW93+QWTLlcxnEcUqmUCeC1Wi2azSYHBwfUarVQRIHd2IhwACQS\nCVKplNlvKhaLVCoVVlZWuHr1KoVCgVQqRavVMtsGjUYjNHMYL1Y0AaCDeZlMhkwmQ6lUYmlpiStX\nrnDt2jVEBKWU8TAPHz6k0WjQ6XQetem+sPk0AeBeYufzeUql0oSnKZVKJJNJ42m0aMLqaaxoAkB7\nGi2aQqHApUuXWFpaYmVlhcXFRUSEZrMZieHJiiYAdCqE3qDM5XJkMhkTmxkMBrRaLZMSsb+/H6q4\njBcrmgDQniabzeI4jokA68nxNNFoTxNGrGgCQHuabDbLwsICuVzO5MlME03YIsBerGgCQE+EHceh\nUCjgOA7ZbNbkx/T7fVqtFvV6nb29PSsaC+RyOUqlEisrK9y4cYPl5WXy+TyJRMIE8w4PD01A7/Dw\nkE6nQ7/ff9Sm+8KKJgCy2SzFYpGVlRUee+wxLl++PCEavZutE8kPDw/pdruh2dX2YoN7AZDNZimV\nSiwvL3Pjxg2KxSKLi4skk8ljPY3OoQkjp3oaEXlFRLZF5B3XvYqIvC4i74nIayJSPl8zLx7u2qZc\nLkexWGR5eZmrV69SqVRwHGfC02jh6JKVMHuaswxPfwrc8dz7XeB1pdSPAv88fh8b9F6TjgIvLCzg\nOI4J7DmOM5F0pdM7dUGcvsIoGDiDaMaZePue2z8LfG38+mvAzwVs14XmONEsLi5SKBQmMvXcInFX\nUiqlQisav3OaK0qp7fHrbUa5NbHBLRp3spX2NDphXCllcn+93iasgoEAJsJKKRW3/nq6GE4LxnEc\nMzzl83k6nc4RwXivMON3yb0tIqsAIvIjwE5wJl18UqmUSRovlUrk83lyuRyp1OhvUM9jdMWBu9A/\nCvgVzTeBz41ffw7422DMufiIyIRoyuWySenUEWB3Vwi3aMI8JLk5y5L768C/Az8mImsi8nngy8DP\niMh7wE+P38cGr6dxiwame5qwT37dnDqnUUq9cMy3PhmwLaFBF/fn83nK5TL5fN7sNcHRYriwVVCe\nho0I+2BaiYq7grLT6VCv19nd3WV7e5udnR2TQB4FT2P3nnzg7gqhJ8Fe0dRqNdNSZHt7m2q1Grqq\ng+OwovGBN71T1zVp0XS7XeNp1tbWIudp7PA0I3r1dNLw1G63jWjW19d58OCBFU3c0GmbqVSKdDpN\nuVw2SeOrq6uUSiUymQyDwYBGo2GK4KrVKvv7+xwcHJgi/yhgRXMKIkIymSSbzZp2aLrSYHl5mdXV\nVfL5/BHR1Ov1I6IJS9ntaVjRnAEdl9Gbkl5Pk0gkTHF/o9GgXq9PeBqdCmE9TYxwx2WKxeJETdPq\n6qrJmdGX19P0er3Qp0O4saunM6A9TaFQoFwuUygUTEDP20Lk8PCQdrs9EdCLSiRYY0VzCiIy0XTx\n0qVLFIvFIxUHw+GQbrdLq9U6IpqoCceK5gy4PY0WjTs+Yz2Nh2NyhF8SkXURuTu+vOmgkUJ7Gu/w\n5N6kHAwGdDqdqaKJmnD85ggr4CtKqWfG1z8Gb9rFQC+5j+uhB9Dr9Tg8PDSdrXQxXK/Xi4xQ3PjN\nEYYY9Q8+rcWrWzTestsoMs+c5tdF5Dsi8nLUS1i8u9reDcper2e6de7u7lKr1UxBXBTxK5o/Bj7C\nqOfeJvAHgVl0ATlteNITYDs8nYBSakeNAb5KxPoH6/Oa3GUqOhpcKpVYWFiY6AbRaDSo1Wo8fPjQ\niEZXUUYRX6IZJ5Nrfp6I9Q/Wk1/dR08PS4VCgWKxSC6XM6LRVZP1ep39/X2zox3l4enUbYRxjvBP\nAZdFZA34EvAJEXma0SrqA+BXztXKHzLTPI0Wje6fl0wmTQsR7Wm0aHSKZ1SHJ785wq+cgy0XAl2f\n7fY0enjSonGfP9npdI4MT1HZYzoOu2E5hUwmw+LiotmgrFQqE1sHrVbLzGfa7TbNZpN2uz2xMRll\n7DaCBxEhm82yuLhIpVLhypUrLC0tUSqVcBzHbBv0ej3T3Uo3KYpSbdNJWNF40G3qC4UCS0tLrK6u\nsrS0ZDxNOp0GmGiJ1mw2Q93ZalasaKZwkqfJZDLApGjcniYOWNFMwdvi1d2pUzOt7DbqcxmNFY0H\nETnSf0b3BNanrejJrj5uJ0yHlgaBFc0U3KLJZrNmn0lvG7i7W+ljBK1oYo7X06TTaVKp1FTRuIcm\nK5qY4k7vdCdduROu+v0+7XabRqNBtVql0WjQbrft6inOpNNpHMcx5zZ5l9vu/Bl9BmWUNyi92Iiw\nB+1pHMcx0WCdDqE9jRaNbluvl91xEc2JnkZErovIv4jI/4jId0XkN8b3I91HeJqn0Tk0gIkGa09T\nr9cjVXZ7GqcNTz3gt5RSPw78JPCrIvI4Eesj7E2yyufz5ggefaLKtImwXnbbibALpdSWUuqt8esG\n8D3gGhHqI6yHI90OTbeodx/2pRsA6DhN3DnznEZEbgHPAP9BxPoIu2u1S6WS6TquRaPza7SniTtn\nEo2ILAJ/A/ymUurA/RcX9j7C3m6duvGiWzTucxAsZ8vcSzMSzJ8rpXTr120RWVVKbYW9j/C01ZKu\noNSCUUqZeYtO8Ww2m+YonrAfkDErp62eBHgZ+F+l1B+6vhWpPsKZTMZ06tQ72nq15C651amd7h40\ntVrNJGHFJbh3mqd5DvgF4G0RuTu+90VGfYP/SkR+CbgHfObcLDxndP6M4ziUy2UuX748kXAFGNHo\nI3jcgqlWq3S7XVOGGwdOFI1S6t843htFoo+wFo0+hN0tGj08DYdDE5txexktnKiceXBWYhkRdk9o\ndXtXLZpKpWKO35kWAa5WqxNDkq44iMNcRhNL0cBk1YHucqVFoyPAqVQKpZSpoNRlt97TbrVg4iKc\nWIpGJ1q5RaNjNJcuXZrqaZrNpinw157GXQwXF8FAjEWjhTPN0+jewHoi3O12TYH/tFrtOAkGYioa\nL1pAWkR6SBIRut0u1WqVvb09tre32dzcZG9vj0ajYQ4DixuxFI32Dvryns+klDKrJRFhZ2eHra0t\nNjc3WV9fNzvbnU7nUf8qj4RYikbjFY1bOJp+v29OU9nY2OD+/fsmwBfVAv/TiK1o9LDijrG4S1L0\n1el0jGg2Nze5f/8+vV7PXHEklqJxz0OGwyHNZpO9vT02NjZwHMcIRx/ytba2xtbWFvv7+zQajdgF\n87zEUjQavRFZr9fZ2NggkUhwcHBghipdorK5ucnOzg4HBweR7NY5K7EVjf4PHwwG1Go1RIRms8nW\n1taRw9f1lkGj0TClt3EVDICc9MuLyHXgz4AVRg2M/kQp9Uci8hLwy8Du+Ee/6G0LG5YcG50aoWub\n3IeX6q/uOY7elIyDaJRSUxOIThPNKrCqlHprnIj134xSOz8DHCilvnLCZ6P/rxpxjhPNabvcW8DW\n+HVDRHSOMMSoj7BlkjMnvbpyhL89vhWbPsKWSc4kmvHQ9NeMcoQbxKyPsGWSE+c0YHKE/x74B0/K\np/7+LeDvlFJPee7bOU3IOW5O4ytHOOp9hC0nc9rq6WPAvwJvM1pyA/we8AKjocn0EXbVQenPWk8T\ncnwtuefBiib8+BqeLJZpWNFYZsaKxjIzVjSWmbGiscyMFY1lZqxoLDNzbnEaS3SxnsYyM1Y0lpk5\nV9GIyB0ReVdEfiAiLwbwvHsi8raI3BWR//Tx+VdEZFtE3nHd893e9pjnvSQi62Mb74rInRmeF2gL\n3hOe59tG4Gi1YVAXkATeB24BaeAt4PE5n/kBUJnj8x9nlEj2juve7wO/M379IvDlOZ/3JeC3fdq3\nCjw9fr0IfB943K+NJzzPt41KqXP1NM8C7yul7imlesA3gE8H8FzfaaZKqW8B+57bvtvbHvM88Gmj\nCrgF7wnP820jnO/wdA1Yc71f5/8N9osC3hCRN0XkC3M+S3Me7W3nToUNugVvkOm65yma81jLP6eU\negZ4nlH39I8H+XA18uPz2j13Kqy3Be+8NgadrnueorkPXHe9v87I2/hGKbU5/roLvMpoCJyX7XGp\njs5InKu9rVJqR40BvjqrjSe14PVjo+t5f6GfN6+N5ymaN4GPisgtEckAn2XUStYXIuKISGH8Og98\nimDSTANtbztPKmzQLXjPLV13ntXMGWbvzzOasb/PqApznmd9hNEK7C3gu36eB3wd2AC6jOZbnwcq\nwBvAe8BrQHmO5/0io4rUt4HvjP9zr8zwvI8Bw/HveHd83fFr4zHPe34eG5VSdhvBMjs2ImyZGSsa\ny8xY0VhmxorGMjNWNJaZsaKxzIwVjWVmrGgsM/N/z4EQsKT2Kt0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4052,82 +939,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAD4tJREFUeJzt3WuQZVdZh/HnPz2XnjhDpiJJEJg4qKAkBRIEKtwJoBUp\n", - "CKgIRAVEC8sCJEaggHzwkxZYlEWkKK1CIpcgoAIGKBWIEiGAJARmcptws4gmIBkvGchA9dA98/qh\n", - "z0w6Tc/02b2z+pw9eX5VXXP2PuvstfqsfU6/s/ba601VIUmSpLXbMOkGSJIkDZ0BlSRJUk8GVJIk\n", - "ST0ZUEmSJPVkQCVJktSTAZUkSVJPGydZeRLXbJAkSYNRVVlpf9OAKsl5wCXADPD2qvqT5WVOP/30\n", - "H3rdgQMH2LZt2932dVkv6/Dhw53a2aX8oUOHxi7bqs1djttynbFjHXt+fp5NmzatuR1d3ouufT0N\n", - "fSJJOvE0u+SXZAZ4K3AecCZwQZKHtqpPkiRpUlrOoXoM8PWquqWq5oH3A89uWJ8kSdJEtAyoHgDc\n", - "umT7ttG+VW3evLlJg7Q+NmzwXgdJ0r1Ly798a55UYkA1bDMzM5NugiRJ66rlpPRvAjuXbO9kcZTq\n", - "bg4cOHD08ebNmw2mJEnS4LQMqK4FHpxkF/At4PnABcsLLb+bT5IkaWiaBVRVtZDkFcDHWVw24dKq\n", - "urlVfZIkSZOSSa6fk6RWWodqJa5DtbbjTmIdqr5lXYdKkjStJrKw5zi2bt06VrmNG8dvapey0G0S\n", - "dZdjb9myZeyys7OzTcqO+/4e0WUOW5eyXdqxffv2scuecsopY5cFOO2008Yue+qppzYpu2PHjrHL\n", - "djmHpqWvu3xGunz2utw92jXA7VJ+YWFh7LJd/gPW5b1IVvw+P6ZW359d+qRLm7v+fkPT5Xzrcg51\n", - "PXarPmnVfy3Pi3Hft+N9Tr2/XZIkqScDKkmSpJ4MqCRJknoyoJIkSerJgEqSJKknAypJkqSeDKgk\n", - "SZJ6MqCSJEnqyYBKkiSpJwMqSZKkngyoJEmSepp4Lr+5ublJN6GTLrmEWuVUGmLC41ZJibvkVet6\n", - "7GlIhN1Fy/x1Joq+S5f8dV3y801LAvhW/XeinxdDdKLnTFxvTUeokuxMcmWSm5LcmOSVLeuTJEma\n", - "hNYjVPPARVW1J8k24ItJrqiqmxvXK0mStG6ajlBV1beras/o8QHgZuD+LeuUJElab+s2KT3JLuBs\n", - "4Or1qlOSJGk9rEtANbrc9wHgwtFIlSRJ0gmj+V1+STYBHwTeU1WXL3/+zjvvPPp48+bNbNmypXWT\n", - "JEmSVtXl7tSmAVUW78m8FNhbVZesVGb79u0tmyBJkrQmy5eWOF6A1fqS3+OB3wDOTbJ79HNe4zol\n", - "SZLWVdMRqqr6DK7GLkmSTnAGO5IkST1NPPXMuGkchpiapYsuqSFapS6BdukvWvVflzQgLY/d6r1o\n", - "eV4MLRXItLS3S0qiLmW7nBddU4a0SjEyLX0yNF36o+t3XBfTkGrsROIIlSRJUk8GVJIkST0ZUEmS\n", - "JPVkQCVJktSTAZUkSVJPBlSSJEk9GVBJkiT1ZEAlSZLUkwGVJElSTwZUkiRJPU089czGjeM1oUsK\n", - "h67L3rdaUr9LKpAuv1+X4w4xDU/LFAet0oa0Oj9N93DvYf/de3Tp6y7fLZqsY0YzSX4FKGClpENV\n", - "VR8ap4IkM8C1wG1V9aw1tVKSJGmKHW946FksBlTHMlZABVwI7AW2j9soSZKkITlmQFVVv9n34Eke\n", - "CDwD+GPgD/oeT5IkaRqtOik9yf2SXJrkY6PtM5P89pjHfzPwGmD8ST+SJEkDM85dfu8EPgHcf7T9\n", - "NeCi1V6U5JnAvqrazcrzsCRJkk4I4wRU962qvwEOAVTVPLAwxuseB5yf5BvA+4CnJnn38kL79+8/\n", - "+jM3N9eh6ZIkSdNhnDULDiT50SMbSc4BvrPai6rqYuDi0WueDLy6ql60vNyOHTvGb60kSdIUGieg\n", - "ehXwUeAnknwOOBV47hrqcpEVSZJ0Qso4C4wl2Qj8NItzob4yuuzXv/KkzjjjjLHKtlr4ElzYc61c\n", - "2HNtZV3YU5KGq6pWnBe+6ghVkq3Ay4AnsDjKdFWSv6gqJzxJkiQx3iW/dwPfBd7C4gjVrwGXAb/a\n", - "sF2SJEmDMU5AdVZVnblk+5NJ9t5TDRj3zr6Wlz6Gdglmw4bh5bRu9b4tLIxzw+naJOOv9tGlbKs2\n", - "tDS0z4gkrbdx/jJ/Kcljj2yM7vL7YrsmSZIkDcvxkiPfsKTMZ5PcyuIcqjOAr6xD2yRJkgZhteTI\n", - "kiRJWsXxkiPfsnQ7yWnAbOsGSZIkDc04yZHPT/I14BvAp4BbgH9q3C5JkqTBGGdS+h8BjwW+WlUP\n", - "Ap4GXN20VZIkSQMyTkA1X1X/A2xIMlNVVwKPatwuSZKkwRhnHao7kmwHrgL+Osk+4EDbZkmSJA3H\n", - "OCNUzwG+D1wEfAz4Ot4BKEmSdNSqI1RVdWQ06hDwzqatkSRJGqDjLex5gMWFPFdSVXWfe6IBs7Pj\n", - "rcQwDWlAuuqSVuPw4cMTLzst7ehSdmZmZuyyMB2pTlq9Fy1TLrUyxM+qJK3keOtQbet78CQ7gLcD\n", - "Z7EYnP1WVX2+73ElSZKmyTiT0vv4M+Afq+q5STYCP9K4PkmSpHXXLKBKcjLwxKp6MUBVLQDfaVWf\n", - "JEnSpIxzl99aPQj47yTvSPKlJH+Z5KSG9UmSJE1Ey4BqI/BI4M+r6pHA94DXNaxPkiRpIlrOoboN\n", - "uK2qvjDa/gArBFT79+8/+nh2dnbsu/4kSZKmRbOAqqq+neTWJA+pqq8CTwduWl5ux44drZogSZK0\n", - "Llrf5fd7LKar2Qz8O/CSxvVJkiStu6YBVVVdBzy6ZR2SJEmT1nJSuiRJ0r1C60t+q5qbmxurXMvU\n", - "M0NLa9MqpU3XY7cqu2HD+HH+xo3dTuFNmzaNXXZhYWHssvPz82OX/cEPfjB22S5apk9pdexp+DxB\n", - "t3OulSH2n6S7TP5bRJIkaeAMqCRJknoyoJIkSerJgEqSJKknAypJkqSeDKgkSZJ6MqCSJEnqyYBK\n", - "kiSpJwMqSZKkngyoJEmSepp46pmDBw+OVa5lioppSD3T6rhdU050aUeXdB1dyh46dGjssl1SvnQ9\n", - "dpe0PV2O2+U97pJap2tfd/n9upRtlZJoWkzD98UQ3zfpRNd0hCrJ65PclOSGJO9NsqVlfZIkSZPQ\n", - "LKBKsgt4KfDIqnoYMAO8oFV9kiRJk9Lykt93gXngpCSHgJOAbzasT5IkaSKajVBV1f8Bfwr8J/At\n", - "YH9V/XOr+iRJkial5SW/nwR+H9gF3B/YluTXW9UnSZI0KS0npT8K+FxV/W9VLQAfAh63vNDc3NzR\n", - "n4WFhYbNkSRJaqNlQPVl4JwkW7N47/DTgb3LC83Ozh796XKLuCRJ0rRoOYfqOuDdwLXA9aPdb2tV\n", - "nyRJ0qRkkgvEJamTTz553LIt29GkbKs2dDEtC3t2aUeXRTK7lO1avtXCnl106Q8X9ly7Vt8Brfqv\n", - "6/s2Le+zdCKoqhU/2KaekSRJ6smASpIkqaeJzwLftm3bWOVaXXJoqUs7uvx+XXQ9bqtLc60uL7W8\n", - "5NfqPJqWc3laPidDMw2fa0nTxxEqSZKkngyoJEmSejKgkiRJ6smASpIkqScDKkmSpJ4MqCRJknqa\n", - "yoDq4MGDk26Cepifn590E7RGLqUgSWtjQKV7nAHVcBlQSdLaTGVAJUmSNCQGVJIkST1lkkP8Sby+\n", - "IEmSBqOqstL+iQZUkiRJJwIv+UmSJPVkQCVJktTT1AVUSc5L8uUkX0vy2km3R8eW5K+S3J7khiX7\n", - "TklyRZKvJvlEkh2TbKOOLcnOJFcmuSnJjUleOdpvH065JLNJrk6yJ8neJG8Y7bfvBiTJTJLdST46\n", - "2rb/BmyqAqokM8BbgfOAM4ELkjx0sq3ScbyDxb5a6nXAFVX1EOBfRtuaTvPARVV1FnAO8PLR580+\n", - "nHJVNQecW1WPAB4OnJvkCdh3Q3MhsBc4MpnZ/huwqQqogMcAX6+qW6pqHng/8OwJt0nHUFVXAXcs\n", - "230+8K7R43cBz1nXRmlsVfXtqtozenwAuBl4APbhIFTV90cPNwMzLH4W7buBSPJA4BnA24Ejd43Z\n", - "fwM2bQHVA4Bbl2zfNtqn4Ti9qm4fPb4dOH2SjdF4kuwCzgauxj4chCQbkuxhsY+urKqbsO+G5M3A\n", - "a4DDS/bZfwM2bQGVazicQGpxTQ77dMol2QZ8ELiwqu5c+px9OL2q6vDokt8DgSclOXfZ8/bdlEry\n", - "TGBfVe3mrtGpu7H/hmfaAqpvAjuXbO9kcZRKw3F7kvsBJPkxYN+E26PjSLKJxWDqsqq6fLTbPhyQ\n", - "qvoO8A/Az2HfDcXjgPOTfAN4H/DUJJdh/w3atAVU1wIPTrIryWbg+cBHJtwmdfMR4MWjxy8GLj9O\n", - "WU1QkgCXAnur6pIlT9mHUy7JfY/cAZZkK/DzwG7su0GoqouramdVPQh4AfDJqnoh9t+gTd1K6Ul+\n", - "EbiExUmWl1bVGybcJB1DkvcBTwbuy+L1/j8EPgz8LXAGcAvwvKraP6k26thGd4V9Grieuy4tvB64\n", - "BvtwqiV5GIuTljeMfi6rqjclOQX7blCSPBl4VVWdb/8N29QFVJIkSUMzbZf8JEmSBseASpIkqScD\n", - "KkmSpJ4MqCRJknoyoJIkSerJgEqSJKknAypJE5fks6N/fzzJBffwsS9eqS5Juie5DpWkqZHkKSwu\n", - "cvisDq/ZWFULx3n+zqrafk+0T5KOxREqSROX5MDo4RuBJybZneTCJBuSvCnJNUmuS/I7o/JPSXJV\n", - "kg8DN472XZ7k2iQ3JnnpaN8bga2j4122tK4selOSG5Jcn+R5S479r0n+LsnNSd6zvu+GpCHaOOkG\n", - "SBJ3pb55LfDqIyNUowBqf1U9JskW4DNJPjEqezZwVlX9x2j7JVV1xyi33TVJPlBVr0vy8qo6e4W6\n", - "fhn4WeDhwKnAF5J8evTcI4Azgf8CPpvk8VXlpUJJx+QIlaRpkmXbvwC8KMlu4PPAKcBPjZ67Zkkw\n", - "BXBhkj3AvwE7gQevUtcTgPfWon3Ap4BHsxhwXVNV36rFORF7gF09fidJ9wKOUEmadq+oqiuW7hjN\n", - "tfresu2nAedU1VySK4HZVY5b/HAAd2T06uCSfYfwu1LSKhyhkjRN7gSWTiD/OPCyJBsBkjwkyUkr\n", - "vO4+wB2jYOpngHOWPDd/5PXLXAU8fzRP61TgScA1/HCQJUmr8n9dkqbBkZGh64BDo0t37wDewuLl\n", - "ti8lCbAP+KVR+aW3KH8M+N0ke4GvsHjZ74i3Adcn+WJVvfDI66rq75M8dlRnAa+pqn1JHrrs2Kyw\n", - "LUl347IJkiRJPXnJT5IkqScDKkmSpJ4MqCRJknoyoJIkSerJgEqSJKknAypJkqSeDKgkSZJ6MqCS\n", - "JEnq6f8BUrepXiOjd3cAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD51JREFUeJzt3X2sZVdZx/Hvb147L7WktlKhQwcVlDYgRSDlnQKaSqCg\nIlAVEA3GAFIrEKCJ/qUBIYZKiCZI5aUIqIAFogJVKhSQDoWZvk15M1RbkI7aUpiB6dw7ffzjnGlv\nL3fmnn33rHv2mX4/yc2cvc86a62z1zn3PrP23utJVSFJkqSVWzPtDkiSJM06AypJkqSeDKgkSZJ6\nMqCSJEnqyYBKkiSpJwMqSZKkntZNs/EkrtkgSZJmRlVlqf1NA6ok5wAXAWuBt1fVny4uc/LJJ//Q\n6/bt28eWLVtW3G7XtbXuvPPOmSrb5f11PRZdyh+uz/Pz86xbd8+PVqs+dzluLfvhem6SdO/W7JRf\nkrXAW4FzgNOB85I8pFV7kiRJ09LyGqpHA1+vqhurag54P/Cshu1JkiRNRcuA6v7ATQu2bx7vW9b6\n9eubdEirY80a73WQJN27tPzLt+KLSjZs2HA0+6FVZkAlSbq3aXlR+jeBbQu2tzGapbqHffv23fV4\n/fr1BlOSJGnmtAyorgIelGQ78C3gecB5iwv1uZtPkiRpCJoFVFU1n+TlwMcZLZtwcVXd0Ko9SZKk\nack0189JUkutQ9WX61CtrGzX8kPos+tQSZJW01QW9jyaFi8UeSRd7xLsct1Wl34cd9xxTcpu3Lhx\n4rJdj0WXC8qTJT9Tvevt8v6OP/74icsCnHLKKROXPfXUUycue9pppzXpw+bNmycu2+W4Aaxdu3bi\nsl0+R13KtupDl89m1/JdgueDBw82qbfr+2v1+7PL+LUq2/VYzJqW/ylu+Z/XFlr+x3XSuo/0t9rb\nsSRJknoyoJIkSerJgEqSJKknAypJkqSeDKgkSZJ6MqCSJEnqyYBKkiSpJwMqSZKkngyoJEmSejKg\nkiRJ6smASpIkqaep5/KbNBdbl1xwLc3NzU1cdv/+/ROXbZUfrKtZS/LbMs9Vl+M8Pz8/cdkun6Eu\n9bZMCt5KqzxsLT8XXbTKEdjVEJKCm2x8trX6rnapd+h5G5tGKUm2Jbk8yfVJrkvyipbtSZIkTUPr\nGao54IKq2pVkK/DFJJdV1Q2N25UkSVo1TWeoqurbVbVr/HgvcANwv5ZtSpIkrbZVuzApyXbgTODK\n1WpTkiRpNaxKQDU+3fcB4PzxTJUkSdIxo/ldfknWAx8E3lNVly5+/tZbb73r8aZNm9i0aVPrLkmS\nJC2rqia+67RpQJXRPY4XA7ur6qKlypx44oktuyBJkrQiSe6xXMORltNpfcrvccBvAGcn2Tn+Oadx\nm5IkSauq6QxVVX0GV2OXJEnHOIMdSZKknqaeeubAgQMTlWuZwqFL+VbpOoaSwqHVsRhKyoAu6WS6\nvL9WaWq69GEIqWRaGkrqkiGkqRlK3UP4Xpum5p6OpVQuiw0lpdThOEMlSZLUkwGVJElSTwZUkiRJ\nPRlQSZIk9WRAJUmS1JMBlSRJUk8GVJIkST0ZUEmSJPVkQCVJktSTAZUkSVJPU089s3///ml3gTVr\nJo8rW6XAaZUSpWs6kiGkwOnS566pBVoduyG8P1NwzDbHT0eDvzOm57ABVZJfAQpYKoKoqvrQJA0k\nWQtcBdxcVc9cUS8lSZIG7EgzVM9kFFAdzkQBFXA+sBs4ftJOSZIkzZLDBlRV9Zt9K09yKvB04E+A\nP+hbnyRJ0hAte/FQklOSXJzkY+Pt05P89oT1vxl4NdDtQh5JkqQZMsnV2O8EPgHcb7z9NeCC5V6U\n5BnAnqraydLXYUmSJB0TJgmoTqqqvwUOAlTVHDA/weseC5yb5BvA+4CnJHn34kL79u276+fAgQMd\nui5JkjQMkyybsDfJjx7aSHIWcPtyL6qqC4ELx695EvCqqnrh4nJbtmyZvLeSJEkDNElA9Urgo8BP\nJPkccDLwnBW05YIXkiTpmJRJFvZKsg74aUbXQn1lfNqvf+NJnXTSSUejql5c2PNuLuzZvh8u7ClJ\ns6uqlgwElp2hSrIJeCnweEazTFck+cuqmv4S55IkSQMwySm/dwPfBd7CaIbq14BLgF9t2C9JkqSZ\nMUlAdUZVnb5g+5NJdh+tDqxfv/5oVbViXU7jtaq3y3FoddoRup16bFW2yymxLvV2Ld/lOHept8sp\n5paGcIqw6ynpSQ3hvXXV6vcQzObxkGbNJL/Zv5TkMYc2xnf5fbFdlyRJkmbLkZIjX7ugzGeT3MTo\nGqoHAF9Zhb5JkiTNhOWSI0uSJGkZR0qOfOPC7SQ/BhzXukOSJEmzZpLkyOcm+RrwDeBTwI3APzfu\nlyRJ0syY5KL0PwYeA3y1qh4IPBW4smmvJEmSZsgkAdVcVf0vsCbJ2qq6HHhk435JkiTNjEnWobot\nyfHAFcDfJNkD7G3bLUmSpNkxyQzVs4HvAxcAHwO+jncASpIk3WXZGaqqOjQbdRB4Z9PeSJIkzaAj\nLey5l9FCnkupqvqRo9KBdZOcdeyWOqFrmoVWqU5a1Wsaibt1TePS6nPUKh1Qq9QsQ9HquHVN4zKE\n79QQ+iBp5Y60DtXWvpUnuQ/wduAMRsHZb1XV5/vWK0mSNCSTTQ+t3J8D/1RVz0myDtjSuD1JkqRV\n1yygSnIC8ISqehFAVc0Dt7dqT5IkaVq6XYDSzQOB/0nyjiRfSvJXSTY3bE+SJGkqWgZU64BHAH9R\nVY8A9gGvbdieJEnSVLQMqG4Gbq6qL4y3P8AowLqH22+//a6f/fv3N+yOJElSG82uoaqqbye5KcmD\nq+qrwNOA6xeXO+GEE1p1QZIkaVW0vsvv9xilq9kA/Afw4sbtSZIkrbqmAVVVXQ08qmUbkiRJ09by\nGipJkqR7hdan/JY1Nzc3UbkuKUa6pp3oUneXsq3SnAwldUmrPnc5xpOmLlpJP+bn5ycu2+WGilY3\nXxzrqUu6fq+7GML3uotjfaylo6HF74wjffecoZIkSerJgEqSJKknAypJkqSeDKgkSZJ6MqCSJEnq\nyYBKkiSpJwMqSZKkngyoJEmSejKgkiRJ6smASpIkqaepp56ZNIXCpClqutS5kvKt0l+sXbt24rIt\nU7N0Kb9hw4Ym9XZJl3PgwIGJy3Ytf/DgwU51T2rjxo0Tl22ZbqXL577LsWhVdijpVrp8/1p9r7tq\nNSZdvqtDGT+tTMvfRZNq+bf9aGg6Q5XkdUmuT3JtkvcmmfwviSRJ0oxoFlAl2Q68BHhEVT0UWAs8\nv1V7kiRJ09LylN93gTlgc5KDwGbgmw3bkyRJmopmM1RVdSvwZ8B/Ad8CvlNV/9KqPUmSpGlpecrv\nJ4HfB7YD9wO2Jvn1Vu1JkiRNS8uL0h8JfK6q/q+q5oEPAY9dXGjv3r13/XS9Y0uSJGkIWl5D9WXg\nD5NsAvYDTwN2LC60devWhl2QJElqr+U1VFcD7wauAq4Z735bq/YkSZKmpenCnlX1RuCNLduQJEma\nNlPPSJIk9WRAJUmS1NPUc/lNmuOtyx2AXfJLQbd8P63y/nXJn9Uyp1KXun/wgx9MXLbLcesyfvPz\n8xOX7Vq+Sz9a5aRrmYuqy1i36vNQjkUXrb7XQ3l/0lL8fC7PGSpJkqSeDKgkSZJ6MqCSJEnqyYBK\nkiSpJwMqSZKkngyoJEmSehpkQHXHHXdMuwvqwSTXs6vrkiOSpBEDKh11c3Nz0+6CVsi1ZiRpZQYZ\nUEmSJM0SAypJkqSeMs0p/iSeX5AkSTOjqpbMPzXVgEqSJOlY4Ck/SZKkngyoJEmSehpcQJXknCRf\nTvK1JK+Zdn90eEn+OsktSa5dsO/EJJcl+WqSTyS5zzT7qMNLsi3J5UmuT3JdkleM9zuGA5fkuCRX\nJtmVZHeS14/3O3YzJMnaJDuTfHS87fjNsEEFVEnWAm8FzgFOB85L8pDp9kpH8A5GY7XQa4HLqurB\nwL+OtzVMc8AFVXUGcBbwsvH3zTEcuKraD5xdVQ8HHgacneTxOHaz5nxgN3DoYmbHb4YNKqACHg18\nvapurKo54P3As6bcJx1GVV0B3LZo97nAu8aP3wU8e1U7pYlV1beratf48V7gBuD+OIYzoaq+P364\nAVjL6Lvo2M2IJKcCTwfeDhy6a8zxm2FDC6juD9y0YPvm8T7NjvtW1S3jx7cA951mZzSZJNuBM4Er\ncQxnQpI1SXYxGqPLq+p6HLtZ8mbg1cDCfE+O3wwbWkDlGg7HkBqtyeGYDlySrcAHgfOr6nsLn3MM\nh6uq7hyf8jsVeGKSsxc979gNVJJnAHuqaid3z07dg+M3e4YWUH0T2LZgexujWSrNjluSnAKQ5MeB\nPVPuj44gyXpGwdQlVXXpeLdjOEOq6nbgH4Gfw7GbFY8Fzk3yDeB9wFOSXILjN9OGFlBdBTwoyfYk\nG4DnAR+Zcp/UzUeAF40fvwi49AhlNUVJAlwM7K6qixY85RgOXJKTDt0BlmQT8PPAThy7mVBVF1bV\ntqp6IPB84JNV9QIcv5k2uJXSk/wicBGjiywvrqrXT7lLOowk7wOeBJzE6Hz/HwEfBv4OeABwI/Dc\nqvrOtPqowxvfFfZp4BruPrXwOmAHjuGgJXkoo4uW14x/LqmqNyU5EcdupiR5EvDKqjrX8Zttgwuo\nJEmSZs3QTvlJkiTNHAMqSZKkngyoJEmSejKgkiRJ6smASpIkqScDKkmSpJ4MqCRNXZLPjv89Lcl5\nR7nuC5dqS5KOJtehkjQYSZ7MaJHDZ3Z4zbqqmj/C89+rquOPRv8k6XCcoZI0dUn2jh++AXhCkp1J\nzk+yJsmbkuxIcnWS3xmXf3KSK5J8GLhuvO/SJFcluS7JS8b73gBsGtd3ycK2MvKmJNcmuSbJcxfU\n/W9J/j7JDUnes7pHQ9IsWjftDkgSd6e+eQ3wqkMzVOMA6jtV9egkG4HPJPnEuOyZwBlV9Z/j7RdX\n1W3j3HY7knygql6b5GVVdeYSbf0y8LPAw4CTgS8k+fT4uYcDpwP/DXw2yeOqylOFkg7LGSpJQ5JF\n278AvDDJTuDzwInAT42f27EgmAI4P8ku4N+BbcCDlmnr8cB7a2QP8CngUYwCrh1V9a0aXROxC9je\n4z1JuhdwhkrS0L28qi5buGN8rdW+RdtPBc6qqv1JLgeOW6be4ocDuEOzV3cs2HcQf1dKWoYzVJKG\n5HvAwgvIPw68NMk6gCQPTrJ5idf9CHDbOJj6GeCsBc/NHXr9IlcAzxtfp3Uy8ERgBz8cZEnSsvxf\nl6QhODQzdDVwcHzq7h3AWxidbvtSkgB7gF8al194i/LHgN9Nshv4CqPTfoe8DbgmyRer6gWHXldV\n/5DkMeM2C3h1Ve1J8pBFdbPEtiTdg8smSJIk9eQpP0mSpJ4MqCRJknoyoJIkSerJgEqSJKknAypJ\nkqSeDKgkSZJ6MqCSJEnqyYBKkiSpp/8HAhusMCiNzYsAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4135,131 +949,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGlxJREFUeJztnVls49t93z+Hi7iJu0Rq44xm5l4bAVzAfnEfnKB5CIJr\n", - "FEjSlwYGChTpgj50Q/vQJH1o/JgGaFC0D0Xb2EE3JC1auEgKtLUNtIj70DYOfGNf9/pO7r3SSENR\n", - "JCVS3ClS5OmD+Ds+5FALN4nS/L/AwZ/L8Mwh/1/9zm8/SmuNAweTwHXfC3Dw8OCQxsHEcEjjYGI4\n", - "pHEwMRzSOJgYDmkcTIypSaOUek8p9SOl1J8opX55notysNxQ0/hplFJu4CPgZ4As8IfAV7TWH853\n", - "eQ6WEdNKmi8CH2ut97XWXeB3gZ+f37IcLDM8U35uGzi0nr8G/rT9D5RSjqv5gUNrrca9Pq2kcQjx\n", - "FmNa0mSBjPU8w6W0cfAWYFrSfBd4Vym1q5RaAX4R+L35LcvBMmMqnUZrfaGU+hvAfwfcwNccy+nt\n", - "wVQm960mdhThB495K8IO3mI4pHEwMRzSOJgYDmkcTAyHNA4mhkMaBxPDIY2DiTFtwPLRQ6kfuyjc\n", - "brcZHo8Hl8tlhtvtRmtNv99Ha43WmouLC3q9HhcXF1xcXJjXAR5DyZBDmjFQSpnhcrkIhUKsrq6a\n", - "q9/vJxAImKuQo9vtcnFxQbVaNaNSqdDr9ej1evT7fXq93n1/vZnhkGYMbMK43W5WV1dZW1szIxqN\n", - "Do3z83Pa7Tbn5+ecn5+Ty+XI5XIcHx/T6XTodDqGVA5pHimEMKOkyWQy7OzskEqlWF9fN6PZbNJo\n", - "NMw1Go3i9XrpdruUy2Uzb6/XQyn14LeomUijlNoHqkAP6GqtvziPRd03bCnj9XpZXV0lmUyyvb3N\n", - "8+fP2djYIJ1Os7GxQSqVotFo0Gg0qNfrNBoN+v0+zWaTcrnM6uqqIcrFxcV9f7W5YFZJo4Gf1lqX\n", - "5rGYZYBsTUKYlZUVQqEQsViMtbU1Njc3icfjrK6u4vV6gUtFeWVlhUAggFKKSCRCNBolHo+TSCRw\n", - "u90AXFxc0G63325JM8DYSOhDhi1lfD7fEGk2NjYIhUKEQiFWVlaAH5NGKYXH4yESiRCLxYjH4yST\n", - "SSNlWq3WPX+z+WAekubbSqke8M+11v9yDmu6d7hcLjweDx6PZ4g06+vrbG5u4vV68Xg8eL1etNa4\n", - "3W5DGJ/PZ0iTSCRIJpN0u13a7Ta1Wm3IlH+omJU0X9Ja55RS68C3lFI/0lp/Zx4Lu2vIzXS5XHi9\n", - "Xvx+P6urq0NSQ7abUYjSLPMEg0FjnofDYarVKj6fz2xTDx0zkUZrnRtci0qpb3BZ2vLgSCM3XaRF\n", - "NBo15nUqleLJkyckk0mCweB9L3UpMEuFZVApFR48DgE/C/xgXgu7S4i15PF4WFlZIRKJkE6n2d3d\n", - "5bOf/SyZTIa1tTUCgcCN87wNmEXSpIFvDH4oD/DvtNbfnMuq7hC2eS2kiUajbGxssLu7yzvvvMP6\n", - "+rojaSxMTRqt9R7w+Tmu5c5gb0di+cgIBoPGStrZ2WF3d5dwOGzCB9dBa/2GN1kUZjHffT6fiUfJ\n", - "Z0bHsuOt8wgrpfD7/UPxo2AwSDAYJBAIEA6Hef78Odvb26ytrREOhwkGg7dSZGV7sq2uaDRKu92m\n", - "2+3S7/dRStHpdExAs9fr0e12Tdyq2+0uPXHeOtK4XC78fv9Q7CgSiRAOhwmHw0SjUXZ2dgxpIpGI\n", - "kRK3tX7cbjd+v9+QxiaMx+Oh3W7T6XQ4Pz+n0+nQarVot9u0Wi263e6Cf4HZ8daRRiRNNBo1MSQx\n", - "p2VITEkkjWw1N5FGtqdRSWMTxufz0Wg0aLVatFotms3mg/MYv5WkCQQCxGIx0uk029vbJJNJMxKJ\n", - "hAkDRCKRqZRfj8eD3+8nHA5zfn4+5PsJhUJDcap6vW7CEeI1lhjVsuo4bx1pXC4XwWCQRCLBzs4O\n", - "z58/N9tTJBIxRJnGGSc6jdfrJRgMmq0mEAgQiUSGIuH2tVgscnx8jMfj4eLigvPz86FErmUjzltH\n", - "GvHYrq2tsbOzw4sXL4YSqvx+Pz6fD5/Ph8cz3c8jpAFYWVkxEkf0GNmW5BoOh3G73SY63mg0TG5O\n", - "r9dzSHPfkEy8ZDJpJI3EmcREttM7J4HoNEIar9dLKBQymXsiPYQ4ovyKGd5qtSiXy4YkvV6PTqez\n", - "iJ9hJrwVpLFzev1+P5FIhGQyycbGBpnMZceUWXJ4hSzy2O1243K5TBRcIP9GpIhk/ImEqdVqlMtl\n", - "4+tZ1sj4oyeN2+025nQ4HGZtbY3d3V3W19cJBoMmQcq+Tgo7sdxOMJdhk9Z2+glB4/E4Ozs79Pt9\n", - "/H4/2WyW168v2/3U6/WlSxF99KRxuVxEIhE2NjbY2Nhge3t7iDTAG8SZFFprkzg+bsj25/V6h+Jc\n", - "8jgejxvCJBIJVldX0VpTr9c5Pj6e908yMx49aUTSbG5u8uLFC54/f87Ozs5CJI3oLfJYrjKv6Ehi\n", - "govESSQSBAIBkskkmUwGr9drCLOM6RQ3kkYp9XXgzwIFrfWfGryWAP498BTYB/681vpsgeucCHLj\n", - "7Uy6dDrNs2fP+MxnPkMikTA3ahqMbj8SBpAhiq+tAPf7feDNNAyllEncEjSbTV6/fk0sFjPkWqbY\n", - "1G0kzW8D/xT419ZrvwJ8S2v9G4PG078yGPcOsV5kSxDfi9QtiQ9Git5GFeDb3JTRkhWxhGSIlSQj\n", - "EAiY+JbEuGT4/f43pJsksycSCTY3N/H5fEP/pxDwvnAjabTW31FK7Y68/HPAnxk8/lfA/2SJSOPx\n", - "eMwNiUajRgmWGyaksS0e+3oTzs/PqdVqVKtVarXakHe30WgMkebi4oJQKGQi5aurq8RiMWKxGAA+\n", - "n28saUKhkCGN2+2mWq0CLIUJPq1Ok9Za5weP81zm1iwFRNJIuqaEA0TSBAIBVlZW8Hq9M0maWq3G\n", - "yckJp6enVCoVU00pFZVSddnr9Yy3WdbSbrcBjPl/HWk2NjaMTtTpdJbCmppZEdZa62XpryfWiF12\n", - "kkgkiMViRCIRQ5rbShr7ua1TNJtNzs7OKBaL5HI5SqUS5XKZs7MzSqXSUAig1+sN5RnHYjG01kaP\n", - "6ff7byi7Xq+XcDhMMplka2vLzNVsNqlUKm+Y9XeNaUmTV0ptaK2PlVKbQGGei5oEdjWkOO+SySSb\n", - "m5vGxM5kMqRSKaLRKD6fzyiXkgw+CttcFq9st9s1JbavX78mm82aIduUbFm25WQPqUoIBoPEYjGa\n", - "zabZbkQ5drlc+Hw+otEo6XSaXq9nzHVZc61We8M5CHfXXGBa0vwe8BeBfzi4/ue5rWgKiN9D3PeJ\n", - "RILt7W2ePXvG06dPTapDJBK5NWnson47wFiv1zk8POT169fm2mw2h2JJNumk5qnT6dBut02saW1t\n", - "jUajQafTeSP1wufzEYvF6PV6ZiuV8IbL5aJUKpkGA7JGwV0Q5zYm9+9wqfSuKaUOgX8A/DrwH5RS\n", - "f5mByb3IRd6wvqFqSCHN1tYWL1684MWLF0MeYYley1/2KMTnIjda9JezszMzDg8POTg4MEMkkIxR\n", - "k1wkQqvVol6vk0gkODs7M5JGAqOjksbr9RKJRFhZWTEE11oby08IfdeR8NtYT1+54q2fmfNapoZd\n", - "SSCk2dzcZHd3l3fffdfk6MpfrO3HEdg3WdITRDKcnZ1xcnLCyckJxWLRkGV/f5+Dg4Mhb/A4JVXM\n", - "8kajgd/vJ5VKUalUqNfrnJ+fm3waIcbKygoej4dwOEy/3zfv2zpMr9ej0WiYP4C73KIehUfY7idj\n", - "u+ltolwnWUTEi95ydnZGuVw2yu3oNZ/PUyqVzFZ0k1IqZJJtpF6vUyqVyOfzHB4eEo/HjSS0Qw39\n", - "fh+Xy2WSxjY2Nsx36Ha71Ot1yuWykYzifV40cR4FaQRXVQLI86tCBKKgik6Sy+U4OjoyPWbEFyPX\n", - "s7MzKpUKzWbT3CghzzjITZXHtVqNUqnE8fGxybXp9XrGqSdrFZdAIBAgHo+brEORMqVSiUAgQKfT\n", - "Md/tunXMC4+GNKOSxiaN/d4o7OL8er1OpVIhl8uxt7fH3t4e+/v7Q7kvrVZryDsr29F1N8oOaF5c\n", - "XAyRRspihDB2/Euufr+fWCxmrp1Oh3K5TC6XIxAI0Gq1zP9xF3jwpBklwyhpxmXf2QFKiR1Jgb7c\n", - "jL29PT788EM++uijoe1rmmoB0XcEsj0FAgFDbOmBI+SziSPebVl7q9Uil8sRjUaNs1K2v7uo8nzw\n", - "pJkGtu+k0+lQLBYpFArk83mOj485ODigWCxSq9WGPLvzEvsi2arVqgl1yJZXrVYJBoNDmYTLVu77\n", - "1pHG9ptIzdHJyQnZbJbDw0MODw/J5XIUi0Xq9bqJWo9Ki1lgk8btdhOPxymXy1SrVer1OsDMecqL\n", - "xPKtaMGwTepWq0WtVqNYLJLNZvn000/59NNPjT+mVquZisd5KpjdbpdWq2WSyePxuJE0tVrNmN52\n", - "s6RlwltHGsCQptFoUKlUjKTZ29vj5cuXQ4ruIioeRdL0+32j1NqkEY/1ysrKlUQdp9zfFbkeJWmu\n", - "+yH7/T7VatW0bT06OmJ/f59sNku5XDalJrIl3ee6bVLYmYXSDmV9fZ1MJoPH4zHEsy26ReFRkgbe\n", - "tKoEWmuq1SpHR0e8fPmSTz75hGKxSLFYNKQR5XfRpBlH7nHrHk1JlVqqVCpFJpMxFmOn06FarS68\n", - "HvzRkWYcUewUCJE02WyWjz76iA8++MC0dG02myYz7i6cZLK2cWGN6ySNpFWkUikT5RbCXBWEnSem\n", - "zRH+KvBXgOLgn/2q1vq/LWqR02Lcnt/v96lUKoY077///ht5M/eJ20oaaWAgfqZqtUqhULiTRPTb\n", - "0PK3gfdGXtPAb2qtvzAY90YY+y9vfX2ddDpNPB4nFApda66K1LmPhCZJRw2HwyQSCZOcJRmG4rAT\n", - "AowmiYlUEasvl8tRLpdNWGPRuJE0+rJbZ3nMW0thB0pALxqNsr6+zsbGBolEglAoZFq2jhv3CSFN\n", - "JBIxlRE2aezk93HZhUKaQqHAwcEBR0dHQwHURWOWDfBvKqX+WCn1NaVUbG4rmhB2kyIhzW0kzX3C\n", - "6/UOkSYejw81V7pJ0pyfnxtJc3h4OESapZA0V+CfAc+47LmXA/7R3FY0Iez67IcmaSQPWCRNNBod\n", - "kjS2fnKdpMlms5yenppzGRa+/mk+pLU2OcFKqd8Cfn9uK5oQotNIInkymSQSiZhg4H2tScxgO4dZ\n", - "EqYSiQTr6+tsbW2RyWSMHhYIBMZaP6P6l/Tnk5jYXVp7MCVplFKbetB4Gvhz3GP/YHF2SasySWjy\n", - "+/33VtIqKaj2GQt2QlgymSSVSg2RRlIfrktBHW1ZctdkEUyTI/xrwE8rpT7PpRW1B/y1ha7yGowr\n", - "WRG94L4kjUgW+3wFaZYk1RLpdJqtrS2ePHliiH6dpLFrqUTS2Jl6d7n1Tpsj/PUFrGUqjEoaqdH2\n", - "+/33uj3ZSWB221nJYRZJ8+TJE6N/XRWctJPdbcKMugzuCstpXkwIW4cQPeI+I8M+n8+U4MqhGlJT\n", - "HolEePr0Kdvb24bgkkhuVxzYhGg0Gqauqlarsbe3Z3wzrVbLHHd4V7GyR0GaZYM4G9fW1ox1ZI9U\n", - "KkUqlSIWiw0RRgg/WmQnllKhUKBYLPLq1StjMUkZzLwTxa6DQ5oFQOqWUqmUOfPSHuFw2BztI6a1\n", - "LR1HKyQqlQr5fJ6DgwNevXrF0dERx8fHxjfT6XTmmiR2ExzSLAB2WW0mk2F7e5utrS0z7C5Y44KV\n", - "dsmLOPLy+Tz7+/u8fPmSQqFgEsXsLudLbXI7GIa0MBFFN5PJ8OTJEzY3N0mlUsTj8aH+xDdFovv9\n", - "viFMs9mkXq9TrVY5Ozvj9PSUs7Mz0zb2PlrGPkrS3LUSHAqFTFt88UrLibrJZJJoNGpaxN4GYikJ\n", - "aaSGXBoM1Ot1c0jHQ+oasdS46x8yFAqRSqXY3d1ld3fXHFsoZy2IlLltvq9IGrv+W6SNlPOKz8Yh\n", - "zQPF6uoqqVSKZ8+e8bnPfc7Ej+RUXemGPomksbcn2+QWSTNJE6Z541GSZpxyab832ilr9H3x3IoX\n", - "1/b9jJvz3Xff5Z133uHJkyek0+mhz/r9ftMu5LrSYBvtdptyuUw2m+Xo6IhXr15RKBRMKufS99x7\n", - "SBiXOjl6kyTsEAwGTWrC6Pv29hKLxYba3o+LZ0kDpc3NTRKJhCGJHW+ynXc3EafdbnNycsKrV694\n", - "+fIl2WyW4+Nj0zDpvvGoSDOK6yRNMBg0YQcbbrebra0ttre32d7efuMc7nGhCdvbG4lEhoKVoxHu\n", - "20gaKeA7ODjgww8/pFAomO1p6UmjlMpw2Qo2xWVw8l9orf+JeiB9hEcfy/PrJI3H4yGTyZgt5/nz\n", - "50NnXI6edwAYCSTkuGo9t7XqhDT7+/v88Ic/NH327tKBdx1ukjRd4O9ord9XSq0Cf6SU+hbwSyxJ\n", - "H2HpNNVoNCiXy5yenhKJRNBa4/V68fl8Q/9eKWVM5KdPn74xn9vtNrGh9fV10wBaAopXKbOjVQOy\n", - "tttgtHl1qVQyVpJ0qVgmXEsarfUxcDx4XFdKfQhss0R9hPv9Pu12m0qlQrFYJBaL0e12TUbf6Mlw\n", - "LpeLcDhMOp1Ga004HH7j/fX1ddPYUdIuRYkdR4TRagGYrMVsp9MxZTT1ep1isUi1Wh1qwrhMuLVO\n", - "oy4bUH8B+D8sUR/hUdKsrq6a9hx263iBUopwOIzWmlAoRDr946XLjbcj1NLv7jp9xCbMNJJG+gOX\n", - "SiVKpRLFYpFKpbK051neijSDrek/AX9ba12zfzyt77ePcL/fNx0YisXiUKdyaZpow+VyGT9KKpUa\n", - "ynyT66gCK1iUpOl2u9RqNU5PTzk+Pn74kkYp5eWSMP9Gay2tX5emj7DoNNJdSvrTSRPEi4uLIR+L\n", - "Umqom6bMYV9nWYsQxz7/abRFrH1I2Pn5OScnJ+TzeZP+IA2tm83mw5M06vJX/Rrw/7TW/9h6a2n6\n", - "CEtJqijCfr+f9fX1ofiMLTkWGZeSue1On5KmaSeDS4TabgApXc/L5TLFYvFO65gmxU2S5kvAXwC+\n", - "r5T63uC1X2WJ+gjLX269XjfnKJ2dnb0R1LvLjlKjOb2jkuX4+JijoyMz7IM55FqtVh8mabTW/4ur\n", - "a6OWoo+w1AFJzY/b7aZSqZgD06WrpuSvLHot9vYkEkZiSNI9NJ/Ps7e3x8cff8wnn3xCo9Ew/XCE\n", - "6DIeHGkeAuzOVoBptpjP58lms0YxtmNBtt9lnsnnIslsE3o0v7dWq5mO57lcjkKhQLvdNucvCFHs\n", - "U+mWDY+CNPJXrZSi1WpxenpKNpvF7/fT7XZNaqVc7bGIioXz83MqlQqlUonT01Ojq4jeIo0hT05O\n", - "3sjxtfsSLysePGkAE4+RDt9iRQE0Gg2i0agpsJcqTGnZMer8mwWyPQlp8vk8R0dHpmmSJIaLxKnX\n", - "66b+etTCWoby4avw4Eljm7WiT5RKJQBzOHoymTRVAc1mE8B0k1oEhDR2Vwdp15bL5Ux7NluyyHex\n", - "v9ey4sGTBob9LHa7VVGS7Vzber1uXpPsOEldsHv32qkQdinsOBMahmNP0skhl8uRz+cpFotmm5KT\n", - "5x4yHgVpbEiBfKvVAjBZ/XIqW6lUolarUalUKJfLpFIpkxAuB6OK4uz3+00vO/tgU/v8J5Fctjkv\n", - "JnUul+Pk5MSYz+M81A8Rj5Y0UnQmUqZarbKyskIgEBjK7C8UCibZSq4Sm5K2rEJC0UVEsRXnnA2l\n", - "FKenp0NDSLPoBop3hUdJGtlK2u320FGFkoAl5zcVCgXW1tZIp9NDTQ/FGSjnEYxKqnw+b0ahUDAK\n", - "sMB20tVqNeOjua/qgXnj0ZEGuNZctQ/VEgki3ctF75EjkMXiEokiQ6wgGaOQKgK52r2JHwMeJWmu\n", - "g2xfzWZzqG5aTpArFAqmikB0HPvMbTnexx4C27knyrb4YKRA35E0DxBiUQFmC2s2m5TLZQKBgOni\n", - "4PP5THqn3HyJHdlSRHJe7O1p9IhlGcvssJsE6jrmX5Mj/FVu6CN8nzk2N2FUzxmXCG6/P5rmYB+h\n", - "PI4IVzUaWmaH3ThorcdGeG8izQawYecIA7/AZVS7prX+zWs++3B+HQdjcRVpps0RhiXpI+zg7nHr\n", - "XAErR/h/D15aij7CDu4etyLNYGv6j1zmCNdZoj7CDu4e1+o0YHKE/wvwX0dSPuX9XeD39eCwDet1\n", - "R6d54LhKp7lW0lyVIzxIJhfcax9hB3ePm6ynnwT+APg+lyY3wN8HvsLl1mT6CFt1UPJZR9I8cExl\n", - "cs8ChzQPH1NtTw4cjINDGgcTwyGNg4nhkMbBxHBI42BiOKRxMDEc0jiYGAvz0zh4vHAkjYOJ4ZDG\n", - "wcRYKGmUUu8ppX6klPqTQRfQWefbV0p9Xyn1PaXU/53i819XSuWVUj+wXksopb6llHqplPrmJLlB\n", - "V8z3VaXU68Eav6eUem+C+TJKqf+hlPqhUuoDpdTfmmWN18w39RqB8fms8xiAG/gY2AW8wPvAT8w4\n", - "5x6QmOHzP8VlItkPrNd+A/h7g8e/DPz6jPP9GvB3p1zfBvD5weNV4CPgJ6Zd4zXzTb1GrfVCJc0X\n", - "gY+11vta6y7wu8DPz2HeqdNMtdbfAcojL/8cl21tGVx/Ycb5YMo1aq2PtdbvDx7XAbsF78RrvGa+\n", - "qdcIi92etoFD6/lrfrzgaaGBbyulvquU+qszziVYRHvbmVNh592Cd57puoskzSJs+S9prb8AfBn4\n", - "60qpn5rn5PpSjs+67plTYUdb8M66xnmn6y6SNFkgYz3PcCltpobWOje4FoFvcLkFzor8oFRHMhJn\n", - "am+rtS7oAYDfmnSN17XgnWaN1nz/VuabdY2LJM13gXeVUrtKqRXgF7lsJTsVlFJBpVR48DgE/Czz\n", - "STOV9rYwh/a2s6TC3qIF70RrXFi67izWzC209y9zqbF/zGUV5ixzPePSAnsf+GCa+YDfAY6ADpf6\n", - "1i8BCeDbwEvgm0Bshvn+EpcVqd8H/nhwc9MTzPeTQH/wHb83GO9Nu8Yr5vvyLGvUWjthBAeTw/EI\n", - "O5gYDmkcTAyHNA4mhkMaBxPDIY2DieGQxsHEcEjjYGI4pHEwMf4/w2zPGHuGeikAAAAASUVORK5C\n", - "YII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGlxJREFUeJztnVls49t93z+Hi7iJu0Rq44xm5l4bAVzAfnEfnKB5CIJr\nFEjSlwYGChTpgj50Q/vQJH1o/JgGaFC0D0Xb2EE3JC1auEgKtLUNtIj70DYOfGNf9/pO7r3SSENR\nJCVS3ClS5OmD+Ds+5FALN4nS/L/AwZ/L8Mwh/1/9zm8/SmuNAweTwHXfC3Dw8OCQxsHEcEjjYGI4\npHEwMRzSOJgYDmkcTIypSaOUek8p9SOl1J8opX55notysNxQ0/hplFJu4CPgZ4As8IfAV7TWH853\neQ6WEdNKmi8CH2ut97XWXeB3gZ+f37IcLDM8U35uGzi0nr8G/rT9D5RSjqv5gUNrrca9Pq2kcQjx\nFmNa0mSBjPU8w6W0cfAWYFrSfBd4Vym1q5RaAX4R+L35LcvBMmMqnUZrfaGU+hvAfwfcwNccy+nt\nwVQm960mdhThB495K8IO3mI4pHEwMRzSOJgYDmkcTAyHNA4mhkMaBxPDIY2DiTFtwPLRQ6kfuyjc\nbrcZHo8Hl8tlhtvtRmtNv99Ha43WmouLC3q9HhcXF1xcXJjXAR5DyZBDmjFQSpnhcrkIhUKsrq6a\nq9/vJxAImKuQo9vtcnFxQbVaNaNSqdDr9ej1evT7fXq93n1/vZnhkGYMbMK43W5WV1dZW1szIxqN\nDo3z83Pa7Tbn5+ecn5+Ty+XI5XIcHx/T6XTodDqGVA5pHimEMKOkyWQy7OzskEqlWF9fN6PZbNJo\nNMw1Go3i9XrpdruUy2Uzb6/XQyn14LeomUijlNoHqkAP6GqtvziPRd03bCnj9XpZXV0lmUyyvb3N\n8+fP2djYIJ1Os7GxQSqVotFo0Gg0qNfrNBoN+v0+zWaTcrnM6uqqIcrFxcV9f7W5YFZJo4Gf1lqX\n5rGYZYBsTUKYlZUVQqEQsViMtbU1Njc3icfjrK6u4vV6gUtFeWVlhUAggFKKSCRCNBolHo+TSCRw\nu90AXFxc0G63325JM8DYSOhDhi1lfD7fEGk2NjYIhUKEQiFWVlaAH5NGKYXH4yESiRCLxYjH4yST\nSSNlWq3WPX+z+WAekubbSqke8M+11v9yDmu6d7hcLjweDx6PZ4g06+vrbG5u4vV68Xg8eL1etNa4\n3W5DGJ/PZ0iTSCRIJpN0u13a7Ta1Wm3IlH+omJU0X9Ja55RS68C3lFI/0lp/Zx4Lu2vIzXS5XHi9\nXvx+P6urq0NSQ7abUYjSLPMEg0FjnofDYarVKj6fz2xTDx0zkUZrnRtci0qpb3BZ2vLgSCM3XaRF\nNBo15nUqleLJkyckk0mCweB9L3UpMEuFZVApFR48DgE/C/xgXgu7S4i15PF4WFlZIRKJkE6n2d3d\n5bOf/SyZTIa1tTUCgcCN87wNmEXSpIFvDH4oD/DvtNbfnMuq7hC2eS2kiUajbGxssLu7yzvvvMP6\n+rojaSxMTRqt9R7w+Tmu5c5gb0di+cgIBoPGStrZ2WF3d5dwOGzCB9dBa/2GN1kUZjHffT6fiUfJ\nZ0bHsuOt8wgrpfD7/UPxo2AwSDAYJBAIEA6Hef78Odvb26ytrREOhwkGg7dSZGV7sq2uaDRKu92m\n2+3S7/dRStHpdExAs9fr0e12Tdyq2+0uPXHeOtK4XC78fv9Q7CgSiRAOhwmHw0SjUXZ2dgxpIpGI\nkRK3tX7cbjd+v9+QxiaMx+Oh3W7T6XQ4Pz+n0+nQarVot9u0Wi263e6Cf4HZ8daRRiRNNBo1MSQx\np2VITEkkjWw1N5FGtqdRSWMTxufz0Wg0aLVatFotms3mg/MYv5WkCQQCxGIx0uk029vbJJNJMxKJ\nhAkDRCKRqZRfj8eD3+8nHA5zfn4+5PsJhUJDcap6vW7CEeI1lhjVsuo4bx1pXC4XwWCQRCLBzs4O\nz58/N9tTJBIxRJnGGSc6jdfrJRgMmq0mEAgQiUSGIuH2tVgscnx8jMfj4eLigvPz86FErmUjzltH\nGvHYrq2tsbOzw4sXL4YSqvx+Pz6fD5/Ph8cz3c8jpAFYWVkxEkf0GNmW5BoOh3G73SY63mg0TG5O\nr9dzSHPfkEy8ZDJpJI3EmcREttM7J4HoNEIar9dLKBQymXsiPYQ4ovyKGd5qtSiXy4YkvV6PTqez\niJ9hJrwVpLFzev1+P5FIhGQyycbGBpnMZceUWXJ4hSzy2O1243K5TBRcIP9GpIhk/ImEqdVqlMtl\n4+tZ1sj4oyeN2+025nQ4HGZtbY3d3V3W19cJBoMmQcq+Tgo7sdxOMJdhk9Z2+glB4/E4Ozs79Pt9\n/H4/2WyW168v2/3U6/WlSxF99KRxuVxEIhE2NjbY2Nhge3t7iDTAG8SZFFprkzg+bsj25/V6h+Jc\n8jgejxvCJBIJVldX0VpTr9c5Pj6e908yMx49aUTSbG5u8uLFC54/f87Ozs5CJI3oLfJYrjKv6Ehi\ngovESSQSBAIBkskkmUwGr9drCLOM6RQ3kkYp9XXgzwIFrfWfGryWAP498BTYB/681vpsgeucCHLj\n7Uy6dDrNs2fP+MxnPkMikTA3ahqMbj8SBpAhiq+tAPf7feDNNAyllEncEjSbTV6/fk0sFjPkWqbY\n1G0kzW8D/xT419ZrvwJ8S2v9G4PG078yGPcOsV5kSxDfi9QtiQ9Git5GFeDb3JTRkhWxhGSIlSQj\nEAiY+JbEuGT4/f43pJsksycSCTY3N/H5fEP/pxDwvnAjabTW31FK7Y68/HPAnxk8/lfA/2SJSOPx\neMwNiUajRgmWGyaksS0e+3oTzs/PqdVqVKtVarXakHe30WgMkebi4oJQKGQi5aurq8RiMWKxGAA+\nn28saUKhkCGN2+2mWq0CLIUJPq1Ok9Za5weP81zm1iwFRNJIuqaEA0TSBAIBVlZW8Hq9M0maWq3G\nyckJp6enVCoVU00pFZVSddnr9Yy3WdbSbrcBjPl/HWk2NjaMTtTpdJbCmppZEdZa62XpryfWiF12\nkkgkiMViRCIRQ5rbShr7ua1TNJtNzs7OKBaL5HI5SqUS5XKZs7MzSqXSUAig1+sN5RnHYjG01kaP\n6ff7byi7Xq+XcDhMMplka2vLzNVsNqlUKm+Y9XeNaUmTV0ptaK2PlVKbQGGei5oEdjWkOO+SySSb\nm5vGxM5kMqRSKaLRKD6fzyiXkgw+CttcFq9st9s1JbavX78mm82aIduUbFm25WQPqUoIBoPEYjGa\nzabZbkQ5drlc+Hw+otEo6XSaXq9nzHVZc61We8M5CHfXXGBa0vwe8BeBfzi4/ue5rWgKiN9D3PeJ\nRILt7W2ePXvG06dPTapDJBK5NWnson47wFiv1zk8POT169fm2mw2h2JJNumk5qnT6dBut02saW1t\njUajQafTeSP1wufzEYvF6PV6ZiuV8IbL5aJUKpkGA7JGwV0Q5zYm9+9wqfSuKaUOgX8A/DrwH5RS\nf5mByb3IRd6wvqFqSCHN1tYWL1684MWLF0MeYYley1/2KMTnIjda9JezszMzDg8POTg4MEMkkIxR\nk1wkQqvVol6vk0gkODs7M5JGAqOjksbr9RKJRFhZWTEE11oby08IfdeR8NtYT1+54q2fmfNapoZd\nSSCk2dzcZHd3l3fffdfk6MpfrO3HEdg3WdITRDKcnZ1xcnLCyckJxWLRkGV/f5+Dg4Mhb/A4JVXM\n8kajgd/vJ5VKUalUqNfrnJ+fm3waIcbKygoej4dwOEy/3zfv2zpMr9ej0WiYP4C73KIehUfY7idj\nu+ltolwnWUTEi95ydnZGuVw2yu3oNZ/PUyqVzFZ0k1IqZJJtpF6vUyqVyOfzHB4eEo/HjSS0Qw39\nfh+Xy2WSxjY2Nsx36Ha71Ot1yuWykYzifV40cR4FaQRXVQLI86tCBKKgik6Sy+U4OjoyPWbEFyPX\ns7MzKpUKzWbT3CghzzjITZXHtVqNUqnE8fGxybXp9XrGqSdrFZdAIBAgHo+brEORMqVSiUAgQKfT\nMd/tunXMC4+GNKOSxiaN/d4o7OL8er1OpVIhl8uxt7fH3t4e+/v7Q7kvrVZryDsr29F1N8oOaF5c\nXAyRRspihDB2/Euufr+fWCxmrp1Oh3K5TC6XIxAI0Gq1zP9xF3jwpBklwyhpxmXf2QFKiR1Jgb7c\njL29PT788EM++uijoe1rmmoB0XcEsj0FAgFDbOmBI+SziSPebVl7q9Uil8sRjUaNs1K2v7uo8nzw\npJkGtu+k0+lQLBYpFArk83mOj485ODigWCxSq9WGPLvzEvsi2arVqgl1yJZXrVYJBoNDmYTLVu77\n1pHG9ptIzdHJyQnZbJbDw0MODw/J5XIUi0Xq9bqJWo9Ki1lgk8btdhOPxymXy1SrVer1OsDMecqL\nxPKtaMGwTepWq0WtVqNYLJLNZvn000/59NNPjT+mVquZisd5KpjdbpdWq2WSyePxuJE0tVrNmN52\ns6RlwltHGsCQptFoUKlUjKTZ29vj5cuXQ4ruIioeRdL0+32j1NqkEY/1ysrKlUQdp9zfFbkeJWmu\n+yH7/T7VatW0bT06OmJ/f59sNku5XDalJrIl3ee6bVLYmYXSDmV9fZ1MJoPH4zHEsy26ReFRkgbe\ntKoEWmuq1SpHR0e8fPmSTz75hGKxSLFYNKQR5XfRpBlH7nHrHk1JlVqqVCpFJpMxFmOn06FarS68\nHvzRkWYcUewUCJE02WyWjz76iA8++MC0dG02myYz7i6cZLK2cWGN6ySNpFWkUikT5RbCXBWEnSem\nzRH+KvBXgOLgn/2q1vq/LWqR02Lcnt/v96lUKoY077///ht5M/eJ20oaaWAgfqZqtUqhULiTRPTb\n0PK3gfdGXtPAb2qtvzAY90YY+y9vfX2ddDpNPB4nFApda66K1LmPhCZJRw2HwyQSCZOcJRmG4rAT\nAowmiYlUEasvl8tRLpdNWGPRuJE0+rJbZ3nMW0thB0pALxqNsr6+zsbGBolEglAoZFq2jhv3CSFN\nJBIxlRE2aezk93HZhUKaQqHAwcEBR0dHQwHURWOWDfBvKqX+WCn1NaVUbG4rmhB2kyIhzW0kzX3C\n6/UOkSYejw81V7pJ0pyfnxtJc3h4OESapZA0V+CfAc+47LmXA/7R3FY0Iez67IcmaSQPWCRNNBod\nkjS2fnKdpMlms5yenppzGRa+/mk+pLU2OcFKqd8Cfn9uK5oQotNIInkymSQSiZhg4H2tScxgO4dZ\nEqYSiQTr6+tsbW2RyWSMHhYIBMZaP6P6l/Tnk5jYXVp7MCVplFKbetB4Gvhz3GP/YHF2SasySWjy\n+/33VtIqKaj2GQt2QlgymSSVSg2RRlIfrktBHW1ZctdkEUyTI/xrwE8rpT7PpRW1B/y1ha7yGowr\nWRG94L4kjUgW+3wFaZYk1RLpdJqtrS2ePHliiH6dpLFrqUTS2Jl6d7n1Tpsj/PUFrGUqjEoaqdH2\n+/33uj3ZSWB221nJYRZJ8+TJE6N/XRWctJPdbcKMugzuCstpXkwIW4cQPeI+I8M+n8+U4MqhGlJT\nHolEePr0Kdvb24bgkkhuVxzYhGg0Gqauqlarsbe3Z3wzrVbLHHd4V7GyR0GaZYM4G9fW1ox1ZI9U\nKkUqlSIWiw0RRgg/WmQnllKhUKBYLPLq1StjMUkZzLwTxa6DQ5oFQOqWUqmUOfPSHuFw2BztI6a1\nLR1HKyQqlQr5fJ6DgwNevXrF0dERx8fHxjfT6XTmmiR2ExzSLAB2WW0mk2F7e5utrS0z7C5Y44KV\ndsmLOPLy+Tz7+/u8fPmSQqFgEsXsLudLbXI7GIa0MBFFN5PJ8OTJEzY3N0mlUsTj8aH+xDdFovv9\nviFMs9mkXq9TrVY5Ozvj9PSUs7Mz0zb2PlrGPkrS3LUSHAqFTFt88UrLibrJZJJoNGpaxN4GYikJ\naaSGXBoM1Ot1c0jHQ+oasdS46x8yFAqRSqXY3d1ld3fXHFsoZy2IlLltvq9IGrv+W6SNlPOKz8Yh\nzQPF6uoqqVSKZ8+e8bnPfc7Ej+RUXemGPomksbcn2+QWSTNJE6Z541GSZpxyab832ilr9H3x3IoX\n1/b9jJvz3Xff5Z133uHJkyek0+mhz/r9ftMu5LrSYBvtdptyuUw2m+Xo6IhXr15RKBRMKufS99x7\nSBiXOjl6kyTsEAwGTWrC6Pv29hKLxYba3o+LZ0kDpc3NTRKJhCGJHW+ynXc3EafdbnNycsKrV694\n+fIl2WyW4+Nj0zDpvvGoSDOK6yRNMBg0YQcbbrebra0ttre32d7efuMc7nGhCdvbG4lEhoKVoxHu\n20gaKeA7ODjgww8/pFAomO1p6UmjlMpw2Qo2xWVw8l9orf+JeiB9hEcfy/PrJI3H4yGTyZgt5/nz\n50NnXI6edwAYCSTkuGo9t7XqhDT7+/v88Ic/NH327tKBdx1ukjRd4O9ord9XSq0Cf6SU+hbwSyxJ\nH2HpNNVoNCiXy5yenhKJRNBa4/V68fl8Q/9eKWVM5KdPn74xn9vtNrGh9fV10wBaAopXKbOjVQOy\ntttgtHl1qVQyVpJ0qVgmXEsarfUxcDx4XFdKfQhss0R9hPv9Pu12m0qlQrFYJBaL0e12TUbf6Mlw\nLpeLcDhMOp1Ga004HH7j/fX1ddPYUdIuRYkdR4TRagGYrMVsp9MxZTT1ep1isUi1Wh1qwrhMuLVO\noy4bUH8B+D8sUR/hUdKsrq6a9hx263iBUopwOIzWmlAoRDr946XLjbcj1NLv7jp9xCbMNJJG+gOX\nSiVKpRLFYpFKpbK051neijSDrek/AX9ba12zfzyt77ePcL/fNx0YisXiUKdyaZpow+VyGT9KKpUa\nynyT66gCK1iUpOl2u9RqNU5PTzk+Pn74kkYp5eWSMP9Gay2tX5emj7DoNNJdSvrTSRPEi4uLIR+L\nUmqom6bMYV9nWYsQxz7/abRFrH1I2Pn5OScnJ+TzeZP+IA2tm83mw5M06vJX/Rrw/7TW/9h6a2n6\nCEtJqijCfr+f9fX1ofiMLTkWGZeSue1On5KmaSeDS4TabgApXc/L5TLFYvFO65gmxU2S5kvAXwC+\nr5T63uC1X2WJ+gjLX269XjfnKJ2dnb0R1LvLjlKjOb2jkuX4+JijoyMz7IM55FqtVh8mabTW/4ur\na6OWoo+w1AFJzY/b7aZSqZgD06WrpuSvLHot9vYkEkZiSNI9NJ/Ps7e3x8cff8wnn3xCo9Ew/XCE\n6DIeHGkeAuzOVoBptpjP58lms0YxtmNBtt9lnsnnIslsE3o0v7dWq5mO57lcjkKhQLvdNucvCFHs\nU+mWDY+CNPJXrZSi1WpxenpKNpvF7/fT7XZNaqVc7bGIioXz83MqlQqlUonT01Ojq4jeIo0hT05O\n3sjxtfsSLysePGkAE4+RDt9iRQE0Gg2i0agpsJcqTGnZMer8mwWyPQlp8vk8R0dHpmmSJIaLxKnX\n66b+etTCWoby4avw4Eljm7WiT5RKJQBzOHoymTRVAc1mE8B0k1oEhDR2Vwdp15bL5Ux7NluyyHex\nv9ey4sGTBob9LHa7VVGS7Vzber1uXpPsOEldsHv32qkQdinsOBMahmNP0skhl8uRz+cpFotmm5KT\n5x4yHgVpbEiBfKvVAjBZ/XIqW6lUolarUalUKJfLpFIpkxAuB6OK4uz3+00vO/tgU/v8J5Fctjkv\nJnUul+Pk5MSYz+M81A8Rj5Y0UnQmUqZarbKyskIgEBjK7C8UCibZSq4Sm5K2rEJC0UVEsRXnnA2l\nFKenp0NDSLPoBop3hUdJGtlK2u320FGFkoAl5zcVCgXW1tZIp9NDTQ/FGSjnEYxKqnw+b0ahUDAK\nsMB20tVqNeOjua/qgXnj0ZEGuNZctQ/VEgki3ctF75EjkMXiEokiQ6wgGaOQKgK52r2JHwMeJWmu\ng2xfzWZzqG5aTpArFAqmikB0HPvMbTnexx4C27knyrb4YKRA35E0DxBiUQFmC2s2m5TLZQKBgOni\n4PP5THqn3HyJHdlSRHJe7O1p9IhlGcvssJsE6jrmX5Mj/FVu6CN8nzk2N2FUzxmXCG6/P5rmYB+h\nPI4IVzUaWmaH3ThorcdGeG8izQawYecIA7/AZVS7prX+zWs++3B+HQdjcRVpps0RhiXpI+zg7nHr\nXAErR/h/D15aij7CDu4etyLNYGv6j1zmCNdZoj7CDu4e1+o0YHKE/wvwX0dSPuX9XeD39eCwDet1\nR6d54LhKp7lW0lyVIzxIJhfcax9hB3ePm6ynnwT+APg+lyY3wN8HvsLl1mT6CFt1UPJZR9I8cExl\ncs8ChzQPH1NtTw4cjINDGgcTwyGNg4nhkMbBxHBI42BiOKRxMDEc0jiYGAvz0zh4vHAkjYOJ4ZDG\nwcRYKGmUUu8ppX6klPqTQRfQWefbV0p9Xyn1PaXU/53i819XSuWVUj+wXksopb6llHqplPrmJLlB\nV8z3VaXU68Eav6eUem+C+TJKqf+hlPqhUuoDpdTfmmWN18w39RqB8fms8xiAG/gY2AW8wPvAT8w4\n5x6QmOHzP8VlItkPrNd+A/h7g8e/DPz6jPP9GvB3p1zfBvD5weNV4CPgJ6Zd4zXzTb1GrfVCJc0X\ngY+11vta6y7wu8DPz2HeqdNMtdbfAcojL/8cl21tGVx/Ycb5YMo1aq2PtdbvDx7XAbsF78RrvGa+\nqdcIi92etoFD6/lrfrzgaaGBbyulvquU+qszziVYRHvbmVNh592Cd57puoskzSJs+S9prb8AfBn4\n60qpn5rn5PpSjs+67plTYUdb8M66xnmn6y6SNFkgYz3PcCltpobWOje4FoFvcLkFzor8oFRHMhJn\nam+rtS7oAYDfmnSN17XgnWaN1nz/VuabdY2LJM13gXeVUrtKqRXgF7lsJTsVlFJBpVR48DgE/Czz\nSTOV9rYwh/a2s6TC3qIF70RrXFi67izWzC209y9zqbF/zGUV5ixzPePSAnsf+GCa+YDfAY6ADpf6\n1i8BCeDbwEvgm0Bshvn+EpcVqd8H/nhwc9MTzPeTQH/wHb83GO9Nu8Yr5vvyLGvUWjthBAeTw/EI\nO5gYDmkcTAyHNA4mhkMaBxPDIY2DieGQxsHEcEjjYGI4pHEwMf4/w2zPGHuGeikAAAAASUVORK5C\nYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4267,87 +959,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEJBJREFUeJzt3X2wXVV5x/HvjxtIbkxEgoINxsZSoYbRiiiD4guoZaiD\n", - "KK1VaavWdux01ApUHZWZdvijHa1OR3ScdsZCfcGqbdXiS1GhlSoqgkTeXxQ70oIi0BIhCSG5CU//\n", - "OCfhcsnN3TubnXNO+H5m7nD2Ps/Za92zzrk82Wvv9aSqkCRJ0u7bZ9QdkCRJmnQmVJIkSR2ZUEmS\n", - "JHVkQiVJktSRCZUkSVJHJlSSJEkdLRpl40lcs0GSJE2MqsrO9veaUCU5ETgbmALOqaq/nhuzevXq\n", - "h71u3bp1HHDAAQ/Zt2hR865OTU217Wer+Kba9Hnx4sWNY5ctW9Y49uCDD24cC7By5crOsRdeeCEn\n", - "nHDCQ/YdcsghjY974IEHNo5dvnx541iA6enpxrF9rdE2MzPTOPb2229vHNtm7AAOOuigh+07++yz\n", - "Of300x+2f8WKFY2Pu3Tp0saxbb6rbcZjy5YtjWMBNm7c2Dj2rrvuahx70003NY694IILGsceeeSR\n", - "O93/la98hZNOOulh+4899tjGxz788MMbx+63336NY/v6O7u3OOusszjrrLNG3Y15bdu2rXFsm+/f\n", - "/fff3zh206ZNjWMB1q9f3zj23nvvbRR39NFHz/tcb1N+SaaAjwAnAmuAU5M8ra/2JEmSRqXPa6iO\n", - "Bn5cVbdU1QzwWeAVPbYnSZI0En0mVIcAt87avm24b0FLlizppUPaMw499NBRd0G76Zhjjhl1F9TB\n", - "YYcdNuouaDcdd9xxo+6COuozodrtC1DaXOei8WNCNblMqCabCdXkMqGafH1elP5TYNWs7VUMzlI9\n", - "xLp163Y8XrJkicmUJEkaC2vXrmXt2rWNYvtMqK4AnppkNfAz4DXAqXOD5t7NJ0mSNA6OOuoojjrq\n", - "qB3b55xzzryxvSVUVbU1yVuBrzNYNuHcqrqxr/YkSZJGpdd1qKrqq8BX+2xDkiRp1Ea6UjrAfffd\n", - "1yiuzaJ+bRYgaxvfJvaBBx4Y+XHbLk7Z17H7WiRTkqRxYC0/SZKkjkyoJEmSOjKhkiRJ6siESpIk\n", - "qSMTKkmSpI5MqCRJkjoyoZIkSerIhEqSJKkjEypJkqSOTKgkSZI6MqGSJEnqaOS1/JYtW9YoLknj\n", - "Y7aJ7VNfte62bt3aSyzAli1bGsfOzMz0EttXbUUYj5qCfX0+29Rh3J14DYzD35dx+BxLeqhez1Al\n", - "WZXk4iTXJ7kuydv6bE+SJGkU+j5DNQOcUVVXJVkGrE1yUVXd2HO7kiRJe0yvZ6iq6udVddXw8Qbg\n", - "RmBln21KkiTtaXvsovQkq4Ejgcv2VJuSJEl7wh5JqIbTfZ8DThueqZIkSdpr9H6XX5J9gc8Dn6qq\n", - "8+c+f/fdd+94PD09zfT0dN9dkiRJekT1mlBlcH/xucANVXX2zmJWrFjRZxckSZJ61/eU37HA7wPH\n", - "J7ly+HNiz21KkiTtUb2eoaqqb+Nq7JIkaS9nsiNJktTRyEvPNC110qbcQ9uyDG3i25Tr6Ou4bcqt\n", - "tC0v0ubYbcrJ9FWGp88yIPvs0/zfG236MTU11Uvspk2bGsdCf2OytxuH96Lt534c+izt7TxDJUmS\n", - "1JEJlSRJUkcmVJIkSR2ZUEmSJHVkQiVJktSRCZUkSVJHJlSSJEkdmVBJkiR1ZEIlSZLUkQmVJElS\n", - "RxNTeqbPcitt9FVOpq/YPktO9PU+tyn50lZf5Vb6GpOm3w+ArVu3No7VZLOUjDR+5k2okvw2UMDO\n", - "ikZVVX2hSQNJpoArgNuq6uW71UtJkqQxtqszVC9nkFDNp1FCBZwG3AAsb9opSZKkSTJvQlVVf9D1\n", - "4EmeBLwM+Cvgz7oeT5IkaRwteLFKkicmOTfJ14bba5L8UcPjfxB4J9DfRU2SJEkj1uTq348DFwIr\n", - "h9s3A2cs9KIkJwF3VtWV7Pw6LEmSpL1Ck4Tq8VX1T8A2gKqaAZrcTvQ84OQkPwE+A7w4ySfnBm3Y\n", - "sGHHT5s7miRJksZFk2UTNiQ5cPtGkmOAexZ6UVWdCZw5fM2LgHdU1evnxi1btqx5byVJksZQk4Tq\n", - "7cCXgV9J8l3gCcCrdqMtF06RJEl7pTRZIC7JIuBwBtdC/XA47de98aQOOuigRrEu7Ll7sZO4sGfS\n", - "3yV3fS3s2Sa2ze/X5j12YU9J6l9V7fSP+IJnqJJMA28Gns/gLNMlSf6uqu5/ZLsoSZI0mZpM+X0S\n", - "uBf4MIMzVL8LnAf8To/9kiRJmhhNEqojqmrNrO1vJLnhkerA9PR0o7iZmeazjG2notpMJ7aJbTO1\n", - "s2hR87KKbWrdtZ0+62u6ra8p27bTXG360UabKb999923cezKlSsXDhpq+7nfuHFj49h77lnwPpQd\n", - "Nm3a1Di2r+9TW23G5IADDmgcu2bNmoWDhk455ZTGsddee23jWIBLL720cezNN9/cOLbNndnWH5xs\n", - "bf6/0+b7tGTJksaxS5cubRwL8JjHPKZx7P77798obu3atfM+1+Qd+kGS527fGN7lN/8RJUmSHmV2\n", - "VRz52lkx30lyK4NrqJ4M/HAP9E2SJGkiLFQcWZIkSQvYVXHkW2ZvJzkIaD7ZKUmS9CjRpDjyyUlu\n", - "Bn4CfBO4Bfhqz/2SJEmaGE0uSv9L4LnAj6rqKcBLgMt67ZUkSdIEaZJQzVTV/wL7JJmqqouBZ/fc\n", - "L0mSpInRZPGjdUmWA5cA/5jkTmBDv92SJEmaHE3OUL0SuA84A/ga8GO8A1CSJGmHBc9QVdX2s1Hb\n", - "gI/32htJkqQJlPnKASTZwGAhz52pqnps58aTWrZsWaPYqampxsdtE9s2vs3y+21i22hTwqHPMjx9\n", - "lYhp04e25Sza9LlNqZM2sW0+F21+v82bNzeOhXbvxTiUDemrlNPuxDfV1+e+7fdaejTqo1xVVVFV\n", - "Oz3wrtahapbp7EKSxwHnAEcwSM7+sKq+1/W4kiRJ46Sff5Y96EPABVX1qiSLgOaVCiVJkiZEbwlV\n", - "kv2BF1TVGwCqaivQvGS9JEnShOjnIp+BpwB3JflYkh8k+fskS3tsT5IkaST6TKgWAc8C/raqngVs\n", - "BN7dY3uSJEkj0WdCdRtwW1V9f7j9OQYJ1kNs3rx5x0+bO2IkSZL6NLyrb8fPrvR2DVVV/TzJrUkO\n", - "q6ofAS8Frp8bt3jx4r66IEmStNvmLr2wq6Sq77v8/pRBuZr9gP8C3thze5IkSXtcrwlVVV0NPKfP\n", - "NiRJkkatz2uoJEmSHhX6nvJb0NKlzVZS6LPkS1+lZ/pY9r6tNuUsALZs2dJLbF+lS/osM9Rm/Nq8\n", - "z21KxPRZhmfStPn9ZmZmWh27zQ0xbT4Xbfq8t4+ftKft6e+UZ6gkSZI6MqGSJEnqyIRKkiSpIxMq\n", - "SZKkjkyoJEmSOjKhkiRJ6siESpIkqSMTKkmSpI5MqCRJkjoyoZIkSepo5KVnmpYC6bOMywMPPNA4\n", - "ts1S9m363LaESlNtSmpAu/eirxIcbfrc9vfrqxRBX5+LNqWO2v5ubcZ6bzcOpZHajIdjp3HW1/8b\n", - "xl2vZ6iSvCfJ9UmuTfLpJIv7bE+SJGkUekuokqwG3gQ8q6qeDkwBr+2rPUmSpFHpc8rvXmAGWJpk\n", - "G7AU+GmP7UmSJI1Eb2eoqupu4G+A/wF+Bvyiqv69r/YkSZJGpc8pv0OB04HVwEpgWZLf66s9SZKk\n", - "UenzovRnA9+tqv+rqq3AF4DnzQ1av379jp/Nmzf32B1JkqR+9HkN1U3AnyeZBu4HXgpcPjdo+fLl\n", - "PXZBkiSpf31eQ3U18EngCuCa4e6P9tWeJEnSqPS6sGdVvR94f59tSJIkjZqlZyRJkjoyoZIkSepo\n", - "5LX8tm3b1ihuXOpc9VVTsE09o77q4kHz8YB273Nfxx0XbWrutdHX50K7r83fgLbfP2lv8Gj9W+QZ\n", - "KkmSpI5MqCRJkjoyoZIkSerIhEqSJKkjEypJkqSOTKgkSZI6GsuEasuWLaPugjpos0SCJEl7AxMq\n", - "PeImcR0pSZK6GMuESpIkaZKYUEmSJHWUUS4Rn+TRuT69JEmaSFW10/pTI02oJEmS9gZO+UmSJHVk\n", - "QiVJktTR2CVUSU5MclOSm5O8a9T90fyS/EOSO5JcO2vfiiQXJflRkguTPG6UfdT8kqxKcnGS65Nc\n", - "l+Rtw/2O4ZhLsiTJZUmuSnJDkvcO9zt2EyTJVJIrk3x5uO34TbCxSqiSTAEfAU4E1gCnJnnaaHul\n", - "XfgYg7Ga7d3ARVV1GPAfw22NpxngjKo6AjgGeMvw++YYjrmquh84vqqeCTwDOD7J83HsJs1pwA3A\n", - "9ouZHb8JNlYJFXA08OOquqWqZoDPAq8YcZ80j6q6BFg3Z/fJwCeGjz8BvHKPdkqNVdXPq+qq4eMN\n", - "wI3AITiGE6Gq7hs+3A+YYvBddOwmRJInAS8DzgG23zXm+E2wcUuoDgFunbV923CfJsfBVXXH8PEd\n", - "wMGj7IyaSbIaOBK4DMdwIiTZJ8lVDMbo4qq6HsduknwQeCcwu7SE4zfBxi2hcg2HvUgN1uRwTMdc\n", - "kmXA54HTqmr97Occw/FVVQ8Mp/yeBLwwyfFznnfsxlSSk4A7q+pKHjw79RCO3+QZt4Tqp8CqWdur\n", - "GJyl0uS4I8kTAZL8EnDniPujXUiyL4Nk6ryqOn+42zGcIFV1D/BvwFE4dpPiecDJSX4CfAZ4cZLz\n", - "cPwm2rglVFcAT02yOsl+wGuAL424T2rnS8Abho/fAJy/i1iNUJIA5wI3VNXZs55yDMdcksdvvwMs\n", - "yTTwG8CVOHYToarOrKpVVfUU4LXAN6rqdTh+E23sVkpP8pvA2Qwusjy3qt474i5pHkk+A7wIeDyD\n", - "+f6/AL4I/DPwZOAW4NVV9YtR9VHzG94V9i3gGh6cWngPcDmO4VhL8nQGFy3vM/w5r6o+kGQFjt1E\n", - "SfIi4O1VdbLjN9nGLqGSJEmaNOM25SdJkjRxTKgkSZI6MqGSJEnqyIRKkiSpIxMqSZKkjkyoJEmS\n", - "OjKhkjRySb4z/O8vJzn1ET72mTtrS5IeSa5DJWlsJDmOwSKHL2/xmkVVtXUXz6+vquWPRP8kaT6e\n", - "oZI0ckk2DB++D3hBkiuTnJZknyQfSHJ5kquT/PEw/rgklyT5InDdcN/5Sa5Icl2SNw33vQ+YHh7v\n", - "vNltZeADSa5Nck2SV8869n8m+ZckNyb51J59NyRNokWj7oAk8WDpm3cB79h+hmqYQP2iqo5Oshj4\n", - "dpILh7FHAkdU1X8Pt99YVeuGte0uT/K5qnp3krdU1ZE7aeu3gF8HngE8Afh+km8Nn3smsAa4HfhO\n", - "kmOryqlCSfPyDJWkcZI52ycAr09yJfA9YAXwq8PnLp+VTAGcluQq4FJgFfDUBdp6PvDpGrgT+Cbw\n", - "HAYJ1+VV9bMaXBNxFbC6w+8k6VHAM1SSxt1bq+qi2TuG11ptnLP9EuCYqro/ycXAkgWOWzw8gdt+\n", - "9mrzrH3b8G+lpAV4hkrSOFkPzL6A/OvAm5MsAkhyWJKlO3ndY4F1w2Tq14BjZj03s/31c1wCvGZ4\n", - "ndYTgBcCl/PwJEuSFuS/uiSNg+1nhq4Gtg2n7j4GfJjBdNsPkgS4EzhlGD/7FuWvAX+S5Abghwym\n", - "/bb7KHBNkrVV9brtr6uqf03y3GGbBbyzqu5M8rQ5x2Yn25L0EC6bIEmS1JFTfpIkSR2ZUEmSJHVk\n", - "QiVJktSRCZUkSVJHJlSSJEkdmVBJkiR1ZEIlSZLUkQmVJElSR/8PcYZmdpOLkfYAAAAASUVORK5C\n", - "YII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEERJREFUeJzt3X2wXHddx/H3JzfPaWOJTcFCNFWpUoZKsTAFUmgBncqU\ngopAVUB0cDqA1AoM0Bmd/qGAMA6VYZRBKg9FQAUsD8pD1QoNSENL+piWB4dqWyRVm5A2SfPUr3/s\nJtze3pt7Tk5Odjd9v2budM/Z757fb/e3u/3md87+vqkqJEmSdOgWjLoDkiRJk86ESpIkqSMTKkmS\npI5MqCRJkjoyoZIkSerIhEqSJKmjhaNsPIlrNkiSpIlRVZltf68JVZJzgEuBKeB9VfWnM2PWrl37\nkMdt2bKFRzziEQ/at2LFisbtLl26tFU/Fy5s/jJMTU01jl2yZEnj2DZ9Pu644xrHrl69unFs2/jj\njz9+1v2f/exnOffccx+0r02f24x1m9cYYPny5Y1jFy9e3Dh25cqVjWMXLVrUOHbHjh2NY0844YTG\nsTD76/yWt7yFiy+++CH727zObT4jyazfS7N64IEHGsfu3r27cSzA1q1bG8fu2rWrcezOnTsbx952\n222NY2f73gR4z3vewwUXXPCQ/SeddFLjY7d5Ly9Y4EmOw+WSSy7hkksuGXU35tRmzco2sW0+1/v2\n7WscC7Bnz57DHrtq1ao57+vt05BkCng3cA5wCnB+ksf11Z4kSdKo9PnPi6cA36mq26tqD/Ax4Pk9\ntidJkjQSfSZUjwbumLZ953DfvNqestN4Ofnkk0fdBR2iM888c9RdUAenn376qLugQ3TWWWeNugvq\nqM+E6pAvOF+2bNnh7IeOMBOqyWVCNdlMqCaXCdXk6/Oi9LuANdO21zCYpXqQLVu2HLi9dOlSkylJ\nkjQW1q9fz/r16xvF9plQXQs8Nsla4HvAi4HzZwbN/DWfJEnSOFi3bh3r1q07sP32t799ztjeEqqq\n2pvkNcAXGCybcFlV3dpXe5IkSaPS6zpUVfU54HN9tiFJkjRqabMA12FvPKmDLZI1XV+LBUJ/i5D1\ntWDZ3r17e4lt2482z2+U7zNJkg6XuVZKd5lbSZKkjkyoJEmSOjKhkiRJ6siESpIkqSMTKkmSpI5M\nqCRJkjoyoZIkSerIhEqSJKkjEypJkqSOTKgkSZI6MqGSJEnqqNfiyE0sW7asUVybWn5t9VXLr00d\nvTbHbfNaLFzYbojb9LlN3b++XuO2NQInraZgm/5O2nOTpKNJrzNUSdYkuSrJLUluTvLaPtuTJEka\nhb5nqPYAF1XV9UmOAa5LcmVV3dpzu5IkSUdMrzNUVfX9qrp+ePs+4FbgxD7blCRJOtKO2EXpSdYC\npwHXHKk2JUmSjoQjklANT/d9HLhwOFMlSZJ01Oj9V35JFgGfAD5cVVfMvH/btm0Hbi9ZsoQlS5b0\n3SVJkqTDqteEKkmAy4BNVXXpbDErV67sswuSJEm96/uU39OB3wTOTrJx+HdOz21KkiQdUb3OUFXV\nelyNXZIkHeVMdiRJkjoaeemZpqVOdu/e3fiYbUqXQLsSKn2WRRmHPrQ5dtvXedIMLgGcnD60HQ9L\n1UjS4eMMlSRJUkcmVJIkSR2ZUEmSJHVkQiVJktSRCZUkSVJHJlSSJEkdmVBJkiR1ZEIlSZLUkQmV\nJElSRyZUkiRJHY289MwxxxzTKK7PMhkLFzZ/GdrEtilps2vXrsaxbcrw7Nmzp3Fs2/g2sX2VtGn7\nvmgTPw6lWcah1JEkaX5zZgdJfhUoYLZiYlVVn2zSQJIp4Frgzqp63iH1UpIkaYwdbLrleQwSqrk0\nSqiAC4FNwLFNOyVJkjRJ5kyoquq3uh48yWOA5wJ/AvxB1+NJkiSNo3kvSk/yqCSXJfn8cPuUJL/T\n8PjvBN4ANL8QRJIkacI0+ZXfB4AvAicOt78NXDTfg5KcC9xdVRuZ/TosSZKko0KThOr4qvpbYB9A\nVe0B9jZ43NOA85J8F/go8KwkH5oZdM899xz427lzZ4uuS5IkjYcmawDcl+RH928kOQP4wXwPqqqL\ngYuHj3km8PqqetnMuFWrVjXvrSRJ0hhqklC9DvgM8JNJvgqsBl54CG25SI4kSToqzZtQVdV1SZ4B\n/AyDa6G+OTzt11hVfQn40qF1UZIkabzNm1AlWQa8CljHYJbp6iR/WVX39905SZKkSdDklN+HgG3A\nuxjMUP06cDnwaz32S5IkaWJkvvpfSTZV1Snz7TukxpNasWJF18PMdtxW8QsWNK8R3ebYbWKnpqYa\nx7bpb1t79zb5AedAm1p+beoa9lX3D8aj3l2bsT722OYFBu6/v92kcZuakG3eF5NWLxHafVbb1PNs\nWqsU4NRTT20cu3nz5saxAHfddVfj2O3btzeObfv508NDm/9HtYlt890JsGjRosaxTT/XW7dupapm\n/cJo8ky+keSp+zeGv/K7rlHLkiRJDwMHK45807SYryS5g8E1VD8OfPMI9E2SJGkizFccWZIkSfM4\nWHHk26dvJzkBWNp3hyRJkiZNk+LI5yX5NvBdBmtJ3Q58rud+SZIkTYwmF6X/MfBU4FtVdRLwbOCa\nXnslSZI0QZokVHuq6n+BBUmmquoq4PSe+yVJkjQxmiy8sCXJscDVwN8kuRu4r99uSZIkTY4mM1Qv\nAHYAFwGfB76DvwCUJEk6oElx5P2zUfuAD/TaG0mSpAk0Z+mZJPcxWMhzNlVVKzs3ntTq1asbxfa1\nlD20K5/QV6mMcSnB0UbbEj99aPu6tSm30lcJnDZ9bvMat3lu0F+f+3ov91XKqW18m3IWbfrcppTT\nuIy19HA0V+mZg61D1bwI1RySHAe8D3g8g+Tst6vqa12PK0mSNE6aV/k8NH8O/FNVvTDJQuDwV0KW\nJEkasd4SqiQ/ApxZVS8HqKq9wA/6ak+SJGlU2l1s1M5JwP8keX+SbyT5qyTLe2xPkiRpJPpMqBYC\nTwL+oqqeBGwH3tRje5IkSSPRZ0J1J3BnVX19uP1xBgnWg2zfvv3AX9tfrkiSJI2D3q6hqqrvJ7kj\nyclV9S3gOcAtM+NWrPA6dUmSNNn6/pXf7zEoV7MY+A/gFT23J0mSdMT1mlBV1Q3Ak/tsQ5IkadT6\nvIZKkiTpYaHvU36HTZ+lZ9qUkuizH021KSOxd+/eVsduU/6izbH37dvXOLZNuY7Fixc3jgVYvrz5\nyh1tXucdO3Y0jt25c2fj2Dav29FeMqSvkj0AS5cubRzb5n2xa9euXo7bJlbSkeEMlSRJUkcmVJIk\nSR2ZUEmSJHVkQiVJktSRCZUkSVJHJlSSJEkdmVBJkiR1ZEIlSZLUkQmVJElSRyZUkiRJHY289EzT\nsi+7d+9ufMw25VOgXQmVNuUv+iqV0Sa2z3IkbfrRV7mcNqVZoL/x60tf7wsYj+fXl7bvi3vvvbeX\nfrQpPzU1NdU4tu1Yt309JLXX6wxVkjcnuSXJTUk+kmRJn+1JkiSNQm8JVZK1wCuBJ1XVE4Ap4CV9\ntSdJkjQqfZ7y2wbsAZYn2QcsB+7qsT1JkqSR6G2GqqruAf4M+C/ge8DWqvrnvtqTJEkalT5P+f0U\n8PvAWuBE4Jgkv9FXe5IkSaPS50XppwNfrar/q6q9wCeBp80M2rZt24G/Xbt29dgdSZKkfvR5DdVt\nwB8mWQbcDzwH2DAzaOXKlT12QZIkqX99XkN1A/Ah4FrgxuHu9/bVniRJ0qhklIv7JakTTzyxUawL\nex5arAt7PtjRvLBnW+Pw/I52fS3s2ebzBC7sKR1OVTXrF7OlZyRJkjoyoZIkSepo5LX8li9f3iiu\nzWmgttpMy4/DaZI+T/lN2vPrs35dn6fbNLn6+vz1demBpCPDGSpJkqSOTKgkSZI6MqGSJEnqyIRK\nkiSpIxMqSZKkjkyoJEmSOhrLhGrHjh2j7oI6cFVmSdLDzVgmVDt37hx1F9SBCZUk6eFmLBMqSZKk\nSWJCJUmS1FFGWcIgifUTJEnSxKiqWetPjTShkiRJOhp4yk+SJKkjEypJkqSOxi6hSnJOktuSfDvJ\nG0fdH80tyV8n2Zzkpmn7ViW5Msm3knwxyXGj7KPmlmRNkquS3JLk5iSvHe53DMdckqVJrklyfZJN\nSd463O/YTZAkU0k2JvnMcNvxm2BjlVAlmQLeDZwDnAKcn+Rxo+2VDuL9DMZqujcBV1bVycC/DLc1\nnvYAF1XV44EzgFcPP2+O4ZirqvuBs6vqicCpwNlJ1uHYTZoLgU3A/ouZHb8JNlYJFfAU4DtVdXtV\n7QE+Bjx/xH3SHKrqamDLjN3nAR8c3v4g8IIj2ik1VlXfr6rrh7fvA24FHo1jOBGqan9JicXAFIPP\nomM3IZI8Bngu8D5g/6/GHL8JNm4J1aOBO6Zt3zncp8nxyKraPLy9GXjkKDujZpKsBU4DrsExnAhJ\nFiS5nsEYXVVVt+DYTZJ3Am8AHpi2z/GbYOOWULmGw1GkBmtyOKZjLskxwCeAC6vq3un3OYbjq6oe\nGJ7yewzwjCRnz7jfsRtTSc4F7q6qjfxwdupBHL/JM24J1V3AmmnbaxjMUmlybE7yKIAkPwbcPeL+\n6CCSLGKQTF1eVVcMdzuGE6SqfgD8I/DzOHaT4mnAeUm+C3wUeFaSy3H8Jtq4JVTXAo9NsjbJYuDF\nwKdH3Ce182ng5cPbLweuOEisRihJgMuATVV16bS7HMMxl+T4/b8AS7IM+AVgI47dRKiqi6tqTVWd\nBLwE+NeqeimO30Qbu5XSk/wScCmDiywvq6q3jrhLmkOSjwLPBI5ncL7/j4BPAX8H/DhwO/Ciqto6\nqj5qbsNfhX0ZuJEfnlp4M7ABx3CsJXkCg4uWFwz/Lq+qdyRZhWM3UZI8E3hdVZ3n+E22sUuoJEmS\nJs24nfKTJEmaOCZUkiRJHZlQSZIkdWRCJUmS1JEJlSRJUkcmVJIkSR2ZUEkauSRfGf73J5Kcf5iP\nffFsbUnS4eQ6VJLGRpKzGCxy+LwWj1lYVXsPcv+9VXXs4eifJM3FGSpJI5fkvuHNtwFnJtmY5MIk\nC5K8I8mGJDck+d1h/FlJrk7yKeDm4b4rklyb5OYkrxzuexuwbHi8y6e3lYF3JLkpyY1JXjTt2P+W\n5O+T3Jrkw0f21ZA0iRaOugOSxA9L37wReP3+GaphArW1qp6SZAmwPskXh7GnAY+vqv8cbr+iqrYM\na9ttSPLxqnpTkldX1WmztPUrwM8BpwKrga8n+fLwvicCpwD/DXwlydOrylOFkubkDJWkcZIZ278I\nvCzJRuBrwCrgp4f3bZiWTAFcmOR64N+BNcBj52lrHfCRGrgb+BLwZAYJ14aq+l4Nrom4Hljb4TlJ\nehhwhkrSuHtNVV05fcfwWqvtM7afDZxRVfcnuQpYOs9xi4cmcPtnr3ZN27cPvyslzcMZKknj5F5g\n+gXkXwBelWQhQJKTkyyf5XErgS3DZOpngTOm3bdn/+NnuBp48fA6rdXAM4ANPDTJkqR5+a8uSeNg\n/8zQDcC+4am79wPvYnC67RtJAtwN/PIwfvpPlD8PXJBkE/BNBqf99nsvcGOS66rqpfsfV1X/kOSp\nwzYLeENV3Z3kcTOOzSzbkvQgLpsgSZLUkaf8JEmSOjKhkiRJ6siESpIkqSMTKkmSpI5MqCRJkjoy\noZIkSerIhEqSJKkjEypJkqSO/h9QtS7j/64B5gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4355,109 +969,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAFYRJREFUeJztnVuMZHldxz+/ut+7q+89072zs8Oa8EACL/gARB4IWWIi\n", - "+qIhMRpE44OiURMRHwSjD0gCMb4QlV2Dl4BGAwETFTAa8cHLml12UXbZTRimZ/tW3VXVdb//fej6\n", - "/ffUmeqeruq6nJo5n+Skbl2nf931rd//8rscMcbg4zMKgXkb4LN4+KLxGRlfND4j44vGZ2R80fiM\n", - "jC8an5EZWzQi8oyIvCIir4nIxyZplI+3kXH2aUQkCLwKvA94A/hv4EPGmO9O1jwfLzKup3kn8Lox\n", - "5q4xpg18Cfjg5Mzy8TKhMd93E9hzPL4P/LDzB0TE32pecIwxMuz5cT2NL4jHmHFF8waw63i8y7m3\n", - "8XkMGFc0zwNPi8iTIhIBfgr46uTM8vEyY81pjDEdEfll4J+AIPCsv3J6fBhryX2lE/sT4YVn0hNh\n", - "n8cYXzQ+I+OLxmdkfNH4jIwvGp+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZMZNwgJARO4C\n", - "JaALtI0x75yEUdNGROwRCAQIBoOEQiGCwSDBYJB2u02n07G3s7AnEAhYmwCMMWhc0H1/3lxLNJwn\n", - "Y73XGJOfhDGzQEQIhUL2CIfDLC0tkclkyGQyJBIJ8vm8PQqFwtRtCoVCRCIRwuEwkUiEXq9Ht9ul\n", - "2+3S6XTs416vR6/Xm7twrisagKGRUC8TDAaJRCLEYjHi8ThbW1tsb2+ztbXF6uoqd+/e5e7du7Tb\n", - "7ZmIJhgMWlsSiQTdbpd2u02r1aLVatFutxERK6B5MwlP800R6QJ/bIz50wnYNFXU00SjURKJBOl0\n", - "mu3tbe7cucNb3vIWbt68STwep91uk8/PxoGGQiFisRjpdJpMJkOn06Fer9NoNOywBXhCMHB90bzL\n", - "GHMgIuvAN0TkFWPMtyZh2DTRDymRSLC0tMT6+jo7Ozs89dRT3Lp1i0KhwBtvvEE8Hp+pPalUimw2\n", - "S6fTIRaLUa/Xqdfr1Go16vU6xhja7fZiD0/GmIP+bU5Evsx5aYunRSMihMNh4vE4mUyGbDZLJpMh\n", - "Ho8TDocfmJDOglAoZO1ZXV214tCjWCySz+cREZrN5tw9ztiiEZEEEDTGlEUkCbwf+N2JWTYlVDSJ\n", - "RMKKJpVKDYhm1sJxDk8rKysEg0G7Yur1euRyOUSERqNBsViciU2X2nuN924CX+7/Y0PAXxljvj4R\n", - "q6aIiBCJRB7wNIlEgkgkMnMvA4OeZmVlhVgsZrcCAoEA0WiUZrNJsVgkEJj/1trYojHGfB94+wRt\n", - "mQnDPE06nZ7r8BQIBAiHw8RiMZLJJMlkkmg0SjQaJRKJ0G63OT09JR6PW/vmOa+ZxJJ7IVARqKfR\n", - "SfDKygrpdJpYLEYoNJ9/R6/Xo91uU6/XqVQqBINBwuEwwWCQeDxOPB4nGo3a5wKBgB2+5iGe+fu6\n", - "GeAUTCAQIBKJkEwmB0QTj8fnJpput0ur1aJer1Mul2k0GvR6PTtsOUUTCoXm4g2dPBaiAQbCBupp\n", - "nMPTPD2NUzSVSoVGo0G32yUYDJJIJIZ6mnkK57EYnlQs7rnD0tIS2WzWzh0AG2+a5XZ9r9ej0+nQ\n", - "arVoNBq0220AuzWgoolEIlY0ML841CMvGp34RiIRIpEI6XSa5eVlG29Kp9MD3/RGo0GhUKBSqdgP\n", - "bxY2qqg1DhWNRu0GpIpGg6o6p5kXj41oNK6jgtEjnU5TLpft0HB2dkY+n6dardJqtWZmozPaHg6H\n", - "iUaj1uZhw1Ov1/PnNNPCKZpUKsXy8vKAp0mlUoRCIVqtFmdnZxwdHVlPM0vRiIgVzTBPo1Fw95xm\n", - "HjySnsa5WgoGg0SjURvXWVtbI5vNWi+j8SUdlg4ODsjn8zMdnnRY0mFUBaORb53P6Mpp3qunR040\n", - "KhQ94vE4a2tr3Lx5kxs3bnDjxg1u3rzJ0tISgUCAer3O2dkZJycn7O/vs7e3x9HREaVSiWazOROb\n", - "3bGn5eVlksmk3aH2Go+caODNfJlIJEIqlbKieeqpp3jiiSdYXV0lk8kQCASo1WpWNAcHB9y7d49i\n", - "sThX0SwtLQ2ENbzGIycazZfR+FI6nbapD3fu3OHOnTtWUCJiPU0ul7OeRlMRfE8znIeKRkSeA34U\n", - "ODbGvK3/3Arw18At4C7wk8aY+YdfeVM0zr2YtbU1bty4wa1bt7h9+7bNiGu1WpTLZQqFAicnJxwd\n", - "HbG/v29TK7vd7szsdQYsve5prrJ6+jPgGddzvwV8wxjzQ8A/9x97gkAgQDweJ5vNsr29ze7uLhsb\n", - "GywtLRGPxxERarUauVyOu3fv8sorr3Dv3j1yuRzVanUmubi6xNY8Zc0iTKVSAxP0cDi8mKLpZ+K5\n", - "E2V/DPhC//4XgB+fsF1jEwgESCQSZLNZtra22N3dZXNzk+XlZWKx2AOiefXVV7l37x4nJydUKhUr\n", - "mmkGA937Mrono6LR/J5QKORJ0Yw7p9k0xhz17x9xnlvjCS7zNE7RnJyc8IMf/IDXX3+d4+Nj62mm\n", - "LRgYXOEN8zSpVMq+7lxae0VA154IG2PMvPvrOf+poVCIZDLJysoKW1tb7Ozs2NVSLBYDsKK5d+8e\n", - "r732GuVymUqlYoenaaNeRvdldOdXE8vj8fhA6sMshDwK44rmSES2jDGHIrINHE/SqFHQIKSuiDKZ\n", - "DGtra6yurrK6uko2myWRSBAMBm0gslarUa1WqVQqNoTQarVmIhjAbjam02nS6fQDw6eWsGjwtFwu\n", - "U6vVbDBTa6LmlSs8rmi+Cvws8Af9269MzKIRERGi0ajNeFtZWWFtbc0KJ5vN2jyUbrdLo9EYEI2G\n", - "C1qt1sw+hEgkYld1a2trbG9vs7y8bCfqnU6HRqNBo9GgXq9TKpWoVqs0Gg06nc7Mo/BurrLk/iLw\n", - "I8CaiOwBvwN8CvgbEfkI/SX3NI28DM2h1bjS+vr6A55G/8FaT+QWjX5zZ+lpMpkMGxsb7OzssLm5\n", - "STabtcNnp9Oh2WxSrVYpl8vW0zSbTetpPC0aY8yHLnjpfRO2ZSw0fdMZW1LR6J6HfmtbrdYDgqlU\n", - "KjO31yma3d1dtra2hnqaSqVCsVjk7OzMJmepaOaZ7rnwO8LO4UlFs7S0NLCjqpt4xWKRk5MTTk9P\n", - "Zx6QdB7OVNONjQ1WVlasvQCtVotSqcTx8TGHh4ccHBxQKBSo1WpzFww8AqJxDk8qmuXl5YEdVf0Q\n", - "NL6kUexZpT44N/JCoZBdWq+urrKxsWFrr9TeZrPJ2dkZx8fH7O3tWZt1dTfvldTCi0Y9jVM0F3ka\n", - "FY16mlmLRld4bk/jDBsANJtNSqUSuVxuQDROTwN+uufYaKL4VUSTy+Xmmi+jnSqSyaSNM62vr5NM\n", - "Jm0+DbwpmuPjY+7fv8/R0RHFYvEB0cyLhRSNsymRe0c1nU7bb20wGKTX69FoNGwkex6eJhwOk0ql\n", - "yGQytuGAM5Kt6ZvaVkRXTaVSiWKxaPeSvFD8DwsoGmcpim7sOWM3GuzTD8MYQ6PRGJjT6A7wrDyN\n", - "esLV1VXW1tasaBKJhK3q1AZG3W7Xru6cotGVky+aMVHBuGM3usPq9DS6fHV6mmazaTf0ZoGKZmVl\n", - "he3t7Qc8DTDQxGiYp9FNPV80Y+IM+A3zNDrhVLevnkZFM2ucotna2npg3tVutwdKc1U0Z2dndo/G\n", - "SyykaODBWqFwOGyPXq9nd371n1+r1WbSdHEYaqOKW8tRtOhNBdNoNKhWqwOxMC94FjcLKZqLunNq\n", - "xn6z2aTRaNBsNsnn83blMas5jBv36slZwwRviqbZbNrApJdFs3B1T27BuNMMnJ5G0zjPzs6o1+tz\n", - "9zSaBuEsR3FGtTWYqiulWcXCRuWhohGR50TkSERedjz3SRG5LyIv9A93OujUcQpHd1rdoikWi+Ry\n", - "Oc94Gq1nusjTuIcnr0x83YybI2yAzxpj3tE//nHypg3HmZikyd9aOF+r1QbEod0h3AVnWqU4rUw4\n", - "Z7WkVndqDbmGOZLJpM0B7na7dmhyp0EspGguyBGGOfYPVtHo3oaKplqtWtE4A5mzFo27mF9Fk81m\n", - "B5bb0WjUikaX2qVSiUqlYocoL3KdOc1HReTbIvKsiCxPzKIrcJFo1NN0Oh0byEwmkyQSCWKx2AP1\n", - "0LP0NJrvo2XBzjCH29NoGsTCepoL+Bxwm/OeewfAZyZm0RVwDk9u0VSr1Qs9jWbwOSeh0+Ci4ckZ\n", - "hR8mmmq1+kDujBdFM9aS2xhjc4JF5PPA1yZm0dV+/4C30d1UTbbSzT3dC1lbW2NnZ4dqtWpLcfVo\n", - "NBoj/35n501nFwdnaENtiEQi3Lp1i42NDVtlMEyszhyZeac+PIyxRCMi29p4GvgJ4OXLfn6SGGNs\n", - "d0u3t2k2mzSbzYFWqvF4nPX1dWq1GsYYEokExWLRHuVyeWQbnBuJejjzZbTzg97evn2bjY0Nksnk\n", - "lf4+rzNOjvAngPeKyNs5X0V9H/jFqVrpQr+J6tqdQ1Sj0bB9eLWt6vr6Or1ej2g0yvLyMsfHx/YY\n", - "5/oH2gZED6dXcbYK0d+/vb3N5uYmqVRqaDvXhz32GuPmCD83BVuujDMJySka9TTdbteKJp1OY4yx\n", - "gllfX7dJT7qSGhWdXOttPB5/QEjOQ7tuJZPJC+dR7mHJy8JZyDCCE61jKhQKHB4eEo1G7Ra8czkL\n", - "5x4im80OTJSXl0df+KkX0Vv3cKSHvq6T8YtqszudzkDLk0KhQLVapdlselI8j4xo8vk8+/v7ADZq\n", - "LCL0ej27UtK5R6/Xs00bNzY2Rv6d6qH01jmncXazcovoopaz7XbbCv/o6IjT01PK5bInLp4xjIUX\n", - "jSYt6VVKNGajy15tCJBIJAZax2vfmnFzapzDiDMGNmz1pIK6aOXUarWoVCpWNMVi0fbH8T3NFFBP\n", - "o1n89XodYGAVo3MaTbtMp9PX6lnnvL6lc9dWz+eMgzmHpIt+n3qaYrHI8fEx5XLZFu/5opkCWjnZ\n", - "bDZtADOXy9lhqFqtks1mWVlZsVdccV7kdJyJsPYb1lu3PSpMvXUvz93icU7onc2vvXC9ymEsvGiA\n", - "gckuwMnJifVAp6enLC0tDbSBdX+Io2CMsZWZmmvsRvOA9dA6c80Jvui8zgucenmDb+FFo99SeLNd\n", - "fLfbtYLRchHtTp5OpwfmNpqjOwqFQmFgg9DNzs4OTzzxBLVajV6vRzabxRhDKBQikUgM9TTu6L1X\n", - "BQOPkGhUOCJiwwVa4pJKpQYO3VfRmNSo5HI5Tk5O7OHm6aeftoJRUapgLvs7VDBeXDE5WXjRwOBG\n", - "mN5XEWnE2zn3ce7WjuppjDEUi0UKhQKlUolarfbAz2jgVFM13IX7btzpoM45jRez9x4J0VyGUyyA\n", - "jSg7Y0ajUqlULs0EdMbDdOmse0fDcF8dxtnUyItD1SMvGsDmBmsVoztCPSrOi6wPw52yoambVxFN\n", - "IpGwO9Z6noUSjYjsAn8ObHAenPwTY8wfebmPsBvnnKfVag1MQsfdp3lY+oJbNM5mRMNw1m8lk0m7\n", - "E+z0kF7iYZ6mDfyaMeZFEUkB/yMi3wA+zHkf4U+LyMc47yPsmV7CbmYdBBx1JeTOQnTu1XiRS32z\n", - "MebQGPNi/34F+C5wEw/3EfYSV/Vk7moE55DmtaEJRpjTiMiTwDuA/8TDfYS9xrA+wG4xuYvltEbL\n", - "iysnuKJo+kPT3wG/aowpO/9oL/QRXgQuiz/p/MVZLAd4dlf4KsVyYc4F8xfGGG39eiQiW/3X59pH\n", - "eFG4bF7lruPy+q7wpaKR86/Fs8D/GWP+0PGS9hGGOfcRXgQWIRtvFB42PL0L+GngJRF5of/cx/FQ\n", - "H2Evc9HwsujiuVQ0xph/52Jv5Ik+wj6z57HYEZ41zs4WFyV7OYesRah1cuKLZko4W6G4xeMWipcn\n", - "vcNYuP40i8CwHjoX5dA4V0qLIhxfNFPiKp7GmT+zSMLxh6cpoBde1YbY6XSaWCxm+xprIFIPZ9t9\n", - "XzSPKe5unnrBDG1Rq4VxpVKJUqnE/v6+bWPvi+YxRa9/kM1m2dzctL2N9UJl1WqVQqFALpfj+PjY\n", - "XmWlXq/7onlc0foq9TTRaNRWZGrSe6FQ4ODggPv37w94Gq+mQzjxRTMDms2mjVp3Oh329/e5f/8+\n", - "e3t77O3tDVRV+p7mMUWzBOv1uq3Jdiab64W/9NAk9Uaj4YvmccXZQ0+vcZDP5+2Ry+XsfEavB67V\n", - "mgsvmktyhD8J/DyQ6//ox2fZFtbrqKdR0ZyenrK/v8/BwYGdv+TzeQqFAvl83g5d87xs8iiMmyOs\n", - "fYQ/O3ULF5BGo0GxWOTw8JBMJsPJyQlHR0ccHh5yeHg4sNyuVqsLIRQnD4tyHwKH/fsVEdEcYZhj\n", - "H2GvU6vVyOVyhMNh2u02pVKJQqFgD683l34Y4+QI/wfneTYfFZGfAZ4HfsOrJSzzoFqtcnx8TLPZ\n", - "pFAoDPQ4rtVqD62b8jpyFaX3h6Z/BX7fGPMVEdngzfnM7wHbxpiPuN6zeF+hCaGVm1rF6bxYvLMr\n", - "hNfrto0xQ0eTh4qmnyP898A/uFI+9fUnga8ZY97mev6xFc2jwkWiGStHuJ9Mrsy0j7DP/LnU04jI\n", - "u4F/A17ifMUE8NvAhzhvcW/7CDvqoPS9vqdZcMYensbFF83iM9bw5OMzDF80PiPji8ZnZHzR+IyM\n", - "LxqfkfFF4zMyvmh8RmZq+zQ+jy6+p/EZGV80PiMzVdGIyDMi8oqIvNbvAnrd890VkZdE5AUR+a8x\n", - "3v+ciByJyMuO51ZE5Bsi8j0R+foo1xi/4HyfFJH7fRtfEJFnRjjfroj8i4j8r4h8R0R+5To2XnK+\n", - "sW0Ehl/adxIHEAReB54EwsCLwFuvec7vAyvXeP97OE8ke9nx3KeB3+zf/xjwqWue7xPAr49p3xbw\n", - "9v79FPAq8NZxbbzkfGPbaIyZqqd5J/C6MeauMaYNfAn44ATOO3aaqTHmW0DB9fTY7W0vOB+MaaOZ\n", - "cAveS843to0w3eHpJrDneHyfNw0eFwN8U0SeF5FfuOa5lGm0t/2oiHxbRJ4dZbhzMukWvK503WvZ\n", - "OE3RTGMt/y5jzDuADwC/JCLvmeTJzbkfv67dnwNuc55vdAB8ZtQTuFvwXtfG/vn+tn++ynVtnKZo\n", - "3gB2HY93Ofc2Y2OMOejf5oAvcz4EXpeJtrc1xhybPsDnR7Vx0i14Hef7Sz3fdW2cpmieB54WkSdF\n", - "JAL8FOetZMdCRBIiku7fTwLvZzJpphNtb3udVNhJt+CdWrrudVYzV5i9f4DzGfvrnFdhXudctzlf\n", - "gb0IfGec8wFfBPaBFufzrQ8DK8A3ge8BXweWr3G+n+O8IvUl4Nv9D3dzhPO9G+j1/8YX+scz49p4\n", - "wfk+cB0bjTF+GMFndPwdYZ+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZHzR+IzM/wMn9Av6\n", - "T5UJ3wAAAABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFYRJREFUeJztnVuMZHldxz+/ut+7q+89072zs8Oa8EACL/gARB4IWWIi\n+qIhMRpE44OiURMRHwSjD0gCMb4QlV2Dl4BGAwETFTAa8cHLml12UXbZTRimZ/tW3VXVdb//fej6\n/ffUmeqeruq6nJo5n+Skbl2nf931rd//8rscMcbg4zMKgXkb4LN4+KLxGRlfND4j44vGZ2R80fiM\njC8an5EZWzQi8oyIvCIir4nIxyZplI+3kXH2aUQkCLwKvA94A/hv4EPGmO9O1jwfLzKup3kn8Lox\n5q4xpg18Cfjg5Mzy8TKhMd93E9hzPL4P/LDzB0TE32pecIwxMuz5cT2NL4jHmHFF8waw63i8y7m3\n8XkMGFc0zwNPi8iTIhIBfgr46uTM8vEyY81pjDEdEfll4J+AIPCsv3J6fBhryX2lE/sT4YVn0hNh\nn8cYXzQ+I+OLxmdkfNH4jIwvGp+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZMZNwgJARO4C\nJaALtI0x75yEUdNGROwRCAQIBoOEQiGCwSDBYJB2u02n07G3s7AnEAhYmwCMMWhc0H1/3lxLNJwn\nY73XGJOfhDGzQEQIhUL2CIfDLC0tkclkyGQyJBIJ8vm8PQqFwtRtCoVCRCIRwuEwkUiEXq9Ht9ul\n2+3S6XTs416vR6/Xm7twrisagKGRUC8TDAaJRCLEYjHi8ThbW1tsb2+ztbXF6uoqd+/e5e7du7Tb\n7ZmIJhgMWlsSiQTdbpd2u02r1aLVatFutxERK6B5MwlP800R6QJ/bIz50wnYNFXU00SjURKJBOl0\nmu3tbe7cucNb3vIWbt68STwep91uk8/PxoGGQiFisRjpdJpMJkOn06Fer9NoNOywBXhCMHB90bzL\nGHMgIuvAN0TkFWPMtyZh2DTRDymRSLC0tMT6+jo7Ozs89dRT3Lp1i0KhwBtvvEE8Hp+pPalUimw2\nS6fTIRaLUa/Xqdfr1Go16vU6xhja7fZiD0/GmIP+bU5Evsx5aYunRSMihMNh4vE4mUyGbDZLJpMh\nHo8TDocfmJDOglAoZO1ZXV214tCjWCySz+cREZrN5tw9ztiiEZEEEDTGlEUkCbwf+N2JWTYlVDSJ\nRMKKJpVKDYhm1sJxDk8rKysEg0G7Yur1euRyOUSERqNBsViciU2X2nuN924CX+7/Y0PAXxljvj4R\nq6aIiBCJRB7wNIlEgkgkMnMvA4OeZmVlhVgsZrcCAoEA0WiUZrNJsVgkEJj/1trYojHGfB94+wRt\nmQnDPE06nZ7r8BQIBAiHw8RiMZLJJMlkkmg0SjQaJRKJ0G63OT09JR6PW/vmOa+ZxJJ7IVARqKfR\nSfDKygrpdJpYLEYoNJ9/R6/Xo91uU6/XqVQqBINBwuEwwWCQeDxOPB4nGo3a5wKBgB2+5iGe+fu6\nGeAUTCAQIBKJkEwmB0QTj8fnJpput0ur1aJer1Mul2k0GvR6PTtsOUUTCoXm4g2dPBaiAQbCBupp\nnMPTPD2NUzSVSoVGo0G32yUYDJJIJIZ6mnkK57EYnlQs7rnD0tIS2WzWzh0AG2+a5XZ9r9ej0+nQ\narVoNBq0220AuzWgoolEIlY0ML841CMvGp34RiIRIpEI6XSa5eVlG29Kp9MD3/RGo0GhUKBSqdgP\nbxY2qqg1DhWNRu0GpIpGg6o6p5kXj41oNK6jgtEjnU5TLpft0HB2dkY+n6dardJqtWZmozPaHg6H\niUaj1uZhw1Ov1/PnNNPCKZpUKsXy8vKAp0mlUoRCIVqtFmdnZxwdHVlPM0vRiIgVzTBPo1Fw95xm\nHjySnsa5WgoGg0SjURvXWVtbI5vNWi+j8SUdlg4ODsjn8zMdnnRY0mFUBaORb53P6Mpp3qunR040\nKhQ94vE4a2tr3Lx5kxs3bnDjxg1u3rzJ0tISgUCAer3O2dkZJycn7O/vs7e3x9HREaVSiWazOROb\n3bGn5eVlksmk3aH2Go+caODNfJlIJEIqlbKieeqpp3jiiSdYXV0lk8kQCASo1WpWNAcHB9y7d49i\nsThX0SwtLQ2ENbzGIycazZfR+FI6nbapD3fu3OHOnTtWUCJiPU0ul7OeRlMRfE8znIeKRkSeA34U\nODbGvK3/3Arw18At4C7wk8aY+YdfeVM0zr2YtbU1bty4wa1bt7h9+7bNiGu1WpTLZQqFAicnJxwd\nHbG/v29TK7vd7szsdQYsve5prrJ6+jPgGddzvwV8wxjzQ8A/9x97gkAgQDweJ5vNsr29ze7uLhsb\nGywtLRGPxxERarUauVyOu3fv8sorr3Dv3j1yuRzVanUmubi6xNY8Zc0iTKVSAxP0cDi8mKLpZ+K5\nE2V/DPhC//4XgB+fsF1jEwgESCQSZLNZtra22N3dZXNzk+XlZWKx2AOiefXVV7l37x4nJydUKhUr\nmmkGA937Mrono6LR/J5QKORJ0Yw7p9k0xhz17x9xnlvjCS7zNE7RnJyc8IMf/IDXX3+d4+Nj62mm\nLRgYXOEN8zSpVMq+7lxae0VA154IG2PMvPvrOf+poVCIZDLJysoKW1tb7Ozs2NVSLBYDsKK5d+8e\nr732GuVymUqlYoenaaNeRvdldOdXE8vj8fhA6sMshDwK44rmSES2jDGHIrINHE/SqFHQIKSuiDKZ\nDGtra6yurrK6uko2myWRSBAMBm0gslarUa1WqVQqNoTQarVmIhjAbjam02nS6fQDw6eWsGjwtFwu\nU6vVbDBTa6LmlSs8rmi+Cvws8Af9269MzKIRERGi0ajNeFtZWWFtbc0KJ5vN2jyUbrdLo9EYEI2G\nC1qt1sw+hEgkYld1a2trbG9vs7y8bCfqnU6HRqNBo9GgXq9TKpWoVqs0Gg06nc7Mo/BurrLk/iLw\nI8CaiOwBvwN8CvgbEfkI/SX3NI28DM2h1bjS+vr6A55G/8FaT+QWjX5zZ+lpMpkMGxsb7OzssLm5\nSTabtcNnp9Oh2WxSrVYpl8vW0zSbTetpPC0aY8yHLnjpfRO2ZSw0fdMZW1LR6J6HfmtbrdYDgqlU\nKjO31yma3d1dtra2hnqaSqVCsVjk7OzMJmepaOaZ7rnwO8LO4UlFs7S0NLCjqpt4xWKRk5MTTk9P\nZx6QdB7OVNONjQ1WVlasvQCtVotSqcTx8TGHh4ccHBxQKBSo1WpzFww8AqJxDk8qmuXl5YEdVf0Q\nNL6kUexZpT44N/JCoZBdWq+urrKxsWFrr9TeZrPJ2dkZx8fH7O3tWZt1dTfvldTCi0Y9jVM0F3ka\nFY16mlmLRld4bk/jDBsANJtNSqUSuVxuQDROTwN+uufYaKL4VUSTy+Xmmi+jnSqSyaSNM62vr5NM\nJm0+DbwpmuPjY+7fv8/R0RHFYvEB0cyLhRSNsymRe0c1nU7bb20wGKTX69FoNGwkex6eJhwOk0ql\nyGQytuGAM5Kt6ZvaVkRXTaVSiWKxaPeSvFD8DwsoGmcpim7sOWM3GuzTD8MYQ6PRGJjT6A7wrDyN\nesLV1VXW1tasaBKJhK3q1AZG3W7Xru6cotGVky+aMVHBuGM3usPq9DS6fHV6mmazaTf0ZoGKZmVl\nhe3t7Qc8DTDQxGiYp9FNPV80Y+IM+A3zNDrhVLevnkZFM2ucotna2npg3tVutwdKc1U0Z2dndo/G\nSyykaODBWqFwOGyPXq9nd371n1+r1WbSdHEYaqOKW8tRtOhNBdNoNKhWqwOxMC94FjcLKZqLunNq\nxn6z2aTRaNBsNsnn83blMas5jBv36slZwwRviqbZbNrApJdFs3B1T27BuNMMnJ5G0zjPzs6o1+tz\n9zSaBuEsR3FGtTWYqiulWcXCRuWhohGR50TkSERedjz3SRG5LyIv9A93OujUcQpHd1rdoikWi+Ry\nOc94Gq1nusjTuIcnr0x83YybI2yAzxpj3tE//nHypg3HmZikyd9aOF+r1QbEod0h3AVnWqU4rUw4\nZ7WkVndqDbmGOZLJpM0B7na7dmhyp0EspGguyBGGOfYPVtHo3oaKplqtWtE4A5mzFo27mF9Fk81m\nB5bb0WjUikaX2qVSiUqlYocoL3KdOc1HReTbIvKsiCxPzKIrcJFo1NN0Oh0byEwmkyQSCWKx2AP1\n0LP0NJrvo2XBzjCH29NoGsTCepoL+Bxwm/OeewfAZyZm0RVwDk9u0VSr1Qs9jWbwOSeh0+Ci4ckZ\nhR8mmmq1+kDujBdFM9aS2xhjc4JF5PPA1yZm0dV+/4C30d1UTbbSzT3dC1lbW2NnZ4dqtWpLcfVo\nNBoj/35n501nFwdnaENtiEQi3Lp1i42NDVtlMEyszhyZeac+PIyxRCMi29p4GvgJ4OXLfn6SGGNs\nd0u3t2k2mzSbzYFWqvF4nPX1dWq1GsYYEokExWLRHuVyeWQbnBuJejjzZbTzg97evn2bjY0Nksnk\nlf4+rzNOjvAngPeKyNs5X0V9H/jFqVrpQr+J6tqdQ1Sj0bB9eLWt6vr6Or1ej2g0yvLyMsfHx/YY\n5/oH2gZED6dXcbYK0d+/vb3N5uYmqVRqaDvXhz32GuPmCD83BVuujDMJySka9TTdbteKJp1OY4yx\ngllfX7dJT7qSGhWdXOttPB5/QEjOQ7tuJZPJC+dR7mHJy8JZyDCCE61jKhQKHB4eEo1G7Ra8czkL\n5x4im80OTJSXl0df+KkX0Vv3cKSHvq6T8YtqszudzkDLk0KhQLVapdlselI8j4xo8vk8+/v7ADZq\nLCL0ej27UtK5R6/Xs00bNzY2Rv6d6qH01jmncXazcovoopaz7XbbCv/o6IjT01PK5bInLp4xjIUX\njSYt6VVKNGajy15tCJBIJAZax2vfmnFzapzDiDMGNmz1pIK6aOXUarWoVCpWNMVi0fbH8T3NFFBP\no1n89XodYGAVo3MaTbtMp9PX6lnnvL6lc9dWz+eMgzmHpIt+n3qaYrHI8fEx5XLZFu/5opkCWjnZ\nbDZtADOXy9lhqFqtks1mWVlZsVdccV7kdJyJsPYb1lu3PSpMvXUvz93icU7onc2vvXC9ymEsvGiA\ngckuwMnJifVAp6enLC0tDbSBdX+Io2CMsZWZmmvsRvOA9dA6c80Jvui8zgucenmDb+FFo99SeLNd\nfLfbtYLRchHtTp5OpwfmNpqjOwqFQmFgg9DNzs4OTzzxBLVajV6vRzabxRhDKBQikUgM9TTu6L1X\nBQOPkGhUOCJiwwVa4pJKpQYO3VfRmNSo5HI5Tk5O7OHm6aeftoJRUapgLvs7VDBeXDE5WXjRwOBG\nmN5XEWnE2zn3ce7WjuppjDEUi0UKhQKlUolarfbAz2jgVFM13IX7btzpoM45jRez9x4J0VyGUyyA\njSg7Y0ajUqlULs0EdMbDdOmse0fDcF8dxtnUyItD1SMvGsDmBmsVoztCPSrOi6wPw52yoambVxFN\nIpGwO9Z6noUSjYjsAn8ObHAenPwTY8wfebmPsBvnnKfVag1MQsfdp3lY+oJbNM5mRMNw1m8lk0m7\nE+z0kF7iYZ6mDfyaMeZFEUkB/yMi3wA+zHkf4U+LyMc47yPsmV7CbmYdBBx1JeTOQnTu1XiRS32z\nMebQGPNi/34F+C5wEw/3EfYSV/Vk7moE55DmtaEJRpjTiMiTwDuA/8TDfYS9xrA+wG4xuYvltEbL\niysnuKJo+kPT3wG/aowpO/9oL/QRXgQuiz/p/MVZLAd4dlf4KsVyYc4F8xfGGG39eiQiW/3X59pH\neFG4bF7lruPy+q7wpaKR86/Fs8D/GWP+0PGS9hGGOfcRXgQWIRtvFB42PL0L+GngJRF5of/cx/FQ\nH2Evc9HwsujiuVQ0xph/52Jv5Ik+wj6z57HYEZ41zs4WFyV7OYesRah1cuKLZko4W6G4xeMWipcn\nvcNYuP40i8CwHjoX5dA4V0qLIhxfNFPiKp7GmT+zSMLxh6cpoBde1YbY6XSaWCxm+xprIFIPZ9t9\nXzSPKe5unnrBDG1Rq4VxpVKJUqnE/v6+bWPvi+YxRa9/kM1m2dzctL2N9UJl1WqVQqFALpfj+PjY\nXmWlXq/7onlc0foq9TTRaNRWZGrSe6FQ4ODggPv37w94Gq+mQzjxRTMDms2mjVp3Oh329/e5f/8+\ne3t77O3tDVRV+p7mMUWzBOv1uq3Jdiab64W/9NAk9Uaj4YvmccXZQ0+vcZDP5+2Ry+XsfEavB67V\nmgsvmktyhD8J/DyQ6//ox2fZFtbrqKdR0ZyenrK/v8/BwYGdv+TzeQqFAvl83g5d87xs8iiMmyOs\nfYQ/O3ULF5BGo0GxWOTw8JBMJsPJyQlHR0ccHh5yeHg4sNyuVqsLIRQnD4tyHwKH/fsVEdEcYZhj\nH2GvU6vVyOVyhMNh2u02pVKJQqFgD683l34Y4+QI/wfneTYfFZGfAZ4HfsOrJSzzoFqtcnx8TLPZ\npFAoDPQ4rtVqD62b8jpyFaX3h6Z/BX7fGPMVEdngzfnM7wHbxpiPuN6zeF+hCaGVm1rF6bxYvLMr\nhNfrto0xQ0eTh4qmnyP898A/uFI+9fUnga8ZY97mev6xFc2jwkWiGStHuJ9Mrsy0j7DP/LnU04jI\nu4F/A17ifMUE8NvAhzhvcW/7CDvqoPS9vqdZcMYensbFF83iM9bw5OMzDF80PiPji8ZnZHzR+IyM\nLxqfkfFF4zMyvmh8RmZq+zQ+jy6+p/EZGV80PiMzVdGIyDMi8oqIvNbvAnrd890VkZdE5AUR+a8x\n3v+ciByJyMuO51ZE5Bsi8j0R+foo1xi/4HyfFJH7fRtfEJFnRjjfroj8i4j8r4h8R0R+5To2XnK+\nsW0Ehl/adxIHEAReB54EwsCLwFuvec7vAyvXeP97OE8ke9nx3KeB3+zf/xjwqWue7xPAr49p3xbw\n9v79FPAq8NZxbbzkfGPbaIyZqqd5J/C6MeauMaYNfAn44ATOO3aaqTHmW0DB9fTY7W0vOB+MaaOZ\ncAveS843to0w3eHpJrDneHyfNw0eFwN8U0SeF5FfuOa5lGm0t/2oiHxbRJ4dZbhzMukWvK503WvZ\nOE3RTGMt/y5jzDuADwC/JCLvmeTJzbkfv67dnwNuc55vdAB8ZtQTuFvwXtfG/vn+tn++ynVtnKZo\n3gB2HY93Ofc2Y2OMOejf5oAvcz4EXpeJtrc1xhybPsDnR7Vx0i14Hef7Sz3fdW2cpmieB54WkSdF\nJAL8FOetZMdCRBIiku7fTwLvZzJpphNtb3udVNhJt+CdWrrudVYzV5i9f4DzGfvrnFdhXudctzlf\ngb0IfGec8wFfBPaBFufzrQ8DK8A3ge8BXweWr3G+n+O8IvUl4Nv9D3dzhPO9G+j1/8YX+scz49p4\nwfk+cB0bjTF+GMFndPwdYZ+R8UXjMzK+aHxGxheNz8j4ovEZGV80PiPji8ZnZHzR+IzM/wMn9Av6\nT5UJ3wAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4465,87 +979,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAELpJREFUeJzt3X+QXeVdx/HPZ3fZ7MaEkBBoA0kJKlF+tBYsDFACxVYH\n", - "mUKr1lLUFqtTx2lrI7ZMKTP6lw61jFPsdHSmgrRQ26q00nYUCirSlNqkQEKAUCBOUX5IorKEXfJr\n", - "d/P1j3s3XJb98Tx78uw9Z/t+zezknnu/9zzPnufes9+cH8/XESEAAADMXU+3OwAAANB0JFQAAAAV\n", - "kVABAABUREIFAABQEQkVAABARSRUAAAAFfV1s3HbzNkAAAAaIyI81fNFEyrbF0m6XlKvpBsi4k8n\n", - "x6xatepV7xseHtbSpUsnr6tQL6WcubgOHjxYrB+pcrZFb29v1rpz4nt6pj7AOTQ0pOXLl2e12yln\n", - "PA4cOJC17pz4nNixsbEisTmft9zvyFTjNzY2pr6+V+8Wcj4XOeM3Pj6eHJuz3Zhfr35K7cMZa9RF\n", - "sVN+tnslfVbSRZJOkXS57ZNLtQcAANAtJa+hOkvSjoh4MiJGJX1F0jsKtgcAANAVJROq4yU91bH8\n", - "dPu5WfX39xfpEObHwMBAt7uAOZruNC4AYGYl955zPrG9aNGiw9kPzLPBwcFudwFzREIFAHNT8qL0\n", - "ZySt6Vheo9ZRqlcYHh4+9Li/v59kCgAANE7JhOo+SSfZXivpWUmXSbp8ctDku/kAAACaplhCFRFj\n", - "tj8s6VtqTZtwY0Q8Wqo9AACAbik6D1VE3C7p9pJtAAAAdFtXZ0qX0u/oy5ngMGeywNx150wumNOP\n", - "UrG5E5HmxJeKLTlRH5MAAt3Bdw8LHbf0AAAAVERCBQAAUBEJFQAAQEUkVAAAABWRUAEAAFREQgUA\n", - "AFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARV2v5Wc7Ke6II45IXmdObE4fcmNz9PSU\n", - "yW1z+5tTb6tULb/R0dHk2P379yfHSnl1EHO2RR0+F319eV/nnLqUBw4cKBKb04fcupQ5csY6Z0xy\n", - "YkvWK20a6v7Njzr87csZ67p/LooeobK9xvbdth+x/bDtj5RsDwAAoBtKH6EalXRlRGy1vUTS/bbv\n", - "iohHC7cLAAAwb4oeoYqI5yJia/vxiKRHJR1Xsk0AAID5Nm8XpdteK+l0SZvmq00AAID5MC8JVft0\n", - "362SNrSPVAEAACwYxe/ys32EpK9K+mJE3Db59aGhoUOPBwYGNDg4WLpLAAAAh1XRhMqt+yxvlLQ9\n", - "Iq6fKmb58uUluwAAAFBc6VN+b5b0G5IutL2l/XNR4TYBAADmVdEjVBHxHTEbOwAAWOBIdgAAACrq\n", - "eumZ1NIhpaa9l8qVWyk1pX6pPuSuu2nbYi7xqUr9fiXLMtTlM9c0JUvgAPNpIZV9qQOOUAEAAFRE\n", - "QgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFZFQAQAAVERCBQAAUFHX\n", - "S88sWrTosK8zd4r83t7e5NhSJXBKTevf15c3xP39/UXWvXz58uTYY489Njn2uOOOS46VpJUrVybH\n", - "Dg4OJscuWbIkOXbVqlXJsTn27duXFT8+Pp4cu2LFiuTY1atXJ8ceffTRybEDAwPJsTm/mySNjY0l\n", - "xz7//PPJsUuXLk2OzdnGOduipNHR0eTY3bt3F4nN3Qfk/M3p6Uk/5pCzD3/ppZeSYzdt2pQcK0nb\n", - "tm1Ljs3527d48eLk2HXr1iXHnnDCCcmxy5YtS46V8v/+pZjpOz1ta7Z/RVJImiqDiIj4Wkrjtnsl\n", - "3Sfp6Yi4JOU9AAAATTJT+naJWgnVdJISKkkbJG2XlP5fNQAAgAaZNqGKiN+sunLbqyVdLOlPJP1B\n", - "1fUBAADU0awniG2/1vaNtu9oL59i+7cT1/9pSVdJOlihjwAAALWWcsXd5yXdKWniyr8nJF0525ts\n", - "v13SrojYoqmvwwIAAFgQUi6BXxkRf2v7akmKiFHbKbfEnCvpUtsXSxqQdKTtmyPifZ1BQ0NDhx4P\n", - "DAxk3VkFAABQysaNG7Vx48ak2JSEasT2oXubbZ8tadZ7WiPiGknXtN9zgaSPTU6mpLzb6QEAAObL\n", - "+vXrtX79+kPL11577bSxKQnVRyV9U9KP2/6upGMkvWsO/Soz0RIAAECXzZpQRcT9ts+X9FNqXQv1\n", - "WESkz+bWWsc9ku6ZWxcBAADqbdaEyvagpA9KOk+to0wbbf9lRORNywwAALBApZzyu1nSi5I+o9YR\n", - "ql+TdIukXy3YLwAAgMbwbPWHbG+PiFNme25OjduRWofp4MH0qaxyYnPjc+o1larPl6NU7cFcpcYv\n", - "pwablFfjrVSfcz4XObXEcsc6Jz6nzznbOLfmHgB0W0RMufNM2Vs/YPuciYX2XX73H66OAQAANN1M\n", - "xZEf6oi51/ZTal1D9TpJj81D3wAAABphtuLIAAAAmMVMxZGf7Fy2faxaM54DAACgQ0px5EttPyHp\n", - "h2rNJfWkpNsL9wsAAKAxUi5K/2NJ50h6PCJOlPRWSZuK9goAAKBBUhKq0Yj4X0k9tnsj4m5Jbyrc\n", - "LwAAgMZImdhzyPZSSRsl/Y3tXZJGynYLAACgOVKOUL1T0h5JV0q6Q9IOcQcgAADAISnFkSeORo1L\n", - "+nzR3gAAADTQTBN7jqg1kedUIiKOPBwd2LNnT1JcXUpwlOpHHcrUSPUorZOz3Xp7e4v0IXfdOdui\n", - "LqWOcuJzxqSvL+VKgpac71NJdRiTuuwDSqnLvnOhb+eF/vvV2UzzUC2punLbR0m6QdKpaiVnvxUR\n", - "36u6XgAAgDpJ/6/k3Py5pH+KiHfZ7pP0Y4XbAwAAmHfFEirbyyStj4grJCkixiTtLtUeAABAt5S8\n", - "gOFESf9j+ybbD9j+K9uLC7YHAADQFSUTqj5JZ0j6i4g4Q9JLkq4u2B4AAEBXlEyonpb0dER8v718\n", - "q1oJ1ivs3bv30M/o6GjB7gAAAJRR7BqqiHjO9lO210XE45LeJumRyXGDg4OlugAAADAvSt/l93tq\n", - "lavpl/Qfkt5fuD0AAIB5VzShiogHJZ1Zsg0AAIBuq8c0xQAAAA1W+pTf7B1ILFNRqjxMbnyp2JK/\n", - "X45SJVRyYkuVOZlLfKr9+/cnx+7enT4d24EDB5Jjc7axtLBLqOSWn6rLulPVYRvnyv18LmQl9/c5\n", - "6y71Wa7LvqXE92SmdXKECgAAoCISKgAAgIpIqAAAACoioQIAAKiIhAoAAKAiEioAAICKSKgAAAAq\n", - "IqECAACoiIQKAACgIhIqAACAirpeeiZ1Wv06TKcvlZsmP6fPOesdHx9Pjs1dd07s6OhocmxOuZWc\n", - "WClve+SUyig11nX53JfaFk0soZKj1PcazVZyH15qn5FTAqdUCbO6f0eKHqGy/Qnbj9h+yPaXbC8q\n", - "2R4AAEA3FEuobK+V9AFJZ0TE6yX1SnpPqfYAAAC6peQpvxcljUpabHtc0mJJzxRsDwAAoCuKHaGK\n", - "iOcl/Zmk/5L0rKQXIuKfS7UHAADQLSVP+f2EpN+XtFbScZKW2P71Uu0BAAB0S8mL0t8k6bsR8X8R\n", - "MSbpa5LOnRw0MjJy6Cf3ji0AAIA6KHkN1Q8k/aHtQUn7JL1N0ubJQUuWLCnYBQAAgPJKXkP1oKSb\n", - "Jd0naVv76c+Vag8AAKBbik7sGRGfkvSpkm0AAAB0G6VnAAAAKiKhAgAAqKgxtfyaWB+sVL2mnPpL\n", - "OXWSpLw+59R26u3tTY7t7+9Pjs2tX5ezPUr9fjnbOGe9ixblVXYaGBhIjt27d29y7O7du5Njc+7s\n", - "zRm7nO0m5W2Lo446Kjn2xRdfTI4dGRlJjh0bG0uOLamvL/1PSM4NSMuWLUuO3blzZ3KslFdXNOcz\n", - "l7MvGhwcTI4988wzk2Ml6bTTTkuOzfn+5Xw+d+zYkRz7zDPp833n9EHKG+vU/f3w8PD060huDQAA\n", - "AFMioQIAAKiIhAoAAKAiEioAAICKSKgAAAAqIqECAACoqJYJ1f79+7vdBVTA+DXXnj17ut0FVFCX\n", - "KWOQry5TYWDuaplQ5cyNgfohoWqunPmmABw+OXMRop5qmVABAAA0CQkVAABARe7mOXfbnPAHAACN\n", - "ERFT1hnqakIFAACwEHDKDwAAoCISKgAAgIpql1DZvsj2D2w/Yfvj3e4Ppmf7r23vtP1Qx3MrbN9l\n", - "+3Hbd9o+qpt9xPRsr7F9t+1HbD9s+yPt5xnDmrM9YHuT7a22t9u+tv08Y9cgtnttb7H9zfYy49dg\n", - "tUqobPdK+qykiySdIuly2yd3t1eYwU1qjVWnqyXdFRHrJP1Lexn1NCrpyog4VdLZkj7U/r4xhjUX\n", - "EfskXRgRb5T0BkkX2j5PjF3TbJC0XdLExcyMX4PVKqGSdJakHRHxZESMSvqKpHd0uU+YRkRslDQ0\n", - "6elLJX2h/fgLkt45r51Csoh4LiK2th+PSHpU0vFiDBshIiamte+X1KvWd5GxawjbqyVdLOkGSRN3\n", - "jTF+DVa3hOp4SU91LD/dfg7N8ZqI2Nl+vFPSa7rZGaSxvVbS6ZI2iTFsBNs9treqNUZ3R8QjYuya\n", - "5NOSrpJ0sOM5xq/B6pZQMYfDAhKtOTkY05qzvUTSVyVtiIjhztcYw/qKiIPtU36rJZ1v+8JJrzN2\n", - "NWX77ZJ2RcQWvXx06hUYv+apW0L1jKQ1Hctr1DpKhebYafu1kmR7laRdXe4PZmD7CLWSqVsi4rb2\n", - "04xhg0TEbkn/KOlnxdg1xbmSLrX9Q0lflvRztm8R49dodUuo7pN0ku21tvslXSbpG13uE/J8Q9IV\n", - "7cdXSLpthlh0kW1LulHS9oi4vuMlxrDmbK+cuAPM9qCkn5e0RYxdI0TENRGxJiJOlPQeSf8aEe8V\n", - "49dotZsp3fYvSrperYssb4yIa7vcJUzD9pclXSBppVrn+/9I0tcl/Z2k10l6UtK7I+KFbvUR02vf\n", - "FfZtSdv08qmFT0jaLMaw1my/Xq2LlnvaP7dExHW2V4ixaxTbF0j6aERcyvg1W+0SKgAAgKap2yk/\n", - "AACAxiGhAgAAqIiECgAAoCISKgAAgIpIqAAAACoioQIAAKiIhApA19m+t/3vCbYvP8zrvmaqtgDg\n", - "cGIeKgC1Yfstak1yeEnGe/oiYmyG14cjYunh6B8ATIcjVAC6zvZI++EnJa23vcX2Bts9tq+zvdn2\n", - "g7Z/px3/FtsbbX9d0sPt526zfZ/th21/oP3cJyUNttd3S2dbbrnO9kO2t9l+d8e6/83239t+1PYX\n", - "53drAGiivm53AAD0cumbj0v62MQRqnYC9UJEnGV7kaTv2L6zHXu6pFMj4j/by++PiKF2bbvNtm+N\n", - "iKttfygiTp+irV+W9DOS3iDpGEnft/3t9mtvlHSKpP+WdK/tN0cEpwoBTIsjVADqxJOWf0HS+2xv\n", - "kfQ9SSsk/WT7tc0dyZQkbbC9VdK/S1oj6aRZ2jpP0peiZZekeySdqVbCtTkino3WNRFbJa2t8DsB\n", - "+BHAESoAdffhiLir84n2tVYvTVp+q6SzI2Kf7bslDcyy3tCrE7iJo1f7O54bF/tKALPgCBWAOhmW\n", - "1HkB+bckfdB2nyTZXmd78RTvO1LSUDuZ+mlJZ3e8Njrx/kk2SrqsfZ3WMZLOl7RZr06yAGBW/K8L\n", - "QB1MHBl6UNJ4+9TdTZI+o9bptgdsW9IuSb/Uju+8RfkOSb9re7ukx9Q67Tfhc5K22b4/It478b6I\n", - "+Afb57TbDElXRcQu2ydPWremWAaAV2DaBAAAgIo45QcAAFARCRUAAEBFJFQAAAAVkVABAABUREIF\n", - "AABQEQkVAABARSRUAAAAFZFQAQAAVPT/E259UVIep5MAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEJxJREFUeJzt3WuQZdVZxvHn6fvcG5yRcOkwqIAwlRgwoYAwEExMIRVI\n1BiCmmC0YllJzIgJFUKVftIKFmUFUymtiiAJ5KaSSJJSCKhIOsQwAWa4DeFiBeQijOB00zND93Q3\nrx/O7qFpuqf3mj2r997D/1fVxdn7vGetNWedPv2yL+t1RAgAAAD7r6vuAQAAALQdCRUAAEBFJFQA\nAAAVkVABAABUREIFAABQEQkVAABART11dm6bNRsAAEBrRITn2581obJ9jqQrJXVLuioi/mJuzOGH\nH/6q142NjWnVqlWv2Nfd3V26366utANvKWtx5Vq3K6Vde965nFfqe5HS9kJjHhkZ0eDgYKnY+UxP\nT2eJlaSpqanaYycnJ0vH5vpcSPN/NiYnJ9Xb2/uq/T09eb4qJiYmSsemvMesrwdgqWU75We7W9Ln\nJZ0j6URJF9o+IVd/AAAAdcl5DdUpkh6NiMciYlLS1yW9O2N/AAAAtciZUB0p6YlZ208W+xbV19eX\nZUBYGgMDA3UPAfsp9RQxAKAj57fnfl/E0N/ffyDHgSVGQtVeKdcqAgBelvOi9KckDc3aHlLnKNUr\njI2N7X3c19dHMgUAAFonZ0J1p6Rjba+X9LSkCyRdODdo7t18AAAAbZMtoYqIKdsfk/RddZZNuDoi\nHszVHwAAQF2yrkMVETdKujFnHwAAAHWrdaV0KX0xwjJeeumlA97m/rSdKzbXgpM52871XuRcwJHF\nIQEAZXGPNAAAQEUkVAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkV\nAABARSRUAAAAFZFQAQAAVFR7Lb+ennJD6Ooqn/ulxKZqQp25nLUKU8acMo4cNRtTx5AqZcwp71tK\nDcTp6eksY0gdR65ajCn/vlxjkNLeu5TPRa7PUOpcU5cSyC/rESrbQ7Zvtf2A7fttfzxnfwAAAHXI\nfYRqUtLFEbHV9kpJd9m+JSIezNwvAADAksl6hCoinomIrcXjnZIelHREzj4BAACW2pJdlG57vaST\nJN2xVH0CAAAshSVJqIrTfddL2lQcqQIAADhoZL/Lz3avpG9I+nJE3DD3+ZGRkb2PBwYGNDAwkHtI\nAAAAB1TWhMqde4avlrQtIq6cL2ZwcDDnEAAAALLLfcrvrZJ+W9LZtrcUP+dk7hMAAGBJZT1CFRHf\nF6uxAwCAgxzJDgAAQEW1l54pWyIiZwmOXKUyUuQqUZEqV+mZFDlLjOQqHZRrzE0pR9K22JyaMg4A\nzcIRKgAAgIpIqAAAACoioQIAAKiIhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACA\nikioAAAAKqq99MzExESpuJTSLF1daXliX19fltienvJvb+qYc7WbMuYU/f39pWOXLVtWOnb16tVJ\n4zjkkENKxw4ODpaOHRoaKh179NFHl45NKVPz/PPPl46VpOeee650bG9vb+nY448/vnTshg0bSsce\ndthhpWNTPm9S2u/Jrl27ssSmjHnlypWlY6W0+cv1HZAipbxPajmw8fHx0rG7d+8uHTs6Olo6dnJy\nsnRs6nd4yndcyndtyjhSYnOVMEtV9jO3r785C/7m2P51SSFpvkwmIuKbZTq33S3pTklPRsR5ZV4D\nAADQJvv6X5Hz1EmoFlIqoZK0SdI2SavKDgoAAKBNFkyoIuJ3qjZu+yhJ50r6c0l/XLU9AACAJlr0\nRKft19m+2vZNxfaJtn+vZPuflXSJpGacJAUAAMigzJVjX5R0s6Qjiu1HJF282Itsv0vS9ojYovmv\nwwIAADgolLmdY21E/L3tSyUpIiZtT5V43emSzrd9rqQBSattXxsRH5wdNPsumN7e3qS76AAAAHIZ\nHh7W8PBwqdgyCdVO2z81s2H7VEmL3h8aEZdJuqx4zVmSPjk3mZKkFStWlBooAADAUtq4caM2bty4\nd/vyyy9fMLZMQvUJSd+R9DO2fyBpnaT37se4yi8sAgAA0CKLJlQRcZftMyUdr861UA9FRPlVyTpt\n3Cbptv0bIgAAQLMtmlDZXibpI5LOUOco07Dtv4mI8svNAgAAHMTKnPK7VtILkj6nzhGq35R0naTf\nyDguAACA1vBi9Wtsb4uIExfbt1+d27Fq1YFfQD2l7l9qfK7YXHWSUt+LlLpKKbEp9bZytSul1QhL\nic1Vj6q7uztLuzlNTZW5CTg9NmU+ACCXiJj3D2uZv8x32z5tZqO4y++uAzUwAACAtttXceT7ZsXc\nbvsJda6her2kh5ZgbAAAAK2wWHFkAAAALGJfxZEfm71t+6fVWfEcAAAAs5Qpjny+7Uck/USdtaQe\nk3Rj5nEBAAC0RpmL0v9M0mmSHo6IYyS9XdIdWUcFAADQImUSqsmIeE5Sl+3uiLhV0pszjwsAAKA1\nyizsucP2KknDkr5ie7uknXmHBQAA0B5ljlC9R9JuSRdLuknSo+IOQAAAgL3KFEeeORo1LemLWUcD\nAADQQvta2HOnOgt5ziciYvWBGMCaNWtKxeUq4yKllQ3JVbokV1mNnGV4UsqipMTmKsMjSXv27Ckd\nm/K5SGk3JTblc5E61ylzsmzZsizjGB0dLR27e/fu0rGpJYlS5jr1fS4rZ2kdyvbsn1xznRNzXZ99\nrUO1smrjtgclXSVpgzrJ2e9GxA+rtgsAANAkZS5Kr+KvJP1LRLzXdo+kFZn7AwAAWHLZEirbayRt\njIiLJCkipiSVP74PAADQEmkXoKQ5RtL/2r7G9t22/9b28oz9AQAA1CJnQtUj6WRJfx0RJ0vaJenS\njP0BAADUImdC9aSkJyPiR8X29eokWK8wOjq692d8fDzjcAAAAPLIdg1VRDxj+wnbx0XEw5LeIemB\nuXFll00AAABoqtx3+f2hOuVq+iT9l6QPZe4PAABgyWVNqCLiHklvydkHAABA3XJeQwUAAPCakPuU\n36KmpqZKxaWUyUgtF5BSvqQJpQhSSguklNRIjZ+cnCwdOzExUTo2Za77+/tLx0pST0/5j3zKe/Hi\niy+Wjk0poVL290NKn+sUTSiN1JSSGk0oKYWlkbP0U93t5vRa/dxzhAoAAKAiEioAAICKSKgAAAAq\nIqECAACoiIQKAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpqLz3T29tbKi6lzMn4\n+HjSGKanp0vH5io7kVJeIGe5jpS2U0r25Cppk1KaRUqb65QxN6E0S1NKVDThfQOWWq7Pcs7fkSaU\nyzmYvgOyHqGy/WnbD9i+z/ZXbacVXgMAAGiBbAmV7fWSPizp5Ih4g6RuSe/P1R8AAEBdcp7ye0HS\npKTltqclLZf0VMb+AAAAapHtCFVE/J+kv5T035KeljQSEf+aqz8AAIC65Dzl97OS/kjSeklHSFpp\n+7dy9QcAAFCXnBelv1nSDyLi+YiYkvRNSafPDRodHd37k3p3HgAAQBPkvIbqx5L+xPYySeOS3iFp\n89ygNWvWZBwCAABAfjmvobpH0rWS7pR0b7H7C7n6AwAAqIvrXFTLdgwNDZWKTVnsMSVWYmHP/W2b\nhT1fdrAv7Jny70t53wDUpwmLAbdxYc+ImPeNo/QMAABARSRUAAAAFdVey6+slNMIOU855DolltJu\nd3d3ljGktl22DqOU9u9Lmb+JiYnSsVLa6cRcp3dTDAwMlI5du3ZtUtvr1q0rHfvCCy+Ujn388cez\ntJt6ejdFyudz+fLlWWL37NlTOnb37t2lY6W0U925LoHIdfo69Tuuv798BbQVK1aUjl29enXp2J6e\n8n96U/+e7dixo3Rsyp31bftc5Gp7bGxswec4QgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQ\nEQkVAABARY1MqCiS3G7MX3ul3HKN5mGV+vbatWtX3UNARY1MqFLXFkKzkFC118jISN1DQAUkVO2V\nurYYmqeRCRUAAECbkFABAABU5DorPdtuX5lpAADwmhUR89apqTWhAgAAOBhwyg8AAKAiEioAAICK\nGpdQ2T7H9o9tP2L7U3WPBwuz/Xe2n7V936x9h9q+xfbDtm+2PVjnGLEw20O2b7X9gO37bX+82M8c\nNpztAdt32N5qe5vtzxT7mbsWsd1te4vt7xTbzF+LNSqhst0t6fOSzpF0oqQLbZ9Q76iwD9eoM1ez\nXSrplog4TtK/FdtopklJF0fEBkmnSvpo8fvGHDZcRIxLOjsi3iTpjZLOtn2GmLu22SRpm6SZi5mZ\nvxZrVEIl6RRJj0bEYxExKenrkt5d85iwgIgYljR3ae3zJX2pePwlSe9Z0kGhtIh4JiK2Fo93SnpQ\n0pFiDlshImZWguyT1K3O7yJz1xK2j5J0rqSrJM3cNcb8tVjTEqojJT0xa/vJYh/a47CIeLZ4/Kyk\nw+ocDMqxvV7SSZLuEHPYCra7bG9VZ45ujYgHxNy1yWclXSJp9vL2zF+LNS2hYg2Hg0h01uRgThvO\n9kpJ35C0KSLGZj/HHDZXRLxUnPI7StKZts+e8zxz11C23yVpe0Rs0ctHp16B+WufpiVUT0kamrU9\npM5RKrTHs7ZfJ0m2D5e0vebxYB9s96qTTF0XETcUu5nDFomIUUn/LOkXxdy1xemSzrf9E0lfk/RL\ntq8T89dqTUuo7pR0rO31tvskXSDp2zWPCWm+Lemi4vFFkm7YRyxqZNuSrpa0LSKunPUUc9hwttfO\n3AFme5mkX5a0RcxdK0TEZRExFBHHSHq/pH+PiA+I+Wu1xq2UbvtXJF2pzkWWV0fEZ2oeEhZg+2uS\nzpK0Vp3z/X8q6VuS/kHS6yU9Jul9ETFS1xixsOKusO9Julcvn1r4tKTNYg4bzfYb1Llouav4uS4i\nrrB9qJi7VrF9lqRPRMT5zF+7NS6hAgAAaJumnfIDAABoHRIqAACAikioAAAAKiKhAgAAqIiECgAA\noCISKgAAgIpIqADUzvbtxX+Ptn3hAW77svn6AoADiXWoADSG7beps8jheQmv6YmIqX08PxYRqw7E\n+ABgIRyhAlA72zuLh5dL2mh7i+1NtrtsX2F7s+17bP9+Ef8228O2vyXp/mLfDbbvtH2/7Q8X+y6X\ntKxo77rZfbnjCtv32b7X9vtmtf0ftv/R9oO2v7y07waANuqpewAAoJdL33xK0idnjlAVCdRIRJxi\nu1/S923fXMSeJGlDRDxebH8oInYUte02274+Ii61/dGIOGmevn5N0i9IeqOkdZJ+ZPt7xXNvknSi\npP+RdLvtt0YEpwoBLIgjVACaxHO23ynpg7a3SPqhpEMl/Vzx3OZZyZQkbbK9VdJ/ShqSdOwifZ0h\n6avRsV3SbZLeok7CtTkino7ONRFbJa2v8G8C8BrAESoATfexiLhl9o7iWqtdc7bfLunUiBi3fauk\ngUXaDb06gZs5ejUxa9+0+K4EsAiOUAFokjFJsy8g/66kj9jukSTbx9lePs/rVkvaUSRTPy/p1FnP\nTc68fo5hSRcU12mtk3SmpM16dZIFAIvi/7oANMHMkaF7JE0Xp+6ukfQ5dU633W3bkrZL+tUifvYt\nyjdJ+gPb2yQ9pM5pvxlfkHSv7bsi4gMzr4uIf7J9WtFnSLokIrbbPmFO25pnGwBegWUTAAAAKuKU\nHwAAQEUkVAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQ0f8DTa6OCIcz\nv+YAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4553,89 +989,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAES9JREFUeJztnVmMpNdVx3+nq6prX3qbnvG4x4tmsEYRkv1ikJyICIVo\n", - "/ELghcgSUmQC4gECgkiY8BIjeIiQEiFeIiA2CosSIZCjBAmwjQIYIRYjb4E4jqVZPNPdM91de9fe\n", - "fXmoOt/c/qZ6qaU9VfXdn/Sp9qvTM3+du5zlE2MMDscgzN1vAxzThxONY2CcaBwD40TjGBgnGsfA\n", - "ONE4BmZo0YjIFRF5V0R+KCLPjdMox2Qjw5zTiEgI+AHwCeAW8N/AM8aY74/XPMckMqyneRJ43xhz\n", - "zRjTBr4JfGp8ZjkmmfCQvzsPfGC9vgn8mP0FEXFHzVOOMUb6vT+sp3GCCDDDiuYWsGa9XqPrbRwB\n", - "YFjRvA5cEpGHRWQe+DTw7fGZ5ZhkhlrTGGM6IvKrwD8CIeAFt3MKDkNtuU80sFsITz3jXgg7AowT\n", - "jWNgnGgcA+NE4xgYJxrHwDjROAbGicYxME40joFxonEMjBONY2CcaBwDM2wSFgAicg0oA3tA2xjz\n", - "5DiMmnbm5uYQEe8xHA4TCoUIh8OEw2H29vYOXPv7+weuSS+VHkk0dJOxPm6MyY/DmFkhHA4zPz9P\n", - "NBplfn6eTCZDJpMhm82SyWSo1+tUq1Xvqtfr1Ot1Go0G9XrdG2dSxTOqaAD6RkKDTCQSIZFIkEgk\n", - "SKVSnD17lnPnznHu3DkeeOABisUiW1tb3Llzh62tLUqlEqVSCYBms8ne3h4AIjKRwhmHp3lVRPaA\n", - "PzbG/OkYbJp6wuEw8XicbDZLNptlbW2NixcvcunSJS5evMjt27e5ceMG169f97wRQKvVolKpTPwU\n", - "NaponjLGbIjICvCKiLxrjHltHIZNGyJ3HW40GiWVSrG4uMjKygpra2s8+uijPPbYY1y+fJnFxUVi\n", - "sRihUMj7bbvdplqteusgmNHpyRiz0XvcEpGX6Ja2BE40/oVvKpViZWWFBx98kAsXLrC2tsby8jKJ\n", - "RAIRIR6Ps7CwwPnz573fNJtNisUioVCITqcDzKBoRCQBhIwxFRFJAp8Efndslk0RKphQKEQoFCKd\n", - "Tnse5tKlS6yurrK0tEQymUREiMViLCwsICIkEglarRaFQoH19XVCoZC3lpnFNc0q8FLPlYaBvzLG\n", - "vDwWq6YMEfG21KFQiFQqxfLysica3TWpp1HRJBIJlpeXqVarrK+vk0qlPNFMqmBgBNEYY64Cj4/R\n", - "lqlFvUwkEmF+fp50Os3i4iKrq6usra0Rj8e9LbiIEIlECIVCxONxjDEsLi6SSqWIRqPedKXXJDKO\n", - "LXfgCYfDxGIx4vE4iUSCdDpNKpUiHo8TjUaJRCKEw2Hm5roH8O12m2azSbPZpNVqkc/nqVarNBoN\n", - "77DPGDN7nsZxl1AoRCwWI5VKkU6nyWQyJJPJvqLRnVKtVqNSqVCtVsnn81QqFU80xpiJ3nY70YyB\n", - "cDhMNBolmUySzWZJp9Mkk0kSiQTRaJRwOOwtlqHraXZ3dymVSuTzeU80erA3yYIBJ5qxoCfAmUyG\n", - "paUlcrmcNz3p+sVGPU2hUODOnTsHPI0tmEkVjhPNEOgCVR/j8Ti5XM5b+K6urpLL5YjFYn0Xs+pp\n", - "isWiJ5pqtUqz2Zx4wYATzdDYOxxbNA899NAB0fRDReP3NM1mc+KnJnCiGRoVzNzc3AHRXLhwgaWl\n", - "JbLZ7JGeplarHelpJhknmiFQseilwcmVlRXOnz/vbbmj0Wjf359keppknGiGQA/y9EqlUt52O5VK\n", - "ebsmewFsi6HdblOv1ymXyxQKBcrlMrVajXa77UQzq4RCIebn54nFYt5W2xaOpjvoVltRQahoKpUK\n", - "+XyecrlMvV53opll1NPEYjEv0coWjcag9FzGPt01xhwQTaFQoFqt0ul0vOSrSefYxHIReVFEbovI\n", - "O9Z7iyLyioi8JyIvi0judM2cLEKhENFolHg87k1JyWTSO9CLxWL3nM8YY7yc4Far5aV8lkolL4Qw\n", - "LZ7mJNUIfwZc8b3328ArxpgfAf6p9zoQiAjz8/MkEglyuRzLy8vkcjmSySTz8/OH7pYajQbVapVC\n", - "oUClUpmq6cjPsaLpZeIVfG//NPD13vOvAz8zZrsmGj0B1h1TNpslkUgQiUT6fn9vb+/AdGSvYaaR\n", - "Ydc0q8aY273nt+nm1gSGSCRCMpn0PM1xoul0Op6nKZVKVCqVqdot+Rm5WM50/+rp+8tHwPY0tmg0\n", - "QdyPvcXe2dmhVCoFUjS3ReQsgIicA+6Mz6TJR/NnUqkU2WyWVCp1IFEc7u6Y9vf3qdfrFItFNjY2\n", - "uH79Ouvr6xQKBer1eqBE823gM73nnwG+NR5zpgM7FUIXwbFYjHC4O9urYPRqNBoUCgU2Nze5evUq\n", - "Gxsb5PN5arXabIpGRL4B/DvwmIh8ICLPAl8CfkpE3gN+svc6MBzmaVQ0it/TbG5ucu3atan3NMcu\n", - "hI0xzxzy0SfGbMtEo1vpubk572BPRZNMJg8kW9lTkzHmgGhu3LhBsVj0ynFnUjQOvML9cDhMJBI5\n", - "UJetouk3PWlBv+YE64FerVaj1Wp5qZ3ThhPNMWjXh2g0SiwWIxaLeYLRS2NQtmjsLhC65a7Vap6H\n", - "UdFMI040J0DXMBqY9HeB0JCBf/e0v7/P3t7eAU+zu7tLvV73QgrO08wo9m7J9jB6+UMHtqfpdDr3\n", - "TE+tVus+/SXjwYnmBGiAUmua+uXL2LRaLXZ3d71ra2uLcrlMs9n8kC0/HZxojkHXNBqkPIloms2m\n", - "F2fK5/Nsb297OcDTOB35caI5AX5Po2W2R3maSqXC9vY2m5ubbG9vUy6XaTQaMyEa16jxBOiaxu9p\n", - "/Id5iopmZ2eHjY0NTzRuegoQmt6pSVcanFRP4w8baHBye3ub9fV1Nz0FDW0jctj0JCL3dOes1WqU\n", - "SiW2t7fv8TRONAHBnp76VRvYZzKacKWiWV9fp1gsep5mFhg2R/h5EbkpIm/0Ln866Eyh09NhC2Fb\n", - "NJ1O5x7RzJqnGTZH2ABfMcY80bv+Yfym3T/8XSByuRyLi4ssLy9z5swZFhYWvJxgOHiYpyfA/h40\n", - "nU6H/f39+/yXjYeTRLlfE5GH+3w0mW2aRsQfa0okEiwsLLC0tMTKygpnzpzxqg80vdPvafQUuNVq\n", - "0Ww2abfbU9FC5KSMsuX+nIi8JSIvzFoJix1rymaznmiO8jRaomILxhbNLHmaYUXzVeARuj33NoAv\n", - "j82i+4x6mn6iWVlZ8TpCDOJpAjc99cMY4+UEi8jXgO+MzaIJwG68qJdWTGrVJNxNzLKrDez7HUxr\n", - "4vhxDOVpesnkys8C7xz23WnE7gtspz30Ewzg7Ziq1aq3vW40Gl4T6VnjWE/TyxH+CWBZRD4Avgh8\n", - "XEQep7uLugr88qla+SFj9wXWy24/70+FUE8zK8VwxzFsjvCLp2DLxHCUpzms7NZf0F+v1+l0OjM5\n", - "PbkTYR92rXY2m2VpaYlMJuM1XYT+JSpaCLexscHOzo7XpGgWcaLpg7/sNpfLkUgk+uYAG2Oo1Wpe\n", - "gFJjTbMUNvDjRONDPY2KRgv8D9tia12THTbY2dmhXC7TarXc9BQUbNH0K/A/KkC5sbHhFfk7TzPD\n", - "2Pdr0vWMNpLudwLsjzHV63WvbX2pVGJ3d5dmsxncLXcQsO/VZAcq9c5wmnhlexq7ykBrmnZ3d72d\n", - "k4rGTU8ziHoYPY+xRaOeJhqNejfGAPrWM6loKpWKF2ua1mK44wi8aOCup9GOnVqjraKxpy/gnnom\n", - "u3pyGm5cOipONPSva9JEK7utqz5qDz1dw2gf4Far5W3FZ5nAi8Yf1dZ7NdldIGy0pau2qZ+FzlaD\n", - "EnjRQPcwzy679Zeo+IWjotEDPVs0QeDIKLeIrInId0Xkf0XkeyLya733Z6aPsO1ptLhfPY1WG/hR\n", - "0ZRKpXs8TRA4LjWiDfyGMeYjwI8DvyIil5mxPsK6e9Ibl9r5M3B44vjW1pZ3AjzLh3l+jhSNMWbT\n", - "GPNm73kV+D5wnhnrI9wvqm1HtP2pnPa9mm7dujVzFZTHceI1TS+5/AngP5mxPsL98mfsqcluG9Lp\n", - "dA7cdufmzZuUy+WZKlE5jhOJRkRSwN8Cv26MqfjuLGJEZGr/pex7N+kUdZin0QM9WzS3bt2i0Wh4\n", - "+cBB4CTFchG6gvkLY4y2fp2pPsKHbblDodCB9YwKQ0+B9STYLlMJAsftngR4Afg/Y8wfWh/NTB9h\n", - "ESESiRCPx8lkMiwsLHgtXu2wga5nGo3GgbIUDRfM+imwzXHT01PAzwNvi8gbvfe+QLdv8F+LyGeB\n", - "a8DPnZqFHwLatj6dTrOwsOCV3uo5jYrGLklptVqed1HRBIUjRWOM+TcO90Yz0Ue4n6dJp9MHWrz6\n", - "A5R+T2Nn8QWBQDc10jveanu0eDzu9QSORCKHntOod1EPo4IJimgCGUawA5D2+YzeLU4DlXadk783\n", - "sC2UIAkGAuxp7Juxa1qEFv1r7oz/HpR263p/crl+LwgE0tModgLWqJ4mSATa0yj2QleL9e1u4v6k\n", - "K7t1SBAJrKexpxT73gWVSsVLytLDOhWNZumpcIIqmsB6GkVF02w2+97wQkMI6oXspHEnmoDiF43e\n", - "/ti+S4rtafSzIIUN/AR+etrf3/dqsbe3t0mlUgAHKhQ0D7hSqRzoPeNEE0B0R1Sr1SgUCqyvrwN4\n", - "gtDPd3Z22NnZ8XrPaJDSiSZAGGMOpD3UajXy+TzGmANFbvqdYrHoXX7RBG27DceIRkTWgD8HztBt\n", - "YPQnxpg/EpHngV8Etnpf/cK0tYW1p6darQbg9ZgxxnjT09zcHJVKxUu0sstVnKfpj+YIv9lLxPof\n", - "EXmFu32Ev3LqFp4yWpKiTYja7bZXjTA3N+clXWkFpSZg7e7uTv3NvobluCj3JrDZe14VEc0Rhhnq\n", - "I6y7I+ge+hWLRcLhMJ1Ox0vj1POZRqPhTVNBFY2cdE7u5Qj/C/AR4PPAs0AJeB34vDGm6Pv+1Ez2\n", - "dufOUCjkNZfW+yCoB9JHO2uvXq/fb/NPDWNMX8dwItH0pqZ/Bn7fGPMtETnD3fXM7wHnjDGf9f1m\n", - "akRjR701VUK7SITD4XuClBpC0PSIWWVo0fRyhP8O+Htfyqd+/jDwHWPMj/renxrROPpzmGiGyhGe\n", - "9T7CjqM50tOIyEeBfwXeprtjAvgd4Bm6Le69PsJWHZT+1nmaKWekNc0wONFMP0NNTw5HP5xoHAPj\n", - "ROMYGCcax8A40TgGxonGMTBONI6BObVzGsfs4jyNY2CcaBwDc6qiEZErIvKuiPxQRJ4bw3jXRORt\n", - "EXlDRP5riN+/KCK3ReQd672h29seMt7zInKzZ+MbInJlgPHG2oL3iPGGthG499Z647qAEPA+8DAQ\n", - "Ad4ELo845lVgcYTff4xus8l3rPf+APit3vPngC+NON4Xgd8c0r6zwOO95yngB8DlYW08YryhbTTG\n", - "nKqneRJ43xhzzRjTBr4JfGoM4w6dZmqMeQ0o+N4eur3tIePBkDaaMbfgPWK8oW2E052ezgMfWK9v\n", - "ctfgYTHAqyLyuoj80ohjKafR3vZzIvKWiLwwbDf3cbfgtcb7j1FtPE3RnMZe/iljzBPA03S7p39s\n", - "nIObrh8f1e6vAo/QzTfaAL486AD+Fryj2tgb729641VHtfE0RXMLWLNer9H1NkNjjNnoPW4BL9Gd\n", - "AkdlrO1tjTF3TA/ga4PaOO4WvNZ4f6njjWrjaYrmdeCSiDwsIvPAp+m2kh0KEUmISLr3PAl8kvGk\n", - "mY61ve0oqbDjbsF7aum6o+xmTrB6f5ruiv19ulWYo4z1CN0d2JvA94YZD/gGsA606K63ngUWgVeB\n", - "94CXgdwI4/0C3YrUt4G3ev+5qwOM91Fgv/c3vtG7rgxr4yHjPT2KjcYYF0ZwDI47EXYMjBONY2Cc\n", - "aBwD40TjGBgnGsfAONE4BsaJxjEwTjSOgfl/g7yNWl4b+UcAAAAASUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAES9JREFUeJztnVmMpNdVx3+nq6prX3qbnvG4x4tmsEYRkv1ikJyICIVo\n/ELghcgSUmQC4gECgkiY8BIjeIiQEiFeIiA2CosSIZCjBAmwjQIYIRYjb4E4jqVZPNPdM91de9fe\nfXmoOt/c/qZ6qaU9VfXdn/Sp9qvTM3+du5zlE2MMDscgzN1vAxzThxONY2CcaBwD40TjGBgnGsfA\nONE4BmZo0YjIFRF5V0R+KCLPjdMox2Qjw5zTiEgI+AHwCeAW8N/AM8aY74/XPMckMqyneRJ43xhz\nzRjTBr4JfGp8ZjkmmfCQvzsPfGC9vgn8mP0FEXFHzVOOMUb6vT+sp3GCCDDDiuYWsGa9XqPrbRwB\nYFjRvA5cEpGHRWQe+DTw7fGZ5ZhkhlrTGGM6IvKrwD8CIeAFt3MKDkNtuU80sFsITz3jXgg7AowT\njWNgnGgcA+NE4xgYJxrHwDjROAbGicYxME40joFxonEMjBONY2CcaBwDM2wSFgAicg0oA3tA2xjz\n5DiMmnbm5uYQEe8xHA4TCoUIh8OEw2H29vYOXPv7+weuSS+VHkk0dJOxPm6MyY/DmFkhHA4zPz9P\nNBplfn6eTCZDJpMhm82SyWSo1+tUq1Xvqtfr1Ot1Go0G9XrdG2dSxTOqaAD6RkKDTCQSIZFIkEgk\nSKVSnD17lnPnznHu3DkeeOABisUiW1tb3Llzh62tLUqlEqVSCYBms8ne3h4AIjKRwhmHp3lVRPaA\nPzbG/OkYbJp6wuEw8XicbDZLNptlbW2NixcvcunSJS5evMjt27e5ceMG169f97wRQKvVolKpTPwU\nNaponjLGbIjICvCKiLxrjHltHIZNGyJ3HW40GiWVSrG4uMjKygpra2s8+uijPPbYY1y+fJnFxUVi\nsRihUMj7bbvdplqteusgmNHpyRiz0XvcEpGX6Ja2BE40/oVvKpViZWWFBx98kAsXLrC2tsby8jKJ\nRAIRIR6Ps7CwwPnz573fNJtNisUioVCITqcDzKBoRCQBhIwxFRFJAp8Efndslk0RKphQKEQoFCKd\nTnse5tKlS6yurrK0tEQymUREiMViLCwsICIkEglarRaFQoH19XVCoZC3lpnFNc0q8FLPlYaBvzLG\nvDwWq6YMEfG21KFQiFQqxfLysica3TWpp1HRJBIJlpeXqVarrK+vk0qlPNFMqmBgBNEYY64Cj4/R\nlqlFvUwkEmF+fp50Os3i4iKrq6usra0Rj8e9LbiIEIlECIVCxONxjDEsLi6SSqWIRqPedKXXJDKO\nLXfgCYfDxGIx4vE4iUSCdDpNKpUiHo8TjUaJRCKEw2Hm5roH8O12m2azSbPZpNVqkc/nqVarNBoN\n77DPGDN7nsZxl1AoRCwWI5VKkU6nyWQyJJPJvqLRnVKtVqNSqVCtVsnn81QqFU80xpiJ3nY70YyB\ncDhMNBolmUySzWZJp9Mkk0kSiQTRaJRwOOwtlqHraXZ3dymVSuTzeU80erA3yYIBJ5qxoCfAmUyG\npaUlcrmcNz3p+sVGPU2hUODOnTsHPI0tmEkVjhPNEOgCVR/j8Ti5XM5b+K6urpLL5YjFYn0Xs+pp\nisWiJ5pqtUqz2Zx4wYATzdDYOxxbNA899NAB0fRDReP3NM1mc+KnJnCiGRoVzNzc3AHRXLhwgaWl\nJbLZ7JGeplarHelpJhknmiFQseilwcmVlRXOnz/vbbmj0Wjf359keppknGiGQA/y9EqlUt52O5VK\nebsmewFsi6HdblOv1ymXyxQKBcrlMrVajXa77UQzq4RCIebn54nFYt5W2xaOpjvoVltRQahoKpUK\n+XyecrlMvV53opll1NPEYjEv0coWjcag9FzGPt01xhwQTaFQoFqt0ul0vOSrSefYxHIReVFEbovI\nO9Z7iyLyioi8JyIvi0judM2cLEKhENFolHg87k1JyWTSO9CLxWL3nM8YY7yc4Far5aV8lkolL4Qw\nLZ7mJNUIfwZc8b3328ArxpgfAf6p9zoQiAjz8/MkEglyuRzLy8vkcjmSySTz8/OH7pYajQbVapVC\noUClUpmq6cjPsaLpZeIVfG//NPD13vOvAz8zZrsmGj0B1h1TNpslkUgQiUT6fn9vb+/AdGSvYaaR\nYdc0q8aY273nt+nm1gSGSCRCMpn0PM1xoul0Op6nKZVKVCqVqdot+Rm5WM50/+rp+8tHwPY0tmg0\nQdyPvcXe2dmhVCoFUjS3ReQsgIicA+6Mz6TJR/NnUqkU2WyWVCp1IFEc7u6Y9vf3qdfrFItFNjY2\nuH79Ouvr6xQKBer1eqBE823gM73nnwG+NR5zpgM7FUIXwbFYjHC4O9urYPRqNBoUCgU2Nze5evUq\nGxsb5PN5arXabIpGRL4B/DvwmIh8ICLPAl8CfkpE3gN+svc6MBzmaVQ0it/TbG5ucu3atan3NMcu\nhI0xzxzy0SfGbMtEo1vpubk572BPRZNMJg8kW9lTkzHmgGhu3LhBsVj0ynFnUjQOvML9cDhMJBI5\nUJetouk3PWlBv+YE64FerVaj1Wp5qZ3ThhPNMWjXh2g0SiwWIxaLeYLRS2NQtmjsLhC65a7Vap6H\nUdFMI040J0DXMBqY9HeB0JCBf/e0v7/P3t7eAU+zu7tLvV73QgrO08wo9m7J9jB6+UMHtqfpdDr3\nTE+tVus+/SXjwYnmBGiAUmua+uXL2LRaLXZ3d71ra2uLcrlMs9n8kC0/HZxojkHXNBqkPIloms2m\nF2fK5/Nsb297OcDTOB35caI5AX5Po2W2R3maSqXC9vY2m5ubbG9vUy6XaTQaMyEa16jxBOiaxu9p\n/Id5iopmZ2eHjY0NTzRuegoQmt6pSVcanFRP4w8baHBye3ub9fV1Nz0FDW0jctj0JCL3dOes1WqU\nSiW2t7fv8TRONAHBnp76VRvYZzKacKWiWV9fp1gsep5mFhg2R/h5EbkpIm/0Ln866Eyh09NhC2Fb\nNJ1O5x7RzJqnGTZH2ABfMcY80bv+Yfym3T/8XSByuRyLi4ssLy9z5swZFhYWvJxgOHiYpyfA/h40\nnU6H/f39+/yXjYeTRLlfE5GH+3w0mW2aRsQfa0okEiwsLLC0tMTKygpnzpzxqg80vdPvafQUuNVq\n0Ww2abfbU9FC5KSMsuX+nIi8JSIvzFoJix1rymaznmiO8jRaomILxhbNLHmaYUXzVeARuj33NoAv\nj82i+4x6mn6iWVlZ8TpCDOJpAjc99cMY4+UEi8jXgO+MzaIJwG68qJdWTGrVJNxNzLKrDez7HUxr\n4vhxDOVpesnkys8C7xz23WnE7gtspz30Ewzg7Ziq1aq3vW40Gl4T6VnjWE/TyxH+CWBZRD4Avgh8\nXEQep7uLugr88qla+SFj9wXWy24/70+FUE8zK8VwxzFsjvCLp2DLxHCUpzms7NZf0F+v1+l0OjM5\nPbkTYR92rXY2m2VpaYlMJuM1XYT+JSpaCLexscHOzo7XpGgWcaLpg7/sNpfLkUgk+uYAG2Oo1Wpe\ngFJjTbMUNvDjRONDPY2KRgv8D9tia12THTbY2dmhXC7TarXc9BQUbNH0K/A/KkC5sbHhFfk7TzPD\n2Pdr0vWMNpLudwLsjzHV63WvbX2pVGJ3d5dmsxncLXcQsO/VZAcq9c5wmnhlexq7ykBrmnZ3d72d\nk4rGTU8ziHoYPY+xRaOeJhqNejfGAPrWM6loKpWKF2ua1mK44wi8aOCup9GOnVqjraKxpy/gnnom\nu3pyGm5cOipONPSva9JEK7utqz5qDz1dw2gf4Far5W3FZ5nAi8Yf1dZ7NdldIGy0pau2qZ+FzlaD\nEnjRQPcwzy679Zeo+IWjotEDPVs0QeDIKLeIrInId0Xkf0XkeyLya733Z6aPsO1ptLhfPY1WG/hR\n0ZRKpXs8TRA4LjWiDfyGMeYjwI8DvyIil5mxPsK6e9Ibl9r5M3B44vjW1pZ3AjzLh3l+jhSNMWbT\nGPNm73kV+D5wnhnrI9wvqm1HtP2pnPa9mm7dujVzFZTHceI1TS+5/AngP5mxPsL98mfsqcluG9Lp\ndA7cdufmzZuUy+WZKlE5jhOJRkRSwN8Cv26MqfjuLGJEZGr/pex7N+kUdZin0QM9WzS3bt2i0Wh4\n+cBB4CTFchG6gvkLY4y2fp2pPsKHbblDodCB9YwKQ0+B9STYLlMJAsftngR4Afg/Y8wfWh/NTB9h\nESESiRCPx8lkMiwsLHgtXu2wga5nGo3GgbIUDRfM+imwzXHT01PAzwNvi8gbvfe+QLdv8F+LyGeB\na8DPnZqFHwLatj6dTrOwsOCV3uo5jYrGLklptVqed1HRBIUjRWOM+TcO90Yz0Ue4n6dJp9MHWrz6\nA5R+T2Nn8QWBQDc10jveanu0eDzu9QSORCKHntOod1EPo4IJimgCGUawA5D2+YzeLU4DlXadk783\nsC2UIAkGAuxp7Juxa1qEFv1r7oz/HpR263p/crl+LwgE0tModgLWqJ4mSATa0yj2QleL9e1u4v6k\nK7t1SBAJrKexpxT73gWVSsVLytLDOhWNZumpcIIqmsB6GkVF02w2+97wQkMI6oXspHEnmoDiF43e\n/ti+S4rtafSzIIUN/AR+etrf3/dqsbe3t0mlUgAHKhQ0D7hSqRzoPeNEE0B0R1Sr1SgUCqyvrwN4\ngtDPd3Z22NnZ8XrPaJDSiSZAGGMOpD3UajXy+TzGmANFbvqdYrHoXX7RBG27DceIRkTWgD8HztBt\nYPQnxpg/EpHngV8Etnpf/cK0tYW1p6darQbg9ZgxxnjT09zcHJVKxUu0sstVnKfpj+YIv9lLxPof\nEXmFu32Ev3LqFp4yWpKiTYja7bZXjTA3N+clXWkFpSZg7e7uTv3NvobluCj3JrDZe14VEc0Rhhnq\nI6y7I+ge+hWLRcLhMJ1Ox0vj1POZRqPhTVNBFY2cdE7u5Qj/C/AR4PPAs0AJeB34vDGm6Pv+1Ez2\ndufOUCjkNZfW+yCoB9JHO2uvXq/fb/NPDWNMX8dwItH0pqZ/Bn7fGPMtETnD3fXM7wHnjDGf9f1m\nakRjR701VUK7SITD4XuClBpC0PSIWWVo0fRyhP8O+Htfyqd+/jDwHWPMj/renxrROPpzmGiGyhGe\n9T7CjqM50tOIyEeBfwXeprtjAvgd4Bm6Le69PsJWHZT+1nmaKWekNc0wONFMP0NNTw5HP5xoHAPj\nROMYGCcax8A40TgGxonGMTBONI6BObVzGsfs4jyNY2CcaBwDc6qiEZErIvKuiPxQRJ4bw3jXRORt\nEXlDRP5riN+/KCK3ReQd672h29seMt7zInKzZ+MbInJlgPHG2oL3iPGGthG499Z647qAEPA+8DAQ\nAd4ELo845lVgcYTff4xus8l3rPf+APit3vPngC+NON4Xgd8c0r6zwOO95yngB8DlYW08YryhbTTG\nnKqneRJ43xhzzRjTBr4JfGoM4w6dZmqMeQ0o+N4eur3tIePBkDaaMbfgPWK8oW2E052ezgMfWK9v\nctfgYTHAqyLyuoj80ohjKafR3vZzIvKWiLwwbDf3cbfgtcb7j1FtPE3RnMZe/iljzBPA03S7p39s\nnIObrh8f1e6vAo/QzTfaAL486AD+Fryj2tgb729641VHtfE0RXMLWLNer9H1NkNjjNnoPW4BL9Gd\nAkdlrO1tjTF3TA/ga4PaOO4WvNZ4f6njjWrjaYrmdeCSiDwsIvPAp+m2kh0KEUmISLr3PAl8kvGk\nmY61ve0oqbDjbsF7aum6o+xmTrB6f5ruiv19ulWYo4z1CN0d2JvA94YZD/gGsA606K63ngUWgVeB\n94CXgdwI4/0C3YrUt4G3ev+5qwOM91Fgv/c3vtG7rgxr4yHjPT2KjcYYF0ZwDI47EXYMjBONY2Cc\naBwD40TjGBgnGsfAONE4BsaJxjEwTjSOgfl/g7yNWl4b+UcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4643,82 +999,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAD4BJREFUeJzt3XuspVdZx/Hvb87cO4OT2pYWGBysoLQBKQIpdwpoKoHi\n", - "BYGKgGgwBpCKQID+4V8aMMRQCcEEqVzKTQUsEOVSpUIBaSnM9DblZqi2IB2ltyl2JnN5/GPvaU8P\n", - "Z+a877yzzt779PtJTma/7177Xevstc85z6y13vWkqpAkSdLRWzXpBkiSJM06AypJkqSBDKgkSZIG\n", - "MqCSJEkayIBKkiRpIAMqSZKkgVZPsvIk7tkgSZJmRlVlsfNNA6okZwMXAHPAu6vqLxaWOeWUU37i\n", - "dbt372bz5s33Onfw4MHO9fYpC3DgwIEmZVu1uU/ZvvuM9Sl/uLL79+9n9erVncouZtq/P0mSFmo2\n", - "5ZdkDngHcDZwGnBukoe3qk+SJGlSWq6hehzw3aq6oar2AR8BntuwPkmSpIloGVA9ELhx3vFN43NL\n", - "Wrt2bZMGaXmsWuW9DpKk+5aWf/mOegHKunXrjmU7tMwMqCRJ9zUtF6V/H9g673gro1Gqe9m9e/fd\n", - "j9euXWswJUmSZk7LgOpK4KFJtgE/AF4AnLuw0MK7+SRJkmZNs4CqqvYneRXwWUbbJlxYVde3qk+S\n", - "JGlSmu5DVVWfBj7dsg5JkqRJm+hO6dB9AXqfO/8Wbiq5lDVr1jS59oYNGzqXPe644zqX3bhxY+ey\n", - "fadU+1x7/fr1nctu2rSpc9ktW7Z0LnvSSSd1Lgtw8skndy574okndi7bp819+rrP563P5xhgbm6u\n", - "Sdk+NyUki244PLhsX6021u2zEXDLmzn6vHfT0NcrXZ9Ng/fu3dvs2n1+v/T5XEzLz3ULR2qvt2NJ\n", - "kiQNZEAlSZI0kAGVJEnSQAZUkiRJAxlQSZIkDWRAJUmSNJABlSRJ0kAGVJIkSQMZUEmSJA1kQCVJ\n", - "kjSQAZUkSdJAE8/lt2fPnk7l+uQz6pPLqK9pyDvUJ5dYX33eu1b5z/qU3b9/f+ey0C+3Wp+yrd63\n", - "Plp+7vtcu2U7WmmVe6xP2Zbv8Sz2iTRrmo5QJdma5NIk1yW5NsmrW9YnSZI0Ca1HqPYBr6mqHUk2\n", - "AV9PcklVXd+4XkmSpGXTdISqqn5YVTvGj+8Ergce0LJOSZKk5bZsi9KTbAPOAC5frjolSZKWw7IE\n", - "VOPpvo8C541HqiRJklaM5nf5JVkDfAz4QFVdvPD53bt33/147dq1rFu3rnWTJEmSjqmmAVVG9wxf\n", - "COysqgsWK7N58+aWTZAkSWqu9ZTfE4HfAc5Ksn38dXbjOiVJkpZV0xGqqvoS7sYuSZJWOIMdSZKk\n", - "gSaeembVqm4xXcuUL61SPrQq2yd1ScsUFX3a0Spdx9zcXOeyLa30dDJ9tPpZnZb3ok/ZWfzct/r9\n", - "Yvqbe/Tp65Y3avVJr9Unzdd9ta8doZIkSRrIgEqSJGkgAypJkqSBDKgkSZIGMqCSJEkayIBKkiRp\n", - "IAMqSZKkgQyoJEmSBjKgkiRJGsiASpIkaaCJp57ZsGFDp3J9tr3vs51+S31SOLT6/qYl9cy0tKHP\n", - "e9enbMt0QJpd05B+StOnT1/v2bOnYUt0LB02oErym0ABiyUdqqr6eJcKkswBVwI3VdVzjqqVkiRJ\n", - "U+xII1TPYRRQHU6ngAo4D9gJbO7aKEmSpFly2ICqqn536MWTPAh4FvDnwJ8MvZ4kSdI0WnJRepKT\n", - "k1yY5DPj49OS/H7H678NeD3ghL8kSVqxutzl917gc8ADxsffAV6z1IuSPBvYVVXbWXwdliRJ0orQ\n", - "JaA6oar+DjgAUFX7gC63pD0BOCfJ94APA09P8v6FhW655Za7v+66664eTZckSZoOXbZNuDPJTx86\n", - "SHImcPtSL6qq84Hzx695KvC6qnrJwnLHH39899ZKkiRNoS4B1WuBTwE/m+QrwInA846iLjffkSRJ\n", - "K1K6bDCWZDXw84zWQn1rPO03vPKkTj311E5lW27s2WrzvT7tcGPP5WmDG3tKkoaoqkXXhS85QpVk\n", - "A/AK4EmMRpkuS/LXVeX2rZIkSXSb8ns/cAfwdkYjVL8NXAT8VsN2SZIkzYwuAdXpVXXavOPPJ9l5\n", - "rBpw++1Lrm8H2k3Ltbx2qymxZDp2oVi1qntu7VbvRd/rtvwctdCnr6ehvZJ0X9XlL+I3kjz+0MH4\n", - "Lr+vt2uSJEnSbDlScuRr5pX5cpIbGa2hejDwrWVomyRJ0kxYKjmyJEmSlnCk5Mg3zD9OchKwvnWD\n", - "JEmSZk2X5MjnJPkO8D3gC8ANwKcbt0uSJGlmdFmU/mfA44FvV9VDgGcAlzdtlSRJ0gzpElDtq6r/\n", - "BVYlmauqS4HHNG6XJEnSzOiyD9WtSTYDlwEfTLILuLNtsyRJkmbHkrn8kmwC7mI0mvUi4H7AB6vq\n", - "R4MrT+qEE07oVNaNPe/RcmPPVptDtsp11ycHYt92tMqZ2KesG3tK0nQ56lx+VXVoNOoA8N5j2CZJ\n", - "kqQV4Ugbe97JaCPPxVRV3e9YNOC4447rVK7P/9T7pESB6UiL0mekpdUoS99rt3rf+rS55WjdNKTW\n", - "cdRJkmbDkfah2jT04km2AO8GTmcUnP1eVX116HUlSZKmSZdF6UP8FfDPVfW8JKuBbsNRkiRJM6RZ\n", - "QJXkp4AnV9VLAapqP3B7q/okSZImpd9io34eAvxPkvck+UaSv0mysWF9kiRJE9EyoFoNPBp4Z1U9\n", - "Gvgx8MaG9UmSJE1EyzVUNwE3VdXXxscfZZGA6rbbbrv78fr161m/3vzLkiRptjQLqKrqh0luTPKw\n", - "qvo28EzguoXltmzZ0qoJkiRJy6L1XX5/xChdzVrgP4CXNa5PkiRp2TUNqKrqKuCxLeuQJEmatJaL\n", - "0iVJku4TWk/5LemOO+7oVK5PipG+6Uj6pBhp2Y6uZjFRdJ/3YvXq7h/LNWvWdC4L7RIv9ym7b9++\n", - "zmX7ME3N0WuZwqgF+1qaPo5QSZIkDWRAJUmSNJABlSRJ0kAGVJIkSQMZUEmSJA1kQCVJkjSQAZUk\n", - "SdJABlSSJEkDGVBJkiQNZEAlSZI00MRTz3RN2TENKV+gX5qaabjuwYMHe5Xv897Nzc11LtsnVcaB\n", - "Awc6l+2bxqXPtfuU7fM+T8tnuU+bV3qqk1bfX5+f65X+HksrXdMRqiRvSnJdkmuSfCjJupb1SZIk\n", - "TUKzgCrJNuDlwKOr6hHAHPDCVvVJkiRNSsspvzuAfcDGJAeAjcD3G9YnSZI0Ec1GqKrqFuAvgf8C\n", - "fgDcVlX/0qo+SZKkSWk55Xcq8MfANuABwKYkL2pVnyRJ0qS0XJT+GOArVfWjqtoPfBx4wsJCe/fu\n", - "vfur6x1/kiRJ06RlQPVN4MwkGzK69/uZwM6FhdatW3f31+rVE9/FQZIkqbeWa6iuAt4PXAlcPT79\n", - "rlb1SZIkTUomuZlcktq8eXPXsn2ue7RNWpIbex5d2VYbe/adJp6GjT2nhRt7ttdqY0/7Q5qcqlr0\n", - "j5+pZyRJkgYyoJIkSRpo4qvAu075zeL0RJ92tJoy6jv92Wraoc/316dsn2m5vtdu9TmaxamdVtO7\n", - "K90sTgVLOjqOUEmSJA1kQCVJkjSQAZUkSdJABlSSJEkDGVBJkiQNZEAlSZI00FQGVHv37p10EzTA\n", - "vn37Jt0EHSW3PJCko2NApWOubzoYSZJm3VQGVJIkSbPEgEqSJGmgTHLNRBIXbEiSpJlRVYvm4ppo\n", - "QCVJkrQSOOUnSZI0kAGVJEnSQFMXUCU5O8k3k3wnyRsm3R4dXpK/TXJzkmvmnTs+ySVJvp3kc0m2\n", - "TLKNOrwkW5NcmuS6JNcmefX4vH045ZKsT3J5kh1JdiZ58/i8fTdDkswl2Z7kU+Nj+2+GTVVAlWQO\n", - "eAdwNnAacG6Sh0+2VTqC9zDqq/neCFxSVQ8D/nV8rOm0D3hNVZ0OnAm8cvzzZh9OuaraA5xVVY8C\n", - "HgmcleRJ2Hez5jxgJ3BoMbP9N8OmKqACHgd8t6puqKp9wEeA5064TTqMqroMuHXB6XOA940fvw/4\n", - "tWVtlDqrqh9W1Y7x4zuB64EHYh/OhKr6v/HDtcAco59F+25GJHkQ8Czg3cChu8bsvxk2bQHVA4Eb\n", - "5x3fND6n2XH/qrp5/Phm4P6TbIy6SbINOAO4HPtwJiRZlWQHoz66tKquw76bJW8DXg8cnHfO/pth\n", - "0xZQuYfDClKjPTns0ymXZBPwMeC8qto9/zn7cHpV1cHxlN+DgKckOWvB8/bdlErybGBXVW3nntGp\n", - "e7H/Zs+0BVTfB7bOO97KaJRKs+PmJCcDJDkF2DXh9ugIkqxhFExdVFUXj0/bhzOkqm4H/gn4Jey7\n", - "WfEE4Jwk3wM+DDw9yUXYfzNt2gKqK4GHJtmWZC3wAuCTE26T+vkk8NLx45cCFx+hrCYoSYALgZ1V\n", - "dcG8p+zDKZfkhEN3gCXZAPwysB37biZU1flVtbWqHgK8EPh8Vb0Y+2+mTd1O6Ul+FbiA0SLLC6vq\n", - "zRNukg4jyYeBpwInMJrv/1PgE8DfAw8GbgCeX1W3TaqNOrzxXWFfBK7mnqmFNwFXYB9OtSSPYLRo\n", - "edX466KqemuS47HvZkqSpwKvrapz7L/ZNnUBlSRJ0qyZtik/SZKkmWNAJUmSNJABlSRJ0kAGVJIk\n", - "SQMZUEmSJA1kQCVJkjSQAZWkiUvy5fG/P5Pk3GN87fMXq0uSjiX3oZI0NZI8jdEmh8/p8ZrVVbX/\n", - "CM/vrqrNx6J9knQ4jlBJmrgkd44fvgV4cpLtSc5LsirJW5NckeSqJH8wLv+0JJcl+QRw7fjcxUmu\n", - "THJtkpePz70F2DC+3kXz68rIW5Nck+TqJM+fd+1/S/IPSa5P8oHlfTckzaLVk26AJHFP6ps3AK87\n", - "NEI1DqBuq6rHJVkHfCnJ58ZlzwBOr6r/HB+/rKpuHee2uyLJR6vqjUleWVVnLFLXbwC/CDwSOBH4\n", - "WpIvjp97FHAa8N/Al5M8saqcKpR0WI5QSZomWXD8K8BLkmwHvgocD/zc+Lkr5gVTAOcl2QH8O7AV\n", - "eOgSdT0J+FCN7AK+ADyWUcB1RVX9oEZrInYA2wZ8T5LuAxyhkjTtXlVVl8w/MV5r9eMFx88Azqyq\n", - "PUkuBdYvcd3iJwO4Q6NXe+edO4C/KyUtwREqSdNkNzB/AflngVckWQ2Q5GFJNi7yuvsBt46DqV8A\n", - "zpz33L5Dr1/gMuAF43VaJwJPAa7gJ4MsSVqS/+uSNA0OjQxdBRwYT929B3g7o+m2byQJsAv49XH5\n", - "+bcofwb4wyQ7gW8xmvY75F3A1Um+XlUvPvS6qvrHJI8f11nA66tqV5KHL7g2ixxL0r24bYIkSdJA\n", - "TvlJkiQNZEAlSZI0kAGVJEnSQAZUkiRJAxlQSZIkDWRAJUmSNJABlSRJ0kAGVJIkSQP9P+4wayRS\n", - "hyMkAAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD49JREFUeJzt3X2wXVdZx/HvLzc3bw1YWiIIDQ0qWNoBKQJT3imgUxko\nqAhUBUQHxwGkVmR4mdG/dEAYh8owOoNUXoqAClhgVKBKhQLSUEj6lvLmUG1BmqrhJQmxN7ePf9yT\n9PZyk7t3dtY956Tfz8ydnL3POnute9Y5d56stfZ6UlVIkiTp2K0ZdwMkSZKmnQGVJEnSQAZUkiRJ\nAxlQSZIkDWRAJUmSNJABlSRJ0kBrx1l5EvdskCRJU6Oqstz5pgFVkvOAi4EZ4O1V9SdLy5xyyik/\n9Lr9+/ezadOmu5zrs19W37217rjjjqkq2/K9OB7Xnp+fZ2Zm5rhfd2jZvtyjTZLUVbMpvyQzwFuB\n84AzgQuSPKRVfZIkSePScg3Vo4GvV9VNVTUHvB94VsP6JEmSxqJlQHV/4OZFx7eMzq1odna2SYO0\nOpJlp5clSTphtQyojnkBigHVdFuzxptHJUl3Ly0XpX8T2LroeCsLo1R3sX///sOPZ2dnDaYkSdLU\naRlQXQ08KMk24FvA84ALlhZaejefJEnStGkWUFXVwSQvBz7OwrYJl1TVja3qkyRJGpeMc6+dJLXc\nPlTLcR+qO036PlSTWrYv96GSJC01lo09u+h6R9i6des6X7NP2b7lN2zY0Llsn+nMPmU3btzYuez6\n9es7l4V+d+j1WXy+dKPPo+nz+5188smdywKcdtppnctu27atc9nTTz+9c9ktW7Z0Ltvn87Z2bb+v\nc5/+63PtVp+LSbnZoU+g3eo/VX31eZ/79HWrvxeT0tfTaBL+89qn7KTcFd61zUdb5+2nVpIkaSAD\nKkmSpIEMqCRJkgYyoJIkSRrIgEqSJGkgAypJkqSBDKgkSZIGMqCSJEkayIBKkiRpIAMqSZKkgQyo\nJEmSBhp7cuQzzjijU9k+uahamp+f71y2VR6vgwcPdi47KYmiW+nbhj791+d9npuba1K2T3snJRH2\npOTm6uNET4Td6vc70d83TbcWf4uq6ojJkZuOUCXZmuSKJDckuT7JK1rWJ0mSNA790tP3NwdcVFU7\nk2wGvpjk8qq6sXG9kiRJq6bpCFVVfbuqdo4e7wVuBO7Xsk5JkqTVtmqL0pNsA84GrlqtOiVJklbD\nqgRUo+m+DwAXjkaqJEmSThit11CRZBb4IPCeqrps6fO33Xbb4cebNm3ipJNOat0kSZKkFfW5k7Vp\nQJWFexYvAXZV1cXLldmyZUvLJkiSJB2TpVsvHC3Aaj3l9zjg14Bzk+wY/ZzXuE5JkqRV1XSEqqo+\ng7uxS5KkE5zBjiRJ0kDNF6WvZN++fcf9mi1TcPRJddIqtUerNvQt3yodSct0Fn1SubRKU9MqfVHL\n9+1E/1xMQgqVlil7Wl27Vf9NQn9Mq0no61Ym/XPhCJUkSdJABlSSJEkDGVBJkiQNZEAlSZI0kAGV\nJEnSQAZUkiRJAxlQSZIkDWRAJUmSNJABlSRJ0kAGVJIkSQONPfXM/v37x90E1qzpHle2SrXQKiXK\npKThmYSUPX3bMQltnvRUC0Od6L9fHyd6ah2tjlZ97WdoZUcMqJL8ElDAchFEVdWHulSQZAa4Gril\nqp55TK2UJEmaYEcboXomCwHVkXQKqIALgV3APbo2SpIkaZocMaCqql8fevEkpwFPB/4Y+L2h15Mk\nSZpEKy4eSnLfJJck+djo+Mwkv9nx+m8GXgV0X4wiSZI0Zbqsxn4n8AngfqPjrwEXrfSiJM8AdlfV\nDpZfhyVJknRC6BJQ3buq/gaYB6iqOeBgh9c9Fjg/yTeA9wFPSfLupYX2799/+Gdubq5H0yVJkiZD\nl4Bqb5JTDx0kOQf47kovqqrXVdXWqnog8Hzgk1X1wqXlNm3adPhndna2T9slSZImQpd9qF4JfBT4\n8SSfA7YAzzmGutzEQpIknZDSZbOuJGuBn2JhLdRXRtN+wytP6tRTT125YGNu7Hls5adtk8y+7ZiE\nNruZniRNlqpaNhBYcYQqyUbgpcDjWRhlujLJX1TVgePbREmSpOnUZcrv3cD3gLewMEL1K8ClwC83\nbJckSdLU6BJQnVVVZy46/mSSXcerAevWrTtelzqsz7TcJF27hb5TRgcPdrmBs23ZPlNtfaY/od/7\n0Wp6t49p+7yB05SS7p66LB76UpLHHDoY3eX3xXZNkiRJmi5HS4583aIyn01yMwtrqB4AfGUV2iZJ\nkjQVVkqOLEmSpBUcLTnyTYuPk/wosKF1gyRJkqZNl+TI5yf5GvAN4FPATcA/NW6XJEnS1OiyKP2P\ngMcAXx2lkXkqcFXTVkmSJE2RLgHVXFX9N7AmyUxVXQE8snG7JEmSpkaXfaj2JLkHcCXw10l2A3vb\nNkuSJGl6dBmhejawH7gI+BjwdbwDUJIk6bAVR6iq6tBo1DzwzqatkSRJmkJH29hzLwsbeS6nquqe\nx6MB69ev71SuTzqLlulW5ubmOpftkxalT9k+v1+fNC4tteq/vqlZ+pSfhLQvpnGRpOlwtH2oNg+9\neJKTgbcDZ7EQnP1GVX1+6HUlSZImSZdF6UP8GfCPVfWcJGuBkxrXJ0mStOqaBVRJfgR4QlW9CKCq\nDgLfbVWfJEnSuHS5y+9YPRC4Lck7knwpyV8m2dSwPkmSpLFoGVCtBR4B/HlVPQLYB7ymYX2SJElj\n0XIN1S3ALVX1hdHxB1gmoNqzZ8/hxxs2bGDjxo0NmyRJknT8NQuoqurbSW5O8uCq+irwNOCGpeXu\nda97tWqCJEnSqmh9l9/vsJCuZh3w78CLG9cnSZK06poGVFV1DfColnVIkiSNW8tF6ZIkSXcLraf8\nVvSDH/ygU7k1a7rHfi3Tkaxd2/0tm5mZ6Vy2T4qYlml4Wl27T9k+71uf/ujbjttvv71z2a6f477X\nbfW5mEYtUwH1uXbL75+k8ej6N+Bo32lHqCRJkgYyoJIkSRrIgEqSJGkgAypJkqSBDKgkSZIGMqCS\nJEkayIBKkiRpIAMqSZKkgQyoJEmSBjKgkiRJGmjsqWe6pmaYm5s77tc81vJd9Uln0Se1Tp/ULH3T\ndaxbt65z2Y0bN3Yu2ydFzMGDBzuXPXDgQOeyfcvPz8/3unZXs7OzTa7bUp/3ok+6nFapdfp+7ltd\nu893tc/fgL5a9UmfstIkOx5xQNMRqiSvTXJDkuuSvDfJ+pb1SZIkjUOzgCrJNuAlwCOq6qHADPD8\nVvVJkiSNS8spv+8Bc8CmJPPAJuCbDeuTJEkai2YjVFX1v8CfAv8JfAv4TlX9c6v6JEmSxqXllN9P\nAL8LbAPuB2xO8qut6pMkSRqXlovSHwl8rqr+p6oOAh8CHru00N69ew//3H777Q2bI0mS1EbLNVRf\nBv4gyUbgAPA0YPvSQps3b27YBEmSpPZarqG6Bng3cDVw7ej021rVJ0mSNC5NN/asqjcCb2xZhyRJ\n0riZekaSJGkgAypJkqSBxp7Lr2terD45o/rmYGuVy6+VPrnE+uY065Prbt++fZ3L9nmP+/R1nxyP\n0C9PYKv8ddP2eeurz+/X6r1o+R63+ixLmm6OUEmSJA1kQCVJkjSQAZUkSdJABlSSJEkDGVBJkiQN\nZEAlSZI00EQGVCZJnm723/Q60bd0kKRWDKh03PXdG0qTw4BKko7NRAZUkiRJ08SASpIkaaCMc4g/\nifMLkiRpalTVsjndxhpQSZIknQic8pMkSRrIgEqSJGmgiQuokpyX5MtJvpbk1eNuj44syV8luTXJ\ndYvOnZLk8iRfTfKJJCePs406siRbk1yR5IYk1yd5xei8fTjhkmxIclWSnUl2JXn96Lx9N0WSzCTZ\nkeSjo2P7b4pNVECVZAZ4K3AecCZwQZKHjLdVOop3sNBXi70GuLyqHgz8y+hYk2kOuKiqzgLOAV42\n+r7ZhxOuqg4A51bVw4GHAecmeTz23bS5ENgFHFrMbP9NsYkKqIBHA1+vqpuqag54P/CsMbdJR1BV\nVwJ7lpw+H3jX6PG7gGevaqPUWVV9u6p2jh7vBW4E7o99OBWqav/o4TpghoXvon03JZKcBjwdeDtw\n6K4x+2+KTVpAdX/g5kXHt4zOaXrcp6puHT2+FbjPOBujbpJsA84GrsI+nApJ1iTZyUIfXVFVN2Df\nTZM3A68C7lh0zv6bYpMWULmHwwmkFvbksE8nXJLNwAeBC6vq+4ufsw8nV1XdMZryOw14YpJzlzxv\n302oJM8AdlfVDu4cnboL+2/6TFpA9U1g66LjrSyMUml63JrkvgBJfgzYPeb26CiSzLIQTF1aVZeN\nTtuHU6Sqvgv8A/Az2HfT4rHA+Um+AbwPeEqSS7H/ptqkBVRXAw9Ksi3JOuB5wEfG3Cb18xHgRaPH\nLwIuO0pZjVGSAJcAu6rq4kVP2YcTLsm9D90BlmQj8LPADuy7qVBVr6uqrVX1QOD5wCer6gXYf1Nt\n4nZKT/LzwMUsLLK8pKpeP+Ym6QiSvA94EnBvFub7/xD4MPC3wAOAm4DnVtV3xtVGHdnorrBPA9dy\n59TCa4Ht2IcTLclDWVi0vGb0c2lVvSnJKdh3UyXJk4BXVtX59t90m7iASpIkadpM2pSfJEnS1DGg\nkiRJGsiASpIkaSADKkmSpIEMqCRJkgYyoJIkSRrIgErS2CX57Ojf05NccJyv/brl6pKk48l9qCRN\njCRPZmGTw2f2eM3aqjp4lOe/X1X3OB7tk6QjcYRK0tgl2Tt6+AbgCUl2JLkwyZokb0qyPck1SX5r\nVP7JSa5M8mHg+tG5y5JcneT6JC8ZnXsDsHF0vUsX15UFb0pyXZJrkzx30bX/NcnfJbkxyXtW992Q\nNI3WjrsBksSdqW9eDfz+oRGqUQD1nap6dJL1wGeSfGJU9mzgrKr6j9Hxi6tqzyi33fYkH6iq1yR5\nWVWdvUxdvwj8NPAwYAvwhSSfHj33cOBM4L+AzyZ5XFU5VSjpiByhkjRJsuT454AXJtkBfB44BfjJ\n0XPbFwVTABcm2Qn8G7AVeNAKdT0eeG8t2A18CngUCwHX9qr6Vi2sidgJbBvwO0m6G3CEStKke3lV\nXb74xGit1b4lx08FzqmqA0muADascN3ihwO4Q6NX/7fo3Dz+rZS0AkeoJE2S7wOLF5B/HHhpkrUA\nSR6cZNMyr7snsGcUTJ0BnLPoublDr1/iSuB5o3VaW4AnAtv54SBLklbk/7okTYJDI0PXAPOjqbt3\nAG9hYbrtS0kC7AZ+YVR+8S3KHwN+O8ku4CssTPsd8jbg2iRfrKoXHHpdVf19kseM6izgVVW1O8lD\nllybZY4l6S7cNkGSJGkgp/wkSZIGMqCSJEkayIBKkiRpIAMqSZKkgQyoJEmSBjKgkiRJGsiASpIk\naSADKkmSpIH+H12Zh6umpBoZAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4726,124 +1009,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGNNJREFUeJztnVmM7Fldxz+na1+6qrqW7q5ebt+ZuTMDTEzgBU2AyAMh\n", - "Q0xAXyQkRoNofFA0SiLig6D4gCYQow9EZYlbQKOBgInKYETxwQUzw4CyzMxdeu/au/a1jw9dv8Op\n", - "ukvfWrvrzv+bnPyram7/51TVt37n9/ud3+97lNYaBw5GwdJlT8DB4sEhjYOR4ZDGwchwSONgZDik\n", - "cTAyHNI4GBljk0Yp9axS6rtKqZeUUh+c5qQcXG2ocfI0SikX8D3gbcAB8N/Ae7TW35nu9BxcRYxr\n", - "ad4IvKy1vq217gCfB941vWk5uMpwj/l3m8Ce9Xwf+GH7HyilnFTzgkNrre71+riWxiHEqxjjkuYA\n", - "2Laeb3NubRy8CjAuab4BPKmUuq6U8gLvBr40vWk5uMoYy6fRWneVUr8E/BPgAj7tRE6vHowVcj/U\n", - "jR1HeOExbUfYwasYDmkcjAyHNA5GhkMaByPDIY2DkeGQxsHIcEjjYGQ4pHEwMhzSOBgZDmkcjAyH\n", - "NA5GxrhFWAAopW4DZaAHdLTWb5zGpKYNpdTAY7fbjcvlMtezszO01macnZ0NDHkd4LLamIffg1KK\n", - "paUllFID87bnOitMRBrOi7HeqrUuTGMys4J8wEtLS7jdbiKRCMvLy0QiEUKhEN1ul06nY0az2aTR\n", - "aNBsNmk2m5ydndHr9cz1MuZvE8XtduPxeMzo9Xq0220zzs7OzN/OgkCTkgbgnjuhVwXyQbtcLlwu\n", - "Fz6fj5WVFdbX10mn0yQSCUOORqNBo9GgXC5zenpKuVwGoNPpoJSi0+lc6nuQ4fV6CQQCZnQ6Her1\n", - "OrVajV6vN3OrOA1L81WlVA/4Y631n05hTlOHUsosRz6fj3g8zvb2Nk888QRbW1tUq1UzKpUK2WwW\n", - "j8cDQLvdNkvDZViZ4fcgxA+FQoTDYZaXl2m1Wiil6PV6tFqtAeLMApOS5k1a6yOlVAp4Tin1Xa31\n", - "16cxsUkhX/TS0hI+n8/8KiORCOl0mu3tbR5//HF2dnY4PT01lqVUKqG1pt1uU61WzRcl/sNlvAeP\n", - "x4PP5zMjHA4TjUaJRqNEIhHq9TpKKbrdLvV63SylskxNm0ATkUZrfdS/ZpVSX+C8teXSSSNfsFIK\n", - "r9dLIpEglUqRSqVYXV1lZ2eH7e1tVldXiUQixlfpdrs0m03c7vOPRZ53Oh263e6ArzBLDPswy8vL\n", - "xONxEokEiUSCSCRCOBw2o1gs4vP50FpTr9cH3k+32536/MYmjVIqCLi01hWlVAh4O/DbU5vZmLA/\n", - "bDHliUSCnZ0dHnvsMa5du0YqlSKZTJJKpYhEIvR6PTqdDu12m3q9bpambrdLq9Wi2+2aX++83oPt\n", - "w4TDYdLpNNeuXePatWtEo1GCwSDBYJBAIMDJyQlnZ2fU63Xy+bx5L1rrmSxVk1iaNeALfRPqBv5K\n", - "a/2VqcxqQgyv/0KaZ555hqeffppQKEQwGCQUCuHz+cyH3Gq18Pv9d1kaCWXnRRpgwHlfXl5mfX2d\n", - "J598kte97nXEYrG7lqt6vU6xWOTg4IBGo2EIM4sldWzSaK1vAa+f4lwmgu3D2D5ANBollUoZx/ep\n", - "p54a+BVrrc1VTLodfrfb7bm/F3HavV4vXq/XRHs7Ozs89dRTRCIRQ6qlpSWq1SqRSIRAIIDH45m5\n", - "DzaNkPvSIR+QECYWi5mRSqXY2dkhlUoRDodxu920221DiGazyeHhIUdHR2bs7e2Ry+Wo1+uX8n68\n", - "Xi/Ly8tmbGxskEwmiUajBAIBAOr1ukkV7O7ucnx8TLFYpFar0Wq1aLfbM4uiFp409vrvcrnw+/2s\n", - "rKyQTqdJp9Nsbm5y/fp1VldXCYfDuFwuut2uCa9LpRJ7e3tm7O/vk8/nKRQKl0qaSCRinPeNjQ1S\n", - "qZTxZTqdDrVazcxTSFMoFKjVajSbTeOHOaS5D4bzMLFYjI2NDR5//HEee+wx1tbWjKVxuVx0Oh2q\n", - "1Sq5XI5MJsPu7i63bt3i1q1b3Llzx/yCm83mpbwfmzTb29tsbm4a0tjJvGw2y97e3j0tjR1yTxsL\n", - "Txo7te71evH7/cRiMeMDPPHEEyanEQqFWFpaotPpUKlUyOVyHBwcmA/+9u3b3Llz59Leh/ggfr+f\n", - "aDTK6uoqW1tbrK+vE4/HCYVCuN1uut2uSULu7u5ycHBANpulVCrRaDRm7octPGkAY2ECgYDxAyKR\n", - "yABZfD4fLpcLrTWNRoNiscjR0RG7u7tkMhlOT09ptVqXMn+JkmREo1ESiQRra2tsbW2RSCRMlFcs\n", - "FsnlcuRyObLZLNlslkKhQKVSodVqzWVDdeFJI7vWPp+PYDBoCBOJRIjFYkSjURNJyY62kOb4+Jjd\n", - "3V1yudylkkYceImWIpEIiUSC9fV1tra2CIVCZu+rVCoNECaTyVAoFKhWq2ZZmjUeOdLIfoxtaexf\n", - "ca/Xo9FoUCqVjKWpVqvGF7gM2GkC2eqIx+Osra2xubmJy+WiVqtRr9ep1+sDpMlmsxSLRVqtlkOa\n", - "izCcl/H7/YRCIWNlpPwhHA4P1Ma0Wi0qlQqFQoFMJsPh4eFAXmbe81dK4fF4CAQCZlsgHo+bjPXa\n", - "2ppJD7TbbbM85fN5MyqVCr1eb+YblYKFI81wAZLs+MqvU/ZmAoEAbrebs7MzY0mq1SrFYpG9vT2y\n", - "2SyVSoVOp2O2COZVYDXsw9h7Y6lUihs3brCxsWGSeN1u15Rs5PN5isUi1WrVhNZ2sdg8sHCkgcEU\n", - "u9frJRgM3pc0vV6PWq1GJpMhl8txfHxsknfVapVOpzP3D932YTweD/F4nM3NTbO3tLW1RTqdJhKJ\n", - "mLzSMGkqlQqNRmNgX2weVXuw4KSxfRkhjZ05tS1NNpvlzp077O7uGksjpLFLPecBl8s14MMIaW7c\n", - "uMFrXvMaEokEsVjsoUgjlhLmV4p6IWmUUp8BfgzIaK1/qP9aHPhrYAe4Dfyk1ro0w3na8xn40CVi\n", - "isViJBIJkskkkUgEv99vHF8hzd7eHq+88gonJyfk83lqtdpMSgcuwrAfFo/HSafTXL9+naefftps\n", - "d3g8HrTWtFotarUap6enA6Sxl6e5zv8h/s1ngWeHXvsN4Dmt9VPAP/efzwUul4tQKDSwCSklD5ub\n", - "m6ytrRGJRPB4PCaJd3p6SrFYJJ/Pm/C6Xq9fWvmmXX0nDnsoFCIQCOD1eg1RTk9POTk54fj4eOAq\n", - "zu+88jLDuNDSaK2/rpS6PvTyO4Ef7T/+M+BrzIk4LpeLcDhMMpk0db6bm5tmpFIpPB4PbrfbRB3D\n", - "pKlUKtTr9UuxMvCDZGQoFCIajRrS+P1+Q5pms2lCbJswJycnZo9pXiH2XfMf8+/WtNYn/ccnnNfW\n", - "zAVLS0uEQiGSySRbW1vs7OyYzcl0Os3KyoqpWJM9pmHSNJtNWq3WlbI0wWDQkKbVatFsNs28hTCZ\n", - "TIaTkxMT9Q13HswLEzvCWms9T309l8tFMBgkHo+zsbHBtWvXWFtbMyMSiVCpVIw1qVarpva3UCiQ\n", - "z+dNOeS8CsXt8k1gwBdbWVkhGo0SDofN8iSbpaVSiePj4wErc5klG4JxSXOilFrXWh8rpdJAZpqT\n", - "ehjcby2XCjuxNFI7Yye/Zh0p2Yk7ON+A9Pv9BAIB/H4/6+vrbGxsmJFOp4nH4wSDQZRSNJtNCoUC\n", - "BwcHvPLKK2Z/rFqtXmpHhGBc0nwJ+Bng9/rXL05tRmPCJoNdgSc1vhJlzCu0tpOQgUBgoDAsnU4P\n", - "kCaZTLKyskIgEEApRaPRoFAosL+/z0svvcTx8TH5fJ5qtXopy9EwHibk/hznTm9SKbUH/BbwMeBv\n", - "lFLvox9yz3KSF8EmgVgau1hcugmGk2AzlMMdKA4LBoOsrKyYJVTIsrm5ycbGhtnuENLYluall14i\n", - "n8+bRr6FsDRa6/fc5z+9bcpzGQvDhLFJIxZGliX5Iu3Hw71BYx5lNPDYrt+VFIHkYiQ1YFsbr9dr\n", - "+soBY2kODw+5efOm6fS8KljIjPCDIG2rwWDQEGdzc9NU6IdCobsa/GWHWGprR4Xb7R4YUuIgY9iH\n", - "SSaTpqhKEnh2z3ipVDIh9VU8N/2RI400yEmVnpj7s7MzU3RuR09SBVcul6lUKlSr1ZH/n+Lo2g6v\n", - "9CQFAgHTpCdDCsUk8yu+lyxBUrZ5WSH1RXgkSePxeAx5JFnmdrsJh8Osrq4asojagpQa5HI50yg3\n", - "CuxuRxk2MeLxOCsrK8TjceLxuMnHyIaldEVI9rpUKlGtVk3D21XDQpPG9kPksU0WwCwBktupVCrG\n", - "15EOysPDQ4LBoGmSGxVSIWhfZUi/tT2G+5FkiSyXy+RyuQFL45BmCrAr705OTvD7/abJX9LxduQC\n", - "5z5HIBCg1+uZTUwZIiNiF3OPCrEuouQgVxnBYBCfz2dIOexTCVkODw/Z39/n4ODAbBU4y9MUIDW+\n", - "QhrZLZZlwC7vhB8sV36/HzhvD7G/sF6vh8/nIxKJkEwmp+LT+Hy+u557vV4zJ0k+Si5JOiMODw+5\n", - "ffs2h4eHJsx2LM0UYJPG7XYbVYWVlRXq9Trtdtv8om31K2lZHc4Ka62JRCImcppG9CTDlmiTq1LK\n", - "kEb6x21Lc/v2bVP361iaKcEmjSTr4vE4q6urA2GqXd0nX6LP57srpyKY5y9aSCMbk8OkOT09NZGU\n", - "Q5opQGttPnCXy8Xp6SlHR0f4/X601hQKhbuWBilokqu9hMhyZQs02vp1D7MTbveGdzodEz3Jddjx\n", - "FcUq2VCVUL9Wq9FoNMwO/DxLUEfBQpKm0+kMZHaPjo6MoM/x8bHJj0iuRHIn8ppENJIIlP0qCcWl\n", - "CF2+yItQq9XMqFarA8m8cDh8T9KIFo7kh6RFRUgjKYGriIUkjRRPiTOptaZWq5HL5Uxtiq1BIzUr\n", - "y8vLRKNRo6MXCATu2naQGpxisUihUKBUuriKtVgsDowbN24AGDGiYdiWRso4qtXqAGnmXew+Csat\n", - "Ef4I8HNAtv/PPqS1/sdZTdKGkEaI02g0qNVqZLPZgYo4O8kmSbWVlRWSyaQJsWOxmLmnkEa09gqF\n", - "gil8ughS6yKj2+0SDodZX1+/55cupKnVapTLZcrl8l2kucp4GEvzWeCPgD+3XtPAJ7TWn5jJrEaA\n", - "XT8jkPyMvWlpZ1wlxD06OiIejw+Ev51Oh0KhYEaxWLxwDpLFlUL14T4qe9ui1+tRLBbJZDIcHByw\n", - "v7/P4eHhlc7LDGPcGmG4QvrBNnHEzzk7OxvY06lWq8anyeVy7O/vm/pc+wsV7ZpRfBopH202m/ds\n", - "vLPFoaWJP5PJsLe3x82bN029TL1ev5LL0TAm8Wner5T6ac4Pdv/AvFpYhmFr4dkRkERYEqHYCt92\n", - "8k0cYTuCkvzJKHkb29kdLvYSAovAtSQm9/f3uXXrFoVCwXRIPMqk+STwO/3HHwU+DrxvKjMaA+KT\n", - "CGRrwMa98jP306QbtbZmOCNsE1lEoWVTslarGUuzv7/PzZs3zeakhNlXHWORRmttvEOl1KeAL09t\n", - "RlPC8Bc+y1+waOTZOn8icQKYzgLZTRcRonK5bHSK5yk5OynGIo1SKi3C08BPAN+a3pQWDxKJSTnn\n", - "+vo6sVjM7He1Wi3TWSAbkrlcjnK5TLvdvqfzfJUxTo3wh4G3KqVez3kUdQv4hZnO8opDpGfX1ta4\n", - "fv36XaSxlbdu3rzJ4eGhUa2QRN6iEAbGrxH+zAzmsrCwLc21a9cGSCOVgyKiJBuSInkm0q2LhIXL\n", - "CF8FSBQme1m2AJF0eUrxl123I86w7C3NS4Ro2nBIMwakElCG1P6KTyNbGCJ1Mpw8XCT/5V5wSDMG\n", - "pHBdNP1swqytrZmWFBFVsjPTw201iwiHNCNCKgGDwSCxWMwsTba1sZOMYmnsDVFb8mwR4ZBmDAhp\n", - "RH3L1iqWsxds/0UOIZPd7GazOdOzC2YNhzRjQNQ4ZQd9eXnZlJMCRu5M9q+KxaI5uU52s+XYwEWE\n", - "Q5oxIDXHYmnsY3MAc3ZBuVweqMuRgivZ2LwsUaVJ4ZBmDIilGSaNfbiYCCtKeYWQxhaHhMs753sS\n", - "OKQZA/dankQY8uzsbKBYXPaZpFh8kfaY7oeHEWp0MITh5WmYNI1Gg9PTU7OTLQd2NJvNhbQsw3As\n", - "zYiwZemFNKKXN3z2QjabfSRJ80BLo5TaVkr9i1Lqf5VS31ZK/XL/9bhS6jml1PeVUl9RSsXmM92r\n", - "AQm57eXJ5/OxtLRkSHM/S/Mo4KLlqQP8qtb6GeBHgF9USr2WS9QRvgwISaLRqJE6k7OxRVzRbrlt\n", - "t9sm5BYFCBGKfhQszQOXJ631MXDcf1xVSn0H2OQSdYTnDfvQDulwECn9YDA4IE0iFYRSmyylptIu\n", - "vKh5mWE8tE/TLy5/A/CfXKKO8GVABAKkFSaVShGLxQiFQqZDU6Iiux5YSGOLRT7ylkaglAoDfwf8\n", - "ita6MtQDPVcd4XlDLM3y8jKJRIJ0Ok0ymSQWixEMBvF6vYYMdhmEbWmktfdRIAw8XOWeh3PC/IXW\n", - "WqRfL11HeJ4Q0iSTSaOZJ2G2FI7b8mfVatUcQGpbF1uE2h5298Ii5HAuip4U8Gng/7TWf2D9J9ER\n", - "hiuiIzwr2JYmmUySTqdJJBIsLy8bta1OpzOQAS6Xy3cd2GGfHS7FW16v12jXiGzK/TokrhIusjRv\n", - "An4KeFEp9Xz/tQ9xxXSEZw3xaRKJBBsbG/ckjew13Ys0tq6wLRUrQ0omhltxriouip7+nftboyuh\n", - "IzxriIafbWlERmTY0sjZmOVy2RzgJfcY1suxdXNEAWMRCANORvihIF+4dGfaywkMhtoirmjndoY1\n", - "cWSpEjLVajWjHnFVxRltOKSZATweD6FQyEjbh0KhgfPChyv75ORe6SO/6s6wQ5opYFjDzy4HbbVa\n", - "rKysmKMSk8mkadMVy+Tz+YyY0qPgCDsYESJ0LZZGaz1wiMbGxoZxnBuNhjm7qVqtksvlHNK8WuB2\n", - "u40sbSwWw+VyDTwXSxOJRPD5fCZ7LMJGktNxHOFXESSPI1YmFouZRF+9Xjc5GXF6S6US+XzejKOj\n", - "IwqFwiMvNeLAgtfrNYdjBIPBu9Q+7VNe6vW6kRqRowbl2OR6vX7lnWBwSDMVSAgeDAYHBBblKod1\n", - "5HK5AX2ag4MD9vb2zHmbV1WhfBgOaR4Cw+KNtg8ie0f2LrfdFNfpdMjlcmSzWTOOjo7IZDLm8Ay5\n", - "n11wfpXhkOYCiD6xHA/o9/tN6CyJOFusWvSBbW3hUqk0MMSXkWo+u+tyEeCQ5gIIafL5vJFGs4/V\n", - "cblcxuGVIb1OoitsC1MPX6Wib5FEAR5IGqXUNudSsKucCxj9idb6Dy9TR3je0FrTaDTI5/MAZimR\n", - "SCkQCBgtYDmh7uTkxJylfXx8bEQf5Tq8fC1aD9RFlkZqhF/oF2L9j1LqOa6QjvA8ID6NUopOpzNw\n", - "bpMcvWOPTCYzMERexK7esx3lRcO4NcJwhXSEZw0RrxanVyRERFpfcjKyTA0fKSj+yrwOk5811MNO\n", - "vl8j/K/AM8AHgPcCp9xHR/hRKgGVsyZlDJ8iJ5GP5GZsEsnxO3YYDpMd6TwvaK3vaRgeijT9pelr\n", - "wO9qrb+olFrlB/7MR4G01vp9Q39zdT+NEWGXMSil7jr4azgvYyug20vQIhDFxtik6dcI/z3wD0Ml\n", - "n/LfrwNflsM2rNcX45NxcF/cjzRj1Qj3i8kFr3od4VcbHmhplFJvBv4NeJHziAngN4H3AAM6wlYf\n", - "lPytY2kWHBP5NOPAIc3iY6zlyYGDe8EhjYOR4ZDGwchwSONgZDikcTAyHNI4GBkOaRyMjJnlaRw8\n", - "unAsjYOR4ZDGwciYKWmUUs8qpb6rlHpJKfXBKdzvtlLqRaXU80qp/xrj7z+jlDpRSn3Lem1sedv7\n", - "3O8jSqn9/hyfV0o9O8L9pirB+4D7jT1H4O7m9WkNwAW8DFwHPMALwGsnvOctID7B37+Fc7HJb1mv\n", - "/T7w6/3HHwQ+NuH9Pgz82pjzWwde338cBr4HvHbcOT7gfmPPUWs9U0vzRuBlrfVtrXUH+Dzwrinc\n", - "d+wyU63114Hi0Mvv5FzWlv71xye8H4w5R631sdb6hf7jKmBL8I48xwfcb+w5wmyXp01gz3q+zw8m\n", - "PC408FWl1DeUUj8/4b0Es5C3fb9S6ptKqU+Pq+Y+bQle637/MekcZ0maWcTyb9JavwF4B+fq6W+Z\n", - "5s31uR2fdN6fBB7jvN7oCPj4qDcYluCddI79+/1t/37VSec4S9IcANvW823Orc3Y0Fof9a9Z4Auc\n", - "L4GT4kQptQ6mInEieVutdUb3AXxq1Dk+SIJ3nDla9/tLud+kc5wlab4BPKmUuq6U8gLv5lxKdiwo\n", - "pYJKqeX+4xDwdqZTZjpVedtJSmGnLcE7s3LdSaKZh/De38G5x/4y512Yk9zrMc4jsBeAb49zP+Bz\n", - "wCHQ5tzfei8QB74KfB/4ChCb4H4/y3lH6ovAN/tf7toI93szcNZ/j8/3x7PjzvE+93vHJHPUWjvb\n", - "CA5Gh5MRdjAyHNI4GBkOaRyMDIc0DkaGQxoHI8MhjYOR4ZDGwchwSONgZPw/UDzRgG/E2K8AAAAA\n", - "SUVORK5CYII=\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGNNJREFUeJztnVmM7Fldxz+na1+6qrqW7q5ebt+ZuTMDTEzgBU2AyAMh\nQ0xAXyQkRoNofFA0SiLig6D4gCYQow9EZYlbQKOBgInKYETxwQUzw4CyzMxdeu/au/a1jw9dv8Op\nukvfWrvrzv+bnPyram7/51TVt37n9/ud3+97lNYaBw5GwdJlT8DB4sEhjYOR4ZDGwchwSONgZDik\ncTAyHNI4GBljk0Yp9axS6rtKqZeUUh+c5qQcXG2ocfI0SikX8D3gbcAB8N/Ae7TW35nu9BxcRYxr\nad4IvKy1vq217gCfB941vWk5uMpwj/l3m8Ce9Xwf+GH7HyilnFTzgkNrre71+riWxiHEqxjjkuYA\n2Laeb3NubRy8CjAuab4BPKmUuq6U8gLvBr40vWk5uMoYy6fRWneVUr8E/BPgAj7tRE6vHowVcj/U\njR1HeOExbUfYwasYDmkcjAyHNA5GhkMaByPDIY2DkeGQxsHIcEjjYGQ4pHEwMhzSOBgZDmkcjAyH\nNA5GxrhFWAAopW4DZaAHdLTWb5zGpKYNpdTAY7fbjcvlMtezszO01macnZ0NDHkd4LLamIffg1KK\npaUllFID87bnOitMRBrOi7HeqrUuTGMys4J8wEtLS7jdbiKRCMvLy0QiEUKhEN1ul06nY0az2aTR\naNBsNmk2m5ydndHr9cz1MuZvE8XtduPxeMzo9Xq0220zzs7OzN/OgkCTkgbgnjuhVwXyQbtcLlwu\nFz6fj5WVFdbX10mn0yQSCUOORqNBo9GgXC5zenpKuVwGoNPpoJSi0+lc6nuQ4fV6CQQCZnQ6Her1\nOrVajV6vN3OrOA1L81WlVA/4Y631n05hTlOHUsosRz6fj3g8zvb2Nk888QRbW1tUq1UzKpUK2WwW\nj8cDQLvdNkvDZViZ4fcgxA+FQoTDYZaXl2m1Wiil6PV6tFqtAeLMApOS5k1a6yOlVAp4Tin1Xa31\n16cxsUkhX/TS0hI+n8/8KiORCOl0mu3tbR5//HF2dnY4PT01lqVUKqG1pt1uU61WzRcl/sNlvAeP\nx4PP5zMjHA4TjUaJRqNEIhHq9TpKKbrdLvV63SylskxNm0ATkUZrfdS/ZpVSX+C8teXSSSNfsFIK\nr9dLIpEglUqRSqVYXV1lZ2eH7e1tVldXiUQixlfpdrs0m03c7vOPRZ53Oh263e6ArzBLDPswy8vL\nxONxEokEiUSCSCRCOBw2o1gs4vP50FpTr9cH3k+32536/MYmjVIqCLi01hWlVAh4O/DbU5vZmLA/\nbDHliUSCnZ0dHnvsMa5du0YqlSKZTJJKpYhEIvR6PTqdDu12m3q9bpambrdLq9Wi2+2aX++83oPt\nw4TDYdLpNNeuXePatWtEo1GCwSDBYJBAIMDJyQlnZ2fU63Xy+bx5L1rrmSxVk1iaNeALfRPqBv5K\na/2VqcxqQgyv/0KaZ555hqeffppQKEQwGCQUCuHz+cyH3Gq18Pv9d1kaCWXnRRpgwHlfXl5mfX2d\nJ598kte97nXEYrG7lqt6vU6xWOTg4IBGo2EIM4sldWzSaK1vAa+f4lwmgu3D2D5ANBollUoZx/ep\np54a+BVrrc1VTLodfrfb7bm/F3HavV4vXq/XRHs7Ozs89dRTRCIRQ6qlpSWq1SqRSIRAIIDH45m5\nDzaNkPvSIR+QECYWi5mRSqXY2dkhlUoRDodxu920221DiGazyeHhIUdHR2bs7e2Ry+Wo1+uX8n68\nXi/Ly8tmbGxskEwmiUajBAIBAOr1ukkV7O7ucnx8TLFYpFar0Wq1aLfbM4uiFp409vrvcrnw+/2s\nrKyQTqdJp9Nsbm5y/fp1VldXCYfDuFwuut2uCa9LpRJ7e3tm7O/vk8/nKRQKl0qaSCRinPeNjQ1S\nqZTxZTqdDrVazcxTSFMoFKjVajSbTeOHOaS5D4bzMLFYjI2NDR5//HEee+wx1tbWjKVxuVx0Oh2q\n1Sq5XI5MJsPu7i63bt3i1q1b3Llzx/yCm83mpbwfmzTb29tsbm4a0tjJvGw2y97e3j0tjR1yTxsL\nTxo7te71evH7/cRiMeMDPPHEEyanEQqFWFpaotPpUKlUyOVyHBwcmA/+9u3b3Llz59Leh/ggfr+f\naDTK6uoqW1tbrK+vE4/HCYVCuN1uut2uSULu7u5ycHBANpulVCrRaDRm7octPGkAY2ECgYDxAyKR\nyABZfD4fLpcLrTWNRoNiscjR0RG7u7tkMhlOT09ptVqXMn+JkmREo1ESiQRra2tsbW2RSCRMlFcs\nFsnlcuRyObLZLNlslkKhQKVSodVqzWVDdeFJI7vWPp+PYDBoCBOJRIjFYkSjURNJyY62kOb4+Jjd\n3V1yudylkkYceImWIpEIiUSC9fV1tra2CIVCZu+rVCoNECaTyVAoFKhWq2ZZmjUeOdLIfoxtaexf\nca/Xo9FoUCqVjKWpVqvGF7gM2GkC2eqIx+Osra2xubmJy+WiVqtRr9ep1+sDpMlmsxSLRVqtlkOa\nizCcl/H7/YRCIWNlpPwhHA4P1Ma0Wi0qlQqFQoFMJsPh4eFAXmbe81dK4fF4CAQCZlsgHo+bjPXa\n2ppJD7TbbbM85fN5MyqVCr1eb+YblYKFI81wAZLs+MqvU/ZmAoEAbrebs7MzY0mq1SrFYpG9vT2y\n2SyVSoVOp2O2COZVYDXsw9h7Y6lUihs3brCxsWGSeN1u15Rs5PN5isUi1WrVhNZ2sdg8sHCkgcEU\nu9frJRgM3pc0vV6PWq1GJpMhl8txfHxsknfVapVOpzP3D932YTweD/F4nM3NTbO3tLW1RTqdJhKJ\nmLzSMGkqlQqNRmNgX2weVXuw4KSxfRkhjZ05tS1NNpvlzp077O7uGksjpLFLPecBl8s14MMIaW7c\nuMFrXvMaEokEsVjsoUgjlhLmV4p6IWmUUp8BfgzIaK1/qP9aHPhrYAe4Dfyk1ro0w3na8xn40CVi\nisViJBIJkskkkUgEv99vHF8hzd7eHq+88gonJyfk83lqtdpMSgcuwrAfFo/HSafTXL9+naefftps\nd3g8HrTWtFotarUap6enA6Sxl6e5zv8h/s1ngWeHXvsN4Dmt9VPAP/efzwUul4tQKDSwCSklD5ub\nm6ytrRGJRPB4PCaJd3p6SrFYJJ/Pm/C6Xq9fWvmmXX0nDnsoFCIQCOD1eg1RTk9POTk54fj4eOAq\nzu+88jLDuNDSaK2/rpS6PvTyO4Ef7T/+M+BrzIk4LpeLcDhMMpk0db6bm5tmpFIpPB4PbrfbRB3D\npKlUKtTr9UuxMvCDZGQoFCIajRrS+P1+Q5pms2lCbJswJycnZo9pXiH2XfMf8+/WtNYn/ccnnNfW\nzAVLS0uEQiGSySRbW1vs7OyYzcl0Os3KyoqpWJM9pmHSNJtNWq3WlbI0wWDQkKbVatFsNs28hTCZ\nTIaTkxMT9Q13HswLEzvCWms9T309l8tFMBgkHo+zsbHBtWvXWFtbMyMSiVCpVIw1qVarpva3UCiQ\nz+dNOeS8CsXt8k1gwBdbWVkhGo0SDofN8iSbpaVSiePj4wErc5klG4JxSXOilFrXWh8rpdJAZpqT\nehjcby2XCjuxNFI7Yye/Zh0p2Yk7ON+A9Pv9BAIB/H4/6+vrbGxsmJFOp4nH4wSDQZRSNJtNCoUC\nBwcHvPLKK2Z/rFqtXmpHhGBc0nwJ+Bng9/rXL05tRmPCJoNdgSc1vhJlzCu0tpOQgUBgoDAsnU4P\nkCaZTLKyskIgEEApRaPRoFAosL+/z0svvcTx8TH5fJ5qtXopy9EwHibk/hznTm9SKbUH/BbwMeBv\nlFLvox9yz3KSF8EmgVgau1hcugmGk2AzlMMdKA4LBoOsrKyYJVTIsrm5ycbGhtnuENLYluall14i\nn8+bRr6FsDRa6/fc5z+9bcpzGQvDhLFJIxZGliX5Iu3Hw71BYx5lNPDYrt+VFIHkYiQ1YFsbr9dr\n+soBY2kODw+5efOm6fS8KljIjPCDIG2rwWDQEGdzc9NU6IdCobsa/GWHWGprR4Xb7R4YUuIgY9iH\nSSaTpqhKEnh2z3ipVDIh9VU8N/2RI400yEmVnpj7s7MzU3RuR09SBVcul6lUKlSr1ZH/n+Lo2g6v\n9CQFAgHTpCdDCsUk8yu+lyxBUrZ5WSH1RXgkSePxeAx5JFnmdrsJh8Osrq4asojagpQa5HI50yg3\nCuxuRxk2MeLxOCsrK8TjceLxuMnHyIaldEVI9rpUKlGtVk3D21XDQpPG9kPksU0WwCwBktupVCrG\n15EOysPDQ4LBoGmSGxVSIWhfZUi/tT2G+5FkiSyXy+RyuQFL45BmCrAr705OTvD7/abJX9LxduQC\n5z5HIBCg1+uZTUwZIiNiF3OPCrEuouQgVxnBYBCfz2dIOexTCVkODw/Z39/n4ODAbBU4y9MUIDW+\nQhrZLZZlwC7vhB8sV36/HzhvD7G/sF6vh8/nIxKJkEwmp+LT+Hy+u557vV4zJ0k+Si5JOiMODw+5\nffs2h4eHJsx2LM0UYJPG7XYbVYWVlRXq9Trtdtv8om31K2lZHc4Ka62JRCImcppG9CTDlmiTq1LK\nkEb6x21Lc/v2bVP361iaKcEmjSTr4vE4q6urA2GqXd0nX6LP57srpyKY5y9aSCMbk8OkOT09NZGU\nQ5opQGttPnCXy8Xp6SlHR0f4/X601hQKhbuWBilokqu9hMhyZQs02vp1D7MTbveGdzodEz3Jddjx\nFcUq2VCVUL9Wq9FoNMwO/DxLUEfBQpKm0+kMZHaPjo6MoM/x8bHJj0iuRHIn8ppENJIIlP0qCcWl\nCF2+yItQq9XMqFarA8m8cDh8T9KIFo7kh6RFRUgjKYGriIUkjRRPiTOptaZWq5HL5Uxtiq1BIzUr\ny8vLRKNRo6MXCATu2naQGpxisUihUKBUuriKtVgsDowbN24AGDGiYdiWRso4qtXqAGnmXew+Csat\nEf4I8HNAtv/PPqS1/sdZTdKGkEaI02g0qNVqZLPZgYo4O8kmSbWVlRWSyaQJsWOxmLmnkEa09gqF\ngil8ughS6yKj2+0SDodZX1+/55cupKnVapTLZcrl8l2kucp4GEvzWeCPgD+3XtPAJ7TWn5jJrEaA\nXT8jkPyMvWlpZ1wlxD06OiIejw+Ev51Oh0KhYEaxWLxwDpLFlUL14T4qe9ui1+tRLBbJZDIcHByw\nv7/P4eHhlc7LDGPcGmG4QvrBNnHEzzk7OxvY06lWq8anyeVy7O/vm/pc+wsV7ZpRfBopH202m/ds\nvLPFoaWJP5PJsLe3x82bN029TL1ev5LL0TAm8Wner5T6ac4Pdv/AvFpYhmFr4dkRkERYEqHYCt92\n8k0cYTuCkvzJKHkb29kdLvYSAovAtSQm9/f3uXXrFoVCwXRIPMqk+STwO/3HHwU+DrxvKjMaA+KT\nCGRrwMa98jP306QbtbZmOCNsE1lEoWVTslarGUuzv7/PzZs3zeakhNlXHWORRmttvEOl1KeAL09t\nRlPC8Bc+y1+waOTZOn8icQKYzgLZTRcRonK5bHSK5yk5OynGIo1SKi3C08BPAN+a3pQWDxKJSTnn\n+vo6sVjM7He1Wi3TWSAbkrlcjnK5TLvdvqfzfJUxTo3wh4G3KqVez3kUdQv4hZnO8opDpGfX1ta4\nfv36XaSxlbdu3rzJ4eGhUa2QRN6iEAbGrxH+zAzmsrCwLc21a9cGSCOVgyKiJBuSInkm0q2LhIXL\nCF8FSBQme1m2AJF0eUrxl123I86w7C3NS4Ro2nBIMwakElCG1P6KTyNbGCJ1Mpw8XCT/5V5wSDMG\npHBdNP1swqytrZmWFBFVsjPTw201iwiHNCNCKgGDwSCxWMwsTba1sZOMYmnsDVFb8mwR4ZBmDAhp\nRH3L1iqWsxds/0UOIZPd7GazOdOzC2YNhzRjQNQ4ZQd9eXnZlJMCRu5M9q+KxaI5uU52s+XYwEWE\nQ5oxIDXHYmnsY3MAc3ZBuVweqMuRgivZ2LwsUaVJ4ZBmDIilGSaNfbiYCCtKeYWQxhaHhMs753sS\nOKQZA/dankQY8uzsbKBYXPaZpFh8kfaY7oeHEWp0MITh5WmYNI1Gg9PTU7OTLQd2NJvNhbQsw3As\nzYiwZemFNKKXN3z2QjabfSRJ80BLo5TaVkr9i1Lqf5VS31ZK/XL/9bhS6jml1PeVUl9RSsXmM92r\nAQm57eXJ5/OxtLRkSHM/S/Mo4KLlqQP8qtb6GeBHgF9USr2WS9QRvgwISaLRqJE6k7OxRVzRbrlt\nt9sm5BYFCBGKfhQszQOXJ631MXDcf1xVSn0H2OQSdYTnDfvQDulwECn9YDA4IE0iFYRSmyylptIu\nvKh5mWE8tE/TLy5/A/CfXKKO8GVABAKkFSaVShGLxQiFQqZDU6Iiux5YSGOLRT7ylkaglAoDfwf8\nita6MtQDPVcd4XlDLM3y8jKJRIJ0Ok0ymSQWixEMBvF6vYYMdhmEbWmktfdRIAw8XOWeh3PC/IXW\nWqRfL11HeJ4Q0iSTSaOZJ2G2FI7b8mfVatUcQGpbF1uE2h5298Ii5HAuip4U8Gng/7TWf2D9J9ER\nhiuiIzwr2JYmmUySTqdJJBIsLy8bta1OpzOQAS6Xy3cd2GGfHS7FW16v12jXiGzK/TokrhIusjRv\nAn4KeFEp9Xz/tQ9xxXSEZw3xaRKJBBsbG/ckjew13Ys0tq6wLRUrQ0omhltxriouip7+nftboyuh\nIzxriIafbWlERmTY0sjZmOVy2RzgJfcY1suxdXNEAWMRCANORvihIF+4dGfaywkMhtoirmjndoY1\ncWSpEjLVajWjHnFVxRltOKSZATweD6FQyEjbh0KhgfPChyv75ORe6SO/6s6wQ5opYFjDzy4HbbVa\nrKysmKMSk8mkadMVy+Tz+YyY0qPgCDsYESJ0LZZGaz1wiMbGxoZxnBuNhjm7qVqtksvlHNK8WuB2\nu40sbSwWw+VyDTwXSxOJRPD5fCZ7LMJGktNxHOFXESSPI1YmFouZRF+9Xjc5GXF6S6US+XzejKOj\nIwqFwiMvNeLAgtfrNYdjBIPBu9Q+7VNe6vW6kRqRowbl2OR6vX7lnWBwSDMVSAgeDAYHBBblKod1\n5HK5AX2ag4MD9vb2zHmbV1WhfBgOaR4Cw+KNtg8ie0f2LrfdFNfpdMjlcmSzWTOOjo7IZDLm8Ay5\nn11wfpXhkOYCiD6xHA/o9/tN6CyJOFusWvSBbW3hUqk0MMSXkWo+u+tyEeCQ5gIIafL5vJFGs4/V\ncblcxuGVIb1OoitsC1MPX6Wib5FEAR5IGqXUNudSsKucCxj9idb6Dy9TR3je0FrTaDTI5/MAZimR\nSCkQCBgtYDmh7uTkxJylfXx8bEQf5Tq8fC1aD9RFlkZqhF/oF2L9j1LqOa6QjvA8ID6NUopOpzNw\nbpMcvWOPTCYzMERexK7esx3lRcO4NcJwhXSEZw0RrxanVyRERFpfcjKyTA0fKSj+yrwOk5811MNO\nvl8j/K/AM8AHgPcCp9xHR/hRKgGVsyZlDJ8iJ5GP5GZsEsnxO3YYDpMd6TwvaK3vaRgeijT9pelr\nwO9qrb+olFrlB/7MR4G01vp9Q39zdT+NEWGXMSil7jr4azgvYyug20vQIhDFxtik6dcI/z3wD0Ml\nn/LfrwNflsM2rNcX45NxcF/cjzRj1Qj3i8kFr3od4VcbHmhplFJvBv4NeJHziAngN4H3AAM6wlYf\nlPytY2kWHBP5NOPAIc3iY6zlyYGDe8EhjYOR4ZDGwchwSONgZDikcTAyHNI4GBkOaRyMjJnlaRw8\nunAsjYOR4ZDGwciYKWmUUs8qpb6rlHpJKfXBKdzvtlLqRaXU80qp/xrj7z+jlDpRSn3Lem1sedv7\n3O8jSqn9/hyfV0o9O8L9pirB+4D7jT1H4O7m9WkNwAW8DFwHPMALwGsnvOctID7B37+Fc7HJb1mv\n/T7w6/3HHwQ+NuH9Pgz82pjzWwde338cBr4HvHbcOT7gfmPPUWs9U0vzRuBlrfVtrXUH+Dzwrinc\nd+wyU63114Hi0Mvv5FzWlv71xye8H4w5R631sdb6hf7jKmBL8I48xwfcb+w5wmyXp01gz3q+zw8m\nPC408FWl1DeUUj8/4b0Es5C3fb9S6ptKqU+Pq+Y+bQle637/MekcZ0maWcTyb9JavwF4B+fq6W+Z\n5s31uR2fdN6fBB7jvN7oCPj4qDcYluCddI79+/1t/37VSec4S9IcANvW823Orc3Y0Fof9a9Z4Auc\nL4GT4kQptQ6mInEieVutdUb3AXxq1Dk+SIJ3nDla9/tLud+kc5wlab4BPKmUuq6U8gLv5lxKdiwo\npYJKqeX+4xDwdqZTZjpVedtJSmGnLcE7s3LdSaKZh/De38G5x/4y512Yk9zrMc4jsBeAb49zP+Bz\nwCHQ5tzfei8QB74KfB/4ChCb4H4/y3lH6ovAN/tf7toI93szcNZ/j8/3x7PjzvE+93vHJHPUWjvb\nCA5Gh5MRdjAyHNI4GBkOaRyMDIc0DkaGQxoHI8MhjYOR4ZDGwchwSONgZPw/UDzRgG/E2K8AAAAA\nSUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4851,89 +1019,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEQZJREFUeJzt3X2QXmV5x/HfL7ub3SVvJE2QEiKBQFLIaIWaDCBCqLRQ\n", - "RtC2VqStUtux00FrSoUR+aN/MC1amY7oOHTGQlGwalu0iNOCUEowYiUCCS9ZJIEhJUAhUEiWQF52\n", - "w9U/nmfDZtmX+87Jvc9z4vczs5PnnL2ec9977rPPXjkv9+WIEAAAAPbflFZ3AAAAoO5IqAAAACoi\n", - "oQIAAKiIhAoAAKAiEioAAICKSKgAAAAq6mxl47aZswEAANRGRHi09UUTKtvnSLpGUoek6yLib0fG\n", - "zJ8//y3v6+/v18yZM/dZlzNfVu7cWnv27CkSW6rPObH2qON+QLY9lh07dqi3t3e/t1tqPEpuux3G\n", - "GgDQOsUu+dnukPRVSedIOkHShbaPL9UeAABAq5S8h2q5pCciYlNEDEj6jqQPFGwPAACgJUomVPMl\n", - "bR62/Exz3YS6u7uLdAiTo7OzpbfmAQAw6UomVPt98wcJVb11dXW1ugsAAEyqkqcSnpW0YNjyAjXO\n", - "Uu2jv79/7+vu7m6SKQAAUDslE6r7JR1ne6Gk5yRdIOnCkUEjn+YDAACom2IJVUQM2v6UpB+qMW3C\n", - "9RHxWKn2AAAAWqXo3cMRcZuk20q2AQAA0Gotfxxr2rRpSXFvvPFG8jZzYiVpcHCwSGypSSTrOPFl\n", - "qfHLnfiyHSbVZLJOADj4UMsPAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpIqAAA\n", - "ACoioQIAAKiIhAoAAKAiEioAAICKSKgAAAAqanktv9xacylsZ8V3dXUlx3Z2pu+yUvXrStXQy912\n", - "qRqIpWKlcnUCc2Jzj88SfdifeADA2IqeobK9wPbdttfbftT2p0u2BwAA0Aqlz1ANSLokItbZni7p\n", - "Adt3RsRjhdsFAACYNEXPUEXE8xGxrvl6u6THJB1Rsk0AAIDJNmk3pdteKOlESfdNVpsAAACTYVIS\n", - "qublvpslrWyeqQIAADhoFH/Kz3aXpO9K+mZE3DLy+y+//PLe1729vert7S3dJQAAgAOqaELlxvPh\n", - "10vqi4hrRouZM2dOyS4AAAAUV/qS33sk/aGkM22vbX6dU7hNAACASVX0DFVE/FjMxg4AAA5yJDsA\n", - "AAAVtbz0zK5du5Licsp15Jb2yCnBkVvKpYSSfZgyJT3HzinDM3Xq1OTYkiVRSu27digns3v37qxt\n", - "DwwMJMeWKndUKvZgL6tT6njL3Xap8kx4U+5Yl/pbWbe/k63AGSoAAICKSKgAAAAqIqECAACoiIQK\n", - "AACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpIqAAAACpqeemZVDmlL3J1dHQkx3Z1\n", - "dRXpQ6kSDjmlZKS8EjE5254+fXpy7KxZs5JjZ8+enRwrST09PcmxOaVZckotzJ07Nzl2586dybEv\n", - "vfRScqwkvfjii8mx06ZNS45dvHhxkdicPjz99NPJsZL05JNPFoldtGhRcux5552XHLt8+fLkWCmv\n", - "xEjOcb958+bk2NWrVyfHbtq0KTn24osvTo6VpCVLliTH5hxzOfutr68vOfaqq65KjpXyxmTevHnJ\n", - "sQsXLkyOPfvss5Njly1blhyb018p7+916t/V8f7ujZlQ2f5dSSFptN/EiIjvpTRuu0PS/ZKeiYj0\n", - "TwwAAICaGO8M1XlqJFRjSUqoJK2U1CdpRmqnAAAA6mTMhCoi/qjqxm0fKelcSX8j6S+rbg8AAKAd\n", - "TXgTjO3DbV9v+/bm8gm2/yRx+1+SdJmk9BtMAAAAaiblruKvS7pD0hHN5Y2SLpnoTbbfL2lLRKzV\n", - "6PdhAQAAHBRSnvKbGxH/bPtySYqIAduDCe87VdL5ts+V1CNppu0bI+Jjw4O2bdu293V3d3fWU1gA\n", - "AAClrFq1SqtWrUqKTUmottv+paEF2ydL2jZOvCQpIq6QdEXzPWdIunRkMiXlPSIPAAAwWVasWKEV\n", - "K1bsXb7yyivHjE1JqD4j6QeSjrH9E0nzJH1oP/qVPnkSAABAjUyYUEXEA7ZPl7REjXuhHo+I9BnM\n", - "Gtu4R9I9+9dFAACA9jZhQmW7V9LFkk5T4yzTatt/HxHpUzgDAAAcxFIu+d0oqV/SV9Q4Q/X7km6S\n", - "9HsF+wUAAFAbnqh+je2+iDhhonX71bgdhx9+eFJsTi2/nFp3Ul4dtpxt52w3p9ZWqdiSSu23wcGU\n", - "B07flHMc5fSj1DFUx7Fuh/0GAKVExKgftinzUD1o+5ShheZTfg8cqI4BAADU3XjFkR8ZFnOv7c1q\n", - "3EP1dkmPT0LfAAAAamGi4sgAAACYwHjFkTcNX7Z9mBozngMAAGCYlOLI59veKOkpNeaS2iTptsL9\n", - "AgAAqI2Um9L/WtIpkjZExNGS3ifpvqK9AgAAqJGUhGogIl6SNMV2R0TcLendhfsFAABQGykTe75i\n", - "e4ak1ZL+yfYWSdvLdgsAAKA+Us5QfVDS65IukXS7pCfEE4AAAAB7pRRHHjobtUfS14v2BgAAoIbG\n", - "m9hzuxoTeY4mImLmgehAaimQnLIaHR0d+9udlilVgqNkGZ6c2JySL6XKw+Ruu9R+LlWGJxelXADg\n", - "wBlvHqrpVTdu+1BJ10laqkZy9scR8dOq2wUAAGgnKTelV/FlSf8RER+y3SlpWuH2AAAAJl2xhMr2\n", - "LEnvjYiLJCkiBiVtK9UeAABAq6Q85be/jpb0ou0bbD9o+x9sH1KwPQAAgJYomVB1SjpJ0rURcZKk\n", - "1yRdXrA9AACAliiZUD0j6ZmI+Flz+WY1Eqx9vPbaa3u/du/eXbA7AAAAZRS7hyoinre92fbiiNgg\n", - "6SxJ60fGTZvGfeoAAKDeSj/l9+dqlKuZKulJSR8v3B4AAMCkK5pQRcRDkpaVbAMAAKDVSt5DBQAA\n", - "8Auh9CW/CQ0ODibFTZmSnvvlltTIKVVTKjbn5ysV2y66u7uTY2fNmpW17Zkz0ysm9fT0JMfu3Lkz\n", - "OXbz5s3JsVu3bi3SB0nFHgLp7Ez/WMm5hzLnuOjt7U2OlfJ+T3L2c86+yNHf358Vn/OZmPqZLEkD\n", - "AwPJsbt27UqOLVUiKnfbOaWfco6hrq6u5NjcY6hUn0v1Ied4y4mVypTXGu9nq99fWwAAgDZDQgUA\n", - "AFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFZFQAQAAVERCBQAAUJFLTM2e\n", - "3Lgdhx56aGpsznaz+lGqlEtOP3LKC5Qsw1NqP+eUIsgpUZETK+WVLihV/iJn/HKOi9zjPqdsSM6+\n", - "KLXfWvlZNVzOfm6H0h65co+jVKXGr12Oi3ZR6vicOnVqcmzOmOR8DuUe9wWPuVF3ctEzVLY/Z3u9\n", - "7Udsf8t2ejEuAACAmiiWUNleKOkTkk6KiHdI6pD0kVLtAQAAtEqZUugN/ZIGJB1ie4+kQyQ9W7A9\n", - "AACAlih2hioiXpb0d5KelvScpK0R8Z+l2gMAAGiVkpf8Fkn6C0kLJR0habrtPyjVHgAAQKuUvCn9\n", - "3ZJ+EhH/FxGDkr4n6dSRQTt27Nj7lXO3PwAAQLsomVD9XNLJtnvdeI7zLEl9I4N6e3v3fnV1dRXs\n", - "DgAAQBkl76F6SNKNku6X9HBz9ddKtQcAANAqJZ/yU0R8UdIXS7YBAADQapSeAQAAqIiECgAAoKKi\n", - "l/xSzJgxIykupyZPyVp+ObXVStVhy6mplLsvOjo6kmN7enqytp0qp17T66+/nrXtnFp+OT/f7Nmz\n", - "k2N7e3uTY+fNm5cce8wxxyTHStKSJUuSY3P228aNG5Nj+/re8pzKmPr7+5NjDzvssORYKW/fLV26\n", - "NDk25+e79dZbk2M3bNiQHCvlfX7mHPeLFi1Kjj3rrLOSYxcvXpwce+211ybHStJTTz2VHJvz+ZLz\n", - "2Xnssccmx1566aXJsZJ01FFHJcc++2z6XNs5v9d33XVXcmzO78i2bduSY6W8z63UPGDHjh1jbyO5\n", - "NQAAAIyKhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgorZMqHbu3NnqLqCC3Edb0T7Wr1/f\n", - "6i6ggpzHxNFecqYFQXtqy4Rq165dre4CKiChqi8SqnojoaqvV199tdVdQEVtmVABAADUCQkVAABA\n", - "Rc4pSXDAG7db1zgAAECmiBi1pltLEyoAAICDAZf8AAAAKiKhAgAAqKjtEirb59j+ue2Ntj/b6v5g\n", - "bLb/0fYLth8Ztm6O7Tttb7B9h+1DW9lHjM32Att3215v+1Hbn26uZwzbnO0e2/fZXme7z/bnm+sZ\n", - "uxqx3WF7re0fNJcZvxprq4TKdoekr0o6R9IJki60fXxre4Vx3KDGWA13uaQ7I2KxpLuay2hPA5Iu\n", - "iYilkk6W9Mnm7xtj2OYiYqekMyPiXZLeKelM26eJsaublZL6JA3dzMz41VhbJVSSlkt6IiI2RcSA\n", - "pO9I+kCL+4QxRMRqSa+MWH2+pG80X39D0gcntVNIFhHPR8S65uvtkh6TNF+MYS1ExOvNl1Mldajx\n", - "u8jY1YTtIyWdK+k6SUNPjTF+NdZuCdV8SZuHLT/TXIf6eFtEvNB8/YKkt7WyM0hje6GkEyXdJ8aw\n", - "FmxPsb1OjTG6OyLWi7Grky9JukzSG8PWMX411m4JFXM4HESiMScHY9rmbE+X9F1JKyNin/oXjGH7\n", - "iog3mpf8jpR0uu0zR3yfsWtTtt8vaUtErNWbZ6f2wfjVT7slVM9KWjBseYEaZ6lQHy/YPlySbP+y\n", - "pC0t7g/GYbtLjWTqpoi4pbmaMayRiNgm6d8l/ZoYu7o4VdL5tp+S9G1Jv277JjF+tdZuCdX9ko6z\n", - "vdD2VEkXSLq1xX1CnlslXdR8fZGkW8aJRQvZtqTrJfVFxDXDvsUYtjnbc4eeALPdK+k3JK0VY1cL\n", - "EXFFRCyIiKMlfUTSf0XER8X41VrbzZRu+7ckXaPGTZbXR8TnW9wljMH2tyWdIWmuGtf7/0rS9yX9\n", - "i6S3S9ok6cMRsbVVfcTYmk+F/UjSw3rz0sLnJK0RY9jWbL9DjZuWpzS/boqIq23PEWNXK7bPkPSZ\n", - "iDif8au3tkuoAAAA6qbdLvkBAADUDgkVAABARSRUAAAAFZFQAQAAVERCBQAAUBEJFQAAQEUkVABa\n", - "zva9zX+Psn3hAd72FaO1BQAHEvNQAWgbtleoMcnheRnv6YyIwXG+/2pEzDgQ/QOAsXCGCkDL2d7e\n", - "fPkFSe+1vdb2SttTbF9te43th2z/aTN+he3Vtr8v6dHmults32/7UdufaK77gqTe5vZuGt6WG662\n", - "/Yjth21/eNi2V9n+V9uP2f7m5O4NAHXU2eoOAIDeLH3zWUmXDp2haiZQWyNiue1uST+2fUcz9kRJ\n", - "SyPif5rLH4+IV5q17dbYvjkiLrf9yYg4cZS2fkfSr0p6p6R5kn5m+0fN771L0gmS/lfSvbbfExFc\n", - "KgQwJs5QAWgnHrH8m5I+ZnutpJ9KmiPp2Ob31gxLpiRppe11kv5b0gJJx03Q1mmSvhUNWyTdI2mZ\n", - "GgnXmoh4Lhr3RKyTtLDCzwTgFwBnqAC0u09FxJ3DVzTvtXptxPL7JJ0cETtt3y2pZ4Ltht6awA2d\n", - "vdo1bN0e8VkJYAKcoQLQTl6VNPwG8h9Kuth2pyTZXmz7kFHeN1PSK81k6lcknTzsewND7x9htaQL\n", - "mvdpzZN0uqQ1emuSBQAT4n9dANrB0JmhhyTtaV66u0HSV9S43PagbUvaIum3m/HDH1G+XdKf2e6T\n", - "9Lgal/2GfE3Sw7YfiIiPDr0vIv7N9inNNkPSZRGxxfbxI7atUZYBYB9MmwAAAFARl/wAAAAqIqEC\n", - "AACoiIQKAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIr+Hyoqh+rLDshuAAAAAElF\n", - "TkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEaNJREFUeJzt3X+QXWV9x/HPJ5vdbJIlyUD4UZKYhBYoYbCGAgMYIVTb\noYxB2lqRtkptx05HrSlVRmSm/YNpRyvTER2nnbFQFKzaFi3qtCApDYiIRCAhkCAk/Gj40SRAyY8l\n2WST/faPezcsm/3xPDl59twb3q+ZDPfc/d7zPPc+59z75fx4vo4IAQAA4NBNqrsDAAAA7Y6ECgAA\noCISKgAAgIpIqAAAACoioQIAAKiIhAoAAKCiyXU2bps5GwAAQNuICI/0fNGEyvbFkm6Q1CHpxoj4\n2+Exxx9//EGv6+3tVU9Pz/B15bSb1c+BgYG2im2VucNG63NfX5+6u7uTYnPWO5L9+/cnx5bsR86Y\nlIoFANSn2Ck/2x2SviLpYkmLJF1h+7RS7QEAANSl5DVU50jaGBHPRUS/pG9Lel/B9gAAAGpRMqGa\nI+n5IcsvNJ8bV1dXV5EOYWJMnlzrpXkAAEy4kgnVIV/8QULV3kioAABvNSV/+V6UNG/I8jw1jlK9\nSW9v74HHXV1dJFMAAKDtlEyoHpJ0su0Fkl6SdLmkK4YHDb+bDwAAoN0US6giYp/tT0j6oRrTJtwU\nEU+Uag8AAKAuRS92iYg7JN1Rsg0AAIC61X71cOrEhR0dHcnrnDQp71r7zs7OrPi67du3Lzm2v78/\na9179+4t0o+cCThzYnMnviw1UWap9eZMUsskoABQH2r5AQAAVERCBQAAUBEJFQAAQEUkVAAAABWR\nUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARbXX8ps9e3ZSXE59vtya\nZjm143Lq15WKHRgYSI7NqQUn5dVMzDF5cvqmlvP+cmKlvG2jVGyp91eyriF1AgFgbEWPUNmeZ3ul\n7XW2H7f9yZLtAQAA1KH0Eap+SVdFxBrbPZIetr0iIp4o3C4AAMCEKXqEKiI2R8Sa5uNeSU9IOrFk\nmwAAABNtwi5Kt71A0mJJD05UmwAAABNhQhKq5um+2yQtbx6pAgAAOGIUv8vPdqek70j6RkTcPvzv\nW7duPfB4+vTpmj59eukuAQAAHFZFEyo37tm/SdL6iLhhpJjjjjuuZBcAAACKK33K752S/kDSRbZX\nN/9dXLhNAACACVX0CFVE/FjMxg4AAI5wJDsAAAAV1V56ZseOHUlxOaVncpUqwZFT9iXn/XV2dhbp\ng5T3/nJK9uSUnsnpc+77y5HT5xylSs+8/vrrWf3Yu3dvVnyqnG05p+TSnj17iqxXao3SOqW+L6S8\nklKl9qlS20XJsS71fZ8Tm1sOLCe+1G9Jzpj09/cnx+b85kgTX16LI1QAAAAVkVABAABUREIFAABQ\nEQkVAABARSRUAAAAFZFQAQAAVERCBQAAUBEJFQAAQEUkVAAAABWRUAEAAFRUe+mZ3bt3H/Z15pZl\n6OrqSo7Nmao/t2RAqpwp8nM/i1LlVnI+4+7u7uTYo446KqsfPT09ybHTpk1Ljp0zZ05y7Pz585Nj\nt2zZkhy7bt265FhJevbZZ5Njc7aLs88+Ozn2sssuS45dtGhRcmzudv/yyy8nx65YsSI5duPGjcmx\nJ5xwQnLskiVLkmNz152zfebuf6lyypHs3Lkza91PP/10cuyTTz6ZHLthw4bk2JwySrklURYvXpwc\nu3DhwuTYGTNmJMfOnDkzOTZnG5oyZUpyrFTm92ys3/VRW7P9O5JC0kgFfCIivpvSuO0OSQ9JeiEi\nlqW8BgAAoJ2Mlb4tUyOhGk1SQiVpuaT1ksr8rwwAAEDNRk2oIuIPq67c9lxJl0j6G0l/UXV9AAAA\nrWjcCw1sn2D7Jtt3NpcX2f7jxPV/UdLVkgYq9BEAAKClpVy5+TVJd0k6sbm8QdJV473I9nslbY2I\n1Rr5OiwAAIAjQsol8LMj4l9sXyNJEdFve1/C686XdKntSyR1S5ph+5aI+PDQoF27dh143NnZmXUX\nHQAAQCn33HOP7r333qTYlISq1/Yxgwu2z5W0fbwXRcS1kq5tvuZCSZ8enkxJebemAwAATJSlS5dq\n6dKlB5avu+66UWNTEqpPSfqBpJNs/0TSsZLefwj9yptMAwAAoE2Mm1BFxMO2L5B0qhrXQj0ZEemz\nrjXWca+ktGNmAAAAbWbchMr2VEkfk7REjaNM99n+h4joK905AACAdpByyu8WSTskfVmNI1S/J+lW\nSb9bsF8AAABtw+PVCbK9PiIWjffcITVux+zZs6uu5iC5dbxy4nPq85Vab059otzPYv/+/cmxOfW2\n9u7dW6QP+/al3HD6hoGB9CnRSsXmyKldlduHnM+51N23Q+/yHU/O9pb7WeTWS0tlp88Yk/MdkLPe\nXKW25VJapb+ltqF2VHL7zFGiHwMDA4qIEVec8mv7iO3zBhead/k9fLg6BwAA0O7GKo782JCY+20/\nr8Y1VG+TlF6CGwAA4Ag3XnFkAAAAjGOs4sjPDV22fZwaM54DAABgiJTiyJfa3iDpWTXmknpO0h2F\n+wUAANA2Ui5K/2tJ50l6KiIWSnq3pAeL9goAAKCNpCRU/RHxiqRJtjsiYqWkswr3CwAAoG2kTGj0\nmu2jJN0n6Z9tb5XUW7ZbAAAA7SPlCNVlknZJukrSnZI2ijsAAQAADkgpjjx4NGq/pK8V7Q0AAEAb\nGmtiz141JvIcSUTEjMPRgVmzZh2O1VSSU74kp1xHTmxOaZZWKbXQCkqW1sn5nEttF3196TXIW6X0\nRU65h5zPuFXeX46cPueWUQJaVavsqxPdj7HmoeqpunLbsyTdKOl0NZKzP4qIn1ZdLwAAQCtJr7J7\naL4k6T8j4v22J0uaXrg9AACACVcsobI9U9K7IuJKSYqIfZK2l2oPAACgLnkXoORZKOll2zfbfsT2\nP9qeVrA9AACAWpRMqCZLOlPS30fEmZJel3RNwfYAAABqUfIaqhckvRARP2su36YREqpXX331wOOp\nU6dq2jQOYgEAgPZSLKGKiM22n7d9SkQ8Jek9ktYNjzvmmGNKdQEAAGBClL7L78/UKFfTJelpSR8p\n3B4AAMCEK5pQRcSjks4u2QYAAEDdSl6UDgAA8JZQ+pTfuHbu3JkUN3lyelc7Ojqy+pBTvqSrqytr\n3alKTZFfskxNqbIhU6ZMSY7NLV00c+bM5Nic7WLozRXj2bRpU3Lsrl27kmP7+/uTY6W88cspJ5Oz\nr3Z3dyfHdnZ2Jsfm7qc56969e3dybG9v7/hBTTmlZ3L365z9r1RszjaU8x2es71Jeft1Tp9ztqGS\nv2c53wN79uwpst6c7bPkb1SJ39WxSodxhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIq\nAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpcquRJUuN2zJ8/Pyk2Z9r7nBIO0thTyU+UnHII\nuaUIcuSURChVhmfv3r3JsX19fcXWXarUQs5Y55SzyImV8t5fzj6Ss/+VLLdSSqkyPDn7U265lZw+\n5+wjObE521Cdv0sToVQZHinveyCnzFdOP3L265zvodzyWiW2uYGBAUXEiANY9AiV7c/aXmf7Mdvf\ntJ0+egAAAG2iWEJle4Gkj0o6MyLOkNQh6YOl2gMAAKhL3nHjPDsk9UuaZnu/pGmSXizYHgAAQC2K\nHaGKiP+T9HeSNkl6SdK2iPivUu0BAADUpeQpv1+U9OeSFkg6UVKP7d8v1R4AAEBdSl6Ufpakn0TE\nqxGxT9J3JZ0/PGjbtm0H/uXesQUAAFBKRGhgYODAv7GUvIbq55L+0vZUSX2S3iNp1fCgWbNmFewC\nAADAobH9pmkuxkqqSl5D9aikWyQ9JGlt8+mvlmoPAACgLiWPUCkiviDpCyXbAAAAqBulZwAAACoi\noQIAAKio6Cm/FKk1jXLqeJWs+VWqBlNObMmaX93d3cmxPT09xfqRqre3Nyt+9+7dybE5daByxi+n\n1tbcuXOTY88//6CbaMd01llnJcfm1Gx74IEHkmPvvvvu5NhNmzYlx+Z+B+TcHLNs2bLk2DPOOCM5\nNuf9rVy5MjlWkl58MX1O5c2bNyfH5nwflqoxN2PGjORYSTrppJOSY0899dTk2IULF2b1I9WePXuy\n4letOujer1Ft2LAhOTbnuzZn/8v5PcvZLnKl1lh95ZVXRl/H4eoMAADAWxUJFQAAQEUkVAAAABWR\nUAEAAFREQgUAAFARCRUAAEBFLZlQ5dzajtazffv2uruAQ7R27drxg9Cytm3bVncXcIieeeaZuruA\niloyoerr66u7C6hgx44ddXcBh4iEqr2RULUvEqr215IJFQAAQDshoQIAAKjIEVFf43Z9jQMAAGSK\niBFrLtWaUAEAABwJOOUHAABQEQkVAABARS2XUNm+2PbPbW+w/Zm6+4PR2f4n21tsPzbkuaNtr7D9\nlO27bM+qs48Yne15tlfaXmf7cdufbD7PGLY42922H7S9xvZ6259rPs/YtRHbHbZX2/5Bc5nxa2Mt\nlVDZ7pD0FUkXS1ok6Qrbp9XbK4zhZjXGaqhrJK2IiFMk3d1cRmvql3RVRJwu6VxJH2/ub4xhi4uI\nPkkXRcQ7JL1d0kW2l4ixazfLJa2XNHgxM+PXxloqoZJ0jqSNEfFcRPRL+rak99XcJ4wiIu6T9Nqw\npy+V9PXm469LumxCO4VkEbE5ItY0H/dKekLSHDGGbSEidjUfdknqUGNfZOzahO25ki6RdKOkwbvG\nGL821moJ1RxJzw9ZfqH5HNrH8RGxpfl4i6Tj6+wM0theIGmxpAfFGLYF25Nsr1FjjFZGxDoxdu3k\ni5KuljQw5DnGr421WkLFHA5HkGjMycGYtjjbPZK+I2l5ROwc+jfGsHVFxEDzlN9cSRfYvmjY3xm7\nFmX7vZK2RsRqvXF06k0Yv/bTagnVi5LmDVmep8ZRKrSPLbZPkCTbvyBpa839wRhsd6qRTN0aEbc3\nn2YM20hEbJf0H5J+VYxduzhf0qW2n5X0LUm/ZvtWMX5trdUSqocknWx7ge0uSZdL+n7NfUKe70u6\nsvn4Skm3jxGLGtm2pJskrY+IG4b8iTFscbZnD94BZnuqpF+XtFqMXVuIiGsjYl5ELJT0QUn/HREf\nEuPX1lpupnTbvynpBjUusrwpIj5Xc5cwCtvfknShpNlqnO//K0nfk/Svkt4m6TlJH4iIbXX1EaNr\n3hX2I0lr9caphc9KWiXGsKXZPkONi5YnNf/dGhHX2z5ajF1bsX2hpE9FxKWMX3truYQKAACg3bTa\nKT8AAIC2Q0IFAABQEQkVAABARSRUAAAAFZFQAQAAVERCBQAAUBEJFYDa2b6/+d/5tq84zOu+dqS2\nAOBwYh4qAC3D9lI1JjlclvGayRGxb4y/74yIow5H/wBgNByhAlA7273Nh5+X9C7bq20vtz3J9vW2\nV9l+1PafNOOX2r7P9vckPd587nbbD9l+3PZHm899XtLU5vpuHdqWG663/ZjttbY/MGTd99j+N9tP\n2P7GxH4aANrR5Lo7AAB6o/TNZyR9evAIVTOB2hYR59ieIunHtu9qxi6WdHpE/E9z+SMR8Vqztt0q\n27dFxDW2Px4Ri0do67cl/Yqkt0s6VtLPbP+o+bd3SFok6X8l3W/7nRHBqUIAo+IIFYBW4mHLvyHp\nw7ZXS/qppKMl/VLzb6uGJFOStNz2GkkPSJon6eRx2loi6ZvRsFXSvZLOViPhWhURL0Xjmog1khZU\neE8A3gI4QgWg1X0iIlYMfaJ5rdXrw5bfLenciOizvVJS9zjrDR2cwA0evdoz5Ln94rsSwDg4QgWg\nleyUNPQC8h9K+pjtyZJk+xTb00Z43QxJrzWTqV+WdO6Qv/UPvn6Y+yRd3rxO61hJF0hapYOTLAAY\nF//XBaAVDB4ZelTS/uapu5slfVmN022P2LakrZJ+qxk/9BblOyX9qe31kp5U47TfoK9KWmv74Yj4\n0ODrIuLfbZ/XbDMkXR0RW22fNmzdGmEZAN6EaRMAAAAq4pQfAABARSRUAAAAFZFQAQAAVERCBQAA\nUBEJFQAAQEUkVAAAABWRUAEAAFREQgUAAFDR/wOvlZHIYOuJuwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -4941,123 +1029,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAGLBJREFUeJztnVtsY+tVx3+ft+/29i224yQzk+lp+9AHpNOX8lAq+lBV\n", - "p0Jq4YWqEgKVUvEABQESbXmgBV5KJSoED0ioLeKmFgQqKi/QVgKpPHA5qKcXzqVnTjOTjJ2L49jx\n", - "/f7xYK9vtj3JnLHjTOxk/6WtOJ5k5zv1v+tb31r/9d9Ka40LF7PAc9ULcLF6cEnjYma4pHExM1zS\n", - "uJgZLmlczAyXNC5mxtykUUq9oJR6VSn1ulLqk4tclIvlhpqnTqOUsoDXgPcBeeB/gI9orV9Z7PJc\n", - "LCPmjTTvAu5pre9rrXvAV4EPLW5ZLpYZ3jl/bwvYc3z/EPhx5w8opdxS84pDa63Oen/eSOMS4gZj\n", - "XtLkgduO728zijYubgDmJc2LwNuVUneVUn7gw8DXF7csF8uMuXIarXVfKfWrwL8CFvAl9+R0czDX\n", - "kfupbuwmwiuPRSfCLm4wXNK4mBkuaVzMDJc0LmaGSxoXM8MljYuZ4ZLGxcxwSeNiZrikcTEzXNK4\n", - "mBkuaVzMjHlFWAAope4DVWAA9LTW71rEolwsNy5EGkZirPdqrU8WsRgXq4FFbE9ndkJdXF9clDQa\n", - "+JZS6kWl1McXsSAXy4+Lbk/v1lrvK6UywDeVUq9qrb+9iIU9ayj1KGBaloXH48Hj8WBZlvl3+ZnB\n", - "YGCufr9/Jeu9SlyINFrr/fHXolLqa4xGW1aONEIIpRSWZREOh4lEIkQiEcLhMJZl4fV6sSwLy7I4\n", - "PT01V7VaRYRsN8XrZ27SKKXCgKW1rimlIsD7gd9b2MqeIZRSJrJ4vV5s22ZtbY21tTVSqRR+v99c\n", - "Pp+PQqFAoVBgOBxSq9WAEWGUUjeCOBeJNOvA18Yh2wv8rdb6GwtZ1TOGkEYiim3bZDIZtra22Nzc\n", - "JBQKmSsQCBAOhxkOh1SrVTweD8PhEHAjzZtCa70DPL/AtTwzeDwesx15PB4TQXw+H6FQiHQ6zcbG\n", - "Bnfu3OHOnTtmuwqHwwSDQdrtNuVymXw+j8fjmSDLTSDORRPhlYNSCr/fTyAQIBAIEAwGsW2baDSK\n", - "bdvEYjE2NjbY2Nhgc3OTXC5nfi4QCOD3+4lEIoRCIfx+v0mUh8Mhg8Hgiv/rng1uJGkCgcAESdLp\n", - "NOl0mrW1NfNVrmQyaaKQz+fDsiyi0aghjdc7+p9QcpqbgBtJGr/fTzQaJZVKsba2xq1bt9ja2mJr\n", - "a4uNjQ0TeeSSJFm2NSFNIBDAsiyGw+FEbnPdcWNII1HAsixCoRDxeHwid9ne3mZ7e5vbt2+brUu2\n", - "IyeGwyHRaNQcySORCJ1Oh06nAzCxRV3X/OZGkMZZrAsEAsTjcbLZrEl0c7kcmUyGWCxGMBjE5/Ph\n", - "9XrP3G6UUoRCIVKpFFtbW7ztbW8z9ZrT01OGwyHD4RCttfl63XDtSTN9nA4GgyQSCdbX17lz5w5v\n", - "fetbSSaTpFIpYrGY2XKEaGchHA6bba3VanFwcMDR0RHD4ZBWq2WqxcC1TI6vPWkAU7Tz+/0Eg0ET\n", - "aW7fvs1zzz1njtORSIRAIGCIdl5i64w0Wmt8Ph9aa1qtFicno4a/1vpaRhm4AaSR1oAQJhqNkkgk\n", - "yGQybG5ucvv2bbMdyVfBeR96KBQimUzS7/fx+XwMBgM6nQ71ep1yuUyn06Hb7dLr9UyVWK7rkCzf\n", - "CNJI4huPx8lkMmSzWRKJBOFw2ByjLct6qiOzUgqfz0ckEqHf7+PxeOh2u+Yovra2Rr1eN1etVqPd\n", - "bpur0+msfAX52pPG4/GYPCabzbKxsWFIEwqF8Hq9E8dpwZM+UCnwyfHd4/EQiURYW1tjc3OTk5MT\n", - "SqWS+epMlHu93sT9V5E4N4I0oVDIJL+3bt0im80Sj8cJh8OGNE7pw5tBIo3Ue4QwzWaTRqPBwcEB\n", - "hUKBg4MD03qQiFSv11eaMPAUpFFKfRn4KeBIa/1j4/dSwN8B28B94Ge11pVLXOfMEAJMk2Zra4t0\n", - "Ok08HjeRxonztg65n2xP0qcCiMViRlszGAxIpVKmACjbXq/Xo1armWKg3GsVifM0keYvgD8F/srx\n", - "3qeAb2qtPz82nv7U+LpyOGUOQhjbtkkmk2QyGdbX10kmk0SjUXw+HzApqhoMBqbWInUWIYkky+f9\n", - "TelDhcNhEokEnU4HrTX9fp9ms0m5XDYnrcFgsJKEgacgjdb620qpu1NvfxD4yfHrvwT+nSUhDTw6\n", - "YktdRk5M6XSa9fV1YrEYkUjEfID9fp9er0e326Xb7T5GoGAwaKQRTyKNvJbIJoQTwsjfFMIMh8OV\n", - "jDbz5jTrWuvD8etDRtqapYB8gFKXOSvSCAmckabb7dJqtWi32/R6PUOkwWCAbdtmWzrvb8KjynM4\n", - "HDaEiUQiVCoVDg8PDWn6/b4hzSoW/y6cCGut9bL561mWhc/nIxAIEAqFiEajxONx1tbWyGQyZiuR\n", - "JmO326XZbFKv12k0GqbG0u12TZ4ipAmFQhP5jTN3EkiuJEf9YrFIPp/Htm1CoZDJaVaRMDA/aQ6V\n", - "Ujmt9YFSagM4WuSiLgKlFF6v1yjsRPsiPSUhSr/fN1+Pjo4oFosUi0VKpZIhivxMKpUyHfFUKkUw\n", - "GDTRSk5GTiLKa5/Ph1KKeDxOLpfjueeeo9PpcHx8TKVSoVwuUy6XJ7arVdiq5iXN14FfAP5w/PWf\n", - "FraiC8JZAZYoEw6HCQQCppDX7/fpdrt0Oh2azSb7+/vs7u7y4MED8vn8RMMRMDob0dokEglzxePx\n", - "iQanHN8lKfZ4PMRiMXK5HO12G4/HQz6fJ5/Po7U2kW2Vos/THLm/wijpTSul9oDfBT4H/L1S6mOM\n", - "j9yXuchZcVakEdJIpOl0OjQaDU5PT9nf3+eNN97gtdde44033jD3ke0nk8lMXOvr67TbbWBU6JPo\n", - "IMdrIY5IQSXSeDweotEowWDQEKZYLJqItyri9Kc5PX3knH9634LXshBMRxqnNFMKedO9okKhwM7O\n", - "Dq+88govv/zyxJHd6/VSKpVMhVd6SwDBYJBYLGYIIomycyQGwLZt4FHPajAYUKvVODw8xOfz0ev1\n", - "VqovdS0rws4PbfrSWtNutzk9PeXo6Ij9/X1KpRK1Wo1ut2vuIQ3GwWBAu92mVqvh9XoZDodEIhFi\n", - "sRipVIpWqzVxWnPKPqdfO+s/sgU6r1XBtSQNPCLOdItgOBzSbrepVCocHR2Rz+cpFosTpJEPUP6f\n", - "L6SR343FYiSTSWq1Gs1m0xDmrEgx3eGeLh5Ok2cVcC1J4yTMWY3IVqtlIk0+n+f4+PjcSKO1Np1p\n", - "IU8qlSKbzVKv12m1WuZoL0nstMh8Oso4ibNqhIEbQhoncYQE1WqVYrHI/v4+Jycn1Ov1xyKNvBZZ\n", - "g9x7fX2dSqVCvV6n3W6buo6QYLrx+WaRxkmeVcC1I43ogG3bJpVKkclkTEdbElWfz0c4HCYej5NK\n", - "pcxJarp5eRamE23bts2R/jxNjiTezWaTWq1mIpS0LJz1mVUgzrWzT3OOqEjrQARXUksR0kgya9s2\n", - "wWDwqUgDk0d65wyU1GZg8sOXNkWz2aRardJoNAxppIC4KoU9uIakebNII6RyRppYLHamTOI8SKQJ\n", - "h8MTkea833+zSCMV4VUhzbXbnpwTlKlUymhnzoo08XjcFNjO62BP3xsmI41t26YG5Iw0TjgjTa1W\n", - "o9FomFxItqdVwrUjjSS6tVqNk5MTisUiXq/XkAQe/9BFfRcOh40fjfNyjuX6/X62t7dZX1/Htu0J\n", - "5Z9UdqeP+9LtTqVS9Ho96vU6p6enlEolIpEI7XbbJMnXoo2wapAWQb1e5+TkxESZeDxupgPOIo2T\n", - "OE4vGtmG5IpEIty9e5dsNott22bLk7+ttZ44sTlzLPn71WqVUqlkdD2A0Q6vQm5z7UijtTZa3HK5\n", - "TDQaNUP+EgWENDJS6yRMJBIxXWzpZMskg1zb29uGNF6vd6LWMhgMJpqVgCGNbJ3lcpnDw0NisZjx\n", - "upFIJeRZZsyrEf4s8EtAcfxjn9Za/8tlLXIWSKSR7SkYDJJOp2k2m+YDEUWfCK1s256wS3POaUej\n", - "UdPdzmQyrK2tkc1mzRiviKokNxEPPmfj0e/3G8LEYjFKpRKpVIp4PG5GYQaDwcSc1DJjXo2wBr6g\n", - "tf7CpazqAtBa0+v1aLVaVKtVwuEwtVpt4rQCj4gzGAzIZrO0Wi2jfXFqZSTSiAwiHo8TjUaxLItO\n", - "p0OlUqHRaBgBV71eNxYmcsm6JMqJhlgG9iSRlrHeZce8GmFYUv9g2Z6azSaWZREIBEyPqNPpGBWe\n", - "kMbj8ZDL5bAsC9u2zYco+Ywzp5FIJCKrTqdDv9/n+PjYXKVSiWw2Sy6XI5fLTRg8yu8JEcWiTeQa\n", - "Qtxlx0Vymk8opX6e0YPdf2tZRlickQZG1V8hjUQaIY3kNqJzyWazhmxnnZ6ETGItIuO3+/v7PHz4\n", - "kHw+z97eHnfv3qXb7eL1eo2pgAzVOWWg6XSaRqNhphUqlcq1Js2fAb8/fv0HwB8BH1vIii4IIQ2M\n", - "TiQej+ex7UmIIKSIRqNn5hHy3vQHWalU6Pf7Znva399nZ2eHe/fu8frrr9NqtYzhYy6Xm2g9OI//\n", - "mUyGfr9vuu7BYPD6kkZrbTTBSqkvAv+8sBUtAE6Vv3ywBwcH7OzsmGqx2KfJeO20cAoekUakofK1\n", - "WCxyfHxsvu7u7pLP5ymVSjQaDWq1mtEAHx8fG1WeRBnZGm3bpt1uk0gkzFpkAM/ZzFw2zEUapdSG\n", - "GE8DPwN8f3FLujjk6Asj0oikU2oi2WyWbDZr5rzPklAA5hgspzG59vf32d/fN6O3Qp6TkxMzmlut\n", - "Vg1pJNKEQqEJ8ti2Tb/fJx6Pm5qNTCv0+31DtmU7Tc2jEf4M8F6l1POMTlE7wC9f6ipngFOGIElx\n", - "pVKhUCiglKLT6ZiEMxKJkEgkzO86db1OiJRCEt3d3V329vbY3d3l4cOHxiFCGpFS8T05OeH4+Bif\n", - "z0cwGDTSC/leZKASaaT5KfUkGeRbNsyrEf7yJaxlYZgO6ZVKBY/HYyrF4vKQyWRMYuyMMtO1Eok0\n", - "x8fHFAoFHjx4wM7ODj/60Y/Y2dl5bKy3Xq9PRBqJKs46kWxDXq+XRCIxEWm63a4hzDLWba5dRXga\n", - "Em0ajYbZggqFgnG9krFb8QkOBAKPVXjz+TwPHz5kb2+PfD5PoVCYUPtNC6mcGmSZgJBBu0gkYo7Y\n", - "sj1KR15cLYLBIJXK6DAqIvZlwo0gjfMIrrXm4OCAQCAAQKvVeqz/5ExC+/0+e3t7Zjva29vj+PiY\n", - "crlMq9U6U3kneZTMWEm9SPQ3Mrgnx3jpyOdyOer1uulndbtdqtXq0jUxbwxpADNqK4SRXCWZTJor\n", - "Ho9PbDW9Xo+9vT0ePHjAgwcP2N3dNflLs9mc0AULhDTS0ZYoI+PB0j6Q0WFx0Go0Gmat3W6XWq12\n", - "rlnkVeLGkEb6Os1mE3iUp0gFN5PJmERWTi4inpIoc//+fXZ3d41BgKjuptFut+n3+9TrdSzLMltQ\n", - "IpEglUpNmAn4/X6zPckaJcIcHR25pLkqTOtvJSFWSpmI0m63jZzCaVDU7/cpFApmzEW0L0+qoUgS\n", - "K/UikXmWy2WKxeLE6clpLGDbNp1Ox0QikaBalrVUUws3gjTTcOY4MtctUoqzchoZ1G80GhPD+ufB\n", - "SVJxpWg0GoY0slXJKUlyHul4y0nKaYQ9PblwlbhxpHHmOFLCbzQaVCoV06CcHnBrNpu0Wi1jLC33\n", - "edKH5zQtkshWqVQoFotG0O4kjUg1gMdII/qcqyaL4MaSpt/vmyLfWW2E6dmnWQbbztoOncRMpVJm\n", - "zkoqxJKcS89KSON80suytBRuHGng2buJ93o908X2eDxG8F4qlSZ8+JRSxu7NacJkWRbNZtOc1q46\n", - "4txI0jxr9Ho9U1wcDAYkk8mJZ0qJvaxTvyMegZubm3i9XsrlsikcXnXEcUnzDCCRZjAY0Gq1SCQS\n", - "Ew8kSyaTRm8sxtYindjc3DTbo5giXTWeSBql1G1GMs8so+bkn2ut/0StgI/wMkEMH9vtNkopQxq5\n", - "pM0gNrXSSJXaUa/XM62JpScN0AN+Q2v9klIqCvyvUuqbwEdZUh/hZYTTNUIKjKenp+YkJbUaEYP5\n", - "/X5isZgRaUmJQH7nqo0DnkgarfUBcDB+XVdKvQJsseQ+wsuMadcKsXULh8PGJcvn8xmtjc/nMxXi\n", - "4+NjU0cSMl2FdOKpc5qxuPydwH+xxD7CywqndNRJGq21sVVrNpuGKDKIF4vFaLValEolIyTrdrtG\n", - "IHYVp6mnIs14a/pH4Ne11rUpSeTS+QgvM5yRBjDOWrlcziTL0mIQkVa9Xufg4IBEIkEkEqHVak3o\n", - "bZ41nka552NEmL/WWov169L6CK8CJCkWXY0o/A4PDzk4ODDP0pRLbPqz2Sybm5tYlmUmF8RMSfAs\n", - "os6bnZ4U8CXgZa31Hzv+aWl9hFcBIrmQmou0FwqFghltEZ9iEYbF43HW19fZ3t424zeDwWCiH/as\n", - "tqk3izTvBn4O+J5S6jvj9z7NkvsILzvEekRmt8U0Umzw5d/kFOX3+w1pxMZNCHNycjJhKXvlkUZr\n", - "/R+cb3y0lD7CqwAhi+hnJNLIeIvMfcfjcbTWE5EGMHKLUqlkrE7kOP8sNMVuRfgKML2VtNttYz/i\n", - "NFxKp9NGIyzmAVprI9ByRqYnicIWDZc0SwBpM5TLZfMshXQ6TbVapdlsmnHeaDRq+lCJRMI890Eq\n", - "zSKEdyPNDcB0QzORSFAul80MumxbYkAgNiUSaeRZCzKOc9lwSbMEENKIEUAymaRSqRjS+P1+YyIQ\n", - "CAQ4OTkxA3bhcNicoJ6VIZJLmiWAJMYSLZxu6rFYjPX1dRKJBMlk0kQbeVpeNptlMBiYKOVUF14W\n", - "XNIsAeS4LB92tVo1s1n9fp/T01Nu3bqFZVnGfcu2bTKZDLdu3QIetSdOT08vfb0uaZYAzsc6D4dD\n", - "arUaBwcH5hE/nU7HJMgbGxtm7CWdTlOv143tSbVaPdeWdpFwSbMEmJZOyFSlPBNKa21cupxd8HQ6\n", - "Ta/Xm2iAPgu9jUuaJYFTjC7uEiJ+Fy1xtVo1BgZyBM9kMqZuIyO/Z82XLxIuaZYQkhDLtEKr1TKe\n", - "N+KYpbUmGAySTCYnjuAinZBin3jcLBIuaZYQTp2MzF2JfUmlUjFqv2AwaOo2TjetdrtNp9O5NH+b\n", - "J26ASqnbSql/U0r9n1LqB0qpXxu//1ml1EOl1HfG1wsLX9kNhnzYkq9MR5pms2kijcyHT7tpybzU\n", - "ZRT75tUIL62P8HXA9LBdq9UyvoGJRIJut0s6nTZ5jbhPSOSRaU1R+C0a82qEYUl9hK8j2u02pVKJ\n", - "vb09AOOJLM6kcuqSSc1AIGD+/SoijYFDI/yfjHQ2S+kjfB0hpNH60cPfPR6PKfBNG2o7H1x/GaR5\n", - "qkP9eGv6B0Ya4TojH+G3AM8D+4x8hF1cEuTYvbe3x6uvvsq9e/coFArmGeESacTCxGkccCWRxqER\n", - "/hvRCOsl9xG+bpB6jViWHB0dUSgUWFtbIx6P02q1ODo6olKpPPaYw8uQScylEV52H+HrCKcnTrVa\n", - "pVAo4Pf7zfH66OiIYrHI4eGheU6mRKFFYx6N8O8AH1lWH+HrCCdhtNbUajUKhQKdTsc4oosxdrVa\n", - "NY+EluLgoqEuS+XlzkItFs7cxPmEGL/fP+Fw7nz21EWds7TWZyZELmlcnIvzSHP1FgQuVg4uaVzM\n", - "DJc0LmaGSxoXM8MljYuZ4ZLGxcy4tCO3i+sLN9K4mBkuaVzMjEsljVLqBaXUq0qp18cuoBe9332l\n", - "1PfGEtP/nuP3v6yUOlRKfd/xXkop9U2l1A+VUt9QSiWedI+nuN/cUtgnyGvnWuOlyXWdfv+LvAAL\n", - "uAfcBXzAS8A7LnjPHSB1gd9/DyMh2fcd730e+O3x608Cn7vg/T4D/Oac68sBz49fR4HXgHfMu8Yn\n", - "3G/uNWqtLzXSvAu4p7W+r7XuAV8FPrSA+86tKtJafxsoT739QUa2toy//vQF7wdzrlFrfaC1fmn8\n", - "ug44LXhnXuMT7jf3GuFyt6ctYM/x/UMeLXheaOBbSqkXlVIfv+C9BJdhb/sJpdR3lVJfmmW7c2LR\n", - "FrxTct0LrfEySXMZZ/l3a63fCXwA+BWl1HsWeXM9iuMXXfeFpbDTFrwXXeOi5bqXSZo8cNvx/W1G\n", - "0WZu6LFaUGtdBL7GaAu8KA6VUjkYKRK5oL2t1vpIjwF8cdY1PsmCd541nifXvcgaL5M0LwJvV0rd\n", - "VUr5gQ8zspKdC0qpsFLKHr+OAO9nMTJTsbeFBdjbjj9UwUxS2Kew4J1pjU+S6867RuDyTk/jjP0D\n", - "jDL2e8CnL3ivtzA6gb0E/GCe+wFfAQpAl1G+9VEgBXwL+CHwDSBxgfv9IqOn1nwP+O74w12f4X4/\n", - "AQzH/43fGV8vzLvGc+73gYusUWvtthFczA63IuxiZrikcTEzXNK4mBkuaVzMDJc0LmaGSxoXM8Ml\n", - "jYuZ4ZLGxcz4f041SDwzkyB1AAAAAElFTkSuQmCC\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAI0AAACPCAYAAADHlliuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGLBJREFUeJztnVtsY+tVx3+ft+/29i224yQzk+lp+9AHpNOX8lAq+lBV\np0Jq4YWqEgKVUvEABQESbXmgBV5KJSoED0ioLeKmFgQqKi/QVgKpPHA5qKcXzqVnTjOTjJ2L49jx\n/f7xYK9vtj3JnLHjTOxk/6WtOJ5k5zv1v+tb31r/9d9Ka40LF7PAc9ULcLF6cEnjYma4pHExM1zS\nuJgZLmlczAyXNC5mxtykUUq9oJR6VSn1ulLqk4tclIvlhpqnTqOUsoDXgPcBeeB/gI9orV9Z7PJc\nLCPmjTTvAu5pre9rrXvAV4EPLW5ZLpYZ3jl/bwvYc3z/EPhx5w8opdxS84pDa63Oen/eSOMS4gZj\nXtLkgduO728zijYubgDmJc2LwNuVUneVUn7gw8DXF7csF8uMuXIarXVfKfWrwL8CFvAl9+R0czDX\nkfupbuwmwiuPRSfCLm4wXNK4mBkuaVzMDJc0LmaGSxoXM8MljYuZ4ZLGxcxwSeNiZrikcTEzXNK4\nmBkuaVzMjHlFWAAope4DVWAA9LTW71rEolwsNy5EGkZirPdqrU8WsRgXq4FFbE9ndkJdXF9clDQa\n+JZS6kWl1McXsSAXy4+Lbk/v1lrvK6UywDeVUq9qrb+9iIU9ayj1KGBaloXH48Hj8WBZlvl3+ZnB\nYGCufr9/Jeu9SlyINFrr/fHXolLqa4xGW1aONEIIpRSWZREOh4lEIkQiEcLhMJZl4fV6sSwLy7I4\nPT01V7VaRYRsN8XrZ27SKKXCgKW1rimlIsD7gd9b2MqeIZRSJrJ4vV5s22ZtbY21tTVSqRR+v99c\nPp+PQqFAoVBgOBxSq9WAEWGUUjeCOBeJNOvA18Yh2wv8rdb6GwtZ1TOGkEYiim3bZDIZtra22Nzc\nJBQKmSsQCBAOhxkOh1SrVTweD8PhEHAjzZtCa70DPL/AtTwzeDwesx15PB4TQXw+H6FQiHQ6zcbG\nBnfu3OHOnTtmuwqHwwSDQdrtNuVymXw+j8fjmSDLTSDORRPhlYNSCr/fTyAQIBAIEAwGsW2baDSK\nbdvEYjE2NjbY2Nhgc3OTXC5nfi4QCOD3+4lEIoRCIfx+v0mUh8Mhg8Hgiv/rng1uJGkCgcAESdLp\nNOl0mrW1NfNVrmQyaaKQz+fDsiyi0aghjdc7+p9QcpqbgBtJGr/fTzQaJZVKsba2xq1bt9ja2mJr\na4uNjQ0TeeSSJFm2NSFNIBDAsiyGw+FEbnPdcWNII1HAsixCoRDxeHwid9ne3mZ7e5vbt2+brUu2\nIyeGwyHRaNQcySORCJ1Oh06nAzCxRV3X/OZGkMZZrAsEAsTjcbLZrEl0c7kcmUyGWCxGMBjE5/Ph\n9XrP3G6UUoRCIVKpFFtbW7ztbW8z9ZrT01OGwyHD4RCttfl63XDtSTN9nA4GgyQSCdbX17lz5w5v\nfetbSSaTpFIpYrGY2XKEaGchHA6bba3VanFwcMDR0RHD4ZBWq2WqxcC1TI6vPWkAU7Tz+/0Eg0ET\naW7fvs1zzz1njtORSIRAIGCIdl5i64w0Wmt8Ph9aa1qtFicno4a/1vpaRhm4AaSR1oAQJhqNkkgk\nyGQybG5ucvv2bbMdyVfBeR96KBQimUzS7/fx+XwMBgM6nQ71ep1yuUyn06Hb7dLr9UyVWK7rkCzf\nCNJI4huPx8lkMmSzWRKJBOFw2ByjLct6qiOzUgqfz0ckEqHf7+PxeOh2u+Yovra2Rr1eN1etVqPd\nbpur0+msfAX52pPG4/GYPCabzbKxsWFIEwqF8Hq9E8dpwZM+UCnwyfHd4/EQiURYW1tjc3OTk5MT\nSqWS+epMlHu93sT9V5E4N4I0oVDIJL+3bt0im80Sj8cJh8OGNE7pw5tBIo3Ue4QwzWaTRqPBwcEB\nhUKBg4MD03qQiFSv11eaMPAUpFFKfRn4KeBIa/1j4/dSwN8B28B94Ge11pVLXOfMEAJMk2Zra4t0\nOk08HjeRxonztg65n2xP0qcCiMViRlszGAxIpVKmACjbXq/Xo1armWKg3GsVifM0keYvgD8F/srx\n3qeAb2qtPz82nv7U+LpyOGUOQhjbtkkmk2QyGdbX10kmk0SjUXw+HzApqhoMBqbWInUWIYkky+f9\nTelDhcNhEokEnU4HrTX9fp9ms0m5XDYnrcFgsJKEgacgjdb620qpu1NvfxD4yfHrvwT+nSUhDTw6\nYktdRk5M6XSa9fV1YrEYkUjEfID9fp9er0e326Xb7T5GoGAwaKQRTyKNvJbIJoQTwsjfFMIMh8OV\njDbz5jTrWuvD8etDRtqapYB8gFKXOSvSCAmckabb7dJqtWi32/R6PUOkwWCAbdtmWzrvb8KjynM4\nHDaEiUQiVCoVDg8PDWn6/b4hzSoW/y6cCGut9bL561mWhc/nIxAIEAqFiEajxONx1tbWyGQyZiuR\nJmO326XZbFKv12k0GqbG0u12TZ4ipAmFQhP5jTN3EkiuJEf9YrFIPp/Htm1CoZDJaVaRMDA/aQ6V\nUjmt9YFSagM4WuSiLgKlFF6v1yjsRPsiPSUhSr/fN1+Pjo4oFosUi0VKpZIhivxMKpUyHfFUKkUw\nGDTRSk5GTiLKa5/Ph1KKeDxOLpfjueeeo9PpcHx8TKVSoVwuUy6XJ7arVdiq5iXN14FfAP5w/PWf\nFraiC8JZAZYoEw6HCQQCppDX7/fpdrt0Oh2azSb7+/vs7u7y4MED8vn8RMMRMDob0dokEglzxePx\niQanHN8lKfZ4PMRiMXK5HO12G4/HQz6fJ5/Po7U2kW2Vos/THLm/wijpTSul9oDfBT4H/L1S6mOM\nj9yXuchZcVakEdJIpOl0OjQaDU5PT9nf3+eNN97gtdde44033jD3ke0nk8lMXOvr67TbbWBU6JPo\nIMdrIY5IQSXSeDweotEowWDQEKZYLJqItyri9Kc5PX3knH9634LXshBMRxqnNFMKedO9okKhwM7O\nDq+88govv/zyxJHd6/VSKpVMhVd6SwDBYJBYLGYIIomycyQGwLZt4FHPajAYUKvVODw8xOfz0ev1\nVqovdS0rws4PbfrSWtNutzk9PeXo6Ij9/X1KpRK1Wo1ut2vuIQ3GwWBAu92mVqvh9XoZDodEIhFi\nsRipVIpWqzVxWnPKPqdfO+s/sgU6r1XBtSQNPCLOdItgOBzSbrepVCocHR2Rz+cpFosTpJEPUP6f\nL6SR343FYiSTSWq1Gs1m0xDmrEgx3eGeLh5Ok2cVcC1J4yTMWY3IVqtlIk0+n+f4+PjcSKO1Np1p\nIU8qlSKbzVKv12m1WuZoL0nstMh8Oso4ibNqhIEbQhoncYQE1WqVYrHI/v4+Jycn1Ov1xyKNvBZZ\ng9x7fX2dSqVCvV6n3W6buo6QYLrx+WaRxkmeVcC1I43ogG3bJpVKkclkTEdbElWfz0c4HCYej5NK\npcxJarp5eRamE23bts2R/jxNjiTezWaTWq1mIpS0LJz1mVUgzrWzT3OOqEjrQARXUksR0kgya9s2\nwWDwqUgDk0d65wyU1GZg8sOXNkWz2aRardJoNAxppIC4KoU9uIakebNII6RyRppYLHamTOI8SKQJ\nh8MTkea833+zSCMV4VUhzbXbnpwTlKlUymhnzoo08XjcFNjO62BP3xsmI41t26YG5Iw0TjgjTa1W\no9FomFxItqdVwrUjjSS6tVqNk5MTisUiXq/XkAQe/9BFfRcOh40fjfNyjuX6/X62t7dZX1/Htu0J\n5Z9UdqeP+9LtTqVS9Ho96vU6p6enlEolIpEI7XbbJMnXoo2wapAWQb1e5+TkxESZeDxupgPOIo2T\nOE4vGtmG5IpEIty9e5dsNott22bLk7+ttZ44sTlzLPn71WqVUqlkdD2A0Q6vQm5z7UijtTZa3HK5\nTDQaNUP+EgWENDJS6yRMJBIxXWzpZMskg1zb29uGNF6vd6LWMhgMJpqVgCGNbJ3lcpnDw0NisZjx\nupFIJeRZZsyrEf4s8EtAcfxjn9Za/8tlLXIWSKSR7SkYDJJOp2k2m+YDEUWfCK1s256wS3POaUej\nUdPdzmQyrK2tkc1mzRiviKokNxEPPmfj0e/3G8LEYjFKpRKpVIp4PG5GYQaDwcSc1DJjXo2wBr6g\ntf7CpazqAtBa0+v1aLVaVKtVwuEwtVpt4rQCj4gzGAzIZrO0Wi2jfXFqZSTSiAwiHo8TjUaxLItO\np0OlUqHRaBgBV71eNxYmcsm6JMqJhlgG9iSRlrHeZce8GmFYUv9g2Z6azSaWZREIBEyPqNPpGBWe\nkMbj8ZDL5bAsC9u2zYco+Ywzp5FIJCKrTqdDv9/n+PjYXKVSiWw2Sy6XI5fLTRg8yu8JEcWiTeQa\nQtxlx0Vymk8opX6e0YPdf2tZRlickQZG1V8hjUQaIY3kNqJzyWazhmxnnZ6ETGItIuO3+/v7PHz4\nkHw+z97eHnfv3qXb7eL1eo2pgAzVOWWg6XSaRqNhphUqlcq1Js2fAb8/fv0HwB8BH1vIii4IIQ2M\nTiQej+ex7UmIIKSIRqNn5hHy3vQHWalU6Pf7Znva399nZ2eHe/fu8frrr9NqtYzhYy6Xm2g9OI//\nmUyGfr9vuu7BYPD6kkZrbTTBSqkvAv+8sBUtAE6Vv3ywBwcH7OzsmGqx2KfJeO20cAoekUakofK1\nWCxyfHxsvu7u7pLP5ymVSjQaDWq1mtEAHx8fG1WeRBnZGm3bpt1uk0gkzFpkAM/ZzFw2zEUapdSG\nGE8DPwN8f3FLujjk6Asj0oikU2oi2WyWbDZr5rzPklAA5hgspzG59vf32d/fN6O3Qp6TkxMzmlut\nVg1pJNKEQqEJ8ti2Tb/fJx6Pm5qNTCv0+31DtmU7Tc2jEf4M8F6l1POMTlE7wC9f6ipngFOGIElx\npVKhUCiglKLT6ZiEMxKJkEgkzO86db1OiJRCEt3d3V329vbY3d3l4cOHxiFCGpFS8T05OeH4+Bif\nz0cwGDTSC/leZKASaaT5KfUkGeRbNsyrEf7yJaxlYZgO6ZVKBY/HYyrF4vKQyWRMYuyMMtO1Eok0\nx8fHFAoFHjx4wM7ODj/60Y/Y2dl5bKy3Xq9PRBqJKs46kWxDXq+XRCIxEWm63a4hzDLWba5dRXga\nEm0ajYbZggqFgnG9krFb8QkOBAKPVXjz+TwPHz5kb2+PfD5PoVCYUPtNC6mcGmSZgJBBu0gkYo7Y\nsj1KR15cLYLBIJXK6DAqIvZlwo0gjfMIrrXm4OCAQCAAQKvVeqz/5ExC+/0+e3t7Zjva29vj+PiY\ncrlMq9U6U3kneZTMWEm9SPQ3Mrgnx3jpyOdyOer1uulndbtdqtXq0jUxbwxpADNqK4SRXCWZTJor\nHo9PbDW9Xo+9vT0ePHjAgwcP2N3dNflLs9mc0AULhDTS0ZYoI+PB0j6Q0WFx0Go0Gmat3W6XWq12\nrlnkVeLGkEb6Os1mE3iUp0gFN5PJmERWTi4inpIoc//+fXZ3d41BgKjuptFut+n3+9TrdSzLMltQ\nIpEglUpNmAn4/X6zPckaJcIcHR25pLkqTOtvJSFWSpmI0m63jZzCaVDU7/cpFApmzEW0L0+qoUgS\nK/UikXmWy2WKxeLE6clpLGDbNp1Ox0QikaBalrVUUws3gjTTcOY4MtctUoqzchoZ1G80GhPD+ufB\nSVJxpWg0GoY0slXJKUlyHul4y0nKaYQ9PblwlbhxpHHmOFLCbzQaVCoV06CcHnBrNpu0Wi1jLC33\nedKH5zQtkshWqVQoFotG0O4kjUg1gMdII/qcqyaL4MaSpt/vmyLfWW2E6dmnWQbbztoOncRMpVJm\nzkoqxJKcS89KSON80suytBRuHGng2buJ93o908X2eDxG8F4qlSZ8+JRSxu7NacJkWRbNZtOc1q46\n4txI0jxr9Ho9U1wcDAYkk8mJZ0qJvaxTvyMegZubm3i9XsrlsikcXnXEcUnzDCCRZjAY0Gq1SCQS\nEw8kSyaTRm8sxtYindjc3DTbo5giXTWeSBql1G1GMs8so+bkn2ut/0StgI/wMkEMH9vtNkopQxq5\npM0gNrXSSJXaUa/XM62JpScN0AN+Q2v9klIqCvyvUuqbwEdZUh/hZYTTNUIKjKenp+YkJbUaEYP5\n/X5isZgRaUmJQH7nqo0DnkgarfUBcDB+XVdKvQJsseQ+wsuMadcKsXULh8PGJcvn8xmtjc/nMxXi\n4+NjU0cSMl2FdOKpc5qxuPydwH+xxD7CywqndNRJGq21sVVrNpuGKDKIF4vFaLValEolIyTrdrtG\nIHYVp6mnIs14a/pH4Ne11rUpSeTS+QgvM5yRBjDOWrlcziTL0mIQkVa9Xufg4IBEIkEkEqHVak3o\nbZ41nka552NEmL/WWov169L6CK8CJCkWXY0o/A4PDzk4ODDP0pRLbPqz2Sybm5tYlmUmF8RMSfAs\nos6bnZ4U8CXgZa31Hzv+aWl9hFcBIrmQmou0FwqFghltEZ9iEYbF43HW19fZ3t424zeDwWCiH/as\ntqk3izTvBn4O+J5S6jvj9z7NkvsILzvEekRmt8U0Umzw5d/kFOX3+w1pxMZNCHNycjJhKXvlkUZr\n/R+cb3y0lD7CqwAhi+hnJNLIeIvMfcfjcbTWE5EGMHKLUqlkrE7kOP8sNMVuRfgKML2VtNttYz/i\nNFxKp9NGIyzmAVprI9ByRqYnicIWDZc0SwBpM5TLZfMshXQ6TbVapdlsmnHeaDRq+lCJRMI890Eq\nzSKEdyPNDcB0QzORSFAul80MumxbYkAgNiUSaeRZCzKOc9lwSbMEENKIEUAymaRSqRjS+P1+YyIQ\nCAQ4OTkxA3bhcNicoJ6VIZJLmiWAJMYSLZxu6rFYjPX1dRKJBMlk0kQbeVpeNptlMBiYKOVUF14W\nXNIsAeS4LB92tVo1s1n9fp/T01Nu3bqFZVnGfcu2bTKZDLdu3QIetSdOT08vfb0uaZYAzsc6D4dD\narUaBwcH5hE/nU7HJMgbGxtm7CWdTlOv143tSbVaPdeWdpFwSbMEmJZOyFSlPBNKa21cupxd8HQ6\nTa/Xm2iAPgu9jUuaJYFTjC7uEiJ+Fy1xtVo1BgZyBM9kMqZuIyO/Z82XLxIuaZYQkhDLtEKr1TKe\nN+KYpbUmGAySTCYnjuAinZBin3jcLBIuaZYQTp2MzF2JfUmlUjFqv2AwaOo2TjetdrtNp9O5NH+b\nJ26ASqnbSql/U0r9n1LqB0qpXxu//1ml1EOl1HfG1wsLX9kNhnzYkq9MR5pms2kijcyHT7tpybzU\nZRT75tUIL62P8HXA9LBdq9UyvoGJRIJut0s6nTZ5jbhPSOSRaU1R+C0a82qEYUl9hK8j2u02pVKJ\nvb09AOOJLM6kcuqSSc1AIGD+/SoijYFDI/yfjHQ2S+kjfB0hpNH60cPfPR6PKfBNG2o7H1x/GaR5\nqkP9eGv6B0Ya4TojH+G3AM8D+4x8hF1cEuTYvbe3x6uvvsq9e/coFArmGeESacTCxGkccCWRxqER\n/hvRCOsl9xG+bpB6jViWHB0dUSgUWFtbIx6P02q1ODo6olKpPPaYw8uQScylEV52H+HrCKcnTrVa\npVAo4Pf7zfH66OiIYrHI4eGheU6mRKFFYx6N8O8AH1lWH+HrCCdhtNbUajUKhQKdTsc4oosxdrVa\nNY+EluLgoqEuS+XlzkItFs7cxPmEGL/fP+Fw7nz21EWds7TWZyZELmlcnIvzSHP1FgQuVg4uaVzM\nDJc0LmaGSxoXM8MljYuZ4ZLGxcy4tCO3i+sLN9K4mBkuaVzMjEsljVLqBaXUq0qp18cuoBe9332l\n1PfGEtP/nuP3v6yUOlRKfd/xXkop9U2l1A+VUt9QSiWedI+nuN/cUtgnyGvnWuOlyXWdfv+LvAAL\nuAfcBXzAS8A7LnjPHSB1gd9/DyMh2fcd730e+O3x608Cn7vg/T4D/Oac68sBz49fR4HXgHfMu8Yn\n3G/uNWqtLzXSvAu4p7W+r7XuAV8FPrSA+86tKtJafxsoT739QUa2toy//vQF7wdzrlFrfaC1fmn8\nug44LXhnXuMT7jf3GuFyt6ctYM/x/UMeLXheaOBbSqkXlVIfv+C9BJdhb/sJpdR3lVJfmmW7c2LR\nFrxTct0LrfEySXMZZ/l3a63fCXwA+BWl1HsWeXM9iuMXXfeFpbDTFrwXXeOi5bqXSZo8cNvx/W1G\n0WZu6LFaUGtdBL7GaAu8KA6VUjkYKRK5oL2t1vpIjwF8cdY1PsmCd541nifXvcgaL5M0LwJvV0rd\nVUr5gQ8zspKdC0qpsFLKHr+OAO9nMTJTsbeFBdjbjj9UwUxS2Kew4J1pjU+S6867RuDyTk/jjP0D\njDL2e8CnL3ivtzA6gb0E/GCe+wFfAQpAl1G+9VEgBXwL+CHwDSBxgfv9IqOn1nwP+O74w12f4X4/\nAQzH/43fGV8vzLvGc+73gYusUWvtthFczA63IuxiZrikcTEzXNK4mBkuaVzMDJc0LmaGSxoXM8Ml\njYuZ4ZLGxcz4f041SDwzkyB1AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -5065,92 +1039,9 @@ }, { "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAEbVJREFUeJzt3X+QXWV9x/HPJ7vZZJONYfgRAyE0SQsUMloBYQIiCNpC\n", - "QcBSK9JWqWXsdNRKqTJiZtq/2tHKdERH2hlLioJVS1GiDi1CW0DEQviRAEkghI78SGiyQCHssmST\n", - "Dd/+ce+GzbI/nicnz557w/s1s5N7zv3e8zz3POfe+8359XVECAAAAHtvWt0dAAAAaHckVAAAABWR\n", - "UAEAAFREQgUAAFARCRUAAEBFJFQAAAAVddbZuG3u2QAAANpGRHis+UUTKttnS7paUoekayPib0fH\n", - "zJs3702v6+/vV09Pz163+/rrrxeLLxW7P90PbHBwUDNmzNhjXs77K7WOc+N37dqVHJvz/krFAgDq\n", - "U+yQn+0OSd+QdLakYyVdbPuYUu0BAADUpeQ5VCdJejIinoqInZK+L+mCgu0BAADUomRCtUDSsyOm\n", - "NzXnTaqrq6tIhzA1Ojo66u4CAABTqmRCtdcnf5BQtbfOzlqvdQAAYMqV/OXbLGnhiOmFauyl2kN/\n", - "f//ux11dXSRTAACg7ZRMqB6QdKTtRZKek3SRpItHB1W5mg8AAKAVFEuoImLI9mck/VSN2yasiIjH\n", - "SrUHAABQF9d5nxvbMdZ9qKriPlSth/tQlY8FAJRXy409U8ycOXOfLzP3R6gVfmRLJV+5CUfO+xsa\n", - "GirSj5KJaE68PeZnZr9BsgYA+w61/AAAACoioQIAAKiIhAoAAKAiEioAAICKSKgAAAAqIqECAACo\n", - "iIQKAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoKLaa/kNDAzU3YViStVKy63Pl6Pdat2VrNtI\n", - "rTsAQKqie6hsL7R9h+11ttfa/mzJ9gAAAOpQeg/VTkmXR8Qa2z2SHrR9e0Q8VrhdAACAKVN0D1VE\n", - "bImINc3H/ZIek3RYyTYBAACm2pSdlG57kaTjJN03VW0CAABMhSlJqJqH+26SdFlzTxUAAMB+o/hV\n", - "franS/qBpO9ExMrRz7/66qu7H0+fPl1dXV2luwQAALBPFU2o3LiufoWk9RFx9Vgxs2fPLtkFAACA\n", - "4kof8nuPpD+UdIbt1c2/swu3CQAAMKWK7qGKiJ+Lu7EDAID9HMkOAABARbWXnpkxY0ZS3LRp5XK/\n", - "nBIjpUqXtEIfpLz1vGvXruTY6dOnZ/WjFeSsi5zYnJI9OWM9ODiYHCtJO3fuTI7NGetSctZFbnmm\n", - "VigzlLMNdXbmfXXnXOyT04+cbS5neytZXqvd5P725Xy/lPouKvXb1+rYQwUAAFARCRUAAEBFJFQA\n", - "AAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFZFQAQAAVERCBQAAUBEJFQAAQEW1l5456KCDkuKG\n", - "hoaSl5lbJiPn9vs5cvqcc1v/nPeX+95yS1qkmj17dpHYuXPnZvUjtdSRlFcqY8eOHcmxOeu4t7c3\n", - "Ofb5559PjpWkvr6+rPhUBx54YHLskiVLiix369atybGStGnTpuTYF154ITk2Z/s88cQTk2PPPffc\n", - "5Fgpb/vcsmVLcuyqVauSY9euXZscm7NtnnXWWcmxknTBBRckxx555JHJsQMDA8mxK1asSI69+eab\n", - "k2Ml6bXXXkuOzfl9yPnemjVrVnLsEUcckRx7wgknJMdK0uGHH54cm/q5vuaaa8Z9btw1ZPt3JYWk\n", - "sdZ4RMQPUxq33SHpAUmbIuK8lNcAAAC0k4lSzvPUSKjGk5RQSbpM0npJc1I7BQAA0E7GTagi4o+q\n", - "Ltz24ZLOkfQ3kv6i6vIAAABa0aQnpdueb3uF7Vub08favjRx+V+VdIWk9BOEAAAA2kzKVX7fknSb\n", - "pMOa0xslXT7Zi2x/UFJvRKzW2OdhAQAA7BdSTts/OCL+xfaVkhQRO22nXL52iqTzbZ8jaaakt9m+\n", - "PiI+PjJo5BUlPT096unpSe89AABAIZs3b9bmzZuTYlMSqn7bu+9tYHuZpG2TvSgilkta3nzN6ZI+\n", - "PzqZkqT58+cndRQAAGAqLViwQAsWLNg9ff/9948bm5JQfU7STyQtsf0LSYdI+vBe9GuiKwYBAADa\n", - "1qQJVUQ8aPs0SUercS7UhohIv+NhYxl3Sbpr77oIAADQ2iZNqGx3S/qUpFPV2Mt0t+1/iIjtpTsH\n", - "AADQDlIO+V0v6RVJX1djD9XvS7pB0u8V7BcAAEDbcMTEpzbZXh8Rx042b68at+Owww6bPFB59esm\n", - "e0+j5dTRy112qmnT0utUd3R0JMdOnz49qx85y86p7ZSz3Jz6Ujn1EqW8sc5Zdk7dv5yxTq11KUkH\n", - "HHBAcqyUV9cwp45ef39/cuyTTz6ZHJtTqzCnD1K575eurq7k2Hnz5iXH5n6uu7u7k2Nzts+c2O3b\n", - "0w9qbNs26XVPu+XWK83ZNkrV82yF35xcOeu51O9ZTmxufGqfX3nlFUXEmCsjZQkP2T55eKJ5ld+D\n", - "SS0DAAC8BUxUHPnRETH32H5WjXOojpC0YQr6BgAA0BYmK44MAACASUxUHPmpkdO256lxx3MAAACM\n", - "kFIc+XzbGyX9Uo17ST0l6d8L9wsAAKBtpJyU/teSTpb0REQslvR+SfcV7RUAAEAbSUmodkbEC5Km\n", - "2e6IiDskvbtwvwAAANpGyo2EXrI9R9Ldkv7Zdq+kvJu8AAAA7MdS9lB9SNKApMsl3SrpSXEFIAAA\n", - "wG4pxZGH90btkvStor0BAABoQ+OWnrHdr8aNPMcSEfG2yo3bMX/+/KTYnFvZ55REafajSGwpOaUI\n", - "cssW5MTnlE9ohVgpr8RIKa1Q/ia3HznbfU5ZlNzPaqrccR4YGEiOzd3mUFbJ7+RWKfuC1jJe6ZmJ\n", - "7kPVU7VR2wdIulbSUjWSsz+OiHurLhcAAKCVlPnv4Ru+JunfIuLDtjslzS7cHgAAwJQrllDZnivp\n", - "vRFxiSRFxJCk9BLiAAAAbSL9xKR8iyU9b/s62w/Z/kfbswq2BwAAUIuSCVWnpOMl/X1EHC/pVUlX\n", - "FmwPAACgFiUTqk2SNkXE/c3pm9RIsPbQ19e3+29wcLBgdwAAAMoodg5VRGyx/aztoyLiCUkfkLRu\n", - "dNycOXNKdQEAAGBKlL7K78/UKFfTJel/JH2icHsAAABTrmhCFREPSzqxZBsAAAB1K3kOFQAAwFtC\n", - "6UN+tcgtO9HR0VGkHzklEXJK65TUCmU1ckqXdHd3Zy17xowZybE56yKndMmLL76YHLtjx47k2Nzt\n", - "vtRY55TAydnuc2Jzy5GU+vyVKmuV+/5KlasqVaoqR6uUh2mFsmTtqFVKv6VuRxNtx63xKw4AANDG\n", - "SKgAAAAqIqECAACoiIQKAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpIqAAAACpy\n", - "nbfttx1z5swpsdxi8aXKX3R2plcByulD7vjm9DmnZE9O2Ymccis5ZU5y+5FTyiVnPeeU1skplZNb\n", - "PuW1115Ljs0Zk5x1XCq2VcqAzJo1Kzl25syZybG5233O9pmzHQ0NDSXHDg4OJsfmfPZyt/uc7Shn\n", - "vbVKqbGc7+VDDjkkOXbZsmXJsYceemhybF9fX3Ls2rVrk2MlacuWLcmx27ZtS4rr6+tTRIw52EX3\n", - "UNn+ou11th+1/V3b6b8OAAAAbaJYQmV7kaRPSjo+It4hqUPSR0u1BwAAUJf040z5XpG0U9Is27sk\n", - "zZK0uWB7AAAAtSi2hyoi/k/S30l6RtJzkl6OiP8o1R4AAEBdSh7y+1VJfy5pkaTDJPXY/oNS7QEA\n", - "ANSl5Enp75b0i4h4MSKGJP1Q0imjgwYHB3f/5VwxAgAAUNLQ0NAeecpESp5D9bikv7TdLWm7pA9I\n", - "WjU6KOeycAAAgKnS2dm5x22NJrqFTMlzqB6WdL2kByQ90pz9zVLtAQAA1KXkHipFxFckfaVkGwAA\n", - "AHWj9AwAAEBFJFQAAAAV1V7L7+ijj06KLdnPnLpKOTX3cmoq5dSB6urqSo7NqVsl5a2LnH7kyOnz\n", - "wMBAkT5I0ty5c5Njc2pXdXd3F+nDQQcdlBwr5fU5Zz1v3749OTbnyt6c7S31e2XY0qVLk2Nz1tvT\n", - "Tz+dHHvjjTcmx65cuTI5VsqrxZizHZ122mnJsWeeeWZy7JIlS5Jjb7nlluRYSbrzzjuTY5955pnk\n", - "2Jy6tJdeemly7IUXXpgcK+XVCt26dWty7L333pscu3HjxuTY3t7e5Nic+qNSXv3IxYsXJ8UtX768\n", - "nlp+AAAAbwUkVAAAABWRUAEAAFREQgUAAFARCRUAAEBFJFQAAAAVtWRCVfJSeJT38ssv190F7KXH\n", - "H3+87i6ggr6+vrq7gL20bt26uruAikiosM9t27at7i5gL23YsKHuLqACEqr2tX79+rq7gIpaMqEC\n", - "AABoJyRUAAAAFdVeeqa2xgEAADKNV3qm1oQKAABgf8AhPwAAgIpIqAAAACpquYTK9tm2H7e90fYX\n", - "6u4Pxmf7n2xvtf3oiHkH2r7d9hO2b7N9QJ19xPhsL7R9h+11ttfa/mxzPmPY4mzPtH2f7TW219v+\n", - "UnM+Y9dGbHfYXm37J81pxq+NtVRCZbtD0jcknS3pWEkX2z6m3l5hAtepMVYjXSnp9og4StJ/NqfR\n", - "mnZKujwilkpaJunTzc8bY9jiImK7pDMi4l2S3inpDNunirFrN5dJWi9p+GRmxq+NtVRCJekkSU9G\n", - "xFMRsVPS9yVdUHOfMI6IuFvSS6Nmny/p283H35b0oSntFJJFxJaIWNN83C/pMUkLxBi2hYgYvgNy\n", - "l6QONT6LjF2bsH24pHMkXStp+Koxxq+NtVpCtUDSsyOmNzXnoX28PSK2Nh9vlfT2OjuDNLYXSTpO\n", - "0n1iDNuC7Wm216gxRndExDoxdu3kq5KukPT6iHmMXxtrtYSKezjsR6JxTw7GtMXZ7pH0A0mXRcQe\n", - "tUsYw9YVEa83D/kdLuk022eMep6xa1G2PyipNyJW6429U3tg/NpPqyVUmyUtHDG9UI29VGgfW23P\n", - "lyTbh0rqrbk/mIDt6WokUzdExMrmbMawjUTENkm3SDpBjF27OEXS+bZ/Kel7ks60fYMYv7bWagnV\n", - "A5KOtL3IdpekiyT9uOY+Ic+PJV3SfHyJpJUTxKJGti1phaT1EXH1iKcYwxZn++DhK8Bsd0v6TUmr\n", - "xdi1hYhYHhELI2KxpI9K+q+I+JgYv7bWcndKt/3bkq5W4yTLFRHxpZq7hHHY/p6k0yUdrMbx/r+S\n", - "9CNJN0o6QtJTkj4SES/X1UeMr3lV2M8kPaI3Di18UdIqMYYtzfY71DhpeVrz74aIuMr2gWLs2ort\n", - "0yV9LiLOZ/zaW8slVAAAAO2m1Q75AQAAtB0SKgAAgIpIqAAAACoioQIAAKiIhAoAAKAiEioAAICK\n", - "SKgA1M72Pc1/f8X2xft42cvHagsA9iXuQwWgZdh+nxo3OTwv4zWdETE0wfN9ETFnX/QPAMbDHioA\n", - "tbPd33z4ZUnvtb3a9mW2p9m+yvYq2w/b/pNm/Pts3237R5LWNuettP2A7bW2P9mc92VJ3c3l3TCy\n", - "LTdcZftR24/Y/siIZd9p+19tP2b7O1O7NgC0o866OwAAeqP0zRckfX54D1UzgXo5Ik6yPUPSz23f\n", - "1ow9TtLSiHi6Of2JiHipWdtule2bIuJK25+OiOPGaOtCSb8h6Z2SDpF0v+2fNZ97l6RjJf2vpHts\n", - "vyciOFQIYFzsoQLQSjxq+rckfdz2akn3SjpQ0q81n1s1IpmSpMtsr5H035IWSjpykrZOlfTdaOiV\n", - "dJekE9VIuFZFxHPROCdijaRFFd4TgLcA9lABaHWfiYjbR85onmv16qjp90taFhHbbd8haeYkyw29\n", - "OYEb3ns1OGLeLvFdCWAS7KEC0Er6JI08gfynkj5lu1OSbB9le9YYr3ubpJeaydSvS1o24rmdw68f\n", - "5W5JFzXP0zpE0mmSVunNSRYATIr/dQFoBcN7hh6WtKt56O46SV9X43DbQ7YtqVfS7zTjR16ifKuk\n", - "P7W9XtIGNQ77DfumpEdsPxgRHxt+XUTcbPvkZpsh6YqI6LV9zKhla4xpANgDt00AAACoiEN+AAAA\n", - "FZFQAQAAVERCBQAAUBEJFQAAQEUkVAAAABWRUAEAAFREQgUAAFARCRUAAEBF/w/CsMbhRL/ldgAA\n", - "AABJRU5ErkJggg==\n" - ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAACbCAYAAACkuQVhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEaBJREFUeJzt3X+QndVdx/HPJ7vZzebHBgIkJCQYVFAIrYAtJEChWHSQ\nKbRqLUVtY3HqOG1txJYpZUb/0mkt45R2OjpTQVp+tFVppe0oFFSglFrCj00IJA2JFA3EbBDYZEOy\nyWbz9Y97N2yW/XFOnpy994b3a2Yn93nu9z7n7HPuvfvN8+N8HRECAADA4ZvW6A4AAAC0OhIqAACA\nikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIraG9m4beZsAAAALSMiPNb6ogmV7csk3SSpTdLNEfFX\no2MWLlz4htf19/drzpw5h6xra2vLaTernwcOHEiOHRoaKrLdnNiSc4flbHu8Pu/Zs0ddXV1JsWMp\ntY9z45shthXnicv9/KVqxX0B4M2j2Ck/222SvizpMklnSLra9uml2gMAAGiUktdQnStpc0Q8HxGD\nkr4p6T0F2wMAAGiIkgnVSZK2jFh+ob5uUh0dHUU6hKnR3t7QS/MAAJhyJROqw77gobOz80j2A1Ns\n+vTpje4CAABTquShhBclLRmxvES1o1SH6O/vP/i4o6ODZAoAALSckgnV45JOtb1U0lZJV0m6enTQ\n6Lv5AAAAWk2xhCoi9tv+uKTvqzZtwi0RsaFUewAAAI1S9OrhiLhH0j0l2wAAAGi0ht+ONTg4mBSX\nM6lfziSgufE5sdOmlbnmP2diyP3792dte9++fUW2nRNbapLMXDkTVOaMdU5syX1RaqJMJuAE8GZE\nLT8AAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACAikioAAAAKiKhAgAAqIiECgAAoCISKgAAgIpI\nqAAAACoioQIAAKio4bX8Ojs7k+Jy6p/l1hIbGho6amNz67uVqh1XquZeybpxOdtutVgAwJFV9AiV\n7SW2H7D9jO2nbX+iZHsAAACNUPoI1aCkayNije3Zkp6wfX9EbCjcLgAAwJQpeoQqIrZFxJr6412S\nNkhaVLJNAACAqTZlF6XbXirpbEmPTlWbAAAAU2FKEqr66b67JK2qH6kCAAA4ahS/y8/2dEnfknRH\nRNw9+vmdO3cefNzZ2Zl81x8AAECzKJpQ2bakWyStj4ibxorp7u4u2QUAAIDiSp/yu0DS70m6xHZP\n/eeywm0CAABMqaJHqCLih2I2dgAAcJQj2QEAAKio4aVnpk+ffsS3mVuCI6csSs62c8rltLenD0Wp\nMi5S3u+XUwInZ1/kyN1u7bK+MttOlbPf9u3blxw7MDCQ1Y/9+/dnxafK2cc5sSVLLrVaiZ+c/Sbl\nvZfb2tqK9CMnNue9mfO+kJpj/EoqNdalyr81y+f6SOAIFQAAQEUkVAAAABWRUAEAAFREQgUAAFAR\nCRUAAEBFJFQAAAAVkVABAABUREIFAABQEQkVAABARSRUAAAAFTW89ExqaY2SJUM6OjqSYzs7O5Nj\nS5XVKFUyRMorRVCqDE/OPp41a1ZyrCTNnj07Obarqys59thjjy2y3U2bNiXHPvfcc8mxkvTKK68k\nx+aM9XHHHZcce/755yfHXnrppUX6IOXt5zvuuCM5dtu2bcmxOeWnTj755ORYSVqwYEFy7PLly5Nj\nlyxZkhw7ODiYHLtly5bk2Jyxk6Senp7k2Jdeeik5dteuXcmxOZ+n3DJDc+fOTY6dP39+cuwxxxyT\nHJvzPZsTm/MZkfL2XWoucuedd4773Li9s/1bkkLSWD2KiPh2SuO22yQ9LumFiLgi5TUAAACtZKJ0\n7wrVEqrxJCVUklZJWi9pTmqnAAAAWsm4CVVE/H7VjdteLOlySX8p6U+rbg8AAKAZTXphi+0Tbd9i\n+9768hm2/yBx+1+QdJ2kAxX6CAAA0NRSrhT+qqT7JC2qL2+SdO1kL7L9bknbI6JHY1+HBQAAcFRI\nuWT++Ij4B9vXS1JEDNpOuc3sfElX2r5c0gxJ3bZvi4gPjQzauXPnwcednZ1Zd3gBAACU0tvbq97e\n3qTYlIRql+2D9yDbXi5px2QviogbJN1Qf83Fkj41OpmSpO7u7qSOAgAATKUFCxYcMu3IunXrxo1N\nSag+Kel7kn7W9o8knSDpfYfRr/SJNwAAAFrIpAlVRDxh+yJJv6DatVAbIyJ9hrbaNh6S9NDhdREA\nAKC5TZpQ2e6S9FFJF6p2lOlh238bEQOlOwcAANAKUk753SZpp6QvqXaE6nck3S7ptwv2CwAAoGV4\nsppCttdHxBmTrTusxu1YuHBhamzydnPq0eXGl4rNqSeYE5tb1/DAgfQpw1JrH0l5dbxy5NRAlPL2\nR6lajDn1qE488cTk2JxaYpK0e/fu5Nicels5tcRy6gmm3mmTu10prz5mzmck5zsgZx/PmZNXeGLG\njBnJsaVqheZ89gYG0k+A9PX1ZfUjZ9s5n+uc90VOLb+Scr7jStXTLfU39XDiU/T39ysixtwZKb/1\nk7ZXDC/U7/J74kh1DgAAoNVNVBx53YiYR2xvUe0aqpMlbZyCvgEAALSEyYojAwAAYBITFUd+fuSy\n7fmqzXgOAACAEVKKI19pe5Okn6o2l9Tzku4p3C8AAICWkXJR+l9IWiHp2Yg4RdK7JD1atFcAAAAt\nJCWhGoyI/5M0zXZbRDwg6W2F+wUAANAyUibEedX2HEkPS7rT9nZJeRPeAAAAHMVSjlC9V9JuSddK\nulfSZnEHIAAAwEEpxZGHj0YNSfpq0d4AAAC0oHFLz9jepdpEnmOJiOiu3LgdixcvTo3N2W5WP3LK\nC5QqRVCqbEHuvmiGUgSlYqVy45dTWicntlRJFCnvfZSznzs7O5Njc95DOaWOcsun5MTn7LdmKTEC\n4MgZr/TMRPNQpReWGoftYyTdLGmZasnZNRHx46rbBQAAaCbpVVoPzxcl/WtEvM92u6RZhdsDAACY\ncsUSKttzJb0jIlZKUkTsl7SjVHsAAACNkncBSp5TJL1k+1bbT9r+O9szC7YHAADQECUTqnZJ50j6\nm4g4R9Jrkq4v2B4AAEBDlEyoXpD0QkQ8Vl++S7UE6xA7duw4+DMwMFCwOwAAAGUUu4YqIrbZ3mL7\ntIh4VtKlkp4ZHTd37txSXQAAAJgSpe/y+2PVytV0SPovSR8u3B4AAMCUK5pQRcRaSW8v2QYAAECj\nlbyGCgAA4E2h9Cm/Se3duzcprq2tLXmbJcut5JTgKLXdUiVtpHKlWZqhzIkktbenv+Vzxi/nhoqc\n2FIlUUrK+f2a4fMk5X2/5HxGmmVM8OaR+/cvFe/lyXGECgAAoCISKgAAgIpIqAAAACoioQIAAKiI\nhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIqAACAihpeeqajoyMpLqcEx+DgYFYfckpJ\nlJJTKiO3rEaOnFIuqWMn5ZVDyBnrffv2JcdK0muvvZYcm/M+ynkPzZgxIzk2p1ROTvkUKW/f5YxJ\nqfJFpbabK+e9PH369OTYnM/ezJkzk2OlvM9qTomR/v7+5NickkQly/vkxJcqt1KyjFJXV1dy7Pz5\n85Nj582blxyb832R8x7q6+tLjpXy3nOp34cT/V0oeoTK9mdsP2N7ne2v284rvAYAANACiiVUtpdK\n+oikcyLiLZLaJH2gVHsAAACNUvKU305Jg5Jm2h6SNFPSiwXbAwAAaIhiR6gi4hVJfy3pfyRtldQX\nEf9Wqj0AAIBGKXnK7+ck/YmkpZIWSZpt+3dLtQcAANAoJS9Kf5ukH0XEyxGxX9K3JZ0/Omjnzp0H\nf/bu3VuwOwAAAOkOHDigoaGhgz8TKXkN1U8k/ZntLkkDki6VtHp0UHd3d8EuAAAAHJ7R01ZMNCVL\nyWuo1kq6TdLjkp6qr/5KqfYAAAAapejEnhHxeUmfL9kGAABAo1F6BgAAoCISKgAAgIoaXstv1qxZ\nSXG7d+9O3mZu/aWcWkmlajDl1GHLqfmVU0tMyqszN2fOnOTYnJp0Oft4z549ybFSXv26nH7k/H45\n+3jhwoXJseedd15yrCSdeeaZybE5n7+NGzcmx27YsCE5dtOmTcmxOeMhSWeddVZy7DXXXJMcm1Mr\nrbe3Nzl29eo33N8zoZwxeeyxx5JjX3755eTY2bNnJ8cuW7YsOXbFihXJsZJ0wQUXJMcuWrQoObbU\nDVa5tWa3bt2aHNvT05Mcu3nz5uTYnO+LnL+TqfnCsJy/f6nvz5UrV477HEeoAAAAKiKhAgAAqIiE\nCgAAoCISKgAAgIpIqAAAACoioQIAAKioKROqnFsu0Xz6+voa3QUcprVr1za6C6ggZ3oENJcHH3yw\n0V1ARSRUOOJ27NjR6C7gMJFQtTYSqtZFQtX6mjKhAgAAaCUkVAAAABU5t0zLEW3cblzjAAAAmSJi\nzLpkDU2oAAAAjgac8gMAAKiIhAoAAKCipkuobF9m+ye2N9n+dKP7g/HZ/nvbvbbXjVg3z/b9tp+1\nfZ/tYxrZR4zP9hLbD9h+xvbTtj9RX88YNjnbM2w/anuN7fW2P1tfz9i1ENtttntsf6++zPi1sKZK\nqGy3SfqypMsknSHpatunN7ZXmMCtqo3VSNdLuj8iTpP07/VlNKdBSddGxDJJyyV9rP55YwybXEQM\nSLokIs6S9FZJl9i+UIxdq1klab2k4YuZGb8W1lQJlaRzJW2OiOcjYlDSNyW9p8F9wjgi4mFJr45a\nfaWkr9Uff03Se6e0U0gWEdsiYk398S5JGySdJMawJUTE8AzIHZLaVPssMnYtwvZiSZdLulnS8F1j\njF8La7aE6iRJW0Ysv1Bfh9axICJ66497JS1oZGeQxvZSSWdLelSMYUuwPc32GtXG6IGIeEaMXSv5\ngqTrJB0YsY7xa2HNllAxh8NRJGpzcjCmTc72bEnfkrQqIvpHPscYNq+IOFA/5bdY0kW2Lxn1PGPX\npGy/W9L2iOjR60enDsH4tZ5mS6helLRkxPIS1Y5SoXX02j5RkmwvlLS9wf3BBGxPVy2Zuj0i7q6v\nZgxbSETskPQvkn5ZjF2rOF/SlbZ/Kukbkn7F9u1i/FpasyVUj0s61fZS2x2SrpL03Qb3CXm+K2ll\n/fFKSXdPEIsGsm1Jt0haHxE3jXiKMWxyto8fvgPMdpekX5XUI8auJUTEDRGxJCJOkfQBSf8RER8U\n49fSmm6mdNu/Lukm1S6yvCUiPtvgLmEctr8h6WJJx6t2vv/PJX1H0j9KOlnS85LeHxF9jeojxle/\nK+wHkp7S66cWPiNptRjDpmb7LapdtDyt/nN7RNxoe54Yu5Zi+2JJn4yIKxm/1tZ0CRUAAECrabZT\nfgAAAC2HhAoAAKAiEioAAICKSKgAAAAqIqECAACoiIQKAACgIhIqAA1n+5H6vz9j++ojvO0bxmoL\nAI4k5qEC0DRsv1O1SQ6vyHhNe0Tsn+D5/oiYcyT6BwDj4QgVgIazvav+8HOS3mG7x/Yq29Ns32h7\nte21tv+wHv9O2w/b/o6kp+vr7rb9uO2nbX+kvu5zkrrq27t9ZFuuudH2OttP2X7/iG0/aPufbG+w\nfcfU7g0Arai90R0AAL1e+ubTkj41fISqnkD1RcS5tjsl/dD2ffXYsyUti4j/ri9/OCJerde2W237\nroi43vbHIuLsMdr6TUm/JOmtkk6Q9JjtH9SfO0vSGZL+V9Ijti+ICE4VAhgXR6gANBOPWv41SR+y\n3SPpx5LmSfr5+nOrRyRTkrTK9hpJ/ylpiaRTJ2nrQklfj5rtkh6S9HbVEq7VEbE1atdErJG0tMLv\nBOBNgCNUAJrdxyPi/pEr6tdavTZq+V2SlkfEgO0HJM2YZLuhNyZww0ev9o5YNyS+KwFMgiNUAJpJ\nv6SRF5B/X9JHbbdLku3TbM8c43Xdkl6tJ1O/KGn5iOcGh18/ysOSrqpfp3WCpIskrdYbkywAmBT/\n6wLQDIaPDK2VNFQ/dXerpC+pdrrtSduWtF3Sb9TjR96ifK+kP7K9XtJG1U77DfuKpKdsPxERHxx+\nXUT8s+0V9TZD0nURsd326aO2rTGWAeAQTJsAAABQEaf8AAAAKiKhAgAAqIiECgAAoCISKgAAgIpI\nqAAAACoioQIAAKiIhAoAAKAiEioAAICK/h9eRJ9X5s2MkgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -5166,6 +1057,207 @@ " xlabel('iteration')\n", " ylabel('label')" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6. Experiment with architecture and optimization\n", + "\n", + "Now that we've defined, trained, and tested LeNet there are many possible next steps:\n", + "\n", + "- Define new architectures for comparison\n", + "- Tune optimization by setting `base_lr` and the like or simply training longer\n", + "- Switching the solver type from `SGD` to an adaptive method like `AdaDelta` or `Adam`\n", + "\n", + "Feel free to explore these directions by editing the all-in-one example that follows.\n", + "Look for \"`EDIT HERE`\" comments for suggested choice points.\n", + "\n", + "By default this defines a simple linear classifier as a baseline.\n", + "\n", + "In case your coffee hasn't kicked in and you'd like inspiration, try out\n", + "\n", + "1. Switch the nonlinearity from `ReLU` to `ELU` or a saturing nonlinearity like `Sigmoid`\n", + "2. Stack more fully connected and nonlinear layers\n", + "3. Search over learning rate 10x at a time (trying `0.1` and `0.001`)\n", + "4. Switch the solver type to `Adam` (this adaptive solver type should be less sensitive to hyperparameters, but no guarantees...)\n", + "5. Solve for longer by setting `niter` higher (to 500 or 1,000 for instance) to better show training differences" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0 testing...\n", + "Iteration 25 testing...\n", + "Iteration 50 testing...\n", + "Iteration 75 testing...\n", + "Iteration 100 testing...\n", + "Iteration 125 testing...\n", + "Iteration 150 testing...\n", + "Iteration 175 testing...\n", + "Iteration 200 testing...\n", + "Iteration 225 testing...\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEZCAYAAADR8/HkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecXGX1/98nnfTee4EUCAZCgAASegApXxsdFPiJBftX\nEcEvAWwoKiJVBQERgtJEpSNLDaSHEFIJIdkkpG7aJiHt/P449zJ3Zqfc2Z3Z3dk979drXju3P3N3\n5vncU57ziKriOI7jOLVNk7pugOM4jtM4cQFyHMdx6gQXIMdxHKdOcAFyHMdx6gQXIMdxHKdOcAFy\nHMdx6gQXIMdxHKdOcAFq5IjI+SIyXUS2isgqEXlaRI6q4TknichfC9XGHNfaFrR9q4jsE5HtkeXz\nqnG+MhG5LMZ+bYNrP129lpcewXflw+BzPyEinbLsOyq4l5tEZIWIXJuy/SsiskRENovItJp+55zS\nxAWoESMi3wN+B/wU6A70A24HzqzLduWDqrZV1Xaq2g74EPhMuKyqD1fnlDH3+xywHJggIj2qcZ1q\nIyJNa/N6wTVHAXcBFwA9gO3AHVkO+SvwGtAJOBb4uoicEZzrU8BvgC+oagfgHuAJEZHifQKnXqKq\n/mqEL6ADsBX4XJZ97gNujCxPAFZElq8CyoEtwALgeGAi8DGwKzj/rGDf3sBTwAZgMXB55DyTgH9g\nndYW4B1gGHA1sAYTlpNifKYPgOOD902AHwFLgPXAI0CnYFsr4MFgfQUwFRPgnwF7gB1B22/Ncq3/\nAt8DXgC+n7LtaODN4NzLgUuC9fthHe8yYBPWQbdKva/Bvssin2US8GhwfzYDlwKHAVOCa6wC/gA0\njxw/KmjbBuCj4F70BCqBzpH9DgHWAk1z3NufAw9GlgcH/+c2GfbfCQyPLP8duCp4fz7wdmRbG2Af\n0KOufxf+qt2XW0CNlyOxzu+JLPsoGSwCETkA+AYwVlXbAycDy1T1WayzmqxmhYwJDpmMdca9gM8D\nPxeR4yKn/AzwAPbEPAvrPMGE60bg7jw/3zcxS+7TwTUrMOsO4BKgPdAX6AxcAexQ1WswUfhG0PZv\nZfjsA4Lz/j14XZyy7Wng90BX4FPA7GDzzcAY7N53Bn6AdbzpSL3vZwL/ULMYHgL2At8GugTnOwH4\netCGdsCLQTt6AUOBl1T1I6AM+GLkvBcBD6vqXhGpEJHxGdozEpjzSeNUl2ICtH+G/Z8HLhGRZiIy\nPGjji8G214BBIjIusOYuxR5U1mQ4l9NAcQFqvHQB1qtqpg4wJJNbZC/QEhglIs1VdXnQKYXHfHKc\niPQDxmNPwLtUdQ7wZyIdN/Cqqr6gqnuxp/0uwC+D5UeAgSLSPo/PdwVwraquUtXdwPXA54MOb1dw\n/mFqzFLVrTE+c8hFwFRVLQceB0YGbiWwp/sXVPURVd2rqhtVdY6INAG+DHxbVVer6j5VfUtVd8X8\nPG+q6lMAqrpTVWeq6tTgPB8Cf8RcXWBivkpVfxfc722qOi3Y9gBwIXziyjsXs6xQ1U6q+maG67fF\nrK8oW4B2Gfb/LnAOZk2+B/xZVWcE11kBXAu8gVlKP8H+X04jwwWo8bIB6Bp0jHmjqkuA72DuoTUi\n8rCI9Mqwe29go6pWRtYtB/pEltdG3u/AxFEjy2CdYFwGYnGFChGpwDrBPZir7a/Ac8BkEVkpIjeJ\nSLPox8tx7osxlyGqugGzKi4JtvUDlqY5pitmcb6fx2eIUh5dEJH9ReTfIrJaRDZj7sMuOdoA8E9M\nMAcCJwGbVXV6jOtvw9y2UUI3bhIi0hpzUf4f9pDSD5goIl8Ltp8JfB8YoarNMUH/d5bvj9NAcQFq\nvEzBXCj/k2WfSqB1ZLlndKOqPqyqxwADsE77pnBTynlWAZ1FJCog/UnpVAvMcmBi8FQfvloH1sce\nVb1BVUdhltlnSFhjWcUncFENBa4NOv/VmHvp/MCiWA4MSXPoeuxpf2iabUn3OThPt5R9Utt1Jyaq\nQwO33DUkfs/LsRhNFVR1JyaeFwavB9J/0irMAw6OtHEI0AJYlGbfUUA7VX0wsNBWYlbsacH2U4D/\nBA8xqOpzQHgfnUaEC1AjRVU3Y0+ot4vIWSLSWkSai8ipIhIKyWzgNBHpJCI9MYsH+OQJ/HgRaYkJ\n2U7MLQcW9B4YZjUFLpc3gV+ISEsRGY35/R8s4ke8C4sz9Q/a2y148kZEJojIQUFHvxXYHWn7GtIL\nSMglWHxjBNYhHwwciCUYnAr8DThRRL4QxD+6iMjBgavzXuC3ItJLRJqKyJEiEnbirUTkNBFpjrmn\nWub4fG2Dtm8PYixfi2z7D9BLRL4d3O92IjIusv0BzB14JoH7LQZ/A84QkaNFpA0Wl3ssxaoNWQK0\nEJHzRKRJ8N05h0QMaQ5wuogMEuMkLJb0bsy2OA2Fus6C8FfdvrCYxTTMxbIa+BdwRLCtJZY8sBkT\no+8Ay4NtBwFvY3GADViGW89gW2cs0LwRmB6s6xOcewPWQX0l0obrgAciyycCSyPLzTCB6J3js0Sz\n4ASLQywI2rgE+Gmw7dxg/TZMLG8BmgTbjgAWBm2/JeX8rYL1p6e59u3A34P3RwNvBfdtOXBR5Pjf\nYZbfJsx11zLYdglmKa7B3FNLI58l6f4E644B5mMi9CoW43o1sn0UFvTfGPxff5hy/GLg5ZR1W4Gj\nstzf87CMxG1Y8krHyLY7gTsjy6cCM4N7sBpLImkVbGsC/ApYEfxv5gEX1PVvwV+1/5LgC1FwgsDz\nA5jPXYE/quqtKftMwHzSob/6MVX9aVEa5DjOJ4jIi8BDqnpvXbfFqV1EZCL20NUUSw65KWV7J8xa\nH4x5Ni5V1XlFaUsRBagn9kQ8O/D9zwDOVtX5kX0mAN9T1ZIZ+Og4pY6IHIYlYfTT9C40p4ESuJ0X\nYl6GlZj347yUfvnXwBZVvTEYbnG7qp5YjPYULQakqh+p6uzg/TbMXdA7za4++tlxagkRuR8bY/Ud\nF59GyThgiaouUxueMBk4K2WfEcDLAKq6EIvnpibFFIRaSUIIUj7HYDGDKAqMF5E5YjXIRtZGexyn\nsaKql6hqR1WNm/3mNCz6YLG3kHKSh0OAJYl8FiBIXhmADdouOEUXoMD99ig2AG9byuaZmBvgYKyU\nyJPFbo/jOE4jJk7M5ZdARxGZBVyJVSbZm/2Q6tEs9y7VJ0gpfQyrIVVFXDQy+lxVnxGRO0Sks6pu\nTDlPcQJVjuM4DRxVjYY5VmIDg0P6kTIeL+iXLw2XReQDMg9srhFFs4CCMSD3AO+p6i0Z9ukRjhUJ\nTD1JFZ+Quk4XrC+v6667rs7bUF9efi/8Xvi9yP5Kw3RgmIgMDMagnYMNoYj2yx2CbYjI/wNe0are\nq4JQTAvoKGyk9TuBKQfwY2wEPKp6N1aU8msisgcr735uEdvjOI7TqFHVPSJyJZYF2RS4R1Xni8gV\nwfa7scKz9wWep3eBnPNjVZeiCZCqvk4OC0tVbydRodhxHMcpMqr6DPBMyrq7I++nAAfURluKGgNy\nCs+ECRPqugn1Br8XCfxeJCjavVCFrVth3brcr2OPhZtvLk47GhBFG4haSERES6GdjtMo2LsXPv4Y\ndu2yv+H7ffugVavEa7/9oFkzqK8TnarCpk3xBCV8NWsG3brlfvXrB73TDXusXUQETU5CqFe4ADlO\nfUHVOvfdu61D37276vtM21LFIPV9ru35vN+7F1q2tFeLFon3IrbPzp2wY4e9IFmUQmFKXZdtfT7H\ntGgBmzfHE5MNG+z4dALSvXv69fvtV7ffkTxxASoALkBOvWHLFli82F6LFkF5ef5ikW1bkybWiTZv\nnnhFlzNtiwpBuve5tuezbz5WzZ49Jkiprx070q8vxPYOHeJZKV272udpwLgAFQAXIKdW2bkTli41\ngQlfoeBs2QLDhsH++9vffv2sE8slEHG3NfEZUpzC4QJUAFyAnIKzdy98+GF6kVm9GgYOTIjM/vsn\nXr1719+YhuOk4AJUAEREP/xQOf98ePlle1B0nJyompikCsyiRfDBB9CzZ3qRGTDA3EyOU+K4ABUA\nEdHjj1f++19YsgSGZJuv0ml8bNyYXmQWL4a2bauKzLBh9iUqsYCy4+RLfRegknnM27IFjjnGXPMu\nQHXM9u2JoPmePcmB9dpa3rULli83kdm9O9mCOftsE5lhwywg7ThOvaRkBGjKFPja1+D99+Gkk+q6\nNY2I3bthzhx48037J7z5Jqxdm8iGigbVsy1XZ1urVtn37dfPBKdbN4/LOE4JUjIC1KyZWT7vv1/X\nLWngrF+fEJo334SZM2HQIBg/HiZOhBtugKFDvcN3HKfGlIwAAQweDNOm1XUrGhB798J77yXEZsoU\ns24OP9wE59prYdw4d2M5jlMUSkqA3AKqIZs2wdtvJyyct9+2TLDx4+Goo+AHP4ARI6Bp07puqeM4\njYCSyYJTVTZtMrf/li3uAcqJqmWChWIzZQosWwaHHmqCM348HHGEjQZ3HKdBUt+z4EpKgAA6d4aF\nCy3u7ESorDT/ZFRw2rY1oTnySPs7erQPonKcRkR9F6CScsFBwg3XqAVI1UbxR8Vm/nwTmPHj4Utf\ngrvvrhfVeB3HcTJRcgI0fLhlBR9xRF23pJbZtQvuvx+ee85ERzVh3Zx3HhxyiKUtO47jZEFEJgK3\nYDOi/llVb0rZ3hV4EOiJacTNqnpfUdpSai64Rx+1h/sXXqjjRtUWe/fCgw/CpEmmvhddZKIzcKAH\nwhzHyUqqC05EmgILgROBlcA04DxVnR/ZZxLQUlWvDsRoIdBDVfcUun0lZwGddhpcfjmsWQM9etR1\na4rIvn3w+OPwf/8HXbrAAw9YKQjHcZzqMw5YoqrLAERkMnAWMD+yz2pgdPC+PbChGOIDUHK131u3\nhtNPh8ceq+uWFAlVeOYZOOww+MUv4Le/hVdfdfFxHKcQ9AFWRJbLg3VR/gSMEpFVwBzg28VqTMlZ\nQAAXXmhDVr7ylQZWtPi11+DHP7aZGm+8ET77WXezOY4Tm7KyMsrKyrLtEifm8mNgtqpOEJEhwAsi\ncrCqbi1EG6OUXAwIzEg47jg491z46lfrsGGFYsYMqzqwYAFcfz1ccIEPBnUcp8akiQEdAUxS1YnB\n8tXAvmgigog8DfxMVd8Ill8CrlLV6YVuX8m54MCMgt/9Dq67zgozlyzvvQef/zyceSaccYYNcLr4\nYhcfx3GKxXRgmIgMFJEWwDnAUyn7LMCSFBCRHsABwNJiNKYkBQhgzBh7PfFEXbekGnzwgY3VmTDB\n6q4tXgxf/7pNy+w4jlMkgmSCK4HngPeAR1R1vohcISJXBLv9HBgrInOAF4EfqurGYrSnJF1wIY88\nAn/6E7z4Yh00qjqsWgU/+xlMngxXXgnf+54X+nQcp2jU90oIJWsBAZx1FsyebUUB6jUbNsAPfwgH\nHWSzcC5caLEeFx/HcRoxJS1ArVrBZz4DTz9d1y3JwJYtJjQHHABbt8I778DNN3sBUMdxHEpcgMCM\nivnzc+9Xq+zYAb/5jU0JvWSJTXtw553QJzXd3nEcp/FS8gI0YoRlL9cLdu+Gu+4y4XnjDXjpJfjr\nX62CquM4jpNEyQ/jHDGiHlhAe/fCQw9ZvbahQy0177DD6rhRjuM49ZuSF6ABA2DjRguxtGtXyxdX\nhSeftEGkHTvCPfdYarXjOI6Tk5IXoCZNYP/9zQ1Xa0aHqpXjvuYa2LMHfv1rOPVUL5vjOI6TByUv\nQJCIA9WKAL3xhgnP6tVWr+3znzcVdBzHcfKiQfScI0bArFkwc2YRLzJ7tuV8n38+XHIJzJsHX/yi\ni4/jOE41aRC95+jR8Pvfw1FHwfSCl8vDxu+ccAKccgosWgRf/nIDK8PtOI5T+5R0KZ6Qfftg2zYb\narNgAfzlLwVuwG23mQj98Y8FPrHjOE7xaLSleESkn4i8LCLzRORdEflWhv1uFZHFIjJHRMZU51pN\nmkD79nDZZZaUtn59zdpehWnTYNy4Ap/UcRyncVNMF9xu4LuqOgo4AviGiIyI7iAipwFDVXUY8BXg\nzppcsGtXOPlk+Ne/anKWNEyd6uN6HMdxCkzRBEhVP1LV2cH7bdic471TdjsTuD/Y522gYzD/RLUZ\nMgRWrqzJGVLYvBlWrIBRowp4UsdxHKdWkhBEZCAwBng7ZVO6+cn71uRavXpZhnTBmD7dJh7ypAPH\ncZyCUvReVUTaAo8C3w4soSq7pCynzTaYNGnSJ+8nTJjAhAwVB3r1gpdfrk5LMzBtmrvfHMdxikBR\nBUhEmgOPAQ+q6pNpdlkJ9Iss9w3WVSEqQNno1Qs++ii/dmZl6lQb7+M4jtMAEJGJwC1AU+DPqnpT\nyvb/BS4IFpsBI4Cuqrqp0G0pZhacAPcA76nqLRl2ewq4ONj/CGCTqq6pyXV79iywC27qVM+Acxyn\nQSAiTYHbgInASOC81OQwVb1ZVceo6hjgaqCsGOIDxbWAjgIuBN4RkVnBuh8D/QFU9W5VfVpEThOR\nJUAl8OWaXjS0gFQLUJpt1SrYuRMGDappsxzHceoD44AlqroMQEQmA2dhSWLpOB94uFiNKZoAqerr\nxLCwVPXKQl63dWto0QI2bYJOnWp4sjD+40VGHcdpGKRL/Do83Y4i0ho4Bfh6sRrTIFO7evY0K6jG\nAuTuN8dxSoiysjLKysqy7ZJP6ZszgNeL5X6DBipAYSr2iBG5983K1Knwne8UpE2O4zjFJjVD+Prr\nr0/dJTXxqx9mBaXjXIrofoMGUow0lYKMBdq3z8YAeQq24zgNh+nAMBEZKCItgHOwZLAkRKQD8Gng\nn8VsTIO1gGqcir1kCXToAN27F6RNjuM4dY2q7hGRK4HnsDTse1R1vohcEWy/O9j1bOA5Vd1RzPY0\nSAEqSCq2x38cx2mAqOozwDMp6+5OWb6foExaMXEXXCa8ArbjOE5RaZACdMABNjtqjaY68grYjuM4\nRaVBCtBhh8GePTWYHXXXLpuA7tBDC9oux3EcJ0GDFCAR+NKX4L77qnmCuXNh8GBo27aArXIcx3Gi\nNEgBArjoInjgAejTByZPzvNgr4DtOI5TdBqsAPXvD08/Deeea+GcvPAMOMdxnKLTYAUI4Jhj4Nhj\nYcGCPA90AXIcxyk6DVqAwMrx5CVAW7fCBx/AQQcVrU2O4zhOIxCgQYNsTNCOuON5Z86E0aOhefOi\ntstxHKex0+AFqFkzS2hbvDjmAe5+cxzHqRUavAABDB8O8zNNt5SKC5DjOE6t0CgEKK84kKdgO47j\n1AqNQoCGD4e//x0uvthm2M7ImjWweTMMHVprbXMcx2msNAoBOukk+OIXYcoUmDUry46h9dOkUdwW\nx3GcOqVR9LQ9esB118Fxx8GMGVl29ArYjuM4tUajEKCQQw/NIUBeAdtxHKfWaNQCVFER2ajqGXCO\n4zR4RGSiiCwQkcUiclWGfSaIyCwReVdEyorWFq3RpDm1g4hoIdr58cfQqROsXw/79kHv3vD++9Ct\nG/ZmwgRYsaLG13Ecx6kPiAiqKpHlpsBC4ERgJTANOE9V50f26Qi8AZyiquUi0lVV1xejfQ1ySu5M\ntGxpGXFz5pjebN1qVlC3bnj8x3GcxsA4YImqLgMQkcnAWUB0pOT5wGOqWg5QLPGBRiZAAOPHw1//\nCkuX2vK2bcEGj/84jtPw6QNE3TzlwOEp+wwDmovIy0A74Peq+tdiNKbRCdCNN8KRR8KqVXDIISkC\ndMMNddo2x3GcmlBWVkZZWVm2XeLEMpoDhwAnAK2BKSLylqrGLWgWm0YnQJ06wTPPwFtvmSW0dSs2\nf/fs2T4Ft+M4Jc2ECROYMGHCJ8vXX3996i4rgX6R5X6YFRRlBbBeVXcAO0TkVeBgoOAC1Kiy4EIG\nDYLzzoN27QILaN486NcPOnSo66Y5juMUk+nAMBEZKCItgHOAp1L2+SdwtIg0FZHWmIvuvWI0ptFZ\nQFHatg0sIE+/dhynEaCqe0TkSuA5oClwj6rOF5Ergu13q+oCEXkWeAfYB/xJVV2ACk3btqEF5ALk\nOE7jQFWfAZ5JWXd3yvLNwM25ziUiTVV1b3Xb0ihdcCGfuOA8BdtxHKc6LBaRX4vIyOoc3KgFqG1b\n2LmhEhYtsllQHcdxnHz4FJac8GcReVtErhCR9nEPbtQC1K4ddP5wFhx4oI1SdRzHcWKjqltU9Y+q\nOh64Cvg/4CMRuV9Ecs5r0+hjQB2XT4Mj3P3mOI6TLyLSDDgd+DIwEPgN8BBwNPA0sH+24xu9AHVf\nMxUOm1jXTXEcxylFFgFlwK9U9c3I+kdF5NhcBxfVBSci94rIGhGZm2H7BBHZHFRdnSUi1xazPam0\nawdDNngGnOM4TjUZraqXpogPAKr6zVwHFzsG9Bcgl3nxiqqOCV4/LXJ7kui4Zz3td63n44EHMHNm\nbV7ZcRynQXB7UD0bABHpLCL3xj24qAKkqq8BFTl2kxzbi0bXD6fzbquxvPJaEy66qK5a4TiOU7Ic\nrKqbwgVV3YjVkYtFXWfBKTBeROaIyNPVzSWvLp0WTWVW08NYuRKWLIG91R5O5TiO0ygREekcWeiM\nVViIRV0nIcwE+qnqdhE5FXiSHFkThaT1vKm8te9S9l8Fu3bBsmUwZEhtXd1xHKfk+Q1WLfvvmDfr\nC8DP4h6cU4BEpC2wQ1X3isgBwAHAM6q6u5oN/gRV3Rp5/4yI3CEinQMzLolJkyZ98j614ms1L06L\nOdN4fdddtFlpqxYudAFyHMeJi6o+ICIzgOMxj9b/5FM3Lo4F9CpWGbUTVsBuGlZB9YJqtDcJEekB\nrFVVFZFx2BThVcQHkgWoICxfDk2a8OGePixbBn36mACddlphL+M4jtOQUdV5IrIeaAWoiPRX1eVx\njo0jQBK4yC4D7lDVX4nInDgnF5GHgWOBriKyArgOm+woLH73eeBrIrIH2A6cG+e8BWHqVGTcONq+\nIixaBMcdZxV5HMdxnHiIyJmYG643sBYYgE3vPSrO8bFiQCJyJGbxXBasipW8oKrn5dh+O3B7nHMV\nnGAKhnYz4YMP4Mc/hgcfrJOWOI7jlCo/BY4EXlDVMSJyHBA7pziOkHwHuBp4IjC1hgAvV6up9Ymg\nAnbbtqAKxx5rLjjHcRwnNrtVdT3QJJia4WVgbNyDcwqQqr6iqmeq6k0i0gRYp6rfqkGD6569e2HG\nDBg7lrZtoUcPmyW1oiKYoM5xHKeBIiITRWSBiCwWkavSbM+nQk2FiLQDXgP+JiK3AtvitiWnAInI\nwyLSXkTaAO8C80Xkh3EvUC+ZPx969YJOnWjXzhIQmjSBUaPgnXfqunGO4zjFQUSaArdhFWpGAueJ\nyIg0u8atUHMWFr//LvAssAQ4I2574rjgRqrqFuBsbBa9geTh46uXRCaga9sWeve21YcdBtOn12G7\nHMdxiss4YImqLguG0kzGRCSVnBVqgkrY/1bVvaq6W1XvU9VbVXVD3MbEEaBmItIcE6B/BY3WuBeo\nl0ydamqDCVCfPrZ67FjTJsdxnAZKH2BFZLk8WBclVoUaVd0D7IvWgsuXOFlwdwPLgHeAV0VkILC5\nuhesF0ydChdfDFhF7NACGjsWfvWrOmyX4zhOcYljPORToaYSmCsiz2OuOACNmyeQU4BU9Vbg1nBZ\nRD7ERr2WJjt3WgzoU58C4PLLoWOg3yNHQnk5bNkC7WNPKus4jlM/KCsro6ysLNsuK4F+keV+mBX0\nCflUqAEeD15Jp4jbXlHNvm9gXl0HfDpYVQbcoKq1ZgWJiOZqZ2zeegu+8Q3LgkvDUUfBFVdA69aw\ndq0JVIsWhbm04zhObSIiqKpElpsBC4ETgFXAVOA8VZ0f2Se1Qs3fVXVgMdoXxwV3LzAXKzInWALC\nX4DPFqNBRScS/0nHccfB1VfbLrNnw7BhcNJJtdg+x3GcIqGqe0TkSqysWlPgHlWdLyJXBNvzqlAj\nIh+kv4wOjtOeOBbQHFU9ONe6YlJQC+jCC+H44+HSS3PuesMN5o67+ebCXNpxHKc2SbWAinD+rpHF\nVph4dVHVn8Q5Pk4W3A4ROSZywaNJBJtKj0gKdi5OPhmef77I7XEcxylRVHV95FWuqrcAp8c9Po4L\n7qvAAyLSIViuAC6pRlvrnooKWLUKRqQbd1WVsWMtKWH1ahu36jiO4yQQkUNJJB00wcrwFG5COlWd\nDYwWkfbB8pZqtLN+MH06HHIINI13f5o1M2/dCy98krXtOI7jJPgNCQHagw3Z+WLcgzMKkIh8P7Ko\nkfWCBZl+m1cz6wNBBex8OOIImDnTBchxHCcVVZ1Qk+OzxYDaAW2DV7vIK1wuPfKI/4QMHw4LFhSp\nPY7jOCWMiPw8WglBRDqJSLbaccnHFyy7rIgUJAtO1UoeTJkCAwfGPuz99+GEE2DZsppd3nEcp7ap\nhSy42ar6qZR1s1R1TJzjY00s1yBYudKmYRgwIK/DBg6ENWugsrI4zXIcxylhmohIq3BBRPYDYg/d\nbzwCFLrfJL+HgaZNYehQn67bcRwnDX8DXhKRy0TkcuBF4IG4B8eakrtBkKMCQjZGjLA40JhYRqXj\nOE7jIJio9B2stA9Ymbbn4h6fU4AC8+pz2DxA4f6qqjfk2da6ZepU+N//rdahw4db/VLHcRwngYgM\nAspU9ZlgeT8RGaiqy+IcH8cF90/gTGA3NtXqNqwEd+mwb5+NAaqmBeSZcI7jOGl5FNgbWd4XrItF\nHBdcH1U9Jd9W1SsWLYKuXe1VDQ44wGNAjuM4aWiqqrvCBVX9OJjANBZxLKA3RWR0tZpWX6hB/Aeg\nb18ryeM4juMksV5EPpnSO3i/Pu7BcSygY4AvB2W3Pw7WqaqWjihVowJClG7drCr2zp3QqlXu/R3H\ncRoJXwX+JiK3Bcvl2JQ9sYgjQKdWp1X1imnT4NyMU1rkpEkTK0a6ahUMjjXLheM4TsNHVZcAh4tI\nO1vUbfkcn60WXPug8GjpFh8F+PhjePfdGudQ9+ljY1ldgBzHcRKIyGeAkUArCcZZxs2SzhYDejj4\nOxOYkeZVGrzzjo0kbdOmRqcJBchxHKeUEZGJIrJARBaLyFVZ9jtMRPaISMbZr0Xkbqz69bewGbO/\nCMQuN5NZCs72AAAgAElEQVTRAlLV04O/A+OerF5Sw/hPiAuQ4ziljog0BW4DTgRWAtNE5ClVnZ9m\nv5uAZzFhycR4VT1IRN5R1etF5DfBMbGIVQlBRDoBw7ApVwFQ1VfjXqROmTYNjjqqxqfp29cE6KWX\nYM8eOKW0E9Mdx2mcjAOWhANFRWQycBaQOtT+m9h4nlzpwzuCv9tFpA+wAegZtzE507BF5P8BrwLP\nA9cDzwGT4l6gzqlhCnZIaAH97ndwzjmwfHkB2uY4jlO79AFWRJbLg3WfEAjJWcCdwapsUxH8KzBQ\nfo2FZpaRCN/kJM44oG9jqrlMVY8DxgCb416gTtmyxZRi1Kgan6pPHzvV66/DZZfBV75SgPY5juPU\nLnHmtbkF+FEwB46QxQWnqjeqaoWqPoaVaxuuqj+J25g4LridqrpDRBCRVqq6QEQOiHuBOmXGDPjU\np6B57IG5GenTx4ypkSPhl7+Efv2sOsL++xegnY7jOAWgrKyMsrKybLusBPpFlvthVlCUQ4HJQUZb\nV+BUEdmtqk9lO7Gq7gR25tPenBPSiciTwJcxS+gEoAJopqqn5XOhmlDtCeluugk++sj8ZjVkxw5o\n3Rq++U249Vb4wQ9sqoZf/rLGp3YcxykKqRPSiUgzYCHWl68CpgLnpSYhRPb/C/AvVX28GO3L6YJT\n1bMDE2sS8BPgz8DZxWhMwSlQBhzAfvtB585w3HG2fOmlcP/9sHu31Tpdtaogl3EcxykaqroHuBKL\n5b8HPKKq80XkChG5orbbk9UCCtTyXVUdXntNStuO6llA/fpBWRkMGVKQdtx2G1xyCbRrZ8tnn23e\nvaZNrdj2kiUFuYzjOE5BqIUpuV9S1RNyrctEVgsoUMuFIpLfPNb1gdWrYfv2gpYuuPLKhPgAPPKI\nic/evbBihf11HMdp6ATz/nQBuolI58hrIClZddmIk4TQGZgnIlNJzAOkqnpmjEbeC5wOrFXVgzLs\ncytWb2478CVVnRWr5bmYNs3Sr/OcgjsfWraEyZPtfa9eFm7qE/vWO47jlCxXYHkBvUmujLMVG+ga\nizgCdC1V0/Di+sP+AvyBDHOEi8hpwFBVHSYih2N550fEPHd2Chj/iUP//pam7QLkOE5DR1VvAW4R\nkW+q6h+qe54444BOV9Wy6AuIlQGnqq9hWXOZOBO4P9j3baCjiPSIc+6cTJtWJwLkOI7TiFgTVMJG\nRH4iIo+LyCFxD44jQCelWVeoFOx0o3L71visqgkXXC0xYIALkOM4jY6fqOpWETkaS+2+F7gr7sEZ\nBUhEviYic4EDRGRu5LUMeKemrY5eKmW5GuluKSxZYtkCPQpjTMXBLSDHcRohYerVZ4A/qeq/gdgj\n/7PFgB4CngF+CVxFQii2quqGajQ0HamjcvsG66owadKkT95PmDCBCRMmZD5rLcd/wAToxRdr9ZKO\n4zh1zUoR+SPmKfuliLQinmcNyD4dw2as5lv1pxLNzVPYoKjJInIEsElV16TbMSpAOanl+A9UtYA2\nbYKOHe395s3wi1941QTHcRocXwROAX6tqptEpBfwg7gHx1aq6iAiDwNvYm68FSJyaXTErao+DSwV\nkSXA3cDXC3LhAlXAzoeoAL33no2BXb3all9/3aoC5VstYeVKm/rBcRynPqKqlcA64Ohg1R4g9pD8\nogqQqp6nqr1VtYWq9lPVe1X1blW9O7LPlao6VFUPVtWZNb7o7t0wZw4cemiNT5UPXbrAzp2wdavN\nAL59O1x7rW176y37+/zz+Z3zwgvhv/8tbDud+sfs2ZY34zilhohMAn4IXB2sagH8Ne7xRRWgOuHd\nd2HQoOSSBbWAiGXCLVsGCxfCV78K//kPzJsHb78NZ50Fzz2X3zlXr4a1a4vSXKcecdZZXsbJKVn+\nB5s7qBJAVVcCsTvfWDOilhR1kIAQcvDBMGuWCdCJJ5pVdMcd1qSXX4aTTrJyPU2bJo5RhY0braZc\n+/bJ51u3DjYUKt3Dqbds3QqVlbn3c5x6yMequi+YugERaZPPwQ3PAqqD+E/IYYfZ5RcuhAMOgMsv\nh3vvtSraY8ZYuZ7p05OPuf12m+57xIjk9bt3mzBt3Fh77Xfqhm3bXICckuUfInI3VkTgK8BL2IwJ\nsWiYAlRHFtBhh1kCXihA/fubJXREUFxo4kR49tnkY6ZPh9/+FtasSY4DrF9vf90Catjs2mUPG9u3\n13VLHCd/VPXXwGPBa39sYOqtcY9vWAK0bRssXQoHpa17WnQOOcRccC1bmtUDcMstcM019j6dAM2d\na9bRfvuZKyZk3Tr76wLUsNm2zf66BeSUIiJyk6o+r6r/G7xeEJGb4h7fsARo5kwTnxYt6uTybdua\n5XNAZMLyIUNg1Ch7f/TRlqIdutX27oX58217p07J7ra1a6FJExeghk4oQG4BOSXKyWnWxS7V1rAE\nqA7dbyGHHZYsQFFatoRjjklUTFiyBHr2tIS9zp2hIlK2de1aS+ZLjQHt2ZNsKTnV57334KGH6rYN\nbgE5tY2ITBSRBSKyWESuSrP9LBGZIyKzRGSGiByfZp+ClGprWAJUBxUQUvna1+CyyzJvP/lkeOEF\ne//uu3DggfY+nQU0YkRVC+gvf4Hjj/dxI4XgpZcsSaRQbN9uz0D54BaQU5uISFNsvp6JwEjgPBFJ\nSYHixWBc5hjgS8Af05zqIeAMrJrNZ4L3ZwCHquoFcdvTsASonlhA48dn3n700fDmm/Z+7txEuCrV\nAlq3DoYPrypACxda4sITTxS23Y2R8vLCFpB97TX4znfi7btmjT1wuAA5tcw4YImqLlPV3cBkbBzP\nJwTVDULaAutTT6Kqm4NznKuqHwbvl+VbJ7ThCNDatdaDDx1a1y3JyujRNn33xo3JApTOAho6FHbs\nsEypkPffhy9/GX7yk/pnBe3YAR9/XNetiE95uf0vCnUfKyuTHyKy8YMfwB//6C44p9ZJNwVOlWk0\nReRsEZmPFaT+VrEa03AGoobz/zSp35rarJkZac8/b4NTf/97W58uBtSjhwlTRUViZon334f77jM3\n3uLFsP/+tf4RMnLddTbW6bvfreuWxKO83MonrV8P3brV/Hzbt8cft/Xqq/Y/dQvIKSRlZWWUlZVl\n2yXW45aqPgk8KSLHYKV1MkS2a0bDEqA6dr/FZfx4+N//tTFCfYPp90ILaOVKc7utW2edYpcuttyj\nhz2pL11qmXXHH2914uqTAH3wgSValArl5Za5uGJFYQVI1UozZWL5cvjww4QLTsQtoMbC5MkwcGBi\nbGChSZ2q5vrrr0/dJXUKnH6YFZQWVX1NRJqJSJcCTsPzCfXbXMiHOqyAkC9HHWVCE40XhBbQ/ffD\n+edbjKB794QAga1r1Qo6dEgIEMC+fbBoUfHbvXKlxTnCMUrptpdKR6pq7T388MLFgSorLUsxtGoy\n8dprNu4rFKAuXdwCypfKSnj00bpuRX7s2WO/+TPOgClT6qwZ04FhIjJQRFoA52CJBJ8gIkMkqK0T\nTq9dDPGBhiJAqvUiASEuRx9t8wMdeWRiXWgBLV1qBUyXLjUB6tw5IUDvv2/WD5gAvfyyFf4ePx5G\njqw6dcPq1eZiKhTXXgvnnguf/Wz67eXlpdORrl8PbdpYyvyKFbn3j0P42XO54V57zeoCVlSYAPXo\nUTrCXV+YNQu+8Y26bkV+vPSSFSz+2c9sepa6QFX3YHOwPQe8BzyiqvOj0+QAnwPmisgs4PcUcU64\nhiFAy5aZadC7d123JBZt2sCPfpTspgktoPffh4susrG07dsnLKDZsxPuN7D5hjp1ggkT4P/9P5v8\nLjVj7qyz4PHHC9fuxYvh+uvho4+qbtu71wSvvnSkGzdamzJRXm7uz379CmcBxRWg11+3/01oAXXv\nXjrCXV/YtMnipGvSTl9ZP3nwQZtiZdCg3FZyMVHVZ1T1gGAanF8E6z6ZJkdVf6WqB6rqGFU9RlWn\nFastDUOASsj6yUTUArrmGrjzThOoLl1s7M+YMfCnP8HgwYlj/vAHeOMNG3fUvXuya2zhQguLFfIH\nunixWVvpXHBr15oFVl8E6IIL7IkzE6EA9e9fOAso/Oy5MuHWrLHK6W4BVZ/wHs+dW7vX3bevelmT\nu3bBU0/BOefYA6j/v42GI0AlEv/JROfOZll89JFZOZdeauu7dDGR+dGPzHUTWkAAp5xirjewIHpU\nGB580IzCTPGafNmyxX40w4fb3927k7evXGl/68sPa/369JZaSF1aQNu2mfC5BVR96kqAzj7bfo/5\nMneu/c+7d3cBitJwBKgBWEAffWQdYrNIbuKQIfal/8Uv4K67LHaQju7dE5PXqZoAXXxxoqp2TVmy\nxNrSpImJYup5y8stOaK+/LC2bMleR68YFtD27Sb62QRo7157Gu7a1f6GGY715b6VCuHQhHdyFH0p\ntKtr2TL77uRLOEoEXICilL4A7dljAZKxY+u6JTWifXvr3KMuNoAvfCERx7niikTadipRC+jNNy3L\n6pRTCmcBLV4Mw4ZVvVbIypUW0K8vP6zNm+MJUO/eJvzZ4kVxqay0c2YToMpK64BEzOpdscItoOpQ\nUQHHHpvbAho3Lv/ySNlYvz77//erX02f4TZ9eqKLcgFKUPoC9N570KePPX6XME2aWCJB1MUG1lFl\nG1MSEhWFMNgZXffWW+l919u2WUZRLpYsSRSZ6Nq1qgW0cqWNSaovHWkuC2jVKhOf5s1tLNCmTTW/\n5vbtuQVo2za7HpgALV9uAuQdUn5UVCSqy2d6eNi6FRYsMNd1IVDNLkB79sDDD1scNxW3gNJT+gLU\nANxvIZ07V7WA4hImIXz8MfzjHxaED4WistJSvn/+c9tXFR54wH64Dz5oWXe5yGUBlZebANWHH9bu\n3VYWKJsQfPSRVSKH5LFWNWH7dnOh5hKgNsGkxZ06maXWo0f9Ee5SoaLC7nWPHjYAOh1z59p3vVBj\nbrZsScxUnI6ZM22fLVuS12/fbg9wo0fbcps2tq6+ldKqC0pfgEqoAkIuOnWqagHFpVs3iwG9+KIl\nJgwYkBCKDz+0p/2774ann7YBrJdcYlbRCy/YuKNsAXuIbwHVBwEKO4CoqPztb3YfQtasSZQ36tIl\nuVOpbuZg6ILLlgVXWZlsAYHdz48/LowbsL6yfDn87nfJdQ1rQkWF/V769k0kwKQyezaccIK5pPPp\n7HfuTB87Ch+6MgnQyy/b31QBmjXLfpNhlZCmTc3yLuQYvVKl9AWoAVlAP/2p/WCqQyg206ebawIS\nT9hLlljR07/8xQbv/exnls326KP2ozn8cPurCv/5j1VjiLJrl02cF85zFF5rw4bE3ETl5fUnBrR5\ns/2NCtA111j9NTBXSUVFovxO1AKqqLBSKdXpHPJ1wXXqZH/btYPWrc1qqwlr11q6fn3kuuus7uFh\nhxXG2gsFqFcvG3+WjjlzLIFn7978Mh3vvdfiS6kDu3MJ0H//C4ceWnW+ruefh09/OnldJjfcjh1V\nr9uQKW0B2r7dBrwcfHBdt6QgnHxy9UNZoQsuWmG7aVP7kc6YYZ3qCSeYK+6990xk7r7bLKMLLjDL\n6dJLLYj6058mn/vJJ+0Why6r0AL64Q/hjjsSZW0GDbJxErt3m1uvrgYJbtli9zEUlQ8/tFfYUa1b\nZ9ZH06a2HBWgV1818Ylb1TpKXAEKXXChBdS2rQlQTcV7/XrL0qpvLFtmY2BmzbLvztNP1/yccQRo\n9mz41Kds7Fo+brjNm82d9oc/JK9fv96ShdL9f/fsMUvrM59JtoBU4ZFH4ItfTN4/kwB961tWL64m\nvPceXH55zc5RW5S2AM2aZfNZl1IFzCIRuuCiAhSunz7dBAjg9tvh3/+2J9Fevawg6vHHmyC9+659\neVeuTHZB3H47fP3ryecMra0PP7QfnIj9OMMf1n/+Y9ujzJ9vr2KzebOJYSgqr7xif8OOas2ahJhC\nsgCFbpQNGxKWEtjTbRhruP329O6yuFlwUQtIxDIWw7hATaistKfv+hZbuP126xA7dbI6hzXtYCG3\nAO3da9/n0aNNgPIZu7NjhwlGarmcdevMyk/3//3oI/v+DxiQLEBz59oDTaqTJpMAbdiQWVDjUl6e\n7G6uz5S2ADWg+E9N6dLFMrmWL0+eErxbN7tNgwbZcqdOlg4qAjfeaLGgkSOtnM+TT5o7aMQI+/GC\nGZiLF1vpmJCuXS19eN48+7KXl1sioog9yW/dam2ZNy+5jffea1ZXsdmyxdqze7f9+F95xQrArlpl\n2z/6KBH/gWQBKiszgdi40YT685+39ZMmmctyyxa48sr0lkZ1suDatk3ct2iH9Pjj8M9/5ve5Kyut\n461vczJ98EEiBfmzn7W4Y2qcJB8+/tj+t23aZBagsJZi+/ZWrir7DAXJbN9uD3FhZfOQ9eszC1CY\nVdm+ffJn+/vfTcxSM1kzCdD27flb3+vXJ08tv3Fjwrqu75S2ADWACgiFInS3DRtmAc6Qrl3tyS20\ngKKcf77FDESs9E+fYFqq0aPNfw4mIocfnnzOUNSaNTPxWbkyMT6pTRtbVk2IWMjGjZkzlioqCvfk\nvnmzueDC5IJXXrEiqrksoA0brH3HHJOYGuPtty0GNnOmpfQuXGjHhH9D9u2zjrFrV+scM4lAqgsu\nFKNUC+iNNxIz58YlPL4u64ylY9MmG2IA9h095hh45pnqny+0fkQyC9C6dYmHjDFj7IEp7pi4HTus\nvU2aJMcC162zRJtUYYLMAvT22+ZhSCWTAFVWxp9TKuSRR6zKdtimDRvsO10KlL4AuQX0Cd26Jbvf\nwnWQXoAycfDBCQGKpiuHdO1q7qkTTki2gMB+WGFlgVQLKOzgU1G1J+RpBSp5uGVLopDrvHnWYZ14\nYrIARS2gsOL466/bPC09eiTmZKqstLT27dtNgBYssGNSBWj7dnOlNWmSEP2tW+1pP0qqCy58n2oB\nbd1aNZidi/D4fI8rNps2JRIuwCzuTA8icQgFCEyAQss20zWbNbPEnNAVm4sdO+x/mSom69fbg1bz\n5lXFI5MArVhh1TZSKaQAPfOMfd8WL7Zlt4Bqgw0bLOgR9Tc1cjIJUKtW5o6ISxwBAjj1VLM2li5N\nFqDly82Nt2BBcqwktIBSnx6XLrXX7Nnx25iN0ALq3Nl+nOPGWeewapVdO5MLbv58s/46d7a2rl1r\nndcf/mBiG8awevRIL0CtW9v73r3Neiorg29+M3m/qAuue/dEJ5lqAW3blhCShx6Kl6AQ7lOfLSCw\n72RNSkRFBah37/QWUHQfMDdcGN/LRShAHTokMirBOvmuXROFg6NEBSj8v6naw1m/flShUAK0c6cl\nzpx6qj1AgQtQ7RDWtghTmRxOP71qrbhu3cz6iVNNIeTggy14um9fegFq2dJiRWPH2o9u6tRkF9yK\nFXbNrl2Tn3TD4pthvGXBArvOSy9ZR5/qsqsuURfc00+bC7FdO7sHW7emd8Ft3GiT+u2/f2J57VpL\nn337bbu3YD/yM85IL0Cha61PHxOgFSssBT469iXqghs7NhHnyWYBXXttsjvu4YfTi0x9toCiAhRa\niNUlKi6dO9u9T01hTxWgY4+NXxEhkwUUzlIcPqBECQWoXbvEMZs22fe6Xbuq1yiUAL36qj10nnlm\n4vO5C6428PhPFX74QxuHEKV790QCQlzC2ER5eXoBArjtNjjkEBOet9+uagF16WIJilE3XFh4MxSl\na6+1WnfPPmt/8xWgHTvSl9CJuuAWLjQBisYLMllACxeaAEUtoDPPtH0OO8ysujfesISMVAGqrExY\nQFEB2rvXRCi6X2gBiSTubTYLaPPmxH1ct84SR9KVT6qPMSDVxANBSLpKGnHYu9csmddfT4hLeA8/\n+ig57pYqQMOGxU9Rz2QBrV9v4plNgKKitWJF5tqN2QQonySEl16y4RtHH+0WUO3i8Z9YnH129TLP\nhgwxt1gmAbr4Yps0r2/fRNYZWCe8fLn9AEaPtuA9WEe0caMJ5AcfWGf5wgvWSTzxBHz721VjRrm4\n/Xb48Y+rro9aQJD4moQClCkJIbSAwpjQ2rUWQD7mGAtkDx9un+O44+wa//wnfOUrti7qggsFqLzc\nOsho6nnUBReldetkAQotoLADD+/Ngw9akkO6yhV1aQGVl1vqfSqVlWYxpyaxVEeAXn7ZHgB+97tk\ncenVy4YRHH54Yl2qAHXoEG+6dEgWoEwWUEWFeQhCQgFq29b+j3v3mgClc79B4SygVavsAXPkSBPI\ncIB4NgtIRCaKyAIRWSwiV6XZfoGIzBGRd0TkDREZHb9F+VGaAqTqKdgxadUq848gG0OG2OysmQQo\nJHzCS3XBdelig/KefNLWb99u7ogRI0yAnnvOXFB33WUiOW6cdazhlBIhFRXm8kqXITdjRvrBrlEL\naMiQxI8xjAOlJiG0aWOd08cf22cNXXDr1tkxr75qAjF8uI3zaNPGnqgvvNBStf/+90SVa0i2gMaO\nrSpA4X5RUjuk0AIKO7N58+we3HOPCXu6uEddxoBeeQVuvbXq+lT3G1Q/BnTffTZ0oGPHqgJ0000W\nhA+/J6kClC1jLpXwYaJ9+4QF9PHHFm9p394EaOpUq9sYuldDAWrSxP6X27ZlF6B0A49377b/dbr5\ntjIRWjtNmth38v33s1tAItIUuA2YCIwEzhORESm7LQU+raqjgRuBP8ZrTf6UpgCFaVaZ7Funxgwe\nbF/m1M46lXD+ojDJoU0bE5EuXRKzpy5aZE9lnTvb09oHH8Bjj8HnPmfxpieesA7iwAOrWkGLF1sn\n/9ZbVa89e3b6jiy0gPr3N5dNSK9eZpFt3Zr8hBjOPLv//olpEtasMSGLdmJjxyaeskeONOF89FH4\n3vesw0vngjv55ETmHCS74KJ065YspqEFtHmzPY2/9551eh9/bO7KdBbQ9u2JOFcu7rvPqlgUio0b\n07uO0glQdWJAmzfb9+Dyy63dJ56Y2Narl3UFzZolrIdUAYLMCQuppHPBLVxo393w+3HHHTbYc/p0\n+59Ev1OhGy5TAgKkt4DCOGLHjvGrs4e/K7CHo2XLcrrgxgFLVHWZqu4GJgNnRXdQ1SmqGjof3waK\n1tGWpgCF7rd8IutOXgwZYhZG69ZmRWUinFOnSfBNio5xadLEBh4+9ljiRzFokC2/8kpikGfIgQdW\njQOFk389/LA93YZ1srZvN2FLJ0ChBXTuuTaNeUivXvCb31hduNTclVCAwrYvWWLrmkR+IccdlxjF\nf9tt8Oc/m8h26WIGeShAffua+KxcaR1lHBdcv37JE+Nt22afY/NmE9JWreCGG6xcUq9eJkDbttlE\nhSGVlSZkuSygmTNtbqkwZlAIKirSC1BFRVUBatcuUbE8Ezt2JJfPeeIJe5jo2tW+U9EHi7PPtkzF\nAQMSNd/SXTdTyna6a6cmIbzxhg1mhkTiw2c/a9/j1avNcg6/K+Fx+caAQis6XYwpE1GxGTjQ3OYV\nFVkFqA8QnYKxPFiXicuAAhRPSk9pC5BTNAYPNqsjm/sNzB108smJ5VCAwqfBz33O3HAbN9q60aPN\nDffaa1VTw8eOrdoplpfb+R95xGIx3/++rX/3XTs+KkArV5oQRIPe0WeUQw6xwbfXXFP1c0QFqEsX\nc61kS13v3DlRAWr0aOssoy649983oRkzxp6ew3hBJhdc//6JzlPV9qustCfhDh0soePZZy0BIXQl\nzZoFP/lJoiOrrDRrNZcFdPXVltUX5yk7boHUfCwgkdxxoFdfTZ4mZPJkOO+89PuefDJMnJh8Dwtt\nAb3+eqLI74ABVt3gooss1X7VKvufhISp2PnGgEIB6tQpfiJC+LsCE6AXXyyjadNJ/PSnk5g0aVK6\nQ2IP9xaR44BLgSpxokJRVAGKEeyaICKbRWRW8Lo21ok9/lN0hgyxp7hcAjR0aLKVkVpoc+xYS7UO\nC4D27WudS7qBsaeeapWDo2nL5eVmeRx6qB0b1vQKS+1HR6Xfd591DBUV1gmkcuKJNi1DkzTf+n79\nkudrad48/tip0aOTLaCwJl6/ftaJdeiQsOTiWEA7dliCR6tW1mGGAnTqqdaJhllfixZZzCAcwBsK\nUC4LaNkyOO205AyvdISd2wMP5L4HFRUmNqmxutRBqCG53HDLl5uIb9pk+02ZYjHFbOQSoEJZQOed\nZ2OzjjnG2jVnjv1fQsJU7OoKUFwLaN++5Ps7cCCUl0+gd28TnwwCtBKItqofZgUlESQe/Ak4U1Wr\nUZo3Hs2KdeJIsOtE7ENPE5GnVDW1HOUrqnpm7BPv3Wu+oRKfgru+062b/RhyCVAqYSccPpW1a2fn\nmjEjd2por14WSH399UT5kvJy6+CfftrcHuHcObNnW2r0v/5lHWnHjtYhl5ebmy6dAGXjL39JuOVC\nP38+AhRNwwazgkL3y9Ch5tLr3z9zDKh3b4ud7d5tT8/t2plQlpebAH33uwkrqmdPE6bFi02opkwx\nl1RYiy6XBbR6tSVU5BKgmTPtaf/qq+2BJOyA07Fxo/00t25NvvfpLCBIJCLs2mWfIZVQjGfNshja\naaeltxyj9O+fOC6TAOWawhuqWkArV9r/LbSQIRE3HDjQppr4298S28LkhXDa93QUQoC2bLH9mwW9\n+MCB9p1IHYqRwnRgmIgMBFYB5wBJtqWI9AceBy5U1SWpJygkxbSAcga7AvIL5CxYYI95pZLoXqKI\nWKeTrwCluuDAnt5fey3e4LgzzjBRCYn+iFu3Ntfgu+/awMxDDkmeHG/RInPRtWqVvlPLRrNmye66\nLl3yEyBI7iD79Ek8/YYZhZDZBdesmX2tV61KWEnt2iUEaNCgxGSF3bsnKjeceWYiVlJZaf+vbBZQ\nmGHVv39uF9yMGeba+sxn4J13su8bDf5HySZAK1faPUrnFluxwo6bMSO7+y1KaAGFRWhTB4CGWZBr\n19rYtXTz7uzda8e3bJmwgN5802J96ULODz1kCSLRAeDt29v5e/bMLJqZBKh1a+va1q2zoQ7ZCsum\nJoEHE8UAABPoSURBVBsMGGB/s3WNqroHuBJ4DngPeERV54vIFSJyRbDb/wGdgDsDz9TUzGesGcUU\noDjBLgXGBznnT4vIyJxndfdbrTF4cPYMuHSET2TRH//IkZYtFOeZ4fTTLdYRsnJlYowR2NPdAw+Y\n6IwfbwIUVlZYvNjGE0WPry6dOyfq6OWiVy8TrFQLKBSg0ALas8c6t0xJHWEHGlpAUQGK0qyZte/N\nNxMz26rGiwGtXm3t7dgxngUUDjYur+KkSaaiwtyW+QjQU0+ZGERrAE6ebPdpxQr7Ljz1lFktp5yS\n/fqQuH/hNVMFI4ydXXutCfcRR1Q9x86dZv2IJCyguXNtXqF0HHhgojRVSPv21u7jjsvc1mxZcJ07\n2/F//WtyYkoq0Qw4sIeWLl1yP+ip6jOqeoCqDlXVXwTr7lbVu4P3l6tqF1UdE7yK1uEWU4DiBLtm\nAv1U9WDgD8CTmXYMfZrTbr+dJemcyk7B+cpXzPWRD+EPKPrjHzXKOpU4AjRypGXy7N2bmOguVYDu\nuMMCwE2bJiygDRusc+/Z08qu1JR8XHAiZgVFBeiqq+wJFhIWUOh+y5S8GcaBtm6tagGl0quXfe4J\nE+xpfelS68ByxYBCAQoHTGabfXPGjETsLVtHCPY0PnBgfAEKJ6Zr08auA/b/u/hic6+uWGEVJ157\nzbLc4kz5FQpQOvcbmAVUXm4ZdW++acKSamGERWUhMRA1HKAcl/bt7WEomqmXSrr5n6JJCOH0EZmm\nG4f06dYDB5aWc6hoMSBiBLtUdWvk/TMicoeIdFbVKh7QTwJq//63pTI5RefUU/M/pk2bqk9gIwO7\nNo4LrlUrezouL7cOvU2b5I597FjrNMPOvUsX64gXL06M4ykE3/++WYBxueQSi1+FjBqVeB9aQJnc\nbyFhB9qpk4lPs2bm3kknQD17mvXQtq3V4w0FLipAO3fCD35g9++CCxIDWHv1svhSGCxP12Ft2mTj\nkg44wNxW2SwgVev0x4zJzwLavduKtYYC9MEHtm7GDBOgk04yMTj33MzXjhLG0datSy9AHTva+UeN\nsoeCfv0sISNazziM/0AillMdAYLsD0K5YkBgFlrqfZ8xIxF7imbAhZSaABXTAvok2CUiLbBg11PR\nHUSkh4h1GSIyDpB04vMJO3faL7K+TnzvMGYM3HJL8rpQgOL+MMLBqumCuIceaqVYRgRjt0MLKN9O\nIhef/nR+45wvucRcgukILaBMGXAhqRZQ+/aZLaCePROfN3QthTGg0AU3f765clq2tM78zjsTAgTZ\n3XCzZtkg4aZNM7vgVO1/UVlp+/XsmZ8AdehgM+2GAhQO2H3hBXsQ6djR3p9wQuZ7FqVZM2vDnDnp\nBUjEROqcc2w5GpsLiQpQ6IJbtCj54SIX7dvbdziMyaQjmwD17m0p30cdVdUCuvHGRGmtdBbQhAmZ\n3YX1kaJZQKq6R0TCYFdT4J4w2BVsvxv4PPA1EdkDbAeyP+vMmWPpO+E3xKl3tGqVPC4I7El78OD4\nCQ2DB5tLqVu3qiLQsqVNvhUSxoA2bSqsABWSjh0TbrJsAtS/v6Whb9tm96xFC3tiz+SCC+ur9epl\nHdXOnckDUZcsMcG+4Qbr0H72MzjyyIQApRbbjDJ3biK5IhSgMMU6tDLXrbMqEOPHW0cYjl/ZtcvE\noEmTzAI0dqzNMjt4sH3GVatMMI84wmJ4YcJFtsy7dEycaIOEw7an8oMfJAZA5xKgtm1NzLt3T/8Z\nMnHggTbDcDayCdAJJ9gD0B132HcmyjvvJJJH0gnQlVfGb2d9oKjjgGIEu25X1QNV9VOqOl5V0xRc\nieAVsEuW6dPjC0TUAuqTmraSQuiCy/cptbYZMsQ63Gxf3/79zSUUjQFBegG68EKzHsCemJcuNfGP\nzkfz/vuJjnzsWEsqWLkyWYAyZcItWpRwTbVtawL64Ye2Lpz4LOy8p0wx8QkF6NJLE2nJmQRowAB7\nkBAxkZwxwyygc86x2Eh16heCuU4XLEhvAQF87WuJ5JJcAtS0qf0P8n2wOeooS13PRosWVZM2QgES\nse1hSaeQLVvMgp0xw9zQpVT1OhOlVQnBKyCULPnkjQwebAI0daq5gbLRtav9KMvK0mc11ReGDLGY\nyq9+lXmfsJjk5s2JLDhIL0CjRiU80b16mbUTxst27LAkjqgAde5s8aGysnguuFSXZt++Vg5p5Ur4\n0peSp5mYMiXZApo5MzFdRCYBijJhgoV2FywwoTzggOoL0AEHWNJCnHhjLgECE/RiPNiIVJ2lNXUs\nWd++dr83b7b/29y5NvdP//72PjULrhQpLQHyFOxGwaBB9kT//PNV3XmpdO1q++2/f35JA7XNt79t\n8Zh0YhISptHOm5dbgKL06mVWSZs2iWrMlZXJAgRmfZWXx3PBpROgBx6wOadU4fHHTYA6drSMstAC\nCis0vPdeIjMx18PHJZdYRfF588zDfsgh6aexjsuf/pTsps1EVIB27LCHgx07kkWgQ4fiuXZPPBFe\nfDGxHJ3UEMwCKi+3sUb/8z82tujgg82NOmVK+iSEUqN0BGjTJnscGJFaOdxpaAwaZM8aLVpYBlk2\nuna1mMOXvlQrTas2hx+eOS4RZfhwc1fmcsFFCQdYhp1X27YWB1qyJPn+he6/dC64ffsSKdk7dpiQ\nRIPo/fqZhXLCCdYZvvaanf/UU62TDC2gt96y68+bl5i0OF3po9T2H3OM/b+7drUCq7liKNno0qXq\n2Jx0hJb2vn3W1uuuS07DBrOAiilAL72UWI5O6QH2f1q71hIxdu2CX//aBOiII6xaiLvgapPp083n\n0KyYmeNOfSCsrn3SSbnTqnv0sI76C1+onbYVm+HDzfrL1wKCxJN7u3YWF1u7NtmVddhhibFTkOyC\nu+su+OpX7f3779tDQPSn1revnX/cOHsCf/NNE6BwqvLQAlq92v5vFRXWccYN2X7jG4kSMv37xxOQ\nmhJOfbBqlY092rnT3kcF6Oabc1vh1eXggy2RI8wwTBWg5s0T08r//Of2UDB6tFWmeO01a7MLUG3h\n8Z9GQ5Mm1gHG+eF37Wqpy/nWfquvDB9uf8M07Dhlhdq0MdGJWkAzZiTmagoZO9aC46FFEnXBPfaY\nPeNB+pT2AQMsM6tFCxOK+fPNIjr+eGtj586JWM/o0fY5/va3+D/ZU04pTAWLfBk1yjryMGa1ZEmy\nAB11VPbMxZrQpEmi0jtUFSAwN1z//pZwctxxlmLds6dN6Dh4cHIV7lKkdATI4z+NigcesHIpcchl\nIZQSoQCFFlDcz9arV6Lz+sIXLBss1X253342jiQkdMFt2mQ/r4ULLWaTToDOPddKw4TnOfBAiwWF\n45FCCwhs26hR9sSeT9JqXUzvdcop8MwzJkCdOpn1V5ujPK69Fn75S7OE0glQ374mPM2bw3//m3jQ\nGjnSaiLmkx5eHykdf9bUqfDb39Z1K5xaorE+a6RaQHGzB3v3TnReP/qRxWBypbCHLrhnnzXrZvFi\nE59Fi8zNFqVly+RyOEceaWIVZnMNGZJo60EH2bm6d69+NlttcdppFsdav95cW7Nnx4vVFYqRI62w\ny6RJ6QXo8583b0BDpXQEaNeu9JPIOE4DonfvRALCgQfCP/8Z77hevRICIQIPPpiYviEToQvun/+0\nKuQvvGADHV991WIy2Zg4MXH+229PrJ80yTrM8ePNmqjvkxaPHGltHDTILMYnn6z9ce7XXGPp482a\nJWfggY33asiUjgD5FNxOI0DEShkNHWrv42Zg9eplQfQoubLPOnQwkZg2zaoHfPQR3HOPHXfIIdmP\nnTjRXqlcd539PfroxAyi9RkRS6TYvNnEf/fuqiJQbLp3t8Kr99+fe86jhkbpxIAaq0/GaXRcdln+\nneC4cfm7jjp2tIy7z342MV36Sy+ZS6gxPev96EcWiwldlnVR6eub37S/jU2ASscC8hI8jpORsMBm\nPoQJDqG77aCD7G+cyd8aEuGg13D67boQoEMPtXTr1En0GjqlYwG5ADlOQenRw2JFobttyBB49NHk\n6QkaE3VpAYElQ9SG5SkiE0VkgYgsFpGr0mwfLiJTRGSniHy/qG1RjTNvXN0iIloK7XQcp3QJp+J+\n7DGr9tAQEBFUVSLLTYGFwInYnG3TgPNUdX5kn27AAOBsoEJVf1Os9pWOBeQ4jlNEmjc3q7CBz/Yy\nDliiqstUdTcwGTgruoOqrlPV6cDuYjfGBchxHCegb9/iVT6oJ/QBohOslwfr6oTSSUJwHMcpMv/4\nR/0fPJuNsrIyysrKsu1Sr2IZHgNyHMdpoKSJAR0BTFLVicHy1cA+Vb0pzbHXAds8BuQ4juMUgunA\nMBEZKCItgHOApzLsW/ScPLeAHMdxGiipFlCw7lTgFqApcI+q/kJErgBQ1btFpCeWHdce2AdsBUaq\n6raCt68UOnYXIMdxnPxJJ0D1CXfBOY7jOHWCC5DjOI5TJ7gAOY7jOHWCC5DjOI5TJ7gAOY7jOHWC\nC5DjOI5TJ7gAOY7jOHWCC5DjOI5TJ7gAOY7jOHWCC5DjOI5TJ7gAOY7jOHWCC5DjOI5TJ7gAOY7j\nOHWCC5DjOI5TJ7gAOY7jOHVCUQVIRCaKyAIRWSwiV2XY59Zg+xwRGVPM9jiO4zR26lO/XDQBEpGm\nwG3ARGAkcJ6IjEjZ5zRgqKoOA74C3Fms9jQUysrK6roJ9Qa/Fwn8XiTwe5GZ+tYvF9MCGgcsUdVl\nqrobmAyclbLPmcD9AKr6NtBRRHoUsU0lj/+4Evi9SOD3IoHfi6zUq365mALUB1gRWS4P1uXap28R\n2+Q4jtOYqVf9cjEFSGPulzpfedzjHMdxnPyoX/2yqhblBRwBPBtZvhq4KmWfu4BzI8sLgB5pzqX+\n8pe//OWv/F/F6pcL8WpG8ZgODBORgcAq4BzgvJR9ngKuBCb///buLkSqMo7j+PfnW2kaIYkWSQoZ\nSVC7F4lhlhAIBtHLhXVRiUQvqCX0ZnqRXS5JEN1EkXWhJZiheRGpgZVJtllurq0ZgkYvttuFggqF\nyr+L84xO48y64s6c2Tm/z83OPGfmzHP+/Hf++5w9z3MkzQSORURv5Y4iorIam5nZxRu07+XBULcC\nFBGnJS0BtgDDgdURsV/SU2n72xHxqaR7JB0ETgIL69UfM7Oia7bvZaUhlpmZWUM19UoIA5kw1cok\nHZa0V9IeSZ2pbbykbZJ+kbRV0lV597MeJL0nqVdSd1lbzWOXtDzlyc+S5ubT6/qoEYtXJf2ecmOP\npHll21o5FpMlbZf0k6R9kp5N7YXLjX5iMXRyo14XIQzCRQzDgYPAFGAk0AVMz7tfDY7BIWB8Rdtr\nwEvp8TKgI+9+1unYZwPtQPeFjp1sQl1XypMpKW+G5X0MdY7FSuC5Kq9t9VhMAtrS47HAAWB6EXOj\nn1gMmdxo5hHQQCZMFUHlBRhnJ4mln/c3tjuNERE7gKMVzbWO/T5gXUSciojDZL9YMxrRz0aoEQs4\nPzeg9WPxV0R0pccngP1k81YKlxv9xAKGSG40cwEayISpVhfA55J2S3oitU2Mc1ek9AJFWjmi1rFf\nS5YfJUXJlWfSWl2ry045FSYW6UquduBbCp4bZbHYlZqGRG40cwHy1REwKyLagXnAYkmzyzdGNq4u\nZJwGcOytHpe3gKlAG3AEeL2f17ZcLCSNBT4GlkbE8fJtRcuNFIsNZLE4wRDKjWYuQH8Ak8ueT+b/\n1bvlRcSR9PNvYCPZcLlX0iQASdcAffn1sOFqHXtlrlyX2lpWRPRFArzLuVMpLR8LSSPJis+aiNiU\nmguZG2WxWFuKxVDKjWYuQGcnTEkaRTZhanPOfWoYSWMkjUuPrwDmAt1kMViQXrYA2FR9Dy2p1rFv\nBh6WNErSVGAa0JlD/xomfcmWPECWG9DisZAkYDXQExFvlG0qXG7UisVQyo16roRwSaLGhKmcu9VI\nE4GNWY4xAvggIrZK2g2sl/Q4cBiYn18X60fSOuAu4GpJvwGvAB1UOfaI6JG0HugBTgOL0l9/LaFK\nLFYCcyS1kZ1COQSUJhK2dCyAWcAjwF5Je1LbcoqZG9VisYLsFgtDIjc8EdXMzHLRzKfgzMyshbkA\nmZlZLlyAzMwsFy5AZmaWCxcgMzPLhQuQmZnlwgXICkXSzvTzekmVd4K81H2vqPZZZlad5wFZIUma\nAzwfEfdexHtGRMTpfrYfj4hxg9E/syLwCMgKRdKJ9LADmJ1u2LVU0jBJqyR1plWEn0yvnyNph6RP\ngH2pbVNaoXxfaZVySR3A6LS/NeWfpcwqSd3KbjA4v2zfX0j6SNJ+SWsbGw2zfDXtUjxmdVIa8i8D\nXiiNgFLBORYRMyRdBnwtaWt6bTtwc0T8mp4vjIijkkYDnZI2RMTLkhan1csrP+tB4FbgFmAC8J2k\nr9K2NrIbhR0BdkqaFRE+dWeF4BGQFVXlDbvmAo+lNbV2AeOBG9K2zrLiA7BUUhfwDdnqwtMu8Fl3\nAB+mBYr7gC+B28gKVGdE/JnW5Ooiu1OlWSF4BGR2zpKI2FbekP5XdLLi+d3AzIj4R9J24PIL7Dc4\nv+CVRkf/lrWdwb+TViAeAVlRHQfKLxjYAiySNAJA0o2SxlR535XA0VR8bgJmlm07VXp/hR3AQ+n/\nTBOAO8mWwa9222SzwvBfW1Y0pZHHj8CZdCrtfeBNstNfP6T7rPSR3Uul8u6anwFPS+oBDpCdhit5\nh2xp/O8j4tHS+yJio6Tb02cG8GJE9Emazvl3pPRlqVYYvgzbzMxy4VNwZmaWCxcgMzPLhQuQmZnl\nwgXIzMxy4QJkZma5cAEyM7NcuACZmVkuXIDMzCwX/wFBVvgiTb5aJgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "train_net_path = 'mnist/custom_auto_train.prototxt'\n", + "test_net_path = 'mnist/custom_auto_test.prototxt'\n", + "solver_config_path = 'mnist/custom_auto_solver.prototxt'\n", + "\n", + "### define net\n", + "def custom_net(lmdb, batch_size):\n", + " # define your own net!\n", + " n = caffe.NetSpec()\n", + " \n", + " # keep this data layer for all networks\n", + " n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,\n", + " transform_param=dict(scale=1./255), ntop=2)\n", + " \n", + " # EDIT HERE to try different networks\n", + " # this single layer defines a simple linear classifier\n", + " # (in particular this defines a multiway logistic regression)\n", + " n.score = L.InnerProduct(n.data, num_output=10, weight_filler=dict(type='xavier'))\n", + " \n", + " # EDIT HERE this is the LeNet variant we have already tried\n", + " # n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))\n", + " # n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)\n", + " # n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))\n", + " # n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)\n", + " # n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))\n", + " # EDIT HERE consider L.ELU or L.Sigmoid for the nonlinearity\n", + " # n.relu1 = L.ReLU(n.fc1, in_place=True)\n", + " # n.score = L.InnerProduct(n.fc1, num_output=10, weight_filler=dict(type='xavier'))\n", + " \n", + " # keep this loss layer for all networks\n", + " n.loss = L.SoftmaxWithLoss(n.score, n.label)\n", + " \n", + " return n.to_proto()\n", + "\n", + "with open(train_net_path, 'w') as f:\n", + " f.write(str(custom_net('mnist/mnist_train_lmdb', 64))) \n", + "with open(test_net_path, 'w') as f:\n", + " f.write(str(custom_net('mnist/mnist_test_lmdb', 100)))\n", + "\n", + "### define solver\n", + "from caffe.proto import caffe_pb2\n", + "s = caffe_pb2.SolverParameter()\n", + "\n", + "# Set a seed for reproducible experiments:\n", + "# this controls for randomization in training.\n", + "s.random_seed = 0xCAFFE\n", + "\n", + "# Specify locations of the train and (maybe) test networks.\n", + "s.train_net = train_net_path\n", + "s.test_net.append(test_net_path)\n", + "s.test_interval = 500 # Test after every 500 training iterations.\n", + "s.test_iter.append(100) # Test on 100 batches each time we test.\n", + "\n", + "s.max_iter = 10000 # no. of times to update the net (training iterations)\n", + " \n", + "# EDIT HERE to try different solvers\n", + "# solver types include \"SGD\", \"Adam\", and \"Nesterov\" among others.\n", + "s.type = \"SGD\"\n", + "\n", + "# Set the initial learning rate for SGD.\n", + "s.base_lr = 0.01 # EDIT HERE to try different learning rates\n", + "# Set momentum to accelerate learning by\n", + "# taking weighted average of current and previous updates.\n", + "s.momentum = 0.9\n", + "# Set weight decay to regularize and prevent overfitting\n", + "s.weight_decay = 5e-4\n", + "\n", + "# Set `lr_policy` to define how the learning rate changes during training.\n", + "# This is the same policy as our default LeNet.\n", + "s.lr_policy = 'inv'\n", + "s.gamma = 0.0001\n", + "s.power = 0.75\n", + "# EDIT HERE to try the fixed rate (and compare with adaptive solvers)\n", + "# `fixed` is the simplest policy that keeps the learning rate constant.\n", + "# s.lr_policy = 'fixed'\n", + "\n", + "# Display the current training loss and accuracy every 1000 iterations.\n", + "s.display = 1000\n", + "\n", + "# Snapshots are files used to store networks we've trained.\n", + "# We'll snapshot every 5K iterations -- twice during training.\n", + "s.snapshot = 5000\n", + "s.snapshot_prefix = 'mnist/custom_net'\n", + "\n", + "# Train on the GPU\n", + "s.solver_mode = caffe_pb2.SolverParameter.GPU\n", + "\n", + "# Write the solver to a temporary file and return its filename.\n", + "with open(solver_config_path, 'w') as f:\n", + " f.write(str(s))\n", + "\n", + "### load the solver and create train and test nets\n", + "solver = None # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)\n", + "solver = caffe.get_solver(solver_config_path)\n", + "\n", + "### solve\n", + "niter = 250 # EDIT HERE increase to train for longer\n", + "test_interval = niter / 10\n", + "# losses will also be stored in the log\n", + "train_loss = zeros(niter)\n", + "test_acc = zeros(int(np.ceil(niter / test_interval)))\n", + "\n", + "# the main solver loop\n", + "for it in range(niter):\n", + " solver.step(1) # SGD by Caffe\n", + " \n", + " # store the train loss\n", + " train_loss[it] = solver.net.blobs['loss'].data\n", + " \n", + " # run a full test every so often\n", + " # (Caffe can also do this for us and write to a log, but we show here\n", + " # how to do it directly in Python, where more complicated things are easier.)\n", + " if it % test_interval == 0:\n", + " print 'Iteration', it, 'testing...'\n", + " correct = 0\n", + " for test_it in range(100):\n", + " solver.test_nets[0].forward()\n", + " correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)\n", + " == solver.test_nets[0].blobs['label'].data)\n", + " test_acc[it // test_interval] = correct / 1e4\n", + "\n", + "_, ax1 = subplots()\n", + "ax2 = ax1.twinx()\n", + "ax1.plot(arange(niter), train_loss)\n", + "ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')\n", + "ax1.set_xlabel('iteration')\n", + "ax1.set_ylabel('train loss')\n", + "ax2.set_ylabel('test accuracy')\n", + "ax2.set_title('Custom Test Accuracy: {:.2f}'.format(test_acc[-1]))" + ] } ], "metadata": { @@ -5187,7 +1279,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.9" + "version": "2.7.10" }, "priority": 2 }, diff --git a/examples/02-brewing-logreg.ipynb b/examples/02-brewing-logreg.ipynb deleted file mode 100644 index d36871fcd..000000000 --- a/examples/02-brewing-logreg.ipynb +++ /dev/null @@ -1,5771 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Brewing Logistic Regression then Going Deeper\n", - "\n", - "While Caffe is made for deep networks it can likewise represent \"shallow\" models like logistic regression for classification. We'll do simple logistic regression on synthetic data that we'll generate and save to HDF5 to feed vectors to Caffe. Once that model is done, we'll add layers to improve accuracy. That's what Caffe is about: define a model, experiment, and then deploy." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "import os\n", - "os.chdir('..')\n", - "\n", - "import sys\n", - "sys.path.insert(0, './python')\n", - "import caffe\n", - "\n", - "\n", - "import os\n", - "import h5py\n", - "import shutil\n", - "import tempfile\n", - "\n", - "import sklearn\n", - "import sklearn.datasets\n", - "import sklearn.linear_model\n", - "\n", - "import pandas as pd" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Synthesize a dataset of 10,000 4-vectors for binary classification with 2 informative features and 2 noise features." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAiMAAAImCAYAAACB54oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmQHOd5p/m8mZWVdZ9dfV/oRqPRAIiDIMH7ECmJkqjL\n", - "lqxrZK3Xno0Zz3i0G2Fv7EZs7IR3YsYbc2x45N2Vx4csj6WRZy1bHh2ULZOUSPGUCJIAiLvRDfR9\n", - "Vtd9V+a3f2RBbIIACRJoNAjkE4GjMquy3swvK/OX7/ceopTCxcXFxcXFxWWz0DbbABcXFxcXF5eb\n", - "G1eMuLi4uLi4uGwqrhhxcXFxcXFx2VRcMeLi4uLi4uKyqbhixMXFxcXFxWVTccWIi4uLi4uLy6ay\n", - "oWJERH5fRH4qIv/xguU+EfmaiDwpIl/ZSBtcXFxcXFxcrm82TIyIyK1AUCl1P+AVkdvWrf4y8F+U\n", - "Ug8rpf7HjbLBxcXFxcXF5fpnIz0jdwD/0Pr/E8Bd69Y9AHxcRH4iIh/bQBtcXFxcXFxcrnM2UozE\n", - "gELr/7nW6/MMAz8AHgX+dxHRN9AOFxcXFxcXl+sYzwZuOwdEWv+PAtkL1j2tlGqIyBmgA5hf/2ER\n", - "cevUu7i4uLi43EAopeRiyzdSjLwA/BPg28DDwNfXrXse2CMirwKDwPLFNnApo11uTERE3QxjLiIa\n", - "dPwWPByCbavO0ooHnuiDl/9cKXVqcy28ttws4/52iIgHur4M7zdhOO0sLRnweC8c+ppS6szmWnh1\n", - "ccf92iMSvAf2fxQeOAceBTZwqAeePaVU+lsb//2XdjJs2DSNUupVoCoiPwWaSqmDIvIHrdX/Fvg3\n", - "wLPAnyilmhtlh4vLdUg/DLS/LkQA/E3YnYGOuzfPLJdNZgAGE68LEYBgA/bkoP2uS3/MxeXtERGB\n", - "+P2wf94RIuBIgL1z0D4mIrG33MAGs5GeEZRS/9MFr7/c+ncReGQjv9vF5TomAOGLPCFEK2Akrr05\n", - "LtcJgddnttcTqYAnfs2tcbnR0MAIQiz9psWEFBDgjeEU1xS36Nl1hgg7RfiSCMnNtsVlw1iGeQ2s\n", - "C1zUswkonN4ck1yuA5ZhThzX+Xrm4lAc3xSLXG4YlFIWVGdg+gIPSNkDKxawtimGtXDFyHWECF8E\n", - "fgz8MvCqCIOba5HLRqCUWoX5n8NTg5D2Q02Hkx1wUEHuhc22z2VzUEotwewr8PQWWGudF8c74WAD\n", - "8j/bbPtcbgQW/wGej8DZBDQ0WAzBT/pg5XGlVHUzLROlrs+klZstuEmEUZwYmgeU4rgIvw18CrhH\n", - "Ka7PQbrK3Exj7qSzm7dB272ghaB0AtaeUkpdNJj7RuZmGve3wwli9d0OyXtAC0LpWOu8WH37T7+3\n", - "cMd9cxCRAWh/CLz9YKVh6Smwj6lrIAbeasxdMXKdIMLfAC8oxX9ovdaAl4DfU4q/2VTjrhE325i7\n", - "OLjjfnPijvvNhytGrnNEuAWnWu2wUpTXLX8U+NfArTeDd+RmGnOX13HH/ebEHfebj7caczdm5Prg\n", - "N4GvrhciLf4OCAMHrr1JLi4uLi4u1wZXjGwyIviAzwL/+cJ1SmEDf4RTPM7lOkVEvCISFxFjs21x\n", - "2RhEJCwi0c22w8Xl3SAigdY16rq957vTNJuMCJ8F/rFSfOAS67uBo0CXUtSuqXHXmPfamIuIHoL7\n", - "k3B/GPQCNFbhqRI8ey2CwW4UrudxF5FkCj6RgCEBsjC3CN9VSs2/7Ydd3pLredxvFEQkEIcPJ2Cv\n", - "D8hCbgF+YCl1cpPsueSYb2jRM5fL4vPANy+1UinmRTgKfACnuaDLJiEiW9vhPi+kKnDWB/ZeuO1u\n", - "mAlAswTGs/CRw2DhtDxweQ8jIr4e+O/vB98ITGvAOYj/BH5DRP5AKZW7Ct8x2gH3eiBRhokMPOek\n", - "+Lq4XBkiEo3Bv+yF3TFYaYOJTrCehi+JyB8ppaY228b1XLcum5sBEfzAQ7y9yPg28JmNt8jlUvhF\n", - "9u+F3/gItH8Wyu+HsR74F/1QCEATIAiNu2EuCe9zO1G/99Fg23aIjcLy+QvlIGRuAcMPu690+wGR\n", - "O26FX3sUkp+DyiOwcxh+U0S6rnTbLjc3IhLphN+5HQ58GFZvBU8T9o/D8H4opODezbbxQlzPyOby\n", - "MPCKUqTf5n1/A/wrEbxKUb8GdrmsQ0SMfvjwwzAXxjn+vZAvQXMOtm9z6sMAEIZ6AEyc0sqFS2wv\n", - "AcG9EGiHwhRUX1NKFa/N3rhcLkFoS0DjwuVJKIfgsgRDa45+BNp2gW3B2lFgAjAHnXNqNtj6ju2w\n", - "pEMqB+8HvnEVd8XlBkdEUhDaA/42yE76IbkTkoOQC0AzAM19UHsGtgjMmpd5/l5LXDGyuXwC+N7b\n", - "vak1VTOOo2Z/vOFWuVxIWxt4zwsRAB/U/FBahVQNdNOZmiELZgkqQFlEAsAwiAlqXik1LyKDMPxr\n", - "sEsgXoGlnXD0ARH50xuxsNV7mRIsr8KbgpJXIVCA2bf7vCNEYr8Mo/thaxFsgfE74NRzUDjc4VQ1\n", - "e4PYGYJVP2yT1uT6BdvrAOkF1QQmXAHrAiCib4Ntvwo7LYhWYX6Xl5/u8VNdzkC0HYqGU26VdlDn\n", - "oLsK112lZ1eMbBIiCPBRnA7Gl8NjwKO4YmQzqJZBs3l9XtMAy3Dm+PdXW2IkB+bz0JOGv8XpzPtF\n", - "GPGBX8G0iERfga5BeLgA3QXn5jS4BtEOePyDwJtaeIuIF1BKqTc9obtsLDaMn4K1FHSMwrKAmoS2\n", - "16BahdcuYxPDjhB55OzrZ86wQPMuODRTusg0eQG8NrxBZDjdViMfhp33wBYFVQ9M1ET0byllnboa\n", - "++ry3qM1FWxC76fgg2loO18aIlmjb+sy6f4wtn2a0v5eGuNRSOfAPAeeVXhm0wy/BBsqRkTk94H9\n", - "wCvrO/iKyO8CnwQywPeUUr+/kXZcp4wBVaU4c5nvfwzHdfvbG2eSy8VQSmVSIuNHYXA3LIDTymzR\n", - "6Tr1138N0QCYBbAzcC4EO2q0/1Ob903AYCtIbB/wg/ugFAB92s8rt3qoRy085TLRKfA9ItJmQ/Ec\n", - "1F4DAtD2IdiyDZQSSRyCzONKqYtO/bhcfZRSNRH5+pPw4ZdhTIAcnF2Bx95qHESkDcK7IfEIJMPQ\n", - "MMBsiUmPguEmjCeXKJ07Dl07YAmgAsZzcFcViv3wr9pEjqXhSSAB2++D23KwtgOCCQho0BwWkS8r\n", - "pS7Z4MwRMgy3wT4NvKvwmg0nXHG78YiIH4ydENsClTUoHr4a3k+nhEDofui7G1QbxEZAPQOUYTUB\n", - "9d1V9uQX+ck2H9H8El4tQ3aXQX3yCOQX4StKqbf17F1rNkyMiMitQFApdb+IfFVEblNKHWytVsBv\n", - "K6We3Kjvfw/wMO/My/EKEBdhSCkmN8imGxIRMYHe1stZpdQ7TpFehe88A184B/1xsBdBm4dXy/Df\n", - "ys75fF8X/JNtcKtAXogOlDnTW2R2HMKrMLQMW9Pw8t4kk73tGCUTM1OhFlth9hMZAiXFg6cgvRMO\n", - "fwA0A+6vw8gMWBoc3w3P94jIf3JvJNcOpVQG+JZzY8EHdIOxRUSCwDml1Bta7IroIzDyq7DLhsUO\n", - "8A7ARBIGn4NAqxGZBdjNFfj2U/DFCeiPgpqCPX6ofgmOBKFxBkaeh+FpkkswYEH6HuipQzjjnBPV\n", - "QVj7TRH5PaWUEhG/CXsTsLMJpRU4GIKh7fDgqOOqb56Fna/BuIg8jXP9X1RK5a/hIb3hEZE4MAjJ\n", - "T8A+D3SXoGA607H6N5SyrrADc/wTcOs+2D8H6SpM7IDZ98GZk1DrENp6QjTCeUSfIxP1oVMmoPLU\n", - "tTT8llJq+mrs59VmIz0jd+CUOAd4ArgLOLhu/b8VkQzwO0qpwxtox/XKQzhZMpeFUtgi/B3wEeD/\n", - "2TCrbjBE9FHo/wz0eZ0ls3UR/dtKWe8oz14pVRCRP16BHiAEpJVSKwBBkQe2wG/vAyMB+Qnon2Nl\n", - "QCNR0on3WMg0PKdD7IhONhKhUjTxVRWgaHb6Uc06lXqR3iyMrEL2NvAkYfRHkDXh+AgUBiASg2xC\n", - "JDzuxMkGK1CegNrR9fEDTjCbMeS8aky4sShXhQj0/BpsC0MEONsO0yGRyDhUX4LGT4Ey9H4aHllz\n", - "XObhGkz2grkVJraAbwoikzDVhMpppVRORL667AjlkV0Q/DT84rzcDks5GJ6lOWBTDMGIDZGWK95j\n", - "QzIHqSEodYtIpgN+Yy90DECmCqnDcFcGEh+CZzyOYMYPjdNEPg/9d0IoB1NxEf8RqH4HmL9R6+OI\n", - "SA+kHnLGws7C6k+h/spb7a8jQD1jEOqE0jI0jiulLqySvf79OkQ+BKN3Q2QIvD1QnYboSzCUhp4A\n", - "fPfTIvLvlVLNd7kfbbBjL9wz5czymXl4QQO7H2LdoPngZIefeWMrqtJGpFCiYZyhYdrgBc/7RPRD\n", - "YI+/1b5sBhspRmLwiyf4HLBz3bo/UEr9HyKyFfgz4P4NtOO6QwQdeAD4Z+/wo48Bv4ErRi4LJ2tl\n", - "6xfgI2uQqDhLMz744RdE5CtKqbfLYnoDrQvXG9ybIhIbgUfGQIaduAIqUOnCE5whWvQS81UI9kEb\n", - "8MJIkFza4Kidpz8OAU+dfNSklI1il4ocHILODJg6+KOQN+Gle2EoALdUYDIFvZ+DVaBrBdIV8B2H\n", - "6QdF5GtKqRWR0P0w9kHY2rrInhGR4N8pVXquZe+bAiNd3hpnqqPzM06pn74ZOHkPbDsAfX7IjkLt\n", - "fTD9UVj+E+jyg6cIR7shF4RsCIZC0KnACMOJe2Hme0qpRfjFOTUjIu1beL0dhAXaKYzdZQIjJh6z\n", - "wmovDCyCVQLdgqbAItCXhXMJH2zZBx13wi+eehVEj8O+LBxsg7IF8jTRA152Wx4k2UT1wH0a5MZg\n", - "+haYf0xEvn+ht+e9joiMwcCXYXcNRiegosOrn4YjcZwH5Tf9Lpybfs+vw44ItFVh1YQTD4vIn51/\n", - "CHkz5m2w+1548Byc2gWjM7AQgkO3wcPPOAK1MwEzXcDMu9ydBLTbr4cbLUQg4oW2AKgEYPjR/T0E\n", - "lQ+P1KgG2zALFUqBEvFBgx2fbBAYgdNVEfnPSql3a8dVZyPFSA7nEQIgCmTPr2i5PlFKnXGmNC9O\n", - "K7bkPE8ppZ666lZuDvuABaWc+IN3wJPA10XwKUV1A+y6wfDvcKb6zwsRgHgVxhTM7QKevgpfMtQJ\n", - "YQW6AhFQecxoikB6num2JjEDwg2wbIiUFPHaANlKgEOncniSJfz+PEnPArFeiNchZ8FqwLnAnOmC\n", - "riAMZ2B6AJIeaK9CxIC2DGxtwpEOuHcVnviIiDwBux6Bj85CJgW5URgLQX23iPkDSLVBv18kdQJW\n", - "n3SLa102HdDZDoMzMN8FshdCNlRsyPdAxyyU90LjY5DphIP7oFODYgcMhCA5B8sGtB+GO1cgHxOR\n", - "5Hkx3ApETExARxIK/ZCZRBtZJLmtjNey6TgBJYHpPqho4JuHKT94T0OxAhQScP8QpBegcxH/tjpa\n", - "CBoSoW4uQLwNytMQr9IZ9uBr2GQG4aFxCDShVHLCnmJ3wgvjwPHNPNhXE5HgPdD7O3Bb1LkOTA9B\n", - "/CC8bwqWHxCRM5C8E/p3ivTVIPsCFJ+F1KNwvxdGW+JuFGhPweOfAP704t+WvA/2LTpxQShQAn0F\n", - "mIrDfLgVtA6tv94lBVhbF/g80wPdSUjUYDIEARWmokxiYlPVGkRZZjbuI6gC6HaGALA9D4MWPPZ5\n", - "Efm/lFLWFdhz1dhIMfICTk+Vb+PER3z9/AoRCbfc3m1vZYNS6nc30L7N5CHeRVaMUmREOI4z5fWT\n", - "q27VDYcZgeBF4iuCDfBF3rz88hEnb/f+DvhMAw7UIXAMurbDMRvRPaiaRdNsULJBhUBVwciX6Dsx\n", - "S237QzRe3ktz9rs0Rldp668zkoZEEmwTlBdeqYP0wO46VE0odDmpwB6BjjpkA9C3CN44RMsQ2Qrl\n", - "FRitw3I/NPZCXxG8RZjfA/F/Abu/DT2zcGYIXhgWka++U+/QTYreusEA+S1QD0LNB9uakGhAO2C1\n", - "weIdYPth3xokS5DvhJEKzA1A8EkYmHC20RWFEykgLSLDkPpdaB87jZ5KkzuQZPmkh+aOABW9TMkI\n", - "otk1trwE8wKrEQjkoeMVJ1vz1TQwbUNlDhmtkhrxkCh5MUo1apFFZjtzlHvjjmrxKnxkyMVteguO\n", - "EAEwGoAPRrMwsZ8bRIyIyADseRR8Hhibd8awzYDJ2yHyBMRM6P7ncH8ets5CzQOHH4KDQxDpd+K1\n", - "1jO8Ai8NnL9/vfkbtTBEW20C/GchPeJ4On1AzXAEyUIBx6X1rlBKLYjEq/DjT0LKhmwb+FPChCfC\n", - "kh7EtD1kBDxYKI+PYKkEAYW/UUH3W3QmIfsANBehexnme4HrohLrhokRpdSrIlIVkZ8CryqlDrZK\n", - "KH8Z+PcisgvH1/S/bJQN1zH3AX/xLj/7OE5RJFeMvC3ZszB3D2y/YPmsH7JXFATshX3b4Vd6oXcV\n", - "wl2gCtD5KoTDVBcnqGzNMCgQa4DHC1Ud0qZNW/4MybNF8r1JiI3j81cIVWy0GEgVbNuJNQg34WgQ\n", - "ZKcXb1ChouApNAhYUM2AtyWyBOcJTAG6AZpAZp/jRcnFoV6HgAE9y1AeAX0RRpeh1g1rB3A6Q7tw\n", - "PtbGP+YUWM1PAJOtKYtlWKrCmt85zmtBOFAFSwdfBQwTegNw/FZofwEWvJCNQ7YHFn1O8cvMGMxN\n", - "Qc8K5AWnDk0Ekn/kZ/uWKPEyWOUS4c4Gpf4dZKshPItxYhN9+MpHmd42x8jzcPpW8KdhwQerpyD9\n", - "XaWUrYm8chLz10ZIzekYTYA6IitELYEHTMojWbBWWA6W2TrhCPXzFELgnXbiUDTvZhz7jSG+F8Yq\n", - "MFuCohdiNSerKS6QboeVHtizCNtbHkJPA+6eguWtsBKAwhKE62/MwJZf/PVmqqfg7BYYWYGeMzDZ\n", - "5hQ7PROFs/tgpQjLf3AlnggR320wGoN6GpYTkAtBNtJNs96J6THxSI6geFmTJpqZJaw38eglNHJ0\n", - "LkOyBt46ZLqc6gTXTxX2DU3tXZ/O23r95da//3Qjv/d6plVf5C7g3R6DJ3Bqk/xvV82oG5dxOHkO\n", - "AgMwugKi4FQHnJoG+/SVbDgJ7+uBvm3Q6IbjEzCUgOUiJI9BY45GCXxhCJmAghUTvE2YuK9BLTdD\n", - "Z2wGyo54aOYglIGGB7xV2FqAxXaDSSPEaV8nw/kaZqVEPZilEquxosM9x5z6WLWCc3PMnoT8Cryy\n", - "H3YNQaDiXGfmA45nJnEcFuJOFoZuQ3cWQkNX5SjfAIiYe2H007DdAtOCqfth/LiI/H9KqYaI/rfw\n", - "D1+AnipUNSj6oFKDqG5SSipKugezGqSWylPI1SgNQp8FWQvQIbsTFrvhmUlYfBaYBeOLQWIjXXQt\n", - "amgKwEOlEcHXZ2NWdNomPPgrAINU/SvkQ3XqT8Hk14Dy+t44ChbPkpirUY62I6qG8ixh9YcZOa44\n", - "5dlK+eUiBBdY6bJJZRxPzqAHSiFYsaB3Ag6lIP2OH3Ja6cOj0H47eAKw9hpUD21+gKQRAF8D2sdh\n", - "/DbYV3e8Izow3Q5VCwbm3viZugeiAzDXAc/uAt8CDL4Gw2k4m4TMzKWzj1Z/Ai9uA6sD+tbAOAHP\n", - "doO/AH0ZGMzAxKdFTE2p2qvvdG+clN6+R+DhKSguwultYEV8pK0ONJ+XoLJoSgilVhERBI1KPYtm\n", - "rBJWdXr8oHdAtRPsohMHw3XT8NEtenbtGQFKSjH3tu+8OC8AO0SIK0XmKtp1w6GUaorIN+CZO+Do\n", - "bYBA5nEo/+wqpMcOJkEPQT4ExOH4AoTKUFyG0026UhCvwUIMfBYM1sHjg/xOGJ6FWBXyOswagAlr\n", - "JdjZiiEqe6BUj8HWA6ycWaSZgJiWZdZvojSLULTJwT2QWQLPEfiJ3sHaQCfsyzM/kqGZzOJZhs6q\n", - "E9dQAuomUGvVbgMyQahPXOExuCEQkTAM/xJ8dNF5EgbYAZi74PnjwKtKWSdE5KswfwCCt0OiDbps\n", - "nVxUkbe8ZPMhqismxUKT0PYaQwoGZuCHg1CP+iloMWp+k6ZZpG4W4DkL444gZuO8EAEQmnoEj61B\n", - "vclKQJHSDMyKgRKDM711cn+mlLpYrFm5TujMOe7PnWMlJpQ6+8AK4c1VsQKDMKWDqtHM/Yij4xaR\n", - "EKzd6cQgmQswtRPO/Awal1PM7QLCH4SxB2FHDnx1OPsROLy/FVS9iYJk9Tic2wX3T8FLAXhqG8QE\n", - "pmMw8zSoBcgNQue6InNnb3OmR+98HvwjoKfg1Adg4jDMLsPydy/1bc4UivwhrHwJwh+BUgr6YjA0\n", - "BYEAxGZhLAt/+0siMvEuUqqjEDdhOQKzd8GwBUNFD/8gTdKaQc72IVoFj3gIqQLY81BWbDXrRKpQ\n", - "E0h7wKjDmRSUD8H1017EFSPXnru4glK8SlET4TngfcB3rppVNyhKqSpOoOrTTgOy2K0Q/pSIOWVQ\n", - "19qcaFZrFV5qwmuX60KtwWLRKVwHgAlWL+RPgNeAWgUtACPL0Cw6sQOVMORM6NGdKpwdraDaI+1w\n", - "OgiNPmjPQkOHMyaY54LY226BpR1kVg5T2dlFfMFGb55mMTVPZh7ypyH3zR545BGnWV91jo7JIqpy\n", - "hp91LrF9Cvqn4fQgnBmAnsegqcNUHxzcCrlTIhI/H1B+EzMAQ/rrQuQ829bg9H7gVXBuNsB3RYJ5\n", - "WPs8qC0BKoNemgZko14KHiEftPAEhZ664lAcCAXxWMO010wahsaK0UMzvkzlt6aozesUlEVN1zEt\n", - "AI1AI0tV66aWHab03ALlkSqeRJG6Vqf+LaAkkvqs4+VbOQKcVkrZSqm8SPIYLI3B/mkPJ2NesvUi\n", - "c7GtZI/prdTeKNS9EK0wOAf9fwXlJJSDsKpB8fg7rcHjxP2N3QcfmAKjJXQ7iyAD8NQ+4LkrGZgr\n", - "wz4Bx6bBMwDD81BIw9FemPwOFL8O9MKRMegwnSmctSgUtkBjEXadAzUDy12QGIAXViD3f799Cf7A\n", - "MGxPQNcrMPlx2N+EYBegIJeCxkHn9z8xCBx5hztUdorznt0LB8qgMDjcL5Q8BootKGlH2SVqzKM4\n", - "hthBRnMNYok6/Tk4ZcJEwIk9C8yDlmnVp0lAaJ9jZ2EWyoeUUtm3teYq44qRa8/dXHl7+fNxI64Y\n", - "uUxEjF0w9jnYVQdfPcjTnx9hydxH7UkPNE7CZ4/CqIj81eWkvq7Bd1+DD6UgGAMrC+Gj0DlJiCId\n", - "eaiY8FwnDOiQbDjBhw0DUjqEgqCvOV6K7SswbcCiCd/vgWAOuo5BNlDCLs1DyoNIgKTtI1hqoIwA\n", - "sgwPPQGnwvBichv4klCYhM4mdihB9HQfRTIU9DqaDmYWXq3BnALtY2AFoP0obLsFjt/SKsR0uZWA\n", - "b0SE1s36jWg26+IDRCQKdAN4ODxlEd+q8KaCNK0eqpl+AvkF6tEKZ7x5PBVohGBbrY0l8eHRbZQu\n", - "9GAx3x7D9iyQLxisFWqc8uv0NwXdyjGXTFM1vAR8E1gHOikd9cDkEag1CAvs/BKMtJ6oT++DUwdF\n", - "5DvOObv2DPxkBI7f2SAUWGW+J0lhfg07/gxs74T0PPgqtG2Be2da5cNb2SIFL/zVgyLy83foNeyB\n", - "AV4XIucZTEN8F5soRpRSdRH5c3hmLxzbCyoDy98H+/jrKdXGX0L+E44gKbSDVoEHXnCm6rCgfwoi\n", - "i/CaoVT2LYWI07ph4GF4YBZeuAfaxOmXGbKdhKe+cZjYBeoEl4w7eUtMmKuBvQNOphOcHuxCjzQQ\n", - "+oEaSA7BoGkZ2JqNqVWxQxYLApk4RDTYtQbNEJyIQOWQiNwNfR+D/XVIlGB1BI7c1+qV9U6zPa8I\n", - "V4xce+7ikqlhl80TvPuYk5sOpwLrwC/BI0vOE9CRnmE80klPpcp01yjNo12QL8Pul+FnwLmLbCOM\n", - "M8XWj5O2PjkJ/28V+Z+DGIkqmiwSDtXoaNj402AvQK0PxtGYbyQ546ni16r0WopGsEmh3bnIrXmd\n", - "aZlQENp1KHXD5GiM5aUOmJ+E3TFQNna+Qi2QoelfIXQS+jOQD4D01pEdPye0TfAE6pSiNbyDfrRJ\n", - "k8piHe9rUGqD9J9CaQfsN+HeU87UEcBAAP7bZ1qFmG7Wyq5TMKlgr/HG7KvxJKSfBhAJPgBb368R\n", - "GwlT6NNZDTQpxjvQzE6MchKlIngaIczVBRqJJXJpiKdAs00aXhvNFAJ1DU/Jxh/woed06EiT/VEP\n", - "Zx5ULPlXoatOl1bltidPUp+aZ2YY1h6okfurAjwLY78CH1zX52ZLGqzb4ODJpMiBfvSPe9Da1kgH\n", - "sqS9eYIxYVuygbKyLLPKUn4OJiF01hEiC2EY3waVTtCroOWAqIjkgCEgCKzgVC2+lEBvwMWcKVUD\n", - "7E0vP9Dy9Pys9eci6xtHReQUzLQDKdj36TdO2wCshqF+9mKfd4oqtj8IRjsks2C0wXITyvtgyAMr\n", - "EQg1oC7AWadp5oTJBdcYJ5iZLTgiZWq9t9KJyQm9HwY/B8n94OnycXKgm5ovjJIqNj78YlFgCdu2\n", - "8Gg1YraHiC1sLddYMkH3OJV7vRnwlSHSDp33QGgUfDoUTzrTxP1ZiCeg8lHgT97lYX9XuGLkGiJC\n", - "FOdHfugKN/UaEBVhUKk33zhvNlp1GiJApTUtcyFd0G04QgSCzHUmMKpevJUcZh80j2rAADSPO2Lj\n", - "3Bu3b+yCwS9B5z4I+2BNIHO2QXp8irZjBmqgQWUnbPfAliJoKajPw5EuKAbaKWm9+CrnyItFXdnU\n", - "DMGONjAyzjTNgOk8gXWehELCx6FhE2+jg8njNZqFcdSDipUhH2Y+jydvES1BzgcZDYx9M4Qe2E6y\n", - "YSLNBqVimYo/Q2NXmdAqvBKC0y+COumUp77zzOtCBJybUk8CZru5TlL8NhInCJAQUFJK1QGcKQ7f\n", - "9+GxT8BY0wk0nvbDyVPQOCwiI3Drh2C3lWSm20fMyjNiengl2Is/pxB/lka0SsaroWeDmIt+FoIa\n", - "VV+DQCBHzgzTXjfQchaNkE3NX0G1l2lXDYovTFB/zEv+n9foj9qMzYLodXz2Kvd9Dxai8MOaE3Q4\n", - "VH5j8oORGQzxAAAgAElEQVQGDFUiHPrHe7AiGh3+ObyaQShikEw20Cyb5YCP8ILGVjsH1k6WZl8k\n", - "3V3jXBrO3AOjCjqKUPJCeQxWPgKxDhiOQVQ58Y1TJ1sew4vFF5yFiRqMBaG95CxqChyPwdLbdiS/\n", - "HmiJ8DkRmYfZ2+DVPtg975QOWgnAK0FYeZOHR8S/H/b8CuxPQ2oVJrvh4Ifg1boTa2JUYK0Gkzoo\n", - "A5ZG4HQB5r6/PvjYCZ4e/mXYqjkB7ZNqfaFCkF2w5Z/BwHYYVFAt+chHgqD5MOwGFZpYdhil5VFa\n", - "mYRtYTbzVGolyhmnyFu/D/wLkFiBQ/3Q3nTaU5QM2DUHrw3Bq1U4cBoG1iDSLyJBpVTpWo2DK0au\n", - "LQeAV5Tiip5AW6Xhn8Cp3/K1q2LZexTnh9z7YYj6oaJE4i9B9h8uuHC2Klaef+GtNbF0ha0JWHXw\n", - "6GDXQGviFJMTkRDQCZiw9bOwqx8GixBbdLb1syQE+6Hpa7BnFV5THpIVWAs28fqg/yyMjsMLQ0ns\n", - "vIGsdSPxSY70K/o9YHhgdQtIDSJF6DgNnoZGM2jSU62TC84RGdzF2hELtnix+vLoq+1EFsLk2sf5\n", - "649XyaWhYyhPuJImbwQQvwKjSqW+RLnhJVeqUPsznHbztkjfJQ/jRo3P9YLzdBm4G/ofcgrKFZoi\n", - "kWeg8LRSylKq+pKIzMD0LvAGYO00MK6UskRSt0NXSmdpjx9POI+Keog1LKKqTs4IECiXiRabWHYE\n", - "/6Rien8KZipYVolFslSUh2kjRCQWQJRC5WZI5hp0NCDzqEX5RxWGcpA6A/1rTv2PuVGYa0DXJHg6\n", - "wJp06opYAucSwlpE4a/CYiJCcyiPkcxQjVTo9gpdEiBRqdEMCPFqhsl6F/3H6lTjEZbKcQrNRV44\n", - "AHcJ9OWcGlzlIGw/BNkvwL4X4ZZ1wvTZMXj+7lY/GxOonfeUKKUqIvJN+MEXYWvSWT2FEyD6emn7\n", - "9wKt+Im/hGcehWO3OPVBMjlY+MaF/VxamS0fggfnIFprzfINwq1lmOuBvhUgAilgXIe6BY1OyE7D\n", - "eiEiSdj2Kfj4EoRa16zdHvjhR0Rkymlol/gsDLVDW6Pl0QrYKK1AjSw5rU6FMnVuQbMEpZXxFLIE\n", - "V7Kk1qD3R5C7BWJRWCvC7CrU4rBrHmYSLSuA7Vl4eis0W31zrF/89U4QkW6BbgUNnOvO28TYvI4r\n", - "Rq4tVxS8egFP4sSN3LRiRETfDrs/C/cvQiINNR1evhNe8gF/ve6t8zCXP18Fscrw3CxzwwbpjhCl\n", - "+gR8pAr6Ucg0YNpxyQ8/DN0Cc93QvgW8liNEwEkPHKjDfA+0Bz2cNdvJBxKcVaAkQ8WzxPyOJjtO\n", - "GhQDJtWmTj0IXrMTtVrgRLBOuJLBVhCugG8Fym1QbdcodFvURdGoZ7C8r8LWrRCqovzd5HvrlDos\n", - "lL4Fu2HimV2m3F7E1E+S1PxYmgbNBj1anXTVx0SlrNS6plzZl+DE/XD7umJOKwGYq3AZKX4tD1Q/\n", - "4MXpY/Ie6iDsPwC7Pwb3zkKgAfPtcOiLcLRHRP5SKdVslWh/Q0EqEfFB4g6QHUKyCiVDYYVsECj7\n", - "cmT0OFVvk4LewJPNkh5YRQsa7MvGMCyN6a4oTd2kpFnkfHNo5Sw75+vsn4JjAeg2Apz8lzHOBX1M\n", - "xstM5HL0LVe4dRYWR2BuDWqzUBiHEw8HOPlAF8VkCq1RoGnMszDWCc12iOo0fKusqjS6JcTKAuIh\n", - "ZjXw+UusxIsU26bw9Gk0s5BVkO+As3FHfxuTkJyFrr1gXHATumUBXv0UxG9zigVWiyK+H0PtZeVw\n", - "VkT+A0xvwTk35i5dMv36pJWe3A2EYe3HsPYkzv1x5RLl8WMQjUA2DGk/WBZ42mDwFJzrAJqw0nDS\n", - "6dssGJmFnA23/xwOfUZEryplnQDfdsc7FVr38ORvwva6U6KfWTDHIJkHCTupxzNdwgqQJYUiik0Z\n", - "OIqtp52c3UqR2087mVIzoxA9B7N3wMDzoOcg39VqtFgFzzJMd4O/Bg2fUw/pbBvkjl3Cy3yp46dF\n", - "4WO74cCgMz+njUNdF/mW9YZr0KVxxci15W7gD6/Stp4Efk/EedS6Stt8j9H+ENyefr3cu2nBndMw\n", - "tVdEnlzXdsASkf8Kf/8lGI1DyJ6mmVcsDd0Ciw2wVpwLei4Lv55jLOJkB/gsOGiCsQ2qHa1mvYCt\n", - "QSMG1ZSXfLyLpWYbutcRQyHVgQ9YGZjj5a4I9dUY5UYcO9aNXZumaKRIvjJPxczQdwKWdkM2AknD\n", - "QEVC+KtCIaTTMDsotRXAlwZ7FKw4LK5ipcYgPw6+WfSOXmzvPOlEGUP5ERSa1QQbkkaJlQsKWBWf\n", - "g5e2OU33eipO0OIJu/Xk95beOicTqesfwUDUeWKcRST4hFKlq1FS/13Tuolsg9Q+p2DXyuFWgGJj\n", - "3Xt06HsI7poDQ8Hpe8Bsg70Cxf8B1lIi8hegdUByJ9hNSB8G6dFJ/Hc23tsVpVgTvZanogtSt/lZ\n", - "W4Kyt4K3OkHN046lFSi3z2ApD9snY8RUnXP9u2mW4oSLSzRSFmg+YpTJtNU5tgr1mQ4W93Rhd+/B\n", - "N1WiYqyQbV+jmphgsbdMfAnmm2DMQN/2IKfv7YP+MP5yGbGgFLody7TRghECqonHGydQb7BipkmY\n", - "DRJlm6Y0aJgr2FsVKW2V6OAy6SzkJiFyGiKWk9nlr8H0IOSjMNMHwarjNQGY6IbuffDgGUewrPnh\n", - "xU/BazqtWAylVIX3aOVWJx4s9QXo7XNu+KvDIBXgJORfFpHHLzJd0QGVO0GrgSSgnIKyD2QcrDSk\n", - "JiEB1Ech1YTYFDTK0L/s9ChafBg4AZoJVhQmw6A1IL4I0aIzVWgEnK+qp6EUhJIfzmwxOW30UiKG\n", - "zQgKDaGOwgMUERYJzzoF7AJVaCbAmICXF6Dshe4gzEWcINbgMTD6oNzlbLtowbc/DvlZsLMixj3Q\n", - "fPlyRIkGYzvgzvfDufOZW9vB/z34goj8u9b58Za4YuQaIYKG08n4S1dje0pxToQisAsnhuQmxOiA\n", - "zgue6DUgaeH0Q/pFEJhSakZEfh9mR8Ab8lGdHoEZ02n2Yd8N6RDUsxgfz9F15PW4irY0zBYhmoK1\n", - "GPhqwvwozCY8ZD0+yipO1aehdJs2BR4RmkTxacuUfHXagqdINjrJGu2oagq9eJh89xI7noH3H4Y/\n", - "7IL5EIjfwO9tUkEx6YlRtrxIMIR4YygtCbk0pDzgr0PQxEMD3aOj6UHKWhc5/PQom7pWYk1N0oiU\n", - "8Ovrj4xSqiwifwyr2yA6CJUsVI+9XRqf45Lu+VV4BOhveVVqOjz+IRFZVEqdusKBvALCj8LYPU6/\n", - "DY8Fk9vh6LiIfHOdIPFBwA/RNJzZDbEEdLbK4PdaMNgOP//XMJaB4Tw0NZ2nP9dBdkc/kekVqsEZ\n", - "JuN1Rq0sOhrjZhTd66HfMtA8RdLWDIuNCI1jJXx2hDalqKQ8FIwE3oaNRAwCykO6aVL3pNBSkM8o\n", - "Ao0k1WA3dr1ANZbH5/cTL0fRfAma/jIrfdC7BPeeifD3946x1rmVat1PwcpB6AQEeiGzgDdQx1IB\n", - "sItUPQEsbZ41zcIKZkDpFP1+hpYC1FcKhDNNDjwHjw3D4R740DHH6ze5C9J7nHYEA71wthcWjsOt\n", - "4zB9O2w7BcnWDSVahduWYP79IvLyu+1Ae/3Q9sswuhPqPVC+BQZqECpAcgpy++DFDhH5k/MeEuf3\n", - "0PsxSC3A0gGnR1RH1kkDnhyE8jlY0p3KvH4djAKkBZKHnSmRzgJ4+hyRHNoJS7c5XX1tDRZ3QPEV\n", - "OGc4dVIAKn8PP/8/oSsFvkCUBmEUA0AMwUYoIpjYhAjZGmbQ5lgYjpmwoEPxKKx9BZZTEP4oRHIQ\n", - "TkH9YfDUoPccTIUhuKxRuyWGPxVBH6xgfjpL6ZiI/K/rY1wuRgpuH4OMvi4rTXfmF4cX4B+JyJNc\n", - "JDFgPa4YuXaMAWmlWL6K23wSJ27kJhUjjQWna2Xvuh+KJZDWWdeY8Tytm/GpKNWHIvDJglNTfXEY\n", - "joZaxX9iaF5orosS7M/AzFmY74CVLWG0sEkhbDBnmWQCGppE8YkQpEaGOiXAryCLQdzWiNsG8cVl\n", - "TnQbYMBSWwU9IyiBE51QPQ7mksb4dh+lfg+NkBd/yYNHa2AHB9GtKpYmqEAIrBLiz2LQJGRp+DQN\n", - "H100qFOlQUGgIWEsqwtLy1PZf5Fj0ACOtf5cLoMwGH5diIDjhdqVhZk7gWsmRkTEDMI9MbjThqSP\n", - "9oEq+5+DjtaTa38W1Ag8s53XfxdVKFWcJ/r6AKRa50tNc4rCtdVheBfc9W0IVWA+3Emzv58O04NO\n", - "haDZQU8zS85boIiGoSWINiLQ0NDKAdolR8XfTdlco2mkKQXzmEYYsFD+OrpWp0kXygqi2QX81Tj+\n", - "YJaFPXkavjqReoFQD3i1JhXLwKx6qVehewm2KJjq7CaXCtEIedANA6vUBcY8GFmI6XhUk0CxSilY\n", - "IBNsElUBYjUb2y5z1mjiXa2jHy3TOWPRNe3U5rt1Hv6+6Ljso93QvAu8ORg4CHYbjFXhyB540oSS\n", - "BoNHwUbn4JYYE6NeGt4yRW/ZaUtxpaUKNg2nxkb/HWAOQn8IUhWncNupKJy7Ax7+Biz1w8oAcD6j\n", - "phvauiHe53gUTmvgizqCYxUYLEFuDipjMBeCHa/B0IuQaF2TFiLOtUvbBXu7wXgNzg3AQBmiGrzy\n", - "EIz/BdCa3ihNgnghXjFZiASoEcKDhkKniY7jq3QCv/y24GvCljocPwvz/xWkDIk7IWfAcAo+9EOY\n", - "G4L8h8E24OUU7PihcPKhQUy7G1NLYi5Y2DLN0q5xar8F/Ju3Oo4amMa6GJMZZ2f2JiC8H4p1GDoD\n", - "r7zVU48rRq4dVzNe5DxPAl8E/uNV3u57hOUn4ee/7pR8bitDxQMHe2Dp4MWe9sWJFvvcARiOOPWe\n", - "OxoQOgr3euGpTihWaKxBxf/6pzTgwBH480CcXF8SvRnEW1U0rUE8bWUs/wqWN4GoMGGVo4qNr5kl\n", - "pDUZUAbL6PiaNUy9RNZXA49BrdHJaw/Oc0zqyAQUum3aZ/2cEYv2oE1fo0jRBDyrrCiBagbLC5pW\n", - "xBYPZjOHEgNThKal49FsTCIYdgMNH9VmgpqKU+rSRe6xlLrSWg8+JwHlQkI18FxRw8F3Qmv8Pr8f\n", - "Rm6BhUWIncFIjvPje9f48FPns6VgSx5O/MJj6EzT+Z6A538Fej1O/ZCqDkfjED0KxU7oqDm9ZgpB\n", - "jRO3tEFYI8AyhUEvPUYQA5Nko0rRGyEmDdB07JKGFLzgt0g2l1iK9dL8qSI9tEZnb5WAb4ayP4g0\n", - "TEr1TozsAvVYCV1FKWttVLVJwtgEPQY+y0PEtqhrVZaDRew8dGfAD5zuNiiONQiFSii9iS9gUq53\n", - "0CytQtjAVm0EawUaoSCR2gKNZoBFS8cqBfDNrRFpq7HjGcdt//rRBFbg3CqE74fbs05sSDkKixak\n", - "005c98EpJ15Bq3t4cesI47cMEMx58VYKLCUy8ElTpFRT6vC1Og+uMj4wtsCuAuQSzrXEb8HOIjze\n", - "AQUTOsCZcznbmhbsAHsvpDRoX3D6SVV0iPihUHa6NU93QfsZCC07TS4XxiD6ImT88POkU++k/R7o\n", - "Auyo02fm552gz0H1BGReWudx2g5bVvzkhuPU8eKhgWINjaSzA9jYlIAMtrIoNuCED46fhM67YGfQ\n", - "6ep77oATc5JdcLyEnnPQnYN0L5weDZDr7qA7q1EyAHQ01UdifpnsAyLylbcKRl2DI2fh0S4oFCFQ\n", - "gj2DkJsH9sHpJJQfh/1vdQN0xci1YyPEyI+BPxbBoxTvcVfpO0cpa1zE+CasfhgifVBpwtrTULhU\n", - "f43eAdh6B0yvQWHFeV3cCvoZ2LIGy4vYh2DSA+2dsGXVSaF9fkRYXtuJVRiG/BIDexbIDXrQzDi6\n", - "toCuFihJAp+qobFCgyVSyiKvNNY8eZo9RcpRizZVpVMzWY5XKabAZ0OqAxomlMYW8etRUrYXo6Fj\n", - "aAZ9jXkMvYeZ6jk01QnNVZQnT1Mv4pUIHtbI6xaoECZNllEIFkUBVe9xvEOfEpEXLhGEd7kswowG\n", - "B8RJdzzPdBxyz1zOBlrBr6NtsKMJ9SwcUUqde4d2DA7ByN2tFOQ1aMQxSsM0zTzH+5rc3SrcVtfB\n", - "uqD4Re0gHNNgfhiWukEKkHgN9k/AT1pz/7kUVG4Bf0IRCDaphOso5cNb1tErFpWQh2ogQFgpDKtE\n", - "TQLUu2pglWhKGbvWjs9QZAQqngzm/8/ee8fIlp7pfb/3O7FyV3V1TjenuZMzJ5AccpbLsCvSpCVt\n", - "kAWvBFuwDQkLGDAM2IYA+Q8DtoSVdyUIsCBrd21Ju7LWXIpLcmkOORqGyfnO3Bz6dqyurpxOnfT5\n", - "j68v53J2MufO7lJ8gAa6uqtOVZ3vhDc87/O0rtDzFoj1PJG+gmTX8HYnqZ7x6Lghbl7I7NtGW1XC\n", - "yCZNU2yrDWqEF8IQ8AVqJzvkpwuU1Q47UiLEJWv36LqXIPYZ2kOa1R6xP4AYFsdT2KMYqx0Qu23a\n", - "lYQzD5vsfKILXR9O3Q+LczB3CFQRRj4E28Zl1ilBM4TKcyDPQzOFH3y+ws7xA+SbNkJAozxPcPom\n", - "2NyBR0XklfciFvgXEG2IM5BrmerZuGwIpIkDuZHZV3UBa0Vk5nMwfxdgw2AZmiPIJzDdg2IM5z3w\n", - "+qAV3PI43HXVtDOfugmeexCenoXROWj+HqQDGH0RztwBVQuW+2Ybm8dhIwN4e9ojY2BGaM7ksXM2\n", - "FgEeXRRtEgI0VTQN4BJOWiduQ/E1GAWQL8HHkzfch9MRZHJw+mZ44FnjELB2HAoFKGUSpLxFx1+G\n", - "y+AAoBBypuKRx8i/viXG8OJLcFsCKwXI2ZB7AVQOXp8yBzJHofPzYOQvBu4HfufD3KDW1EW4AtzN\n", - "hx/o/LlARGyMXnJBG87HlXeSaNc6ek1ETsNmDgjehYhZmd3raVagHcJTl8wJ5J+HQwN4fhe+CmsW\n", - "9B8C73bQx2G2q3kgc5HNAx1qm1XqmQS3nFAMLRIp4iRtfOsifekzkQ7IaOjaUCBgpRCwNQF5xhRE\n", - "MUhsjmhNnQka9pBRYUhmlGXNdlmwMwQ6Yej2UGmAnRSYD5s0rApxcAEZXCTnd7g5dNHKoekoJmTI\n", - "jqzQpIgd23QkwQ4CVFwiGbbg5g58XESeei8ksrfex7ouUnoSvvsA3FyHTARXJuGFIfSffbfXi4hd\n", - "hl85AccPQC8C+wzclxf5Tl/r777Xz2HB1IKZQwVgEna2aFFgOsyyO92FC2b89UzeEFB/4jto4GkR\n", - "+Xtg/R24Y88s8Ow0XBCjIKofgDs2UiaDJhulBXYcH1UY040c3HGPoTtJtjOi5ZWYsvu4qod2YmJ3\n", - "SCt1yGbanLgrR7Ee0GdAU2qEF9vo+S1UfpLcsIDf9wj9Md2wjq7CyGqS0ztEiaKZ0eSigMrQIzvo\n", - "cWnKEFj9I3WKVpG+zjBNQKQjurJG7CQk5Bl3zjKe6FDC5oBt0Z0IqBU8KCdUGop2ADuLMPw8pDuw\n", - "edSIYB1W4OZhbhVqx+Dcfph8HcpdMyl2vgHD88AWvDiZRd2bkCUhZJLBuQMkZy3QWVjCJOgf6Pj6\n", - "KCEiOXBOQG4K+lvAGQhehnMnjE7K7hSQg3EK413YLsL5GbjnIageNXySeg7OR7BrGWXVkTY/uyNw\n", - "FLRH8MAel+38NNTvg+kpkHkYHYb0IXB8mK2CnwdvaKZyggQKFtTuhsXfAnkV0jmo9oWNWRAnIERI\n", - "iLBw8agTsUZMD802hQTuXDNGf6ddmFiAlW+88e3dGuT2QzptWpT1CPblQBKobKeEKwFjp8GGKmOK\n", - "wyO6xYBwAyP0eP1+VMDhKbhVmw7RKzvwL5+Am/LwuWVonoQXDhvRvGt4x2D1hgYjhjDIncALb3bw\n", - "3St3vQj8ttb6Z3o8VYQJzAl7I7gd13gjPxPByCz81wdhugq6BlwyYkS//04lwr2s/72MmY42IROA\n", - "5UMyC7Up+PYpWOnAmZbWv7eXwR8QWhua4kF45DTctgHt4pjMdJ9KIeFlO8JOXyHJOCgHvDRHKZkm\n", - "VG02YsNavzmGgjJeMPcgdIAkTdFqxKvuUSxyWDImR8CW32IsEZ6GSW3hxAVia5fESmhainFYQg93\n", - "yTgBRwLFpIa2PYPNBFOEKJpc1h1i24PIRUbzjIMOWNMgR+AXTsOte8ZlH3Act/sNeHoDLn3MTBy0\n", - "12H4no5nBcdPwvFPXUdg2w9WCI+IyKn3+gkSGHSu00TJw2iR7guvEj80ZiGC50xSx+pjwKW32obW\n", - "et1clzp3Q3Z/jsbCfqJOFrXUYryvzvpUm8MbW4zGMfFugdiJOO3VWLFSvMEsuc1L1JbqDCeKzKUW\n", - "aRhSdwV/oKlqHys/wsoHzPbhodfhm0fGlHsNuv0JxrZg+XW2btLoZBLllMhQwB6uM7auYqUxTlZo\n", - "ZFOa+y3i0GY0GrOUHbHCWZpSYIgiJwEzRPRwGMoWvYxidqTJeIoNew5LJshbOeJxn42pHsPamOU/\n", - "MSJn9RXjEH13BJZAtwrShdw2rC/Ba9NQGBu58LXvG50LEJFvCtx1iGGrAEPP6EjQAS8wme/78rT5\n", - "84CIzMDS34ITGdO22PHgtR7svgBn5ve+0prxqOlapoD62g4s+HAEyCZQ7RtdkfE8RJuw1YUnfJM7\n", - "6QJcqcPNZ4xWzMiCU1+C2/KQsQ1npKYhPQkkUE1hEujmoKehE8Mogf0JTOTg8oNw1yXFqbuX6MpB\n", - "UorkGGNzgQEdNC4T9IEu3RTuHYA1B/Rh/5bhoWwtwcoVswdmLhlfqmEFagVQPthb0B0BnZDMDwLi\n", - "W1uks0M67YS+vUNr3Eb/4fWJjBhfhC8eg7uPQFeA83DbGXihBf+uBZen4TeXoHn9/r8AE++0Pjcs\n", - "GBGRO4Cc1vphEfmnInKX1vq5657yS8AO7xIt/YzgXuD5G9RKeQz4b4H/+QZs+yPHw1A8cZ0S6Iuw\n", - "8B/gUeD//aDbNIFv7kFY/uTryE11Brcfo/PCx4gutCBzBnQbvisihWn4zw7C/ARYz5B9YEC8EdDt\n", - "wNpck92FPuNpKOVssmHEnC242Ixw2Q41TjAm6xuR3eUh7JRhMgVHaUoorgAz2sdRDqGGFCFhBksg\n", - "lXW2xKWoYWRrlFYkEtDSLZRuU3T72J7CGwvttMKGWyEXWQTaRqksRSKaqYbdAnEyhE4edn04fQes\n", - "deDWOtnfFMk89l4maN6MvYDvRRFpLsGvrhjZ2JWr8IW8yP/X1/qJt3ttFW45+KbMyoPkIOizsPI+\n", - "lJUunIf+PphY2SMoW+j2BoMrYy6+COcuAc9ord+RJK61bgDfyoh87F5YehDOXkDpXTLJNH3neZ6Z\n", - "Djhc2+Zma4fNnM9Ze57TL9TJ3LaKP69BaVQ9ZlNsnLFQ8EMyXoZursVqachU2OeWSyAWTFSEuU6E\n", - "nz1Ps1ugVVGIexBn7DFxNiVc6hDPjclhM21ZFAJFlgFNT+H1xmzNQyCwSUSGJovAEooeNldRFNOA\n", - "rOthh3mazFDTBUQNsSUiyeSxuku4g9MMspr9ocuum2EwkaMepVi6w8gb4a3AvmdhVcPGFgQuXPxW\n", - "jnE0LfJX2ybCO9WEH7wOD9y7V64fgf00zO/C137KNuCHBnOuqxMw/RDYEzC8AM3va61rMPMleCSF\n", - "/Xtti2IBGo/C7Ajowuv7wKlD+ALsnDUBOIvwwFcgmTIVQQAngul1E7itDI1fTD6A+lW4+QJcPgE/\n", - "DA03vjBpbrOlBBoa1hbgNgWhhkCZqpwvhvyaJqAci57rsX1QGErKN+cUYW4JrElSFAkOcByPc2i2\n", - "yRKS02MKEcx1QK/D0iqkAjszcOX+N4KR/BDS1+FKwbSCChqO/xBuu8qec3SbK2eHnHnkNLVWAtst\n", - "+FoAu1MiX04gbJkgf2USPn87nJo1luDsg0YCdzwDL2qtL2RFvvUn8NmjEDqQXIHsWXjHxONGVkbu\n", - "Bb699/t3MG2K64ORXwH+Df8RqD8C93HjKhdPAH8gQlZr/hztuj8cHIPa9Y9PwtYrcJuI/MnbyFG/\n", - "B2Tvh1s+Bw+uh/CtOmfu7HDh/jOcnxbi1zfh97XW62WRv3ESuX0SJ2oROha2V2S0HPHMoQQKcEcY\n", - "4rThQjlEeUBqcyIIGFpDzmVhVWDBgbyA9sBWRqXe8AYVY5WnRwEfYVcUA1Js1ScQi5D9NPSANSVU\n", - "tcWYMXWKhExRZQzRBWI7pmdrcvYkapxH9R1U2KdXyZJpBnjZC8S5VVxXozIlwtbtRI2vU3q4z74J\n", - "m8JKzIQNr39aRH5Pa/2WfhtvBxHxl+HXP2fMTBqYb2Z9Gz4rIpta67c020uNIpR6898T87/3fBPT\n", - "Wo9F5F9+C/76LCxFULzI5IkRizVQD0Hvs7D7sIj8Q3PzeWdMwv0noaaAMnGtQXA0Jhe5TC8G3NWD\n", - "0iBlYjyk1L3K8zfZzI888r6FF6RMhAlXsjkygyHjXpWtlSq262DpkMha4+VjdYZti7hoo1xNwbKZ\n", - "1i22cvO85M0hic+w2mVYuIiXahbdDBARekOKVsRELLwybzGrNMf2dpKP6VyeIgVcptF0VIqnXba8\n", - "ZZSsUIgsHBkRyiotNEfX8mxbObbnBnhTBwiyHvn1XYazFkXJYccxq9WIaN5MgtibsDo4wHjhVpgq\n", - "QrAJN5+CB7fgd58HrsB9e3Pz6S58O3gb35c/H+QehBOfg9saMNEznIhnbjLKqscXYf9VU63cmoNX\n", - "fgFusmE4gGPfgehpeOIYvPQ9CB8HjkPmi3DqAZhrQVqA4t7UViOCxgh29hkfKvUqfPZl6Duw/glY\n", - "/VVz/qsJ6AhkGoYzv+gZA72LtvGruTk1p0ZX4FRGkTDFscQj1QmRO6bl2JxVDh42DikxWXxyQJaY\n", - "LDFDBqRU26D7UK6bwEJpOHIFvrsE7hJMBiY3eb0Ljd8CdkH+GxD/WiBikPZC0v9jHf4VkFTgP70D\n", - "fvlMF/0AACAASURBVHE/DFZhvg63lmA8Y1qts1fh9XvgvAIOmJ7eMeDCUOsfiMjlVThpgd8yarwX\n", - "gP/r7VbuRgYjE7xRKu0AN137h4j8AvA45nr0HwNv5X4+PLGzn4DW9ER4GXgA4+b7lxpvvmNZkFrm\n", - "z9ZbPf/dYDgoi58RljyP8/ekOKOQ5dMhyy/36U3D+j/WWgcisjyD/5/bTA/PkMw1yC6OIavxhpp+\n", - "1pBZ51uwUYJyBBUXVhW0BTwb5lO46ICnoWbDjG8mFiIMGewyOSwgJqbJBD18Ino0ZZssGWJsInFY\n", - "JWSdSUIpE9MmR0TOzUK0TEKD1qhPktMkaOLMkJHv0NdCJg1wnJDSUHM4jSioBoPlx7nwn/gsdieZ\n", - "Xa+jBe5ah8U8fO0rIvKP9gTh9iYEuDZFlMVkv2tvyngPHoLM7HV9YB+Sm6C7BndhLjZ/Brvw4jnD\n", - "rm9e0yEYgHMB0G/TTnk7aK23ReQfb8ECzPxXcMurkByFgxHku3D+PnjxH4jI/7SnqPq2SKD4LN70\n", - "Jtl9CYmXpylD0lmHA9rIo7czEK1Bth4y82DI7DjA7ziMCppkasSMNWQjKdONllA6pm+BTZ403Yf2\n", - "A84uj0gSqGiL2simmVa5ksvhJIqRaxHNZInyfbJ2QsiABMhiUY6h6VoUEeb3liYmZYSRW/cAF4WX\n", - "htSVoi5FBnpERlrE7hRae8QyTaq32Vh0iVohYyfHenUadw2s/hUuTSQcdhTlWAgFnpuEq/8com8v\n", - "wJc/D7XJPQ7IfmjmYOFx+FhL66+LyOMYQmP3/ah03mgYPsiBR+GRNUNCBThWM15RjY+DaDP6f/Eu\n", - "iPbBdBGWRnB2Hi7fDkefgfsvwNqdEB6GpV+GpRzE89Bagdf1nrBhH64ehANdaA8BGxqfhq9PmcmY\n", - "43kopBD7cNkBncKlGdDaBCg9TEHhuDa7cV1ACyyJww4OKtGM7YQYh0AgZpOIHFkcAlxkr0aSkhKQ\n", - "pT8KiT2T+GSvO1+HAuMX4Ltfg8Is9LYhev2agJuI/DF87zfglpxx7N0pwCsR1L9fhE9k4NMTcLIC\n", - "zwdGRe3wL8H6edg3Z/p7rSfhpqch8SFsQjHCVP9FpApku6ZSsnPdGr3t+t3IQKCD2TtgBKiuLwv/\n", - "LYz416+80wZE5O9f9/BxrfXjH+Ln+0hwndjZ37yBb3ONN/KXPhjZgsLcdfyPVaj0jIvlByXHTXno\n", - "+2fphlnsUUxYbHJhpUn1tKY0gvUMEEDlc4osQ5xCl9xShQPjLP20wUZR8Czw8lAfQsMGP4bUEcS2\n", - "uZJxmZKYUZoyUNNcUFCiydNOwAwxI0DjskaWLAlbZNhimYgLuDSZYoBHEWGKiAl6QCBXsXCYIGJa\n", - "drG0zyhfpBUPsNbGbLs1UidH2xZsbVEadoimtnF0l0rOx0l9JB6R9UaUKpqJfoO+PWJpr5Uy24e5\n", - "JdicE5EyFL4CCzmf/v5pWlNzDFcT9OpV2NoTD7vWYvEyb7GDs2ZesPAOa3DuDDw1hnsOQByBnANZ\n", - "hT/WWrfe6QL1VtjzELFgScPgADzQe8Nt9+QmhIswfhT4/WuvMc7NTGF8VeoikrEoLwRM3w0lS1Px\n", - "23SLEZd8ze4uTNagdBG2y3D11ywWJj2qPU235DC2DIlQrIT+pCK0wSKLrSPyhCSe0PJyJDpmZpjw\n", - "4kSBdlhlkK/Qc2qM3G1COYToTfJqzAIhywywNOxamgsiVLBQQAFBoXCJiEh/HIy0GbImc2zpaXoy\n", - "RyoxKQ0S8YnTCjE5YuXSrIxRhWUuSp8RQ/ITLfRMiePNhMgKuVwU4s2Q5SehN4CdwTz4XUhWYSoD\n", - "4QGoH4Xac4b/93Wt9RDevgpr1kadgOm7jT5G62UIXvywApc98uSt4B0E2YXgnNZ606zvLG8EItew\n", - "vwGFBWhuwqkjMDEHpY4hq44VlGqQzsPuJBTaEN0Kxxw4qQ25N9iBnYNwqgivzBuX7SNNU1QrWOCV\n", - "YFZg9ZPQs2BxA6IpKI8gG8I5H9y9gzxJoalMQTCrIdUm7h9pKGuLoUoZJyldt0xNVQCNRcqQFl2q\n", - "QIeEBj5NFB0SMiyPFZO9lKwHL98OVg8SG2p9E4xEbWhe1Fr/BIdDa31VRH4bardDfg66z8Lw4gL8\n", - "9bshb8GkA/4afGUH4gOmh1UoQVCHXAHsEOaGMLUMOwMo+dAuicycMOTWdBdUVeRMA/7du13Db2Qw\n", - "8iTwXwL/FnOj/D+v+98R4KvAAqbN932t9bk3b0Br/fdv4Of7qHAEaGnNu5aNfwo8BvxvN3D7Hxm+\n", - "C6VbIV+Bfh0KL0Fag29+0O3l4dYSI7uANCyseERcTWDBon44prcOuf8gIk/CoYUBfm2X3Yds5h0Q\n", - "x6dAnhF9OklC3YJBYk70xgoUbEDHFFVMKBYX5BD9NIsaa2K3TESTVTZwSemTJWSClH30KBNzGmGL\n", - "GULKeOyyQIEcFjGKIm2WyfE6iiJTpHjSZQQMrCFjzyKtjcj451H5DEnBpZ/vMkoz2PExlMDp7JCx\n", - "XaAchQxUi4zVJRtrNvdBeR3Kgcn8K/8AZj4GM65Ql1nizi0cODWmXl1i+/IBqHwPvgz8i73duXkV\n", - "5A5DhvhxafcqTLTgqbdbg73g4WsvwQtnYX8K0RjO7XE3PihsiLNQtd8IRACs1CiE5o6IiLWnMXIX\n", - "rHwWZhwYKpGZNbAvJKxIj6KXZSlr4ziKxWhE0UtYzUFkwziEwX059jsRg8hnYhBjTViMMnlGWhFG\n", - "CTVtgZuhnEzh9yFJWuhMi8QTBrjUUp/1eBnLtRCrQqQWiTmP4hlEQpaxKDHARjMl5pL4qtLskjLA\n", - "Y0RMB8gh+AhdNLVUsS5lQjlAIDnQPonkCMhicYW+8kAP0NLHTifwIwerWEHGTeL8EM/xSRMHaRao\n", - "vLaJikyFaX0f7BQacPM2OFXMbfIJMwLyLO/BOM1U2Up/BU7eDceaxufm0hfgpdtE5F9orX8qoquI\n", - "LEDlf4DFm2EugXEEW+dF8v8WeB36f6YdaMbz0y5sfxWe+V/hTh8qEax6YA9hZQOGGehMw45jiL3V\n", - "HJT3kiJ/BIunYGseBjsmaCvsgPoYOAtwa2i0SfIedF04vQQ3KbALxt+qDVzcq8qUlKmeBgKbYqa/\n", - "+omR31dWQuClKMthXU3j4KPRxNgouqRcAVxstkgZU8XmcBqSZjRqFbJDUAuwWoW5i5CdhpXPmMmh\n", - "bl2k/By0v369Yu7eOfida4/zIo/cAYXbYP1VM2418zC0vweTUxCUIbNmyCbPPwnHJ2EiY6IrTsKT\n", - "E4Y5e8eX4esKE3I9B0d/BL/Iu/D+blgworV+UUQCEXkCU6p5TkT+d63139Va3w4gIn8TsN4qEPkZ\n", - "wv28w4X6Q8JTwDERylq/IYH+lxHn4Xd24K4MzA3g1R489+aI/v2gBDcfpfPCZS7fNGY20yF3WKGU\n", - "xeVsgt/VHPsinHUhcbpktM14wifGRsYxqfTxsXGDmLbWWD64FaEkmqtAS2LmRaiRZ1MK2DpGWZq+\n", - "bRNTxaLDiC534fEUJ+hRROMjlHBZp8wYYRqLBIsYjZAhYICDMCYliweAIp/u4EtIZ6pAcWOKud0m\n", - "u8E2nu1hyxTKm8fVFmOZwgZUcoEgzmKnDqsOZByX3O09LlTrzJxLaN4G97pQcWC563J6MsCer9Nr\n", - "TFLe3aFz6DZGj5+C/SIyqbVuaK23J0Se+S7cdwIaPkSXYfIlaAbw0jutw95o7drez1tCRDJ7z30v\n", - "VbBNqIdQetM1rFUAtQppCKQichBu/TJ8egMKe5yjM9Pw2H1gVRNmRz0GZYVKUspD2NczwlSbxwDb\n", - "olJW6NSjOxyxVbJR2QxiFUnSlJ30AEl3nYzXo6dKWJaHlWRBrxImwthaYCwJtjdmIvWZkIC6rpDK\n", - "UVL5IRk8JgnRCDFvtPSywJAYjUsdlxJj2pjWXBNIWKYgOXpUcIG+hMTkSCkgFFDsoPQYO1nEi1zs\n", - "cICXUyx2Ha4kI6KxR7EV0cu00XaPueeN6miifLhlGoq3QCO3R3bahtwP4BMt+EfvYV0WYN+d8KnL\n", - "prtay5ub7+ydsPsahuP2gWDaMDN/D44egYevGMPKkQuXlsD6JXj9HGyvwelpOL7XGogFXpqB+h9p\n", - "rbdE8v8P1D4PwdhUVbYXoeRC4MHaBFzcAbkMcutPzlYowB2BakISQXsOrCKsNCEpmsmZ2IJ8CgPP\n", - "FAB9TIvG0Yakugx09saAI4GzGqZT48YLsK5C2gS4UiEhj01EFyHARxEjXEWxnxLTKC6SRTHLkB4a\n", - "FUM/gtkBhB5sZOHkBuyvw8VpOPgyPHUPPN0C/oyflIgcrMIdRfiCZ85ne2xkZcWFdBbCDXBXTLSX\n", - "y8HVTZj1IYnh1BKcyRnyzdGxUQbOVIzVBnfA+lm4XUT+9J3W94byNd48zqu1/rtvevy7N/L9/4Lg\n", - "RpJXAdCasQg/Aj7BTzF18hcBe/3Fb7zrE9/r9iA4SLI14rz/Mo2/5pB3ynTVLBIpvIkrDD+5jVep\n", - "sObMMDqmcZNtav4Q144pBC65ep6IEWezsFO2KeYVRa3ppTG+MpmqTQaLCNsCx4KiNreXAuZ6PqKH\n", - "w1U0B4iJgRoRI1I8CkQ0sXEZEZKSYKEBjxifATExmgYJwpAF+pkpMgsBa0mDQabKIWyCJM9Q9em6\n", - "wsiOUGkOW9t43jpxdJJIK1I3otyfZ5izeeET2yxOe+gwJHKEvmuh8zbLgx1O7Z/C3oqwcgrIsPdh\n", - "9tCBf/8kXLkE9ynw2/D4wEywvNlI7H1hSuTXD8LRvd/P7cI33qlyYqzrvX8D9kk4M2ssAXo+tEaG\n", - "WNh60lRkZj4Gt3XeCEQAjuzAE4/A4GCRc4VJLMdB6zaXnSbTvZjyBqxuQb0oHAoq5GohmeMttnxN\n", - "XzloEpqyzBAXrYpY+gqJ7DDOWETeyNyYVBXiGbAttNWkbzVJUQh5EBdXazQBWkb4KKZJyGpDanSB\n", - "o2guEnGOiC1ismhcoIDCxccnJSAlwcbDQugyJCChjsUYS46RkYDU0SSBkNchth6inISGvcupxSEz\n", - "nZTCNlQ34Dt3wriSpXR/hkSfYriwSNr2IR6DHRmVrrdNGvd4RwuC+kVtkuhtmxeX57h4Yg5ICP1t\n", - "rN/MiAxGWj//wY4S+yhML8DBgQlEwFg1TWehWYGrR2HnD+B7vwbnl6GYwpaC7e9D9LyZSGUbun34\n", - "xHnTzrl4AU4fNlWS+tdh+Bhkb4XGAWjMwOLeMTi0YVtBqwHDPtQ+BZVpM6GuR9DOAyPoZ4zo2Y4N\n", - "pRj6tvEPrGgz4VLBVEQOa9gQw+sghi0POkpzqNvicr5Chz4pAQFLQI6EESAkxAwYU2CMJkbSGFeD\n", - "N4a4CEsvwvYUeC4c3TLzIb5jjPbu2IQLD+11In7MLcmJfPxW+OUqLNXh1jrkLpsPrnvgrxv2rtMH\n", - "6+tQycJuAcp9yAFnjsPzlnHqda0957/oOo6fbbRoBBOdvf3qfrCD4ud4H7gf+Ocfwftc4438pQ5G\n", - "3g0ikofSw8byAKD7HHSfeKuboYiI4Ay/SvGvjrGXNEl+ho4+Rj7UKDK4jRKxD+37DxF/XdO5RVNU\n", - "GUZRjQ27R9HN4rh92gls/8DlyIpHf0nYZ48oFmyqqcZWCSF9asQM8Uiw2JUGFj0ihuRQbFMBhmTY\n", - "ZIAP2CS4XGVEnwYRM/QpIkAfF80mMKaIjas7KK1Z14fpMoUkDtodou0sEZuspw7aOkCo84TKQbND\n", - "qtqAx4gctnKZ7IU0UWyOfZrhPsgEeJkSqdRoZyJyCrxUM8jEKCKCfI6w1gGvbjx7fkxY3buIvbz3\n", - "86HhU7Dv6F7V5Bys/AD+toj89h4/4fo1zWCu6P296ut/B4P/EeZmIN+AwRXYeBX6e8qwziSU3lRp\n", - "Wa1ANV9iwznATOowHwtWXKLnZLhQWCW/AZVNn3N4nK+OmViOqNgFDgaaZ61FOqpMgEVsp6Rln0jl\n", - "cfU62XQfYlVAlujgg6yi7DmcZBqlnqcnARNpA6XaBNJCE9ImpkJKB8iLoLRmKC45HDJUccgxZJ02\n", - "XebxyTJmpPqElPBoU2caB41HQsgIHxeHPOgeIxGs1MNXAYkecWlmiaHcQmbjLPWZbcaLPQqf0Zy5\n", - "HSSCz/6h4nv358n2xrQmt9nqVUjWM0aRy+Nt2jQiYpXgr+yDO13SqVUaxwf86MAUa85JSusWKg0Z\n", - "FJZg9zR8UUSufLAWnTdhqizXT38AeBFIFsTSWrdF5J/CzgKmxFQHulD8LMzeZ2hDaxPwh4/CymVI\n", - "NGxsQO2faD16fu/7nIUXt6G+DCu3GiHRTWD7ZeisGepT+BzsPAqXi5CbBhWC3YNhAuuYMeCBMgFM\n", - "RUPWgoGGIDXCaK6GldhwhIc1GMyYKp8egpUbETEg5RhCEU0IeAh5FDVgQEhAThvV6SgxxNhQwcYk\n", - "1DWUh+b+H7jGiTmdg5k1sH1MoHDN9K98ED5fgE8lJqpTu6YyVnahUYTWszDvA/fAiyHo12DfizAd\n", - "w3dvN74KKYAH4RCiDtiTeyO/AE3ItMzjdzTb+3kwcgMhQgEjOvFR+DY8xjuMTf0swJAQZ34D7qnC\n", - "iW2TtJ++H548URA5V4JjKQwb8FQIL0HuY5qbDzVxsj72pKKlMjRVB1QJ6cYkJRuiWWIX8GcYNQSR\n", - "PjqXo+6cwfH6eH4HvQbRUxade12KXkA9oylLSrjXn47oUaFGj0MM2KFAzBKaDHkcAobEtBkBNVwy\n", - "JBTR7KfLCE0Tj3N0KBOTY0wXTZ0BIZoe2xIxYpItNUEuHGG5PRylABcHRYtpfCCyCjhJjwQHnz4W\n", - "dfObilH5gFwohNUSUsqg8xZtVWJ/DHGww24mYCJosmXP0AuHDMse4YXHYH4b/vCaqq2I+BiVpsH7\n", - "1Sl5NxznDQPJY7DTgKUanGBPDmBPK+aTsP9hqCroKpHyGZgswb4L4O1Cw4OdPjT//RvchP5F2LwD\n", - "KiOoZ6FehKv7wGcOte6ytS9hnBeyCSRJhX5SZ2d2gtGXDpJccmjvdkj21Rl6PfxRhEQD+l6VhAJI\n", - "F1t5eIQkaoqOFJlKHSLJI+Sw01kUTex0HqFMYq0zsHcROmTI4gA1QkI0CbCBJtQwKy5dUurYZPFw\n", - "2U+D8+wQkUWYokWEyxrrhHRQuMRsoxgS61l8mvQEknQaiFHSYVstEKgZshtruI5mMZ0iHyeo3AB7\n", - "QTFIHF753JB8u80gV6FSH9ObmKVzZQzsmCGEt+S9KThxEu7+FFzuwnaL2qxHNDlDOqlgAxKV0vYW\n", - "iC4lkFk1FbAPYK432IBxG9YrhltzjR7S9WCjAb2xiBzCTIGtX3uVSP5huO1BONCCzUVYseDSArx+\n", - "CDJt6F+GyBERF7J/G1a+DJOekXw/lUDuNExdgf1j2Pg8rLxqpuriEM64cCIxx2RYgKEGdwid1Bgz\n", - "nggh75qpu+kUagJXUuOKQGgqMtYkVB2j2rw9DZPWkAYhHfpERGgiBLBYxOIFPEbkMdWhVy1wY6gc\n", - "APrw5EmwXoWugrUZ8x3yIeSPwtlboPvidedzxoUvhvDXIqjuM30e1TGzylKCyiqoKqRlaDowCMFb\n", - "gScEdn4I3/kRPDKEuVnoNCH/mpEMttagPAvdHcg/D+Ud+Nd7k3tvu7o/D0ZuLO4BXtImsL3ReAmY\n", - "FmFBazY+gvf7c4A6Biem4c6rb/zteN3j0peW2L1rDhoKxj3Ydxr2d5k8BkdDRaNoU9lSDGcUWS8h\n", - "SIY4ToYwP2QQ+ow7GvJl6HWIymO85AoFv08JwU8Vw4U8+m8UqZPDi7Y5k3WYFJsKMWOGdAk5QkCH\n", - "i/ToMYmQwSOz177pE1HFYagLaBmRUiCnQxIJGKczFBKfntPGw6VK4cfZcIcuc6mgFfhJgOfCvNK4\n", - "pAyIKBFxQXkM0x5K24RWQAmHMj5jYJ4RPbZpqBy27ZIqi/JEwDhToBO3uJwpsBhU6AVb7LoBV1WL\n", - "ZsslTi/BwTr8UQgvvSEat+8RmLJMIFB9DRp//ObKxYeFKQgKMP/GX7y74ZZH4eNXwU8MGfB7v2SU\n", - "Mr/wbX4slHd6Br77JX5Muu08Cc/d4XDhgRk61Um06tJe2sbyFSKK2VATBSmdjGbg2nScKdLyncio\n", - "BIdaJElKW9sMkhH9bEAxXMez8wytCG25KFqMdIhKFxESxjjoOMC2NJZy0cmYVA/JJl0iZ4OczqFl\n", - "hSp9AoRlXHK0SUnQmGz6KiFTZKkyQjNilzKKMoodUiwuk1BmFXAoIijGTKKYwWHIDuuhj8sKw+EZ\n", - "LHeMHjkMveNYY0HFdfwFoew6uFGRKE3IamHfEJ5fzlFQp2hPLdLFx+Zp1GCb9Oo6fAemf1VkaQ7G\n", - "G1B/Qmu9CjANdx/bIzFOwPhOtp/5Ef1ftvG8AXrBod+bpntqChrbsKCua/u9T1yErVMgVXhqCpbG\n", - "0CvAqRw0evDQp02CcjUUsf5A6+ScOXYXH4KShtWPmwms7SNwrAqDCE5ehv40PPu/wNpjcPDLcJsL\n", - "VtnwSJrAxWPgXYKZOrQ/AxeOw4Rt+Ju2BZsKrmpj1mkFkOmYSs0gZ2wGaokpCsSW8bKxBbZSo7y6\n", - "oMEpmsDqfKzAdZiVEUMCOgiGsFrCRhCGJLiMGLMCbAnkemaEOGhCqQn7ijBagfMjCGbg5hbMnTPn\n", - "SUdgIiMii8DONPzGMtzrG0vfcAjuGjhzkK4Zx754T6XNTaBwEUpleOmA0cKfLoB9Ef5JA+7JwkoA\n", - "rzXNoIrzTfi4C4sR1GrwR2+nQXQ9fh6M3Fg8CPzgo3gjrUlEeBx4hOtGGn+2UF6B+Z8ouSuuHsnh\n", - "LWZw8/sIsz2whhBVIN8lM4QoJxQSF783Yio/pGFlCVTMyBrQzboEF7bRYQWidTKLQik5TVzsUMmE\n", - "zCQOlaFHlIb4s0XO79TZXvYpKdPr7TBFTIYCp3mFhJg+VWAZizIhARFdLYSUsaWITY5YT6O1SyQ9\n", - "XC1mvE9NkUUokKWKpsiYXXLUGLKrFIvpgKYKsdUbVuEuIQFDCoxIyOCkTUaWIktEaihtuARMskOf\n", - "Bfq4lLtd2pld/PQofqfJqt+lZgmWlWOYTjC6+Ovo37aACNSfwm3Pw4bGGcFNn4dPXjV99hR44Tg8\n", - "qYD/+0asdAv8wU9k4tVPwN3bJhAB05efy5rBnmbGVD4Ajtbg5f0iUtJad7TWu5bID49i3zlnOg3W\n", - "EuPTeTJ3N8iWi0x1bbxmSuzHrE+O6FgJKtomm3QJfZfQA8edJY1iQhUxznaIaZCKxtWKFJ8cN6F0\n", - "i45ShHpMRQb0xMLRHQIJ0HSI7E1KpKzIPNvYTDIiwKWEh0fEmC6RhkQETRHIkENhkWDTokdMgM3k\n", - "3pTNZSaxEMp0KTBiCpuBdlgeDwhUkWY9T7QOUdKl+zvT8Is+8W1D9ExC1fLJBimpK6AUBBovTVET\n", - "HrbqcSD7Gl43w2uZhIliQCsPU4/CfbvGFK62CM/9FyLW72qdnBNwr7ePPw47Y/rf2qb/hUl4fdmY\n", - "BY1S4BI4w/epLXMNWutYRH4Pxquw9Rl4eQaCy5DLwq+8CuW9algzA9/4NRH5LaAPVg4aJ+Fw1uj1\n", - "+XNwMIZtD3aqcMdFM9rb/jsw7UDXgZEHOQsOJKCroG+FM4dgMAlHxpBzDEViWsMhDc8JHBwaLZHv\n", - "zIMXGw2RjmXGbI8lIMrwRhIFT3kwKYZTtqQho102XZebRUgRCnSBDBofB4XgAC0UBYRdHIzD8CiG\n", - "ox2461VwI3NubszB1RKkz8DVAC7nwWvAwXNG/6h+k6JbOQHztrEl1gFYTbAdw9LVWWNiRAgIbFpg\n", - "rcAT1T2J9y7YI2hrrevAn7zFcl15v+v782DkxuJh4B9+hO93jTfyMxqMDFtmdO4NeNRvrTCWw8SN\n", - "ZegCVCHbhgPQWYVBKaGQpCSOx/TuFjt2SitbReKUUX8LGV/G3qihF2cplALGOYc0ux9JQ9ppjdbE\n", - "iEMDiwPuJer7C8xYM/gaRCI8etToM8aiQJ8xDkXYK69buIzxxcFiRJ8hETVyUkFJkYQRCSmx0ojk\n", - "UGgsQDOgRwsLzQEsPBIyohHp0CLHiBSHgIQaMQNm9TZbMktMHqGIT48AIUsGTR+HAQXGjGKbbGgT\n", - "BPvxIps0nSIfHaE+PA0TFWNUcSUx4kb6PM7NWfzDebKHezgueB14ch7SDGRqcPAizBy/Nmnz067s\n", - "JZg8sKfqehkqr5lxh9fgmm7FviJUrquIpXv30XwKfe+NYESx5zjqXHvmDBy7k/i5EfHNOUO6K/Vw\n", - "vDrK2aLmT1K0NGGuQTdtU3QyzLgBrrVDaCe05BA9XcQFhjpPX8ZETJHIPpwUFCGxSsnIRYQcnmTx\n", - "aNLVQ0JrG2UliLUGaYP9aYVVlSNmTA9FHrUnhOej6KJwcYhwETK4FFAoIiw6OHtHUMaENGgcyiSU\n", - "ydLF5jwDVoi44iXYaUwcnYb+EP4ZyKtNso+eJdx3gHyoGSmNqJBYArzUxR8PWS0KytZYGRtXByT+\n", - "gCO7UBDYPQzOGWNsDXCgAdkxtD8vIud9ePkSfGH2OlfXQ7D9LFxVMMqZHlrmLJQumRHh69bx/WGv\n", - "EvdN4Jum6pF/BO596I1ABMyxcExg/bjWox+JVIYwswDrk0ZDMSemOFN1YGM/hOuQi8GdhEJkEvqu\n", - "ZYZBGgI5Bb0S5BagWYA4BxOR6Vxoy/A1ysDTM4YfksO0cKy+IZUeSKE4NHI8oQ1Vz1RwDmLGiFsC\n", - "dZ1nLEMG5EjJUCdGs44wS4yDzQioo3CwCAiA/sBwi5caRqL+2vG/sAWZGcMDKl8Fz1ZkSMk4hrNi\n", - "ewV4wILbIzNOF27CRBV0ybBxaZnIiSkYvwRT+2F1/14gsg6lMxDEcPaDruNb4efByA2CCC6mTfMB\n", - "eqMfGI8B/70IovXPoufP6BS8/BVwZqDQh1LNYjCRYTtaIv0xOWraUN+PlqhHmtcX+xye6VFyPfQ4\n", - "xWGHylaNnarGt4XZWYdJf5edlSZFOUzNqpLRwqT4JK5PqK+ylg04SELeUXhaUBSxdUAiNUpoMtKG\n", - "SwAAIABJREFUmqREaFZIKAGX6LNJhgXGKCCgT40Rlgg2FjC1l/MOiCXGZpOYDCAMqJMScYgURYRG\n", - "YYnDLD3GXCGiQA8Ln0kmKDCUDVIdk+gSwjpDYjxciliEe14WDR1wshHzsdeEs1PC07fYpL0xycw5\n", - "3GkojiIiHAonnma3NEl8qsPcvgz5hgMCaRX8g0bMaWoTdpbh1UXwzmPSv586GPlTaJaNmaS0YL0G\n", - "X71mjmh6zXObsF4yUzNg+uRJE+pzcPI68nItD40O15l0WVDows37zSxmYwD+NjIo42ZPU2nUSRON\n", - "thTiT3EAD5GU1J4ko7pk2WRVIPV2sbVHUSIcrhIQ0JeD+NohpkNHDXH1NqLKtHRKhS4WYyZI8SRi\n", - "zZ5nnQJClgSPLruEaKoIiogYi0ggROPSp0RMl5QWYyxCSmgExWWqhP8/e3caY0t63of991ad/Zze\n", - "l7tvs3JmuIyGQ4qiRJqmaNqOZdmxkQSJAyNCYhsxDCUfEiTwh0RBPgRBYlgO4h3whsRW4gRW7DiS\n", - "aS2kFlIkh8sMh5w7c/e9b+999qWq3nyoc8Wr0XCROAtl6AEafft0n6q6XdVVz/t//ouqdSNTXHcC\n", - "mzJXXdFVjS2N/LZ4L+PPlb+BJ/5iZnn6DZdn94wXZ7LqyNV6tBqbjo0Tk8Wm64H7aaHdyVQKfuAm\n", - "jdD00nM1h9OMzsDJezw+JzMf77N4hrud8Tw+PuPcOY7G1F6hfcBP32P/Cs9G8m3+OS7OZd7fc5Vq\n", - "qfUFWm+Q1N3KqM2N+A52ufdUSX5tRO42SknwMyMqHa69j2/UWU3Kj0qVlYTNwNcTDlPiu2gXZBW6\n", - "kfv10o11W0mKHeMCmqE0H28lfGm5DMBrVThsMwhlGvCxOJcKh2A9lg3Jl0PVWHBRzZIzBno6pUez\n", - "XKEiqmqquaRAb8KHv8IX30e/W+KlUdls3Wovu7V8XHy64eAH+mI6sraXOba/71ZasZ/X+VMt1tYY\n", - "fp3iaaaNchyTB/Id0ozRLo9ss7dLvMkTCaP7HNzlH36vCrrX1+83I29dPYfLMXpTiX7foV5TXpWP\n", - "+zYyvN+LVa6OVz5Bq8rVR1io001z18JZ3e3GQzDxDicy2j8m/7XPuPuJscmpaKEyLZcwo57hiURn\n", - "0vahvUQUbS8lkk5bvZqqGxqEch67GBvaYUk3HTnMghiTUoKbdCQyRUw0w1iUe1RiXWJVYVXmK3q+\n", - "oGnmuD3nsK9pqu/Ioq8bW5GpmbplYmzJI2oGxkaOq9k0NZsjI32FJbkVy7pOSGXGxqbqqta18sw4\n", - "FCrFgWpStSpRUZPHUkY4GtTIMvdPRtX+jvf/X1233ldx8/Syc7f6OpOqUf209cORyqn7tlrLli/e\n", - "N1jq2bhL/z08NSRbKg0Zzx9hiU+d9bpkzt9tbcX4t+fSy/DG5NjtT/G5nyjFaaePSij++iG3Mi5v\n", - "lOODgxYvVtn6Rw9LF4/YHpc5K7f2WdznTDRoDdQrDbXm0PplLm+sSCupJNTlsUc4RFXVgVrct2/m\n", - "dBKtyWUCcdsgDtwKpySidixZH43irnqSOaFcJY8CRag7oeG6dRuGdi3rW9O1I4jW9NTV9EV3JTYU\n", - "Cl23NdUkEtGGuuNSd7RkclOJkQtyLW2ZVBTCLYdxZGWwKD2xbzZi8c9S+xDJsZkTC9s6aaKRc5Rw\n", - "FKO79WWhWDLsHTMYH0rrmceGM+P6cderm6qxolJPjdItn/2RG6afi57ZKh/E4wLTeWbQ3/sVnlkr\n", - "mZnDvdJb6kH20UtvxjXy+pqH4l3m9gfKW97DdbtO93oI4Rwn/1LZKGxiWC3Jr/uBFxOyjO4KaYfj\n", - "Wdlk5JFmQhLKhIT7Rfkc3qmUlvJpUjYgmRIM+kZ5lekohSoV5CmtUN6OFyP1pOSt3KmUVIyKiiKk\n", - "+iFXk2kpHFi2L3HPWE2NOQ4atUwdKVwX7GtE4jaVHTYu8XKNyslUdTnRa3V8buNxo8OOvJ6otk9r\n", - "H92yvXxfb7Lu1sk6Ty6X/JB0kUGFeI3ZKeTlYuCwS+8Yqx3CY2R9lr7B4f2Si3XxrQhG/P1m5K2r\n", - "j/oeDH5+NxWjGMJvjmr+jWpGSvLqU8/xia9SvMjtZWZpdPP9EwaXyj8cOeEmx2u8Ug49VqpPye53\n", - "HNhTWRzLu0ca50ZOazg/gMxGLfqNauFWvW6cnJDExFEYGCZbKgrNrHBHSuypJX1ThUyVMNY1siBY\n", - "w0iQzYctx9Td9C4zZ4z1NPTkms5raYjaBqI9WzJ3TVRc0hdMZIKpsVyQGKpqChKFAwvGJhr2FYYO\n", - "1azEtiTfVdTWHNOU27etL2JkIstqGnf4SjWxt1h4/NdpDCYOT04cvz3ww99gfVTx0vHbrh5b1c5m\n", - "qpsT/XsXJUszjSUWGuy0SzfNpRoKsjrFXoyx963P2e+sHrKdf4Pv5ZdDSP8+e5+kfrZUEO79IyZX\n", - "+IXn6Zxl9CqHL7w+k6bHV67xZxY5Fji5QrZndlTTjw03V6a8t1Cv1GU6akVNlrRlcUcRtgVjwrK2\n", - "TQ1dibE1I9Gyjol9C3ZjZjqH2Ssh+qDgSVE1lNLNL6sZ65vquS9VcV9fzUR0YNeaXEdNZkXXlqGq\n", - "e85JLVhXONR1YFtb6owjh1bmNOkaciMjhanMmpEDtdFYp8b4vw/qf5rjMYqd0rr8QkzsSiwWmaHc\n", - "nZC4OmqZjI6064eag7rVybLLy6esHaWyIhpW2uLoCc3ukZfffeDJLb58isPfeKBamn/+8vzjLa0Q\n", - "wnHWP86Zp8jHfLVG7TxP3S/Hdxc3eO0KLrPyv/Jcmyf2CJ0yA+bavKG4VOdUSnNE6LNaKc1FbzbL\n", - "tU0pyC8FZJ3A7cjjBbWE66FsbnIlPeK0cjwzUSIUaSgTEpqhNDgbKsdDq7gW6IjIHSpB7K9ZFj2B\n", - "RGHZ2C0l3jKVGAq2cGRplFk85Pz/zlPXOXwPLz7a9OKppmrM9bJT9pw0bS+S1ez1tx0trpL1ZI+e\n", - "L31C4vGyk8xf4fSIQZP8LlmHgxNcjLz/dOncNtjgdpUs4Ykh7+vG+I234rz+fjPy1tVH8Q/egf3+\n", - "In7cWxTM987V+g/wxFEJbyaR8wcw9t5rL/lM5T3cm5RD2uoVmj/Crw2pJ2Zr57THLZVsSSyumeXR\n", - "6QmxPnO0Fg07iXFa0ay1XE/P6sRFzTgzji1FSA19WU/Ncr+hs9A1SjJFUThKyPT18YzEIhKJ37Bm\n", - "bMHM0KFlmQoyExNLNi0qTEQVQVOq6kBX05NGamauYqZtpq5mgEKh6simREvdnrqBk6KqsVD03asP\n", - "LMf7+pbVnHDMWHTXTsxUxuecujjw6urM1z41ce8W4zbdV/jEKTZGJDHz7L0rVoZbXryQyOtjq8OZ\n", - "RxssDLi5Vn6+u8b+k7QuU7yCK2/nFRBjfhmXH9i8P/StT32r95RoS3VxX777ouLEGnoli/HmmkHt\n", - "X+s/0ZZXZ7ZWGob51CBUdeJENFSVqWhaioW1cEchEdW0IewoQrQah/o2TMKmatjRVMwbwURfYqBl\n", - "XdW2czKJvtocR9sT9aRSi+55UtS356pUw3FdyxaEuRV4XSbqO3JMX8OCmVRXoSEX9BXqquWa3O5a\n", - "Rzp9t9q/M1Kv7NuNPZsxs4zdNLMQK/qxqR+DNAbV0WmT1wYqGy2t9j0XV+uOWkSJwV5N7/ai2dWh\n", - "bLMpdA7808fZ+SqHb3sWVhnAduHP80M5j96mX+NLS3x+Uo5URPb/P8YvYJON0xyflP580xQpp2OJ\n", - "jCQFa1c5d5W997PVprlYoh67ygZiG4uBVwNFUQq81rIyAO+BGr2uREaWlM1IXdn07CnV6cfMk3nn\n", - "2ztSIjlrcjMVv+G4Xc8p255dJcbyXqWufRk9LQOVYqoyqdkbj6weZ/8+V+OSrWzRXjpTTaZymyaz\n", - "J7l3yKlj9NZl01c43aT+FJN9woTqSaZNRp9ncsDkJAc14j7HU5pd+qulhrkfcI7xy6Uo45+8Fef2\n", - "95uRt6BCkCpTdP/jd2D3v4i/OndPetOhtHeuAsRSHpfmDzQltMfb/NyvlUyx0wN2q7xYlCvgQTCs\n", - "NSz2Y8nmEiUToopppbBz7Jgkr0pDrkg25fqyUDFLa9JYGIsKuVpaVW1PVaWuOGkWVsvVj662266Z\n", - "OS9125m5eVnFSE20KDURnBJcUjGRqwpmc+vvgUJuWdW6qaFUVcO6iZtyi3OCY0/NPSetuW5H1XEL\n", - "KoaqoiLkTqo4sm2pOFCkiYmpdux6XFUvO9A9PXFiMrH18qbtE+c53aDxeZc2MqdC7vSlkgB35mjg\n", - "Uo/JP2TwR1PXl2r2n4qypcz1kFm/VlqPnPgsL6yz+7YoxV5fr2tEflvNE0OPYYXzn+CZZM/uQc3X\n", - "fuA9xuPzijtD6lcoWpavVqSnhvK1ZQ19N8KRNQONUNrP9WxaKnqSpO94SGxpmmppyVTiWCOMLBjI\n", - "3NSIQSfUDM3sqqprSyQaMn2n5kTVLVEFuyrGFqRSDVeMJHjKum3rcmSiBYVDi2bGEtvuWlC3M0dD\n", - "Ts1twpva6mpumyULxrVVORZHazrDpu7Cq3qV0gujHRI3berG4xbzaJJMhfZt1k4Y3D5y9L6gmo1N\n", - "ZsFwSF6smXzt3bIX7ttbfpkz7P61h308vsU5eJT156l2OHiF8VffHBn40g/x/sATc+7K0oSPXWbv\n", - "LF//xzHG31RghRBaLN6j/zjHMmr3ywYjdjhIcIWzN0rEL01J5w1Goyibif3AoChBgXNKa/ndyG7F\n", - "3A23REFmypHNnnJM01GapE2VwX3t+c8FD7AO7sjtYN8Zr2nPL9iOcst3fTN58r7CvoEa8RHjYsFC\n", - "se/ij17x4kc6jl5raT/R0G5nivaBfn0X92hG8kkpP1vMSOvkoxIemkTCDu0luqEMxrn2QtnZXRnx\n", - "rpPs/0FeXJ43Iub/g/jbg9XftPr9ZuStqXfj/lscjveGFaM7IdjBs94GyPTtqHI2nE556ZMMRiQD\n", - "ll4pvXSuwMVxqej4/PznX/08f+GDNGtGW9sOTjQsToP6nQWjStdOyHSyJcM00az0ddPEraQqSE3t\n", - "qsZUkeTaJjrIw1Clkbgaz2pYE2JNPeQqFjQFO674VS0sWJKYSEyk6g4VVkwtqlsxsGWigcSRgQN9\n", - "XYtGgq8o1C2qiw5UrGjaVjERTKwLjmQOzQRbotn8NriSBEsSC4F2OpJqipoqIbcXonHrUH4hc/xn\n", - "Gzz+gyy9f65mGLjdfsWv/aGRR9vR4j2u1bj8OfKfrrn2Y22bZ9sezWrq+zOz2p7+yaEX23z5NXZ/\n", - "juztMPP7rqvkFS39GE9/gJOR7Q9T63HuM7kP3L5vVr3m0g+N9Ncr4tZUc2lq+OTAbKmmbl01X1XE\n", - "HTth26jStiBIZWbJgtXi0FFa/nZH8ySZe8oQtCVDi6p6YWpP1argvjgnHUY9GwaGCuQK0ackZlYE\n", - "G9iU2pHoizZkuoKJ1CFyQWosmJko7IpCaYdnUapiUaFQuG/gQPS4epEbp1uS9shROlGTOpnMbOKY\n", - "tpshmiZkoW0yWtAqegaLl9RrA0tp32qaWc8O3F9eMmj1xDM7XL1YJsf9y+/ciLQ+zoU/09ZqZprD\n", - "iQvv4doHQwh/93snPXYe49Tr8rcSpV/H19f9VmO2XQ73GF4qreI3xiXP4mqNnQlnvsArz3DsqLxO\n", - "zi4ilhyQqTJpd3P+8L2h5IecSHgqlA3GlvL+kysxjW8wz9UtJbZrSjfW48o2Yzw/vJlVV1SkMlNN\n", - "ifH83VEpA0vn/95VRpgvyYun6a4Ydo+MqgvCTldybtux56ZO15tCI1NUc5Nw143Q0K8ulEfYqJTp\n", - "ucWU6hGjDkWj3HZ6l409QoN7p3jhJpd2+Qdr/NRIqRFS/jaSiyzt8cvf2/n71vX7zchbUx/Fr76D\n", - "+3/AG/k3ohmh9SGe+GAwHNV97VSmlmaKZ+i+zM5ff720NMa4FUL4W4d8JJEtTu199LTBbEFlVjca\n", - "jxzOhk6kqVDpykLqMHnccBYklQ1ZGOqFbSvqVvX11LWLulZyqBU6siKRmppqObJgQUNi7MBERTIf\n", - "ytS0VC0Y2nPfTE8u6jl0INOUqliw54KBhqpgaM/Aoba6ZVOXZAYqplr6Kjp2TCw4L0g07OsYmblr\n", - "V9+eXGrdipa6VJSp2VLVSO6YNDI3rXA6pfcip0+x/8flX3zElZufcuPDRxq/Tv/TSvXXWkdotT2+\n", - "07TRQ5kpq7lw214rd/Ufxxjf0rwlyib0u1FehBBWcZLKU7z7eT5+lcOl0pOmEXnpA3z80zMffumG\n", - "o/UgO71ieVS33M3txr779bp68nU951SKqiJ5WiwqqiGoFMEk7LoblsXYNwsTfUEjNoxVnMfQcbnE\n", - "kvu29dy2anku+I6C2x4ztIod0V1RS8OGiolDu0Z6jiGTCHrW3XfVewWM9I1NcCjTct7MmoE7EgM7\n", - "TtiVK3TVlEyEQ73kyAmFs6EQjBSxdC6JRXAz6SgES7perTQlWS4epIrptvb62LvuRM0FlkbXXeos\n", - "e21thx9+iZMHklfHJr8UQki+FYExhHCsY+m/eFQMK7JR5rB9W37ypuPtwtEH8Onv7aqY7rJ9gX6V\n", - "vMrCAasHpcOp34K8xBiPQlj6lVLCm43YfhfDBle/yr2/RW9IzDn/LJtL3KmXzqXtWDYia0o+SGoe\n", - "XjgnpB6hmGfNVJVNxnVl9MqDrOO2b5JZryuRk1RQWJU4qy5xBld0TX4zAOqcsgnp4xVlm7WgZJo0\n", - "tRol2WWavWhxfWQlnTkVouU06qXrurGpYddmGJQJ4vEeSaaoIauWbN0kIz2gXicMyJ/map37B1TP\n", - "sfLLnNnll3+DjxxjrUG8Q+smL+Vv7CnyptTvNyNvTX0E/+Id3P8v4s/jf3oHj+FNqRBClVN/ZNHk\n", - "7FnDWuGwuWCyGuTVHXl7X/xGCOHLr19xxRjvhxA+u0FnKjauGZ0tyI5srrG5TfdE5lijInXc4mTg\n", - "KG3amr1mXG+KcWDmtu14pB5qOkmug3Uzl5NVE0HDxjziYaTQsaSqMNXVUpUj0dRQc1fbvtSBTFVf\n", - "sI6B42raOnJ95Dakxo5M0XRgVUVFtCu1b2jJWaUh2X01LamqmtKhsWpH5lDLqkxhYCzR1ifNzZrc\n", - "e7Ze5pb3qhQvERZ5+XmuvCJ74Uj/bz5o6kIIKzXVfkXejqa1oDalSEv7rfZh/rqb/pt8vkON59b5\n", - "g2dZPhHCrS3+dYzxtxllhTKo6Eef5GNniS9pf6inMR463Ke/GAyPJdqzXIJrmzy6veNDX+j5l48t\n", - "asSJ3nrXsXFFu8gspDsyB66kp43ieWkxME7bFo9Sabpo2r5nV9CvNKypSAw1QkVmRW5x7o7ZNrVg\n", - "z749FYnEyNMmHlE1EG2Jqkp2QWEgkdrEgX1RQzFfSQ/mg5sVhZGxXR2Ftp4chVRdxTFVK2amciuG\n", - "7hnblmmFluNmqnNp+HLItWNwlESjgjRrSiJpUjdsdQxaXaYVrSI1Xs88uUW9mJo1tq2MuT1h7Q5P\n", - "fYZf/xhfPjRHIV9fNT75mNrCOcvXH7y2KE/H9s9sWXje99yM7NzlpT/PB/u0cw4TLh5y4wt+04X3\n", - "4er+Ai8/x7H3lfZDswqanPtY6Vm0scb4iK83aaTldGMZ5yP3lHyRFSX6sakcxVxHJ7IUeDLyUiiR\n", - "j0U8pRyyvKgc3ywqFetT5Oq+ZllVooaJsYlN5Tw9KHGTknFUfj1ThrpsSMJYXjsS0tuqaccpuSxJ\n", - "NcOGVGpJbhpaxpY0JNLQEIuzVA5UZ7tC/l71m3uGJ67LFxZKo7PkFIcXiBNO3Cs94y+u8Mw1/lrO\n", - "xR0+GqmMeeGwRMXeVDnvw/WWNiMhhL+K9+PLDyf4luFW/qhSN/XfxRjftJTWd7pCEJTIyH/5Dh7G\n", - "p/EPQlB7m6zo39QqV7oLz7NwgcVhavbUk6at3KRz2qx9SjJNpKM7xgtd8d/6UrmA+KnXbWPjEf7c\n", - "DzO9wNdGXPw/tT6565n79LOaU+tNxbhmXK0pQrAeuyZp0052WVqJahY0Q1ti6tCqhih1pHBeEE1F\n", - "DZmuPVQ09KTu4rj2PLZs36GZqQtuu2vFSMVJdcdMXNZUV1gSJbiratGCzC23PG1q3UzfoqpNO7p6\n", - "ZmYyS84aaeqbCIZWbTuncGCq477LFvRdMNPW0hY0cel90aXu2LSfMTvL0U1WvkSxXw7KH5bodpns\n", - "JSZZotcpxE4o42S3CqMBb51cvcMfeDd/+Hnur3PzKmuf4y+3Q/jsjJdmvPLQDfFdT/GJT3K9SnFN\n", - "9b3LarObLv6hupBFsZ3qTKdCK3ftR0Y2/xU7a2PrXx37dz/DZz7Bs73cxVM1K7FhscgtZnVfrE6J\n", - "Fbt5YlpkOmlF0Qv2q+dM6i1HlaGaYDV2tELpDxP1dGVyE6clOpjo2XXTRCHXUz5Y3oeWVCLRk7th\n", - "aBEHqkrY/8iSuqjiokOZ0yrWRBW5A7mxpmNzgfctE6cEq/O8565UQ1tNxUw0MpaLlkPdTEeYTQ0q\n", - "iWlcdpRsiHFBOtoltiT1pqEdd5ejzoRhp1SXLG+zUBArPH+P6x8LIXzhjVCrJZ5YkfyWZrUqzTfF\n", - "dMuk/b1cG2VI4rkf5tTnee0JlkrzWLdX2H7hjdGa6rM83+aj/5TL76dzuny2/uIP0lghbNCs8miV\n", - "1UAvlD3NFaVt+9NKVCSJpQFayfZhObIe2Q5lo/HM/PUrSozjgtIT7GvK5mYDh4KxsURuX91YMHUk\n", - "ehRPKFueoXK4U0VXsCjYUgiy0BCrQ4uhoWpspm6sqSUXjNX15tGLdcJdRboqxLrmkCK9pNKoafcO\n", - "dWstilP0n2C3WfY+OuUqbTMpD2N0EOPPhhD+hVJun30v5+67qbesGQkhPId2jPGjIYS/EUJ4Psb4\n", - "wvzbfyXG+D+GENr4V97EyPjvg3oSkxjfqEt/eypG+yF4DR/yNsuLv9cqZXvn/xw/kHKsy+7JxOef\n", - "K0yvBoPNk2JoqkyJFpidYPcGPxpC+NsxxnsPtrPEh57Do3NDriazVDtdVl3YkxRTa92Bfn2o3wyK\n", - "tEa+q1GZSZzVsWRJpQyjcqTrjrtaEkNctOCkmUxiB9FMak/0tKFV11Sldsy0jG1JVaypqom66nJ1\n", - "NFX15MZzYlihYiiRWNTQ0HRgLDo1f/9UX0/iOTUzVTU1LV0TI4c20VXTc0pVx7Ig2MN2yDUFx5Ou\n", - "7tKuW0ub5Nc4gf6XaN7lJx5+sMQYt5ZD+DWu/6llT99t64ymstqWrZMzO7/ke3DQ/A7nvnmBj/0B\n", - "bjVLb4PWmOeeY2WBzXUuvMIfCiH8vRjj/WN88BkOqvPU0HWDrR39Ex3x9Jr2lULl1R33Hk3sxCUL\n", - "tS2/9CO5O19gYVq6tlabtEaFpe5UczWVJYlGMhCStkZMNZIl0/pMv3IkKzbEbCYpMoXUyMQgjCVW\n", - "5mdw11DTKQuW5yqpoUzLfQUOdZQw/En0TAVNqypGcjvGqvpmTgqioUwuiFYtiaq6epI5yH9HZklF\n", - "V/CIjk2ZibFVTY+J7ulqioKJisyujqqOwopZZWqS9d2qMsxzndFlQkdtq6G/OdBvrrl2MtEZDk1a\n", - "fd0hJw+5W2+5+lQhhLHZMU785RBOR46+SP+zDxrECjv0stxaPVWbu6JGM4MWR1/5Hi+R8zxS48Ov\n", - "MbrK/YXSdv3RQPcpbxi9sf5Bntpl0CKe5sQ+L5/g9GppB79UL13RH4nlM7goSlfVS7HkodTn/M08\n", - "zI3KlM/uPCWNZSjwksQ26grLSmzjtJLtcTg/6wXOqTgtt2/gNRWpnr4Vc/2NcrCzPN/DFoaqGjLH\n", - "hLAmDzWsyA1FUw1s21dX0dKTmGmIDgw9Zmw7zBw4ob80U89WLU8yMUsNw5osaVEMWR8xXWQ7ozjk\n", - "bI9fijGO+M5k8Tezvm0zEkJ4Cn9C6RJD2bD98xjjK9/Ftn/QNyV3v6B0K3qBMmNg/nrLW7jKeofq\n", - "4/ild/ogfJM38nuqGWHjk/xwweNzItrxfmJn667XHj0jq9clGVEuq6WKYY1Zp/zBMjmqjIU8sy75\n", - "RFDkPY4aTG5LzuXimaphlfwg17mcOVw6rj1s6NWCmKXGnZoQNjRVTBX6ppo6Gqp2dYgDKyFadckN\n", - "K6aaqmpatmSCRC4xtaiE0msqToq61gytK+zZVTgptWDfoWVDTVOpwpGZAwtaggRBQ26gpTBV/q8L\n", - "HSO76mbzx1VVV81tmX1tiyqCIxesCDomEmu64bY7YSg4UM9OmRSPEa9SrXO4Uv7uvvrwWTji72bu\n", - "ZUODP05ncyqfTQx+lv7ferMcNN+gVtdJmuWA3V3efZzaKvdusvpBbh9n9V/xJ/G3Uzot30T+njV6\n", - "9edcPJ862YhqITErOm5uL7u5tSDtjo3CHj/N7E/wyrPlW0dVFg9nqtVMMotCZaay0FaNTZUwEpNM\n", - "Vukq0uNqs32KiWS6Z6WWWjQ2dl/bnomxms7cR/fIREe0oGFgxWMO3VPe8CaomMyB+6ZErmuEVFOC\n", - "RQM9E1sesW5BWzGPRgwObWmK7ipUVDUEE9FYYqqlpq8himpWpEYKIxXXNAwlJE392rLRbFctP1Sb\n", - "prLRSC3NDTRcKthMMktabtgwrudefa6iGHQs1Gqq69tm9S2P3Zn68Ctc/AhffGJOTp1u8/Ki4R9s\n", - "u3QhWMwWtbtRL+zr3iB+Swn2d1npNx9ZzeyBvL903U1qb/yWpEYlL13pm7FsKrobnBlxbYNToXRE\n", - "beSMKmXzsRHnqpmkPFtt80tSCSAeKduHG4EjiYa6NYUlM4Voee4dMpVKVGybWMeKoX31ucC7qqci\n", - "WlYiZg/vaeYBEze3IGiq2JJKTUQDia4NSxqqsedG2BKkhqoqFnTkqlI1uXG4bpRumBV9exs9kk0x\n", - "PyQ5SW9AJ6VxhRMj9m5T2X6HwIFv2YzMRyn/Pn7GN+eDZ/BPQgj/R4zxf/gO2172zUCkIyWO9fD2\n", - "/wb+bfyHv4vj/n6uj+Nn3+mDUDYj/w3+23f6QH5n1X6cR289/MrU+V+buPbjPdPmkaQxXMXCAAAg\n", - "AElEQVS5JE4T+SBjOColu0cYhBASlv4kp374SO/5X5cf/5LZeNXhzopjw3Xp7iWj82xUefmJjpWD\n", - "oN440t2oGjVP2Q8jLKjEXAyFmZrMWGpBEWeSOFGEih2bGoK+k8YKQU9i4MCyhh2ZQkvqrJmb83Vx\n", - "amZFzcTYKzqOG2g5sGNNX13mnqmemsSCqVyqa1GmLjiSyzSN7JrJZUZaZnL0NcysmVo3tm1TX8Wm\n", - "TKKYYyin3DOQWddK98Rw1zQ51AxHmufGir8UQvM+4y88gLrnMsy/HkL4h3TXsPtWzovnNegS8vIj\n", - "zTm+zEGfamCcEB9hb5UzIYTlFl+/wY9ulvdyx+k/b+ezn3d4OujMmvLes7pffRf3B1RvlIzE8wx2\n", - "+ewOS0Mqp1hOOXk5SlocLI+cqF0xqa9qD/ckychO2hGTlmntjGpxi5ipGOtIFQqHhnYk6voyVVMV\n", - "Jcsow0TigTLhUPmgWUJd7sCRa1KFtqqg4Z7julIVg7lHzWiOmLVVnDPT1RdkppZNjaSiwlRwYKaB\n", - "aOKKaCw3k7umPU9KWihXxQbUdkzjXZMQnYuFhUZm3Go7CNHdg7rb4awsrCsafTFfVx1edvjESGvy\n", - "tLWvpO5duGb/Bs/fpn+WnSdDCAfn+egmcdVsOLXXumFv7ZAvbPN3cDyE0PsesoxucT3yXKVsRh7U\n", - "1dXSW+SNav8rfPY/oLHK7DHu7pceX7Nx6Xg+nZs3Tx98hLkMN5ZfXyovGW0PJLnlo21FOcK5JHhR\n", - "piM3ELVFGb6mpacl1TYW3HPfVSNP29NRM7JkoCHYFZ2c7+mB+HeoxFJOCu5ZEm1YVtM3NnbPkhv2\n", - "rTnSCcHYSV2rmqaCbdGyFVU1XS1PGdkUdOWNVUWyK5+2Obg8Nz/p0tgpQ6e+fpu/+TDC/HbWt0NG\n", - "/hM8HWP8Lb7/IYS/olQhfadm5EjJ3qH82/stCEiM8S+GEP5r/GslivLbKoTwUw99+ekY46e/wz7f\n", - "0QrlgvZj+M/e4UOhhCyfDUEnxm8GWH3/V5Ez+S03m+js9SPhYluRvKR4/nz59zoL7L1K44CXcZXk\n", - "KR79CM3zM+8ZDPRGFTG549Z7x7ovN8TByN09Jjn7K4VrjZHFbm44O2V/dNp48WX1atc0tDWM5OqS\n", - "IjMJQ2MrYnhGIqjomnlWY27bPbMuU7HjtprEMYW2iTtKTvyCI+ckanNS42uqLhoJ1uQacotSqwo7\n", - "em5J7Mqc0ZNbcqTtrkKu0HRgWYKKroapmcKyzIJEW3TOyMsyh6aWUZXoWjdSVXNC3aE03KLWczKJ\n", - "Gp2ovkDxJ/jaMn7+4bMxz4d5W66fGOPhWggvf5l3v6dkD8oJF1la5ysPDA7muHkY8sJXeC5w+jz7\n", - "Q2q3aUzMfuUTDm6cf4gH80XObllu8vSfLW2/D1K+8Q2+8gLHP8DRCWyX4WNrzcIkO3Ji2FJP+YpT\n", - "DprHTZNCDIs6aV07vqYwcVrDVMMgVoxCw8RUTTJnAk3kUkfmhMFwA8cERzoKub6luUT3gpl9Ffct\n", - "OjTVsoa6qUJNfZ7cmkosGWCkZmhPXWZFUMgtmKmpaKtaldqdS4HXNa2rGBsZ2HPbmp6I+9bqHZ2V\n", - "mTRPtSosTAeq1WNuTZ+QHubydqGorJi5oKh9TZjWnekf16vccns9c/awVC0tXzhu/6MfZ3iGn99l\n", - "bVAGvXR+VRqjR/50iTgcJCGsfYP9f/a7uD6OQmj/HD//Yzw9pD7j5iIv32b8LUZASZvsAmcSkpTe\n", - "U2zXqO6UI57bsQzEe7xKCORFOXrZSUolViVwS9ka7Ct1LReUdMdJeYV6BCtzs7u7OFB3zIozElMT\n", - "UdUNp01ccR+FoNCRWRXdVqIgm8oxTV/ZXT+Bm5qaTklVZeioSlRVXFZ1X8t9j2CsaaBuRUUiM8RE\n", - "jCsKaxiIcSAvFhW9J9nfIjnGYJ1bFfJPcWybX4184Xd6Xt6s+nbNSK4cz1x/3esnPZQD8m3qc/gL\n", - "+KfKccHff/CNEEJ9bh889m1MVGKMP/Vd7Of7qd6H3RjdeacPJEbDELygJNP+HuLkHH6elz7MDz6E\n", - "jlxeyw1/7haf2uYn7vChdkllX88ZZOXd5FRh/Tkaizxa4ZH7R3YmU7feVXEiHjl8ZlXv3mm12ZHe\n", - "2oHT91pup5u6g5Htx56TH1y3tLymFu87DJuWFBp2ZcmB3aJjPGsL9VWJmYqawp6ZmsK6DLkVIz3X\n", - "deVSBNsqDi3YEBX6ojIL56zomlNmclM1mY6KTO6cmoq+Kybz9qEp18Ixyw4VbiscUxHkhtpKPVDX\n", - "TNNEPrfkKt05SyCjpq9QaCjMNMOuakitSzTSgUYHZ6l+gLXnQlg9ycEvxRivv/3nnn3++ecIV3im\n", - "yuwyJzf56g/MlRLXWdkvx+mHZVBa+DuHfGCFd+fsbvMvC3Z/gf/oMc4u4S7haxrN3I90ef4hvsup\n", - "dT7V5dJPcuPjtD5Sl38k0WwVnpwmWkuJnVhzWGuYhJFZmKkXFY3YshRb+mEkN9YTVUPHvrF7ploq\n", - "qhKZ3JYVh8V9laSQFEOSixbUpUgMXVBxRsW+RRVta/Zdt6ZrJtewY2ZJrjQPH+haMbEg05EpXDFy\n", - "TM8JdX0z+xYsq1rWm2uwqp7Qt21dsKhtz0k3Xbaiomeh2JOktVIOHuuqRXS8UrjZDhyMBYHJiuJ2\n", - "hcVvmG2QJwWhkM4Jo/0ag3yFE2fnfKIN9jbYy4THW1Y+3PXH/gnL0/Kh/qV38dk/xuvsQr6LinHw\n", - "2RDCHW4+Wxqq7b9C9vUHtvQPVwhhkcc+xCf/H177Uer9Eg17bKUUjZxPy9yZGMrMmLVYsjVuoJ6z\n", - "ntGrl/lCMyUy8l7lY4uyhTiBvtRUoSVXinVaFqWaOFSTz23yjjRdM5HY1NVSeEK0qlzd7yofyD3l\n", - "3HQdd7U1VHWVbJVF5fDnlorcxFk05yESuaimak1iaqYvhkf0swlplBXHOBhTG5UypF187ibHbnDi\n", - "Ki+M+JkY4zsmePh2zch/jl8IIVxWtoaUY5rH8Ze+04ZjjF8JIYxDCL+iDE16IYTwv8QYfxI/HUJ4\n", - "l3Lw9ntefvpQfb/wRR7UA97I76FmpPtpvniC7UdK46r9wJVddv7vGOM+fqodwr93ij/yFFunuXtA\n", - "7bP8xMsmh8zW2JiPEzYORypXq15bWXFseFpyt6py4owTu9fsre5q3F9TZBXt7JrhJp1Yk2tZidvG\n", - "4UjfQDurqw+WZfWxLB7KbSvCigWJVMdAlAuCqkLL1Lod++pq9qVaFmTqc/D2UGLPkpqKVT0nROdV\n", - "7CrcEnTkcmNVUeaMqg0trfn2S2b92F253MSyhqdlJqK6aDCnxE1kBloyE/U4kocojccsh4qankzV\n", - "oqAWc2t5kFaCyXujc6/yxJPcfSyE+s/EOHlLAs6+Xc2Jcz8TQljBmRP8+Dr1a6zt0/w6ky3+2QPe\n", - "yhy5+WWvM2MKIfz0bR5N6eQc0fkpjp7k1z/I2i02X2U1Y/kptv9Z0/TGedMfXbJ6OBMPe7Y7267X\n", - "F4VYkVSqEn1F7MuSmV6s6iRBHoODwIX5g6in6oKamYk9wcApNYXFpKvq0DAZKuamd1Uja4IViW0N\n", - "mUKwoGmqourgN0c6ZZNZXhk9M2cEOxKvaqk7homRkQpWdWyLxkZm1pVr7aGRzB1xLh1tWNCMa/J4\n", - "l7CiMyvUJ1NFJTespnq1iSIdyVdHQh5JbrNWYViRZ2Oj9l0xFM5ts9sqH6WTlwt+qPDN1WVB2NV6\n", - "nE6X2rxxSfDcHV573++mGZmf8xveUMb722qzXDvHCq0aj7/M/jLdhdKUNPY5vsQjB2wnXF9ic1be\n", - "d/oJ/QqNUK4xawXfSErmwaZybENJJ52omEg0REOFZYUxqnJBrm8mmurHRAh1U2vGdvElpRj4A7im\n", - "7LKfVbEukZmqKuYco3LUsK8vOHRMZlM5bth54I2qbzDPf+6aqBoVU7Mkp1gupVFypi+xusW9nmrn\n", - "ls2TR46Ppto5N34yhPQfz2MX3vb6ls1IjPHnQwhP4oNKhCQqB2YvfLcyn4flvPOvf3L++T/9XR/x\n", - "93d9XJlq+P1Sv4i/8U4fxO+kYoyjEMLfZ/csX1pTopZXH1xzIYT2ozzzh/lCfY7QNZl8iOSuo5V9\n", - "g6QkJS7Mx4uToqFbKQxqBw7ONKyly4yOK7J9rXtft7Ld0Hv6QLJwVjKLYlq1rDDTtV4MVWcdL7UX\n", - "NMOKUegK6loORU0zNVVBVXRkV6Fi0TEdB4ZaDtUtW5bPRwupmZEDYzNn52vcfW2HqngUA4WmoCeq\n", - "6CpM5da0bci07SuzgVMbcomhzETTTEWnzEjRchRzuZ05fXHfSnxMEYOasSIEE7lQjKRZtDQN8kBn\n", - "xuVlfvA+78o4/LEQwjfeDknfG1WM8QAHIYQruzy9yKkB98e8/O3C+UIItYQnFuaEvIxbrP1lzvwI\n", - "53oMcu6e4uDDpXdGq8rGf3XMTv0RjVZm8Wiit1u11VgwTMcahmbumYZzqvm6UNkyC3fd01cLhUeQ\n", - "S8yMta1bmSMaqyaO3HFgJo1DUeqkqrvhpIkVbVftqethKpeoWVGZJ988pS6Y2FXGLy6bKeYi7apS\n", - "BlxzzlKZMm1iVaFjYldHRc+mctJ1oGXJqqA9p7kOJHOT+qHgIEanMmLSVplNdGZjr7WDpLgqhkfF\n", - "8QL7N1m5zMJA2rvu5pk9J77OV1e4M+bO/xZjvLEZwtVLnHiynHOYm2stdW1epvXQdZTG0qfjrasQ\n", - "QgWxdDOf1KlHtjeZnKKyWDYpzfrcjGyrXGcXGYs9JifK9N6kUg5Lhkpi65pyDHNXiVMMlaObqYnV\n", - "+XKhdAcZq2k4mNOU12SaduyFQrRk36pvcoh+XbkqH+GYVGXuv7qEit580FOfK/iObIo2zCwpsZkj\n", - "QaEyx2sL9/XiWD2bquSXhGRN3OqUMcuVfWoT9vbp3fToYu5Dn+HkXWpZ2Vj+v38mhPA/vw38sN9W\n", - "31ZNM5f1vOVOi/8mVAiqyhChP/tOH8tD9UVcCMFGjHbe6YP5bmu+6v1Wq5/VddRfNyo8zVGblX03\n", - "P8sXf5wf3CamNZceW9CfVdypL+ofHxo3busunLH+1brcwLnZ1GxcczG7olFhIJOYOVvUrZu62Dwm\n", - "KdZUYlMt///Zu7MYa9LzPuy/t6rOfnpfvu5vnflmvuHMcIYixUWUqM2yHNlaINhBYiGB7ViOEyBG\n", - "kps4CZIAgQPkyoETJIDtq9iOlzheEmuxSFmyRIqWSYrrLORs3770vp/9nKp6c1E9JCVrn6GGSvgH\n", - "+qILp7vfrjqn6nmf57/MNNJrWl4xclOhodCWOj6/EVxQuGVqQTzPmuibGcs0HRrqa0qtyowEXVOL\n", - "XnbH+x26LPjXoouCD2HbVKblyJF9TC0bnDd9l84zboZuOXNBMG9s38C+TCqol5lOXCYcSOJ9kqn9\n", - "cslUA1v2jH3bgCSNyjI6yRnmrA54daNt+p4mf+G8s/maqkO8qepV3/uDKlLOb4qfDSG8ovI7+O0K\n", - "kfkN/vy7WL9QhX/V/rX2swPPX+DqA1ZaPD7llSvVdO/set1+2pIvzUkXeyZJx1a9JYaOvDUnuqvQ\n", - "lZUXKpePpKleLkmcCfGBmATHITG2KDPS1Ve51TJV6jjUNVYvGsqkStmdhcvq9gxdMdK1YqhuXuLQ\n", - "kR3RM4ZmgvY5GTHT1NCUmjjR9LpCsKirrYVS09jeOfG5IZzTmjnQtaergbpEet5ZuycI4UgwZ280\n", - "dCupuTApxFlpr73iVClzIA9Hyk6T2bFGvmPTyLWXo/Qur+V8+qfwwpu8wn1+6hP8+R2uLlbf115V\n", - "HA1dv/vrr1S/XtWJby+qOADvovsjXHycRo+H13j9lPoi9XU2I2+0uHFSlXWP6swusPA55g44XGLQ\n", - "qIYkF2Jletav/htt1Ufgy6q9+Z6K3fEM5yqXWKlsTFx3pNQ8l/UWJhKXBK+7oRr2nKsAXcGnVV2w\n", - "mboD0ZnpuRHayNB9YysoXTRUN7Kq4k5lqt7XialE34k0nmjGmYXJmfL+JfHRiNXXqn92Ms+D72Xv\n", - "nuZzhff+Ix7b+toZXB3y5Bp3r6sMUv5A8S0H1rcPH8TtGP1+meJvO2I0C8En8Ufwj97p9bxN6J2c\n", - "Ky7S6o4A9mlXc9D+/8oLD9n7cebbXb1RYn/lwwaTC7I4UmSv6s/fV94YetevsP99xNgxfzTVmZu6\n", - "UJtZzOoWyqlhaOuVTQvFsZ00EqvZfamBI4tuG9hUk4lWznkeZ6YuuSB36nGFV93Rt2wiFXR1nZoK\n", - "ziwKLijwgr5vMzFWmlM9+Sf6dqVqOiaOTaVaenZ1najLNY08rqrLtk2cyl2OJ2qmYtF0GEemYcHj\n", - "9yem3XteWRtK4qFWMlaP3MyiVo2iIDtk8ZWmf/Z9jzm4vGwQrnDpHn/2K0wvkFxV7QXvcRZC+Ht/\n", - "EKz7KvRu7ce4cZ0ghI377P60qse/hvGb6oxF/sSzPB81Vl5VrE3lBd1LNaFVc3Q6dbCYWy5Zyri5\n", - "0HGcXBf2U83ljrOVDTG2xOFQ0ZoXkyFSsewqbcimO/LWUF4eKkPQVdcwcikm+mHqSEtDTzCTaciN\n", - "pHK1GBRpsBQGUqWeh3a0DTwndWLfQE2hZtnMzMSKuiOlQzVtM22ZR2qOTS3ZFB2anPfFRgozTR0N\n", - "Q7dM1eTn+q2GU08rZjvu1MbWlMgc2zC0J8RTrWLTcHDVg92Zo+WORv/MMJbGzcfV+os6oxPT1uti\n", - "Z+TxQXT1xeg7P1o9Bq8u87EPxrj9pneUGONhCOEf9Pjz3cpvaVAYf54vrtGacfmU/Q6fW2P/n+Gv\n", - "vA3vj2Xaz9O4wNxzrH0bTy+x0ac34daUV36A9UBrjVspoVc9wmdpNfxIVhh/H0dbnHYpZxX/tlji\n", - "QlnJfx8EishCrMzRFrEYqu7TnqrP8UBwLOpIva5wxdCZlurstyT6alZVXZDa+dcF1dBnS2pJTd9Y\n", - "du7K2lTFcS7oqyktqNQgB77mS5KJemIcyl12Ib+kUQz08ruONqb0v43bnYptKyUe0ozShOEaxY6v\n", - "cn+oOkh+C5n0NxbfKkbePnyz8UXexJu8kf9PFCMxxpPlEF76LM9/gIcZcUDts2wc8H+d79j/Xgjh\n", - "/1nkL13k+6/KVpc1lWKaSeNlZfbA6NLY8fvZXuc7XzjVf+ay0DtzvHxqy0gnLTWlpob6tahd7ihk\n", - "euYV5lVtw4FGeKA4v8G07YvGpiYOzbTsOfOYka6hr2g4taCvo6lpoCZTw5K+iz7poeXzx8whElHb\n", - "qZG+jmjJnvw87TfzuJHU2EyqKdc1sW5fNyyJedv8tKcVjz0cLQrlRGzMdPIdi0UUa1ErlBbqHB+w\n", - "/oCTAUebm4ZXV8zNUtNJVFt7zmxvxh97F//8qfP2+30WP8afCSH8tW9kh6Ry3Lz0k3xvnRvnvLU7\n", - "q4mf+28vOjzZwIiwHsLdfX52Xe3fPzG3NjW5tKDTnKpnDfVuYhYXhJOa9ta+7c2+Rit1nF2TzVo2\n", - "5gtntZ7TWt1wNjRr1YWwzOweWVMMmaJoCmFByLdlouW0Zq2IhqHUCzVrZlKFPWMP5VpKhVmlegl1\n", - "N6KvdjFyA9EFD3VFHaXxuUB3XeJYdCQx0XJipCczMjKVxa40ZE4kJgo9afV8OS9yN9QlprYV5lCY\n", - "GMd9J9mauqnxeVZO11gt7krHOYP7+p/7DpNXM5PvzGTNR8rLV6TDZUke5Z056XBd1jw2bU7UB5x1\n", - "Wejz2BHLV0IIS+cjNSGE1mX+zPcQbpwbkN1k7Re8Nt131Kd5kfyA/X8Q4+ylyhLorbw/sid44s/y\n", - "bCC/xPA5Dru8+0U6ObdXmHua73idV5Yo5thsc7/Nrw1Ya7MSuFty1qB+idMWP3jC1hxZrBQ1SWQ+\n", - "pYjBzWReazYyq01dVpUDE5Vqrq5hzcR9GRIXNZTWUBclEkEiV6lCgqrXsqgaFmWqjKFLqq7JQxWH\n", - "ZBHLEi3B4TlFdlX18J6oXB1Lwg0L4znj2ciotqm+nVmsvyife9Fs6XkOF5g+YOlTatcnWgVH38Fr\n", - "myx/kY3dKpX4bjj/03/g+FYx8vbhj+J/eqcX8ZvgX+IvvdOLeDtxzE99mvwW75urKv3igJ+dnht3\n", - "VZEltWdzYamU31jUPuobr5UsJLI4lBUtzSHzrzBrMqsNNQZ7Hl5dkqR17DkJQ5tlMKcvhIYsqZvl\n", - "S0qMDDQsy8K8mUeiaMmpXN3YVU2resbqXhNcP6e2tU08NFTXlWk6MxbV5Q4MdM1bseDEIkozO3Lr\n", - "akYKO6oNy5IVmcKZQ01reueqmsRYzWOinTgwiz3zpi7v5aaPzhwkcw6ud6T5TFKe2TiZ6Relr3Rz\n", - "s5yb22RP12yuzEmyKPTbNt841b428fDaU/SOqvvfPlzl5DGublUGDN9Aslv2NM/M866vU8DEcEX6\n", - "7R/mM89U4yNf4eIv8p/lOmu52fKmxbRlpT82bW8YFqdiODbaWJY+7Gj0+vrLTZKOx8ogndXktaaL\n", - "8cvu1xZMp10x36u2iLGBfTGbE5NjaZhZmtWs5GfibOZqs9TJ+vZDIhFNRMuCe2ZIdGIVhnZZbuBA\n", - "X0tpxaJ9u7JzFVaVa5PYkjhRM7FgYOTIvJmOBbuuOQ5tVRDebVwVLOjLNBwr3HbHkZrENXUtUSMu\n", - "eCNsWDJvpKtppOEOds2FiYt1JrOhq48+7o0L847vNOXX2rJRSy3pK5pdIS+V7aDRLMhLq/Ns/xEm\n", - "n2b93xj71nn2mSrf5KtKuKfYP6T5S/Y/O43xs2/XO6PihFz+d/ihE9YHfPl5ru/zaJFbF3jPI846\n", - "XE7Ir7BaZ25As1PxP77YJk0rh4DHJpWNTTFg0OR0vlIlL0VeTSrb9xMMQt1eOefZsnRazvSSaKxS\n", - "19zAktyhDG2PFLZ0rWpJpaYGcoNz4uoTqoLjEK+qmCfXVR+oXHUCT6SmglzdvK4DwZnjc/5Q1RQ+\n", - "whlxJrOqnUehJPSbasOmWllTm+6a3R/TmbKyo7kRPfcoWJow6DNbYut7Of40dzPu/6sY4x942jzf\n", - "KkbeFoSKV/ZB35xupy9jLgSPx+jOO72Yt4oQwkLKjSG7b/D3VHeJkzelfZWd/JWf5N2tvln92GcW\n", - "ekaNDckkNz8spWWuSEqNhKUp8XTJr9y4YmHC4tnEbHmsVx+5nieuKrTCI9vlxO1wwUlIheJYkSw4\n", - "mx3Ka0OtkKvyeJlY0T13Hdm1IZHIPBCM1OQKHQeG6miKqtzVAqtWBH1B32smNqU6KvLijsSquvG5\n", - "y8SCUt2pB04El9V1ZNbVbRpJY8OrxdhkOhPPEgdrTzquddVmC64czpTxoa90p5pxVToa26kfyhd2\n", - "PTmLVu5m8vma7miof7Vr7vZIdr0t305+A0enU3WJG9/Yq929wOqvk2x2vfrEVa1eVG+VpuGAlQ7d\n", - "Fcl772jOmnpzdXOzIIhidlmYnXhQC5bb0cmVxCwGh7WgU0SmpUkzCFlHW2rZIzvpE5z2JfU1ad7Q\n", - "LHNF+nnDrKk96yjzQ2fpkc1Gai0Qy2icFDINIw339Uxiy3VzhmFMLIzC+DwYPtd2rFBT8wWFFUFX\n", - "Q8vMl5R2taWitiUbNuTuuWzRRK6FmYFFXBatKA2NLEt1FXoKhVrMXIuZBy5px7ZZHKinlRNFDcM4\n", - "8G14LAT38obmha6wtOil48zwpYH8mWXtfqK5v2eyMNOtF0I5k9RYOWPS5tFH6P0KR1tvdkXO3xMb\n", - "q+fjgK/HCuO5imzxdmKDzQ7rb3rJJNSnzE+rUMQ3Rhws0Kgjq/xCVvr0O9Q6aLCccn1U/Xg6ozvl\n", - "VsndOk9GNiLtsuoWPCxr5mPd4ijXDwuGtaimcGBsqoo/PJALmHeqo+3LlSGSjompgSMXDM9DEr+W\n", - "yPtmSu/GeXlaU9NDIXOkpq2ukEqMXVN3Ud2JsZFoJonrZrP7Yu1EXmbCtKbeGyhbE8VJLuw+4hNd\n", - "nspYmLoxN7I66bv2a8wf8uoVHj3L/RYH/7uqxfOO4FvFyNuD78KLMfotyXXvFGJUhuDn8cfxN97p\n", - "9bwV1EN49gl+4ilCg3iX9A6fO+WnvvaqC3+SHyh5/AHsevTG625/e6YI5HEs6OuMB9Kkod4o9M7a\n", - "ppcOhUZUS6Kz0FWLK07CgdWi4Wo5MZc+lBr5bHFD+6AmX9+zmgVrMh25iS37nrZv2dCZbRN1+xKF\n", - "qZ6GeUvWjF0z85rbth0ZWRBcFi1IEAUNF/Scum1qZmSi1JCZNyc10DfWtAKmguiGzAMtryttYd5I\n", - "drYgvDJ0y5JHR0+Y7R+5vEwoU9P0ulm6Ly27lsq2ZLBmPsuN2oeu3d2z15mT5rSzqd5CLhnfpP3e\n", - "qmMMcsL9qsv8DeaM9HfZr/P0194DBt3EpDUzbb/ED87T6VJeVG5uGaV9knlljUIhBkJYczBecZI3\n", - "FftrJsef1X7XqUutIzutRUsh1ZmMjWo9ZVrTKjvy5UQ9f1UMXclgItR2LKVTS2Fe587I5ELThWZJ\n", - "vVJTTZOOB2HdINS14gN5mJick437ISjVBKW2ID1XRGSGasainqltHQMXBFdk2mr2nTmzJtFUR6qm\n", - "VZ5K1PWSgKFSQ6JUWJGaExxpyiQxM461qrOTFNplX5GM1CSaIWoXNaNJQ1rMmayuu3Cn7/7Sdxve\n", - "/jgnxwaNTQuTqFk2rA6OHHfGZnjtPazMOGzx6cDOr7N46LN7+JsUqEcVk3TnNx5/i4iUX6fIaTxg\n", - "eo3ThMMLXC9pt3mwwnqf9TO6Q5r3uHmF+lI1oklTGlMmdYpGRUO6k1fiE6FibcTIUpHYz+g3umJR\n", - "Myz6HiTRfMxcDjPXfO0jcSra0HdRdMtYoS1aNnZJMCdzqHQkihJtQVN0X9ueoY7ootQiTnTiSCMc\n", - "OrGEmmBJplu56Bqrx76ZvrR8QaNR10oyg3LFbO/QIOmb/EP835/iekP6I1Nr7ei5F6tzAe+/zdoR\n", - "W9sxxq+8zdfo94RvFSNvD/6YahzyzYqPqqz9/9AWIyGEzuP8uz/G/uL57ut5wtsZ5lMAACAASURB\n", - "VC/yoc/wOr4cQljkmUs8/tW2funGp0ZOrrzgeD4ViqA7HmnGhtU7ibLG0aXgxlbbchnFem5x2tNf\n", - "rRnnuZjmJkUmTqN2Y6aZ5JK5I82k7kJZkyU1szCSaZsXHNoUVMmnfRNLcWwpjKzEu2I4sWdF4VQw\n", - "UkdDy46ugVRfXV3vPG+kbsGxA2cmLphTattz6kxf3YIzDWO0fcUVx5aIU2fxzGn5wHh+T/5saWf3\n", - "itmnLnP/xOgDU735xLC2Kiu3TZtTx0XL+DCxat04HhrXtj21VXh9c01MOb14rHhjxL2LzLWZDmi8\n", - "zPIWnzj3ffkGIn+VV85YX+PGPoPazOEVDjfmKove5ZKjFvcDe++SN7fEzry8nOrmhXQ2cLayQtFQ\n", - "HD9n8PKIxr5e8ZL+c/cspieGoa2II5N8KMmXzeWfczbXFIp1c4OpdPhAq557PCndX5h4VyN6lIzd\n", - "lFsLQZG13UsuEqO6PXmYWFHoahrqKsxsmVg201PREY+talgWnRra0dXylEV1UyNjUWnF2C2FGMm1\n", - "xTiVm0i/mpIyUaXStGTlmCQRY65Xjs8Nc6fGxUArmZFMkcnjyKxcZDhmWDdNZsLirtn1UkhG1Ja4\n", - "uau4fOa4HGjWR04mQ3NHicuYv0m/WYUM3niVyQdwK4TQavPhFb7rK3wg5eLzfLHJ9A4rX2Y0qyQo\n", - "bycqqwzbc2z22HyDNx6jt8DaIeNm1dXYPWB7vrL835nnUUXdsRAZlRVPYjEQSva6VXbNU0c0suCl\n", - "+WAuYaEoHcXSnfGKabJuT8d4lmmkuy6HoIy5k1CJcRfRE23rOLSso+NIZuJMRXVNZbpaFtVFwba+\n", - "XGnm8Xhi19MmoSZ3IsrFEK3Eh85Cw1iOU7moNNZWmIYDWdJz6VHh2lGLhUQRt93anDn7m+T/9Dzi\n", - "4Y0Qws8yWPtaIfLVUznHya++zdfn94xvFSNvD34I/+k7vYjfBv8CfzMEjRj/zTbqHxJcf4La4te1\n", - "gVPi0xzf5gN+y5vdtYe5l25eVlvdNQ0Dodm2uD02WRjZXk5151ILRU16t6ZxPJWs55IP9vQz6gdN\n", - "28sNC6L9WLMyfGCnQ11NG1NDdJXW1G0rnJiZPzc423UaTtUVZjI1hzp2LCv0YpCGS265oI3M+Fya\n", - "d6CuYUMqt68m6jpyqi13YsmpCwptwWLk1bDp9DxabxwztbhoFqbGHrg24cLZll/74VvKlxlPZs4m\n", - "mUmtp6iVYujqHW+Kk23DS6m05LXFwod2tq3c3PaVy2wfUvyX2PolPjzPuwtO9/hYWY3/fs84DzJc\n", - "VXWp93/z2PcK554z/zu/+KN89smGkxvXnfRmit6scmbNdyRX/6X02oHs3g2jL+3KWrftL60bNzPp\n", - "dN/oLFM2N42PHlaihb2PiL+8507nnsceO3K9PDJtv5kGcmJ6PHGYXFY/OJXMdtQXc08ftbVHR27r\n", - "u5+zNKoZ1TOvjWoOOiti7EuymTlt188j4uc0XDHz4LzYvCu3rXRVdNUtIw9sS800LJ1H5JWaCnVT\n", - "R4iyeExcdlSuivmWIqzKk0OSAiuiHRwpw4ki9gWFvTixkBS64YHj+rqZzIl5MwO1cCYmU6NQyuNM\n", - "Wi+tLCTyLNUtPmX1h5ccDDLGN8R//AXF80PrF3ILj01dfsjjh+x22BvzPa+y9VwI4aNr/MT7ufY0\n", - "O0d84ot85FV+JOOLZ9zZrcJV31bfihhjEUL4R/yLP8fTiyxMuT9iepen3yAdcWGnCqH95Z/kU5s1\n", - "83mQ16ayLicliyMOA8M604SzgsMpz/bXfXlzTas4cRr6eulMy9DTh8d25i45KubNOg/UdYUYjONQ\n", - "P42mqrTeTXUPLXrWxC3HtrWxoXJXzRTnxPhKzrsl19Q0th8aeqYyD4kjIeZOk8xqiC656ZFLCi+a\n", - "WFNXlzqQlzetjcfec0TjwUz33OByLuMTn4+x9/WfrzvcusNnrvH8NrWS1y7wYp/xC2/n9fn94FvF\n", - "yFtECDZUvKNPv8NL+S0Ro8MQfEXlg/LN3MH57ZBkXyflfRM1iqRSyIkxnoSw8Yg7yzx+xLDBdGFf\n", - "a9QxmVyW7o08yHbtXDrWaXDpK4XFjTOt+dTscaZFTWsvGN3r612vedTtCMXEC0lNb9Ax96itNr4j\n", - "fy5Qb6jFYFYmJHuOLIlORXVVw3Z0nhHxIe3QMIwnhmFfzbZpWHfqhrpg5kCpo7AsWjb1wH19waY5\n", - "DdGh6AVDIwtqlnUx9UpIHceWGApJWchjYpQmogX1ZMu4W3iueey4+cCDa4/beHHk9LEzw0sHprWr\n", - "ws3n5TdbjIfO2m9Y3KDzauUyOVhm6zYH/8PXJXT//PnX7xshhEsb/NvrrAXsV6Zm//S3+5lz2e7f\n", - "CSEsXOC/+mEe7NH9Iv/h61pLifrkSG3a9O6Hd2xdbbv5pTdMP3qo92SqvTRVzK6YrD7BzUNar2lf\n", - "+VWNH+4b15veKCamnejxAQvZvFmja7g6cJoObGyUFvq00lQjG9haiDY/GT37af7Vj+eOPnBNXizp\n", - "JMt6aTB1G3XBnMLEgb6BVOLMjhVRS4zHgmAcUicmji0YS52Z01cKxiprvMzQ1K556exIMd0TFabp\n", - "qkQmKW8qww6hipsvwpDymrQ8cmbglsJaONUKXffiVVEq0RXKa6I7PtMau65wKWs6KRI7zZZumZpr\n", - "TgwmJ0aDQz6yavrKA2+sn7qal64MeHG58p179+epxXMF6NPv4tqHzz2BFplc52d+nic/zU+VMX7m\n", - "t766v+P7JeAa808TC3qvxhi/So6NMd4LIfwvPHyaxpO4yHcWLD7gwja1AhKLN1NfXC+ELt2MNOFy\n", - "we0GT25Xib15nQcn7O525O+5pDbKDdu5+bBgsyCb7SrqI0t7t714sWZQdsziyKC2oJEMZeedirHS\n", - "sZqU8w1GV7VbylQylQNR3czgXG9VU/eEugP75szMqcVcFk9NwiVB3x0jK46seGhXV4hHUhNFfuLi\n", - "3syH+oQVZm0OWlz7RdYS2iu/4bNUhBD+Pp/8CC99JyGj/wLHv3zuZPyO4lvFyFvHv4VfitE3TOL4\n", - "NuGj+BP+8BYjD+4Q3kva/Doy5S2WD/iVEEKD7N10Ir/wNFfrXclGU785cLB232Nnu5KQGoeeYiX3\n", - "nj0uZby2fGwxnzhNW/rXo8nZ2LhW03tpyRdajwuvXhLvHll7X8v8UWIhPnBvI+pv1qyUQ7N600xd\n", - "z5NyZyrJSWXNTSbXMDS1HOY0q0eRh1ITK6YKmZGpK6pbV9S0oPS0hp4FUdOaqaaegR2Jvr5oXRmb\n", - "xDWl0p6RScKC1OZ5M7+Yz7z43pln9l63nx2Yteqahz1LecNW9ym2+6RHzB+aHadOj+pevzi19DmO\n", - "v8T2T8cY3zbCcwihe5X/4AeZXT1XW2wx94v8udu/0w9XmJ4P9Yt1hgu6Jx3rk450ODZuFxp54rHB\n", - "Q/sXOfmZ/GuE5vpt/mKD6w9ceHriQrfp4LFrWrVS3hg5zLdksbAR5yV5tFW/qjaZOBwfGnXPLGRl\n", - "lTb0Kb7vlzlu0+4sOkgvyWs1pVSwItUX7TiybNFIqalyFkmMLMjtG4ZVLzvSEi2b03bZxIK+fT11\n", - "c7qqFNfcUWw7LHsahuYnp5Yfrtu9nMtrjytNJMmuMj1POA5diXWdsiXJ9s2VqXFo200WZXFoKadd\n", - "ZPK0ZZxu2ol3PGrPKUYd2XhZM2vJ4kPF8pHO6LuNPrZL+ByfzfX/Gtt/iXurrO3zkd3KTXWny8nR\n", - "PMuXfhPS6nVOX38LpNWqEJn7EZ78Lp6cVPuQN74/hLmPx9j7hfPXXGLhPcT3ceE662PiBcxx85jr\n", - "nyKbpW5fzayNg6fLme5SkBfRoxqNku1FRmcc1Hj0OqP/uu3g5zPza2faUutlMFcm0mHTtBjqd8eW\n", - "MnbHbVOZg1rdZpwzCjOkBuVYL4lqMndsGltSnYigItQ8UvmMPMC7BBdE9/VdU2jIykO1kAjhaUl4\n", - "qPBufQcmrmiWN43jfe8uZjaKyB6d2/Se4/GS6ZjiEgffx6O7HP/S153PBZWA5zjG3i+qol7Cm7EK\n", - "3wz4VjHy1vFD3uKO8Q8IH8Xfxn/xDq/j94UY41EnhH/xsSqTZtAgv8f8y9yZ8Qar/wkb765pxZlJ\n", - "WPXis1cVb0wVk4H3HbdtnD0ymztWHNHsVeS1hRHr9+hfHloZDc3iilMrHm5tmt59pPs9PcXzJ0a9\n", - "RB4TIU7laaa9m9ip9xwuzMvixDCsOI3LYkjObbeDoM+57fZMLouJWmgaWVdoqUtMkLsiWhCciE6x\n", - "pKajZWwqV9c2taHuvpmr9u2qyTV1tZJjZ/GKcQhaYWxd1HIkDXXvjdHDkDvsFpbG+67c4rnbPLh8\n", - "0Ue/LdX77OtsJsyu8eDdpuN/Yjvbtf0PVZ2mt7WtXuOZZ2he9TUn4Iv0nmXhd1OMxBhHmyE8vMvS\n", - "InlN83gsS6dmcz1Znkqax2I2MPfg6wPCY4zTEMLfOtL+y6lrjQVbTzylMWtLpmNhfuQ01OyFAyfl\n", - "nGbZ0Z61dGYrRtuHhvXP214YunbEhz5J3uQLP1qz/dy6cdaVxYZQZtJiYpY2TDQNFZbUzkW+ZyYW\n", - "5dblenLXtK1q2JNq6OgK2o4tuevYgkwzTg3DRafjq8rTLxlNF7iZGC9Hg6wlL5Y0JntqnjKrL+C2\n", - "WTaRJrTSOY14Ig0dawrj0LQfcu2SMmWxzOwXDa24qGXBaj42S46VjSFJppYHzXxg89lFBwdrZpe2\n", - "YtytRmXbP1mlHQ/r3F/hi3V2//a00tX+G8+RfhXIdvIbj/8e8BhPfYQfvlvZx8O7En7m+ys33vo6\n", - "7/5TlSB258M8mzM4Zu9eZfve3OSl59g/od9IfOeE1bSmeVpKamPTdhQTFhusjpgbUjvgle8ptI6D\n", - "Ri1otCuufJ6VynZuWnTMQiJMT4R8qta+6qw4FJO2thOHYaadBAvnrLAqY6qtKkKiyszwTPUB6+Ip\n", - "dWUVz6ApKevmtJTl2DRpq8WmJBwpzGsWQShXxOS2SYxaA5ZfZ7iMEbvNiq/SHDBKuXmZ2cvVJm3p\n", - "R3nqvRVP5lAIc5+g/8u/3Yj0ncC3ipG3gBAkqs7If/NOr+V3gc9jPQRXY3T/d3z1NyEGMX4ihHD/\n", - "Pt9Wo73Pl0teof7jK2o/ds1o2DYuHzndWFdPFxWdR9KiZalfk+RVFkS8xnRSRYCPmjy7zQuBTz+T\n", - "VMZXLydieeB9l4LW4cDowquOP7Jsa3fd2cIjZe3M2v3g4OJFu+k1WU633JPU9sWwRMyFUBk5l2VO\n", - "aMrCyCQErZhXDbSwLrNjZlmhRszEMBbPJZxBoVAIcvtWECQyqUVR09RDs9DQsyqGuwgazvT0ZGZu\n", - "yGShsBh4o8G77rB/Q5XyNR7Ke4+z3/W1dOlf5Wqfoyf5jy/glLBW5cL847ejhdtieamykv91WPxa\n", - "BOrviB1+7pP8hefJZsZhJt+9o1zY9/hWaXE319zjpSnq55u+KcQYhyFcHuYWbl+wdW1FOpwpNrpC\n", - "UlNLMqedseZ4wcI46nSjXiAkmVqamLvDcMAnnqfzJMfPN60npU4spWHgLK2UK0nMDMJUDTNzEn0j\n", - "NVuahoYyF6SONWNXQzAK1GPNQjgx1XFi1YFexaQsNpk0Kw/z5vuNJsFo+3OsP2J1lUmqrPflWRRD\n", - "UzQiCbJYiEVl8V8F4o0kMr2MaZmYxro8H0uLtmk41W8sydI6WSGdnOllTdOzjov7p8qN3O7G+anf\n", - "qnvjsw0P/mShsTyTvzgz+DsxxlshhMNX+KFrtNcq4o0jWl8hDN+Spfjis5WCP/26nXut5MaMm8+z\n", - "8WF+eJt7K1yZVGPZnSVajxjd5eET3Gqx+zcKm88VwvuCZgxqI3qNoBWiemAa2Vmk8Smuzdj+z09d\n", - "6B3bNW/+sO9ss7RUTo2bI0lZMykmjjV0mhn5RUl60Th+ySxp6aIhWlToG5liaKKyC+6oBluJKlNm\n", - "iGOlXBbJpMowOw/drPyQJmEk1aDIjEIqDUOxbDrOJ3ZiYbkkafDcHh9frXxCwrCKEeoMqz+3+AN8\n", - "6H186EF1Licpv/KDfH7gm4xa8K1i5K3h23EQ4+8qQfIdxbnE92fx4/jf3un1/H5xPjr46vgghBAW\n", - "pP/ee3R687pnMDGcXzWZG0vXMtPe0LRW15omxEQtlOqH3LrMkyW7XXobXC4XrN3kJD3UfGLNyutd\n", - "te2+etlTv3Rq0r7vXnpirRulmyfm5rv2i4F6qIYxl8a37DefMAodSdyRuKMRpuYdmOqYWDEKI2MD\n", - "mRG6gjMh7osuoke5SrFvVEvkcnNqxuo6DoykKoulDubPg7TejBR/aMXIvNyiKFE4Na1C2CKPn5A3\n", - "qhv3q7We0d/6OT7yTDVknt6n+wLJe9j4AW7XKhsEX+LaJ/lT+D/e6nXrs7VD4+nfcHy3qgp/V4gx\n", - "Pggh/PVDPpQYLQ3F9bHv/SRPHNGvBz/93jXbg2X+8ohiPoRP9/ilKjtldpw5ebIQ6yPFfFeYlGKj\n", - "MGsuSoqbJs1o2o/6s6A4HEj6O+JZ3zMf5yzlV065+u7g8UFHmvTtpxPjtNR12yyQnvex+rHwWpiq\n", - "mxetGZua19I2cWqgG5Jz1UzUNjTWsmzq1KJojaJk/3HSIe0ms4LmWmXrvfNpVj5v1loUi6EYnhaK\n", - "BfVyT9EYG9jVSGtaojxUOh6edKwrT0YOsx2Nsqd71jaYW3OvCBbMdELdSZizE4L6EE7U0iPtcQgh\n", - "WeEn3sfTzxq/UDMu3mD9s/xYCOFvxhhPshD+7k/xp69USXIeMXnI33/Tpv/tR7nG1YTOrHJHfVPi\n", - "u9jn+Aprn2F8n9dP8HIpvDAxeCbTW2BpmBsUpSRUPODLPRq32LrB1gdZbRY292/pNxcdLKfm81Ox\n", - "MbE+Kw3znn69rT4eWa+npum2wzRKnbliQUfHmSO3lYKJkUVVebqvIqtOcF9VjHTUbYk21OK8hkP9\n", - "MG9WFjplXSO5bS/kYlxDUEzvEYaS8VX93T23iiOzBbIF7rbobnHlszz+SqUIun0ZddbexwcffK2o\n", - "axR8cIt73x9C+Mz/b8Y0IYT/Ge/HF74+wTeE8N+rxhvw38UYvxlt1H83+CF87J1exO8B/xR/2R/i\n", - "YuQ3wfqystVVP33zQF3rbGCwWposbxj969c8uJHrjPpiWmrfobnCG484Cxw/k7jSrJn1Clk2opOZ\n", - "a48N3jcRp31pvW+pXxI47vH0NtlGU9mgeWkmNtuaeUeaHlsfftGDViYJhdWyZkNdluyZhcKpXf1I\n", - "M7YkycjUTG5ZEIXyFqEmK09N02P14lCSLmpKz42tRkqXjPRUBklHKkeEkSSuacVbeknTikVTJ3rl\n", - "yCyZ6c1YOeDBJvdz9loc/p95jC+EEL70gOebzB3y+gY/+kGGbxYi8B62XudGCGHlrT5YSl57lf0l\n", - "Lj7LTiC+ysaXq3CQ3zVijHv42RDCxzj8Qf7Vh/nSZXbmbzho/DHx5TWGI7LP8b1foBVC+OkmrZrm\n", - "tZEwV5rVBrJaYjZpOHUkr+Wy6SMPm+vauy1rr2+Z1u5Z22H9hC92WD5kLomuHUc7WbDafs3dpFCm\n", - "dU/GmWkciGHRWPTAsrELEj2JVEMpONDQ0IlDeXliOVnU9dCsXHISGxJHijCgeIz+gLXzJ23zlGfH\n", - "QnYkac0L6a4QMrHWlRQvCRoYivkt0yRRCx2nBurl0Cxc1HFWGZ8libNkZpI1ZK0oT54yGU8chZ5m\n", - "SKnNi7NHyrVbTg7uaJ8WBq8zfOw67/ruysEcfDsPx1w94Hn8Wl51SP7qw0pKAo/e7Er9/nHyFd74\n", - "bm6Erz1IZwlv1BjfJr9RHbt6yK8W9GvVKOreJrt/lHyB9j3m/iIHt6O1L8/svXtmWqMfGc5oHFWd\n", - "hF6gt8b1QL7Heiw1R0denCdPEjtF0+3QkMZoflRqJ/dl+YZaPjCo78uTRY1zPVTbnGAkcWrNffc8\n", - "pSK5vaZyXK2jLvW0zK0qRjN0DOOOvJio95ZlcSa2T6yWhX79TD+ta+ZD2XRF55V1p1tPOX3jl+0U\n", - "Pc2U927wHS/ROTdwe3GT4xeRMFdWtvZfj8UJtXXVtOgtXqe3D9+wYiSE8O3oxBi/N4Tw10MIH4gx\n", - "vhmq9HdijH/lnFTz0745M11+N/jj+B/f6UX8HvAL+Lsh2IzxG21Y9QeGpGGyNdXbbFo5gIlYe117\n", - "kW63pXh35tFox9nVExf2ybaqbsj1l6mFlul7VhWjttatodPLAwePz1sd1SRZphGa0mQqLSaKza76\n", - "u5e8cTwy6y5K03krowf26l2H9abGdIgd7btNnY01l/Oo1hzJ41RWJFbKM+O0o5UemUiNzavZEcNU\n", - "LSl1ponuzraTuX3zLRbTLXlkWF8wDs9IjM8lwyeqgqRFXFLGoamGqYGmM4sGYpiKZVQeVjkdX9Dy\n", - "2l7T+HPHDM6Ja9vOTctC5a39pxf9+pDHc4fIqIrQeEvFyJvcjY/zA1/gfaq0speO+EX81d/H78vx\n", - "sRDCx9G5wE98L4/eHBW0yL+L+/d5/xmLV/lTPByf6NZeJ2wosmCStuXbW8zeY/rxT/Hysf5SKf3A\n", - "yNUtWod8tMmDv8v8uyjGZPUzncGqWTGz0hmbqw8UoZDkhSxONWrBONz30JlSkEkcG0uMNZR27OvE\n", - "oevj3DTL1OOuIk/VQleSXZblW9JmbpSUitoSkWy+FOtL2qEvNbNa3BRD5iReMhlPTWXyWGp0BrrJ\n", - "lrmkNIvX9S1Ii7qNWU2RBdNk3qz4gklzQWFH2c61pxPprNAZJTrTI2eNY5u3K0uZ1z/XZPPy1xHG\n", - "qzAEtQ16S5UH+q+dX48Zb6vD811e/1XKcwLruMPtJnd/Dp/l/vdXkferQ65+lk9/B4MnWBszzire\n", - "yNwV6n+c/kPGN3llxsqYUYJBTb07Z1LOnD02tNgtDCaJYjF1eymnFq3KHMZFY8smZU0zLeXF0Dg+\n", - "shxed7UsdXTcNJGZKbSkOgqJwpHSmWpWtaDijSziSBCk2rJ4RWJPVuwpen3T3dLceNvaQqo2Cqbt\n", - "3Gg0FWpNyeFl5f11h69cM3ttn2ZL3OoZ/RPe+AnGT7Besp/w4C5HP4eco5JhVpGO38T2HOO9t14w\n", - "vr34RnZGvkPlb0F1w/lOfA5ijHfPj0/9JnLNPwwIwSLe65vTAv43RYwmIfjn+JP46+/0et4m7J3x\n", - "erBTH5uuHMva2xYvZy4N9rVe7mkclrYWpl79GC//YxWR/Zij5+aV/1HX0sGC1q1MbTIxuPCYwp69\n", - "hWg5LciDZNB0tNF1L33KfL+jGQvbyVBsbVHPvHd4pl/bN01OjRq5s2Ri42ii2cmIqVJTYlN9cCif\n", - "WzdWs1GOLXroLI61kprh9HGLt1e1vpSI1/atXOJoI3cjb1nJBh6mrzi0KlgRPIOomg3ex5oYn9Yq\n", - "Smde1otTTWOtKRcGNR+9ftX28VPyew0++JD3v8GnQwg//WaLNsYYN0K4fZ/1x6qmC9WJyvaq58/B\n", - "23GhYoxn+GchhJ85/76AtxKYFmMcY3w1hAsXf0PAV0pM2bzBD71HNjenMTvS7z9ULuC0oLzHyfP8\n", - "/Da1Ab8SY/5KCOEKR+9T3Z9+NcbYCyEMOHyNWx8Zeaa356AMYqNUTwuTaeGZT6/YfiI1XTxSLjQM\n", - "nKonTM2bmNO2rhtHSkNH5ci9/5e9Nw+y6zzP/H7vWe6+9b6hF+wgQYAkQFIkJUqiFkqivMkaxXbZ\n", - "HieWx7NUMqlJTSqVeCrl5I+ZZOIlY3ts2bFleyxbXiRZ1kJZIsV9AwmCAAgCaHQD6L373tt3387+\n", - "5Y9zQTRBUCRINAhy+FQ1gNs499zvft9Z3vO+z/s8tok0chTyCWLNIqlJk75YkYaXx2m5OL05ymoU\n", - "mwF8PUpUCihVQ/wIA16KjtkmIsJZT3DiO5FAo9OZoZPUSaswkM6ogEAM2hEfnyhOK4VLFAwDGk1i\n", - "iSSmM4YEOp6Wp5J2SbZhdTuUfg+YdSDZDBtBmA4dFfcJpBoQ64QdGcZmmCUqpZSIfBdeXIH5X4Z0\n", - "T0gT6z0QVhaX/hoe+AXY3QdBFBZqYDdChdXOHfDRJqRy4FrwwiSs2nD7X8JTe6Cd7Cc1NYHM1anH\n", - "KjhjOnGnjZc0GQl8LIljSZSkZJhmDBVY6NowflSjZS7gSgdXisRjPZRkHAuXChESWNiUcMiik6bE\n", - "VsKU0jxhSTUDjJB2NeKtaVpxG7QAt7aCOeOjuduwshb5IMDw4zh5aFlVgvy9tB7IgC2EJ+SZ0Bj0\n", - "O10tnj+D9THCWKcGLF04t0VSD8Pj98Pta9DXgeUMPNsL+T+/2mv2drGZwUiOkDAH4QTtvcw2vw58\n", - "aRPHsJn4NPCYUrTfcMvrC18D/kfeI8HIBfGjOG58G/lSnsxtAVPFGuk1jxsf9Uh1YCIBqzdCawiY\n", - "hsRtkPlwkur2fprrTUqZBH0dk/ZQH9FWh1K0RhPFOB5WwmRe30pQj2IEHsqIIVqGwF/GNGNkXJOG\n", - "1ktNHyIILCLZFRoJi90B9CqDlmdSijSp5aJoJBgMAiJKCCQgJwl2Bg6ndZsg5xFEW2h1GJyFlc/B\n", - "rAm+9OEHHTwZRWQYXdXxpEZ4YcuCpuMGa4iqE3UzDFsZXP00tuNxLjdERY2Q9upEP6ERWH005y3a\n", - "PTU4zoYn2Tw89Az8agAyDpUSJI7AYAEeUEp1rvaaXc39AbiwtgbpUS5aMlih8tXeKaLpJKmOgeEM\n", - "kpyPUBufxY5nYXYADpfBOB2q+M6kRO7ZCfdNhPvkPBwUkYeAKqz+QWisuLbfJqtBoQXKhrufAtc0\n", - "EbuNE0/TYJyOxGmxjoNPBg0Tl14xcYNhGnodL27isoWIVAkGk0xaHbxInETVxKykaE5UMDSfVS+D\n", - "MpqIWsVXJaJK0TI9TNXCMsroqXtAFlH+MiORKAdtF990Eb1GQxvE9H0KkqbjZHHN5TCwaMVgsUhw\n", - "015oCKI7+I00WjCB3zxJs6BU/bsAIjJzBpwoTLXhltugmYDaDOhJGDkBKLvQvgAAIABJREFU9xNm\n", - "tzcDJox+HD6xDNuOh78qx+HBn4dTvw/nfgtWfwFG74QtbbAcqN4OdzphY70Tg7gON+rQuAFeGIDk\n", - "ssbayggqkWRYz2K0M7iLc9T2xZkMPPxYlKYxSDLoUNL6CGQbIjU8qeDLMEnZgsE6AREaMoalejFU\n", - "lSVlgT6AgY9PC4cYLtuAOBoG4s3i6wkQHUcsfL0GTpSeRRdVqNOyYGzbLOmBJIGfxG97JIxltEyL\n", - "0jcewB/cFcr7B+fBPAuHg9BjD+jaFsFsNzjfgNaTcKQNC/dCZACsFSh8Syn/zCat2VvGZgYjF66X\n", - "EGapXtXmJSKfA3qUUn/9ejsQkV/f8PJRpdSjV3mMbwc/weadhJuJ7wNfFmFcqYvumu9mKKXOich/\n", - "WoObbWJjPrvOKIZWIObA0Uko3wx7MrD7CzA3AZkKfOhYwPea/fjSZnq4Str0acfnaGXj6AxidxKU\n", - "3Da+4WLrPWSwcQ2XckLQdQOlDHzlUNAy5PUdRDolTMOFuNDUl1mKWiQ8j5Rfpe07zETG6KgOSjlY\n", - "rKOpDoMqg4ciSplSZpXOrSVip0HqkDxkMBDozH4wTWBqGIZLRGp06OCpHmAI7DaYFjgGAW2CToyy\n", - "7xJRBr1NUMkcEvUZTsdIrfq4UYvKaJKVdJLGB9gQjCilFkTkD8vw0Shs86FchL/yfkRHhC6ydwju\n", - "NWDQgcV8SBY9ey3WXES0CNzaBx/UINWE+hMw/slQ8a5jg/4UbFdomkl/vk27LwIOCDmyS4rqyAxO\n", - "x4JzVXjSDR2fJ3bB/Z+ChRj4HYjm4IMx+OQQPF2GYJ71h1rUT5nIwQi23cbepyinoa/WpNmXoqb3\n", - "se7vISYayBSBPk2bFg4RdN/ECEz6/SjrZgstvkgm4eGkXYi00YvrJGci1O9JYmoaORWn6pVQmqB0\n", - "F03ZDJkmPYGFplxGqNFvHOJcYFDHZcRPkbQUHdWmHq0SkRWq9NPwxml7DrqxCJIiW69iD6UIrCaJ\n", - "uoOXdInlk2QXB2jlMpTcC/OslGqJyH+x4TfvhkgNEisQ5OC53bBchNtF5DGl1BVxfy6uY+xOyIxB\n", - "swCd45fsZzvsyMK2Dd1/vR3Yb8PabVA5BXvH4VNPh/SaB/vA3wGpCLg6aBEwXDA0GA5AVxrTe016\n", - "Dgi4Po2KQo9GaGlC04L+pCBGFF8c1iXCKr0YgKMG0VjFkwaWeJjKwZc460EEXTQynk/BnCSKRgyP\n", - "sKfGxeVlIAZBCnnFGM/EUXFiegqjtETLz+P2wmgTdsc77Fy0aEYqLCZ8qm04WICHt0xT/LV52KND\n", - "tAVnCZOiukj2M7Dtru4tNhDJPA6NRy+07XYzJC8AL4iIvhkPAlcLmxmMPAP8c+DvgI8Df3rhP0Rk\n", - "P/CvgM/+qB0opX59E8f3liGCSZgZeddpdihFR4S/Bf4p7y6+y49E1yflEZGRPaCnwkBkJQ3VW+Cu\n", - "WpgszZZgaCfkB8E26wwvtMhvGSBWqbK4awz8gESQQ/NrOJQpm5BWVaL+ICQMOvYk9dUq5tA6Qdwi\n", - "plLUmv1o6TJG1EbTdGytF1OzKKlVzokCw6cidTSngyERAqXolQjjrkJpa8ybAY7WYlwsegwXScOL\n", - "t8COYy771xT1XcvEhjNYbkBL66DrDh6j+E4E7Ar4W2Clg5ZrEdhVMh2XtG2R8nS8KHg6pHQfFdWJ\n", - "2B6JhE/a9HB2XGYOF4G/eDPzHRO5/Vb4/G1QHITlZeh5Dr6oi/y5r9T01V3d1yIDn74JPnwzFNJQ\n", - "nYP+p8D8G+jtA+lAsA6PxzBvMkg1q7gxhZNMoLk2gbaOrtbgzx2lvnxhnwMiB28MzVd8gAW4eRwS\n", - "EWgpcHsRrcDwv4Rhs5/UskZVb3K2UueZbTaZqsdKsodGsIuYiqArH6ULQhbRTDzl0rJN4lqbpvJJ\n", - "dpKk2yv0LoRmgH064IIz4THhJGhGdZoSoS+iUdVT2Jwgppv0+gGG5jOOju0liTsdIlGPWfFoqTpB\n", - "TOjDIIZGX2OVs7pFXhM0IuATEmrtEobbTzUSug6nG1ESxQDf9CnHTOxXGaYppebHRU4Nh3wcbQQq\n", - "kdDpnn4IzkAPV0hEvoh7PwuD7fCB4cS9IvJlpVS33CbJMMF+KbItiPVD/22wzQPfANOBsRNw7I7Q\n", - "OycjoAO1KCRcqBspIr0G0XiUyRbkzSRmwkHsOP1zgywES8xGA6IGtFQPhvRjKIUvDp6ApmxMFTCo\n", - "WgSBhy6CrVxsimhajAQx+gOFEpcAiCqFyBotNYHpTuPrY0RtH709SLtp0NGaaKZPkKmTrcPuGKRS\n", - "4OqKVMPn9jU4nIBYAEamSyB/lX+MSObjcPAeuHMx7JKxdHjyk/CiKyIvEq5L/UKAdz0HIrCJwYhS\n", - "6kURsUTkceBFpdRhEfkdpdS/Bv4jMAh8X0RqSqmf2qxxbBLuAWaVYuWdHshbxJ8CXxHh3yv17uTs\n", - "vD4KD8GhXwbDh6URGCNs4ojMhJLPvUF44i6Ndtg38yKr+6KoPTvIpNoEotCJoKkkeIvUzVV0T2EG\n", - "FYqxbTitDtGEh+5Xcf0KtuvQMNIo08TDwA8UzUBjTOsjRomEyuApDQyDut7Gtso0/CgTcUVgeKyL\n", - "ohEkiJd1MusdlA790zBhwuJ+2LLLIxeBqWaNsjnPtDlJYGuY0Q6+4YLtgFODhIYrHhJvoNwlsKE5\n", - "4OPHS3T0BI5tYEQAO0CjgGg2ibdcXhQRcxzu+ygspbts/AmoRsArw6dF5MxmtgyKSM9u+ODH4PwF\n", - "i4AbYS0A+QEcPQmPAR2llB2V6P5F6vdtZeBcnU6mSju3jBtfJnXEp/PAxv0akIp3v08rTH2P9EO5\n", - "Gqr8xk8wcLtixyBEzQZmkCJRjOJHB5mXBn4PBG6GwPRpGS2iARiBYOLRIUrEh1QQIWovoOmK3R3F\n", - "Ga2XelzHbbd4alebrRkYMcAxalRUP3XPJaWqOPoKHk00pdHEo0dptMTEdIU4PgmxyBk+Hc/EwyMi\n", - "Pp4fJ9qwMdMGKp9kdL6O1buMN7ZIKqpj2ooWo6z5DokgihER7FYHe7Zykev3CnxY8yC2sQwWAJXw\n", - "jv823Mrv7GZntwFDWXjgcyLye+Hxo9ZhRUIFhY1YzUK1CrnPgZWD8zYYS7DrJZj7IRz/8ZBbm7VA\n", - "i8O8rtGQASa0MmU/xUC7QTuZoho3MWM+yhT0aEBe6yeJhhVEiOk6MVH4dAjkPIo8WVUBcQg0kz2+\n", - "T6Ct86IyqGnDpDFQyiVQgrhp9HaFdKqNqz1Hr5OhrXaRWIkQ+A7tdhUjV8dIu6CHBYTt87A2Br4O\n", - "9QFCHRofluIQvCa4F5EYTN0NH+gGIhDK2t+2Ame+CMNL0B9AVRPpfREq31FdVeLrFZva2ruxnbf7\n", - "+l93//70Zn7uNcC7tURzAc8R1hg/BDzxDo/lqkIpf0ZE/zNY/wxoo7AnCuMvwtQsFIbCTn8zgMCA\n", - "0/scDnoRXo6A4XgYArVIg5aZI+b1IK0qIwsaxb4ijlUlmU6RxsKsOeTmhNJEBT3ej66lSQXQ0nRM\n", - "peMFVTp6Gl+2YEsPcT/AIIZtPc+SX6GhHKKmRpMEPflRdh730VWLSN1j7CjUbwoFnBabEG23SAQJ\n", - "RNUYdM7T0pK0Iz4S7EaVcmBUoaeF4hw2yzgG9CYh50C2lOdsT8BSZpiYpRH18jQTBbKnofLC25jm\n", - "XC9E05e0BQ6HfIJxQt/1q8ozuQRDY+ECvirgGYdyGnbVlPqHC79zcP6/M9g7i9S2pIl0msTrZTIL\n", - "PoVvKaVeZWtfgVOL8GNboOaCaYSGKDINqVUStxXp2ZskjkGvo5O265QnU6RjI2hrfZzrzJKMNkkl\n", - "+lBuhKivcDQLRxUJRBFQpRVYKCwSvmI6PUqlM0Zvw8UebxFLLrGUWA9Fy7QAnBoDHY/AtIloPgkr\n", - "gqV8PDeKpGPoQQfD9tHEA83BNAQdn5LvUtJ8EuUmxWSaTkWIN22izWmC/joHzuuMmgaYLYzgBaaT\n", - "22if8CBdhdw66FnYKyILXcIxAHl45DD84kfAyYLtgbwAW/Jw4urpiYzXoHccVnsJu7fm4fwMPLMD\n", - "9q9C1IPZQTgch6m9sGUBIgnYXYHiFpiLwCefhT/PQmEYBsfA0UF3UwxrEVAarZiJ+DDoNxC/RtN0\n", - "8TQN3zuIVUri9gcYqkFVFfCZAnsa3VxiQDR2+TWU4dIWYUUXskGDKDq27yJ6BN+Nojsm4rUJoiXQ\n", - "6gwWFfcVFCczJc73D1ApW6TiJn3tGDp1iMGgEZaTcwHYSUhpUB2B6Q5wFEqXk49IQlrCAGQjzkzA\n", - "1A645wjE3TALfPLH4Fi/iPzx9ZwdeV/07AohghAGI++2bM4rUAolwpeBX+Y9FowAKOVPi8gZ4AYY\n", - "/UWYOB82qvYXYcaCUk8oCe9tg2i/R0oEo2aQ8DyMHhs/WsSJlXE7TaqiUVgZIZkPuMXoEGg+vqEj\n", - "gY/0BAx4K6x7k6AlyEYcNL1D1a+QZhBLBkn4CsdXuE6DwIoxnoaBehytY9CpWzRTDoG2RjVnIxFY\n", - "v19YvTlL3R7mjNvE7y9TtJpMlKMk4m22uj6LVVjN+ej9A4ihg6yj3En8H0Dj7mWGZmCqBMu7AsZj\n", - "eXKqyLINvZ2A5BwsvgjtF9/GFLebgBc6bb0SELTAtMMAZbNbBjsXOjw2ohFemV/FTVOhnPn/UoD7\n", - "C/h7gRrkH4P205e+34ZjR+EOHcYnoboO+gtEbyoyjk1/DIaUhZ1QrKko6SBCQneImQFoNqKlmCqv\n", - "4iYCKvERHKXQnQKa5qJVFokbMGGaDPk+7SiUomt4fht7Vwo9nWOyNUo9ahHxbPboARXNI2+4BH6S\n", - "ljZEy/WxKvPkYz4DukOv38HRAywvIFbXUSaoiE+86RNfB6/pMNiu0/YszqdXaCY77KrA3Us+AT7z\n", - "YzBh58kGFsdu3ELQHMKa/RTeY+dgz1MwJCJ/0G3ZxVfqZEzk60X4VC9Em0AJjlRDm4mrCAVdrZtu\n", - "R81X4al74OW7Qg5IdRn8FNyowZ55eHEoNIkbaUFzEh5sQvOPofE0VH8Vpm6Csa0+9S0Wq4lRrHKb\n", - "fCJJVO+np9ogG3MotvbjOlPQdPBjffhOAJGTkFoGq8aI5bOdBlFN4Sdhp4K2Fjr+9otPf2WdZipK\n", - "x5zEQ0eCKkryBJ5LrKhRDRxSahndj6Bi/fRaAYa/SCdWZvs6HJiHB++B0XWI29BOhCZ+TgDOGAzf\n", - "J5KMQ/uJDcFEHWoONCOQ6p5vnsD6jTC2DsqAM/dAOhHKwVR+AfKRbhnsqlo9XC28H4xcOfYS3tne\n", - "htTxdYE/B86I8G+VensaEtcjuhey0zB7FH54C+yqhPevhSWYbUFPGvpTsN5rsb2wzkxslERgkCkF\n", - "rCctRApUzrUp/q86tMr0/JZBW3dIZKAfh2LCQe+FiWqD8eYZShJnqR/i8Q5tP0m22Us+oqP5AW7d\n", - "oe2uMJyOMOyZaH6Z3JE4btpBHzzH0mDAkAW3tMFK9SDxKCk9Qll24Fcq1DMzrHttts5FmU0EKFUk\n", - "3bHwhwRpa8SsJIlWjErfJOZKjeMDTRIWqGLYwerrAcUMrJ2GzkNQOweZO0TMMninlVJXVLJRSrV6\n", - "RY4choN3wKJGGJg8D2MVePAaPH0tLkBxFvp3dNuObdCPQV8BvnuZ8a4BX34jY7Bum+SfPAq35eDm\n", - "KpRcBm5PEMehHYOy2OxyNZZ1j0rMJK65tLSAprJItGP0pGL0nj/Pwtg5amYE24eBRpvWvE88A/1D\n", - "DpJUxMw4O1yNuu9SyNTQIj5lv594I0ot4WN6PlHRyOuj1LQe6vY4RnmU4OxRir3Pc3xXk7rhMroG\n", - "yVVoOR7pdVjZCv2PAInQGmZk0eXBKZf2X0DwMZCfgfkesAQaCdi5pDOdmyIen2LkZYty3xpL2/YT\n", - "TBdgMg/budixgRWW2o8thkSO9tW/qZ3rg9KSUqqyYU1swhbiRyD7UzB1ALK3Q8qGI9tg8nlopOH4\n", - "GOTrcOoB4Pvd8/+34MRuWPppB//+FMHoBJpV4GTQINMzRzpTx+pkKDZ34a/GQZ2DXaNQjoE9Dtkj\n", - "6HGfvqjge4qWD/ucMHMRJKAHoaed5pyt04l5ZIM5PEPDS7RRbh/eyxpqdZ3MMWjerrNNXqaxN0cQ\n", - "sfCjRaae8xlNgB5AfxPOCDgJaMch6sKBRfBbocLwc/eF4nvh8a2UckWSD8MTPw4fWAuJvasZaOSg\n", - "72FYuQWGDfAsKKUgKrB9D3gfA759ddft6uD9YOTK8RPAt97tXAulKIrwLeCLhBye9xyUUoGIfA2e\n", - "Pg2nPgeRneCWwf8OzMyB+/PQE4Hh5BKa1eJsNktHdwmcMrrTwvsPSqnHRUQr467ppO+Is6MRCj8l\n", - "GzCTC420xHbY0uOwuw0lDx5J+5S9Mp4aplN0qMUtsijGDJ+0GRBLgHGwQ2QOjIfhyEG4tQl2IsbZ\n", - "qQx+J8qg0aEV6UWtJLGddabH2yz1tkhbilhHkTT7aZWmSNc7qEQnlAQJojTdOFapSexpSHSl4JsG\n", - "nEjA6pdg6Jfgw3tgyIGKCafbIvKnl5Ys3ggV+N5zEJ2HfT0hWVTLwzPNa5Bp667rVx6Enz8F4wlg\n", - "BVQe/jH0Knrd973hOdu9wT4mInMaE/9NhJtbQs5TOBJQMxXTmke/qrHcbyLozGtR1EtD+NYi9kAF\n", - "a9JmZ0TR17LpAKcT8HIE9npw0yHFwgHoiyvaCQ1MjzUvw1CtzarYuLYQCTSa4lJOZ1ljiqDcIdKq\n", - "0HajIBNQmaXaWKD1LDQsaDkwuACmCccK8PSHYUoLv80TNVj5i1BxOLkF6gqa62EAY+6DbDPK+ngC\n", - "vQUQJVMtE98KrenB0BWw7zLz47LB7PDt49GJsBmrbMJ0C/LfvPx25q2w/za49zzMDsNQD0z6cPgg\n", - "3Psg6Ofh6xPACxv0c1zgBHBCRL60BP9zC/0nkyQjLXxpUglSOGcmcactGMuFXVhzs9A7ACyDVAlW\n", - "NSItH8MDbwxED+XW24Dl6Zimi2X246kpGlYBJ57Adj3sSJy+uEtgrJMoN9n7A4uTtwhmf4fdczbb\n", - "j8PIKpzbC8u3QjMDcR9u0GBFwVYLIqlQ6j3mwT3zsHKniDxxsXzWfgaOurD8MYj2Q7sG/tOhOJ/0\n", - "wmICvAHoVzAYgfZ2iP6kiHxvM7Rh3i7eD0auHD8J/Lt3ehBXCb8LfE2E31SK67aW+HYQ6pDkJmFv\n", - "DG5+HpIOnN8Dh3ZD4XHIjkLsYMDucom0W+JEHIbKcGYBeLK7j0Bk6KxH31CDTBuiVmgdcnwYykZI\n", - "ko3noZ2EJQXRNZ/l54u0x1dRO2Lk0lYoiJS20W2fPgVGJFSVbE+AvwqJQ2DrOkEqHRpaJVuY8RaN\n", - "WATlx1FKGDobwa/GaN8eoJvLtPURooFDxIpjrrtEUgFtzSYXwFBXqMwXODICpW9Dz8fh7l64eUOr\n", - "5Fgv/OPnReT3r4R02n1i/RsReZCwY7H6Vts73wqUUiUR+d18OPkxIK+UehtEykvR/9kIo4k42WqE\n", - "REeINJvEt5jMRBTresB63SKyGKNeysFSFEsdIz9gsy2mmKiHRmU1DSQNxpbQ/6Q5FVJRelsOIgb1\n", - "WBRNaeAqtESBmlXm5vUonajBGZWk6fnoxWGCp3yCxjTc7ENa8PMa5SDgprOQsWA5Dc8lYD9wxzdg\n", - "qS8kQk4aUP4k3FqAXWtwZB30LVDrh5QObcOh6fvdYETQlAolikdmiBy0SEVFMiloPLt5a/v4X0Ny\n", - "BDrr3Szd63CN+j8ANxXDpHTvDKx9GLa0oDcKMwNQicHKcaXU6wVKroMZrZPRmxiqQ2ZNZyBQuLFV\n", - "Tgy26aRrEN0K367B+DzsW4LGMOrwCZb2d/jQ87DqgB6F4v6QezbVAjvpcy7aIXBjxLVJfHsYvb5A\n", - "LFUjOtygbUPaBsvwWFuGyl9B9SOQK4aZ2m0vwyM7YSWAD/gwUAyN+wYUNFOQLkBxAIYLYVAxkyM0\n", - "/r0QXD8vIocJVeYdMG+AQ78KgznIZWGHC8s94XHSn4OlAUInietOgfv9YOQKIMIEYery0Xd4KFcF\n", - "SnFYhFXgx4HXeSJ5d0NE+uGGO+Cj5y96XNy4Bv4oPOjAqd+GlV+Dl26AhA3RdZibg7U/AIZFcneA\n", - "VYc+F9JPw8oeMCNhZ07qGMzeAg0dcgrqDdCXYGABNLdOJXICQ8ugmyZRs0JNBWyzY2TbHs2kzfpO\n", - "WKuBNQ1aA7bUHAq7AuzhHFreo9SXptKyUXGLXG2AYt8eEmWT5Mkmxq4qRvoUpfQNTJ7QENehaq7j\n", - "nKtTWoFvToSEuOUYrB4H6zgMfQZuvKQDbKoM/eOwdoE0eEXotlSX33DDTUD3Yrz0hhu+JZjbkiRL\n", - "AbUhRVwUXiyN4zloOsxLls6qUG+uYv/hI+Cl4LYObgvWXLBN8JPQ9GHHacgPwWocxmIhrcY2AjLN\n", - "FieiinjTpxWxqHo2QVExrXWoKig+WEPRj1coYOwuo39mG5qfwusU8CtDFMrH+BY2PStQnYWeD8Nt\n", - "Tqiy2dedk3N9ULob9p2CbBtueRJO3AbOFNR6QXc8ZH4elUhjxyM4EYXNMfo+tkiuDp8swNrdcPgW\n", - "EflDpVT1R07ZW4BS/gnC7MUbQItDtNsN0l8G/ylYuAmKGTg/ANYDUL+srYiIJEfhX42g37+FXN1E\n", - "nHWs+CyFoMyYtk5PxqDzzSUYHAlbWAor8N1iqBi+CmsaHPqJUHT21ACkapAtgjMYsGbEyfktlHme\n", - "FXMcx28iGTAbNRyziorDN3dAvQPrf6dUcEQkWYfSJ2FYh4YJlQCGnwRtFzgeaAGU9bAtP1cFKw1B\n", - "Acoal+lc6p4HFzplTopofwDrfwa3JOBcBIba0NcMH5YmIrD6BeB33sJybSreD0auDJ8H/kEp3Dfc\n", - "8t2D3wP+B96jwQgwCGPq1VbkAOMlSO9UqvZtEfkJKO6E7H7wa9CcgYFPwK5JGLOhZcCR7VAowu3f\n", - "h1YS7CjENPjBGGTL4UXEdKDWhC3TsPKz8KGKRf9hi9k7DIaSARYaS4ZDM+OjYsISimwxfLh/+hPw\n", - "8QdcRk6uUt7vUs5NUF0Zxc0/jbHTImJtQ2/3kGiAaircmE7f4BIrHKI0lsAWi9rZGvwRNF6Ao9sg\n", - "+VkYGIedu6D4b8EfA235tVOkvfLH+7iAYMnBvbkPd7nKyriHmUuBC8v6FhZP3of6ewuMb8Dty0r9\n", - "RshPSn8WDtRC0zYlsK8Vtpg/m4IgD6ezkFKwkADNUZjrLW44CS/mYP00xAcgmISJFuztq7BW/SEz\n", - "X+ghot+E0UqiqxJu3MJv3U5zvoKTniH/LaVUXWT8M9BzSfainIEhBU4kfD3chMzTcKgHSgp2WpCJ\n", - "5TmZbjE3mKHdUkRVg/HpJh88CgPt8D2MQe0DhIKJ7xBqx+DcPXCgG2gNFSH9BDw3DoX/+0cFSjHY\n", - "vx2m4hgqjm4DDBNvt2gnwG2tECs48BdtqK3CEKHOTKHLO8mC2gIL3wC+A/l/AXv3gJeA80GAajj0\n", - "p3TQl1nDxRCfQG8Q15vkVn2smVD3ZLAF5v0iMV0p6+lQB2RuANBg5xdhKAOxWGgGGHVgrg/GnFAB\n", - "Xu/AoQkoHN/Ip3k9KBVMi/T+FThfhKk49DfCY8D1YXgBem8VkZ43s69rifeDkSvDF4D/850exFXG\n", - "3wG/IcJepXj5nR7MJqATunJeilocvCK8IgZ0uvuDSOpjcHAC7py/uH1PBx65J7xYxKaAFCxGoH0S\n", - "Gi3oXQ1JdTcX4bm9kIzD1pchbgunfB1lBfQmBenAQjzBOsOojoObKmP6TYIa/O0eGCzWKMzGKGVr\n", - "OJWjYNt4JwL8uzJkulkNUWnMOVgP+rGsBdTDJVoPE6oyBoBA351w5wAcmA0DsUYEvnkrvLAX7tjw\n", - "JLqShvUyV8l/5r2D4vdb9NyVYjTXQ2TOoRKJUtcGWKnejfpBCpxUeIWfEBEdKENlBvK7wpKIIpQj\n", - "P98LrTmonIboXkgCNQuq8TAFv56Fsy/DthYkBuCuM5B2oNADGbVGsu1xKldDVAPd0uiZj4AUmds6\n", - "hFucCXkddbBnYX4LbN+Q3dK9cFnTG56mC5PQF4PIizCxFOWZjw5QiYbW9c7cMr39FwORC5gsQWYv\n", - "72gw0nwWDu8HbxzGq9CKwok05L/9RhmbLGzNgaPhdFyciEnEAcghaplazKSCDZVuhuGVzGFS5CM7\n", - "4ROThO1h58FapP4d8F1w9sL+J0CL2EzfqdOOKHq8Jba4iqG6hx/xKSRgpQ9+4R9DPkgjAo/8tIje\n", - "UEqdJjxfERlehriCZQ/6HOhLwDJwpA86JnRWoP4NqF5B51LlIah8AYwaNAwwyqHy9Ok0TFRgZQR4\n", - "3WBERHoIy5+la2Wo934w8iYhwjiwm3evw/BloRSOCF8C/g3wK+/0eDYBCzC/DrP9sKN7w+0YcLwH\n", - "8v9w6cYiYkLvZ+NUki5PRT12rMJQE3aU4KVpODoauoimVuGmBdgeg0O3hbpYwxVY7IG5rZBZBl+F\n", - "CYftizrnxz3cREAh3UdLTZGtmehGBG9lHJejRPUW/otw7O998JpwZwE+YIBRh4JFPdHBzCQwW4pA\n", - "HBrZLLWzTbxl8B6Fkbtg4LNhHXrFhZ5BOPjSxYRH2oGDL8CTB8Lsz1A7rLO/HMDKn22mSNm7EUr5\n", - "p0Riv71K+VeiRG8wace20Vo+gPXQMBQAVkMyQH6D4d/vwJP/L5R3QToNjTjMAs0HISmgHYPWLugt\n", - "w5YGTMdh7VGIN2BbBhwTst3AYagCq5Owu2GxFFFkZ6MYtkMn49PsqSHpElhAt6Ol+DA8+6sQDMBE\n", - "OQx2lmOwfAZKsfApG6A+AUUXdi4YzPbvoRpMkjvuoHp6aOV78QZP8MRtDX7q8YvHTisK/lUv0VwJ\n", - "umaFX4LKAcjtDk3xysUc5NIin2jCSaXUZUUo27DugJ/GKbUo9Jv06hEibh07ZrHqKirfvvT4F5Ed\n", - "B+DT93WtAQDykPo26vYlFl34oAMDHShFocf2seodRgwY1YSsr2iyZLMsAAAgAElEQVQ0w0AzeSYM\n", - "RCA8Bw+UYeWjbOhSgvx34PgXYcu5sMW3vxfEgehTsPUYzCVh5fwVipadgaXTMLMDpioQCCykITIN\n", - "nTYXyzqvgoikoe9zsGcXJAMouiKx7yllHb6Cz35LeD8YefP4PGEXzXVlu3yV8J+BGRH+nVJcUVfF\n", - "9Y6ukd5X4MGfg5PjYYfJCrD6XXWJbLmIxAbgFwdo39pHseWyziJnb1zhwPOKm1ZAcrA7D/ed0Hhh\n", - "spfDt6XxzTZ+qsbjcYuTDQgq0F6FgTthdgJuWVcMrQVIJsJMkOJcbDd9nomrFO5qhsSsIkKO0lgL\n", - "V20g4H2vSw41lFKWiDySZ+XfJSindJAIVqdGMDoPWaGvV3HfHGztprAPT8LqTdCehdQGQuCuAjzx\n", - "Mjz6ndBevV2E9ptK/f7XCXt5mMKJLDRsWLXCx9cmwBz0PAI3B7C0ReTflOAQcBgW/ido/T8w4EH0\n", - "NNxyNNS16dwOH/06NA5DdQqCGIx4MPccJO+EVAuqG26IQihj3jaa5EoLNDPjWJksTjqKZ5RwvCbs\n", - "iIQ1voJSallE/ggqH4H4TvAqUPxL8Nbhuz8HY+NgqvDeuvsETFSzPHnnKMmaICh8SUO5l3a5l8pI\n", - "g7U0jDZC7YoTvVC4ynoiV45up9MTIvJ0D/yTXfDJrdB2QT8N9yZFvttS6jX6MQ04fQL+2TAM5WhH\n", - "67QV6HYJ1TIJHnEuo5WSg08OwtZzsFsP+2VnhqCwC/qWWHkEDu2DZi9YKSgL7MtDwoPzacVSHTwt\n", - "VFHdeklZdKAJ5sAl32tJRH4P1j4Go9ug7wXoWYCt+XCL4RTkPwocu4K58kW034Ol/x6CAHQHRlfC\n", - "NuLjitBI+FUQEYGBn4V7xsIHLY0wm/PDz3eV0mfe7Oe/FbwfjLx5/BPg37/Tg9gMKMW6CF8l5I78\n", - "2js9nqsNpdR6eLLnR4Eo4dPsazQS4nD7rTDVj3usjNoZJVPJ4RkuRw8U6G1AwYR7ivDy8HZOHNhB\n", - "shrBaFqIX6PYP02hWlbqb0WkD/KT4Wc9PgD9ymKtrXHSG8DzdBoZncxanPgyCEKASSsClROXjNuj\n", - "6wGilHopKvJ/WbQ/3wN3JiErsHwAynNoN59jJrDZ2g0qthVgRYf8FkhtuIAs5SA4p5R1iPDm+T5e\n", - "ByLSsw3+u3uhMw6nPDh9BA48BB8x4CUbdtwAhZth0QP9FHz2KOwsEZ+HD74ABzbchJ7LQFqD4jCM\n", - "L8BAt5QS7YGXUuAugpaDshfyTVJuWG0LOiF50iifJaugvM1G8ywsPQJH74fnH4KfEpEZpVRTKbUM\n", - "/NVlvstvwcoYoIP0wMQXwBUNL2ISb/k4EZ2a0w/FOO1DM/j3wTMTMFQPZWRWHoXguinharDnRrjl\n", - "43D+Qu5mBxjfhPtFZPpSRdg++OhuyOcgosNoB3rO4MdW4est+M+XdgqJyOQE3D8C+ihULUjm4YMu\n", - "vJAI629LUP0dKHwSRqtQD0ANg6nBLcchWYfDYzDrwvgl5c+VLNgLXIJud9hzMLjvIi/mAvpboI9d\n", - "+Uypl2Dp6xDcA+MKziRhvg4rX3md1t5RGJuE/RvGl3bg1gqsfhh4Pxh5p9Et0dwIPPROj2UT8VvA\n", - "MyL8B6XCp7/3Erpp2MuQNy+iF27bDYUkvt9gddjC7dVJOH20cgW+uxXyX4fSwSz5bZPEmhGM7glt\n", - "GTcRnKnCPhF5sHth+WNo/xjEd8DpJDS/F9D8Sgd+tof2Tou1XTa5HtCVQ9VoUT8DPP+jxmcr9WJS\n", - "ZHAbJG+ExWFoTmPsnSRbarM2Nc/KufBptrcD5hxMb4Wh+VChcTkDz2Uh/7dXaUrf00jCrftAH+8a\n", - "wBmg7oAXOrD+GJz8KHgf3vB0eQ/MN2BXCSMFuUts3DO1UJqjJ/Hq3+dTUJsHuwBHvghbTsNzN8GY\n", - "Bp04rKzB3PNgrSRQv9APCwZWYxfuiZ2EjttT0HMWJuH1+V7dMlKXnyDz8PIWqH+ghbhF1sZztGrb\n", - "aD4bAc+Bjo39FLz0N/CSAKvXW+asH27dGfZNv4I4eDuAMzDFhq4wERm6CXZ9GI77cKIGGQX0gv59\n", - "KDaVyl+6/yH4zBQstGDSBN+EThTcGdh7PiyvrED9GEw3ofhBCM5CJR0uQ38W8v0wU4Tat+DEEBxc\n", - "Cc/BpSw8l4bCV1/nq5UhT8hLM4OLv17MgfOaAOaN0L3mfT8McqZHCEsz8z9CYyQFPZcp1/a3wOy/\n", - "0s+/UrwfjLw5/Dzwd+/REg0ASjErwmOEEvHXXdvXtYDqalHHwNmH9USBpeE6kf4obgPUfwFegpNb\n", - "DfhQgr4lCDSbZiZCqTEU9saOEGpulLvOo18SkSTgK6UsABH57nH4lZtpHI3SiDQguQBeDf70zQgR\n", - "5WDHPpgfCFWXSOJVV2nFs5hAIRsGIxDu9ul5WB0CMwqdPBT+RCl1fjPm7r2GZKiq9Rpl2j5w07Br\n", - "/DItluPgHaXpOawlYduGp/PtRXixDSoGIzoYAZwZhJeaYB9XSrVE9D+F0qdD8bKTWfDOQe17oE4q\n", - "pewRkf5dkJ4INcg34jLk7NeHCq3lvyUiz7XDXPxPDkLdCj14hk9BfA2+rpR6XfG46wCX5Te9Dukp\n", - "09eVl9ch6O3aBSTAMMPOmVdBRCJTMLYNFk6Gi9UzCi0XtAUYmIe/V0pd0Oj4YdcINgZkIH8XaOPQ\n", - "OA88ArTg+Xtg9oPhOdheheI3lFKvKZHABV5M9ml47COh4V3OhsUsHMpA/m+ubIpetd8KP4KsugEl\n", - "yEs4XRtDveUcdGbf6ue/WbwfjLwBul40/xT4Z+/0WK4BfgP4qgi/rxTXnULfZqMMz0/D/XfDfAS8\n", - "LbBUwVk/BFngmFLKFpE/8TF3VqntSCBWBntxCveUFqqQCq/1Rmld8npJRP6gDHclYMqGwjo8rZSa\n", - "ezNj9KDehLEBaC9B9lmyu6uYY03MJJx3Qz2JZhROV8D6CizagHmF5Lf/6tGAxXW4YeqSi3gBDBvm\n", - "WzB66XtaoPmol+DlNGRGYM8a+BqcHIbSQ7A6C7O3gmjQfAlKP7xwfIQGjzJLKF7ldoOGV1CCQ3Pw\n", - "uckNT/0NiJwPyZVzV/r9uoq7ayKmWif538bRB11Up4XzA2hdNyWZy2Edjp6Bmya6whsAHTDOAgou\n", - "DbbLxVC441W31zXION3s0iXYUiB326PklMKVdUoygGVGobkELzcvMUjtqry6hMHp1y6zv0dE5DHe\n", - "9DlY/wEcrsL5j4A5BNYirH39zV4f3g7CcnbPEXjyNjiwAgkHFnrh+SiUNl1ZeVODERH5beAgcERt\n", - "cPAVkV8mVDF9Sin1i5s5hquAg4Q8g9cQo95rUIpnRVgCfgb4y3d6PNcaFhw+Aje0YOs4WC0wTwOL\n", - "8FcXLiRKqZqI/GYZ94s3hiSAZgvMJ0MvjzelVKnC1PBb0nUpwLMvwS8nwX6c/ruFfUGS2GwJZxCM\n", - "GDz6Kah+GWrf3qBmaYtIBszdEElDawE4fw08ZN616MDx4/DhLAxsh2IAchKGz0DRgn88Cf98MpxM\n", - "B6AAyelQyOElWD4FD38Cnt8HKoD6EagehcgYFB+Dzhwwd2kHxyXiVa+CC0ePww0W7J4EqwPGadCW\n", - "4Gtv1SNGRL8BbvmEzb2HbNJOSFZ9cQye+Wmu4/M/gNMn4UUXbtkKlgv6GdDn4TtdEb5XoJQq9Yoc\n", - "expuOQjLcfBWIP08ZArwqnKJiAzAjl+yuPG8jz3VS2y9QyVV5yV/O5V5C069FeG3bmD5et0rGjAJ\n", - "iUlwO8C0Up1nReQQoF972fbqt+DZEszcA3osPFbzP3i9TqWrCdmsjj4ROQD8C6XUr4rI7wNfVkod\n", - "7v5fH6HZ0q+/XjDS9bS6ohTkZkCE3wXWleL/eKfHci0gwseAPwJuuNbibtfDmouIAezMwVYbGp2w\n", - "ZfA1yqS6yO5huD8FvRa4FXiyAY9fi4tHQuRDaeSXAvbv1hmpNzA6bbY/B5k6PL8FHn1Aqc4zG77T\n", - "Ntj6i7DHgKQHSxGYmYHSV6+HjMn1sO6Xg4gMDcBnMrA9AFWDE+XQhK0WFbl5FH5qnJA4tAidJfhr\n", - "pdS5De/Xw39F9sPUT8NuBREF50w4dxhq37w0A/IG49GB7TnY7kC7HR6bb9knRmT0X8KPJy6W9iBM\n", - "0X9tHE7+J6XUpmrPvJ11797Et2Zhlwd2K5yLy3YCioiZhnt74a4IGE0o5uEBX6nZV2+X/RR84i64\n", - "MW8yfXOa+ngCUQ0WcgEnv9+A31ZKXTU+XXit6fkC7LgJJl3o6DAdwLmvKuWffuM9bB7CzpqrHwz9\n", - "qDXfzMzIB4AfdP/9EHAXobzuBeZwehM/+6pAhCjws8Cd7/RYrhWU4mERzhNyR/7wnR7PtUb35DvF\n", - "jzBcA/CVmhaRM0AccK7lE0xbqSdFsoMw3oTJQqhbcUFhts+C5Cutg6FuyvjPwWfqoQokwE1AameY\n", - "juWpazXudxu6Gaw/E5E4EGwM3GyljonImTnYQlgqWeym7De+3w8VPCc+Bz+Rv2j1vhd48HZ45jRw\n", - "8grG4wNnuj9XAfogDFxC4NSAXkXIfbpuhfC6QdzZ7s8bbesCPxCRhwnLYJ3L6+rEh6CnBYbvsvdI\n", - "mfqZMu1k2IE080OlnKtM7Ddvgf374CNzF4tIO2LwDz8jIv9Rva5Pz+ajOz/XNCuzmRLQOS6SvGrd\n", - "1+82fB44ptQbH/DvMfxvwP8uQuqdHsj1DBWife1TqQDtc9BphW2iG6XuCzGob0ypjsOW2MVA5AJu\n", - "LEDvHddkqO9yKKU6l8sgdX8/o5Q6d2kgsgFb+f/Ze+/4OLLrzvd7qqpzowMaORIgmHMaTp7hZEnj\n", - "0UgrybKsMPKT5ZV3V2v7eT9rrf389Lwv2ZL8tLZ318/yyrYkK1hhlEZhcuYEZg7JIQmCIBIJNBro\n", - "RudQffePaooYDjlMAJoA6vv54AOguqvu6b7dt86995zfoUc/54iANeyuSEDD5tmx+HIpDsJw8K3H\n", - "TIGoxuUFPM4rlFKlyvf1ItsByQEYmzbmBVLQNAqJDBRnwTGr2worYm+9DYdz0OXAygpaVMymM5IA\n", - "ApW/g5wX2MdFg5/PISKfn/Zz5wzbdzn8G+C/VaHdqqIUr2OtZi006fsFROlNODIJbzRbe/2mwOFG\n", - "OJyA4vQARAH9AudrZRA7gH320UC7wFinla1y9NVk9Bkr3XukskqddsCLnXDmtauJjZj/ZPbC/oJV\n", - "BbiMlWK7txV6T3MZKzBXjuhvr5kFlc/LoqsVNZuD0U7gd7Bqn9wN/MN5j19yr1Ap9fmZN+vyEGEj\n", - "VuL4jy/13AXK/wocEuEbSrGn2sbYvJWKKuv/gGfuh11rQASmjkDsF+ct7w7DUAkSLghOm90fb4D4\n", - "s3Nt9yLkFPQBG3RwTQsYPhGCaBVrvYBS6qSVUjz5AHg7oJCHiSch/Xw17aoWleD0v4fH3wU1S8Es\n", - "w9RemHxydoK9J/ZA74NWuYmzpB3Qr6jowiwmZi2AFUBEvgxsBvYqpf69iPyVUuqzIvIg8B+BpVgZ\n", - "NR+8wLlVDWoT4SvAgFL852rZUG1E+E0sRdYb5kIIrdp9Pl8RESeAukhBKxHHWuj5MKwpgS8PQ344\n", - "dAZGv3q1mRgzyULvdxHfHbDsfliZA0cJ+v1w5CjEvvkO2ztzaJ8IVsZgcS4zrK7nfhcRF1ac0Kz1\n", - "j9VG/SdgdSd0pCDrhCNO6P2RUrnXZqvdavJOfT6rzsi1UM0PqggtwBvACqW46mj1hYAIX8UK+vqY\n", - "UpfeWru2tq7fwWm+IyJNULMe3CGrumzp8PWQSQOLo99FpBNCa8HhhugR4Fh1Yo2uHxZDv18KK8Bc\n", - "Wwm1K6CYhsQBZcn6L0hsZ+SK2+aLgKEUv3fJJy9wRPBi1TH570rNbvyMPTgtTux+X5zY/b74sJ2R\n", - "K2qXCFZBoA1KXVChb9EhQg9WCui/UooXZ68de3BajNj9vjix+33x8U59vugidi+DPwS+bzsi51CK\n", - "XuAR4F9EaKuyOTY2NjY2Cwx7ZeQtbdIO7APWK/XOFV4XIyL8J+C9wB1KkbvU86/8+vZMaTFi9/vi\n", - "xO73xYe9TXPZbfKPwJBS/MlctjtfqBQN/C6WhsynZjqg1R6cFid2vy9O7H5ffNjbNJeBCFuBB4C/\n", - "qLYt1ysV5+MRLKn/f11da2xsbGxsFgq2AiMgggF8BfgPSjFVbXuuZ5QiJcLDwEsiHJzNgFYbGxsb\n", - "m8WBvTJi8XtADPhGtQ2ZD0wLaP2OCM1VNsfGxsbGZp6z6GNGRFgPPAXcVLnJ2lwmIvzvWFL/dyvF\n", - "NSsV2nvIixO73xcndr8vPuyYkYsggg/4DvAHtiNyVfxnIA3839U2xMbGxsZm/rJoV0ZE0LEyQ+JK\n", - "8Vuz1c5CpyIStxvLofvBtV1rfs2UKjU9lkPdRtA0GD8I5TcXu8z3lTLf+n06ItINtZvA4YHYISgd\n", - "uliNIJu3Mp/7fa5561gjOsQOzMexxk7tfdu10YC/BlYBDyiFPXhcAyJsA34GPKwUL139debP4GQN\n", - "DoEHYeXNsGLKKgXeG4TDh2DiW3NZcGy+M5/6fToi/rtg+T2wKg2uIvQH4Y0BiP7j9VL353pmvvb7\n", - "XLOQxpp36vNFl00jggMrc2Y58G7bEbl2lOJ1ET4KPCrCQ0rxSrVtmgPaoOsmuL/fGhwAlkxAeQ28\n", - "vBw4UkXbbGYZEYnAyrvggUFwVW4GnXHQOuH59cDrVTXQZiHRCl03vn2sUavhpQUz1sxqzIiI/H8i\n", - "8ryIfPm84y0i8rSIvCQid8+mDW9tlx7gRaAWuFcp4nPV9kJHKX4JfBL4iQgfrQikLWA8XdBdOjc4\n", - "nKU7CXVrqmOTzRzSDl2cc0TOsnQC6jZUxSKbBYqnG7rNhT7WzJozIiKbAZ9S6nbAKSJbpz38R8Af\n", - "A/fB7KuditAuwl9iVZ/9Z+C9SpGe7XYXG0rxGHAP8DngRyKsrbJJs4hZAvMCDldJB9Neol/4mFC8\n", - "QP8XDChfc2aZjc05ykW4UGhI0QBzwXzWZnNlZDvweOXvJ4Gbpj22Vim1UymVBpIiUnOxi4hQI0JI\n", - "BOflzrZF8IqwWYTfE+FxrHozOrBGKf5qpmXMbc6hFPuBzVhVfp8Q4QURPifCu0VYLUKnCI2VnyYR\n", - "mqps8lVSOAZHBdKOc8eKGrzpgcmD1bPLZo7ogxNFmHSfO2QKHA1BdFf1zLJZeOSPwbELjDVHvTB5\n", - "oHp2zSyzGTMSAvoqfyeA6ctJ+rS/E5XnJi9ynT8FPg14AU2ENFY6aaryOw1kATdQA0QqPyewtmS+\n", - "grUSkr32l2RzOShFHvhzEb4M3AXcjyUs1wl4sPoKQAEFoL0adl4LSqlxEfcP4UfvhWVYfn2fQP9T\n", - "Sqn+KptnM8sopdIizu/ATz8MyzRwAf0a9L8C5QWxh29zfaCUiom4f2SNNT1Yt88+gVNPKaVOVtu+\n", - "mWLWsmlE5HeBqFLquyLyfqBVKfXXlceeUUrtqPz9I+A3lVKp8863Vy9sbGxsbGwWENXIptkJ/A6W\n", - "lsfdwD9Me+yAiNwIHAQC5zsiZ5kvaV8iorfCH74P8nWQOXv8KDQ8AX1Rpb5ZTdvC8IEe2NAFuSJo\n", - "b4LRDz/JKPVqtey6EHaq3+JkPva7iIS64P/aCp11gBPMJDiOQHkPfCmn1DPVtvF6Zz72+4XwiNx8\n", - "B7z7Jhg4eywP+g+g9Sh8SSk1ea1tXGwc74Mf5ZSaN5lb77TIMGvOiFJqr4jkROR5YK9SapeI/JVS\n", - "6rNYlXG/hrVk/6ezZcMcUt8Avjp4y4euB6IvwyoRMaolTqPBqtWw8W44eTZAaBkYP4QHReTYTHxR\n", - "bGwWIUuaYPVSGHVjlUIIAwVo7IWHANsZWSTUwoZumJh+zAXmEuCotQV9zWOsBqvPH8d7wPFDeEhE\n", - "jiul5n1m6KzqjCilfu+8/z9b+T2MtVqyUCgVeXtwbQH0shUGXa6CTQDUwaZlEJ8eqeyF0lKQY7CE\n", - "Gfii2FwbZwOz7cDqeUWDAcZZR+QsPsgY0FIto2zmnjLkC+A//3hFwGpGJqH1sHk5TE4fx31Q7AHt\n", - "uDWO75uJdqrJoq5NM4PExmC4F+qmHzwIzQl4XSlVNWcEQLjoTW7eL5HOZyoZRY9iDVj9Inys2jbZ\n", - "XDaDUSglwXn2QBkYAG8ehqpol80cMwavHYZac9p4Og7ePsgDMxZgepHBWl38ofnFolNgnQ2UUkpE\n", - "vvc0PDIAHWHgNHAS+qeqvFw7DvuOw+r2aasjWWuvEaC/WnYtdkQIA88D3wN+E1gL/LMITUrxhaoa\n", - "Z3M59E3A3pdgZRsoF6hRkDMQz8JPq22czdxRhsOH4ZUU3LAEVA7kOBQG4Z+VUjOSxRmFvcfhw23n\n", - "jeMnLGekfybaqDaLsjbNbCEiTmCpgF9BDOiv+qqIiBGGDy2Hdd2QLoDxJjhOwE+zSu2spm3nMx/7\n", - "/GqobMv8EOhTit+fdrwVeBn4rFL8qFr2zTXztd91kZWd8IkGCOnWTag4BIfH4GszdRNayMzXfr8Y\n", - "ItIi0KKsrbveio7WTF3bqIVfXw5ruiAzbRz/SVapeVN+47oslCcia4C/A0zgkFLqM+c9vqA+qNVE\n", - "RHSgOwwripBLwWGl1Ei17TqfxdLnIrwf+D+BjefXRhLhRuDHwBalGKyGfXPNfO53Eanzwho3BOPQ\n", - "V4ajSqkFo4o5m8znfq8GlXF8aRiWX8/j+DtxvTojv8owEZGvAn+tlNo77XH7g7rIWAx9LoILOAZ8\n", - "XCmeu8hz/hTYBjy0GIJaF0O/27wdu98XH+/U51ULYD0v1dUDdtE6m0XBI8DhizkiFf5foBv4wJxY\n", - "ZGNjY1NlqppNIyIPichBILeQZG1tbC6ECA6sIoJ/9k7Pq2zd/DbwZZG3pwza2NjYLDSq6owopX6s\n", - "lFqHVSzv3mracjmISEBEakXEXlq0uRo+BvQqxSUDh5XiZeBprArXNtcZIuISkYiIuKpti82VYY/j\n", - "1ydVS+0VEadS6mzw3hTT8vWnPefz0/59Vin17ByY9jZEJFQH710OPU5gAiZE5EdKqb5LnmxjA4hg\n", - "AP8J+K0rOO1zwD4RvqIUp2bHMpsrQUQ0P9zRCbcHQZ+CckDk+SQ8p5Qyq22fzcURkXAdvHcFLDWA\n", - "CYiJyA/twpbXB9UMYH0I+AMswZaTwG9NT4O9XoKbRMRogn9zOwRWwqgGnIaapyF4HP6rUmq02jYu\n", - "FK6XPp8NKoJmn1KKO67wvM8DK5Xiw7Ni2HXAfOp3v8jtG+Fdt8KgB0pZMF6Gtr3wRNKuR3NFzGW/\n", - "i4ijGf7t7eBbAWMaMAyBZ8DfC3+jlBqfCzsWO+/U51VbGVFK/RgrhfF6p3sp1K+eVgSpGZIbwB+F\n", - "rcBjVbTtHRGRlgjc5oHOAoyNwQtKqRPVtmuxIYIO/Anwu1dx+heA4yJsUoq9l3y2zawhIo4OuP1m\n", - "GPJUZL49ULoJhgbgdhF5adpq7+Ve0+OBbbWwBSjH4PUc7FZK5WflRSxeepZBZNW0cbwVptaDf8x6\n", - "739ZRdsuiojoTtgYgRs18EzBgSS8opSaqrZtM42twHoJBAKRCxyPQMoDTXNu0GUiIp3L4VNbIdcM\n", - "iRg07YFPuUS+nVdqf7XtW2R8EEsE7+krPVEp0iL8OVZByffNtGE2V4THB07fefVovFDyW/F3XuCy\n", - "nRERcTTAxzdDxzIYUyBvwnv2wQoR+Zq97TNzOCAYuUCNsFpIe6G5GjZdDkF473q4YQ2MuSHfB7fu\n", - "gnUi8v9frNr9fMV2Ri6BgskL7cNEoSYFB+fcIKASeCVYBblqgInzt4ua4IFbIdlRSZmugYkQpCet\n", - "ar2HgDZo2AHOViiOwuhzSqljc/5iFjgiaFirIv/hGjRD/g74jyJsVGr+F8SaL4iIF/w3Q3CLdcS7\n", - "K0GmmABX0Ko7AkASnEnLQbkixU0NVqyCzhunyXnfCqfSsGwcbhKRGJCohrCViOgLyRkqwsQo6Ocf\n", - "j4I/CbtF9FXQeCfoEcj3Q/Q5pdRliw6KiIZVGWTG4h5EpHkdbNkBfWczTTbDkAntk7AZq5zE2ec2\n", - "ABEgBQzNpB1zhe2MXJr+PhjaA63r4LQO5VNQuw/KSdh9uRepqOd16RAxIQGcuFKlRhHxQ3AHtN0M\n", - "ah04s9ByEhJFkdoDMPkDpVRRRFzd0NbBWxU8Q5CPgGsQ2QKr3gs3TEFTDKIh2PVJEdd3lMrbN7uZ\n", - "5dewZsu/uNoLKEVWhC8Af4y1ymIzy1ilHRo+CduaYOUolAXevPM0Ox0vEK+5FQZDkI+Daye0jMOP\n", - "r/T7HIaetvMcmDw4HBgrnDR0FVjdC1FNpP44jH/naiXmLaeKHgGXsspmDV/sZiXi2gB1d8GSiEhL\n", - "FMafUKpw+Gravc440QsjDdC6FkY0UP0Q2Q+lNC4N1n4cNscgEoPhdnjt0yLy90qpdwwcF5EIRO6B\n", - "jrWgSiLB12Dq2RkqB9DUAWp6ymsMPDnwuuB+ETkCxCH8MKzZAE0KJgUGh0Tkm/NtK8d2Ri6BUsoU\n", - "ka8/D/cdhI06aEkYGIWfKaVil3MNEfHVw8eWQnuTtS+s9VoZOf+glJq4zGs4oPETsL0B3I2WE5x1\n", - "wfEuuO85OLAeXokBTwKlIhQyYHinlbAuAxnQoOFOuH0cmirLfO0J8Och9i4RObiQZkTVpFKD5nPA\n", - "/zMDSqp/D/yJCO2LRSa+umgrYHUzbBs4d2z7oCLZuZcX95yBbi80ZCATgx9m4bUrbSEPyQw4ph87\n", - "gWNNmkidyfpX4MZKP7++FF6+H6ue0RUhIl1L4KPLwOUBNQBaP+wVkUfP/56LeLfD+ofhhjFoGIAz\n", - "fnjlYyKubyuVn9dbu5Vx/GvPwX37Yb0O2hT0j8GT0PQI3DUEvoozuTQGehni9wFfudg1RSQA7b8N\n", - "Nzth2RAUdTh4M7zeJiJfnYFxNDfdUz0A7eOwKQze9RCPwr8/gR4rsKkObj11TqnjjSZ49v3AP15j\n", - "+3OK7YxcBpWCR4+KyGOAoZTKXMn5IbjnRmjZwrn0zDaofwA2RcYAACAASURBVNKKAfgfFztPRHyg\n", - "LQOjBmiH9nXQOgTxRmiYsHZqMmE40QybRuDozSLytFLKrBHZuQd23Aynzn5ED0JLFE5AoBuazruh\n", - "hXMQroehEFZ8g821cwcQBn5wrRdSiqQIXwc+g5UibDOrhLqh9QKz27acSTA5ROILgBtLsPGqbjop\n", - "OHgYdiypbPsUwBjH1T2CN2nSkIXTTeBJw8ZhOLJFRH6hlMqdf52zehnnr3aIiLMdPvJuSBkwdRJp\n", - "aEQMoXznAegD9kx7rgHt98BtIxCsbEE1peA2E6L3ViYpVS36ea0opZLA90Xkp4CmlMqKSAvU6+cc\n", - "kbN0TIKnc3rZkrfj2QgbvLBqyPrfKMENgxDrhOgSEZnAiivMAQOX8zkREW3a+9x3AtLLocaA8jhs\n", - "vgGSZ0Bvhd0BmPgOjl8/ieM12NMFoqBtHFafgUM9IlJ7uZPd6wHbGbkCKpHyVxot7+iEzWut5dFf\n", - "sQyi+2CJiISVUpMXOG+J0PTHLhqWg9FUJOU1yedgdACohXwWHHmoLUBvBDynwHBg9WkhBc/vhshp\n", - "WN8E5gRoQ9A/CY9C/rOQNcAz7UtWEsgorC+OzczwOeDPlWKmVpr+K/CSCH+mlN1Ps0suDqm3aR9B\n", - "ygH5ROXGclVVWUXEjRXrNXUCvv0o/KsOMIrgOoZ4Y3RNgtoGZQVjAgyDMwq4mPb9FBF/CO5st7L6\n", - "pFZk7yQ8o5RKVJ7S2QnuMcTYS9NWRZsmGKrAqNvN8KdF5Hen3fgCEHSdc0TOEsmCP4IVnLsgAibP\n", - "y1TKQkqsdePpGyJJF5Qy8E7f3WAXNCbffry5DO5fg846aCtDWuBUXES+rpQau9CVRKStAe7tgO4W\n", - "ETUBO4HHB+Hrj8Fv+mBFN9QMgvLCgQaImiAGelhj9K4ya8+AAg4LBA+At4j1eZk32M7I7KPpoDvO\n", - "+1Br/OrNf1sfiIhuEPk/6ljeWoPTUPhyBUpqjLH6HLEM+FthPAzOBMRS4OiDgTBkBs+mFlZ+f0dE\n", - "njkEtUASGFFKKZHAK7D7Dri5srRXBva0QWzPTJa9XsyIsAVYDXxjpq6pFMdFOIAVh/LdmbquzYXI\n", - "vAGH74JOD9RWVkiiXjhShtxVxVBYcWP+HdB1KwQ1SJRLRF/oJ/XFfmgFFHjaoS0MXVHrLIW1FTth\n", - "YolDnr2WoxEeuQEa1lixbOoIbNwJS0Xkv1ViFgzAsY/GDR42pAxcJYACEccYrqVwdBVw6OwLhnQZ\n", - "8jq4po1VaQdkSyzQSYpSalKk7k3Yvxw2DVtHTYE9zRD72TsHgmbHILHE2uaezplGWNICH3gdjMr5\n", - "/bXwy4+KyH95+/aYtCyD394IRg53Vxp3eBTzrl7K782T/rNh+JITPtAFmU446q0ET5+C2inqncKy\n", - "LPRUJrQdGry4CUb2Ms9WuG1nZJZRSuUbRHqPQ1sR9LiVAVN2w0QMJrjwB2adh3B3PcGhHPk1Gp6M\n", - "m3IujLt+lLHOMmsHYbIB9CQMNYI7Ai9lYPRbF2h/DDjPG08+Y63yDW+E+jLENDh9BOJXHWRp8zb+\n", - "CPhSpc7MTPJ1LFl52xmZRZRSMRH9n+HRD0JbBJTAUBZOf10pdZVFPf23w6a74ZYBSHgcHO50Uvp3\n", - "efIrSxT/CTDAPQH9QXD7IZSFuBuGTVA5rH1ZBaDB8hXQtGWabsZ6GElCR8xygncDQ70QctPsOOuI\n", - "AGQo+Qt0n4CJrVScEaVUTiT4Krx2K9w0YN1Eixq81goTT1x8q2IhEPshvPQh6FsK4bKlbXlmJ2Qv\n", - "UbYhsceKEWnyQl1l6/5kLQzUw72vnHNEAJZMQEc7nG5nWvYUQARu2wik8a8WWss1eMb9qPE4sWXD\n", - "BH4XTn+xCOPHobUEWgsMLoVYH+7WEg0Jk0IWJgPgS0PeBU4/TBy/Us2bamM7IzOAiDQBQSB+IUXW\n", - "KDzxNHx5FbR0QiILrjfBOQF/f5F92IgbTVmB1OfE6gwcBYO0p8CAglgG4nnQR+CEE8b+9mwKoIjU\n", - "YkW4JpVSZ86/eCXq/3si8gwcCQFTSqnozLwbNiJ0AHcBn5yFy/8A+C8i1CuF3WeziFLmMRH5Cxhs\n", - "w3IChq80Y+YsVgB65+1w0yAMhVvYeVMnghu3Gcf44BjF4DD8AAJJcB6C3e3gdIJrAjpfgwE/RHUq\n", - "Whk10NoApRMQKYCzHSb8kG+CdAA6sYTTkg6RnV5Y66CQ19FKGUqeKM6kInIKNMdbrZx6EnY5YGAb\n", - "hJQ1V4q+AKnn3/aCFhCV1eB/EJFGwA/ElFJxEdEqmUj5C8V7KKVGRfSvQ/r90FBrbXWPjUL5wLnV\n", - "tOl4ADoq9YxiZ1VfPbDUCe4kEYcLzySAINTiygwTjtRw5g9Wozw6YMLmfljVB8eGoS6BbxA6X4fx\n", - "bjgTseJyHcOgz7tSJbYzcg2IiCcCH1wHy+ugHAUtInJkAr731n1JbXstRoOOoY9QavJR7L0D9VoZ\n", - "lotI0wUchv4SE+UypTKYJTB1UFIga0BwBJpOwaTDj2PUTTpcIBdOQoOIREPwaythcyOUJ0CrF+kd\n", - "h3+5UNBtJRtoXi3lzRM+A3xNqZnfY68Esj4G/DrwNzN9fZu3UnE+flVRXERcXrgxDDcKuFKwLw7P\n", - "X8ZqiRd8OrjMWnZtXoMr68WZB3DhNrrIep6Gj7jpvaGOVKGIZo7hSk9y65tWlkbm1HRHKAnuQ3Bv\n", - "A3oANNdRKIcxd3kpn8pM+06X4CdTTG3NsMRpgDNP/XFF85C14jH+5AVe64+tSQoBLI2TBREncjlU\n", - "JpKjACKujdB6D3gDkMuL+J6BzCvnTx4rDusXYKgBays+CqH3wMBWWDdNH2bc42Pf5m5w10F2FLSw\n", - "yJ44/LgJxicxlgrOyuqTIk+yNktsiZ/JlgaUW4OReisWMJcC9zi095P7JmTXQigOtZVgZFPgJx2Q\n", - "mXdK29UslLcd+EssT/91pdQfVMuWqyUED9wIy7ZVlkrLwKuwaifcAzxmRbkb7/PQ8L/58TgF75gD\n", - "NZIlXjPBmZYWyvoRS9zop+fNuPpMYi9McvA2N21xk3xzkaKe5aQU2D4KA752hqQHl9+LI5el4I7D\n", - "h9+Egc3Qdgv0K9ANMHdD10vwEPDtarxHiw0R3MD/Atwyi818B/h9bGdkThFLVOLDm2H5WjjjhGQv\n", - "bH7FmlT8rVIqJSJ1EL7FKoFSmoKxF6F8CEhDMg/9tSEKbi+BSYAyJUOjWKiFUgPcdwO5Z8dIboEa\n", - "vYF08CCP3xvHeA1GvznNjkAb3N2Ao3EJ/owb50QeU99P5uZD5IMZzC+efa5SakLE970S/vtLrM4A\n", - "JdjZCof6oHjgQq+zknVygcDMxYGltbL21+GWMxAZgqQTdv4aHHABb6s/VEkbjgJlKyZPXoLX14Fq\n", - "sXbNUm4vP7ttG1Pjd8DxEWitwb3EQN2cRi0fpfDMKUo3NpNxOvGRY6K5wGSHB3eihYy/BUI9lhrb\n", - "YY8l3uZ9wXIWT8BRE7R10JMEU4Njfuh7CRia6/ftWqnmykg/sEMpVRCRb4jIWqXUG1W054oQEc9S\n", - "2LRpWqdrwGYYPgrbROQJ8N4Krf+2TGMB0lLAWVsgFfYQOH2KzLvSEDOp80J+tYj+L0qZx8FK0ROR\n", - "LwrDkybRrWAUchQdSVyHYEACZIwVeLIepFxgPNBN/nUfRKPwvmbYvRfvPSV0r4GZbiTzZh2sEZHA\n", - "fBPBmad8ENijFMdnsY0ngK+LEFHKXtmaQ5Z0wfJbpqXor4ORLLTHYIOIHIXOz8A2DTpjMOWH/R+F\n", - "I48rNfW0iPdJ2P8bJqYBUKboKDAebCazbwq6/JB2QVGR0/MYdQpx1RE34+R2K6UGLZXNunuh7o4g\n", - "mdugJn6Gkuah4AVw4chO4ilD7C1ZQEqlnxORUzCwARxeGD8E5TfnW0zBXGBNIFvuhZtHrUwigJoC\n", - "3DYII3eIyM7p6dUi0gz198OSHjALIjUvA8/DwN9C4iaoWQW5YhPjI7fBnuPoq2PUr3AQTrVCdIjk\n", - "vROIdpzB748x/tkA5U5INgfwRiM4ckPEu5oxyi4keIby5kbMfY2QrIUGgTrF5L/Ay/vg2HpQJsT2\n", - "A722AusVcF5sRZFp4lzzBLcbxOCtYlYuMF2WXxKBxnugPpdn1dQ4r/Z04kyZeH1J0qsglBmlnIX7\n", - "D4Gm4OcfFZG/OiukVknP+0trplVwAeNQrIVjf+JAPphCL5rkBrsoPNlmRdYZBtSNUr/dSd2kC+ek\n", - "SdE5xPgNOmODWBuWtjMy+3wMS6Bs1qgosj4FvAf42my2ZXMOBzS2VWI2suAaQu9K4GrNYRoeCqUc\n", - "wUbYDqyupPHXFKAuDRM7ROR14DU4ok2g//kwse1eJBMhva+F8uCLsNENZ4YJbXXTGvPiOAOQxtkI\n", - "uXtEZBd0fAJuEYPolJNeVcbvLhBPabgHNYyih7I4KFAkFqay3XAWpVQ/5wVO2lwQF3gCUHfeyoKn\n", - "BCHBWpHIAYhIPXR/Gm4pQNeAFbaz+xHo/QQYOyH6CiR+CTSE4TNZ8MTwL3dSO6VhFDQEB84crHcX\n", - "iLZE8T4WJfuuJZTMCKl8EUfIgW+8SL7GgZ4XTGcMowvyx01QCqKVWJYjlZ95TdVjRkRkPVCvlHqz\n", - "2rZcIYk4TI2Dtw5+FY9xBvxTVuSXH9pMMHMQLAzROVpkoKGWgreE6Y+RLURZvxcME8YCUFcHg9uB\n", - "n01v5GyQkzUrav5b2BwuMzCmY6g8E/XDnN7STmEgBa4o7tYS7pYyBeUkl2tC6w1QGx8j2QHZq8wA\n", - "sLlcRGgGtgHvnYPmfgg8jO2MzBlFIArBBMR78dxQpMnnwJvKk/ZmYK2lT9X+8lvPcpnQqqC3CeiH\n", - "0Noky/b0caannZIzi3vpASbaRzHHI+hdwwTqIJcLk4014RmLoZnQU4CpB2GjE1YMl9BUguOmB4e3\n", - "iFZfJBsy0JKTlFNZjD7sSce1UIB8BibdlhDkWfJ65W2dFkMT2m6ViFkag5wTxrbDRh+4HeBug8HP\n", - "QN8+yPxTFMwjyNY0rqVZsnmhVDJhMktkGPJu6PowbH8cCi8qnvWVSTidhGJ+zIk4pW6NklchChz+\n", - "cfItY1YW1DvGhYjoayr1duqgMABjT19K3r6aVNUZqWR9/DXzsN6GUqrsFHnsWfjoFphqsJTxAq9C\n", - "YwpONsC/jjO8oUBtQuOpJSV64kNsOzHCia4ykwYYRyG6AR5/yEon805Bc0TEl1Yq/dzbW/R8yFIC\n", - "3nZqCnc2xvGWJtqiUVIrf0HsA8dxrE/TFYDWYghfoYgqnaBvo07s5CThfZB1Mq24l82s8GHgh0ox\n", - "E3UpLsVjwN+I4LYF0GYXEXGE4D1L4YYorDkAN5aplQCBowVK+gBCntt3was74GQ9rB+BCY9wolGn\n", - "4Cgx6saaTS+H7jUGrqYCroZjmK4cNShayqB7MhR6ArgKYdqTo0TbBzm+KkHNaci4wdcBkV2WRV3j\n", - "I+zNGWRbAoQLQqk4Rdnbx2RYMfVzzhNYtLGqmDfAXU5YYkIsCs+W4OD52xlKqbKI9xl49WG4rSIR\n", - "n9fhlTYYf1EplRERtwbLNeruK+NIQ0mH0Xao9UHjJBxZAqM3w/I0+FfCYMcgY3mhZnUDtWUPkWyG\n", - "tOcU451TBA7B+HpYNQpLJqHMBIdO1VFc40f3uHEMnUL5EpRrBFfJxPBM4ZRhCt84mwFp1VH6lbZU\n", - "5fV6t8Omh2HLONSPwnAjvPrbIsZXlSpdl5k21QxgNbAEof7wHVTpPj/t32eVUs/OgWlnC0s1Yg0g\n", - "Zy62/1ZQ6rCIfGUMbnNCSwbiLqh7EGqaoe+7DN/uJ73MA+k8w+EzOIihF8CMWrOcZJew3KPh1MuM\n", - "NCjWnITwgyIyrpQ6NM2WCDTeZkkUg8mq6AlyjiiHO+vIRpwQKhJwOWgu52ktxcgCRU+J5ekiRz0w\n", - "NcRlihaJSBhLC6UA9F9tKuMi5UPA5+eiIaWIiXAYuBl4ei7aXKwE4J4tsO0mOHUaJp/F+SEDMzLA\n", - "xPokomVoivmIbk9Tm4ODnZB213Foaxt6yY1pxBgrR+HmON6gm6EHOig6O3AlT2HWTtDqnSSUKBMq\n", - "lqnfF+fo2jTRWiHgLrC+AM2nQRlQdMHAdgi9APFIjnWxXnJ5L28s0zC9GZqiJZqOwP7T08eryjjr\n", - "wPr+13hhUwC6chCNwx6l1IJ3XERkyUr41HZItcNIDHy74TcOWVsuL779jOxrcNAJp++EkAOmyhB7\n", - "AaaeFJH6VvjkSggMk2me4FRdklRXFk8Z6rKWMF62CW46BPVJ6zbS4lLs236KVb8Yp/8+g4wvT/1E\n", - "jo0n4WA3iB9Cu6wdf40kd77+Jj8NuBjbXkOhS1F2nSSs3HjJopOjNZOhuFlE2xZB9XTBagUqLNIX\n", - "h13Aaei436q34yxDPAw1ZdhkwtgjIvJPWGP7dVWDrJorIx/EkjH+i0pphc8ppV6Z/gSl1Ofn2igR\n", - "3y3QfR80C6Q1GDktIt+6mMa/UuokldS/WpGHb4X6FTC2C3o2k487iRPDF9Jx9UdIGG+Qjk/Q7gaz\n", - "RcNbr6OZUBADV0ln8jaFc8SBryck8rUi5LrhpgbgINklGUbdirpDYJhFlo07ONko6AShGMFrKETF\n", - "SHiK1KXK+HJFPDHoDUF0z6WcCitwy38XrNgB7QpyAv0pEfmGUmreRWbPNSI0AKu4QLT9LPI4cB+2\n", - "MzJriIhrCdy4DYYMUO2QqEPfPUzThhRaYyONe1pwZouUjRHiSyYZcrrI3eUkXIySVLVMnH6Awo92\n", - "Iu/ejXOjm3BTCWe6j6irhE9vpS6RZ6ouRX0cAlFoP13kQAP0TEBeQX8ThI/Apl7htUdcZJcLLkee\n", - "sK+M71SKxhdgyyvgzVsLn8fqKnY7amBHB9zoBEfCqk8T2QK5JkgmoOMg3KiLfMNU6mh13+XZpRHu\n", - "uxmmOiBe+T+1A3JjcLeI7Dq/3k/FmXtBRF6FUwEgfbYKb6PI+3aA0QMDJ8mknmfkdg/u4DB5T4nG\n", - "BLzZYAW+RirZSEXAa0KnDoZKc9+3YHg7ePyWMPfYEoNy0UfdxgLRpVna3oDGaJaO3jr6b1uFgwK+\n", - "YhqPnMKhK+pNNw6ziNZgcOaP7mZqXxecOQUbxuH2fvhIFo6cwVNvEj8OiY3gNSDTAFk/NEzBUgOG\n", - "Yu8kT18NqhnA+i3gbYqhs4WIaFazF48yFpGVsOVBuGfwXN2WY3Xw1EdF5G8uVSjKa5UEnwSIw5Lt\n", - "EPORP3OEfPcozroizkYfLmMCTwrGgkKroXAoIadMyjWCKT5KTh0Ju+GPDdC3w3dXwLiXqRd3cvxD\n", - "OSJdirZeGPW5SATcZIwemBgl3+zHURDSRMl6CwSBcg3ERiD31GW8RSth1T1w3ylwVF7nSA387GMi\n", - "8iU78v6SvBt4chYUV9+JJ4AvY6m92swOXh+Ie1o5h2VkB0aJ3VFDe9bAKAIocrrGqO5keX2E+qO1\n", - "OLIKzBRB9z4OrXDj6/YQbDUJOsZRAaFGypQMD5NuBwUHpJstyXd3HDKtwvFGIaWVye+HjbucHLxb\n", - "cDh1RpVGbanEhFvQekw69kIoBaebnfSu1YmPOkQ2hmDFVli/BYY9UPol3FoDnUvg5z7IeUBClm7F\n", - "+0XkCwtVYVVE9E7o6JimVAvggVI96P2WOOTwhc6tjHnj064VXgUdPZVrdcHEAKeGjpC8U6gJw4kS\n", - "mJOwo8/KYUi7YazGS2FFnmynMPEeJ7kzCtdEFr1XY7ijlsSEh6wqs79TpzaRIN6QIPdshP23bsAc\n", - "DGOGBvHVufBqDRTlJKaRJ9BRJufz4TyzAsaOwuYirGiDhAecechnmFo6SbQLVvVDIQhBD5CF3hq4\n", - "dcQKtv3FRypJE9dFAcSqB7DONiLSCg33QUc3mFkR/4uQfvnCX77GW2DD5FsLyC0fh+Md1p4g7xj8\n", - "U4LJBESC1pRG08Ech/BpAj0l6pxegikPk4YO9SaNuiJWMnAaXlJuH6ZepIRJsraTjMsJ9S5IDsF9\n", - "JXj2Vjg6yrHnj5G8tUiHwGBTgmKwndpUHAn6SDPFiDtIS0Ewi0OkczCRgInHgEYRuUTVyMYbYE38\n", - "nCMC0JKEJR1w+iGR1lbQPJB6A+IvXr0k9oLlQeAnc9zmK0CPrcY6q+iTIJPgDle2OttgKshQpo9c\n", - "Y4KxTTpm3sd41IM/WaRW1xAMnFMKNCeRwCn873LgqMkjHiElGn7RaZYiJ4mRdUEEoehRGH7hWE+Q\n", - "cWcb2UyBBAlcS8fZ+bCOs9FJeKoBOarjLI0z2pmnKZgitU3nDVeEiSVOTsgm0kfG4ZFBWHID/NwJ\n", - "Z+80tSth4iTs8ELRY+nLS8AKvm/lEmPbfEUpZbaJJOPgCk2LmSsDyUqJMJHQu6FmPZRzENsJ+d0X\n", - "cc40fVr25EloH6LuRp3WgoZrCvyTVgX1Q8uheFKI1oUp5OvxZk9zmgASqcHvKmKSIN4yxdFuD1MO\n", - "Jy5/iqwrz0jZyWBKeMPTRCJaAw4BVxGlFO6ynxrlRml5mvQSwxGTwtTzsC4Fd/VAtgDhODjTMFnD\n", - "VGKKZI+J0QtT9RDIwgk3RBJWSOOGIWjrgDNtnOeoVYsF7YxYMu1LPw235GDJIKSdsOcB2FvHBcu6\n", - "G2EIXiD4MFAGvCLSCZHboLw+QMoQim8k4DmgT1m5yi/th0/UQyoAAydhxSDOtUm0gJN0PkveE8db\n", - "FMIFnUxAY9LhJ0mYWq1MSQxSGAyLm7KzC8onILgC1JuwsQdGP0jhue9zavQgQznY3GOS7zSYDJoY\n", - "gTCSS3DMf5rRmhJes0iuCGocNvvB/C0YmKpsuVxkj1j3g/cCs/r4StjSBNveAG8STmyF19aIyH+3\n", - "dUssRHAA9wK/O5ftKkVRhOeAu7FF7WYUEalvhPevhrYMND0JN62HV1bAwH5oPUVjxE93nxd/okTO\n", - "MMFZIu8o40zFMV15Ej1lRru9JN05iu5JajHZXNZoNgymlDBU1miWBGOGh/qch7KZZXd7mH7nUkol\n", - "B1GnQTBXh9edZ3TTFGFxkzyl02TGiTUXyPt1dteEyTY7oclFuX8L2afWw+lRS4Niax80rDyX4msm\n", - "IeCFthXwulZxUt6AlUH4/UaR1yfgUAkOL7RV0Bg8vwseuhP6jcrr3getZ6APWj8EN/hg6TjkDDj4\n", - "MOzvFJEXQ7DZZcmbnsjDAWBiDJI/w7E1iT80ibmuTJfTQ+tUGU8clp+EzhH46TbQmnQifhPJD9Hf\n", - "0s2ZyUaKiZOMLjXRNrsp5F0UG3wECdGumtBLI2S1KPmAwXiPg/L309A4Ac4YaZcwpIRwqUSIEq4C\n", - "5IwCxbY0PLAEAgEoB6wbnHEY2n2oIZ3TGZMX68Dwg5TAH4WuNEy4rXfGq7iOKvsuaGcEam+FbSXo\n", - "rghD1RTgtn4Y3Swiz59Nm4Wz2zjBkzC4FoLTbtimwIgGWhiWf9JHcWMn+VAQX0GIb0yS2twHjwJP\n", - "Acf3ox0/Rs0HHIhLiHd1oULL0EpOtPI4BSOB00xSKyWOqABxrYWCyjAuBk5ClKjFW05Q0EsUlQMc\n", - "OfAGIT0KNY2QzEAKGgpw04tJDjuPk1jWgMKg4F0HOBmNjkB6EG96iB27FNsqM57BIPzi4yLylxeO\n", - "H4kfhoEd0DCtau+pINAIt7wMwUr68voRKLbBxBbmNj7iemY9MKTU+QUJ54SnsJ2RGUVEXC3wyF3g\n", - "6IFBYHAnxF+ELc+BZ4JQZ54NL3og4sU1peMp5/C4TrF/aw79ZYXe42B4ZTfK7cZPlow+RUmVmCzl\n", - "aCuXCOk6hbLJgKbhMuG4qsEpBpPmespxP6KmKHkcFIsGOSJkVALRi5Q9/YxsL9PiDJBztxHQDEpq\n", - "KfEBIDkCXWU47YJsAEoT0IBV9Q0/9J+E96yCca0yu38dOt3g2w7rG2B8CFYfgpOVWIIFk3mXg1f3\n", - "Q+gEPAQ17RkMT57coRzlw7BpibVKAOAvwB0nYfSebuK3bIVxP+SHYeVBuHkEvj1GYyRJy6Za/KUU\n", - "400mzYVJ8hRZVhE5dDmgrQTFXhfDK1xoaY2SQ0eUUK69k2zaBCMJ5hhijOI1veilAQoO6BAvHpVn\n", - "3NvH4a0miUIrOOtxF0Fppxlx9pEplXGUPbhSBrpjGRQ9iBrB3TyIu1DCLIZIF6bI+MA9AsufgIGN\n", - "0FJnafO9FoFwAnI6DCuuo8yrBe6MeLuhdfKtxzSgqQyH64Bxywnx3gRtd4DUwqurIHcc1h2FpAv2\n", - "N8LwK9D0AIS3thFrr6M1qyh6BHepg8FIifwOEdkPoTtKrFuWZOWzEA818kzQIKdPYNTo+Io6Nbk2\n", - "yo40p91pVClAzhHGJ+0EcQIlskBJsnj118jjI0cEPAUgA87noGMUngRtO0S7oMM5gn9fmZfXb8KR\n", - "gpKeIZ90YUx10qjSHN06wcYBcChonYKudhjuBi4QsJbZBXs2g7RB5wTkHPDyKmgYhmDKyqMvixUo\n", - "1xaH4HJsZ+QsNwGXqPA5a7wA/E6V2l5wiDUgLFsBwZ5py9c3wXEvpH8Br+eovxG2D43RtyzF+AoX\n", - "SB60HO5exfEWneZQEw7lwDBLREWj1gxiGBlizhEypolHmThNIWvq+GhF0x249XESDg+Gu0DOdBMs\n", - "+fHENVQujhGCUCZNrMtgdd5JsdiKT7mIKHAVJsi1rySfP41a+3PEkSWgxSlHhMyqWszTzZBshpFn\n", - "QTmt2ibhKDhPQ/1dcCgK7nrI9MCYBl0vwDqsrIwFgZWu608lWZGBZQcglLASH1/6CAQOQH8PZDus\n", - "ysxa1I1v9TJ4aXVlVakd4h5o/QX6v8ux4oYsSydHyPlhShQNJmSnBcAmGyGQh7pjTpKeMMXgFO7g\n", - "OGNtnRRMF0Y6jWaWKPqD6JLHlBFSOizFQ025gNKFiIqzdLCd/ZsjmP1TFPxZ3GWISDsOcxCX7kJc\n", - "TsxEAow4IYeDGjJoeghjcJKkL8pEa4HBx6EjCN0HYOQ2GOmEySGoM+GJDjjz82utPSSV7JOZUHxd\n", - "4M5IMQYTEWtFZDpxDaisANTcDRvugm0jEByHQ1PwryWyKgAAIABJREFU2kbYLSCnrPLS+dPQ+Ckf\n", - "hGoJTem4iuDCxPCkGFvRSb7/CNwAtXdD0xnwZSGv1xI840RzmDhFw+UUDOUgj2LQlccrUQyC6Pgx\n", - "VZKsTDFFDl3G0EjQorspmpOcieQpDhXBN4lnWFFq8xLtynPiDpNtg4quWJk3xxMU9RKFgE7AreFS\n", - "QtB0k47AgVscuLJuUq0l0v4yjFTiR96yHaWUSorI30HiBgiugXIczjwKkdvh2A1gNlUqCMehOAil\n", - "EWzOciPVc8z2A60i1Cl1LtjO5vKx/A/PNgjfDu0BRVKPEW97GjrL4PTByEo4GYaMFxqypGvhWNjE\n", - "KCRp2Z9kqgcIguaFOC5yAQ9SFBziwFnK4fIrKAcpcJqYUjSYQgoHZtFJ1GHQUEqjOdzU5uPEXF5y\n", - "hhOnylFsymIWR8j4vJw+kUGkiFec9Hk1NFOjnNCoKSXxNU7iTMUhNEJrh4dwMQGSJN/0XYaXeykP\n", - "QPyEm8KP3ZCZBCMOoRVgeqFQAMNnqSIGwuAMwg4R2T0fJcUvhIj4oPseuPfEuXjAZqA3D0MPwMqo\n", - "FadcrIO410nKX0TvH8ecHMG1IoOjvoxZcqE25ug5AB0JBaMwYUBsOfhNmKoBZxEmg5Aag21DSXY9\n", - "6ERvNXGSAWcMbzmDcniRqImYJYoKSkyScHiJqgyFco5Q2aRUcGEGXPhLMRKZNKXeHI5OF+6yn6xD\n", - "Z1CvgVgr2cQwjmAXwSETPVxEBUdxtERxlmLUH4GRr8AzK6BmM5h7rYX1mhL0TcDYo+q8LKqKrIMG\n", - "TFyq70WkJgh3tlsZsdSK7J2Ep69l636BOyOjL8C+T0IkYy3BlYHDTTA4BAxZH9Klt8JtA5ZSIsCa\n", - "MxB6GX6SgdPfgNoHoPE3gA1lEqUCmugYeQ3JaRi5ElooDWEIfxw6W8HshN0KjN40ZW0Jgb4MIx0m\n", - "mWARRyhDwZujhho6JoQ6bYBopEBCeUhJCA0PGiVqyOGTKZq1OO566I/wP9m7s2Db8vs+6J//GvZ8\n", - "9pnvuefOt+/tWd2S2pIs2TKOU46dCXCcpBzKdiqGQFHhAQoeKHig8kBBQUGRFKSo4gESIAxJSBzi\n", - "OEPZjuNJsmRZLau71eOdxzOfffa8hj8P+7TVNrJly0PLkr8v955d65617hr2+v1/v+/guc1E/9qa\n", - "0bmme8WxmyndqzMnL8487o80Qq4Xg0mvaTis3U7mumXm8Du3tW4s69w7cZBe4vqX+KEQwv/86wmt\n", - "pwFZP4mfDCH06XwHt/44a4GLtxE4eJpXPsjuH3ZFvoxP4L94P3YcoyoEn7II5vuH78cx/MFH/3t5\n", - "4V+hHxidiw5evCVcuGZ4t6FVDU0u/4LyiSY3DqxfpHmp4e3nW1aS2qw3tXG3lD9i4yY+WUh6hUlM\n", - "NbLaUhYN0iCLU7MYjSIno+hWp7KTBgf1LSedJetlS7O+7ySedRI6yuaAxkwZr+ruthW9u6bZA69O\n", - "ZnpFaZgksnml6tUUd8TssdV+bXt+oJmNbYy4cL/ymfUT9w44Pznxpdu3TLc/vlCI1Hf52Fua1wrp\n", - "/ftm39O23JxqNibikHoUQvjbp7EUf9BxZmHV8G4hMm2ws40ug4skYxprbAxRM+wP9J79rPK5JWf3\n", - "aORD0/O1ySaf/TC7t9g6ZqnFg5r8DPW3Mt/j4SHn3+bmh0ornccelZysJVbDDVWyZh56ypXEdD43\n", - "m80MWlf0qoZpPDJI9jyIbIyXJctR1e6zHBW92oMmS1khS2ZqlfHyNoeflrVy805fNy019ofSk/vO\n", - "F8xXeLAa49GP48cXflXNF6iuMz/yHpfeEMLmGf7Ms1xKifvshxD+fozxKxJbQwiNLX7k46w/xyN4\n", - "nQ99mqunXMKvyYTxG7oYiTG+GULnRzn4Xs5kjBN2brD7/5yG0a2wHr5ciLyL8wPyK2z9m3z7Mpdu\n", - "8/pswvqu1/Jzlo+CpMd+lZgfvqH9MT78kO0G3ZrjM9z94GPjum86v2b+qQvGX3pb+Og9a8+Mnb2z\n", - "LlyvaIxED0ielhpJFc7qaDpv6qZBqF1P2P+W4OD5ymyW6rzV9PRR4dVG5uWNzEpz7Eq85zBsmcSz\n", - "OgmN5thRo6VRNxTVkfzq3Fv5NY++8Ed4/Yhndxdhfp/9SgqbRSFy/t/hmat0TrtLDz5Kf0494MyE\n", - "8i+G0Hwc4+wLvz9X8+sTp/4ia3g/4wx+Dt/hD4uR3zYW9/qT30arR3Kd5+a5w6WJs623vXX1aWff\n", - "mZu3B2698MBkNXr+CxfcWut4mI4M+pVeo+ne1YGyKJwvefGoUG/uuOOCbB6NmixVM/eTXbFk723e\n", - "zhMnW1HRLlytKg1H6rzjIOmpyhnhobIRJclVjSozWwlCtawMqcHSTZsne46y3L2LPaPQNhrfU20e\n", - "u9yoZLESG9FJxpvJoumRfJL+DTZf/BV3//rbmn9iovPHGlbW1p0dpJL2vmGr5+hWVM9Hnt7Ht/K5\n", - "HH/9azyvDWxg9m7e1vuIKcNk8ddhhzvfzkqblS2GMz73HOcPFp3f+8lEo75r+1Iia2UmF9aUjZF2\n", - "Y+RaYLxMZ50vPcGLR6QFXxqydosHG1Q5J9c52mKyzMkST6otV4ceJgOPQ+Z+u6XR6JqELWURjVUe\n", - "ZpuCllm4ZWetttI4MukMeL6ilWlLdOZjiW3bs7GYvSy7nDuublmranUx1z0eu/qwduWQnzhH9zJ+\n", - "KYSwxPZf5sW1hUJyeI1Xvi2E5v/N/M3z/Mi73ilwj+Wf4kdOZb+Hv/5kJjz9LGc+/J4x5gd5MODS\n", - "7sJr6fNfy0X6hi5GIMbxL4YQXub2Bqa/7sEYchQWJNX0PW2pvQ6jlOc3efE2R0ukJSvDBzaXCneW\n", - "VqUq43TPvLnvpQdcbPLFJxm+RDfyxHxmff9Nn1/ZceMTy8rZfb3LY+eGxJUT75y5JjaiGEuTGAml\n", - "NWyi1tHUdhAqqyHXiktajYca6b7Gs/tuZw1ls+V8UlhDI9R6HtsNR24lUd6da8635XHqdmtoo9X0\n", - "OL9kdv+n+M5sQR65fsLdEMLfwS9Y3AvTxZ/dj/FSf2Hc0x2Sl4vPy8DV1xaGjrcqqu8LIbzxtVbC\n", - "3yD4BH4xRu+nVv9n8V+9j/v/g4wN2svsvcS1GUcd8k7uuf25aX/HYKVvZVR4YjB3b61jsHVBfaaQ\n", - "zCfmsXZSdU1Siu19FwZcf5PXrj22Fqf20yVHoTILx5YmY/F2y+Dtq2bbDdn5Xamxpebcap2SlPrZ\n", - "wIN84qAuXKivOEqW5XFq2pjY3061q46TNPdaf2gWjx3nU1Uo6BRUTTGZaGTRJGeSETqsVJyveLK3\n", - "+H+W/93Y5oiVeuYDbx27c6bnZDlxafpA8tRUdZ8nd7l/tqH50UYIRcH/+ZVeSr8RmiF8+Bw/3JNd\n", - "nkmaKyH5lWPxv38f3V4f8fD+wpAsvcDWqUjm5S3O3WVljf2K7l3WLhaeOTh2a2tJJy/NGjfcSWc2\n", - "J7WnI7dyHm2Rp/zc8iLktB4vPrvaZgXTe+wEHp5nO6WIjJOJTkg8JdNQKJJl90NUxcSRLUdFIglL\n", - "ZEOT9tCgPVFXv0JoEjJlmBm1CleKjn4yctLY0W807M6PHah85GWevU+d8KVV2m8tpm7Q/yQfW+HD\n", - "d798Si40+fvfF9z+sVN+1K9Kuy9w/AK9x3zYVzBU7HPh7FeIFjm7IE5f8ofFyG+MU2b4VzK2aS04\n", - "Wz/1p7j6Ntu3UfKZs4ze5MylxWbHG5x5QLlReiI8VLUe6k7Yay++B7IVXr6W6XRyl5JUQ2mnXbhx\n", - "du6P/PyO1tKue9+eeGqXi+sd46VVmYk7MnNNMw1NE3OZmVxUi8hMHemYm2lmLGXk+TkxFHrWrMRC\n", - "HWYKE1HUEXXDFbN0JqQzMea6MXN9Otbc/GUH33ONmHCmy/K+7KVE+oMHuvdpfalt0Oga7h9LLmRu\n", - "jprebEysnZlJm3zHCUct6gaTQOcO5zNuncPXZdbB7xM+YeH38X7iM/hACLoxGn3Vrf8Q78UKx9/G\n", - "B5cXSrKdpcqjbqY1T60eT433+no3KydbCc80HH7oUOxEV+uupVkpTUpHYebGKqHNzkrDQw1lo9DK\n", - "H9iKtcmcc0Xbm5fX3N3INMtAkVvLL2g5dpyRh7EQE+uG0mRTljTFqi+bd3WSHUW7kJjIi9xefkmd\n", - "XJOVUTfMFPGWsnFiN2mZpxd0tMRwZG7fW2Hmo3NOziWO0548C/aXJtbMFWHk+Xsjr11lraCdsj9a\n", - "8rlL5w1WOup2Lf/3DhXXQgh/I8b4VZ/zEMK1J4X/6KL1My1rw0Q62XX0idccPRVC+JHTUfDvK067\n", - "4P8XP/VDbH4PT53whVWmN7h3gS5WksWicyNj2JnK86nVhCwuzs1yubAZKWpagXnGWsXFOZ2aX1nh\n", - "UkEPr71Ae4cnEs6EZBGxGGpPqFHYFtwOiV4MBqG1+MVJX+2YpBRcxkxILyKK7gtKTUMHeamZBkEh\n", - "pkEjXfMoNPyTlyZ+8rlKNi41HpM3a3v3QwhbXPgwT50q/Y57qceXctOlmaVeymyJ9L3na4+1iexq\n", - "kG+G0J4w/YKFBPgy6pzZMY1ff56PaY597by1b4pi5CshhPRJnv5hnqnYPeDVj/D5D3H8WQ7/0WKu\n", - "dnCVImGWLUxj1t7hlTXCbq6YNhQX56pmYX8zt513ZYKmxJJEHVMvp6VPvViaF6mz9YZkf+DBhSDN\n", - "m5aM9ZNr7poo1DqxZRY4kukbGGNFZkcphGXnjXUs2UvWbXnk2FyUmuk40ldYljhUoLasSjuqdN9x\n", - "7MrzgU53LEkL9SSnOdBZ2hAa61ayHeHyI/nlygcPxu7WZ+32thwWfb0vDDxu3Dbb2vXUw8XtUjU4\n", - "nnPhDm+se48z5TcpPo7/8v08gBhNQvBFCzLZVwhZ/MZECKFF8iTNVSY7ePu34yS6IK6e+y6e2mWt\n", - "z9aU9br21tnC22tt3cNS0T7w+W9ZM1/JzKuhZGNotdHTnlbKrBKbiUasLOHm+bP2+tvKVqblQOpQ\n", - "CBODfMsgWZPVS7JWw9H0gWanqTVrCSEK6UAZK8JIK6ZyK3rxwGFYN29lkjCUigbpurk1uUy0K6Rn\n", - "xLiqTudiMjS1qdSSm6Kp1DUMt91oJ3ouelj09ePUSb4nzOd2+4eyIf0h8x5VmXqwet2st6VZUlZ9\n", - "WX6i+OiMfyuE8J99tTyTDb57S297yfYj0hrO2rq3J145Uf0p75MEPcZ4GEL4G4QnuD5keo3mhabj\n", - "jcqnN0rdnLrJ9hIXjxfRXFnNalhkA9XpQvMwqjlXsVvQnjBrBKsd+lk0axBTqpQnh9wT1HJJmJtg\n", - "KNiQO7apXRemdSJPW6qwTUhxR+Ka6FjtWbS0pWZStQcm5mp7jpIM1+3HC7IwkyYPTdofUkVCPpeH\n", - "I2WRKC/t81feVmSLIPmH68t2nl+TlCeqrSCeKV148g1H86ZZ/ynFF+8LFx9Y+9CeVnviyqv0/lTq\n", - "U//GVYPJ9UUl5i3SX6Z/gePzp9yThyy9toiof/VrvUbvZ1DetkXy6LPo/l5b0i72t/LSQsV2dJOt\n", - "f4XvPmBzjHscf47Xz/GLr8c4/LkQQq/hl7b63vp4LqtPdM4NXT/iaL6uqC+LSW3QKq3N33GSNZwN\n", - "uTQWhMpd6x6EFZXao5Uj43LHSnkiPN80bc60s7GmrjSZm8WJXnxLP1mSaNiX2jOyrKXSdl/beaXa\n", - "XKGn1hCl5iZqXXuuy4zklgSbasfmZjJNSdnUivuO8sxRLKUrmXr+UNa5ap6f6DdTzbgpZg15vKOx\n", - "3NYOV3TGJHmpemJb95cTs2zsZ8+PPLVL94CtLzBMuTf0G1gpfzMgBBm+Bb/4fh+LRXfko75JipEQ\n", - "whnO/yWeXma15HHKWw9DCH/rtyFX3GJrhRf/OW/8EPkKYZlmKA2bU6Otys7WeXndsTXpG99+0/Hl\n", - "gbyZinlDb5IqZhOpmZVs1Stbz1iZtCzPK2neU8g8jhOc0U264izTbq84CQ1F9kUHaUs/jFS6EstS\n", - "j43D1IFCM9TWve5AT6EycNbcWD9sSrRNw74iDM2r/mKFkLbVlnTtmTjWUFqSmGnZS1JFvaFR1opG\n", - "X2N2aCfvWpuO3NyYO0mDopcYanu43JGOK1m2zKgpfTd//sOPOOurPO8JTzQszd8tRN7FkuaI3ge9\n", - "j344C4nv6k9z5/sb4jNXVPmalWFpNt/1YO2ek3Zlc8oo0JxTtdlNuJWQdVitWC8ZNLlb0u6z2owe\n", - "WMTeHISeQaeynlRuP9lxN5zR0LJST5wkj3zeyPPajnRtl7VOcstj1yzaCQOJocRlZEq5oMRbco8s\n", - "Geo5NJbacdmKNVU4q5VOTOKSNFTKzjpxX+U6N16XfPC6unps9zKf7TQtr26K4UgWC8u68v2+Z+88\n", - "dGNryckHgr3qSPfqiXbztjpUVo5ZHp/X+c6XDH/5OfU78AKNf0DnR2mdX7C+PWbwgL/5O3Hmfj87\n", - "Iwf4oxaGYb+nCCF9hmd+kBeKhcPqrRe5+SLxH395q+UZH7nFl66HELIVvu8ZJ822IqXVnTic33D7\n", - "0pFeuqkVKlO5dDw36aybq40sq8IDM32PXLSiMFKRnLGRpDTu227NtUPtrloWMuO4Zz3puSSTmlk2\n", - "M5W77YyW4EjLxIFopBK1FOaRKqxrx/seh7NqqVRlojSyopCI3lQktX4ZqafezFcMJqmifYduX9mb\n", - "aYbSclJohUoZ+rpVw27elc5TnWZTdTywvz7TW1lV3eq5G0byn+Pph7ze48059//WN2qmxW8RL+JO\n", - "jL4erPE/g3/9/T6IrxV5CC9tLAo7+3y+4Au/ebjj1p/lj6ZcO511v4D18/zMd+NHv9r+Qgg5LlKs\n", - "Lsyhrvxdbn4/zS3ak2C/21DNG/JWTzd0zKpasn5R9/HrxiuHhNxJIwjzmd6gNhltm27k9ppTszwq\n", - "00xiW7BrlrJUV2adTKVN1lLXmZ38vsyqtdDSUClj08OwbmzfUNd1pXW3PXLJsSHmpslELZPqmduT\n", - "hFRipDSV2ZUbu6hl1VyltqTwUEMRKmUjdVwt2RxsmvQfebVZyfLEJR1V3dKtaOSHbvX6ZpOGlaQ0\n", - "78w0NoP51GKe8ZtizK2x+bcuveezKDpUZ4TfF+l5CGGT7gs0lzh6h/qNL99LRz/F3X//rOWNTauT\n", - "oMoayukHnP1UavrhG96p6KSLkVWz5lGGesGbO0kWHnKDsEjruJSQptSCgbNelWnEkTxmpskVZQha\n", - "dTCNTWndsJvc9Fl9F2Mii5VxSGT1CckeNgWpYKxWoxTcETz2hMSyllQ00XdH5khHQyaLpTpsSb2u\n", - "Dmu6saS3p325MC721cvnTHqlt16f2GqlVsdT9bnEwcG69ddbOuMdl1uvGNy/afDxTLnSMppclE7P\n", - "+/l/7Z6qcVZ7b6R1nvGrsMT8eY7/KT+5uwiJDXj8O20ovJ9BeTPMTj1Tfs+wiNC++Gf4nsUoDIv5\n", - "X/wYP/8dwbk3ogv7CwVNkVBXuNDX+OG+zTLTPapMW6mDsGV02DP66BXNtJDM70nzjnHjOalfdmhq\n", - "U8OhVUOFSmVPtFpnhGV1cuBE4lIYODL2SOUkNJw30BLVEkPk5noGbtg0c4RjO0505QbG0nissCbR\n", - "N66CcTowkKh0FTHXqEtC0K0KM0MDV5T5hlgnWvXQdH0oyVYtVczk2nEqC4mQEM1VIZNOc820YbB/\n", - "zt3PZ0xe53O89rd5+xrFEfHlGOM3Oz/h/TQ7+/X4LP7z9/sgvlZ8O3/+6dN581t8/6/w/Gl8wVdS\n", - "e63z/HmuvUd6WKYL4uXLL4UQfuw3K5LTEK5f5AfO0brh3tMjP//E2Lk3mK8t1HAPsxXDeUtjUssa\n", - "bUVYE8spS6VkpWU0K8QwszZCOlEk7B+nspVM2V4yiW2hKsj31HEixiVl2hCrwig8Jj8iS9VW3bNk\n", - "P07loVCHLa1IEh57ZCrV0JY6EDSUttEwtKNhosJY4k1Vdk9wIlXINS0plIJSVJtbEdxTGSVn1fei\n", - "/XRJUg3Mci5bMZl29capPJ0LSxOTpHQ7nTvOVjQfjWTpvnKJ+n4IoUnrJdY+ujibB59j+kvvOrYO\n", - "+Uc3Df9cw/Haiv5BqU4fGK4+ZsjhT/xu3S8hhDYunv54510SfQj5B3j6B3iuWvD57n6ML9057ZhN\n", - "0clUy6tCHZU5RZWqJ4l03lKHRNWrHU+5n9G2MDDrNRbekzcDs0A743y6ENF1kGp7w7JgnTB1x1AU\n", - "tQVZMhOrYFiuqIqO485UEnnY6DiJZ5xUgfKIbLHgpBDVglzwSE9mWRAFUVdTz5LMnrFCJQkkShXS\n", - "WAhKSUi0WmOhWZq0cuvzvnR96k590Z3DiY1W7slxolHuenBpana21BtNdIvnzfcuSvNVdasjm/ZM\n", - "lzOzJwu/NgC0QcxpzmN89Lt1Tb8ZOCNbbLVZ+1UVTXCw0VX2W/bPXzdoPPJ6ct+VNwvtE44/Reu7\n", - "l6y02jbvFMpuLawc6m71DTfPEZ9QxFLWzM27B7KkqRH77mGoL9NzrGXHSFLXkpgqk1QaohMT76ic\n", - "4Jy5lsoVM5XcRGGkZaBh3zkTfYmm3FCJIVqxMAl3TBwYiJpVIYQL2prEHYfJWBUm8nouJA/MGg2q\n", - "dRvFimr3xGy5YZLsG4UDSZpomNkLubmBZpg4Z2ZWjIW6VjZz1duXuflZLu5xj/N/mrXlRSz23pMh\n", - "hB/9Jg/M+wR++v0+iFO8jdU/qKF537VYYYFznEx5+lNc9xXdgiVfVr+Nm9x/luIiwuliYstvME4I\n", - "Iaxc44f+OEc7pEeK45k3X2g4fGluIyb20r53kheIQ6P+HZuOzPRIjkzzoVmaKtKhL8XEajfVjrlp\n", - "txbbe2L3qhhWFGmqGWFXGQ4IZxzrmYWocIt8ReKahlIZZqZaqKw70Q1HmGianZYglVVB4ZJaMFJK\n", - "DJT2lB6LgSyuaVcdkkPCsqlEUCicyFU248xuHJnGynylZ368p56e6GSZtWJFp04kjUqoMo1ipJ3v\n", - "qOtMPR6rk1vqxoGlmxxnbPwAH7rG07uLBfGbf5LPPxdC+JsxxiLGeC+E8J8M7f7HHcMrpbwccLcy\n", - "/FHqL/5u3Csh5M9z5c9xOVs4298uQ2j8XYqbXP5zPJlwfJaTmnP3aFzmZ384hO0G299VS4tamGVa\n", - "46hcGymeu2H4gaEzWe1iZKNBGhKdOjpuROPICWLk6QZ3k0UR0osLZeGuFQPXdeRKU4l1EwNVvCMN\n", - "qXZCC9O6MjzsOnm0wdKKsDzRzh+pswtKZ7Gv8sBib3dVokxXLZMZaejqGTmwJpiqPDLVEtxTSLUc\n", - "ysPcWhyZtY81ilSdbFl+3NSMJyYlg82OeTkzb+7aeXLuYrdy7hGamcHFmXeqJXHe1z2ALe3DR04u\n", - "rijbQzo9xjVukY3f88yePlvLfb5tiQ/UjPf59JyXvxrP6F18MxQj1UKS+i5OussefnBb6+2R6VPL\n", - "YtLXiMHnP3pT9c+DkwOWfuBYWhXKbmn6ZF8ojo07F6Rhqirm6mluXuWs9MTkgap+UVbnRmHPOAzU\n", - "NqX1XDOW8jAXwo5o7gmVQ9EZmVwpCg6sWparlFIHjvREd6zqGevKbFs3NzMVQtey1Chu25wfGeV7\n", - "8pCqnFGEtio+0rWrq3R2cmwQnpalDXUxMLsQLZfBsoa5G/bCBfO4JjFSGRlYUaSHzo1fMc2XPS4u\n", - "m3zpH3L5Fo9HnrzCJw+pxouW5eAiP/MXT1n236wk1k94n8mr7yJGdQg+a8Eb+fH3+3h+p7jC+HWe\n", - "9JWLkX32Drm/zODDbCwt0kjv99iaEf5SCOF/+EqGXS2ee5bkdfnFG554run8aNVw78Bgee6L6ZZG\n", - "uGj7qOdRb418bOqOmIwcrmyp045WPK8rEcKRfJYT2i4UY+90xkL+WCcuupzT5Bg7og1l/cgspIQJ\n", - "liVhW1JnOJaFZambGmrRwDLWlbqiqDCOtS+FPWfxwEXHeqcvvCCLS0p39MOJvmhkbm6kJ1MrZRZC\n", - "iaNQqTy2Xg7drxNV+0QopuI8mjVKjbQnmVdCNpOGVDUbMD7RGNWaw339t2bmNzi+wlPX+eStL5/R\n", - "jdtMrrD7JF6DGONnQgg/ODJ80uJt/SD+Lq2gFyOYp/4Cf3KHlVN56WGLH/8LvPWPab1IaPH0dGFy\n", - "eefSQgX4xMe49jJHF2rj7K43NyaGea2VzUzDyFI61kwoC04a9JPoZkKvpJUScspkoaB5jJAsxjhV\n", - "4ChZMZap0NIVjI01pKGhZVm7pB0PdUJUVE1Hh48XcsRWVMXLsioR7CqSNQvDoHdlS581NZVZ1zp9\n", - "S1SmNtxzXx9HUnMj+xId3djWV2o7tBxHurH2RroiqQ/tra1zsiOsNx0X99zqjn3oqLT1OFJm7jzd\n", - "t1RFa73a/ThRNTKtwbJpeEM5yElucqHPzpusvsPnvMdnJISwdJ5/+6MsXWVvSvMV/vyvLKS+vyUq\n", - "xtdLMfIVZzUhhL/6nh9/Osb401/D737Mox1urXLlMNg/s4qZ/eZVg5+8Yr4/pzVku+TZp+kcmD23\n", - "73jzdYP8AzZ2Mtm8NG9OievsP2KrT9onPVbbV4dnlSHFM8RXCPd1QktMJnYcW7XrikJX6pZMR2Uq\n", - "VVn2SKYtlRo71rClq5TKjU5r300jK6Z2TKzoVzNnQuFRY0M7RD0PtJ24r6shMY5Ry0TZLBWziTqd\n", - "m7UbzgwzjfmQdq6bToQ4MoipflULYdlhbHB/4kHY13xrYPzTd7V3mLzK8iabH+DN51lNmAfGx5x7\n", - "yOOrFqvybyqcmp2t40vv97G8B5/Fx3wDFCNTsvki3v7/hwURMfwD/vl/yHMX2NjlrRXuzLn6KsUH\n", - "mf/XIWx/np2fpX7tXXvrJssJyU2bT7ddPp66e75heOGsJE1Nmk2DdCjrFqrkgiJ5wiBMJNalVaGT\n", - "pJbrFuGyRjk3yYdaIfi8rmnJqlK/vm8S5qoYhLBtNxyJcUqyJI+H6nBWqqeZ1EqpJA7EkKo9VKj0\n", - "jeRKM6vesaEOmZkTd0yMkJoiUVlTGjoTWi7V3dNtAAAgAElEQVQIturCOORGCneUtizGCAGPJPJy\n", - "qh2PbXRrzbJj0Go6U4+MkwMNQUhbkvncYRI8Gh7Y/sKxp19mbbgYX/+Lm3RepJcvFnfZe3yZLkxY\n", - "u+60GDm9RlP8rnRCfi06z3M557XrjM+RzNh4h6dx49tZO8NLN7/8SlkKfObpzO7jc175lhWNtVr0\n", - "SKPzwJKOtXhsJ689GYPN+YIDctTmYYw6CVcSBgmbkdsJN+KCxPpOTj9JPQ59r+iZq0UtU7WmVM9M\n", - "Q72wUqgLMa/kZdNyGhy/tClv1qpkKFrWEeSaDpxTauKAuEbYc+yORxrOaGiYKCQem2p6ZF20pDaM\n", - "tXk89FyVWlMJoibmMwbFfY/PfdxkcE1zMDC2r9zNjJcKk2btcLfh+NxF6eul9kpt9Xru/vGSSRpN\n", - "jgNHy8x3OHiV/YzHu/yTepHu/Kv3QIePfJj+h7gHy8w2GB3yLSGET/1WitH3U02T4Z/ig/hnIYT/\n", - "NMb4mfduE2P8q7/T/ZxqzP8OP/GXePIStqfu9bc8vPmt5m90KIc0Znzsw+yWek8uW63aurNHdtc/\n", - "7aCxqbN7IMQV9bRP6wKxzfSQrCTbInlsEZH5ELlM05J3jOMjuZluCB7quy1R6dl2pBDsOqdp4p5D\n", - "B2qXNUWpVEtPYtVYFIykdqWO0E9rtcqhhpamsQtObNiWqkLTfQPHyVA5Wbd+a6C6dIY8aDQqdSyE\n", - "sKuUynT0TM2TcmFTXZeqak21t2/zHv9qRusMty/xxlPk63zboy+71T7s8fMvWLj8fDPi495/s7Nf\n", - "j8/iL7/fB/G1YEijdzqXHpG/Tjb6TWSCMcabITR+nDPLiy/d9iGXj7j7rTzf4qkxKz1e/iFe/adO\n", - "VUbH3P8CT5fiubkvdK9LqmWt8cDJxjUxOVKFnt0wkMYvmsW+EFsmsc840RPUzR3tTma97huZ2qiW\n", - "7KcddXZiCXXat1aXgso8DD0MI5K2EOey0FZo48RUH00hTPQcyezrqC0LWla87Kq5pkXJcs7AA7Vz\n", - "2pZlZsZ+RRWiSzqWnOinlQ6WJN5Uu2ARM5LgAoqQeJS2PRPmTqpEM1mzkrSUBo7iY+Nmbphnjkcz\n", - "9S+NXX2dOmv59IuZB/0l8w+sCPXMF7cP3b1y6Ft/iSunRmiTnNnvKHDtt45si70P88Kcs0OmTd75\n", - "GLu79O/RmzLLaZ0SVsslssZ5g/4Lzt8cqNcKs/W2i/O7jvNj7ZPa5eXgagzGKfOUfsIxBpHjMmjI\n", - "LJ0ULjX5hQZ7KceRg3TbOK6qTXQUKE1VRiYajmTGWnKx0Vs0LxNmKxetqrVUakGhr3RgZhOlRFSb\n", - "EeZ4SmXPTZU9pZauUtvMA9eVrkodxr6RUgwjbyWlj8+CPKGqOEzYmJT2RY3Ht8z6mfrR0/yzoXh5\n", - "rn76WOfVM07CkubRTDbZMTt/n9Yqg116Oxyv88ZdTvb5b2OM8690VVZ45qJfS+RPiRfxykKF9fVb\n", - "jJwSzL7792lfj0MIf41716P0akf1J/4EX2wu+nhuLfq8rUKzG5wrl7RuDJTXVmwu7wvxnmmdCXt3\n", - "JRuVeOaSmMzF6g5Zj9C16FlNLfyPJ2pTQ3MtbEpdj2veCuc0TA0deaRjyUwhE60qlOaCxFBhdqou\n", - "j6KgY+7AWE+2mF2bm+idyoAJ1mxIdFXmZrpxSRK3mBdWjh4abL2tytcNs1LIDnDkqVnHnTD2KLuk\n", - "UfbMQ66YDVWt14QnOpYfjD25c+qxssHtZ1ifcXTIzspCc796TKttMTz9ZsTXE3n1XXwG/1MIQoz+\n", - "QIWc/QM2r5IG3Fjkpvz9GOPj3/xfFXfo3llkS8HPfIRnIo05JwcLUvrSnIc/fCaEJwsGazy5znpi\n", - "uNkUG6vS6tCsvUTa0p23FfmuJCwJ6b5ePXJ2NPKoPzDqJJIkkcWgXc+l6UQdUgNtBaahaWxXVc/M\n", - "0obczECh9gRWpKGHL6jjQB2WpQ5Rqowce2xVYtUiSHPgrKmlUxn/xNCa4Oh067m2WmWuLVhTCBK0\n", - "NX5VQRPkotWacZI6tCZLKkU2d1tlLSusGRnpa9RrluqZpdmhWZiZ/B9j/gM+852XhR+8Ih7NWf4A\n", - "nQOxe+Aov6TZec3Pf2LH+k8skry/lDB6NYRw3qIl8fD3bnRb9Dnb4YlTE69OuSCZ/ujzlNmimHj9\n", - "0iI7pjlnt9Pw0LbmUWGyHI1DpdlNJMmmGI8Mm8HZOiqSSpHSS8hrOgn7MdEVmBNrqhlZO7cUo8tS\n", - "b8Q105BjrOXAzIaGucJDwY6WtrUwNzMkTBTJhrkgrxJVmpwOXgZ2JaeGpk2ZwSlXdNninXJelBlo\n", - "OZHqeltPoafjtiumoS2Pc2UYG7jrF6uJ5/cX5pS7bVrjRDFLNR83jIbPqn+hy+RpY6+59wHON099\n", - "8kXjdMX+K0eU/5InA0WHN24yusf//hsVIlAwGC0Wpr+mKD1VOPyWHLq/XsY0v+c4ZXu/ilf7IcSf\n", - "4JNPMcyoXuXiCodN7bSlcwzL8rcLwyrlXGGSNlx8cOS43XLUjgKKvKPSEsxEZyw6Ix1sq90yD4U1\n", - "mS2FPetSTbmGSuWBfZWx3LGpNZlcYmQiyh1roFhQngw8Vom2FO6ZG1qQ4fooRWMtqUpDLZWokiXZ\n", - "dEeR7buz2RIPJvLWTb2s0E4zvcMg78xNG+tmcUWRNswtq8Iq8ZYsXDftveEff3LF6NKWav2RamPf\n", - "2+3K8XmuPV6stu6dZzC04Fp9M+Lrhi/yLmJ0PwSVxVL47lfb/usJ7/DfvLNweITbX82pcxFyaYc3\n", - "jji3uTAum5xdBGI+TBfExWmj5a1P9HXPf4Tdh5wbyz4y1nkwVs7Oqru1JGPc7Frdq427lMlA3d1w\n", - "oVpW1m9p90oXpycO9cyalVbNtJo5SGdmoavMNs3rM+owNAoPNZKHGnrqOFd5WhKWhTCSWBK8IITP\n", - "qU8NC4OBloFULdWxpzRQ62iZaEgURhrGGlpa2De1KhUXSjgnClFPX/tUkVeqjdUGp+4lj22ZWRWS\n", - "h5q2POGxOrBZl4Ijd8KmaexaHhxLu9MFKbHY5tnvFb94hwuXmOeS5Y58/VCaz52sbyiqHT+2z+wO\n", - "d37mHH9xezET8ZBRCOHvxRjf+d2/U1aXaN7jwTprp/fIvSt0+4tuWChZLbjfpH+T5PXE3veV4upE\n", - "a2kh2x2pzNJgXheGKYnaYbboXDTighS7izMSG2o7VWGnzVFMrGp5flopmx3D2LSXZO4lHc1QWPGa\n", - "A8cSR5pqB0ot61qihoZjS4t+SLoQZ1fa2h4KWtLTb/NohisWfuv3LSRDS7gvmqvlck1TywaW9YUF\n", - "AbrIhLBl0Hnsdp6IdTAa1Yat2s6dVHXzRV5rUEKbWXDv88TJvvZSqg5te8PvcvTpCxz/BLc+xeer\n", - "Rbf15rtqqd8Iu/ziK3xgm+P26T7usXxjUZz8lhy6v2mKkffihB//LG/c4EMJ2R7/8jrfvyQ+t7gR\n", - "A0I9UR8d2r4b3Pu24MxB0I9H6kFf7DWFrOlIS4y3VWFVNLHwyF2Yj809NnO04G85sSPT19TQUSkd\n", - "irbtWMNMT2HfY2Pb5hJjqwYOZcbOOevYocRM7a4ejhUOtdARDFXWpUZx4RJ5mO2TjayeX5YfrGjs\n", - "jRysDqw2otBsuJctu50uKWKpDg0xHlJFWmeEcirUm+5+8lkbg1XN48wgm6haM+vdubq/4OGdG/Kw\n", - "TfhgCOGV39wT4hsL7zE7+8xX2/Z9wMv4kD9gxchp8fHKV9suhLC8wZ++zjMZ9j0c7frxks9fOm3Z\n", - "l1z8BfrDxNtPnVUsBfPJUHLpnrU/su5cKLTah0I88aiZKKqmSTJxsLaqngyEaa2bTvTikYmRy+OG\n", - "1cktn+mvu1t3PcjnqrQgPkk4Y6QWkqEYN4zjXC8M5OY6EuOweN5bCmOPRT3BEm4LgpauflyTh6kj\n", - "57Ud2VPIzE77HtFEpTBWaAh2BF90om+x6jxwYNk5iVQtShxK7cutGNtJeoY2FMZOtOVairgiOjZR\n", - "WzG1Wd93s26r5sFg3uHOCb1lNs9x9wadivUTS2cSeZYrGsHq2x2DTu7GYaH4H6/y734Po+1TvsAO\n", - "3X/GD4cQ/vpvJ9PmN7jeKdkH2fz4IqZltk3n9cWi/dZlygbzcuGOvXaTg2NuPUOvxb0+j/enjn7m\n", - "yPr3NOVFIa7XymaQz3Y0WpVz8+Aoi9YRq8WkoSgYp/SS0iwg42jM3eXgWhVMqpZYVNaSEwfpum5I\n", - "HXoLI88rbUkFtdtyN5Q6gsyagVpTD4e/6iiSachNbTpWuOWuy7hlMSiaWlic9i1MXtaM7UsMZPoS\n", - "jOSq2FYntUF9RrM68nq4IB9MFC4a3b1J9XmmFRfPcXSPJ29wpa1+venuzj5/L+WZZcIX+einyO8t\n", - "CpG/Z/FKa4cQ5u/liPx6xBjf7obwY8d87wXCjHCH4wf8r79ZR+W9+KYsRk5P6tveQ7zshtCMRs9u\n", - "OdhKNJNDk+27sqR2VKE+drXouBcOXU8SD5OLYrlnlJdmhhIbgkLqLU1x4dehMBC8YduJdROrKocW\n", - "dXmlq3LRqqZc6eSU0Jq4Y8nbcrlUJlhy4lDi2HXnMPO2Y8e6Ej0te24bWvFA17yoVfGuVuPIclyS\n", - "t9fMzncN6rZ8PlbF6F7+lGq3QWdL3swUjbZqfMR0k8N75udrx+f66k5f+jAh5qZJQ2PWUpUHJmml\n", - "a2EffeGE0fezn4UQ/revVj1/A+EF3I3R7+iL9vcI7xYj/+j9PpDfLZzyy84jW+fPvsjW09zbYnSX\n", - "5Z921H3H0f9C9i849928eAAtxxeCQZ463HxoeytxpW5rOlFspLaPa2s7d728fkFW7Ws3Bor6jnmY\n", - "6zg0T/ZJaum0kHfnrjfGBnHdSbVknjyhoa+ot8RkIrorhnuCrhCX7Ie2k3pMGi3bM9RRydX21O4J\n", - "mqKmYGhqoIpz03BoILfqrFouc3iaOJVgV1SJvhUP8Kq2XWfkgsJbCys1E4ljG0aO7KIlNT3llz3S\n", - "djG2FGZSA4chqmMQ66AcNN0ZpgY7u4v7p5ijXLz9jx/Lr16RVTnzplA1xeW78ryw2m3YeepZ8u33\n", - "dEjPMHqO1YcLU8DfoSPwyvfxwkd4fpdGxad7fPHD/LH/l8vv8GCbo+9gf8hL+wuvmYcPePs8X4wc\n", - "/jXO/5X7+m/Ujj667P9j705jJUvv+75/nnNO7Xffuvv2Oj0znIU7xUWiqM2WYlMLDMeLEseGYTnI\n", - "Ar9IgCBGXgSJE8BB3iQBEsQvYidxFMOIIy+KF8qmaYuWRHEbchYOhzM9M73f27fvfmuvOsuTF1UM\n", - "SZmUhhxSQ0X6AQ3cRlfdevo8p875n//y/a0U0er4yP7ygYWUmuh4wIMO5wuGGad1NsuZ0++NZNZ7\n", - "kSWUZaZetuXpRFIfW0ju64TUkQaGNiQuSSQ66gYeEfXV7EtkSlEhuK+Y481yJ3Ycazhnoq2vqeHI\n", - "SA3bZlmRXfMoDyfY0tdVqrTUtFAlpaGWqUonrovF+5wVlWo4YnwqWX/O2rVPaPXquu/fcjb9cT7x\n", - "KMcPWPw1LjyY1eMvbc0ogGdhlqX8b84zSGaf+2COcviWBN5BjJ8KIbzwOhfM+A93v51y3e/LYOSb\n", - "aRDjJ0MI/fuO/2rH4tVAtWnUuuhksacWj7y+NLZkydX8RGda2akl0vRQO6xIwkBuILMt1RFMRWOF\n", - "ykPXLSpcVjgRdDGVaWjZlVnRsomapr7zgi2VgcxQ6cCOqaGLVh04c6Qu9zQ6ckOlJUcOHFI2TJJK\n", - "lg48XSxop0tqoe8kRA/CmmKSCdW+vLFsnE7F1q4yu6hMGqSLtPZmxdKi4Wy7J2tODTu5vFrU627J\n", - "xwMHbdI1LpywfJfmkO4Jl6/z6z9g5v77+0Hfj/0iX9Vz+FNv9SK+WwohPMKln2e7w8G7BqbvekX7\n", - "1m3jJ9cdPfhxw2ffTWefR3uKT8xawQ4/zIVYuL+ceNjatnJwS+tCzfrJme7GREuqkUWtowPLawOj\n", - "pKlejAzrE0tJagUrMbeWB2drqXBSGVapqrZktXlFFZclBcN6LpMobEgM1YyMQk+Ii6p0LLWvb91U\n", - "Oe8B2xE9KtpUuWUsMwjV/EGmY6SQOJPanLeuvqhlxaqWRKbrgVOLKjWpmmWpqQZmGd2+jq5ly7qi\n", - "VF/w0JJD14yrL+uGuk4shVBIq7ajKjHortnbaxid7Sh+2czfp1wL4bnnedcqxZeEdEWRN8hyjdHQ\n", - "VE8rp9ass7X0W4BY0CZvzCzI3+TeX/tZ1HnpMqt3+IkX+Kcd/v57eeQ+p+sMIj/2mdnlC8736PVI\n", - "J5hS1UYebd5UO2vq1aIiTGwP2W+TnczcmgcTHi7zaJyxatZwP/JqNZvYyTLKamJQ71qTioLU2Lqb\n", - "7lqWKG3JVDJjhVJuINFVWdKwpnBi4shInM9NjeXzc6PmyFNSU6WaxAOZA3WJQsvYxCzV+TaJBUt+\n", - "SNN9XYyEeUm/L00OKBfUpk0r1bHBym15deKRTuKJlyrv+kLNZ7dTd9KRW02iC/TOcXWFx3+Ej72m\n", - "8b6p9qV1ro4Nm9umv/xj4st3WPkkvxBC+B+/2cj8VzXPcH5Hpfs/CEa+US9tGTyzatDdklxtyIqG\n", - "iwd9k5Ud9y/dcGE6dKWsWym67jUuS8q+pexEFXNH4R1q2lJDY30NKxaN9d0xseHIVN95leuCPVGl\n", - "MnZopKbU1HBi5juRGGnJLNpy177cvqGBDRNXZqeQSqmlsiSzHEtFcmo/JOrVqk66Lg9NIUx0Ylc9\n", - "LBgt1yTTiXFyS2OtTRmMRq9Ia21la4DIYYf+iXjQkl9P7Dav8GKN0YH9p0cWCjYPeHw+svfMBhsv\n", - "sHU2Mxr8fRWMfL96wDyHv/pWL+K7oRDCMtf/PH/0jPvLrGw2bA1GTjaW+Mqxg3P/yovvfrfhjQ7b\n", - "3RmO+mMhhE/zymbJZ5pq/9GChdMgP1dXn/TUxgNxsS5JJnobueX81HvudhTXCrfSxCPlVJ5kqjJV\n", - "1CtrZenLC5lury4bVfqtUgyZNPbV4tg0LAuGApK4qxnOrBrKLDs2MNKa/W+qe8pkTU1i6jVsmLoi\n", - "OFObhxFdTWMnUgfqbqtLXXVeTaLQs+GGA5ftCIbI5YLckS2JhonMWE9b07LEkkzw0KmUJDqMtzRC\n", - "33Je13jxyGBcd7esdF/sqt2qbJzS/2AIYY/m8BOsnDO+sqrqPSekOSHTGLKx37A4qXsxG/DKLj/w\n", - "5HzPDmm/xNMPearD5Y0QsiP+2bdbrpllw5b+Am97nKd3Z8HW3ffymQv8wJf4hyN+9RMoufgnv/bO\n", - "YZPbH+Dmdba+xMpfZmeNwVWebo51puwszkxodwsuVSRD7o/Zbs14IiMzT5payXrOE13WIzs5z14e\n", - "mqqpqUxCMFSzOv/ssdyOwoIpGl5Ss62jrm1JadmppoZbrmNRqpTqzfPiY9FYsG7ROdwWjC3rO5Pr\n", - "a2FBS8RAYcminqGRMu4qjDXiWBqeMh5n0upEzY7m1lhzVDla5zc/2CBpe/TkJSdPPe1kN0FkZZXs\n", - "FY0PTV1aChrlkryIhsOviB88b/f4CfbfzqW9Wbbr17+T7/PvpD8IRr5R61vEBs0PqG48I7wnV2Rt\n", - "zeMVw3TRa4tHFh5OdWOq9uCW9JHKYlpoGJqGoURppLIss6qptI7b6qIHFkUrZtvfNDU2tKbpdQ+V\n", - "1i0ZSoz0VXKpTM+iiYGGgbZUKlNXGCllUh2VXalhKOwKzse6UdKSxEoMxSw/ExJjZyb60ubQ07Gm\n", - "JRGqh+53rtotOtLpnmkyJTvj9R/j4y/wkwe8c41am6LtYPgai6XOKbdX2EvJb/O+PY7as3rr7xv9\n", - "EP7bt3oR30Kv4lwIlmP0LZ9gfm+o8TRPJWwMeO5tvPe4NFoMFpMje481NOMdS1cLw7T/dQZs8xvf\n", - "SQjh9ZtqPzPSe6KmmpzaWRvZ6o5k45HQnj1Rdx6y2ZvY265RW7I46uo36qZFbhKiflnopdFBOZFk\n", - "Z6ZFS5KuGYbSzNxsKHEXd7RD4jELmiEXNazr27Fqb47xrjTlUrOutHWzC3BHYWRgVeKWiYGmPYnc\n", - "ZQtqzuYgs9SSaNVNqYEzq26pbBgI7jrWNsK6zLplq0ZKXTsW5cY4Jw8tt6vXtMNEKhj94kT56Ykn\n", - "/hRv77B8nhc+wtl1nnhmZPHgti9vdb120NQeLnjbcUNnPDVodd3cSBz/cuTGy+wucWltNgzw49ss\n", - "PsGdx3n+Fo//BpfmcMTRG9/75G287TxXz74GN1ud8Lnz3DnFp2OML0MI4f/kV/4c1y+Tv5dykbUv\n", - "8NMvUib8gw/PWkEXIxspxwmhYn3MV9q0Trm/wFptNkF4YYLarEyzNgeWBFwe8PqIu/Wgn7Ia29rh\n", - "iovG2g7tKn3ILKtSSixqWDGWKwxEUSFxTtA2QBDm5qalyhiFjqlCXTCQe10imvWOLKLUsKFlrHAk\n", - "1bHitkHIncSWKj/naBo1khuqzm0hnlrusF62tK/kqotdewvr1p4tNepT0iZlPkv9hKnFi6n6NFcs\n", - "N8RQClXN1uhl/cee0N1fZ7gwG9P9nugPgpFv1LBLtkLjVy0+cWR9obTSDAZlR9ZvKE9pHrE2Kl3+\n", - "lxMf+9OF4t2cy2tOG5FaqdRU4lihrmeqI1rV0jEV5AYK5wUDJ051FDK5ysChCuMZZVVwMh/WW5er\n", - "CTK1uTFeT1Q3lQraxhoGTuyFqYape4ETuYGOussmesbJoUuhbl1PiEE/27BdvW5YX3ZYtNQnpXR6\n", - "onPuV/nRy05fvqlIb7Bdl7V60sHA6Wf4YpPyHuePuXw0w3K/ssnxP3yrN+93Q3PY2YbvL9jZ/6cY\n", - "lSH4khm/59fe6vW8OTWWZgTMKqDJ+snI/QsLji+tyEcbavtHGs0x74izO8A3KMZYhpD8Tzct/yXO\n", - "jTl8nH6DZpsbFxn0eO8pp6uF0ShTNgpTddMi6pYTSUzlMTEWXAmsOtOdDt1rjR2nJElDaiQayGJh\n", - "Lcy+5WOJhkNraHnNWHQW2nI9s5nrJYnmfAC3r9JQqGmrjIwFOSp1A3V3JZatSGVy0UjLxLboVUv2\n", - "XFTMzCKkWgrLJk7cMHbibUYuzo/HPmr0PmJ41OczBzzyJZuP8lMP2Bhy1qBxmQ83OHuS9c/yM58a\n", - "+scXtnx5v2t4fl9jvWl8Epy9PuafxBjzEMIv/jr/WYefvsZGm/2S9inrT7N3PLOTeNqMgPAGtfI4\n", - "j+5wtsVqg/Y8INks+fVtDp/5un2+H0L477j/fq5u8dFXWJqPkyaRy4EbE6a7PNziqMYPjthd4As9\n", - "Fi7SbtJpUB8yHswG0potjhbYqc+4IlVrdi4u9yvTRZbTVKXvTEfdok09XaUCU5XCbL5yoDCdz0wN\n", - "1SW25/t/otA1y9OM5fM5qdxEqScTDC2qLEmsiqbG9qW2NDRM3ZcqJLE9Y9U/fKA5uq8+CNJqoLzU\n", - "slWs2tjN1Ce5vH4oz3bsvnPb5IX6DKedHc1inZVLkuWWfEhs9eTLDyVHizaOR+4uwAHt3tfaV77r\n", - "+oNg5OsUYzxaC+ErJxb/2AVPFps6B2fiuYmN5p6d5Z5BxvPZjIz78tPFrLcn5059KnHqQXyUsKiO\n", - "yrFDXblrrmvqGTvRUGljqLIuSvSkyJ041bBrzaqWpsJE047CmcpYW2pb4VjUVNdQk6GQmlhzSdM9\n", - "Dx14yrKmqQ2pMyP3jZSWbFirBtI5z6RM+5bz3KPjtlZ/X7lYaS8MpbVSrTqzstW3kw195FcYbJFd\n", - "oL3Fa5u8+iTFMUc5+2fc+adMvviWbt7vnn4Qn/s+g539Vn21ifX3eDDSvcvOj/JUJDvluBlVvQVF\n", - "lTI9k7em+uP38dkJP78YQujzqRjj100SxZe58w8Y/xE2jri/xt5Dzv4qtWXSf4vHj1idJqZ514Ol\n", - "RGvcsr1fefgYeRZsT4OttHS3UYj1wvr0jknjvFpcVgsd0ZKzsO9Ycw4qnMx7waJc5cCBtVBz30Df\n", - "u9WNpRLRQGEi0VDpy02lcmuWPaZnJDhvqu9UTV00NVVqa1sSZTYkzpvdzBYFd3WNkMq9zdiVeWdJ\n", - "UFg1KV+aXfN7B8LVSmNSE5dzzf9ndqxefpzVR9kYMzw3w6If745d//Krjn9i2bW9uta9M5NsZG/C\n", - "zSU8SLj+TpI2n77K5Yv0JtRe5/2rfHyL8cKsAfnbCEamgxnp9cJnuP0hOu0Z2v72Irv/OMb4Db4o\n", - "McZpCGGXduBLP0zSoBpTnjC9wvICD1cYRdIBzzfpdmcmeI/26QfGgcd73FnieEAR2QmsL7LRZ2+D\n", - "fkWzXXhEzWqoaZrqG3lV3SUrMiP3DazKpUZOtdXUNZVyIylKq7NsupYgEe0wh571pBpuqFkUvEuq\n", - "JjU0cd9YR+HYUE3qTOGuppo8vt3C9IZ0bdfCjcK/8zf4zafqbv58TXvv2GCb6bQpGaxaOnng5sap\n", - "0/7f5x2nbJ7RW+H0vsHKtnqYCpO7qjLaqjFprRk9eJXNFxmN38DE23eqPwhGfotO+Hzqwg71q7mi\n", - "VjEcKbOBtcZQ0uOdH+PVxzh6hI/8Crv3OPpA5WAzUjyQ1wYGyvmk/6p0PsBVKTTtmrqqbmIomnkL\n", - "XFc5E1Qa7prl1hOFoWCkY9lFDU1TZ1jUc0tzXq5ZNrLhvHROW7xiNMefzTyAl0xsim5KqqY0GZrG\n", - "hnaMYpJaGTKsdU1qQxdD3bUkStNC0ui6s5ErhhQLbF3gXUeMmixfZDiepUrbr82Gzuo1/H4p03zY\n", - "939vzHP40Fu9iO+CXuWVuyxeZusGL3w4k11osEv7Tt/dpYtOiw5PXRLWSrU/35H/yVoIXyx42ew4\n", - "NKi/h8n7OJrOvFQ2j7nxGPt/k1tfZvinWLqQq4eG/kGiU43c3IjyUGpVwTumFYuV9yTciZSNFYNk\n", - "WxmitoCWFRtOve4Em/NZmYlKV1M9Rgthz6mWqUNNhdKLCssSbUFP5VUT+5qanlJa1LZnat9EUyGZ\n", - "M0i6WhYsylWG3q6hlJuVfiuPaXveUEZCDJQAACAASURBVBBsS+TKeS41ix2VJXnjczqPTF1dzCyc\n", - "lIbbNb+03VY9GGlcmrrWSQ2zUlWyfcb+RQ5bpctfPvYDzxADy2czP5hf/rkQwqvn+cCTHO8Tu2QX\n", - "Zwc9XyI7Zv10dvff//a2vv8iL/04j/R528c5WqPX4n7G+O9+8/c0rs5Kex/cZfmEu4s8/4fZ6rBV\n", - "cn6XgwV+c4FXdige5z31WfmmVXEHzyzO2Hs3a0yTGexxtZiRD9Yr0jrtIlgqKgfpVE2iHQoLKoey\n", - "eXNx0KoqSXLsxMSylpahidzY4ZxAElRWzJxuemZAjkxlVy7T8bRq3ldS6ai7aOaAWYleNnEqmqKu\n", - "qO5rhCjNma4t+J//zJpR59hGZ2glS3TGmVoYmaxMHBSJwcmJ+BsbvPsHebk3s5CIXzHdeUk9bdvs\n", - "tq28vOf4qWOvnB8b3rzFzgEf+534P29GfxCM/OuKpcu/eeD6b5zafzwzOJ9rDwsX7/GlKY/dI38H\n", - "C+mqT/3QNWmeiXdv66+umbYWpEXXNFuUuSY4lbvrgUWrFiSGxl4wdWhGCGmrdGQ6UstyAyceKKyr\n", - "uSYx1XTiwMiaqGPseJ6o3XHZspaacm7hUSm1JXKLaImCMyPJ7CKYzN57LkRTqdTIw1bDTjmQlTVP\n", - "HhZqjYmiGFt7EK08ZHCd/af4wMEMdHa6xmZBHNGPPH6LzSHFVfavm/UrvCGFkD7J1h+ido58l/1/\n", - "+T3Zze++fhj/1Vu9iN9Bz+Hff6sX8WYVYyxCCL/Ir32YlfczfSEYJ1ONrKEsrju9uy0+0rWwdqbV\n", - "7jm3mMnXVzz46Ibhaa4qjywcnHq8zweP6Ke8ts1Tr7Fyjn/1I/Re5PjXeDBKhT/blF6tVEmN9Irz\n", - "ZSo49aXWoYtJ5UmUaWovLEsQpCrBBVGi4UTHsZF1LaWRQ9Guyko4NVTIYksalixoS5zKPZSb4tjE\n", - "SMdQRzBRt6rtnMKZsddVMixpaltXSB3NnUoCgqZoLKoL6kKcEGZI+iAXzfzqojPRwKX6utWVUr6x\n", - "qd1MdJbq7p5/xLix58XY1Rw2lIOR1x4fO7/L6eNs/wbrX9eEujVg5TK7S4E0o3yUB5/j6fVZCnWY\n", - "EA9Y/jInk98G7f8t9n4vhMbf4+//cR5JqCK3C+79XzHGo9/6+lnD6+WP8MQXOH7b7P97ssz1GoOU\n", - "uyNubhPqLKeM38aFOo8ms2CjStgIvJxSFjOy73qN1W36AyYZm9UsCOtUUZpG7cnUca3SDJVakroT\n", - "B0Zh5LKgTGir1PWcmtrXMvCoSpR50WgeMM5KdetmAckmUqWhoa7UJZVEUM2nNPdFqQW5IMhlugYu\n", - "J9FymaoPgrtrFx2Gi6qDL8tkhrWpZpZrPKhbGI/sXKrpLqxr/6fHGuUXVLevOst+kINUvvrQnd2e\n", - "s/Vc1u4Y3NrV/++HfObb6/f5zvSmgpEQwl+IMf7vb+L9/4MZPOqLMcb/+M2s5c0ohHCe2o+y+hhb\n", - "BTcv84HP5y7u5l57P1sbHGbE2PbMT+eSJ1L5yjnlwwuWXk2EB335ExMPmk1Feg2pxFQmEy0pPFAo\n", - "tKVacj0Nhz6gtIDXRLsKG9iSGenatqAuzivJwUNndi2qeVR0Og9AEkMjuYGgdGwYmzpheY6Ijkg1\n", - "HZhgEjKvx4mzEGwYGhnppZcUr3Q1Lkwl2UR9WGk/ZHWP4eLsiztaml1TmIGG2jCapUFvn6N1b2ae\n", - "ZcsbDEZCaLyHd/08Hzzk3C4PlvjcL/DCd31vv5sKQQPvw2ff6rX8DvoSngxBPcZ/fezy95LmF8F/\n", - "Mf8jDeHpC3p/7ie5e4uP9DU3h1ZaB5KFVZ16lKlrlBvuFecV9R3ZpVsO+w9Uh1ztki3y6lP8wBf5\n", - "7J/h+j3OrS57+Q9t29+Y2atrLsvSaJQlimrFNDbcTe6oC9ohuGpsR2mASs1Y4UDHmWVB7obcvppK\n", - "w8TImdKK0nLoGtpReVRTWybYMFLZcWTFBSNtY4eilPkUzYKOoYeC3MLcj2rJmUyiZqqvUqGm7kyr\n", - "6ukmicxtuU2LsWcS6oo4VoY7amHN6rSjap8ItW2d3ljeOFLvrGuWlxxVr/tsreOdg5rx4titx2Y0\n", - "04vv5MZ5Nm6wdjoroYwjJsc8/xo/9xHuPMWnXuC9GesPWTjiwT5/+zt5oo5x8mwI4VVuXjEbp7kT\n", - "Y/ym5olYYKnOk19m92zWP7u3SCtjv8V2Ovt5nFCLHCWz/pNBwkacMUyqOovJLG7KFnmwzShLDdul\n", - "pcDWcMYAG7YIZd00YZhUepEHcWIaxkY4FvWQCtZkSo8ZW7IgUero2ZR4RfS44L4ZsvTdvjYjvYGu\n", - "0o5SZx5Qjk3sK3VNnFezKhq4JlpMjqkFxdaqrdDTbRw5rS9ZHeTuN6OzZGThAsNh6iiJOnHTY2VL\n", - "u79jfOWGw7zpVvuq6uFEWfyMo48d0/rHM7z7p+emh99zvdnMyH+N7ygYCSG8D50Y44+GEP5aCOH9\n", - "McZnfsc3fhcVQkiX+GOX1P7igrWlocbo0PLBUFHnV36aD36SacmdFe5mWzrTDdnJPYN26mwhKloP\n", - "jVcTVZ7rL2WqZJ2wjZHoSHSgMYtPFYLrenoSGVo+476nFZZQm/tLjHBFIlPoS+fFlpYNqZ6pRGJs\n", - "oC9xx5nr8xNzKFdIPMSyqKlhYKqQe6ipI1eXh0ccV/tO4sRiVbg6va3zBe69g/EaizmthzNvpAdv\n", - "52SB1iafXuDiPRo5B826wVrT660103Tfl352qFlwrRXC5iMc/qPfbg59RlS89FF+7AGr85P80tns\n", - "d39/ByNmgfMrMX5/I/BjNAzBHTzp98BB/XZU8ZWX+een/MQClybq233tUW49XdJIg3FtRWdypN6+\n", - "JJ0sSrINRePA564Vlqd1h62GvcdGjuuFzcf42U81/eY7N0yaK5rNZUFmWjTlCeNaJShUMTXI9jWq\n", - "qeWQ2nJmEFaV2nqiI2sGxoLHtDxu7At2XdQyVjd02VRdX2Wi7bYdQwOLasYmjkx1XTK1oBCRqXso\n", - "11KqVKYyQ21HViW2JFbV3Ra9LrWgNi/VVCb6IZFI1Z0SC5NwJhMUYU8ou9phWVrvStNMYqBqFoq0\n", - "YZSkJsVUEbfEg45bu0cmG5nGucL289RqbK2z96NUv8HtNsfPxRhHIYRnn+ddBVev0tvm5edZvc0/\n", - "m8zGer9jn6QYY9/XuQH/NhrO+jnGGRfvz/7czTl+mnemXMwZZdQmPNtkKcwCqjO8XufcZBYKPAjs\n", - "By5uEJsdd5NMTenUxIN67lrBXQ3raWYDm6F0HHKFwmWJC4InEZW+MrfruGe2J4lEZSw3VBniGaXU\n", - "rF02Zb77sybWBZl9hUexrHKsVMOa6O0qL2hpW9AUYkOZ7Au1TYkZDv9kbapbLVmbFCZhYJilmtOJ\n", - "hVFH47ShVatLyi2N6b5Lg1ecLtcdFUN6L3Hhy9R2+aXfrUCENxCMhBB+OxvorTfx2R/Cx+c/f8Js\n", - "XPJ3NRhp85En+ekVW6Fl83YU7emtv2BxPHbW5v/+w7RbpGt1K5MNG7tTvXO5g+VcVe+5WJ3pb6UO\n", - "PW6UVDODryQl5DMqo5al+eWk40wu09OyNp8fX1G5693OdEQ3VXIZ6jq2JFpmrRgn81O4NDZRd2TJ\n", - "0LJKquZE1LQ8XTVOh2L6JVOrClHUR2FdqnJBETOd2Bfj1NaYw4TTS2Q3ePW9s+mC9nnG1zlOafVp\n", - "tDlYouiQ3qyrwqru4nnx1onFzQ2Xs548nHj6AQfX+fU/H0L4a3MjxG+mJVbarP6WVOvmt3ri+X7S\n", - "R/Abb/Ui3qCew3v9/ywYmd/Y/mUI4Qs0LixZe/Sc99yfOnisEqqmLE5Ma0EYUsmFeKBaoNZYomhZ\n", - "SDJJsWrnAweuj0a6y6n+uZrxxkXNdCyEoXF2RYxjk9CXpEFjuqyqWu4Z2yjbknRow22HllXWDPSl\n", - "mprWNLxqoq3hSKontWxkXVNhaKjAsj17duWiptJFbBmLEplKZeiOiMqymQfVqo6mjpahA/tG8w6x\n", - "0p6eukpX10TpgmtVYimuGYfgJDzUtaduIqmWFGFEEmRxorCozBbkZWqYvJ3pnrz5smL5mmy4J19J\n", - "XHnIez/Os+/m5ByNBs/9CAe/xOmvzLelPNB4+ZOWnqiJjwWD16ZG/1uM8be7d3y3z4tpCEu/zmd+\n", - "kg/fm2Hiy6fpVDOC6lmdNCXvzCZiQpyBRp8q2U95PZtlenbMhrN6i8ti0nBF3QUJJo7CsZu1XD/m\n", - "hqG0o64RWxZD8ITS/rxX6EyiPW+i2xNt66npOrRqz0WZY7lc1DXDvJ+ZBSIRGxJn8xJeT7A3B8dv\n", - "y5wT7YoyidYce1kXQkcaEzHO/MnSLJXEmp1YMy5ydbnVvK35YOru+qon7o1MrjfEUBPKIMlYu/+S\n", - "o7MDvvgSN854Lsb44Hdr/3hjmZEt/FG+Kfr6zTTyrfiagc4Z3v4mfte3rRBCcpkfOa8WC50xVKp6\n", - "Xf3KguHS2PqUKyPWdiieZ+9Hd7zcKpXnKxfrNY3Y1Im5Kpk6TVJnNnBoVq2sSV1Td2riIcY21Eyw\n", - "rWZRoiFKTARf8qotfXFusBQ1XZmdVCotmdyZA6U1F51Td0nfy7btzxvUmqbO0kovbFg0tGHqnJGu\n", - "JVFw37rJfA0dC6qkodeeaJxy6y6dEY2vcHyFpTVENs74uf3ZKfLsOW71OK3WDG4/Zjo40zwXPdHs\n", - "SB42tM4GDq5NveMZdq/y8DpufItDP2JYMUlpfF3T6+j3Qv/SD+Nvv9WLeIN61myi5v94qxfy7SoN\n", - "4e3n+PF01j1464BPfuOEDBhzYW+gdufA8WpNMpmYtmZ8j2l1zmQQlLW7kuXo+llN1l6zOmEUJi7H\n", - "qZezddnZQztPltL1XAxtQVSm98WkKWiq5nbwedqfcSNCKs/GDiwYKZzz0BQjF6xrOXXb0KFLlqyY\n", - "qgsWnDk28VDuHM7NKZsNLXcFNazqI9oUDKVKM/P4+6IrZuzNDxq6Z2qsUneGZQtagpE1NZnUoQW3\n", - "QlNNJohiElwsl2xWe0ZZQyfN7RjbLWrOZVPjUJnG6EHtMXnZErJleWwSjt1Mxi53px75OCsjfuIz\n", - "M/DcWYvuKkd/62sPHKt/gve8m3fezbVe5/VNPvuzIYS7GJqxKaLvqZsv9P4VX8y4+2Gal8gXWD5m\n", - "a4WLGQJ54KWErJqt6WbGRjkzcH8l4UJkOc2M05oVDdvznHUpqElcwTjUvUflSO5maMzNCmdD2yOl\n", - "ocotLMqck80RDA3bBiqVI9k8GFlTmarcNktjpiC1LDrEBcGixCWVNZUTdFRGpralXjLAlsks9Ik5\n", - "1dhh9oOCsTJUzhpn6rHrrOizsCbczGSjSrpzanSxVDYnascjg8Wc/3XE3/tWmawQQr3JB9b4YCA9\n", - "5bnBrIwz+G7s3hu5AfwTLMQYn/0mi3szFMozs1EMZm7Jp2/id30nyjIaC6rBsfJ8qWx2jd8btBeD\n", - "wzpLDVa6LHXpxoa1r9T0LxZOO01XIrX81Mu1juPQUsSJkBwLYUFqT2XTDAc/Ee3KFUqpQy2Pyp3I\n", - "tM1Qvm09S6KxmkTUEqzrGllUyQ115R5o27SgpYFU6pyJYwtyE0MtaVKThZ6euodKwbKo5cBjjpE4\n", - "dhiYpplSRxajk4Wg8a6JP/13aL/Kx36E8TWupHzohPp8fPXtR7Pa6v7O+/TvfJB7/0Dzx9qWmk2t\n", - "4VRZT+Wd2Ws3I2H5Wx30GOM4hNXP84Uf5Afvzhpjy8AzF7/Ve74fFIIUP4L/8K1eyxvUc/joW72I\n", - "b1edED78Pn7ufRyuc3CfS5/j3wsh/I0Y452ve2lFLEs/9A9PffkPsTw4VdRbuq0NO1aVxUNFdqY9\n", - "HUinDcq+3fZY2qgsjypLydTdtVSajV3a73r1/Jlh1jEMmRBfJayrjKROVOFAlTREjzidg9lnDeNb\n", - "0pgqQ8uxqcqRJSPrOprS+Rh9ZduZV9Sti4JFUysW1D1m6nV9hbYL+gqVIw1LxgrRttmsxSbOG6q7\n", - "71lL8+fkQmmqZlFNQ6KtLZHG3GHZshVyaVVzLHWWrZrKrBvbKGvupsFgVJm0T5XJqhAPhWpkWs8Y\n", - "N6ndVr6Xg+GSL17qyvszz5dLZyyP+HRpPj0XQtjmXe/iR27PvsvwjgeMrvLgL51XnNuejaWMd+mG\n", - "EP5OjPHu9+LcmQc6Hw8h/DqNP8LjHeof4mKXVspwjUZt9hz8iln712HJa+UM01GvWMxIsxnufWUe\n", - "LM4sCEdqMpsm7qJZZbaSUicOfCqU+pouaUjmV+SaGdQsk+LMSEOu0nHPgb6GfUuCY8nMddfQDITX\n", - "ldvFER4RbakELM7JJa+jPYen7djVVehaCiPT0NYrtg3SOmFAPGfSXzWpmuTPcLwkedB1f3vJIwcj\n", - "4n3Hm2PHgeqUcyvzB8l/zW05hJCu82fey+NPzVJJxav82DM8FUL4X74bvmS/YzASY/yF3+bf/u03\n", - "8dmfNuv4/yX8Yd+k9ySE8Fe+7q+fjDF+8k183jcoxji9EMIDyio6TsZcS6XtfaPYtVhPXc4z29WE\n", - "83TXB+ovZBbeXspj3UKsHMcVI2sW4lAMp0bWtOSm6nhF7kghVzmzreWehtSaoJQZOdUz9UDT1JKm\n", - "0pqBpimWndpyrKcydGBBw2ie+BuYpeIyh4I1dZmplTkkJ5G74ljHsSWZnsIaXtcy0pHqVGeotOKK\n", - "V8KixXDTjUtLHlzcdLK9bzWOLbSis2u5xgkLh7Nxvk5CPr7J1nV6K8aHO4aPsGCsaE8tz5tX9wPx\n", - "dwgsTz/O55vcfTdr82ay/c9/t/b2e6T3YzdGu2/1Qt6gnsN7QhDi7JHt+14hhOZVfuonuN+ZGW15\n", - "lKN0dqX8N/DXv/raGWxr9VlO3seP/yNeP58rN3KDD1R6lz+tWq3EkxNrO4W1l+p2PhotWrVxEgU9\n", - "D5oVnYnXN5gMD6yWz7sbHleEBVk4UzqRxpGWpmUNuZFJjA6s6oSGYZwahXWXnSA3EDVMLCstOlVY\n", - "lGjK9VFpyNExlDq1ApraWtYd2J8P6ieW5Ag6ZodghKaau9pKlS0P9OcF2KZNUaWva+xYX81ijCRj\n", - "B+W6Ml0j3TOOlywXK2rVPWexpzU90U4q16crM3xBcdNh+qh7R23qNaHz1MwFuJvbf8cDv3rlruPf\n", - "5P23+cI2x1/fB7I1R6p/3U7ubTH50JaFq0/q3GzoVy29gy1JEZX/eQjhv3yzJYAQQhPJN2tonfex\n", - "PM/4Z2ZZnX7GaJksCbpVlKMe6x6MogtyzZLJhGmNTqDKphqxMAhRMncaK1UyhSrSiLlcXYzR1Ozn\n", - "JXVdDTXLODHQ01TINeRWtQSlnpFjpWMrxt7hllc95siKUz0M54iGsaghuqdy1aybZWBGJ5vitsqt\n", - "+de68lA5c5APi4pkSRUGatqyaVCUF5UParRfYHRT9bczN/7svsNHJpp5ZTFy/XWe+jTHa3zu3w0h\n", - "/Zsxlq/M+vtcNsPYtB7jbR+ZGQqDD3BvzJWjWVXjTXOm3rLUeIzx2RDCOITwa3j2mzWvxhj/yvdy\n", - "DQf802f5hWtOdqYmj3c1a/ctdQrnpqkwydQnhaPFmnGS6L2/J9ZKZ9PSWbPtXrKiHZuyUBiFPatx\n", - "aqJShhWlKCi0HAkyJ644E9V07TJnE2QypaZMYuKpefhyFwfqHlezMrff2lVJ5UptQ7mohpGGGyZW\n", - "JVK515QuSdREj6o08QAftyC4IuroGiSlqupYnBYW0lzv4obP/LFV2XBR6/TYWSM1FeVpKW5UyhYP\n", - "cw4LVhdu22p80tE7Ng13KzezY9m5Y4v90uZdnt/m9V1fK799U80tpf9uCOFfmGfFYoynIYTv5Xa/\n", - "Wf0U/vlbvYg3qhjth5mByVcdyX8vaH2L9KuByFd1mZMG10MI6Tem+U//OZ89x/7lWXp9ENYcn3xU\n", - "+fce5fCE5t919tEDO08m0oWaxTSIaem0WKPXtdCIpoF6I/VIr2f56CteurChys6kajpx1VLoKsK+\n", - "lnXnIvfC2+2WXdLPS+KuKqTqbs5dWHtOla4p1Y2dmqUIjxUGOLZhLJjK1HVN0LNkIjqwaGpZVyJz\n", - "onKmEl1Tc8OGd6mpyVUqi/p6xqKRPctyXRHnBGvFlKovD2P3akOFzFKxaVkQkjUxOZUHtuPEomND\n", - "m5KsoVne0FtfcFy8W+3kWKwN6bQddVaFtdInt4985stj5d9i+Kmv254h3a/74g4bnHwok7cvaXYX\n", - "LZ92hcf7Vh/ryG6e02vtKf+LEMJ35J8UQlhh/aNcf5pECOdusf9PYowPf8tLb/Pw87TfwVGL5iQx\n", - "rqfaRWUpROdDqcgy6YRY0Ltbt/tES5FGRRiowsBE4q6WRTMzw7GJQWRzUhrUR8Y4SoKrGjbVpHNo\n", - "w0OLagb2NbTVLMpNZIKga11wqIGahiVNY0NT0dSqaFmUiO6qSfEJk7kb2deCkZl/WeVUdKqNbZn7\n", - "4aFpYyxxjeqc2lmqWe7qbj8Uy+lsHjtn+pfZu8K5v8hP3uXS4eyQLUxoFBz/dAjh5AJ/9jJrHapb\n", - "XKuIFbe/Puy8RH+Nx/1eDkbgrRznhSLGmyGEv/6QP94xfP+Zaq3v8Zi5Mi3daybK2oa80SFPFYsT\n", - "u7WB3vjIi0kiNpo6aTRROI0152NuP7lgWV0jBmloSKS6DrWdN9QWvOCuaENNw9SSuvuWNRwZSnQ0\n", - "zXAdU/05EmkoMxQtmqhbUtMSde1LDe3b0DGIwVgHXdPYNg1jRMEDHRNvk7psiIm1qrIXSnu1Jeth\n", - "Tb68oKidF0e39N62av1k4rVa1KgSabsybNGr2C9oXBnb/PKLFgYd958unYWJV6qok/Klp+l/gpNf\n", - "eaN14a96iHwPt/i7qZ/y/etH8630VRLr7bd4HW9Uwx5J5WvP2Ttc3OedkeVt/pNmCL864Zk40yCE\n", - "8DfYv4a1Nf74n5hx3nuwzvgH9L/4L9z4D6YeKaKpwkmWOailGmWQtLjSZeGsUt8sZGlpeFi4txW1\n", - "q+iR0QO9ha48VDYkFpNCjJ83SQqlbe3Qlghz3seesSUNfTtS1wwtz+kfRxoqiwbWzG4oZ6aCfe+W\n", - "SwSFkUVMrKJtzdh9fQ/tW3OqckNuQ18PF7TR8IptdROVhi3nZNVDspownWqEro3YdlJdsC4q0twk\n", - "JvrVRD0ZawxYyqc62ZlBu1KmY1spvXBffSVKq1Wx3lYfNXX7J6b7jxndep7xyTc2p9/i5hm317h2\n", - "zNEW7Syz1+xo7A8NLkSbSarRL/UaC5xm1pJc9m+y922dHCGEOhf+Aj+8xFP/L3v3+StLmt+H/fNU\n", - "de4+fXK4+U7cCTuzecmlyF0uVzQVaFm0DEqyKRtUgAEbkG1Ihl/Y/gsMCxb9QjYMUTIgCjQlSKJF\n", - "kDRJMS43z+5Ozjffe3Lo07m7qh6/qDPL0WzgkrPSzED6vro4t+vcuvVUV/2e3+8b7pQk1Gtb/O5f\n", - "CyH872+WD8cYYwjhZ7l2H/X/lEdP6mp5VM+ia0vl2CZT6NXYTRa9uHpZzGqW01wtHRmnN80ce9Xp\n", - "mahgbo4rkcWCyYTdJt1YMUemph4zm0kZw7EQK15WkYaZC6Yqoj1dAxWLGlJzFZkVuUzuyFXBA2oS\n", - "0bJCR8UtQd/Ugj8gua5g7czVdabuVTM33FVVUXE19owMzdwxXK+axIGFcEvdQHeV4f9HMmTheWpt\n", - "js/R+V2Wzq7d5oD25S3+6o/hCreOWFok7vCBZ7jzwdIdDgyoT3xzBlYIoa2ch51+t7Lu9wJp8N8o\n", - "Yow3Qwif7bnyNxsePglCNbfSKPRVPd2pWSwIw8Sd6SN6Wa5a/4LbJpLkUBImGjGT5H1HyUVF6OqI\n", - "WrFQhJaxDRP7Fuxp2lJYdeScEzsakjMya0swkzmVSpVs6kV7jhwbipYlzuk5dWJb/cxvYKahrtCL\n", - "FdGullNjNbUwVfOasXXBvq5U1cihiQJ9wVKMpFX5nIU8VzFzvHBFrZiYth6Uv37Pl+8PukVmtaCS\n", - "8EOnPPM4+SW2joaWO5wkPPGzJDkvrHB08G/Soe+dQgg6ygHze81e/Q1Fzb94p0/ku0GM8Xg9hJee\n", - "5qEPcfcuF4d8bEblA3zlfqZf5D9+tuSIf+7smByvhxDuLPHnLrwlvvxQa7WpftR0ezYRG3Wded2V\n", - "WW64kYk5xZCLr0T2R/LHo241UxlEJ+0NNxYWVWJLJfQcGVgULISpJ3S8DEZSp4KgJtVQkQuuOXSs\n", - "0FUakmUaTnT041BbXwj0fNSpBcFLomWpRew7MpdoaMXL1vK+NCxqp1W3Hbojs6pmrG5kU01V6UcR\n", - "1SE5R3Es1pZV47FWHNsvxrZDIQpqYaKVlJFtw1YingbFtCft1CxFWsVIPUxcSNr2tdRGqepkKOsW\n", - "Bjvfx6s3+VgI4dfOupveyKbhV/8yFy6Rn0dzqvu1gdm5BdlSqjMqZNVI5Uiezt1/h/E6O0IILWV3\n", - "dPCHPzuSh3jfKu9/E+fkwQOOL7L3JL7RsQkhBDo/XHJn9w8JKzOxGkyqhc2sYnVQeKrGzUmi8uxF\n", - "yfpEqO077SQqYUFWbMnDHRuCRpipRRZPuNbmizVWptwKPFSwVCSmyVhMKxZjoR2G9gV5KOM/npFI\n", - "NEQ1OVJNQdPA0NyemVWlJUMqGivsoSJVM1HHBalUbv/sYjXNzc8+cc5YX6Ln/phYj1O74brTkMgV\n", - "OtgKQx1RI0+EUEgWqH+Ew2MWm7y+zAf/MWlRCglOW5cJl7j1Gh8KZeBPMmXhNn/uPD+/wX6P+gtU\n", - "T8vnzBvXPe3yow/wAys4ISyF8OUevxJj/Nc6nm/Fv/PFSDkXW/2ruQ9tZ5YWql4fFCYpzeZ51WzV\n", - "0XGqP2sZF7mlxblQ78iTXe24p2HDcmxrn5zorRzat+JEyyiZq8XEPCwiSOKuldByoqbivEzbxIvK\n", - "kO+ZQkUqlTg0RnSq60RL3cyGsQ2ZDxjr69tWaKnbNxGth541iWrsm6vaFxWuW9UxMJEYm5zJB7eU\n", - "qZQH6BkR96wMU/1qIV+6Kp80GEjaOwAAIABJREFUxUHdwvyi+fA1MefBMbUWs4IHK3QSBqs8dsRR\n", - "jVc/yp/8VS70OP5UCOGL3yt29bsIP4bPx+i99v/6Gv7KO30SfxQc8M9/n598nQdqfLxBbPPSR0rZ\n", - "Q/wkd7b5TAjhK2+8EM8wmzI4prFcNh/AifrKxObeir0sGK1UnZtVNOLQMB06zVnusTpimOZMgnS1\n", - "EOJls7wpmxXa466FxQ6Va24mEwtGoroFJ+pnhmNb2meh8ntOVBxoOFbeLlWLmhblNgg9u05FlxQS\n", - "qeuCniUXJGpyFfmZQVoeKmJaxaGopmYgwUVNqzJ7uCWRaarFnllo6ZjKk6gwFIqpuWAeRrrzinYl\n", - "UyQ3zeJcd8SsE93XLYS8qpekXgtN+3Gko28eO9JAUmSydE8yS1Uz5pWk9OPaVEp8QIxxN4TwM+yc\n", - "w2Ue//PRZ25d98ufuuKovigfZyb1U4PRbYvHPLDPc2eE9fv/hzIZ9ySEsPwVTn7527+0mpusfYu/\n", - "Wx/RvfiWHz7EI5/hx27yyv/L7qdyqw8wWU40ZoWX64n+IHr891p25j3dq9Fm0tCZ1YTaxDTNvBZL\n", - "p5iLRV87zG00eWTEl+rsptQjLXO1pDBMaybmpqGwrdAz9f4YXAsbMm0rirPguyMDUV1baSJ/qKqn\n", - "cHwWATLVEiwj0bOvau6ehpdEq1Kn6sZon4XtVVQ0dY3VVK3H1IqBG2HuROG8xLKZpbxwPeGCoB5T\n", - "YmZUY5bROs/1h7jvFb5ykePnFri6zYUaVy9zUPr8ml/j/s/xoy0+d5fpNr8QY/xGi6vDD32IT/4g\n", - "t6oUGeELfN+XS1+3X/5O3/1/54sRnGe5y/Lh1OZ2YIsb56N8PjFarjkNdfLU+QWa1YKQEYmGHpod\n", - "6lUOjZZSQWrJxIlLxgayMNNwcJYyM1ePtx2HpsJ1QUdUs2euaapmqozUmqi668MqBgLqjp0YSmVS\n", - "mbnE+pkL301dU5ccKeSSEDQMdM0MsHLWCbmG9yt52jNlFHY7UrHo8o2K5ig3S+8Zb3TtDgdi7VRv\n", - "fU877XtkUuYxTMbca/Jgxl5JE1fUaU5ZrHF7iavHbIZS1veee2n/YfgJ/LN3+iT+GPg6/s47fRJ/\n", - "FJwVsv8ghHDfJZZ+gldXShYnaDNfonqrTFQ/fNNxsRHCb32Rn/gkt1tkc5KJSWVi9fVbusfLXn9i\n", - "7uvrY9XWyDTJrH62vI8PF+k9umRSq5sMW4r++62c9vVXt2XrUciDorJmFu9ZjhXjJPGQVE/NqtSy\n", - "qQMzE11LUizakxq7LrevbqQdb5uETKJj2f5ZAHyuoWbzzF85P3NebQoO9U1CYdHImsJcalW07FRb\n", - "LjlTZ0yk8hAMjbWKkWoYKkIwDg1HMZqlrxpG1vKJGObuG1CMqaXRsF4R0rpqTCwVbYexbim9Q9Jz\n", - "mg+Ma1NxVtG+2zJb/y2t/3pfI6XzcAiLv87p331DRRFjLHC3DKu7c44vfOzEk8+MfHmlafuBIPSG\n", - "rn5t7uMvc6/LwVlWzV/cKSX+WeALH+crOX7pW98d432Oqt/884MWg7fMfNY/wmOnVAse3eZgQu+Y\n", - "Xq1QhOjS3cyFE4b7hWK9abO2bPF2bv5YUz1raeT3rFeDJOYUUa1WBgfeScvpQ56UPiU38fH8VC1U\n", - "3U0Sp8q4u/vV3QhVhUOLpgYKDOX6Viw4lpgqNDU0jFUcm6pZlOhIJDKZXNtM1YtyM/cbOIot9ZBq\n", - "FUOHITHRVwtl0k2jSBBVVJ0rhg5DYTGyEetOQ6afFioRMQgFW6G8JrsLjB/ny5OSZzP77B3+2zWu\n", - "XC4TBMGEeJHfPqT4HL+F3yvVkaFSfjVNL/PJj3O3WlJcVIgf487rfDyE8Fvf6bv/74sREqrH7K5w\n", - "pRddvc6V62y3Dz3//RcNh12X8kxoF4IDucx6QUhmNosTMVtykKxIVTTirhg6Zqq4a+hA4gG0TUJL\n", - "RabpNXOPiR6UueGGXa2zhMc5LqlYE+Wi5yzJbWnpS52aaZu6Kziy6NiW1GVFGXse26qhZ4xtXYW5\n", - "e/pWFSZKJV6tKJ/fg8Dm/MC9zZr1vOS9pMkXLYa+ZjXqZFTq7GZs9ljpM7taFjNRMGzV7aWJxsHU\n", - "5L5c/xkcc5rgvWBe9l0jBDX8Gfz37/S5/DFwDUshWI3RN+V5vMtxC9vVtwQwTkn75YPum+6zKV9+\n", - "lvo2n16m0ifuGv+Lwp1HZ35kb9cT19ntcmedV1d58kW2n+RzH01laxW9sGR4r656mgixpVpbMygG\n", - "WrOphZR6dWwcamfbjQSptqqKqYaop2HhzN1nqmZB3cyRy8amOg5VDBwba1mMiRDINBWOBdfNBA3B\n", - "0KncsUSQSFw2cAuLZzndt23Ys6lp1UTF1I5cz4tJT0dbdN7EsizeVs9T48rYjUqqbWjSnOvWeaCf\n", - "upfUhEqulgSNrC/HUZbbdNdSNnN4+pCFF4PxhVNL67vWjvo+8SIrE774H/FUxP/y5jU442r8Ip9/\n", - "lY2PzeS/NOM+Hh9zbsCzW7wwYecf4Wf+wGuoEvm+21z7eAjhN7+17XvxCi+fsLXOg2d5WTeXeH7O\n", - "6GkIIXSwxsYWjbPOWa/LxZyrz/D0RXpp9Ng9Qs6vPpybFyP1yqrGbiFbzkwuz4UwVYs1w6SqnwyM\n", - "sSy4L604VtUME7NQuI2TKnVzI2Whch790LBgXhaicttqTqUmrpjoSixq6jlyV8+mmUNV588CQ44V\n", - "+godK47lUlls68YdWYyOk3NEWvGuk+RE3akiFhbyWMp/04FZUphjFNuup8sacaASxwYIodBKqQ75\n", - "4C1+OXL9dxn8vTMen24Iv9vkby2VGUPzHTqvk3+QV18qu2P3MG2F8H2X+EyHxqC8oJfrpR79G6iT\n", - "d8rFan2nL/y/L0a4R3+3DFX6+jqXBmRNXr04MPvsM6pXN0wfbEkcCdWBbpx/I35qkmYaRVTJ27J8\n", - "7Ki6apZsiTEKyVC0KMc0ZCpYtCk3VnddqmYsM5WZmGgpPIzzEusKPW0rZ3bTK1pGjm07kDhQta8m\n", - "F3XUhTLBN0yNLJpgatO6KHHP3L6+Qlkzly6DzcgsHXuglZumNXfklsPI5RM++RvcuMArDyEpuY9L\n", - "GUmflzs1J60l+7OoWWQuxKpjmfpjQ1+fs3M9xvhHTOd81+NH8GKM/q26EX4vEKMiBE8rYy/eK0GE\n", - "KLkgrRB+5wv82R/iVoN8TvJFLh7y2TP5ZkL1I6z/EMkia68MHfzWkC/dLD2MhjHGUQjJwxz8dF16\n", - "NcrizPQpxr/Nb/5tHulweVz18vS8fNbRLIYGYc98YVXeWpbMZkbTsUp9T6eaq2Cmqmns9MwfqGmo\n", - "sCQYaauIKlK5iqqKuqdd0QplPF6zKJwmYzHuaJsah0TPQEXPlqaa1ImhSswthyCTGImCiqCmrmvP\n", - "FqqWnJiqn/EKbpupOXAOqRB2hYQsPKZSDKQGlgyNqrcchomlSpQUuZV5VVIv7d06aUVa5DYDi8N9\n", - "h/2B595fMWrPfeD1iQ/cZPOsSPi+W9z40yGE/zPGePrWtVPmIz0LIYQ6n32UzjmGh8xfiDEOvlk9\n", - "Vy3Khpe2b1FsxhinIYR/yK//OZ66jyRwvM3Oz2EeQv2nOfcxLp2ws8Wz6yz9GlnC9gr3LpZdlOQW\n", - "v3o/0y3yLunRUKt3w+iJhpBEkqhIG7J5017CQtFUhIGNUDOKiancrkQH7wuF+9BRurc+j5GKB7XM\n", - "DQxVDV2Q62iZOHZVcGwkmFk0tyizo22scEtbU64vNdWxoKZwIGjGqSIZWimuaU0O7VejYVKYFYV5\n", - "NrV6XHdaPTGpT6WNzJ2irT6verZa1Y1zK6FOHHpOw5ViTjrX3Odzj5Vu2/kylfeFEJ6OMY77/Nrz\n", - "nMv4i4tkrdKH4bU2sxvli+R2nY88wZ//E9xb5GBA9bf4gc/ygR9+E4+kT+2EKU7fuqZvxr/zxUhJ\n", - "wEp/gfp/znzG9Q+SLTI+4LE7fS8ujHXu6+iMgpPGpmnSltqxnRyRTK32p2KRyyK7Sw+U9rxJ/Ux+\n", - "ex4DUydyEysOTbSUjqyZFfecnM2IM3nZ/jPzuqChoq4ql59R5BqW5Joq2nIP45qhuzo2BU25Aw2n\n", - "mgaCviC3qtCzEycuzEt79wFuLhI1HSYXHMWmNCnUwrHDhR1ffbLwwdfJn+fmAs+f58YCw/22k+rD\n", - "muGS1t2h4eKepzZ3hf2qo5WhfsHJL4QQyshgjv8wwtJ7BD+FX3inT+Jt4A0S63uqGIExn3uG2j0+\n", - "uUzSwwG/f1rGR6D7YzzxST60y9I9rl/lC/8lr/8fb/hYhBDCIo8+6MAVrs1pPK/x4zddGOaqG6W3\n", - "2k46EWanGq26RrWq6Nw0TKeGtZpkUhGP79ltn8gL5iGYhwUXZTrFqeOQlzqYUComJqIbNsxsqJor\n", - "WzwNBxq6WaaT1CUSo+QWpqpnzp0PKQxMnJy1gqrB2XYjWrVsZmjbwJaOKKgr5KrGFiyrKfQca5hZ\n", - "k1pS8aJpWMeCVj6RJ6lqsmzL0G13TVLWijInK93N7C4k1qWyIjqd1s1rTXExce5g5m41uhBZfpOx\n", - "VTMrDcKs+0NeMmejnK970wvqW2NY5WTuW6gz3vS7DvCzIYQuEpIrrP9N6p9hqcvmbSZDPvxMqbT5\n", - "7I+S7lLZ5MKM+24zaPLKubL7u3bKPGdnbeLR8cTyuGJ2p+50reegkQvTxM0w1UwTKyF3EoOpwiSU\n", - "XawrglTUxIrUpuj4zAmqLrFn1VzHgqnrVswtiWdP65FM1JZirKvjQFB1TkVmInFiJjiU6GpYzFvl\n", - "qL6WCfk5cX7O/F6F2ct213Yld6LWWmFYOW8/3bI8b8qTmr3itnuVoVicIzs1LDLtcUWy0TardA17\n", - "DSsfvavy8Mjkd0MI/1eM8TSE8Av7tLc4f4neEZ3P0r5XjtEG63zm+9lZLAsNHeZP8LnP8cM3uHGV\n", - "k31aX2TrgH9+Rnb+tqv/ri5GQqh9jNUnSx34/lcoXjybTX5PEWP+Sgjhf6P1V3hgiYdfPHMv/iDn\n", - "H89k3bl78RGyumrIHVYuGsWal4o9rcpQ42jH6doVA92STxLmZ4Y0bWV/qibYlhvZ0rNnx55FNRfP\n", - "OiTbDh2oCtZlUsGGuVUT4zOOdYolmYmhiqoLcgsKTxkZq+gI7ukaaqiamRWMtSxkC3rpxLOBzgJH\n", - "GfsheGh+ST9Z1EgKSaAeNtUqMzv3HdhdpHlE5XrF5KDrzp0JCw8yfcJwMlerLct7j8uefZ6FYyc3\n", - "TvmdDn9qlSfbxCNmrRB+fRTjuz3h9tsilCyyH8d/806fy9vA1/Dpd/ok/jg4+67/Zgjh89fLTsfg\n", - "DXJ0WWM8/Cf49I2yxU/pElpscPJJ/D9nv+b+h/j+P82NlPhVtU+0ddqrjj5cWG6OLWZDF3OO27cc\n", - "FVGaLErymo3+K8YtZsVIsjl2Ja1byKd6lan9oi+xYCl2ZOHUUyExjYUYmurFiknykLYg1Rfdr2Fo\n", - "otCvkCjUzozU6rhP4ggvWJFra5uq21PVl+IwVk1Cbv3spXfHzJEoiDJLUnU1hYEFifukdkTLWDjj\n", - "puUkc7U0UckZJy2VwI0QqYylMdVvVMxniUfGU4dpMBxfsr5NvxUUu4furnX0Onv21goXz1rw/Sq9\n", - "uT+qPvebsNNha1B6gXxpi/1/+RZi8re7N05DaH+KR/8CFx9lI5CMubnO+RFPf4rOtTJpuPUgH366\n", - "tMQISekO210qx8of3WZhzO93ea3Lqtx4IZdOGh4ZDcWlxGJsmExytVqwUsxtp6Vishqi2tmzeSqY\n", - "q+rIjeTqxgYa6DpSOLJoIMokogY6ClNBIjszmy8sOtY3NdaxhoadYkW/uGOcJ+oxtWjkNLnsxKKh\n", - "jmJljVl00hgaPXZkYbagmly0VjRlRV08XDBvdGXVa2ZFyp3zRl+4ofmDNbXsnOU767YOU0nR0lt9\n", - "xqVHoskP4pfLrmL4+0c8scxjGf0jvhpjvBFCaDbprLzFmuEqt7/Es79EpcPlGUcH/PyMp/+wNX1X\n", - "FyN88ie4/4h5yss/xfNfDCH84ttJgXwDZYvXJWW9sB9j3A/hYpP/4Lc5bfDKp1lY41yd7qDjy52K\n", - "WcJ+XpNMaaeXxfHMINs2mOWSwyHnR2JoKvWFFeWQoyNYUdU/ixqPqq6I7sfIxJ6JVSM1N4wkCovG\n", - "duXYdmRLU1VqLjg6Y9+XBjoLuCjYU3Nd9+yBNDpTpafCtHTnaydUZuWYb2/eViQNtyvLqiHKQtAS\n", - "NSUyK+rZgVhhtlR3/JEtvTsPE3tcWGTzRDx90vQrlTOC0mXCLeoNPvgJVj5cMrxin9pv8xNpCP08\n", - "xu8mdfPdiP8Mv/Ie5Fu8GV/Hf/dOn8TbQYxx7IzEGkLYWub7N/hw3+SRsTv9kjz9Bi4flWaRJZZ4\n", - "5EFGKXFA6yYfWzBaXrFaHVqPmeV8x0my46pM5rpGXneS0Xo5c/G5luNPd2zGXK0SrIq6cebIqX42\n", - "d5RG87jgKD5sEnYk8chmWDoT+I4V5qoSM1tS+2ZqZx6bUV1VzdyKwqFLMnVdQaZmasW+e4JUCKfu\n", - "mOiJOpYc6RqeJVjVtM5o7YfGZ7THmsqZqXwU5CZOzZPMahFkSVCPpZdJHgOR/nAqvTN1Lo3SbhTy\n", - "Va1ZGYwZV+ZOl1acng683qlKtqYu7HLU5EvnOfi5tyrnQggPbvLDNbam3N0rnbOvf/vV/cWc+iXm\n", - "Pfb/KbPvyjyrlATf/yO8ryg5LHmFjXE5Ufjq+7k6pxFJqmWj5dyXuXmFGz/GeqtU8CQ58xVm+2xl\n", - "LBW8kEadItUdVDRPxlrtukcGud3q3HYS1NJgsyg8n0bLkU4ot5sDQaYwk5rIHZkZqDk885CZWD7T\n", - "QA1FbYmOqqroptwFiR3DM/nvQNuuy3LnFIYkJ7L0pjtx7FTTKCzI4op5JVA5ZJYLratyLQMNSWgq\n", - "Qq7WmppUFs1dJh8zP8/+83ywbnz4iIXjhqVvfHfWNQYLxp1TjU+FEL6GPXS6PNDgwUiWMQkh7GI6\n", - "ZnBE880E8wnpmL0D/s4B8z9KFtG7vBj5oRt/8OdLJ4w+xtNfwZ2381tDCMub/NRlNheJ90iWQniq\n", - "VDLVcm5dYqmGZtnak0X1NKg1c1kIClE1tuRpXatZVV24LBtlVqav2W88aGJTMJG6JjVWsaQwkymD\n", - "vJo2TdEzxCXRilTfzOvu2DGyYumMXbLi1PzMPL5q7AmlyvweKgoHcseqGg6smuvZQMUsBLG6Lwk9\n", - "9ZzdKtXpeUv5innl0GloWopVbadOk0wSy9jrWiTmvLbYsT35qPn4CY5eoNYkHbL5Og8+yGsFYZvl\n", - "e7xyhbWPcPMNs6oFZh9h/y4/7LuLAH9XIQQBfx1/650+l7eJ5/FgCJox/sFD472IEMLlh/hrHyZv\n", - "Mn9Zf/Wu3/nULaPP89jZjv24Sfbm3VqMhJs8cMgH2+bnlqW1iWoahKJKsqEWT+yGifM5L0+ovbrs\n", - "VM/uY2319pYjuRj23Q0TSxKtkInZWHdetR22xHRmJVnXDiP9MFYx0YhRElJDiakoQ2FDy8DAS/qi\n", - "izJ9VUNDWdyRh1xLRd9lDWuIojXRjqFg6EMaatbiPf1wz8Bc1FOVSzxojiVTM32JlLgj0yxZZSHX\n", - "CFOZI6lK+X0Pia1KYTrg/Cm3rjBIgsVGatIsTNKandknTG++5PVLR47qvHaF6YD9/5vJ33/z+tRD\n", - "ePJJ/vJHOd7gcIfNL/M30hD+YR7jtwzOjPHe3w0hVJH9ETeZ66V6L61RyQgDpk1Omlxocn+PwZzp\n", - "iGF7wW/8pRWzjapuree4cWw5ZCqh5HqMlsr36VGLrVri8nBquDF3bSOSFU4bE9qZep66m1Y1YnR0\n", - "Nip7OZa2N2mIego7Go6LiknYMrUuCcffCAMIzuE1QY5l0TEqVlQMzUycKizhCVyXesFiUhrK56aW\n", - "Y12wbGRJLemoxLlREmheEkNfNa5Jk7vGYcXcVC3tyBpBnN6VpcfMF5h12e1RU0orv4GhabPm5MJV\n", - "w80V/qttphndH2HwEHfmpM/xiS9xYZ+f3edffYG/cMYZmY6ofJ5L+/yrGOPEHxHv8mLkzUgj9+W8\n", - "eMXbKEZCCGGDn/w0i49wq097Q3KpJvkvnrV/N/d0tSSw5meS+sqIeXdo5WTssFrTSQuDZFGRV2Wx\n", - "qVl0JaEjqyRqyUR38rpZ/RVpMrIoWLJl0avGZg5dlnNmbDPVtmxq2VyQq2NRz9wQ9zTkptaRaZg6\n", - "EQQrZwz7uYptFacSNZnCyCWlT0BP3TiMtNLCg3nFxZBbzHmpWbg9q1mLCw7Dkb1kTevsVj+VaWeH\n", - "AiYhdW9wyXTyYGlK4jzHL7F5oXzIVF+kOyZ5jteH/ONlfiJ5y7XeYFDl3B93rd5hfFg5GviOcrR3\n", - "O2I0DcEryvyIb4pceC9hqySzDi9zEnFsfKdhcXXgmQ8cefjXS6Li19fZ+0dvHHPCC8/xH36AqxtM\n", - "ErFfYWWskMoUinlFXqs5MRFV9ZIPa2UN1clNs/WrFkJTNRam2YrF9IZKcuJC0bdXTd2bLerP6hqV\n", - "hmplrB4rstBzWF0wDnVVbdVY1/Cc0zCUmCtMVTXkZm6oOTRx4tCVUHW/iqZo6rrXdN2xbFVwaMVc\n", - "JmipKsSwZcmuuX1THQ1Boo9cxaHUgnZsmg1uaVX2jOstdwx1wtiK1IW8IYToFYVQSVQuFe7cof4a\n", - "oTpw9EN11ZA4dNnodKS60jU/ajj+7MzxzyhdNf81gmkIIb3In/lhdt7YKV/lqMHsiD8TQnj12xUb\n", - "f0xu2agcszR3Ob3KxjYnD3O0wMUJvRqjCt2nF+x//AHF+bq1mNroLTtNWq63b7o65bhDPmG3zmY1\n", - "lU9rupNCZzZ3ulB4vjO3lpPmJCG3OI/WcZAWukW5ybuKuijGwjxMHYfztsMFqY4irsniEcld0VBF\n", - "oa2rbarMsHlYRSFVV1hRXrwbUrdtmFlVWDWUyd1NanbiRBHuoCoPBemq0sSjR7wgDXOJvmjJVKqw\n", - "Jg6fpUj43Qf47JDaK/ypqD/LTRup+mQmSw8dPPyQau9+2dcf4vYzPHGNJ9f45xVihexj3D7k6j73\n", - "TXnqWdJtPrNQWs3PDvm1wR/THPIdK0ZCCH9a6YFwEGP8oe/uqGkgf7vpgBtbXHyE2/usvm7xB1i1\n", - "LhQLxo+feGbE0gHdRYoutRn58dBW44Z7cdO40jXKJyrFDUkt2pwHR+nUuLGsPq/L01Q3u2ahVrEq\n", - "kbgnqmgppI7dNBdkOlZlFgRR48wgKeiecbT7mk71rTvV1TTXUHPsnl+XWVN1qmYmlVo1VZd62bbc\n", - "R/RN9N2U6ISKZlJTiXPtLPFQNjRozuzHNdOiJ0sOnYYFoRjqFIdMTnzwKZJp3cFSXX+lfkZOWmJ6\n", - "juvP8ciESY1ntzm9U87mj/ZxTD2cfRbusDQr+XvvRfx1/GyMvuccpXcAb9jCv2eLkRBC80HOXz4z\n", - "2wp42OQrr9r+SEf96pFffpCTMTu/QvH8mw69eZfeCo0twiHZivE8N6w2tOPQJC1ks0x1yr3GOdPh\n", - "mpXDe44ub5mniVmsC3GonnR08y3D2HOYLImx5dy0JS+mQlyRVW87qk48EArLbrllzcTIOBwrYk/q\n", - "PisydS2HFgQ9wYmeV1Q0PKChI0qlKiYetmvHTKGtomlorGaKucI1JypqZhJHck1LjjE0ULEUJ4bF\n", - "vrrE1mzuXjG1lp1qNSsuh8J2uuEgrMizxLzo2e/cEbfHtl5k5QO5fDCzl16V9hq6kxfVl8ZOtrtm\n", - "ee9NBldvweISrRWO3vzDLQZdLm6X4/DB9+A+WFducCbs3GDvMvUDDteo3uZgqzRmLE7Z+iz56aZK\n", - "v+Eki/bSKK9VTIcr5smBfhgaFtxLmYzqRpNonE4UK1E1YZDyYFryUVJczXktFG6ERDcjiD6al+/5\n", - "04L1EC0VuUmo62uahwVFbKiETYkXFA7ULViUKS9U4Yqbti0qL1BXudMuRQqbmu53IpPYLZOHVELb\n", - "wB5exXI5Qg9zLCtE0/CQNPuCPDkR1cXhAQczJsul/870Noun/No144srbjyRWEy2zbqLsrBh+vIV\n", - "+WvQoP0g0+tcXOcbna1z5FXWZzG+hi+GEJ46O/3RG4VlCCFJeHSNj6XUj3hmWvLXvi3eyc7I55WS\n", - "w3/17T8yTf9Ah35S55VI/urb/HfrrTLwJ9zU+nDF+XGqPi3EUCHl8af5nUdZrDNs0VqgOyOZ96wO\n", - "Bl6zpDVY1spyi8s1q1nTJD8xS+qOKk15Hs3TaKsYSJJG6aqUtBVGZ/bNXaltifxsjthUNVUDXYlD\n", - "U0OZJVXn5YLSSueyTXN3bcu0nVfREIxkeuhr6BqdWQRnagpdhdM404uJ9izXSDP1RsO4uCKd5Irk\n", - "2Dx/Tlrra4eR9cDuVY7vjnjtWPa+EWmHIqJBusxTX+S5Y34Od2OMWQhh5YDOb/LpRfoJB2u8/hK1\n", - "3fegEiWUkal/EU++0+fyPcLXlIqa9zKyebkTSetn3iNtxk+afvYZ032++g9x460chhhjPB/CzWXm\n", - "hywdky/RWnN05ch8NTod7cuTkdZRsH/rqv4R0yQxnSyJe5nTS1OdNFpVKJKyY9q3omkqqc2EvK3h\n", - "JceVka0QdMytxFOLDuzGqWNbYnHeeqUpMXViydRQMDMwMBDcL5OamUjPFDhjDZklbOk7sW8eE6du\n", - "2QvB3IbUqiWnCnsSd0XHHhKdxiWN0VDI6ppSoywxLvriNJElwX5tzVFyUS1fEOYzh5Utqkt86qad\n", - "cKxfTV3anblQeUleT0yrC9ZuB5U4de87FROTMTJChW90QMZUJuV6va1NZMnxW/xxHv84F5W+iq9N\n", - "+Z0TLtyllpU5K70vs3GPT3yVSs4r61VZvao4rEhPZ4q1xPqkZfEodbDCC4Hh14PJ1bqFJLdVKcRq\n", - "ZtJiOSmLkIOknGrMA9XI3aywUrBdsDljmtCu0ohRZ5jZqh94rXlR4sQ0rCkQBG1jbTtacm0tLVW5\n", - "nmBg5EklG3iCuTrW9E1OrZRTAAAgAElEQVRl6jZMXXDeibF1I39SYQdHZ4VIDStmSVApMkXaEezJ\n", - "Jym3I62C6jYPvMzxU9R7/GyPrGH8kdTk4blw/nFF40leSM/WLy1d3sJJOcv6Bk5I5m9SUMUyq+hf\n", - "U0B1+bOP8wOPlCGX2TV+/Ot8+Dv5PryTqb0n8J2TWv/ZBe5XNqFez7j98zHGbyv7+i6xt0O+x1Km\n", - "1ayrH0PPuDO2skNW55ENPvKzfPknefkSlWYwrTclB4k8nTpamBrWGnpx5HqtLswWnN+/bn+xIqu0\n", - "hWxkVqw5n/YNql1ZPifUDLSMpdpJYmpb18yJ+6QKHR19M4nbgpq5VVWpwkzfqVR0ZMVM36pLoqZZ\n", - "zNTDwIYDI1UVURZLL5FBEszl1pNMI7LTYhKjaT4Rp31FURHzTFoUpCPTYaE3KncZ9VMGv3mb3/9l\n", - "fup9TBKyPqfXuHnMz8UYb56tX/08P/2D5bD+82MeOuXCl1m6w//8nclr71r8J/hcjG+Pm/Quwtfw\n", - "l97pk3g7iDHOl0P4ytf5vu97kxX5c5zv8VSM8flvdVwomY7pdf7EKqM2+R0OG/LpoZOreyanPa1X\n", - "mPxSorfX5NMfMbr9NJf6/OiSeTNzsjEQkoFpODSONetzalkhjmp6rZaYjiyZWjfUialG7KJmMd5z\n", - "z8Dr6dyJTKqhr6lqRy4xtYG+kRpmEuMzphipYCL3okzH3P0hM/GKXRcNLes4xETLkkU1A5kiTozi\n", - "RL8+1y3m8nuM77V8MF81CQPPPJbZWV5Vj031mJvFNeN8VSOuGM8rXDmRt1/VqNd9YNTSOCqM04HX\n", - "tjJxOuLbKuNijKPlEL72FB/+GLcTJcP9q1w4Lp0636bMv/Ik7/8EP3KjHNnD+xb5lZTnfkZpJ7CP\n", - "wPM/TX6hLBR2W8cOXTV/aaz7SOqkzWRxKKYT1SE3n+bwb0ULf2Pm4k8GzTTRSlKHIdfjjBZcN42l\n", - "0LZhroFGj+ywtMDpZDQuUBsFo2bdcW2gG3eNLIlun/XCb8tDbk1XV8/coR1BW3BBsOj3HKobS2Rn\n", - "I/oo11ITLXEWuNizKZgquyg56kp3wxFFQ5bdJD0tN8G7n+aVwNINLh2z9Rs8us//GGO8d/b9eHlD\n", - "3MjFS7tcOeHe6plCZpVbX+ZDzTc5al9j9ZWyEHnt261UCOHcE3z/nzxTsFF2yAqu/MZ3WuE/1n3x\n", - "bw0v/x1evqy85tdjjG+7zRdjnLRC+NXP8Ze6skaQVfomrVcx9MGXePYHOXeKFo8fcf5W3Y33171c\n", - "Oaf7zNDg4xcdt+tGxYrmPBGS61QPpK0Dj92ODi8um+ym+iv79rs0i7FqoF9UbIdUXswNksuiFYmx\n", - "um20Tc3O8gnauvZN9M1MzUw0ZFoqJqJEfqas6QqhQpyYBTJzx1KdIpUXUR5yG6F0BGzMKFJeCHW7\n", - "R1Elu2lWVC3uzmUrc92lwhMTLr9QbkBfq3P8ibHh336B39/lR2sszHjpsHyw3HvjeiY8/D6WHyvH\n", - "MTs5r+Wkaakt73ybZXi346/jf32nT+J7iKfwRAjqMb69Heo7iRN+40us7fDgJvGgJKbeOeRffrtj\n", - "WvzA+7nvPCcXqNYZP8faTbbv8XMDk3/CpIgxzkII7Rf4/i1WHmb7d7gxZTkRxz3HrbpRsqheZE7j\n", - "gXnRluxvKmoNR6s17XpmNdKJDVneVismimpVHo6tx5lOOO9AqupY1aKWgW2bFENH4Z7XQsMDRaKe\n", - "TI3lrll0pOqcJZeQOnFqqOFEoqUvUcN5U0NVFalBDORzKxJbo8LCPvuzkcHxhu2PPmohDgzyVaO0\n", - "a5IV5BsqkTDLJGlVEVbULMrmR+q9qXk3VTV1vpJ5/RC/94esz698kdYtHl0l36eyw9On3xOPm/Uf\n", - "4P0HZVLvc+fYv79837bnWI0xPvfGJ0MIf4+9h+lcYHzYM/+tm/ztLfvVluXjvkHtQF5ti0fB8T+d\n", - "xPhqCOEfzdz886nqZrRZK5zkHFYT61b1NLRDMC8mTkzsVk8t7REmXHuBh5vlK2p3q2W72TGaZR6L\n", - "t9xM+g6SqFUMTLJTWnXzNLVnzcBFdXNDx8g9rCIzds1csGpH5kDqnMJE5kTbSEu0qCLI9YhzIaZi\n", - "GAjxRWk2kceRynFqnjzJpKB2zHSFX3w/18ec3y+v0WrCRx7jxz7O/iI3f4+HnuXPPshvbLJ3i86r\n", - "/H7K4JCLGWGPnV3+yRsxAN8KgQtXiembOmRwhZPvtML/xouREMImfv4tP96JMf7lP+zYGOORt8wg\n", - "vxcYxfjFEMLxgun/VDFandi6Ofbka6Xe/fPLtJ4v54CVyLjb1MwTC/nMqLVkUr2g0h/RPNVQk8/a\n", - "YnFNOil0bzIYjtXutmXn5+5uzITNiqS6bJbXFEkqqVwx1Ve3qmUuc91IYWpN3VRxNg2+Ysd1D2Ns\n", - "pqJSTM3DrmCqG3fMk0yhKY25PAZZ+P/Ze9MgO6/zvvN33v3uW9/eu4EG0ACIhQTE1ZREipREyyPF\n", - "sl0ex055MhNr7DjJB6fictlV8yU1S5VnqXKcZcZZnBlJySi247G1WIoWiqQpcV8AEBsBNND7dvvu\n", - "9777e858eJsSRIGUGBGEKOZfdT/gVt/ug3vufd/nPM9/sWlKSSXRcXzJeCYhFrCaQDmA2ABlRESa\n", - "Tv/iKKY0cOIr+LOSPQImVmB0V4VQ8WBtHhhVSn3HSfFGyEF9BL5z6tHTD2E8Am4+9Xx7V0EIDgMH\n", - "gL+61Wt5u6AUg10S6wne5HT7447dHIxPN2EKqJCe0FbeyHtICGHOwkMPwDUBy5uwL4CpHOx0oTuA\n", - "P7ne00IpNRRC/Nv/BD9fg8kYrm2nDMW796MO6khNQ4k6ATpdPUBUFVqQIRgKvKJiSxuhJu1UO6El\n", - "DJA0gKoacpdcZEvkuSKy9AnoI1BK4Mg9+EbABdVmR0vIKvDIMBBViipmlByaMIilQ6J10VREVSQ0\n", - "d4e3HRJMegxUDw+NQ4lAj23yrsuUC3s6Nv/xjgPkz0iMCcmw2kGfnADVIbEEoqOQ4RbKccCXWH0b\n", - "d1KR9Hyq2+DtHoy1xR8k09xVUPz7XV5HidT48G2SxWvZNAvr2aOgH4Tjw3SEf24WOr8qhPhfXkv9\n", - "3d3Ts7sPhBDVAVzxCbYbbE0EWNEMycIR4mtfh727Ng/nJcmfSYa/lmbOlAT0EpsFzdrtS0TE6GzJ\n", - "afrxNc4rQVOF5O+NuVJJOyQ53UIkeYpRB2VoWInN7Po6wopw+hmiXofzd+3D0YpktHRgH1JAskST\n", - "iGliyspCEGIIiysMyJNQpkeP/Ui6u7osHSFjNEAoiyTUMJil2nXoix5hdxk6ATQH8Godtiq7Y5Qa\n", - "6Fn4lT1QkHDvQYgTuFyEsw/B15+Bk1+B+zR4oQ8vd1ICf38DRklHFDs/SPWkILpRpRKksqM3xE0v\n", - "RpRSW/xnmi4JIf7xdf98XCn1+NuxJgCl1CUhxO9A+N9BpgCLY/DEYdjYhoMtmO6kIUgZUxAK6CYC\n", - "R2WIzRJRS0HYwywo6q5OJC3CCFo9m836CUp6nfolgbj0Ipt3KuT+MsVeiKcqGDWPRPfwsehgIJlg\n", - "CCQqIhY+FpsosmzSJqKLTQEwCXazdm1pYQmJrQb4qo2rFP3YZuDlqLPDdhwSaJKJOC0ucsug6jDj\n", - "QiEv6DBgb2RzbvMOVlZPUzviU2jB+HVEUzuBrA67RJY3wTDN5/6+D1kTsoPU2OTdhk8Bn1aKH7Gt\n", - "/GOHZ4D7eBcXI5ByQEg5fj/MCC2XByufhiqxP5U5nwO4CNObaWv/ewy2dhNI/y8hRGX3qcpR+L0a\n", - "emNAcVpScWxGXJNEnKVVfIV+rohvKzS3iudIFoRLXnPxNZeGshgkZTzl86Qx5Lhq86Dq8bLIsyhK\n", - "qV28kpjhFJ4YZ1PvY7GAoM5IopPRE2wVoYQk1AokykNXXXTRoyhrmCi2tIAhm5ixYMzVmPd1XC9i\n", - "UBb0C4pazyRvpo4nXneUeHWdTHwJb0yg9ITIaUARnEEBZSX4MqB8FYZLMCyD3kgPxN+bN/ID9qhB\n", - "OjJ5G9E/B+cegugAfLCZjmoSDUp9uFPAk3fzxh0YswaNR+BlF2V4BGYpHT0rLZ126Kk7qPWnkPsE\n", - "TBahkAFhFrgiEgrEWCKDCB0C38cJTbw9Q8pC8FPSYIKYLQEbokuoG2ybCUNjjLGNMuVmh6i8TvVM\n", - "l15YxSsV0cYVVsEgI0BoFppw6NJhVOpYUic2BLUkZl3TWBBp3Y1aRgkDXZ3Hp4SGjU5AJF9BJFPY\n", - "6zUiqRMEOZKtCyAsuDB3HfEUYBXmT8Da0XQ+pVkpqftEBMlhOP9RePbfwcwV+P3XKabeShzGlcsQ\n", - "HoJMbVdZFYB+ftfr/41wK9U0dwK/DxwTQnwN+Buvb/0opf7xzVzDbvT1H0Lr12DiPpgcgrMKL9yd\n", - "dnNzV2HhniFbhXH0SxFDe0AvakGpR9WxYQB9usSZDkERtrxxpF+hnAjAJbQlJd1FhmfolzL4QsMQ\n", - "BiMx7GhZQmmitAi0HVABSkRIZolkiNBiDjEgwxYhGg1N4KsSe0LFlhjgGkNsAwQ2rjeK2tjhWm1I\n", - "vZNgRwmbY1DrgV+HOS9V4q5mXbLLbUoMqRwSeO02ccsnEWly6Ug7/X5uVsDd5Ue9OSRcugjtOowe\n", - "gm0NuAbVV1JTnDM3c//ebuyG4v1t4IdUd72r8AzwMeAPb/VC3kEMBxAPwcxd170bgDVMi5A3DHVU\n", - "SrWFEKN1+I0q3DZD4q7QneljRQmOkoQO+Nk+t70IwaEqHbNHXInoOx5ZPcARFpoapSzrlJKIlt7m\n", - "29oKIyohpkst8ajJIjEVnCihF3v0sy0KBByQAxbMUXpqkHphqCyx9EAMkCoE1WBUDnGBIO7h6AHj\n", - "scC3YT3JUNuOcHKKThVyLUmQ8+jsFbTWIDFHiAkQySmkkcERs1Q6BXJLCrmzxOahNuoVmDuTHkou\n", - "1+CZ90GiCVH72xqtnRpkXGgP4cyuPfs7gN5T8NJH4e4CRIPUOr6RgcxZGNmAM0d442KkuQXhl7Hv\n", - "alKeAFsYDIJxOitD5KnX+CxKhaeFKHwawl+B6BDE2gBDKwA6fSkJZJeiobEnihBIirYgUYKMEBxE\n", - "kVeS02KHbauCMdhgpTpkoNrkkxhXZjg/XkCpPJ7bR2UitqwMuoAcWaRKSKKArhFRC2ICYTIiq9S1\n", - "IR1iHE2gyR5D1SQObDRhEBl99F6WyqV1/HpI37FIuoswuQnfNIEJKExCPwbxEuztgPNRuPws3G/A\n", - "TCE1BNSvwCMObIxBP0o7INFuGq98q67nSqmhLsTnvgh/ax+MmqAWgVX4OvB7b/Q68TaYmd4UCCGU\n", - "UurN2K1vx98YAx6A2x6Bj52G0u4p6dw4PLYHrDPgagbhiRHM8QL9oYu8u052rEotMoj8VTx9mYo+\n", - "4NA16PdGWTZn2WmNkEm6JNmzFN8Ht5lDaki27f0saqngtyFzSIqYcplI6PjuJlFGJ6dncOigi4g8\n", - "ZSbZQWAwpEVfZZFBSOwl1HI6U7GioGv0Qo3LrsbaygD3TwSZv6mY2i8YV4qMBaNB2pXeHsDJz4KT\n", - "wDeOwtUeTNRh9ghUM6nHjb0Cwy148SXY/mc/jBGREKI6Ap8ow7wGdGFlC774Wj7IW9iPm77nb/73\n", - "+QXgt5TiwVu1hpsFITgE/CelmLvVa3k9bua+54V44AT8zP2wmoNoCOa3Yfo0fHmg1PdxIIQQDqlx\n", - "hF6DRz4M+TW4+37wNrFPbmHXupRMF5sFHC9haO5hUxzDu7gKE2cYn0g4HGvkLYsYQYsi60yQk5Ie\n", - "C3S1DqNKMJcYTMQFGonNlmbgyw79TMieVkQ9p7FuTdPWPYbagBF06kriazENaaAHJiNeHlYaNKZ8\n", - "DhYFdV1nK5IYgJlI8suwHVt0shbnnH30kxzkauB5aW683sc2mlQ6Cfmmg5QhtttlZENyPoFiF7Qi\n", - "JMfh8GWYvWZz8cEi18pHWHuxguycA7EAn02U+s9SOL7VfRdCnIQ7fzu9zGh+KtYTEtZn4KUQ5Jeh\n", - "eUopdfX1r9VE8R/l2fcLo4w1bWx/yLDQYCHvsvR7Sqmndn+/yMHfMSj+Dx4jdcl+Q6HpNQJdx096\n", - "bCU16q8MMUYG2NmQPSVBoEuUDqF4zSQYXDQaUsdOEuJE0ugbGMM6ThO2Z08g3QIqXENOZyhpLpa4\n", - "iqkUpbiI8Fcwsj5N3UZoFo7SwQvZ0cfp2nVMN8Q1XMxuDyfp4BRq9KNZBt0GyihCXIDtPDxxGgo+\n", - "DGsQRSnHamkWDkyBU4aDWShkoTQC3gIUr8CFHFx4Gs5l0wL+YAJhB57pwxNvxhN5g/3KkCpQDNJx\n", - "auvN9vzHnMB6cyDSNLf/6ijcn8O6w2fgbPCl0Qb3PZMaNR7dhDULnvqSUmpBCKFvwkNDSv8kR927\n", - "TOBWGWYyhIUmNWWxv+VgOxFJEWaiBmRnWf3qEFGV7LtPZzZQOEKjaGwQK8FFLY8jIrJylZ7ewg4l\n", - "Sh/D0etUhMSmRp42fTbZQKOgoCeKBEKnY2dwjCI5IhbtFpkkYDZUzJg+3l4T8XdLHLIE5UGfYSlh\n", - "w1QMLIgtReFyQskFPYZeER7YhBPfgqfdlN9nleBKCFuvwPb/+8M6Iu5yez6TfpfRXpvdvgvx68Af\n", - "/8CfenfiMlASaYX6I+aJvHswhG+dAlbhwTyYA4h24MtDWBAi9yHQDBhcBpZ12DebnuZswFmHe1x4\n", - "ugQL30J7JIeqh5QtF93cItMx2deu0q1JOjkH77YeGTPHIU1R0yOUZlMkoqJ6+FQIsDB0B4lJX0ks\n", - "LcK3XSpuwnhX0neGbBo58t0Iw4yZ19c5RYGenqGFi6s8skrHIIPUKyRyh+GemDFNIx+BEwqmEli1\n", - "JH0JrbrFWm+crYUMfb0I+6ZACchpaWcDF+XVCc0FRq92efAsmAm8MlnAP1Gk+WIbp+Ty8AtwzzWD\n", - "V49NkVVZjq5u4M1+gJ0LM2D/JfyiEOL/eIdCMc/B1jl4X6jjThXZOJHBm/TYqoK20uboALp3CZF/\n", - "VKnBdywjhBA1uK3a54Nf9NmaMwkKIWNXYsZbEBwTQpwC5oC5abhrC3OYUB5T1DUoJC3aWLRETNZq\n", - "sblfUhoq0BVDUzEi4LyW0phSDRU0kRxQkosiJbnuswVxPqJVsRnRzrJQ2I/n5QllQtPbhmyEHZu4\n", - "pktUzuOrDLGy0MQMhaiNq+kEzihGYBJaeVRsoXlr5Fo19rYzdHN9LsRHiMiD8mHxOCzOg/0XULsI\n", - "f0TKGUm68LsZOHYSuhp0V8HoQiUCOYD9F0BU4I6TcPV2OB+BfhoeeAHGhRCffSsuubsxDjdUud0I\n", - "78liRIMjR+EDH4HFUxgHBMXBOEq8zDP3Npj4GmRjyCjSixJKqUSI/AmYjCI03aFrzDLhtvHNDJOa\n", - "jW0V8csdop6N09Coja2x8f4ejm+RD/t0dBgzTKzYZcJaYJ0MQgkMzWdCKHLJCKecPAVyIGNizUNS\n", - "psAWDQR9sZcsFlBCigBlrOFTZEoVGHCNqznF5NCgiEO3bpNxe2haGdOyKMV9PC1htJcnsnY4e29I\n", - "exPCAO5cSkm6H3oeli+n7oWNKmz869fHgv8weL3Hw7sJQrAPuAv4hVu9lpsBpZBC8Cwpb+Qvb/V6\n", - "3g7snrwOiDSEZIPU9+Z7Lpa7Lea/FkI8TaruGkDmXtj3D+BgDLqEhYfh8ukZBoc+Ab2R1C47P5aq\n", - "CI5HWDGMts4xnNRwjA5l5TNv52lWs6BFFEWXttUmb5QoyiFKdzFEFjvRUGJAXgQEmpWq30Qdy+vQ\n", - "diSaFpEtRHiWzlAaxP2AxZykYhZwjVk6usO+SENnyEBbIyJLueUzsASRcNAyHkUlkTq0hcboUDAf\n", - "wqKCl5Iya8FtgAczU5BEKUeAfalVaf9ZkokCsbXNwok2Hzmt88LcXk7fu5eoeQd0nkbMLfDKnm0S\n", - "3SLenyPX0RHSo5TfZic/Bb0JqK2kJmQ33dxwV/H0WfjibxUo3VvAVpJBdi+8Wqe2c4bVfZv89DfB\n", - "f0gIcfq6EVIJRiSMtCNG2t+tmiINxDHY+zuw39AZzrdYmusy3KPImIJCIjA0ixEhycQxA8tmy5pA\n", - "Y42glPpgbZJO+4qkRN8uUFSpB1hOgLKhZhrIxCXKmmhhyCF5lrN2Bk030SmjolECTeFrEySygxI5\n", - "RNBFl0OG5giRsx8R+UhNI1EhRi+DHtYJ6ybmyyZTos3C7VWilTHYvpoaYxklCPaBsQhjpPwotuFR\n", - "Cx7xICiCNwLrSxAMQWYhtw+8echl4eAiWAfg5Z+C5W042EwNXr4jq3+78Z4sRupwzxFoG6CKBOst\n", - "3PkMpfYEfr7B4gjMb+++5xtCiP0a+s/X0X9zklaxCDTpawGmYVNIdHRTEWYd4o5DkpQoLTYZ6FuI\n", - "TIsoPyBOJEFb8OpEjIagnOgkmsYkBlPSARFy3skTigya8ImFicLEIyZHQsQMkjw5FCsUMMmh4eHT\n", - "xldZHFHGVdu0Cw690CDS+8S2jhGWqbgGBc2gF+1wMQ+eyBBNhwy/ALN3fDftFGC2kz5eBdZu2ajk\n", - "FuLvAp95t+e3/AB8m5QP864vRoQQe/bAfzMPThbUMmiLcFoI8ec3Un3sntzbaRrE3Mfgb6ym40qA\n", - "2wR87pEZrvgjuym0RRispTHpIxexqgUqmkFxEDOtx5gCIhHRK9nEoY4mm6AkkUjDMC0ktvKINBsd\n", - "gYfAkkN8zacgLVzLwBd5SjJCigHK9HF8xWYGas8L2ocnkXoWSwNN01CyRBbFthziGhG+GTC0TBxd\n", - "pykirESQixQ7hoaIE/qWwOocQPPmkf018MdBLsJYBmSczl9CQRLmSMwy0mhztVbl/B178aODhKcC\n", - "MFzi2l66Tp3nR9pknQH19QLTa4oIK+UVoFIz3HfMpVgptVoT4sWTbGo+1mGDqTBHrmeiR1P4+ibr\n", - "1XQycGGW3SgLoJMal0nSULvXsDQC+l742QWoeoKLZR/jngzLjsWObrPDkESXjCgdy9Toyhhh2BTc\n", - "AlEY4NuKpoCmgGukXZGySuXHCBAJWLpATxRCKAzNpeuMo0caecaRYZMoK1BCYIVzwJAYg0iroYwK\n", - "uOcZZnWUVkIYEqXyaD2JQQ9pZgmckFgzKfQF+tCEjgGhkZ6mDSsNaapOwKf27qppVsFfg0dPwd11\n", - "sA1o67BVg/kubJogpqBTgHAB9rThWhU6E6Behir/pRh5e6GDY+9+maZJrvXYmg6gYpCY0CjDYgbW\n", - "HoPyL8L4L9cY7p+FgkGcL6EGI5hBk67RZahFxLpgUlPoeojKh8S2Q7tZIdlYIXfSYsXOs1MvoMkA\n", - "ZW7jiDJt4TGOia0Srog5QhGioxGSwUQSAz7ubpJFFohYx0EpE1tFxORBtHCFoBybuKbDUE3R92vE\n", - "5iL9zADT0an2AUwycZEg/BBbT1wFnoIXoF+H5XJagLyG1RJ0trnOXe+9ACGwgb8DvP9Wr+Um45vA\n", - "v7jVi/hRIYQwp+Fv/Qy442myKCeAx+Hk0+ld4fk3frV1IA0gda4rWHQlGAkVi6O7lwUEUIeXL8PH\n", - "h8iKgTYUeFGLMIL9gYOyEhpmSCh0OkRg1fBpsKJH7BOKNJ11wA6CTVYxDJsSNgOVwdEdTDnkmoKi\n", - "ZhKqiJ6KyW+CMWHTLlSJzSymlLQ0iaVCNHLEhPh2na48SNRvQTFgwwnIKIODnsQ1NLoexEOb2Koi\n", - "e7k01U4NwOqQNUIc3YT8NYZ2QtDxcAcZZAKPHizRMvcRfLsOjW/CA7cR9bNkxDpKmyC32mB7zw6R\n", - "GKW1VAd3Awpr6bXiLXHDflQYYFvo5YjMZELOGWCOCMLQQLbThPdYsevSC+kYWYjqaXj6BNy5W4Q2\n", - "svDcXGppUPUAYpSWgXKWyf6QayWNvqiQU10aWkRWaqwrnZbRwap6oGm4KkGEYJrQFmkDQigY7NrH\n", - "BwpcXVFPYlpGnj7jxBh4hkFfhlh6FosmHYbERhV0CxMTDYm0Q6ReAZkmpKskA7qGUiYoSaL3EcLG\n", - "lkPaBReZfJ3qkTwi0hj2SvjGBtT6cPRn4UsTu8XIDmT/CsbOw1MnIDMJg+V0HKnthRcbMNWH8WIa\n", - "qCf7UKlCp/VaNPHN3df3HlrwyjX42BgMsuAfwX1yiaV9ZzEPw/AqNB8FIw+H/yE45REGtoGtEjTa\n", - "uPkCelxEam2kXmAoh7RUTIUIO97k6rE6KxfWOHAwQ12MYl6NUNMujUyFtq7YUUUK8SZtzWdHlOiQ\n", - "x2CAzhYt6hQpYKiASDTo4zBQFWJhYdCloEIUNtkkoK/DBpJtzcVXE9jeYeLOAKM2RjsZ4Bo9woyJ\n", - "DGIa2hTiqg76dno8aMLmF+HRvw+j+3WsOMGMYKULG3/6FtMzfxLwi8BppfhRowZ+3PE8sF8Iakrx\n", - "Nvk/3BLMzkJ2nO/+HzTgKDQuwz28aTGCAO37Pt+KSncLRq8/O9eheQZOLWDmLEqhz9yqojkmuDIL\n", - "wtFwo22WjVE6zKKrkESLaNAmlB4ZTVJEoJPwYDKkjcaKVkago8hSUnmSZMiWcLFCnWLUJqlCr+Hg\n", - "2hqhbmMkHkibCgmJNiRQktCs0YnyZEQB3WsRGy6XZMDQAUvEJAEYyzatYgEubsBcDOHz5GcqlIME\n", - "zYyQahnTHuJyhP7nL+MVwfsTC35xAtbXoJSFyjwsbTGYS7CrOl6Uw4s22R6bJHr6GZi5CNE6fPqt\n", - "xMS/HWgi4hVKt81QWRkQzulU3ITIWmM4BQUPnjNJTUmvQ/vz8OwALt8Ljgb9Hmx+DT5+7LWfcPDL\n", - "DkZfYFt5ksDgij7ANgxiFaCJIpEapRBCSA/d1JhXCU1A8wyuOIJAS9gREkkq1qpFIJTGFT2LriwS\n", - "oREowboaI6CLrRtYcRlNDJB6HUeZCNFBoSGFRNM8EjUH8SJoNkQzqKSDby5hWtsUlzSuzQna1TyH\n", - "V3wy0iOuRPj2n3L1d6EfzSKaAbKqUF0BjIB7FKKvw1NPgFtKA++yHwDjMGw5aUdkpgRmDEKH6AKM\n", - "LqZF/+LN3Nf3ZFIpnb0AACAASURBVDHiw0un4KSC2T3Q9sFaQHodgv9dKf9RACHGfhfsukCUdcak\n", - "Trkn6doh23afUNeICLDlLFpnne3cGm0zw9hlA8I+udEhk1QwWwVy6xHexoDSHX2a5SxlaRLpWfQ4\n", - "pCMtepZGIkfQhYulttnR1hGiCSiE3Icm2whjH0oOGIoWJjqBvoXAoDhs0jWmyHWniXp5/ERhDlyU\n", - "XWPg92hTwm6PUz6f0LMvQGUbvqCU6ulCjM2wpE2yUtAw8i1idw15oQdWRYiPA3TgAqnz7U96cfL3\n", - "SEMbf6KhFJEQfBt4EPj/bvV6fgQYNzLAsdLYXvvNXxouwBUdbtvNvYoFXB2By+MrxGe/AfuOwo4F\n", - "8QKMXIILCdGih/o5qHhlFlWRq7FGmIAnBwyGJrqxTMaQaHaFQIX0dMFI0gUtpq6gpEDFIZcMHVtk\n", - "cQkZSptMrJExc+Q0jzhvo4c28d5DWHFCopeJVY6ObNPXFEo2UOIQkXsAkiZBbgUjEWTaUxS5ghEp\n", - "BhIKz0H+miTZa8FyFtZaOA/sMLvawM1HhFWTXKIzs6PoDp/m/P7NVPl2qi7EibOwJ5PGlisBMkF2\n", - "RvBO5VluSHj6KlSfhG960I3g4q0gqyeM1heprJkE2Sx+r89StYlpbJIN4OkRWP03r1/XrhHaV4QQ\n", - "3wRmoXoPjNwNr94ONQEzKwKkgd4I6JfHcFYzuNUqsdHCqwVgFCBUjNIgG8ccSRR6Bhw/wyljL3o7\n", - "ZNX2SLwm0gmYGKacEVvPsVQsk2VIw3IIggPoQ5vcIMQbjUgSH5Uro4kdQjGLJkpItpA0EZoLsQ/h\n", - "EKSbcpicbVSwRdgo0+hl2Cx22W/5mDMu9lUDTdQwxyUHfIcrwypJZgXjYUnviX3IKwB5iBxwOko9\n", - "Rhp0N7cGv3E8nVm1h/D8X8NdLuRisJuw3IAbjj/fTrwnixGllCuE+DcdOFGBozG4jTTR9LqTscxC\n", - "XFHc1W3xvF1Ib/6tGK9usKUFRN0Bo/FVCr6ieL6AUe1gaQlq3KdYVWRXynjFhLBvYLctig2XnJ7B\n", - "jHcIslUMt4VbCDHQEYlJLKp4jBDJBcqmQU0qdFyGUmcnvExk9okISEQDXcVMxYoxmWD2RmjFgq5n\n", - "E2/1iMoGohtTTHY4/q2Areom27OS3sYQPhPAc0IIexZ++WdhvYZcgJAY+I/wkRm47/juqeIyfOAS\n", - "fFsI8Vc/qQWJENwFzAJfuNVreYfwTeBh3t3FyNpKenE2sq/NVYCrMNKBJ97shUqpTSHy34QvP5xu\n", - "+9K9YMzBSOiT3fsUy2uX6KxbIFvwFR9eSq0Yzk9nufzwAZSexdjMoGeKBDuXoJwlmR7HkBFCrqBJ\n", - "j1yYo+528XKQl6mb83Q/YNPc4pIzi2uGvMqQSdNIXZeNCD8pkHOniXITZMwQw1+ibTkktIkFafJw\n", - "XAB/BWyXxOhgBjNkLl6kt1exdwmOPw704ZmRPsE/fwIePAZWHyPy0KMBZS1k+pJJTpm4+ZhkbB3r\n", - "jCT8EsAO/PmT8CujKSm4aKeE12sH4IwO6lUYDeGprlJvFjHyDsB0Bnz0W6e4NlpkdTomsobkB+nE\n", - "aPHT11vD3wCjMPv34UQCh6/BU2W4+GHYOeejt/tsJyVW+jWKDZPCqk+/skg3GFLrb1Ibj7AcRVlA\n", - "P0koBODaJoOwjxMrxgcq5fv5ClMLmVmCKJvHmZvA1Hy8MI87sNFdAy00iX0fx9hBiCmU5mHIU8Ro\n", - "KDxMVlGJRN9xiTcyYNgwtgGmCwslYJRE6uiJQ6ltYMarDOctjCDL+FqIqys2JLi2A9ktMsemGS5a\n", - "EK+mwTqLr70hSqlreSG+PIRH9gIRiE14fgW+puDS2+ei++Z4TxYj8B3Z0dO7jxugewqS/xZq0TYz\n", - "A5OlQgVNVwTCRZMRqmNQ6OY4cFVDi7oMbBfqkmwOVACToseG6RAfcOCKIlQ6URBjDjbZt+7Tqubp\n", - "ij5dc5XAOErcrKNaT1MbGzKbn8IcdpHZEoV4gNQNtpINxnSdidhDxYpuLNiIYvzeFs2LJvSbkJGw\n", - "NWSoNwl9uNTpoxp9hp+G6AkgsuBkCX4uC/dfgIsH4cooDJehNgHVOkSHd90WD6Qi/vtfTu3gl96p\n", - "vXmH8TvAHyj13ZvaTzgeAz5zqxfxo0ApNcgK8eWvwiePpOF3wQqUzsDO8IdwmFVq8KgQ4jJc+204\n", - "Pg7HLsHYDiQ6nJ7Z4dubSrV++/rXCCH+YAR9eoSsI5GmgVcxke1ZKOkQlkmCECvKYAWbBMUufScm\n", - "xOGCSsgmEXUBg6jHkacu8eyBvXRik8FUhO30yOp5jkeCtp0nF3u07Qpooxhtk7C7lt6EuvvgCzbc\n", - "WUMrKYxMl7i4QXtvm2QLXnoWLhrgh7D9/yglXxVCnFlF/5uS8oOS0SqM2DCYieh0I45eBM+C/S5c\n", - "mCFNPO4LIf51AyYc+KgDJ++C5RD0Jag9B1oLlseF+O9NGPVhZSf1n7jpSprvxeACbJxQ3LXU5a7d\n", - "61Kgw59NcoMANyFEFcr3g/0BGH0IDgPVBizuh2MvwPYqPH9SEfy1z45/CGlk6FouenmDuNtGfB6m\n", - "Dnj4j8BsklIOXR3ORxqDgYUXhMwmITlTogUSKRSxhNUWjHUGiIxO35sgWZOwuEiy3yGpXEMfUWix\n", - "RmKBsArYIoupTDRfgOoS6hJ/WIOVNsy1wDXhpTEoJzBbB1UguXwRP1ei5CaEo03iDOiNBM+qYTVb\n", - "RMUCflWg57ehtAq5V1Pl0/e8TwOlnhRCnLkMM3w3C86/6Vt5Hd6zxcgPRvQ4bK3C5YmYKW8JxSYr\n", - "OYHj2uTd9zFydYnNcZdy3qYohyQTEk2D3AaM9qAz1acoTXpGnuFcyLql0xZLSAfuXOzghB2q05As\n", - "WVzKLREZFxiMdakrB8fzkU6E0BKE8KiqLiGTHA4EdqiwehpHGorzDEl8l61WAnMCfY9PJruNMRhi\n", - "PQbNx8B97LWuRkmITxyH90+DcNLc6+nTMHkCntiC8WkIw9SERE9blqgDECyk396fuGJECPYDHyYN\n", - "xnuv4GWgLgSzSt18OebNwm6+1NYK3GlBoQ3fCuD0btfTBO0w1I5CEkDr1A3So7ehsgfuugSVXUm6\n", - "lsCJJXj1HiHEtFLqesv5Tpbk4j30VwSodZg+Bx8/CGyBv41rldBbimGlQmIsc9U4QCnKopuKXrDD\n", - "ortF8UVJsFom8j8MT32V+NeOEjtPkp8ZkrU0XAYMREIiNHwtwcw7aKJNYPkoOQXNdfSVVXI1ENEW\n", - "YqfNscdC8AXPLVbY3vKh6V5nxR6zbwbe/zhsfgrKOuzz4EIVnrkTeBYO9eDSGLsn5d1rxboQ4jOn\n", - "4NQafFBPw6oudqB5B3zyfdAehc46TL8Av2EI8X/HSi3cvN1+PTrfgueOgZyE2Sb0MvBKBTa/9vrx\n", - "TOoxMvubcHsJzOOwXYBxBXYHxoaweB/s/wY0T8MTn+/D6rNwvIY6GhMPd+AlUNuw8kdwuw8THtQ8\n", - "iE2wcorHjYBKFDJZElQU6HpCJxPR1KCZhXs/36czd5Vn7jlBcG0G1pbBfR799g4nv1igc6jK1qEm\n", - "XlbhOzaWlCTJGrEe4fsCVfLRH87hYKDTJH5/hqhbIsqOp1a0UybrrkvBMtFiC2V7dLOCdTVKtmVQ\n", - "aLzCJn0G2mUQHXjUhWde7wsjhBCkrm3nblUX/L8UI2+A1A66+L/BlV+FzjRohYDbz8Kqp9OTPlY0\n", - "i9xu8XK8Qf62NlkJIy14+Ao4MZwHlqdbqGaHxb0GaiHk6FlgAp48AHkH5s/B9JMuwYEMnSlJZtQl\n", - "W7WoJQPcao9AmehyB2VlqSkDMxmQaJJsYFKIQnJZk8vZw1DOYtZ1xuQ4mY1RYjMmvneH6QGcCoUQ\n", - "1wB1G9z3ECxGYC3C0QMwlGky4z4NZAcqCYZ8gczHQaky/lJE3JXXMdN/wvCPgH+pFO9Wk7a3DKVI\n", - "hOArwCeA//NWr+dHgVJqkdeR6tJCZORX4cg8zPVSpePFu4XIf0OpwfV24WZqxVB4XX6SAeQUMMJ1\n", - "+TdKqe64EKtLUJmD1hSsXoYzHsw7cC5LsrxN/4MemaKH7c3gigq4GpYn8fJ5OlHC9sg28q8OEg7G\n", - "wC3D2UuUPjpDpbNDKxdS1tpsGTpZ+pQ9Sd/rkPhXySSKwFnBnR2QPeSTFStE9hajZ2GkXebibTPo\n", - "9xyHbwzAOAcPG0J8BijAfg38PVBZA38ENgwwA1AdmDJgR4fk+/yBdm9Ip3cfCCGMGfidh2C9TJr8\n", - "vB+aDkQd+BkhxL94p25iSqlmmszbvQ/yhyFuQuNLIC98/09XPgD3GJDTIR+D34eqDs0JqLagImBn\n", - "HHoJ4O12A57nOhK0EEIHYwuKF2B9FlYroCJwXlbY5SG5n7KZ7umYkURpCZkg1WOdLcN/KID/0iaD\n", - "T38bJnIw1oPnXOoBPNTo01vS+FamwnZlh6Qi8EwH3zdQQgPrCFocUpc+tlFB18qo+DJJOWLb1AmU\n", - "jiqdoHP5AudGWxSkC3GGa84+Cucz5MM+bq6H0e9i/EFbqe8L/0yLEOskTD0Mdgn8thD2o0oFp2/e\n", - "Dt4YtzKb5jdI5ZQA/1Qp9blbtZbXIISwIXs/VO4DYYJ2Fi7+GZQ/CrMxdDtQenXIJ1dP8eKhHKv7\n", - "QdIleCrmwauw9UEYFGGgwb4W5AJ41tAYa1qMdwRRJsBfF+TbCjFTYqFjcu4+H1M7g6qWoezRyQ+Y\n", - "3PTJDTPkLRfXTGgJ0OIdXM0lG2tYAUBMaBnsjOhoFcjaDqYnkEkJszeOX99h8CDMHYXq07Behc2c\n", - "RrKcgSAPZxbhZBZUC/YlsNpBr84z28xQaIPSWnTnrrCuDYj+1S3emrcdQrAX+GXgyC1eyq3AF4Ff\n", - "411ejNwYxjE4Ng8fWvzuc3t18B8WQryilGoIIYrAFHSHcGkaKi7YIZQG0LWg63EDueoW/OVj8Kkt\n", - "mKmC3wZ9BzK3w3Id1iOS50NKUcRg5BBjZx1sXxKbClPT6QQ2/sI2nGvA/CpMSrTKBkWrgLBNNlRE\n", - "W63j4ROoMSJrG6JNigWYbXn0Kl9j6eMlyMTEgcCQ07jHIx49OYvWL2NszELbgXAKcn8Bv74Jp1Or\n", - "lMF8Sq8JczDZg6oL/hDiPFxS3GC0cQNUqpAp870qrCno5dLWvgPvnEfPruvzl3cfb4LcEZjbgY3x\n", - "VCAyug2Lc6kJmpsBK4GrE7D2DG8a7GkM4PCj4OVguw7LM7A9AmJGEiQekdTRLIUWS3IN0DMg20qt\n", - "/P5rv0EIsdBHvA8yd0F40uQrmSJeIomTJXQxigKE2KKaHWCYk3Slh25a2IlAs3QgjyUzhHJIPlpD\n", - "y1ZwBxHk9zNoWQwWXwInAGuDztgGdnUb6XcJvzFOOD8rxP8YwvIWPPrdTmHmHjj2c3DfZupf18jC\n", - "078shK0pFbz8I27TW8Kt7Ix8VSn1r3bDeJ4BbmkxksZI134F7pyH4xupNfLl2+GZAax+FsZ+CUYC\n", - "8Grwqu1x5JrH3jX46iWQEWx8DLojsJmHaQ8aGiyIAp1SncmrCe1pweZkkdiU9PEIMjp5MUm9NUQb\n", - "X8NhnaoHLRMGCuZfimkfCuhkJM2gQ1UvENoZpOWzuKdLEkVcFRXKSkczImx9iOlkCe2YpJYQGjb1\n", - "fEI2k7DnKcUdW5s8/rGzLCzfjlqbgaUmdBfh8DKEDYwXdOaLAr80waCkgA00scp0C65Zu+9RBXIn\n", - "IT8Nw3UYvPxOkZtuAv5n4J8p9cOnkf4E4avAHwtBXqmb6x3wzqN2O+zrfO9zdpIaYV2czQtxeB4e\n", - "GQN7iZ36kMcPmcy3YvJen1iGNHrQ/AugK0T+YajcAxjQfwl4chn+cBOOGlifdBlPbJzFAZ0HyvhV\n", - "UMNNZHFIKQ6gmEEf6uhJhJczkW6cHpc7y1jmE2R+uk2xljAb94itGFMPaTdmCLUaI1nJIOriGBZ7\n", - "4ohJlRAkGQrCZD0YI5RVEr2JX+qgG3XCRBKOAoRgtOH2KTgwA+VzvPqgz+1VyR0r6bhhrQ5PjYC3\n", - "CV4Rtl4mXdcPguemLl5Ch+90QFwwwjSE8Mc05Trpw8AGpwGDPbC3CRfX4MU5qOdhx4FrL0L7P7xR\n", - "Zyd14K6dgbMnwZqDtWMw6UBRQt6AYQjP2wmzXQgsaI+lmaGxJoSYUEptCCGmYeIfQvFDBqpisF3b\n", - "w4pZprjjYF1co1vcJjQUk7qgLKtEfhaNED0TIA1JTrdRSJQjQUHGWyYeNvDJIt0QmusweRucrUK8\n", - "RFBZIrgawnN3wYfvSiuotZWU+/PrhhB/nMAyzHwEHliDwm4uW92FD2zC9iO7LrbvmKHdLStGlFKv\n", - "cRAS+LEgD+6BffNw/3XciOPr4M7Adhm2DsAeHeZ74Nbg0ny6t83PARps/RY8uAmNPFysgbTyXMhV\n", - "kauQZHSao3PIJItvWUS2TSIW6M2tYFZnmF/dg2f22CgN2HsZ9AKcyiYYFyKE1HGOFFnKG8xJg4o0\n", - "CLWEFSemGkdEnR2GoyWElhAZMbFmI4M2NibjfplBK2D1zg5Hvukxu3OGxonb6a4B5KC/Advb8Gmo\n", - "3R1z/8tXkWKF5TGFIGZ2C9p5WKsLIYYw9ym43YD6AJr74MwHhBD/9p0nsP1oEIL3kXJF/t6tXsut\n", - "gFL0dq3hH+Hdraq5AWSURsu/HokANXEQ3v/TsPwcnHgYthTb/im6cy4lWcZVmwSXhkT/Mh313LkX\n", - "jm2mlvGv3gvPHYKNPwrRhiF3CfjI0wGuvcjZTxrIoWTJkFjrglp1nWuHbPTIwWgltDIOwebSbufA\n", - "44i8jD/Moo+PsumUKIQJJH0GpTJyRxJoq4h8zD5D4CiXHVMgohr1lsuw6LJeTtgjDQoyYmBfYacy\n", - "xVqnARMR5EtQr6fZI+0CpaaOmR2wOaUYWwfLhaIOhQjKFyA5AWemhBB/rJR6w8JUKTWoCvHKy3Ds\n", - "rt3xlQRehKkWPKaU+nG4ht8AjW/DmV+C96/CUge2K6kXiXYOOmtwdRE6/+QHr7/1DXjm52H/fihb\n", - "MO6lRmdZwM7AigZXc1BTMBaBrafPj/8DIYw/gfrPl7A+OsawbmNYDpY2QJchRrHP5t37CVoaRVcy\n", - "2tNJRhyw2uhCYWKjMLBUSMCAmIiSyrKp5chvXaDfieAJB973MXji0K744C7gcdh/Ef7rh+D0a6nV\n", - "e1PncdmCn96Ez0HJ/m4h8hqqXpqpSA7euRH2jwNn5Df5sbCnNsdg+gbciMkeFD8Mxy+kEsChk7rr\n", - "VcWuEngF9BOw9xXYmTYIRmLEDliXimTm6+y4y2wfmSYSOTynhhEnYOfQvHlio0unPGStnyEOcwRd\n", - "ybVyhsmSgy18rKjNwMuzfe0oMvYYMGBQNZAiQasEmGOKOXOVlhfScbLopk+gu/jJkNkQBkEFY90n\n", - "cbo0R32OPrnM6Q9/CWazoNZAbcBXgIvg7YH2HNy+EbHnupPl1SKEXRj7ODwQwdxuJ2G6C7USuJ8U\n", - "Qvzzd5n0938F/qf3ElfkBvhz4Jf4iStGGi/DxeMw2wZ99zPZt+ByUoWRY9CTIAKYmoWODl2TYBiy\n", - "fW4MVr4A9UuwH+bn4KeuO5icXEsPJjvHoHoEDrVTe7T2KOwJYiY2wJoq8nzOpp1rE9sJnbtKhC0d\n", - "79p5mN+EP4XcPIzq0FaTeO1Rip7EzoIQY1j2Bp3RNsVEMeEaTCWCjIR2QbClW1hJF2mETEQ1arEC\n", - "3fn/2Xvv8Lqu8073/U7vOOegd5AgCXZSFEmRlCiZKrZkx0WJYzlW7LhMnEwSJ9PvzXNTfOdOynVu\n", - "4plkPPa1E8eObcndkSyrF0qUSIliETsJkOj94PRe1/yxDkgQhNgJgDTe58Ej6pS919lr77W//ZXf\n", - "h7VooiEyRs7hY7TSCA1uyMZBuRFxUh3yYhgdYHBNipgBxADtIehKwJo3wJEFSzO8cgfw0kxHdJIw\n", - "PPUmOPpgSSWUxsAwCu8kLlFOPbcUDsGRepjYptVWTzRBwAPFA5DYCak9l2lIlcDVD9kSmDq00rqh\n", - "AlqB4STUVoC/BGYjGHNQNQK2JNhKEPukk/zqdnBZ8ZYMUKhFGVMUzT1kjBYMpXoKo0NYq4qI0Yop\n", - "mAGvgWo1SNTpJWF1YVRBDIQwFQykCyay2S5yNS6KJ9p1jXpjEewTWmglZAAWQXII1jq1bMVZmiBq\n", - "16G1HCRKkDGer0icNEO6wCyG3WAWjBERqQW+P+3lEaXUJ0TkDuBB4CM3ehyXJp+E2AxPVHEbWGpg\n", - "/S4wdkHQDyWjzsiuqYOR5SAVNuIrajBn7ZgG85TME5TqsxgMlZTiY4zkilDhwGgoUaRIXiyYYxYK\n", - "dgcFiRLOlnAGIdO8hapDYUbq4qTwQMRJzGilGLBQ7TNh8XopOsyYmCBVUcJuMVJjFJoGRgjUGgi5\n", - "s9gtRnqA0UQDdYdsmNJ5ilahaFLETDkMP9wHL6JjvKOT2ecicgCObIM6J9SUE9rOVEJnFBgGdwu0\n", - "TutL0BQFXzOMeIHwDZyc64YI70WvIN+Y67HMMT8G/l8R3LeYUXYSTuyGzBZYVIS8wCkFAz+xwiY7\n", - "5IpgKN+VFYAFlNJ5VBm9IFqboHGGsENjErztYDCDqey+Lpp1n76CwUqocSm23ga8vaNM1MWIuyKU\n", - "PCZIbYFjMbjtAClfgLiyE/FUUpG3Yk8WyGZyJGoVWbsRAxaq4kZy5iQBi4maFFjD4CFHwlQgbTJS\n", - "lzdiTJYomKxILo5lIo+/po9Rrw18wxBaAnsSKDukxExF1kxmBEojUNWs1eHdp7QhAtAegIO3cQlj\n", - "RCmVAr4lInWAGwhPaUY3rxARF9AA5CH2GsRicLoRij8H9lyFgJdFt3xp6gOrDzwpyNRDVQr6Mrrx\n", - "LS7w5iAUg9Z3ADv0+8BvdNNfZcNRUtgpkrYUyVt9WNQQKYsJiiUMVYqUo0DWXIHJUAAJYnJkaM4O\n", - "ccZYIqey2AsmKuJGLLkJYhYfE7GHYE9cJydG2yDbC5t98LwRSjZtUZimh9aiYM1rQyMFwd3w1ntg\n", - "Wz+YS7pE+q1GCD0/296uG26MKKXGgB3TXxeRRuD/Az70bk/VIvLFKf+7Uym180aMsUwXdCahrQKa\n", - "o/qliBWOWIF+3fPAmgNXAvo3g8ULVjcs+pyZEbOPEYuX2jEDBmUHrBStZ8gtHsRgq8OooiQNQgkz\n", - "hnwJUzpLydxDqTSG35qltSoAdQWMEiJVXUMmfifh16og1AO+F+CuJJlaP0WzA0MKwE02NYLFlaZg\n", - "d2Ev2agfyuCqMtDvt2M4s5zQ7iGG2vM0ZmKUjCWyOTjsgsBjSqkLmh0ppcZFTN+GJx6GqiatTBkY\n", - "gvGfAGntlC1Nk9IuUY6wzVMX7fmIYEB7Rf5Yqfka454dlGJChNeADwPfnevxXC+UUkpEnoJDB+BE\n", - "GxRzUOxSSkXsIq4BePAOGBAIjoOrGpIxkCrdTr0iDONQGIbYDGtj3AaZEGTOQPfD0BjTVcURA+Cy\n", - "M27w4Yh1E2+J4Kg3ssToIJVLEWxoIf2yG3JWlOl5Ti0RXHlFzg6OnAFjzkZemZFwGqNPsFjcOAtp\n", - "Bu1pzMk8rd1CtjJOj8lOOJamypkg6TBQLJlwdBYwx0cwZcLwqhWq7wPjIgilwLSXXnM/6rYk9Urn\n", - "NwRaoTMOa6boK+WNoHIX/t53PcajlBsKzkdE7Fuh/SFoEgh5ILIc2k5CZQwG1kJPm4j8YHp56yUI\n", - "QyiuAyCdBXC6dGO8rAXyJciZoSECFVGIGsFU0KFBQxHIGMjmzahYhrTPjE1SGJSVPGZUsQi5FCWv\n", - "l1ghRCCWotrlxKwi5At5+m1GPGEnVYF6zIk0qjpL2OYmpOzkR+p1xUTuLVDLoeAERwh81RAcAk8I\n", - "9hyAptt1HIkCyD5oCMIvytfKy3DABP1btFJwBAjshMSuGzA1F2UuwzR/CtQAP9Ulzjw0XWRFKfXF\n", - "2RqMUiojIt+Gp38DGpp1R9uRHAx/H6y1cGQHbO2HgQ1Q4wKVBnMSHjlp4uePVtA1Euek30R9zoCh\n", - "lGDQK5gNXazqqiTcVMLkPkTEtwgKDszBPhLeU1QZFW3FJC5nFneuEr9pjJ41PgZerIIQgBNyGTg+\n", - "TGqJlRgm3IYkeUsWY8rAeDqHPx/GZBGyNkUsDcWjleSCy8j1KY7TycCqENYg0ANjL1wsv0OpwhkR\n", - "+Tud5EZhanKqSOUROL4S1k7JOD9VC+HTcyEJfZV8Ashwy4UmrprHgE9xCxkjcLYsdaj8d5YMvPMO\n", - "bDZCUx107Yc7fVBthjMpcB4GRuAHUAzCqSwsckN9+dwO2+CoEeKHgDAcWgfFxdASg9EoHOrwEI8E\n", - "sNVEqK2344o5yVscGDMhKt276Fr7flL71kLP24SrRjCkQ8TvNpGyK4o2F4lcgXQpgSmdx6AU7iIY\n", - "smkGTDAqiolEkoF3qsnbEkQ29FFnBmsGzPE01qEiscMFrbDsPgifBxq8kCpgtmfwqiKOAhirwW0G\n", - "gxNCO6BvNzR3w/FqCMyDUPm1IyKLYf2H4H0D2nv1ykrYkoVoMyx5EdYXYNdKeGMTsPtyt6uTWI1P\n", - "wFufgqZOOLQKxANuC0RyWjndAoy3AAOQN0C/CZxxCEYyZJ/PE7pPex5qTGncpRgj5ggqYyAfPwrO\n", - "RajhZvpGjxJqO4PJbyAfc5EYG6dmMIdhKVR4TORSdgLpDH5bGoO5i6GaDl3Wc/gtuM0F9jh4u/T5\n", - "HIjDd/fAg92wwgelcZBx2JUui32WvR9Pi8iraG9XrOwBm3Vkvob6RUQppWa9lb2uqqEebaiNKKVy\n", - "uuS36hPQvAYqN4InDqNZWLkHGmJOXv9wHQcNHYS7x7BVGjAmE5RcQ6yvjrHlKSgWYKDBxPE7qxlY\n", - "UklqMAtDY6xZkqStWKSjC3IuN92LvWTyHvbGPkLs22Yo7oGWnfBKFfyaA9PKLPbqEq6UUIoYiOcC\n", - "tNalWLkfPEEdatrrMNL5RjXUKygEYH9J95C4Jk+ALoes/S1YUgc1RQgaoCsII99SSl2XEM2NnHMR\n", - "bMBJ4JNKHj9GhQAAIABJREFUMetW/3xEBAdajXGjUje2CdbFxzF717qIuJyw2QtrsmBMQNwDuRQM\n", - "JeBsdZiItEDDI9Do0bknwzkY/IlSxRPl981gWAGVKyGfgajUYfqsGW+bk3VDJqxJA/GlCohjGTVw\n", - "PPchhp+zQ+F7UNsPX3HB77XCBi9S4UBVDFDhTtHaF8NQC22ApxRBpeB0P5x6EkLfAyrB8SFYtAIW\n", - "5SFtgp40DHxfqdzk2Pwe2GyAO+LctrrImh7IbYT6iJam718CwyVwRmHibRh4G8JPo3MPjEB/uXT2\n", - "Rs/FNc27XpdpR/cjGtVVK9UfhwcXw5IJ6PFDYDtsDsGAH4x7oWEEQnb4sUGpoS9fxT6boWormOsh\n", - "egd0rIIdx2HUC8OLoOSDUgEyfZDuhehRGPwWUGqEP6pB3mPB2p7HXApgTBVR/R1ED8RgYxbiXkha\n", - "IdwE3c1a3a1pJ7wKDZ8x4nXYyBqL1Azn8BsaiC2u4tDwR4i9DnAKqnfC6iK8GIYjeThSVhovi7/h\n", - "QofW5qwr+8XmfD4ksM4ryqVMQ9Ney2qvycRWaK+A2wbgrnEdQxyvLpBrSiIteZyLK7DGLORHg5hs\n", - "OVxBbbgI4D9TYM2ZEZ5bE+OtE0WMjgweH6wcAXsOSCXIYOB0qwmLqxPaQlA4AsNZ2F2Cle+h0G0k\n", - "XkoSt1oh3w3143SWIKjAZodsH4w9V7hQbfJ6HJeYFhoaawdLJeTCwOlrNXJmkT8ADi8YIudQipQI\n", - "3wF+B/jjuR7PbFCuGHm5/HcBZSXKVhs05RneWWQ4jo6vD08918v/Plz+A8AmErRi+Asb5iygEihD\n", - "ESlW4phIY/VkwdwNVUHd+8mVgC8fg3o36j4vfEjRFqqibdhBPByhvyFKsRoMEegfhtCPyh6fCRH5\n", - "noNjv+7g+D1mlCpBKKBjppNjCwHPisiQdvyUKqEuChXlXLDCKeixQWEMju8CTsHifw/tJn1L6EbE\n", - "+YJSyXmbmKqNguZPwhKHrmjpFxHvPrBX6BQKgILx3C3OjA6lgNYWMdivZr/lEPeAHkPd58EThjcb\n", - "dNVz/ggYAwa6V7oYj3pQsRLIBNRklXpHRP5yHLWvmcyjjWRG2mG8XXfD5cfQ0AoD28tVEXGwnIbq\n", - "M9qAmIClZ4rsGDynTpeyTnDEV8DU3A/eFFiPgC0If5NV6sAM4w7ChZ26RaTOAouVLkM7PZc5QAvG\n", - "yGWilCqJyH4o3q9FdBwFCPq8nHrATsllwBAsYs6aybtHMFnGKJQymI+cX8JvAHKxJDwJxRIEH5yS\n", - "V4SiYTxKnyWFMRfVLradZes2KyK/eA0+vQFyAagcgbusULuG4liacWMaTo1Cd+IK2zyXPUEt6Ct6\n", - "/GInY9mld+pKtj8fEKEa+D+BO+d6LPOQrwK7RPiiUmTnejA3GhGpB3zormpDU/PVRMTkg48uhjUt\n", - "UEyDdEKxF75XvAyjO6PUayI1z6dgsQlrKUPTS04ibQYSfgNR49vQ2A8Ni/Qds72ceLEzDl8XcFpJ\n", - "fCRH0WrAUTJjjhSwdgJ9cGaPUurs3Pjh4Y2wYgPqgA2KY+B6DX5LRL4xTfZ+AHqVVhydSsAGzUd0\n", - "1ceRJDR/HD4YAG95H+uN8Mz7RKR/Bhn9OUd7pZoehfdnob68Xm0QeGUzvN0Fg14dXmuI6Oe4lBHi\n", - "AlXlXMCuaoi9ee0jMQgs74baQ+WcwqKFV1YtpWS6HXVkMfSHwP4aPGIUqQaG8vBaAJIu2F4FhhNQ\n", - "1wXGAfhWFtY7y1nSMVhlBJsTeivh3iBDDm1vTtZYOLIZvEfGKBp+AaM5iIbhwEz5gO+GW+T+VbBj\n", - "CZRKQBeIXeSptFLX4dhcOQvGyBWg80ocz8JLH4H1YQuBDgcxv5Fwph3/iRwlU5KcY5ycLUlTFxy1\n", - "Q60XWiO6fOpQA/R3UV4ERdwvwhsfhNVj2hU8ZIf4YB5rdwi+MuliK++7W0S+NggfbYUH2nV92X4X\n", - "JIbAdUyX9O04qC3ry1pAtOuu7jd1zyWPgiGDiHcvRJ+6imzz+cyfA48pdfMZUjcapegU4R3gUeCb\n", - "cz2eG4V26Vf+OqxdDrUlmDDAQK+IPK6USgKYYf1aWHsP9E4u+UvA8SR8XES+NNUgeHcC3y3Q/bkC\n", - "G9NQH01imEiyr81CZE8CGu+D2OqyumsWjC/DA/thIgZ/L0z4Y4yvM1AdTVN3CIoJ2G2E2FRp8upV\n", - "sHoL9E2OsRYSG8ESgLuZcu0rpSIirhfA9Cgk/brJ26gDxsKwcQheqtOJ6svknCECWiRuRQr613GZ\n", - "a8ks0wItTl2qO4lRwaoJ6PTAwQgYm3SVkOMUPL8Nqvt0AeHJFjgSgtgb1z6MiYNw+iPa8LEWIW6p\n", - "pH9JI9loXdnjUQJJ4+kwU3t7lta3YNgQZ3j/YSJf64JFCooZ7ZEYE5E9AXhkGdzZoSWzT9fB6Emo\n", - "eZa+iiivt+p5cxRgyAPvWBXRr4+e0+y6bESkdT3c9wHoM5e9aivB9CT8ioh0K6XGr/34XBkLxsgV\n", - "olTqLRGJwNB2I/kaL9lwDbWxClyTST+xLDHfCM4sHHkKnmkCZwsUChB+E2IvnXsaS3wVDnsg3KH7\n", - "Jhh6IRSB0Z9MNUTO7VsN14kkl8CRJmhzodUzGyExCH4nmHywlstYQLQ7uubjcJ8TlpaTWosCO7fA\n", - "3lEuo/vpzYAIK4BH0M3+FpiZv0Qrsv7Lrdu9uOI+2NQBW6YkcB9ohl0fAH4IUAWbV2gr5SxVWlyk\n", - "ph9WlBUpL5pkp5TqEZGvQWg7WFsgNwDj38tBeiX8/mrONSe0QvE2CPTD9mGlDovI/5Ol8wEY2wAm\n", - "IyTGYOyZaSrH3iqd+HEedRCzQNOF40m8psM1I78H1cugugfqArCzHnpeAVMSrDP8JmsBzI6L/dY5\n", - "xKzTRKZjy4PZBEPfgFe2wv41UOqF8Zd1oulhj07DyB6eNECvjfwhOLQW8ouhJQGjfjtBdwOJNxyQ\n", - "KQGv4d5YYp1YcOaybBrSjdBf3QRvTqTJ7gdSk+eUUipaL2K4A55t1J47AFbAeCd5x0F2H4HTy8Bi\n", - "huQ4jH9TXYUhAuCF1R2QNk8J79mhsEx7AjsoG1OzyYIxchUopU4Bp2pE0otga4H84qnvx1AGmMgB\n", - "+5Ua+YWI2NHVKXkAEbFXwP1tsNFEnDDHO4N4+kGdhvjhcjn0jJjBa9fiCectIE5QQb2CmS/zZ9RB\n", - "Q/05QwT008X6UThzJ7eIMQL8DfBXSl0YL11AoxSvijAM/Abwnbkez/VGu/XbNsNt03qPrBuG42tE\n", - "5BdKqaSAyTRlcU6D6SB0RGDdIvBl4aRR5OmiUl0X25/S3X7Pa28hIu3uadcsQIXWNvGXv5cCnhCR\n", - "pwHj9OrCMtEJMEx12AOMaUnVC/rplLd7RkT+C4SXQHAlHMtD5Ci6E3cj9BhhjZwTiQPodUPg2MV+\n", - "5xwyrNM2pot1dVdB9LVyguZz5b8bxrlcwtc7wN8B6WKJpLGpHCofBXeCKq8Nb7KIymsl35zJiM9v\n", - "w/6njWTfjMG4iDw1GQ4zgc87xRCZpAIKkDkA/T9Gr/GZaxGaNOh7xQXeb5N+73LvIdeVBWPkGgjA\n", - "692wtpnxeAYqjTiT4yR9oxQyEH+hXI/PVC+HiEgVPLIZ2tfBsBWKg1DxGrGGTq1Ea7KL7CiCPa/b\n", - "OZ9n+SbgdBLqzWCsBMbA2YfV14VUQCY0cfk5HTZwzNB3wJUDY81VH5R5hAjvQ3tEfm2ux3IT8EXg\n", - "H0X4kVLMdBO8qRARpwk6rFAW5DOZtSt9KkYFdtCP2ckwHDwN76sqey/2wnofNK+AZDscj4DlNfi0\n", - "iHz9Sp5Iy1UfpSEw5bViWikAjpOYm4ewNE+QPS4iFUqpKJxNjp0xR0UpNV4lcuJtWL4BhsxQCoJ9\n", - "P3jHtJDdjJTDrqeYtj5or0nP2/DiHdruMheh2w/Humfugjv36GR6x3Pw/AdgVQwcORjwwjthSMzq\n", - "Q1R5ro6W//CJFHbD1s0wmANzCYsxSM6TpultAAsnN9aRqjFiyn0CBobA8xp8VkS+CSS80DcA7cs5\n", - "1zOrANIDXvDcDrbbIXQSCsfhwhwvEXGYoMMOvrg2TmcsMgjByTOwZYluogZAEeSM1qu4qLF9o1gw\n", - "Rq4BpVSfUeSbUbIP2xlYksJSE8F4PE36n4EBv8hHnLCsALFx2FWC40BDEyzZPMVd2wTRDWAdhz/w\n", - "QZ0H2hxgmgCDR+SpOPx3tLDYYnCaD5DyrkDF+zAsG6fRn6bKGMOUjJPzwOBmETml1CVFjMZgVOnS\n", - "QPsU13xPFaSO34DDNauIYEd3pf3CL0Ni5rWiFC+Xc0f+C/Bf53o8l4OIVPvgzvI1FhmHNyavsRb4\n", - "9HKweyA/DJb9TLRn6U3oRmmTTDi0WiZRgDTsOwBrc9Dq0QmsHfW6/8NhO2TtkN10Ljfjkh4kEREn\n", - "3NUK93rBGIKmH8HiFXDqKHW3ZWl2RLCV0tg8cOoPROQfZ/KK6hb2tENFG2QTwEt7IHkKNtiBiI7n\n", - "fE8pdeZKj2FZ+OpJeKsLujeCmCD4KuQPX8YaMmcolXpdREZgYBOYPBDZC+kD1yf8cvVE4Ll9UOiG\n", - "O+xgHSVkznL7AUXzIIQqPCTrbGRyFaQnAOohvghWhuF/VWAIJijxinah0A4TcbA+g2H7ME2NNpo7\n", - "itjCedLb4PRREfn2VO+ZiNQ3w2eW6wTpwihYOmG4/LnpfYdOd8I7Bli/RLdIMHSBq1trrwzO4iE7\n", - "y4LOyHWgXJFSAWSVUikRqW6D390E0qJXO9shqDoGzydh/H3wsa3TJvwMNL0G9y+D6ApIFbXcq/kY\n", - "+I7Bt6L447B0BbRmYNxj5eAycLQa6UjmcYzlaTwEdSPweivs+rFS+QvKuy4ct3MbrPggrA1DRRoG\n", - "/bBPQe/X5iKB6XrOuQh/CbQrxSPXY3u/DIjQChwAtig1e09HVzPvIlLTBr+7GVQLhKP6Gqs8As/5\n", - "YMP7dQZjdPLzz8OaN2mpLHHXMaiNwYQL9vmg8wko7p0SQrWaYJUD7umATVvgUOWUVgcpMD0GFQNK\n", - "/dWlxugQuWM9fGQ7DDigkAHjK7DxEO7lwoZEkaqBHE2nwBeF01Xw/KhSY+clEYuIBSo/AcuWQnMW\n", - "UiY4qaD7MSj1o7MyY5MJ5yJSg84dyQNn5krA6nK4mdb4y6FcFu5Hhz/SgAOsK2DlB2FdBAqeWrru\n", - "dNMb3cHYrkaIdUNHGHmoD4c00tBZIGsaYtw/QGZfBUykwZum9j0NrO+zY01lKdgmKNpCpHph73eU\n", - "yuwp79tVAX+yHuyroLcGkgD79X3l7YhSP59hvEZgWRWsVjrMfwjtSblhRsGCzsgNpqxNcnbB8sH2\n", - "zSAry5LJbshVQTII7zkDjwXOD/cCEIB2M1iqwR6GZgt4ChislSijA/kPUdpeh4fKioErR7NYi5Cs\n", - "gK0/1K0GJlkchhPr0DeVS4w7uVtEgjC4Dcx+3SY9umcua82vByLcBXwWuG2ux3IzoRR9Ivw58H0R\n", - "ts1nj5If7tmiJbDHAFyQq4TkMHyoEvJNcJ6XYDucOE3/onGeOw22VkhXgt0Mq98H4XtFHM9Dem+5\n", - "YuaAiAxnoLJyWs+lcd3i9JJS6CJiaIIdd8Cwo9wuwaZb5B4/SsWSJNuenHbdToB7kYjYz09et22E\n", - "25bCXVPCQovt8MTHoO9Lk4KDolUJH1oFd7aBygKnIW8S+W7hKjwmC1wZItIK9Q/rU6YIBPth/GdK\n", - "ZXaLyAQM3QkGp5Hw+P1k36yDRBEkBFvMOI0W3OMWnDELTlqxpyfoWz5I5sN++K9V1I+7sMUBHJiT\n", - "tRgKSaz1WfzrgT0WkZWt8JkW2FIPseOwpAdO3gGnVsPIO7CxnBd1Xli+bMCeKP/NOQvGyA3ACcvb\n", - "4LwbuhWKjcAZKAxA30FoWgvDRlDj4Dytn3CUBaq8iFNhEyPGpJ2C5TSlyhGcHRA8AZXlxdGR1a3S\n", - "Q5VQP2VxLBq1fs3lMZmMe+2/en4gQg1a5vxzSs2c0LfARfkKcD/wP0X4vFIXJl3OBxzQ0TpNxMkG\n", - "xWqQgm59fh4GfW2lIPhD8D4Mmz2w6bRuDpawwKsfgYMZ9NMhSqnRKpHOt2HpbTBo0k+O9v3gHb9I\n", - "bsYUrDZwesttHc6+CAUjJYG09XxjpCRQUkxJoNX4N8LywLTX0tBSBX0tnIvvr1gB2x+AXlM5UXY5\n", - "OH4Oj4rI38xUnbfA9UFLJLR/Bu5NQGO53LirBnZ+WkT+QSnVCXSKiOThc8PQXAXJApjTGKsDmHJu\n", - "PGc90RbsaRv2Gsisd4HDxPkN66wYsxZyvixFk4hUtMPHd0AkC9F2naUse2HFaQi2aals4XzBq3nJ\n", - "DF1qF7hWihCLa+PiPBL6eGcC8NguOP44NP0Ymp8A4xn4x5x+36wwm40Y8wrIAQopgkVBqP3c1loD\n", - "OucjZZmyZ4GTFTC+/0b/xvmICBXAs8A3leIXcz2em5Gy8fFJYD3w30Tm5yJWgnh8hvrOEqQCEAto\n", - "Eb+znNKtqA8AHqi5De4Y0IYI6KTtTeNQc+/U7wThR2/Awceh8cfQ9DOwnbj83IxMSle+nDcOO+QV\n", - "0RAMu87/+PF6iBy9UMtEjCAzGIQGmHKDqYVNKyBimlKxUwWpdt0wZfGF31/g+uFcD6tFN06cZGkA\n", - "lnnBsHTyFaWUCsDju+DY96Hp51B7BClBxYAH+9lwWp6iMYUUgYhARBgp5cmcrXApogwFAnYI7DFA\n", - "+zKQBpjIQjoFVhOoVsiNQvMpqE1o4cx5rxs1Z54REfkU8Dn0gvJ1pdQtI7gUgDcOwcfuheTk4tAF\n", - "1UPapTyp+vgD3V0UK7pVokTh46fg/g4wuSmWEihDP8ZCCdO4kDIoip5zezEpCB6DN4wQbNbGSo8R\n", - "et/kFvJ0XC4iLAKeQMt8/99zPJybGqWIi/B+dEt5rwh/NN/0Rybg9UPw0R1TPAGdUDUCwwF47nn4\n", - "5GrweiAzAs6jEAnDTsANPnV+GStoW8XULCKGSXd22ZvwUxF5Fv1wEb3cRV0ppawiL+yGj98Jo5WQ\n", - "joL1LWgokPwmvL5MN1WrLMK4ETrHIfzshVsK7YPO9+kmnZNErdBXoCxLDmAAm22GCpzyk8qCB/yG\n", - "4qoF/wyJs/4iWP1TXykn2P5QRH4BWA0YAh4yH/OSj9ow57MUTL1EqyOoU0BnFN5exrg3yKHmNM0G\n", - "wazijHgLjL0O6qARNltBGUBVw4E+2Fap+4uYxqDuBHQH4cVZOQzXyFyepI8ppf6lnPy5l1tI/bEA\n", - "h45C3QRsawQVB8MAjI/p33x2ESyfmGdPYqPIV0ahPoRa5URKRSwJK57BHIaSIgp0GnXnzbQZTpgg\n", - "+HXI9UDfUjBbdHOm8yWub3VEqEf3VflNtBHy9/M1tHAzoRQBEbYDPwKeF+FTSs1Nlv1M5ODgEaid\n", - "gG0N+hqTARgbh8eVUiER+YcRWOeAqjB0l8vkUyJS1BHUvOGcZwRg2A350elxdTir/3HFiaBZpQ5Z\n", - "RWQM7ndAVRrSE/BkBt6CYTOMLgFrJaQDvGufp/TbWrxrfJ02mGxpOGmE4R9ODb2E4UgPvL+uLIQI\n", - "kAdDOdFk3szbrUlsAALLtdL2VMZM5bm9gMm1X0S+eYZ04wTBjXZMkoVShFxvicjfKqUKIvLsGXDX\n", - "MJoURr1RDJYUpefz+gG+KCL93WBcA1INwRS82QuLhrUh8pMC/GyuK4wulzmvpikLgj2rlLpn2us3\n", - "faa1iHiBWnRm9eBMC925zxo7oOERM+7NHrJLraQN9Zi6UxhL3XjHssQHoPsF8Pt1eV/i6KSOyWWM\n", - "w4zWW0jN5xPzSuZchFrg/wA+DXwL+JJSl04sXODKEMGINva+APw74PvX29i7lmtdRHxADZdxjZ37\n", - "TsVDsH47bB7WIZphN7zaDJ3fVqp08GrGcYkxCtqzkrtSd7mIcQU0fgwq66Hkh7EojH1VTWuGJiL2\n", - "WvjsOmhog1AGLMfBcxJeiis1L5+Mb4U1HiY7mrd8AbajJehLAsfqYXcQxr42s5F53vetYFwJ7mWQ\n", - "HYf04Wmqu4hIHbpiM4LWFzFSzkeqgA8tgzsz2JoiVNVkcFkjpKJ5ot+F6E/nU4n2xeZ8To0REfkz\n", - "4LeBP1FKfXvae7fEiXo5iEg1LPtDeHACXHlhqMVM79YinVVFintA9sHY00qp/ktv7XxsIhtr4H1+\n", - "sCaAoG7c8My7qDvOKZcz5+UE1f+MDvF9B/jrhUTVG48Im4F/Qj9l/55S169nyWxf67qk0Xkn+O8W\n", - "8i1+Io3VZPoLMBGEQ2H4xXxI+NRluh1fgAcD4Ctfr6MueNYFvX83XTtCROxWWOeHVQX9SL4P6Jqv\n", - "ntJbaY3Xc1X9ILiX6kTk2GEIPaeUil/HfVRWw4crYbFZJ1SHhrVQZh84f8fMyvcZaIzk8A0paodg\n", - "fyO89bpS0Weu1xiulTk1RkSkFvj+tJdHlVK/UX7fgo5NPzT14hIRxfmx/51KqZ03dLBzhIj7Pnhg\n", - "u5annsqeFnjpWaXyr1/Ndo0iK9fDJ3fAkBtyBZD90PQWHAsqNX1O5pyLnqhCFfCf0Mbr42iJ96HZ\n", - "HN8vOyKYgf+InocvAV9Wamal0Cvb7tzclAwiK9bAZ3dAvw+yBZB3oHEPdE4o9d3ZHs90RDwPwAPb\n", - "YO00Y3tPC7z8r0rl9s3NyK4Pt5IxMklZbVddb2+EiFga4Av3gG1pWTV1GNwvg/s0fAMWfx4eGT1f\n", - "ZThjhO/XQu9fzhfvyJzqjJQVBXfMMKh1aIXMItDODKVHSqkv3ujxzQ/sXnDNoOlQkQO7/Wq3Wgs7\n", - "NsKEWxflYAK1CQZ6YbWIVE53Bc5HRPCjb4C/i25otl6pc4l7C8weZcPjr0X4IfBV4JMi/EeleH6O\n", - "h3ZV1ML2TTDuK8tqm0BtgMEeWC4iNXMh/Hc+Nh+4Z1gX3HmweC58fYG55sJqqOvGkqXg65ii3N0A\n", - "8bXgHobNKWxyYbsDWxFsBnSRxLwwRi7GXJb2/ir6AJnQB3jJHI5ljgl3w/AF2ggwZIX4FYdmJjFB\n", - "Tc2UhDbQE+7XWgbuq93ubCDCEhH+ATiNzgnYoBT/dsEQmXuUoht4EPgztB7JcyLcMcfDumJMUFM9\n", - "w/VROW+uj0j3hSXAAEMWSC5cB79EWMDrv0CDBnyQdIEHYkkITntwDTggFmNKkcR8Zs6MEaXUnyul\n", - "diiltqFb3kcu9Z1bl8JxODoO+5sgaYa4Bd5sgc4+pilJXgk5GBzWSU/n9gQS0F6o8Lt8bc4p64Xs\n", - "BOLAaqX4baW4qlbZC9wYlEIpxc+AVcCTwOMi7BXhP4mwvtwb6AJEMIrgfLf3Z5McDI5Muz5KwLhe\n", - "F+fB9ZE/BkcCcKC8LkStOkTT1QN0z/XoFpg9cjAxppNWz2Mc3Anog8DT8God9Hsha9T/fa0GAk9f\n", - "TlL3fGCuE1g/BPwFsE8p9Zlp791y8cSLISIucN+pOzNShMjbkNxzLYl0ItK+Gj53F0zUQSIJ5n3Q\n", - "eADejCj15HUc/nVh6pyLYJpv2hYLvDvlqpv3Ah8E3oMW2sqgtS8mq0lslIX/0NVPX9TfnZtrXUTa\n", - "VsLn74JgA8RTYNoPTfthX1ipn872eGZCRNzguRPcG4AihPdCas98TEC/Un7Z1vhrQURMNfA7W6Fm\n", - "NYwYodQNVbt0+fb/VEpFRGQp1L4HLA2QG4KxVy5ToG/WmLfVNGcHIfL3wM+VUi9MeW3uB7bAAgss\n", - "sMACC1w35l2jPBGxTMnwjXFWLPAct7LVLFLxINx+N2wZ0IlHGSO83gIHn1YqsevKtiUmoN0NjRmI\n", - "5+HE9LK/m4Fb7Ump3LPiD+H+GPhS0FVjpq8pz5kEhL+olIpeeiu3PrfavC9weSzM+2SZee3vwz0V\n", - "sHxMOw4nHPBSNZz4KlC0w1JApbUw3k0tY3AxJ8NcKrA+KCL/Ae3C7QHmTS30jUZEbLBoi+6PMZkB\n", - "bSvCliHou1tEdl+uOJKI2Kvhk0uhtQFyCTCd1Mf2X5RSC3kWc4rrNlirwJav4Of3tJJ2ezAUo5hW\n", - "jMMXReSvy9VmCyywwC8nbbCoBlZOKVSoSsH6tJmef9NBxrxEV5xyGh50ibyUUOrlORrrDWXOjBGl\n", - "cxbmXd7CLOEEl0EbIFNx5cBhBWxamdb0AHiWg3kCQm9C/p3pan4uuHMjNN8BfUWQMagDy9IY6i9E\n", - "5K/QXpKbIoHp1sNRC96UnT1rl5FqdOMQAypvx5VuZsK+H/Wr6BLZa0ar7JrWQ8X9UHJCYh/kn70V\n", - "cgsWWOAWxg3+srcg4NCdmPMNkPHVoWruhu/XlJOpV4DxKbhPRDqVUjNK/OscI/t68CzSunexAzfL\n", - "A89CA6VZQkT8dlhlB69AvyJS1K3LXeVQVcKiq2gSCRts9GH+z5X4KkrY0mMY80Eal0PvHhF5bKpx\n", - "UQGbV8FYCeQE5g1xqlqMeNJ+kt4Qvn8LAztF5CfzVYXxZqcs2meeWWY/3g8D6xwEtlqpLBYx5wso\n", - "V5GYsxHVVQkNIuJXSoWmbM9ng5UO8EegtwSnLiVYpPs7eR+14/61esTmQUoRzO+ZIPawiPzhQjho\n", - "gQXmhsn1Ad2KQ4mI2aDb+S5OQxSIwIhY2Lmqit51HkyNOayFCaIOL45EN/btBiKvV0HICsVluhnZ\n", - "cmboN6TDws2/DWudUBeD6CI4slXE+F2lip2z/duvlAVjZBYwiixbCo+uAJyQH4It+xkxJ3nVBYvi\n", - "Hk4tdRKpKRB1pojsqofPtFFlclLbC9BEznKQWFOA1rUQ2sOUcl8BgwFKAaiK42+xUTMBgom8BdYP\n", - "gnUD7DvAQingdUVE7F547yLYYAJDvcjIqJYRnxIaS78DRz8LDocJ25gAReImMyoSw90M8ShTxP5E\n", - "ZHE7fGoFGNyQG4E7TsCYiPzzJXKA2qw4378aszTgGQVoxccAanEnmc8Bf3djjsICCywwEyJi9cD9\n", - "bbDJAsY4BIwiL1bD3SuguRHSSTAfB05z0rUI98Za/HYDlRFF1ljJsD1O0SDUZ/rJrqki/SrojBLD\n", - "DCUAYYLNAAAgAElEQVS+Gv99sM0CK8oaNM1RqHNA8ldF5G+utC/SbLNgjNxgRMTSAh97CEJ+3cyL\n", - "DsBBoeVF9of9HHnvMkxGL6VwNam9PdARQBaZcJ0VNbJjyTWRcQawu8DZyhRjJA4HDsN9Fkx1JZxm\n", - "wJAhb5zAVICmKGQt0LmMBWPkuiEiUgW/sQXa1un2q6UBqHgNPici/2uygaFSKi5SO5CiOBCjq8aF\n", - "JWfGEHLgG4mSrwoQL1JudiUipnr49O1adjNRCaEOKLih6VXdgesiOVX2pRVQU4frvKelGryBUcJb\n", - "RcQ+H3qtLLDALwt++OgmWLFBK1cWh8H9IvxxHQTvheOTn2sD+49I395GtidJYROkskZI+Kk4kWNi\n", - "SQplsGOpyJI2m6BwBqwxODV9f9o72rIGlk7zmFSloMYPgzVw8R5e5dYtk41dey/V4O96s2CM3ABE\n", - "pMkDq4zaPZdsBJsfzpOWXg5j+yit3UZmz0oYN0NBgCw0KZQpRrqiGudZ178VgLQFcskp+zG6wXcS\n", - "1jZQrBeSjjD5+mFMQxNs2qWTYwsGKF6RFLDOPzCvg6r1oBRM7IfCUaXUgu6HprkFFm+cIs3cDNEN\n", - "YJuALejmVWVM4TR3PdvH25sWkbfYKJqDBDoGyDqDmH4KBYeIpGzwsVrY4YNYATgNuWrYuxhCe+HD\n", - "VSLWJIxl4JhSKnb+cPI5EwWDAcN5oTihZLJQyqBPnwVjZIEFZgERqVsDK7eihRqzYC6CvxlWpmE0\n", - "CT3O8vXoh7QHrNWU+qHos1IREYwlUBRJVPUSq24kn+uGym6wn4E3gT4RqQffHWBvKKvxvgWqAHkj\n", - "mKat0wXtlH338Ror4MOr4fYmUAmgG6Ii8p3L7Qx/PVgwRq4zTpF71sB7OyBnhuIhaEhBbREGjJzf\n", - "et0MFTVw0sI5cS8rjDogP07EpvAZBWNRoRijYIFADPKnpnx24wZYtRH+dT9q2Wny26E2GaQ6BcvH\n", - "IW2CU2ZInrjc8esy4cpPwNoOWBICJXDqETi6QkR+sJAMC4C3dtpcAtRAzAHN578aegtGfyXIB14O\n", - "8/JWC/nlOdqzJYzjYGqCQ5+HkVcXw7Y6iNWXPSUpsJ6G7QpylVBxGwxEYMNRuF9E/kkpNaWpYuFA\n", - "glQyTtLlxpkAUBSNKYK2NKWD6NL5BW4SRFgM3A1Uox9idi4oEN9U+GrKN/8EOPrhTi/YK8E2Bov7\n", - "4d4a2F1ZTkxVEJgAh4v0cIpkrQVPtIiSMJ6xITzDEwRHT8KhEBwDzoBxMSz5LVhfgMo4BG6Dgxth\n", - "6AwcXQqbprQK6PHD+BgQeLfBmmHDWti0A3omJdl7wfccfEJE/sdshXcWjJHriIhUr4QHfgUGreWT\n", - "sRmCT8CqM9C6DHonP3sSauOwPwiuBi17DkAdDL4D4RKJWJxeXxGnKUDeMUxhAGL/v1LqrGx+JWxb\n", - "A+NuyL8HjlmIZU8TXmXH7M+yewUMJqD/F1dYm74UlnfAPb3nXmqIQmYNvL2Xa5Cnv4WIBWZo7DgB\n", - "7jScPP/VzNvwzmIYX1fC2pRh4ygkclD9JlSFwNTk5Llf30B+qBvqI2D1QtYBWYGlWcg1wZtLy4tJ\n", - "DXifgYfL4SAFoJSKGkT+9iSFP2nDVWHDnMsQtYyS7A3A9xYMyJuDshHyP4A7gBfQbvXbgb8V4Rng\n", - "j5QidJFNLDA/iAbLeR0jsLIWLJUQjoCnBO5myA/ABj+8FAJ7ArqPQGoDOZdi0B3CVT+C0TaOpQ8G\n", - "Xk+S/2GiXBUnIgK1H4IdEagr55HVJMHthae8sLcfJlqhoQQRA3TFYfRHFytgqIZta2Fsam+YNgg3\n", - "QcsINDLFA3wjWTBGriNmWNwOyjrFJeaAYgu8vRs64lBwQW4Q7KegPwFPH4J/UwnuBoiXgDPgH4IX\n", - "43DAS/z2PHFnCA6V4LnpFRsGcDim9NDYRuH0YgZGX2ZgZQTDK1B6Qyk1cWW/wr8MWqdVhhiAtiyc\n", - "XMyCMQLQ3w8Dh6ChLM2sxsB1EGwh2DP1g0qpvIh8D4JjsLUKZAAWjYOtHDprCxVxbXER3tsO+/bD\n", - "1maw20ANQWURjt4NXZPba4WIH5pHwQfnbkwlpV4Ukd4k6Q9aobYAJ0PwklJqoaHaTYAI9wGPA38L\n", - "fFQpslPecwF/BewW4V6lGH6XzSwwPxgZhNP7YLENGnwQjoNlDFIZCHaCPQeON2HpGUiNwr+UYDwO\n", - "W13kAjlC5gn9ULMfGJ5mSHjB54e6add1SwS8zdD5JQjUgqUGcjGg61KdhA3gdOjKnvOwae/vBWKk\n", - "N4oFY+Q6UoKSmuGJuQ6Cb8PxF6HTCp6I9pB0lW9U/5yED/uhOQ+EoGsCnix7QF662P6ScLQb1q+e\n", - "kpjkgUweBqH0glIqdeW/Ip+C7AznRdYIhYW8A0ApVRKRx16DXzkKK61ACMKj8G2l1NAMn1ci0gvG\n", - "QWialmCWMeeQvj4dAB7wwks90DAK7kFo/CDsdM/c/vuCJx2l1Gngy9fnVy4wW4iwHW2IfEwpdk5/\n", - "XykSwBdE+FPgCRHuVGr+t4T/ZaV8vf/gDfigD+4OAjnINMKebTB+GmoOwfJR2JmFPVNK+5/h0uKf\n", - "OcgCRQHjlDUgb4B8CciV14HTlzveOBzphtvXcM7ITYNpSK8xs6b4umCMXEeK0HMaWAUmezkPpAR0\n", - "agPkZ0qpk9O/o5TqFZG/H4EV4FgC1hKEq0Ukdin3ehh2vQUr89DYpK1v+xHwjMATFzNEyvLxppkF\n", - "seJH4eQ90G4CRzmXJW6BUwLpC8Z/s3LxY3BplFJx4HHd4BALELnEfPVBbwpG3FBfDssVBI75S4R/\n", - "chC2Ai2LIFgNweNQSsCLE2CrnbKRHvAH9aJhE3HfD2YbhDuBM/O9dG+BCxGhHfgx8OhMhsg0/huw\n", - "Efhz4P+6wUP7pUREPGBbBc5qiA5C4cTVVKKV198feEXMS2H1XdAzmTPohEwWdmfh6SvVf1JKJUX8\n", - "nXB0Cayb8uBzuB4iBy/lBZmJKLy+F1bloakZQgmwHYaKUd0vbgb9pBvDvGiUNxPztW+BjtlRi65Q\n", - "GJ9+otpFtrbDB5ZB0QilHp2IuC8K//puNysR552w+P3QkQNzCXrs0HkIwj++1A1GRLwu2OiBjjxE\n", - "AvDmu3VqLNe+7/DBFhMYEzA0Bs9Ml40XcdwBjR+AxQZ9/XQXYeBnSmXfuZJjdaXMxpyLiN0D9/pg\n", - "kwlMCegrH4PBaZ8zA3WUnw6ux41eRFqg+ZPQbgc7OhQ78CbEngbsdtjggzVFSAVgbwlGGuCzK8BX\n", - "DdkQWE9Csh/LO7D0LlieB0sBehzQeQxCP7gZK57m67V+oxHBBOwCfqAU//0yv9MAHAY2KUXPjRzf\n", - "jWa+zbuINEHbZ2C5RUfbwxYYGISRf1JKhS+9hRm3WVGvr+HKGsiGwXICMv3wz+cnoV/Wthpq4CE7\n", - "dARxrUrRkijR0gMTBejrg8BjV2s8iEiFCzZ5oKMA0XF9H7ls78oV7Gd+d+2difl2ooJWx6yBj9VB\n", - "sxNKo1Aag+eTSu2e9rk6Byw3gDWh3VynJi1WXQ+OD+1Oi2vVvI5/Dw8PnZOHLwEvLYI931WqeOwi\n", - "47EDhss9AStFHt0EK9bDsB0K/eB9Fbxn4FvosNHZk0FEKoBW9M24t+wJuKHc6Dkv64N8ejMsLuuD\n", - "FPvBvwtsZ+ArSqkAaJG6Rvi1erCXQIYhNgw/UEpdViKXlmSmBm3EpKa9ZwUWo43ZYaXU+JT3nGhv\n", - "ZWxyLkTEZoQVdliUgaECDMKy34WHR8BeNjxKwCuL4I3HlSoevtbjNNvMx2t9NhDhz4A7gYeU4rKT\n", - "jEX4c6BNKT5zwwY3C8ynedcPmfV/BOvqKuleVknBAhCgYAkT+ldIfAvtAY2j1+/MJYQIp27baoAO\n", - "NzSmYCIPx7WHQ4yAo7yti2p6iEjlIvj97ZBvg2AGTK/D8iMQicMPgf4LS/7nHxeb84UwzWUiIoZa\n", - "+M0dULG8nF2cBNOz8Cm3yAY7TAThaAlOKqVGRWxNULMVPHZIKpGKPZDoh8b3g98DWRGpOgn0Qzsw\n", - "6jExXFXEVFAsGoOlUehajy7nmj4WL1S+H9pXgAGRun4Ye+piVTMiUr92Su17BixxzItqsC4fwrY0\n", - "g2WPiPHnShW7QFdooJ/AbiWaWqB985Ts8DbtlqwP6gqGp0Skein85oMQrIQgwDC4n4ffEpEvX2wB\n", - "0oaG699B24PgNkAsJ+L6KSS/MemxKBulJ6Z9zwOVH4AlK7U0TWRcRH4OFG0YfrWE744E7iQkcmYi\n", - "mfz/Zu+9gy257vy+z+ncfXN6OU7OgwkYECASyWVcMK652vVKxd1VKFtr0SqXvKu1Vest+w+Vtsp2\n", - "uaQqa+W15A1eaYNEU6SYiUQABDAAZoCZwWDezLycb8634/Ef/SAMSSSCAAYE8K2aqnn3vdvdt897\n", - "p3/nd74BJw03jrUC7KnD3AnefWP2roQQ7AW+DBz/aQqRHfwL4KoQjEr59u3pv8tRhNTEGFf3H8Xq\n", - "WThdgEm6yfNEv1VlagbIQDgOqQUIGkLkL0D966+0JS6EyCXgxHC8L7vWjPkhjfh75gmY+BgkE9AL\n", - "hEj9ADoPv9iBFUIMW7AHYADzaTh+ApRdO3OSA8FtsFRB/1CbkRzYDSGGF2H7azcucH6ecNOKESHE\n", - "bcQ21RFwVkr5392sa3mdmJyE4QM3PMi2YN9u2GfC0GF4ch6OXYLLQmgX4ZZfgrvWIVuFjgbf/i9i\n", - "Y81PPQSl1fhjX9wDDxwxuLZ7khcSwwgZIlnlhaMbTFyPiF4uf8CA0d+AO1NwYBWEhMUiPPS3hRD/\n", - "/FVySPLD8UmRwBXM031GixmcTRupDrgXePDXhRD/8l2swMiPvAzxcwSaTtwFIgnHjkCUg/4WJEMQ\n", - "Q9DZD9mV2Dz36Vc+fOofwS2fgjuW465Fx4DH/hacd4F//eM/vbPlp8Hw34IPFuHwakxKW0sLvvVP\n", - "RlnRYWbGYKLjsXo8jUmCjNdjUd/iq/ka9z72Ev/kffyc4X8H/kBKfoLw/FqQkqoQ/DnwW8A/edOv\n", - "7L0JqdIZmsLGQt8hB0siBqPDZBNVxtKQmIQDLtR2QeEhWDoMP0wA/+bGA8WLC/bMwGePAwXolmH/\n", - "BbhLCPFHsdLlyC/DnZuQr0NXhyc/CudM4FtJIe4+DB/bDZECXAN1C+whWA134j9cMK6Q/GCGjAO3\n", - "NOHECswPw0O/ufMceNu4Hm8WbmZnZBH4kJTSE0L8mRDiiJTy4k28nteCk+GlFUwdMiHs2wNbFdBn\n", - "oTYbSy0P/oD8EbhtE7IuXBmC5ROgTsOuAmy7YDwJmQ4c24C528e4vvsA0/MaxgAECRpDLs9+poKT\n", - "FGIsB1vflTLcIY+KwzAzEluXvIhdVahNQOU48PArXH+ruqP0qUO2R7pkka016SU8MjUY7sBJG8p3\n", - "EjP7341ov3gPbkQVkoMdfxAb8hGoXyF9T5d8BlQM6u4QtVUHMq904HgHaOYj8IHll7ZPkh6c2YCV\n", - "z+90Oho7CioTknfB5B3gDcHIJEz94CV2fM51GNsd0dLy7N4YsDF0iCCwMLU+dsuiPlrCM8/zw1ta\n", - "fOEHOzTpHJRfi4n/Pt4BEIJfBPYBv/QzHOYPgW8Iwe+9gc7K+/hJVE2aro7xn5+JPoOEh5ZPoJcV\n", - "WrMRJzpQ6oGWgsosnDoHS7uFEKNSyo142zz3adh71ECeimhqLvVnUgSVNPTzkOjCp8sUk3D7FuR3\n", - "+IYJH+5YgZU7hBBzR+Dj98GqtWMRcRiUP4XPnMc4nsXsq4QDk0E7Im90Ufvx9KUAeyqwPQWbh4Cz\n", - "b8ZN2Qn6M4DuT0u2/Wlx04oR+aOxxj43uJC+Q7G9DkoIQgXZgnwGoho4Fi+tbqah/UOUWwOGrsN6\n", - "CtY/AGe68EIEkz3QM7B2Ozj3gyJ11H0O/dQmV+8OUEWE1jNIM0qqUeHUOowY8MMvCaH9hzzh7Dji\n", - "voil6S5fGWtx6kKsLwcodiEx/irXv7qy441RBCmw5QBfX8S3uhzcKWxKLTBH38J7eLOxtAibF2Hk\n", - "EGwqQBmc87E/yOKQEH9TgTufwLxHZ/dqgalNAI++cYkLJ9ts/LtXOXYJEhokfuz3uGak6B0cht/x\n", - "oZ0U4lHIjcOt++CWNbhsgHYYNu4C9UFIdaGZS2EFLlZBw1xSqBdNXFMQJHTIRXhdgZtNM0i1ODsD\n", - "ZQFXz0P0/Mtd2Pt450AITOKuyH97o5fITwspuSAEFeBDvIYFwPt4bUgppSrEXzWIfjeBzAmMwKVR\n", - "ULD9Hmo9whDx4hLAdiHMxv8vSCANbED+83D7QdhfTXBJ2ojW08x9ap35ehY6Mk7erYHeh9KPZYWZ\n", - "IeQw4cQ+8K0bvKqqUMqTzC9j6GlGKjpCVtg42ieSa6Suw64bvKQKA0j+ZwGeEMJJwh0ZOCWAOpzt\n", - "xttFr6oQEkJYGfjoDJw2QGlDRRPi68EriCPeDNx0zogQ4hhQejnZ6zsJUspqVoizD8Ftt8BWFBtd\n", - "OdvQPnyDpluCIvAbsJWEpWnYFULGA30AtSzsbkN1WOW5ey2647C+PwO9U4SbGqG5gj+6iFKXZGsQ\n", - "apAO4Ew1zdV/fA/9CznkwhpKwWPgPM8PPrjFxx+Iw5CqCeisCyEcoAAYOTiegKMSPAceK8NfPQyf\n", - "yMCZkGamg+3VOPVk3FkBKKdh8KYzqN8pkFKGQog/fRA+ewH2GkAN2uvw/f3w2TPQA2pXSSkdtmea\n", - "aGGS0VoXkWyzqw6d3IvHEkIYGnyoEKf2JpKge2yNCZ5JeoyUJUMV2EhOcnbfBG7/QzDvgngUPncO\n", - "u+Ryx84DJN2HRg/GBWzPQuoiCBnQ1y0G9QEdK6KdK6JEFpo3gCikF/TwBgbdCjxwHnqXgQUgsRN2\n", - "1QG23ndefUfiHwJXpHxNP4nXgz8BvsT7xcibggge3qJ/vMjS/gLqIEG4cp3MiRWmtuM5vJaD0Q70\n", - "rNiGIwK2FaAeCxEOHgLTS/Hdu1Rae5pYaoGs65B27qW1vAqpZRiH/kNQceJ5+0X4CjQQIPwbnsub\n", - "kHwB87RFvlkhu/UUnpPBs1wMt4ZaGHDX2ViB+SIqJnQ2d9SAmRL8ypmYXrAVgbgMH34a9goh/vWr\n", - "kWYL8MtnYO9eqNXiXJAzc/A5S4j/042tI95wIf1KuKnFiBAiD/xz4Iuv8P3fv+HLB6WUD76F12KA\n", - "eRIKpwEFak/D4OkbfSia8PUnYes63ClBVaD+YXhqJJ78CUBcgaRP4y/h8XvAyYMhNa7s0qmMwVre\n", - "5PwndQJVRe2pECSpR5NgRaAloTOK2oVAe5TOLODFAoptfQRROrgz6WxSdRXC4ihRtsp37wsYvgyL\n", - "VZteahR+Jw9WE25NQv1OeFiD6AJ87BmYqsKfVeHrwJdg1zDs34RKHpZugcvjIO4XwjwF3jNvdVvu\n", - "ZmCHU/MnO2ohHagPw2/eAe1paCwgMhlS8zaavc3W9BZ516V4JWSkAi+cEmJsH3AEhg4lUHUTWTMo\n", - "W8cI2aLmrzNXBM+q0sqYzDklalkDf/F7aJ+TBJoAPUdrZJOLz8ORDZitwIPNeAzcYXi6BxsHGqwM\n", - "7ad5vsq1iSwickEqSF3i9XL4mwKiFrIHThJKX7KonCjQG80jm0FMpn7yJzNsfjbsTHAG0Hs3/m68\n", - "1diR5f73xGGKbwb+Avg9IdCl5G1NWH2Xwt9GPFIjM24Szep0Nrp4T/uMduP0jit3xh2RjoDcEjw+\n", - "BRsXpJTbQoj9Cr0jkzx9cBgnBDVj0nZqtFubhM5jcMSPHbN7Gtu9gMdH4K41yLhxhtgD+9IsiSLc\n", - "fQ1OlmFRgpaAdEi4Z4uqFqCpNUqDGmEEE8/A2iHYLsLQDm/s6hA83wWtBKO/C9HYEOVDCuHaFYx9\n", - "GpE7yWC+A1PlmBz7spllO2KHfcdgawHuHgJrBiojkDoLv7IRL3r++M1e7NxMAqsG/Bnwj16J/Sul\n", - "/P236VpUKPwq3LIf9pdjUujVT8G5w0KIf/NiBbnDdH585x+2EKceh89VwdFBXgd1CX4A0bfh0iak\n", - "/r7O4ANDJH2VDTFO4Cv0DB1P9YmUbfrOBEG9CKzAZBn8iMDqIIVPsg1JCbVJqBR1hHMJblcxgg7q\n", - "bhdlVMEQBjgBg0BQCY7BXR+CxY3YyKLXAeM5OPYheOJOWKrBgRpMSimXYyLVDz8OF+8F5xSkGnDr\n", - "tyDfhae/CBcywP1vx/2/GXiR6CuE0GyYnoRlH9QeshSxtcvEdNMo/W2c87B3DR68HfIGnF4CZgy8\n", - "vGDVl3giRTCao1nO4q/VWBpvUs2oRAWNvpkic71NJsox2FskVBP0Wil8Q/DEXRtkvw0TTTjyDDz6\n", - "i1C5A6ZOQmEpYPTBBa4esZi3k8jwMiI5TOQNEWzVoDsHdg+7BPdOZnhm/wzq+GEynkPH0gjsefjI\n", - "82AIIf7pG3PifQlxoZ7+CEyfAVODdlUI9T+9qLx6H68b/wz4V1K+fnfMV4OUrAvBHHAP8L0345jv\n", - "VcRk8twXYP8dAcN2AE0oW/DCFXh8FQpHIZiHK8NgboG0oP4ItC4LMfJ3YfxMlsa9Y8xUTFLNkK7q\n", - "oDhtyrki/WAypiIMhsHtoP7qCnNPwfwuSBngqRm2wo8TPbMfNq+Dchk+VgT2wNwCYWKCIKFSSy9T\n", - "XPA4tQLre+CFFjy0BM/thHM2r0GnB7feBR9YtXlgysIv1kiPJlCuS0RnmcZtFtvbGaIZXqEYAbJD\n", - "ILdhIg92cSdypAjdDGgW7K7ADDD/Cu9/Q7iZnZEvErsJ/kEsKuB3pZSP36Rr2QV798Ndiy+9VFqC\n", - "wTRU9wMvS6ztS/m0EGL+OuxRQfdg4QZ57XkhxP+VQR4QTAUF/ENF8h2X1WyJQQ+MroOSLcNwH7Wr\n", - "E6kOaqgRRQFC1/CtOI1xjwSh96goG6j3GaQ2IixbYdhzaVsutg2T3RQLt47SO6/Ebb7SEPSHYbAG\n", - "I9uQGILuBETPQEkIsQaMQ9iF1gCOPQKnFmISFMC9S7B9jxDiiZ9HVvZPiTDYKdw24EQWRrO4jQDN\n", - "3iRIFDh3a5WBBfMT8KlvQuMEFH2Tvqdi+D0enxzC6V3DHaszrMCQLJK6uE19KmDD8TDLCq2jQ6Sk\n", - "ghr1UEswUCYJ0k0u7OszaBks/0JAIx8yW4eTC7EKJ4h63PdXPb56zzBXl07C1TpoG5AxoaVDyWdW\n", - "EXh6iU5xFtW1EXSxRnVIpgnJ4H9mleA54K9+tluU+zzcehRO7njhbCbh4V8XQvyrHzfMex8vDyG4\n", - "g5jfceBNPvRXgc/yfjHys2IKxu+F6SkoAqYf8/X8++Cp34fWfyTuCnYAi7i4SMHsfwN3+7CVynC5\n", - "JfFSHm1Nw2wNkD2FfiYLskJRBoisizs+hrZUI7Gvy6QBaqTjmzqp8WdZHcvS+6oBKzlYG4o1xMNJ\n", - "GGRIawWMgcLy6DYDs8HxDUj6MP+XUH1xyySCXf8YPrgCZujRzwakVZ2hhkujaKOVNYYGK3Rm+3Re\n", - "ravRqsQqwlIBbtwZMHWolSA6Hxt/vjuKESnlv+Udo9rIzMLUy9iCl3ywPmoKkfFikurSj7enpZR1\n", - "IcT5EOUAZD9pCXsmy0ABljXo3ULtyUU6hyx0PaDv6ww8G2EERE4GxVtBsZaRySlEaKN1B0T6JjIV\n", - "kBUmWsKl34DJeplqxiHKCshJkmaIaG/i9EP2tmDlgAIjNYrWOdwpnU7gIZUEDBIQdWODrW4zVpJ4\n", - "kPsvYd9BmHJh43ZotuBKHw5uxp/KCmFIwHwB+LkoRoQQFuhHIbcPvCY0zv+4q+rLQUopHSEe/iH8\n", - "yi4YGYdqQNi4RGs3GMFutp02mwmPvc/GKZnVFDj9kB4aab+P0Jv01HUyRYf9PRXDk4ixCDXTIVNZ\n", - "4NLhvQgH8CJ8tUtkBBhbKo2EQeeDNpuBTWgJqHg4Vp3tEY8912FxFwQLcPDKGtedw0T9U7ClglyE\n", - "3Dm0MZ+9103KORikAiKriZIwyAY9unoLw9BIJhS0/1GIXBIaf/FGOiRCiBIcPhqrhF4sVkc6cKsB\n", - "lXuBP/5pj/legxAIYhuD/2EnZ+bNxP8HfEsIvizlT8rW380QQkxC7hbQ01C/Av7FNxrvAMY0FPfB\n", - "dB2cnYd7uhtTy67/TWgHQAT+NSllNT5/6iQc02B2C8q2T6rt4Q5ctvMaApVB5CDRSbsqad2HrE/a\n", - "V+ikdcK0wsxGks09EbqSISUH2LvPcu03huh+PwddC4I0pNNoTY8AH6+goSqjVOwWP4wiCs/DfElK\n", - "eWXnfgxDVsRkWAix1Q3wU0QoCEMiFZdQW8ORHp3GK9wIgPVVuJ6BXXnQk9BvgTEH1hRcW42roDf7\n", - "9/jmE1jfTgghhoAEUP1Rt7p+COt5GGq9RCqaLxR5/O7d9NfHILcM2gI8L4T4ixuJP/E+euHXYO/R\n", - "PFsH9+CYCQZhglrxOpGoQeoo3tkOwewEdreFmW/TG3LQ+nVI93CiK7jKKkI1iXIStdZE71pM+QG6\n", - "5jJUhqTXoatfo5dKs5jVEaJHSJMjVSgnIK+4zHoeFZkl0emxNbrEtmrCoAliP3QWIXcFAkh8GvZ+\n", - "EqZqYC/ASBXGJDx9Gqa+HcvMIqAl+PkpRBIw/JtwbBjG29DfDRdvF8L6ipSDp17r/X344bNw0oXj\n", - "XYjaoPhw+V68p108fQnYwsvvKLub0MgPEH2DrqNg9BYIR3WGEdiRwKqB4g4YmDCS22QzZVM3TXw7\n", - "IowCRJRikGsQqTr96iyDxQK7uyt4xQZKwaY17HElC1LAUhN6yy3kVx6AiXNwQAXRjG38/xwqH3FY\n", - "OBLSK20gnAKqUKgHIRlPkPXaRIOIg3WofxAu+MTboj8tslCULxUiL2KkBcarqbfex0v4G8T8pDdy\n", - "/18Ll4lX6Ud5DxneCWHdCkc+B4fdWN2yeggu3L7Dk3oD25KhA8KIC5FAga4db9e302DdC8d6kOjA\n", - "NSGE9VUpB2chOQGlnYeyvd2hfmoCTytBOKBrbCDNNqoGZiIg0iV6mMDoV2jnPQzfYMMKURIGoak3\n", - "QUsAACAASURBVOzjoZDw+mStLhzr020qMSEsDAj1LfxUHcv3cPp5SlUbJepSO8qPhmi2oSHjUFMz\n", - "BKe9zcyqz9WxHF2tjMiU0YIKxQuw/Ypp7lLGQX/nQF2HL43FmRPdSfihBuFc/Fx407do3xPFSBxm\n", - "VvwiHNkNGQlbCJF5FFrfS8MvzMKHNc6d6LNyoMrIcp/bnyvw2AcO0wlOIM9loX0UeAQOPQJ36EL0\n", - "M/BxF3tXzCMoJVX88l5EOEJxHSLRIZyZpf7cebgzAdNdIi1Bq2Ria3W0wQaD1DaYBnpQYYSQoSDA\n", - "dFXWTIeyImllJGoUt+z1ELqGTjJyyHZdUiLF3pbCXL5Hz9HZ23HR1EV808YzHQrlBs3cd3HH2rB0\n", - "P4ysQrPMqAojd8Dtm5DyoLIHGkBLhayEp3fDUA2aNmxdeXEF8M5H4gNweghuvcGufUqHv75PCPH8\n", - "a01OOyqbbwBTCaiXwB2PLeBHr2CebGP0oVJV+bf7c4RZAzHTxwlbCF0nanUoRjq+dAl7ITWjyyCv\n", - "gdBp5SEp6wh1myiyULQEq34GEawTpaYgbODfus2CZ6D32gwKPmd8hRE/Qh1AdRyezoL8g4qUD+8o\n", - "pdSdGIFkkqd+2yZ7oM8hZwXFaNAVFltGjihs4aqbjOz4xzTNJPxySYhsDR6OYjvq1yulb0H1Zeyb\n", - "t1Lgb77eEXqvQggs4J8Cv/5W+IFIiRSC7wAf5T1SjMSLj933wSfX48UTwEwdjEl48Ay8ZuDgyyC8\n", - "Gje/V4swGAXPNHg+n2Qxa6DXTRYO1UnVWnzgPPBZIcQCpDZg/ghcOKazcnIEzzJQA8nASSJkgcB4\n", - "HlOmMcIkiq+hBwFRWKdrqiStIl0lQBUhUioQgasN6ApJwlmnG9Vjo81wlWSuw6TVJuUqKEGPctFl\n", - "dCO2uiL94ieQUvZip+/H7oYPrMby4dZInQMbdbpzkFsHKeH7ITtO3K+EnTnzjzQhznXh8xMQzYG5\n", - "Ad0N+H/feAfqlfGeKEag8AW4cxpu2XlY+Qo8dI/OY5PHiXbdDfMVup0lxKktOgcvsTKRp55LEG6+\n", - "QPJejag3RP/qLLJ2CX5rFtEzKEwKUoNl3Nlt+rbNZrJBWK3S7PTRE30SaR3l8DCd5gC3DLjP4u0J\n", - "8S0NLVBAJkmXy0ykUkz2dbq2RFNVRu2QHiGboYmlFpgbqZOsq4Qdh22riBqGiN46T2VG8MwaOUWl\n", - "LwV6q8Nk6ywt1aZn+aiyC/+zHzvGdsCYhYOfgbqEpgHZAYzUoV+InYpXzuxQS/qwXoHWgztqp4aU\n", - "MorzVpyTkNkHfgMqZ6WUizdvTG9E9jjsKf/oawkfplRYmADmXsdBFjdg7QDY49BaRJldJn9qAVvp\n", - "cfcTKnN7Zrl8bBKxoWCt99geruD359FWQ/YuBUSJPq1xSFoWqqVT00PKOHQVnZxYoKon6Eobz6gR\n", - "JvcgOwI0DfQqUaJClNhDV1nmrN5j4IEIodmE3AqsjgkhWgJmknBcFWLKgcM6+gnBXs0iE0oCv4+n\n", - "NbCURZYdl6FqQEJqPLR3L92tIoo/AuOb8KsX4cJOh+81w/+klFtxbMHZfXBiDTQJNRueycLWX7+x\n", - "8XpP4cvAs1Ly0Ft4ju8Cfw/4X9/Cc7yTMBn/bSf8H315TwWePcEbKkaYh41z8NhnBEPRCEvZacqJ\n", - "Akbg4poV2sNjaN4LPHFrnclllWtfNGmrPS59AfajMpVs0Q99yk4WXxvB6I6gNDfR8lVsv0LPMXHD\n", - "Jr6exCBJW4WMOoYSRfFWuhxQVSLaiUvI6TFoWrD4JM4+lVlhkPMtHF/BjMqQCGhmIRfA0JeFKH4f\n", - "qt+Mw/xa34WnfVi8E6JhGKQgacVejs+PQy+E3neACWLj0Z2tWNLEc/2PLECDmBd5YT0ODQ2J87be\n", - "EsuAd30xEuu/D+2FYzdYnOsRnNhM8dQXTjP4hg5RFuoBnWczdDJrMKNiAzPSxGpEBMYa9VNNNloz\n", - "UMyR7OiMbob45h4aiTSerZPxHDaGlzHGYcLLoGoSOegysDwW1Ntpf1MB+Q3kIYF/9CCWuUnCsikq\n", - "oJhdzHBAy0mi4FEMLOb7Gstan4Tl4OdCOrJAd6WALDdxZodxFQ3htlC0kLQDga4SyYB8o8OBZ+EH\n", - "UzBxD4QSqheB26BzHHI2zA/BZg0OL8ScrPok7J6HiYdjHu7mPrj0e+A9A/0lIZQHYfwjcCIF403o\n", - "DMGFk0JY/yFuV95syAB89Sdf9+EG86BXPYKUgRDiT74HX3wOZvuYtzfJtKocOwdT9TxP5mcZmQtZ\n", - "GlJphzp08hDWoFOldh1yJ6EQKSR1DT/0aWmSUBFEoUUjdFFpcoAmTUWhrPdodhOIRA7dM9H8Mqol\n", - "yMthOrLGUiNk93fgg/OwmoOF3Xla9+XQPtkkO2uRSvt4eoTQk6Q7oAgXOzDQ6RMl+vhqxJE0uEUb\n", - "XQFRc/DaM7B5EPoeHHkidmh8na3W6r+HRz8BL5yI04Yb3Z2E0LfMAOndACHIAb8N3PEWn+p+4I+F\n", - "wJKSN33F+g5ECP7L8GN8NXZKf/3YiWRIAh7IpyF/PMvSzAwDbxjN0BCqg6FquBOb1JUREs0B61P7\n", - "kdk29v4qM0aHgq/iCgM96GFEJh0SSFfFEDo9NUBnwKi3hS6zrGqT6P46bTyW1HVGlZCk4lMXSTqh\n", - "TSQ6GL6K03EJ8iqpKCRZdlFTPr7Sxw888j3wNdCb8JF5CHfDD35TCPEvdvw/vi+ENYBDvwS3/nvo\n", - "6XDuEzBahPHvgzYEF/6eEObXILkLDh+EQgRlRYj8eah/9UYqgpTS44YYlLcK7/piBHAg9TJ73ran\n", - "IZJpcJcQ0xukj0nSCkh0arsrON1dmANQUDA8i1J1gcrpWfzzEjsZIB2PxlQJ4QJ2GVeRCDPPuNvG\n", - "VHR8kUIJl1CsPqXd3yGdsgjaKo2ui7se4Y31CEo+UhdEionud1E1gQwyOK09OJUObUeyXYSQPtRc\n", - "lEyZKMrglruoqQoTpiAbwURfZawT0jR9LtwGy0Nw6vtwZgUaDjz8ORgcheNrsUpoTY0NvJ7cD0EE\n", - "moDR+2F4C67cBcMZSNdgRYvl6F/7bTi6HhO1qgchyMK+DtR/TQhx8bXc/N56VJ+Ey5+F4g2KoO0E\n", - "rAyATSHsD0L+VkBA/Snon325NqOUsiqE+MNtuBOGRuDu52G6CTXbItQi1KEWYiaHiKYQCKJwADNt\n", - "lqRHIQXjSwqLuwRrRZWSrzOhSTqyRkcJaSOYiRzq0qAo51jJHWI7rBLZ1xH2NqYIkYGF0nEIr7U5\n", - "fSW+qpZh0N43jn1fg7GsxoQcRe1VGaQrVIVPYFhoAw2p9IkCF0eJSAK6qiAGaabVBtf2jrP6TR38\n", - "NiSnwLsCe3mdxcjO+H5FCPFtYiVB8/V0Vd4H/xD4j1K+rs7cG4aUNITgInEC8HvBAG0JlgZQdmJ7\n", - "doj5XJeLUPnK6z2IEOo+GPtFSOfBjaCVBP1ikTBlMBgSSEWSVEERKTx3hcGwTq+Uwl/cT7TwKLnb\n", - "S0yt27hOBQgIHY2S1mBNX6Wf16Afkeim2FJaYKjkOg79LYElPMKUhqJY+LpNR/okpEZCLOKIiIzp\n", - "kMi6uNLHtw3UXpeorREVi9hCougdyrbLZnbAr9Rj1+fKFGztB56LpfhTH44LlaQHjx6D000Y2obl\n", - "adj7AIw1oPZlOLAId+zMmxHw2Al4ogV8500ftdfAe6EYqcB2FBvL2Dfsk29nPKLlqzBeJXeLyXhT\n", - "oIY+odpHE3Wc/iWapTEiRRKl2wTmFpo6je/7uLscBoGGW9IRUYCHgWf2MWSEYum40kNxB7h0EZbg\n", - "lpZG13XQm1usTvvMzWn0ruvUv+BRTduYUYhvh/iagRJo1PAIMwnC9BiaXEG1IgpqgrCwTK9UJWz1\n", - "UdISWzPZ21GQfsBSRoKQJAT0enB6UePKkSS1PQH+IZfRrOTqaEC4CfllSJdhcRqulOGDL8DECpQL\n", - "YOWgVIOKDaEdcw5K+Zh/V9kPwx4k+tBPw/JuWLsb+PbNGtwY7tPw7G5oH4LJELoKzHmw8udQ/FU4\n", - "OQv7twEJcx+HZw4IIf4f4rbQblAtCNeBch4+PwynBZUDXb5+uIk2aLHnfJfQ7uBO6GAfwqpGKE5A\n", - "aI8x0BsoH13Ga0uuI6n7EUlsRjshbileXoxEHgkRUsdBiXx0VaUULlPVwEZlV2CiCwvVr9EzetQn\n", - "YhJazYHngyQc62In2hhFQTXtYysOBhEGFTytADoYUYdeso+lQKIJQV/SSEV0hEq6XUMZukb4CQOU\n", - "SkwYEkKIZ/kp2q47+8g/k2fJewU7XZHfIk6DfjvwHeBjvAeKkTjPTPt38I1fg31FcCJYVmH+Avjn\n", - "Xuv9O92QO2DP34n9xXYvARF87xc1rh+ICBN9tLyHUCzUUBIoPsKMMMM2fcWk0r5MYl8f3dbwPAtN\n", - "CnBqKFGKri5xRIc027h2QLJl0g2h4Wg4/SqVXBdF6ZKJFBwtiSUUpFRRaNBRQnah46oqUSqH3ajg\n", - "KQ3kaIJukAYlws8O8JUS7nYSo/ksl8clp5eg5EFqhJg3lIOCHhciELs6jLXBjIA8eBqoAobHoXTx\n", - "pQWcApxag6u3CyEeeDWH1rcC7/piRErZFyJ5PzzwKTi5DYVeLON+ItHE/cPHUf7+BAndRAn7eMYS\n", - "/VSD8RXJaLjEJW8DbVQlEQ0Y2pYs5a9z6Y7DdDoKaSK0XoBvNkEk8VQTb7CNr7kYRKidCj0VZmVI\n", - "mBowKA3wEwNmrga09Ue4fmIUzzGYEx1adkgKnShqUrdmaEUBhjuMjBoECRcnEJD2SSgOSWuOtB3R\n", - "FgamNMEw6STShDJAhi1UpQ+74dnbS/TG0qBvoVsqwx2TsldnPePT2Qusg1yHzr+Eyq1xVezaYO+0\n", - "P7dtSOysnPUuDA7A/quQGLz0WiYB+buFEN+7mSvlnfC5P4faNDw3Dn4qJv0qp2DPQbjjyks/ffsy\n", - "9Gag/GmYvA32BfFk9kJWZ8GZJfBOwNomfdNBOE3U5CKXb99C0dfpZE5DV6KYIPVtIuFRkHmEvsWg\n", - "BFY2JIp8ko5GGEaEnoarxt2KnKdTabRIJAJ6iQyoHRSRZSxyMVQDwzeRXojqSMxhnT+6z0c+BZW/\n", - "7JH9M8nkeMBEWiKVLSoih5RJbBrUhUsC0NSAuqFApDIdeeQ6ktFyh8sTSXqmRTi+D55rgHMBSnvg\n", - "Ez7sasKzQoi/fufwf941+DLwNSl5u7ayvkvsZv07b9P5biqkDK4LIf43WNoLhhNbKv2k9cKL2HEP\n", - "zgM+5D8J2b8Bp5OQGoLreyHxfJqM2WMzs03gJFCjFjoKA9Ug9GuEYRdBFSVIcdAckE/4bIU1emMO\n", - "qi9IKD2cqAehjkqf0cBDUw18Z52a4tEJxlmz6iS1NrolySsBQ4qHygbbSpGO7IOQpCKLKCrjWgpB\n", - "yUITEes66JGB2fNphjbtYArTDTFIszLd5PQSVPU4HBiAXuwSG4o4fFN48RaWECB90EJoOXEosBlA\n", - "JHa2fYJ4wW5qxAu194uRNx/dH8AzDVi5B9RhcBeg/EAk5YoQ6SMVrI+ZtHM+VrfJ8ackBWD+Y+AI\n", - "j0+9EA/oZhG8aI1OSrJuZNgyA1SjR6jnUUJwtRS6u0jF6pMgjZqqEugeRCZ11UOYLooMaB4AR+sw\n", - "GlZopvcyUBOsRH1MavhKE19UUO0yrlrH1zxywsXUdMinKPngRzAhJG1caqpCxS5heSoGgiiy6CoV\n", - "Onmf1p0Wwg0QioHd7lNN2aTKPoFWJ70B233YXIOUBldDuP8gzLTiqrmdg7UO3LHj0xHVobYfnBu2\n", - "Nio29FowLKGSZsel72ZhR462DPYJOHQaZkNY2AvpkfizjO+EGbYdMA7D+H1wZhNkFzYimE4oZA5t\n", - "01n9LssfmqLnN+kmJIoqURMForBGIMqodkCk6mhuB0foFKSk4wgi4dOyQmwJoQhwBdQkiChCCkGo\n", - "hggRofkeKc+lr5hoWh9DMVGlgTTa9A0LWkWcrTGqjQGR9gLOvT67ZAo9LVFVQZoIhxZXlSQZ6dEM\n", - "fOaDJOgJlKDHZGRg6W1WJ5qM1toM1wLOT1tE1y9DYQ5md8PKEdiag0walPvhS0KI/0NK+SPeA3EK\n", - "qXUL5I5C2IPts8Dc+1bwr46dMLz/mtjk7O3CE8AuIShKySvKNt9NkFJ2gNfRCbFPweQnoGjC1iRM\n", - "5ECRMLsRdwuyFlz8sEQWBNNql4G3wHaiSFepE0YdhGhgD1rk62Dnh8l6FvYgR/9amc1bqzgZH2UA\n", - "DRX6is/+qo/MChK6jzAkDZGh4ts0zQZJ3SGnJEkpdQQBScASG1wRGr6EvnAIoz66TOHqNobMUI3y\n", - "LIYRmmXhRQKFAQVXIPISqwz3H4WrI5C/VQg1AJZhYwUe2xXzzvLzcO045GVsF3L9JNR2w/YwrH/I\n", - "ZiMyEZGPOuhiL0F7hZvQAX1PFCM7k+dzvKz0rftwi7EJuGcx/vrqECxMwhULxrW4i+IJaBZgsqmS\n", - "rTQ470dUkgXaSgFvuw97WhjaGsJR6IYGi7KGZrgMDJVkM2TYjUiqHmTA1gTVSCcKUmhqm5TsEAkX\n", - "SYpATAM9QlEnUjcYUSymQwWTFogOFd1FIElKHRH5bAuNltRIu+BrEa6m0+qO0daXqToqu3sBjZyG\n", - "qCvM+ZJ9QsUAAh8uHoShLtx9ENoCzqdgzgWlC8M9uOvpmK2+nIXqOnSvwSNFGJLQTCpsWgqFuYDV\n", - "LLzx9NE3GQfg0Bk4swFXpyAqQqcAC3dD+wEoj0H3FggSMXncTUJ5EkwHjp8zudIVbGUSJItFvO4x\n", - "grUWofkw4aQO66OoHVBEDsVoIQ2JpbYIlQq6qrI/9NhWJL6AlpDs0sEKoNiEalKyYEicrErkGgwQ\n", - "lMMEdhBhWRp6KPGUAqrbBBlQTwsiZwzSixifdkh4XVxVpSZAyghLdLHRqBJSUVP0m3vBERS1Oj2z\n", - "zhXLpOhrNPMBXtOjs52E763A6G7gFigDGCAy4B2C5AYcAR558UbGMuKRvw3Hh2G0r7A5q3P9SxqL\n", - "F1Qh/u8defD7RcnL45eB56R8RbvtNx1S4gvBI8QF0M/ouPvugRBiH+z5uzBig6KBOwG7PFiwoBHE\n", - "c11iAEoxIGcJyoFKSe1ycNCmocOqgMwAaMDmMDjuKuExnTUlINRDMnpA14d5oVATCawgoDnkcjCA\n", - "TGSgRZKUYjBDh6v2gI4+wqQIkDh06BMiSBKSJsGGjJgXNUoiiS51FOkzGGSo6Q4hJwkDDfAJxXXK\n", - "pTnqyRbZARgl+PDjoOcVnvmfslxhls7cOg+eqHH+zoBSJaShQ6YGpQNg2dCtweTTJtXbdRLdUZIX\n", - "PLp2ledub7H5cHgT/rbfE8XIqyO6As/Pgz4LbhH0PZBRYXId7By0epBcgOHDMNz0qY9aDKwJ9EEP\n", - "I13FnfbBCVC9ACOQWF4S18nQE1l6cp35tM5QS9I0JZpqsCqytNRxPC1Co0xeQBKDiBRdWqyRY8Aa\n", - "GTXNWFBFqDZqJLFEDU0MCKWCRoQmBHZkMkefqqGgqzr97jSDCgTmMotmg3ZSIzBz0NmDPVdhrlgm\n", - "LIGZgmwVPv1gbMoKUIxMvnl6iM3LA8ojNVaPh2TKggYOtctd7C3oHNDoT+QIZZahtT6VUcmW04Z7\n", - "gW/cvDF8EUOnYLIHT90JUw7MdGBjArb3waUinNgCmYMrhdiUdioAPQuhCi/MuhgDSXl4BiuAhNWg\n", - "WYhAGYt981GRlSp2dBl3OkWo13BlGVvUGZHQI4Gi5NGljhAdrokKlu7TtsFpQJgyWbBtItXECzRM\n", - "GdI3Q7YDnWEsorBBGDSoOWlWlV0w3YdbDIJxSScaQRUCKfs0RBNVePRkhN31SDBBw5zEaLfwDQfd\n", - "TdJPtlkwevh+h0IrQeeJWSi7kC7sFI4+qB5ENrgZcJ3YA/sGWCfglmE4Wk7w/F3DYJrsq3XoHSuw\n", - "9neuw7e46Vyhdyz+AfC/3ITzfh/4MO8XIzcg9xswvg8ONcD24WIJtj1It+D5LDhBTKFCD2mo0IsU\n", - "ZiNJVlEoBgEDGywJFyYh8mBX08OzPdwh2KvGLq1bisWamkDoSZaFQUfU6OoDjoUeiiqoS522ZqGJ\n", - "cdqiy1V8UmRIkMWjSQePTUy2hEoU9fFkSEp4dLCpS4WB3At+C0wBShrCYWT4Ar5ikBm3KFwJaB7y\n", - "UPwRRhyVrp3h+skJwlyDKk2qXROuPcdm2CeagKPzcMtWiksfHaLzXI2tqTqXxsfwrh2nfe5JOCCE\n", - "+Nrbnfr9ni9GdvgGfwoP/gLs/gdwfBNSizC9BWd/AcwM9LIwBMgoYCVU2B6p4hsaoboLgjwETUL9\n", - "PB27gOJnSOGiiRSu0OmwzqPZIpYcBSXCkwp5IVHpkWWEMcp0SaCSIccGEo15YZCRIbYIUMMNpC7R\n", - "gGngkogICSlKuCxyEByi1fDp6jlSqz3c/CJBcRS7bLKthgRulkQYEhX7eEMu6Tr0k3DswZcKkXIh\n", - "z+atJqXkONuJEuHiJtXCItXx0zCfhfF1+s5Znpu2KBbT5CsBc8YQWyt3M3jq+/BBIcS5G3J5bhIU\n", - "DTbGYNqGfS9uG82DdxvIDHQ74FnxxNRKQd2EVATjHjxTdAm3QlxHYhg+QuuC0YYoAwwgYxA9MsLA\n", - "KaOZm8jRRVxFMBZFZBWN69osGWmjyog8WUwc1lmgrkaknWE69hRIg4CQpF5BCeoMyS6b2oCy9FGU\n", - "LH3jMH6QJEguwx4b5G56SoW2OkYGl1B0UYWBoExLREzbCoEbYBhdMAWDZotKUVJSTAwkXR227A7h\n", - "tx6FE0PQ24SsDmMVSPvwQhuSm3HK84+ZIOWPwWxNZW1miNBKY9YBXEYGM6y1+3CXEOKslLL29o7x\n", - "OxtCcAoocXOK8/uB/+omnPcdidgcbeYM3LYVFx0A0xvQnICqB8lz8Pg4aEVYkgG5BZXMHgUjVIkG\n", - "AVECFC/2XnJCgd1RWCqFODYMKbEzcdtR6GIjtCK2ULDEBBKdBgs8KXQyUZYuYyjCZoSQdcZo0qKD\n", - "IEEfjQwWITUiRmWFEAs/UNhQcrRFAanVQFERTg+NJnq0RSjAEwl0zSOZ0QmSSbRejeoZB70hSRYU\n", - "FH2GqFYFpQozY7BaRHy0QTpS6GU6LGwaRHqKfFXHcBNstD5N+3GAizBJrOF/Wx24b2Zq7yjwn4CD\n", - "QOLtrsJuhJTSFUIrw/6zcOgGP5LpJ2DuHmAmNnpqZkdZ6+9CK+t4E9Mg+8A2hvTQ9BSBatFV+gwH\n", - "EclIUInySBVUkcFEJaKIKRr0WSIkIkdIhEM86h0EPikqWHQQSh9NcdGRKBLUCNYVCCKJlHBNQBCu\n", - "obWztK1ZgpUK3akeMtEj3Rtj1oe25jIfzdEo9UlEPQ5vQb4McyVwd8NgHizPYu2gRpRvYxeWOCy3\n", - "0DqC5clR6s198EQOBvsBnf7eMitrB1h5NgX9CWgC7ILohTjF8SYXI5VnIf+rcOYG/ooSQboOyjaU\n", - "VyGbgpILjgeXsnE+T9MBJzKZzyhoLY8gEzEQtZjxFQqgDlYB3YK8mcCsKbQdla502UyHNI0MTWGQ\n", - "RCKRqDKiL1KkogR1y2fdmMZGp68aFEIdSzq4ooerNBnHYzGcocspUAoYigq0CZwrIIpEYsCKbDNA\n", - "4sg6AzHAx8DF50poMKS0MJ156pqNTCukQ4XIbzLQe0z//+zdaaxk+Xke9t//LLXf/d6+vS/Ts3PI\n", - "ISlxFWVro2TLi+zIih1ElgMHSeAYCZJ8SRDAiT8bMRAHcGDHMGzHgZPAkuM4lmVLIkNJliguw2U4\n", - "5GzdPb3ffalbe9U5558PdUmNKEpibA17JPIBGtVdt+rWv885dc5z3vd5n6cgr1fSv/w5u//HuuLd\n", - "LS5NKK5yu44v8cde4hPFb0nwLEeMF+p651ryN+VQzEKN4hL5q5zDd8jIb8ZP4R/E+M352/we40Ws\n", - "hOBSjO79rq/+g49zrJ4wq+OUjKzvcbLM/XMsnWeyPJe77f565eKFSr1f6K4xm0WzA/YnnP90UP6J\n", - "NWuTnntLleUsWk7oJuyHtpE1mVxdpl4tKUImhj2TpG9qURUSZ2LpUEsSzps4kdsxdknmjj1Lph6I\n", - "oeFMGBmFiXByUaNsKtqpqjOVmyqTkVRwthyb1Xb1qpF6QnjHyGhxkVgzvhhVg1w0pNlhVnJ5wAc+\n", - "IB58Vn9j0cXjA71LPZONUv24MKwvGXWhR200D8f7lvvVPMrKyKF5SfGbngt/axELZl9ne/3kHrN/\n", - "zb/oE5aXtb//eWu3ZmbXR8oYxGpgJR9bSINazOyqmSRd/Wx+EUurRWU2FJWmgdJYZUmCwgQ9pULi\n", - "CDO5XKKvZSgx01JYl+mH1CBwoDQsomOlULLwWt/Kp7/o87M3uBQV19csz5as54n+uUpPTa2bS0ZD\n", - "659pGRRD6/e43KT7g9x4N0+9EPSujjUWU6Ppks3dXKsqNNKeV9b2dBdWGBeEVY4Pefwx9upvMhOb\n", - "mSdIfSv31jdG8dKccNy5wuXuvP2yvUAYZfprHbPp2Elnanu1srJDtsO05FaN8XSJvai52nW//X7j\n", - "uzWqh7TvkhXEnrXzTSsPEtXkoXJl0dU7hx68c1lVNp3kqWVBkNtPckU5k4RUlMtmiVFGFTO1pFKW\n", - "xwZpoZ8mzsdMrF2QxVxQSRNoSsKaqQOsm4QL7ldf0Ek6Llqz4IGyGipTTtKpMu1ajnWT0JInpSwb\n", - "OCu6OqZ5wqhe2Xi+8FL9+5R/6x6Xv8xlc6Z2b8bD3+q7svcZXv7J0plpqWzlktnUqJbaml1l/z7n\n", - "vX20Qm8LhCDHnzP3+/iWI0ZVCP5f/CD+/qNYw9sMBeVdth+f38x1RvNDfjqiP+JqYOV1ek12nuFg\n", - "QLUXpRgHHuzz1D9l77GankQaUpdmmWxcOmgmNmKpKXUSMqmRng295Fiu1JJLw8g4CSZVZhxTEx1J\n", - "0pAplXInlmQuKb0mOG8cUvfiWFH1tY4m2t2XjN7RV9kRwlkZYjIxSO5qx7EnYyUP0Zkw8WoaTgAA\n", - "IABJREFUMDqf2KraimRma3lDrJapjudhO0ubZJsc5bYW+pYeW1JvDxRrex4uNdx7+LTZ3SHZJ7lw\n", - "wP/zKKYjH2Vq7wST+cj32wHVzflUybM1QsaoST7ijSaDf0xyLvLDN4yfKozWojwk6rWGZkJWVdLZ\n", - "iLQuD+SBIBomE9FUXV1HIsaeQah0ZYLEQxNXHWsqdByr8BWptsqKobtqRuraSvtx2V65qF490B33\n", - "5EVUPuTgwdjs74w1/9KG9kfOydKaw1gpqyCzzeqqyeoF9yTy4tiNDzxQtQsLnejkSunB944cLhZC\n", - "3rB0vK33XMPhYE27GltvHOgu/KLGuS2LVwqx03dy4VMm19foXeaAuXNW6a0fYZynUjprfhG8deoM\n", - "+DXM/QeSv8GN/4w8zmURtVt19/9k09HwsisPh4r+loP3Dt09H3mN5AbrP5f5hY8uGW51TEdLJkc3\n", - "aLVJdogHvHLP0rtZupBI1mbG44lLn2qpLjUMa2MhjxKF25axIisD1ZFJuqDmxL20UC9yaR6FatdB\n", - "qBul1zTjQL3oqrJKnkxNzETZKaWJSvtyQd3ENMmcl2nbl+rqJJXFZO7ovKnSxINQOZQbhkK9YpBy\n", - "7wp7A/KtaHn1nINPXeXF6lTMHQkP52XZr0P1Fb7yKxP7f3LHwvVlsZt5MPugvV8/oH2Hnt8l3+Lb\n", - "EB/FrRjdeIRr+Kpu5O8/wjU8UszNzDZ/mMvn2L3GuT2qHCtUBbdSrv0iH/oC44xP/Thpm/Elhg84\n", - "KOZmkPU6X/wRJkuZ4eDIw3O5q+PKYZ46J7odok6cGIWBY0sO1S1gaZ6xK8FlXZ9L1nTHpSQv1eLY\n", - "TFcaG9IkE0QzhbrEukqFfiPVu1rnIOoUXRtlV5XMPEhXRNsmZi6F3GJWKWeVWznrugbtmQfhWcdH\n", - "i5QHpDfJG5QFa116Tzi5u+dLT00sJW1hVOofBr36L/C+EfmQWwUxhND8VptZfttrRr6KGGM3hNo/\n", - "46f/a66co1lxL+HeL7HyYd71xEQx3nNwcWa1nTuKC8bJmk4cOwiJk9pMLdw2dt5uyMj7VNsS61bL\n", - "XKGpNFIL+7KkMI3LBuVNt7OxcyC4bdlI9Izcgsyhhq5EjKVMwyRuaveOvLHQM9lh9o/p/aslfqJu\n", - "/BNB3pgapZU8yWWxZ1qOzWoNMUy1Fhet7p5x97GaVnbs8nau3D22v3AsW+Dxfs1Kg7Qxsr3ywN08\n", - "lW3f0HqWd4a2je6+h4upB7V9x38mmGy9yvSAr+zxt+e5CG8NQgjpEn/8Od5/iTgk3mQYQvhfY4wP\n", - "vm5Pvsitf8Lkw1yWe/iuVffv55JxX75MPbZs3y8MFiee/SIHx9woc7v/8D3i6tK8CvL+DW4NqR2x\n", - "NLSaTz0zLHzwC/MfT/CZtaHj0PBUtWRWlB5Oxw7rLWWckvRJdmRxg6JwlN3XkEliy07SNk42NB1a\n", - "qRqypKYT+nqxpx6mRnKVXOohdp3Vtu7AtmBRoaFvQeWSeSX1GXPxbDesaOC84A3rbiZ3HbUK7ymo\n", - "pUze07Mbj2iepf9Vm6NDGiUnvg6nkzL/IoTw2QH/Tpt3X+boJu3b8xDBf/itNkX6fYCfxD98xGv4\n", - "OP67EIQYfdtNO4WQPsU7/gIfPOTCHV4Z8cIPsHiPtS/xoGJvxh/7IkXgVz5CeJYrCU9VHC7Ow2r7\n", - "bd5Y55lf4/B8obE6022WXquxWlXuhIoYDKqJu8nUWJAaWTHFsYYTq3JnqwOX1dxvrFipMlU8kTgy\n", - "Sh4T47FZeKCm6VrctGAsOjZKj91J7xue6xMzeVK357wVQ4kosWZJVIV9rTBSZjW7Se6gXDOJ+xqN\n", - "f2KUXxHLs0yG5G+wcZlPL7D23UYv9oxqv8rSR/jnr/Pcizz9PfziIuM7/PEv8t3/5gnI/2Z4W5OR\n", - "EMJffdM/PxFj/MRb+4mtTa7cYfk1YsKHjsifIHucD/3rsU+22Ki3PNOberB0xxuhqwgdMfaFMNCI\n", - "a5ZDX4KRI/1w4LzoJGTidKyej8VwZ14Fibk8mzmLjsRES0emqVCTqmuoW8JMEiYKLbOysJM19IZR\n", - "8T/jpwPfdZE/c1mcHZgUD1T1JyQyaTUxzB9TJKm06tnd3LW33rIQlnUmXQerTZvDvtqZhqvJWLHU\n", - "U41TZSitllMHMXezlTi3vmxtZ9fx2Zrdjeetf6bQWGq5t7Oh2voMpm/xHXLGu97JB7+f26n5CfZJ\n", - "Fv8FPxlC+OtvTqB900X007x8fonGj3O/TnHTwZmxUEvF8g5rL9n9OG7g1oj25/nLf4jegAe7XD+Q\n", - "LN5Q1brO1wuLfe48HawcRp0+a0tMVkuNtG4/XNYqxsa1vmkIpo7FuKAKK4pky3qMVlMy2wZhxTTk\n", - "0qpUSxiLVuOxrtzAZQmCmwp3LVj2mBOJnqiyhLrgTEUtzEfOo6CwJEotIDd1bF3LqiTs6iZsnnDh\n", - "sHBw6Rft/8B1bq2zc4X9z3P2kP/7t9v2McZd/K0Qwsr9uUZkYm4u9c2m/n5b4NRb5EfxXz7ipdww\n", - "b6E+hVce8Vq+pZg7q577Yd45Y3yV1xq0dvjhf8ZPP8YLP4N7nP8p+g1efSfN97Ha5mJF39yp+dV1\n", - "muk8FXf/Iu8wUWRBfVB5vRUcSSzHoBui3SR4MnY1w9Cx3LFMpWfT1IUYhCq6GG6b2jUJmVaxQLqm\n", - "Vt3TCwMzfSuuWQpjpYGxRSfWtEyNwirhxLY1tKWiTE0wVWioxWiQzduzySzKDzetzUqDVk2VXTA5\n", - "XhLHHR7eZnWLzjOYzCsmi6u8nJB1uHiW4RPsZcQLnCRc/gTvwa9+q/bf24WMfMNeTYzxr37LFhBC\n", - "g2vvn5vE1N/UL7sZqK+xc572dKwRK6PNRDOZ2Yg97ZC6p5LF62YWrYRUiFGoCnfDVMe2BSOTtCHE\n", - "iVYcmOEgmVkyn5BJ1OxrO2PirtIdqWuCKEHuWHTPhl4yEZql+vScpf98qPcXx4ymYucVjaUJzQVl\n", - "OJY7MMguitWiNCYaoW4h1hTJA3laCslMNc1YroRmqkwzR2lNrcotH5eqUCkaM9PtPZduHVs8Dg5W\n", - "v1t9XJOPE82Qqk2fNr7R5+J9nsYn36p9s8GH3sH+V4kIXODkMpcezLUPt77+PTHGfeyvh/CZQx5/\n", - "kr0m013xucV5qWBpkwc7fOrUPKkfQvbrO/L/OMifnljpjCWzuSX+uRiszzKzDfY2c8fHI8OFaNoY\n", - "KWNq2u5phVQW2uYzspti2Da1q5ZULlhQjw1lNVKrRhrx2FFYU6UzC2FqbE09GUm8dpoyH+Q2LCMx\n", - "tGdBX6EfK+thapZUlkRTFHJBqiHIZILKUKpjUbQrBKZLwcNsQWtWaV8MBp0bZJ9g64R/MJ6H5v2O\n", - "OK18PVJju7c5vh8vxWjnUS4iRjEEHzPXjfyBJiPzc7biTcQ4J3uecJ6VGfmM3jn2Tzh7m50h7XfQ\n", - "r/GzH2XjKs8VjEbzKfdxyXSVlR63F3HAhQbLM3pZ1M45k0QhrVSxkiWclzhXFdbD1EjlYP42T8R5\n", - "carCKPDkdGg35dz+0KjV1W2WbuRR4YLVMFWYCFInLqs7UqkJUkRTXcGGjprSguDQkZHFQM8FpUoo\n", - "KydFX71bVzQvyUfHZq4oX2yQdLnz+XkGSOMsxRovvo9b25xPqOccZG86v17j8EXe5duBjIQQMnOv\n", - "gufxr0II/22M8dOPaj1o0Ep/MxGBfELMmLZJVjOjhZrNklDWLZcDowZVUlOGhiLOjOLYKEYxpsTE\n", - "Tpp4TLSZzLRUpiHxRggKdZmOHblU30RhaoxEruue1MREadGxDZNqpp7tGicpBa2kbuNsota+o6Fu\n", - "ULYcxpYYxoYWlSLJTdEF9bImjQuyin56aDnpa2Uto3rHQbpqmGXKousgHTlfr1s4rDsejCRl3+Rw\n", - "5umXWu68J5c2oTKr1RX9041WZvMxsLcMKc0m069/vjF/qP1O7z3gVz7Lc0MuHvDe72Y0JFnjpfcx\n", - "/nn+gxDC/0j9Gd79h04s32J6HoukZ+iMGedBv71g+eZIsjazfSaxW6vrJ7nV6UQWBgZhXTQ0cUtp\n", - "ybyEsKsVEiKTZCyqSWZj9eTINKs7iJnEzAkmokpHEqeqkKlryb1hz4ZdTcG2bjh0glXBgeBEZV15\n", - "2mtORYU9qyp10ViQSEWDxoKBJbG3Jnz2yXlwT23G6gNe/apY7TSz4yLa5sZoyQLvrLF0xI1q/trf\n", - "sh++A/Cn/A4Vpm8xPoY/jb/5qBfyViCEcJmzf5Trl5jNQlj6NCcfR0a4yplDlibza+vCCCtzger1\n", - "n+LxOvEd88DP3UW2Z4xyHmApMF1ht0G1zSihvsjuZfImVZ5SRqtJYhiCaVVpJzPjJJhWmaUQDJRS\n", - "7MWgE6PdlIPALEu0Y2JlqWYtm1qsVnwlaZpVQ6Mw0TIy0jbw0MDIVE0hNdJUOlLpaupoausauK+U\n", - "uqQuM4sjk/w5rZNbRmkpzqaqWqFMb3J1wsFj/PzLLD3ky5d4/lnupXP76fx1WlffZHgIY7IRC6sh\n", - "/FgyHw/+Mm68lVOvj1LAWuCHHtXnfwP06PbnI7yrbxLuLBzwcsVaUVN15u31bpWYhAWdSaGXV/aS\n", - "uoWqr2fViXPyKoqh6zgZKIuuWRg7GzKNJBig1DZWCUqpjqnU1KFS7prGaVF+aKTvFUSJpWRi5IyF\n", - "WDdujZy0dk0MrUtlIfV80fWFrOYNT8q0VVYlDqTuG6YbkqouL08UcV89BGnS9HDxjDSMdS1bizNp\n", - "9ap7tcrqbFO1/dC01ndrlxvrQ+d2Dm1fWTCdRQfJWcWdCneoDeYqyrcMXV66xfe8l/tffW5Mejq7\n", - "+OC3ex/EGB+GEP7OHv/F83NPjaLJy9e4kVE+Na+uPF3a+CG+9wGf/KOpcDX31KxQTVlMKq9llHoO\n", - "LyTOlNEsz/XDVJoOjZuLuuG6RQtqorFS6WWlQxTEDZmWuTvMUFWvU1QKY71kYDeMJJ6TVxs6lkxD\n", - "qfCqY31R6Vjb1L62iYtarql0jBQqhcQDhS87UbcoWjW1onDsgWNn5JqT0qCsqaqRo1pTv1zmOMEq\n", - "yzUL/2kIF+/S22XpWrDyWFNcmjqpbejO3q/60gKT+3zXV9gKIfy9b2Uf+fcDQpDgx/CHHvVaTvFx\n", - "/I0QpI9oxPgtQwjhLE/8h3xkwJW78wDUL3wPn12bp3cv3OMrT3G1TpITBjycEdr8kU+w95F5Evfu\n", - "Q7oTbjZZSXi84myfWY1Xpry0wKjOjQ5lHYGYVM7FTKfKLMWpvaStUYxMk9IbSakjk8boAPeq4ExI\n", - "NMrKLOF+UgmxcrtRyELDYbjkpHqc8uftJXc01BzaNLIucc/ACq4qDFVqMlu2PZCpKa0o4nl5qKvU\n", - "TEIQkttGVxfV9x4qixPD9gbbHY7HxNf47h6/NuAff57d23ykSdajV/D595/aNEBJ+Nd81wVO3kkt\n", - "Id7g/a/xuRDCz7xVhOTt0qZ55IgxliHU/yW//Od43wFne2wt8soyd19m+H1Re6ESw8y9LLdcnkjb\n", - "HffDpv3BA+NGosguakklmFYtZkfG6ZqtpOUgFKKuGFmy6KyhQuK8gamZN3DWUN9UqbKssopUYVff\n", - "xCWs64QTR6Gp5YrM66axqx0qDxullgXFaVWkkoiWRD1199UlkvzIk7NSmtS8kjVVWSodLJvManbr\n", - "hTSsmFSFYW9FVTw0foPR3+Hn/zRrl27pFYmHq8+afKpP8gLXbsynMm6/lfumxyc/yzsrLl7ieEjt\n", - "Syxt8XMxxh6kITxzhu/NWB9x+4BfepO4tTtjf8TDiqOcQUFakC4QczZLnRYniwzeG51pFjp5dJgF\n", - "SZG6OK3cr5futqMbBUd5y0aYahipQkdm5Egw05MayE0kJmZWnISWsqpJw0CZnKW6YVqrWVG5otDX\n", - "dFddkeR6JqaagksSn3YgkZjZNLaMZQ1nVSqFqYmpVEvmTlwQDRUhV5kKhhJ1x4Kb+UyVZXrOOhpF\n", - "nv/lecVj+yuufHflyXs8+wYv/PuLXn/yceXtJY3eSPnEWD2bGu8+Ln7ucTS5/Mt80Pxi9x38Bt6H\n", - "wxi9/qgXAjF6GIJdvBsvPOr1/N5i5cN8V8GV0xylZjEPv9x6moOb5DWKjBs1FuPcU2SvYvWAkwtM\n", - "r/OgpIicGfNKY+7/VwXu5xzUmR1wvuLmBkWdp8O8WLgtej2ZmYXKPI5rJk8q60kijampShITszIX\n", - "Q4HKXkIj4clACC27cq9btuuI8OuEUqbmDRfQUEoVVnHd3P9ipnJeYQNfEfRVVsQQpEplTNXkpqFj\n", - "mt9TrMX5jdDeBW41mfRZvcNTO3PH5Ookxo+HEH7FvLg8SLn6z/nJJ1hv4GUWM8Kf5IXaPEHV9Xml\n", - "9L2f4ot47a3Ys98hI29CjJMvhpCO2f4B8vOMe2SRP7LPzR2K84F2pqbuQdxwHDeU1VmhOnEyWpS1\n", - "j8ySmm4SMVQkDdEzQriokqrcF8PLJmpyhamZW2rWDRGNJYLKGTU56iY2kZl5VUvN1FBNadFMTWLs\n", - "JMw8dOKSljdsqkvVRSP7RhpKmbGeTM9KVZNP6npZrqdjfbKpdXiiu1A3C835GoYDk+Oh2f0e/yjG\n", - "uGMuYFwb0HyZC7u8J1Lu8/GCF99qw7oY40kI4W8f813LPDNjZ4+fiTG+Dq0QPvAe/vR7OFjl+AHX\n", - "PsMzIYT/hfom1/7sxMIffmC22XcwPmd/eFeS0tq6Y1ofK29wvM7Oc0GzCGYSnWLmoB7t11JL08rZ\n", - "NHpYrdhpblpJFjF24q6h3IpjBx6KzuC8tk2JPV1DE3teSyrnZVJMkwVdbee1rcnUJI6UjpQqOXqi\n", - "gcoEYwvmxncLgianXeRSlMtjqlPNtMKifmwapZeJLWkYER+YVhN7s45kdEbj4IKkWOXoDhc/Y+Gp\n", - "meujwuOvkuR1483r1qZLBq2m0FuTThvy4UtmHy4Un8+IT7HzIu/1HTLy9fgxb58WzVfxVd3IHzAy\n", - "0rrCZve3Pn82zu+Ljs7Nc8aaxVwb8ljBpy+xs0z3R0ivzts3k5QbxbxysrE3t3Iot2m9ijXapxrv\n", - "7+kxXCQLrAcKwXbIPRdn7oapV0PNUKYepirRQJCHGUldUpaaaelxwXK5ZCup64dNjbgoDy3BWBXm\n", - "lfBgE0sSe+bUJzd3ahtiSZTJkGgrnZdaMBPmrsyxUJUV0x3l5N3czth9ncGUp1tUT9Cb8ONH87Hd\n", - "//3UWuOr03C3Qgj/w505/6k1uPyjPP9VIgIJrtO/wTv8DmQkhFAztyufYu//T37VtzUZCSGs4oL5\n", - "hrsdY5zEWL6KV+c/X/8Jvq9Bd4lrKaO0o5olqlpiLVS+nK3rx6+IoaFlUVlcJx6Y5jMhjsT0HHJp\n", - "1VaFVBUuyZyo3HffqksaZqbuC7pKha7zUjU1TaUEh2rac5NgMwyty6VSqUwqc05q6kiqZyY9/d/V\n", - "JYIT4+qhJHlgSWozJob1BTuzjnJwZL9Z19ioCU5MQ2lWbYsHR8LwWHpnqPzaQRdjPDj96/0QwufM\n", - "HVfrWHLqN/JW4rQC8onTP19DCKF+hR/5Ae61T79cT7CXz61mf/zIY+s1j29cNNuZGubRwuo92eYT\n", - "jg8fSs8+9PhXaD3f9KUPr3pxqaGVPfAwnWh0ok5CFqMj0VFs2a2dV6U1a6JoQcOmvrEDmaguWLHM\n", - "qdonF5yTCKKagzg1DI1T55hK3djMQKkmlchMTc0r/tFM1BGcWHKoFMyU+mbGZo41zWRmYeAoLfTi\n", - "oZF3CdU1aTETTaRpKhT3TNNz0rSrvvm6KlvSaLSN96aSs0c2fpYzu9zfbNlda1s6mZmuNNR2I9qy\n", - "aWve2lq8SLdyurjv4Ovxw/ivHvUivg4fw3+Cv/aoF/J7i+k2B9dYGdNv0l2ZG5nt50hYfIkXrnC+\n", - "Pc+U2QkUd+h9H7WMy9Vc4hYrPtPg4ZQvr81b8/URi13G59itz9s3jZS8pJ/NbwQuiu4qnIRK3QUL\n", - "cl17Uh0bsWbdSBYGUoXtJDGOLcdh5uU0c2hJ37IYKovamqduQif29BEUEsuCE/P+WmZ+gTpGX6VQ\n", - "xIsyURnmNyRRTRW2hOSOvEbSi8ZrDRZrzDaZbHLzhOSY3nUe/1W+F7/41S06t83Pn6F9hv52pTgp\n", - "v8FQSTXf0L/tFF09hOcv8yc2qU0IO/O27v/5pmvH74hvSzISQggdfugp/vAVc7eGNxiFEP43841d\n", - "wxaXnuLyIb/yXq41SZPUwjgxrSrL8a5ue+b2KFdUiZq+XjIxlxe2ZcXrpmkTiSqZiNqCRGkD+yoN\n", - "M211iVzDiZktiQWFVVGldKLuSGLJTK5vakNAFBVO9PU1tHS0bJlhz0RT0NZG4phkT7uqW4uZViBN\n", - "Rhab0X5JWVYGoUl/k5OXWbutWQ58/6vzL+GrfymE9s/GOPi1N22781z481zpUC5yvx1C8zOM/94j\n", - "EjeunyFrf50D7GUOg/QjPH6/aXqmZraYKM6fSBcmNsIX9VeHSj3v/ULTl566Jlk5K9zasffcdeNk\n", - "ywvZ0DOxtDijW9ZsHy9JVmpqiApNPHRecEMhGLkglRgZ4kRUWY0No1AJlqWhkJmZ+/S2ZaZKa1JD\n", - "LWPHNuWmp0TzgYmJqCN1pK1moFAXfMWaNTVUulruxaBrLAtdafW6Kq1LLKhrqrIgpBOdkLi2nzI+\n", - "crJyYGt9Iip1383nK/YuVZLOVFZLZMnEaCNSLZi2qAbp6R3SK3Nl4L/81u/ity9CsI4n8euPei1f\n", - "h1/CPwhBLcbfKv7+/Yu9X+PzzwXDs0sG1xeIY4cLI68d9/kZRgVrD3jlMmHIlVc51+J+xV4yb+HU\n", - "s9NDOrKwwPEBl/bZRP857mxyOGI1ocjndYpRnJORCQqFoaYjCY4ElaeVlo3tB0YyY0sWy4mDrPQg\n", - "XNLXVrMi2JCYmZlIZRo6Ftw3NTNzonBVbmL6NYHcClLRrtK61DlF9bqYbqBlXjk5UDN2PhTaazfd\n", - "Gz+u29tk2CHd54k77K/wlcfZ+TIfckpGQghnuPQXeWqRfKVm+2L0xuwlxydPs908ddouCK/ROuKl\n", - "b7RXQghXnuPf/SG2l0+dmV9n4+P8hRDC//TNWAF8W5IRPP0sP/BR7uSnR+VLnCv5m2f4UpPZFuVd\n", - "J61KdzgPVxufCxpJoaoKZTpTTypn465xo6ZZq3lQnRGql5XZU9I4xS7xHOExla5gJlrAHVNBw0yq\n", - "J+rqyx16h8ILXndioJAilVsy9EB05K6oMpDITSw6ENQ0BYfom2pINN1XE8xUgh3N2HMttD0eCt0w\n", - "M5ZoasjTd5gOMbpLq0eWaxys27wzcGmfcz2eyPinPxpCeC3GuB9CyOdE5IcCt8/TOctjuPdTvP5U\n", - "COGvxRi338odN2fxLpqTxrsY9eeMXfKm1/WoF7KSWkn3XN3s7KL2uBRrQ4lcs5iq4zPvX/Hw2VTR\n", - "uOPg6TNi9rha/zWxed9RNtENU2G2aHO/sLXKLHIv0NEytXDqljoT7ZqaC10zicuCGPYdnFY2glKw\n", - "Y6R03tDsdOImyqSGErcEBypDLT0LKlML9mSaSrnCgYsO5BpKQcvQWWXYk8VFRdgU0jqOJXFPUa0q\n", - "40hWDS2WDXmvVHWC9WxqnDA6arExdvfPlt770tDi7b4711ZsHMyMliuT4S1Hq8equ4e0v8Tqa7wx\n", - "4lFOvL0d8YP4pbfbBT9GhyF4zVzj88uPej2/V4gx3gkh/eVlD/+bZcvDYBo2Hd94zuC1j/Hv3TN9\n", - "gtUOz+/RbfD6e9kZEOOSo/qi+8lcFl7T1wlsZPPsyG7O9uV5kXwnIZvNp2B2UjYCkzA/w9zma+qO\n", - "A/uWRXWVXKYVgnUTD5Il5aAmJn1FXje1ZlGpMJQj1THSNT0dZYhYsO9QVMqVhqef9NWxtvnBlUpl\n", - "YWiSZuYnwAOMJXZVYVEn5GpGzqdfVq6NTNv3ZcVttdZYbXFZ2R87zilnIYQwb6Gc+VN8JG8YXtow\n", - "Xuu4MBhqLnZ99sxPmzaf45UEN8nemBPc299ov6zzgefnibJfi4h4gr3bXN7iGr+7nurbkoxs8v5n\n", - "Of4qEZmQ3uVDzwsXo5pVxY33Kh/8gu6113zsTGrWyXRW2i7F3KTdVeWZRpkpZ3WdtKkRDzXTkVFc\n", - "Vp9NJBVhtmma7c/nQ01Oq9snopHCRA875iO+R9ZOJ9SDidSRkU2JdaWJ6ETUsuTYoQ2ZqahStygV\n", - "DW2bWJI458GpB2BTW88wHpkEmroOMZK4ZtkrLlnUNmksGhSXVaM7TB9aPOxII8PTcdlmwRORG9ew\n", - "j8tcWZhH06yf452n5bcLIxau8Pk/d8qC/600JHPS43Ha5xgdUL0WYxyF0PoA13+US8n863l3yP1/\n", - "tMfrL3HtXTxkrgb/HOdGJv+SNz4UNRuVTJCWQVlGJ9mSonpDml6x8/yzTDZU/ZvGZ85KK/Lhimp2\n", - "32Rp2dJgKq9OOFuqOdaNC3ohOaUce2baGp604YEjYzOVDkqlsS1tXZsmptiKQ2th5ERNlOhg36ot\n", - "ly24KzNzVuqMKDF1aOAVm15VaKoUHjezikpNoumuiRUxZHKJRJDZJNxWJDcUcdfabKZdremvZxpZ\n", - "YVbeV4+p5n7qjon2eqJ7fWbx1TuqMHNQ65BN9GqHiv9rn088YHqa6nvjUWRWvM3xUfzCo17Eb4Ov\n", - "6kb+wJARWFMtfNTRx5YdDesUK4wj1tW+/57HXqPeZvcs9chSjS9vnzFpXNWsLVoq5r4d3ex1J6Hr\n", - "/ZH1Dv1VLnyW6RovX+fO1lx/8skNzoV5DWLPvMXzDrxuakXNVYnU2MDYVEOhUI9N4/7E/lKqUdVI\n", - "k/n5x7HMMVZERD0TWwq90ymZROJVlcbpWSBV6ZlnLyzKbJvEHuFZmZpcJZ4OKyTu6oWgGftaWeZK\n", - "7yV3046LoenCSa6qMln1BW9875Fbn6J8JoRwwlOXg6YNh2trGgdQsz5Ora2ytftzvJByPOLmb3W7\n", - "/g3UWF+aF2l+E5bmD+1vZr9+W5KRlE7rTb4Vn+ddLfXHF9SLYyvZoeT6noffddnin2owAAAgAElE\n", - "QVSkGnm9ESXnD8yyQr2cyZMgxNROlsqLQqxm8iqVe6BKNlXJdfkkKpOSohTCF8WkRAcjdFXWtPUN\n", - "LZq4qtKVeiBI1eZdQGOVmyrnJDasCaamcuvuO7FsqqXvWM2eFaVMaWBqU89EYlSVapEsYTHMu44N\n", - "lVRHGWmHiSoZqddyo+4a/bsmi0c6B6y+OTo6+I3+4QJZk6PrPPcmEVlWzD/j/Brb5/wu47a/E0II\n", - "C2z+BZ48x+aU44xXByGEj/H8j/Ej938jDny7w8/9+X13/vav8GM3ubpM3CZs86kZP8vrl1LnxzsW\n", - "k6ZZu3CcNmwn+2qz3Kx2Xr1b6NUzRbchLqwp0xdZPrZUjYRyaJxXeo1SqKbqyZ5L+maifRN76tqu\n", - "WpIJLliML9gPY5Wa6SmtvKBmU+bE0EnInNNRmupp6GlpaEkcmuk7o7Dg2FShp2WkZcU1PQv6ujiW\n", - "OaupkMvURKWaSk9HYWJBYaZZlcp4RxoSzbDn7HjXINQkgdXhzGF6xuigqd2bmXUKh7OxJ3514Cd2\n", - "XndzI7O9VugljP/Ktzqf4vcTQhDM9SJ//VGv5bfBx/BX8N8/6oX8XiKn02Zydm6ZCoY0U/V20O5H\n", - "T71Er820xrl+zae/56rjg7bDxSBLZ8Zpw6oz9nSNTqdqOjW2n6S5RNIhfoDrCdtTejWGCRtx7sz9\n", - "onldIjeWa0pl+l/71kbCgb31ZVvjmQuGhnFLERqCXOqewo7KgNPpuw3BxLaRpwx1VdYFawq5eRT6\n", - "sdQtEy21sIREIqqcYKhmQYwTJyYuiM5Uha3azGpad/6kIQtR0De6PLDebjl4/4ccju5Su+14M3dc\n", - "tmW/iUgE4hP0b7M9+Sb8v3rc3OJDZ+YB9F/Dw/nD/jezX78tycgxL93hh84wmJAfaj6zoT4eClVN\n", - "+6QwWOqobS6Y7Pc5eZfq6FO2zr8hLLOcpPJ20CqnHiQt+8WSB8k5kpkYD1TlF5X1VXpDy2FDaSCm\n", - "A3lSmoQzhqEtOLIoqDQcnHqpB2csuGrdocIb6o6smhfiUgV6MnVNNZftGyvdMbCMBU2Zyh01x0ob\n", - "porAYsKyuQQmMVfH7CnNVKfWObla6Jt1hqrixDjfd/HGXBwG43Sef1feCWHxo1z6QfbeN7fNH92j\n", - "sTX/vScd6q9Ti/6tj6mVH+SDG7znTRbzF1f52f+IZ+7+BhFh7gvwxCp3zu7xd/eceutzEGM8hBDC\n", - "Ty969bme1bV9y81MczRxococZblB1jActIxe6olXGoxfE5a2rOeZzqyjMR5rVgf2FuryakUttmUm\n", - "WvZ0wkjpGZVcIpwq47vW9GwKLuqoy0wEQ12HooG6LR3nnNjQt29BU2Vgx5Gupr7MxEDdqoaaYOS2\n", - "qcc9dB6fFt3Wt6wpkZoIKrmgYWTZyL1TypnGi5aKun428Eb7rpXuwNMhd5LX7PUXXD6YGjQre3l0\n", - "tsfKIXnF0zuFSUr56e8Qkd8VT5oT9ber0+mv4j1h7r7V/11f/fsEB3z5Lj926U3eGKj2VKKN0+cW\n", - "BhhQhNxs6QxbbcfpofH5mUaWaFUtqdROKA0jzUh1hmlCL+MdQ56s+FzK3UBSpx1ZjvPp1tVAS6Fr\n", - "bE3lgspYsCN1aGoUS0V9qkxn3itXmiqwY82hHaVDVyxbtS4VVDK5V9y0qO2uji0TuQMXTJw/FbSe\n", - "l8tPRxkK2Wn+e0PPKBRWY3ReKc0alseFEHoWqq6sFxRThvUrVl6ttLN3Odz9ILOfdvjOW+7NKhtf\n", - "q3gOHS8s6e1FyvgNzCYhhJDg8TXeFdDjzguUDc5cZ29M/gXO3eVl3+TN6bclGRnywufmI4qXVoiV\n", - "RnpH0Txv6XZTNin0zqxrdLeM1mqKO1j9sGqnZ6uzZ5BWsmRZETYVZUeZrkhCJepx/ARbn2fjrno7\n", - "FUYLqmZHnmxIRYumCiOVbT11Q4tSh3Jn1JSWBKm26IqRTKrSkbsnMfSEZan9UyvgdTMXcVPTq5bV\n", - "wZFDUwPBYphLpZaVp13JeYlxS1cMZ6VxbC3ueFjl0smuWrhv+mJhNOCVTWYJr9V445N1+Z/PLX/v\n", - "2JOvF+KLHH6Yh49RJVRDDkasP2SrgX9Lzcjie3j2637H1cO5v0DxDQ7qFkI9xiqa30R8Pe5sa2Qd\n", - "l4/XrQ5yndlEme+rrVZeHq4Yf/YMW29wfI8nj+TtMwq5cX5iVjtSJFFDZjG9YFblinAiDUOZE2e8\n", - "6lbcFUND6kTN2AV1LewY2hSU6g6VXtVSyj0usYjSnouGbmgZK1QGpipjiQ25uvbpCO+is7b1DZ24\n", - "IppIbJsaKm3LtCw6J5cYy8x0DJNd9bCoFhiVqXFy1uHSbXtVKSsTYX/bw6dLq7VSnk/sd/jcR7j8\n", - "AlsLfLFL92s20Kdts8KceXYwPh0N/HbHD+MX3q6BdDEahOAF8+mJn3vU6/m9wowvvcj7Ey5fobvL\n", - "xRvy61viCVsXuHL0G8XcL58bm3yuy/c9q3wpN0m3NM4Qqz2xnqnH1BezUrtR2kd6MtdsVnXuNbhU\n", - "0U0Yj/8/8u40SJL0vu/758nMOru6+u65Z3Z29t7FLi4SIAmKFCmCpCRashy2LPnQZeuN71CEQmFL\n", - "Yb2xHWFLtiJkyxFSSJYUDoUcoiRSJkUFRRAgBJA4Fwtg753ZuXt6+u6q6joz8/GLrAUXy6WxBEEu\n", - "QPwi+sV0ZVQ/U5mV+X/+x/dXuU48lFGkHMx7SI4U8jm8vS0zizUdQxdr971Slq5g06Fcw0AqN7Cr\n", - "0LVhxYbERDYv4x66pGbZRBDsyQyct+3m3H8qOKe0L9ESpQotdQfG9jDWKWu21ZUK9XYujKJ0xpUv\n", - "c+PMKbW8yWhs3G4za1C81+zZu156Zsdsdd1SUhpkNTfGjxu8+ms0yrdxYw8hhC7/1uN86CEGgfga\n", - "H3iBV3+R8QJPlEwO+dgJn3qn473flcFIjHEQQvg7H+eDHX5gqHaY27yXmnROmTYTMdszy+6Kkye5\n", - "dlv2viXNEMSlVD15SN9lMe4JyQUx1k3DnrxYFidXeGXM/mesLPe0snPuP3BeXgyV2dg0TCWGc/eQ\n", - "TR0zuQWFYu7GGFXdBitadp0YWrBsYkNDVXfMNdXl9t1zWapuwarM2IrCqtxVd+SekM5x4EFLISjt\n", - "YmjgglfdsaFXdqTbJ06/smVpL7fzHJ//F7z2KMWUfv8Kf2hN6yMLWocnbjz6ujTfc+aTvPj7uHue\n", - "Ux+ntsOvLHPvn7zTh1QI4Ryr30fzLKM7HP7aG6+Qvk3PSbLH9hJPvSngKFW7lvi2fiBVs+vafzSx\n", - "9uDUo0XPySJHa4WFgsuzVL/xGXd/qmtUtIkNsivSGC0mhcWwqiEYlDdNQqoZx8o400xaauWyLDkx\n", - "wYIFY7QqhwhHmtYkSoduyxRSM4uCRYUD+4JFYy2sOzFy4s78GjhSIrpoJjcyU9OzKNi1qKmni0UN\n", - "I8G+6MCiHZsKh845NpHpS7R1Q9M0nRqVK1butmTxnnR3anVp4PBc0C0a6nejK5+m8wJf+n6++F4G\n", - "v8j05yoX6+wKGz/O5TP0l0gzVg8Y5SEsfZbeL32XO/f+GP7Ru72Ib6A3+kZ+zwQjMcZxCOHvfYIP\n", - "tTT+fGFzqe/hl1ka8JUPs73OxdfZwfV7hfE/eY1HNli/IH9+x+D7dmSLM4vjhs5spFsPejhKWa3T\n", - "LVlv0Emr6ZtO4Jk+n6nxckF/uZq0SZDO76tN0WsK0xCdEu2JVsMbThlxPl9TU9dwhHvaSGXqZk5s\n", - "OS/qaAhGVjS0zdwyNbEqOLAkaImWpV4XdRWmxvE2dmTWFBaNi1IIR4owNMurQkljlfFOpuz23Vw5\n", - "7/DqpzSfONDayExmdYMvnvhyoy78gQVlGbn+KRZuV87c/bc5BZce4ns/+ibj0gfZK3n48/zdff7x\n", - "b4Uv8oa+K4MRqoAEnwgh/ArFX6L71Ff1Ojccn2uaLmxKe48oP3Gs9tBYPT1QnDu0kmVqsS46MRVN\n", - "y2gcZpJ8JCnq8mK3Kj5OM6PxuvKRsSQcatUalrTmcfGOvq4DmxbdM9YytiQ31DGZNyOVStFMsG3T\n", - "WGrBWKqUqkmtKtyXa1mx6JyJPQe2nVY6bd89fQ1MncxzLU3RRLSFk7Kv7PUtPscjr3LhNvUpP9vl\n", - "zI+TrjF6/RQf+Qjj+1qDhvZJF00ni19w/xzNr5RefGTilX7kBQ4/HWO8/U4++xDSh3jsT/O+Met9\n", - "dp/k2fdVLJ3+i7z2MI+/KcC4t8jRqxxNWDnPg3tMM17Y4MaXvAkTX71/OM3S97D+h3h0BUM2x8HR\n", - "atTKUr2woL1f6NSi+tKGUadFfkirQZGqFSO5qVboaGs7qM0clCPdpFnxW5IqOXqg4YEwtmVZ7qxJ\n", - "HBqGE2tmHpLYVtc1dG0+EdNQuB2PDEPuIVX2cl+qJnFeW2aorzQyVTp26AFjucxQKaj6jY7nnNaJ\n", - "jq7cjgNHMoUFhdMecjT3I1qY7qo3Sv31sfpoxXTtrJP9Q4oDaRxoXS88/mlufYgP4vkNWk9z9b0h\n", - "hI/z+If4gUMGU+4/VjXypS9y7mW+8BG+0MQ//21/Gb8DFYIafgh/7t1eyzfQx/A33+1FfCsVQrjM\n", - "2gcm4pMT58f8xKd+vXz76D/nH7+H//cTuK7iRxUhhL/4K/z3K7xnbDKdOi4KSwohNBxOS9vjYLA0\n", - "08qqcd57IbEZoxiifsFOncYxOyd0Fyru4yjlchKMRbexpHBPqYlF3AhvjAJXY8G5higotNWMTXWl\n", - "gqhhqK3GnKt8go5MTa4naEpV/tw0ZM7KHCk8r69Qxsuo2deT1IKV8rRmmJmsDLxSn3r1TFO7MzQ4\n", - "s6y3dV3nqZaneg2d0Y7+ubFXLj1lf/u0uJfS3eeh15iVvwk/apGHr1TUuK8FHHMo2ug1HjuM8Tdk\n", - "U96JvmuDkTdplVaXzunSlfxYtnPs2XLBq+NFcW+Ln0ylzV3dMvfEYcd2O+rUDh0lE/n4eUn9vDIM\n", - "xWyHjXt8aIDc8WjTQudYN/S0Qlcpyg2kps5oed3AoUx1RkszqUOpDTmODY0kmvpalgTRSFBaUhqp\n", - "qQoDLU0VDnjBzLJjO3KJaF/pptSyXF1wJNiKUX/cdLgz9sxtLo+onWdwji/VWLnPjwxY2+X5xxp+\n", - "+fd1nPzCrmke5WmQFU3jzmmHl87aeDkzO8z0Jl9l7f47bFKqzNjO/hQ/fFD1fMDaiM5SFYzs/2s+\n", - "fYneBU6dcNji+cj238ceH/8Qzz5DOWHvnzF79s1ReLWbf+RP82hg6z1cSYPnHliwNWxYSFnpF/qr\n", - "idvrifvxacnolHpMTAeBc20zxw6TxFJaAfWLMppasBPGMqVWeWIYZrZDZixYMjTQFgSHYVGp7zhy\n", - "PUR9qX2UplbiLeJYDJWv756qHPuA0lWZhqZFC5b0TJRW5Pq2Neatbj25ukxUWtC2qJDItSQeiMGr\n", - "MmfCgo6evlJZpmplQzOe6DcGRo2nnbrfkR4vSxub8uyaq4/tGbSrUcj1nZrDs+f0H13Rah5r/uie\n", - "6es9zY/zynt53zHLY165Qnm1QnDf/kAI4eMxxqNv2bfxO0cfxrUY7b7bC/kG+jweCsHa3DTlO1oh\n", - "dH6Q9/5BnhjQe4Kwxq82+b5PszCjWfLkITcO49c/FCf7Nm/t6zycqA0f0ws7DpoLmsdtraulxfqu\n", - "xWdmTmWUddqxdBfHeWZSFu6lUdqmWOHMiKSgvkp7nq/YVmUh3q9y6q1K4lS+24lFUd3MLQsOnVZz\n", - "3y09qxoayEU9QZTqGiIVnChNTS2rWdN028hEPncuoxTCY2I8Ky0ODbMN7XDXfjq2Gtvuxa48Hyof\n", - "WHd46xHlLw9l33NXc3OofG0opAeS8Snp6rLkfU8qn+uwWw0au/hZ/kII4S+/dYKupHg7KFr+DaBo\n", - "30jvajASQvjf8AE8G2P8r9+dVXR/mEceYXNCbNFr8OTnrjtOeu4+1FGu9KXtvpUYzGol+W2jWmLD\n", - "zHKz5SCwU55RhMcqrF9jTP8GjZsmaV8SatpJX2FBW12m4YYldQ3RaYUD0TV0RYU920pTLas6atYd\n", - "GNhUAeZJFKJ9Y6XN+QBYKZfryRxbVLhk5ljulpq7WBBNlXpl02M7Uy+16LXojQg1bm/QP81DL3LU\n", - "Jr7Exb1oJd+SP7Jp+PKW3fdlusNMf7MrnbSc1M6bPHuJmykXf6Xywfi1d/CBL7O8wuk7X//r88dU\n", - "pNcQwv/O3tN0L3Kyy8lzbzSkqnZ6H3u7N66aqs7+EX7wpOHu+1Nhs84ksVgvvdYqXJgm1selYai7\n", - "np1yMonqzbFsoYW+PF0Xy4ljI2XJOBmapQOnputGWWbPzDjkDp04MbAu2lLT01DqCgpR0A5RX5Rq\n", - "ObSJjkUTRXnTfrZnrOKznEi8hEKqq9DW1FB3z9CJYj76t+SehzUlEi3BVNtEYizYlyq1wkRqZmLR\n", - "ssKqVx2ky0bNEzEcKrLT0rIuqZPWo2HSVIuLxiv7Ot3o0jYvvnfVqHjS6ZczablndOGsovZl/+YD\n", - "fa0lVuZ1+DaGC7QnrJWq6b3vxmDkx/CL7/YivpFiNA3Bp/D78dPv9np+OwohLPHIR/mJW1Wz9Us5\n", - "61OaS7x0iQ9erY6c8aaHYrUBOv3HufAYTx2U2jtHPv5YTW297XzMTOq7djcKG6Fy8K2rMhqzSD8r\n", - "XU4bTh2Pjfs0ejTOpo5j0JpF+wo7abW5KHCoyoIc4dGYuhYadkVNpZHotrrUsZa63MxVhcxM7sRM\n", - "fd4r1lDaMdGTa1q140TLRJz7cJ9TM1JYEh1KwhnSdWVMHKMM9xyHnoVYuNxtaY8Pjc8+7/YjZ+S9\n", - "NQuTe+6fPtD6cnDwyMTyhS2NxtjBlQ85ubrM5Ar7N3j0uCJtf12m44SXX+FHHyFtzqFoE9JXqfd4\n", - "8Zs9v+9aMBJCeD8WYoy/L4Twt0IIH4wxfuF3fyXtP8KlBS7uVjfbIuHOxejS1oGdpYFH5K7EoC03\n", - "a+SOw9SlsKQ9Te3VuprjfZPsgoNRVtlEju/Q2NFsj1xM67qi5fm0wz1Htl2Q2NSwrLSh5ozC86bI\n", - "lM5YEAwxMUDTdaljrFpWOrFrYN+qxCP6JugZy80k6h4yUcOm6CVTixIrSmVEHr18qmPlpK4RJ75w\n", - "paPI2pq1E/VwYOf01Pu32f4ewmePrNy7bf8DR7LJ1GApGtSDcT2RXL+g94UL4i24zMFXeNo7C0am\n", - "TANFIH1TXXH2NWZZjPFk/l7v5P3erGVWV1LjhdNie6g4mjlpdXWHdWXWcyuZuJc23Ms3FbM63aHO\n", - "rG6YJZa6i4rJVf1W3cxEXh5Jp1tW0pmHi5uuxWV7tZZRed8snXhK4glNEw1jB16yYddZUV9haCTD\n", - "mpqFqh8oNBTpeV0T0XBeNktdxKtyU9EMHanTFu3pua6hdFlNV91UcNVEc46+u6+t74qaKBNF1wyM\n", - "bejE4IItJ2nfNO/YSRZloVQs9s3aheOYa8S6jWnULqlraqWpKye7dlbP6O4lTDuy2Zr+al99xGGz\n", - "mrIaB8os88rDwdWzM5ZDCLd/p/2Jvg31Ufx37/Yi3qHe6Bv5jg5GcIFLqp6N3Q+QrXNwjvKE7Rmu\n", - "Vtfp1dzXP0BPs3aO1mJF1A62Pbi94JV1inZidPaE2lSR8UyZGE0jCReT6DCJGjkHC9THNHLKIjhu\n", - "FpUDe8pFledcQ/Vs3laVacahqyW1L9EXJcYeNlZYlGpbd2RL3SA2zcJ1uQsKpT19wTWZzAPaLpma\n", - "ec11q7ZclppIRJmzclvycE0RzkniKSGsSV2TKTwaV8WYC1mpE4ayx7fdmJwzvRvkQ4rN6HsGNbdj\n", - "x2w6cTr9Na88+GN6L09I2xWJovvWkxBj3GqH8Av/gp94qErsx2skN/jYOy3Vv53ezczIh/z6zuKX\n", - "VIja39VgJISwwsVlWie/nnVKy8qI6ZNPlC4s171vNwinWUqj/bSwWCutFrsMliS1ic6LLc3TNFtj\n", - "497rbNynO7UWVi3KRDMThxhbx20NLYuGUqnrckc69pVaSh0TEy0jlxy4o+LFfMCRQzsOhLm3TW4g\n", - "es0MIxOVm0nb1FD1hairSIGHgn6x4ELJfpZaG04d1lJHlx4SWwuSek2zNxHrXTtrr3t9JffwIdee\n", - "HmmfuSq7csnqpKUW90zTA43pE3rPXpwHInBUbZPPXAjhryAd8KUjPhFj/A2GVjHGkxDWvspXnuR9\n", - "b5qO+fLZb8EpnTHVcPBAV6NX153teP2xnla9U43gzrjfPKM1mNG6J2+dlbcOqgbf2FLPd7SmL5sl\n", - "E+l4LDmh003k05nzzQNtdc/VKjDZZdFMS1TTNvaQa/ZcsmjdwC2zeafO2hwdP1QahlTXkqmJiVQi\n", - "N1S4qG+i5q5UriaIrtrQ11bt0fa0LGobiu7YUNhQOG3Rka6ZKHdO5shd1ywGlgVTXffDkmI2NEyD\n", - "rJaplx0L43uShbsGNW712VsqJaOGzcGBvdVNk37LyVYprde0IyvXefEpzi0GW6Nzbn3/aSeLHft3\n", - "Tvj3rvJYCOGnv1uAaCFYUZGvPv2Njv020cfw59/tRXyzmk9zQc6oyd4zPDCmdZujgt2LHD3Ox17j\n", - "RoP7nyN5eE6OPkFaZSuy+MZ9vvSBrb5Jc+DwoaiRMK6xmXPQLO0kFS97mhAkdtOgM+XxXWYx8clT\n", - "tGNqkObOCmaCqDRToRR6uPE144imnjXRTpU1lWkopE6kas4JrodNqTuC1yzIbItmShclFtxzNKdu\n", - "Lzs7d6hJLEjM9B1asOBliw603bCnZeLAcmxaKvv204mQJspaYrUc6DtRWx06rnPmZc7sH7kd1+Tl\n", - "ks7o2On2Tb2lu6TTirZ6+HbnZBjjp0IIr17jSiRMKyja2w4SvFO9m8HIsmpWimpe/Ml3YQ3t6oK+\n", - "9mBVD6/Pd3eHdXpLPLwztne6615eUqc7y6UJ4xnJ1amFWTQ6G6Ure8rmjI3T1chB0tSRq5J1qVxT\n", - "4VBDw9jQ0H1TPamhMzZtqCuNjN23Yyabc/cSVZTdVTjjwDK2dOxYNXLoSOWnsGBqilLUK4P3J1VJ\n", - "p4sj0QtpcBBbpsXQShLFomPcWHeuqGbsB/WO2iwzyXa8dP7Ie+5z8nDd8QMNT9w9tDg6MM0KmZHR\n", - "xk3XnhnYeaXDdET6BX7gaW58L9dT4su87zM8FEL4W2/Pqjj4l/zqCncvsh7ZCdy68Vs5cSGEJuKb\n", - "p3dijP0QNl4rrX6YzXHb0mDR/d2J1840qNXlCmaF5nBPCAdanab6nNmRjO4aZNdsxBPh9ar6kO/V\n", - "7TzctNCb2Ns4Y6e7IIQ7FmJNEoYmgppSgpZ8DhpsKbA27/XYVkdQmBnJJapelKGpmeBBiQH2RYWB\n", - "ly3Ys6lUU0gEy5qO5Pa1NE0FE4m23IkFQxxZnfvejHS0nDK0EDqGcWyWDMWiJ00u6CR1ab1nPH5d\n", - "uz7wVI8Hv0z/VO7m6SN3aismR7nd1oNGn9g3Wj/UeobulP1bfGV50+jsY2J/w/jZK4qXE4qP8d5f\n", - "q9KzX/2tnMPvYP1+fDpG43d7Ie9QX8FaCM7H6M43PPrbRJWR6dqP88ATiBy9zLVNrjRozzc6y1sV\n", - "abzV49kVHj+oJk6PH+XVSQjhH2Cb7UjR5kaNjWPuPkDrTLRXY3uRWZ76aj2VZ9FFhbNllBXczKL7\n", - "ceJUUZWGduulo5R7WdAMmeVYZQsbSofVMuUyC+oWdEQtK6JbruDAtnuac/LTWK5uJI9jzVDXkDs/\n", - "t/XYsWRNLreqUBPsGghKQS44MTKQ6kq1NLUVzoZty0ZuqOuUheOsKcRFWayLhkoH8uS+WXNkZUL/\n", - "LNvTgdZLN00e2DRbmmpmz7Lc5OXd6vt8821PDmKMO6qRpW+J3s1g5Nivp4Detu4cQvirb/rnJ2KM\n", - "n/gWr+GA6S5hxCcfrUA2k8DejHi15ublc1rZmsVRJgk9+4u3HSd9D41YzoPR5RELdNIddxuXSHJC\n", - "F9tGWjpzQHdNZqrpdWcNXdKwVvnG2JM7kDuWSbT0bUptKw1k2nJdwY7o+jwCX1S6ouem1FkTLaUs\n", - "VmWPAqMkVt40MToJVRvUcszshEQrTUxCqr9fo5syphXHBrXM0WhDntfdXeWzm6mvbjTko65nDsKb\n", - "epWGDps7Fk59koc36D/P+irHP8SX3jjqGbYGlfPUU6oGuq/TfLT6b1c7Gkuq6PsO/s43OmEhhDXW\n", - "f5IHH63+vf4S+78QY5xH8Hs/O1V8aNfh06laseLu+Q15L9PKZmrLQa14Sb62Y3G4ZHG650Kybzdt\n", - "i8XEymRm0qFc4XgSTN/HqXHf0aUld2rrZjE1icFJUjMrGySlqXQeXGSmaOgZ4JyRY8HEprogNcOO\n", - "PQOrCj2lS4KG4NgC1gzsO3HG2GOamhr6RvaNNMz0Ravz+nHuVkzshcTUqbm5+J6ZNQ/GqSzcnYPt\n", - "cucMTGsdZ8Z3zdKJo3pPrX7i0oiHtsk7nH2x1Dzs+dhT6+68ciwef44f7dGYGP0cX/5p1U3nylP8\n", - "ye/lev1NNflHObxW9X59twQjH/Xti4D/DYpRGYKPq0o1/+DdXs87UQihzbk/yw+0ePRO9ZB/8WE+\n", - "0eSrNYarFWTxfkL5KqebJAv84TfRQh/o8nP/PsMbrC3TXuQrm1WPyQbKGnkkLRcM2+t2amMPhJq6\n", - "ib30UCvmukqHSYUR+MIZDpd4KA2aofR6jEah4UGlVHXMACN1TW1TywqJzEjLsm2bVvXteMiitpqB\n", - "4Mg49LQdCHNbj0SwKxiKCiMzuw7NRAdGuqa6cnU1XQ2vm8WRehgblCPNWWkzTGzVVnRjaaMcm4bC\n", - "qCyMysSJ2x67S7jK4SNc+jTv3z+yvz50/XsTd891+cqEf3VclV1+1xg672Yw8msqi+t/ovqS/F9v\n", - "PSDG+Fd/JxdQ+Z0sfJzNn+SJf1ONi5YL1QRHcbmhtTHRDfdMi65gyerOBfeXXnFnr7C4uijpFuwN\n", - "HS01pMWuEFJlWBS17JlZlGoaSc2MrNj1FI4VdhSCpjWZHUcaHjCQWFA38zqSicQAACAASURBVLrm\n", - "fI68crFZUjqlsC2qGVpAW0PTioZUEk7mfSZVH8K+hFDYk2poCKFjGjIxLtqblcrxmMaMUAoxmMY1\n", - "5f5MvSiI3LjecXfcdf6R0jRNNd6Ufs8mE3Hrc/w/GLe5/D089dbW6rOcLFcGSb8hGJl/9tFbou4Q\n", - "fkODtre83ubcn+MjdR6Z7/BeucKn/lwI4f+IMY4qPkb4SyOHf2GZHzpPL3d6faKbTtQGwdJsSa+5\n", - "J1nvGExGToydTnP9+sRRe8FS0qI2kHZLZwOThQWN4arDWt1JqOm1l+zoeT1puKyvclfOXbViEIfG\n", - "4VhDqmlJrqftrqiDmam+0oKeBZmenqFSKXPiSGbborFH0DIxMRXULGm54cShEwOliZqGO2FTtGxi\n", - "JpEZq2lLhVAo4/K8mXZkuRhYSjPTWlPXus5sqlcWloqR6+eoLdFrMikL2Ut74tEF1i5xs8ONbZY+\n", - "z0/d528h1pjU39IxH6onRfLW8/V7WD+m+jy+k/RG38h3RDBC7UmeXOKJN/UgPH2vYhv1T8jvMM64\n", - "eFT9/Nyf4OJbeszO9Vj9Hk5f4ief49qMr/wIxVrlWxNmtNNgpXPGVlaQp1YliqSlWc6cJEeaJRcj\n", - "X+zQWuD7c8qy0Iwsplwz0VM1pNfwgooUtVE27SbLMqVC0JKYOtSf01Qrh7HgwLrCyF0tmZa7TtSc\n", - "aNh1IFGz7NB51NXta9vVmt8JSvcURjoy9dhUy3M1Y620Lo4yW+lUbRok6UQ+quuNNpzq7VkekW3x\n", - "xWUupqyiczhVfpXjnxvz99/MD6o2gM6azyl3eSQhOeIVvP6tCljeUTASQnh8vpjPzvkcb/z+J2KM\n", - "35SleIzxSyGEcQjhk/jSu9O8CsNP8qU+t3+IdJHBHumHeepMR4hN7XGpaBy6t5B5LSxJbnSEGwOv\n", - "PpaaTVeNh0GYji12ZuppXUPPgTNGDlxzx+Kc/7DnCVNLMgvG9mT6poKG0tRw7sxa85KHTJ3VNjZx\n", - "IHcO9xTzkeB7juwZmFoX53tiWnMzvCN9wZYUCyaaeqa2JQ405dM1iyGVlS9JJvuG2brsMDVwZLJy\n", - "Q6gdy77C9X9U8mDTwX9x4nar6YGTRBZnZtnQbpODj8cYfxVqIejxvrd+qj2ao99kTv2bV+1Jnlzk\n", - "8TfdoJ64z9ZTHff+wsUQzCqf8F855n9MmQ1kf6jQKRrW79XMOgWLmZCmFgpmVtwfbXs1nSjqa66o\n", - "yYqBo05ptTbTCrnGNNMczTSbmSyWjoon9NPXfSXedyfMNE0MZKIDp0KppSaJY1dDV92KrqGg75YV\n", - "0RPqrhorHBhrCVoGtq3ouWzd1H2ZQq6Y58UYzJF1TevxtFpo23fKWENXkOso7Jipq8W+aZipW8Sh\n", - "qVynjEIY2K6taw3HptnELK0rsqZJLerXZ5rdE5375PXzkuMfUP7sDcmVu9ofiGrphtHCjvx+lP/L\n", - "14nPVAZFXwtIrrKyN7ck/72uEFxRNXJ9p2WBPoa/HILw7UqM/Xp1z7P5NiXei3f55VOVgedTt6s4\n", - "+Nnz3B3ykbchMCfnOPvVxJf+ZKp+utRcKzyeVg3zd3NOJ3VjLQtGekk0K2gnjLQ0p0c6SWW3sjCt\n", - "gpJTh2wtM27Msyt4VpXYj6okb8eMZKqUy6SqTeKCUk9fQ6LuQFBI5+MGG1jDOZktQy8oDJxyycCS\n", - "TW20HLqk7lXRkVP23XPWmqZWuKMRE5sx15qkerNoIyzbSXjhpJCNGrpF16mje05ala9gL7D91/nX\n", - "G/zqk5RTjn6FwSffCERCZRT20cf4wYu4xaXA+Qd5dpGja/zgq3w+hPAz34oG9m8YjIQQ/kv8ZyrG\n", - "/N8LIfxXMcafmb/8P+GbCkbg3Rvn/TqtUltmdo+9V1n5CR4/xeX+yAtx5ng5KmMmnZxIdxe1jwvN\n", - "TmHxpG036QiTu6ZLhUvJnl7SENSdcuTAwJFgT+7YY0q5IJo6J1gTXDcy1JVoGaupu+68gStoy2Si\n", - "ukLPVNfAvlRi25LR3IvmSEXnri72umMLDkQLzuqISqldZ9yNp0xmB+qDE8V4olgsFPGuLN9ylLXM\n", - "8rbO/j2to9zGDW79232zf7Vt9OUlr31wYHet0Al9g3Tq+NP0vgZRynnlFcYXWTo/94rYo/08YVCZ\n", - "OHwLtXiWjbfU6XfXFuVPP6x+/aMmn9uj+0X+1Iv80x6/0FP+/q76OMiKTNor9BuHRllicXKon51z\n", - "HD6iv/W87rlMnqVOkpY8luqhLiSHyuZU2RladeRWY00i08gfNk4XbNkXdGy6aV3ustSiqe2Quq1U\n", - "CoYaUut6LknsiwaaFnS0bMsFiaFTGlrzse2h0vn5Xmo2hySlkjkAKc6nsKLUwFg9zgg1hb5BHDhy\n", - "3uk8VS+WxdrAbpgxTp2E1+3Xp04rTGuJ18KK7mxFa5JZPLzt/uqJyfGitcXn7X946PSphrXDIC1W\n", - "9GJN/kendq/dMvr5n+OnHmPaIL/BwsvVjOXz39pz/W2rH/NtjID//9FV1dPyEdWO9ttcJzsc/YZN\n", - "DnsdDj/DLzb4wnlCweBz5M9z84mqh+QNHbQ4jJx+smX11ILufs/9hcK0yXZSYQ2CQlIWMgsWDWyH\n", - "0uU8lcVcmdAP3J2oRv0b7EQOBvSbvtYj8sbIe6l6pN5TSuJIEu7ILcrlDkxVZKElpUcNlX6d1lio\n", - "Ws4X5x1lU7lX7FrRkci01OQGFtFVzl3Za0Z2TZwpK95RGYK9LLM+mjjtwChesj9s627n9s737T6y\n", - "LYncuc/4l8h/Oca9OPeZiTHGGEI4ux7CD7Z4YJXaKc7/O3xpm27O2jPs3+XyQ/zrR6rR0+/5bBWY\n", - "v/bbPePvJDPy5/GBeZ3/Afx0COGBGOPf+O3+8d8NVUjw5jMsP8asx/4XY4zX569d5sqf4j2B5SGv\n", - "fYidU5Qdrq/0dRc7VmNqauQon9k5F/VOpRrTrn56S697YLE7tpKVlmp9dVcdx4ax0lI4MDNU1xAs\n", - "G9sycSw6i0S0LHfHrtKaxDVdOxaMLUlMTeTq1iX2TSzK7Nlycc5hHcgduqNf/S30dRwq1eReks8d\n", - "XZeM4mVlzDX3OprHpdCL9h49K721IpmN5Oe3tU6uufjc1EJJ9ywbK03X3s/+ZNfxZwrDmMvGpckv\n", - "Uv7SW5pGT0IIf//n+eNnuJBUrrmjLf7vGOM7AqG9c53scNB8829abj+1bDI7a7rVpDjP8RKj/QpG\n", - "8L/e4OUz7j+8pN4iK3flo0PN446b00vuPjdj+hJPN4xHhWmrY202Va+NHCeZRTXDZKi2kDszfcXt\n", - "cE6RnlaEUl1d6ZT2PAt1jF3R63KTOTe1La36eKyqEEivOK1mU6Gp4UTPNUGqoW3BzEzdiWpD2FcY\n", - "K+2goyYah6HSOTOpxJKgIw8TypFaqCtC1x2HphqWpxPD0DGLW8ZJbiMmurOZST1YD5Rx3/36WC0s\n", - "22ptGoxvapcTjfLAwtNL1l4Kcyz/iDDz8E3KHxm78z+/wO3bPJXRPKgebK99t0zSqIKRn/mGR32b\n", - "KUYxhK+Var4DgpHx8zz/o5xa4sIxZeALH+bmA/xQzizn9T53/2GM8V7FIPnMBU4ucnZQ8aJeSNn9\n", - "6dTpv9LywF6QyLSHXFuush/nC6YxdzrZ9XpyXqdYM5gderk2tZj3TOttjbzrVG/iMDtyM4tqC5yr\n", - "c6akl1QTxOdVFelCFZz0poxCblwbKsz0rKiwhAtyE1W9o1TVNkfMyaqFIKpJnJLaMkOYl3lqKujv\n", - "VB1Hc5rrknZx4Fac2U+CWt5Uz2fOjnOXDu+J7ZFf7l62M56o1Q50B23ntxNxoWf/DzJ8SUWoLSGE\n", - "cPER/tMPMj7L8Yv80IC1F9ibUj9HscTomNV91k6xs05c4c+cC2FrwvZ+VT35psZ730kwEt4ozcQY\n", - "b4QQfhj/NIRwydtQ2L6dVGWZzvwnPLNaXdAnZ3jh/SG0f5bR5zn7x/gDfc7M+fuDGmnC3lkem5Ye\n", - "3T9x1KkbNqLYHltMhxrDmjPT4MWFliztyxZyiqg+O3avvmQQzIG/U1116yYKW7aN8FU1W6aW5A7R\n", - "tOCi3CuOhTkKfmKsbiaf1xZzhR1H1k08jvtS+xouKgwMnahLdA0dmxh4QvCIMk6Mw0ui66INoT02\n", - "aQyM10f0Tklv0+rmuoMVMew4usQDQ9YnZ3y+e0ZZa1s7Gio/sufk87fM/oZqd3UxhJCpWOYnuMTi\n", - "g/dMP3vP5EiVr9yOMX7TJL7fXJPneeFHWN1kc0htltg/3XK796j4tRTtItM16rdY7Cn/Wk+60XZw\n", - "pdQKY0s7icODy3r17+VzmxXc54u/avpn2XpgolOraSZNR+HAyyHTKnKJqWGNNPS0wwVkFvTtWjKT\n", - "Mc9DDVzUNVOaODGQlC9Lk2VDOe5a1rKuIzVTmmkZuyh1W9/MeZlVdfdlrqqynm8YQ1wx8fnqZhcj\n", - "oRAMRAsaZoZGSuuUV+TFru3kpv3aqoXBTLOxpT6bOdsOLqW0Y2YUM/uxdCEm9qd1J/l52dFtndFt\n", - "R+GyUF+eByID49YtaR49fYs7G2jGGO96h06cv5cUglQ1SfOfv9tr+Sb1MfxR3wH9LvPer7/Hz/8x\n", - "1i8wOUU4yw//Sy7OJ2luLfOv/sMQwv86P/7/ZO8plh9kfED/OdSj1/+HvuJ8ol5GJwVHCR8uWQ9c\n", - "K6iHXU8Mp15Il80mwYGB43ruTJnJitLd5JLF+7ntRl/aJqSEuaHthmAvLvicqAgnupHNQHdaeC3L\n", - "3A9tdbklA6mOPZkqlVDZaVaByNOCRGEBhXKeEa38KaOJvlTDGKldUc+hmlgGC+PE/foZw+SCTiNT\n", - "rx0bNrYd1rZsDgaa09T0V/seefCUK/eCYKpoXLN5fiL8iRDC//LGvfoUP/79DB6Yj/MuUjzM4Rd4\n", - "avFNmY+MmJPdqJDdH/pA5RWxs89jz/G+NIR/WMT4Ww5430kwshNCeG+M8bn5RTIIIfxh/F0V6Orb\n", - "WJ0P8cEVPvCmSO38IYM/yLX7bCxz5k2vJXPWS1YSMswKa72RvMswa7o4TGzlZ7zSXlaGxNJsYL95\n", - "V1EEg/SiellXTztmcc9BOFIqLZqYeVlX1wNqSifG9hzYsGvRyHWloOnERGHkSBVrtwxdVT3x6zgt\n", - "8YLq8oxW9E3UHaoZ6ctsGTiviAtqYWqiLfOQqec04z2L9SNTmWRyxiyr23Rg5MTRUkcW143PHbr3\n", - "WuZ6clZvLZG2c/XFuuVwVv09R0Z/vWf5szxYq7rYb6l8Gh7p8uC0st5+JeHGz8Q4/p0aHxy13Xo9\n", - "9S/+g0S3Ww0zHyXf6+Rzi2+yui4IPVpL/PgyD03sjg5svD516R6tSekk3jLyCRaW6bys+cRQlj6q\n", - "n0Qvh6FaqPySp2XQno1drdENNJK+83FoJzD0sEzfzKHEguiMmaFjpdqcrzhOqpLMqjt2JZY1RPum\n", - "ehbNLMltaJrY0tM0dGZub9gwNVDaUP3H7qluUhcIO6KagMShiRNF0hfjpQoZWSwqZ6dNx3s6k6H0\n", - "Ku11noxRfTFoJdFyKGVl6aaoG0pJuGlnYer8Z3aEfGyntuN4nVAcap0c+f7PVTu+kxHfMeOsvxP6\n", - "IO7G+Lbu0N8J+hj+RgiSGH3bQ+pijHdCCH+T7TXW/wx/7BXOvsm47eIRFy+ydRHXY4xDfG7+I4TQ\n", - "Yf0vRudnpZXlXD2JkpiYzkrH5iymfXZKjrNj03Bs/y6n1oMzK01ZXhg0+vaW9pRynTSRlaWdQEgY\n", - "xbqWjmPn1UJQ07PjjiJpuN5sW4hshoGxwpEDS0itic7JDCUaSj0zPdEZFaHkWNXvNbbkjmh5ngcf\n", - "GbsucaS0YlaWVotjrzdXTZM2pqbpgo7T8jTYXzlxv1GI108sLXed33tjKrIunTRk7YnVh1fd+W8v\n", - "hDDu8dIKj1x8U9DRYGvKIx1im5O7JBdI+oRzHH2WD5wjOcsL6wzXGa7R7vNHQwh/7beaLX0nwch/\n", - "bM7XfdNFMgsh/Cn87d/KH/vd19J7ufIW74h2zoWUa6fmJNs3aeEqN9/LWq+6+d6rMWuR94J6vSZO\n", - "F/STy7rl0CAUYtJ0IVx0LxsYBDYNDGVGNvTjrnoYiTEYhdJjTiQKR/oyC7ruKuzo2dec+xdM4jah\n", - "odp2Hqse+RuqfudqDjrzqkImEazbcmBXI/ZshoaX5IQjjdmEtCvEmhCWtMqblsOhMydnvd5r6Zb7\n", - "9s8keqfeY9ZsaMRMTI/dv7DjOAseTFIrvUQyKxx2gnunGmpneGCbj36m+qxunOfLP8UTP8dD80bV\n", - "R2v8zB8JIVz9nfAr6fIHPsB7Pqz/8339xrRinLz/OR67zK++Ydz0RS71OP1jDB7jbiHee87OQ5+x\n", - "lx1q/CKjGwOSF1mh/X6+r8F05ZZXz66r1XOjOBREWVp3kG1Ii5GT0Pd4nHjGDf/GaXthV2lixVRT\n", - "00BLw8BIqW5qscikSdMgDB3Gh2ThQNSU6cvklo20pGZyLamOa67aM1WY2ZY7g1TiRGpk5nHBuiAR\n", - "PS8KohO5RTE+QOxp1UcWyiBJZ07sG0/3bdxmaZmddtAso/VYaIfSUhL0YmEp2TftDDVvlnZ73H62\n", - "J/1nPSt/mPdsVXbsJ3U+fY79n/kuKse8nT7qOwAB/5spRlsh2FFZNzz7bq/nnWg+qbEXwvlYNZG+\n", - "Va2oiiq+ThUCvvPf8N7vi9a3CuO1zEaMzhSFl+qEMYcDmtc5O6NT8MqUU4v8u7+W2v5g4XAtl9ZK\n", - "Md1ycyUKabSG1SmtwNXGkn5I5/iGoGNFGse+moysxMwVI/04q4ozIXXLvrZnzdyW6gjGanqGnjO1\n", - "rXr3qhlp6jFHXpV4RaFuqE1RI2Sy4rYkWbOXPiwmbZyWGSlct5NuaJctebaoKPfNhoc6ZzriXjZ/\n", - "jhfKLDdZWzNZ+T7uPcrBVT74RZ7e5/5GFRM5zfXrFaLh1CaTXW79PE+vc23I2g6XL/HlTb/uz7TO\n", - "cIW1O5wNIUzRnweJ31DfMBj5zeo/84vkU+/kj7x7KsfVJKK32NpPIva4v8+z72FlVjkynrnF53ZI\n", - "ltnP2BiwsEPzXvTl7y/8f+S9WZBk13nn9/vO3TJvrpWVtVdX9YLuxr4QBAGCBCmOFlIzpEayZcsT\n", - "1jjGYzvCoQe/zMh2zMOEH+wJT0yE7QdH2A7HaEIzYQU1kjhaxqJIUxJXkQAIEGgADXSj19qzMiv3\n", - "vPs9xw+3APaAICQSjWkQ+kfkS0VW5Il7qk5+5/v+S9fySa0xMTEzFL4FjvKxzBCNossSIRGh3EDj\n", - "YmHxGjMcctYQfFJSoDAJDolpoLXLSC3TYZmCjprxfSeZ8yjWUYxQTDFYCDllDphSIWJIlRltlrnC\n", - "KjEelu4zsmfMmRxfC0M9pD4x3NfxcPwh+5MZ+CmTjQfJ9TzWeId4zkHlNSaVGdpKUDMbSEnbBmzD\n", - "fDljCKSPQvAC+BEka0VY1cHG94uRSgp3KXj9FPC927mTIlI6BU88Adse5F7h6sYn4Onfho/8Nmws\n", - "Q94HtQ3Jg7DfhkkITg2Sx+HSDL35LUL/BPynG2DnYF+CJ3v0OuDeN+BsGLLtOKxYHjlLhJQom4Lh\n", - "E+WH7Ns7nDNjTrDIlIQyHk1ihnQZHjsNCBaZMdRNSlNyGpSJZQ6bLkP2aDPEw8aiTorQwcZjhkPA\n", - "MgmhqRBLmwkuIQMsYjCncaSGYoywjOJ+NHsIdbQpKHQeFg0Tg7Gx4wluuYcxCZN76/Q323RsF58R\n", - "nvRZjGPKtsUIzXQ24Wgb8v8NbjzDmzbal1PofQKq6zCJ4egPIXzmh27QXw/8LPBP7vQi3iW+Anya\n", - "n5Bi5PuYvAI3HoeHbiGoxhZsA2/bqToFCx+D010I1zWV/YT+YmF8pgwMO3DyJgSXwM7gZgkGOZz5\n", - "WegvZRwtCJThbl3wNlyrOJVjQLTiZqlQxAzxiTBYZkZHB+hjiburIyZWxoKxCWSBMSUsphiGuGzR\n", - "xCGlzoQFykwpkuAXKCL22kCfiAY5S9h4qKyHSaaYGwmVxROErdNYZoWcKRyPdYQaikNyXIxOcCox\n", - "9x8FDE9NGZ+qkYY+KhqRKgcdzTHYvRd2fcgegd1tOPgufOjj8PQRspyivAH50VW4sg+THJ7pwOf9\n", - "gsvgNKC2Bpdu5WqkhXDh1An4tQVIh0BT5Dsj+PJfNrr/gKf29p6GV/6Doqh4wwZhvwbbMyABaxGu\n", - "3ltorW2BZ0PY+xIMFmH+FHy3BcshjFbh+qEQrTWIyyVmJiOzx2RSJmLGjAUyOUEVCkc9lrC5is2M\n", - "itRoHAu7BGiRETEhJ0ebDqlpMqOMj2IgHhgDskDhxXsSwUXoAdepMaKCTYUEnwFCwpY5TS+/Bwuf\n", - "WlolcQKMXGEiITqzUIxoqBiroQn8mLXpJfbsBWI/Qs0u4jRSGqqEkBHgABOGnovngUZRCcckzpS6\n", - "AmcVXv1Z8LswfQSqZZgZSC+Ac3xjFgPqveASVWqgvLe0s5oQ1eD6Zfg/Lhdj2ImP/fdu0nxyj1oM\n", - "kSwzuPlxold8sE7Ar3wcrgd4qwmqegZZE8brXZ4wsJRFrOcRXVFcUhntbEqoPIz2KJk2PT3ggsx4\n", - "wmyzKy5TLFL2GNJGWEChsdknl4SRHeARsKHnGMk+kQQ4jDggx0IYYAho4VBnniLZ18JlUVo4JqIn\n", - "cMOs4eucWAoCX47CYp8MD02P3MwwZGCW8BTYRmMRof0jtE64x9R4beMk2nEpaQOWTyAlLnpdnHyF\n", - "YLZI/FrA5PIVGE+Kk/YUsGfM5Ksi8i0KGev0veEA/eRAhBqFhP3rd3ot7xJfBP57CiXkTxDGfwHP\n", - "Pgj5GmwMYOrBC8uw9T2gLSI5cBLwiuby4t+F0jrsOtBbAs8DVxWikLqGG/NwsQTzr8NwAjtlOO8V\n", - "eVlpG1LfcF4JoVWccT6wIfACNpd8h5pA3/h0mCfhkJSQeaVwTURVQkoYOkYhrDGRFk36HLKE4i5s\n", - "hkwZ0CSnicc+FaCOokmRUDYDrpFzH4JDnq5irngQ/AW0LjJyfVwp4amEhMJrw6OESxWl+9gERAS0\n", - "pppHn55ysaE4Wo4xvoXfjVD5PFfb5+n9qX+LRP+xwt3wiV38/7BBjRmW6aKnM6IXhgx/wxjz73Sm\n", - "miLWBfjo48cVIcAz8BEH6r8CWyXIY7C+Ax97ruDrvqPy9gNejKTPw0snYfQwbGqYKrgSwM6/guVf\n", - "hM+MYOELcGUJYh9cH5JFqJ6DaAVGfsGDcK+VMXqNIE3JleBIBUVOwoTIRMRSJIHkZEzI0XRwGKGY\n", - "YB8n1PSIWcRBI1RNyg0yImMQ6oBDSgfLXGdRDDVcEgYc0WRKD8NVTjDlFA7rTBkT0gUWTIWZKbOj\n", - "+iTxBFFjJG+h7QoJO2QyopwGLHrQDhXdGPwgoF8eoib7lByfdj6P0g46q+JF15i0B0QmoWdXaAQz\n", - "YjnCUikKWFbgfhRMDxZ34eAkNOtw7cNw7unipnIV0D/UQvhdYDKCdAZO5ZaxYb8IFhpTkGa1iPNA\n", - "yLkHhZW8hD+bMlt8nc6n9rlyP8SjZcTqsvioTTPQ5DaEjTa2fURPaXwbWhaEMiOXHWzb0DIOE9Vg\n", - "xCrN2GPHnvGMPSbWW4yVR5Atoa1zNOgRiKFEBZt9InpM0PhqQgWLKgllFC41XDQtFA4BW7iMKWMT\n", - "EuAyT0BAQokJdTnD1LIxlACXMk0sAib0yU0Ipg6mh8glYtPiyLjYaoJrepRs2C7NEdouJ3IYK4Wf\n", - "GUJpMrYm5CbBGpcILjwIO0d4/82E8xegMYNdLeL/sTHmaf56JvK+HT4FPGMMf6WW8/sYXwV+W4SG\n", - "MfxAdtT7FccE1f8Tho9B/R6IF6HiwVNnofMYDO+Ck68WXI7DD8NaBE4CNzdhwYczQEtDx4UbBh4a\n", - "wNNluN6E2Rfg40/Bx3bhX38Cqh6IhkvK0JAi2HNkYCgQSpMFbVMmZwXFzBh6ElITm9yUORCHDINt\n", - "jyjjs0WZmAkd5olYpIlDQo2cBjk3mTDA417GdNDcQ8ER3KMYzTeRLEQliswVyE9B/jqW36KZJISO\n", - "hwLqKkQzI2GAkQ4VM2Apj5ERfO8xDWuaVhf6dsr4OtQ7DdJzdVSJW6hDMyjFVOWIz31pB6OKyLH1\n", - "IXzjpPD1/3hJBANZF14ALgN/9gwsduCupeJLQe3Awufg62+k+XqQPw47N+AJEfnqO+3xB7oYMcbk\n", - "IvK7MPg2XFgGE1F8W1ZhYRFOHld0Dx0TLv/0ITj5WfjEd2HxAF58GPbWQJ0ts02FxN/Ayj1sVSKT\n", - "Gbk8TV9CmmjGCMPjm3ITzepxukiLGSMcusSMcKiYiJSMjgj3SYUJioyMGRMWpEILD5sMTUqd17lG\n", - "GQvFCkKdDCFmDjgBXBUhFQ9jlsCukZsJRnZIUxujFUmW0DKwJTk7FU3DgFmEuB+QTXawT54ksVyc\n", - "mcHEPVInoBlYqHSfdlWzEkPown4OzhRMqSD3tgO4uAI7XdicwOQMPDeCmyHs/Ikx5jabnYExJqmK\n", - "fPUb8LeegN0mxEdQ/gtY6cJvf990Z/FvGB6/2Gfv4xmje9rAKu1Zn95yRGcpo5KWWHoRlEkJqgo/\n", - "sHAXLMJYE+XCwIOuMpynyimjMSREMuSSsblhRUTi0UdoM6CRu9xQ51ESgTEskB1LfjdwSaigeYmQ\n", - "lB4loIZiiRoJ6ZtpQi3GvMbicQBAxAiHk6KoEzPHFteoMqBeyBIJGBJh2EdkAUtclAkxcgaMxhKN\n", - "qxNEeTRNhO1ZeBkkxqKeOoyjlLxms5yWiYIyZy5d5eDsETcfWqSVbHF6Bg9vQ2DDl/62iHSNMdfe\n", - "YVv+OuGzwL+904t4tzCGQIRvAT8D/N6dXs+PguPgza+IOEfw+Cp86jJkCr5+PzyRw3gNrmk4PQ91\n", - "HyZzRZekqSG1oHds634ug54D7QFUFmD3E7AeFom85hBeWIO6rXhYFBZCCGxIjgck5ERKYZkyiwSs\n", - "yJApNjOWEVFUMTSYx2OPDmMMZRaYssUyGZBgobHI8dEsYjjEoormEB7SNQAAIABJREFUBoUldZFw\n", - "JcbBEOFowTVTpu0qJknBE5Q08LJdpo6gxcUDbPaZsY1rhqymhvlZxjUL7mrAQgiVoOCovmbBU88M\n", - "6M0dMD5xnuxlgAisF2FjymYXznbhxrzN9kLG/lyZg9OnsR97jPwrGtQleOg1+M4I/vAIfvOo0FvM\n", - "Adk5+E9Wjzknb6AEebUYTVTeaX8/0MUIvMlt2eH7/jKISL2YG74V3Q/BfTEsBNCvwXQBfnoEr1Qs\n", - "rjmrzGU2kWVAa8qUMKZJoGZ44pBRosRVHBxWjq17ARQWp4h5DQsLj4lMCYEGHjOaeASUSIlxWKZG\n", - "Rohhik2JGoYGEZoITUiCQR2bi9eAxFQIZRWhiicOM9bJURj3ZTBTKNWZmJSUKZvTgNNXYeMqjEop\n", - "/bsPaB3kJHNHxNqgnJRmPMfc6zNeWUqY2THxDMYaPtqFzQCevQu6UzgycDSCB//f4iZy+QF47TqE\n", - "v/9uIqT/Mszgmy9CsgOfKhX2jKMufD4+VnoVpLUTbdjcDhjvtgg2QPIZuhxStjykN8E9nZDXXdTI\n", - "wk40s/IEV6fg2OwqQyxF8N08MZl4ONpBVMy86XDdtqnT4h6jKB87CAyJ6GKRieBSIqeCIsbgobBx\n", - "WWHKNRQJDgqPMTHzKKrE5ARkhHgoUirAGhZ1DDYKH581AgJmRPQZkhQONWYeTwwtevTMGn3ZxKOP\n", - "YQBygiVScompmBGL6TyW1ozsHFxhUUdMZEY9aFHrCnbziMlSA+taMTuHguT9wBR2P8L3wyz/2kIK\n", - "GcJngX92p9dym/BF4Of5CStGvo+Fj8GD3SKF9+o8LDiFSvKlJYhOwNmwSC4wBs5ocK3iEqWBmoEs\n", - "h5sG6iNw+jBZhqMObM2BtQnLiUNql8HkhJLjYLFMiIvFLmVWmHFFHJRxaeVj6rJIrIQmhjZgY2Gz\n", - "RIUpFkcF9wyXsTHMJMMjRuMdy3khJKTohAyBHrB/TGNto8Um9IcYNQWzB0wps0VSaqPMFNvsE1o5\n", - "ZULqpkkjTVCzEUcJLHdgZQTRAkw9QTuGZgMubA6o9S+QnujDo3U42iv89b8GzfvKfOnRdQ7XF1G6\n", - "T1SzGZ1YQa6cPJb8bkI/gY98D54/Pu+3gW0RUTOY9qHcgjAo5L/tEEpHxcMfv3Unb8UHvhj5IehC\n", - "d1TwR1ZukYqlbWh1iiKuU4clKTIMGmTgKMjBMUKkLOwsQKsc22SEHCKiiIhoUsFhhKGOkDAiwiMu\n", - "SEiMKRnoiMsSHhkeipwF+oQ4WGhSIgQHmwYOR8dBamUMIRkZGUUcdgCMpImYMRibVPlkaLSKgAmW\n", - "WaOWOYit8XRKpK/y2vwENa0xWLZZtBOG6YgToYdKyjj9EuXDEdu1EsNhTqwLoqpfElTNcL0OegQP\n", - "vwqLA/jWHDSiIv9h34XwK+9lIQJvFpZPi8izgAdEt+YiFA6Cq3uw0/BIKhUaL+doNyI6pRHdYHV2\n", - "HaMUwcPLuK9a6LDPuNwBu8ViWMPLR0ydKYklrJkAQ8TUcshMhGUES9VZwaeaGgwjcFKW5Igj3ILH\n", - "YUogmpwDMqzjpKAKZSxibEaUOHnspzuigcEjQZOyhUGhcPGZEiDElMk4pITQMOfIZIqrE1bFYYpH\n", - "CQs3NyD1QuarbXKdoywPK28SSxedD2mZPbr2AkGa42UzYtPBNj4LVwtxsJKMir1HREH2ewPVCNzG\n", - "e7mfP0F4BJgY8+5dJt8n+CLw6z851vBvhVWFynEsSWYVmTAAoxq0IggsKNngZoUwvmQXOTZLGsoa\n", - "uhpCDc4MqgfgluDFBhw8DAvKY0CFepYzclIyFAsYQhwMGkVOGcUyKT2xqEtOJB45xxf/Y85cioPB\n", - "o2oOyFhCmR65tIg5AhQVHDIOCVhhyi7FgeZTzDcskBmYHVL7dGFsQhfkOkKJqt7HYcKEeZSekJHS\n", - "pEl5ppA4J05gfwyPRDCzbbaaNUK/gj2MYB6+9SstTPcc+df2wX0ZGMD/BfTh8lOnKZ86w1yn8CQJ\n", - "a2uYTBNVo+JBJRaY05BdKmZfb575xhjtiXz5m/Ar65AdwQNzUJ4Wc6/LPjz5TjPO93UxIuI+BvMP\n", - "Fh4r3e+CfvV2eOAX3AL5PfjK34P76tCMoOPD+BCmxyQdSQEDk4pi6MfMJ/t0K0tocYhViMWrOKbH\n", - "ikpxTMAhN+hKwRwBHyHDUCVjwD4OHRQhGZ4ILgmCjUcGx7kjDQJywMEBfCwy4uOYvZAjJliU0eyR\n", - "McVihtBHSEzGmjmkbzxSciyZIPhofYpmOkDyGbh1xF5lsnTApUaLxlAxdyXlhknwK4c02nXsWcpr\n", - "d1XYXWlRHjVwmLKzPkJlGY5SVMYT6hcyhj6YKgQBLE/gRguujnlThfHe4/hv4G1yKwA6X4Gn/37G\n", - "qsmxrYyoGTKqtJGtJVoHVxieuMTJ4S6vn60yyVxUvsGRMyRxAhy3SiBCQ6cE4pJrB0OC5JqJqZFK\n", - "mZKxQQZkktOkgpERq2i2qDGRCjaHpBxSxWOZlIABHsIRDboE3CRnmRCLjAkuA9ZIuQvF0wxJOMBG\n", - "UMXcGRubgEx2SfBQKmdGhE2ThBoVXGyTYZmcUCJsFFYm5HlG5KS4saZq7VExPSZik+URC4cab6zJ\n", - "MotgKSW3+0yshI9+u+iIvIGdJgxvm+JCRGrVIuHw0x6spHBzCP8mg+du12e8h/hAjGhuwesUZOUH\n", - "gAt3eC0/BqYX4foj8MA+rAwLCkNkQ+jA5gFsr0BbQW0Kh/WiKxIGkHlg2fCahmEPAtfH+2iJTmoz\n", - "O+pSe8xwwga8iIFlUTIGSzQpLjYWUzLQU3JlUMfWhjskpGaCQ5WRFBfFiIKQnpPRMhYiPbRETGUO\n", - "TU6Gx4hrQHJctJxF0cewi2GOgolrgyTYXCQjRahTNk1sUeQSU5YBlqmTqbtJzAFXZEC54oFfJxi1\n", - "SKcdDtoxOqkQJy6SKExaote6m2gyJp/cB1c/DNlLsPzn8OSRMb8zL3LQon4uwWkqrDQnqFiE0TyM\n", - "+zC/eqxcSkHpW7yd3kBszAuOiNeD/+GRQnAwWSqsc3e+DJ95pwPljhUjIvLzwP8C9IwxT739u576\n", - "RTgzKOZ9l34VXnlaRP7gNqUETh2ufstw83yGH0P4IqRfhhf+R6i2oBnCFWMR1ytEowYnu1tEpxJG\n", - "XhmdHaJVwAmj8YMWdpZj1xQlytwg54ZklJlSZZ4WmhkKaGBzhRYRDg4TbFYwaGxyIKfEVSJWiHEx\n", - "GDJGVMnIaOEzYcqYGi1yLiPkJmHeHJKqKpF2UIQsYlPWU8ZSI8jKEIKxI2w3ZVDy0fgkjo9lpsza\n", - "m0y/MePygsGtdxFZJCufYuFiicrQo7/Zpt57gdlij9cPDCeGhmBlSPegMCGqvQD/dh32e3Dw+bcy\n", - "re8UjMlfF3H/ZcLBf3aI9VSVvLVM9UaT0nCP0WJCdqDppnWy5TNUO4Zhawl7qiF9jVGzQqYPwRpz\n", - "HZd14+OalIFyuKzLJLliKDEtCVBKCKTYnxqaZnpIYidYIlS14qwCiwaaKRYZUKOD5lWgQ4UGHkcs\n", - "MWOdBjMSWoyYcYWAORaYI6BMxpBlRqxg8LBMyFi6uGaIZRwCUVTyLkOVk+QZeWpjshCHDl6Q8tDT\n", - "UIvg5XMJUkkId+EgVZzeM+SLI9JSRNdP6L8EF0+CpeHEEK62i/DI4LYUCiLiL8N/tQBPbUJlHYIh\n", - "fOganL8Kf3DbCUa3H58F/rs7vYjbhWNr+DdGNT+Bxcjwm/Ds/WBW4UQfzDZ8+aFiKjBqFrmNl3OQ\n", - "GugArlZgaVT45dysQHwJ6tUS7ZMKSRQrnRnJ+RJnxiELFI2ISjmkrywWjSGR4orZocGymdE3M3aA\n", - "SQaVGB5MelxtlplI7TidN8TiAIucSBwi6mhq3JtdZ6oy6lLiJbkHyyT4kjFki8KGrQqcBy5S+EvJ\n", - "MU3WwiXClyLH15UuXb3ATNURqqhkBS0TIutlCq+PM7DzTXYf7DO3pNjYz5AsYLdZ4SD7EPkzl6B+\n", - "CZbbMNmAfh0eEJHfX4GDTcbf0MyaKVZpnWR7COebxcxLAczAuVQYtVx+u93JIDwHz90Hew5kb0gr\n", - "74Hp+7IYAb4NPEThCvhD8IlbVBknhhA8Bi9+l1v4Hz8OfJHHz8PnzoNRZOYqY+sGbE/gS/D6P4bh\n", - "fwHNFUU/9akeNFkcCUpprO3rRG2h7iX4lkdtXMHvR2S1MU61QlW5lDjLgIiEKgFdehg0LRpMCMnJ\n", - "UBjTwBObDhNChCllAuQ4lSRASHApkeAwT50KFYSEq9SZmRNM5QaIJgViMyWROQSDx01GakArPUVo\n", - "pWinuGWPyRCTUJKIRnLAUQWuV7aQX1jBBI+QTG7AXAWvleElE2arLrlYuMESzrRDNhczkJDpJkTr\n", - "kH4XBlsw+SPgyu2KkL5dMCZ5VUT+UQSf9nD+wSHW3FWckzM2spTGrsvF+jKT/iqzZ7vYVbfoPrZP\n", - "oOQQ4V6G5hJTM2ZfZihWGccOydEB3pxF3+sTOmWWjcITzSF1jsw8C1oxMx0O5JA1sRmhyJhgUJRY\n", - "ZA7NITYZDRI2GFDkTJTZYkadmE0MMyCiT48+EXN4dFklNxlKUmasIcaiIdcocY2cnKltyKni5AuY\n", - "cUTidRj5Q+7tQb8BByXoXof2DFhXzKwSzz5Zw74pZLlLTsqZ9oh6Ct/7BPzZDsS/C+O/MMZM/pJH\n", - "jYi4FN3lHyr/9eChE3BmAbwPFw7YLMHEgZaBR9/PxYgIy8BZ3veeSj8yvgj8OvBP7/RCflQYY/qF\n", - "9fvwo1A7D/mzcPD70FqAm58pCKof/hMYVeDKo4Uqsj+E8CpE34D2P7JorlSpjxxmyRhzMuGMGEQs\n", - "hlEMeDSUg2UyLpOigSqKRYYMJSPUkKdwZgR2AHvtnHS6Te577FqCR4hDSkqZm1SwjcNauoNYEffm\n", - "ULX7RFzkJZZIWcVQoZAk3Dh+FR1zaGKIgISYGBjgsk9kfGbqdOHcrRMyq0uuqli0cYDq6rPEiwlW\n", - "VuLApAQlB8IS8ZFLtdVl6G/hLB0y/4kS1alhasYcDSGVHrywD5tPkb/6hovCt8B8Ex49Bf4ObFwB\n", - "swW//8OyxwTcMuDeIhsGKL9NJ+VW3LFi5A2HTpG/qiWFZeBUDq9u8i6KERFpn4fP/W3Ye0NjfT/I\n", - "F+GTz8HrxqRfK/wV9ueW4B8+RWf2OgenhpiTKwQqwRrvsrEUsbIX8cDhiNSBwYLPYLmGEgtL1VCm\n", - "ykxKFJrxfXwTUaPLmmScRhFKQoowwmORAS1CLAzXj+nGEXUW2MRgA+Y4h0RTIaUrXTDreKYGUsGI\n", - "TVt3ScxlQqlimQoTa0Ike5iqQwmNYwQVdTGS4RvhsGyx4FdoTUKM3+HwhDCdbODriKyRshBNGVQH\n", - "TMMb2I2QkxKw4BmaCkoCVx6E8RLsVWH4P/GDVrZ3HMcF0p+IOCdg/dfgyZehOQNlFKO6oetvwuWU\n", - "zJ8w+aV5/NhBLAHlYZwGkSwRJW1QVYhH0OkT6wlqYZ2ZypiqlLrJGHEWO5syloyQBTKzi5IYnxCX\n", - "Cgp9zPbxsFnBZQ+FIgMUE+YQUmwUE1q4rOCwj2KHAwJzilQ2MJKh6QF9FHVSU2KEi5OPybOEk9LB\n", - "TPdwtqA1bxGWfIYriptLHnFvRKOb8eQhrIeNQor8/ISL84pEL/GRqxrHSlBpyOlnS3z1wz7d+yfQ\n", - "E5GXjDFvOw4TEasCn9yEpypgTSD2Rb4SwjNvLU6bcNYDZ/kWSbYAdTALRV/7/YzPAl825t91of4A\n", - "4KvA50WoG/POxML3I4wxA+CPj19vQkS+ANMn4NqHwIyh/08hep5iLFWrYv3jnPJ6GTexmMqUtAab\n", - "mc2yp7HDhFkFIjemrMEoYQ04DRwYzbbEzASsPiwkMJqBnbns9O5C6whZzEnJmeQlmpbHfLJNVt/m\n", - "tIKGEkraYk5BRQtzlo0j62hKOChSZhQk1msUY5o+sAzEGI4o2J9blLGYk5AxQ45YI6WEEb9Q8pgy\n", - "trg0jMXEfpWWU6aapBi9SHXXoikhVvU79M71OWW1OfO6g5WNCRtj9mtw9cMpwXMvwoMZnN6ESQTO\n", - "AcyuwT+5Aj0N2sC14+f/9nsDezdBHi5aTG+eBTeh+U57+r7mjPwgYil8VH58eHD2fOG1/2bVZoM5\n", - "B7PrRavqGsV3WXdB5EXgdM5svoVVU9Qpk8uQfRUhKxn3H0JUcjh40KJkQ24cMDGOtsmki1E2xmjy\n", - "fJ+yFdHWhlAZcmCFMTEKB2EFYUbxh+/jskWMzZQUD5hg6GIRYJEwT8wR86TiYEkNi5hYGYw5jzF1\n", - "HDMikBw/PSK2poyUoak19qFhIXborlk0yiWaqokRQWmhlhyy1RgwlRY4HonEuKUd8oUhbSujNtK0\n", - "K5rFBGq9IvFyB8g+BcPfAV59N3vy3qKVw8LlgtyWO5BKhDuZ4ske040UljOybMjY3QcrwUouYiyL\n", - "eR1SZ59MbCZ+TnzXEU5/jnG6Ab0Juh5TLgfMZftE2mFmpyRqh6pS2Hgs4iJSRkioMOUmJWJsDGC4\n", - "SRmLEQl9loEJTWxaGDQag0uFBqGsA/NogkJDJdtAD0sbfBOgJERbNU7HE7ZrhntWK8TSoJQ71GxN\n", - "WwuX5sFpDolUjnWphDRK+NGUDQK6zXlK+wZSYefkaV5qrmBZPs7DkNYvwOMi8hvGmNlbn2oVfupD\n", - "8NNPwI4P2QTcb8AvvViw5p+99b0JjDKQ+PvOg2/8XLJbjQ7en/hl4F/c6UXcbhjDTIRvU0h8v3Cn\n", - "1iEy/8tQ3oD4AHrfMsa8K4+iY+vxPzt+3fI54rTh19axPtyjNCrjVSJ69YA128Kf5gzKhgWnGGum\n", - "ApMyKGM4r2FeoG2Ki9hrU+AIsilUZ3BzLWexusu0GoNbpZm7xEbTT4ZkZYt5nWM5UJPifzvVEGqf\n", - "PbVAVc+TaU2ubFIro3Bf1RSs0EXgWxTf5kNKjFlA0WIZmxk++zgscFMaIBE2A1IJsJjDWC52WiG1\n", - "AkpAvNoDr4odzqDaoVqvsfRSii5NyJwebpjxsWdh8FMQfKcHv/kNuPsi3JPCbAgXfhRxgjFmryHy\n", - "7J/C4/dA34PsGrQvFPYpPxTveTEiIkvA59/y4wNjzN/5y3/7X/1C4egJsHoNdkeQvytGuxRWtj8w\n", - "VrBA53DPWhGwUlsR2e3B63+E/1/aNB72OJVZ2NojiGwGnRo3rAF/dB5WV23aohkaRZcVlogYiE+a\n", - "pxjTJ2cPbWAjh8UMUkczkYBDJbSMoSMFhbWPZpmAiBo2GQkDoIowooKQYmGTM8+ECjcZEBGaFiXj\n", - "kJASyyIoYawrZFmJeFjCyPOUqjN88ah4p/GCDnFaZjlJ0aWMzFbYYwsz79O2hozjkNBrEiiFE++Q\n", - "Nqa4owTXzaibHBPAQQPGZdifg9oAuIf3dTFiObDxDNguBE2wYnikt8WVz/gc/Y3zELWgv1+kJJpd\n", - "8kVYNcusYmFph0o0IaPPTYm56xWbF57oE+Q5ef+A8TLUcMmzIxKZ0cwtLNWgwYQtSWlg46GZIOzT\n", - "wANiUmKWaJsDhD65eEQ4JEAXhXUs3y7C9yI0Y8DFxiFDgBuUJOKkzqkazb7S9MSiql1MxSOwSng6\n", - "R4lD1UypKIeW63G4HnDfH4RMHy+iy700x/ZStB0RVhocNu6huQWp52IlD5Fu2bDxtSIc7mu3PtFj\n", - "a/6nnoTtN8yNapB8FPb24KdF5LlbieYDeL4Pn7RhbQ1sH7IAvCPIt74fTPy+gwgt4KMUBckHEW/w\n", - "Ru5YMQKfvrvgcxxtwvP3iTi/ZUz6yu38BBFZh/Z/bSj9VA9zImFQA1+n6JKHa2LKFuzrjIlrONcB\n", - "bOiUYB6oipAgJFrjZVAZgHwDXrwMi78MD9o5VjhlvwVnVYRC0Ew5cGx2jItrQlIDMwWrRjMV4Xlr\n", - "npk2OJKglM1UK9Ae2AmFpfo6YMB0ClK6pCxj0QIEgzAH9KhzlZI8QMQhmksYMhxcEkpgxYQmBzVH\n", - "JehQnYyo9TO2Q1jrhdT3B5QOUyoDw/IeeCl4JwDXGBNRBAu/9OM+8zH84Xfg6jV4XIHXhz+OigiC\n", - "//2H/c57XowYYzoU7oU/BuwXihZZBlzNYPtfHxvf/NiI4NpVsO4vYnkNFJXoy3D/Gkx/Bl5pwWAb\n", - "Gl+g9usDNqXKcmSxkhhMPmKSt2nvK7LKlK0rKf6ihY5KZJ5g2WBjqElCzwqxdQ8JhabJsVyHTBzQ\n", - "OVPtsu2AkYiJ8fGkStVkTGRGGU0Jlx6GMSPqJickZ4bNCRQbJIxQDE2PPdllnyVcDKrgbiNmQJke\n", - "qt5lwbi0JGDOitHz+3ScDKwSSht0GCOpS9rKkUqKOApP9mklDiIw0zHszMhfBvcEUIOpD+28iHU5\n", - "FcPhPJTufjf78d5j8DLc/Hl4YguOrV9IVULUt2B/D9wc/FNwUMVd6OGvjziVX8e1hdhy8GZCbWTR\n", - "aTW48ijUpjdISoaTQ0MjtsnLU3J7xJ5rWNE2A1OigSJnQkegUFa5CDkxIaAYmh1EDGcpY9NnjwYO\n", - "NjOKdJuMPTLmMCbDNUdoSmSS45kenkpwTJWZ8gj0kJQApQo/G3IwZcFJbOLYIgltUs8wQbEaQOZM\n", - "adzoMzydMGto+nNjBg+OmFZOQN9G6YiZv0h8CeAM9F4seF1fe8tDrdVBld4ynpuDqFzw7jxuUTsZ\n", - "Y7ZLIr81hr/fh/sWCvJbegAvHcDvAP/te7P37xq/CHzFmGPH7Q8evgj8gzsr8T1/HMPVjKEZwOhz\n", - "IvLa7QpkFJEGnPzP4YFmjVGtRZ6FpOkRu57CTWNGXogpZ7gTiC7BdhO2y4rANmwIDCxQSogToTYx\n", - "OFFhBi2vwNmzsHYGLpzKOZtazDs5iaQEBjZVxNg4NLXFiTRnz4YdKb5totwmkRjDFUI2QLdwGJPm\n", - "N0FlFMlzI8qSsmrmsdhinpAKVYQuIfOk1EkxKHMZZAsPm/sp02CfKSE3VY7Ja1xTipanmMwnTLZh\n", - "8XvQecjQ2UxYugqbx4XIYQXCPuCJyD2qsKC9+eMaWB5fRn6goHknWsadVNM8CvzPwP0i8mXgc8aY\n", - "t4xgLv2vcOkExaF33Rjzrg8FY8xeXeQbX4RPnoOZDfllmO+A96vwzcrx+CYD5dKoCvFSQpp4ZH2b\n", - "emLjuBP2Fy3aScaBC5tTg28VnZB69RKHUkVbmlz2qeopmevSCHw6sY1nOWxZG+jEULEzOsaQqxkh\n", - "y8xTxtUdjmSf3CjGss6IHloSGjqiIi5tERIyHPo4tGnKTY7QjKWPlfsoASUptrVLzSrR1gors8jS\n", - "nHoeYMWaI5XTqbdZTntYnoPGkMmAsSg2Q4cHAtBxyk5e5pm9GZ3nCge//U/CXXnBQdoB1lJIIlht\n", - "ikjdGDMWkYUqPFiG1giuJfDKcZV9BxF9D174EJgNODmAyIGLjSpHuw9Dbx1GN2D/EPtnc1pVhbZy\n", - "WtpiZRYzdmNMeZFXrA2ycpXKEZTDA7rLI4zfAkej3THiZqxhmCQxdj5lZJdZReEzI0KTodmjQ45P\n", - "xCPkconqsQerRcB9XKNDE0wRjicyJs3m0FJBpRY1UhI1QtsjtD5FybhF0JZeYMZ1et4YiRyWKoUH\n", - "9lSVUaOMUb4G3Q7DckQ9h9jJOPfyHt9cneP6ykkGh2N2SlUae4psZUz3bJ3+6yuYXYC0IGq93f5N\n", - "RpCHYJdvGXf2oRzClB8IpoTImO+KyCsHBRl0GTig+J+e/NV5Y//e8R8Bv3mnF/Ee4hIFj+d+3sUt\n", - "+PZhPoTWPOwUF//bgtJ9cJ8LtdTQ9ys4PTCqQsOqcz3eZeZMODWAh/8F5AI3fwbq3zbEH1XYJchc\n", - "Q0U0talhN4RwCJ0LUHehFhYeS8MW+FmOYyKMqzHkKDIakpOLwddwV1h0lKcsAMuIXqRqpoRqn9Tu\n", - "o/QQVAPSJ0Dv4ZQaNNllKkNaJGRYLJPQx8elwwybAWcI2McjZRmwicnI8YlZMktcM3eRxlMG/QTt\n", - "HjFvGcwTFuV1Ta1mmMxn/GnPsPb/wZayOHj+NPzDuwqjFHMNqIp8eWrMv5c8pjtJYH2OIgXznd5z\n", - "xJu32duHCXzpOdh+FX7OgdoIXngUogpkBrgJm1/H/twMfwNWTEI7HdOpOvRSh3YeE1kZwZ4h/hOY\n", - "PDTj1Ew4kCqu0qx4W2yriLkkZ+kCRCZjbdPhQBJestcxfomSl9CTMkMWqZibxGTsm4QSdQJCAl1H\n", - "5wZxq6TmgETZQJkZmjIuFhGIoEyOK4e4eozLK0i2TubYlEzCkoypWBlGa7LQYhI6xK4mskAmYzzH\n", - "pWoPMYwYiFAK6qyNNUNbEZTncF/qMVeG3f8HLnwI6h+Bo2phmTwfwFEMc1+H1RiutS2RlXPwq/dB\n", - "XoN4Dx56BZ4SkX/+V1Fl/KiwRO5ehE/Y0Arh+hF83RjzA+mdxphARP45DB+GC/dDHsDhv8lh4wg+\n", - "tg6jFbi5g9+PsUo5zizBWC6S2IzLLvulJYKySxzbNGJBaOOnKWNvUtjAi1CnSosJUSlG6T774mLE\n", - "sAyUmbKDYYMaCU0umgqYGmUVAGN8ypR1yAm1T9kY9sk5oaEXb3NYssntNpECMTeI8PFVCS+BsZUR\n", - "OTZ5tkpshFByXibEZ0hZZcR+g8kIkBDresbeGLYqUD5RpiOfYvIbp+FoixvN16mcGhGXbbL8bnjG\n", - "hUwDF6HdhT9/41mKSBvK90Dd32d87Ztw75OwU4F0BN63C2v+3/1hXkDHZNgL/ATISY9HNE9SFCQf\n", - "SNwi8f2bvC+KkVwgEt6mmP3xUVmCuVDQtTHGeo3kpKGiwdERHcvjaM8lej6hW4F4Hqb7MB8YWl/K\n", - "ufBzMG8VZ16QwUECo9+Cye+B9Rhcvwc228V7ghIYZbBMjDnmbY4xLGhwdGE/38XnQC0Ta0hNQIcq\n", - "duTgWK+QezUU96HskEzKOJJimyaZ7B+7e2dsUXBDXIqc3ql5FUtsFvS9LCQdEuc6uZRQ0iZjhdA0\n", - "SfUQ1b6bUuc1ug8pNt0Sa7OYfD8EP6R8V8x3lqH7z+6Ch3/RfcHcAAAgAElEQVQB9t7I/noQrD+G\n", - "T4vI9ffa0BJ+4gistw2rG/CL56FUB70FjxzA+QnsX4d7X6byc0M253IWlEUiGUPLcEYbXvcU49Al\n", - "mmZ00gwuZFzfhtbqlLXRlGAGr7chyWDjS/Chb8Jey3D4dxWbUZW+ahCXhYnMMdYWRhrEapVUDkmp\n", - "MdU+DjYwxuQDVKaImDFyDCtkWOR0KaGok6OxpEKu57DJKXOdchhQNi6JHaLEYj4FL8zp5TFWWGPk\n", - "G5x4ndOdLfqnD+lKRinVlDUsaxsd+ThhjilPMSqgehkYGzP6HZGlDZg/CX4TVARz12GxBy9sAPEa\n", - "/J3PQK913J4/DUcVWPtzeIq3MN7fLXyRxx+BX3oYjlow2YGzz8K9IvJ/G2PeTmk1B14D8hH0XgOu\n", - "T6F3gf+fvfcOluw8z/x+70md081h5t4JmAyAgwEIIjEApEglipRWkZRFaVfWrlRey2W7ymuXXSUH\n", - "1daW7d2tpezdUqlIUV4xiJQYxASCJAgQEOJggMnx5tDhdu4+ffLnP04PMBgMSFAEMCCBp6qnbvd0\n", - "n/76O93feb/3fd7n4e5RKIzBQAOnR6D12LasaCWF/vQIVii0zSJ+YNH1HbTREKNn4MsonuUQUCJP\n", - "SDMq09ZcQqWYFY++Cmgp0MUkUAkyIgSiSFJnNydZFYe+srDEIWDAVqQRSohFrBIpIaR0l5lBlUWz\n", - "T1ETUtGAuiqgazqEFh2VIwybaGYOXyVIRkk0v0f/0hpbsw5Jepgdj9FjA1ItjZNeifazPWhMg3nj\n", - "ULxoP1T3069ehEuPw/t92FEEexlkCZ4J4DkAkcTNsPfXYL+CZOCynHqMU9EyvbEc6D0YbMEX3Z8M\n", - "EbNXgg8D3/kpLtFcxt8D/zNviBbfk9OwdebV3bx01mDlvgzWoSwqo5NKOCitS08J21Zg3FZcOAt5\n", - "gYMVGFmGlUm4qEP7X8V/J0vgboL7daXUEoBIfhzGdNi1DEYJyhmYU9DUIBdBXYPukCviJ2MFkb6k\n", - "WI8mGagkaRWR8R18rUvCAN9PEco6CQMs+gjgyiiayuDjkFY+vhayRkBeaaQimKWHRAnyeoVIt9H8\n", - "SaTrEBQC/LBP4G5AMI3yXPx0SDIzyVg3xEmkkHAOqYJZvkChmKb23ikYZGJ7HCD2lNkP7nKcOXsr\n", - "GHm1ISLaNPzm+8HbFpfmuAl4AHZ8C97pk73J5YCeYucgRCcgGeksZHSWVEDSdTjtTtE+czuNxx+D\n", - "W1ao/Sk89wewtBM0DRrrsGcVbv8etJKweruiVrKpJxVB4NLWxxkYoxDWUZYLYQAUCHSdSAdRfQK9\n", - "REJaBL0mRipFWo8wtFg6bRrFEllCNmgqCwefKEzSUSmClMWN7YhMwudiSjC6Frm+Rz8X0gv7tDtC\n", - "mLxEsMNknFmSfcGQdWqmg+7XSAYGSTvC6UeMPwJnHOIOM6DxAFR+C+49A6lhE8RzM1BeAIwZSIwM\n", - "5/My9kHlKBzhVQxGRCS5A372Pli9HMHvg6oJo+24M+AvX/z85Nvh0IfhoAtpD5ZvhlOrUPvUJfhk\n", - "Hz40ApNtBqpB1h1wx4LBhYlJFlIRZiKioZLYwQRSr1IZcShshNizJppkKVEgFwqiEjTFoa977PIi\n", - "0oQ0jRI9xgkloEKdIop5TNIiaKrPikCXUVajEE2z2RmFFBUciqCiLNo9RT5qkQhsEpqLmw/JSYFu\n", - "lKaug4QBoRvhJ0x8sUhFOfTIwkyl0FfWaE2XSRcUazdnaW29A++peZiswO7jcMsatLddcb5moeXC\n", - "Iw/BlwwwfFgH1mKJfcnAzl+BD1YgN9QKOEhEesca378fgtNA/9Wq879B8DvAx6/3IF4HfBf4jAiT\n", - "SsUaMK8v/m4OJhXUBVZXofGVV/f4/tkUJ3aPsk/pJKIUqbZJVzPZNBRT1RZTvs/WvXDoCdizEZuA\n", - "HqjA5Cw81Feq8W+vPmLsgbXtENx8P6zeA3YaogAu6LG7r6bAV2AJbI8gO6xD5gCTEFtSeLpCNwdE\n", - "5NDVgEhbwZCAZKRQojBUjjxrVDBxoxyXwg6h2UOLYEKEBDqLXpaZQYXN3AJJbxRroDAaOr6Zoxbs\n", - "RV0ag0we5T2DPy0kQpOoLUjaROlGTE9Bw2AEOkZsQJZMX1GaNSE04iaf1xxvumAEmJqG4rarIr3b\n", - "4Pufhl8MGcuaJJVNZOhkKmkEh1JCZ0ESGNUJls/uJTonQA6S4D0Nyxdg9BaQcehsgx3T0EkJT/xK\n", - "mm1jCW5ctDk7r7GUcrATE+Bn0QIdI6rgm5vo2k6sqIdQQ5cWPjqetQPdmyHv+wyMLmV8oENGAnRp\n", - "clHl8GUfaTVCFNToYDCQDU5kArb7I6SaHS6YPUbGfFwDNtsR5a0CUoHo0BiltkLpPmGxSNqtcU4P\n", - "2ZUJCGqgnYAnTdj47AsXmOAEnCpA7b0woUFPg8pF2PoCUIpi6YgXIYpbOV/t1s2xCdAzvFj3YTy2\n", - "mr0j1ohhSSnli0gWdv8i/PwGZIbP39mAxBw8dESpwaMi8vEyFMEfheBfwdl9KXqZaXK2hd8ZkFwe\n", - "0M5Oo05bML5Bq7OFfyBCIp2u5mNqgqtyuFEJkTJbSqcbbWPLm8TSBV0PSZlFNLXKgvQoAS2ZJ4FH\n", - "kwk0UuRosqStYQeb+EqRDzSmA8VKJGiBh2FF7PfBSlY572foYlAVhYsiH1TRZD8JxwBlQ0mRGc3R\n", - "9xXbzugE0xbObA+vNgrLc9DqwIWn4O4ifD0Lng3GY7Gq4AORUk9fY87nYafxQiByGXvrcPawUhuP\n", - "v8rn+LpChJ3Eu8GfJgn4a0IpXBHuBz4I/MXrP4Lj/w+xvEaHYfD7Kr/B6D6ap4XjMzVGdvhYiTx+\n", - "OIXZPEVtqke0BjM7Id2FE4fAugS7l2CqDblbROQrL29B0pqEfMoiZafJdmxaWY9GLl72bg+gYcIe\n", - "id2CB4HGwFaMp7sM2E0oGhE+PhdQ+OhMkmSaSDKYUQNHVukTEGi7MbWQhiogKiQlq5zCIxOOYPTH\n", - "KfYDVswKS+0NCksW4ViJVi1Np5mArge58tAN0MRuOdhKJ20aaB5AnyARUWcSWjXY3Yf0lcHIImTr\n", - "r1O35JsxGNH1a7T2psHVYMkmn86R6rqE2xJYXQVEGD2TUBlsBduIciNwcxukHQs2JZVSiyLpCdh+\n", - "C9yUgNoe+Id3GuTH0pSqHo10kRVvCs0oYZnn8PQRUA5Ka2DRQBOXVNRCAodUkMNPTaAFCrFA97IY\n", - "joaTKdNXWVRUoaP3yUgJWMXRfDzLQaIsbn0cO1WjV9YYa2uMbtNxXY9KC+751IAzH9B4dm+BFdMm\n", - "ZWkk1QDH0Sm7swy8FY53IPo+RMeg8aRSMZERnhcR+76IPA2LY4B9mWktIoONuNiam76iVfMUTDZf\n", - "2onx48LpX6FXoYAl2NeBg0WwdsHvLENfRP4ayMK8/kIgchk3bMGJI8Cjw8/VBJoi8j/A4//SRf+1\n", - "JmE2jdRLOOsGauPR2P7TbOJvbMGlW1C7kjRTIUislZvQDDyVxXYsmv5NJOoDmiWXVCIkF+poRh7b\n", - "CFDRFEosdKbRySJEaIEBWsggGrCsmhx2A6oFRZeIMTTyvk7RiShGDoXBeZ4pFOhaBVyjT2h4lGQD\n", - "CllEBhiqS5s2qYslJuoa3QmN+cDg1OxZom23wuK74dlPQOqzMF4A6cWmVt/qwcsR1eQasSYvtN3/\n", - "1OG/AD6n1KvJXXhD48vAb3EdgpEhz+slXK8fFSKiExOjFbF0xOUAQs/A4F3Yjx5Fy5nMd4WM6REY\n", - "Ic0dsNsCmnBTMxZxfOp90KlDsgt+AIwB1avGrEQKJ2D1j+GucsCqNiAsKHxLRxeDCTS6moNSiuwA\n", - "XEuoRWnCdp5cZguTM3hakUgNUFEbXY0g2jhjYYeB7jPQNCKSOBKiK+goE8gjfkjO1AhDodftkjRq\n", - "ULQYSA59q8PcMy5Lk5MMRubhiQXY7sD0FLQy4M4SLVVYuEexzVLkej7uWINK6QbqS9Ow6yQUH4X9\n", - "h+GsQHQJimdjZfpryr6/2ngzBiPlMgzqkBq9ov3wHEza8JBLexSmjQx21aYyBrnIoakH1NQtbPXf\n", - "A+UIZANGDsGmB78gIl+BAx+E99Y0zs9nGWRdtkpgpYWV0SSbajdRO0Qzx7CCDp5po8QmkESsIKE8\n", - "RoKQPQMFXp7nlEZbE7zIoO945FOCjk1b6yJozJLBpohg43CJVbmZvutBz6dz/gIp0yM7Dql2SLcB\n", - "Nz8Ig7eFHHQd6myn5vpczHmYgxxsTpJaKqPnYPCwUs3/FUBEsiLpd0HpUCzwU30SOD8kIb4oq6SU\n", - "CkXks/fDx/ZDMQvBBlgXYLkf6/a8alBKbY2LXDoJ22+EcgUmQjgYguyGp2+D1Q3IfQN+exX+HsJr\n", - "XDBDDa7Z5RPM0O/eAA+n4W1FcMqQzkIrBccegqgFfzEKfxpAxiLKteiOuIgWYEgFP/LYlCI9Q6FN\n", - "TiLSoGd5OAKlTpGg4GCqNIbWp6mV8CW21fJMHTMycaWIHtZ5LqeRQ2dnpJGTgNFkRDWhkEZEP53E\n", - "MNLM9LL0cnME0TK6WsASHVd5uJpDGKUZd6uUd2YJUyWSPSFp9LCngUUBScLaAvyfa7Hlaf+HeAst\n", - "w1IIt1iQveJ5F8Zg60s/1gl9g0EEIS7RvAIdpJ8afB34TyJkfxI5MiKyC7b9GkxmQAmUWyLyeaXU\n", - "CrC+Br4D2hT26QpbN5uM9Jr0sn0KxM69bh/KeVjeAXe50E3GGkrJLsjviMjHX9rp2TkOqwN4dldE\n", - "yQ2p5lOsiDCqICUJfAJqkc+KDIMaCZHREC+aIoq2g6FhRBNgN/GzJcCgqZuEmkZAiMMYES6RmgTX\n", - "BiOBcpLYtmDpa4QpoW32aUZ58k1FPg3zwO2PLPH5X8iwduhugu9WYPUivKcNzj7YaNB7dJPze3uk\n", - "tuUJ9btwnjkUp7iLc/DUAnhfhIyg0SZ6WMG3X6/y65suGFFK+brI330LPnoIwjw4m5A9Aa0ufAWa\n", - "3jqbH80w4ul4tR4bIz7Lz+aoOjNgLEDJBSy49HY4vQpzVRJvh3mtyIN3zdHdNYkkG0SdBbqZInrf\n", - "wBFFVGriZmYJZAAqg9JngAGe6iIsY6LIayEVfwDaBglLBzHpJwJ0HQxCFBYFlcUVE0WIMEKSGgU0\n", - "2k6eIF3GHzhUnlT4d8Khc3D4FPTnIJOHyS2PC0sOW6UxojFIGCZWqkf7xjL1LRh8CuJABKb/Szgy\n", - "AnNNGBTg5O/CmQe4StnwinldFpF/tw77k5DrxpyDi6/FF3kL/vYh+K1LsN2EGzVIZODMnbGSMjPQ\n", - "3QXbV0GDJQ8aqbjpBuKq0Zlx2Prbq49bgLtvh/xhOFaGjQYcHof0UXh3Gz7dijUx0rNQ7sMpA2ZN\n", - "PLtFfWwTK+iQqChGFkfov8snNMBwR9DbJv2whlZqYZEiM6izlhnBIYMii9CkLx0SWoQQIj4YKiIT\n", - "QWRY6AK+FpLzUzw+NgNhHk816adbaGo7GfZiqyU6qka67WJmQ7YZHuOjAUrr0MzXWR07iHMxMexS\n", - "OB2rTJ16pa3ySqmeSOJL8LV/AgeCuLtgJQ3nLoD/7Kt1Xt8guJu4f/1a5aqfSihFS4THgfdzXQXQ\n", - "fnSISAl2/w68vwOTQ/L6Rg6+9TER+fdKqW5C5EvfhF8/RGSnqJxZpnngIpoRsGcVxh8BpcFzH4Tt\n", - "SUjbsFkAZwl2nYb6neDNi8xehK1HwDs2zLpUQZ4F5w7oLxo0jDzpTIcwo+FLipSCpLfFc5Zi30Ax\n", - "pruEeodlfQo/7EFYQFFHUn1CxhCVp6mnSeMSUkCoohgQkQKjCEED/CTBVp1gIocrc+iDFmJ28fUy\n", - "osDZD85Gm1/65tN8+o4ltsYFenX4NwG0ViDRhRWIFiL6/9V2+HAf3IegaMDaQVh3Sd/3DLsMxZ41\n", - "WH0nLIyKyN8opV5zO4Q3XTACECp1TkT+bAMOp2Li46ILJ5RSfRH5QsC5pTalnwEpxs6l7e/l4Y92\n", - "QcWFVAoGyaHpjwkKjJRBeXYfg0yOhJUD10IP6jS9Jnopi2rrdLO70aM1XGMaor1o3iaR2UML0xTs\n", - "IiQqbKoIM12laGYgSOLo0FN5umGZyBiQYAJbRjGVgaJKSAQqTdofYERdwsIlknOKO87AmgvRjdAM\n", - "wJ+FgoJGBnr+GhNBhLmVp5O1aTsVpN8gfxwGQ7+B9Nvh1hLcdkUGZLoNnXtF5JnLvkJXY8iCf+pa\n", - "//ejQETGgTzQVEo1rvE+HRH58xrMjMDvfwCCfVeRZ9PDQ8Hq5+BrH4W9GqQjWDbh0gnwnxWRWWLV\n", - "5Q2lVCUHt+wZpmSnoDIely6yyzC1AA8opZoikjbBeSd85zzMbGC8C8bXdpLf6hKaDqlcid0bq6wX\n", - "TGiMkehl8JOL1EcbJKM0UUJho6NkCyFHRIoo6BBF4OtNIi3BRD3FWDOkPKehSUQ3kcQzSpjBBCZJ\n", - "Qm2EwGuQUqukmESLsgyMZbykTcKEkAi7ZLKnpbOrM0AfOU17bj+dZ78D8xegWo8Fr14xlHKPicgG\n", - "rN4IVgYaF4ALL2eO9xOMfwp86vqJgF03fJm4g+gnKhiB9M1wUIPJKwLrmS4cKML6AeBJV6njIlJb\n", - "h8NJKDbxPuPDAvT/GDJdSIagX4KEB800qEWYOAq1O2FHDkYXYbcGz/0qnJgAvhGvQaVTMHMXHFi3\n", - "CMcFO6FYCzQiGcRdkIYiFDhngKmZWI2QnNXGzupoA5sg2SMydLSgQ2TsJog0uuKDpFGXzfKUHXdG\n", - "6Gas/eG3wLgVFUUoCdCUTqE3jxWcws4qOpOw85zH+KUNtv7dy4mEjous74MHCzH71stC8AzZ9ycY\n", - "cwwmWj5vW4tbO75/I/zDJeA154W9KYMRAKVUFfjWNR4PgSeGt+cxIXJhHbbvueKiV4P0FvSgfyzL\n", - "6j8vMtHqEYy6mAlIkqCpbVExmiSLBwisHKE7iHu/Mmso3UXzNcxuElUtUtu2QS8ZcsjukHYW2ExN\n", - "IWIiKiTUCuTUNEEUd9wkCXElQxh10KjTM2zcnItoNlkf+rfBzhQ0J+HZHSmyTpq247Kp+9T7Lu9b\n", - "XiQd6pybijCPKg5eiFPu9+8CjkHxJthxVRCQCGEOOD8LXDMYeTUwJvLRQ3BwFMIaaCMizzbhy1dH\n", - "5kOux3pG5HuduIvmeYQgKzHJYVOpsCoi/xaW94M+Bu4isAGF/wlG3xWLF3URKT44BZ5/BR9FB1WI\n", - "+/MKvKA2Wt6Ebg+sI7Dkk7zRZKy7QW+mTTpM0DqooYcZsv4GXn+VyOygsi2KoUXkZLHTKRANjSVC\n", - "tQQyikgScVsEloYZJqEzoD2ZpCAehhES6BYNNFqqja31sbU8qbBIRJl0VCE7OEuz0OMGgakeqFSA\n", - "Y0ScL+pst2Gi0mF742mWFiL6XyLOWP3IO52hmvJ16Lh4fSCxyvavAHuv91iuA74C/G8iGErxExRg\n", - "pkagcI2Sa96HVOnyvWtxU0Sy34bv/By8rRFzPBvbIVmG+X+A2m6YBJYGUGrDRB/uXYLaXSLyWLwh\n", - "a30ezt4Hg109alMBWs4i6TlsGBFFPWQmgqKAo2uUnRx7NzTMaINnx+ucSvlEKYeilEiYGmXO4jNL\n", - "nK60QSYgGgO1Hjv+SQ/yLdDmSZg1RsQmJMAfWGQGOVJemq1sn6wOp6egWYOXN0BswPky3Hpg+Huu\n", - "wnhEzmwgymdqqO2lEbc7n7udt4KRNw5qcP8j8Ac9mJ2ETgvSz4G1CX8FLGi0V5ro74bJrEZSt2nQ\n", - "ZUpPMhIoejWbPsfpJkIoJSHQUSqLYfcQlaGw3GZThVguVHNwIGOzT6pEpk9daRy3ZsmGBgNVpawN\n", - "SEYahmaDeLiRR11GEBN0b5zEZJnWbJm5OmwPDC6NCMetAonOLNlFG9l2hvOzNvdeDJnchH0nQY/i\n", - "r4IMvw/RAJxrOCw68ENsoH9cvAP23wbLl9twHoVbnoQ28ADErdlXstttOHoMbtNg206oD8A8BaOr\n", - "MTm1CqDBxBTB3SWCkgN3rGPtdti7He7ZgIIHngZPvrfC42dP0qvcc0Wv/Trk12NS7jo8z4/5/P3w\n", - "sYNQbOOoZTbuLpNIhaSigPlEl75WwnMStLNVXNNhXyZA1yIip0nT7rIyPo4nM5jKIRm4GMploGfx\n", - "7Cq6FtBJRIzpJmOBhRZ1CEyfpqTYivaDE6IS4CXXCcRmPdhizOhz0IeMxGaSYw3YUY04XohQy7HM\n", - "9lg5oh0p1XsD+whdd3wM+LpSLyYsvhmgFKsiXCK27njgeo/nlaO1GgcEjgUj3TgrArEyam8NQEQs\n", - "SN4KI2+PjWQbR2HwFPB9OLoVt+eSBm0D7lyGfAfWJqFuQL0DNw03oIaCGQXnJ4CWUsoR0T8N5p9F\n", - "zGkRxcjE0H1CCWkGAX2B2RBGwghNt1kfS7O9qUhKm5wVcKPA3obLaiZPQYcFQ7BJQGTFwYgqQ1QE\n", - "MQEbmCSb1okkQEUFxpt9PMuhPB5QaCmc5CTLt1t0PJ/+P9Rj37DT15q1CM6ehuUEzO+BWgMya3jF\n", - "FWbOw+4r1G+NaPj2rzneCkZeIZRSFRH5szrcmoP5AZxrxXXltgGHXYJKk25hjFxT4aZ7kNSZD3v4\n", - "CQdnooboeylpCUKtSUufIvCa+LkB0WKa1X4D9ynImTA7D6MT0C8IpAyMaMAullmWnSQiCyfscU4G\n", - "ZPAQAvxolkIE4xp0TJOxzAzJcMBKocfNbp7dbZeqjHB+M42YCfROkfVdNqe2YPZR6GVA82FBIBxe\n", - "hKuPw6mPwFQn/gECbOZgyeaKC/VrgSOwdjk1oQG3wfoFuFPEqMPEu2BuTGSmDJUHlArPxXwG+fMO\n", - "3P4M3BRCpwrfiuAkgIjM7oeP3QuNSVhtQOGLZG4pM+b45IeBlRXBreuK1R2Pca66ivGzkyg/Iqyt\n", - "xP41n7qS+6KUWhKRf78K90Rk74uYGIFpgQywri/SI0KZaSg2KWR9pnp9EhWDKB+rQZrVC1ycuZmk\n", - "ypIKhVBqJFUPFXYIVoVSwSTs9Tk+pjCMiEhl6Kk5rChDgEPaVyT0PF3jHGbYwfMh8qDdgWQPSIPp\n", - "wXgf+h6UdcjUIHhZ2+83O4bE1T8E/tn1Hst1xGeB3+QnJBgRkRGYfDd4+6CfgLoNZ9cgW4ZzmxCd\n", - "j7tsRj8Ch/fA/hpoEVz4ADxzAKqfUCo8zfCCHZu6PvxzcPQQBDMw6cIN58FLgDnknHU0ho0PIpKA\n", - "mXthRxl26Q7dGQc0Ia0pcgKrUfz8UYEx16Y84VHPxurJu7MwE0GodSg5FoN0mboqMNB3oMIl8I/F\n", - "u0RR6DRI90ZIuwajdNjM5OkHkNVTmJFDQm2xVJiD9behnp4hXPIhehA+OhSCXLp67obSB596GG49\n", - "DndGMKghZxX3PBe7QFzGxXFoPXj1618LvBWM/AhQSjWBb1++LyKFafijQ1DqwO4lIsthbTxBxm6Q\n", - "DAdI4GIqSJp5iipDKjJAOqQ5RsVK43tNhC7u6gZ8AuzfBnMncUsXAxx0uppGmho51cHBJ+nbpEIv\n", - "dgAeFOkk8xR1nYztc2ZcI6lM8kGGWrpPDyEZ6uRtG7N1hI3THYyxLKLDJQf8e8AwYMWClQeIMxBA\n", - "dApOPQqdO+LSjA0sDGDtr35I18WPjcvmhZeRgkCQebjxI3D3OkysxAS1x39XxPzPSvmnhlyV7wxv\n", - "L8Io3HkLOAaYKzDnQjpW9hCjQTcD+f7wnQNIz/Y5NHqObRfP0yooqgkoH1XKfomqq1KqLTI+D8Xp\n", - "DGlHo1Hw0HDZo3wucZF+mCRheCRUxEgbpk56dKcCKntgOmzT6/foallszUDzXRKNGlk7YO2TEPyG\n", - "z5QBKdMklTDxE2na+gA72SXyLVJtG2dUkfVHSLsRJh5bkcfNX4SkDau/Bm4RNnUop2D8aFxdrL6q\n", - "nU0/ZbiPmOD7Zp6jvwGeE+GP3uhtzbHw2MSvw3sTsO2rsLEXBvOwsg+OnoP+Xw4vuHtg7x545xWb\n", - "qNHl+Llb+7lCBn+44fw2pHbB5HNQ2BvflnfAzKNQScD6JrE5F8AcjOVgxIbQhbwTe1+5hjCqCwmJ\n", - "TUU3DJ12XmMZj1agmNqE7A1xc0A5E1Fw6yjfxKdNXZbx/ByoELwaujFGtjPGxAWhv9sg6ftMs8pq\n", - "IknHMbH0ZWxDCJ77PXgRKf9W6FVjBeyll5tHh9JUmdECZBVsePCNI3B4EdIurOfgRAX6T7zc619N\n", - "vBWM/BgowfvugGwHch247RYC3cKM6vRTOvpgiWoIpQSkVIZcZJMRDVt0xv2QhOrQbq4Q9fr4FWhv\n", - "QvfLsHQ7iAX5iksr1OmmoK0rEIttgyzGmoOaElSg2H8UnrhFIxFp6KGG4Sm6BuSiEPSASCJcR6Pn\n", - "JtCdGdgcIag+CglwzbjsYjpwQwWKOTjxYeBzwzLIV0XkSTg1TVyaWXhpe9urj2asvfx8DXgdCi1S\n", - "k3DfsbikAnEq9p0hbH1ARE4T670UiLVPBlcez4JtA9jbgrEsRAqMNJ3cgL4D3hXpx40piDS46wLM\n", - "duKIyNXhy/eIyFGl1IsIsiJS0Bl97wxOYYwRQ0iFPn60yapsMRZBz3Q4sAyLeRg7CYkBdGoR3ijY\n", - "WZhdrzDVabE2qqG2QvIbLuEGrD0ZK7a398O44ZPt+GxMp/DnfBJ+AzGEVlFI93JkahpBqsToeodK\n", - "SWf9wIA7vwHWf4YTH4CLGRh7Gi71YPO7EF0zZfsWAPgj4P99ExJXn4dSrIlwEvgAMYfkjYwJmNoG\n", - "e1fiuzccB3UctiVgI61Ub7jJyO2A7cN1azMXS25kHNjWh9INXBGMxAHO1IfgvT3YvgZPd+HM/tg1\n", - "5MS7ofENqHzmxcJslhu3BW8PIbNlcmEqpIPCUjoGKWxyuMqnIkW8MKITLmPqPsEAVASlLjTQ8PQE\n", - "oV5EBgEsrIDjIisB4zv2kt9IYYUO9rYQx8qS9nsUgjpjCx6WWWWtfRecvcYEdRMw/fJTOPIrcMcB\n", - "OLIWZ8C7Vfj6fvhaNSb2Ns+Df+L1Mju9nq69fwD83niYgbwAACAASURBVPDuf1BKfeZ6jeUfAxHR\n", - "p+DuCiRacNcB8CMsFZI3s2gofGwW1CqzBsz3ekgyh6YpCgMwQwMlHXr6gEwWMh+G8XGon4KV0zCb\n", - "hXwVJt2QWsHgwQNjDETD9gwStSytiRRjmT6J/V0SUYtmYoTRwEBvRtSSNko65Acgyz0ujeSxBzP0\n", - "1zYhdwzGN8k78IGzcSR/9BBs3QYWUDwiYm4q5T8Mz5N8X9f6+fdg+jZoTMQiaoXHYKLN5PILgchl\n", - "jNuQ3Q7WnXGqtpiCPiLFp6F9/+XAyY5rJ/O7YOWybFef3vo3ubAX5hNQ1KCZhdOzoJ+B2StIX4kQ\n", - "dgFn5rmqWwdIFOnvnqIQgpEQDF/HMGYQ1WdLG2AF0A4h9wQ8W4RoDrQ8qAxUDcHJJrGqPvPfCZi9\n", - "AIk+fGkWOAfVL8KlP4FEHRbHNZyxHglvg0BtwwwnUX5IOGjghDB+KUmmk6e2tIE9OaCyF8SG8peg\n", - "8hCs9oCKUqr/GpyunwqIsJ2YK/G713kobwRcLtW80YORBKSuUkYVYpVgbfyFx7wedC146DaQWSgp\n", - "WBOohDC42rCxAKUpmB92Ed5+HtrLMY/v7DhUPnXV72gVah1I+7EjxYQjOCKA4pwoelESkwAnUlh6\n", - "l1ExGIRFKk4NpwzHZmCHo9FUJXqhyYazG+/RIpxZgpsuorIeGXcNZ3Q/ySWNdNmnucNmkGhAT0hL\n", - "k2oAjc924dDVE1SOF/ila02eiIzCwYNw28oLnP2cB+9chK9oSm3+9Y9wLl4VXM/MyP1KqT8XEYOY\n", - "qfsTEYzE0TM70vCrGbhnWJyfaJDIjjDeNzFSgJkkI3m2IuFCV5E0ttAlRzvMMxGEeIkWZW2VbCri\n", - "8BaoAexegzN74MEmnK1B24wzJG53guDiYfIdlwVJEuSzcOIJ/MN5WrMpjKCOaw4ou3koD5D6JvXx\n", - "ATiwuOQzON2l6h5Duc+AW4a/VuR/A8Z78P3bYGIG9rTiyHhCg+O/IaJXlArPXY/5fQ4+WYZ3mzDp\n", - "wXoVvgTyEfC12P3yMvomNPJw8EPwnjUo1uPnPH07PJkkTjljQaoGg8ZQ5C6IGWzVFBt0uN+D3Ay4\n", - "deh+Fz5wDSXIUGLjOhARk9inwcvBr0/h5jK0UxEp3cUwFCYmoZagxoDEOpzpwM88A4//jEVmZ4ac\n", - "puNpMN5x6IQWi7kR/H01lm/z6Aygfhoyh6H/KCx9BYI/hBvyKcb6SfbVW2yM9jg1pgiCCM1cRYsK\n", - "TFUHXMjfhfv4M7iZJo0vAGWg+hpIa/+04r8G/lKpF9SD38T4W+Bfi5BRijdEABtzM9hBfL1aI87U\n", - "FmCtBPUWjF7R1ntpHOwrMoDuWXj2D+EdU/C2ShyweDo8Phu7I7wIYdw0F/HCBbrgxkJ/j2aBjIjY\n", - "Q78mHZKHwclDMAonMqBnFUkzRRgoZkKFa/pckDQzyqCowPM0Ik1Y3jtBZU2n3a7z7KiGUgX81hjt\n", - "Y32UrsEvb4+7CLQW5UqN2fyA1g2T6I0+sllhc8JGXwzpPBPQ+QxwbB0+8hgcOALrCQg3IXc07vb8\n", - "/stMaz528dCueniiF1uNvf64bsGIUupyDS+En4xWMhHJwejvJlG/NMNgXwHf6BAkDbB10uKj6xa0\n", - "NZRhofwIyxynf0nnwniDXZMLWFaChXyIz4CkUhRdsEtxMIIGR9ZhcR7Wn4KbLNixBX0rSeV9IY1U\n", - "gcDZCc0VKNxMu2njRAnSnVGC/BaRfY6i8pl3obEGzSZUqtD4hIc6uX5FK6fI9D1wZhqYgf3N+Aca\n", - "AVEEt25A/V7gugQjSqnzXCU/LFJ8Cp68A+5YiclVvgZPzsZy5LdXoThMw5oRvGMFlm8WkQeUUs0E\n", - "eHPw/WfhkMBICFEKVubgRIXKn0OlTry47YSlj8FeeYHA1bPgQgjRck7kffNwdxr0JkyNQGoEtVik\n", - "bTUxxjKkNUFwcUODlqMxfjxi7dPw1d+zSNw6wYxvEgQmTujhhR561iZImJzMTWB6G+x+OuIXTsCJ\n", - "98LROag3oZgTJjUTlYBwWii6HlObZeqqhG4psF2OZw5Qe86EcAvqwPG3gpBXDhHyxNoiR673WN4I\n", - "UIqqCE8Qe9V89nqPR0R2wvaPwM5kbDx3sQR2Eg5sxGKG3/1l2P0s7LgI60U4qqB+JeGyAzRASrBa\n", - "ite6bgS7HoL1GREpXNbiUEp1RSYWYvmC/cOM8MBI8LW7Sqwli/AvO9DURb4Ghf3wtnfA4VWwvwDP\n", - "/BZkDANxp0E6aEkHX2wSZkhg6NSUgatNkSwJowR0xkt0t3bgPLKGmjwC31mF/QdgfBL6KXBTkFml\n", - "71dYX1ynMLGGlME5Ac4nlVJnr5qnLzwG7zsHb7dA78JWBf5SKfVybrsNqAkE8kKTAsB6AfzX3KH3\n", - "WngjcEb+BfATIik98uE0pfsOUpu5iUzFRKjT3HmGoNRBU/OElo3uJTE2t3Ane5j2JKmlt9P+5tM8\n", - "90+WyO7uMm4pbvAgFcJcD1YNGFhQ3Qbzl+Lr5YlvwqO3wcl9EM1tsbVnG8F6AgoJWGzB+H6wu7i1\n", - "cdyNdchn0fwmyfkqqcfg3Ssw3YXH5uCxKaXax178OaoPwNH/Fvaa8Y/T12GzFCu4z22BMXVdpvdl\n", - "0b4fnjJg+UicZt0iVkPM3flisSOII/2RkJhD0uzDcR/edi98rwsJK3ZJ1r4Qm3NtXi7niMg5OPs4\n", - "OO+AXQH4EsdEK39XgDuOwD23w1oKgqNwiw2JBnRGCJZKVLI6KX2ASA+as2TWUmwUVinuhh3rGVrN\n", - "NKWGTzfdprndYIeeI+c0qSR0eilYyiTYuH3AsxHsPwe1AyA7YNuKojXjY5cMUBnsVAKtlsU45dAd\n", - "SdNduREuuSAPQHITPvNWIPIj4/eBbyn12naJ/YThr4hLVtc1GBGRNMz/NvxCDyZq8TW6eBjqCZhZ\n", - "gHufhJOr8NSt8OQWOEeh9dhlz6wh9FjW/cA3oDkS8+N3NyHhQ3obkOR54j5A7Svw8O9BZQ5GgxRP\n", - "HD5AJX0PwTdGoF+FzHfhn5+laMK7T76wcXE3oTQ+QKIGtlWg6rXpWyE3CBRCA+VrtFSLNWWSdfIo\n", - "+yYGtXMwPQa5JXjvKGRNUAlo9cFKgL0fumn6GwX6F47G2d6j1zLuG65jXxORB4hr7v0ftBbEBPzi\n", - "k/DInXDbRpz92cjBk0WofP7HPnn/CLzmwUjcLvWSL/WmUuojIvIO4GeJlf+u9do/ueLu95RS33tN\n", - "BvkKICIFmL91mtAaw3ANtEgQNUJxaZatXc8huk0Q5AkHHn5hCy1MUlqcobzZg1veT3TpEUJzkdEp\n", - "jVSlgTvmEg7g8BY8nofWDGy/BBUNWITqElj/PRxZ7HDzqQWO3rGN2vYFBroN6RbYU7CRBieEnCJr\n", - "ZigswZ7lWPgK4PAGnH3HMEvwfPZJqfCiiPZJkP8D8iUggPTJeHexVgB//VpzcL0w7OD5ooh8l1iZ\n", - "tQX0ILUdNvKw/YrFJBy6ZNIk/ufhJ2C/C7Oz0C5D4QSkNuELVxJyh6nXr8BzR+HcDgh98C8A3hj8\n", - "8l2wYsYEWJIgu6D1BGgXwZ+ArTwDq45kPcz6blonx/HdNcYPKKY2LSpuQKAG9KyIaaWTNQIiT8dL\n", - "WUxGfSLxMX2Ym4FnJ0BrwaQJjpvFHKRR9QKBlcWK+jRSLoMdZfiLDjy8BTN9qPtwZthV9BZeIUQw\n", - "gf+GWOjsLbyAvwP+gwjbleK67JKH2A17EjAxFNqrT8a+dSM9uDQHe2pw4ybI0/Ctp5RqvURVWCnl\n", - "iUyvxRLv81fw31oJ2HKAxlXPr4vIx6G8B8wbtuFOfwCeTQxFDyegvx/UGmquh34izp4evRtmNSiW\n", - "oaCatCybCymL2UGAUfIgABGLEl1sJmg3CwTdPORHQPdhfQXS2wEX8jVQPXDHYdEHFUAqiLOeay/v\n", - "IPzC5wW8IZ3gh6D9DXi6B5fuHsY+Vah8Uim1+MNf++rjNQ9GhqqN9179+FCK+/8CfunlIjil1J+8\n", - "tqP7kWCBliggCpLtAfZIBmugoQfjmOUkHapst9YYPx+QX0mzdXCchcY0oS2QiMBtYeYEQ1Kk7HH0\n", - "yga1UkTBgLRAD/jePotlfwL+uIO1q8cNKuLQE5Dw1xj5dp2H+2WWbsrgV1OwlQGnCsUI6gH6SAcj\n", - "gFH7hSGnAjB04vP8olKYUtFTIsX/BNU74bZlyPpQycJTJai8xLfljYA4mhdzBH4uA4dsypkGD80o\n", - "7nsGZjpgG/D0LFSfuiL12hCR/1iHIwXYY0O9PSTlikhp2K59+fiKuCb9fCuviMyOAGZcx0LivzeI\n", - "CTbmJJyfAicJgUIZB/G+ngTvcTggmKIYb+sEVY+LIx4JA8ZCD9f06aSS4EAytMmZAek+zHfiltxH\n", - "JmHnurCcSzOayDNVsXHSLWojwmYwS3TMg9ORUs8Bz71+Z+CnDr8KLCj15vGheSVQioEInyPOjvzv\n", - "13EoVkzRuozQiksKWgBh8oXHUz5YuZc/TPmb8Ojvx8JoMy2oZ+GZAlQ+dy0l4uEm5aSIuLNwJPGC\n", - "+jIA49Cw6A3f7/wMzGZg9zo8XgSiiD0nBmwecUjq4JQDCvUQY8QEMcnkPS5a8/T6KUgIqD4MdsHj\n", - "a3DfFNACbS+cz4JzBkoDaGzGa1JbRG4CSYDaUEptXDkuidXdDo/Be7bDyJTISgW+o5RauNasDDeo\n", - "D4rIw8SGme71zKxezzLN/0LsC/J3wyDu516vFqJ/JBrQb7ZI7pqlUN3CKUR4KQvoE0Y60UWXxS+F\n", - "2BnQUkKtdwCvp4NWQ58tk8p5aMUuoWHTmS+QLBuohse6grNpaLXzNNL3EtQOQvmLZA52CEo1Hnuv\n", - "z75HYHt7wG/cv8nfeKOcj56A7dsgm4oJSxcWse9rsOP4i0mey0Xor738vLa/Ckd7sHgXJAzoNaD8\n", - "l0qpS6/LjP6IEJHiHPzBnWDsgQ0HzO9wMXuSxi0+owvg+tD4LvQevvJ1w8DkQZHUAOZ+AXbvif/n\n", - "khJJf1Up+wf10XeaIEEsT6sAJuHcxbg3UCtBowz7p8CehKeTQ0n5VXAi3CqU7Cbbz25j5UAAiT5G\n", - "CEYUEtlChgqNrE/P1/FSIY1k7KrjCtRbFvmLORbzLuWkhqgRutVZmke1eFt3DYXct/BKIYIG/I/D\n", - "21t4KT4B/I0If6oUP3A3/hpiE5YFDg95XNk6dPXYTiV3xRq1koX6S1pbL2No4vkfof5OSM2DV4bq\n", - "51/BOtceqqS9iObpQegzWIczE9Afh1knHt9oFdYbsJaD6kARNOHur8DW9pDaezyinMa62kXFHsDM\n", - "OSgugTMBD98BFx+GERd2R+BdgqwDE+fAbcOJOjwG8/9dnClKAcsiUjwK7S9fFmTMwD03ws/fBpVR\n", - "WF2D0uPwzwyRTwQ/4LMOX/+6OPP+IFxPAuu/uF7v/Y9BLANu/HWZ4s0jRGPjjC5U6Mx41EdWicpL\n", - "8HGlwudFt0Rk8mn4pzNwWJHYngFl4qoCDS3CKjSxcz7pNahswubHLbqP3Ak/fwus+aD1CYo9erMG\n", - "xXmf0yPx9e/tx1xGLm7A5zcgtwpvS0PBh2oF/9/A+jvh4ljMLq8U4KgB5Zet+w53BQ+IyPeI64z2\n", - "G5lzkIVbb4HEgaE0exa8D8Ez0Jg7RuP/AxZfznNFRGbg0AfhF9fjjBHATQZ89YMisjTM4L0ESqlu\n", - "UeTJf4A7b4fVJIQKvBU4dx7OVsFw4Og8JA+AdxqmzkFiCb4NzRZ86zc9JnIbTJhJyrrPIjb7j4ZM\n", - "bKRpvyePZ+tsZEYxZyuUx6qMroL9V7DSdJn7OQvp7cdY7tAprTMYXeSG2Q6yr4WdEkkuK+W8tav/\n", - "x+GXiUXOvn69B/IGxVFiG4T38DJO3a81lFIbcav+d2+Hg3WwHLjowlYW7mxANROvd6dXIHrZYOTy\n", - "sYDPXf24iExDeh9oBvQuACuX10ClVHVU5MxTsP8IrJsQbcUu3oUug/8bHnwHpA6ANQqNbtzAcuMC\n", - "NBPw4E1xZfegCTvPRhTXPZ78UIq17Bojc+tkTRtXSrS7Ac6uS7BxJxz9ezCqUNP/f/beOzqu68rT\n", - "/XblQhWqgELOIAACBHMmFShRWbYcJGfZbdnu5Ncz73WvsfvNmuk30+3uWT0zr8PMtKdf2/2m3XZb\n", - "cpZkS5aVAyVKpJgzGEAEImdUzlVn/jgXUhEEkxgAUvWtxSWhwr2n6ta9d599fvu3IRSA/ii8DfRB\n", - "3R8b2hnjOrUGeH0DvNsNHBQRRyPcvRX6nUYWvB78JlBTuhvzd67agblGLAQB6w2DUuljIvLNY9j/\n", - "Dw9qhYOURVCjBXB0EWxxiyQj8LbSjIrI/xyk4J/qscV9FBQ2YJck8fQwfdYoWSkkFk8ROhoj8e0i\n", - "+FSVXqthN5aWDA1WE3VpB6WpGJ4EjFXCttugfzdw1Ihm384dn4gch7FbwVYB0WMwvUMpNXLxz6VS\n", - "wDVvEX2leKCl6iyxmaYGOADuCzd/cy+FJan3AxGAgjS0paG3nQs0gAvAC3sg0Q23FoApCLFx+FFc\n", - "qb2g++VMQ1MfLM1AKgDHlFJ9AB6R28twLXZg6/cR2+chHtpNfF2QwiVuMl4vKXM9priJuKOAjDXO\n", - "mDVI6BVgCI6d6cfxh1ZGa4IUOE2sHM7glDDOHlh0Al77tIhMztca742KkRX5M+Dff5hNzi6EUigR\n", - "vocW+M5LMKIJPAM7u6FrE5gcMP1tSKUhuEwnK6eeh/i+D+IMLeLeAssehNa0dl7vuhu63xWRX88E\n", - "JFPw1A64/ySsc4ApAIExeFwp1SEih4C3wfz78EAfVIQs7Gwu4fgaL+OWNLETgzy1KkHlIGTFxBBp\n", - "SlJOqsedWGPFpAtThLwpuio7iW2YgGNjsGsM/jlXzyYirbqaqDzH68gELJ3Q3wsHAV8pmJ2zluNr\n", - "IeCAehGxqAXeYTsfjFwmSqmTIvINF/zrZdqg64zRrMDyOnx0nxZEHTNeG/aI21NGRciKJZsl5bJh\n", - "U/VI2MmIw4z/oIKp/VAeg4mgvjP6eylqKaF+yE4qNs5gM8SdICkYL4KRX+b2SZk1tjPk9I4REdPs\n", - "xnI3MnGYCEBZpRG0zWBEJxfxRLA6wDrH92bNgsVx7uPvY5zEL4vIm+gcaWhWr5oscNr49x4iUtIO\n", - "ZZ8l8rwpZ3jFBIOvE/zqSgr8JVhMWtdjwkPSOkysKqiV8FnggIh8/Rg8Yqblaxa8oTi+3iw1fWBL\n", - "w4owDG4E8sHI5fEw+azIpfA48OciVCl1dsfb64VxHsyljTqff8YlISLlsPQB+PgAOIxzuV3gxc2w\n", - "5zjQaew/DjwrIi+jK2+CM9dTI2A5JmL+B3juM+BsbmB05WKSo83EdvvAf4JA+WsEomE4VkzRGhPV\n", - "oWqcIQCFORLE5Buj2GMiVngQ3knCG3M4XVu0pGM2tozWjwAQCYEpo32U3guwp8GR0hmueV+GuRj5\n", - "YOSDUVULlRtzbvxOSK+BiQG4AyMYAciSCmfI2JzYsk4cQROismTFRNZagMls1wUahSE4eBTu8IE7\n", - "haXQRtZiQaEwnQTvbnDEwOvBaNI0g2HEVYReYokYj3mh+B6oXw1KiRTvB//rM9UW2mjO1AYlKyCb\n", - "hslD6LbyC3qWOAW7D8PaCrAX6ZsJ3VDSpatr5hRpvc/0Kei5TXeHn1kBzgI9Dgh2Xsr+jYvE5Vji\n", - "u4u1x/xZlEDUjPgKsYwOYHFMYrNB1lKGJWzWF5clwE5jn0kROZmhcW+SdYb1td8D/XUQ8YHJKyLP\n", - "5R1WLw0RLMBfAP8unxW5MEoxLcJP0PYLfzbf47m62FqgJft+IAJa97E4At0rMIKRGYygZE7tnVKZ\n", - "kyLyV6XwjTZIjePwnKJsi4CqJNRXTTzSB0HBbBas6RkNiiDKiTkSoCCehmNJ2D67nYXBoL7VLKqE\n", - "eBUoCxQMwYAV/C8b4wv4RI7sh+XroN8EJMC8F6om4Zm5ru26dJpGdDuNvhnR/3yRD0Y+GC4v54q6\n", - "iiFmBp9258MC2MB8eIKJzXZKsiksVhOoONOmKJlgAwQ6dYHGpFJq3CzykxD8mSLckGDClMAZS+M+\n", - "rdvfqAxMOzBKVgFECjZB/X1QbIMwIsUHwP86VP8OrKmEwiJIlsPUBjhyi4j8KZAB3xe0FXBzENJm\n", - "OLkOTr4N/OZ6fYEfBKVUv03k59PwW2XgyEJ4HAZHdD+diy0zdcGpw2BdCS1+/VBnEZw+yBVmFkTE\n", - "BLY1UHIbmN0Q6YDp7cD0+CzxK3pnFUHMpv1YGxw0iAurWJDUEOHSEN0I0TaMYMRgHAZF/+RGKyG4\n", - "EUqzEHPqbsG2PxCRfwGmzpc1y/Mev402qlnQv/UFxP8E3hDhPy/05nmXh0nOdR8FfTl+vyxWn9tY\n", - "geRFJmsFWSwbjlK8TNFssuMKWzEPjBCsj3LMEiK0z0ncFCPhGSJbXoQ56MQUTJAxxwlIAg6drzRf\n", - "VxEWxOHdT0N7AApj0N0OR85A9D0PqWl49l0wdcGyIsiOA2Pwehx2z96mTaS9ET7XBFYzqF7AKfKb\n", - "mFLvXtLXdw3IByOXgIhYrLC2DDahc/qd/TpPftZNphdKA5itUP0nJrKtboK+OkIjEyTCZxhxlYDN\n", - "gSRjmP0erJMTRLJDWv8xCuCC2mVw2kS49zij6zy0BIrJWvo5dEuSqV4Yf3rmpitiXgZrHtFW6IVJ\n", - "7aS3dy1sb4OWCnA3Q0UWCiO6yiSzBXZ9GdI7oX0p3Nv7/idcNAHJW0XkoFJqQXmM5CIilVVwTwUk\n", - "s2CbBPMU7FKzmtjNhRYgy89hx1HoXANKwcRvIHtcKZUVkSIP3FqodR/hMdiRhSOXli3yfBRW3Aar\n", - "xsDth56VsGsZ9H1nDHa+BVs26BaYyS7wvYXvljCuERO+hhKcJhsQJmPL4EkIlZkyurca69aTxtgH\n", - "RXyH4c21ULQUWqIwZYfhELSfhFO3g2kDSIeIdw8EX1/glWnzguG2+ufAQ/msyKWhFMdFOAR8Hm2G\n", - "dpMQ74bTZliW02YiC3T4nEwU1Yp8M4apUvA5FF4/xMdFzC/N1SZDTz4rvhzC7rFSLV4apyFjThFY\n", - "5KSkc5S6YkVX0zRVZiuJzDjuVBSKLIRLI4yHUky/GYYn5xqliNi98JVaCh+0M+2fZIc3jJs0TTug\n", - "BZhoxFjCMrIqPxGRYsANTCulwnNs09sMX/gYTM40JV0Llufh4yIyqM7v2npNyQcjF0H0kf3cKli+\n", - "FMYtkD0Nm3aD91Vo3qA9iOM9ULIdy4oQ64agNVzOWKmHVCzGyco1DO88g3PVSaw2sAULSZhMhPoj\n", - "8MsIvGXsx1SnnT4HCyBdQb//KP62IHafi6QnSegZpbI5EW7F3bB+XAcioOvvN/ZDx71gN0Ol0RES\n", - "dMFHy6QWaMWT0DQrArcoaMrAqUaMSpWFhojYauAr94NqMJbHImB9CT4lIhOXIuI0sgZHyOnUaWy7\n", - "qBa+vkHX/U1GwXUEHj2mtbHnGCnNem8JtG+Gu3vfd2NcNgLZaghsDhB4aR+Eu2GLDRyTiC3Asg7I\n", - "jMShSmG2xbCkTWQsEFVZHGMezD4bmXXAy+/vafpp2JGExrUwlgXXINQNac3Ihqy2xm4eh0O3wp5y\n", - "EfmXhb7sNg/8R+Alpdg/3wO5wfg74C9FePxmCeKUUsMi7tfhubuhNQmWDJwo9nGk9HZotGDyTVC6\n", - "ZAJHpovqzgTL/bDjKyLm7yuVmb2s2wCNlSksQyEcdQ6Sdhu2RAYn4wQWxSjrgtCKJB97Ksux9SbG\n", - "l0aIFGeJZmD0ZUj/m/Nldr1w/3LY5KYk4KBoWqEGBwj5jhK1J2kbhK4VzNLTGN5J03NtD8AKbW3a\n", - "luC9CYsT0u2Q6IeVMD9Gd/lg5OLUN8GyO6B3Jqm3EfqTYHoLOvug1AwlERiZon4IHjjm5OBWL6aI\n", - "GXM2RY39NGOti4gEi6B8FNPkBNntQfj7WbNXs1mrLNMAzTDZTGgHhHgGaqfPWUqwlEHFwNmPmQBn\n", - "RJsEemZpKKIm8MRgsqGAfcvNdETD1Awp2od0hUkGyCzkFH9TMxQ2QN/MAy5IrYDwEGzgCpZaCmHT\n", - "eihYZQRiRZAoh/A03CYiu5RSUxd4ezP47LpPTi51k+BeopT/eeAtEXkbsELhVqjZCIF4kmRfGMrN\n", - "ZGxp4mkHI6l6olYPmWoFjzlFnHZIOaHcBX0RUsd1F+AHjO9gx3JoRncwnnbq47i5D8ZaYLKWebqo\n", - "LERE2AB8GX2xzXN5vAj8F+Cj3ETLW0qFXxORTuhZCmarnWnPLbBkKYwepHB1MZUjRUg2wnDjGZZ1\n", - "w6ZpGL+PWXoSwAMlChiP4hwYwuG0EvFkMWXjFI6DfxKKLeCOpmneZyMQqSFQW4rFFMPcFCD9hyLy\n", - "uNJd0t9DRBxNsH4xDA+jKgEEoRpnsJ/ONVFGaiAwICK7uAzNnwUcjjlkBk5IWuEC5nHXlnwwchEc\n", - "UFsPmdmri3UQKILUoFJ/AyAibdBg/GAGq9NMFNnJmtKEiqtQahNsH4boarK7u6Bopxa6vjfzVUql\n", - "ykW6eqCqWVv/AjAFzgktWp04ewTJAd3UyJ2AkAN8US2cTozDQI2uwa8yMiCTThhIQ9LdSmJxKSOV\n", - "DkonpzhS0cWZhhB37IVTYtifL1Scc50lHohZofhKNuyB9vpZttAWULWgTkAVs54DEBFfGTzcDGuS\n", - "dKwKMV3vZ/1BaDKOXdAJ6feOo6HAT4iYh2DMDu39Wd6dzlBi81AcynCgoRUVchGLuGDSB9Md8P/4\n", - "YO9y6B6BpkOQ7KMvBf1ebYEfLwFfDCa84MxJH1cqoIR8MAKACHa0ide/UYqxi70+z9koRVaE/wT8\n", - "qQjP3yzZEQCjBL8PoEbkDxpgKgIFunDGlBW0M+cZxr2wagBsdXNUKE7BiMCtg3CoLcXa6RSLe2DS\n", - "C70T0B2GAq+PJ++z4S+vIFxdgXvYjHvKgUx7dIb3iyLybWPJWDB87+1gLoPxEfxZRaEZRKWYWFRG\n", - "pKSQmKok3jcIv31Cl1+/cimfOQZnzoBlOWerElvtLgAAIABJREFUZs6AZxI6zve+a00+GLkISYhG\n", - "5lA6RcGR5KyW4yGYNguHa6sZ9S7BLlZIjJC2NJJJD0FNFMIlEFoN0ydgs4i8lis4HIeX34HfjUJV\n", - "FQSmwXUQCowGaLNqxEe3wyt/CTVuKErCcRME/TD1U4i8CW98A+qtesYei4B1uJix5k/Bs30EpieR\n", - "1kq82Qwji47yZEIx9V11doOphcbYAMg6zj4YA+ANwIHzvelSSEMoDCW+WZVKUa1mO0d7ISLWKvja\n", - "neBshqOHiJeHibtP8s6tw7jeAG8MDvtg9Nfn7i17Co5Pgs8LLa8F2PfJFMnaRUzbnCRjDhJTJ7Co\n", - "CYruseGydBPfbCKg7iB+tBB8LzAxNc3LhdBWDyEbnCoDVx8055QVTwln/zY/7HwbOMEC6EJ7A/M0\n", - "Wm/zADpTctORhlAEvOUQUyRNWg4oxkXBlobxAkhPz2GV0A993VC5CGp3wZ7VYK3Wq/qTu2H05Tps\n", - "f7mYurifjGMpDr8i7h0hVFxP/OdVMFUL9SNQKyIxqPgslFeBRXo5s+44U/trCR4YoH9tCofXQajM\n", - "gko0Eju8BE4sB1MM7jQ0fxfVzwF9XXDodVizBKYskDkNJcegN6vPk3khH4xchCx0noJkC7jKDS+L\n", - "CFiPgd3PWWvPwzDQ42Xqs424ziTILkqScJlJmatQEz1Q44BXCiCeBcxaoW0mp/5bOw7Kd6ZgUwE0\n", - "JqFzAt6dMdA6m+I2aByFiiSY3DpFn1CQmILMOzCUgfj9UAZkonDGtIbwMQdkW8l0+JkcmGaq1IFy\n", - "jsDpMcPAa6GilBr0iRzeDqtWwKgDUl1QfgCiUe0W+YEZh51H4csVEJrpQ3FGWzUHYM5uri2LoXiJ\n", - "MaNaTGzXaYY31mKvmuCltSmkG4ZfYI4TWymVEJHvw+v3g3dFmuzLQUZqCkg2OqDvDGbGaKvxUJwu\n", - "wByNIalhAo1v05HdSuKoF2qn6f8rGFwE5iYI3wf3ndYXyyxwogJ6xoDeK/lObhZE+DqwBdh0M83o\n", - "rzdGduTP0dqRl+fRIv6aMQa7jsCy+yHgIdwfxF+XxhEdxpKACj+8Ww0T57i4KqWUiPwEdtwD3vVg\n", - "PgF+P0y9Bhwqgc9tJLk7yVDzJBSaMKetpJSPRMgKSYACHfm4ofrzcI8FmvsBYpywbuetO7cy9EYr\n", - "gdc7CHxkAqYbYFu7biuOFbKNQAfUA5ci5lci8tQObeu9UXQhwI4EHPgg5nFXi3wwchGUUmEReeLX\n", - "8Gg9+KwgfZAZhF8ppQZyXqdE5Gd2LA+ZKbRlMY8miRRFSdj9ei0ulEJMHVhXJ0gmwnBq9oE3SoKz\n", - "ftg2PYcKOud1bmhZB3cc1KLJpBUsaai3wdgWGNihVOhFEdkJfWXoGX+JBT43s40iCBahgj3gY45l\n", - "iIXINDy1E/pOwa0C7jDs9+va/OCVbDcLxzvg1WndYEpFwXQG/MPwxFyuhVYoKslZc/VCeA2xN04R\n", - "q+vC75+C786o2I1aficQmNmWUsoP/FxEfoXOvvjC8H8ugv59FD/ooiaYIVI/SdqTwDbqoio8xHBj\n", - "gJHOrA6WokplDgOHRcwnIPYwlBRDwgST3UbV1ULW/1wXRPgt4E+BrUrlM0VXgV+guxx/Fb3sdVOh\n", - "lOp0i7wQhPtqSE1NMuAbpMA3TfUReKYYxn8NyYPneW8MeE5EXgLMuXrAWpHKGhgrItY3DUSgtRJT\n", - "OA3EwBWHwKAORpyw2AvNOZPPJV0BAvZXmfIWE08loWc1HFw3S7eSBtQs99XZiEiRMVa/cX1YUI02\n", - "5y0YEZHHgN8B7MD/r5RasD9upVS3iPx1v448zehWzueYTCmlQtUir1cx7SmCuBuiJ6DyFGwFS52V\n", - "ylAck6mbmH2c9ISIuGa2YxZpq4FP+MATB0pFOibh13OVZgEu8ChdBQNgN5TYRQmwlfN+B8YAhkGp\n", - "iAROa8W0Y0ZFnQY5Ad5x+NXV/cauDcbNfCdne3Bcje0q4DUR2dupNSIJtAnQnDf0FEyO6t/Be5h0\n", - "EJNJwH4jgHUUw4PNsLYAxA8xu8gLCaXeW1LKCUaHvSJ7XoPb41i9WTJFMeyeCNasUFQwSqjNhX3y\n", - "CNQF4c2z3V8zJ0Tkr2GgBEipnC7EH1ZEEOD/Bv4IuE+pcwSHeT4AhkX8HwHPiPCkUlzRJGAhElbq\n", - "LRE5eBqqIZOE0CScdAD+OZxRz2Gu1hox6BuD5TEotuIp7tJthh0JUvY46bUHSDmG4TkQExTPkb2r\n", - "HYhQNBlWw98XkTY/fDXXVsIP9k4diMxp/CgilRXwSLuuDqRSZHAUfnkprUKuJ/OZGfmxUuqHhqnM\n", - "bhZ4pG3cOE5f7HWj8MoB+MrtELFApgYmD2Czj1HebcXjj+GdirG8C4a9sO1WdKO6+qXw2N0wXgr9\n", - "GZAj0PYOFIrI/5pDJe2HyQxELbq/ygwjbohNYKT+Zo0/bBP52a/h84vBYgfVDXJG97c5p3b+w0hu\n", - "8HYRurtg6CDULIchE6geKDkE6YixdOeDhzfBsnUwYAHlB/s2+JxZJJpR6pzvOwjP7oEeK/HbBIs9\n", - "SU2HGbxOsGQR+wTx+ig86Z+jT4gRnOSFmYAIi9EakTJgs1J5Ee/VRCn2iPAsutz3a/M9nmuBkWnN\n", - "DbSuyJl0CnbuhQ3VuNZ7qZs0kw2cYKJxCnsoTkE2zNBhSL0FapE2N1w9awsjHgjNSAJOnYDtUbht\n", - "EWSTIKch06+NH8/J/omIux5+5y7ILDKWlXvA9wb8tiGYPW8G/nozn117Z26idi7aV+TGIaPUCavI\n", - "E+PwgBvqwuAcpfZkhi/ueD+TAToBcmA98Eop3LoGoqUQBRBQK2C4D+rHoY6cclaY0R24X4c3Pwob\n", - "R6AkBkOFsLMURs/rL5FU6riI/G03NAtYFfQvtOj4RkAplRaRH74J9x+ClSYwhbRQ4wWllF9ESpbC\n", - "8g3QNyO2LYLEBpgchrtFpHO2CM5Q0R9LYjsI6UbwhNJ4hkKMF0NvEdgGY3o2E73+n3jhI4IL+BPg\n", - "68D/C/ydUucG5XmuCn8MHBDh00rx1HwPZqGjlBoRkZdG8awqJOZJY8oEWLIrwS3HIW6FJ0uVGlQi\n", - "cga6e2FXA6wc1r1nOsvhUAIi+4xtKeB5Edl/DGqVXrbtOt9StR2WLQXHopzKukUwNQp1w7CUOdxZ\n", - "54t51YwY9uS/B/yH+RzH1Sal1DER6UBrBSqg7GtnByIAWcHQHdihshRCMbAcgsUBaAIsCZ3hWMSs\n", - "YEQTeRsORGHgLrCWQWIERn8wl0NgLkb0POe6Z55Lx/genxKRX6PXiHMrcTy+WT1pEmDug2oLrKqH\n", - "6nKRU+PwqlIqtwGZAsc4FI3C3iWQLQKJQMU+8KKTZnlyMZZkHgb+B7ADWKXUwjTuu1lQirAIXwSe\n", - "F+GMUixo8fsCYTBE8/4Qm0d1w067cS5HbZBxloh8pg5WKiZNk7yajHGoWt8zIsdh8pXZfWOMSeRF\n", - "J5IuKPfNURFYDIlCqLhKn+2qcM2DERGp4NySuhGl1KNKqb8Qkf+KXq9/anbKSES+lfPnNqXUtms7\n", - "2quHEcFGRWQABmPa96M8JwN0vAL8bwDEYGAUlgxDUzlUrIGAFTJ7tZnEQyJyZLbxlrH9fcA+ETHn\n", - "BYvzw3nU5/7xWR0034U1LmjeDCPLoL8L6nfC74nId2bK8bRlve8gqJVw7+va4t+i4EwRTMQ5x2vm\n", - "w40IjcDfo4P3ryrFG/M7og8PxnLN7wK/FuERpZi3niY3CP3Ql4S1ZnDnXDOOVJUy5roTrEt0CaQc\n", - "I1W1i6HhMfinS9GpXIgwDI3DxtZZj0+APQxDV7Ltq801D0aMvit3zX5cRGzGhTyFzhDIHO/91rUe\n", - "37VGKZUSkZ/Bi49BezG40zBgh1N9ENkBMAXv7IAtTdCwTP8gTWNQ7IXu9RANaIfRly6wj3wgsoBQ\n", - "Sk0Xiex7B9avh8EpcGVgUSEkiuGYCVgM4wndUXMzkONHMv0q7KiDqXqoTMC0DY7HYeSJvL27RgQr\n", - "8A20SPVvgU/ll2SuP0rxjAhpdEDyN8B/zx+HudFL6+afwW++BO0CrjT024VDiTWozAoYBl15sA4G\n", - "pqFhTAfZx69kv0no6IC7fFDeapT9noKyDggk59HgbC7mc5nm34vIVrRm5KdziW9uFoxqnP8Og0vB\n", - "7oFgH9CZU+o5LCIv1UPrCSjOgrJDzyI47gd7oV6qOS8iUlIAyx3g8UNXVm/7Yl1s81xDAvDcbgid\n", - "hlvTUN0AWS/sLM/JblSD360vOO+hlAqKyHdhrBU8NRCZhNTx8zS8qnFDuwVsfi1C7pnDkOmmQoT1\n", - "wPfQF++NSs1dQZDn+qAUvxFhE1rQ+kcifA9tkHYw7+tyNkplTonI/4DBdrAVQrC3BFZXz3F9r4Jk\n", - "oa7su6JgRCkVE5HvvwYP7oElAEE4MQEvzlpafg8RsQAtxdCSgHAUOmZb1V8L5lPA+udoR78PBcaa\n", - "34VKUjsV7GuEEQtkLIb51jT44hew9TaLLFkMX1wKqgBSA7D5BPQZjdLynVvnCSMYfFVEtgGtNfDF\n", - "ShjNfc00FCTmMFUzUrPnNPTLxSVy5wq4vxWSFl0ZtaUT9orIL2/GgESEAuAv0P1lvgn8KH+zWxgY\n", - "AeHHRViOrrD5BWAT4SngJ8Ce/LHSGKX3O2b+dovU+LWQ9Cz8YImB/yrtcxL4kYg4jL/Pe18QEVsJ\n", - "fHEJLK6HWBwsHXCvXeQXCaWuqSfJOTbneeaNnm6Y7ANPTiDiOAzOKdg11xtExF4Hn/0oTKyBwTYY\n", - "uwfOrIP6Ath0fYefZy6M7NeJPhg9rttcABAA+yEonPgAnikiUt4I9z0EAytguB1GPgI9S2A9MHt5\n", - "+IZGBLMIX0G72VYBy5XiifzNbeGhFEeV4pvAYuBBdHnsE8AREb4qgm1eB7gAicChY6BGwT3zWB8U\n", - "nYR4+ipbLiil4heboFph9WpovQ/OtMHYKhj6GIzUwCMi4rqa45lN3oF1gTBTLvoqfOYw1NlBjUHC\n", - "6EtzvsxIXS3YimeppVth7AisA9689iPPczGMst0nXodPH4UGpz62yRH4uVLqsrsNW6GpBZQjp5WA\n", - "oUMJnoYVzGN/iauFCA7gi2htSBD4glLvzyjzLFyMQLED+DMRvgXci9b3/CcR1iiVF2LPoJSaFJEf\n", - "xuAz5VCbBcZgynB/vu6WF2WwbvEsoXwhJBeBpQcauIY6k3wwsoAw0mn/KCJlaC3TeF77cXNgpGf/\n", - "SURK0Tqp8avdB0LNIQK/kRDBAtwJfBb4FLAXvSTzcj4TcmNiHLdXgFdEWJIPRM7F0BT+7aDOnGaB\n", - "sQUqVr+mY8oHIwsQdWmdFwH6+yE5Bc7cjrMnoWwKXr5Gw8tzBSilrvhinIKuTpClYJ7JjmSBTr3s\n", - "c/iKBzl//Ft0EPILtHtqXpx6E6HUjZ+xu1YYFZHDF33hNWYc9p2ChyvhPcF8CGw92m5+Dr+rq4cs\n", - "zAAMREQppW7omd71wCzS1qwFR+KGZD84T0LvODx+owlY88f80nGLbFkED7ZBygzZbnB2wp6AbuB4\n", - "QwlYZ467CKabsRtsnrnJn+8LD0PA+mgrtDVALAaWE2DqgSevhoD1Qsd8QQcj8z2GPHny5MmTJ8/V\n", - "43zByIJepslHzZeHiIgN1pTBvU4ojEN4HF5LwD6llHKK3Ho7PHR7TjlpCGxPQ2kP/PV8CKZmjX/B\n", - "zpREpHIZ/F+f0I517y2NvAyL3oV/UUqdyHmt2GC1cRw8s4/DvH2IBcpCPu4Xwyay8Q54eAv0zjwW\n", - "AevPYHkC+gqhIA7RCdgWh103WtbqWnIjH/c8H4wLJRkWdDCS5/Kww/oV8OlbYLgE/FPgfBc+fUS3\n", - "u9/lg7Wts5TSSTB7dYfTDSLyZv5mOTc2aGqGjH1WBUuLNjY7q4LFDuuM4zBSAv2zj8OVjkVEzECt\n", - "HhZD8x1EfpgphTUtMJn7WABK62GFG4KbocsP9t3wicPggCu3rBeRYvQ5G0Ef//w5m+eGJx+M3CSI\n", - "iLkW7r0dBosgAeCD2BYYHIZ7RWRfFaiZiosMyC5YGocWL3iWgWkclonIj5RSV8Vs52ZCna9lAYjK\n", - "UZkbx+G+22HofMchp2P1ZSMi1dXwpTrw2EENAE6R52NK5XuDzA9nRQIKCMBSn+6AFgXdsXkL9A/B\n", - "nSLy7vmcLy+GiJi98FAbbKyCrB9Mg9AvIj85X9fWPHluFObN9ExElonIOyLyloh8Z77GcRPhKgTn\n", - "zA1whkJIevQM2j0Be05CKcBhqLNB62YIVcD0J+DoXVBcDp8XkXzqdBYzFSyxnAA+A9IJ7smzK1gK\n", - "3Oc/Dnb9vx8MEbHVwmMfAT4C/XfDwGdgZAl8UkSaLrqBPFedSdg3c04BpMCSBM8UxBtyMiZOSPv0\n", - "9dbzQfflgI2rYPPnoH8rDDwMfXdCRSl8+so+RZ488898ZkZOKqVuAxCRfxaRNUqpA/M4nhudWBRS\n", - "EbA69X9tDkinwRTRs/poCg4cgvYotMVhzUow9YG7GPbYIdUOYyegfgwqWQBlZgsJpdS4S+SF5+Aj\n", - "rZAxQ7YL7N3wLtCZ89JkCCQINg/vNw2LgSWil3iuZEmluRncdTkldgWQXg6hAdgI+VLY600SDh+B\n", - "9ji0N0AiBpZjYGuHg4U5xz8FpmkdjHzgppYlcMdaGDbnZOKWw8hxaBKR0qtRNp4nz3wxn71pclPV\n", - "Tq6SD/+HFaVUqlBk+wvwpULwWcGehGwQghPwgxmDLRF5YhKaqqBWwWgNDBYa6WQAt77QOebtgyxg\n", - "Ikq9IyJdPbDEBJawDkL6jLpUswtuq4MtZqh/Hm5tg51roC8B5nehdgJeu0KjM4d7jgfdELeC9wq2\n", - "m+cDYnTl/vEuaDoBTQmIZGF7OdwTBUsBpP1gfwW2JCHdAn9UJTI0As8rpc7pS3Q+RETqwO2B6dnP\n", - "Gees86p+sDx5rjPzqhkRkU8Afwns/SC22HnOJgJjaXCVgcursyPmNJgVVNpFblOQQnf07SwVeT4N\n", - "LbmBSBzMw/rCds07NN6oKKVGgJHZjxfC3avh7k0w6IQdx2HlcbjzCBxRMDYB28Kw7Qp3P9IPso6z\n", - "11cHoCgA+3NfKCIuE7TawBWHIaA3X8lxbTC+19PGP0REjkB8BO72ai3W6maIPgTvFECqD4q2w2+L\n", - "yD8opUbPt10RKbFCi2jhc08CTvdCdVPO8k8ULKM623KpRol58ixI5jUYUUo9CzwrIt8WkfuUUq/k\n", - "Pi8i38r5c5tSatv1HN+NRiXcfQfsK9VmNc5aiNuhPQhfb4K3zZDuBOwiTydh2y5oU1BRB1MBcByE\n", - "0hHdWjpfnXEZiEhBE9x+O/TNVNssh0M+6P0V2Mfgbz+oaDEXpdRwsciBbbpaZ9QB6W4oPQChKOzL\n", - "GU9jI3y5FewuyA6AuQtOiMjPrrYFfZ5zMapbtovIbqB9NTjuga6Z5+vBvwbsE7AZeGaubThE1rfC\n", - "J1sBC6guMJ+GjnfAkYLyOpiaAtcB8I3Br280g8M8ZyOCFfhddGXeL5S68qqrG415C0ZExJZzYQzC\n", - "uR0dlVLfuq6DuoEREVMDVFYbegIbhEag3ArNLeCvgOkG8LeD7Rn4VCf8t274rh+2FMDiDPhH4UdZ\n", - "ODbfn+UGxOsDsc/SA1RDwAX1aCvlq4IffrkT+k7DZgFXCHYH4R2lVAhARKy18OhHIFIBowCrgO2w\n", - "5B3d1TffbO46oZRKiEi2Kkc7MkMFBAv0b+McRKSkDR7+BAy7dDaT5SAvwPJ98IxfN1tsSsPkGDyX\n", - "Uer4tf4sea4dIpjRLRA8wHPA4yL8R6X4/vyO7Poyn5mRB0XkG+hyyR7ghXkcyw2PUipbIzI5Bq5y\n", - "iGTANAorCsAzCqrSEL25IbkYOA1NWaX2AU/O78hvCkLTQBrEkiMunARnUmuh0qBvMg5YYgFHWP/m\n", - "L3vpxOhhsdv4Nxe1dVBQMcv7YimMHYdN5IOR601wYlZJ+BR4T0NrWJfl1iilBnOft0LLYlAzgQjo\n", - "7EgbhHuhekKpn12nsee5PvwxUATcrxRJEX4DvC3Czg9TP5/5FLA+Czw7X/u/GRmD13bDo5thfBzW\n", - "WqA1AF4HTJ6C2zOwcxFMWQCL7gqc5yqglAoXiezZCbdshH47ZMJg2wWV4/ALpZSyi6xqhc+0gbJD\n", - "5gzcfRqOiMiTV+I7Mgdm8xwPWiBryguT54O+MzB4GKqXwXAftAZh5QTY1+lA5V8VirwZhldmzMsE\n", - "LLlB7QwWyEr+vL2pEKEa3SByrVI6g6YUJ0X4z8BfAZ+Yz/FdT/KmZzcBIlIANAHmw7BtEL5Qr1PA\n", - "QTekt8KpMFj3wvpKeK0bTCk9M89zlQjAi3sh0wObXGAKQGIMnknCARFxN8EjH4fRmXLPpcAbsGqn\n", - "dm49eKX7F5EqoApQfaBCYMstLT0NZX5460r3k+fCiIgLfS5agH6l1ISIPPEmfPwAbHTBukIYb4E3\n", - "22AsBabnYOshOInRpiEJPV1gXj4r09al/UuOzM8ny3ON+HfAD5RidmXVd4BvirBWqbPF6Tcr+WDk\n", - "Bsci0twIv9UMNjuoM8AIuGrhnSKITsKaM1BbCtMW8D4Ly/rh2Qup+PNcGiJiARrRZZWjfqWeF5E3\n", - "gAK0Dmrm+UVNYMkNDkxAG0x1wjquIBgREXMRfHIlrKsDFQFOgvdpKFoPEy5IDIL7CEyEtSdKnmuE\n", - "WaRtETzaDFYrqF7ArX8Pr08o9eMCkeAdkFgF/REonIKiYvC3QqIH2jGCEaXUkFfknRdhSyuELdrT\n", - "xnMcjmXh1PX4LEbLgUb0b3ncqCLLcxURoRT4MrBk9nNKERfh/wP+APi96z22+SAfjNzAiIizAb70\n", - "MQiUQjSuZ8PrTLApCK1pcNnAn4boaagZ17qBnwLvzPfYb3REpLwavtwIxYXall2KRPYAzymlYk6R\n", - "zVXwYDWYRqA8DI0BmPJCeGYbJm1Gd0UuyFZYswI23AU9MxtqhcJnwfcyHHDom15nCo5ejYqePHMj\n", - "IoVN8OjHYaoY4gCrwfwS3LtfN9HrMkNcge8MLHWBpEBGIJSEXpMu332PILywF072wCoT2CbhSFYb\n", - "RV7NJb3zfZaSSv3bLvWCGgSTT+TgNPzyeuz/Q8RXgWeV4nwTwx8AHSJ8QylC121U80Q+GLlBMHwj\n", - "HiiCdQKRALwGxFvAVmp4hfTBSh+UtsD4KNRuhjNjUCAwVQKTh7QV+cF8Y60rQ0RMlfDF+8HaaFQv\n", - "ZUC2wS3vwpCI+NfAJ++D/jhYj0DxMNTvgE+3w7ONhnHVaSiZPM/SiYg4LdDmgJIojGS1P8w5VRml\n", - "sGk5jOdGNNUQWgTFO+GYX6m8K+t1wATNi8EyE4gA2CHTDuE+WAt0hSE5BkvXwZmZyqtpcL0K6/3w\n", - "vdztGedoFzklwXMhIhUOWGwCcxS6lFIDV/I5RETK4Qv36PYSU93QWALeLDSHdSCdLzS4CohgAr4O\n", - "PHa+1yjFsAhvAY8AP7xeY5sv8sHIDYCIVJfDf1kMLQ0QTWob9zs64IDFaNQ1CuVx/fxoSDfRyh4B\n", - "bxkkzkB9DLrKoLMfFpFfd74gRm+eGvTyy5hSKjDrJTW1UNqYY8tuBrUCRrvg1hRMrYJAGOyHYEsj\n", - "WGtgeBSaj8KnemFXGsLH4VQKDs2x//Ja+NoSKCyG1BhYT8K4iPwgdywiYq6EqhikkhC35ZQQ27XW\n", - "4IYRO4qIFag2/hxSSqUu9PqFhoDNAuYxKBPIFoPfors8p8yGO2oZNDjg1H6oqIWU6IyaLQlTzCFY\n", - "vRgukduWwkcXQ9oEdMMDXpG3g/DCFUw4KqqgygyRDrirGbIeSEyAOwrfEJGjSqn+D7jtPO9zJxDj\n", - "4kunT5EPRm5+RKQGfBvBXq6r5kJ7lFJT8z2uXERESuB3WqH2LuiZ6UtRDkVxWHoKAoXQaIVyO9T2\n", - "QNUZKPNAKKCDFo8fAvfAtmEo2m/4uYiIDV1dEc47c76PiBSXwxdroaoQskMgHpHtoZxqB8DunOPm\n", - "4YKkCbxWUIUQOwZL28Bcr8t7/WZdSTNxAEoH4Z+AjrnS3hXw6bvB1GQEO8uAEqjaBvej/QgQkbpq\n", - "+IITGgegaQpSaWzTdkx+F/HhPj3zHpy97YVKHfxxNTgFZBDiZpGfZZQ6Pd/julQUFHTBraUQAkwD\n", - "4Ehjnx4iaxsn9biImGugaDkcnYS+PigRoAyGs+DsvEw7dxGpWAof+bh2/E0DLNNeJFv2aVH0B82I\n", - "2R2Q7YZVayHuMzI9XkhOQEUcPoYWV+a5Mh4FHlfqokHoc8Dfi+BS6or6Wi14PrTBiIh5CbR/GVbF\n", - "oTgCI7fAwY0i8r8WmFir3A0NDRCbCUSMKW/aB3VnoGoYUsthPALpAJTEgTZILdEujfa3wJIFOaP9\n", - "DsYKRR6qhk+asVVFIWIR+WkGnvmwL9+IiFTAo3dB8RIjEEiB6XW4a4+2255p5DjcD6YDUJeEAieE\n", - "W2C0G0rDcDALqQHYGIXqGgiAPmYpSLbAnlHwDsL0XIGIiPiaoaUHh/UQ9qUeEv6lxHuXwsh+WCEi\n", - "vwKsDfCVFeAcB8cA1JdhLjBhivnxnRoi0TpA9BVtxHtj8AmIlRneKBNQ8AJ8WUT+7npNDnRwbl0J\n", - "JatApWF8L2SPK6WyRqasvgAWpSGZ1NqNyZz3Vi6Beyrg+Bg0FCOlZgo8fUhDJ5VHs5Suhw5riGDJ\n", - "XthaBOE0ROvgcDOMH4IGLrMFg0N7kWScOdkwC6hWiHRrF88PGoyMDoK1SRv5vdd4LwCFpdDjgWoR\n", - "cSulwhfaSJ7zY7itPoI2IbwgSjElwi7gAeDpaz22+eRDGYxopXjtI3DvGJQYF+yKMBSUQfg+4PF5\n", - "HeDZiAmyacM4KQsMQH0CKuzgqYVQBEZ3QrEZUmWQXg9j3TrFXxSCTANMvg3rR+DHHtjQhPV3Syk3\n", - "OfCEYiRdXUz9215ilcB35/ejzjvVlVBbBLEhqCqCqQJIrIbxXtjC+8GINQLuCVhfB9EoqBdBxuFd\n", - "P2wH2AdrisEZh4gZGAOvQG8RhFLa4OgsCwtpAAAgAElEQVScZQhjqWLNGBW3CC3jFuypXqYqexhY\n", - "disT20T/BkwmWFwFJSFYvBpMEQqCk1gDI8R93URLA3z0p9Drgh2L4cYwTSrL6ZFUCtGl4BvSSaHt\n", - "13rf+nsvfQxWLoImv171OPlbcGyXiDzrhYebYH2TXg6TU/BRu8hTCaPLeCGsXAaZZbB/D6Q7cFeZ\n", - "KZiKIukwLcdhY7eT3s+tIjhaDv4aEAWmg3DHCegcgNdzq9tEpAzwoSuyRt7zH9HZzEbAagfPXMpn\n", - "E6jZYtjLQSkVt4m86IYtAYjZIRmGgjFtnHgqrRsyziliNX6/ZUAy30H4gtwNdM1Rzns+XgDuIx+M\n", - "3JSUQZlT6wdzaR4HV6uIWBaQanwsCmd6dXbEEoSiIDQXgCUEJoFSE1QngEJIecEch3hA31B7TXom\n", - "lx6FvQF4swH+powKCigdB3Bjj7dgjU8x9rCIPKOUGjZmgtysmRIRMc21NCXQatGaj7AJXWfpgiNl\n", - "0G/RNwcASuCjW2GyBF4IQpMTCqohNqj1JVPGPv7RD5btcHc9jLrgYBP09oBvWM+Cz1LQW0WW18In\n", - "43huS1LvSxL3KAayVWRRWC27sX5pktQ/A1hgXQQ2LwIxIyk7jmQ91ngF1kQIJQGyIlBkx/55s8gv\n", - "jSqMxLX8Tq82hZBw6qDtOmBqh+VNcEfv+4/V+SG6EQ7522HD/TnVSm1g+xU8IiLdSqmAA4rcEDcB\n", - "bmzmaqp6rBSEJwh7u0lZU4wUlmEqbsB8upzMiVFYnITqAkgdhXE//Ap0sFEMjyyGDTbwRcA+CYdF\n", - "5B8AXy18qRGcdqATCjugZBkMzXiRZIHjUBOH6QqRRyd0KfDxy9XfJJV6s0jk6UNwazlghd467X1S\n", - "5IfDc/XBsYusrIOPl4M9DlIh0jcGTyqlzukynIfPAZfjovsqusT3pmY+e9NsAv4b+hzao5T6xnXc\n", - "fQoScu7DCQtk0saYFgpqFH5shupXYJkdFleAcwjiSYjWQI0bJAKEQcIgWaiwwLtr4JcAb0N9WFff\n", - "eBxYSmy4o7k7cOGIW7FXgCwTKb0d6leCSot4d0HwzZuhJFRnwxwboeQOqHeLVJ6B0ZeVUn3G8+46\n", - "uMcGiSotPlQVYOqB1cfBGoVdxuuczdC+BAbMerY4BvoH0wP1IlKolAoZZlf/tRN6U9Bao5ud1Z/W\n", - "PYB+lhvoiUjdMnh0E/i34ckK3pMpOm5ZhCXtwTGSBuyETSZSjRb4w0XQmAJfKSSTKFeaZMaCNR4n\n", - "Y7Fhifl4Z2sdGWspqQIFnzsB0yLyzzfSjWEQCvy6JPY6ULoMGoNnP2ZWsCjt5fDWNlQgNwthtFQw\n", - "n9bmZgem4fQArNLuxtmkImsGmCRrTlE+DcECD1nMqJQHwh6dYTsQAesxcE9pi38KYWsj3OWG2np0\n", - "NU4nfOwoNLpgeCukenD4eimst6BkimnP02SSK/WkI3sMlgbA+TEYdoKnB1Ycg9Mi8sRMJZaIyKzf\n", - "nsw16QjA945BKg4VpUAnlHbD0BS8OPu1IlK/DD5/L4wWG92DT0DFNnhMRP7eaGGQBxDBBjwMfOsy\n", - "3nYU8IjQqNT1OieuP/OZGekF7lJKJUXkCRFZrpQ6ej12rJSaFKnogxMVsCRnrfZQNQTevh6CTiMV\n", - "WwpE0E6NatbztWVwbx00ZyA4Dr8ch7fK4U8rYLAI/HZY2wRZpduIq0WQOgT2EcAHVQNQNgr2IzCW\n", - "hiCUfqwf1RYnli0jMeLBYc5icidJqSSSguKPwT2T0DqgiwAO3w5764wb2YK+oGi5BzXo5Y8upVT0\n", - "7Fd4HoBVd8DaIfBOQ18J7Px9EflHpVS/CVraATMc3Q9LF0OoAFJpsO6D2gjsqBX5k2pwpWFJGKZn\n", - "PEOSYBnEVB/Fugo8vy/ieBsS+41GaT+chKZ9WO4C7zKtGU7cJyKvzWiTSmDTKoiWQFTIoAjYGjGP\n", - "CVZnAElbMI+6MNEITjesegi2PwlLT0N9BcQTRMqSmJN+rLEQKddSnH4X8WQb2WM+7UFT8Rp8BPjx\n", - "dTwkl8VuqGuHUQGOQ8VxGMpqV9Krjnar9d0KznpIjELSrSciMwx4YcwLQ2WCGjPNMTkxgRLDIyYN\n", - "HUfhNifUlZMeH2GyfZS0tR/fqM629vqChKSU7FnZsDEoTBgiYxGxlMP9KViyGAJ1EBSgFoJx2BSA\n", - "jgMUWeO0F7goCQAkGHWc4rh3kPBRgcJCqHkU3ikwllEaYcoELdthuVUkVQZ31UF5lcjgKBxVlLdA\n", - "XZNITQim3oL4npnzXCkVEJF/GIUmAa/S5ei9c10HSmHzaojmljUvgbFeqB/Ry0oXLE/+kHEvcFwp\n", - "LrkiSSmyIrwG3MOsEvCbifnsTZN7Yqa4ip1NL42xp2DbY9BXrzPwwwK9nRDcdi33ql07iz6h7Qaq\n", - "MuA3Qf+wMXsJiIhN4PZGXUETqoFeB6SPwD37oKMI9ruhbRxaK8FtBREgDKYMmH16uSA5DKajUBOB\n", - "p8PQC4sfg1tiCfz7o0zfPkhsZZhIuAT39AD+whCmrJZLLO3QI7WkYVMfTDXAeCML9IIiIuKBh5bD\n", - "LQ2gEiCnIWkReSKtVJfxGi8svgXu7AGLEfQ1TkPGBFNbgcfN4CwAtRJOHoPwflicBmcM/jd7bx4j\n", - "6Xnf+X2e96z77q7qnr7nvmdIDY8hRVEUdVqyLUuyHcuGV+sjiyBBgt0AySIB1kj+WCDYAEF2Y2eN\n", - "jZ21pWhtadeyJQvSihLPITkccjgnZ3rOvqu7676r3uvJH08NORyOxFukaH6BBmeGVU9XvW/V+/6e\n", - "3+97VNvg3Q93HlQ7zsr3Yc95+PQB+H4InPPY924S3dFBlxEm9nUR22Fh1/Cc+kJk7oBDW+HQNYg5\n", - "cG1mWAj9CVDOwo41GK9BJkq9XiG6NYTwQ4iOg7EJAxmlt96G0SRU1yHeI9U7QcpOYsSgboZohXT0\n", - "psRNxmi4BVpnM0Py7E7YfB52CyFC79eo+Sfg8dNwRICowxNtePp2viq3QgihAXNxmHWV8d/Fm8ml\n", - "t3n8FGz/fbjThUIdKtNwbAJOWzBRDXFs3xjr0yP4eo9SpAich5EUXIpAzwR/APo1QL7imNoXQvzZ\n", - "Y3BvCu4cUL9YxUr4ZNbhkT02l0bbdIonYN9dcCoGgxJEnod4CZ5U14Tkl1vEPh4hHn+BXuYS5d49\n", - "dK7HwM0rae02j+lKgtGXCb0J8rUSg0iDc1cgMI7Cjsgt19GtUDsFX5wD4wiURmHpNEw+SuGrTe45\n", - "DgfmoRGCk78KpzPA9288d1h4XH69c2DBSJrXKj3SanwUe73n/wPDb/DmRjQ38CjwIB8WI+8ehBAH\n", - "gBEp5c+VaCelrAoh/g2sz6K+MFVg6d3nSYTvhUMfUfPpG83fl/Lw6JeFEN8qwNeS8IkRmO5D+Kq6\n", - "+C2OwslRuK8Fcx1FjMxYgA96B2QaBhHwO+AkwQ3g2avwl30pnxFi5LfgrgHMVXy8YxWe2WFjzjWp\n", - "J1fZ9NpE1iDvQusu+P4IhKqwZR52bsJ4AFaed6EYGRLeokDnrfpKaLBnD9z3MCzcmJ3vgsh34beE\n", - "EP9qOGLKQl6+UojcwEQdQnMALqwsgnYA2A+r8+AuwSFgpgCWC64Lm3FwPgJPHYfPHYePpKG6hH5X\n", - "B1dsJ3k5RCdVxA1dJ550qT4thGjCvkPw0euvnO/tJTUNqtwbpUEa7khDLgHNDj2rxKrcwIrkiCFo\n", - "hSM0NrbinHkUPhuH6pOk7wlxuGsROtGjO9Ejl12kbHpssAW3nKdzbvqm7CGhdvHDP74/0ZLyEdRs\n", - "/A1DCGFk4De2wd4Z6PfAmIfP2EJ8ayDlmds/q/BZuL8N03X199QA0l34//bANw7P4O2Zwq5rNNxx\n", - "uo/Ow5ZrcO8x2J+CngYLa7B5FU7D6C8LMTkNfhmMx9p4Px6+D4QQKYONz8zCJ/bDlRD0zsChb8Ev\n", - "heBUG8qb8HUp5YIQsQfgjgM+VtGmE0lidltkI89xcfYo3es+tLto2QTJV31Hunhhl7FVWJ6C2srt\n", - "Wpd9MCOw60F4/EYcwRrRsSzbGx7eRBcxD+m+KtQ37hVCHLuNr87PRAeuF+Gu3E0kZICi+sB/SGQd\n", - "Qghs4AvAP38LT38a+B/e2Vf0/sJ7WowIITLAvwa+8lP+/x/d9NfHpJSPvZO/f0hSfd3K/+1CCBED\n", - "e69S6yQ+DfuuvdoFfM8GnN0To/RHeThQh+0FcHZDxQOzDCMLcNiCfFh1PlIxcNeAURBN0GZhMABx\n", - "CmIxOLMOxcHL7y08BxPDHZXuB6Q3exSK0J8A9wXIl6H5MMxYMNkHLwwXjoL/HDQ0cG6Zp7/t46FB\n", - "9H6Y/hjEDGi5QkQffStr5eDIbpW7I2/6t+4c5BaVwdtLQEd1oG5FNQLejYvlygKcehTuyCmnzHtm\n", - "QZTV+CQ8gHufgX0H4O8nYe0APPI9SDsYuRyh7i7G5kOYLkAC2emxObmM9XnQJIR3w2YfCjd1A0fb\n", - "YP+2weiYh917iUbuME33ftiAHov0fGiExlTrO/40fOwyXJ6A2ICxcJJ4FcAjtFEknPLYcRWuF9ts\n", - "Rq5SvhtqzBJcA7gMo03l4PoLz/25GQYc2A97P6Y4EwDsAOs/wa8JIa5KKV+1WxdC2LB1EqaXXr1S\n", - "pgdbNnKcdvdAKwOtrPKD2Z6HsVnlZHytohjv+UU4Idl9QKUuTKxBMa3xzP+cYL42IcRSA04AJydh\n", - "16/A6diwCNgBjzwDM0/A8R5895VxcOp+uGPNoTUocX5nlEHBIGJskrZP0k/VCU7VkfMu7UMGCVcg\n", - "gi5udBOjI3Er0K0C166AvwfsKkQXFUk2U4RIZMjjOIGYaWLH17C3pUisW3ixLo4JtqsK9YKESzmG\n", - "HbU3igYcPwkfCcHIVij1wDwNY8twAVh7s+f1A4zPAmekfEvH5AKQFYJRKd+cDPwXBe8lgdUAvg78\n", - "91LK2x5cKeUf/Vxf1LsANZ+e+sewJ6R2YWcOwkYBQsd4mUjajoRwD+2FyB2w9hyYI2C2wU9C3YSo\n", - "gFkHZjJQ6kJfB7OquiKNOISugrUJYhNWGvDkksqRGN5ovQrUIhBuga9DLwf1GMoAbQ6uHISH1mA9\n", - "DVKHXAsO+vD4EVh/kne8YIs9AAc/DUdXIOpC24Jjn4dn3vRKOtj2bUZ8lvqPCWokKMTIVTg1DQfW\n", - "VCHYNeBkDja+MXyMFEL8p2fgSgr+8BB4A2UotcsCYxvUXUhsqFbp0z50NHjOQB6eJDp5oxABCAiE\n", - "j1eA8d+AqARzHDb2w/p52PljCA3g2j2QmYpQcCR6qI1TP8aVfI2ipimZ8HkD4hVVrfkBNBPQugzV\n", - "EPoejYH0gCLelMeOBXANg9Yhh8LqRfqhDt2jDr1ODazz0Cl9AG28c3DnDsWLeBlxcOZAv664Cudv\n", - "eYqnGlw9A8I3fWYCoK+Z4GyBxSz02mB1YfYuqD2F2HqB9MclKSPAkxrtf+az8z+oUZ9jhNg8mGc8\n", - "blCOfpbNi9fhgafg3gkwYzeFIwLshuI52L4yLERUYT4VhmgZYsUqy4sB3b1JhHSIulfJtIq4BZPG\n", - "cy2uTrcIhUyynT65iwFGFR4zYHBeStkyhfjWX8F/OQ6HtoMjwY1B6RJs+xuyBZjt60S8DmvZDu2M\n", - "S2hFjWNvoK5xm3HL60Fx8MSftuGTEdgZwKAGj7XhiQ+qIu8t4qvAN97KE4e8kePAvcDfvqOv6n2C\n", - "97Iz8hWU6cv/NlSS/nMp5QcqVVRJZPNfhIc8mBkSltavgDkJa/tgx3MAOte3Z6hr41ALQIwoL4qY\n", - "gNhAmRiNCYhuQ0W8rkJyHvSjsFAGYxW6NpypKzOt/+grt9Cb5uYbT8DJ34F0D4o7IR2AZ0GyAvsr\n", - "cHIaFgKwXoI1qYolJNQDWP3rG7LQoc9BFuhJKetv8ZhYMP1RuG8ZIsMLYcyBo6tvpRipwdnr8LnC\n", - "TQF0LmgL6o83kcTK34Infw3md0A8gE0fNr+nRAgKwxn5i1uEOLMdLlXhrjnY3IRIG6wUeA70KrD/\n", - "knLSfC6Nnwqo3ytJ6gLDB9igOdImkVCeFUeuwAs6ZEPg7IKFJiTmYW06QtxI4SVjyO4AoZfYYqzS\n", - "2Jimu5CDiV+Hp25kmADMw+jfw1qD3qkGKV85iXcsHT8ZpphKYq5mSNbqzIlz9DKX6XUd+JEDZ2/u\n", - "EgghQqjz2P1FUtjcCqE8V15zs9PUOOo1IynF30keh1P3w703dUfOjUP5QgPWrsFDWVhugh0FrkDm\n", - "IvntBeaKceyaS2CcwdnaZ/kTkl1fh3I+h5NIE620SKT7bJpHYHkFDrZV1fuyl4Sn3GXTDgQ3VCzK\n", - "VC1/Ba6PK57oiFMn/1SD9azGelxjWylFEB3j7OFJGpfO8sLBFcaKAekebAxg7etSyuZw/fMBrE2D\n", - "Z4OTgMocNM8S3Qoz0yNsOa6B9PGvr9E91Ce6CpUIODqUY7C28FYNH4fP+8th2m/wYRHyaghBEuUV\n", - "8odvY5mngaN8WIy8s5BSfhP45nv1+39OSEN27JVCBGDrBaXisfZCaBECx+DUjl3UTurKeW3OBc2A\n", - "ZhkyK4rYGJtV8fB+B2JT0O5C9BRk8+Cm4GQXNjfgKV9p+2/pFAQvwUvfhdJnIHkQ0g3oDZSBaCWu\n", - "du+rcdj+NHjblH1JX1emr/EvC5HNAnlFcE2tgFsXInsBqt+5tRX+BhCFuPlKIXID8dclK94OfXjx\n", - "FByWMDUN9T6YFyCxAo/c7N45dIz8i+FoMAKUfxqZswOL63CPpRQKNR2urcP0FYjrYBUhtAA/lFIu\n", - "CSEeb9K6N8biqEZSSBAbdKe6FFyYcmD9HkhH4QogHWjsgY2+Rqw/TqFn09sSQnPCgI4t1zF39qGW\n", - "h+rNhQjADFRs2BdjyQTtMIx12+jjFr2wTbGRYnTToWX3qGV1kqNtUvug5UNxBeio4jhyL8x8EkZ0\n", - "aGlC5C5A5a2cx58Lhh3UrRbkHKXouHKD2FqGk5fh18Z4JdG0A+Y11er4KYZSzUfhRA6Ku6EQQEXA\n", - "8jJU/q4LwUk46MFUAVplCF/F2ppirJ3E7gDoCBkh1PGw8i7zkyZWMoLu+EhtQDfcgHABmlPQfhYO\n", - "P4sdG8Vd6xL0z5LZVyWRL2FdhuZ/LYT4tpSyqDwKn/gSzOQgEwF9VbI+8CksT2DnYlD0CRlH6M3v\n", - "YnD92yzMLrLw5yh1y81Kn2gSwvvhQgCchtlV+JgknuthRhdp7AwR2ugRo0/lJJzeA8tfAi1Ql4/K\n", - "373d8/V+V929h/gS8BMpeTvF/9PAv3iHXs/7Du85gfX9hGFVP4baVRXfqPGZEPpuyD8I+gg4i7D5\n", - "mJTythdDAYkwhh7wYs7m5G9J3IGgu1qGA1LdpbMBxK5D1IJgHYyMkpjKKWi2IdJTVs2DCyCuQV3C\n", - "s1V4xlMx8a95zcNdyjEhxCWYjsM9y1BoQSsOnRhYJRUwOtgPOyvKtuTFg7BFQPP3YLICXgG2LcLA\n", - "BuMUVHfAsV8H/vym4zeVgSM2pBpwtQsvSClvjb5uq8ZPx1Qjmhto2G/kWN/mvfWEEH/2OBxIwz5f\n", - "jSReQN39b7wuzYQ7R+C+CTUbu1iFx7lJijhUZczqkPOh8SKIXWA6oFvKOK7kwuJWOLkGcU/9DoDG\n", - "Eiy2aY1HaEkHYh2ilkEQ1WjfFRD2BTE/YE7zWZOwfB6K3wwz879GCG+6BFaLwUgI4fn0LUlfW4IX\n", - "Xbj726Qe7GNE0/RK++lcakEoDnt+BeeRCpc2rrCxdRG2asTTWSa6Pu1tG3Rikik/RnfTJ9dxiZrw\n", - "yNeEEP8HaFOw55fhoSVVDAbA6R1w7CuouPL3FYQQ8Tz87jYYGwW/Atpl5Zny51LKqgunz8A+B7ZP\n", - "QWegClFzRY0obxu5PuzyfV2NT89kUIXMy9J6IcSf1uBQGnZ34ZiBuXUKq+fhZAOk3gVCGK02/his\n", - "P+gzutiin65T2p2l0mnBXf8Z9DbhTJnpay/QGx2hu62MnveYK/exvSj2iIv7UQcxIUToe3DoC1C4\n", - "CnUPLt1pUs9GCBYE8YxOoeQgwzkGawAh8Oaguwj2bSwInAEEfdAvwsQADt0NHQfR8zD7VYzmJtH1\n", - "gKmzcPw+2LUGO36kRGOuD4/8mhBiA8XzyAMJIKErpd4GPxeC/wcWXwX++G2ucQI4LAS6lHzgir4P\n", - "i5EhhBDTsOU3YDwO/QisGUKI7wGP/yyJoRCRu+HQr8KdFciVYG0MnvtDIYz/B7iulJgLaTVfLmcy\n", - "rNwZohzJ0+rch3+lDeETcCAEiRFY74FfgpCBppURpoYvNZAZ6Lig2eA2wKiB1YH1OvxfAyJXoC8h\n", - "sLiNzfhNMKGfhxd3g9GH1FU4eFkZuz4xB5YJXgxKIxDtwi4PKmnohBWv1s9A7iJc2wt7fwDXtgoh\n", - "8lLKDUuIj8zB12ahPwkbZZg+BXcLIf705lGAlNIVIvY4HPusGs3EHGhZ8Mz4z3jdPxNDYubx4c9r\n", - "kIDPHYD7DsJGDKoLsOdZJXX94+G8OzwCX52FmXGQdRAXQD47NLOKK4LNwgNw4QTMrSuliiGEmN0O\n", - "/+ggBCE4fh0ebEEkTe+JeQa/IWnTx7U8YlLZwQQCOvuBswab5TZr6SiF1T60S6xv6bAc9vA9yPxX\n", - "K4QLcRLlAuPzDbzsY1x+QLLGTrg2Ac0JaI7T6J+DuQadqItjdLCikE+GaK/YmKUqVhcmG7AnAet7\n", - "IXMn3FFSoqBGFKJ92L8GV7cJIUZ/GnfrvUIGPnMUcgdv6nKMw+iPlWnUnw09iv7yKdiRge0udFuq\n", - "IC++3trDx7zmcUN/mqeBp4UQWoz+wzWauyDpSAh8sELohmC9CxYB7q4GK7PT1IsfZbA4Cp3n0e6+\n", - "jrAk235UYvuxEk/cLYikUojoNNHzJvpggBZdJXdfm95uGA2BaYBlbaFljBHrR+mYHo5V4fL2Js7a\n", - "BP2rf0X64QFWtEPPNmkNJoToByrA7lkXTkopnZQQz52Eo23YdRQaMXAtmnRw2yNk1rt08k1WViE8\n", - "CvmrkC+98u4PDmD146rmTe7MUDuwha6Ro3ulCcXrcEEI8VdvVfn2DxVCsAU4DPz921lHShpCUAR2\n", - "ooj5Hyh8WIwAyqpi9nfhkx24llZTkbkYLH8a1teFGPkJNL8Hzou3uBdaMPUp+PjqK2OG2SqYPtQ+\n", - "I2Xxj4UQfwM/+RrsnTTob7MpR2wup+/Hv5SB3hWY2A9GFOoliFkIM4lmbxBuZom1LRq2Ti8pQa+A\n", - "kQI9C8EyWB0s3WHHJ2DnFDQ1OBMVIleESEhZjWw8JofJp8pkbe73Ye8GxFOqAbC6Cx4tQH8R3Cdh\n", - "e1vFZnAE9riwtEeFia6kQK+DIcAPgRbXuPARMKwAtgshUpPwL3eAZyrXyG1b4MW7IdRRUdnfefUR\n", - "7zwFpyWsfEw1gNoDKP0t8D++C+c2uxvu+Tgs3Aga3A3rPozV1fz1uwl48AhM3zUMxwOYhOwPYWMB\n", - "flKAOwLQ/ho+HYHgsPKJ+GcVKHwU5qeg0YCYBz0LgjMEB8OURZUlQ7Bfgi3ACQSelHgZIKbT/U6Y\n", - "M5+scnWsSXwiIGFr5BKS3X4cOxQiVqvSHFlgI5Rm9GqbWcunHnyW7mWALoQWEJ/Mo6U6+Nosm90y\n", - "Vj1Goefi6kWsIGB0yNpPDSCSBa0AL00qVVcKuJyA56PgtyG+MhwbvC+kmEIIexb27b1FjbEDNl+E\n", - "OSFEUkrZGHYCX+LduThPZvEvQzHnE3YihDUNLdVgMxrQWYDpZ2D5oRC5bo9R6xFKB11aJoyEA0ba\n", - "UPoELG+CFDaWyEBgoQ8EEMbsRNAtH+7LUSyGQFZZGxsQ0dYZ2DFa9ihyaQv9sItnXGfb7ggzTQuz\n", - "t0l5LsPG5/az9PgcweZ5+OIZmBVC/DXw4+OQG4WP1aFRBJGlc7XKpUKL7nZB2IeVOch4oFfhwkMQ\n", - "RMAogb4Ckc/DA+fSnJk4zEgliuEM2Bg7wua1FOw5BncBx96FY/1Bxm8CfyMltx0Lv0mcBO7gw2Lk\n", - "gwpzF+wyoZyC0FbY04HOhJK6NQRcuQuCJMxneLUXQhqy5mv5DhMNiEwKISwp5ZoQ4v+EjT022u9M\n", - "0atFlSqm2wBLU3cJqUO3BLE6mh3HGFSBOJbTwwpy4J+mNxKHYEXxRvQmrEXYseozkWiwtaK6LzsO\n", - "QHQnHPwelDLw/O8JYX5DSvccpO6GOwTse0k1LjZ3AiY0UjD/x5BIQPteGPWgHoGyBu001CyIOrBa\n", - "AOlbbIbjLGctnG1d2miQtkC7B9g79BTognEcjszC41E4wC3FyLC9/KQQ4hkUf6MrpfSGROZ3GqPj\n", - "6vi+qr08AdU47BBCaBNwzw6oSF5hPW6FyihMnYO/ugKPlOBrR0G/ezj+aUD0GDx8FowKLJdUouud\n", - "UdAGoBugpwjJPvP4+ATEhcD2BFEjSuX/DqCyzCCjE8rEmNp0aU/6FAYmu0oD6nmBJ0fIbaxgUYQV\n", - "OHJe5/I9ZbqxBLgvEf6ohzGRJlyDrn6RIGnTD+q06RLymxTOvqLW2ghBYwUIQ3YSDq/B6QmYSkEa\n", - "WE7Bvik4+U+G3aKfS1Lu60DTbkNQ1VDptLyNMLg3igjM3gmLK9SDIufu3SRUkGiGYNAOGC3CYJfB\n", - "4XacZiiMu1RBZLtsG8lgVyJYWg1zNEDm4KoMaGf7RCo3O4AJVgvb8Y00ic4S5XyMaVMjRhfNaBIl\n", - "YHGwF+eZGqkH40xcaiLTZVqjWcKtBDtWF2huT1PtmJBMw1dq0M9CPArbO+C+BPUx6ORgcpJqdZ1a\n", - "/HnMTA933WG3AXP7lA2+3YRWGl7YC5EiRLwRnFCMRA3AIN3doLltL/0XLyg1x4fFyJvDbwPvVNzJ\n", - "jWLk6+/Qeu8bfFiMABBJQcKF4g441IbeGMQCFc1Qj4OZh34UsgeEMLtSuk8Pn9iDjgBfqCyLG2hb\n", - "4A4YSk6H8+vjcSHiSXioC9IH4YOmAw4MHBgNIJRC0yIE4gr98CLVKEivji8CNbf1siAyMGhiGWXq\n", - "hQHxEjSSsLoX7q5AJQr1EcjV4KA5qa4AACAASURBVGMDqHxWCHEBxudUMwAgv6l+ADqTcLEBjQq8\n", - "+N8qO5OcoYqVugaaC7tbsJyJUkzM0UulkK6GG+/gaUtk7s3i0KdXGeDXbTXj8mbAX4QpyU+3PR7u\n", - "at9RD5PboNe6jbKiCWFFiIx8oo//8FnMfhi/OkHvTGEYYmcqUoUBuGOQPXITD6UMkyOQ24B7inDA\n", - "hvEtEC6gexaa8RJSs7CFRTboE5ESgxjX7DhtfxfszYKzBJHLiEidlm/hGD6jA0GgaYT9Ho1oGnvT\n", - "xIgMaGfg6j4fb/ACJBzIuYxEJK3eIs5oj4ieIVvpsS50inWHuAbpDXA1uJCHCxUILkFEUwqc1aS6\n", - "bx3uQScCoR5s3QSRhPo93OTC+V5BStkbFeL6dchvhZeVYauQqKq/v+sqIBf8K7A3BfE8jojiDCws\n", - "x8dsn2PzcJ28F9CvdBnYIYLAxbZMZqoDlhMeMhmwbRUSfajHAupBEyMSxw1ZaE6D5VyKupEk3Gyw\n", - "mRyQjkSx7RCB0cUXBjm9RXDoCheTPeKlKtEWmGMWYcPEiTg4iRZmsAGJrdANQ0aHfzEL8/vg+Dw0\n", - "avDgdTC3wboBJR/ZP4jzowqI56nmlWGt7qluaEdANYCkBbWRgGCqhjupI7s2ouyiR20VZxx9o8dP\n", - "+SuhA81/qFwTIdiDSjJ+/B1a8iTwP71Da72v8GExAkBjGdY+BtKCkKeInaEebIwopvlEHxJN6Nhw\n", - "/neEsLtSDk5JKZtCZM/Bi3vhjhW1b/MFPD8OlR/eSjBrw/MX4MgItC5BehpaVRUHrvchaYAwcFlS\n", - "YXdyioGAaK9PP1ECfRt0JxXhrnkabWQHRvUEa+OwXSijRbsH3SlohVWkhaxArISyX9iE2hxkbzG+\n", - "qgmgA/nPw8ETajO1NqWsLTTLxsOgOOpQMsdYM2wCTeBJA83bzkhZoxnzCJstdHuN9vYZ/LOqDY23\n", - "CePVt2Z9DChC8a3sfCFEKgH3JeBgoGS2zwzg+Z9BNl5agtIVyG0bdm76oJ+B9Ca2liD1FZteVOJn\n", - "Xcz8JcyCRvMHAfSLYKN+tKiKZgegDJkAds3ARkkFiVkzYGxgaGWEkcAaTKKH5mnqfcKay5gfomjE\n", - "qDONp02BNqqKsJQEq0bD0YhSpxNy6Y57aD2BZ/p4tqQ7kqKejLFOnGq5CtUfY0QEbsYlNGITaFOM\n", - "LLfxwi4ip9PI+Zw9DevjoPWgeQZqjwC+ss4YfRwu3AvhsCJMhpYhGoCnK0fa2A7eB8UIQAm+/wT8\n", - "QR0mRtV3JXoGKMKf/6ybm1Bs5D15eECHTB+ulRX3602ZTQmIhqGQUzLZwRZYvYQ7uYRX2E6ouoyT\n", - "DqiHW3RDJej46IaOCAZIOtgOCB36IfCtgMRVwWaiyqWJBLKUobGm4U6apBp9agXIR1xCuoGDj4uO\n", - "rweEzU3C2/v0rkM8BrOLkvnDAich0aSJk9wKnVGoXofwndCwIH0VHp6BIAWVC7BtHqaaMKdBMwKG\n", - "BYs6yaZPfREenQWhgbUBO07D6S+AbVRJ6GNEOwFYLco7swyevwyjrZ/Cy7rl+Kcg9wXYvgN0AY11\n", - "oRLB33AeywcIXwW+KeU7Fr76IorEqr2Da74v8GExonAF5ldgbAaW05ByYSMONRt2FuG0DTM9GOhw\n", - "5ypUHhZCnFYXxOp34Rkbru9Q96hNDdafhe6rWplKomh8sox9uEYwN08/NIKseVBehG07QUrMYJ2I\n", - "3kCSoEsZ10jTzISRgY7wXaQWgpIOfhqnX8dNRRA9JRl1NNXN0HTYuQ56AJUE9OYg+dvgHoZnD6g6\n", - "aOIcjFTgwihc3wRtJ2Q+pwqwRBHsY1AaiWFFJRfCIUoNjfXRBEndQggb6QRoeotuNInpL+NYcdKd\n", - "NRwbemMRGJyHxCL8sAdv2jtGCH0H5D8FMwUhJupQfgwGLwCxLfAHdynPlVIPzHPwy6dhmp9S9Cgf\n", - "B/Efvwf/NAtHDWUnu1aFH6ax/rtDxOsGqXqFjW1j+KZLkH8e/XNVfDcL5ybh95ehvQ7hNlgxcBow\n", - "kVWtr3IDsikYb6PFNXTW0Ls2pi/RAocKHcZRBpgNX6cq4jhSIyErtAshAtIMRJ+eDEgFNlWhk9T7\n", - "GHaETr1OdU5jw4hSb47R3NgO6wuI5AsUxgfs6oPW7lGMdtjYkSfwcriDBKHeVvpL51kur8Gf3Kwq\n", - "EaJwDdqjMH4cqqb6DAxMcCyIt9W4xt243XF8LyClXBdC/OsSHE7ARBvW2/Di6/FaInB0D3zhMJQz\n", - "UFuBuecUYflPpZQrNx4nhBhJwEeiMNmDtbpKD3/5/edgzxwcuwa/lAfRBVFGilmkbBKkFqjYLZKm\n", - "wAzAmXOp+x2KToB1TjLTATOAUgL8pYAjT3V44WjA9YSHnV0itC8G4V00NY2oIRGexDYHdHQbKcMg\n", - "XAZWFNkx6E25LCTA8TU8u4PvG2xY0wz6YZVvM9cEcx+U+5DpqmiB6x5EpqG3AcEh6IWhXoP8CsQM\n", - "qn2f/+L74L+kiNVmAJtReNKHjlZjx/I15ifyeJpOO1hGG9+Ak43XGdGoiIfCP4IH4rBrWW3QllLw\n", - "2D8eJvj+1NygDxqEQAN+C/jiO7WmlJSFoI5KjL7yeo//RcKHxQg3FB7i30O7COV/AlNAQkKkA/Nh\n", - "SK+q77JXhW2bEJlE7Zj7Q/b9XwghRlEZN43hjyWEeQCiOWgWDezfnCb20CgxdIg06Uav0cp0KGzm\n", - "aQSX0PSAMT2BJbNIunRFmyUS9MigyR7SaEO8CNMW+DqBO6Dc9Yn3YbkADQMupeDQKTACNVZfyUAs\n", - "A5Evw64+9AewcA8s7oD2BSjPQ9+Avb8CeQ2296C+ReeFO5IUZyJYlsO6YUEuREiX1IREZ0BYmsSd\n", - "LgO7Td8vInRBO5XDWujQe2kRwhfgeBv+1Ztl3guh74S9vwv3VmB8CSphOPElOBM16U6PwOEBrHag\n", - "MQqdB2ChBgeEEE9JKVdfu56IFuBLw1Tckz3lEaJVYMc4ppUg3B3gmRAvz9NNg2fXCbZ8Bv7ttuF4\n", - "YAWSfwvRR2B6l3LnnO1B/pIiC21pYtgR0AYY0iNnaehOH33gohlwzhaYSDQh6OOh+QHQRE91CEyD\n", - "Hg38iE68b2L3upyNCqRWQ4/ptPtj9JlCigzaqE9grhJLG8QZ0E5DTsBeBFF6FPUqhKIEERexawLJ\n", - "JsbvCDG6AbUN8FaBJ+An/43J5KykMRdgzgaYm5D9iTK+OpuGze/cegxvOpb68DPev2GE925jaK73\n", - "hqMChBDhWfjkJ2ApPByTblcFfLahUk///fBxk1vh9w6CHIVWBe44BXcNZcPXhRDmFohMweIqnOpD\n", - "oQ2RLogawlrFFG08IVg2bcL00bBo9UKck222pFyKrvIiXBwzYMTiR3eE2UgamL0Occ1hd6tO4C5z\n", - "YTxJx9JZwmVc76MJnZRXpiOgokvseIQxGgwGUDR9hFllVYtQHVj4ogZ6TVkCnO+AMYBsB9Ln0VJJ\n", - "AmMTrG3QyoNXU/Pm3gBIUnM3eX4SPrKsRsyuBs9Pgn0GtLKkuG0VrVjGCyzS1Q70AopffwO5Ndtg\n", - "+wjsucnaYKoOByOweZg3mT/0C46jqLye0+/wuidR/pcfFiMfRAyLiu8IIX4M1Y9A7MtgPwQHy2qu\n", - "Wm7A1POqW9LvcIvNMzCA9EchcRC8CAQF1VXJt2BxPMTlT42TWEuiJyNorRS+CLDGrqLPCKQmSWsJ\n", - "bHwQEoFBDIdRaiyKLoHugwiBNMANQ3URcj0IKrijUPwEtDzoroAwIJGBzbByg87XwYrAoWWgBNVN\n", - "OBeF6pwKCxOHYa4BKyY4mkExNEO1MIo0DOpmGpcqmtEkjEdPC+HTJWa7aFYPl1VMz+Po+jyt6irn\n", - "8ybtXB//zzrwzE8zFfvZyH8KjlZgbLijz/bgaNHk2j/dQ9ferzSy8XOwuwAn9kBxEuRp5YvwmmIk\n", - "DHcehpG7b1LK7FLKpKMGfaNBN3oN5iQzmsAKXFaiGov+GJ2mrwiUwQQ09kLjSSU/+KgFGQlTEYhs\n", - "QdObID2kH8bTOrh6Dzu6TsXok9MsdosIRuBTBAY4mGKNZj6ErqXwhYPwM7gMuGwYWIMxnJVL6NYG\n", - "dz49TufIdvSJbZgdD0t3qIej2GKTaEzdG7NxEEYMx5jEFSPEWgJpZehEz2N8ymDLpMeWDWhtA9+B\n", - "cj3D6niaYhVCl5qs5fskI23SE5KGBuvflVLO33z8hBB5YFzFH43thrQNXSlE8lloPvI+lHnmRkEL\n", - "3xIRMKMM47bdcD7Nwy89AN1pqAMUFFs73oDfFiK3ADM7ytS2HafljxBcvwSzLRKzDUYiJWyjgiZs\n", - "SuyiKy16fg1PX6On30X79AnKk2ssboHJlM6kabEcm2bdyOABRqiD7hWpDza4d3MNM9Lgii6pyAFt\n", - "I84W6bBhJKiLOD08ZskSlmvoqQ6mtLC6DhlDYgSXWIuZDOwwyDAYZ2F3BvJhwtLGCJZxQgs44g6k\n", - "qIFdAnw1y700gXdykyfrsDilNl4bwPojkLsb9q2DfQ1gAAwY6PDNAm+Ip2OllVLvVmQ7EH3L8v1f\n", - "UHwV+IaUr3UJfps4BRzkbYzA34/4sBi5BcO29qPAo0LEvwi1h2FmAfpJuPwxuF6AzuOo0cB1uBHA\n", - "VfgaHE3B7jV47H5l4ujbMPcYBFtCYJRZnc6h9fo4hQ5eLEEqCFO2ozhijAGSKpu41IiTwQR0uszi\n", - "YmltGrJMFR8nFQGxSshaYTTd5rPPQHYAl6dhPQT1NrRTkNJAxmCtAPsuvfIOEwOI7oMDi7BpASaU\n", - "c4p3+ogepzybRg8b9ENRanIUP4hgai9RFSGyQRGXPj0cIjTIij5aPyBek0Q2m8x8H57X4PSFt+7o\n", - "GRpVGVuvQKO8JU00MwXXs0qX3B4H4xjcOQM/GFYttw2BS8LhHHgNiCWHlvE2+DNQv0avW6WzV+dw\n", - "2yLWh0AL6BouovME81+cxuujrscVTyXDRu6G0gamdREZzODpUwgC9OAKrt7CxaEh1pF6k7xvMCmS\n", - "JAMdA5+wrNERPlKk8bRJhNxEl2tEtBhp6eNqTRrZAKfdIbEKnzjl8Sf3J8Ar4llLGKEa8VCZgSax\n", - "JeiuQBfQEjlcooSlRyWq4UbbCJHF7M7jJZTT6v2rER7fM05z1xhpx6ZqVmi38/BCmFr3DAuU4H+/\n", - "YSs+/EwLiH8O9h6FfAacA+DWYfsxmKzBifvh+RDwN2/tPL9r6LVvQ1huQCiA9jCDKLodtkzfQq5O\n", - "gGcTfgjuewoOLQ9Yr5/he5/bykZyhXBGZ86WGHoHQ1hERJgwPkURwxK6onlZK7RnNLRImHHPwNS7\n", - "NGNpmmaUMJKeHEUjgW9AKVVj3texgz4pPyAWFvQ9j2VrKz3mMKgSsEZN9NCDLDY9PL1LPq4R8zyW\n", - "rQGaf4219A5aJQO2bEKhTLg9gik0hOkSGVjoxll6Yp2kqZPvO5i4NMwOG1PQ+Jdw1uYVR+KWECng\n", - "haNwz5IasQTAC1ug+iwwI4SdBacKXL19IepUoHSbUMpSDDon34Hz+wsBIbCALwNH3oXlzwJfexfW\n", - "fU/xXgbljaFMYHYD0du4Cb4P0P4unOvB0m/CyDawmrDlGByuw/E/EEL8OynlNdB2wO4cHFiCUgTE\n", - "lFKkVPJwuQ16FyKyh5GW+GYIDAfhV+na47haEgsLCGFh4bNClSYJLCbJ0MYENKJinQjzXMcnXHMY\n", - "M7vc3YGx4U1/Zg1KeyA4Ag+cgEgAxYIa2WzmYLAKgzBUCiBNaMZtLv9qBiOZQsOjozXpiBBSTyMI\n", - "QOoIBIY2QoCOJ2ySgU7Iv0jfqzPrQ6BBowyVl2DuHOSqUJqEM2PcpkvxxuB2oG4rbwwFm8pMmH43\n", - "C1fLcHcUehHwcqCfhumrasd29daVbCEO5eDBtpJGDdagNgkvxKDbBq+F9A20nE0l16fhaGitGqKU\n", - "IxZxiI7uoXG6DdEl+Hgb/F1QiaCPJDHTMXrRafBBGD4Yc0TlKl4wjxfU8b0QsaqGn7NBg0DXsJCM\n", - "4lLWypSlhj1okBAWk4ZACAPP6JDX1ikWXKRu8M0vgWNfwYuWyFkRAgoYWoIBGyxoJTrRgIwUBFh0\n", - "iNIQaQJ0QCATPRzDYDDmsOeEwXxujq6RIGqNECo16U3spdu4AmMGXI8oo7wor1I2aXtg7/3w8AJc\n", - "noGpNUVqPn4XjP9nle2yfKcQ4tG3mlP0bkBKWR4R4tpZmNwP66AyYU7CWOWVTA/PA+mpNuLLu9Yi\n", - "2pRLwoKYCauTkKpU+fLfNfj2/RaaliRWMnHdNkE2jRQWCVZYYUBLGPi6Ry+ow5RGRE5h1wO8RJVN\n", - "s0BLjGPLFq5eJCBHwk/R1y1W4gO26Bo7PJOS7+EGFjEk18jgE0KXOnCFqghTkDrKZk1QNpJ00Inp\n", - "JSaDOlfCGs5EGl2kMZ0Gom8QCdJYcZtq+kWS2XG2NgSWoWEXJePtKrEwXChIKS+++gg2fgwnYrB8\n", - "ALI+lHVYuwyh7XDgHhgJlOz/clkI8f/e5txfhcubMDoGe9fVCGghA2d8aP+DKUaATwMXpWThXVj7\n", - "LLD/XVj3PcV72RmpAg/x/ttZvYyh98XjkL4f7jwHuQ6Ehi1IAVQ/CfxbSExAfqCua6sHQE6o0NeQ\n", - "AYND4F9s4xDC0wNESEfILn2jTFWbxkYQkh06oouGDhi41NAx0KkRxcIB3CBCwo8SdTpEWy6ppCR9\n", - "k+V1tAeDPoyYcHlWSXK92rBAyMOZXTBqKjPXQQROjc/Q08bxdBuJQLUWiiBnEEFfWV/LTSQxpIQg\n", - "kPRkHx8HS0JXKq5cvwKJy+r3gAqzfTt8gvJjcOJX4IElsH3wRUAxlaO2MgPFJTh9BfZFQZQhcQFk\n", - "Ff7iVpdcIcTsAfj1SbjgwOH9UGtAfAnuMeFMGfbvg/YaWi+GNPoMrHX0sEdsySUY7YLZBbOl2MzU\n", - "IVzAHHWIM8AkzkC4+LqJL7roQQOXCIGeItBbtKSDW9Tpp/oMTEkTjYEI6ApJA5ewWEVaLhlCCCnx\n", - "hUCTYPtJplphrox49AsacmMD0wpRNycJhMAPwPLHsLBZiy/wHBqTskcDl75cx0XgkQLNQmo6bhSM\n", - "IMr1sTiEBG64jpwKYQSTKt/IHoFBS0mUD/IqR9KRI7CnpqLl/SREauozPxqDhRzsWVfJBSQZjjp+\n", - "XhgGNk6jrl8rt1q/l+HbT8BvXoHplIpU0IrwVF/ZaSOlHGSEOH0GDtxxU9F8Dv3eBmbeZvnhAemO\n", - "Sl+InfXZuTpgcdTE26ETxKcI6OIQIAloMIoghUkXR3RBO42QFtLsUrcm6Ik8kESKGOAjWaSqh7Ck\n", - "Q98IiBohHD1MX/ZxzBApGmTlJkUi6FLQEylClOnrHmBxXuiUhE5ChjCJ4uiWUub5OoHp4WZ3EVo4\n", - "Ry9xEU1zsfUuI7KMIeOIQQs3VSd2zeeOs1C+SwgRgEiArKGybgbAX6tx9Y1zm/00fDQO+28KFywU\n", - "4NHPo6z1LYjeD+mjMGVDawEe6cPpyaGydwXWv/eLHMr4FvCWE3rfAK4BI0KQkPJdt0b4ueG9DMob\n", - "AIN3yejqnUQW8gFM3HLSp+pgTykVoVmGugWVDNT3KuJaNwyGpkLnerOCJbNP0XoJEQpAGrgiBEgC\n", - "TBxhEaDTBUxqCDxiZEmiA308mlS1LP2ugd6Fjt3HIUDc9OXuWdBPQMRU6bwALR1KBtTDyi+l7usU\n", - "0zbLRhpX24qi6go0OkgCJC0QZ5DaNhK+TqB7DOQFNAGSPt1gHel0GfdgrAkdC7oZiB+AbhWaJlzu\n", - "87aIVf3n4HQUig9AVkBDuKw+kaQfR73e631YLcLIIsSr8L8M+T6vwgjccxBaM6q/nHgK5vIg1yF3\n", - "HrTdsD4LuR7Nks2Elybsa3jxNTrbBIPFKoPEfyB8CIJwHreeQ4pNwoHEY4FWXOLrl0BLIRkw0GYA\n", - "H0EbZBbPmWdpqkm+Z7EQTaEJDWhRoUkcjSlCrGoRDHIE0gTaeFoJ3RQEI3E8mcbTL9ObczEYJdCS\n", - "6AyIahYpBEaQQBoRWvQ4T4uGMAgYw0DDZA2PRYJwmEHQYiFr0s7F0LChDX7cxwlaEEIVcsktcGFR\n", - "2VX/4JUjqIfBHvIu9AZ0Q8o+3pRKBuwLKAt+/oXIzCR8dRrCJsglkGEhvt+7KfFbjRvEvytBAdXx\n", - "Kd+6g6/BD56F3DpMpcG4ALt85NadWA2Lrt6gnllCZATBtEap3sYbK5OJzCC0PJpzkc1QQJE9DMig\n", - "0adHh0CMoHkJulodJx5lICaIIgkY4GAxIDz8ti0zMMDWbHoyoGcYDISNKwQbtHFFkUDOopOi763T\n", - "06u0tBGkGEGSRMgmbW2RgCxCjuCa46CHEXoHJ3oGf5fPVheSuosfwEi/gSZ8Oo0MoeU2InDRAf1z\n", - "/P/s3Wmsbvt9F/bPfw3PuJ89n73PfM6958732tcTMYnBAWcqSRQ3oiltAlWFQK1EEZX6ohUSfVOp\n", - "byqBVFUgASnQCqigkBISgklIQoht4tg3tq/vcKZ7zj3jnsdnftZa/75Y+9jX5jq2g6/tmPykLZ2z\n", - "9/OstbSG//oN38GHnqoNnLcCb9wLIfzfMcb+CetlN4TQZvE5nrv3ZRfCsxt89ukQQpfln+T9z/Li\n", - "Q9ozbpzhE4Gbf0OtMdL3H1GEYB5/An/hndj+SfXyKl5QWxd8V8QfYEa+dgw4TOrZ6VtHoXttZocn\n", - "1NHXePWHGbxAd7mWXL++Ti+QzlZ86l2P2c1WlZN9sj2yVWKXEJTGCm3RKnaNBZetGCgVOjITmbGF\n", - "su9oumB4dKh8MHWY8dIKz7dJVrhxjqM5mjMO30Oa5qY6JkVqaza105yYthrayYJu6DpwDvMShbp+\n", - "mQg6ogcaClWIQjzSjBtSibScGlcjp3JWjxkNuL1JMaJ9il/+INuvcO//OvGK+b1Gp6nfb+l/vu+N\n", - "QclLFYcv82emPHaB0bA2REs2+Nm3S0Qg59Qiw5T4IT7/gFubLA1YLbjX4ntbhBfs3/+8GxdGzkqk\n", - "SeKwdeTg3Bkf+ELX8vHEcOXAvWen7jYbsntTB8++W0wmdYvfm1ir96cvxkUGyxwXDsefNzm3pB1W\n", - "RT1TE9F9Mw9t6RlpGGnrBCaWJHGqCtuOGkcm5YEsm1gJqVlMjByLKt2QyCSyLJeEXIhTx1YVujoG\n", - "oiCa17AgJnumndQnvyfVGg8dxDn5wcRx57TJ9AFr9zi4zBsX+fwn6zfSW+/vz3PrT9RG0otXufUD\n", - "QStGN/LaBuYTF9n69NfBrvhinIhgnVO7Ed/53Tyfvsr3O5f4Mz/KYL3mSxuR/Ut+IoSwEWO8/eiz\n", - "JzokX9WjJsY4CCH8rS3ZT7L8Myum739cs0wd9xoWhm3j5qK9hT3NYmpwvqWRHNpsblpIjg3TtgfW\n", - "jZ1DrlQJVUMSB9J4lnjoTtKQxVw7jOUO9c0pHYpGkjgWy2WDEG0lc7JQOa4WHIVTUtGRvqlXzcIy\n", - "6ZbKssx5LZmWxDg8qRLMLKvCAqbyNJPFurDJ01SWbqtMNCeVgxA8FgbG5ztm+7kqH7n2h+vR7g+9\n", - "pdvxO+f4jR/BP3nLqUrr1eGRqGOltocYtCi6uFiTzD70FvbM01uMz7L3rhiPPvaNXOPvkvhJ/JsY\n", - "vZM05kejmj9IRr4VEUL4ayTLxIr48zHGb/lIJ8a4XwubvfTcl4TNJimfPs3uz518ph9C+DsM/jrf\n", - "kzPMagXMUb/j488+7aC5Jhe0sz3D8KTKI9TYUKWnpnqMsSnV1NUQPXTHyJqxXKk/nbi/v6+4NvLU\n", - "DU6vs3GRjz1bY1Kk5BP6PZ6eNoRGRxkKx62ZPQsWQkcwMbUqN5XYO9l3gkQ0EQylOpZ1NIxNI3OH\n", - "fU9ei/KSz2S1e++Nuyx8nvfepjfmxmnuRHa/YSrvV8ZF/tLztJYYb9N6lXfd5//c5u9u8+QSVyYc\n", - "D3nlq+lNhBDO5brrvyB78ZzJ7eeNb53luFO3XS5HyQ+NVE8PqQrKJ23uTu3svSlbmDedHXimaJgb\n", - "T/Q7QT4YWZns211YcXDpgtgYSJOojL7YehcP0KSqaBySZ6pJbpqtCPGMtlQ7RImeypE9i4Kph/Zl\n", - "saERGtKQ6GMrbFlPWrigsqwII6VCJRGMJGmibWIch9bkYsjMqwSLHhkfl6FnVA5ksedWnmsXt1Wz\n", - "maJ1xnS3YnyL9jL/8jleebkGHn0F/XD8O/zO+ygfy4WLPYftzPbqnK3jodd/cFP5D6LJL3y917UT\n", - "wgev8KMX6vmhO4xDCP8gxnjrG7g9nniS1vqJQi61uN5l0pvyPxvC8qfYv1pvPnuelRcoJ+y8hBtv\n", - "I5T2dO7Cn5u3MnfZhmW9MDRLJ26f75mEjui2Ya/tyuRxp/fuOejueTgfbOSPKeNI0w1VeMwsJhJN\n", - "eTgwy0fy6jHTMjVOZo7SrhibYmjWB+ZAFlddGQfj9r6t0LQaC0fJk1KHJx2UFa1wV+mqIhRSz0mr\n", - "s5JwbKJUSARtlY66xdVQ6kskMpVGuCuIulrmkpGjRnCvmZhWU9MXxkYH7G22nXuQ+KX3D1y6z1Ob\n", - "LA9o/EAI4fPqMXoHOxxscO0Ma3tzfv0D645Wu2bNQ5vFNj8xtP42gNUzh/SufAPX9rspfgZ/+x3e\n", - "x3cdbuQ7JRn5KrOa9w65csgscP39IbQfxjj6hkW0/sNj75/xiYQbz7FQ1UXZ1q8w+e1azMyTKzxz\n", - "aPpGYXKa7hZZi72nl/QX1swnmamWqVTdOx6oT/4FNVbjAa5jTomRiSVMJO6ap6oMQ8Pe0oYza/yp\n", - "X6S4yfUF+lv8zrvpteskaB0vt1PjUKm09HWUFg0w0MfYVMu8O0YCeiozlZvoC1qSMJGEgbLc1NiL\n", - "3nWLN+e5eIf5J1l6yNNveXmd2aPR/2bQPP845WMnLIensFy7tP4n2zH+fbVr6LX6Tys/GMJaxfbn\n", - "cP0RADqE9Eme+a9mnk22HSaF4TO33Xhm1c5wU/7kxNzyU9qbx46bI0XjjPHgWDwzUc41lFcnsu7U\n", - "cevQv/v+rrQcakx2tbcXDGhudgAAIABJREFUTBcXlMtLsiRXSsQkV/O7dwlLMrk0jE2yfc3OQ/Pd\n", - "TAhti9WRftpTyIy1BfMKicT7jD1wPTzUNJBoG2tp49hTgp7MTK6ro69mk6faDhx7YCFEK3hTKtoT\n", - "TU21pAamHsrSwrpU2eg5Hj1r/95tGp/W6M2kyxPTckv7Xa/Jnz82fnhs9A/r8xcWcB6LbP5G8Kvf\n", - "u67z4hnV5x43uHOBwxHpL3Lm9olU/te6piGES+/iJ/4E9zsnlNstuv+CPx1C+Ktf772R0up8hVfN\n", - "TcmTu3rvi04d8YemXPsj3F7khX2u7DNLee09vP5r+Fdfvr3eT68608xNhsymmTLpaRUHsuUl/XFK\n", - "uaCRcTg+kLcGynZwKkwV8Q3tsGLOnmjfQThvK/RM7AseCGFZTC5KbInVWQ1U4VAsbypDYqE4drcz\n", - "MQsTHNgNlwXHKESZeUemekptqed0tIySzFRTpilSj91M0BakUqU0VKK+mXnz2vI40893NGLhqEhd\n", - "zzrGvWjUzORLlzTzXH6wY+PSGz6dTVyacGWR1b/KccbyyzUIf9Dkt9abrD5l0l/T2AkOhx82/fi/\n", - "4+JL7i9VvhKoedBh8hWjne/+CMG6mkHz0Xd4Vy+r3au/a+LbyabJ1DPqF/GxEMJfjjF+6ss/9eN3\n", - "vtQefCbj//vxEMKNb7Wz6MnY4R+EEJbUok97J23efIX/8plaGnxw03H7C+4tDbgYrWapyVxTSGfG\n", - "eqbaEs2TvOtLpmyJAQ6lunJrxoY2DbWsamlrxNJU4XDwlPxuJq7f9vqFWvL99RcIpznTbGhoOMZ1\n", - "XVMrUpVooO8xwQWJKNgx9bpoTkuBPTN76uToSG5DV66nUpZD7eHY8zcY5dwree81PnGFxlt0BMrA\n", - "F06x+cvfjHP9WF2RfTGeYvu3eSaE0IJU5y/nLv6xxMpsqrldOPw+bvxG7Y4scPajfGSPtUHfwe7E\n", - "F96/Kv3eI3lybCU5bRL7yksjvfIlw3JROdc1HR7QGDA3VSy/YGv1knxIGQeK8Zbj1aGynGmWlWmy\n", - "IgbqTtZ5XEVL6ow82RWroV62aVHTJKZyiZVq4F5ySt9AQ1eiEk1UVpQuShwpXZWZ09Awc0ZTW2Jo\n", - "YijR0vUZQ1EXS6KWRW8IjvVV5gSHCvuCqRXbcvMWQynYtdp8SXG5sj4cON8bK2djxfyh/D2Z+CBK\n", - "Drn1386F8NJjfHiZpyLpgP2BMn/B8ct/+C04oDHLp3hmhz+fhvCrFVd/t0R0mfe9cMKAevS7NQZP\n", - "snKbJ77ee6PkwR3Ce9TdvFe5eE3zh4eqbtPw7sRer3C2oPsunvnYl7yYLu0x+nAI4bMxxq1H28vE\n", - "D3DvQluZ9w3mpkZJoZd3ZaGFe2KrrTFtGZVXjReip5PEfojaYaaBkWWlPeteU+naNtSqgvVwYBrn\n", - "TMNZjfGhSXbgIB9LbEiqS/azgfmk57Q1uV19qU1tU5klQQsTTZmemRWZBzJrSpVSJUFhoE5GmurO\n", - "5raRQs2vioZmstCQyh2Hlr3GRZ1qyZ5l8i1Fa2Z8OpfMM07bGqcmhrsUs+CMhvlsYv+P8keP2IuM\n", - "P7fktQ91TTotx/tXlC/1GH6YwWvu/NjA1bV6PEPNhvtch92vWM//o4ifwMdifHupgW9ivIx3hSC8\n", - "Azom35b4dgJYC/zg7/6pt5rPtQuejLxxxYnHyLc6TtDgXwSNZrzwAs/8cW4fMrers75sqzOlVxhm\n", - "DdOqEsOe0mlNucwCHigfuY96Q25owbHEWWv2DHBX4oaenl3CglHxjFE1lS6dId72qZ9INE9nhqsr\n", - "pmHRtonSUKLUdNrAgpZSaklhCbmGQmJe6oLMdTPzmqYYKvTN62sa+cCU5W2KnJdatarr/T5PfoK8\n", - "5PAqGyMOL9Zd3DuBe5+g+sI7ff57/MW2sx9Z8+SbqaQamvYeOvVYX1ny2d/BIcsLrJ3oRywe5faH\n", - "ucb+vudOVdqzQ7sLmW4jdxyD7uiBYbzgfj9w94jOOkvPK5K2tDFUhZnYXFX0HgrpsVAMxEbUCAET\n", - "M7uiU6I3xHhf4VBaww6tZFPj6Zbd1rJugIHCrplCPXl/Q6mH2yaOsS26pDQ1cN/UmrZFubGhFJf1\n", - "7ciVgqaHFh3bt+bQJaUDXTN9xw4cY82KTNCajfSTB+YWmlrNSrMYG2SJFyep42Zi+/S86aiv/cx5\n", - "6UeeUx4+XQvWTG+w+DpLh7y4xcM1Brd5YsYLK3S+h8szfvpVroUQ/v5XS0jyum337+FDujXHvP0N\n", - "tNPuv8lnf433rTB7wA+eFXqF5u7jFrbvu/auV7Tzyvcc0j/vhNpbM4Iew6sXsAUhhIvzms9fkLR7\n", - "To2OdYttm62O/XSkig/M8gazVZNsR5hPjNNCEQpjuSUNiT2FNVVcFMKGRUf68aylZMcgDuXhqkl4\n", - "4KBBGaeKYWlhNm/Y3ZUlK3JL+mboSQ319B3oKNXvsdKWRNBQKcxL3FQJSlM1qP1sfQ7LLVmyoQp9\n", - "ibbEWT0HDgwM9dGw5Zw8dswVUTNdNqnmVfEzdtd3pYd9F+Y61odHdBu2O0tuzZ/T2z1weGHT63eO\n", - "fc8tPn25bW5zwcqgdKvZMxrCPNMVh68O/Mph7Z7QimxO2fhHMcY3QwhrKZcrysit7xBH6HcyPuqd\n", - "Y9F8MWK0GYICZ/2eZRS+s+I7ZUzzdUbCVx3pfPPjBHDXxMFXGrbBCi8+cZKcvKH13l3za7mD+Sfc\n", - "ambuhoeigTl9M9dV5pX6MrekzikNMdQxlGpbNCcXLRoaWffAil1vSuKadtGV56lpuGOwkFueazuY\n", - "P20aHpMYKZ1WigqbCptmDk1EmYsKFY4NZVqCoCsxk5tZdaRyoGOiE2kd8cJNGgUPF5iNuPfrPFbw\n", - "apeNnI2/zfQqDx8/OTcP3+rn8R8at1h+a3fkGmtHvI61ec33d5zZzSQVdDWO10wWh5ZPVeaf4ugT\n", - "TMNbwcaJrUuFc42m9mSo3ymk6WX9pCfIxORQGu5pzc0Z787z4TPMllTlxKTRkTgSuqU8aWnMhnR3\n", - "TU1VWtjSNNTRNjCShGOrsTSJ6xaqgSKMLDbvGVcM05apkWiqnvG/oH74jiTmsK2yIGqbaEksmjhU\n", - "SXQkZkZGUjxv30OFBexo6TiDBaU1G3b1Lcrcc9GWkWGYWM1bNuIV06SpH/ddT2dCqy3EVBUnQl4o\n", - "H++YZvPmqoZie9e0t2p28woHt1huMX+HM20eTHj+HEdvUn6QN3pMM576t/X8+m11JPZ4/R5PXXwL\n", - "86bCmzV+5Os2rzsRLPunv8Ubi/zF5ynGuptz1m8FWXlZY/qm3eeOjPe+vJChnibVZoq1oNvSn1/T\n", - "3GubrjMJixaGA2k8cC/fNhw9y4MnySdma03tNJi54XpVqtKora8j07FlHEqlqUNnhdA1NjYJpc3w\n", - "hBjXGee1YnJ1y+FRzgtNmXfJ5IIoGqp8Dnc0LMlOoKmljlRTlJrpiXLBfbl7J4D3BY14rEweKCSa\n", - "uiozqZ5FDVEhGphJzHTMQmWSJdJqSLrIlCItzbWbWnEqThuKuObcaCpNj2wsNBTZaRsrY6+OZ9Ld\n", - "I+l0JsQgmytIM8q7LEy5yfbfYPuUGsu9FWOczYXwkef4yJUa9Oc6WiH8/DjG3/56r/nvpwjBHD6M\n", - "P/0t2uUj3MgfJCPvfLyVwTJJuRmYfSOAt99TnNDVfpwnX6hfHfv9EPJfiHH2yld8NFaEYzrbGk8c\n", - "6T99RWyekYdCu+oI6XXLdmxZlDmWOEBPW2bbNbm2RQsn2hUDdabVsCDYMFJpS2JCOiU7ovPApDdn\n", - "M8w7Cuc1jAXnRatS4xNmzorKrhrlP8KOzGld0QSFvlTUiwPtWV82nVge12rZ65vsN5g1uIfBr3L0\n", - "P/O5FfUis/kWBsRr78S5/zXCJueXmG7TfK1WVfslXFpQldOvMKpsyUaZo+WpIsECW7f5wjne/RCm\n", - "minNZkvcLPRfWFFk8/LQQDBpLsmKA2k+4bnzTCriA3ptVT4UQ6pVToViX9HuWhEdhI7UQCa1bMmK\n", - "u+47UmpoVy1bIbdkwWJcVqSZU9WWA12bnlC39LpY9MgSOLgtOC3qSCwp9UUPlHpm3jQ0Fo3VwhoR\n", - "LcdmUpV5LalCZWhsUWZRz0j7pM81CTtu5I/rjkdmMdWdtB22Vxw2p5qTrrZD+809jdBQaCjTRGxP\n", - "Ze1NZfus6rM9Do9IHnAh0s7ofRprvNQ76XZcYf813uOrJCMzXv5cre9y4Qo7M9JXWb1dg2a/ISfX\n", - "k6LgMxdDuPk8r1xX/DFChESIp8TDI1eXeP9bkpyDJtcLvBFCmMc55k8vSB6kkiLaW53SqhRK/TBX\n", - "d8jWD4nBTKIsGhppV5rMXNYQTCwa2arRIPY8Zd+6oI2ZIq6LYR1nas794WWmm7VBVFwRHSuQiypN\n", - "lWW5a7qG5vTNa9r3vL5FDXcdaynsm9nHUBJPa4QBYaJ0WaqnUii8IpoodGVmJhLBw1r11bxB0kRR\n", - "A7fDWDNpaZuYhaFRryWbxrpz15hznJ83FWVh6uUn7jh1uG9u6zV3X7hocjAk3WD5M7Q2+H9PwMFf\n", - "HIGFEC69yA/+KHebNXvKc+T/vGY+3Y4xbn8j1/33SfwwfivGbxnd/VEy8i+/1gd/P8R3eDLyscd4\n", - "fECZcLXJ7X/9zazCIYTwOKc+RGOd0W32Ps7qj/F9F3jxXl1h7bb5tZ85cf28/ei727x0jZ9+kaND\n", - "8XxX2TivMhFCpUpapsma3F1nXLfptNSqpmisLzHEsbaJXKKmCCyq2/8NwS1UiiQhmyiyDTrLJCum\n", - "KM2b2jlpzZbqJ76ttKq+sInUntKewm0Tq3IDldtidSwWpdabUfOYq2dp7NC7QZmzOc/du+z/45PW\n", - "+8Y385z/bnGH//0hz8/VduUPCl6LMY5CCCu52e7Ig6XKUkhOKt+xabtyd/684Q+d5Xv3HDTv+6Xl\n", - "kTdbrBdT4+MjR7Gj1+o4aizrmWkZG8lVoRLjnCjheErZ4MyI7CzVvCTdUSabQuuhhXJZzBKJfUFP\n", - "R6pj08Ce01KlrhvpunEcejNMTJOe+TIaho5dT0lclBifqKQeekQHLm3hOalDLbm25ZOE656RA8yf\n", - "3BcJltHALaWJiYZobGLOVEulFCVGTht5w9S8SqFqBKPRWD9fMosNeXHLYZprFmuaWobxvmFemFRB\n", - "ki/JxmNheYPnD7lX8PnX+Df3ePIxlj9Yc0C/qLtT+yl5Gz+SOk6u38/+Oh/8HV6MTHb4uVntwBu/\n", - "Xq2hWvMie5aFSz3Zwo6iOu3w5Q3h3cFiGSRxqp9z+G9qJ+LHL9Sdshsld/7ZMj+2yvMZ7Ztmz27L\n", - "wzm9qzOtBxOz5SObz5wW08P6fM+j3KAxVmmo4oLGbKqVBYOkcEtTruFIZtu80QmQNDoyDo9jRhiR\n", - "BdqR5JTQuCqmUcPYqjkNUaVvqLQjk1tx2lRuzrKbXnHO0EhlR5RjSVAK4dDUohpwU9XHpyVxRvCG\n", - "DQt6FiTuS42slVvuJ++RxoapkslnyXNF3DXt0hhNOeyKrajfntPPV01mC7Ldmap9wSir3H/qjFXH\n", - "xuGWaX6dpwt+c5e3Nahc5IVnGDffcl90mT1FvF1j078bk5GP+pLK77ciXsb3fwv3947Gd3gy8lt/\n", - "h2vPUk05fCXGeOdrf+frjxCaL/Lu/4L3Hta0to1n+M3vY77J2YdsnGX+oDZ5et8xm98fQmOVxY8Q\n", - "LjF3/3f0Jzt8pNBfymmNNOJIKXOUnsOOHXMuKjXt2HNspHR0AmEMMbEbOCOTgg0zY9typSNBTnxF\n", - "kSyowWrnTS3hQDA9YWUUMjOJkZnGyaI1FgSlqClXUwrrsdH8rO/yzcr2K/z2y9hhfI3FD/BLHyJN\n", - "GX+c3b8bY/XqN/N8fz1x4mnzdsC3W1vcPudua095jjNKMdt29/RFW9f/FNeblCXhU0bFJ3zm7nFd\n", - "qX9yKPwPmdnzibIa200b5spEqSMZTU3CsXG1zOs7vPg+QoLXyfqqdCKrxlqjzOl4ZJqNtFKe1JAK\n", - "EjNBU6VpV1PqReINo3zPlokqSUSZqQ0j93Gs7ow8e/LvPameaCKRSzROAIo9HVOlOU0XzKwaO1b3\n", - "Y5fUK/yOA4VdDYsWFep05cgFfacVRqZuIjcJOXcTG2lLfjbIqsp+xkwqVPMmYcvQsby/xyRVZIkQ\n", - "77C6w3irdi/+5WN+Y8DSfI3dRd27vMrSNv/i67iuv3ry8w1HzfI58+d4fonTw2P3Ox/zyvf8sK1f\n", - "fsber+3YP31XOHWs+k38b7yyzqvniSVuLPOfPcEfmqfKGU/0d/esPXbTwYVzupsHdi4t688vEEri\n", - "MVmb0Kn9CZpNlZG9kIlhJHcK8wpDdyybOHNy9mdmUlGFIIsH2o19w/UoNmeSfKxhpmViZKaSSBUy\n", - "uyo9iyrlSVHRMbbooR2Jpp6o7cAZ8USvpEZsnVYzcO6pO6GXRFOZvsIDLUNrMmV1KIY7ZipVVZAN\n", - "NMKe+eTQJEmtJHPKwcykCsbtBXdna4bbubQcOcw6hEuyIrFdPW/0r05x/+c5+zq/+nYdjhBCNid5\n", - "z32N7zuUFV3TjQumry1ynBOTOg//rooQZPgx/JVv4W5fxn/3LdzfOxrf0clIjPEarn3ND/4eIoSQ\n", - "c+HH+ciDL/mgLGxx8zzl9zO5RZLV4+nZhPw+/gjv2mX1EusjNt7d8Fvr9I93zcfS1J1acjU0REFp\n", - "0a4NZexaUEgcKsKyaWwTFpWhsGlqLDVvopI71jFyQ0MiapqFUyfH3OQE/zFVqjVJOtgyc1o0qGm5\n", - "dlW2sGJFTf6htFKVdSq0XbnykFvbjP+Xt2gv/MojR9N34nz/h8aJNP/fKxU/teBOf+buwhHTjvjG\n", - "R3n1UQWWEj/Andf5viUurlHdcvf0UKPZ9ORw191OW5I2jRWOs5bx0YEqnUlePBYWbylb+cl2JmKZ\n", - "aE1XdcKR0GzrmtkQzUSnFMZSAz0NEwcaJloYWgzB5TAn0zJwZOJAaUGhq2Fg5JNK59AX7akMpc6K\n", - "MkGUGproSyxrSfVMbTtr5tfVXZXzOK3wmpu2LGloaZpYc+hiTfOUGxkSO4y67B+aHM2bHG1xaZnJ\n", - "Y4bTSuhsanZyyXjB6c9sGizd0j9TKLq09jZ0DZw7z8O/wPbP3uWf/jx/8mk0ibfI3uDT1Ts0tvtS\n", - "LP0A3ztX+z/BEzsHFopf8OsfetbBp/riaFv85QN+7uQe3jj5EUK42OOnzuIU0zHpnqN2n8Nr1tO7\n", - "9h+bc7j8hFK7ttsOdwmBLJFm+7JkaGJeFp/Xt60Gv+zrxUQUCcucjNNKi7J4VxHOCEVilrSExkCV\n", - "DxUWtBxI9UxOCPUcK+1bOhmtkCkMPDCyq6uhJ1Nq2LFg6p5n1cPKvjo5zU5+WuiJUlPrcnv6Doyq\n", - "05qjmZCfFaoxyT2tsvJ4OK3T7BgVI3vG0rO5o/7M3uSS436braEyGzB+nJ1rpsnjpr92vr79PEV8\n", - "gye9bYdj8aN95y4/sNd+3MLmULl61eaHn3b0G2+QDWs58++2+BDuxOibWjB/jXgFT4cgi/HLXap/\n", - "P8Z3dDLyDscyq19myFbjUiZP15YdzYrpEheG9KfsNOmcrYFwjX02qtRhecmykXy+59ys8GbWNGxe\n", - "kmjL444qvCI6ZRYv2khywQMpYjinRu49g3MO7Tl0pMYUXFNXv6fUC0xfXQVdPPndUL3yV1q2BDeM\n", - "NQQrkhOWzkxHW2reTLQrSJ2SmouZa4szry+RHD9KPE5o1lfonQshO6R8/ffuuvvORYxxN4TwN7d4\n", - "mtjE9cf5nxbqptEXY4uzK1x5N6/2GN0131i0NA3Gnaa5wb69zqqq2DLJ+4p2IcSh1uOlSZZJw2lB\n", - "U1kWsuObhs37YnOikBpVTQcpn1Z4WsO8FIX7MntOG3ogTSbOSjTsGzltzwUN805p2XUsuiozE11V\n", - "WRUtYEHmodKeqY7o1kmFPNG3rW0oNzYzpx4SN9SdlYsmPmUjHhCeklhS0zyneCAgxmvSuKB1qZQM\n", - "Hxrklerq5fq2avbFtWtmnYneqC2Zn9c5GJl0Eou3dkx7q4rWOYPH9jReONBuT+Lwfw0h3L3NUzmt\n", - "Ye1cfeebmcTWhYLH1Jn0Lu5y8UWe/TJF1eg9Xxi41f+0g3+KN7+a90mTP/oUvfdwe0hzhzMXWdp3\n", - "lA8d34zS8SnllYT8LMkeoUEIQpiJZqoYNeOiM2FoPyxqxnlFuONheMw0BjU4c+HkqNqK8HniliK/\n", - "ZJaWtVqwS1JruCrzpmOVwkBuYlEUNbXROOFcvekpHfMa5nBo5J7MzLJoUxQcn5B8H3VlJrgrigpB\n", - "X0NlQQhd3eFYa3NTXCmV62NLjaaumSrk2rML0t09w6yyc9Q22H7I4y26XUY90jtcGvDK2ZNEBFKq\n", - "9G3eHyGE9cT5H181XslMexvuna3kg5asvK7xU/eVv0j5Hbe2fBPiWz2iEaNBCO6rk8J3uBh45+M/\n", - "imSkBqRaV7eXH54snBNG4ctBsq88wdoFhqPaffdCRbNVCwC9vsaTgeWEi9s0pql/fanQPBwq2kEy\n", - "OaPTSTXLO/pJUIWoGVeJh4SOxJ5SVyFRV7b3kAimch2V2wpTtRDa0+oj21G3YoMaLbinXnxqW9zU\n", - "vCXH5u3q2bKta0fPoTmpPSMHchPnqyZFpVlVGrgSuf9YCOGpetOnPsJT5zkzrf1lrk5OHDm/IXDh\n", - "Ox0hpFdSC39pXni+qWhMTR7umz18SO9M/W4GuzydcbzO8U1WS63Fy/LxgTLLdaWa1YZptW+WPm9v\n", - "NtPpnJZV98zSNbPQlaqE0FK2VoXqqiLOTGJhKTSslomNpO2VMNVVCnoG1g2cU3lZ04FER6V0pCvV\n", - "OKFnTs2cxaGZEVbVyegOxiqrMrcwlGqZea/CnJaxwpaZePKdmhJ+khajR3iILZGTEcE2mhKlkGy6\n", - "NNjV3O5L9kfK4ao7p+YNb7wpefq++emOJ/+fnvvPDxwudPWTXLq7a9Y5ZbRwztrVlt7BTOvodXs/\n", - "mobw8zHGL+AdER8MIayc4b++wtIS8T7hNjf3lCnV24FLCvUz/VVN2JZ5vMdgROMBT57CBfpjFtti\n", - "475iISdPqe6THZM8jamGO6KzWrEgHDg2L2o5MDCLi8ZatWGjnJORWP2stggDMR6eMGauqDlP1/Vd\n", - "Vlg6GfRtmLjl0JHUoaFKouHAMwqrWgaCEmsaRiY2zdmV6atcUC9otzxSc65xZ1NzWuYlJg6MwsTx\n", - "YjC/d13WXDNXlnpxIo8TMXSVSSnOd3UHQ41yanDhmI1jtlv1uCo+ZLHJ+NEqWRBuko3exikb77tk\n", - "8uSzlu7kuq+OHK7u2n/+hk449L6rrGW88hdDCH/v93J/fCdGCII6GfmT34bdPwKx/kEy8p0cNYWv\n", - "+0e58gOcTurH9f5GCOEfxhj3Qli9zhcee8S84PgJGilPX+P2efp1gaS/XCt9Pztl3GDvNKc2oouj\n", - "fTsLuWowUQ4bqm4qtlJ5rKimpkmbsC/xpkql8ozaZrFmzjT0BW3BgdI2HlczJs6rk5GmWqG1p05E\n", - "FtX0gzHuGGtYMLYqWDa1ZuR+tWO/SMhWnKpyucziLErSsVE608HDK6SX+cCIg4z1U3zPx1g4eaFf\n", - "mucX//MQwl97pGz67Y4Qwnpq/a88qXHhsoWtprToO1q65d4f+iWz3o/w6jmOdujc4Nw5fqtNscWV\n", - "ZbPDmaq1JJkOpf2RuLqr0VgUp5XEJelsrGouiRZljiRxpEoKVWusLBNZyKwVhUaaGKeVUwqlFQ+N\n", - "T+QzKrUEZUdlZGjRnLHCosREif0TH5NgXXCg1k9NZJaU9kyMTQXBxMR75Cf/S/QkUqVX1YnqbR5p\n", - "TGip/XHueCRNmuqqcQTXRYtC2HLc2XF+kfa5VNLc1U4+4eVTMyu3+fF/zIW9A3feuO7jHzwlnI2O\n", - "TidGjYalOy29A8hl5XnpqF9TF98RTZkQQljjpz5S+9Xfgffjk1z5NTuzqVdP8963gCXvLbC15y0s\n", - "jrfZZrpOd0h5lRfOYoHjCfmY9DE+e8gP9UleJL1fM02SHUEhlchEeVyVlwcmSYfQc2yJySdpHp9I\n", - "DYzUbKfL6s7m2snuHxNrtT716rOArrHeyUBmAQ19r5o39S6pB1LHUoVSJRUdm5gppYKZoXuiSuUy\n", - "zslsKe2cdNgu6NjQtKLjntSqNaW7WWl4fmQ52aVMDZLEYliVxKEsXDXrlfrtxGiuFOLzFnf7xvPR\n", - "6OVlHna5+CrPvML1nPIac7e+CnB1mefOqia5tISCbtcTO0sm7UNLu7zvPmd6jH7yG2B1f6fH82oD\n", - "n899rQ++A/EoGflH34Z9f1PjuzoZqc1Zn/1RfvBNWieo7mur/Os/HUL4P/Bz/OZPc/siy5E7a8zt\n", - "875NqjbLfUYLbDSZDYmBokWvYrA8s3Y4MFu4ZHj/gTQ9dFSdliSpPGQYmrijCm9qmsnjk0aB+gXy\n", - "eUGqY2Bi39S20ll1j6amndYxpy75a5GtujKeqROTicKhqURHUKhsR0YF79qpbC7s2WvXep/jZmmU\n", - "TM3KSj6miHx/Sf99pHdr2f37f5i5X6nZQ+eOOH2BB3UD5jsieh9ckl143OLmo4VuzsL+JcPGyzbL\n", - "n2fU4uKM/T4fe/cJhmTK8nOOb73u4PLA4lxd3aX77J2ZNylH8k4pyQtFWgphTiLTjBsmMZeUDTMd\n", - "XSumk21HvZm5WWmSpfIwVTmnfsGM1UvrGXQdOdSSypUmZsaWjbRlpifJaBTN4/hETb2n1lUlmlMZ\n", - "i2bmTnych5pSlcwtU++VWRBMlKYqpTqJraQKwU1RT/SsqJJUqWFnZL/dshpbJBOnq6nNc/OG7bHb\n", - "o4H5X+XiwZ71X9nz2Yt8/Huf19Oy8sW3xcyoO2+20Xg0jXhnYnWN848SkUfxIg9eNjn7wCe3OLjE\n", - "mXHtkv3alIf/8KuNiB4pJM9zLq0f2lafuZKs4PiIWxlnEvnlLTHfUCRzddVRdcQwlYW+1Fg7NE1C\n", - "IomJcejK4lVFWCJdnziLAAAgAElEQVRcJtYFR92NOlQ/ryvq53Wofmb3BaMvMmLoKQ1FudxluTeN\n", - "jS3JJUqFiXuOHWhL5FIzDQcm9hx45kQ6/q66WzqvaU3pQDQTTHHb1NicZV2Hemkw63V1jVTlsq0w\n", - "1EruuxzrnspxSDzM10zSiWS2obrYsjgpWHne6Gfn+e2XmP7KyS73+bSvguVrYc5gf2Ywl2sPZ6qF\n", - "VHvUctzzRePCM8esXvguSkY+in/2bVJCfRl/5tuw3296fFuTkdoIz/vxUozxv//m72HtQ7xn90uJ\n", - "CDy1w7WLbJ6PMd4JIfxNts5jjtUR5y7w2Uu1M+3DJUZzbBXEIbOCnZwqY9biqDwy3brn4Ch3cKkU\n", - "5gpZyM3ManhaOJabWZFKwpGxe6ZGeFOUONJTaauxIKX6YR6c/Dt65KZbZwRN9UJ3qK6O24LctomB\n", - "oTxGpyfMTqi5D5uli9OR00l9vFu4Fep6uhdo92m0eLDK4jUGi+yusHaibpvyLRSY+9rRuDgnLR8l\n", - "Io+iqTvtEt7k72B84qJ8/lP8N8Ma05Alik7Pze6RxSqYizODbjSYJbozJunEtJlrhLEiPhBPJvhF\n", - "0tMqrinSUj47FvOmy2VfnuWSkNoxs+mSY7tqAEZeG9lpi1IPHSrcMbZsZiaxq34pHaMtOlQ/gA11\n", - "0jlVj2xqMGJh4kCuZU4mlcnlRjJ79rVVKolDtdniKWwrLMmkKldU9qkGlKc0ssKwmulr6ZVD46TQ\n", - "jRPD3pK9hZm7z0wtfJpmWSfg1T8/sP8TY43FTHNSmrSCnSI3uT96Z8GHeZN/rxPXpMyIbP1Ndp5g\n", - "/jz9I4pt3l52O4SQNfjgizzzAT75SQS6cxSb9WhlM6H8grM/cuRMPpZWr3gjnNUP0dg8cWgYCktV\n", - "1C1vG6aHpqFjMttUZkOa766ZOemwPkZP4/PqZ3mgLizeUD95y+qxbEfd3TquR2hKwaaZRK7tNQtK\n", - "MwN3ZR7XV+mKlkzFE4uIBdfddcoRUlHtRZNiX+qeto4Vbd16IEmM0ho85Mi6pTRXqczi1L2Q14yh\n", - "uGSpOjaIQSsZWpsbaadHlrq/4uZHP2DyC/uS8b5z55hr0L/M7q+GEP7dVyaCQ260jFe4e2Gsu1wJ\n", - "LfZj33Sj9rZ6FF+VCf77Mf5T/I/fpn1/1xjmfTu9ad6HbozxwyGEvx5C+ECM8dPf3L2kiyy8zWI1\n", - "X6nXhUdW43frY0pTBj/D0g53zrPZ5vAM58fELv+2wdMvMzfh2jlu9aPRZjB3cUlx6qzKnlacGIdU\n", - "mUS5dR1DG8ZmRkqvnkiAn0GtEFBXUefU0Oi6aqr9ThbUYg576hpiTp2EPMCmdTwhcaxypqy30kj5\n", - "dMF+wlrFelH3UQaN+u9N3G6Tjetuz9qAxog7C/XfihPK3U6Hh0PfQn2Rrx2jG0ONRqkKqST2jdtH\n", - "+isT+6v9eu1vxBiHEGO81wrhMzP+bIf1Gzz+vGLYsLsZ7RxvyEOpc/BQmp+TJfuG+aKy2RTDfeJV\n", - "w5hR7AplKcymjmNTO2+4nlfSUFhTmpNZ9LKRU1rOiVKFmcp9+xoyi9pGKtc03RfNCSLaUpSuqxOR\n", - "y+qs7576mm+rX2DzGBl7Q0NAsCoXDPS9qVA74jQEu9W2KpmpE5LT6qW+TyyVcSqJa/J415GZEDIb\n", - "1Rmd8g1VIzhqNPTPTm2ss/s4L68x/ltHir+74/YPn9aYrpjeLsX+Z0h2+bfv4EXe3mKyVzsKf/G5\n", - "vcGpYa03M8YXmiHkp/mxtfrmTdZCuLXNP4kxHoQQ2vP8yFm+L+U9Q/Z3OPgwH/842y/xkWXKc7z2\n", - "eQt/curpcmxpVGrmI63GPVuhdDMdmVlQFkMH4VA/2aKiSt48Ie4+JimXKIdmVZN8oH5Oezgv8ZmT\n", - "McppdeLx/7N3Z7G2pPd12H9fVe35nLPPfO58b9+eyWY3KZKiRFODNdqOIkuWbdARLENGEMMPjh+M\n", - "BEiAJH4zkMQPCWA7ieJMzmBYliVDEjRYMi2ZpEixJXaz52ZPdz7zsOehqr481G6SoilzENlNClrA\n", - "xcXd9+yza9euXd/6/v/1X+ue1IngzMw5LCndQ1CYqLYILROrgjruSb0mtaSFmaG61KXFoPjciaaZ\n", - "0rG+lrlE4kiU27Sjo764to6NjRzJzMJ5R87MHNsSbYXMyJZQpFoK0YmNZMvGfFQNEtVqLo4OTO//\n", - "Za99x4nH7vJDpyzN6Nf52I/yVPRF2qFTPv4Z3v0ek1uXTF67Kz27Kb1y6PqzVUUEXt3g8I9FWSQE\n", - "F1WFyW/k9+Lfh1ewE4LlGD+vm/tWxNtZGfmAz6do/ga+U1X++zpi9FluPs47v2BRzQN3El+izxxj\n", - "8WwI7V/g4IdYu8PoEg8+w9WCjRNOl3jyKs+dcRBXlc0V7c01/etRq5nLw7a8jIqwJBrJvGBkS2Fb\n", - "ZqK6WlbxDhUbeknldf5ela/8q4vHuz4fg9kWBEGq4UjpwENSlwUXFvNcrwRqkTJWbabunOV18oxe\n", - "ViUNdwKdyDRWG81GjXtNLj7PKxuE81xKObjAswl3/8kiP+ibBKNPnqrfuOHo6rJ6r3By3wVFfW5U\n", - "rjF6jb8ZQviZGONhCOHSu3j/n+NXP8Yje+rbL6kt1YRHpsr5jNk1G596is0bllorRkuvy7NEkq4q\n", - "Y5AWZ4qsbl6P0tGaYWPHPGaWTSSG7rgj07MqGFsWbWk5MJE59oCKXJwZ2rcic79TfYXEhkThzIET\n", - "wdBcVQ0JKro4X/wdVavxCs4UXtbS0ndO1Besaaijp4wDteLQ3EWlg4Uae+HUGSZiiIbFREzGzrQs\n", - "Fee1i6E87ZhMxu6VE+EivR+upl4vPMeV9/V9evc5Bz+zZ/odKe0JN/f4VzHGb9giEmOc10L4hd/g\n", - "rzzBpMvoLqufYu3Q+lkI5/86+/vv4rt+iFtvOsA+z4Xf4idDCP+oI/kvOro/WLNcMN4OztZfNGvf\n", - "4cVxJV7tnXD5Dt99oLE+1xnNdQe0G8fKctVSPTVMZ+7M7yhrbYVUEh+SJ11LcYAl5exAUb+rVraq\n", - "UeyyNE+GcoXgdVFX8IwlVf2ysGpmRWIfz5tZUm1AmirSsKLuwLGb6toypWbMzALn1SxZVTNTN5Wj\n", - "Y1nPZU1NdX09x8YmmhJ37du2rGHiVMNReMREkLilZs2O1KaJ86LSrlvpBfOirlC3oS2EMyGZS+OZ\n", - "IpnYvDc3zPjh5+ksYoSWZ/ypO9z5vhDCk190n2gO8GkeTdgYKUb7Bi8UwhHPXuC4xss99n4O//Ab\n", - "dS29hfhR/EqMXz69+huBGBUheEGlW3kbEu2/fng7yciqz5d8z1Qn8+uMk4/xqcdJd7h2SL/B0zvc\n", - "++gfFtgU4+iTIYRPc/N9fLDOB2/y+ndytF53Y31Vv9V2N6SK5oqdGxN2WiwvmyW7ZiEjvSDVkHjZ\n", - "WB2PWFJTc+jUO1QkY6iqgrxD1YK5qdohD1WK+H1kUm0dA4kVNa9KDNwveEDqUCJXqJVREqrizkZC\n", - "c7WqkAyRJGwn1VRQEbiRMC2qn7vdIR5y/i75kGc+zst3GR8xePqtTkb+cogxnoQQ/suXTP7OhvzH\n", - "3yUWhfJoXfzE+3h+h50h34d/1uVdjzArSF6x+t4VsZNLamNCqVMsS7Op+QOpznPH3vtyMP+hroOL\n", - "25JmpiGo1ztGemZxrnQfg2CyNJZKtaygJzdQV/OIU8d6blk3c0VitNBy1NRdsORYsGTTPRxJpUpj\n", - "NY+4Y0XuVOkcrkm9vJiSOFAZBwylVkQdQytYXgxy7hsIVSheGEjL+zTzkTw9spQeydMrGmUhjyVS\n", - "J3GoDJcoo5jumoXozMysl6vPcuNlJrtsvdpxvNFyenWq+d6B9Oi24u8h+VLZTN8IzGN8LoTwj3b5\n", - "9gbbRxprM+/KebxF0uz49T+/4W4xkvci4xl1audXhW/fk5+vufRXtlwcN2XlSJEeO7nCa0tHpu+4\n", - "WPG7uMTxEkd3yebOq1zuz1pzq5MD3WnDkxsXpdn96vmWOHld3r4mJPuKpCuZtdSLwjy7RXrdksys\n", - "mMmTPXUtTTcNZJasayuljjUd2DZ1y7K2FUzNtFQ9qTlywapuPBTC1Hlzt0JHrlSqqamagDOnopYT\n", - "l6WW1aSCzKrMxNQovkeZ/75eekMjuWzuumhDY/F7ltwy1hWNDbEqsePM7WTFPAZjNe00JQzV0qA0\n", - "1+jTiJ8nIm9ieUaniZbFJFsIYeUaP/2DDC/yKyV2Wf41w+UbPv5LtDtMjik/G2OcfKXOu9/k+PP4\n", - "x2/zMbzZqvkTMvI14ky18aMqBPw7fv4hhL/7Bf/8NzHGf/PVvECM8SCE8D/R/x7aj1AMOPgXzH/v\n", - "yzxvFkKYsjGjOePBjzb80l94yMH2tnSaC51z0vlt/fuGknbEBUkIaj5r5o1FD3eA+4WFfVkpU1U9\n", - "thdvtpquqPrJr6C3cFJty8x0tDXUNOS2RDWJl3FtUcjNYuEsRK2kEp0eqPzWHp4zrPFiWjV2LsTq\n", - "8cHilK+G6h5+OmX/aW4fc/BL5E/HOPqmmJz5wxBjvBNC+PvnmL+jmr0e1Rex9A+x9zs8FkL42Q2a\n", - "dfIXOZ9JLm8oWpd1CtJy37y+q4zR6Hzfuae4/9Ujzz297dbFJXE+l9YnmmWmMVmTx9vyekOZnOqV\n", - "M51Y0445SUNfaaqwbNVQV9uGqSWZYuERUqhb13ZqJGpbUndgVXX/5q6+mRPRIglo0bZbF7SkC6t3\n", - "gpam3Ia6poFEW1vbyEzNmUQZlhTFHZv1pnfEQjE/sK9ulpZ62UxaduX5un6WSsKBeXpXOTuyM5t7\n", - "ZMgDY/qdLb/94w9rvN61cjhWJrclP3VbcXMY48fe6s8ZPx9CuJ/H/zp/9oWFk0baNNvMZOf68rV9\n", - "slPtpZrzt1tmTfIPd2x3lzWOU6FoSMcnuvW7utc+YL/3DgYjwhGzFzWvrUmO993r8ESfpR43NjhI\n", - "G3r5mlQXMxodIanJtCVxpB7HBvUV2+Xr+tnLMhnJvqmpeXyHZkhk3mlJprZI5eV1M6eWbBk4L5Gr\n", - "NiMNDNQW240y1KoNhlVXjYyMHJlZ0lAa4cSZC451pKqB8LqmmkIqVYQ9Ic0thagelwx1xHgmTQZm\n", - "ZqKOUs9Mw8hYzUxUmMa6o7wpZPuupKmsKOT9ue2b3K1VPkvD2h8kJP06w6kvaKfVeM/DtC4u2rsJ\n", - "LtB/jNU96uM4/K235gp6axCCFXwQf+ltPpRn8PjbfAx/ZHxFZCSE8CEcxxifDyF8L96nypX4zT/C\n", - "a/8O/gZ+Ft+vEiD+AcQY/+4f4fe/+Tv2F6/x1eKQu4H3Cj770I7Daw9r38uNG6VcQ1jqKpYLYdbU\n", - "nP2+XqsQkdtWEY49VS94skjQnS7aNBOf6+lLVIr7luB5Ncc6alLrWgtd/FDQUhpXCSrGC+fGHpTc\n", - "SyoVSYw8MaFsUE+qbvUungtVi6aMrESSkpdTjp/l9G/Qu1Bl82TfH8LaZzn92JtVkRDCm/KWKW6/\n", - "VbvjL4O8ZLa6yEbZZekzWg8cap07NgsMHjrixTd4f865HVqpc3lfP7QIG+qzE8PsZTHPvZHxvz7Y\n", - "tX/luvK1TbW1ubRx4OjcsUaYWS2m+nmhnGwoB/fsnc+NUhJTcy3njAzcj0JwIreDVVFNbtfQ2Imh\n", - "trDwyu3YMzGTmVg1dllQLoLyZqpSYV2io+7YRBQMBAMthbq5QuZUIqgJsSYpa/LdU9pjq60lq3mm\n", - "0FdkB0YhsxzXlOWW+bhungaz9Jx4dFtdy6M3Jy68RPJQ28HaNduzmtNuJt1vyvKHheMZPxBC+P0Y\n", - "45cUin5jsXyda7M3fYBqPvnQqnljSX3aNUsbspWaenpstHyqOUw0aqXlYiJf6sjOghATtbOW5maT\n", - "wSG9O5rZsfr6UOhmxke8PGa0yVqToyzxwqimnIzV6n3zdlusDaSBUCZKiSI7VQ8jE4laHKrHQ+10\n", - "4D7BmZfcdFlYLPKnMkFHal1wV3tBSyu9SF21GYnqZhLVQHYdUa6U2rQmt2fXgQK5ZT3LghXB4nN2\n", - "IF+4mfCUjVD6rmnNXpr7bPqqs+ScGHckYWjsjrmeJW2rmkb29Mpcb1AYlTVJa+heMtTNS2dly43V\n", - "qXhvJj/m45f44O2KkAzqfPwiR7+4cEbe2OTPbfHnIjsvce4cz3SrW5wuk3Y1VPTHDX8GH/sm0Gp8\n", - "RtUu+pbGlyUjIYS/hz+NNITwEZXPwC/jvwkhfFuM8b/7Wl44xvjpEMIkhPDbKmLzddaLfOUIIdzH\n", - "5ndS36zkB6efwE3eeJmPPtI0fXSFSWFWD45jU9lHvS6v10mDkJbmEtF9KiKSsyjHRoXcWKktuKeK\n", - "dLzkTSFqpRMZWDa2rnBNoWFqbmqgbVdm4NBIX4pPqW5jm4FrsaIyUxwHPtmsqiBXcBDZjmRJlWN2\n", - "Hu3AzRqTgsk92u/i0R/hiZNK6Hv7CT71RAjhf6b1Lq5/P5fzyhzu1kkI4f+OMe6FEN7MbJvHGM+8\n", - "tdjfY+911hvMP2Lnu6MHTdQbY62b7P40z/3yiyYvbfLuNdOQWCp72mXPKCbMC3kcWzvgtX+5LN9/\n", - "L8mURwtxZyZv7VpJchcUluLMLL7m5c67FEct45OJ2OlrdXJroSszMjIXjQwtLyobmcSS1KqGOwo9\n", - "Dee9oauhlJg7dSLaVLesrjCyr9BeaAKeVFqXm6qbKh0uHC8SY12pfjUSWjANM8W0wc1jdqasRweN\n", - "nmGYWDZzXrAXJlJBPW0YH7WFWjQd1zSWOhrjgeny3LxoOux2rPYLJ22KpHDWumz21D7ZG9VC8jYY\n", - "4OUTZguvrXmy6ub1KzbfuOneY01lu60emmqjQ/2Le859LFOejISNM7HbWbiFThQNRvkhg2es76Qu\n", - "FHPNbiFfmjporzt96UwjL8xD5nin7vLZzFY4cmulFMtUOrsr1HJF2TZJgnkytJHsqZeH5krtLPrg\n", - "PLWUBGdpz0qcei7M9GxoqgsKiVUzDT2HC/LQUX3vOyqR8syxVwVntqVmRmga2Jea6UpEwZELluVK\n", - "ZxJLn6MxUz3n4qlRGNspO7aTqfHoWFi+rhl3zDUWRnojiQMDTTEem8REL3a04jXZaSq4pdeoOQvr\n", - "mst1ybQUl24bvnvXJ/4/bmyxkjKYcvhLjH4nhNC6yE9/qCohvxxY2WH1Dh9q8K+bVVpxq+cttUl/\n", - "q/CWu67+IXgG7wpBeJvGi78u+EoqI39eVQKqq9bOSzHGsxDCf49P4msiI/CNGef96hBC4908/per\n", - "Uu3qiHvv5fe+jdd/hqN/ykf/Wq7zY/smaxdMT+uyYmYjOdXrBvM0ytMDE2sL/4jrqjv3THWybuBl\n", - "hW6VWeEF0am6O1rmCmdmohWlUqa58GjtOJVrW9G3hzUj51VF3VUVAWmrvt+tOY9HjjNCyXFSFQ2u\n", - "BE5DVSTuxopQ9Ev2JnzgHr/9GOFH+IFbtBYCtJVd5vdx8t9y9X4e6lHbZ+eZyhzt138qhPRfcuFH\n", - "2egyCyFsvcLhv/z3OWB+PbFIef1n/4q/lmn/qcL1lVxnfKq9W3r0qUp6dPz9R17/+1NWl02ulXYv\n", - "BVvzxNqkNAoTo5zQI392hQ8+yq3PsLknf/ex0OZCiBrhgKxtczKQx9/14nrTfPdMPjpTNtftZIme\n", - "jr6egY6xC3hVsCwoJQ4Xlt1dA2vaODCwrLAp1bErGhjoKtR1DdSlel6SWVXTUCo0UViyb6TjUI6Z\n", - "Q0V6KiujneFE7zqjdrAXThVh7r2iTdHUXNvMJBk6bg8UjW3xdEBaxfwNr6Rqg7nLn8xNHpg67aZm\n", - "YeLO6rreZ7fZ7XE/VkMIoxjj0VvxGX8e4xd58Yd5sA41ZbqsNciFO28wHMsfCcpiT+dw7L3P1rzW\n", - "zp2+d18tzSXtoAhH9pqJyehZD+ykroTcMFvRS9a1Bdf7hRsbXafZ64qE+8uW9ZNEkt8xXdrXX+04\n", - "V9Zk8UVnIXUkMQ8DK6HvvkAR6ZaJMmFSBuNYM05SMWyZCRjrsHBPXZW7I4nPCWGLz4WJVOGIwQVL\n", - "GkbumaNZJcZ4VOaiOWp2HTux7sgbcutKbaUjHFkJU5dwYKaczXUGPc1mSu2UkIqGoomZjhO3PR+b\n", - "2nlLzMfOwp5aHGjWZ+rh3c4dJLJ0YNqt2e9+p/yN5/jwwO2znBfnfPykmm6KtRAefoTuo9wak/0G\n", - "s+OqN9y6Q97hjee5l1c6/T82CEENfxb/2dt9LDHaC5VR73nfwuYtXwkZmS3U0nkI4dU3d8KLWPBv\n", - "ao3Bl0OVgXHlR/j+e3QX+SYb4yqbpv8DjG/w8PXM0ms1vc6r7j52XpyuqvdGeo0DYlMMA1UVZFNF\n", - "F6JKJb+jEqh9RqXoOMDIFevWZRJEc3NNt23I1cwMvOKeTVPvMfW6qoZyXeUX9JCqZH2oepkrOE2o\n", - "T6nVmKdcjNxOqp+rqeZ1rofKWLIc8cg9WjXa6zTO0Xq9et+7Oxw/xvSdbG3xnhe4ekR/hbvfxZWP\n", - "cPEa6d/iR15n59Yis/Uyv/VTIYR/8FZN38QY90MI/wMr13jwRZb7bB5VMyl1ldvu6+sD/tmJ4uEL\n", - "Rk9wvFpI21NluS8dc/qv8eyMR3Z5V1ute1vo7Kq3Uq0wk8aJ5TAzayxrDArrN2+Le3OPT5edjgbe\n", - "ePSckJxHaSgoZRI7on11fW01a1SeFWibSvWs23ReU6EvF2zak7iGqcxtmab7tGUShcaizH9mojR1\n", - "Kjq2ZappSb0I0uW2cWjaLc6Jk0PD1k0vmVhCqlAqnCtP9EOX5NC8ccLBBdOjGw7O5WY7LIeBy796\n", - "7Onve9jxZ+4Xn16h/9uS77xheZ1H/xK9UDkWH/3cW5VbVGm+Gj/Hz/849ydDs/qZw637DX73Mm88\n", - "Kcxya+ktCXYGc51PBr98re2gmGtNSvN0btKPHk3rttZSm1lqujlzFO66q22pM1dfbzuOdfN0Znk+\n", - "MVtqu3gytzUZOTefmpc4G9tqly4vV0S/G1lLqpmlrtKJaBA7boXLWuWpJBmalBtiiPKwp+5UQ9eq\n", - "XXnYFcwNLOl7SLFwWR6Koi1dZ+4s5m8um3hoIWWuSWyKmub6VmwamjgztW+qcMlYC3uhcLfB2Xau\n", - "npyomwtloh6jZpKiZjdsOZy3NaZz7eE9l8e3TBqlzclFt7KGLJ2YtzrKWqLe65LtsPIBDt6oohce\n", - "/DhXQwj/sMv5rcVU0126TVrL1cfXPObRFynu8b8vxrL/OOF78dkYv2kW/zdFrN8sx/NV4yshI9MQ\n", - "Qnvh4fBtbz4YQlj1JQyKvsWwzXb980TkTdx/QOMxug/xQzcmDmYjb3zvmfXTnrutxM1LK8r0IVk+\n", - "UqR7YhJUNYi+6qSuqEjJTFXHOI9dbeuLocypuplCYsVc4sxUKrdkZsOufSeLZ2+oTnNbRXHSxSvd\n", - "CdX/JUUV9ne7wUFgcyFoPcZprOzs+6F67iNnZKscZYQZ83dyc5fGkN4HK0ldfTGZEx/h7hXat1kZ\n", - "c3CJ7DwXT6p39qag7dE9bl1l9z5VXthbgkpkfOl1Vuesj7l3rmX3ocS8M7UnZy3G+FQSwv/Yd/Z3\n", - "OqbvzDWHJ7LegN9h/3+JMU5DCDd/z9LfvGSr09GKTeVsoFUb6oTMZlGal0f26uQrc088nThXC0K+\n", - "4sb0AdPmZVkIUs8r9RdTMnMrmi4Z6st1F9ZkjCQSOwoENRO5JoJtfXfNpUY6trSlCrlCgkRTas3M\n", - "sbm6rh3R1DJpKaa08hPLzZlitmKt3DZLbnpesCLaKodaZl7VkybLOrXLxr2h2Do1rkfd+7j1Q6Wb\n", - "s9ed/WYUJ6d093jktu2dkb/w62yPqmvw6fv56E/g/3rrPufpp0MIr/LqfT1+d4/vuY/TnKRr/MIn\n", - "3f6uE9df4zefYK8+s/eLp0avrTjbmXJn7Pp38IG9udd+ciKULaFIrGW5oyxq1gppOLGmaq4+OB06\n", - "ujDx7FapaEQPFiPHgaIbLWVksRIft3M6RTUavxtoxGgcNs2LsZN6z4ZXjMMtRWCi0LDhYbt6Mh0r\n", - "nrdmTQ23FRrWlJrGhpZM7Qh2FRIdqUS+SLyZ6pibmGBNqqXhxETfmpkLRdRLKu+i04SNYuQ49O2H\n", - "rtYk167NNQMnTm3GmWV9N+pD/XrTvY1UUtQq19U0N84ok6bkpBQmgXaD0VVOb7B1kd9/vHJHfHzI\n", - "3hH1Eq/z7vfSX+fgHmubPPsgJ7/C9/hjkJ3yRfgJ/NzbfRBfgDdFrL/2dh/I14qvhIx8z5us9oty\n", - "SjL8tW/IUb11mDH5EvNlvQbjNg/MyMpoY/dE/7lU2Ji5OKm7t/aYcj40q9ckSalwqhrN3VPtnTKV\n", - "euuzqv36QN1sYWI0k5qoOZGqOyco1E2klg0MtO2rWt5RtfvaVIWXliwEbtUrDFUju4ctTgpWZqzW\n", - "uZNVEtkHF88vYuW6emOT9SNGE5KbLO9y5wM0Rqx2OexyeI7OtLrxduskqwzXGR5w7yrdLV67zCiy\n", - "9Crve4HN0ucno95CHH2Up34suBa37L17XTbM9dPgoMRPhBCOcbZv6zO055RtBjc4+sefDwHcefim\n", - "+5/p2/u+jrmeaRhKYrRVlLIYhSxqTiiXV8TvXHKQjYw6q1qqocwYCdakbqiHpvoi3n3mwLq5hlMD\n", - "dcdKURBMZHITpZZD02r5UBpZUxiamqtLBE2FqbEzUz2p0hzBfHFNCWvCrFJ4NkOUZJlaXNGMmYuh\n", - "0FMR2rm5lRjc15+azp+xe7HUnp939XduibXC5susNmYmuy/b/5mX2WDzJ/mJ5yq/MapK2xN3eOWh\n", - "EMLmWzn6HWPsqXI/ng4hPHPCn65zec7tPZP/Ojr4UVprwcVuS/KDy3ZPVwyf36NPY8LWcaH3kUL8\n", - "9pTtVJJFaVIaFIlJSD0YCo3FmtuOBU1ulpTzaKXOSp1xwixW+qwrOULiwrz0ap1WQhELu8nApqAV\n", - "Dxw5r7SuaeLAmZ4TazFTk2qGQs9AzaprOuoigg0DUxO3lOqCiXLh11u5rTacSc3NYmEQpkpTbYlL\n", - "scqxe90izRAG0Y8AACAASURBVCqptkWX4x0xFnZbS6Yl9XgmFgc2sJROZcmqk8kFjV5iUB+Zz3It\n", - "R6bNpjzNTGuFs+WXhHiokZSSa0OjWUk4R7/LtT1+/gUGHS7V6Kxz0qNzyvwqd9pMV7gcQuh8MyaB\n", - "fy0IQYofV03SfLPgM6pqzbcsviwZ+cPKa4ub0TeVF8VXi6oMvHOTF3Y4f8atde5e4ORh2qeZl757\n", - "1SunNfXBQGvUl85SJ5t1/dpnleE+kvtUMysjVVjDJu6qoWUq6GlLZOZmTk2UJhIdPfFzI3vRSGpt\n", - "Ec1VN1Kq2jID1Uc0W/x9qKqGHKoWwluqxXCc0JrSKTnLkfB9JSsFo5RXSt6osxw5KTk64b2/VolW\n", - "f/0naLyP+8/YazCr8cCocj8pamyVlRj+uXeQDviOCedPKvO4Zx/iycjxUMV6vmFYiGavqkjPqUow\n", - "8yk+fbHp1f+0bWs0M2q27fa/V/+Tg6pM/CNHrqzxbQ3yM5xV5/HTP1W1eQy4cq30oeeOvHr1yGzO\n", - "6Q7TJW5k0WpRZf2cSnS724ZnF2wdH5IlYlKqxSNzXWKilixZ87Io0zVQoC6aG0gNtHQUpu7oOWek\n", - "riZVSs2NVI4zlQFuz5m6VXVNhcLQxGxhdsWxoTUdbblTuVk9CiEaqelkUSjHYqiyod+M0ZuWdPpN\n", - "DUuyF+dWl3Lb9RPTrYmlnNojnItsP87JizHOfjGEK1lVcfpCJBbuxR1f43e/ao26pOLod2KM0y/z\n", - "lD+AGOPrqlV3EYS59bd5/zL1tU1nF7c9enNsvX3B062HzS79mr0rc7sH7LwWfPrPzLVqc7GW6sXE\n", - "blKzHEeaolbkuMlywXJa5Te9XOeJKefH9Nu8ErkdWKoxSpuSGI3zqdNYOkn2q++hxHJMhPCanhtO\n", - "BTVRq0ysqdkNqZaRvrkLxhqiVCKKChMdA8sSm2YGi6m5gYqQjBVeNbUaS9OycBbqapEk1BwqjMpo\n", - "syzVa1wrgzyWNsMbbieZF5K6pKSlcD1JXc6Dk6Rwt9x3rGtYFl5aLbXzl81r58yT8/KsL5hYEqyM\n", - "7tleO3JYvuH2VirmY45ijKMQwv825i+vs7IQhpyc4zNtpjkhtxgz/OODD+FejF8ytfjtwjP4W2/3\n", - "QfxR8Mc8KO8rwf4/51f/K1Z/nPoGyx3O9zvubV7WP7ciO9dWvPy646uZ/P7zsnTVehn1s5Gp38ap\n", - "JWMr+nK3nWlb0ZAZaGm4rpA78pKR81J3FS4obChEE7d1rQgLL8boUF9lVVXZr9zAU6pEi5dUN6Zm\n", - "/Hxo+DjQOmOwxN2iuok+UlQ31TSQFtw/YNzgTo/6x/gPP16VmucJjRkrr7F8ynLG3cdop9TGHOa8\n", - "lnEw42DMX/xlTj9YmRetDHn4jF95D3d+1ucNY7/uCCGssP1XuXaezche4MYbHP4/9D/xgP53POpO\n", - "v8XsCicpcZ1RED7AWsrpVqWlgdsp7YzOo9W5GV/nt29WLacLxxxusZbTSxbVqIzQqWk6c7jdUs9O\n", - "FBusxBUxZMjNkr7EiWjmgsy6NamZqbETU5mpq6Y+I+orrIk6qlW4oyKWM8FwMRTcd2BXY2EDnztd\n", - "5Pi25F4U3RN0bRuFNbnMyGSRZlRqJIeysuKGA9yIPNxj6+zAUTHXHEyUO1ONpJC0efg1OosNx5WE\n", - "2Z8JITzL9uvc3OG+LzAHnKYL4+KvSciahXD/ZT58iUYg3GaWhvC1jN2/iUfY+FGujhruXV7SSaem\n", - "DzWtv37Hyn0fdvhLn3G8edOvvpMr51jTND2ZuZE1rIaJnbTvrmAWKruMcU4tZBqxLoltjfmp5xq5\n", - "k8qN341FdeSVGu041U9aJsWS9nzF+vi2s/WuuQv2QgMzmV0dx0o1B5bE0LIacwdxYCNJZM4wl2sK\n", - "RoIB5hqmVlXX7IuBeaQp2Itb9mJdOp7armWuyNXD1Ena1CzH0qQ0TxP3lVEjieahtJus2V8okCZh\n", - "pEjqsnIsTyJxKssaht1zyvFFjeOxSXHbbPtEMjxRmyzbDlvS1sB45bPG065HnvmM0beljp7q8ftU\n", - "mzr8g/UQpmPue0910wLPcOGUp79a0vlNjm+2Fg1VmsjDIchi/NYkfn9CRlirxODvHHLW5eFxZn95\n", - "VW/9mvnpzGh11+y9Y9v5wybFskZeo5ioL3PgVOKiq0aaeoIjQycL82ZWFtkT0cxlPGziOUvuOrMv\n", - "WDN1VV+htfAO6uub2sa3q0rCmar5M1r82cL5RWvpesFJ5PU6o4Kl06q91Et5o1aZthVJRUSWzpjP\n", - "eN+zFREZZ/zedcar3P/JqsjTneCEkyY3VmnfIHmJC/eYXa0qIo2Pcu+xKmAvlpVz59EvfFEL7+uM\n", - "zR/lQ5s8/gXjgU9e4aM/xOm/zZk+wu5iBtSU2l22x7Jt2suVdXWtrOzx6+9mfIGLIx4bM2/TfyQz\n", - "HATPlXODWCU2P6GqLIgch9wnAtPyloNLmcdmpWnxoufipsI6BmLY04gTq2FsVaqnVF8MfG/HTc9L\n", - "nF/YXu2GvtxYG7maJ+QK0ackLittloVRMpJ507FmyZpEZux+pSPnHdpCR8TIiprPGhhqx6GLRZX6\n", - "/jzONam3SD4y8x2f3nfzIkcFvUvcd1gRkagyJd2r89AJx+9j/zf5xH9SFTCuHHPQ4d8+zK0nVdv0\n", - "wVfzCYYQutf5q3+2YoYHcEzrV/nJLxn/+hVh9Qeq87Nzkrp3pWZpQDObO7lYSvZ6LLc0HqJ+i9tX\n", - "o0kWTcM57f7EdnNEmjtuVsW2DgZJzc0y1dOxpmW9ziwMlOXEMiZpNVx0QSYJmULulbDkhXyumWaa\n", - "zptra2JZS+ayobkbZs6XwSSM3UxKwzjyxIi9epBmA8vq0jLRT2amZkoVOZoF3q3yO9oVPRL68ryu\n", - "0dxwbm8idvuS9twVuRtZZlYW0liaBDpJw71w1Z5Nc3WpzDy5aerQZ8LY+/NoNK+Rn9eslTQpR6W0\n", - "cV5t2hJHQ50Jm+OBeWuqXClNylNpra/bmDr65YWH0+dwws9+gp/a5+oW5R7hNW6ffAvrGL4YoXKc\n", - "/LBvrhaNGI1CcFuV1/jc2308Xwv+hIzo/AUeb/PwXV5YTy03UwfzdePuujhtCme7alsdeWNL7WRC\n", - "IxcbiSzQXtSrozUsiY4kcpsmDlRkoq0ax72JXVOrCqXSrlLAgaFNw0WsVdXr/ZAgiJ+Tvq6odrob\n", - "qgpJrtpNz1PKlEFK/YTuiKLNUSQrudOoKhyP3uH1NtMpv/M+9l7j4NuoL3Eu4+Q+XmnRukq5UWXb\n", - "5Dd55//L8oR/dZHRKxVJWT9j/WPMMkYZn1jxJXJ+vl6ojNceepjHvsjn4l33eObbOP2VfV5+hutP\n", - "cPeGcPWupcdvq60NhVAZQt5uEtNq0rC5WWlcmgUPDWoGrehO2tDLg6MsOmhWtnUDlUanDExCYcOp\n", - "e50NO0Vbfz7Qr5+5nB/rFDX3mnUHMTGJiXsht2eGUlTtxu+FibbMUjx1GOqiDWsOtU1FpYmgJS5q\n", - "ZSuGyUxp6qqgJTOVmpojFXRNbC/GOpctK6V65lqCU12ZPMu9cj+1Q5ae5OgSZnzkw9TOMWxVE1dZ\n", - "QnvInfvYXaK5y8EHKJv457z0M5x+P+ExwgOc2+d7r3Hnb4ew+inOfukrNcJr8I5HSbcqRg3WGb+D\n", - "8mshIyGEBtd2yE/p13KtwcysWVebTY1XtwxefFXj/We2E37waT69w/f2Jl56/9jd5a7BcOh0PdiO\n", - "HIeoENRDzXZSeioWrsS+YVaoR0YJd0uaJTuBSUjFsimJNRdk7tUT9yZtm1oLp5lK21XI5LrmsWee\n", - "ZG6FqAzHdhaj+IM86mW5mnwhdq00H2/6DG6r7PRmi8zmkzi1nI5dMhLOJ2ahLpQ1RZxIlUJJqFUt\n", - "1ruh69Q6OjLRxKo0EkPpNAw9V5u6f3fm9sauWXaibmC61lCEVVmxpJ6eKLqFXN3yQTCbTIRXex78\n", - "bd5Y9SUEqQvLh3+4V43/vdlOff0bu1F5y/Ef4MUYvfJ2H8iXwO+rhkz+hIx8a2L50SpNsugwWi9M\n", - "2i33UkI8o32mVp+ISVLJyVq5ELpirRRMpZqimtREIlVakhstQtBSj8WpVoiaKlJyR5U4U60Npang\n", - "wsKNImOhNWGw8HAMKiHqNdXNqada95s+H7HVUA0RPzbjhTXWs0qsuRJp1dmt8RvbpE/yY7/Crz7O\n", - "U+/jnRmzUyYN5o9WGTbXn2PlFZ5/B2eR39/gaMK9n6uM0z72F/nO3Wr8eZjxifMc/mKM8RsZElWr\n", - "3mfyRQ83CmoJsiP+xb/lwy/yBCvv7lsbHrr0FOMV4sNk19m6yfEWZy3GJRvDxLRbV5sWurGuP62r\n", - "J21JsS+oJpLGSUX6uoFTc+frh5rlqrNkbCOZeXBMo8hdqJdeShODkNqSqimdqdRELcGWxIr6Ygpm\n", - "7Lamqu4xUYhqi2vjRFupaVNNy8xARM1UlMiUogNddBeuvEyVGpaU2gpNN4xsx+A9Meok3HtP1Z47\n", - "+xCPdVgZ8M7X2K/zew/zRsrlMe9+hvND7qwz3aH3RIzzp0II/wfn/jY/vM+1RcumCHzkO/jkHV9h\n", - "uGWDlSX/bphYZzEW+jWgRMHFp/i9b585NzjUX10xaWZec8Ho8LNW3n/sgSfZGpP0eeN6YW144HR1\n", - "ZJrOhVhTn0a1ciYIxrWOGOZW5lMHtcS5SCzndhOGSfWd62GjnKlJzENpHGmHJUlgEqvKJQuX9EBf\n", - "Q6YtU9O15VLZ0gs3LddYCVXVc1cV07CqWsO7qs3HFMuifdFYbi1UYQErWhohkYgO04ZpHImCh5JM\n", - "Qy5bRBXsioK5qbmJnpU4MVeYxJr+dGp/febBGEzKKC327JdL7mqJw4KybrlfmC3PjPJD49jzxNPc\n", - "bXH48h/mK7Qgp2/ZVN3bgJ/2JdzCv0nwpMod/Z+83QfyteBPyIj8LgeP02qxM+KNZU5rd4SsrVls\n", - "6+SbRqNblpt3HLXOSfIq6qyM0TAcauuoOxQWS8iKuVeVthfWV6cqm/h1lW5vf9EPrh6LVqRWpYLc\n", - "qWhLarzwSzwWlarkmhuq+/aOz5ORvkXMVqg0IlmXy5HkmHmjqqCsRl4PXHi2cmcNj3B9pSIXV7eZ\n", - "ZvSWKwHj/sPMX2DtozzQ46NPMv+lN/u9ITRK7n0/rU0mQ45+gfHvfoM/oFOOz9hbYucLWgM3Vunf\n", - "WYycw/8aQvc/5n0zHr3F+ohf/FEaR6RN9rv0a5Ux3FHgQp4o0yCdEQVlK5OVNaGWmcRcL1Tnq6si\n", - "hCHyRMy9nhxS4+KApRGT9agWCheUjhTOISyi75bwmtIDaubmBqGpWRbOJRNvmC9ISHRXFLSdSk0U\n", - "OjJNHXtGXhRcUjiTLOzk13SdGljWkBujNJfpmYvyMLYWg6JFMatM8GqNqnX/2O9Syz+XGmJ3k7M1\n", - "3v98VUnbW+NswHufY+9DKrHSJS6vc+0LKlNp5PF9Xv2gr5CM9Lhxm+9+9Isev1Ox9K8aMcZ5COuf\n", - "IX8XD/wWN64OnPVyd3c6Dke/y/jA1oulD73AnUtsbHJ3uUqESsNQNmU+5uo9lhvsr0WDbCgGpo01\n", - "V/ulfjZw0giuljWtydydTnU9lKLGbC6tzYyTmbPQkiVjoRjaz5Z1VaRiiIGJlVCax5ZaDEKyigP9\n", - "OPY+FdGeqCbf7qrkOEG1KXlOVVHdlrshuIxCYmymq6mxUIa+LlgKQRJzIaQuxOjUzJqxV000DFzW\n", - "1E3mZmXfII6dohVZ7g8kcYPYdDWOzLNDu+muLHY1JzW95rHdnVPdT1bHcmePw5//Wj6zb3WE4Br+\n", - "FP6jt/lQ/jD8Hn7s7T6IrxV/Qkac/iZvfLhy007m9OLESla6GF9yKzlwnGayOHJaHmvEuVF9JphX\n", - "I5ixpowzeRLVDcwlxi4s5h96boSgZaSlujE1VMLUM9VN6AGcyDU0nGpU5VrBifA5AfoWPr34+euq\n", - "9kFP5TVyqrppbQR+5zxipQE4XuPcoNoF1+dVv//un2b2aXaaFXm5Grl2yivLlYvr+UNOWzSe5L47\n", - "dLo834lx93PCs4Xnw1MqJjR9K8qvMcaycn39yE/x7g4bffZX+HTC3j/9gz/dwQN32Rxx3KoWjuY9\n", - "PnvfQrQ6qM7NqOTmamGtKMQ0Ogs1I4les6kxr/wj2ioy0VZViZYE18roOOFuTtjn8HwlEu6hE6Mi\n", - "RF3VYv/mGntkZiOW9kNpXIzEhJqJscJMa1H1mntJZjmWdkT9EBy7YlVPMPe83NhlcysypTUHi6mr\n", - "GsZSJ1qOrBlJYzV2fRh5tcXwiPuG1HaqqIOlEdM0c+9cMFmK8lrhuY1o6Zjmy1x7nVCQrS/eQH2h\n", - "nfkidGakX8049ysv88YSVx+tFMheZvv5P5JJ08mv8/ELPHiOnSOK04nykxP5/4kz8v+csyZnT/DO\n", - "A2aHPH2JO4NKrJ73GZa0BuQFzdbIwWoqjyPt/alxd+5SLXV+3pT0zuy1uJVyoWCe54ZJ6tVQV05X\n", - "JPv3pJs3JUs7jkPHUagIIlEa6w50dEPQF5RS+Fw1dIIVNXNRqjRTmqlIyYrqetoUzaS6Gm7KHZlo\n", - "Ss2VjjV0jZWhGgWexNRSmFtzJEqsartkpnQsCyOdaSGUtIqaWE6kcc8kb0gauaV4LOlNvPfJI9NN\n", - "zr3Bc/8/e+8dZNl13/l9fje9+3LqHKYnDwYY5EyAQSQhElyJpiRLstamd9cluXbX5XK5LIdSuVxb\n", - "Lru89m6tg1SSVqpd2YqrsF6LUaIYAIIAiTAIg8nTM53T63453Xz8x3mDGYCUCJAABgPqV/Vquvul\n", - "O/fce87v/H7f0IWlf4bG+qwrpW5ayfEfMv5r4LeUemt4qXcxXgTuEsFUiveCj9hbihuWjIjI48C/\n", - "APaUUh+8UccB0Tp0T8OLs8ACHOnE1EQoGDHCOtspG2Nokdnz6RXX2cv5REaZfFQmg6JnbbNIkxQR\n", - "ittIqCLJGQaSI02HUPpEcY/ADAlGiiR5dJJxNUHx8Elj4Y1KsrvEzKIooOUVriYxndHPe+hE5PDo\n", - "oUa/Py0aZGeYkGtCVNLeHmYAVRPW74epAbSKUB25JLsRdAQiE8q7unIgQCcN/nexJkYT0btqmqZU\n", - "fElEfgNqD4I7A4OXofWdNwLooHUR1h/TbbdUpJO5w5vwF4dgMoY4gXQfDjtQsxVPpn1cM0d7I2a3\n", - "0MXNNkjbEVMBLLv6nNeBtMBcYhBHin1Rwnlg7wxgQ2YSchYMRFdPMsIohdDzQR/FZNQiMFNEiaJu\n", - "BMRABxeXNC0SFIoFFCiDKXFwEFqEtMkxy8ZrbBt75Ai8qzJkxcPgCuO0uBWdBFWANYEGihMD7cz8\n", - "ogXtSZjIQOMO2B2kaFuTOF5E6Ed0Y4cwqBG3Aw6c12N/YQIGV0vt27Cp9HXlXjfBXRmD7otvfgxV\n", - "JCK/9xQ8dBruEzCb8ERfG2b+2g92XaiuduXeOaTHwWtAcvG6St4X4Cv/CRzNw9CDvQwMd+HDT0F/\n", - "DL7603Cyr8X+preh5cLqfMzkWpPjNbg4BbmDJn5Ke9y4vk7uL6a01UJ2N6YqA/LOZbpGSMUIqbZX\n", - "OFdwUYbCVGk84yANMbCkjUWfWPlEDMigGcpL6I7TKgZZYsIRAi2N4CMcJxnpNxsEGAgW85j4BKxi\n", - "UadIKDWyKBwxiJOEbcMml0SEbGMaLlUG6LuhSyFMSEfQsWz23Cqhl8JtDLBUAysX48aw8ALc/3V9\n", - "lteLcHaI3hFlgTkR6dwAT6obGiJMAb8AvLG4954JpWiLsAncwk2IG7mRlZFvoykLP4zz79sRfcie\n", - "AXcd8hGUmgo73efy3SYTaeFg4NOOB/gluJBNKGDSTwxsc4BiQEFtk0NhqCo75InI4SRZ6tLCNIS8\n", - "KqAkoU9AS/mkJXxNuGwRnZgcAHJE7KD7xjbQUVoNdT96Z3pB6V342Oj3KrqnPADyid5BTSh4wYQ7\n", - "hhA6MOjBlRLEISQVzaqYuQANEy7OwJGa/j+fN3SZ3m5pumsrBacdaL3pxeadDqXUJvB9ysPDl+Dl\n", - "B8CZgcO7QA2euhemTbh3V9OYa3lYSul59VKQEDQHxBMDZu2YhbQi5cOOpam+KQdmRKgmwl6saMcG\n", - "UQidTsKlSJf8pyIQBxYF9iuDRBQxBiGKZRI6Ck4ZignlERh6fPvYPKpiYnqcFQdT2eyTkBomXhKS\n", - "Mi0q1KkT0qHPGMIBLrPDPLHKEqiItnRIqQ53oDikwDB0jmiPzsVuDJggOTg2gM1AJ6cF26TrBOy0\n", - "8uz4Y7Se32J9LMfEQoPty5qJ9awJ9SdG570nkvsr+KtPwe0tDWheL8NJH9pPv8Ux9IAnRo/XQuR7\n", - "6A6++c8M0b4n3+V9Mqrk/S4E/50Wbc0swt3LGvPUDSD+GsQNkCKspKA2hJ1/CeFPw6lxvXzHtZg7\n", - "FmM2yxqLtYBmno3vwnwAmwcifC/iqA/VXdiuZpiVKnNKSFTAjuqzTcxQOlSASeliqoRkpHQ8h65u\n", - "rhGQxsRVikBEN36TBAx9b6dG0ngOUMTFxEJRQACLgE1sskmKiuoxxKduCBuJsD/sUzEHZEUxBKYS\n", - "yAQGNcuiNxhQlDSGX8YNAtYLbZYFblvRlcVaAV50YOv/hcLjMP6Qnn+aIlJ+CVpfUEr9oJifmy3+\n", - "S+APlWLnRh/I94mruJG/TUbebCilWvDDTURvU2zD9jpkq1BuwkQDFquQTmKm+lqzp5GCjAMTmMyq\n", - "Bn2jw+UkwjZ8yniMRS5GNwXmCo30Fn7UY2hPsjSsk01HWFIlibcZNy0OEZJFJyEDNCDVQFc8BJ3U\n", - "9oDLAh9Q0BZdHb1NdHvnKqsyh154VoBKpGXhrRjqu3AmBytFyK6A2oVOCcZDaAXQzsLhZWgcghUL\n", - "3BCcS3ChqcGs2bQG1G3+kVJq690ejB8mRjvl34avPwLP3wXheRguwN1F6FjgWeD3oRJr09/4HEwR\n", - "EU7CtgXTsYVyDTyV0DYjptALUl8lVGPhnCmcN1IM1ocYM7AeQMMQpkJFxhS2LUVfCZYY9FEYJIwL\n", - "bBi6uqAMmE1gUtmURWup7sfnkrhYCqrKx4w8uqZJmgSLhL4SJiXFjAqoskXbN6hbPQYyJCuwLwYj\n", - "0dihIfrfrg+dADpZcJRmwQTAphic2ycEgcl6/CCdLxyE5VOcn3+RjfsbnJ+D6JtQf1IptXPtvPae\n", - "EpEarD+kcUmdb0P32av38Hs8XoD+k3Awcw2AC/DKNHT/FHZehsX96N3B8ogR8mXw/x5MLgAnIByD\n", - "idOwsAbnfxx2NmD/q3A5DxdKMN+DaFLTxDtpm7wRsIdNVtnskwZ51WdTKcrikUa9dv8eQY/LIcBF\n", - "8QoKTyyqSUxFGZhRQtPWVbey6GsxIuQiERHOyDZvQAVhSMyaDOhjYicRkaErq4lp0hGhqiLyol13\n", - "mwWL/rCCvNRh7WCHaMwl8IvU6x7dP/HxL8OZaRiehcYzkDkKdz8Kj65qinws8Ow98GwIfP7dHc53\n", - "P0QoA7/IdXYo7+E4CdwL/D83+kDeavzIY0ZGLrB/DFERuic0NmO1CpNLWkiwX9VAL8eAshhsJhnG\n", - "E49NI01fpamLR0d1mXW2MWUfxSTFThwSB9o4r5dMQrJCWpnkkz32TBiIT0MScugk5CB6LjTQQ1JH\n", - "76DXBMJYszr2oVsATXRZt4ve3WcD3fNuhhB7cO/XYPkADMYhdQ7Sdah8GPbycMdlMMdgbx/0QjiT\n", - "h8oSRKdgexs2voLOfLZv1h3PqHz8pdEDkemsTt5iH8oDnZilU7BqQKoD0QNwaxfCso3nWaQs2HJt\n", - "MuTxgy5dy2DQgEQMBrbLIOwxndYLSK+g/94kYSiKtjIYw6SsIMDExuQ4PssJdENYSGBcwHECDBxM\n", - "DMYl4iwRbeUxnQgpBT0vZsu22cIkFOEgBnFiY5MwqYbMi08auJLAaYH95jUXpPUI+kOt0C0GpBN4\n", - "uQB3vAT3dIQXggr1YZWNxcMjobq7UGt7dFil8/tKqQt/zXm9gFbdu6lidH9/3eXPfjlFfsKj2POR\n", - "DaidhMEzo+v85Te8pwn8HyIyBczCzj1QWQDy0PxTGNZgtwi9JniLMPtTQFZX3Vw7YFpLjLEraZQy\n", - "sVFMSsBkrNgfwauWFu9TwKKp8T05LI4IvICQiU1igV4E+T7k8lpozUTTfRWKHD7z+PjYuBjMqJCh\n", - "pLg1CmkZBsPEQMWKtmlQjmMuABOinbs3sVFhlX2bGVptmxe8EwzOrMDsNuzA3hevSreLiAnVX4QT\n", - "DVg/oqtrVhtuWYfL94vI164Dkb9f4z8DPq/UNTG393C8gBZlu+niHU9GRGQSeAPQkG2l1C+8iff+\n", - "k+t+fUIp9cTbeGjXhw2Nz0G3BdFdUKxB75CmjxYHMDWEJAdxLmTJdDmrDqBUEUVCxCohGbbjDuXk\n", - "HM2URc4U5uxNQsulEaYIgz5OWpENTNLmOAXq7Fp9BqY2sUtxDah2VeRMi1mBZeodUW/0tyCBgwlc\n", - "MsEWrYMR2KA6EPTg+BXY6cHlLrRKwATYRfjoKc0AUbswl4UXp+GFbTj/P6NLLstvhqI7kvOObx7t\n", - "AKlB+WW4eAz2OdApg7JhZwj798BzwO1CVqAd5amZRfyoT8ou4XSKDJ1t+l4OiR2SQppUOEnn1nVe\n", - "cfrMBtCTmHHLYiY22EOYVgnbhklKwaREOEAp0YycrgX7Q+gEEetuRCC6ktFWQ52AmgrlaZxPV0LG\n", - "PWjlIMZFcEm8PmZiYioTP5VQSiBK4EVTXzu9RLfuTjiQG2GBkhDKPdjNwEQnptBssVY4TO81PNAS\n", - "VK5oQNKVGzJE72CIyIGj8PN30Fuy6W012CpdBFmCp9+YcItIBV16rCulPKXUNrpMeFJE0vCaW7kD\n", - "zidh4gFwx3WiL45B1nWZQ6iqlFaEEY8rYpJNInrETPrgC5BoMULlQ2YAUQ6UFREY4CQmvSRhPFJ4\n", - "pqahbyRaqK5gwIbSlPbDaOzvGiE2QkoUfRXRNxJsUXQlpqOETJDQEpNqoKi7iqKCmXrEruPhl4f0\n", - "Ugk+UX79WwAAIABJREFUTzH+8Q7VTMD4ENb3iTh/olRwFkiBXYG9g1Ad2U4MJzROJ3WFa1LQ78sQ\n", - "IYuWWf/IDT6UNxsvAXfejEqs73gyMir3/tgP+N5/8vYezetDRPIl+Knb4OgUJE1CY4nzy02yG1CY\n", - "gUfXIeOCNwu+gi1lUzTS9KSAUg6hZEgnMYjCjVr0nYhJK0UmjnGHTcyhxVz0ImeqKTzVomULsddm\n", - "LecxJXCngiujNoyFFjs6h164ZtHVEQ896Vy14JtREIpWPz0zEq4SC+wMpHrwpWOw+wxUZ7WHxjCj\n", - "xZqsEQJe0EJXEz0wryil3hQ1U0RmYeKTcOAARIFI4TvQffK9L/O8802Yn4fjT8HONGwJFCdg7iJU\n", - "65pZ0XbB84Xt1DiBJIRJly16+FmDyLchlae0OKQ35lAyW9hWmik8SnbMAAhURIiFb1hIYjMfBzQM\n", - "kxIxLtBO4FEfvpSFyykBsamIhRCwgSInMTOBlqBvpiCOoTcyPcx5sJruYRGRNkL6TsySmdBCV8jc\n", - "BI7EsG7p91RNSBm67ZSygDSsjjyHZjqwobpsPn2JuDeAOR+MLdjZgT/WdFmx0Nnx4L3OmhCRIzD5\n", - "QbAnYLg6ai9tXPe8TMOnPwKtGV1KBGAeil+EnxCRXxtVTnJQ/Sk4fgxyCewmItm/GlVOFOgk5No3\n", - "Z/8DmP37kBuDyIZoDLyyzQR5nLjNltFAiYEixiFiVRSugqYNhiGoSLGrdCVzcggTIdQr0ArhoZWY\n", - "Qgjny3rOWS0Dy1Aeh+N5zQrb4Brw9R7AQrEOtCVEiUkqThi3IDGElnJY6AmBgrokpMOYYttnt3SZ\n", - "1t0uq1aBrFMi6WcYLO/Smuzw4S146udF5F8AHRjO6vbOxEhbJD/UWKTOYeD9DmT9ReBbSt0crsNK\n", - "0RFhBbgdnZjcNHEj2TT3Av8UOCEiXwF+8t1a2ESkVIVPTcPjB2D/PliahFfL0D4FM9+kzx7Bb8KF\n", - "fzSyTy9BEBtkbBffGdI3anSNDDEDlJHGTQz6tiKxAo54DVTaxVQOhuVjscNE22V9DFwrwslGHEGL\n", - "krVFbywKaOzHFfTG7GF0QnJ1XYjQ0t7pEVtjWTRe5ChACL1NCF+Foy/ByRkY+zjM5qCsoFcG34Bn\n", - "b4OHz2tH3l4aagqil7/H6fle52sCDv0SPOrBwqrGXrz8YXhhAvj9t3t83t5ITsPpL8PeR2GyA8OL\n", - "2ixw30UotmFzE87th51BitAYsme3yTgeGRRjqZi869BglyvZMSLpU7aFg0YaoUdkxEwrcGI4nUQo\n", - "X1gWYdpOiI0ID6gnULa06eDUAC4VUtyCTYAQkMclZpYWK07EB+sQGdAyNbtpcgcODOFcOeFsdYBl\n", - "g2nAtAcP+lq2ftmBlyKNEckYMG6NWEQ+ZBKNJznvZHh1xuC3pU/4B4rwV9ehu65Fa0L07t8UyX8M\n", - "9j0CaQt6bRH7L5QK35NAOJHU3XDnz8E9TRjrwuYBeOG4iPwrpdTy6GWFEozNaKToazGnfR/mtyAn\n", - "Ij0Y+1l4dEHbDRhoZeFv/AScbAOnX/+9MgMzvwwHsjDmQLsEwzSsGCEpuqxjUSWkgI9CWEdhKpgC\n", - "njGFlEqhYqHNkHRGKyY3YliyYWwXDvc0JmMiAfHB97RmUAwshbDfABGtH/MA1+aHfegW85okPCog\n", - "gVAME76ejtlJFZjaMdnX2KWRgq/OgGkk2LUKMp6jEJn4FBk6E1j507x0osvRFVg+onFVRh2u5CDt\n", - "QsWDtgOXXZBNRtz3d3Swb1CMpN9/Ge3QezPF02g9lL9NRt5MKKVOAo+9W9+ne58sAMUx+MkP6zup\n", - "+CFY8yG3CY848I0TsHkWju0R/iHwPBRSKbYzJtaxhCBKuODO0pLDWLHCNraAGqFEBKmYglikGcM3\n", - "XdKASMCwXCO0PW6JtYtu04KZUTLRQRvbHR1hUi6iJ63s6KhNrt3rJTS7JiuA0gycJtpFdH4TGiU9\n", - "kbqzMH4QPnwK0jH4A1iqasbMhYEGspobsKugvSIit6DbZq8DI4rIAlTv1S2e3ATcZlwzTctE8IEV\n", - "2DkuIjMjpst7MkY72ydF5Hm4Mo5Geabgq5+G0gwM1zTbaKbWZ/ODBkbRI23Y3I2QUhF+aNGxs0w4\n", - "MTtGgGU4pEaf3kdXM4ompLAoYuP1hMt5k7641PEoi5AWoeZGBNi4VLAQFAZphBQJWRxWJWI1Dc5Q\n", - "4zzmEkgygAPHElgNwRrCtCVUTJtKqEgIcQx4KdEsqKMx1E3AGnnxKIeL1jzbUiW1XqT1ckxovQI/\n", - "UYffU0q95vUjUnoc7nkY7l/X47ubgaf+IxHzd5SKf3D7mHcgdKtw/lPw4S1NQV8vw2QbHgmh9Ung\n", - "N0cvDQMg0qXD16o8PUh1MA7B9H+jk4HCAhz+1jWV30wE9+zB+od5QzIC9uMwVRIOGSa7+YQpOyGj\n", - "IFIJu5KwgE0JhYFJlhA9Sno8SmJwORrH6Y4zvXeF9kSLxTRYlu50HHMMLhxyaFsK24JqP8B2FHMl\n", - "qIbwrMA5A90CHB1PHIMSvYmZAWpKMfDB9CBKUuS6Npelz041ICcJSQS+A7cs5blUnkUxhnIcrLhN\n", - "e6GOokxidRmvabG8OAF3D6pb8OIx6M9CFEF+EZwW3Hx6Fm8hPgucVerNCfu9h+Jp4BP8gJT5GxU/\n", - "EgBW3Que+qz2b3LGFCsnVqids/GsFMQu9D0tsjG7X5u0KKABl8/lGPzDEhNRQjeO2banaDINEpOI\n", - "jTCLTQ1l1HElIBMUaJopKoEiyoKRmGC5xEaPqQgwdRIyFuukIiNwQfSiptATylXfmQy6pSJcE9GK\n", - "0CqI08CyGmlg2BA8oNUkT6YAW+MS0qNJIuXDzBKs3gYbArlluJDXiqb3/zjkFGwgkv8m9L6qy9bu\n", - "A3DHZ+C2ga6knP0obA+gtQul66pXUwm8UuWHEq56d2IEsnsNgCYivw7befRkWrDY+aUSks5SVC2U\n", - "xAxJyGHimiEDJSRmwN4I4xGLh49PBj12ZcAkQ2EoTHshvUyBnSTPpNkhMCMakUFsdPENkxATQbDR\n", - "10IMRFgIJrtGzPioBL6bhvFIL1KhQl8gRSiGgp9E7OYTQgc8Q1dLCraWLPeUdmPuZ6AdZ1i2iqT7\n", - "BdJrDpZ5P/6KB0ef0VSO86NzUYAjD8AjK9faeeMDeKABtY+hs+T3UlQgVyrytdsnGea08o6wx/4L\n", - "IZm8iKSUUr5SalARefU03HrX6BqNQb6F/YkG+4fw01uwWoHde2H1ETj4JDiBbo008hBlRMR4PT7K\n", - "XYB8SvDSMY4DrqWn0VlgkQQTjwDBQjPlImButIk4rGJCu85OISRSKY7FWg140gClYLEIsYopk1BQ\n", - "BvWixSAI2TahndGblFaok5eh0nNCMdHXSGtkXYACbwiVU4rE88nYAZVpxdRFLT/vPzjCR82U6GZm\n", - "sRMwTME2K6SihOGBHZIJODsLppYmoXkO/GMZhv40jbAExQ57n9il1W+RPiUin78KeH2/hAgm8N8C\n", - "v3Sjj+UHiKeB//FGH8RbjR+JZAQmfhZ+LAfHVg0W3RKZZp3KbIZXzF1UZgIGafA7UG5Bak8DNRo5\n", - "+rXjLJ5ZZ/WRKqIy+MxD1CblDLAMwVB1ImmjqDMXQ6TSbIYBSWKSsRJ8K2bPyCJJj5atWTN2AruG\n", - "1gZRI7nx9RFt10L3gdfR+iIGeqLpcG3XNkigbkBO9AToKY2Sn3K1mdniEIyN1///C3u6GnL+23D5\n", - "Jch/FH68rtsWRU+D6b72UXhuW0SuwIFPwSc2tNYG6H784BCcPwQPnb32uQ3hul78zRSjikkHQETm\n", - "jxIdm2BirUc6FWCNmySqzh4+U0AlbtARF9/IEKkmHTVkThQ+ujR+2YQVNWSYCMOS0BUbL0m4YhlM\n", - "JCYBPh2JsRGG+Pi4FIEIRYzP9kjMLAO4OdhzYc8GqwR+CLURSLliQikxwFTU0Xb2pdiglihyhiIK\n", - "YNzRgNmqMlCGzVzSYnMwhkQZwj2ABRic1XSgq9ocJc3usNTrz9JMG+x978qAvLXwC2zeeTeTvSKF\n", - "JsACiVxi8cQFehfhGnCvCV96BsobsG8c1BqMXaFqeHz6SUhHMN7VuKFiGlYXYH1cg1LTaZjqgvwj\n", - "Efk9pVRHf2LYBT8lGlyeaP+onoI1w8ZQMCSmLQYWFllCckCCkBWwQ6iaEQY9rDzsCczaOpntKthn\n", - "JHQkYQ/YlZg4EgqWcMhQFBQMQ1hSsB7D0NHgdwcwQ8gF8GxO/2wuQX302vELir4LR56H0/8h5HPQ\n", - "caGn8mCG2JaNFSmUAaaRwXUDvBzcU4fCQ3Dpblj9/0y+Vj1E6liJQj5B0jnM9gxTWy8R/YMO/riI\n", - "/MublYH318TPoMF837zRB/IDxCLgijCv1OtblO/leN8nIxrvcPscHFsDSEj3fDBKTLe6LFVO004d\n", - "0zVupwPxaZjegT9RSoUlkSM9uP0OglQRghUorWNaFaZUD6VWEAmZVH0M0c65XZVChgV2G11UxaZv\n", - "ZFGJR54d9kw4KroN01FwCr0bikQzJqd8nZz0bBiKbqOURSurukq3djaAsqErIxk0zQ8Fiwa4ogWU\n", - "rhiw6cFYAUqj/nOtBNs7oP4YghKUboOVMqyO6V10ZVFjKJYfgW0P5s1riQhA+TL4+6C5HzirE6Zz\n", - "k7CyhS7V3NQxCQ9PY1spins+nf0pnDgkljSm8lCxwcCIIeoQqw77lXZxvWJoczNbQZgYHAgNekaW\n", - "Wy+FtOZbJIUS6cjHshzqZpmWFEnLLqbqsiIJHiYZYupE7Ko+toItBUYNdqfh4aEGoO45sGBA29SA\n", - "xk0zwhSdsDqi3xPFYMc6h16I9PXTVYrENMjFQ6zMgM38cYJFgCHYgS7pXI2OxiDEon1nrkYtB9EO\n", - "XG1z2vfA+AfAyELvDLSeUkpdp93xrkVphl7fpXpV4Q0TURMEVo1W2LjOSViLtslv1zSoogjOLfDw\n", - "rZAfLZyVIbhXYPV2aN0NBzyY8WALePR5uHQfnPqgyNxJaD6vvazqA5izFb6p2AJiEwST/cTsiEtJ\n", - "GRgCrvIRgZZSTAHLpkV2aJLEHu2MSWBVSBKLphriW30KKqEaa4fpW2I4LQrLMnHDGMfQQ/ZwC57I\n", - "wJU+PJ3XrRkjgR0T2i0wFHRyYKXBsqF2HFJdOP2TcKhgMG4YWIOIi5khS0YbIy4wtBx8P0GpJpHZ\n", - "Z64Ld17WQNVqBdwH8rwwOEzvdAtudykvO5S7YCYTdCodJg/D3jHg1XfxGnjHQgQBfgX475VCfb/X\n", - "v9dCKZTIa7iRNzJZ37Pxvk9G0N4a111Q47UGWwOXKGPiREfgyVNwx6a29nxlD76ilLosIqlpuO0I\n", - "WPthmIN+FgqvIPkeAXs4IhxWaQqqhWdARsFUrcYr2SrCFKaXENgRGW+LKAVFH17Mw21Ky4Z3Qm1a\n", - "tp2GRIGK9G6nh7a494BzAgcSncDsokv606KrJTHaBM9Renc0jGC8A24TFl8GdwpyBU393KnD7peB\n", - "HSj9IhxcgCNpKITgxXD6OHSroBzgL7/bXLXYgvNLcPko/NlB3TPeW4S9f3fzUHz/+rCglCNuDYmm\n", - "fWiZ7FZ6DJyEcVE0gV5ssBfFuAnc24aNgjCwwBZtZDirbGbbCUuFiJ4T0FAWJwKPhjuNGaWZSZrs\n", - "popsJilyxjIOEREWuySY+JQVGB2wNiDwtcppJoGcr6+JATAfwaKCFQMypr4megqMOGHS1LoxXQO8\n", - "EJIIainFkD6RnycOIgxjERZsaLwK7uA6hUalVEuk8jI8e5fGjNgJtFPw3DjsjBxAi5+GOx6AO3Yg\n", - "04Yrd8Hzt4rIb9wA8TN3kviCy8b0kM6Y4CrFQMp0ltPEtTe+eHSNLgNo6Fj3xOtf8cAZ+IssbN+l\n", - "pTa2+lB6Eeq3waECDC04Bmw+Bs/nIfM1xSs/LpiRwnU0wy0DGFgYScKG4VCJe+wZMR6wLxl1unwY\n", - "b/i0qg5bZoEZP42yFKHhkk4cBmaDbKzPv6EUFYGUitkTsCKtGrti6oJe+Tto4b1EV3UWPGjYsF2G\n", - "XAjFsk4mmj3YSMH+kpBN2xjDGHEMqsEeWbOArzwilSbpRrisUrQ9TuxBMirF5n2YskLycxb9VZfK\n", - "rkO2c/XMWYiCcgDlA7xPkhHgcXR//Is3+kB+iPjbZOQ9GDWohdB19G7IiQYce2aFk4/k6KunodCC\n", - "Z7bhc9fTAoGDh6Ft6JX8lhx0UxDmsaNleuIzYYLIgD4R+dDEVzF31jx6hXPsbhWpjRskQYdcts+x\n", - "LaiV9cThCsx5MN+HSxnttjs5onWGpmbIjIsWsaoBm4ZOKHJK73rSBliiuyNRBLYPxRg6CQx7MFyH\n", - "7X8G/scgdQ/E4xC2wHKAD8BCEdJZKHhafdUFjvjwah6SKrABqz3YymuPl9USnHsQZBIOXIBdG7ae\n", - "UMr7i3d/KN+Z6ML5PvHCEq39HofSDumeS9fdYz0NV/wszqYickOKPdjLwRCDCQwKXsIOCco2MKKQ\n", - "ot/h0oSBZSTkGika0ylEQaxsClGXmlkhl2RJpM8EIQKoWGtInM/A+CEYjzVAcUPBWEv7CoU29C3Y\n", - "NeFECFMGIFqzomaA8nSZPu7qNp6rdELbdXqYYchS2Sd9WDG24JG+NKR7DurH0RnuKJqfg2d9WLx/\n", - "hE3woPZvlYrP6uribffBR5avVU5u34J4FpoPAF95l4dsZxviR/Gf6eIXAnAz0F+BfAe2RXIf1dT3\n", - "waU33NNAchEuDGFfCfaNkqhmGho7YD0BJy7CwIWl+0HdCX4bVKArTw+twN7d0PUSqt+AvY/oyoRY\n", - "0LU9jCiNoxQFZ8B2EJBBJwgLoQagpnYjxk/Csw+X6VlCx46ZFQPDhCFpbGWxZYaklAGRIjJ15bSe\n", - "6OpXwwaxYTIB7oIrAUx5cMsKxArUPFQU7MzAeAOakZat396vFZqHKQO3pzc8LbvH9HCJVWuadLuH\n", - "sbWLWd1j31BriWQ8fW4CC8yhj9ltkrgWoXn1TAZEVh0jBtuD4fuJUfMrwP9yM1ZFrotvoQG4N028\n", - "75MRpVQgkvoi/NXPwl0dLWK2WQhZOdVk8PtNLXD0vW4kJwtxGU6t69V6nwNikKiETNghb5vkVEwq\n", - "NMEPcLqwWICdskd3xSP4n8DfgL3fgnMzkLehGsOqwJqjhbcObkC2q03M1mZhHsirkUqn0vS+0NSt\n", - "mpxo1s0ADVpLh7Bl6/fsWJD0YDmCxu8qpbZF5Otw4DDc19b28a0p+OYjkDNBdfWiWlF6F5aYukxf\n", - "2YHdPGz8IXz5P4aDVWg8pEXWMmfh0ItakOsrHxaRRaXU4rs6mO9QdOA7J7E+k2LOz1JIIpQbkbNt\n", - "jmwUuLA9zu5LS3Ae1AE4/wlI+SZmbOJ0DSw/YLcYQiGh6UKnljCfJDh9EzsZElvglSK9mmCRRAam\n", - "CalEJxgtgVUbjigYN3WLJRnCgQFcLkLsaOuAJNaMKuWgd21AmMB4AhdNnWxuAbshHElBNwuTDdhO\n", - "fCZrPicSaOSg/AxMr8BXHheRbaXURdD3CfB5EfkqGkndUUpdxV5Mwpx6fQsHYK4JhWO8y8mIUqpZ\n", - "FPnWN+BDd+gLtrEE1acxDvQ4WoTbDugW6KXHRHJfU6r39eveOxSR/xu+/HMwOa8Zazt92PwdGP8x\n", - "uDQD8R2Qn9c2C14G+hVYmYXpC3BwC/7yDpibhuIqzBc19b+RMYjbQ4ohSFl3wnbRMi4XxuBgAIkF\n", - "z8zCWiPFWCYDqQYrKYPJSLCNiD1TaCm4N0nIoNWXMwHEkdaqcWI4ZOgNiLMBwyoc2wHjomYFGQ/B\n", - "8QBUBjJD2FfXQNRsExqi8FMRO2mDQWhqbAk9zHARqxNx8DsQ3QbteUht6+QrsDQ7a28Y0f3zM6hH\n", - "p6kdLWFFISKrxFadw2fgYgKD90VVRIQPoqlKf3qjj+WHjBeABREmlOK7qoXvxXjfJyMASvkvikgT\n", - "tj6grcP7J0eur3t/w9s2F6Fahv13watdyPdgooW/v4bn2vRiixiFZw9p20oD1RIodeDoGTj/MNQL\n", - "OlmYNmDa12C5joLzJjSykN/Urrk7s9o7ZUHAE10BUWhMQFHBmoJjgQbcLRmarluyoSfwpAvNGAZ9\n", - "GP4WBCOviOpn4NZxKDT15xxogG/Bq4/B9B44e7AzBokNvR6UzsOOB3hKqboWPFr9ONw3CfMXodLU\n", - "a2A6gRMd7QDMTZ+MiEgVcJqMbVrsN7pEYwlqxSPfcTAij065Rv1zwFegpSD4CSh/JqbxmEUQmSSB\n", - "4EQhZlYrah4xYDkNhWSAiicoPxfQPRzRmc7RiT3aOY9SqBfLoQJlwa3oNkAaXfE6mdIKu7i6beOH\n", - "sO5CNdAvaojgJDZOnBDGBm0nRzecoGa2EHeHDVtxpKf1ITJDODgF+4Zan8If0xiJ29uw/iBvYMqM\n", - "xL3e6Mo8/N445Z4L4Q1hUnXgL5+DrSV4xIRCG7a7HCvDz1y4BsQ9ZsIXPiYiF66vkCilNkXk/4St\n", - "STQyfEcpFYuIB0//r/BACZwuNKZhJ4S7L8LlY9Ba1hXWbBtmL8Hlh4WLt1jMh0K2l7CTdQiaHlci\n", - "MM7Ard/UyULfhq8/CBc9KBZh/ECLVK5CwRjHo8cVIsw4RYuEiRAkhDOWheFZ1IjYsSMKJuRiGA4g\n", - "qUF1DdyqBitvHgczD2MBpAPNpEvy0CxA2YOzBQgugDNM6JhCfr/BROjS6Fjcst6iruCUguTPQd2l\n", - "k+6tfRCGOs9bfgmib23B8w0GFx22/v2ASuxT3ISzLdj80xuEHXon4leA/02pm5uyrBSRCE8CH+Um\n", - "adX8SCQjAEqpJbRs4fcN0e593QbENUhVNWdysIkp25j9g3i+x/qgyXAyxVwipJMe2Iq+BzM9rQh5\n", - "9AFYzcItkT7NFaCX09RB39Wl3fJB2PctaG3p0nAjDYVEJx1KRgJYiSb6DPqwGoNj67LtakqXZu0N\n", - "+MA6NE149RPg/blI9jhM/l2Y6wAHYS2B3MtwdBWebcNWAMUM7L+kHXpXs2C0ofHKVYreaAe5BhNb\n", - "UG2+/gzlfLAKb+sAvcshIkUY/xm49YAWk9u+LyL7asSx56++RnOYa/PApeuwMZ8XkSdi+JBH47OK\n", - "iXsUZQUdD8YDKJlQM+G822estc7uQ2mS2KbWSxEOVhEvZKYDhTlopTWu0mPkEgxgwT6BdqB3paqm\n", - "QbKVPKyX4DYElZjkI31AW3aWKCkQD45y5ImQOH2SzQ/WsMegNNTVkKIFnQykdnVCClrZ9U2P4TIs\n", - "t2G5DPtH18LQglNFqP3bH24kfrAYjcfLo8dIJ+X2qdczglIxHA3hyjE0+vv69yu02Nv1f1sTmboE\n", - "e13YGgMKcOsGzHagXYbLU1oh2W3q/Ce1z8EToW0LZQGlTC5SYfnVBtPndPK+k4fNvHYEvlNgoQQ7\n", - "RptivMWiU6WgClgEDNQGBBHNHrwU26TCLMrLYjSapOcVExVFVhIOxtCbhtUCuB2o58Ab00mJZcJu\n", - "VjPz5i1dSekbut0XZeG5tZix+2ImE6FNgNlImP823LcOfzwOK78GKA3kvXgM0kNonkFf/xG6d/xv\n", - "ROTPtN7IGsDmm7GRuBlChHvQyqWfudHH8jbFV4GP87fJyM0XIlI0kU9aVD4WkVcDuscbtC6/TGKt\n", - "kbqzx6yRZRjNke6DWm/SpM9WaxNjIcVk5HHbeTAysP4hONqCelYvMkYCrq/pmaGh8R+hoZktu3eC\n", - "5cPcEM67miEzbmqA6jrQ9CH7vE5U9vsw34FeBhr36efmmjC3rDd4yT7o/EM4lIJMA0p9XfnwZmD7\n", - "56BxEaQFrz4Fa49Bdj+oAfiXoHMSml96wynZ1mZ9976BZbFWgvaL79KwvO0xMv/6L+Duadi/BRO7\n", - "8O2LsP4oVFowPvJtaaS1Jh7r179fKdUFvigiqzD9TyH1IBwdQKYHbg+mYvh6GTbdNsZlj7jvkve2\n", - "cMcjKvtgLKvbdBZaJXfPgh1DW9KbQEq0VP3WGNxag0kb1hXYKaGdgVys2BDF0DBZlAxeNEFaBoRz\n", - "AUZ5iunmHr3xBNuEggtLJaiehngI7mhRXq1A+8k3c76UUpGI/C785d+F2X06edtQsPn1FIxVRY53\n", - "YTOEszfONE0MXVH8rr+jK0JvNowa3NKGqZOwPQm7H4DOcX2+VjOw+wWL8omIkz9pMlVxmO8KXRWx\n", - "mrJYM9IkDa0DorLwbAG8deg8DUcfhVsy2q03iBV5c4v7kwY7iUUgHpkkJhlqfFh5OEacFMiuBQwD\n", - "SB8xKEdCWwWElpYDGE5C4sKrMZQdmK9r3aGGpTcyHU8rw+74kNmD9DrsVGDuEty9p7BjRTsLG0dh\n", - "Zk2DonFHFObnRo/vGaPEZOWve/4mjv8B+OdK8R63uHjT8VXgl0WQmwH/ciPl4P9T4B+Mfv2/lFJ/\n", - "dKOOZXQ8C5PwX4VMfMBheigUhx2i3C7t/Q3ORT3mKhkqhslaLiSOQYYpKnGBVKNHbLWoljzscQgn\n", - "9C5kO691AYZ9XeFIZzUllgA6KTgQalpmOKvxAAMT2pGWAU+uMm4URIHWDVkswWRFa0tcPqyrLJYP\n", - "y4d0ZWNyCebakPsIHH8Cepfg7J1QHIcJBWOe3lk7BpgNWP0smpJhAW2l1PdiIWyLlE7CEw/AbTUN\n", - "eL04By8OYXBTSQ1fDW14VvjP4cBjcLgD3gJc7MOx5+HZHXjmITj2AqyPwdIchOeg/EkRWazCrWkt\n", - "h9rZhiXNTCreDTMmpFIa59N3wWhCxoFWFop1n8lLCdE+uHjcYt4xyaqQwE7omSPRq0QL0pmO9pqp\n", - "KWjmdDWsd0DrXYQp7frb8w0uGxbZWLDCPKVslmbikO0MifYZZIYuydCg3Ui43ISZCCIXXjgMuStw\n", - "qAMvz8KLXei/KiIlND7kb2RFKaV2Rq2NWXQJRy3AL9wKqQp4Nbj/LHxERP71jSnZt87B4qNw5LrE\n", - "ORK45Oh7Qceo6pkDgu9tP7H7DLz6czDWh/RAC3/FQwhWMxwLMxR/3uFKccDKXEReUtjikSQm4TB4\n", - "mcqJAAAgAElEQVTL1KBPMhmR3oOFBnQmoHm3xnZM+qAMiBx9P64DpcSnKD5GpLVDUg5kTSHBoBJH\n", - "qP1D6koYE5deEDLMwdMZtAWBoTH17Qg229AqamxJKoSDKUjvwq4L/qvw0BOwcwTGJkC1tbeVDRT7\n", - "0KnA0jx027ye7v0jFSLcB9wHfF8D15sozqPn90PcBC11uVFeWCKyoJRaGRlzfUcpdd8bnldKqbew\n", - "o3nL339gHB60odqFKxY8VsZ6bIwxy8UK6wg7FFVEMVG8tDDBoWiWfL/GVnmKAIU59EmGLoWtFTr5\n", - "ZQ5MxxQCGIxraqwCdhOQBA6HkMnoXe+egnoAczGMDfXEsGvoNv0gA/0++Bm9y8u0oB/C1m9APoKF\n", - "W2HjUYhnwHHhdk8D2gYG7HqwNYRL6/D45/Vk+Pl/D8YOavZO04XaGtz/efjmGJz+1ZGJ4fc7TyY4\n", - "d0H5Y2DcD1YAuXXo1GHr3ykVX/p+n/EWxuQdHXP9HcXH4cinYf6QTkYyHnSyms459gL80ST4qzDz\n", - "MNy9DFN1WJnO8J0HP8jOc3fD8hUY+zLlnxoyUUgRZCJm0j4pSy8QSaTBwJEHYR8eew7OzLucn4rI\n", - "VhSTKUEiwUhCJtMasuEA5VgnobsmrA01k+lAWrfk+i6ElkkkVfqME8URttrDFJ+UOU9nOM78csig\n", - "YuL2tvGSRZw6DOvgHtYqoc1NzahoBND+gwJ9ZxyOpoAWNLfhC/EIzPomxkmm4B9/EnL7tScBAOdg\n", - "8qtweU+pP3xrY/LDj7tOMoqfhiMPweGBrg5cSsPiU9D5slYWNg/D1N+BfFVrttTPavaZY8NglRH9\n", - "FwqPw+zDkL9VCPZn2VMmjlFgfDcgGrNYnBrHVxvM5cC1bCw/IteFYtSlV/DYXlaMDyCVgU4RtqtQ\n", - "7sPhyxAcgPKENrGsoyteKoKMrxNaowGdnTw7+/LklM+anTAmJWKEQcYlkT6JWQfVYzKEqoJA9Mbk\n", - "4BpspeH8GEzuQep5ePCbuu373Mdhz4DqBoS3wommVlO+MgnPb8Hl/10p/015Vb1d8W7c7282RPgS\n", - "8AWl+PUbfSxvZ4jwO8CLSvGrN/pY4G8e8xvpTXO1zKf1sN/FSIvcewf8zB3QK8LgMnziAnx6H5Y/\n", - "RaENMIUiRSt/itjZh5gWfVUnXwqZjFfZtsqE+ZCB2cPL10lbMbsRFCowKwYSK5qiCA3BShSXbL3j\n", - "7Y8ou4Y3clv1oeWAIZpVMQzhaANK25rnv5QBfwkKeWjUwf47WsysGGuBqnpa0zhvGWg65npGT0rn\n", - "j2jF73ILDp/VLSEjD/d/VRv/zSo4PY62Av4bYwTsOwXq03D3Nuzfhuoe1DPwtc+KyK+PrNbfM6Fd\n", - "WDP3anG3uA87z6KV5QSmPgJqCjYOaMGr7Rgqq1rtdH0Skuegcgt86gUN/gObrdIYR8IdBlMu3ctX\n", - "cBYKGJUDhLkMuZ0+lwq7uM4Ox2JF1tbA1LoHhW3Ih4JdDBmvmNziRXRSEErEWlorlJfQFN0VQwNV\n", - "hxHYl2B6Hhb64BfhUAhrwSxn0pNM+4qha5KOcoRqkXWzSRJn6NqKULUYZtfJNXQ1bbIMj56CzQrI\n", - "CzC7Ac/OZ/nKnR+C6C5t9atqkP0G/D0R+U2l1JtRbCxXYGr/GwzojkLtOTh+VY79bR7WvzFG7ruf\n", - "gxdOw+XjGiDcOgssj56bh+N/Hz7UhOl12JiEc/8YWg04dgrWLFg8D41/o1T7iyJyMov7B4cpdyvk\n", - "OwHe4VVWT/SYyKQ4EbapGQb9JEWh71Ie1oncNi07pllXRA5053UlpGjAwRj+//bOOzqu67rX354O\n", - "YAAMei8Ee++UqGbJKnFV7DiJ7cSOY8eWX8pLntOzXvPKy4sTO8mLveKVRHYc23GNLUdyHNmS1alC\n", - "SSTFDjaA6H2AGWAG0+e8P/YwBCGQBMkBZgjcby2sBVxgzj2459xz991n798+XAJjNeAp05iiFKqs\n", - "awMqbDBpB3ccPCOw82SUl6bL6K0sw+bz01VSQomtkvJYHHGV46KCUTlFlGl8AmuicNyp2kXlcSgt\n", - "gvEuePAFcCfhlVVwYgMUFUFxndazeake7FP6ctT5bWNSi2qI5BOZDJqN3HwF8ebDY8BvQX4YI1ci\n", - "H2JG/gvw6GKdTETcLfDO+zWqLA4wqfmztgAJR5Kkw4EjaUOoxRE/S8BbiQlO4ndEqMdNeTyG19HN\n", - "YMkUk644k4dSsA5qisEed5KMOiiyG5pTUexFhmGHpuh6hiFVBBVOLUI2GoFni8BXoJofjQFVTjzZ\n", - "CGu71eXa2KnbOU/shLoa2OGB+hRE7DCUBpsDzhrw2DUbp7Qf1h+GU3Xw9Ard0om7dcErOXUxFiIo\n", - "aI7wfK6XC4p+B9ruhaYgTLfBWAiaXoEtSRjeBfxogYbrmlFDpP4h2F6m3qHpYjjxEWh/GkL7wLED\n", - "doZgeBCiZXo9h1eAPwjtDgicgRXbocx/oU0X4eoSysYmKayMMWX3Y1u7Envc4EgJ3iSEp1z4CqIM\n", - "OwOsj2vWVMUg9Abg1WbDRIWhJZli3C1E0vrwacxohQSNCpwVZbZJplPgr4XhOEwUapZhzFZAdLqC\n", - "ipTB77XhihtCKScmUk1F+CzO8DjjIsSnYjjDUNYOVYNQ7INACUxOw6qM4VmeLqBoxy4mH7vw/1VD\n", - "eAcUjsIdwHy2S/Ny/zkTlNqR+ZpF1R2wc1o9TnEHBHfCHUPwuhfKp2DzJLywHl7aCey3QXUbJtVE\n", - "2RjYbX4iHjdtaS8FtjS2ZCnVcRexAj9dTkNseJqoJJkaBucklO+A7SnApsrMpwUaYzC50kYkBaFY\n", - "mna3xgutSWu15T67Lkd7O0BIcFtXDwN+F89trmbIVo5xgXGmMHY7hfgoSZURZhoH6nH1pkBS0HgO\n", - "RgLw6qvw3UpIroWy1bApkpljlRCchHUT0DkFwZ9CerF1YvIG0SJCfwf84RKKFZnJT4Gvi1BmDBNX\n", - "/escsuDGiIjU8OZo3kFjzC+JyC3A21jc6OWaWnBcMEQAnBArgcgEKWecoMdGWdiGzaQwTkM8Eifq\n", - "bKEgdJaO0j6KysHjTBOxRagIQkMZDIxBaZHgs7uojELamSZWJDiNDdJCJJykNgqrxlVSvSIF4oZo\n", - "Gjb1QSAJlaehf6e61D39sH5Mc/17KsFbA2vKYG0PRJvAnanc2ZPUNL7AeCZ4sgsSk1A6BS/+CErv\n", - "hOCdsOcorOzVYL7TVdA1yrwD0Lx3Qts6WBWEukwswIQX+nZC2WHw1Fz584tN4W7Y4YNdF97aw9AQ\n", - "hMm74fQk1IS0QOGWHk21PFwNoQLomITRLwAhiNg0vkdFKNM4IwliHhuppAPSLhLuUpyRAFPFaVwu\n", - "wZtyUzZewogvwNAUtJ3Tz55pA4bA2Awhl42RlINbJlKMl6WoQb0iIaPS/w1ROOsEX1x1XU6KigLX\n", - "RqEYO70iOMVGWcRFfFQIpKDcODQGIRZnvAP8/wNIQvrt0L8dGktAzkDTMXBlvI+hEi/JN9UQqdJA\n", - "prp5XuTAOAx0QXkr/Gd8yGmontQg1jxc1F2NWosJYKIcihzgmVIV42ChZsysG4VTe4D9FbChldjp\n", - "OIFVLsrHJ3C6SihLJImkQ4TtXpxDNtJVYZyecjqmJkgfgvgj0PI12GRTVdaAS70jGw3E7ODFji+W\n", - "pt3uhhE7pakUA54k054UU2OAU7OevFGdP850HIYLYGIzkdERUpvGcFYIFTbwJB1EM4URIzb1ruGA\n", - "zgKwHYf0s9BzBNb+HqwrgLUxjUcbq1PNoddjMDkKo0tCRfkG+HVgDPjXXHdkITCGsAjPAu8Avpnr\n", - "/lyJBTdGMnEJ98w+LiINwF8BD5rLBK6IyKdn/PicMea5LHQpHr1YdQ6AUt0DGYlDZRH+iUmmKxO4\n", - "7UPE7BHS3x0ivcHAzjQ1jlqqYzEMI8RTmlrX2QQ7nofh1QYvKQo8NlxJQ2LaTtikmbLrm29rWDNq\n", - "PIP6MI8VqgDZaBLKu6EkDF0JKAvCSKXGlYQEIgNQVqr7vrYkuEcg5QNvAeBWpUlHDIoG4FwaNgTg\n", - "oAfM68ZM7BfxPAuRd8LpBhXUGuqHkX81M+p3XA7dh2/cq56a8dqLvykLwVgZ9NZAKM/cu77N0Dqu\n", - "ol+hYnDFVCOl2cDpFVDVBYOtkCiFliDUROB8AZx7/sIWhUjVOTjZDJuGACJUnx3h1fu3EDxgB1NM\n", - "ajRKcLWdsrE0/mQCRwU4nCkm49D8pGZfeMqhYUqNolcqDJ4yQ4HLEHYliWW8ZWmjFVSHBDwu3Vqw\n", - "JdRLdqoG7H0QaAQn05TEIvQ5y6kYFeJxL4VdAtFOYjXgfQM4lElfB3hYRCpB/itsD0JxxgsWs8N5\n", - "h4PpwdlXbUTdc/MKcstsezz6DHxsPTSVQ2wE3O0Q8EOeKvPGB2G0CYr9Gk9yYQkICrRkdFUcadTN\n", - "QBLCBTDqZSQ9yvSaNCXxKOHCNLFkCsKDJMrBEYrhGBoi+kwIPg+u34LmOKQLNBYsmmmuxsAbDiiO\n", - "CS4HlKFRtOuGDDF7kImyFK5noGsXvFysczUBBOIQeikA9aNQ2UD8SJL0Zj/+2igVjiBFSZiKwoCB\n", - "5BgU7YOac3CsBqbOA3UqRe9wgSusBmlzl+obxVNQ2AED9tlXarkgQg2aQfOWmyHb5AZ4DH3hX97G\n", - "yBX4n2ge6w80wJ23G2OiM//AGPPpBTjv8BAMdkDFSo0goxhCQzAU0ChGv5OIJ0DEMQSnUvD5IdgR\n", - "QP65gIpUmmjpFKP2NF4bJGvAVMDoeQj1wEg6TmiLG684SETguEkwWZCixaYxIANlWj8kHoT0eZhu\n", - "huSoKmmeLYfkeQ2CNANgOvRNLpWE46vB9MB4E1QHNfhu2qbVXYcFivy67VN7GI5Vgv/f0R2W3VC5\n", - "W3VKDvVA4gDQcznjbw4EbG5Y3Q/7xuGMD1ZM6qIdLNRSFKE8S/FNTkP3HeCt0hTqgKjbOtQPjMBY\n", - "GDY9ByMtEKgA2zAkYhDZf7GNsX+DFz4E3c2qUjtom6TzuR4SPA2NfhhNE/JWEg9F8TSBSAwkSOF5\n", - "WHsCzrZqwLB7HAZLITEGkfEU9uYUNgMuBySdUBqCcKlmTrnjQErl38fL1FA551Fp7qlUGmdfP3ab\n", - "jaHGYhKRKZzFA0w0D1M2Dp1tMPrczHL3xpgxEfkn+NGHoLVMyxB0G+j7fgBWvA5t22DACekBKD4I\n", - "BX6tZzEvjDGDIvL5QVhfBFUhGExC++x7OH8Y3QcHH9J6Lb4J6DDQXgHxEd1+BDhbBYGnACbgyCnY\n", - "+3aSpxsInB8mGZmi0RfA4wrjOx3AlrIRsaeITgGfAaahaD3INEw7YcirYoNJ0aoS8SSUjiQZr7OT\n", - "Tl4orhclXpwkPgGbDkO7E/xTmpWVTsPoKAx9c1StjM9tgJJSkmejjKS6CZUHqZ1WTZEzAr4oeFbD\n", - "vp0QHYC1HwW/W7fpykMw7dYgWYCkA4jCeAqVd16u/AXwVWM4edW/vLn5d+BvRCg2Jn+rrOcsm+Zq\n", - "LGSktYhU1sGvrIDyUmAApBuOB+B4Deywq0jH0Si8YYyZVg9B7b/CXVVwchtsFqg1EHGqTPPxOAwe\n", - "gOQPwbfRQWKLEK60URSO0xAwBFdCXSFURdUNn56CaT+80gK3fS9TGC0EURe88E5ofAX2dEDQA4dq\n", - "4YQN9rig4BYorYCiJJwvhkMBGPseVFRmFpwIjD0L0y9D2QdgyxZYP6rGw7kqONQHI1+5Fje6SNWH\n", - "4YFmLSd/ZB2EWyDlhO4pGPpvb679cUPjkoWsCtcvw67fhLd2qlgYQFclPBGBwQ9A5YdgV5vWRnSn\n", - "9Lq8ZKDnizMLvomIDVUk8wLjGdVOLxrEkSiFe314PlJOhS2CLd5PqnyK+pjWiZmwQ8MZWN+jZeNL\n", - "AnBkJZx4F7QW6vZMuQ1K0OrJSRuUCBxOQtu0PsCGA1A2Ah02GD+pyr4mamd0owfv5hTl7ijVBpIx\n", - "SHeA/RC0vwrBf5tpbGrMDy1oyk6fMSYoIgU+eKAMdrhAJsE/Aj9KGjNHrMXCs1hZFSL2dVD3LvCV\n", - "wlQNmHLY3q6ZLr3FcHwARv75glZKgcjeJnjHCpAgFB2jaus0W9phZaeKyR11QMdXjUl2iIgbKh6D\n", - "0lthpx3cdr1PEqgxEgzD6vMQSwmddUIfNlbFkpR0QPErmgXTfgT8j6Dlt5Poi0Mic41qnTh+uwDX\n", - "LUnsU9OkBqG6BtaOw3gJpFfAdBHUBVSLKDYCRUfh+XfD+jMqslcfUu/s/lro7YTefzEmtG+hr/vl\n", - "xyN32TQi3IV6Cjbk8wM6W4jwQ+ARY/habvtx+TFflsZIpn0H0IqmoYwaY64oay3iex+0fhQK7oKd\n", - "NhVSKo7qg2QwDs8mYfRBlV123A633Q+3darc+8kVcObjUO6EpjFIJKEvAkOdEA7B2l51UnUZ6D4I\n", - "xcVQsBpSk+DfB7F2qPolaFgDhY0wXgVDZyDwf4wxfSLizPwfYWNMQkRWwM5PwDu7Lt2Rer4F9n3f\n", - "mMS8NUI05qf1k7BDoC6oio9HiqDj28bEjl7zhb/yubJgjDT8EaxuBVuTOt5iaL2WoR7o+DNgCorf\n", - "AqW3gM0J4Xbw/9QYM3rllmefp/BO2P1eqAiBJw52H/i3QH859E7AriG45WVwZLbDYnb45koIVcOa\n", - "tVDkg4RL03YLS3Tfv3wSSpNwLgbFP4HbTmp5gEdKoPdvgHLY8BuwsQQce6EqrP/PURusegYOlsEb\n", - "882IQR+guIDQNXjLss5iPpQyRmYpOjFKoWQreEpVEDD5pngXVeqlGQ0imgDveihugekhCB68kB6v\n", - "XsjNf6py6hWF6lFLF8A5gVQCWnuh9QR0VsOBYzD8dSjcC76fgWIXJPtgcj+Mfm/2XNSXoYqPwK5V\n", - "sHVA155D74WpCDQdgIlbYFsQDm7XWLPq89BboRlUowIHtkNjD9jbVKF1vB0m/xESh5bLuF96XlzA\n", - "G8D/MoacKAgvNiL8PPDrxnBvbvuRh6m9uSajIngNQjDB56DrQbglCAkv+GyQcGhFT28SCsPg+whw\n", - "EGz3QUuXptUBOAqgbVL3Z7tD4A2pCFJ5FPafgGd+hG4u95rLlGMXkYdhtBl9nZ5A80JXiNh2ozXF\n", - "Oy4WNito0kqhtlmttEzB8bXojTgvMmJXX4TxPeBtg/gZGHt1Rmp23qCLdpMX7joMY2dhuFS9H3eM\n", - "wXO10OHJLPRPiMiTgG0+sTNz422AthGNT+lZAZGd0BzVwofFnTCwFvbfBltfhWABHK0A/+MQPgCn\n", - "fg9q2sDhhfhmkFFIn4PgaigYVzXX4UI1clyAux7KP6I6Yw3l4LRBTY+KVoFWYu6v07ik9hZmpdxe\n", - "jsyDNw+DTReOzDbWhayCabS6IKDzRw15qQQTRu+pILofeYHLvLRU7dVCkr2rYFUMJoohFYNqm27J\n", - "dtjhVAWMHoDAZ4Ak1P4M3PuUBs8CdFTAsx8Tkc/P2u5qhtZVsLdHf/T7oD6q9tHx9bApBVEnlMbA\n", - "lGiyU2kEhuph+2sar/Lqv6Dr/eC1Gt5LkE+hmjI/yHE/FpMfAf8oQrMx9OS6M3OxbI2Ra8Vo8bh/\n", - "gIFbob4AYlGwxzQwLOgARxLqt8OaMThbA6kq3UppOwmRJiiNa3BiRSfUZR4iR2ohbTPGXHXPMrOI\n", - "dsGF9NXqh6CtUYPj/MC5MRH5mjFmAuLT+qY9m2kXJK7ZJWmM8QM/vtbPLTYaWFl9RhUlV41p5gxo\n", - "obLhFFpG9T//FuYuhqUqrTRlfuw1WjxuFuFB8K+HegcM3wdVhVoLZKoAgilY8zzsX6NFytJjMPI4\n", - "pE9mgj//HELroeBWWDWlxpM3DO12WBvSGJLuCj3Py5ugeCvs9GvAcOFKmEpCxYzUbIdR2f+4QOpN\n", - "mTIWVyezzfJBWLFadXiCwNnJzD11VT0ezY6rHYPzUzBVrRo2ElKhsfFhmBiEoc+COaXeS+9bYbPt\n", - "oiECsNIPA80wsFpETqHbaw6gCupnnMuR1F2cqggki3UrqDABIZsKqAkak2JLwEgRJEfms8YsB0Ro\n", - "BP4A2LPEg1YvwRiiInwL+CTw33Pdn7mwjJF5ots6pQ3gn4DuGtiQ8TyMCBzzQEsvTE1A2yhMnAFH\n", - "CyRXQ7BXy8B3OmHCB3VRmB7RgmNjBTB26tp7U/YA7K2F7TO8Ew018MyDwNcgdQZOp2BVAVRkHqRh\n", - "J5xwQ+BINq5H/jL6NLzykAYXN0yoVsfhMhh+dD7BlSLOTdD6PmjJ3BvdSRHn941JnLj0L6ePwPG7\n", - "IL0NXNWq8dDrAv807Iio8FbNKTj85dlS+xmPxGER6YN4o3rKbEBBBwyv0/ghRxh6SyG8Fdacg/V9\n", - "YItDsFa1aYZ9GkdiS8OgEwon4LgNEllTxF3K6PZLyW1QsgGSYfVi7myF22bcU63l8JNfFJG/u/p2\n", - "xtQxOPE+zdDyO1SYsCgJ/V4YKITRLxmTnuFhKayGsjm0fsoS4NgA1e+CliINZj1Vrm3szLzRloZg\n", - "cBwG68HXBf21ajubKPQlwefQ4FXHELxaDSM5LbWRZ3wa+JIxdOa6IzngC8DLIvxfY+anM7WYLGtj\n", - "JFOXowHVHOkyl6k+KSJl4L4btuyB7d+CH78PRtaBpwimE1qELF2lmSc9O6FqGM7FoawKgq3Q0wRV\n", - "bmidAl+RfvbIBEx0Q/rla+yzC1q3waZZ7uK1w3B4tYiUGGMmRezfhB9+AForwS7QnYK+R40xfXO3\n", - "fHMjIkXg2Qa162C0Fx53qXJtwg/DjxljTl/l8wXASlj5Ebh9TKsou5OwKQQ//YCI/G3GQwSAMSYg\n", - "Il+B0HehqQimEuCZhtVxGGoA5xgMF6Gv2HOiGS+Vp+GNVbC9H5rOwmkfHFwL6WPw7HpoCkFLJmNp\n", - "1Sjs64fUKg1cfaNGNVJGh7WcQN/31DNmcSXUEGn8L7CrEFrHNPDztQcheRxmurBbx6G2SQvmXVrh\n", - "981MvgztH4W9SajsgxN14C8Fx2ko7YbkLI/kVC+MbrhYBfkC/YVQeRu8q1tLEQBsG4ZH3wOHx6Cx\n", - "H4ZKNWbldA14wuDqhUc3QnkvjMXhZAPYuiAWh5H/MCZxxdiuTL2edVC9U4UUx45C8rgxZkl52UTY\n", - "ADwIrMl1X3KBMZwV4WXgw8A/5ro/s1mWxojok+ueNXBPM7qMd0NYRL4x82EtIoVQ/h5Ytx6St0FF\n", - "DCYFfuHb8NJWiK4Atxe6mlQb4JYQSDn4G6ChC06HodsLG/vANw4tAU2rK3BqvYrAT2a/NV+mvzZU\n", - "kMoJBMBuA/ssoSIbmfLpzSIur/5b3X8H3dWZX/YaY0JZuoR5hYgUQ/0nYGsZNAU0KPS4F04/ZszM\n", - "lN05PytQdAe0vhVsKxy4dlbxfLIW+1AM0oO4pieo74bejcALsz4ehdIE7DoINEF1WANWzxfB6/Uw\n", - "Po/MJf8j8NJ74MwGKE7DWA8M/hvEOsHWCmv3av2cC7R0wBGnysebYQgMoim5J41WE7a4Kt49sLMQ\n", - "tmUywUpjWkBwtBVGzuk4XsBpmMc6qS8AlU9C79vBvlJjlZp7oWQchqK8qeRF9CgcvQtKqtWb2lkJ\n", - "51bACQM7J6B2xr1aGoeN+x08tbUKubUSm0kQS04QPTysgpJOMmW70TiYIVTkZOpiHNmVKH03rNur\n", - "1YodKej8eTi2TUT+5XIvaDcpfw78pTHLOp35r4GviPDPxpBXxuayNEaAtevhgfuh252JGxiA4sfh\n", - "wyLy1xffCCreC7etga298FQENgShfxOMROCeNyB4Eh6/FQoESsrAG9GKod4wnGyD4DHw9MIWO9jd\n", - "MLAJKNWg15IzMPUmwTA1gNxbwLcKYgEI9ELdPVBXCe40DKa0eFp3OayYUR21txSG2mDDp6DWDbEw\n", - "9A1C99dmiGEtUby3wk4f7LwQuDkFjRMQeruIHL+yEebYAhvfAff0wpNrWwi566lKO5kuKcbVWUOk\n", - "8ABndk/hiYvUNMHYMUi3ZxbpWvWCuYrA0wHjdUAhYCAwBbFHNb7HuR48PpjqB87OXOAzaaTfynjp\n", - "CtE04iiAiPTD2VtggwsmPXByNxSUgFkJlRO6BVcYgzNvhb4e/b8tZpMx5tvA2wKJaSjfCc0z7h0B\n", - "PAPgXQsjpReNkQkPDMWYRw0nxd8LK+rhLadUpBCgvxJeqgQuuQeNMVMi8mV44t3gfi9UlUL5ELQ4\n", - "NS7tiaNQdw7WDqlhk3CtJGZ/gMRjNpASmOoG3w8o+FSI1vNQkdQt4+HXIXhsfkbIBfHJrbfAA10X\n", - "qx03BSG9CvatB7KaMZcrRLgd2A58INd9ySXG8III54CPQ34VBVyWxkgN3LIJJtwzAhjrYaoNmvtg\n", - "BXBaC2ut2KMeDgdaW2asHGonoWsN0Kf6HdMFcNfrMFoHL63S8t6JjGBV76tQ4VJxszY/VD2vdTHs\n", - "KRhuYlbJbn3Dr/s4bKnQwLbAajj0Kdh2DLZlAtBCLviP1fBkEdxSoArcfi/sWwUtbRroWJCCcJlW\n", - "B01+VET+bKm5XC+ldCusnJUhUJDU+i8dDWiRvMtQ9RbYOQoFyRImvRWQclAYSRAvTpFyT5AoFYpW\n", - "wKZzUD8J57bA8WER+TYQg1QvjKyAcg94z0PMA+OFEHsBqISWX4V1bvWgDLrh9ICIfNUYc8nYZ7Ko\n", - "ArOPibgfgR/8AhTthU0GIl6om4C6DjjQBM3noTUNj79fRL6wzKW934SmvVe8H1ZugOYYRO1wZBsM\n", - "nIGKGVWKa0/ByVXgqdBaNcEiOOaCwW/P3ztQWQP203CgGmrRwNKBNBT2AhUikkDzzePAiDFmVKS4\n", - "B3Ydhz098PoaqN8K5YWQ2ASpMnhpBG5/1cvptWtInq/QzDkAzlLQ4mZdQ4g9J6BuRItnvngrvBYC\n", - "nplfn10tsCJ10RC5wIpJaN/IEjBGRBDgL9FU3jwV5VtU/gR4XIRvGnP5beTFZlkaI3bwFvJmF1Wh\n", - "5sS5NdK9+WehZhucXgntw9DYAe1VsMoDERd0lcERHwQPqof0tuMw0A1D5Wps+DyQPgujYTagsfYA\n", - "ABVoSURBVDi+CeoD4EmpJPNAMXSGYXYQVcntsLsMdmT2rcMe2JQAVyal1pUEbxy2j8Dj/fBUHxQ3\n", - "w3Q7eLbCDr8GbQKUAwWl0L8R+pu5pjTmmw0Tg5iTN6WpxuGqFaEdFVAxAODAkXATCiYZLwKxTRH2\n", - "jWJvKaBuYpLWHkiUQcMG4DboWQvh16A3CGsOQ7QEJqsh7dcgwvHvQf0vwv0xaMxsxW0AfI3wwluA\n", - "x+f1n5nYEY0T2l0DhSMQ3w7NAa1btDIOna1w5yGob4KhWi6berpccW6DLRvgLV0Xj4kNzr4FWruh\n", - "ODNnJpww+BwEX4auFoichcDBaxP1c1fC3kMQdsNwma4Du0bhRDV07IGGdVDjVO2YoX4R+Z6WW9jW\n", - "q8Uz42vg9gGt4DtUDzVJSNXDU9scDCVquZhOHwT3CL6mIiqn/KSdetRuYFc/nLtdRJ6fX9p6Kq5Z\n", - "WLOJOTQ1eUnwLlRp8Bu57kg+YAxviPAY8DngoVz35wLL0hgJwMkeuKd6hmciCdIDAo4q2Hw/3Hoe\n", - "BlfCmgCcr1bphg3Pw5Gt0OOG5AiMZPLU2z8GzRNQP6VfEx44Uo7qFEyJeH8Mk/drxHsU6AlB/7+8\n", - "OZ6gZBusmRFDEnVBSUoL4wV8UD2W+bsIFLqN6X8KLgTYlv03jUuZSXkQnC1AQVYvYN4xuh9O/Jyq\n", - "kl/IaB4s1ut8tZz6WBf01UDreJia/iQJdzHhYITxxmmidjsbR0MUBCDugfQWWD0OFXGVdPc1wjMh\n", - "eNoGLXF9A+5FH2pmHGrKoHGW5sfGQXhjt4j8+BoEp9JQOwzNPTC5BWyZzxXFtRI0ZOKFlm2dkctT\n", - "tQvWjl16bHsPdHTBI+vVYxkBuidh6MvGmDfV7Zk/050wsAU2DF9M2U0D58pgzR3w9rNQnHkJOlMJ\n", - "T38YcGpK+GC5pu86DPh6dMulPwWpKHSOx4k+NgS3NmS8ZxFwpimQKWxA8Yy326IEuF2oQM0cKemz\n", - "SZ2FM2lY69bYGVCBvlOF4M+zulPXjgh2NFbkT4yZO5V/mfKHwHERfsYYnsh1ZyCHxoiI/Arwa4Ab\n", - "eNgY85XFOvc0HDikkqKNreCPgOuEhqK/CNVbVT3TNw3j56BvLTQGNX1urBfGhmHsVSgx4CyDxAk4\n", - "9SxE7lJB1wRwLgm9370QUGhM6AUROQzn6jN/0DO369ckID7jgVI+CX2iFUBtM9zv/T4IzlwobJAe\n", - "UvXPtTOi82M2GDNA1iTb85PEITjWCsFtGkgcFjg3Df1fv7qLfeQZ2P8QSDrG5o4z9LeuYLKwkdAL\n", - "AVKxKdK7Q1S1Q7RZM1scaXWHSwq2DEJHMxz5Bxh0oXN5ICO5Xq96IbOxG30zvzoi0gglm6C4QQMc\n", - "t/RqDNJEI1QGYbQACnozsQ1xrprxsRwxNh2v43UQrFFtoKZ+qO2GZx6DrhDqUeuZb5zF5Zl4RVVQ\n", - "XZXQNgZhFxyuh8k03DF00RAB1SPqbIbjg5oVY0tfdOLFneph2/AkdPtAzk/DvoPqWruwZjknCRZP\n", - "UnQcSmbERA0WQ3gE5rcdoXPV83344c/DKrs+EjqBnqeMMUsh/fWX0Yy2H+W6I/mEMUyK8GHguyLs\n", - "NebSmKZckEvPyLeMMV/PBJe9BiyaMZIJHns4CHt8Kl8YGIGfpOE42G9VuwSgtV1l2zvXwHgxHHBr\n", - "Dv8DW6AsAiPb4MQ90PdlOHEYTmxH90c6mfVGboyZZMZ+79z498OJd8CdGXdsUwDa/XCqAfZEdL/7\n", - "XDUcnobwwRkfHIfIUThzByTLtRJt1AEnfTD2tDFmfM7TLRGMMSkR+T5MvKxCcsRQr9RV3wyNMd0i\n", - "8iWYuB88LX6iB8OMBwZISxwSE0w4VV67byW4w/pg6y6A6guaD2nAY4yZvQ02DMMhGPZeFF8DaK+B\n", - "0BtX8opo7JDj56D5Lljnh4ogHKiDn9bDlldgsAb6mqAvDLVReLIaBq4htmE5MX4MXvojWC2wIqZv\n", - "/afXw5kuNAMpfLUW5osxZkSVkifv03IO6SiMPwml28A3x3gXC4TG4al10ObW6rqlZRqHXPYakIbT\n", - "JTB2KLNm/eMk3FIKG1Mw7if4RTi/DSqLoToEfT54vRSG//laZN6NiR4TkS7oaOOiEvRNr9IqQgHw\n", - "p8CHlpPA2XwxhudF+AzwmAh3G0NOnxM5r02T0Xf4iTHmLbOO56huQe3H4O3VqjFwgZgdvlMPoSA8\n", - "KBerfII+XH7aCakQtOyBFqMvJWcT0PsNY5LzLj6msQHl74e2tdCUVkXFU3EYPgFVK0E8ED4KEy/M\n", - "NjA04LbpE1BdD/YS9dAOdcDoX83Ux8hnclk4K3N+++x9dhH3Vmh+H9RugmofBCNg74Bbj0Na4F8b\n", - "4cxfzyXjLyJtqluyESiNwlAhnAjAwJczMuNz9MG5ERo/orEEjSEYToPrDGw/A4/tBb8fnCGYDINr\n", - "ElI9mdiGG9heyC0LWxTTdSfs/GPYIFAS09T6YQfs74Xe312odPfMS5ZRxV3fO+De3epJu8BwIfz4\n", - "nVB7QiUD+mqhp1S9J6sHwDsFnTboehmmHr+ccSFiXw/V9+j2cqIPhp+5WbLnFr7+GH8GrDaG9y/U\n", - "OW52MsG9fwXcAdxvzNVemG/0fHlaKE9E/hfwCeB/GGO+Nut3OTJGpAXWfQJundI4kPFCOFQDh1+H\n", - "tu3w87NiAFICD2+HFUG4v/NiVPpYIfywGHo+Nx/lzxnntwEt4KqHZAjSZzPpn/P5bCkUbAFvNUz2\n", - "Qex4Nt/8FppcGyOXQ9Nu5Rao/QXYMQI7uyBQAG/UwdEXjAlcNhhVRMqhcAsUVUCgGxInLuexEZES\n", - "WPn7sMet2zN141rB90AFlL8IngQ8PmLM4FcX6n/NBQtrjNT/Jry7APDCdA3YYlDWD8dK4JlvL4ZM\n", - "uohUQOtvwF6jWV8RJzz+NmgIwR0zsl4ONMJz7RA+Aw4nJLpvZiPzaizsuLMO2AdsNcYK6r4SGYPk\n", - "i2jq8zsX0kOS00J5WvWV78w6PGSM+aAx5k9F5C+Ap0XkkdlvKSLy6Rk/PmeMeW5hezvTbT9+H7hb\n", - "IRWA0UcgcR7M9jk+ATjqYcP5S9PjKqehrVKLqNF+DedPo5oE1/x2k3nbzllJ8KVKxuvxhIicgNfu\n", - "g6MrtaLy+KMQff0qnx0HnpvfmWwrYbVNtUPI3LAOowX4OpqhqRPSVhDeNSFpjceoHeCSTCNTCovj\n", - "ujda1+phmLoXCtdD3IB3HPa8culfbh6EY2sh9D1j4jcYv7J8EcENfAtN5bUMkatgDEaE3wQ+C7yQ\n", - "CWpd9DjDBTdGMkWm7pl9XERcGe2LBBpy/iZryRjz6YXu31wYrUj7T5Ix4+CCUufYIJyfJTZ2slYz\n", - "azxz6HjMT73R4uYgo8771ZnzIruIU2uRlPuhNw2Vdk3hdaYh7YCzPhj7j+yfdykzegBOv/dSRdOA\n", - "G84nyBSeXAwy6+C3MtLrlVDz25pFMxNnCmx2NG7DMkaugxlv+eeBf8hxd24aMjE1fyDCKPCiCA8Y\n", - "w6LWucrlg/JPRORuNAPhO/koZT3zgaN7v/IDeOajsK4JyhMw7IJTYxpF33HXpTLSMTt0wzzLuVvc\n", - "PCyMIQIqoHbeBlui4D0MnduhzMC5EuidgLGDkJ63l80CIHEYjq6F6fXQHNcg8FNA/3fmE+CcbTLr\n", - "iB/8wTcHN3dWQqjj6iUELOYiY4h8FtgK3GsFrV47xvBZEfzA8yK8xxheW6xz5zyA9XLkcfxAITjW\n", - "QVElTA1C+gxgg5qPwZZ6rT8TccHJIjj9hDHh53Pd55uFfB3zxUSk9B2w7k5YNwkJN3SugDOjMPEw\n", - "KiWfnzfsDbDwgYwX5OCLV0AiDNFTuc4wE3GshJW/CluSUB6C4RI4nITuLxljlkWKdjbHXYQS4GFU\n", - "X+FdxjB25U9YXAkR3g38E/BxY/hh9trN0wDWK3GzPZg0K8i5GSo2auDp2CFjzLwzaSxuvjFfCDJu\n", - "/DVQtV2rQPuPLcUKqjNZruOu8XS+XVBQA1M9EDpollHV5WyNuwjvQuus/AT4HWPmI/ZmcTVE2A08\n", - "BvxfY/hidtq0jJGskElDTi3lB0Muyccxv14yb+MFQHR2urDFpdxs4671bnACkaXoqVosbnTcRWgG\n", - "/h+6LfOQMfOtx2MxX0RoQ0tX/BD4Y2O4odpXljFyg2hly5p3QnETJNMQfAMmfnozpc3eDOTTmF8v\n", - "6tlw74aqt0JhEUxPg/8ZiLxmPbjm5mYZdxFxQ+m94NsNTgeEBmHoxzeLrke+cb3jLoIL+F3g94Ev\n", - "AJ+1CuAtHCJUAI8CY8Cv3Ujqb05Te292RKQS2j4Od8WgtRcSNji6HfbXiMiXjFUl1eISCvbA5vfC\n", - "bf1aKyjghlfekyl++mque2dxI5T/IuxeC9v7tehlXym88DER+XtjjJVCugiIcB/wd8BZYI8xs4uN\n", - "WmQbY/BnrvtngCMiPGQMP872eeZVI2N5U7IbtnFRkdWZhp390NoEtOSyZxb5hYg4oPJeuLMPfJmM\n", - "CF8M7uiHyvv09xY3IyJSB41rYW+PGiKgNat2xqDi9tz2bukjQpMI3wO+BPyBMbzbMkQWD2OIGcPv\n", - "ovXkPi/CkyLcJ5I9G2JZGCOZFOLrxNsM1XOkHdcC3Hf97V6ZG+vz0mo7W20uQjtF4PVcWhAN9Odi\n", - "t/5+UftzU7ezUG1eZ1vlUDPHNltNEJLX096cZPva5cF1u8FzUiXCnwOH4eEwsMEY/v3G2rzx/yOf\n", - "7pXF7IsxPInWt/g+8DmgW4SvivBJEe4WueN9mRTra2ZZGCPA3df/0elBGC968/ExATZff7tX5W6r\n", - "7ay3udDtTEM4AWHnpYfDTj3ObFn/he7Pzd7OQrV5PW1Ngn+ORdbvhenaG+3QDO7OYlvZbi+bbV0W\n", - "ESpFeI8I3wROA2XATvhkV5YyZe7Okzay1U422ph3O8aQMIaHgR3AA+j2863An8FdXwcmRTgkwndF\n", - "+D8ivHU+7S4XY+QGCLwGh10w5NWf08CJGugcBpZNGp7F1THGJGDsBXilESKZLZmIA/Y3gH+fsarq\n", - "3sz0QW83vNGg9ahA608d8kKi58oftbgSIvxl5sH1ogjdQAfwm8DLwDpj+HVjFk8t12J+GIMxhnZj\n", - "+Htj+Kgx3AGf+RzQBHwSTQtOAc3zac/aw74KxpghEcdXIfSzUN4EcWD8LIw9Bnwqx92zyDum98ER\n", - "O/TdCSV2mEyB/ykIWTWDbmIyyqnfghffDSc3gsfAeAhGvgn8Yq77d5PTDRwG+oB+oNsYrHT4mxRj\n", - "CACvZ77mTV6n9ua6DxYWFhYWFhbZ46bTGbGwsLCwsLBYHlgxIxYWFhYWFhY5xTJGliEisifXfbDI\n", - "LtaYWsyFNS+WB0thnJfFNo2IeIwxCyIXLCLubJT8FpFdwF7ABwSAV4wxB26wzbmMTQGeMMbcsEaK\n", - "iGwCksaYUzOO3WqM2X+jbc9oz4vO0zm0Xq6rvazMhesZ92yMcTbHNFvjJyLbgYAx5ryI3A+4gB9n\n", - "Q5042+M/o92srQk3sgZk675fiHs9m/f3jc6RbM6DXK0B+XT/5+O9v6SMERH5IPB7QBLV0v/LTBT8\n", - "s8aYexbonE8aYx64wTb+Fh3Ep4AgUArci06W37mBdiPAXJNrqzGm/HrbzbT9N0A1kACqgI8ZY0Zu\n", - "9FqLyMeA3wDCwFeAj6P51I8YY75wDe0s6Fy41nHP1hhna0yzNX4i8veAm0xRQGAKmAQajTG/Ot92\n", - "ZrSXlfGf0d6CrwnXuwZk877P9r2ezfv7euZINuZBPq0B+XT/5+u9j8kkCy+FL+AVNF1ZgF9H85zL\n", - "gGez0Pa+y3xNZKHtF67l+DW0ewjwzXH8qWxcjxnfbwGeB3bf6LVGb7QLFW970RtYgJdzMReyNe7Z\n", - "GuNsjWm2xm9m/4FjM75/Ppfjn+15kM25kO05kc15ke35cb1zJBvzIJ/WgHy6//P13l9yOiPGmGTm\n", - "278XkUNo6ePqLDRdiVqfl0h9i8hPs9D2QRF5GHgStS5LUKv50A22+06YU7HwbTfYLoBNRFzGmLgx\n", - "5qiIvBf4BioVfCPEjLr4IplChHEAEblmN3iW5kK2xj1bY5ytMc3W+NlnfP/fZ3x/vS7XrI3/f3Yk\n", - "e2tCtteAbN732b7Xs3l/X88cyco8yKM1IJ/u//y896/HgsnXL+AhoGXWsQbgH7LQ9tuZ2yLdmaW+\n", - "70Ct9z9B3ZPbc309r9LfW4CaWcccwAdvsN1fARyzjrmA/52LuZDNcc+nMc7W+KEL2Fzj9WAuxz/b\n", - "8yDbcyEf58RCzI/rnSPZmAf5tgbky1jn672/pGJGZiMi3zLG/NICtf1tY8wHF6Jti4tk6zpnay5Y\n", - "4764ZPt6Z3NNsObC4pGNa22tAfnNUk/trVvAtrNZHMvi8mTrOmdrLljjvrhk+3pnc02w5sLikY1r\n", - "ba0BecxSN0YsLCwsLCws8hzLGLGwsLCwsLDIKZYxYmFhYWFhYZFTlnoAa40xZvhma9viItm6zvnW\n", - "jsX8yPb1zmZ71lxYPLJxra01IL9Z0saIhYWFhYWFRf5jbdNYWFhYWFhY5BTLGLGwsLCwsLDIKZYx\n", - "YmFhYWFhYZFTLGMkjxCRt4nIKRE5KyJ/lOv+WCw8IvIVERkWkWO57ovF4iAiTSLyrIicEJHjIvLb\n", - "ue6TxcIjIh4ReVVEDovISRH5TK77lE9YAax5gojYgdPAfUA/8DpaK6A9px2zWFBE5E4gBHzdGLM5\n", - "1/2xWHhEpBaoNcYcFhEvcBB4j3WvL31EpNAYMy0iDuBF4PeNMS/mul/5gOUZyR/2AOeMMV3GmATw\n", - "HeBnc9wniwXGGLMPmMh1PywWD2PMkDHmcOb7ENAO1Oe2VxaLgTFmOvOtC616O57D7uQVljGSPzQA\n", - "vTN+7sscs7CwWKKISCuwHXg1tz2xWAxExCYih4Fh4FljzMlc9ylfsIyR/MHaL7OwWEZktmi+D/xO\n", - "xkNiscQxxqSNMduARuAuEbk7x13KGyxjJH/oB5pm/NyEekcsLCyWGCLiBB4BvmGMeTTX/bFYXIwx\n", - "QeA/gF257ku+YBkj+cMBYLWItIqIC3g/8MMc98nCwiLLiIgA/wScNMb8ba77Y7E4iEiliPgy3xcA\n", - "9wNv5LZX+YNljOQJxpgk8FvAE8BJ4LtWdP3SR0S+DbwMrBGRXhH5aK77ZLHg3A58CLhHRN7IfL0t\n", - "152yWHDqgGcyMSOvAv9ujHk6x33KG6zUXgsLCwsLC4ucYnlGLCwsLCwsLHKKZYxYWFhYWFhY5BTL\n", - "GLGwsLCwsLDIKZYxYmFhYWFhYZFTLGPEwsLCwsLCIqdYxoiFhYWFhYVFTrGMEQsLCwsLC4ucYhkj\n", - "FhYWFhYWFjnl/wPBByFp6Gp27QAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "X, y = sklearn.datasets.make_classification(\n", - " n_samples=10000, n_features=4, n_redundant=0, n_informative=2, \n", - " n_clusters_per_class=2, hypercube=False, random_state=0\n", - ")\n", - "\n", - "# Split into train and test\n", - "X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)\n", - "\n", - "# Visualize sample of the data\n", - "ind = np.random.permutation(X.shape[0])[:1000]\n", - "df = pd.DataFrame(X[ind])\n", - "_ = pd.scatter_matrix(df, figsize=(9, 9), diagonal='kde', marker='o', s=40, alpha=.4, c=y[ind])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Learn and evaluate scikit-learn's logistic regression with stochastic gradient descent (SGD) training. Time and check the classifier's accuracy." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.783\n", - "Accuracy: 0.783\n", - "Accuracy: 0.783\n", - "Accuracy: 0.783\n", - "1 loops, best of 3: 508 ms per loop\n" - ] - } - ], - "source": [ - "%%timeit\n", - "# Train and test the scikit-learn SGD logistic regression.\n", - "clf = sklearn.linear_model.SGDClassifier(\n", - " loss='log', n_iter=1000, penalty='l2', alpha=1e-3, class_weight='auto')\n", - "\n", - "clf.fit(X, y)\n", - "yt_pred = clf.predict(Xt)\n", - "print('Accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(yt, yt_pred)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Save the dataset to HDF5 for loading in Caffe." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Write out the data to HDF5 files in a temp directory.\n", - "# This file is assumed to be caffe_root/examples/hdf5_classification.ipynb\n", - "dirname = os.path.abspath('./examples/hdf5_classification/data')\n", - "if not os.path.exists(dirname):\n", - " os.makedirs(dirname)\n", - "\n", - "train_filename = os.path.join(dirname, 'train.h5')\n", - "test_filename = os.path.join(dirname, 'test.h5')\n", - "\n", - "# HDF5DataLayer source should be a file containing a list of HDF5 filenames.\n", - "# To show this off, we'll list the same data file twice.\n", - "with h5py.File(train_filename, 'w') as f:\n", - " f['data'] = X\n", - " f['label'] = y.astype(np.float32)\n", - "with open(os.path.join(dirname, 'train.txt'), 'w') as f:\n", - " f.write(train_filename + '\\n')\n", - " f.write(train_filename + '\\n')\n", - " \n", - "# HDF5 is pretty efficient, but can be further compressed.\n", - "comp_kwargs = {'compression': 'gzip', 'compression_opts': 1}\n", - "with h5py.File(test_filename, 'w') as f:\n", - " f.create_dataset('data', data=Xt, **comp_kwargs)\n", - " f.create_dataset('label', data=yt.astype(np.float32), **comp_kwargs)\n", - "with open(os.path.join(dirname, 'test.txt'), 'w') as f:\n", - " f.write(test_filename + '\\n')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's define logistic regression in Caffe through Python net specification. This is a quick and natural way to define nets that sidesteps manually editing the protobuf model." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "from caffe import layers as L\n", - "from caffe import params as P\n", - "\n", - "def logreg(hdf5, batch_size):\n", - " # logistic regression: data, matrix multiplication, and 2-class softmax loss\n", - " n = caffe.NetSpec()\n", - " n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)\n", - " n.ip1 = L.InnerProduct(n.data, num_output=2, weight_filler=dict(type='xavier'))\n", - " n.accuracy = L.Accuracy(n.ip1, n.label)\n", - " n.loss = L.SoftmaxWithLoss(n.ip1, n.label)\n", - " return n.to_proto()\n", - " \n", - "with open('examples/hdf5_classification/logreg_auto_train.prototxt', 'w') as f:\n", - " f.write(str(logreg('examples/hdf5_classification/data/train.txt', 10)))\n", - " \n", - "with open('examples/hdf5_classification/logreg_auto_test.prototxt', 'w') as f:\n", - " f.write(str(logreg('examples/hdf5_classification/data/test.txt', 10)))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Time to learn and evaluate our Caffeinated logistic regression in Python." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.782\n", - "Accuracy: 0.782\n", - "Accuracy: 0.782\n", - "Accuracy: 0.782\n", - "1 loops, best of 3: 287 ms per loop\n" - ] - } - ], - "source": [ - "%%timeit\n", - "caffe.set_mode_cpu()\n", - "solver = caffe.get_solver('examples/hdf5_classification/solver.prototxt')\n", - "solver.solve()\n", - "\n", - "accuracy = 0\n", - "batch_size = solver.test_nets[0].blobs['data'].num\n", - "test_iters = int(len(Xt) / batch_size)\n", - "for i in range(test_iters):\n", - " solver.test_nets[0].forward()\n", - " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", - "accuracy /= test_iters\n", - "\n", - "print(\"Accuracy: {:.3f}\".format(accuracy))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Do the same through the command line interface for detailed output on the model and solving." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "I0318 00:58:32.322571 2013098752 caffe.cpp:117] Use CPU.\n", - "I0318 00:58:32.643163 2013098752 caffe.cpp:121] Starting Optimization\n", - "I0318 00:58:32.643229 2013098752 solver.cpp:32] Initializing solver from parameters: \n", - "train_net: \"examples/hdf5_classification/logreg_auto_train.prototxt\"\n", - "test_net: \"examples/hdf5_classification/logreg_auto_test.prototxt\"\n", - "test_iter: 250\n", - "test_interval: 1000\n", - "base_lr: 0.01\n", - "display: 1000\n", - "max_iter: 10000\n", - "lr_policy: \"step\"\n", - "gamma: 0.1\n", - "momentum: 0.9\n", - "weight_decay: 0.0005\n", - "stepsize: 5000\n", - "snapshot: 10000\n", - "snapshot_prefix: \"examples/hdf5_classification/data/train\"\n", - "solver_mode: CPU\n", - "I0318 00:58:32.643333 2013098752 solver.cpp:61] Creating training net from train_net file: examples/hdf5_classification/logreg_auto_train.prototxt\n", - "I0318 00:58:32.643465 2013098752 net.cpp:42] Initializing net from parameters: \n", - "state {\n", - " phase: TRAIN\n", - "}\n", - "layer {\n", - " name: \"data\"\n", - " type: \"HDF5Data\"\n", - " top: \"data\"\n", - " top: \"label\"\n", - " hdf5_data_param {\n", - " source: \"examples/hdf5_classification/data/train.txt\"\n", - " batch_size: 10\n", - " }\n", - "}\n", - "layer {\n", - " name: \"ip1\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"data\"\n", - " top: \"ip1\"\n", - " inner_product_param {\n", - " num_output: 2\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"accuracy\"\n", - " type: \"Accuracy\"\n", - " bottom: \"ip1\"\n", - " bottom: \"label\"\n", - " top: \"accuracy\"\n", - "}\n", - "layer {\n", - " name: \"loss\"\n", - " type: \"SoftmaxWithLoss\"\n", - " bottom: \"ip1\"\n", - " bottom: \"label\"\n", - " top: \"loss\"\n", - "}\n", - "I0318 00:58:32.644197 2013098752 layer_factory.hpp:74] Creating layer data\n", - "I0318 00:58:32.644219 2013098752 net.cpp:84] Creating Layer data\n", - "I0318 00:58:32.644230 2013098752 net.cpp:338] data -> data\n", - "I0318 00:58:32.644256 2013098752 net.cpp:338] data -> label\n", - "I0318 00:58:32.644269 2013098752 net.cpp:113] Setting up data\n", - "I0318 00:58:32.644278 2013098752 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: examples/hdf5_classification/data/train.txt\n", - "I0318 00:58:32.644327 2013098752 hdf5_data_layer.cpp:80] Number of HDF5 files: 2\n", - "I0318 00:58:32.646458 2013098752 net.cpp:120] Top shape: 10 4 (40)\n", - "I0318 00:58:32.646502 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.646518 2013098752 layer_factory.hpp:74] Creating layer label_data_1_split\n", - "I0318 00:58:32.646538 2013098752 net.cpp:84] Creating Layer label_data_1_split\n", - "I0318 00:58:32.646546 2013098752 net.cpp:380] label_data_1_split <- label\n", - "I0318 00:58:32.646556 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_0\n", - "I0318 00:58:32.646569 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_1\n", - "I0318 00:58:32.646579 2013098752 net.cpp:113] Setting up label_data_1_split\n", - "I0318 00:58:32.646586 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.646595 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.646601 2013098752 layer_factory.hpp:74] Creating layer ip1\n", - "I0318 00:58:32.646615 2013098752 net.cpp:84] Creating Layer ip1\n", - "I0318 00:58:32.646622 2013098752 net.cpp:380] ip1 <- data\n", - "I0318 00:58:32.646664 2013098752 net.cpp:338] ip1 -> ip1\n", - "I0318 00:58:32.646689 2013098752 net.cpp:113] Setting up ip1\n", - "I0318 00:58:32.652330 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.652371 2013098752 layer_factory.hpp:74] Creating layer ip1_ip1_0_split\n", - "I0318 00:58:32.652393 2013098752 net.cpp:84] Creating Layer ip1_ip1_0_split\n", - "I0318 00:58:32.652407 2013098752 net.cpp:380] ip1_ip1_0_split <- ip1\n", - "I0318 00:58:32.652421 2013098752 net.cpp:338] ip1_ip1_0_split -> ip1_ip1_0_split_0\n", - "I0318 00:58:32.652467 2013098752 net.cpp:338] ip1_ip1_0_split -> ip1_ip1_0_split_1\n", - "I0318 00:58:32.652480 2013098752 net.cpp:113] Setting up ip1_ip1_0_split\n", - "I0318 00:58:32.652489 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.652498 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.652505 2013098752 layer_factory.hpp:74] Creating layer accuracy\n", - "I0318 00:58:32.652521 2013098752 net.cpp:84] Creating Layer accuracy\n", - "I0318 00:58:32.652534 2013098752 net.cpp:380] accuracy <- ip1_ip1_0_split_0\n", - "I0318 00:58:32.652545 2013098752 net.cpp:380] accuracy <- label_data_1_split_0\n", - "I0318 00:58:32.652562 2013098752 net.cpp:338] accuracy -> accuracy\n", - "I0318 00:58:32.652577 2013098752 net.cpp:113] Setting up accuracy\n", - "I0318 00:58:32.652590 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:32.652642 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:32.652655 2013098752 net.cpp:84] Creating Layer loss\n", - "I0318 00:58:32.652663 2013098752 net.cpp:380] loss <- ip1_ip1_0_split_1\n", - "I0318 00:58:32.652672 2013098752 net.cpp:380] loss <- label_data_1_split_1\n", - "I0318 00:58:32.652679 2013098752 net.cpp:338] loss -> loss\n", - "I0318 00:58:32.652689 2013098752 net.cpp:113] Setting up loss\n", - "I0318 00:58:32.652701 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:32.652716 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:32.652724 2013098752 net.cpp:122] with loss weight 1\n", - "I0318 00:58:32.652740 2013098752 net.cpp:167] loss needs backward computation.\n", - "I0318 00:58:32.652746 2013098752 net.cpp:169] accuracy does not need backward computation.\n", - "I0318 00:58:32.652753 2013098752 net.cpp:167] ip1_ip1_0_split needs backward computation.\n", - "I0318 00:58:32.652760 2013098752 net.cpp:167] ip1 needs backward computation.\n", - "I0318 00:58:32.652786 2013098752 net.cpp:169] label_data_1_split does not need backward computation.\n", - "I0318 00:58:32.652801 2013098752 net.cpp:169] data does not need backward computation.\n", - "I0318 00:58:32.652808 2013098752 net.cpp:205] This network produces output accuracy\n", - "I0318 00:58:32.652815 2013098752 net.cpp:205] This network produces output loss\n", - "I0318 00:58:32.652825 2013098752 net.cpp:447] Collecting Learning Rate and Weight Decay.\n", - "I0318 00:58:32.652833 2013098752 net.cpp:217] Network initialization done.\n", - "I0318 00:58:32.652839 2013098752 net.cpp:218] Memory required for data: 528\n", - "I0318 00:58:32.652964 2013098752 solver.cpp:154] Creating test net (#0) specified by test_net file: examples/hdf5_classification/logreg_auto_test.prototxt\n", - "I0318 00:58:32.652986 2013098752 net.cpp:42] Initializing net from parameters: \n", - "state {\n", - " phase: TEST\n", - "}\n", - "layer {\n", - " name: \"data\"\n", - " type: \"HDF5Data\"\n", - " top: \"data\"\n", - " top: \"label\"\n", - " hdf5_data_param {\n", - " source: \"examples/hdf5_classification/data/test.txt\"\n", - " batch_size: 10\n", - " }\n", - "}\n", - "layer {\n", - " name: \"ip1\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"data\"\n", - " top: \"ip1\"\n", - " inner_product_param {\n", - " num_output: 2\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"accuracy\"\n", - " type: \"Accuracy\"\n", - " bottom: \"ip1\"\n", - " bottom: \"label\"\n", - " top: \"accuracy\"\n", - "}\n", - "layer {\n", - " name: \"loss\"\n", - " type: \"SoftmaxWithLoss\"\n", - " bottom: \"ip1\"\n", - " bottom: \"label\"\n", - " top: \"loss\"\n", - "}\n", - "I0318 00:58:32.653069 2013098752 layer_factory.hpp:74] Creating layer data\n", - "I0318 00:58:32.653080 2013098752 net.cpp:84] Creating Layer data\n", - "I0318 00:58:32.653090 2013098752 net.cpp:338] data -> data\n", - "I0318 00:58:32.653128 2013098752 net.cpp:338] data -> label\n", - "I0318 00:58:32.653146 2013098752 net.cpp:113] Setting up data\n", - "I0318 00:58:32.653154 2013098752 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: examples/hdf5_classification/data/test.txt\n", - "I0318 00:58:32.653192 2013098752 hdf5_data_layer.cpp:80] Number of HDF5 files: 1\n", - "I0318 00:58:32.654850 2013098752 net.cpp:120] Top shape: 10 4 (40)\n", - "I0318 00:58:32.654897 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.654914 2013098752 layer_factory.hpp:74] Creating layer label_data_1_split\n", - "I0318 00:58:32.654933 2013098752 net.cpp:84] Creating Layer label_data_1_split\n", - "I0318 00:58:32.654943 2013098752 net.cpp:380] label_data_1_split <- label\n", - "I0318 00:58:32.654953 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_0\n", - "I0318 00:58:32.654966 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_1\n", - "I0318 00:58:32.654976 2013098752 net.cpp:113] Setting up label_data_1_split\n", - "I0318 00:58:32.654985 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.654992 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:32.655000 2013098752 layer_factory.hpp:74] Creating layer ip1\n", - "I0318 00:58:32.655010 2013098752 net.cpp:84] Creating Layer ip1\n", - "I0318 00:58:32.655017 2013098752 net.cpp:380] ip1 <- data\n", - "I0318 00:58:32.655030 2013098752 net.cpp:338] ip1 -> ip1\n", - "I0318 00:58:32.655041 2013098752 net.cpp:113] Setting up ip1\n", - "I0318 00:58:32.655061 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.655072 2013098752 layer_factory.hpp:74] Creating layer ip1_ip1_0_split\n", - "I0318 00:58:32.655148 2013098752 net.cpp:84] Creating Layer ip1_ip1_0_split\n", - "I0318 00:58:32.655159 2013098752 net.cpp:380] ip1_ip1_0_split <- ip1\n", - "I0318 00:58:32.655170 2013098752 net.cpp:338] ip1_ip1_0_split -> ip1_ip1_0_split_0\n", - "I0318 00:58:32.655180 2013098752 net.cpp:338] ip1_ip1_0_split -> ip1_ip1_0_split_1\n", - "I0318 00:58:32.655190 2013098752 net.cpp:113] Setting up ip1_ip1_0_split\n", - "I0318 00:58:32.655199 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.655206 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:32.655213 2013098752 layer_factory.hpp:74] Creating layer accuracy\n", - "I0318 00:58:32.655223 2013098752 net.cpp:84] Creating Layer accuracy\n", - "I0318 00:58:32.655230 2013098752 net.cpp:380] accuracy <- ip1_ip1_0_split_0\n", - "I0318 00:58:32.655237 2013098752 net.cpp:380] accuracy <- label_data_1_split_0\n", - "I0318 00:58:32.655251 2013098752 net.cpp:338] accuracy -> accuracy\n", - "I0318 00:58:32.655259 2013098752 net.cpp:113] Setting up accuracy\n", - "I0318 00:58:32.655267 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:32.655340 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:32.655354 2013098752 net.cpp:84] Creating Layer loss\n", - "I0318 00:58:32.655361 2013098752 net.cpp:380] loss <- ip1_ip1_0_split_1\n", - "I0318 00:58:32.655369 2013098752 net.cpp:380] loss <- label_data_1_split_1\n", - "I0318 00:58:32.655378 2013098752 net.cpp:338] loss -> loss\n", - "I0318 00:58:32.655388 2013098752 net.cpp:113] Setting up loss\n", - "I0318 00:58:32.655397 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:32.655414 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:32.655422 2013098752 net.cpp:122] with loss weight 1\n", - "I0318 00:58:32.655438 2013098752 net.cpp:167] loss needs backward computation.\n", - "I0318 00:58:32.655446 2013098752 net.cpp:169] accuracy does not need backward computation.\n", - "I0318 00:58:32.655455 2013098752 net.cpp:167] ip1_ip1_0_split needs backward computation.\n", - "I0318 00:58:32.655462 2013098752 net.cpp:167] ip1 needs backward computation.\n", - "I0318 00:58:32.655469 2013098752 net.cpp:169] label_data_1_split does not need backward computation.\n", - "I0318 00:58:32.655477 2013098752 net.cpp:169] data does not need backward computation.\n", - "I0318 00:58:32.655483 2013098752 net.cpp:205] This network produces output accuracy\n", - "I0318 00:58:32.655489 2013098752 net.cpp:205] This network produces output loss\n", - "I0318 00:58:32.655503 2013098752 net.cpp:447] Collecting Learning Rate and Weight Decay.\n", - "I0318 00:58:32.655511 2013098752 net.cpp:217] Network initialization done.\n", - "I0318 00:58:32.655517 2013098752 net.cpp:218] Memory required for data: 528\n", - "I0318 00:58:32.655547 2013098752 solver.cpp:42] Solver scaffolding done.\n", - "I0318 00:58:32.655567 2013098752 solver.cpp:222] Solving \n", - "I0318 00:58:32.655575 2013098752 solver.cpp:223] Learning Rate Policy: step\n", - "I0318 00:58:32.655583 2013098752 solver.cpp:266] Iteration 0, Testing net (#0)\n", - "I0318 00:58:32.683643 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.3736\n", - "I0318 00:58:32.683686 2013098752 solver.cpp:315] Test net output #1: loss = 1.00555 (* 1 = 1.00555 loss)\n", - "I0318 00:58:32.683846 2013098752 solver.cpp:189] Iteration 0, loss = 0.869394\n", - "I0318 00:58:32.683861 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.3\n", - "I0318 00:58:32.683871 2013098752 solver.cpp:204] Train net output #1: loss = 0.869394 (* 1 = 0.869394 loss)\n", - "I0318 00:58:32.683883 2013098752 solver.cpp:464] Iteration 0, lr = 0.01\n", - "I0318 00:58:32.698721 2013098752 solver.cpp:266] Iteration 1000, Testing net (#0)\n", - "I0318 00:58:32.701917 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7848\n", - "I0318 00:58:32.701961 2013098752 solver.cpp:315] Test net output #1: loss = 0.590972 (* 1 = 0.590972 loss)\n", - "I0318 00:58:32.702014 2013098752 solver.cpp:189] Iteration 1000, loss = 0.54742\n", - "I0318 00:58:32.702029 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:32.702041 2013098752 solver.cpp:204] Train net output #1: loss = 0.54742 (* 1 = 0.54742 loss)\n", - "I0318 00:58:32.702051 2013098752 solver.cpp:464] Iteration 1000, lr = 0.01\n", - "I0318 00:58:32.718360 2013098752 solver.cpp:266] Iteration 2000, Testing net (#0)\n", - "I0318 00:58:32.721529 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7696\n", - "I0318 00:58:32.721562 2013098752 solver.cpp:315] Test net output #1: loss = 0.593946 (* 1 = 0.593946 loss)\n", - "I0318 00:58:32.721593 2013098752 solver.cpp:189] Iteration 2000, loss = 0.729569\n", - "I0318 00:58:32.721603 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.5\n", - "I0318 00:58:32.721613 2013098752 solver.cpp:204] Train net output #1: loss = 0.729569 (* 1 = 0.729569 loss)\n", - "I0318 00:58:32.721622 2013098752 solver.cpp:464] Iteration 2000, lr = 0.01\n", - "I0318 00:58:32.740182 2013098752 solver.cpp:266] Iteration 3000, Testing net (#0)\n", - "I0318 00:58:32.743494 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.77\n", - "I0318 00:58:32.743544 2013098752 solver.cpp:315] Test net output #1: loss = 0.591229 (* 1 = 0.591229 loss)\n", - "I0318 00:58:32.744209 2013098752 solver.cpp:189] Iteration 3000, loss = 0.406097\n", - "I0318 00:58:32.744231 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.8\n", - "I0318 00:58:32.744249 2013098752 solver.cpp:204] Train net output #1: loss = 0.406096 (* 1 = 0.406096 loss)\n", - "I0318 00:58:32.744266 2013098752 solver.cpp:464] Iteration 3000, lr = 0.01\n", - "I0318 00:58:32.764135 2013098752 solver.cpp:266] Iteration 4000, Testing net (#0)\n", - "I0318 00:58:32.769110 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7848\n", - "I0318 00:58:32.769170 2013098752 solver.cpp:315] Test net output #1: loss = 0.590972 (* 1 = 0.590972 loss)\n", - "I0318 00:58:32.769223 2013098752 solver.cpp:189] Iteration 4000, loss = 0.54742\n", - "I0318 00:58:32.769242 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:32.769255 2013098752 solver.cpp:204] Train net output #1: loss = 0.54742 (* 1 = 0.54742 loss)\n", - "I0318 00:58:32.769265 2013098752 solver.cpp:464] Iteration 4000, lr = 0.01\n", - "I0318 00:58:32.785846 2013098752 solver.cpp:266] Iteration 5000, Testing net (#0)\n", - "I0318 00:58:32.788722 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7696\n", - "I0318 00:58:32.788751 2013098752 solver.cpp:315] Test net output #1: loss = 0.593946 (* 1 = 0.593946 loss)\n", - "I0318 00:58:32.788811 2013098752 solver.cpp:189] Iteration 5000, loss = 0.72957\n", - "I0318 00:58:32.788833 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.5\n", - "I0318 00:58:32.788846 2013098752 solver.cpp:204] Train net output #1: loss = 0.729569 (* 1 = 0.729569 loss)\n", - "I0318 00:58:32.788856 2013098752 solver.cpp:464] Iteration 5000, lr = 0.001\n", - "I0318 00:58:32.804762 2013098752 solver.cpp:266] Iteration 6000, Testing net (#0)\n", - "I0318 00:58:32.808061 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7856\n", - "I0318 00:58:32.808112 2013098752 solver.cpp:315] Test net output #1: loss = 0.59028 (* 1 = 0.59028 loss)\n", - "I0318 00:58:32.808732 2013098752 solver.cpp:189] Iteration 6000, loss = 0.415444\n", - "I0318 00:58:32.808753 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:32.808773 2013098752 solver.cpp:204] Train net output #1: loss = 0.415444 (* 1 = 0.415444 loss)\n", - "I0318 00:58:32.808786 2013098752 solver.cpp:464] Iteration 6000, lr = 0.001\n", - "I0318 00:58:32.827118 2013098752 solver.cpp:266] Iteration 7000, Testing net (#0)\n", - "I0318 00:58:32.831614 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7848\n", - "I0318 00:58:32.831657 2013098752 solver.cpp:315] Test net output #1: loss = 0.589454 (* 1 = 0.589454 loss)\n", - "I0318 00:58:32.831707 2013098752 solver.cpp:189] Iteration 7000, loss = 0.538038\n", - "I0318 00:58:32.831728 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.8\n", - "I0318 00:58:32.831745 2013098752 solver.cpp:204] Train net output #1: loss = 0.538037 (* 1 = 0.538037 loss)\n", - "I0318 00:58:32.831759 2013098752 solver.cpp:464] Iteration 7000, lr = 0.001\n", - "I0318 00:58:32.849634 2013098752 solver.cpp:266] Iteration 8000, Testing net (#0)\n", - "I0318 00:58:32.852712 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7796\n", - "I0318 00:58:32.852748 2013098752 solver.cpp:315] Test net output #1: loss = 0.589365 (* 1 = 0.589365 loss)\n", - "I0318 00:58:32.852792 2013098752 solver.cpp:189] Iteration 8000, loss = 0.684219\n", - "I0318 00:58:32.852840 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.5\n", - "I0318 00:58:32.852852 2013098752 solver.cpp:204] Train net output #1: loss = 0.684219 (* 1 = 0.684219 loss)\n", - "I0318 00:58:32.852861 2013098752 solver.cpp:464] Iteration 8000, lr = 0.001\n", - "I0318 00:58:32.868440 2013098752 solver.cpp:266] Iteration 9000, Testing net (#0)\n", - "I0318 00:58:32.871438 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.7816\n", - "I0318 00:58:32.871461 2013098752 solver.cpp:315] Test net output #1: loss = 0.589656 (* 1 = 0.589656 loss)\n", - "I0318 00:58:32.872109 2013098752 solver.cpp:189] Iteration 9000, loss = 0.421879\n", - "I0318 00:58:32.872131 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:32.872143 2013098752 solver.cpp:204] Train net output #1: loss = 0.421879 (* 1 = 0.421879 loss)\n", - "I0318 00:58:32.872153 2013098752 solver.cpp:464] Iteration 9000, lr = 0.001\n", - "I0318 00:58:32.889981 2013098752 solver.cpp:334] Snapshotting to examples/hdf5_classification/data/train_iter_10000.caffemodel\n", - "I0318 00:58:32.890224 2013098752 solver.cpp:342] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\n", - "I0318 00:58:32.890362 2013098752 solver.cpp:248] Iteration 10000, loss = 0.538933\n", - "I0318 00:58:32.890380 2013098752 solver.cpp:266] Iteration 10000, Testing net (#0)\n", - "I0318 00:58:32.893728 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.782\n", - "I0318 00:58:32.893757 2013098752 solver.cpp:315] Test net output #1: loss = 0.589366 (* 1 = 0.589366 loss)\n", - "I0318 00:58:32.893775 2013098752 solver.cpp:253] Optimization Done.\n", - "I0318 00:58:32.893786 2013098752 caffe.cpp:134] Optimization Done.\n" - ] - } - ], - "source": [ - "!./build/tools/caffe train -solver examples/hdf5_classification/solver.prototxt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you look at output or the `logreg_auto_train.prototxt`, you'll see that the model is simple logistic regression.\n", - "We can make it a little more advanced by introducing a non-linearity between weights that take the input and weights that give the output -- now we have a two-layer network.\n", - "That network is given in `nonlinear_auto_train.prototxt`, and that's the only change made in `nonlinear_solver.prototxt` which we will now use.\n", - "\n", - "The final accuracy of the new network should be higher than logistic regression!" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "from caffe import layers as L\n", - "from caffe import params as P\n", - "\n", - "def nonlinear_net(hdf5, batch_size):\n", - " # one small nonlinearity, one leap for model kind\n", - " n = caffe.NetSpec()\n", - " n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)\n", - " # define a hidden layer of dimension 40\n", - " n.ip1 = L.InnerProduct(n.data, num_output=40, weight_filler=dict(type='xavier'))\n", - " # transform the output through the ReLU (rectified linear) non-linearity\n", - " n.relu1 = L.ReLU(n.ip1, in_place=True)\n", - " # score the (now non-linear) features\n", - " n.ip2 = L.InnerProduct(n.ip1, num_output=2, weight_filler=dict(type='xavier'))\n", - " # same accuracy and loss as before\n", - " n.accuracy = L.Accuracy(n.ip2, n.label)\n", - " n.loss = L.SoftmaxWithLoss(n.ip2, n.label)\n", - " return n.to_proto()\n", - " \n", - "with open('examples/hdf5_classification/nonlinear_auto_train.prototxt', 'w') as f:\n", - " f.write(str(nonlinear_net('examples/hdf5_classification/data/train.txt', 10)))\n", - " \n", - "with open('examples/hdf5_classification/nonlinear_auto_test.prototxt', 'w') as f:\n", - " f.write(str(nonlinear_net('examples/hdf5_classification/data/test.txt', 10)))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy: 0.832\n", - "Accuracy: 0.832\n", - "Accuracy: 0.832\n", - "Accuracy: 0.831\n", - "1 loops, best of 3: 386 ms per loop\n" - ] - } - ], - "source": [ - "%%timeit\n", - "caffe.set_mode_cpu()\n", - "solver = caffe.get_solver('examples/hdf5_classification/nonlinear_solver.prototxt')\n", - "solver.solve()\n", - "\n", - "accuracy = 0\n", - "batch_size = solver.test_nets[0].blobs['data'].num\n", - "test_iters = int(len(Xt) / batch_size)\n", - "for i in range(test_iters):\n", - " solver.test_nets[0].forward()\n", - " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", - "accuracy /= test_iters\n", - "\n", - "print(\"Accuracy: {:.3f}\".format(accuracy))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Do the same through the command line interface for detailed output on the model and solving." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "I0318 00:58:43.336922 2013098752 caffe.cpp:117] Use CPU.\n", - "I0318 00:58:43.654698 2013098752 caffe.cpp:121] Starting Optimization\n", - "I0318 00:58:43.654747 2013098752 solver.cpp:32] Initializing solver from parameters: \n", - "train_net: \"examples/hdf5_classification/nonlinear_auto_train.prototxt\"\n", - "test_net: \"examples/hdf5_classification/nonlinear_auto_test.prototxt\"\n", - "test_iter: 250\n", - "test_interval: 1000\n", - "base_lr: 0.01\n", - "display: 1000\n", - "max_iter: 10000\n", - "lr_policy: \"step\"\n", - "gamma: 0.1\n", - "momentum: 0.9\n", - "weight_decay: 0.0005\n", - "stepsize: 5000\n", - "snapshot: 10000\n", - "snapshot_prefix: \"examples/hdf5_classification/data/train\"\n", - "solver_mode: CPU\n", - "I0318 00:58:43.654855 2013098752 solver.cpp:61] Creating training net from train_net file: examples/hdf5_classification/nonlinear_auto_train.prototxt\n", - "I0318 00:58:43.655004 2013098752 net.cpp:42] Initializing net from parameters: \n", - "state {\n", - " phase: TRAIN\n", - "}\n", - "layer {\n", - " name: \"data\"\n", - " type: \"HDF5Data\"\n", - " top: \"data\"\n", - " top: \"label\"\n", - " hdf5_data_param {\n", - " source: \"examples/hdf5_classification/data/train.txt\"\n", - " batch_size: 10\n", - " }\n", - "}\n", - "layer {\n", - " name: \"ip1\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"data\"\n", - " top: \"ip1\"\n", - " inner_product_param {\n", - " num_output: 40\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"relu1\"\n", - " type: \"ReLU\"\n", - " bottom: \"ip1\"\n", - " top: \"ip1\"\n", - "}\n", - "layer {\n", - " name: \"ip2\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"ip1\"\n", - " top: \"ip2\"\n", - " inner_product_param {\n", - " num_output: 2\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"accuracy\"\n", - " type: \"Accuracy\"\n", - " bottom: \"ip2\"\n", - " bottom: \"label\"\n", - " top: \"accuracy\"\n", - "}\n", - "layer {\n", - " name: \"loss\"\n", - " type: \"SoftmaxWithLoss\"\n", - " bottom: \"ip2\"\n", - " bottom: \"label\"\n", - " top: \"loss\"\n", - "}\n", - "I0318 00:58:43.655120 2013098752 layer_factory.hpp:74] Creating layer data\n", - "I0318 00:58:43.655139 2013098752 net.cpp:84] Creating Layer data\n", - "I0318 00:58:43.655264 2013098752 net.cpp:338] data -> data\n", - "I0318 00:58:43.655297 2013098752 net.cpp:338] data -> label\n", - "I0318 00:58:43.655310 2013098752 net.cpp:113] Setting up data\n", - "I0318 00:58:43.655318 2013098752 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: examples/hdf5_classification/data/train.txt\n", - "I0318 00:58:43.655365 2013098752 hdf5_data_layer.cpp:80] Number of HDF5 files: 2\n", - "I0318 00:58:43.657317 2013098752 net.cpp:120] Top shape: 10 4 (40)\n", - "I0318 00:58:43.657342 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.657356 2013098752 layer_factory.hpp:74] Creating layer label_data_1_split\n", - "I0318 00:58:43.657373 2013098752 net.cpp:84] Creating Layer label_data_1_split\n", - "I0318 00:58:43.657384 2013098752 net.cpp:380] label_data_1_split <- label\n", - "I0318 00:58:43.657395 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_0\n", - "I0318 00:58:43.657407 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_1\n", - "I0318 00:58:43.657418 2013098752 net.cpp:113] Setting up label_data_1_split\n", - "I0318 00:58:43.657426 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.657433 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.657441 2013098752 layer_factory.hpp:74] Creating layer ip1\n", - "I0318 00:58:43.657451 2013098752 net.cpp:84] Creating Layer ip1\n", - "I0318 00:58:43.657459 2013098752 net.cpp:380] ip1 <- data\n", - "I0318 00:58:43.657467 2013098752 net.cpp:338] ip1 -> ip1\n", - "I0318 00:58:43.657479 2013098752 net.cpp:113] Setting up ip1\n", - "I0318 00:58:43.662454 2013098752 net.cpp:120] Top shape: 10 40 (400)\n", - "I0318 00:58:43.662477 2013098752 layer_factory.hpp:74] Creating layer relu1\n", - "I0318 00:58:43.662497 2013098752 net.cpp:84] Creating Layer relu1\n", - "I0318 00:58:43.662508 2013098752 net.cpp:380] relu1 <- ip1\n", - "I0318 00:58:43.662520 2013098752 net.cpp:327] relu1 -> ip1 (in-place)\n", - "I0318 00:58:43.662530 2013098752 net.cpp:113] Setting up relu1\n", - "I0318 00:58:43.662539 2013098752 net.cpp:120] Top shape: 10 40 (400)\n", - "I0318 00:58:43.662546 2013098752 layer_factory.hpp:74] Creating layer ip2\n", - "I0318 00:58:43.662555 2013098752 net.cpp:84] Creating Layer ip2\n", - "I0318 00:58:43.662562 2013098752 net.cpp:380] ip2 <- ip1\n", - "I0318 00:58:43.662571 2013098752 net.cpp:338] ip2 -> ip2\n", - "I0318 00:58:43.662580 2013098752 net.cpp:113] Setting up ip2\n", - "I0318 00:58:43.662595 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.662606 2013098752 layer_factory.hpp:74] Creating layer ip2_ip2_0_split\n", - "I0318 00:58:43.662654 2013098752 net.cpp:84] Creating Layer ip2_ip2_0_split\n", - "I0318 00:58:43.662665 2013098752 net.cpp:380] ip2_ip2_0_split <- ip2\n", - "I0318 00:58:43.662678 2013098752 net.cpp:338] ip2_ip2_0_split -> ip2_ip2_0_split_0\n", - "I0318 00:58:43.662689 2013098752 net.cpp:338] ip2_ip2_0_split -> ip2_ip2_0_split_1\n", - "I0318 00:58:43.662698 2013098752 net.cpp:113] Setting up ip2_ip2_0_split\n", - "I0318 00:58:43.662706 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.662714 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.662722 2013098752 layer_factory.hpp:74] Creating layer accuracy\n", - "I0318 00:58:43.662734 2013098752 net.cpp:84] Creating Layer accuracy\n", - "I0318 00:58:43.662740 2013098752 net.cpp:380] accuracy <- ip2_ip2_0_split_0\n", - "I0318 00:58:43.662749 2013098752 net.cpp:380] accuracy <- label_data_1_split_0\n", - "I0318 00:58:43.662756 2013098752 net.cpp:338] accuracy -> accuracy\n", - "I0318 00:58:43.662766 2013098752 net.cpp:113] Setting up accuracy\n", - "I0318 00:58:43.662818 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:43.662827 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:43.662839 2013098752 net.cpp:84] Creating Layer loss\n", - "I0318 00:58:43.662847 2013098752 net.cpp:380] loss <- ip2_ip2_0_split_1\n", - "I0318 00:58:43.662854 2013098752 net.cpp:380] loss <- label_data_1_split_1\n", - "I0318 00:58:43.662863 2013098752 net.cpp:338] loss -> loss\n", - "I0318 00:58:43.662873 2013098752 net.cpp:113] Setting up loss\n", - "I0318 00:58:43.662883 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:43.662901 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:43.662909 2013098752 net.cpp:122] with loss weight 1\n", - "I0318 00:58:43.662922 2013098752 net.cpp:167] loss needs backward computation.\n", - "I0318 00:58:43.662930 2013098752 net.cpp:169] accuracy does not need backward computation.\n", - "I0318 00:58:43.662936 2013098752 net.cpp:167] ip2_ip2_0_split needs backward computation.\n", - "I0318 00:58:43.662942 2013098752 net.cpp:167] ip2 needs backward computation.\n", - "I0318 00:58:43.662976 2013098752 net.cpp:167] relu1 needs backward computation.\n", - "I0318 00:58:43.662988 2013098752 net.cpp:167] ip1 needs backward computation.\n", - "I0318 00:58:43.662997 2013098752 net.cpp:169] label_data_1_split does not need backward computation.\n", - "I0318 00:58:43.663003 2013098752 net.cpp:169] data does not need backward computation.\n", - "I0318 00:58:43.663009 2013098752 net.cpp:205] This network produces output accuracy\n", - "I0318 00:58:43.663017 2013098752 net.cpp:205] This network produces output loss\n", - "I0318 00:58:43.663028 2013098752 net.cpp:447] Collecting Learning Rate and Weight Decay.\n", - "I0318 00:58:43.663035 2013098752 net.cpp:217] Network initialization done.\n", - "I0318 00:58:43.663041 2013098752 net.cpp:218] Memory required for data: 3728\n", - "I0318 00:58:43.663158 2013098752 solver.cpp:154] Creating test net (#0) specified by test_net file: examples/hdf5_classification/nonlinear_auto_test.prototxt\n", - "I0318 00:58:43.663179 2013098752 net.cpp:42] Initializing net from parameters: \n", - "state {\n", - " phase: TEST\n", - "}\n", - "layer {\n", - " name: \"data\"\n", - " type: \"HDF5Data\"\n", - " top: \"data\"\n", - " top: \"label\"\n", - " hdf5_data_param {\n", - " source: \"examples/hdf5_classification/data/test.txt\"\n", - " batch_size: 10\n", - " }\n", - "}\n", - "layer {\n", - " name: \"ip1\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"data\"\n", - " top: \"ip1\"\n", - " inner_product_param {\n", - " num_output: 40\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"relu1\"\n", - " type: \"ReLU\"\n", - " bottom: \"ip1\"\n", - " top: \"ip1\"\n", - "}\n", - "layer {\n", - " name: \"ip2\"\n", - " type: \"InnerProduct\"\n", - " bottom: \"ip1\"\n", - " top: \"ip2\"\n", - " inner_product_param {\n", - " num_output: 2\n", - " weight_filler {\n", - " type: \"xavier\"\n", - " }\n", - " }\n", - "}\n", - "layer {\n", - " name: \"accuracy\"\n", - " type: \"Accuracy\"\n", - " bottom: \"ip2\"\n", - " bottom: \"label\"\n", - " top: \"accuracy\"\n", - "}\n", - "layer {\n", - " name: \"loss\"\n", - " type: \"SoftmaxWithLoss\"\n", - " bottom: \"ip2\"\n", - " bottom: \"label\"\n", - " top: \"loss\"\n", - "}\n", - "I0318 00:58:43.663349 2013098752 layer_factory.hpp:74] Creating layer data\n", - "I0318 00:58:43.663365 2013098752 net.cpp:84] Creating Layer data\n", - "I0318 00:58:43.663373 2013098752 net.cpp:338] data -> data\n", - "I0318 00:58:43.663385 2013098752 net.cpp:338] data -> label\n", - "I0318 00:58:43.663396 2013098752 net.cpp:113] Setting up data\n", - "I0318 00:58:43.663422 2013098752 hdf5_data_layer.cpp:66] Loading list of HDF5 filenames from: examples/hdf5_classification/data/test.txt\n", - "I0318 00:58:43.663457 2013098752 hdf5_data_layer.cpp:80] Number of HDF5 files: 1\n", - "I0318 00:58:43.664719 2013098752 net.cpp:120] Top shape: 10 4 (40)\n", - "I0318 00:58:43.664739 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.664754 2013098752 layer_factory.hpp:74] Creating layer label_data_1_split\n", - "I0318 00:58:43.664772 2013098752 net.cpp:84] Creating Layer label_data_1_split\n", - "I0318 00:58:43.664783 2013098752 net.cpp:380] label_data_1_split <- label\n", - "I0318 00:58:43.664791 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_0\n", - "I0318 00:58:43.664803 2013098752 net.cpp:338] label_data_1_split -> label_data_1_split_1\n", - "I0318 00:58:43.664813 2013098752 net.cpp:113] Setting up label_data_1_split\n", - "I0318 00:58:43.664822 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.664829 2013098752 net.cpp:120] Top shape: 10 (10)\n", - "I0318 00:58:43.664837 2013098752 layer_factory.hpp:74] Creating layer ip1\n", - "I0318 00:58:43.664846 2013098752 net.cpp:84] Creating Layer ip1\n", - "I0318 00:58:43.664854 2013098752 net.cpp:380] ip1 <- data\n", - "I0318 00:58:43.664862 2013098752 net.cpp:338] ip1 -> ip1\n", - "I0318 00:58:43.664875 2013098752 net.cpp:113] Setting up ip1\n", - "I0318 00:58:43.664901 2013098752 net.cpp:120] Top shape: 10 40 (400)\n", - "I0318 00:58:43.664924 2013098752 layer_factory.hpp:74] Creating layer relu1\n", - "I0318 00:58:43.664945 2013098752 net.cpp:84] Creating Layer relu1\n", - "I0318 00:58:43.664958 2013098752 net.cpp:380] relu1 <- ip1\n", - "I0318 00:58:43.664966 2013098752 net.cpp:327] relu1 -> ip1 (in-place)\n", - "I0318 00:58:43.664975 2013098752 net.cpp:113] Setting up relu1\n", - "I0318 00:58:43.664983 2013098752 net.cpp:120] Top shape: 10 40 (400)\n", - "I0318 00:58:43.664990 2013098752 layer_factory.hpp:74] Creating layer ip2\n", - "I0318 00:58:43.665000 2013098752 net.cpp:84] Creating Layer ip2\n", - "I0318 00:58:43.665006 2013098752 net.cpp:380] ip2 <- ip1\n", - "I0318 00:58:43.665015 2013098752 net.cpp:338] ip2 -> ip2\n", - "I0318 00:58:43.665030 2013098752 net.cpp:113] Setting up ip2\n", - "I0318 00:58:43.665052 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.665066 2013098752 layer_factory.hpp:74] Creating layer ip2_ip2_0_split\n", - "I0318 00:58:43.665077 2013098752 net.cpp:84] Creating Layer ip2_ip2_0_split\n", - "I0318 00:58:43.665086 2013098752 net.cpp:380] ip2_ip2_0_split <- ip2\n", - "I0318 00:58:43.665093 2013098752 net.cpp:338] ip2_ip2_0_split -> ip2_ip2_0_split_0\n", - "I0318 00:58:43.665103 2013098752 net.cpp:338] ip2_ip2_0_split -> ip2_ip2_0_split_1\n", - "I0318 00:58:43.665113 2013098752 net.cpp:113] Setting up ip2_ip2_0_split\n", - "I0318 00:58:43.665122 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.665128 2013098752 net.cpp:120] Top shape: 10 2 (20)\n", - "I0318 00:58:43.665137 2013098752 layer_factory.hpp:74] Creating layer accuracy\n", - "I0318 00:58:43.665144 2013098752 net.cpp:84] Creating Layer accuracy\n", - "I0318 00:58:43.665153 2013098752 net.cpp:380] accuracy <- ip2_ip2_0_split_0\n", - "I0318 00:58:43.665168 2013098752 net.cpp:380] accuracy <- label_data_1_split_0\n", - "I0318 00:58:43.665180 2013098752 net.cpp:338] accuracy -> accuracy\n", - "I0318 00:58:43.665192 2013098752 net.cpp:113] Setting up accuracy\n", - "I0318 00:58:43.665200 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:43.665207 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:43.665216 2013098752 net.cpp:84] Creating Layer loss\n", - "I0318 00:58:43.665223 2013098752 net.cpp:380] loss <- ip2_ip2_0_split_1\n", - "I0318 00:58:43.665230 2013098752 net.cpp:380] loss <- label_data_1_split_1\n", - "I0318 00:58:43.665241 2013098752 net.cpp:338] loss -> loss\n", - "I0318 00:58:43.665251 2013098752 net.cpp:113] Setting up loss\n", - "I0318 00:58:43.665259 2013098752 layer_factory.hpp:74] Creating layer loss\n", - "I0318 00:58:43.665273 2013098752 net.cpp:120] Top shape: (1)\n", - "I0318 00:58:43.665282 2013098752 net.cpp:122] with loss weight 1\n", - "I0318 00:58:43.665290 2013098752 net.cpp:167] loss needs backward computation.\n", - "I0318 00:58:43.665338 2013098752 net.cpp:169] accuracy does not need backward computation.\n", - "I0318 00:58:43.665351 2013098752 net.cpp:167] ip2_ip2_0_split needs backward computation.\n", - "I0318 00:58:43.665380 2013098752 net.cpp:167] ip2 needs backward computation.\n", - "I0318 00:58:43.665387 2013098752 net.cpp:167] relu1 needs backward computation.\n", - "I0318 00:58:43.665393 2013098752 net.cpp:167] ip1 needs backward computation.\n", - "I0318 00:58:43.665400 2013098752 net.cpp:169] label_data_1_split does not need backward computation.\n", - "I0318 00:58:43.665407 2013098752 net.cpp:169] data does not need backward computation.\n", - "I0318 00:58:43.665415 2013098752 net.cpp:205] This network produces output accuracy\n", - "I0318 00:58:43.665421 2013098752 net.cpp:205] This network produces output loss\n", - "I0318 00:58:43.665431 2013098752 net.cpp:447] Collecting Learning Rate and Weight Decay.\n", - "I0318 00:58:43.665441 2013098752 net.cpp:217] Network initialization done.\n", - "I0318 00:58:43.665446 2013098752 net.cpp:218] Memory required for data: 3728\n", - "I0318 00:58:43.665534 2013098752 solver.cpp:42] Solver scaffolding done.\n", - "I0318 00:58:43.665568 2013098752 solver.cpp:222] Solving \n", - "I0318 00:58:43.665577 2013098752 solver.cpp:223] Learning Rate Policy: step\n", - "I0318 00:58:43.665586 2013098752 solver.cpp:266] Iteration 0, Testing net (#0)\n", - "I0318 00:58:43.683938 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.5184\n", - "I0318 00:58:43.683981 2013098752 solver.cpp:315] Test net output #1: loss = 0.716141 (* 1 = 0.716141 loss)\n", - "I0318 00:58:43.684236 2013098752 solver.cpp:189] Iteration 0, loss = 0.764954\n", - "I0318 00:58:43.684267 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.5\n", - "I0318 00:58:43.684285 2013098752 solver.cpp:204] Train net output #1: loss = 0.764954 (* 1 = 0.764954 loss)\n", - "I0318 00:58:43.684305 2013098752 solver.cpp:464] Iteration 0, lr = 0.01\n", - "I0318 00:58:43.714700 2013098752 solver.cpp:266] Iteration 1000, Testing net (#0)\n", - "I0318 00:58:43.721762 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8168\n", - "I0318 00:58:43.721818 2013098752 solver.cpp:315] Test net output #1: loss = 0.434918 (* 1 = 0.434918 loss)\n", - "I0318 00:58:43.721899 2013098752 solver.cpp:189] Iteration 1000, loss = 0.282425\n", - "I0318 00:58:43.721917 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:43.721932 2013098752 solver.cpp:204] Train net output #1: loss = 0.282426 (* 1 = 0.282426 loss)\n", - "I0318 00:58:43.721942 2013098752 solver.cpp:464] Iteration 1000, lr = 0.01\n", - "I0318 00:58:43.750509 2013098752 solver.cpp:266] Iteration 2000, Testing net (#0)\n", - "I0318 00:58:43.754590 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8224\n", - "I0318 00:58:43.754621 2013098752 solver.cpp:315] Test net output #1: loss = 0.416874 (* 1 = 0.416874 loss)\n", - "I0318 00:58:43.754660 2013098752 solver.cpp:189] Iteration 2000, loss = 0.51988\n", - "I0318 00:58:43.754672 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:43.754683 2013098752 solver.cpp:204] Train net output #1: loss = 0.51988 (* 1 = 0.51988 loss)\n", - "I0318 00:58:43.754690 2013098752 solver.cpp:464] Iteration 2000, lr = 0.01\n", - "I0318 00:58:43.782609 2013098752 solver.cpp:266] Iteration 3000, Testing net (#0)\n", - "I0318 00:58:43.789728 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8176\n", - "I0318 00:58:43.789777 2013098752 solver.cpp:315] Test net output #1: loss = 0.415907 (* 1 = 0.415907 loss)\n", - "I0318 00:58:43.790487 2013098752 solver.cpp:189] Iteration 3000, loss = 0.5093\n", - "I0318 00:58:43.790510 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:43.790530 2013098752 solver.cpp:204] Train net output #1: loss = 0.509301 (* 1 = 0.509301 loss)\n", - "I0318 00:58:43.790544 2013098752 solver.cpp:464] Iteration 3000, lr = 0.01\n", - "I0318 00:58:43.817451 2013098752 solver.cpp:266] Iteration 4000, Testing net (#0)\n", - "I0318 00:58:43.821740 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8252\n", - "I0318 00:58:43.821770 2013098752 solver.cpp:315] Test net output #1: loss = 0.409124 (* 1 = 0.409124 loss)\n", - "I0318 00:58:43.821822 2013098752 solver.cpp:189] Iteration 4000, loss = 0.284815\n", - "I0318 00:58:43.821835 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:43.821846 2013098752 solver.cpp:204] Train net output #1: loss = 0.284815 (* 1 = 0.284815 loss)\n", - "I0318 00:58:43.821890 2013098752 solver.cpp:464] Iteration 4000, lr = 0.01\n", - "I0318 00:58:43.847015 2013098752 solver.cpp:266] Iteration 5000, Testing net (#0)\n", - "I0318 00:58:43.852102 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8256\n", - "I0318 00:58:43.852145 2013098752 solver.cpp:315] Test net output #1: loss = 0.404445 (* 1 = 0.404445 loss)\n", - "I0318 00:58:43.852188 2013098752 solver.cpp:189] Iteration 5000, loss = 0.511566\n", - "I0318 00:58:43.852200 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:43.852210 2013098752 solver.cpp:204] Train net output #1: loss = 0.511566 (* 1 = 0.511566 loss)\n", - "I0318 00:58:43.852219 2013098752 solver.cpp:464] Iteration 5000, lr = 0.001\n", - "I0318 00:58:43.876060 2013098752 solver.cpp:266] Iteration 6000, Testing net (#0)\n", - "I0318 00:58:43.880080 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8328\n", - "I0318 00:58:43.880105 2013098752 solver.cpp:315] Test net output #1: loss = 0.396847 (* 1 = 0.396847 loss)\n", - "I0318 00:58:43.880700 2013098752 solver.cpp:189] Iteration 6000, loss = 0.397858\n", - "I0318 00:58:43.880718 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:43.880729 2013098752 solver.cpp:204] Train net output #1: loss = 0.397858 (* 1 = 0.397858 loss)\n", - "I0318 00:58:43.880738 2013098752 solver.cpp:464] Iteration 6000, lr = 0.001\n", - "I0318 00:58:43.913795 2013098752 solver.cpp:266] Iteration 7000, Testing net (#0)\n", - "I0318 00:58:43.917851 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8316\n", - "I0318 00:58:43.917876 2013098752 solver.cpp:315] Test net output #1: loss = 0.398135 (* 1 = 0.398135 loss)\n", - "I0318 00:58:43.917956 2013098752 solver.cpp:189] Iteration 7000, loss = 0.243849\n", - "I0318 00:58:43.917971 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:43.917989 2013098752 solver.cpp:204] Train net output #1: loss = 0.243849 (* 1 = 0.243849 loss)\n", - "I0318 00:58:43.918002 2013098752 solver.cpp:464] Iteration 7000, lr = 0.001\n", - "I0318 00:58:43.943681 2013098752 solver.cpp:266] Iteration 8000, Testing net (#0)\n", - "I0318 00:58:43.947589 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8312\n", - "I0318 00:58:43.947615 2013098752 solver.cpp:315] Test net output #1: loss = 0.394763 (* 1 = 0.394763 loss)\n", - "I0318 00:58:43.947651 2013098752 solver.cpp:189] Iteration 8000, loss = 0.513399\n", - "I0318 00:58:43.947664 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.7\n", - "I0318 00:58:43.947674 2013098752 solver.cpp:204] Train net output #1: loss = 0.513399 (* 1 = 0.513399 loss)\n", - "I0318 00:58:43.947682 2013098752 solver.cpp:464] Iteration 8000, lr = 0.001\n", - "I0318 00:58:43.973080 2013098752 solver.cpp:266] Iteration 9000, Testing net (#0)\n", - "I0318 00:58:43.977033 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.834\n", - "I0318 00:58:43.977056 2013098752 solver.cpp:315] Test net output #1: loss = 0.395663 (* 1 = 0.395663 loss)\n", - "I0318 00:58:43.977710 2013098752 solver.cpp:189] Iteration 9000, loss = 0.399341\n", - "I0318 00:58:43.977735 2013098752 solver.cpp:204] Train net output #0: accuracy = 0.9\n", - "I0318 00:58:43.977746 2013098752 solver.cpp:204] Train net output #1: loss = 0.399342 (* 1 = 0.399342 loss)\n", - "I0318 00:58:43.977756 2013098752 solver.cpp:464] Iteration 9000, lr = 0.001\n", - "I0318 00:58:44.003437 2013098752 solver.cpp:334] Snapshotting to examples/hdf5_classification/data/train_iter_10000.caffemodel\n", - "I0318 00:58:44.003702 2013098752 solver.cpp:342] Snapshotting solver state to examples/hdf5_classification/data/train_iter_10000.solverstate\n", - "I0318 00:58:44.003850 2013098752 solver.cpp:248] Iteration 10000, loss = 0.244639\n", - "I0318 00:58:44.003871 2013098752 solver.cpp:266] Iteration 10000, Testing net (#0)\n", - "I0318 00:58:44.008216 2013098752 solver.cpp:315] Test net output #0: accuracy = 0.8308\n", - "I0318 00:58:44.008252 2013098752 solver.cpp:315] Test net output #1: loss = 0.397291 (* 1 = 0.397291 loss)\n", - "I0318 00:58:44.008262 2013098752 solver.cpp:253] Optimization Done.\n", - "I0318 00:58:44.008270 2013098752 caffe.cpp:134] Optimization Done.\n" - ] - } - ], - "source": [ - "!./build/tools/caffe train -solver examples/hdf5_classification/nonlinear_solver.prototxt" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Clean up (comment this out if you want to examine the hdf5_classification/data directory).\n", - "shutil.rmtree(dirname)" - ] - } - ], - "metadata": { - "description": "Use Caffe as a generic SGD optimizer to train logistic regression on non-image HDF5 data.", - "example_name": "Off-the-shelf SGD for classification", - "include_in_docs": true, - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - }, - "priority": 3 - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/examples/02-fine-tuning.ipynb b/examples/02-fine-tuning.ipynb new file mode 100644 index 000000000..422259de4 --- /dev/null +++ b/examples/02-fine-tuning.ipynb @@ -0,0 +1,1175 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fine-tuning a Pretrained Network for Style Recognition\n", + "\n", + "In this example, we'll explore a common approach that is particularly useful in real-world applications: take a pre-trained Caffe network and fine-tune the parameters on your custom data.\n", + "\n", + "The advantage of this approach is that, since pre-trained networks are learned on a large set of images, the intermediate layers capture the \"semantics\" of the general visual appearance. Think of it as a very powerful generic visual feature that you can treat as a black box. On top of that, only a relatively small amount of data is needed for good performance on the target task." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we will need to prepare the data. This involves the following parts:\n", + "(1) Get the ImageNet ilsvrc pretrained model with the provided shell scripts.\n", + "(2) Download a subset of the overall Flickr style dataset for this demo.\n", + "(3) Compile the downloaded Flickr dataset into a database that Caffe can then consume." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "caffe_root = '../' # this file should be run from {caffe_root}/examples (otherwise change this line)\n", + "\n", + "import sys\n", + "sys.path.insert(0, caffe_root + 'python')\n", + "import caffe\n", + "\n", + "caffe.set_device(0)\n", + "caffe.set_mode_gpu()\n", + "\n", + "import numpy as np\n", + "from pylab import *\n", + "%matplotlib inline\n", + "import tempfile\n", + "\n", + "# Helper function for deprocessing preprocessed images, e.g., for display.\n", + "def deprocess_net_image(image):\n", + " image = image.copy() # don't modify destructively\n", + " image = image[::-1] # BGR -> RGB\n", + " image = image.transpose(1, 2, 0) # CHW -> HWC\n", + " image += [123, 117, 104] # (approximately) undo mean subtraction\n", + "\n", + " # clamp values in [0, 255]\n", + " image[image < 0], image[image > 255] = 0, 255\n", + "\n", + " # round and cast from float32 to uint8\n", + " image = np.round(image)\n", + " image = np.require(image, dtype=np.uint8)\n", + "\n", + " return image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Setup and dataset download\n", + "\n", + "Download data required for this exercise.\n", + "\n", + "- `get_ilsvrc_aux.sh` to download the ImageNet data mean, labels, etc.\n", + "- `download_model_binary.py` to download the pretrained reference model\n", + "- `finetune_flickr_style/assemble_data.py` downloads the style training and testing data\n", + "\n", + "We'll download just a small subset of the full dataset for this exercise: just 2000 of the 80K images, from 5 of the 20 style categories. (To download the full dataset, set `full_dataset = True` in the cell below.)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading...\n", + "--2016-02-24 00:28:36-- http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz\n", + "Resolving dl.caffe.berkeleyvision.org (dl.caffe.berkeleyvision.org)... 169.229.222.251\n", + "Connecting to dl.caffe.berkeleyvision.org (dl.caffe.berkeleyvision.org)|169.229.222.251|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 17858008 (17M) [application/octet-stream]\n", + "Saving to: ‘caffe_ilsvrc12.tar.gz’\n", + "\n", + "100%[======================================>] 17,858,008 112MB/s in 0.2s \n", + "\n", + "2016-02-24 00:28:36 (112 MB/s) - ‘caffe_ilsvrc12.tar.gz’ saved [17858008/17858008]\n", + "\n", + "Unzipping...\n", + "Done.\n", + "Model already exists.\n", + "Downloading 2000 images with 7 workers...\n", + "Writing train/val for 1996 successfully downloaded images.\n" + ] + } + ], + "source": [ + "# Download just a small subset of the data for this exercise.\n", + "# (2000 of 80K images, 5 of 20 labels.)\n", + "# To download the entire dataset, set `full_dataset = True`.\n", + "full_dataset = False\n", + "if full_dataset:\n", + " NUM_STYLE_IMAGES = NUM_STYLE_LABELS = -1\n", + "else:\n", + " NUM_STYLE_IMAGES = 2000\n", + " NUM_STYLE_LABELS = 5\n", + "\n", + "# This downloads the ilsvrc auxiliary data (mean file, etc),\n", + "# and a subset of 2000 images for the style recognition task.\n", + "import os\n", + "os.chdir(caffe_root) # run scripts from caffe root\n", + "!data/ilsvrc12/get_ilsvrc_aux.sh\n", + "!scripts/download_model_binary.py models/bvlc_reference_caffenet\n", + "!python examples/finetune_flickr_style/assemble_data.py \\\n", + " --workers=-1 --seed=1701 \\\n", + " --images=$NUM_STYLE_IMAGES --label=$NUM_STYLE_LABELS\n", + "# back to examples\n", + "os.chdir('examples')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define `weights`, the path to the ImageNet pretrained weights we just downloaded, and make sure it exists." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import os\n", + "weights = os.path.join(caffe_root, 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')\n", + "assert os.path.exists(weights)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load the 1000 ImageNet labels from `ilsvrc12/synset_words.txt`, and the 5 style labels from `finetune_flickr_style/style_names.txt`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loaded ImageNet labels:\n", + "n01440764 tench, Tinca tinca\n", + "n01443537 goldfish, Carassius auratus\n", + "n01484850 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias\n", + "n01491361 tiger shark, Galeocerdo cuvieri\n", + "n01494475 hammerhead, hammerhead shark\n", + "n01496331 electric ray, crampfish, numbfish, torpedo\n", + "n01498041 stingray\n", + "n01514668 cock\n", + "n01514859 hen\n", + "n01518878 ostrich, Struthio camelus\n", + "...\n", + "\n", + "Loaded style labels:\n", + "Detailed, Pastel, Melancholy, Noir, HDR\n" + ] + } + ], + "source": [ + "# Load ImageNet labels to imagenet_labels\n", + "imagenet_label_file = caffe_root + 'data/ilsvrc12/synset_words.txt'\n", + "imagenet_labels = list(np.loadtxt(imagenet_label_file, str, delimiter='\\t'))\n", + "assert len(imagenet_labels) == 1000\n", + "print 'Loaded ImageNet labels:\\n', '\\n'.join(imagenet_labels[:10] + ['...'])\n", + "\n", + "# Load style labels to style_labels\n", + "style_label_file = caffe_root + 'examples/finetune_flickr_style/style_names.txt'\n", + "style_labels = list(np.loadtxt(style_label_file, str, delimiter='\\n'))\n", + "if NUM_STYLE_LABELS > 0:\n", + " style_labels = style_labels[:NUM_STYLE_LABELS]\n", + "print '\\nLoaded style labels:\\n', ', '.join(style_labels)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Defining and running the nets\n", + "\n", + "We'll start by defining `caffenet`, a function which initializes the *CaffeNet* architecture (a minor variant on *AlexNet*), taking arguments specifying the data and number of output classes." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [], + "source": [ + "from caffe import layers as L\n", + "from caffe import params as P\n", + "\n", + "weight_param = dict(lr_mult=1, decay_mult=1)\n", + "bias_param = dict(lr_mult=2, decay_mult=0)\n", + "learned_param = [weight_param, bias_param]\n", + "\n", + "frozen_param = [dict(lr_mult=0)] * 2\n", + "\n", + "def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1,\n", + " param=learned_param,\n", + " weight_filler=dict(type='gaussian', std=0.01),\n", + " bias_filler=dict(type='constant', value=0.1)):\n", + " conv = L.Convolution(bottom, kernel_size=ks, stride=stride,\n", + " num_output=nout, pad=pad, group=group,\n", + " param=param, weight_filler=weight_filler,\n", + " bias_filler=bias_filler)\n", + " return conv, L.ReLU(conv, in_place=True)\n", + "\n", + "def fc_relu(bottom, nout, param=learned_param,\n", + " weight_filler=dict(type='gaussian', std=0.005),\n", + " bias_filler=dict(type='constant', value=0.1)):\n", + " fc = L.InnerProduct(bottom, num_output=nout, param=param,\n", + " weight_filler=weight_filler,\n", + " bias_filler=bias_filler)\n", + " return fc, L.ReLU(fc, in_place=True)\n", + "\n", + "def max_pool(bottom, ks, stride=1):\n", + " return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride)\n", + "\n", + "def caffenet(data, label=None, train=True, num_classes=1000,\n", + " classifier_name='fc8', learn_all=False):\n", + " \"\"\"Returns a NetSpec specifying CaffeNet, following the original proto text\n", + " specification (./models/bvlc_reference_caffenet/train_val.prototxt).\"\"\"\n", + " n = caffe.NetSpec()\n", + " n.data = data\n", + " param = learned_param if learn_all else frozen_param\n", + " n.conv1, n.relu1 = conv_relu(n.data, 11, 96, stride=4, param=param)\n", + " n.pool1 = max_pool(n.relu1, 3, stride=2)\n", + " n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)\n", + " n.conv2, n.relu2 = conv_relu(n.norm1, 5, 256, pad=2, group=2, param=param)\n", + " n.pool2 = max_pool(n.relu2, 3, stride=2)\n", + " n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)\n", + " n.conv3, n.relu3 = conv_relu(n.norm2, 3, 384, pad=1, param=param)\n", + " n.conv4, n.relu4 = conv_relu(n.relu3, 3, 384, pad=1, group=2, param=param)\n", + " n.conv5, n.relu5 = conv_relu(n.relu4, 3, 256, pad=1, group=2, param=param)\n", + " n.pool5 = max_pool(n.relu5, 3, stride=2)\n", + " n.fc6, n.relu6 = fc_relu(n.pool5, 4096, param=param)\n", + " if train:\n", + " n.drop6 = fc7input = L.Dropout(n.relu6, in_place=True)\n", + " else:\n", + " fc7input = n.relu6\n", + " n.fc7, n.relu7 = fc_relu(fc7input, 4096, param=param)\n", + " if train:\n", + " n.drop7 = fc8input = L.Dropout(n.relu7, in_place=True)\n", + " else:\n", + " fc8input = n.relu7\n", + " # always learn fc8 (param=learned_param)\n", + " fc8 = L.InnerProduct(fc8input, num_output=num_classes, param=learned_param)\n", + " # give fc8 the name specified by argument `classifier_name`\n", + " n.__setattr__(classifier_name, fc8)\n", + " if not train:\n", + " n.probs = L.Softmax(fc8)\n", + " if label is not None:\n", + " n.label = label\n", + " n.loss = L.SoftmaxWithLoss(fc8, n.label)\n", + " n.acc = L.Accuracy(fc8, n.label)\n", + " # write the net to a temporary file and return its filename\n", + " with tempfile.NamedTemporaryFile(delete=False) as f:\n", + " f.write(str(n.to_proto()))\n", + " return f.name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let's create a *CaffeNet* that takes unlabeled \"dummy data\" as input, allowing us to set its input images externally and see what ImageNet classes it predicts." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "dummy_data = L.DummyData(shape=dict(dim=[1, 3, 227, 227]))\n", + "imagenet_net_filename = caffenet(data=dummy_data, train=False)\n", + "imagenet_net = caffe.Net(imagenet_net_filename, weights, caffe.TEST)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a function `style_net` which calls `caffenet` on data from the Flickr style dataset.\n", + "\n", + "The new network will also have the *CaffeNet* architecture, with differences in the input and output:\n", + "\n", + "- the input is the Flickr style data we downloaded, provided by an `ImageData` layer\n", + "- the output is a distribution over 20 classes rather than the original 1000 ImageNet classes\n", + "- the classification layer is renamed from `fc8` to `fc8_flickr` to tell Caffe not to load the original classifier (`fc8`) weights from the ImageNet-pretrained model" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def style_net(train=True, learn_all=False, subset=None):\n", + " if subset is None:\n", + " subset = 'train' if train else 'test'\n", + " source = caffe_root + 'data/flickr_style/%s.txt' % subset\n", + " transform_param = dict(mirror=train, crop_size=227,\n", + " mean_file=caffe_root + 'data/ilsvrc12/imagenet_mean.binaryproto')\n", + " style_data, style_label = L.ImageData(\n", + " transform_param=transform_param, source=source,\n", + " batch_size=50, new_height=256, new_width=256, ntop=2)\n", + " return caffenet(data=style_data, label=style_label, train=train,\n", + " num_classes=NUM_STYLE_LABELS,\n", + " classifier_name='fc8_flickr',\n", + " learn_all=learn_all)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Use the `style_net` function defined above to initialize `untrained_style_net`, a *CaffeNet* with input images from the style dataset and weights from the pretrained ImageNet model.\n", + "\n", + "\n", + "Call `forward` on `untrained_style_net` to get a batch of style training data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "untrained_style_net = caffe.Net(style_net(train=False, subset='train'),\n", + " weights, caffe.TEST)\n", + "untrained_style_net.forward()\n", + "style_data_batch = untrained_style_net.blobs['data'].data.copy()\n", + "style_label_batch = np.array(untrained_style_net.blobs['label'].data, dtype=np.int32)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pick one of the style net training images from the batch of 50 (we'll arbitrarily choose #8 here). Display it, then run it through `imagenet_net`, the ImageNet-pretrained network to view its top 5 predicted classes from the 1000 ImageNet classes.\n", + "\n", + "Below we chose an image where the network's predictions happen to be reasonable, as the image is of a beach, and \"sandbar\" and \"seashore\" both happen to be ImageNet-1000 categories. For other images, the predictions won't be this good, sometimes due to the network actually failing to recognize the object(s) present in the image, but perhaps even more often due to the fact that not all images contain an object from the (somewhat arbitrarily chosen) 1000 ImageNet categories. Modify the `batch_index` variable by changing its default setting of 8 to another value from 0-49 (since the batch size is 50) to see predictions for other images in the batch. (To go beyond this batch of 50 images, first rerun the *above* cell to load a fresh batch of data into `style_net`.)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def disp_preds(net, image, labels, k=5, name='ImageNet'):\n", + " input_blob = net.blobs['data']\n", + " net.blobs['data'].data[0, ...] = image\n", + " probs = net.forward(start='conv1')['probs'][0]\n", + " top_k = (-probs).argsort()[:k]\n", + " print 'top %d predicted %s labels =' % (k, name)\n", + " print '\\n'.join('\\t(%d) %5.2f%% %s' % (i+1, 100*probs[p], labels[p])\n", + " for i, p in enumerate(top_k))\n", + "\n", + "def disp_imagenet_preds(net, image):\n", + " disp_preds(net, image, imagenet_labels, name='ImageNet')\n", + "\n", + "def disp_style_preds(net, image):\n", + " disp_preds(net, image, style_labels, name='style')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "actual label = Melancholy\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAEACAYAAAC3RRNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvU2sLcuS3/WLyKy19j4f9+t19+tW08LQbmNhIZmJJ0iG\ngQcW4kOyEMiyxIQpc7eEGDCECWOEPGCA+JCQJ0g2bQaIKWZgZGRjEN3Cz253+71+r+895+y9V1VG\nMIjIrFy11zn34X5P5yKdvDp3r1WrKisrKyPiH58p7s6n9ql9ap+afuwBfGqf2qf23WifmMGn9ql9\nasAnZvCpfWqfWrZPzOBT+9Q+NeATM/jUPrVPLdsnZvCpfWqfGvBzYgYi8udF5O+KyP8pIn/553GP\nT+1T+9R+tk1+1nEGIlKA/wP4c8A/AP4X4C+6+9/5md7oU/vUPrWfaft5IIM/A/xf7v477r4C/zXw\nb/4c7vOpfWqf2s+w/TyYwa8Cf3/6/oM89ql9ap/ad7j9PJjBp/jmT+1T+/9hqz+HPv8B8GvT918j\n0MFoIvKJYXxqn9pHau4ut47/PJjB3wR+Q0T+GPAPgX8H+IvPzvrX/kMQIeyNIALuCSukj1VAdMIa\n+b3jGfc8JvEXmY5P59N/Fq6Ai083BuhzJNNcHQ2sItHX//7X4U/9+f33eQwy9WOW1wiogPnzPq/6\n70N0EN/76pOjMj2CAhbPKDfe761jyD4XKvC3/nv40/96fB7HNe6f8yMCJ1XORXEc3HhVCp+Xyp0I\nTQxzwQAXx3BWh9UMw7gvyr0XVoGCo1IwbzjGosqr88KXp8JZladmPLaGm3OqyrkKX96dWduFL+5O\nfHF3YjmBbPDmaeXv/fiR//W3/it+/c/+W3zx4kRV4Td+4TXiG18/rDxuDRHhxxfhDx8eaICKoAja\n51IFdacoqDhFNKYi31NRwQF3Q/O3S2tslq8z33uzhnl8MxyLi/J1SS4RR/FcwhLnIPzf//N/x6//\n2b8ADieJexaJ+RQB9VwYYiyiLEWpRVnyNboZLpbjzmUUrwrHabn2/8p/8O++d+n9zJmBu28i8u8D\n/wNQgL/yfk/CvlgdiYU2E9IVA5sI+9kx2YloZhCDQMfgrglkZg63mOWRZkefEwOQHIf358l/7nHe\n+xjLzIRutnx+0Xi7vXvIt5/HSr1+rsF8eh/TWDvzG89867bT/KtwV5SXKtyr8KIogiMIr2rh5SkY\n9doEERmL3hGawaMZFzfuilCBVyosRdlM2KwgFMA5F3h5Ul4ulYdL46VWtnXjrhaqOiKNF7VQVVl9\n414X7s4FkcYX94XPzoVfe33ii9d3sDZeFksGtrDZwo8fNlQ27k4Vd6FZEM1gBrn67rRQJJiwiqIo\n4k6thaUIjqEIRZSnbWVz2MxpwRFormwWxN+8M4O+ND1fSX5yxyzWqhBs/RRUPVaRqubSNtwd92Bk\nIp6z7MkUAA86iFfvgwlJX5tu7xEOe/t5IAPc/a8Bf+2DJ6UUcnekL1SOg52kYpdcEOxYlB0i2EGq\nHxiBQFJCIg2/JpLnD7D/nQmL3s88RBldXzMG9me6AiSy93m89VU/00GbmU+XEEcU1Mfbx+QxPYPp\n+LX0ZxqDTNfRV7CCCosqny+FF0U4K5xVuK/KixqLcG2Gm9LloajSDJrBC4PNC6KOqrNkfw+bc5/S\n7bJtnIuyFAEFLU4VeHFXeHmqnIryuG2oFKpCnOacT4WnVvjibuHVqfLHvvcakY3T/ZnPX5wxa0GA\norx9bKzrRinKgtBKoXkDnOKCirKIcF7iHjufdkSckwqnWpJBxPTclQUjmIGZh/R152KwNo/jiRIU\nQXMNmhsNwdyxZqzu4IFSahGEjoQdKUIVcNfxXkShqCZ6iXs3d2pRRBwVAr1IzFWRgUEQ/QjM4Kdt\nVzQCOzH0z4OAp3/uCWPnB9NrgvUJQcj84QbTuUmwB+K7NYe/9Mf3fsWTGU3MR473mO4zD24m6iMT\n6GMYY3n2UNd9XjHA/kDT3M2X9lN/+U88R1B9nsyhOKpQi7Dkgi1VWE5KIaRrEcXcUS2ICE9rww2Q\nQi2FZoYD5xIQW32jFqWq8A6hqmLN0BoMQkQ5VygKiwpeCgaUopQaDH2zRl0qS2382h//U9wvcLec\nUBFenJTL5qiE/NQCVgriFkSH0yRQSRVFBZaiOxLpb8AMFeFUCssilJS8Doh7qEbJjINUnW1zHrfG\nxWBzwyxQSvDlQjNhtbiWIizmNIdf/Gf+JEU85zPenUhAawBZhCKBjopKMqWGuyUgbqg7dSmpAjkV\nQcVxEVTKtyDRj8kMpCRq7cRACvppEY9zOyF3AtGJ+GxazHmtPu/imstMxHHzlIkzHO0Mvf3Sb+xS\ntY/l2T0P/d7izM9sEv1/sl9zJf0PfT57jv58c58zI5jnV+BX/rlrpndQo1Z3nqzxGo1F6rA157JZ\nEK47tYQEqiUW8osaRF8kmMi6Gav50HOLgKji7jSvlKJoiftVAbOGUli0oCKci/B0WfFSwEsiSaNI\n4ayVf/af/xd5cTpxrs5pOSG+UmsQhQCvzpXP9MKDx5GlFO5yXkvRYBIFTgXulyWheqCKHFbo8EVR\njWczC8nu2A6yRKBCa8LDunExwaQGEJVkTlZYN2PrzAQwd179yX9hqBTxmsI+E/g31DCRYAJCo6JI\nEeI/51xDxanSUQJgRp3sSX5rHU/toyID6MJeEuVPYmvWqY96/oDx/bdZIiYn6Ayh93elMkxtnp9Z\nas5w/+qiWxd8SxtE5s8ZhpBqz0E6v6/rMRe+z8WVneVWBzcY60z8M+q6Ygypt1JozbE0Zl0slQIX\nllyktQgnFc5aCKHn3NX47aEYFwt4f6ohoVZX1q2xaA5YFfdAGVrzr6SRD+Xl/YmlFtq2oi4sS2V7\nWoNobWOpUFVYBAylbc5yrlQxfu2LV4gV/t6P/xChogp3VThXTWYVZFLEKWKpTQmqoaP3aQv6sjGb\ntcTYGCZEQRZBFuX+bsFFsGZsmxHmUkccWgvm2Ca7wVAjLGwNgSoAURZNW41AFcGQoa6oQNHKolBK\nMC3cUFW0VLB4nmBiH16vH50ZdHX2StJ1wxmW0vRA7LMhbJZ6g1CmY7MaMPqfDXkfGNwtHjB7JwZa\n0W/pZ/rxFjooMzEfjIzHv51g+xwckcHV9/m5D+frjXk7jFOSUXlzvBRcFMNoBr46zRv3VQPySkjO\nWkJCLTUNYggiSt1C/y5F2RalXWwMwzDaBlsRVI2aiCCkoKHqnLVwqhVTxW0DKiKKsHFaCltzllJp\n0SuihmKcz4V36yNffnnmFy8LawuD7Ktz5cWiqBhrETYLI90yYPrMF2Xil/EOuq2rlmAGnnadPoWF\n8E6UotiiCeWdZkZr5DgFM0ubbyAmJxDDahbndmOnCEVDpVIBcRtjcJxTKRjxTooqeDCQUpQYolPr\nh8OKPhozuFIP4kD/MC36g+4/VIPJTNt/u0mMcnDF+W1i+1C7MiL2m83D0On3rjKwP8OR+AfauTGG\n3qfK9W+dYJ1klFzPF0wuS5nmoz+7TTe8wUCPc6/hvl1UOYmyiXNx455C0YJ442LOtgacflgV1UpV\n56RGVaWq4hILVsUpuhuKNcca+nthtYYDmxlVJCzm7riEzn5XK3dFURUsic/MWbeA9/fne9bmcNnw\nUwkCFcFVcFVEBd0u/FOv73nYNtZmnKpwqho2iepsVtgs3XjoBLh8TJWKoGnka63lswWBSu3TKeP8\nWjyNgoKbhdRHaVbo3gUzWLdQNWopqPpwCYLTWjIEIY2MoQJoriMzY20biqFaaAhtazTCmFik5XMI\n5buqJgwvAnLw6k1E1Bf0DF2tw4i+8HXu9DaBj9O7VB+Qgedc5Gidn+7tz0+5vm4irEGwRwTzAQZ0\nNG5CYL/ZXiplSIWckL3fcPRPcRj9c3nOOPvcPntOGcZDza+rNZ4MnraNshRKKbi0lHTO09YoAosW\nVg24fdnC8GgSUtSz2yJKKZViK61BEUkpGWvC6PwoDIwvzpUXS+GkwurhNTovZ95dNloykWaNy2Zc\nSvj6X94tIMK7hwsCvFjOVAp3arxoFRXl0hqtGeflxF1VpChbc57WlXUzmoXlXtLy4NjkdAlLf0xb\nMLVTLRQJID6mU4MZaBHEwtbQmtGGhue4QVuclobAkgZNCPeme0lUkUgAiFgFyWVV2Si4WSAWFGow\nNnAKwQzdnfpd9SbIUAfgeqXyXFJ1aWW+L/ARX3CQrPMXufV5PvlwUPy5SWBmALfm8oqwpvt0ZDDH\nG8z6/q12xTyyT/dAH0XRomEg8hNPttHcwcIqjgLFoU1MU6c+xXe09Wye9HrcAAYrAdlf1AUXZ3Vn\ntbAFnEtFcBbtUDXciZuBVcVEcDdwpbVdz15peLrS1MNXXrwgeNoHHBNDtCACSxXuz5VTEexpRRG2\nlO6IBkq5bJg7LoVGEPW6bZQi6MV4dae4Ks0bS60sqiy1sK4ryyLc1ZjbVYwiC5diPDytgSgE3IKh\nFe3zFO9TMgCpqKR9I9CD5flkbIB4ogfS1dcZgQfBQ9gPmoe6MeIEhm3aEXQsQfOwPUhwibSnlzQQ\nKmaGlmQc7ogGO+ueife1j28zyGUSC2pGBYd/A14fqPKWpJ3ViVlSQwrSAyMY/U9WR7GDLWPq/4rJ\nTER+i8a7zaNz5fcFHsk0wI5guj1lC5/4fT3zvdPCpT1hcs/vt0fYJuJ3231RMwPq8yHT3PQwjb7i\nxKcbxniaw8MWlusXi9BUeWeOb42XZWGpyknDcCcFLK9ZB9xOK7j250njGAGZg4eFyxKC2ARDJm+O\nilI0pKOqcqoLb58ecTca4Kqox2MXUTyRijqcloVtW3m8yHjEqlA0CGPR8GSIxHiahS++pLFTgKoF\nKSCEHcPdMbOA+QJCRArihptjkmvZg+C3zXFrSK3h4XBJNBEG0ggGUswiUIlkkJ2Z9AhHd8OsgcAi\nJRiqCC6BcKw5hqQbN4OS+vIk1BmsY7Db7aMyg4GKB310Ap6kvk5BQj4zCOL7M+I6SGdhIlaZ3Jdy\nrVZ0eDw+l2AIV2rDTDQHRtC7nT/Pv93y8R7Vmmdqju8BVpvx9u07Hi+V779euHcQE6jgzaGWQAVG\nRiEeVYNDvz6hCOmLpOw2j2TKzRtvmoMUPgPuCjwBykZBMQejYC5szdi0sA6I6kHc0l1jEb2ooqg4\n0sNnc+H2UOCCXMFl3NlCiaaKc78sXNYg1kvbgqmoUNJdaQ6n5RR2iVK4rI1aCrUWigqiYeVXjUAd\nUcVzCiKuQFgz+qgkE+/iI+wGZdgTwpovlNJt9R3KyzAqFrlGGOApe3Rcpxp2gEAL+x1bS4SAgFbM\nLZCBWB736L9IeCAGTQi9Vol2Jv8taYkfjxnMRIuElbbPykyYg4imwKIBfW+ggmcLf2IER5w/61AD\nBcxI4nqMA273k7sifAs13BjauA9cI57OBHR6WzNicMsXabSt8btvNl4tZ0oRqigNWN3RWvDN8O5x\nmQOZ5oXgvd95Dv3wrB6SRGEz4SdbYxXnywi9YdGx5mhuiIWkW83RFmP3nkZilmBEBqQuGi6yHv/v\nKbVVYvF2Yx0Ia2s0a6hqSj2h1oJshiCwaOrQ6X7TQmsNced8WsIE0hrLqSLseRTiHoY914HG0pPJ\nqRYs15i1Nt65dGu+eML+UHnivy7gkrkVyfDl2RvhmAXUxw1vks+8nxNPnb1pGAmhyzLF0nbSMvS5\no5SCICVzGpyhcoyl9V1lBuE97ASaKkLXX/tiHUzhFvH3xXyE2ewEOum/zwx4R2KVw8FdYbt1IleM\nYr53DxIaaMSfXfasTTB6MLqutfT+RdJ42uCp8E1rSHWWRXmlC39oF16KcFmUpzQm0fqzZmCMRBir\n4iEhCfcbSCQWNce6cXU8e86zwbsWS0+AkyirRALTIkFcW/Yhshs1a6KCZpagzCgoSykUDau8JdO6\nBnKewKixtfTvyy75MWMpIaW9k45BKSW8DuGkH9K4WaNSMHdaayDOUguCJiRvg1GZQK2Fy9Z2az5O\nkRK2g3zNKpJQn0wU6q9PBoooyGAeXXWTXCMh2bsJ2HJu+9OAJNPsiMeBZo6mQVgkUEJ4GySYLj76\nN3b3rQ770fvbR4xA1AGZduKHIX07I5gZQ1+o7xW7TL9N5xwh8ofEtk+/3+IDA6n49biufps+H1/A\nURXoatCV7UFBu6S2nTA1JJhj4A3flAd/5GHJQBmFc6k8besIzJS8Ts2opfD5svBCjdcl8g3uUvr+\n6LLx/7zb+Nojzj7mfnJjuOOb8M7ClqKZu6BpH0AlLdpxPxGQBlrSBKQhyYJ3B0NZtLCocFk3SGNc\nh95hc9hfSa0B85tbREmXmPOqirfQqbUqpcS6kgx9DhUimMRYPpn7VTTUFTMHCct/M6etxtqcdQtG\n5ZbBPMlxPO1bkoOM5TrlD0xrOWweQbh0fp6qX0/t6mtJc4CZoTCWS7dRtPTeDCY9ltnEPGRXD6qG\ncVm8o4fvKDPoRpZhOJyJfRAXXFHk0UK+Y+74MzOVwViAnvxxS9AznUvvm2umcGUZ7H36fnz++Qre\nzz9Mfc+/X9ktcpydGsYz63RtX805PFN4MrwGIli0QMbda4VzSuZ7wkv5RVFeFuVFUV4uwl0NS/7L\nJcb0248bF5dceHb93N5wE9415ffYeGfCZsrrJRKQFhFKgVWctTn3NSTxqcgYeTMHdSR141NVTukB\nCFDtaNERBdgtosFvnMg6bKgomxvqursnJcKE17ax1Bo+eQTJ2AdBsJTatYS+rhIqj0lnEIE8zCPc\n2h2kBCGFxyDtHfNSyvXQ0cIeauKghhS5AnkDTQihqnTPQ/YYid/7Omwez22DGexqxr4m9rXWVRgd\nRmu63sCH2sdNVHrGCLj+3NWGK2Gvx07mLzvOvH5TN/qGwXieteNxufrpmkccrp+ZyZH4xxjfgzyQ\nVFonJpJoYBdr03P2zxYW6ydzLpZRmx658k3TWl8KFzfeWEOkIgpLi2Sg+6VQSuVXWEGctxs8VnjT\nnMsGT0a4Cbs0MniSQBAqygrcE3aNpQivEDZ1jJY8VcNTIB2yChhhAVdYloWimXTjMgimMw9fNOB/\noknN+gLqabXHwoC2xf2aOWqWhrVdYooArScDddUjkQweCVNunE/KosDIxvQB02MJ7cJoXm7dvThK\nD5BRiIOxkf3k+HNMkWwUiMDdsbbfd2iIRDhzlLA4Ej8DZXS5pn2NeF9y75OEe/u4rsXkkCMXXroh\np1Nch6m+P+WRwGYJPNgvxw8TAc9E+r7JuUHgCW93VHBkLFwjgZuMoD9jf0t+3TfTX+lGgwkp3Rqv\nwyhGQlrFW+rLhOX/qcCbGoEyb9V5w8ZXUnky57VAWaAi/MJ95YuT8mSeQUZnfvS08YPHC99slc0E\nUU/joXNpzu/bxqNVPq+FBae2UGHkpKg7SurnRTiVeJQiCiWk2+ZGcai1p+/GM2rOZzNja4KV9EgU\nOGuhWUNaGCE9JZ7Q0zyOiE4HwSxLCTsCBh6+eevfa0ROLiLosoQdgJDIW7PBPHS8j/QKSCIHdmYh\nlhJad6InIb95ELZZGCB7Wn0I8CR6d9y7JybvkcJHUo2WxCcilmEkqbJN6vcOluXbTAYf0YA4/tdh\nlU5CXxhhvtMLvQmz5+9XEhNGTMJNCT5fx3NIf2zCzvLfxwhuookZKczD6F+UcGHKzgCOzOyqW7mB\nTmZ1ZZ6DZBLmsEbdgUsJqHlZnyhV+WU5cV+galQEen1euHPhYTWW4rxalC/OhR88bvzo0sDgq1PA\n/x+ulp4M4w82417hRVHUoGyhw1cXijlCiySbnKNuO3Y3rEWZk1pSYmZ+QFclmjmXrGmgJVSSWgRl\n47I53jvLSkwOGT8gSRfhMaiaiU8C7prFTZzNW6CN1K3DFeh42S32PWEqCvB0u0AnyAzbkP1dSLqw\nI/Yg0EgQtoK0fC2Z47AvIiDQmtmu43taGru091xPNog+/omEqSkS/3wsu85Yv7M2g2hThZxhoJlX\nOhOkPhAB3D6fw9cjjd+S2LeMfbeOvU869/MGg5r7yeOTNXn/vSOfboXq8RWzbpdo6Urf84nwfb9v\nZ55jCJ1J5P2agQUBP6hQXfgDMQobX9WIF1jd+fpyoVlItKUIL0/Kr9eF71+Uh814kbUIXq0Nc+GN\nGV+3RnN425w17djNuiOnUFXC2wAUN06q4WlA0rPhae8IZboUGeXGcOfSIqFnqQU9ObU4S61ctg0z\nj7h+AfdGR9PuMaf9cwTvpM6e9xaJqbUWST6eRLu5D2nbaY6cZqM7jfb30LV8kS6hu9xOwG/d5uH7\nM6eK09Fxd6mKCq21dKkK7vt13WDoliHMiSA6gp7Vud5KMt1v0RI+JjOYiPw5xU7HZSeS0XyStBNx\njbcx9TvqDfj1eVe3uzFLx2O3hnnr3CubwWTo6x9mid4h4qwyIEwWqKnv43jk+tjMcDqK6gxEuLZF\nGICyPa38gW08tMLbWrhfDZWNd22jSuVOCy+KcxY4FeGzU+GLc8T2n8T58hy67T9+WvnRE4grb8x4\n0zZwxQv4uo/SKFGpR5yq4QlYsgZCFTIRp+ySMNLzglgdLtbYLjIepVZlqUpbd325qO62gE5EmQ4d\nLsaYXi0dhiqlBLFounjXzEsIJhB1C/q7i1W0z7t5RiT2tGHZ6yX2YKNgKpHG3McocTE92SlqHkYE\nJkLkFzTHWsN62bNkBm79e1+QHUEQ6dh9vSVaMAnE823g9yO6FmNaA3Z1P3tHBxMBdP1swOGZqN5D\nKOPUvFB9IrD5nAO0Pxrpbs7eRNBH7nDlGZjGPgh0GsDs9+3oYYxZr8f6TAWZfhwMpM/NPIZjlEky\nmp5xQ4HmPJjzg9UQtYSxAtI4i/GiCK9VeZllz5ailNL48lT4/HzipM5ni/LL987XF+PrdeNHTfAW\ncPVt84gVcI86CFKoIiwtEmcSzCJahm5esk7AujV61GLwTaE142ED8TAO1kzrbSOiMCS7ecD9JTMY\n99J6TnPBveFlRwdRm7DPkuNN2CySsXpZsy7tI1Eo6wMMT0AaO6WHKe/xApGW3GG7g0cWoqXB1LuN\nYAi3DKwqQoZE4CKsPcmJzONIg6onswGhlBreELORyLp2wflhZ8JHdi32z+yo95m0u/IeyI3PN45d\n0Y1MPOSGZO7nPJP8Pn4afeBT3zfUk1vBQ88MgNfcfHy8MirOz3+4zTzuwXD6tZ0p+H7uVf+9r85s\npnFaSGCXFr+r8KDGY3O+VuVeNQ2HkX9wV1Z+8a7wq/cLv3SufO8snOrGy1X5VS+83VbemPN2s4Tp\nEa78tGb5NHFKyySnzLqpGclnrmxtG5K5VsnU5kiLXreNdxbI464opyo8rmF4i3qDGXSkPdLQ8HS3\ndqndXXWqncgzQUp65qEPguIgVT3LvI3X3l2heW7PBegqQvPMgsz3f2n5e76TTguWXoK576UW3DVD\nkDXyE0YNp452LMPH4rrWjZT9n0VYuPtROFy3j2hATGnZ25CSXC/cQbATUc3++ZmBHInolt5/89wD\nkT4Twu9hQjeFtVydMq6XmVHwvP00nog48foZxr/ppj6dOu5/GKhPxzsn7rw3de5eyFMc3mwttOLk\nNX/ozk+ejB8+GF+dV37hvvDFErD/s6XwBfDY4MdPjYe1R/dBlB0wahbvdISmsNkWiKGEpIcgIEPA\nem2fCD92j0hHf1o5vbjL5CNlSwYg4ogFQ9g2qKfwOPTQ5y11hZLSNfIUwlNRIO/ro4x5GCIjEYlE\nHeM1etaI1HCf9lLyvUJS3DfmLUsURECnW6oGgUxGBSVh7180Q52jz0UjoWnYDZxRmdmA1bqxNeau\neUffgO3BSO9rH1FN2BftdUV0uV7gw0jD80V9Cxz0dpMRTH0eDYNXgv5wjU/Hv8Uiuzfd1Z7j/a86\n/Zb+js9xZBQzQ5iPH3jtlQG2n2vXcy0SsPskUSL9LMKSGX7fbMab5pkkmcYshB9vja9t4/cvwq/e\nLfzyqaC6cq/Ky1oRVf5QQ++uWXXHHC4NJL0oW0ZLFpxqwkmN+6WC9uq/MsqFVY1CKlvbcIOHzXi5\nVEo1fIu1IkXQElLUk+F0u6ojNJeIcfAIPW7JDNwZdR2bWzINzSDRtEukHOpxYF3C7yXMoQePOVGC\nzdnTiHd3YYYea69LEy9nyLpkANbHnedEmngwi82M1ozNgsE9bY3NnC1rTlqu81jy9kyrPbaP603o\ns8pxocu+0DsrHQYyuWYSz4jA388I5vOO4/ggkc8S9PlPz/vtIpaJ+D7Qv8C1kXO62UBKhwEMRnCj\n32E8PXDOdEycstLxusFT1tNXIhbgs6J8WZRXtXCfxr6iyqXBT9aNt81Gv6tn8lGyhjdPxu8ZfN2M\nu6J8eYbXJ+X1UtmKRUmKXMwCLApNo6y4qKRLLSz5TSMCEJy1peoiAYGLRBGUbTP+8N0Fu4O7k6a9\nNtZAJ4RmztNqGY0YM7hZZ2awbc5qIC2qCpFVmc2hmUbcv8moO1AS/vcQZclKSia+L0cLQrU0+g0X\nIH18nVcLPchzbHLk4GYj6hD33KzFseasFrkaDqytRaZoc1azOO5xboRt2zAlheryHVUTuq7bX8qY\nyTGj05cP6fbvo7FbULszl+OFH2QOk3SfkcM4JhPzeTaI6Z4HsdwJdmQ+Tn/nzgbB98VyGNu4qV8f\nO45VQ0LcF+XLRXmtlW/U+OH2RFHlpMo9zue18NWpctYoVYYIJ1VenIRXZ2FrAUefmvFkzpY1EbcW\n+vk3zfjGwKTxj9bG98/KXQbyvFZlOSkPlw1EKLUgQCMknrqz5Xy+bSsnUV6UKGNmvfKQOJhRSmQV\nPl5W1uZ8ZpVliTLoJYOwPKHy1hqLVehGvdTR1xa2gzXLikHh0hyxuNZcaImeel2T7lbU3GjFgZb7\nJIR6kgyvWRaeslHktBsWu5SPtyO7V50om761xppEbkZWUrZEA5FpieW8deI3n+TgqGiA5zyEbPiu\nhiN718UOtoDZkObTQu/H+/PMRrOZIMdv48utm7//t6NHYG6DBrtn4KC/X/V9lPIGUvfjPo3928Zw\nxXDketjUbFK8AAAgAElEQVRy+HBEV+Nj5Ol/sRS+LMLnVXhZCueygMNSKsWNlzVQwWYrT1ss+Cdp\nA65CSNsLzirwZELDuYiz0iWqc3Fnuxi/+yB8sSivCnzvrvKL9wuUQjPnMeMQ3DUWdmY8qjgNeOcb\njxVenCoVsiCo00zQZtQars13F6PZyt2pcNLGeakpYZNYAKwXVIkioc2CwCQhvWgwh9bA1TPUYzJy\nt+4C1FHjIDZKaRl70OMJbEB5c6dhuMU66Lp/SG/S4CeZBZnne7gH10QHHTkMdSG5SkRRSjCJgTZy\nD4XugclcD0/akplGbrSPW9zkCPOvf40f90DvGzR8lOjcRgTPmr7/9/cygk6EB2LsjOpqTM/0l8NN\n3qOWyDUBX6GB+diMSo7tlrs0mcFZY6u0V1V5tQhfqPJVE55y9yFHs1iHRbSfRsLR4+Y8WsDVloa1\nhvDOnbdpcTeCgFsvsJHtCXhjhrpzfnRevdl4WQsKvKjC907K61pYcgF7y3qJqTpc1sa7deNUlFMp\nVI3sS3WjmLHUgkmUY7OnxlrgabPJ3x9MZG1BNO5QkyDdI3lLRFDPvSFTsnby3UONe9p3dy8mxE9r\n/qVFh5Lz03c6WlOdHQFOGfvRLf0B2rpx1TCTHhs2UhDiz54fQSKLjjd7bsO+/GR4Fvp4VRlVn9/X\nPiIy6B+OGLwTRLyIIV1n9UFhEPTcz4eeVeZ+bxD6s/MPH2a4PqOS/rae3fzIDCZm8v5BXo+nxyMd\nx3jFMH6KlkOuAoJRtKaf2vjiHCXI19Z4MuFha1ya8eRBxI+tG62iXkEjJPnFnG/cuLiHIXKMR/e5\nzqi3LX3gl+Z80wy5hBGtKnz2CJ9X5ctaeFn7fgACGEspEcvocBKnSuOuCkuJTMgCLC0TpDQyIN2c\nrZExE2mpT7htAu4t9yEIxmCS1Zvp+C3TiDxwgUjcRzQ2UOmFSH1KFrK04nfo3zMOVzMu1iMYM39A\nuu6eTBrJ0GPCoDkMhH2vxixswqRaTIBTRZCSuQ2dScy1PGUPlf7u1kA8WvNvWck7Afnxt2k2mM67\n6n/qcyYeP5x0i6BmwofpnElSD8KemctPYY+4GkhHPe+h6qE+HcYwI4MjangGBfeLG/Dgztdb44Ky\n2caXZ+W1KheDt5vx9aXxZoO3m/NNqgNKEKkmAtgwNu9+8em5n9k2GAxhZw6xB7HjXBx+uDk/Xhs/\nVMv6ChHTcBLn3BpP1iBRjZpxvxROBc41d04Wx31DgVd3C/dVqQhFIwuxG0DdPCMA429n4mWz8KCU\nqG6s3isDCViX3HSQT/OeMLTD8mAGktO/77PYLJkQ7Nd49FNkro0ke6X7qWebxnm9srLisgd66vWb\nI6CpC9EeyxBMLd7hd1VNEOdqT0Sc2/A9FbpBNBPhPZO0NzhCX4gzI3i298BEbUfCnz8faX7cQ66P\nX52nxwsOz3FEKfPpnfCP0P/50J6hCmB3y4a//m2DFeHNZixibG78/cdHThlEs7pxafDOsjjn6Nb3\nv/19jDmcBr1TCfsK7nv8zc/bpWp0YBL3vAAnc87SuFPnXjXKuQlsGluRt9XR1jgNv7nF9mgi/GS7\ncFeV+6JUhfuqnESoxcfW5FX375GyHNvFmRtnzcpMKlQtQ4VorYUdpIXtpOTmspdUDzaLGIQefhy6\nfzxfGBujGEwASt/NXh1Rdqmex6Qziv45mUxfapKqjyZzG9mSxPld7ejHe6zIXOXvVvvo1ZGftWdS\nUp797P3DBx8uf59nYGYeMyO4iQKma0Y68Xz+jZMHAjkgFj/c7+Zw52snZuU70dwc3/vGcGiei35r\nzrsEst7HMw9JDgy6j73/nXeU6urSFRrxw5D8eg5EqCnA+ncFKiGRt25E8yA2Ic43d6rGDs3mUDM2\nAHqhlAg9ftOcRRsngZcL3GvUGOjTehJF1WJvSGmBHgiX3VNRFlFKE87VYvs1ERqFh23jsYVxUCSk\n/7u18biFYiFpUzhJr1ockxDBW+GZ6cmVY/X0peTBSMd3ckt47cSdv8NQXfpmM4ojPteK2AuwSs59\nREPad1hN6K0T4rM9FPzwOX6bheZ1PIEcFjV7JiSH48cKyp3lPnMRTpIZ2VfUuP6G1H/2fNPv7pkn\ncXWTK1rfJfGMhubfjv3nuOfxz7+Ne18P1Y9oaTZevq+P+fss7ft727FwjF88Kx0LGxHPX4jApiae\nKSPJDFKiIpG0VAjGEIQURV/xQCxPwEmE4j17MAju0Y3iERF4Ap6acFfCntBLiRUiBPlUnErselQU\nWB1jQyXCru9K7OZ8kpC/j1sUj2kp1leLTMrNuuTPSsZpv+gro6OAYp41IPt78jF1EQOw6/ax/0Ju\nqFKEIj3pKf5VjT0Xa9mlvghZXk2mvrpBNIKc9Lg+Du0jZy1OEhAO0v6wkGfCfsYIjpfcWNhj8cvz\nY8frdbpRRwVHpNsHNtX4f/Z8Iox9EGZ0cKUmcD0Hc/+3hfz1+P9Jfuvt2Zjy4GDKBwZ9RFPjMTqD\nyLkYm3xGOO2JcJ3hkvsbhE9+xyDBMEKKwikluWbx1iXvMaoQe8hio5f/ykAl90yCCq/H5sZDc+5K\njxLM/RJMWD32fFAsKsV75CIsVbjLiEMHLmrJhKK0WrhOYxdlkKyr4FkKLVOTBfakpkQvOUehDnSv\ngOdvISO6kc/zvWiGbMechVtzKcpJQ90pmpmeyl5RKd9RzePNeqm0YL4fah8vUQm5ostoR6W7f52I\nWw7Hx8EjYzlez/Uin895Zmg8MIzR/zSbPTX6aqgHKp5Lkc9/jy/lfUzwFlOD5wjgaqzcvqZD+uOz\n31Ik+yPPtpVx6cyE/fBbdqmSC8+HtDsBjaiMLALVdQJvPhBDkb4PraSKkDozznBcCGBOI/zsIRvS\nndbPl4j8u7jRpARTySpN4pJVmKKga5Go9FRqiVqOJbahiKSpGEt6EYnsRQ0GlQQfy3PKauzTMeSE\njPEP92BeWCSjOKVL8x3ad4KeEcHYJbovMU/UI539pqqgfT4F028PRYaPXenoICBvjvgoNcfxI8P4\nwOf+Zg6L9vZ9bkjsm4OdXnusxmsCOl7/zMbRaw2U22M6wvEhlG+oBO+D+Fe/z2P2fWw3+7rR54HP\nxanxpVfVEYGCUiX08F6so4phAneuLGiE7uY1HTovkGXV93H0YRnhrmsZH9A0Ep4iBFgGIaoHiugS\ntaOLziCqKHU8WrzPXpNxN/T1GRI2ZBSp3jKAaRdg4cno1YdmRhBzcs10fXI9ggxoL0jaQuRqifTs\nyyhfeYhSzOv7kTUDkcYuUD2Qqu3KSKhHH1gjfFRvQv8j1yzg23Tkq3Mm6fQ+hjGIaibGg3ScCeDq\n3H7eAbFc3X/uU6a+8vDQn+XqtJv1FYa0hdSN9r6Pj/fseT8wb/N45ufqIma2J8jhnPc2v7qm6+QA\nknD9nOMsaf+4LxF+3DMChSiD1vP9rUtP9gw7S397d7W5CKs7NT0gdWQzhm4RFZRCDTGTqEGIU7Tk\nqGO99KKkLpI77mn/lYjskyudvxs2baiFkVSl+b6mnT+SocwMfH4Xu0QaPXmoNTLUgzh4SYEeIdYx\nLiXcla4ZMNXtD50BS1ZBMtg6KxDSDvOdthkcbGnvW4THqLqrbvorOBBb/21I9snYd0WYt5jIuPH+\nt7+50d9hTL37q/v7pJcL12pGdtifTSCraMa5KhQPKXCFBtL/fYViOvPok3k1nxPFXmUxXj3oB5hL\nXj8Y5N6f5++SoeVKoIQw8UjuvZJ6ej5HI1CBiyAek7YlsUfREb+a6k6MlpPc93SwPEkltoKJYJ5C\n17WRcBGGWRA8C5O1HLt4pDn31xk7I8vODLKgSd8jIQMMh6TV7KvHEGhmIZYMujJvGUrci7PIxGr2\nZxL3sctdXz9VGFK+aHyP1O5AH4tCVWfxrNWY6odJoiIHvG9aE/PYVKg2rb8b7eNXR76SRDOxEOxv\n0Pq88OdFvEdzjb9HIj9K8vl+z3jBDY5+1IsF9prYU/89AdP6sbmvxpVbzvvYp46VkGBuvDwtvALe\nRGwrUgpmjSeJiLpttlmIx2rW+fmm55k57hhPZ4yejCyZlb1Pl5phQP8c0ljzEkWzLHgG9iTxbDkV\nUb4rexMgS6mP/IG8i/r+WueKfr0+oLTwGKhFYZRC+O41e9jcUPouRBLElo9pxNbuMWRHPEKjY441\npiDvZwhb7iLV88lwvw4YEvaKSjnPkn3XZPjdThAbstiYl7m4ye5RNjZS9UkmUwRqg1PWalhUY1fq\nkV4d9RA27cZMRj0FUj1w9+eFrw7tO1Dp6EqUHv5mU5n4xAek2S1GcDz36vcDMc/njijDPG/mVR1x\njPMkavinL3gp8MVSqaI4G6+qcFdO/OBd4ye2BdTMZCcRCd+2htX45VK4E+FlgUrhzhqxCawAlUd3\nnorztsXW5q6ZPSe93JdkNtuEZpjnj+d2CGCUQptdn1e/x/+6nquEL71JQlMnP4dh0MRzx2FYB4ag\nGwlo+zYhQVCJLpBuWZer1+Oe6dSkNV2ymrL0YihxbBFPM+W+JVlNfbpIv8eko3e7h3dVJewDvRjr\niPH3XiI9IxTxzGT03VCHs1mLAq2q1BIb1MSOTVC8bw9nowJRL42+v55AEiqdSYT0XwhjZsUxNdwL\nTqNaqFrhjuyMwHNbtkRr6S35znoT5jKHg4oFhhsu9aBd4k8Ler5mfOwEeuNmR5RwS3LOx44GtRlx\neBic7kroriLCyxJ7GJo5r6rwalG+f6rcV+XFsvC9E7y4P/PbXz/yN38If7CGxDqlP/uzWjiVMEa9\nKMq9nhCMR/Nwe6mytViWJ48w3jvRqGwjUFEeSsjG1QPatl7EUwlp3wN0uC63FQsx9V0RRJTW5z8n\npaf9IsGwpB8jDHRVIpNxFQMxKsLJhU16Zd4o8tH16pjitH4ngeEypriXFSehexBGeCaKxvMuJBCL\nzCoWhLsShVbL/Iww0EoIRs2xMNSMfp650xLOtwxFtpyJ/txHmSS5XCJl+Toa0XLDWcn1Gfp8BlKJ\nIEV25pB9m9kon9YzFJFMDnMdhspgWoBkmHXWPojqSU7VqIzUYw723Znf3z5ybkKCuysVgEl6X03/\nc6k/I4H3MYIjPD6ec/P7QSTq/rkU5atF+aWl8mCNDfisVqpEOOtX58p5Ee4dXp6VX7g/8dW98tn9\nmV///Mwfe7Xyg7cXvl6Dq3sSTEvm5zitRVDLqUTYK6pIxtYXVc4In4nw5L2gRUTpbcC9hC57qQXr\nHqXiqGoWBoliJJ6rdHWnSa8NGMxFPbwCccz3El7inDzGvOaMlNTxg+jDHKxC1gnMJS6RrGRpfS+p\n4QS/mSRhrgthAIhh/OrhtJLzFD177qTsmVYskU8gRhVFcj/DsYlJXy4+ZQV0ap5et5MJWRY2nKCj\nkKw93LcXLTEPFDQYmRTQUDS2rLQUkYLXHoulRCVlUpXp3oUeJ+j5XDtL6q7HjC9I5tgrggy2nWX1\nc6PmfG/x91tMBn80ZiAivwN8nXO3uvufEZGvgP8G+KeB3wH+bXf/yXs6uNa7O7um2wo6NxsrZb9W\np2O3Ig2Zzp8ZxREVCM9/ODIc3SXpy6r8yt3C5xXET6BwLsp9cT47VV6eIt/dzDhXYRXn9y+Nb9oj\nd1X5xc8W7pdIBHq7bjw1cBMeNuOpwRONizlPm1FqtyzHPgOdcagoGCwirBgXoFphTZnX3DEpeMkl\n76E3NtMBhVeHNR+/eCyqLSMGu0XbHFxk7LJs3bzgu+ZmktZ6dinU56+M3ZF8SvbxEf0YQUbBnJbp\nNbrAXvJTMtsyloW5X91noatbPoizKWkctCHVY3/HzhSMHYckg8n3u/vsZcQ0dBDfn7t/6Qw0Zrm7\nUaHbgoQd2RRxFu3FYGsaA9Pd2FEQEzlMeTuzfaL/UXwYFPu2bpAxGlnfsRQGI+yM5EPtj4oMHPhX\n3P0PpmO/CfwNd/9PROQv5/fffHZlTvgeo85hNrL7ee+Bjlzn879NNTga8nrnR+YyX9M/91kkdMB7\njUIdLyucUxKVKvmSlSd33j2sgPKE4S1SWDecFyqIKqdFIw7flZUspuGBBDysTNQiiGSBjmKoZmEx\nz3x5ibBcxbkrSjHHinBKab55nysfUsncsCJRpcidNY18s61TCXi/u/gY86xO+tTDmFa6SSXtJUgY\n0nr5Fs9XKSIsvuuvNkUeFo3zSxoeq4axzIcUjcUeEXgxmI3Qn0sJYlq0JGFGtaLihHSU3UjXffJX\naSr5rjXP71GNMqR0d4kynlnIQiQTc+vzthN9X0bBVIpkQFEyg1NRFp2Q0EDGIfjMbewK3ZfjbBDs\nDK1nInabxW7LSLVGNPeZZN9C/rbEHO1noSYc7/BvAP9yfv4vgP+JW8yArgDMRHvodiQIHZT6IeU/\nxAg6w5D9onHujYvk8Lvu16sI56K81sKdKpfcqvxha9gWL/pOe7lsp2RN/9YagvD6xZnXNcJYvYVZ\nqgGRqh/6YkHZNF6iCKg6kdWZ2mqmAksaq7wqly3q3FXCPeUiWT1XWAd89TQZCBgUKSwYqxsn4JQE\nG669eHqbYjLcnY2h0LGke8/FqSk9HUnjno+w2iDPWKCLaOivMEKC+0LWtFM4aTXPXY6LBJM1szAW\nqlClRHZhqbHjkljmO8SORlt6CdxlMDN3GWEeHZZD1kuUXj8hGJfJtFx8MnCSRmJIgu9JQh1NkPYM\nmQx3EZRUOkMowSgKAfPnfRXmNVgpeO1Gy7j3CN1O3UpT3Rr31n0cQmcMk1pCooefc9kzB/5HEWnA\nf+bu/znwfXf/vfz994Dvf6iDvmdd72y3FfTPBzWhu7WuCJ3pGvbz/78wgv53XB//aok0WBH42p03\n28aPGpykJByHBedzNb5YCp+dla9Oha/uFkoRXCIPX6sjLVi1uWeiS+xe9OjAGjsBmQT8lyz9rVoy\nmk8GsVdgy3F1Qm2W0N+dJgrWhmFqQ0fQTtTlixWikMk+UaVI8HRrJeR3H6ESl5yasCcQFmxnBL0s\nSRyLROhx7FgUkW8nVTQde+TiDOYQC90ljWEesf4nQm04VcXSjXguylIKbhp++Bk5CDQ0siEz5qC1\n3EvAszox3ZgnV6+6VypubsFQEbKECXskRRovJQlwENjeR49krLqHEXcvgyaS0bRxMAi3mysSCZDo\no+hV/9o9L33pJyoZZdRzDL2K0igN4D5QBHC1H8Ot9kdlBv+Su/+uiPwi8DdE5O/OP7q7i8j7R5Bv\n5FmOwkzIV8Q9IYSZaTxDFwfEcIwgnO9//LyLBhAwb6yWFuacVkmuL/nS70VY6bXmCivCYxrrXJz1\nceUB56EpxZSfsLJ46OJnBdcS0lLBXIf0j6E07kpFRNkIfdhRHp6euKvLsMLXAuQW581bEJBrJqn0\n8UXNvm4R7VPbgUBJqa9YSOn8B8F0MrolVTsihDjzL8L/XTgnM9O0AFbZq/LagNOR6hu/Ra2FLY1l\nKhFUs2TCj5aSUi3SgHt9wghoSteltQxcyifLQq4DHXSB0glvkEc3kDru4cWKiMjZtRf7HhTpBr9c\nI5qE5nuZ9O716AY9Tbaig/h9WnIh6PoOULMsCy9vr7nYvSPJGLp6M9bHTl7mOlVWjt9GYlSPVPxA\n+yMxA3f/3fz7j0XkrwJ/Bvg9Eflld/9HIvIrwO/fvPh/++vxwkTg+7+B/PKfiJfWGcGYNN9X7Szx\nj5L+irC/ZeDPVBL6u5mi+wjiIuD2fD8X2HLpiSlNlXdm/GSNwpxvmvPNpUZRUBOemvGI8MPtQmnK\nE41XqtwV5fMiOwzshCMBjU8aW4Q/ZHhpbOPtrN7YNuHCxjkJZRF4cS6cmvO4GZdm4fMX4WKweWS0\nt6zzF4VMwd0yyk7ZBJZJJ13ohj0ZC79n3BVkMIulhFEzPBV9C7aI8nPvxTyDCPvuRVXCW9KNYJbS\nrNsZSr4nCaG5VykSRgizI2gWbAlmAnhsnT7g/1S7IVBEqjndJpLMTRMNRnCS55YSAeWr5C5F5G7R\nluSue7k07Xhc+qqVoXYBIxBtFGyXLrVzbmeDhs2hVt0UmRWcE7X1uoyStDGWrwQC64bNv/u3/xZ/\n52//rZ+KMOTbdll574UiL4Di7t+IyEvgt4D/CPhzwI/c/T8Wkd8EvnD33zxc6/yl/zRNs+kOYbIh\ndNPoIPqwO1+hhYHz9Do8dwYMvY/jwSMzONoerlAJ10bNUD53fVGE1yq8FDhLuvYKCMpPbMVMWVEW\nVzZXqm7cSTCUs1QWDSivoqwe0P6uFM4asQSlRN68i7KowyY8QJYUX/mF08K5KBXjroYG7QqnUol8\nduNpM9aWq78UnsyCObjRWkjVzT2Kd3gsPvMk+GRWVUkkIyy5+JZSOFXJlGPn0aIi0CKxIapIRBdu\nucZ6Pn33f5fchShU+cxRIBe/O6olqw1HEFXLYB2QIf2KhHo0hF6iMU0JHtmGnvUQPIyCOS7LXYzb\nZOvoQVOkaqbaic6HvWDJHaSLBFMrotTcYq2rRWEMzWrKslcm0qH6+lADhqFzWmYKWagkeYzsiV+9\nj0BLXV2K9+TuOzIYdg8frsq/9Bf+VdyfYXHgj4YMvg/81dTBKvBfuvtvicjfBP5bEfn3SNfi+7uI\ndNDuXhHAu7VnmLJ98iL4tU5xJNpju4UArn4/fOnf535n26UmJ8/QTsmXH1bjwkXhwYQ3W+TGPwK4\nJ3RulNJGFZonjOYbjw0u3nghhebGE8K9GXdK7GZ0CX09kEJKRxPe2crrorzbNpzCSQu+OUtp3Iny\nsjr3GgT72Apv1y2z2+Cl9Tp84Ytvtns0VouKvpfcaKRqbHl20lBpzkU55SqePbqC0Lxwsb5XYC58\nyXulx6XrJH0fgGa7sbG5jK3NHPC2hgSX3PJsWPkH8A89PYR0jCN3OBaPas5r7n/Qk6G6Xt0TlYRI\nkx7Pksut75TUjXwCOyF6xGN00DrnBwyXRXcZ5sXejZvTnI0Kx8NQSNY0DF99r58YgKMbDiNmJPYe\n2j0fOhkNS1eRbL+XmaWp+v3tn5gZuPtvA3/6xvE/INDBT9Fk5GM7slffAboB73rVdckvXBH6bD84\n0v8g6MFR9uNX18nzawcjiN/ORXlZYqehc0bJrWZsAm9a7C24emOdeBgSpcdbwv9HwrV3AZ6sseWm\nmg/awI1G4VGdYqGTN1fcG2crLFV4UUB8r3yzivMi4TBSaOyBLSLCeSmcF+dclyjR1fcqwKklpHRA\nYxnWdMFHaXEV9nBp6frxroe2XNAhRWNjk57hN8itS8AsQnLZjNZCWm8eOwU1jyy7HijVzMb87cjR\nYRIWYccB3LFBuBHlZ3giir2eY+LLSJ6SyX3pfb6ShrW7ENnLo0u3A8jV/PZKTirhJq2p54uE7Wcs\nqyRQM9/vNZaZ7zJvKj0gdPWIyWjpFDfUwBS8auS3zQimx+kk6hIPT0n7FjXhI5c9S2IcEL9bQdn1\nr0H0Pp3LRLg+ZnZkhnUotmMwBiOZC47AzgRuzpPv10lAxiKhY7/z2OziYsaKDQJwDv0TsfkPkmmw\nMCLL2qhkG67AuJdzIRbok4GzxmagvdJvxrN/Xk5sNNSUi5Yoy+3Otm4glbU9RQxEU+4ldkxatIRW\nlQu6qlEVToXh+nN6qe9gJDV1/DA8glASxSVchxFr3zxKfzW3rBAcVwQCsGCcnrsSu7O50BLKt0ly\nFQkvjid1SomKSdtmNM/8XclIyyHsPOMwAvoH8UxGOOkwPgi0SC8WEq7HXaJGQFIhmG7UOtjjDTIr\nI9QY2Q29IpPbMJfM8AjkegwU0BnTpBaIjLTuPZOr95NSf6COxCppjNEWG9dKjq+T0dgDUnOsPFuW\nz9rHYwbzHovAhM/y+w0R35/mOnpk/Dyne1xlCHZqP4CD8fm9k3SNFp48CoqKZSiqyYCxz10i/aWG\nMeqdd2mav3WWPTOqZAZ4WLejS0U0nEu+GatGMtI35pHn3pyv16fYPzGlnNE4Z7KKiHEq8KJXDS7h\nEjypcreEpZ4S7qyazHRtWea7NSiSBrLCCODxILzNfRjunNz7z3bE0NKt5+S+C5BIwtPAGPDei0RW\nJnVHETkn1j0kWQC1td0OYB4hvxbsair4IaNqUtUob7ZI1F8UiTLqmufUfPZiYRfpxUa7YXMGlfP2\nEJ1mpRPatKSYXmlHET0D1yfGsEsrH2pL31yFCa2o78VayGeI9Gwfgqrv99DDpIXrgij4d3gTlV5p\n5hlD6EQ/AMEknTmcfny4WX24kv7TB8n7HFWNfs14y8/7seaZRz8ZEoZZmn3c4x3vaCQ8fLrrksNw\nOz3Y4CydUcT3DQExXrry6PAkEdD0SgXR0L1fi8YuQ1pioRelNUM0rNohQY3FYw+C1Z22bjw1YWvK\npVgwCo1xmEf67lNu8NH94OFyTJdp5kZASKFRoESC4JtZlCbDByGpSiTVJEzfNweO6zePe176DsQO\nWMZgqOR+Dd0ouBvL5qjF4dWQ2FKuinOSjGIUG+62KDegkdUnET+xZNDQokFw9NfQzx+wvaslfrVU\nO2PsayCyEnfu4N4jHT29M912kGHk/ZnzHZB2gpIBeGVav534g4nkUs11JbJvBd8D9+TnZTP4WbSA\nc7NUhElR31tyvytEcPUjjJ0xD4fzTnnsA5zxFhOJQe7HxuRGdt6OVvLN63TjwWy6MtgZwA2GM4+h\nK42DR0SZi2LCCylsYog4X4qyVPilZeGtNb53KkDBBU4Ir5eCL85jawm4wrLtLjyZ8EQQefVQX06b\nj23GRbq13sdYikawT0kj4l1VqlSkZtFNtxB+JpDhvUpue95iX4OIpShErKKjRXHLHYsN6PsWuuCu\nIyw69kQEC2sjwwcvSuvOOovxh5U/DZbJuKoKFRlLZOvjyuQv1COxit0Q2HwPue58PRCAZnhxHh/G\nSUbBVPCR7mj0UGnpmyPt+j8Zs5GqlA1G19deXBDMVOhBW/R57LYT31FBV5e6YbaHfiu7MfR97SMX\nN81wTIIAACAASURBVOl/ZHDTbpz6AHa/IdW7BJ4J13cX5fHace8ZiUzXHQc4C/Hu0bhKsJqk+fHy\nq+/9uvyh/3581GE7MSjOaymINVw2TsA9wssKn50rv3pf+Xrd+P5doYnwzSXKZT1Yo5bCxTQiExHe\nbm3o7EJUHzoV4UVV7kqhaqoEiUebhSGxERb8u6Kca+FchYcWTKkTXjNCvXDNWIYgdkVYtIxgItJf\nv7aIwFzTGR8FTMOQXIO6KRZrQ0s35MUGrUuWjVxbbPAauyCFTUWyL/HuLcm03v76CAZh0wsKt2EW\nHUlm1FWYuXWX55ZIYazVJOTme2ZgXwruXVHKziXcl6hksZM9VqCTdDfOxnKWEeVpHoVaCpoh11kw\nJ7m4DPeBjGXbjPB+lcPD3Ggft7iJ+xC2+/cDcfaH62Krt4PrJjtlRxjsEnncFLiCSodzrzp7NmKG\nlO/XXSGa6drBMHw6p6OKWUVJBpLXxCkhAXoSVwHuzFiLcBLNIKMoYLI2+OHjhmrl956MB4S3q/PU\nMtmFNoyaRTxKg6cr7ixkFeCgrDWJ1HJu93TXPfnpbTPeNYNLJpjhnER4uYS94ak5T9uKaOw9UHOn\nI02p3Lrkw1k3i9oLfUo0DHPhQhU8LXEjqCfXhxFBTY5wEuOl5nSPvoIx4BmALX0fhjQkZmKTjvfn\noyJzIeMKZM8CdBg7IXeytvR0qHZ3Y6zfClnodUcLu/cm10GOM/JFgll1iSDEDtEk2sB7iHImnWfi\nmWiMr7CnV+9kE2oSQtZOiJGbfYeRgc/EPOA2u8Q+/nZF1NO5R4YnNz6Pv0d4LjCA1DMxfoMvzGjg\n+FMn/onAkV11GMhlvp1d3dZVc+U5iy7U/PFd8dRKnLeWG30YvBHnH7bc4jt9+FWcswnqGqXRNMnZ\nA+JWgthOJeIHRDUs9MRyRIIwt9xKTCSkS9/CPCTpbjI7SRi9ThoxCg8tsjXPpWRIsePe0LQpBPHF\n8hZKeBLcEAs/OskAIwVXWWS38IepQVmbx0KXyJ0oJZBJ1vVJr4HuuQtJZNFnMIMuRSWfe1j3JUjZ\nCPXJu1dE9lfVJTbI7h0ocmVIjCKugmvYO7oLdhcAuQuz9FH76CuWV8Y5eBiBu1dhbAvfk6CG+zJd\nnzK5f9NGFennfkC9z9vHrXR0hMndfDpBnV0nZye40WYJ3c+d/k7d7OfPB3pko986+cBY+r3lcL+h\n4O1jHwxhYmRujBjZno05MbX+4k2V4hG0hAubhk79uVXOVXghysWdd2y8kIVmwlmUl4BI46yFrTAZ\n1vaSjC6he26erqotCLG6c7cslLJw2Rpvt43H1sb4s2oWkTITtvseCHNRoTV4SZRIP5XwKjRbMVGq\nlzQYxjNa9lUysnHbbBRRFQFJr0Zx51wyd6E5m2+R6ozgJfR+cUGLIhiaBgFVRb3FZioahKM4aDfW\nbaB1AMQg+kSlyay2Fq7ivjRjQ1bLvQhKGGnTHdlddj2zMkxbAr4bBJsV1tzMxN3GmugS3Xs0qFkP\ncp8CujyrPUs+X0cv++dhg5CJsdHtFWN1JjN/f/uoNoOesehpGBxI+ooR7F93EeoHSdxZ+jNxzc4w\nPgyR3jPC58xmMK95jAfFfz50xcBk/NfH6+KROYhGaWsLglWEx8xVeOEFVHnjK1/Vhc9d+LxWNjc+\nLwVR506UNyaso4RQzE2wu9A1V7LunirNInnpBCxaeNiMH64PPG2xC9FGhNmWIcm69AwD3SJh4Y7y\nW8ZFHCmFU6mca7gIm0cJsFok1IYiHfiEdVzgftFkVt0b4CwlEEzUITQoilsvaR7TuiyVbWspDUv6\n6UM9ap4pxNZQaWzpCg4KMZAW9oVh/NvfXVQxylyLRFVV9oQjTW9DzV2NqgbU767Koh2MW+j4Bhfp\niKobR31onEGfWbZMegzDcRWmJ0d1z1QUD9VqxBT0pCfoHcypBj9N2sFHjDPoelEs3j0MeSasXNhd\nwbuyE8yM4sgIbjGGqb/5+iGpR2cTOrlx+dW17NBf4NneDP28YTgSqkSewpquOSdSZxsetQ40s+ei\nygeqwguPvIUqhW2NWIOiUAxWdRZTvhHnTUr8RcJOINYXt9AyeaeI8IinYTrs+nVKuHEXGpq+6pRy\nXUYlsYoQ6ofsQTer/7/MvU2srtuWFvSMMd/vW3ufc3+pW1XcggKqSEEC0QYpJMYYQyKxYSI9jS0T\n7dmwK3ZoErVhx7aANkRpGWNsqA2NMSEawRBDhyIUVIFV91bde8/v3mt975zDxnieMea39t7nEEqz\n7puzz1rr+3l/5hw/z/gH5jmBGmqqxJooSL2Y4hyReQde52C2HpnkzY3Zh0uNXEziLYufED2xbmYt\naRjt57XwtDrM6MjQ3gwmGrGg6lJMa1UHcNBfkLMM2WwFlmjDlGaV/oULm5QMbnn7DvRMo0yKh2V4\ney48ntFZgEQNizZIkAzLhwKttWC/6El1ByTbBWAwXKk1JNJKlskPm9vX9j170R6I2gzA23GIrLQL\n+H1vVDNsAvzuPHcMqNfeeQ/vIgQD9nh+MXDHdrbXtusB/ZkyCaLjTQB/79erkWUE3kSOtwgHwMQl\nRT8GDMsDr23gtiZGGE6bWL4w7IIvDTWdZ4YBcWKZ47oMOIBLAGslIS5qiRXZJ2FE9gpIpxZzAxBY\nJ3CMTF1NRmktM8o+VndiRRsCg+XWnZLsGAtYNrGGILzn9OdIJsm2BXn/gwIpsJh9lBryRo89gg1e\n1yqBYq7hp/m96ziyn8E6YWa4+shW6StwHYMafVX26IMchJbJPDYGHXOZxHVx4HoMXO8YnVodyhFg\nmfVgxSaYjLUpGENQkzuuQXPF0mmayr8jBkA6JQfTp7P1IoUu5x9kwdbKHhlDRlqSzVwcHhvSja1U\nM/MDd9f60PFywmAthB8w9vYr7Wq55IjNUeOBUBF7Jc2CRtK+Co00sElSABvj23vyFTahEdvn6/Xo\n90t87wJHAmK7xjNnoiG16G0t9p4IVqGYVC5gbHE+HGMutt9eWGb4CJkl90QOHeF4ou1+Dc4xjIFH\nyz6K6mso21PhtJO3pFZcBsA8AMxqP2ZAdSManuhBGjE98gYLr5TewzPS4aGYeAr0sZmobsnQAx0V\nALrD0sxWTV3AFNlOfa6FcFOLgtTUKm5TWTcCPqrCpVqUG/J+L5ZwXk1REpEmEr0gy8Wd0YyLszKT\n/7IaMc81RZQUbIPPMJT9CYqoIDKjLhhueH1NmP/25DOFEoWM7ODZt3EGJpRsEIz+EBlEALaqdDlR\njKIMzhBk5nVY0WEOdAnLCNRXHS+IDNT4qjVshhf1J22rMhH0RcFy3/7etPfGgAXht8TsusZ7UQba\nknjf+7xcfRaA0oc5x0tYe/tM3tsCzYKslGE74e0cMPhyLDbveERgDuAhDMuzG/GDOT5C2vo2DJcA\nLEbewsj+gFNxa0JGQ2olRGo+B+RpwkQXH10Aprhm56bDhARYxsyvHSTOq+e/w1C9/aT555oAmRFh\n1QFoR0dzZSrzudLZqWlHC5YONSjxKWkkZ5ksRqGy+YodA7FmliW7M6nJKbyioiZXRiUOB4VEhktX\nqIlLRxKy1TrK/j886zYSeueeOekIls7Ug30nBs+hlOJ04KvU2PgZw9NkIVah0W4sOwHWazAxy9J/\n4blwOZuDBKwUA7fsC+E0eQCvsL15Cua5zq8RBS+dZ2BiVlal7Q4Pa6lZ5oGKjN6r3XVibNraWlPT\nZKgr7NBff39IENTrds/oZRI8E0z7F5Vva6zKBAB6g9cwAGk820r/wLKc4XeOhLHT2NADC69XhvCM\n5sSDZ4VeIIdrAFmyjMieAk5b0dnw4iCTpzsrPdcHsonJlfb1cRheq/MSUDZowuz8l5/PAqedacwW\nHpDhu0GIIS2lFmAwFJNP1l8slho/LbWDS+dbdmd2ljAvtAfAqfWd25GoMRl74nDHxQ8cngLh8IWr\nDVwGZzc4fSOrIwJjZFmw/CqK16tRl1P7Kr9fvSwMCvGBRUrU9AR+6iOgzwByJDqjC4ng4MAaTgco\nquAruFdZj5Cf1T2pPmOQzPNZVvkXVhijPyAdfEjD5fHCU5i5G885cGOaBgSj37P3f5YvbObBvSDY\nvvTu9+umnh2l3fev8Rd7j+TYP48oh+AedXDL0FlQY4cZXsHx1hdexwEMZ5PTiQHDx9PweDh++zjx\nnWV4MsdDDFiOyoGKvny1I+tAevHdOLvPRlYuMhFHHYFHRPZ5HI6rBY4Argz7gbJq8nkcwGFs6AEJ\nRs/Jy8HrOBnHM3JxGQm1L4Olvm4ABtYM3OaE0XH8NBcezyxmerxNPK5gA5ZEBpm34Fgr+zcAYM7+\nQPiAwTF84UoBexGCGemgvFg6BNMbn4pgwuGRtj2gicrKTVjQjLdydFN/CGjKuefUTcO8mpNmjQGV\nma8SHsOyp8UkKjoX0Q4dtoORlBjZJetcWe691qRjkp2eoovmbASceR3DR/l0Mr+BXY+WMhk/fLzs\nFOaC+tvLptRk5Vrzw9XZdUvtEIMqoL4x3DsIQaq8NPpzAXF3E40A3uH3XRjZ3cvPZykatVrlNdHO\nvoQBPrPDzshowekLFwRew/AYE9dl+Mkr4KOZG/8Aw7nSsboW5/iFsU25Un6jsueuBfXBXoOZbHSx\nQcjvLF/uXP6P2GQ1rYheq0wMioa81kU6sHTqGRldGXxZUZeOretgCA5MEnLHuBqAo5bw6bbw1iZu\nEXjlI6dFxW51JaRHZC9IR8b8DQszsjR7mLMmgevMYaUybxS6TAoiMpVGNeENOmiBBO2c5BwwLDZ8\nCEvbnltQJGloZNA1jxrrRg3v+fxr5fSl22RDl8X2cLGKnC+e+zYtqzWr1CgyEevkIAsL5kGEw2Ze\nwxTmZFjVrcfcfeh4wdAiWovykJ8gnYrJQaocC8hO2/x3hQq2BJ7Y3rs7/2bsf50Q2EOY+3t31437\n90zZYiiH6EFAO7E4f2/kzATPLL4zsrUZ1sTD4biuRAPOtOGHMzP8Tlt4jQPwgUs4YiwckcwykHka\nhpXNNZDOrFfDcUFgjGxpPtgBSI5BMerFkWnOw/AwkOW9loRRCawGwAZtz4xOaPvSa96mAuTrgRjT\nau6Bq6KS99vy2nC9Gh7GgcdzVsGPQdl5C0hMA8ORQokOPjdFEih8WTZ9sVz5YyDNFpJJIgMmL/li\nqNJY15CIKY0Rll5Plf9YO4jpi0on4ObzAtOv6dpPElx0elrROJBzKQ+uzxNTlnv+IkOOwbCqGW62\n8HhOnJViDFhkqPJkCPLiYM5OFB+4OStb7V2afna87Eh2ZaY5HR4LQEUXRGqoh2gpXGAN99g+yjkm\nUt4dlPnr/reVMyaGbXHYqI8NOgZX+QOsU6l5X+U3ROBA3v8lMp3VYZjuCMvw3nVl92EPx5sxMeIC\njKwe/MIS+j7AAQ9cAukwMsPjPHEZB2644SEOLEYbKt0VuXZvsXCZwFN4avr0TMEAHLxvG+D8hkGb\nfFHotsMx1kwhxvjuBQsXMxYJ5dqvmEypTQ9+ORHXQoXWEJUWfNjEwzG0qxkd8N6DhwP41oPi8zva\nS8WwtqxAM8cxDhzDMdYFGITSPF/inyTv0wbTijV9meXaQowubzyqwcpB7T0MTAwyRrS649E+eyER\nmZf339uhxAiNPp/nGupkbNmT4lyB8OxfudbE9NXC6AAuy3AdB94+3dIRLSsYAFb6ms6Vwi9pNBvi\ngkISADDnV3LkC89azJ8BMObjzbMGPHfIlQmxn8Z72WFKnckjtu/fOSNL3cX2N0p6h7StsesP7fqE\nlrS30aPIAIadNvl0WubDP8bCEc6knsXikrQfv2UXeOSQElvA65FVeelnivTwAzWh2AN4IGGbOU5L\np+AupCwC0w1Pa6ZX34KedMuGJubwmXrP5sJ1Ol4N4O058foy8ADDdUmbpW2+IvAWC49iXt7jYYYL\nW5krVnYMwzg0JH3BPOsFL9RcaZIEjnFkCe/K2Puybimedu8eWcr1cGc69JY+bOsGjAGzzA8YQIci\nubFHRMbm1WyFZkeCbhb/LlC7Om3sRA1mhnDCd7PusSi8IEQBq9eVpSlVZGjfQvlikM7dBeC6LpmL\nwWpPjIGI9BcsZ3mzBSbXbc70F1S5NB2y5wrcprHVvpK+wPdz/b7qeOG2Z7iD8y0IqMq40AAZ9M40\nyFf780r82JHFc2ECCp+oa0qn51uGpVCmsSNPMF06gCucGXE8nxuTckK3S6if05FeL44OBxTWBjxw\nZQdeR4YPwx1rMusNHGCykJWK0bUFbsAIxxwZAdCQVHlXFjT0NJ1+OSuQWhyclOyLjT8CV7LDY2TV\n4uPMmY4PihLQAWYOxumtmqpezBAeiDNt+etwzpEwXA+OIzeF8RYiZmrCmRWHZhPwFBxjGTA5pzkC\nc53ZQ9G8nm3QWSsBLGXnAM6ZQi9zBawGpqLWLYoMFk2YCBogREOwVhhjeJp8Eq5K2KlwYWFW5BCY\n7F4dYVjzRCwD6LwF0Z72Qfue6THM/GRq98EIiuZVr+XsOpVZqmlqZpuz6ZnFmU1kWAMxc2yeHQM5\nW3JRKP6UFyq1AOgNrxCiGcphqDeKwRNCC27d+/eY7lqXsEIeyazZEjvKqYjqwe/hnGbmOVJ8MRtO\nZ/Oeb3+YY3pqlmXAAzLmP43ho2FZOWgTVxtZPciNPAiyPbKh5TUyXfWA4WQrMCMBZdQBHWYN/rSA\nLzBuPRAxSze5G3yln8KMOf7IjT48veqO1ZmEkY1FwpCVd0cirZmqEhd63M85sZyZdGEcYsJGIUhm\nXZbTlo9Itr0Yhc4xsq1ZBAyDjTcWEfrCKwPiGPQTKcKSOzjnbFQ2F+CcsKxntWzXLmpI2L4g40J+\nAPUVGMIDxowD2ulrLfYL7GxGIRUPZFQlurIQlhGXat0ubz/9V3MGE7KIRqbyISxJeMl0MFqcAayV\nDmFew4cDtmBnXis8ozbLFqZnaHIuYA7yyALMFnoCUytD96+btPiiyEClsPngxaCGXCkSt5JMyvAl\ntIOQApBavNAyvc5mTGBBSQsJEBDmCgWYMQEFwEFP8gIQI23ESzgRR27+wMKFdx6Ww0phAY+FNYCx\nWHLrgK2ZpbhwDB8YAZwO2ErtTlM9oSjkJ0hhEJGRgaCdCkI/QdYRBouz4uO5qgsDSpKZcHhmGDJt\n+GKGh2F45Y5X7ngYA8Mca82cveADry45Yj41Jwgxj0zIoT0u+1eEnJB/YtkgfE1nmh0B88nQ4FHw\nf0lZhpNZE4rTb8Z9M6zjyLXHwpDzkIyoAiGlAwdD0bEa8SVS4neWQ1EOIQKBJ6qGVjz0T7gBIz2j\nWVW4Fvs+Cn0wO9CEbPvc0twaqzZt4QjDQVquvbVGJp1rk/c/zIDDsxtyoLIXM78hk88G6SS3LAWf\nTE01YUGoz/KHjxf2GSTlF5I3IKR+2fXmrhSYH9rHUfXpom2zUIXbhhEoa/Js7Vm/0G8wtfBiAF5D\n2nmyE0720kvimmH03meGoFl6918F8HRwXPjFYCuwPNNBhwPXcIQbjrUwbcBNhTmJOk5bXS0YCtWB\n97zSg17ClJGC1QM63BKGLtryBACEi5nk4/Q6y28+mKBzGYEHn/joyOveGO8fCFyH4eEYHH5S4ppB\nGBIerNJ3UyiknjqXcX3y/i+eBkRadm3TJh8G+/zzHDGx8Xe2QQORAG3vxBR8JncmVskESKHoBxDB\nEfOE/0aNGpfBmg/DtGjSweJAFjFwlkwv0uSKdpB2VyKaBpE+u0U6Uls1W9HurWBkhWHOxKkhdihB\nuzwbzBjSlDBmmhqzNRGLw2jV0zHLpTVToftJfPh4UWEQYmwgGdUmJbMXSKiMTTeGRwAzx6IZYZGE\noBl5Bb2gsBtQ3V8iPzci7fbB/PcTwNVz0mAW9HDeIBzyv14jQziwbmIxjDa7p5lwmuMClFd9ENou\nZCZhEk9unJlXSFBZbyMY+155ziFGU5IPNnPBAV9Z3jvWoqBTXJoVetGNLhyBq2VnogOuVjsJjzNI\nD0NmFw4zXC8D37weGACe5ky73D0FggtmixHIFGTwmkmAwJoZ6Uj7e2UnZCQSOkC/8Qxm0yW+UZmw\n6p3NFRdq51iuBoVPpGB0pjwvy+upPDg7CjEvzdJUUfYlaA5qiC6QkR1Zh4VRS1FwjcMwYTQhVF0I\nmjRRtO2SYDBYZOTnxMyWcHR0Rv3bzJDtCGR41CMwMWkaZtJW+soOzDWx1kwxJXOT3oc0qjIj86uO\nF3cgBqIFAu5/Gr1hAbT9Q+bYgYGcRAMZYlnIzDYL5zbQOaPPO1gAlOd9FckA02i70+s/SBHDgl2H\n8vMHNUGY4ZUPTFs1cmyUBE5CnZ5DLR7ofFK2G9gSbKYjgJvHnv3upcol6NwCsVoDgc+VyTgZoVAl\nHDw1xAg6FSMdgg8jR6FdmeB0scHeBJmjMAbgR2bzzfPEDYGH64HXV0MEbX5TrF77FGXjO1ChXzOD\njwMX66Io2Tqmz+bDZKMT0kGW9OZ1LkdGIlYsnCfF8gCwFswG3LNv434YUElPRl9CdxAKCq4cPqvP\npmIlpeizPK9TcFQsr1ROYp4w4ZPc3075TaiuNO48HYWCUbGFVYoxtgiJ7kH5FLKHzQx+HLVObpYC\nASxEGzlLc66Zwo2hco+kwa8JJrygMIhoQxedt6/woSRxLp6LjlK7hEH9XNSy2jBxxcKTMbQTFa0E\njJV9hpr3p80OLtgiwytmnITCacBBEoj83mGU6ITJCgFe0D6KLBJKweGepkKmp64cEMKKu0GHICyY\n6FO+oGK6tJgBs4UAUUfGqQBbXJ9OMwbJUx1xQGZMoZqZe68Ow0fHyBwJ1jfMMNwmcIyFhYHHOeEn\n8MoGi31y34bT417Gi3aRFwAh/DrZjNRp7dGx5VkkJfZaS+YdiZfPZoTNbo5xyKjJMfVJF3Ik80x8\nwB4lSBRl6WfR7WpYSuYt5GeUdRlEhzIxCCYY/0/GdUeaopHmmjpBBb3+okulAg+igLwjK5Ri+tu3\n+6ZplXk3XWcAmRiWNOQOXA6n3yGvvSJDv2uN7NZkC+ostQopffh40WiCehTETlR0DlVjLVMGGDW8\npaYkAswIAc2Ig9JWBToD4OaAAzKN8fOg194wzfHI+ItTPrltJbMrw42L76f50XYykIJE9qozl17D\nSkAz5qSAHx6MXwOKdDAvqKufxecFh6Wl9OyKiqQNy8ZfZTcb5O1vB1vAcKrw5ZavPxjw8SUdhl/O\niS+ebnhaaUbMCxAjx7Wda2a7LyMjDGPdA7v8mPLyxcAUxLHKc982PQmbAg6r03qzkps2caiIB3c+\nJRUny1dhvI6YKhWF4PCepAReBLoytW6jU7UeT5kn4YLaK3OrASdG7XQuY5u6bLteAmYRcRhwA4WC\n0cTxVEIzgvThlbAEBJO2chF3AVuC1gH5L+VPCpnGMRCeAvuYHPRDn4yQwoeOF6xaBJo2BA3l1k1t\nKaZQT7fAKs/xot162OKCeIbqSCEjcsS4g95vI1PU+ZPB5fAT1RgJWhunDQj6HTS4U/XiAVT2miGl\niVPyeyBDkOYZevSo51Auf/7NyADV0AJyitKaOIzTlCTURqoCX5lrbmqEAXnXUzjcNTnNJ4DaJ5xY\n+GQGvpgnPr05fuZ64PXlwMNDjlM74DA28A/k9Ogvz4mH48DVHTEXznnLxCPPGgf46lwKtCCT74QR\ntcrelDYLviZEGJBDuXJHkf0LxMCOtW6oTsFm7H+oZKKdxniuLZcgJGhM7s90XGo0WwocYSvuPe8p\nZYJUcTL9QatveTqUE56jSphXMLswkikrAuGsf5iArQX3ReFGiuC9068IFTMla/A9OTPVO5HrtCzD\ny/Cct6EMyoWfWmHgBVtbBcq2S+ZzEkmO83TWegMHMh472I7qMMOy7CF4hVWTDRXFEERD5qWmCgbv\nIxN4sv9+ZnPqPvK+DIEL72WVttZtM3HE+TWThzrKi1zohZ2BFgWY8SQGpHfYOwYuON95EVk3r/sy\nV55CPs2SMKWmVYeiQftZTs+069neyxzTgE/PM1GXZ7rxq2vgoyPj94d5pvKuwNt1w/JsqCHH4enA\nMTLL7wKv1mGJFqgJKzbP9dlpYGv0kYNnpSEUD0g0lV+PqlmQAzNYA91+JwpqHSVoYhM6Vg6799Im\nkCaNbHtC9ABzDpCJaBnCS4zjVCge2Whm8t51hRXAbQLLM5HNS7OzuGwlIlbVo8w70YcEFpbMHvpl\nnLMvKVjNEjsligSWS+BaOaE/dLwsMgilmKbRduFE4sXuOtdNS8cALmC6Mm02ZezBEsofkXX2Hl28\ngc2+V9pFJtxolqE0uZUZUH0HkNI6XWoAWPGmWLliuAKugoXyJjiTjDJcaoVSFJaqWDC5tLzzNAEE\nfRP+UXgs1hHAcCxQI4rBksKMjEgMja40TGEwaLocBrx2wzeOgddHOhcfBvD6MLy+dMefPHNHSArV\n4R7cnYv61FDSMQMVeR/qqygNpWYnZSasUt3Y5UfUOtEM0eiwzeQQ09B21I51oVs55nbs34ylC+6w\nXNcF3677Rv+9YskoLySgTkdSJOVgBMqfIX/44mecWYhqnhw0u9J/kjGN9JWACCfvRYlV06zWypgl\napYJYovZtF/XFPXFhMF1GU5qwsMHTkEgsMSXcHU4MwPd8PF03DzRwc2Aj2NgGXCzDAW+8pFhIcL0\ncr4YWjuqGtJSgwyCRdntYZnYcTBbzMnhQSefh3wHsssZdgrG83m9YYRpke04luzpAL26uTHDPDdL\niMOA6/Jsne0LiCSKC6DoNr/JTDyaLr5lATGPD4CESkdVmnstNf4MmA882MA3L5YTmY/AwwBeHRzF\n7p5OvKTmdKbx/CaNG3RShuYMJPNGBOs8BMppFqD9QdBrFKSC5e8VCAiGmfOzhQj0noEFRkQBsSO5\n1qjdpjzqXADarjb5B+R4VbIUzadQfgqrHFaiiMYDcj5KaubrsbIWZe+DICSo0LB6MtoyuE8qZuMK\n8AAAIABJREFUBM8MSaQi05rV/WEXeBSu0c543wTIh44X7XRUMXEBXQs8sDgmLLXqky18vNKRdeNY\nrcsE4sgH9sgcgMWcUdUlLD6cGLwKP02NJlpDKiwmZ2bD2wasC4o2UNZbx54lxKypDqWntvMoG9AF\nPWWGSGtH5g6ELSxn5aNlAxIlU8Gteuc5GQwu2Axq1WQ0+Vpggs75WWkl82w19iYWHiLwCo7X7ng9\nBh6cTT+Z7xAEvoEUICupF9WoFFaRGVhnhy4wWSaEoqgdyUwaHQa0AKMyJ0slgz5HIwRXcKuxphIj\nhPIbk+jnFrLLnxI4qxyCMN2foZyccl4JfkM+BRA1pHBZYAblUgJWIX0KhXwqiyxhVvdo6jr6VYzK\nLBVcy3ghXZq7gWyiVaiQAkr3hOcOw68WBMBLdjoaK+0md9q3acdfLfPdY+QwkQezFAKEkpfI2P0D\nDNMWHsiBE8E8fBarePoAtBsHCMsAyCcQctaBzS3NKLX5tVTMaeMH2Egk71W0U/Fy9EYKZOZ9ZERi\n3zR9J5SOGg33TFVzvE72H+DgEs8pSfpsEReJquKa5CorkrX6RqKc/LeQWnsZ8DSBL0/1A0xSPsFO\nRWawEqdKo4lCYKDjDKXdM5Q6dK+me0Q3h9qFpHnF+0tIlDjls/DLcgQ7/SZeTGVci00wbH6EXBoT\nv2uB+N7ozwSKoVJAE92o4YnMC6CQQK7zqqKxCbAvQZsVJTRlGtU1WhgYabNazhFKpqm2Kg17ak/b\nusk9I8qRP+T53ATbF/Q9x8uZCdwci0yIWehQ0QOYPGQZHTh9IVZWaiVcyk24mtd4cAcq17/gGYke\n1oM3iR8YS0b5JFLjZ32CkTgV7roQESy6duXcCV6n0AKiGLlpL92XR6icV4kpYql7IklGoI3vTBhZ\n6X3GJjTEGDvE9Ur4AbC6I5F05J4Qo5Hm5zLc4PgyMqT1eC58fgY+Go6H4RyAYpU+rDBhMnFeUz0D\nFbrLIzMPc3JSCoKDSKbi9+h7TwiNEl6t13W/1IruHIhipaWzH8GoEl3lJsjsALhOMkU3iWQK1OtK\nSSB3aCLHwcsfEByEoosrRFhiGVloDaYfhza1+jE45MxmOJAoTfeh94WmZkWosr+C8dkkPPKhJTwb\nocbXJRY8O15MGMgRpXCdDTnqMpcgAnBPn8AD+wc8IRnsiJTQF9tyBtgURY5CaQU5DStvnddUiw0z\nhZLyuzlco1QrTY0UOLK/BlAwEqXxxeAAInPJh4jaUI7EDAu1tAiGBaWlLBhVsJwrcMJhPqmRFjw7\nkySaiYUTSmrq0JQTvotJlZNeEYztbufK1uqBTI+OFVhPib7ejoXL2HoRsEWaOggb7/GwbGSi5quS\ndYk+5LhUkVctUd4HzR0HCIk7YrJnDuquO0LC80BaeHLeQOZcmPoOgghpRx4tyRXGgLk3yvO+t4Tb\nqLoFxevlG1kLmCuLklRKPCzj/Ce66WlGMPJc56b4ENn3EbN9Hhr5Lrp6Yps7p0DNhjDyGVGd1O+2\nk2HSvNb6a0yFF52opFTaTP/NBhUHrEp2H2zgxCpmfwXZk8rVb0eU8zMIEio3OxXWvUMKUOitIWOG\nAZmyE6WvqeVX3bKj4X5qaJ1EiUzSRfRHUAlpk/K7GZOXHpNzCZL+0ePAHJPnzJObB2xaCQ2ZP0Nx\n03ou3WV0Ln/QKDIhKOvnhOFgmHJG4HGxoQYMk36KVzD4cCzGuV1oVfe3IvdLSABauxZBNpL5EXnP\nagKSTVS1OrlwTm1ZoeBEzTTvgs/am9jDVoTgOlpRexnx7DO5zpGTW2v/FLM3yyajqPAmKpJU5kPk\n0s5g7wE2MT0DVWa8oCnUwWoU3XMUWlWCWs4O6SyHNRk6RhbEjZHRths7SWWIMSqELSRSDkbe7wbb\n3nu8mDBIqOlVUzACsJHEvciUStcNaTRqdVBgCGseYSUI9rx9+lzLq512WL5rz6QvCCOtEkOksQtz\n3Tnk8q3dKy7V3s/n/GW3NYVBdlNBXzOISaME3NUDr/0CR9qOgUxwuWEiInDYwDGC6MlwW8ix6TCw\ntrGhvckwoUMSygfIax4GPLD//+EZUVB3YaewMqSwzfBsjhl7ODL5xq0hdwooL2Z0bHkHNG9ykGnb\n+0PPR5s3BWj7IYLFaREo9BdZokcLQGbTBDa6yXvYEBnmJnjY+4AVoGV33xX1NEIJYGs/f/8RKZvs\nXJzJQHOh2q2tFZUWnOYGexMuhaolbLJTlCIWMQyKYOg+sA2bWUI4a0GVoLHf11pQ9vpXHS9nJriI\nv/vxZwRhYLrhsuhJN8+mGtjDJGLKfG2gN10CwAz3G0Y6WJZeeTGdhIG87SlYo7Q7v1roopa5NGts\nGpLaGwnZBlQJtwkK2SYemX3GHRqW2l4oQ3kB4DO9csNHRw4ueRgP+OL2iMc18fpy4GrARyPw+nIg\nMPCTxyd8elv4Yo5Mg6YGc8uMwRQEi23LgFfDgVjZavwYeGA586sDuHrmI4AJU2mmrUxQugw8HIZX\ngyXJlh2JHRmenRFwH0RMex+ETGQSImCbRSjmc1iO24ulCc3UkfTwhdrjleaTtq94xIaLeO7orD4g\nEDM/67545U5cCiSNFKpw2+hElAbsDrr9MOSQ2fADQ/6EWIJQOGc7+tbKRKQFo8VC8yNQfRm0BgEK\nB5mY0c1VhByzerTN3CxtdzgW+zJ8+Hg5YUAmcYCQOdt4HUu1+lb9BeRtFzd56PtAmGe+Pz+rsJSB\n2I1dbmRbjVCBzXbI7hJJKmpQwoEfQxQxbGIir6m8UQNk/pgBGhQKNFTVM4SjztV5EbGFOg2wgS9W\n4A0Cnz8BD4fh9XpMbX0YTrbGfnRD3E5cx8R3HwzfeBj45HHhzblwhuGp4K9ChgMXy0Sjb1wcH1+G\n5BBecWry64uXrZqPt6p+IAV4Zi1eh3NYiXWjleOCcy7c5qya/8nzGM8jN6EzSQaMDID9CkqGhvw1\nNM4K0aHUXej+tAdbmLN8MmWmpfc/Ih20VqfZksn6Ckmn2p++JOmB19jU7v13QYsks0OrOpLUluFL\nOia5AXNb6yRjmkX6m9eNfY0kqEJJdqzXQFaFIgCLn1Jh4AFgpHbS4Cc31ecBcM9uvkh8k8wR5fAr\nKW9RWrg1QF9HzFcMF6hyX1GH2SpnixyEoik5eoQUmnDA74twRND8DhRZYMqPhBWSuF2Zk9jRDP30\nvE9YaqzBPXwK4O1p+BwnW57RPJgLxrDgxYHXntD942F4bQNvA3icwWw3Zm5aDhl9fTg+PoBvHo5v\nXBi1QEcQVk45zSpFl+BSdSd7ArAkeO9dmWsflWiF1cipDhL28gJEFZCoKEhp8/5OHmvPfCotvUoT\na/9b8BvfMO+sw2xwIkZPtRuFOrBB883k8WfmhxynW75H+SnADZbwJwK0tbJXI1amqQfY2yCdg0Y6\nSFoog5f0RTRFk6Z6ciZcggXIU/KtBAayl8JXHS8mDC6WJbcXqAciB3wO9bDP0d6pJeUIFHNRCjKr\nLwkzN2+Re6W/jfmdRaMSILyP+ik6vtPj6Go6dEitkAf6JOWwI8VIandtATVzwoh8Hnq/FVVSoFH5\nCooEiPCAHIQSM09+rgXEicMHlnE0WQBv58I4s9vyK5bPvrLUMGoOcngKjlcjsv3Z4ThG+iWy3XcQ\n6gJPJyF/GGPg7fPInHtGCuZKlMYVmmGZGCNBwOfXfooJrZAY11W+GCGzivVRm4bCuAGzwbVUghCZ\n9blCIAQHlC2YfQBMg1Hq/WYyfU3SRX6HdNjRJ7LRG/hZoYQVYvhtA/kZl3Zano1laBosJHrVfRtQ\nIeLFMuyc/4DKJ5hcf6GHWAsXc2jgqvIWvqZo8euFgZn9ZQD/KoAfRMQ/w9d+H4D/GsAfBvDrAP71\niPgJ3/sPAPzbyEzNfy8i/of3nffB+OBQZxyD0X7yZq1M9uFiLyjxp9OH5QDTYnvZ7R2Tl6TOB2Ke\nNxe43ygMydRalOYW86v1dOWXlXDK66cCjNJ4auOVpkveh1dqMzcUzSTpNDQSSW7wZdOQwwBfM2Pe\nTEd2etarIk3ZjTB8MQNv12TNASE/pCFTO95W4NGA63kDIiMH1yOJfcbJrkM5Vv3pNvk88smwt0Nl\n0dkWbUnEl4y1ar0qwUb3wn0Q4eey3ycM7apeOIxKMEOIBZ1JJ7NzGcD92rY3owQImnYUztSkrenz\nIt0pSoIAua8yA3ckVAijeAehmSBBOtJPczqX9WyL9M6FIDw00mxwXaKQba/dGJnZMMntYTnBamHU\nDItE0L93M+GvAPhPAfwX22t/AcD/GBH/sZn9+/z7L5jZnwDwbwD4EwD+AID/ycz+WLwn++GVATmB\nBiRqepItc7dPs0IFYvBAbn5m0OVrrrg9YtPgqqrbHEg7bLPOHJTG4u5h974DyrDDXQHSPXRVL4Nu\n/TXQhSMSSIumgZnQ7e7fIGKAGBmApSBYzDzL52sPuUyeohtQVVh2T4q1EO6YEXhahjeLE5csnX2H\nZ3nrMODNufDlNKYgG16N/Hd19V/ANhcw7304cHXH8sWx4M2kK7Kd2lLnZarZFIYoJsrPN/w2U+Yd\n6rUZUUIGAMIdmmeQWnLVqhWqqnMIcdDwMJBeAOLs/N3BvZFAiD6HmB5RZpJMjGW61jNTRkJQf1EY\nyITRa3NpujSdg4HNrKGPSwIgWkAOrZngFDJ/ZYxg2nNS76CgKDX1e0UGEfG/mtkfefbyvwbgX+Lv\n/zmA/xkpEP48gL8WETcAv25mvwbgnwPwN56f90pKzpwATYrNhzhKMKCYU51vRf0BqI0f9PLOqK1t\nCDeLwPRJJQ2hN9ms4GH+vS94E6kotfMH9XpUZZ2EQBWXkNiqPBVWDUpqIIjuT3Yq0Dn93PRqwEGm\nCnR6csXVebNKNjLL6U4TwFMYxlJDmNbox5nNSi8OjlsHIxfpcOyBHElalwWcA3hAjixXU5W1Ypsd\nKPjd+y4TIQmYJbu1pI04JDTU/8Cczzw1FYm5CZGNyUQnuVZR++aQjd+baGT4YuISUKQNA1SvUAJB\n64q89yUCfE5/fP/+//n6okSUYNBadUaBVR6FWDqVERuemJCp1zlrbBsgG5WPaXcCRIrmq45/Wp/B\nz0fEb/P33wbw8/z9F3DP+L+JRAjvHgGYcZSWNoJCIHbmj5bM+n8xU22gNJNVYVCVsZYW2uw6rpk0\nqzRUb0tvvAgi6nM8P6J6GxgfSFrpcGm0JMS5AmtQy9ediOGtiE1arDWTVdiytBsacZRwjHRKVSKW\nbUFTUz7FtoKmjrqRXZqi+yjcIvA408N/AYe30r9wONjGzVlUBRzT4CeguHdpYDMg0v+jnAQ3RSKk\nwTtKkIxLFOC2kXsObAGFgVv2rrCYMCYqWYwSMDn2TD4NMX6TnZTODghlOta9w6DJ1nfC4NmJEvJb\na/u7q+QrGT5cpfmDCiCnS1tRgdqTyQhNR3MnGzXZWiEt7GjD+rolbCVMN2T0Vcfv2YEYEWF33STe\n/cj7Xvz1/+2/K1X7zT/8x/GNP/In7r8iIUAisUCHkdHMnWvQUJOc04xr0vBipk1iS0hIoOSpoJWW\ntkKfthg8wlA57rFpaDNOSM5CqQcfmBa4RbBMmwSK2Bqi6Hl0Lbt7nhDDm1UoTJ+RcAzYVntADUKh\nqD9qTVDGSBKUtYNuBqskPTXZzQxjAU/GUezOQasUvpmVmecdfDYlEx2I2ojdNHB3Jhtx3JqlH2JQ\nCIwt994MVVciQZfIKCc25cM4E5LUb6FDzfIBqOnLnifQSqQLlSTINCpeeS33HE8KKoHw7tGl0bWR\n9UxL1bIAhVwjjMVwuHEtlRgm08TQQldU3dlOTfOg0Pibf+tv4m/9rf+raOKrjn9aYfDbZvb7I+K3\nzOz7AH7A1/8RgF/cPvcH+do7x8/+C3++HTW0saQiDKrJ16KgNiYI31zaU/83QLkExUxtoBUTgsRS\n5sCGfUvy34WjSq7W+VKbRTFycPG1wTNSEyzLvoNJ0AldOzmXZgoFnIeqLNl7IFqABTk+e+Wn7Zqa\nKc+UPflBIdMOU9FMmTd8vZrCbgzsRYypWSs2b43I1OxTzWYHE5KGWaUW17TjcipuaMC6A5JbQ3Wh\ngeHGcm3ejwQJDL6iS755bzv6QQn1jgfx1fzp3ibldh7pj4je9juBEVa+qI3gNtqQQHoGD/T1Kl3u\nb3SnaBRakGiXeauok5fUyIyE/E5UurrVRfmkgeyizX3/1V/9U/jTv/qn6up/+a/8VXzo+KcVBv8t\ngH8LwH/En//N9vp/aWb/CdI8+BUA//v7TrDXaWtFhiQ/7zxt2kBsXlBpJDFKM76+tml8MnnlYtai\nN6Np31tjAhKxBquNAKI1byEzSuvqSNyUIg12i1k8lVA8mTjppy+shKZ6rx8I6vUn31DZtt7dmQre\nPns2Y5oyx+1s6cc9P3HAKwks7z05Q1ryQCMVN3BsGjAszZ6sXEQVMXndY8q6FBBWwsDQgmFHDLmc\nm8Dlb6YW17XqQjvaKz61EnfYAQpGGL32yI5VcxmZT71pEiyK2wGwxbDl/ed8p9NctKQ48T3heZeu\nM1F4gxFV31BmGs8TyJBkVGFknU+Vkxpao3VS70515XYfOS6vocKdIHvf8U8SWvxrSGfh98zsNwD8\nRQD/IYC/bmb/DhhazOePv2Nmfx3A30EWY/278YGczdLieQ0SRBRzStpqgMb+TO0xtiRapKc+0Fpz\nID2r3dee14nevI4QoBBIEhrvgyq2NOyueTetooZYhg4NNVHwCozxb1Tebdairw8ES7RRqacaIyYu\nthV1r9WVGQHB3eYsCYZeb4VtBy+sJqnVfkuML58HXxvW+QdXz2nFbo7DAxeLDe4z9Agrfk2B0RYy\n0GgB/Lxi4W77veoxVu9VSPBuzyla4H1idNKO2sKmTGAlwkqBsgsmkgT3IZOButYin0c9FyyYOlzs\nCKJWmQZRDLybktvm7LIt6Y2JRpWTIqHIQqgUlBO31U1LFhFoIQ6tqxt8nVn6DivB/Hs2EyLi3/zA\nW//yBz7/lwD8pa87r8tLjtapRvhYCjPQXYPz5AAHWWY/PqCTQVZC6dKO4LlqxUsIbD82AHcvszIi\n8Cw0GaWX6hxisLWdM/c+CUCp1ua90aVN0I607n1IRqj7szL7876iCLnMFxFx9LMWmulbKibfi3Yi\nMlstU4IZltX5mU5fTLeyA/VcAcPE8BRoy6xa0ScysM4dMVR7elXYgRq5TJFQ4VM7H5MetvAcEuUE\n90brXypFyWXMHSjEEZ3ABJM4J7sz/GeKfEdfG0hGTkfoktre1pLmppiRz9HOPa6vKCgkOgI116EU\nzDN68hRenbos5gdzNtJBvThzUwMRHJG5Oqsnee+W724+ve94wbZn6vhjJZ2VEFOEW+oZXQykv9FJ\nK/pCiwIxge0oErufU1N3ttAverspHGLzRt+ZGL3fYrBRWFc2Zh77cBi+Un8H9tBoC8fd5Nhj3jCr\nGXt1H0RGxuKrCktuGg2bQKnzwCokoc94nXP7pwvte8O19rrfvOxCZNZh6Hm6MvLeX6DvWwn9WnOz\nWhM9t1CyZjIWc2O/v6hzBM220I0pXY/CQuinovWW512rg3wp/NLvE0RQ644mpO3J4MqFIYSvJypp\nZoUjKtQt5qfAvFh2oy4nNm/bec4MB2d0CjNTwNVVuughIsesucww7kPsauz9x8sJA+zaWVpjt3vv\nGaMgOiVvIYuC90kIgpZ7PoHtRLtB2CaEDbEVFJRwF2zepCxvbhPw2x3sbbi48dHP0ZENQMmGwVFr\nYBu4yjugFJKQMzCcKQEDK6GnJi/72hqTnGJnXOtz1YNuzljHllGIZuDDGCEw+gc8oyYXWxh6Zu0d\nNS5WwvuVJybKCQpmoyaWlu212pFXLVRE9hyo15tO9OJ96I/vV/aYciOzzFcXUUn1CsNpyuLbBHBj\nQ5YaK+25xQYQm9mwGQ+hTBQU+mh6MlQJPKVwdrWKCplXrQHXapnB4fCRqdCLfoUI+SNW84hvCIf8\n83tOR/7/65ATS/3+vWClbQQrydnaNYBitgIFRRx2/39rAt2ZCtasq9+lgnL/yYTW32sVFLWJYv4S\nLLySNOhuTy7axWu7Q2m0FIKKkKwq1qn3A410SCCVlSfGWvt6bAlIBqiCzWHb9WjPmpSmIjjrTlAb\n0hzLSEFUTcPFAhfPWoZh7MBjdB5SyKaAMj0GAqjhpvSKwMKqSrX7IvVKav3uf198Fjacs31uApVD\nCRkrNJE00WKraMuQmYnLYJgIJUs1W+f6e3aGuoOT6F9zz6LoJ9FS0rh8L2XcWZtFJgEsTYa+ftGf\np8mcfM7CpVBsSsnoUcNm++b4DPFTPFFJAlulvopXl8KCmGqLOVPvVmstfq94Ffe/dwJPM0Fr1Twq\nww07qBaTbTbfM20keL5defsNdwlNAB2hsdnwQY0t4oASdZCNUvW8gTKpjFA5Iy8c8sr77IpCadt8\nGg0gyeSVKG3c/xzlatjXiQuZa75qFsBaybLZE5Aw1oxVkJZ+BBG6dyOURiHbmmitaa/s0Dv3BhtT\n2kY3Egwp6Lr9eQsx1wbu+xeqNHGtRv4t4e+Gix902hExmmB/2vo50Ir7xNLi2FDk0u99WtTN6nJA\nralBSVhEYFuyUy5uU12mnIMCPBBFKBywAnVftDZVUlaUH+6rjhcsYU47a0QWDKeWE2N4M40WpbRe\nwEw9jVEcWPY7iW7PYNMvlXseeeIyDfIMbcM1bsAuZdvZI61r9faOAsqpCcIzy+zAiPS6C4mEodp6\n98O21hoRGduXpiciwEjCufLZzIIhQlSYTzGU9GVkjYI0BNCFWjvCklZrJKR8gUQNB02Dg/kFGhS7\nkAlVJptgE9CqOalrRPsdKr9LzwFjCfX+Rq99/S5tz/ZgBnWUbqHaviTtg85pkH1XCoECBVoPohuE\nBpDkfe/1BmD9RXYyEgKgUikTD8XokgIVUUJ3nyrhuRlbZgYfd9KEvGA1lm4xByKFZvoKZGLuyEbC\nrR0Y7z9ecCS7Bpik2KpQo7dWsyIq/u3SXIEqJXr2fAW7BNVDmt4adUg41P/JyJtAgEUhBY03q8/b\nRqq2ExWK2Y3TkYFN49te4UjBJM0MlPBoM8la02//AFROvyP7Ggi6D88KRXWPUo9EoDXXjNbLemdL\n7oTCZPrd0I4/5zMeJo2P0nbqDQAiFgTnQSLeQSydZ5B7n/kjs2zl58+775iLUGr/82KK6VcPxU3Q\nxUZD1fhjMy3qVHryO+yvjc4H3YeXKBUoBYJiC8KwxCEyV63vSUhAjWIqDbuQcn5e5xISKcEV3R5O\npdItCDr7UYIiv/NT2s/Ae5WZgNTWdGoQpYHq9dT15XASg28wGyK8krC5Xd5LSpC4aYpn2Ya6vjZ6\njx+nxJagUv4BRQZPU5lzfK66u4gWBrzXMgVabaIzK60YBYYSburUrByBQDDMFNks0w039sJL+z6L\njg7PNN+DDLkQiNJ6csw+x7atFctfvUm+mocJfS0JWd2B5UuRISBEoH3K5VMUxJ5B2bJdKGy0e6rL\nT82sEml5+GOTIGpVNze6s4oSGrfetj3CdhXUb3fy6A64RO1/mblURaXtRQvWeQ1i9vy3UaPFJqBQ\n2l0CSP+ySYltEZB7jXhfqpzmhNksdfah42WFgaSfFgkKIXYlXuuwlIrOTeskHWkbQDL5eezW0Z78\nFhxNBvf3lV8S0QKoBiclLKRtCmzch/tQ2l3CCHy1DRM9UyKk1kq+EYOQkYRECqo9jASop81ETke6\nTcPjDK6hVcLQ8M4QvDxDG+JxD6/z3ivNFGaaV2CWnu09L0SrdepZg23mjePa+Yk7nw3NtswczEWe\nM8ggUfdVvoC4J+cd9UYJGC8zbQY6H6P2x8qfIO3de4aSBgGUP6n8haV7mMTE3IxCTZYrnuPV9zCq\nEBAKUYhGen1RfiblP1Ti0Z3G7+jXWr1+LVA2Kozo177aQgDw0uPV9Ds9zhooKhjZ2l5M4MyrT8Ix\ndd9Fr6kSg4qRdsjdVy/YeH9TTYB5PsXM9YrOS6Lcklsq1810NUUUFAaVPlYGXQsQhwRLMCsv7ijY\nwCYvfICabOyGGhazMY9VzFIRBLbOiCwtvu2azABXKTP/CcZ6JUC11Z2CJ5urZN+CNBdOfk/RlYw+\nGNzWlploLWyxC9E8t8wIt8X7yIa4gteal9A1Brl6TvMx4j4aUfezvRYyk1Z74KHwMpXMWoL+ybBT\nzYoo4KtDd2Thljo8i2bvBYzUhSjPIA//8+RchaBj2/tdIKjsueY2LGLD1Q5URRai/oe7+ZBfdbwo\nMmhIT4eg2l9tkBx4npizaU7kqHYRkSilt16fA8plTk1rdd7oD2/Su5i/PhL1XalCZwbapuuoVbst\nWNv9UdOA1uawSqbvjkjGtWHchNfJarwsBiIxao1gHNe9Nm2f8FM5A7lu6rFPUWQb4i3VEX1ONKyN\n/XUDrNDc3pWKGoynSoHR+7L7CyTsDtidgEsThnF3Xi/hfKs2N8NU/wve91L6Z3iFFGXeGJGmBToi\nwso/2fgSlLrmhCYpg0JC8ybYMMQbwWmAy8UHU67z/Jhdi9LNGvVMqOdpeNPi4o6maCLFCjosV103\nW62T+afuZbGPRfrWQt/fnvFDxwsKg3YcilhA5q7avtgQQjF8w/R7vR7b5wQPm/B23Va8DxLOJmx2\ntFj8b/eL2DqSf8fuJOT3rE0EpU4P5FTjZMZ8PqLSAgJHaVCrEKpawfuQvyPJ/aJe/5AAAP0UxmtT\nYyyug4iCP1299tTIQ/dK+/ZS8F6NNe6zDnch+M6v1utb7wnu83YGFO69h9RVo4AWRAjCZ0NpTuN1\nEJo41fs/AZoVZNrI0GAy/8yF4hXkg5BpODf6632Ou88rI7BEKJFFdcnmdzSFqeA8H/iOdkNuSMmG\n0H8dCdDulQmxKiV5reyDqM+mkMi1XXco5KdUGBRBbWHDfF0NTA3VLVj/D6EJERs9wyHDYjEdAAAg\nAElEQVRmiPpsEkprcV2jNsH6M/vGyE+hhJ47iPeOcLA6kbE9WUA01GXBoEY650TQnqwsRQkry6Ex\nh8nzzsIr0uMCMGdmCwyOY5qMKGjDh1tqEGv70syB6DkC99mG/OlKYkoEs1ymy+oCJCK5XX+Jq+VH\naUfD5gfauu/Ao69rbaakA3nfO65NKPSq/U4NX41veN3SfvRfeGgeot5vBo66+3a8iU8qHKm10tOa\nQsUyWdsMylBrolNB+Q59xjv8pw7Fd9mSwJ1PALCKGER0lAC6Bu98rsVJzKu6WEdoUbd9otPLNoTy\nvuPlhEFoFh59BPV6JPEaWGQitJDrOkrjWgnr0paCz9o4afmC7E1wTcj5e2uxewdkQV90yW30SbDv\n6Z6fUMRe95kMMmm35+ez0GTAOR5dkBdFXOHKydAo9uxlGCtgnLlYvg0ioPIlcD0d8z6dmv9fRAQr\nNHZdREkTyAwnGU42v3oW3Jlrldglrz4K0UXmWKewia5H0drKhl5EU4macjTZc+ejZO8hGSwN60c9\nWECCrNNvhUaKUait1Rau/AO1Oux6rNfEW4YariK0V9iMGn1FroM0ca/5lgj0zqHw4f37u8Aytztk\nJOcnzKhg6Flbq/YRCMTyWt9N0r33eDkzYU1mzRF+MvkoMw6TuJwLJBQAEqmAsITETuT3EYhNg5Fp\nSrNLE8lJVwxrjQAQXZ9wF/LDJnmxXW+TyGVuJBfKlhfDLlO0O9+fcgYRH09p182mNENlMkooqVFJ\n1DMgUQmsKtVK296tkc56X9kolS7zaXfwAWR31QqIB6y+BvkRctzaBrFXMtDh26h2t+qatG0CQJSU\nzroox1q+xZhlRK+1JwJRFmYKRO1xdMdpvifhEiUMrOB3kpwQRXk9mim12KHb2KG7lSbfBUKhEWn7\nuxUFFKa+AyYSBRrBFnswvunQ7D50Sh2XZ9ADYduHrzheThjwqZ1OHrP0IbiL6LsmvYjZEupoQxS7\nhRi0tH/Duf0QXdvz18ATgkTF7UqH5paIVPdjva76G8+0Zb5ATdkaMM/XzryMLbCf3929WD3/iKhX\nIkjcPH+HYJs4dwEZQDm70k1BAbxRZBV7SbBYohTBdI22qTXWQrbiJFpAtjSDUms7AxHYqiKhXocU\nDMZOR2r3ZU7zcUu6qQXP6AIUgTJD5qgkZxTLVpYhQ4OzlcjcBBfqU5uQtH6w5zH88rpQkVf35339\nCsjzMxElJLrISbTST2jPrgTSRqYdTypGK4GP7Rp1n/xdNQrqAxHbfn3oeEEzIXozoxGCILq88lXo\nQgIqG8hyM6v6S0JB74ssynRoz39vfat4F9QWAT5DJHkybESIWug6Y6GLfP25DVqogg657OKU95uh\nvn4uoSQFI3chpqdzqhOD8gbUhBXlLzk3Aqjx3XrqQHnu62Ompr9Wry/5BWgHy+aXIJTwWED1QEiP\nvLGVGzVYAD7VZDUwAjiptH1F5UM4ZjpQaZfJH6HhqC2QVdwj/4uGzkQhF4AoIVU37zG413o5SCNN\nK73Sm29DjEUGV21GcLgJL9Eefr7YAiEKSTXYEdPfC4Q9oqDzIyIbVjF61LyEolfJGTkNGxx8jSTA\nCzsQuzCJdnrgLoy099TfGTU3hsJDmySEid7knQHvtftuPMT2O4nM2r/A07Q5IT/DJgyEQ8rdabGd\nQxe2PmdsDKnnxhZCjb7wqLTjZgIJPq91srqnEencujBn43EtCoR+pirsMQkxhSUNiecbWeV583WN\nhRtQhSOZejcHuL7G6ywEz8812gXkJnQypp+SJIUJ52JaI6vF+3LP6UISBIQ/2HNXUMyUWnUjEVRW\nKQUKynkHMu+GGMwxqemtpUd/n88ZK5jqvTZHZYP06K2v7/eHNmrb0a/2Vw7EEgjPGFsCSQsbQPd4\n0v9+moXBO1781lp6pWBRORuFGBpBtKaOgr7352lCLBhYTkG85zvbfZWGByRR9LliKN57lVXru3KO\nYbsvXZPPBJMpsl0O2+cgOue9U5NkK/GchGyRQ0z2Lw4DLkjhctkqvvJ86avIHIl8PqESs1XEC36/\nymojugGHa3ir4eKp6Z3TnWvWRe2VV6hLTroe3IrS6KlN2WoMEv7tdNvDahZOiB4lEtOUWrWnLRQq\nY2j7mZAo/Tksg5bjTTMflmz2ufkWuiNS3qM8G4E1o5KVAlG1GaKze3RZRJL7v9EShJg35s01WbUe\nEtA9do4nfsZTfbQC/arjBasWJwxeg1OMhCD4XX/nm6Xxc6Em8W1A3XRQxNMmRx4yJVJ3yyEXgtjc\nnKoD0CEkAC1itHDCJhCSnmoD7910934LfXNPMDThVej6e2gqobkLGnlnCR6WacUPntOPDk9GGSRu\ni4XhRju+K+TqLgrVZJafu5CWlRZrFEJYDaGsbF7rRkFrKZxUaAM0WskmQ2nuTE5kSu3e4dWs5HOE\nqYpkEwKbMNghPQAYKwdhztTcJZ5IvR1a100Jc/PNGJ3xVpzFr4ZuirKE6RrEt0efNMTzVG5EpLAn\n6G30WmfoBPUklW1A3rb2Ip6e46B7jfpMmRe2mQiiHb5WdPfVsuAlhQErxwiZKv015FkdTOPt17C8\nIhAwjZwGVDx6x/TFmPl+JtjMYmYtrXixzrUxDNBEvR+lsbUL4PdJFC39o5hL4qHPvj2HTCUJJvTf\nCmWJuIdTkyCw5sT0gWkZGhyeTDr4gOmgyxDmIPx0v29DJhGmNnCdXYgitYWsHVi5lMBSD0GIRUnw\nzHi0VfMIQUG9a0QxYgoph68uqQ4VLuneSNFk9cRgzKco5g01KE1hkM/idV/YFEDZ8erRcG5RBH0I\nUZ9V6m8hpuI8bLST197NC8eGbKK1sgGVep5HmwBFQxuRdQVp9GclBiQUngn5Nmn3fIUWZh86XlAY\nUMtUkhHDZGZsbZ05Bkp3LbQAb4EKwSlqQGhRCRc3gjRIq7d2L5Mg0LZsSMo+N2P0/+D93jsI3zFz\nti/fN1hpu1ZzHg3yn0i0r0ID5Uupa3U6KjzwFBNzBm4BXCLbl1+o6X3lpw/P53HINt/bmidEP5nK\nmiPmOj06b3Dzj69kvr04qZ2s1FPGfBAZ4ZtWfKdEGciUdIYF1eU87vaJp3CHTGMxQrZAV/dkCVZB\n6FV3qJuVRl9ca6GN0vTlO6CZYFsfoR0xbehup49doMuRuclBhmt74A5gqIlQYR3lqUdv38bCArwb\nA6pq877SsXMb9hTr8lN8xfHiDsQIhoQLsm/tuvXZEFRCxdiLwbE55rQZ5f0GNnWkT9zpZzGoEkf0\nfpFQiPl5Izql+pxj2zvrj+jvzc2UQod5FAaW4tp9yE3CKC8y69admm73n8AyXwEIPCIbZboFbljU\ntmT4QA0+EdR3hvQuhR6oe+hpV8c+tLxD6zOtu2F38BVNqupQ6+j72ucJ76r4DAmric2XSXsD8r2E\nFky2PIgwVvC7vcaRF6AXXnCN15JdL6Yn97aznbv1zPtOsip5vWca3n2K4WhJl13o1XOj94K3ulXF\n6rmt0KCEmzEXp6tle3N2odD5DI0eOtz44eOF255t8feNee8rGhs3aSaBGLZoj9/dm1WoOw+K+dFw\nfGd3ESUM3VH4HnXkPbXN1pZaM1f9TTtfUj+U5w5qefSmuyQ2Q+dlX5YA01oZpBKrCMqKjmFYsAk6\n7zSu3ljUY0WMXQmKqlqsTDrLadhmgRUz5R0oiAoJaW2l5ds21Wcr8w5GHvTas12wVBv0UtrUoqYS\n4/yOGsBKW+9HCq3IxqtAyf2K8uheKDB3j3ydQHugdWEuZplKQjKiBd10S0goVdiKHjr9e0+zvj+s\nBIDuvdYjKKzqgVDPT6xVCCxNq/ycUp33Wgit7dfjghdueyYDKRdv1UK6ofIQWqOTkRQ9EIyMtlfV\nCKS/F9VincvGS+5owZoJa8d4TgqPvMe1y4+8g2CWXfR3BAvVPqy2z0DC2JOmKBYKQ0Y6VOWYJAnp\nY41iyHyh7r7N6G6ejsNA1RtYXVsPKLTCMmQz2ApMy0hBOgczCWhs393t3udhXi5oFlO9A1vbC+7F\nXLqTvMHn3XkyaphrN1fcCZniaSysiS1Ls57qjtayTV7v7e7k7AXOY1A3iYYM2z4VXcYGHSV8eq/a\nhic62Zix/Eekr9p6CXa+X8iMC6JTVuLSxtp19lIOyoRsAS2z6KuOFzQTMq8+PfwdZuuMuoaiMKsN\nyQYcHBpRzCSYamSyPKcWcPcq2935gXYlNvPVuStUU6u8KQU5Kft8+qSeUJsOXk1DWdpQiQ0Gi9i0\nFny/hBtaw0cjK5Xs7jkENaQDmel4MSU1RRFrhfW2u828AZ7NkshqD9CONGEd9SnQewuArX2e5M5I\n1JXRKADYmEHOAD5P4akAQ5NaxY2Bq7mHnoLIgu3mdzTS4mIXRGmStn+okUNg+7k/i5TYaiTY953c\nF/DetHrKKBFVqKuEVyPQbUMaLdw9d69hnT0aBTR0yFWMQL3301vCbGxWwifuPIJVmh5IB1EQJjqc\nmkUwjrZkCQt+Buue0K3ZD9v3U0A8Y2ISN99FCRtep82DjmlDQmh7vmIkA2pKNAWWbd637lAV2xrw\nb60VUBA6G5Zsz0ePW2jNPAdrpHmVyURLxEQhkgU21s8A28Kjz/41LOFS0FND/laG4bpDHlvhz1pQ\nA9s+KGitIwcNxzdThsIuOElJIUexjcyraJdAnePubmL/xWpvar+j+0/kT0eLAflntlPJLtrPoys+\nu3AZVdZ+GTGsyp1LcG7ftxVaprt+C7twiEIpIRBVC9FIal+Dn1JhYIRP6Wu5E4Mo+5gexu4aG4Ax\nPwEKIcV2TjI6dubeEYHOt6n4kpb3G5u98rYzTQC++TJKazvN4t3rT9FTSGUjFJ5f7++Q02PbbGtB\no6EmVpSTd7osozItUDOtN5ksBa2bdacbpJGyRKLhrAxEttNG0O8AWK1TShCtYaElalB19S3dVz6K\nXgeZAe33aKYvR2IdTeigmbP1JOo9DWnhRCfq9gN9t7T7M2Wwry9fyqgTAAxWi5KN+oL8uSkq32g2\n2qdUlFa0ZdBgXq1RPe7aviIYv6/FivJHwgyxUgkMa1OJqh/Y1xsUHuQrUfF9fOzd4+WEgcaLlyRk\nCw8DLOjE2R9G0F8Vc0ATjEsrRGvq5wRHIqxy5sr826+xaeUiuGdCAZLg/R0JlPzEBh+5SS44i3bE\n5alb04mllqPutSMTC12jwWsYoEIqyVJ16DWgPr+6bVDruq2+wC3KLyAkU8qN59VIt3Q4otfKUMlH\ne7p2ayHDUHg3AA2GbeWZam8innnD65bLb5Ol5NsK33nztYK0ne+0oN1dcb+GBEKrkyj00d/F3Sfy\nzwb8IS0fCmPzsyUINn3zoaNuLwrdAOgci9j6aEZsjZPEI1YC9y4pa/v+P8nxosIgx0pliaavbg5i\n7L1voIZj+KrhE5l7KUdBVYASAmLOKEKUeKx4vgFy8qHg+Q6rokNiG3EnAW0aWlCtuAf1HZFu5Tds\n6KFFA0ohmCnMyutL66+6iWQq3+W8Aetdma/tnxrrZRIyjKlvjDDLG95j1dTf36A5DPaOQ9LRWr0E\n491NZKuuEjKhceLaA2Ubosy1d+gEPLFs9T41NCMRcLoQtj0roZzY4l449H62Pd2vtyzp7wgRKOG4\nfFilKOwe3ErY2LoTBoVRTJ+jUOPlSrlE74/pPV5jKZ+iPIR51+/4Bug/UrOdrztetrnJ6nRjxzYn\n0VNAGAIaaFkf5KbISQRPiKiOt0ZCvvd2S0N3/BuS4lZb2fdWQgWFXADQ/t0+p/r5ENtTuwYFkdOM\nWQ1LA6jpuolEOukKupS0pOVmKgRZjrylZ3tmEoUQDZeKgqrkIdFECyej8JGjEJDQKuIzVTF2D8FQ\ndiS6xuC5BhbprZ1Ao+1f3T+x84YseA9WRkofsTFPiJmVqbu2Nba73IZd277/sLqmbG1d/Lm2z4Ku\nrnywXRhYz0oINeixjij0tfqcdV9EQHo/3+3ag0Y8cl3vK2N4nkQQ9xIIeO62ec/xYsJgrYlhCxYO\n85GETyZ0RBKyZofJJufDOOi4cjqzdm1qu1ZGES1CGr1RwHNdcScoVOPATRAziUAkrVOza/wZCcKc\neQPMON/uqZAKIV7VN1gSsZqVlJlBalcoMamtCagiKxB7NxE4kQCsQ4/pPO2EfEPnHOi6fQ6hkzQH\nxnA6tEqsFRwu7bOtazJFvq9OwxAy2JxntQ7FsPfnKYm932MJj43pdc+1dNGvbszxrmDYBYGYPbbL\nag93kU1TdbUAK6LQ+4ESLvdxpB26B7Lzks6zCqXUagg2FHkyc9IkJHg+kdYmvOrHZj586HjBTkcL\ny9kdObJJRBbLeNXPI7y65YStEqphnibGys8Xk5cUbwIpgQL91Dn4azQKILd0iah5E4QEQQGVThqp\njk3Q+jc03M0S4ys6ny2kR7wx45aVuRHvHWzs5iYB5jmYWpA3GqxOyfViMM07W5XwUfNY2MqZ7S4X\noDU8gLlqYG5Er1lB/xIOfBzo9S0fkQRsIR2aTKjU51jU9NvF28nY64RNIMQqjkQFCTcNX4xWt9Y0\nsh/vs+9Dm77QVordf8L6121B785cX7o/fQurfjNKqd2v6bbG2MwbtGKT41RLJCGhYTI/xaHFiYiR\nsHWt7GsnFQoyucnO3kJzYYB39VuhAhg2lhTL9TYIVQgii9BatBNG0A4MAJioEmkAq31xefDaHt7J\nUAVfrO4vbMteDjnbUmuvkINRSE5+iPxb+QROoeHqxOStTetZTOgHbVNCNBbsAXAUgzbH8R7MMLGy\nyxFSQzrPn2VeGcHYaJsJYrp2kWpeN2R+yOzhPpGoK1EG2QtgWML7BH1e12hZ2WW8u0DYzToxRa+x\nTEadqKNGJUyKKoWkorRF0dn2uTbq4pnw2P94V7tLmBepI4Wq4oIrtkjKzvASbPy9GF+v9oMXAgiL\n7qzMtVeG4oeOFxMGt8cF9wVn1Z2PjCbUrEIW4gCBOBdweAkDPfvwJj+EYblhxNZAY7PB0rkQRawB\nAQZdkHqbi9ouBRG0VexXW17mgL5OyA/6EoKtcNw7tGRkc+M92SYc5Gu39IYRdaRvpLSfdc6FnEYd\nkbk3E6xc/yCRrFJ/XSlH5AGjf2Yj9ogaoa6AmFKtBeIrmQkSTsoyBNREMV+PQlZabqEWCQqxZpQW\nEwPUO3cpYvux/yXYLiHotr/XG1jUsPkh8n2i0BIIfYJdO+u6YvQSSM8QSHn5674MBSsR9CHl9bSn\nuxbfTQqlKevZYsVGI0IU2zkCuJ03jFFZDh88XkwY/Lk/NvDlZ2+x3n6OHz0NfHn9GOenP8Enn7/B\nd37++/j8Rz/GH/oDP4PP5sAnXz7C5xVxGTjxEQ4E1jJMm/AL4HEAkSPBzQYcJyKcjTCdzHJDUpyx\nWKiltOgje4SsdJAttr8mweZXcxMV407UwtCmtGksRHhCcpAw1qJ3PorhcjOzKnNVXoXDyfSyB9uO\ntSLEIh7IMRlAoacc+BqRcWnlY8damE8nHo5rNluNZGxlWsoPEJWnQIYvc6CbjlS1ZXBK8Za45ZFm\nXjk32TzR2O1DFpvsaScSsAhMBIankJu7T8ENsRKvhBLVINJecKVUwxBuvIdVgmBVaTsbohjXBlaC\no0al8X7uGBAtqNCgodBJVoOimLs0ic7BH2vpDyEToZMKit6JuYr4tNxIG8qy0UxCx7zeiknJnApz\nzYXwwOeffobzPPH28RG3m4bfvf94MWHwx78NfPLqAb/zj38b9ru/gz/75/5F4Hc+xyfnd/Dqo0fE\nH/0GXn/0Cj/+wY/x9P3XePvmht//c9/C3/1/foLf/vFneP1wwF59D//4d38XX/z4d/FLv/hH8Y8+\nd+B4wMUdH10W/PBkTDMsGxjHwDDHOSfWPGGxMM0RbrA4U/MMB2wgYmG6HIUE7NpMo0BIRweWsAY3\ny86FOLKEOAl/YoUnobOTzjCHhSM8m2qZGWK2XShveAr3CcwMs4apbFXMwoYg7O8gxiyEsUFHm4GY\n2UhDxk9ezjfB6FhrYgI4RqMpnT8VZ0dVAsQ5kTA/rIuLsj4CaQ4VSusQa1hgLpoEnnsVU4I3qJFV\ny5Hm5AKwhuHAwBk5in5Glve6EGIA7oMMTnZekzkcAzmZMg8NiI1YOMYF5o7sl8KZCGNQCAXLpY0d\nlqxQIGxlyjSlPLMVEGtx7qLX58X26mGY58r7nGsi1sI6W7OvWHi63bhWC/N2w/n4BIfhnHndc07M\neSIW8MPf+QHmWljnic8//wKffvIJvvXt7+DX/t7f/1qefDFhcLwaOP/+38Uf+tlv4ydvP8XH1wPz\nYeDy3W/gkx9+gu///PcQBnz56sDP/v7v4PqN78Ke3uBPnobx5kf403/mz+C7Dx/jGL+AH/7W38ff\n/bXfwL/yz/8Z/No/+CF+4zPg6bO3+OTpAW/OwHH7DNcx8Plnn8Jvn+LbP/MHML/5s8DlFV49DPgx\ncJ7AeTOcYTjjEcMmcA4ACwNRQzzNDZOowN0Ra2JMMsXhiHXLOQS3gRWOsCxDdkw8+SoBcVr2DjiW\npaaXoGc4Mk5qzaUpTI7TTjZ4sjSdLAWFD0Ow1gMAECfDq8ncHobb7YZ5OzEuEzbsLt8/sDDGwLAk\nsDEOXM1xu03YccB8YK18SBG2jlKgljkNFpM9RhIFLGOINYKzMZ0a2xJtRGD5wjonLscB6ca1FswH\njuOKwdbLcS6c54SNQf+JENPE4QdGQrTU1hZwPxIxeZ7rqoS1i2POBbPAeTtxuz3hAsOnP/5dwAwf\nPbzG4/mEx8dHfPLpp7hcrzjnicenRzw+PuKb3/wYWIE5J87bDWsmOrleLni4PlTG5xeff4HzPBED\nePP0iMfHJzy+fYtzLpy3ZODb7Ybb+YTb7YZzTUTkWlikcGCFNmKeNDDp+4GlA3qlOaqR7BMpILIN\nfa7vb/yDf4jLOHDOu6bq7xz2T5qd9P/lYWbxf/5XfxHrt34Lf+8f/xi/9Au/D69/8ZfxxQ9+A5eP\nvptE/vYN5u0Njm99G1/85m/i+s3v4dW3v4llwNPMmcOXAC4ffRtPP/4JPn/7Br/v+7+AmDdcXr/C\n0wp8/sUNuHyMH/34x/jBb/5D/Ny3PsKPzoEf/ujH+PxHn+Pt6fgMA5/dvsQVjp/71nfg14/w9vgI\n9vHPAjZgthDjgCNRRTCHIb33KfXLmZUrij17cU76FoZlqS2TYBQhXGHsCsRMMxsZ2pIT0Tg7YEuA\nGrQRxxh00qkyDrg93XC73fDxxx8lIQI4jgNPT09Ya+HVwwWPb9/kRizg+nDB649e49PPPsPT0yO+\n9Y1v4ic/+QRffvklvve97+GLLz7HmideXa84joFzZcvueU6M4YgznazH9cBxOXB5uMDHYLJY7TeA\nYLdjCQPQPPL6zJsvv8QYDh+eCCUmPvv0c2AFnp6e8M3vfBsP1wfMpyc8rRMeOXfRYZjnxFoLxziy\nKen5NsfULwBzYs6JH/zwh3Az3M5bJU/M88Tt6cTrywVffvkGYcAxRkZI1kxGHwOxggNwJnV7miVr\nzuyGZMBtnjhXdtMqB7ZlFyqcE09zIdgSXk7DtC+yacuiYE6nZ4ZU1lrlezmuSYM59DYAIx0cF1wv\nF8CAy/VaFaduhlevHtKUPQ6c5w3/2V/9q4jdCbIdL4YMhj3g4Q/9Ev6X//5v40/+yi/i+tG38dnT\nb+L1L/4M3K64nW9g5xMiHJ/77+A7v/AHgZiAH3g4Jl5h4OnNp3jz9gt88vQGv/D9n8Htzad4G1mo\ndFxe47vf+Q7cA09fOn7XA9+6DvzyH/9l+PUV/sb/8bfx9/7O/40/+8/+Cr77/T+JWAPnm0/w9u3E\nr/+jH2M6EOf5/zL3JrG2rul91+9tv241uz/dPbetulW3XI4dYzsJ2HLkAJEIAcEEMUEIIiEkmgES\nEp4AQbKY4AEEDAGMjBCZMQiKIqMYhGKiBNlO7LKd8vWtus1p99ndar/mbRm86xxbcbksYUXlNdp7\n7aW9dvO9z/c8/+6h309EMyN5z24c8UB0EwLY+4gPgeg9MZa7QRICg0QaSY6etm0Y3ISWGp/TwUsA\nWisiGS0llTFvxpEAZd7LRWvhXrfkh7EgxgxKEWMsi1xDKIItpchCMB06AGsMKQRiBiElwQekKnoO\nn0KZmbNAa41RGu88kNFKFmWnFDzVhhQ8gkPhIRNeKwoPF3vMiXRoh18PuK/NOeX1h7vRoUC+no3l\nQTvxeoyRooxbSmtS8uVnU2WkE5SlKiE6jDHU0uCCRyvF5CNKSkIIVHWFEZJ+6mmrCh8Sg480Sh3G\ntbKoNAJKSVI6RJ8JyTYFUkhA2V0olX7T/8R8WHiaMzEGUiy7HVM86GEOVS+lgtdoY0hSEl8zNFEQ\nsiQU1xVGGbQyGKuZtS1tVb+50RijqawphdXYgv8cxpWqMuVuf8B0Qopoqd6E0SIOCt7DeKhU+bsI\nMlmVsee7Pb5nxWB49ozt9S25v+Fbnz3nq0eP2PmR4wC2rcmDp799iT4+5+jRBXRzpNGoLEn9HWG/\nIynF6YN3OX0rM7meKLa0yzP8bo9VCWESQlVoLZA5sNlfc9SfcPdkzdOPP+b87Iy3Ls7IMvHxt36H\nrDt+4Af/BG/fWzGGAd/OWV/dwDTSXTzA9yOdUqjs6Y6W0B3x2RcvMHXNZrOmlpqsBUJZnj+9xMVE\nf/WSxcNTnlzegFT0biInWG32+JC4dv4wb4PVhpAKbqGkQGtFrSxScbiYBTlEtDEHhFgXY1FKRDcS\nMkw+IIUkpnSQFicUUBtTZveYaIREGnXIEcxIEVCyHCprFS5kQgj4yZW8gwzSB4Q6aBQSKKnegJdG\nCaxSKMThzsbvdgEcItikJPpSwF6zHLW2JCDkxDA4tpPn1e0NTVVRac3QO2TO1N2c1c0Nb791n3Hq\nebVe0diKm82W2lY4PzGfzfntT7/N6WyJPb3g5vaOKo58/Uvv8ve++W20Mex2Oxe91DAAACAASURB\nVGazlpwy4zQWwBaBpeBJUoBVhpQSe7cnA7aqCTnRtQ1t02KMBV0xuohSitOTE5RSSG3wEYRSaFMd\nAMXCs8SU0FVVsIdUnKRSgTbqDRgqpCQecIIYI947pnhgf1JGxkydC7gdYiKkUK6LlFCHoj668Q3o\nmmIAEbG2wg0TWhuE/O5TwB9aDIQQPwf8BeBVzvn7D8/9J8BfAq4OL/upnPPfPHztPwL+DQot/e/l\nnP+P7/R9vQGn4K3332M5q9mNG87PH3H77Anze/cQMSGswTYGMXtIGPdoNcOPG/xqzae/9ssslkse\nfigYtaGuOupuVgI5KsV4d4dbeUTO2AxvXRwxaxtUO4NXN3ztQcujr7xfLlwluWLGTFXMK8EqNlTU\n2PUldQOirkA4wvGCtL/lsyfP0M8+453332OR9gzXE48vzlicnBNC5uXzp/ypr5+jguAfPI388A9+\nP7/8q7/JWWOZHx1RK43panY+4dYropDskuLF50+xdcV2c8cew7TdstlPVPMljRH0Y+TzTz4h1zOO\nqo4+Dmy2I4vlEqkybj+Uu2sWhChRShIFhCgY8ghkFImYwfmElqq8Zkokmcq6cRfIKRJjKu0ooIQq\nzEzwCAExCWIqnYRRBZvoEQeZNIQUSDm/0UTEDDHB5D2zRUelLMWhFHHeM2XJbpre9BOTi8zaFjeN\npGSJ2xv+0r/8J/hv/sbHfG1RI6Pn1Try7vuPWV/d0hhLZwxfffw2Q0osGktQxwQEKyf46ocfYYzG\n2gptLFLpMopIRQiZJAVaKJTSUBlETLgMQ8wg1Rt8KBww45ihPbAF4wEfEIhD2KxkjBEEVNoUufZh\nxUwZBws2o9VhneCBOQoxlk3UUiGVwhpLjpEQC77io8fnREgRqSVWVKWj0kCIxJypbIPWihTDAXtK\nGKVo6obsSuf0RyoGwP8E/FfA//x7nsvAz+Scf+YfKRxfA/4V4GvAI+BvCSE+zL93/cvhYZtztnef\n80989AhlGqRpiPstzcmC/e013ekFup4z3K6Rbc32xSvmbz1k3K1oZyfc//LXqKsKUVuW7QVJC6bN\nHT71KKmxixPSfkdKmfmspT7s6Ms5M79/ga0lTTMvCLDIfHR/zqxp0ELQdR05TThvqdtTwjCR8Gyu\nntF2Le998D6by5f4/Y7b2zsUAltbNs+/hR/2jJNk+eF7vPjN3+JPf/0D6nmH8Y6TL7+HdD03zz/l\n/OKck9PH+NwjbMMH5w/4QK2YffD9XH3+CUeP3mZ69hmcnDGfXzDisVnwy7+Q+PDHfpRn3/wmTdvw\nySfP+Yl/9ifZ3N7xzW89Z9KW66sVn1yueP7ihhgcCy3Z+0TICiUjUgis1vgM292ASB6XBY2psGog\nSE0UGuEjj09aksyMUyYkDWQ6W9iHWVMzs6UFv96P7ENBwk0UtFZz3FScdDPuhom7wWGE4GTRIY3G\nasMQAxKFy+Wg1UajtUVri38NL5gaKxTPneQnfuKC1gi+LCsygtYYvAFQzGxVaE4pCKEc1IhAS8EU\nEolIipnJx0OUYpnzFQc6kQxaE2KiMpJTW2OlQMjyWill2aIUf1e0JIXA6AIyp5QIh7EjhlykClIQ\nU8THRIjpDdMQU8EevPO8VgjGA64AkGJEaoUPnkpbXAgFq0gF3I2h0OQxlf+l874UE6VIORK9P5Be\nBRgmRuqu5na1+qMVg5zz3xZCvPsdvvSdBpB/EfhrOWcPfCaE+AT4UeDv/r5isL+ld7e8U11g5jVh\nvCYJGFc7ZkcPGTcrop/oFh0oxfLslBglFZpZTmRtcVkxRonf3mJqhd/dopf34VD9VZzo2gXbm5cM\nw552PmdmKrLUKN3gNyvu7m4wWnFqE7OjJbvbl+R2gakM+9sbbDJUdc243nNydoQ0muQF9x484PrF\nF7z1/rtUdc2w2aN1jTltaI3ld37r1zBuS57eZnu15cN3HqC1REbopMXoDrKjao7wRqK05rNXK77v\nKxXKVEhR8ennX/B9b3+NHDzn58esVzf88J/7p9lvnoMQvP2lr/Lgg6/gx8i8a/jxH/9TDDfPUF9/\nj8FvaWb3eHLb89knn/KtLy759OUdc6V5uOw4nneMIbNOGaU1C62pBHSNobKaoe8xKjOzmkYXDGu2\naLFVw27nud1NDAFQFUMSvJUSY/C4UDKs9j6wi/CF1qTZ64xGyQshEbpgJEooKqvQRmGUxihByJmY\nE1praqmo2gorE0lrHqlIdBmXCx3Xx0DCEKYRFwWjC1TWghQEH0BJYoosqopaV1SNxWgDIqG1REuB\nd46mqgjRE3xACYXziU0/ECX03qFQjH5k8h6fElpXSKkYXzMELkAGHxxZFCGdPBwtgcRUmhg93rs3\nxyb4wDQ5hBR0bUs8FAIlJSGmN4t4D1AAQkBwnrZpGN3IOEzMFnOmaaSpa/zk3ojb2rah3+2BiDWW\nfnKYAJth+qMVg+/y+HeFEP8a8MvAf5BzXgEP/5GD/5TSIfy+h3nwgA/DD6AXHWG/wSzvo0jo5QXT\n+hlaWezRKcN2RfYJKTTGOGgtdzfPC4UXJciAPLmPHwI+CdL6CjNboExLXS1JUTE/vsdicQRoJrdD\n6oq6m2OOj3nwtR9i3G+Z+lumzTXCdixPH5CGFRfvfYWgGoTzLL/8FjFl/LAnKYX0E2dKYpoapgnP\nSF03CN2iz464/Px3OH38IaK7oIobxHGHjBF5fIJJmuxX6PoRcbih7S5QUmH9xM03f5nZ8hwpI2eP\nHkLec/fiM+h+gMl58s4xjYlHb71Ne3QfkeCOK3JWbHZrpK2R7QwGRZCSr3z4Pl//+kdM+x37/Z6b\n2y1Pnz4Dn8jRE4aRYYyMAXYBXqwmYGJImdvBsRknhixxUjEFR5I7ktGkrCg34B0iOkIsCcXSGIyx\ndKZi2VRUHkKOxJzwIRKcQ4Y9ulKkULQdPhwCWI0ixsTMViitSFMELXBR4X1PazTaGIwwaC1R2mNp\nySqQtcZPA3VlwSekKqBpyBkRCw6TFYzDSFYKoyTTNGKsZbV3dLYqLIBW+Dwx9RNWWWpTEQ7AoxIS\npRRaj7zWP1RKE0JkdA6jLTkopFGYxhTwL2V2ux0CMMYSQkRrxWzesFhKnHMopRjTWChBpYhuKl0v\niRACCE0/7NFaMXiHQTFvWoZ+wBiDzNB2DcF5vHO4yTGOA/NZxzRNpBC4vb3FKPOPpRj8LPCXDx//\nZ8B/Afybf8BrvyNqoRP0+1tsu6R3GXv7kuN3voxWFhcW3N3doaZrbK0gJCqbyCkT/ETo1+ijc6bL\nZ0yra47PHiCbChUU/u6OanFKTBMxAyGSDnE+4+6GED1aTYg6kL3EeU/KmpwlQlfkBP12dbArK/y0\nJ417YizUnHcjzbxjdfkc2S6QMTO9ekGWjnR8gYged3vFxfk9js7uMa6fs98PLOcLgl+RfGRmBauX\nV+TmFKk17sUX5PMHBCIxG67u9rD6hPb8bb74xjdoTu4T+gli5jd+9Zf4YgN/8Z/7SbbrnuB36GpB\n9BOiNlhlCWGP3+7wfiJs95jZcUlKFpKj5RGL2YxpHPGTY70b+LWna/6vT9d8sRqKCEiWO5ShRmmB\n0BktDaYyGAFaS4zR5BhJUZLRRdiVEjJltBJERpLzOCGIMaGUoZYC0VaEIIghYKxB5kxnK+KhBVay\noPwiS2RtkEZDv+do3jBkydjvmS0NPkV8PzJqSaUl0zRgpWIYyjo0ETIyJ3yCTKJShqkfaOqOEDNW\naoQpY8+9hSVOHh89Rham6/h4SXATk3d01pY7c4yknImuMApKSQZZPAVaV0BCKUjesx1HEhllVNEe\nxMgwDOSc8V4wTQUf8aEAt1VVE2LEuYnK1rgYidFjlUGksgtDC0UIkXQoSlVVIcgE78kH9ZQypci2\nTYN3vjAQTYMfJ3z8x6BAzDm/ev2xEOJ/AP73w6fPgMe/56VvHZ77fY+/8r/9n7jtHVl8xp9874wf\n/6GvYm3LfhpI45b54hjZdbjNFTNVE+Yz8JJ5u2Q/DNjjR+R+IHvPTErM8T18pdgOW9qze4Tdhqnf\nE9xEymCqDi0qhFL4aWKSkdzVGKAyhojF0hBcRPqelCbu9j3t7AjTtqQQqdoW3bWEzS2m6jBKIaqa\n5uE7BNdjFyeEcSBnx0Ja+rtLQr+Dowe8Wm1prKVrZuhasDx/RJKJrCVSHzFcfsa7H/0Q1XzGr/zq\nb/DDP/aTXH7y69T3H/Pqs2+zuP+Qqmr54Gs/xAdVizIV+75nMVviQ4AckFnjh4FMwClBWO/ZhsD0\n/CnUHaenF/gYiCGjtCIq6BYt/+T3tfyZL9/jk6st33ix4oubntvtSEQRpCZkiQsedVAABgdeHWzV\nQqK0whz8BVOOxCRoTV3EMQc9hDaiAJZCEQREqVDaEoIjx8h8NkdLXdKelEBnQR9GRIaumpFF5KLS\n+KqmaVuGzQY5P2G72zImOOo6Yk5YZdiOA5WxpCnSj45Z10BMWK0xShLTBFIwjnuqumXcT4wxkIXA\nGEVwE+uDEKi11UEHJfCTx4WINhqtS0sec0BkWYRCKuGCx5oKrTXBe5SA3WZNiKFQmlJT1xbnXQH7\nUiJ4z9D3CK1pmxofPWGaigiMTMiRLDIpeKy1RUsRAuvtlspaurah3/ekULAGJSTWGILzfPE7H3Pz\n6mVRWEr5nY7iH60YCCEe5JxfHD79l4BvHD7+68D/KoT4Gcp48GXg//1O3+Nf/ws/BnlkuLqlO54x\n7CZGe0d49RmLd76OnM8J6yuk1Hz867/KV/78X0TZIpVFGowIrMeRyjS8/O3fQJ2/QueyqmvzrX8I\n7RHDsMVWNXFcIbJDSI2pLJaIX71kch1icQEuI5sF0Qu8v0UYQ7QVMmpStvR9T//5bzO79xh9eoau\nO9rjhmnYoQEnZxiZsF2HNoa7J9/kF3/pV/iRH/6T2PP30EDPxOe//vf46p/750l1R7//Fk13is2J\naBv2k8TYiBCaH/mRP02/XXH0/vdhnWd5dsF0tWI7a5ifv4WNkudPPqNta9Y+gZLsxh4pepLWCJ/R\nzMnNDBkCQg74ybG9vsPH8h7JjaArVExMU8/W73lcz/mhjy7o3Zb1zTXXz5/z5HbNRte4kw94Js9J\nFNVk8B4hy13ptW5fxMjZfIH3/uA7MAclYREd6YNZppKWrEvrHg9uzM1uizKKxlRM2x4hJUZrqspA\njviccX5iHAdIAVTR4z++uIcUkil6Xlxe0rVtGTelYEyZR+cnbPsB5ya6rqVSkka37PxIN+uotEbM\nGupxoNEGpGKhZ4XiGyei5A0IlypF3VUooVjvduyHka5tsVogtGDyCY0huYiPnrquUVKzH1YoKVge\nLTFS4p3n+OQM7x3JJJwfSaSi+DwwF04JBu9wo+d4vqCrK+5ubjk9PmG/21NXFQ+6Bt+PhGlECxhz\nQmeB845+7Lk4O+WxfIfz+w+Yz1ta3fCbv/b3/+Bz/YcpEIUQfw34CeAMuAT+Y+DPAj9IGQE+Bf6t\nnPPl4fU/RaEWA/Dv55x/4Tt8z/x3/pefLuosLUnrNYgJKzQ+SSY3UlcS7wMSSYwZWVforiM6X/IM\npgE7riAXTrx68CWS74kIwt017YNH1O0RQlucC/hpj65m5f38HvyItg2BTEoWVXWoSiEwODchlMXY\niuBGpNS4YYPAYaUAoYp4jITUhphgGPaoYU/IgbadYapjbi+fYboFdVORmgYx9Wz3a2bNCcpWhDAw\nxcTqs084e/fLiDixvr6iO7+HzBLTdnhhkEKxffo5upJMLrIdd7R2UdSKRjANI4qDas4HRu/wo0MZ\nXQpbCNRNS/C+cGOiiGf6YU/TLbBNDUIy7nq6pgHhCW7i+tU1w901bQo4qdi2D7gUp7h6Tnd8VNRw\nKeFCZHKecSxy3RgjMYTSEodQlIq5RKAZpVBSkTJYa0ghFmGRKnRbdL54E4pEsXQb0whCMOtaRCxK\nwJgiWQpmtmKcJrQ1KKWwxiByZhwn5rMZq826qBaJ/O6yalmKitYYqYu/wXvG5FFaE0I6KPgyRll8\n8lilisRbKrQ2bIce76YS3ydKmz9rakZf2nGNJMSAEKIUshDQB/FXCqFoKaqqFEElWc7mjOPIfhiY\n1w1KSAbvSDkTfAEa67rBOQchMowjpjKknJl1NUob8JHJTaWQ5YyWgtoabF3hd3uigJ/72f/y/78C\nMef8r36Hp3/uu7z+p4Gf/sO+b7EiR7JLpG6OcBW77BFTaadjBq0txImmm5Palv00UnWnKCuRURL7\nBWwukWksM32MyCTANhgMzg0EF9D1Emu7N9t+le7IYsXm5jnYOd3RMTFFokukFNDKInzExxFZKXLM\npf1Sc7JSZd6Vimm3RcZE9hPS1IRaY7s5qoLt1XOahw9YPX+GtBfUIdMniVUz+mmHEbC92yHjjou3\nv8Tm1Qtsu8BnxeZ2hR48k7UkP6J1i7Fw/WqPUBIlDDebG7TShCnjgmPyjkpKkpJv/A0mRVolDwYt\nqGqL0gqXE4RAUzdUShODYxq2iO2W7fWID57r9RpNBhQ7IcmyIaLQIjFOE7u7NbW1hT4LkTAWVWZK\nRXOvtGKaJqAUgbZu2A97fIwEH2jrhrEfUFpijcYFX+bxGBnGHqEt0XtSitw/O+PlzWWRVkvD8XLG\nfr9nco6Nc0ityYeW3Jqal5dXzNuWcRwYhv3rBcZIUYrQFEZkgqN2zujL4RGVRrtSBAIJnzxVZdm7\nkXnb4J0jhERMESVkYTtmM2IICCEJwTP05fdDCoTVxV8CaGsKgDo4jNV0XemewkFFmcn0ff8mpXk9\n7pnGCWMM87ZDqRqpBHNbM1nDbhioJIgEi1mL9yNjHJjpitt+X7qjg5x6sxtht+HR2Tku/TF1Laa0\nw+gF0WosgpASlWlQZoEjY8M1UtSEKRPCRNqNWBex7UWpgELA/IgpeCq1pQLEyQWTy1Qi4Y1GJQCD\nVGWmQyqkLXZa2Z3x8W98zuUnf5s/80/9KEcP3yfkUOS4cURIjZ9GZARV18hsmMaAriRWG1KC5cV9\npv0GF0eEn6hrQ86eGCzV8hHbJ58xu3iLfb/m+nIF0uFHj9IVkT0aRZ0bnq0ukabl5e0NCkcMpTUd\nxi1WVNxsv4U1NZW0xf1XGwiOoDVNY1mIiihqfI7Yqi2z6cGE1FQV3m3ZrG/Y70ZscFTWkIQDbbma\nHNc3N5xXhrvJY3TDrJ7T1ccM44hPiZgFG33CZSiYQ9tarKwYnWe33x8cdpGqrqmMOfDdiRgjxhi8\nc7x48QJtDYv5jO2wZz8OkBNdXTP2iX4cQUBTV7RtSz8WwLapG65vb6iahnEcOTmZk4Xk6uaW09Nj\n+mGg3+x459FDpFJ88q1PaeYzhnGk6zrqpmO922OULgEuUmIqi+gq1rsNImcm52mbiuN2htCaM21Y\n7TdYJF4blNJv3KV105Fi5vbmFqM1Vkq6ukFkwbPVLVppRMqYxnK6WKKFYL3ZkHLiZLkge0/sR5qm\n4bbfFmqxqkkhYCrLcTuDlFi7gf1+D4BViv008PTyBY/uP+SsmzGlSBKw3q05r2ccLxZ8+uo5tbZ0\nbcsUJoZ9z4OLe+zGPa+ur7j3+DsSe28e3zOj0i/+zL9DbWrkfEnWVfHPuwEXB2bH98locp7QyjD1\ne4TUUFm0c0RdIUVCSYGUlu31c1Qa8Bi680eluoeIqevifhevjSUSoRQ5R6RUPLu84W/8wi/y7v0j\n/oU//2fpXfEokg6KPG2I7pA5EF2hxbJAWkvKkX6z5frlM9K4ozk+JwiJyoKUxBv76ugmNqsVi8WC\nKShOFhXD6PAUO9roHI0UuBDJylDlIjZpFzXBWOK45dkXK770/e/TKksWmuxdUZ4hGNwOIxQWhe5m\nJFWC1Xw/kP3Efr+jkkUYlHJktdlxvV7zcF6hyYzDSN3MmELGx8g0FXdeyJ4pKaKd0esT5PE9bveO\n7RQ5PjkpLX2KxHTwPqRAP/Q4H5icJ6XEOI5UVVV4cOcIKRUWImec86VYSFnGHQXGaKZxOJh0JFVV\nsdttefzgPvtpZOxHZIYpBeZdR4oJYTTZebTRDONQZLk+0NlCo603O3RVMex3NFVdvBLJU7cNMsKY\nAvNujgiBKfgS5nLoZJTRaCFRRpHDa7twIuaMTxGrDU1VMUV/+D9W+BCYKCNBLSQagbIGoRXrzQZE\npq5qQs40xiIz3G5XGK2p64bdbosbJo7m8+La7QdsVVEpxeAmVIIxFL1CVVtmbUsms7q7oWkaRM5s\n9z2trRjcBBLun5ySg2c39vzVv/IHjwnfs2Lwd37+PyUMAyomxGKJMC1+e8fkBTM1YI4elDuOlChj\nkd7hRURISw4Rpcvz2XkwhhRGCIewCa0Rpi7pLkIf/Oqh+OMP3nlx2PrbbzbEfk3V1dh2werVK/zQ\nU3UzXMpIWQ6+G8Yyz+byzwVZLME5krICXebn6+sbTHJFFZYVs7piN0WsFbgoSg7DgbpbHJ+grEEb\nw+b2FiUVs1rzbLXmwfwYM6+5ub3i1Ys1P/ijP4CfUqGHkifHVJxoLhC8IyZPnkaSdzx58pT58REP\nLs548uQ5fnKcnB+zXq2Z+pHeeR4sagIaFxPD6CAHYpQMkyMg8aplL1rG6gjRHaGMoWpbjLWUvIXi\nyFSiOBl7N+FCEd/EEOiHAe89Qhb7dHIBoRVNXZFiwoVAXVVIBLvdjqap6ZoKrSTb/UCIEXkw5+iY\nGGNivV7z3jvvsN1tCg4QPGOO+PWO2fES5x1KKryPkCP7vqft5mit2O12dG2ND5GT2Yzb3Raryzy9\n3e4wlSnzf0okWQrqvOkYvQMpcG6CXPwjRmucL5kCVhXX5+RdSet6vcsCwIWiDYiewbvyfkoVD0LM\nDMNAEJFF0zKrG6YQSGQ0RX9QjF+ZedfRuwmjNavVmu1uy3K+AJGZNS3TMKIrjRElH6EfJza7HXVV\n4f1UfCmqGLV+/r/7b//4uRa9j8h2RtjeIUbHb/3Kb/LwSPLgw+/HpZphv6dZFq9BjoGkFDhIsUc1\nLT4ndAJhatLkUNIQRCxS1uCRwiGoSxKMTAhpYHIoW1DocRy4/OLb5CQ5efCIT58+x/hn7PqhvN/w\nBDtf8ODRY9JhzZA+OOvcVJx8hsx+mvCDwxqN0hI/7cjS8I1PX3H/bMny7JSLi5aKTHaBJDIx+eLd\nj55WanJbcXH8LnnwxOi5X9WIWByRJ92Sxbsd42ZFXdWgJC4JJJE8jMiUif0ekzOjc4zO8+R6y0dn\np/gYePDoLabdmqoS7JXg4Vv3efHiFde7CauLacYfcgJ6F7nR99H3v4SsG3zM1FqiVSYCPmfi5A6m\nqUNyj3DEEBiGkZAKs6EFNNZCTiQfWDQNsSnW89V2w/2TU1pq+n4oklqZcW7C9SPKSEzT0NkGkRMv\nb684Pznh4dkZOpWgj7NZx+QC3351TdM2iMpyvdnwzvkF+31Pu2ixQrJabxE5MvYelyKdUsy05Wa1\nYecnjBy4P7/g4qjjdj+y6ydOlh1WmCJd9wHnPV3bkm3GTwUMjSEgkOzGkZh6zDRQGUWlNEoqQozk\nLBiChyFS1zWNKerHkGKJz8uZ05MThnHkbrPiZrPm/Oik5G6MIzInZm2LD4EQE37yTPuBRdMSD+E8\ns3lH21UMuy0xCa6ur2m7GT5Ejo+PyJNnuWh58fwFX3rnXfpp+K5n8nvWGfzSz/2HaHNK6FdEVfPp\n0xcc71ecvvcWzeIeDkEKPUrXyKZBZknWsYB5gMTgSUiliXFCiUxWDUoKjIyk0ZOlKtZbqUlIYgyM\nQ19CMqYJHycEhbeVVUWYJoQfkboh5sjt1SXTbkvbNJj5EVFIpPc0VQE4P3v+nMYabjd7KiFZnHR0\n9QKpy6gws5mnL16x6BpOLi5wGUIIxXaq1CHUNKIx2LYhWl3irGIkxYiPkRwDwXvqqmIcehpjqWZF\nhiriwXrkekIYQVq0FWyurlltdhzNNSTNq6tLVncbqkZSyQrbzAnJweTYTIkJTS/nPBHnNPfeKilR\nosyqAknMiZBK8lCIxXRT/PdF0JNiQArFME2InNFGI3Jmtb4jKl24cVmUdVVdc3e3RpGp6gptFDkm\nalvjc2az3WAErPdbjo5PqLUpnV2MuGlikzwn1Zzj0yM+/uxbfPDgLW53W46bOVklru5WTLuRXGuM\nMpzPZ+ymMl4c3N8YbRiGQKMU3cwQlGImJT56pjEyBYeqK0SW3GzW1FbTGkuIgvWwpbU1QmmUApkj\nyWd88EWgVDUsZjPWfiq5BCkTXjs5DwlXvRuYnEMjqeqmZA7Ict9Kk+N6u2UaRx6enyFipqotQcB+\nt+Wm39FVLfePjrm8fMnyeIlIUBuLrS23N7d0s4679R3Hx0dUWfL06gWtrfn82RP+1t/463/8xoT/\n+2d/CmMbpBX4fkKISJoiIeyhnbO63vD43fdIUiF0QdCVEARVIspwHlG1+GFEaI1UB024qggpEaeR\nOI7E6EFpgpsI3hNCQCmDEpqMJGaPDxMkweg9Wig6WzGEgRgC1tZMfdGgx0NackiJtq6xxrIeJuZt\nQ9NUTDFgDpui6qph12/4+//wUxazY776wUOak6NDjs8hzJRyey1xfcVko7Q5GGcOacmi5PdFXxyY\nOQVAoYXAk1A5lKwCXYC74Abcbs8nn3zCk6eXfPXxMTe9RuKxKrF3mU4V49I2amJ1xIoZG9lgZwu6\ntsPoQqsVvQAIqfAh4EPk9U4Bqw1Sq4ORJ7Hb7okpUlt7kB4f2B1hCsJOIsaArSrqqmEc9mWLs9SM\nzhULcSpApK1r+n5fJNraYIxmt+vLKBYiMkbqecPddkNKkmXXIoSkaSyruw1ZFCu2VaocpJC4W21w\nk6OuNMIohLD0buT+fIbUhn0/kmKkthWTm0hKMG/b8rcPge0wsJh3dEpxu93TdS2jLxSfVYCQJCmY\nvKNtmiKb9gnvAhOR5By1LvjClMLBICVLboEy7HYbFm1HSol+cgglCqUafPbAAwAAIABJREFUEnVl\nsW2DGyeqLPCi5FdM+z1H8yW3uwJQ1pVGVyX2T6XEfuipjQUJcQp4Ij//V3/2j9+YEKZA1Si8kEgd\niAHkbEZFh9vfcHR2xN3LJ8yPz9Ay45uOJA1WtWSpiJVERkddWaYwgaogBHbbK4IL3F1fsTw5Ztis\nCINjPzpubzegFPN5w/lihg8BFyLtbE5VV9gsWN3c8rIfOD894WY/0q9ecr7oqNqG2/WEi5mjWbn4\nkszMaoMk4cOEshZjiqPOC0G9POWf+Ylznj99yXa7w1qFsDVojVK6pP1IWaStWZKiJ/kSviGkQhlT\nsAGrD9SmJHmNzAmUQMcSEuJHx269IYSeqR/5/Pk1DxcNz9oFxliOW0HOkv3oGULilWu5MyeMsyWm\n6uhmDSciFbo0Ftedz5nB54LNxIQ/eOtjTggpQUsiiXHfI4Sg7ZpyIe93pFx+n5wy22GF1gZ5UB82\ntiITUUYz7HsyxSBUa42sSpvthhFzUN9pZQoWIQptqlNmihn2E+eLU7bbHT4nZrZmtdqwGQZEhnfm\n91n1W6aQWHY1690WgcAc7vILW3N+NEfHxF0/spzPuNusiN5ztFyABD8NLGczYq6YzTo22y3Pbu6I\n+XdThLrljBQjzgVmdYPq5kyxYCZJahCw6BqkqBhGz7GdM04O5zyKgm9ZrUr3lRP73RZlDEezI+Ry\nyeQcRpQciT7siAmskqScMNpws12z73vmdUNXtQzTQNaawXtm7Zy77Ro/TXzw+DEvX736rmfye1YM\n6sWcab3GzBYEHxGNJfuRMCVErNhtrtl6xfFsj7Iz0mZNOjlnN2zQpsYoQU+iTpmYAvurO7Z3O1ZX\nG45OOo6Oj9heXTP2A7ayxfhhW+p2xtuP76EUrFcbXl0+Q4+RRw/v0aKZRk/ddkRpuH9keSUU18PI\nxULxta+8h06C3TTivcNNI01tcJNjGjJ1neFIYXVFTIGYBfsR5mfn/IOPP+fmdsVHX/vKwUpdvBZK\nlsBNpEAqi0i/a7FNB4/769iuqjJ4BLhAHCeGuzXXn3+GmLV8+9kNj+YtoqkwWnG1WvHle2ds+g2D\nKxfa1im+4U6wp+/SLZccGUUWobACATy+vLcp6r9a2SJfztA0TQnlyhyWuiRi8IfQ0dLeK6CtLTEm\nVv0ehOT+vXtkKbi+uUXXNXs3ldyimOhmc3w/oEwiUopRDIFNPxSBTwhsdztOT0+pjOBsPudus+Ko\nm7PNjjxMRCLHtuPJ8xe8+/Yj2tmMfthQtRVy3BFSZH1zy9nJkoBkXrWcLma8urtB9Bt2EY7rGX4M\nKFNjDOw2K6KUTD5wvd1jKSEnQhsu7t8jTp62NkyTY7PZII3GHbIMjxcL6qamsjU7N7Lerah2jrkt\nxeD6do3WCnlYtGKjYchwMl8ijaIfB2ZNQw6e9bana1rOlg2r/Q6rBE4KImC1YsiOeddyerQkkpnG\nge1+i4iZetaihYQQ+ej9L/HZiyfYxn7XM/k9GxP+n5//y8TdSFKZqpkRw2FBRmXw2x3by+c0bcvH\n3/yCD750n37Vc+9rH9Hailw1jJPj7vaO8a7Qdq8uX/DFk0vaSnN2dszJyTHX6xUvbrYsq4qL8xOk\n0ex3PVopQvTc3K7I0nJ0fELX1eWHyxkjwGpJEqoYfEIJ+8hSEGM5PFJprK3RB7NLOCjs6sqA0OQ0\nISIIo7F1S10ZblcbyIl2Nn+94b143N+Ek5ZEIKnkIRIbNOLNQtHgigMt9nuic7x6fsmLzZpWSbQy\nhKnHikREshsnKq24GwIOyzY1fBFnqOU5praoLA7bnCRWSUxd471H5Yw0urj/KOh0Ofup6OtTKpLw\nFMtaPAQpRbSWWKOw1jCMjugjSmp2+x1CFeqxqWvcFHB+orYWYiIIaKoKLRX77RZU6ZaIgQen59zu\nVogk0E3Fq6fPObr3gO3mhkcPHjLuekxd0W93CGuRMTJrG/bbHUkJTpqWz66uUcrQVZausvgcmUIA\nIQjDyOnZGf20Zxh6lvMllam526yxooSu9jEgUsZaxWbX09R1sT7nSKs1o4tMIVHpomzStSX6QJgC\nTVOj6jL2qZjwIeN9KB1FY1nttoyjw40Tnsx81tFoU2LPfenAeu9Ytg3jNKCMZbPdvukkGlvR78s4\npY0uEe4HZaZGsNntyWQabUucf8z8j//9f/3Hb0yYXMAoiwgFLwjjhNYaWdVIlTh6/D7D5ROWRw11\nZbllw9XTJ8yUJDYLxnEgDB5qxTT1GCk5PVuQk2A7RuY+0JiG+yeCy5s7pqeBB+enzGcdV6sV3/z0\nOeMUeXx+gpagZWmByYkYMwOxZCS4kaeXd/SDx0jBvFaMKbDajYisePvBBSenR9RGkw4yXKFASosw\nRVfvnMPHhK0PphcpyC4QCEhpDtr9giCV4pxQouwCiCmiXMC7id31KxCZ0YEWib13XBzNGfqeFCYG\n53G2InjHmARjsqxzxSdDgzh6hKws2lZkipJOH3YrBMD3e9xU7LTKF1uuVOUCl7KkCZdHQT1e71GQ\nBxdjZTVZSIb9hEue2WzGsB9p2hpHJg4R7yaMUhhTQ8hko2i0JMfIfnRgFLXWTN7hBbjkEcGxrJe8\n6ndUXcPNesNbJ6domZlEZNxsmFWGMSTaWcfcaj55vuVkseBmGLg4WeJc4Hq1wpycFwejsaScODpe\n0iDpk2E/OirjWa/WLOYzJleA3tZI2qpBypJdOHjPfhjIIqMp+QtCakJOxBAIUhC8ozY1CAjjhGnq\nkh15ULIPfiDGCbLAVsVQJEJgHAdMnUGL4jWRAmsrVvs9+jBanZ/MAcE0OpTSLJcLcoZpHHDDxOQ9\np6dHWKOprGXqRwY34Xykberveia/d1HpOZPzDlk19NseqRomdnS5RndLsvfsXGSfYXO9IibJs+tb\n3LDjq2+/RVUvkc7jXWKYdkx9j3OBi7MjVN3gvMNqyxQromh4tdugW4Odevr1ng/u3+M3n97y/HrN\n8VFL11qUVaSQEUGWCKwpY0TFh2+/xWac+Lvffs5vfONjPjqb82M/8nW2rnBsKUSm5EBIfEyoGKnb\njrq2+MkVQ4r3GG3ItiD0vt/hcsaIRDUvij6nR2Qs8VlhGIh+Tw7gtyu8d2x3IwEB2bGcn3BWa/os\nIUkGF5B2Xi7aqiJpGLzkk41j186pYyL3Ayl4pIZKK8axjAW6qjDWMF8uD8nLpUvT+rDj6ZDUHA9x\nXmXRiaSyBS8hxrLHICUqDfud4269RslIq2uWTcvdIYZdizIC9cFhlUZZCXju/IaH846cSieUZUWa\nIttdJqYBKyW91Hx0cUROin7vmRyczmrwAlNnjuY1u7sbvnr/Ids4setXbEfF+WzBg+UcR6DTFTf7\nDceLOUTB5XZNN7M8XJ4zO2m4fO64vL7luK2xtqUfI1s8UxgQQjMNIyEKKmt4cH6GlJLNfsveOXxS\nnDY1wWk+v77CCs29o2PCNKKsBUroyqKy7HY7Rim5tzxidkhYatqGfr1FomA5hzGwXq/QRiPbilev\nNqg0MV+0nJ0cMw6eq9Ud52cn7FJkuZzTdE2JU58cg5+wTUWlDTtfYu++2+N7Nib8wn/+b/9/zL1Z\nrx1Zduf323NEnHPuzEsyh6qsUlWqSlBbliw03DZgP/rbGQb8kWzYMhpCN9BuqdAaqnImk+QdzhDD\nHv2w4t70g5V+sBtZ8ZJMMi/JvCf22mv913+g213SSuVUpQqPhxPeC3318f0j2q222U2hPVjdMZ4W\n+sHRiuJuv+f26prHcSanyuV2Q7PCy7cGVKvsj0eWrLg822C8MB0Px8OqXdd8eBhp2nBxseV8e/Z8\nAHxw6Jb45rt3vHn/yO3NJZ9//nM+7Cf+7b//Z37/7Vv+5PUZ//ov/4xuGEipQS1yUwa/Wn0/BWGs\nycxKU2pCK4VVsBQlTj99hzZaisa0kE570unAcZrpXEfKCasNi2qMx5nHD3ecXWz54v0DZ33AuY5p\nTDQDCkWKhbFU/ukR3rsrQn9BRjYExmhKSdQcSfPMdndGGHpBo71nGPo1D6KK7VitWCWod2ti2bXE\nRMlJSEJWc384ACL/3XS9WH2lgtWO42lcU50SORWC9zSl6JwAjBZHQXEYRwZjGLYd45Jwqq3mKWJj\n/uFxj26a892Ad4b9tNCrjrvxATs4XnQDd6eJszBQqMQcsdrjOo+zcgj3y8iLzZaqDQHF3WEEVdDO\noWvhcT/y6c0VX98/cBhHdrsd58MGZ8Epy5gXjuOMM1ayLGrDWYfxms46UizMKZNKxXpNZwwawxRn\nFApjDTknGhprDMYo6URTIuUqwGJrdN7RW8PhtFBao/eWzhvuT0dqKvTBshkG9scTXejQtXCcIsYo\nrIEQOkrJxGVBvMKln+s7x//8P/2Pf3xjwv44MsdMTYrDdCQM5xwe78E4XFPobiBYxZwWam6UYoCF\nzgeoGqUym16xLHvIhcMpchxPnO96nHMoZwleWtoPDweWVLi5OsM5gw+Bmgy1KV68GISRqBVYjeu8\nUFPHiQxsLi657c+I88y3X37HMAQ+uQ6odslnH92gQeysmhIMQD211HVdra1dhhJatPjxNpQVq2ya\nmIe2cSTnhenhnu+//obL6wtiVnhTqNow5gI50nDcz5VN0dycX7LERQhc1lKrrP/GpfF+KexrwLoe\nay0ti4RbWw3Ko7XB+4FaRTjkg9xcp3HCeSeOvEZMNHJjtdUS/626ZjammmnRMPiA9+JrmHNlmhPL\nNNJ1HednHeO8sMxtVakqvLEcT5PoGKy4EllT2fU9hcrlVpSgeV5oJpBzZrc9Y+M13z8eUbPGB1A2\nczPccFhmCopXVxccY+bth3tuthcsJAblOU4LF51HtZ6HceFsCCwVVMsMoed+OhCsxwVLNYrbm3Ou\n0haaYi6JeaoMthJrxaDJVdKXUlmYlwUzGVLfrZkGEILDG+mAjFHUnHg4jnRrB1afUpxKxWCpVXNK\nAkbfhsD94cSw61Etc5wSpTb240Swgd2ZZ38c+e7NO/q+g1pZUqLvLHNKaOuxRgGG0HVYbTgcDjjv\nmZb5R8/kT1YMChsm10EcOSZI40K/2Yh7LJqxRc5MIC6NsTackiSZaVFk2/A+sNld8ocv3vLt3cRn\nr8+5PutpqnEYj9wfNb33dJ3js5+/ImhH33tiXvjq99/x/nHk5atLPnr9mq4fULpS50iZTuSSePdw\n4s39iWWc+bM/+YTPP/8Z+9PE4/fv+LCfRDjUe4xeI1Ga5AOqVtArb0CtLXepGd30iglqrFVUa3Et\nsWAwx5G6/54vvn3P9eUAKlCmkcuLC/aPD2S/4zguLA/37K6u+ejFObkoWnN43RhjpKjKvCSW3Hic\nImPx7MKWbw970rSnKAfOCiZg3EoOEqPu1lhlxRLhpZKkG0mcmn6WxIpjkRC5yvp1yhmCtmhViElm\n0xQXfNejjGKeZs43W9T5BWOciPNMipWhG8itMeeK8YY+eBbg0gfmceawLKRauTkfiDnjvSXpxicv\nXvAP33wFfkPeH7i8CHxyseOwjHTWEGvj9dUV284zFYMzjXF/wtOYUgWVmRfNYUlcasNxWTjlzGa7\npSiN8gaTGme7Had5oSwS/HtaJs42A8dS2fYdNVcmGrbzGDTWGkwTU9JcxUNRK4MOoocZ+o5pWWhK\nsRl6TFX0PjDFkaIa55sNAGMu9JsBtOLm8pJhG8mlYFVPrywPy8Rxmbm4uqSVwpwl+GY7dDweTozT\nyOVuw/3dA9Z7Hu7v2Qw9Z+dn/OHLL3/0TP5kxWCeRpb5hG2F4/FAKne021eEGrFWwXGkXe747t0d\n3+4bF1tprc9DYDJwfr6l5cBu2/HaaIZNhwsWrSr/8Q/3/O//+I5f3pzz159/wquzHSVnlhxx3YbN\n7Q1f3P+BN2/v2HqPf6Xp+gE6xeF45P4wsdtt+cWvf8X7/Uh6+MDbb77FWc/28opf+A0mzgTvKVhM\nlai052CRklBqRdqVJB51wUOTuLJyfOBv/vbf8SeXHa9//VsO+/e8efM9X331lqtwzfbVS7754hs+\n9VsI59TjI8F4vhwjfngks6HmyHGZCEiqUqYJdjBHjilQt7f0w5abIfHuzVdoN6BUj1KG1oRSPJ4k\noKQ1sN6KB6CSiDJtFMF7Ce2cZ5x34re3gpo8BXcUIUEZ73Cmgc4E5+idZYqR704juTbO+0AHbIeB\njOKs6ziMB05L5tx7HkpG5cyHY8Roy7DdcowT4zKiFXSdp6+ZTd+zsY6PhisYKl8dHum9R6WGPneo\nOOOsYj8d2TjPtDRudmdsho5truQCTYs126YfUNOJm4tbvn8YaSlSTg7lHTkvBNuwyjNrxd0o/gxX\n51uO00ROCe8dm6Gn5EpcElrDduNZTiOD93TGsOSEBrqu4/ryAmsapjbG48IyF1CG4EGv8m3rHLlE\nHh8m3sTE2aanc4ZxmfjycWRz3vPR9SVWa+aYMM1jtZItmVIEYzidJhmvaZyf7xj6gbu7e7bb7Y+e\nyZ+sGNzf7Tn/+AV5nLk8v2ReImed4e5YOMwKawPHOXOxC/z+/Vv+17878epsy+3ljvPO41zF68h2\nt+HV7QUxTeRl4m4/kavlv/3Nz3h1teX1yxuR0WqF9x4XDL+8PacvH/GH7x95tx/ZbCeC78hVMezO\nGHZn8qKnxIvOwEevmZfI4/0DNiXONxvqxj/Hprc1UIQVI9Ba8gnVyjIzGLHsjgtff/8ONU28vjxj\n1ytMiUynEw3Hrz67pvgt7XDkNFYOpxPVdnz3bk8/dHz28prHKaOIGKvogqD+MVVSaUxLZc5gwoAd\nOjbX59jamHLl8O5rdM2S4uR7chWLcOeEhx9jlJVrbYKIlyQviJH8hZoLdQ1WbU2s4mpN5Fye49KK\nqqSUcDawtIa2lp+9uKSkQltza2sptAbH8QQozrtAZwxXfQ9F0VQhxcJ2cMxxpNTKNnSk08Sw3bKP\nM0PvGdOJXR/YmkpuCbQoC3MSTr9pYIKji41lHlmKpFBt1hRqHzyKRj+IM/LN1vMhwjhP6Jox/YDV\n4v9Iaby83MnquxZenG0ZY8ZrwWFmDVqJiUytmavNwFIK+2leRyGhXD8ej5ScsFrTFFKMamWeI85Y\nSmn0QdPZDl1FcdhbR3CWTOPlTcemC8zzSKmFZV4oteKTpu8Has5Yo+j6jsNjxDhhiKZlYbsZKP85\nPBD//3j+8HDiM2+4PN/Qq4pV4nIz7vfUCr/59AVff/+Of3qzZ4yNV9cXfP7xDSpYuibzrA8WqzWp\naEoNKDfQ73r+/FwRgke1QsuF6izaWVIqLEukKcXu/Iq/uLxak/4aaRnlNm8SU4ZzuD4QjyP779+R\nUashZWaaJvquRzv3bEiBkmRgCRrVwtJrkhgMmlQU42nki2/e8WmofPSrX1If7rh7+5ZWE+PpxJvl\nxKssstdjyjzcPRIuDduzc+K8MNdEF/yaD5iebPZRSvQZUy6MzWL6Ldp3tNborOXF7Q1LaaSHbyGO\nAia6Dq1k/hUcppDygjIW64IAoKXQtMSFrUny5CxZgw7JAFBacAWtAWVoJQNZ5lXVJIuxc3gvBiZO\nWZRRjDFiFKjUmFPGGY2y8mOlRANxe7GhzpX9PHNzcU5qkBexa9PBMcaMMo5NsBxypqZIyolCwhjF\nxls2O8/dA6SUhQOxzLy6vuL+/oBykny9CR0lZn5+e0WLmSUlgjfkmPDOkrMmp4p3jkYhp4JRsJQM\ntdEFh6NxTGKOEnMkNrjcbdHryjovkpJsvJfDXSUJOtaMs4paM8dplvd6DZb1WlFa4WGMKK1ZxomU\nIlZLyCta3JmtE9r13fsjSim2T2vfNcmq7zumaRRz2R95frJi8Ltv3vDdm/dcbzcMXnN7s2HOhQ+n\nkV9f7JiWyPup8u++eOR86/irX77guvdULeGa2mhOS+aUCs5ObJ0j6YwNMg8brUBZSmvyAinQJmCM\nw61ZhRJFAUo3MQNZwy7MmgMYx0bJmaI1b9/fUYswFbdnG9EO1IqpSg6/sc+sQQEN1+jNqpjjI3Wu\nbLdn/Hd/fcO7f/wnmA7MceLNmzu+HyNv7xbuHva8+OszHg7w17/+lFwrD/uJbfAklBiJloJqSmjP\nrUh6dI3iEVAqWVnxHmwNqiDIKMX+5oqRhjp8L9ZYtdB8QNuBnCPOOnTn0dYwzzNDCOQomw9tzco+\nbEBbHXkzQ99hgJQztWmcNWy3mt6Ls9LpMOJ6J8GoMTN4xyllOqXZWfkMTW9EM1IbccmMMXExDExp\nYVAdkxJDEor8efuo+fTqnLePHxi6M7RuoCxVG5o13F5fcFomLjcDUTumeUbrxnYzYJykRqV5xjqR\nwtcCmcrSMn6RhOTzzUBTmeACqTVM0yxK9vxkzfvDgcFafLAob0k5CzFLK5aY2O4CGxNQpTGnRcAV\nKsNgMBp6a4lZMedCU5ouOHZ94GwTeTxNQBPnqhBoDXZDj7WKxzLz0etbPuwfCdryyfCCcZ5IKXM6\nHtltt0hyE+x2G1JKHA5HDoe9dKnmj7QY/A9//im/e3/CWUffB2znKIeJf/PbT/nd1/f8zd/+A6e5\n8OtPLkQvnjNjkpjsh3mmFkm6dZ2j946LbU/oeoatYggdKIWyhhQX9vsRZwxnOwdV0bRC60a3puc2\nZdBVGHn5GSirpCUS50jKUTgDJZNipEaPXVOJa63UnCTU0uo1Gtw8Z+ZpCt98fYeOE+Fnt3TK8oc3\n79h8aLy+vSJ0PVdhy+0u8s9B8d33D/zVn/6KxyWxrGuqnEayVpQiQRq1NWoV4LI2SeTNtZGLQq+m\nHhZQq/qxt5rbjefNvOXu8EBNCyqLUYvJlawU2SdMslgr5KlkDE0ZWs44hUR/KYUyFlRDq0bOkao1\nymgxRMkaHzytVMaSMT5IvqJrEmxSGt5ZvDaM0yRS4ZpWpSkEJ5Rnrw1h2NCoXIeA2TimnChxZnvW\nsZxOvNheyEqvbdjPM59e79Zo8owOg0S3t0JVYk5zHEdccNKFZcN2EKC2axUXCy5LDF0sheO4UAFq\nZugCoXf4omkUGgXnDEtKLGnm/GwLaLRVbJxhmSI1FvzQOCbxhDRKLga7JlOXKmY7eUkYgCIp02Hw\nvOgsrVackc0ENBF00Xj98gXj6USJhX1ZCNZhtRJlbhXLOesk0i44K2PRZsNmECelp6CWf+n5yYrB\nl3dHvnhz4OdXZ1wGS140fej44s2Jje/47OUFnenYeSu22kbYcrvdlvOLC1mTaAkYza1xWBKnXHHe\nUJWWUMqi8drw6vqCWhLzPDKOiX7Tc7bbgJbOoT638wq9EmtcCEI9LpmWC2d9x7AdcN7JQU9JgjvX\nVgwqqkgvXde8TKgUGp98+hFlHlF5ZjrMvHp5xnya2Z8SeUl8fLPhH789EothazqOcSInKDSC90xx\nXteVckvXLBZcpck/cxVJMTx1KQpltJAEm3QqF8FRzrccl1uW/SNMD9S5ULXH+IB1imXKFGNw3pJS\npGHF3RjAGJEsr+sylCLlinXgnQTFeqOFDl0k4dk5oXOnJDwJg2RRqJX8kkvGK0VpCmU1WlXONh3B\niX9EbhqrGvuxQKmoTaCmwmnO+BC5MI7HOYLR7E8TtVZ2XUfQjVMstFrEtoyC9opN8JxKgtzQrbGU\nmZQrXec4H3qm3HDFYBUUFOMyizdjrcQCnVMCBCuDGbTIoTU8HGeC9RKe6qTFrw1ZI7bCtIjpikMw\nk9wKcrwrMVeM1ZL/WGGal3X9bUhJgMkxJmrJ1LplXiI5ZgoF0wVx8qoLu7OeeZIOsVVIWYxplYLD\n8Ygzlpb/SDED6wb+q1/uuD7rhHQREyo4bMvMh0TzllIbUwbvFMooNkFi0ZrSOG/RrdAH2XE7I07A\nWmvm44mSEqdxQinP7e0NJS3cv3vHP765B+V4fXvD2fmWfhPY+l6Sc3UDVUhLYv/hDt91aBuINTJP\nEW3s6qEn8WC1SHy3xGDV1eZ6ze1bAUWymGt2WhFPld9/+Q3KNK5fv2AeE3038OFx5p/ffuDrD5mP\nLjsOU0Yhh2xpwhuLpRCUeS48GihVRgatNVo3tJacAo3cFiDEmForVsPlxhNvLvi2KQ5xxi2PFAtN\nazgVyfMzjla8tMRAzRWnxaefVvHeQ9Pk0qhFaNIteHa7LbZJt7AkuYEU0FkjNmiq4JyFlME68Yss\nikai0lhywzVYYkFtDSVmtLakWhnniAuOc2uJTXF9ueXweOI+ZXTnuBk2/P7tA5fbjrOznpoTbx9P\nBK8pKXKxGdg4CFURrWMsgiVFVThOC7pkri8cvW0o51mKfP8HFdDGiBfkLDZ7zoBWUuyC0pKCrCqq\nVXrnQFtUgxQjU5b/N+89tTZKruxnAX97b7HekskSvFIrD/sjTYlBn/eG02EmN7nsaIqHxxPGGbpt\nTy0Jo1ZeiJMV9na7gQpxNTHZbjfM88J3377h5vqK3v24UOknKwa9KRhgWma07znOC3963vFwPPK/\nfPuBw1J4ddbz0c0FV/3A1nnR+nuD1+BdT8yJogy4wGk84ZLEm2tdyaWxNJnZhtMRHwLnNy95UTx/\n//UH/v4//AFN4U9uL/irz3/Gi49eEvqOEjUlJqY4s8RI3/e8enVNNYpaiqRDp0rViookONNAP20W\naqU1EfI0pam5cn93j4l73u0jqSi2veXCG/6PL77nn756SzCev/r8Y16/qpxZzeAsS4YURRRkMWw6\nQ10ysZRV+qpXrX0lZSlE3sCSIy0nWkpioFIbrSgqDWcqt1tHK1t0uuTh+5GaI75BsxbrPZVGjDOm\nOEppdKuASRuhIZcqUWOS7htEZKUkQqzVhvVWQLSaafNMtQ6rLamJtl+XRmcUeW50XaBVBQWUklFC\nGUUtjZwVwSvmVDnfBnKuHMcJasVWxXY7MObE7aaDVri9DtxsNnx390AXLB9dDQTf8WG/x3sNRXGI\nE0tpbHqH0vB6d8XeHoixMMZMapGaNaVCsJppWuiCp/MOrTQhWDTn//iXAAAgAElEQVRwnDPTMpGS\nFFxjxVrvcBjR2tANDqOFu7FUsYK3TmOV5oWXX6utYZQm6PgsUrNB0drqh9kqofNsVlGddH+Vzrk1\nCdoKk7PzYsEeC/O4x7u1cCMaCaPh5csbTuOJPvzniVf7//z83Vd3fHxzxYtgoQpN9u3DSNOW6/Md\n57ny6iwQnMKYtnoYOjpTqTExxhnvPFZDGUeccWLRrTS1itFnTZWLvocVzOuc5Revr7h9ccZxadwf\nFlpJxNbI8yx2VMYQhh7j/eqfL7e+URajDM1q2hNaS5WvoUkUupE8hVYLtSTSnJhOMzFFpsc9Iez4\n2fWOXAtffH3H/ePM7cUFn//sBl8zn78QgcxhFL88tKIV6QxaEdMU0+Rgtyo3FUbhmqYUhWoNVRMt\nzaTFrCAq2LWjUFXh0bzoLerqjFIix+NRchJTpuQsmwNjKbrRWiWnSGqVqsBYh3dIF+LFwQeaaBWU\nGLM4vRq6ek/NWV5CF4Sz0ArKCpjYNJiUsFavAGTBGo00JA5nGxgwTosVe64Ya+icZ5lGeqXZesdx\nkRXfaU5sXSIYi66KJSdKkjh4o0AHA7rD5cqyJA41Y+xI0LJ5mnMWG32tRH1pBRtppaDQeKvXDI+C\n7zxh6KhVCrNCgmmdc+h1hqc2dMuUSTwUnXWILQwSq45mXu3hZZqTxCMJXFW0Cl0w1LqOHCvZK3SO\n2hSH0whZMY8T7qkAz5HgHG31pXNGk3Ki7xyKnv83bcJPVgx+/upC2ta0oCUwl8O4sB06/uJnLyhZ\nJLBKg7UGZRRUcDTeHvd8c3/ixeacm6sBa8XyqSaZY6syZBSHWUwsQxB6cmuy9z8Lnsut45cvL3DG\nkLUhlcoyjRitsH1PHzxjntdDWFG1iOuQlsOIEnaejAt5lSKvhppKUY3lcX/PssxshkDe7Kg4UmmU\nVNie7fgvhg6DYtsZxkkxzwWlGzFlilICalVp0ylFTE+UCJlKyc9uSXWVT7cnf6SSKTGSrUcZIwVN\nO4np1pXeaS43nlQusc6LAel0QhVxgnL9BqMLJotNfXNhpbkWqHJz1VrxPuCtkMFUE1LOFBOlKWqO\nOCuGtEsuaDIoSLXA2ll440mtyZqtPYGMkkmhlWAj3llaKhSv2fSWoDydURzGE6YPlCZS796Jw1LN\niaoNWmnuT0eMG6gVGsKHcM7QhyDEqZqw1omxjpZb2RnNkgp+jY+LpWKd8EeMlgAYqNLJADlV4iLM\nw74LaKNYYmScxRT3eBoZhgEQizujFXmpWGflsDfhAcSYZJNlDTGLx6ZeI9V100zjTAieukg+RB8s\nORUpBNqwzPE5tKaUpwAbfjBv1ZLT+GPPT1YMfvPRJd5U/vaf7/ji7gODNbzYDuyXymAnXl3tUKqQ\nMsS4sNsMLHlkP3YoG6g2EmsjlkYzoFOjFTHkBNheXHB9dSnCnZyZY8R6h9MeqzRNFeI0UrQV7n0q\nmFaJteBKw/c9MWeW04i1lrAZcE4ouis6CDI6op/ZCrJ7b+uLTefo2owpigvX8/Y4MloBkrSptFyZ\n08Lbh8KrXY+zlsMilOASI6UqMOLNR2OdJzVP4rJaZWPR2uoKraQ7qFX23a01pLWQWDqtRPQFUFLG\nlsqLoZdAF60o80hdJlpZaC2Rm6JajyoTzizUqLChx/nw3AHFCHMtUDIG0NrgnCgzlbFi/ArMacJb\ns2Isa85iFeWiWvUOpVSMMpgqDEiy8PqVblwECRJNJpFaQzuPyogEula8Aaca3x0XNr2jd46u6+i8\nfc7XfPq7xJxwVopHafL97byjNk1ME9YYVKtsOrFcq7WRShImpjPQKkZbQKGNwoU1WSotmKLW8JeM\ndYab60u6dTSYZzGOlELTxGBXV5o14gRlxafTpIazoqA9nWZygSnOYuM+VwzgnFjVB++oZc2ztFYK\nvhLT3nmOdMHRqPT9IDZqP/L8ZMXg3WFhYzVFKebcGHPhEPfsfMfPrrcEp9E1M+XMY0x0zoKzLEX0\n6L/56DVBaaaaoSlSSeimUblSWqY2hXaWs8sdZll4eLhjPIoZZgg93juJ6qqJ2OAwzTijxGUGWJaI\nVRq321IV63xeQBeUkeawgdB39dohIGhfXSKVgl8SuQn4V1rl6qzndIr4zrI/jNAqX7655+1YabcT\nL69v8U5zPFaW2hi8R62rTkHXC1pLztFTh5BLES6A1mhVnpF6rVeuw1okaJVWmhCrnrz3XMIZiw+e\nYdhw9+g5NkWjoK2AZ01bAQrnhahkJFEoMUGpBbse/IzYslm3zstKoaomprg20oqMxgVLSZlUIikV\nWhNUXistzMQpMisoTbPdBrwxeG8YT7Os5FSkVrDGoLUSb8pcMJ2nNs3t1RmlSqd2semYU2JehPyk\nQKzbckWhoVWWPGOdFQBbGfF4rI2KJlcl0vBWRc3a1PpZtB/YpkZRqiKlijZSeL0LeB+kUFeho9cG\nXRcouTDPkVzLc7QcyFZKUfGr36dsa2SNqXSm77cIx8PSirg0LylCFF2MtXq9GBTOWsxgOByP1FVw\nltJCa/X/+TCuz09WDP63v/uGs2D47NML/uLjARPEOmoTOoIWim/Tmm7oYKhrxbNYbYXVphrJ1tUL\nzjDGiFdyG7WqKDmJcjF4jK5M30z87ov3PCyZYej5s198wi8/fkWqhdAaoe9FpNPaevE3uWmt6AxB\ng2pUKm0NFm2rE7BZbxxdkVVlzuRl4e50QNOIOQlYlhPTnDnvDF++feBuTry7P/GbT294mAsvdaNm\nuNhumGohxyKAJA1lNC2tpCP1dOSVzLGtiixaa6yqa4yWUIStVmiz6giQnEVBvi3RO2pt9M5irRMv\ngVKoywlTkoTNmEJTBuU85smleJqoMTFr8M6sB9OA8qiqybWhlcMYhQ8ddV7IrRHTCoBU2YZYIzTd\nphsxCVHMWMF8mhI1aCuaZY4sS2S324oBTZX9+TKdRMeCZZkXeucYpwnrDJ3VjPPE6ZSwvadzFr2G\n1RglRCetJPUpeEdZRWVaGZoWkFShcEaxTAlvAsaotYAB69caBNOQYowUiXW3rJpYwpWmoDZyy9Qm\nQbTzaiSjAe8t1qgVtxCgFqU4pokQDMF1kupcpJCoVRmrjZXYdy3ejr0Nz+E03nuM1szLQugCyzIL\n9fxHnp9OqFQrr4cei+Z864llYesNV5c7lhihSUJvZxpnNjDFJO61vScYg+nVKgPV7Pd7/sMXH+iC\n51efvmQz9OhgmFPi/Xdv6IaA7bZEvWcfG9hKagXbWXSzTKeZkhtaG7nhW4aSqEpBFmN2te74rbVg\nhN5aa6amjKpScdO8MJdCyYm4P9A7xRwh5oUNjnFqWFU4xoWzzYb3aeSzlx2/ejFwKob9aSS4QC7i\nMaibrOFkQyH2Y0rJGqq2Rm36h5Fk1Rp4C7HM1DjRgqc1Jy+28IVXbKNgjWE3BNlbpwxVceY1+mLL\n/gTx4QMsBe0DzUimokHArFqKkHqsIS4zrVaCE429ftowJANOwmZySfjgaLVgqmZZCkVXZg2KhtWN\noetRNAZvOZ4iZzvL3Yc9BcN4ilzvLMsU2Qwe3Qsx5xQT3hpSakL5LZHzIVBLE0fghBCiloRXYIeO\nBnhjyTmhkK6o1oo2hrg6UGvVyKWJR6U1+ODW7/sTA1NGLa3lVn7SeDQk3xCFWMrXirUyRLamyDmB\nVnKhtCoxen41xq2NWqr8vWt59n4I1sifqSQRLHSenMRFurOWlBPOGnLJq/O3pImldMJ5i3WW4/FA\nCJLb8GPPT1YM/s2fvmTnZW9/fT5w2FfuDgt//9X3bIJl8IElZ24vN8SiCNbifY8PWpDmWknzAkbz\n4eHE29PMRa2olum8wuie0sEyzYyHjLOWv/rtZ3hr6KzCOsdhfxTgaNXZa2OopdKKWttIwQMK8gHV\nWKjFYKx0A0rLnvmp+aqtMi7iTvPuw4E/+2jL9esb3t8f+Or7Bw5LJE4zqWr+1W8+5b++6Km1cZwn\n3p8maHC103IzABiZV2utayFQz8xG1A9rvtJEPKS1FASVEiVOpKXHOIexioqYq7QV9BRIQxGMZ1rE\nHKNRuOgCXhseSmM63FHijPcV5wdS1ehS0E1yKy1G9upGE+PEPj4yu5VmbIWG7IKl67x4UKA5TjMN\n2Pie2sT8NcaMIVKbJEZ1fcfxKBb3tVS0riwJ9o+PXHPGtg/MywmDhPPuOv1c1BJFkphrYdcHnJEQ\nks77dbyREVBbsW5T+ofuqlVkhWqMxM2XioU1Ek5RaxM8QSmx5Vf/NyC3rSPB0zZBSYFurdIQIFAp\n8YnAmOc1X0pF+CJKEZxZ/3sLVVKpa2nUlokx0ZoiBEcfxGJOjFFkm6OAGKP8fWpjmRMuOLw3Ipm2\n5hnq+peen45n4Nxq+qlYcmHjHHub+Ju/+4YeCMFQsXxyMaCM5tc3L+iHSIuW/uqcZT+JOKharl+8\n4L+/OsehCM6xzDNKaZwPErjiO1paxPizwTJFMaOzmjwnSdU1llYTTclt0Fqj5PJ861stFTrXQo2i\nX1Ba/AD0GorinEVtCncf3uJNE9ORaaKrcD0EYml8tyz8/t0D/+VvPxVsImcG77GxMc6ZJYr9e61P\nWgC1ZiesuMX6cqwLrRUPaGgNuiqMUhglgFcpSTgCVqOl7pKzaAtqa4LoW41WFmMU0xKJMdO1zPX5\njr3VHPd7VInk6UB1PaqWHwpTibQmRdSs684lVVRWuCLjzTw3ltmRhkHYiKXSeUNUBVXVeugaJfQo\nBbswoLRmniOpZealshs6dDCEGmjA/vHAsPFk1ZjHmcUo3ny456PrK4JX5JpxxpKzHF5RE1ZiLDhj\naFHWtIWM1ZZc8zp+GZYl8hhlzTn0nRSYnFYlqhbFYRMuSV2LcF5Ht1JEN6OoLMtCa+KYVVZyljXy\nXkkn8gTwsorCsowNyshEqmS0gIqzVjCg1Um7pAxGANyyhssYLY7W2mh0p/HO4byjlERzTkDa8ke6\nTXg8LhQUu8ETc8UrxWaz49OXl7x9dySrRqrwhw8P7DrPiy5wjI1dd03fO7796j1jMXzYJ3Z94KJ3\n9KFfJblCM25LRI6r6PZLSqinub6UdWbTOC0VuZQqNF8tu95aC/WJ4queEHtBxOs6eyu1dhPIreBp\n3L64RtX3vD1EHu6/w2jH1fUObUQleGiZt28+cHW+o+s8NTUuh8bFumosrYpmohQBC586BWS1ae16\nU5UmLwkCMj7ZqTkNuURqWqglkJOs2qxCcI/Vt7HVhoBXhs3gCcEyjTNjK9jScLstm37H6bgnjnus\ngjGnFb3OVK2wvl9ZFgKgVsQKrBRxIG6lUessSsSc0NrQEhyPlRrBdZbt2RnONmpOlAIkiCUxp8Jm\nM7DZWGxwTCdh+33z4YHrckYIPQ+He9ywwYWew5w4G7Z8OB4YwpZaRb24pEoqy6oOrCJOqgllLUuT\nzzmlKBwLrSSyc10V55QppVJUou970QE0nkHKVqEUwQG0MZTVeWiOQvqyDSgyWojrfV5j6WQ00EpL\n9mQsGCNr8LquBlVj/Z6J3Lo1AQhTTNggmy3nZYSx+qljESDRGFl511V411pbA3D+5ecnKwaKwuO4\nsHWGyxfntDU1+V//yUt+13dsLcypsR0sF33HThfG0tA+YKsYefztP7/lm33EtcbLXc+ffnrLn19s\n6EJYD2tD2UCaJnqnacUIOUgprHUYZSg6ktZWX+knYkldIUMl/bRaqzFqZRzKS69WBNgajVMiWiq5\n8urlJ3w4Ft58+Q1b30hxYdgZdtsdH6dKyonffxh5PC389ue3+OBJ4xNQaLBNY1RlQV7KUquUtLU4\nSCegV8KLwrQqcIBSWKXonagMY5yoi6NoRV6t16UFVrQqbXBtDWsqQYHTGrvpGIIkRceU2ClNb3fE\nPqC0Yj8tHI8nao7r90iYcamIZ4Fh7VC8R6sGJTHnwmman1dpta24uBHfhzRPfJjnNaDF4ENH8AZn\nLa5mHh8mWi4UJTTm3XZDxqBipCqDb4rOd0zLxP1+BCT9WgGpCIo/zTO2OmJZZewozs8cOSWsFatx\nGlijuDkfsNYIGAdY58S5W8vqD5lSyTk/d21tBZ4bgt6fn21lzVsSzon1Xa3iIUmTG5218CsF1uu1\nYysSnKNFhGZXiv1TB0LjeQVpjVmVjQKwC5aTn7vIeZ5lZWm0kM7+WMeEV1dbbi42nA+Wq60FPzCP\nJ768P3J3v+eg4C9/9SmbjWe3GYDMpXLEceLhMPHi5Sf8Onf8siZQhm0f2BmxGKcVVBVzUNXAaIvk\nFMkazCh5aeVD8EIUWok0rSFpumrlDawyA7SCJjeL3AgraEjD9IGHD3fUnHg/FT57ccavPnvNV999\nSwZC55lTxVfF2TDwmVOU7x6JqfAPX77n9npg2+9ITbAJp8zz7SQfouAapWahshahHxstjiFGK4y2\nNAoOI/yHVihxJp+knWy10mpHNUbGBq3XF66R8mrXZtvzyx26Jwv3ypnuWKx0ELvdltP5ltMcOT18\ngLxQmqZog7diMFKauC+nFKm54rVbuQ8SCw/iGj2cdQxd4Hg6CkBKW92UMqc1/CZPFT9smGNm02la\nAWMN6PYsAX6cIttBMfQB5S0DIvjJTTPFhe7arizHxtY5HkujDx6MpqaGD5acJVW6Vemy+uBRXlr4\nXCopRVJs6+ZEQLpaZTxzzv7A7Vs3OC1npmWRz4+GIsncrhWqCbMUJCZNa4VuYpxSq1w6dX2/Si1A\nW1WJ8nPGCLeiNhHHpZTXjmXlqGTpZmKKgp+oJ7s786Nn8icrBscp8tHlDuchz5P45cfEf/rujvtT\n5GbXsekNF9ue3DRnl5cEE7hr70hN2qK//PgKFyy4jpojJc1iUDpHOcnWQp2kBCixBqtVoslSK5im\nsNrRqszedUXLn4g5uQlAZ7TQjLVuYvSr1DPeoVuh1MoX7x6Zpom//+7A5X/zC/7so5/zr377Genh\nAds0S4HDGLk623A3HiWkpSoyiilWdl2TYJPayEpuBtdENCt9wRPwp4TnsFqP1/YkdOW5HWxNE6z4\nDIxpJDZhRYKiOodTYk0iDkVidSYj0g8gJE2AsFLBWVCdl1sNuBw826HjXY0c9w9Y3aG1xdZENpqc\nEiVZqaRGiDs5JVIRLCh0Fm+MrOeqdAM5LczjiRACxSdybmjbMMoRvMXbLVqx5jkYUe4ZQ+cd1mi6\nYCBlTG08jpF5mcHKry+p0HlZOQu5x6B1hSK3/sODjKV+pVPr1liSoPPWOjlgpVJyoZr2rAh1xq4e\nl5WGWn9cMFU4AlOKOG1FZqyVZEmyEsKUfG7SeK6fTWXdaPBcrGlQcnnmlrRVb6O1xqz/3lpjnuXn\nnHMrKU3hcM+mtrVW2Wb8yPOTFYOvHyZA0weHt4o+T8zVcnW+4dXVBbcvzjDK4rXj8LjnfLdhXCau\nbq5IS+TNt9/jrGWjBoKDtLrMCNFDaMe1ZEwzktBTV7S3AishCSo5RiHjrL2fUisBRGl0W5nn61qv\nVjBtvT1XPr5Tcjvf3t6ynyc+73Zsdpd8ePuOXlU23cA4zuy85ZAaj9PEu/uTAD/Ar2+vxLVGSaHR\nWq8GK4JIxyWirV07AbXyXSqgSSk/6xfqEzLe5PexKDovU/xUI3WR7D+jFbWu61INGLO6MjVJSmoK\njRSbp/ayloL3ApCllGi5YlXh5cU5mxCITbwXx/1IP/RMpbDMwjikZZaqscajjRhsqFzonGFOmVMU\nWW0rYIzHWU9uDaMUy5LYnfXokuSmq5BapmTHVDJeK1on/IjTLBbuWiswclNvjKZ3jnmO7HrRH+yX\nGdMqqirmeQGl+e77R7rOsj0bCBsnKH3O5JiF60HFOyOhOCvPVCkZH1OCXLPYwynDE0HVWYOz4iYF\n0s2llNdtA+uq8EnYtt7yNLyVceLp4Mt6UoxzlHjrsSwFZcUXgfVzqqWuBDMIq8x+WWSUySqvAOcf\nqYT59sUNOc1MKTIlxRSlJfvF7SXBWYbtjqoMsw5kJ+EkJWW03jIvCfqO7W5HHWdO48L9YWRDZrPd\nYLuOJWXIUVKClRh4KiWoukLR1ltGNTCrkKdVUeC1VmVkUGZFkWHNp5I8gSa74lplHIHEpYefvbrF\ntMJpXPiH//QtcZk4O7+iUonjidD1fPnuAaUaoTX2sWBVYxxP7IathCohbaR4EAqZx1tHLlnmhidh\nVJXuITcxyqirdPnpUVpWU50DYmGOI0utKFUlYVlbiSQzrC8irMOm3EJIF4IGY+zKtitYIwy+aZ6w\nWnF1tiGXytFqagoYDNp6Wk7UnIQcliu6kyTs1Bx57amVNXjn1x293I5NNXovugRrDdM0s388kGrF\nhh5tNc5WLoYt8zJzGkdybqAMMUUuzza0lMTN2TtSzmw7xzjOnGZJeFqWTMyOvnd8eP9AtkLYGoyY\n2E5jJJayhsWCs5pGppYmlni1rgY2K9NzTaZuNBHMZdEu+LV41FaFNr+a0kCRcUFpnlK2Wdt9wYNW\nNaR5kqwjWwyg5EgfepT+gYBGA2Okk8sproC3vAtPnYNSihDCj57Jn06bcHvGNGf2h5nvH2e+OD0w\nRqHcvtjtuL1odEHmoLPNObk2alXc3z2yjBPBe2xKTDlTWmNwCqqm0kilMi+FYBSxijzWIKu0kgUw\nahVY27uiKwpD02uuYW3rfjdRlKx0jNEYq0E5qioYZbEKYqwr5z/yf/7uGw6nI04X4pj47ONLLm86\nDmXg/tv3uNp4d3/AecUfvp94eb3FeYe2fl0UNlHnrR550LDO0Kq49dT1cGqlqRWc9M2UJpoFRaOu\nNGVQtOdPt0HKzHkinSpagfEbod2u66Yn2rJaxx+ZlFbmJ0rMQY2luSYpzamQ4ogqiW030J0POAOp\nVNxS2O9PBKs4LieUka6md510QM5IulQt9F0QokzJlNIwxsGSOU4nri8uuD8dSEum6zd0AYJ11JYp\nc+QwLywFttbig2E7nK+0Y0PfWXKuOF14dzey2fYUNHEW09DDsogHY7B8fN7RsmJaCjvfGOeZOVdC\n8ATdsMYDhjlHQLQuuSZxijIKtwbVOiOKxPp0aainAlDJua7bqB+o4rU+GcEIGB28X8lschlJdya+\nm0+MwqKEgo1qq0OzFyKc0iwxys8FL9aAWq9eCnXd5vyRdgZnHQxuoMbMf9xP/O7diWlJWGN4OCRq\nbrw891xuxBbsEDNqs6WcHqElllPk5DTWWpwzOO1BF5Ylk2ax9LLGkZ9ooeuH8kQN1euOV9hgjWY0\nylooldYUSokcuJZCLAnrjOz4owRbtqZ53B+5vH3Bru9pSTEud9xNhY/OAx+/PuPqPFDnhdBtODs/\nZ//+ga0PZFU5KcvFJqCMZwiOJY7ULNVeW0HSYxbEeT2RqJUW/4xgV2lHFYJbCBou/Ifa6vPNw7oW\nNaUx5Yl4AldWALWJ2SmrzZZa8ZDnZWb7QZelV6WmDQqaZzoJ7bqUTHCWy01PqQ1vE1Y1pnlexUcy\nXihlUKtyriD6hTRPRAQJR2tMK885j+M0oprm/2LuzX5tW9Pzrt/XjW52q9vN2ft01bkq5ThuCHGE\nYzuJEgUkBBcocBEkBNzlApQrkn8gAi4Q4hKJCxqBiEAKSIQoRgRIh6PYcYJdSZXLPnXavffae3Vz\nztF9LRfvWOscOWVbihNVTalU56y11zp7rTnGN97meX7Pquto6xYdZ0osjCkx6EABNt0ap2WI6qzB\n54zWirZ2hHnm0M+SDFUkK9FHz65paLXGaMmsDH1gP3rhY+SIMoZGWdT9liRnmqbBOpkvzUHaFnTB\noBeV90KILpkYZTUYfVzcpIsN2eoH0VJKWViURb5WLTbnez+JvMrDweB9wBhD8JEpiGZBZhlp+dwi\niTfir4gxLk5MlkoXpumH1Kj08eUBhSCtVNPx6NRSaejqisY5LmrHycmaqnJQaZTXuJywuzUvXr9B\n1xWhaByy580RqlqCKpX9XBpqVEFl2b/GLLhvreTpl1MBK7p9o83SH8sBgVYoKpQuKJVAK+aY+cff\ne4Elslu3fOfDN/zckwu2j065vXzDl9864f1nZ9S1w1lL9gNvjjOH62s2XcNxHvnKW1vu5ky3OaEz\nEvs1jqKTt4t7LflA7SoKEZ3BOMs8z1I+ZhYN/WKlRm7StGjpRTUJKGH2aQpOG5TTaJ2gJCY/MudM\nKpmmlfAOg0ixixJoixwIy2BLqYe9uxYBHcWC3XSM1jH5CaZRRC9KCbxEZ2xtUHrHNE2ERbasgBI0\nVVVjlWw6rJWZSUkyHK3qGpMzwzDgnGQTGKW4uhrZ7hyrtqOqHZVZVqipME6eaZ6pKvGAFBJNXVFr\ny6qxlJKoGoNPjtmL0OzoZ+6OE4OLC7INxjlIIpKzpKSYQ6QfR2l1rMxxTBFXpbUitjJaUPNzCJRU\nFoWjRWswyAbiXqKccqLMcsCmIvoXoxXRB+KyFbi/iUH+nLGG4APjOC6rYGFVmmXrlaM4brVaKFvl\n85YkhAAsmQz2hxSIepsM8dhDu+a9x1vO1nd0tmGaEyena3ScWa1brm/uKCkz5oLqoaoc7XaDtQpX\njHAKYkYZiMiNYKKgpIoqoOVCU0laAW0tZJkA13WFWowxFiVVgawTBLahxUueFQ/RYk8uzgEZgL33\nXo0uienuBlJk3bTyBDQQssYUS9cVqs2a2I/ouuOTyzdYEzndPcHawsvLG3bbDuNqTMms24oYAlf7\nnpPTDkJBIFaaULKYamIRQ80yzMoRrFl23/cmGSMDUF1EYisE1YyqLEolpuRJ44FkNMYagZcsFYG6\nl1d8YS9dltYhF1C5YJVBWWg2lpBrjseBq7sDXVvTNQ2alhA87cowTo7rK1FX+piouxpnEDWjsXKY\noFh1a+I8kuYBlGwCphiYZ5mGr09P5caOnn4/Mhe49jOrakVQCuMsWhlqqygGUAVbMuMQMRU45Xj5\nek8xmdY2zKlgNPgwctKc0FUNGI1dnuAhydS/Hzw3tyN1ZyymaiwAACAASURBVOgqR06Jumuwi8ch\nzAEfxIeQYiSGBFHcpF3rMFYz9SNlGe6FlEjLYBIt750zRtrXUphmL+rUyVO5GleJuAjAh8RwnIGJ\nqja0XUvXiEPyXroeQpRWErkWrNWS7vQgXvv+r9/xMFBKvQP8N8BjZIz6X5ZS/gul1BnwPwLvAd8D\n/s1Syu3yNX8B+PeQSvA/KKX8te/3vV9eXZPnxHvnZ2ys5eSko787orSmNY4pB6IvjLNH3Rxx24ba\nWfbXN7htR2cMJi+R2EXYAApDUeXz6K8l5AKWIZmx4rxTkFGkUrDlc6lxzgmMqAxV+jx5OC/jLV0K\nbz/aoRcdwMUplBw43NxBkVRilEZlDSWQlGJVtyinGVThvNL8+kefcb6pqFPAKi3Bq2lmP83kUjjb\ndEsa0QT7ImYWa1g3FT5HoRw9rAUhRkFjUzToJX8il4en8P26UavF9ouImKqcmZInjj3aWCytbCQU\naJZ0JWRivggXRfWI/LvV4sk3WuLYndGkXLCqUFlNtemYRsscAtpZ7PkZx3FmGCdKKfhBiNXKGtn+\nGHHlBT+jUdjKiLxXm8WLodi2NdFP+FgYfZQEoUrmELW1WA3rSvSQVlthDvYj1jps0gx5FBFXVNxN\nE87CZrNFYOmZum7o+55xyAwhibJ0YQ8klSlFYuXmGJn3g1QGWt6DlCFEQe1bY2mcVFpDP3I8DuIJ\n0ZDC0jbkjNEy9C0FQhR3aEpL6T9HfMjENFNljdGS36k0NO3CUtBKVIYF/ByXDYS0uEXFxdloZODr\np9+zziAAf66U8itKqTXwS0qpXwD+XeAXSin/qVLqPwL+PPDnlVLfBP4t4JvAc+D/UEr9SPk+Rupf\n/eAzSlTczJ7z1YanT3Y8Oj9nOO7Zbtb4mxkRYBdM7aiqijjPGKsI80wwIhIJIcmE3FmUL7jKUIyl\naBkmykRbL7bZQCnxYbMQQ4S06MSRE+R+gluW/XKpBLZxv16MMaONVAoSLGLIcocxhiBkoQI2JWzT\nkAKMwwyVZldvePLkjHVdsT8cUG2LdRVjGJinSMjyVHhxCPRjz09/9SmXSWGnmcmPWCpcnYUgpEWE\norQihbg47PTn68koT4eEyK810k/GBa9VLKRY8H7AD0aEWfczhhLFKmwXrfx9qVCWtgGIFIwSNR0x\n02jDk7Md0zwTF9GLlNqFrBKrTcembdn3I8M0M5SlqknCYLDWivJTSRbkPQyVHDHO0rUNx+NBDuiY\nqa0l5czK1szRk2ZP0YVeQVaFumiOkycqWBnD3M8ko2mWliPmRF1rVlVNiULF+uTlIH/fXPBKyndb\nQKvCZt1w6KfFf6CYfMRE+RmVYgnVlXZTJM3yfWISVaqWLHqpMo0GXdBOC2K/wDCMhOMkQBgjLVld\nu2XQmIgxYI2S1mPhRApkdYHP3b83KS9shMIwjChtF7FXfIC7/FMdBqWUl8DL5Z+PSql/tNzk/xrw\n88sf+6+B/2s5EP514H8opQTge0qp7wJ/CPh/f+v3NtrByvHq5oDVlvVe0aiC1WIB1VpTrxvU3uFD\nokoRazXjMdKoihBE5x3mQNU6nDXSIeeM0YKgVlFYB8qAWRJocoiys7eyj04+LhwDmZprbSheACZW\nGbQVMZJFU1IipoipHMQkE/+QKCpT1RX1uqVtNR9991M+vDziY+IP/vhXWa02DMcBlTPffP9dPv7k\nU4wxnHYdQWnCZMlmYrOqeHMXOF5dsk+Gfph5drpjHhrGfESXwpurW05Pt7SVqCjnGHCuIqdESgVt\nlbypRlaElTb4IE/zlGWT4IxZ9t+JEhJ+2DOhaTdb0ALQSMu6URnxQ0hHYpbGRNoG7odfSp6tWina\nxpGyIYTIPE4oIk0lPMaq0bTVlikkrocGPw3oDL7A6L2Eh6eZbDUGzdgfKBicVxADOUaqpsPVNUpZ\njv0Nh8PIatUsMFdNvz+iUIxGUa9rNtYxz4X9PNDWLXNWXGxbMo5+HOlvLsX1ubzPOss+frvphF05\n9Mwh0041SlVLCnOirRxNU5GCJ+VMa50cCAWmKeJZDufFEZmCKBCTCqIWzXCcZvwyjJzmQEgZlTO7\n9Zq2NczTgDKOymm6rkErJZFqujBOEg+vlcJPQURPWTYMdVNTOS1tsFZ0XYNdthf/1IfBF19KqfeB\nnwR+EXhSSnm1fOoV8GT552e/5cb/BDk8/onXH/jyY5ny25pGK7qVY/KR7aZmngI313syFft+ZlfD\nza1ns+5IORFSwSmHKgmsIWmN9rLSUXVFCUmsxUURl70wOHmyKYNB5LqqKKpGNPcyvLGi6oLPS7n8\neVCJMVJ+qgJFWwyKYg1xnqi6lpILf+cf/Cbf++iSm2Ogtpofu7nl5MvPOH38Hr/4t36JogT+Wdct\n/TBRrRva1qGKILtTSTxZW06i4dcv71Avrvk3/vhP8cFn0i60i0dgUcEzTwOpkojwQial8rBFKKmA\nEu6e9IwKnTNaF6l2lnaDkojTHq8LVVmhqxptpboS7KnYfCn33/te0SAleVGyRjNLkpSrqgUAqmjq\nuEhpgZJw9aIWVIXgDFpBKIpjP9FPI7nIYbZuagbvKUkAps4K3ksZI6zDcZL2zjlQmdo6jNaMJFTR\nKJUoPnB9cyQUTcgRWzxdq/DzyOAjGUvvM00rQbHaLg7HZBiHkZQKKSqaRkJ5YpihSF5GTImieCAg\nzT4xzzNzjOQkkmEtc0ORixuF0QJ4Oc6y4pvnwBgi2mratqXOhZjEOTuMQWY2KZCjXIvWmgXPn4he\nAK6gFyBMIiNehlKEvjSMnrp2HI89lbPyd/29HgZLi/A/A/9hKeWgvjBZKqUUdU+H/P6v7/u5XW2X\nfrNhPwV0Fsnu9WGmqxKnFycQxGwSVUQXw9DPrNqGfpgBS9OIRj3HRMgyZS1R1FxGZAcLsUZ24woN\nC/Xn3okopZcQmpXWy2GzrPQWOTJ6majnz3+gBYwuEtCqws+elDIOxztPH/Ejdc1uVaOUIUyRqpp4\n8tZjPnv1hnajeX17EJJQcMw5cnk3s6k03/rkmst9z7snKz7ae8I48Xf/8Ye8te1AGdrGPRiMQsw0\nbUtRi9HK6AcXnTBP1BKCIiWkuf+5S5HhqrJLCIyAZOPcC+K8XWGrZvFkGEw2FFNQmgdBi6wc9VI1\nyPQ6yWABlZdZQluhklv27HKTaKNxKtNZTVIVVSWzhnXj2I81d4cenSLOGp6enXLbT+zzkaI0UcE8\nDeIRKYrKaVzliMFzPBwWHmAgZhn+Xt/NoMWerWLG5xFnFIckLaQxkNKM044SI7OPZCWpT/PYY7SV\nmwtZS4I4MzWCOj8cehGJaSE8s+hUYFkIp4I1eoHmFPwU8THjk2hIlNa0bU1dWQzgF42EtjKvUUrI\nSuMsNHDFcu0Whc+Sp5BjWOzNUFWGylYP18fspcoOORArR9c1v+N9/rseBkophxwE/20p5S8vH36l\nlHpaSnmplHoLuFw+/inwzhe+/O3lY//E6xd+6Vti8dSGZ08u+NLpqfwAVhOnkbpZ4Yc9ZycnhDBT\nWcvYz7SuQ9eW/TTKOkyLEywZizZFfAtGDDgqCprbWENC0mV0ljdyTgpbOUxerMjL+jGViJ8mnJML\ngSi6Al1ZEpmSlpZC3QuUROte0KgceO98y11/lB4vKMasaSP4yxs2uvD2+U7ozdrCPHE9BDatw1nH\nZtvxjbcyfYz8xnWPz5CL4Rd+9VN+9FHHH//Jb9DHIulESoOSGYoqDXf9rezineQ+5CKbBV1kC6HU\nYoa5P82QTB+jFLU1OF2YQ8L7gTl6QtVR0hpXV1Cc7BINYgJbKgAxF/EFi7UMakky5NSLU1KZhReR\nZCePKkL3Xay2jXHYEDHKYdWK28OeYTjSVR2P1h1tZajblus3b8i5cBhHNusVWluG21smH2hWK3RO\nqMoSE0zek4rMV1L0YhLKhakfUa6icmpxByqGQ8/sZ1JRhBQ52WykQrDieBTOgIBUjLWi8kOhrCP4\ngJ88caFJKaVomloi02dPKjD7mXGaUBmscTijpTJd0OjT6DFaL1F6ATVmNtv1sioMFAXHYcTY6nOZ\nuDLE2UvLaxS1q8RMlRcbfhbX7ovPPuPq9cvlwfd7qAyUlAD/FfCtUsp//oVP/a/AvwP8J8v//+Uv\nfPy/V0r9Z0h78DXg736/7/3zP/Z16q4jzx7bVAzjJOPKGHGrNbc3N5jacWYtWkd0KCQSh0NP0xim\nOBHrlrubnrPHT0S0YQyuqTnc3lLXFXbxhicvNlHtxE+A0qQUiJNALe5BJdkPYr1tK6kIjEJVNbaI\nv56U5IDI9w6zIk+WqDjZtWgdOYxH/tavfo+Prg802jAMI3/uz/4Zzp6d0PcH1PUdfuh5dtrhx4bf\neP0h4yFwuupoXM1752tWmzV/4zuvuN6PBBJznLHrNdsObKmYvUSv2awlIKVkQoRNIxF0GOm5SxQx\nUmVExZgQqeu9TkHESwW5QxOVlTZijp5pCJQUKXkFdU1xFaZoilELCAZRKmaFhH3q+xUOwIOuviDD\nVq0Mwn5Ii66joJNUbtZqjK6ojKGpKrrGcTz0sGDmqhQIk0flhLGG85NTxjBwfZxxxtBtOtbriv5m\nYO4Hdl3NPXtwHjxKZ7rK4nOA5aYZhpmmqrCVZb1pUb1mXhD1V/s9zmi0l7i9tm1wrcSn5RTFmlyE\nbRlCRmvLqnGELHmGOQSmJEE+SsvDyWGYkqwMQ1wYi8pIhZkzXVdjKo1ztcwdxkkAKUoGhW3ToJRh\nHid8zDgnswSBuETBni1KR2sNfT+gUJycnvL8+Vs4K+K7v/dLv/xPdxgAPwP828A/VEr9/eVjfwH4\nj4G/pJT691lWi8sF8C2l1F8CvoWs/f9sued6/9b/sDEScRUjxYMuEJfy0enCphOzydgfRcseEofk\nebTdcH04sm0qxjniVh0USbMJzlGXJcEmxAWdDk1doZMMz/QyqdVIbNY8xcVcZ7BOUy0AUYVgriii\nI9dKfSGCXSbqRmtUEYnzNEaUdfy9D674jTcjt1NBxYBBuHfWKXTwtJsOt16hb2+xKvLNd5/w2cs3\nbDpHVSmOUfOltUN99Smv746YtiGGnpOq5fKuxxTLNAe2509IRqjLkNmuO9RyW99j0ypnJMMgy7TZ\nKiUHgmxSpW1Yun9rNFGL487oggkZ73vGOJPajrpdUaoK6yxpcejJk1/w62Vxcyq9SKGWUl6rzwU0\nANqaz9uXpJmmcVmzabq2IsVEXRkqbZjGkXYjIqL9HGjaljlETlct6phRaSYC4zQxHvdoY5nGiRQm\nVps1ldGCSS+Km9sDTVNhEMBNCDJ41Siur/fkxZVYVRVV06GUWICHeSYrJdqAlIll8Qwo6dOtUiiV\nCX6iKDEPhWUlapzFTxMpyLjqHr1GuR/DytA6KQGW3NOnFAJuZRHDWZUgRiJRthBFoXKmaWq8T3jv\niWNaDHbqAZ8vsmfhMpRsFl/Lb//63bYJfxPQv82n/8Rv8zV/EfiLv+N/FdAWKqNIUdJoq7bBhkAM\nmVxntHU0VcXN1Z7NbsPoE7Vp+PTyBrda8fxkR4yZeS74fkTnIGvHYyCXRDSaMHusUVTLE8ZVkpEY\nk1QK917wfhKC7Nnq5POet67lQPDSC5q8KNAWiahSGmUNKidc3RFCpOA4fesJf3R1wpQSk5+5qBU6\n3NFfz5RxoN3uaE4e8SYk1NDz9qMntHXHcR759ZdXnDeaT/qe06bi6fuPSRH2R0M0hdvbmevjLSdr\nR7l+zYRi29XYDBMwF4VTanlqyzbQKkOgILxkuYisXiLWl1KyqOUAVGCywuqC1QqXJEQkDj3JB6qu\no27bB0qUsZaiy+diFoV4JJRMtu+BMSprmXXdm3IWzb0xC8gzRExtmBcFoVWRVSeBs45M6wy5JPTm\nhHEKVEre87ffOuezN9d0qxUvXie6RhQ8tqrIIRJjoChFLFq0KCFyO3iwjq5bkeYZoxJhlu0RSrIL\nu/WKHNNicRY1l58mCpqQs2RTLq5CZfTStkmbWVISrqEpECTYpHZucbwLxjwvPX0Ms0BQlViVnRZa\ntE9JoMDI76xrKzElaUmHWtViGY8xMg4DSktrEmKQNbP+fMU5jAPBe9ZduxinfvvXD0yBeNiP7HaO\npxcX9NFze7Nnt90wzSPTMFDVDXM/4XYbqk2DbWvurgcePXnOv/TH/iif/Mav8vrDT9nsTonB8/ik\ng6S4vrri7Okjhqu7xf0nSSdGI8GgJaOLIgeZjDvEZLLvj7S1rG+oNdtVK8QhW4iTJ2iFTpk8zsIT\nsGax+iLDRyDNM29vtqgTGR4pa6jSjO9n1HEiB5jiAXuYpe3ImWzgfLdhOzWsVmuuXr3gwxd3jP4V\nbb1lszY825xgE3w0TVzOM6TI7GfuRsPHFN57csHJifTQzJ6YRRE3x0ywoklvq0Z0F4oFjPE5bVkp\n2ffLk0USr40t6JhxWbIcRz8yHSTHsV2txc5bCiz2aoBFDY36AusvL9Ld++qg5Pwgb1Qo2rbF2yiE\n4CRPzMpZrMpsu4bXH13yzpef0QaFyZ5r76mtY3NW8Wjb0fcRbSJfe/8xt1OinmfUfHywmGc0u92G\nq9s98+R5cnqOUp7jNFO05mbf44zDFmiXsBNHIhlHU3f0/YH94UBjLLZyZGBeTELaGFarFYpCiIlQ\nCj4lQojUxuIqK5uqGBZsOvhhIC4Mh65rsY1hHmeGaRKpcsokMqtuJahz70kJ6qaFLOa7QqHve+Y5\nLvqPJO7KuiFqkUJPS54EqdC2LSkn/PxDmptwuZ85+hv2/cjFds3Z+Snr3Y5tily/foMpmkChsxaX\nhD6zO9sQjea7v/z3mKaJujEM/YHVdkeOiv04YrqOtt3Smx5XMsoppphIKeJsouoEvJmLiDWS0RhV\nYRW8ur5l03W4Yuiv9qw2nXgY7P1VLqvEUgoqL6pHq8lEqRSMXcwvMp/I1sCcKCOEJQZLa8s4jNjK\nCeE2JopOWFtYhYA9P+Wkbvjw9RU+SEhKVhndreDqijdXM6dPtyTv+fjlG14M8Cuf3vL7n++42DZc\n33l88rxzvqNqa7wxFLesFReFWix5GTBK+K08ocV/QZLtg1ZKjDXLQaoVzDERhgPRz7i2pW46qrpC\nIU8cWTlm8uJuuh8s3ttoRR0nLYvAZOVp2lRi9TVKLXJokRN3taM72/Dy8jWbrqbd7NgpxTB5HrUb\nDne3PL3YcbO/o1KFtVNkU3PrR2yBVdOinGEcJDrOOIvPnujFXGWMrGpJWViJ0S8Qk0zXtpQUZI1J\nIZSIVlaUqBTUwh2Yp/nzNkjL79ktBCmZ2UT8MvG3S4Va40R1OAU8Hh9FcJai4NCUlVbQKGn1coyM\nvcy2oir4WTgMxt6DS2TVmedAzolqsVQ7a+W9jomcIvGHNUTlo+s7VrWjPQ5c7QeenO4YRomD2mxX\npDHS1i1V01GGo8AgsazamuQ9+5s3tLZCdy3NdoPzkfn4itXJKVcvX0sqTS1yYTFpGIpxxFCW3q+I\ncrAoWuuoKstt7nHrBmcNJRX8OFNKEf2B/nzPXrQMzYQwltEFSkqYJfwjFTCVI4491ekpXfIcbw+8\nuOtpuo5xnLHKsN7UdNtT8tCTlOJuf0dlatq24vn5KeM041Ydqt8TkuftTpOfXfB4VaGc5c2UedR4\nirF8ernngxfXDHPmy892dJXicLzjLmQer1uUatBKcigVRVyZS08qCb8ylU7IDStGSREUucXnr43C\nx0xInrkP+HHEVQ1121LVok0wWqOtQWmDNuVBr6G1kQpkUeClh5Xn522GWQw9MlyzOKd4+viMYZwZ\njgdu727IWXF2dsZwHOmPkXVraKpTjkOgaJns79ZbGpMFKFtVTONIt9kyThPDPNHWDj9F8v28yhoh\nJVMoKXL0kXkepOxXEvaaYniAyaS44PUAVFqGeY5UitCotSLlTIiyQtSIOKtEmTuEIq1qyllaNHX/\n81ucc6LZ0IvPIcmcZxpHGleJld5Y6qoSDqJ1hGwYBhkY5pRI92TmRb9QSpZ8i9/lnvyBHQb7OZBN\nxZt+QNHzyXVPW8k0+UefP6IA9ph48qRm9fwZ8yRwCn8YmFLkOPfEGFmtGkKObHZr6tcV4+Ud7cWG\ndrVlONwIkCKkpbdTTPPIXArWijFI5JwZZxXnTSfinZSX2BSDKYkQI6WpqIxM6EvKC4xUyj0Qim02\nmrlktE+8vr7l6fNHnK5XfPrtz7jte37t9Z5vfXTLv/oT79A+esrZScX2S8+ZvGL/7W9j0ByPbyAZ\n7OaMMN3w9Okj9iGyOtkyuYbu9oZud0GcJ/7A07e43B/47PbIp1nx8U3g7bOKd09XfOnxBamt+NbH\nr/nOBx/x/rvQ6BqjFxSWEmGOyjJgnQiSwmwkDNRaQy76AdRh7mEcFJwRtZ6Pkel4x9gfqOqGdr3G\n1TUmCeqsJNk8pFJAC/G5quyihFOLD0KeoveVhOzXpSc3taaQWSuJYAcYDj2qZMIs69/Lq2usrtE5\ncnqyQZ9umObIp1fXmDnQKItVGlUCtnIcvWceZnyI7HZbamO4e/2Kfp5Jy8OhqzoKmaigRKEdGVPR\nugrnDGGaGfoBV1WQFFonxiAyz7qqiV5gsiJOWjDp1tI1HUpByPHBfai1XtjSEpJaSqIfD6hiRIKf\nRMyUl1lV3/fUTkJkrLHs9weUFSxfTCI5jilSVbVoDELAGujalkPf/4735A/sMDDO4MPEnAupFMbj\n4s3ThVf7Pe9fnPNTX37OOE+4/R270zUu9BzP1uRxptFPGHIiDBMvP/iY+v13cV2Dzz02a26vb9BW\nUoB0bRl8wrZaQCIpEKNHLzzEjMbnTG1Z8OKeZC3Ji47fhyhOR6MWG6ic/KoylCyns7E1kLHZgk4y\nVR9neu/5n37xu8zDyKw1N70n7/e8/5ULqqLYf/YCNU9UF2dwd8Mv/spL/oX3n7AykYuzM/avbnEn\njnhzxebRU9TdLd/+4CO+/u4j5lxhXcWLm1t+/vc/59XdlrdP1nTrFSHO6FnxaNXy4vSUYQ64rmby\nkxiNlKgpy/Ikrp0hW7Xo3ZMEiigFRiGoARErqQeL7BI4UilizoS55xBmTNVQtx11XWOsJZsFme7M\n4sf3AgFdBm4RaQvuh29l+Xf1haGkteKsjCmz2q6YfZRINu9JITJMd5yfPyHPgTkeUdpx1tSMypDj\nyPZ0h0USk3fbLfM04efA/nAgVY4eMF3Lpqpom4bbw5GuXVFQ7A93y4q1QHTMs1COlIJpHMQs5CrM\nEkXvp/mBQWCspXIObUV3EVNaDHVi9JJZQ1gGriL6SjGKqE0rhkmyQdq2FsNZEuFciJnUz1Dk88UH\nNHKYUIrY30uW1i9LSGxYEpp+p9cP7DBwCy/OmYTTS549GtfVVEuAxe3tHc/feUIYe+6SwCxU6Emz\n8OnW644ZD0px8/o109TLcM1UTN5zdrHl2I+EMbNabYilkGJm2PfUbUO37TApk33Gi9dR1oQhkPqJ\nbr2iGPGSZx/QbS2iIy2qMmZ5GhhToGR0Lg8JRudWYriny2v+4Nff4XrK9NPMj1ewO1kRhkSpWq4P\ne/S4Z7ub2HQNp9s1btVilfD99seJF59c4/zE0xz59gef8MmV53uXV/RppiQF2VKmzI+caLLJVGSu\nx4L1AxWGH336CJUSytXEAil4KVtLkUjwsKxXl/bH6PvyXS1hrTIjEcXhEvcFoOTPplxwJhNixI9H\n0jwR6oa6afDG4uparOR8TvYt+gta+WUyr9UXMiGLDMrutw8y4BSYjbWa2j2mHycO/cD1VeLm9g2b\nbsPFxSm+FMrguesH0jBz4hxt1RCMxlQVoy3YdUc1OIZh5KRZ4XMkFmmTdquOEDNTTHRtS20lWHUa\nB0nfMk7qRmNQLORkBJ2WksyPSikMw4A15iHjMHj/gGWXwyPK9bowB1gMW9ZaQioPnI04eaZ7FoTc\nBdhqYTUmSdcW9Fp+IFeJWUki7qcpisbjn5U34Z/1K8XE6cmO959e0PcDTWXYtAaVHcrC+49X+AJd\n1fDp9WvWXU1QhmmY6bZbtNPMQ88cPF23pnKKcVJYt6b3IyXP1KM80V6OI68PPWdn52x2OzbG4srI\nziZoO6Z+oswBpzRjKqSwRIMrQzby9CImpnGmXbWQC6VEVExYLRisqm4EChI8KE2eZ0pVoUrm+XnL\n06RJ5ZR61WFLT4gQ8kTjGsp6y/XrNzQKHq9qGlW4eXPLkyePsF2D8xN5VXEzZvoQiNry6RgocySU\nTFPgb3/3NX/6p7/Gm5sbdo3mzZQ53ezQztAlR7RBNBNLfDeA0kr4C9qJTbgUKuMwRRGjp6S4pExL\n3JyCB+aiUnJjK0TBqY3cDC5JalKceuapFy7BakWXVzhtqaoKV9kHgMr9ijGrZQ6zAGnL4sUvy0DT\nqAUVnsEqCbHZrFqaxnF+smUMnk8/ecV3/tG3uTg5YX2y40tvnXD058z9gbvDHY8eP2YOgUpbamcZ\n+szZ8yccj4M4LUOkqu5zGCNjPxKMwmA52W1QZc314cg8e5y1KNMsa8GCIjJNI+LqlEqn6zruMw1k\n0CehLKUUsk4LVblI7HvKAjEJnpyLHAJJmJMaTQpykKRwX1nJA885J6j0SuLrYgjMcxDNSZHcz6qq\nKCUSgv8d70n122iC/rm+lFLlJ7/5DXRRnHQttauoneZ81wopZvT8xFcfsaocaIvbbDje3lFCxJeM\nsoZH52dcv3rDPdy06RqSj8wpMOREjSOFSL06oW4dRUV8dhBmamc42Z2xdtC2sB+O5OpEVjPXL/Dz\nvAytPMkYplyIs7ATu65h1dZSZitFIlM5h60ESmIVaFMR80z0kvBbKo3VFn8caeqaaETZm5jRtsVh\nlr7acvfqJUUrbqaJNI7oqub2+shXv/5lxjny7Nzy3/31f8z3Lm8wxRJSJHhPVUV++u0zfu4bz7m+\nPrJ58pgpSFtjKkOcItpYfBC1WilFdALLTVaKIkS5Vkq0mwAAIABJREFUkAosfL60KDbNookXKXfM\n+QGbLuavhcK7cAdilG2Fj4lUoChpz7rVmqqu5X9V9SCKuecuKs3DQSVDNdniiMFGbhyLpdiCTrKq\ny8sgLyZJHDoeJi6vr7l+9YoUCienO1brjhfXN2yM5p2vfJn99YHRjwx9j6kqfBKepFEwDQMnZ+cE\nBdfDREmRFGf640RT1RhXoa1m7AfZJKApRrgUKkt1lBdq8X3smig+5eeJMZFJD/gz2c7K4DCn9CB4\nizFxeiqUqHGSTUgMcvMrYJjG5VDWyzYjU9lFsBTC8j0CZhnWtnWN1pr/7a/8L5RS1G+9J+EHWBmU\nZeJ6OY4000QGXt0NOAOPt2tujp7ZJTablkeVo318ztyP7K/vOAwDVwtTPqdE1TUC2ExS2m6UJnqP\nbizOBMbDLD1hq5lCpsweM9+xvXjC7BP76wP1qeP09AQ/C1NvniI+K+aQOHoPpbBSmhzlokQbYhHl\nXC4SAhtzISgFOXC+3dDsDOP1FTkaboZbvvPhNT5l+hg4HDNff7rhZ/7YzzIdb4hHz/HmEqzGBU8X\nAnfAm8sbUol88J3v8uhkQ2rO+bHHG0oxXO735LkwR0PUhbpbsd6tqbsVN0MgZ4FrlGNhu90QU8BV\nBpUE/JFSJGvBbKcQF/CyBHuwcPtTknzJotSDTVYrsTYv1fziATBLzkKWC3B5Lx6Sg3JkPNwxHi11\n21A3LXXTPFQG95iwHKNUB1+YK6R0305AVpniJfj1nhAJmWoZVJ6fbdjuVoxvPyGMkdHPeO85OT3l\ncHXLr/3ar3J+eo5pG6rUCfsizBRtCTmgq5p+HOlWHRebNX6amftMt61Q2nCcPWA53e3wzcRhHBln\nT4ywblrII/08Yp2jciIWksMzYY3FVQtLMyWMsUvmYiZ40QXEGB7CYK/fBFnJKg0LXDUtTEZnHTFn\ncXIum2/v/eJZkTmQMYtYS2t8DFTmhxR7pjMUJbhpn4RNOIdRtOb1RMkb2q6j261JJJpVh/aR1DZy\nAcaM2rYonyhaY7qWME2CB68rpsVfj4JSaQ6HA/0hs21btqsV/e0tt2miOjvj5PSM1in0/prQT3z7\no1umIqKd232PMopdW9N1Neu2pqkWfsAcqNpK/PwhMvkgJh7ruLu6JjqFnSIff/wZv/z6yEfXRzSW\nbdfwYn/k5uaGP/UvF9Znz5iOgV/7vz9ivLtiheLZl97mWcpsdjspG1PGti2v7wZaFfjD75yS7WP2\nhwMZTWHm2arm1asb9v3EgOLZo3NK1PTjzOvhirq1bDanaGXJOi4iF1BZnlzWWupKLrKQJdcPCyZb\n6eFLIZlFgVkWtr/WqCJrMF0kWiwj2QA6RqISRFtaoJwheaajZ+qP2LqhaVuaboVddv16ySzUi4lH\nlJQaskIZRcrCdUwpUhbWm4KH2DaVM04rqqYlV5lSVhImkyPzbsfl1Rs+fvmSXduxWW3QNeh1Ja4/\nt3qIYj/OHh8S0YvIKxZom5ZVU0GKZB9o6wqtFZ115GVAqKqa1shTPOck1YyRv2cMHr24OzOQYqAE\nyVS8NxHJNiCBysxzRGuRyYdpXmzpWfQFWj9UQyBELoGnLE5bpXDG4qzFWJkv/J7gJv88XwWxC5uS\n6ZYQkccXO5racNE4NpsKVxL9zR2ubWjnSD9N5NpJvzcMVMYSVMaExHx1gypZYCOLndnHmco6YR34\nSHN+weat53D7hlINfHg70qUjJycn3Lx8hWs7PvjwFW/6gVFXtK3h/OIMpwq7tSOHgE8BEzQ6ZbCK\nHD06O4x2tK3GNDVx39P7yHeuRsLNnvOvfo189f9xvtqQyWxax81YcRMn/sHf/RX+yJ/6k6zfO+Nn\nfjby8uMXXF++4c3LF3z9a7+fNx99wPvPz7mdIPuR7tEjfJy43nt+9KLhzeYxZu6BlrxAW9O6oQkz\nJUOpG1pruZlmPnt9yzdcIbgVVmlWzjKnjHU1xjrmmFApLrTfjF9KdKUSKQNFY0omLxdVyhKprhF4\nTM6ZKQhZymhNbQ162RZV1jB5T2U0VsvXhunAYR4IwVPVLc5VNF0LZGKWkjj7yFwSVdUQfVxw4cgT\nMGdUFnNUznGpJJbwEZZBmlJUlabOFfPOcbJZ8aV33ubDzz7hw48+IfYzTdexPrkgzqOE+J5u6FqL\n3m2YQyTMEasEmqOrVgC1KXHzei9P/MbiR8/UDw/hN6pkXCUuw8l7sIbaye/NpEQOkovoFyVjXJ76\ntbMPGyuQgFg/eLpuJUDUnFmvV8ScsYi8OeUkmZVJKglrjQS2OrvI6zMxRb5vb/CF1w9sZvCn/8TP\no2Ok6ypUTjS142zbibY+BlZNTSyZWok02FnHMXh0Nox+plhN3bWkaWaeZzbdikAm9BOulotq6Aec\nsWgDx16gm2jN9vSMx2894tWLS8ZpYt8nzp8+ZV0p+v6KGOTiq6wl9JO4qJSCEJZ1GeRxoRU7iyky\n0HJK42OiOzul+MDc94RZ886Xz/jrv/RtPnxxxbqx/OQ7J/ztD/bc9J7f9/YZ/8of+gZtU7GfZTft\nk2IcBubbW17cjEzDHY8fXbA7q7h++YaTzRm+abj77BNAs+vW1LXo5l+8uuVi1/LRzYFHXcN2tyOE\nGdtUoK1YuClM0yQrMjSmqilEgWKERFb3T3/NvaUml/vocVEQij9DPp6WNJ/7PjklGZTpRe+vlLSE\n9zh3wbXJ78rHRCxQMFhb0a5W0j4sfbRZvofWaknYXgaX98aoxYmZl778i9DP+9QjrSVJqyB/RxCZ\n+hwi+77nxWevuby+wVYOV9U4Y/FzpHGWzboRF6efUFGe/s5WdHWFrh0ZMWqlZdsVk2DN/TJDua9w\n7unH2miKAh+8XD9KE4Jf2ilkQ/AFQVZMUQ4VBG5jlJFkJK0XtLqROcRiTIopLi5ceY8q6wTuGsQK\n/dd+4X//bWcGP7DD4M/8yZ+jVnC+ackl47SmbhzdqsPEZdgVPco63ILWSjFTGccQg4RbImATs4RF\nRCMXWt22OGNEH1AURhX640jKssO1ribFhC6Frl3RY8kl0OTIsO+5GUaevPWEt56c4ZpOiL3jyDB5\nEgLvTNETtZR4+8NMPw48Wze8/ZW3WbeGcH3FdDhQcsVNv2efHL3W1Bkery17U1E5y844VO1gOFDv\nziRCbDywahtss+bu5o6XN3c0pbBu4FsfXfL07ISmqyWkNWXGJa16ngq//L0XtK7w2UEm4rumZldV\nXPczz09XdF3D65s9e594tGt47/GZ6OpVom5rjtcHulVL16wAAcCkJKEpqRS0tQ9pv3khMd9vrO41\nAiUXhnGGZR8PoLSAOZF7EYCQBDoqT0Wx/CY02spN2bQtdS1PYmU+D4u9H5QpJbMnozRFF4G9L05J\nreUg00o94MjKItOVDUBexE4CvrkbJm7vDrx6fUXJmfVqRQaCD0xTIOXCtu0oKokBzDnJajD3DETQ\nxkqLFSIhRmEKKKFv38NPYgiyucji2E2L+vM+YTultHAh5Tfqg+c+del+6BiisDYBmqpZ+BJyIJbl\noBXX4gLkUUJaUgr+6i/81R++AeJvfvqGde2ougo3z6x3p4Tome722NpyumqYb4444coQKstMll5z\ntYJSaE5XHG/3dK4Rs1CKGBRmzkSVKDkSpkDRltW6Ed22MdR4nLP4WPjsxQu+96pn9eiUrYo03ZaL\n3ZZtpXBlhvqMfHVFbQxhvSX1NygfICRCSQyHSTgHDWgbOX/2lEfvPOf13/k/yaPman/HXR/41Y9f\ncDPDu2eav33lWTmFCYUf/ZFnvPOo4vJyZPXmmpNnTyhk+hcvaC4e0ZTIeWvx+wMutfyBZ2v00yec\nBHi9H6kvajaD57A/0NSOi23LZzcTXzlf8fp65s0x05wpstOUpqKua25Kyy9//DEXNzXHKXC6qvnN\nq4nvfHDJ9mzLOxuDKpExWuaQePfJmq+/9xzHcpEtCK2cs7jrilB48yI9LqXQdq1sSO4l3KWIMYuy\nYNvAYSjaYHICZ4kxEXIm5YDvZ8bjHmUMbdexXm/p1muKj/iUKSpjlabqWlnXGXFMyumjyTHKgaD1\nw3S/qIJVikwUcpUW2K1xgd2qYdvWvP/sgldXN3zw0QtsLrz/7jMSio8vb7jeH1itOzarlsNhYh56\nnDPYpqGxDq1kU1VrhXVWFJrThDGOxkrUWzGa2jZQCj4ErHVUTUM/TUzzhPfiLxDkuUcnu2gvltY6\nZeqmEbqS95QsLdH9711rxdj3iw9F2uV7wZb9XQaIP7DK4Ce++fuoNPz0u89wW4fLsG4rzBIdVrUV\n4+HArumIrcMfBooTaEcIiccXFxwPB7CGPM0L91/8cyHlBzx4VTnWXc2T862wBqMnTxPHfuTybuI7\nr+74tZdHrvYjlbX84fcueP9shTaZ3dkJn7w88tmr10wl8db5KU/PVzx79zHHu555OPLq8pZffz3w\n5hhpG8fXH295drplf3fk9NEOrwy7VuMT/MOPL/n40z0v+oGTruVnf+x9xv2e3/fjP8Xlb/46qXge\nbRq61Sm5sujkKSnRmIq9NvjbW/7+tz7h+UXDdi2DrGq1BTJ10xKTws+BYRyYsmd3ck4AuHkFuuai\nGjkmzesh8Vf+0SU3R0+dI2+fbfjme2/hKsU0jHz39S13/UxdGz67EeHSj79zzo995S2quiGEuASD\nLDCVAnMIQi5ytZB7U1wewHrBqkVSltYh3VcESdiNMS9qORSpJFhaj5jBxyWt2DqMcZycnlKcw1pN\nYxyJQt00hBSpllzMjAzkpHpYoG9aE0umUlbWkYtWAe75FpqSBSxamZqkElc3e66vbmkqy3q7JoTE\ni9dXHG731At9iWzpx0m0GDljSqHrGuqmEmWqcxz7gUM/kooM/HJamA9a1opGaRF/JVlNjuMo2QmL\nDkGCViQ+rVDQRoA2JSViSAI+XbYIsKhkF0GSWsRdeaE+/T9/82/88FUGP/b+W7ROUWnDxjlyzFRa\n0+7W7F/fMA0R5Sx9msl7L+ETYUIph6k0tjOEyxFbWVxdMYdE0UswZkyiErOaafKsKifqtXZFmRTz\ncSR4T0iBu7lwmCPZFIYc+MUPX/Kdlw1ffnrC1zYXvPeNr/LOV97h1XHm2eMLKiIffve7nLczrjuB\ndsdqBWenLSebltO2wpNx2xUYwzh53n3vy2g/87PrhqunI6w6WR9WmqvasLKe001FKS2mqTj6kU7V\nHPojq6rC4ykzrHZb/vC/+DX8NBO15nh7B8oQjwPKaW7vBlpT4UPi0A/cHmZ2iwvzMAzcpJlV15KV\n48n5GdrsKT4yJLjrb/kj773Fav2c568P/P3f+Iy7vuekjby4GfmHH1+iVOYnv/E+Z7s10zTjY743\nc1JZjS55EeyUBYIhkW0pRawGpST6S1tFRDj/qhQqc7/GTGis+COSzBMqZx40DyEkbq4uQTtMZdls\ntriqoswzlEwwss0oWi+HVPn/2zuTGEuSs47/vohc31qvtu7qvWemB49t8Bh7RuAFcfEyHDCc4GaB\nxAkBEgcsc4EjQkLixgUjGR+MhBCWOVh40WCBwJ4Ze1aPu2fr7unuqnq1vKq35suMzAgOkdXTHtxj\nG4vusnh/6amy4r2q+kJR+WUs/+//v21Yqp1n9FV1JYAv5fZsvqosGY7GdHtdFEJhC0QcS52UTqvB\nPMuZZRk4y8WNdcz6KlleUBQ548kUXIE1QuX83sh0OKY5D+i0W4RYlFgaSeTdoauKwviNPl9+7Avd\ngjDAhVDZgFYaU5Qlk9mcqvRqXLeL7epyI2cdQRgRaC/Maoy3WLu9jKhLyF3lZw1hGKLkmJ4mlLMp\nvdPrRDpkPpsQ6IjBwYQVDSoIMLmh0Wsyn84QayhLRZq2UMoihWWwve1rhW2JituIy8jmBaEorAQo\npwkkZJZN2LUlxhhOTnLa7YgkCamqiM3NAVc2D8gqEAKvSiuKvBSKrUN6yx2agSWJNJfOnWEymPDS\n5Su0Oi0C0YwHE+Io5OKpdXTagnyCFQOlJUy8W9NqI6V/4wZhvcMeUJKUJQd5SbPRox1WZOMhOk0I\nVOSTlHUMBockzQaD0ZjlTsev2ytHNZ5SaUWv0aG1EXG4N2DrcMSz37nKrPKyYFlRkhWWJFBsLLf4\nyPvOUOZzpvOSvdGEi2sxn3ioQxytczArGA9nrPZaHGyPGKZzmmnKSmpRubC0tkJv1bKzN2KSV4jJ\naMRtdNggmGWY0pd0ox2iS5Txx2FFWWFtRagrHF5qTaxFB97bMVCK0nhSjrGOAL8x6MttPTvvSM3X\nWeUtNBBMZcjMDJM7ivkcpQLSZkqaNrBh6AVMxYu/BnXRjgTasymVQil/E1bGb+4dmcq2Wi2veu0n\nDd7rQCu04F2imqmfzRSGYj6hzGaESnF6bQ0JNNN5zt5gxHScUTrH1nDEzt4up1eW6a6uECYho+GY\nyTSjqglcyjlCFHNbEtbeIFVVkkYBodJoEpQKmeVzZlmG1srXVdRK3mW9FBJ8AZhXOPLiNaKEIKj3\n1ep9iTw/pgzER3/uEZqBohUl/Mp7T9JuJ9zYHtBMUuI44WA0BbEoCYg1ZLl/2nQaIaO8wmHqTJsR\naUVTB6gwoNGMscYSRgGlKHKrmU8yQgnQIbSigNVukyJwPPnSmzz9Sv+2CIdoRTPy/6ylKVmONB96\n37s4uxzTTBtkpuTm7oCzD1yk21siq4QbL75Id7mNKh1lWRJEIYE1GPA8fRRmOKF3egWVtMmGI6JY\nqJyG3BJ3GxSHGd1uzP7eHlGjSxInFJFiPhhjXUmgoQpCYhsiccTq6VVWe5pJf5NnnnuDb7w6YG9W\nQFXiVEUiIau9NqosefBEh8O9MUSaVFcknR6v39ilq4WPPLLGpbMdNgczXrk5Ym9qyAvD6/0p+7mj\nk8RcWk14z9kerZUl4igkn85JghDREcYKQeiY5TPySoiCmAAvQV9q5YU6Sj+V9X5qgjVHrDzvuGxM\n4clOStdVkwFFkeNqhyXPKfDj4+p1tidAKUrryAt/Q6A1aZISpSlJnHirtXpj2YpXERJ5S+ZN3d5k\n88pMlbi6gtI/qeVIkwDnly6lL/ixStWCpMJsljGeTshzQ6RD4iAgqwyDwwPyovIsxv093GzG+TOn\nWD+5QZ4bRrOMeWGYz3O09ia7R9JvOG/GYqqKKI2xWIqiQukjolhFXlVkR9Tnqqxl/DVlre4U1iXk\n1nrikac2+xnGN//jyeO3TKiUZeQcrpxwarlJJw1IVZfXtwbc2h2wN8vJjCegLKUhaaDpJjApFJO5\nY6OXUFUZY1NiKih0RTaZUmQhTiwnOimrS21GWcE0ASeWeek4nDvysKLRaaJ1g0YjxZQVlfVqx0X1\nllORqSxxJyXqNJiORjgVcuHhh1GTIS89d50zJ9eJ2x1oLTHr77F3MCJKI7pJSqQts4mhcMJSr+Wf\n1GZKGEZU0zlhJFzp9zkna+AqXn5ti5XlDlEIhhJmJRJpxlu7BM2UZkNxUOSU05J+f4t153joEx/m\nm1/4FiP3lvfiapzwS2darHZjVKJ5+vIurw7m4Lw564MnHR9//BJihbww/MtTb/KuSycJWy3y6Yhc\nFK1eyKl2jNLCC9f3uLw/40Jvl0fPr2LRhHFMpwmFcXREMHPD89d2mec559fb4ALOrXdppSkmCCkj\nVz9xHeaO48iqMoShpjRe89/7OzjCQFNaiAMNVelLnbUgKiDSAfM8R4ea3BSkzYhrW3usdtvMRjnF\nbMpYh8RxRBgnpGmDOIkpVa0QrfVty7mj41FE3fYjsFJ7StTHc/4m0dhA18xrX/ZeOv80XkuWEbw9\nmjGGiIhOM2Y2mzM8HJH0lpg1GtzY3mWrv0u326XV6fgNy2aDoigoCsPWTp+N9XWv+FTTi7PZzB8Z\nOpDIs22ttb7eIDjSNvT9KvL89gmLtV7QpKqTQVgLsRzbQiXBa/Y/vNKik2iiVkzPVbS0sFlaBvOC\nzAglFf0hrCWKD7zvLEJO3xnMdMLEVUyykkgiSi2M5wU6VIRpzF6WEylHkRXghINpQVEphgVsv3Kd\nRhBQWViOA7IgZJLlKAWNIGC12+XMcsyFiydY6bQoDsck3Q6Hkwo1mnJwa4unr93kxLnzJJUlyIfE\nQc7Kaspg/4BCO6yO0J0mRX9IuhwznsEsMGjmDAYTmp0WptJMRwPa7RaNdtu7TM0tB/ND2kmDINSE\ny12C0lIMDjE6wDqhCEL28oz3dDt87Ilf5R+/8m88tNpEuZLHH+jQk4rxvOJgP+f8+hK95ZI393P6\nhzO+f+OQ0eHzPHZumeVOg/+6sskbA4PTYK0wmRVYYDCaMTOFN5El4upBiXJ7/MLpJeIkYlYY4iRk\nWhqSQGikCdf3p9wc9Ckq4dGDAa3QqwYvr/fAhQQqIE5jTG25Xkm9sRV6ByYEtPLr4ShQtyXSgsBb\nqftTCUsSRaCENG5SGMP2/j4XNlapanpubmbk5Rwzm2KyjDhNSZLUK1sruT1jqKylcur27MA668Vd\n8WpGlb1D7t2XQtS29b5A62iDzwmIWOI4qGc9IWmc0uu2qZzFWGE8ydjf3WF7u8+NzU2iOKLd7rC6\nukZ3qc33Xr3CA+fO1GYpASKK0loKUzHPptjS+Bdens05aMQJ2TyrzX79TMlZbzSD9bwFb+fui5uO\ncTIwbDRSWg3h5mafl7cmXFju0Vjq0Rw7TocxV29tY6oQHUWc3OjQbcLhbkEkMDaOYQ7b45JTqeLA\n5JRaoSYFYSEEaJaX2kgrxOwPsVjG2ZTDyZxJrrhl5igJMEVBGmk+cG6dhy+cpNfpUhyOybOMk6sb\nOAqmbsD1V3dIeycYZfscGsNgOCM/mGDF0d/aItKOCx94lNf7z5O6jI7VvHFrm/apVd64vsvyqTUi\nHKYC3Va0T56gurXFfhny8tUdIhXw4Lk1RoVhHsLy2pKn1ZIynhlmoSFVGqNKklJQLc3w20/xi6dW\n+UYakg1zXD7mmWnBxOa0GytEccWlEy3e3Vvig5cCrh5W7O1N2DyY861bY9qbmVceSlKub/dpiGai\nFLk13tlZBYRWYWSOiGI/E/rjKY+uJKg05snn3+TZV7dxQYjTgrEloiHREMYdHrq4zFee2SY5yPnl\nR85zOJ5hDw+JAk2SNhCtiOLQG7+UnqNQ1XL0lTE1k87zHMJaRKaRRuS5oapKX0EughLQ4tWarS2J\nGiG2EkxZkY8PGU/HaBXQ6S6RNhtEccx8Pq/9HDy1PFDKG/EesRjrkwhXG9+Lr1LHiRdcOTKOcbZe\neKja/7KqajFYnyRwikgsa70Gvd4FNs6cZD4v6W/32draYn9nj267RVkUYK33/KgcpZkTxgHNRkgj\nXcJay2yWeWk06xmhtiqJAk0YaoqipKgMpnQ4W9W+DG/FQ1nednK+G+5bMgDFpHDcHFdc6Q8YzguC\n5gofOrNGYS3KBTxwpsfL1wdok/PzGwllXjGrcqykDOeGvdEcYy1XhxnWaQoMVyvIizHtOMYpzYMb\ny6yev8iFpS4Wxc5gyPatHYwxrLQCNtbbjLMKDGTDIYNZzvrpEyy3T5FNBmSTjFubA4IkYrDbx1ae\nmTYej9jav0mkE6ooJGg1ufXyZR67uMLWzX0yW6CaLeLxhMZaj+k449o4Yz4e0kwTkuCWN/PodWgg\nXNvc52OXzrN1WPCNr/0nNq+4ujlipaXRBLz3gw9R7M/RQYKUhmkR8p3Xd5m+eJP3XNxgvQUje5H+\nzhA7G9NNNOfWevQ6HfJIM+jvoU3JY+d7FA8EDDPD5mDC1acH9HTAXqPL1mRKWHnPIL9Wdijr3Zpm\nZUVV5TR2LacSYTk95L3rmrR1jhdujhhOM5CAJI6wrmKUG6Lc8WsfPM+XvnuNf/3uFR57+DTNbhst\nEcYZVCXYsvLTYO2XaTpQ3tHKeYIO2jPupHYXVrYkbcRe/ccrs/ifE3+e7gL/hFRa/KxCK2J8TcNs\nuMd8HBAlXqYtaqRUxusTujD0NS9HnhDUtGZPXeRIwBXniWtHbKojLzHlLK50t/UGcNTOXV53sqoc\nzlmaUUwjjllZepCHH7rIwWjITn+PV27e4sbWDloHJGFAs5EgBmzpjwfLsiSuS73z0pCkIcb4JUsY\nRaRhQFWF5GXJPDfY0OtDFKao+R6+svSdcN82EO/5H11ggQUAjhcdeYEFFjh+uJtBygILLPD/DItk\nsMACCwD3IRmIyCdF5LKIvCoin7nXf/9/CxG5JiIviMizIvJU3bYsIl8TkVdE5KsisnS/47wTIvJ3\nItIXkRfvaLtrzCLy2XpcLovIx+9P1D+Iu/Thz0XkZj0Wz4rIE3e8dxz7cFZEnhSR74nISyLyh3X7\n8RqLt9xu/u9feOm/14ALQAg8BzxyL2P4KWK/Ciy/re0vgT+prz8D/MX9jvNt8X0UeD/w4o+KGXh3\nPR5hPT6vAeqY9uHPgD/+IZ89rn04CTxaX7eAK8Ajx20s7vXM4HHgNefcNeecAf4B+NQ9juGnwdt3\nYX8d+Hx9/XngN+5tOO8M59y/Awdva75bzJ8CvuicM865a/h/wMfvRZzvhLv0Af7nWMDx7cO2c+65\n+noCfB84zTEbi3udDE4DN+74/mbd9rMAB3xdRJ4Rkd+r20445/r1dR84cX9C+4lwt5hP4cfjCMd9\nbP5ARJ4Xkc/dMb0+9n0QkQv4mc63OWZjca+Twc/yOeaHnXPvB54Afl9EPnrnm87P736m+vdjxHxc\n+/M3wEXgUWAL+Kt3+Oyx6YOItIB/Av7IOTe+873jMBb3OhncAs7e8f1ZfjADHls457bqr7vAP+On\nbX0ROQkgIhvAzv2L8MfG3WJ++9icqduOHZxzO64G8Le8NYU+tn0QkRCfCL7gnPtS3XysxuJeJ4Nn\ngEsickFEIuC3gC/f4xh+YohIQ0Ta9XUT+DjwIj72T9cf+zTwpR/+G44V7hbzl4HfFpFIRC4Cl4Cn\n7kN8PxL1jXOE38SPBRzTPoiIAJ8DXnbO/fU8RS3vAAAArUlEQVQdbx2vsbgPO6tP4HdTXwM+e793\nen/MmC/id3efA146ihtYBr4OvAJ8FVi637G+Le4vAptAgd+r+Z13ihn403pcLgOfuN/x36UPvwv8\nPfAC8Dz+BjpxzPvwEXzB43PAs/Xrk8dtLBZ05AUWWABYMBAXWGCBGotksMACCwCLZLDAAgvUWCSD\nBRZYAFgkgwUWWKDGIhkssMACwCIZLLDAAjUWyWCBBRYA4L8BEXB9iNhuVz0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "batch_index = 8\n", + "image = style_data_batch[batch_index]\n", + "plt.imshow(deprocess_net_image(image))\n", + "print 'actual label =', style_labels[style_label_batch[batch_index]]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted ImageNet labels =\n", + "\t(1) 69.89% n09421951 sandbar, sand bar\n", + "\t(2) 21.76% n09428293 seashore, coast, seacoast, sea-coast\n", + "\t(3) 3.22% n02894605 breakwater, groin, groyne, mole, bulwark, seawall, jetty\n", + "\t(4) 1.89% n04592741 wing\n", + "\t(5) 1.23% n09332890 lakeside, lakeshore\n" + ] + } + ], + "source": [ + "disp_imagenet_preds(imagenet_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also look at `untrained_style_net`'s predictions, but we won't see anything interesting as its classifier hasn't been trained yet.\n", + "\n", + "In fact, since we zero-initialized the classifier (see `caffenet` definition -- no `weight_filler` is passed to the final `InnerProduct` layer), the softmax inputs should be all zero and we should therefore see a predicted probability of 1/N for each label (for N labels). Since we set N = 5, we get a predicted probability of 20% for each class." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted style labels =\n", + "\t(1) 20.00% Detailed\n", + "\t(2) 20.00% Pastel\n", + "\t(3) 20.00% Melancholy\n", + "\t(4) 20.00% Noir\n", + "\t(5) 20.00% HDR\n" + ] + } + ], + "source": [ + "disp_style_preds(untrained_style_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also verify that the activations in layer `fc7` immediately before the classification layer are the same as (or very close to) those in the ImageNet-pretrained model, since both models are using the same pretrained weights in the `conv1` through `fc7` layers." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "diff = untrained_style_net.blobs['fc7'].data[0] - imagenet_net.blobs['fc7'].data[0]\n", + "error = (diff ** 2).sum()\n", + "assert error < 1e-8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Delete `untrained_style_net` to save memory. (Hang on to `imagenet_net` as we'll use it again later.)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "del untrained_style_net" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Training the style classifier\n", + "\n", + "Now, we'll define a function `solver` to create our Caffe solvers, which are used to train the network (learn its weights). In this function we'll set values for various parameters used for learning, display, and \"snapshotting\" -- see the inline comments for explanations of what they mean. You may want to play with some of the learning parameters to see if you can improve on the results here!" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from caffe.proto import caffe_pb2\n", + "\n", + "def solver(train_net_path, test_net_path=None, base_lr=0.001):\n", + " s = caffe_pb2.SolverParameter()\n", + "\n", + " # Specify locations of the train and (maybe) test networks.\n", + " s.train_net = train_net_path\n", + " if test_net_path is not None:\n", + " s.test_net.append(test_net_path)\n", + " s.test_interval = 1000 # Test after every 1000 training iterations.\n", + " s.test_iter.append(100) # Test on 100 batches each time we test.\n", + "\n", + " # The number of iterations over which to average the gradient.\n", + " # Effectively boosts the training batch size by the given factor, without\n", + " # affecting memory utilization.\n", + " s.iter_size = 1\n", + " \n", + " s.max_iter = 100000 # # of times to update the net (training iterations)\n", + " \n", + " # Solve using the stochastic gradient descent (SGD) algorithm.\n", + " # Other choices include 'Adam' and 'RMSProp'.\n", + " s.type = 'SGD'\n", + "\n", + " # Set the initial learning rate for SGD.\n", + " s.base_lr = base_lr\n", + "\n", + " # Set `lr_policy` to define how the learning rate changes during training.\n", + " # Here, we 'step' the learning rate by multiplying it by a factor `gamma`\n", + " # every `stepsize` iterations.\n", + " s.lr_policy = 'step'\n", + " s.gamma = 0.1\n", + " s.stepsize = 20000\n", + "\n", + " # Set other SGD hyperparameters. Setting a non-zero `momentum` takes a\n", + " # weighted average of the current gradient and previous gradients to make\n", + " # learning more stable. L2 weight decay regularizes learning, to help prevent\n", + " # the model from overfitting.\n", + " s.momentum = 0.9\n", + " s.weight_decay = 5e-4\n", + "\n", + " # Display the current training loss and accuracy every 1000 iterations.\n", + " s.display = 1000\n", + "\n", + " # Snapshots are files used to store networks we've trained. Here, we'll\n", + " # snapshot every 10K iterations -- ten times during training.\n", + " s.snapshot = 10000\n", + " s.snapshot_prefix = caffe_root + 'models/finetune_flickr_style/finetune_flickr_style'\n", + " \n", + " # Train on the GPU. Using the CPU to train large networks is very slow.\n", + " s.solver_mode = caffe_pb2.SolverParameter.GPU\n", + " \n", + " # Write the solver to a temporary file and return its filename.\n", + " with tempfile.NamedTemporaryFile(delete=False) as f:\n", + " f.write(str(s))\n", + " return f.name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll invoke the solver to train the style net's classification layer.\n", + "\n", + "For the record, if you want to train the network using only the command line tool, this is the command:\n", + "\n", + "\n", + "build/tools/caffe train \\\n", + " -solver models/finetune_flickr_style/solver.prototxt \\\n", + " -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \\\n", + " -gpu 0\n", + "\n", + "\n", + "However, we will train using Python in this example.\n", + "\n", + "We'll first define `run_solvers`, a function that takes a list of solvers and steps each one in a round robin manner, recording the accuracy and loss values each iteration. At the end, the learned weights are saved to a file." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def run_solvers(niter, solvers, disp_interval=10):\n", + " \"\"\"Run solvers for niter iterations,\n", + " returning the loss and accuracy recorded each iteration.\n", + " `solvers` is a list of (name, solver) tuples.\"\"\"\n", + " blobs = ('loss', 'acc')\n", + " loss, acc = ({name: np.zeros(niter) for name, _ in solvers}\n", + " for _ in blobs)\n", + " for it in range(niter):\n", + " for name, s in solvers:\n", + " s.step(1) # run a single SGD step in Caffe\n", + " loss[name][it], acc[name][it] = (s.net.blobs[b].data.copy()\n", + " for b in blobs)\n", + " if it % disp_interval == 0 or it + 1 == niter:\n", + " loss_disp = '; '.join('%s: loss=%.3f, acc=%2d%%' %\n", + " (n, loss[n][it], np.round(100*acc[n][it]))\n", + " for n, _ in solvers)\n", + " print '%3d) %s' % (it, loss_disp) \n", + " # Save the learned weights from both nets.\n", + " weight_dir = tempfile.mkdtemp()\n", + " weights = {}\n", + " for name, s in solvers:\n", + " filename = 'weights.%s.caffemodel' % name\n", + " weights[name] = os.path.join(weight_dir, filename)\n", + " s.net.save(weights[name])\n", + " return loss, acc, weights" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create and run solvers to train nets for the style recognition task. We'll create two solvers -- one (`style_solver`) will have its train net initialized to the ImageNet-pretrained weights (this is done by the call to the `copy_from` method), and the other (`scratch_style_solver`) will start from a *randomly* initialized net.\n", + "\n", + "During training, we should see that the ImageNet pretrained net is learning faster and attaining better accuracies than the scratch net." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running solvers for 200 iterations...\n", + " 0) pretrained: loss=1.609, acc=28%; scratch: loss=1.609, acc=28%\n", + " 10) pretrained: loss=1.293, acc=52%; scratch: loss=1.626, acc=14%\n", + " 20) pretrained: loss=1.110, acc=56%; scratch: loss=1.646, acc=10%\n", + " 30) pretrained: loss=1.084, acc=60%; scratch: loss=1.616, acc=20%\n", + " 40) pretrained: loss=0.898, acc=64%; scratch: loss=1.588, acc=26%\n", + " 50) pretrained: loss=1.024, acc=54%; scratch: loss=1.607, acc=32%\n", + " 60) pretrained: loss=0.925, acc=66%; scratch: loss=1.616, acc=20%\n", + " 70) pretrained: loss=0.861, acc=74%; scratch: loss=1.598, acc=24%\n", + " 80) pretrained: loss=0.967, acc=60%; scratch: loss=1.588, acc=30%\n", + " 90) pretrained: loss=1.274, acc=52%; scratch: loss=1.608, acc=20%\n", + "100) pretrained: loss=1.113, acc=62%; scratch: loss=1.588, acc=30%\n", + "110) pretrained: loss=0.922, acc=62%; scratch: loss=1.578, acc=36%\n", + "120) pretrained: loss=0.918, acc=62%; scratch: loss=1.599, acc=20%\n", + "130) pretrained: loss=0.959, acc=58%; scratch: loss=1.594, acc=22%\n", + "140) pretrained: loss=1.228, acc=50%; scratch: loss=1.608, acc=14%\n", + "150) pretrained: loss=0.727, acc=76%; scratch: loss=1.623, acc=16%\n", + "160) pretrained: loss=1.074, acc=66%; scratch: loss=1.607, acc=20%\n", + "170) pretrained: loss=0.887, acc=60%; scratch: loss=1.614, acc=20%\n", + "180) pretrained: loss=0.961, acc=62%; scratch: loss=1.614, acc=18%\n", + "190) pretrained: loss=0.737, acc=76%; scratch: loss=1.613, acc=18%\n", + "199) pretrained: loss=0.836, acc=70%; scratch: loss=1.614, acc=16%\n", + "Done.\n" + ] + } + ], + "source": [ + "niter = 200 # number of iterations to train\n", + "\n", + "# Reset style_solver as before.\n", + "style_solver_filename = solver(style_net(train=True))\n", + "style_solver = caffe.get_solver(style_solver_filename)\n", + "style_solver.net.copy_from(weights)\n", + "\n", + "# For reference, we also create a solver that isn't initialized from\n", + "# the pretrained ImageNet weights.\n", + "scratch_style_solver_filename = solver(style_net(train=True))\n", + "scratch_style_solver = caffe.get_solver(scratch_style_solver_filename)\n", + "\n", + "print 'Running solvers for %d iterations...' % niter\n", + "solvers = [('pretrained', style_solver),\n", + " ('scratch', scratch_style_solver)]\n", + "loss, acc, weights = run_solvers(niter, solvers)\n", + "print 'Done.'\n", + "\n", + "train_loss, scratch_train_loss = loss['pretrained'], loss['scratch']\n", + "train_acc, scratch_train_acc = acc['pretrained'], acc['scratch']\n", + "style_weights, scratch_style_weights = weights['pretrained'], weights['scratch']\n", + "\n", + "# Delete solvers to save memory.\n", + "del style_solver, scratch_style_solver, solvers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the training loss and accuracy produced by the two training procedures. Notice how quickly the ImageNet pretrained model's loss value (blue) drops, and that the randomly initialized model's loss value (green) barely (if at all) improves from training only the classifier layer." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VFX6/z8nJBAS0iAkQJCuoCC6IJbFEjvWtay6rq79\nu/ysW3R13XVXEAsdFZFFFFxXwYYVEQSlKChFWpBOSEgjpJOeSeb5/fF4cu/cuXfmzmRa4nm/XrxI\nJndumbn3fM7neZ5zjiAiKBQKhUKhJyrcJ6BQKBSKyEOJg0KhUCjcUOKgUCgUCjeUOCgUCoXCDSUO\nCoVCoXBDiYNCoVAo3AiqOAghFgghioUQWRZ/TxVCLBdCbBdC7BJC3BXM81EoFAqFPYLtHBYCGOfh\n7w8B2EZEpwPIBDBDCBEd5HNSKBQKhReCKg5E9C2ACg+bFAFI/PnnRABlRNQczHNSKBQKhXfC3Uuf\nD+AbIUQhgAQAN4f5fBQKhUKB8Cek/wFgOxH1AXA6gDlCiIQwn5NCoVD84gm3c/g1gOcAgIgOCSEO\nAxgKYIt+IyGEmgBKoVAo/ICIhD/vC7dz2AvgEgAQQqSDhSHbbEMiUv8C9O/pp58O+zl0lH/qs1Sf\nZyT/awtBdQ5CiMUALgCQKoTIA/A0gBgAIKJ5AJ4HsFAIsQMsVI8TUXkwz0mhUCgU3gmqOBDRrV7+\nXgrgmmCeg0KhUCh8J9xhJUUYyMzMDPcpdBjUZxlY1OcZOYi2xqVCgRCC2sN5KhQKRSQhhAC104S0\nQqFQKCIQJQ4KhUKhcEOJg0KhUCjcUOKgUCgUCjeUOCgUCoXCDSUOCoVCoXBDiYNCoVAo3FDioFAo\nFAo3lDgoFAqFwg0lDgqFQqFwQ4mDQqFQKNxQ4qBQKBQKN5Q4KBQKhcINJQ4KhUKhcEOJg0KhUCjc\nUOKgUCgUCjeUOCgUCoXCDSUONtlftj/cp6BQKBQhQ4mDDbKKs3Dq3FNR56gL96koFApFSFDiYINl\nB5ahqaUJP+T/EO5TCSgNzQ2od9SH+zRcOFB2ALVNteE+DYXiF88vQhyaWpra9P5lB5fh9F6nY23O\nWp/eV+eoAxG16diShuaG1p9bnC1t3l9jcyMu+u9FeHzl423eV6CobapF5n8z8e/V//Z7H6V1pbj3\n03tR01QTwDMLP9WN1ThaczTcp6H4BRFUcRBCLBBCFAshsjxskymE2CaE2CWEWNPWYxob42O1xzDg\nxQH4bN9nfu2vsqES24q24d/n/xtrc+2LQ01TDU7/z+mYv3W+5TaldaXYVLDJ674+2vMRLn7rYgBA\ns7MZvWf0RvLkZIx7exxyK3NdtrUjHESEB5c9iE5RnbBkzxI4yQlHiwMb8zd6fW8wmfH9DAzvORwL\nty9EcU2xz+8vry/Hpf+7FB/t/Qif7/scADB9w3R8svcTn/flaHH4/B4AqHfUY3HW4tbfa5tq8Y+v\n/4FhrwxD/vF8v47xfd73GPmfkbjto9taXyurK/Pr/PzlSNWR1mOW15dj1vez2hRm3VywGf/4+h9Y\nsG1B6+ewLncdPt7zcUDO1y6Hyg8FbF9EhIeWPYSdxTtdXvf3Xgo3wXYOCwGMs/qjECIZwBwA1xDR\nCAC/9ecg0hnUNNVg6CtDW3v4RIQ/fv5HDEsdhr+v+juanc0AuNf86IpHbd0YKw+txHn9z8Mlgy7B\nlsItqG2qxbi3x2H6huke3/fXFX9F15iuWLBtAQAgpzIHS/cvddlm/NLxuPvTu03fP2fTHHyd/TUA\nYPGuxfg+73uU1pViY/5G9Enog+w/ZePigRdjzPwxmLR2ElZlr8LVi67Gma+f6fWa5myeg40FG7Hs\n98uQGpeKDXkb8Ma2NzB2wVjsOLrDbfuaphpUNlQC4B7swm0LQURwkhN3fHyHm6gcrTkKJzm9nsdL\nP7yEPSV7AABF1UV4aeNLmHf1PNx26m2YtmEaAH6w/vXNv7C1aKvX/d372b24oP8FmHX5LLy/+33U\nNtXi2XXP4l+r/+XVwe0u2d16PyzKWoQRc0fYugYjn+77FLd/fDsq6isAAFe8cwUOVRzCdcOuww3v\n3YCG5gYQEaaun4qMmRmt96QVOZU5uHrx1Xjh4hewpXALSutKsb9sP3rN6IXdJbvdtt91bBfmbp7r\n83l74+EvH8aTXz8JAHhrx1uYsn4KRrw6ArO+n4W1OWtbOyWbCjbhYPlBj/tqbG7ErUtuRU1TDWb9\nMAvvZL0DAJi0bhIe/vJhr07/ze1v4p9f/7P1d39Do0drjmLI7CHYVrQNALcjB8oOYHPB5tbQZk1T\njW33vzJ7JT7e+zEueesSfHngSwDcmRsyewh+LPzRp3MjIr+jDiW1JYHpPMiTCNY/AAMAZFn87QEA\nz9jYB/1l+V/on1//k178/kVam7OWSmpLqKK+gu74+A5KnZpK+0r30RMrn6BBLw2icxecS06nk+Zt\nmUcj546kBkcDXbDwAnpty2tUUV9BV71zFfWf1Z+ue/c6smLN4TV01yd30ah5o+iVja8QEdGY18bQ\nNYuuoXMXnEvDXhlG/1j1D3I6na3vqW2qpTmb5tDNH9xMA18cSOV15dR7em/aU7KHLn3rUuoyqQvt\nOLqDiIi+2P8FDX5pMHWf0p3yq/Jdju1ocVDatDQa89oYqmmsocQXEunXb/yaFmctpqe+foqeWPlE\n67Y7ju6gR5Y9QqfNPY2mrZ9GadPS6HDFYcvrWn14NaVNS6ODZQeJiGjC6gn0wNIH6ISZJ9D/ffZ/\ndM7r51CLs6V1+8r6Sho9bzQNemkQHSo/RFe8fQV1fbYrzdsyj17d9Cr1nNqTzpp/VuvnkFWcRYkv\nJNJLP7zkduyyujK6/aPbqbyunLYXbaeoiVF058d3EhHRYyseo0eWPUJERPlV+dR9Sne665O76OL/\nXkxp09Jo/OfjLa+JiOjHwh+pz4w+VO+op4r6Ckp8IZFmbJhB1yy6hobPGU6rDq1y2b7F2UKbCzZT\nc0sz1TvqacjLQ+iEmSfQzqM7KX1aOvWZ0YdWH17dun3B8QL6Nvdb02Ovy1lHKw6uICKi69+9nro+\n25Xe2/Ue5VTkUI8pPcjR4iCn00k3f3AzDXl5CGW+mUkjXh1Bg14aRBvzN7rtr7qxuvWe+NtXf6O/\nLv8rERHd+N6NtGDrAnpsxWOUMSODbvngFrf33vT+TRT9TDQdKDtA9Y56mrB6ApXUlrQ+D1sLtxIR\n0YqDK2jc2+OopLbE4+dKRFTvqKeE5xOo+5Tu1OBooLNfP5uWH1hOKw+tpAeWPkCnzT2Nhs8ZTnd+\nfCd1mdSFfr/k9x73N/W7qXT1oquJiOij3R/R+QvPp8LjhZT0QhKdt+A8+u/2/7q9J68qjxwtDqpp\nrKFe03tR4guJVFJbQj/k/UDdnu9GhccLWz87/f1rJKcip/W7WrRzEXWZ1IVuW3IbOVocdPbrZ1P/\nWf3ptLmnUfxz8ZQ+LZ2in4mmG9+7kZqam0z31+JsoaLqIiIiuvKdK+n1H1+ntTlrKX1aOjlaHPRN\n9jeECaB7P73X6+e8tXArVdZXUkV9BV3034tanwci/g7s8uSqJ+nRFY8SERE38X623f6+0fYBPIvD\nLACvAFgNYAuAP1hsR8+tnk7PrHmG7l96P501/yxKnpxMUROj6IGlD9DLP7xM/Wf1px5TelBeVR4N\nnT2Unlz1JKVPS6e9JXuJiGhj/kaKey6O4p+Lp9s/up2qG6tpwIsDXBoASXFNMfWa3oumfDeFpnw3\nhUprS4mIG7CE5xMopyKHjtUco1HzRtEDSx+g2qZaWrRzEQ14cQBd/+71tGDrAio4XkBE/HCfOf9M\nOvmVk1vFav6P86nvzL60/MBy+u37v6U3t73pcvyvDn5Fo+aNoiEvD6E/ffknuvStS2n2xtl09yd3\n05jXxpies+SuT+6il3942fRvP+T9QGnT0mjloZWtr2UVZ5GYIGjc2+OoxdlCZ79+Nj279llyOp1U\nWltK5y04jx784kGa9f0sin02li7732WUVZxFqVNTqceUHpRVnEWj5o2ixVmLaWvhVuo3qx89sfIJ\nypiR4XZDP/jFg5QxI4MufetSuvDNC2nC6gmU9EIS5VXlUfcp3Sm7PLt126PVR2nqd1Pp2bXP0u5j\nu6n39N7U4myhktoSWpuzloiIyuvK6dwF59KS3Uvo2sXXulz31Yuups6TOtOXB76k17a81toYEREt\n27+Mhs8ZTsmTk+mOj++gCasn0HXvXkfPrXuOYp6JoT9/+Weavn463fXJXeRocdCdH99JyZOTKXly\ncuv9JGlxttApc06h3tN709Hqo5T4QiI9s+YZuuuTu+jF71+kuz65q3Xb5pZm2lq4ld7f9T5V1FfQ\nQ188RJO/nez2PY3/fDxlzMigwxWHKXVqKh0qP0RERO/sfIcu+99l1HNqT9pWtI3SpqXRruJdre87\nUnmEUian0ONfPU63fHAL3fnxnXTS7JPopNkn0T2f3EMZMzJo+JzhVNNYQ0NnD6VrFl1DQ2cPbd2/\npKyujNbmrKXNBZvJ6XTSlwe+pHMXnEsXLLyAZm6YSalTU10aS6fTSV/s/4Ke+vop2lW8i1Imp7T+\nvbqxunW759Y9R7/78HfUfUr31s+xsbmRek7tSQ9+8SDd8fEdtPzAcjr11VNbOxu1TbX0xMonqPOk\nznTt4mtpwuoJdPMHN9Pdn9xNz659ls5feD6dNPskenTFo1TdWE2DXxpMp809zeUe13PzBzdTv1n9\nqMXZQvd9eh9NXDORUian0ENfPESXvHVJ63HrmuroSOURqnfU01XvXEU3vnejqei8/uPrFPtsLD23\n7jlKm5ZGdU11RER01vyzaNn+ZfTIskfo4WUPU/LkZKqor2j9vF7/8XWauGYivbrpVSqtLaVp66dR\n6tRU6j6lOw18cSDd9+l9lDI5hQqOF9CS3Uuo2/PdWkXNDHluLc4WOmHmCa2d0PYsDq8A2ACgK4Ae\nAPYDONFkOxo9+ml6+mn+t3r1aiIianA0tH4409dPpze2vkFERIuzFlPnSZ1pXc46lw9Q38snIno3\n613qObUnDXppEA2dPZRu/fBWmrZ+Gl3+v8tdeueS7PJsl4a5sr6Szl94PsU+G0sX/fcit94pEdGu\n4l2ECaAVB1eQ0+mkuz+5m2547wZaum8pERHN2zKPbltym8t77v7kbpqxYQbN2TSHMAH02pbXaF/p\nPkqdmkqJLyRSY3Oj23EkS3YvoUvfupSqG6vpkrcuoeUHlhMRN4ipU1Nbj6v/TC5961LalL+p9RpP\n/8/pdPn/Lqf0aen06IpHW2+8lYdWUlVDFRFxj++1La8REbuRqIlRNODFAfTqpleJiHtR8mciop1H\nd1LPqT2puKaYLv/f5XTyKyeTo8VBt3xwC/3qP7+iG967wfKaiIiGvTKMNuZvpHs+uYe6TOpCO4/u\npAeWPkDXLLqGBr00qNU1SN7e8TYNfmkwtThbqK6pjjJmZNC9n95LT656kvrO7Etf7P+Cahpr6MI3\nL6S45+IopyKHnE4nvbntTapurKai6iJKeiGJ7l96P132v8voeMNxmrFhBl3+v8vJ6XRSdnk2Nbc0\n05LdS+iM186gm96/ic6cfyZd8fYVdLDsIPWa3ovOX3g+fbr3U4/f1bi3xxERO7h1OesotzKXUian\n0ANLH6CeU3vSNYuuad2+sr6SYp6JoYv+exEREc3cMJMSX0ikfrP60d+++hv9Zflf6OFlD7f2rk//\nz+lU01hDczfPpRvfu5Eq6yvpyneupNHzRtOlb11KTqeTZm+cTWnT0mjZ/mVExAI2et5oOuO1M6jX\n9F70zs536KEvHqIXvn2B5v84n7pM6uLVxY15bQytOrSKluxeQsmTk6ngeAGtPryaBrw4gBbtXEQb\njmxw2f4vy//i8oyMnjeaHlj6AO0p2UOnzT2Nbnr/JjpSeYR+9+HvKGpiFO0+tpu2F22nrs92peFz\nhlNORQ6lTE6h25bcRnd8fAd9+NOH1H9Wf/rr8r+6iNjekr3Uc2pPGjp7KH2b+y0NemkQZRVn0Z+/\n/HNrp88M6Zbmbp7r8rrT6aTT5p5GMzfMpMEvDaZ/f/Pv1r/N2TSHbvngFuo3qx/tKt5Ft3xwS2vn\n5d/f/JtGzh1JT339FP1+ye8p4fkEOvmVk+lI5RHKrcylLw98SU6nk/785Z/prk/uol7Te9HMDTMp\nbVoaTVs/jSrrK1uP878d/6OTXzmZukzqQm/veJtmLppJ6Velt7aV7VkcngAwQff76wB+a7IdpacT\n7d9v+t254XQ6Ka8qz9Z2Wwu30v7S/bTj6A56c9ub9MiyR+i+T+/z2ADraWpuanUWVmwv2m75t+zy\nbEqflk7birbRKXNOoefWPUcpk1MovyqfaptqaewbY+lYzTFyOp004MUBLo2FGdWN1ZTwfAL97sPf\n0WX/u4zSpqXRje/dSH1n9nUTSyvqHfU05bsprYJhh+KaYhfx/SHvB0qenEwXLLyAzltwHvWY0qNV\nLOqa6uho9VEiolbbbRWykTyx8gm68b0bKXVqKs36fhYNeHEApU9Lp/K6cjrecJwOlB1w2d7pdFJ5\nXXnr72V1ZfTU10/Rje/d2BoGIOKeqQy1GLnqnato0EuDqKyujIj4uz75lZPplDmnULfnu9GZ88+k\n4XOG0yd7PqEDZQco+ploWrhtIRERnfjyiRT/XHxrT9KM0tpSSng+gTblb6IeU3pQz6k96Yq3r6An\nVj5BzS3N9IeP/kDrj6x3ec8fPvoDfb7v89ZrLDheQHtL9tItH9xCYoKgfaX7iIhoS8EWl+uUHK44\nTOnT0imrOKv1tXU566j39N70xtY3aO7mua1h2U35myh9Wjr1ndmXdh7dSRX1FdR5Umf6Jvsby2si\nInp27bN0/9L7aejsoXTpW5fStYuvpdHzRtPirMWm2+8q3kXD5wwnR4uDiNgR3vzBzRT9TDS9+P2L\nrfdVi7OFthVta33f7R/d3uoQ7vv0PsqYkdHaOy+rK6Mr37mSRs4dSe9mvUt5VXn0h4/+QBPXTKTn\n1z1PV75zJaVNS2u9T7zd69Itf5v7LY15bQzdv/R+WpuzlobOHkotzhZqam6i5pbm1u1La0sp9tlY\nGvLyEHI6nbT+yHqKfy6eRs4dSSe+fCIV1xS3bltRX2F6n+RX5VPnSZ3pT1/+iYiIdh/bTbd8cAul\nTE6hyd9Opi/2f0Hp09Lpu9zv6Ie8H6jn1J407u1xNH399NZ9tGdxGAZgFYBOAOIAZAE4xWQ7uvVW\nogULPH5/7ZYhLw+h5MnJ9PIPL9N1715HV71zlel2T656kt7a/pbX/Y17exwNemkQHW84TtuLttNf\nl//VpaEMFftL99M32d/QN9nfuIUuJE6nkz7d+6mbqzOy/sh6wgTQ5G8nk9PppIe+eIje3/V+ME67\nlezybLfeZFZxFi3dt5QcLQ6a/+N8+u37v211Vl9nf936kD+y7BG68b0bvR5j5NyRNOTlIfTi9y/S\nBz99QD2m9KBjNcf8Ol87HSIiMg2P7C3ZS31n9qWkF5JaQxJEHEo9YeYJrd/PvtJ9Xr+rrOIsipoY\nRZlvZlKDo4FOmXMKjXltjMdcgHGfTqfTVNysqKivaM2j6ffx+b7P6YKFF1CfGX3opNknUXldOWWX\nZxMmwDRn44knVz1JnSd1ppkbZtI5r59D3ad0p9kbZ1tuf/2719Pfvvpb6+/HG47Td7nf+fT9rstZ\n5yYch8oP0aVvXeoWHZm0dhJFTYxqzb8QRbA4AFgMoBBAE4A8APcAGA9gvG6bxwD89LMwPGKxH5o9\nm+i++2x/pu2KeVvm0Ue7PwrY/nYc3UF7SvYEbH+RQHNLMz224jGqbaoN96nYoqqhylYj8Kcv/+SS\nn9H3PkPNwbKDtGjnIpfXGpsb3VyZN5xOJ2W+mdmabD9ccdglnxQJnLvgXJr/43yf3tPU3NTaWais\nr6QHlj7QGmY1o6qhyqdEsi84nU4XESDiQhZjdKAt4iD4/ZGNEIJ+/JHwhz8AP/0U7rNRKAJHdkU2\nCqsLcW6/c8N9Kr8ojjceR7fO3RAlOvY4YCEEiEj49d72Ig4OByElBThyBEhJCfcZKRQKReTTFnFo\nN7IZHQ2MGQP80LGmN1IoFIqIpN2IAwCMHQts2BDus1AoFIqOT7sSh3POUeKgUCgUoaBdicOIEcC+\nfeE+C4VCoej4tJuENBGhpQWIjwcqK4HY2HCflUKhUEQ2v4iENAB06gT06wfk5IT7TBQKhaJj067E\nAQAGDQKys8N9FgqFQtGxaXfiMHCgEgeFQqEINu1OHJRzUCgUiuCjxEGhUCgUbihxUCgUCoUb7VYc\nIrECt64O+L//C/dZKBQKRdtpd+KQlAR06QKUlIT7TNxZsgRYsCDcZ6FQKBRtp92JAxC5oaXXXwec\nTqClJdxnolAoFG2j3YrD4cPhPgtX9u8H9u4FOncGGhvDfTYKhULRNtqtOBw8GO6zcGXBAuDOO4Gu\nXYGmpnCfjUKhULSNdikOQ4dG3gR8O3YAmZnsHJQ4KBSK9k67FIdhwzRxKCsDZswI7/kAHEqKjVXi\noFAoOgbtUhyGDuX4PhGwejUwe3a4z4jFoXNnrqRS4qBQKNo77VIcUlKAuDigsBD48Ufg2LHQjHs4\nehTYtcv8b42NLAzKOSgUio5AuxQHQAstbd0K1NcDtbXBP+bHHwOzZpn/TS8OqlpJoVC0d9qtOAwd\nCuzZw86hWzd2D8GmoQFobjb/m3IOCoWiIxFUcRBCLBBCFAshsrxsN0YI0SyEuMHuvocNA1auBGJi\ngFNOCY041NcrcVAoFL8Mgu0cFgIY52kDIUQnAFMALAdgezm7YcOAZcuA0aOBtDTlHBQKhSKQBFUc\niOhbABVeNnsYwIcAfJotaehQwOEIvTg4HOZ/U+KgUCg6EtHhPLgQIgPAbwBcBGAMANs1RwMGcEM8\nejQ3xso5KOzidAJC8D+FQmFOWMUBwIsA/k5EJIQQ8BBWmjBhQuvPmZmZyMzMxEMPAWPH8lQaR44E\n/2TtiIMa5xD5/OtfQL9+wPjx4T4ThSKwrFmzBmvWrAnIvsItDqMBvMu6gFQAVwghHET0mXFDvThI\n5MjotDSuWgok330HFBQAt9yivWYlDvK16GhVytoeqKhg96BQdDRkx1kyceJEv/cV1lJWIhpERAOJ\naCA473C/mTB4Ixg5hxUrgK++cn2tvt4859DUxI4BUGGl9kBTU2SuB6JQRBJBdQ5CiMUALgCQKoTI\nA/A0gBgAIKJ5gTpOMMQhN9e9kbdyDjKkBChxaA84HEBlZbjPQqGIbIIqDkR0qw/b3u3vcYIlDomJ\nrq8pcegYOByhKWBQKNoz7XaEtJ7UVKC0NLBx5Nxc9yk5rEpZlTi0LxwOFVZSKLzRIcShc2cgIYET\njYGguRnIzzcXB+Uc2j9KHBQK73QIcQACG1oqKuJ1oH0Rh86d+WdVyhr5OBzA8eOqqkyh8IQSBxNy\nc3l/RnGwmlvJ6BxUoxPZyNCgcg8KhTVKHEzIzeXJ/FTOoWOixEGh8I4SBxM8iYPKObR/HA5e0lVV\nLCkU1nQYcejbl6fRCARHjgAnn8xhJH0FlBKHjoHDAWRkKOegUHiiw4jDuHHA0qWBWS40NxcYOJAb\n/Pp67XUVVuoYOBxAnz5KHBQKT3QYcfjVr7iR3rOn7fvKzeWJ2eLjgbo6fq25mSuYlHNo/0hxUGEl\nhcKaDiMOQgC/+Q3w6adt2w8Ri0P//iwOMu8gHYQSh/aPcg4KhXc6jDgAgRGH8nJeejQx0VUcGhqA\nrl29i0OXLqqUNdJROQeFwjsdShwuuADYvx84etT1dX2eYOtWYP16632UlgI9e/LPRnFISFCzsnYE\nVFhJofBOhxKHmBhePjQ7W3utpQUYPhzYsoV//89/gHfesd5HRQXQvTv/bBSHbt3YORiT3uEMK/3t\nb8CCBaE7XkdAhZUUCu90KHEAuNev7xF+9RVw4ACwejX/vnGj50ahogJISeGfjeIQFwdERblP8BdO\ncdi0CcjLC93xOgJKHBQK73RIcdA/9G+8AVx4IYeSamqAXbv8F4fYWF7tzRhaCpc4EAE//aTWJvAV\nh4Nn8q2vV/khhcKKcC8TGnDS0rTG/9gx4OuvecnPCy8ENm/mRLOnWHN5ubk41Ndr4mBMSjc2ams/\nhFIcjh0DysqUOPiKw8HfU48e/Pn16RPuM1IoIo8O6Rxk4//++8C113LOITaWcw1XXNE25xATYy4O\nclbWUIrDTz/x/0ocfMPh4O9RVZYpFNZ0SHGQjf/evcAZZ/DPY8cCb78NXHklN6YtLebv95SQ9uQc\nwlHKuns3cOKJShx8gYi/v5gYVVmmUHiiw4mDPqyUn89zLgHAr3/NjfbYsUBSEoePzNA7h7g493EO\nkZRz+Oknvp6OKg47dwKzZwd2nw4Hf4dC8HdlVpqsUCg6oDjonYNeHM4/H+jdGxgwwL2iSY9VzsFb\nWEmJQ+DZuLHtgxqNyJASwP8r56BQmNMhxUE2/Hl5mjicdhqQlcU9RmNFkx471UqRIA6yUqkji8Ox\nYzwoMZDoxaEjOoejR7WybYWiLXRIcSgt5Qa7spLDTJIePfh/fejJiJU46KuVIiGsJAXwpJOA6mr3\nsRcdgWCLQ0d0Dl99Bbz0UrjPQtER6HDiEBvLDfWePRxG6tTJfRtvzqEtCelQicOePbzmRKdOfJ7V\n1YE/RmkpT4UeLo4d4+8pENOwSzq6cygtDc81lZUB06eH/riK4BFUcRBCLBBCFAshsiz+fpsQYocQ\nYqcQYr0QYmQgjtuzJ8+hJENKZn8/dowb8TffdO11G52DnLLbbs5B9kYD2aCZceQI508AIDk5OKGl\no0eBFSsCt4iSHZYs0aY/kd9RTU3g9t/RnUO4xGH/fuCtt0J/XEXwCLZzWAjAU98zG8D5RDQSwCQA\nrwXioGlpwLZtnsWhpIQTnnffDfz97/x6YyM3FvHx/LvZrKxmzkE/8V5UlHnoKdAcOcJrTgAsDhUV\ngT+GFMYVKwK/byteeglYuZJ/lqGzQIaWfgnOwWzm4GBTX9/xPstIgyj4nU49QRUHIvoWgGWzRUTf\nE1HVz7+C3BnvAAAgAElEQVRuBGDRnPuGN+cgcw6bNwO/+x2vILdwoeYahODt/Jk+A+Cfg90jNYpD\nMJxDOMTh8GG+NoDFoW/fwM6BpJxDcKirU+IQbGbPBp59NnTHi6Scw70AlgViRz17Atu3e3cOW7YA\nl18OTJgAfPaZa0gJ8K+UFQhN3iFU4nDGGcDataFpRBsbgYICvraWFi4rHjZMOQdfCKc4hMOxBIsf\nf+QZjyOJgoLQThYZEXMrCSEuBHAPgLFW20yYMKH158zMTGRmZlruLy2Nb1Zv4pCfD/zzn+wUdu1y\nTUYDvs2tFA5xOOEE/jmY4tC/P/+8YQPg4SMPCLm5bJuPHGFhSE4GevUKnjiE2jnU1vLx9B2QQFNa\nyoM3Q01HCytlZ3P0IZKoqrKe2UGyZs0arFmzJiDHC7s4/JyEng9gHBFZhqD04uANuViPJ3HIyWFR\nGDaME9L5+azM3pyDnbBSsMWBiMdwhMI5xMUBl1zCtfPBFofDh1mMjhzhkFJaGs+eGqywUqidw/z5\nwLJlXG4aLEpLuUov1HS0sFJDgxZWjRSOH+ecpieMHeeJEyf6fbywhpWEEP0AfATgdiIKWE2MFAfZ\nszaSmsqN/q9+xaWgMTE8R9GGDfbEIdzOobKSb5KkJP492OKQnh6agXaHD/NI9oICoKhIE4eO4hxK\nSjjZvm1bcPbvdHJJaXsIK1VXR/bgzYYG7dmPFKqq+LxCRbBLWRcD2ABgqBAiTwhxjxBivBBi/M+b\n/BtACoC5QohtQohNgThuWho3+r16mf89OprDR3JSPgAYMQL49ltXcZAzrTY1adVKdnMOwZx8T59v\nAOyJw/ff+26TpTjExobmpjx8mJ1c9+48r1JamjaoMVAYnUMoxaGiAhgyBJg2LTj7r6xkgQiHOPga\nVnrlleB9DoGgvj7ynENVFZ9XqAhqWImIbvXy9/sA3Bfo46alsTCYDYCT9OwJjBmj/T5iBPDeezyl\ntx7pHrw5BykkQPAbHTNx2LHD83vef5+vZdQo+8eR4hCqmWYPHwauv56vbcuW0DiHUDakFRXAX/8K\n/Otf7t9hICgt5Xs+HIlhX8NKlZWRPV16pIaV9O1MsImkaqWAMXIk8OGHnrd5/HHgssu030eM4F6X\nMVloJg7hLmXV5xsAe86hutp9JtqWFs8JLr04hMo5DBzI17Z5c2hyDqF2Dv378/154EDg919ayiHA\n9hBWksn5SKW+PjLDSqF0Dh1SHDp1As4+2/M299yjzbUEsDgArtVKgCYOVtVK8udonQcLhXPQ51Ps\niMPx4+7iMHUqMGWK9Xv0YSV/e3l1dfYbd704HDzYMZ1DSgqHJ4MhtjIZHa6wUkuL/UFaNTXKOfhK\nxImDEKKbEKLTzz8PFUJcK4SICf6phZYBA7gh9OYcZM6hqQn4zW/cXQMQnrCSHXEwjqIuKuKqLStq\na9vuHBYtAv7xD8/bELGzqa9nQZDX1hFzDikpwcvhSHEIV1gJsC9MkS4O9fX8OUZKBRYRP8MRJQ4A\n1gHoIoTIALACwB8AvBnMkwoHUVHA6NFARobr61ZhpepqHjhXWNg+xMEsrFRZCRQXW78nEM6hutrz\npIBNTSwCzz/PAi2ENrYiLY0bU08r9/lKJDiH2NjgPOThdA4dTRykeAcrtPTmm751EGpqWCAiTRwE\nEdUBuAHAq0R0E4ARwT2t8LB6tWsFEwAMHcpVPsaEtPxid+8Ojzj4E1YyOoeqKnvi0JaEdF2dZ3t+\n/Dj/ffFiDikBrs4hOtrzyn2+Ei7nQMTfUbCdQ69e4QsrAfZdS6SLg7yeYIWWHn3Us2s3UlXF922k\niQOEEOcAuA3AF768r71hVt109dXAF1+4l7J6E4dg3vgVFa75ksRE72s6WDmHo0et3xOIUlZvJYHV\n1Rw62rwZmDWLX9OLAxDY0FJTk1bxEUrnUFPDx+3cOfg5h/YSVorkhLT8foIhDvX1/Cz60kYcP87F\nBpEmDn8G8CSAj4noJyHEYAC/mLWmLrmExwjU1kaGcyDiG1bOHAuwqHXrxjeQFcePa3XwEukcrJKI\ngXIOnqx5dTWQkMACcOKJ/FpqKpd7JiZqvwdKHMLlHPTzdgXbOTQ3h3b2TsB3caitbR/OIRhhpcJC\n/t+X66+q0sQhVN+tV3EgorVEdC0RTRFCRAEoIaJHQnBuEUFCAvDrX3PMu3NnLecgH+49e0IrDg0N\n3LgZXU5KCo+ONUMmfGNj+SaTVFby/qxEJRClrHacQ0KC62tCAM88o82OG8hy1nDlHIziEKycQ8+e\nnD8LtXuQ33FHCSsF0zkUFPD/vopDjx783YbqnrVTrbRYCJEohIgHsAvAHiHE48E/tcjhqqv4gRbC\n1TkIYS4OwRznUFvr6hokqanW4tDQwDdVr16uoaWqKi7dtco7BKqU1VdxMNK9u5YvaW5um4sIpHNw\nOIB16+xtGyrnkJpqPoo/2Eix6ygJ6fp6ftYjSRwSEzkkGarQkp2w0ilEdBzAdQC+BDAAXLH0i+Hq\nq/mhA1xzDoMG8c0TSufgSRysGs3qar6xUlK0RtbpZMdw4onexSGYCWl5bp7QJ9yXLeMxKv4SyIn3\nli8H7rrL3rZ6cQhmzkGKQ6iT0jLUaee4Tmfkh5UaGrhTEoywkj/icPw4F2ZEmjhE/zyu4ToAnxOR\nA0CII5rhZdAgYN8+/lkfVho8mBuYSBEH6Ry2bdPOF+AbKyGBb3bpHGpqeD8ZGdZJ6VAlpL05h6Qk\nTRyOHfNcYeWNQE6899ln9h/UYDuHlhbuXaakhGYlQiN1dfw92XEsMm4eyeJQX89hnEhyDpEoDvMA\n5ADoBmCdEGIAgCoP23dI5Bz5+rBSfDyXXwZDHBoazGv77TiH//yHV7aTmDmHykq+2dLTPTuH+Pjg\nl7J6E4fkZC1XUlnZtrLWQDkHpxP4/HP7jUewcw7V1fxdyVmGQy0O9fV8j9k5ruyNR0K10g8/mCd4\nGxqCKw6dOnUAcSCil4kog4iuICIngFwAFwX/1CITGVZqbOSHfPDgwJWyPvig1qO8917g7bfdt6mt\n5cokI3pxOHqUF3yXmDmHqipudK3EQQ646dpVy6F4KpW1oq6O32vVo7TjHPRhpYoK69yKHQLlHDZt\n4u/BH+cQjLCSDDsAoc85OBzckbEbVqqp4c/Al2ckGBVYTidwzjnA3Lnuf5POIVhhpX79fA8rJSaG\nboZkwF5COlkIMUsI8aMQ4kcA0wGEYa2pyEDvHDyJg7HR2bMHWLDAer9NTcCrr3LZLBGwahUvQGTE\njnMwioN0DvrErnQOvXqZh5UaGvi6oqI48e6vG5KNp1Uj6o84tGXEdKCcw2efATfdxPeCnYY42GEl\n2XgAoQ8r1dezs7YrSjU1fC/60jheeSWPhQkkDgff308/DWRluf4tmM6hsJBD1b48TxHpHAAsAHAc\nwE0AbgZQDWChx3d0YPQ5h9hYnp/fjjhs3QosWWK9X9kb/vprYO9ejq2bJZhlrsCIXhyKinjiOtnT\nl84hJcW+c5D5Bom/5azy4bJ6yHwVh8pKbbSxPwTKOaxcyQ2W3Yc12OIgq1mA0IeVpMO0e9yaGm54\nfRGH3Fx7uaamJvsOo6mJ7/GnngKefdb1bzIhHWhxIOLnc+DADhBWAjCYiJ4momwiOkREEwAMDvJ5\nRSxG53DHHdzz0GNWylpf7zrGwEhpKffQv/4aWLuWb1qz2n5vzoGIH6KEBJ7aG/DPORjFwd9yVm8l\ngf44B8D/vEOgnENVFY/g9vawHjvG30mwcw7hDCvJe8WuY/HHOZSUeJ6jS3LLLfwM2UGOlh82zLWz\nIUOqwRCH0lIORyYmdoxqpXohxHnyFyHEuQAibDLb0KEvZY2N5YZrsEEqzZyDp8FmAN80Z50F7NrF\nic6rrjJ3Dt7EoaKCH9QRI7Q1A2TIwegcPCWkzZyDP+JQV+fZnvsjDlFR/ucdAuUc5AJPcXGeH9Zr\nr+XvMxQ5h3A5B3mv+OIckpP5Zzsi1tzMn58dcSgp0aqBvCHFIS7O9f50ODhhnJgY+JxDQQFXCNp9\nnqT7j9RxDv8PwBwhRK4QIhfAKz+/9otE7xyM4SSJmTjU13sXh4wMFohly4Abb/TNOfTowfs4epTd\nwEknaXkH2QDrE9KVla5hJaMVN3MO/oaVUlPbJg5JSa7VSiecEH7n0NTE33/Xrp57l0VFvPBUKMJK\n0jkEO+dQUgK8/LL2uz6sZKexl0UVdgeLyo6AHXGorbXfcbASB3k98fGBdw6+isP55wMbN0ZoWImI\nthPRSAAjAYwkotMBXBj0M4tQjDkHM7p25d6RHjthpdRU4OKLufE780zfnEOPHtxgFhWxOJx4orlz\nkGEZebPFxfEDIs/tk094DYZAOAenkx9AT/bcjjgkJvLn2dLC5z94cGDEoa3OQYqDp4e1tBRYupQb\n1FAlpIMdVtq2jee+kr1af8JKUhzs3FOyk2RXHOzeG/JeMIqDfLaNrweCggKgTx/7115cDLz7buSG\nlQAARFRFRLJ5ezRI5xPxGMNKZpx8MoeH9MiwklWyTIrDrbcCkyZZz0RqJQ6yB7R3r2/OAXANLW3b\nxpVSgXAOcvU8Tz0wO+IQFcXbVFWxOAwZEpiwUludg7ewUl0dN6AnnxyanEOowkolJXy83bv5d3/C\nSt262S/5ls+BHXGoqQmcc4iLC39YqaGBC1ki0jkoXDEmpM045RSurtDfzPX13FBYNZJSHAYMAO68\nkxvUlhb37a3EAeD379rlLg6y4dAnpPVhCH3j3dTEiWy5CpzEH+cgSxzlw+d0crmuHjviALCQFRVx\nLLhPn8hyDt6+0xtv1MaLAMHJOYQyrHTsGP+/YQP/72tYKVKcg5U4yGfbn7DSzTd7jhDIUey+iEND\nAz87dpxqIFHi4CPywZOD4MyIieGE8I4d2mvyC7W6cWRDIhHCfL4kO+LQuzfXUefl8bnKUta4OO3c\n9c5BH/ttbOTFhNpSylpaqgmh7IHJtaQfftjVPfkiDjk5/GB17x5e5+B0ciMYE+P5YS0pYQf4299y\nmFASqWGlI0eAOXO8b1dSAvTty2NyAP+cgy8j70tKtDVLPEEU2JyDr2Glhgbggw9cp64xIvdt1zXV\n1wO/+x0LvxARIg5CiBohRLXZPwB9QnN6kYcd5wDwkqNbt2q/y8bAKiltFAeAGxZjUtquc+jcmXMX\nBw5opaxCaO5B39PU36hNTdxIGJ2DL6WsN9zA5biy0ZAPWXk5N6wyHyMfZrMR30aSk4HDh/l/mV/x\nh0A4B9moCOE5rCS/0379gDVrtNeDJQ76UlZ/RG/dOo5ve+PYMV4/3SgOdh2LPiFtN6w0aJB3cWhs\nZLftq3OQDa7stOhzDr6EleTKbtnZ1tv4OpllQwNP7ihXfowIcSCibkSUYPHPZM00d4QQC4QQxUKI\nLA/bvCyEOCCE2CGE+JU/FxFK7OQcAGDUKODHH7Xf5RfqizhYOQerxjQ1lR1Br17aOWzd6jp/UUYG\nD5Dz5BwaGlgg/A0rHTrEDYgxrKQvo5XXEhtrvgKfkUA6B7kSnL/OQYaUAM9hJekcjJhNR/LII8D2\n7drveXk8G7D+NU/oB8H5G1Y6cMCeaJWUABdeyCN9y8pcnYOvYSU74lxSwoPGjEUeRmRD7qtziIpy\ndcb+OgcpCocPW2/jizjIz3LUKGDLFv45IsQhQCwEMM7qj0KIKwEMIaITAfwRgMksJ5GFv87B17AS\nYO4crEZIA9r7pTiccQbfVPppsS+7jKea9uQcALbG/iSkm5o4N1Be7hpW0seC5WdgN6QE8LkePqyJ\ng7fe4c6dHMIyO79AOQfA88Nq9p0C7DiMjcOqVcA33/DP27cDY8bwNezcae+cApGQPnjQ3nd87BiH\nLs88kyeu82eEtK/OYeBA786htpbvE1/FAXAVAn9zDtnZ/DkEyjno25ion1tqvcvRh62DQVDFgYi+\nBVDhYZNrAfz35203AkgWQqQH85zaip1SVgAYPpx70PobztNSnr44B1/FQe8crryS18SWI6QB1x6c\n/H/vXnvO4YYb3Hu8ckSwMaykT4YDvomDDCulpHBYyVsDkJWl9bb06MNKnTpxQ+3rPE1652AnrGSG\nUWwLCjSn+fbbwPjxnNz0tMa3Hr3Y+5tzsCsO0hGddRZPQBiKUlY7YaXaWr73Gxvt7ddKHOxWK61e\nDbz/vjYvU3Y2cN553sVBFid4O0d5Hnpkpdu+fTxQNpiEOyGdASBP93s+gL5hOhdb6MNKVoPgAP7b\nySdr6l5fzyWjZs6hrk6b1VKPPzmHTp20BmnUKG649Y3wOedwJVVzs9b4651DYyM/YPv323MOBQW8\nP4n8ubzc3Z7ry2gB/8QhOdmecygqMu/16cUB8M89GJ2Dr2ElwLWctaaGBVyKw/r1HLbp1cv+2hWB\ncA52w0rHjvHUISNHAj/9FPxSVrviIPdr5/4AvDsH+ZpV+fl11wFvvMFTdgAsCpdc4i4On32mibUM\ntfrqHCTSORQUeA+ztZXo4O7eFsLwu+lXMWHChNafMzMzkZmZGbwz8oDdsBLAg7Vyc7lBluJg5hzK\nyrhBF4ZPIjXVPebsTRzS0zULmpTEOYbcXO0hiI7m0NKqVdrxjM5hyBDgu+9cj2N1Mzc1uT6Iubks\nUGbOoS1hJTmFRkoKX1dNDX8P0RZ3cGGhea/PKA5yNLuxh+YJuzkHu86hsJCT1nl53PDu3Mkhm7w8\nHndih7bOylpezt9LlJfuYkMDX39iIlfkPf0033PBLGX1JawUH68VLPTu7Xl7b84hOpr/ydHweoj4\nOj7/XBuTlJ0N/POfPJGf/j67915O3g8Zoj0Tctp/T1iJQ0OD9f29Zs0arNFXP7SBcItDAYATdL/3\n/fk1N/TiEE7shpUAbvjkF9jQwA2AmThYNSK+OodevbjEUM8ZZ2jhHMmVV7qGXIw5BykOdkpZm5pc\n95+byxOZSecQF6fFbtsqDgCLQ1QU/15RYd0zLyqyJw7+9LKNYSWrEJcn56Af61BQAPTvz43Z/Pnc\n6MbFeV6I6fvvudMhr6mxUbsv/AkrHTzI37u3eYnkNQnBo/Bzc/l79bVaSZayenNtRPx89O+vLYBl\nVcAg99vSYi/v4M05yNdra93Fob6eX+vcmb+H775jcTjpJP4e8/LY7RDx/S7vRSkOdkJfZmElvXNo\nbna9BsC94zxx4kTvH4QF4Q4rfQbgDgAQQpwNoJKI2rAIZPCRzsHTOAdJfLxm/TyFlazEQeYc1q7l\nGLQs/bQSh7PP5p6MnjPOcG+Ar7uOezgSY7XSkCH8s51SVofD3TmcfrrmHIxhpd692yYO8n99Oeu3\n3wJ//KPr9nbFwZ91KuyGlew6BzlqdvRoHiR47rn8utWMuTU1wNixWrWT/BylE/RH8A4eBE491XtY\nSS94nTvzvbJ1q39hJTvO4fhxrdxU/zx52q/dUmd95ZrROejFwez7lccC+Pv66CN+T1ISi4IMLdXX\n83HkefuSc/AUVios1M4jWARVHIQQiwFsADBUCJEnhLhHCDFeCDEeAIhoGYBsIcRB8HKkDwTzfAKB\n3VJWgG8e2UB5Cit5E4cXXuA6+cZGzeqaIQTHgvWcc4577zUxEbj7bu13M+cA2EtIG51DTg6Lg6xW\nMoaVBg5su3MAXMtZP/yQ4/R6CgvN48WBdg7eqpXs5BwKC1kcRo3in8eO5detnEN5udZRAFzHOAD+\nhZUOHGDHB3h2HTLfIBkxgvNTwQor6T/DhATPoSXZcbJb6qyvXDM6B9ljt6pY0ovDeefxFBeDBvHv\nenGQ97q+kyhzDt46JXbEIRgr1UmCXa10KxH1IaLORHQCES0gonlENE+3zUNENISITiOirZ72Fwn4\nknPo1k27KRoafBeHnj254mnbNh534KmM1Yqzz+b8gieMzmHAAA7d2ElIm+UcfvUrFgyzcQ7+ioNs\n/KQ46HuHK1bw56MXgqIiDi8YH8BAOwdjtVJ1NfDEE9yrr6jghsoMK+cAaOIgx60YG3p53fLe0o9x\nANoWVvJWsmwMlY0Ywf/bCSvdfTeXvjY18XHsiENJifZs2BUHO9VsgG9hJSN6cTjzTL5uM3GQxRfG\nsJLdaiVPCWn9foNBuMNK7Q5fcg56cfAnrNS9O9/AjzzC+8rJ8V0c5Hl4wugc4uK4sbLjHPRhpZYW\nvmlPO819nIMUh0GDAuMcMjI4cZuTw/uNinKtgmpp4fcYH55gOAd9zzIvD5g6lavUEhKsXZ4x55CR\nwQ3t7Nl8nwAcW+/Rwz3vJD9v2VDqk9H+XpNdcTBzDoC9sNKKFcB99/H9KJeeDaRzkJ0ns7BSczMX\nYujLlr0lpI2vG48ln6uuXTl8qxcHORBO7xzkZxMTYz+sZJVzKCw0v78DiRIHH5EPgFkFgxEpDkR8\nI6SluTqHnBxgwgQOiZiJQ0wMz8szfjwn5H76yd5UE75irFbq3Bl48kktzCC38ZaQLirSxiE4HNxY\nBzqsJP//85+BWbN4uofLL+fPR5bRFhXx5Hz6kMCGDfw9BMo5WIWV5PEWLrQOKQHuzqFPHxaShx5y\n3c4s72AmDm0NKx06xNV1/joHb2ElmViOjdXuYbvOwZewkixlNTqHsjJe2vXIEe01u87BmzgA/Ixe\ndhn/rL8XZYelpkbrLNm9dquwUl0d3xNDhihxiCiio/kLkXPreEIm0OSqYcnJruJw//08F1JiIg8o\nMuODD1g4+vfnKZL9cQ7eMI5z6NKFz002xIB1QlofVsrN5fMUgkWioEBzDtXVfO39+/snDrJnLJ3D\nyScD11/P6wpcfjlXgskHv6iIE9/x8drDc9VVbPXNxMEf52AVVqqt5et/5x3rZDTgmnOQzsEMs7xD\noMNKRLzP1FTfncPAgVoHwJMoVVXxvTB3Loc6AXtxd72rTkjwnIA1lrLqke5LPymeHedgJ+cA8EzK\nskhIP92+fqoY/WSWbRGHykr+LHr0UOIQUURHc6PmzTUAWkJaxg4TE7Wb5csvube2aBFXOowZ43lf\nwRQHM+dgto1VWEk6h9xczlcAmjjIhuPoUW1NCX/EITqawxL67SdM4B73ZZe5ikNhoeYcamu58Tt+\nnP8eiEFwnsJKtbVcBFBTY885OJ382fSxmMpSDoTbvJndCKB93lbOwdewUl0df+cxMb47h6goYMEC\nDqV4Oq5835gxnLwF7DWQZWXcCAL2w0pmzsEXcfA152BEP7OBPqwkc3CA9sxZDbADrEdIA9yZ0Hd+\ngoESBx+RCWlv+QZACyvJLzkxUVvw57HHgOnTzRtiM0LlHKzCZWaNhtPJMdyqKv5ZOgfAXRyam/mh\n1S/5WV6uOQE7SNsu6dOHY7tpaebOQT7Yci2JnBz+X18n749z8JSQrqvjBj0z07NzkDmHkhL+TKw6\nG+npLB4LF3JVFhD4nIN+6g1fnQPAI4SluHgTBz1W4rBrl7afsjItqd+tm72wUiCdgz5vqMeTOCQl\n8bnI0GqnTlpYSYpDVBS/7ul7MnMOcpJAfecnWChx8BHZ6/RFHGRiSdriPXv4/2uusX/cfv24IQy2\nc9CHTIzbGB9kWSceH88NlF4cunfnhqRrV+1BM4pDTo62vb/IEb1WYaW6Ou14hw7x96cPBwbCORjD\nSvHxwP/7f1qYwQzZCHsKKQFaWOmrr/i6AC0BLxtKY1jJ15yD/v12xMHKEenDWfv2ufaKfRGHe+7h\nQWUAX6td5+CplLWkhGP0e/dqr9lxDvr7VY8ncRBCq5iqquLOguyk6J2AN+dkVfTStasmDu12nENH\nRFaf+Ooc5NTUcXE88d0FF3jPWejp358ftlA4BzNxkI0GkTalh6wTl3PZGJ0DwNfbqRM/CN27a4u2\ntLRwYy7DUG1FnwQ0hpVknkeKg/Ha2+IczMJKcXGcD7n9dut9yJyDN3Ho1YuT6YWFWmK6vJzfIxsG\ns7CSLzkH/fs9iUNjI5/DCSeY/10vSr/5jTYhHWAuDlbVSsePa6vN+RJW0ouDmXM491zfnYMncfD0\nLMrQUmWl9l35ui67WVgJcBUH5RwiCF/EQSq7/ktOTOSJuHydGko2usF0Dk6n66hR4zaNjTxYSs4G\nKR+ulBSOgxudA6A9DHFx/Fp0NH92Bw7w+3yZ08gTnsJKnsShrc7BLCFt5zvSOwerfAPAzmHTJh7V\nXlKiLWbTr1/ow0r797OYW4VC9cetqdGcDuCbc6iu1sJA/uQc5PQU+rLVkhIef1NZqe0jWM4B0MSh\nqspaHLyV8lo5h9hYlXOISPxxDvp65aQk7glecIFvx+3enW+GYDoHmaw1czSylDUvT2s8pJBIG2/m\nHPT14lIwkpLYfQwcGLhr6N2bGwC5noS+lPX4ce6BHzwYGOdgDCtJRwXw8ex8R/J92dlafbwZcvr1\nq67iz7SkhMWhf3+tkdNPvw74F1ayIw579nCVmBV6x1JXp/X+AWtxMBPm6mpX5yDvG7ulrGbLaZaU\nsNCeeKLmHjxNn2HHOdgRh8pKnu9MFqb44hzshJWUOEQQQnCYxK5z0FcrAdzDk2s8+3rc/v2D6xw8\njd2Qpaz5+a4hKBlWOniQHzTZg7VyDkBwxCE6mj/X777j3njfvq5hpeHD2d0Ewjnoe5xRUbwP2aAa\nl1e1QjbCcnyBFVIcLrlEG/MgxUGGlfS9a3lNnsJKy5e75gP0zsOTOOzeDZxyivV+9aJUV+dagmvX\nOcjZTktKtBJbX8NKgPv4BHn8oUM1cfA0fYbeOcixCnrsiENJibtz8CXnYBVWOvVUHoOkn54nGChx\n8AMZGvFGTAxvW1HhGlbKzPQt3yAJljhI52CVjAa0Gzkvzz0/kZLCU3zok8uhdg4Ah1puvhmYOJE/\nZ31YKSODz8l4fWbOITcXuOMO6+PonQPgGlryJaxUX+9dHFJTeWLB9HQWP7nKnj6sZCYOVs7B4eBZ\nefWzrwbSOTgcHM5pbPRPHGTp8bFj3JhGRWn3kN2wEuDeq5aJ9GHDXMUhFM7B35yDlXN4912e/VU5\nh0fe6kMAAB5GSURBVAjErjgAfAPJkaEAlwFefLF/x/31r7VJ8QKJ3jlYiYNsNPLzuVeqz090786N\nvZk4hMo5AOzGxo7l0dOAa1gpKYkbVDvOIT+f5wCywvg56UMYdsNKdsUB0GZp7d2bK7yamvhnK3Hw\nFFYqLOTGV78gTaDDSvL9dsJKxsZRXtOxY64hJcB+WAmwdg5DhrDLBdzFQT+9fqBzDsZBcGbXP3eu\na/WRtyl6lDhEIHJuFDvEx/ONKXsi8+Z57pV64qmnODEZaKRz8BRWkjdyfj7/LrePiWEhyMpyFQdj\nWEmO6AT4gSsuDrw4vPgiL9soXZk+rJSYaC4OZs6hvt56OVfA3TnoK5bshpW6dmUX1qWL60h0T/Tu\nzaGd7t21smi5JKu+EfUUVpLfn6/i0NzsOnOrGVKU5GfhzTmYJWRravj7KylxFz1PI6SdTteYvr7h\ndDq18FRSkveEdLCcg7ecw5Qp3FmQWIWVJEocIhB/nIN+OL7VYiXhQjoHT2El2Wjk/byoqxQH6Rwa\nG92dQ6dOWmP82mvaIDbZEAVaHFJS3MM93sTBzDl4EwejiPobVvrpJ++uQU+vXpo4yAFhVVXapHf6\na5KC99vfugqF/P70jZA+52A1Bfnhw3x8T8Inj2sUByLX2VUlVs6hb192Dvp8A+DZOdTV8Wcqx73o\nG/vycn5vTIxrg2omDvX1rkvoJif7Lw7FxXys3r3thZWOH3d1O3acgxrnEGG0JawUifjiHPLyuNGX\n1U0y5wC4ikOPHq6NZP/+2oOYnMz7sKqXDxRG59C/vz3n0NCgNRJmGEXU37BSZaVv4tC7NwuKdA7V\n1e69a0DrwTscPFWFvkHNz+eGy1fn4C0ZDWiOpa6O73spDnK+KePnYlatVF2t5VOKi12vTc4wYIZR\nlPVhIr1r0YuGmTgcPszlurIDp5/VQI8dccjO5u8pPp7vmepq64S0nOLFV3GQ12hnuVVfUeLgB3IO\nGjt06+YaVopE7DgHWcJbV8fJUZmjkNVKgKs4pKdzItWMpCQWBqvprAOFPufgq3MArHup3sJKdktZ\nAd/FobjYNaxkjMsDWiMte5X63mVeHnD++b6Lg7d8A6CJUn093wulpRzSsVou1co5JCWxKOzd63pt\nKSksqPrxCxJ9vgFwnTDPKA6enIMxByRDyMbwjR1xOHKEr0Um1UtL3Z2DvPfq6/m6/BWHyy4DNm60\n3tYflDj4ga/OIdLFQe8cPM31FBvLll+WteoT0oD7VBgjR5rvJykp8CElM4xhpdGj3ceXWOUcAK2X\n+uKLrqEF4+dkDCvZLWUFfA8rAa5hJTPnIMM7UhT0DVt+Pn8GenGwM0Lazmh2fVgpOZnPsaLCd3FI\nSODt9+51T7QnJZkvAWocsax3CPrj60VD/z127syN89697t+JWd7BjjjINUUArR2wCivJjoheHHzJ\nORw65Dr6OxAocfADX8QhPj7yw0p2xjnI7fr21W5qfc6ha1fPs5DqOfVUYNy4wJy7J4xhpSFDgMmT\nXbfx5BykOEybxnMbScycgz9hJcB35wBo4lBTw/eWlTjIBsfoHMaM4b+ZTfltJQ6Vld4nSdSLQ1wc\nV+YVF/smDjU1LA5paexWjNeWluZaBSUxOjZ9w2knrCQE/y0ry70i0CgOcjZVTx2p+Hi+Pim63sRB\n3mu+OAc5zqGlhce/5ORYb+sPShz8oC0J6UjEzjgHQHMOenGIieHXVq+2P3bjgguAxx8PzLl7whhW\nMsMq5wBojWtFBfDNN9rfjSLqT1jJH3Ho1o3/paTwPdilCzsBq5yDVVjphBPcVyvz5hwqK71XVckZ\ni+VgLzlpoJU4mFUrVVfzNfbsydN1mImDcWU8wD2s5Mk5mIWV5Ht27jR3DpWVwNatwIMPaq7B0/0u\nBLsHvXOQE1FK2ioO8lrktCry+wwUShz8wNecQ1NTZIuDv85BhpWEsF6sKJwYnYMZ3pxDYyP/rhcH\no4j6E1aSU5lLN2CXXr1cp7DOzTV3Dvqcg74xLCvTRujLiiU74lBV5V0cpHOQJZvp6dwgenIOZglp\n6RyamtzzKT17mjsHY1jJm3MgMheHPXusncPWrTy63FtISZKaqn2usqTdF+fgLawkz106BuUcIgBf\nnQMQ2WEl+VA3NHh3Diec4B5WilSMOQczvOUcKiq4YSkrcx3jYRZWInKvZbciPZ0H2vk6Ur53b9e5\nhnJy7IeVCgv5uJ06sThkZ/N32NysNUJtcQ5WYaX1683zT95yDoD/YSUr5xATwwnipib3SSbj4vg1\nY25FlrMeOcKfd1mZfXHQOweHI7BhJYCvef9+Hn8ixSEvj8ektBUlDn4gLb0d9IuQRypysfeaGs+N\nvXQO+gS2sfonkpC9x6oq6xXnvDkHOcDswgs5dAaYj5CWNfJdutgfx3Lqqb5dDwD86U/aiGkrcbAK\nK+Xna+XDUhykcEqRaqs4GMNKBw+y6/rNb9y3l8KsLxPVOwfAflipuNh1HIVxnIN+P/Jvxvs3Lo4r\n2ozPtnQOublcfbVzpz1x6NnTNecgjyHxJA5EvonDWWex+Dc388p8CxZ4Pz9vKHHwA1/DSkBkOweA\nH1Rvy59ecglw+unuYaVIJS6OG0a5noQZVjkHue51RQXH+C+8UAstmc2tVFdnP6TUFm68kRswwH5Y\nSf4v8w0Ax9UPHHANKQGexUG/nRn6EdIyrPTOO1w6ayYsQriLszfnYBVW2raN702JPqxkTKbLXJRZ\nWMksB6QXh4QEDi/ZEYdevTTBkq7GU85BCE0cHA6+b711NOLj+XscMIA/7/x8nvX5nHO8n583gioO\nQohxQoi9QogDQognTP6eKoRYLoTYLoTYJYS4K5jnEyh8rVYCIts5AHyjVld7buynT+dyVTtzMUUC\n0dGuM8WaYeUc0tI055CSwvNabdrEfzfmZuTiMnYrlQJFQgI35N7CSrKRzM9n5wdwQ7p1qz1xkGNg\nvF2bWVipvJwnQ7TCGFrSVysB7hVSVmGlbduAUaO03/XOweh6ZLjRzDmYzV2mF4fMTD6WHXF45hlg\n/Hj+2Y5zSE01nxnWE1Ic+vRhgcjO5vEOES0OQohOAF4BMA7AKQBuFUIYh9E8BGAbEZ0OIBPADCFE\nkIdGtR1/cg6RLg7SOdhp7I3VSpFMfLxncbDKOaSn8wMr17lOT9eWnjQmpOVsqXYrlQKFDJUZk7b6\nsFJMjLlzyMjgv+3c6V0cZDLaW34kKor/1dRoziEmBrj2Wuv3GCuWZLVSWhqfl3GgpJk41NVxozh8\nuPaa0TkYxaGqivcdFeX6upVzqKjgsM3FF9sXh4QE17Wo5TEkRnHo1ct/ccjIYHFYtozdld2yck8E\n0zmcCeAgEeUQkQPAuwCMkcciAPLRTQRQRkQ+LHAYHh57zH51TnsJK3Xpwg+1nVxKewkrAd7Fwco5\npKe7hpVSUlgoZJWL/nPq3ZsbjlCLg7y3rMJK1dV8HVIciov5d8mYMcCqVa6fj5k42Mk3SKKjueHt\n2hU47TTgv//1/F5jxZIMKw0aBLzxhvv2ZjmHrCxOyBpDRLIqyXj+8fH8vRrv3auuAi691P2YSUna\nmItTT7VfraRHv86ERC+MZuJgp0Mpx7tI5/Duu+xyA0EwxSEDQJ7u9/yfX9MzH8BwIUQhgB0A/hTE\n8wkY48a5TyJmhXIO4SUuzrtzMIpDQ4N7WCk2lhu+ujp359CnDzsH48RqwSYhgc/JeH36EdK9emni\nYJy9VYqDXedgh5gY/txkqe6tt3re3hhWkuIQHc35FSNmOYdt23gJUD0ydNTQwI5H3zmLi2PBMN7r\n99zjvh+AP5+dOzmketJJ/Jqv4iDHReiP6ck56BcI84QUnT59eNaBgoLAhJQAIJghHPK+Cf4BYDsR\nZQohBgNYKYQ4jYjcZrWZMGFC68+ZmZnI9HUR5jDRXsRB5hx+ac7BKqyUlsYPWkWF67rY5eXuCWkZ\nVvK26HygSUjgczKGe4ziIMMrUugkY8awm/AmDnaS0fpjy5li7WAlDlakpPA2cklbgHMnxkZdJp3N\nXI+Vc7BCTtnRrx83wnFx/olDXJzrd2UUh6FDtbEnvoSVoqNZNLkEdw127FgDXXPpN8EUhwIA+nk3\nTwC7Bz2/BvAcABDRISHEYQBDAWwx7mxCIK42DMjGItLDSr44B30pq68PSaixE1YqLgbeew847zx+\n+I1hJVkFk5KiTSanj4XHxvJx8vJCH1YyhpQAbaRydTULl1z1zSgOZ5zB/9sRB1/CStI52MFXcYiK\n0tZKkAMIt20D7rrLdTsZVjJes/ybmXOwQl57//58/CFD/AsrGT+TQOUcevfm8xo8GEhOzsQrr2S2\nVjlNnDjRtxPVEcyw0hYAJwohBgghOgO4BcBnhm32ArgEAIQQ6WBhyEYHor05h19aWGnAAO4RPv00\n8Oab/Jo+Ia1vXLp35zls5KhwPX36cGIw1GElM3Ho1IkFTDY4+rCSvqHs0YNj+2Y5B/3YA1/EQToH\nu/d7aqoWJnI67VV86UNLDgdPY24cZCcT0lbOwRdxkOIpHeRJJ/nvHPR4CyvZ+Qzj4/neA/g+PnAg\ncOvFBE0cfk4sPwRgBYDdAN4joj1CiPFCiJ8LvPA8gDOEEDsArALwOBGZzLnYfmkv4mBnnIOkI4WV\n+vblKRHuuksbiKTPOchqJUATB7PPqHdvHvAV6rCSmTjI8QMVFZo4OJ3mDeU557hWtsja+uZmYOZM\n/p59FQdfnIN+Gg+5YI+3xk1fsVRUpE1EqEc6B7Nz99U5GMVh0iTgppvsvVfSrZt7GxAo5yDFAbCf\nC7VDUMtGiehLAF8aXpun+7kUwDXBPIdwExcHXHNN5PewfXUOVVWRP84B8C4OksRErmMHXMc5xMVp\n4pCSojkHI336cOz7xBMDd+7euOYa8wQqwOEdKQ5yChEZn9bzn/+4X09sLN8Ljz/OAx99DStVVNgX\nh8GDtenDvYWUJPqKpcJCLuM0Ip1DRYW5c8jJsX/vyvtHDj70tFSqFSkp7nmbQIhDcnLwFs2K+DEF\n7Z2oKOAzYzAtAvHVOegX+4lkevSwV/OtX2VMn3Po0sW+czh0KLRhJVlia4bROZjF3gHz8EhsLK9r\n0NLC11RZqVXpeCMmhj83X5yDXKTGrjjow0qFha49Z/15yLWozZxDRYX9ezc6mq+/LWuQjBrl3g7o\ny3j9DSuNH+9eUBEolDgoAPiXc2gPYaXJk+2tOJeU5CoOSUncuBw75ioOO3ZYi0NDQ2jDSp6IieFB\ne97EwQy5vjXAvXpfS1kB+2FUf52DN3EAWAQKCtqecwDavpCOENqob/35yZHazc38/TQ2cgjQrnMI\nZmdEza2kAKCthOVrQjrSxUGOT/CGdA5y3eiYGH4tKkp7AFNSOMZtFVYCIkcc5DXLsJI/4hATozkH\nX8JKgO85ByL7g8t69WJRAPh/q2nP4+P5722tVgoWQ4bwtZeXa5Mfyhl+7YpDMFHioACg9YZ9SUi3\nh7CSXaQ46AcfJSa6jiPwFlYCIkcc5NrHsrb+6FHfxGHXLmDsWN/FQd4PdsUhOZkb6dJS+85BzigL\neHcOhYXWYaVwi0N8POcLNm/W8hoykW43rBRMlDgoALiupWtn2/YSVrKLXhzkQ5mQ4NqgekpIS3EI\nZc7BEzExWi+8Wzceg+Grc7jsMv/FwZeGTboHu+Ige9yAZ3GIj7cOK0WCOAA8hmbdOu26pTgo56CI\nGPx1DpHwgAUCM3FITHRtULt3t07aR5pziI7WGpxu3XhGVuMEfVbExrIIXnwxv6+01Ddx6NLFdUI7\nb8i8g11xyMjQZsH1J+cgF/WJhHv39NOBb791dw4VFfZHpQcLJQ4KAL45B31CuqOFlfQTnpmJA2D+\nGcmS2UgRB71zkKO3fXEOAHDyyVy1dfSo/YYqOtp39ySdw6FD9gQsKkqbnrqoyLNzqKszdw5A5IjD\nli2u4lBby5+5r0vIBhpVraQAoPWGfRGH5ubIeMACgbz+ykrXnIO+BywbVyt3lZERWeIgG2kZVho3\nzt57Y2O5skbOjpqXZ69HbzyuXQYPBhYt4kqwLW4T51i/56efOIltNhAQ0M7DzDkAkXHvnn46F4IY\nncPRo5x4DyfKOSgAaA+Kr+McIuEBCxSJifxQWuUcZHmr1Wf0wQfA6NHBP087tDXnIBe9GTyYr9tu\nmMgfcRg0iFfZe+QR9/WbrRg8GPjuO+5dW60zoa8y0xNJzqFXLxZiozgUFYXfOShxUADwzzl0pLAS\nwA9ocbEmDklJrmGOqChuaKw+o+HDAzevTVuJjnYVh9JS38RBLnrDk7n5dlxfq2xGjACuvJJHZNtl\n8GCO1XtqQKUIGENikeQchGD3EInOQYWVFAB8dw6NjVybHgkPWKBISuLBVbJxe/hh9zESKSn2PqNw\nExOjhYJkI+mLOMgpKQYN8k0c/HEOPXsCX3zh23uGDOE1Fq6/3nobuaaE8R6NJOcAAGef7VqtVFnJ\n+S+rcFmoUOKgAOCfc7C7fXtBOgeZczCbs6Z79/ZxzcawEmBfHO69V2uYxo4Fbr/dt+OGopx38GDu\nnFglowEWATNhiyTnAPCMwDI0FhfH8z717OlbxVcwUOKgAODfOIeoqI4dVjKjvTgHY1gJsC8O+iVw\n+/YFHn3Ut+OGQhwGDOAG1ZM4xMWZi4MU/0i5d43rWB86FP58A6ByDoqf+aWPcwDsiUP37u1DHPRh\nJSkOvoSH2nLcUIzs7dKFnZ0/4iCnRInEezcujkt0w51vAJQ4KH7Gn3EOv1RxaA/XbBznINdlDsVx\nQzVKfMwYz7PFWoWVACUOdlBhJQUArTdsx2rrE9KRYs0DgTHnYEZ6evhjwXYwhpXshpQCcdxQicOH\nH3r+e1qa+VoPAAtHpIrDsWNKHBQRROfO3NDbafg6d+Yy1o5WrZSYyJUinpzDY4+F7nzawkUXaQsB\nhVIcYmIip8Nwww3W1UyR7ByAyMg5KHFQAGA3YPdhkYnojjjOAfAsDpEysZ437r9f+zk+/pcpDkJY\nD5CLZOcAKOegiCA6d/Yt0dqlCzsHq4evPWJHHNojZ56plR4HmwsuiBxx8ESkOwclDoqIwRfnILd3\nOoN3PuFAjqQN91TJgWbAAPvTUrSVK64IzXHainIO3lHioADAD4ovD0vnztqqaR2FjuocFO6kpoam\ntNdX5OhtJQ6KiKFbN3tLNEq6dFHioGi/vPFGaEp7fSUujsuOI2F23wj8eBThYMgQnhnTLl26cEK6\nI6HE4ZdDpOZFkpPNp20JB0Gt2BZCjBNC7BVCHBBCPGGxTaYQYpsQYpcQYk0wz0fhmfR0+9t26RK5\nD5i/SHHoaDkHRfvhpJOA9evDfRZM0JyDEKITgFcAXAKgAMBmIcRnRLRHt00ygDkALieifCFEarDO\nRxFYfE1gtweUc1BEApGSCwmmczgTwEEiyiEiB4B3AfzGsM3vASwhonwAIKLSIJ6PIoB0RHGIjfVv\nPQKFoiMSTHHIAJCn+z3/59f0nAiguxBitRBiixDiD0E8H0UA6YhhJSHYPShxUCiCm5AmG9vEABgF\n4GIAcQC+F0L8QEQHjBtOmDCh9efMzExkZmYG5iwVftERnQPAy3ymquCmop2yZs0arFmzJiD7EkR2\n2nA/dizE2QAmENG4n39/EoCTiKbotnkCQFcimvDz768DWE5EHxr2RcE6T4V/XH89UFYGrFsX7jNR\nKBRWCCFARH7NYxDMsNIWACcKIQYIIToDuAXAZ4ZtPgVwrhCikxAiDsBZAHYH8ZwUAaIjhpUUCoVG\n0MJKRNQshHgIwAoAnQC8QUR7hBDjf/77PCLaK4RYDmAnACeA+USkxKEd0FHDSgqFgglaWCmQqLBS\n5PHHP/LaB59+Gu4zUSgUVkRqWEnRgVFhJYWiY6PEQeEXKqykUHRslDgo/EKJg0LRsVHioPALFVZS\nKDo2ShwUfuHr+g8KhaJ9oabsVvjFwIGROR++QqEIDKqUVaFQKDooqpRVoVAoFAFFiYNCoVAo3FDi\noFAoFAo3lDgoFAqFwg0lDgqFQqFwQ4mDQqFQKNxQ4qBQKBQKN5Q4KBQKhcINJQ4KhUKhcEOJg0Kh\nUCjcUOKgUCgUCjeUOCgUCoXCDSUOCoVCoXBDiYNCoVAo3FDioFAoFAo3gioOQohxQoi9QogDQogn\nPGw3RgjRLMT/b+/uYuQq6ziOf3+ygqA1QGiqYmObWCglMfRCbKxbmpCUcqH1JYI1Ri4MaBBoTDCh\nXig3hjZEw4Wx8aUgqYqpL63FRKASihXEtbGvbpUQrQHBloteFI2k4M+L8wwc9sx0pu3M7uz297nZ\nOc+cfc6z/zxz/nPO2ed59PFBticiInozsOQg6SzgW8BKYBGwWtJlHfZbDzwEnNKiFHFyduzYMdVN\nmDESy/5KPIfHIK8crgSesX3I9nHgJ8CqNvvdCvwMeHGAbYmafAD7J7Hsr8RzeAwyOVwMPFvbfq6U\nvUbSxVQJY0MpylqgERFDYJDJoZcT/T3AHWWBaJHbShERQ0HVeXkAFUtLgDttryzba4H/2V5f2+dv\nvJ4QLgL+A9xoe9uEunJFERFxCmyf0pfuQSaHEeCvwNXA88AYsNr2wQ773wc8aPsXA2lQRET0bGRQ\nFdt+RdItwMPAWcBG2wclfb68/51BHTsiIk7PwK4cIiJi+hrqEdK9DqKLziQdkrRP0m5JY6XsQknb\nJT0t6RFJ5091O4eVpHslHZa0v1bWMX6S1pb++hdJK6am1cOpQyzvlPRc6Z+7JV1bey+xPAFJcyU9\nJunPkg5Iuq2U96V/Dm1y6HUQXXRlYLntxbavLGV3ANttXwI8Wrajvfuo+mBd2/hJWgRcT9VfVwLf\nljS0n7Ep0C6WBr5Z+udi27+GxLJHx4Ev2b4cWAJ8sZwj+9I/hznYvQ6ii+4m/rfCR4D7y+v7gY9O\nbnOmD9s7gaMTijvFbxXwgO3jtg8Bz1D146BjLKH9v7Anll3Y/pftPeX1S8BBqrFkfemfw5wcug6i\ni54Y+I2kXZJuLGVzbB8urw8Dc6amadNWp/i9i6qftqTP9uZWSXslbazdAkksT4KkecBi4A/0qX8O\nc3LIk/L+WGp7MXAt1WXnaP3NMgAxsT5FPcQvsT2xDcB84ArgBeAbJ9g3sWxD0tuAnwNrbB+rv3c6\n/XOYk8M/gbm17bm8MetFD2y/UH6+CGyhuow8LOkdAJLeCRyZuhZOS53iN7HPvruURQe2j7gAvs/r\ntzkSyx5IejNVYthke2sp7kv/HObksAtYIGmepLOpHqRs6/I7USPpPEmzyuu3AiuA/VRxvKHsdgOw\ntX0N0UGn+G0DPiXpbEnzgQVUgz+jg3LyavkYVf+ExLIrSQI2AuO276m91Zf+ObBBcKer0yC6KW7W\ndDMH2FL1IUaAH9l+RNIuYLOkzwGHgOumronDTdIDwFXARZKeBb4KrKNN/GyPS9oMjAOvADc7A4le\n0yaWXwOWS7qC6vbG34HWINnEsrulwGeAfZJ2l7K19Kl/ZhBcREQ0DPNtpYiImCJJDhER0ZDkEBER\nDUkOERHRkOQQERENSQ4REdGQ5BAzlqSXys/3SFrd57q/MmH7iT7Xf6mkH6jyZD/rjuhFkkPMZK1B\nPPOBT5/ML5Zlbk9k7RsOZC89mfp7MAr8FngfcKDPdUd0leQQZ4J1wGhZTGaNpDdJulvSWJkN9CYA\nScsl7ZT0S8oJWdLWMqPtgdastpLWAeeW+jaVstZVikrd+1UtsnRdre4dkn4q6aCkH7ZrqKTRMtp1\nPXA78CvgGpWFmiImS0ZIx4wl6ZjtWZKuAm63/eFSfhMw2/bXJZ0D/A74JDCP6mR8ue1/lH0vsH1U\n0rlU89AsK9vHbM9qc6xPUE0BcQ0wG/gj8AFgIdUcN4uoZh99Aviy7ba3oyQ9afuDku4F7s7UMTHZ\ncuUQZ4KJi8msAD5bvqE/BVwIvLe8N9ZKDMUaSXuA31PNaLmgy7E+BPy4TDR6BHgceD/VLa4x28+X\n+Wz2UCWjZmOl84CXy+YC4Onuf2JEfw3txHsRA3aL7e31AknLgX9P2L4aWGL7v5IeA97SpV7TTEat\ny/OXa2Wv0ubzV25pLQTOl7SXKoHsknSX7c1djh3RN7lyiDPBMWBWbfth4ObWQ2dJl5Rv6xO9HTha\nEsNCqnV6W453eGi9E7i+PNeYDSyjuh3VbinMBturgO8BXwBuAzaUtZWTGGJSJTnETNb6xr4XeFXS\nHklrqBaVGQf+JGk/1WpkI2X/+kO4h4ARSePAXVS3llq+SzVV8qb6sWxvAfaVYz5K9VzhSJu6abPd\nsozqmcQo1W2piEmXB9IREdGQK4eIiGhIcoiIiIYkh4iIaEhyiIiIhiSHiIhoSHKIiIiGJIeIiGhI\ncoiIiIb/AxSD6Sq0YLMCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(np.vstack([train_loss, scratch_train_loss]).T)\n", + "xlabel('Iteration #')\n", + "ylabel('Loss')" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXt8HNV5N/49uq+klWRLtizZxjYGCxMMgSQm0FzcEAiE\nWyEXAm3epkkb0r6Etklza/IW80vT/nJpkzaQvDRNoDQJl4YEsMEQbuJqwAaDDdiSjHyXfNm1td77\nTef949Gzc3Z2ZnZ2tKuV5PP9fPTR7uzs7JmZM8/3fJ/nOc8RUkpoaGhoaGioqKl2AzQ0NDQ0ph80\nOWhoaGhoFECTg4aGhoZGATQ5aGhoaGgUQJODhoaGhkYBNDloaGhoaBSgouQghLhYCLFDCDEkhPia\nxedzhBC/E0K8LoR4SQjxjkq2R0NDQ0PDHSpGDkKIWgC3ALgYwOkArhVCrDTt9vcAXpVSngXgfwH4\nt0q1R0NDQ0PDPSqpHFYD2Cml3C2lTAO4G8CVpn1WAngKAKSUAwCWCiHmVbBNGhoaGhouUElyWAhg\nn/J+/8Q2Fa8DuBoAhBCrASwBsKiCbdLQ0NDQcIFKkoObuhz/P4AOIcQWADcA2AIgW8E2aWhoaGi4\nQF0Fj30AwGLl/WKQeshBShkG8Fl+L4TYBWDYfCAhhC4ApaGhoeEBUkrh5XuVVA6bAZwqhFgqhGgA\ncA2AB9UdhBDtE59BCPEXAJ6WUkasDial1H9l+rvpppuq3obZ8qevpb6e0/lvMqiYcpBSZoQQNwB4\nFEAtgJ9LKbcLIa6f+Pw2UBbTHRPK4A0An6tUezQ0NDQ03KOSbiVIKTcA2GDadpvyeiOAvkq2QUND\nQ0OjdOgZ0icg1qxZU+0mzBroa1le6Os5fSAm65eaCggh5Exop4aGhsZ0ghACchoGpDU0NDQ0Zig0\nOWhoaGhoFECTg4aGhoZGATQ5aGhoaGgUQJODhoaGhkYBNDloaGhoaBRAk4OGhoaGRgE0OWhoaGho\nFECTg4aGhoZGATQ5aGhoaGgUQJODhoaGhkYBNDloaGhoaBRAk4OGhoaGRgE0OWhoaGhoFECTg4aG\nhoZGATQ5aAAA4nHg9tur3QoNDY3pAk0OGgCA4WHgO9+pdis0NDSmCypKDkKIi4UQO4QQQ0KIr1l8\n3iWEeEQI8ZoQ4g0hxGcq2R4Ne6TT9KehoaEBVJAchBC1AG4BcDGA0wFcK4RYadrtBgBbpJTvBLAG\nwL8IIeoq1SYNe6RS9KehoaEBVFY5rAawU0q5W0qZBnA3gCtN+4wCaJt43QYgKKXMVLBNGjbQykFD\nQ0NFJUfpCwHsU97vB3CuaZ+fAXhSCDECwA/gkxVsj4YDtHLQ0NBQUUlykC72+XsAr0kp1wghlgN4\nTAhxlpQybN5x7dq1uddr1qzBmjVrytVODWjl4Ba33EL/b7ihuu2YKmzbBtx8M/Cb31S7JRpu0N/f\nj/7+/rIcq5LkcADAYuX9YpB6UHE+gO8AgJTybSHELgB9ADabD6aSg0b5oZWDO+zaBTQ2VrsVU4fR\nUTpnjZkB88D55ptv9nysSsYcNgM4VQixVAjRAOAaAA+a9tkB4MMAIIToBhHDcAXbpGGDdBoYHwey\n2Wq3ZHojHAaSyWq3YuoQi9GfxomHiikHKWVGCHEDgEcB1AL4uZRyuxDi+onPbwPwTwBuF0K8DiKq\nr0opj1aqTRr2YNWQTgO1tdVty3RGOHxiKQdNDicuKpo2KqXcAGCDadttyusAgMsr2QYNd+B4QzoN\nNDVVty3TGeEw0NZWfL/Zgnic/jROPOgZ0hoADOXgNu5w4AAwMFC59kxXRCIzz60UCgGvvOLtu1o5\nnLjQ5KABIF85uMGvf21k7pxICIdnXuD+ySeBb33L23djMVIO0k3uocasgiYHDQClK4dwGEgkKtee\n6YqZGJCOx72P/uNxSlSYaYSoMXloctAAULpymIlGshyYicphMnEDJhXtWjrxoMlBA4BWDm4xE8kh\nkZicclD/a5w40OSgAcCbcjjRyGF8HIhGZ55i0spBwws0OWgA8KYcZpqRdIPPfhY4OjHT5pe/BO67\nz/gsGqX/J5Jy4O9VSjnceCOwZw+9vv9+veDU6Chw5pnAypXU/6oJTQ4aALRyYDz4ILB7N71+/vn8\nFNDwRMWvmUaKkw1IA5VTDk8+Cbz8Mr3+/e+BV1+tzO/MFLz9Nk1CveIKYMuW6rZFk4MGgNKVQyQy\n+8hBSmBsDAgG6X0waBACYLyeicphurqV4nFgcJBeDw7OPOItN4JBYNEi4OST8/teNaDJQQOAVg4A\nGcBsNp8cIhHj83AYaGmZeQYsHqf7mvGwUko8DrS2Vs6tlEgYkykHBmbetS03gkGgsxPw+zU5aEwT\n6JgDzSQGnJVDZ+fMVA6ANwMfi9E5V1o5RKPA/v2zr0+VCpUc1IFJNaDJQQPA1CqHeBw4dMjbd8uN\n8XFg7156PTZG/wMB479KDpEI0NVlTw57907PmcROcYMjR5wNf6nkcOyYQbJuwMphaIjel0IO+/fb\nqyGOG9lhdHR6ElEwSH1MKweNaYNSlEMmQwbHKzn86lfA3/2dt++WG5s3Ax/7GL12qxzsjMqll3qv\nYVRJ8H2yMvBf/zqVQrFDPE7n7FZ1/Ou/Aj/8obt9paS2SQm88ALg85VmsD/5SeDhhwu3Hz8OnHqq\nQfJW+OIXgQcecP9bU4VAgK53a6smB41pgnQaqKlxpxw4pdPryGv/fiNdtNqIRoHDh+m1Sg6xGBmu\nUtxK+/eXNmqeKjhNZDt0yNkIlaocYjG6Dm6QSgH19cBppwHr1gGnn+6+T0kJbN8O7NhR+NmRIzSA\n2bCh8DNGMDg975WOOWhMO6RSFGx1oxzCYWDOHO/KYWRk+jyYyaShFMbG6KEMBo1t5oC0nXKIx+n7\n1X6greCkHJgI7RCPk5vDrXJIpej+ukE8TuXh+/oopfXMM92TQzBI15szncyfAUQ4dgiFpue90uSg\nMe2QThM5uFEO4TAZjGTSm499dHR6kQPPeg6FgOXLDXLo6SlUDnPn0jUyn/foqLHPdEM8DtTVWRv4\nYNDe8EtJxDF3rnvlkEwa16IYEglyJa1YQaSyapV7chgYINVhVTY+GATOOgt47DH7wY4mh+LQ5KAB\nwFAObsmhvZ0MjtsAtoqRESP4W22wMWI3w8knk983EACWLi0kh7Y2Mkrm8+bRcrUfaCskEvYG3kk5\npFI0IautzT05eFUOQGnkMDgIfPCD9srhHe+g4z7zjPX3p6vK44B0Swtd8/Hx6rVFk4MGADJ2zc3u\n3Up+Py2X6da19LOfGQvVTze3EkBkMDaWrxwWLqR5D3xNIhHjvM1GjA1ipdMP77gD2Lmz+H533QW8\n+Sa9jsetySGbpewiO+UQj1OfaG4uza10+DD1p2PHgO9+137feJyUQ18fuSkXLiyNHD7wATon80CD\ng7qXXw78zd9QwoGqMKT0phx276Yg+NVXA5s2Fd9//XoKtBfDhg3AE09Qu1g51NTQdef4nh2efx54\n6CFXzS8Zmhw0AJSuHPx+GvW5JYe77qIHIJOhhzcaJeNUbZiVw+LFZLQOHiyU93zeDQ2FJDpVbqW7\n73aXEfWb3wAvvkivWTmYDfyxY4bryAqxGBlvn680txJAge6XXgL+6Z/sXY+JBPWhM86gEb4V6dph\nYIBIZcWKQvXABvZLXwK+/W0KUG/enH9e2WzpRH777WS0k0lg48bi+z/4ILm2iuH73wfuvZeyrJqa\nqH8B7lxLDz9MNakqgYqSgxDiYiHEDiHEkBDiaxaf/50QYsvE3zYhREYI0VHJNmlYg2MObpQDj6Cb\nmtw/zIkEPcSHD5Nsbm2lh6HaUMlhbAzo6CBDOjRk5JuzEQmHqd0NDdbKoaur8uSQSBQfTfJ+3BY7\n5cCBWzvD71U5AHQ9BgfpHnM2mNXxfT5ACCKIUshhcJDIoa/Pnhx8PuCqqygLSlWqrDRKvVfr1gF/\n9Vfk/nJzD0Ih4xrbYWwMePZZOgduN8MNOYyMFP8Nr6gYOQghagHcAuBiAKcDuFYIsVLdR0r5Aynl\n2VLKswF8A0C/lHKaeKNPLJSqHFpbS3MrJZP0AIyMUKC3o2N6uJbMyqGjgx7QgQF75dDYaK0c+voq\nTw7xuDvDFI8bpMbkYDbwbFTsDL9X5dDYaJADYB0XAIyANMMtOWSzVKDulFNIOZiD0mYja+5r/LqU\ne3XgAFWPPf98ek7KRQ6PPkoVWE8ocgCwGsBOKeVuKWUawN0ArnTY/zoAd1WwPRoOKEU5eHErsXIY\nHQV6eymgPZ3IIRCg9rS3kwJwIgc75TAV5OBFOSQS1nMVgkFnwx+LGcqhlID0kiV0nwcHgQULrDOK\nACMgzXBLDnv3AvPmUX+1Uw5dXcb79vb8uMTYGCUVlHKv1q8HLrmEkjDckoNaxNEO69YBX/gCufj2\n7Mlvd2trcdfX6OjMJIeFAPYp7/dPbCuAEKIZwEcA3Gf1+XSDVSqjF0jpLdunEqh0zCGRoEDq3r2G\ncpiKjKVMxjnjI5mk82a3Uns7GdJ9+wpnqqoBaSvlsGJF5QPSbstvx+PUbu6rVhlHgQDFWMzb+Zp5\ndSstXUpkOTAAXHaZd+Vg1xcHB+laA/T/rbfo91QVqI7AzQORUIiC36WQw7p1dC5AacrBaZY2T9S7\n4gpSQRs3elMO5t8Ih8vjsq0kOZRiPi8H8JyTS2nt2rW5v/7+/kk3bjL45CeB556b/HEefRS49trJ\nH6cc8Koc3PqIk0kK5m3cOLXK4e/+Dviv/3JuV29voVsJKCyA5hSQHhkhQzXdlAMbYCsDz+Whzdu/\n/nXg5z/37lZaupTcPocOARde6F451NeTyyibpSDyO95h/b3XXqM4AkDKIZGgff/qr2gbZysxrNxK\npZLDM88AH/4wvS6XW+mtt0gBLVpE5/HCC6WRA8/NOXrUGKz29/fjE59YiwsvJFs5GdRN6tvOOABg\nsfJ+MUg9WOFTKOJSmuyJlhPHjtHfZDE6CgwPT/445QArBzfnFYmUHnNIJOiB7u8H3ve+QqlfKezb\nR64NO5jJgZUDYO1WsgpI8zKcJ500vWIO4bAR9LUy8MEgKQcuPMgIBMhQz53rXTnceivNGWF/uhXM\nykEIQz2MjdnPl1i/Hvj7v6fXra2UPPD885SdxOdlVg5mt9KiRcDWre7OKZula87HLMWtVOdgYY8f\nN465YgVlN33kI8bnxcjh4EHq2zxno60NWLNmDZ54Yg3q6oCbbgJuvvnm4g21QSWVw2YApwohlgoh\nGgBcA+BB805CiHYAHwAwDctgWSOVKk/ZZqcHYKoxFTGHM8+kwF5v79QFpM3F88xIJmkUefgwkV5b\nm+H3Vatjjo+TcWVSVK/T6Ci5ytrappdy4AWZmprslQOn7qqIxahfTkY5HDhAo+FTTqH5LVbVU83K\nATDIIRaj8zS7BINBMup/+If52zn2EI+TMW9pMT6zUg6LFtHx3biHIxE6nhD03g05sI2Ix+2fqWjU\naGdfH+2nxhyKkQP3u87OfIViJkevqBg5SCkzAG4A8CiAtwDcI6XcLoS4XghxvbLrHwF4VEpZoeVE\nyo9UqjzlfkMhMkpeFmEpN7zGHEpxK515Jr2eSreSG3Lo7aUJTq2t5PriSUjt7cYDGomQga2pKVQO\nnIE1FSUPvCoHq6Ayk4N5eyxGhsdrQHrpUnq9YgX99oIF1iW0zcoByCcHoDCGs2EDEYOZVDo7yXjv\n2EEGlg05YB1zmDOHjuHmWnJ/Z7ghB1ahc+fau5ZUcuAYimrUi1VmHRmhvtvVlf8bZreaV1R0noOU\ncoOUsk9KeYqU8p8ntt0mpbxN2ee/pJTXVbId5Ua5lEMoRCOX6bC2gRfl4NatxAFO9iH39EydW8kt\nORw5Qm0C6MGaO5eIgA2+aiCslENvb+UXaMlkDBdHMagxh6YmZ7eSeXs8TobHa0B60SK6dlwWwyqj\niH/HTjnw75nv3bp1NPPZDCGs/faAtVupo8M9mbM7keGWHDh+5ZUcivUnVTmoQWlztpZX6BnSHjAZ\ncnjqKaOkMXdYt4XKKgk3yuH++42yA62t7t1KnPve10cPcXe3O7fS6ChV63TCr35luB6ef94o0QEY\n5QicHrBkkka2QlCbAHrY+CHldELOVAIKA9KsHJqb6XhulGA2S7PGSwEbzGKGiUt+mJWD2cAHAuRS\nS6Xy3TeqcvD5DIXops5PMmmoBTWjyCoozW1T4aQc0mng97+ndTOssGKFNTlYuZVUVch46qnC+Au3\nwawciikpNS2aByi/+13+Pio5zJ1L+5YSkGblMOPcSrMZk3Er/cu/UJYSQB1IiOrHHcbHyaAUq610\n0000zb9Ut1IySfsuWUJlHerq3LmV+vudF47JZoFPf5rywwGq46PWmYlEDCPp1Dafj9wMrBze9S7g\nRz+i1/yA7t9vBLat3Eq9vXQvW1rcqYeREeDP/qy0lGi35MCE7UY5dHXR5ypxxOOUAXP0KPUJIdwP\nBFIpMvC33Qa85z20zarEBbezFOVw4ADdD7sEAzvlwGtg88CHU5bN8whuvBF45JHC43pxK7E6YcP9\nzDPA3/5t/j4qOQBUnmPVKuO9JocZiMkoB3WtgFDIyAmvJtJpyk5paHBWDuEwyXo139+NwWAjIAQV\nLQPcuZXYb26HsTEyrupMXPWYfJ2LkUNjIz1MTA4+H3DxxfSaH1Au1wDYu5XU/YuB1+AuJeuNr7Ub\ncmDDZ6cc1CJv5s+YRIaHjZG926B0Mkn96LLL6DoBzm6lYspBvZbF3CUrVlBsw2wYhaB7y7n/7PJR\n79Xu3cAbb1i7gCYTc2CXz8AAqRL1OpvJ4bLLjLpKQPGYw4wNSM9mTEY5qOQwNkapftV2KzE51Nc7\nk14kAjz+uLEojtvRZCJhGAqGG7dSLOb8cPB1HBwkV87bb+cfMxgkleKWHNitpEIlB3aT2AWkeX83\nyoHbVMrAgI1pMcMUj1M76uqIfDhbSTXukQidR2Nj4WexGLmb3n6bPgPcBaV5Umd9ff52O7eSk3Kw\nIwcno8fkbUUgqlK1ciutW0flyd2QA1dLdVJ9KjkEg9R/pKRryjCTgxlulUNXlxFz4KKCTsd1C00O\nHpBOl085rFxZfeWQSpGhcKMczjjDKO9dqltJhRu3UizmbGj5Og4MGOmSZnIoNveAyaGry1AOKvgB\n5SqgQHmUA59XKQODRILa6UY5+HzUliNHrNNRVUNr/iwep9LlZnIoFpRmYqgxWZWTTrKO/TgpByu3\nUjFyOOUUUglW+6hKld1KZnL4yEfsyUENSPM5OtkAditxzGFwkFKdVZJ0Qw5uA9LquufmbC2v0OTg\nAV7dSlw/30wOM0E5ZDL02Sc/SQ8KT1gqxa2kwk35jGJupUCA2jA4aLgtzG6lpUuLB6TNbiUV/ICa\nlYM5IM3k4HZheK/KwQ05sNH1+ylV2mqeQyBgjLCt3ErLl9PvlOJWYpeSGTU1ZLiHhvK3u1EO6r0r\nlqLp8xERWe2jKlWzWykcppn7n/qUNTmYA9JAcdeSWTkMDFBtJtW9NhnlkErRb8ybV0gO5XApAZoc\nPMGtW+mLX6QOsmyZQQzs65WSDNlpp80M5cCjpyuvpPRHwNmtFIkYE5Ws3EpulUMxt9K7300P3sAA\nGW/1mIEABcH5GG++SUFgFUwOS5dSCqYZra30O/v304xfIN+txLOj58yh96XEHIDiA4Nkkha1Aeg6\ntrXRa6fBCRtdJ+Vw5IhBDupn4+P0m3yupSgHDkZbwSooXW7lAADvfCcRhBnc3zgV2O83iLy/H3jv\ne+k5taqFZHYrAaWRw5499OxfcEHpysGuLx08CMyfb8zL0eQwDTA+boyii+Gtt4A77yRDGQjQjROC\nXvO6vsuWVZ8c3CgHfkBOPRXYto22OZHD6CillgLWbiWfj66jE8myW8kuhTIYBM45h+aJvP46sHp1\noXJYtIh+J50m48SrozGYHNauNWrzqPD76f4sXmyMilW3Ekt7lvGlkIObTLVgkOr9Z7PGvIBihklV\nDkeOGNlK8bjhJ9+5k9QBkB9PYCJfuND4zLyPHeyUA2AdlC42Cc4849yN4fvd7wpnTwOGW+n4cWOy\nI6vCN9+kNaft5iR4IQc1W+nll0k5nXZaacrBSYWqyk+TwzQBj6zdKIdQiNwNvb1G3XX2v7Lfc/58\nel/NWdKsHKzWRmao0pp9yk4xh2CQjpVOW7sPeF6Bk3oolroZDNKciZNPppmzq1cXxhzUyqrBYGF7\nmRzswOfMLiUgXzmowWje321A+qSTipMDnw+XwvD5ihsmvt6trYZyqKujPyY1NftKVQU8K5rdZKW4\nlbgfWcEqKF1sEtz8+aVlKwH2vnbua+xSAgoz0ZzIQY05AKUph2jUWJioFOXQ2mq/jrR6LdSAtCaH\nKoIfLjfKgTtib69Rd/3UUyl/nEcWdXV0c6s5S1pNZS2mHFQ4xRzUVcas3EpAcdeSVcaK+Tc6O8nw\nHDlCefVmclDrI3khh8ZGukdsSHmbqhzYkAKlBaRXrCjuVlIXpvGiHDjmAOQbeHbDmbfzrGgmvHK5\nlbwoh/nz84l2MoaP+xoPyoDCTLS5c+lzszGejFuJDfiKFRQfyGaNZ6MYOfA60laDDfVatLTQ4DKR\nyFcUk4UmhxJRCjlwR+zpMZRDby89EPv2GZ20p6e6QWk3ysFq9OTkVlIfACvlABQnBzZGdiNxDlD2\n9dE1PeOMQreSWnbbCzkIQd93Ug4qOZQSkF6xorhyUJe0LFU5MDmwAVYNvBpgNysHn8+bcnByK3HM\nQU3/LFZ4r7s7/1pOpmYQJ0CoyoHvFRNlXR1tMydKeAlI8+CPY1ErVlBfUhVUMXIA7JWoSg6cocWZ\nkFo5VAlMCsXcSlIaowdWDty5OztpghGTA7udrPDyy8br4WH7xUNeecX7AkRelQO7laQENm3K/0wl\nB6uYA1A8Y6kU5XDqqcYISl3dTS277YUcAPq+qhzU68QxB3Vft+TQ10ffL5YvDxgT2pyUA/cVVTmE\nQoXKIR4npcoF8qyUQ2cn9Qkr5ZBKAVu2FP6+k3Lo7KR5BOp60k7Kwc6tNFnlwM8kQNdn716jhApQ\nWMQOcFYOiQTFu8zg36mro35uVWfKDTmog42DB2lQCRQSpSaHaQC3yiEep4ehsTE/5qCSA49gmDzM\nOHKEsij4s5tvBv7zP61/76Mfza8rVOo5uVEOdm6l3bspo0aV42blYGU0urudFVMsRtK6GDlceCHV\n8ueZsGxQVeUQDtMDpZKDlO7I4ctfpqwo9bz5/puVQynkMH8+GW6nWdJulcPwMHDuuXQ+qnIACpXD\nzp2UCFFba2xncuCYgxDAP/0T3SOA4iM7dtDr++4rzPoCnJUDUOhaKlU5lIMc3nyTzh2g6/Paa8ao\nHigsYgc4k8MTT9BKbmaCVxXK//k/RkXipUuNci9uyEGt6vqTnwDf/z69Nl+LU06hUuaaHKoIt8pB\nHaGobiUmh7ffLvzcjIcfpk7Hn/HSi1bgjCgvcFM+w0pas1tpZIT+71MWheW2OLmV7GruMOJx8tM6\nkUNXFxmuP/1T2qYGua0C0iqpZzJEPmwk7XDjjfnnXq6AtN/vrBoB9zGH9euN/Vk5sBtQJYdYLH9C\nH283u5UAWkWPjf1HP0oTxaSk37Lqa04BaaAwKG2XysrrIKjKgUmPU3lLBavUdeuMwn1+vxEsZlgF\npZ0C0iMjpD44gw8w0tT5+f7SlwwFph7fDTmoLueREaOvmIPzl15K90WTQxXhVjmo5KAGpK3Iwc5A\n8JR+tXNYGVNeiMbrQuOqcvDiVuL2qW1z41YqRg4clLQiB7U2kAoeIaZShjGxcyu5UQ1WKEdAmg1O\nsXiTSg5OymHdOvo/NpY/QxoodCup8QZ1O2C4lcxYtYr62datVJzOqq85uZWAfOXAqs1JOagBab7X\nXmf+treTYnrzTWDNGtpmlYlmRw52ymF0lJ5RJmfASFO3Iko+fjZrFH10gupVGB01Xpv7/qWXUkHP\ngwd1QLpq4JF1MXLggBSQrxy6uuhPdStZGYhUiuoYXXqpQRyjo/YFzADv5KDOc+AF6c2wGj2xW4nb\nZyaH1lZnt5JdzR2GVcYKIxKhB9CqLMfYGP3+3LlGQJkD0um04f7ySg7lCEizEiumHFS3kp1yOH4c\neOklMr6sHJzcSmqmkrodyFcOKoSgdRS+8Q0jVmEOUBdzK6mDgWTSutSGnVtpsiPijg5y53z4w8Y9\n5/5cjBycAtIjI3RdmJyB/GffDI5pqO47J6heBbNyUK9HTw/F3fbu1cqhakilqEOX4lZasIACcYcP\nG8ohEnFWDk8/TaU1zjrLWHglFqPfPXo0f182FJNVDrW11Fmz2cJ97JRDIkGk1dWVb+h5Tkcxt9LQ\nkP0kt3i80O+sHt+pTIKa0uf3kwE9dozOUXUNeiUHdn2os6P5t9wqByaHYsqhu7twnoNqmB99FPiD\nP6CJa6GQO+WgulLcKAeAjOCGDVQ91MqIFlMO6mDArk/YBaQnSw78rKkLBfH1Ua+FOSCdzVJbzddE\nJYdPfQrYvt0ItqvPvhkc03DjUgLy+weTg51qvvxysk12xFQqNDmUiFSKOlUpbqWGBrphb7+dv5CM\nU0D64YfpIeTPRkeNBVTM6oHJYbIxB26rVdzBya00MkJS3awclixxdiu1tdGf3chZdStJCXzucwZx\n2RkLdiup2Rx+P5W/4FXNmNgn61Yyz44GiCh27KBEgl/+krZFIlRKRQVfz0WLgH//d9pf/fvJT2i/\nUIiMvrpwDxuml14CzjsP+Ju/oaAoqyY75eD3A1//OmUamZWDOSBthTVr6DeuuCJ/4hWjWMxBXU/a\nKt7A15aVw7x5tN/4eHmUQ0MDxU4YvGDVqaca28ykpy4Pq0J1Ky1dSkkRvBaEGm8wg49fCjmMjNAz\neewYXZ9jx6znM1x+OV0zc1u9QpNDiUilqFMVUw5madnTQ99VyYE70Pz5dLPVWdJbt1KGDMtK9m1b\nTSYql3IA7OMOVtJadSutWeOsHJwmR1m5lqTMVw6hEPCLXxg1+e1my7KBHB7Oz0rhOv9sfIDJu5XM\nwWiADMXC459FAAAgAElEQVTGjcD7308LzwC0HxMFg8nhc58DfvtbWlyI/z72MWNBqLExIhArt9KT\nT5Jh+93vgOuvN4jRHJBmYv7+96kdmzZRn2O4cSsBdK127aLFkKyUQ7Hrqa4n7UY5tLQYk8AmSw6N\njfS76nnX1tL5qP3anK1kNSgC8pVDby9dk61b6bPhYcP1Zkap5MDP/6FD1N8XLiT3WDxeGJx/5zut\nU4y9oqLkIIS4WAixQwgxJIT4ms0+a4QQW4QQbwgh+ivZnnKAyaEU5QBQB+Iy12ZysJolzdKflQMb\nIis//WTJYTLKgd1K559P/xMJYxTKFUTtDAFgH5ROp2lEPmcO/TYrK/bB202IYreS6jppbS0vOajK\nQY03ANTms8+mCXnsEuHKnxzL4dpcvAiPWTV84APG+YZCVNfJKiA9OEgktHq14U5gt5KVcpg3j46v\nrjbGn7txKwGGC83OreSkHABjcOOkHOJxw0XFixaVY+avmciBwlXlzOflRA7hMLmSurvz+7HZbaei\nvZ3Ob2ysNLcS97XeXlqUiONpbs7RKypGDkKIWgC3ALgYwOkArhVCrDTt0wHgVgCXSynPAPDxSrWn\nXHDrVjJLy56e/FooQKGyYIMQjdLDsHixISt5hFIt5eA0Q5oL0y1dSq4zNtxsxOzcSoB9UJrdGxzg\nZdeTOU3VDFYOakaO30+jra6u8isHMzkw1NhDOGz4rgEydlz23ApqDMpJOZiNkOpWsoo52MHsViqW\nQQPYK4di5MBG1GoCHEDfHxujzziZgDPNyhVodYKVW8mOHHbtIrJsaMh/Ls3ZYCp4wLNvnzty6Ooi\ntbxrl0EO27ZNzbWopHJYDWCnlHK3lDIN4G4AV5r2uQ7AfVLK/QAgpfToNZ86uHUrqZNgAGOtV6BQ\nOfDnbBCGhsg/W1tLo5JAgHzmrBysyGHBgqlXDnV1xu/zTOWBAcPlo84iLaXmDmCMYDnTqBRyCIXy\nM3I4n72cbiU15mAFdb6DShL838rgMLq7aUSazdK5LFpkXXjPnHXE526nHOzAFVuB4sqBYTVZrFhA\nGjD6iNUEOMDwqXMbppoczAFpq0ERQPdg505jcLB8OanTdLpwHonVb+zZ444camqoP2zZQn2tp2d2\nkMNCAMq0KOyf2KbiVABzhRBPCSE2CyE+XcH2lAVeAtKAO3JQ5wvwQ19XRxLytddoH6sMn2iUgr9W\n5CAlzbQudk5ulIOVQWtqMoKybOj5QVbJoVS3Eo9g2TiY3UpO2UpHj5LflwON3O5yu5XcKgcmCZUs\nnMiBExgOH6bv9PYWKod9+8gQ8QxmPnenmIMd3AakVahGlPtXKW4lO+XQ2Ej3uFrkwMqBXYBObqVI\nxBgcNDXRfdq1y1k58G/s3et+Kc/eXmDz5nzlUK65DE6oq+Cx3VT6qQdwDoALADQD2CiEeFFKOWTe\nce3atbnXa9aswRqeyTLFSKXoppYyzwGg0gY8OmtpAT796fyAkprPbO5cPT1UO+krX6EHnksxs2GI\nRin4ywExFS+9BPzFX+TP4DTDjXKwk9dMDgD5sh98kALBbt1KJ59MD0o2mz9TmY0UGwcr5fDe9xYe\nr72dat10d+dn6QBTE5BmmN1K5v9O5ACQERgYoGvY3k7fGR83lMPrrwPveEe+a4rdSmx46+tp5ngx\nI6QGpO1iAWZ0dpLBAmhNjaefdnc9zziDBjqRiLNy4MAxK7ChIWORqUqCy5uHw8Z6EnbkAOQPDlas\noIWDWlvts5UAgxzcxgd6eoBnngE+8Qk67oEDwMUXW+/b39+P/v5+dwcugkqSwwEA6u1cDFIPKvYB\nCEgp4wDiQohnAJwFwJEcqgkmB55MZZc2ZlYO73oX/QH0QN95Z/7+vb1EAAAZhQsuyP/stdeMztTW\nRn5IlRzmzzcWhFEf7jffpONlMoYbyOqcvMQcAGPEBNAavDfeCLzvfYXKwc5o1NeTD/bw4fyHRfWb\ns3Lo6jLIwSkgvXcvpRYyKqUcrALSDHUynNV/q2upoqeHcufV5SxragzlEI8Xjk5V5cCG9447ip+P\nGpB2qxx4hH38OLk8AwHD5eqE3l4y8k8+6awcONvH7yeXSihE2ThTAY7/tbU5xxyAQnJYt85ZNQB0\n7V56iVzHbtDbS4TZ22vYFDsVZR4433zzze5+xAKVdCttBnCqEGKpEKIBwDUAHjTt8wCA9wkhaoUQ\nzQDOBfBWBds0abBf1akOEeA8EcYKTsqBO6C6iL06a5jT4qyChIOD1E4u9mWFYsqBs2usjEZjo2HU\nu7tptavf/ta9W4nPyzzXwSogfdppxd1KfM3V68cGyyogXcwNYgUvAWnzfzfKYft2Oh8+lhpzAAr9\n2mrMwc3on+E1IB0IGC7BUMj99bz8cireZ6ccpDTa0NoK3HUXVQooV/5+Magu3mLKQR3Q9PVRVQOn\neANgLB3q1q3Ev8FuJT5GpVGxyy2lzAC4AcCjIIN/j5RyuxDieiHE9RP77ADwCICtAF4C8DMp5bQm\nh3TaWG/ZKSjtNIXeCmwgpSwMaPX00O/NnUvvzSUaipFDba1zDaNiyoFHulbZNapyAOjBf/bZ/IC0\nk1uJz908CVANSLNyOP10dwFpIP/6VcKtxKWv1dnRKpjApSwkB7vRqAqzcjCX7AYKR6jmSXBu4SUg\nzTEHlRzcBKQB6iMHDtgrByA/5rBjR/7M5kpDHag5BaSBQuWQSBRXDl1ddD9LiTlwu5gopiLmUFEu\nllJukFL2SSlPkVL+88S226SUtyn7/EBK+Q4p5Sop5b9Xsj3lABtStfiaFUpVDmwgjxwhY64avt5e\n53WKmRysatEPDFBpBacaRsWUg5MxsyIHwL1bCbCuSssjWF4q8cABKifiRTk0NRnXtFzkIGXh7GgV\n9fXkxkskCgPTpSoHjglEo87KQZ3nUIpyqK+n80mnS3crMTmMjbkLSAM0uXPBAnvlAOSTQ2Mj1USa\nKrhRDo2NpGTUvs/3w41bCSiNHGpqyHXc3GwsP1ppzMoZ0uEw8NOfVubY/AA4LYwzPm4EtNyC15L+\n8z8vfOiZHBh25GBOL8xmKXvi0kvzlUMolH99rJTDbbflF31zIge1batWUXC8XG4lXiqxvp72Y/eF\nXfnmhgbaX72GQtC+ZnJwO9I1QwhqT7GAIt+nSIR+u5SYQ28vEWJ7O10DjjOoykEt+wDkz5AuRTkI\nYbiW3Aak29tp/zfeMGJBbsm2pob6pJNy4M/a2ij+5taQlgNm5WDV94UwquoyFi2idrtxKwGlkUN3\nt5GwoWY+VhKVDEhXDZs2Ad/7HvCXf1n+Y6vKwc6tFA7TjS+2ToCKujry1R85UjiD9cILyeAynMhB\nVQ67d1OnOuss4Pe/N7a/+CIt5MLXR1UOXJn1ppvI+HzoQ87G7JZbKGuGIQRw//30gEQi1DYOpNqh\nt7dw2r9qpFpbaVTMI+Ni5Zsff5xSe1U8/DAFQsuhHADqA3bxBga7/8JhIx0VcKcc2Oiwa9Lvp2vC\n1XNfeKHwntTX0/kcP16acuDf27/fvXLgyVwbN9IMbXYruY3hrF1rXeDRrBz++I+pltNUorcXePVV\ner1vH3D11db7PfooEQKjpoYW/yk3OaxaRSVSGHfeSc90pTEryWFgwF1lTC/gjAwn5VCqS4lx2WXW\n232+/EwNt+TAgW3zLOSBAar7ztlW6kPd0EAEdehQcWkNUBqjGWefTf+lpLax0bJDTw/w0EP521Qj\n5ffTPmo5bqeR03nnFW7jtNdykQOv8OcEjhWEw9R+lRzsau8w+NjqkpbqPbc6R94/Hi890M41rtwG\npAG6Bzt2AJ//vLFWhtvfVY2qCjM5dHfnz+WYCqhuJacJbVap1Hb3RUWp5FBTQ6nwDHVVwkqiqFtJ\nCHGFEGJGuZ8GBytLDsUC0k5VGcsBrjfDsCMH7tgnnWSUCQbo+mQyhgvKrBzefJNeF5PWxeDzGbWW\nvAakAaO0NbtNJjMhqpzKwa1biclBnQxX7HqyQVTJwY2rqL2d9it1URyejOg2IA2QO2n+fFJppQSk\nnWB2K1UD7FaKx2kQZVahkwUHk6fSVeYFboz+NQB2CiG+J4Q4rdINKgcGBqijFpuo5gWplDESdlIO\n5aqpboVSlUNtLU3vHxoytgOG8TcrhzfeyP/cjTGzQk0NPeSZjLPRsIs5qJPYensL3UpeMNXKwatb\nqaGBCuVxP2ptdWcwOzq8GVaeuezWrQQYJVNY0ZXiVrJDXZ0RZ6oWuD++/TZN6LSbH+QVnHU448lB\nSvnHAM4GMAzgDiHERiHE54UQHszF1ICNn9NavpkMPQhOcxUA8ouq+7kJSHt1K7mFU7aSGpBW50uo\nNYwGBmgCDo/WzcrhjTfyP/eqHABqV0OD80i2u5tcWdmsUbbAya00mQqdU6kcOOaglsAA3AWkgfxJ\nT6Uqh1KxYgXw1lt0D7gvFENnJ/UrVnSTuZ4qGhurqxz8fuqHmzcXjx94QV0dXbMZTw4AIKUMAfgN\ngHsA9AK4CsAWIcSNFWybJySTFERasMDZtfSHf0gBNXPw14zLL6f9Tj6Z3psD0vfdB/z1X+d/p1rk\nMG+esRoVkO8vPf10KrkQj1M84bzz7JXD/v20PgN/fuyY9/NpaSlurOrqyNAcPgx8/OO0Hq8akF65\nksouNDVRnGRkpPrK4fTTi6csqjEHlRxCIXeZbKtXG/3O73efReRVOWzd6m7pSsYZZ1A/YkVXDuUA\n0D2ppnIQgu5Xf3/xe+wV731vYbnw6QY3MYcrhRC/A9APqoX0HinlJQDOBPClyjavdAwPk4997lx7\ncpCSylEMDlK6oBOGhmgEMTpK3zMrh717C/3lx497H2m7gR05nHIKtZcDwVz2GwAuuogydnbuJIOz\neLFh/M3KAcgnh5073U/1N8MNOQD0MA4NUWD6tdfylcP3v0/tF4IM0fBw9cnh/vuLB5V5edJoNH+5\n04MH3dXV+Y//IILgY7m5jh0d3pRDdzeRdClG+W//lhYrYkVXTuVQTXIAKk8Ojzwy9YH2UuFGOVwN\n4IdSyjOklN+TUh4GACllDMCfV7R1HsCjZae1fEdHaXS1eDEZIXUFNhVSGssA1tZS5zcHpHlGqgqv\nPnq3cApI19fTCHxoiOIMnE573nmkqJ54gjq8GgQ2KweAyIEJsVgJYie0tLgzGD09lKLHJY/tfN/t\n7cZyq15QLnJwA7+fiMDno3bzjGmngn1Ox6qkchCC+oWX71ZCOVTTrQTQ/dmzpzJupZkCN+RwM4BN\n/EYI4RNCLAUAKeXjlWmWd7Cf3Ykc2NjV1BijOyvw9/1+43jmGdKhUP5i7/y9qVIOrBLUkgqDg4UL\nwdTVAZdcAvzbvxkrzNkph+5uWo6wpoauTbESxE4oRTncdRe5lZxWCmtvnx7KwQ38frrGav8ZG6Pf\nLNXfzOsdF4NX5QBQv/AyYudCkF5rVZkxXZQDUDnlMBPghhzuBaBOVxkHxR+mJdgoOpGDaux41GMF\nteomBxfV2krTgRySSVIHbNw5X928EAxA8ZPdu2m7OgvUrBz4e7wkYTqdv/ZuKSiFHGIx4Mtfds6a\n6egw1tP1gqkkh9bWQnJwKtbnhEorB8C7cuDsvaNHZ0dAGqB71Nbmvd/PBrghhzopZS4vR0qZBMUe\npiXYKJorl6pQR9XsLwWADRtoZvWvf03vVflvpRzs3Epus1G8QiWHWCx/FGqnHAAqqV1Xl782NVCo\nHPh7PT3kd+3rKz1vnlGKW2nlSmM95D177JUDMHOUw+hoITl4Wee30tlKgHflABBpB4OzRzn09Eyu\n388GuMngDQghrpRSPgBQgBrAtF3Ok9czNlcuVTEwQAuzA0YaHgB885vAmWdS6YhrrslXDkw25oB0\ntZWD6lICiBzuvJN83ebyIe3twO2307oStbU0Ao9GSU1w4Pqqq4wU3XIE5dwqh49+1MjMWbGCSnzY\nxRyAmUUOq1YZhfiGh70ph4sucncfPvQh74HOCy/0bpTb2+nZK8f1/OY3p27tBjtccIF9xd0TBW7I\n4QsAfiWEuGXi/X4A03Y5Ty6VXcytxKNj1a0UCFDNlyefpJGr6gIwKwcOSHOhMxWVDkhzQTtzvAEw\n3EoHD1obkz/5E+N1eztw7730IPLEnDPPND7v6QEeeAD42tcm11Y35HDSSUb9qL4+e3LgSWFeH9yp\nJodjxwwV2dpKfc8LOSxdWjw7Csiv+V8qOju91zFi0i6HcrjqqskfY7JYsIAGLCcyipKDlHIngHMn\nJr1JKaXD1LLqQkoKjKkLpJjB6ac8SlXdSjzzlieMqQvIq+SgzpAeG5t65VBXR78fixWSw/LllHra\n3l7cL9/TQ+mSdoXFOA4wmYyN5ubSDTCTmp1bqaPD+6zVqSYH8//BQRrdzzYwaZeDHDSmB1w9YkKI\nywCcDqBJTDjhpJT/XwXb5QmxmFG1ktMIzdi1i4p+sVFQa+Cn0zS640J1IyPG0p5WyqFabiW1PWZy\n4BRdNxNsenupsuTtt9t/DkyNW0kF/56dW2kyC51MdUAaKCQHVb3NFpRTOWhMDxQlByHEbQB8AD4E\n4GcAPgFatW3aQV19zS7mYM7iMVf65HzvwcH84CHPLTAHpEMhKjmgridd6YA0YE8OALXfDTn09NDk\nNjtlwOduXjegFHghB26PlXLo6JhcLftqK4ft270FpKc7OjpoUHYiB3BnG9woh/OllKuEEFullDcL\nIf4FtLTntINatkLNVrr2Wqp/D9C2z37W+E57OykMtZhbXx8tFG4OSJuVw+gouTfq60l58Ei30jEH\nwCA/K3JYtcodOSxbRiU37B7opUvJTTUZops3r/T4wCmn0HesyGHBAvtyz26gkkOxFeomCytyyGS8\nxwSmM9rbK3stNaYebsiBw60xIcRCAEEA07IqiFoNVY059PcDDz5o5CyrhrOjg9REMGi4K1g5HD2a\nTw7qLNDGRpqJ3N5O7ii11HE13UoALeTjZjH2b3zD+fOlS4Ft2zw3EQBw3XWU+VUKfD4qa2J1Dh/5\nCNXF8gqVHI4dMwLxlYCVWwmYncqhvV27lGYb3MxzWCeEmAPg+wBeAbAbwF1uDi6EuFgIsUMIMSSE\nKMh5EUKsEUKEhBBbJv6+VUrjzVDXUWDjmcmQ4T/7bKrLvmRJ/ghHrfTJymHJEqOAnfpgm5XD4cNE\nLrzEIkAupkSi8hUXWRlZkUNDg7uALcdnnDDZyUi1td6Mht3vCjG5ESqTQyxGrsBK5tNzP1Gzldra\npn81Ti/o6NDkMNvgaEImFvl5Ukp5DMB9QoiHADRJKceKHVgIUQvgFgAfBnAAwCYhxINSyu2mXZ+W\nUpZlIUCzWykcplz+zk57Y2m1gAyvf6CW87YihyNH6Pvj4wY5RCL08Ffa9+qkHDTsweRQbKnRcoEn\nwPHr2ehSArRbaTbCUTlIKccB3Kq8T7ghhgmsBrBTSrlbSpkGcDeAKy32K9vjqbqV2Cevxg2sYLeA\nDJeYYHBAmstnsFuJlQPPdZiKYDSgycErzORQaZjJYTa6lACtHGYj3LiVHhdCfFyIksdYCwHsU97v\nn9imQgI4XwjxuhDiYSHE6SX+Rh6s3ErFyhXYrUvMJSYY5nkODQ3kimpvz3crTUUwGnAOSGvYo9rk\noJWDxkyB2xnSXwKQFUIkJrZJKWWx5Uqki2O/CmCxlDImhLgEwP0ALLPq165dm3u9Zs0arFmzpmAf\nq2ylUpSDOjv4iivy12nw+ylAXVtLgdLGRnIntbfTd1XlMBXkwGS1cyfFUzTcQSWHycyXcIvPfIYW\nBgKAD3xg9paAXrkS+PS0rZtw4qC/vx/9/f1lOZabGdJenSQHACxW3i8GqQf12GHl9QYhxE+EEHOl\nlEfNB1PJwQ6hEJWaBgzjvXu3MznYLVp//vn5+/n9+YXF+L85ID2V5LBvH5X6+M//rPzvzRZw7Ilj\nUZXGl5TlsMx9ajahsxP46ler3QoN88D55ptv9nwsN5PgPmC1XUr5TJGvbgZw6sTaDyMArgFwrenY\n3QAOSymlEGI1AGFFDG6hupWEMGakXnSR/Xd46ckDB5yNBSsHMzlwieRqkMP69aR2psLIzSY0Nk5u\nqVENjRMBbtxKX4XhImoCBZpfAc2YtoWUMiOEuAHAowBqAfxcSrldCHH9xOe3Afg4gL8UQmQAxAB8\nytNZTMC8djMXOvvMZ+y/w0tPFltdjN048+bRe7X8hjkgPVXksHs38IUvVP63ZhuYHM46q9ot0dCY\nvnDjVrpMfS+EWAzg39wcXEq5AcAG07bblNe3QsmGmizUbCWADOjQUPEMkfZ2Skt18kFzBpKVcjAH\npKciW4l/4/LLK/9bsw1MDrOxAJ6GRrngJlvJjP0AVpa7IaVg/XpaC9kM1a0EEDkkk8UzRDo6DAVh\nB57bwKTAyoHdSlOtHDo6qLLsyqreiZkJJoepCEhraMxUuIk5/Fh5WwPgnSC3UtXw+OOUTnrBBfnb\nzW4lv58yi4ot9dfeTrV8amud9/P7p09A+n3vI4LUhc5Kh445aGgUh5uYwyswYg4ZAL+WUj5fuSYV\nRzRaWCYbKHQrtbYSMRQrJdHe7s5QWJEDKweu4xQOG6uqVRJ1de4Wf9EoRGMjqUxNDhoa9nBDDr8B\nEJdSZgEqiyGEaJZSWpjnqUE0mj8HAaCaRuYJaG4nHbktA62SgzkgzbWYpko5aHgH3ztNDhoa9nA1\nQxq0ngOjeWJb1WBFDmyU1UqebssVuF1AprV1+gSkNbyjsZH6iVOMSUPjRIcbcmhSlwadmLhWwVqW\nxRGNks9YhTneALhXDqW4lbiKKY8+/f7qBKQ1vKOxkUp1uylrrqFxosKNWykqhHiXlPIVABBCvBvG\nGg9VQTRKRlgdpZszlQAqK8G1+51w9tnuFsfx+2nCHEC/e/XVFMSuRkBawzsaG7VLSUOjGNyQw98A\nuFcIwY6cHtBs56ohGqX/o6PGEpbmYDTgfpGZK1wWDPf7DYXQ0ADcdx+9rsYMaQ3v0OSgoVEcbibB\nbRJCrATAJcMGpJSpyjbLGdEoxRJGRvLJwawcyg2/nxSKGdWYIa3hHZocNDSKo6jXdaIERouUcpuU\nchuAFiHEX1W+afaIRmmdYTUobeVWKjfUbCUV1SjZreEdjY16ApyGRjG4Ccn9xcRKcACAidefr1yT\niiMaJcWgBqWt3ErlhpqtpMIckNbZStMbWjloaBSHG3KomVguFEBu+c8iKw9XDlLSKN2sHKbKrWS1\n5jIrh6laP1pjctDkoKFRHG4C0o8CuFsIcRtoSc/rATxS0VY5IJEgA714MfDGG8b2cLjyyuFjHwM+\n+MHC7awcDhwAurt1SYvpjv/9v7W609AoBjfk8DWQG+kvQWU0toIylqoCXhaTA9Lq9oXmRUjLjJ4e\n60l1rBwGBmbvSl+zCbpYoYZGcRR1K02UzXgJwG7QWg4XANhe2WbZg8mhtzffrVTNtZSZHAYHNTlo\naGjMDtgqByFEH2jltmsAHAHwP6CV2tZMTdOsoZKDWTlUixzq6yne8NZbwArLFbA1NDQ0ZhaclMN2\nAOcA+IiU8gNSyh8DyE5Ns+zBJNDWBmQylDqqbq8GhCD18NprWjloaGjMDjiRw9WgMhnPCCH+rxDi\nAlBAuqpgEhCCSl4cPJi/vVrw+YCtW7Vy0NDQmB2wJQcp5f1SymsAnAHgWQB/C2CeEOKnQoiLpqqB\nZkSjNEoHKHX1+HFjezXJobmZMqmWLateGzQ0NDTKBTcB6YiU8lcTa0kvBrAFwNfdHFwIcbEQYocQ\nYkgI8TWH/d4jhMgIIa4udkyVBPx+Y5Gd6UAOy5cXX1hIQ0NDYyagpKLFUsqjUsr/kFIWXZp9YrLc\nLQAuBnA6gGsnajRZ7fdd0NyJom6r6UoOPp92KWloaMweVLKi/WoAO6WUu6WUaQB3A7jSYr8vglab\nO+LmoGZymA4BaYCUgw5Ga2hozBZUkhwWAtinvN8/sS0HIcRCEGH8dGKTRBGoJNDamq8cmqu4BJFW\nDhoaGrMJlfSQFzX0AH4E4OtSSimEEHBwK61duxYA8NRTwLJlawCsybmVxscpGOzz2X278vj854Fz\nz63e72toaGj09/ejv7+/LMcSUrqx4R4OLMR7AayVUl488f4bAMallN9V9hmGQQhdAGKgKrAPmo4l\nuZ1f/jKlsH7lK8A//AOtxPblL1NNI14ESENDQ0MDEEJASulpCkIllcNmAKcKIZYCGAHNtL5W3UFK\neTK/FkLcDmCdmRjMMMccDh2qfrxBQ0NDY7ahYjEHKWUGwA2gqq5vAbhHSrldCHG9EOJ6r8c1xxwi\nEU0OGhoaGuVGRbPypZQbAGwwbbvNZt8/c3NMq1RWTQ4aGhoa5UUls5UqAk0OGhoaGpWHJgcNDQ0N\njQJoctDQ0NDQKMCMJgcdkNbQ0NCoDGY0OWjloKGhoVEZaHLQmDHYf3y/5fbMeAYHIwenuDXlQSwd\nw9H40Wo3o6I4njyO48nj1W5G2WHXH2cLZjQ5tLbS+0hEk8OJgL5b+hBLxwq2Pz78OP7sAVeZ0NMO\n//36f+ObT3yz2s2oKP5147/ihxt/WO1mlB1n/vTMWU3sM4ocUilASqChgd7X1gJNTcCRI5ocZjsy\n4xnE0jEEY8GCz0KJEMLJcBVaNXlE01EE44XnNJtwKHII4dTMvD92SGaSOJY4hmhq9tbsmVHkoC4R\nymhtpaVCNTnMbiQzSQBAIBYo+CyajiKeiU91k8qCVDaFscRYtZtRUQTiASQyiWo3o6xgQp+p/c4N\nZiQ5qOD6SpocZjeSWSIHq1F2NBW1dDfNBCQzSYSSoWo3o6IIxoKIp2eXEWUFO9vOS8WMIodYzJoc\ntHKY/WDlYOVWiqZnLjmksimEErOcHOJBJLKzUznMNkWkYkaRg51y8EoO8XQc333uu8V3nME4Gj+K\nH7/042o3Y9Iophxm6ghOdSuls2l855nv5D6747U7sDe0t1pNKxtmtXLQbqXpgXi8cEEfvx8YG/NG\nDi2xvnYAACAASURBVCPhEXzvhe+Vp3HTFFsPbcVPNv+k2s2YNGarckhmDbfSaGQU33nWIIc7X78T\nr46+Wq2mlQ3BeHDWjbC1cphmSCQoO0lFayv990IOiUwCoUQIlVrwaDogEAvMioAnKwfLgHSKAtIz\n8T6msikkMgkkM0kaYSvnEUvHZnw2TCwdQyKTmHUjbB1zmGZIJgvJwe+n/17IIZlNIiuziKZn9gPo\nhGAsOCt82jnlYOVWSkcxLseRyqamulmTBrc5lAzliI9Ho/FMfMb3TfM5zRbM1vNSMaPIIZEAGhvz\nt02GHPjGzgbjaYdgnEajM9FwqnCMOUwY0JnoWuLzCiVCuXPj85gNyiEYC6JG1My6EXYwPnFes0wR\nqZhx5FBO5cDkMBvcLirG5TjG5TgAQ/4yAWbHs1Vr12SQzCTRXN9sHXOYMKAz8UFl0h5LjOXOLY8c\nZqhy4H4WjAexoHVB3gh7OvTBcTleshtSSul4XlONSl/HGUUOVm6lycQc2FUx2/LM1/avxa0v3wrA\nGGnzOb77Z+/G7rHd1WqaZySzSSz0L5x9ykHpg+aJVfF0fMYqh/f+/L0YDA4iGAtiUdui3DntC+3D\ne372niq3DvjsA5/Fhp0biu+o4Lm9z+GKu68AAOO8qqSIRsIjWPXTVRX9jRlFDk5upeZmD8ebpW6l\nQCyAnUd3AjDIgdXR7rHdOHD8QNXa5hXJTBK9/l7bgDQwM4ODqWwKvjofuZVmkXI4FDmEbYe2IRgP\nYqF/Ye7eHIkdwUh4pMqtAw5FD+FI9EhJ3zkcPYzXD74OgJ6rRW2LqqYcRsIjFR/kVZQchBAXCyF2\nCCGGhBBfs/j8SiHE60KILUKIV4QQH3I6np1bqaEBqPOwGvZsdSvFM3GMRkYBEFE01TUhlAghM57B\nWGLM0sBOdySzScxvmY9YOoZ0Np33WTQdRXtj+4xUDqlsCvNb5pNbSYk5jMtxJLPJGascYukYBoID\nCMQCeUY0mopOizpLXmbVR9NRHAgfQCQVofPyL6qaKzMQCyCeiVe0z1eMHIQQtQBuAXAxgNMBXCuE\nWGna7XEp5VlSyrMBfAbAfzgd0y5byevs6FwwcJa5lRKZRG50FowFcfKckxFKhnIVJGdiobdkJomm\nuibMaZpTUAkzmopiXsu8GRlzSGaTmNcyLy9bKZ6O50baM1U5xDNxS7cSz0mpdtzBSz0uJuodgR0I\nJULo8fdUTTmwyrSKwZULlVQOqwHslFLullKmAdwN4Ep1Byml2vNbATgOae3cSl7JYba6leJpQzkE\n40QOasCzkh2qUkhmk2isbURnc2cBuUXTUXQ1d81o5cDZSvOa5yGWjuUZ05kGKSVi6RiRQzyIntYe\nZMezyIxncgY2kopUtY1elQMAvHzgZfgb/WhtaK2aK5OfgUoO9CpJDgsB7FPe75/YlgchxB8JIbYD\n2ADgRqcD2k2Cmyw5VNut9MK+F3ILhwRjQTwx/MSkjsfKITueRSgRwtL2pXmpkjNVOTTWNaLT14lA\nLIBn9zyLfaF9kFKScpgwqlPdpvt33D/pY+TcSrEgFrcvznMXTKVbaSwxhkd3Ppq37XjyODYMlRa4\n5edqIDiAYDyIzuZO+Op9SGQSOQNbdXLwMKs+moqiRtRg4/6N6Grugq/O51o5RFNRPDT4kJemWsJq\noJcdz+K3239btt+oJDm4yhOTUt4vpVwJ4HIA/22339q1a9HfvxZPP70W/f39ue1nngl8z2MFjGQm\niZb6lqq7lX788o/xwI4HAACPDT+Gf3z2Hyd1vHgmjkQmgV1ju9DW2Ia5vrmUDTMLlENXcxeCsSD+\n+pG/xkNDDyGVTUEIgbbGtikfxW09tBVf3PDFSR0jlU1hfvP8XLbSorZFiKVjBjlMoXJ4bu9z+OaT\n+QsPbdy3ETf131TSceKZOOY0zUF2PIvB4CA6fZ1oqmsicpggu2rHHbzU44qmo+jr7MML+17InZNb\n19RrB1/DN574hpemWoJdkOpAb09oDz7zo89g7dq1ub/JwEMY1zUOAFisvF8MUg+WkFI+K4SoE0J0\nSikLrNfatWtx+DDwjncAa9YY25uagCuu8NbARCaB7tbuqpNDMpPMuYFGw6OTdnPxaGbboW3oau5C\nR1MH9oT2IBALoK2xDYH4zAtIp7KpnHJ4/dDr2HJwC4KxIKLpKFrqW9Bc3zzlymE0Mjppok1lU5jX\nMg9vHnkT0VQUPa095FZKx1EraqdUOQRjwVw/zG2LB0smqFg6hub6ZvT6e7FpZBMphzofpeZOHKva\nizN5VQ5n95yNX2/7NU7rOi2nhtwgnomXVS0F40G0Nbbl9b9QIoTU4hTWfmttbtvNN9/s+TcqqRw2\nAzhVCLFUCNEA4BoAD6o7CCGWC0FL9wghzgEAK2JgWLmVJoNEJoHulu6qu5XUAPJIeGTS7Ymn45jr\nm4s3Dr+BzuZOtDe150amfZ19M1M5ZIyYw52v34kaUYNALIBoKoqWhhYyPlMckB4Jj0w6Y4SzsHaN\n7cJc31y01LcgnqZjdjV3TalyCMQCOBg5mBcs5mtcCuLpOHz1PqzoXAEA6PQpbqVpoBwy4xmksinE\nMqXHHM5ZcA6AiXMqoc/F0rGynjM/y2rm4VhijEoClSnYXzFykFJmANwA4FEAbwG4R0q5XQhxvRDi\n+ondPgZgmxBiC4B/A/App2NaZStNBslskpRDlQPSeeQQGZm0kklkEjh5zsnYdngbOn2daG9sz+XR\nr+hcMTNjDlkj5rBrbBc+svwjuVFttZSDmhHmFRyQHj42nPPNc0B6Xsu8qVUO8SDG5TgORw8b22Le\nlUNfZx9qRS3am9pzLpjpoBy8zouJpqNY1LYIXc1dhlvJ5THi6XhZz9nqWWa7Ua4BRUXnOUgpN0gp\n+6SUp0gp/3li221SytsmXn9PSnmGlPJsKeX7pZSbnI5nla00GbByqLpbKVvoVppMhdF4Jm6QQ3Mn\nOpo6cnn0KzpXzGjl0NXchbqaOly36joihwnlUBW3UtjICPOKZCaJec3zkMgk0OnrRHN9c06NTLVy\n4H6hupb4GpcCJocVnSsw1zcXNaImF7ydDtlKXmfUc19b0bmCAtIluJVi6RiS2WTBHB2vCMQCheQw\nMcgt14Bixs2QtlMOv9jyC9zx2h2lHS+TwILWBRV1K43LcXzwjg/mah3ZtUN1K6mVYj9854dLHuHE\n03Gc3HEyhoJD6PJ15dxKaoea6vLWn3vgc3hp/0uev8/KYXH7Ylyw7AIsn7M8L+bgq/c5XqdLfnUJ\njsWPFWwfCg7hM/d/Jvf+qnuucj1JcCRSPuUAAJ3NnTmSi6fj6GruQjwdt+07/bv78c0nvmn5mYqX\n9r+ELz36paL7saFRZzBz4Uan/mtGPBOHr86HM7vPxJKOJQCQG2VH01E01DY4ulg++8BnMRgcLNh+\nPHkcl/zqktz7Gx6+AVsPbQUAPLLzEfzjM9aJHF98+Ivo+l4XTrvltFx2G7ezFHBfO6v7LCxuX5wX\nkP7BCz8oyFz795f+Hfe+eS8Ag4jK5VqyGuixHZsRyqHccHIr7QjswBuH3yjteNkkKYcKupUiqQie\n2fOM428kMgkEYgGksimMRkZz5RQy4xk8sesJHEsUGjUnsFspK7MUc2hszymHXn8vmuqacDx5fLKn\n5hrhZBi/3PZLvHzgZc/HYOVw4ckXYv116ylrqQTl8PTup/HWkbcKtg8dHcKmEUOwPrf3OdflHUbD\no1jWsczzjHMpZR45dPkoPZKzlVrqWxxdF0PB/LbbYejoEF4ZfaXofoFYAMs6luUUEYCCkh5uwMph\n5byVePFzLwJAXirrgtYFji6WTSObMBQcKti+Z2wPntnzTO79q6OvYvjYMABgIDBge44vj7yMX179\nS+wN7c1zbXlVDrd89BZ8+sxP56Wyvn7o9QJCe/2gsY1JpByKKZFJIDOewdKOpdZupRNVOdi5lRKZ\nRMkKIJFJ5KR7pWZs8kPg5Hrg4mtvH30bqWwKSzqWYCwxlpsJXMrNllLm3EoABc46mjpyMYdOXyc6\nfYUTySqJx4YfQyqbshwNugUrByEE6mrq0NlM8x1yysEhOJgZz+Rm7JoRjAXzDFU4GXbtGx4Jj2BV\n9yrP1zIznkGNqEFjXSN8db6ccmC3UnN9M1oaWmxHguFU2NVvjyXGXD0bwXgQq7pXFSgHoLQ+yAFp\nAKitqQUAI+aQiqK7pdtxBB1OWp/XSHgkV1oEoBEy36twKmxL0qPhUazsWon2JhokRVNRtDa0epoE\n11LfghpRAyFEHnHzcVWMJY1tOeVQhriD+hyr58wD0HK5V2ccOdgph3g6XnLsIJFJoLm+Gf4Gf8VG\n0vwQOI0uE5kEelp78Oroq+hp7aEAslJOoRSZmBnPQEDgpPaTAKAgW6mzuZNmGU9h3GHd4DpcfMrF\nGAgOeD4Gz3NgdDR1IJwM43jyeFHlwKM1q98PxAK5z9PZNJLZpCvpnxnP4Gj8KFZ2rfR8LTk9l8+H\ns3o4IO2r86GlvsXWMIeT9gZRRSgRcqWOg7Egzph3Rn7MYWI9hlL6IBObCjWVtZhysDP0TFq50iJK\nnaZwMmx5H8blOA5GDmJB64JcYgbPqC85ID2hHHLnpMQc+Lgq1G38W+VwK9k9x9qtZEMOiaw35dBU\n15QznpUAGx4nA5LIJLBszjJsHtmMXn9v3kgfKHHUlqFRW4+/BwAph4baBtTX1ONI9Ajm+uZOqXLI\njmfx0OBD+PJ5X56ccpiYIc2oETXoaOrA/uP7i2Yr8T2wVA7xIMKpMKSUuf3cSP9DkUPoau5Cd0u3\n52uZzCbRUNsAAGhvajeUQ9qdcoikIq6IKZQMFe3fUkpL5RCIBbDQv7CkPhhLx9Bcl08O6iS4Ba0L\niisHi/Ni0uLrEU1H8+6Z1X0Ixmg+QGNdYy4xw+uMelYO6jmxWg0lQwXXSN1WTuUQiAVyHoFIKoLM\neCb3e4B2KxUgno6XHDtgg8PG2Arbj2yf1Cpqdm6lLaNbjHZkk1jWsQyvjL6CHn9PTv7mJP3Ew7A3\ntNcyqKqCCa+1oRX+Bj+6mrsAkPHxN/rRUNuAruYu2xHnocgh25Lebxx+I9cRVUgp8eDAg7jnjXty\nPmApJdYPrscPX/wh5rfMx5qla3AwctDzLGazcgBIFe0N7TUC0jZupXAyjBpRY6kcgrEgMuOZPMXA\n92wkPIKDkYN5+4+GRzEaHsVIeAQ9/p6cewugSYeluCdT2VSOHDqaOtDV3JUXkG6ub3ZWDqkwoulo\nzi2pYvjYcO48xhJjCCVCOXfMawdfK9g/mo6irqYOJ885OUcOyUwSqWwKC1oXlGRIeYCigt1+rBzs\nCDiVTSE9nrZ1KwGG8Yum8t1KR+NHCxIt+D4ByA0CvdbiKlAOSsxhLDFWQOLqNv6tUmMO2w5tK0gG\nCMZIOdSIGszxGYUoQ8kQOn2dJ6ZycHQrZby5lZrqmnIBWyt84aEv4Nk9z5ba1BzY4KgjoX2hfTjn\nP87JdaxEJoFlHcuw5eAW9Lb2oqOxI6/cBT8M33762/jvrbYVRgBM+Hvr6MH81ge+heVzlwMA2hvb\n0enrBEBqwm7EeeumW/HVx79q+dl1912H5/Y+V7B9//H9uO6+6/CDjT/Ad5/7LgAa3Xz83o9j08gm\nfPsPv426mjosm7Mst85EqTArBwDoau7CntCeom6lcCqM07pOw/Cx4QLjzUZIjTXwPfvRiz/CPzz1\nD3n737rpVnzjiW9gNDKKXn9vngq76p6rsHlks+tzSmVTOcL73Nmfw7t7350XkPbV+4rGHNRzUPGV\nx76C+7bfB4CMhgQpIyklzv3PcwvWMuDRaK+/N69oY2dzp2MbrGDlVnKrHJxidKpykFJSzCFl3LPM\neKbAPTwSHkGvvxcADLeShyq+2fFsbu0NRl1NHcblODLjmeJupUwcNaKmZLfSJ/7nE9h0ID/pIBgP\nWj7LY4kx9Pp7T0zl4OhW8hiQLuZWiqaik2Jiq86+fnA9AHqIMuMZZMezWNKxBJFUBL3+XmqPUiiP\nf/946njRc+RzAoCv/sFXcw9pR1MHOpsnOpRFZVNGIBbAhqENlgphJDximckTiAVwytxTcOPqGxFJ\nGzK/u7Ub93z8Hly18ioAQF9nn2fXkqVy8CnKoc4+lTWcDKO7pRvzmudhb2hvQdsBMi5m5XAsfgzr\nB9fnjdyOxY/hoaGHsP/4fvS09uT8vslMErvGdpXUB5MZw6305+f8ORa1LSoMSBeJOQDWLstALJA7\nN27TWGIM4VQYqWyq4D7yaLS7pRuHo4eRHc/mAp9ObbCCOkBhcKpxND0RkLZxrzjF6EbCIxAQiKai\nSGaTGJfjBqEnrb/HJA7AcCulo5jbNBfpbNq10uP7MVHQAQAghMiR+fHk8bxrJKXMC1LzvJVS3UqB\nWMDyXrFHQFWuoUSIyOFEVQ5ldStNGBwnt1I8E/fsCgGoswuIvE67bnBdrs28TgF34B5/j5F6alIO\n4WS46DlaSXpgwqftQjkEYgEcSxzDC/teyNuezCQRjAdtySE3wkwZ/mDVPwsAKzpXeA5KWymHzuZO\n7Avtc6Uc/I1+y98PxoMQEIikIrkHl6V/KBnCaGQUr46+mtufEwV+t+N36PX35lJqh48NY1yOl6Re\n1YA0oyAgXSTmYO5bjEAsULB+eChhJDkUGJyJ0Wh9bT3m+ubiSOxI1ZSDgLDsnyPhESzpWIJoOlpQ\nhoOfM/OgZyQ8gp7WCbfSRKKHmv7sVj1E0/kuJfW8jkSPQELmXaNEJoH0eDpPOcxvmV+ScsiOZ3E0\nfrTgXrHKA5DrfwD1zVLjQ06YceTgpByS2WRJi2+4cSupFTK9gNWAmhL47N5nc6uaJbP55JALSE9k\nF7XUGw9mOBUuSTmoaG9sd6UcgvEgzl98PtYNrMvbzr53NQde/U5Xc1deW83+WYDIodzKIZ6JFw1I\nh5Nh+Bv8lsolGKO5H+FkOM/QADTSXjV/Vd614G2PDz+ecysFYoEc6ZSkHJSANIPPw5VySIXz+pb5\nvHIjymQIc5rm5Lkq7ZQDQH1wJDziWTmwS0yFr86HSCqC9Hga81rmOSoHq3OSUuJg5CCWz1mep+ZV\ntdfr7y0glTy3EqeyKhMn3T7b0VThYAcgMudnQ71G5uBwLB1zVExWGEuMQUJaE3mzg1vpRFMO4+NA\nJkNLglohlzVQgnpgQ8rG2AqTJYdwMkyTVSZu4GPDj2H1wtXobunOldZurGvMjW56WnvyZjQv6ViS\nrxyKjEytJD0wEfD0kRR1CkgHY0H86Vl/mlM3DLX2k9V3On3FlcOk3EpWymFi9NTS4ByQjqQi8DdM\nKIdAoXJY2rEU4VQ4NxJngxNKhvAnZ/5J3rXgbYBxr6KpKN48/CZ9XkL/U2MODM5WimeUgLRdzMHU\ntxiceaSuH35S+0l5SQ7m6qvqaLSntQcj4ZHcNqc2WIHbrsJX70MwHsyljtuNoCOpSO6c1OAyD5Q6\nmzvzlIOarWSeFMbnyc8Wewi8lFyxUw6+OiKH+pr6vGs0lhjL2xZLx9Dd2l1SQNruXhXEHOLB3KC4\ns7nzxFMOySQRgxDAb976TcHINpFJoK6mLjc6+tpjBUtWFx5TyVZSJfiNG4w1h/hBtfruJb+6BO+/\n/f249eVbAVDu+6W/vhTvv/39+PFLPwZAI5tlc5blbvTDQw/jslMvy41amKDmtcyDr85HMQdlRvNJ\n7SfljZKKkYOdcuj0dRplGhxSWYPxIC5afhFCyVAu8wggcmhvbM8phyeGn8Bd2+7KfcdsRKyUQ19X\nH7Yc3IL33/5+/GTTTwCQdP7C+i8ULedhpRzY71pUOaTCaG1oRV9XHwaPGuTE+3e3ducC0uqoNpQI\n4aOnfhS7x3bnRoehRAgXnnwh5rfMx6K2RbmMkRcPvIhFbYty9+extx/D/7z5P47npGYrMSwD0g7K\ngfvWuBzH59d9nvzwE8HZnLshEcKSjiV56dFWo1G+nr3+XuwL7TMUoUMbrGDnVmID72/02xrJcDKM\n+S3zUSNq8u7naJhiB6xiOLtKTSJYNmeZs3KYcCvx7HMmYjewUw5NdU04GDmIHn9PvnKYWEZULfI3\nvznfrTQSHsFF/30R3n/7+y0XjbK7V+zGBegZOBI9glAihPbG9pKJ3AkzhhxUl9IjOx/BrZtuzfs8\nno7nym+/deQt/OK1XxQ/5oQhPXfhuejf0w8A2LBzA/7r9f8CYCx3aGV0ho4OYSAwgE+c/gn8Zvtv\nAFD64NZDW3H5isvxyNuPAJgY3bUbo7uth7biPQvfkzNmHHOoETUY/OIg5vjm5M1zWNK+JG+UVMxt\nYRdz+Pr7vo4bzyXSa2tss530x8Gud/W8K1e3BqDRy7t635XrqOsH1+OhoYdy33ETc5jfMh/Pf/Z5\nXLHiitx3D0UP4bZXbivqi7WLOQCkHJrqmpDMJC1rAIWTRsxBVS48MvY3kLEKp8Loae3Jcyt1+jqx\nfO7yXCB7LDGGub65eOXzr+CdC94JgB7Qjfs2YvXC1bn78/Sep/HY8GNFz8lMDg21DcjKLMLJcE45\nOLnLuG/tC+3Dz179GY7Gj+Yt6sSpob2tvTlXpZqRxGD1BwB/sPgP8OTuJ4376kE5FASk63wIxAK5\nEXsik7AMBnN8SA20AoaR57ZEU9GcD19KiXAyjCXtSwoUsa1baaLM+6SVw4RbyezOCSXzg8OxdKwg\n5nDvm/fC3+jH+YvOzyWpqLC7V8PHhrGsYxkAYGnH0lwiREdTR8nxISfMGHKIxw1yGAmP4KndT+X5\n77iIXigRykliq/xvBqeg1dfU47zF52FfaB/2hfZh3eA6RFOUKpceTyMrs5aji8HgIFZ1r8IfnfZH\nOYMzGBzEGfPPwPtOel/uAY2kDbkrpcRAcAB9nX25UUsik8iNiBe1LQKAvBnNecrBRUDaNuYwMc8B\nAPyNfkvfJ5cmaKlvKXABjYRH8O6ed+fIYfDoYO51IF7ofrBSDgBwzv9r70uj46qudL9d86ipSrZL\nkkdJJU/CNoQYSEw7AQcTICQkwQkQ6E5IyOumk57S7/GyOp2mOyEs+r10ZyXhZU53yCOkeQnEhCGE\nbjMnxsQGDFiSZcuTZMmq0qySVJLO+3HvPnVu1b01iJJtmfut5WXVrapb55577tnn29/e+8TOx3tX\nvtdQaFD93wpWmgMAWdLA6/Kaak4jU5rmsLxyOfrG+uSEwJMfuznYb60K0izkS2apH2uoaJCRK8zE\nLqy7UDKHxHjCkp0xzARpjoBJpBJ5BWkO5VxetRyJVELeKx77sVAMiVQCQxNDqPBWyImxf7wfrYta\n8/qx39/8fjzZ+SR6Rnty3IXFwJI5jCfkvQq4A6bsgfWhbHbL+QrcFjXqib0GS0JLDN+ZFbPoHe3F\nktASAJDu47mUeS/EHLKFYPb/c+FEKUgrz93O9p24+bybsb1pu2Vpl+x7lUwlMTk9Ka+pJdqCtkSb\nHJel6kP5sGCMQzKZiVTqHulGta/asDJLTac04zA5JDszO4FJBa9EuVbPlc1X4qEDD+Hxg49jVswi\nPZuWRsFsALX1tyFeE0dDRQMGUgMYmRyRx1SfPtNkAHL1yfvPqm4lFVW+KgykBpBMJbG0YinG0mOy\nPtBcNQcVVj5fniyJKMc/3zPag5ZoCwSEvFZ1P4NimAMjFo6VbhwKMAcAlg87Mwenw4lV1atkrgW7\nw9hYshg6MjmCyWlt0xSuedQ/3o9ZMYuxqTFUeCty2hHyhLAmukYa7/5Uv6WuI6/JRJDm60iMJ/IK\n0uPpcfhcPiwKLkL/eL/BOCRSCTRHmpEYT2BocghVvioDG12/aL1ltBKgudlWR1fj0Y5H58QcTAVp\nd4Y5ANZjkA15dmmIntEe1IWMzIGjnphtqJE7AOTOhzxu1DyHgDuQV6fKRj7NoXesF7WBWm3e0Ety\nD01oQQBel1dmvKuaw9DEEF468RIuX3W5ZaBG/3g/WiIt2g5veiJue6Id8UhcLkyaappwMHkQyVRS\ncyu9HZlDMplhDj2jPfjkpk9KoXBmdgbpmbTcqF3ujTCaG1nDyJ6Ur4lfg68+91WsqFohRUaeaMwm\nnPZkO1qiLXCQA001TehIdqA9oR1TVz2SJvsjePH4i/LGchgdRyupqPRW4uToSfhdflT5qjA2pZUJ\n8Dg9RbmVzJiDioA7gKmZqZxcBnWCyPbPMz2vC9eha7ALR4aOGJKl1GgldsdZGYdFwUVIppJIz6Sl\nhmEWBcXg6qXZE6nKHABY5jqMpjVBGoDB6LFRC3lCUpCuC9dJbafSVwkikveT6zg5yPjYRPwRxCNx\nGUfP5y5U2sJMkAa0+zOWHstbPoN1FG4bR0v1jPTICCyP04NjQ8dQ6a2U/vZESjMOvaO9Bhec6scG\ntOeBM25LnXA4u1uFz+XD0OSQvFdW7HVk0nhdDDPmEA1EMTUzhcGJwcx3xnO/w8h2K5WLOfSM9uS4\ndNgo8zMho5V0g/j4wcexZfkWBD1ByVazvQKJVAK1wVosDi2WC102Dgy+7v19+zO/93ZjDomEZhzS\nM2kkU0l8atOn8Ov2X2NmdkZOsLw6KmY1mm0crmi8Av3j/bi6+Wp5Q3lVYba6UG9SS1RzwbQn2+Uk\nMTKpiYI82KOBKF449gJaIi0AYGAO2SvisDeMWTGbEQP16pMsGOYL152YnijIHIgIIU8oh9ar4YzZ\nqxmOF4+FYnju6HNYUbUCUzNTGJsak/5qt9MNJzkxOTNp6VYCtMzSaCCK3rHeou5VejYNp8OZOymX\nwBxCnhAAY8RU/3g/ov6otorVmUMsFJPuu0pvJQA9lnw8YTimIhqIIh6JG5Ip1WghK5gZPABy1e13\n+y1X7dL9oq+w2xPt0gXBRj4SiODQwCHJHNSy7RXeCgOzUROrAOCalmvktakTjlq+ZWxqzHQsWhXe\nA2BgDur44xIQo1OjGRYwnsDM7Axe7X0V7Yn2HM0h5Akh5Anh5OhJ2RfqNbGIzZBupamx0gVpgzxT\nkgAAIABJREFUCybMmkO2S2dwYlCu5Hnzrmp/tTSIO9t34pq41sfM1Hlccl/wc8XRY4A27/AcwmiJ\ntmD3id1vX+bQ1z8NrxeSwjXWNCLoCaJzoBOpdErmK3DiUlNNU97VaLYPu9JXib+66K9w43k3aiu3\nAsyhrb9NGod4jbYabevX9ASnQ9sacSA1YKDJzByAzERm5lZykAMV3ooMpdeZQ9gTltTYCtwXhcAT\nogqVOfBG97wS5getLlyHXUd2oSXSIsUy1V+truysmAOgRcT0jPRk7lUelsd7OWTD4/TgxtYb5YRt\n5SZg9gYYE/G43WFvGKNpLQkuFo7JfJIqXxWAjKbAq8FsXNxwMa5qvsqQTMnMIV8UlpkgDUBOrJI5\nmKwEVUbKmsPWFVu1+6FP9NFAFJ0Dnaj0VRrCoyP+CGLhmHw+xqbG0D/ej8XBxfL8rYta8bH1H0ND\nRYNhwtnwfzbg2NAxAMCdT9+JL+/6ck7bzARpHpMG5qCvog8PHMb53zk/c1265tA/3o+vPPsVbL9v\nO06Nn0LrolbZFh5fYU8Y3SPdhr5gvNn/JlZVrZKv1cCDkgVpi8WOz+VD72hvLnOYyGgA/eP98Lv9\nBlfarq5deF/j++R52Dg8d/Q5bP7+ZgAZRs7PCqBVFlaZA6DNP7tP7F54zIGIthPRASLqIKKc+FIi\nupGIXiGiV4noeSI6z+w8fckJ+HzG6IMafw2GJ4e11bLbL1dH3SPdeEfdO0piDgBw97a7EY/E5U3m\ngZM94STGE0jPpuXD1BJtwcs9L2sZihX1ADITCq+EIv4I9p3cJ60+r1o4WikbLISyi4EnA9V1YXVd\nZtFK2WBXSvZ18epRXc1MTk9ieHIYkYC2inm662nEI3HEQjEcGTyC8fS4nKDVlZ0VcwAyiVbF3Cve\ny8EM9113H9xON4ACmoPiVuIVGq/MVOYQ8UdAIPSN9aHSp10Tr0gHJwblMRUfWvMh3HTeTTIEWQgh\nV7D54tqt3Ep+lx8OcsDtcFsyB14sVPurJVu+ZOklRubg15gDu5U46z4SiMj+B7Tcm80Nmw33i4hw\n/4fvR9ATlBNOeiaN48PH0TvWCwA4OXYSv2r7VU7bTJmDPib5eMgTkouTo0NHcWz4GGZmZwzRSolU\nAr888Ev87CM/w97b9qIl2pIJZdXHV9irGwdPhm0wHml/BFc2Z3aOczqckmmULEhbMQeXH+nZdCaM\ndCrLreQJ4tT4KS2/g7WtSa1I4IqqFfI8LRFNWH74wMPoTHZiYnpCLl5ymEM0lzkcGTqiGaOFwhyI\nyAngmwC2A1gL4ONEtCbrY4cAXCqEOA/APwL4rtm5+pIp+HzaCpb9iPxQs5+dV0c9Iz24IHaBacIW\nwyqqB4C8yal0CgTKGUAdyQ6DKBSPxPHbQ79Fc02zdH3wQFWjL6Znp6XVV/MczCYIzmgOerRQRnaN\nFCovXozmAJj7fFXmAGRcMFwP30EO1IXr0DvWK5nD/r79qPZVy74oljnwgO8e6cYFsQvmxByyYWkc\nFObADyEnijFz4GilsDeMsDeMEyMnpMGTzMHCrcSo8FZkkumIUBeuyytK5xOkuY4Ps9ica9Lb6nK4\nUOGtwIqqFVheuTyTvBbIdStxva5oIGqYcB5pf0S6OMzAE07vWC8EMoavf7wfb/a/ic5kp+HzZoJ0\nDnNQVtHdI92YFbPoG+szPC+v9L6Co0NHccnSS3LawuMr5AlJ5hBwB7TIoHQKgxOD2NO9B5evutzQ\njkpvJaZmpiRzKFqQzsMcAEhDwONPupXcQZwa04yD3+XH9Ow03jj1BpojzQY3KS9adrbvhNflRWey\n01AMkfuoI9GB5ppmQxt4Tsk2UG8V880c3gngoBCiSwiRBvAzANeqHxBCvCiE4Nnu9wAazE50anAC\nXq/OHEIac+CHmv3sld5KdI90Y3JmEmtr1+Z1K5n5+hkqc6j2V+dMOKpLCdBuTmo6ZTgWCUTQN9an\nlXfwBKXbpammCQCkIG1lpHjzF77ZTLfz1YHi6yqkOQC5Pl8gV5Rk8VZla/w/M4fX+l4zfEcyB4vo\nDga7pHpGdUM+R+agwkqQVjUHZkb94/3SGPIqllfjYU8Yx4aOZdxKul9fdTWZwelwIugO4sjQEenz\nz6c7mIWyAhnjAMByJciCNLcvHolrriJ28+nMoXOgU2MOvkr0jvVienYaQXdQ9v+smMWvO36Nq+NX\nW7aTxyA/T2oexdratYYMcg4OyTbmZpoDL07UABIptAcieObIM7iy6Uq4HK6ctkjm4AmjZ7QHIU9I\nCx7Q+/yJg09gy/ItOQyGmR/3cTmYA59XZXkytNSju5Vcfqn1/aHnD7muoUgcTx1+CsOTw7hs5WVo\nT7QbWF7PaA+ODx9Hla9KLnTU7wLanMHXVI494ufbONQDOKa8Pq4fs8KnADxq9kZiSGcOSpVFyRx0\nP3uVrwoH+g8gFooZaLMZrNw5QGYAjqfHtfo9WRNOtihU469BNBA1HOOKoQF3AA5yIBqIYmnFUvlw\nsL/TLFoJ0AZbtiAd9obz1oECrJPgsqH6fBmmzEHPZ2C2xv+3RDPMQRUyJXOwiO5gxEIxHBs+hv7x\nfmxcshHdI92WA/qtMgee9AHNXcKMqH+8H9FA1OCLDnvDCHlCOD5yPJc5TOZnDoB23w4NHNJW7nkK\nHAL5BWk5mVqsBFVXWcQfQUukBbFQDCdHT2aYgz+ihTj6NLdSMpXU3GZEkjns6d6DKl+VXLSYgceg\nDF3WDV4ilcCfbPwTQwIXl85Qq5cC+TUHNSiBxzmPqWxGk6M5eMPoGekx9EX/eL9B8FVR5auSbruS\nBek8zEGKwVMZzYE1AHYr8XXv6d6TIyrHI3EtICZ+NVZHV6Mt0SafRw79NnMpAVoinNvhRqWvEk6H\nUwufLaEcuRXm2zgUbb6I6D0APgnAtO5FcjijOfAExRE37Gev9FXi+PBxKZyqropUOiXLXAAF3Eqe\nTLRSJBDJZQ5molAkbmQO/gi6Brsyqzs93JGRT5AGMsyBB/Dw5HBGkJ4cQt9YH37ySu7eDvmuS4Wp\nIJ0VsRKPxLGraxf+9ff/KuvTcMQIG+D9ffsNBqUU5rDv5D5EA1FU+6vz1rovmjmYFFLjjXzUFWQ8\nEseXdn0JHYmOXLeSR3MrHR8+LleZhmglE81BRaW3Ep3JzqKYg6Ug7TIyB5XhPfjGgzg6dNRg8Dha\nyuvyIuQJoSPRIQVpQBtLIU8IDnIYius90fkE/vKJv8zrUgIyBkrNa+H/d6zbgd0ndsuMezOXEpDR\nHMyYQ/dIN/wuP3pGeuR1RfwRuBwubG/abtoWHl9SkFb64u/+6+/wSPsjpmyIJ3Fu03h6HF2DXfjF\nm7+Qn/niU1/EZ3Z+Bj999afyWL7Ce9zHKnNQo5X6x/sNWsvLPS/nzB+VvkosDi7G1fGr0RJpwR96\n/gCXwwW/Wyup83LPy/inZ/4J8Rrj9wAt+q+xptGo+5XBteQq/JG3hBMAliqvl0JjDwboIvT3AGwX\nQphudXbo9W9ARBowMvY0Gj/UCFyQ8VtKzUHvnFg4hmggKpNHPE4P3jj1Bj73+OewY/0ORANRS18/\nkOlcp8OJaCCKrsEuw/tm4WTfvPKbcmMdQKP6L3W/JAftNS3XYMOSDfJ9jqyxascXt3wREb+225PP\n5cOp8VMIe7QQ16GJIfzn4f/Enc/ciU9s+IThe8UkwQEWgrQSdQQAG5dsxN2X342pmSlsXbEVgDax\nPn7T49rqMxzDWHrMaByKZA5sWM5brMUf8Eo2O8EMKJ451IfrcXzYOLxGp0aly4Fxx7vvwLNHn8Ut\nG27BqupVMuFwenYaPpdPcysNZ9xK7MvuGe2Re3NbocpXhc6BTm1y9kcLMgczN5Xf7ZeTTqW3ErNi\nFsOTw6jwVuDu5+/GrZtuNegoX73sq7JdqsHme1np1fI1Kr2V0mBsa9yGOybugBACH1774bzXpDIH\nZlG8sU5duA6NNY04mDyI82Pnm+Y4AIDb4YaDHHJMNFQ04Nmj2iZaPaM92BTbpDEHJQrrqZufyjHG\nkjlM5UYrAcBdl92FV3pfwWcv+KysOKCC3T9AZoH26/Zf477X7sN1a65DMpXEN3Z/A3924Z/h3j33\n4sbzbgSQPwlOPa8qSPOxw4OH5f0Me8LYe3JvjnEAgAevfxCb6zfjhWMv4M5n7pTP1fpF63HPtnsw\nNTOF96x4j+k9+vG1P8bGJRuxa9cupP8zja8kv5LXBVoM5ts47AHQTEQrAHQD2AHg4+oHiGgZgF8A\nuEkIYblNmCPyCVxyyR/h+daH8b7LtBAwFlV5QuTOqAvVwUEOmTyyrHKZFHQe7XgUN2+42dKdA2RW\nv26HGxG/kTnMilkcTB5Ec8QoCm2KbTK8jgaiODJ4RA5aFgUZam0ls4dpdXR1pj2eoKzfAmS2Hzw8\ncDjHNVEKczDNc1AmeqfDiT/e+MeGzzjIgXcvezeAjP4wF80hFo5henbawEh6RnoM180oljmw31aF\n6n5hrKldgzW1mbgIZqA8iYa9YZk8BkD6sg8NHELrota8bWC30vLK5Tlx99mwciupmgMRoTnSjPZE\nOy6IXaDl0yTa4SAHaoO1ACANLKAZ2bb+NpkcBUCOO2ajgCae33r+rXmvheFyuOByuNA11IXWxa3a\nnh+pAVT5quB0OKUL9/zY+RpzMFmcEBF8Lp8cE/FIHD/Y+wMAGnO4ovEKTXPQ9SEiwqXLL805TzZz\n4EUOM/TNDZuxuWGz5bVUeasMrt3UdEr2KaAt/FZHV+NTmz6Fn7/+c/m9fElwTtK0JjZcvAlRhbdC\nCtIcxRj2hg2BKSr4uYpH4jg+fFzW7nI5XDnPYTb4mrdu3Yr61+vx6Y9+GusWrcM//MM/5P1ePsyr\nW0kIMQ3gdgBPAHgDwANCiDeJ6DYiuk3/2JcAVAO4l4j2EtFus3MNp1I5oazMHHhC5FWnKp6q/syw\nJyz9owXdSormoBqHY0PHUO2vloPRChF/BIcHD+dMTAy1tlKhyTzo1oxDyBOSbqX2RDtmxAwODxw2\nfLYkzcEsWkmZ6AtBGodst1IRzIErb5rdq2wUyxzMyhCoE4cVvC4v3A63NOQhTwhj6THDqlWKu8W4\nlQY6M5pDPreShdFTjYN6XX1jfRieHEZbok0GKGSjLlwnS6BI5qC3Wd3wqVQE3UF0JDqwvna9TPDj\n88dCmZwJs3LdDL/LL8eEeq84Yq1rsAsCIu+9zmEOXC/M4jnLhhlzaE+2y4KFnNzK4j7rYPkK73Em\nvZqT5Hf74XK4DII0tzMaiKLGX2PZxiWhJdK1NheUK5x13vMchBCPCSFahBBNQoi79GPfEUJ8R//7\nViFERAixSf/3TrPzTGMCLm8aA6kBWatIMgd9QnQ73Qi4AxnxVAnX6xntwQ2tN+DJQ09iamaqsFtJ\nj1aq9FVqRfj0milmLiUzRAIRDE4M5kQWMPJlSOe0R2cOMlppcghtiTZE/JGcybAkzUFxK3E2dylU\ntNJbCZ/LZ2QOnuKYg8vhwqLgIsM+FpbGoUjm0BJpQVt/m0HY5jyTQgh7w3KC4f/VvogENA2pUP9U\n+arQNdhVdLSSqSDt8htW33xd6j1X3UoqYqGYodY/AMmA1A2fSkXQE0RHsgOti1tlgh+fXzXsZjkO\nDJU5LAouwvTsNI4MHsGsmJUibNgTzhGzVTCLSaaSUnMAUNQ9BoyaAxuHtn6tX9sSbbI+WsgTMpSr\nycccpK9fH/tqyDMnwamagxlrUME5RnO9V1bhz6ViwWRIw5XCtLcX0UAUTocTgO4OSGuCtM+ZiTdW\nV6O8ouke6cbGJRvREmnBM0eeyR+tpDMHzvRUtxPMrm1iBX5w8jKHPKGshvbozCHsDcv6MO2JdlwV\nvypn28tiNQeVOXCMOQvDxYJj+Q3RSkUyBwAycID/VgMI1Am+WOYQCUTgdDhxavyUPGbmVjIDC9H8\nNwBDZBLX8SkYraTH0WdHK03PTiM9k0Z6Ji1rWplVmgUsmENSc31c0XQFjg4dRTKVtGQOfD9UQZr/\nV+9VKQi6g0imkli/yJw5qMbBirlyORAgMwHu6tolgxtUN2w+BNwB9I31zYk5sHDM7eGk2W2N22QJ\nHI4IUq8rn+bA/ctjXw15DnqCGJkayUQr6TsSFkJLtEVuzlUqyrWnwwIyDhOY8pyUpWoBYygrD8jz\nFp8nk0Tqw/U4NqxF0nII7JVNV+LJzicLJ8HpzIGrN7JriUtuFwI/hFYuDT5nPu1DtscTRO9Yr4xW\nak+0w+1w46L6izT30uwMVn9zNU6Oniw6CU4VpC/+wcVY9vVlRRm9bLyj7h1YVZ0pURD0BDEwMaBl\n+OqZy1Y4f8n50ve/rHKZrJY6PDmMdd9eJyNgimUOgLGwHgDLFXY2DMxB/3y2Wyn7mBnUCCeuznt4\n4DCq765G4KsBBL4agPefvHjpxEuWzGFZ5TJDn0rm0N+G9bXr0VDRgFd7XzW9rrW1a7Gudh0A7R5v\nXLJRTlSro6tzEqiKBRccXFu71pQ5sGG3EqT599VaR/FIHLuO7EJduA5LQksgIIqa5IPuoMwfKpU5\nrKpeJfsg4A7g9VOvY3nVcqyrXSf7mJ8Dvi4hhIwWzEZduA5ra9fKPhpLjyGZSqLaXy3bCmSE66aa\nJmyut9ZEGBc3XGyqvxWDUkusW2G+BenywZ1C2t0vRTjAmATHE+JjNz4m32+qacJ/vKHtxsVaxfTs\nNH6878e4sO7CgklwgDaJq/HQ7Yl2XNF4RcHm8qoqH3PIlyFtaI87iInpCTmBHeg/gIsbLkY8EscD\nrz+A35/4PdoSbdjft7/o8hmqIN2eaEffF/ry+kGt8MBHHshpa99YX16XEuN7H/ie/Hvriq24deet\nmJiewBMHn8Cb/W/iN52/wUfWfqRo5gBksrq3LN8CwJgAlw9cxA2wcCtlibtWUOsxsVvp4baHsWPd\nDnz/A98HAOx4cAc6BzotjcO1q6/FtaszuaLsn2+oaMAtG25BPBLHYwcfM72uy1ZdhstWXQZAW53v\nvW2vfO9rl3+tYD9YIegOYnFwsWRGx4ePG3aOMzAHC+a68+PG3RtbIi340b4f4cL6C+F2ulEbqC3q\nXvHY4gxpwHoRlo1tjduwrXEbgIxrl8PQ799/vxZsohsPzi84MXJCZkBnY8OSDbjvuvtke8bSY+hI\ndsi8EdWFBQB/fclfF9XO2995e1GfM8PbkjlMOvsNIo1aPsNsQKpF1riqKE8eBaOVdLdSdialWY6D\nGTxOD0KekOWKpiRBWokN55VpS7RFbvSxs22ntpNcor34wnu6YU2lU0ilU6j2VRf8TjEIeoKS8peC\n2mAt1i9aj6e7nsbO9p1oXdQqM2+t3C9myBalrYTbbKhuJZ5oVBeSGhaaDzJxTnErZSdksbvCbI8K\n03P6KhHyhPDc0ee0+64z12JdKeUAl5Zmobsj2ZEp0qiLt0B+QTob8UgchwcPy4oHdeG6ohhA0B2E\nk5zwOD0lu5VUcDtbIlqfPt31NKr91fKcdSHNLV2sK5l9/axbqL9RzIKtXChXnsMCMg4pTDmNoZZm\nzEFFc6QZB5MHMTUzhcR4AotDi9FY04iuwS6MTI4UTIKTbiVXJiehZ6QHK6tXFtVkLupmhkIZ0ob2\n6BMtRysBWiVG3pjmgdcfwHVrrkN7or2k8hkjkyPaBuzhWF4RsBSUwhyycU38Gjx04CE82vEovvX+\nb+HRjke1kuxFTqKAcUEAlKA5ZLmV/C6/wS0W8UfgJGfBiU8W69PLckzNTGH3id2GGj+shVkxB6vr\nGpwYRGN1o5yoinWllANBd1AGerAozgZzcXAxTo2dwszsTF5BOhuq+4b/L8qt5NHCRomoZLeSCm5n\nPBJHU00TBiYGDEaAGZE62Rdq11h6TJbuB2CIjDpdWDDRSmWDO4UUGTN4OT5d1RxUcKz3y90vo8Zf\nA5fDBZ/Lh7pwHQ4kDhRMgmNxl5lDZ7ITK6pWGGq95ANn35rB5/JhamYK4+nxwtFKSskBlTk4yIHm\nSDNGp0ZxU+tNaEu0lVZ4b2pEMqpyYa7MAdCMww/3/RD1FfXYsnwLYqEYfnf8dyUxh+ztTYuOVvIY\no5Wy3UeRQARVvqqCRrTKVwUHOTIbBQUi2LJsi8FYxkIxdI92l3xdy6uWw+/2S8H0tDOHUCavhSOn\nAMDtdKPaXy23YC1mcQJA5gqp0YXFMgf1mQDm1hc8Z7REWhD0BLG0YqlBT2RGZFW2wqxdzBz489lu\npdOBtyFzmECKjHH4hdxKgDaJ7uralSOEvdr7avHMQRePi3UpMbhujxk4KWggNVCSW8nlcCHoDmb2\nkojEcVX8KqypXYPX+14HgQoKwXyukckRQ95IOcChe3NhDmtr16I+XC9dMNfEr8Ej7Y+UxByaappw\naOAQvv7i1/H1F7+OZ48+W3q0kmKEGdFAtKAYDejhonpmO38vuzwFr0hLZQ7qPQeK97OXA1ysD9Cu\naXBi0PAssnibT5DORsgTQn24fs7MAdDum9fpLWrMZ4PnDLVfTZlDkc990BPE0OQQuga70FitVUvI\nFqRPB8rFHBaOIO1KYVwY3UpBjxa1wPvpmiFeo0VEqNsFtkRa8ETnEwU1B6/TaxCkuwa7sLKqOJcS\nAPzF5r9A62LrjNqAO4CBiSKMg7IpOwB848pvyBXO7RfejipfFVZWrUTPaE9RrAHIsK7s3bLeKoKe\nIATEnJgDEeHeq+7F+kXrAWglR2791a344OoPFr3C9rv9+Mf3/KPcr3vTkk24oqlwAMGN590o29y6\nqBVfuvRLhvdbF7Xizq13FjxPU00T7tl2j3z9xS1fNGzqAmTcSl6Xt2jjcN2a62TGbH24Ht+9+rsy\npPt0gPerADLivMrieSJ9re+1grWaVNyz7R68o+4dAIDr112fd/8LBu/FwG349lXfLvr3VLidbnzn\n6u/ICMi/fdffGgoQxkIaczg5erKoCMWgO4jOZCeWVi7NqSV1OpnD5vrN6Bvre8vnWUDGYQIjM8aS\n0jxh8k5LZohH4vj3V/8dN6y/wXAMQMFoJTYM7FbqGemRafDFQN1oxAx+tx+nxk4VxRzU+kCf3PRJ\n+R5H5QDAyqqVGJgwLU2Vg4A7gMmZSRwdOlpet5I+wc6FOQAwTOQX1l2IvrE+HOg/gHfWm+ZGmuIL\n7/pCyb97UcNF8u+wN4yPtxqqvCDoCco6O/ngdXlxy8Zb5OuPrf9Yzmc4CqYuXFc0I2qsaZS1u4gI\nn77g00V9r1xQ91TITrIDtIm0a7ALvz3025Ima7Wf8y2kVKhuJafDaXgeSsVnLviM/DvbiMfCMZwY\nPgEARemMQU8QM2LGwDLUnIrTBXVOeCtYOG4ldwojM4mclPKwJ4y+sT7LCbYl2oLx9Lhhdcz+wGJK\ndquCdPdoef3zPEEXE8pajAuhJdpSNHPg2vIdyY6yMwcAc2IO2XA6nLgqfhUeO/hY0cxhIaDSW4np\n2WkkU8mimcPZBF6gZbuV7t9/P9bWrpUVDOYLqltpPhHyhOB1ebGscllR94nHvMoyzgRzKBcWjHEg\nzwRGphM5GZ4hTwinxk9Z+vTYiqtuJT5mNZH6XD6kZ9MYmRwxCNLl9s/zgCmGORTji43XxEvybYY9\nYbQl2gx981YhmUMZjAOg6Q7FiPYLCVzR9tT4qQVp9DgSS50wY6EYXjj2Qt5Ng8oFlTnMN2KhWNE6\nI7MD9fMepwcuh8s2DvMJpzeFoancwnBhbziva4Y3wlAn9YaKBvhdfssHk7dnHJocksyB3UrlNA48\nkRejORQTxVEKcwC0vjs0cGh+mEOZVnbbVm2Dx+lZkJNoPnCfL0TmoO4VweDrKUVvmCtOF3MAtOsq\nRm8AMm7u7M8H3cHTKkiXCwvGOLhCA5gR0zkrhrAnjPRs2tKn53K4sKZ2jWEzbwc5sG7RurzZrqqv\nkAVpdaOhcoBXE4VWxdFAFLWB2ryfAbS675y2XwxCnhCmZ6fLahy8Tq+hbv9bRdgbxuWrLi8qUmgh\ngft8ITKi+or6nDGzomoFGqsbZTDBfCIaiM65YmmpWFG1oqRrWhRcZCgHz8fe6t4KZwILRpCOrDyB\nWRHJiTPnFXW+FfPzn3w+x2e/65Zdeale0BOEd0Kb6PxuPw4PHMb07HTBDNlSwAat0Kr43cvejQev\nf7Dg+S5uuBiP3mC6y6opOAywXNnRAGTp4nKu7B786IMLcoWdD6xdLcTr2rRkE35z028MxzYs2YB9\nn91XtmTKfLh5w824ofWGwh8sA771/m+VdI/2/7f9OWN/7217TxvTKScWDHM4OdpjWlGSffH5aJuZ\nmMsZllZQw+UC7gAODR6S5QPKhYA7AK/TW/Cc7OYqBCIqaRCGveGyZkczgp7y+oT9bv9pDds8HVjI\nbiWrcXa68i44mfV0oNSxZ9YvC9EwAAvIOMyIGdP65jwgyz1Ygp6gXNkH3AEcTB4sq0uJz3sm3Qph\nT7is0VeMcjOHcxGxUAwuh6ukEuk2bJxOLKiRaeZnlMyhzHHEKnPwu/w4MnikrL55Pu/pWgGZIewJ\nl/2agPIzh3MRdeG6BckabLx9sGA0B8DCOBShOcwFQY/RrTQjZsq+yg64A2fWOHjDcyo7UAg2cyiM\nunDdOReBZePcwoIyDvk0h3I/aGr4GbOS+WAOZ3KCeO/K987LeXes2yE3nLFhjpXVK3HbBbcV/qAN\nG2cI8+5WIqLtRHSAiDqI6L+bvL+aiF4kogkiyrsThpnmEPaG4XP5yi+qZgnSQPmNw5lmDtubtmN7\n0/ayn/fzF30ey6uWl/285xJ8Lh/uuvyuM90MGzYsMa/GgYicAL4JYDuAtQA+TkRrsj6WAPDnAP45\n37kc5LDUHOYjwUQVpPn85XYr+d1nRnPYtWvXaf/NcxV2X5YXdn+ePZhv5vBOAAeFEF1CiDSAnwG4\nVv2AEOKUEGIPgHS+E/lcPstopfmYYM9l5mA/gOWD3Zflhd2fZw/m2zjUAzimvD6uHyu7fH4PAAAG\npklEQVQZfpffUpCej4qH2YI0MD/GYSFmyNqwYePcx3wbB1GuEwU9QdQGc0tIVHor5yVsMuwJG8pP\nB91BVHgryvobIU9oQRbksmHDxrkPEqJs83fuyYkuAvBlIcR2/fUdAGaFEHebfPbvAYwKIf6XyXvz\n10gbNmzYOIchhJhTtM58h7LuAdBMRCsAdAPYAeDjFp+1vIC5XpwNGzZs2Jgb5pU5AAARXQngXwA4\nAfxACHEXEd0GAEKI7xDREgAvAagAMAtgBMBaIUTh/QJt2LBhw8a8YN6Ngw0bNmzYWHg4q2srFUqg\ns1EYRNRFRK8S0V4i2q0fqyGiJ4monYh+Q0QLr9j8aQIR/ZCIeonoNeWYZf8R0R36eD1ARO8zP+vb\nExZ9+WUiOq6Pz726p4Hfs/syD4hoKRH9FxG9TkT7iehz+vGyjM+z1jgUmUBnozAEgK1CiE1CiHfq\nx/4HgCeFEHEAT+mvbZjjR9DGoArT/iOitdB0tbX6d75NZJddVWDWlwLA/9bH5yYhxGOA3ZdFIg3g\nL4UQ6wBcBODP9DmyLOPzbO7sggl0NopGtqD/AQD/pv/9bwA+eHqbs3AghHgWwEDWYav+uxbA/UKI\ntBCiC8BBaOPYBiz7EjAPRrH7sgCEECeFEPv0v0cBvAktj6ws4/NsNg5lS6B7m0MA+C0R7SGiT+vH\nFgshevW/ewEsPjNNW7Cw6r86aOOUYY/Z4vDnRPQKEf1AcYHYfVkC9IjQTQB+jzKNz7PZONhKeXnw\nLiHEJgBXQqOdW9Q3hRaRYPf1HFFE/9l9mx/3AlgJYCOAHgA5eU4K7L40ARGFAPw/AJ8XQoyo772V\n8Xk2G4cTAJYqr5fCaPVsFAEhRI/+/ykAv4RGI3v1EGIQUQxA35lr4YKEVf9lj9kG/ZgNCwgh+oQO\nAN9Hxs1h92URICI3NMPwEyHEQ/rhsozPs9k4yAQ6IvJAE1J+dYbbtKBARAEiCut/BwG8D8Br0Prx\nFv1jtwB4yPwMNixg1X+/AvAxIvIQ0UoAzQB2n4H2LRjokxfjQ9DGJ2D3ZUGQtk/BDwC8IYT4F+Wt\nsozPs3azHyHENBHdDuAJZBLo3jzDzVpoWAzgl/peFy4APxVC/IaI9gD4ORF9CkAXgOvPXBPPbhDR\n/QD+CECUiI4B+BKAr8Gk/4QQbxDRzwG8AWAawJ8KO5FIwqQv/x7AViLaCM29cRgAJ8jafVkY7wJw\nE4BXiWivfuwOlGl82klwNmzYsGEjB2ezW8mGDRs2bJwh2MbBhg0bNmzkwDYONmzYsGEjB7ZxsGHD\nhg0bObCNgw0bNmzYyIFtHGzYsGHDRg5s42DjnAURjer/Lyciqx0I53ru/5n1+vkyn7+FiH5MGl4o\n57lt2CgGtnGwcS6Dk3hWArihlC8SUaEE0TsMPyTEu0o5fxHYAuAZAOcB2F/mc9uwURC2cbDxdsDX\nAGzRN5P5PBE5iOgeItqtVwP9DAAQ0VYiepaIHoY+IRPRQ3pF2/1c1ZaIvgbAr5/vJ/oxZimkn/s1\n0jZZul459y4i+g8iepOI7jNrKBFt0bNd7wbwNwAeAXAF6Rs12bBxumBnSNs4Z0FEI0KIMBH9EYC/\nEUJcox//DIBaIcRXiMgL4DkAHwWwAtpkvE4IcUT/bLUQYoCI/NDq0Fyqvx4RQoRNfuvD0EpAXAGg\nFtr+6JsBrIZW42YttOqjzwP4ghDC1B1FRC8IIS4hoh8CuMcuHWPjdMNmDjbeDsjeTOZ9AG7WV+i/\nA1ADoEl/bzcbBh2fJ6J9AF6EVtGyucBvvRvA/9ULjfYBeBrAhdBcXLuFEN16PZt90IxRbmOJAgAm\n9ZfNANoLX6ING+XFWVt4z4aNecbtQogn1QNEtBXAWNbrywBcJISYIKL/AuArcF6BXGPE9HxSOTYD\nk+dPd2mtBlBFRK9AMyB7iOguIcTPC/y2DRtlg80cbLwdMAIgrLx+AsCfsuhMRHF9tZ6NCgADumFY\nDW2fXkbaQrR+FsAOXdeoBXApNHeU2VaYORBCXAvgewA+C+BzAO7V91a2DYON0wrbONg4l8Er9lcA\nzBDRPiL6PLRNZd4A8Acieg3abmQu/fOqCPc4ABcRvQHgLmiuJcZ3oZVK/on6W0KIXwJ4Vf/Np6Dp\nCn0m54bJa8al0DSJLdDcUjZsnHbYgrQNGzZs2MiBzRxs2LBhw0YObONgw4YNGzZyYBsHGzZs2LCR\nA9s42LBhw4aNHNjGwYYNGzZs5MA2DjZs2LBhIwe2cbBhw4YNGzmwjYMNGzZs2MjB/weqU7qyKIn0\nFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot(np.vstack([train_acc, scratch_train_acc]).T)\n", + "xlabel('Iteration #')\n", + "ylabel('Accuracy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's take a look at the testing accuracy after running 200 iterations of training. Note that we're classifying among 5 classes, giving chance accuracy of 20%. We expect both results to be better than chance accuracy (20%), and we further expect the result from training using the ImageNet pretraining initialization to be much better than the one from training from scratch. Let's see." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def eval_style_net(weights, test_iters=10):\n", + " test_net = caffe.Net(style_net(train=False), weights, caffe.TEST)\n", + " accuracy = 0\n", + " for it in xrange(test_iters):\n", + " accuracy += test_net.forward()['acc']\n", + " accuracy /= test_iters\n", + " return test_net, accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy, trained from ImageNet initialization: 50.0%\n", + "Accuracy, trained from random initialization: 23.6%\n" + ] + } + ], + "source": [ + "test_net, accuracy = eval_style_net(style_weights)\n", + "print 'Accuracy, trained from ImageNet initialization: %3.1f%%' % (100*accuracy, )\n", + "scratch_test_net, scratch_accuracy = eval_style_net(scratch_style_weights)\n", + "print 'Accuracy, trained from random initialization: %3.1f%%' % (100*scratch_accuracy, )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. End-to-end finetuning for style\n", + "\n", + "Finally, we'll train both nets again, starting from the weights we just learned. The only difference this time is that we'll be learning the weights \"end-to-end\" by turning on learning in *all* layers of the network, starting from the RGB `conv1` filters directly applied to the input image. We pass the argument `learn_all=True` to the `style_net` function defined earlier in this notebook, which tells the function to apply a positive (non-zero) `lr_mult` value for all parameters. Under the default, `learn_all=False`, all parameters in the pretrained layers (`conv1` through `fc7`) are frozen (`lr_mult = 0`), and we learn only the classifier layer `fc8_flickr`.\n", + "\n", + "Note that both networks start at roughly the accuracy achieved at the end of the previous training session, and improve significantly with end-to-end training. To be more scientific, we'd also want to follow the same additional training procedure *without* the end-to-end training, to ensure that our results aren't better simply because we trained for twice as long. Feel free to try this yourself!" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running solvers for 200 iterations...\n", + " 0) pretrained, end-to-end: loss=0.781, acc=64%; scratch, end-to-end: loss=1.585, acc=28%\n", + " 10) pretrained, end-to-end: loss=1.178, acc=62%; scratch, end-to-end: loss=1.638, acc=14%\n", + " 20) pretrained, end-to-end: loss=1.084, acc=60%; scratch, end-to-end: loss=1.637, acc= 8%\n", + " 30) pretrained, end-to-end: loss=0.902, acc=76%; scratch, end-to-end: loss=1.600, acc=20%\n", + " 40) pretrained, end-to-end: loss=0.865, acc=64%; scratch, end-to-end: loss=1.574, acc=26%\n", + " 50) pretrained, end-to-end: loss=0.888, acc=60%; scratch, end-to-end: loss=1.604, acc=26%\n", + " 60) pretrained, end-to-end: loss=0.538, acc=78%; scratch, end-to-end: loss=1.555, acc=34%\n", + " 70) pretrained, end-to-end: loss=0.717, acc=72%; scratch, end-to-end: loss=1.563, acc=30%\n", + " 80) pretrained, end-to-end: loss=0.695, acc=74%; scratch, end-to-end: loss=1.502, acc=42%\n", + " 90) pretrained, end-to-end: loss=0.708, acc=68%; scratch, end-to-end: loss=1.523, acc=26%\n", + "100) pretrained, end-to-end: loss=0.432, acc=78%; scratch, end-to-end: loss=1.500, acc=38%\n", + "110) pretrained, end-to-end: loss=0.611, acc=78%; scratch, end-to-end: loss=1.618, acc=18%\n", + "120) pretrained, end-to-end: loss=0.610, acc=76%; scratch, end-to-end: loss=1.473, acc=30%\n", + "130) pretrained, end-to-end: loss=0.471, acc=78%; scratch, end-to-end: loss=1.488, acc=26%\n", + "140) pretrained, end-to-end: loss=0.500, acc=76%; scratch, end-to-end: loss=1.514, acc=38%\n", + "150) pretrained, end-to-end: loss=0.476, acc=80%; scratch, end-to-end: loss=1.452, acc=46%\n", + "160) pretrained, end-to-end: loss=0.368, acc=82%; scratch, end-to-end: loss=1.419, acc=34%\n", + "170) pretrained, end-to-end: loss=0.556, acc=76%; scratch, end-to-end: loss=1.583, acc=36%\n", + "180) pretrained, end-to-end: loss=0.574, acc=72%; scratch, end-to-end: loss=1.556, acc=22%\n", + "190) pretrained, end-to-end: loss=0.360, acc=88%; scratch, end-to-end: loss=1.429, acc=44%\n", + "199) pretrained, end-to-end: loss=0.458, acc=78%; scratch, end-to-end: loss=1.370, acc=44%\n", + "Done.\n" + ] + } + ], + "source": [ + "end_to_end_net = style_net(train=True, learn_all=True)\n", + "\n", + "# Set base_lr to 1e-3, the same as last time when learning only the classifier.\n", + "# You may want to play around with different values of this or other\n", + "# optimization parameters when fine-tuning. For example, if learning diverges\n", + "# (e.g., the loss gets very large or goes to infinity/NaN), you should try\n", + "# decreasing base_lr (e.g., to 1e-4, then 1e-5, etc., until you find a value\n", + "# for which learning does not diverge).\n", + "base_lr = 0.001\n", + "\n", + "style_solver_filename = solver(end_to_end_net, base_lr=base_lr)\n", + "style_solver = caffe.get_solver(style_solver_filename)\n", + "style_solver.net.copy_from(style_weights)\n", + "\n", + "scratch_style_solver_filename = solver(end_to_end_net, base_lr=base_lr)\n", + "scratch_style_solver = caffe.get_solver(scratch_style_solver_filename)\n", + "scratch_style_solver.net.copy_from(scratch_style_weights)\n", + "\n", + "print 'Running solvers for %d iterations...' % niter\n", + "solvers = [('pretrained, end-to-end', style_solver),\n", + " ('scratch, end-to-end', scratch_style_solver)]\n", + "_, _, finetuned_weights = run_solvers(niter, solvers)\n", + "print 'Done.'\n", + "\n", + "style_weights_ft = finetuned_weights['pretrained, end-to-end']\n", + "scratch_style_weights_ft = finetuned_weights['scratch, end-to-end']\n", + "\n", + "# Delete solvers to save memory.\n", + "del style_solver, scratch_style_solver, solvers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now test the end-to-end finetuned models. Since all layers have been optimized for the style recognition task at hand, we expect both nets to get better results than the ones above, which were achieved by nets with only their classifier layers trained for the style task (on top of either ImageNet pretrained or randomly initialized weights)." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy, finetuned from ImageNet initialization: 53.6%\n", + "Accuracy, finetuned from random initialization: 39.2%\n" + ] + } + ], + "source": [ + "test_net, accuracy = eval_style_net(style_weights_ft)\n", + "print 'Accuracy, finetuned from ImageNet initialization: %3.1f%%' % (100*accuracy, )\n", + "scratch_test_net, scratch_accuracy = eval_style_net(scratch_style_weights_ft)\n", + "print 'Accuracy, finetuned from random initialization: %3.1f%%' % (100*scratch_accuracy, )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll first look back at the image we started with and check our end-to-end trained model's predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted style labels =\n", + "\t(1) 55.67% Melancholy\n", + "\t(2) 27.21% HDR\n", + "\t(3) 16.46% Pastel\n", + "\t(4) 0.63% Detailed\n", + "\t(5) 0.03% Noir\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAEACAYAAAC3RRNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvU2sLcuS3/WLyKy19j4f9+t19+tW08LQbmNhIZmJJ0iG\ngQcW4kOyEMiyxIQpc7eEGDCECWOEPGCA+JCQJ0g2bQaIKWZgZGRjEN3Cz253+71+r+895+y9V1VG\nMIjIrFy11zn34X5P5yKdvDp3r1WrKisrKyPiH58p7s6n9ql9ap+afuwBfGqf2qf23WifmMGn9ql9\nasAnZvCpfWqfWrZPzOBT+9Q+NeATM/jUPrVPLdsnZvCpfWqfGvBzYgYi8udF5O+KyP8pIn/553GP\nT+1T+9R+tk1+1nEGIlKA/wP4c8A/AP4X4C+6+9/5md7oU/vUPrWfaft5IIM/A/xf7v477r4C/zXw\nb/4c7vOpfWqf2s+w/TyYwa8Cf3/6/oM89ql9ap/ad7j9PJjBp/jmT+1T+/9hqz+HPv8B8GvT918j\n0MFoIvKJYXxqn9pHau4ut47/PJjB3wR+Q0T+GPAPgX8H+IvPzvrX/kMQIeyNIALuCSukj1VAdMIa\n+b3jGfc8JvEXmY5P59N/Fq6Ai083BuhzJNNcHQ2sItHX//7X4U/9+f33eQwy9WOW1wiogPnzPq/6\n70N0EN/76pOjMj2CAhbPKDfe761jyD4XKvC3/nv40/96fB7HNe6f8yMCJ1XORXEc3HhVCp+Xyp0I\nTQxzwQAXx3BWh9UMw7gvyr0XVoGCo1IwbzjGosqr88KXp8JZladmPLaGm3OqyrkKX96dWduFL+5O\nfHF3YjmBbPDmaeXv/fiR//W3/it+/c/+W3zx4kRV4Td+4TXiG18/rDxuDRHhxxfhDx8eaICKoAja\n51IFdacoqDhFNKYi31NRwQF3Q/O3S2tslq8z33uzhnl8MxyLi/J1SS4RR/FcwhLnIPzf//N/x6//\n2b8ADieJexaJ+RQB9VwYYiyiLEWpRVnyNboZLpbjzmUUrwrHabn2/8p/8O++d+n9zJmBu28i8u8D\n/wNQgL/yfk/CvlgdiYU2E9IVA5sI+9kx2YloZhCDQMfgrglkZg63mOWRZkefEwOQHIf358l/7nHe\n+xjLzIRutnx+0Xi7vXvIt5/HSr1+rsF8eh/TWDvzG89867bT/KtwV5SXKtyr8KIogiMIr2rh5SkY\n9doEERmL3hGawaMZFzfuilCBVyosRdlM2KwgFMA5F3h5Ul4ulYdL46VWtnXjrhaqOiKNF7VQVVl9\n414X7s4FkcYX94XPzoVfe33ii9d3sDZeFksGtrDZwo8fNlQ27k4Vd6FZEM1gBrn67rRQJJiwiqIo\n4k6thaUIjqEIRZSnbWVz2MxpwRFormwWxN+8M4O+ND1fSX5yxyzWqhBs/RRUPVaRqubSNtwd92Bk\nIp6z7MkUAA86iFfvgwlJX5tu7xEOe/t5IAPc/a8Bf+2DJ6UUcnekL1SOg52kYpdcEOxYlB0i2EGq\nHxiBQFJCIg2/JpLnD7D/nQmL3s88RBldXzMG9me6AiSy93m89VU/00GbmU+XEEcU1Mfbx+QxPYPp\n+LX0ZxqDTNfRV7CCCosqny+FF0U4K5xVuK/KixqLcG2Gm9LloajSDJrBC4PNC6KOqrNkfw+bc5/S\n7bJtnIuyFAEFLU4VeHFXeHmqnIryuG2oFKpCnOacT4WnVvjibuHVqfLHvvcakY3T/ZnPX5wxa0GA\norx9bKzrRinKgtBKoXkDnOKCirKIcF7iHjufdkSckwqnWpJBxPTclQUjmIGZh/R152KwNo/jiRIU\nQXMNmhsNwdyxZqzu4IFSahGEjoQdKUIVcNfxXkShqCZ6iXs3d2pRRBwVAr1IzFWRgUEQ/QjM4Kdt\nVzQCOzH0z4OAp3/uCWPnB9NrgvUJQcj84QbTuUmwB+K7NYe/9Mf3fsWTGU3MR473mO4zD24m6iMT\n6GMYY3n2UNd9XjHA/kDT3M2X9lN/+U88R1B9nsyhOKpQi7Dkgi1VWE5KIaRrEcXcUS2ICE9rww2Q\nQi2FZoYD5xIQW32jFqWq8A6hqmLN0BoMQkQ5VygKiwpeCgaUopQaDH2zRl0qS2382h//U9wvcLec\nUBFenJTL5qiE/NQCVgriFkSH0yRQSRVFBZaiOxLpb8AMFeFUCssilJS8Doh7qEbJjINUnW1zHrfG\nxWBzwyxQSvDlQjNhtbiWIizmNIdf/Gf+JEU85zPenUhAawBZhCKBjopKMqWGuyUgbqg7dSmpAjkV\nQcVxEVTKtyDRj8kMpCRq7cRACvppEY9zOyF3AtGJ+GxazHmtPu/imstMxHHzlIkzHO0Mvf3Sb+xS\ntY/l2T0P/d7izM9sEv1/sl9zJf0PfT57jv58c58zI5jnV+BX/rlrpndQo1Z3nqzxGo1F6rA157JZ\nEK47tYQEqiUW8osaRF8kmMi6Gav50HOLgKji7jSvlKJoiftVAbOGUli0oCKci/B0WfFSwEsiSaNI\n4ayVf/af/xd5cTpxrs5pOSG+UmsQhQCvzpXP9MKDx5GlFO5yXkvRYBIFTgXulyWheqCKHFbo8EVR\njWczC8nu2A6yRKBCa8LDunExwaQGEJVkTlZYN2PrzAQwd179yX9hqBTxmsI+E/g31DCRYAJCo6JI\nEeI/51xDxanSUQJgRp3sSX5rHU/toyID6MJeEuVPYmvWqY96/oDx/bdZIiYn6Ayh93elMkxtnp9Z\nas5w/+qiWxd8SxtE5s8ZhpBqz0E6v6/rMRe+z8WVneVWBzcY60z8M+q6Ygypt1JozbE0Zl0slQIX\nllyktQgnFc5aCKHn3NX47aEYFwt4f6ohoVZX1q2xaA5YFfdAGVrzr6SRD+Xl/YmlFtq2oi4sS2V7\nWoNobWOpUFVYBAylbc5yrlQxfu2LV4gV/t6P/xChogp3VThXTWYVZFLEKWKpTQmqoaP3aQv6sjGb\ntcTYGCZEQRZBFuX+bsFFsGZsmxHmUkccWgvm2Ca7wVAjLGwNgSoAURZNW41AFcGQoa6oQNHKolBK\nMC3cUFW0VLB4nmBiH16vH50ZdHX2StJ1wxmW0vRA7LMhbJZ6g1CmY7MaMPqfDXkfGNwtHjB7JwZa\n0W/pZ/rxFjooMzEfjIzHv51g+xwckcHV9/m5D+frjXk7jFOSUXlzvBRcFMNoBr46zRv3VQPySkjO\nWkJCLTUNYggiSt1C/y5F2RalXWwMwzDaBlsRVI2aiCCkoKHqnLVwqhVTxW0DKiKKsHFaCltzllJp\n0SuihmKcz4V36yNffnnmFy8LawuD7Ktz5cWiqBhrETYLI90yYPrMF2Xil/EOuq2rlmAGnnadPoWF\n8E6UotiiCeWdZkZr5DgFM0ubbyAmJxDDahbndmOnCEVDpVIBcRtjcJxTKRjxTooqeDCQUpQYolPr\nh8OKPhozuFIP4kD/MC36g+4/VIPJTNt/u0mMcnDF+W1i+1C7MiL2m83D0On3rjKwP8OR+AfauTGG\n3qfK9W+dYJ1klFzPF0wuS5nmoz+7TTe8wUCPc6/hvl1UOYmyiXNx455C0YJ442LOtgacflgV1UpV\n56RGVaWq4hILVsUpuhuKNcca+nthtYYDmxlVJCzm7riEzn5XK3dFURUsic/MWbeA9/fne9bmcNnw\nUwkCFcFVcFVEBd0u/FOv73nYNtZmnKpwqho2iepsVtgs3XjoBLh8TJWKoGnka63lswWBSu3TKeP8\nWjyNgoKbhdRHaVbo3gUzWLdQNWopqPpwCYLTWjIEIY2MoQJoriMzY20biqFaaAhtazTCmFik5XMI\n5buqJgwvAnLw6k1E1Bf0DF2tw4i+8HXu9DaBj9O7VB+Qgedc5Gidn+7tz0+5vm4irEGwRwTzAQZ0\nNG5CYL/ZXiplSIWckL3fcPRPcRj9c3nOOPvcPntOGcZDza+rNZ4MnraNshRKKbi0lHTO09YoAosW\nVg24fdnC8GgSUtSz2yJKKZViK61BEUkpGWvC6PwoDIwvzpUXS+GkwurhNTovZ95dNloykWaNy2Zc\nSvj6X94tIMK7hwsCvFjOVAp3arxoFRXl0hqtGeflxF1VpChbc57WlXUzmoXlXtLy4NjkdAlLf0xb\nMLVTLRQJID6mU4MZaBHEwtbQmtGGhue4QVuclobAkgZNCPeme0lUkUgAiFgFyWVV2Si4WSAWFGow\nNnAKwQzdnfpd9SbIUAfgeqXyXFJ1aWW+L/ARX3CQrPMXufV5PvlwUPy5SWBmALfm8oqwpvt0ZDDH\nG8z6/q12xTyyT/dAH0XRomEg8hNPttHcwcIqjgLFoU1MU6c+xXe09Wye9HrcAAYrAdlf1AUXZ3Vn\ntbAFnEtFcBbtUDXciZuBVcVEcDdwpbVdz15peLrS1MNXXrwgeNoHHBNDtCACSxXuz5VTEexpRRG2\nlO6IBkq5bJg7LoVGEPW6bZQi6MV4dae4Ks0bS60sqiy1sK4ryyLc1ZjbVYwiC5diPDytgSgE3IKh\nFe3zFO9TMgCpqKR9I9CD5flkbIB4ogfS1dcZgQfBQ9gPmoe6MeIEhm3aEXQsQfOwPUhwibSnlzQQ\nKmaGlmQc7ogGO+ueife1j28zyGUSC2pGBYd/A14fqPKWpJ3ViVlSQwrSAyMY/U9WR7GDLWPq/4rJ\nTER+i8a7zaNz5fcFHsk0wI5guj1lC5/4fT3zvdPCpT1hcs/vt0fYJuJ3231RMwPq8yHT3PQwjb7i\nxKcbxniaw8MWlusXi9BUeWeOb42XZWGpyknDcCcFLK9ZB9xOK7j250njGAGZg4eFyxKC2ARDJm+O\nilI0pKOqcqoLb58ecTca4Kqox2MXUTyRijqcloVtW3m8yHjEqlA0CGPR8GSIxHiahS++pLFTgKoF\nKSCEHcPdMbOA+QJCRArihptjkmvZg+C3zXFrSK3h4XBJNBEG0ggGUswiUIlkkJ2Z9AhHd8OsgcAi\nJRiqCC6BcKw5hqQbN4OS+vIk1BmsY7Db7aMyg4GKB310Ap6kvk5BQj4zCOL7M+I6SGdhIlaZ3Jdy\nrVZ0eDw+l2AIV2rDTDQHRtC7nT/Pv93y8R7Vmmdqju8BVpvx9u07Hi+V779euHcQE6jgzaGWQAVG\nRiEeVYNDvz6hCOmLpOw2j2TKzRtvmoMUPgPuCjwBykZBMQejYC5szdi0sA6I6kHc0l1jEb2ooqg4\n0sNnc+H2UOCCXMFl3NlCiaaKc78sXNYg1kvbgqmoUNJdaQ6n5RR2iVK4rI1aCrUWigqiYeVXjUAd\nUcVzCiKuQFgz+qgkE+/iI+wGZdgTwpovlNJt9R3KyzAqFrlGGOApe3Rcpxp2gEAL+x1bS4SAgFbM\nLZCBWB736L9IeCAGTQi9Vol2Jv8taYkfjxnMRIuElbbPykyYg4imwKIBfW+ggmcLf2IER5w/61AD\nBcxI4nqMA273k7sifAs13BjauA9cI57OBHR6WzNicMsXabSt8btvNl4tZ0oRqigNWN3RWvDN8O5x\nmQOZ5oXgvd95Dv3wrB6SRGEz4SdbYxXnywi9YdGx5mhuiIWkW83RFmP3nkZilmBEBqQuGi6yHv/v\nKbVVYvF2Yx0Ia2s0a6hqSj2h1oJshiCwaOrQ6X7TQmsNced8WsIE0hrLqSLseRTiHoY914HG0pPJ\nqRYs15i1Nt65dGu+eML+UHnivy7gkrkVyfDl2RvhmAXUxw1vks+8nxNPnb1pGAmhyzLF0nbSMvS5\no5SCICVzGpyhcoyl9V1lBuE97ASaKkLXX/tiHUzhFvH3xXyE2ewEOum/zwx4R2KVw8FdYbt1IleM\nYr53DxIaaMSfXfasTTB6MLqutfT+RdJ42uCp8E1rSHWWRXmlC39oF16KcFmUpzQm0fqzZmCMRBir\n4iEhCfcbSCQWNce6cXU8e86zwbsWS0+AkyirRALTIkFcW/Yhshs1a6KCZpagzCgoSykUDau8JdO6\nBnKewKixtfTvyy75MWMpIaW9k45BKSW8DuGkH9K4WaNSMHdaayDOUguCJiRvg1GZQK2Fy9Z2az5O\nkRK2g3zNKpJQn0wU6q9PBoooyGAeXXWTXCMh2bsJ2HJu+9OAJNPsiMeBZo6mQVgkUEJ4GySYLj76\nN3b3rQ770fvbR4xA1AGZduKHIX07I5gZQ1+o7xW7TL9N5xwh8ofEtk+/3+IDA6n49biufps+H1/A\nURXoatCV7UFBu6S2nTA1JJhj4A3flAd/5GHJQBmFc6k8besIzJS8Ts2opfD5svBCjdcl8g3uUvr+\n6LLx/7zb+Nojzj7mfnJjuOOb8M7ClqKZu6BpH0AlLdpxPxGQBlrSBKQhyYJ3B0NZtLCocFk3SGNc\nh95hc9hfSa0B85tbREmXmPOqirfQqbUqpcS6kgx9DhUimMRYPpn7VTTUFTMHCct/M6etxtqcdQtG\n5ZbBPMlxPO1bkoOM5TrlD0xrOWweQbh0fp6qX0/t6mtJc4CZoTCWS7dRtPTeDCY9ltnEPGRXD6qG\ncVm8o4fvKDPoRpZhOJyJfRAXXFHk0UK+Y+74MzOVwViAnvxxS9AznUvvm2umcGUZ7H36fnz++Qre\nzz9Mfc+/X9ktcpydGsYz63RtX805PFN4MrwGIli0QMbda4VzSuZ7wkv5RVFeFuVFUV4uwl0NS/7L\nJcb0248bF5dceHb93N5wE9415ffYeGfCZsrrJRKQFhFKgVWctTn3NSTxqcgYeTMHdSR141NVTukB\nCFDtaNERBdgtosFvnMg6bKgomxvqursnJcKE17ax1Bo+eQTJ2AdBsJTatYS+rhIqj0lnEIE8zCPc\n2h2kBCGFxyDtHfNSyvXQ0cIeauKghhS5AnkDTQihqnTPQ/YYid/7Omwez22DGexqxr4m9rXWVRgd\nRmu63sCH2sdNVHrGCLj+3NWGK2Gvx07mLzvOvH5TN/qGwXieteNxufrpmkccrp+ZyZH4xxjfgzyQ\nVFonJpJoYBdr03P2zxYW6ydzLpZRmx658k3TWl8KFzfeWEOkIgpLi2Sg+6VQSuVXWEGctxs8VnjT\nnMsGT0a4Cbs0MniSQBAqygrcE3aNpQivEDZ1jJY8VcNTIB2yChhhAVdYloWimXTjMgimMw9fNOB/\noknN+gLqabXHwoC2xf2aOWqWhrVdYooArScDddUjkQweCVNunE/KosDIxvQB02MJ7cJoXm7dvThK\nD5BRiIOxkf3k+HNMkWwUiMDdsbbfd2iIRDhzlLA4Ej8DZXS5pn2NeF9y75OEe/u4rsXkkCMXXroh\np1Nch6m+P+WRwGYJPNgvxw8TAc9E+r7JuUHgCW93VHBkLFwjgZuMoD9jf0t+3TfTX+lGgwkp3Rqv\nwyhGQlrFW+rLhOX/qcCbGoEyb9V5w8ZXUnky57VAWaAi/MJ95YuT8mSeQUZnfvS08YPHC99slc0E\nUU/joXNpzu/bxqNVPq+FBae2UGHkpKg7SurnRTiVeJQiCiWk2+ZGcai1p+/GM2rOZzNja4KV9EgU\nOGuhWUNaGCE9JZ7Q0zyOiE4HwSxLCTsCBh6+eevfa0ROLiLosoQdgJDIW7PBPHS8j/QKSCIHdmYh\nlhJad6InIb95ELZZGCB7Wn0I8CR6d9y7JybvkcJHUo2WxCcilmEkqbJN6vcOluXbTAYf0YA4/tdh\nlU5CXxhhvtMLvQmz5+9XEhNGTMJNCT5fx3NIf2zCzvLfxwhuookZKczD6F+UcGHKzgCOzOyqW7mB\nTmZ1ZZ6DZBLmsEbdgUsJqHlZnyhV+WU5cV+galQEen1euHPhYTWW4rxalC/OhR88bvzo0sDgq1PA\n/x+ulp4M4w82417hRVHUoGyhw1cXijlCiySbnKNuO3Y3rEWZk1pSYmZ+QFclmjmXrGmgJVSSWgRl\n47I53jvLSkwOGT8gSRfhMaiaiU8C7prFTZzNW6CN1K3DFeh42S32PWEqCvB0u0AnyAzbkP1dSLqw\nI/Yg0EgQtoK0fC2Z47AvIiDQmtmu43taGru091xPNog+/omEqSkS/3wsu85Yv7M2g2hThZxhoJlX\nOhOkPhAB3D6fw9cjjd+S2LeMfbeOvU869/MGg5r7yeOTNXn/vSOfboXq8RWzbpdo6Urf84nwfb9v\nZ55jCJ1J5P2agQUBP6hQXfgDMQobX9WIF1jd+fpyoVlItKUIL0/Kr9eF71+Uh814kbUIXq0Nc+GN\nGV+3RnN425w17djNuiOnUFXC2wAUN06q4WlA0rPhae8IZboUGeXGcOfSIqFnqQU9ObU4S61ctg0z\nj7h+AfdGR9PuMaf9cwTvpM6e9xaJqbUWST6eRLu5D2nbaY6cZqM7jfb30LV8kS6hu9xOwG/d5uH7\nM6eK09Fxd6mKCq21dKkK7vt13WDoliHMiSA6gp7Vud5KMt1v0RI+JjOYiPw5xU7HZSeS0XyStBNx\njbcx9TvqDfj1eVe3uzFLx2O3hnnr3CubwWTo6x9mid4h4qwyIEwWqKnv43jk+tjMcDqK6gxEuLZF\nGICyPa38gW08tMLbWrhfDZWNd22jSuVOCy+KcxY4FeGzU+GLc8T2n8T58hy67T9+WvnRE4grb8x4\n0zZwxQv4uo/SKFGpR5yq4QlYsgZCFTIRp+ySMNLzglgdLtbYLjIepVZlqUpbd325qO62gE5EmQ4d\nLsaYXi0dhiqlBLFounjXzEsIJhB1C/q7i1W0z7t5RiT2tGHZ6yX2YKNgKpHG3McocTE92SlqHkYE\nJkLkFzTHWsN62bNkBm79e1+QHUEQ6dh9vSVaMAnE823g9yO6FmNaA3Z1P3tHBxMBdP1swOGZqN5D\nKOPUvFB9IrD5nAO0Pxrpbs7eRNBH7nDlGZjGPgh0GsDs9+3oYYxZr8f6TAWZfhwMpM/NPIZjlEky\nmp5xQ4HmPJjzg9UQtYSxAtI4i/GiCK9VeZllz5ailNL48lT4/HzipM5ni/LL987XF+PrdeNHTfAW\ncPVt84gVcI86CFKoIiwtEmcSzCJahm5esk7AujV61GLwTaE142ED8TAO1kzrbSOiMCS7ecD9JTMY\n99J6TnPBveFlRwdRm7DPkuNN2CySsXpZsy7tI1Eo6wMMT0AaO6WHKe/xApGW3GG7g0cWoqXB1LuN\nYAi3DKwqQoZE4CKsPcmJzONIg6onswGhlBreELORyLp2wflhZ8JHdi32z+yo95m0u/IeyI3PN45d\n0Y1MPOSGZO7nPJP8Pn4afeBT3zfUk1vBQ88MgNfcfHy8MirOz3+4zTzuwXD6tZ0p+H7uVf+9r85s\npnFaSGCXFr+r8KDGY3O+VuVeNQ2HkX9wV1Z+8a7wq/cLv3SufO8snOrGy1X5VS+83VbemPN2s4Tp\nEa78tGb5NHFKyySnzLqpGclnrmxtG5K5VsnU5kiLXreNdxbI464opyo8rmF4i3qDGXSkPdLQ8HS3\ndqndXXWqncgzQUp65qEPguIgVT3LvI3X3l2heW7PBegqQvPMgsz3f2n5e76TTguWXoK576UW3DVD\nkDXyE0YNp452LMPH4rrWjZT9n0VYuPtROFy3j2hATGnZ25CSXC/cQbATUc3++ZmBHInolt5/89wD\nkT4Twu9hQjeFtVydMq6XmVHwvP00nog48foZxr/ppj6dOu5/GKhPxzsn7rw3de5eyFMc3mwttOLk\nNX/ozk+ejB8+GF+dV37hvvDFErD/s6XwBfDY4MdPjYe1R/dBlB0wahbvdISmsNkWiKGEpIcgIEPA\nem2fCD92j0hHf1o5vbjL5CNlSwYg4ogFQ9g2qKfwOPTQ5y11hZLSNfIUwlNRIO/ro4x5GCIjEYlE\nHeM1etaI1HCf9lLyvUJS3DfmLUsURECnW6oGgUxGBSVh7180Q52jz0UjoWnYDZxRmdmA1bqxNeau\neUffgO3BSO9rH1FN2BftdUV0uV7gw0jD80V9Cxz0dpMRTH0eDYNXgv5wjU/Hv8Uiuzfd1Z7j/a86\n/Zb+js9xZBQzQ5iPH3jtlQG2n2vXcy0SsPskUSL9LMKSGX7fbMab5pkkmcYshB9vja9t4/cvwq/e\nLfzyqaC6cq/Ky1oRVf5QQ++uWXXHHC4NJL0oW0ZLFpxqwkmN+6WC9uq/MsqFVY1CKlvbcIOHzXi5\nVEo1fIu1IkXQElLUk+F0u6ojNJeIcfAIPW7JDNwZdR2bWzINzSDRtEukHOpxYF3C7yXMoQePOVGC\nzdnTiHd3YYYea69LEy9nyLpkANbHnedEmngwi82M1ozNgsE9bY3NnC1rTlqu81jy9kyrPbaP603o\ns8pxocu+0DsrHQYyuWYSz4jA388I5vOO4/ggkc8S9PlPz/vtIpaJ+D7Qv8C1kXO62UBKhwEMRnCj\n32E8PXDOdEycstLxusFT1tNXIhbgs6J8WZRXtXCfxr6iyqXBT9aNt81Gv6tn8lGyhjdPxu8ZfN2M\nu6J8eYbXJ+X1UtmKRUmKXMwCLApNo6y4qKRLLSz5TSMCEJy1peoiAYGLRBGUbTP+8N0Fu4O7k6a9\nNtZAJ4RmztNqGY0YM7hZZ2awbc5qIC2qCpFVmc2hmUbcv8moO1AS/vcQZclKSia+L0cLQrU0+g0X\nIH18nVcLPchzbHLk4GYj6hD33KzFseasFrkaDqytRaZoc1azOO5xboRt2zAlheryHVUTuq7bX8qY\nyTGj05cP6fbvo7FbULszl+OFH2QOk3SfkcM4JhPzeTaI6Z4HsdwJdmQ+Tn/nzgbB98VyGNu4qV8f\nO45VQ0LcF+XLRXmtlW/U+OH2RFHlpMo9zue18NWpctYoVYYIJ1VenIRXZ2FrAUefmvFkzpY1EbcW\n+vk3zfjGwKTxj9bG98/KXQbyvFZlOSkPlw1EKLUgQCMknrqz5Xy+bSsnUV6UKGNmvfKQOJhRSmQV\nPl5W1uZ8ZpVliTLoJYOwPKHy1hqLVehGvdTR1xa2gzXLikHh0hyxuNZcaImeel2T7lbU3GjFgZb7\nJIR6kgyvWRaeslHktBsWu5SPtyO7V50om761xppEbkZWUrZEA5FpieW8deI3n+TgqGiA5zyEbPiu\nhiN718UOtoDZkObTQu/H+/PMRrOZIMdv48utm7//t6NHYG6DBrtn4KC/X/V9lPIGUvfjPo3928Zw\nxXDketjUbFK8AAAgAElEQVRy+HBEV+Nj5Ol/sRS+LMLnVXhZCueygMNSKsWNlzVQwWYrT1ss+Cdp\nA65CSNsLzirwZELDuYiz0iWqc3Fnuxi/+yB8sSivCnzvrvKL9wuUQjPnMeMQ3DUWdmY8qjgNeOcb\njxVenCoVsiCo00zQZtQars13F6PZyt2pcNLGeakpYZNYAKwXVIkioc2CwCQhvWgwh9bA1TPUYzJy\nt+4C1FHjIDZKaRl70OMJbEB5c6dhuMU66Lp/SG/S4CeZBZnne7gH10QHHTkMdSG5SkRRSjCJgTZy\nD4XugclcD0/akplGbrSPW9zkCPOvf40f90DvGzR8lOjcRgTPmr7/9/cygk6EB2LsjOpqTM/0l8NN\n3qOWyDUBX6GB+diMSo7tlrs0mcFZY6u0V1V5tQhfqPJVE55y9yFHs1iHRbSfRsLR4+Y8WsDVloa1\nhvDOnbdpcTeCgFsvsJHtCXhjhrpzfnRevdl4WQsKvKjC907K61pYcgF7y3qJqTpc1sa7deNUlFMp\nVI3sS3WjmLHUgkmUY7OnxlrgabPJ3x9MZG1BNO5QkyDdI3lLRFDPvSFTsnby3UONe9p3dy8mxE9r\n/qVFh5Lz03c6WlOdHQFOGfvRLf0B2rpx1TCTHhs2UhDiz54fQSKLjjd7bsO+/GR4Fvp4VRlVn9/X\nPiIy6B+OGLwTRLyIIV1n9UFhEPTcz4eeVeZ+bxD6s/MPH2a4PqOS/rae3fzIDCZm8v5BXo+nxyMd\nx3jFMH6KlkOuAoJRtKaf2vjiHCXI19Z4MuFha1ya8eRBxI+tG62iXkEjJPnFnG/cuLiHIXKMR/e5\nzqi3LX3gl+Z80wy5hBGtKnz2CJ9X5ctaeFn7fgACGEspEcvocBKnSuOuCkuJTMgCLC0TpDQyIN2c\nrZExE2mpT7htAu4t9yEIxmCS1Zvp+C3TiDxwgUjcRzQ2UOmFSH1KFrK04nfo3zMOVzMu1iMYM39A\nuu6eTBrJ0GPCoDkMhH2vxixswqRaTIBTRZCSuQ2dScy1PGUPlf7u1kA8WvNvWck7Afnxt2k2mM67\n6n/qcyYeP5x0i6BmwofpnElSD8KemctPYY+4GkhHPe+h6qE+HcYwI4MjangGBfeLG/Dgztdb44Ky\n2caXZ+W1KheDt5vx9aXxZoO3m/NNqgNKEKkmAtgwNu9+8em5n9k2GAxhZw6xB7HjXBx+uDk/Xhs/\nVMv6ChHTcBLn3BpP1iBRjZpxvxROBc41d04Wx31DgVd3C/dVqQhFIwuxG0DdPCMA429n4mWz8KCU\nqG6s3isDCViX3HSQT/OeMLTD8mAGktO/77PYLJkQ7Nd49FNkro0ke6X7qWebxnm9srLisgd66vWb\nI6CpC9EeyxBMLd7hd1VNEOdqT0Sc2/A9FbpBNBPhPZO0NzhCX4gzI3i298BEbUfCnz8faX7cQ66P\nX52nxwsOz3FEKfPpnfCP0P/50J6hCmB3y4a//m2DFeHNZixibG78/cdHThlEs7pxafDOsjjn6Nb3\nv/19jDmcBr1TCfsK7nv8zc/bpWp0YBL3vAAnc87SuFPnXjXKuQlsGluRt9XR1jgNv7nF9mgi/GS7\ncFeV+6JUhfuqnESoxcfW5FX375GyHNvFmRtnzcpMKlQtQ4VorYUdpIXtpOTmspdUDzaLGIQefhy6\nfzxfGBujGEwASt/NXh1Rdqmex6Qziv45mUxfapKqjyZzG9mSxPld7ejHe6zIXOXvVvvo1ZGftWdS\nUp797P3DBx8uf59nYGYeMyO4iQKma0Y68Xz+jZMHAjkgFj/c7+Zw52snZuU70dwc3/vGcGiei35r\nzrsEst7HMw9JDgy6j73/nXeU6urSFRrxw5D8eg5EqCnA+ncFKiGRt25E8yA2Ic43d6rGDs3mUDM2\nAHqhlAg9ftOcRRsngZcL3GvUGOjTehJF1WJvSGmBHgiX3VNRFlFKE87VYvs1ERqFh23jsYVxUCSk\n/7u18biFYiFpUzhJr1ockxDBW+GZ6cmVY/X0peTBSMd3ckt47cSdv8NQXfpmM4ojPteK2AuwSs59\nREPad1hN6K0T4rM9FPzwOX6bheZ1PIEcFjV7JiSH48cKyp3lPnMRTpIZ2VfUuP6G1H/2fNPv7pkn\ncXWTK1rfJfGMhubfjv3nuOfxz7+Ne18P1Y9oaTZevq+P+fss7ft727FwjF88Kx0LGxHPX4jApiae\nKSPJDFKiIpG0VAjGEIQURV/xQCxPwEmE4j17MAju0Y3iERF4Ap6acFfCntBLiRUiBPlUnErselQU\nWB1jQyXCru9K7OZ8kpC/j1sUj2kp1leLTMrNuuTPSsZpv+gro6OAYp41IPt78jF1EQOw6/ax/0Ju\nqFKEIj3pKf5VjT0Xa9mlvghZXk2mvrpBNIKc9Lg+Du0jZy1OEhAO0v6wkGfCfsYIjpfcWNhj8cvz\nY8frdbpRRwVHpNsHNtX4f/Z8Iox9EGZ0cKUmcD0Hc/+3hfz1+P9Jfuvt2Zjy4GDKBwZ9RFPjMTqD\nyLkYm3xGOO2JcJ3hkvsbhE9+xyDBMEKKwikluWbx1iXvMaoQe8hio5f/ykAl90yCCq/H5sZDc+5K\njxLM/RJMWD32fFAsKsV75CIsVbjLiEMHLmrJhKK0WrhOYxdlkKyr4FkKLVOTBfakpkQvOUehDnSv\ngOdvISO6kc/zvWiGbMechVtzKcpJQ90pmpmeyl5RKd9RzePNeqm0YL4fah8vUQm5ostoR6W7f52I\nWw7Hx8EjYzlez/Uin895Zmg8MIzR/zSbPTX6aqgHKp5Lkc9/jy/lfUzwFlOD5wjgaqzcvqZD+uOz\n31Ik+yPPtpVx6cyE/fBbdqmSC8+HtDsBjaiMLALVdQJvPhBDkb4PraSKkDozznBcCGBOI/zsIRvS\nndbPl4j8u7jRpARTySpN4pJVmKKga5Go9FRqiVqOJbahiKSpGEt6EYnsRQ0GlQQfy3PKauzTMeSE\njPEP92BeWCSjOKVL8x3ad4KeEcHYJbovMU/UI539pqqgfT4F028PRYaPXenoICBvjvgoNcfxI8P4\nwOf+Zg6L9vZ9bkjsm4OdXnusxmsCOl7/zMbRaw2U22M6wvEhlG+oBO+D+Fe/z2P2fWw3+7rR54HP\nxanxpVfVEYGCUiX08F6so4phAneuLGiE7uY1HTovkGXV93H0YRnhrmsZH9A0Ep4iBFgGIaoHiugS\ntaOLziCqKHU8WrzPXpNxN/T1GRI2ZBSp3jKAaRdg4cno1YdmRhBzcs10fXI9ggxoL0jaQuRqifTs\nyyhfeYhSzOv7kTUDkcYuUD2Qqu3KSKhHH1gjfFRvQv8j1yzg23Tkq3Mm6fQ+hjGIaibGg3ScCeDq\n3H7eAbFc3X/uU6a+8vDQn+XqtJv1FYa0hdSN9r6Pj/fseT8wb/N45ufqIma2J8jhnPc2v7qm6+QA\nknD9nOMsaf+4LxF+3DMChSiD1vP9rUtP9gw7S397d7W5CKs7NT0gdWQzhm4RFZRCDTGTqEGIU7Tk\nqGO99KKkLpI77mn/lYjskyudvxs2baiFkVSl+b6mnT+SocwMfH4Xu0QaPXmoNTLUgzh4SYEeIdYx\nLiXcla4ZMNXtD50BS1ZBMtg6KxDSDvOdthkcbGnvW4THqLqrbvorOBBb/21I9snYd0WYt5jIuPH+\nt7+50d9hTL37q/v7pJcL12pGdtifTSCraMa5KhQPKXCFBtL/fYViOvPok3k1nxPFXmUxXj3oB5hL\nXj8Y5N6f5++SoeVKoIQw8UjuvZJ6ej5HI1CBiyAek7YlsUfREb+a6k6MlpPc93SwPEkltoKJYJ5C\n17WRcBGGWRA8C5O1HLt4pDn31xk7I8vODLKgSd8jIQMMh6TV7KvHEGhmIZYMujJvGUrci7PIxGr2\nZxL3sctdXz9VGFK+aHyP1O5AH4tCVWfxrNWY6odJoiIHvG9aE/PYVKg2rb8b7eNXR76SRDOxEOxv\n0Pq88OdFvEdzjb9HIj9K8vl+z3jBDY5+1IsF9prYU/89AdP6sbmvxpVbzvvYp46VkGBuvDwtvALe\nRGwrUgpmjSeJiLpttlmIx2rW+fmm55k57hhPZ4yejCyZlb1Pl5phQP8c0ljzEkWzLHgG9iTxbDkV\nUb4rexMgS6mP/IG8i/r+WueKfr0+oLTwGKhFYZRC+O41e9jcUPouRBLElo9pxNbuMWRHPEKjY441\npiDvZwhb7iLV88lwvw4YEvaKSjnPkn3XZPjdThAbstiYl7m4ye5RNjZS9UkmUwRqg1PWalhUY1fq\nkV4d9RA27cZMRj0FUj1w9+eFrw7tO1Dp6EqUHv5mU5n4xAek2S1GcDz36vcDMc/njijDPG/mVR1x\njPMkavinL3gp8MVSqaI4G6+qcFdO/OBd4ye2BdTMZCcRCd+2htX45VK4E+FlgUrhzhqxCawAlUd3\nnorztsXW5q6ZPSe93JdkNtuEZpjnj+d2CGCUQptdn1e/x/+6nquEL71JQlMnP4dh0MRzx2FYB4ag\nGwlo+zYhQVCJLpBuWZer1+Oe6dSkNV2ymrL0YihxbBFPM+W+JVlNfbpIv8eko3e7h3dVJewDvRjr\niPH3XiI9IxTxzGT03VCHs1mLAq2q1BIb1MSOTVC8bw9nowJRL42+v55AEiqdSYT0XwhjZsUxNdwL\nTqNaqFrhjuyMwHNbtkRr6S35znoT5jKHg4oFhhsu9aBd4k8Ler5mfOwEeuNmR5RwS3LOx44GtRlx\neBic7kroriLCyxJ7GJo5r6rwalG+f6rcV+XFsvC9E7y4P/PbXz/yN38If7CGxDqlP/uzWjiVMEa9\nKMq9nhCMR/Nwe6mytViWJ48w3jvRqGwjUFEeSsjG1QPatl7EUwlp3wN0uC63FQsx9V0RRJTW5z8n\npaf9IsGwpB8jDHRVIpNxFQMxKsLJhU16Zd4o8tH16pjitH4ngeEypriXFSehexBGeCaKxvMuJBCL\nzCoWhLsShVbL/Iww0EoIRs2xMNSMfp650xLOtwxFtpyJ/txHmSS5XCJl+Toa0XLDWcn1Gfp8BlKJ\nIEV25pB9m9kon9YzFJFMDnMdhspgWoBkmHXWPojqSU7VqIzUYw723Znf3z5ybkKCuysVgEl6X03/\nc6k/I4H3MYIjPD6ec/P7QSTq/rkU5atF+aWl8mCNDfisVqpEOOtX58p5Ee4dXp6VX7g/8dW98tn9\nmV///Mwfe7Xyg7cXvl6Dq3sSTEvm5zitRVDLqUTYK6pIxtYXVc4In4nw5L2gRUTpbcC9hC57qQXr\nHqXiqGoWBoliJJ6rdHWnSa8NGMxFPbwCccz3El7inDzGvOaMlNTxg+jDHKxC1gnMJS6RrGRpfS+p\n4QS/mSRhrgthAIhh/OrhtJLzFD177qTsmVYskU8gRhVFcj/DsYlJXy4+ZQV0ap5et5MJWRY2nKCj\nkKw93LcXLTEPFDQYmRTQUDS2rLQUkYLXHoulRCVlUpXp3oUeJ+j5XDtL6q7HjC9I5tgrggy2nWX1\nc6PmfG/x91tMBn80ZiAivwN8nXO3uvufEZGvgP8G+KeB3wH+bXf/yXs6uNa7O7um2wo6NxsrZb9W\np2O3Ig2Zzp8ZxREVCM9/ODIc3SXpy6r8yt3C5xXET6BwLsp9cT47VV6eIt/dzDhXYRXn9y+Nb9oj\nd1X5xc8W7pdIBHq7bjw1cBMeNuOpwRONizlPm1FqtyzHPgOdcagoGCwirBgXoFphTZnX3DEpeMkl\n76E3NtMBhVeHNR+/eCyqLSMGu0XbHFxk7LJs3bzgu+ZmktZ6dinU56+M3ZF8SvbxEf0YQUbBnJbp\nNbrAXvJTMtsyloW5X91noatbPoizKWkctCHVY3/HzhSMHYckg8n3u/vsZcQ0dBDfn7t/6Qw0Zrm7\nUaHbgoQd2RRxFu3FYGsaA9Pd2FEQEzlMeTuzfaL/UXwYFPu2bpAxGlnfsRQGI+yM5EPtj4oMHPhX\n3P0PpmO/CfwNd/9PROQv5/fffHZlTvgeo85hNrL7ee+Bjlzn879NNTga8nrnR+YyX9M/91kkdMB7\njUIdLyucUxKVKvmSlSd33j2sgPKE4S1SWDecFyqIKqdFIw7flZUspuGBBDysTNQiiGSBjmKoZmEx\nz3x5ibBcxbkrSjHHinBKab55nysfUsncsCJRpcidNY18s61TCXi/u/gY86xO+tTDmFa6SSXtJUgY\n0nr5Fs9XKSIsvuuvNkUeFo3zSxoeq4axzIcUjcUeEXgxmI3Qn0sJYlq0JGFGtaLihHSU3UjXffJX\naSr5rjXP71GNMqR0d4kynlnIQiQTc+vzthN9X0bBVIpkQFEyg1NRFp2Q0EDGIfjMbewK3ZfjbBDs\nDK1nInabxW7LSLVGNPeZZN9C/rbEHO1noSYc7/BvAP9yfv4vgP+JW8yArgDMRHvodiQIHZT6IeU/\nxAg6w5D9onHujYvk8Lvu16sI56K81sKdKpfcqvxha9gWL/pOe7lsp2RN/9YagvD6xZnXNcJYvYVZ\nqgGRqh/6YkHZNF6iCKg6kdWZ2mqmAksaq7wqly3q3FXCPeUiWT1XWAd89TQZCBgUKSwYqxsn4JQE\nG669eHqbYjLcnY2h0LGke8/FqSk9HUnjno+w2iDPWKCLaOivMEKC+0LWtFM4aTXPXY6LBJM1szAW\nqlClRHZhqbHjkljmO8SORlt6CdxlMDN3GWEeHZZD1kuUXj8hGJfJtFx8MnCSRmJIgu9JQh1NkPYM\nmQx3EZRUOkMowSgKAfPnfRXmNVgpeO1Gy7j3CN1O3UpT3Rr31n0cQmcMk1pCooefc9kzB/5HEWnA\nf+bu/znwfXf/vfz994Dvf6iDvmdd72y3FfTPBzWhu7WuCJ3pGvbz/78wgv53XB//aok0WBH42p03\n28aPGpykJByHBedzNb5YCp+dla9Oha/uFkoRXCIPX6sjLVi1uWeiS+xe9OjAGjsBmQT8lyz9rVoy\nmk8GsVdgy3F1Qm2W0N+dJgrWhmFqQ0fQTtTlixWikMk+UaVI8HRrJeR3H6ESl5yasCcQFmxnBL0s\nSRyLROhx7FgUkW8nVTQde+TiDOYQC90ljWEesf4nQm04VcXSjXguylIKbhp++Bk5CDQ0siEz5qC1\n3EvAszox3ZgnV6+6VypubsFQEbKECXskRRovJQlwENjeR49krLqHEXcvgyaS0bRxMAi3mysSCZDo\no+hV/9o9L33pJyoZZdRzDL2K0igN4D5QBHC1H8Ot9kdlBv+Su/+uiPwi8DdE5O/OP7q7i8j7R5Bv\n5FmOwkzIV8Q9IYSZaTxDFwfEcIwgnO9//LyLBhAwb6yWFuacVkmuL/nS70VY6bXmCivCYxrrXJz1\nceUB56EpxZSfsLJ46OJnBdcS0lLBXIf0j6E07kpFRNkIfdhRHp6euKvLsMLXAuQW581bEJBrJqn0\n8UXNvm4R7VPbgUBJqa9YSOn8B8F0MrolVTsihDjzL8L/XTgnM9O0AFbZq/LagNOR6hu/Ra2FLY1l\nKhFUs2TCj5aSUi3SgHt9wghoSteltQxcyifLQq4DHXSB0glvkEc3kDru4cWKiMjZtRf7HhTpBr9c\nI5qE5nuZ9O716AY9Tbaig/h9WnIh6PoOULMsCy9vr7nYvSPJGLp6M9bHTl7mOlVWjt9GYlSPVPxA\n+yMxA3f/3fz7j0XkrwJ/Bvg9Eflld/9HIvIrwO/fvPh/++vxwkTg+7+B/PKfiJfWGcGYNN9X7Szx\nj5L+irC/ZeDPVBL6u5mi+wjiIuD2fD8X2HLpiSlNlXdm/GSNwpxvmvPNpUZRUBOemvGI8MPtQmnK\nE41XqtwV5fMiOwzshCMBjU8aW4Q/ZHhpbOPtrN7YNuHCxjkJZRF4cS6cmvO4GZdm4fMX4WKweWS0\nt6zzF4VMwd0yyk7ZBJZJJ13ohj0ZC79n3BVkMIulhFEzPBV9C7aI8nPvxTyDCPvuRVXCW9KNYJbS\nrNsZSr4nCaG5VykSRgizI2gWbAlmAnhsnT7g/1S7IVBEqjndJpLMTRMNRnCS55YSAeWr5C5F5G7R\nluSue7k07Xhc+qqVoXYBIxBtFGyXLrVzbmeDhs2hVt0UmRWcE7X1uoyStDGWrwQC64bNv/u3/xZ/\n52//rZ+KMOTbdll574UiL4Di7t+IyEvgt4D/CPhzwI/c/T8Wkd8EvnD33zxc6/yl/zRNs+kOYbIh\ndNPoIPqwO1+hhYHz9Do8dwYMvY/jwSMzONoerlAJ10bNUD53fVGE1yq8FDhLuvYKCMpPbMVMWVEW\nVzZXqm7cSTCUs1QWDSivoqwe0P6uFM4asQSlRN68i7KowyY8QJYUX/mF08K5KBXjroYG7QqnUol8\nduNpM9aWq78UnsyCObjRWkjVzT2Kd3gsPvMk+GRWVUkkIyy5+JZSOFXJlGPn0aIi0CKxIapIRBdu\nucZ6Pn33f5fchShU+cxRIBe/O6olqw1HEFXLYB2QIf2KhHo0hF6iMU0JHtmGnvUQPIyCOS7LXYzb\nZOvoQVOkaqbaic6HvWDJHaSLBFMrotTcYq2rRWEMzWrKslcm0qH6+lADhqFzWmYKWagkeYzsiV+9\nj0BLXV2K9+TuOzIYdg8frsq/9Bf+VdyfYXHgj4YMvg/81dTBKvBfuvtvicjfBP5bEfn3SNfi+7uI\ndNDuXhHAu7VnmLJ98iL4tU5xJNpju4UArn4/fOnf535n26UmJ8/QTsmXH1bjwkXhwYQ3W+TGPwK4\nJ3RulNJGFZonjOYbjw0u3nghhebGE8K9GXdK7GZ0CX09kEJKRxPe2crrorzbNpzCSQu+OUtp3Iny\nsjr3GgT72Apv1y2z2+Cl9Tp84Ytvtns0VouKvpfcaKRqbHl20lBpzkU55SqePbqC0Lxwsb5XYC58\nyXulx6XrJH0fgGa7sbG5jK3NHPC2hgSX3PJsWPkH8A89PYR0jCN3OBaPas5r7n/Qk6G6Xt0TlYRI\nkx7Pksut75TUjXwCOyF6xGN00DrnBwyXRXcZ5sXejZvTnI0Kx8NQSNY0DF99r58YgKMbDiNmJPYe\n2j0fOhkNS1eRbL+XmaWp+v3tn5gZuPtvA3/6xvE/INDBT9Fk5GM7slffAboB73rVdckvXBH6bD84\n0v8g6MFR9uNX18nzawcjiN/ORXlZYqehc0bJrWZsAm9a7C24emOdeBgSpcdbwv9HwrV3AZ6sseWm\nmg/awI1G4VGdYqGTN1fcG2crLFV4UUB8r3yzivMi4TBSaOyBLSLCeSmcF+dclyjR1fcqwKklpHRA\nYxnWdMFHaXEV9nBp6frxroe2XNAhRWNjk57hN8itS8AsQnLZjNZCWm8eOwU1jyy7HijVzMb87cjR\nYRIWYccB3LFBuBHlZ3giir2eY+LLSJ6SyX3pfb6ShrW7ENnLo0u3A8jV/PZKTirhJq2p54uE7Wcs\nqyRQM9/vNZaZ7zJvKj0gdPWIyWjpFDfUwBS8auS3zQimx+kk6hIPT0n7FjXhI5c9S2IcEL9bQdn1\nr0H0Pp3LRLg+ZnZkhnUotmMwBiOZC47AzgRuzpPv10lAxiKhY7/z2OziYsaKDQJwDv0TsfkPkmmw\nMCLL2qhkG67AuJdzIRbok4GzxmagvdJvxrN/Xk5sNNSUi5Yoy+3Otm4glbU9RQxEU+4ldkxatIRW\nlQu6qlEVToXh+nN6qe9gJDV1/DA8glASxSVchxFr3zxKfzW3rBAcVwQCsGCcnrsSu7O50BLKt0ly\nFQkvjid1SomKSdtmNM/8XclIyyHsPOMwAvoH8UxGOOkwPgi0SC8WEq7HXaJGQFIhmG7UOtjjDTIr\nI9QY2Q29IpPbMJfM8AjkegwU0BnTpBaIjLTuPZOr95NSf6COxCppjNEWG9dKjq+T0dgDUnOsPFuW\nz9rHYwbzHovAhM/y+w0R35/mOnpk/Dyne1xlCHZqP4CD8fm9k3SNFp48CoqKZSiqyYCxz10i/aWG\nMeqdd2mav3WWPTOqZAZ4WLejS0U0nEu+GatGMtI35pHn3pyv16fYPzGlnNE4Z7KKiHEq8KJXDS7h\nEjypcreEpZ4S7qyazHRtWea7NSiSBrLCCODxILzNfRjunNz7z3bE0NKt5+S+C5BIwtPAGPDei0RW\nJnVHETkn1j0kWQC1td0OYB4hvxbsair4IaNqUtUob7ZI1F8UiTLqmufUfPZiYRfpxUa7YXMGlfP2\nEJ1mpRPatKSYXmlHET0D1yfGsEsrH2pL31yFCa2o78VayGeI9Gwfgqrv99DDpIXrgij4d3gTlV5p\n5hlD6EQ/AMEknTmcfny4WX24kv7TB8n7HFWNfs14y8/7seaZRz8ZEoZZmn3c4x3vaCQ8fLrrksNw\nOz3Y4CydUcT3DQExXrry6PAkEdD0SgXR0L1fi8YuQ1pioRelNUM0rNohQY3FYw+C1Z22bjw1YWvK\npVgwCo1xmEf67lNu8NH94OFyTJdp5kZASKFRoESC4JtZlCbDByGpSiTVJEzfNweO6zePe176DsQO\nWMZgqOR+Dd0ouBvL5qjF4dWQ2FKuinOSjGIUG+62KDegkdUnET+xZNDQokFw9NfQzx+wvaslfrVU\nO2PsayCyEnfu4N4jHT29M912kGHk/ZnzHZB2gpIBeGVav534g4nkUs11JbJvBd8D9+TnZTP4WbSA\nc7NUhElR31tyvytEcPUjjJ0xD4fzTnnsA5zxFhOJQe7HxuRGdt6OVvLN63TjwWy6MtgZwA2GM4+h\nK42DR0SZi2LCCylsYog4X4qyVPilZeGtNb53KkDBBU4Ir5eCL85jawm4wrLtLjyZ8EQQefVQX06b\nj23GRbq13sdYikawT0kj4l1VqlSkZtFNtxB+JpDhvUpue95iX4OIpShErKKjRXHLHYsN6PsWuuCu\nIyw69kQEC2sjwwcvSuvOOovxh5U/DZbJuKoKFRlLZOvjyuQv1COxit0Q2HwPue58PRCAZnhxHh/G\nSUbBVPCR7mj0UGnpmyPt+j8Zs5GqlA1G19deXBDMVOhBW/R57LYT31FBV5e6YbaHfiu7MfR97SMX\nN81wTIIAACAASURBVOl/ZHDTbpz6AHa/IdW7BJ4J13cX5fHace8ZiUzXHQc4C/Hu0bhKsJqk+fHy\nq+/9uvyh/3581GE7MSjOaymINVw2TsA9wssKn50rv3pf+Xrd+P5doYnwzSXKZT1Yo5bCxTQiExHe\nbm3o7EJUHzoV4UVV7kqhaqoEiUebhSGxERb8u6Kca+FchYcWTKkTXjNCvXDNWIYgdkVYtIxgItJf\nv7aIwFzTGR8FTMOQXIO6KRZrQ0s35MUGrUuWjVxbbPAauyCFTUWyL/HuLcm03v76CAZh0wsKt2EW\nHUlm1FWYuXWX55ZIYazVJOTme2ZgXwruXVHKziXcl6hksZM9VqCTdDfOxnKWEeVpHoVaCpoh11kw\nJ7m4DPeBjGXbjPB+lcPD3Ggft7iJ+xC2+/cDcfaH62Krt4PrJjtlRxjsEnncFLiCSodzrzp7NmKG\nlO/XXSGa6drBMHw6p6OKWUVJBpLXxCkhAXoSVwHuzFiLcBLNIKMoYLI2+OHjhmrl956MB4S3q/PU\nMtmFNoyaRTxKg6cr7ixkFeCgrDWJ1HJu93TXPfnpbTPeNYNLJpjhnER4uYS94ak5T9uKaOw9UHOn\nI02p3Lrkw1k3i9oLfUo0DHPhQhU8LXEjqCfXhxFBTY5wEuOl5nSPvoIx4BmALX0fhjQkZmKTjvfn\noyJzIeMKZM8CdBg7IXeytvR0qHZ3Y6zfClnodUcLu/cm10GOM/JFgll1iSDEDtEk2sB7iHImnWfi\nmWiMr7CnV+9kE2oSQtZOiJGbfYeRgc/EPOA2u8Q+/nZF1NO5R4YnNz6Pv0d4LjCA1DMxfoMvzGjg\n+FMn/onAkV11GMhlvp1d3dZVc+U5iy7U/PFd8dRKnLeWG30YvBHnH7bc4jt9+FWcswnqGqXRNMnZ\nA+JWgthOJeIHRDUs9MRyRIIwt9xKTCSkS9/CPCTpbjI7SRi9ThoxCg8tsjXPpWRIsePe0LQpBPHF\n8hZKeBLcEAs/OskAIwVXWWS38IepQVmbx0KXyJ0oJZBJ1vVJr4HuuQtJZNFnMIMuRSWfe1j3JUjZ\nCPXJu1dE9lfVJTbI7h0ocmVIjCKugmvYO7oLdhcAuQuz9FH76CuWV8Y5eBiBu1dhbAvfk6CG+zJd\nnzK5f9NGFennfkC9z9vHrXR0hMndfDpBnV0nZye40WYJ3c+d/k7d7OfPB3pko986+cBY+r3lcL+h\n4O1jHwxhYmRujBjZno05MbX+4k2V4hG0hAubhk79uVXOVXghysWdd2y8kIVmwlmUl4BI46yFrTAZ\n1vaSjC6he26erqotCLG6c7cslLJw2Rpvt43H1sb4s2oWkTITtvseCHNRoTV4SZRIP5XwKjRbMVGq\nlzQYxjNa9lUysnHbbBRRFQFJr0Zx51wyd6E5m2+R6ozgJfR+cUGLIhiaBgFVRb3FZioahKM4aDfW\nbaB1AMQg+kSlyay2Fq7ivjRjQ1bLvQhKGGnTHdlddj2zMkxbAr4bBJsV1tzMxN3GmugS3Xs0qFkP\ncp8CujyrPUs+X0cv++dhg5CJsdHtFWN1JjN/f/uoNoOesehpGBxI+ooR7F93EeoHSdxZ+jNxzc4w\nPgyR3jPC58xmMK95jAfFfz50xcBk/NfH6+KROYhGaWsLglWEx8xVeOEFVHnjK1/Vhc9d+LxWNjc+\nLwVR506UNyaso4RQzE2wu9A1V7LunirNInnpBCxaeNiMH64PPG2xC9FGhNmWIcm69AwD3SJh4Y7y\nW8ZFHCmFU6mca7gIm0cJsFok1IYiHfiEdVzgftFkVt0b4CwlEEzUITQoilsvaR7TuiyVbWspDUv6\n6UM9ap4pxNZQaWzpCg4KMZAW9oVh/NvfXVQxylyLRFVV9oQjTW9DzV2NqgbU767Koh2MW+j4Bhfp\niKobR31onEGfWbZMegzDcRWmJ0d1z1QUD9VqxBT0pCfoHcypBj9N2sFHjDPoelEs3j0MeSasXNhd\nwbuyE8yM4sgIbjGGqb/5+iGpR2cTOrlx+dW17NBf4NneDP28YTgSqkSewpquOSdSZxsetQ40s+ei\nygeqwguPvIUqhW2NWIOiUAxWdRZTvhHnTUr8RcJOINYXt9AyeaeI8IinYTrs+nVKuHEXGpq+6pRy\nXUYlsYoQ6ofsQTer/7/MvU2srtuWFvSMMd/vW3ufc3+pW1XcggKqSEEC0QYpJMYYQyKxYSI9jS0T\n7dmwK3ZoErVhx7aANkRpGWNsqA2NMSEawRBDhyIUVIFV91bde8/v3mt975zDxnieMea39t7nEEqz\n7puzz1rr+3l/5hw/z/gH5jmBGmqqxJooSL2Y4hyReQde52C2HpnkzY3Zh0uNXEziLYufED2xbmYt\naRjt57XwtDrM6MjQ3gwmGrGg6lJMa1UHcNBfkLMM2WwFlmjDlGaV/oULm5QMbnn7DvRMo0yKh2V4\ney48ntFZgEQNizZIkAzLhwKttWC/6El1ByTbBWAwXKk1JNJKlskPm9vX9j170R6I2gzA23GIrLQL\n+H1vVDNsAvzuPHcMqNfeeQ/vIgQD9nh+MXDHdrbXtusB/ZkyCaLjTQB/79erkWUE3kSOtwgHwMQl\nRT8GDMsDr23gtiZGGE6bWL4w7IIvDTWdZ4YBcWKZ47oMOIBLAGslIS5qiRXZJ2FE9gpIpxZzAxBY\nJ3CMTF1NRmktM8o+VndiRRsCg+XWnZLsGAtYNrGGILzn9OdIJsm2BXn/gwIpsJh9lBryRo89gg1e\n1yqBYq7hp/m96ziyn8E6YWa4+shW6StwHYMafVX26IMchJbJPDYGHXOZxHVx4HoMXO8YnVodyhFg\nmfVgxSaYjLUpGENQkzuuQXPF0mmayr8jBkA6JQfTp7P1IoUu5x9kwdbKHhlDRlqSzVwcHhvSja1U\nM/MDd9f60PFywmAthB8w9vYr7Wq55IjNUeOBUBF7Jc2CRtK+Co00sElSABvj23vyFTahEdvn6/Xo\n90t87wJHAmK7xjNnoiG16G0t9p4IVqGYVC5gbHE+HGMutt9eWGb4CJkl90QOHeF4ou1+Dc4xjIFH\nyz6K6mso21PhtJO3pFZcBsA8AMxqP2ZAdSManuhBGjE98gYLr5TewzPS4aGYeAr0sZmobsnQAx0V\nALrD0sxWTV3AFNlOfa6FcFOLgtTUKm5TWTcCPqrCpVqUG/J+L5ZwXk1REpEmEr0gy8Wd0YyLszKT\n/7IaMc81RZQUbIPPMJT9CYqoIDKjLhhueH1NmP/25DOFEoWM7ODZt3EGJpRsEIz+EBlEALaqdDlR\njKIMzhBk5nVY0WEOdAnLCNRXHS+IDNT4qjVshhf1J22rMhH0RcFy3/7etPfGgAXht8TsusZ7UQba\nknjf+7xcfRaA0oc5x0tYe/tM3tsCzYKslGE74e0cMPhyLDbveERgDuAhDMuzG/GDOT5C2vo2DJcA\nLEbewsj+gFNxa0JGQ2olRGo+B+RpwkQXH10Aprhm56bDhARYxsyvHSTOq+e/w1C9/aT555oAmRFh\n1QFoR0dzZSrzudLZqWlHC5YONSjxKWkkZ5ksRqGy+YodA7FmliW7M6nJKbyioiZXRiUOB4VEhktX\nqIlLRxKy1TrK/j886zYSeueeOekIls7Ug30nBs+hlOJ04KvU2PgZw9NkIVah0W4sOwHWazAxy9J/\n4blwOZuDBKwUA7fsC+E0eQCvsL15Cua5zq8RBS+dZ2BiVlal7Q4Pa6lZ5oGKjN6r3XVibNraWlPT\nZKgr7NBff39IENTrds/oZRI8E0z7F5Vva6zKBAB6g9cwAGk820r/wLKc4XeOhLHT2NADC69XhvCM\n5sSDZ4VeIIdrAFmyjMieAk5b0dnw4iCTpzsrPdcHsonJlfb1cRheq/MSUDZowuz8l5/PAqedacwW\nHpDhu0GIIS2lFmAwFJNP1l8slho/LbWDS+dbdmd2ljAvtAfAqfWd25GoMRl74nDHxQ8cngLh8IWr\nDVwGZzc4fSOrIwJjZFmw/CqK16tRl1P7Kr9fvSwMCvGBRUrU9AR+6iOgzwByJDqjC4ng4MAaTgco\nquAruFdZj5Cf1T2pPmOQzPNZVvkXVhijPyAdfEjD5fHCU5i5G885cGOaBgSj37P3f5YvbObBvSDY\nvvTu9+umnh2l3fev8Rd7j+TYP48oh+AedXDL0FlQY4cZXsHx1hdexwEMZ5PTiQHDx9PweDh++zjx\nnWV4MsdDDFiOyoGKvny1I+tAevHdOLvPRlYuMhFHHYFHRPZ5HI6rBY4Argz7gbJq8nkcwGFs6AEJ\nRs/Jy8HrOBnHM3JxGQm1L4Olvm4ABtYM3OaE0XH8NBcezyxmerxNPK5gA5ZEBpm34Fgr+zcAYM7+\nQPiAwTF84UoBexGCGemgvFg6BNMbn4pgwuGRtj2gicrKTVjQjLdydFN/CGjKuefUTcO8mpNmjQGV\nma8SHsOyp8UkKjoX0Q4dtoORlBjZJetcWe691qRjkp2eoovmbASceR3DR/l0Mr+BXY+WMhk/fLzs\nFOaC+tvLptRk5Vrzw9XZdUvtEIMqoL4x3DsIQaq8NPpzAXF3E40A3uH3XRjZ3cvPZykatVrlNdHO\nvoQBPrPDzshowekLFwRew/AYE9dl+Mkr4KOZG/8Aw7nSsboW5/iFsU25Un6jsueuBfXBXoOZbHSx\nQcjvLF/uXP6P2GQ1rYheq0wMioa81kU6sHTqGRldGXxZUZeOretgCA5MEnLHuBqAo5bw6bbw1iZu\nEXjlI6dFxW51JaRHZC9IR8b8DQszsjR7mLMmgevMYaUybxS6TAoiMpVGNeENOmiBBO2c5BwwLDZ8\nCEvbnltQJGloZNA1jxrrRg3v+fxr5fSl22RDl8X2cLGKnC+e+zYtqzWr1CgyEevkIAsL5kGEw2Ze\nwxTmZFjVrcfcfeh4wdAiWovykJ8gnYrJQaocC8hO2/x3hQq2BJ7Y3rs7/2bsf50Q2EOY+3t31437\n90zZYiiH6EFAO7E4f2/kzATPLL4zsrUZ1sTD4biuRAPOtOGHMzP8Tlt4jQPwgUs4YiwckcwykHka\nhpXNNZDOrFfDcUFgjGxpPtgBSI5BMerFkWnOw/AwkOW9loRRCawGwAZtz4xOaPvSa96mAuTrgRjT\nau6Bq6KS99vy2nC9Gh7GgcdzVsGPQdl5C0hMA8ORQokOPjdFEih8WTZ9sVz5YyDNFpJJIgMmL/li\nqNJY15CIKY0Rll5Plf9YO4jpi0on4ObzAtOv6dpPElx0elrROJBzKQ+uzxNTlnv+IkOOwbCqGW62\n8HhOnJViDFhkqPJkCPLiYM5OFB+4OStb7V2afna87Eh2ZaY5HR4LQEUXRGqoh2gpXGAN99g+yjkm\nUt4dlPnr/reVMyaGbXHYqI8NOgZX+QOsU6l5X+U3ROBA3v8lMp3VYZjuCMvw3nVl92EPx5sxMeIC\njKwe/MIS+j7AAQ9cAukwMsPjPHEZB2644SEOLEYbKt0VuXZvsXCZwFN4avr0TMEAHLxvG+D8hkGb\nfFHotsMx1kwhxvjuBQsXMxYJ5dqvmEypTQ9+ORHXQoXWEJUWfNjEwzG0qxkd8N6DhwP41oPi8zva\nS8WwtqxAM8cxDhzDMdYFGITSPF/inyTv0wbTijV9meXaQowubzyqwcpB7T0MTAwyRrS649E+eyER\nmZf339uhxAiNPp/nGupkbNmT4lyB8OxfudbE9NXC6AAuy3AdB94+3dIRLSsYAFb6ms6Vwi9pNBvi\ngkISADDnV3LkC89azJ8BMObjzbMGPHfIlQmxn8Z72WFKnckjtu/fOSNL3cX2N0p6h7StsesP7fqE\nlrS30aPIAIadNvl0WubDP8bCEc6knsXikrQfv2UXeOSQElvA65FVeelnivTwAzWh2AN4IGGbOU5L\np+AupCwC0w1Pa6ZX34KedMuGJubwmXrP5sJ1Ol4N4O058foy8ADDdUmbpW2+IvAWC49iXt7jYYYL\nW5krVnYMwzg0JH3BPOsFL9RcaZIEjnFkCe/K2Puybimedu8eWcr1cGc69JY+bOsGjAGzzA8YQIci\nubFHRMbm1WyFZkeCbhb/LlC7Om3sRA1mhnDCd7PusSi8IEQBq9eVpSlVZGjfQvlikM7dBeC6LpmL\nwWpPjIGI9BcsZ3mzBSbXbc70F1S5NB2y5wrcprHVvpK+wPdz/b7qeOG2Z7iD8y0IqMq40AAZ9M40\nyFf780r82JHFc2ECCp+oa0qn51uGpVCmsSNPMF06gCucGXE8nxuTckK3S6if05FeL44OBxTWBjxw\nZQdeR4YPwx1rMusNHGCykJWK0bUFbsAIxxwZAdCQVHlXFjT0NJ1+OSuQWhyclOyLjT8CV7LDY2TV\n4uPMmY4PihLQAWYOxumtmqpezBAeiDNt+etwzpEwXA+OIzeF8RYiZmrCmRWHZhPwFBxjGTA5pzkC\nc53ZQ9G8nm3QWSsBLGXnAM6ZQi9zBawGpqLWLYoMFk2YCBogREOwVhhjeJp8Eq5K2KlwYWFW5BCY\n7F4dYVjzRCwD6LwF0Z72Qfue6THM/GRq98EIiuZVr+XsOpVZqmlqZpuz6ZnFmU1kWAMxc2yeHQM5\nW3JRKP6UFyq1AOgNrxCiGcphqDeKwRNCC27d+/eY7lqXsEIeyazZEjvKqYjqwe/hnGbmOVJ8MRtO\nZ/Oeb3+YY3pqlmXAAzLmP43ho2FZOWgTVxtZPciNPAiyPbKh5TUyXfWA4WQrMCMBZdQBHWYN/rSA\nLzBuPRAxSze5G3yln8KMOf7IjT48veqO1ZmEkY1FwpCVd0cirZmqEhd63M85sZyZdGEcYsJGIUhm\nXZbTlo9Itr0Yhc4xsq1ZBAyDjTcWEfrCKwPiGPQTKcKSOzjnbFQ2F+CcsKxntWzXLmpI2L4g40J+\nAPUVGMIDxowD2ulrLfYL7GxGIRUPZFQlurIQlhGXat0ubz/9V3MGE7KIRqbyISxJeMl0MFqcAayV\nDmFew4cDtmBnXis8ozbLFqZnaHIuYA7yyALMFnoCUytD96+btPiiyEClsPngxaCGXCkSt5JMyvAl\ntIOQApBavNAyvc5mTGBBSQsJEBDmCgWYMQEFwEFP8gIQI23ESzgRR27+wMKFdx6Ww0phAY+FNYCx\nWHLrgK2ZpbhwDB8YAZwO2ErtTlM9oSjkJ0hhEJGRgaCdCkI/QdYRBouz4uO5qgsDSpKZcHhmGDJt\n+GKGh2F45Y5X7ngYA8Mca82cveADry45Yj41Jwgxj0zIoT0u+1eEnJB/YtkgfE1nmh0B88nQ4FHw\nf0lZhpNZE4rTb8Z9M6zjyLXHwpDzkIyoAiGlAwdD0bEa8SVS4neWQ1EOIQKBJ6qGVjz0T7gBIz2j\nWVW4Fvs+Cn0wO9CEbPvc0twaqzZt4QjDQVquvbVGJp1rk/c/zIDDsxtyoLIXM78hk88G6SS3LAWf\nTE01YUGoz/KHjxf2GSTlF5I3IKR+2fXmrhSYH9rHUfXpom2zUIXbhhEoa/Js7Vm/0G8wtfBiAF5D\n2nmyE0720kvimmH03meGoFl6918F8HRwXPjFYCuwPNNBhwPXcIQbjrUwbcBNhTmJOk5bXS0YCtWB\n97zSg17ClJGC1QM63BKGLtryBACEi5nk4/Q6y28+mKBzGYEHn/joyOveGO8fCFyH4eEYHH5S4ppB\nGBIerNJ3UyiknjqXcX3y/i+eBkRadm3TJh8G+/zzHDGx8Xe2QQORAG3vxBR8JncmVskESKHoBxDB\nEfOE/0aNGpfBmg/DtGjSweJAFjFwlkwv0uSKdpB2VyKaBpE+u0U6Uls1W9HurWBkhWHOxKkhdihB\nuzwbzBjSlDBmmhqzNRGLw2jV0zHLpTVToftJfPh4UWEQYmwgGdUmJbMXSKiMTTeGRwAzx6IZYZGE\noBl5Bb2gsBtQ3V8iPzci7fbB/PcTwNVz0mAW9HDeIBzyv14jQziwbmIxjDa7p5lwmuMClFd9ENou\nZCZhEk9unJlXSFBZbyMY+155ziFGU5IPNnPBAV9Z3jvWoqBTXJoVetGNLhyBq2VnogOuVjsJjzNI\nD0NmFw4zXC8D37weGACe5ky73D0FggtmixHIFGTwmkmAwJoZ6Uj7e2UnZCQSOkC/8Qxm0yW+UZmw\n6p3NFRdq51iuBoVPpGB0pjwvy+upPDg7CjEvzdJUUfYlaA5qiC6QkR1Zh4VRS1FwjcMwYTQhVF0I\nmjRRtO2SYDBYZOTnxMyWcHR0Rv3bzJDtCGR41CMwMWkaZtJW+soOzDWx1kwxJXOT3oc0qjIj86uO\nF3cgBqIFAu5/Gr1hAbT9Q+bYgYGcRAMZYlnIzDYL5zbQOaPPO1gAlOd9FckA02i70+s/SBHDgl2H\n8vMHNUGY4ZUPTFs1cmyUBE5CnZ5DLR7ofFK2G9gSbKYjgJvHnv3upcol6NwCsVoDgc+VyTgZoVAl\nHDw1xAg6FSMdgg8jR6FdmeB0scHeBJmjMAbgR2bzzfPEDYGH64HXV0MEbX5TrF77FGXjO1ChXzOD\njwMX66Io2Tqmz+bDZKMT0kGW9OZ1LkdGIlYsnCfF8gCwFswG3LNv434YUElPRl9CdxAKCq4cPqvP\npmIlpeizPK9TcFQsr1ROYp4w4ZPc3075TaiuNO48HYWCUbGFVYoxtgiJ7kH5FLKHzQx+HLVObpYC\nASxEGzlLc66Zwo2hco+kwa8JJrygMIhoQxedt6/woSRxLp6LjlK7hEH9XNSy2jBxxcKTMbQTFa0E\njJV9hpr3p80OLtgiwytmnITCacBBEoj83mGU6ITJCgFe0D6KLBJKweGepkKmp64cEMKKu0GHICyY\n6FO+oGK6tJgBs4UAUUfGqQBbXJ9OMwbJUx1xQGZMoZqZe68Ow0fHyBwJ1jfMMNwmcIyFhYHHOeEn\n8MoGi31y34bT417Gi3aRFwAh/DrZjNRp7dGx5VkkJfZaS+YdiZfPZoTNbo5xyKjJMfVJF3Ik80x8\nwB4lSBRl6WfR7WpYSuYt5GeUdRlEhzIxCCYY/0/GdUeaopHmmjpBBb3+okulAg+igLwjK5Ri+tu3\n+6ZplXk3XWcAmRiWNOQOXA6n3yGvvSJDv2uN7NZkC+ostQopffh40WiCehTETlR0DlVjLVMGGDW8\npaYkAswIAc2Ig9JWBToD4OaAAzKN8fOg194wzfHI+ItTPrltJbMrw42L76f50XYykIJE9qozl17D\nSkAz5qSAHx6MXwOKdDAvqKufxecFh6Wl9OyKiqQNy8ZfZTcb5O1vB1vAcKrw5ZavPxjw8SUdhl/O\niS+ebnhaaUbMCxAjx7Wda2a7LyMjDGPdA7v8mPLyxcAUxLHKc982PQmbAg6r03qzkps2caiIB3c+\nJRUny1dhvI6YKhWF4PCepAReBLoytW6jU7UeT5kn4YLaK3OrASdG7XQuY5u6bLteAmYRcRhwA4WC\n0cTxVEIzgvThlbAEBJO2chF3AVuC1gH5L+VPCpnGMRCeAvuYHPRDn4yQwoeOF6xaBJo2BA3l1k1t\nKaZQT7fAKs/xot162OKCeIbqSCEjcsS4g95vI1PU+ZPB5fAT1RgJWhunDQj6HTS4U/XiAVT2miGl\niVPyeyBDkOYZevSo51Auf/7NyADV0AJyitKaOIzTlCTURqoCX5lrbmqEAXnXUzjcNTnNJ4DaJ5xY\n+GQGvpgnPr05fuZ64PXlwMNDjlM74DA28A/k9Ogvz4mH48DVHTEXznnLxCPPGgf46lwKtCCT74QR\ntcrelDYLviZEGJBDuXJHkf0LxMCOtW6oTsFm7H+oZKKdxniuLZcgJGhM7s90XGo0WwocYSvuPe8p\nZYJUcTL9QatveTqUE56jSphXMLswkikrAuGsf5iArQX3ReFGiuC9068IFTMla/A9OTPVO5HrtCzD\ny/Cct6EMyoWfWmHgBVtbBcq2S+ZzEkmO83TWegMHMh472I7qMMOy7CF4hVWTDRXFEERD5qWmCgbv\nIxN4sv9+ZnPqPvK+DIEL72WVttZtM3HE+TWThzrKi1zohZ2BFgWY8SQGpHfYOwYuON95EVk3r/sy\nV55CPs2SMKWmVYeiQftZTs+069neyxzTgE/PM1GXZ7rxq2vgoyPj94d5pvKuwNt1w/JsqCHH4enA\nMTLL7wKv1mGJFqgJKzbP9dlpYGv0kYNnpSEUD0g0lV+PqlmQAzNYA91+JwpqHSVoYhM6Vg6799Im\nkCaNbHtC9ABzDpCJaBnCS4zjVCge2Whm8t51hRXAbQLLM5HNS7OzuGwlIlbVo8w70YcEFpbMHvpl\nnLMvKVjNEjsligSWS+BaOaE/dLwsMgilmKbRduFE4sXuOtdNS8cALmC6Mm02ZezBEsofkXX2Hl28\ngc2+V9pFJtxolqE0uZUZUH0HkNI6XWoAWPGmWLliuAKugoXyJjiTjDJcaoVSFJaqWDC5tLzzNAEE\nfRP+UXgs1hHAcCxQI4rBksKMjEgMja40TGEwaLocBrx2wzeOgddHOhcfBvD6MLy+dMefPHNHSArV\n4R7cnYv61FDSMQMVeR/qqygNpWYnZSasUt3Y5UfUOtEM0eiwzeQQ09B21I51oVs55nbs34ylC+6w\nXNcF3677Rv+9YskoLySgTkdSJOVgBMqfIX/44mecWYhqnhw0u9J/kjGN9JWACCfvRYlV06zWypgl\napYJYovZtF/XFPXFhMF1GU5qwsMHTkEgsMSXcHU4MwPd8PF03DzRwc2Aj2NgGXCzDAW+8pFhIcL0\ncr4YWjuqGtJSgwyCRdntYZnYcTBbzMnhQSefh3wHsssZdgrG83m9YYRpke04luzpAL26uTHDPDdL\niMOA6/Jsne0LiCSKC6DoNr/JTDyaLr5lATGPD4CESkdVmnstNf4MmA882MA3L5YTmY/AwwBeHRzF\n7p5OvKTmdKbx/CaNG3RShuYMJPNGBOs8BMppFqD9QdBrFKSC5e8VCAiGmfOzhQj0noEFRkQBsSO5\n1qjdpjzqXADarjb5B+R4VbIUzadQfgqrHFaiiMYDcj5KaubrsbIWZe+DICSo0LB6MtoyuE8qZuMK\n8AAAIABJREFUBM8MSaQi05rV/WEXeBSu0c543wTIh44X7XRUMXEBXQs8sDgmLLXqky18vNKRdeNY\nrcsE4sgH9sgcgMWcUdUlLD6cGLwKP02NJlpDKiwmZ2bD2wasC4o2UNZbx54lxKypDqWntvMoG9AF\nPWWGSGtH5g6ELSxn5aNlAxIlU8Gteuc5GQwu2Axq1WQ0+Vpggs75WWkl82w19iYWHiLwCo7X7ng9\nBh6cTT+Z7xAEvoEUICupF9WoFFaRGVhnhy4wWSaEoqgdyUwaHQa0AKMyJ0slgz5HIwRXcKuxphIj\nhPIbk+jnFrLLnxI4qxyCMN2foZyccl4JfkM+BRA1pHBZYAblUgJWIX0KhXwqiyxhVvdo6jr6VYzK\nLBVcy3ghXZq7gWyiVaiQAkr3hOcOw68WBMBLdjoaK+0md9q3acdfLfPdY+QwkQezFAKEkpfI2P0D\nDNMWHsiBE8E8fBarePoAtBsHCMsAyCcQctaBzS3NKLX5tVTMaeMH2Egk71W0U/Fy9EYKZOZ9ZERi\n3zR9J5SOGg33TFVzvE72H+DgEs8pSfpsEReJquKa5CorkrX6RqKc/LeQWnsZ8DSBL0/1A0xSPsFO\nRWawEqdKo4lCYKDjDKXdM5Q6dK+me0Q3h9qFpHnF+0tIlDjls/DLcgQ7/SZeTGVci00wbH6EXBoT\nv2uB+N7ozwSKoVJAE92o4YnMC6CQQK7zqqKxCbAvQZsVJTRlGtU1WhgYabNazhFKpqm2Kg17ak/b\nusk9I8qRP+T53ATbF/Q9x8uZCdwci0yIWehQ0QOYPGQZHTh9IVZWaiVcyk24mtd4cAcq17/gGYke\n1oM3iR8YS0b5JFLjZ32CkTgV7roQESy6duXcCV6n0AKiGLlpL92XR6icV4kpYql7IklGoI3vTBhZ\n6X3GJjTEGDvE9Ur4AbC6I5F05J4Qo5Hm5zLc4PgyMqT1eC58fgY+Go6H4RyAYpU+rDBhMnFeUz0D\nFbrLIzMPc3JSCoKDSKbi9+h7TwiNEl6t13W/1IruHIhipaWzH8GoEl3lJsjsALhOMkU3iWQK1OtK\nSSB3aCLHwcsfEByEoosrRFhiGVloDaYfhza1+jE45MxmOJAoTfeh94WmZkWosr+C8dkkPPKhJTwb\nocbXJRY8O15MGMgRpXCdDTnqMpcgAnBPn8AD+wc8IRnsiJTQF9tyBtgURY5CaQU5DStvnddUiw0z\nhZLyuzlco1QrTY0UOLK/BlAwEqXxxeAAInPJh4jaUI7EDAu1tAiGBaWlLBhVsJwrcMJhPqmRFjw7\nkySaiYUTSmrq0JQTvotJlZNeEYztbufK1uqBTI+OFVhPib7ejoXL2HoRsEWaOggb7/GwbGSi5quS\ndYk+5LhUkVctUd4HzR0HCIk7YrJnDuquO0LC80BaeHLeQOZcmPoOgghpRx4tyRXGgLk3yvO+t4Tb\nqLoFxevlG1kLmCuLklRKPCzj/Ce66WlGMPJc56b4ENn3EbN9Hhr5Lrp6Yps7p0DNhjDyGVGd1O+2\nk2HSvNb6a0yFF52opFTaTP/NBhUHrEp2H2zgxCpmfwXZk8rVb0eU8zMIEio3OxXWvUMKUOitIWOG\nAZmyE6WvqeVX3bKj4X5qaJ1EiUzSRfRHUAlpk/K7GZOXHpNzCZL+0ePAHJPnzJObB2xaCQ2ZP0Nx\n03ou3WV0Ln/QKDIhKOvnhOFgmHJG4HGxoQYMk36KVzD4cCzGuV1oVfe3IvdLSABauxZBNpL5EXnP\nagKSTVS1OrlwTm1ZoeBEzTTvgs/am9jDVoTgOlpRexnx7DO5zpGTW2v/FLM3yyajqPAmKpJU5kPk\n0s5g7wE2MT0DVWa8oCnUwWoU3XMUWlWCWs4O6SyHNRk6RhbEjZHRths7SWWIMSqELSRSDkbe7wbb\n3nu8mDBIqOlVUzACsJHEvciUStcNaTRqdVBgCGseYSUI9rx9+lzLq512WL5rz6QvCCOtEkOksQtz\n3Tnk8q3dKy7V3s/n/GW3NYVBdlNBXzOISaME3NUDr/0CR9qOgUxwuWEiInDYwDGC6MlwW8ix6TCw\ntrGhvckwoUMSygfIax4GPLD//+EZUVB3YaewMqSwzfBsjhl7ODL5xq0hdwooL2Z0bHkHNG9ykGnb\n+0PPR5s3BWj7IYLFaREo9BdZokcLQGbTBDa6yXvYEBnmJnjY+4AVoGV33xX1NEIJYGs/f/8RKZvs\nXJzJQHOh2q2tFZUWnOYGexMuhaolbLJTlCIWMQyKYOg+sA2bWUI4a0GVoLHf11pQ9vpXHS9nJriI\nv/vxZwRhYLrhsuhJN8+mGtjDJGLKfG2gN10CwAz3G0Y6WJZeeTGdhIG87SlYo7Q7v1roopa5NGts\nGpLaGwnZBlQJtwkK2SYemX3GHRqW2l4oQ3kB4DO9csNHRw4ueRgP+OL2iMc18fpy4GrARyPw+nIg\nMPCTxyd8elv4Yo5Mg6YGc8uMwRQEi23LgFfDgVjZavwYeGA586sDuHrmI4AJU2mmrUxQugw8HIZX\ngyXJlh2JHRmenRFwH0RMex+ETGQSImCbRSjmc1iO24ulCc3UkfTwhdrjleaTtq94xIaLeO7orD4g\nEDM/67545U5cCiSNFKpw2+hElAbsDrr9MOSQ2fADQ/6EWIJQOGc7+tbKRKQFo8VC8yNQfRm0BgEK\nB5mY0c1VhByzerTN3CxtdzgW+zJ8+Hg5YUAmcYCQOdt4HUu1+lb9BeRtFzd56PtAmGe+Pz+rsJSB\n2I1dbmRbjVCBzXbI7hJJKmpQwoEfQxQxbGIir6m8UQNk/pgBGhQKNFTVM4SjztV5EbGFOg2wgS9W\n4A0Cnz8BD4fh9XpMbX0YTrbGfnRD3E5cx8R3HwzfeBj45HHhzblwhuGp4K9ChgMXy0Sjb1wcH1+G\n5BBecWry64uXrZqPt6p+IAV4Zi1eh3NYiXWjleOCcy7c5qya/8nzGM8jN6EzSQaMDID9CkqGhvw1\nNM4K0aHUXej+tAdbmLN8MmWmpfc/Ih20VqfZksn6Ckmn2p++JOmB19jU7v13QYsks0OrOpLUluFL\nOia5AXNb6yRjmkX6m9eNfY0kqEJJdqzXQFaFIgCLn1Jh4AFgpHbS4Cc31ecBcM9uvkh8k8wR5fAr\nKW9RWrg1QF9HzFcMF6hyX1GH2SpnixyEoik5eoQUmnDA74twRND8DhRZYMqPhBWSuF2Zk9jRDP30\nvE9YaqzBPXwK4O1p+BwnW57RPJgLxrDgxYHXntD942F4bQNvA3icwWw3Zm5aDhl9fTg+PoBvHo5v\nXBi1QEcQVk45zSpFl+BSdSd7ArAkeO9dmWsflWiF1cipDhL28gJEFZCoKEhp8/5OHmvPfCotvUoT\na/9b8BvfMO+sw2xwIkZPtRuFOrBB883k8WfmhxynW75H+SnADZbwJwK0tbJXI1amqQfY2yCdg0Y6\nSFoog5f0RTRFk6Z6ciZcggXIU/KtBAayl8JXHS8mDC6WJbcXqAciB3wO9bDP0d6pJeUIFHNRCjKr\nLwkzN2+Re6W/jfmdRaMSILyP+ik6vtPj6Go6dEitkAf6JOWwI8VIandtATVzwoh8Hnq/FVVSoFH5\nCooEiPCAHIQSM09+rgXEicMHlnE0WQBv58I4s9vyK5bPvrLUMGoOcngKjlcjsv3Z4ThG+iWy3XcQ\n6gJPJyF/GGPg7fPInHtGCuZKlMYVmmGZGCNBwOfXfooJrZAY11W+GCGzivVRm4bCuAGzwbVUghCZ\n9blCIAQHlC2YfQBMg1Hq/WYyfU3SRX6HdNjRJ7LRG/hZoYQVYvhtA/kZl3Zano1laBosJHrVfRtQ\nIeLFMuyc/4DKJ5hcf6GHWAsXc2jgqvIWvqZo8euFgZn9ZQD/KoAfRMQ/w9d+H4D/GsAfBvDrAP71\niPgJ3/sPAPzbyEzNfy8i/of3nffB+OBQZxyD0X7yZq1M9uFiLyjxp9OH5QDTYnvZ7R2Tl6TOB2Ke\nNxe43ygMydRalOYW86v1dOWXlXDK66cCjNJ4auOVpkveh1dqMzcUzSTpNDQSSW7wZdOQwwBfM2Pe\nTEd2etarIk3ZjTB8MQNv12TNASE/pCFTO95W4NGA63kDIiMH1yOJfcbJrkM5Vv3pNvk88smwt0Nl\n0dkWbUnEl4y1ar0qwUb3wn0Q4eey3ycM7apeOIxKMEOIBZ1JJ7NzGcD92rY3owQImnYUztSkrenz\nIt0pSoIAua8yA3ckVAijeAehmSBBOtJPczqX9WyL9M6FIDw00mxwXaKQba/dGJnZMMntYTnBamHU\nDItE0L93M+GvAPhPAfwX22t/AcD/GBH/sZn9+/z7L5jZnwDwbwD4EwD+AID/ycz+WLwn++GVATmB\nBiRqepItc7dPs0IFYvBAbn5m0OVrrrg9YtPgqqrbHEg7bLPOHJTG4u5h974DyrDDXQHSPXRVL4Nu\n/TXQhSMSSIumgZnQ7e7fIGKAGBmApSBYzDzL52sPuUyeohtQVVh2T4q1EO6YEXhahjeLE5csnX2H\nZ3nrMODNufDlNKYgG16N/Hd19V/ANhcw7304cHXH8sWx4M2kK7Kd2lLnZarZFIYoJsrPN/w2U+Yd\n6rUZUUIGAMIdmmeQWnLVqhWqqnMIcdDwMJBeAOLs/N3BvZFAiD6HmB5RZpJMjGW61jNTRkJQf1EY\nyITRa3NpujSdg4HNrKGPSwIgWkAOrZngFDJ/ZYxg2nNS76CgKDX1e0UGEfG/mtkfefbyvwbgX+Lv\n/zmA/xkpEP48gL8WETcAv25mvwbgnwPwN56f90pKzpwATYrNhzhKMKCYU51vRf0BqI0f9PLOqK1t\nCDeLwPRJJQ2hN9ms4GH+vS94E6kotfMH9XpUZZ2EQBWXkNiqPBVWDUpqIIjuT3Yq0Dn93PRqwEGm\nCnR6csXVebNKNjLL6U4TwFMYxlJDmNbox5nNSi8OjlsHIxfpcOyBHElalwWcA3hAjixXU5W1Ypsd\nKPjd+y4TIQmYJbu1pI04JDTU/8Cczzw1FYm5CZGNyUQnuVZR++aQjd+baGT4YuISUKQNA1SvUAJB\n64q89yUCfE5/fP/+//n6okSUYNBadUaBVR6FWDqVERuemJCp1zlrbBsgG5WPaXcCRIrmq45/Wp/B\nz0fEb/P33wbw8/z9F3DP+L+JRAjvHgGYcZSWNoJCIHbmj5bM+n8xU22gNJNVYVCVsZYW2uw6rpk0\nqzRUb0tvvAgi6nM8P6J6GxgfSFrpcGm0JMS5AmtQy9ediOGtiE1arDWTVdiytBsacZRwjHRKVSKW\nbUFTUz7FtoKmjrqRXZqi+yjcIvA408N/AYe30r9wONjGzVlUBRzT4CeguHdpYDMg0v+jnAQ3RSKk\nwTtKkIxLFOC2kXsObAGFgVv2rrCYMCYqWYwSMDn2TD4NMX6TnZTODghlOta9w6DJ1nfC4NmJEvJb\na/u7q+QrGT5cpfmDCiCnS1tRgdqTyQhNR3MnGzXZWiEt7GjD+rolbCVMN2T0Vcfv2YEYEWF33STe\n/cj7Xvz1/+2/K1X7zT/8x/GNP/In7r8iIUAisUCHkdHMnWvQUJOc04xr0vBipk1iS0hIoOSpoJWW\ntkKfthg8wlA57rFpaDNOSM5CqQcfmBa4RbBMmwSK2Bqi6Hl0Lbt7nhDDm1UoTJ+RcAzYVntADUKh\nqD9qTVDGSBKUtYNuBqskPTXZzQxjAU/GUezOQasUvpmVmecdfDYlEx2I2ojdNHB3Jhtx3JqlH2JQ\nCIwt994MVVciQZfIKCc25cM4E5LUb6FDzfIBqOnLnifQSqQLlSTINCpeeS33HE8KKoHw7tGl0bWR\n9UxL1bIAhVwjjMVwuHEtlRgm08TQQldU3dlOTfOg0Pibf+tv4m/9rf+raOKrjn9aYfDbZvb7I+K3\nzOz7AH7A1/8RgF/cPvcH+do7x8/+C3++HTW0saQiDKrJ16KgNiYI31zaU/83QLkExUxtoBUTgsRS\n5sCGfUvy34WjSq7W+VKbRTFycPG1wTNSEyzLvoNJ0AldOzmXZgoFnIeqLNl7IFqABTk+e+Wn7Zqa\nKc+UPflBIdMOU9FMmTd8vZrCbgzsRYypWSs2b43I1OxTzWYHE5KGWaUW17TjcipuaMC6A5JbQ3Wh\ngeHGcm3ejwQJDL6iS755bzv6QQn1jgfx1fzp3ibldh7pj4je9juBEVa+qI3gNtqQQHoGD/T1Kl3u\nb3SnaBRakGiXeauok5fUyIyE/E5UurrVRfmkgeyizX3/1V/9U/jTv/qn6up/+a/8VXzo+KcVBv8t\ngH8LwH/En//N9vp/aWb/CdI8+BUA//v7TrDXaWtFhiQ/7zxt2kBsXlBpJDFKM76+tml8MnnlYtai\nN6Np31tjAhKxBquNAKI1byEzSuvqSNyUIg12i1k8lVA8mTjppy+shKZ6rx8I6vUn31DZtt7dmQre\nPns2Y5oyx+1s6cc9P3HAKwks7z05Q1ryQCMVN3BsGjAszZ6sXEQVMXndY8q6FBBWwsDQgmFHDLmc\nm8Dlb6YW17XqQjvaKz61EnfYAQpGGL32yI5VcxmZT71pEiyK2wGwxbDl/ed8p9NctKQ48T3heZeu\nM1F4gxFV31BmGs8TyJBkVGFknU+Vkxpao3VS70515XYfOS6vocKdIHvf8U8SWvxrSGfh98zsNwD8\nRQD/IYC/bmb/DhhazOePv2Nmfx3A30EWY/278YGczdLieQ0SRBRzStpqgMb+TO0xtiRapKc+0Fpz\nID2r3dee14nevI4QoBBIEhrvgyq2NOyueTetooZYhg4NNVHwCozxb1Tebdairw8ES7RRqacaIyYu\nthV1r9WVGQHB3eYsCYZeb4VtBy+sJqnVfkuML58HXxvW+QdXz2nFbo7DAxeLDe4z9Agrfk2B0RYy\n0GgB/Lxi4W77veoxVu9VSPBuzyla4H1idNKO2sKmTGAlwkqBsgsmkgT3IZOButYin0c9FyyYOlzs\nCKJWmQZRDLybktvm7LIt6Y2JRpWTIqHIQqgUlBO31U1LFhFoIQ6tqxt8nVn6DivB/Hs2EyLi3/zA\nW//yBz7/lwD8pa87r8tLjtapRvhYCjPQXYPz5AAHWWY/PqCTQVZC6dKO4LlqxUsIbD82AHcvszIi\n8Cw0GaWX6hxisLWdM/c+CUCp1ua90aVN0I607n1IRqj7szL7876iCLnMFxFx9LMWmulbKibfi3Yi\nMlstU4IZltX5mU5fTLeyA/VcAcPE8BRoy6xa0ScysM4dMVR7elXYgRq5TJFQ4VM7H5MetvAcEuUE\n90brXypFyWXMHSjEEZ3ABJM4J7sz/GeKfEdfG0hGTkfoktre1pLmppiRz9HOPa6vKCgkOgI116EU\nzDN68hRenbos5gdzNtJBvThzUwMRHJG5Oqsnee+W724+ve94wbZn6vhjJZ2VEFOEW+oZXQykv9FJ\nK/pCiwIxge0oErufU1N3ttAverspHGLzRt+ZGL3fYrBRWFc2Zh77cBi+Un8H9tBoC8fd5Nhj3jCr\nGXt1H0RGxuKrCktuGg2bQKnzwCokoc94nXP7pwvte8O19rrfvOxCZNZh6Hm6MvLeX6DvWwn9WnOz\nWhM9t1CyZjIWc2O/v6hzBM220I0pXY/CQuinovWW512rg3wp/NLvE0RQ644mpO3J4MqFIYSvJypp\nZoUjKtQt5qfAvFh2oy4nNm/bec4MB2d0CjNTwNVVuughIsesucww7kPsauz9x8sJA+zaWVpjt3vv\nGaMgOiVvIYuC90kIgpZ7PoHtRLtB2CaEDbEVFJRwF2zepCxvbhPw2x3sbbi48dHP0ZENQMmGwVFr\nYBu4yjugFJKQMzCcKQEDK6GnJi/72hqTnGJnXOtz1YNuzljHllGIZuDDGCEw+gc8oyYXWxh6Zu0d\nNS5WwvuVJybKCQpmoyaWlu212pFXLVRE9hyo15tO9OJ96I/vV/aYciOzzFcXUUn1CsNpyuLbBHBj\nQ5YaK+25xQYQm9mwGQ+hTBQU+mh6MlQJPKVwdrWKCplXrQHXapnB4fCRqdCLfoUI+SNW84hvCIf8\n83tOR/7/65ATS/3+vWClbQQrydnaNYBitgIFRRx2/39rAt2ZCtasq9+lgnL/yYTW32sVFLWJYv4S\nLLySNOhuTy7axWu7Q2m0FIKKkKwq1qn3A410SCCVlSfGWvt6bAlIBqiCzWHb9WjPmpSmIjjrTlAb\n0hzLSEFUTcPFAhfPWoZh7MBjdB5SyKaAMj0GAqjhpvSKwMKqSrX7IvVKav3uf198Fjacs31uApVD\nCRkrNJE00WKraMuQmYnLYJgIJUs1W+f6e3aGuoOT6F9zz6LoJ9FS0rh8L2XcWZtFJgEsTYa+ftGf\np8mcfM7CpVBsSsnoUcNm++b4DPFTPFFJAlulvopXl8KCmGqLOVPvVmstfq94Ffe/dwJPM0Fr1Twq\nww07qBaTbTbfM20keL5defsNdwlNAB2hsdnwQY0t4oASdZCNUvW8gTKpjFA5Iy8c8sr77IpCadt8\nGg0gyeSVKG3c/xzlatjXiQuZa75qFsBaybLZE5Aw1oxVkJZ+BBG6dyOURiHbmmitaa/s0Dv3BhtT\n2kY3Egwp6Lr9eQsx1wbu+xeqNHGtRv4t4e+Gix902hExmmB/2vo50Ir7xNLi2FDk0u99WtTN6nJA\nralBSVhEYFuyUy5uU12mnIMCPBBFKBywAnVftDZVUlaUH+6rjhcsYU47a0QWDKeWE2N4M40WpbRe\nwEw9jVEcWPY7iW7PYNMvlXseeeIyDfIMbcM1bsAuZdvZI61r9faOAsqpCcIzy+zAiPS6C4mEodp6\n98O21hoRGduXpiciwEjCufLZzIIhQlSYTzGU9GVkjYI0BNCFWjvCklZrJKR8gUQNB02Dg/kFGhS7\nkAlVJptgE9CqOalrRPsdKr9LzwFjCfX+Rq99/S5tz/ZgBnWUbqHaviTtg85pkH1XCoECBVoPohuE\nBpDkfe/1BmD9RXYyEgKgUikTD8XokgIVUUJ3nyrhuRlbZgYfd9KEvGA1lm4xByKFZvoKZGLuyEbC\nrR0Y7z9ecCS7Bpik2KpQo7dWsyIq/u3SXIEqJXr2fAW7BNVDmt4adUg41P/JyJtAgEUhBY03q8/b\nRqq2ExWK2Y3TkYFN49te4UjBJM0MlPBoM8la02//AFROvyP7Ggi6D88KRXWPUo9EoDXXjNbLemdL\n7oTCZPrd0I4/5zMeJo2P0nbqDQAiFgTnQSLeQSydZ5B7n/kjs2zl58+775iLUGr/82KK6VcPxU3Q\nxUZD1fhjMy3qVHryO+yvjc4H3YeXKBUoBYJiC8KwxCEyV63vSUhAjWIqDbuQcn5e5xISKcEV3R5O\npdItCDr7UYIiv/NT2s/Ae5WZgNTWdGoQpYHq9dT15XASg28wGyK8krC5Xd5LSpC4aYpn2Ya6vjZ6\njx+nxJagUv4BRQZPU5lzfK66u4gWBrzXMgVabaIzK60YBYYSburUrByBQDDMFNks0w039sJL+z6L\njg7PNN+DDLkQiNJ6csw+x7atFctfvUm+mocJfS0JWd2B5UuRISBEoH3K5VMUxJ5B2bJdKGy0e6rL\nT82sEml5+GOTIGpVNze6s4oSGrfetj3CdhXUb3fy6A64RO1/mblURaXtRQvWeQ1i9vy3UaPFJqBQ\n2l0CSP+ySYltEZB7jXhfqpzmhNksdfah42WFgaSfFgkKIXYlXuuwlIrOTeskHWkbQDL5eezW0Z78\nFhxNBvf3lV8S0QKoBiclLKRtCmzch/tQ2l3CCHy1DRM9UyKk1kq+EYOQkYRECqo9jASop81ETke6\nTcPjDK6hVcLQ8M4QvDxDG+JxD6/z3ivNFGaaV2CWnu09L0SrdepZg23mjePa+Yk7nw3NtswczEWe\nM8ggUfdVvoC4J+cd9UYJGC8zbQY6H6P2x8qfIO3de4aSBgGUP6n8haV7mMTE3IxCTZYrnuPV9zCq\nEBAKUYhGen1RfiblP1Ti0Z3G7+jXWr1+LVA2Kozo177aQgDw0uPV9Ds9zhooKhjZ2l5M4MyrT8Ix\ndd9Fr6kSg4qRdsjdVy/YeH9TTYB5PsXM9YrOS6Lcklsq1810NUUUFAaVPlYGXQsQhwRLMCsv7ijY\nwCYvfICabOyGGhazMY9VzFIRBLbOiCwtvu2azABXKTP/CcZ6JUC11Z2CJ5urZN+CNBdOfk/RlYw+\nGNzWlploLWyxC9E8t8wIt8X7yIa4gteal9A1Brl6TvMx4j4aUfezvRYyk1Z74KHwMpXMWoL+ybBT\nzYoo4KtDd2Thljo8i2bvBYzUhSjPIA//8+RchaBj2/tdIKjsueY2LGLD1Q5URRai/oe7+ZBfdbwo\nMmhIT4eg2l9tkBx4npizaU7kqHYRkSilt16fA8plTk1rdd7oD2/Su5i/PhL1XalCZwbapuuoVbst\nWNv9UdOA1uawSqbvjkjGtWHchNfJarwsBiIxao1gHNe9Nm2f8FM5A7lu6rFPUWQb4i3VEX1ONKyN\n/XUDrNDc3pWKGoynSoHR+7L7CyTsDtidgEsThnF3Xi/hfKs2N8NU/wve91L6Z3iFFGXeGJGmBToi\nwso/2fgSlLrmhCYpg0JC8ybYMMQbwWmAy8UHU67z/Jhdi9LNGvVMqOdpeNPi4o6maCLFCjosV103\nW62T+afuZbGPRfrWQt/fnvFDxwsKg3YcilhA5q7avtgQQjF8w/R7vR7b5wQPm/B23Va8DxLOJmx2\ntFj8b/eL2DqSf8fuJOT3rE0EpU4P5FTjZMZ8PqLSAgJHaVCrEKpawfuQvyPJ/aJe/5AAAP0UxmtT\nYyyug4iCP1299tTIQ/dK+/ZS8F6NNe6zDnch+M6v1utb7wnu83YGFO69h9RVo4AWRAjCZ0NpTuN1\nEJo41fs/AZoVZNrI0GAy/8yF4hXkg5BpODf6632Ou88rI7BEKJFFdcnmdzSFqeA8H/iOdkNuSMmG\n0H8dCdDulQmxKiV5reyDqM+mkMi1XXco5KdUGBRBbWHDfF0NTA3VLVj/D6EJERs9wyHDYjEdAAAg\nAElEQVRmiPpsEkprcV2jNsH6M/vGyE+hhJ47iPeOcLA6kbE9WUA01GXBoEY650TQnqwsRQkry6Ex\nh8nzzsIr0uMCMGdmCwyOY5qMKGjDh1tqEGv70syB6DkC99mG/OlKYkoEs1ymy+oCJCK5XX+Jq+VH\naUfD5gfauu/Ao69rbaakA3nfO65NKPSq/U4NX41veN3SfvRfeGgeot5vBo66+3a8iU8qHKm10tOa\nQsUyWdsMylBrolNB+Q59xjv8pw7Fd9mSwJ1PALCKGER0lAC6Bu98rsVJzKu6WEdoUbd9otPLNoTy\nvuPlhEFoFh59BPV6JPEaWGQitJDrOkrjWgnr0paCz9o4afmC7E1wTcj5e2uxewdkQV90yW30SbDv\n6Z6fUMRe95kMMmm35+ez0GTAOR5dkBdFXOHKydAo9uxlGCtgnLlYvg0ioPIlcD0d8z6dmv9fRAQr\nNHZdREkTyAwnGU42v3oW3Jlrldglrz4K0UXmWKewia5H0drKhl5EU4macjTZc+ejZO8hGSwN60c9\nWECCrNNvhUaKUait1Rau/AO1Oux6rNfEW4YariK0V9iMGn1FroM0ca/5lgj0zqHw4f37u8Aytztk\nJOcnzKhg6Flbq/YRCMTyWt9N0r33eDkzYU1mzRF+MvkoMw6TuJwLJBQAEqmAsITETuT3EYhNg5Fp\nSrNLE8lJVwxrjQAQXZ9wF/LDJnmxXW+TyGVuJBfKlhfDLlO0O9+fcgYRH09p182mNENlMkooqVFJ\n1DMgUQmsKtVK296tkc56X9kolS7zaXfwAWR31QqIB6y+BvkRctzaBrFXMtDh26h2t+qatG0CQJSU\nzroox1q+xZhlRK+1JwJRFmYKRO1xdMdpvifhEiUMrOB3kpwQRXk9mim12KHb2KG7lSbfBUKhEWn7\nuxUFFKa+AyYSBRrBFnswvunQ7D50Sh2XZ9ADYduHrzheThjwqZ1OHrP0IbiL6LsmvYjZEupoQxS7\nhRi0tH/Duf0QXdvz18ATgkTF7UqH5paIVPdjva76G8+0Zb5ATdkaMM/XzryMLbCf3929WD3/iKhX\nIkjcPH+HYJs4dwEZQDm70k1BAbxRZBV7SbBYohTBdI22qTXWQrbiJFpAtjSDUms7AxHYqiKhXocU\nDMZOR2r3ZU7zcUu6qQXP6AIUgTJD5qgkZxTLVpYhQ4OzlcjcBBfqU5uQtH6w5zH88rpQkVf35339\nCsjzMxElJLrISbTST2jPrgTSRqYdTypGK4GP7Rp1n/xdNQrqAxHbfn3oeEEzIXozoxGCILq88lXo\nQgIqG8hyM6v6S0JB74ssynRoz39vfat4F9QWAT5DJHkybESIWug6Y6GLfP25DVqogg657OKU95uh\nvn4uoSQFI3chpqdzqhOD8gbUhBXlLzk3Aqjx3XrqQHnu62Ompr9Wry/5BWgHy+aXIJTwWED1QEiP\nvLGVGzVYAD7VZDUwAjiptH1F5UM4ZjpQaZfJH6HhqC2QVdwj/4uGzkQhF4AoIVU37zG413o5SCNN\nK73Sm29DjEUGV21GcLgJL9Eefr7YAiEKSTXYEdPfC4Q9oqDzIyIbVjF61LyEolfJGTkNGxx8jSTA\nCzsQuzCJdnrgLoy099TfGTU3hsJDmySEid7knQHvtftuPMT2O4nM2r/A07Q5IT/DJgyEQ8rdabGd\nQxe2PmdsDKnnxhZCjb7wqLTjZgIJPq91srqnEencujBn43EtCoR+pirsMQkxhSUNiecbWeV583WN\nhRtQhSOZejcHuL7G6ywEz8812gXkJnQypp+SJIUJ52JaI6vF+3LP6UISBIQ/2HNXUMyUWnUjEVRW\nKQUKynkHMu+GGMwxqemtpUd/n88ZK5jqvTZHZYP06K2v7/eHNmrb0a/2Vw7EEgjPGFsCSQsbQPd4\n0v9+moXBO1781lp6pWBRORuFGBpBtKaOgr7352lCLBhYTkG85zvbfZWGByRR9LliKN57lVXru3KO\nYbsvXZPPBJMpsl0O2+cgOue9U5NkK/GchGyRQ0z2Lw4DLkjhctkqvvJ86avIHIl8PqESs1XEC36/\nymojugGHa3ir4eKp6Z3TnWvWRe2VV6hLTroe3IrS6KlN2WoMEv7tdNvDahZOiB4lEtOUWrWnLRQq\nY2j7mZAo/Tksg5bjTTMflmz2ufkWuiNS3qM8G4E1o5KVAlG1GaKze3RZRJL7v9EShJg35s01WbUe\nEtA9do4nfsZTfbQC/arjBasWJwxeg1OMhCD4XX/nm6Xxc6Em8W1A3XRQxNMmRx4yJVJ3yyEXgtjc\nnKoD0CEkAC1itHDCJhCSnmoD7910934LfXNPMDThVej6e2gqobkLGnlnCR6WacUPntOPDk9GGSRu\ni4XhRju+K+TqLgrVZJafu5CWlRZrFEJYDaGsbF7rRkFrKZxUaAM0WskmQ2nuTE5kSu3e4dWs5HOE\nqYpkEwKbMNghPQAYKwdhztTcJZ5IvR1a100Jc/PNGJ3xVpzFr4ZuirKE6RrEt0efNMTzVG5EpLAn\n6G30WmfoBPUklW1A3rb2Ip6e46B7jfpMmRe2mQiiHb5WdPfVsuAlhQErxwiZKv015FkdTOPt17C8\nIhAwjZwGVDx6x/TFmPl+JtjMYmYtrXixzrUxDNBEvR+lsbUL4PdJFC39o5hL4qHPvj2HTCUJJvTf\nCmWJuIdTkyCw5sT0gWkZGhyeTDr4gOmgyxDmIPx0v29DJhGmNnCdXYgitYWsHVi5lMBSD0GIRUnw\nzHi0VfMIQUG9a0QxYgoph68uqQ4VLuneSNFk9cRgzKco5g01KE1hkM/idV/YFEDZ8erRcG5RBH0I\nUZ9V6m8hpuI8bLST197NC8eGbKK1sgGVep5HmwBFQxuRdQVp9GclBiQUngn5Nmn3fIUWZh86XlAY\nUMtUkhHDZGZsbZ05Bkp3LbQAb4EKwSlqQGhRCRc3gjRIq7d2L5Mg0LZsSMo+N2P0/+D93jsI3zFz\nti/fN1hpu1ZzHg3yn0i0r0ID5Uupa3U6KjzwFBNzBm4BXCLbl1+o6X3lpw/P53HINt/bmidEP5nK\nmiPmOj06b3Dzj69kvr04qZ2s1FPGfBAZ4ZtWfKdEGciUdIYF1eU87vaJp3CHTGMxQrZAV/dkCVZB\n6FV3qJuVRl9ca6GN0vTlO6CZYFsfoR0xbehup49doMuRuclBhmt74A5gqIlQYR3lqUdv38bCArwb\nA6pq877SsXMb9hTr8lN8xfHiDsQIhoQLsm/tuvXZEFRCxdiLwbE55rQZ5f0GNnWkT9zpZzGoEkf0\nfpFQiPl5Izql+pxj2zvrj+jvzc2UQod5FAaW4tp9yE3CKC8y69admm73n8AyXwEIPCIbZboFbljU\ntmT4QA0+EdR3hvQuhR6oe+hpV8c+tLxD6zOtu2F38BVNqupQ6+j72ucJ76r4DAmric2XSXsD8r2E\nFky2PIgwVvC7vcaRF6AXXnCN15JdL6Yn97aznbv1zPtOsip5vWca3n2K4WhJl13o1XOj94K3ulXF\n6rmt0KCEmzEXp6tle3N2odD5DI0eOtz44eOF255t8feNee8rGhs3aSaBGLZoj9/dm1WoOw+K+dFw\nfGd3ESUM3VH4HnXkPbXN1pZaM1f9TTtfUj+U5w5qefSmuyQ2Q+dlX5YA01oZpBKrCMqKjmFYsAk6\n7zSu3ljUY0WMXQmKqlqsTDrLadhmgRUz5R0oiAoJaW2l5ds21Wcr8w5GHvTas12wVBv0UtrUoqYS\n4/yOGsBKW+9HCq3IxqtAyf2K8uheKDB3j3ydQHugdWEuZplKQjKiBd10S0goVdiKHjr9e0+zvj+s\nBIDuvdYjKKzqgVDPT6xVCCxNq/ycUp33Wgit7dfjghdueyYDKRdv1UK6ofIQWqOTkRQ9EIyMtlfV\nCKS/F9VincvGS+5owZoJa8d4TgqPvMe1y4+8g2CWXfR3BAvVPqy2z0DC2JOmKBYKQ0Y6VOWYJAnp\nY41iyHyh7r7N6G6ejsNA1RtYXVsPKLTCMmQz2ApMy0hBOgczCWhs393t3udhXi5oFlO9A1vbC+7F\nXLqTvMHn3XkyaphrN1fcCZniaSysiS1Ls57qjtayTV7v7e7k7AXOY1A3iYYM2z4VXcYGHSV8eq/a\nhic62Zix/Eekr9p6CXa+X8iMC6JTVuLSxtp19lIOyoRsAS2z6KuOFzQTMq8+PfwdZuuMuoaiMKsN\nyQYcHBpRzCSYamSyPKcWcPcq2935gXYlNvPVuStUU6u8KQU5Kft8+qSeUJsOXk1DWdpQiQ0Gi9i0\nFny/hBtaw0cjK5Xs7jkENaQDmel4MSU1RRFrhfW2u828AZ7NkshqD9CONGEd9SnQewuArX2e5M5I\n1JXRKADYmEHOAD5P4akAQ5NaxY2Bq7mHnoLIgu3mdzTS4mIXRGmStn+okUNg+7k/i5TYaiTY953c\nF/DetHrKKBFVqKuEVyPQbUMaLdw9d69hnT0aBTR0yFWMQL3301vCbGxWwifuPIJVmh5IB1EQJjqc\nmkUwjrZkCQt+Buue0K3ZD9v3U0A8Y2ISN99FCRtep82DjmlDQmh7vmIkA2pKNAWWbd637lAV2xrw\nb60VUBA6G5Zsz0ePW2jNPAdrpHmVyURLxEQhkgU21s8A28Kjz/41LOFS0FND/laG4bpDHlvhz1pQ\nA9s+KGitIwcNxzdThsIuOElJIUexjcyraJdAnePubmL/xWpvar+j+0/kT0eLAflntlPJLtrPoys+\nu3AZVdZ+GTGsyp1LcG7ftxVaprt+C7twiEIpIRBVC9FIal+Dn1JhYIRP6Wu5E4Mo+5gexu4aG4Ax\nPwEKIcV2TjI6dubeEYHOt6n4kpb3G5u98rYzTQC++TJKazvN4t3rT9FTSGUjFJ5f7++Q02PbbGtB\no6EmVpSTd7osozItUDOtN5ksBa2bdacbpJGyRKLhrAxEttNG0O8AWK1TShCtYaElalB19S3dVz6K\nXgeZAe33aKYvR2IdTeigmbP1JOo9DWnhRCfq9gN9t7T7M2Wwry9fyqgTAAxWi5KN+oL8uSkq32g2\n2qdUlFa0ZdBgXq1RPe7aviIYv6/FivJHwgyxUgkMa1OJqh/Y1xsUHuQrUfF9fOzd4+WEgcaLlyRk\nCw8DLOjE2R9G0F8Vc0ATjEsrRGvq5wRHIqxy5sr826+xaeUiuGdCAZLg/R0JlPzEBh+5SS44i3bE\n5alb04mllqPutSMTC12jwWsYoEIqyVJ16DWgPr+6bVDruq2+wC3KLyAkU8qN59VIt3Q4otfKUMlH\ne7p2ayHDUHg3AA2GbeWZam8innnD65bLb5Ol5NsK33nztYK0ne+0oN1dcb+GBEKrkyj00d/F3Sfy\nzwb8IS0fCmPzsyUINn3zoaNuLwrdAOgci9j6aEZsjZPEI1YC9y4pa/v+P8nxosIgx0pliaavbg5i\n7L1voIZj+KrhE5l7KUdBVYASAmLOKEKUeKx4vgFy8qHg+Q6rokNiG3EnAW0aWlCtuAf1HZFu5Tds\n6KFFA0ohmCnMyutL66+6iWQq3+W8Aetdma/tnxrrZRIyjKlvjDDLG95j1dTf36A5DPaOQ9LRWr0E\n491NZKuuEjKhceLaA2Ubosy1d+gEPLFs9T41NCMRcLoQtj0roZzY4l449H62Pd2vtyzp7wgRKOG4\nfFilKOwe3ErY2LoTBoVRTJ+jUOPlSrlE74/pPV5jKZ+iPIR51+/4Bug/UrOdrztetrnJ6nRjxzYn\n0VNAGAIaaFkf5KbISQRPiKiOt0ZCvvd2S0N3/BuS4lZb2fdWQgWFXADQ/t0+p/r5ENtTuwYFkdOM\nWQ1LA6jpuolEOukKupS0pOVmKgRZjrylZ3tmEoUQDZeKgqrkIdFECyej8JGjEJDQKuIzVTF2D8FQ\ndiS6xuC5BhbprZ1Ao+1f3T+x84YseA9WRkofsTFPiJmVqbu2Nba73IZd277/sLqmbG1d/Lm2z4Ku\nrnywXRhYz0oINeixjij0tfqcdV9EQHo/3+3ag0Y8cl3vK2N4nkQQ9xIIeO62ec/xYsJgrYlhCxYO\n85GETyZ0RBKyZofJJufDOOi4cjqzdm1qu1ZGES1CGr1RwHNdcScoVOPATRAziUAkrVOza/wZCcKc\neQPMON/uqZAKIV7VN1gSsZqVlJlBalcoMamtCagiKxB7NxE4kQCsQ4/pPO2EfEPnHOi6fQ6hkzQH\nxnA6tEqsFRwu7bOtazJFvq9OwxAy2JxntQ7FsPfnKYm932MJj43pdc+1dNGvbszxrmDYBYGYPbbL\nag93kU1TdbUAK6LQ+4ESLvdxpB26B7Lzks6zCqXUagg2FHkyc9IkJHg+kdYmvOrHZj586HjBTkcL\ny9kdObJJRBbLeNXPI7y65YStEqphnibGys8Xk5cUbwIpgQL91Dn4azQKILd0iah5E4QEQQGVThqp\njk3Q+jc03M0S4ys6ny2kR7wx45aVuRHvHWzs5iYB5jmYWpA3GqxOyfViMM07W5XwUfNY2MqZ7S4X\noDU8gLlqYG5Er1lB/xIOfBzo9S0fkQRsIR2aTKjU51jU9NvF28nY64RNIMQqjkQFCTcNX4xWt9Y0\nsh/vs+9Dm77QVordf8L6121B785cX7o/fQurfjNKqd2v6bbG2MwbtGKT41RLJCGhYTI/xaHFiYiR\nsHWt7GsnFQoyucnO3kJzYYB39VuhAhg2lhTL9TYIVQgii9BatBNG0A4MAJioEmkAq31xefDaHt7J\nUAVfrO4vbMteDjnbUmuvkINRSE5+iPxb+QROoeHqxOStTetZTOgHbVNCNBbsAXAUgzbH8R7MMLGy\nyxFSQzrPn2VeGcHYaJsJYrp2kWpeN2R+yOzhPpGoK1EG2QtgWML7BH1e12hZ2WW8u0DYzToxRa+x\nTEadqKNGJUyKKoWkorRF0dn2uTbq4pnw2P94V7tLmBepI4Wq4oIrtkjKzvASbPy9GF+v9oMXAgiL\n7qzMtVeG4oeOFxMGt8cF9wVn1Z2PjCbUrEIW4gCBOBdweAkDPfvwJj+EYblhxNZAY7PB0rkQRawB\nAQZdkHqbi9ouBRG0VexXW17mgL5OyA/6EoKtcNw7tGRkc+M92SYc5Gu39IYRdaRvpLSfdc6FnEYd\nkbk3E6xc/yCRrFJ/XSlH5AGjf2Yj9ogaoa6AmFKtBeIrmQkSTsoyBNREMV+PQlZabqEWCQqxZpQW\nEwPUO3cpYvux/yXYLiHotr/XG1jUsPkh8n2i0BIIfYJdO+u6YvQSSM8QSHn5674MBSsR9CHl9bSn\nuxbfTQqlKevZYsVGI0IU2zkCuJ03jFFZDh88XkwY/Lk/NvDlZ2+x3n6OHz0NfHn9GOenP8Enn7/B\nd37++/j8Rz/GH/oDP4PP5sAnXz7C5xVxGTjxEQ4E1jJMm/AL4HEAkSPBzQYcJyKcjTCdzHJDUpyx\nWKiltOgje4SsdJAttr8mweZXcxMV407UwtCmtGksRHhCcpAw1qJ3PorhcjOzKnNVXoXDyfSyB9uO\ntSLEIh7IMRlAoacc+BqRcWnlY8damE8nHo5rNluNZGxlWsoPEJWnQIYvc6CbjlS1ZXBK8Za45ZFm\nXjk32TzR2O1DFpvsaScSsAhMBIankJu7T8ENsRKvhBLVINJecKVUwxBuvIdVgmBVaTsbohjXBlaC\no0al8X7uGBAtqNCgodBJVoOimLs0ic7BH2vpDyEToZMKit6JuYr4tNxIG8qy0UxCx7zeiknJnApz\nzYXwwOeffobzPPH28RG3m4bfvf94MWHwx78NfPLqAb/zj38b9ru/gz/75/5F4Hc+xyfnd/Dqo0fE\nH/0GXn/0Cj/+wY/x9P3XePvmht//c9/C3/1/foLf/vFneP1wwF59D//4d38XX/z4d/FLv/hH8Y8+\nd+B4wMUdH10W/PBkTDMsGxjHwDDHOSfWPGGxMM0RbrA4U/MMB2wgYmG6HIUE7NpMo0BIRweWsAY3\ny86FOLKEOAl/YoUnobOTzjCHhSM8m2qZGWK2XShveAr3CcwMs4apbFXMwoYg7O8gxiyEsUFHm4GY\n2UhDxk9ezjfB6FhrYgI4RqMpnT8VZ0dVAsQ5kTA/rIuLsj4CaQ4VSusQa1hgLpoEnnsVU4I3qJFV\ny5Hm5AKwhuHAwBk5in5Glve6EGIA7oMMTnZekzkcAzmZMg8NiI1YOMYF5o7sl8KZCGNQCAXLpY0d\nlqxQIGxlyjSlPLMVEGtx7qLX58X26mGY58r7nGsi1sI6W7OvWHi63bhWC/N2w/n4BIfhnHndc07M\neSIW8MPf+QHmWljnic8//wKffvIJvvXt7+DX/t7f/1qefDFhcLwaOP/+38Uf+tlv4ydvP8XH1wPz\nYeDy3W/gkx9+gu///PcQBnz56sDP/v7v4PqN78Ke3uBPnobx5kf403/mz+C7Dx/jGL+AH/7W38ff\n/bXfwL/yz/8Z/No/+CF+4zPg6bO3+OTpAW/OwHH7DNcx8Plnn8Jvn+LbP/MHML/5s8DlFV49DPgx\ncJ7AeTOcYTjjEcMmcA4ACwNRQzzNDZOowN0Ra2JMMsXhiHXLOQS3gRWOsCxDdkw8+SoBcVr2DjiW\npaaXoGc4Mk5qzaUpTI7TTjZ4sjSdLAWFD0Ow1gMAECfDq8ncHobb7YZ5OzEuEzbsLt8/sDDGwLAk\nsDEOXM1xu03YccB8YK18SBG2jlKgljkNFpM9RhIFLGOINYKzMZ0a2xJtRGD5wjonLscB6ca1FswH\njuOKwdbLcS6c54SNQf+JENPE4QdGQrTU1hZwPxIxeZ7rqoS1i2POBbPAeTtxuz3hAsOnP/5dwAwf\nPbzG4/mEx8dHfPLpp7hcrzjnicenRzw+PuKb3/wYWIE5J87bDWsmOrleLni4PlTG5xeff4HzPBED\nePP0iMfHJzy+fYtzLpy3ZODb7Ybb+YTb7YZzTUTkWlikcGCFNmKeNDDp+4GlA3qlOaqR7BMpILIN\nfa7vb/yDf4jLOHDOu6bq7xz2T5qd9P/lYWbxf/5XfxHrt34Lf+8f/xi/9Au/D69/8ZfxxQ9+A5eP\nvptE/vYN5u0Njm99G1/85m/i+s3v4dW3v4llwNPMmcOXAC4ffRtPP/4JPn/7Br/v+7+AmDdcXr/C\n0wp8/sUNuHyMH/34x/jBb/5D/Ny3PsKPzoEf/ujH+PxHn+Pt6fgMA5/dvsQVjp/71nfg14/w9vgI\n9vHPAjZgthDjgCNRRTCHIb33KfXLmZUrij17cU76FoZlqS2TYBQhXGHsCsRMMxsZ2pIT0Tg7YEuA\nGrQRxxh00qkyDrg93XC73fDxxx8lIQI4jgNPT09Ya+HVwwWPb9/kRizg+nDB649e49PPPsPT0yO+\n9Y1v4ic/+QRffvklvve97+GLLz7HmideXa84joFzZcvueU6M4YgznazH9cBxOXB5uMDHYLJY7TeA\nYLdjCQPQPPL6zJsvv8QYDh+eCCUmPvv0c2AFnp6e8M3vfBsP1wfMpyc8rRMeOXfRYZjnxFoLxziy\nKen5NsfULwBzYs6JH/zwh3Az3M5bJU/M88Tt6cTrywVffvkGYcAxRkZI1kxGHwOxggNwJnV7miVr\nzuyGZMBtnjhXdtMqB7ZlFyqcE09zIdgSXk7DtC+yacuiYE6nZ4ZU1lrlezmuSYM59DYAIx0cF1wv\nF8CAy/VaFaduhlevHtKUPQ6c5w3/2V/9q4jdCbIdL4YMhj3g4Q/9Ev6X//5v40/+yi/i+tG38dnT\nb+L1L/4M3K64nW9g5xMiHJ/77+A7v/AHgZiAH3g4Jl5h4OnNp3jz9gt88vQGv/D9n8Htzad4G1mo\ndFxe47vf+Q7cA09fOn7XA9+6DvzyH/9l+PUV/sb/8bfx9/7O/40/+8/+Cr77/T+JWAPnm0/w9u3E\nr/+jH2M6EOf5/zL3JrG2rul91+9tv241uz/dPbetulW3XI4dYzsJ2HLkAJEIAcEEMUEIIiEkmgES\nEp4AQbKY4AEEDAGMjBCZMQiKIqMYhGKiBNlO7LKd8vWtus1p99ndar/mbRm86xxbcbksYUXlNdp7\n7aW9dvO9z/c8/+6h309EMyN5z24c8UB0EwLY+4gPgeg9MZa7QRICg0QaSY6etm0Y3ISWGp/TwUsA\nWisiGS0llTFvxpEAZd7LRWvhXrfkh7EgxgxKEWMsi1xDKIItpchCMB06AGsMKQRiBiElwQekKnoO\nn0KZmbNAa41RGu88kNFKFmWnFDzVhhQ8gkPhIRNeKwoPF3vMiXRoh18PuK/NOeX1h7vRoUC+no3l\nQTvxeoyRooxbSmtS8uVnU2WkE5SlKiE6jDHU0uCCRyvF5CNKSkIIVHWFEZJ+6mmrCh8Sg480Sh3G\ntbKoNAJKSVI6RJ8JyTYFUkhA2V0olX7T/8R8WHiaMzEGUiy7HVM86GEOVS+lgtdoY0hSEl8zNFEQ\nsiQU1xVGGbQyGKuZtS1tVb+50RijqawphdXYgv8cxpWqMuVuf8B0Qopoqd6E0SIOCt7DeKhU+bsI\nMlmVsee7Pb5nxWB49ozt9S25v+Fbnz3nq0eP2PmR4wC2rcmDp799iT4+5+jRBXRzpNGoLEn9HWG/\nIynF6YN3OX0rM7meKLa0yzP8bo9VCWESQlVoLZA5sNlfc9SfcPdkzdOPP+b87Iy3Ls7IMvHxt36H\nrDt+4Af/BG/fWzGGAd/OWV/dwDTSXTzA9yOdUqjs6Y6W0B3x2RcvMHXNZrOmlpqsBUJZnj+9xMVE\nf/WSxcNTnlzegFT0biInWG32+JC4dv4wb4PVhpAKbqGkQGtFrSxScbiYBTlEtDEHhFgXY1FKRDcS\nMkw+IIUkpnSQFicUUBtTZveYaIREGnXIEcxIEVCyHCprFS5kQgj4yZW8gwzSB4Q6aBQSKKnegJdG\nCaxSKMThzsbvdgEcItikJPpSwF6zHLW2JCDkxDA4tpPn1e0NTVVRac3QO2TO1N2c1c0Nb791n3Hq\nebVe0diKm82W2lY4PzGfzfntT7/N6WyJPb3g5vaOKo58/Uvv8ve++W20Mex2Oxe91DAAACAASURB\nVGazlpwy4zQWwBaBpeBJUoBVhpQSe7cnA7aqCTnRtQ1t02KMBV0xuohSitOTE5RSSG3wEYRSaFMd\nAMXCs8SU0FVVsIdUnKRSgTbqDRgqpCQecIIYI947pnhgf1JGxkydC7gdYiKkUK6LlFCHoj668Q3o\nmmIAEbG2wg0TWhuE/O5TwB9aDIQQPwf8BeBVzvn7D8/9J8BfAq4OL/upnPPfPHztPwL+DQot/e/l\nnP+P7/R9vQGn4K3332M5q9mNG87PH3H77Anze/cQMSGswTYGMXtIGPdoNcOPG/xqzae/9ssslkse\nfigYtaGuOupuVgI5KsV4d4dbeUTO2AxvXRwxaxtUO4NXN3ztQcujr7xfLlwluWLGTFXMK8EqNlTU\n2PUldQOirkA4wvGCtL/lsyfP0M8+453332OR9gzXE48vzlicnBNC5uXzp/ypr5+jguAfPI388A9+\nP7/8q7/JWWOZHx1RK43panY+4dYropDskuLF50+xdcV2c8cew7TdstlPVPMljRH0Y+TzTz4h1zOO\nqo4+Dmy2I4vlEqkybj+Uu2sWhChRShIFhCgY8ghkFImYwfmElqq8Zkokmcq6cRfIKRJjKu0ooIQq\nzEzwCAExCWIqnYRRBZvoEQeZNIQUSDm/0UTEDDHB5D2zRUelLMWhFHHeM2XJbpre9BOTi8zaFjeN\npGSJ2xv+0r/8J/hv/sbHfG1RI6Pn1Try7vuPWV/d0hhLZwxfffw2Q0osGktQxwQEKyf46ocfYYzG\n2gptLFLpMopIRQiZJAVaKJTSUBlETLgMQ8wg1Rt8KBww45ihPbAF4wEfEIhD2KxkjBEEVNoUufZh\nxUwZBws2o9VhneCBOQoxlk3UUiGVwhpLjpEQC77io8fnREgRqSVWVKWj0kCIxJypbIPWihTDAXtK\nGKVo6obsSuf0RyoGwP8E/FfA//x7nsvAz+Scf+YfKRxfA/4V4GvAI+BvCSE+zL93/cvhYZtztnef\n80989AhlGqRpiPstzcmC/e013ekFup4z3K6Rbc32xSvmbz1k3K1oZyfc//LXqKsKUVuW7QVJC6bN\nHT71KKmxixPSfkdKmfmspT7s6Ms5M79/ga0lTTMvCLDIfHR/zqxp0ELQdR05TThvqdtTwjCR8Gyu\nntF2Le998D6by5f4/Y7b2zsUAltbNs+/hR/2jJNk+eF7vPjN3+JPf/0D6nmH8Y6TL7+HdD03zz/l\n/OKck9PH+NwjbMMH5w/4QK2YffD9XH3+CUeP3mZ69hmcnDGfXzDisVnwy7+Q+PDHfpRn3/wmTdvw\nySfP+Yl/9ifZ3N7xzW89Z9KW66sVn1yueP7ihhgcCy3Z+0TICiUjUgis1vgM292ASB6XBY2psGog\nSE0UGuEjj09aksyMUyYkDWQ6W9iHWVMzs6UFv96P7ENBwk0UtFZz3FScdDPuhom7wWGE4GTRIY3G\nasMQAxKFy+Wg1UajtUVri38NL5gaKxTPneQnfuKC1gi+LCsygtYYvAFQzGxVaE4pCKEc1IhAS8EU\nEolIipnJx0OUYpnzFQc6kQxaE2KiMpJTW2OlQMjyWill2aIUf1e0JIXA6AIyp5QIh7EjhlykClIQ\nU8THRIjpDdMQU8EevPO8VgjGA64AkGJEaoUPnkpbXAgFq0gF3I2h0OQxlf+l874UE6VIORK9P5Be\nBRgmRuqu5na1+qMVg5zz3xZCvPsdvvSdBpB/EfhrOWcPfCaE+AT4UeDv/r5isL+ld7e8U11g5jVh\nvCYJGFc7ZkcPGTcrop/oFh0oxfLslBglFZpZTmRtcVkxRonf3mJqhd/dopf34VD9VZzo2gXbm5cM\nw552PmdmKrLUKN3gNyvu7m4wWnFqE7OjJbvbl+R2gakM+9sbbDJUdc243nNydoQ0muQF9x484PrF\nF7z1/rtUdc2w2aN1jTltaI3ld37r1zBuS57eZnu15cN3HqC1REbopMXoDrKjao7wRqK05rNXK77v\nKxXKVEhR8ennX/B9b3+NHDzn58esVzf88J/7p9lvnoMQvP2lr/Lgg6/gx8i8a/jxH/9TDDfPUF9/\nj8FvaWb3eHLb89knn/KtLy759OUdc6V5uOw4nneMIbNOGaU1C62pBHSNobKaoe8xKjOzmkYXDGu2\naLFVw27nud1NDAFQFUMSvJUSY/C4UDKs9j6wi/CF1qTZ64xGyQshEbpgJEooKqvQRmGUxihByJmY\nE1praqmo2gorE0lrHqlIdBmXCx3Xx0DCEKYRFwWjC1TWghQEH0BJYoosqopaV1SNxWgDIqG1REuB\nd46mqgjRE3xACYXziU0/ECX03qFQjH5k8h6fElpXSKkYXzMELkAGHxxZFCGdPBwtgcRUmhg93rs3\nxyb4wDQ5hBR0bUs8FAIlJSGmN4t4D1AAQkBwnrZpGN3IOEzMFnOmaaSpa/zk3ojb2rah3+2BiDWW\nfnKYAJth+qMVg+/y+HeFEP8a8MvAf5BzXgEP/5GD/5TSIfy+h3nwgA/DD6AXHWG/wSzvo0jo5QXT\n+hlaWezRKcN2RfYJKTTGOGgtdzfPC4UXJciAPLmPHwI+CdL6CjNboExLXS1JUTE/vsdicQRoJrdD\n6oq6m2OOj3nwtR9i3G+Z+lumzTXCdixPH5CGFRfvfYWgGoTzLL/8FjFl/LAnKYX0E2dKYpoapgnP\nSF03CN2iz464/Px3OH38IaK7oIobxHGHjBF5fIJJmuxX6PoRcbih7S5QUmH9xM03f5nZ8hwpI2eP\nHkLec/fiM+h+gMl58s4xjYlHb71Ne3QfkeCOK3JWbHZrpK2R7QwGRZCSr3z4Pl//+kdM+x37/Z6b\n2y1Pnz4Dn8jRE4aRYYyMAXYBXqwmYGJImdvBsRknhixxUjEFR5I7ktGkrCg34B0iOkIsCcXSGIyx\ndKZi2VRUHkKOxJzwIRKcQ4Y9ulKkULQdPhwCWI0ixsTMViitSFMELXBR4X1PazTaGIwwaC1R2mNp\nySqQtcZPA3VlwSekKqBpyBkRCw6TFYzDSFYKoyTTNGKsZbV3dLYqLIBW+Dwx9RNWWWpTEQ7AoxIS\npRRaj7zWP1RKE0JkdA6jLTkopFGYxhTwL2V2ux0CMMYSQkRrxWzesFhKnHMopRjTWChBpYhuKl0v\niRACCE0/7NFaMXiHQTFvWoZ+wBiDzNB2DcF5vHO4yTGOA/NZxzRNpBC4vb3FKPOPpRj8LPCXDx//\nZ8B/Afybf8BrvyNqoRP0+1tsu6R3GXv7kuN3voxWFhcW3N3doaZrbK0gJCqbyCkT/ETo1+ijc6bL\nZ0yra47PHiCbChUU/u6OanFKTBMxAyGSDnE+4+6GED1aTYg6kL3EeU/KmpwlQlfkBP12dbArK/y0\nJ417YizUnHcjzbxjdfkc2S6QMTO9ekGWjnR8gYged3vFxfk9js7uMa6fs98PLOcLgl+RfGRmBauX\nV+TmFKk17sUX5PMHBCIxG67u9rD6hPb8bb74xjdoTu4T+gli5jd+9Zf4YgN/8Z/7SbbrnuB36GpB\n9BOiNlhlCWGP3+7wfiJs95jZcUlKFpKj5RGL2YxpHPGTY70b+LWna/6vT9d8sRqKCEiWO5ShRmmB\n0BktDaYyGAFaS4zR5BhJUZLRRdiVEjJltBJERpLzOCGIMaGUoZYC0VaEIIghYKxB5kxnK+KhBVay\noPwiS2RtkEZDv+do3jBkydjvmS0NPkV8PzJqSaUl0zRgpWIYyjo0ETIyJ3yCTKJShqkfaOqOEDNW\naoQpY8+9hSVOHh89Rham6/h4SXATk3d01pY7c4yknImuMApKSQZZPAVaV0BCKUjesx1HEhllVNEe\nxMgwDOSc8V4wTQUf8aEAt1VVE2LEuYnK1rgYidFjlUGksgtDC0UIkXQoSlVVIcgE78kH9ZQypci2\nTYN3vjAQTYMfJ3z8x6BAzDm/ev2xEOJ/AP73w6fPgMe/56VvHZ77fY+/8r/9n7jtHVl8xp9874wf\n/6GvYm3LfhpI45b54hjZdbjNFTNVE+Yz8JJ5u2Q/DNjjR+R+IHvPTErM8T18pdgOW9qze4Tdhqnf\nE9xEymCqDi0qhFL4aWKSkdzVGKAyhojF0hBcRPqelCbu9j3t7AjTtqQQqdoW3bWEzS2m6jBKIaqa\n5uE7BNdjFyeEcSBnx0Ja+rtLQr+Dowe8Wm1prKVrZuhasDx/RJKJrCVSHzFcfsa7H/0Q1XzGr/zq\nb/DDP/aTXH7y69T3H/Pqs2+zuP+Qqmr54Gs/xAdVizIV+75nMVviQ4AckFnjh4FMwClBWO/ZhsD0\n/CnUHaenF/gYiCGjtCIq6BYt/+T3tfyZL9/jk6st33ix4oubntvtSEQRpCZkiQsedVAABgdeHWzV\nQqK0whz8BVOOxCRoTV3EMQc9hDaiAJZCEQREqVDaEoIjx8h8NkdLXdKelEBnQR9GRIaumpFF5KLS\n+KqmaVuGzQY5P2G72zImOOo6Yk5YZdiOA5WxpCnSj45Z10BMWK0xShLTBFIwjnuqumXcT4wxkIXA\nGEVwE+uDEKi11UEHJfCTx4WINhqtS0sec0BkWYRCKuGCx5oKrTXBe5SA3WZNiKFQmlJT1xbnXQH7\nUiJ4z9D3CK1pmxofPWGaigiMTMiRLDIpeKy1RUsRAuvtlspaurah3/ekULAGJSTWGILzfPE7H3Pz\n6mVRWEr5nY7iH60YCCEe5JxfHD79l4BvHD7+68D/KoT4Gcp48GXg//1O3+Nf/ws/BnlkuLqlO54x\n7CZGe0d49RmLd76OnM8J6yuk1Hz867/KV/78X0TZIpVFGowIrMeRyjS8/O3fQJ2/QueyqmvzrX8I\n7RHDsMVWNXFcIbJDSI2pLJaIX71kch1icQEuI5sF0Qu8v0UYQ7QVMmpStvR9T//5bzO79xh9eoau\nO9rjhmnYoQEnZxiZsF2HNoa7J9/kF3/pV/iRH/6T2PP30EDPxOe//vf46p/750l1R7//Fk13is2J\naBv2k8TYiBCaH/mRP02/XXH0/vdhnWd5dsF0tWI7a5ifv4WNkudPPqNta9Y+gZLsxh4pepLWCJ/R\nzMnNDBkCQg74ybG9vsPH8h7JjaArVExMU8/W73lcz/mhjy7o3Zb1zTXXz5/z5HbNRte4kw94Js9J\nFNVk8B4hy13ptW5fxMjZfIH3/uA7MAclYREd6YNZppKWrEvrHg9uzM1uizKKxlRM2x4hJUZrqspA\njviccX5iHAdIAVTR4z++uIcUkil6Xlxe0rVtGTelYEyZR+cnbPsB5ya6rqVSkka37PxIN+uotEbM\nGupxoNEGpGKhZ4XiGyei5A0IlypF3VUooVjvduyHka5tsVogtGDyCY0huYiPnrquUVKzH1YoKVge\nLTFS4p3n+OQM7x3JJJwfSaSi+DwwF04JBu9wo+d4vqCrK+5ubjk9PmG/21NXFQ+6Bt+PhGlECxhz\nQmeB845+7Lk4O+WxfIfz+w+Yz1ta3fCbv/b3/+Bz/YcpEIUQfw34CeAMuAT+Y+DPAj9IGQE+Bf6t\nnPPl4fU/RaEWA/Dv55x/4Tt8z/x3/pefLuosLUnrNYgJKzQ+SSY3UlcS7wMSSYwZWVforiM6X/IM\npgE7riAXTrx68CWS74kIwt017YNH1O0RQlucC/hpj65m5f38HvyItg2BTEoWVXWoSiEwODchlMXY\niuBGpNS4YYPAYaUAoYp4jITUhphgGPaoYU/IgbadYapjbi+fYboFdVORmgYx9Wz3a2bNCcpWhDAw\nxcTqs084e/fLiDixvr6iO7+HzBLTdnhhkEKxffo5upJMLrIdd7R2UdSKRjANI4qDas4HRu/wo0MZ\nXQpbCNRNS/C+cGOiiGf6YU/TLbBNDUIy7nq6pgHhCW7i+tU1w901bQo4qdi2D7gUp7h6Tnd8VNRw\nKeFCZHKecSxy3RgjMYTSEodQlIq5RKAZpVBSkTJYa0ghFmGRKnRbdL54E4pEsXQb0whCMOtaRCxK\nwJgiWQpmtmKcJrQ1KKWwxiByZhwn5rMZq826qBaJ/O6yalmKitYYqYu/wXvG5FFaE0I6KPgyRll8\n8lilisRbKrQ2bIce76YS3ydKmz9rakZf2nGNJMSAEKIUshDQB/FXCqFoKaqqFEElWc7mjOPIfhiY\n1w1KSAbvSDkTfAEa67rBOQchMowjpjKknJl1NUob8JHJTaWQ5YyWgtoabF3hd3uigJ/72f/y/78C\nMef8r36Hp3/uu7z+p4Gf/sO+b7EiR7JLpG6OcBW77BFTaadjBq0txImmm5Palv00UnWnKCuRURL7\nBWwukWksM32MyCTANhgMzg0EF9D1Emu7N9t+le7IYsXm5jnYOd3RMTFFokukFNDKInzExxFZKXLM\npf1Sc7JSZd6Vimm3RcZE9hPS1IRaY7s5qoLt1XOahw9YPX+GtBfUIdMniVUz+mmHEbC92yHjjou3\nv8Tm1Qtsu8BnxeZ2hR48k7UkP6J1i7Fw/WqPUBIlDDebG7TShCnjgmPyjkpKkpJv/A0mRVolDwYt\nqGqL0gqXE4RAUzdUShODYxq2iO2W7fWID57r9RpNBhQ7IcmyIaLQIjFOE7u7NbW1hT4LkTAWVWZK\nRXOvtGKaJqAUgbZu2A97fIwEH2jrhrEfUFpijcYFX+bxGBnGHqEt0XtSitw/O+PlzWWRVkvD8XLG\nfr9nco6Nc0ityYeW3Jqal5dXzNuWcRwYhv3rBcZIUYrQFEZkgqN2zujL4RGVRrtSBAIJnzxVZdm7\nkXnb4J0jhERMESVkYTtmM2IICCEJwTP05fdDCoTVxV8CaGsKgDo4jNV0XemewkFFmcn0ff8mpXk9\n7pnGCWMM87ZDqRqpBHNbM1nDbhioJIgEi1mL9yNjHJjpitt+X7qjg5x6sxtht+HR2Tku/TF1Laa0\nw+gF0WosgpASlWlQZoEjY8M1UtSEKRPCRNqNWBex7UWpgELA/IgpeCq1pQLEyQWTy1Qi4Y1GJQCD\nVGWmQyqkLXZa2Z3x8W98zuUnf5s/80/9KEcP3yfkUOS4cURIjZ9GZARV18hsmMaAriRWG1KC5cV9\npv0GF0eEn6hrQ86eGCzV8hHbJ58xu3iLfb/m+nIF0uFHj9IVkT0aRZ0bnq0ukabl5e0NCkcMpTUd\nxi1WVNxsv4U1NZW0xf1XGwiOoDVNY1mIiihqfI7Yqi2z6cGE1FQV3m3ZrG/Y70ZscFTWkIQDbbma\nHNc3N5xXhrvJY3TDrJ7T1ccM44hPiZgFG33CZSiYQ9tarKwYnWe33x8cdpGqrqmMOfDdiRgjxhi8\nc7x48QJtDYv5jO2wZz8OkBNdXTP2iX4cQUBTV7RtSz8WwLapG65vb6iahnEcOTmZk4Xk6uaW09Nj\n+mGg3+x459FDpFJ88q1PaeYzhnGk6zrqpmO922OULgEuUmIqi+gq1rsNImcm52mbiuN2htCaM21Y\n7TdYJF4blNJv3KV105Fi5vbmFqM1Vkq6ukFkwbPVLVppRMqYxnK6WKKFYL3ZkHLiZLkge0/sR5qm\n4bbfFmqxqkkhYCrLcTuDlFi7gf1+D4BViv008PTyBY/uP+SsmzGlSBKw3q05r2ccLxZ8+uo5tbZ0\nbcsUJoZ9z4OLe+zGPa+ur7j3+DsSe28e3zOj0i/+zL9DbWrkfEnWVfHPuwEXB2bH98locp7QyjD1\ne4TUUFm0c0RdIUVCSYGUlu31c1Qa8Bi680eluoeIqevifhevjSUSoRQ5R6RUPLu84W/8wi/y7v0j\n/oU//2fpXfEokg6KPG2I7pA5EF2hxbJAWkvKkX6z5frlM9K4ozk+JwiJyoKUxBv76ugmNqsVi8WC\nKShOFhXD6PAUO9roHI0UuBDJylDlIjZpFzXBWOK45dkXK770/e/TKksWmuxdUZ4hGNwOIxQWhe5m\nJFWC1Xw/kP3Efr+jkkUYlHJktdlxvV7zcF6hyYzDSN3MmELGx8g0FXdeyJ4pKaKd0esT5PE9bveO\n7RQ5PjkpLX2KxHTwPqRAP/Q4H5icJ6XEOI5UVVV4cOcIKRUWImec86VYSFnGHQXGaKZxOJh0JFVV\nsdttefzgPvtpZOxHZIYpBeZdR4oJYTTZebTRDONQZLk+0NlCo603O3RVMex3NFVdvBLJU7cNMsKY\nAvNujgiBKfgS5nLoZJTRaCFRRpHDa7twIuaMTxGrDU1VMUV/+D9W+BCYKCNBLSQagbIGoRXrzQZE\npq5qQs40xiIz3G5XGK2p64bdbosbJo7m8+La7QdsVVEpxeAmVIIxFL1CVVtmbUsms7q7oWkaRM5s\n9z2trRjcBBLun5ySg2c39vzVv/IHjwnfs2Lwd37+PyUMAyomxGKJMC1+e8fkBTM1YI4elDuOlChj\nkd7hRURISw4Rpcvz2XkwhhRGCIewCa0Rpi7pLkIf/Oqh+OMP3nlx2PrbbzbEfk3V1dh2werVK/zQ\nU3UzXMpIWQ6+G8Yyz+byzwVZLME5krICXebn6+sbTHJFFZYVs7piN0WsFbgoSg7DgbpbHJ+grEEb\nw+b2FiUVs1rzbLXmwfwYM6+5ub3i1Ys1P/ijP4CfUqGHkifHVJxoLhC8IyZPnkaSdzx58pT58REP\nLs548uQ5fnKcnB+zXq2Z+pHeeR4sagIaFxPD6CAHYpQMkyMg8aplL1rG6gjRHaGMoWpbjLWUvIXi\nyFSiOBl7N+FCEd/EEOiHAe89Qhb7dHIBoRVNXZFiwoVAXVVIBLvdjqap6ZoKrSTb/UCIEXkw5+iY\nGGNivV7z3jvvsN1tCg4QPGOO+PWO2fES5x1KKryPkCP7vqft5mit2O12dG2ND5GT2Yzb3Raryzy9\n3e4wlSnzf0okWQrqvOkYvQMpcG6CXPwjRmucL5kCVhXX5+RdSet6vcsCwIWiDYiewbvyfkoVD0LM\nDMNAEJFF0zKrG6YQSGQ0RX9QjF+ZedfRuwmjNavVmu1uy3K+AJGZNS3TMKIrjRElH6EfJza7HXVV\n4f1UfCmqGLV+/r/7b//4uRa9j8h2RtjeIUbHb/3Kb/LwSPLgw+/HpZphv6dZFq9BjoGkFDhIsUc1\nLT4ndAJhatLkUNIQRCxS1uCRwiGoSxKMTAhpYHIoW1DocRy4/OLb5CQ5efCIT58+x/hn7PqhvN/w\nBDtf8ODRY9JhzZA+OOvcVJx8hsx+mvCDwxqN0hI/7cjS8I1PX3H/bMny7JSLi5aKTHaBJDIx+eLd\nj55WanJbcXH8LnnwxOi5X9WIWByRJ92Sxbsd42ZFXdWgJC4JJJE8jMiUif0ekzOjc4zO8+R6y0dn\np/gYePDoLabdmqoS7JXg4Vv3efHiFde7CauLacYfcgJ6F7nR99H3v4SsG3zM1FqiVSYCPmfi5A6m\nqUNyj3DEEBiGkZAKs6EFNNZCTiQfWDQNsSnW89V2w/2TU1pq+n4oklqZcW7C9SPKSEzT0NkGkRMv\nb684Pznh4dkZOpWgj7NZx+QC3351TdM2iMpyvdnwzvkF+31Pu2ixQrJabxE5MvYelyKdUsy05Wa1\nYecnjBy4P7/g4qjjdj+y6ydOlh1WmCJd9wHnPV3bkm3GTwUMjSEgkOzGkZh6zDRQGUWlNEoqQozk\nLBiChyFS1zWNKerHkGKJz8uZ05MThnHkbrPiZrPm/Oik5G6MIzInZm2LD4EQE37yTPuBRdMSD+E8\ns3lH21UMuy0xCa6ur2m7GT5Ejo+PyJNnuWh58fwFX3rnXfpp+K5n8nvWGfzSz/2HaHNK6FdEVfPp\n0xcc71ecvvcWzeIeDkEKPUrXyKZBZknWsYB5gMTgSUiliXFCiUxWDUoKjIyk0ZOlKtZbqUlIYgyM\nQ19CMqYJHycEhbeVVUWYJoQfkboh5sjt1SXTbkvbNJj5EVFIpPc0VQE4P3v+nMYabjd7KiFZnHR0\n9QKpy6gws5mnL16x6BpOLi5wGUIIxXaq1CHUNKIx2LYhWl3irGIkxYiPkRwDwXvqqmIcehpjqWZF\nhiriwXrkekIYQVq0FWyurlltdhzNNSTNq6tLVncbqkZSyQrbzAnJweTYTIkJTS/nPBHnNPfeKilR\nosyqAknMiZBK8lCIxXRT/PdF0JNiQArFME2InNFGI3Jmtb4jKl24cVmUdVVdc3e3RpGp6gptFDkm\nalvjc2az3WAErPdbjo5PqLUpnV2MuGlikzwn1Zzj0yM+/uxbfPDgLW53W46bOVklru5WTLuRXGuM\nMpzPZ+ymMl4c3N8YbRiGQKMU3cwQlGImJT56pjEyBYeqK0SW3GzW1FbTGkuIgvWwpbU1QmmUApkj\nyWd88EWgVDUsZjPWfiq5BCkTXjs5DwlXvRuYnEMjqeqmZA7Ict9Kk+N6u2UaRx6enyFipqotQcB+\nt+Wm39FVLfePjrm8fMnyeIlIUBuLrS23N7d0s4679R3Hx0dUWfL06gWtrfn82RP+1t/463/8xoT/\n+2d/CmMbpBX4fkKISJoiIeyhnbO63vD43fdIUiF0QdCVEARVIspwHlG1+GFEaI1UB024qggpEaeR\nOI7E6EFpgpsI3hNCQCmDEpqMJGaPDxMkweg9Wig6WzGEgRgC1tZMfdGgx0NackiJtq6xxrIeJuZt\nQ9NUTDFgDpui6qph12/4+//wUxazY776wUOak6NDjs8hzJRyey1xfcVko7Q5GGcOacmi5PdFXxyY\nOQVAoYXAk1A5lKwCXYC74Abcbs8nn3zCk6eXfPXxMTe9RuKxKrF3mU4V49I2amJ1xIoZG9lgZwu6\ntsPoQqsVvQAIqfAh4EPk9U4Bqw1Sq4ORJ7Hb7okpUlt7kB4f2B1hCsJOIsaArSrqqmEc9mWLs9SM\nzhULcSpApK1r+n5fJNraYIxmt+vLKBYiMkbqecPddkNKkmXXIoSkaSyruw1ZFCu2VaocpJC4W21w\nk6OuNMIohLD0buT+fIbUhn0/kmKkthWTm0hKMG/b8rcPge0wsJh3dEpxu93TdS2jLxSfVYCQJCmY\nvKNtmiKb9gnvAhOR5By1LvjClMLBICVLboEy7HYbFm1HSol+cgglCqUafPbAAwAAIABJREFUEnVl\nsW2DGyeqLPCi5FdM+z1H8yW3uwJQ1pVGVyX2T6XEfuipjQUJcQp4Ij//V3/2j9+YEKZA1Si8kEgd\niAHkbEZFh9vfcHR2xN3LJ8yPz9Ay45uOJA1WtWSpiJVERkddWaYwgaogBHbbK4IL3F1fsTw5Ztis\nCINjPzpubzegFPN5w/lihg8BFyLtbE5VV9gsWN3c8rIfOD894WY/0q9ecr7oqNqG2/WEi5mjWbn4\nkszMaoMk4cOEshZjiqPOC0G9POWf+Ylznj99yXa7w1qFsDVojVK6pP1IWaStWZKiJ/kSviGkQhlT\nsAGrD9SmJHmNzAmUQMcSEuJHx269IYSeqR/5/Pk1DxcNz9oFxliOW0HOkv3oGULilWu5MyeMsyWm\n6uhmDSciFbo0Ftedz5nB54LNxIQ/eOtjTggpQUsiiXHfI4Sg7ZpyIe93pFx+n5wy22GF1gZ5UB82\ntiITUUYz7HsyxSBUa42sSpvthhFzUN9pZQoWIQptqlNmihn2E+eLU7bbHT4nZrZmtdqwGQZEhnfm\n91n1W6aQWHY1690WgcAc7vILW3N+NEfHxF0/spzPuNusiN5ztFyABD8NLGczYq6YzTo22y3Pbu6I\n+XdThLrljBQjzgVmdYPq5kyxYCZJahCw6BqkqBhGz7GdM04O5zyKgm9ZrUr3lRP73RZlDEezI+Ry\nyeQcRpQciT7siAmskqScMNpws12z73vmdUNXtQzTQNaawXtm7Zy77Ro/TXzw+DEvX736rmfye1YM\n6sWcab3GzBYEHxGNJfuRMCVErNhtrtl6xfFsj7Iz0mZNOjlnN2zQpsYoQU+iTpmYAvurO7Z3O1ZX\nG45OOo6Oj9heXTP2A7ayxfhhW+p2xtuP76EUrFcbXl0+Q4+RRw/v0aKZRk/ddkRpuH9keSUU18PI\nxULxta+8h06C3TTivcNNI01tcJNjGjJ1neFIYXVFTIGYBfsR5mfn/IOPP+fmdsVHX/vKwUpdvBZK\nlsBNpEAqi0i/a7FNB4/769iuqjJ4BLhAHCeGuzXXn3+GmLV8+9kNj+YtoqkwWnG1WvHle2ds+g2D\nKxfa1im+4U6wp+/SLZccGUUWobACATy+vLcp6r9a2SJfztA0TQnlyhyWuiRi8IfQ0dLeK6CtLTEm\nVv0ehOT+vXtkKbi+uUXXNXs3ldyimOhmc3w/oEwiUopRDIFNPxSBTwhsdztOT0+pjOBsPudus+Ko\nm7PNjjxMRCLHtuPJ8xe8+/Yj2tmMfthQtRVy3BFSZH1zy9nJkoBkXrWcLma8urtB9Bt2EY7rGX4M\nKFNjDOw2K6KUTD5wvd1jKSEnQhsu7t8jTp62NkyTY7PZII3GHbIMjxcL6qamsjU7N7Lerah2jrkt\nxeD6do3WCnlYtGKjYchwMl8ijaIfB2ZNQw6e9bana1rOlg2r/Q6rBE4KImC1YsiOeddyerQkkpnG\nge1+i4iZetaihYQQ+ej9L/HZiyfYxn7XM/k9GxP+n5//y8TdSFKZqpkRw2FBRmXw2x3by+c0bcvH\n3/yCD750n37Vc+9rH9Hailw1jJPj7vaO8a7Qdq8uX/DFk0vaSnN2dszJyTHX6xUvbrYsq4qL8xOk\n0ex3PVopQvTc3K7I0nJ0fELX1eWHyxkjwGpJEqoYfEIJ+8hSEGM5PFJprK3RB7NLOCjs6sqA0OQ0\nISIIo7F1S10ZblcbyIl2Nn+94b143N+Ek5ZEIKnkIRIbNOLNQtHgigMt9nuic7x6fsmLzZpWSbQy\nhKnHikREshsnKq24GwIOyzY1fBFnqOU5praoLA7bnCRWSUxd471H5Yw0urj/KOh0Ofup6OtTKpLw\nFMtaPAQpRbSWWKOw1jCMjugjSmp2+x1CFeqxqWvcFHB+orYWYiIIaKoKLRX77RZU6ZaIgQen59zu\nVogk0E3Fq6fPObr3gO3mhkcPHjLuekxd0W93CGuRMTJrG/bbHUkJTpqWz66uUcrQVZausvgcmUIA\nIQjDyOnZGf20Zxh6lvMllam526yxooSu9jEgUsZaxWbX09R1sT7nSKs1o4tMIVHpomzStSX6QJgC\nTVOj6jL2qZjwIeN9KB1FY1nttoyjw40Tnsx81tFoU2LPfenAeu9Ytg3jNKCMZbPdvukkGlvR78s4\npY0uEe4HZaZGsNntyWQabUucf8z8j//9f/3Hb0yYXMAoiwgFLwjjhNYaWdVIlTh6/D7D5ROWRw11\nZbllw9XTJ8yUJDYLxnEgDB5qxTT1GCk5PVuQk2A7RuY+0JiG+yeCy5s7pqeBB+enzGcdV6sV3/z0\nOeMUeXx+gpagZWmByYkYMwOxZCS4kaeXd/SDx0jBvFaMKbDajYisePvBBSenR9RGkw4yXKFASosw\nRVfvnMPHhK0PphcpyC4QCEhpDtr9giCV4pxQouwCiCmiXMC7id31KxCZ0YEWib13XBzNGfqeFCYG\n53G2InjHmARjsqxzxSdDgzh6hKws2lZkipJOH3YrBMD3e9xU7LTKF1uuVOUCl7KkCZdHQT1e71GQ\nBxdjZTVZSIb9hEue2WzGsB9p2hpHJg4R7yaMUhhTQ8hko2i0JMfIfnRgFLXWTN7hBbjkEcGxrJe8\n6ndUXcPNesNbJ6domZlEZNxsmFWGMSTaWcfcaj55vuVkseBmGLg4WeJc4Hq1wpycFwejsaScODpe\n0iDpk2E/OirjWa/WLOYzJleA3tZI2qpBypJdOHjPfhjIIqMp+QtCakJOxBAIUhC8ozY1CAjjhGnq\nkh15ULIPfiDGCbLAVsVQJEJgHAdMnUGL4jWRAmsrVvs9+jBanZ/MAcE0OpTSLJcLcoZpHHDDxOQ9\np6dHWKOprGXqRwY34Xykberveia/d1HpOZPzDlk19NseqRomdnS5RndLsvfsXGSfYXO9IibJs+tb\n3LDjq2+/RVUvkc7jXWKYdkx9j3OBi7MjVN3gvMNqyxQromh4tdugW4Odevr1ng/u3+M3n97y/HrN\n8VFL11qUVaSQEUGWCKwpY0TFh2+/xWac+Lvffs5vfONjPjqb82M/8nW2rnBsKUSm5EBIfEyoGKnb\njrq2+MkVQ4r3GG3ItiD0vt/hcsaIRDUvij6nR2Qs8VlhGIh+Tw7gtyu8d2x3IwEB2bGcn3BWa/os\nIUkGF5B2Xi7aqiJpGLzkk41j186pYyL3Ayl4pIZKK8axjAW6qjDWMF8uD8nLpUvT+rDj6ZDUHA9x\nXmXRiaSyBS8hxrLHICUqDfud4269RslIq2uWTcvdIYZdizIC9cFhlUZZCXju/IaH846cSieUZUWa\nIttdJqYBKyW91Hx0cUROin7vmRyczmrwAlNnjuY1u7sbvnr/Ids4setXbEfF+WzBg+UcR6DTFTf7\nDceLOUTB5XZNN7M8XJ4zO2m4fO64vL7luK2xtqUfI1s8UxgQQjMNIyEKKmt4cH6GlJLNfsveOXxS\nnDY1wWk+v77CCs29o2PCNKKsBUroyqKy7HY7Rim5tzxidkhYatqGfr1FomA5hzGwXq/QRiPbilev\nNqg0MV+0nJ0cMw6eq9Ud52cn7FJkuZzTdE2JU58cg5+wTUWlDTtfYu++2+N7Nib8wn/+b/9/zL1Z\nrx1Zduf323NEnHPuzEsyh6qsUlWqSlBbliw03DZgP/rbGQb8kWzYMhpCN9BuqdAaqnImk+QdzhDD\nHv2w4t70g5V+sBtZ8ZJMMi/JvCf22mv913+g213SSuVUpQqPhxPeC3318f0j2q222U2hPVjdMZ4W\n+sHRiuJuv+f26prHcSanyuV2Q7PCy7cGVKvsj0eWrLg822C8MB0Px8OqXdd8eBhp2nBxseV8e/Z8\nAHxw6Jb45rt3vHn/yO3NJZ9//nM+7Cf+7b//Z37/7Vv+5PUZ//ov/4xuGEipQS1yUwa/Wn0/BWGs\nycxKU2pCK4VVsBQlTj99hzZaisa0kE570unAcZrpXEfKCasNi2qMx5nHD3ecXWz54v0DZ33AuY5p\nTDQDCkWKhbFU/ukR3rsrQn9BRjYExmhKSdQcSfPMdndGGHpBo71nGPo1D6KK7VitWCWod2ti2bXE\nRMlJSEJWc384ACL/3XS9WH2lgtWO42lcU50SORWC9zSl6JwAjBZHQXEYRwZjGLYd45Jwqq3mKWJj\n/uFxj26a892Ad4b9tNCrjrvxATs4XnQDd6eJszBQqMQcsdrjOo+zcgj3y8iLzZaqDQHF3WEEVdDO\noWvhcT/y6c0VX98/cBhHdrsd58MGZ8Epy5gXjuOMM1ayLGrDWYfxms46UizMKZNKxXpNZwwawxRn\nFApjDTknGhprDMYo6URTIuUqwGJrdN7RW8PhtFBao/eWzhvuT0dqKvTBshkG9scTXejQtXCcIsYo\nrIEQOkrJxGVBvMKln+s7x//8P/2Pf3xjwv44MsdMTYrDdCQM5xwe78E4XFPobiBYxZwWam6UYoCF\nzgeoGqUym16xLHvIhcMpchxPnO96nHMoZwleWtoPDweWVLi5OsM5gw+Bmgy1KV68GISRqBVYjeu8\nUFPHiQxsLi657c+I88y3X37HMAQ+uQ6odslnH92gQeysmhIMQD211HVdra1dhhJatPjxNpQVq2ya\nmIe2cSTnhenhnu+//obL6wtiVnhTqNow5gI50nDcz5VN0dycX7LERQhc1lKrrP/GpfF+KexrwLoe\nay0ti4RbWw3Ko7XB+4FaRTjkg9xcp3HCeSeOvEZMNHJjtdUS/626ZjammmnRMPiA9+JrmHNlmhPL\nNNJ1HednHeO8sMxtVakqvLEcT5PoGKy4EllT2fU9hcrlVpSgeV5oJpBzZrc9Y+M13z8eUbPGB1A2\nczPccFhmCopXVxccY+bth3tuthcsJAblOU4LF51HtZ6HceFsCCwVVMsMoed+OhCsxwVLNYrbm3Ou\n0haaYi6JeaoMthJrxaDJVdKXUlmYlwUzGVLfrZkGEILDG+mAjFHUnHg4jnRrB1afUpxKxWCpVXNK\nAkbfhsD94cSw61Etc5wSpTb240Swgd2ZZ38c+e7NO/q+g1pZUqLvLHNKaOuxRgGG0HVYbTgcDjjv\nmZb5R8/kT1YMChsm10EcOSZI40K/2Yh7LJqxRc5MIC6NsTackiSZaVFk2/A+sNld8ocv3vLt3cRn\nr8+5PutpqnEYj9wfNb33dJ3js5+/ImhH33tiXvjq99/x/nHk5atLPnr9mq4fULpS50iZTuSSePdw\n4s39iWWc+bM/+YTPP/8Z+9PE4/fv+LCfRDjUe4xeI1Ga5AOqVtArb0CtLXepGd30iglqrFVUa3Et\nsWAwx5G6/54vvn3P9eUAKlCmkcuLC/aPD2S/4zguLA/37K6u+ejFObkoWnN43RhjpKjKvCSW3Hic\nImPx7MKWbw970rSnKAfOCiZg3EoOEqPu1lhlxRLhpZKkG0mcmn6WxIpjkRC5yvp1yhmCtmhViElm\n0xQXfNejjGKeZs43W9T5BWOciPNMipWhG8itMeeK8YY+eBbg0gfmceawLKRauTkfiDnjvSXpxicv\nXvAP33wFfkPeH7i8CHxyseOwjHTWEGvj9dUV284zFYMzjXF/wtOYUgWVmRfNYUlcasNxWTjlzGa7\npSiN8gaTGme7Had5oSwS/HtaJs42A8dS2fYdNVcmGrbzGDTWGkwTU9JcxUNRK4MOoocZ+o5pWWhK\nsRl6TFX0PjDFkaIa55sNAGMu9JsBtOLm8pJhG8mlYFVPrywPy8Rxmbm4uqSVwpwl+GY7dDweTozT\nyOVuw/3dA9Z7Hu7v2Qw9Z+dn/OHLL3/0TP5kxWCeRpb5hG2F4/FAKne021eEGrFWwXGkXe747t0d\n3+4bF1tprc9DYDJwfr6l5cBu2/HaaIZNhwsWrSr/8Q/3/O//+I5f3pzz159/wquzHSVnlhxx3YbN\n7Q1f3P+BN2/v2HqPf6Xp+gE6xeF45P4wsdtt+cWvf8X7/Uh6+MDbb77FWc/28opf+A0mzgTvKVhM\nlai052CRklBqRdqVJB51wUOTuLJyfOBv/vbf8SeXHa9//VsO+/e8efM9X331lqtwzfbVS7754hs+\n9VsI59TjI8F4vhwjfngks6HmyHGZCEiqUqYJdjBHjilQt7f0w5abIfHuzVdoN6BUj1KG1oRSPJ4k\noKQ1sN6KB6CSiDJtFMF7Ce2cZ5x34re3gpo8BXcUIUEZ73Cmgc4E5+idZYqR704juTbO+0AHbIeB\njOKs6ziMB05L5tx7HkpG5cyHY8Roy7DdcowT4zKiFXSdp6+ZTd+zsY6PhisYKl8dHum9R6WGPneo\nOOOsYj8d2TjPtDRudmdsho5truQCTYs126YfUNOJm4tbvn8YaSlSTg7lHTkvBNuwyjNrxd0o/gxX\n51uO00ROCe8dm6Gn5EpcElrDduNZTiOD93TGsOSEBrqu4/ryAmsapjbG48IyF1CG4EGv8m3rHLlE\nHh8m3sTE2aanc4ZxmfjycWRz3vPR9SVWa+aYMM1jtZItmVIEYzidJhmvaZyf7xj6gbu7e7bb7Y+e\nyZ+sGNzf7Tn/+AV5nLk8v2ReImed4e5YOMwKawPHOXOxC/z+/Vv+17878epsy+3ljvPO41zF68h2\nt+HV7QUxTeRl4m4/kavlv/3Nz3h1teX1yxuR0WqF9x4XDL+8PacvH/GH7x95tx/ZbCeC78hVMezO\nGHZn8qKnxIvOwEevmZfI4/0DNiXONxvqxj/Hprc1UIQVI9Ba8gnVyjIzGLHsjgtff/8ONU28vjxj\n1ytMiUynEw3Hrz67pvgt7XDkNFYOpxPVdnz3bk8/dHz28prHKaOIGKvogqD+MVVSaUxLZc5gwoAd\nOjbX59jamHLl8O5rdM2S4uR7chWLcOeEhx9jlJVrbYKIlyQviJH8hZoLdQ1WbU2s4mpN5Fye49KK\nqqSUcDawtIa2lp+9uKSkQltza2sptAbH8QQozrtAZwxXfQ9F0VQhxcJ2cMxxpNTKNnSk08Sw3bKP\nM0PvGdOJXR/YmkpuCbQoC3MSTr9pYIKji41lHlmKpFBt1hRqHzyKRj+IM/LN1vMhwjhP6Jox/YDV\n4v9Iaby83MnquxZenG0ZY8ZrwWFmDVqJiUytmavNwFIK+2leRyGhXD8ej5ScsFrTFFKMamWeI85Y\nSmn0QdPZDl1FcdhbR3CWTOPlTcemC8zzSKmFZV4oteKTpu8Has5Yo+j6jsNjxDhhiKZlYbsZKP85\nPBD//3j+8HDiM2+4PN/Qq4pV4nIz7vfUCr/59AVff/+Of3qzZ4yNV9cXfP7xDSpYuibzrA8WqzWp\naEoNKDfQ73r+/FwRgke1QsuF6izaWVIqLEukKcXu/Iq/uLxak/4aaRnlNm8SU4ZzuD4QjyP779+R\nUashZWaaJvquRzv3bEiBkmRgCRrVwtJrkhgMmlQU42nki2/e8WmofPSrX1If7rh7+5ZWE+PpxJvl\nxKssstdjyjzcPRIuDduzc+K8MNdEF/yaD5iebPZRSvQZUy6MzWL6Ldp3tNborOXF7Q1LaaSHbyGO\nAia6Dq1k/hUcppDygjIW64IAoKXQtMSFrUny5CxZgw7JAFBacAWtAWVoJQNZ5lXVJIuxc3gvBiZO\nWZRRjDFiFKjUmFPGGY2y8mOlRANxe7GhzpX9PHNzcU5qkBexa9PBMcaMMo5NsBxypqZIyolCwhjF\nxls2O8/dA6SUhQOxzLy6vuL+/oBykny9CR0lZn5+e0WLmSUlgjfkmPDOkrMmp4p3jkYhp4JRsJQM\ntdEFh6NxTGKOEnMkNrjcbdHryjovkpJsvJfDXSUJOtaMs4paM8dplvd6DZb1WlFa4WGMKK1ZxomU\nIlZLyCta3JmtE9r13fsjSim2T2vfNcmq7zumaRRz2R95frJi8Ltv3vDdm/dcbzcMXnN7s2HOhQ+n\nkV9f7JiWyPup8u++eOR86/irX77guvdULeGa2mhOS+aUCs5ObJ0j6YwNMg8brUBZSmvyAinQJmCM\nw61ZhRJFAUo3MQNZwy7MmgMYx0bJmaI1b9/fUYswFbdnG9EO1IqpSg6/sc+sQQEN1+jNqpjjI3Wu\nbLdn/Hd/fcO7f/wnmA7MceLNmzu+HyNv7xbuHva8+OszHg7w17/+lFwrD/uJbfAklBiJloJqSmjP\nrUh6dI3iEVAqWVnxHmwNqiDIKMX+5oqRhjp8L9ZYtdB8QNuBnCPOOnTn0dYwzzNDCOQomw9tzco+\nbEBbHXkzQ99hgJQztWmcNWy3mt6Ls9LpMOJ6J8GoMTN4xyllOqXZWfkMTW9EM1IbccmMMXExDExp\nYVAdkxJDEor8efuo+fTqnLePHxi6M7RuoCxVG5o13F5fcFomLjcDUTumeUbrxnYzYJykRqV5xjqR\nwtcCmcrSMn6RhOTzzUBTmeACqTVM0yxK9vxkzfvDgcFafLAob0k5CzFLK5aY2O4CGxNQpTGnRcAV\nKsNgMBp6a4lZMedCU5ouOHZ94GwTeTxNQBPnqhBoDXZDj7WKxzLz0etbPuwfCdryyfCCcZ5IKXM6\nHtltt0hyE+x2G1JKHA5HDoe9dKnmj7QY/A9//im/e3/CWUffB2znKIeJf/PbT/nd1/f8zd/+A6e5\n8OtPLkQvnjNjkpjsh3mmFkm6dZ2j946LbU/oeoatYggdKIWyhhQX9vsRZwxnOwdV0bRC60a3puc2\nZdBVGHn5GSirpCUS50jKUTgDJZNipEaPXVOJa63UnCTU0uo1Gtw8Z+ZpCt98fYeOE+Fnt3TK8oc3\n79h8aLy+vSJ0PVdhy+0u8s9B8d33D/zVn/6KxyWxrGuqnEayVpQiQRq1NWoV4LI2SeTNtZGLQq+m\nHhZQq/qxt5rbjefNvOXu8EBNCyqLUYvJlawU2SdMslgr5KlkDE0ZWs44hUR/KYUyFlRDq0bOkao1\nymgxRMkaHzytVMaSMT5IvqJrEmxSGt5ZvDaM0yRS4ZpWpSkEJ5Rnrw1h2NCoXIeA2TimnChxZnvW\nsZxOvNheyEqvbdjPM59e79Zo8owOg0S3t0JVYk5zHEdccNKFZcN2EKC2axUXCy5LDF0sheO4UAFq\nZugCoXf4omkUGgXnDEtKLGnm/GwLaLRVbJxhmSI1FvzQOCbxhDRKLga7JlOXKmY7eUkYgCIp02Hw\nvOgsrVackc0ENBF00Xj98gXj6USJhX1ZCNZhtRJlbhXLOesk0i44K2PRZsNmECelp6CWf+n5yYrB\nl3dHvnhz4OdXZ1wGS140fej44s2Jje/47OUFnenYeSu22kbYcrvdlvOLC1mTaAkYza1xWBKnXHHe\nUJWWUMqi8drw6vqCWhLzPDKOiX7Tc7bbgJbOoT638wq9EmtcCEI9LpmWC2d9x7AdcN7JQU9JgjvX\nVgwqqkgvXde8TKgUGp98+hFlHlF5ZjrMvHp5xnya2Z8SeUl8fLPhH789EothazqOcSInKDSC90xx\nXteVckvXLBZcpck/cxVJMTx1KQpltJAEm3QqF8FRzrccl1uW/SNMD9S5ULXH+IB1imXKFGNw3pJS\npGHF3RjAGJEsr+sylCLlinXgnQTFeqOFDl0k4dk5oXOnJDwJg2RRqJX8kkvGK0VpCmU1WlXONh3B\niX9EbhqrGvuxQKmoTaCmwmnO+BC5MI7HOYLR7E8TtVZ2XUfQjVMstFrEtoyC9opN8JxKgtzQrbGU\nmZQrXec4H3qm3HDFYBUUFOMyizdjrcQCnVMCBCuDGbTIoTU8HGeC9RKe6qTFrw1ZI7bCtIjpikMw\nk9wKcrwrMVeM1ZL/WGGal3X9bUhJgMkxJmrJ1LplXiI5ZgoF0wVx8qoLu7OeeZIOsVVIWYxplYLD\n8Ygzlpb/SDED6wb+q1/uuD7rhHQREyo4bMvMh0TzllIbUwbvFMooNkFi0ZrSOG/RrdAH2XE7I07A\nWmvm44mSEqdxQinP7e0NJS3cv3vHP765B+V4fXvD2fmWfhPY+l6Sc3UDVUhLYv/hDt91aBuINTJP\nEW3s6qEn8WC1SHy3xGDV1eZ6ze1bAUWymGt2WhFPld9/+Q3KNK5fv2AeE3038OFx5p/ffuDrD5mP\nLjsOU0Yhh2xpwhuLpRCUeS48GihVRgatNVo3tJacAo3cFiDEmForVsPlxhNvLvi2KQ5xxi2PFAtN\nazgVyfMzjla8tMRAzRWnxaefVvHeQ9Pk0qhFaNIteHa7LbZJt7AkuYEU0FkjNmiq4JyFlME68Yss\nikai0lhywzVYYkFtDSVmtLakWhnniAuOc2uJTXF9ueXweOI+ZXTnuBk2/P7tA5fbjrOznpoTbx9P\nBK8pKXKxGdg4CFURrWMsgiVFVThOC7pkri8cvW0o51mKfP8HFdDGiBfkLDZ7zoBWUuyC0pKCrCqq\nVXrnQFtUgxQjU5b/N+89tTZKruxnAX97b7HekskSvFIrD/sjTYlBn/eG02EmN7nsaIqHxxPGGbpt\nTy0Jo1ZeiJMV9na7gQpxNTHZbjfM88J3377h5vqK3v24UOknKwa9KRhgWma07znOC3963vFwPPK/\nfPuBw1J4ddbz0c0FV/3A1nnR+nuD1+BdT8yJogy4wGk84ZLEm2tdyaWxNJnZhtMRHwLnNy95UTx/\n//UH/v4//AFN4U9uL/irz3/Gi49eEvqOEjUlJqY4s8RI3/e8enVNNYpaiqRDp0rViookONNAP20W\naqU1EfI0pam5cn93j4l73u0jqSi2veXCG/6PL77nn756SzCev/r8Y16/qpxZzeAsS4YURRRkMWw6\nQ10ysZRV+qpXrX0lZSlE3sCSIy0nWkpioFIbrSgqDWcqt1tHK1t0uuTh+5GaI75BsxbrPZVGjDOm\nOEppdKuASRuhIZcqUWOS7htEZKUkQqzVhvVWQLSaafNMtQ6rLamJtl+XRmcUeW50XaBVBQWUklFC\nGUUtjZwVwSvmVDnfBnKuHMcJasVWxXY7MObE7aaDVri9DtxsNnx390AXLB9dDQTf8WG/x3sNRXGI\nE0tpbHqH0vB6d8XeHoixMMZMapGaNaVCsJppWuiCp/MOrTQhWDTn//iXAAAgAElEQVRwnDPTMpGS\nFFxjxVrvcBjR2tANDqOFu7FUsYK3TmOV5oWXX6utYZQm6PgsUrNB0drqh9kqofNsVlGddH+Vzrk1\nCdoKk7PzYsEeC/O4x7u1cCMaCaPh5csbTuOJPvzniVf7//z83Vd3fHxzxYtgoQpN9u3DSNOW6/Md\n57ny6iwQnMKYtnoYOjpTqTExxhnvPFZDGUeccWLRrTS1itFnTZWLvocVzOuc5Revr7h9ccZxadwf\nFlpJxNbI8yx2VMYQhh7j/eqfL7e+URajDM1q2hNaS5WvoUkUupE8hVYLtSTSnJhOMzFFpsc9Iez4\n2fWOXAtffH3H/ePM7cUFn//sBl8zn78QgcxhFL88tKIV6QxaEdMU0+Rgtyo3FUbhmqYUhWoNVRMt\nzaTFrCAq2LWjUFXh0bzoLerqjFIix+NRchJTpuQsmwNjKbrRWiWnSGqVqsBYh3dIF+LFwQeaaBWU\nGLM4vRq6ek/NWV5CF4Sz0ArKCpjYNJiUsFavAGTBGo00JA5nGxgwTosVe64Ya+icZ5lGeqXZesdx\nkRXfaU5sXSIYi66KJSdKkjh4o0AHA7rD5cqyJA41Y+xI0LJ5mnMWG32tRH1pBRtppaDQeKvXDI+C\n7zxh6KhVCrNCgmmdc+h1hqc2dMuUSTwUnXWILQwSq45mXu3hZZqTxCMJXFW0Cl0w1LqOHCvZK3SO\n2hSH0whZMY8T7qkAz5HgHG31pXNGk3Ki7xyKnv83bcJPVgx+/upC2ta0oCUwl8O4sB06/uJnLyhZ\nJLBKg7UGZRRUcDTeHvd8c3/ixeacm6sBa8XyqSaZY6syZBSHWUwsQxB6cmuy9z8Lnsut45cvL3DG\nkLUhlcoyjRitsH1PHzxjntdDWFG1iOuQlsOIEnaejAt5lSKvhppKUY3lcX/PssxshkDe7Kg4UmmU\nVNie7fgvhg6DYtsZxkkxzwWlGzFlilICalVp0ylFTE+UCJlKyc9uSXWVT7cnf6SSKTGSrUcZIwVN\nO4np1pXeaS43nlQusc6LAel0QhVxgnL9BqMLJotNfXNhpbkWqHJz1VrxPuCtkMFUE1LOFBOlKWqO\nOCuGtEsuaDIoSLXA2ll440mtyZqtPYGMkkmhlWAj3llaKhSv2fSWoDydURzGE6YPlCZS796Jw1LN\niaoNWmnuT0eMG6gVGsKHcM7QhyDEqZqw1omxjpZb2RnNkgp+jY+LpWKd8EeMlgAYqNLJADlV4iLM\nw74LaKNYYmScxRT3eBoZhgEQizujFXmpWGflsDfhAcSYZJNlDTGLx6ZeI9V100zjTAieukg+RB8s\nORUpBNqwzPE5tKaUpwAbfjBv1ZLT+GPPT1YMfvPRJd5U/vaf7/ji7gODNbzYDuyXymAnXl3tUKqQ\nMsS4sNsMLHlkP3YoG6g2EmsjlkYzoFOjFTHkBNheXHB9dSnCnZyZY8R6h9MeqzRNFeI0UrQV7n0q\nmFaJteBKw/c9MWeW04i1lrAZcE4ouis6CDI6op/ZCrJ7b+uLTefo2owpigvX8/Y4MloBkrSptFyZ\n08Lbh8KrXY+zlsMilOASI6UqMOLNR2OdJzVP4rJaZWPR2uoKraQ7qFX23a01pLWQWDqtRPQFUFLG\nlsqLoZdAF60o80hdJlpZaC2Rm6JajyoTzizUqLChx/nw3AHFCHMtUDIG0NrgnCgzlbFi/ArMacJb\ns2Isa85iFeWiWvUOpVSMMpgqDEiy8PqVblwECRJNJpFaQzuPyogEula8Aaca3x0XNr2jd46u6+i8\nfc7XfPq7xJxwVopHafL97byjNk1ME9YYVKtsOrFcq7WRShImpjPQKkZbQKGNwoU1WSotmKLW8JeM\ndYab60u6dTSYZzGOlELTxGBXV5o14gRlxafTpIazoqA9nWZygSnOYuM+VwzgnFjVB++oZc2ztFYK\nvhLT3nmOdMHRqPT9IDZqP/L8ZMXg3WFhYzVFKebcGHPhEPfsfMfPrrcEp9E1M+XMY0x0zoKzLEX0\n6L/56DVBaaaaoSlSSeimUblSWqY2hXaWs8sdZll4eLhjPIoZZgg93juJ6qqJ2OAwzTijxGUGWJaI\nVRq321IV63xeQBeUkeawgdB39dohIGhfXSKVgl8SuQn4V1rl6qzndIr4zrI/jNAqX7655+1YabcT\nL69v8U5zPFaW2hi8R62rTkHXC1pLztFTh5BLES6A1mhVnpF6rVeuw1okaJVWmhCrnrz3XMIZiw+e\nYdhw9+g5NkWjoK2AZ01bAQrnhahkJFEoMUGpBbse/IzYslm3zstKoaomprg20oqMxgVLSZlUIikV\nWhNUXistzMQpMisoTbPdBrwxeG8YT7Os5FSkVrDGoLUSb8pcMJ2nNs3t1RmlSqd2semYU2JehPyk\nQKzbckWhoVWWPGOdFQBbGfF4rI2KJlcl0vBWRc3a1PpZtB/YpkZRqiKlijZSeL0LeB+kUFeho9cG\nXRcouTDPkVzLc7QcyFZKUfGr36dsa2SNqXSm77cIx8PSirg0LylCFF2MtXq9GBTOWsxgOByP1FVw\nltJCa/X/+TCuz09WDP63v/uGs2D47NML/uLjARPEOmoTOoIWim/Tmm7oYKhrxbNYbYXVphrJ1tUL\nzjDGiFdyG7WqKDmJcjF4jK5M30z87ov3PCyZYej5s198wi8/fkWqhdAaoe9FpNPaevE3uWmt6AxB\ng2pUKm0NFm2rE7BZbxxdkVVlzuRl4e50QNOIOQlYlhPTnDnvDF++feBuTry7P/GbT294mAsvdaNm\nuNhumGohxyKAJA1lNC2tpCP1dOSVzLGtiixaa6yqa4yWUIStVmiz6giQnEVBvi3RO2pt9M5irRMv\ngVKoywlTkoTNmEJTBuU85smleJqoMTFr8M6sB9OA8qiqybWhlcMYhQ8ddV7IrRHTCoBU2YZYIzTd\nphsxCVHMWMF8mhI1aCuaZY4sS2S324oBTZX9+TKdRMeCZZkXeucYpwnrDJ3VjPPE6ZSwvadzFr2G\n1RglRCetJPUpeEdZRWVaGZoWkFShcEaxTAlvAsaotYAB69caBNOQYowUiXW3rJpYwpWmoDZyy9Qm\nQbTzaiSjAe8t1qgVtxCgFqU4pokQDMF1kupcpJCoVRmrjZXYdy3ejr0Nz+E03nuM1szLQugCyzIL\n9fxHnp9OqFQrr4cei+Z864llYesNV5c7lhihSUJvZxpnNjDFJO61vScYg+nVKgPV7Pd7/sMXH+iC\n51efvmQz9OhgmFPi/Xdv6IaA7bZEvWcfG9hKagXbWXSzTKeZkhtaG7nhW4aSqEpBFmN2te74rbVg\nhN5aa6amjKpScdO8MJdCyYm4P9A7xRwh5oUNjnFqWFU4xoWzzYb3aeSzlx2/ejFwKob9aSS4QC7i\nMaibrOFkQyH2Y0rJGqq2Rm36h5Fk1Rp4C7HM1DjRgqc1Jy+28IVXbKNgjWE3BNlbpwxVceY1+mLL\n/gTx4QMsBe0DzUimokHArFqKkHqsIS4zrVaCE429ftowJANOwmZySfjgaLVgqmZZCkVXZg2KhtWN\noetRNAZvOZ4iZzvL3Yc9BcN4ilzvLMsU2Qwe3Qsx5xQT3hpSakL5LZHzIVBLE0fghBCiloRXYIeO\nBnhjyTmhkK6o1oo2hrg6UGvVyKWJR6U1+ODW7/sTA1NGLa3lVn7SeDQk3xCFWMrXirUyRLamyDmB\nVnKhtCoxen41xq2NWqr8vWt59n4I1sifqSQRLHSenMRFurOWlBPOGnLJq/O3pImldMJ5i3WW4/FA\nCJLb8GPPT1YM/s2fvmTnZW9/fT5w2FfuDgt//9X3bIJl8IElZ24vN8SiCNbifY8PWpDmWknzAkbz\n4eHE29PMRa2olum8wuie0sEyzYyHjLOWv/rtZ3hr6KzCOsdhfxTgaNXZa2OopdKKWttIwQMK8gHV\nWKjFYKx0A0rLnvmp+aqtMi7iTvPuw4E/+2jL9esb3t8f+Or7Bw5LJE4zqWr+1W8+5b++6Km1cZwn\n3p8maHC103IzABiZV2utayFQz8xG1A9rvtJEPKS1FASVEiVOpKXHOIexioqYq7QV9BRIQxGMZ1rE\nHKNRuOgCXhseSmM63FHijPcV5wdS1ehS0E1yKy1G9upGE+PEPj4yu5VmbIWG7IKl67x4UKA5TjMN\n2Pie2sT8NcaMIVKbJEZ1fcfxKBb3tVS0riwJ9o+PXHPGtg/MywmDhPPuOv1c1BJFkphrYdcHnJEQ\nks77dbyREVBbsW5T+ofuqlVkhWqMxM2XioU1Ek5RaxM8QSmx5Vf/NyC3rSPB0zZBSYFurdIQIFAp\n8YnAmOc1X0pF+CJKEZxZ/3sLVVKpa2nUlokx0ZoiBEcfxGJOjFFkm6OAGKP8fWpjmRMuOLw3Ipm2\n5hnq+peen45n4Nxq+qlYcmHjHHub+Ju/+4YeCMFQsXxyMaCM5tc3L+iHSIuW/uqcZT+JOKharl+8\n4L+/OsehCM6xzDNKaZwPErjiO1paxPizwTJFMaOzmjwnSdU1llYTTclt0Fqj5PJ861stFTrXQo2i\nX1Ba/AD0GorinEVtCncf3uJNE9ORaaKrcD0EYml8tyz8/t0D/+VvPxVsImcG77GxMc6ZJYr9e61P\nWgC1ZiesuMX6cqwLrRUPaGgNuiqMUhglgFcpSTgCVqOl7pKzaAtqa4LoW41WFmMU0xKJMdO1zPX5\njr3VHPd7VInk6UB1PaqWHwpTibQmRdSs684lVVRWuCLjzTw3ltmRhkHYiKXSeUNUBVXVeugaJfQo\nBbswoLRmniOpZealshs6dDCEGmjA/vHAsPFk1ZjHmcUo3ny456PrK4JX5JpxxpKzHF5RE1ZiLDhj\naFHWtIWM1ZZc8zp+GZYl8hhlzTn0nRSYnFYlqhbFYRMuSV2LcF5Ht1JEN6OoLMtCa+KYVVZyljXy\nXkkn8gTwsorCsowNyshEqmS0gIqzVjCg1Um7pAxGANyyhssYLY7W2mh0p/HO4byjlERzTkDa8ke6\nTXg8LhQUu8ETc8UrxWaz49OXl7x9dySrRqrwhw8P7DrPiy5wjI1dd03fO7796j1jMXzYJ3Z94KJ3\n9KFfJblCM25LRI6r6PZLSqinub6UdWbTOC0VuZQqNF8tu95aC/WJ4queEHtBxOs6eyu1dhPIreBp\n3L64RtX3vD1EHu6/w2jH1fUObUQleGiZt28+cHW+o+s8NTUuh8bFumosrYpmohQBC586BWS1ae16\nU5UmLwkCMj7ZqTkNuURqWqglkJOs2qxCcI/Vt7HVhoBXhs3gCcEyjTNjK9jScLstm37H6bgnjnus\ngjGnFb3OVK2wvl9ZFgKgVsQKrBRxIG6lUessSsSc0NrQEhyPlRrBdZbt2RnONmpOlAIkiCUxp8Jm\nM7DZWGxwTCdh+33z4YHrckYIPQ+He9ywwYWew5w4G7Z8OB4YwpZaRb24pEoqy6oOrCJOqgllLUuT\nzzmlKBwLrSSyc10V55QppVJUou970QE0nkHKVqEUwQG0MZTVeWiOQvqyDSgyWojrfV5j6WQ00EpL\n9mQsGCNr8LquBlVj/Z6J3Lo1AQhTTNggmy3nZYSx+qljESDRGFl511V411pbA3D+5ecnKwaKwuO4\nsHWGyxfntDU1+V//yUt+13dsLcypsR0sF33HThfG0tA+YKsYefztP7/lm33EtcbLXc+ffnrLn19s\n6EJYD2tD2UCaJnqnacUIOUgprHUYZSg6ktZWX+knYkldIUMl/bRaqzFqZRzKS69WBNgajVMiWiq5\n8urlJ3w4Ft58+Q1b30hxYdgZdtsdH6dKyonffxh5PC389ue3+OBJ4xNQaLBNY1RlQV7KUquUtLU4\nSCegV8KLwrQqcIBSWKXonagMY5yoi6NoRV6t16UFVrQqbXBtDWsqQYHTGrvpGIIkRceU2ClNb3fE\nPqC0Yj8tHI8nao7r90iYcamIZ4Fh7VC8R6sGJTHnwmman1dpta24uBHfhzRPfJjnNaDF4ENH8AZn\nLa5mHh8mWi4UJTTm3XZDxqBipCqDb4rOd0zLxP1+BCT9WgGpCIo/zTO2OmJZZewozs8cOSWsFatx\nGlijuDkfsNYIGAdY58S5W8vqD5lSyTk/d21tBZ4bgt6fn21lzVsSzon1Xa3iIUmTG5218CsF1uu1\nYysSnKNFhGZXiv1TB0LjeQVpjVmVjQKwC5aTn7vIeZ5lZWm0kM7+WMeEV1dbbi42nA+Wq60FPzCP\nJ768P3J3v+eg4C9/9SmbjWe3GYDMpXLEceLhMPHi5Sf8Onf8siZQhm0f2BmxGKcVVBVzUNXAaIvk\nFMkazCh5aeVD8EIUWok0rSFpumrlDawyA7SCJjeL3AgraEjD9IGHD3fUnHg/FT57ccavPnvNV999\nSwZC55lTxVfF2TDwmVOU7x6JqfAPX77n9npg2+9ITbAJp8zz7SQfouAapWahshahHxstjiFGK4y2\nNAoOI/yHVihxJp+knWy10mpHNUbGBq3XF66R8mrXZtvzyx26Jwv3ypnuWKx0ELvdltP5ltMcOT18\ngLxQmqZog7diMFKauC+nFKm54rVbuQ8SCw/iGj2cdQxd4Hg6CkBKW92UMqc1/CZPFT9smGNm02la\nAWMN6PYsAX6cIttBMfQB5S0DIvjJTTPFhe7arizHxtY5HkujDx6MpqaGD5acJVW6Vemy+uBRXlr4\nXCopRVJs6+ZEQLpaZTxzzv7A7Vs3OC1npmWRz4+GIsncrhWqCbMUJCZNa4VuYpxSq1w6dX2/Si1A\nW1WJ8nPGCLeiNhHHpZTXjmXlqGTpZmKKgp+oJ7s786Nn8icrBscp8tHlDuchz5P45cfEf/rujvtT\n5GbXsekNF9ue3DRnl5cEE7hr70hN2qK//PgKFyy4jpojJc1iUDpHOcnWQp2kBCixBqtVoslSK5im\nsNrRqszedUXLn4g5uQlAZ7TQjLVuYvSr1DPeoVuh1MoX7x6Zpom//+7A5X/zC/7so5/zr377Genh\nAds0S4HDGLk623A3HiWkpSoyiilWdl2TYJPayEpuBtdENCt9wRPwp4TnsFqP1/YkdOW5HWxNE6z4\nDIxpJDZhRYKiOodTYk0iDkVidSYj0g8gJE2AsFLBWVCdl1sNuBw826HjXY0c9w9Y3aG1xdZENpqc\nEiVZqaRGiDs5JVIRLCh0Fm+MrOeqdAM5LczjiRACxSdybmjbMMoRvMXbLVqx5jkYUe4ZQ+cd1mi6\nYCBlTG08jpF5mcHKry+p0HlZOQu5x6B1hSK3/sODjKV+pVPr1liSoPPWOjlgpVJyoZr2rAh1xq4e\nl5WGWn9cMFU4AlOKOG1FZqyVZEmyEsKUfG7SeK6fTWXdaPBcrGlQcnnmlrRVb6O1xqz/3lpjnuXn\nnHMrKU3hcM+mtrVW2Wb8yPOTFYOvHyZA0weHt4o+T8zVcnW+4dXVBbcvzjDK4rXj8LjnfLdhXCau\nbq5IS+TNt9/jrGWjBoKDtLrMCNFDaMe1ZEwzktBTV7S3AishCSo5RiHjrL2fUisBRGl0W5nn61qv\nVjBtvT1XPr5Tcjvf3t6ynyc+73Zsdpd8ePuOXlU23cA4zuy85ZAaj9PEu/uTAD/Ar2+vxLVGSaHR\nWq8GK4JIxyWirV07AbXyXSqgSSk/6xfqEzLe5PexKDovU/xUI3WR7D+jFbWu61INGLO6MjVJSmoK\njRSbp/ayloL3ApCllGi5YlXh5cU5mxCITbwXx/1IP/RMpbDMwjikZZaqscajjRhsqFzonGFOmVMU\nWW0rYIzHWU9uDaMUy5LYnfXokuSmq5BapmTHVDJeK1on/IjTLBbuWiswclNvjKZ3jnmO7HrRH+yX\nGdMqqirmeQGl+e77R7rOsj0bCBsnKH3O5JiF60HFOyOhOCvPVCkZH1OCXLPYwynDE0HVWYOz4iYF\n0s2llNdtA+uq8EnYtt7yNLyVceLp4Mt6UoxzlHjrsSwFZcUXgfVzqqWuBDMIq8x+WWSUySqvAOcf\nqYT59sUNOc1MKTIlxRSlJfvF7SXBWYbtjqoMsw5kJ+EkJWW03jIvCfqO7W5HHWdO48L9YWRDZrPd\nYLuOJWXIUVKClRh4KiWoukLR1ltGNTCrkKdVUeC1VmVkUGZFkWHNp5I8gSa74lplHIHEpYefvbrF\ntMJpXPiH//QtcZk4O7+iUonjidD1fPnuAaUaoTX2sWBVYxxP7IathCohbaR4EAqZx1tHLlnmhidh\nVJXuITcxyqirdPnpUVpWU50DYmGOI0utKFUlYVlbiSQzrC8irMOm3EJIF4IGY+zKtitYIwy+aZ6w\nWnF1tiGXytFqagoYDNp6Wk7UnIQcliu6kyTs1Bx57amVNXjn1x293I5NNXovugRrDdM0s388kGrF\nhh5tNc5WLoYt8zJzGkdybqAMMUUuzza0lMTN2TtSzmw7xzjOnGZJeFqWTMyOvnd8eP9AtkLYGoyY\n2E5jJJayhsWCs5pGppYmlni1rgY2K9NzTaZuNBHMZdEu+LV41FaFNr+a0kCRcUFpnlK2Wdt9wYNW\nNaR5kqwjWwyg5EgfepT+gYBGA2Okk8sproC3vAtPnYNSihDCj57Jn06bcHvGNGf2h5nvH2e+OD0w\nRqHcvtjtuL1odEHmoLPNObk2alXc3z2yjBPBe2xKTDlTWmNwCqqm0kilMi+FYBSxijzWIKu0kgUw\nahVY27uiKwpD02uuYW3rfjdRlKx0jNEYq0E5qioYZbEKYqwr5z/yf/7uGw6nI04X4pj47ONLLm86\nDmXg/tv3uNp4d3/AecUfvp94eb3FeYe2fl0UNlHnrR550LDO0Kq49dT1cGqlqRWc9M2UJpoFRaOu\nNGVQtOdPt0HKzHkinSpagfEbod2u66Yn2rJaxx+ZlFbmJ0rMQY2luSYpzamQ4ogqiW030J0POAOp\nVNxS2O9PBKs4LieUka6md510QM5IulQt9F0QokzJlNIwxsGSOU4nri8uuD8dSEum6zd0AYJ11JYp\nc+QwLywFttbig2E7nK+0Y0PfWXKuOF14dzey2fYUNHEW09DDsogHY7B8fN7RsmJaCjvfGOeZOVdC\n8ATdsMYDhjlHQLQuuSZxijIKtwbVOiOKxPp0aainAlDJua7bqB+o4rU+GcEIGB28X8lschlJdya+\nm0+MwqKEgo1qq0OzFyKc0iwxys8FL9aAWq9eCnXd5vyRdgZnHQxuoMbMf9xP/O7diWlJWGN4OCRq\nbrw891xuxBbsEDNqs6WcHqElllPk5DTWWpwzOO1BF5Ylk2ax9LLGkZ9ooeuH8kQN1euOV9hgjWY0\nylooldYUSokcuJZCLAnrjOz4owRbtqZ53B+5vH3Bru9pSTEud9xNhY/OAx+/PuPqPFDnhdBtODs/\nZ//+ga0PZFU5KcvFJqCMZwiOJY7ULNVeW0HSYxbEeT2RqJUW/4xgV2lHFYJbCBou/Ifa6vPNw7oW\nNaUx5Yl4AldWALWJ2SmrzZZa8ZDnZWb7QZelV6WmDQqaZzoJ7bqUTHCWy01PqQ1vE1Y1pnlexUcy\nXihlUKtyriD6hTRPRAQJR2tMK885j+M0oprm/2LuzX5tW9Pzrt/XjW52q9vN2ft01bkq5ThuCHGE\nYzuJEgUkBBcocBEkBNzlApQrkn8gAi4Q4hKJCxqBiEAKSIQoRgRIh6PYcYJdSZXLPnXavffae3Vz\nztF9LRfvWOscOWVbihNVTalU56y11zp7rTnGN97meX7Pquto6xYdZ0osjCkx6EABNt0ap2WI6qzB\n54zWirZ2hHnm0M+SDFUkK9FHz65paLXGaMmsDH1gP3rhY+SIMoZGWdT9liRnmqbBOpkvzUHaFnTB\noBeV90KILpkYZTUYfVzcpIsN2eoH0VJKWViURb5WLTbnez+JvMrDweB9wBhD8JEpiGZBZhlp+dwi\niTfir4gxLk5MlkoXpumH1Kj08eUBhSCtVNPx6NRSaejqisY5LmrHycmaqnJQaZTXuJywuzUvXr9B\n1xWhaByy580RqlqCKpX9XBpqVEFl2b/GLLhvreTpl1MBK7p9o83SH8sBgVYoKpQuKJVAK+aY+cff\ne4Elslu3fOfDN/zckwu2j065vXzDl9864f1nZ9S1w1lL9gNvjjOH62s2XcNxHvnKW1vu5ky3OaEz\nEvs1jqKTt4t7LflA7SoKEZ3BOMs8z1I+ZhYN/WKlRm7StGjpRTUJKGH2aQpOG5TTaJ2gJCY/MudM\nKpmmlfAOg0ixixJoixwIy2BLqYe9uxYBHcWC3XSM1jH5CaZRRC9KCbxEZ2xtUHrHNE2ERbasgBI0\nVVVjlWw6rJWZSUkyHK3qGpMzwzDgnGQTGKW4uhrZ7hyrtqOqHZVZVqipME6eaZ6pKvGAFBJNXVFr\ny6qxlJKoGoNPjtmL0OzoZ+6OE4OLC7INxjlIIpKzpKSYQ6QfR2l1rMxxTBFXpbUitjJaUPNzCJRU\nFoWjRWswyAbiXqKccqLMcsCmIvoXoxXRB+KyFbi/iUH+nLGG4APjOC6rYGFVmmXrlaM4brVaKFvl\n85YkhAAsmQz2hxSIepsM8dhDu+a9x1vO1nd0tmGaEyena3ScWa1brm/uKCkz5oLqoaoc7XaDtQpX\njHAKYkYZiMiNYKKgpIoqoOVCU0laAW0tZJkA13WFWowxFiVVgawTBLahxUueFQ/RYk8uzgEZgL33\nXo0uienuBlJk3bTyBDQQssYUS9cVqs2a2I/ouuOTyzdYEzndPcHawsvLG3bbDuNqTMms24oYAlf7\nnpPTDkJBIFaaULKYamIRQ80yzMoRrFl23/cmGSMDUF1EYisE1YyqLEolpuRJ44FkNMYagZcsFYG6\nl1d8YS9dltYhF1C5YJVBWWg2lpBrjseBq7sDXVvTNQ2alhA87cowTo7rK1FX+piouxpnEDWjsXKY\noFh1a+I8kuYBlGwCphiYZ5mGr09P5caOnn4/Mhe49jOrakVQCuMsWhlqqygGUAVbMuMQMRU45Xj5\nek8xmdY2zKlgNPgwctKc0FUNGI1dnuAhydS/Hzw3tyN1ZyymaiwAACAASURBVOgqR06Jumuwi8ch\nzAEfxIeQYiSGBFHcpF3rMFYz9SNlGe6FlEjLYBIt750zRtrXUphmL+rUyVO5GleJuAjAh8RwnIGJ\nqja0XUvXiEPyXroeQpRWErkWrNWS7vQgXvv+r9/xMFBKvQP8N8BjZIz6X5ZS/gul1BnwPwLvAd8D\n/s1Syu3yNX8B+PeQSvA/KKX8te/3vV9eXZPnxHvnZ2ys5eSko787orSmNY4pB6IvjLNH3Rxx24ba\nWfbXN7htR2cMJi+R2EXYAApDUeXz6K8l5AKWIZmx4rxTkFGkUrDlc6lxzgmMqAxV+jx5OC/jLV0K\nbz/aoRcdwMUplBw43NxBkVRilEZlDSWQlGJVtyinGVThvNL8+kefcb6pqFPAKi3Bq2lmP83kUjjb\ndEsa0QT7ImYWa1g3FT5HoRw9rAUhRkFjUzToJX8il4en8P26UavF9ouImKqcmZInjj3aWCytbCQU\naJZ0JWRivggXRfWI/LvV4sk3WuLYndGkXLCqUFlNtemYRsscAtpZ7PkZx3FmGCdKKfhBiNXKGtn+\nGHHlBT+jUdjKiLxXm8WLodi2NdFP+FgYfZQEoUrmELW1WA3rSvSQVlthDvYj1jps0gx5FBFXVNxN\nE87CZrNFYOmZum7o+55xyAwhibJ0YQ8klSlFYuXmGJn3g1QGWt6DlCFEQe1bY2mcVFpDP3I8DuIJ\n0ZDC0jbkjNEy9C0FQhR3aEpL6T9HfMjENFNljdGS36k0NO3CUtBKVIYF/ByXDYS0uEXFxdloZODr\np9+zziAAf66U8itKqTXwS0qpXwD+XeAXSin/qVLqPwL+PPDnlVLfBP4t4JvAc+D/UEr9SPk+Rupf\n/eAzSlTczJ7z1YanT3Y8Oj9nOO7Zbtb4mxkRYBdM7aiqijjPGKsI80wwIhIJIcmE3FmUL7jKUIyl\naBkmykRbL7bZQCnxYbMQQ4S06MSRE+R+gluW/XKpBLZxv16MMaONVAoSLGLIcocxhiBkoQI2JWzT\nkAKMwwyVZldvePLkjHVdsT8cUG2LdRVjGJinSMjyVHhxCPRjz09/9SmXSWGnmcmPWCpcnYUgpEWE\norQihbg47PTn68koT4eEyK810k/GBa9VLKRY8H7AD0aEWfczhhLFKmwXrfx9qVCWtgGIFIwSNR0x\n02jDk7Md0zwTF9GLlNqFrBKrTcembdn3I8M0M5SlqknCYLDWivJTSRbkPQyVHDHO0rUNx+NBDuiY\nqa0l5czK1szRk2ZP0YVeQVaFumiOkycqWBnD3M8ko2mWliPmRF1rVlVNiULF+uTlIH/fXPBKyndb\nQKvCZt1w6KfFf6CYfMRE+RmVYgnVlXZTJM3yfWISVaqWLHqpMo0GXdBOC2K/wDCMhOMkQBgjLVld\nu2XQmIgxYI2S1mPhRApkdYHP3b83KS9shMIwjChtF7FXfIC7/FMdBqWUl8DL5Z+PSql/tNzk/xrw\n88sf+6+B/2s5EP514H8opQTge0qp7wJ/CPh/f+v3NtrByvHq5oDVlvVe0aiC1WIB1VpTrxvU3uFD\nokoRazXjMdKoihBE5x3mQNU6nDXSIeeM0YKgVlFYB8qAWRJocoiys7eyj04+LhwDmZprbSheACZW\nGbQVMZJFU1IipoipHMQkE/+QKCpT1RX1uqVtNR9991M+vDziY+IP/vhXWa02DMcBlTPffP9dPv7k\nU4wxnHYdQWnCZMlmYrOqeHMXOF5dsk+Gfph5drpjHhrGfESXwpurW05Pt7SVqCjnGHCuIqdESgVt\nlbypRlaElTb4IE/zlGWT4IxZ9t+JEhJ+2DOhaTdb0ALQSMu6URnxQ0hHYpbGRNoG7odfSp6tWina\nxpGyIYTIPE4oIk0lPMaq0bTVlikkrocGPw3oDL7A6L2Eh6eZbDUGzdgfKBicVxADOUaqpsPVNUpZ\njv0Nh8PIatUsMFdNvz+iUIxGUa9rNtYxz4X9PNDWLXNWXGxbMo5+HOlvLsX1ubzPOss+frvphF05\n9Mwh0041SlVLCnOirRxNU5GCJ+VMa50cCAWmKeJZDufFEZmCKBCTCqIWzXCcZvwyjJzmQEgZlTO7\n9Zq2NczTgDKOymm6rkErJZFqujBOEg+vlcJPQURPWTYMdVNTOS1tsFZ0XYNdthf/1IfBF19KqfeB\nnwR+EXhSSnm1fOoV8GT552e/5cb/BDk8/onXH/jyY5ny25pGK7qVY/KR7aZmngI313syFft+ZlfD\nza1ns+5IORFSwSmHKgmsIWmN9rLSUXVFCUmsxUURl70wOHmyKYNB5LqqKKpGNPcyvLGi6oLPS7n8\neVCJMVJ+qgJFWwyKYg1xnqi6lpILf+cf/Cbf++iSm2Ogtpofu7nl5MvPOH38Hr/4t36JogT+Wdct\n/TBRrRva1qGKILtTSTxZW06i4dcv71Avrvk3/vhP8cFn0i60i0dgUcEzTwOpkojwQial8rBFKKmA\nEu6e9IwKnTNaF6l2lnaDkojTHq8LVVmhqxptpboS7KnYfCn33/te0SAleVGyRjNLkpSrqgUAqmjq\nuEhpgZJw9aIWVIXgDFpBKIpjP9FPI7nIYbZuagbvKUkAps4K3ksZI6zDcZL2zjlQmdo6jNaMJFTR\nKJUoPnB9cyQUTcgRWzxdq/DzyOAjGUvvM00rQbHaLg7HZBiHkZQKKSqaRkJ5YpihSF5GTImieCAg\nzT4xzzNzjOQkkmEtc0ORixuF0QJ4Oc6y4pvnwBgi2mratqXOhZjEOTuMQWY2KZCjXIvWmgXPn4he\nAK6gFyBMIiNehlKEvjSMnrp2HI89lbPyd/29HgZLi/A/A/9hKeWgvjBZKqUUdU+H/P6v7/u5XW2X\nfrNhPwV0Fsnu9WGmqxKnFycQxGwSVUQXw9DPrNqGfpgBS9OIRj3HRMgyZS1R1FxGZAcLsUZ24woN\nC/Xn3okopZcQmpXWy2GzrPQWOTJ6majnz3+gBYwuEtCqws+elDIOxztPH/Ejdc1uVaOUIUyRqpp4\n8tZjPnv1hnajeX17EJJQcMw5cnk3s6k03/rkmst9z7snKz7ae8I48Xf/8Ye8te1AGdrGPRiMQsw0\nbUtRi9HK6AcXnTBP1BKCIiWkuf+5S5HhqrJLCIyAZOPcC+K8XWGrZvFkGEw2FFNQmgdBi6wc9VI1\nyPQ6yWABlZdZQluhklv27HKTaKNxKtNZTVIVVSWzhnXj2I81d4cenSLOGp6enXLbT+zzkaI0UcE8\nDeIRKYrKaVzliMFzPBwWHmAgZhn+Xt/NoMWerWLG5xFnFIckLaQxkNKM044SI7OPZCWpT/PYY7SV\nmwtZS4I4MzWCOj8cehGJaSE8s+hUYFkIp4I1eoHmFPwU8THjk2hIlNa0bU1dWQzgF42EtjKvUUrI\nSuMsNHDFcu0Whc+Sp5BjWOzNUFWGylYP18fspcoOORArR9c1v+N9/rseBkophxwE/20p5S8vH36l\nlHpaSnmplHoLuFw+/inwzhe+/O3lY//E6xd+6Vti8dSGZ08u+NLpqfwAVhOnkbpZ4Yc9ZycnhDBT\nWcvYz7SuQ9eW/TTKOkyLEywZizZFfAtGDDgqCprbWENC0mV0ljdyTgpbOUxerMjL+jGViJ8mnJML\ngSi6Al1ZEpmSlpZC3QuUROte0KgceO98y11/lB4vKMasaSP4yxs2uvD2+U7ozdrCPHE9BDatw1nH\nZtvxjbcyfYz8xnWPz5CL4Rd+9VN+9FHHH//Jb9DHIulESoOSGYoqDXf9rezineQ+5CKbBV1kC6HU\nYoa5P82QTB+jFLU1OF2YQ8L7gTl6QtVR0hpXV1Cc7BINYgJbKgAxF/EFi7UMakky5NSLU1KZhReR\nZCePKkL3Xay2jXHYEDHKYdWK28OeYTjSVR2P1h1tZajblus3b8i5cBhHNusVWluG21smH2hWK3RO\nqMoSE0zek4rMV1L0YhLKhakfUa6icmpxByqGQ8/sZ1JRhBQ52WykQrDieBTOgIBUjLWi8kOhrCP4\ngJ88caFJKaVomloi02dPKjD7mXGaUBmscTijpTJd0OjT6DFaL1F6ATVmNtv1sioMFAXHYcTY6nOZ\nuDLE2UvLaxS1q8RMlRcbfhbX7ovPPuPq9cvlwfd7qAyUlAD/FfCtUsp//oVP/a/AvwP8J8v//+Uv\nfPy/V0r9Z0h78DXg736/7/3zP/Z16q4jzx7bVAzjJOPKGHGrNbc3N5jacWYtWkd0KCQSh0NP0xim\nOBHrlrubnrPHT0S0YQyuqTnc3lLXFXbxhicvNlHtxE+A0qQUiJNALe5BJdkPYr1tK6kIjEJVNbaI\nv56U5IDI9w6zIk+WqDjZtWgdOYxH/tavfo+Prg802jAMI3/uz/4Zzp6d0PcH1PUdfuh5dtrhx4bf\neP0h4yFwuupoXM1752tWmzV/4zuvuN6PBBJznLHrNdsObKmYvUSv2awlIKVkQoRNIxF0GOm5SxQx\nUmVExZgQqeu9TkHESwW5QxOVlTZijp5pCJQUKXkFdU1xFaZoilELCAZRKmaFhH3q+xUOwIOuviDD\nVq0Mwn5Ii66joJNUbtZqjK6ojKGpKrrGcTz0sGDmqhQIk0flhLGG85NTxjBwfZxxxtBtOtbriv5m\nYO4Hdl3NPXtwHjxKZ7rK4nOA5aYZhpmmqrCVZb1pUb1mXhD1V/s9zmi0l7i9tm1wrcSn5RTFmlyE\nbRlCRmvLqnGELHmGOQSmJEE+SsvDyWGYkqwMQ1wYi8pIhZkzXVdjKo1ztcwdxkkAKUoGhW3ToJRh\nHid8zDgnswSBuETBni1KR2sNfT+gUJycnvL8+Vs4K+K7v/dLv/xPdxgAPwP828A/VEr9/eVjfwH4\nj4G/pJT691lWi8sF8C2l1F8CvoWs/f9sued6/9b/sDEScRUjxYMuEJfy0enCphOzydgfRcseEofk\nebTdcH04sm0qxjniVh0USbMJzlGXJcEmxAWdDk1doZMMz/QyqdVIbNY8xcVcZ7BOUy0AUYVgriii\nI9dKfSGCXSbqRmtUEYnzNEaUdfy9D674jTcjt1NBxYBBuHfWKXTwtJsOt16hb2+xKvLNd5/w2cs3\nbDpHVSmOUfOltUN99Smv746YtiGGnpOq5fKuxxTLNAe2509IRqjLkNmuO9RyW99j0ypnJMMgy7TZ\nKiUHgmxSpW1Yun9rNFGL487oggkZ73vGOJPajrpdUaoK6yxpcejJk1/w62Vxcyq9SKGWUl6rzwU0\nANqaz9uXpJmmcVmzabq2IsVEXRkqbZjGkXYjIqL9HGjaljlETlct6phRaSYC4zQxHvdoY5nGiRQm\nVps1ldGCSS+Km9sDTVNhEMBNCDJ41Siur/fkxZVYVRVV06GUWICHeSYrJdqAlIll8Qwo6dOtUiiV\nCX6iKDEPhWUlapzFTxMpyLjqHr1GuR/DytA6KQGW3NOnFAJuZRHDWZUgRiJRthBFoXKmaWq8T3jv\niWNaDHbqAZ8vsmfhMpRsFl/Lb//63bYJfxPQv82n/8Rv8zV/EfiLv+N/FdAWKqNIUdJoq7bBhkAM\nmVxntHU0VcXN1Z7NbsPoE7Vp+PTyBrda8fxkR4yZeS74fkTnIGvHYyCXRDSaMHusUVTLE8ZVkpEY\nk1QK917wfhKC7Nnq5POet67lQPDSC5q8KNAWiahSGmUNKidc3RFCpOA4fesJf3R1wpQSk5+5qBU6\n3NFfz5RxoN3uaE4e8SYk1NDz9qMntHXHcR759ZdXnDeaT/qe06bi6fuPSRH2R0M0hdvbmevjLSdr\nR7l+zYRi29XYDBMwF4VTanlqyzbQKkOgILxkuYisXiLWl1KyqOUAVGCywuqC1QqXJEQkDj3JB6qu\no27bB0qUsZaiy+diFoV4JJRMtu+BMSprmXXdm3IWzb0xC8gzRExtmBcFoVWRVSeBs45M6wy5JPTm\nhHEKVEre87ffOuezN9d0qxUvXie6RhQ8tqrIIRJjoChFLFq0KCFyO3iwjq5bkeYZoxJhlu0RSrIL\nu/WKHNNicRY1l58mCpqQs2RTLq5CZfTStkmbWVISrqEpECTYpHZucbwLxjwvPX0Ms0BQlViVnRZa\ntE9JoMDI76xrKzElaUmHWtViGY8xMg4DSktrEmKQNbP+fMU5jAPBe9ZduxinfvvXD0yBeNiP7HaO\npxcX9NFze7Nnt90wzSPTMFDVDXM/4XYbqk2DbWvurgcePXnOv/TH/iif/Mav8vrDT9nsTonB8/ik\ng6S4vrri7Okjhqu7xf0nSSdGI8GgJaOLIgeZjDvEZLLvj7S1rG+oNdtVK8QhW4iTJ2iFTpk8zsIT\nsGax+iLDRyDNM29vtqgTGR4pa6jSjO9n1HEiB5jiAXuYpe3ImWzgfLdhOzWsVmuuXr3gwxd3jP4V\nbb1lszY825xgE3w0TVzOM6TI7GfuRsPHFN57csHJifTQzJ6YRRE3x0ywoklvq0Z0F4oFjPE5bVkp\n2ffLk0USr40t6JhxWbIcRz8yHSTHsV2txc5bCiz2aoBFDY36AusvL9Ld++qg5Pwgb1Qo2rbF2yiE\n4CRPzMpZrMpsu4bXH13yzpef0QaFyZ5r76mtY3NW8Wjb0fcRbSJfe/8xt1OinmfUfHywmGc0u92G\nq9s98+R5cnqOUp7jNFO05mbf44zDFmiXsBNHIhlHU3f0/YH94UBjLLZyZGBeTELaGFarFYpCiIlQ\nCj4lQojUxuIqK5uqGBZsOvhhIC4Mh65rsY1hHmeGaRKpcsokMqtuJahz70kJ6qaFLOa7QqHve+Y5\nLvqPJO7KuiFqkUJPS54EqdC2LSkn/PxDmptwuZ85+hv2/cjFds3Z+Snr3Y5tily/foMpmkChsxaX\nhD6zO9sQjea7v/z3mKaJujEM/YHVdkeOiv04YrqOtt3Smx5XMsoppphIKeJsouoEvJmLiDWS0RhV\nYRW8ur5l03W4Yuiv9qw2nXgY7P1VLqvEUgoqL6pHq8lEqRSMXcwvMp/I1sCcKCOEJQZLa8s4jNjK\nCeE2JopOWFtYhYA9P+Wkbvjw9RU+SEhKVhndreDqijdXM6dPtyTv+fjlG14M8Cuf3vL7n++42DZc\n33l88rxzvqNqa7wxFLesFReFWix5GTBK+K08ocV/QZLtg1ZKjDXLQaoVzDERhgPRz7i2pW46qrpC\nIU8cWTlm8uJuuh8s3ttoRR0nLYvAZOVp2lRi9TVKLXJokRN3taM72/Dy8jWbrqbd7NgpxTB5HrUb\nDne3PL3YcbO/o1KFtVNkU3PrR2yBVdOinGEcJDrOOIvPnujFXGWMrGpJWViJ0S8Qk0zXtpQUZI1J\nIZSIVlaUqBTUwh2Yp/nzNkjL79ktBCmZ2UT8MvG3S4Va40R1OAU8Hh9FcJai4NCUlVbQKGn1coyM\nvcy2oir4WTgMxt6DS2TVmedAzolqsVQ7a+W9jomcIvGHNUTlo+s7VrWjPQ5c7QeenO4YRomD2mxX\npDHS1i1V01GGo8AgsazamuQ9+5s3tLZCdy3NdoPzkfn4itXJKVcvX0sqTS1yYTFpGIpxxFCW3q+I\ncrAoWuuoKstt7nHrBmcNJRX8OFNKEf2B/nzPXrQMzYQwltEFSkqYJfwjFTCVI4491ekpXfIcbw+8\nuOtpuo5xnLHKsN7UdNtT8tCTlOJuf0dlatq24vn5KeM041Ydqt8TkuftTpOfXfB4VaGc5c2UedR4\nirF8ernngxfXDHPmy892dJXicLzjLmQer1uUatBKcigVRVyZS08qCb8ylU7IDStGSREUucXnr43C\nx0xInrkP+HHEVQ1121LVok0wWqOtQWmDNuVBr6G1kQpkUeClh5Xn522GWQw9MlyzOKd4+viMYZwZ\njgdu727IWXF2dsZwHOmPkXVraKpTjkOgaJns79ZbGpMFKFtVTONIt9kyThPDPNHWDj9F8v28yhoh\nJVMoKXL0kXkepOxXEvaaYniAyaS44PUAVFqGeY5UitCotSLlTIiyQtSIOKtEmTuEIq1qyllaNHX/\n81ucc6LZ0IvPIcmcZxpHGleJld5Y6qoSDqJ1hGwYBhkY5pRI92TmRb9QSpZ8i9/lnvyBHQb7OZBN\nxZt+QNHzyXVPW8k0+UefP6IA9ph48qRm9fwZ8yRwCn8YmFLkOPfEGFmtGkKObHZr6tcV4+Ud7cWG\ndrVlONwIkCKkpbdTTPPIXArWijFI5JwZZxXnTSfinZSX2BSDKYkQI6WpqIxM6EvKC4xUyj0Qim02\nmrlktE+8vr7l6fNHnK5XfPrtz7jte37t9Z5vfXTLv/oT79A+esrZScX2S8+ZvGL/7W9j0ByPbyAZ\n7OaMMN3w9Okj9iGyOtkyuYbu9oZud0GcJ/7A07e43B/47PbIp1nx8U3g7bOKd09XfOnxBamt+NbH\nr/nOBx/x/rvQ6BqjFxSWEmGOyjJgnQiSwmwkDNRaQy76AdRh7mEcFJwRtZ6Pkel4x9gfqOqGdr3G\n1TUmCeqsJNk8pFJAC/G5quyihFOLD0KeoveVhOzXpSc3taaQWSuJYAcYDj2qZMIs69/Lq2usrtE5\ncnqyQZ9umObIp1fXmDnQKItVGlUCtnIcvWceZnyI7HZbamO4e/2Kfp5Jy8OhqzoKmaigRKEdGVPR\nugrnDGGaGfoBV1WQFFonxiAyz7qqiV5gsiJOWjDp1tI1HUpByPHBfai1XtjSEpJaSqIfD6hiRIKf\nRMyUl1lV3/fUTkJkrLHs9weUFSxfTCI5jilSVbVoDELAGujalkPf/4735A/sMDDO4MPEnAupFMbj\n4s3ThVf7Pe9fnPNTX37OOE+4/R270zUu9BzP1uRxptFPGHIiDBMvP/iY+v13cV2Dzz02a26vb9BW\nUoB0bRl8wrZaQCIpEKNHLzzEjMbnTG1Z8OKeZC3Ji47fhyhOR6MWG6ic/KoylCyns7E1kLHZgk4y\nVR9neu/5n37xu8zDyKw1N70n7/e8/5ULqqLYf/YCNU9UF2dwd8Mv/spL/oX3n7AykYuzM/avbnEn\njnhzxebRU9TdLd/+4CO+/u4j5lxhXcWLm1t+/vc/59XdlrdP1nTrFSHO6FnxaNXy4vSUYQ64rmby\nkxiNlKgpy/Ikrp0hW7Xo3ZMEiigFRiGoARErqQeL7BI4UilizoS55xBmTNVQtx11XWOsJZsFme7M\n4sf3AgFdBm4RaQvuh29l+Xf1haGkteKsjCmz2q6YfZRINu9JITJMd5yfPyHPgTkeUdpx1tSMypDj\nyPZ0h0USk3fbLfM04efA/nAgVY4eMF3Lpqpom4bbw5GuXVFQ7A93y4q1QHTMs1COlIJpHMQs5CrM\nEkXvp/mBQWCspXIObUV3EVNaDHVi9JJZQ1gGriL6SjGKqE0rhkmyQdq2FsNZEuFciJnUz1Dk88UH\nNHKYUIrY30uW1i9LSGxYEpp+p9cP7DBwCy/OmYTTS549GtfVVEuAxe3tHc/feUIYe+6SwCxU6Emz\n8OnW644ZD0px8/o109TLcM1UTN5zdrHl2I+EMbNabYilkGJm2PfUbUO37TApk33Gi9dR1oQhkPqJ\nbr2iGPGSZx/QbS2iIy2qMmZ5GhhToGR0Lg8JRudWYriny2v+4Nff4XrK9NPMj1ewO1kRhkSpWq4P\ne/S4Z7ub2HQNp9s1btVilfD99seJF59c4/zE0xz59gef8MmV53uXV/RppiQF2VKmzI+caLLJVGSu\nx4L1AxWGH336CJUSytXEAil4KVtLkUjwsKxXl/bH6PvyXS1hrTIjEcXhEvcFoOTPplxwJhNixI9H\n0jwR6oa6afDG4uparOR8TvYt+gta+WUyr9UXMiGLDMrutw8y4BSYjbWa2j2mHycO/cD1VeLm9g2b\nbsPFxSm+FMrguesH0jBz4hxt1RCMxlQVoy3YdUc1OIZh5KRZ4XMkFmmTdquOEDNTTHRtS20lWHUa\nB0nfMk7qRmNQLORkBJ2WksyPSikMw4A15iHjMHj/gGWXwyPK9bowB1gMW9ZaQioPnI04eaZ7FoTc\nBdhqYTUmSdcW9Fp+IFeJWUki7qcpisbjn5U34Z/1K8XE6cmO959e0PcDTWXYtAaVHcrC+49X+AJd\n1fDp9WvWXU1QhmmY6bZbtNPMQ88cPF23pnKKcVJYt6b3IyXP1KM80V6OI68PPWdn52x2OzbG4srI\nziZoO6Z+oswBpzRjKqSwRIMrQzby9CImpnGmXbWQC6VEVExYLRisqm4EChI8KE2eZ0pVoUrm+XnL\n06RJ5ZR61WFLT4gQ8kTjGsp6y/XrNzQKHq9qGlW4eXPLkyePsF2D8xN5VXEzZvoQiNry6RgocySU\nTFPgb3/3NX/6p7/Gm5sbdo3mzZQ53ezQztAlR7RBNBNLfDeA0kr4C9qJTbgUKuMwRRGjp6S4pExL\n3JyCB+aiUnJjK0TBqY3cDC5JalKceuapFy7BakWXVzhtqaoKV9kHgMr9ijGrZQ6zAGnL4sUvy0DT\nqAUVnsEqCbHZrFqaxnF+smUMnk8/ecV3/tG3uTg5YX2y40tvnXD058z9gbvDHY8eP2YOgUpbamcZ\n+szZ8yccj4M4LUOkqu5zGCNjPxKMwmA52W1QZc314cg8e5y1KNMsa8GCIjJNI+LqlEqn6zruMw1k\n0CehLKUUsk4LVblI7HvKAjEJnpyLHAJJmJMaTQpykKRwX1nJA885J6j0SuLrYgjMcxDNSZHcz6qq\nKCUSgv8d70n122iC/rm+lFLlJ7/5DXRRnHQttauoneZ81wopZvT8xFcfsaocaIvbbDje3lFCxJeM\nsoZH52dcv3rDPdy06RqSj8wpMOREjSOFSL06oW4dRUV8dhBmamc42Z2xdtC2sB+O5OpEVjPXL/Dz\nvAytPMkYplyIs7ATu65h1dZSZitFIlM5h60ESmIVaFMR80z0kvBbKo3VFn8caeqaaETZm5jRtsVh\nlr7acvfqJUUrbqaJNI7oqub2+shXv/5lxjny7Nzy3/31f8z3Lm8wxRJSJHhPVUV++u0zfu4bz7m+\nPrJ58pgpSFtjKkOcItpYfBC1WilFdALLTVaKIkS5Vkq0mwAAIABJREFUkAosfL60KDbNookXKXfM\n+QGbLuavhcK7cAdilG2Fj4lUoChpz7rVmqqu5X9V9SCKuecuKs3DQSVDNdniiMFGbhyLpdiCTrKq\ny8sgLyZJHDoeJi6vr7l+9YoUCienO1brjhfXN2yM5p2vfJn99YHRjwx9j6kqfBKepFEwDQMnZ+cE\nBdfDREmRFGf640RT1RhXoa1m7AfZJKApRrgUKkt1lBdq8X3smig+5eeJMZFJD/gz2c7K4DCn9CB4\nizFxeiqUqHGSTUgMcvMrYJjG5VDWyzYjU9lFsBTC8j0CZhnWtnWN1pr/7a/8L5RS1G+9J+EHWBmU\nZeJ6OY4000QGXt0NOAOPt2tujp7ZJTablkeVo318ztyP7K/vOAwDVwtTPqdE1TUC2ExS2m6UJnqP\nbizOBMbDLD1hq5lCpsweM9+xvXjC7BP76wP1qeP09AQ/C1NvniI+K+aQOHoPpbBSmhzlokQbYhHl\nXC4SAhtzISgFOXC+3dDsDOP1FTkaboZbvvPhNT5l+hg4HDNff7rhZ/7YzzIdb4hHz/HmEqzGBU8X\nAnfAm8sbUol88J3v8uhkQ2rO+bHHG0oxXO735LkwR0PUhbpbsd6tqbsVN0MgZ4FrlGNhu90QU8BV\nBpUE/JFSJGvBbKcQF/CyBHuwcPtTknzJotSDTVYrsTYv1fziATBLzkKWC3B5Lx6Sg3JkPNwxHi11\n21A3LXXTPFQG95iwHKNUB1+YK6R0305AVpniJfj1nhAJmWoZVJ6fbdjuVoxvPyGMkdHPeO85OT3l\ncHXLr/3ar3J+eo5pG6rUCfsizBRtCTmgq5p+HOlWHRebNX6amftMt61Q2nCcPWA53e3wzcRhHBln\nT4ywblrII/08Yp2jciIWksMzYY3FVQtLMyWMsUvmYiZ40QXEGB7CYK/fBFnJKg0LXDUtTEZnHTFn\ncXIum2/v/eJZkTmQMYtYS2t8DFTmhxR7pjMUJbhpn4RNOIdRtOb1RMkb2q6j261JJJpVh/aR1DZy\nAcaM2rYonyhaY7qWME2CB68rpsVfj4JSaQ6HA/0hs21btqsV/e0tt2miOjvj5PSM1in0/prQT3z7\no1umIqKd232PMopdW9N1Neu2pqkWfsAcqNpK/PwhMvkgJh7ruLu6JjqFnSIff/wZv/z6yEfXRzSW\nbdfwYn/k5uaGP/UvF9Znz5iOgV/7vz9ivLtiheLZl97mWcpsdjspG1PGti2v7wZaFfjD75yS7WP2\nhwMZTWHm2arm1asb9v3EgOLZo3NK1PTjzOvhirq1bDanaGXJOi4iF1BZnlzWWupKLrKQJdcPCyZb\n6eFLIZlFgVkWtr/WqCJrMF0kWiwj2QA6RqISRFtaoJwheaajZ+qP2LqhaVuaboVddv16ySzUi4lH\nlJQaskIZRcrCdUwpUhbWm4KH2DaVM04rqqYlV5lSVhImkyPzbsfl1Rs+fvmSXduxWW3QNeh1Ja4/\nt3qIYj/OHh8S0YvIKxZom5ZVU0GKZB9o6wqtFZ115GVAqKqa1shTPOck1YyRv2cMHr24OzOQYqAE\nyVS8NxHJNiCBysxzRGuRyYdpXmzpWfQFWj9UQyBELoGnLE5bpXDG4qzFWJkv/J7gJv88XwWxC5uS\n6ZYQkccXO5racNE4NpsKVxL9zR2ubWjnSD9N5NpJvzcMVMYSVMaExHx1gypZYCOLndnHmco6YR34\nSHN+weat53D7hlINfHg70qUjJycn3Lx8hWs7PvjwFW/6gVFXtK3h/OIMpwq7tSOHgE8BEzQ6ZbCK\nHD06O4x2tK3GNDVx39P7yHeuRsLNnvOvfo189f9xvtqQyWxax81YcRMn/sHf/RX+yJ/6k6zfO+Nn\nfjby8uMXXF++4c3LF3z9a7+fNx99wPvPz7mdIPuR7tEjfJy43nt+9KLhzeYxZu6BlrxAW9O6oQkz\nJUOpG1pruZlmPnt9yzdcIbgVVmlWzjKnjHU1xjrmmFApLrTfjF9KdKUSKQNFY0omLxdVyhKprhF4\nTM6ZKQhZymhNbQ162RZV1jB5T2U0VsvXhunAYR4IwVPVLc5VNF0LZGKWkjj7yFwSVdUQfVxw4cgT\nMGdUFnNUznGpJJbwEZZBmlJUlabOFfPOcbJZ8aV33ubDzz7hw48+IfYzTdexPrkgzqOE+J5u6FqL\n3m2YQyTMEasEmqOrVgC1KXHzei9P/MbiR8/UDw/hN6pkXCUuw8l7sIbaye/NpEQOkovoFyVjXJ76\ntbMPGyuQgFg/eLpuJUDUnFmvV8ScsYi8OeUkmZVJKglrjQS2OrvI6zMxRb5vb/CF1w9sZvCn/8TP\no2Ok6ypUTjS142zbibY+BlZNTSyZWok02FnHMXh0Nox+plhN3bWkaWaeZzbdikAm9BOulotq6Aec\nsWgDx16gm2jN9vSMx2894tWLS8ZpYt8nzp8+ZV0p+v6KGOTiq6wl9JO4qJSCEJZ1GeRxoRU7iyky\n0HJK42OiOzul+MDc94RZ886Xz/jrv/RtPnxxxbqx/OQ7J/ztD/bc9J7f9/YZ/8of+gZtU7GfZTft\nk2IcBubbW17cjEzDHY8fXbA7q7h++YaTzRm+abj77BNAs+vW1LXo5l+8uuVi1/LRzYFHXcN2tyOE\nGdtUoK1YuClM0yQrMjSmqilEgWKERFb3T3/NvaUml/vocVEQij9DPp6WNJ/7PjklGZTpRe+vlLSE\n9zh3wbXJ78rHRCxQMFhb0a5W0j4sfbRZvofWaknYXgaX98aoxYmZl778i9DP+9QjrSVJqyB/RxCZ\n+hwi+77nxWevuby+wVYOV9U4Y/FzpHGWzboRF6efUFGe/s5WdHWFrh0ZMWqlZdsVk2DN/TJDua9w\n7unH2miKAh+8XD9KE4Jf2ilkQ/AFQVZMUQ4VBG5jlJFkJK0XtLqROcRiTIopLi5ceY8q6wTuGsQK\n/dd+4X//bWcGP7DD4M/8yZ+jVnC+ackl47SmbhzdqsPEZdgVPco63ILWSjFTGccQg4RbImATs4RF\nRCMXWt22OGNEH1AURhX640jKssO1ribFhC6Frl3RY8kl0OTIsO+5GUaevPWEt56c4ZpOiL3jyDB5\nEgLvTNETtZR4+8NMPw48Wze8/ZW3WbeGcH3FdDhQcsVNv2efHL3W1Bkery17U1E5y844VO1gOFDv\nziRCbDywahtss+bu5o6XN3c0pbBu4FsfXfL07ISmqyWkNWXGJa16ngq//L0XtK7w2UEm4rumZldV\nXPczz09XdF3D65s9e594tGt47/GZ6OpVom5rjtcHulVL16wAAcCkJKEpqRS0tQ9pv3khMd9vrO41\nAiUXhnGGZR8PoLSAOZF7EYCQBDoqT0Wx/CY02spN2bQtdS1PYmU+D4u9H5QpJbMnozRFF4G9L05J\nreUg00o94MjKItOVDUBexE4CvrkbJm7vDrx6fUXJmfVqRQaCD0xTIOXCtu0oKokBzDnJajD3DETQ\nxkqLFSIhRmEKKKFv38NPYgiyucji2E2L+vM+YTultHAh5Tfqg+c+del+6BiisDYBmqpZ+BJyIJbl\noBXX4gLkUUJaUgr+6i/81R++AeJvfvqGde2ougo3z6x3p4Tome722NpyumqYb4444coQKstMll5z\ntYJSaE5XHG/3dK4Rs1CKGBRmzkSVKDkSpkDRltW6Ed22MdR4nLP4WPjsxQu+96pn9eiUrYo03ZaL\n3ZZtpXBlhvqMfHVFbQxhvSX1NygfICRCSQyHSTgHDWgbOX/2lEfvPOf13/k/yaPman/HXR/41Y9f\ncDPDu2eav33lWTmFCYUf/ZFnvPOo4vJyZPXmmpNnTyhk+hcvaC4e0ZTIeWvx+wMutfyBZ2v00yec\nBHi9H6kvajaD57A/0NSOi23LZzcTXzlf8fp65s0x05wpstOUpqKua25Kyy9//DEXNzXHKXC6qvnN\nq4nvfHDJ9mzLOxuDKpExWuaQePfJmq+/9xzHcpEtCK2cs7jrilB48yI9LqXQdq1sSO4l3KWIMYuy\nYNvAYSjaYHICZ4kxEXIm5YDvZ8bjHmUMbdexXm/p1muKj/iUKSpjlabqWlnXGXFMyumjyTHKgaD1\nw3S/qIJVikwUcpUW2K1xgd2qYdvWvP/sgldXN3zw0QtsLrz/7jMSio8vb7jeH1itOzarlsNhYh56\nnDPYpqGxDq1kU1VrhXVWFJrThDGOxkrUWzGa2jZQCj4ErHVUTUM/TUzzhPfiLxDkuUcnu2gvltY6\nZeqmEbqS95QsLdH9711rxdj3iw9F2uV7wZb9XQaIP7DK4Ce++fuoNPz0u89wW4fLsG4rzBIdVrUV\n4+HArumIrcMfBooTaEcIiccXFxwPB7CGPM0L91/8cyHlBzx4VTnWXc2T862wBqMnTxPHfuTybuI7\nr+74tZdHrvYjlbX84fcueP9shTaZ3dkJn7w88tmr10wl8db5KU/PVzx79zHHu555OPLq8pZffz3w\n5hhpG8fXH295drplf3fk9NEOrwy7VuMT/MOPL/n40z0v+oGTruVnf+x9xv2e3/fjP8Xlb/46qXge\nbRq61Sm5sujkKSnRmIq9NvjbW/7+tz7h+UXDdi2DrGq1BTJ10xKTws+BYRyYsmd3ck4AuHkFuuai\nGjkmzesh8Vf+0SU3R0+dI2+fbfjme2/hKsU0jHz39S13/UxdGz67EeHSj79zzo995S2quiGEuASD\nLDCVAnMIQi5ytZB7U1wewHrBqkVSltYh3VcESdiNMS9qORSpJFhaj5jBxyWt2DqMcZycnlKcw1pN\nYxyJQt00hBSpllzMjAzkpHpYoG9aE0umUlbWkYtWAe75FpqSBSxamZqkElc3e66vbmkqy3q7JoTE\ni9dXHG731At9iWzpx0m0GDljSqHrGuqmEmWqcxz7gUM/kooM/HJamA9a1opGaRF/JVlNjuMo2QmL\nDkGCViQ+rVDQRoA2JSViSAI+XbYIsKhkF0GSWsRdeaE+/T9/82/88FUGP/b+W7ROUWnDxjlyzFRa\n0+7W7F/fMA0R5Sx9msl7L+ETYUIph6k0tjOEyxFbWVxdMYdE0UswZkyiErOaafKsKifqtXZFmRTz\ncSR4T0iBu7lwmCPZFIYc+MUPX/Kdlw1ffnrC1zYXvPeNr/LOV97h1XHm2eMLKiIffve7nLczrjuB\ndsdqBWenLSebltO2wpNx2xUYwzh53n3vy2g/87PrhqunI6w6WR9WmqvasLKe001FKS2mqTj6kU7V\nHPojq6rC4ykzrHZb/vC/+DX8NBO15nh7B8oQjwPKaW7vBlpT4UPi0A/cHmZ2iwvzMAzcpJlV15KV\n48n5GdrsKT4yJLjrb/kj773Fav2c568P/P3f+Iy7vuekjby4GfmHH1+iVOYnv/E+Z7s10zTjY743\nc1JZjS55EeyUBYIhkW0pRawGpST6S1tFRDj/qhQqc7/GTGis+COSzBMqZx40DyEkbq4uQTtMZdls\ntriqoswzlEwwss0oWi+HVPn/2zuTGEuSs47/vohc31qvtu7qvWemB49t8Bh7RuAFcfEyHDCc4GaB\nxAkBEgcsc4EjQkLixgUjGR+MhBCWOVh40WCBwJ4Ze1aPu2fr7unuqnq1vKq35suMzAgOkdXTHtxj\nG4vusnh/6amy4r2q+kJR+WUs/+//v21Yqp1n9FV1JYAv5fZsvqosGY7GdHtdFEJhC0QcS52UTqvB\nPMuZZRk4y8WNdcz6KlleUBQ548kUXIE1QuX83sh0OKY5D+i0W4RYlFgaSeTdoauKwviNPl9+7Avd\ngjDAhVDZgFYaU5Qlk9mcqvRqXLeL7epyI2cdQRgRaC/Maoy3WLu9jKhLyF3lZw1hGKLkmJ4mlLMp\nvdPrRDpkPpsQ6IjBwYQVDSoIMLmh0Wsyn84QayhLRZq2UMoihWWwve1rhW2JituIy8jmBaEorAQo\npwkkZJZN2LUlxhhOTnLa7YgkCamqiM3NAVc2D8gqEAKvSiuKvBSKrUN6yx2agSWJNJfOnWEymPDS\n5Su0Oi0C0YwHE+Io5OKpdXTagnyCFQOlJUy8W9NqI6V/4wZhvcMeUJKUJQd5SbPRox1WZOMhOk0I\nVOSTlHUMBockzQaD0ZjlTsev2ytHNZ5SaUWv0aG1EXG4N2DrcMSz37nKrPKyYFlRkhWWJFBsLLf4\nyPvOUOZzpvOSvdGEi2sxn3ioQxytczArGA9nrPZaHGyPGKZzmmnKSmpRubC0tkJv1bKzN2KSV4jJ\naMRtdNggmGWY0pd0ox2iS5Txx2FFWWFtRagrHF5qTaxFB97bMVCK0nhSjrGOAL8x6MttPTvvSM3X\nWeUtNBBMZcjMDJM7ivkcpQLSZkqaNrBh6AVMxYu/BnXRjgTasymVQil/E1bGb+4dmcq2Wi2veu0n\nDd7rQCu04F2imqmfzRSGYj6hzGaESnF6bQ0JNNN5zt5gxHScUTrH1nDEzt4up1eW6a6uECYho+GY\nyTSjqglcyjlCFHNbEtbeIFVVkkYBodJoEpQKmeVzZlmG1srXVdRK3mW9FBJ8AZhXOPLiNaKEIKj3\n1ep9iTw/pgzER3/uEZqBohUl/Mp7T9JuJ9zYHtBMUuI44WA0BbEoCYg1ZLl/2nQaIaO8wmHqTJsR\naUVTB6gwoNGMscYSRgGlKHKrmU8yQgnQIbSigNVukyJwPPnSmzz9Sv+2CIdoRTPy/6ylKVmONB96\n37s4uxzTTBtkpuTm7oCzD1yk21siq4QbL75Id7mNKh1lWRJEIYE1GPA8fRRmOKF3egWVtMmGI6JY\nqJyG3BJ3GxSHGd1uzP7eHlGjSxInFJFiPhhjXUmgoQpCYhsiccTq6VVWe5pJf5NnnnuDb7w6YG9W\nQFXiVEUiIau9NqosefBEh8O9MUSaVFcknR6v39ilq4WPPLLGpbMdNgczXrk5Ym9qyAvD6/0p+7mj\nk8RcWk14z9kerZUl4igkn85JghDREcYKQeiY5TPySoiCmAAvQV9q5YU6Sj+V9X5qgjVHrDzvuGxM\n4clOStdVkwFFkeNqhyXPKfDj4+p1tidAKUrryAt/Q6A1aZISpSlJnHirtXpj2YpXERJ5S+ZN3d5k\n88pMlbi6gtI/qeVIkwDnly6lL/ixStWCpMJsljGeTshzQ6RD4iAgqwyDwwPyovIsxv093GzG+TOn\nWD+5QZ4bRrOMeWGYz3O09ia7R9JvOG/GYqqKKI2xWIqiQukjolhFXlVkR9Tnqqxl/DVlre4U1iXk\n1nrikac2+xnGN//jyeO3TKiUZeQcrpxwarlJJw1IVZfXtwbc2h2wN8vJjCegLKUhaaDpJjApFJO5\nY6OXUFUZY1NiKih0RTaZUmQhTiwnOimrS21GWcE0ASeWeek4nDvysKLRaaJ1g0YjxZQVlfVqx0X1\nllORqSxxJyXqNJiORjgVcuHhh1GTIS89d50zJ9eJ2x1oLTHr77F3MCJKI7pJSqQts4mhcMJSr+Wf\n1GZKGEZU0zlhJFzp9zkna+AqXn5ti5XlDlEIhhJmJRJpxlu7BM2UZkNxUOSU05J+f4t153joEx/m\nm1/4FiP3lvfiapzwS2darHZjVKJ5+vIurw7m4Lw564MnHR9//BJihbww/MtTb/KuSycJWy3y6Yhc\nFK1eyKl2jNLCC9f3uLw/40Jvl0fPr2LRhHFMpwmFcXREMHPD89d2mec559fb4ALOrXdppSkmCCkj\nVz9xHeaO48iqMoShpjRe89/7OzjCQFNaiAMNVelLnbUgKiDSAfM8R4ea3BSkzYhrW3usdtvMRjnF\nbMpYh8RxRBgnpGmDOIkpVa0QrfVty7mj41FE3fYjsFJ7StTHc/4m0dhA18xrX/ZeOv80XkuWEbw9\nmjGGiIhOM2Y2mzM8HJH0lpg1GtzY3mWrv0u326XV6fgNy2aDoigoCsPWTp+N9XWv+FTTi7PZzB8Z\nOpDIs22ttb7eIDjSNvT9KvL89gmLtV7QpKqTQVgLsRzbQiXBa/Y/vNKik2iiVkzPVbS0sFlaBvOC\nzAglFf0hrCWKD7zvLEJO3xnMdMLEVUyykkgiSi2M5wU6VIRpzF6WEylHkRXghINpQVEphgVsv3Kd\nRhBQWViOA7IgZJLlKAWNIGC12+XMcsyFiydY6bQoDsck3Q6Hkwo1mnJwa4unr93kxLnzJJUlyIfE\nQc7Kaspg/4BCO6yO0J0mRX9IuhwznsEsMGjmDAYTmp0WptJMRwPa7RaNdtu7TM0tB/ND2kmDINSE\ny12C0lIMDjE6wDqhCEL28oz3dDt87Ilf5R+/8m88tNpEuZLHH+jQk4rxvOJgP+f8+hK95ZI393P6\nhzO+f+OQ0eHzPHZumeVOg/+6sskbA4PTYK0wmRVYYDCaMTOFN5El4upBiXJ7/MLpJeIkYlYY4iRk\nWhqSQGikCdf3p9wc9Ckq4dGDAa3QqwYvr/fAhQQqIE5jTG25Xkm9sRV6ByYEtPLr4ShQtyXSgsBb\nqftTCUsSRaCENG5SGMP2/j4XNlapanpubmbk5Rwzm2KyjDhNSZLUK1sruT1jqKylcur27MA668Vd\n8WpGlb1D7t2XQtS29b5A62iDzwmIWOI4qGc9IWmc0uu2qZzFWGE8ydjf3WF7u8+NzU2iOKLd7rC6\nukZ3qc33Xr3CA+fO1GYpASKK0loKUzHPptjS+Bdens05aMQJ2TyrzX79TMlZbzSD9bwFb+fui5uO\ncTIwbDRSWg3h5mafl7cmXFju0Vjq0Rw7TocxV29tY6oQHUWc3OjQbcLhbkEkMDaOYQ7b45JTqeLA\n5JRaoSYFYSEEaJaX2kgrxOwPsVjG2ZTDyZxJrrhl5igJMEVBGmk+cG6dhy+cpNfpUhyOybOMk6sb\nOAqmbsD1V3dIeycYZfscGsNgOCM/mGDF0d/aItKOCx94lNf7z5O6jI7VvHFrm/apVd64vsvyqTUi\nHKYC3Va0T56gurXFfhny8tUdIhXw4Lk1RoVhHsLy2pKn1ZIynhlmoSFVGqNKklJQLc3w20/xi6dW\n+UYakg1zXD7mmWnBxOa0GytEccWlEy3e3Vvig5cCrh5W7O1N2DyY861bY9qbmVceSlKub/dpiGai\nFLk13tlZBYRWYWSOiGI/E/rjKY+uJKg05snn3+TZV7dxQYjTgrEloiHREMYdHrq4zFee2SY5yPnl\nR85zOJ5hDw+JAk2SNhCtiOLQG7+UnqNQ1XL0lTE1k87zHMJaRKaRRuS5oapKX0EughLQ4tWarS2J\nGiG2EkxZkY8PGU/HaBXQ6S6RNhtEccx8Pq/9HDy1PFDKG/EesRjrkwhXG9+Lr1LHiRdcOTKOcbZe\neKja/7KqajFYnyRwikgsa70Gvd4FNs6cZD4v6W/32draYn9nj267RVkUYK33/KgcpZkTxgHNRkgj\nXcJay2yWeWk06xmhtiqJAk0YaoqipKgMpnQ4W9W+DG/FQ1nednK+G+5bMgDFpHDcHFdc6Q8YzguC\n5gofOrNGYS3KBTxwpsfL1wdok/PzGwllXjGrcqykDOeGvdEcYy1XhxnWaQoMVyvIizHtOMYpzYMb\ny6yev8iFpS4Wxc5gyPatHYwxrLQCNtbbjLMKDGTDIYNZzvrpEyy3T5FNBmSTjFubA4IkYrDbx1ae\nmTYej9jav0mkE6ooJGg1ufXyZR67uMLWzX0yW6CaLeLxhMZaj+k449o4Yz4e0kwTkuCWN/PodWgg\nXNvc52OXzrN1WPCNr/0nNq+4ujlipaXRBLz3gw9R7M/RQYKUhmkR8p3Xd5m+eJP3XNxgvQUje5H+\nzhA7G9NNNOfWevQ6HfJIM+jvoU3JY+d7FA8EDDPD5mDC1acH9HTAXqPL1mRKWHnPIL9Wdijr3Zpm\nZUVV5TR2LacSYTk95L3rmrR1jhdujhhOM5CAJI6wrmKUG6Lc8WsfPM+XvnuNf/3uFR57+DTNbhst\nEcYZVCXYsvLTYO2XaTpQ3tHKeYIO2jPupHYXVrYkbcRe/ccrs/ifE3+e7gL/hFRa/KxCK2J8TcNs\nuMd8HBAlXqYtaqRUxusTujD0NS9HnhDUtGZPXeRIwBXniWtHbKojLzHlLK50t/UGcNTOXV53sqoc\nzlmaUUwjjllZepCHH7rIwWjITn+PV27e4sbWDloHJGFAs5EgBmzpjwfLsiSuS73z0pCkIcb4JUsY\nRaRhQFWF5GXJPDfY0OtDFKao+R6+svSdcN82EO/5H11ggQUAjhcdeYEFFjh+uJtBygILLPD/DItk\nsMACCwD3IRmIyCdF5LKIvCoin7nXf/9/CxG5JiIviMizIvJU3bYsIl8TkVdE5KsisnS/47wTIvJ3\nItIXkRfvaLtrzCLy2XpcLovIx+9P1D+Iu/Thz0XkZj0Wz4rIE3e8dxz7cFZEnhSR74nISyLyh3X7\n8RqLt9xu/u9feOm/14ALQAg8BzxyL2P4KWK/Ciy/re0vgT+prz8D/MX9jvNt8X0UeD/w4o+KGXh3\nPR5hPT6vAeqY9uHPgD/+IZ89rn04CTxaX7eAK8Ajx20s7vXM4HHgNefcNeecAf4B+NQ9juGnwdt3\nYX8d+Hx9/XngN+5tOO8M59y/Awdva75bzJ8CvuicM865a/h/wMfvRZzvhLv0Af7nWMDx7cO2c+65\n+noCfB84zTEbi3udDE4DN+74/mbd9rMAB3xdRJ4Rkd+r20445/r1dR84cX9C+4lwt5hP4cfjCMd9\nbP5ARJ4Xkc/dMb0+9n0QkQv4mc63OWZjca+Twc/yOeaHnXPvB54Afl9EPnrnm87P736m+vdjxHxc\n+/M3wEXgUWAL+Kt3+Oyx6YOItIB/Av7IOTe+873jMBb3OhncAs7e8f1ZfjADHls457bqr7vAP+On\nbX0ROQkgIhvAzv2L8MfG3WJ++9icqduOHZxzO64G8Le8NYU+tn0QkRCfCL7gnPtS3XysxuJeJ4Nn\ngEsickFEIuC3gC/f4xh+YohIQ0Ta9XUT+DjwIj72T9cf+zTwpR/+G44V7hbzl4HfFpFIRC4Cl4Cn\n7kN8PxL1jXOE38SPBRzTPoiIAJ8DXnbO/fU8RS3vAAAArUlEQVQdbx2vsbgPO6tP4HdTXwM+e793\nen/MmC/id3efA146ihtYBr4OvAJ8FVi637G+Le4vAptAgd+r+Z13ihn403pcLgOfuN/x36UPvwv8\nPfAC8Dz+BjpxzPvwEXzB43PAs/Xrk8dtLBZ05AUWWABYMBAXWGCBGotksMACCwCLZLDAAgvUWCSD\nBRZYAFgkgwUWWKDGIhkssMACwCIZLLDAAjUWyWCBBRYA4L8BEXB9iNhuVz0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(deprocess_net_image(image))\n", + "disp_style_preds(test_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Whew, that looks a lot better than before! But note that this image was from the training set, so the net got to see its label at training time.\n", + "\n", + "Finally, we'll pick an image from the test set (an image the model hasn't seen) and look at our end-to-end finetuned style model's predictions for it." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "actual label = Pastel\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAEACAYAAAC3RRNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvUmvLUmS3/cz9xjOOXd8Y86ZlTWg2N0cJZGE0N2QFlpo\nJe0k8DtoI0hQt8Q9CQr8ClpoJ30CQtBGgDZqiE1ShNhTVXdlVmZVTi/fcIdzTkS4u2lh5hFxX2ZV\nE1CVXgt4XvXyTufEiXA3N/vb3wYXVeX1eD1ej9cjvOobeD1ej9fjr8Z4rQxej9fj9QBeK4PX4/V4\nPXy8Vgavx+vxegCvlcHr8Xq8Hj5eK4PX4/V4PYBfkzIQkf9YRP5ERH4kIr/36/iM1+P1eD1+tUN+\n1XkGIhKBPwX+I+BnwP8J/ANV/eNf6Qe9Hq/H6/ErHb8OZPD3gB+r6keqOgH/E/Cf/ho+5/V4PV6P\nX+H4dSiDd4BPVj9/6r97PV6P1+Ov8Ph1KIPX+c2vx+vx/8PR/Bqu+TPgvdXP72HoYB4i8lphvB6v\nxysaqirf9vtfhzL458APROQ7wM+B/xz4By+/aH/7HJGAIIBQSkEERITipGYQyEXRXAgUUEURVAsi\nAgHsuQIS7PeKPaegqCqIIBLAf2+Eqf2z7+3zRQQEBDG4pPZ31YzmTNGCYq9XVf7xP/mn/P7v/VfE\nEAjSEEJAxa8fAhDss13tzX/zERTQQgVSInZdEb8XsM8siZyLXaOoPWep9wGEQIiBECOo3UN9FtQ+\nU3JBgt1Poc6toMA/+kf/mH/4D/87nw/7PUVBFbuNTNFMzolSiv3TssJ/dt9BAiLNfP8iYnNS1zIE\nSqnPujzverz8u/q9qmIrL3bf/vt6P//kn/5T/pv/+r+c56+UQtM2oPXzIiHEeV7vfiagAQmBokoR\n9deJyxvzdYIqNo1CKS4fRdFi6+hSRZAw318IgRDCMi/BvvqV/T3CP/rH/4T/9vd/D8H/pkpQf62w\nrKvLjm3nRabrHNW5qX8WrQ9pn312fu8bc1DHr1wZqGoSkf8C+F+ACPwPvzySsN4E3HkYVWzyNBBc\nESACJaAU30wABc2rSfONovN17gqdgglvsA2wdmwUpRS7Bn5PYAtQstpGwAUaIedCkUxUbFOGiIpv\nVFVMPYW6N32jClLqvS8C+rKwBgloaBEplJIpFFTLsrg+HaKK5oSESCAsQuHCFGNVLmrzE+z+6ufV\n+Qcll4LALPRKRLT6kwWhIKXMSkWLKWmbl8k/LyLSuIL3zy513tZKeSUF36IcQgjzmrD627wpxIxA\nCIEY4/wZdl9rJVtQNcVUN2aVAwRbL5cd+48sCkAEJLihKKgqxecrhABBKUXIJYOaTBQUWc1vnYfY\nxDuKoBoi3CiacbTnQn1dq3mr7/OpUJcot3d2PxIW+axzLFWhriXt28evAxmgqv8M+Ge/7DXiG0b1\nrpDMt+zaIBBA8mzlqApBBdWKK9bm198r4qjjm4Ims9n0DxK3hPVq4jpeQFQIsUE1IGRExYVusYCu\nQsjF0AwqEILfn6yEV0w1iAv6SvbXgry+Z/uMSAhCzplSZJmHZb59fhISDCUEYRG6IKY3RQihWtrV\ndNd/9beiFIQFTAYkCjEoJRd0SkQXxFKvp7ZRhIBmJZRiSmG2yDJbr4oY1khI1VDPei5E6oosaHE9\nP3VebWPGeS6apvHrg4ia1V8pppUgoAglyKwIgn+eurKdP1Wr5fd1nxVGIMZAcEQyrwU633NVANkR\nZkUp9twLAqlyWZXNSjQdccqyTFKle7F6RZdnrMpeHCLk/Jd75r8WZfBvM2xxfOpnRHBXa6rgllWI\nISIUt032d1FZKRN8ceu7ZXET/O+2NhX+LsI2uxYOnes0z9BPhSARmoDkBAi/+zu/ba+YhdQUAgXb\nkJgQiguZlkKIoSLwGfbWIXKXy1VX5X7LgCklCUou2T0MdZSzgotFKWRDFVIVkAmJloIWQVbw/Xd/\n93fcEJZ5Lmf1qn5fgqOwQowNMZgVTikhudhnAVmzrSugYhs/+uaXEOZr33nGl76u3Yt6rfXfFvkB\nxNbyt3/ntyEEu6+cAMg5LWtedAYWpeisIARBxeRovrKjJ2SlMKnGKtjMVHd13pAFiYEYxJSlKpRi\naGrtsvmcVsVkc2sy/zu/+zsmE4ugLmsh1ayv/vYtCj0s6oHZFJjdQkTvXvZbxq886ejfZoiIHm6v\nQIL5wSv3YHZxfGjV06rmpxleM8inVRMbLNNqbN0CLyZv8VXr1ztQkZcg87wZfHNo9YEFtJBzni2h\nlrJsNoeYwX3UGCPL0ty9nYpbZp/UzZD45q0Qb7FwYUE4YptBi29gZfZbqyWoPkS1Dg60KBgsRgIi\nrrSoaKGsBFzubL5FK7nq9M1asrkwOSdUy+xL1zkVCYQg7kJVRiZ8c85fch8kiG9W/9xviKmhhTuI\nT4yjCUHIKd/hoXS9CUMgiM9pWG1KVUp9Zr8nk4dF4VYzXDkgWU1uxYg4j6DzXFSDtXyOfR/M2ss8\n4/XRlt+p2nrN07+C/etbcreuohK7zMJMmHcpnF3c5/9LAvHfaiybzSyWWSv/eUU61WkCcR9/bYl1\n3gxFFSluVVCK7z4RXQnbamNWGAXzrM5Kt0LQ2e1Y4FtdBZEIpZgfX9Qxi22yokrRRC5VYOplFngo\nSPUpWNwhoeiKzJzRwiLwpgwiIhCiKaAK+1Xz/JpZWMSQygxyKzx1oVzg5CKIdW6WX6wFbNGoEgJR\nCpJtg5eS/B7czdKKOCrYD279bDPU+a7PWTfJoqhdMa/up/rs1ZeuvAKrNS7uKphbVWVqccOEaiUL\nFMPiMUZKRVIrL6wqmOoWVDeBRQznOTGfXmYew5RlNmS4UlwLiW1cV4hOpDuEleobIChhVkiVb4Kq\n/O8s0fz9jIoxlxSEIgtZ/YvGK1MG1RmqAlBhqrivDQsbW4Vi3ryskJRUgsh+UbTMVm+xtmDCqctG\nZGWQdbGgM0PMMnl18YyUqgvl/rOuLaOuNh3LfVVlVYkibBOHGNyVMIhbf56Jv+pmEGY0ZI+kTqzi\nc+f++0r51LH437NOo8odmL7LLMJWgQUsFtWUakUPzIImrrCCmGKTbB+ipVA0O4KwZ6n3YZvX5mgm\nCFfcQUUdCLO7sOYGbHPqAvj8a/XPV/vYOQt/b/B70OL3UhXPwvRDgEjFhbP8EGa07Rt7UY710yrh\nrFLmv9T1NJRQo2FVfp2odY4FBImLYpsNjj/UtxGvd5DbDGhsQmYpn0HVYgx/0XhlymB9a1XQSlEj\nvmYBEPfxWG2GJbRWwOBq3STqcAg1FDFD3UVhyHoRxReBqqnrRGa7utb3ZcAWtMJiLYXsML0qhJf/\nqfp7ipqFAGZlooKGSg4aZAwx0LYdQaL55rEhNvZ9iA1BAiE0aH2PsmLHl033sutX4XII7uogjpyW\n+Z/h7wriV0VQ5yuEOG+ERSks6xJiNLIuZaS4gme53kLkGjpYfGdZ3Uu1siuFX2dupTTqC+aogTIr\npfVrY4is+QdlJSuO6qjoIzgyqBpxpWzAFToeKZhv2Hbby8B73oCzW2JhanMxXfk6OpkViaOMarC0\nqIPTipCWEOu3RV/q/YiKha7Xvw5xpcC+fbxCN6EKCczadQUXQQkS3RWAJUTiizhv7no9+68obtmV\nO6umy7ZflmqBpFWNiqj7fIqWjGr9VzzWnik5U3Ih+abPpVByMpicJ/t7mfw9ZiVRUyT4/RfNs0XH\nCS0jKgMxdvO/pu1omp6m62ka+z62G7quc8FtzAsPFsAUiaZ8NPu1HWWp+7AIYZYUU4gze72GvDOi\nWq3YbKFWgig2j7b5lCCKNCAZioYZ/d21SovL4ujb13uB29/4fIc169Bzzbm4i/YWBDhHEERml9MQ\nVGYdLRDstQGh+MYk4KRnDe1V+VLnjlyCpd6bk8+zC+F/rygqBII/U87iDCj+Pp8bv/fiz2OoJngO\nR3W1vrmhLVS8rEdFSkF+idL4lvHq3ARfDNw3N4LOQyyLMVr8H61a3bUtgqhBsDlM56tdSSehIA6b\nyrzsizUO9R5ccRSKJxcZc25+v21ycwXyjAq0GJFIyZATlASaTYH4e1Ttd2RLHsLZ9kKa761a8opq\n1ow6BELskdDSNC2h6em6He3mnK7b0nUdbbehbVqaZkmsiSEgCqmkGdaiJka5ZIp4eK8SeRVLOpew\n7NBlsy7Ta8hGwEOwy451gt/I0xANzvtcraM+C6IwPmFOCArL2jJv+rpZ1sqnJphhYVNdR2aWcFpF\nQfa5MnMs9lDZyM6iKHlxVbNFuYLWzSsrdGDk7qLgFo5h3m6zu4k9O5UodtdHIkKgiH8+tjbzVnfr\nryiiFr2ouSVmMJifB7ijBGoOm5GkK7URZLVKv3i8WjehavEZzt/1idYwtP7awiw+sQhqgfPldchc\ncFF0YcdjCMSmNW0JbgVNyBSD8RmLA5uQmJWvELOsBLo+gIlpQaTYPRVzKSoqEc1ARrCvs3Kon5Pz\njFRKNkRisUlL4hGFnBogMEkAIsfQIt0psd3Qb07ZbM7oNid03Za+39A2PbFpkRBpCObKeHRCxDmV\n4pYjVNjtHIsTXYvXy7IHZ4S1oC1xKD07WRKYQ3KzdcOeqbgrpXl+/7ymuvosrQZhcRd4ST7s+qtQ\n7IrQC+GblnCRM7vHEASKJZ0VKoew3i6GCrMT2xKCJZWqJ5AJgOe+FJ1dBBG3+DP3siKL/QaLK93Q\ntASgpDS7Ouv9YM+QQSwvYcmKYolksEYFpvxm47KIqa1DyS8hvW+OV+cm+IMZEeawMQhBvxlvf5ko\n0VKWkMsaCskKvsEMD2PTEKnal9mqqcfO8Z+XeHTlKapVYd40tlmrz+3+ZoW7wuyzVqe8lMU1mEm8\nYnDTYG5Ci+UFEEy1V0UBIE6IGoxuSHmk5BtkaBj2G/btCW13Rr89Zbs7p+9P2O7OaNvOSEkxlFDE\nsgbXpF3OeZUuW+1RVXK6rBEVHbykuOcpEs/UW1n0FeRfSDoIRVaWtbhuKYYq8uo6da2/BeLWfJB6\nbzMTv3IR6jPW16+NjwpI9EhVMYRJWcnZrKwcNajxR8GfocwKizvzsJZT12t+vRlXzW9S3LVrG1OU\n2ZS0RSQM4s/uLmryWhQJ0SIgqCv0NS/2zYQuf5DFFfwl45Upg5qNZ/OVV1BL+QYbA3d8nzkRBlbC\nB4gllVBsMmO0WH9w2FnnwixfWeCfQ08LB2WqO1HcTzVhxjaMLgk5ZkW9bsF9ZqM1DQXYv+wcQUF1\nWlwQzKWwMJtS0khwUs1THy1kOacfQ5G0uEbRFENOB8bjFcf9hv3NKdvdJcPhks3ujN3uhKbpDYYT\nES2zUMwbw5HPQs7Zw9lG8EgBq3lgmTab1tVavbxxK8TGHwmDyFoqKRtm3Rkwq1YqQTgrBb2zmReC\nbU2HLTi9EqqVL5g3RX1u7gAJQhOdA/TfFH1pM6nh74K5V7MsVHdG7rpXK+Spc2HK8r1QXQ9LHqty\nFxFKKGj2Tb+S+5yzuwk17OmhZTcSa6U3K7XV/jAEEb6Fbbg7Xl0Goi5Wmgq9ambcnFa5CmnpytLO\nntjKAlSXQE0gmqaZuQQ3Xsw73xL03aKswoiywEwpywLf2SBaZmE2QF1QsvELefKiJivq0WKFVmii\nlMl5hOKFR9X6K+IRC3H9FDBLERyG53p/pXEy0vBMICPBagJSOaBpTzreMg4HttMt03TJbnfBZnOC\nxEgIjX/WAkfr/K25Cpn/t9aXi29cFcFskVcQ+64lr5sXc0FEkehFU3lZt6WASe7eSzTyrP7uzkav\nlt1lYrXviBWer643W8wV91DdA3Md/XrBkGeuEaQaEanPHpb8l9mFYaVdZoFjUY4ul/7t/Psoqw0a\nhED0UKSi2V1PrfKOI4cMQU3BxyX8OLvUs5z757kbrSVDvIu6Xx6vEBks7C5SnHBxARWHrVpWfmUN\nQ9nUGOHm2h+dlUsMkTbGudhjmZiFWLIfVzFdtz4B17TUDEaDhLnonO2mJVPSZFa/TKQ8kLJ9X0qi\n5EyaRss7KJmcRkoeyGV0cjF7MYlaCo4LsmphgkWoi1qojmV+LHYfoeiCYEK2BQ8RJVE0s78eGccr\npuGWYdhzdv6AzeaUtttYhEbKbGnL/PnOnRScePO5koqSFl++Wsw7oFiW72eOR9fQeYG2IkJooinV\nDKFqQQnuMi5zoOEu7L8boqzrKiuLu9zVOscCt+ZBmQuJ4iwDVeasBqOUbOUwHnY0ItBQUC5KCdmz\nTIWa5muJXLhLKMsT+0Qs7pkbuopkagStqimJSLQ1p3hSVHVlFcBdZFVKDk6+LrxZRS3q5GRwxEqM\npDXn9S3jlYYWC+rSrx7GqTh+IXzmJa9C4MIWxNjh4qx+hVttNCb7DoWiaxmR+ft1yKt+V2bC0CIJ\nOU/knMkpkdPkP49oTqQymA9fJofsAzmNpDSSxsHek0dUR3I+zpuvOOchnrsgWMaiYom6wRN5YohI\nNAJRNCLSItIgRaxCMYgRjZ4zn3MihBFKZtKR25yYkpOgObHTS7puZ8ktnlptX7ITfPX+auVhXSmt\nOH9luVcb/SWvbrHI/v4Vv+IOmcPegEg2V0Pr2likoCTnT1YpxXX9l3VcWX8WvsPCamFWEnWt5yhN\nKXdhtIhjPHPRRKCJkSJKyeYeVC5KcK/BFXQIMm900UUZ6Vp4Z1lz8fYIWHUz1BXhDFrMByAGAQ2W\nWj2nxtt/ipoxKdnQYaxuiz/TrKzdNQpr3+gXjFeqDCQ4OaILoqoEystch8mlzuJUR3Z/t2kiXdPM\nSSZr+LpWBIsCcCWg7sWrkjSRfMPrrAgmUhrIyTd8HpimI6V+n46kaaCUiZwHUhrQMpKmAc0TOQ0r\nFyHZ+zxUaeRhMUZZCyJKLgkt0MaWGBpi3BBCT4wb2rglNj0hbGhCBzS+Rwu1Jl9kAk1ITowU0q0J\nrRYFjUCg7zdzXoOIOztaZohZKyMtg49ZoLSSaGGVykwVO31pjp0wnDMOq6CyWkFBg1G7Mrv9Yu7S\nnFfi9+8uRw331bqCuobVYzEEpbaRWKzz2l1Y91moCUZz4vdcAlyL40x5WR5CmT+vON9T6yzMhbFC\nsNp7YP05JufulrjhU9exhohk3sSzeyAgXhFJ7ZmQKylt6ehFzaUowV63rt5cZ3UqukJ83z5eXZ5B\nnpNg7f+eYFFruC1EXCeIeUdXGCnAmBIpJxoJ9E3rDTwWkPaScr4zZqvlVjmliTENTGkg59EThxK5\nGBJIyci6lPdM45407Sn5SCkDUgqNZIIkYhwpIdGGCXQiaEKwRJOchclzDkqy607jkSQjaVY6A2nK\nHHKgpEKIPTH2NM2WrtnQd+dIuKTvt3TtCbHZWMiUjVn7kM3JEfMrybcMA4gUYhMJbUNoIzF0EM3y\nBBq7x0qeuYXMGaSo+echLnUAy3IYrzJvxqp8F6Gra7D46qsNTA2+yMqK113tmZ3Z+aJZCVTru4Tg\nalFT/ayA+d21EUpVAnc+NywNSOo960pp+as8pRhC8RwRTztfXqdzQlfNJJWaFarru9LZ+lfZmwnb\nijpWvLjlCVheQRAITfCsVlhetWwRLV7Ru0ZAsCRlze7dLx6vtIQ5EJdEEMUIJlhL2kwggk9BMIWR\nSyGlCVHoum7xG1eLpIZr3Rj5ojhhWDA2NyXbhLbZbVOWMoEWckmkMpLySJqOlHxEdKANI02X3Xfz\nPgceRTCuLwCt3bFGUE/2KSM5W6KNZkFLpORIKT3TNDFMkSlFchoZjgeOw5FxfMEwDhyPEMOGtjlD\neEjfn9P39+k3F/T9CW08J4YdTdsi0U12mVDN5EEZCRy7LV2/pe06IxS9M5ElIDVQoTJu/RytzKkd\n6ok8d4Rq4QuUb4b1ZoXvQ/C0XnfdtBiEXaIW2IaKkZytycpScOSKQYTYNOY+ePYjAkVqlypmjgBf\n+2VTynyduxtkQaQzQpHqYnodiRRzzXJeVUzqrBxKRa4r9FJnoZLbd1yqeSoXjmVxi+d6UqMNwNOa\nA5I9OuW5L3fyarOAGIaZ3ajq3r3sz700Xl3SkROAYBNdTJG6kVkIQeAbWl1FmLSQVWkRmni3pVXl\nFe6KrE1g0UzWRCoTU5pmJVBSqnXBrgjsb6YojpQyEmSibYQ2bgmxA02ebXig6N5SkEsNKxYgOSEY\nCFnIGgm5oWbeCYrmFtWRvrTsSkcpYjolFYbxmuF4w/H4guPhOcfxipSekfLnHI8bJNyn7x+y3T7k\ndPcOXfcYZUeg8Vp620yaJ6Zhz/H2in5zQbc9o8mFhSc0C0hQJCuSrQKx+qkVKaAZVS+9tQVZ1rPC\n0Tu/W/FAOM+gNaB8122YvwXnCIxEFnFfWaqS8pqRbDGWULXKbDRq/wVHI9blxSsAZEGONTNzuVu3\nxkuURTADZbdrcqoYApVSMxhXyKK6MzU/IFQWQ+bNWF2iyhSXOyjjJV3hyXVLtMwVZxOgeAu7XJVo\nVUzVnVBvLMPs6v1l49UpA7+5lCdbL+/RV216qHCRtcw5s62FKRdSLnRNM2vgtUitya+ilmCTSmLK\n5s+nPMw1+GhdQAvxlWJIYEpHcjqS04BqJkSITWOfGQo5H8mSKCSyjqhOFEZTBnjBiBjbKxrtM2Zq\nW0l59OKYCFlo2i0UT4/SRFda+mnDybhlHDeM4zXH44HxOLI/7Lm6vWJ//Sm3xwcch6/Z7T7kTB/R\n6Rltv/X8gkDJJt7jtGcYj+ymROkUjQu8Fxe02T6LWijLhVV1Jfh6N4HlDrv/EmqYrey8js4/+PUN\nrNm8LNXIFVbXa5QZztegaimZkFc5+8GwWSQs5FzlN8Rc0CBzAHGlQKpkMcsf1DTjMu/Q6kKIiJG6\nQWw9cw0/Ltepc2XoIxiaxa0dDhwXh2CZx5dmTlz4671V3Cb+vI00aFhnyHpGqxE8lJKs6xWCxMhf\nNl4dZ+B51kK0tE+1mn5DZrJMRvURdUk0VlWSQ6UqDCbVS/GHjULWiSknpqm6AhM5JdBCFDz92CyO\n5QeMpHRgHG+N/PNogcl4Q1FlysV6MqrM/IYSKKEhakbFfTttCNJatR+4Zs8Oj421DxI9dRhi6Oau\nNpmI5ELrUYWm7dnu7nOWJtL4gmEYOL254epm4Gb/JU+fX3F7fEbKP+A0v8eW+7TNForPc7DaijyZ\n62AbPCzJMNVCByVKg2hcCZmHeal1Ir55K5Hn66QuhIulsmsKekdJaLAMTglKKOoIvZCyJ1355rdc\njeSdnarQ5xWVtDiFdSMbidb4hnHEg8zNZkJNvQ7M8lRlbr5OjZgQZgu+HhaGjmhQVMLc3agqD69g\nMJQpxWtgbK54CS1VRVtvZB3pWutXU7iVkNT5mRAvSArBCqC8KtKuXvmMAPwVTkcmRIM+NRGw+j81\n0URm727uhlSHquV0l1wz6upfFsikjiDGnBimo/n8afC6cpmvYwJl7kPJI1Pak6ZbcjpQ8gQlI5pN\nJjKUoGSxzYRkh+INQk/RQMl4TXsGGmLoEWnQWGiCQLJCpRA76Dy1tKIHiYQIRc1lEWkJjXEqMbSU\nnAhRaZoz+r5wsj1ycfKUZ1dPefJ8z/7wMc8pTDmRdeJk+wah7yB0RFqkVB84oljFRKi8DAt8rj5q\nbVdWFdc6+ataQAkLMSYrB6ByBUHqlnVnXJZEpCWnIlsm56oYrJRav2HrDDipW7tMlVWZeOUAFtKw\n9oloHDk2TTQCNTaE2Hr7tsYsZ1j1NcBwteONb4ht3aTqYUSpyEqL2aLiKdZag52Wu1Fhj1D5kQrr\nXZRe2qmVr5i39QyWKs9hFZYitTN2cR87zMqTyhlYiOUvdRVeXdJREPOPBUQLuaLGrEgo3mWYO8JX\n409BgSKMqTBk822X5A37lzUz5pHjeGCaBkoanRPwRZ6VsxE/KU+k6UgaD5R8hDxZJaJ3XVSFnHH0\n4S6NFLc0vfUnLKMLgW9oFUQaRK3DsaAQW4paWFAQaMRy4xGDeSWBJoKkuTtNaAJaWkKwDMTQtJQE\nm+aCtjlj05/Rt5/z9YtnXB8+5ep6hHIwyBwjXXtuRGcItO2GJvRAcF6m+rU+Hax86VlIHebPPRlq\njwQhVVS36josMyFYXQ+pZJC9t7oeeE5B3fRqpeG5TPNGr+3LSinkZMRuyhOirjBcWVQ3Qv0aIbpK\nEm9DF71GpWmtFLzb0DSt9Y+IHdEVhCkHK2xTFkPjAQ3vECUru2MbsD6zIEsLOn8+nzB/j1gfi+oG\nrZBAVREyr4dzBlQlJTPgUmo41pOLRAhNYwokWWejikDXmZi/bLxCzsAVAmpkzgzRbL+pqoW+apef\nWTGY3xckMKbEcYRcJkJsndxSMoWxjByno+UEpImS0qxVS+1+XAWqJHIZSPlILgOa1+27ZubBkEsJ\n5AKSTXAIAQmmMGr79aIBLSNBvXFFcVJL7IwFdOdK0NyiAH4PlgZbxM8mEIOqMQSzAiE6E5+tWUZS\nQtjSNxdchkRslOb6mpvbLznu4TZuCE1DjB2Bjq7fsNnuaJseJTKp0nu9RRHmyMEdKfXFqim4dWMC\nHnHQ2eVrBJoQ79hTmZ1YG7U0LFNDhm71Be/DUPs6evy8WGo3paB5tHXJyd3KwlIRaslnKRuJy+jX\ncLciCEg0q980HaHpiE1L2+9ouxOaZkPb9jR9T9t2NLExt6LG7almYaYbarMun6KFH6rdlMwi45rE\nk4usZNRTiasBW6mBGUnVaBjz588AS6tULkPFStIlCLGNNL42RTwUqlUJ/+LxCvsZ+ARGawmwHLLh\nWYYlgVg2YRXMUlchCI1vjNv9ntu+5/y0oUaKs2amZEShRQmyN6SoyTOKlRPXQ0qOpHTwLMEJZQQS\niJUUiSNhcQWSrTyARhuLaUs0NCMC/np7hiPoiEi0ikRvBRborfPMjBatgYqoEEM9iMTQBF5Nmcle\nu+9wNBZKtgYqhIbN9oIQIqHtCTzj5uo5h+OnhOMFoXvIdnvCyekl290pGluOznj3wdHZyh7NElh3\n9azIlnyAUpS8Sm+dE4G4o0bm99crl/rIqqiUmrMzw25z0430q5skpxHKRJ6OSEkEiiVkBZA2UIpl\noo4DjJpeIm7AAAAgAElEQVRJOZOLKYtSkjVzcVKvaCGP4s8TkdjRdFuadkvf72j6Hf12S9/t5oYy\nMVpJ+NL/YjVLL4UmTXFGTzjC0YsTkbNroGixrNFaVLTEvnTe5uLXn/ewo6t1OvM3Q7n2XwliWYml\nMRdcSs1q/oXjFZYw12q0ld8lpjXrASnFe703MWLZb8yWqOsaWml4tr8hcEXb9uz6zqa7JNsoOSNl\ndrzu2Cdra54o6UjOe0q5hXJENBkXUBfKy0Vr2EhRQqnWrWbCLUSUSXckSEtmZA6JlZmPJgQTroJa\nQYyHxELoEG2IWLorYmHKIpPzTtYxScWqHzUku08Vikaa/oRzBJ0O5OkFt9OXyPgOJxLYnt7j4vxN\nmt0l+ywMU6HvwwreLzBe74jmas0EEzIiyKpzkvvdd3xhTFDX6sWsqw2P+Nk6uK9fxBqz5LJ8eimZ\nPB0pw5403BJR+ibS9h1d09F25m4VFaYmMbYdUxoZx4GSBoiNhR8xojjl4mnmxcg/juTjDVNoGZqe\nsNlaOfj2jH57Rtuf0PdbVwoNVd2t3apZZ67mz8ikpSGplrLIoeqMriRUqaiu68uqVFeEqfr/DTF+\nWxKRYAikIj2C1wEF5pO5ftF4pcpgKb108C8BDR5Htl1txT4w55oHx2d907DrN3z5HD796muaEHnr\nwSVN35gApQnNE7OurERN1bzq9Qd5dGJxMsgpeW42gSugtdZ1PewZX5nsJchNEzwDzRBKDG4hpEF0\nZy6J7ikMxvBLRssEFEKoIbtmaaIiye8lUZhALGSZy4SoQ2FN1AYreMfhJvacbM653Q4ctKFtLji/\neJ97D79Df/qY29Tx7HZgI4F7my1xFmwnrLRC1LujoBYNwVFACDTeZrz+bEsj9WqzAqiZBWUl1MGj\nEpUv0LmhjCnykhJ5msjj3jbr/gVl2Bs62myQqDR9QxeFGBskRHLXklNhmlqGITANUNJEE0CkkHJi\nSsJxLEzHcfbhRSKFCU1HpvGGabhmPFyzPbmk312S0xldv6XvNjSxNffwznBU4+hghvQs1ZfKku14\nR/5XPT7Bof6sGFafUJXKCuovZdas9pLC7Aab8hBPNvgrm4G4Yk5mKxJDsEItL7OtOdmlKOLNNusZ\ngUHgdLthu9ny+ZOn/Mn+EyRlHj64gG7N73gJqi9OcUWgzhOU4nkBxUpWQd1s1c3hykNWSkVt0kvJ\nkOxZQgwWkpMGoSUGCLGhbU8IcormRC7XTPnKUprzjbkWqstFASgUnShlgGLl0IIphKIJZDL0ohlV\nd2dQrFdAR5GGEB/S9z0PNh/w+K3f5r0P/i6nF29xNfV88mxPSUfev3/CrjWhm2lB36izXdaVUnC4\nWnwqLIRXM/tcSdT3zdJdUVl1z+z58BChpkSeLNW7eJZnmqwepJSJMiXKdCAfbtDhBh2O5CCMmpCg\ntF0kNqaI2tjSNIEcEk0olnhVIpOObNpIDA2pRI5JGPOIkrxMWIzHEVtzUUGHicFTw8dxYJoGtrsz\nVM/MfZDOmozIKq9xtuqrXhHU7E2H97Uluq65l5VLQFmiFLC0K5v1jOctrPHIQjdUamKWJ4G5QZLx\nnH9FS5hVa162VEIWsLJSS4/1Trz+YHPprwakiRCEvo/cPzvh880Jf/7RT7m53fMbH77DG48u2DTW\n5mzKWPEPmBLQ2tNwpJSBoiNakp0fWDPu5jhzTZBZ7nsJ7WD3pZlSAjlZ8lAMDRJaW9DQAjtDC9G4\ngpAboqiRhKKeWmrWSdWQiQQ1KD5L2ZJy29QMM2zSrIuRv64ECFtoH3P58AHn9/893nj779Ndvs/T\nvfJvPvma5y9u+Y03LzjddkiNbM4WZ+V3VkXg+9kRpyMsWeZiXlB7URXtyp15TSZzrkK2uoyUJvIw\nkIc903jLdHzOsL9iGidS9iiO2FxJzhY/z4UxJaY02PmWjXUKCrFFpslIP281b0o22aYPQmwbWhoy\nllIcQyBNybiDqDOhLSE625iQtGc6KFom1EvQy4nSozTtxsuHPQuStRr1KfHjs2Z+xFviC2LnTYi3\nyGPJUQC1/AU8WiAzrWIz6/JQiQRzC+yF4tG2dTSIeQ99C5fz0nh1yEDtgWul3FxAghdZiHe+KS5E\nutqkAk20153ttrz14B6f/uxz/vDHH/Hx06/5dz58nx+89Yjzsw1dbEghkdSEUNT8Ny1GLFKSNfxY\nAeM5lUXr5g93EMzLw8qovbjKtX8JCnkk5cHhc0L1SE63CMPME9RKNoP7JryQPCtTvf7BCMUoYoaV\nYjkJoUU1WkKORGJzRi/vc3b519k9+GucXXyI9pf89IXyhz/6gi++/IofPjrn8fmObdu4Z1APh+GO\nQlgtk32dJ8SUYW23VWvrESusQWovJ3MrkucOaLYS8DIdyOOBdLwlH69J+xeMh+eM+6cM++ccbm+Z\nUiJ0Wzbbh/Tdlr7ryWMip8KYR6AgwU5abrueJnYzM99I9M/zeH+IqEQIjaHOIkgRokPyGCJtG+00\n7aaF2NrZmmJ5sJmMTnuG2+zl5swZmKHpDbGuFGR1EUx51jTkRc1aklrwMnKsN0Xt2zEbvmIRGq/e\n1PkwoWXM5fxV/c5uxMvbbOVWfNs+XI1XiAysC+2SnCGzYNZz8Kx5pXqGoFKLZ5gSopEgyrZteHi+\n48O3HvPpz5/yr/71J/zkJ1/xN37wLn/je+/zwZsP2e0amiaQRMijJSqV7CXEapvPc2990y+atBJG\n5Rt6f34QVL2foNSNHYxg0xFlNB9fJ1CrfIzRayDAkE71+9XrGspoiSNa0ZDfgfMlRrbZDRaNIJf0\nzduc7L7L7vw3ODn7IXF7jyep5V9+csUf/l+fcXix57fe2vLX37nH5WlHE638O6/8+KoMKtKsyACf\njVr9t4TWqiAufqtiiiBpIeXMNI7kaSSPA2k8osMtebhmOr4gH69It89IwzXT/inH2+fcXl9TtNBs\nL+niBkIktK2XWRufAAkdC2k8Mo0DsRlRIhBRLE09FaV4J+ScMoOMTMPANBwpw4GQRqImWoRWlNAI\nTRcJsaVp+jm9OZVidTD5yHh47mHtpSNUFzZzS3WQZVOGeVXxBWSpunSgL55BqJ5zUWpXpRoSrWWM\nZe736RPuOQTLAq3dlYq67/ILf4WVgbjvjtaUCieUcHi1njywlE+bMopmpklpGzsZ+Gzb8vaje/zm\nh+9z82LPn/7Fx/zko8/4wz/9lL/1Gx/yt77/Nu++ccFu09A2PaKJKU9oHtBiB7Vozr7tZa7tD6tk\noDrZ69jSkhpi7kfKglX/NYAVlITQWUKU+LHdAgWrZ1j8Q0tkkdAQSjFrRHIFYq4DrijNivTAGRJ3\n9P09Npvvcn7yG2xOPyBv7/OsdPzky1v+4I8+508++hp9cc1v//ARf/cHj3h4f0PbKpOo197bOtSN\nbQeL4D7+XdivQHsnnRZfExPmighyyYxpYhgGpsOe8XBDHm8p0y0cbyjjDXnak49GDqbxhvF4y3DY\nMxz2IBCaEXUUUJvXUApBk3ElU2Ha33Ibe4o0bNQyOCGQNTBmGMbENOxBJ5DMOBwgH5kON2hSR1kd\nk/QE6SBiWaLS0DRbYoxkLUw5MySrYJ2OLzjGaN2NY2ct7FdRMVg2Zam9Eyirxie1GtFnUWq+gVe9\nen5JNUymmFfkpBdwlZWSrp+5fJWZc6uIWrirHL5tvMKqxarNVjMI801XqxRCAG//JYUZqqkqOWVC\nKDQxcHm24cP3ThiPD2HY83//2ef84R/8OX/6o6/4g/cf8Zvfe8Tf/P67fOfdx9zfnXHSd6Rmw7Hd\nMaZbpvFqrjq0fHL1/oKuEOo9iiykELYZrGzW/GHjGAIaGiiddcKRgtAAyf7mAl3UUMTslkiHiqXP\nEjKlDIYCSo3htzTtDsLbbDZvs+nfYbN9m7h7k2N3zkdT5Ed/fsu/+PHH/MXnB5589JS/dv+U3/k7\n7/E3Pzzn8cOOtguMOkIOVkLuSrmGPmeEoCsXArzFd/DmMbhb4K8T4x6yv25K2Uqwb64Zbq8Y9i/I\nhxfEsieUAbJFeqx9HFACMW7oOqVshWEcmabCcLghxNbqEQhM04E07inlyERAD0eaIXE6FS4uAxCI\n0lKSMhwGrl884+bFl+Txhjwd0DLRRovGtLEDjeTSI6lHUseUDjTdxrkbBdla9MBdEEmJKR8Zj9fE\n1nITStujoVmCCXf4perzOwpwEao4eDYwGAlqXoPlkmRVJx7tVVqW71lFJZbanJU/5+5blau5lHn1\nvm8brzTpaPY1X9ZYsmi6rFjjk6ZBSiF4i66aGevJabRN4N5pz4fvXNKWwq7v+Td/8YSPPn/OP//s\nij/640/439/5c77/4Zv8xgeP+OH7j3j30SW77pyuHdDuhlyOVq6cj64YjGwUL2vGw4h2UFAlG+fM\ne+pJSVPJQESl8UIk33BiLczsfdWDHNCSrZW7VkIwAudIPKdIpAlbmvaCpn1M0zyk3b5F014yxTO+\nGHp+9POBf/Gjj/js6cCTJxM/+/hzHu5a/v0PH/Hbf/1NfvODMy5OG5TEkKzwp43eZ999VftSZqVX\nXYZSEZsrgxwCRSv6sQcvniNgad2ZYRw57vfc3jxjf/UVef+COO1pQrEyBlUktDTbBuk3hO2pZYme\nDIzDLbe3V+yPe4abF0zHWyRGVIJ1mxotQxSUHBq2xwOC0LcdbYiGCoYjN1fP+OqLj3jy+Z8z3T6l\n1ZHTbcfJSUeIkRQCEntk7IyAbDrC0NH2J0i20nS2mdCe0LQdJUbSNEIqTBwIwy2bdG5RERRdIcZZ\nvlnYvCXagGOo1evqW73NGTgBml3eVtexysSFs1mHF+un3jli3n/HHeL728crzTOABSqxjpnWXwGW\nLFJj2d49NmeCZhBr3WURAoCW080J330Xzk96Hj484a2/2PHpp8/57Os9f/Kvv+DHP3rCHzw64623\n7vHmo1PeeXzJ9955wPfeuMeji/tsTyKtjJRysF4GZSTlg7cu86PWPIVZvCqtJjHNm6mMRkOIkINN\ncSBSaCnsDPqrmFBoRDWgoUNjS4g7Gk6J4YwmnCDS03Tn0N0nx/vc5C1fDJE//uhL/ujzT/iLr448\n/zrz9cfPYH/g3ccX/Ac/eMxvfnDG3/7hI95785RNG7gdJ4b9HlFrEVdKYYT5nAKDk876zx2PFg5F\nFd9Ekbb0lGhdiKsyzzUdeByYjgcOt9dcv/ia/dUXxOGGXRSkawnSIY2RdLH1pqIqhJIo08A03tIf\nztheP+P66y+4fvElV9fPOU4D05hoQkfX2r+42bLptkgZKNOBaTCXbMp7hvGGNI4M+4HrZ89p9Bqm\nhpB3xHZLJhLaDgl2jJ3EDmkb0mZEk4WaowhRQXWyI/SmA9OQmKZC6M6s1fkcyqvCXAV8Fm7Wfv03\niCeHCoYo7QWVqLZr1wKkJZ1YNVOozVA9Gjcb1bqH3EitMxj/kvFKkQG8THKsfYV5WkCzEy/G+mqA\n0Ig3KynemkpIBY7JOIVH9zdcnL7Fh2/e56Offs2PPn7KT7+85efPbvn6swOffzbSdE84O91y+WDD\n/Ucdj863vPXgPt99+x7vPT7jwb1LLrYdJ1JAJ7ufObtxORehnsSkfr6hYGXHSCTS0DaRKJlSztFm\nojAgTEAEepCWEjtEqqD2aDzltvRc3SqfPxn56IsbPv7iJzx9ceTpoePrZ3u+evKCdBx4fNbzN965\n5L3Le3zv7XN+63sPefuNDaengULgyfWR5y9uafKRy00khpZUkuVvVF7GIUE99MUUX4WezgyESNFA\nbDfEppn5joJ1I0rTyHg8sL+54vrqKS+ef8Vw9YQTErrdQOiQtqVtdlYf0AZr1CGBhoKUiTRt6E42\nbPuWRgrkgcPtM548+4rnz69JKXByesH2/JLLhx3nrliaxo6g6/ueXdjSd6ecbC84297j6y/eYH/1\nUzQ95+aQ2KjQbneE0BGbDRI7QtMTGiMQtSjT8cBRXlgEKjZMeeJ4PHA7Ktpl2rOHs9zOGZxrLkUW\nUV4UwiLri+3WOz+r6NxzYW6dpkohOEKtr13xAbPFd3cmeBq0smSY6uLy/aLx6pHByk2YH2pWCjIT\nKd6yx3ypYNV4UmyCQhQ23Ya+OzKWwPPbxDYWHmw3fPeNM95+eMb3v/uIn3/xnB//7Dkffbnny+eJ\nm1tluIbPXhz56KMbUpnY7j7j3sWWe/e23D/vuLdrOD/vOTvf8PDeOY8uz7l3uuVse8pJ39K3DbHx\nvH1PWopi5zh6XiE5xtmCFjKjV2keE+ynwNV+5MU+cXU18vXVga+vn3Nz/IrrQ8uz24mvbgeePLvh\n6qsr2sFYigcXO37w4ILvffdNvvNmz3ffO+GDdy54fG/D2c5Kn1+ME589PfDpZ1/Rl8xblz0xCjlb\np6f58BRXBHPHba1KwXsG+0lTEhprSBpbYhPpu87Tik15TMNIGo4c9zfcXD1jf/0CPY5oX3soRmLT\nEKKdqxnFMjWliQSspLjdNPSpY+xaQtPStBu67TlCzzh+zJfPnjEdD+jJPS6aLd3unH5zyu7knNOz\nM/q+J3YdZ+eQ7o3cv/eIh4/f5MWTN3nx/HOG/Qs2fU+/Oyd2vSmDpqfptnSdJS5RkrXAG0aO+6ek\nkjmOe64PtyTZcPZwh+DnUDha/bZQ08qTf4kh8L8bI23h7vlNskLFdQ9YDkHES8VLqTlxd7IaRZY9\nVN2Sst5bf1XdhJzTKlqwwE2o92xs9910S0/OkGj9EIIQNFIk0BE4Pc2cnh357OkVn372FS92A+88\nPOf0rOHdt3c8fLzjh99/k2dPj3z6xTU//fKGT58feHqduLrKPN+P3B4LP7898PEnN4TiB6XsWrpd\nx8mm5XzXc7HpOT/ZsG0DfRtom0hoLHYcg5gPuhKQokZu4T71hDAROWaYCNzuJ6YBro+J66uB6+uR\nq5vMuE8EoG8Dl5uGt04a3v/gIY/vt7z7xo4fvH3G99+94K0Hp5yfdPQnvbHmpfDkuvDHP7vm5599\nTZuOfP/xCaed1RBMOVFSPdMhe968FbfUtOJSOz9RIxiKSCIoHOdGoYGmaVG1aE+aJo6HA9NwII8D\nkpW+69luOvp+R2zs3AbLE8hEny9L2fXDWomUpjVrHTpiu0WbHZP2HLSD069oup43Hr/HW2+9w8MH\nj7i4uGSz29K0EWm8cUkU2tixa8+QDqQF+i3DYU/TBCth7jfWcLbtaTc7Nv2GLkY0jwz7K26uzM35\n6snPeXH9nGOBk3vvcP54Q9ud0nY7QvQEM/iGUatY4S7Tvwx1hrEGC+QXvA5hLgk36G89Du8emVZ5\nhfq64ORzJYDLt+mrO+MVNkTNqweRO+cmrAGCSCU/PBshWP+77OSj9T0ISBvYbrc8vHfB18+v+cnH\nn/HTn37FT++f89137/PGgx3bTcfpRc+D8x3vvXPJ3z5knl0f+OLZLZ9/feCLF0e+uh54dlO4us0c\njonjmNmPhelGubpOPM0jWm7s87U20CwW9/dTi6yKsVb5KeI/KxCKlTqHaFWXMUZKhi4EIp2Fuw4H\ntlq4v+l4540HvP1gx/sPt7z3eMe7jy94990dbz445XzX0m0DTWcWO6fCF8eJT54O/Ms/+hlPnu15\n66znw8cnvHGxpYs6d3225jCWCVhqGSYmaMGVsxsiS8BxxJDTiIpw3EckNPRbi7vXaMSQrCWb5sTJ\nZsOu6TndtnR9Z2s1h4nEU8zt5KsQ7RwM1FrEBRVClwldorRb5PScizfe5fTeQy7Ozri4/4DzSz9G\n7qSnbYGQyTmRq1tDIZOgUWTT0p6cQNPYmRStn2wdW3MPggKJItC0DU2/IXY9oxa+fPGMn33+Of3J\nfc7fvs/p5Vucnj2k63fmDs7erdz56hSif8cs32uHYv79shXmv3zD+ZgT3zyhidoXZFUVuQpX1zuZ\n+Z+/ZLzSpKPF5wm+sWripQcdxeLvKpUhVScMwTrVBjsKQKw7Ute0nG63vPPwnCdv3uPZkyf86x99\nzI8/+Yrvvf2Q7757n8cPLjg57ei3wsmu58H9DR+8d8kwZQ6HxNVt5uvrwtPrI9fXN1ztJ57cJK4P\nidvjyH4oDJNwux8ZciEVGEux1m3ewkwdCVRlEKK41YVWA50IXRuRkGmC0LaR067l/tkZ221HExP3\nt/Dg8oR333rM22+c8Ohiy/2Lnr4NdCcbmrbx5B64TYWbY+Gzpzf8H3/2lB998gyGkR++fclvfXDB\n+5eBvlVysvwKK3021APF6zLwJBZTbLFpzfmcFXaZ0VlOieNx740+Mn3bWw4A0MSaOw9933GyiWz7\nxkrISyFK8bL0mj+XvUw8UEoAtZOj05QYxsTtcSJliE3Pg3sPOek6zk52NCdb+o1t2LaxVG5rI1fD\ndj73WBHZyW5LDDANA+sTqSCbIp0SRw2EFNm2LdE7IRM7Bu04sOXywQc8fu83uf/oA07P79N3nSl7\nTIneaQb7DXn3yBlrZcGd1+udn19SKHOEYK6J9BIaR9ZqiqB4D416JkZVHt/Sve0b49W5CSX5M9jB\nGFZ5V5M3DCXM3WCAtfacWdUQkJw9n9ze0zaBy9Oe77/zkDSOID/jRz99ykdf/oR/9fFXfPDmA77z\n9j3eeXTKvbMt221L10UuNx33zzreLkIudozWNGWOY+F6SOyPEzf7gZtDZj8U9sfM7ZA4TsqYMikp\nWmqDDsE7nZqgBIgx0DaBPkb6Vui7lq5r2HSB003Lyabj4eWOs21rG2gT2Wx6+i6y2XbEJkATyU5m\nHsbEPgW+vsl89MUtf/LJM37886+5ep5542zDv/uDN/ibH9zj0ZkQw8RhPJDKYF2Fs4XD5jbp3tps\njuKIWDWmr4L9P3hTGEALOY0cD+Ye5E0ydl8C27bn3vklt1Io5Wh5/wFrT+V1FaiiuZAnT6rKQonm\nKlDsoNHheOSwv+V4OFJS4aTb0m137DYtbdOgTTSyLQCe9FXsLFeaYCHaECNNiDSyoWsadruthSen\niWk4MgwD42gnZlnVtBU8qRPSoWnRuKM9e4t3Tt7j+z/827z3nd/i3oM32W63Xp68gubfCJMvG3hW\nBJUTp05F7aZU/7AkL90hHKVer+Z3yKxB6sFB6meRzFyQbxs86vDLy5ReJTLIZSasisMY6/FeE2ys\n2ckaLMhaGShmSbCNF4L57KpKExsuz0/53ruP2HUdj87P+dOPnvLJVzd8+tmn/Ks/e8rjh2e8/WjD\ne2+e8c7Dcx6cn7DbNGZ5m0DbNPTScwo8VjsPIZdC8vP2tEAqkLIfPlIUb8NAkQXC1UVsYqRxH7lp\nhKaxDkZNE4jRWPWmbWnEGGB1xWj9PAP7SRmTss/wbD/xs6+u+fSLA599deTJ13uubgZONhv+/nce\n8He+e4/33+g5O7ES3sNxNHdA82pDmmBGiUhjMD+n7DUF7mtqIQTmWpEq2kXVKg/TxFiFb6O0IdD1\nOy4uhX67YZxuCdMBTXbWZBDLEUGV4AoleMOWEMTy9YloLhyHgeFwRKeRgNIGoW1NwaZ6OIKH5FJO\nnjloboYd1mrnCtTS3dh0xFaBjjKNTG2YIfZxHJlKJpRIBFIWRoVDVrQ758337nP54B3ee/97PHr0\nJrvdzk9smgN4s1yvezjwElJwLtARUd3M/hxSow2BerK1Zy5/A0dYcdISVVh6P5obagf1eLhbjHAM\nUg3mLx7yl6Uo/tI3i3wEXGHJZ5Oq/j0RuQ/8z8AHwEfAf6aqz196n375yY+NPHESxG094AohRKwp\naPiWGanaeCEfwfkEYDgeuL2+4vb6mul44PZw5LOv9/z5z17wZz99ys+/PHB9VGgbzs63PLi35Y2H\nW958eMob9895fHnKvV3LaY0WBGO/Q+OHiKBzbnrNoHSKEDArVxX3EiaqqamY2+CHq4RobbLqeX+o\nZfGlXDimwkjP14fCZ1eJnz+95svnB15cw4sXB4ZjJubCW+cd33njjB++/4gP3tzw8P4GETiMtxz2\nN+RhoKF4GDTZB+gskiZEiJ/pl5mKuT8FjKT1tFo7FdkhvvpTh8ZKtRtrFda2XjlIouQBnY6U4ZZx\nuCEPt0z7G0oaLEw29z0y4Y2NpeqKBEpSxmEgDQdyGmkk0PWRpu3c3480bUvbW5izbTs7Xj20dN0O\nczNrHYWsjjwDoVCmiWkYePHimqvra26PRwoyN00ldGjcIu0Fm7PH3H/wBufnl2z6bkkxrgbsJZv7\njR3lLkJlFPyJ/U8105BZnmviYVUG3zbWLdH8XbaW2c7cLKvaFlWQGIkS2J1folXbvDT+3yIDBf5D\nVX26+t3vA/+rqv73IvJ7/vPvv/zGlJLXBlnz0zkLrk6K5Hmy8cWsE7C4D06QrMMpYqfoZi2MaSKX\nzOnphh+c7Xjr8Tnffe8+P/3slo8/3/PRF3u+en7kqyd7fvJxy/b0it3pEy7OOu6dtzy86Hh0ccL5\nyZazk56zk45dF9lEYdMYBLUU3UAjduL1fGRe8IQVu0Fy7bYjQpyEXBKjKlGEY85MGrk6DNweB57e\njHz05IbPntzw4npkP0S0bNlfH9Ec0QhvPjjnew/O+f6bZ3zweMt7b53y4N6G2AZSUV7c3HB9fQ3D\nwLYBDdW9qs3hWCQOVwhtg5RImRJJLfRYsq1FCJG2bQmtv2+dNKbF2szlTCqFrmvpYkPbtki7RbtT\nYn/KdLghlZbh9gXD4ZYyDpBHohRyOVKKZRZaR6Fo+fx+7uVEoZRIkybi2NL3kZJbTDF1lFJoSkNs\nlBEjpE0pheVg1ODp3942PQUlxI6iDVMKTApt3LDpLtmc3md3do/d2X12u3O6fksT44rVD0vke8Xo\nV/y0ePZrRVBVActp0LC0fZq3lH+nizaYdUWV/3olf+ucfNxYjUtUawenOc/KqHxTTd0Zvwo34WUt\n858A/4F//z8C/xvfpgym0d4sBk+rMlhzBLX4Y8nMcqLxpWvNvi6m/Wvp8zAVrq+OhBi4ODvh3tkp\nl4PghbQAACAASURBVGdnfPhW5usXR3725JZPn9zw2ZMDnz+deHY98PnNNT//Qmjblk3bcHJyQ993\n9H1kuxH6Xsyf7wPbTUPXRjZtQ9819K3F0JvojHVNylGYspU5jzmTs3IzTVwdJ1JRbg/K9W3h2VVi\nv0/cvBi4eZ65PY4cxz33z055fP+Ux/d2vPfePd55cMp33r7knUcb3n6w5WzX0G0aSkk8GwtfPr3m\n9vlTYh642DTEYD0UC9lrQsSyXnVBsjb3FpaLjRBVyTpZR6eslCCgCcDbj0dqX0Qt6uc92JF3qB0E\n2jQNTdMQ45Zu2/P/MPcmT5JkSXrf721m5musGZlZnbV0ozGYAQcDEqSAhJDCE28UIUT41+DKE4UX\nnngheeaFFCEEghuXwww4AAkQhMhgBj1bd1d1VWVWLrF6uLuZvY0Hfc/cs7q6MOBwJMdEorIiwt3D\nlqf6VD/99FPrlmi3wM3O6XePhP6ROGyIfk+/CTzcPzCOO5zRtK5l3s5wRqYRKxDWaUSmYmkDRLzK\nxDhgnCN4iRxUbSAyGqsdSRcWXlFJVlq8Y+9hyA3JrpmdnrFq53SLNYvVGe3ihG6+pGlajDKgjst7\nNSJ9H9KqNzIfveo981AcSuTfeuN7VYMKLEyAY/1PPrzy6GMPzWLlMFqqMUUA9lhO/vuOP2+a8DPg\nHkkT/tuc83+vlLrNOZ+V3yvgpn5/9L78+R/8U/lGVxT74BOrV1VVGbl41xo6qKOb8Uv92mW60jB4\nbm4f+ObtLbd397St5emTM85Wc+atwxrHEGCz99w9DLy76Xl71/Nm0/Nm47ndRR52Ae8zyR/yr6SE\nJCMeWKGdxjo7KcwYlXHWTq2uMUqnWUzC709VzWmMZC/XuR8Tw+B53I887Ho6pXhiNU9OVpysO/7q\nZ1d88nzJi6drnl0tuDqfsV51dJ3GOYOPmZ1XXN/3fPX2ls3DhpVJPFk5ljONVp6QfFkUkrLkaS/5\n1k5UFlWMsQyfCYRQ3qcP8weMFWlxeaMkRBTlIxlWkjFaDE8b2aXFqIvSUYwicjLuGfot24cbNnfX\n7Lf3Ytwq0yiN1TLsxqiI0TISThdA1hgrMxeNCNkordHaivJxI8NrrG0mxF1pS9YWY1uUbgjREJIm\nqgbTzmhnC5pmTtN2KOsEyxEjkSqFKtf5Kw4BBY/s6SiCmnbwUpLOBwvnPcsun5GnjziuPYgz0KXK\nVp3LtzDLo+ikdKPmQ5v9fHnyF5Ym/Ic551dKqSfA/6qU+sP3rylnpb67qJH8IDPmjZr6sqe5c6oM\nnjjivpfr5IAVSE5YyRRV97Q+EJUUXaNYzgz395kvX9/w5bsNz59c8oOrM87XmsWs4em84ep8zacv\nAv3o2e0DD4+e+23gfivMwJth5GHv2Ww8uyGxHxP9GAnFUezzSB8ivghOmiIXrtHTgNGYpNGprYQk\nrTBG0znLxVlHoyInMwG5np3NeTZ3XJ4uuLhY8ORiwenJnNWyo2kMrhEKrydzP4xcbyI/f/XIl6/v\naePA85OGZ6cLlp0mqyC9HZRQQKlDvlnl3cptPQ47lRJk3VjLOERCkNmCISRxaglwRYhmej7iZBKq\nyCIJYKkyBFV0AIzI3BtnsU2Dnc9p0zmLs6ecP93jxz3juCdGTw4BnaRPQOWAJqDwKJVQSRW+RkH+\nC8vTlCEp0negwTWAlHy1sRJCl+jBKUfWDuUalBHsQ2PJ2ogSt6xi7CGb+t7jfdf6y98LA7X+rhh5\nNexvfdCxm5hIeO85mvKPOnYV9fkenMQUoeZDrPKrjj+XM8g5vyr/vlVK/X3gbwOvlVLPcs7fKKWe\nA2++673/9X/z3007/N/+W7/F3/n3/h0BVmrZMBXveVS/PTyeyW8Wmqysx2kebU4YFJ2Bi3VHjmf4\nZPnimwf++etf8Iera148v+LjZ6c8Oe04mTlap1m0My7Xjvgky64YIz7AOCT2Q2S7D+xGz24Y6cfA\n4GEMMATox4gPmZAOUChAHSBqjcJZQ2MMrbO0jaJrMvPWsW4dndMs5y3NzDCfNSzbhqbTNI2mcY0s\nVGcZcmYMgYde8WaT+eL1PV99/Zph77lYz/nk6RkfnVrWnSKnkSEJfTlPqkpMqVZtbFHUZpaaqglQ\nmlPhCzSSDvgQiWVgSaWxWGMn/rug9wrqSDaDGG0JeZOq7diJqGXIh4wGkzJet2zoWItDSalw8UX5\nRyWZjyAdYBHq51aT02V0uhZNA2UqVdhOpecJUCyyepXolhEyVkwSAWiTpdsUwzTSb1px338clxen\n8h41uC/uskYMx5WH9zzH0TeqIBDv59DTsJ4pmp7s4HCmSsHv/M5v8zu//TvlGf8FpQlKqTlgcs4b\npdQC+F+A/wL4T4DrnPN/pZT6e8Bpzvnvfeu9+Sf/+B9KLkZG1H5EvSeVPDvHfADjpgsu+RappFRq\nEuIAqULUfgBVkfmU8SGz2Xq+udnz01d3/PT1hoe9Z7Hs+OTpBZ89O+Xp5Zzz9ZzFrKFpFI0xWG0n\n+e+UOXylLFr9UUqKMQn7L+UsNF51OKeaV1utsFrKWcaaEm474ehrMQpnC8HKysI1uuj8Z4XH8jjC\n3S7y5n7ky1c3fHMzMPSJi0XDj56t+NHVnPOzGY1NqOgJfiRkT4hCLEpR8vn3V3aNDjKoes/VVOHJ\nhc2XYsL7gPfSwQdiVKbQiI2xoMqMiyz4gVJSXrVHYrYodUD4qY1S0tV5tD4kshJvUfQA9GFUmyoI\n0oQlFVObnlUlsBUDKGmRVPESh02kbPlF+9AaS+NanHMTWFgSjLoA39uJv+84bvL6rrJAmlKBaYsv\neMPBxNXEMyyR8NFvpunU1fHw3rcTga9yIarDd037K9OEP48z+CHw98u3Fvgfcs7/ZSkt/o/AJ3xP\nafFf/R//syyAfKhjR5SIf6QiBaWq1nue7qncu+8YugpkDCkrUnEWZAgxT45h9Iq7PvPz11v+5Os7\nvny34+ExoYzi5Lzlo6dLXlzNeXbW8mS5ZD0TEZTOieaiMXoCoKTkmUuKcmRg9UEUVLMuuLrohQ0m\ne4TBoEmEHMlIBUQGgGiGYHiMgbt+5KZPvN1E3rwbeftmR78PzFvDR+dLPn6y5NOnC15czVnOiqZA\n8Hg/yAiyKPl5nTgtnZXpu/NSVaXlyj2dnCsToSpETwxF17AYlJQd3TRRSGTk5bnVa9YVbyjgqnx8\n6agrYWw5hSmDqcfUmlvz9ny0wx6hoMLZz5MBHcxNTTqFmdLoplVJDUpDVNMyaxoaK06gllDfcwZl\nlf0bHZUK/B5GcLiuo4386C8UVWX0VJl6//NKqXt69ZFzee8DD2Pu6tH8RTiDP8+hlMp/8Nv/UwnB\nFMbIEMmsrYRwSW5GTOkoGihknFyblaAu2NryjTJktAwmUaVe76PIjWEwusFYAdxuNiNfXw988WrH\nz7554Ou7LWOAzgmX/vR0xsXTOU/P5zxZzTlZdKwWjkVrmTtLYzLOSH3eaDONvtalTKQR+rHMOi25\nooKcZcZhLOVPHzJDhIdBGqXutgPv7nq+ervh1fXAwz6R6HDOMW/gbNnyo7MTPr1a8+nTOR8/mbOY\nW5RR9DEQhh6Z3BTRWajDMcWiwlTHlUUmKe9pRwWowz3Kfa1plzq0y+aUSUEwhJzTVPKV3nozfVbO\nedJxrAaktcY5h3OujC6rOhWqwBmqomziZJNMqYqVYlvPMklT1WFtHOff8rN6RbpM5NKUCEAJ1Vob\nEUB1rqNtO1zTYLUkBjVy+bPFAN8+vmVPv1Ql+45X5gMeUNuNj0jH30oh5Mf6W8HGAY+oabakbJWd\nWHUNvs8ZfEANxOJzVSGllUUUqx5f3Qxq2Fp2GRlwUkCCfJjVSIkuJs36sptIrpvZjQMxe1pnWM47\nXjxZ8oPLE37jB4FXt3u+uh159a7nm7c9rx92/Ozlhp+93eA6aQSady3rZcuyNcxbx6zRdK1h1rW0\nTUvrLM4omtJQWXcp0QYsQ2JDIsbEMHq2e892n9nuIzePe15fb7nbBLaPniEkdqPHGcvV6Qk//qjl\nr3604odPO15cLvj4Ys3Z2YLFUmMN7IbI/S6y6yOOwKLNOCNjtbSV7s+kQeUIQYzl0Nzy/jPRSssu\nU4zqQAGtHHwhSmkgRc2R2HdhOFazLYs6pxKVyM9ijIQQJBS3ZZ5hPuxiNYISNSR15GgOTibpw3wB\nFO/x7icMopiK1rZch6QC2sqMTNe0tF1LYyQlMKregcNn/rKK0J9tZR+Og4G/H8xXn1fOq76m5pfF\n0Kv24S+dQX7/0VVMxlDl6aDOv8w1IvozbPofbgqzMu8ZLxSgSB9yP7khHMCWjCzOzFQiq1KStZ5/\nwBJySYMl5Msp8Ljb884Hmm7GxbnhdNlwcem4fNLxV3zifue520QJyW9G7h5G7vYDN9s9+wfP203i\nZYR+TChrsU2JZMoeKuW0XBvHyCkXz1warjCEkIriLowxEUJCxYR/3BNjolGGp+dLPr5Y89lHJ3z8\ndMUnTzqeXS44WQn5aeE02lm2KfHNw5a77Z5xF1ialtncYEyd4pMEJEsBFRUpSnhZVY7r7QSgtiln\nJHnJqdzPXICw49YZwQI0CpUzIRfValUxhnyEQ5R0I0RiEtzBaIPWI8YZXGNx1krlorRFm+LYqSlV\noZnXdEZlQ23IrRH0lEZiMEpNE7iUKeBmcWym7XBNS9c4nNbyWiir6LAz19Tue49/jX0J87GkJuUn\n4gCgzv2sEc30t4/6CqoLmUrpFYYo3qC2MOfJ2A/nnDn0OLwfNf3q48MpHR3xpJXKJCS31UlJC/AR\n0vq+hy6NHSrLvINCV5a+7TytwZzFIaQkC3/WtYSk2PSB169vefluw9XFOc8uzzhfzVjN5pyvLPlK\nMYbIrvds94HNLnKz89xvRx77zMM+cr8Z2I+e/eDpfWA3BkYfCDExpEyoCylKt6UtyLY2AhzOrKVr\nHMtOGqRWM8e6tSxmlvWiZblueLJuuTidc7rqmDeKtm3BWoYcuRsDm4fAN3c97+4fsTnydDHnZO5o\nZ06Go5DRTkMMBaita1ChlKH2DFL39Tr9uLQia9QkPivh24RMSeRaukk1QlBKsTynXCXd5eVGxAXI\nOhNzJviAj6P8jdKX4ZyjKZGCNYWoZGUArdYaM3lXNWEMWh3CZ1PFbpgSglJdEDHdGmHqUl50TYM1\numhYy/qrHIt6j/5Mh+I9AzvmvyhZqgfM4T1MgF+KaA6wgjpExjWiKedV9SjrR9UKQczSdaq1Rk8l\n5KOPnuzn+6/rwzkDdcgRM2I45IoEU5SN5OFrpY5C13KUEDQlYbvV2y4dWyVSgILwS5lq2Wo4maOV\n5tXbe/6flz+lXax58eKKT56dcLluWXVadA9mDfm0I6AJITGGRO8zg88MJWcexsh+VAzl994nQlLk\nrFFJVHysyqUdNmGNdCIqlWkax3zu6Kym7WBmFc3M0TmHbhydMTgrDUxDCjykgcfHnttHz1d3ntfv\n7lFJ8fH6lGfrlrOTBjcXByhj6YIIlVhHne2aUdKRZ0qXW6rgrNxLlTPoMgAlyzlLw5KauDbHKRgU\nXj0ZjHQikoXcItGpLGKDSJC7aKSxSVVCU1FBHuS1xhictRjrppHo1jaYmk5ocRZKadEoqKlvPly3\nMULyUqaUF40wJSNZuvesBSPiIHlKB8qCpKJT/9/Qgl9626/4GHX0PxJTHv3VSuAq51b7dyFP1Zj6\nHKCuc/n/lDLoQ4RzTIxO3w0TvHd84IlKFGTboEo7akqiMKxyRmPFxL/VbZUyKF3SiHRUclFIzlvo\nyCBASo0arM6czhuappNBGc2OL95s+KP/6yfMV3M+ffGUz55e8NHZnNNFZNU1wlZ0GjczrJTUnWWj\n0lMqknOWidFlhUlUosBqcu1u07nM2hPOAYhcm9FamHZG0eskcmkRUlDcjIFtSlwPmdcPI1+/3vDm\n7SMmKz57esmnT5a8OJ8zn2t0I4shlp3DWCMGjtTUKfdIKY2ySB+AKaFjRtR4SwOTLrtSUpL6TNd5\niNUmJLxU7Ik5kYw4GONcSe8SRAFzcxIBVaNn5JTwQaTXfPT4MJJzwvuI96N8rjIFaHRYVx2EmfAD\n27ZS3dEWYyzWJLKzoArj0YjEmivahplMSElYiKVkV2AnDmZTFtEvL9ayZI+igO+KHo5+/+3o4rv8\nRMUR5Ll8G8D5VoTwrb87+cF8kETPORGLPdQy7CQH8GcQNPhg1YQ/+t1/cLgZNReadqtCPlIKo4Wx\nVzeo6eKTjNguBayjgJcpOshZSpMhlhte9QWUYYyKh33m7f3Al28Hvni949XdlhFYrBzPn8/40bMV\nn5yfcrVes5h3tNbQWcXMWRpr5Y6bkptNUbQiazEiDegopazaNSe1dUvMihhE6DLGREyKPsKu79mE\nwM0w8OYBvnn3yLt3Pf0+cbqc8fFHp/zwfManz885W1lmM0PSSEnS13OIGF1uQM4kL8rOKUWhBGuF\n0lLjqL0HFGeQv1UmPTycgzM4rJlcmJ+Hf+vvUuHDq/K5ddBoKudUB+LGJACjDIg5TJCiVAwqCU1r\nV2jQYuyuaUradRBDNdaJhJlzWNPgnMUZI/hBhqRypSxRJRa0EmdWU4Y/w+r91veZqftywi2EAEcZ\nkpqL8EutNKHe8xtHThZyjihVdSnNAak5zjQyRxOtjxxTziWSq/UrwayUlmgjA9b9JSwt/uk/+YeT\nZn86WkR1jn3NaXMJm6QmraFo+Mm8u4KYwrQjopRwDXLR8UsQyYxZgDtiwmQwxpKzIQE+Jd7dj3x+\nPfDza88v3u1599DTjyOLmePJxYqLizUXZ0uerGdcrltOF45ZY2mthPPOyojyyp0HMFnKjTkrUULS\nlrGChxl2AR6Gnu1j4naz593DwOvbRzaPPf2QUMZwvpjz8fkpn1yu+PTJio+uZlydGlzXEY0l5BLq\nhlhAIpkjaThUX1KQbkAZ2SURmABvqYxEr/MSBAisfPZvA1bfxWKTsWdlvkLFa6rTKDoPIolWfpqO\nOA71mZOP0PsjZ6OKAy/PvfISpCxosEbSCWUtWgvmoG2LdVI6dIBFoSonRZVeewWhXkvOIjmXy4A2\nVc+rntux3cjNPvzkCOY73gxyKmXVQvaJoKPgLDFJG3nKcerSlNFpEpHZLKmQtgUD0bnMjRAOTskt\nmKqwHOFp+XDu4mxjsR1VqipgvscZfNApzDVnnYAYpcqQSTFiNWEAQSoCSlp+q2gWdU6BMkLPLGo9\nFKQcJQNQc0roGNEx4VNi772EU8oya2bMZjM+e7HkxdPM39xG3jxEvrod+cW7HW83PfePI6/fvGEI\nr1DO4FpRIlp00tk46xpmnaM1BmumbJpsNAHwiBBqyobdfmC7H8nZEKKi7z0qikdXNMyalsvTJZ99\nvOAHF3Oenc749GrJ09MFZ+sO2xhGleljJgZJA5QG21qIkRjyNM5NkVG2aibUImem1v5V1sU5CIKd\nRJlFnk9Kpa9CtqA6UZhvhb/6vZisGkMxfV1BMvlZUnmicVZUfZLyrhvgBIELXmQnzyX9GJMzMI2k\nAgVLMMbJZ+k6Kh6MypL+UNeDGHxpgcNnmffgE0SUOI4pvK5JQ0mJyt07KFQUp1DSpZQUISZiGPBj\n6bHYb9mPe3waJCVKXgbCxiCisb6HFMv0Z4t1Dc18heuWNM2Cxi5wpsNZR2MdbWNpnJ2aplRpyqOc\nnzxPSUETx5HDv07jSI4PWk2odeWKTwnHoDyQKKQWUW4JZJWmumueHkcJwfMB9VZImiClxqN8CgFg\ndAaTFePgeex33Ngdi67lfDnjZLnm7MmcT64Mv+Ezmz5xt0vcbEZuH0fePnrebhP3+8RuP7J/9Nyn\nTKQnpr3MD8hQ6dVZchYJ1ZSEid4HjHU0DcxnjieLJeerlou542rZcnW24GTdcX4653TZcHnasWwV\n1ijGCNsh8BgtPgVmTtM5zcwZclJEU7LfYrOSviQZ7z7tILHo/2Uo2odK15A9TqF+nZ9Qd5tDzllp\nvbV0lYts3bT3H7YtmCYW1x1/Ii5NYLEqRi3ov+xiYrJZVdamPsp9EafQdKIcVWjDtdYugKXkj9ro\nop95hNxn0CRcKWFHpQgp41MkGdFgNKqQxqZwHXEFdZisF65E9CPB94RxxzgO+HHE7zcMDzds3n3D\ny89/yvXbr3DaM28MJmey9wy7R3LYo+OAQxxWSDBiiXbOcnXJycUV6uwEugWLkwsun33G8vwHdMsn\nNLMTUeNyCmNL1aREgrU5rpZWJYmprJ7vPz4c6ciYKVOSBhqN1aaUApV0jhVU2pIJIZCyEomrsgtI\nW6YkYVOuClQuQvXqqoBiMUV0TlgQ2imJ65t3fOUTs27N1aXn6cUp5yczVksRN8lK06cFQ4Bdn3gc\nkKrCGBiGwM4nhqDoQ5aKQpSdRlIVWeyttVilcI3Qmhdty9waFjPL3BlmM8fpqivioUZ+1lqiUUQi\nu2h43CcediPbMdI0M04WLYvO0jlxcIGMQk8danlaBnpi1clqMJhSxs2q9o+LQZkylEbuZZ2uVOYm\nUBmLcKjfwiGc/iWsa6oE1ffVqCElCaNFZk2emcbgjJPmohISq7LTq1omrHJgWqOMmzoglTpsD7rs\n+9qU16IOpc5MyZ/lW6tEdcqoyIjgLkOOQp3WZsIUdHEC+92O2+u33F+/4eH6Jbu7V/SPb/D9IwSP\nzRmVAjpHcvJ0w55PThSz5SmzxVKikX7P/r7B7zeQvOzyRtibIWeGcYTwhnB7Q771KBV57RPvZuec\nfPRrrJ79FdzpM7rTp8yWl7TzJYvVGmUaOtfRuRLBVSEXJArXlef9fTb5wTCDf/G/T4tH1wlSqg6F\nUKCKjlsSWfUYPSFKT75SujS/GAERM1Sar2xk+ehLENYQpUc/xkgoffrjGNhse17ePPDV9ZZ9Upxd\nXPDi+Uf84OklT04c65lh1rTYxmKNo0q15Sz5sq+fXc6BVAk4alq8IAIdzhiZsWBkQrPR0BTmIhjQ\nlqwFgA9J00fLbci8vHtkv/e0KK4u1jw762ROQqOmGnlMBV8pELms/aI3SJ7UfmrLsaRf5StFDrOB\nCyBYqjo1vz+oS8n1TClZPjQtkZnujeZg/CVsO0RLQMpBnkc6kKBEgaiR/gVrSmZgpvbkXLQs6rwN\nraUKojgqv3HYzb8rM56eSCm9ZQTsDBnG4A+SbEqhUiSMgcH37DcPbN5d883nf8gvfvJPCA9fczLX\nnJ+uWC6WODPDmFbKliqB1SQFyjhct8K5GSZrwjiwfdyIA0kjGIVuOpyV0XApBpLf4fs9cXvHuL3F\n7x9JfofWMGbLzitGFvj5Fecvfp3PfuNvcfL8Y1YnV5ycntI0LY2xqKyJJW3IZZP4Swkg/vz3/9Fk\nsKo6ADmjaQHlBDkecIMUAzGFiXetSx5JEZGU/Ux6GlJK03AQ+RmTI4ghMHoZIOKHwGY78uZ2yxdv\nNtK85DPL03NevHjBZz8448VFx/lqxmI+Z9Y0tNYVzT+DMaWMV/LeyqCsC63WiTOxpEWHXM5nRVSy\n440hsR8jY4CHIfNum/jm5pFtv2c+6/jkySk/fHrC07MZy7k02lRF6ePmoqlNudxPVYxFF8VgODjL\nKqVdG5d0lgrINHMxF/S/OIJKnskTUFUjkOmHh+eY1ZRyyDPXR0ZcekxIxdGXWZlZOBraWmxbx52V\n8H+SCpc/oTkybJhCEw3vkZ4mGPBo/R8mFNf0UtZNigHf79g+7nh43LF9uGV3/SXXL/+Ix29+htnf\n4hhpjKKbzelWp3TrJ7j5CaZ10nWbxNnmEETNy0SaztG6BoUmjJ79bi+yf6V0K3iYxTYdjW1IMclU\nqjd/yuuf/x4vv/wZKo2crFecnD0n2xVow+PDDfePPfvY0l59yl/7t/99/tq/+x+zvPoRp+tLWmfK\nWDYvHPmcMa77ywcgGltq3ymhlJNnWfrkKbs/GZIFFQFackzoOIr3PJo7VxeaUD+LZFcJb6vKb04R\nZVT5LIXLMCqPzrDS4Fxi0WkuVh1fvtvx5e01/+frd/zOP29Zz5c8vTzn+fNznj5Zcnk253Q5K01L\nRqitRtFYi9FCsjHGFgchnXyiJ5jEKaEZkqbPmc048rjzPPrIy9s919c94z7Rrhwvri74tRef8OnZ\njCeXDcuVpTOlHVdBZQLV/BYOmg61+aeGzhlB1DUUMFMySW0MSkkfQ2UfokyRKQGd0tQ7Xy3suBmo\n7svyTa1ri0NJSTQRQTgWujiCyiKknHHOiRwlFYwxkpU8P42d8ACtmAhOuYCS1Jz4gF+KnNvRoQq+\ncbiC6lzkLT7KwNcUZbDM9nHDm1df8frzP+Lmq5/gN1/RjffMs2e2mDNbXdCtL9DzFXq2opktpazp\nLMrYqVQ6DnvwAsJqrTFVfkxHdGNxqkRAhtKtKq3qY84YHdEmkY0lNStYXDB4z7g4x5y/YDk/w2jL\n6fqcy7tv2N+9pX/5T3j17l9yyiPt3/nPGbo5jZ2jFSRlywDZ77fJD9ib0CCwTIU3hJjDtJuUnbZW\nGYBsMjpbCTGDtOfmOpu9jFtTSnTzTS5aiFG6A000kv8agyHglUIFhdWW5ALGKprWcH7S8OKi48d3\nLdc3W76+TXy+feQnf/LIv/iDL0imwS1amqXj5GTByXrFai6iqetly6yxzJwV/QIjIFbvE2OEwScG\nH9n2iZ3PPOxG+tGTvae1mouzU55dXfLXf7zih5ctV2dLLtcL1jNF6zToRFJ5umMVF0EXhwATmCcY\ngWKi8BZDrsIkMcvwEFXlyMxhsEldNbbUSXOuEUQuYOIxlbxi84eUNAMqK0xpNaZUDSgiou8XJMrf\ntciU5yD6Cyl5UtBkZcDoUlo7NCDVGCRncYxHPT44hKcSi+qN1RSAtPArYiT6wLDds9/csL15Sdje\n0PcPbO9uuX/9Bfubz1mogeVqTlJXBGVp5ku69Snt4hTTLTGuFa5DY9FlEC1RmAzOKoxy6ORQrJ8a\nwwAAIABJREFUKTPsPTF5YhyK45WNK2VDRliSEhUnAgqMY3ZyxbMfzTh/8evEJOPoZm1H4xpUMgS3\nQBvLam5Jpy1DzKTdDWn7BhU+IucOpcxE2694ya86PmDXojTwVKRYUdtny2IpSG4qYMgh5s6oLCq4\nKsQyJqxws40pbDN5vSmfackQU+lVSASXaJOIlAYvDDgXPDGOxODplpHTyzUf7zw/3u75re2Ou23k\ndmN4t3HcDprNNnJ7f883eUvUjqjAOCuUVyM6gW3bll3Po1OmsZbFfMasaWRk/MmSi6dPuTpZ8tGT\nFZenlouTTgBMC11nRD48J5KGlLXIeaeSRlFviz7k/CU6En96QNiroWglU6xNfXOxfaURRmI6UJNT\nFqS//rHqDOoTlJuuJrzg+O/IKwpP/uipH/gxR0G+KlUFJziQCZ4QMyl6fI7QSEo2bQrlnXm63pr2\nyA9TTmV2Ra2MlKaqGEg+EfY9u7s3vPr5H/DVT/4pb3/x+5zMMyerNfPZmovWYD79FDdfoJSThEJZ\ncjejmy/o2rlUPJQCXSje1pZ5DYJLqZhpsKAS/bBls7llHLdoE9EqTFOsrLYYtwC3wrYLjG3Q2uLR\n6IVm1i6YKV2MOpP8QBx7YM+ot6RW07gndMsVl8snuOe/QdedlDsUylowBY/7/tDgA45kl8VgjCnk\nCyTUPfLwGS2hfekMTKUWnpWgoyKXpcmT2IYiJRHLxOrpr2QyRAoTTECmFBImJULqaGIihvIVY0G7\nR0IcuQyRT4bEOEYGH2SS0RjpfWIYFWOw7EcYMXgMUTmStkQ0sdCAZ23Dej7jbC2NR4t5w2rlWK06\n1vOOk9mMWeOYtRrTaoyTiCkVY05KT6GuygnzHiVVeBc1HFbqIHohrE01Gaq8WsmUaKunG31gUEoY\nH7NMvMpTGlYhugzqqLuvfmZWvzy+S9U+wAPWcIRAvn8UIRuFOB9rNLqoKoUYGPtEdHYSQIUSAZWP\nrYSlqqXpY3FuSKk6Bk8Ie8ZxYHh8ZH/9NZtv/hW/+P1/zObVz3iy0Dy7esry7BzTnoNbEFVHNKKj\n6EzGti3YFmOaiY/gk2hOmww61ZkMpcXaSZOUyhkVPFkZhmEkpYHGJTQR3w+EsCdmaOZPWJ0/x55Y\nnGvRusEGmZgdk0IVan7Mmf7xnv7xmrG/oZ0v0KtLrDaYxSmzkzOUSagYSWNGuVAi7ua9Z/Zdx4fD\nDIwmpohSqZSfBGSqKsPltoKW+XFA6VM3pS05k1UqnNIEQYBBobsmDGXKkjJiFKV1NyH0U+PA5Sph\nJulGLqPRUszE5CEFkU3LIs9ddLpJSabuiKHWHnJNygqlG4yWFCgETwwBay3L1YrVyQmz+ZzGNTRt\ng20sjTUoIzk1qjRWHeEBuSx0XULdCqPp41q+qnkx00xKNeX0hxD6vSMXZyrfHNSblVQhaltsSqn0\nA4CYnpn+JuUpHZSFykdDqXXzSxz9KXc/AlJBoUsVQpVUwDmH0ZrBe3wI+GHE2yh1ea0xk+pXnqKf\nmKIIx8SEVRpyIPhE3+8ZH2/o33zO/u3P6G8+x2+/4aLZ8uyvPKObn7C8+IixW7GLhnG/R4et8BOs\nI84XtFYLz2DYso8i6VZLnrpt0dZilFDRrTFEMra0ZjvdYfWM2WxNCj3Oyj0b9z2Pj2/YjQ+F1q4k\nsi1q0laaTkulSvpYIpatymz3ewwt2CXMz9G2JRrYb29J1/KM/PYcPe9wzUmpaLjvtckPx0BUEtYD\nZFM6yisZpixRo2wpmeopN5x2xZxl4jGFZGQswfoDhgBIWGpE6ENVJRiFKsTuik1ITlxGix1FwhVJ\nr0h01UuQXE9ATlNKYtoIgKSVkTHd5Xp8CIQYMbZhsViwWCwxjZTNciFcHU5XTRvoVJFDrl9+/b7B\nTbjd9LpDn8dU0y8fJpm9RFeiNixkqFzq0VqJc/YhlmejJ/KPoO/V4A8w/SFoF2Q+lRRFZQHyFDWz\ny2V8mCpzKMuOXhy/gJt1KIlCRqJKCG6d/IVxHElDAB8kerGN4D0ZcmnhzQgAiVJkH8jjjt39La9f\nfcXbz3+P4fUf82Q5suos9nRJ1HOSalCmY1QzvNeMQYRwTU4ys7EMb9UpEv3AbiezHYy2dLMl3XxN\nGg1D3OEa2b2tEj7Mtt8BGmc6lLO0iyWkDqPBWUe3TDTrK06yRxmkKctKD4ZWjjzKlKucI9qWqEnN\nWK/OGPot+/5BJlgZS1KtzAjtBza/+IKHb16imgYzO+H08hNOrz7Bnj37Xpv8oGmCKk0UuizcKfc8\nMnh5narbX/meqTwmQhhiuC62AkAFX8gzgklYK7l8KhwBdJpYcXKUPodpeeeyUjUq12y8GGo9F4CC\nd9QaeRXSEBKJvCZ4z+A9IWQiCp8SClNKg/VOFBc45fG1XfUgI3C8tccCENZuu3LTDpFAiX4iUpuX\nce0D47gljjtCHArIaNFWOjgzSsbMa4NxTdEzVMUR5qPzrLnFQbBjSlHqT6aoof7P4Z0cOTT5Vp7r\npLVYnnt1FlpbtM44I0BwCgNRZYZxL81I1hb1K0hECCNGJ3b7nu3dW+5/9s95+S//Eddf/YQnz5+w\nfP5rzBYrkhJRlZgtY1QMyYFqWS1nWKsweUTlophcqc45yd+LTq6uiLSCOP2EoXWlsS5BP0hU0zaR\nxlpSHhn9jqwynepomzknq3O0aQhhZL/f4UePVgNNp4hGot8QPba0nhs0TTfn9OyS5tGhtML3PVGL\ntB3ZoxOovQIVGXOmv/s5ir+B1r/1vRb54QBEeySxXVBtnY9UYQoApgpIcxyGTvz3gmwrVSSfTEK7\nBhMDYfTTAJOsik5hXeA10TzKlVUZlXZokhEOg6ZODzqyxwqJ11BRyS5qhMdKPX2Zy9jRhsB+P4ou\ngvegMq0WgY1UDT8fTulwAyQSOjYUOWV1wFZyfu+3tSToS0oUYySNPWp/R9y+Iu7fEv0gQ0zIKDNH\n2zmmWaDbFbZd4VhhdenjU8XxqEqvFoARhfSR5Fw4HmpKSZjOMx851qNnf3TGx7jFFO2k+nxTKT0n\njJYoKuVIijLBO+ZAjtLZZ4AUpbA6jHseH+54/Ys/5PaP/hnp+uf8+GpNd/EM7Rb0WaG0w7klIWmG\nFMk4WteJgzGVEh0FD0ATU0BkayFrS2NbXDMjoUWdqGwS0hgGCkvbLliuOmbtHJVgt3tkHLVgGKah\n7WYoM0dpW5xkPwG6qUTC2uhJ9EWhCDkSyRjXMFusy55l6IceP/QYnXDaoUKGFGg7SLsbXn3+E8L4\nlzRNqCkCWiTJa99/1cOf6MWp6t2W2LJM7Zl2pRpFyK/QOaGtwdiGMMYiCApKZ5xTEs5TG3nkMypQ\np7ToFajj3b8E2Acl33IOZXFWRqK8VEpXNb+uiUnjLNYYvI+M40hOEd+P4By2qfdBQuSsclnchyil\nYvKHQEZNiyaLhUgpLSZ0ETwdQyCEnuz32PCA2t1ihze06Z5MEWL1nmF8LeVdY9BuwWx9BSfPUcun\n2NkJ2rZIXaZGKrILKqVEiETraRc/gjGOzvb9fw/RS7mUMmHpvTb0wg0BpCxWZjWICrMl5ix9AWGU\ngSxK8mkKkv94e8f9l7/P/qe/i7r+KSenS+ZPP6U9+4Qhbhm2d2CWnM2WNPM5ZmaIqVRYwsB+GBji\ngDKK+WxO61qS0hjVMLe2yOiJtuYwZrQxtK4tvRCyLoyxWCsG39iO6CNdt8A1DSkFkY0zDVA4KDlh\nXYNuW9Ha0AadAtZCVoEQAqN/xI8D0fdkFWlmC7QxxJzFAdgOFQasbbDalG7NiMkZPQTe/sn//b02\n+cGcgbXtBBQeDE9TtU6n5hQjfejHS0rV11J35kMSKjuKI5mMNlHSBi+pg9IyD8HYol1YHICpOTnq\nPe0B8mGK77HU+YGaL2HcQQNfPiXXzbCGz0pGq1fAcBw9KUbGvidFh2udBCIl2H5fSoujFKB2yEEK\nGSmRiBNIMZJDYhz3jMNOcsrtA2F8pA0PLMyepR1E8l05lJKoys00SXm874n7Rx521+w316wu7rBn\nP8DNn9C2K3G/WbCSlDwKTVBaUo33wqZDJJDzwYlNZb96TZXhmAoYl+Ta4qTFKE4C0mQsOQXIGat0\nGVnnyYzsvaRF5D2bxw0Pr37O5k/+GY8//V1a3WOvfpPF04/p1ufEh8T14w3G7FkbRWMNcQwYpWVu\ngmnY9VGowuWZJ5VByZyL1losBj8mEiPOOmazGUbDOAwMsUQuKUL27Hcj+/xATki369yRk8UPgRR3\nZEaMayfZN2cdCl3AXEfIGZUyMYyCh+SETwGtnHBm7AydwLg9McGs7dC6A5UIww6bG5zTWBfBP3y/\nTf4bWfD/j4fClLhYTRevrZBMcxnJlSuZpmJWGcwRrZWyw0Mx3hrKUioHJmGNxRtL8OPEAlROJv0q\nbQtrsSD16jB+/L3Q9r1tubghVRD8zFTims4FJOVQRdyjgJdaKZxWaO3wQYH3BAI5IBOOy7nooqx8\nuFf138P1JZXIEVIIU+nMDzv8sKXf3NE/PuB3W+K4Z6BHzaFZyN+xjYOYyUaTlUXR4XRHDI/ocUd6\n+IKdf6AZH1HnI+7kB5j2RJyHthNQl1UkmVS0BgqoW52Zqn0E8vNUulCVqhJ2h0ggxfK8kzgBRSr9\n/qk4CXluRWhR5kIkDyT82BN9IPqBfvOa3euvuP7J/8abP/5njLtbzs7WPG0aGgfkxGazpd8nzi9W\nWD0ra6noWLsW3c2ZuYZ5XqOtmgRKszJEJfcr5EjvB8ZxwOaE6jqccWQnw21zSmgjA2rJmX4/MAwj\nwTvS2GKMw3tPyhHXil6BMQZTHKsso1RARY0fBDtxpqFpTjgzMrSHLDoF+/2OkCLGBaIymMaCj7KZ\nGY1qHNoZ9rH7Xpv8cM6g5ufV6I2W8gqHHZl81O/OkdEfcU5zVu/1A1QjBYWx4EjY5PHeCY6QEuM4\nYtC0ncOUioSq8mSl5nVQm30/D/6OC5kGvlBTmcrHPxLZVAhAmEp1pHEOow19kKapGBNN02BtzfrL\nO7P0VdSopJ6HymJEMQRS6IljT+hH9psNw+MDYb8jh0gKEjXcB5m5GFGstcOZhnYmnAKJnhLOOnJs\nGMeBuHsk5K+lBVtF2tOP0W6JVhZrhTWYkO5DpY+vs5ZjivBMOjSNUaKLQ12xfGVpn66aFCkFyNJO\nXeczpCC7Yk4J7z2ESI4jjHvUOJD7DXFzw+76G1zvWUQDI7x9dc/Z3Svmu8/IO6Ebg3Qs+v09Oi0w\nNBjjUAnSuAOEEl0jPBFS1TSmRSlLSp59jjw+vBM9grSDk1OUtmVid4suXbgxerTZYZueGGVgj3EK\nbVt8GCXKSxljMiGMDMOADz3GapwTXGI2WzCwKzR8D1nTtIIhDL1U4MLYk6KnWViM7WW+ps70fsuI\nZa5bunbxvTb54aoJRhaG0mpC4bUqGvcTZn1MNFdTvbyaitZmIifmo7y/dujV9zW0GDsy6p5+6BlS\noMkeEz2NFlmsCl5NugcUIKew/eoud/y55FJL15T5ASXMVxI9mPdy6CODLjV1aw1N+SwRBx1RucE6\nOX/RsztKT4CQIoRYHE2AHMgpEMaRcdgyDhuIO1QeIEUh36SGoQ+EYcewe2S/aFktlnTzJbZpsc6g\nikRZCrLDhDDC/p5IIiiFVQ518gzl1mVgTCInNd0jI22KU1RQy8SHMWeC/9QGI00t3caiv1iMvkx9\nIkaJJpKkB8kHcvakFPDjiPID435H9BvCMBJ3WzY3b9i8e8Xty5+i4wOBhFeK282ep8GzPml50T7j\n7uGG7cNX3F7/lOV8xWx5im0XuGZJ08zJKtOHgZQS87n8TOWEzhHrRKR1Nl8yX8wYdhuS35JCi25m\nGGUxpkEpW0okpRPTBSIjGDDOkLNmjJmcqzNNKC09OyFl+nFHyAltpNTYtI7oJSrKQEo9mYw1HYZM\n9oHHzTX9442wJLtTtBGgM6VMMBbb/iWNDKhjurMiF2HOmBNGmUmphpxJpSRolXTqVQZiLpiCqKRl\nWV0amtLJGAGlEsL3Nrh2hnUNpm3o+z0xJIY0kLOmaVoxunyUkkzxRS1RqopvMun3c8h/dal+lE3x\nvRIZxxWBUj3QSjT/nBVQEyJ+7PHRo3InIBAQqnHlWtUUjy+5tiLnACmhVcJIe4Yg3iqhTSEpaY2P\niWHYcX99w1sdWK9XnF09Zbk6E8YbCm1abCP9EzlGMp6x3xDuXpHbJctuQTIN2cyEd58rsCt3K5Vc\nX5UwKKWMiqEymcTZkCFHVJJqRIVHckqC2AcPKRYimDiJ4HtSHIhhzzjsSX6AMTBs78kxMKaBuN8y\n7jZ89eoVP/+TX/B8kfns6oTLznC2PqUh48i42ZKh77ndfcE3X3/J2fmCp89eYP0Faq1pZ0uss4hk\nlaObr0QqLHEof1uZ3Nx2SxxZyokpgx/BVU7FWJylNF2NQ6LvB5xVOGMxpmU2m5fXClnOGEvXzljl\nFf24I+WANtJNKWpVFrQmxsjgR4IfMbFnZmc4HI8PN7y7+ZrLp59wddmwWp3jbENIHtda5svl95rk\nB3MGLQCZaCBnQy7GrrXBlhpVKMCbKUKZEUsuIarR0rYsw0yrlEfGk7HFlJPS6JTQOZS2Vo1rO4xr\nyOOIH0aiH0lFzEIMDVA191XobIgigIMptNuipzL10lMcRFIccIIpzTgoHuWCdci3ZZ5fBkNk1VhG\nOsYhMA4jISuatkxFKm2xwhgUKRCJiCLWWKL1uGjJriG2HT4GdM4kNUpTlxppnIbgSKYhDJ7b61v2\n+x2LxRucs3SzFfPlCY216KZDaXsgVpmZyHqFQFNSqaQMIQnwp9WUICCMz6LpUCI8cQHypbKFVIDI\nGEgEco6k0ngGZSJySQuS3xP8Dt9vSb4XnsE4EPYDJnqGcRDHMw7stxvS2LNed5w/WXByeYFpgeQZ\nH65JbUvj5lyePieHkbP1OUoFTNPSzhvmswVNM6OZz5iZhDIaY+YY3RYQM6CtQ+s5RMvY7Nk83hPD\nA8pp2qbFh8i43ZFTYSAWctRiNqNtCvVeg1J5muI0DCP7fY9zc8y6sBnzjDTuUCSsyfgh0LgWpQwh\nJsYHTwzFGTvH2eUTUD8WWngoKmJFoMa1DSlraZv+nuODOYPoVrLLkknpkUZZrHJknRhN0ejJCkxD\nSo4YYpEsyyWfk1p3IjAEKb0QZIfeF9Q9JBhTlgeQsjDKChEppMhDv2c/epxr6VxLow3OCA20IuCC\n6oqhy47OtLMrLapMSonyTjZOJvTIi6Z6sc7CF7CASlGSiTIsT8jDGpTBdY5sEuPo8aPHoUrZTDr2\nhPpcsQ0pgVprUEnAq4ZE9As0iqZrCMNAGHpUDz5rrFI0RjFqJyVHHxgf7hhyYN/cEP0z1mdPaOdr\nsmpw7RzXrmkXJ7jFKa5bg+7ImJJDeXIOxMA0sTiVvL86yOKlSxk0kdIg/AGUgCHl9SJ5L6h5ip7k\nxVH74gDysCP5Ht/3eN+jkif7CCRCCDzs7rm5fUf/uEUZx6NvuRtXrGctFsfm9pZ+SCxO7pmvF1xd\nnPM4m7PZPZKzR6VEjiMpQwhRNDZCJLk9QRVRHW3RiIhJagxN12EbzbgLjKOnmdWoz5BUIsbM0O/F\nIJ2jaRspjQZPP96Xa9yz213z8HjDbHFCzD9iuXqGwmBUJvmRcRjxvWfPnvlihXYNq8UCqzVRacys\nw+K4tJ+wWKyE2FbwCtM02KZlvlhT+0p+1fHh6Mg6iGdMEZtbYhajsNkxi4qspVnH+5HgB3wMDMHj\nUyIlx5g12wj3jwPvbu95d/vAL27vePXunptX17x785abN9eM9xsII8l7cgSSlvBNSaiHjuTs5SuM\nUt4zaqqLaevAOnAOZi3NcsHJyZrzy1POL0+5Oj/h6ekJV08ueHZ1weXpnFMDc4nOsUZhrRCXjJV2\n18YYSElIP6oO+1QEBdppWutQ+8h22KGdZWZn0k8RJTrxRTSWpMnGgk0l3FbMl5bQzvG+x7Qj1nvU\nuMZ6T+i32H6Gm68J/Y44PpKSl+irbfFpRh8arDqhWZzhVmd08wva2RLVuCn/T9mTxh25l52YXKTR\nQiBGL7MVtS5t0Vo6ObXU50NWBLkakVorg0Fr6TD6gTjuiX5PGPak4IvO4J409mQvqkwylg7RL4yR\nYei5vrths3mgzY7H3vPV7VueuiVdalktFgz9LZs3X3NxtSafX7Ebtrx98wUvv/4589Zy/uQF5z/4\nt+hOnrFcPsO2a1TIKN0XyntDznJNOQupzDUL/Diy7Qey2dI1M9pWIoycFZvHR/Z9D1mTQxn0ohzO\nZMYhkMZE2I883t6xfbjHoHAp0zanWK0IWWYkWZ0JYU8/BEySGRLd3KHdDFX6Vo1b0MyFo5Bzpt9t\nCSFNQjwxfL8w6ocjHSFllJQyo4LtsGG3ecTZDq8s25C52cLn7274vT/+gj/96Ve8/OJLHt++IvY9\nyTW0qzUn5xdcPb3i4+fP+Oj0hL/66Y9Y/82/QTdztNqysA2zxmKNzEEswsHS34SQWLIyjCnjcy7D\nWXIZEJqIUYaaDGNgN4zsQ2Tbe7b7nofNlrc3d/zpy1f8fnzJZjfy8pvXbL55Q7x/QM9mdE9Pufrk\nik9ePOHXP3vGJ5885ZPLSy4aS2cVjbF0TYuzhqa1OKUwGVHKTYqt93jVo51FO0uMRTxFKyIOlY1E\nJC5iY0OOkRTn0u0WIimJMfkYSUOPHvb4QXbXHPqS6iiUbbCzBW6xxC2WtF0R7uhmYJykXQXpT2FH\n2N7iH9+RhgdMiqgQGIcd292Gsd+S0kguXQZg0LrF2A5tZyjTgmlw7YJmdoJyS7ITMlEKgeR7CHty\n3JG9J/tBHHoYhYSUM+iMz0J+it4z9AN+GBiGPU0rY+1HH7i+3jBzPWkN8/kSHQZuv3xJfPQsn6w4\na+ZsaHj35TV3bx64vX3L8x/+Juq5ZqFbOteI81E1FZV0gZzR1rFYndN2M+leNA6rGqxuIEvau1yt\n6GYzmQSeIcVY6MUd65MOvbrgZH3JfHHGbvuOMNxz8+6PWMwv6LpLmmZOqzVbv6PfPjD4PdpkXNsx\nW3/Euu2wM3FIRhnIQs9unEVry26/R2tH8KX57nuOD+YMrq9fMwbL6wB/+NUdP/njn/Evf++Pef35\nN/hHT4qJk2fn/Ppf+5TPPnvOf/Yf/Qc8/7v/KRerGSezlq51NI2EUlYfGofqzp5UUd8FaqyaSz25\nYF4Snlc2Xz2xnCfdA0igpFEk54ZMOxFpcirMQB9Lc42mTlbqfeBhP/Du3T0v397zp1+/5sufveEf\n/Pa/4uXLWxgjzgy4J47zT1/wW3/rb/LXf/xDfuOjC56vLK1T6Laj6xqcdehxZMgDuZ2hTVOQeNC2\nEnENGkOKVpD5OnYulbw8eEISXQXigPeD9CGUL+FXOIxtZAiJdTjXoIyWZquxF62HOBLHgThsCds7\n4v4ek0Zmjegv6+yxcc/Y35HHHvJIjAMx7gtRqcxbTIaQHLg17foFqyefMT99inYLMZgwgh9J/UDw\nPeO4L3oN4ghijCQVUVkEc8mRGGRQDEkR/UhT2qATMITMbd7wsE2s2sCwveXmpufj9ILTszNmP/pN\nXjzdM+aBUQd0UBBDUY1Oh/6QlAlDL8/eOKmCuVaalpoi5pqLDLvfEYY9/y9zbxZkSXrd9/2+LTNv\n3qWWnt57ejZsM0PsIigOSWGAMBdwES1LokTbsi2FHxzhCNtPluwH2w96sBh+liMkelNYJu2wLMmw\nuZMQNwEEQYAQCGKwzD7TPb1WV9VdMvPb/HC+vFXdMxg6TDoGOVFT1VV3zZvf+c75n//5/5UCYxs5\nn1qTQqTvEiFsCMZQTyY0k/NcmO2zXt7g6PAVNqsDDvvb9K2iqnry0HF461Vef/lrbDZ3aCeGxfmH\n2b/kmLZ71DOHaeSz937D4DeEUAhmVuFDz3q9FE2ItznesWDwU//pf0t3b0UKkfMXLvHUe9/Lj33f\n9/Pk37jMhZ2W3fkEUxsqpzEqYcqOHnIiWksKAVvGn4XOmgjaS3sxgyttL81I4rEyngwUKsN2rFnl\nhMqxtBNPdPvAkrMDir16CRCiGVhSc1sVfv4orBlosMxncOncBT6YL4F+Eu97hs4zxA3L1ZpbtyOv\n30688doNvv6Fr/LlX/w811+9QV1p2nNznvzgI3zoqad47OELXJm3VNOK+SKwuztj6uotL0KaF0Vt\nSKutzLfMAoLKspuPO5OCrTpxSl6CApKuj19ZZUL0RC9892F9TNgcEXqhw/adIPc59DhjaJoJbdPg\nqFFqitGDWJ8TidoT9VwwnwKg6uKUtImJMBwxrG9QtROcNZKJJS/1exwgR4wSTkXKWWZICr6AyqJ2\npTRV1TKb79FNbpP9XfBrtKkBR9AV/XqFyj1r3TObRIiJ2zevM3RLXNMwm59jMptjGotr91HTfblW\nUsRWFWhL7/N2TL6qkVZ44VGEIl6jUPh+w9B3DP0xMW2w1jGZ7NPUC2xdgc6YIJiPYMMe4yzt4hzG\n1jTNIWHw+JhZb9b060PW6yWbbs1qvWSx8xC1m1C7Fq0sfdehVRb2oq7o+yUhdChOvDRDCAx9/7Zr\n8h0LBv/hv/M3ePfVhzg7n7GYOGytQUn6pUxVAMSiUosVYMrIbm6yILU5JZn9NxqSxia77fPnrSag\nEG0ymbydGxin8nUJDNtUga2GlhpBxLQlDJ3wkEdl4PHdKEDacU0hy8SyO8dyW6sUja2BKecWkUfO\nRT4QEzpdZh2epouZ5SZx/eY9bt464sVX7vCL/9fv8eq1N2DVs/fwed79wSf4xDMf5IOP7LMzaajb\nisWkZdJUBZCUToO8tNL+HP0GKFp8piq/K2PbJfgJuzGRsozN+tDhuw3d6h790U2Go1vE9VIAvuRJ\nBbRdh8ixs8zmM2ZNjVUR6pqkyyiyFohUShtROjZaXKlrDEk36MkcYyfC14oDOgfhU5RVlKm+AAAg\nAElEQVQUKKuMtpCDlJVZje9HGAvGWOp2zmyxx3p3n6M3Xid2G6IaMM4SNwbjFDkOxD4Q5xMuX36E\n6XSPlBObbo02d0F12FATY6TWEWs6VJ6RQgOmRmfBe7QG4kAInbAnVUYTydGTQib2okYkRrRKzpU/\nYlABY2q0qqhsy1ZiLmeUSiSjMBNp4aoU8WmQeZN8iXjxER66+jjDsGY+mzNfnMXNL2CqSujo3uNT\n3MrfkW2RixdNRmOl0/N2xzumjny46UZWD1ZZklbiFqwg6TF1PzlZI/9vdM+9bzVmTiiwIwOxpL+q\nWHdv3+f4uGO7YHz7JR6cvEgYqdLbaX4lrMJxhHp8wLFdOI7SKoX0yEvKrshFeEPIQrLLBWLsAVEH\nVjETfSLH0VEqsR4SB+vASzeOeO6lG3ztuRd48dXXGdYd+zs7PPqB9/HMB57ku957nguLinbmmM2m\ntM4VrcDSXkqJTEBlDdqWWQ+5bMYcQuzoKGrFA2FY4bsN/eqYzdFt+tVtQr8W38bgSTEQfCQMYiSS\nCdS1Zd621M5uh6tSRvQpjQU0oQDFCotpZtjJAjeZCT08Q+jXRL8mhw7ve3IaxCcylo5RUbkGT/ai\nWLXxgd4PHN+5y42XXuDuK39Ef3AdEwJoaca6GnTIrA4Tsx3DI4+d5cL5c1jXkjHinZkDQ1yBzVSz\nOTvnLjLdOU89PYNxM1J2ZC2AsrKOmMXnIAahFuc4QNE4dKbCuRZrRYcwqUBIHSH2aK2p3ARrmxJM\nlHAZRrvAKF0SU1msq6l0I9hI6Eg54GwDRl7DMPQcHx4Q/UDtHMZoRreuVJyuA5HaioLUY8/8e3zn\nqSMrIflELRZkubQMU5YhHJHx1mWhn3Dct7nudhEXVKAMK2V1EhgkfkRZ5OX2o05uLkrA6nRguU+X\nj+3PQnMuI9QKSGVwSOlCJjqJImOSIT9oAfiUtER1iTY6yk4cvSD5KUm966OIs6QUiDnShoHJLPPw\nuRkfe7Jl+JF3s95k3rjR840XX+OLX/kW/+AffJFhM/DQxUu860Pv5uMfey/fdfUse/OGnUXDtKmk\nBUUtIS2nQpAKbKcRkb73KFqak8GZGl0XlNpomroh9Bt82fWCH/DDQHDiKBT9hhgCR0tPXWmM1cVh\nSmGsQ2eRDEtKGHxuMqOeLTBNi7EVxEgOHmUGwT+UFieo6ERjNGcqp4k+oIFIgKyxSROtYETtdMrZ\nhx4iry9yFDb0x/cwGmpnsVZo184COXH3zm208jTNDG0s/WZTRoAz7WyCPTqiWx5y5sIxew+toV6g\nbI02DbgpKs/QpiIr6Y6EEFgvj1kub9J3hxirmO8saKd7VO4Mzk1xxpCSYrNZ0q3WOO0gBULsMMZR\nN1OM0fT9Bj8MVNOWxf45aA1KN7imJURPUhaFE+Jc13N8eEjwHXVVU9cVVT3Bugl5bOaojNVu+1l/\nu+MdCwYhCFNOKLe6EFJGcsq4227pgFsWn5hwjopEpYldbqezLkafBXEe714cf7cSGpnChBtfzemf\nH0w60rYu3wYeJLsYlYAoFGORAi8SYUqBstzvc1dS9sLHzaou9UqDIuOyCFToJAtDAkMmhYyJmSYG\nptazv6P4riee4MeefYLDe54Xbhzxh1/+Bn/0hT/gv/mF38TNZrzrqSv8wPe8jw899QSX92csdiZM\nbMLENT4Povtg52jVyuktakdaK7SFZDTGNdi6xbUz0myPNAx438sYbZCWbxhHasMAOROzpKNZyfCZ\nIRdw0mGcw1Y1VVWLgIq1UkZkKd8SEZstMRigRumKHAayGlDak5OX85nEtSbnjDYZqxRWJ1xT0e7s\nsjh7gRzWaB3JfkNOnmGQbM1aDT4SNpG7t+7RTldUtdCHM1GG15Jm2ES0jnT31qz1bep2ibIW41pM\nu09lQdspysrUa+1a8d10ltVxTdevGDY95LuERuFipG5b6mYHoyekfiD2PZv1MV1/SMYwmS6wRtEP\na7puRdW1WGupzARTV6WN6gsYK+7ZKWaapmEoZjrrjSfgaFSScsw5jHZgaqyr33ZNvmNlwq3DDZFc\nwCCDHlU9KYstIzuruj8zkN15HH5Jp9L/k5JiVPgdrdXGADOCKeN9OVU6jKVGLhiBtNKEFnsSUEs/\nfMwytsFgnNAbdRdlYUl/XUaltTECOCnZaYWUlIVmWoRUbMkqnFbkIN0Pn0RSI/seEwQ1j0ERo9SU\nIXhAEX3ieNPx/PUDvvzc63zliy/zyqsHuHbCkx98mGc+eoX3XLZcmK5pdy17u2dop5dx9iwZ0Wwc\nsQXFyWlJpVSLhUNAsXZPKUrpEyRwpRBK/By9Ecw2aMYc8cGTyThXUVe1yKwVBqJKqcwi9MThmGFY\nkb0f0zxi8AKEhgHIRC+GOn7wmJDp40DIgdT1DOtjVoe3uXfjVQ5uvsrm6A4pBoa+sBuCJ/UbFBFX\na9pWSz1tRI9AJ9DZYlzFfH+H2e6Cuq5QJqGdwrUzJvPzzPcvU8/3wLjiDeHIyZB8IvrA4ANZR5KO\nWxJQ00xpmzmmWAemGMixI/ieGMG5BucsMfYslwcklVnsnmU6P4utF2StGXxH8hGyKQ5h4gIl1658\nekFLu7luptTNHFu12HpB3UyZ7136zisTROFHAKasJa3PSkuWkCl8d0nrZeMdV2w6tdjTyeIeXfsy\noo5Dui8wjEaio+XYyRcnQUWQl+1MfcoFrS4LYqvcswXdTr2fJEFLl4WdUYxeDgkZQBG3YItxDq2K\ng7Cx2xHWpCVtz8WAxWqDNfIRKdeiiniJDSIj7kq7L/meYAcqa5k3e3z40XP0z36AV9444ktfe40v\nffl5fvYPvk7lIk+/Z8ZHPnqJj77fcvWR8+wv5GWOQrEnNmun3p1SOFfhXHUSQLflViqThicuVgq2\n3Q4Yufk9Q/BYYwT1Ll2FkCCSRDtSQ84DJgXZCCh28SVz0LYSLEYFbA4o4yEGKm+wKRCVtEddXaNd\njZ3usbx3V/CPzZHQmNeH+FVCl8EgCcqaoctoM2CzJ/aJqnJMZgofGxhqYsj4vMatAm2v8SHRrA9w\ndY2raqpqTkqOMEQy0jLUVUNUCtV3DH3HZtnhuyAZQl0XObWaibFkNIlxTibg5rsklanqFuUmZOOw\nrkHZmmh6YtHECDHgQ8A6R9MscM0UbENyDbaZ0bZzquKvIGIq3/545zKD41NtjjLxJoi+2pYJKQkt\nNCOTcbm4KJ22/xpT/Dz6AuYxKEjggNFRmPJVFn4+8WmggGg5x20WscUtGYHBkwBU6oztPTNj0FHl\nS4aQJJiJtqBWukirFUktXWbYraTQ2rjisCO7kjEyXq1N0VcsNGhVgosogSdS8OTot1OPyRcqb+wZ\nYk/Mhr63vH7tkC/+0cv83hdf4PUbtzh75Qzf98xTPPOh9/DEI+c5t7dgWlcjFs0JZDvu99++3hyb\nnHIeQmlbytSiKePNIkM/0siVYEJZso0Rv8kpQPDk4CF2xNgRvRcHqJhEjzLnAs7KYsgxkLx4XqQQ\nZdbEb+g3K4Zuw7BZ4rsl/XrJen3M+ug2m6N7KD+QfcDS4fSA0ZkcN6Te4zsZbmv25+xcuMh89hDO\nWlLuCVlASVs5tLVUdc1sOqed7khQ8RFTT2h3zlJN98imwkdhTHZ9z+AHqqpiMZ9RVQ5j5fPOGGKS\noTWr87YzlJUjKw1Krg1yJIRB7NtCpO97umHA1i3znbNMF2eoJguUnaCsw2onXBSlyAm0s982M3jH\ngsHdjQxNjLP748tLZZRVFnEh9oxKN/lkVx7TflVKga2NWhbw8SSlHz0XOVndp2bs8zZKCNo/Pvc2\nAJXAIAGg2LTlAjYqmekf/Q1zATvl53zy3nIBQ0fMoQSaE5txmU3QRuTaVFHJdVWDdRZtK9FYtK58\nmBpjZG5h+6mWnZnQ47uVoMjBl7LCi7cEllUX+Oo3X+d3P/ctvvKVV9hYzQc+8hif+J6n+MiTj3Pl\nwj7zaYNRJ3nZCaz6YKB48JD3nFLAh4FRP3F8zwpVWpeBUTVRJOqLG/M4o5ATOfX4sJYAkST4ppSF\n6hyTaIgn4XvEIkmfk/xMGGQCdOiIw4YwrAl9R79Z4YdjNssjhtWGYb0irg/IwwFWDRDXhK7DbzLd\nJhKdYbI3ZXexz850j2rSlOvKE9NA169IMTJtZ+zs7mOck3KvaWkXZ2hme9TTXarpHnYyA20JMeN9\nLDwJ0TPUrsKaGqUqtHMF1I4yyIaUW7EMuukiGpyKOExMiqws1WSHdrFP0+5iXFVG3EuWrdmOJSjr\nvgODQe+3OyqUAZeyqMY6PZf59+0OviUEpe1C2waHlEvXoNT86v5SAtgOw2ydgUacIEcyIqixDTpl\n2nAsF2Tnlzn70XswpyTPc+oxt8kG5fbbFuU4dj36DpQPS17ytqsh50RmM6R8cFhbCV3Y1VRVg3EC\nLBlrZVBKqzIwpSja4aToCUNHCGUysx/ovbQxdczEAC9eP+ZX/uVX+dIXn+P24YpH3vMon/wL7+dj\n73+UJx4+x/6O+AiWUMaD1mbw7YICxBy3Tss5DagcUARUHglPCq1qjKmLz2AgxEBOomaVkgcK+7ME\n4VQMblJO4o4UEjmGbbATqnQQVWPfiwLUsCb4DcH3pKEnhY38e9iwXq0YVgcMy0O65ZI4HOG7Y+Jm\nIHUBnwciAZNgPp2ye3aP6WyB0pYYE5uuI0ZPVVmm8xlVU0MJ8k3bULcTpvM95ueu0OxdwFQLUDVD\nkHmKlAVnsU50D1GuOIt7YuglS7A1KE1ImaxtaVdORHmJTM6aqpnRTBa4qkFpJ6YpWcm1lmXDGjdN\n9TbGq39iMFBK/ffAjwE3c87vL7/bB/5X4BHgJeCncs73yt/+M+BvIc2C/yjn/Ctv8Zj5dtcz7v45\nn9p9Ybt4Of19W7OXfbsAgKNmoNTwI0vwBGcQKvGY5rN9HPF6L//O5aJjNCQtQWBMX/OJhfm4G1Ge\nK24ByRKetq81QtHz19qUVLp46pFFKkzr0l8vbsMZwTRCIiFCJrGE9pgyWlnJFqoW6ypcVWGcTKUZ\na9FWZLq1LhOSQPRFXtx3hOGYwXsZs/VrGRvOmtsHG37/X73O73zuGzz3rZdpd3b4oWef4Xs//ARP\nv/s8l8/v0ta2tAoDZKSEUaNUSflcy/dMEU4deny/QcUjVLgL4S4xbcjZYqtdTH0B7fbwKMSWLG0X\nE7mwS8tjjQpIsUifEaVMEHu9QB6/F7wo+UAMvbQ8Y1/KhwFC4VCEFX7YSBbVDQzrnm59SLe8i1+v\niesNYVgxDGtS3+N0ZLYzYTqbYcuMhbZy3nNOIneGBC1nDdNpTd0YqrZldvYq7Zmr6HqPpGoSaqvJ\nkTNUVUPlJqAFH8ppwPsNSVtM1WKqCbZqcc2Cqlrg3EQCRMELlLLSoTEWo0eZ/nGz2aLjUomb6k8V\nDH4AWAL/6FQw+Bngds75Z5RSfxvYyzn/HaXUU8D/Anw3cBn4NeA9+cQnfBsMbm36U+v8BOkfjzFJ\nBUQHD7by0WN5MAYETi38sZgf/z6mnpJa3Z9RjJmE7GJy35zGUuQUODlmB9vfl+wgSzCQQHHqdSF6\nfWN8U8hOL79QkrYVsHCcbrPFSKYYTLI1QSmZky802JwyMSu00TJLYGvqpsVVTQkOE2wlPHhjxUpt\nDJLJeyEJDR2+XxN6sZALw0CMmcNN5LN/+Cq/+lvf5JvPXSeEyPf+wPv5sX/tI3zkg5e4dHGOVtJC\nrO0MZ2vY0pfuP0L2bNZLhvUh2d+E4RWyv0YMa5RZULcXqafvQtVn8cmU8zd2YqRDM5rH5JwK0aic\n8xggBSkxciomvL4EgizCKTGQorzXGAbC0Eu24QeS7wh+RfAbou+kE+Ijw7Ch747x3Qa/WtGvj+jW\nh/TLI2K/ROeAzoG2qZjO57hGQMKcYOg7+q7H1BWLnQVNZUi5w9SOvQtPsHPhvVDt0kclHSslvExt\nSoC3E4x1KKvQKhFTAjuhmu5TTXapmx20a9F6nB6Vaz8U6/eUU2GYGsGelHg7nKwmyUaV+VNiBkqp\nR4FPnwoGzwEfzznfUEpdAP5Fzvl9JStIOee/V273S8B/lXP+3AOPtw0GcL8a8PjSR26ALC51Xw1O\nqTdldz+1I48gYCkBTuYIuA8w3N5+xBlI4qdUAofwFE409/KYvudCLx6BzXy68yDZgmZM08cuBIVA\nBVvpP6NR2onIpZM0UKNAq2IRoQQko9TpSgIZWSzERq75mLlopaWccDVV0+LqGbaRvrJ1FcaaoiIN\nZWCf6Ht83wnZZlgTh440DGQ0t1eB3/3CN/iN336Or37jDik5Pv7J9/OTP/wRPvr0JS6en+NcvRXw\nHIPBaS6YL8IjMQ6o1KHjMYQlqIgyDaqaouwMEOEQH9IWR3HObYVpFWWWojhljZ0LRSrMRAkOW4Wl\nTMEOAsRACP12DDqlAMNADoOw+YJkCzEM5CDThD4I1pD6jtiv6TfHrA7vcnjnOst7N0nDilljmU4q\n2Y3LaPfQ9QwhMd3ZZbGYo5InxjVuUnHm4rs58/DT2Ok5fDLEHEtJpLCVw1YNyjRo12BqAY+1nlC3\nu9SzfYyboLQj51HFu1zbaQTaBaMZBpGFc64SYpd1cpmnE+8L4759ZvD/tbV4Pud8o/x8Azhffr4E\nnF74ryEZwlseoyjqidqxHLJ2i+9AVqWoZlvjb+/PycI+KS3KZVmkuAp3GJJw87f4wfh0SUGWxZiV\nElceJVTGklCQT/+Xc5mOK2UCI7A5DoWwXaRk4QqonGVQR4tsFaeoCzElGdxRUpNvTVVG++xyXjSy\nexojC8RIhJfgEAMxdPhhw2a9xLpDmnaKqydUdYupJ5iqwViD0QpTOWxlUU2NbSb4bko/bPDdmtht\nODOFH/vkB/jwhx7jX/z27/PZz73Gb//aV/j8577Fpz71Uf7ypz7Eh5+6zKI1D5CqTj4Tow111aD1\nBKX20Fzc3iIjmpHSuo0o5dF5KCPXJ9oMekx5lXwmMcYSJAR3MVkUsPUIJioJvGTQIZCiR0UrRC5f\nCfhoJUiYKCPRRME1YgjYMFCFjugH4jCQg3AAprvnme9f5PjeDVaHt/HrQ466Y5rgaTPigZhEJTop\nxbrr0MlTOy1GOWkgpaHoJ04JKdB3Hf0QidlgbYubLHCTKbpgQpWdYesp2oq3Qi4emicrBOGwZNDa\nUVfCbel60QARA+GIszJoF1N6244Q/BnwDHLOWak3efDed5O3+uXP/N2/u0Wan/kLH+cHPv7s+Hjb\nmmccOkrjqlRSUyvUNvXfZgvjnME4hFMyiu2TqNJyHE8k40CTLqk/SJo6tr8KB+Kk+ygZQjpdSpQ/\nlf76FvMYY1gRK5U0HSbtgqadk7Vlud7gQ4/JblsmSQbEdjFsA+DJuS52dIASHMJkS0gWncRsJMZA\n8CuWhyu0qaiqFttMqScz6maCrWqonGAWxmEnToQ8fUPfOIaNwa43+N5zYV7z1z71DB99/y1+5def\n4wtfvM7P/c+/zlf+6Hl++q8+w7N//kkevXRWxoUf+HyV0jgzDk2NLNETBoNIgiuUOQE/tfakUVNO\nCUlLvCyMiHvo0kkoGY7sivLYqdiPo9NWbSpFRUqGHBNKOUwKZFtEVGJhNKYoRrshCnnHrwsOISSn\nGHqq0NHMH6LdP89mdY/VvVsc370G3ZFI3ZMwRT8AZfAxYxNgDUaJgaxSMliVjSLEhM8ZXdXU0z0m\ni3M00zPUkwWmalC64vTSPBGVP9kgJItSJ2c0JzGrtYau2+C9p+87fvM3f5Pf+Z3Pysb7Vgvx9Gf2\npygTns05v6GUugh8ppQJf6dctP91ud0vAf9lzvn3Hni8fLdIVqms8CTGy2kkmOQyjaSV7JbxVL2u\nEZEIlaXVNHo1ppIqyo4pFlxaif2WrNC4xQrGelzQ6VIu5CyodQqC9Oai31/kuUZp8pHuvCXc5ETd\nNCht6Ic1wQ9CmaVH50jTtDg34dKVJ9jZvQjacf3GNZarA6xx9H7Ah6HgBmMEOAkG2zg3Bog3f0CM\nHZUT5D0QU97SvU1VUzdTmmZK3c4xdSPKyFqXeQoRFhGV5TXd+piuWxMHKZd6H/jCv3qBX/2tb/Gl\n5+7Sx8wPffKD/KWf+Bgfe/+jnJlNyovZvtJTy5/xkt3eYvw+/hyzDG+lCKCx1mxbp+NXQvwWY/BF\nL5FtQBAH7bFuLuzRIJ9hLi3JFIKUeKqcoxDknBXHphh6kt+Q0xgMAjkJ+Bh9KNTrDXlY0x3fZX14\nk83yHr5foXXEGI3RRrwxskfnnqatOXPlUXYvPYGZnKHPFb6wUyfTXWZnLtPML2DsoqiDj2FVb8/S\n6fMmnTK5fvWY9arx+s6gJFsUhTBPzllG002ZFG3aP3PM4GeAOznnv1cCwO4DAOLHOAEQ35UfeBKl\nVL4dwxa1j5S0PAZ0kc52RmTQTckSfC77eoqFN5BLCyqenJCtBrHCx/FCEDAmyZOJJPgpBqM4BEXh\nEJSAk5KXNCvHrbjnCMARS61ayoUYPEoZLl15lHY6587BLQ7v3cYPayoTmdSWvb0z1PUO08VZJs2u\nEElAKLYkbt874M7dW6Q0YDTkFEqPWZ2UQeXCHzMnySBGA9lSZo1/LxlMKmBbjFEosyljTEXTLnCT\nOVUzZzKZCJfBFFu5DPhA368ZOvkKvQiMRAK37nV85jPf5DOffYVvfOMGV596lH/7p5/hx7//SR6+\neAati4zbAwHh1L52clGf+nmEfkVYRm0VqUb7ynFpRKKoW6cg3AutS2khl5gxRsqIrEpgLyBjCqQo\nn/OIN42pNCFuN5AY+uKDLgF1JDbFcYgseJLvpUPTi2vVanXI0C9RMcj1FQdS3JDSBucsexev8tDl\nx6inC7JrsZMd3GSHarJHNdvHuCkKtz1bhXbHmBaeLqHl/OWTYHDfH0q2rAqGVQKn94NgKGh29h76\nU3UTfg74OPAQgg/8F8A/B/434Cpvbi3+50hrMQD/cc75l9/iMfOt4OWt50zMogCTk0cnjyHQVhVW\nyeJHabSr5aRkRSglwmhFNV5Qauz5l4ssxsgw9AwxEFKWBVGyCx+G0rfOpV0o7UVpY8WT3SLl7Qht\nTl7EOqPYdscUUDnTNC2Xrz7OfL7LZr3izp0bpLihsZnKKIw1uGrGZLbHZLKDjwbnppDFhToCx8tD\nbh/cYOhXKBW3xqdjN2NMD3LO92Efcg3k0+d2+28B4EQFynuxmUte0mllLVUzp23nMiDTtOgyAiti\nIlFm5PuOoTtm6Jb0XUccItFonnvlJr/8y1/nd3//Op3y/PgnPsBP/cT38sGnr7JoRZ//dGZw+up7\nMDCcvgJzFvXpiAQ7CS5svSwgM3hPN3RAxllbfDvzlq+xxRVGYDcXdaQYCvg4Zp+l61N+H4sylPxb\nsggSpfzyco2k0crOo7KoSA3dmk13TPAdBPGeiEXvAA3zh85x5sIVprM9XCMCs1WzQOmGXFzEJXjq\n+84RIB2vB4JBKpvAyXkdkWm2oHVCgoXwNALL5TF933P+wsN/uszgz/pQSuWb3QrlI5OqJmtFCF70\nhMKAypnKOJSKKCWI/dZ+LGm0rUsyIHvQFmdQ0t+XFqOIbsoTQkiBzdAL5qA1vuvxgy82XpHBy0Re\nOEVyySkSSl8+FdprioMsMmNQyjCbye66d+Yhmrqi744ZumMmtSF2a7r1kqzA1RXaVEzaOctVYDY/\nR9OeQablJANYbg65dv1lEl7KphID7rOO22IqJ8dJC5RSPsoS0/o0wJchjjtFj4+ekA3W1kwmO0xm\nu1STGdWkwboxRVfkGAnDmqFb0S07hnVPCGu8GjjuM5/5zB/z6V/+Bt96+R4f/Mh7+Hf/+l/gh77/\nPZw7M8Vs+wwnpQOcBIMHr7wxeMTyFUp7VuWMMQZXlksCet/TF+Ue5xzOyYToyBPR21buCRclhkAo\nLcpSK0LOxcMil38KuSnK3DQ6q+1QUUonnap8OsNIsYi+iFVeCkW/Ig1M2gmLM+dp57sYW0sXyYyu\ny9slvw0EbwvxycnYdrdG9en7gHQS29kYKHZ1ihB7lsdH7J+58J0XDO4c3iB0a+ZTSZFi9FinS+qu\nUcrhKuGwx1hAGq3IyWHtdOtWrOQBx0dGDCmGsktYlEpABwRZMMoAFmH49+S8xvvIpst0QxKL7iHS\nbTaoYmKRswCWcRAr88lkxmQqjK/dnV1iTmhtqJ1l6JcM/ljckH1PSlH47KlHIVz9vvO4yQ6zxWVs\nNQddM9J+bx3c4LXrL9LUdiu2YmwpGfLpavx0RnCSDWTYtltPSgi9BUVBKMAhymRd8BGFmMzUkwXt\nbEEzneGqGmulVCMnovdCzFmtGTbHdP0xPm6IyfGFL1/j//y1P+ZLX7nB/oWz/Os/+gH+8o9/lCcf\nuUhtRpmT+/2xTl75mwNDhnHsTEoABMx1px4jkfHei8U9onxljJwnPbZRSzAdZeBiCe7jzjpmTicg\ndEnSU/Hk1EUcJo6DbiPZbHzllK175PoK6y8n0U7wviMDk3bKZDLDFNdlpU6fgbEwYLu7n3YW3z7F\n6VorywTNiCGpBzKDXCCn7UMqhSYShp66mX3nBYPN6hZDv5aTHOWdTiaNvFktFydKE/zAcnXIZDLB\nVRVaVSiqclKklwuIcEb2xHCIUh6lJhjTgorAMTl25GxRZi7tPY4g3wFWJYOoSFSk3NB1juWxDMZU\nTYOrJhhjRRXYr9HaMWnPYOwUhcKHDSklrC7DJCoL/TX0GOcIaWB9fA0dNwXE1ESFlA7teUy9Ry41\nY0yB51/8GqvNbarKQlZFqkxBHi/e0fnppCU70rq3nYlTAXLUi5DxCCm1ZI0nuWiHAR8jSlmayZTJ\nbJfJdIe6nRbbdXnWEAND19Fv1vSrJd16Jb4GCl56acmnf+kr/MbvvcQqO37kBz/A3/ypP8/HnnqY\nWVPBNtw9cKGX7w/iCKdBxvH7KXh1ez+ZliyEJDK5mJHa0uE4ub8Mj4XgiTEJ0CCVboIAACAASURB\nVHc6mxjReaW3WNb4bCMmoUb89v7Tuz1yIU1JqSYtvq5bEWPAWSfkMFtvuwB5e07enCVtz8npAHHq\nJG1LhQeCwXi/IsxX/i9/1+SxJf2WweAdG2F2bo5zLSlu2By/yNDfxVMRhxVJd2jT4qp9oGY47plP\nrmDUhJg6UBGDI7Mm55ukOJBpyQn67hauiji3D7iyeBKZoZy4HnJHytfJHKJogQaUBwTUbBpD5VrC\nYMnZUFU11lZ45Ql+w2Z9E60zdW0wpsboRPBrURMyFoUVv0RXAxYDxGZDXItsV9JJOPJDpNMWl6Bq\n5mJcog1XLl3lxZeXBC8eBK6imKUUzf4iZLF1oubUAlH3L6dRl0EpVab+2AYSrXUxe7XY4BmGgc36\nkDD0hL4nDjs00zlVXWONwRqHmghfXsQ3gVXC9z3vvjrlr/8bH2C6cPzqv3yVX/r05zm6dY+/9W8+\ny8e/5wkWM4vQk6R0O4F63xwQvt3fx9+Pl71GevxaUQbGMjFK0FJaxqQzZc6pLB5nK0yZ2tGjlKyy\nJxv9+NiqiOkgbM8Hg9dblTnje8gASlNXDdZY+n7DMPSs1xuaOlNVldCGtxkejLyYk6Th7XWJRpZm\nqR1PlcrjwleSPWxfpHrL13v6eOf0DNJ1hv5luqM/JBx/ldXydTplyX5FiIekrLHNWepmn75vOegf\nxU0fwVZXmMzOkrQBdYfs38DoyLDKwA4m1dg0RyUrBilKXPYwLYoaUTr2pOxQXELps2QaIKJUBdkw\n+I4w9OSYMNaRUkcICq1bFA7yQByOGBB77UxPignn2oIBjLy80vtGU1ULvD8i5gFNT/IdKgY63+Pt\nASrvk5iRaWibHa5efg/3jg5Yb1ZsukNyilTGScu1WMCRS224FX+5XwQmZ4XA8iInpwqWsL1mAKXE\nO6Iqmgp+6BmGjuOjW3i/wfuedr4nu5ozWK2wVYXVMrCjTcV6eUDslpzfr/hLP/oUi13DL/z6N/ns\nZ1/k8ABu3Trgx3/wac6e2dtKlm06z9HxHTq/pLaWtpnSTmbUdiLlHSfB4fSiOI0rjEdIoxeB6EXI\nVCol+MsOHGJEkahthbP2ARTjrY8Hn/f08SAIevr76dsYI9mWsY6u7+j6NSlFqrrBGLMtAbY1f/ls\nxqU7Emjvfx2na4BTvz+VReRyFY6AIgrelg3EOxgMlrf+IcvDP6A7+CKqPyInzzpkcjAFvdV0QyYF\nhbENplqg6l3q+ZMszj2GqyrQS9bHL6OzF4Wgeo6rLhKrR1HVnGQMqpoxmeyh1C7K7gFzFBcwOpad\nVAM9MGx3To2SEV5bxEx9IFuNcy1aNxg9kVQzd6RwhO8P8CGidIflHNpMMWq0+kTwDudg0pBYkXqL\n0xNiWJHYQNiw9IdkPQfdEPw5FjtXmE4X9H3Pq9de4PjoBrZOCDAqi1i2xLStC8c0ORYP91RYl0qd\nCMaUO5NT2ZVUKhegRhtHXRu0khn5zfqw9PQjcb5L07a4qsIqJdLeeiZov4qs0fTdwNm54yd/8MPs\n7S74Z5/+Mn/4tW9x8LMH+C7yV/7in2N/f4YnsRk6bt17jVsHL5NTYGdxhsvnH+Hc7hUqMysXshxj\niQCiEneqSifmTIyJGKSmtw60NduSAqQ9nVQh+0SPM+5NbbnTz/Xgwn+7LODB273VbdQ2SzDSsh02\nhOBp6gZr7Yn2JEXe/xTeoU7XOt/21Y3fyg3HbOF0GcmfnBu8Y8Fgff2/I2/uUudEGhLRG1LKhADr\ntWLoBcjJPpNjxxA6+niL+UPPs75TUU0b6toR+iP84KknO7T7V0jxiJA3uOpdBN+QwxuooUebJ2l2\n34eIlIp+wLjPyIxfg1IBbSKVNmRblTFaOamyu2xAG+rJeXKWFpfKPQTQqiKlRAgdJvXyofevkrJH\n23PMF1cx7iy1NvS6Q+mOYdWTQgSCOAE1CWs6uuVaxDHdDrPJjLNnLnD37utoPaCotuIoSp/UsSqP\nnIsy0IVcEzFkec+qzCdoySRyQrwstSk9/Vx8DTSuatDaMPge71csjwIp9uS0T54tyE5EVrXRNG2L\nVhCoiPqYtDlimjyf+O73YHVi9U++yIsvH/Cz/9PniVnzV3/yI5zZb5m3LVfOX2VnNmW5ORLb8aIk\n/GA5fjpFH9PwB/GFVAhj6hSbU0KnBBJnbMmGMoGE4aTWPpnyu/9484785r/9v8kYxke3xqGbKTkm\n1stD4uYQ5xxKGVwj9HG0LhLrMJqFqIKGinDO+M5Oh8jxiU6XHSdcD1TBPtVbhauT4x0LBjbewqiM\nT5acFH2nCUFgj+jBWUU71ajColt1Cr1WTGtodUf2a1wF012Nj1NM/X7ahz6FnlzAVvtU03ehMITh\nRYJ/g6wvo5TM5qNSqV3HqDkSfGSGXqlKdPJNIBPRWRFjz2p1B9BMJ2dR2nK8usawGXB6RtXMsXaH\nw8Pr3Lz2G+T+OSq+LhLc9irpzEdo54+StcHVF6E6D84xdAeoqLHKoO2KzfEbaGq61RnanTkZmM92\nuXDuMTadXDwpJY5Wd0V9HI1KUv1W1QRrLcvVMTF4tCrTilJdl5IBCQpF5EzrJH16rcUJ22iM0rgy\nnjv4jqH3rI8OpJ2WgXaBqqsyhi0X8hQNOjEQyKqniolnPvY+us3Az//Tr/H8q3f5+z/7m1iV+St/\n8c+xtz+lXlzizOICsYz/mvLfuIc9WCac/t24DJRSYO2WCKa1vi9zOH0opTFab/8qoKIwFI2294nF\njHvrWMmPWg5vVTqcfl2c+t19P6dAGDr69RHr5V1W994ghRXaaKxtmC/OMNRzUtL06yWKzGz/PNVs\nT6TxMpAVMQ7k/oiQBlzVYqoZaNGwVDmNBmGcQJRjdvL2gQDeyWDQQDKK/ijTDyKGUTVCJ22azKQF\n26hCQ4ZdAHNil6Yy2IkmNwqiIpuIyYHGLbD1eUmNGTDuLK55CvR+iZSW8STJ6RpP2gC5O0HpcUgL\nMoJKEkCUTIMZK52OZrJLbSaoaIl4Uu748pf/CTdf+XnOt9fYnXt2F/vY+jU2d99A+8fZsKGZPc1s\n8UMYM0PZJSrXKNWgdZaxZDXBugZTBnKcrXj06ns5Wh5SOUc/rDl64R4xeNpmQWVrjIHZbIe2mXN0\ndMDB4U0O791A5VicmzU5F7TbWKnLjRV5tSxU1awUOVvQMr+ljaauW7Qa8H3PennIODQDc1xTyxyA\n0TRNg2KPddL0HJO7I+o08MPPfhfLo8Q//YWXuHZzyf/4c7/LmYfm/PAnnmY2rVGI6yacLPy36ibA\n/fvg6SDhtEHXTRHFOZ0Wn9zfp0jfD9R1Lca32wcqVHdG1t/9R8oJirirfuAx3woj2D5CoVdH3xH6\nNX59xOboDst7N9kc3SL7Y6wOKGuwVUte30BlS/SR9fFdQuiYL86zOPswbjrD1FOUneI3a9L6Ot6v\nmOyeoz3zKLreAxyjochYMYy40Pg+/6TG4TsXDCbQlzyuajVVm6kbMGYEQUpzRGuCh5wr3OQMyhm6\n1U1MAtRlMg1KHeHUS8TV/8Em/T6meRfJPEpSD6Orq8zmCyj1uxxSiBVxNTQdmSNSCmg1LTWcoM3j\nhWl0zXx6USTOEQswjSMQCMGz6e6QY8fxnefpVndgEth0iqxX7FYV08bRtBfouxscHj5Hyg/j7BMs\nD26DH8Sd12iqeoap9qjac6WUKRCkUuzNd8lkmqrhyoXHGfySxWyfup7IzuYcztTM2h1cXXHn9g3I\ngaqyBN9TVeJaNPiezi/R1mJcGXU2opeXUyRrgzIKqx3GGKqmRhtF1/Ws14dbjwqlQVVi9WaNgWYi\nXH8SMQ/060ilNT/47Hu5/vohv/b5mzz/+jH/wz/+XS5f2OWjH3oEZw2nluZ9n9B4fLt0/fTCNCWr\n2Spa5Lx1XhoziZREh5C6Fro7ZXbFmG02YZCS4/Qz5ZRFj4I3B4AHD6HAe4bNim59l259h351QNis\nGDZr+vWSfnWMH9ZoFck6Yatj6uoQh6XWDoYNauhYHj3P+tq3oMo0O7vM9h8F1ZDDEahI9lNyGhh7\nLDJ0F06IZgVQPkmxvkPLBF3PMalHDZF2ok6m1awQg3JWZO9Qdg9bXcI030U9/xC6qlDLr0NQVJNH\nsM2CFK6R++dJPrPpAyockvIRuoJKaaH46oyrZyc4i1LAmuzfIIbbkI9FacY+vL3YwQFCrY1hTSZi\ndIsYnUIOK6K/SbdecXj3dfrVPVTy3LwFlTY0FhQDg7+Dz98kT89zsPL45Lhx52s88nCD8gOxv0vK\nS4Ky9L3GzY+p/cMYXUkoUBZ1askorblw4SI+HKBVwhkHzNjmOtqwMz/L448+RUgrjE5s1ivqqibG\nxL17Bxwd3UEZ0NZRVS25bsmmwZpK9kilKaJGaG3QrqJWim7TsV4dCJlHFTPwypG1ZAh1O0FYoDJM\nFHzP2b2KH/2Rp3n+pTf449cyn/vSNf7+P/wN/vZ/8ine+56LMhfxba6Tt8oW3u6SNqduO94+ktHG\n0DYNIZ4oKlXGkHJiuV6y6jYsFgvaqiaTZTgpDOQkHaF2tsOoRwgn/IBU5ltACHJDt2J1fJdhc0z0\nS8KwIgWPcROcqkm6pV6cJ6dClfc9s/kccuLujVu0dcNkvse0ctic6Y5us773Orm7htoEpuceZ7J/\nGTuZ4aZ7aLdbrtNTwSqnkhmrLWb8J0Yx3snMoP4wWt0m+ttY1sID14GkHCHNqcxjKB4jqIsM5hy6\neRxVvwtjDZO9p3DVPlkbEahYXWHdnyX0PcYoKjPHVZeg3mMYjhk292inF6nrFhhrQUUYXqA/+r9x\nw6uoHPBmHzt7Fte8l6hWKGUx6kIB3I5QqtCEVQNqyab/HH7zIlXco81LfLzNYtqQ1Vm+/tI1uuwZ\nNokLLw7s77/EI+9a4UnM976b2fS9pCFjciDGV7j+xlc5d+7dGHUBHTPD+qu8+vo3uXLp+2gnT5HG\nLgIBhSVhMWZKyh3Cp8hkVuJgpBrqasLDD7+bmAdS6Bn8ihh6hr4nBM+t24n1aonRllyJUnCsM95G\nGYXNFWRxRMKKPJuzGtVkuk3HZnmE0a6MGbfYWuji1hiatkWckTNxLUNC73vfBX76r30PP/uP/4BX\nbhh+4Vef5/FHvsB/8O9/nHPndhAWghzfbrGf5h48ODKdH/hbKjwByPReWr/TpsVZ0S+MSQxfxvsu\nN8dcv/sazcSxM23RsUi2x0RICR/OMJnsU9fTMviUtztwCMJP0UaXsgKadoqx0zLlCs5OQBl8iFTO\nYY1iuTzm8OiY+WJB5RzVznWGbiXCuIXw5c4s0Tcewh/eYLXZEFYb2qtnmexfQtumqCdTzIMpA275\n/iwgv+mHt16Tb/vX/x8P5b6HrI6p914mx7U4zKQVVb2HDpD8GbK5DOpJXHUJ5QbWy1eptINKEYKo\n/eShY3N4m2E4xtga7y3WLqjaGYEN66M3MIPH5ZqwuCgz5bmTcePudYbj30L75whxhzT7FNaclSsq\nvELov4ZyZ9HmXZgUhJ6aDGhLzHeI+ZuY/A0acxXaOdqdY7Z3haRqXnjhs6z9bbqNoTVTtEpsDhT1\npKLN53nozMOolLh364944/VfoZp1aPc4090rzHYukdU91vdeZzO7BvkszeQi6r4OiMOoRXFE0pAD\nQ7ghIqrqDCAW8lo1KGdprCUG6WLsnbXYpuXunVvcOzjEarh0+SpVu8/Rcs29gztULqKcQeVKQDml\nyVrjKpE6G/pAtzmWXrlVKGtQpaXnjEVNZiQvHZjkNSZpPvHxp3jptVt8+hdf4lpf889++Tk+9MFH\n+KFPPsVsUj2gevAW1wxvrtffBNQ9cP+YwYdE1w+gKybO4oweNWbIWTFtZ5zXis0bx7x47atUbaKu\nNTZDmxtsSqy7Gyx2HmFv9yLWTmToPssMhC3ahVopJs2MqqoljVciXqNyxpkJWjtE5BXCENBDopll\ncBXVdM7Vd+8Lw7P3GF2RciB0K6bVGbg4kOMGdGB1dJd+6FmcexRb6y1/IOVEwkpXKJ90VGQ+4a3a\nkvcf71gwuHtnzd7+08BVcUyOd/HD6yh1EdIhg3+ZofsqWoGNnsbsoVQD0eDXAdOIS001qRjWgbgZ\ncLbGk/BZYUIi5w3Kb8hxoBtuYzZvYJRF6UTTLoipYz3cJcSGavaDTPZ/Ajc5Rw4vQP9Z1Oq38XRg\nzpOjRasJqrkM1XvI+TyNu0JOPaQeYwfqdJmJOcsHF7tcvjijX7+IZoI254UKnQPW1UzaK6hs6TbX\nuHb9t8jc5tKVD7M4+25mZx7H1XvkuMve/Ijga45Xb2CbXZyaITyDJcKGaBGQU+r0lJdoYumOTMho\nNEKCylkJlz94Fjt7tO2c/d2LHC9XaJ3Y2dmjbnbZWffkqLh3cJ1ciFQZS3IKa8URSlqPQQQ0uoI9\nGIfWjUwMIv6K9WRCMzT4NJSR8Q2ffPYpnvvabdYxc+3uwM//71/gQ09fYfboQ8CbF/Tp74n7L+e3\nwhLG22zb80rJdeETm80GUsW0qbe5c0IGm9pmwsPnrhLjMTeXL3MYl2irWaaeRoHrNxwfG44Z2Jk+\nxLTaEfAYYYdKrnlCW85ojKrQVpakzkItTymxWh5yePcOq/UR7XRCIPHG4SHKVOzvn2F3/yG0tuKa\nNcxQxXBHqcDm3hvcfvnr9DevoeqG3TNX0KWbgFYCeI9CqEnEerZJwncqgDjEC/R+gklnUfEux5tv\nMp3tYczjhHCDIb+CUw9RmYrOP49fXcXYh7HtHq5qwdQ0bUscbnF87wWMPSDm62h7DtM8jqoc+B5X\nr4hWo2tNThs2PnJ8fEg/RJaHn8dlxZUrP0X70E9h63MojkjxLjlHdHWelF4lx+dR0ZN1D6FC5Scg\nvxftZiSVwTqMMmIJbxrq5gKox+lXHoJBu0tofYacHSn1pJRwGFJdMTk3Z3f+A+yeexY3eYwQNf1y\nw/HBK6g0kIcVMfXkfB4QAZFMV6rWSdlJN2SOUaoT1eB8F23mkB2ouUimKUvWDltpwSJURtnE2f0F\nMcmIrvcbZtM5D195hOiXHB6+QUqKrBpySeSV0mhrcE40A0IIDOs11tZCoKmqLVhl65pmsiCHI4KS\n8uThy2f5/u9/H9986fMc211+53Ov889/4Q/5m//WM+zutG/aux7s1T/IOXjweDCYaEBZTa4UQ+/x\nQ6QzGuucBJjS0rdaUbspj118mt3lPi/deo7D/g5qolhrjVaGVTji4GCJvfMqlWqYuAmTasJitsu0\nmVNZQ4iBTbdCI8Fz3R9y685rnFk8wvkz72Kz3HB475A7t2+wXN5j8v8w92a/lqXned/vm9a0xzPW\nOTV3dfVYTbI5iqQ4yBZlWIIlwYCABEici0DITf6AwDcBcpVc5Sa5cYIksALYiAFbchLLlmiIJkRR\npEiRbHYXe+6azzzscU3flIu1q7pappjL5ropVNWpOnuvs753f9/7Ps/vKXqkeUGa5aSpIfiathGd\nTFwlqDxHCIm1LVVd4Zyn6I8xSYrRgmp5znJR01pLYgSDrEdb1ni/pL++S9rbIIpujPz/J0H82IrB\n1sW/T2APVQsiUxKzTbBjFtaQ5S+ibA8jU6I/J1EJOvZQOicbX8TkQ7yzaJ0SfYMwmrl9H2NqdrZf\nohg+i1Y5TQNN2Gc+OeLuz96gsiW9vsTZU5p2zmhwwMZQEeI2Qka8O8U7Q1vvIOJvkKRfR+oPiOEQ\nGfsgc7w7ByJaXcKGhhjfQokBIuZEWeH8CV4JZFJhbEMUApN4EAnIMW1VIdQJtnmd/vouz9/6Lzk9\nfp1Z9YieT2nPTxC6ZnZ6jw9u/4zdi8/y/Cc/i4qeDyl4/ac+MQOtm2DdDKOH3ZHL16uZs8DLiBR9\nBLHDqwuNFCBFhW3nOGznGE0yBClSCPq9PkW/x97BHOssUmUoJQlaEmOnCxFKYRJJjA3ONbT1ArNC\ntotVQ1ArRZYM8GmLCw4dMgSOr375Zf7wD7/DwWRGE8b80z/4Pl/8/E0+/5mrJH/DB/B0I/Dp62/u\nCv5m0Xj6UkJ053QRqZqaqp5jXEJqEkSIlIsFRq1i4Wgx0WJsSX3+CO8yknwdpXqkOkKE2peUYcJJ\n0zJbnDE5P6Qt552GUIF3AeE9ghYhl5jc88VX/hFbG88gtWQ0XicvCmzbrNKxAv1+jpSBupoxLQ+R\nKmJMn6K/RZoOULIbMafDDTJjsPWcui0xQXU7NW3QWPbvv8Pk4QOqyT7nZc3uc5/ihVe/TH+887fc\nyQ+vj60YJOYIaQ0+SXh0/wOEjgi5Rn/zIqq3SSGvkeYFoT5A+EPm0zN6yVW06iMEKBU6hqAZM9r8\nElYM8H5ONC/iosE6R22HHE5yTo8OOT/5AeXsDdJLhky29KSjJzXBDrh//19RTs/o917A6hHSDDDJ\nGG9bZPUyUj4DpkCLLZw/wDZvYDKN5CohzHj08Kf45gH98fP0RusIehh1g8adI8Kc6DsbchQQmBP9\nA+bzb5PmLxPDFwntDNvew4oSq3u89u6PefedPW7/9AP+4W/3eEka5vMlw3GLFgkRsL7CqE5j70VA\nyD5CjZCipLUHBL9Eq0523PEiajqRER0SvDwhtiXOVQjlwYzoFM4SoSDLEiINVVWSZ320MeiYrIhA\nHRPCaEOCoG1rWlujmxKddOnJajWQMUnauT7bluAU0VVc3Mn52ldeZe8PX6M0hvcfWr75rXd4/uY2\nm2vFk2fkb/YQ/rbfPz4Nf1Ro9JiWuSIlSQ3CrezJJXXlmLsS28w5P3mAiBXICCKyrE6ZTO/hmxPq\nWiLSbaTZZLi2TT8bkZgMZMC5BUvhae05h9P3WVaHVM0pwbbo6JGhpd9X3Lz5OfrFoMs16JnVvZE4\nH3G+xjYLQltj6yWumeGqKa2rQOXUdcV4bZe8GJHnPYgRJyTON1SLc5K1AaPxagwdPD4o0mKddnGN\n4z/7Y37yb/8Zt3/0XX7v9/8xyWDtF67Jj60Y4D4gsM3pzPOz2/d54eVX6I2vo9IB82VFf3CVJFPU\nvuTo9KfdNizf7WDGztG2cPfBO/zV63/Kg5OHOGExaY3Rf0KaPJbtR2bTM+aTAy4OHLdufYndzR2m\nZ68T3QFO1AgyBqlkcnyb5bwkH10ky8don+PaGSbkoBKcqXCphfaI6EpUfhGdXicmu4y2XsG1E0I8\nYTZ7F2O2yTNFkgQSlYObQDuh9gVlPcL6hIfHR6h0ThJKFIKqnPP9n36Tg2ngrbfuc7Rf8+qnP8Ur\nr3yFZeupqBDqiLXhbqcnFJ0jM+AIIpAkfTR9okwRooLQImRA0CBYEkLVfWIp/SSKTSd9kt7mKpQz\n60RQyA4uGm0nmLE1rZ2jfY4OGTJ4hOyYhTJ0RU5H3YWrtjWmbT/EqAFSCZK0h2la6nYBImLbmt/9\nnS/y53/xJu8dekRR8O0/f5/f/vu3GAwSEv2YN9GurLjZk1He3xQk/by2mCBi6wU2RIRSuHrO6dFd\nYgjofEi/n+F8ia1OcPUU4SZYN6F159TtIXUzoarmEGZEG/HVAa3STMsN0nSX8eA6/eEaUjjyfMDu\n9gsMemvMygfU1UOinSDjktaeo3XB7vgWg2QTYoOSKU9KWGxXGLauwyHoOkIuQGgFQdS4ZEqwQ4Ib\noHRXYaVRBCLBrRShccWIkwkbu9cROx2dq5xOUH95xNG9H/OjP/ofWXvhi79wSX5sxeD/+F/+Jbde\n+Rw3n3uFlz7xG6wNLxH7Bb6xpNGQG42PAZ2O6Y0/T6/YQJgNzmaHfOs7/5Y37/wIWZxw7/B1js6O\n8ECSRtK0yyDUKjAYKoLXLMuWwWbB3WXOnXPPs9d+lRevfwUtHaGdc358F6+XbFz4JEm2zXzyffbu\nvAmux5Ub3yBJ14k0CBHQ2TbEdZTeRMoUofuM1iS2eZeyvMfx2QekuqZIn2O0+SsYM+iQ2+27UFcY\n/TK333qbv/h2xHx9jxsXNRvDT/OwXHJ+/pCThxOe2Uj5xDOX+OSnb3LpwnNM2j2SeAaVoE4ysmwD\nLbvcP4EiFRtIOiS2EBqtCpzXKwFMixBtd5xopkgZ0ColSQxJNkInYwTFk8l5JFDWM1xb0s8Szsop\nVTnttPO+QOtONShFF1rT5T6qjgLkXBdY4rMnRwUhQJkEk+a0zQJnPbZ03Lx+nU++dJ2j+YKq9bz9\nwTlvvXvA8zc3karGNw/xzQGm2MaYZ7vJCBBXHCQfGpqyQpuU1lryLMV5y3RyhqumLM4eILWmN9yk\nPD9lcXaPRWXJN59n/OILqBQkOSFR9PojfJzRVCdMJpKz2ZLESaSP6NCCO2PZLqhtxdbwRTaHl6n8\nEhu7opvKgMw0qUzxSQKtxog+/cFlRoOXuHbh1xmmA/Cr3AiRQjQoCZ6GGBaYVBBUH2cjTs0Iet45\nFp1mMdsjEukNdpAyQ6gUlRRk+QilU1i1ilcYGGL01IsJ7bLk0qXL5GbJ3mv/gePbP/uFa/JjKwYv\nPv/rbG1tg5NsXd4iOPAsse1iFZY5Jc1HuKDJzDZJtkHAsFjOaMIZ37v9/7J90xKloj/UXec7kQgV\nmZ4H8kLhgybNurPr2bJBmvv09BFH08BO9Ss8e/UbWLugkQ9ZM5os2UDpPmm+RlG8SnQRbwY0bEIQ\nCOdQea+zQNtjjH9EiGCbChlbYnuB0WCbJO+RJNcRdoOQKkIOQWQIOWM8uMGN5wS/9bv/HaPBI37y\n9v/GWv7X/Mk/P0CKmosXFZevBzZ2Eta3HZPFMUEGekmKC5ZISWSA4DGNWK6mDI+3yRIl+zTkRL9A\nSIdwDVolpKboUoacQyiB9TWhXZIkBkmy+sQNRN+g8FzcvoAicD5f0tYzsrTfSUe1pnO+dFDZDt8u\nunzHpibkOSKukn95vDtIsElO8C1BNFTVhM9+5nn+4rUfYZLA5FTwvb98yDe+9jytOySRc4zO0LKH\nRNLhPCPL83vs3/0J/SwjIpBZDxcjcymRwTOfnDI9OyJWHWB2bgrcckFTrt/gFQAAIABJREFUHnE4\nqbnU30DrPpCRZOs8Rug31RQjh4TW0DQtxJSmTfFuSXQtMGJ7/Qt87sV/SJFfoLRHVO4A25xQlfdp\nWosUGVpcRvktZLD0ik2y9AZ5GnDl29hFQKt1kvQqJt8F3YXoBD+hWhzhGocWmvXxkBBTlouaZVlj\n/Sk2lLRuwWBwBZOMyfvbmHyAd5a6XpLnw85zEiKnh3tMTu8zHBgms4Sti9e5c/sd3OThL1yTH1sx\n+OwXfp3GTfAi0IYEKYckMsW17yPVPvXi29iFQupdbPsiYvdlVLHOaDDi85/6Aqf1V/jx/W9SNb4L\n4AzQ2ojUgWIYKYoU7zWT6ZJe0c2Mq0XD6EKE5D0env4BRU+wM/46o/wSuEhTnuHYR0qDScaoXHE2\nO0WGQGFGCJHgXSTJxl0KWnveyV6jxIU+Uo4ZjlOa9oyyWhB8SSxLvEkYDbfI8+dwImFn5xaXd75K\nVS5R/Zfw/gGf+Dt7fOvf/hO2lWN7KyH4E5TPaOcnqFGkCpoid4gmJehtWn+C0CmJ6j+5p0+2yyIj\nSy4DXXCocyVaebI8xftsJb2VRNlDyz6SD52CIbS07YxoW3p5wc7ODlEeU1czfD4imD7Bd8eAgCcG\ngVEr5JiPxFWkeowpPIaYig5emyQ5wVkkUC/OuHKlRyZqkjynVik/+emUsnTsDNYwegOlDIgUh+Ex\n1fL84SPqR+8y2BhQuUA+3kRqTVM3LCanuMZil4GTvUfUyzMGwwEiNoQw5/h8yW4UKANCWJTOkLKP\n8BbqA1x4n/Fgn35uOF1uU1bXWJZn1NUEJda4cfXvcWH9BaRQDEWfEC/g3RFVZahKjY+SIr9ELxsS\n3CHezfBOIcUSEQ4pF/co2xLBBrp4jsHWZ8mK6xitqP0BOh7im3PwiiB7pOkOxeAijfc05Zx6cYK3\nNcPxDdJsA60TnK7xvmM4KgRteUZ5/ACaBcWFDUq7jTlVjDYucubdL1yTH1sxqH1A6SE6AUKvM8Ms\nfkCz+A62eos8KUmLW4j+8xTZyzgfCOUxBsNGb5evvfp77J9NeG/xfbKBZLEMyOhIU0VaKKyItHVD\nYiAtYJhLTPAIUSJjwPs3mJT/hnHvMtZtIoKkyHKWyzOack5MU1JTMMq7JB7NAhk01fwA2CbPh3jZ\ngU+EikSXI0TEugVt45DMCe0MEc6RyRKd3cTKl5BofDWjst8mG61z5cqzSPNFLl9ZcPPTn8eVd9kc\nL5FCkMhLFIMtko11mjahqn5I626TxZbzxW22t3+tw7jxdDe9Mw1oPejO7NGjZLN6+EW3aMXKbCT0\nSofw+N9CU5fMJt1DJ1WgbRrKcoF1EW8bgu+mD9IbOuRgtztQShJERxX2rkPNa/mhAUlKiVQdgDUG\ni7OeLEsxwlHkFVWe8N69Q46mC65cvdixBFfvq+u4d79ZTKecHz9ka3Ad4QTTg0PywbijTDeOuqxR\n2pDkEmu77z9fOqzq4YqL6OwCUjbE+BBvFUKPKef3mB/+a7BvkOgKrSO9/ALD/Ndp+lc4PLtDNrzO\npYuvdFmHgKDDlynjUfF50tjHC4fUa907FhbvR2gzxPm7zCc/gPo9cgVajrH1XWaHb+GHXyMtLtHr\nbdJWjkV9iF086mae5hrpKGM4ukklezT1Ka6e0NQTkmSMkB11qvNdCWxTcufd16inDwmNZ3IUyTNJ\nGK/x3Cuf5OCtHvDW37omP74GIjVRC2LVJ4n3sct3OT/7d5TzN0lFRb75d1H6ZRaP7pCs/zXJ+is0\nLpL3tmmWJevJLr/zhf+a2w9u8d2f/QvSbImKgn4G/VGK9ZqTZYk0XVhK1hsx6hf4MMEVBpWPOD44\nQC/f5url6/hgqdsJUmp6mek+LUNnVpKuQUZBjAlZvoWQirY5RdGgpSAIg42BEBu8BSVSRGyIuiLa\nKcr/jMXpB1h1glJXEHVN5R6hjcHLBhc8vd4ur/7KVVx1jq1PqOpD7KJBjS5S9G+QWMdfv/vPGKpH\n7Pg/JNo7HD36ERs7v0+Rv/qRRtrTBB8lFEoUPJ08Jfjwi1e2ohVMRKKSjOFoi0WowVbIqNFS4YWn\nbSxJapHKE1aBIUQIPqCNQSpB4HEQagT9oSpWSPGE0CSFAC1Adch4O5mDsJyfz3njnQW3nocs6wqB\nX73U4B22XRJcSVV79vZPGA7HVPMZdlFRWksxHKKTlDTtkWSbNI3n+OSI2XzO6MrL/Nrf+8+5cvlZ\nlBJYN8TZGfXiXZZH34X5X6C4SzBgo0ebBwQ5x+hXuXzpGdYuXKLfVwhafDgksI+SAwTbSD0milPq\nZU2MC9IkYrRHrqC7ihGD3lfx8hrRH5KOrpLJDeaT9zjf+19pREJ/9FlGw1uM9HP4NsM2M+q6opo/\noDd6hqxYw9slvpl3hYJu8hGDp2mWuHbB5PSQ6dkDltND2kXJ9uY2y0VJL0/pba9zzf2SjhZlDNAq\nhHuX85NvEVXC2tXfoTf7Tc5O/h2TcgdlM+pDQdrewQVDJMWKbuudNHMuZZbx9S+xM+zzzsl3efeD\n1wltgy0t3kd6mSYxCb6xtG1F3UR0opBJikq32Rp8hd21T5MPNzoQiB0CFUp4nK2xdgmuRUrXLZQs\nIxts4kODb+dd3j0ZiIjOoF2FZwil0HqXLFlH2EtAHxtKivwax48WrG1uMFA7RN1D+h6z00ekvqWN\nnrZZ4tuKZl7j7YLlbIKXD9FpzjM3/1Okf48k/rjLkUiuYEw3LvrbRGZPF4jHHv2n+++dV/9DLpBA\nIVWOMjneNaSJJDOK+WJJbZYURUtwlrgiWUvUk5a+VJLguweUx4CV1f8shei4CWLlBg0CY7r5PzbF\nREMtCv7s22/yW1+/Qi/rP/biIRF4V3P4/k+ZH97BLWruTie8+uoI4WuMj2QidA067xFe4XygaVqc\nXZCbgBYVG0NNEEums4AUa/R6V/D6nDA+ZTb7PkIeI2VABU+IDYF9isHnGG1cJ80FiCM6HO0CESsk\nfbpyVaPjktS/x3L5iFlTkeeWQEmki0qr6gVtaxiMPk3of5Uk2WCUPo8/+N/B3cGIK8AtdLqJtfdQ\nqmQ8vkRQWxiT4ERKiBpWwTGPdZZCROplSbOYEWrH5to2/SShHcxoliVFWmCbioeP7nN52PuFa/Jj\nKwaufUCaPEPwE3TxLDJ7nqz4FHlWogYXWU7ukZtN9JUtGtGyrKbUszP2H3yT0eAavjVU9gyTjbm1\neYNLgz6fvHCL8+qEdx++x9t37mD6AqElxgCiRZmMYbbNSFxlXb7KWv4VsuwaWmadxz/pdx1yAiqt\nUM1pJ+ARqhu9mY7eHBEEmRFi3XXnY+jm81oQwxLEIVG+jXOvQWgwegzqCOHOyc0Orn3Aou4zcFeQ\nMQW34ODRB2TZOiYfUDanICsQjnL+iGLYx6iC7c1bTKcJSl5ChhnKbKH0BnG1kX7iVF3d48eLvxtB\ndnFvnfsxffL33fVh9Ll1geglMmjKqmGxmDCZnjKbzUiSAc43mJASgsQ5DSikWhF4pEQ+zqF8nHL0\nlGFGyS6C3CtJRJEqQ7/I8NUJyD6olPfeO6SqbQcxFRBdF26LrammR7TLI4ZZ4GjieHj3AdevXWQ+\nmzCfzxiaTarFnGBreplmKSPzySm9RHDvzR/xF8W/4IXPfZ3BYANjeqgkp5dfQW9+AyV6tIsfIOUJ\nMjTAAUpdpj/6Gia/TBTL1bSlIsSG1pYIlmi1RqTGcx/n70I7I1Ylzi8p3T2q9hwlwFlNkn0ZZS7j\n4hAl10kGWxTl+ywmDVpfwWRXkSol1wNEOIEIZS2pG0uW9SgGl1jMbWfNFAHbLpieHoGviHaJCCXr\noyELZakTg9I5uRFMTuYsliW++CX1Jsym77O9c4O09wqz5hwh+8TqgOXhG5yf/SkZhyzZJJpLSFGQ\nkCBdRagOmLkzsnQHEVOCnWHnS/pKk6VX2B3scmntBp96LqKyfhc0qhYY0zDI++QMyNgiTy+QJhsE\ntyAEjYimA3xKg0B3HMPscUBLskJgB0JosN5hzAZSdIrDspyA3ycRr+Oqn6DFETK2qHi+CmHtY/oF\ns3If9BrBXmRgPkd5ekSSjlCZJDUDpEzQSUruUmbzR6z1t6hcQ7SGzGwShabfu4iSI4gOJwQuViQi\n/48KwUev2EmY4yFK5ETWgOxJMXis4w8x4GON93OsnVNXUyaTY5bzCQQLoiH4Ch9SnFddExJJIle7\nBKkIq+DauIKSPv16lFRIobo4PTqcl9IaHzvJMETKuadqItY5QvTY0PEBlHNddQgRIRw6Ok73HzHu\nG9a3Rphcs6hqelnGoqpQps94bZs9lbG/d49sMOL+z75DPh7xhV/9u8iwZHL8ADYUg94u/c1v4Iav\nELGrROu7CNXHpJ/oPCmcIOIc8CgZMdLimx/i+SsCCi9rsvEnKPqmy2v0DrnYR7XvI5jiGoHUGzj7\nAD+vwV/Fi8j07PvQPGDW/DlHx++zeekrjMafQIiM6nyPtqroZ53Xoze8gDIak6ScnZyxmO4h2wXC\nl9TlBGLg+OGUWXnO5SsvMhxvkMhAsA3Xrl5nuvfuL1yTHx8qPduhat8hd2NyNYJ4zps/+Et+/M0/\nITMHbG/XZOsJanNIEXKyaBB6jNIS48fdVjXmtL5CKUGMCikjMijW8otsjS+QFltEUVPXx7h2iVoE\nsjRntLZLml8nyTYQIoAUTzWGHiMuFMj+Uw+zZbGcQKzw3uJ1hlQ9rBNkxSWkuIEIKcYc087uENsT\npPFYAC8I7W8wWP8tvA6IoAitIiqFSgZE3Wc82MSHhBDmGFuztn6R+fwu0QiSPEUKQ0BgzJAP/fQ1\nLtQEYTv/AT/Pudchs52dsyzfoV9sY0xOpBO/PG0EinS6BOsWNPaM6fKAN9/7KZPpnLWNzS541NWU\nyxlJCBR904XeBI/3EmU0j7kaXQbBh4WmQ0jIJ85LKWWnENSGECU+xk7AJHKW85qm7gpM67uGpLFd\nXoNta0zs0rd8bDk63CPvp0SpCUGQZn20a+gNN7Ct4+KVm1SLcwgeHT3L8xmuDqRYXDllIRXBbTEa\njTBqFx9sJwJyYywL6rZGJQO02CSKc2I87qzsYY9m+QOCOyLqZ0j7v4ZJn4UgVl4Sz2ho6dczrNvH\nxylERYgNUXwATYkPHhX38H6fanGPeZORyRbVnBC1pJ6dYZsZMi6oywNEuk6vdxGtBlTlKW15ShKW\nHD68Q+sbNjZ2aYNg+8J1pJRYW7OsFkRXk5qE9x/s/8I1+bEVg6J/C88BuugjJzNOHryJ8A+Q6oTp\nWYtbKqZvLCi2llzcUWxtGoTeQ4oea4PPgkxwar6SJxukVkShMOmQbHCDdHCRJO8T/QxfnrGcHq64\n+S+RZDfo9S+tLKUAK5pwdHhbYtuKGAVpNkbrnO5RNqTpCOcEiLoLUBECaVKUKhB6A8EAafpIn9Py\nPbyaE8Mm0lyksTfI4i7BJgjpCHFKMTa0zqBUJ382KGLM0aZPDJcp1p+jskcE9fhsD51bMQc8CoeP\nLS6WJCJ7cm8/usC7QA1PxDpPVVckZsXMW33dh+d6ELKDkOtsk91rW6ztfBZrS2Io8dZjW0HdVlgp\ncWmBUmkXTuIFSurOYWc0Sj1OJXjqNYlOeyBFp/yNq6xLo1JilEgFeMGyXLCsSvASZx3ONpTVnBga\nkkyjrOHC7hpnJ/s4u2Dv4QMuXH0ekyWMRusI05AUBTM3Y/PiZZJMMz05oF5UnN//Ge/89BI3nn0R\nJyRSa0yargpWF6sejEWrMdEZfLR4N1sZmwoQE2KcEGKCTn4TURhcDEh9ASE7V6dS4+5npCxVeISN\n+5hEkyVXCL5PFBGjRgQ7p6k+04Fn4x1MmhGVJMoBSXaFtnyfsDymnN0mNHukoxfo9S4gUGxub/PG\n3m16KpAN1qFt0NmQXjpge+sCy8kpaaIRriYxOefnd1Hxl3S0KNN1jBOUyzss6++B/wHK7vPss457\nH3jefsOzfxS5fENQLh3eGKqyYjxMKQpB8thbH3KkTvBEkAnF8Arru7dIigvU9ZSz2R5a56yv3yTN\nNxlv3CLvXwZl6JBnnQjUB0cElII2VDjXSXwfLyjnPYGADZ4YW2x9Qp5vk6abq5AO3z1M+jn04LcR\nxSfxHoK7SJKOccuGRblgUU4Zb14jLa6isPgqkhdD6rbsYJcx0C8GWFKy7AJJ2ORxVtbTmvwIHTMv\niCfmnp/n5Ov+XKBVQZZvIkl43DN4fD3eFYTYIAj0+mOK/hil+yhlsM2C2XSPs5N9mvocZyuiCHjX\nR8pBl3z8mNUvWFGWn5okrF5HDB2JWArQEryNNLWDIDFZSjACobp8x2q5wNtIsJ7oPdJbVJLiVY5r\nM7y3iNDy/ntvsbVzlcHaLsvG008VuztXOTyZgG3ITY4YbjM/W7Czs8Xt997gX//zP6A2V/nP/qt/\nxOUbO2TpsLurAsChlCUIi47glyXT6TFJkhJlRMohSijaJpKkz1DkF1BUCHwX3hodMRiE6DByJt+i\nr15CyQYpcyrXgkoQyS5G79IbepQcotSbuBgx6XOo9CbGXCLLc4y4QN1UtMGRqRsoMQABWdHn+Vu/\nSnW+Tzvd72AyPoAWeAxtW5MERTs/QCvLbH+P6dnJL1yTH18xUJ5qcUy9eIhq7qLcA4ZiwuBCj61d\nyXA7cLA/ZjpbUFvBvfs5u7s9dnevEJQkSkf0AyJdWrEgQamUtukirdI8kqVjNjZfwDXbLOYTeoMt\nesOLHf34I5vq7uwbIgRnccGjTI5UhtaVhNAghUKpBBkFTV1hXYuICa2sEYkiSXpokUMcEfQzRL1L\nNZ+SpVvM6z3Oj+/Rk1v45Smuv0aablM3gqw3QCUZzjdIAbap8SFHqY5HoOXgyT37aF+ge9/EDOhQ\nXS56pJArKFt3PTUjwKgMrfsf6fI/2R1Ehw8VSgRMkaNVQYwpzjscCmc9s9kpk8kBEDEEvB0TXIsX\nCpPnKClXUuWO8i2fahh0BcEhhcPHSJZlTOeOyazBpAobQWtJ3tMkOiBd6GjH0eNDwAUgXyPfukl1\nlhHn95ken5AoSbtcYJczJqfnpHGO1ZI8HZPHPsFa3tk74NLVZ5nbJY8eTdi6MOLBbJ/YKvJ0BEJ0\naDTAuYb5/BQlIomE+fkJp4f79AYFymRolSMw+NgizCOWVdVxK5UkCk+a9jDJAEGCwKO1R+tLiOCI\nQZFlDhcgxgR0g8r6CLuD7kky3Sft3USbMahATAwyvchIbxK8JMlGRJlj2wrX1KRpn2TzIu/ce4Mk\nNrStJV9fwzeKVDaE5RS1PCCJgeXBAa+98Ut6TEiThjo2jNYKysk2zTwjCMnayBLTQERx6dImZXOV\nujE8fOA5Pwr0XrlCi0SrDBsUJsvQqkBpiw0tVePYNCM6LhzkxSZk6+S9FqHEKq3n8VJ4zBXsAlGD\n9yzKY9rlhEFvh5o5Uluq2T6L6Rn9QYbSDdG2yDAihgaTjZEmJbiGoOcIMcVai1YjEgPe7tGcv43m\niHSouLBxAZ1eIWJIC01ixkTZ4Ui0yEnVACklrT1DSkOi1lcla4Z1Nct5TRs9o+EWRmkQmhg7BLqP\nFoRCkXzkXstVoSCCUdmTA8eHxwSPjzUiOLRU2AC2bdBaEFxLU8+IoUEJj7ULhBBoU4BfRZTH8GQX\n0BF45UemCN336HZPwXt8gGKQsHd0znzpEcoQLYjgSLUgTy2JShAq4lYhMVEkBJeTDHYILuBm97DW\nA4bpdMG7773NxtYWy+WC4bIkmhSdqm727xWTec3VZ65x86VPcV4t+PynvsynPvdlhOg0/T50NKRE\nG1I9ACx1tYSQoUSBqzy2OkeIcwSm252JhlIdYpIhKjVdNqW6jDQKIQ0RBSIHKmycdwawEBAqR6mM\nGAqW9T5V26MYfo5e7wJS9hBRMpue0LgFWT7AZH2U7HU/SQFtVfPg/dcoegnV/Jg77/41iXAkacom\nWyRuRH12gK5nnNx/mw9OFvzpd97h5c9+AX74zb91TX5sxUA132Hcz0FcIlY5VQ5V8z2aeITyDYPe\nmO3Nf8C0hao9ZPdyhtE9ZKJJiWg5ZFGfUYz6pAkkxRyVX6a/8Q2SfB1QRLukLZdEYSh666vv/PTn\nYfdrwHaBKaFFYlHKrQJKAnU1xbXn2OYHHE1+jHInKJEgxCWS3k1c/wYq28KkGT6eQjykbec4n5Pm\nGfX0bezxd7Cyh9r+KunoMwg5QuC60BbRUZuVTJCAVy3gWc4PqZqSi7u3mM/OWZZ3oHUEa8jWb6Jl\nRtN20erLxTmbazsYkX5EcPT4HXahqw6tDR0C3iOe/OgjYImhC4U1JkcGSWWrTokZaqJbgG/AO2RY\nYcVXANvHRwKlOoBGRCFkwodJA92xxtM56aKPRAdK9zg+bljWFp31qK0g1YILWymKmrZKELlBJykx\nNsQYSJMEj6NVGUIIlk1L1huQ6Zxp1ZI7GKwN0a5hdnTIhcs3OGn2oJcRlpb3b7/NpWc/ySeefZXn\nXv4MxWC48nMIjDBIA86XKJNTVYqqCURpKfpruKbCtoIQF2gtiU53gaxyTmwdymXE2OKaml7vlLy3\nQVQ5adrJ1IWIEOe07SlJKiHW2MYiY488u47WA5xPwXbWZ9dAnm9TFOtdIRB6VWgjZyf3mR68xaOT\n+yxm56xvbnNhe5umLklDpD3YZ35wn6NH7+OaJXfuVzw8tfzel/4O/JNfwmLg7B8hvMK6ASa5yvrm\ncyzTSxBPkVJhRI+2WSNPBQVrtM4ioiJPi44LYCM5AimGOJ+RqzHF4Fmy3hpCJJ2BxmiUSkEouhPt\nh1Hsj5uCK40hQiZI4Qn1I+L8A1QiEOYa0r1HO/m/cKd/hQoTsC02gFAZbpkyPUroja8yGF1EKU9r\nKyI1oYnsPzqGNiDbPWTv6wixiZZjkN2i/DAM3CJX53hBstINLKmP/w1nyx+g1DXms3v0e0N8K6gm\nHkODSjKatiLNRp0hSPx8ynAkIIVDqhFdv6AiUqw0BxHiCuwhO0mN1pokMSzbBW2zoKkrvG2fWJ8R\n4ok5KcYIIXbpTELCKqZNPBVmEumOIdAifBdYUleBB/f3iRGWiy4uXSnJ88+NKTKNcxVuWVP0Ckxq\niFhCjKRZj1obKu/JewOuP3+N1kr2fvozziYL1tcv8MG9d3j5xReZ7b/LYG3I81/9Hd67fZf/83/6\nH/iN37vOYPsy2qSU1ZKDg4eMx1uMhht4b2lqS5H10EYyXR4gvWU8WmM5bYna4GxC25YYFEpC8F10\nnZcglQVfMalOmc8ekuRDBuOr9Hq7KLmFMG1HunIVtavAF6Qmw1qJa+Y0s2PausR6GKxdpte/iDYF\nEUWMjnJ+xP69t7n9V9/C1Cdo2bA2GrK1OSZLILYOWc2Yn+4xSCIWxYHr88ak5b/57/8x9+7+khqV\nnH+EaBb4UGPiJlq8zHjzG9TtS0QPrV2SKJDOo5QiF7FjwllLmmaITFHIEc6rbnGJIa5N8bZBKk90\nDUIGyuWSgKY/6nf5iUScXRKjxyQbgOhuNuDac4T/CbOTP+L4QU3WGyPllNDuI2OFVhBFxDddlDl+\nhlSRdnbGeXUbpMD5BCVGJGmknFioB2Rmk6K3y/T0mGxQIuWQyBJBDxBIkhW5sPscl1TIxXep599h\nWg5JzBdRWiBiTepHVMs7zNpIf3yN/lqf2jeU7Zx+Mvi59zpGh/VLEt3vxodYuhDaVciY0EiZE6NB\nys69qHRKkvZwbU2IkbKcM52dYW2DTpJu3avV4hditf0VKJNi0uRJ9sTjK3iIoeP66ySwtxe5e29B\n4wOt16RS0u9Fnn9uk6JnwAbmiyXLeUtW9EjznIaa6Bz5cI124yq9mWdSV6QiIdUpVy9d7gRi45R2\n6igf7XHSfw996VWe/cTnWR+PufvWO3ziK7/L4YMPuHHrEwyHI/Kic4AaJXBiSmtPsK1kc21MjA7n\nG4q1a+Aivl7QVN3IrxOkrTQTQYIF21iEiEQXCTYiwj5ETd7bRsktskwToqMq5wRfQfA4J2jKCc3s\nFCUlw80r9NcuIk1/NUSO1MszDu7cpj1/yNWtPuPeOovlIW1lqU8PcUQKJfCzCZmD/aM9br91j+c+\n8yV+/7/4DeaTc7b7P//5eHx9bMWgt/WvaOu3WS6+TSz/FCW+SxSRJPlPaN0GWqT4YMkzgW2rLuBE\nS7TsEoFiCITgIFqibwhB4+05zVLi3Izl+T4xWNJsSG9tF4ICtdV1vKWhC1V5HLrd4pt7LE//GFv+\ne4ajPchLJPdBe0ISqcsu9jrJBDoRCCm7+G8bkKIh2IYgA1LnVE3gzqOSC9uC8aAjPzfuXQbmV4ni\nNZxfYOs7FMU3EOImcdXyC4BlyfLg/+H4g/8ZkxQMil/lvKkIrcb5gOIOaANB0zYJ7WQDU4zJspxA\nSxeb9tFYEinkqleg8dF3C1I+lgt3pGUh9ROdYgwtdVvjfZdwVZULHu19wHx+0sW3r4JXpDF0gkOB\n95HEKNIs6+jD4sMDWYCOuOQSgjgjzVK++92HPDwEp4qO/NNGLu3kvPDcDohzhBD0ezmLsmI2nZD3\nBmRZTltLZD4mu/QZtrPLNNO71JNDXrz1MsYonAvcv79Pb1Nj3Ax/foo6eZvT8xYZZ+w/cDx670fM\nJxPWNteZ1y150QMB1tUELK4qMTKn1y+QSU7bBvYP7nB453USDTuXdsnG25SLEhkFaWKoyzmTkwOI\nFpMmCKXR2hGs6OAw6QP6w4v0elsolVAULd6e4duOieBNhhxvonVONthFmYLHFvD59JS7r32X+cFb\nbI4MmC4yb2O4QeVP8NWc5ekxB/MZTV3xaH+PbLDJM1/6Is++8mXmZzOslaxlv6TFQCVXSPSzrPW+\nhl+8RDP5p3ju0dMHBL1BdBrpDcG3XeRYVATfgugQXkqAD11DiihoFpa6WtCUBzi3wAhPWy9o2zNc\nfYJM75ENn6E3eg6lM0DikXg/pZ7/e9ry/8aEt0iTB0g977wGjaBrZPTkAAAgAElEQVT1oDRkRcT7\nlbQ3dOdfKTQhRHTS7RhCyGmbPpVNePGVz2DLfQpzRimm9Na2ydcvE8QmMUyZ169h8lO0eHa1KC1V\neZ8Pvvffspt/FykDw/TzVMuGJOvR+j7SzPDhFCkKfPMWpT2A9Drr2edRQn0kV+DpSyBWqdAJQjgE\nLdACAh8dgYgWHRzEugbbLFjMT/B2TlvPWZYn5IXG+wLXRpTMMLpAyy7jUCmF1gapNEp3R4SnX4eP\nkeBdp8yLipNTz7f+/F32jqd4rejnfZIQ2d2KbG1miKhpvUVrTdErEHVFtZwhYiRJcpzzpOMLRDPA\n5H1UMuTw/m3C2SmDZMiO2CTJDefljGG+Rfn664jiXb76lZcoNrYo4iGmrzh9eId8YxclNE2zIE0U\nabZLlmmsdQSlcI1ncXpAZhfcuHSNJBth+mMqG+hlgs31Naan+5ycvwFJQgiKNkqMTEGnuBBoJjNG\n4xQVIratINEoVRCVR8jQIeNIKUNE6SEqWSMgiNU5D9/6Cffe+hFjU7POnIO37jEYb7J/MuXkwZvs\nbo84n0wppzWD8QYxGDZ3PsVodxu5dglvRhy1h4zylIenp79wTX58x4SmQeVDTEghfQbTe5FcDNH2\nKlYMibqCxuGC75j8BJZ13fkGFBAs0dXdOM61xKhIsx6xnREjNA7wkbo9R9RHpOkGItnEFxOiKIhB\n4OpTFmf/Eu/+CCnfR4mGGBwuxs5CqzrTzXwakUKSpLJjegBSRvCOwghaLwnRkKc3SfUORpTU0xl6\neJHehV8nLfcJ+ZdJixeIaoCUkbXxcxwfHrNz4T6OM4S8SBoesr6laNpfYW3jFg/e/mNc/DOGa79J\nOlijahyZuoC3c5RYQJximxmT04z+cBdF8R/pDOBpPFgguJayPkXJBU3ticKjpEKJlGVddnbsYCEs\niaGlqUuWyznzxRJnI1plpOmAPO+jlMbF2GHTtEFqg1LySRV4vCvwFlzbEvwURcoPf3jEw+MTQmxQ\nvsf2eB03OeFzn71CkQeCzWh1pLEd2DVPM1SEcj7Fp55ev09rAzbNYXiJvjG0zYwf/tmf8PL1a5x5\nz/G9U3qqx9H+Gfl4zoUru2RB0LcL0hZ2LryAGPRIhyOKNKduWiYnexgtGK9dxMgex4cP+eBnf0l1\neptH777GcOMKm5dfYOf6J9m4eJP+aJOyLJnVnq3LL5KlZjXh6KYraZoiRPfJHlxDU02JriUnUuTr\nKJVy+/ZPkPUZu9dfpDdYJ8gc51qO7ryOOHqPk7d+SLY8oaEk6xk4P+To0T2MSDh785Cf/Yd79C4M\nef4Tz7D77Es8OpogR0NOUNzI17HHLaZW5Bcy3jw7/4Vr8uPbGZh1fAQZNSb5AiJbYpgQ5Ro9OVwt\nZo0XirqZEqnI85QYSpxviLSdii0EpGgR0tHYBb5RBKeQJCjRdc69WxLUksX8DpPK00s9wT5E+CPS\neBedVPx/zL15kGXXfd/3Oefc/e2993TPdM8+mME62MENJAFwA0NZC60l2iwpUpw4lityVWTHJTtO\nlauUilOJy4kroiRLLoqWJVESVwEEJHABCZDYwZnBzGBmepbunt7fftdzTv643bOAIOQolaJOVVff\n9959993lnN/5/b7n9/t+sQWOFeSU1XdZbtCFJBsoHKERFvLUgrQYLbBmW8RUluCkg8dm+zJh1KDR\nugPhFMhI0U/20Rp9HBXMY0SA1hqlApRy+T8/9Zv82q/+OHW/IItPk3ZOMDb1Uda3XufC+d/BoQ19\nTeYsMT55bwlimS6h5zMYtrGOh0JjulfI+yuI6l7g7eoTHAQ1LBqUQinJ1vrlcjlPGZKsTxBWyAuL\nMaWac5FnZFnKlcULnDv3OoHnUqs18YIQL6zj+jWywhBGIUFYKdfgvRAhtzUMKQ1BqnMKnSGLhDx1\n6GXw4ktLtNddlKiw79Butq5kTDcVtx6bpcjK4jIvCMjMAJ0ZtC2JVX0kSTwkGXao1asEfpUkVbjW\n5c8+9SfUPcFZvcLtj9zNysIaV1e28DOPEb/FyVfO8MA9D/LGSyfL5yQUTs2H0SmOP/oLtPUoX3/6\ns9x7z24O3/EwXjTLxORuHC/g2W8WvHrxWfxTz1Crv8bYnpM88P4PUx/fTWtihonpCRxlMHlOkBdk\nSQdkgbACayJatTm2lk/z3e9+haDWYu7IPThTFVw3QoqAN06+wqlvfRkn30TkhonJeYoULpx7k0sn\nz1Or1Eldy8Fb9zBRG0N5HqpW48joQeaSITNzezh9/hxPPfcad912D55Xww8ihOMzSDcwruCNK21u\nv/sx4H/5vmPyB2YM+muv4tamCaJRsDFCaITTQ6hX0HaWbudrFINLjFQ/hNIHyB1DJnogXWxR5hBo\nNcTobhnrZgKMKgluSTGiT2YN2nhUKuNIdxnl+vj++9lc+WNs/BxRUECQkKuyFNSXBmMEeqgRVuIZ\ngwoMWb4NfmlbMvzakv9PWEEhCsx2zf/e236GSv1Rstigi0tYvUmlOoK2FZQYxZE+w+wcuZEwTPn7\nPzVHvvG/MwhmqI7/PbI8J+2tsLhwkqm4z8oyTE9EZMPnuHzuVRozdyHNB8nNFo4aYE2f/mALNxrB\nCu+mRVO4kSxUbgOGUGSa9XaMMTmuUWRpjjGabrrJME4JAp/hQOH7FTqdDVbWLiGUxo/qCMdHuCFI\nnzQzKNchCOp4fgXphSjP216R2PYILKRFDnlGFmfUWyM886WzfOe1iwyHUK3WsMbHFj3uOO6we4+D\n70cYHKzslEi6GZKlKVIpXNfBNZL+RpduMqA6U6XwLFYEjB07wqVzZ5jZfwg1LJA6ZWWjzeG9ezmz\ndImZ8V34E7tov7HA+37sp3jq079N07GMmIKv/MG/5dCDH+PjH7yH7tJ5tk6+RFS/wpYXsevQUR75\n0Md5+L0fQuc9cp0hlIsQFkeoksA0Kcl6omoFKVOyziqrKwtU6w0aI7vY7G+BJ7i6vkn73CLR2D4q\nYwbHFQhb5eWXt5jbf5hb7rmTYdLhu689S23rAvFWh/2HDjA+1mSpk/KVZ05Tc0IqtSr+WJOpsVZZ\nuLW8Qej4eEpw7soiE3N7aFhDGiveOP8mY7MHOHLnfRy+8+53HJM/OKajuEOWF6wuncGTq1SDJdyw\nDQiUu8lY88PklRGwA0I3gBQc10HYDONY0iwDU6BsRJaE6EKATrG6h/AlWkYot4orJEbmGG1RYheV\n5hxGjTLcNGUefAYkBbYHC5clhbBM7QfhAlbhOg5W5iXwJkTJOJwJsA7WKDwVUchpvNq72EqushZ/\nhsmxH6c6+ndKXkDbodfvYewGIRPU3PkycbB2BuGdJL70DCKpQusRclLWLn2NkXCV4bKh5re41E15\n+Xl47IcO4RV7EXqV1ClDGdd7gAPH/g7Sq2Gd8G2wgp1kZK79d1SA79YZpOs4Fc2w3SMrclw/wpo+\ni5cvYjF0ezGFLgOMen2MKKzh+1WCoILj+BgradVbRFEVIT18P7ymbHwtPNCWPBlikpgw8jlxZpXP\nf+EUi0sZm8OU48f2MNzQeN4yD3/gfqJKFT8KyFIwbojJc4TQuJ7CFDl6OGCqFvCdv3iW0d1zaCNx\nWi1UEDF3+3HufvcjrHV6rCyeIOn0abbqnL2yQLVZ49ziJidP/CFRs8Vv/sYf8sPvvZ2skLz63JuE\nEXz9//jfODMTMn9rFW/XPhIlqY1P8Mrrf0ylModfHcf1FLrIaXd6FEWMH5S1DVaFTEwdINGSKxdO\nQdqhGnqsnO2zpA3V+hhhFHJstsVaNeDVbz3NoDtgY3Gd57/8WdYunWXjzAuMmnX2HzlINDeCHNHk\nU7vop4peMcSvKaanp1la3sCPauzbexCFQMdtiqTLsLfOWMXj/PIFdu2eBiv42te/ytjcUQ7dej9z\nR+9FuB7v1H5gxiAtBFLEBK4hVJYiWaKfnsereminihcdYLDyRbT+Oh4DHD2DlKBNhsVQDSfQ+TxJ\nPEVmNX4tJ8uWMSZD+U1ajSMoRtnaWMRVV9C2TU6XtY0X6a09z0gYs9W2dDoWNaroaYkcsUyGFvqW\n0PVZfMOQ5TkTRwUqUggtKApdgoeOBMew0S1ozf4wjf2fICtA5hZHRGVuvqqiqNJs7Ih0ShYuvcbq\npf9I/8qTvOvxj+P4U9j2ElnaZ2TkEZoPPYzgBFeiJ4nsJrb3JPdUEsJGCM4cicxwbBdhfZQYoPQ5\nTDGJ5+6/6f7urJO81UA4jkclGGHx8kmurF/E9wtW1jcoTI2igDOnXgHRp1qr4nlVKrUmQRDhuSFR\nVMcLGyB8KlGTIKigHA/fD0pJ9hubteg8xxE5Vri0txL++I9e5MXvLtNPCybGAh597xjfePIss0c8\nbrtlL/X6CHmegRQ4yiK8GgLBcNBDKoH0PVZW16hU68xPzJC7DpsrV1hYWOJd9z7KwtJ5JmWN11/7\nBt3lRRpTI7R7a3TaAwLXIQgcer0OoS/5vz/9HA/ePc49997H5dUtLi+fwKSCK68M+cbn/ordcwF7\n909Tb3qs6ecIx6fR4QRjk3sYb3icOXGKF0+cY329y7598+zfN0tncxHHJIhCsJkaNrfW6A96xElE\ntdYk1ynWqTI9f5C1b66Qxxl7W5Zd7jhm2OPKK88yvHqRemOK1ZU1ijwmrEXIULJ8ucfFS0tMHdhH\nmiVcvnwK1/NZX1kiW+sS+g32zE1y5NAtiFjTk5o9t9zNex79u7Tm9uG47vZa0fdvf60xEEL8DvAx\nYNVae9v2e/8c+EVgbXu3f2Kt/fL2Z78O/D1KCpj/zlr75Nsd17UbmCxCOw6pGQf5CK5JiXNL0DiK\n8vbRmo5I2ik6eQLXfx2pa1BYjLdOnm6gCwdr9lENH8L1jtKOx5FiL5XqLdQagrT7MhV1ARtblDuD\nYyfJsoyC3ZjKKI5aYBhfZulkjh7kzE2FaBeWewntrZT6+Ax79s9g9RXS/jrdjsGrUnIspk22uqNM\n7f0k03t/Gi+Y4bqTXiAEDIaXkHIJ3x8H5rF47Nl9lOUzAa997RJ75heYPvoTGDfFrbybztZfUbSf\nJo7PIEPL2N4HufxSiBpf5sTZVzh+f4iT78YxmljWCVpHsU4dL2h8z7B/q0rxjc3gMDJ2gL3zR1le\nusz03DhT0wc5e/4Nrm6skg4uEEZVwqCK74f4Xo0gqOOoELTEcX2q1QaVSgPHC3DdUoEZrhclZXmB\nzmMG3RRXuvzlU+d44YV1dBYgRcav//ojvPi1k0i5zj/4lR9hZmYSi0RJA9JgXI/cZOgMHOVSFBYt\nIRgZYd8dd5H6EY6QBKbKyOgYV1YXGRmfZjm+zP0Pf4jP/eHvQXeLVtig20mQykNKj8bYOBv9K0zN\nj3Nxuc/Vr3+NtU7G7j2T3PWjj1Nveryrk6IGfb74pafpdy8xNQlTXZ/JmRpnL7zAsSMHydY2kWnO\nY4++m2azRbY5oN0vyGzKvrm9FIXDxNQ0QUWx1cuZbO1HSpcrV68wuWuMbneLpa01KqFLqzmNHlbx\nHEkuBK+8/iz9jS32zs2hjcM3v3WGemUMR3o4SnHwlqOI9ibrV86RXF4haE3R2j2Nmp6jIwTe+DR7\nbrmNY3c+iBPUscrZpr9R79Ar/vM8g98F/g3w+ze8Z4F/ba391zfuKIQ4Cvxd4CgwAzwlhDhk7Q4G\nf71J7aKFwOo2mSlQqiB195FnfYZLr+IEFwmjGcKRf4jNP0ba+xeocAmVOKgsxHp1CmeIrAni/uuk\n3efxszZSbWDXfPpdSYqm240JhaBIDxHWj1KZHGdtI+f5J75N2k6JIs2thwJUbR/N6V+kOfkwvThl\n3giqlTF832Nl8c9Iis8S5K8SEBM4H6R1+Jc4UL8bK2o40tkW2ywoGJLGCxTDF0m33sCaEepTH0L6\nOcrZYun8f8KvvMSdH56mMfVeoup72OhcYnDl9+kufwbVPYnuFORKsrnwHPWqjxfV6TsbPPfUcxw8\nVJCZS9jq+9g7+xBW1t9m/v/+TQCNSoN6JcKYmCCsoRyXNG2TDTeYnWwi7GHSJEF6Cuk46NyS2dJl\nl65ldKJUFzIiRLohyOvsyhooCovJBUk8oFL1Of16h2e+eplzV2MK6fPf/tJ7OH/mAq+/9go/+3Pv\nYmZurOQ3sOAoD2vA6BxHuWTSxfHLnJK8gNzxUdUWaVaQpxlKukyOj7G0vEIa92mO1lg/t8jkyCSB\nGFIMYnJPMsxizFATp1eZmR7Fnx3h0rkFGmN1Blmbtcs9/uR3P8fkZIX2Wo+lxS1mdjWZ33+QTrfN\nnsZhKo1d+OGA175ziaRnOLp3nuXTF/EPldJtva2cZmOa73zrIkuri3hRhfHxXbie4OrVl9i9dx9j\nsxNcXVsh6Q9wHZe4PyDutwldD7wKcS9mrDqGSKDWGiOxkMYpNkx44L7bCKsh3fUVXn/xVcgz3vWB\n97FZaFqzh6hM7uWhRz9KtdkkKwRJbqih/rPd/792P2vt14UQ89+nX721fQL4jLU2BxaEEG8C9wHP\nvXXHTG+S6xahchF+yGDYx6+khFHEcLCFTWMK0SfRz5Lkq6xfnSdeWePYcYeYJYxJ0Pl+ROVx3Onb\nWH7jD9CbJxHDmCiSNKoOoWdQkSRTDaqhhvyz6NUWI65hTTksLeaYKUM6ALoBzYqPO15jojWJFG6p\n+oxkfPbHMMVeBuLTpPIF/JFjyPAA0hqS7AqplWURlOOQDzWBu5dKaw5aPdJiWPIsOG2GSZvxyUeY\n3ftJEA554dNrv8Lm6r+lGHwdrx9jMsgM9JMCP7f0+wmVlkuzDlvtiGjsOFPjv0Bj1z3kokZhEiIZ\nvfX2vmMT2wKcjgpwlE+mM1A5rdGArTUfYRzyoEpqUpQb4soarhuC9BgZn6bRnMTi4UURjudeL1IC\nTGHQaUI67OM5lu+eWOS3f+cEL58e0I8Fx+8bZ2RS852vbnLk0Dzvf+9djDQq5EKX2YzSwdmmRDFZ\nhut5FFlBEFUQQ0qGZiMIpIdxYXlxkdHxMaYmx1hcWmYzGRK2JnFGx/nG00/QDFxSbZEqoK59tO6x\nvtZldKLGxP5b6HQ2EELh+JbV9jqmClN7J3AbEadev8DFxQ32TI/y2suX+cKXnqNR96kGiixJee28\nodGsIyubNOo+VANefGOBeiPgoQ8/jBAhna0hb75xiizt0utm7D14gI2tLdorG+yamMZzfUwYYJBc\n7fTxPR+/VmGyGjHMDbvn93BXErOydJGrl18mcB22NvsoMu5/94MEzRE6a33m5w8zdeh2guYEwnGJ\nPCBOyG1Blhsi1/9+3eFa+/+CGfwDIcTPAC8A/721tg3s4uaBf4XSQ/iepvQVlJuR6gautvhODald\nsr5EFLuQniWqNhByjTz+CtPTQ9TkGPHwFGma4thdmPwQeLfgVSZpNo7RMScIK23yNcVKsoUXQNE3\nFNkGSrQJIok3MkLh7Ua0JrjzQ3exZ/9DnH/zKXwtcaVk2D1PgMIPPApZI81cXFFnZv4hzNx+dPoy\nQrgYtVXWmAe7kLKyPRRiqOdATm7aCBr47i6sKNmHq2ETG5aMRZo+V9dPMWkznMEm2VZMjiXHpS00\nnU3FeDVEmISt1Zw8Ctl/90dpHf55ctuiUBU8wAi1rSnw/6aV0GJhS2qxNM1YWLjA1UsvoJM+aAfw\n8N0Ax40IgjrGSvxwhFp9Eset40d1XFfdVJxodZk/kqdd8mzAG6+t8+n/+CYnFmK6iWDfvil+8adv\n52tPnWJz6yL/+Nd+jNm5SawAB3WtjgEhkErg+BJjXKwTUGQZXlilcB0KYZBWY1LBxPQ0pshxXYfp\nqXE22ptkacHDD78PESd89+XvMDm3i167S7+3hc4SXNclTgPOvXGaZqvG7gN7yAdbzAeTXFna5Nzm\nZSZ3TTN/62FGRyZ58YXXSa5e4MiBcaYnJ6CwLC+v0817mAReOX0RoQyjIy3qu0YoMs3JM8soDFla\nEIQ+9fooUeRy4c3T2xRmNTrZgF6/R+j51GpN6s0mrhcR+AFJkqDTIcnWFrtH69hhHdcXDGLDWlZA\nc5Z2dZZo+ig/9zMfpzk1TWIUqSnwhANaUAkDhmmKkoo4TQn9dzYIf1Nj8H8B/9P29r8E/lfgF77P\nvm/Lzxz6moQMoToUhcHqGvV6Rpr2yGhjuiE6f4361APUpv4N3fU/oLv+ewRSYrMahW3juT3S3pNc\nuXKRbz/9LZq+Zt8duxg7eCeSKnl/kYuXvo7yBIHrYYIJZPRJ9u75JfbMh2ytnCLNFzh460dQ1gfZ\nIjVD8m5CnvtIGeM5k7hBDnIdB4sbHaCsbxBIvUqRbJHqFmE4RSH6YId4ahRX7in18EiROICL2C4t\nFhiUjZhp7EXnV8i9abRfox7ELC5laCCzkrYJObD3fvpxitO4hcbEx6hXdm8fo2zBNXLTnMwskmYO\nkT9Bkue4josvb0aQLVCgyzRum2OFQSpBPXRZoWC9u0a9PoYrfJQfoNyQJBXU6qPM7j5IVJtGetUS\n0JPXly91ATq1JSmJyXlzoc9nPneKr36nQ2Jzjh4b41/80/fx3DdPc/bEIv/jP/sJ7r13H466jm4o\nIAesECgVlMIggY/NSpq0LBkglEOtPkI66KO1wHMhS2JcKdBAa2SM7tYWT3z5CSZHKtz5wP2cX7hE\nt98nVIJKJaLTHdK+tAp+wJnzy2wsrzMz7hMqn5nGKEOTsL62SmJ9ziyssHR1k13TVRw/oD8cgnEY\nm96F191i5eoyDV3FkYKO3mLP/AxRELGxusHa6gaVSkBYDTFFQX9QkBeSVr1KlqVkw5TZ3bupVCOW\nL1+l1xsgpUcQVYnqNaJai057k1x67D7+HiqtSURlnGP+CFPzB5jdPUet2sBRDkqVvcsgSok7A77y\nS3pAoRHSod3tveOg/hsZA2vt6s62EOJTwOe3Xy4Cu2/YdXb7ve9p/+rffQ0hRiis4L67dvHAnXN8\n59k/4qWXTnPX0aPcc+dPkjBOOgjorb5ENhjHFT+LNgsov1zJ7vfPM8i/wML5mLXNnGHDY3hhyL70\nEkLOUZs9wsj+WarBUSreXrzaHmQwTZJvoswiUcsjEreh8xiTp6Ak1apHlgzo93KqzSZONIoUVcAD\nCiBHs4U1Z+lu/QXGNqiOfAClZhFiEkm+HcOrbQry69a41AXeQOoLdDuvE8oqRX8Tm62VnbQzoFYP\nWL2Q0hqbZO/BD1HoY+w5fDvR6C14UbO8529zPwUuvpzFCywCl4rnfU/Ogd3eEiYjy/oUeUqSlUu3\nkadwlUcQVClMyacsC01BxsTUAaamD+EHdRwvQro3oxSFBqMzknQTKwrOvNnhd//9K3z9+Q26heTg\nvpBf+9X38Nyzp3nqS2f5+Z99kHvvmUU6ZWXjToKSpOyQhQSsRMhtoRYXcmsIonIQ5WmKX2kg3ZB4\nOMCv+AzjPn5UxcQx9RHJ+z/2OOtrK0zOznK0N2Tx4iWef/YvWVu4jM5yqpGgSLrsq1e58567WLh0\njoEuaFQ8lq906Pdhfq7JVMvj4HiVKKzguAarJMYaVrfWSJKEWrOBUhLX8TGyYJD0QUrCapMWJeeh\nX2uSJZqiMExMtzh58jxJ1ufgoRlOXzjPrpndNKemwd3CFBbHi2j3cmw1Yu6+DzM+u59ebvGjBvv3\nH6JSq4Mqn0GapAyTLq6riIIIJRTSUWhjiNOEp//yL/n2898updf+GmxJWPvOwgoA25jB529YTZi2\n1i5vb/8j4F5r7U9uA4h/QIkTzABPAQfsW35ECGEHF/8Z0r+DVIyS6xWGy99m8+pn2eqvMz56nInW\nD+HVK6R0SOMtTAJWu+jCY2z2NoLWDHGa0+utcO67z/Dyt3+fe98dMLtvL0HlNowJ6LZfZ33lMkU6\nzcFbf47p+R8hLxZBr+MyTjLMidOV7Rx7DyMkldoUQTiGEM5291SULIKrlFTjI9tdtg8kFNpDGwfX\niZAi5DqOb3grpl/kJ1lbfZ2RkT10t75INvgWef4mqmdwspTOlkFV7kCGd4ESGL/GIHGp1OaJGrex\na/YIGRk+OxiBxdqMtOiiVER/OKRVHX/bZ7gjlmLJyJJNNtZfx+gBStVxVIUszVlcusiVpTM4rkGI\nKtb4TM0cYW7fvTh+DS/wcB3n2lWVoQYUCfR761jb5dRrS/yH3zvFN19pMxjk7Nnf5J//xkdYXtzg\n9z/1LB//2G387E/fz/hY5ZrLeCMX407T26+1zjFaUxQZOs8p8gxdFBSFRusCz1EM+h2EMOiiFFop\n8pwiy0iGCRcWFmg2mzTqDUyacvqlF/nGU0+QD7sURUElDOgOY5zAJY1zJkZrCM9hcmKakWYTCs3m\nxiZpsl28ZXIc12VsfIxKNcSVEHgBV6+usbm5yr69M5gCVte2mJiYoFGPyNOkxD3CCsJ3CGstTp+8\nwOrSAjOzY0xNT+N6FVY2OpiowcE77+PwseO0pmeRfoDj+nheRFFoJJrA9/Add7tiErr9Lt3BkJGR\ncTxHsaNXAxCnCUKpkhJNCKq+j7X2ba3CX2sMhBCfAd4HjAErwG8ADwN3bj+vC8AvW2tXtvf/J5RL\niwXwD621T7zNMW0xeAptBPEwQudX6S3+zwT6Kt1hm05xFzPjP09qv0M2fBKZZtj8CE7jFqqzD9OY\nuB/pjYHJSPuXGKy/xMnXfouVtRfZNV9jdtcd+O4Egj5+VeGH+2j3IqycJYwOo5QmUGEprGoSjHCw\nRYawFuU2wQ9J8x4m7eG4NaLqflxPY+KnEcUAE97DMOnQ3XiRkbHHCCt7MMJBEiLYIZ3cpiUrF9rA\nrjDMBgSuYavzWapmnWKwSHftGaQu6FmL4/8QTnA/uvAxcUBerCFUgnKmGJm6A6c5S2ZyRqozgEWb\nAYPeKmk+JKpN4ThVfLVDjGrL9OPtrYIEicQhQhd9er1TZHmPqDJDp7vFytUFNlaX6fc6SKHAjdh7\n8B527b6NQkR4YYiS5UqBBDxHUGhLVhQMh+v4puDFbyzz28OW6G8AACAASURBVJ9+nRdPDYjTHg+/\nd4b/4R89ypsXO/yHf/9NHv3AbfzkJ++gNVKe445HwA136kajkO98agxYTZHnaF2g86JkQDJlKbm0\nhjQdllWsRqMLjdY5xbCPY1OunH8Dt+gS99bwVMk1sbjY54knnyMrMvZMj+MGihxBu98jUpLAryCE\nw9hog/bWJspV+GGVbn9AWKnSaDaRWDwFvnIZxhlplpAN47J4zfcIwojQC7BZjDUxwnXIrWB9Y4ta\no8ro2BgLVweMz93CwWNHmdu3n+nZvdQaY+AFZZIbkMSlMalEIY6rSmp5QGtNt9ulUa+RZjmO6+A4\nLtiSdg5T3l8jwBWQaYPvqL+5Mfj/owkhrMnb9OOTtC++yNrCF6i7z5N1E7K+JK/so7rnl2lOjGCH\nrxFvfA2d+6jGQ1Qn3k+9eRSvNkaa9NhYepn+5glOnXyCjcvfZffuPmPzDkJGSMcyPXsUh7sYZhHV\nsTtp1D+AkhqdXyXur5DnQ4S0WJ0itYNUIamOSYYb2KyLJ1OK4irdzrcohqdxwlEm9v0UlZGP4Hoz\nSLlDEhIAikRv4khQ1kWzRjw8TRQ26Vz+LeL8Co49j8jWsKZMDXYouRVTPYLJHsR1jyFcQaLBFgWG\nHkbnDFKHPbc+TnX0dvIsw3UladqlMAPipKBVn8HzWtf4hSya3A6wFhxZip1kRcZwOETqBF1slbOs\ndRn0N1hZeZM03aC9leBHk+w7eB+j0/uRboQXhNdoz6/5PUVOmiX0Bz36/YS/+tJpvvBnC7x5NaPd\nW+FHf/Qe/v5//TAvvnyez3z6JR57/6387E/cSXM8uuZv7aTA7BiCGz2Enb+d/fIix+gCpSi9giJD\n5wXCSrTR5HmGUgpdpFidkmY58XBA0dvA9Fe5eu5FfNOjUfNZWu9h5ShBdZKllU0WLlxkebEsVPN8\nnzzNaVZrmKKgKHLC0EcYQxBFrG1sUKnWCIKIPEtRShL6IVEUEUQV8sJQaEu706Xf71OtVojCCD+s\nYJWiFw/RUtHtD3DcgPsfe5zj73qM8dGJkuxGCowRWGMJnG0CGSBOUqy2BIFHHCf4notyFEvLy0SV\nCo1aHaFk6QEgUFJcA3eNNcRxTBQEOMr522cMCp1i9TKvfOWXGFHfpujndK5qlq8K6hN3894f+hQD\n36fQbbZWXsWNJNbWyJM+9fpuVDiF9Ko0mlMgJFne48Qrf8STn/9XzE60OX5bhfHJOwgb/wWydpyg\nNo1gBIsLZFjTo0guo4fr5EVOZoeYXOB6FRxHkiZ90kEHEa9D/ALdznOsb27hRJJWawxZu5WJfb9K\nJbodJTOEChEiorAF2A56uEU2vIJbreEHE2Sdpxl2fpuqOEuRGTKrybXCOIKk45BuWU59S3J5ocLx\n97+XXbfdt80ulGBMm6SwiNodHL7jEwwGA6JKSdWudY6rPCQB5gYq1CzPWG9v0Gq0CDwfjSbXMWnS\npt9Zot9bQwiJtIIi6bG6tsRmb0C9uYeDhx8gqk9jZIAbOEjJdQE2CyZPGQ47ZHFC0vP43OfP8idf\nfIlLVzcZaTj8yi8/wqMfuZOvPPkyf/qnr/DYB+/gpz95F1PjNy+Baq5rKV4XeCvbjjG4MegqjEEI\ngTUF2mzrQxpLmsQYXWxjMhahM7I8x1hBHifofIBIuoTSsLx8mUGqGZnYQ0Ep6CKFQWcD1lcuc/nS\nJa4uLjHsdXGsZXNzDV0UuFJQpDHSQr3ewFqIogjX9UBJNJYk1/hRhSCs0B8m9IYxOC7Tu+c5cusd\ntMamaI6MUau18IOQsFonCEOELFUZS96tbWTHWjTiWigAUOQao0sx3DRNqNfrOK7L6uoKSipGR0dQ\njqLQlrTICb0ylNgxtkk8pBJV/vYZg2H3EquLX+bk0/8NMw1B0pcsdxzieIqHfuifElX30S8W0Lkk\n3koRfkilXiftbwI59dYU2oZE0RjVZhM3qIHUDIcdNldPobiA44zQGv0gKprG0kUxAFpYPEx2lbz/\nHDp5jcIajJygKKoURuEEFWzhYhJJkV1k2P8iw/a36bcTOluWRrVKNBLRmnuUscn3Y22KdDp4zgyS\ncfLsEpgz6MF5hqmk3vpR/OY8yfDPofdbkHXQeChGSIYuWSboDyaI8zFqtfuwcozCv1DmOaSSeJgS\n1GYYmboLtzJNWKmh8Ngh5nynbMOdpinI8pLyvNe+hM5ijBZk6ZA06dLt5bQmbmX3/mPghDhBhHSu\nVyAKysGYpTl53KdIC65eGvJHf/JNvvTMApu9nNldPr/wKx/k3vcc4+kvn+SlZ07z4cdu4eMfO8po\nM7wJExCUKwc51wOqtzMIO5I2O/UOBsiNxZFQ6JJgFGsp8hTIWV+5Sr3SxPNCkizB2LykajMSU6RY\nk/PtF55HG83x43ejNSDUtmZkgbU5RZFRpFmp62B1OfjiIWkSk6ZpSTrr+GRZTpokuNukLlG1TrU5\nSlip4/oBSjlEtSphtYrj+viOd+3ahSgJ+KQ15fUJedP9ybP8mnK1vYEoRmvLoD8AKSmMJgojAlex\nsrqCMZaxsVGUs83PSFnVa4pS8boUthHf1xj8wGoThu0FKqEiS5u0NwZEnqF/WSCjCq4JGQzfQMdr\ngIOrNNkAjJqhWtmFUR7KrxBGVSpRg0K36W+eJqrMUKkcpLL3wFt+zVKi+jkwROCQZosMOl9Empco\nsPjiNkLnAVI7jc1qGCUxTobIutjBBioztAIFvuHi+R5TqUOe/RmuPoXj1+n3T+O7klpjN9KpYHUH\nhzaeHZK2T2KGHiocpZdGSDfEd3bRH1ylcOs47kM0RucZqx7F9Y4hCXG8nJXll+gmy1Qnx5mYvoet\n9atEdYtEkdsCF4UUf70psBgwBUVRIK1fFlc5mqxISDJFUNvH0UP78StzWAXS2y7PZrsTWtDaUGRD\nkuGQOLGceHWR//QHL/DCqx0KIXj8Q0f4L3/xvRR+xKf+3bfYvLTOj/3wcT74gQPUa95NYcDOE9nW\nrbrOk7j92Y10tTcpMu3sL0VZ1qxcKLVccV0XXRTsmWuQFQVa5wSuoMgdhFIUeY4xDgp478OP8sKL\n3+aZZ77Gu9/zHnxfoaQD1sfY0sSqhiCOYwpdELlqmyBGoDwf4boo5SGsQKFAlicRRhHKdZFS4Tnq\npuvdMdoKKLbp3x2hUEJi7A7n1vWQyfFc8qK8MzuiuQZQSlCtVNjqdJBKIkXJWDU1OcnGxgYLC+eY\nGJ+gXm8ihKCwkJoCRxc46p2H+w/MGKy+8Y+pNo8RRhHLlw1TUUbFqdCcO4L0I9JeH0REng3QWqMz\nSXttlcakhxeNYXIfR/pIp4HvNRGigiQE3q4yS1Aag51lvoLBsE233aHugHUsa9k5nGiEVmOy5CO0\nkqLX4fK5J+m3T7BreoJ6K8QbX2P6kKa/lTAYZHQ3+ozM7GNz8U1Wriyy5/AWe275EH74EMP2F8q6\ndt3GZBu4RZWqP4ZhHuF9lCLv0h8IWmOP4VfqJc4hA4wwDNKY5sRdjO66G0yCRFEfG8PgAgJlM4bp\nJqE/hZTfP+VohwbdWo0jDEppkjyjKAzKrzI1MkG1tRcjI3Alzlsoy7CWrLCkaUwaD+huJnzzqbN8\n5nOvcm65y9hoyI/8+Lt47GN3cPnsOn/1xHdI4i4/9VN38a6HDuCHHgVsn/XOOd0w0wGJMXiiHGxm\n+70dI3CjV7DzJD2gENx0XLut1iRUqRuhHAeExTNg0KhMo4Qgz8vViYfe/QhvvnmGbz7/bT706GNI\nxy3Fd4WDQOC4Ls1xlyIvMAY8zy0Z4K3AFinkfYo4ppAe9ZEpXM+/aZVl59zLbYvJC4wos1QdsaNT\nCcaWwjJs/y/vS2kaPKc8YmG3vT+xbRAcwdhokzQvyLXBVRaEYHR0FMeBfr9X3qcgIggCAuFjjCHP\n83cckz+wMOGlPz8GI+9ifv79nDv9Cv2LX2Xv3PtpHfkI/V5Mlm+RZ10oBiVj7FAj8BFBlYldBxBB\nDev4NFpzhNFImUCjLVJ5vJWz/3ubpcgusvLmH7Oy8CxRa4xdBz6KXz1MlsaksUXaNpfOfJbFU5+j\nFm0yPhvhV3wqVSiylP5WihKCqGYQnmBrQ7J22bD3lgr+eB3PUUTRUQY9nzy9SM3fJDcFRu1ia1Dh\nzGXJ2SvfpbOZ40UNQn+MSjjO5MQcY6PzNGq72b3nAaRo4nku1+cZibY5vc4lirjPyNRRpPjembds\nBm0ShvEWRmuszUmzHoNBhjEejbEpHL+BEUFJuHoDNiBsyZqcFznDOKc/KLh4Zokv/MnzPP3NFYaZ\nx933TfGTv/ggrdE6f/GnL3PljRUOzLX4kU8e5/DRaXI0tsxYoMxpvFGp4rpBKLb/nO3PE23JjSFy\nJM72s9yZOeG6EdHcbFRcIN/uznJ74LjbxwbQphSEFbYUdnUdxdWlRb713De5/Y7bGRsdxQ0CPD9E\nOV4pSCNKXgZjLMWwy+bCCS69/g2G65eZmd/PxJEHaO2+FTe8Lk6zg3XsnK/ZHmPm2lgr9Q+UAGMM\nRmuEsCjlIIUs+TJE6ZHt9GV9w3XdWCZudCl0u6NUJaWl1+2xublFVK0yMjJCrg2O46KwSCn/9mEG\nJ574BHtu/U1i3cC4a9C9xObmKv7YXtysw6C/hkCjdEqW9cniDLTAqoCRqVsIR3YjA5eoMkoYjWFM\nQZoMcJSD6wWU9Ogle+/3NoO1CZAghCHtvUY8eBonECg7i7Q1NjZOcvGNP6doX6JWgaCuaU4qXEeR\nJ4LN1fLBRHWBEynCoIGJDZmyeJVZQn8UzzlMu9NlOFyhWonIlc+V7jpfffFFNpIhwyygu6XxvBTX\n1/S7ijBQzExMUJGj3Hnso9xx9HGq0RyOqt9w/hZjunQ3lojqu3H9ynZsfbMjbkjJ8phet43n+2xt\nbSCUxA2bJQ2cChAuyOtMZUgD1lgKk5FnMXlsWF9OeOapE3z2C9/lwqql2XR49EN7efQTx7l8qcdz\nf/EKyhjuOL6bDz92C/v2jJUJMdYSG4sSAm0tQgoCUWbK7bi9O6HA9bMu30u2Z8obPYq3e5L59nEc\nrmMKNxqcG1dAdnIXBJRFUdseUG8w4I3Tp6jWq4yPjeG5HqFfEpJ6qkyTzvKc3sZV1t58nvbi69Ra\nLUZ230pr5jai+sS1s/x+4c7b5VTseEBZus205XpY6ZUDG0izrMwulGUooQuD40oKbXHUtmbF9jUP\nen2yPKPVbBDHQ6SQOJ6LtQIrygDLd94ZM/iBGYPTz/5X7Dryy+RJgFQxw+Qi7aUlqtE8WbqCEQk2\n15BnFDYnz1N0WpaiupW9tKZvBcfFC0NqjZGSqizuYYscIz0cN8D1Ihy3ehMiC2BtQp5dAHECRy3R\nW3sWm7xEGDURZhLkKGmR0Nl8jbS7jLHlY0sHLlFFUq9PoJwxrIrx/FGCaA8bnSso2yGq7ke4FXQR\nQdFkc7iCsofIgz6vn3uBv/j6N3Arkqm5caQ6jNUD2p3TbK2n2KKKKTKEsYyMCcabY0zUb+PBu3+a\nA7vf95a7WCYWg4OlwGK3dRR3PtXktkTZ8wKSJCu1IdwAHA+pZLkWbbdnKGvR1lBkUGQ5WR7T6eS8\n/PxVvvhnr/LiySsUgeD4XbP88Cfvwam6PPXZF+gtDpmbH+Xjn7iN+4/P4zo33+vMGIZ5jnAcrJJg\nIBQC74biJrh5oO9gCDnXcYK3Axh3mqZ0pQWlgVaUdK83ApM33rEbj7Xz+0mS8Ob58wyGfQ7s34+U\nklqlhqvK8MMChSlI+x2ypE9UbxEG9Zuu4Zon8JbXb10y3XlvB+DL0z7ttcuEYUittQvhXBfRhXL2\nLwpdYgRq2zAYiyvFNY+gKDRplhEGPnEypNfp4ocBtVqdLDdYIYk89Y6ewQ8MM6iHITL2SNUqgXEo\nEkW1VkXqPogMYwyOLAEfbcpH6AiF0ANsfIG841AZmSMdxkBeCqvYogSYbILSGcaWsI3rhdu/WjqV\nQjh4foRFgtkgqLVB9SFfITfLOP5eTKpRpkN9QpAaxeqVHJsqwjAgL8bxwqOElRGE30A4klq1gSUH\nuRtrxshtjvInqEvLxvoV3lxdJq9OEU7M8MYrCyyeX6DXWWDv/BgH989wx93TKK/G8uo6eRYQhQ5S\ndMtEFX2jeu4OFCUo6d4tqd7p4CnWWpRUaJszyHKyrEA5Lo7fQCoP4QjsW6bYTFt0kaP1kDTO6G4Z\n3ji5wRc+/zrPP3+eWEa0Zsd59P1z3PfuQzz/nQu88FdnGW9GHL93ksc/coyjh+e+J5NQQCmQ6/sM\nC02xnQQTFwYrwVfXQcobp6Sd2XsH4dkJCXbi8J19di5DAp6AQaEJtoG7ndDhRs9AUHb4nd+6EbSL\ngoCjR47QGw7JkiHGaDq9DtWoiu+VoaeSDtX6KKI+etO57hx7p+0kU70daGptabB2PCMpBXlhEW6D\nYVbg5QW+Y7dhw3KJUSqBsJAVGZ5wcVRJ75elZYGWVBKtNZ7rk6YZvheShQW9ThtdaBqtEQySNH9n\nFeYfmGdw8okGWs8SVY7hVedxo91kxTReOIE1mjztYtM3KQbniDNDoasIrbGFIUkUqCZTc4exyiOo\nVHHCAIODUB5SCVzHw49q+GGpUce1xCAXMFhzHm2eQHIWkV+hGJ5AW4Pw5inMDDrJSPqn6fcvsbGU\nkvYt9bpDc2QXzdY+sIIsdnCCEay/yqDwqFceIQgPY50ISwWjLVsb59haP8FqfIU4spxbWef1117D\nJaXXH2BiEFYzNePRHwxptRrs3XeAgphQznNg+nEeOP5J3LcFRkv9wqzokwza2GzIMDf4lRaOF2KE\nh1UeSrrXpsNrqap22xsoNDbPyJKY3mbC+bM9nvjyGzzz7FnaiSUa97nrgQM88rF7kTrmW0+8wPri\ngJnZMT7ykf2898F9BK577Xx2BsBbBzeUs3c3SSlkCZg1XJdA3UyrfuN3bgwjiu3vO5SezFvBSOCm\n3E99w/cV3zsoDWVMnhmLr65/qq0Fa4nTIXEyxGhDpVIj9Mt8gLd6FDcag7d6AG/1DApjS+0LJRFS\n3PCdUpNDIK55ITvf3wFSS3xAk2cZvueRZSWVn5SSIPAQArK0QCpJkqZYLNUoJI4HaCuIKtVS/O5v\no2fgu5CKM+SDiyQdSbV2J+HUo2gPhBH4ekicnqCbfhXfv4Wa9yCDfkxu+/gVn6hSpSh6xLEh0zFe\nFpWhQVhDqRIE8ryA8kaX2gpClpCTtV3S5DzDwTKepwi9aZRr0FpSsB/lHyTpXSLpvUmnp9nMS80/\n40iszVhbP8vqZkxr8ijDfp+pqQ8yOfNuYBTHa4LyEbh0e4toG0HhEeaK7soa02GVyu3H2Vxv0+6s\nUSSCIo9xVJtaXVKpwcXLF5BylA/c82Hec/wn0cjvmWUor4zcpOg8ZzgYIoXFrzRRfh3lBGV9hbo+\nE0E5AKwxWG3Q2hAPUvq9mLNn13jySyf5+rMXWe87hPUqx+4e5wMfv4dqKNi6uEh7qY8e5rznXbv4\n2ON3s3u29bYd6EaDcKPL7AoYCX22hgmFkvRzXRYnKfk9IcBbDcqOR7AzeHeQ+oLrqP3Ob+14BDvb\n2oJ/w8F3DAQCPCVuytVwtrXkA9enKHK0KOh2O2RhTq1SA3Xd89jBKG70PAC0KZf7lLz5iUn5/zD3\nZrG2ZOmd129NMezh7H3OuTfvzbw5VGVmDXbZVeWhymPjtqHdLQtXG2SGBwsEjcSoRjzhRrzwBq3m\nBR4Q8AKNGLoFtJFALQOS225L7bJxueyyXa6qdFZm5XSnM+05ItbAw7di7zjn3swq6IfMeDn77CFi\nxYq1vuH//b/vU7hB5CdmK6EXAkMCFgysCwkWSD/LUnoxVGXJer0lBE+MjhgTzlkSibKqaLqGbdMw\nGk1oug5iwocPjiZ8aMIgxJlkppktdJ7Fxe/wePH71NPPcOf2j3O1fJerx/+QqgrYWFOZY1JV0bQr\nutSx6VZUtmA0noOpSNoS8KiwhlASVUVMI3Sq95MtU9sQ4xVaF0yP/gJdaNhEyXE35YzC3SOkElN/\ng3VYs9g+Sz1+hqPRHeqywk6PsFrTXnyDN7694NM/9Je4/eJfwbnedOyXZEdRjZg983E0HVxa2Mxo\nlaFKLevwTdrLEqUKIayMJlhX0ezgmemLfOkv/Qd8/O6nr5nG/ZEQZDymyLaLRF1TnryIcQUaI/UW\ntWjQvU+eICXpldg1Dc12y+X5lte+teA3fvOb/Ppv/DEXm4LRfMrHfuyUn/jZT3DvdIRebfjO1x/y\nrT97jVdevsW/82//Rb7vU3efQMyH0YH+eD8//2RUcf/ikqAsm1QyKaV34817HLoCCgH8PIltSIyy\nRWGAbYRKywgMElGw6hCd8OogIG6OZah9h5856xhVY1brFXVl2KxXpOCZTWc4K52kArKseuM6ZovF\n5ArRIBu+xzJuzo9WIqh6Pa36Gx+MLSSxGqxWpARt21EWcn1jjDzTEFFa6nO6QhKVNtuOs4sz7j17\nT7qJKrDFBxdE/fAYiGf/NW+++fepzZLl44ekrZamFqVnt/CospSJtc+iyy/y3Mf+Ij5EFpf3aVYb\nNJJMEpUmKs3R7Ihmt6XtGsrxLerRCVU1w5hKSltri9JDisuTxmNKYlyKb9eRUqTzEZWiPEyF9CLU\njqQ6lGpJKWLUKDdOPegMIZNqurCj61a07YLzswcUlbTj3mwbXnj+4xRmBmgWzSVVWVPw9AIUCfas\nsgCs2h0hRZwTNyAlsf9dvqVDw1MRArqLNF3Hdt3y+J2Wb3zriv/rN/+I3/xHf8RqV1KfTrn3yjGf\n/f7n+cyrzzMtFa99/TXeevMt7r10yi/8/Of4yc99/H2f6dC0vWmS3/zbb/DFZsdqu6MoK2ajEp0F\nwk3QT0FOSmqwVnPeNMzqKToJ/75JYFSkXW/ZbDfU89uMTMQojfSMlvM+bdMPx3bTzO/H2rYti+UV\n3rdoZTg+PsU5t+dE3ORC3BSSN4+h+9D/xueGtqT+mSWMAjJAGCJYrfYCRyN9HYV4pNhudzhX4JwR\nwDsl3njzDW6d3gIU9WRCYe1HM5qwuPwySWkszxB35xilccWYRm1ofEKFEeNyJF17iLShQcctm+UF\nTQvWGWLYEkJL9BGj5X9DJKmScnzMeHaHspaux8ZIItHTD4GoYvT46Am0JL+ha1bC3Nu1JC8TXIxq\nbH1EUZ1gzYgDRNVbHk/3fg96C6RTnhosU/A02EEkvt/IAoIqvFJsG2mCqq1DKSPcgMEVYzYnAaFY\np0T0ia7puHq84PGDDV/5vbf5+//7n/Cn37rA3prhbheMa8crL9/iC1/8OOGq5Su/9SfE1ZJPft8t\nfu6vfJaf/rFPUh1ggSeOIUoOTxcIgeubrl/Q7z18RBcj0/mcqnBUWj+xKQHazZpH7/wRJ1PL229t\nOLrzApM7L1GUBpdn7Q//5Gt841t/wi/+3D+B326w5YhYVLjRyd4EDumAOajB2IZjioj7kRDrQgPN\nbsdqvSAp6Hzk9OQUZ11+nk+a9wxePzEfiRz9YR8eXO8a0DpHB6SudUwRa6RPh1IKqxU+SojWcBAa\nbdtQFAXBi7WotbgkIQRQ8vsy17f4SAqDb3z5X+P4+Iexk5cx5RwfKwpdoYs5nd9Sq4KgpHVaG1sK\nW1JYzfLyEaPJnKRGLJbnELbosIGwousu8c0OKCjGtxifvMj0+EWMGfH0oBQkPCGsgEY0bCyEzUZL\n12xRBAgbgu/wXswx42qK+hhjRxn1NRwivkO98PRrPjmGJISUhABISdEpAfiarkOjMYXtP96ftdd0\nGlkUIQuOGBNd07A4X3P2cMW7bzX89m99i9/+rW/wxqNL7L0jipOa05M5n3v1BZ599jb3v/Mef/Z7\n38C5Hd//uTv80i9+kZ/6kU9Q2oO2/sc5PAdTvffxh7O02G4JQGUMhXOgFE3whOBJnceEHe9++X+m\n3l3y3//tX2f+6vP84l//j5idPk9dWEiaoCC1C976yv9EPD/HTe8yfvaHuf3qZ1FIuLEBVIy4FCkH\n9NzrIb9DU9p+rAHYbbdsNgtJBuo889kJLtcVCHkf9VWihySpw3mFvBRBkp+Mls2ev9N2HpMzD5US\n8kcvBLoQhQ49aFKjkozTey+cDGNZb9aM6gofgmQoIlRyYxQqKexHMYX5wWv/DeeL32C9vuT4+Ed5\n9tkvocxzuLFDpYawOWfZLtHGkWKJUdDuruiawMkzr1KMb0uyR2jZXL3N8vw1ut0ZwbdoVeJGp1Sz\nF6mnz1HXR+8zkkiIW3bbh2jVYI2haxPaTbB2TIzS3NU3GxIeZcAoIxrBGDAOsBjl0Bh87NBqmC9w\n8JpTCrl3grwvml8eZpckCy9FRVKOgAYtxBIGZ+oX1MF0Digk7OR9Yrtbs7zacv5ox+P3On73d9/g\nt377a7z+5mPS9Jjqzi3KmeLZ50a8+srHqMKEN3//dd57+G1mty2fevk2/8I/+xP80GefxWn1PSVA\nQY9hiHPcb4YhGt4fQw0ss3+4N4DHiwXb3Y7T2RHGOKFArxecn5+jNmvOXv8tdg/e41M/8KN880/+\nD+790C9z61M/TTk/QUVNaRIaxeOLN2nWl9w+fQldz/fkpYRYWpvtGgWMR4euxCFF4m5NWF+QrMLW\nM4ryiJQSPohVaJ2jbXcsF5fsdluUspzcuo2xko+Qrfy9ACFr7pjnZRhybLtOxpWLxYR0oBwDUgqQ\nhDViLYTIHjtgcJ3O+32jWxDGZEoSjo8pUhhHjEHyIbxEGD5y0YTpK/8yc36FFJq8qDWRQLQGEzu2\n3Ypmc87x8fN0XYVvN/JAbEnXeXS7koaf2lFNb9N2K0wxRisj4aCjW4zmz6H05ANGIeaYtQUphy1J\ngXZ7SauWxKSISWO0Q2sLCUJSqKBEWyuF1ooUO6IKNK34bVYXol1SQimHQuNDJ3H+nJ0WUiLGXH4k\naYx1e3NQ78c2QK3TEKFP6JDodi3dLnBxtuHRow0PGkNKuAAAIABJREFUHq34wz/4Nr/z5df59rev\naJVh9MyM+fe/iJs7Xnr5Hi/eucej19/h//m138E6ze27Y37hS5/gn/urP87z92YCNPH+lsBN/xpk\nk68l/Y/aHoqk3vTRDYfw39OE2+NHj5kejdnstjgdqKqC0p4Q247YXbDlMbZ8myPzDJ//8b/A+JM/\njZ7cpmtanEvsYsD4xNhvefjOt3F6wqScYQ3olEBpQpLMv8l0LOCcUugUSe2Oq2//Actv/DZ6ekT5\n0o/wzMtfIAKrzQaVIrPZnKKoODo6Ztd07JqGzXqFtY7xeIzO/Ql6+zCmSOcDGI3KTMZe+ZbOiQDN\nYxiCvamPHmTl4UNeFzlBy+bzBKUkB4ODyxD3eIPkmfjOk5I0gU32gxX/h2YZrFIaGNRJDO0kiCx4\nUlgLTTZZtpuGdreG1GK0wmqHsXLTrjzCFhOk8+2AtZ0UqO9F1kUSG4K/IjRbog9IfQhNQmOMtBiP\nSbw8rQwpKZTWWCdlwn2IGGvFZVAG0NmqSGhtUdriU0RpQ1RPak3FdbQ7DRDmPrE15sD5ZtOyvNzx\n8P4VVxcd77y15Kt/8Dpf/cPXOFu2rJOmms1RFZTjxLP3Tnnl4y/QLBv+/I+/zuJiyfGdKfeem/KX\nf/YH+Kf+wg8ym4vva3iy+tBQk183pQ/vtUl+U6iDdlFcxzAYfD8OzjG0EvrX2+2O5XpJ0gGr4NE7\n91Fn36Fa/SG7i29y+96r8PxPcvrqz+GV2UOuDYnL80ek7l3GdU01eglsJeXeQsQad+2+upgFa/Sk\nruG9174Cy7cpi4quusOdV38YXZTEENEG0f4cKgl2Xct2s6ZtW6xzTCdHmMxY3D/XDPqqzB8YUojh\nIDCfmNdEbiqs8DEKcxCVyXiKLgSMMXuLI0QhJ3kfxO6MYX9N0DgrdKuPZG7CJib6aNI+Ppx6Hzjt\nK7zIg9vzsUhEVIz4sCOGiDMFzlZ783R/jf8P40mpwXdXxNAQE5LYYQqcK0EZ8fOySa8w+aEIkKO0\ngZwxh9IoZa6ZynDdPB4CVkPNGVPKDzbRhXynUdHsGtaLHWcPV1xdtLzz1mNe/7Mrvvq1b/H6/XMW\nDaALyqJE20gaw2w+5ZmjY5rVmuXiMXWlOXnmhMks8clXTvjLP/PDfOrlu1Sl2QuA/VxwANAYjFsP\nXvefK8CnxC4kCq2otLqGB4QkZnv/nG9u/i6xt0TS4NoGePONb1HYQDk+IgTL8vF7xNU7dN2aj33i\nB6lPXyEqtwf5+rnt8oUsifV2R1WVuGxG9+tMxLrKBVPACUuaECNKJYqsVHotn0KUXIZcwLXHaXpX\nbbvdsN1uMcZS1zWuKEFnbkjGgmKMJIXUKBisj2GK9vBQQAwiSEw+l2j+RIoJbcUyjVEsTKPVns2o\nFaTg88aHpJIoq5hw5iMoDLp83es+MEKK0TE/roOGDIOVdDOE8zTCyvcC4e0XZgqEJPhxUhBj1gJZ\nyw8l9s3rDx/kTRN6qPnj4Ds3hYOK4vM3PrHZbFldLFmetSzOG967f8Vrbzzij7/+Lq+/ecZy42mC\nJtmIHWl0cbAmnC3QPhIaz7h23DodceduzUuv3OIHPv8iP/5DL/PS6WQ/tptaaXj0G/MmENbff/St\naC0MXQRnBOgaBmyf9rvhfd98rxcwBmi2G84evUeXYDyZUE/GFM5hdXmNktyfYxgn8iR8kIW/aTsm\nRe7aDagUSQjSbvf+eiLGiI+glKayh+pAISV8ShQ5yhFTklTkHJXoj6ZtWC2XxBApqop6NMJZi88b\n2mopz5ZQEg7k+joVPONgSSkgdF5ITjm82HYBYzQxxsyGFAXSeTmvlbRFUpRMRo2Ah7awgjMkhdMf\nwWjC+f0Fo/EYW2iSBVRO2xyYYXBYlNeERn+ewWcM/pLN7JvMsJt3OgwIDjf1TeDsu83Q8Pw3x3ft\n2kkeuA+Rtg00m5blcsfiYsNy0XD2sOHROxd881tv8dqbS77z3mPaVrPuOkxlaPCYStPEiAoKOoNO\nFt/uiDowv33EvdmIF54b8YnvO+bHfvwTfPb7P4ZzBp8itSsY20SRuyUP5/Rpq2OorfeaN0aILd3l\nd9Chw4yfRRUTXI4APM2tGL5+mqAIg+cV0iHZyMfIV37/93jhxXso56gnM0rjKJS+TuzhpjCA7a6l\nrop9eNZqjUqJZreh2azx3Y6iqhkfnZDQeN/hrCVmFD/HboTWnMRazS4+zqgn7gHAdx3L1ZLtbktR\nOCbjKa4sJZCcRGPvN/zAlSDJb5PS2Iy5DNOUfbaiE0pyFZTwK3wn1ZCs1oSQ9lEDYww+BozSe/6C\nBkzmJHzkhMF/+h/+PZ59/g7P3B5RzwvqsWN2NGI8meBqR10WKGcwBpIGpdN+sQ3NzeEmvikYnsYq\nGH7nJs98P77v9T5uXL8/Z4piXfiY8F1gt+3YblvWix2LxYbFxYbzRxsePVjy1juPeePtxzw4W/L4\nYsNmJ3Sl1rUopSn0mK6V5KOu80RaYrdCqYpJdcTdO3NObjuee77m05++ww9+7kU++6l73JmPDqg2\nUips3XlaEtOioFQHssxNn/XmffUCIfiO7eKc9vxN/OOvQbNAn/wA5b3PM5mfXKPavp9w6f9es4yQ\nsJ95yvuBxKOHD3BOE4lU5QhFwWRUPZGI1B/XCVfQRY81Bkfi6vKc+2/8GZVLRFvywqufR9lCtGno\nxOUzGpUiVkvYr8ssQJ2tRKXEbR26P71w7UJgt12yujojxsTR/Bb1eCoYVHYt925CnpAYE5v1Buts\nzjM4CAqxRnLORK8olQgnpRS+a+laT13XKKVo205wi/57RhNiwntP4Sz2o4gZjN2XKAvL8fERt+ZH\n3Do+5d5zt7n33Cm3To+YH8+YzmvqiaUcFVQjRz0qKUtHWTnK0uGswRYa4yS1UxJAROj2deP6VTn0\nVYekkJtavX89/L9fxf3iIgoiHX2gazu6LtA0Hbtdx27TsFu3rFcNm3XH1dWWs4sNjx6veff+OQ8e\nXvL4bM2jqw3bqAidRxuDcpY2tPLgfcDqEhUghh3WBerKMpmMmM/nnE4qjp8Z8dLHb/GZz7zAK598\nho+/eIujQu8TdEpuFMHgAPZ1SfzkAg4hN65jGDdN+S4ENssLNvdfY/nGH9BcvU1ZaE4//oOcfPJn\nsKM7TwXCbq667W6HMRZr7TWT2A++OxQGvda/vDhj06zQrsAWI2bVGOsOAPFNaxIksSnFmC0bQey9\nb9hePobYMZmfYKvZfjPHGGhaT1EUQt65kYegUnYdYkJrhVWHtdRXcU6Ajh2b1QUX549BFcyPb1OP\nx6BNri3AnjQUcgRAqxx+VNddht5ykPcSKbsnWilQCd95FlcL5vM5Wotd3XaS0u6cFSG0X8B8NDED\nZ34EsBjjSDg0FSmKyeO0gIKjUcn0aMr0aMJsMuV4NuNoOmI2HzGdjqhrRz0pGI0d9aigHpXUtaEo\nLLawOCeCwlhDobVMVs8r3k+HvE4kSeDJIE0MkRACPgQ6H/KGD2Le7wLtzrNbt6xWazbrhsW6ZbFs\nuLhcs1isuLxasVg1XK42dEkRsslprJiN0Wk2zQ7VJUqsgFRNR2EdMXZMj2qmRyNu3x1xelpyfDrm\n+XszXnjpHq+++iyvfOw2s6NiXyjEw76yz3BT9bp6uNkCsEuyuEf6sPl6srbiSX7Arm1ptiv87pKw\nOqNdXlCoyPzZZ6lPXyEZwSKe5ooNj7PLS8qyoixLrD5YekOLZOjCDK24y6tLNs2GoiowOOq6oswN\nRYebcijYdl2HD5GqKvEhUZvr17w5xn4jom6QpPLGVTfBP3WYrx50NSnRdg2h3dFuG7oQKMcj6tEE\nrQWA7rNHYxIQFg7C4NpOTWI5oJUUf83WQVISGSD1NRITIQjvJEWxCGK2HoxW4kIohfkoCoPx+AcJ\nnSTOpGRAW1IU0E4pg05S9cXqkn13oyRhuohkZxntMMbgjKV0jkldMq0rRqOaona4wlKUlrK0VM5Q\nGoOzWjpM6ANBRmlISTr09Ew+n7X+tvPsfEfrA7tdy3YnJn/bBFofaIIXzas0ygmKjBHkFx9pd2J6\ndiESgtCPlTbopNEERrXl6GjMqHIcTQ3z+Zj5rSOOTh3Hx1M+/vG7fOb7XuDF555hPrXXtHhfUBQO\n2j9yqAJ5E1iNiLYEKSq+iQmrFJXiA4uNDDdOAHwMpK7DGI21Dn19+V4LTfahyqdhCX39P5817ftx\nN4cgZtPsWG6WKALaOMpiRFWWoA6j6LWqhOE0m85TOivJPTewpHTj7/B+e2tqyJoM6TD/cAPwyxEn\n00fCUiKFwGazovUdVVULD8XYPVFof614+C0DzKDnHMT8ZaVk3kKIuLzhDbBarlguF0KCMm5fK0Hq\nKgrOEEOSiMhHTRj8/M//S1wtdiwXW1bbhu3W0+yk5HWMHSQjsfWkQBlSZokrreT2lUbrApJG5eCS\n0gqt3V76xpRQWswkYQ1kK0ADWlwLqR8nZlrKNljSKYeBLKSM/maOeMoPOmYTlNgJ8OUBDF0XxFVB\no0KSv1ZhnaEoDVVZMDuZMTuquHtnyuntI45mNdNxyUsvnvDSS3d57vk7FJOCysr56tJg1cEUlfr6\n10NqfUOSfvG6G+/34bsuJbYRRkbuYxMghUStwWbq8U2kuz/v0PzvN8vw+ze/tzfXYwYFb2i9LmY0\nPGaat7oejWBwnsO1JaNjs74Si61tGY+kUYnRhi7JZjFaUPbKmoPG7sedJKtxeI3+PobvDV3K4biG\nwm4/tl6JNDu2l5cY5xjPj6XqskpsNlJq3VpDWUr4MelDanpvJQzLopNDs70w6IVZiOIuCOEtoFPi\n4YP3ePT4IZ/89A+AsflziYrFINVvCm1k/3zUGIj/4i9/gdXGc3G15uxyx/nFlsvlhqtFy3IZ2K6b\nDI4EmjbRtYrOe2L0pNBnGDYC/EQJD6oo4NseVspWRspCQJ56P9siAVQPMgjEi0QTJSaclEVHJXUB\newKHyvZ1jusaQLmCwlqKssQ5Rz2uGNUls8mIyaxifFQxP54wOSqoKsNzd25x99k5z79wm1u3jhnX\njpAiVaH3G7yLUGvoEN/UD3zIIXp+U+PuC4VmP5T8P3khGaWwWnCDAhgp2KbEOkBlxEror8HgGr2Q\nGa6iJyyPgXrtX/Zpvv04hqCl0xLLt+bQM2CodYfnGf6vgel4xnq7JcbIcrUkpsS4HuMjVE6Av9Ka\na9hDiELn9Vmox6x2UzrgS8Nrq5SuVWzuV9Z+vnsrIfvw3necvfcd3n3tNU6fvcdoNhelojST8QSt\nFLvthlW7pB4FynqUG6IO5jQd5uumcOhDmSbPW0LCnlZpTk5vc/vOXZKRFSTFUg73FWOfu/L+x4cm\nDO7MHM8cO/yzFT5CFxRNaFlvI6tl5PJyybZpaTtYbT3bbWKzjXRtJLSBtu0IPuK7hO8SXefpUqQL\nUW48CKIfE9KuKgWIQtjozdNeEAjVUwt3yOicqqywRYF1FqMVrigoRyXOWYrCUJSO0aikKAyjcY1z\nBq0SR7Mx01nF/GjMndNjTk5mnNw+ZTIZUVQ2N81Q1GMnLDFtZbNnodZ3L/JRuhH3pcH6zWIRU7VT\nBz9/SBxSCPGmQayD/gH3NQE1IgC6JALHaBiXml3MzUmUbNIuJRrvMSgqZ58wpeG61t4LkHTdAtCw\nD5X1WjkOFvhNkHNoHovcjmybC84v3mKxvE/brbDOYFQFacJLL3yOVYTdrsk+NAQjJe2UHgjNBK2P\nKKslHp/HYiCvmUjdJ4MN7m+fntwTfjKR5wA7ic8ek9QpDMowvfMcs7v3UFYQnP7ZlWWdrZoN6/WG\nRKKqKrS2RHU9OkG2bsjXHoZte4EY85kDoGxB7AWbOoQxdRZGGFlfH3R8aMLAuIIYpRFkqSMxWRIj\nTqYBnvG0jaXZbAlJYVwFpsQHR4x634W3aTtSMrRdxPtEGyO7EGm7RGil551PCZ+bUeyjAIl9WWql\ntLC5nMnmmEjasiiEG18XuMJQFpZ6JHhEVTnG4xGTcUVRaMpSGIBNuyMRMQasNUyqWsCyakTTBZSW\nTLJ225I6zaSw+CSb22mDD4f5Ke11lN+pQykvqw6fDewgyH8LoFGS5486lAqDgVBRgpX0Kb2VhiZI\n8QyvIDrLzkdsAqMNJEmcUoNFOSQtJQ6mtw9Co1VaXdPMezM7yWa3T3EdRBgkNu0Z54vXuVi+x6r9\nJm8//Crv3P86TXvBeDxG+ZL1YsZf++X/gsnoJRq/JYQG7yHEFmtHVHV1MOMVWJPj9FndmuweanK5\n8cE4RRMfNnJvEIo7IBWRlDpUpE5AUda88LFP7kuiq9Snqcv1tNGUZYW1js16yXa1pG12jMZTYS3m\nzdyf72nCl8F7Gk1hNT53WEaJ1dBXWurrQxitiCFrmg84PjRhUFSVmFl9/zwE2EtJ/MeyrJmOfe4K\nrCickk1rC3y0tG2LKyeU1ehQD18nUIf200Il7oEq3fOyJX7vSlmsSoPWYq7pvLyTwhiLc46iKgQv\niCk/zBJIUoraWkxOgy2qGufmrNdrmu1WaKgeogEVoXIWHyRWrY3G+0BrDIU5LAB7CA9fA99C1kQ3\nwa7+9U3URyEPtk/ZNVyvFNxrYasOroQGaqPYBsW26XDaMLKasF2ybReYcoox5bUFec1FYKCxsvnc\nL66+R+I+dJbE7elSEA6Jkgi+ARp/xbuP/pS3z/8h711+mceX76DKM5QFc9wxUoHd9hFKdzzcdLz9\n6Gt8/tVPktqITpHdbk3sztm1Gnf7OXQ5PWAbWu8jAyD1CAsr5e+tMQfgkWEDlHyvWmFR+xqJMRdW\nOQCJipjt+72QTCkLRrDG5NJlEgInjVj6jt2uwcfEdDylKksBohV7ujSwz2d4P3TPZi7Bft0o9kK7\n5zY4Y4SA9AHHhyYMnC1AaUKvDrUIA4U8NJQkMo1GE9arFb5rBYTSCWUMu23AasvRdLKPAsSY1R2S\nSIQSskhfbNIZt//MWkvKmEEEUpQyUtbYbJYJgGiLQpprKg1assSMdQdTNmUzLEmprJPjYy5T4Ory\nEpPk++vtjqOjiURAjMLmXnhdTMQQKAq73/DDTR6BTdMSlaZ2h7h8X/evBwWHmxIOFkShMmCYEmUu\n5tkfKUHHAcHuz1EWgl80ywsu3/w6izf+iPFkzvTlH+XolU89IXyGi7SPsxdW06WeOSc+eg/e9pZI\nYWDdJkkU0gpL5Oz8O1z6P+Krr/89Xn/wmyi3QRkNbWKkb6NtjWLLerOgLBW7VqGZSI3Dosag8FVk\nu9rR7jyXF4aTWzXK2qzVhUF5SA1PtJ3HObsvL1aY6/ME14WwzvUFQkwEMmtWqWsbdr8RFegsJW9q\ndesKxpMjiq5jtV6yWFySJlOKakQyg5qXSYhX+wjF0zYTYJQ8mUNtDfYp8r3LZT6qloExVtJ5I7I5\nel+y9+GNbOqqHFOUY1arK2LwIr21pR4f4QOUxYi2a+gbWSaMEDOMIcQOsiVgjUUriUKIFaBkE+fm\nln2/O2ut4AdKiTuhe09brAkhjWhcUaC1yS6Lhyi168tCstcuzs9Yb5Yoqyidoe06KVFmFDFqmt2W\nrm2k6YuTzrl9Oy04+P7rRmiytrCyyYM4+r0vfBNsgwOn4JDNN2wsl3+npES6j5HK2b0fHFIEFUh+\nzeLxfTaXS6piLolZXN/8/TWH/++R+4xLJMjVeg5huZiTg5yxtJ0HVrz5+Hd468FX2LnXuErfQI0i\n61VHWVY4PaXdFWizY7e9RClYNxGl7nL39AcAJcVCrKUaj/HNKcWx5mq94XJxQekqxpMJnfcS2TBW\nrBRjaFqPDpIVGFLCRyk35lPC5e7IPdGn34w6T0QIUdKItdoDfb0Q37MprdmT1YZhSKM1dV1jnIj0\n7XbDYnHFOAbq8eTQMi8LFDlv34qtFzpyXq1gu12jVKKqJmj03hXTOrtGA0vj/Y4PVRiAoii0hD9S\nkjTfLFWNsmhjCSFQ1mOOq5LNekXbbIkhMqpKYhCCReEqfOxwVvRlCAlrDQ5D9OJ1t11LiC3ToyNh\nv2m9LzaijMIWjoj4VgqDsVl4IDnhwYsv3actp+ilS3FZoKyV1Gcf8TpSVjUnp7dZLi7ZbJZEFdEY\njDIYZVFaUThL2zREBV1OQOmJK730V8CkLrGZW54QtBkO5n5fjWy4KYehQQvsYiL1wOTgs0JJt51d\n50kh4qxh0zWE0NKGyPHHPsXHfvDHsNWU+uj4Wg/EoYYaglr9ZrCIX92HxEA0XEqBGBXBJwpraJr3\neP2dX+PP3vlfUUWLL7Z0yqL1nFFt0Noyqud0jcbYll3rCZ3lauv53Kd+iVvzZ6WJSBbmCcX01ot0\nzZaxrnnw4F2O56doY9DG7hN9Fqs1s9kRzhmazlOXBU5rKXKCKIKnuV/9vQu4J9+XDNPso+ffDYuc\n9gBg9kCvAZTWOsaTKdY6FotLlqslIUYmkykm10fQGXtJ8Xq0JWZ3Z8+MRV4oLRfa82i+i1XRHx+i\nm2DzDYjkstZRGC3JF0iyhbCucs03WzJ1Jc16xWZ1SYotVTlGk7CugqAhl3ZyRjrHgEI52eBt16G1\noa5HYjUE6XW/222J0TOeSD1DYySCoFV2B7TkgnddS7NrUCRKU5G6RtwMV1KUTkA3Hwkx4hMc33qG\nyXjMg/vv0G23dFgKJEFIWUNVlYzLgnXXCnFk0JJ7b0oCRUby+0NbjUPwgGF/wuHCHT5UDdh0MM+H\nwkNrRaEM287jU0LFRIGSCEcxhkpBfUR01Z6vcJNQNMQ3GHzHc9CmbRfQWuGDcEhMMnSNZ6sW/Pk7\n/xtf/fP/kvPtO4yPZsS4IHCMs88QG8/V8pKm22KdhsbnZBzL2H6af/KLv4JH5qN0jpBdDp/AuYrj\no5Ltak2KkcurC6qyZHZ8mvkhUireakXMWJKkkIvPTs/DWK05vzjnzp07FEVx3UVSStyfLIiiz26D\nlqT7/TPITMswACH2URPELS6rmiOlWK0WrFcrurbjaDbfJ4AB+wSl3hoQGSORjHo0Ram4dxG0ug7a\nfi/HhyYMYvQYIxWEOt+BVriywroSUiRFKVCqrSJ0LVpVWFegpzNQifXySjRYs8O4ktFogk+Rrm0E\npLEWKU4i7bJd7k9fFGUWFB1d2xAywNM2O5qmxZU1x8cl1kplGpRYDcootDU5fi8WSdt0FLbEaIUp\nLJ0KhBDYrDeMRxV1PebWyW3eeedNKd2tNTGNKMcjghbgamKl29Oe+5XdpSG7sF9DfdX7vmxqQITC\nsC4zXDfltVLUzmTATt4bIvhGSVxemUxIUZA6zWh2SnV0Ihl/1tJ7ME/TMDeBTcipvyGitSL6Fh87\nUmrodmLZ+bDl/uIrfP2dX+fB6hHRGtrtjtR5nN0yqyu8Nmi7ZrNbo7oWElg35urC8gtf+Ne5e/J9\n+40yvHZPuFJG89zzL7C4vGSzXXF29hBrLNOjGSfzOU3IeQta5SangyhJSlLkBglH9xPaXyMiG9Eo\neUohJkKSpjRaK3QW4mowsH6D9tbTtWemFXVdo5Viubiia1uWiwVH0yNcIQLhJm+kz2PQSuoaaHUI\nQw/nY49vfRfJ8KGGFvuij33IQ6MwhSMQ8cFDl3nVXUvMmt06x2R+ijWG1dUVbbMlKYUrHEVRoXNV\nIrSVsJE1OYtLuN199KIoSoyWLLFEyDXjFE3TcnFxwWx+iislEyylJOCiFUZi78q0IUg9+8wIK5zF\n68RutxNfWGmms2PmywWb7ZKmXdN1LT4ERtMprdF7GnDPSQ9I9V1rr3fvCRyaizJ43XEAFIdZmv2C\n6LWI+MHy3SEnoV/8fWShSZFVs8VFx3Q0otR2f749JyBKTYCkB4j34Jq+aXOFnyjmdGjpdku69orN\nasWuXdCpSx6svsJGP+SibbFYxtUYY24xqub4dkZRFsyLMe8++iY+XFJVkdU5fOET/wY/+f3/DEo7\nxLmTZqQ6N1dRSp6N0lIafDaf45yl2S45P3sISjM7OsJaTZd9mJQzEYdRG6VgNJkwnkyuCbvI9c2W\n8gM04j9es556ATOc787L2rDmUCOhv3ZVSZ/FFCOXF1cs4oLp0RRXFPjgs/uqcp3DQaVkdV3IMBxD\nP8bvwjb+8NyEaiRZVQnCagUhokIkqZBNNIUrRxirMPWIs8ePcTEydkfYomZ+OkKbku1qie8aNssF\n02OLtY4QY3Y15H+hYAKqDy0qjNbY0hKCpfMt2jq0KdCbLW3n2WzXTJ2T1mQZrREro4+E9xaCLPg2\niOXgColWhCj176wz3Hv+JR4/fshieU5RaJpmBSim8xleawa4IU4J4aj1QQQZhw3bb8aeydcnJfWL\nc4gbDBfB/vTq8F6MkV3nsVpTOkuhxIwtrGVUF0KgiR6n3T686UMgeqn9p7VmNBqhTF/+/bAQ2xBo\nmy2FFe78dnNFs3nMcvGQtvN06ZJl902W3Ws4V/LqCz9CF0qKegKmQEVLE7c8vHib8WjMaptoQ6RS\nL/DDL/4i//RP/JuMiuMbm1LtsYo9gp4FYVCKejRmPj/lwYP7LK7O6dqW+ektSZZKGh8CxuoD8Ukd\n6hLugcM8jT1eM5zrXli4QSbl0ywmOY+sH6kEJWNtu4bCWowxlFVFSomJjywWl4SrwHQ63dc77AWV\nEOpSthrU/jkMLY7+EBLSB5sGH15HpQTjskYrTQyBzXpL27bgwdUVZH/IGEdVFrhqxW67we0KKlOi\nyxEnd+5xae+zXS7FFN1tKcdWkj6yRI6dp6gqbFnQdq3UsxvQdLQ1OFsRQ8KYiFGWygdZxNu1hH+c\npLQmJEqhMpdBIcxHRcSZMoNIoJTGWY1GaM1tSkzmt1FGc7U4x9jEZrdCryy2rCQlWw0RaE0Tw95P\nv1k9qEW6RipEIAx7EsBAs5EjBPl1n9HXn1fdWDV9IpMxBdoeNnigBx6lZPdqtRINGDyj0XjvS+83\nROGE8Zk8bbNhuzpjs7xP165p/ZZNfMROP6S6Hbs6AAAgAElEQVRREW1e5N6tl2m6xNVqSdMsKeyE\nLizxesub713g25LPv/pLfOL2z/JTn/4So2JGSJJk1T9Ha65r7MIK+NaGgDWGoDXT+Smb3Zbzxw+p\n7lrWV2e4sqKuRuik2LUdReEOAjbjCP3cDNmRPZrfz7cma+eUN7y6/kyGm9RmmnTIhUeMUjQx0nhP\nmSNZKMV4OgadOD87I8VAWRZMj+bCZ1DCpOyZkSEkSeFX14XP8NAfLAs+PGHQtS3NdsN4PKGsxyhT\n0DSttBDvOqqqkvLO0eCT4mh+Itl+xolcVWBtye0791iW5yyvLtnt1lhnKaoRXYK2ayGCK0qRtgq6\nps3kF7UX9UZJS6rgA9oZjBVG2raROou2tvgYBACKYGyunYB0TGpDoiAQ05Kr9RXVaI5VUwpn5JpI\nvH82vyVJTSmK9bFaUcVEUVg8igxv4DQoba71EYTDwxpaAkPO/HDBMvjdMBV3jydozSg31ugPq2RB\ndyqHyvKq32MMRmOqknR0xGazYbVZo7TGGMF9+iKxRksYtusSMSRSSLR+yzq+izdrutSQ9BFV4WiD\nptl2eN3gwyWNf8DlynO1OqNyc169++O8fPeH+dyrP8np6GMUyuQ5keKgw9j5kBE5dLt6+jna8Mzt\nuyQf8LsV5/ff5vT2Xdp6wmR2ggpPJ/cM5yhj3sJIHMznfgNmgRAHnw1lbv/dHnNQiItSFAU+RELO\nh5BzScPUFBNdu6NrGy7OH1OPJ5RVTeJQbzOq66O+eQ/9+vig40MTBlVZSrfYpCirmqKqcPWIrmkI\nvkOhsFoYhCFErCuYHM2kYqzNPeZioKoqTu88hzKOxcUZi9WCqTG4UgQCGhKRZrulbRpC6ICEc1LC\nXBqyGql56AyJhMrYQq1zP3vIYU6JFuiMIRijSKEgelmY3q+IaYU2NaQJbUpUiLmprWLrW2bHp6gQ\nWK/XPD47JxSWdm0oxyN8VGJZDB5Mv5B6AfC06MHQMnhaX8bhYuxtoi4mtj6JYNOHvIUyuy0+xoOQ\n6Re+gmQMo6mU81pvNnKerhOWXU9V3u8ehTGKuhrh4wkpbUCPUa1jtdlQ+BVtXOO3LcrCxExwVcls\nXPLynVvcHn8fn3z2s9yav4xTDmIippA5GVK2PtwQCP1c9ULRGYNPKWMJEv25dfd51pePMMWOkBLN\nZkXShsn46Np89U1srMm4Uy9U+rnguiAY3Pb7Wmr9/30kQMYr7NZCaynIkg5z6L1nPJkQQs1yuWBx\neUEIHpUS9WhM0nrPbARxG/roRT+GmOKgl8f7Hx+eMKgqvLd0PuB3u33IrxqNiCGQYiAloVm2TUtV\nl7ii2CO7RmuICd9FyqpgfnqLGBOL88dsri4ZTaGoj0hKk5Tkwe92DU27FbzAWFCKEKRUtrZgiuyF\n+wAqYp0wCGNMmMLm/IEczVYyhlIXNNGj0Fh9TKFnGF1ISXUGG1tDpzUdMLKWyXjMZrth10p5dmeg\nqsd0HDT4sIefj4fEFTgsLMuhWxFcT1rqvzdcGMPfBQ1tjKiQGLlDVR+LRD72AY6Y8DEzFSW3C1sU\nHBlJj01aOgPZvIKt0igLMTmSLQlERrbi+OhTspC9IhyXrH2gDVsavyYYjy1qSjdjOj5hWt+isjMs\nem/eSsjOCvEKifX7eN0a6o9h3kbP3hPtKMK/ns6pJ3Pa6GkXSzaLFSqAq2vqutrPYR/+huub+v3A\nxKfN9XBM/fv79mhK3K/+gz4bYo9TaC1JTM5Rj8YoBZvlgouLM9quZTqbSa8QcmGUgetyGKd66nhu\nHh8oDJRSLwB/G3gmn/e/Sin9Z0qpE+DvAC8BbwD/fErpMv/mbwD/KrI+/3pK6f982rlTlDbp0+mR\nUG4ThLaTCjjO5AwrhYmBuNvRtZ6qrLDO5O5DkaSFedY0iaoqOZpN2S0eEXaXbPwGpaEYz4lJeiq4\nsoDUQrfDeItzo5zMYzDaYpDwmnYm16rPjStiREfpqNPnih20gMrjjWg9ljBPXjEua4ielTe2h+k2\n1nJ6csqji3O2ux1XK1hvN7iy4ng6peO6n2/UkxYBg++Qr9MmuW4MkfVux2Q82n9veGgtpc27KIk3\nw3qCw4UNspl86Nh24lO77FdrYyiMyQVTDr9RcgGJ/beymEejIybjE9quofM7xtN7nOiKLnkIAaUT\nxjicKbHK7BdyiMPGMnnsg0xOo9Q1TXrY9Aet3c9hn26srCFFIYAVpkajaDdbdrsNXexwTuOMNLWx\nzu3L9rNnuR7m6ea1hvNwc94TOZOQ62HG4W80as9/SFpA6369VVVF4RyFK7i8vODi4oKUEkfTOdrm\nUGY/1uF8fY+kow8sbqKUugvcTSl9VSk1AX4f+CXgXwEep5T+plLq3weOU0q/qpT6fuB/AL4A3AP+\nb+CTKV1PnlRKpW987XfpfGB+fExICh+CEEq0oa7rnFMgkrHX6NZaXFHIBOWQkNZGyDNlQUwdFw/f\nolk8xncdbnLCaHabopgQU0763D1m++h1VNgxOb5DNX8BO74jNfjzSta2yBZFhJT29etdUUifhCSm\nv+3j8qpvhwWF6TsmyabsE1+C94xy04ve1wcpJ7berFkuF0Tv0SiOj+aMjk8wOlfPicKZ77kFw5Dj\n0PTs2X5aQQqR5a6hKqVISr/Y+u/HKF2ZUYpyQKYZar49ozBFdm0j5cOKksIeKi7BIWI1BKj683Td\nDt/tcNaibEmKXlrgmRprc/ycg4gdLliFgHhtkjyUp+Eh/SG9LvR+c/Zam8F8DdOkQ5RqVs7Jpg9d\nw3bXsF6vmIxHkl3oSsmrUApnDuJIkoISdlCt6OZxc5z9nMYEIQgXwQytrzyPOj8brRWBXhCqPXAJ\n4r60zZbF1SXNbsdkcsRsNsM694RwuRlq/KDqyB9oGaSU7gP38+uVUurryCb/EvAz+Wv/LfAPgF8F\n/irwP6aUOuANpdRrwBeB33niwlUBbWC7XlONJhTWEbQ0hPBesIC2bUgpUdUlaHnfh0CMAa1MlpqR\nmJQ0nzSG+a0XCLNTLs8fsWtadus1REPEsF5dEBfvks7+nLj8DpwdY+99FnPnM+jJXVJRSq3CECgK\ng7aO1vvsb0nxSWuVVFKKKecuZalrtLD4yDH7/DT2D/ngSF9bAK4omFuLs5aHjx5ggfVqxXh2LMIG\nsTSGD3W4UYcCQUJiGVswmmldZV76UxaskvuI6snCHT5Jmnef9+9DlJZ2ugdOD9f06Xo3Yegr+ZJr\n+icKN8E5m4FLh7O1dBPOizyQrtFsrwmEzArs6w/uhdmNOdBK7QXscJ77uYLr51da49zBfK5yarFW\nKlPeO8o64YoKiRoJ5csYI3yCwSiftrPeT0AYBWgllGeuC/Y+Atb7/ypBikhm534+5Dd1PcIay2J5\nxWq1BCLToyO0dhhrDt/Pgwkp7VOa3+/47qjCfhDqY8APAV8G7qSUHuSPHgB38uvngLcHP3sbER5P\nHK4sqOqSrgv4LgOGxlIUjrbb0fkdZVXgQ8dmu8YVjqoucyNKjfee3W63j7OGKFNr3Ijx/FmO734c\nU01pWk+zW+H9GmUiwWiCGxHsBFwplZVVQBvhB2hjUFryEYhCc3VW0pmttVIajXxNDuaXZFQqqZXY\nBaQZ1sGMt7ntVu82tDHtzXKjNbPJlJPZnLbbYZxicXW5L3PFDXLP8EEPTa40eNFlU7PXaMNNlOR5\nUjhLmc3LGNO+4UdPmw0pSWYlsiFJkkfRhLh3DQw5NZmh5ZEIwedOwPm+0/Dzw0gOwKdC0dLnUu6t\nDgSDMKh9nYB+HvpaEAoRXDcX8xPAHtcX/L4AqQIfPMvFBe1OuhjHCNvNitjtMDm7NSXwnd93Pb5p\n5t88htbT8DA6931IaQ/+DoXxcHwqswsl+pA/yC+Mc8xnx0wnU5p2x9XVBSG0RO+v84t6pRQ/aLTf\nI4CYXYT/Bfh3U0pLNdRyKSWl1Hebk6edE2sto8kI30VMkjip1oq6qmmaHTaXEFs9Wsn7oxqfCUNe\neTbrFclZrC1FKGTnOkTNeHrCMxguHj8E30JKFNWYsnwJfXwH5T9PPaopju/i6jkhcweSlhi1oDly\nLaXEry6cPtBUNbkv5KAWYUi0bYtWGq2cMOIGoE6vgeGQNjx8ACezY5rdhqvLR8xHay79htM79yRe\nPnhgMSacvg4K9a5H5lo+lZW410CD1woJqXY+UGUsoC/KKT5oImqNqytMYp9VSor7nAOlFF3uVEQC\nbRSbzRrvO8bjKU67a4k7kC2lvZ+vhJh0dZ/tasOte68KAUkd7tGoQ8LTHhy8YTH1wnFI1Br68jeF\nQv++VlLXQjgGibIaoY1lu17Srq9QKWDKESYnzvkQULnX4fB4Gp5zbbyD76l83zfdveHvZP5FeSSg\nzUIoJSl5rlFgLUezOWVbs1ouWC4XFK6U4qtFme8/ZXbkP6YwUEo5RBD8dymlX8tvP1BK3U0p3VdK\nPQs8zO+/A7ww+Pnz+b0njr/1t/5zNFJu7Me++EW+8IUvoLTB2mKf3myNQzvDZDzGNy2+6aQoilKU\n2hBDR+g6VALnJKVYVkggtAGnDcfHx5kfnnMNcuqyMQ6lFMForC5xxoAJBKUQL02ktyy6XNRCCcqu\nldTQ659az3wrFJLHoBQxa6qhaToknux55YM5McbwzK07+N2azfIxq/MzRkVFdXyKRxaFA6KSZJy9\nO8JBC/UhNK2hDZHyRn7+07IOjRZXxPsOU7i9yS3CSuWNfIg2ALlAiURzlBZTFiX4jVEa5wq22x3n\nZ2fMZjPq0VhQcXoA7To/wLoSPb6FNptMuT3M2/57AyXU07NvbiKF3HePH9xc/k/gLH1lZq2pR1OK\nKqK1odIm1yxcs1ouKLqWohxRFOJ6dXlj6gFucM00H7zusYr+XocCoI8ovB/AtxfOkAuoKrQ6uEwR\n0NZS51ocy+WC5XJJ2zWMRhN+58u/yz/4zd/cuwsfdHw3AFEhmMBZSunfG7z/N/N7/4lS6leB+Q0A\n8YscAMRX042LKKXS/ftvcnV5QWFLFAljS0bjUW5oKqE/ZTRdFLR5vVjSec/R8RxjDF3bsF4t2K63\n1KMxt27fJfV5CVHYcW3bEFOkqkeCtiopmRa8F/pxn5VonIBiOvudUUwqY6R0l5jRPXp90PS91gkx\nZwSq6wvt5sIbbv6+AIkbvNebndvdhrhdcX5+RvCJuy+8SDma7DcASC2C7XbLfDJ6QgP1i8Rnlt7T\nOksNjwR0PrBrW5wTl2ioVUPnpYdg4a6FN2OMEotvduzalrquKcoKH7wAYb5jefmY3XbLbH7K6Gie\nOxk/ufD310oxux3qfTdYv7lSOkRs+u8E5NlJKblDcs9NCyINzpEiaHXwqQ8CL9H6ju12Q9OsSRGm\nkxlVPcpJWIKh7C2MwbmHLkriSeugv+e+qIoZUIqHn8d0fePvP+DAjhzef9d1LK4uCb4hxsDs+JaQ\n+vJ3zP9fABH4KeBXgD9SSv1Bfu9vAP8x8HeVUn+NHFrMk/enSqm/C/wposj+rZuCoD/q8Zym7Qi7\nBm00dSmkkvV6TT0aMR6PabuAUgYcBCWgj8S6Da6sGCty7oHl0DBCi9bWUOTQozHCjGubDc3FI3yz\noz4+RbkTrCkwyhKUTKdWkAsXITZCls55d/SuwVAjD5NEblKHnyYcbvqRNxdOWY3Q1QhXTzm7OOPh\ng4fMZi1HxyeHVu1akrOGINQw9NhbNMNrMPiMG/9bo6nKAoW6xlT0QDJ53m/8UPfVk4qS7XbHZrOV\nIjK507B2inpUsFk85Oqsk/j+5OipFXcOi/VJjOOm8Ni7AEoyMYe9ECRVW2FVuvbbm4KgP0fcP291\nwGjyd6JSFK7IBDPNanHJ5cUZ484zmhw9UeasTwK7Ofb+O097Dj0HImUM4olnM5j0/X0o9pjNTZzB\nOcd0dsRqcUnsYHF+zuioYzydP9XyuHatD6tvwnq3JYaWxdkZPnaMqhEJxWqzIYbAnVu30a6k9R2e\nyGa1xKCYjMdgC5SxIv18R4wJa0uUsblrkt6j6H1hTm0siwdv8e6f/COU7zh96TNUd16mGI35f9s7\nk1jpsvug/845d6rx1XvvG/11u7vjOIlNghMlOEjBEkIiJBtCVrBBEUisECCxIAobWCIkJHZsSIQC\nKCwImACKiCMFZZDjEIinOB3biU3b7v6GN9V87z0Ti3Nv1an71fu6nRbfe5HqL71XVXc8438ekizB\ny5DduF2KbT68eKO1lCd4tEWlsNp+da5znWOwle3b67tWga44oXXN06dn6LpiOD7i+OR4w8bHlLOL\n1dtnaueoyposURRZei21be/pHo/bu1M7ILIYANRaU1Y1XkAvzxFSBc83b5hdnbFcLfFk9IcDxuMh\naVIQGxKv4xTisY0pa9vWmMOCQOkt26Sx+5SK8fti/ck+at7Ov3WWslyxnM/QtWYwHDEYjwnRsVvK\nbQG/nLF45y2kkhx94IOIfADvoh9ox/hFGv2Yuwhcw3aNxmDxWK0pV2uWsykOx9HxMYPBECmT21c3\nIZESn+SgQmERbS1pmjEYDFkvllTrmkI2HoFOoJI0RJGJkBRVJmmzUARpWzpdSpRUWO9CfL6QjR4h\nTMXw+B6PvutjrK+e4fHUqykyU4h0AM4GitVg6Hijx3K2hE0uvUzJHdk2HuHW3t0u1liZF1MLQaAo\nVa0psvQ5x58szbh75w7vPH6Hq4szUumZHJ8Cz4seXUTSUh6ZpjsscJflbp+1j31vkZlpNtkmTqHD\nJmRp2qSaC+7BxlnmiwV53mMwuUc2qDE1VOslV5eXHE9OUUm+U55s37vjjdq2N/YbaMdro0MQu/fv\n2+zxM7qIcYeziu5RUlH0BggEi9klq8UVRtcMRhPSLEdEeQuNcxigKPqQ5BgfuK12Te1TNHYR8L7j\nz3MNPAcbjlZl9AYhMc/V5Rmr+VUoLPsCuDHOYLVeUmlNvVxS9AvwnsVyGQIwnKcqS/K8T9YrQEjq\nuqQu1xR5TjEahzzxzmKNBusRUmFN8COXSrLJkdBU0m2VgVhNuZoxn15Q65qiN2FwdIpKEzyiMYU9\nv7HjjVz7YHtXAtLGN3wfxJ5p8eLqfga9g6PSLlQLTp6X81frFV/+8pv0+wX3HrzCeDTeu6hbCtNm\nNmqREuwu+Fi+3Zmba+Yslnvb6+L7BY1/QoMMAlej0XqNSgRZ2scYxWx6yXzxjOH4iKPJHZRKdtqz\nj53u+g+0CGAj97PLtcRtjn0ouiLFPgTg9/ze+e4cVbVmMQ8JSGSDJIZHk40yMQTb1SHNWprtIOd9\nnFa3HV3ozpPoKB33zVlb0MZ7j60rnrzzDZIk5QOvvnH7OAOnLUoosl4IY67qMjgTSUHa65HkBdW6\nxDtH0SuaRKUKa2qstRQpOKWaME7AezwGW1c4G3QKUqmgKY/kK6lS+oNjHAozvaQuKxI5ZXB0BCpF\nW0+mdpNcdNlVKSBTIZxXN2Y+IXZNh7A7ycYFzzNvLUUeNPY7UYZSIpOA1VfGkiSSHlslWq/o8cor\nj1iVK1SaUhlL1qkY1C56B5imPW1WpLYPQWlm0GaJWc+Zzr7FbPYMhyXJUorimKPRPfr9CWkyJhiT\ndp8db5pYeaaEwEuJJZhUsyyjWp2xmJ4zOr5PkZ+QpZLlesGinAEwmdxBNLn+ugvbRsdiZGeafsVt\nKhvOqruB27GBIDrE1aW6m6/LBbbPaGsohkhXSVb0GErFejFnvZwzv7rEOsfo+DgoSFVC3iC5NnFJ\nvP26adhj2Ky5zslGZ9hwZc1nhBS6okLLsRoEMiu4e/8Ri/mUF8HN5TOwhjTNSIteqGmvDYPhiF7R\nQ4gEoRyOmnq9DumgkoS0yFFa4Koa0izEqQvZKH08kixUIrLBPbjXJJqIByywfJLhYARCMru6YL6a\n4hIYjo6DmMH+6L+YwiMEiZI4J3bZ1WaCnPMs5wus0QwGQywSlYREIq3XYjyB1rNJ0y29RDvBynqK\ndLsi8mxAkmaoNMVYi7c+WF3YUpw2+rDNhBQWowZRUVaXPDv7Ms8uPs9i9VVmy7dYlmdUegEEP/zh\n8Jjh4D6JvMeo95288egvcjr6KL6zVLqbrgXVmD3rJuVZMTwlK0YhM7RU9IZDHj56jdViyuz8Aqd9\nKBbaxG3E1DvmFLpstI3OSUAlispa8ijZSnsu3thJ9LANUmtk7xhxxPMjRXB42hwTkiLLkcNwbrmc\ncTU9xwrH8eSkyai9Fae8D9R8nwjTHVMR/+hcE1mzN9cErtJvzeCdZ25KsvX6qCTlRXBjYsI7b7+F\nkimj8QkyEVxcXlDkOaPxGOc80/kC6RxKhsnqDUdBnrcGnAtmsywLPu+02NRT25ClWODJUhUKTHiL\nRyKF2lkc1jnm8yumV+c45+kPxownJ8gmzr/LsrYTGOcmFEDk7xQoCWHygydYyCFoETvZc1rfhNAW\nxze/9ockqeL+ow/hhWpKdbfhyR7lPNOLM/I8ZTieoI1B12UTuJIHN1rvMdqGMmHeMl085cnbX6Aq\nv8LC/F8uF3/E1eLr1PYcr2q8sqyM4Xy2pjaOLJUM+gnHk4fcPfkOhFb0/Ct89ys/ySt3P4GS/ecU\nbV1laDsu2vtNRF4bdt2es97hjOHNN7+EdJ6j8Zi7D18hKfLN5ozZeaJ3bMQqthRWRu9sg5ra4CTY\n5Yyuk8FjLjD+3eWCYt8R7z1luWI2n6J1jTOWXq/P8ckpSZLt5Z72IdB9v+N2ddsTn/QiVAkTIkSU\n7vMjoRmbtHEYu3ViQppmWOuodUlKyrA3oKxKVuuSotcPtty6osgTdKWpqor+YEDSuNcqa6mdx1eG\nRECWhXp1QimUlLiq5uLiDLyhn+f0B2NkE7DTDrCSktEw5EiYnp+xml4igdHkBNnIei32baHVVrds\nmG++a+OwiKYEWcDibQqsbVaebQRjkLEDIlkt5qRScjQaIAiKqLb0lwW0FxjhQi6/xmyHlMwXwQNz\n5eeMjo7RSIR3zGZTLi7fZrZ8k8p8icv687x1/kUups+o1mv6veByjezhkoLZMpQlG/YURQbT2ZRE\nXjLKTtD1l/jiH01xBl5/9AkEfRxBgapEcBUm6lP7mXZiBeLFnAgJacajV17lG1//Y6YXFzhnOf3A\nI4qiH4qdtjLvNc+IdSXtXyYEBjapybtIO25f3OYuIoiv6W7mHYQhQuWvgfUsFjO8MKxWS2pdc+fO\nvaa24n79yovk/bi/8edzIFpOV2y5hGv6mVyn2Iofd1OcwWy1AufRZYVKBMNeDyccVVnRGx6FTbJe\ngbMUWY7zYcNlRYbAI5o4Aact5bqiX+Rk+VZOq42hLNeAI0sSirwAuS2sGWN4ay3z6SWzizO8h8Hx\nHUZHx40YQHA8kg3b3ZCXtq5gO8QhEYbFI8hSuUOhYkzdVkkGNlFqtdFgDf0sxZHgZceMR0id5oXY\ncBPCe8pqxeXFMxKZkqQZ/eEYJFTlivXynKdPP8es/CJL9TZX7imzes7jJ39MtXqGUhYpUmqTcPZs\njdEwHEqOjx39vmBYZAzygkwVpNzhKP9zfPT1v8mr934YR8htaGxoUyqfL6UOL1ZOBvbWUZdrptMp\nF88eMxj2mNy9z3g4CQ5ibDdM10oSbybj2OSRbBGV8J5UqZ1r2/MttPqGriK2S727SsVu37xzVGXJ\ncjnDmpCtS6qUyeSUotd/DqHFn/usKNfBPmTSPb8PecVwKzmDvCjQxtJLFavZJVdVidYVw6OjsNmF\nIE0SqsqCUqRSIVQIKbbOhrJkeU6aKoTPqOoKJxxZljUlsGQQI5RqzI0C4aAlZPFoSKUYHh2D98yv\nrljNrxDA8GiCk2rD0rcsWKwA2ughhCBLVQjyQeywzKLzfUNLG8yepSkuSYNjVXOqu/izRuG4UXIJ\nQS/vI0/vs1jMKKs1HkNvMEaplCw7ol/cZ73+FoW9YiTHGNVEg5oCbQ269Hg0o5Oc1dqgFcxNQj0D\nqz3O1WSJJs/X2FJwPvsh7p18HyoZhuAl2RYWbb3st/3sjnGswNzoAYQk7w84zXJEIjl//BhpnqHu\nC4rRUUgtz26uhXhsNu8SoC2kqtGXtNWR2J/sZR8nYH3gxLpIbQeR+O2cxc9CSopeDyE8s+kVCId3\njrPzp4zGE4bDcajSdc0zJVxrkYrh3S6Jkdm+AKl3g5tTIGpLmipqa5EiAQW9tKAohsynM8qypj/o\nhyAYZ5FJghIqpDr3ASnoRoOcZ8HZSGuNpiRLE6RwKGewzqKyIsSei2iwGs1smytPKcVwcoJ2ntX8\nivUyOGv0xxOEUjgbvBtTSZNrIUxNHIDTBt+4hn3wkY9/bJrciClsqZ4SndgFdie1fUbsZWgQpHmP\niUqYL2csF5cgBGnWQ6icLDuhlz7Ary4xlIyoeTh4jYweF8u30W5OnnhS5UmUC5aUVHA0yOhnGUbX\nrFeaXpFANmNRvkVlLhkkw40HoPCO1XLJarkMjjj9IRCos3OOTKkdT8iY1fYi/M6ShLsnd9Fry/nZ\nY2qhuWNrRpM7+KbMWKuAc2ytCTTPUSJkbdrZ/JEjkLOhgnSbmyDmNto22WZNxB6IXf1Ia2EiOtZ+\nRwjyos9EKmazK+q6QkoafZTlaDyBxswd398mUd0nNjyHVCPR6UWIYYfgfBtwc1WY07BIjAeZpCQy\nOKys1yEFmhDB3j/s9UMsO8F11AmCE40P7Jlv5cNEYaymWq/QlcB7R5v+1yqJUMHjrR0kAzuFMwQh\nzPj45AQpPevFlHp+ibCGwdExUmUI4cFbtK5DGnaV0lbOaScooUlv5ncRQMzydk1Lm2xG0fh0Kxh1\nKVy7CTwgkpThYIw1lnK1wNiaXu+Ifv+YevUIX5W4dYIzDu/XpOo+x6MhpZ1R6wW1W5PnjqopZ14u\nDU6XOBEUr4lIMarmyez/8Pj8z/DGwyOUDPkC8ZIs6yGEbES7KpQyS2Rg06PIwy5FloSQaO8cWZrw\n4OF98lHB9Owx08sLQDCanKKavAvdzRYCNXIAABK+SURBVKs6Y+F4flMpwEoR/C5o4vojhNBCN5tx\nC6Lzfd81m7kUgizPOTo6YT6fUtcViQpFUQQwGk02kY6xQvO9vBuCZ2FbxOe9QFc8ejcEcWM6g3aD\na13jmsIT9WKNQFAM+xhr0XVJrzcI2Wgac5zxIUGqN5YskU19xa0Mqq0FH4pmWmup6gqEJM1zsjR9\nTuZzziE9G8UkhNj2p+98k+X0gjzv0RscMT4+QaUJ6/UCgaNXDBBJRqUtsvF3iNlY02h6N5ps50ia\nkuBxG+JJasUOTwhZjnUODpqFsB3HrghijWY+P2e5mJJlQ5KsR21WLOZPqVZnLNfvsDRTal3j/Zq1\nvmS5foJ2U7wweCXw0oIwwV4uMpQakqQD8qIgJYXliGH6Yb7z9R/mAw8+FKI/fdOC1jgu2ElEsg+8\n3+YsOLu6YjgaUaiEcrWgrNesVwvK5YLJ0R0md+8FhMAWacbcVTwesUgRy+dtUJIUvuEAdkW5LhK5\njvru0x90kZAgZLa6vDxnuZwjlcQaR78/4OTklDTNnnvOe31vF4ldB/v0NR5emOnoxpBB+96wKDyr\nukLPVyipSIs82NFNqH40HI+2CjwA59BVjbe2qaSUbRZCa9YLI9dkTtKm8WtIybNga93xanMOJcQm\nVBQ8lS6pywpTG5z3TTKWflPV1jXBUSFhq5QiCifeTmfrigygHXgcRQchtHdsqiPz/KS3LG1cNDX2\nimyf4QihtRcXZywuLugP+wwnR1jW1KVBKInMs1ARSZesl1ecnb1FWV/iZYm2S4zXWJGQpmOORg+Y\njB8x6N8lzwoUHmFr8JI8PSJPBzuUf98KcwRqHNxxd69wbVlzH1KICSGoyopVuUQlktnlJWaxZjQ5\n4uT+w5AclF0uyjZItoU4WCjerPFnGLCtGXIjtkT37dN7wO4mizmdriekICimZ7MrLi8vg1lZSZIk\nYTI5odfvbzQt172ju0ZaYvF+4EUKxBtHBmEJSypTs54tQp2CPEd4H2osqoT+MKTNajeEdw6sw+qm\nck+WhPzyRIoq50OVHCVRPugTvCc4XqgQ778z6NZhtcHoCuM0KstQadHMgsYZjTWevOiFIiGIbflx\nAOeQeGbTKUopBoPhJpklgGm4H+990D4vllTrNccnp2R5FkyIBL/2TISya/HMbLwHCQ5VqZLP2eJ9\n8wxrNOvLpzz++pskKRT9E4rRXfqTY/I8p9IVdVmircE1BdpC1anG81IKkqxHmvTJZEYiVERJwyi3\nScsE+yljVzlnrQlm0U7E4nK1RkpJlmeNSTHULFwuligBn/xP/5EPf/CDfOgj38347l1SFYrLx1Q9\n5hZiy0DMGbTzHHtQis736yIk4/HdR7ljZNC2bRM/4Rx1XfP0yWPW5YokUfR7fU5O75LnBdfBu+kF\nroN94kD8rFuLDOq6Yj6fcTQJbpzVek2paxyQSYW1NQJJrzcICU9po+VMo3VJKMsVtS7J0wFFniMb\nG5ODkDPRONJ065bsnG8q+YaqRxAtBucw2iJl8GjzjenB6ppqvWC1mJOkOUeTE1Sa7cYeeB+cjAie\niVJKvNWcPXtKmiYcTY7xCGprMdZQL9es5wuOTk4ZjUc4IdBs6yK0s9UqxWJFovaNMssGTX6qtprq\nVvtu5pf84ad/icuv/TaTh9/BnTf+PEevfASR92i9U5JEIdtMxGLLcTiC8jMOZ34Re+qbNjlCfoF9\n7rZthF33OdZ7am3RLnB5RZMk1DmHdYKnT9/mU//tv/IdH3yV7/7Yn+X49C5pltMmCSV6V+wuTecY\nPO9E1o2I3Ncv9pyLj3c5BU9Yo5Jd277RhsvLM8r1EmsMWdHj9PQeeXE9Qvh2YR8yi88Fq8UtRAbO\nO/BgTM26rOkN+5iqDotQyrAYag0+VJspikARnK1YTc/QxjGa3EETcvdlaR9vLGmebRQy1jrqWgcz\nZRYi97wLiTzwBLOk3J1Qa30oCCK3i805y2x6znJ6jvOO4dEpo/EpMkl3gk689xjPxtNQEoqwyiRB\nqgRjgj+hxSO9QNcVaRrKx0m2eQ5j3UGXasUl0lpR3XlP0ijJhGjqDXpHOX3CN7/066wunjC+/xGO\nX/texnfvIxFh8wqaTRWcoloKF0Oc2+BFC61u2pQ2f46Qh3G9WJIqSa9X4BpOqTXTtveGUhhNPorm\neN28M3WO+XTKv/u5f8N3vvEG3/dD38/47gn93uhaNpvOMb/neGzm3EdJ9z2vi+D2yeXtcd/muIyU\nPLqumU4v0HWFNqGI6mRyQr8/QIiukPn/B24lMih1HbLRek9VVyF5ZpoESpUkBH8CB9birGny8jms\nLlnNp1gnGI6OsAikzEhVhkqTUDq9oUDGOqqqxltHkoXz0HIHod9JKmmLQQsaW3KjqFPRkFXliotn\n76CtRqU5RTFgOJ5sOASIFrjfKg+F31bhaReTbTeiD4gn7Uz/RjfCbs5/wbawqGUbmdhC4LYsvbxJ\ncuoden7O46/8b+ZLw9HDD3Hy8DX6gx6VCanpA9fuSZN0Uz1qsyD989ru9lxXPGn1I7HSszaWs2dP\n8c5weucuSV5s2OeqDIgwiTIFdRVpG6ToPc+mU37x5/89J0XOJ/7yX2J0eofeeLy5r8sVdMWE9ni3\nHF33vfs2+nvZoN1d1G6rHU9VwOia6fSKuioxtQahOD45DZWe5XadvIgT2/fe94pAbiUyqGqNx21S\nT69WS6SQFP3BdtMAAo90Dl1rrNUkqSJNUvA1Ri8pK4uSI/ApeZEgUrW1F3tPVVbUdU3e66GyNGx2\nxyYMFAFS7k6ascGPIci44YRzFu8t1hjWVYV3liRRJGmPJMsgytDTUnLXprNid6G2lN0BwjbyP7sT\n2l4TPzNeqJt3sEu9jfU44yhy1VggPLpc8uzJW8xnU0bjU07uPSDJctalIW1MvFLIYLVhy3XEG0RG\n74wVZW17Wq4i3mgGMFqHsZIh6jRpUpEZ51muVkgh6ffy4B7NLpJx0XOdh3q54rf+56/x+O1v8cM/\n8nE+8OprDMfHm3Z1nYtaiBV9+zZarPPoihJ0fu/TicTPeRGXskFOzrGczyiXS6zReGAwGjMcjVFN\nrM17hW+Xk7iVyMA3noRamyAW1DXeW2SakuW9TS89DZb1jrJaY61hkBeY+pKr2RPy/hF5fkqWDRt5\nzeGMJWk0t+uqolqvKfIeqsgDNWjyJAYXBYlSYqOM84SIO20MqVKkSUAutTZ4b0mThFprnK3Q1RoQ\nDIdj0rQIqdPF826gXSrVfrcOvK0Dm54oBCqyaOyKA90sx/Ez280AYfPXxqBkSNXmRQiScqZidvE2\nb7/9NqPJPR48eESa5RitwblN3kmVJA3X4cHviksxxH3sIgOi4+213sFyucYJT79XBI7Ae+raYK0n\nydKgq5G7MQUeWKxL1lcLBsdjvBLYuuSP3/x9Mpnw6utvMJwch1TmnfZ1WfrumMVItaXcMfjO8fh3\nfH98rotEY4hFMOE96+WcxXyKNwbrHP3hmPHRBJV0ecX3DkEdf/3dL0IG79dS8b5ASBWoKgTZ1zmc\ntSxXC+q6QrjIVVNK8rxAqYTaGdJixN27r5GnA0xdoU3VEGeHtwbvHNpZEJ40S/De4EwdJHNBKEzR\nRHlh2fECS1VwmDHWBr8FAVma0MtyEqXIs4zf/PXfwFlLXa6YXZ1TlWuCW+5+GXVDdRrlknfgtGY1\nu6JezKgWC6qq3EEAGy7Duh0teFxbMbant553SRJiHGyTYzsBVJJz9+5rfPR7P87JvQeUdY0CPv2b\nv9X4eXho8iNIGo6iqlmv1pvahmF0dxf+znxG/VQ0NRvb4xJUnlFWhuW6DvUrhaCXpwx6GdI7lvM5\npt7m/G+fNeoVFIOCq/MzpNb005zv+Z7vQ6D4yh/8Af/9v3wS5+1zrH3c3m4b4+taXUz7O+6b7Pz2\nvglT7zyry7nFn+13Gf0hBMVgxPHJfWTa59O//b9YLuacnz+jrta8iEi/mHz/yTUON4oMIGCqLElC\nHUORkuV9cJ7p5TnL1WIzUcHnXNHLBySqQGswNkHKPkr1UCIl6L8lIYbcN8VLkiahZYIMZTwb/YNs\n4ggsQtiQ9pvt4kkSRaokRmuM1kiCfC8J2Y0+89u/Qy8fBKRRlyymV9R1yXVTtVlcbeJLCUkiyYsM\ni8VJj2qcUWKWVtKkMrdB4x7YeP8cNQ46Ak+pQ9h0KoM505hgAJWAFZIkSRkkGa5ac3n+lE/96qfw\nXpAkOe1CEgT//kSC0RWr9bIpdPPugTXXIQoIUaKDQZ8iz3cTfQpQqWI4HqGyJIRvG7eDFMajIQ8f\nPGA+nfH4nXeQScb3fOxjfPDD38Uv//L/YP70HGl2cyLFVLzbvuvmZ9Omzn1t3yWt2drvnGuhRfiu\ns5n3ISCBIM0yjk9P+PRnPoNHYLTm7Oyc1XIZTOjfJryfDX2jyCBQkKBgS7IUpTKsC9aDPM+pV0vK\nZUi80U6OksFbUCpJVVUh13+iNiZFJWXjB+CxtslrKCW1D0o7wdYBxkvQXuMxJHI7GC1ly5KEPFUY\nXVGuVw3VCpMshAwmLilJBOh6xXx6gWs2TRBZ9iuiBEF5aOuK1XzO9OoK0eg5rDabm9oFlIiQjk0g\nMM4iXeAsfOe5Ugh6abJJu52oBF1rTMRZhBoTKePRCGsNVbnGmFCmPnbWUUCRZQx6fdImwaxpFK/O\nbTmpWNaO7etd9hkgSQS9IiFLxY4n5WY9tNYECQ6H9WbbPwFKSe4/uB/MtDLBS8nkzh2SLOMLn/sc\nF4+foI3ZERH2bf4XUVbR+WuPbfoqGtdn75qK3Fuk3F7bVkKK3x0/r11nQgS9VZKmDEcj0rygqg3O\nai7On3J1dYG2egfxW17c/vcj9N8YMrj6ypu49Wy78L2g6Afzn0oSsqIH3qONRtc1rqGGFjBOs1jM\nKct1MNPUK5yu8SasUtGUsTbGBEtCmiPTBFuv0POn2PljMr0mQ4JXoWRWXYNz4BzO2U1mG6VS0jRF\nG01Vl1gbPBIdkBUFaZ6yXC3AGRLhKcsZ3prAmovdhdUmQZFAVdc8fvKUr/zR10Ak9PuhtLYxjrIs\nN+MUUzYpJUIqpN8u0Jgz2CCa1nXbeUpjNn75gvDPC4koBgxP7qKSlOViynJ2ia6rzbscgBAIlSLT\nIiSkbfQHptZYY/dSz/beLpsem02v25yxIjBLEpaLJYv1GtdwbRZY15rBeIRKBdaG1Or90YiP/OAP\noqXk8vycKqLaXXaeznc6x9+TElEGb9XWjyW+d9/mjx3GROdz+3LJvQcPuXvvAUqGsV4uZsynM7Te\ncjwC8L7dDfv78CeFG1MgvvSXHuAABwC4XdaEAxzgALcPblyBeIADHOB2wAEZHOAABwBuABkIIX5M\nCPGmEOIrQoifftnv/5OCEOLrQojPCyF+TwjxO82xEyHEp4QQXxZC/IoQYnLT7YxBCPFzQognQogv\nRMeubbMQ4meaeXlTCPGjN9PqXbimD/9UCPHNZi5+Twjx49G529iHV4UQvyaE+H0hxBeFEH+/OX67\n5iKk8Ho5fwSl9leB1wnxLJ8FPvIy2/A+2v414KRz7J8D/6j5/tPAP7vpdnba9wngB4AvvFubgY82\n85E28/NVQN7SPvwT4B/uufa29uEB8P3N9yHwh8BHbttcvGzO4OPAV733X/fea+A/AD/xktvwfqCr\nhf2rhJL1NJ9/7eU258Xgvf8N4LJz+Lo2/wTwC9577b3/OmEBfvxltPNFcE0fYL8V7bb24bH3/rPN\n9wXwB8AjbtlcvGxk8Aj4RvT7m82xPw3ggV8VQvyuEOLvNMfue++fNN+fAPdvpmnfFlzX5g8Q5qOF\n2z43f08I8TkhxM9G7PWt74MQ4nUCp/MZbtlcvGxk8KfZjvkj3vsfAH4c+LtCiE/EJ33g7/5U9e89\ntPm29udfAW8A3w+8A/yLF1x7a/oghBgCvwj8A+/9PD53G+biZSODbwGvRr9fZRcD3lrw3r/TfD4D\n/jOBbXsihHgAIIR4CDy9uRa+Z7iuzd25eaU5duvAe//UNwD8a7Ys9K3tgwgVbH8R+Lfe+082h2/V\nXLxsZPC7wIeFEK8LITLgrwO/9JLb8G2DEKIvhBg13wfAjwJfILT9p5rLfgr45P4n3Cq4rs2/BPwN\nIUQmhHgD+DDwOzfQvneFZuO08JOEuYBb2gcRorJ+FviS9/5fRqdu11zcgGb1xwna1K8CP3PTmt73\n2OY3CNrdzwJfbNsNnAC/CnwZ+BVgctNt7bT7F4C3CVnEvgH8rRe1GfjHzby8CfyVm27/NX3428DP\nA58HPkfYQPdveR/+AiE84bPA7zV/P3bb5uLgjnyAAxwAOHggHuAAB2jggAwOcIADAAdkcIADHKCB\nAzI4wAEOAByQwQEOcIAGDsjgAAc4AHBABgc4wAEaOCCDAxzgAAD8P7tWdgG4qV/gAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "batch_index = 1\n", + "image = test_net.blobs['data'].data[batch_index]\n", + "plt.imshow(deprocess_net_image(image))\n", + "print 'actual label =', style_labels[int(test_net.blobs['label'].data[batch_index])]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted style labels =\n", + "\t(1) 99.76% Pastel\n", + "\t(2) 0.13% HDR\n", + "\t(3) 0.11% Detailed\n", + "\t(4) 0.00% Melancholy\n", + "\t(5) 0.00% Noir\n" + ] + } + ], + "source": [ + "disp_style_preds(test_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also look at the predictions of the network trained from scratch. We see that in this case, the scratch network also predicts the correct label for the image (*Pastel*), but is much less confident in its prediction than the pretrained net." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted style labels =\n", + "\t(1) 49.81% Pastel\n", + "\t(2) 19.76% Detailed\n", + "\t(3) 17.06% Melancholy\n", + "\t(4) 11.66% HDR\n", + "\t(5) 1.72% Noir\n" + ] + } + ], + "source": [ + "disp_style_preds(scratch_test_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, we can again look at the ImageNet model's predictions for the above image:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "top 5 predicted ImageNet labels =\n", + "\t(1) 34.90% n07579787 plate\n", + "\t(2) 21.63% n04263257 soup bowl\n", + "\t(3) 17.75% n07875152 potpie\n", + "\t(4) 5.72% n07711569 mashed potato\n", + "\t(5) 5.27% n07584110 consomme\n" + ] + } + ], + "source": [ + "disp_imagenet_preds(imagenet_net, image)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we did finetuning and it is awesome. Let's take a look at what kind of results we are able to get with a longer, more complete run of the style recognition dataset. Note: the below URL might be occasionally down because it is run on a research machine.\n", + "\n", + "http://demo.vislab.berkeleyvision.org/" + ] + } + ], + "metadata": { + "description": "Fine-tune the ImageNet-trained CaffeNet on new data.", + "example_name": "Fine-tuning for Style Recognition", + "include_in_docs": true, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + }, + "priority": 3 + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/03-fine-tuning.ipynb b/examples/03-fine-tuning.ipynb deleted file mode 100644 index cc90b16bb..000000000 --- a/examples/03-fine-tuning.ipynb +++ /dev/null @@ -1,947 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Fine-tuning a Pretrained Network for Style Recognition\n", - "\n", - "In this example, we'll explore a common approach that is particularly useful in real-world applications: take a pre-trained Caffe network and fine-tune the parameters on your custom data.\n", - "\n", - "The upside of such approach is that, since pre-trained networks are learned on a large set of images, the intermediate layers capture the \"semantics\" of the general visual appearance. Think of it as a very powerful feature that you can treat as a black box. On top of that, only a few layers will be needed to obtain a very good performance of the data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, we will need to prepare the data. This involves the following parts:\n", - "(1) Get the ImageNet ilsvrc pretrained model with the provided shell scripts.\n", - "(2) Download a subset of the overall Flickr style dataset for this demo.\n", - "(3) Compile the downloaded Flickr dataset into a database that Caffe can then consume." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import os\n", - "os.chdir('..')\n", - "import sys\n", - "sys.path.insert(0, './python')\n", - "\n", - "import caffe\n", - "import numpy as np\n", - "from pylab import *\n", - "%matplotlib inline" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# This downloads the ilsvrc auxiliary data (mean file, etc),\n", - "# and a subset of 2000 images for the style recognition task.\n", - "!data/ilsvrc12/get_ilsvrc_aux.sh\n", - "!scripts/download_model_binary.py models/bvlc_reference_caffenet\n", - "!python examples/finetune_flickr_style/assemble_data.py \\\n", - " --workers=-1 --images=2000 --seed=1701 --label=5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's show what is the difference between the fine-tuning network and the original caffe model." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1c1\r\n", - "< name: \"CaffeNet\"\r\n", - "---\r\n", - "> name: \"FlickrStyleCaffeNet\"\r\n", - "4c4\r\n", - "< type: \"Data\"\r\n", - "---\r\n", - "> type: \"ImageData\"\r\n", - "15,26c15,19\r\n", - "< # mean pixel / channel-wise mean instead of mean image\r\n", - "< # transform_param {\r\n", - "< # crop_size: 227\r\n", - "< # mean_value: 104\r\n", - "< # mean_value: 117\r\n", - "< # mean_value: 123\r\n", - "< # mirror: true\r\n", - "< # }\r\n", - "< data_param {\r\n", - "< source: \"examples/imagenet/ilsvrc12_train_lmdb\"\r\n", - "< batch_size: 256\r\n", - "< backend: LMDB\r\n", - "---\r\n", - "> image_data_param {\r\n", - "> source: \"data/flickr_style/train.txt\"\r\n", - "> batch_size: 50\r\n", - "> new_height: 256\r\n", - "> new_width: 256\r\n", - "31c24\r\n", - "< type: \"Data\"\r\n", - "---\r\n", - "> type: \"ImageData\"\r\n", - "42,51c35,36\r\n", - "< # mean pixel / channel-wise mean instead of mean image\r\n", - "< # transform_param {\r\n", - "< # crop_size: 227\r\n", - "< # mean_value: 104\r\n", - "< # mean_value: 117\r\n", - "< # mean_value: 123\r\n", - "< # mirror: true\r\n", - "< # }\r\n", - "< data_param {\r\n", - "< source: \"examples/imagenet/ilsvrc12_val_lmdb\"\r\n", - "---\r\n", - "> image_data_param {\r\n", - "> source: \"data/flickr_style/test.txt\"\r\n", - "53c38,39\r\n", - "< backend: LMDB\r\n", - "---\r\n", - "> new_height: 256\r\n", - "> new_width: 256\r\n", - "323a310\r\n", - "> # Note that lr_mult can be set to 0 to disable any fine-tuning of this, and any other, layer\r\n", - "360c347\r\n", - "< name: \"fc8\"\r\n", - "---\r\n", - "> name: \"fc8_flickr\"\r\n", - "363c350,351\r\n", - "< top: \"fc8\"\r\n", - "---\r\n", - "> top: \"fc8_flickr\"\r\n", - "> # lr_mult is set to higher than for other layers, because this layer is starting from random while the others are already trained\r\n", - "365c353\r\n", - "< lr_mult: 1\r\n", - "---\r\n", - "> lr_mult: 10\r\n", - "369c357\r\n", - "< lr_mult: 2\r\n", - "---\r\n", - "> lr_mult: 20\r\n", - "373c361\r\n", - "< num_output: 1000\r\n", - "---\r\n", - "> num_output: 20\r\n", - "384a373,379\r\n", - "> name: \"loss\"\r\n", - "> type: \"SoftmaxWithLoss\"\r\n", - "> bottom: \"fc8_flickr\"\r\n", - "> bottom: \"label\"\r\n", - "> top: \"loss\"\r\n", - "> }\r\n", - "> layer {\r\n", - "387c382\r\n", - "< bottom: \"fc8\"\r\n", - "---\r\n", - "> bottom: \"fc8_flickr\"\r\n", - "393,399d387\r\n", - "< }\r\n", - "< layer {\r\n", - "< name: \"loss\"\r\n", - "< type: \"SoftmaxWithLoss\"\r\n", - "< bottom: \"fc8\"\r\n", - "< bottom: \"label\"\r\n", - "< top: \"loss\"\r\n" - ] - } - ], - "source": [ - "!diff models/bvlc_reference_caffenet/train_val.prototxt models/finetune_flickr_style/train_val.prototxt" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For your record, if you want to train the network in pure C++ tools, here is the command:\n", - "\n", - "\n", - "build/tools/caffe train \\\n", - " -solver models/finetune_flickr_style/solver.prototxt \\\n", - " -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \\\n", - " -gpu 0\n", - "\n", - "\n", - "However, we will train using Python in this example." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "iter 0, finetune_loss=3.360094, scratch_loss=3.136188\n", - "iter 10, finetune_loss=2.672608, scratch_loss=9.736364\n", - "iter 20, finetune_loss=2.071996, scratch_loss=2.250404\n", - "iter 30, finetune_loss=1.758295, scratch_loss=2.049553\n", - "iter 40, finetune_loss=1.533391, scratch_loss=1.941318\n", - "iter 50, finetune_loss=1.561658, scratch_loss=1.839706\n", - "iter 60, finetune_loss=1.461696, scratch_loss=1.880035\n", - "iter 70, finetune_loss=1.267941, scratch_loss=1.719161\n", - "iter 80, finetune_loss=1.192778, scratch_loss=1.627453\n", - "iter 90, finetune_loss=1.541176, scratch_loss=1.822061\n", - "iter 100, finetune_loss=1.029039, scratch_loss=1.654087\n", - "iter 110, finetune_loss=1.138547, scratch_loss=1.735837\n", - "iter 120, finetune_loss=0.917412, scratch_loss=1.851918\n", - "iter 130, finetune_loss=0.971519, scratch_loss=1.801927\n", - "iter 140, finetune_loss=0.868252, scratch_loss=1.745545\n", - "iter 150, finetune_loss=0.790020, scratch_loss=1.844925\n", - "iter 160, finetune_loss=1.092668, scratch_loss=1.695591\n", - "iter 170, finetune_loss=1.055344, scratch_loss=1.661715\n", - "iter 180, finetune_loss=0.969769, scratch_loss=1.823639\n", - "iter 190, finetune_loss=0.780566, scratch_loss=1.820862\n", - "done\n" - ] - } - ], - "source": [ - "niter = 200\n", - "# losses will also be stored in the log\n", - "train_loss = np.zeros(niter)\n", - "scratch_train_loss = np.zeros(niter)\n", - "\n", - "caffe.set_device(0)\n", - "caffe.set_mode_gpu()\n", - "# We create a solver that fine-tunes from a previously trained network.\n", - "solver = caffe.SGDSolver('models/finetune_flickr_style/solver.prototxt')\n", - "solver.net.copy_from('models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')\n", - "# For reference, we also create a solver that does no finetuning.\n", - "scratch_solver = caffe.SGDSolver('models/finetune_flickr_style/solver.prototxt')\n", - "\n", - "# We run the solver for niter times, and record the training loss.\n", - "for it in range(niter):\n", - " solver.step(1) # SGD by Caffe\n", - " scratch_solver.step(1)\n", - " # store the train loss\n", - " train_loss[it] = solver.net.blobs['loss'].data\n", - " scratch_train_loss[it] = scratch_solver.net.blobs['loss'].data\n", - " if it % 10 == 0:\n", - " print 'iter %d, finetune_loss=%f, scratch_loss=%f' % (it, train_loss[it], scratch_train_loss[it])\n", - "print 'done'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's look at the training loss produced by the two training procedures respectively." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPtzt7AlkkJCGAgbCIqCSyuIDaRECEYZvB\n", - "EQRFB5iMo8CjzuMwOlpdioo4IM4iM6wTgdHhgRFBRAhLM6gQtgQCIQQkYc8CJIEQQpb+PX+c01hp\n", - "eqmqrl5SfN+vV7266tZdzr11+3tPnXvuLUUEZmZWHxr6uwBmZlY7DnUzszriUDczqyMOdTOzOuJQ\n", - "NzOrIw51M7M6UlaoS2qUNFfS9fn1OEmzJS2SdLOkMb1bTDMzK0e5NfUzgAVAW6f2M4HZEbEbcGt+\n", - "bWZm/azbUJe0PXAYcDGgPPhIYFZ+Pgs4uldKZ2ZmFSmnpv5j4P8CrSXDJkTEsvx8GTCh1gUzM7PK\n", - "dRnqkv4MWB4Rc/lTLX0zke4z4HsNmJkNAIO6ef/DwJGSDgOGAVtLuhxYJmliRCyVNAlY3tHEkhz2\n", - "ZmZViIgOK9LdUbk39JL0MeDvIuIISecAL0XEDyWdCYyJiLecLJUU1RbMNiepOSKa+7sc9cLbs7a8\n", - "PWurJ9lZaT/1tiPA2cDBkhYBM/JrMzPrZ901v7wpIu4A7sjPXwYO6q1CmZlZdXxF6Zajpb8LUGda\n", - "+rsAdaalvwtgSdlt6lXN3G3qZmYV68s2dTMzG8Ac6mZmdcShbmZWRxzqZmZ1xKFuZlZHHOpmZnXE\n", - "oW5mVkcc6mZmdcShbmZWRxzqZmZ1xKFuZlZHHOpmZnXEoW5mVkcc6mZmdaTPQ11FSUUd1tfLNTN7\n", - "O+iPmvo44HoV5fusm5nVWH+FegMwqh+WbWZW17oNdUnDJM2RNE/SAkk/yMObJT0raW5+HFrmMse2\n", - "+2tmZjXS7Q9PR8Q6SQdGxFpJg4DfSToACOC8iDivwmW2hfkY4OkKpzUzsy6U1fwSEWvz0yFAI7Ay\n", - "v66mXXxc/jumimnNzKwLZYW6pAZJ84BlwO0R8Uh+6zRJD0q6RFK5Ie3mFzOzXlJuTb01IqYB2wMf\n", - "ldQEXADsBEwDXgDOLXOZpc0vZmZWQ922qZeKiNWSbgD2iYiWtuGSLgau72gaSc0lL1toZhypPd41\n", - "dTMzIFeUm2oxr25DXdI2wMaIWCVpOHAwUJQ0MSKW5tGOAeZ3NH1ENG82v6I+BzyHa+pmZgDkSnJL\n", - "22tJhWrnVU5NfRIwS1IDqbnm8oi4VdLPJE0j1boXAzPLXObYPL5r6mZmNVZOl8b5wPs7GP65Kpc5\n", - "DngS19TNzGquP64oHUsKddfUzcxqrL9uE+CauplZL+jPmrpD3cysxvo01FXUUGAwqfeLm1/MzGqs\n", - "r2vqY4FVpNsMuKZuZlZj/RHqLwOvAsNV1OA+Xr6ZWV3rj1BfGYUIYDUwuo+Xb2ZW1/o61Mfxpzs8\n", - "rsTt6mZmNdVfzS+Q2tbdrm5mVkP90vySn6/CNXUzs5rq7+YX19TNzGrIzS9mZnWkP5tffKLUzKzG\n", - "+rtN3TV1M7Ma6utQHw68np+7pm5mVmN9HeqDgI35+avA1n28fDOzutbXoT4Y2JCfvw4M6+Plm5nV\n", - "tf4O9eF9vHwzs7rmUDczqyNdhrqkYZLmSJonaYGkH+Th4yTNlrRI0s2Syu3FUhrq63Com5nVVJeh\n", - "HhHrgAMjYhrwPuBASQcAZwKzI2I34Nb8uhylJ0rdpm5mVmPdNr9ExNr8dAjQSOqKeCQwKw+fBRxd\n", - "5vLc/GJm1ou6DXVJDZLmAcuA2yPiEWBCRCzLoywDJpS5PIe6mVkvGtTdCBHRCkyTNBq4SdKB7d4P\n", - "SdHZ9JKa33zxWUYy1aFuZlZKUhPQVIt5dRvqbSJitaQbgL2BZZImRsRSSZOA5V1M19z2XEV9GdfU\n", - "zcw2ExEtQEvba0mFaufVXe+Xbdp6tkgaDhwMzAWuA07Ko50EXFvm8kpPlK4j/U6pKi20mZl1rLs2\n", - "9UnAbblNfQ5wfUTcCpwNHCxpETAjvy7Hm23qUYiNwKY8zMzMaqDL5peImA+8v4PhLwMHVbG80hOl\n", - "8KcmmPVVzMvMzNrpsytKczNLZ6FuZmY10Je3CWgEWqMQrSXDHOpmZjXUl6FeepK0jUPdzKyG+jLU\n", - "2ze9QOoB41sFmJnVSH+HumvqZmY15FA3M6sjDnUzszriE6VmZnVkINTUfaLUzKxG+jvU/etHZmY1\n", - "1N+h7uYXM7Ma6us2dYe6mVkv6uuauk+Umpn1ooHQ/OITpWZmNTIQQt01dTOzGunvUHfvFzOzGvLF\n", - "R2ZmdaS/a+oOdTOzGnKom5nVkW5DXdIOkm6X9IikhyWdnoc3S3pW0tz8OLSbWbn3i5lZL+vyh6ez\n", - "DcBXImKepFHA/ZJmAwGcFxHnlbks19TNzHpZt6EeEUuBpfn5GkmPApPz26pwWe1PlLr3i5lZDVXU\n", - "pi5pCjAduDsPOk3Sg5IukTSmm8ldUzcz62XlNL8AkJtergbOyDX2C4Dv5Le/C5wLnNzBdM0A7MZ+\n", - "7Mkb7d52qJvZ256kJqCpFvMqK9QlDQauAa6IiGsBImJ5yfsXA9d3NG1ENAOoqK8CO7R72ydKzext\n", - "LyJagJa215IK1c6rnN4vAi4BFkTE+SXDJ5WMdgwwv5tZufnFzKyXlVNT3x84EXhI0tw87BvA8ZKm\n", - "kXrBLAZmlrGsDk+UqihFIaL8YpuZWUfK6f3yOzqu0d9Y4bLeUlOPQmxUUa35vfUVzs/MzNrp7ytK\n", - "wU0wZmY1M1BC3SdLzcxqYKCEumvqZmY10N+33gWHuplZzbimbmZWRwZCqPv+L2ZmNTIQQt0nSs3M\n", - "amSghPqIPiyHmVndGggnSl/DoW5mVhMDoab+GjCyD8thZla3HOpmZnXEoW5mVkcc6mZmdWSgnCh1\n", - "qJuZ1YBr6mZmdcShbmZWRwZKqI/qw3KYmdWtgRLqrqmbmdWAT5SamdWRbkNd0g6Sbpf0iKSHJZ2e\n", - "h4+TNFvSIkk3SxrTzaxcUzcz62Xl1NQ3AF+JiD2BDwJfkrQHcCYwOyJ2A27Nr7viUDcz62XdhnpE\n", - "LI2Iefn5GuBRYDJwJDArjzYLOLqbWTnUzcx6WUVt6pKmANOBOcCEiFiW31oGTOhmcoe6mVkvG1Tu\n", - "iJJGAdcAZ0TEq5LefC8iQlJ0Ml0zAB9lBA/zQQr8pt0orwEjVZSiEB3Ow8ysnklqAppqMq8oI0cl\n", - "DQZ+DdwYEefnYQuBpohYKmkScHtEvKvddBERAlBR64CxUYjX3zL/ot4ARkch1vV4jczMtnCl2Vmp\n", - "cnq/CLgEWNAW6Nl1wEn5+UnAtd3MqrPmF3ATjJlZTZTTpr4/cCJwoKS5+XEocDZwsKRFwIz8ukMq\n", - "qiEva1MnozjUzcxqoNs29Yj4HZ2H/0FlLmcwsKGLNnOHuplZDfTVFaWdXU3axqFuZlYDfRXqXbWn\n", - "g0PdzKwmHOpmZnXEoW5mVkf6sk29u1D3PdXNzHqoL2vqPlFqZtbL3PxiZlZHHOpmZnXEoW5mVkcG\n", - "0olSh7qZWQ8NlBOla3Com5n1mJtfzMzqiEPdzKyOONTNzOqIT5SamdWRgXKi1KFuZlYDbn4xM6sj\n", - "DnUzszoyUEJ9DTBKRVX169lmZpZ0G+qSLpW0TNL8kmHNkp5t90PUXeky1KMQG0i19THlFtzMzN6q\n", - "nJr6ZUD70A7gvIiYnh+/7WYeQ4E3uhlnObBtGeUxM7NOdBvqEXEnsLKDtyppKikn1FcA4yuYp5mZ\n", - "tdOTNvXTJD0o6RJJ3TWblFtTd6ibmfXAoCqnuwD4Tn7+XeBc4OSORpTUzJ4cSNCqZjVFREsn81xB\n", - "bn5RUX8OzItCPFll+czMthiSmoCmWsyrqlCPiOUlhbkYuL6LcZtV1AjgpSh0GuiweU39NFJbvkPd\n", - "zOperuy2tL2WVKh2XlU1v0iaVPLyGGB+Z+Nm5bapt50o3REYXU3ZzMzezrqtqUv6OfAxYBtJzwAF\n", - "oEnSNFIvmMXAzG5mU26b+gdUVAOwAw51M7OKdRvqEXF8B4MvrXA5ldTUtyX1a9+6wmWYmb3t9dUV\n", - "pZX0ftkxv3ZN3cysQgMp1Ntq6juQmnUc6mZmFRpIof4i8A7gnaReLw51M7MKDZhQj0KsJ93Y632k\n", - "3jQOdTOzCvVlqK8vY7zlwN7AwzjUzcwqNmBq6tkK4N24pm5mVpWBFurLSWVyTd3MrAoDLdRXAJuA\n", - "x4ERKqqxV0tlZlZnBlqoLweeyz+a8Sq+AMnMrCJ9FepDKL+m/kx+vho3wZiZVaTaW+9Wqtya+sPA\n", - "dvm5Q93MrEIDKtSjELcBt+WXDnUzswoNtDb1Ug51M7MK9XqoqyiR2tTLufiolEPdzKxCfVFTHwJs\n", - "iEK0VjidQ93MrEJ9EerVNL2AQ93MrGIOdTOzOuJQNzOrIw51M7M60m2oS7pU0jJJ80uGjZM0W9Ii\n", - "STdLGtPFLBzqZmZ9pJya+mXAoe2GnQnMjojdgFvz68441M3M+ki3oR4RdwIr2w0+EpiVn88Cju5i\n", - "Fg51M7M+Um2b+oSIWJafLwMmdDGuQ93MrI/0+N4vERGSotMRLuIUJjNZzWoGWiKipcxZO9TN7G1B\n", - "UhPQVIt5VRvqyyRNjIilkiaR7oPesVO5Chgbc6K5wmW8CoxUUQ1VXI1qZrbFyJXdlrbXkgrVzqva\n", - "5pfrgJPy85OAa7sYt6rmlxzkrwMjKi6dmdnbVDldGn8O/AHYXdIzkr4AnA0cLGkRMCO/7sxQKr+Z\n", - "V5vXgJFVTmtm9rbTbfNLRBzfyVsHlbmMak+UgkPdzKwiA/mKUkihPqqGZTEzq2sDPdTX4Jq6mVnZ\n", - "Bnqou6ZuZlaBLSHUXVM3MyvTQA91N7+YmVWgr37Ozs0vZmZ9YKDX1N38YmZWgYEe6m5+MTOrwEAP\n", - "dTe/mJlVYEsIddfUzczKNNBD3c0vZmYVGOih7uYXM7MKbAmh7pq6mVmZBnqou/nFzKwCAz3U3fxi\n", - "ZlaBLSHUXVM3MyvTQA91N7+YmVVgoIe6m1/MzCrQ7c/ZdUXSEuAVYBOwISL262A0N7+YmfWRntbU\n", - "A2iKiOmdBDr07Ien1wNSUUOqnN7M7G2lFs0v6ub9qmvqUYjAtXUzs7LVoqZ+i6T7JJ3ayTg9aX4B\n", - "h7qZWdl61KYO7B8RL0gaD8yWtDAi7uxgGdU2v4BD3cysbD0K9Yh4If9dIemXwH7A5qF+O5u4g4Ka\n", - "BdASES0VLmYN7gFjZnVMUhPQVIt5VR3qkkYAjRHxqqSRwCFA8S0jHshr0RLNVZfQNXUzq3O5stvS\n", - "9lpSodp59aSmPgH4paS2+VwZETd3MN6iHiwDHOpmZmWrOtQjYjEwrYxRH6h2GZmbX8zMytQXV5T2\n", - "NNRdUzczK5ND3cysjvRFqM/v4fRufjEzK1Ovh3oUYl0PZ+GauplZmfqipt5TvlOjmVmZtoRQ9z3V\n", - "zczKtCWE+oBsflFRE1TUNSrqnf1dFjOzNj2990u3JBRB9GAWC4FzVNRuwMvA/yHdv/3F/JgETAa+\n", - "G4VY1UkZPgCsiODJkmHvAv4S2Bk4I4LV5RZIRe0K3AS0AscDZ1exXmZmNdcXNfV3VTORxGCJM2mO\n", - "B4F/BG4BHgS2YcUeE3lyxgnAUcBOpFC/RkXtrKJuU1FfLJmPoPViaP2HkmHbALOBscAuwKfKLldR\n", - "Q4FrgPOAmcBfVLN+Zma9QRE9qUR3M3MpIL4UwU8rn5avAz8AvhnB2SrqBOC5KESLxC+BI4G9I5in\n", - "ohqBXwKH0Np4Adp0ImKPKMSLmvjggRwx8yZGLW1k62fORq1bsfCoo3j4+Dv51HGfpTmOJtXUm8oq\n", - "V1HfB/YA/hxoBF4A9olCPFXpOpqZdURSRER3v1XR8bR9EOpXR6SasMT2wPKIjm/FK3EE8FfAfwBX\n", - "AMcBvwD2iWBJHmcn4F7gR0BTBJ8EUFHDeeITe3HFby/kswe/xtRbHgLOZ+let7B+5HPc+v3RHPbl\n", - "+3lptwZe3GN/PvK99YhNbBr8W/51wYms3GVaBE93uT5FTQduBPaKQizLwy4BlgA7knrpfC0K8Xx+\n", - "7wxgqyjEWdVuQzN7+xnoob4a+DkwGjiaFMhHR7By83HZClgAXA18HvinCL4n8Q3go8BhEbRK/BPp\n", - "xzm+mcf/TgQ/k5gA3ADMZ8SKI/m7iauBVh44ZXvu+urOvLT7ycBU4FDgcJo1F9gLOJb1I7/Gsvc+\n", - "wg53XwT8KgrplsIAKmpYXt564A7g8ijERSXvHw78GrgMeI7UJPMDYAXwfdIvQ50ShbipNlu1exKT\n", - "gfdFcGNfLdPMamegh/puwDF50H8AzcAnga+Sgu8HpJqugMYIPi8xHFgXQUgMJt2j/RekNvWrSc0u\n", - "SySmA/8NPAW8H/jXPP//BJblYX+MYKbEnsDDwIURzNysnO+67iDGPnkDk+fALjdt5KVdj46L5sxW\n", - "UVNIgT0Y+K+8HntHITa9OW1q+tk3CnF3fv1u4BzgY8ABpHb7/wL+Igpxlybf+3l2/N0pTJu1inc8\n", - "di6D17UAXyEdYH4KPApsjEKs7XS7FrUDK/YYy3//zzHMnP4rBq9rJF25Owh4N7cXz2fYyg8y/dK7\n", - "GPbKH/J2D+D1KMTSTub5UeCHwJejEPe3e0/AoCjEhpJ1PhB4D+kguLizspZLQnz0rP2Y8a1v5vX4\n", - "HOl8x4nAT6IQj1c0v6JGAu8D5kQhWkvWY0oUYnFehwuApcD3oxDrVNRY4N9I+9k5+ecUa0JFDYlC\n", - "rFdRDcAMYCvg91GI5R2MOwKYGIV4sv17ZS5rIrANqSK1FelOqYtruT4ly2ok7Vt7Ax8G7qFkm5eM\n", - "N4r0zfuxKLzlh3TKXZaA7YAVUYie/PDOgKOitibly9woxEMDOtQ7KpjEMcBZwDtIJ0F3JNXiD4rg\n", - "rTu52BmYQ+r1cmIEt5S8N4oUADdE8FQetiup18wlwBcj2JROmHI28KMIXuxgGQ3ABD7wk3+nqXgE\n", - "oacZ/vIwFh1xAxuHPcee/28m8Gma43lSCG9PCtLrgDnte/ioqBFtwZzPB5xFawNsGPlOVr1zEU8c\n", - "Opq9L9qaoasXIjYC19Da+EU2Dd4ONJhNg29h2CtXk/rpfwI4CPgNsBH4S9Zs20jj+tGodQnDXllD\n", - "MBUQm4YuZuHRU2ltvJ0nPjGFo7/wWxpaTyR1Dd0qz2NJ3uZzgeeBg4HDgYuAU4EZUYhH80Htb4Bj\n", - "Sbdavoj0jeVE0kHzQeAI4HHgKtLPFo7Pj02kwFwKvMwrk0ewZsJTbPfA3cA+wKlsGvRJkGjc8D+8\n", - "MO0jbP3sNF7a7Up2/MNzwEkEwaoptzJ2yaHAY8CupIP/WmAI6acSh5K+sd1FOsexNelAegCwEniW\n", - "tK8tBZoJDkdcCmwghf4KYF/g7vz3xly+52ltPJ+NwwYx5LVv5uX9nhRgytttEzAceIRUsdid9LsC\n", - "B+Vt8iCpQrAP8CHgJWAdsCqX50N5fovzZ/IaMA7Yn9Sz6sK83n+fP/fHSQH9ev48JpCC+2Xgj8BD\n", - "wGdI4fpCXs5rwHvzNJeSvs2uJR2UZ+Tt81iefi/SDzWszWV9iVQR+iNwAjA9l2E46YC7Sy6vSP9v\n", - "vwc+SOqRdhepI8ZUkvGkytk+wM15uncABeAPwLtJ33IPyp/bE6QDxOWk/4Ef5XXbSOrivIB0X6nf\n", - "ATdGIVbkA8cHgHeSKgb3k/bxrUn7/gZgWRQiVNSeuQx/yON+lLSv75rXcW0uf0Meb5f8ea8g9bp7\n", - "mNREPBX4OCkHXif9psRo4Mn8ua4BJuay3JTX91DSPnMTcBvwJdL/VAtwVhTi3i0u1NN7NJBq5hvK\n", - "mxf7AksjeKbM8d8FPFZNd0ptP+dAGjZcyIaR27J0+nxgMrTeDw3jSTvfBaSdZTqp9jGS9I81K4J/\n", - "6qAsUxmzeCPjH/kui2dsig0jviAxmlEv3M0BP1zAwiNPZ8mMGcC5wH8xcukrvOcXn2e/nz7CS7vt\n", - "z/N7r2T5e2Zx7HHraGgdyYX3LOT5fb8D/AvpH/NTDHl1HpuGrGHT0KdJtf1/JPXweR6YGcFaFTUa\n", - "OJm0gz9Hql1tB/wvcGUUYqmK+hzBT9kwYh2D3mikYdOlpJ33ReA0UthcHoV4BEBFDSYF2dH5vRX5\n", - "0UDamScRGseSj32YbR4bxqgX1iBeZ+24y5h12+dR61g++ON5PH3ANF7Z4Uye+OR3gD+jWQ1cOGcn\n", - "nt/vcva5YAZ/9reNwELmf3oIzxywJ4ed9gDpILKRdAvoffPrV/LjrlzmU0ndTiexascWLrzvM5wx\n", - "9U6Gvro98JEoxCoVtRewJ6kGODs3uf0dr044lQ2jtmfR4b9g2qwrGLZ6b9I/Nnm7iXSQ2wvYgRS4\n", - "d5IODFPzPN8AFnDx75/g8zPWMeiNMcBDOVjE7c27snTad5l8z3p2v+4BJjy8hBRUyvvZGFJQrAZ2\n", - "y49hpIPCsjx8LKmXWVtgXhSFePN3gXMNdzrw16TAH0lqBv0N6cCwOynMHsvTDyIF7vg83R6kHl8t\n", - "pN5ma0mh+0T+rCn9FqCitiOF+yZSQLYCq/L+NQ44PW+rVuB7pN5rTwFXkr6Jj8xlaiJ1SFhJqtR9\n", - "Nc+j7VvY3qSD0yHAiPxZ3J+XGXldd86fwWpSBWAT6UC2HbCcVLlpqxhckrfL1DysNY+/Oq9rI+kb\n", - "0HjSgfcE0sF4NqkX3Bjg26QD3E552Vvlz+lgUvhfTPo2uDupZn4I6cD1gyjEije3YQ9CnYjotUea\n", - "fe/Nv3fLHkMg3pWfj4T4GsQREEPbjSeInSD2hVgCcTzElyHuyc+/CvEixIr8mFAy7TshbodYBfEQ\n", - "xLSSeV4BsQziaIhPQNwNcRnEcXk+H4QYnp//HOIqiFMgHoPYtqTcV0A8AXEfxG8gppYsfyTEdvn5\n", - "cIgTIH6GNqxg/MP3MHTVcogP5GWdADEKohHi/XndvghxEMQOEFtD/Divx/g8z10gxkMUIG6BTQt4\n", - "7xUzmX7RKIjfQpwPsSfEXRCfyNN8CmIBxGCI2RB/gLgmfx7/lrfVaogZefxdS7dpB5/joRDn5G36\n", - "nxDPw6bzaKaxm89/XN7+n4K4KZej0+XkaQZD/FX+7K8oWac9IDZAHN7BNN/J8/9ZXobyY5v+/h8o\n", - "8/+ky+3Y7fTNNNBMQxfvb08zh9CcKqCdjCOaaezoM6WZEaXT0swUmvk4zQzOr7ejmZHt1mkiRKdl\n", - "6qIMnZYxjzO8/O1KVL1Ne/cDr75gW+IDYi+INTmkPp3/ue+CmJL/UYd0Mp0g1G7YIIhRJa9HQtwM\n", - "8Vxb+Ofh5+RgH9/FvA+A2I90YHoRogXi3lzWl3IQr4C4EWImxJQ87eEQayEezQeEl/PjEYj/hriI\n", - "dFB6AWJTDs1z8zp/Ly9rVQ7H7SAOgXga4kmIX0AM6qS8N0P8ewrgGJ3X+W6IayG2IR3kni5Zn1UQ\n", - "d0L8EOLb+SBwIMTQvKxnIM7O6/revA5j8nb5YV63n0Ic2/bPDPHPED/Nzxsgirk8V5EOUvtCfAHi\n", - "DojLIS6AWApxK8RhEH+Txz8K4pa8nW7J87sA4jyIYXnb7J6XMZd0EPkuxDqIY8rc746DOKHCfXUk\n", - "xF4dDG/MZbsVYlweNikPuxri/XnYqLwPzMlln0SqUOxSMq/d87bZuQ//B3eFmNxu2BCIbSGGtxve\n", - "kPfTr5EPohBTIVZCzOxk/g2U/K/mef8NFR4Eul8Pouppe3cDV1+wLfUBMZke1l66mPcgiK3bDdsa\n", - "Yo8K5rFjDrwP53/sxvx8aifjD2/biUk1mEmdjDcs/xXELIhfQ0zI/wRDS8Y7k1zL7qKMe0JshPh2\n", - "fn1cDtlBJeP8mHRw2SWH46EQ38rhfTrEcogLIa4r+Uf9Xp72CojHSYH/7Ry8p5O+zdwDcT/p2802\n", - "7cq1F+kbyo9I3yZuytOeDPF1iF3bjb8v6VvFgxAjcsh/E+KPEIty2W4oGX8GxCsQC0kHrudJB86/\n", - "Jn0bEsT0HEQPQPwLxDdIB60XyQfjTrZpI0QT6eD0q1yul/J6j4H4D1JI3wJxG8RP8vb9Vd5250Oc\n", - "kcu0GOJZiItJB9vPkb5FPg5xbV7eyblMl0E8BfEZiOtJlZChpG81Y/K478jLPpN08O+yxtvJ+o3P\n", - "+9wruUwNpArBhXk9l0O8Tvpm1LY//wjid6RvSS+TDqYPQlyZP9+2b02D8vgHQrwG0Zo/+6F5ewbE\n", - "sbX9Xyeqnbbf2tTNuiJxJPC/EXR26wcBDRFvtnG3f/84Ui+o90WwSGIq8HwEr+cT74cAl0XwRsk0\n", - "DaR2zleBWyJo7WDWla7Hh4GVETyau+eeReoZtYp0cvao2PzE/1eAqyN4RmLHXJ69gcNI5w9eI7U7\n", - "30g6gf4B0rUdx5PaoBfm13eTTnBOIJ24nAo8A/yWdAL3VtJ1FXeQTgJfQzoPMQa4KIL1Ep8lte3/\n", - "KvJtNHJvtB1JJx/nkdrOr+dP5xbuJp1v2gs4IoKFEqeQzuVcmtfjfaSTj5DOF3yGdNJzcF7fBtKJ\n", - "xPv4Uxv5aNJndiypff3XpLb4e0lXm/8KeBr4el63y0jt8UuBb+XtuS3phOZrpPbyHYEPRfBy3tZn\n", - "kT77L+d1+wZwUl7Hc4Bvkc6htfXGG53X5cy83Pfksm+VH/vk9yeROlXcBJwCbAucGsEGiUl5mw/K\n", - "j2cieLHfTpRKOhQ4n3QC4eKI+GG79x3q1m8ktorg1f4uRxuJrYGPRXB9fj2ms4NWB9MOJvXq+GPE\n", - "W0/+SwwhncicT+rltRcp9F4gBdtTETzXwXQ7ATtHcGtVK5Xm8RPg9xFcJXEYcAapl9qKDsYVqWdS\n", - "W1BfQgrQ09rWS+IdpB47++THzqSD4L2kLsz7kw6Mz5JCdj7p5OWH88Ho/aTgv510fcvGkuWPIN0W\n", - "5GXgruigJ1we7wukLsa3kTLuLODfIvhZfn846UB4GekgewfphOqHSMG+jnSgeoC0/T9C6vVyZV6f\n", - "l/Pwk0knUjfmR3ME1/ZLqEtqJJ0tP4jUk+Je4PiIeLRkHId6jUhqioiW/i5HvfD2rK3+2p75osNz\n", - "gO9FsKhk+BHAneUeNDuY7zBSL51/jqDbH/rJ18wcC1wcQZfXbeQDy/Wk3jendXRg6Ul29uQujfsB\n", - "T0TEklz7beZeAAADf0lEQVSIX5BusPVoVxNZ1ZpINTGrjSa8PWupiX7YnhEsIzWRtB9+fQ/nu450\n", - "sCh3/LmkZqdyxl1L6t7YK3pyl8bJsFmf8WfzMDMz6yc9CfXeO8NqZmZV6Unzy3Okq+ja7ECqrW8m\n", - "3f/FakFSob/LUE+8PWvL23Ng6MmJ0kGkE6UfJ12Kfg/tTpSamVnfqrqmHhEbJX2Z1PeyEbjEgW5m\n", - "1r969eIjMzPrW73yG6WSDpW0UNLjkv6+N5ZR7yQtkfSQpLmS7snDxkmaLWmRpJsljenvcg5Uki6V\n", - "tEzS/JJhnW4/Sf+Q99eFkg7pn1IPTJ1sy2ZJz+b9c66kT5a8523ZBUk7SLpd0iOSHpZ0eh5em/2z\n", - "lvcryLX+RtJtKqeQLvudB5R9bxI/3tyOi4Fx7YadA3w9P/974Oz+LudAfZCu4JsOzO9u+5Fupzwv\n", - "769T8v5b0xs0bcmPTrZlAfhqB+N6W3a/PScC+Y6sjCKdm9yjVvtnb9TU37woKSI2kO6RcFQvLOft\n", - "oP0VZUcCs/LzWaR7mFsHIuJO2PwnE+l8+x0F/DwiNkS6mO4J0n5sdLot4a37J3hbdisilkbEvPx8\n", - "DemCzcnUaP/sjVD3RUm1EcAtku6TdGoeNiEi/eA16X4RE/qnaFuszrbfdmzeHdf7bHlOk/SgpEtK\n", - "mgq8LSsgaQrpW9AcarR/9kao+8xrbewfEdNJv+f6JUkfKX0z0vcyb+sqlbH9vG27dgHp132mkW4a\n", - "dm4X43pbdkDSKNJNwc6IiM1uPNeT/bM3Qr2si5KsaxHxQv67Avgl6evWMkkTASRNgrf+nqt1qbPt\n", - "136f3T4Ps05ExPLISD/R1tYc4G1ZBkmDSYF+eURcmwfXZP/sjVC/D9hV0hRJQ4BPk+5hbGWSNELS\n", - "Vvn5SNJ9pNt+5Lrt5kUnAdd2PAfrRGfb7zrgOElDJO1E+r3Oe/qhfFuMHDptjiHtn+Bt2S1JIt1y\n", - "eEFEnF/yVk32z57cJqBD4YuSamEC8Mv02TMIuDIibpZ0H3CVpJNJP3j7l/1XxIFN0s9J99zeRtIz\n", - "pB8EPpsOtl9ELJB0FenHhzcCf5troEaH27IANEmaRmoGWAzMBG/LMu0PnAg8JKntzo7/QI32T198\n", - "ZGZWR3rl4iMzM+sfDnUzszriUDczqyMOdTOzOuJQNzOrIw51M7M64lA3M6sjDnUzszry/wFBsEB8\n", - "UlvRigAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot(np.vstack([train_loss, scratch_train_loss]).T)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notice how the fine-tuning procedure produces a more smooth loss function change, and ends up at a better loss. A closer look at small values, clipping to avoid showing too large loss during training:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": [ - "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\n", - "AAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYHNWVt98jgXIY5ZyQMNlIJJMMwhhssI0Dxsbr8Dms\n", - "zTpne9e73qa9tnFYrzMYe53WOeyuFzA4YBAYTEYiCQQCCSRAaZQTEtL5/jj3TlXXVHdX9/SMZsR5\n", - "n2ee6a6uqq5Ov3vu7557rqgqjuM4zv5Hv319AY7jOE734ALvOI6zn+IC7ziOs5/iAu84jrOf4gLv\n", - "OI6zn+IC7ziOs59SSOBFpL+ILBSRK6s8/g0ReURE7hGRea29RMdxHKcZikbwHwQWA52S5kXkXGCO\n", - "qh4MvAu4rHWX5ziO4zRLXYEXkanAucB/ApKzy3nAjwFU9TagTUQmtPIiHcdxnMYpEsF/Ffg4sLfK\n", - "41OAFan7K4GpXbwux3Ecp4vUFHgReTmwRlUXkh+9d+yaue/1DxzHcfYxB9R5/GTgvOCzDwJGiMh/\n", - "qepbUvs8CUxL3Z8atlUgIi76juM4TaCqtQLsqkjRYmMicjrwMVV9RWb7ucD7VPVcETkR+Jqqnphz\n", - "vHIxy4EXaUmXNXyhZbkK+I6W9KpGj90fEZGLVfXifX0d+wP+XrYWfz9bi4hoswJfL4LPouEJLwJQ\n", - "1ctV9WoROVdElgLbgLfVOH4QsLOZCwWeAQY2eazjOM5zjsICr6o3ADeE25dnHntfwdN0ReB3AQOa\n", - "PNZxHOc5R0/PZPUIvnUs2NcXsB+xYF9fwH7Ggn19AY7R0wI/EBPqZvAIPoWqLtjX17C/4O9la/H3\n", - "s/fQ0wL/rJa0Wj59PTyCdxzHaYCeFvhm7RnwCN5xHKch+prAewTvOI5TkL4k8M/gEbzjOE5helrg\n", - "mx1gBY/gHcdxGsIjeMdxnP2UviTwPsjqOI7TAH1J4D1N0nEcpwH6mgfvEbzjOE5BPIJ3HMfZT+lL\n", - "Au8RvOM4TgP0NYH3CN5xHKcgfUngPU3ScRynAfraIKtH8I7jOAXxCN5xHGc/pS8JvEfwjuM4DdCX\n", - "BN4jeMdxnAboSwLvaZKO4zgN0JcGWX2ik+M4TgN4BO84jrOf0tcE3iN4x3GcgtQVeBEZJCK3icgi\n", - "EVksIpfk7DNfRDaJyMLw9y9VTueDrI7jOD3EAfV2UNWdInKGqm4XkQOAm0TkVFW9KbPrDap6Xp3T\n", - "+UQnx3GcHqKQRaOq28PNAUB/YH3OblLgVF2J4HcDB0hZetpWchzH6ZMUEksR6Scii4DVwPWqujiz\n", - "iwIni8g9InK1iBxe5VRNC7yWVPGBVsdxnMLUtWgAVHUvMFdERgJ/FJH5qrogtcvdwLRg45wD/A54\n", - "XqcTXcqb5GI5I9xbkDlHEaIP35WegOM4Tq9FROYD81tyLlVt9Mk/DexQ1X+vsc8y4FhVXZ/aplzM\n", - "XC3pPU1fbFnWAYdpSdc2ew7HcZy+hIioqhaxwDtRJItmrIi0hduDgbOAhZl9JoiIhNsnYA1Hnk/f\n", - "lUHWeLxbNI7jOAUoYtFMAn4sIv2wBuEnqvoXEbkIQFUvB14LvFtEngW2AxdWOVdXrRX34B3HcQpS\n", - "JE3yPuCYnO2Xp25/G/h2gedrhcB7qqTjOE4B+tJMVnCLxnEcpzB9TeA9gnccxylITwv8ri4e7xG8\n", - "4zhOQXpU4LWke7t4Co/gHcdxCtLXpv17BO84jlOQvibwHsE7juMUpK8JvEfwjuM4BelrAu8RvOM4\n", - "TkH6osB7BO84jlOAvibwvvC24zhOQfqawHsE7ziOU5C+JvA+yOo4jlOQvibwPsjqOI5TkL4m8B7B\n", - "O47jFKSvCbxH8I7jOAXpawLvEbzjOE5B+prAewTvOI5TkL4o8B7BO47jFKCvCbxPdHIcxylIXxN4\n", - "j+Adx3EK0tcE3iN4x3GcgvQ1gfcI3nEcpyB9TeB7bZqklGWelGXWvr4Ox3GcSE2BF5FBInKbiCwS\n", - "kcUickmV/b4hIo+IyD0iMq97LhXo3WmSHwReva8vwnEcJ1JT4FV1J3CGqs4Fng+cISKnpvcRkXOB\n", - "Oap6MPAu4LLuulh6cQQPTKb3Nj6O4zwHqWvRqOr2cHMA0B9Yn9nlPODHYd/bgDYRmdDKi0zRmyP4\n", - "SfTea3Mc5zlIXYEXkX4isghYDVyvqoszu0wBVqTurwSm5p+ry56/R/CO4zgFOaDeDqq6F5grIiOB\n", - "P4rIfFVdkNlNsofln21gWWTXnnBnQc556tErI3gpy0BgNL3w2hzH6VuIyHxgfivOVVfgI6q6SUR+\n", - "DxwHLEg99CQwLXV/atiWwzNfVGVrw1eZ0FvTJCeF/4P26VU4jtPnCYHvgnhfRErNnqteFs1YEWkL\n", - "twcDZwELM7tdAbwl7HMisFFVV1c5ZVfFubdOdJoc/vfGa3Mc5zlKPU98EnBd8OBvA65U1b+IyEUi\n", - "chGAql4NPCYiS4HLgffUOF9XBX4LMELKkrWE9jUxgneBdxyn11DTolHV+4BjcrZfnrn/voLPd2Dx\n", - "S8u5npJul7LsAYZhYt9bmAysxQXecZxeRE/PZG2Ff74WGNeC87SSScBy3IN3HKcX4QLfGiYDy/AI\n", - "3nGcXoQLfGuYhAu84zi9jJ4W+C558IF1wNgWnKcTIswXqUj5LIpH8I7j9Dr6dAQvZZkkZanwvaUs\n", - "35OyHN/oSUUYBPwSeHET1+QevOM4vY4+LfCYIN8lZTkWQMpyJPD3wGHVDhZhugjn5Dz0dmACDYp0\n", - "mMU6HJvc5RG84zi9hr5o0aQFfjbwI+APUpb5wMeAbcCYGse/EKt62YEIBwKfwHL9G43CJ2J1enbg\n", - "Au84Ti+icKmCFtGyCD5EzuOArwJ3Ar/GXs93qe3RD6azEL8Yi8D/SuMCPxl4mt47y9ZxnOcofVbg\n", - "genAk1rSZ4HrpSzvxCpbKnB0jePzBH4i8DCwk8YFfjTQjgu84zi9jL4s8DOxgU0AtKT/ByBleR21\n", - "LZrBdBbxNmAjJvCjGryekcAmTOB9kNVxnF5DX/bgZ2KpiVnaqW3RDKJzpD0K2EBzEXwU+J0553Uc\n", - "x9ln9MUsms3hPIeRiuBTrCNE8FKWfsGrT5Nn0YwiieCbEfiNwG6gv5Slry1k7jjOfkqfE3gtqWIi\n", - "fjz5Ap+O4F9P5zVi8wS+jeYj+DZgU7iuXrkgieM4z036okUDZtMcQ3WLZkwoKXwwMD7zeK0IfgfN\n", - "WzTQXAPhOI7TLfS5CD6wFhgCLBdhsAh3xge0pDuAZ4GhWKbNsMyxrY7g0wLvmTSO4/Qa+ozAizBF\n", - "hP7h7jrM834aGAEck1nQO9o007FZpmnqefCDG7w0F3jHcXolfUbggZ9hs1DBIvjHtaR7sEheqBTm\n", - "ONA6jc4Cn5dF01UPfmO47QLvOE6voS958KNIctTXkgywDgn/01ZMvQh+kAjpZf+6mkXjHrzjOL2O\n", - "vjTRaUT4A1iCeeyQRO7DsJowYAL/POz15XnwEh7bLcLAcHs77sE7jrMf0Zcsmg6B15L+Wkv6j2F7\n", - "XgS/DpiHlR8YkslNjw1CFOI2YKMqigu84zj7EX3Cogl2SjqCT1PNojkGs3F2kET7kC/wG8LthgRe\n", - "ytI/PH9cANwF3nGcXkNfieCjjZL106F6BH8E8AQmvunjooBHIY7+OzQewY8AtmpJ9zZ5vOM4TrfR\n", - "VwR+ROZ/mrQHH2nHGoQngK2kBX7ONSN5xTv30IIInkp7BjyCdxynF1FX4EVkmohcLyIPiMj9IvKB\n", - "nH3mi8gmEVkY/v6lyum6Q+CrWTSQRPDJY2MeHswhVwr9n0lH8C7wjuPsdxTJotkNfFhVF4nIMOAu\n", - "Efmzqj6Y2e8GVT2vzrmaTZNsVODXhf+dLZrB7QMYtrofx3x/JrznISrz2HcBB4rQX5U9Ba4rFhqL\n", - "uMA7jtNrqBvBq+oqVV0Ubm8FHsRWMcoiOduyNBvBD8cW8mjEooGMwIvQnyHt9prnXHNM2Kcjgk9l\n", - "0hQV6TYqI3j34B3H6TU05MGLyEws/fC2zEMKnCwi94jI1SJyeJVTdMWiWU31QdZnqRT4tVhe+9NU\n", - "RvCDGbpmD+uet43RS+dKWQbz5rNexwE7NqeObaTgmFs0juP0WgoLfLBnfgt8METyae4Gpqnq0cA3\n", - "gd/ln+X9zxORi8Pf/AaucwSwkuoWzVpS4q8l3QbMCsv5pQdZBzF09V6WnbmGYauPAt7F7GuP5vDf\n", - "psscNBKFu8A7jtNSwphm1MmLu3KuQgIvIgcC/w38VFU7ibeqblHV7eH2NcCBIjK685m++aSqXhz+\n", - "FjRwnbUEfjCwhsyMVS3pmnAzPcg6mKFr4eGXPc3AzbOAT7J+9kae9/t0SeFGCo65B+84TktR1QUp\n", - "nby4K+cqkkUjwPeBxar6tSr7TAj7ISInAKKq63N27YoH/yTVI/hOAp+i0qIZ0t6P9udtYufIp4A7\n", - "uPeNq5m4cFpq/0Yi+DwP3gXecZxeQZEI/hTgTcAZqTTIc0TkIhG5KOzzWuA+EVkEfA24sMq5uuLB\n", - "r8EyXLKZOMUFvt+uwQza0I/NU7Zw99//BvgIj58Gw5+ck9q/qxaND7I6jtMrqJsmqao3UachUNVv\n", - "A98u8HxdSZN8FFuPdTiQ7h0MAR4BplY5dgtWeAym3TKeZwft5dkhO7j2i0v0z198VD67fQADtk+S\n", - "sgzSku7EPXjHcfYT+tJM1s3hL2vT5HrwKbZ2PDbuwYk8M3I3aSF+dkgbe/s/DMwN+zcq8O7BO47T\n", - "K+lLAr8l/GUFvqpFI8LZ/OlLryJaNMOeGsfOthilD+woYiZ7b8MW8YauRfDuwTuO02voE9UkMYGu\n", - "FsHHNMm8CP4INs6cRBT4Ie3j2DlyJ0mkPQR4hn57bwdOCMd0ZZDVPXjHcXoNfSmCb8aiGceOMQcS\n", - "BX7QxrE8M3I7icDHnsF1wFmhbnyXPXgpyxgpy9sKnsNxHKdb6LUCL8JIEf4S7qYFPjubtSOCzyzD\n", - "BzCeHW0DOo4ZuGU0O0duJRH44cAWLelj4RwvoDGBj9cViec9GagouCZlmS1l+UXB8zqO43SZXivw\n", - "wATgRSIdC33U8uA3Y+UKsv73OHaOGkCM7gdsbWNn2xYyAh/2vQI4j4ICH6L9wcC21ObowU8HZkhZ\n", - "0pbUHOC4eud1HMdpFb3Zg4+R+iHU9uAHY3VnkmyZhPHsbBvUca4Dt7axY/RmEq88nhcaFHhslajt\n", - "qcU+SJ13OtAfSE+gGkOyaLjjOE6309MC30+E/gX3jUJ+GCamW8kIvAj9MEHdSb7Aj+OZEUOI67IO\n", - "2DqcHaM3kUTasWcAcAcwmuk3DqKYwKej/0jsGcwI92enHhsDtElZilTddBzH6TI9LfC7KB7Fxwj+\n", - "OGB7qM+e9eAHATtV2Uu1CF77DyWuyzpg23C2TthAjkUTIvE/ccRvplBc4LNF1+J5pwNLgINSj43B\n", - "ovqhOI7j9AC9WeBHYIJ5HEmknPXgh2DiDZml+UQYhNk3Q9Eg/gO2DmXLlHbyPXiAexm3eDTNR/Bp\n", - "D34BlRH82PDfbRrHcXqEnhb43YSBVhEGi1SdfQom5Aux+vPRJ8968NF/h84R/DgsffJZEBP/AVsH\n", - "s372OioFPp0Fs5i25eMoVk2ymkUzHBgP/JXOETxY7rzjOE63sy8i+JhJ83HgX2vsOxy4C4umqwn8\n", - "EGoL/FpgG3v7bwMuZPvY7WyZspHOefCRxQxbPYFiEfww8gV+ArbQyBI6e/DgAu84Tg+xLwX+aCqz\n", - "TLKMAFYBK6gt8NGiqVxc26LoNcA29h64A/gX/vzFRWj/9EzWbBT+BP2fGcSwp/NWjspSLYK388Bj\n", - "wOzUoOrY8Hpc4B3H6RH2pQd/BDCpxr7RPnmISg8+Lb71LBqL4J8duBP4H+5702asQYipkBUirSVV\n", - "dratZPKd4wq8lrxB1p3h/xNa0vXAHpLIfQxWEdM9eMdxeoR94sGHAdA55C/eHYn2yRKas2iSCP7W\n", - "D18GvBtrEHZQPYKHHaMfZ8J9Y6hPXgS/K/x/Ivx/lMSmGQMsxSN4x3F6iJ4W+I2YR30IZlcUieD/\n", - "Ctwftm3G6r9EinnwN/zrai3pBjoLfLbUAGybsIwxS4qIcCeBD6mWu0kE/jHgICnLIMyaWoELvOM4\n", - "PURPC/x1wFmYPXMLNvGpWibNCGCLKr9W5cth2yZgeJjgBIlgQy2BT3LP60fwG6c/wuileUsDZsmL\n", - "4AnnjgL/CHAwFr23Axtwi8ZxnB6ipwX+GuBcTOAfwLJNqkXx2RRGwmSnrSQ2TTaCT/vziUVTKfC1\n", - "Bllh5UlLGPXYkAKvZRidPXjC+aPAPwQcSiLwG/EI3nGcHqKnBf42bBLQWSQCX82Hz6YwRtIimRb4\n", - "tZioR2IEv5VE4AdRL4Jf9NZlHLijv5RlVp3XUi2CLwMPh9su8I7j7DN6VOBVeRb4M7Z60v3UjuA7\n", - "++PGRhKbI50muRyYmdqvWgQfs2jyPfjdQ3ew6P9tBj5a5+XkCryW9Fta0pgu+RA23jCOxKLpUYEX\n", - "YYgIv+/J53Qcp3fQ0xE8mE2zG8soqWfR5EXIaZFMp0k+TlLkC+p78J3SJAM7uPkTO4G/k7JMqPE6\n", - "ql1fB1rSLeF655FE8D3twY8BXpJTK99xnP2cfSHwVwJfVWU3VQQ+iFHeTFGobtGsBw4QoS0M3B6A\n", - "Ree1BllR7ZicFNnJlikDgF8CH6jxOuoKfOAh4BRgHfvGohmKFTkrMq7gOM5+RI8LvCrtqnwy3H2K\n", - "/Ah+KLAjDKpmyRV4VRSzaWZgJYaXhG3bgKEiHIgJ3a5QffJZ8gU6ToL6NXBajZeSN9Epjwex9V73\n", - "iUVDIuxFMoMcx9mPqCvwIjJNRK4XkQdE5H4RyY1qReQbIvKIiNwjIvMKPn+1QdZqA6xQaXOk0yQh\n", - "sWkOBxaHbTGCHwesCaIPFsVXE/jB7DlwJTAl/UBYa/XccLdaDyPLQ1hvoR3rUQwLq0H1FLH3MrLm\n", - "Xo7j7HcUEZrdwIdV9QjgROC9InJYegcROReYo6oHA+8CLiv4/NU8+E4pkinSUXDaooFkoDWmYUIi\n", - "8JOwyVWRZ/KeIwwEK7d8aB0wObNAx3zg31LXWETgHwz/28NEqK30rNi6wDvOc5S6Aq+qq1R1Ubi9\n", - "FROsbNR9HvDjsM9tQJtIzQHKSDWBrxfBVxP4x6ku8BPpLPDVnuNPXPulz6FsJ6klAxbRz6yyHms1\n", - "Hgr/23OuvyfoswIvZZkoZSnt6+twnL5KQ1aBiMzEMkJuyzw0BZuGH1kJTC1wyvXAEBGrvy7CiSKc\n", - "S/UUSagUyKF0juCjRVNP4HdSXeDfAJzO9rE7qLRpJgOjsUYpux5rNZ4Or2VduN/TPnz04BsSeCnL\n", - "BQXmAnQ3JwB/v6+eXMrSX8qSXcjdcfoMhQVeRIYBvwU+GCL5Trtk7munHUQuTv3ND354uibNa7Ef\n", - "dC37I+3BZ22X5cCRWL2bx8K2tMA/ndq3agSvyibgvaw7ZCidBZ7wHEUGWK1CJbyIZPJTx/WLcIAI\n", - "J6X3l7IMkrKcX+TcBbEIfuziSVKW2XX2TfMB4PQWXkczzAImSVmKruPbNFKWN0hZPp/Z/P+Ab3T3\n", - "cztOGhGZn9bKrpzrgIJPeCDw38BPVfV3Obs8SWVt96lhWwWqenHOsSuwqPsx4HlY9F0rgk9HwFOp\n", - "7Dk8Hs6xKJWBE2eyTsRqw0RyPfgUS9hw0CBm3JwV+J3AURTz3wHQkt6VupvugRwNXCXCuJDZA9ZD\n", - "+qGU5X8L9hDqYQJ/3rsuBM4EXlnwuBkkywzuK2ZhmU/jgaelLKcBf9OSPtsNz3UwNgEvu62RRtFx\n", - "uoyqLsCW/ARApHmbskgWjQDfBxar6teq7HYF8Jaw/4nARlVdXfAaHsBEHUycZ2OReU2LJuS6D8QE\n", - "P7IWy6pZnNq2Dct4yRtkrSXSq9k8rR87R6SX3ZsM3I5F8IUFPu/6w+0RwGjec8TXpdyRnTQN68HM\n", - "aeSkIpxVpXDbUAZsgcl3Hos1HvXPVZYDsJ5Lkbr43Um0iGIj+xvg2G56rrF0fs+nUcxqdJxeSRGL\n", - "5hTgTcAZIrIw/J0jIheJyEUAqno18JiILAUuB97TwDU8ABwpwgHYAOkDwMnUH2SdCqxMpT2mc+Ef\n", - "SO3fzCCrnWvH6DU8M+KQ1ObJwN9oMILPkK4oOQIUhj99IYn4xp7QMQ2e9wt0jkABhnD0j7ew+qgV\n", - "wAgpSxHRnoJ9NwoLvJTl/G5I/5yF9QSnSlniWrcHt/g5ImOB6RnPfVp4bp8F3CBSlqG13jcpy1FS\n", - "lrf24CX1KVr1nSuSRXOTqvZT1bmqOi/8XaOql6vq5an93qeqc1T1aFW9u4FruB/LepmJeeS3Y41K\n", - "rQh+FJ3tmci9wB2p+00JPAA7Rq1A+80E+8JiPYZFWI+jkAefwzISkRrOhHt3MGjjWJI6OtOwAdlG\n", - "I9U28hcLH8rxlx3Anf/wGHA3xRqOWPKhkMCHkg6/xT7HlhC+4LOw9QCmkCxg3l0CPwb7PaQHlqdj\n", - "351uy0CSsgyXshzXXeffh/wBqDWW9BrgrT1zKX2SN0pZvtXVk+yLUgVZHsCE4RDMI78X+7FVE98t\n", - "2EzTWVi2TgWqXKjKn1Obqg2y1sqiMXaMeYT+uyaGe5OxmbfLwvM3G8EvAuaG28M5/rLHefjc3WiF\n", - "wF9B4xF8vsAfd9mhDNyyl0Vv3UpjAr+c4hH8yeF/Kwdlx2CzjR/ABH42sJcmBV7KcmCdXcZiFt+c\n", - "sH8/7DN/jO61ac4HftcTA8k9ReglngK8vMZux1PZmDqVzCdJsW6a3iDwa7Af7mlYpsm9YXtuBB9s\n", - "mE2YD54XwWf33x3OL1RG3TvCeaqzadr9DNgW7ZTJmF2wPNxvVuDvBY4MP+jhPO/Ksdzx3idBpgTv\n", - "eyrwf8AxRbppUpZ+csSv+wFtjHx8lJTlnanHhjK/dDJ/+dyNaP8RmMAX6RnMAO6k+CDrKdiXsXUC\n", - "f8uHXoayjCTldjaWnttsBH9LNlKWsrxIyhLHLcYCt5L48BOw3uKjdK/An4A1YC+qtoOUpaHxmCrn\n", - "OEjKcp2U5dNdPVcBzsG+ay/Ns+3C9/o4YEqBhve5yhnA9V09yT4X+CDYDwCvxgT+vvBQLQHdiPng\n", - "nSL4KmwDVqX9euDjmJBWZ+3h93DAzoHBl40RfBzIbUrgtaSbgNXAHGZeP4MBWwfy6FlXs2vYNkxI\n", - "pmE/jq0Ui3Dezflv/Av9dvfjNW+6EPiulOX54bESTx+7gXvffDdmM9yFNRwTpSxfqnHO6WHfohH8\n", - "KcAlwOkt86ufPvar7Bi9DmtUYwT/B+DgRp9DyjIaa9iOzDz0DZJ6Q2OxBiSK6XQsgCg6p6NZXgD8\n", - "nCp2hZRlMHC/lGVG3uP1kLKIlOVd2Gu7H3hHD4wpvBy4FPudzs15fCoWcK3A3uemCPZWoUzAvoSU\n", - "ZTqWaLG43r712OcCH7gfi8weVmUtyeSgajQl8OkNqjyuWmcm6p5BS9k2fi8m7pOBp0Je+3Kaj+Ah\n", - "2jTP/+nRrJp7L3rAY2yduA3LIhqLvf67gJdIWU6p030/Htk7jwtfDZMWHg98C7goTFJ6B1ddvgxr\n", - "mEZiFtg44FrgY1KWiVXOOQNraAfnTfSRspyYuj0YeD6WRrsNK/TWdUasGM7Wie0kAn8QNrayl8bT\n", - "N08J/zui/yByM4Fp4TX0B+4hEfhp2MpcLRd4Kcs4KcuA8LyHAZ8EXiZlyfP6T8XGfpq1M34EXIR1\n", - "+T+IBScvaPJcdQkR+VnA1Vhp8HNydjsO6yEuIxlbaYb/g47lPPcn5gMLgtZ0id4i8DHrJU4G+hxJ\n", - "JJ/HBuxHXteiCWyj0n8vyuNsmtaPbWNnkkTwYALf7CArRIGfueAQHjn3VqCdjTOewbzs1VrSPVj3\n", - "rMze/n9g15Az0wenbAWAw3j45Z9i+JNw88euBL6IzcT9D+AbbJo+IFz3yJBXfztwQzh/XnQFiQff\n", - "TkZMpSxTMbsjTk47DlisJd0WztuUTSNlaZOynAcgwmDaHj+A9bO3UGnRPEpY5zYbhUpZBkpZpgbR\n", - "zHIaVmIjbe+MxcZmpmJ+/7pw7rTAd1cE/zOsptFc4EEt6UpsIZyP5OwbP/uGI/gQGFwAnKElfSAI\n", - "xi+x70dLCdH097AGZamWdBXVBf54rLFeRpMNV7DbDgH+n5Sl2qpwfZUzSOXBd4XeIvD3Y0XNHgdQ\n", - "5duq1Mqj3xj+Nx3BF0GVZ9k+djsbDjqWSoG/jq51nxYB5zFk3XBuf+/dQDsbZu8BXkhotLSkX9eS\n", - "jueO9+xl/ZzXZI6/WcrywiByh/G3jz/B5QvhhouXBbG4EWss/gMTsRjBg3Wf3wcsJCcvPpxzOvZZ\n", - "rKWzTXN2+H90+H8KcHO43bTAY6m4Pw6iNJq2ZbBq7g4t6WZsVnS8priQ+delLHdJWc6SslyGjac8\n", - "EF5zlhcCP6BS4GeG/1MxsV+HCc60EIVGi2YFKYGXsoyXshxNQaQsr5KypHsOw7DP5h3YD/n28NAH\n", - "gbdJWV6fOcWZ2Oc5Mxz/DilLUYGejQUM6d7wL4DXdcOg7kex92kR8I9h243AYSEoSJOO4GcBSFk6\n", - "9cqkLIfVsJM+DnwF+CHwT12++hyqjQ9IWQ6WsmTtvqbOL2W5OOezmE8L/HfoPQJ/N/CvVeq/57ER\n", - "62quL7h/UwIPwMMvX8q4xR/CIrsnAbSk/64lvbqp8xn3AIez7EVr2T1sI9DOukP6Y9U6O3olIoxg\n", - "2RkjGLKuI/NFyjIKs0ROw6yL7TxxavyCxOj1U8AbwopSQ7D3qZ8IA7WkO0Ikl87mSTMO2KEl3YoJ\n", - "fPaHdzb2XsZjTwVuCrcX0LwP/xpsQtox9Ns1ijEPw8qT4/dhJWaPPYMJ/DnA3wHfw+Zd7MEmss0D\n", - "zk/7siG99Sgsap6TurZZmA0YBb5dS7oL+4xnUt2ieTPWWBTlEuBjqfsvBm7B0j//kSDwWtKngFcA\n", - "34oNQhg7OAT4FUkEfz5wacH5DEdgwVMHWtKHsc+1S6mZUpYxqdvjgfcD79WSfllL+pfwXDvDtb81\n", - "jAUskLIsxoKCDoEPabYr0j1TKcsIrMG+POuzS1lmYg3f94AvYSmF1ezGZl/f84Hl4feW3t4fWyvi\n", - "2no9BylX2NA3AAAgAElEQVTL66Qs36vxe5gDlLDxx3jMBCwY63IGDfQSgVdlmypfaOCQjWQmOdVh\n", - "K80K/F0X/Y31c57GfhBPZR8WYZ4IVzW4JN4KYD33v34z5uWvY90hAzExTttOh7PyJBiy7vBUNsIL\n", - "gF1YFHgY1pNIL2GIlnSxlvS6sG0o1sBtpnLRj2oCHyNlyETw4cv9YuDrwNxw/1QsUgOzdXZjYwmF\n", - "CdHbsdiM6Rcz/zMnov1g6dnx830Ss2fABP71wNe1pN/Rkh6kJX2flnSDlvQx7P1LL9RyIrBQS/o0\n", - "lhobq5zOwnoe00gieLBg4zyqWzSHYwPV6Qlw1V7XVKwRPl/KMiBsPhfzp7+GDaTFCB4t6T2YYMUZ\n", - "4/PDNT5C0uM4HGscLsk810Apy6VSlqNSm4+kctJf5GbsfUkf32kWtJTljKzAhe2zgaekLPFz/jTw\n", - "8/D+Z/k+1ls5H/uevhV4T7BwHsM+h1dgqcfp780xWCA0AxuwTXMScL2WdIuWdDXwP8Dbcp67K5yK\n", - "fffLme3vwn5L3wJ+I2WptVLafGyG/yerPD4Hs5s/lWoEjgDub4X/Dr1E4JtgA8XtGbBlAm9t8rke\n", - "5RdX3An8b5XnnA+8jNo5vxWED+9sFr82rirVzvqD4w8sLfBHsnUiPDtoJxbJgQn7z7Av+RGYt9yG\n", - "NWJ5X7Yo8JuonLDzEDZLc5iU5Z9SXc6DqCLwmAivBq7CGoe5WGS9JvW6Otk0BSL68zAP+krgLA7+\n", - "/Su55y1Av/jcaYG/DxtPqVY24zfABcGP/yU2+Pvr8NhSEptmJiaUaYsGrPfzT9j7vQILJg4Um0kL\n", - "9p7fRTEf+8WYD70YGzAXTOB/jzWKbyFZLyDydayncTEmLtcQqqQGER6PFUE7V8ryAuh4f7+NBSHX\n", - "SlliAbsjyUTwgVvJCDxwp5TlTfFOCCh+A/xfzkD7C7Be079LWV6KRaCfqfIe3I29h98HPqElvV1L\n", - "+uPwWLRoXol9fw9NHXcs1jO8AHitlCVdE2o6SboyWC/undLamdQnYNH166UsH5KyfE7Kcin2Ot8P\n", - "fB77DT0oZemo7yRlOTTV4zgMG+B+v1gdpSxzsN/yASRjFenFirpMXxX4dSQiVBdVLlXN/aIX4VE2\n", - "T5umJX2NlnRHzuNzMcH7jEjx91NLehd6QKyauZFN04dhBccqBR620X7Ik9BRdfIkLGLZiP2wFmMz\n", - "e58mM9Ep9CqGkCPwoWDXYqx65+eBd4eHXo6NMYC9z2mBPxv4I7AE+5G9jM6DQR0CH7rlXwDuk7LU\n", - "KpH86vCabgSOZ+xDp3Pf320ksYduI/j8WtL7gIOC/ZTHb7GqpDdjP8BDtKSxImT078GE5V4sK2d2\n", - "eK3RwvgqZhc9HRqtlVjOtmA/wE8DbwiNyAeyFkKKs7CMpZ9jYv56rBfxiJZUtaQ/yRaUCzbRe4GX\n", - "AJ/FhDuOAxwBLNGSbsCiwm+HXtQnMdE9E4uWfxuuqZNFk3o/OzJppCzTsEj5c6lB6mPCe7Ia+Hna\n", - "ksEaki+G9+KXwBu1pGvz3oDw/n0TuFFL+qfMw6ux93k+ZntlBf6uMH7wc+AfUo9Nx+yzyJ3Y7+HF\n", - "edfQJCdgjes7sdf7DPZevk5Leq+WdK+W9B1YY/uT1HfgKqwRBxP4a4EPY2NG/UNDEXtfc7DEkq9i\n", - "nxu4wAPwEyp9ze7kUUJFQRFOEOH7mcfnYa36XhqI4gMjgC2q7GHPwI1ov6eoFPgjgFtYeWI7cFL4\n", - "MZ+ARWB/I8kOacPso2wEPwhbg3YPnSN4MJvmy5iQvDb41a/ARBI6R/CnAddpSXdjX8KLMEFPswDz\n", - "4fsD38UGEm8FfpY3sBe2zQf+EER7IdsmrGX9wQ8RBF5LeqmW9EfxmODt5qIlXYo1FJ/Wkl4cuvCR\n", - "dJbMTCyCXIF9hu2p/b6M/ZDjGMAKrGdjYx6Wj38A9oO/CPhKGDB7v5TloPC6BBOcP2Pv5yuwgcgP\n", - "1et+a0mv1ZKepCX9lZZ0T3i96zEBjz/+n2LjUH/FBqhfFiyLq7Dg57zwWvO83IeBUcE7B2uQf4/1\n", - "TN4ftp0dXudbMCFeImW5IDx2PBZdvwP4qJY0+x3Ivp4fhOvJbo8px7dh35FOAh9ufwuL0GNPokLg\n", - "w3kux8S4y4ilq04HHtCSXqElfZOW9DPhe1gx+KklXYAFAM8P4wCzgROCtTUE633+BgvkfovV6XpJ\n", - "OHwO1qv8C/DCVADx3BZ4VbarVvwgu5PHgJkhOj8dEyMARBiERYT3YStavazBc6fr3rdz5z+8l+RL\n", - "DRbB38jD527FunDnY1kR6zCBh8SDf4rOpQrSC6LkCfxtWDZNCROxL5L41ZAaZA1fvmOxaAmscZhM\n", - "Z4F/FJvE8mcsSj4T6x0MBr6TI/IHA2u4WDeLcCjwNW765N8wMa5M0SzYQ9KSnq8l/a+ch5ZiKZb9\n", - "sIj1cezHOZfEokFLuktL+j+p427AovEjsJRQxayD52MDhi8J1/tJLLsDQkE6Leny8HmN1ZIeHwS4\n", - "GZZjkeHicI2Kva8PA6doSdMR7fexVOPH8xrD0Gu4gySKPx1rmP8R+LhYCuxLgD+FQfn3YL2Pz4RI\n", - "dR4WXd+gJc0GPLnUaNSWAr/DGqJDoUNgpxDsKy3pQ1hjGhuJGVRG8GDiebaUZVDcEBrdi6QsV0hZ\n", - "XlXt2kJPc3Rq07HAohDIFOFmzDqNRRJfgEXvD4WemgIfwmyxM4FDw3XOwVJKn8Aa61guPW/cpCn6\n", - "pMD3JGEy1EbsCzcXmCFCTJ86HFiqyk4skjq16HlFGIBNrok/wHau/vb62GUXYQwWAdzHo2eD/WB/\n", - "gGVggH2p1mPRVbUIPvrvkC/wPwBOD8/5K8wa+FXq8XQEPx14JgyOgQn8ktR9oOOH/AcsIn6ZlnRr\n", - "+KG8Eouar5SyfF3K8uFwyDyskTkZ+JWW9H+4892bMOHKZvDcIdL8zEdMhJ+HDbRuDrn7K7H3ZV2N\n", - "467AxKVjKUgt6d1a0ie0pBuxxvcj2A/49WHg7b1Y5EbYvyvzJsAao5NIRXda0vu1pG9Vmx2d5leY\n", - "pVNLKG4lEfj52MSah7HG4VLMokk33tcBA7DewlPhdbeCd2I9vYexxrc/9p24Vyvr/i8gyfzJWjRo\n", - "SduxQCs9/vMWrBFcTu3o/mTgrtRY0fGkBr8L8DesoT8F+00dj2lDx/iKlvRuYEr4vyTsM4XEav4r\n", - "ZlUeSLMJITm4wBcj2jQx6ySmrEVxAvtyTQ3CXIThmD0TI5t2Ktd/jWLSDv1GaUkvw6KCT0FHxsWx\n", - "QVBzPXgqBT6bRUPwEeO4wq+xga505Jr24NNdZrBB54+Tzzu1pBeEtMb4XFswC+tG1s9+ht2DLgl5\n", - "xsdg7+EYkmnro7Av/iAR0gN8E+hajfoHsPfknzF7BpKB81oCfy/2wzufnO6zlnSZlvR/1OYg3BrO\n", - "/xpaO8tyOfZ7rdt9D43Jz0i+m3nchllp07H3O57337DP+vbQAMZzKvBfWPbOHbQILenq0GPahtWl\n", - "mkHn7xrY7+uoEN0fQH6K9FVU2qRvAS7GxkxeGCzIPE7Cgo+YxXMCjQl8jOBPwXojG7CApmIAPTXe\n", - "cif2XXoyjLmAWV7vJOkhtgQX+GI8itkls7DWOq7yMxeLZG1SlP24T8k7QQ7ZZQnXkS/wG7B1YNGS\n", - "rtCSdqyUpSVdHm5WWDQivEqET5AMsEJ+BN+BlvRxYGJmsCwdwR+LZUTE/Z/Ukl5Z5Vy5K1FpSZ/R\n", - "kn6Bbyy9kY2z9mIRZGwkR2MLuQzHBGd9znsyhGQR8YYJjdmrsZS65SKUWHtofH+qWn7hB3cl9iOu\n", - "133+T6wR/rKWtOg8jSI8jqXHPlpvx8AHoGbq8Q3YBLI7gRviZxaE9g1k0jADP8Gqst6Z81greAgL\n", - "Yl5O53Wf78Nsr+nAE1VE8Crg5cFymYVF0VeHHs4dwItD1tibxQrNxeDhBOzzf0mwTk4jsUCL8Aj2\n", - "3ZyLNQy3Yb26bIZU5E7gdZg9FfkrNs7TMv8dXOCL8ijWIi/BPrROAh9oxKYZTmW9nWxZgIOxbut6\n", - "kjVc+6fsoTRZi+Zw7Etaz4OvIB2xpa5pSJjQcQydo6pmaePRs3ZiPu88rOGIQj4NE/sNmMCn35Mh\n", - "kLtqVWHUsnBeh2VmnMfy+XFMoFYEDzvargFg19B6P8CrsCJm3+zKdeawHLPECi1XGKLiqh5yiPJP\n", - "xyyML2ceu1lLem3OMY9hPb3rso+1iIewAf9hVFqFYK+/DZtBnfXfIw9gmnYENiHtl6kIOdpsP8Je\n", - "8zcx2xMs0PgqNrB8ATa+UO05OhEam79httJ2TOD7U1vgJ1Ep8A9iv3UX+H3Ao1g2yKJwe3YQ2qOp\n", - "7AbfhE2LL0I2gs9aNDMxG6EjgsfSrfKqQGYHWUdi0UDaokmvJFWIICbfAf6FTATfRdp45GWKTXrZ\n", - "FXz8+BqnURnBj4OOAdaBdFHgAbSkv9eSXgEMYdXcrdg4yPaaB/38qnu56RPw+a15tW7S596lJf2g\n", - "5qfUdoW/0OIaMmEA8L+1pIXniGhJXx/swe7gQWyg9S3Zxin0MB7ABppzxTcI7fexaP2fMEspciWW\n", - "0jgDK818AXBhGFAejn3PT8NKRmQnVhXhD1haJVgUvwtL0MjjvvB4h8CH1/dDkkmDLcEFvhiPYi1y\n", - "h8Bjrf5S1Yo1YW8HjhIpVK2vnsDPApapsgNQEQZjX/6z0icRoT8memtIIviRWAMxjETgn6K5olmX\n", - "ABdi3flOC6k3SRvLTx+ICXlsIEdjqaZR4LMRfBTWLgt8iqEsOW8T8JW6vueKUwZy7RehVdUyGyQ0\n", - "HC3Lruil/BY4V0taLfK9D3gpNebAaEk/g/2O5mpJ70htfwyL0l+rJd2pJV2MBREfBu4Ig7SLsYDi\n", - "941euJb0Mi1pXBz7duAd1XpboVexEHME0ts/piVtVS8ZsMEKpz7R91yEWR2zsXSnv6R3UmW7CO8H\n", - "fiXCNaodk4fyyPPg03bETJLZeusxAZwFHCHCeFXWhMdGYlbPNmBwmNw0AhPEWSQCv4JkvdfCaEnX\n", - "SVn+AzihhYM/bewZOBTlKqRjgZfR2Be+msDHxqtpDz6HoWyddKCW9F8K7Btnsh4GZCfsOC0gpJPW\n", - "KrJ1HzYxr6Z9EmySJTnbs0kBv8IGYKNF9X1ANZn/0BSh9/HTOrudR41xn1bhAl+MdZivtgiLMg/C\n", - "JrF8LrujKj8U4XZSKXJVqBrBi9CG9RjiIF20V2ZivvxpJJOR2oANqjwrwh4slS167UeSlDVeAUwT\n", - "QRqo4RP5HPllEJrFZrWuOKXE9JtjSthorPbIYcAzquwSyRX41kbwxV9XWuCdfUMsIV7YH6/DrzDP\n", - "/zYALen3WnTeumgo79HduEVTAFVUlRNV2aTKFiwqPh4bVM2jncRTrkYti2YmsDwlxOuxruNUzFec\n", - "nzqujaR88g4sch+JWTJHUjnICplUySIEr7b24iiNYQL/g5tWq1VRhETgj4YO2ytdzbKlFk2wtmKB\n", - "tyIMxz73w1vx/NUQ4TIRWloZcT+ipQKvNuv5SyTVUPc7XOCb41Hg9horQq0HRtepMFkrTXIWlcWU\n", - "NmBivQ6rBTM/9dgoEoHfTiLwi7Bocxt0LI3YlE0jgoSJWa0i1qUZnto2Brvmg0kEvjsj+Gj1NCLw\n", - "d9H9EfzbyB9If84TLJx/pvhCP0XO+ckWTtrqdbjAN8cjWBGhXFTZhRUnqiVGI6gU+HSjMJNkIk58\n", - "7JiwbRE2oSrWEclG8EMwgV+IRajpRqgpgcemqf+47l7FacOsrrTAxwheSKyp7hT4IZn/9RiOfe4H\n", - "ijS8ZGAhQq9iAHCGSOFsrOcUWtLPF00VdQoIvIj8QERWi0juEnoiMl9ENonIwvBXZMCqr/Nx8lcO\n", - "SrMeas5qrYjgQ6OwAxPnvAj+WCyr5llsZuUR4bE2kog3G8FDawT+NJpYMq4GMa1zOHTU9IlTtDeR\n", - "vJ703IDcQdYu9CyGZv7XI35eD9J9Ufwg7DvwaZJVkRynaYpE8D/EUpNqcYOqzgt/n23BdfVqVFmt\n", - "WndN1mzaIwAinCbCyXSe6AQWsU4gP4I/nET0nyZZuGIMiSDuwCLcYVg0DJX53c0K/Imp52sFbeFa\n", - "YgQ/ClifspHi69mS2mcwVoM8G8HfK1KxFF9RmrFoWiLwInxAJHfG8xDs83qQrpVkcByggMCr6l+h\n", - "Itc7j2aWaNvfiamNWd6EpWVlPXiw9Lu3kR/B9ycR/dXQMRA3iWRB8e2YMGwPx++lMoJfSYMCL8JQ\n", - "TNBaMvAXLKiRVAr8aJKUMVvtykgL/BBs0DVZ1s0Kjx3S5LU1KvDDSAS+qwOtp2NjKlmiwG+htdlC\n", - "znOUVnjwCpwsIveIyNUi0q1ZBn2I3AgeE9iTsYlSWYH/HLYk2GwqBT4KXty2ikqBj5koO8L2Tars\n", - "xrINumrRHIfZPSLSEtEZio1PbCAR7zEkr/EJCgo8SeXAWouJ1LqOeN4ixAb5UZLl85plRJXnjQK/\n", - "lcrxCcdpilbkwd8NTFPV7SJyDlZNLXdNThG5OHV3gaouaMHz91aqpUpOw1bBuZCMwKuyQoSfAW9S\n", - "JT2yH3tQMYJfRbIy0WQqI/hJJCmR11OZUtaMwJ+IlSiegDUeS2vvniDCcaqdClPFQeG0eI8mEfVL\n", - "sAYA7PUMFOEAzKJZg5VYjZyO9VKaFfjtNC7wT2auoRmGV3lej+AdRGQ+lZlyTdNlgVfV1EChXiMi\n", - "l4rIaNXOlfRU9eKuPl8fomOQVYS3Ar9Q5RlMYF+DVTXMevBgEy+yNSzWY/5zTA+rG8EDqPL2zHlW\n", - "YBk4Eh4vMuHpJKww10mYyBcS+CDKt4gwVZX0qko1BV41mYauioqwFRO7GMGnF7uej+UwNyPw8Xzd\n", - "KvBh0trWMDgeKRTBNzkpzenjhMB3QbwvIqWqO9ehyxaNiEwQsUL5InICIHni/hykHRgTxPTbwFwR\n", - "RmBe+iNYUbLO06ltAPermc1PAQ+mRGI1MDGcOx3BR4HPazgIA8PPYEWrltTJ049++YlYGeR0o1KE\n", - "GVgAkU0prBfBZ4n7VVg0IkwJ57qZggIfqnHGBZKH0pzArwLGhgasCD+gcj3ReK5qAr8j2GvPQkUt\n", - "fMdpmCJpkr/ASmEeIiIrROTtInKRiFwUdnktcJ+ILMJWur+w+y63TxEHWcdhP9xDseh9RZgZe4fa\n", - "Itt1UbU1H1ObotgOB/aG2bXQ2aLJYwW2fuUU6Milr8Y8LJpcgTUqjWTSxJLK2XGIRgU+G8EPCw3P\n", - "6dhM4vXUKYOcYiYmuGACny7QVo/hJJH4Ooo3dvOw3lqaahH8YJKsJ/fhnS5TNwpR1ZolSlX121iE\n", - "6lQSB1lnhfuHYiK5suoRNch01ddgkfE0EnsGkgg+d85C4Nck67AeFK6pGhcAvwlWySoaE/i4uHVR\n", - "ga82OzHuNzjssxebDDQXKwu7kcrFmmsxHBgVSg/HCH5eA8fGhjTaNDU/y7B4yQRsAttoVdaHxim+\n", - "nizRooGkYVubs5/jFMJnsnYf0YM/CBPeQwgRfFdPHLrwG7EVbp5OPbSdlAdf5djPqvJ7zOc/qNp+\n", - "QYguICmalk7NLEIjAp/OosmStmi2Y1lBQ8O1PIW91qIe/HDoqLY5FIvEG53oBMV9+COxErTXkyzI\n", - "PjRcQy0PHirfH8dpChf47iNm0czCfuAdFk2Lzr8aiz6zEfwgals0kWUkvYs8jsa+H7Fee0cEL9Kx\n", - "+HEHIpyQ8fTnYAOyRT34aqVT0wK/gySynYg1bhspLvAxM2U0zXvwUFzgj8J6U78DXhW2xWJv9QQ+\n", - "vk7HaRoX+O4jWjQHYROYDsIEtVUCvwqrT5MW+GzlyFrUjOBJ2TPhfhzYnQjcIZIsHiLSsYZmevxl\n", - "dtjWVQ8+bdHEDJNh2FjDKhoT+PTzDQnHUmUZxA6CpTOEpPTyUzQm8FcBZ4WB2XRefxaP4J2W4gLf\n", - "fWzEBv9mY930J7GBwVYK/DwqLZq4TFwrIvgzgaszzzcBW7oQbKJWTAP8DlY75SsitAVBPAhb2abV\n", - "Fk06go8CPzJcy7w6q2nFiHgUyXKGRXLhhwLbU4PiDUXwqqzDspdG4RG804O4wHcTIdtiCzYYuAxb\n", - "ULiVFs0qTBhbFsGLWI55KOB1FJWLbEcP/kxM4E4M28vAlap8EVvY+HOY+G3AJlnFuQBfEOF9ZAQ+\n", - "FBobT/XlALMWzbZwjjbMQ09H8G+kdpGudATfiMBny0rUFfhgV8UIHpLCacPD7appkuF2RwMo0r01\n", - "6J3qiPAGEd64r6+jWVzgu5eYwvcEJvDQWg8emo/gV2CWywAAEY4EHgoWzFHAY+mCaqH2/bPAy7Fa\n", - "Oi8IlsMbSOqX/zNm05yN+e/papBHAx/FBD8dwc/BFjepWGQ5RV4EPxtYq8qe8FrbgqBOwUrtVssO\n", - "6zGBxywkJfmcYunjEVjjXCRNMkbwN4e6O07Pczz23e2TuMB3L+1Y3vsuTOA3pXLWu0pc6i4vgs+d\n", - "6JQmCOpT0CEccWHts7Ev9R05h63CMkB+hPn/Z2Cvb1k4ZzvwLUzwo8BHi2YGJmCnYgK/E0vTPZKk\n", - "8csjz4OfE64lllnejQnmVEwUj61yrmHYjOBGLZpcga8zUSzaM3EMIwr8cKoLfCcPXoSBWA9lUp1r\n", - "3KeIMFIk+RxFGN/AZLDeTByv6ZO4wHcv60nqxzxAZQngrhIFvtkIHoIPH4TqQsxLfylwAuafZ1kN\n", - "XK/KJmxl+zLw35l9voo1AksJq1SF888ALsZEfWMQvi1YMbNOM3pT5EXwc6h83dGmmYKNG7y4yrmG\n", - "Y+KcjuC30bjAxwa01vKHp2AzgCPpCH51fE4RThThv8I+eR587AHtE4EXYYgIRUqAzwQOTjV6P6L6\n", - "59CXcIF3qtJOUlfmFiw6bhWrsJmVaeFpVOCjD38cNoHoEuwaX0B+BP8E8Odw+1asPs1v0zuEImlv\n", - "CdvXY8I7FtiFzSK9mcS22IL1FopE8GkPviOCD2zEovLJ2MpTtQT+cZIf7fbwVy8XPrs4i5Jj04gk\n", - "lhfWu7k+9XBckrEjgk+t3hUnauVl0cS68Psqgp8DfCTbWxHpVEhvKqYncQLXqPDX13GBd6qyBisv\n", - "GxfubuWsxEeA7OpZjQyygkXwLw3n+aUqK7DIeA75s2HfiUVmYAJ/vyoPZ3dS5SpVHg4DzdswD/Nx\n", - "VXapcmqqUdqCWT1FIvi0RTObzgI/OzzXH4HjRDoi5GkiHWUThmGNVFWLJmTiZAU/r3b/Sjqnmf4Y\n", - "+GB47nlYYxaJ4xEjsIZPsVWs2kiEsFYEv68W4p6MvfcdvZUwHrA0I/oxbXZ46n9FmmemAewrjCJ/\n", - "1nGfwAW+e/ks8M3uOLEqO1X5embzDpJiVUX4C8lCIrHcxB+AhcHbzj7ntjCwCfAz4PwCz9GOifjj\n", - "OY/Fsri1BD7WZElPdBpIZ4vmSGBlGBi+FTgvPPYV4MPh9nBM4HMHWUM+/B/pnIkzHDqt4PVj4Asi\n", - "9uMPYncsVs//VGBRZlH2tAe/OfW8I8kX+KYieBEmiXBJkX0LMjnn+edi15we+I1lqOPAcCeBx4KD\n", - "l7fw2lqKCB8V4SOZzR7BO/mo0q5af8CzhawjVWa0Hqrcqsp5qnwoVdL3P4EvFDh2e170nkM7Fs1W\n", - "E/h1YXC2GlswkdsdGpcotNkI/kiSVMvLgPeLMAkr9BUHetMWTV4E/zLsPXxPxoLIi+B/go2rxAyi\n", - "KdgA7k6szs/1mf3THvwWMgKfmkwVbbYYwY/DMp6KWjRHYuWoW0UU+HQPIha+OyK1rW4Ej/WyevNg\n", - "8fNI2Xuh0W5I4EUYWq9Ka0/iAr8focoWVc7t4jmWqPK7Vl0TJmzHULnwSGQLtf33uM94ksg2RsVp\n", - "gd+EiU0s/nUFJjjfDM8bbY5o0UzEqnDuplLg34algP4v8KHU+eNyfR0EH/4i4M0ijMcasYXAd7EV\n", - "u/IEPnrw2Qi+H5U2VHzdMYK/j+IWzURqD/42Sl4E/3zs/U/n53cIfKqgWofAhwZsBq1d27fVjMHS\n", - "f6NAD8YK2zUSwV+Nfd97BS7wTnfTjkVG1SL4WvZM3Gckld40dLZoDiUIfPD+L8MspEuojOCj4MeG\n", - "Yjs24DkROA0rrnYJ8N7UDz0vgo8DytcBL8Fsi4XAT7ESDbdkdq8VwYNZHtU8+PsoHvl2h8BnexBH\n", - "YVVJ0xH8NOy9HYZZaOmyDITjD6T3C/xokkJ5sRfXiAc/kfylOvcJLvBOdxPtlzyBXwPcW+f4dK17\n", - "SAQ+XeZ4IyYe6dmw3wU+jWX9xAg+ZrDsIiPwmJVzhSpbVXkUs1smpo6rNn/hGuAcLIJfpMoGVU5U\n", - "7bBaImmBz0bwUJnZE193jODvB8aHKLgeE7EGq6Ec9ODd51kLk7AZzRPDfoOxSPx/CQIfjpuKLUie\n", - "jtzTAh/LYvSYwIswQoRzGjhkDPAwySzt0dhn1UgEP5JeVGLCBd7pbmoJ/D8Dl9Y5ficmtmlvemt6\n", - "li10rF/bUZ9dlfWqfJbK2bTRatlAZ4E/ksrSDA+RpC/WE/izsQHWhVX2AbORhmGikY7g27CJWtUi\n", - "+HFYw7WZYpFhFNBGC5XdTP4EscnYussxgj8cE8FFwGGh0WnDZjk/Fa45Pnda6GZiEX5PRvDnAp9p\n", - "YP+xWGG4WM9oFPbeu8A7ThVioa1OKaIhbfLZzodU7BMnRKVn6T6V2S0KfF49m21Av1AULc58XU+l\n", - "pz8EOAyLQCNLSAQ+2ip517cyXM8YaqxXGwqVbcAyT2IEP5iklMVYzO+NC46nI/i1mCVVxKaJvY7C\n", - "No0Is7AIe1Jmez9MkBemzvt8bIbuxvA6poW/lalrzovgZ2LWVU8K/HEUbOhCL2QM5qGnI/jCAh9S\n", - "QAdRfI2BbscF3ulu2oEnii5PWIW0wN9HkgIZiXn/nVZYCg3EOkxgokivpzKCH4qJeXrA9yHg0PDD\n", - "PxqrCFqNa4B7CrzGdZiVlPXgl2NZONtTpQ22Y172REzgV1Fc4PfQmA8fK4SOy2wfhzWeT6Se+/kk\n", - "tjqGaqcAABLySURBVNoDmE0zFXvvY0rrcKyhyhP4estEtpJjybwPYd2CdhE+GVNcA0Ox9+1vWM9k\n", - "MInAD8qzr3Iss2i3eQTvPGd4CMu37wpbCBaNKntVOw3MbsQEu9oEr3YqBT5r0UzCxCjdQCwhWYXr\n", - "AGqXmfgeFMo9Xxf+b6VS4JdhVkiHbx+EfhtmE6zHIvgimTQTw/kaFfh2OotvXNA93XuYS77AryCZ\n", - "1zAc69VkPfj7gf45E8laThDfY+gcwZ+Drc9wHvC+1PYxQHsYO1mCWXajSHqgg3Ke5gYRHhLhg+G+\n", - "C7zz3EKVe1V5dxdPk47g81gJ3JZZtzbNOkxgom+fjeCPBZZkjo8e/EnALTXOjSpLVbmq7quw64iT\n", - "xbaTiOHjhAg+s/9WYENI56xq0YgwV4SDw0St2GAUEvgQmZ6B1RTKRvCTMaFux9IfR2C2R6yxczNW\n", - "onkOnS2arMDPDNe1GpggwgHhfN3FbMIAaSbSPgObw/DLcE2RsSQN8IOYZTcaCwaqFaSbAXyeZEZ5\n", - "FHi3aBynAWoKvCorVTmzxvH1LJrxVPrvYLbJBOBFdE55bJZ2kkJlO0jy+9diUXD2NW4hGbuo5cH/\n", - "G/CecL61mCgVFc/ZWHG4v4XjSdkRk4GngvW0Bot6HwzF5sAahaXAB7AIPm3RdAi8CP3D63ucIPDA\n", - "m7BJdZ0Q4VSRQguq1OJYrJ5SbEgJaw8cB/w1XF/6/RxDkhAQG/e40tgO8gV+DHAlNlGtP8m6BB7B\n", - "O04DREujWeoJPGQmXIXB38eA19M6gV9HZdrnJMxW2kD1CD4K/CpyLJpQTvgMLE0zrnK1meICfyY2\n", - "KWsNSQT/DhG+E64vDmg/jUXrHRO4Qq/m77HofQmVFs0qYHCInidjM5afIRH440nyzbN8HGsAusJx\n", - "WFZUeuWwk7D6SVvC65qc2j9P4KM91imCDx79gSRrG7ThFo3jNEWHB98k7VRaNDeSjAvkCnxq21Dg\n", - "zi48d5p1JBH8dkxgNmEikifw6Qj+CeDwnMG+UzCxmhfOV1jgg/i+H6srtJZE4Odhs3RfSSLwq4Cz\n", - "sIldHYRsmkNVuYlKiyZmCg3D3vvl4ZAo8PMwiyOPcVjJ6q5wLPa5bSYR+HSFzzyBjxbNQyQWTRT4\n", - "7GSnMVijFQfxx2ACv5m+JPAi8gMRWS0iedUF4z7fEJFHROQeEZnX2kt0nLoefD0qInhVblDlN+Gx\n", - "eN6sRQP2Q1+k2qXnzl5HtQh+APkRfBSdW7Hfa7YU8kuAX2DCciImoEUj+FdjDecfMIGPg6wzsHLP\n", - "6UXdn8YqYN6cOUfs7cTrjQK/hUTwZ5DMg1gTXvfzgWEiuWmM4+m6wB+OZVxtIXkv0gK/ClvRLGpg\n", - "OoJ/BGuUJlDdg0/vHyexjcSybvqUB/9DrKRsLiJyLjBHVQ/GKuld1qJrc5zICiprzzTKOqpPVtqG\n", - "pcfl5bD/gSo+cZPch/m/0Fng47Y0HRF88MEvAT6V2eclWAXMhViGSKEIPvQEPg18JkSha4FxqcVZ\n", - "PodF9jFjZhVwe2aCWZa0RZMW+MkkcxRWY72O1ZgFlhfFjwNGi1RE2IVJFQlrp9KiOQyboEWwizaT\n", - "TIIbG/ZHlZ2Y7XQ4VSwaKgU+TqaLAt93InhV/SvJFzCP87DSqajqbUCbiPTmehNOH0OVL6jyrS6c\n", - "Iv4Q88RpFXBRlfLIf1Xl8i48b/Z8d6tSCne3YxHiRkxEoLMNtRmLeCO/BGaIcDJYeQFs4tTtmMDP\n", - "o7hF8wIsz/6qcG3bsdmoMeJersqb4nKMwLXUL32dtmi2kMzGjemWYMJ+Wrje5WQEPowpDMFstGaj\n", - "+CFY9dEo4iNSM27Xp/ZLD7SmBRus99af6oOs6aybtEXTtwS+AFOoXEh6JUllOcfpDcQfYl7BsGdV\n", - "+X4PXw+YwPfDIvjNmP2RjeAvxnrQQIcV8j1seUUIA6Rh+91hW1GBfzFwdSb9cw1WGE6Dt96BKjeq\n", - "8ss656xm0aQHa1djdtRCzLaZmTlHFM5baV7g20hmN8drGImVuEjPnE778GkPHsyyUyrrBqWpZtE8\n", - "RS+yaFq1KG524Cc3Z1hELk7dXaCqC1r0/I5Ti6oCvw/pWH1Llb0ibCQj8KoVFTMj15KI/otIBotj\n", - "HZxV2KScegJ/JlYaOc1aLPskr25QEaJFE0s7pAU+HcHH691DiOBFGKXKBsyeWYP1Sj7a5HWkBT4O\n", - "smYjdOgs8NkIfkP4bKoNsuZZNHfTxQheROYD87tyjkgrBP5JktVcwKL3vJogqOrFLXg+x2mUWhbN\n", - "viK7vGK6Pk4t7gamiDABE+m44MgKTKCfxESyqsCHJQWPx2yQNF0SeFV2iaCY+GU9+Cjw0XJaiAni\n", - "MSKMA5aLMJak9s4dwPEiDMizz+qQjeBHkGTEpKkl8A+m9o8lpQWYptpROyg6F+uw+QRttMCiCYHv\n", - "gnhfREpVd65DKyyaK7BFlhGRE4GNqrq69iGO06Nsw6ab98oIPvzfQAGBD7Ngb8Dyzw8k1NMPVstc\n", - "VZaSsmhE+IecGaNxScFsg7cGE/5mI3iwRnQy1SP49diYx9MkHvw5mAUykyDwqqzDBqSbieLzLJp6\n", - "EfzYzOO3Aq8Nt6NFcyhJFlHa0klbNKuw2jX9m7jullMkTfIX2Cy3Q0RkhYi8XUQuEpGLAFT1auAx\n", - "EVkKXI7NqHOcXkMqV7k3CnwUokICH7gO+BhwXdpDV+3wuePAogBfxPLZ05yJWT1Z1mK1Zboi8Fuo\n", - "jOCnAnviQuth8fnvhn2jB/9yYC+WmhgjeLAc/Y+KdFrcHAAR/l2EN+Y8lLVoRpAv8E8Dk0MVyIEk\n", - "cxRizaN7wt04yDoZmCrCMKpbNLEuUq9Yx7WuRaOqbyiwz/vq7eM4+5h17B8WDZjAf53MpKMUUdTG\n", - "h/+vxOqvEFauuoDQ686wBssc6arAx/9bsAYjbywBLNodiaV6XoEJfCy3gCrLRPh3bKzg/Jzjz8WE\n", - "9WeZ7XkRfDWLZhIm1utr1Bvajs1qjfME5tB5kDVm0WwiyR6qGVCEBni+aqflHVtGqwZZHae383Ys\n", - "D723kBX432B54UV4AKvMmBeFQyIwh2CTds4KdVhmYLn9PyBnwhJJ5NxViyb+34Jl5WTr9wMWJYuw\n", - "AhPeWzGBH0GSEQRhXV0RpgfvG7BBWez15bkQjVo0B1GZQZMlzjqO6d8H0zlNcmx4nhjBF/HhZwN/\n", - "FGFgrWJ2XcFLFTjPCUIO+u59fR0pKgRelf9WrbkiVAfB5jgqLXiZx2O1ynlYHZ17sFmrVwGfV+Xf\n", - "qghKKwR+C1bXfg+JwFeL4MF8+Kuwxi1aNB25/6psw3of/5A57kSskZos0rF2aqSoRbMKi8r/E/hK\n", - "jWuMHvx4bK7A8zLnW4/1EPphK5BtpUqqpAjDwqAy2Nq2B9LaNXQrcIF3nH1DnNRUrYZ9V9mMZcQ8\n", - "DPwfllr5J1W+V+OYNdhg9Joa+9RjK0kUvwVLL8yN4AP/io3dLcMi6bQHH7kMK4A2MLXtJOAmrN7M\n", - "C6BjkhQUtGhCg78BuEk1mW+QQ/Tgx2MFzA7HIvSN4TzPYu/3ptBwxh5UBeH6rgG+HTYdGf5nyzS3\n", - "DLdoHGcfoMoeEbZRe5Z4V4gCfyUWxc8FPlLnmEeB/2rB6ltpHx5qRPCqVqlThD1YBL+ajMCrskSE\n", - "e4HXEcYSMIH/Ojbn5sQwEPtKbH3cohYN2HjE7XVeU4zgh2ONyqsIOfKpfdaRzAfqZNEEv/3SsM8p\n", - "4f5R4eFx1FjusSt4BO84+46jVJPMjRazGfOoH1ZlhSpvDlP3q6LKRlXe1cXnTQt8jORrWTSR9Zge\n", - "zSRn/V7gq8BHRJCQgngC5tvfimXhfA6zTiDfoom1aSoIM3R31rm2ONFpPCbws3PO1U7SG8uzaE7A\n", - "Jqa9FAusp2ER/EqSejgtxwXecfYRqTov3cFmLFrslsiwBnFwldT/WhYN0JHKugzL4snr1fwBS2V8\n", - "EVblcnXIlb8t3P8B5sfHhTfyIvhsFk1RYgQ/gaRCZVbg11Ep8FmL5u3Ad8Pcg1uwmaqzsFx/t2gc\n", - "x2mIzdhqTD2dGtqQRZNhGTAxzyIKGTdfwQZDJxKWyVNljQgfwgZK34iJcFbgh2GNXZ5FU4S4MPt4\n", - "zEJ6OOdc60gW/KiwaMLM4QtILJm/YYL/GMnM4wrC5LTRqh119JvCI3jH2T/ZjAlRT9NVga81wPsz\n", - "LPPlDapJGWdVvh6ybVZg1keHwIdsnp1YBN7sgPYOTIQ1NJiP0DmtslYEfz62rm8s4XILcDrWG+hY\n", - "aEWE14rwcxHuxno972zyejvwCN5x9k/2lcAvhI7aMRtJVlUqwjLy/Xego0571bUpqBT4tJjH1M1m\n", - "c823Y1VzY/roYqygW5rVJIOsW4GhIhwJfAZ4IVZaInInlm55P/Z6Dw/bP4FlPH0TuLvemEkRXOAd\n", - "Z/9kAfR83r8qfyUsahIE+fgGDr+RrrkKK7CB5d0ZcdwMXcoM2o6Jd+xdfJnOFXQvJdHTrViJhndi\n", - "kf0LVZMlIVXZIcKd2OIjQmLRHAR8X7VLi9tU4ALvOPshqvzvvr6GRlFlEWHFpSZZga3FujGzfQvU\n", - "zZSpRZyUtho6Gq4KgkUUiR78kcCn0uKe4mXhOk/AVtIagdlILS3U6B684zj7Cyuwgcw8gW82gwaS\n", - "SWlFJ4BtxWyio7GJUZ1QZX0YTI4e/CxgWatLFrjAO46zvxAtmqzAb6b5DJo4ULuL4tH1VqyUwuOx\n", - "imYN1mJ58LMoXouoMC7wjuPsL6zE8ujzIvimBT6wneIR/DZssPeOAvtuwZYw/P/t3VuIVVUcx/Hv\n", - "r9IHMwgJxi4D+uDD+OQQDJFI8yT60oWiFAIfeoju0EMiSPrQgwVBD0EEGViEJUViEGRBRRAkkrdS\n", - "KcEBLS8DRSQSKP17WOvk8Xgue2b2OXtm+/vAxj1775mz/LP8u2fv9V9rBMqvi3CCN7O6+J00dUHZ\n", - "j2hgagm+UXvQM8E3rVUwhu/gzczay5OHneHaBP8ezPil80Wm9ogGes9x0zBJmjCt9ATvUTRmVien\n", - "aEnwEXxfws/9hrw8YgEXSENUD/W6MJskvZAt/RGNE7yZ1ck1Cb4MEVOqKj0FPDyFQqVGVawTvJlZ\n", - "Fx+RXrZWJo+6+WwK3zJJWmi89HmDnODNrDYi+LjqNkzDJH14/g5+yWpmVrWz9GlaZ0X0Za3Xaz9I\n", - "iohonb/BzOy6lhdEXxDRfijnTHJnoTt4SWskHZf0q6SNbc6PS/pL0oG8bZ5OY8zMrjcR/NMpuc9U\n", - "zwQv6UbgTdI0ncuB9ZJG2lz6bUSM5u2VkttpLSSNV92GunAsy+V4zh5F7uDHgBMRMRERl4APSYvb\n", - "tvLjl8Ear7oBNTJedQNqZrzqBlhSJMHfSRrX2XA6H2sWwL2SDkn6XNJyzMysUkWGSRZ5C/sjMBwR\n", - "FyWtBXZzZYVzMzOrQM9RNJLuAbZGxJr89Sbg34h4tcv3nATujog/mo4NZriOmVnNTHcUTZE7+P3A\n", - "MklLSLO1PQasb75A0hBwPiJC0hjpP46r3gp7iKSZ2WD1TPARcVnSs8AXpLmWt0fEMUlP5vNvA48A\n", - "T0m6TJp1bV0f22xmZgUMrNDJzMwGayBTFfQqlLLuJE1IOpyLyPblY4skfSnpF0l7Jd1adTtnK0nv\n", - "Sjon6UjTsY7xk7Qp99XjklZX0+rZqUMst0o63VTouLbpnGPZhaRhSV9L+lnST5Kez8fL6Z8R0deN\n", - "9FjnBLAEmEdaNX2k359bp400jeiilmOvAS/l/Y3AtqrbOVs3YBUwChzpFT9SMd/B3FeX5L57Q9V/\n", - "h9mydYjlFuDFNtc6lr3juRhYkfcXkuacHymrfw7iDr5ooZR11/qS+n5gR97fATw42ObMHRHxHfBn\n", - "y+FO8XsA2BkRlyJigvQPaGwQ7ZwLOsQS2hc6OpY9RMTZiDiY9y8Ax0h1RqX0z0Ek+CKFUtZdAF9J\n", - "2i+psfDAUEQ0lhA7BwxV07Q5q1P87uDq+cTdX4t5Lhc6bm96nOBYTkEeqTgK/EBJ/XMQCd5vcWdu\n", - "ZUSMAmuBZyStaj4Z6Xc3x3maCsTPse3uLWApsIK0JurrXa51LNuQtBD4BHghIv5uPjeT/jmIBP8b\n", - "MNz09TAVr7gy10TEmfznJGnx4DHgnKTFAJJup/iK75Z0il9rf70rH7MOIuJ8ZMA7XHlk4FgWIGke\n", - "Kbm/HxG78+FS+ucgEvz/hVKS5pMKpfYM4HNrQdICSbfk/ZuB1cARUgw35Ms2kKaHsOI6xW8PsE7S\n", - "fElLgWXAvgraN2fkBNTwEKl/gmPZkyQB24GjEfFG06lS+mffl+yLDoVS/f7cGhkCPk39gJuADyJi\n", - "r6T9wC5JTwATwKPVNXF2k7QTuA+4TdIp4GVgG23iFxFHJe0CjgKXgafznanRNpZbgHFJK0iPCk4C\n", - "jSJIx7K3lcDjwGFJB/KxTZTUP13oZGZWU16T1cysppzgzcxqygnezKymnODNzGrKCd7MrKac4M3M\n", - "asoJ3sysppzgzcxq6j+vUsbacqJa4gAAAABJRU5ErkJggg==\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot(np.vstack([train_loss, scratch_train_loss]).clip(0, 4).T)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's take a look at the testing accuracy after running 200 iterations. Note that we are running a classification task of 5 classes, thus a chance accuracy is 20%. As we will reasonably expect, the finetuning result will be much better than the one from training from scratch. Let's see." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Accuracy for fine-tuning: 0.570000001788\n", - "Accuracy for training from scratch: 0.224000000954\n" - ] - } - ], - "source": [ - "test_iters = 10\n", - "accuracy = 0\n", - "scratch_accuracy = 0\n", - "for it in arange(test_iters):\n", - " solver.test_nets[0].forward()\n", - " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", - " scratch_solver.test_nets[0].forward()\n", - " scratch_accuracy += scratch_solver.test_nets[0].blobs['accuracy'].data\n", - "accuracy /= test_iters\n", - "scratch_accuracy /= test_iters\n", - "print 'Accuracy for fine-tuning:', accuracy\n", - "print 'Accuracy for training from scratch:', scratch_accuracy" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Huzzah! So we did finetuning and it is awesome. Let's take a look at what kind of results we are able to get with a longer, more complete run of the style recognition dataset. Note: the below URL might be occassionally down because it is run on a research machine.\n", - "\n", - "http://demo.vislab.berkeleyvision.org/" - ] - } - ], - "metadata": { - "description": "Fine-tune the ImageNet-trained CaffeNet on new data.", - "example_name": "Fine-tuning for Style Recognition", - "include_in_docs": true, - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - }, - "priority": 4 - }, - "nbformat": 4, - "nbformat_minor": 0 -} diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 663d7360b..43bbcb837 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -19,11 +19,12 @@ foreach(source_file ${examples_srcs}) caffe_set_solution_folder(${name} examples) # install - install(TARGETS ${name} DESTINATION bin) + install(TARGETS ${name} DESTINATION ${CMAKE_INSTALL_BINDIR}) + if(UNIX OR APPLE) # Funny command to make tutorials work - # TODO: remove in future as soon as naming is standartaized everywhere + # TODO: remove in future as soon as naming is standardized everywhere set(__outname ${PROJECT_BINARY_DIR}/examples/${folder}/${name}${Caffe_POSTFIX}) add_custom_command(TARGET ${name} POST_BUILD COMMAND ln -sf "${__outname}" "${__outname}.bin") diff --git a/examples/brewing-logreg.ipynb b/examples/brewing-logreg.ipynb new file mode 100644 index 000000000..c053b73b3 --- /dev/null +++ b/examples/brewing-logreg.ipynb @@ -0,0 +1,1164 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Brewing Logistic Regression then Going Deeper\n", + "\n", + "While Caffe is made for deep networks it can likewise represent \"shallow\" models like logistic regression for classification. We'll do simple logistic regression on synthetic data that we'll generate and save to HDF5 to feed vectors to Caffe. Once that model is done, we'll add layers to improve accuracy. That's what Caffe is about: define a model, experiment, and then deploy." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "import os\n", + "os.chdir('..')\n", + "\n", + "import sys\n", + "sys.path.insert(0, './python')\n", + "import caffe\n", + "\n", + "\n", + "import os\n", + "import h5py\n", + "import shutil\n", + "import tempfile\n", + "\n", + "import sklearn\n", + "import sklearn.datasets\n", + "import sklearn.linear_model\n", + "\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Synthesize a dataset of 10,000 4-vectors for binary classification with 2 informative features and 2 noise features." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAImCAYAAACB54oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd0HOd5//uZ2d4XwKJXAiDYeyclShRFyYpNVTu2JRfZ\ncexEPx/7l+bEKec68c8n8XVy7ThO7o1jy6YsypapTolUoST2AoJgAdE7FlgssNjed6fcP0BBokhR\nhQRBUvs5BweLd+adeWbewewzz/s83xFUVSVHjhw5cuTIkWOmEGfagBw5cuTIkSPHx5ucM5IjR44c\nOXLkmFFyzkiOHDly5MiRY0bJOSM5cuTIkSNHjhkl54zkyJEjR44cOWaUnDOSI0eOHDly5JhRptUZ\nEQThx4Ig7BcE4SfvajcKgvBLQRBeFwTh36fThhw5cuTIkSPHtc20OSOCICwHLKqqbgT0giCsfMfi\nbwHbVVXdrKrqt6fLhhw5cuTIkSPHtc90RkbWAK+e+7wHWPeOZbcAdwuC8KYgCFun0YYcOXLkyJEj\nxzXOdDojTiB67nP43N9vUQe8CHwS+AdBEDTTaEeOHDly5MiR4xpGO43bDgP2c58dQOhdy/apqpoV\nBKEHKAY87+wsCEJOpz5Hjhw5cuS4gVBVVbhY+3Q6I0eAbwA7gM3Ar96x7DCwRBCEk0ANMH6xDeTe\nm/PxQhCEG2LMVVXlv/7rVwQCDoqLawCQpCxDQ0184Qu3snDhwpk18BrjRhn3d7Jr16scPDhMdfXi\nqeMbGjrL2rXFbN1610ybd01wI477dBEOh/nxj3+N3b4Qq3VykiEejxAKneFb3/oCBQUFM2zhB0MQ\nLuqHANM4TaOq6kkgJQjCfkBSVbVJEISfnlv8Q+AHwEHgf1RVlabLjhw5rjYjIyN4PKkpRwRAq9VR\nUDCbAweaZ86wHFeFTCbDsWOtVFTMn7r5CoJARcU8mpo6SaVSM2xhjuuN1tZ2ZDl/yhEBsFjsqKqL\nlpbWGbTsyjGdkRFUVf3f7/r7W+d+e4E7p3PfOXLMFIlEAlE0XtBuMlkJhbpnwKIcV5N0Oo0si2i1\nuvPaNRotiqIhlUphNF54feTI8V6Ew1F0OvMF7QaDlWAwepEe1x850bMcOa4wRUVFKEoYRZHPaw8E\nvNTXV86QVTmuFhaLBYdDTzwePq89mYxhtYrYbLYZsizH9Up1dTmplP+C9kTCR21txQxYdOXJOSM5\nclxhnE4n69fPZ2CgmXg8gixLjI0NoSjDbNy4dqbNyzHNiKLIXXdtZHy8hWBwHEWRCYcn8HpPceed\nN6HR5IoHc3w4Zs+eTUWFjqGhNjKZFJlMCre7g+JimDt37kybd0UQrtUEIkEQ1GvVthzTw42U0KYo\nCk1NJzh4sJlIJE5DQw233baekpKSmTbtmuNGGvd30tPTwxtvHMHj8VFS4mLTpjXMmTNnps26ZrhR\nx326SCQSHDp0lMbGs6gqrFgxj5tvXofVap1p0z4w58b8olmsOWdkhgkGobER1q+Hj3v0Nndz+niS\nG/ePJ7lx//hxKWdkWhNYc1ya9na4/XaorgaPB/btm/yc4/pGlmUikQhmsxmDwTDT5uSYZsLhMBqN\n5rp6Qs1xbRKLxZBlGbvdfsky2BuRXGRkhpAkWLECHnkEvvEN+Jd/gd27Ye9e+Jhdg1PcCE9KJ0+e\n4uWXD5JIqIiizOrV89iyZRN6vX6mTbtmuV7HfWRkhOeffw2PJwwo1NeXcPfdd5Kfnz/Tpl0XXK/j\nPh0Eg0F27nyVrq5RQKCkxMY992yhsvLGSni/VGQkl8A6QzzxBDid8PWvT/79V38FgQDs2jWzduX4\n6LS1tfHkk/swmxdRWbmekpJ1HDo0ws6dL1/R/UiSRCKRyN3IZ5BQKMQvf/k0kUghVVU3UVl5M263\nnkcffZJMJjPT5k2hqiqJRAJJykk5zSSyLJNIJFAU5YJl2WyWX/96BwMDGiorb6Kq6ibi8VIeffQZ\nAoHADFg7M+SmaWYAVYV//mf4z/98Owqi0cDf/z386EfwyU/OrH05PhpvvHEMl2seJtNkuF6j0VJV\ntYjm5oNs3hzC6XS+zxYuTTabZe/eAxw+fIZsFlwuC3fdtTGXFDkDnDp1hmy2YCohWRAEiotrGBwM\n0tXVdU2o7HZ0dLB79378/gR6vcCGDUu45Zab0Gpzt/2rhaIoHDlyjL17m0ilZOx2A7ffvo5ly5ZO\nrdPT08PEhEB19ayptry8IkZGQjQ3n+b22zfNhOlXnVxkZAY4cmTSIdn0rmvsvvugrQ16embGrhyX\nh9frx2Y7P0QviiKiaCEcDr9Hrw/Ozp0v8+abfbhcq6mquhlJquHXv95Nf3//ZW87x4fD45nAYrnQ\nudRqbUxMzPzTbG9vL9u2vYyi1FJVdTP5+SvZs6ebF198ZaZN+1ixb99Bdu48hd2+jMrKm9Hp5vHk\nk/s5der01Dp+fwBRvDDfyGLJw+PxXU1zZ5ScMzIDbNsGX/7yhbkhej184Qvwq19dvF+Oa5vS0gIi\nkfOFiRRFQVUTlx0VCQaDnDjRS1XVEnS6yaRYuz0fh2M2b7xx5LK2nePDU1bmIpEIXdAuSRFcrpnP\nGXn99cM4nXOw2fIA0OuNVFcvpamp+4o4xjnen3Q6zf79zVRWLsVgMAFgNtsoLl7Ea68dnppmdbkK\nUJQLVVTj8QDl5UVX1eaZJBevu8pkMrBjB5w+ffHln/88fPGL8IMfXF27clw+mzevY9u2V9BqF2Ox\n2MlmMwwPt7J6dT0Oh+OifVRVZXx8nFgshtc7zvDwGC6Xk2XLFp+XCBkMBhFFK6J4/vODw+FieLhr\nWo8rx4UsW7aEAwdOMTHhoaCgFFVVGRsboKBAwWQysX3774nHk6xevYQFCxag0+nef6NXkOHhccrK\nzp++E0URQbAQDAbf83rMcfkoisL4+Dh+vx9J0qHTnZ+8brHYGRpKkUqlMJlM1NXVUVh4gMHBNrJZ\nmVAoiKJkKCiQWb784/NSxZwzcpU5cADq6+G9kqRXrIBoFDo7IZcKcH0xd+5cPv/5LK+8chC3O4tG\nI3PrrYu57baNU+uoqsrIyAihUIhkMsnBgycZGQlx8mQLkMfy5SsxmxPs33+ahx++m1mzJueRbTYb\nihJHVdXzSv5isRDFxdfHGztvJBwOB1/72md44YXXcLt7AJW5cysRRSdf//r3yWYLEUUdTz55lNtv\nb+DP//yRD1zm7fF4CAQC2O12KisrP1KJZ3FxPrFYCLv97WtDVVUUJZ6To59GBgYG2LFjN+GwgiRl\naG4+gclUh8tVOLVOKhXHYtFNXQ86nY777ruD7373hwwNgU7nwGQCk8lAY2MjVVVVVFZW3vCl47nS\n3qvMn/0Z5OfDP/zDe6/zyCNQUwPf+c5VM+ua4EYp9VMUhXg8jsFgOK+kN5FI8NvfPktfXwhJ0nP0\n6EEKC0uw2Zz4/RYMhnySSQ+bN69DllNAD3/+59+YioY8/vgOOjqSVFTMRRQ1pFJxPJ6TPPzwnZcl\nCZ3NZlEUZcY0Ua73cY/FYmg0GoLBIA8++Jc4nbdhtU5GtVKpOGNjR/jud7dy222bLvmCvHQ6zZNP\nPkdn5ziiaEdRElRWmnjooQc+tAPR1tbGY4/toaxsGUajGUWRGR5uZ8ECK5///AOXdbxXiut93N9N\nMBjk3//9MazW+djtk+N/7NirdHcPcN99D2GxWMhkUgwPn+bee1ewdu2aqb5PP72TlpYELlcViqIS\nDAY4dKiRdHqA9es3otPF2Lr1ZlatWjFTh3dFmLHSXkEQfiwIwn5BEH7yrvbvCYJwShCENwVB+LPp\ntOFaQlVh507YuvXS691zDzz//NWxKceVRxQnX4b2bm2R3bv3cPZsFLt9DoKQh8WykkQin9OnT2K1\nlmIwmAErw8Mj2O35hMMKPt/bCWyf/vRWli1zMjJyCLf7KNHoaf7wDzd+ZEckHo/z4rPP8rPvf5//\n/Kd/4olf/pLR0dHLOfQbnkwmw/DwMGNjY1NfpFarFZPJxL59+5Gk4ilHBECr1ROPavjRP/4r//X9\n77P9F7/A4/FcdNt79uylszNJdfV6KisXUl29Gq/XxPPPf/jS8Pnz5/PAAxuIRE7idh9lZOQQK1YU\ncP/9n/poB57jfTlz5iyy7JpyRABWrryNsjInra07GR4+ht/fxB/8wWLWrFk9tY6qqpw61UlxcQ16\nvR5JyrJ7937G3BKewTjtp7qBap577uAN/f85bdM0giAsByyqqm4UBOG/BEFYqapq07nFKvAXqqq+\nPl37vxbp7IR0GpYsufR6t9wCZ85AOAy5qd0Pjqqq9Pf3c/JkK9msxMKFs5k7d+41UcrY39/Pr/77\nCSyaOsa7PIwEwwiGaoqLa+ju3ocsZxBFE1qtkWg0ht8/is83SigUori4GACj0cgDD9zNJz4RJ5lM\n4nQ6P/KxybLMjt/8Bt3ICOvLytCIIqNjY+z4n//hC9/8Zk646yKcOX2avS+8gD6TIasoWEpL2frZ\nz1JYOBmCj0TiiOLb46GqKsP9LeijIUptejZWVTE6Ps5Tv/jFBec4HA7zzDO7keVSotEEVVX12O0F\nlJbW0dFxkEgkgt1uv6R9sizjdrtJpVIUFxezatUKli5dTDgcxmQyYbFYpufETDM+n4+JiQmsVisV\nFRXXrDLpxEQYk+n8CJZGo2X+/NUsWWJkw4Y12O32iwogiqI45dwe2n8Q3+AENsGEVoox0XaaZzrP\nUlZfzVNPPcc3vvFHN6SI4nTepdcAr577vAdYBzS9Y/kPBUEIAn+pqup7pHPeWOzZA3fe+f4Kq0Yj\nrFs3qcZ6zz1XxbQbgtdee4M332zDbK5Ao9Fy+vQh5s1r5cEHH5gxh0RRFLq7u/nFT36CLpmmvnry\ni0srSTT29GC356HRQE/PEYqLF5BKBYjHvXR3t6HXyzz22G7WrOnlk5+8c+ptr2azmb6+Pp599hWS\nyTQLF9ayevXKDzWnPDAwQMrtZtE73j9Q5nIRGx7m1IkTLFu5ksP79tF1+jQ6g4HFa9eydv36G/Im\n+EFwu928+eSTLCspwXJuqmVkYoKntm3ja9/+NjqdjiVLFvCLX+xiZCQfjcYwOV6xEKIaZtnscgRB\noMzlIj4ywsnjx9l8550ABAIB/v7v/oUDr3djNsbQGg0cNzWzYsUK5s5diiBoSafTl7TP5/Px2GNP\n09k5jscTIpMJsGnTIv7X//pjXC7XtJ+f6UCSJJ5/fhfNzX2IogNFSVBebuahh+6/JhNwq6pKaG5u\nweUqP689nQ5QW7v2PcdBEARWr17A0aM95OdX09V6lmwsTVAdISt3kZUqECmjuyPFG5Z+wuH/4I47\nbqawsJDq6urzktq7uro4fPgk4XCMhoYq1q1bhdFoZHh4GFEUqaysvOrJ1B+U6bxDO4G+c5/DwIJ3\nLPupqqr/KAhCPfAosPHdnW9E9u6Fe+/9YOvefvuk85JzRj4YY2Nj7N17lqqqtWg0k5e1y1VGe3sT\nbW1tLF68+Krb5Pf7+c1vnqG11YOnLcZEIIgsd7NwVh1lLhe67iEOH96Nqk7g88Xo6upCo4lQU7Oa\nmpoyNmxYjs1m4/DhZoqKTrB27WRod9euV9m/vwertQLfWJJ9r+/iyeLn+Jvvfnsq4fX9CAQC2C7i\nFRfY7fR3dtLe3IwrkWBtURFZWab71VcZHRriD7/4xWv2yXQ6OXnsGFUm05QjAlDucuEdGKCvr4/y\n8nKOHTtDOOyjo+N5NJpyIIULL8vqLKxdsnmqX4HNxmB3N0dsNtw9PTz3wsv4BnXML6giEReZGI0w\nIkuMj++hs9PDggXCJSNViqLw+OPPcuZMnLExCxZLDSaTyM6dh/H5/m/+6Z/+5rpMfjx8+ChNTWPU\n1Nw0dc15vf3s2PEiX/vaQzNs3YUsXLiAffuO4/H0UFxcA8DoaC/FxcL7ChPeeutNDAw8ydGjr+B1\nd2LIKhiEBIJoRIlbEcwiiUicRKKSXbv66emJUF5eQmWliS9+8TNYLBYOHDjEiy+eIC+vDqOxmCNH\nRtm160eYzWZ0uiJAwWhM8+CDn6K2tnb6T8iHZDpzRsLAW3FFBzBVlK+qavDc70vKe33ve9+b+tm7\nd+902XlVUFXYv39yCuaDsGULvPba9Np0I9HfP4BG45pyRN7C4ajgzJmrX/qqqirbtz9LPF5Eft5c\nSp2zWFq3joGxHjrdvQSjYbJSGinjxm5fTmnp7VRXz8ZgcKDT6Vm+fB4OhwNRFCkpmcOhQ83A5BPw\noUPtFBbOo625hVj/EOVaJ+MdMf7t//pHuru7P5B9drud+EWSB0PxOKFYDHs0Sn15OXqdDovRyNKa\nGiY6OhgaGrqi5+l6Iez3YzObL2g3CQLxeJxdu/bQ3DxCVdUmFi++h4KCQgwGAbshyZo5NZhNpqk+\n3kCAU01NdO3ahdLTQ+fxFiwJBZvFSDDgxaAxUai3kElmSaXGSCQy+P3+C/b9Fm63G7c7is8nU1BQ\njclkxWAwU1a2ivZ2P8ePn5iWczLdHDhwkrKyeec5vyUlsxgY8DMxMTGDll0ck8nEH//xgyxaZGZ0\n9CBe70FWrHDyla989n0jihaLhfvvvwvf0AFcUi8N2nFKhCw6pRC7YCMWm0BWQihKHmVlK8hktFRX\nr2Z0VM9LL71GLBbjtdeOU1W1ivz8EsxmGzZbMadOJfH7DVRVLaeqaiUWy0Iee2wn0eiFuiYzzXRG\nRo4A3wB2AJuBKSkvQRBsqqpGBUFwXcqG733ve9No3tWlrQ1stvcu6X03S5aA3w9u9wfv83FGq9Wg\nqvIF7bIsoddfmcs8Go2iqur7zt3DZHnm2FiG6uoKVHWcnkQCGyJVjmICodOoqhNRE2FW3SLmz78D\nVYV4vJB0WkKvL2RkZGxKatxgMDE2lpjariA46enoxCHLFORNPjHXFNWgxLt47ZlnqP3Lv5ya0nkv\namtr2edyMTA2RnVREYIgEIxG8UgSFrudoov0dwgC4+PjVH8MXy1dXluL9+BB8t5V1RJhsuz6zJle\nQqEkLtdStFojNTVzkOUsPad/Q/fQGKtiMaxWK6FYjMbeXhZUVLCwqorOoSEcWi0Ogx6vZ5S8/EIU\nWUVIZdDIIW666QH0egMtLW1s3nxxAaxUKkUwmCAUEohGR9DrdeTlOdFqDWg0Jtra+ti06QM+BV0j\nKIpCMpnG5bqw+kgQ9O87bTVTOBwOHnhgK/fdN/kOmnfrAl2KQ2+8gTGeosJYSIGqIyzHGM9GUWQj\nZlEhqjNSWFhOOh2Z+v8uLa2npeUg8+cPoCjW8zRN3O4RbLZZTEyMTLVZLA78fift7R2sXr3qCh31\nlWHanBFVVU8KgpASBGE/cFJV1SZBEH6qquq3gB8JgrCQycjMX0+XDdcSe/fCrbd+8PVFETZvnpyq\n+cpXpsuqG4e6ujoE4SCZTAq9fvIGpigy0aibZcvuvKxt+3w+Xn3hBXznZNfzKyu54557ppyFdzI+\nPs7xw4c53dREZ1sUq7WeSCRKny+GJS1jMziQUyAYwzhcFVjzJsOlggBGoxNBmHyZVir19s12dHSI\nuroyAPR6PaqaxT86yux3qLpm5SyFTgtqNIrP57uobe9Ep9PxmYcfZtczz3Covx+NIKB1OvnUl79M\n59mzxM6cwfWuefkUk/kqH0eWr1rF442NDHi9VBYVkZUkOj0eXHPnUlRUhKKIZLMyVutkebQggFar\nI69iJWPaTvYPDpJnt6Ox27EVF1NbUsLju3ZxqqWF4ESQaNCAyVCIyVlAfn4+QtxHiTGf6ur5TEyM\nEI0m3tM2s9lMZ+dJvN5qHA4HspxmbGwAl0uhqsqJxXL9jZkoitTXV+DxeM7LwchkUuh06Ws+D+bD\nOCEwmR9zcM8evP4ggiSRzqho0AFR0rKLrEaLs6AQQRCJx93Mnz/n3H40qKrm3P6y520zmcwgCFxQ\nsq/RGInH3/t6mimmNatPVdX//a6/v3Xu959M536vRfbuhbvv/nB9br99cqom54y8P3l5edx33y08\n88w+oABBEJFlPzfd1EB9ff1H3m4ymeT3jz5KeTbLnHMCVJ6JCZ765S/58re+dZ7+w8jICE/9/OeU\nazQst9s5HWrn2GuvEsjqmD1/I0G/h5HhFhx2K0lHPi6Tk2w2SiIRJRDwkU6n0WgE4vFWzOYNhMMh\nmpqO4PWeJRKZTyr1GFu23ITJlCCVSaCoDjTCOacrMcymZdWMpNPvGxV55zl76I/+iHA4TDabJT8/\nH1EUMRqNPN3YSFEqhflcjsR4MEjKYrmsc3k943Q6+ezXv86B119nf2srOr2eJZs3s/7mm9HpdJSU\n2DCb9cTjPqzWyQhGMhnDbrewaNFqvvHIQ4iiSH5+Pv/2ve/xw189Rng0ikNvRqOICJkuJpJBTAJI\nQoRQ1s2mTzyIKIokEuPU169/T9tOnTpLdfUcfL4eJKkAg8FJMunH42nH5apgdHSE5557iZUrl1BR\nUXG1Ttlls2XLzfz850/h9WbJyysmkYgQCvVw773rZkQTx+Px0NR0Gr8/TF1dBcuWLbliAnKnT58m\n0N2NU6PSL6WYqyskI8VwKDFG6CIiu6gU8/B4DtLQUEl5eR0A4fAERUUW5syZQ0HBQQIBL/n5kw8i\nhYVOWltPsGTJ+ddONhugsvLa0yuZ+ZrHjwGqCvv2wb/924frt2UL/O3fgqJMRkpyXJrly5dRU1NN\nV1c3kiRRW7uJsrKyy9pmR3s75miUyqqqqbYyl4uQ203LmTOUlZfT2dmLVquhrfk4dUYjpQWTqpeb\nl9ez82AvEz49JaXzMZq11MwpZePGL6CqCi0tL+B299PW1oXR2ICiqAiCjoKCcaqr0xw6tB293sWn\nPvUV7PYCAgEvjz/+Ivfeu4merv+mvf8kTouTRNrLkrp8NIKArazsQz81vrsyoaKiglv/8A/Z+8IL\nGDMZZEDMy+OBL31pxoTRrgUKCwu5/3Ofu0AFF2Dr1s309Lg5ffokmUwDgmAglfLS0GDkrrtuoajo\n7SmWzmEvw26BZXlL0Wu02LRV9IfPYFBHEMUsGX0lazdupbx8Nj09J9Drx+ntHSIWS7BgwbwLvgBP\nnuxgw4atFBWdZN++PcRiIhqNnmh0mHi8EI1mPmfOxGlsfJpPf3ojy5cvuyrn63IpLy/nkUc+x/79\nR+nvb6Gw0Ml9932ChoaGq2aDLMsMDw/T1tbO3r1nzyUH59Hb28+RI6f5+tcfJC8v75LbCIVCtLa2\nEQ7HqKoqY86cOedVtKiqyvG9e1lSW8vOrj5MRgPtmSB6tGRFF7Kowep0Ulio4nQGKStbTzIZIxoN\nkM0O80d/dC8ajYaHHrqXxx57msHBYQTBgCwHmD9fD8ikUvFzMvW9zJ7tuCYTWHMKrFeB1tbJqEhv\n74fvO2cOPPkkLF36/ute71yLiox7Xn6ZcGMjNe+a9nCPj3M8lkIRSjAYipHlLIfeeIrPrqlj5dzZ\nACiyzGsHD7H9zWYc1UuYM3cxixatxmp14vMNIwg99PWN0N8vEQ5HsNnMLFiwALvdRllZktFRlerq\n8+d1R0a6Wb++kDVrVvB33/lrWo53YDMWgShgcMI//ss/sGjRoity7Ol0mtHRUXQ6HaWlpR869PxB\nuRbH/aPg9XrZtetVDhw4gSQpLFkyl61bbz+vkiIWi3H/1i+Tak/iEjVoBAFFVUmoWRL6QYoW1vLF\nb/wp/f1eEokEo6OjmEw1WK2FZDIx9PoQX/3qA5SXlzM6OkpXRwe/eWwHVbM2U1xcTTIZ48CBF+no\naCUUstLQsJA5cypZsmQhkpQhEGjir//6Ty6pBHu1mI5x9/v9yLKMy+W67OvV7Xbz29/uJBBQOHLk\nGCbTbFatWkJl5WR0aXS0l0WLzJcUkuvr6+Oxx3YiywXodCZSqQDl5Rq+8pXPTU15ZrNZfvR3f4fg\n9/P68y9il+y0pWWicgWqoKeqrJqEVuQT921GlntYs2YBPl+Y8vJC1q5dcd6UrCRJDA4OkkgkKCkp\nwWw2c+TIcU6ebEejEVm9eiGrV6+asRL9Symw5iIjV4EPmy/yTt6qqvk4OCPXIq7iYtyZzAXtXaOj\nuKMO1q9fgyiKKIpKvnMBh1sHmVVWTJ7VyqnmZjTjY1RqU9SYVRJj3fiKi2lu3seZM01UV5cRCiVY\nvfo2GhqWTj1ty7JEU9N2SkpWo6oqo6Oj9Pa6SSbTOBxa2tsjiKLC8JhKUd3N5DkLKC2rRa8Xeeml\nfdTW1iLLMhaL5QNP2VwMg8FATU3NR+7/caOkpISvfvVLfPWrX3rPdcLhMBZrEYI9hFYUCceSSKpC\nQozSF0gSH8ly9GgHa9fOJ5lMk04XU1Y2OTWWzWZpaTnJN7/5D1SV52OITrC4opy6bIwTLz9K+fIt\nJDMKqVQREKCwcBZlZfMYHBzBZOph3rw5SJIFj8dzTT4ZXw4+n4+nnnqJkZEIIOJwaHjggTs/8nEm\nEgm2bXsWo3EuTmcWi8WH3T6HpqZOrFYreXlOioqqOXXq4HnOiKqqtLS0cPjwKSKRGO3tXcyevQWX\n6y2HoYahoTYOHjzCHXdsRpZlTpw4weFDhyjMZCgw6SESRsBKucWFhIBFryMlZiktLSMQCHDLLeun\nhBDfjVarpa6u7ry222+/ldtvv/UjnYerSc4ZuQrs2/f+EvDvxZYt8LOfwV/91ZW16eNOOp2mt7eX\neDxOUVERVVVVF9XPsNnt9MViZFtbWTJnDhqNhpGJCbpDCaprb5l6+hJFgcr62XQ3eejo68dlMhJ1\nuzEYjSxZtgijrBBNJnnu1z/AJtqYV1iKIRZn0BviyJGTKIrEvHmTURBZlrBarahqgo6OLtrbPVgs\nReh0+fT0tNLdfYpXX60im63FbLYzMOhmbNyLTleIu/8A3U37mFVRTuOZM6TCYfLz87npk5/ki1/5\nyjUpFnUtkMlkaDp+nLbjx5EVhXnLl7NqzRqMRiNer5dwOExeXt55XwLZbJa+vj56enoY6uoiHYuR\nX1TE6ltueU+JfpvNRklFAUdbJhiZiJDOykSyXRjUJEWClipRy3D7IK9FRcbHu7n11oeByemCw4eb\nCAZVYjHnFT5hAAAgAElEQVQTwkQfc8xmgsIYa5cuJho5TPOBHUzoyigsvAlIUFlZhCCIOJ2l9PYO\nMGfObFRVuiYUia8k6XSaRx/dgSxXUFU1GRWMRoNs27aTb37zwSmF3Ev1d7vdqKpKRUUFJpOJ7u5u\nEgkrRUUFhMMTgIxWq0OnczI0NExenhNZljAYzhcQ27HjWV5+uQmns4pYLMKBA4McP76L1asXM3v2\nLLRaLU5nGcePt7JmzUqeeuwxTrz0EtXRKG1uN8PxOBZFISxniWf8OG3lDIx5qFgyh2h0gpGRbjwe\nD/n5+VddvCydTk/9j6jA/BUrWLl69XtG2d6a4pIkibKyMkzvKG+/GDfWVXkNoqqTkZF//deP1v/W\nW+ELX4BkEt5nLHN8QLxeL9u2PU0kYgCMqGojc+YU8PnP3z8VvpQkiaeffoEzZ0ZICA283HWE3Sef\nZfnyBdQuWsTakmq83vPzJ+xOJ4OhGM8caMOeiqBXs9gqy5lfV4fNYsHf0UmlIrFo7mKKi0twDwxQ\nFPQwGkuyd6INNZti7sINjI52c9ddmzh1qoNDhzopL1+LLEuMjfUSjXYCTgTBTlFRBVqtgZGRCH19\nHRQXRLAEAqiCluf37acyI1Gj0aKbiHB04P/lbGMjP3n00WsiRH8tIcsyT23fTryzk3ydDlVV6dq9\nm/ZTpxAt+QwMhBFFK4oSZd68Uj7zmbsJhUJs2/Y0A/0BPKePUamHObUlFGi1vPLrX5P49KdZvnLl\nBfsymUxIUojO8SE0SQ06PBSSxIELPZAaclOdn4ffI+IZnyCTyWAyafF6vQQCEgUFVQSDpymxmCgu\nrOZ05wk6BnspMhopExOMBdqpX3cHDQ2b6Oz0AYVoNFokSSUQGMNuVykvL7/AruuZrq4uIhE91dVv\nH5fNlkc0WkJz8xnuvHPzJfs++eTLpNNGQECni3PvvbcRiyXQaCb/T+z2AqxWgUTCj1ZrIJFIATA6\n2s2mTW+LKe7e/TI//ekObLZFtLV1MDp6FkEoRFEqOXq0k4MHT1JVVY1GI5OfP8Kzv/sdo0eOkB0Y\nIBEIUC/LVGs0jMhgFJP04yaiL6C4ah5e7wDPPTfG7Nn17NhxnNdfP8rDD3/mqlUVSZLEjt/8hkxf\nH/WFhQiCQM8rr9DX3s7nv/rVCxyjkZERnt++HSESQSsIxESRW97niTznjEwz7e1gtcI78h8/FA7H\npObIwYOTUZIcl4eqqvzudztR1Rqqq9+ea+3sPM2hQ0em9BgaG49z6pSfkpIltLY2kRZKiAkWmvqD\nfOnPbj/3NPYaLtekzHc4HObYsVaKS8tZt+4ezjS+Sqj7BI7RcUw2G/50mu7ubgpNDiwWK8ODA2iT\nSZZXzuLA6BBkzYw2vcqor4vqaheiWMGiRbUcOtROZ8cOxga60clxjFqIC1bCjnFSqTSCYMDn85NK\nBUkFTzLfZsIdimOPpFhSVIogCkRUlQJDPh0nTrJt2zYKLBZSySR1CxawdNmy931iudHp6+tj6Phx\ntF4v0VQKURDIiCKdjSfQNmxmxYo7gMlrp739LHv27KW7ewhZriId7Gd5aS02kwXvqBu7YxydovCz\n73+fOx94gOXr1lFfX48gCPT29vK3f/t/eOWVY0jJECIyKhksmBFRQNSQSerwDrox1emw2cz09LTg\ncJTS0dGNIFhJJoMYjTIqKqcHOxkY6ufW6gIWlZdTptWCOoa//zhr7/gi0ehhRkebyWYNiKIPRTHx\n4IP3X9bU3bVIKBRGo7lQYdZksuPzBd+zXzgcZvv23eTlLaG4eDIpOJVKsGPHm9x99zpkeVKnUxAE\nVq26icOH9zI+Hsdur6C7+yBWa4pIxM7vf/8UAwMD7Nixj1DIgkaTJBrVkJ9/Fx7PbkTRRyIhUVTU\nQColYren8Xrj/PSf/pk5skJsYhSrIhMTRWRRRNEbWGGy4Y/7CGbaSA1PkEzKNDTMZv36WzGZLPh8\nw+zY8SJ/+qcPT8MZvZCenh7ifX2sfMe07aLqak4MDNDZ2cnChQun2lOpFM/8+tc06PW4zn3xpTIZ\nDjzzzCX3kXNGppnLyRd5iy1b4NVXc87IlWB0dJSJiSxVVecnpJaWNnDkyMkpZ+TIkdMUFs7m2LE3\niURsOByrycvTMDJyip/8ZBvf/e6fsHp1FcePH8NkKqG9vZNEYpiVK5dSWTmHrpZD5IlayrUGLKpK\nntNJm0ZDLBpGECATi+M0GkhlMpiMOoqrHVQXWDnq9tDQcBOHDk0wMdFNJOIhO3gKl2RBK7rQZTOk\n0nEmEmGyWT+h0DCSZAJ0aCQn7ZKKkhlgo8aAJMmYjAbUdBKTyYbiG2DPY4/x5U99CrtOR+dLL9Ha\n1MSDX/vaDa8fkk6nOXz4KMeOtZDNSixdOoeNG9fjcDjoam9nor2dpS4X5nOy68lUiqYzbVjL3laq\nFASB8vK5vP76qxgMeVRU5JMOT6CYrHiC48iKyM49e1lRWUpVJoPa2cnLbW0s2rKFJcuX853v/IC9\ne9tJx6spoIgkKURG0WNCRxGyopLJBonHMwjxCAaXjdbW/aRSJUSjKuGwl4oKA2VlLg6cOImYsSJF\nXbzUn2BCHaDKYWXD+pW8caqHgYE2Vq68hYGBNsbGzvCZz9zB5s2bb0jHs7i4CFluvaA9FvNTVVXz\nnv3a2jqQ5XzM5rerk4xGM1ptCcPDo2i1Qfbu/T11dUsoLKxk3ry51Nf3sWRJOY2N7XR2Btm5s5Vg\ncIJUyoAoFqHX5+P1pgmHB6ioqMVun43PdxiTaSmCkMDr7cPpzMc/kSLtD5MSVKyyQCFgU1WCksTZ\nrIQVC1m1EINaiyIUUlbWAIR5440XWbRoPfn5eXg8Q0xMTFyV6MhQXx+ui0RUC00m3H195zkjPT09\nmBMJXO+YHjPq9VTmpmlmlr174VOX+dbuLVvgkUeuiDkfeyRJQhAufDLUanWk028nqiaTGSTJTyik\nkp9fg6oqBINj+HwRjh5N8rOf/Zy/+Zs/Z8mSUTo6eggE4tTVraeqah6yLKHJJHEUVjA+PoQ9HMas\nKGQFAbvTQCDgJhKNEgjEiWczuNUY5pSTrvEM+Y4FVFbOIRqN0tc3QfPhw1gkGZtWi1YMEZJjJOUC\nbNZydDoBrdZFPB5FVUfRaWzEMhLJtJ1+wU2dzYqkyAhaHVlFIp5IsrKkZKr0uMBuZ29LC//PD36A\nWafDUVDAqo0bWbR48XX5/hlVVeno6OBMYyPpZJL6RYtYtnw5BoOB7dufoqcnQ0nJEjQaDU1NQ3R2\nPsEjj3yZiUAAslnM7yhb1ogiRkSi0cB5+9BqdWSzCjrdpEpon3eU4ZQRRTLjDfchJfyYtBZsRoVb\nCgqYZTJx5M036ekfoLV1nHSqAIs8jIUUIJHETpIoIgkU1YSs2AlH/UwEwG6ppqZmOdlsnGwWTp92\n43aP4/GEkbJ2wv5xnEIJouTghfZ2FlUH+MrKlaxcWIPP6MXvTzJ/fgmPPPK/b+hE5NraWsrKDjI8\n3EFpaT2CIOLzDWM0Blm69L3FneLxBFrthV+wkUiQ3/3uDHV1q9DrDRw69Ab5+Spf+MJ9rF9/Fz/7\n2eP09vpobGxFlm1kMilEUUNenp1oNIjLVY8sTxCPj2AwFGAwGJg1Kw9RjJOfbyeRiNLT1YQ5EyeE\njBWRJBpKFAktYEWkW5LRGGYhmEqIZFRisTCiaKG1tY9IpAWTyYDD4SObzV54YFeQTCbD6Ogo8WSS\nxEUS+VPZLPnvKjVPJpNcTADA8j7TwzlnZBp5S1/kRz+6vO2sXj0pC5+Thv9wqKqKx+PB4/FgMBio\nr6+npKQEnS5NKpXAaHw7GjA+PsjixW/rFyxcWMdLL50mnRaJx8P4fKN4PEHikTSkdOz4zRsc3nuA\nW9cuwe5wUF7ixB+SSKUSDPSeZmSgFcFkJ2E0gKIgjYxg1Wg56fFQnEwRD8mYTA4CWg0r5t6EgoXW\n/hZW35RPLBbjqadewusNo5UUarFjkx2IapaQLDFEnHTcQ3Rch6ToUFUrorgKFQ3JTBIVhS51lCXR\nCGbZhLmwnB6vG7eUYZ3JRJfbTU1JCf5IhKH2dvItFjZ84hNEEwn2P/EEkXCYmzZef++ufG33brr2\n7WNWXh4FOh1du3bRduIE6zZvpqdn8gWEb1FePpvBwRZOn26hqKiIgKIwPDaGThCwmM2IBgMhDdh0\n599WQyEfNpuO8fFeWlrOMjoSQI3ESCsQl/KxaxfTOBTBbpMZ/f1zbF27HKNWy8GDx/H5YuRlo1SI\nIhbFRkJNEwQ8pKnAjwE7KVllPO5FE5LBsRqDwYokaYhEWtHrHWSzVrJZG4piQNBZULQxNAYb2WgR\np1s7+I/+/w/ZaeMvfvpj7j33Vs5sNktXVxepVApRFDGbzRQWFl4xwa6ZRqvV8qUvfYbXX99Pc/Mh\nFEVh7txq7rzzc5d8dUN1dQWvv94BvF1xI0lZTpw4zKpVdzJr1lxmzYL16zfR33+SoiIXfr+fEyfa\naGrqRKtdh1ZrIJtNksnE8HhOYjbn4/EcRhAs+P3d2GxGZs2qpLS0jlBoDFkOcLyxBX1GSxFWYsSw\nI6NBoQuIA8WiliFZRk4rCEYdopghHg+Sl1eORuNCp9NjsRTh8ZzG5/NRWlo6Zb8sy/T39zMyMord\nbqWhoQGLxfKRzmtbayt7nnkGQyZDNJHg9OnT2HU6Ks7tL55KMaYobHmXlEBxcTHHVPUCPZ6xcPiS\n+8s5I9NIeztYLHC5r/LQaid1Sp55Br797Stj242OLMu8+OyzDDU3kyeKZFWVvQYDW7/4Re6551ae\nfPJNjMYKzGYbkYgPkynEpk2fn+q/ePE8/uM/HqWrS8JoDDMx4UNULdSXFqDTxsmmbaQGoniERjbe\nfx/tw8PsPXOcrpNmKhGYbbDS1t+FN2tC9DhwaTQYNQplZXMYj8UZFQSMogGnvZjBcT+ptIdI2oCi\nifPUU48zOJhAq9XiEi1YMYGaBlnBKBgpVQ10qglKjXb6giF0ujVI2QyqIICgQ1bLiQvdvCFHKIor\nKKk+xjJR5liM+Bsb8bW1sVsQELRa6vV6Cisq0Go05NlsrDAaOfbGG6xYteq6Cun7fD7aDx1i3axZ\naM5VOOXZbLQMDnJg/0E0GucFfez2Inp73VRVFTGWhj2+CewqoGaQrXpmLV5A2CLi949is+UxNjbC\niWPPs7bOgdTTzujxFgozhehEDVEpRkY1kJUyCKEJSjGTDMV5dqQfvctFprIOJemnXO9ASKdJk0ZG\nwIqBMFoGMWMSRUQD6PR2MpECAr4Es2YVk05HOXXKSzxuxWBwIEkZdDoztXXr8AzvwTvmwSSI2I0u\nQqqEM6njX//+ByxfvhyNRsNvfvMsPp9KW1s/4fA4lZUuZs+uZNOmFdx22y3XZRTsLbq6unjttUN4\nPBPk59u4++6NLF68+AIdDUVR6O3tpadnAJPJwPz5c6mtraWhwUFX10mKiuoQRZGOjqOYTHZqa89X\nGi4qquP48bPMn1+N2+1Ho6lCq3Uhy0kUJY0sZ1AUSKVkLJY8MpkBDIYQc+euorJyFmfOvEEqJTM2\npkdNCLiIMBstCibCxMgCGSAN9CpZMjow5NdgtdUQj7tJJMbwet3I8jDpdID8/E7Wr1/LgQNNLFq0\nCEEQSKVSPP74U/T1RdHp8pHlJAbDAR5++D4qP+RTrNfr5bXf/palhYVYz90HHILAb/ft45ZVq9Dq\ndMS0Wu743OcumCaqrKykeP58TrW2Ul9cjE6rZWh8nPj7VPLlnJFpZO9e2LTpymzrM5+Bf/7nnDNy\nKUKhEMcOHaL37Fm8ExOIY2P8wbp1Uwl7oViMndu38yff+Q6PPJJPY+MpAgEfK1dWsnz51qmnKFmW\neeGF11mz5n5k+SBDQ0EEwYFBFNCIaZLpQQpEA0X5DiLBTqLhMCtnz6alr4/R7jN4EwKtfh/eRClW\nTRXxjERCzKA3pCiNxkCykJAkwolCDPkLUDVmFFOU6MRejhxpwePRAAZQ2pmFTFIQMCigQ4eWLJBF\nxICMOBl+Q0WjETDozICMJOvQaRysWLOQU61dFDqMfKV8Pgm/HzUYhFAI0WzmaDCIoNMh2WzIsoxG\no0Gv02FSFPx+/7RIh2ezWYaHh1HVyaqOK6XoOjw8jBOmHJG3KM/L49iIG0V9W3tBVVUSiSih0Djz\n5xdz4MApXLM3YA6OYRa1CKKALzCKuaqKP/nTr9PYeAavd5CQr4utC4upLS0l0d9HUGcgJlmQxSwO\nfSmJbAi9EqEIM4VaEzqzBa3opz0UwhvrQZRCZKU0gupAxIJIBshgJ4MsGrBozYQyPrKSCY1YiWck\niHTsBbLZDH5/FFEsQ1WTmEx6FEVLNJpAVgyoSGTVcbLZJBadws3FVXSEJti+/XcIggVRrGd0tBud\nbh41NesIBM6iqsW8+morBQV5LF265IqMwdWmo6ODbdteIT9/LtXVi4nHwzz11FHS6SwbNqybWk+S\nJH73u2dpa5vAaCxCkjLs2XOS++/fyEMPfZrjx5tobGxFkhTWr6/A4XBcUP4siiKSJGMwGEgms8iy\niVjMg06XRzY7iixnEMX5aDRxZLkQVc0gCDE+97lNrFq1guee0/DDHz5BKlWBhiCFJLFiRESLDRNa\ntIwi0YtIBoWSWZsQdUb0eiPhsIwoGrFYYqhqgpKSCkKhCIcOtdHTkyCdlti6dRNDQ5MCiu+MAEYi\nfn772xf5i7/4+odKXD7T3EypTjfliAAsb2hA1WgoXr+e+fPnU1lZedHKPEEQuPezn+V4YyNnjh4l\nm0jQsGYNf3DTTTzyne+85z5zzsg0snfvR9cXeTebN0+W+Ho8cJkK59ctQ0NDNB08iH9sjJKqKlZt\n2DClPhiJRHjiv/+b/ESCxS4XPZ2dREdG+N1EmDWrllJTUoLTasUUCDAwMEBDQ8N7ftkODg4yNpbF\narWyZs1qDIbDnGruRIOZSCJLfWkFxlgGSUlj0wpkzs2leodHMSk2KuY20Nh4ltLCm4gGxzEIEoqx\niHRmAk/ET4kYpiibJYGe4EQnpRXLSUZjpNMFjI0lkaQ0kmRClgX8REgIZkRE7KQwq3rSBDCYZpHM\n6EBJIMs9aDT5KGoSUUij12rRaGQWVhRTlU2Q1etZWFZGp6LQOzYGySSGTIZMNovF6STU0cHRvDzW\n3Xzz5BOWokxLQmt3dzdPPrmbVMoACOj1KT796duvyLb1ej3SRdrT2SxOp5Pe1mb6+tyYTA4mJkZI\npWTi8VFEcR7JpIk1Gx9gcKCVsb4WFFnGvmQTliId8+bNY86cORw/fpwfv/ECnUYjPW43TllGI4JF\nryGUzoAgYhLBoqpkVJlAPIE2o6LVRtFozZjslag6hUx2BAMqKiZkkoiEySAjCn6S0iiV2jJCIig6\nO5psDLe7B1F0oKp6stkker0BURSQJC/hcJpU0oNR9lEsxrApkMjE2NfXilar49iRYyxcfAc2m45Q\nKE1+/mTpq8VSTX9/P8uXr+Xgwebr0hlRVZVXXjmIy7UAm21Sjt1stmOx1PDznz9JPB5n0aIFlJaW\n0tJyltbWIDU1q6aiQJlMFc8+u5fZs+vZsGE9GzZMvr8lmUzS2/vfpNNJDIa3v4jHxwe4/fa5pFIp\nFCVFJhNDFPUkkyNksxNAMYoSJpuNotdnKSurQZI07N7diM1mZf/+Luz2CqTEODBGmAwqWRQUFKxo\nERGRkbEjYSca9dMwbxFu935kOYBGk8LlWoNeP5eBgSEyGQ2K4mHBgltQ1Vq2bduFJMUoLz//7cx2\newGDg714PJ4PFR2JBAJYL+Jo2A0GCvLzmT179iX763Q61m/YwPoNGz7wPnPOyDRxufoi78ZggHvu\ngSeegL/8yyuzzeuJttZWXt2+nVkWCw1WKxOtrfzu1Cnu+9rXqK6upvn4cRyxGLMrK/EGAjT3+rEp\n5Qx2C4ylRygvGubu9UvRqCqSdLGvrbcZGRmhqakZnW4cVdWTTpsxWyTs2hKKHDryHA6CoQFEYZyi\nAhM2m41YMknfeJRyjHjOnkbKGtCZ9BhNNmKxIBpVJC2DVZGoMGnQiQKyDOFAN2OJOGkljSZtIZEd\nBIpQFdCIeUwoDThVAT02EoSwa8PIRjuzS6rxBLvQaoJojWFk2UAmq0OnAUHTy9wKFxPBIGaLBUVR\nGPSO4Rkfp9Bmw5fNUpCXR6UsozGbKREEetrbyZosZESB8lUryT9XVXKlCIVCbN++C4djMUVFkxGo\nZDLGE0+8ekW2X1tbyx6DgXA8juPcHHkqk+HpIycYl/MYG1Pw+Y4RiXixWudRUVHGli2fJRbzc+bM\nfurqNlBXv5S6+kmp43Q6STx+CkmSeOJXv+LNxx/H0N+PYDRyNpFAr6oUWAx4fGOgOhDEGLKaBkFA\nEE2EpBR52hglRiPjURFZTJORjQRELWUY0QoSqiwTx0QEEYccRSeaUWUZORsnqo6CXoC0DUkqRxDC\nqOoYgjAPScpQUmJkdLQZnWaEGiFOiaDHrSrYNbNJyzqG0gnkwQnKK+MY/3/23jvakqu+8/1UPjnc\nc27O3X07t7pbqRWtlkBIIIlgTDBGFphneCyHGfOMZ72ZZy8P4zULz4yXjbHxMMxgyUZgokCAQBLK\nodU5qm/O6dx7cq683x+naakVAIHaYOPvH2edqjpVu9bedWr/9i98vwEbSXqBB0JVdRzHJhiMUCxW\nX7E/fxGwtrbGsWOnyOfLbNjQx+7du87nP9i2zfp6hcHBJM1mk0xmjTNnRikULGTZ4Xvfm+Rb33qK\nPXsGWFsrEYlsZm1tnuXlBQB6ewfw/Thzc3MXyCcEg0He9rb9fPWrj6Pr3RhGmFptjZ4eiSuvvJw/\n//O/IR43qFbnAAnPk5DlAKChqg6a1o7rqhSLdSSpDgzxhS98h2YT6vUywoYQm6jR5BirXEoNnSYN\nVDIIXGIochu2XWRoKMzu3W/hxIlFyuVRGo1l8vkeXHcETQPXlVhdrbJ1aw3DGGBy8kH6+1/u/ZAk\nCd/3X1Pf92/cyOjoKJ0v0d0pui5XXKTV8EU1RiRJ+kvgMuDYSxV8pZaJehz4tBDi/1zM+/h54OxZ\niEZ/en6RV8KHPwx33gkf+9gvl3Ce53k89p3vsLu9ndi5l1EkGCRULPL4Aw9w10c/ytzYGP3JJL7v\n8/CRMdJte/CLNSIKxAM9FCp1njs7gZKKv+oKQQjBsaNH+ctPfoqFSR8jGKZmSShKCNtJs1R+jqA2\ngOP2smpNcknCZ2B4F9FolLu//xCzWYGjmGBbNO0gS41xAlqMqusQqJfx3Dy+lCPvBLF8CSFKRHAo\nNMcQSgRHZBBeCkXtR1JquG4Fj80UKGJgIROjLvvs7NlOpdIg7BbZoHvMm5P45FDQ8b06QqqhB/rQ\n+vtxCkUef+Ygg00H1bFZtuukFBklEGBzPE5Q1/nW6AyWEua5Z/N0Dfexp6vC4uLiy/rJ933m5uYo\nlUrEYjGGh4d/Ytfv2bNjuG4b4fALCYXBYARZfmVa69eKYDDI7b/xG3zn3nuJ5HIowJH5JfL043ld\nbNmykURikZmZGaJRi1isjVAoRGdnJ0eOHGRhYYyNG18gsFpfn+P667dx6uRJRh96iMtDISqpFPV6\nk05P42ipiK27uD6oWgBPNKl4WUAhShXTd3FwyDd91kSc5fI4IfKU0GmSRQdsEjhSP3WhUuIYQb8N\njU4cqvj2BK6nYbubgQay3AYEqFbHgAKRSJwrruigOrtGaGqFrKsSYATZk1BwUSUD2Wrn6ae+z/vv\n3I0QJkL45yTo19i4sYdCYZUtW17HF9TriNHRUe6990FUtZtgMMrY2DjPPHOc3/7tXyeRSKBpGqGQ\nxvz8LEePTjA/nyWTqSLLMXR9ikhExfNCnDhxEsOoUCweI5HoIxZrJfDNz58kEqni+y9Xr927dw9d\nXZ2cOHGGSqXOyMil7NixnW9845t85jNfxjS7sO04vn8SWXYJBpPYtokkbUBRBvF9C9MsEo/rPP/8\naWy7hKYlaFQVEsiAjIlChTSPUGcIGxMokkClkyIGwvI4dWqca6+9Ec8rsGXLVpaW8pTLMUyzTDgc\nIxbbQDw+wMTEWS677Fqi0SBra3P09b2QiN9s1jAM+zULhu685BKOPfMMk8vLDHZ04Pk+U5kMsY0b\nL1pl1kUzRiRJuhQICyF+RZKkz0iSdLkQ4siLfnIHsA78y1fIegW8HvwiL8VVV7UI1B56CG699fW9\n9i8yisUiolYj9pLJsSOZZHRhgWazSTgWo7m0hOt5VJsqG3qHONucolQsEnQcNCPMI6fH+ONP/r+v\nWkXw2A9+wIH77iNgBujEYWl2kpoaRgr3IUQMI6gzsjdJVxy6N1/O/MwsD5yZ4O8fe5rZTINYaBdF\n6shOEVkxqDtLVN12NDWALcq4zBIXYHoyAheBQRafmujAd5PYBFGQEH4ORQnjMAw0ELRjSyaCOLK3\nzPHZI3RIdS5LBxm1NPr9JEI1qMoyycAQkuYhhTx+86Mf5a5fez+9cgpLrxHAxDcbzHo2Vcvi1t5e\nZvJF9Mg2+vt3kt66lW07drK0NMOnP303n/jEx8/HhOv1Ol/7x3+ksbhIVJKoCYHW1cWv/eZv/kQU\n85VKDV1/eejHMF6/cNDGjRv58Mc/zuzsbKuC5MsP0F/uYH7eRZJkTNMiHt+I40wihMrKSoadO9vY\ntm0HS0vHCYXCGEaYanWd9naXa67Zx31f/CJKuUxHKkW5UmNyvobhx0hKMGF6GDSRnAyOD2HC+JKg\nLCqEhIxiaRRwWKaIgUyEXiK0USCMiU+TMogeFGYR7KGBS5gkqtyFI6XQpTFsmijKELIUBOI4bgdw\nglxumksu2UK+UmUoEmClqhMUKhYCkAjoGlu7h5jLHubAM/fR1bWZublRFEUiEqkTiezA8xa54Yb3\nvm79/3rBcRy+/vWHaW/fSzDYIjNLJjtZWZni8cef4e1vvw1Zltm3bwd/+qf3YpobaDRkQqF+XDdH\nta8YfDkAACAASURBVNrk6acX6O3dRTSaIp3WmJqaQ5IS9PR0IUkQDLaxsPC9V72H7u7uC6pUJicn\n+aM/+hTV6m6CwSFUVcKy5nHdMVKpIbLZs1hWFsfRaeVwLVGpuAiRwjBK5HIVVLtBDIcaZdpQCSFT\nIsACBg4uDbrxUZE0hZDeydLSCo8//nUuu6wbIWx0Pcnw8GZMcwpN8+nrG8IwIlQq01Qqea6//kpy\nuQoLC6eJRNoxzRqum+HXf/3m10wdHw6Hed9v/zbPPvkkzx0/jqqq7LrpJq669tqLRpp3MT0j+4Af\n+mB/AFwNvNgY+XXgn4B/uancPwKPP96qgHk9IUktjZpPfAJuuaW1/csAwzBwX6FUzHFdJEVB0zT2\nXHUV3//85xmMREBIaKrGQF8fU+EwUmcnUsBgZPhSrn6VGOaJEyf427/4O2TT4+xMFb8Woy3Wg2HV\nydslgrEudD1B3+Al/NEf/Rb33fcAZaebTPkgIalKSotjNvNURSex2OU4jeexXQuZEopkEg/UqLsl\ngiKGoIGMR4MaTXpwSWKjoRHFI4HrL+L7ZUBHkaIEVBNDjdFwwHIlQuS5IdUFdh3f1ekPpzA9H1lR\niUXj6LrD6vIs/+k/fQqzHqcW0uiMJPEkn2YsTjM7j9m0qDYaHM1U2TxyExVFQ9U0nn7oQYK+T7Y8\nyZ//8R/zgd/9XQYHB3n0wQdRl5e58kWlYdOrqzz07W/zrve//8eO4dBQH08+OQ0MXbC/Xl//aR6J\nV0UwGGT79u0IIfja1x5GVXUkqRWWC4VClMs1JEnD973z56TTQd73vndSr1uUSjU2bdrJrl07W9VE\nQoAk4QnBaqmJpqXwPAlD+KjRXvJ+GSs/T1uom6JVw3drDODThoctxQgLnY0ssUQAkz5AoGEjiKHS\npMHTKKQIsBeTCSTqyHIQWSRxXA+JBgouEhauB62aCx/fTwJhHKFhOS5dkQSqpRNUFGwhWPN9NF1n\nc28fqQ6bbVe0oapzlMtFurp62LUrxP79b3xFwTXbtpmcnCSXK9DenmJkZOSfVQclk8lgWTodHRey\nqraE6Z7l7W+/7dx2mlQqwPPPn0QIGceZw3VDQBxFGcS2VQoFk0plFtcNMjMzRr1eprMzRTgsGBzc\nzIMPPkYms8baWoHV1TyJRJTrrruM7du3X/Cu+dzn7qFcThCPb8I0m3heASFkXDfG4uI03d39lMsa\nrlvE95sIIROL3UC9foxLLtnGwWeeJolOlRJDBAkRxkMQokYJwTgqgk48JFRvEd9PY1kSrhsgmezk\nrW/dz3/9r/+A60ZIJGoEAh1EInHq9RyBgIZtL3Lzze8ikUhw+vQZpqeXSCbbuPTS/a8qqvfjEI/H\nuelNb2LD5s24rktfX99FlZK4mMZIApg5970M7PjhAUmS3gQ8DngX+R5+LvC8ljHyl3/5+l/7ve+F\nT34S7r+/lUPyy4BoNErftm1MT06y6UXuxrHlZbZfcw2qqjIyMsL6W97Ccw8+SMlcp5yJoUUTXHPj\n9aTTHWSzi+zdO4BpmmSzWQKBAB0dHQDMzs7y2c/eh+QMsqG7h1Nj36diGqhRn/ZkJ47TRAkIzLrN\n4ccf5BPVWZ47usjC7BKaVSFol3CcDlwM8GE1uwZSP4gsirJKW8AhHPCxm5ew4EwQRidAlCpNaoRx\nCKMDCgY+DXzCeKwisQ6iHUky8YgQCoaxqgeRfZvJWpE2VQYEIc1AVVwaeoB0uovJ1dPU/BTZbAir\nprJqyeT0Em/avYuB1FWMTR3nxPoEZm8velWiCHQODpKdnmY4kURVFFQpywZd51v/8A/85u/9HlMn\nTnDNS1y9G7q6eGpsjGq1et7b5HkeuVwOTdMuyDvZtGkTw8OHmZs7TUfHMJIksb4+R2+vcv68TCaD\nEILu7u6fafWVyWQ4fvw0xWKOUsnDtkGIFMlkO6urSzhOFlnupKMjxerqNO3tcPXVVzM2Nsbc3DF+\n8IMDjI1NceON17F1717GHnmEtWKRarWJpnUjB1SqTZ9yM0Oz7hMX3VTrSQQbUDhOBBUXH4FAJYiO\nQpgoDhEkwvg0MLDRMbCQ0KQYQpKRfAlV8nDcZZAcDNlGEusgrSNIokgSmlzE9UFRgoyOTiNLMnOe\nBG6Zphcn5ofI0+LeODt1hn27QrRFo9ilVS5tDxLoCFERAr9ZxjRN6vX6BTwUxWKRz3/+yxQKCqoa\nw3XHSKef5oMffDeJxMvLoy8GZFlGiJfnOPi+h6a9MF1IkkR39zDVaheVyjxTU5NIUh/gIssGjuOg\naVWKRZ94vIdIRBCNqjQa60QiERYXK9h2ie9+dwqwue66G5DlNPfc8whXXjlGZ2cnuq6zadNGDhw4\ngusKbHsZyyoCXUhSAlhHiCqWlUSWQwgRwXVtIECxOE806tDTM4BBCZkgPiZ5gtRoEMDCwCZEkAg2\nTeZB6kfXb0CIdTStjUajwhNPPMd//s//D29+8xm+/e1RYrFOCoUcJ0/OEIlUuOWWS7nrrjvOh2L2\n7buSffuufFn/vVZMT0/z3S9+kZBloQAPA1fccgvXXn/9z3ztV8LFNATKwA8DxHGg9KJjHwJ+k5Z3\n5FXxp3/6p+e/79+/n/2vd9zjIuHoUejshItQGYmiwF/9FXzwg60w0C+LCOstb30rX7/3Xg7OzxOW\nZaq+T3rzZva/8YVqjGuvv55L9uxhz6FD/J///WVqqwuMPXGahtOka6SXK698G5/85Gfx/RBCWAwM\nJHj3u+/g4Yefpq1tOyXjDKqi0RFLUG+UydUtdAVqVhHDnqMzGqaemeM7X6+yWo6iy31EJRNdXscX\nJRQXFCw0SSEoy1RFgLDchuXMo0lhqk6eJl0EiKJQw8E85xFJo1MEmgSJUSMH2AhsfJZo2sMgLyCb\ns3RRZqPWQRhB3q4gsMjaOYJyDFeSKTWy5Os2qBEKhQJFO0hU9FBqFvjusVHevAd8TeVtH/wAN99x\nO4GnDrC4aFAvuyR1HVVRsF0LVa6zqWcXoysrjI+PI/k+6ksMBEmSUOB8QvDo6CiPfPObSI0GnhC0\nDQ1x2zvfSTKZRFVV7rzzXTz33CEOH34e3xfs37+da665kt/93Q/xP/7HZ6lWWyvRSMTjPe+5jeHh\n4df8nJw8eYqvfOVRNK2bWGwHJ08+QqOhYNtNFMUgHM6hqg0SiUVM02Dr1j4uv/x6vv3tBzh0aIlm\nwyM3c5oT1QLf/Pt7eNeH3k/fNddw/FvfYrVWRJEDZJGYrTVRnQrd/gBlXKLnckFUyoRxAI2q8JBQ\n8YmiIOEio6ISIEQDHxkPmSSuqOOKs0hoWITQMJGpkqCB6Vcoq0tIcgPflRGehC9q2GY7lVKKSjlN\nRNIZjgXIl7IseyZtSpCU6pPwS/jZOIfLa3zgppvo6u6mWCxSHJ/ie489xw8eP0PvQB/XXruLm2++\nEUVRuP/+h6jX2xkcHDrfp6urMzzwwCO8733vfM3j8dOgu7ubZFKmXM4Rj7/AYbG6Osn+/S/Qjg8M\nDOD7WebnJ7CsGKbZhudV8P15PE8QDA4hSQrR6FYcZ5lYrJfNm3eTy2WZnDzFxo0JDCNFIpHEMAxO\nnTrFzTffTqnk8Fd/dR/XXvtGNE1hbu4fWV218X0Xxwng+0k8bwEhZKCCLAdpNFZoNs+g67sIBAaw\nbR/fX8DzTOYmjhMRddYoI9OHSgcNTBRW6cejHZ8F6tTpR1W3oevteF4WVRVEo3vI5+9nfHyctbUm\nQ0P9rK3l6OhQcF2ZK67Yzp/8yR++ovFerVZxHIdkMvmauWTq9Trf+cIX2BWLET/nWXFcl0MPPEBP\nX99P9d/8cbiYxsgB4CPAV4E3AH//omObgW8CvbRyWZ8SQky89AIvNkb+JeF734M3v/niXf8Nb4Db\nbmtxjtx998Vr5xcJ0WiUuz7yERYXF6lUKiSTSXp6el72J4tGo/T09LC7I0g6HcB3fBLJGDPZdT7/\nP/+Jm279CNo5Vs1MZo577/0GKyt5+vv3szK/wlJ2nZgeJ6larNdnyDamMYLtDMV6mV/+AYZQkOUA\nqmPS8BRsRQNS6H4ekzwmDr7I47gVVIq4dhPDdik3Qgh60elFJ4GPisIaEtPIbMJDR5PqNES95RGR\nVBDrGGoHshKgYZ2mC4cuwri2oOFAQArj+XXG/ClcX0N3e1ht+lSbYSJxGd9PEk724VWrBJRuzIbN\n06OjbNya5M4PfoC+vj42bNjA5z73JZ4+O0abb5CvNLGdVd54+TC6pqFLEpIkkeztJVMo0PUib0eh\nUiHQ1kYikWB5eZkHv/AFdqfTxM7Rzc+trvK1e+7ht37v91AUhUAgwP79v8L+/S9nd1XVzQwMtDL3\na7US99xzP//+39/1mlbjpmly332P0Nl5+Xl23XS6hwMHHsIw1ujsbGfr1ut5wxtuoKuri6NHj/PA\nA0/x9a8/xfHjZ0inImyNBNjTPYye7GQ9t8o3P/W3+H0biG+8nNVMgXzBQ5MTBNxVVKEikyGAi8Ya\nKg0MAqh4RNDQcClSBNooUEdCoOHi4uHi47CAhEWIKj5RbAbQRDsSIMk2hhwj5RdpupOY0lUI38AW\nU0AvshOlmF1HyBGaUgTFkBiIaqjlBVSRISVLXNq5DUfXyVSrVIslThw8TSZToVhsEIoEqK8X6bnq\n3Tz++AmCQYPLLtvL5OQK/f0Xrnw7O4c4e/Ypms3mPwsRnizLvPe9d3D33d9gYWEFWQ7ieSWGhyNc\nf/01538Xj8dJJkM0mzKmGScUGsSy6nheHM87QiSSplqVMc0GqrqIqtbIZqNkMjkcZ5GRkV3MzdWI\nRKI0GnkKhSpHjjzE2hrEYpcSDCZZXZ3mkUcOUy4ruG4Ty3oWaIOWxjIQQJI6MM0yUEOILK5bRwgT\nwxjEdWuYmWmajRpRBvEIE8Qijg4MUWAejRoRoEQVH+ucQF+FZHI7rlsmHk/z7LOHCQSGuPLKITzP\nxXUddD3AwsJhFhcXGRoaOifkOMoTDz7I6MmTqJJEX1cXoXSaN77tbWzatOkVevuVMT09Tcy2z1em\nAWiqykA4zKkjR/5lGSNCiOOSJJmSJD0JHBdCHJEk6a+FEL8vhNgLIEnSXYDySobIv2R8//vwZ392\ncdv47/8dLr0UvvIVePe7L25bvyiQJImBn6A86eBjj7Gnr4/0i9xGS4urqDUTy2qeN0a6uoaYnz+I\nqvo0GhWGRkb4yqHj2PkiZr1K06vSsHUi1MnVH2WbESBq9NEwA0SaFaZFnbLbS1oJYfsanVhILBBC\npYJOJxJhIpiYlLEJ4lChggJ4aHiE0RG4HMUnjilsJGwUJBTJRw/txnHXca1ZAjRpQ0dHxcDHE4KG\nkAkQxpU2YmsRPL9KSAkTikUJhVPU6ypdXX1UAnnKhUU0CcxQisTwEI899iQ33vgr9PX18dGP3kk0\n8gWe/MZ3Gerq4rLNW+lsa0MIQUkIenp6SKVS/OOnPkXP6ipDfX1Umk2WHIe3fvCDSJLE8YMHGQgE\nzlc7AQx1dpKbn2dmZubH8hL8kCsCIBJJUCqlOXPmea677ifnKVheXsZ1wxfQ/EciCa6//naazVP8\nh//wO+f3j4+P88UvPsrhQ1lKOY9GdRtLaweIGhU2Jzrwg0FOTo5SLS2hFhroO2N0dWxHzz2HUl+l\n5pWoIdFNEpUoHg2iyExjMYtDFwohHFxsVqlRpx2PBXRiBFCBDBEKdNMggo6OQZkFcqzg00FE6aSJ\nRRyJhFRgnWN4IoFKiAhRPCwc4aF6UUzZ58jqKEm5Qb8eBlSiMYlco8GO3btZOXqUZw+fZahrO5Y1\nSzo9iGlVmZ+dQAhBX99OnnrqKN3dnVQqNVz3wnCILLcqQDzvhTyb14JcLsdzzx1hfn6Vjo42rr76\nsh9LqNfb28vHPvZ/8dBDD3Ho0Ck0TWdwcATHcS5IqvY8nQ0btrG+7lMuF/F9j2RyAKhRqZzFtoPE\n4yPs3v3rmGadRmOOtjaXVKqb7dsvZ2HhEUZHH8N1gzSbPmtrpxDCRVV1stlnKZddms2OcwaODxSA\neaAdCKIovSiKjOcFgABC6EiSTTjcg+PMIUtVVqbPAjoBwqhA85wejYxMgzDzrBElTESxUZIKnrdO\nIBDEMGyi0RCRSALT9IhG26hWi9TrZYLByDkelBDlchnP8/j/Pv5xjn3zmwTLZYKKQrS7m/K2bWyN\nx/nuPffwnt/5HTo7O1lfX8dxHDo6Ol7GVPtDmKaJ9grelICuU67Xz4djVVUldW7x8bPiouZrvLSc\nVwjx+y/Zvuditv/zQD7fKuu97rqL204k0uIcectbYN++n51y/l8T8pkMm9vbqVarGIaBrus0GhZx\nI4hp1olEXlhty3KQvXt7OXBglFMnMgQ8FU+P4gcF7Uo/LlHKzQmGEwphKUWhWsF3JQIYpGmSwSXr\nrSJYYxEDmTQeJpuQ6SeBikKZBhpNMlRJEEJFxUelgE8DCZdFZAoodKNiEGQdzbdoNgW+GkOlgQVU\ncEgjE0XDRKAhaGDjIYjEdmEYEIkUEKJKtVrC91NYlkkkGiUYSlMtNWiW11k/Nsl3R1f4+hfu43c/\n/n+zZctm7FIRXTRZnHieeinLnp07qTgOvXv2UCqV+cY3fkBZGWBqZZbH545y82038d63vvU86Vxh\nfZ3eFxkinuexsLDA5PHjrLgub37b29h72WU/MeOqrocpFF4bB0Zr0nx5cZ4Q/svc2E8+eZjTp7N4\nVYO+ZJoFu4zqx8HxOXXiEGpbnGApx6ZIEikUxS1kWJsfozOQYKnUoIZHHI8FsjRwiCCzEYkuLHJo\nrGADDnUUihjodOKSI8w4CjYCkxAufWg4KIBEnCAGLgUcgk4dIepoVBBey1Sp4iDRRYUSCJ0AKkEU\nTF+mikHRV4hIXQQCDs2Yy1UD7Tj1Otl6g75oDJDOiURKmELgG53kcstEox0cfvYwgcoS2clpZs4W\n2XXFNedXvysrc6TTQSKRyEu79sdieXmZz33ua0hSN7HYIGNjZU6c+Bq/8Rtv+rHnHjp0hAMHFojH\n92IYQZ56KsOJE1/gwx9+H/F4HFmWWV9fY23NwzD6aW9PUCyu0WiUcd06vi/T1dVFT083oVAbkUg7\nuZwCTJBKtaMoKq5boFYLkUyO4LpTZLMGlUoDSZrB8xx830GStrWIjonSSnPspJV5EMP3LRSlm1a4\nxsIwQshyGFVdIxzuo5k/go+LQKNGa8IVCBq4+EjY+KSAHBKebuCYhzAMQSg0RKMxi++3iAG7urq4\n7yv3o9fLRCSJhhBo7f3EO1ueyT/7L/+FQ1/6Em+Ix7EMg6Ask1ldZdX3yQ0P0xsM8vjDD9OsVKit\nrKDJMrauc8Mdd7B7z56X9X1vb+8r6suslsuEBwf5u//235AaDVwhaBsY4LZf+7WfmZvoX13y6M8b\nDz0EN9zQIim72Lj88hYB2p13wmOPtfJJfplhmibT09NMzC0w98RhkpEEkuSxcWMvbW0xjuazbA+9\nwHPh+z6+X+a66+4gGj3NN//p74kpHVhuk4F0Nz3JnTRMi6PT8+TyJQip6Kqg0nRxPIGBh8Rp2sji\n0INGBw0U6mRRcaljESGIAdhIxAEXExcNFY0YFnVypOglgkWDOt04xAkiIcj5a0zYRSzS+KSp4jND\nmRQmYWK41Cjh4nt13EYGzTfIN6ZJd/QhUaRWPYrr9jAwMITnWhjNKkPdIa7auBVD1VkprvHXf/43\nXHf5Vna3tXHp7bczNzvL+OQkDx47xgc//nE2b9nC3/7tl0mn99DVFWHbthup1UrMr5y5IPGxe3CQ\n3MGDJCIRfN/n2KFDmJkMOA5bNI3nv/Mdps6e5T133fUTVWY0mzkGB694TePf19dHMGhTq5UuMDjX\n1qZ4y1suFPOan19hZSFPQu6iUM/h2Daup4JskC0XSEsWKUkiGolSlCTkZp1EtcKEYyH5JjvwqWKg\n0odOhDwwSx2DOkUEMu0oSpKGX0ARGhYT9FJkMxIughwBYlgohGhioeMRRkEH1qkghEGMCjEsbDTS\n+NjUEFg4BAjRhYyPSRmXLAE68PCpOSYJLUjdSnE2X8Irl8kImfL6Moqs4fgW9XqOJR+8YA9jY2NU\n84dI0mD/xo3sSKX4+pOnOPzotxnvTrE8eQrTKrL9ssv4O+Nu3vGOW88boD8Jvve9x9H1DaTTreTK\ncDhOo5HkW9969EeeV6lUePjhIwwMXI2qtp6XSCTB0tI4Bw4c5tZb34hlWZRKJYRQCAbjWJaF78dR\n1QaRSIhotIuNG6+jUDhBqXQISQpiWVn27esiHo/z1a9+jrNnFxBimEbjII7ToNkMIkQQ36/j+wJw\nECIA5IEarcyCyrlt+Rwzrg3ISFIJIdpR1RS2vYDVnKXHKdIEumhiUSFMG2vnjJAoHj55isSwpR34\nis727duYmlqgXq8yMLCDdLrFniucGdypgwx1bCOd7gQEo7OnyPtJvvmlJl/69KfZ1myy1GiQUFWS\nsRhdQjBRLDI9O8vuLVu4/0tf4lf37eOScyvXhmny+Fe+QiKZZPAlq9menh6GLruMI4cOMZxKtfRl\ncjnygQD5Y8e4rKvrfDh2YX2dr959Nx/6/d9/GY3+a8G/GSOvM+677/Uv6f1R+MM/bIWF/vqv4Q/+\n4J+v3V80TE9Pc++932Vqao0zZxyMYoPL+1MM9Q1ydnQBO9Qk3N1GvV4mEAhjWQ1WV8e46qpNpNNp\nduzYxp7BNqy6RFt4C/FQB9VqlWKxiun5NEWCSqOIobUhRA5V0iiLdTZRwSZMmF4UVKIIVpCBIHXK\nGFRwMFHwcXGpECCKgU4Nj3UC+ARQCAMGFXpox8HHQ8PGJkkHJgFcZCw8PFJYLJKmcO7KAwgaBJtn\nUJs2ilyhXp1HGB1IfglV1FhbKmBbBTalA+wZ3IyhtlyzPclODp04i70UIX1uFbxl2zaGN27kzMIC\ngUCAM2dGkeXO83wP0JoUisUkR48eJRAIkc0WCIcDLHsegWwWzfOorKwgFIW2vj429/cjSRJHZ2YY\nHx9n586dLxu/xcUxurpa6qlrazN0dAi2bt36mp4BTdN43/tu5x/+4X4KhQSKEsBxCoyMxLniisvP\n/87zPNbWlinkM3hytMVO6kuU7SgLTNKmOSimDbJgrVYg1LuJSiGD1xBUnTLbhcBAJUMPKRK0AS0h\n9zgreIBPlC5qnkqNXiTWiZNjBEECnyJtxFEJ4uHRoBOFKjWglY8hISiyxCaqrKEQBXqwmCeNQQyH\nOWxcZMJ4FHFZIcJeaizQoEDOcmlmE5xdz7Ip4tMX62CtUOPhwhmMcBJLSuOIIbCzTE3pVJaf473X\nDIAQdCSTvOuG3fyvr99H4WCG3QPb6Nx0JflykwNPnCWfr/Lv/t0HiEajVCqV8wR4r5TbY9s2c3MZ\n+vu3XLA/FIqSz//ohMrFxUUKBY9yeQJNU+np6SYWi5FO93HmzCi33vpGzp4dY/Pmq6lUDjI39yTl\ncgDHMYEMgYBLKrWBWKwd1x1h375NhEIG+fwiV1/dzpe//AMymSKWZeF5RRynAoQACVmO4Dg+rfqL\nTqDj3AhngNO02CiWz42XgRBFYBlNCwMSlcoChlEmqrQ4VTcA/cAKy5SxaSPBMi41ckSoUmUPrjaA\n45SZnVymv30r5foU/b1h9t/0Zh577AEWRr/P1akeFhdHWVh4nv7+LnZvSPPE1BhHZsaJOw5pVSXu\n+5SrVQxZJhoK4dbrTE5NkZ2aotpocFhVMXfuZNvQEKFAgMFQiOMHD77MGJEkibe87W2c3rCB04cO\n4VgWm2+5hdjKCmJi4oJw7EBHB9m5OWZmZti8eTM/Lf7NGHkd0WjAgw/CZz7zz9emLLcMkTe8AT70\nIfgRitn/atFsNrn33u8QDm+nUllh8+bbqNeyHJh6hBVpHiMSRo/E+OM/+RiHDp1kfPwJotEQb33r\n3vMlcOFwmO7BbhZPr+ILn9XcWQrrrcp0WXKoRbro0CzMYo5oKEamlsehTpeksiRCaGh4qC32SyKU\nKaBjo1IjhIqNYIU6ARZJoiPhoOJgE0BlnQYuKSwqgIeMj0MdCCEjkPCQUZGBKFWKODiEGUJBoLHK\nIHUC2Bi+w2lMio0QshKnadYI6E1810aWui4QkvM8F6deJrucYWpqmmQywdzkJMVMhlytxnSjwYZL\nrsAwkq/Q5y533/0N+vsvR9ejmOYKshwml4hy/OmnMS2LS3ftYs/WrefdvJ3hMPOTk69ojFx1VZoj\nR54DYN++7dxww7U/lYje8PAwH/vYbzE2Nk6tVqe//7KXMcVOTEwACZAzWKKLqN6LikNI+FT9MHV/\nGa+p0ysHcH2ZwNIa9doalusihENckqmIIAoxXCRUBGFgDZsyQWQiNIjiUEeiSBAFHROBxxo+UEZH\nIYdNGy4aBjFM6tRYRUFHIoRDiADtuMzgsEAAhw4celAw8aiiUSJMhBIBPPJ0Mk8HbWieh9coYCpV\nRoauY7h/KxMTz1NswKwcw7YNFGWZUKhJKhVhg9ZBIdtgdHqabZs2sV4s0icJIvE+to/sBaAtIjhT\nyLC+3sPx4ycolaocOjSOJIXx/TqXXrqRO+649YIcBEVRUFUZ13XQtBf2CyEQwnnVMXRdl+9//1FO\nnJggnY7j+w3GxpbYs2cTbW1RQqHWc9FoNIlEktx222/wla/cQ7k8gWGE0PUkoZCNbWeoVjOAiiQp\nuK5DJNLg1KkJ5ucNQqEOHGcBy6oihInjFDGMTbjuGJJUQ4gewIVz1W1QpTVlmuf2jwEKkESSYkhS\nO77vEwjkSCR0vHwOC4ihAUH6ESTJ0WQNF58SgmXa8JTtqFKIgOIhPJl0JEpQ6aK8NM+BZw+Qy6m4\nbpih/u0M9m+jVMoSDDbo7m6H44fpiETI6zrTtRqaEDi+T65SQZJl5k2T3aqKo+tcm0gwGApx6tgx\nouEwfe3tREMhlnI5stksE+PjeK7L8MaN9PX1oSgKe/bsYc+Lwjj/+NnP0v0iQ+SHCEoStVrtQROY\nDAAAIABJREFUJ/+jvgL+zRh5HfG978GVV8JLFJUvOnbuhJtvhr/5G/iP//Gft+1fBExPT2NZEZLJ\nII4jiEQCxBP9yFveTiTR4KqrrmBl5QipVIr3v/9dr3iNaDTKdW++lYcy9zB27An6/SBJT8bGIqL5\nrGKzHuukWMogOWuUZYHigSU8fBwcLGQ8fCQUNFZRgRrteDTxWcWjAwkXFwUXG4Mh1BY5FjI1JBoI\ngmjn+EaccxOYi4dBHIMcTSJoqKh0YtCkSQGIoSNRIEKTLAKX7ej0oalBQuF+XH+VqjtGZlXigcoB\nrh8ZJBpJsLK6zHrdo9AMcPr0OssLj7KzK8amri4cIC7LTB47gBe6hHS693xfCSE4deowu3btpb//\nh/RBA6yuzhBqU3jXRz7CwsMPs/0lq62mbdPxKnkHt912C7fddsvP/jCcG8sXe0JeijNnJggG0wxv\n3M3i5BEK9bMoko5wqshKDREfphFOsVZcpU1OY5oKubLHqrBwZZWSbyEh8PAxkRF4FBAU8RCMIAMe\ncSQ8QmSIUEMF4jg0kKgisAENmMI7R4JnUDznNRvGYJwqPjXSCJ4ihMNGVEJAOzICQQkHCYUKGhY6\nZ+khDugIDAy/wCZNIVPMMTKsMzKyjUxmiZnZcRwpyh13vI+Rkd3MTJ/m6LefQZFkHvvBElMLCwhJ\nAsshHH0hHCNJEklJomZZPPLI0zhOOwMD1yLLSissd+wMhvEot9/+AjW0oihceeUOnnlmnMHBF8Jk\na2tzbNjQ/qrjc+rUadbXVVKpOK5rEY93AUlOnBhny5Ywd97ZqvYZHh7g0UfHKBRsOjuvRte3k8/X\ngCIbNmzAthfx/THW1mZZX8+zY8cG3v72d/GBD/wBCwslarUA9fogLa9HCiGWMM1naBHzdaOqG3Dd\nCrBGi5liIy3GigawH5gCQJZLqGonjjOB72eRZYdiVsa2ZcIEkFAJoaIDEVQsGjSxKCLhE0OSSgR0\nlWgghus1cFwXaNDXlubkidN0De3FikapNmtEgxGSiQ7yhRnmFxZoui6pcBjP97F8wWlfIiFUHNvl\niXweO5Eg0t/PrpERlk+cwFBVBgMBxqen6WtvZ71UopZKce+nPkW7JKFIEicfeohNV1/Nrbff/rJq\nxZ6hIbLPPkvyJSzWVfiZc0Z+iRROLj6++lV41yvPdRcdf/iH8Hd/Bz9GA+5fJVqquRqaZmAYCrZd\nB1pue9+X8TwXTXNflQb+h7jtHe9gy037GUkr4K6Rs9eoej6qI9ArM8xmyuSlGyiKfTT8bdTpp0Ib\n7cg0KSHwEZg4uKi4RLGwUWmgEEZhHYlWASDY2CwDSSR0ylTwKBMFfEJYRPDoACrUafGPyASAJllc\nGlSQMVGJ4+OTJ0AAWwqzIMWJyn24eNTtALlSjXwpiuMolM0m5ZzN6OGHmTj8EKfnz7Lzqjeh9G6k\n0LRQ3BgrhTpzpRJWOMzlW7awo60N15lnYeEsltXENOuMjx9G05qMjFyY+NYqAZ1l85Yt5GWZumme\nP2baNhnXZccll/DzhqqqVCoFanWZZM+t6AEVYU0Q8vO0oxKs1Fgv+ORjVzLtS5QTYTJGGFkOEABm\nMVFp4rGGiUsJgwoy0IXAwyOERoMYLgZxmpSJ4bKMioJKGwptaPgEaBBkDZUSUVxU6nisYeEQYZ4Y\nxxCYpPFpR0dFZ50gEgphBFUazBFgmQgFPBp4WPjUkKiQFBHW1tao1QoYepDBgREG+zfS07OJgYHN\n1Gpl8qMHuaS9nxSwJRCg27I4OTZGQ5GIxi8s47UROE6D5eUCvb07kOWWt0mWZfr6tnPo0CjNZvOC\nc2666VcYGTGYn3+OhYXnmZ8/TCJR4ld/9bZXHZ+DB0+yuFijXteYnn6aw4cfYG7uBKXSJIODynmV\n4eHhYbZsSXLy5JOsrJxifX2M9fXnKRQmKBSWWF1dYWFhieHhLQQCQTo7U8RiMcbHp8jnG5hmL9CN\nJA3h+01a5qFOKzlVxXWrtKZIC0jT8oJYtIyVNmAEGML3+/H9CqoawzBiCNGN5wxgYOKTZA6HWZrM\nY1FDYKKxBvgI9GAPsZiJrsgkIhF0xaTaWCYUMOlIdGGbTSxrmUv33chUs0q+VsJ2HdaKBZ4YH6fa\nbHLk7FlSwQiWNkRd6WJGSnBGDtFUI+zp6sJrNCjX60Q7O1nM5zEUhWq1ylwmw5zjUJydpaPZpDgz\nQ35mhh5JYurpp5mamnrZ2Oy94grWFYWlbBYhBLbjcGZhgfiGDS8L9bxW/Jtn5HVCpdIK0Xz60z+f\n9vfsaYny3X8//Oqv/nzu4eeF3t5ehHgaEGzbtoOjR88Si22l0SjR1xdnaekkb3nLZa9axgYtVdmn\nnjrA6GSGuhbHNFxCag+hUArXtVnIjeI0VFS1gXBqaMJGsJcZTtNDjjDLlMlSQkWiyTAV4ki4KARw\nCOPTB5hILNN6nTnIrCII4OChIpNkmgopXGR86oBBGZ8yDnVUSshUiRNApYlLCJsmISyC8gCyZGN7\ndVyh4QGSMHBcFRUXSQoSD0govkLBW6Rh19mx7XqqlRxD+9/F6aOPUVhegqpFNJnkjVdcga5pdMTj\n7NuYJt3Xw7FjJ5BlmRtuGEDXG+cno5cilUpx83vew8Nf+xpRp+WOrygK+9/5zp+amvr1xPbtm/iL\nv7gH3/fRtAgJPUZc24hMCl3PYEgKpmWwnjcIaJuo5uboV8O4nkvEL+D6IaYxcciSw6VBJy46nPtU\nEOeopR3ARCZHGwplBCVU9HOekSweEjIr+PRQYxANH4l1HGqoWASpUsImgIJElE5McsgU0RB4ZFDJ\n0Y6HeZ5EDRQ5iCTFsHwf0xKsr2eIRVMUamX0VCfBWgnDCDI/dYIeTSc1tJ0Zr0EtJPBtm/ZUikh7\nO2FTUKnmCYXj5GtlFhpVtncF8LzIBWEXAEVREULDNM0LuEgCgQB33fVelpaWKBQKRKNRBgcHfyTD\n7tGjp1hfb6en53I6O3dTqaxQLC6wYUMfN910PUIIGo0GBw48x+zsEtnsJOvrHu3t27nkkp3YtsTs\n7CP4vsQ73vGOc2EGwZEjJzl9+q8QohMhFIQwgBCuWweStAyNTlrrfAkYp1XCa9OaKldoVWuZ57aD\n/NCr4rrrCNGO5xWRuJwgzxDBAVxCqISwkYEJbDLI54I9EvFEB8PD/ayvTIJYYKDTJhjI0ZHoZ25t\nHD2co6trM7t2XUexb4T5iaOcmjtLLjvP22+8num5OU4ePoxiR0gEU9TtAnWzylAwTk9bL3qzyuXx\nOKfHxhjZu5dYWxtHjh+nmk4jjYxwSTTKE5/5DFkhCAcC1C2LyUwGP5Xi+WPHXlaS39bWxrs//GGe\neOghnpiYQFIUdl5zDdffeONrJlZ7Kf7NGHmd8MUvtvI22l/d+3jR8ZGPwOc//8thjPi+z+zsLLOT\nk2iGwbZtaZ5//jDJ5Aa2bx/gxInHUVWXZHIPt9xyzY+kR65UKnz2s/fSaKRIJK/g2ewkwgvTZtgE\nfI9ms4arhPH8BN1BF8Jp8uUMvhfGZAvjxElSQOAQwKWDLGFUTBya/z977x0k2XVeef7us+lt+aqu\nqvYeaABNeIDgACIJUoRIkKJoRqQiKAwHK2mGoQ3tajY2JrgzmphQbEyMQitNjIbQcClSIClB5A4E\nwpuBa5h2ANpWd1V3+cwy6fNlPn/3j5doAoSTYCkGzz9Z3ZmReStvZt3zvu9852CxGw2JpIBKC4HT\nM3ufwGQOFx0TH40uMboMEOCRwsFEkmANQQmdVUJ89qKQoEsHnTZhT5mv0RUuSuCh49DGjqynhQPS\nROATyhopN48es9iV2kCrtUhltkQ1WOTOWYuNW3YxNHk1cX2NK/ZuI9U7UGqWxdjll/Phj3yEj33s\nRiBq08zPr1CtlikUflrKX12dY+fOSQzDYPeePWzavJnZ2VkgcstMvk6v+YPAwsICzcUT6JUabfcJ\nYp7ElwUMI0QIiZQORiBoBevYMkWBFqqn0Qna5KRNXBjY0uQ0DiYeCarYmFiEpBnFx8eigodHnBqj\n1PDR2YiBQoxST9ZcQAA+HRS2otEGLBIkSNCPywxtCkCONi1sIIfGAEl8AioEhPTh4JCgi0JAnBh5\nZBgdkeeVFewwwVx5DpHJsBz4jO7awc2XXMmZM4dYWTjDuGtT85rsvWgLl122DyEEG+bn8TdvZunE\nCV549ghTRxvYJBjbMsrOnZMsLVWwrOarEpht2yIe53Wrj0IINmzY8IZp2a/E+vo6UqpoWkRiVVUn\nn5/ANLOsrDzCuXPz3HHHD3nqqcOsrHhkMgU6nTSp1Aie10ZV24yPb6NS6UOIBHv27EZRBCAYHd3F\nnXf+f0xMXEyj8QLNZr3nogpRRQSECJCyiGEoxGIZms0zQAlIEnl15omISpWIlGSIyEuMIDiGoqRQ\nlDKqX8fApQ+LHAlCTAQhWQQruOg4dBimP+0xMGCzdct2lPoCt3zoWoYKBU7MznKmVuNr/+Z/45ln\nTnL27BEcq0Wn02Z5aYor8hlYXmZIVTmcSLDc8hh25hgwTMZ1g2IqxXRnnVwhzVKlwlg8zvT581yy\ndy8TN9zAF2+/nf7+fr733e/i1evUTJOTi4vEga6UtMplsldc8bp7NDQ0xG985St4noeqqr2R+neO\nX5KRdwl33AH/4T98sGv49Kfh934PqlV4h+27n2sEQcDdd91F6cUXGTBNvCCg4vvs27ubrtsgnY7x\n6U//Frt37yKfz7/ll+X554/QbudQ1RTPP/MAK5UGBUxKVg0z4xEI8DQNPVQZLBRpOj4JN0273cIA\nTIqkSKHSxmaGIhrbgAVUHEJUAuqE6Ki4PSO0ZQJapAAXnxQ6ghY2CuN06ZImIKCNyjp9+HjQm6oI\nMQhpEaIQo41gARWJRUYEBNLH4Rymso0gbBFgobBCDB9bVsk66wS+RA8DCF36EzlSqX7qMwusxgP2\njDkUeirocrVKRdP4xL59dLtdjhw+zJkXX8QwDHbu3MiBAydYWKhgmpleZLrNzTf/NAU2Ho+zc+fO\n9+pj8LZQLpf503/7b9nUaTHUN0izXaVULVPFIS7zKH4fZuhiB7M4cgSVButBHU0aKHho6CBVAkIm\nUAEVjyI2cZZZoc5pdEbJ0kGlTp4l+ghoAhJBGxUXDZ0akyg0CIjjAx5J4rRIoZHBpE4KA5MiSWx8\nVmmiESPLGm1ggX5WaQuJJRMIusyzQg4bjQwtFFpMMjCSwRpysYaSfORDl/KpT32UiYkJFhYW+MGd\nDq0jR7hyzy76+/svfE+awCdvvJH5rVuZbWb55PU7GBgYIhYzOXXqBENDKsvLL1Is7iSTKdJq1Vhf\nP8XnPnftOxrthMjCfGhoM1I2KJVeQNf7CUMP3y/j+xaPPDLF0aMVZmaS+H6GatUlCBqo6lFisU1U\nq48zPDyFEAoDA/3Mz8+TSCTo7+9H1018X0XXmxQKozhOCdtWEKIPKdeBFlJ6vYqfiu+nUNVBgqBK\nNA/jEBGPFFADqgiRQAgLqBKGKaBA4DtYFEjSZoIOChIXlS4CgUKCDvPo9PdfzK23/hbd7gJf/vK1\nmIbB8489xvTyMkNbt/Ivb7qJjRs3kojH+es//TP0eptYu0mmvkwuNcaGdJry8jJmt4siXYbFIKpQ\n0BGors94zKCbMhneu5eZqSlOrqyw95Zb+PyNN9Lfu2r2u13mLIvJep1LUynUXijko8vLzM3Pv+le\nvdvhib8kI+8Cjh6FtTV4RUzKB4JMJhKy/vjH0WTNLypOnjxJ+ehRLt+48UJpcNx1OXj6NF/9/d8n\nn3/t9MebYWpqltnZGoeevg9/pUaKLO3ARYYxzjXmsLR+wvhu3MYx1prD+BI6TqvnNDFESJI2FinW\nSVJllCQ2HgKBT9RpdntmXAYGoneVtIxgEYcueTwgxAamUDDwqZPHoojKBAo+IS2i4cIuUCNGiIYD\nxEizFsSQmoIIimRknIRxhooT4kufJA5xfFJCMKLk8JxZjHQcIx5yxm2QBVRh01w7TmtkjG8/+CCj\nGzawYccOPvtrv0Y8HufOO+5AKZUYLxbxOx3OPPwwOy66iA0bN7O2VmN09GJ27dr5ntqFB0HAzMwM\nCwvLZDIpdu7c8YZGXJ1Oh9nZWaSUjI+Pk06nCcOQP/6jPyaYr5NWBuk4cSy7RlJR6PiSjq8iRBct\ntLFkGykGCMIhfKmzQgtBnQJtcsACARuFiUJAS64TMMIAWSzmkMxRwGcTHgqSaRTqyF5wnkqXBntQ\nSCPwep+GGC4NQKGKTZcYIVkySEyKnEdjlhOs0iKOiiQlbEJVRTOS9Hc8cgi8HglZwaXNFmTYRlFc\nLt42yXDW5Ogj9zJz5Bkuufxy9l9/PV+//et898//nI7rEkqJ4zgcPHmSNdPk+NGjPPXcCXbuvJZU\n6qdOxuPje1hcfJpf//XrefbZl5iff5GhoSK/+Zs3snv37tfdi38MisUiQtjs3389lUqJ1dUyum4S\nBBNMT9fpdAKmp+v4fj+x2CS2vYjnmQgRI5EYIZEYJZ9XKZWOUC7HOXZsACFCNO0UIyMxOp0aS0tl\nVlYCwjAEziFlFuggxCCalkfTHLrdFcJwClV1CQKFaOy3DiwQVUYyQIBhLAORBX0YdglDE8igUSVB\nnCRdEnTpItCBdSQdIK7vIqsaHDt0CN2AH3z/x9x66ye45Lrr2Lx5M6qq8vyBA9x9550cfPJJrt6+\nnX3XXcMT999P0N+P0e0yPTtLu1plUNNQNRsbl5SSpuF5xH2frBlDSRps2bYNLZNh186dfPpnRI0D\nQ0OERHWhpuOgAE3fZ6xQwG9EYYrvZVLvK/FLMvIu4I47osP/58F07AtfgP/2336xycjpF15gPJd7\nVY8yZhjkw5DZ2Vlc1+X5p55i6fx5csUi+6+77g1zGWq1Gi++eJQDB9ZRay1MJU88FafdXqUrWxBk\nqPgJTPspUrSprbfw1RGk1FFFB0O+RBMFBUmKLgY6XSQuCjU0qqiksYkDDQJiRCOgAVnWcKmxA3pe\nFAIFjSQhDh7rbFQmcMMmZymRwqIBvSFBlX5cXHy6qKQIWcaj6ruoKKg4KHaMBDFU+rA5jUQwExiU\ngxr9+GyLJTGyWbZn+/G9Ek5rjvGUzyevuAJD0zjf6XDtRz/K6Ogozz/3HKJUYu8rBGqFdJpnT5zg\n2htu4KqrXr+c+27Ctm2+9727OHeujWEU8LxZ7r33aX7rtz79KuGc4zjceecP+c53foJtxxgZGWLr\n1iKf/exHyOWynH5xhuH0GDlVZ3WthnTj1P0UIQ5tqaArSVbdOg5pNJnClTaCUUIkgjwv8TxZYiSJ\nEZCkLj18mricw8dlHJcEISqCNRQsBB10fCRTSPLUyOIz33sMgItCdNxraMQJUakBTTQKKCjoGIok\nEebQ1H4ShommmMTjktA6Qh4Fg1wkvxQxEjLgNOcJyeNZ61w+dg0vHDnCPlWls7iIk0jwt0eOkNqy\ng4GxCeaWFzgzO8vS0hJ6EHDl1q20jx7lyOOH2HbJMHsuuujCd01RVBQlzsjICL/zO5e9xqHznSKT\nyXDVVTt58smXGBnZxeDgBPX6GtPTj7Np0y5OnjyF62bQ9SwQEoYemjZEEHRpt8vkcqOo6gCtVo3N\nmzeSSCQIApfDhx/jwQfPo2kC284AwxhGAts+CawBY4CC570cJVAFRnrieAdYJDqydSIXVguoIMIs\n6dxVVKtPAOMopDGoksTCQec0XbYBKSQqkTtJlT7G1Szx0KOoKCwvn+aZIwdZvu/HxLNZzq6vs1qv\nszUWY8fWrWwKAmaPHuWl06dJdbuM9PXRWFmhu7SEbpoMKQpdTTCRCbGFi9MU1N11AquLKnOcmZ9n\nzTD4woc//Jr3e9O2bSRTKTYXi9SbTYIwpD+ZJC4EWl8f3W73l2Tknwo6Hfj+9+HFFz/olUT4+Mej\nRN9m8xfXc+TN/gCurKzw+I9/zAZNY3cuR3NlhXv/8i+55tZbuexDr3b0nJmZ4a/+6h7OnOlgtSrE\nLImi+cR1FVWXGHaZJB36WGYUSZYBVCT1YI51kUIRBUy9xXbp0PQyLBAgaaP0klrBQMNiGpcUYJBg\nCUkdgy6CEIMCVXwa2IwTMg69Ir5Dg+PhKcaJnF6XEdhI9gA6KiM9HcoUPt1e8medgD6GWKeOYJYM\n0EGlQhKbUTSRwqLNmjRIxlPctO0ycskMUy89SdI0aKViFNJphgoF8s0m//Pee9n8e7/H+VOnGP6Z\neGhFUcgLwdLS0oXo8vcSBw48y7lzHtnsVoSATGYjltXg+9//e/7gD25HVVWCIODP//y/861v/T1B\nsA1dz/LSSw0WFhbx/UfZvXuE/MAmuqsvMZTKkM04rFaqaGKAmlijLAxW3XWSBJikcREIhoAcLiEh\nIZIsDiOkmSMnJRr53mTLAtsxaBISoGGg0KSLRoKNGHi4lOlSxyeNZITIQ6aKZBqd55DEsTHxWOlN\nYWXwsKgxSxc/TJE1Btk1Psnp1TXSMkbouUhHoNCmQxadJFLaqDiktIDQyJNLDvN3Dz3OTUMFBlIp\nOqbJs88dJpYZ4aEnf0g2UyCpehQ2FDGF4IvXX3+h1bJndI5zp48xPDpKX8+vIAh8oEu293l4N4kI\nRG2a6667imw2zRNPHGZ11WF0tJ+vfOWT3HffiwgRIIQgFkvQ6TSQEnTdRFV9gqBLPN6H45TYsuVi\nrrjiEp577mGOHTuB72/oCUyzKMoGwnAJ14Wo/aIBOlJG31nPOw9swPfD3n1JoubVKpGg9WUH1mFc\n36FWe5AwjKqe+V5wQ546W1EooXAc0FHw8VkAhsUoQ6bGuiKwvTbVc8+zPxnSWFxk7exZUkGALwSD\nus7y2hpNVWXvhg1Ynkc1DMlms3Q0jdPtNkXPo+j7+PE4xWIerdsl7wY4ZpoZIYh3uzyzuMjvf/Ob\nDAwMvOb93rZtGxv27WPpzBmKiQQh0FFVNu/dSymReMsJxHcTvyQj7xB33QVXXgn/AG3W+4JUCq65\nBh56CD77/iR+v+/YsW8fB06eZOAV1RHX86gC3tmzbI7FGOn98UzEYmSTSZ6+7z72XnzxhYka3/f5\nm7+5j2x2DwMD0GhAuXEA6bdx2rOkFIsNSpxS6DKCJIVOjDiSgCKCCk2qoUB4MRzRxMannxQuBm2a\npHBQiGGSYAEoEzBAhnKPUqh4FDB7QsQmAySps4ZLkYA10sTJkmKELuD3wuYDmigUCOn2JjZymD3d\nQZKscPBx2CQtBkkTss4yOgED1BgmkCNIbBQlzanVk+wtzbJit2ksnqWhhrS1flYrFYYKBYqZDCcX\nFuh0OpiJBI73WpMqT8q3ZUz2dnD//U9y+rRKENSQUhKPC/bv34NlqSwtLTE+Ps7MzAz33fcUrruB\nvr5dgEIqNUalMsNLL62QyYQMTezgXGmeUrVBYFkgJV3h0lJTbExMoHWmaYo4bZkkCH/qJhIgUaij\nk8Iki0OWVVq9molCokdCJGmSdLAI2UCS8wSoCLLkCQko4DEE9CMoI1lgiARFFhHM0kVQJ4OPTo4u\nISm6JPBZpEvM1xBhSLNjkZAeigAwGDBCyn4TIQwMYTCUH6AtfdpqPzvGN7A0+zTaYNS6bLQtqtWQ\nlFtBX10iHsaJ6xqNI1PkCianJyfZsylywr181wTnHjnF/Ow0fX19OE6X5eUTfOQjF5NIJN5oq94W\nlpaWuPvuh1laqgGSrVuH+epXb6VYLBKLxZBScvLkOc6cyaKqp4F+YjED2345h2adfH6A/v5h1tYW\nyOU0ZmfnCcM+hNiFlEVcdxpwUZQlwnCNqNoxQNSCKRGpss4TNUJHiGTALyfKvPy4nUQTNTPAKjHj\nKtzgaVTVJ+W3MUkRsMwoGlHjdQCNFHVCygR4VMhpK6yGUZjE8alH2CzbZF0NYVloUQgOaSlRwpCE\nomA6Dvb6OhuHh2noOiuLi5SlZHM8zkqtxiHPY9vgIPNS0m42SQpB1TT5yD/7Z9x4+eUcn5+nvLzM\n5OTka953RVH44m238dB3vkNe08glk+jxOGdqNa78lV95xxqgfwx+SUbeIe64A77xjbd+3PuJX/1V\nuOeeX1wysmvXLqb27uXg8eMMJhJ4QUDZdfnQzTfzzP33s+9nkn3jponh+6yvr1+4ii+VSnQ6GsVi\njtHRfhqNnbSWz5FqzWG6PmOxUVa9EjVaTJLCRCHExKJLmQaeTKMqQ7RDSVfa5FkijkYkJczRxKLJ\nGi5Z6kyQxCdkDYMxPHQUPGwEKlkCAhSaZDEoMYegTtiL1/JRERgIII6CisDCI0acGAKTAI8AlSaS\nGMgaGzBJoGMRw8YkQR8OPm1CBElgF51wkZ8cP0QxtNBVyKUL7MvlOPD005imyaaREaSqYhgGF+3f\nzz1HjzKQy1FttbBsGwE0dJ3Nmze/6r2ODNFe4oUDB+i0WmzavZvLr776H63jeSXq9TqHDp0gl/so\nmUxkO27bFgcOvMCOHbFe7x/On59ndbVFPL6Jly2UwjBEyDgnj52ikFgglh5jx/W3MHXwUWbKB7F1\nj3XPZyJ9MYHTICMV1sIYScOJQtD8EFvWEbiYrAASnxYJ4jTpI2QdQYsskCWFgeg5j4QkUbGRrBOw\nikUaBxCkEawTMkueOEN0UImiFzfiUCKgTZJ+dAJCkvjMYGBTCRd48lwdX5gsS7OXCtym7DoEqHiK\ngaEUOFlfYcnoR9PLKGwBJU613aaQTjO7UgVVo7I0j6EXySQnMVSdaqVNRmszdeYMu3tarC2jo1y9\nd41p/ywLCx6mqXDzzZdyzTVXve29fD3UajX+8i//DsPYzPj4Hubmpvjrv36c733vXq6//jJuvPFy\nrrzyCr70pVsJAo/p6VMsLh4iCAT5fEizWSUeH2fjxkspl9tUq3M0GnW2bPlVarUynpcE+hCigpQL\nhOFGYC+RGLUCzBM5qp4h0oJMAONEFRCDaLR3Q+/+gMhzBKCBH6yiaWOE3gkUynjEMLDGinESAAAg\nAElEQVSwelVLA4McGhlirCIISWDJWUayK2SLAYtrdTKhz1q1RdgjIjGiOR1HStQgoKiq1C2LUrlM\nF8jbNl3Po6vrbFNVxhWFmWqVaqNBfzxOODzMTVdfzXWXXIIQguFcjtmpKa68+urXff8v3rcPTdM4\n8PDDlNfXSWka1/3Gb7Dvkkve1X1+K7ynZEQI8Z+By4Ajr0zwFUL878DNRIPa/5eU8t73ch3vFc6c\ngamp6PD/ecInPwn/7t9BGEZ28b9o0DSNW7/wBWZmZjg3NYURi3Htrl2MjIxw5PHHsV2X+Cuu2KWU\nOGH4hlfxGzdOsri4Qt/Gq1k46xHzXqTpdWgqPt0wjyISGLJBiVIvaTVGgE4tXGZRMQjCEQxMHEoo\nlDGJkUOBntOqhU6LJIIVHEx8kuRIEiJx8LHpUKeFgqSPFfKoRN6vHVZIkiaBJEaDCmlCYsQIcXAQ\nVPExkTTx6cpt5FjGQOD2vCc8BDomKiGR0XwKpEvgqQyaSQbjBVxrnnBlhedbLcYyGX50773c8OEP\ns+umm9B1nU2bNrH9+uv5z//PHXQaCpIErtrlV371mtf4RTx0331MP/EEW/r6iMdiLB88yJ0vvcSX\nb7/9dfNL/iE4duwEg4MbaTarJBLRc8RiSZpNhXp94QLBTCRi6LpGEDR6rTxJbX0RaTWJKR2uGB2l\nUilx+NmzJArb8YqDxB2LXXED11XxhIHlOnTxietpFHeJroyUOjotUijI3lxMAYN1YihsQlLGw0JB\nw8VihIB1YAqfBAqbcPGALiFN4BzREdclTYiKRQyfJAEGkX5oCYOANBqCPpax6eDhM0KHNDEJtljB\nlOVeey5BjJBuWGM1rOOJNMNGko5tcfeTPyGT1ngqqKAJQdN18QMdGx01kSemR3qAVHqYWvsURis6\nFFUh8IOAWD7H//H1r9Pf349pmm/qD/J2ceTIi/h+kaGhIebnz3D48Alyuatptyt0uyPcffdRXNfj\nhhuu5/bbv8bll+/j+9+/h3K5w/z8EktLPpbVYGrqfxKLZRga2snc3NPMzc1g2wFh6CCEi6J0CQKT\niEx0icjIIBHZiIIYIlLysj7kZS8VB5gj0om4vVsAEz+okIyn6XptTCx8bAZ79c0kGh1WaWHgk0RS\nJIsJYYzyaouZhovvVMm4Ts93SMUjIEGkLRkLAkwhQFFwhcA2TdKAqygE1SodRcFKJhkQgqrj4Os6\n1WSSf/HFLzJUKFyoGndsm8RbtFt279nD7j178H3/fa2GvBLv2asKIS4FklLK64UQ/0UIsV9Keah3\n93+SUv6xECIJPAD8kyQj3/52lJj7Jl5aHwg2boz8Tg4ehDcYFf8nD1VV2bZt22uCmfZdey2nH3iA\nfZOTF76M58tl+jZtIpfLMTMzQ7VaJZlMEos5FxJer7/+Cs6enaJSOUjTLzCRyaI6LVrVJOthnRCH\nBC55BO0ekSigYuiSs04LSYoadSbxGCdOEoM1QlZp0UWlTAKHDCEpQiQWARAjwCAEHNbpQzJIFg0J\ndJkkxyIOLoI4g6xgU6XFKHEswMOhRYCCShMDlBSKSNINnJ7pVhTG1qGFQxKJhkJAIJeJ44ENcV/S\npyfZogcctm2cdhsvDDlnWdz2ivGwetNmcs8nicf7UBSFvr4+SqUpHnroMT71qZsBqFarnHj6aa6Z\nnLyQgbNlZAS5tMTzBw7w0U984m3tdbXaZOvWi5maOkmlchrTLBAEXRxnmssui8zsPM9D1zVE2MBx\nVHxfIESBwFpFBquM9tt8aMcOThw7ycmZMqKok86M0lk9Sdhao23PUGp1cUJBwAgGmygagjhLrLsN\nBA4F4dKnWpT8CgYZBBYWMAyYDHKOMoM0kMAyAhXYi8oAkjYBXejFxUv6gRINfIawMemiEOIQXZ8p\nhAgsAnwC6uQICTEYwCWOg0ST66ToMsgoCUXBEQHrYYu09BjWM3jxPkJ3goItaTgO5YTJXefnuGT7\nBs69eB7HTLE/Fwl/wzDANAV+rI9V3+dcqYSUkheXl9EzGR675x627N3Lpfv3v+vtGYBSaZ1ksoCU\nklOnjpNOb8cwkgjRZnW1QqFQ4Ec/epjLL49e/7LLLuPiiy+mVCrxF3/x//KjHxmY5ibS6SGCwKPT\nqZNI5CmVjhPlxtgEgUSIABhHiDJSWkROqw3oEcwIacAkIiA6Efmgd7udyPisS1S/aKGoBWz7PDLw\naBGyB4c4HgUixZjA5CwBAQGrVOnShxamGGKQZtvBl3XWUVEx6UPDwqGCT0BADbClpBwEOLrOzkyW\nkzMzbAoCNoYBg0FAw/c5bxjENY1sKsUx30fXtFe1rxc6HW7Z/8bxCK/EB0VE4C3IiBBiJ/BrRLnJ\nEFHGu6WUp/4Bz30F8GDv54eBq4BDAFLKl03LX56X+icH34fvfAceeeSDXsnr4+VWzS8qGXkjXHXN\nNVRXV3nqhRfIKgpdKYmPjvKxj3+cb33ruyws2AiRJgwthOjQbD5HrTZOo9Hmwfv+FsVPU8xfitVu\n4DgNRuQKhpJlKagwgkeNJD4q0aEhEY4HdHDQSNFmLJKA0SSkhUIOgzhVVMo9X9UYsBmfIgK9N1Gh\nodKkAOgYSBwC+mlhoeOwRhuTKg0CNGKs4uFh0EawAR2dOGvUaIRnkEiO02QIhXEy9GNxnHPYbAVK\nhEg0lkgiSAD4AZom6cZi+EGAD2QGB9kwMIDrupimiWVZHDs2y6ZN177Ks2V0dAeHDh3gYx+7EcMw\nKJfL5BXlVWF8AMOFAlNTU/A2ycj4+DDPP7/Mddd9jOXl86yvr/UOxW1cc82VOI7DD7/zHezZWT5z\n0Th/++hJak6Flu1hum0y8S5bY2lePHqUUsll+/A23NFR/I5Gvdal1Foh57S5Ss+z7rmUCVm3aoAg\npcUpGBod9wSTisOwkiTAIkGZPAs0iOGQpIVPnQ4KHm0EGgINDZ2AKiE6MjKUIjr2GkAWm7O08BgH\nBgioEbLYIyYaBmlsVkhRJodCiMsKBh1GUAmpELIRDSkDFKnQJyVC0XFCi4pVIaH3Y8YDFEPhM1/+\nHWy7hq4vMGYUWZxXmWuWGDLT6CIkU0ywFMT4nf/z36ApCs8fOEDeNLlocBDDcZh58EFOHT3Kl2+7\n7V0nJMPDfZw5s0QymaHb9SgUUniex/nzMzSbSdLpkGZziT/5k7/gd3/3a2QyGTRNY8OGDdTrbdrt\nBqmURbt9Dk0r0G7PsLbWRFEyGEYUrNdsnoladsLr+YpIfmpeNgm92lWUP1Mh0oqUeo9ZI2rbxIi0\nIy/7b1j4fgdNjaOjEcPpua5G9ZUQH40QE8k6kMWnSpuicEgmYhRsn6Zt0MRE71XNVOI0emsxCJkl\najWOdbu8cHaGYUXQlZHTSRwwfZ96ELBqmuQtC5JJTnY6JBsNNKChKFx1yy2vqxf5ecMbkpFeK+WL\nwA+A53r/vQH4vhDih1LK//gWz50jqkhC9N171RC6EOK/AJ8B/vnbWPcHjgcfhIkJ+DnzdLqAm2+O\n8mr+/b//oFfy/kFKyfFjxygvLFDvdrFSKS65+mr27dvHU089x/Ky/prArlyuyuRkjm//2Q+YzPej\nyRymbbNor9Jvq4Qa+CHY+jAydCFMEso2BsmekXsHnyRNzpIjqkis4LFAHJc0BiEuVs8VxMdlFYFJ\niIuLgsRCIY8giU6ITg6XRk+bouIxwDo+Oi0mSZLt6VICPEos4xCjjUaLIllimPhIHOp0WKGBg0kL\nvWdAPk+AJEaXNFXUwKQR1rFVG9ouxSDAVFXqzSYnT53i+WefZfn8eTzfp1JZZ8OGV09OqKpGEIDn\neRiGQSwWw+npN16JruOQfAeakV27dtLff5DV1TnGxrYwNraFcnmGvj6V7du3c/D55wlmZ7lschIm\nJ9m1ZTN/9aN7OXhukdEk7M8a9LWbPPOT+0mN7iYxPEG12oB2m1jOILHsMaRkKcYLKGqbQXOQY515\nLK+fPIK0ZlAKMjSCGRYCcCjSAZI0MGkSkqRBHy6SChUyNCgi0YloZiSBFGioBBcSZKJ8Z4cVQlIE\ntJE4wBIOEwhySOr0UaJAiMYgEpc8JdYokSUJOMxTwpQ6KTRUbDoySoT2lRihoUIQ4rg2lmUxOjrJ\nmTPH+fCVu7hv/WncRJ516ZM0DJqm5FOf/wo33ngjq6urvPDww1y1d+8FYplLpTg2N8cLR49y9TXX\nvO29fD1ceunFPP30SzSbGUxTxfO6nD07jRAhY2N7EEKiKEUsq4977nmIL30pEsM1m03Onp2jVpth\nfb1GGBqEYYUgECjKJpJJE9936HZNwEbKJELUCcMi9N6/qBLyMjFJwIUIQ4XoGvzlz7xBJG4NiZoo\nBTTtIlR1EZwSfXTIYpMAQgQJFNqAQxcLBXAR+Oi47NbSLHrreFLFJaAfhZAODmCh4JBgFcEkbXYC\naSFYl5LlwMMMoCjoBQ1Eq0FKAtfFMgyEovAbt91Gp9PB933Gxsbe0Ivn5w1vVhn5bWCX/JmsZyHE\nfwJOAm9FRhpEaiCI6mGvqoBIKf8XIcQfAg8RVVFeg29+85sXfr7hhhu44YYb3uIl3z/8zd/AF7/4\nQa/ijXHNNTA9DSsr8HMQB/K+4MBTT3H0nnvYPTTERVu28OCBA3z3kUc4tHcvh0/Nsm3/Z141Fjww\nEDlRDvW12NbXx0KQo7ZcoZBMUnJrDKEjEkWqzjLzXQ2fBEPY6EhCyjjorOHg0iFPFQVBA411Rsky\nQBsFH0GdPD5LbKfDEh6SLGHP0j2a1eniM0yDWTQCPOq4JCkyRAuQhAgytFgkSUCHkDQ2OwmYw2aV\nAjFGGUFHQdIWA3TlPBohTeVSUmERlwUkJVI4ZHqeoekQHEKkE2KEAbF0mqG+PoZzOZ45eZLj/+N/\nsHNyEtd1sU4f5AU/ySUf+mmybqOxztBQ9sKV8vj4OGE+T7laZahnAewHAdPVKh/55BsHo70VTNPk\na1/7Ao899iRHjhwA4PLLd3HDDddiGAanDh1i8ytyGDKmyf7+NFZFoHW7JDoevqKQDwJKs1OcLa1g\nG3O4zTYtuwqeYEVRSYdtNL9BsqOSQqGCRjUUxKSNGbRYIUvIZnTypFCpUKfFKllSCEwG0fHI4TNL\niyYxVM4RUCAetccQ+GhIVDQcTGCYBCYNuqywRgKHAME5DExSlNmIT4CKTQoFhwE0BAKLFiYew/gE\nCEI05nDpkxpFTKa9NVw3hiEUhnMxzhw6xLkZFb32Ah8uXsGndgzxzJFjrKgmm6+6kZtvvp4bbojS\ncJeWlsjBaypco/k8M8ePv+tkJJ/P87WvfZa7736YbNbh9OkH6HQM0unNvPTSSTqdc/T1KUxNrXL2\n7DmuuWY/ExMTPProk6ythWQye6hWk0hpEgQVohHcDratMzKylZWVKWzbBOpIGQMOE9UVbCJSso8o\nibdFRFDC3q0kIiUWkXVhkUhX0o8mCkjp4TgO/SyRxydFRCb6UFCRJBBU0Glh9yIDciSJ4XuSVtig\nEgg20iWGQR5BCkmHgLO0AZ9rAVMIuopCIgwREgSSEaFSlQHne79FG7DCkPOOQ9Jx+Ls77+Rf/ut/\n/a47pL7XeDMyEhBRw9mf+f+R3n1vhWeArwN/C9wIfPvlO4QQppTSIfo0vKHE8pVk5OcJrhsF0v3R\nH33QK3lj6HrkCHv//fDVr37Qq3nnkFIyNTXFC888Q6fVYnLnTvZfcQWZnpmK4zgcfPRRLh8fx9R1\nHjt4kEStxseHh6lUq+yKJ1k/8QyLiRQbxqNyVrPZZGmxjG/NYYqA6fNnURuSmj9Lo1Nlg56IFPtC\nRe2pRBZYJYeNjo+F30thFYSk8XA5h06CPmwSaMRo4qKRxUPiMc0mOkyzgsZAL1qtAqQI8SihIpnt\nmWaN0QUsBD5xQix8dBZZZQQVEw0bqBFEjpy0CEkCCppQ8WSBGDX0cBUpTJBLZDCIY2CyRsqIsy49\nKl6XSRk5u/brOiXHodvtsj2RoF/XKaTTCCH43Iev5r8/+Bi5vlGGhzfSaFRw3Xk+97lbLpA7TdO4\n9Td/kx9/73sszM1hiCileN9NN7Fr1653tP/pdJpbbvkEn/rUza/1thCiV3aP0Ol0aFkWRrvNaDpN\nyfdJBQFl22K6a9FJmghXUG2n6QY2MbYShAI9dJG0aLFIGhMFE4nJoj/NBiwqTNBFQ0Hi4+OQRpIl\nYIEcSSQZFNqEjONzjg4WXbSePZaPBUgSpNFpE1AmidvLOilQRKfEHBVyJOjv0ZIscTSgzjJ27zUd\n2rTx6UNhmKBnrOYzQZQZ7fgwqFVphnHqpBlMj1Gfm2fphWf4Xz//CZ555FHmz8wQFwG5MOTAA1Wy\nqsXRxx9l8+7d9I2M8Hrh347nEXsPNCMQhV3efvtX+fKXm9x114/55je/hZQKQeDg+4J6fRDDsFFV\nn//6X3/Abbf9OocPT5FMRjEOUrYBBSHSBIGLlGVisQmWl2fx/Ty6vgvPqxO1YLYSNTpWoOd6HGXO\n1IiqI3GiVN5a7/HF3s8pBHXiqGSlgR10qbOOT5x6r0GzQpMGHdIIIKSER4wUa7RpA2lqtEjTDmwU\numiAiUM/gjiCHBD0/EhswJbQDCQ1wERQQtKRkrGe79BxwBaCLarKiGHQ0TTmnn6avx8f59bPf/49\n2av3Cm9GRr4BPCyEmCbywIWoTbMV+N23emIp5VEhhC2EeAI4KqU8JIT4UynlvwL+RAixg0gp9H+/\ns1/h/ccjj0TtmbGxD3olb46bb4b77vvFICOPP/ooxx96iE35PIOGwfITT/DXR4/ypa9/nWw2S61W\nw/R9TF2naVmsLy2xN5mk1mqxXKuRGRqj6CosnD7E2IYdnDh2jPlTLxHnHNQFTx15kW6QxXE8RjwX\nIaHaXUHpqeLzSOpAnSIhKxQYoEiSLCUCDBbQ8NhCi2WqKL35FY82MVIkkRSok2ALFi3m6PTG/jwc\nurhopNAZp8QcGdpExd7IdjrGEgUckkQpow4dFgkYBsaIAwErVPHQ0YE0cRCgywo6NjW5ikqCgAHa\n+Lio6LTI6pAgJCZCxnSd5XqdgYkJQtfFWl3lqcceY25qilx/P1t27uSmS7fTSK3geTbbtw9y7bW/\n/hrDs8HBQW77xjdYWFjAcRyGhoYuGGS9G3g9k61d+/dz6ic/YV8viC8ei7HUaEAYsq+/nxBYbDbx\nu126dpfDto3fBTfwkEyikkUDWiyRpQ8bWOEsgjI6BkpvJxQSOOSw1X5kUMekjUlkFNVFYtIghgqY\nxJEMYHCaGN3eYLdLSBaX5d7clMYQBkM41KhxnkyvbtIBuowT0GaNKgUc0kAFGwOPfgSjKBjoLCF7\nkuiA7cBpFKQSkghaKPE1AlPSDstIu0nGbXHfPY/i1nz64/0I6dO1SyRnZyk/9BBf+e3fZnFqiudP\nnMALQ+rtNrlUCikljWaTk6USt3zmM+/aXv4sLMvi+PGTHD16mv7+IrFYnrU1lb6+EQzDZH39GLt3\n50ildnD//Y8TBBJdN/B9gaZlUJQYnicRQiUMY3heA8+LoapJpFxHCAUpt0LPuye6Do5M2qNqiAKc\nJiIk/URk5eUCfxYoo+OiMIRAwcAmhk2XjeTQKQCCUTrMIahxjhALA4lJiiY7aKAgWaRLkyRp0viE\nxHDp4gABZjSgTz+Rk0kRlQEERSSrQJOQ00IwIASdMKAM3KRpWFKCVKh3QortJN/+s2+TLfZz440f\nec/2693GG5IRKeX9QojtwOVEFRJJ1Cw79AoB6pvileO8vX//q97t7W97xT8HuOsu+NznPuhVvDVu\nvhn+4A8ise0HKJJ+x2g0Ghx97DGunphA640WZpJJphYXOfjMM9z08Y+TTCZxpCQIQzqOg2NZnFhc\nJB4E6EGAlkhQry+ylhhkevoUMy88y2C6wy3XfIjVhSWWjfPUGxXyYZdYoGBKGbmEyIBy70/GOiWg\nQJEcJgkCVlFIoJCnwDpdTDL0U+7pBWIoBHh4tFBp4hFjjmZvlmaaOApZTJJsQidNnDQdBBnO0aAD\nDKJhMYxDmiRQJUkKHY8yHrMo7ESngyAgZAU7muMJXRJKhZT0sOnSpYhkE6aSJwxdJGuUvUOMCY+C\nIrB1k5KAzdksumHQcRw6ts2wZTFmmvjNJkeffJLY5s3ccsvN7N279012K5p0ej8Fc5ft38/506c5\nOD1NfzxO07JYkhLVNJGAoSgonQ6649DCJww8pHTRCYEsDiYhDhKDDh0sEjgMMcogGXS61LERWNgI\n0YdupEm6bcxAp0GVDII+oiqVQGBTY5yAGAF9gE8fBio+UKaBwzB5bJKATQWI4VDAxSZAA7ZiYZOk\nwCo2AHEaqEAhsq0jhUoBWOplFg0QHacNQjYIA0MIwsBBemt07QyJWJFKdxat47OjkCNlxmj7DqEL\nA5qOu7rK4cOH2XfxxXiVCv727ZxYWCCcm2P69DSLlkd2YhvavY+TSCQY/xkvn3eKer3Ot771fer1\nOMePB9TrA1QqTxOGg8TjIfG4h6YtMTR0HbYtOXLkJL7vcPbsWWx7C4pikkymUNU4rdY6llWl1bKB\nQXz/PLo+hBAuUsaJWi4hEQkpAFuIVBgpovbMRqKRXwvYRGQVv45BHLDwOYaHi40NDPQiIOhlvCgI\nBrFpUyTEIoFGh0tQieHTBoZQmEayjE4bm1xvIk4Q0ui9apeoMrIdgQdUCVBRKKJiSYkUgrimkZSS\nlqahC5VOIke+f4zhwQkW13UeeOAo27dvZezn/aq5hzc9oqSUAVG75ZfoQUp44AH4wz/8oFfy1hgZ\niUS2zz4L1177Qa/m7WN5eZksXCAiL2O0WOT0iRPc9PGPk06n2XTJJZw6epQEcOT0aa4m6gL3b9zI\n5tFRuv4c9nACq3aQyzb7XLv3YoqZDLNT5+mkB2kul0hLE1u2yeCxQQacJ2CWOA45QrKkadKlQxsH\nE5UkCXQ0VFRavWvgNKuY6OgkySLwWKFLDYcGJgExBBNIXEJO08coWRwkFVxU8njEUSjTJUcCCxMN\naKLjEGLiolBA0iKg05u9UEj2pHIGNhVS4RoOIS4Ck1F8ErjSJqZI/NBiVOqM+m1ihomZTnG2WuWs\n51FotTjvumzIZinG49RrNUbHxmi7LscWF/laz50TIjv9px9+mJWFBf5/9t40RrLrPNN8zrlr3Ngj\nMnLPrMpK1s4q7otsipS1WpQs2ZIXtVsaW24IXjRtWN0YoH8MMOPGdKNhoNFAw2gYltFDy54RxrIl\n2RJNSaZESaSK+1ZksVhbVu5r7NuNu5x75kcES9RiayNZlM03kciMzIzMgzgZN77zfe9SGBvjtp/7\nOU68LMfktYLjOPzab/wGL774In/7N5/n4nafyvE72Dr1Fb68vs5iNst6q8WO1nhCMKZDYjQNQnw6\nGJTpo0jQdDEZOj7EtNmhhwW0ECPfmEDvIKM2adVB08JhDYsKARqBokoHk21CAiYRHKTHWTaQjKMw\n6ZCQRwMJDiYWBn0kIQ4ttrGYxiWLJkLjE5JnA02AZB/QwsAblbMuMSmGwtQ0Q43HLDCpIhIMAtWD\nwCfxt2kYNWqJS1abDGJFxoG+CpFxTFdp8qLHxunTdHd3mT9+nKjX48Mf/zh/+If/FfPo3dy17yjp\ndJ5Wq8o993ye3//9/+XH9o35fnjggYfodkvMzR2g03kW111kZmae1dUvoFSfXk+SywnOnt3FthUr\nK0+TzU5i29DvryPlDO32JqnUgHTap9ttMHz2S7QuEYYvyXgVw3N1PHrUphhyTEyGihmPITMhx7Aw\nyWHQRLMD9LEZYDNgHwGbaHpYlBEw6mg1UYSYJFiME3EOn4P4ZDFIYRIS4+FwHJM6PnUUY2iySDSC\nNBqfYVekgGCbhOFuatIYHDJclnMGhudhKoWMY9xUClvmEG6K3NxBmv0OXnmSdHqWM2fO/fMoRt7A\n9+LixeHHfyR37XWHl0Y1P83FiG3bfK8Z+XCGnRq15gHe9d738hc7O9zzZ3+GqTXLWnMwlyPudDi3\nvEzHcTh85BALCwsU9vYoj/gmlxsNNtspUvYEBSONJy0azRUUe2gqSGbRjGPh0eI5BGUkFm0G7NGg\nREgXQRfQ1HGJ6bCJGp2Z5oio0mEfAxawWUYxAbSu6Cte8iQYkJDgkydhF82FUWN+eEk0cYgAjxjN\nsHGcEBMxTIRNgCYNynSJyBOSp0OEjyI34hYYQuHIFqnEoSMkYymXQb/PQi7HqudRy2a5sVCgZJqc\n2dgg12jQ9jwaQlCZnyc9erzPnz/Pfffcw6F8nmNzc7R6Pb756U/T7/X+UafHVxOmabK9vUd3MMGt\nt7+DKAp43Ae9dYFOKma316PS6ZD1PNrNgG2ajDNDnzXC0ahLMIWmgcUSRUzKdJAE7I46Fg49UsYZ\nHCFIGYJy0qeke9Tx2SFNhEDh4TPNJXaYGyX8HmWPHk2WsHAQlCggcNhDYRMTk9BmA4GJwsXHRZAi\nS0iCxKRMkz0UPiaCJopk9GYwfMndYsj7uQbQwmBJgyZFBYdV5VPCpEmKy0jCRpWJfouqjrC1yRFb\ngJVwYHoaz3V5+rHHuP7IES5fXiabPcj8/Lc7Yfn8GJ1OldOnn+fOO1+Zi4rWmqeffpGpqTfTaDTw\nvDz9fpt+P0LrEkLMo1TC9vZZZmYMOp0NPG+MhYV3Y5rfwDC28P1LowJE02jskSRzOE6FKGqSJGmG\n3A+PoYtqkWEnJM+wSxKN3jdh5BIzfFT72Oxg0UPTwxj57MYoNtlCUMekR5/0yHl36CLk0yVFlwaQ\nJRoepEhGPS5BMhr6pYhxsPBxeBqfAkO2Sm3019MI6gydlwU2jjSJ1ADblwSzs6SmpnhnpcKlp5/B\n7GlKhQkSy2Ep6HHk5ncQxyFh+P2unK9PvFGM/Ih44AH4uZ+D1/jw92Pj7rvh3/5b+E//6Wqv5IdD\nkiSsrKzQbrcplUrMzs6yb98+4myWaqvF2Ih/oJKEi9UqP/uOd1y5r+M4ZDyPt6endnEAACAASURB\nVN1+O7tnz5I1DNZrNaIoot9s8raf/3l0qcShkyd58q//mlgpNqtVLtd8svYEm8pAOJJoMMCQHmsi\nhaMnGM6VDUJqKBYZ0GEKcHEIMOmwRJs0C5TYxcJhHg+FRAJF6iyTocc0AhMLF00aQYwmTY8WXSQ2\nPRxs0iTYDNgCQhKyNEc9kgSBZhuHmF2GF645bLaQLCPIigwd3cJggUk5Ri9JaI48T3q0SXSWWA9P\n/QkCX7vsdBMwYsYyGVKWxeTiIrbvM5lK0QkCKgcPsn/fPlKOQ310EvZ9n3/4/Oc5Uixe2Y9CJsMN\nts2j99/PDTfd9Jpl1ryEKIp46KFnmZ29DcMwMQyTE3f8Ii888RV21p4ikpJSpQJxTLmboh9t0KFL\nCoOQU2hmgBibHuNksbEZcJFrTPDiDgMhqcgsUdqgZAgGvR45FZEa9cVMMuwgCSgjUMTs4ylWuI6I\nZCTtLBGN2Pq7GMziIOiiGNAmRJDlRgLqWKPk3g4SQY2YLpqQHgazxHjEWKMXtXU0PeA0w9SUCoIN\nDRFlPPIk2GgMmtIhpfaoJmNckHkaKkUca6R6kXGjxfT4PMVslkEcs95uc0RrVlc3sKzvlYW6bpa9\nvcYrtndCCEzTIEkUcRyTyRSJ4ybVah3XzSJElyRJ0Ho/zz33AJVKjiRxqFYvks0eplzOkiRj7O5u\nc/HiswwGFkKMAwGZTI4wXGIwaL3sL3b4dkfEA8qYZgelqmidY0iNLGJxDmgg6GGzDw8Tn5ABafaY\nQ494QgEzpLDJktCkg6BGQkITgwnGaNKmR594xP8YoGihRt4kmjHydDAJiUbXhiFvJAZyCApImkTI\nRBEIRSmBXr3Or/7hHzI7M8PD3/oW9/3t15HFWVR5muMHb6BQGGd5+TGOHn3nK7ZPrzbeKEZ+RDzw\nALzs9e91j9tvh5UV2Nwcjm1e7/jzP/kTBhsbeELQ05r8gQN84Nd/nV/6yEf47Kc+xcpIpdHUmiN3\n3PE9/IX1pSVuPXKEL66uspDJcGRiAqU1m60WHd/n5htv5NDhw9yzs8MjX/saqcGA7maHmrmH8gqc\n7q5QDGIsLWng4BouKND4KNoIKmQRRIiRY+bQnyBLyB41IvJYRKQYOhMoEkIKNKjSxsAc6RRqDAmR\nFSQtdukwSUgOaGFTJc80vVH4/A6akG2mAJuIVQQ9NB6SdQR7aBoYZGSdIjlaKk+YRCgSOgwQbNFj\nEoFPlEBBGmRtjWkWCY2EOO7zYqvNLjCXJHztwjZy4JAtFFmoRszPKp7f3OTw4cP82Z99ikuXtjnz\n4P34c1OcPHmEcrkMgGvbWFFEs9lk4jXWk/u+j1ISy/q2HXKhUOFNb/t1zp0bI370Xtxmk716E2TI\nIVPQjWucI6HLBJoU0hgw5e0nFWmSaEAsbUyjylGt2LQMTGtARlosuBkebNeICchh0sGkRkybcWyK\ntOlhYdKlzTkaCDw0CpsGNnCADZaoE5LGwkEzoMs8BiVsIOAsHgVMTJq0MdjlKHkkFhdoMYaFRcw6\nMWkkB4F1EraAKTRdPCxcDGKaRGhmSJIUItkE1kHup0caLRpImWI5nXB8ZoYndnd5YWsLQ0o2Tp3i\nvJRsdNJMTu7/jtFbv19ndvYnU0d9N2699QQPPXSRSuUAMCBJJJXKJFLGLCzczuOPfw3HyVAo3MLs\nbInt7T5bW3sYxgWuuWYW37/EhQvPYpoHEKKNlBXiOEGp85RKNxFF30CpNIZxDKWGKb1Di/ctII1S\nBlr3gY0h4VXVKZKiyy4KFw9JiD/yFcqhKCLRRGyTo0tCzCZtxhiQwmadDBJjRHGNCelzAxqFQYOQ\ndRJSpNhBUKCLx4AMFgYJF9FcA+RIuIxmhhgHwUWZMG9ZLGSzXLZtPv+pT3HPZz/Lzbfcwuy+a3j8\n8TWy2VmUUiwvP871109x4GVj1dc73ihGfgRoPSxG/vN/vtor+eFhmsPi6Utfgt/6rau9mh8Mb3eX\nk/v2Xbn9wuXLPPAP/8Dd73sfv/3v/z3Ly8sMBgOmpqauxJq/HLlikSiOueH663n2qaeYNAwcw+DF\nZpPj+/Zx0y238MRjj3Ewm2Unk6Hf7zNuSSYch1ONTZR3C1tJBx236ag9esrBoYeDZpceFiHmKHJc\nIbHwEFiUqbFDgEmKPsOJs00yIqN5+FSokeAggBaXgCKaAQYpYmp0iAhJ02c/HiE2adKELBFSoUWe\nPm0kAxYIOIJNH5PaqMAxCcgACTY2khYREX185oixMVnHICChS5wotrWDjQVCUpOKHRTT+TxfP7tF\nIhbpuwa5/ATbHcEf/X9/z5H9ZR459RidyGbh+reQKy3Q6xt861vP8Ja33EIul0MlCaHWr4pl+A9C\nOp3G8yS+3yWV+vZpPgj6+N099k9NUd3cxPT7TGEQaIMuMSaCAm18KwSzgko0uVKGuN8mCIZdLMuy\n8HVCEreRwiYXDFgkYs9Nc2GQ0AB6VEgzTY8mMR4WFj4CmxIpPFr4rKLRDMjQZ54+GRQ1CqxhoFEE\nbGGhKWPgsU2XGMkWk2QoYRASIxmjjsGwaxayw4A5BswQ8jzwOJIMDuZI7ruNjYUDiYOPgYnCtGMS\nsU3Gc5mxFsmXIk7cfDNPnTnDm2dniYXg9qNHMS2LP/v8vTzz9Fc5ed1bEEKwu7tKLudz4sS1r+j+\n3XXXz7K8/FesrZ2hXNacP/8McZyQycxx5syz9HoR6fTQ5tx103iez/LyGkppZmcnuHTpPElSJpeb\noNvNoJSDYZRRStFun8YwSijVRKlngSMM+SJ7DP1Fhtd2Kbto7SBEHi26QImMHtCjjsXGaGg2jiCN\ni4vERDFGgMsYIEgT4NPBxGYPix4WRRzKbNPgWfQoW0pSImKNiADBJpqXSoYtoIvAQuCSMDvqfOUN\nSdEwmDBN4lyOqUqFzd1dlpeXWVhY4Bd/8T0cP36BZ589S5JorrvuLRw6dOg7HJNf73ijGPkR8OKL\n4LrD7JefJtx9N3zhCz8dxcji1NR33D40M8OpJ5/kHe9+N5ZlcfDgwX/y/jffeScPf+Yz3DQ/Tymf\nZ2ltjeWtLfa985389h/8Af1+n2/edx/O7i6ZIKRcKONZPTabA4raYMUXpKxZEA1c3WOg+uQwmBUJ\nXe0T0kSQGo1gbLTo4emYGMU+JNv0KeKQIKiiaWKTEFGiyC4RCX0M0rQIuYCJIjVqA/fI0MFAsUMD\njxI2JRygho9BiYAUDmsMgCcJCQk5iM04eihUTGI6WpIjwibgMgUUZcqsMI2FS4YBJj3WkbLIM0GL\nUpKQd9PMiwin75OdOsFE+QgXL1+mvrcHZhurWSe7GVIODXAsLjxyL87i9WyjqRhZli+vcuLkcV5c\nX2fhuuvI/oBQrlcDhmHwrnf9LH/1Vw8yPn6cTKZAt9tkc/NZMrrH++66iy8Cz3/rWzhBm3WlCYXg\nWivNZjRgOXqRSE7hJzEEKaJBFZl0qQnJdhyxz7LYn06zEcfsdttoNFPeBHPpNP9QW6MD9OgSIbEB\nQUxEig08FAEBRSSCEjYBZ9khYQNBmxweeWCAJgIUIQo9UmjksJBYxISAQ4YSLpqQkIgWEXlqrNMC\nKhgEZGgS0EEQj8oYRExfV/FpEds34Jr7CII+nXiPJdGmGPl849Sj2NGAJJtl7vDhK66dH3jrm/mH\npUtsbVkkieb48QXe9a5fe8ULzlQqxcc+9mEuXbrEqVOPsrv7KI89tkuvN8XYWJnJyQqdTou9vSfY\nv3+GTuciSWJgWQat1jatVg+lMnQ6fUqlCWq1vZHfSEwYNkiSXYb0XpuhMbjJcERzA65rIcQ2YWiS\nJA1k/DApDCJcxjDI0yFDwDppQqwRXXUNh22y1FBkCMgiRs88E4VFjzQJHbaIEDijqwak6OJjoShh\n0EARSIeNRNMgoUiWioiJBfSdGKE1BAFSSjpas5PNMlYscnJ6mt16/UpitZSSw4cPc/jw4Vd0X15L\nvFGM/Ah4iS/y04af/3n4gz+AKBqaob2e8d1KDNMwQKlRENoPXvwNN95Ip9Xi4QceGJo7Z7Ncf+ON\nvOO97+Xez3+eldOnefab30Sdu8BEpkzOydPvden3a6gghWF3SI2ViH2T/h7k2KaDT09myakedVbp\nU8QTJYSM0WqTIgFbaI6SsMs2ISYl0phoGigKtBGk6ZKjRp42Xbp0yDODxw6CmBiP3ChzJKBJj00S\nepSJR56vc8AL5GhiM+QHSGCNkB2GoeeOFryAT40NuhTReKSoM43CI4WBgSCLS5Z2UmNWupycO0yj\nucViRiByeU5tLdFtCOa9LK0kZrO1xmICXrtDNj9DNp0nb9o8uHyG/W/9Nc5deIqdy3u0ijnmjh/n\nXb/wC6/4/8QPixtvvAHLsrj//lOsrnYolbK8850nuPxQE89xuOXECXZfeAHbttnc2OKaxGAjESRy\ngayyaUUCU/eRQZtFS1Fwsjzc2mbWcVjIZnG0JhWGpOKYs1pT7/bwk5CUdJhK1hEM8PFoU6VPjGSe\nAXlsNB5VcnRGlGWX4/RpIGhgItBYhIRU0aSwiTAJkGxiExAyRp0eeQoIJMMwgAFtTBxyXAYOYZKX\nKdAldvWANC6XUexhgu4RsoMlS8zQIzW4SDOOaJtpBsTk9+9nUzqk+xf5hXe/m8rL3GzHCgUWFzQf\n/w+/j9b6VXX1NAwD0zQ5d67G4uKd7O09RxBIBoMuvV6VYtEhijKcP/8AnY5FNjtNFC0TRT4HDtzK\n6dOP02q5OE4Nx0mhtSaOh/kycVwABFLeSpIsodQw4tAw0ii1jGl2kKSxSePg4rHNNA326HOYgF1W\nMRhHYSHpkGePa4gZR+ETUB/5EBk4VNklpMscHkXqbI06IHWgTEiEQYA14nw5kCS4lsZLDDJWiURG\nxFGTqVIZM+WyXKvRBuanp/mZxUXK6TQv1Grk5+aYnJx81fbjtcYbxciPgAcegKt4rf2xMTEBi4tw\n6hTcddfVXs0/jZeMll7CbqNBaWbmhz6JCSG4661v5ebbbqNWq+F5HmNjY/z5Jz/J0le/SkYpBrtV\nLD9mENWJ7JCKlyey8/i9JnnbZd/+GaoXn2PMqJHRIVbSAZr8jG3wWOjQZGg5nU0MIgYsEZBGcIYu\nGRJsLrFNaiTVy1Bmkuoo0M7BwMTExKdDjzQdAvKUGSNBY2FjMU5AiMl54lGqr+QiY9TxMEhj4hMz\nS4wFXETQxGBsFLuX4JPFZ4CDiySNh4kkRmOIAQkaW/l4TpogbCJogpXBD3wGO9v0MgHj9gniJEYN\nOkzYNpYMiCMfKJB3UqS6TSpTB8gUKhw4kPCBD7yP0sgC/mpAa02z2WRhYT+f+MS3o9BrtRpnv/kN\nBr5Pt9Fgu9FgXkoOmJKWMnDMfaSFRz9SlLWB0h4dq0OWEEsKKgiElCx1Othag2UxNjvLZKvFmQ7k\nE4c5YhwcGjQI2KJEgx0mCQmwCBkadm8giYmp0cXnSSx8EqZYITfqpLXoY2BjoZFoypi0SUZJRSnq\n9Cig6RDTR6Op0BKKvO2S0kM/T1+lsJI8FTmgpppUpYNpdLHjAQfdWaw4QcbgCZe0qrJqDbjzro8y\nP3+Er/7V/4XxXfL57XqdmcVFzp8/z4UzZ7Adh6MnT75qPjJf//qj5PMHqdXOMzd3y7Aj0Nljc7OG\nYQj29iCfX8TzQkyziGkWGQzq5HISKWOGVljXYpqCIFjG87p0Oj1sexi+p/XGiKS6C6yDWsdWyyTR\nDCZpbBwcHAzGCKhylIAIg8MElLnEKap4CA6RwaFLAUluJAjfo04RgUk0svof4BLSZ6jRSaGJCQkx\nEGimKTLAwULSVjV2RUzRtgktk9V4j0DF3D45iZnLUY8iStksO0HAmXabMJ/nX330o1fUbf8c8EYx\n8kMiSeDrX4f/+l+v9kp+PLwk8X29FyPP1Wrs6/UoZDLUOh02lOKXfowQoHQ6feWJ+q2HHuK+e+7h\nsO/T6nTIVJssJQmq30PGCstJsWOYeCmb1d4l4mcusyjSxJTRepsiUDQMlG1zhC5PRGV0cZJ6bJMK\ndjlqZZH9LcaThJ6IMSSMqR67aM6i2aNCE4sskjYJXTpoQlJcxAQMZsgTMyAgGRUUKUx6GOzh4jKH\nQ4sBCZIZOhToEHCWHml8Ekx28NEkRICmQIoeWdaImUAP83mR9EG3cQ2fnojQsklhfIKcnOPFS5dw\nADv28bvrXF7z8caOEqKQRkA5k6EjEnp+B2naCMsmCHwMo84v/MK/uqqFyMWLF/na3/0dg3odBcwd\nPcq73vc+stks5XKZ9NQUn/3sZ1lwHOYyGc7t7GDFMU2RJpVYBMYw/0cmCZZTxHELBP4Wu40NsiIh\nbVgcdF3W2218z+NnT5zguW99C5006NCjiQAEWQQz9IgAmyYrPIcmj0lMiZgiimEic5FlYvK4ZJG4\n2Bh0mUPRoM8c7kiT4eAQ4bFNljw7pGiPylkHjwECw+0wNbWAO2jQbncxYxsdmWidxpaCijdOM9jA\nNk3qoYWTShGqHcYMkwk3S+JpCoUKF194hEa7xf/9mc9w0+HDXH/DDbQHAy5HEelqlW/+xV8wnc3S\nj2P+7uGHOfn2t/OWt73tFd/Lzc1dSqUFCoU8GxtVisVrSKcr1Ot92u1LJIlHkgQkyYAwbJHJzOH7\nfXZ2HiOTKdLrPQ+kEMKlUhHs7DRQqkQcTwIBUvYwTQs4iRN+mVlcUhgkhLS4QJU0FlkcbBI8cgzY\nRqKRmMAENWIsEnwEARGKPjYaF5eEAQbJyLU5h0cfyQCfoyMjxB1MKgyVZnsoXBi6riYWgehR728x\n6xhMl4tk982zoTW3f/CD/MbHPsaXvvAFls6d4/jkJG9597s5cuTIK/74X028UYz8kDhzBnI5eIWN\nB18z3H03/PZvw3/5L1d7Jf80fuX3fo8nTp3i8vY2EydP8qE3veknUmb4vs9XP/c5JqQkFYaUSiVC\nP8YiZnnQZTcO6SIpZMtkHBOr3sHsSLAN0AGG9uiKBC9pcjkMiaRkttyjbvYxUwGVsElReAipyeiI\nIrCsk9HJFTQhe+zSZ54WXTQtxKj/McsYDeoomkN3Tzw0NgEWfUx6WKN4tI3RC1OFMgUkki45HBbp\ncZkUEh/JOsvMETNGSGNEp2uywy57jOMNg+mFT94K6VoObsZjMp/jwbNnGfd9xgFDaBztszTYwo8N\njh5bpLa+QiqO2X9wga2dPc7ubqOm5hgb6/L+97//NVfOvBxbW1t88Z57OF4oUJqfJ0kSli5c4DOf\n+hS/+bu/i5SSdDZLnE5zanOTM80BO0GelLSQSlByJFkp0IlNbAoKxSy9aA1LtrDNEKklPYaBf3nb\nxgUeeO45lBAURERJD5jHwEEwIKbPUKfRJ2Eanwl8miRMAT1sUuQJSJhjQHcUvhaPvpMmoUqHNtDH\nGmUNCXwcxuiQIaSJBBzadNBoJp0ZqvUd9lVsylaFRqNPNxIkGPiGxhANXLdMRoxjDNLYOkNiubTk\nOrOFFIEHF05/k0qvw1v37ePAsQWeOnOGJ778Zd734Q9z/fw8F77yFW55mSpjVike/trXOH7y5HeM\ndF4JTE1VqFbrzMwscu7cBbrdHYRI02w2yedzQMzCwhFM0+T5559gff15kqRKGO5hWRLHWcQ0u2Sz\nA3Z26kSRjdaHYNQzTBKfMOxiscQ+AnKiB0aKMA6pEBLhYzCNQhCi6KDQIw3cCkPaK0QIIloMnUhK\nlJFIEjQJE2yzyTgdBsAukhRDGX6foS+QQpLHZJUAQQphDB1hXRQHUwmeSMBKc6hYZCUImJ2fp1Kp\n8JGfBtLfT4A3ipEfEj+tfJGXcOutQ3nv2hrMzV3t1fzjmJmZYeZXfuUV+31ra2tULIvLQcCsGPpo\n5jyHvg8FM00vVSApH4RikUL/HBN9jzE34ICbod1StLsBwsjSlgN6RsKJxUXGMhn+/sIGGdNlSvcx\noj62TEhLi140MqaybaJIMNAWIRUkBgkdBNMYNCmSxkFToIdLgywFIvps4qLZh0+DHLMkuCMxoIFg\njBbhyO2zABjElOmzTZYsmjEGtMhiM4PFEm3ejOICbeq0SUlImYJOvsgvnTjBkzs7PLW1hb+3x2Q+\nz04YkjJN4jDkoOfQzNrcde1RPrOxynq3y97ODrmJCRZuvZn/8Du/w7XXXvuau61+N5569FFmLYvS\nyMBOSsk109M8vrLC8vIy+/fvZ+3cOcbyec69uMJ04UYWCymWqytUeytsqy46M42VTSOcNIYlmLYy\nTAQGYStiO9KMlfN8q1rFiCK2+n1Uq8VNlQpV2SGlJAaKGYZFyCrDAQBoimQR9BgHJrFYwyAixCUg\ng0bTo4RFh5ABHj4+EYLeyEg+pkSTbUz2cYF1Jigxh80AgzoJpjtgpjjN+OR1nF97gMPlNCKWxLpJ\nR8LC+HUkCNb2mmRSFsWyh21niaIsW9UOzXiL8sxJ7PoOKRtOnjzIwsICJw4e5MzaGvsPHWL90iVm\nv8tp1TQMysDy8vJPXIw8+eRTbGzsUqkUufbaY7zlLbfxyU9+gYmJ67jjjrfwzDOP8txzX8UwOmht\noVSKzU0fpboEfpc46KCFTyp1LYXCtSgVEkXnabdPI8QUhlFEykmUMhim9kZAmxQvMmYZLBYKNBPF\nVr2FpR3KxNRpoIWJpQUXEHgINhnQJeYAXMmOMYHLSDZHPJA6OfoESAps08UiYhNNaXSfFlAmoU/M\nMHvKQGAQiBjsGNvymJqZQdo2fSGYue46rp+Y4ImXnDb/meONYuSHxNe/Dh/84NVexY8Pw4B3vnMo\n8f3Yx672al47SCkxTJN98/Ocf/pprrVtxvJZ1ttdLvd7ZNxD2KkUY4UQGSpKqRyptCTvuGSzHsZy\nSDeJiByX2w/u55b5ef726ac55BgMgCnHJei3aMQRNoIMUEfTAkzpcFBJOtSoUqfD1KhbUiZhA2hy\nkiwderToAS5pelzmIhnyFCmhCEby3Tox0+xSI0Mbkx26OPh4CAwWsOiRQlJDGjF1FZEixkxnmFcx\nOA69YMDhUpGbTpxgZmwM37J4vtFAmiY1rZlwXYq2TRDHnGs2Ob20RCqb5e133UUum+Xi5iaFY8f4\n3U98gmKxeDW39Qqqm5vMfh/1jscw00gIQaPVoreyQsaeZCw9A0ClUOCJrQJxSZJIiW1kmSzN0Ouc\nx00VOLNURSWKfYUSniU5UipxanWVbDIc5zy/s8M4MGFIVlWCy9DX02CYKjpNPCosCljUR2oYA5uY\nMRyaCDSaDAYwoE2GXYbprMaIwloTETU9TgkBLJAQ0qSPLVykSIGuUG10yGamiZJZelMOa/2A9NQN\nxHubBFFErbeF607iO5L9+2ZwY0VjZxfXlbREF91Z45pigZ/5mVu+gwxZ8jx21tYwTPOKYuPlSOAV\nkY1+7nPP4rpFguAcX/3qo/zWb/0yH/7wO7jvvm/SakUsLmY5ceJNPPjgBeAa0ukq1eoqYauN6nWw\n2AXSqMEWtVqM605g2ybttkCILKZpY9t5Op0mWqeBKpZlk7LLeFZMpAIKQhNbEX0FXRXSZxWpfXpk\nCRBMk2GXy5SAArB/tPY6Q8v2s/g0yJCmzyyShIAaGo3B+Mh5dYOh3D8BTGJWEAgEkWxgmAI5WeFn\n5+e5ZWQGdbHZZH7fPsI4/h4ezz9XvFGM/BBIEvjGN+CP//hqr+Qnw3vfC5/+9L+sYmRubo6B43Dy\n2DGam5uc832CIKBTzHLjscOs7lQ5fGCCA1MTfH33IuPTLuXytVxceYoSCYFrstWuMj2V5fb9+3ls\ndRVDKd581x18+f6vc9FvsRBHeGh2SSghaekENwwpGC5pu0QnEuR0xCV26ZIjwaGHjUuEwMLDJUVI\nlQZZskygscgTEWKM3DaLbDMgZgZNhpgMEk2HZfo0KAMZNA22cNhNCiQ0MHF4st8lMisU1CQ50ef5\n1h53uC79KCIwDOwkwQfsIGA8n8cwDFzDwDVNcqkUH37f+6iMTsa3Hz/Oo8vLNBqN100xMj43R+2p\np76D9AxQjyJWV1fZXF6m5fv02226kUUq7OJZaYI4ZqI4wfytt5Av15Ay4oUXdrnxxndh2yk2u19g\n7ZwkaA2Ya9SpDmoc0pprpEQIwZpSvACMm5I8Q4pqn2HIWQEoo2mzi4VNlYQWMRJBcWRz1kPRJEWG\nLhaC1uinO7hs4wEesZ5DEdJmlWFUXohijEg7xLqPFbawASlsTDuHHwTYRgt/5SvMWGmETmglHWLd\nZ9IskESCFzebVNLTVGbyfOjtv0q/3ebZS5cY+64OR8v3mZuYYHxykq+dPs1kqXSl+BiEIQ0hWFxc\n/In3b37+5Lf3rL7NZz/7JT7+8Y9y7NhROp0OjuPQ7Xa5777/lfHxSfL5fQStv8YwtumwjtIeUk4h\nhIM/2CGKWhgGxLGFZcUI0cYwBJ6XIwxD4jgml5W41ji1wTJWp8Gs7TBueTSMGDHwmRIeDeHQVbO4\nrONTZQJ1JV6vwdCjdQA0Saig0XRJk8fDQI7cRVboo0ZhA0vA4dH/RgSY0kAZUDUFh8r7kIUUmXKZ\n1mCACkPGpqeRUnJpe5tr77wTpRQXL15kaWmVbNbj2LGjV5Wn9WrgVS1GhBD/DbgJeOrlCb5CiP8D\neNfo5v+utf7aq7mOnxSnT8PY2E+Hg+k/hfe8B37nd6DdHvJf/iXAcRze/aEPce9f/iVji4vUl5dB\nKdLlMvPHj/ORt76VielplFKEuRypZpsnzm1TnDpGu1ejSUIv3UdOTfDpS5fYbvvcNDXP9t4e/qBL\nJwo4x7BF30ZwUYCvh1mfYZJgjjxAPOGQ0w3qVLGxR06dWzTpYZFcoZ6CSUAyokUqUpjEdDmMossu\neVzSmLgYSDR5DM7QYosIiSZHBVvXmcIgNqbwVYySNiuBom/MYSdpHlrdoVzO0DcMVKtFWymeCQLO\n9npkDIOMbbNjGNwyN0et3b5SjAghGLNtVi9fft04O9502218+oknyDYaneN8BgAAIABJREFUjBeL\nxErx9KVLPLe0RN6yKHkean2d51dWcJJtlL2HbzgUxw4yNjXPzt4Ga5tLyHaT/tYaDzzyRdqDASI7\nx/j0fnqrZ9mLYnKxoiw0hm1jAGNJwpTWvBjHaDw6o6jCPooe0AQOAYcI2QMeYZi4a6CoIhEYzBBS\nQ+NjsYVAonHsHMgpBkEWLQSmcLBUlg5NFIsoLCJcBA6RPosXNrh08RkaqV2mqhnGe1VOlCcIkpiG\n7VIY2DS31kkbAieIGA+6qDTcfnQfJw4cQMUxz507x1MXLnDriBBZbbWoGgZ3X3cd+Xyei7fdxiOP\nPUbFNIm1pqo1d/7iL76iQXkApdIkq6sXaTQalEol8qOoAa01x45dw9raBu22ifQbTHsOe8EEQbuC\nZU1BkiNWk2hxAdBkMhopPXy/Sxg+BYyhdRvDWAK/RcW1UHmPc36LgT+gr/u0ZY5Js4inNFqFNFlC\nsk6eYecrYcgZCRhG6aWACUIUJvmRF8w22xRRGCjGcBkwT4c2JXYI0CwBApMcLq6EnWyOQAgcy2Dx\nwAEefPRRMqbJzaUST6ys4M7NcdOtt/I//+f/w+OPr1GvJygVMjFxHx//+K/9wATtnya8asWIEOJG\nIK21vlMI8T+EEDdrrZ8YffvPtdZ/KITIA38HvK6LkZ92vshLyOfhzW+Ge++FH0Og8lOLgwcP8tF/\n9+849+KLPPn445x97jlEHOONj7N/cfHKCS8YDHj8c5/jPW9aYG23TtfPEOj93Pmr/xtBrLn//jMs\nhJLdR/+e5cef5SgG0jSRWrChE2qJ4pA0aWtBBo0vBvTV0PY7RmLj47IE5GnhjaytUtgoDAQCkyoB\nNQ6TZQJFnw6X8aiPFBoai5gsGsUAR0ik1uSEpqfbCA6R0GfWMECb9BITyypT9jSGaVOzp2l0HZ5s\nrXPbhEm62aSlBChBRRtkREKgNWtxTCafJ+U435OUHCqFm0q99pv4j2B8fJxf+jf/hq998YucW1tD\nC0E1jnn7sWMcmp/nxdVVgmqVGz2PTpzguibYHjuiwWrbpVOvMZd1mHZKPDVYRw0cckFCRu9Coqks\nzBHuKirNLlIp/DDC0oKE4UhmlRIm8+SwqdPHZx0HnyoaTUiZYYs+C0hsamgOjmzkfTQCn1UMMkgK\nRo6cK9hSyyhrnjgp4WWzDFrPIxOHAAtBGTDQBECWml5HDJ6iqGOauwUWLY1fXwVtsO53mQAOOQZG\nMaLd2cFSAzaaDW45/GYMKTFsm5uvv5510+Sh1VUE4JbL/NJHP3ql+/We97+f9ZtuYnlpCcuyePfh\nw1ciAF4LpFIpbrrpKJOTKZSSPDsokokU+SBHJ3CG4ueBj0pctExhGOso5WPbDbJZjyQxiaJlXHcD\nR9eZljZuCE5fUlUuLWlhqIis8nGUSYSmS4tjRPhoxhkm2USAP/p8iaF9WoKmTsQcEpeIPgEDXGwx\nQ6S79HFGe9YCNA55DBwUKbphl90utKTNe2+5mfItt/Cbd9+NaZpEQcDU7CyLi4s8/PCj/P3fn2Ew\nmMB1h3ty6dIW//E//jF//uf/7ao4Hr8aeDU7I7cBXxl9fj/wJuAJAK318ujrIcPj4OsaDzwA//pf\nX+1VvDL44Afhb/7mX1YxApDP50mlUoQbG7z7wAFKuRy1dpsvfPKTvPMjH+HY8ePccuutaK159P77\nMYpZsuMWb77jDo5eey3//b//vxw+/GaSRPHEVz/NjDTwEk1fQ0vFOEJwGMmGkKgkoacTbjYlfbNH\nXYdIrVlNFCWuoUMGC0WPhE22yAEu3ijjJEcegaSFRFHCo4LNDjEOklkEeQRdBIFWgMDRCTlAYQwz\nehUINCBRiabvD0ikgozk5E13kc+fJZ2P6CuH/mbAkcx+DL+Go8Ggx5vGy1yQkmfqdd72ssKj6/vU\npOS9R49epV38/pifn+c3f+/36PV6JEnCn/7RH3HNzAyb1SqfvfdeDvT75DMZLu3uktg1TEJ6zQ3S\nsynmKyex1s7z0NklUv4MXmLSU122/Sol1USYFrHrUUUxrgVd5JWc111sEsaoUCLBwKPEgDQRz5En\nzTYNHiceJS1beDhkCEZGZ9BDs4cY/TaJr3yCXkzaVvTj00hb0e/3iZMeHm1MIKSFSY4RFRsTg0OG\n4qiTYrnXRpoCO5NB+j4MumSEIJcqkEjNkUPzDHZ3kd0uZ5aWmB9xRLTn8ZHf/E3K5TJaa0ql0ncQ\nk4UQzM3NMfcqM9/r9W2mpnLfdwT4nve8lT/9079CiArjC0dZevSrCF1i/9QcShlcWF0lMbpIqXCc\nIun0LP3+CoaxwvXXH0HrFLWdacrxcUS7T70zoK42ucbw2Io6TOgsigSPJpcJOcDQSPBpIMNwNBOM\ndipgOKLpM+SNDMMhQopIuphskkZplxYhFh6aAX3StDFJiQyBFiTapCey9PE4du2bMMwJbr/zzu+r\nTPvylx+k3c4wNbX/ytfS6TxLS6ucOnWKt7/97a/0VlwVvJrFSIFhAQnDsvD49/mZ/xP4k1dxDT8x\nlIIHH4RPfvJqr+SVwfvfD5/4BPR68M/IL+cHQinFN++7j+smJsiOThITxSKOZfHNL32JI0ePIqXk\ntttv56abb6bb7eJ5HrZtc/r0abQuXEmDzVdm6W2vcNFvg9YYhoFONF0U22j6QlLUirptM2GaNAYD\ntqOEgAoGeQY42FSZI6FACoFPj5A6eQxmmCfGISIgxsYmwsWjj41JE0EBjcZEY7EBBJh0GeDRIDey\nUbNxUYBKmkjl0tQJnV5Mr7fLjTdOYw5qbEeKnHSZ8Fx82yQaNEmihEa/z0YcMz02xl/eey9zMzMc\nWlig57q860Mfet3wRb4b6XSaMAwRQJwkPPLkk5S1ZjaTIW2aCNNEFApkFhb4mZkZXkxconCMs089\nQhQWKCUupu0QhQGmnqKRrFPqh8wcuYHHd85jIyhjEiNoolghRZ5xxDDlB1eaw3EBGXrEZLHYI0Yw\nfPGysRkONhLWiWmP+mE2ES2mMZjBxqMxaBDpS0jtY4UdDuHjookx6LA3GvPM0uU8HppqFOBHMJV2\n0VJSazQ4XCyS831UPCyGnDCk0+2yvbtLLQw5++STFJUiOztLw3F4+pFH6DQazC4ucvPtt79mnY+V\nlZcIrG1ct8UHPvAr31ehNTExwS//8tt55pnTjI/Po9UBBqcbdLtdlM4hrDymziE5RxLvEQRTuO5t\nSLnBkSN3cPbsw8xPLTKOyelHn6LolNjtakJ8UjLDcwoEggwRNkOy6R4ODULmeCnTeTh+qwNVht2u\nYwwzgBtoAgy6aDSaXUIGLJBgMC0zbCU7uKRAplGYiP+fvfcOkus873SfE7tP5zDdk/MMMMiBIEEk\nBjFZFEVSDBJNK8uyZFq2ZO8trVy+tavau7Vbdde7sl1717K1srQSFUnRIiWKFDNBEETOYQYDTE49\n3dM5nXz/mBFIkJAs2SRBQXxQqJ7pme7+vv56zvmd733f3+v1krF1PMFl5PMG+/fP8rd/+w/81V/9\nuzcYmaXTGWS59Q3viSwHOHdujMtEi7ylYqTA4poChFlcx/MIgvABIOq67vd/2RN8+ctfPv/1dddd\nx3XXXfemD/Jf4vDhxVyRS2il8KYSj8OVVy5W1fw2Vwf9ppRKJZxymeDSiTSdz/PioSMMTcwxr9vI\n4SS33XYTTU1NyLJ8QTzcMAymxk+RmTyHxxfCwEXXK2zUAqiCTaZWZco2MIEGy0BTVaquQkZVSVkW\nZU1DFyziZoJzjoyIh0bmWYaKB9/Shr6FQYFpqjjImMhIiDhYlLBIAjIiKVSmqRFEwQJsNHQEIiSp\nMEMdD1lcOgUJwa0huHXKroPpbUUxyoyfe5L3/94djKfLLBR1BFGialbxKF4sT5i0DVHBpKchwu07\ndtDe0cFLJ0+irVjBh++9F+0dFKK5GKqq0r16NUf37UOq12mNxcim04iOg+r309nRwUg+Dx0drFje\nx8mTNeZqBoIToWhbOLaBJVjYtoWJh4VqESmdRot3cDJdIGAvih0dmTwhmvFi4yIiYLkOjgg4BjI6\nfYCDSAaJSbwUMQkjECCEhYFLnSgV5kji0oVfaMBxRWLEmMNDWT9GD14SGLhYlEgTJUaNUbLMEydF\nNyYBDAZrFusjQQRZZjSfx6/rVIEZ22bAtmk3TUZGRxGDwcW+ED4fh8fHqZfLrO3pwTs5SdLnI7V/\nPw8eOMB9n/3s2+Ifc9dd65mZmSeRaGX16pXne+K8ltnZWb73vcfIZm1ARFUN/vgLn2fnzlf42c+O\nMjVVwHGzSNYQXjGP6zp4dA91yjS3tCIIISyrjWx1jliwEUeAumWiuF7yroDggoBIEyLdCJi45FDI\n48WPQQSWmlAuhmaqLIbo9KX/IRa3+McQmQGyiNRoJ0AzNUYpOgI2Yc5iEhN1LNvCcPwUnOUELC+q\nGiUUijA7W+Ghh37Cxz9+3wXzHxjo4uTJcRKJVxuImmYNQcjT2vpGkfLbylspRl4BPgM8BNwAfOMX\nPxAEYS3wAPC+X/UErxUjl4rLJV/ktdxzz2Ko5ndJjHi9XixBwLJtRqaneeyJp3ALDnE1TFm3ePon\nrzAxkeZzn/swyWTy/ONyuRwvP/kknsmjJMJdWNk5zPHTWKLMkFEjKELdsnBZPEi1qCr9wSBnczmq\nts363l6C4TBPHjlOwdSXDNynaMTCgw8BGwkFBYkEZSaYo0A7USQEDCzK2FSoATHqeBE5RRAFDx4s\nXFTiRABlqe9MnozoZ9iZRsHEFSPoqkpQNUA/zQpfDenMGZZ5PBxLnyZVMxeTVG0Dv2gTxCErOIQb\nG+jo6MDn93PtunUcmphAVdVLs3i/IdffcgtfPXmSVKHAikCA/bpOwTRZ39lJ1TA4lU6ztbkZj+Qw\nfOCf0StzZKt5olaABknBsnUWbIuiPU/ALRGrD1JVROpqJ07dwREUYq5M3p0iTwUJHw4SritQcecR\nKeMDMtg4gIFCHD/TWOQwiFNGRSGEgQpUiOEniO66eHGwBQnNjWIikqCKi42AhMoCUCCKiYxCKxEi\nFBnwhcjaJsfSGbY1N5GTJF6pVmny+ZCBY5UKQ6USHlkm6PGgNjTwodtvJ+T384+PPMKqTZtoWuqA\nHfT5UFMpXnrmGe55G2LTV1yxkSuu+OU/r9frfOMbP0KSeunoSC7dV+GRR3bymc/cxY03XsP/+v++\nzlNzzxBVE/ikIOlKAL8nSNouEA63kc9lmRqfo5AfYUHMItk2ZbsAjoDhGNQlmUYcNCxqS2aFKjYL\nFOgFirDUFnOppHnptorIThQkXBwsFGSUJV/dGhMUKQEeMpSQWMAQNdJSF5LWhmmGkBUFxznHzIyI\nohRYseJ9nD17hnQ6fYF/y513vo+nnvoy8/NH0LRGbFvHsmbo729gw4a1XC68ZWLEdd3DgiDUBUHY\nCRx2XfeAIAh/57runwH/L5AEfi4IQsF13TvfqnH8W3n+efjUpy71KN5c7rwT/vIvQdfB47nUo3l7\n8Hq9LN+0icMvvcSpI0eI1CAe7yZfqbC+o52SXmF8NMczz7zI/fe/arq2+8UXaTJNlt98DXv3HsOo\nufQIAuOyRFqWKdSqFAWBLklinSRRVRRcrxfF66Wo64zrOpmzZ8nXKxSccWRcbEREFFi6OnZRAQsV\nEw9zzOJSxYeHMrBAEBsBkJAok0SjCYFWatQwmKQBFw2BHDYFXHplL343goSD6VGZlQUCfpOkXGZ1\nwM/siROEYjGi1TQZw0tWVVHsxS4qBSNLTzBAczxO1bLwAZrHg12vYxjGO35nBCASifBnX/oS/6VQ\nQK1WuXlggPlSiSPT05wZncBs6eXJn+ykySxyx5pl7K8VOZIfIS1UKLgJfJJIULAQJYO4pjFYLCB4\nFOpuAUXxgAkTrr3UeWYSF/+SSXsZDwV0oAmJ8FIb+CISU5h4UcjSgsUCSSxEROpAHYdG1MWTngt1\n10Zf7CCEjIlNAAkPXhxqODjUacNApopfVfGGEnRIMiOpCU46DlVV5ffb2ghLEs/NztIMFHI5CATo\nSiQwQyHms1lkWSbkuojuhWl7bYkELw4O4rruJTe1O3v2LJWKRmfnqxcIXq8fj6eNw4dPcMcdt3Ll\nql7W3HszLz53BEPQyJs2sqwTkGB+6hRmWqJazGMZVRasAj67gIRLCQMdA8lWcaggY+BHRsIkgEuZ\nxV2PEIu5InU4H3LTkanRu9R4wWWaGiJlkiTxYZLDi0wCv2wTliRcX5i8MAlSnVptGsMYRhAMTDNK\nrTaB67rs2xcjFBJIpVIXiJHu7m6+9KU/5MEHf0o+P46qKiSTEe666/p3d0Z+XV5bzrv0/Z8t3f7e\nW/m6bxamCS+/DN/61qUeyZtLUxOsWQNPP73oPfK7wg233MLfDw2RzWRQTC/pSpVANIbtlTk7OUVq\nPM/k9AiyLHPbbbfg8/k4c+wYVyeTqIrCzTfvYGpqisP6DBVJX4wZRyPsnZ2l33UpuC4dfj+Cx0N7\naytnUykmZ2ZoFgRcF0RBIOmWmcRmHoMwAgomDjZQogxICMjM4CyVBIssuj3WgGOEiRMnisMcZST8\nBGklz/jSgTJPhxIiqQaoOiDa0B1OINdnyNbyJEUTpVxGF0SmZ+Zortap2xUMNUA0GMcTThKpN7Gi\nWSYWDDI2PU1DOEy+XMYfj+P1ei/d4v2G+Hw+PvWFL/DY//k/yI5DdyTC0Og0gb6tdK/eRvn4S3RG\nOxkbmaC/s4VmCV4YnmCmlsVybJq9dSzTYtpQ6fM0kKmVSZg5VFHG8YdIV03SjkRFaMJVbApGCa9i\nUjdVolSJoiCjYlPGxiCAiI1DUIzgdTRs8jhk6UFiigVKVHHxYQoCNdemTAYJhTlkQsholGlEwGax\n1byDS0xSaO1aSaqwgF4okkVkygoTFV3OpNJEQgFCfj+dmsa8x0NVkli/ciW6ZXH83DnaGxupOA6B\n1+Uo6KaJ6vVeciECUC5XEIQ3fu40LUgutxj5lxWF3v5+PLLK0WNnSBk5CjUPgqHTKAfw1EWojOK1\np1km+tAQsalRpMwkMg1AGxYhBKax6QECLFbEpYEmlnY9WcwPOQmUSaISwAVsQCOIC+jMUUHDpIkg\nOn5JwdIUou2dSEacSqWI1+tBkuaBdYiih3q9Rj7v4fDhCaLRIt/9ro9PftJLX1/f+flee+0OVq9e\nyblzi2mYPT3dNCztZl0uvGt69is4cAC6uhY9Ri437rkHHn74d0uMeDwebrr1VmpDQ2TOZkgk+igb\nVfacnUOVl6PJMi0t3Zw4UaVS+TGf+MT9KIrCbCqF5Lr4/H66u7spZrMMFoso9TpV10VyXYYti55Q\niKCiMF2pcNa26dU0Vvb00NXQwO7nX8Jvw6SrkMBDBgMBacl7orrkTSEQQkNk8QBYQcYEIhiogkna\nDaIjISIgksfGRMODSYWkkCcU8iAZOhUzh+ANYEoWs4URwn6LoqsjlmukLYeKINKseHHkALJdIuzX\n6I34UFobcVCZmzlCNBZE13UyhQKnFxa45WMfe0ecnC6GbduMj49TKpWIxWK0tbUhCALd3d189POf\n59SJE5w8dgyh5yqu3fBehk/tISJ7UBUPshwjnx+luzHBdSKcnp+noaYj2i6vpC00xUfF0tEcmwZ/\nktNVnWo9giOGUKUyqBLBhqtJ5Q0UpURAnCeYOYbhmBjYpLGJ4SJi4RE8qLJN2TCIiQuschxkwWW1\nu8AejmHTRt6VsMhhU0ZCYJbF0tVOXEDCRKYL/2I3I8emXiyhCgF0nx/L6+H3P/lXjOx6FH8tiz8q\nUJ+dJdbSQkKW2TM4SKlSIeDzUanVGF1YoGntWjKVCh1LgsR1XQZnZlh3882XdlGXaGxM4jgH3nB/\noZBiy5bFknw1HOFvvvUIfkUjHo7SbZU4euowspigWi6QM3M0Oym8ro7HNrGExRwRyxVZjoPiCeHV\n67QKMn7BIuW4eHDIsHiCHFy6nWcxEXKxzD6KKMu4jkPUlSm5NhYaNtNIWIi0UNci1II2a9atxCWK\np7JAqTRCNLqMYtHAMGaAJkxTADJUqyI9PU0kEpv4wQ+e4Itf/CyKopyfczwef1tLqt9u3hUjv4Jn\nn+WyyVR+PffcA1/+8u9WqAags7MTT3MzsXwFwyhzdj6DV2mjaFhIIR99fV20tDRz9uxuBgcHmZqd\n5fSBAwyEw+hAoKmJxq4ugv391Gdn8WoafsdhNJVCsixGMzlmJJmaKOH1qajA3MwMogBRV2RSqCG6\nQcr04VLHYIoAAapYKFRYi0AFnRoyDhILQA4PYUXEMHREFEQUBExMKthk8ZOlJSBz1S03c+LgMfSi\nij/aiizLGPU8ucooJdNk3nFZHoihGTU8jk3etKiJKq5hEvEHmc+liLX0kFi3kjPpFAHbJujz8d7b\nb2f58uWXeOUuTj6f5+FvfQsrlUJj0Qk11t/PB+67D6/XSzQaZduOHXg0jYnZQRRFxeMPUbNNAFTV\niyiGyOplBFUlEY8TrtbYNTTDrOMj4PaRqRdosHMUfAEawmuYK5WwaUCUVEpM0NueJFedwrY1dLOO\niUYBmRwLrMDGi4QMDIgCs8IpDGrojskkILkuUwg0kyFLHrR2VKUFHIlCrYzHPkEbMhryeWs8Cx8C\nVUZcG7eQwXQE5rwe1tx4L21tvUw1NBKp+YlHbGxVxefzsZDP07p8OSOlErMTE9DXx7o77uDu/n5+\n/J3vkBofRxMEiq5Ly9q1bN2+/dIt6mvo6upi2bIYZ84cpampH1lWSKXGCYUqrF+/jscff4K//+qT\n5MvLsSo29dIUlXKKHk2nM6GTnRvHqlVxnMVEbwmRblfGoE4JhyAiJaNKQZCYdR0k16GCy2EWLwgS\nLPaVmWJxdyTDYn6BLjn0xWIUSmWKdQsEiUbJS5MUYNysYggVOttV7vjQBzl0aJBQqAPXncfv91Kt\nzmNZLqLYi2XJSJKLJMWQ5exiY0d/mIUFlampKbq7uy/dm/82864Y+RU88wx88YuXehRvDS0tsHbt\nYlXNHXdc6tG8fQQCAW64+26eePBBFk6dYXR2BkvwIIRCXLttHS0tzQCIop+f/OhHbIhGGRsYIDU3\nRxg4PjjICzMzrN20iWHXZd40ufvjH2f3zpd4cf9J8gGVcKIfKzOGJXo5fOIcEcFGMnQEPAgYFBDw\niiuoOwUsSngDYVyjRtKYQBFUfK5AlQCNRChTZBoHy1bwoFPFwcJCRKIBFYsUQXSkZAud3d38fN8w\n/c1NrFuzHgGBil7jx3sKbBzoJz94hgkHFNvCEGVG3BoBT4SqEuRMMYsjimhWmoamLnbcdAMf/OhH\nL7gyeyfy+COPEMnn6e58tdLgxNmzvPT889z03veev6+hYdGBE6CpuYfDp/YS16votRLLlnVQrpY5\neOoUjZEIu0emGXZ9mGIPkhsFVyFDBq8RIhnQCAQsXCkAikbZ7SczP4EquiwUT2OLEFQizFvzNNou\nAVFBR6LiLuaPLHfqpEWQXR9zrr3kmqvQ4/Fx3IWG+ADxjk7OTE3hzM0Qtb2I1HGR8CAhITJHFQUP\n86KfghDGkXJcc9O93HjThwEY2HQTh5//IZVcnraOFn528CBiqcTylhYc18UOBBhYvpxlS+Zln/zT\nP2V8fJxKpUJDQwPNzc1v7yL+CgRB4Pd//y52797Dnj1HMAyLDRuWce21NyMIAn/7tw8SDl9De3uC\nYrHA0T2jNKLQ4Cgk8nmKtk0KCT82OiYrl2ytHPx40QnjkHclDCFCmQVUJHQcFFyaWTxBVpbGEgCi\ngsCCoqDIefJmlbwLs5IIrkNFzVL2hljRsIJW18QTlphPzWEYBtnsIJ2dCRKJVk6cOIHrCkiSh2BQ\nRlESqKqA1+vHthd+MfOL9gS6nHlXjPwSKpXFMM0111zqkbx13HcffP/7v1tiBGDd+vW0tLZy+sQJ\njB8+RlXvYP36q87nRLiuS6WSxlPO0NLdjUdRyDc24tg2YydOEC4W2ZZIsDWR4LlDh3h43z7KrkTX\njR8i1jjA6Ngguq0QkDyUigUSfhmjVqMq18HWqLkutqtTJ01IUgjIDZjOKGFbRRIdRFNBEfzYUhDN\ncZhwBOpiDVWsYVjnsFwvIcIg1GkQ6rQrCoZtsmtoBG/HFeghmVPZFKIAZUFGa1pFZ6uXytQsCTXM\n0PwkXlGiTVEwIw2YokTOA/6uVjp3bOWq665j3fr154WI4zhYlvWOq6bJ5XJkRkbY9jozrmXNzezZ\nu5f33Hzz+SZjnZ2d9PVFOHv2OM3N/fRvfi8HXnwYv71ATIoid3fz7z79aRYWFnj2L/4LHu8yCnNn\nSbkLqGqSuhmmbgrkqkWaOluZmiuRqeoYYgBLytMaDeEXDUr5SYoo1KU6cWBBFDEEAdN2aBJdVMlL\nTdWIuX4ClskRq8KsJJATaxhyG7IjENc0Iok4DYSRiyLFwjBJ16aKjICLItgsKBF6269ix/qreXHf\nj2hOtp2ffyzWRNvqq1i5wktnWyspVUWemcFSFJKJBNd0LyZuP/3Tn3Lfxz6GJEnvGHv/i+HxeLj+\n+mu5/vprL7h/9+7dVKseksnFZE9Dz9DiFmkLd5HNH2XecAgJcUbdMvPotCwJERsXCRkBizKg4GCL\nrWSxUZ0Kc66LgEkclqwDF0WII0ko7e0079iBFgqx84UDGLqXgKnRohisab6C1ngjHlUlkztDRasy\nNf0ilmWzYcON9PWtpVyuMDs7TioVxLbraFqMej1HKBRGVS2CwRj1egVFqdHW1sbvEu+KkV/Crl2w\nYQNcpOz9suHuu+FLX/rdM0ADSCQSJK6/nu6+Pv7hH36Erpfxer2YpsHMzCD9/QmG9w7xreH9uG4Q\nw6xS1edotcu0hUJoHg+SJHHH9u0cHhvjYNZgzdp70PUqI6MjtK+4jcGD3yOm+JiXBeZljVmjSDTg\nIlbKmKQJeFup6gZ61UU3XXQsPJKLLflQtRAeRaOIztrGZczO5XGCmPoxAAAgAElEQVTkEtFyng7H\nIGPnqQkeyoJGOa5xxYb1RK/cSO2kgW1HKNhV2toaWdu7gice+x7RkMXWrVfxyv5TBKKNDOfn0SSF\njoYWYi1+bn//rdzzB39wgeCwLIuXd+7kyO7dWPU6Da2tXPN7v/eO2To2DANZEN6Qy6LIMo5lYdv2\neTEiCAL33383O3e+zCuv7MM0be75xJ2sXr2MWCxGS0sLkiRRq9VINH6DppZuqkYdoxLCFURUVyVn\nnULEJeDzkRWylEwL0Z1HC0BLg5/NK1cSN5rZe/osycRGRgcPU67mcU2wXIm07VI2dbyqjCHpWB4P\nii9BR/d6duzYzp49exBJ0LN+A97jRynpQbpDUQ6ZM5RdHbFuIeFlVlSpBNu4YdVGNK+GLxIlX5oi\nlRpHUTwUCjP4fAVsJ8jx0+M4+TzrBgao1uv4NA2PotCRSLBzeJhqtfpbYyeeSqWoVqskEgk8Hg/5\nfB7bNrBtE0lSMMszRGQNB5ui4zBv+bCQ0F0PFQKUBJcZ18DCRcDGQWEUERcBxRUxhSAVf4SaEEap\nzKFLRVo9IhGPiCZJpE2TfCjEn3zxi6xatQrHcTh37hxf+crfkz8yRFu8AcuqMV8ap6xITKShZeUq\nArU5JifP0tExQDgcZseOq5mfH6KhIYIgSGQyZbxeCU2TCQZVUqlD3HffjXg8HmZmZtiz5xCzsxna\n25NcffWmC6wHLifeFSO/hMs5X+QXJBKwefNir5oPfvBSj+bS0N7ezsc/fhtPPPEiExOnkGWB7dtX\n0dKS5JHvPc3KxBrS+RIT8wILOchWxnGXd2Ga5vkTXcLvJ6rbZDLTeDwaum5Snj+Aa+vM2TV0b5L4\nuvVUp45wY1cc+9wEQ9kKmM1kHB+qM4fk6mQQEAyDqmzS4FcQfS6NwTa0YDPnpiZxzAqapDBhFnGU\nDiJaK4gGkY5GTqdmaRqZYnKySjC4EVVt4tSpDOXyYbr6w5hKiTVty/CJKqdGZnDDEUgmSa7u4/6P\nfIiVK1e+oVX5k489xuz+/WxqbcWrqqTzeR793/+buz/72bfcGvzXoaGhAVfTKFWr5111AWYXFmju\n6XnDTo7H4+Gmm97DjTcuGgf9QsTUajUqlQrBYBBN09i8eQUPPXSApqatOI5CoZCnXlNoiOaJRIKY\ndp2tq3vZd/wAATFLXPLQGizwge3XUCuXOTo1xdnxU8wYJh5LJuBG8QBlTKYEGZ9VJW2V8doOXk1E\nsg0aGlpZvnwZmUwev1+jUqkyl7fJZE6wIqBQdwTGzDp5W8SMdLH9ipsJB4JMZuZo6Ejwl3/5RwwO\njlCt1vF46szMBMjlElQqRXbvOkzOe5jVnW3MCQLHPR6u3bqVd2Y68hspFov84AePMjaWRxS9zE6f\nwO+WaAoGkAtDnDtt0738NgRRxhPwMTZ+jAUnQlDsQLQkFu3fatRFC9suIgoyuGFEbGwcJonhOosO\nq5satiJIIvkFP2eLBxF0A/xhch6VcizGbZ/6FKtWLZqJi6JIf38///W//kf++j/9J0rnxulpbeTk\nrId0PkqstZv1668FHF555Z8ZHHychoYmgkEPn/vcnYyP14lEuhEEheHhY+j6OHfddQtbtlxJY2Mj\nZ86c4VvfegJVbSMY7ODw4QUOHPgun/703e+Iv783m3fFyC/hiSfgH//xUo/irecXoZrfVTEC0NfX\nx+c+10utVkNRFBRF4Zvf/AGrr7iJE3uPkElbxIIteD06enUKpDgHDhxl+/bNAFR1nTUb1vDzZ15k\nZqbO2JFn6EUm4bq4kgvVPKPDu2mK+xgvlUAR0bwulj6CIDrMCzJBQaMqiKTsDGFRJJ2fJhFdTkvj\nCvYfPYpHrhGPN1GuKxQzDg1yM7YmI3g0snWVVEnCjTrceuu9HDiwm0plDkFwOXv2EP/jf3yRYDDI\n848/zsu5DNOFeYIhP9duWcVH/vAPL5ojkM1mGT54kO2dnedbxyciEQzLYs8LL9D+kY+8rWt0MSRJ\n4j133MFT3/kOnZpGJBAgXSwy67rcc8stv/RxvxAhlUqFpx9/nJHjx5FcF38iwQ23386f/MmnePzx\nT1AsTgM+dL2EKM3S1pYgOz9MIOSlpaGDzf0O72lajiZJTFaraKqK7fGQtRVSngEWhDSGqKEJWRTB\nwbBUFFej6o6wTqjjmiYLog9vfpxj+56kf00fW7e28fjjP+HU2DBiZZ7WgEzehahXISQrpJ0gXWu2\nUxZFTs7PoATqfOELn2XFihWsWLGC2dlZ/uf/fIje3i2IosjMxGm6/WHiepUg0B2LMV8u87MXXmDz\nPfec3xV5J3iKXAzXdfn+93/M7KxGZ+dWpqfP4UzlUJ0aA1e3ErxqLU/tOc7ZU9/GH+1hqnyOolAn\n5l2JYEnoGJioyMTIOwUmhDxBt4SJQVGQkEWNsD2BhYimBFhYGCYYbydj1BCU5YwrVUoehUSDxvIN\nq/jQa5p6jY+P853vPMThw2cIBn30b1rPXD7PyQWblWuvom/5MhRl8RR7xRXvxbYHeeCBj+FdKpse\nGhpiz56jVCpVbrqpC8fpJJstMTh4Bq/Xy6OPPksstppAYNEN2u8Pk8v5efzx5/nsZz96SdbjreRd\nMXIRRkYgnV7cNbjc+cAH4AtfgGIRQqF/+fcvVwRBuGC7Op8v0dXVz/BwajGh1IJgyzIq7lk8/iCZ\nTIVSsYigKIzVauhn54jHVzF6bj+JuoCKQVMihGTJZDPTJCToD8RJxmKEW1sxhgsk3TYo1XFMAdGR\nKbsZfChMyCqaaFIzchw58zSmZXPDlbcQi8Q5OXqUQ6U4k7UcYb2FRLCFuYLJfD5IZt9eNC3GypVr\nCQYjuK5LLteDJEk0NTVxamQGa15ne9s6FFFi7Ok9/PW5Ef78P/8/b4hPLywsEBLF80LkFyTCYfaP\nj78ta/LrsHLVKoJ//Mcc2rOHsfl5mjZu5Pqrr77ANOpiOI7Dw9/+NsrsLNtbW5FEkYVikUf/6Z/4\n0AMP8Bd/8TH+5m+eplCoIMsZRDHCwkID1UqesD9JyCfSs3EDqbNnWR6LobAobh5/4WX8TetY1r6R\n6pGn0PVOysU8siDjUACy+IlgClkUbHx2Gr+kkFSy3HvvjYRCIc6cyRGNtpLd9Qir/B0YtsVsaYGN\n63v4wMqV7J4r0tLVTDLZzo03bmXNmtXn5zU1NQVEEUURx3FYGB9kVf8GJocOcm56DsnjwTQM8rUa\nG66+muHhYZ55ZjdTU/PEYkGuv34zGzasf8cIk1Qqxfh4gc7Oxd2IqaH9dIdiKILA8PA41123hWRj\ngof3HaJ5bZhCxyZe+fleRNdDsVTHkAW8bhCPq5BHIhnx4ubqGG6dXimIxy0RFGHOcahLQQJCltOZ\nFEgDtERF4ppGvK2NBTNP88Dq894e586d44EH/iO1Whex2JVMTxc4ffo473vfCrZct5z29gudUTXN\nz8zMhSGxgYEBBgYGOHLkKA899AK1moeJiXFmZ59A0wySyQauuWbTBc8TjTYyMTH0WxVe+3V5V4xc\nhJ/8ZNF/43XH4cuSSASuvRYefRTeARe77xiWLetg3745QKCrpw9BEHFdh2lpgAnZQCxmCY6PI8fj\nSIkW6tkoy5ev4cS+PSzr6iGAwnx2mIhdpi8RwTUN5MZGtl5/PYqqcmzs6xSLs0QIoFtgUkKT0kQ8\nQSqRTuKdrcRDDuXiHJrRSctSgmJf6zLSBZfxlIo/2YkajUK2ileTse0C2azM3r1HWLu2D6/XRyo1\nRqWyil27dnP24BA7utagSIt/9qFAhLGxEzz12GN88oEHLph/MBikepFs/kKlQuRfONG/3fxrOspO\nTExQmZxk82uqcOKhEO3VKgf37KGrq51wGKLRBubmFLzefnR9AUP1E/S3MTo3zcDmOLphsHd8nHy5\nTH16mgnJz8CK6zh+fBqv10s+n0aSu3GMaTRkFEFFcMFCpFNV0DUNOexn06oBNE3j3LlxQqEOgkEH\n3+w5ZFEE06CjuYeurijdra1oy5fzkc985qKCwTAM5udHEUWJaLQR13XweQM0da9ClhaQW5tpCYXY\n4Dhks1l++tP9xGIr6OxcTaVS4Ac/eJlqtcb27Vv/zevyZlCtVhHFV11/66Uc/kgScCkV60iSRG9v\nDzepCjd96lNMjI0xd2aGsRmRQkkm6Q0jIJCrFwhIVUTTZkqSWa8FUZxF8/aQ6sdfmueEk8Un2zSL\nXvrX9REOxDg1M0N81SpWtzRTqZ4+P46vf/071Ou9dHSsw3VdZNmPpsV54omfsXnzWizLRJZfrURb\nWJilv7/jDfPTdZ3HHnsBVW3l8OH9eDw9dHVtIpUa4eDBl4nH97FmzdXnf9+2LSQJZPnyO3VffjN6\nE3j00cXdgt8V7rsPvvvdd8XIa9my5UoOH/4O9foEo6NDGEYJUTTYuHEt27a9lzNnnqR180qGhmZ4\n+eeHMM12Dh8eZXp2gZBTJRlvIeI0EbZTtEWjjGcyeAMBTh89iuu6rOjv4czZs8jFNHa5QrMWwCfL\nLCh+RL/G1VtuwDSnUNUeDj47cX5cIX8EgQK2GyORbCSfL6NpYQxjHMtqpF6vI8uNPP3Yd7iyJYFg\nLfDCQ1VOp6s0aMHzQgRY7ECsxRk6ehRd1xkdHaVWq9HY2EhLSwux3l4Gx8ZY3tqKIAjUdJ0z2Sw3\n3377pViSN5VCoUDgIifzXzjP5soW1113K4cO7UYQHFS1SGtrKzMz8PyhIxjVIq8c2cna/h7i8QBr\nbrmFprZ2njz8CNVTs0xPT+K6Bo5TQJK6sB0Tecmj0ydW8Msa0WiUsmWgOxbpapW5uTlmZqaoVEza\n2/sZUb30BGOoskI6O0PF1Dk+McG2+++/qBA5uH8/Lz/2GM7QIRbGhhhXvJiKh1Qxg2yVuPrqjSST\nSfLlMvO2zf79p4jHVxIKLRpp+f1hOjo28swze7nyyivwvAMMiBKJBK5bWjoJy/ijjRSrJSTHoiER\nJpfLYdk2RdsmGo3i8Xjo7W0il5tHleqYehkZgYCQYWWjh4DsYTqVpaOxk9m5aTTJg+O6uIoXza2h\neV3Uss7xcyNEIlUGrljPmrVrMU2dbPbVq9MDBwZpbHwfhUKBqak5LEvAdR10HWIxifHxA0Sj3QQC\nEfL5NIYxxg03vDEWPjc3h2F4mZo6h6p24fVGmJ8fJJOZpFCo8OyzP6O1tYtYrAnXdTl9+gBdXTLj\n4+N0d3dfVqLk8pnJm0Q6DQcPXv7Jq6/l9tvhj/8YslmIxS71aN4ZRKNRNm1azs9/vovy7Bmikoqm\nqQzuew7HKXLDDes4fjxDW9vVwBip1OLByNaDDOspXH2cZEjGFUUmymVGqlWSU1NkRRndssk7Juu3\nb+fs4cNItQwzehVFTUA8xA23vB9BgN7eJFddtY4De/6OsUyaiFfDdh18oRhaaQYYoVzO4/Op9Pb2\nUiiUqVRmKKfm8TsOpj6PFGxg6FSKfUOnafVHWZNsQ3hN6qJh6biCj6985WuUSh7AA+xi3bp2brv7\nbp55/HFeOnkSjyhiqSrb7r6bgYGBS7Qqbx7hcJjy63qyAGRLJeT2doZPn2B8pEokHKSzM0g83k+h\nUGByfBLLcLGtAF6jjV3HBHpWBPBN5Ribgra25VQqPlav3sbJky/j8WQwzb04gk6VOiG3hCtaOIqC\nIIrUXJ2cAJnRNMVnxigWC+zc+SQdHWsIhps4lBpBrBTIzA7RlomhJJNEDh5k2fLlRJc6UMNiOOOl\nH/+Ybe3trAkE2LfvBGGjzrHMFEdlm609LTiyzPD0NCng5vvu4zvf+RkdHRc6eiqKB9v2ksvlaGpq\nequX4ZdSq9U4cfw406OjRII2p0+/SFfXFbQt28iJZ79Hwi4gGgoHZyYZK5WQenpIp9P09fVx8z13\n8vJL/xdeVcJnqVhOhTafSYfoZdbrI97VS1H24/g85CpFJGRM0ULxenFtlaxeo5QXqQkefFN5unoy\n1Gpptm1bDBWVSiXq9RpnzpymWHQIh1vw+RZtAYpFg6GhMeLxRl544QCmWWfr1rV85jMfpaWl5Q3z\nXEwat8lkMgSD3YyN7adUElHVARoamqjXR3j00X9iy5YbOXPmBI5Tw+vdwje/+RwNDQIf+9g9xC6T\ng/a7YuR1/PCHiyGayywc9ysJBODmm+GRR+AP//BSj+adgWEYvPjiIdoDPrZvuYpSrky5XKVuVShP\nHWNhoZdEYhWOs+hiK4pVgsEV5CkjeRWGS8PMVebobYwxNz+PX/VSLUBF8DKpl6gEQ+R27uI9mzai\nrVjB4ROnmLBVVm29CV3PIElVtmy5i/7+fj76yffyxBOHyBRMRElg2fouulY20tW1hV27DtLQsBZR\nFJGko7S2rCMzeJZ6XcLwttAUWoFX1ehv8XJs+AgnRs6wpmfRTbVaLzNbzxASWmgQes83I3Ndl0OH\nDtHRMcTd999PoVCgXq8Ti8Xe8SZovy4dHR3429sZmp6mr7n5fM7IvulpggsLNDkO2dkxdMlPei6D\n359k8PQggl0n5G9CEnK0NCxHEBTKxTkOHEixaVMbfX3N7NnzIrVaI11dfRQKJxHFKA0N7VRmx/DX\nDKq1EVJMUzcF8pqXWMsyrt/xCRRFZWTkGXy+fo4enaSxsZFaNU+sNsotG9awdv06ko2NTGYy/PN3\nv8snHnjg/A7J4KlTNEoSXlXF29jIzbdEWchkaJoN0HTNNbR3dTE7NkYymeTGDRuIx+P4fM9Qr1fx\nel892DmOjevq+C9hrX+hUOC7X/saWj5Pg99PS61GujpDOq2jqn5W37CJ48//HMlw0Xw+Nm7eTFdL\nC49/+9t85POfp29ggFves4ORI0doEUX83hBhRaFkWWiJBB+/9X08/a0fkuhZRXVmhKDokDWrxDw+\nTDtISzxKXVAp1irkciWeffbH3HnnFezYsYW5uTm+/vWHCIUaOHnyGKK4FtNMkUw2U6/Pomk6w8M6\nnZ3LueuuO9H1GtPTJzl5cuiiviEtLS1EoyKi6JDPj1Ms6gQCa6lUsrS0NCFJPpqaHGCUrq5u1qy5\n7vyaz89P8PDDj/NHf3R5bGm/K0Zex4MPwn/4D5d6FG8/990HX/3qb68YcV2XiYmJ8/1JLnYV8puQ\ny+WYm0nTKIgko3GS0VevII+P7eP0yVNs3b6VVCpFMNiDIMyTyx3FcQykqBdL9hGLd7L6+m1Io6Oc\n2HkIFR+OJBPvvhIxN423lkYzTa65/np2bNnCqXPn2Dl9hEIhikCI//bfHmTlylY+/OG72LRpPYOD\nZ1EUmRUrllEul/n+958gmZSYnNxDOOxhw4b1GIbEPAfxeGWa4otCBKCtoYMCDvvmTpFHRxOgKuls\ne99NLBSDRKOvehcIgkBjYz+7dx/h6quvIhwOEw6H/03v5zsNURS55yMf4enHH2fXUjWNGo3i1TSu\n6enB5/EQEGXOnJmhVzE5efJBMmmHiBbCdso0NnQT8i1+JvKZWfJ5i/37dxEItCOKSUqlCTStQF9f\nAsMQCQb9GHqE1OxhwsE6hhjC6mrhve+/nbrehd8fYnDwIPm8l56e6wiFpolGTeq5Cp0G3HDTjchL\nQrCrsZG94+NMTU2dz5Ux6nWU15Rmq6pKc0sLhiThC4XYum0bbNt2wXtw7bWb+MlPjtLZuQFJknFd\nl6mp06xf30MwGHx7FuIivPTcc8TKZTqbm0mlUgiVCuvjceb9Ap/7y89zYN8+OvUSfc3NKLKMtJTc\n11AscuLYMVxBIKFpdOzYwdjYGF6g5rqUBYE1mzfzmc9+hpUrV/D0j39MbjbEuZERMtM18pk6nmA7\nPjdOLKjSGJMoSnl6+qLcffet+P1+vv3thxGELm69dRPDw/+ZTGY/lUqMyclDNDbKdHevw7J8CMLi\nWng8Gp2d69m1azfbt1/9BpEniiL3338Ho6N/xwsvvEyt1okgZAiFVGTZIZEIsGJFD7t3/5Cbbrrz\ngvBcMtnBxMTLLCwsXBY9a95SMSIIwleAK4BDr+3gKwjCJ4H/G3jZdd13jKw7exZGR+Gmmy71SN5+\nbr11UYikUtDYeKlH85tRKpV4+MEHqU9NoQkCJdelcWCAOz74wX913FvTNMx6AY94ofeGZZsEPApu\n0EuhkEYURQRBoLPzShoaMqTTu9mxYwfh8O2o6gR/+qef4qtf/RqZUS+9rb2osoppm+RmBwmpcYql\nKrAoADRR4sSeE7R330BIFUhlFtj93EkeffTn/MEf3MWtt15/QaLmv//3nQwPD/PCC7uYmCggSRUM\nY454Usetxs8LEYCSbnDte+4gn+9h69Y+/H4/GzdupF6v881vPveG+SuKSrGo/6veu98W/H4/d37w\ng9Te/35M0ySdTvPsN76Bf8mJd9WqFXS0t7Jibo6WfJ69x8cJOiqFSpRocHEd3KV/lUoBVU3Q0XEF\nALHYajKZo1iWzo03/gGnjh6lI6KwLHo109OTLFQLXNXeRObkKeatDC0tfYyPj+PzLWdmZpSZmSnm\n5yFEms6Qh1w+f0GFkCaKVCqV89939/fz1M6ddL2uRDdVrXLDL+krtGXLZsrlKi+/vBvX9eE4Ndat\n6+S22y5dkzzXdRk6fJh1gQAvP/sscr2OVxSpOQ6nbJuz995LqVAg4PHgfZ2PjF9R2Pn00wjVKudO\nnGBlMEiD10vrwADhUIj5UokV110HwI5rrmHb9u1Uq1X+6Z++zU8efBGhHCQS6EVAoFAeRwhU6Vm5\nnkTCRNO0pfyQPKFQG3v3HiEY7KdeLxIICGiayX33/RHPPXcQRSnj979amihJMoKw+PiL7Tg1Nzfz\n13/9H/nv//0rPPTQCWKxRrxei8ZGkQ0b1pLNTqOqMrL8RgdkQZAxDOPNXYRLxFsmRgRB2Aj4Xde9\nRhCE/yUIwibXdX/RfvFR4EXgy2/V6/9r+OpX4cMfhssoJ+jXRtMWbeG/+1348z+/1KP5zfjZP/8z\nvlSKta+pjDg+OMjO5567oD/Jb0IoFGLdplUc/fHzJMNxBAQc1yWfnyXcFGfzbTeza9cZQqFlKIpJ\ntZojmx0kENAYGxvDsg7zmc/chqIodHZ2ootHEEQZUZTANrEdh5ptEXtNS+h9+w4jWyrdDUmmp2Zx\nqiJ9kV7GUmcYGbH52td+xAMP3Hc+lu/xeFi9ejWrV6+mWCxSKBQIh8M8/9RTfP3vvomnmMWraOSq\nFZREgkSiAUEIcOedd563vl+sVqhgmjqK8qpwS6cn2bSpj98FNE1D0zSy2SyvzyIJhkK0KQrFxkYa\nupaz86cnUKQihllBVfzkigvImkNIdQmFGqnXK3i9fhzHxrJUgkGNsZGz+A2B/q4BRoaHWRZMsqCa\nmKUit2zbxvee2MXouWMYRo2hoacplUwkyUNr62r0ksGZ0VfYXh44L0YcxyHvOBeIk56eHpJr13Lg\n6FE6o1EEQWAilyO+ciW9vb0Xnbcoitxyyw1s33412WyWYDBIJBJ5q97mXwtBEBAlieOHDxNxHKKv\nyYcYnpjglZ07uXLrVkZ27qTrdY89OTZG1XG4c/NmGlyXyaEhIrUa506epH31atzmZtZv2HD+90VR\nRFEU5uZKRJPL8MpFcqU8IV+MgK+V8cxeevwi7e1RotEoxWKRarXCkSMHkOUkXV1XUK+fwjA8SFId\nUZTR9VmSyQjR6KtXdI5j4zj1C3abTNPk2LHjHDx4EkEQueKKlXz+83+KaX4N02whHm8iEAhQr1cx\nzRm2bt1AJjNNIvFqqKdWK6Npzr9Yxv7bwltZvLoZeGrp62eALb/4geu6C4D9Fr72b0y5DN/8Jnzu\nc5d6JJeOT34Svv51uEhe3zuWQqHA7NAQva8z7lre0sKJvXux7X/9x+zTn/4E/p44J8YOkl4YI50Z\nQgxatF15BTfeeCOf+MStBAKztLUVmJx8mIWFUarVRtJpcJwQu3YdI5VKceWVG+lYnmSsWGAyu0C6\nVCEneXECAv39Pdi2zdTUFEdOnkZUQhQKRfL5GgF/BE3VkG1pqVSwnV279l10rKFQiPb2dkKhEO+/\n6y7u/fTvM+dkKHpV2jdsZMOVm5iZOcXWrWvOCxEAn8/He9+7hampA6TTU5TLeSYnT+PzLbB9+9UX\nfa3LldbWVkyfj3z5/2fvvKOrOO+8/5nbe1HvXYgqBKIIsEEU2xg3XDCucUm8sZMTbzbJ7mb33fPG\nOduy3k2yb4pTbMdxCTHGFVfAdEQRAgQICaHeu65u0e135v3jyjIyoltISPqcoyNp5s7cZ+5zZ+Y3\nz/P9fX+uIctrOzqYuWABz3znm6TMMCGp3LT07KOyZQd9wePkzTOxcOFcli1bgFzeS2/vGbzeJubM\nyWLmzBm0Nx3BoJbj83rxu1wE8BCt9xApkyEolczPSeZY0bs0NNTQ0eFFkrIQhBja22tR6Ey0ywTO\n1DcREkVcHg9H6+uZsmDBkKF5mUzG2nXrWPTgg9hjYuiLjmbB+vWsuu02iooO8MYbb7Nt2w56enq+\netjo9XqSk5NHPRD5gtRp06hrasJ6Vi0Om8eDJSaG7sbGcBZJYiIVTU14/X78gQCnm5qo6+vjhqlT\nkctk5E+bxtzFiyEpieZQCOu8eTz81FPneHP4/X5kMjV5i5egshjxi100d9fR1NuFoFYQHd3Pvfeu\nAcLnmN9vx+0OYDCYkctVWK1ReL119PRUUVW1jbVrp5GYaCUQCI8qhkJBmppOkZ+fNRiMhEIhNmx4\nh7ffPoLdHkNfXxSbNh3m/fc/5ckn78Vq7aW3t5ympiPYbEdYt66QBx+8h2CwnpaWKlyuPjo6Guno\nOMaddy4fNxk1I3kUFqB24G87MGME3+uqef31cFG8tLTRbsnoceONYTFmcfH1Y/jm9/tRDkyVnI1K\nqUQKBAgGg+fYnF8qZrOZn//u13yyeTMni4sxaDTMveEGlixbhlqtZsqUKUyZEtZv/Oxnv8PnS0Qm\nU2K1WrBarXR1NfP553t5+OH7eODBVXz2WQn9/RokCaYmzLPjJDQAACAASURBVKGn4TB/+XQ7/V29\neGVKmgUFViKprm4iFJSh1wuIkoggOdDrjVgs0dTXV1y03TKZjIcffpDk5GR27z5KMNhGd3cjS5fO\nYOXKZee8vqBgITEx0Rw6VIrd3sLs2SnMn38npgnmgqdUKrntwQfZ/NprWG02NHI5vX4/xsxMFhQU\noFareeH3v6C4uJjKyipkMigoKCAmJoZf/OJVoqOjWLEilmAwXBOnq6uJ7OzpqHxd2Jtqae8N4PTV\nE2dUU5AcS63bDYLAogX5bG1owapKpbvbBTgJBDR0dMjp7d3PLbfcQ73YwJ7WVvRGI3Pvuot5Cxac\n036FQsHs2bOZPXs2AF1dXfz+9xvweCwYDBFUVXWyd+/rPPnkWtLG8IVu/qJFfPDKK5zs6cEsl+MR\nRexKJTcuWkRlfz9yuZz1jz/Ogb17OXz4MJIkMb2ggOlKJaaBYEMQBFJjY0mNjcXa2MiMWbPQarXn\nvJder8diUSOTKVhx2+10dXXS1dVNIODFYDDx93//nSHbJSUlUF/fQFvbCVpanASDXkwmBTrdPEKh\nAHfeuYbm5lZee+19amu78Hpd5OVlMmvWjYP7qKqq4vTpPtLT5w8uM5ujOHXqEAsX+vi7v/sbWltb\nCQaDJCQkDE41f+97j3Lo0BHq61tISbFQUHDfuCqmN5LBiB344mpmBvq+sv6iz9/PPffc4N+FhYUU\nDsz3fd34/fD882Hx6kRGEL4cHblegpGIiAgkrRaXx4PhrItGe28vUSkpV+2VoNfrWffgg6w7ywb6\nqzgcDgTBQHb20Ln5qKhEKip2I4oiK1cWMnVqNqdPV+H1eikudhEVtZ6uzm6qvNUotXqsxmpEWyfI\nU3HYHOhNdlz+NqxRemJj03A4ekhKsp6nFWECgQCnT5+mvLwGjUbF+vWriYyMxGAwDHsx/oKMjIwx\nXbn1WpGens6TP/gBpysq6Hc6mZOSQkZGxmBAq1QqWbJkCUu+IgYtLMxj27YSYmJy0Gj0dHW1Ego1\nUli4HpNOgb2khEi9ngM7bUy1WvGHQniVSqLMZlq7u9GaY1mUvxq7fRf9/SpAQKk04ve7qa5u4bHH\nbuCppy7PAvyvf32PigoParWG6GgPiYmpeL0RvPPOFv7u7546x113rJCUlETBypUoOzoQg0GidTpS\n4+Lo6usjKTsbtVqNWq1m1erVrFq9enA7URRpKSkhKzFxcJnNZuNYTR3sPUxPj43c3JlDdBsymYw1\na5bx+utbMJuziYmJRquV09dXxUMP3X/OOZOZmUZ/fyxHjpRisQhERKRjMiXicFQSEZHKe+9tY8aM\nDMzmJJYuLcBsjqK/384rr3zI00/fR3JyMmfO1KPTnSvM02pjqa6uJzs7e1gTv4iICG69dfwKGkcy\nGDkAfBvYBKwEXvnK+ov6DZ8djIwkf/oT5OScIzafkDz2GMycCb/4xfVRsVgul7P8zjv5fMMG0vR6\nLAYD3XY7zaEQ9zz88DVpg1KpRBQD5ywPBv2o1YrBUZvExEQSExM5fvw4+/c3k5GRS3t7CQkpi9Hp\njHR26pBrK5HsrXilJjp664lLSWbuyocIhQI4HDXccMP5DccCgQBvvLGJM2ecGI0JhEJeDh7cxqpV\ns1i5snCkDn/cYTQamT/MyMOFWLmykMhIK/v2HcFmc5GdnUxh4Xri4uJYsmwZf62qwmezEZeRwaGT\nJ/EplSwsKKChs5M2ICtnCjIZ+P39aLXRaLUWQMDhaCQQ6EcQznXDvRCHD5ewceN2rNblqFQKWltb\nqalp4oYbFtDVFaCnp2fMag0EQWDNunW8/8orREsSZq2Wus5O7Fot6y+gASu44QY2lJUhNjeTEBlJ\nfWMjHx8oRZ+1hK4uCx99VMG+fUd56qkHh0xJTZ8+jaeeUrNr1yFaWqqIi4vi3ntvIyvrXM1UQcFc\nDh/eSCCgISsrF0mScDpbMBpF0tJmUFu7m+bmg2RmrkQ+YDD4Rer0tm37ePLJB9Hp1ASDX302h2DQ\nh1Y7+kZzo8WIBSOSJB0TBMErCMIe4JgkSSWCIPxKkqRnBUG4HfhHIFMQhE2SJK0bqXZcDLcb/v3f\n4Z13RqsFY4uEBCgsvL70MzNmzsTw7W9TUlTEmY4O4mfO5IElS4i9RmlB0dHRJCeb6OpqIjr6yyea\ntrYzLF8++5wppIaGVrTasHBVLg/bzANoNHEkZkZhtVjRn9iNKULAHJmGJPXidHaxfn0h6enp521H\nWdkpzpxxkZ7+ZT2LUCiRHTsOMHv2l3U1Jvn6EQSBOXPymDMn75x1ZrOZbzzzTNjEq7YW3fz5eN1u\nfH4/UZmZPLx4McePl/Hmm8UkJWXgdHpwOuvx++3odJ0sX343fX3eS26L1+tl8+ZdGI3xmEyRyGRy\ndDoTNls7tbV1GAyhK566vFakpqby6LPPcuLYMWydnWQkJ5M7e/YFU46tVisPP/MMJQcPcrqsjN21\nbWQue4y0tOkIgkBERBwtLdXs2lXE2rW3Ddn2UkcGk5OTefDBVZSU/Ce9vQEgRFSUiblzVyAIMjwe\nFxpN1GAg8mXbYqmrOw3AzJnT2LnzOH5/MipVWL/l93sJhTqZMWP8jnxcjBFVvpydzjvw/7MDvz8C\nPhrJ975UfvYzWLQILvNBaFzzox+Fs4qefvr6ySxKTU0l9axsmmvNunV38Oqrb9PQ0IEgaJEkB1On\nxrB06bnDbVarCb+/HoCUlHhaWirR6UyEQm5MphjiEzJRKHv50Y++iSiK+Hw+IiMjLypUO368Eotl\n6PBu+KIYQX19/WQwMorodDoWLFx43vnPG29czIkT5ZSXH8ZqnYrB4EajUbFs2XcJBv1ERjov+b1a\nWloAM2lpCpqbG7FYwgGs0RhBRcUJ7rkn57pw7YyIiKBw5crL2sZisbBq9WpyZsyg2W4gOXmoVDEu\nLo1jx/adE4xcDnPm5PE3f3M/JSXdJCZOGUzj7exsJDMzjq6uwDlVkD0eJ1araaANcaxdeyObN+9B\nFMMjNHJ5H/feWzhmR6uuBdfJrWZkqK6GF16A0tLRbsnYYvHi8AjJu+/C/eeWU5hkGCIjI3n22W9S\nX1+Py+UiKiqKxIGaLl8lJSWJhoaNVFRUYLVGEhMDLS0nCAZbCIXMdHaWcO+9Ky5bQKpUKhDF4bKH\nxHGjuB9puru7OXz4GE1NHcTHR7JgwdxrMsKmUql49tlv43S66OiQExc3n6ioBEKhIM3NFdx776Wn\nqMtk4dG26dPzsdu309NzEpnMhN/fh1rdzD33XGe5+1eAXC4fHHE8m1AoeNnngt/v5/jxE5w8WYVS\nqSA/fwarV6+ks3MT7e1V9PWZCQadWCwBHn30fj78cCt1dVUkJGQjCAKhUJD29gruv38woZT58/PJ\nycmmYaACdlpa2qgazY0FBGmM5nEKgiCNZNskKWz0tWIF/P3fj9jbXLd8/DH8wz/A8ePXbnREEATG\n6vfx66Knp4c//vFNWluhtrYLl8tHINDCtGkWVq9eRmpqCtnZWUPqjlwqFRUVvPbaTlJT5w+KE30+\nD52dh/nRj54csy6qY6Xfm5ubeemld4A4jMZIXC4bwWALTz551wWnx75ObDYbGzd+QHOzE0FQIZd7\nWL16EQUFl64oDwQC/Pd//wGNZhparYGurmYcjj5stiYefngZK1YsH8EjuHRGst9FUeSXv/wjopiO\n2fzliGBjYxnLliVz000rLmk/gUCAV1/dSE2Nl4iIZEKhIH199RQUpLJmzc3U1tbS2dlNRISF7AFx\nrcvl4u23P6KqqmOg4nA/hYVzWLFi2bAPJxOJgT4f9kOYsMHIn/4Ev/41HDoEqnON7SY8kgQrV4ZH\nRp5++tq851i5KY0kb7+9mVOnfMTHZyCKIna7HZ/PSyhUxT//83euKvtHFEU2b/6E4uI6FIrIgVGS\nbu67bwV5ebO/voP4mhkr/f67372K3R5FRMSXBeIcjh5ksnr+7u+eumY3EkmS6OzsxOfzERMTM8QX\n5uzXXKg99fX1vPrqBwQCZuRyLYFAD1OmWHnooXtRjZEL3kj3e0tLC3/+87u43QYUCh2BgI20NB2P\nPrrugpllZ1NaWsrGjYdJT587uCwUCtHUdIjvfvceEs/K3Pkq3d3d9Pf3ExUVNaq1fsYSk8HIV2ho\ngHnzYMcOmDVrRN5iXHDsGNx6a3h05FpoQcfKTWkk+clPfk5c3A3nCNyamkr41rdWX7XuJVxfpJkt\nWz7n5MlqFAoN2dmp3HTTkvM6cY42Y6Hf+/v7+c///CMpKUvPWdfYWMQPf/joFY1Wfd2Ul5fz+ef7\n6eiwERtrZeXKRcyYMbyFk8vlorLyDC5XP8nJiaSlpY2pdN5r0e9ut5szZ87Q1+cgMTF+SJr2pbBh\nw7s0NqqJiIjD6XRy+nQ1ra1d9Pe3c889OTz99LfGTHB3PXChYGTsfDOvEaIITzwRFmlOBiIXZs6c\ncL2aJ564vlxZxzIajYpA4NxaEpIUvGBF3FAohN1uv2gdCkEQqKtroKqqn7S0leTkrMHhiOGllz6k\nqqrqqts/XlEoFMhknKO5Cd8sr73mJhAIYLfbhzgIl5Ye57XXtuH3p5CauoJAII3XX9/O0aPHht2H\nwWAgP38uy5bdSEZGxpgKRK4VOp2OvLw8CguXkp2dfdlZRGq1kkDAj9vtZs+ew3R0SFgs2Wg0MRw7\n1sabb76H3+/HbrcTDAZH6CgmBhNO1fbzn4ddRn/0o9FuyfXBT34STvX98Y/hv/5rtFtz/bNo0Wy2\nbj1DWtqXKaC9ve1ERamI/4ql/RccPnyEbdsO4HaLKBQhliyZzfLlS4e9QXq9XnbsKCElZcFgrRmL\nJRpBENi6dR/Z2dkjc2DXOWq1mtzcTE6erCYx8Uvzuvb2OnJyEq6ZuDAUCrFr11727i0lGJSh08lY\nuXIB8+bls2XLPuLj89BqwwZARqMVhWI2W7YUMXt27phP170emTt3JiUlH9LZ6SAUMmCxRBIIeFAo\nHOTmrmbLls0cP16JTmdFrZZYuXIBBQULJ7w25EqYUMHIvn3hYKS4GCbP20tDqYTNm8NW8QoF/Nu/\nhZ1aJ7kyFi8uoKmpndOnDxI2KPZiMgV48MF7h72AlZYe55139pOQMJuoKD2BgJ8dO8oIBIKsWXNu\ndVWbzUYopB5S9A7CdtONjScJBAIXHIGZyNx660q6ut6ioeEwgmBAkvqJjZVx553XLqVs+/bd7NxZ\nTVJSOJj0et28914xPp8PlyuE1TrUiVCrNdDdLeFyucasQPl6Jj09nVWrcvmf/3mdQCCF3l4bMpmd\n/Px8mpqqqa0NkJQ0heTkbHw+Dx98cARBEC5LcDxJmAkTjHR1wYMPwiuvQErKaLfm+iIyEnbvhjvv\nDH+GL74IEzwL7YpRqVQ88sg6mpub6ezsRKfTkZmZOey8syRJbN9+gNjYGWg0YQGcUqkiJSWXgwf3\ns2zZknOEcXq9HknyIYrikGF5r7cfvV4zmeJ7AfR6Pd/+9mPU19djs9kwmUyXrTG4GjweD0VFJ0hJ\nWTTEvTM+fhZ795YikwUJBPwolV9+V4LBAHJ5aFiR6yRfDytXFtLQ0ERJSSdRUYlERSUglys5evQI\nJlMaBkM4BV+t1pKQMIsdOw4zf/68yZGqy2RCTCJ6PLB2LTz+eFiQOcnlEx0dFvyazTB3LpSUjHaL\nrl8EQSA5OZn8/HymTZt2XgFcMBjEZutHrx/6xBu+UWlxOBznbGMymcjNTaW5uWJQHBgKBWltLWfZ\nsvzJ4eOLIJPJyMjIID8//4o0BleD0+lEFFXniJu1WgMeT4B586bR0nJqUNciiiGam0+xcOGMq67B\nNMmFuemmQiwWBVFRCWg0enw+Ny6XB6NRNsRMUKPR4/GE8Hov3TF3kjDj/jFJFMP1VlJS4Kc/He3W\nXN9otfCHP8CmTWGPlh/+MKy9mXwAGBkUCgVWq57+fvuQgCQUCgKe85qi3XnnrYRCH3PqVBGCoEEQ\n3Cxfnjs5dDzGMRqNyGR+gsEACsWXU2kejwuTScstt6xEFLdx+HARgqAH3Myfn8WqVYWj1uaJQnJy\nMuvXL2fz5l10danw+91otXbmz585JGD1evvRauWTI1VXwLhO7Q2F4JvfhPp6+OwzmPx+fH00NMA3\nvhEO9l57Db4OT6ixkOJ5LWhoaODo0TJcLjc5OWnk5s4678WrtPQ4b765h4SE2Wg0Yc1Ic3MZN96Y\nOqxm5GxsNhsul4uIiIgx7XMwHvvd4XBQWnqCurpWoqMt5OfPviQn161bdwxoRmYOakZaW4+zbt1i\n8vPnDu7bbrdjMpmua53I9djvgUCAjo4OlEolp06dZuvWCpKSZqFSafD5PLS0HGft2nkUFCwkFApR\nUVHBiRNnkMkE8vKmMWXKlAmZ1fQFE9JnxOUKT8vY7fD++zCGr8XXLaEQ/PKX4Syb558Pf95XMwtw\nPV6cLpf9+w/w4YeH0emSUKm02O1tJCTAk08+gE6nG3abr2bT3HBDHoWFN44b/cd46/fu7m5efHEj\nbrcZozEKt9tOKNTOo4/eypQpUy647RfZNEVFx/H7hcFsmgUL5o+7Kbbrvd9FUWTv3iJ27z6G3x9+\n2P0im0YURd566z1OnOjGZEpCkkSczmbmz0/m7rtvH3d9ealMuGDk0KGwN8aiRfDb306OiIw0J07A\no49CRgb88Y9hfcmVcL1fnC6Gw+Hg+edfJj6+YIgIsaHhJLfcksXSpTecd9tQKITL5UKr1Y47k6Xx\n1u9//eu7VFVJxMWlDS7r77fj91fwox89fUk6lEAggNvtxmAwjFsh5Hjp9y/6Sq/XDz4gnDlzhlde\n2U5a2pdBpCRJ1Ncf5Omn7xjVop6jyaiZngmC8EtBEPYIgvC/X1meIAjCDkEQigRBuLyyjOdBFGHP\nnrB9+T33wL/8C7z88mQgci3IzQ2nS0+ZArNnw0svQSAw2q0aezQ1NQGWIYEIQFRUCqWllRfcVi6X\nYzabx10gMt4IhUKUl9cREzO0erJeb8blEujs7Lyk/SiVSsxm87gNRMYTX/TV2SOVFRXV6HRxQ0ZA\nBEFArY6hqqp2NJo55hmxYEQQhLmAXpKkpYBKEIR5Z63+MfB/gJuBf7mc/UoStLdDURG8+ir83/8L\n994LMTHw3e/CDTfA6dPw0ENf37FMcnHU6vB0zbvvwltvhQOT//iPsLZkkjDhi9W5VXVDoSAq1aT3\nx3hAEATkchmieG7FWEkKjZuptUkujEqlHBCaD0UUQyiVk9+B4RjJT2UhsHXg78+BRcAXCaEzJUk6\nACAIglMQBKMkSc7hdrJtW/inpgaqq8O/tVrIzISsrPDPfffBr34FF6hZNMk1oqAAtm4Nj5S88grk\n54PVGp4ymzIF0tLAYgn7lBiNYDCEl08EUlNTUam20N/vQK8PZ8JIkkR3dy0rVkxmuowHZDIZ8+dP\n58CBKlJSpg8u7+lpIz7eMCQNdJLxy8yZU9m79z1CoZTBVO1AwEco1MHUqZdWMXiiMZLBiAX4YjzK\nDpxdzenssUf7wGuHDUbs9vDNbP36cOCRmRn2uphkbLNgQfjnt7+F8nI4eBBqa+GTT8J96nCA0xme\nzjl1arRbe23QaDQ89NAa/vKXj+npMQNKJMlGfn4Ss2fnjnbzJvmaWL78RpqaNtHQcBiZzIwoujGZ\nfKxbd9+EFS5ONJKTk7n55jy2bTuAIEQhSSKC0Msddyy6pKyqichIBiN2wn7XAGag76x1Z49hmgDb\ncDuYPHEnBmd382SfT0wmQr//+MffHe0mjDkmQr+fzb//+2i3YOwyksHIAeDbwCZgJfDKWetOCIJQ\nAJwETJIkuYbbwXhQWo8Ffve7V7Hbo4iIiBtcZrd3o1Y38b3vfXPMXBDGi7p+kstjst+H5/DhEt57\n7/iQooqhUJDm5oN8//sPEX2laWtjhOu93+12O//936+QkFAwxKSuoaGMW27JvGB23ETlQveaEROw\nSpJ0DPAKgrAHCEqSVCIIwq8GVj8P/DuwbeD3JCOEy+WipcU2JBCBcOG0zs7+YS3FJ5lkktHn5Mkq\nrNakIcvC+gMrjY2No9OoSQZpbm5GkkxDAhGAqKjki2bHTXIuI5raK0nS9yVJWipJ0t8O/P/swO8W\n4FlAAv6vIAi/G8l2TGTCqYHiYD2LLwg/kYiTqYOTTDJGUatVBIPD5chPZuWMBc6XHRcMBlCrJ7Pj\nLpfR/EZXSpK0BEAQhD8JgjBnYDRlksvgC8vhimPhj25qXh7Tp08fDDK0Wi2zZqVTUVFHQkLW4Hbt\n7XXk5CRiMBiG3e8kk0xy7Whra6O0pIS+ri4S0tPJmzuXefNmUlb2OVZrDDJZ+Hz2eFwolQ4yMzNH\nucWTpKWlodFsGVI7SpIkenrquOmmgsHXud1ujpeW0lBZic5oZPb8+RPW9OxCjAkHVkEQ/gr8syRJ\ndWctu+raNOMdSZL44O23aTt6lJSBFKNmu53IWbO4e/36wYDE6XTy6qubaGsLIAgGRLGf2FiBxx+/\nf0zVtrje55AnuTImer+fPn2aLW+8QaJKhVGrpdvpxKbRsP6ppyguPkpRUSUyWQSSFESh6OOBB25h\n2rRpo93sq2Y89HttbS2vv74Zn8+ETKYayI5L46671iCXy3G5XGx48UVU3d3EWyy4vV4a3W4K7rqL\nhQUFF3+DccaYtYMXBOFOwpqREkmSnvjKugkXjHg8Hg7s20dZcTGiKDJt7lwWL12K0Wgc9vW1tbV8\n+uKLLExLG2I5XFxfz6onnhhSByMUClFbW4vNZsNisZCRkTHmhnrHw8VpkstnJPvd5XKxf88eyo8c\nQSaTMWP+fBbdcMN56wBda4LBIL9//nlm6nQYz2pTfXs7wpQp3PPAA3R0dNDY2IhSqSQzM/O814Pr\njfFyvvf391NTU4PP5yMhIYGYmBgOHThA6f79nCkvR+3xcOvixZgHCqT5AgEOtbfzNz/+8ZguYDkS\njNlgZLARYWHrh5IkbTtrmfSTn/xk8DWFhYUUFhaOQuuuDaFQiL+8/DJSYyNZcXHIBIG6jg6cFgvf\neOYZtFrtOdts37KF3gMHyEhIGFzm9fs5WF6OmJDAHffdR1ZW1pgLOs7HeLk4TXJ5jFS/+3w+Xvv9\n79F1d5MeF4ckSdS2txNMTOSRb30LpfLrndcPBoPU1NTQ3tqKyWwmZ+rUiwY9ra2tvP/CCyxMSRmy\nPCSK7Glp4Qc//em4rfI6Hs93SZJ4+y9/wVFeTnZcHAd37ULweLBpNNxSWIhWraalq4tDlZUsuPtu\nblm9ekIFJBcKRkbtLiUIgkqSJP/Avw7gnKIbzz333DVt02hSXV2Nu76e+Wlpg8tykpI40dDAqbIy\n5s2ff842CpWK4Fm20912O7uKigj29BDlcLDn9dfZn5DA+scfn1Bf+EkmASg/dQpZZydTz5qfn56S\nwpH6eqqrq7/WqQ63281br72Gr6kJi0JBXSjEXo2Ge594gsQLWEMrFIphJJDhhxO5QjFm0u4nuTSa\nm5vpKC+nIDU1XItGpSJKLge3m7KaGmw2G4HubkSXi4YdO3i5vJy1jz1GyleC0YnIaIbcqwVB2CUI\nwm4gCfh0FNsy6rQ1NxMxTBG0aIOB5trhCytNnT6djmAQXyCAJEnsLykhRRSJMRiYN2sW+ampqNvb\n2bNjx0g3f5KrIBSCn/8c5s2DtWvh+PHRbtH4oKW+nqhhRiYiNRpavuaiSUW7dyNvbmZeaipZiYnM\nSklhikrFRxs3Dlun5guio6MxxMfT2t09ZPmZtjZmLVw4GYxcZ3R2dmIWhMF+S0pPp8vlIkqrpbS8\nHEV3N9kGAzGRkSyZOZOpWi0fvfkmodBwIenEYtSCEUmSNkuSVChJ0jJJkh6XJOn8Z+wEwGg24w6e\nW1jJ5fViiogYdpvY2FgW33UXxW1tHKiooK2lBWcwSOqsWVisVgAy4+OpKCm54AVxktHl2WfDBQb/\n3/+DW26BVatg167RbtX1j9Fqpd/vP2d5v9+P8WsWbpcVF5MVHz9kWbTFQrC3l46OjvNuJwgCt61b\nR5NCwdGGBk43NlLc0IA8LY0ly5Z9rW2cZOTR6XR4z/o/OSUFQ1ISFZ2dtLS2Ig+FaPP7yV24ELlc\nTqTJhGC309raOmptHitcH2KCcYIoirS1tREIBIiLi0Oj0Qyuy5k6lSKVil6HgwhT2EXf5fHQHgqx\nMi/vvPvLys4m/tvfpry8nA6nk4UzZgxJ15XJZEiiOO7mZscLH30ULix45AiYTLBkCUydCvffD0eP\nQlLSxfcxyfDMzM2ldNcu4vv7MQ1MU9qcTmwKBdNmzLjI1mGHTVEUsVgsQ0YoJEmio6MDj8dDdHQ0\ner2eUCg0rLZDBhd9EIiJieFb3/8+1dXVuJxOomNiSE1NHbdakUtFkiRsNhtKpfK6EO329vYik8no\nUyho7+0lLiICuVxOzqxZtKnVpPT2kpGeTkJ8PKqzRsFlsuGrPE80JoORa0R7ezsfbNhAqLcXhSDg\nVihYevvtzM3PB8BgMLD28cf56M03ERobkQkCPrWa1Y88Mqzt85kzZ/jgg+04HEEkKcTUqQlEpqXx\n1bGVho4OMmfNmjQ3G4MEg/D978MLL4QDkS9Yvhy+9z146qlwYcHJkforIzIyklsffpitb7+NoqcH\nBIGgXs9djz+O6ewP/Ct0dXXx/vtbaGjoAQTi4gzcffctJCYmYrfb+eDNN7E3NqKRyXABcwoLycnL\no/74cbLO0oc4+vsJ6XSXVBhNpVIxffr0i75uolBdXc0HH3xOX18ASQqSk5PIXXetvmC/jRZ+v59P\n3n+f+hMnMAgCfqeTTxsamBIXh1qhwKtUcvuTT9LR2oqtuHhIIOLyePCp1SSclYQwURkT2TTDMZ5S\ne/1+Py/+8pekA7ED0ycen48jra2sffrpIQY4oVCI1tZWRFEkISFhWMV/S0sLL7ywicjIWRgMloER\nlxoUikaMfiexgoBJp6Pb5aLfaOSBp54i4jxTPWOJn4czWgAAIABJREFU8aiuvxBvvQW/+hXs23fu\nukAAZs4MT92sXn3t23YtGel+DwaDtLa2IggCCQkJFwzMPR4Pv/rVKwSDiURFJSIIAjZbB15vFX/7\nt4+xeeNGdB0dpMeFyysEQyFKGhrIXbOGskOH0NrtRBsMOD0e2kWRNY8+OiTFfpIvOV+/t7W18cIL\nb2GxzMBotCJJEu3ttURGunjmmcfG3IPVlo8/pnX/fmalpAwe04n6ejRTp7KksJC4uDjUajUOh4O/\nvvQS6t5eog0GXF4v7aEQNz/00LjwjbkUxmQ2zUSipqYGlcNB7FlBh1atJkWno7S4eEgwIpfLSU5O\nvuD+9u8vQaNJxWCwAOFhvsTEbBoaerlj3c3Yurvp6+5mamoqM3NzJzNpxii//CX84z8Ov06phJ/9\nDH7847COZHJ05MpRKBSXnK1QWVmJw6EhNfXL+TGrNZbmZhs7d+7C0djIjLPOV4VcTk50NGeOH+ex\n736XshMnaG1oICYigpV5edd9MbvR4NChoyiVSRiN4Qc3QRCIj8+koeEw9fX1Y8p91ufzUV5czOKk\npMGpPEEQmJGSwv7aWuIeeAC1Wg2AyWTiG888Q9nJk7TU1RFttbI8L4+YmJjRPIQxw2QwMoJIkkRZ\nWRkbNryL/VAJQq+drKz0wflPo05Hu802ZBufz4fD4UCv15/Xo6CtrQejMeOc5YKgRyaTsXzVqsFl\nbreb5uZm9Ho91oFRmUlGn8pKqK+H228//2vWroXnngtrSm655Vq1bGLT3W1DqTxXn6DVmmlsbEI/\njI7DoNXi7O5Gp9OxoKAACgrweDz09PRgs9mu6rzzeDy4XC5MJtPgTe1y8fv9HD5cQnHxKUKhEHPn\nTqWgYMGYMX77Km1tPRgMw6VD6666sKcoivT29qJQKLBYwg9zLS0t7N59iKamNqKjI1i6dD5ZWVkX\n2VMYr9eLPBRC8ZXRGoVcjlwU8Xq9Q/pNq9Uyf8ECsrKz6e/vvy60MNeKyWBkBNm5cw9bt55ELs/E\nraihuclPS8thli2bj9FopMNuJ3nuXCAcuOzZs49du44QDKoAHwUF07n55hV0dHRQXRmuApmVk0Ny\ncgwnT/ag0w39IkuSa/DCJ0kSe3bu5Nju3WhFEY8kkTRtGmvuvnvMXoQmEq+/Dg89BBfyoxME+MEP\n4Be/mAxGrhWxsVEEAjVDlvn9fmqqy8nKCNLa1sbU6Gi0Z4nP23t7SRm4eUmSxN5duzi6a9dVnXfB\nYJBt23Zy8OApRFGFXO5n6dI5FBbeeFnCVlEU2bDhHSor+4mJyUKplLFjRwPl5bU89dTDVxzgjCTJ\nyTEcOdIzOPL7Ja6rCuxqa2t5772t2GwBIERaWhT5+TN4553daLXpmM15dHb28dJLH7F+fSFz5gyf\nOHA2RqMRpcmE0+0e4qDb3ddHl8PBoaIiomJjmTZ9OlqtFrfbzcfvvktLRQUamQyvTMbcwkJuLCyc\n8Gnck5qREcLpdPJv//ZblMpkRFGks7kSTWczRkFGUqKKqKQ4ujUaHv3OdzCZTBw8eIj33z9CcnIe\nSqWaUChIU9NJ9NoujB4nsQPakY5AgPjcXE6casdonIrFEo3LZae0dBc6nYeHH76L2bNzqTpzhoOb\nNpGfmopSoUCSJCpbWlBNmcK6Rx4Z5U9neCaKZkSSICMjnM47Z86FX+vzQVoa7NwZzrIZj4xWv4dC\nIZqamggEAiQkJKDX6/H5fPz2t3/G6bQSG5uOy+Vi19YPUftruHvJTPaePEl7XQOLZ85i6pRMRIWC\nhkCA9c88Q3x8PEePHOHApk3kp6QMOe8UWVmsuPVWFArFJd1Qt2zZzq5dtaSk5CKXKwgE/DQ1Hef2\n23O54YbFl3yMNTU1vPzyVtLSFgxZ3tBQyr33zmXu3It8AUeQ8/V7V1cXv/nNBnS6bKzWWEKhIG1t\n1SQlhfjWtx65oiyjzs5OfvObDZjNMwd1KF1dTRw9+jHz5t1FVNRZLtbefhyOUn784+9cknt12cmT\nbN+wgRyrlQiTidPV1Xy4bx8ZWVksmDIFh9+P22jk/iefZOuHH9J/6hTTU1Lo6+ujqbmNKlsvq554\njDW33XbZx3W9MakZuUQkSUIUxa9FIPXRBx9w6OP3MPn8iJKEXaEkKjMPnULB6dp6vnX7am5etgyT\nyYQoiuzceZiEhFyUyvCTilyuQK9PYu+nm/mndSsxDNjBp4VCFJ84wZo77uDo0dOUlx/i+PHTREdP\nIStrEVu31rNr11E0wR7mxcWhHDiZBEEgJzGRotOn6e3tvS4EreOV48dBLofzZGwPQa2GRx6B116D\n//iPkW/bRKG1tZUP3ngDweFAATgFgYJbb2XR4sU8+eR6PvlkOxUVezlx9BgZhhB3LL6RM83t+PyR\neNVaPizvZndTL1NnZ/GDf/oH4gc8Rop37WJ6bOyQ886qVPLmq69SV1qKVqcjMi2NNffcc95z0Ov1\nsn//CZKTFyGXh/ejVKpITJzJrl0lLFq08JKvUQ0NzSiV576PwRBLVVXDqAYj5yM6OppvfesePvpo\nB42NlchkMGdONjffvPyK051LSkqRyeKH6FCs1nja2yEQ8A15rUajp6tLQW9v7yXpOWbOmoX6ySfZ\nu2ULb2/dSlN1NckaDbKeHqrq6rgxP5+O3l7+66c/pe34cfIMBjZu30lAZiI+aSpKv44//OIldHoj\nhYVLr+j4xgOTwQgQCAQo2rOH0v37Cfp8JGZmsuyWWy4p3UqSJGpra6ksKwNgyowZiKLIvk2bmOK2\nkx6Zhlwmw+ZzU1J1lLjCdSxYkc9ta9cOef/+fj+RkUOFpj1dXehlOvyBAAwEIwq5nFiVCo/TyXe/\n+wS/+c1LREbmEhv7pUCvu7uVo/u3sXztUEGCIAhoBQGXyzUZjIwin30Gt9566aLUxx4Lv/5f/zUc\nxExydfj9ft599VWy5HKiB4St/kCAwx9+SExsLJmZmTz00L10dnby5/9pZ0VmJj0OByWV3cRHzEKt\n6KKsthSjPpqq8iYOFBVx3/33A+C02QgZDJTX1RH0+1Hr9TRWVJAokzErJoZYq5Wm9nbeeuUVvvns\ns8Nmy/X39yOKShSKoevUai0+n4TX671kUbrBoCMU8p6z3Ofrx2Qau9eA5ORknnnmMdxuNwqFYkg6\n7JXQ0dGLXh8ORPx+P9WVlbTU1dHe3MmR4v0sWxE1qN8QRRFJ8qNWqwev7ZIkkT19OpmZmcMGRNnZ\n2dSeOcPCzEyyPB6mREYCUN3ZyeGyMswmE40HDpAdEUGEXI7dr8Ar89PvtBGfkElDr8C2bUeZOXM6\nUVFRV3Ws1ysT21VngM1vv03N9u3Mt1opTE5G39bGpj/+ka6urgtuJ0kSn330EZ++9BLeEyfwnTjB\nZy+/zMu//jUml4sUq5lAIHwhsKp1JCmUVBz5lIKCXERRJBQK0dLSwsGiIvp6m2lrG2r77g/4kMt8\n6L9SJE8gPMTscrlob3cNCUQAoqISCAg6mr7i/BgMhXALApEDJ8rl0tnZyb49e9j5+efU1dVNiCmV\nkeCzzy4vXXfmTIiJgUlX/6+H2tpa1C4X0ZYvNQkqpZI0o5HSQ4cGl6nValQqFYIg0NzVg0yIxObs\npqvuMBlikPkRceTqItnzl43sGugcbyjEzs8+w11Xh9jeTunu3Tiam/ErFJj1egRBICUmBllPDzU1\nX2pTbDYb+4uK2LF1K+3t7cjlQfz+oUGEx+PCYFAMWzTzfEydmoNC0Ud/vz3cPm8/VWeOUHNmF3q9\nmuAwrs9jCZ1Od9WBCEBKShwuVw+iKHG0uBh7TQ0ZRhNZMSp8nY0U79mDx+MBoK2tiunTkzi4bx8f\nv/gi7tJSfCdOsPVPf+LDd98d1qDM7/dTXlxMTmLiEO1HutlMS2MjpyoqmGI245HJ6Oq2oVLridKZ\n6O9ppdvZi0JnpKm+gw/ee4/29nZqamrYsW0bRfv20f2VUgHjldEslLcQ+AUgAoclSfrBaLSjra2N\n1rIyFg0UNgJIjIrC19ZGcVHRkBEMCA+h9vf3YzKZaG1tpXr/fgrOcktMEkUObNxIos9HdJSFhsYW\n3G4FKpUGwecgLimFloZ6ij79hDOVlQguF/lTppAZ6mf3Z3+ke+4aZs1eitfrJiR2EZtgQHnW47Ao\nirT7fMyfNm2gvRKSJJ3jEBmXkUO104larSbGYsHl8VDe3s7sVauuKNW3pLiYfZs3EyOToZDJOLV9\nO8n5+dx+991jLu9/LONwhN1WL7cA9UMPwaZNcNNNI9KsCYXX60U9zLCUXqOhxW4f/N9sNmNNTKSt\npwe5TABBor2tkngUqKxWFHIFdo8Tp7ud3/30p5Ts2UNjTQ1mlQqZUolFq0UF1Pf1kTNjBtqzxKJ6\nmWwwM+T06dN8tmED0YBaLqfS60UmyGhoKCE5eQ5+f4iWlkZ6e8/wxBM3X9ZUhclk4pFHbuPNNz+h\nttZNw/H9WAJO5s7I4vRnn1Fz6hTrH3ts3Iva8/Pz2L//JNXVZXi7uki1Wumyt5KXZcSs11J8upSS\nw0FSUmNISNCi1WrZunEjy3JyMGi1YcuFmBgOHTlCzezZZGdnD9m/3+9HCIXQ63SYoqOx2e1YDQbk\nMhkyUaTb4SA7KgqXw0FxbTWxgpYIawxuKURVfTmWiFisoQC9Bzt57uOPMZlMzM/IwB8Kcfizzyi8\n917yLiYwu84ZzWmaemC5JEl+QRDeEARhpiRJZde6ET09PZhksnOUzDEWC2fq6gb/DwaD7N6+nZP7\n96MQRUSlEpnBQIxKNeTiIJPJiI+I4NT+/ZitVkxIdPXb8fTL8FnNBMUgtmPHSNNq6bHZSFOrsVVV\nsXD5clIio3jn4BZOKRzExkbyyCPL6OuezqGDB4kfeBpq83jIWrKE1IHgKTs7gcbGBmJj0wbb0NnZ\nwLx501i2rIB927ZxqqEBvdnM/LvvJn+Y6r8Xw2azse/DD5kfF4dm4CklQ5I4fOQIldOnTzpHXgY7\ndsCiRXC58eDatWGr+N/9bnKq5mqJjY2lb6BEwtnnfX17O/boWF588Q0iIy0sXDiHm9euZdPLLyP3\n++hzNtDb20GcOYr4pESae9ppqzvB8pxU/HI5hq4uZE1NxM2eTYfLRUVvLz0aDYbYWCxfCSCckkRk\nZCRer5ctGzcyJzJyUBeWDhyrrUXIMXDwwLs0nK4lUiMwLS2G0u2fY9TrLus8zsrK4oc/fIp//M53\nyKaPaLMOf1srFoUcSRTZv2cPq8aJs57b7ebYsVIqKurQ67UsWDCbzMxMLBYLTz21jt/+9k+4nSfo\nlpuYmhJBwfS5aNVqspJaaFarWbg0j5Jt2zhRtB2pupo3SkpAoyEtLg5LVBRJiYlUlZefE4zo9Xp0\nERHYnE6mzZrFkaIiPL29SECP30+vTIa9t5fcyEhMU7I5VllHVVczHRodU2NSmReXhtPRQEpkJFJT\nEz0+HxF5eVgMBlJ9Pna+9x6ZWVnjOhV41IIRSZLOnkMIwDlO5tcEg8GAe5hhN3t/P9azjJJ2bttG\n/Z49FCQno1Qo8Pr9bN63D4fBMMQCWpIk+vr6kMxmqlwujH5A0NHg9dAi+tDKfcSZzdQ3NxOrVBJp\nNBLq66Oxro5pM2dyh1xG1JKFrLw5/AQkSRJ1s2ZxprwcgDXTp5Oenk5tbS2lhw7h7Gimpakdu70D\nozEGv9+OxeLn5pvvoquri/iUFKbm5TF9xowrNj+rra3FKoqDgQiE9ScpZjPlR49OBiOXweVO0XxB\nZmZ4qubQIVh86ckUkwxDfHw8qXPncqSkhKyYGNRKJZUNDXx6soqsOTmIQixtbQ6OHNnEgw/exBN/\n+7eUnTyJO2oPH7/9MYYIA263naraEhYnRBEXGUmtzYbVZCLbaKS7tZW7b70VuUyG0+3mvU8/pc/t\nRpIkQqJIVWsrfQoFH7z9NmdOnULe0cGUG28cDEYA0mNiONrcxMxoDY/krkSv0SAIAl6/n70ffEBq\nevplaQuOHDmC88wZbk5KQq1UIkoSHU1NiG43pw4fHhfBSH9/Py++uIHubhUWSzydnV5OnPiE1avz\nWLbsRuLi4njoobvZ6beTn5Y2xBtELpeTnZPDkR07mG2x0GC1UtrXx2KdjgafjxhJQmO3c7C9ndUL\nFpzz3oIgUHj77Xzy5z+TaTAw94YbOF1dzeG6OizTpuGsqaGpuZnMiAhmp6ai9Po53NRB0B/E6PXg\ndDSQl5dNZ3MTcUYjgtdLc2cnFoMBrVqNVRSpq6sjNzf3Wn6k15RRF7AKgpALREuSdPpavm8wGEQu\nl5OSkoIqLo669vZBi+d+r5c6p5M7lywBwsZDZQcOsDglZfALrFGpWDJtGm/u3MnM9HS6+voQBAG1\nUonb5WLdbbexYfteetp6kYWCKMxxyC3pJFhj2XqoDJWvF6GpCcliQWsy0dfTA4RHVpRK5eBoS1j1\nbWX+okVEREQgCAKHDh7k0AcfkGY0Mk2jwRCl4YzrNLm5yWRmzic2Npb3//IXFD09WNRqmv1+Dm7b\nxrpvfpO4gWO8HCRJ4nxay0ndyKUjSfDpp+EqvVfC2rXw/vuTwcjXwe13383RlBSOHziAz+2mRaYm\nZ959pKaGA2uTKQKPJ4o33tjMo4/eSXpGBosWL2ZWXi57/7KBZIsGuyeSzPh42mw2olNSiI+Lowzw\n9vfj8niwGAyolEpkERFUB4P8z6ZNKGQyQlot9qYmcnU6TJJEa3Mze202Zi9dSmZWFoJMhkwQaG9u\nZnFKypAgRaNSES0IVFVWXl4wUlREpEaDekAwKxME4q1WKjs6CF1C7ZyxRiAQ4MyZM3S1t2OJjCQn\nJ4dDhw7T3a0hJeXLhyOLJYZt2w6Sl5eL2WwmMzOTXVFRdNhsJA58ft19fVT29bHQbEbv92PS6wkE\nAqhEEZ1KRZIg0NLby+KsLMq6ulCe5TFzNlOmTEH97W9zcPduztTWUtHXR1tXF3pBQNvfT5zZzOdV\nVSgUCvweD2lJUTjbOvDZ60ibt5y0tFQ6m5uAsC5wyLVVkgb//+LeNd58SUY1GBEEIQL4NbBuuPXP\nPffc4N+FhYUUXu5E+zBUV1ezZcveAZc/LYWF87j74Yf55N132Vdfj0oQCKhULLv/ftLT04GwQ19T\nXR076usxGo1kp6Uh+nzUV1dT09LC7994gxkWC429vZxqa0MSBLxuNz29PqLMuZgUOiRBRpXTi1cP\nJ8tqWByvxBYIINrtlDU2okxMxGA20yCKZJhM9Pb2EgwG+fTdd7E3NyMIAprISJatWcOBTz9lwcAT\nzhfUNjZydN8uYmPu4eTRo1idTjIHbKt7HA7ONDXx6u9/zw//5V8uKXf+bNLT09kHBILBwZRFgKa+\nPhavWXPVfTJROH06HJBcaRmKO+4IZ9Y8//zX267rHZvNxoG9e6k+eRK1VsvsggLmLVhwwe+5XC5n\n/oIFzF+wAFEU+clPfkFi4lRCoSAejwtBUFB5qpy6imPEeDtQ6PXETJnCHffdhwBseecdytracPT1\nMXP6dAyxsXy6dy8dNhtlTU10BgLERkdz/NQpLHI5sRoNETod7R4Ptro6kCTE2Fhio6Lo1unob27h\nrY1vY03OICM1Ho9Sjs3no6yqCrVSSfxZonO5IAwRnvp8Pnp6etBqtcN6mLS0tFBRWkpXTw+RoRBp\nsbGD1w6b283UMWSvfik4HA42vvIKdHZiViqpDQQoMpmwBZRERg7VVYQzksw0NzdjNptRqVTc9/jj\nfPTWW9TW1dHQ2EhHWxvZ2dm8+fvf42pqIjh9Ok6Hg9j4eLptNtx+P/VOJyG5HK3VytZPP+WvL72E\nEAgwfd487n/00cF7RWpqKpa77uKnP/whvUVFzNVqCblcnOrrIzk9nYK4OKo7O5k/fTodLS3UygV8\n/U6KP/8cq9VKXHIytSUldMtkJCiVHDp5EpfbTZdMxjSvl9/85k+0t/diMulYtmw+CxbMu+ZBSSAQ\noKKigpryctRaLdNnzyYtLe2q9ztqpmeCICiAzcBPJEk6PMz6r930LGwA9CFW6zTM5ig8HhdtbeWs\nWjWVVauW09PTg8/nIzo6ejDlrquri7+88AK127czKzISTyjE0dZW7HY7gt9Pl8NBjMVCj9OJzucj\nW6mkeyD17pTLh9yYSnrSPLxBcKnVVLe2kqhq4ZsLsjjZ2srp6mrUHg9Gs5mA1UpbMMisOXNISEig\nvLqam2bMIHugjny33c6+5mZilEoWDxTfaurs5MCBA0SJIn2iSNbcuWwpLuabt96K2WBgd2k55Q0O\nZDIzjX1d3HjLfJ5++mEiIiJoamoiGAySmJh4UQHbvj17OPrZZ8SpVKgUCtr6+4maMYO7H3jgsoOb\n8zHeTc9++ctwQPKHP1zZ9qEQxMZCaSkkJV389dcLV9PvDoeD1194gSiPh+SYGHx+P1UdHcTMncva\ngXTbiyFJEv/6r/+Ly2mgrfIoqlCA1q4uQkE18dEaHrkplwiTifLGRtTTpuHo6SHU3ExfSwtdtbX4\nNBqcPh8Zfj92mw10Opp7eijzeFibk4PP4cAoimjNZiobG2lzu5lrMNChVJKp01Fud3DU5sMnRKG3\npGHzdGBU2nji9hV0VlYiNxpJnzaNuVOnIooiBxsbWfvMMyQlJXFw/34ObtuGVhTxiSIJU6ey5u67\nB6dky06e5PM336SvvBx/dzc1bW0Y5XJmZGXhFkXKAwH+7cUXB2+m15Ir7fcPNm3Ce+oUWWdZL7R0\nd7P51Bly8h7EbB46YtTYeJRvfGPZkIKFkiTxwbvvUrNzJ/MyMzl55AjO1lYO19SQnZSEEAyiDoVQ\nKpUcqa+nD5AQqLSJKBXRJFsjsep8ROv8BGKi+D//+7+Dxe5e+sMfKPnjH4n2eknW65EJAlU2G0d6\ne1mRlUVbVxexOh2N/f1U+f0oRRFZfz9anY4lq1dT3dmJy+/H7PcTJZPhE0X8Viu1XhULlz1KZGTC\nwL3rFDffPIMVK5ZdWQdcAX6/n02vv467poZ4oxF/MEiz203eLbew9BIGC8aq6dk6YB7w/EBk90+S\nJB0cyTfctq0Ii2Xq4JdVqzWQmjqXPXsOsGjRgmFTXvds24aupwedysD+smqiDDpa6mtQhSRUgpw8\njRrR7abF5WKGRkOG2YxOqaTV4SBJEjjtbOVkWxkR0dOYkZJKbWsVhkg1x+12Gt1u+mUykjIysPv9\nGICFGg2H9+yhVqMh6HTyTkMD999+OxkJCUSZzUQ1NdHa0UF/Sgrtvb3sOXiQfIMBtUyGUpKYnpTE\nyf37OV5R8f/Ze88gya7zTPO5Pr0t76u6u6od0OhueDRIEBCFJSFBIAlShDCkSE1IS2mMxmzM7MRE\n7Eq7ignFxIxiRVKz0gRWIkVJ9AJIkDCEITzaolHtu6vLZLmsSu+vv2d/VLMFECAJAg1H4vlVkZH3\nVN57Mu99z/m+7/3o7unl5ILLQHYXkiTRFgkcZ4AvfvFv6Ar56O02qiTRUhT23XYbV75KLPRH7Hvf\n+xibmODU8ePMnjtHSwik9XUe/8EPuPr66y/2eXiPn8xDD8HnPvf6j1cUuPlmePRR+MxnLtnHelfz\nwsGDpNptNl9oLmloGnvGx3l+epr8jTdeNCP7aUiSRF9vjB88eC9Xje5AU1TkxTw1c52CBM3OZqLh\nMFNDQ/ztgw+yZ3CQ3Zs3E0xMcK6ri/1PP83S8jLhaJSJ0VGiqkrccci3WpxfXKJlB2hSgLm8zEA0\niul5rNk2Z+p1cprGuaaDK2/B0NI0HJ0w/Wh08eQzB8n4Fs7sAodPnWHlhuvoGh5m0w03MDQ0xMmT\nJzn83e9y9fAwIV3fcHs9d477v/lNPvmZz+C6Lo/fdx97enuxolFefPppbtq+ndOFAicti8GREX79\nllveFiHyenFdl9ljx9g3+PLeNYNdXfRE5llZOUE8/r6LYe5Wq0YoZJJOp7n//geZnp7BMDSuvHIb\nc9PTXLdtG2dnZljN5RhKp5nIdPHkuVmuGBggn19GVxRMVWVPLMahdY8hkSUphWhZIVSjm3JnjYlW\niy/9j//Br915J4eeeopvfeUrdAUBS40Gc9UqUV1nIBIhrKo8Wy7TabU4Vq+D5zGsaUiqihmNQijE\nkVyOu//dv+PBv/s7YqurWJ7HyMQEtaZNy4F6rUg2O0A4HGN4eDdPPnmA6667+ucq934jHJuexjx/\nnj0v+c4M+j7PP/IIOy+//A35V72dCaxfBb76Fv4/lpbWGR3d8bLXFUVFiDCVSuUVCZ6+7/P844+j\nLdaJxTfBaB+Hpg9hN3zCqoatRag3bYTXYjDwKNsbTn66qhKoKprjEA7ahK1lvJbE4nqHRLjADZdd\nyUwuR6fdZmcsRtjzqDYahDUNVZbpqtdpttuEAKVS4YknnsC+/no0TcNxHI7mlplfsZDkGLWFAuFE\nnUwyxJZrrkHVNCbHxzk8O8ty3ScTn0SSJJqdNnoiQV/fCPd/67t8et84Wy+EcSzH4dl776Wnr++n\ndjcdGhri3OnT+KurXN7VRUhVWd2/n7+fnubu3//99wTJT6HTgeeeg298442N88EPwiOPvCdGfsTi\nzAyDPxaakCSJJLC2tvYTxUg+n2d5eRnDMNi0aRN+o8bekQzN+jK+r1GrLyFcE9OLct8zOcLGDB/Y\nPUF+YQEpm6VSqZBOp9m6YwfFfJ5SqcTE1BSburo4evgwlXIZu+NwptMmLsEWI0rClhCyxZrjEPU8\nQpJEyPWQ/Ch9vo4wFLRIHKVawLEcVtptskkZLAep3eH+pw5y/YdjfPaWW5AkiUNPPMHW7u6LieWS\nJLF1aIhnZ2YoFArYto1m20RDIaKhEDuvv55zx4/Tn0rxgmnym5/4BO+/5ZY3e4ouKcGFKij5VUIT\nfT09pKb6OXv2eSANOBhGmzvv/BW+9KVv0Wql6em5Es9z+e53p2nMHKPV08/+I7NInQiPn1shpgnC\n8RFy6gAzfo3BmMQIgobt4Mn9RBUJ1XWJBgFsqMUAAAAgAElEQVQV30dXFAp+ifKTT1Kbnd3IOcnn\nWbdtmpLEFbqOAI6VyyDLBIkEDV3nGkUh6jgMGQZ+EPBss0mmp4fJwUEe/s53CHI5tvX3E9J1aqUS\nszMLDG69kfziWSY27QI2XHmFCFGtVt8yMXLu2DGGf0xwqIpCGsjlcu9OMfJWs5EIGqPdbhCNJi6+\nLoRACItYLPaKY4rFIgf3H2HS06gb64STvSihOCktjRBN+uJdeO0ish9GFQ5tz8MXgpLjEFEUwpqG\nG4uxeaAf1+lwcvkwgSzznQcfZFc6jVevk3NdhmWZZr1OtqeH5XodPwjQLmTO14Vg2Pf5+29+kxEj\nzGKpzIzoJ9M7ykhXCl9EKHcMOprLBy6sDjdv386Ty8uUi2W6Exa1jkVLlhkcHeOpxx+nsVbCbHVf\nLG0M6TrDkQjHDh/+qWKkVqtx7Mknue4lmeiTQ0PMrKxw8Lnn+NX38kd+Ik88AXv2QDL5xsb54Afh\nP/9nCAJ4nc7Yv1DEUilalQqpH/v92pL0qqHHIAh44LvfZf7QIVJslPA9rmmsFwp87OYbqVQqFAsF\nFuYk+tJTqIFDMjqEomj8xbcfgc4K66EQlZkZjEyGPddcQ6q7G1cIooZBo9HAbTTwfImikEkKi7Ss\nsWQ1CaPhmR2MIGDO9+lRFFwhSCATlWVMy2Z9NUe/LKEjaCIT9n02J7s51a4zvukKrDM5vvftb/Ob\nn/40tXKZmBDsP3qUpXwe1/cZGRxES6VoNptEIhH8l4RBent76enpodFqEWq3+eCHPvQmz86lxzAM\nhicnWcrlGHlJ4m2pXifc3c2nPnUXa2tr5PN5DMNgYmKCI0deoF6PMjKyUY6raQaTk9fwN498jWYj\nS1dyB6X6ClGtl45fx/bXuHbqfdSaBp4yT0hqUa61aHZsDAvCikJI03AkibgRolyts94K2JNO49dq\nqKbJsO/TAc46DklFIQLMyjKXJZM0LYtqq4XpOHQsi1XfR1EUcktLeJEIc60WtwwMkLjw/e1Jp+lS\nFllbnUPeeuXFcw6CgCB49WfXm4Wiqni+/4rXA3jDflO/VLezm266mvX1U7iuA2xM5tLSaSYnewn9\nWIZ0vV7nb7/wBeLexkUa1EI4q7NIdoty4OGgEdUiYMTpIFFFogmcrlYxg4CsqrIkSQhJwq3XMest\nCqU6fqnKaLtNtNlk1LbxWy2KnseAqrJUKBD2PCRV5YpYjN26jtluc2ZhgXSlQdwzcPRuxjO7EU0X\n0j3ENm+je3ycTHaEaqUCwFqzySc/9zmuu+1mWhGF7LbtRFMpCqdP0V5eIqgucu6ZZzi4f//FmG00\nFKL9M9pz5/N5EvCKdtkD2SzzF0qP3+PVeb0lvT/O2BikUnD8+Bsf6xeBK665hoVWC8txLr62Xq3i\nxGJMTEy84v0nTpxgcf9+rh0eZvvoKJePjnJ5MslqLsd6pUI2m0XVNAaGtlG3XVabTeqmzfnFFay6\nzo6p7Xiaxmg6jSiVODU9Tba/n0o0SqPToVwokIzHOdJq0yfrTEoymzWVTSKgHLSoex67ZJkpVWVr\nJMIaoGFhCw9VSOhCouEJLKeDGrToM8K4gaABhGWFuBThmQcfZGZmBisIeOrxx2mdPUvP2hoDhQKz\nhw/z4v79HD10iN7eXozubtYu3BcA6rUa33vyWY7P5vnCF/4/pqePvevytD7woQ+xqqqcWlpirVLh\nzPIyZ9ptbv3oR5Ekif7+fvbs2cOOHTsIh8OcOHH+ohX8S3GVbqptGVnTqLRNJFnFJoKnZujYHURY\np1kuUy6V6LEtwrRwBLT9gKbjogBtv047sJA8D7tYpJDL0SfLTMoyU0AcCPkBM76Kq6fQLBvqdcKA\n7LrMmSYpz+NyXWdU19msKCQsixXHoeO6Fz/r2HA/82tzZAY38l6CIGBl5TS7do2TSCRecW5vFjv2\n7mWxXn/Zd6ZjWdQV5Q2H+35pdkYA9u7dQ6vV5oc/3I8QYTqdKnZzkaNLHU48+QhTu3dz25130tfX\nx6MPP0xu/wsYFpxs1TidXyKiqaybDiUtzFAApusSVhOsGxbztAkrEqeBoN3mNDAxOUlSUZhbqaKp\nXQSSQ7dQ0bw21UqVrnAII53mSL1B0nFwfJ9pySUjZM74Nl6goMgqrWqNcDiJn+4jYgRYPhiKz9lj\nR/jNT9/NzAuP0pqbofrDVULZLsavvoqPfOhD7LMs/sr7KsvLRZqrS0idJtW1Y3SpbXosheNPPEGp\nWCRmGORqNbZ/7GPYtv0T24obhoHzKjcu07YJv4U/iHcjDz30xkM0P+J974Onn4Zduy7NeO9mJiYm\nuO6OO3jugQeIBQFuECBlMnzs7rtfte/L8QMH2JTNvsyoMBmNsmV4mANzc7zfMLAsB8t2WTJr1IMw\nh6ZP0DZNdm8ZYXw4wsriLCcPvkBCSKydmWHyg7fwr//0T7nvnnvIz8xQaTYpeQ4DKLQlnZKr4MmC\nXgnmhceKFGBKEnFZJgmocoeGWMYJ+lGESkMKcKRVRr0Gp2qCNV/gSgpHjh1EFTahtThf/m//jcWV\nFXo8D7nRYCydxgsCRL1OJR4nf+wYq/v2cftdd/GtL32JfC6H22zyxJFTyL3buG7vJ3Acm3/4h6eo\n1eq8//03voWz9sbo7u7m0//yX3Li+HHWl5boTiTo1XQOHz5GLrfEZZftIJVKkc/nefz73+foY4+w\nXvTJDE2RyPSi6yEisQxt04ewRmGlTMlxEW6drswgrtfh8eP7KZXOk6yXmJNtNFkhFph06GFZxLFc\nD6NZJZlqMzA4gFso4DSbqEFAUpLQFAUzCDCBAIOYEsELTXBkxcToWPT2xil4HqF2m6Qss9Bo0IlE\nOLuyymAsSiyZ5Hi7TVYIdEli1feJT41hOwscPTqPpkns23cFt9/+1vrDbN++nfmrruL5w4fpUhQ8\nIShLEr/yiU+8YUO2t62a5mfxZlTT/AjTNCkUCvzZn/wXzDM5umN9SEDdKhLbOsof/p//B//+9/8d\nifUW5YVTVBot8D3CwqGNxGK4ByMSZyAaR/geprAZito4QLanh4bjkOp0GO3qYmZhCWGnsD04WjjD\nVfEBVLcOdp3BmEal1WZBVllyN+yEB1BA6iKhJfBVmVrYp93J8/5rPkxP3xiPvvgU7VKbrBqh6Jr0\n7dlFod6iNP8iQ9ku5HCUaF83//sf/W9cffVVVKtVPv/f/5yzzx7GLxe4YbSXpXKZVqlEq1olpCgM\nbt1KJ5ViYssW4lNTfPKzn33VLTff9/mff/ZnjAYBvRfi9H4QcGhhgRt/67fesCHPL2o1zews7NsH\nq6uvvTneT+PLX4YHHoCvf/2Nj/VO4FLMu2marK6uous6g4ODP9Ey/W/+4i8Yse1XhHWOLy6S2ruX\n9fl5Th45wjNPTaNFJqhUJAyh0O5U0UWR9+9N0x0bQ2gRWlabmXqF8Suv4g//8LeQZZnf+ehHaZyZ\nIeEFDKLQwEMnhAvEZIeiojCpqfiSoOF71H2fRgCDikJDinDOE0iBTVKTqLsBcSNJ3EjiN/P0Sy66\nBqvhEH2bNqEIwaZ0GrVYRPU8FFUl09vLOVnmij17GPvVX+XG978f27aZnZ3la1+7F9PsZfPmKy6W\ng7quQ6FwgP/4H3/vLbeEvxTzXq1Wueeer1Gvh4lEMlhWE0Up8dGP3swP772XcVXFkCTu/ceHqJQr\ndCJxJke2cjQ3z7lqkyuv/l2i0S7W1haYmclhGCrV6vOEHItsZ50hOaAjPPJBh7gkMIOAtpYhMBKE\n3DJXbhlAjcV4/vhxrpJlFMsi5rqoksTpIMBHoQeNBaAQGUAXfWj+OXZ16XTHYqyurBAxTeqSTDYz\nRDgaJ1dfR/R28a//+WdZKZWwLIt8u40+MEDINNEcB0dV6du6lTvuuut1m1m+XoQQLC8vk1tYQNd1\nJqemXnO+4Du1muZtIxwOc/78eQon57lqfC+ytHHjSvk9nDkxzT985SssLxWIzZ8kC0S9JqOygaJG\nKPgd4nHBiuSjpgZJxQPSahO5WSVIJolLEoOaxtFymfOHD2OaPiotam6ATQTTcvGFwHV9OnWHsPBp\nagoJI4ZhW0h+QEfWKfs2JhKe42MqEWRNY6m0woBwMWWTZrtDJhrHzp3Dy+f4X67Yx+iFmOh8aYX/\n579+kb/6my+STqe55tor0efO0RWX6QQBzU6HlXabfKuFEYmQTSb5tZtvJhoKcXh+ntnZ2ZeVwf0I\nRVH4yKc+xb1f+QpLi4voQE0ILrvpJi677LK3cAbfXTz8MNx666URIgA33gj/6T9teJb8gvke/USE\nEMzOznLixDkkCXbunGJiYuLiQzUcDrPpJX4ZjUaDSqVCPB5/WZXc5OWXM/PQQy8TI57vUwPu+MAH\nSN5xB3/zV3/F9PHznJlbYzw2SkwPM2sugbfKwUMLXHNtLxOpPqKhCPVEhp6endx//2P0ZMOkLQvP\nCzDxkXBJAlVa+MiIICAUSqAlsviNElHbZglwkFjSo+R9n15NokuJ4AmNbiWM6VWpNHNcK+mE9Qht\n2eXm3l7m6nVWfZ9+WWb76CjpWAxJkrA9D9U0EZJ0seTeMAy2b99OEDzwMiECG0mQQRCmVCr91Hyx\ndyqPPPIknU6WkZGXzn2Zv/yLv+aGnjgDfX1UKhWymkciJDPbrtKq5+nzm0SGeiiXX6BcTiJJGrK8\nxtLSGRJqjRG6CCshDE3Qth2SSHgajBgRlh2TuNsiIxSqC4usS4IQcM406fU8JCFYEoI0oKEg8Mmg\nYlst1qQaE5E+RNzlaK1G07YZRUJS44wOb0ZXNUxV5flmi8emp5kaG8NUFNR4nD7HYdfmzRfP88Ts\nLP/zC1/g8t27yfb2snXr1lekG7wZSJLE8PAwwxdyFC8Vv5RiBODQgSNkjORFIQKgKhpRLcVj3/8+\ncVdgywpOELAlHEPzPdqyTzSZ5Io9O3HTacz+fqKqSm5uDl+FPt9nRyaDLEmUKhUO53K4rocd+Dhy\niKScYcZrkwnAFN1U/IAKJmVPYkzIKNjUgaIfYBKj5cu4bhhVtbjnuacYDsMWz0KzTUKuh+9orNY8\ntqR6yWS6L57HaKafhaWTnDp1Csdx+NY/fIMXHn2cPkUhpavsiscJC8FYKIScSNDudIhcCM1kdZ3l\nhYVXFSMAfX19/O6//bcsLi5iWRb9/f2varT0Hv/Egw/C3XdfuvHGxzdEyNzchk38LzpCCO677/sc\nOLBANDoICPbvf5Drrpvg13/9Qy97uPq+z4MPPsL+/aeRpBhCdNi+fYiPfvQ2QqEQu/fu5fTRoxzL\n5RhIpbAch8VWiz233koqleLEiRN87RuPsFIIEREW+fZ5pGaRlN+kK7BABEwffpTTqS7UnhGMvh0U\nDhxibe0kVm2B7rVVdgI1VFwcugAbKBDQRKLftWg3y0TDcXzfA99lRUTx7H40JYotPOasFbo0l3Sk\nH9n1aLdbLAufFDpJI0ZXOIzrOBQtizXXpd9xSG1cKM7XakR7ezm+tsZ2wyAIgou7RMlkFNNsEYm8\nfDs9COy3rBrjUlAsFrEsi0wmw1NPHaTZNPjhD793oYFpmq1bL2N1YQWjZysAM7OzLLQ8TClNyW9R\nb9XoicdJqAr5VhFfKLRaJpVKAUURJOQEulAoyLDiJDFEjHpQo2TZFPwQtUCmX5UIxxPYTpFBJcA0\nTWRJIq+qnHRdMkACiOABMlEgE9hU5DqFQGXYgp2axmlZRng+Ud9lbmWOeKqbZijCxOAEXt8mrr7r\nE6TTab72l3/J9pc8/FutFsWzZzlRKNDdbJIDnk+l+MTv/M7r7sr+dvNLKUYKhQKtjkXLe+UWYdu2\n8ITLeCJDqd3NSnmVkO8SkmRqrs1IJM3i3ByJLVuQh0Z48VyRej3E/LFl3j8Qp1tVqdTrHDl9ml5f\nourHcUUUJfBZI0+NOKtyFlW2UKUwnr8ZxRes+Dmy1KgQp0YajzQ+48hyN67bpuqfptmeIUaNXkIY\n0V4sXaNdX2W5UmSw0yIeSyGEoGG1qFSr/O2Xv0z+hROMJ0a5enQX0yeeQ3IdZsNVLEUmJUmonQ5u\np8N6tUpfJoPpeUR/RuxPVdVXTQ58j1di2/Dkk/ClL126MSVpY3fk6ad/OcTI/Pw8Bw8uMDZ2zcUH\naxAM8/zz+9m1a5HRCyXqAE8//SzPPrvI6OgNyLKCEIJTp06h6z/gzjtvJxKJcPfv/i7Hp6c5f/Ik\nuaUlCo0GC9/8JoePHOHh+59EdPrwOnUyUgJJsVCcFfZqKiE1Sd1s0PJslptVch2VjDuFpKuY5hTt\n2hpdlkQRBY8ABZl5YBFBAYVhPOZcFd+NItoBARJtWUOTJrADHTfQMFGwkCmwSoYQZsdGDnRspZ92\nANVmkeZaiYIPdQ1i24ZYjUY5v7BA27ZZaPuIdY0tl1/Pvfce5sCBY3zqU3eSSCR43/uu5N57jzA2\ntgdZ3gjDrq6eZ9OmLN3d3a926d9R1Ot1vvGN75LLVfE8OHnyMC++OEurpWPbNrKsEg5bzM83iYXX\nWBnP0tfTwxMnl7CdYXriXSxV8xSqYc40ZnH8EoQmmdw6jOdVSSaH6HRm8bwTeGqSuqmT0rtoOHk6\ndOMTYs0tE0fGlDxy9Rp4HXrkgEFJ0JQkNqsqR1yXMqAALio6BilCyHicDOo0Oy7raxJRCXo9jzYS\ny75NuZQn6cDwwCbCkRSxWJLt27djmib4/svcr09NT5PyfQaTSfqzWVKxGAvr6zzyve/xyd/+7bdt\njt4I72oxYpomrusSj8dfkyVurVbjG9+4n1yuyvq6xQtLi0TQmBwZR5Ikap0my16b3ZdtI9W0yK8v\ns61nmFatSMpzSXsmqu8TURTue+owlaeL7Lj8NzBNl0J1lSeq60yfPsNoREaYFhU/i08ciRQyGhHW\nWUXGD7oJy2lkZFQZvEDCo0KDNG0UTDRk+pHpRvgCgYwIxggos05Av5HmjFVDop+OkmXBaWCdneFX\nIzGWqxVm1posN6OUHpgjIytszoaZnNzLmYWzJBtlKj5M9nWzXqsxEIlQqlQ4eOwYK7kcq7bNP9u2\njd1796K/pDHee7w+nnkGduyAS71Y+ZEY+WXwGzl9eoZwuP8V3bENo4+zZ2cvihHf93nmmaMMDl55\n8WErSRJDQ1t58cXnuPXWJvF4nHA4zJ4rr+TBB37Ac/c+hNpwQRh8v/Q12sTZsVkinFBolW10N8+w\nL+EhkHQJTVUYiSdpIVEJulDaHZbWO2yZnKSz7rNIliYJdCRsGkg0UJDxyTCPRgKbftJoKKzSphiU\nmEQnKoWoIeOIAJ1h7KBOvjKLQjcVfJK+RlG4rIkunIKOp/QQGAZpa4Ade8ehf5gXnn4BRx+jOztJ\no6mwPbmFYrHE/ff/gLvvvpOdO7dz6NBhnn/mS0Ti/SSTcTZtyvLxj9/xtszrz4MQgr/7u29TLicY\nGdnO9PRz1OvDVKtLCDGKYWxGCBPfL9FoFInFhji0mEfSdRRjGEW2OLW4zGpHJhXvxnXLtJw2YWOM\n2dkcluUQiWSIxUaoFo6heGtIYoKWaVFno5Ori4nMIB4tal6BAJ1tUgpfKOT9GprUJh6OkDY9cvgI\nYsioOARYtDmPjEmaQMRYtwVlSvRSYlhS2KxFORU4eI7LWnEJN5birl0bu9OhUIhkXx+lep2uZBLb\nsmgWi/THYghFIX4h12e0p4enZ2bodDpvSv5PEAScO3eO0y++CMDWXbuYnJx8wyW9P+JdKUaazSYP\nPPAoJ07MI4RCT0+U22//lZ/qjy+E4O///h8pl5N0dY3Rqp9HT8/wwNmznG+WyaTTWIrPHZ+9C6eU\nZ3sohCsHvHDoBTrCpmY16TYMKh2Llbag6fahyyMcnz5COqySimex6y6S0mS2sQi+ioKBTJYADRUJ\nnTgyYOEgBxK2JIhIKhISATJtJDqEAZ0AiYA6Ej4brgM6EKGMxlm3himGkB0VSxJYRNGqIR5+8SC2\nE6PSiaBl+ymvrdOSY1TMF/nIVXuIRLJEZBXTqqOl02wbHqZcLLJ/bg4tt0S/EaIrFue+/+v/5tCT\nT/Knn//8T6yseY/XxqUq6f1xbrwR/vzPL/2470RkWSZ4lc7aQgTI8j8tQjzPw7J8dP3lcXNZVpAk\nDdM0L2b8P/PMszz/wBN0+wmi3cMslmfpB3AcpMV5RhMhjikOmt3GEz6uFNCwWhixED3pGMfXy/iy\nT6Ndw2l7rMx0aHQC4ozhYaIh8BikTQaHZcKkMOmiSg1BA40wPjoyMRpI6GjoSoSOVyMseSAMbGrU\ncCjShUcNKwhhouP5Q6hKlr7eCXK5JjMzzxIELUAnHI7QqpZpVeDBymPc8ZEP8/zzD2FoAYeffprR\ncJhfGUqQb+TRYhKf/OQ/f1e0pV9eXmZ11WJ0dBe+75HLLeL7Bqo6jGWF8DwbkHFdn3A4TSymEaQy\nfO/IMYr5OJWqRaXhEtUnKFZatFyVQFMAj3J5CSGiBEEI37dwgjAl0cAINpaGFh1cokSZwsfDwUXn\ncgSncMQiVQE+EULC40y9Qx0N0DmPoAefECqLCPL0oJLBAQQKHikWkFBFkaZTZx0Z5CYhVyLIHyWV\n+gNgQ1B/4Lbb+M499zDuOER1nXKnw3yjQf+WLSysrTHc3X1x5+TVfitvFCEE37v3XpYOHWI4kUAC\nnpie5uzu3dx+550/MWH85+FdJ0aCIOArX/kWa2shBgf3IcsK9XqJv/7r+/gX/+Iuenp6yOVynD8/\nj65rbN06SU9PD0tLS6yu2mQyWQ488UPivs++TbuZDUVYa57jun03ctdv3cnU1BRHjxzhvnvuwZND\njOy6ivOLZ1mcPU9RN0CN0w5iBJIg4s0Tb7XodkJ0VIWFwKIiDKYMg1O2TTcGCjoyAgcPkwAPBQkJ\nlQ6qiGAJgUOJAAedISTigIlCkShNDMACOsh4WMi45AOZFh08F2QphSd5+G6bUqGCEckwtHk3rZaL\nUFQ0OUqlHvDo8eMMaGHWnBaabjA+NETYMDixXqTlCe4Y20k6nkSIANNscO7Jp3j44Ye5/fbb3+YZ\nf3fz0ENwzz2XftydO6FUgvX1jX41v8js2DHF009/B98fQVE2blm+7+G662zbtu/i+3Rdp6cnQaNR\nJpH4p60o2zbRdf9lGf8PP/wEXqPJWlvgN+rY7SLbJJVlbJxWm15ZYVgymVHDVLw63bqEpqWQFZmq\n4xDEQsT0GOt1lRBJ8CAIRmlhEsbGJsDFwEKlSoIQGiFsdFQcqnShoqNhIihgoYoUwndxUaiIGioN\niqgojOFhsMT8hU8eA+IYkqDValKrdggrIeKhJpbTwa61kGM1Nvf2srowz5f/3z8hK5VxjzxGxjBY\nTCa54dprGUineeHsWf76L/+S3/nc597xgqTVaiHLG3ktvu8RBBtiVIgwQdDC8zr4vgW0iMf7aDVr\nlOZbvG/bJr63toywJISexY/00GqtYwkPYeexnWlAA2o0Gg2EUDCMOKF4CqsxhxckcbCQ6UKWNYRw\nkYWOi4GKg0ubBCFaBKwDHTxsIshIxAnI47BGCIchYIiAAB+oI5NBxWOQdWwaNGjgs0UOyIZ8+ge7\nOfTYY+zbtw9VVRkfH+fjf/AHHHjqKY7PzDDd6TAsScQLBc6trzMdibBt61Z6xsbeFBO0hYUFFg8f\n5trx8YtRiP5slgNHjzK/d+/LksdfL2+bGJEkqR/4PrANiAohXpOcW1hYYGXFYnT0n8pIk8kuOp1B\nDhw4gut6HDmyhK53EwQeDz98mNtvv55EIo4sh5g5c4aUEGRTG0mX20a3M2IFhJwWlUqVw4ePsLKS\nJ+/3UW26rOZOotccJsJJMANMP0TJCfCtKhlhoAgZ2THJygYudVbcDrLrYuFTpE0WjwCfBg5rZAAJ\nnTxtZAxa6Pj4rOARQpW3IQIPicdIECXCCApRQnTQWKNKgzYxNr7y4ygM4gvQdIVYtIzl1AgZGUzT\nIR4fpxOXcBpNVDmO6wraSgdX1pCyaY61WnTKZQ6U62wNpVGFRzk/h4RAyCoRYfPce2LkDbG8DPk8\nXHnlz37vz4ssw/XXb4SBPvaxSz/+O4mRkRE+8IEdPPHEARSlGxB4XolbbrmcwZf0KJEkiZtvvpbP\nf/7rRKPjDA1tQgiHUukMH/nItRfDjr7vM3PiGEp1nSE1S8drUTMrnPcCYr6HJMm0TYWwJIjrYcqh\nBO10FLecR7cDTrQc7EyKhr2G8JOE1BC+00KRJXw5SjnwCGhjI2GTQaNNhigyOj6QQMGmTJ0uHCQU\nVrBREKILFxA4CKZQMHGo4qMDo0AE6AC9eF6DUqlESIvgBTKarBKSPRzhYDoqrXaLZmmZpL9KtCuG\n75iku2XSaZl//M53mEqliEgSh86dw282ue3uu5mamnrL5/a10t3dTRBsmG3peohMJkGj0aTTOUYQ\nuAjRgyz3ADqVygxRzeeK7Zsw81U6lQVUsRndd2m2KzhuCWgDOxEiDmjIskQQzANrxB0YUUA1fGyn\nSt43WWcZV4SJyTotHzxWGMIkQxRJEnQJmQQ2cwR0sJiiH6gT0MUAQ8zRxCOGShxoYyFYxcFDo0ka\niJDEQ/brhC2F1fl5lLk55ufn8TyPSqVGd3eW2z/+ce7/9rf5eKNB5fx5NMdhQNdZKBb5YRDwX/7V\nv3pTrv/s2bP0hUIvS4eQJIm+cJiZ06ff3WIEqAA3A/f+PAfV63U2VgcvJx7PcOTIEWw7xvj4NS+p\nox/j/vuf4zOf+TWCoE5xtcLkS1ZIjXaNiGRy7Jmj5Dv9aJrOgQPPcN11v87UVIZT3ho7dmznh48+\niBxY9BtZys0laq6FL0wCKQMiguuB7FmochnFSDFBh8O4FGkhMOgwjI+OwfKFtU2FNutk6eDhUyeD\nHZzFR2MIixFc8tSxkIgQkMJEJo3JFG3OARkCDMDDkARBkMV2bZT2Kh0nSrari0z3AAV3nk5zlY4V\nZyGoMzCU5sbNw1irqxiOQ8sKcJwOXgnnP8UAACAASURBVK1EJrJRHugFPsu1BrWf4cj6Hj+dhx7a\nsG+/RCHVV7Bv3y+HGAH44AdvZseOrczMzAIwOfmBV/SdyeVyPH7ffYypZWbOnubkIZOtV+zkd//X\nf/ay0vPz58+zOWawFImg2Q56ENCPyrLkI0kevYaKMEyKnTbZrizjmz5Mbv0oiS6JTrNFRIM7dmzh\n74+vYmp5DL1Oo15HCmzCwRS+FEYWPiZRoEEIgUcEmSYuRQx8QLBInV5aJJBZx6PFIj4D+OxEYBFQ\nw6cC+IDBxgr+gnu0rwN5LL9NSPVxOm2Gw0mK7jLldphcJ8Bz1hhWbTxbxZdVmq0AaW2NoFgk1d9P\nNhKhR5LYlUrx4Ne+xsh/+A/v2Kqarq4u9uyZ4PDho/T3b2Xbtst56qn/vtGnRt5NEGh4Xh5JaiPL\nUSrVc9TWY4x1bWeya4WZQgHfE9Q7pxB0I0lRhBgBWkiSjiR10LQsuDmGRJuoJ0hkN9Go1gkLj04w\ng0wcEegXsvryJHAQJKjjoNFBIkBFIosgTkCRGB79yITR6OBSRZBEI4lNHUEPgioBPURYRUFhxQtx\npWEgYjHOnzrFn/zxnzI0ei2yHCMIjpHNPo69NsctmzfjjoywsrxMu9Fg5+QkMXjT5k/VNLxXCf94\nQXDJcgvfzkZ5NmC/lsTTl5JMJtlQtS+n2azQajXp6tr+Y3X0BpChVquxd+9mDj79LcyQRiQUpdaq\nUG2cQng2RqyPkZFtNJtV4vEdnDy5hOvWSSPhuS7xZD/rq+exrRKq7yGLJhqDBMJH9uv4kkdKMVjz\nFc6bdWqoZGljskKDIaCOTp0oJhmSdEsKFSERx0YDNEwC1nBooiFIY6BhowIaMg2giE2YAoEcJhBt\nECBQ8R0LW5h4voZJEbww5XIKSeqQTDkks5sYGMjS0zPEH//xv+fzf/zHJHp6SMfjjLVcls6eZlO7\ng4aCLElIisw6gvGurldc5/d47Tz0ELyZG0v79sG/+Tdv3vjvNAYGBhh4Sdv4l2JZFt/5279lRzSK\ntGULw6kUruezblsX854syyKXy/HUY4+xY2QYrd7m1OGjCNMi8H1CgUtb1YkmMxiGwQnfozszSmFl\nmVDHYuvgJH4XVCvnyNVapFMJ4rEdjKdTlHM5iuuLrLZm8Ajj4BER50mwTjc6RVboIOi5sLep4BMh\noE2UBlFCxNEI8OnFQkKWokiShRQECFRAAAk0TGTOIsgicFHFCpoWJmUM0+q06YvGKHamcSSFkNwg\nJat4QYRio023EWF1qUAopOH5Pvlmk76BAUK6jl+pcOLECa666qq3bD5/Xn7jNz5MT88BnnnmBRYW\n5uju7sc0DSBBu93C93tQ1RVisV6E3WJ6waI76TDcP0yzukLWSFD2PBwxhO8XgSaSpKIoGYSQUaQ6\nBg79OBiujyifIwhkCBR6NJ8VdxlBlBg+AXkMLHzCSEIgYxElRJWAEC4FypTRCfDx8Uig4FPAQUHQ\njU8HmRoGRUbQiOGRQWZZwFHLYnMshu0GmCtNBq7biabpWFab8+eP0lo8zwc3bSIUCrHpJb4ja4uL\n+K/SN+ZSMLV9O9OPPcao66JfcDZ2PY91x2Hfjh0/4+jXxrsuZ2RsbIzBQYOVlRn6+ycu5oz4/grj\n4yO0Wq8UNz8y+fuN3/gQ+ZUcj3/7YcKaRrPTxmwLFmo+QbLMWKuOLCvIskCW41SrdZIIgsDHskxk\nzQABaqDSljQGhQ50iEgeiiRR8y2glzAuGRRWcNBxkVnExyGLSokYKhCWAmTRwiOMJffhixhtIZBx\nkGmzjkySFBFkZGQ8dDpY9MgeqA4tR0KideGG5OM4PopsE1N7UZIgxAqyHKFYWEcWgkZxgUqXw10f\n+23Ckkyp2mGp1EEEOq6bZtVtMmmuMWiEWREOmdEh+t7zD3nduC489hh88Ytv3v+46io4cwaaTXiH\nh/zfdGZnZ4lYFssdi6eml4AsSBLNdh77S1/h7s9+mq9+9UEcJ8Li/DyhpWPcfPUutk5t4v7v/YB6\n1cNyagS6itKVoiAEUS9Gp7pIYKTpjcVpreUptktMXXYZ/f3jrJ49ykxzHTGxCWutgCJFiOtNbGee\nsHDpR0bBoIlLlF4UNHwcVlnGRiJJjA4KDZKY6EADQRgZA0lYBMJFEAZWgUFULFTiCAx8FtCokGSV\nkNTFwMDV5JcWWGnNktJsrg6nceQ+/FaRlA0Fz+HFxfPEhEszGsE+dQ59sJctgyN8+aEDrNVszpr/\nyPLyOrfd9qvvyEo6VVW58cYbuPHGG/j61+8jmaxz7737SSRGWV8vADFaLRXTrG7c8xoGp5ZzXLdl\nB/m1VY7lFxHqAJIHmiajaT6eJyHLHr5fJ+Q7GLjoaGhyAgWNbs2koNp0rCYhPLov5IMEBLjIGHh4\nCHQkmkgsoyGRoY8MPi4VaqRpI4gQI0qHIi1WCVAxUBghQhQByFiEiOFxtGZx0LTZPpJkWI/QbteZ\nnz9LLrcCGCycLzCSPMBt1119MXG0WKsR6el50zqn9/f3c9WHP8yBhx7iR0vUkhDsvfXWl4VK3wjv\naDHyR3/0Rxf/vummm7jpppuQZZlPfepOHnjgUY4ffwbYqKb5+MfvoNFo8NWvPk8m03fxOM9zkaQK\nY2NjKIrC733u9+hKJfj6l76Jqk6AEuBFVYbHLufgwRe44YZrUNUmth0lGs2ylDNpLKzgtFaRLRdD\nTbKChSV0FqgwgEASEoosWEMjLEeIizaBkIkhs0QMiQIx6kj0k0KhgosfFHFwgC0kRAIZFSEreISw\ngjZ5JJIEuAgsHPIIArqoBhauE8HjJGHGMdCIyjbt4DzxoIZlKXRtuoVWq0ixUMQ263THE3RHksSs\nEGvrZc6as0jydlR5ENtzEXh0mOeYKLKutbl2bCcqLvlS6WKvGtu2WVlZQVEUhoaGLlk51y8qBw5s\nmJP19f3s975eDAN274b9+zfCQb/MOI6D2W7z/Lkq2cRONHXjYRoxMhw8eJZa5x8YHX0f0WiCVGqE\nF0sFjh6b41duvpI77/x1Dh3JsehDQ1bINysMxlKIVoFoT8C822C9UsDwAqZ608i+i6GHGO4fZqVU\noNZ4EV9ZYz04hxENkNw2k3h0ozKDgsc4CSJE8VklgksXAVUy9OKzhkDCI0RABZXOhTNqIJNEQ8Vm\nAVghYAyJOBIOITQU+oixRsxa4/zSg0RCcXylyoQWpeM4rJoetlDZLAn8QFAVcZZCglQ8SWzscsq1\nNfYfrzI+eDm1oMXWrbdw+PA88AM+8pFfe5tm8rURjYaIxz02b+7lzJkFHCeE43QuGLg5DA/vprRU\n4Nj8CQa6ssgj44yNb6UyfYxWK4+mDREETXw/huPkgCKqlCdNE6Fo6JKDGfh4gaDjudhoTIYMunyf\nhusyTxiLEINI2Ph0UChSp8lmAgaAGll8YkiUqNCNTBhloy0AGz1uQtQwCJDx8OmmjY0hRUiIFFVl\nivlSi7o8R+WH36ZcEfQNXkckksYchCdnZhHyYa7duoVqp0NRkvjoXXe9JouL18v1+/axZWqK+bk5\ngiDg1s2bL6k/zTtFjLzqFXypGHkp8Xic3/zNj3D77S/3GfE8j507z3LixEEikT5838Nx8tx66166\nLoQcNE1jz7XX8uyhAvH4OPPzp1iZPsf6+ll0XSGXm+Wqq67lBz/4Jo6zk1LTo2rlGehRWFxYY9Fq\nUvZtegFX6sEWMit4GL5BgI4brFBCRiZAxaIXAxUPj3UsGkTUGAQOlcDGJY1OgqYI8LAIiygBOnWS\ntNE4LasEQQcXhYjcQ1wIPCoowqWPAgFFHDRUyeJyuYNPjJO+w9raIoaRRhVrRKM62we3Icsa6/kV\n/MDHcTLoxjCBEKjKIIFvIiETCelIkkm94VMNZMrnXL7whb/m6qu2c/SJJwi7LgHgx2Lcfvfdl9wO\n+BeJN6uk98f5Ud7IL7sYGRgY4Hy5CmQvChGApmWjRbtZXfXZvn2jmWMikWV07y2ceva7yEdeZGJi\nlFW1hdazjWsmr2Zl6RxnzzxFYqCHrTu2M1E32X+sQcVqEA08lpbOcaZawIkmiWk6qUqOTfEomyeG\nqBZXOImgB4UeIIeOh8IaAQ4yHdIYxFBwUdCQ6SOgjEwBjyYBLyITB7rQqKIrDpo/hMkcG8bxKioG\nOgmggCCEosh0peKEMpvozw6ycmIOW8rScRxUyeL5zgpCSP8/e28eZMlx33d+su53H/36vubEAJjB\nOeDgEAYEQYgERVoUbZ20LcmW7XVQEd5VSOHwWmuH5A2FLa8VCiu0a8mK0EqytCS9lEDxAgiBlEBg\ncMyAmBlgMEfPTN/X69fvrld3Ze4f/QiLIqmDJAaEuN+/qju6XlZn1qv6Zeb3QDhljh46ihv1kIbF\nRk9i+QZrhT7zR4+SzxfIZo/y5S+f4nu/172h0fR/U9x55zGef/4PefTRB5HyWc6cWUSpHJa1wvT0\nfg4evBfbvsDq6iKrdobbbjtJHLu0e2ssLY2RJCauu4IQKaYZkCY+k3qfo+Yo6yKiE/UoJiEDUhQ6\nFSS9IGXK2MsZyjCNoMgSXbqEJFSJyWMxiaBIE42QXUwkWTQcrtPDooKDwKaPR0iIYE+ZiYpR9HFE\nBaEpbOXQ7iW4wSIjgcd0fh+7V5+gXb2V2fkpjh49yfWrT9KfnGRqaorH7r6barX6pvf76Ojom2aQ\n91aqaQzgSeAO4PNCiH+tlDr9N/mMTCbzVYQdwzD40R/9u1y7do1Ll65j23mOHbvva16aruuSz49Q\nry/SbCZkMvOsr6/geRssLPS4/fabufeeaRynz+jNFncd/CAvnz7N8soybqpRZBSJRKoWA2wERTwC\nUpoUGcXDIcAjpcEhJJMoPCRX8fbY09KmRIUuPfpsY5PDxCEmRaITIPDQ0LRpkA2yosNArtNDYZMn\nr8GYzFPT8phCI5Q+QhkEOJiMYBpH8bwQP7yAaVXZ2lrBRhAGIZ2kgxAV4iTANCooFEoohFZkEPnE\nicUlu8/0wZMcOHAn9Tr85n/6df7xu+7n+sY2l1Z2GPgBl69c4xf+0y+/ba2H32w88QT86q+++e2c\nPAm/8itvfjvf6RgfH2fy5pv50ucWyWd8dF2j47qk+QKVrM1g8D/20l3XpVKd5faHfxjLWkUfK3GL\nEHRabdavPsFdD9zLT/3TX+TXfvF/53PPXkYzcuSsSSIrz8vbV5nM5rhl8gC9JOLCuWex99/G/OF7\n8DyX9trjTKWSNjqzCAZo7FAixCYaElEDUmxidBJiTGzKBGwAFjYjJNRJcUnQCFIHnTp5BAkRGayh\nl+cmNpKILL6KGLPzTFR1zl2/yk5XYsgGFS1LzRxlJfTYlRqjWo7W+hrduM/V8XF6dhHbLnBofpSF\ns0/x4pO/i+aUKU/kWFxc/JaDL79VxHHMxYsXee21q2QyNnfffeyNmPqZmRm+//vv4zOfeYF77plj\nY+M1Op0NDh++l0ymwksv/ja9notpZbh69QoTExazs7MIMcatt97DhQtL5HL7UKpHtWri7X4RG4Fl\n6uQSE+HtzZBrCKZxSPA5TUw9SXEpEWHgoTGghs8IUEHwIibrCBr4lOmSwSJlFJdRAjJIJskTo+ES\ncAnoEFJVMQa7SDJ0VERHr+AmMUI0cKIWG9sN9MkC406Fla1THH70f6FSGWF0fIb73/Uuoiii2+2y\nvLzMwsICa2tN4lhx5Mg8Dz103xvFQxzHvHDqFOdPnSIMQw4ePcqDjzzyHeO++12Z2ru6usp/+A+/\nzdJSSqVyB0tLL9JoJPh+hiReY74WcGA8ZkRzuXrxEkLosLvLRlwgZIYaOgMkCV08NhghYBMNnVmq\nTJKi0SQiIibHEgfx0FDsorONjsJkHEUJhUaRCI0dNGJG6WGjWKFMH9CpkJJlDA2LgAF1DHpoTGoR\nU8LBSm0GrJNi4uOwzigyfysYWbz+GUqqwfHCrSgUbhizlrbZkgaGdYw0cZAqj5QKaKLU6xSLBykW\nDQxD8s533k4+U2P9tT/m0HSVVq9IpbCnYLi8foXb33mAX/zFf/VVUe1SStI0/brx7X8V/rak9tbr\ncOQINBrwTXTD3widDszOQqv15rf1ZuHbNe5LS0v80i/938igTJqkjE5PM79vH5cufZE0Tbnppndy\n9uwFWi0PIXQ87zoPnCiyTxPcOj2NY1l0XJfXdnZQ4zP81n/5PDVtklqhSm+wy+L6KQ4Jn4nZee66\n83t48dXniVeuUaiNkK9NEbgd+o1NaG6wpBlkkpizjAIPkFIkpYlNhKKHYA3BNDpzeGwiAImOQQbJ\nANghQ4BGFp0ONhox00hCbMDGpI9Bnw0y+BQrOnMTk6ys6thMYEvYjToIvUUqbcy0x035KcbLNTxS\nusYuvVKFYn6csrtN2Y+pZPN0wgGX/S3e9/e+j//pX/7LN/VF9ZeN+9raGr/yK7/BykrE7OxNVCpl\nomiLu+6a5v77TzAxMYFpmnS7XVZXVzlz5mU+85lzbK6usnbtVcJokkLmZiJMZg5O4AcXEaJOv1/C\n9w/R7QYUi6OYpoVSDdLupzlsWcRpj2jQYzYJqAEeii32CMcdFE1AUqbPPmL24xIAk1hsMctl8pgI\nxvDosEFCQgGTZW6iwTgGghJqaHtXJ6VNQoGIKWx8YuqiQKDfjpbWmVMRJbOLQYKRszDGppmaPcjo\n/e8nlyty5dVPcOe+Sbrb21xaWCASBn4yhpGd4dDtd1EqZ4ANPvKRD1Or1fjEH/wBvYsXOTI5iWWa\nrO3ssKFp/MOf/ukbli/2/6f2/gXMzs6SySS4rsI0d+j3I/L5g+j6LkZcY6aq09i6RqPxOtlen0tJ\nQkSOiCoawVDnEpFjQJYMGRExjUFXtVlBIMhQRFHBIsWkR4IA9mNgo2GQUEURDK1zUookpKzSxCJg\nFhtFHp1dJAYDdnHQMTEYQzDAYFu20dBwMUkpIKnSZ7BnveN2MTUHhxRNuPSSDlWripA+IokxtC6w\nQZKWMYwymuYRxysIMUMc17HtO5mcnGV7e5vRiiSMQrabBnPj+9/ow4nyLOvrMVeuXOHYsWPEccyX\nvnSK558/TxDEzM+P89hj73xbJoF+q3jqKXj3u29McVAuw4EDcPYsnDjx5rf3nYx9+/bxgQ+c4KWX\nVrGsGlImrK+f4/77b0Ipye/8zsewrJsoFMYZDLYoFDK8+OxFHvj+B9A1DaUU5XyesXab3/nUKfLl\nm9na2WG9fZVsJkM/hg3VpXPtFda2rhCEPlWpSFfqdFcWiDWTduLRVdCTDhFFIvYh2USnTg0bRYTO\nOiOENFiijYdGG5MykhwFIixcBClyaHqYEuOh49JGYxxBOnR47TCPICFHs9dh0W2TSWexzIRspsCY\nElwJQgzR5hbNIok8BlFAdXwKJ1B0u4uIuE0pzjFVHiFNE7KE3DdWJN3Z4fSpU7z/B268Vfz586/y\nn//z77KwALXaMa5d62FZTYTQ+NKXHuell5aoVCw+9KFHOXr0Vqanp9nc3ESpPyHjbeJYoxSc2wm9\nFFuTXL94hVC2ieIVRqtH6fV30bQa3e4FdD1Cyh62YRDEHUrFHEvuLmViFCbbWJSBKSTZYQrzIik9\ntkmpAGVgjTHWKOMAGtClSIqOzzp9ptlFAQ0SDFok6AxQlBHkMQlJWSPGxCCnYtz0GnNYFPWQimFh\nGBVSLUZPfbw4wPN6XD7/BA9M5bi9UuHMuXM8Oj7Ob56+TmqNYrLO+kad9/zAD5DNzvDMMy9w//3H\nqV+6xH3z82/wSvZNTBCtr/PK6dO8+73vveHj/BfxXVmMCCF43/seYXPzedbWLuH7KePjKRk7R9hy\nWV/fIGqHpF6GKNVwKQEFdCYIiLnOKlV65EmpkDKpxBs3mE8TjztIMHHZpUjKLcCrQB+Fjc4oERlS\nBkgkASYpgogCkhIaITkkigwpc5gUEfj4tEgQmMzhkEXQIEUwjaRAiMYIBQIWqbJBTjokCFIxoBNe\noB3mQQhqeUFWRiwG59FUiTR5HYRJsTiHpqXousn+/dOMjc3RbscMggZh4pPLfPUMyZOSydGDLC6u\ncezYMR5//DOcPdtkevoeTNOm1arzW7/1R3zkIz/yNX4Qf9txo/giX8GDD+7l1Hy3FyNCCB599GGW\nln6XZ575AmCSz8cUjVGCgUu3cR5vcAZTSqYO3sqBmx7m+cVL/B8f+wyzo1NkbJ2j+0fJ2hYLV3dI\n+y5lI4/ApNt4jblkwEHb5oBj0gwHXA4CrqcJUxjYGOgyZVqZ5DEok2GFGEUJ0JjkEgUsUgbYZDFx\nqOEyYIVD6CgkG3QwgTk0MggiYhZp0KFCeZhr02MHH7AZkCOmiINODi/dQU8zjBmCKB7gJwGxkcMx\nKiSyS94YIdVjlBGSph0sM+Xm2RnGHRt/aYPewMUyNY7MlSnk81z1PNavXbvhY+j7Po8//gWCoMT4\n+DSZTIk0zfHKK88xOjpLsXgbmcwkhcIMH/3oU5w8uc5/+2+fZmXFpbnTJ9xp0vQylO2YbKaIHzcI\nwwaBrKFURBLrJMl5krSEaR4lCPYC9my7xrXBi9xt+Uxo0EtBUkQSM4eOR0qIQ0TIGDoturg0kITo\n9Mmzt2W/5wnjY5BQI49HwjyCTRSjQA1FnwQFdIA8CU0Ek2iYpFgMsFSHCBstLWIkORIVU63V6Hhr\nXNy4xJGZEaqWx4lb72FtZYWCpnFhe5vdZsyoqFMrFtn1ff74936Pv/MP/j4LC5scPDhLcfgd+fMY\nK5dZv379ho/z18PbrhhRSrG1tYXv+4yNjX3TNsZ33nk7Bw++ytzcDM899zpxnLC7vUXSX2c6n0NK\ngUDDVyNo1Gjh4RAiKOAwgUGdPCk1FAmgI8lgMQssEZJhlJQMATuUgBFglZSbiWgQ4LAXLd4gQhJy\nCJhAR5JyiZABFrdjksFAAAUkNXTOEpPFYZoYiU6LLCkGo0gGRIygGGUeG0WfmIpRpGX02WdajBYy\nXPFderLKhFMiTcfJ2iHewGWAR7W6nzDsEIZdPK9Hr9dg8kjMWOkQ29cbFHNVpJTs9Hpkx8fJZi2K\nxRyNRoPz51fZt+973rjZq9UJ4jji2Wdf4od/+Ds/iOvbhTTdWxn59//+xrX54IPw3/87/OzP3rg2\nv1PxiU98mna7zHvf+4959fwLbL/yBa68fom4u05lo46jCSadLPGru3z+7Ck2wwnK+Wk2Gi6apvGn\n53aQ6TLdVo792ZtJgxgvdRlJAipKI0gDBAYiSdBR5IAmkhCfg0qjSwZFFQtFlYgWa8AMFXIUiUiZ\nJiTAoUsFnS4FPAJq5JiijcKgRIGQATYpBnAYjSwCDZs6Pm1sBsRMM4lOjIXHGII6McVsnsGgj58m\nJFKASFHE4BiMViYQms/BgzOEYR13PMOIZZGRkrlKBW343d1xXZRlUXoL+GAbGxskSR7HSfD9BIB+\nv42mVfC8lHxekiQxtp0lTSv88i//V3T9CDMzD2JwFaFPsXX1GRIkUkU0exuQHtqzIxM9vIEDqYUu\nfUg3kdKnVLoNkOTF8wSBhhuX2CAmi0WZgG0gxSLCISahhEeFPFVGaQ7doHy22YdLAYVAYwB0iNCA\nhL0SxWIv2qMB7AcKwCowj04ZyTopOoIq+t45ukYvDggl9NoprhYwfc/3Mj19guXnP8mXnnmJ0Voe\nKSUXlpeZ0HLkEER+RE4aSNfnjz/+UX7qp99LPp8n+Dr97fo+xW+TNPdbxduqGOl0Onz0o59kfd1F\n0xyU6vPOd97Bo4++628saarVanzwgw/yb//tr3H58jVI9yNkgu438ZTED9eoqAjFKB4JJXRCeoCG\nTg4XsEmwSUnRCVHIoV5cMCAiRKOHTZFN6kigTIoCfKCIoDoktrYQrCKYw2GAYB9TLLKLwEESE2Dy\nFfW4hsLBp0BMEYsWfRwEOoKIOnnyCAxMEiwEMSY5ZdNBMHA9LvsZ9s08QC/aZLO+Rr8TorCwhcCP\nm/TkZbYyEl2PmJ72+Tf/5ucA+Nf/6j9yrdcm4+SZPnqM8ckxOp1Xue22x2g0Gmha8WvGoFweZXn5\ntW9t0N9meOUVGBuDG7k7dfIk/It/seen8yYq+77jUa/XuXp1l8nJe3jh2S9x7YVPsj9IaHRbBOEm\nN2kSgc2OH6KSmCqjdC0I4ipKFQj81xm1LNa7PlkVEScuQuWQaUQuVQh8FDELgxA/itgnJWswjL+U\nbAF5ShjYpLSpElGkToc8PQY4w2+pzi4OAX1SYir0gSIBRVJ6aCzhEaIjKFPFJ4ciQsNHYeAxTQ+J\nCdTp4FAhQaIhadAKJsiZOZABiYqIjQ5COGxHG+QHEMcer53b4MDxwzz02GOsLiywfOkS9fV1Ctks\n5WqV1SjCOnCA4w8++Jf295uBvWeIYm5uH5ubr5HNjhDHEUKYuO4Og8FlGo0svv8JNC2h0+lz330f\nRNdN8uUxuu06JSNPc3CR2B9FpkVi9jhxhrBwaKNLGx2PDD4t4RBFCWmyQCXxSLUyeSQFUjzGacHQ\nyF9HADnUHocDG5MBBj4BCXkiSmjopBgoypg08MmR4CI5CpSG/2MRaA6Pm8AoKQkaDAUMCRkUA3rp\nDgE6BaWBC+nIGNMTh5ifv5Wtyy8zCCJodnEHA5wwxBAJzahMza6iSBjJZtloL7C1tcL+/ft5ulJh\nY3eX6aGy1A9Dll2XH7jvvhs6xt8Ib5tiRCnFxz72SRqNAvPze9bOaZrw9NMvU6tVueuuO7+pzy0W\nJjh+UNJ3u8RpluVNn91gkxE5IKub9NImZWYoIEgI0WmxQ4IkokdABguFRoygT0yARUrAGG1y6PjY\nBGh0kTjACpIJoIjCxUaiUyOhRcw2ARpj5AFBSkyOFn3U8IbX0EhJGSEmDxjEhHj00TGo4lNhG48p\nXCpkAI1ASgap4mrQJNWyZJ0RwrRBvHuFmTgmQ5mEhFW1jef3mHYEXm+NTkchhOBjH/sMt912mP/5\nZ36Cz3/+RcLQQYg+g8EOH/7wyU7g/gAAIABJREFUexkZGcH3faT0vqZvB4Mu4+PfXcZpTzwB73vf\njW1zZgZyObhyBW6++ca2/Z2EXq+HpuW4cukSg/Vlct6Agp4hFQZSaRhphCNhRwly1BBKJxP02ZJd\nIk1REGPEchtTd5jTdTr+ZfTMDJqICFSHMSJsJ89uv8mUUsNYeROPPBlCyiS0aVIgpUKMIMsIkgwN\nunTJIBmljU7MJiaN4WRDkmJiEA23Yk0mKJPBZ4MMI0RAjEsMHMYhJsRHUcZmlS4uIT4SjZRL0Ws4\njBKj4RGQyYxzoHInmmqyK7qIqEN5tMxGmqA5OTZ3d2kCWhSx0euxtb5O8cgR/tef+ikOHz58w8dw\ndnYWxwnIZCocOFBjefksYWiwu3sOwxhQKtWIooM4zihbW1/G9yNWVq5z8OAtBEHKUnNAEpaw1UU8\nuUrAHDoBGc0gVZIqNq4Fg6iPpklymk6iBpCuMy4lUxEIFFlghy7rFGnSZwaBhiQlYIDERGfPVXsM\nhx2ajNAloEKPGh4agjIShkEA1nCqKofviiwpy0AeQQ4NHUkCSEAHmuToEHIzCl3GRELjxP5jhEuv\nU5/Yx9zR+9h85U8ptQfUxsbovPIK++KUvr7ObuhjmAUMtU2tGJAkOVqtFj/4Ez/Bpz/+cVZXVzGE\nIDJN3vnDP8z8/PwNH+evh7dNMbK1tcXamvtGIQKg6wZjY0d49tmXv2ExkiQJp0+f4bnnzjIYBNx6\n634eeeRBRkdHeeWVS8Sewe37b8cyTFy/R95J2NidpNdbxk8TsrSACIlCAg4h42zt6c7JsEyEiSRA\nEWPSxMKjQg9FSsSABjEWXSBkDIs2k8TsksceljgJITYD1vCYBvqk9IBtukyjoWHQISTDnjxRsheX\n1SWiS0zKPgzyaPgEuDTZJk9ChEacSpZQhNpxUllGRTHXN5aYUTZFMmRETETEvIrZMBXj1jircYNs\n9gRKjbGzU+Kll1o4zlX+2T/7EVzXBfakdV+x2Z6enmZursDm5jUmJw8ihCAIPLrda/zgD77/zbol\nviPx5JPw7/7djW/35Mk9v5Hv5mKkUqmQJF22l9tkNIOWlJiWTqKSPTK3puGmCtDRsRFAojTCUJIx\nFMqxidK91c7tKGYmtSFpkcnmGWgF+v42WVEEJUAIWsogS40+GnVARyMgIksLgzxbKHJYTNEHEs4S\n4yPoU0NjigIlBClNNmkT4uHgkmGKIiERPhqSiIQ8/tAA3iDLgAExCR4RBTw2EFg4QJEs1aHsVBBj\nYPUUy+EipZzivrvvYTTfppimvN4M+MNPnKOz3ObQ5AHuPnmSOAwpZjKsJQmzbxHx3LIsfvRHv4/f\n+q3/FyEM5ubKuO4W29s75HJ34fs22ew8vj+gWp1na2uV7e1FNjcv4/saStVIjCxRLHAYwRQJphhF\n4mKIXVAm3XgbiY/UZknSAZGXkKWDhiCWHjoZspiUGbBByDZV+jSx6ZIj5SYgosMqWVIiUqYwsdEJ\n6dBiwBKz9BgAPWAOSRMxZAplSBH4JDQIOILBFinTQ3ZRDx1JiR1ixsgOowU6WDJi+fwLSEvjwuY1\nPvgP/zeM+76PV1/8KO04ppfL4Xd73GNJenoLp6LTQVCYOUapNM5gMGD//v38o5/+aer1OnEcMz4+\njmVZKKVYWlri6qVL6LrOkaNH3xIPqbdNMeL7PprmfM3vM5k8zab7Dc/75Cc/y8sv15mcPEqh4HDl\nyjoLCx/lIx/5+wxXBEEIhBAUsiXuOHQHazufoS8Tso5FNY6IktfxsdHQcelzFy5tBKOYbCEJSBlD\n0WFAkxIJ49Rp49CggqRLmSZT5ICUPj46BUbQ8PCIh7TVHCGCbTyyRFhkEAja9Mmh6ALXgX3sJfMs\nAC0kBiNoRHg0yAABkpQSkg0cLLZJ8fV9lLP34voNklQiVJ/WMCenqPZ2ox19hF3hIg1BlDiMjx8n\nTSWuG3HkyC1sbAhOn36FD3zgMaIo+iq7aCEEH/7wh3j88c+xsHAKIUxsO+GHfughDv257IS/7Wi1\n4MKFPQ7HjcZXSKz/5J/c+La/E9Dv97nw6qu0ti6ycHWdQ8VZsAs0YxdFj4Iu6aRyz3hKWCgGxEqj\nj7PHyJAKP+ii00THpJvuEUirYYqXtOkJl3qxxlYUkgjopFCgRAdFnxKCeVr4BHQYsEobF0WB3DDY\nLouJjQfkyDGPTZ6IkAgPkyLX2CZmBgtoopNHICiyQ4sqGhBjkBDj4aGIEZQIKaChYWNhorDwMOlR\nRDBGlRSD6xTDEgPlsbn1IvOzcyRyhHKxRBBrjBVnuHDpZV5/+XmKpqBULDIyMcHFixffEuJ5kiS8\n9tpl0lQjCHx8v8uxY1NUq+9jedljYSHC9xuUy0XK5RkaDWg2d5GyiqYZJMl5TFmnYs0i5TioLlJb\nQZMFIpVQlz2KhiKr52jJa4SJRqC6FOngk6GFRQHQ0BBYSFx0IvLESDwOoOEhmcRliQ4B48AILg3G\nSTAp4jNNRMiAGIAmigoGHtnhC1eniyRgmjouBVLO4zFCRB1FG4VGmQo+RRQaEkdJqnqJSA4Y1Ff5\nwid+jcLUfnZ3Vgg6be4ZH+dCqohSKAvBxd0t1NwR3v3IjxFFK2+YfgohmPhzttBSSj77yU+yeuYM\nE5kMqZQ8/swz3P7ud/Pwo4/e0LF/2xQjY2NjKNUnTRN0/X9cdrO5xeHDX7+Kr9frvPLKMvv3fw/9\nfpvFxddIkhhN03jhhTMcP36UP/vTSzS7PaaqIygUC4uXCL0E26iRxSagwbzuM6IN6MUDBuwVBQKF\nTUTMnjlOAjikWGwhUURUMJkgQOJjYlFGZ4seJXbpkCPFJ0ZSIcGmi4eigk9Ekw2OMoaDQ8w2KXVs\ndLKkVNnbc9xFUCE7vMGzuCQMhku+XTQGCCQJKSNYTJEmHXKmopP0SNGGUuAN8iTowiJRCikTemEd\nu3SYTKZIp1Mnn99jq9Rq0zz99BMsLKzQankUizYPP3yCEyfu2SvkCgV+/Md/hE6nQxAEjIyMfFNe\nI29nPP00PPQQOF9bM7/peOgh+KVf+u7kjfR6Pf7gN3+TYr/P3z16E+2FK6wsfQmhNOpWxEjFpNUQ\nXGOPRDiuYnaI2UQRaNMouYUrB9hym5xtIeQ8OcOgIzssCrBNg1TYPHjvu9havYzePM/abodamjJg\nDItxBkhCchiM0yRgigYaAp0KPoJt+pgEgEGeGJ82Ol9RVwh8Cgh0FAk9Egpo2OSpo+PjUQC2SIjQ\nSamSZ0COzFBbs6fms9HYoEeMg8MODhUUNjkG5JTD6uISxa5PKTvDej7PROEA64svMuYOsOKUe2ar\nbIchFxYWMD71Ke69994b7sL6zDPPcfr0NocOPQIILl8+x6c//UWazXVqtTkqlTIHDhxBCI2rV5+l\nXD6Obbu023WSxEDTSki5TNU8ThR2ULaNr/r0k12StEuU7lJFYKQGFVGko3JETBDyZSQGHlX2prZ7\n4uoQG4M2RVI8LK4TUQLaMGT8GUA6zFiWlJFILDYxqGAREZBDZ4BJljzu0NCyDmTYT4MlMkhqJFhI\nWuTIMUaMTgufPH0msEi1mDAN2Yg8ktRm48JLaAtneMfMBIdzOZw0JbZN1o0csjBKycowe//78bw6\nDz982zcUely/fp3VM2e4d9++Nzh/82nKS1/8IkeOHr2hBenbphgpFAq885138PTTLzM2dmS4IrJF\nmq7y8MM/8nXPaTQaCFHg/MtPcfb5L5AEDik5Qs1nefkMv//7/yePfu9RPvGxP6W50iD2XV67/gpT\nI8e46eABvnzpVeptBwcJ6Z7Zb0CECxg4hOQpIAhwuQgUGCNLZhgR3iFBEFEiZXvozCcokGWLEMmA\nAikWgt6elgUde88RFYsBG+hksYgoYxITkWDTwqSAR4QiIsCjRYKBhomDIEAh8DCokGg2jjlHEPrE\nyZ75kSSHRw+TXaSAQFPYacyO2iVQAaXxKWb2HyEMfaDPzMxeIuPi4utcvFhn3753Mz9fwvddHn/8\nNFEUcfLk97zR529WUNPbATda0vvncfPNe0XI5ctwyy1vzTW8VTjzwgsUez1uHi4t/6MPvp/Pf+EL\nrF25womDBwl1nRdWsojtXa65DldVAUtM4SsbKa8BKYKYskhJUoUhE8iViSOLJHFA5lEs8uyzTzBZ\nc6glkqI5xdXUxSKPhiIhg45GQojDCDvscIAOPj4esA5UMEiJ0AgxMRgHUjQ8FFkCSjRoEuNQxWMM\nG0FKhh086mhoOPiUKKFj0mYTHZc8o8MZ9YBxTPLAHDoxTZYQDEgwySQ90iSk3m3Q1HNMTt1KY3uR\nrOeRkzoYBoamIZSi2etx/cwZfuHnf565yUlMTePQbbdx4oEHhqnpbw7SNOXUqfNMT99DFEV88alP\nsXDpGhlznmSg6GAQJDvAC2hahYWF1ykUbkPTYkqlMlLOYdsj7Ozs0KJPpNqEgYnUJkGPEXKH4nCs\nHcaoKYcsLhLwGWObNgZdYgzSIVMvpUwRNbSc3KMNl9gjnhZx8WgBWSxSxrBQpCTADAYxMS1SHGJW\nsLGICUnpUwKKxHSGE9iQEj59FBEplaEix6fKJq09zomS7MQBG1JQDmtEaUArMrmw02d6JIs0TcIk\nIRu2yOdt2m6HNFnhQx/6MO94x/Fv2OdXXnuN6Vzuq8QHhq4zoutcv3btu6cYEUL8KnAceEUp9VeG\noT/66Luo1ao8++zLNJsuhw/P8fDDP/JVy05/Htlslu3Nq6ye/TIFbR/l2l78eMftsL64zRNPfIGf\n/Mkf4x3vuJ1PfepzPPcnT7FvbpaDU7OsLb5Eqdd9I43xdTQqWLhEZCiQ4wAmJqCoI0kZYJElh0GM\nTg8XxSIainFSBEVidLr4aGRYQVDCwyKLokqKwqFPFh0LgxEsegTEQBYDHfARFJjmFZZIycBQ0Gvi\nksNBYQIBAV2Ucyta2iGKru9ZzMd3DylULjFjdNnAVttIVcbVoKsSzHyF/cdP4Lpt+v1LnDz5ILlc\njjRNOHv2OY4ffy+53N7DKJPJMzNzJ0899SJjYzWy2SxTU1PftQF6Su0VIz//829N+0LsFUJPPvnd\nV4xcu3CBm2u1N34eq1T4O489xh9mMpxPEgqZDCcee4zC6iqbT2+TBkdxdJ0wvoZSxwAf05Ts0kbS\nQSiDvBIILU9WS5FyF2GZFEoPkkQdlj2FH6wiUMRUsZkcFg4Rii1SJBGC6yiqhOTQmCWlQ0INxTYt\nRqkRoDEgJcYnM2SRtRnHJYNLGx2JYJdRLPJkcSlQx2QbgyIDRpGUcfCIcHEwyCOxhg4lNglTmLhk\nuRmpDfAZMFHSiQyLWrHI9vVFJss1mptr1DIxX97dpT0YcFcuR9Ju03rySZKDB3n05EkaL7zA/3Ph\nAv/gn//zb9pO4a9CFEVEkSRNFU8/+SRXz79MxrqZcqFMxkjIWSFbkc7ly18gm53GtqFUMhGixvr6\nGqYZ4LpLgKQVLaPELJo2yszsETqdy/Q6ZSQ+GTJoqkeHNhYlMvgEzLOFh8HMcA06Q4JEZwFFiGSU\nyaGt5AIhNw25I2dZpI7Y85kZqmEMWm8UFaCwgDIuu5TQuQWHHB4mfbrErNGjzQCQCEr0celgUwFK\nNClh0ERTijBJyYs5UAYJKQX24fu7fGH9GjdlLO7IZunFMQfnZ3mt0+HY0QPce+87/tI+/0YuuG9m\n4N43wluZTXM3kFNKPSSE+L+EEPcopV7+K87hrrvu/GspZ5RSKKVYufw8zUbI/NieZl7KFIOIuZFp\nTp06z9Gjh/n0p5/B90sYWoFosMH28lkmIkFPq+AKgzElWGdAAXBhaFHjkKIRI4nJYVMipI5JdviQ\ncocxSCktJDoFSkzikNJnB53NoQ+Jjk2Chc8IgpgUGw0bmwkkl/BpkkMiGRBS0ix6skKNSQJSJuhT\noMkme/SXSQSjCFajJqldIoxbQA3J6tB2RyBYJBW3sCVK5PMOtdodzFiKD3zgfuL4Gj/0Q49w6tR5\nms1r9PvrSNlkYqLM4cNfzY7c2trhuefO43mCTCZDuQwf/vAHmZqa+mZuibc1Xn11T9Fy8OBbdw2P\nPQa/8RvwMz/z1l3DWwE7kyH0PPLDnCrX9zl9aZHlpmT/HXdzxx2Hec97HuLXf/23ObA0zeZml157\nhVQVMHAw8NBlH1MZ+LKFQ4By92LkHWqAhQq3kL0+AzWOTDM4RGQp4tNgL5tVJ48a0ld7GJSYo4IA\ndGIqtMjSxwDm2aKNiyCHT0iOiAxlQozhs2Ufih3gVWbJkCMH1MhjUyRiEZOAeSR1JD4hPgkV+nhE\nWMAA/w1XCYcOAaYcYNpTFCoCLQxY3XidBIU0QsoVxcH5g1xYW+Ph2VnWBwN6nsc7Dh8m0nWur67y\n4F13cXF1lbNf/jIPPfzwmzKOjuNQKBh89rOfo764hZIWMi2wVd8ll+9z9+GDeOvr2Ifu5qGH7mdt\nbQnPG8dxRllb3STsvk6a7Hk+RWocTdfR9E2SJIPvB1R0k/3SokQBhUlCnWgok44JgCwJkJADQjR8\noEwHjxIpBg4mITaKDLCNYIQ+fRYIKdBGo4RiBJ8x9mTAPiY1IiqkPE8A7L1/JC4+OjFjRPTZj84O\nEFIiJsVnG8kaBSJiFA4ZcoyhqyJd4eEzh6VZmDJLT2RQvotvGHhKseW63HfiBLvb2+zs7DA2NvYN\n+/ymY8f4/OnTzEiJpmkAJGlKI0l45Aarqd7KlZF7gaeGx08D9wN/aTHy14WUkk9+8rOcObOCrpWI\nwnXWN5YoFPLkcxazs6P4mmAw8Pn93/8so6PHaTSWaA5MOu0GZijJ5MaJQg+dAQEuY3sBz3joGDhI\nMhjEWOhDYZaFQCdFsMsuBhXKjGAj8YiAHVIsiuToYBGRJ4eH5AqSGjFZAiChQZkiPUDHwKBImyki\nLEJ8zsltbKoUyBDSYwyNPCYGFikeOQp4+NTlDp0gYi8LQaIIMfQupl4hSWdJ0gTDqKFUmTBscttt\nx9i//wCbmz5KKUZGSiwvX0TKiOPHjxJFLi+9dBrXDSmVCoyMlDh37hrZbI39++/Fshw6nQa/8zt/\nxM/+7D99Q2nz3YK3covmK3j3u+HHfxw8D7LZt/ZabiTuvP9+Xvj4x6nk86RS8sfPnWWnU6IweoKj\nR99Dvb7JRz/6Wa5fv06nk2Nu7j7WREK37aCSFVKqCFEjVbsUqVKlTo48UsIa20CWMQFG2GY7Xkdq\ngiwCkwIjeGxxHcEIEnBpokgYYxSbLCEhkhDQKLK3XeMgMWkzi4uBThsLnwod3KF35zIQ4WDTw8Ig\nIY8iJiaDSQ6fPlPUSelzHZuQHfzhk6iLgyImj4GNICKlRaSK2GmZ82sX+LG79rFohZTzVbKpT7UH\naBrjto2XJPSlJGuaVKpVpKbxzMVLqH5Iz/dZihPue+CBryKwf7sghKBUcuh2NzF1DWVaJNIjli5h\np8XVBYOVRhM9l+A4Ze6//3s5depp6vUt9LRLrHrk9JiCWWUgSiTmKAmbSNkim61SdZexhA5qj2Uj\nKJBnQERKgg8cBuaAbaAPjKMRIHFYAlr4VPCHPqsaNyMJEFTwWMRDASV02ggm2dvKibGRxOhozCFJ\nqKOw6aNYR0dis4uFS4Ye0yhqOCR4hEgiPLbZxULDJkuwxwyU4xj6HJFqIJBkdY2CnWELyE5Pc+I9\n72F0dBR/bY2dnR0uX17g3LkraJrGiRPHuOuuO9/g8x06dIgr997LSy+9xLhtI5WiniTc9Z73fMMd\nhzcLb2UxUgYWh8dd4Oi364OvXLnC6dOr7N9/H143Im5/DlOMoJKQAwdnkKSstHaYN7OY5gwXLpzm\n9ZfPQOgRqRSZ9vC7bQrSRCiFFAkdpbEJSFIaDDDJkEcMX/MJCT3ytAjYIaHACCM4QweQDGN0SfHp\nYGKgMMlyjJQGWfpodOixRgEHRQELAYQoasR0cdExGMemSsx5fCx2yOOQkNBEwwD0PWdIsqTsmcyj\nYgQFFDXAIU27CNkF4aDpLXS9jGkGnDx5Bw8++C6klPi+yx/90VOMjBznjjs+hFKSCxde5LnnzhDH\n0zjOIQwjots9i2HEzM6WOX36PNVqifn5Obpdh+vXr3Prrbd+u4bzbYEnn4Sf+7m39hqKRTh+HP7s\nz+D7vu+tvZYbidvvuION1VWeP32a3s4OlzcTSqOj3H3f/RiGwfj4HAsLO3hejK776LqBbWcwjS5R\nOgvo6JoiKy0s5nFJKKPQgRl0VnGZkzYFaZLDoyNDPCK6DNhPiVli6mwjEaQ4CIqkKCRtqvjD77MY\n5vQamOTxcblOhEM69CEasENhmGI1B1QweR0NQYMtFC1sphEoNFIUET4B00PL+RwRBjGjQxXeMikJ\nLUYoI0SONmVSdHYCyZnlVQrHjlGd3I+SFud2nydqrqF3O9xaq1GZnSUvJZZp8vrVRXb6ETOVDOvt\nHpv9VX73dz/OT/7kj74pBPVWK+Cxx97Hn3zm9yBq0h7skmUKRyuSKAMzC7lChbNnl3jkkRrvetcH\n+OwffxyT62gyS8W6CYFOHLRQqU2+Nk6reQWlbFQSkqg9awSDGAjwCIZr3tNABbDZezVV0fkzCoyQ\n4SYECR59VqlTZpkRFK8DDopDwzNfRKDQSUjpYhKh4ZCgUFRI39hcj4ZKHUGWhDYNymRwyLCPCIcO\nA2I0bGYJsND0LmZaJtUShDxAUbMIRUSkFG7SZdIM2E0Utxw9yrvf/37K5TJKKbpxzBNP/CmdToFa\n7QBxnPL44+dYWFjmwx/+e2iahhCC93/wg6zedRfXLl9G03UevOUWpr9NrqxxHCOl/GtNTt/KYqTL\nnjAE9jhBnb/4B7/wC7/wxvHDDz/Mw3/N5cFz5y6RJBbnzj1Pv++ilRw6javEgcOZs5fRZIhdMpHe\nzTSbdV5/9tNMRGBGA3Sl0UoCpsX/R96bx8p1nmeev+/sp/b17hsXcRNJSdRCUfISS/JuOZmOGu7E\nTmzHnU4aDQSDHqAHg5luoOe/AN3TE8CNtJG4jU564ni3IUuWJVsyba2WSErcl0vyrnW32pdTZ//m\nj6pIliXZkkVZivMABMl76xQO6pyqer/3e97fA6YeE8cGMlDQUAkIhh8sK6ziIxhDwUTnKrN0SZMk\nIiCHQ48FDAqESBTAoECdOg18FGYJidEp4jANNGhykRwWOUZQUQjwcPHoIWAYUT3IQdDxaeNRQqCy\nhsAeelZMVBQiNomHu9M9DMZQyeAREDNNLK+AXEDVFQwjx9hYgCIkjz30AIHTpd45ya7r72T37snh\nvqHC0tIajcY0qRR0OhcIQ41a7QyqajM1dR+Ok6Zeb3P16tNs357BcV4JQPtNVqsFx47BW9S9fkP6\n+Mfhm9/8p1WMKIrCR3/7t9k8coRvfet+tps++/YdQtNe+niLY4Nkcozrr7c4c+YJpIxx/WVUeRBd\nC5Cxhxr7DGLpJD06ZIbuiwiVRakyi4skoolNQBEfn1N4pMiioNHCwx9azLfoMUWPJBYR0ZCdOuih\npumzk8QwuzdmhTQdtgE6YrgIgS4+MRERERYNKqTxkaRw0FDYIk2XHAqrSPZhs84q/nCxY+PgksZQ\nbkAooEifWDg4scFl1eaW8vXs23cvqqoxO3eE5565n/ryTxm9fh93HDjAc0ePsrK5yXPLa3QSeX5y\n7FEEMcXtB/nul7/Djh2T3HXXXdf8WlqWgWWVuf7g7Vz8yTfJKh1W2wu0RYK2NcpNt95BtxsRRRqL\ni8uMjKQ5f/40fd/BNqcwEja2aqEndK40NnA2G9iGS9dZphk3SZEgIhpeiYAmOhEpBnD2KgYLDIJH\n0+ioWIwQ46PSwKJDiMMkCmPI4bwiXAXKQBqNEEkfSYuYzBCT1mfwZdelh0tEjE1rOIo9eI7t9FlC\nRcWnNdwGCohp4RJhxC1GkxN4Xp96fJFeXEJHQ7BKuehx042Habgut/zWb5FIJDh16hRPnzzJpmGg\npkPuePfHSSaTAKRSOc6e/SkLCwts374dGHSkZmdnryn8rNfr8djDD3PpxAlkHDO2fTvv+yU0yDdV\njAghPiul/NKvePhTwJ8AXwPuBl7xPD9bjPwiOY7D8vLyiy/qqVOnee65GpnMdajqKCQPoESnCBdO\nM5fKcNONB7n55hu4sLjIl37wd2R7LmkpuOJpxOwiEC5rsUPek2gq1PBZxycDjAI24FBlnRYb2EwT\nkyXCoEo4nGux6RMN1zkeEQEMp2QS6BhYNIdMP580eRpMUWGTgCVSgEtAnTImE6SIabKJSxlJbzgt\ncwELC0mKeRpk6aFj0CKiSZGIJipZTNEf0CcxCKgRE5IUPlG0jShqs77u8Hj9GLlEj4PbM+wdz3Ll\n4vNcLc+wfeeN+L7L4uIamjbL2FiBYnEUz+tx/LhPq1UjkchgmgksK0mnozM/f5zR0X9C34TAI4/A\nnXcOPCNvt+67Dw4dgr/8y19PavCvW77v02g0sG2bTCbzst+NjIxw+PDNLC0df1khAhDHLomEzsGD\nH6RQOM7y0lWajR4ibJG0snhOi0D4CNlgikEKt0FABh0HjSo52nRp4xEzToxApY5A0sABAgIidBQ0\nfDzSrFIDfFRCuni0UCkQkUTSQ9ImiTZMuupyCckcEtCooNFERaXPAlMEJFGwCFhmHY8UxjAir4eL\nwCKNSYzAo4YJjAPzdHGEjipsAsWgWL4BVVewiwbbt9+Gqmpsba1w4anvMgVk1RRLly9zYXGR8WKR\n7x/9Md1+SKrRYFSzSOSnGZUCVbf50l98nsuXV9naajI2VuK9772NHdfAMHXkyI381RfuR11b4X3X\n305l4RLJaI2O5jF5+Dbec88n2NhY4sknH+PUqeP4voLjWZhM0HFrdPomxYSBptmEUkcVq8yNlbi0\nfJGaK9BxyZNGxaGPQoUdhERYPM84giQhEVs0CGniE1OlSIM8KjFdAnrDrTSDBCFZIqr4VBBIIqxh\nyOEmEVkENuGLOIhJfBaijUDoAAAgAElEQVRZYAuHwTp8MNigYhOi0eM8U4yiYhAPmayCdTIGpOwG\nrpcmjYFUmviyScLYZHLbu1gKA/bt3cu3nnqK1cVF0pbFPXfeyUQ/4txiyI8eeojRqSmIY0pjYyAy\nLC4uv1iMXGtFUcTX/vZv0VdXuWNiAlVRqKyv8/W//utfeNyb7Yz837xKEfF6JKU8IYRwhRA/Bk68\nmnn1gQe+z4kTF9A0hdtvP8iRI4df0e45fvwE3/nOUaIoBUjCsMaVKxUMYweZzMBImUyWuVhb4ODk\nBP/yU7/7ohv80L59fOd7D9PvNdnQR9CYRkEllDpdSrQVnURCpePFGP4qeZxh3yJNDkESFw0HkwQS\nQRYbicYWfUwMOvjYGENk+zIuNiZtTExGAYsEHj4NPAI8Yq5jCQ+VLaIhEdDGw8Qjg4rLPDFpErSY\nQeKygUmAjoVFihoaOZIEtGkRozKKLxNo+IT0hoVIQMoURGrA3L5306pVmMr2Gc1vp945yVY1ptGE\nS9/9ez5wr8rMzG46nQ6GITEME1U1UJQY295Gu32eSuUUExPXI4TA89YwTYfR0dFf5Zb4R6sHHnjn\ndCJmZmDnzsFWzfvf/3afzbXVM8/8lO9//2mCQENKn/37Z/j4xz9E4mcMMrt37yaTeYJqdZVSadBq\nbjQ2yeV8um2Xow98g9FkkVmrwOXUKJuNCkHQwVKgFwckZGOYs6vho9EDiiTxkLTJ4lLGZhIDlz5l\nBB45ikQ06BMCPUL6xKzRQqWFQOBRJGaUDBa9oesghYsG9LEBEw+Xi4CKjkSjgIpDGRUTixiXPkkK\nlOkiaWHi0CVLTJuILj49HGYRFJEIBDYBi9Eqm6RI5m5A1Vvk82mE6LCxcolLJx5l5cppbh2bZbQw\nTl06vPvdBzg5P8/RCxfYO72XpY0uOa+NJlXcbptKZZ1SKUVjucrp02127bqFzc06f/VX9/PJT97D\ngQP739Q1vvXWm/nbv/wCVtgiCgTpfJau2+X26+/mfLdJr9cmkymQzdpsbW2Ry23HD+bpRUVUKQlk\ni5XuYBGo6QpTI5OUsjP0+3NcrvyITWFRi/ooSFy2E9NCUGMKkyxlwGeAcO8T0yCNyTg5xBAnOY7N\nKgE1wEDgIigi2EAyi8oY0CMigUGMwkUU+hiEGCzSxQeSbKNND4VJBKVh7zwC5hG0McjSp0tMjSml\nR1tRsIM2uuijpWzSqQR5c5p1WYbSJNnaJT60cyf+1BRPP/oonqpSyOWIFQfX61FfqGB2u4yNjrK6\nvk5dtvngB986wu7CwgLu8jIHfqbTMlkq0V1Z+YXH/dJiRAjxi5LOXtum+zr0y8Z5n3mmzujoLURR\nyMMPz3P16gqf/vS/eNH1u7a2xte/fpTx8VswzYGT/uLFc1QqF9i2TadavYphZInjmMBpUxhPvWws\nTdM09m6f5ZTTod52yeoKoQ5dNU0utsgbJXTFxWMTBYUkBhJ7ePMwZDcGtHEoYjHImDBI4LBChyom\nJiF9mqTwiOkzgkmXNVyKGFjoxDjDeRuFUSQKksxwXj2ij0/IFho9LAx67MVgFQWXPB6ThHiI4Uos\nxsWmQ4CgjUIdmKZPjKSCRYAiN1ECF6EomGaOhNlHU302aldYWaywq1hC6XXpu3meeeZ5NM3AslQ8\nb4l0eoDiFwJarVNomkK3e5WTJ0+Tz2c5fPhdpNPWP6nx3jge5NH8+3//dp/JS7rvPvja136zipEz\nZ87wzW8+zfT0zRiGRRzHnD17Ed+/nz/8w5c4Q7Zt89nP/nO+9a2HWFq6CghGRhLcccchnvrmAoXx\nFtV2hWq1TV408ewuaqpAoyFx/SYl6vhoNFDxyeGRRgyZp5LpF/0gGgYSiwgLl7UhciyFzxgqxwkx\n6FFiBoMYjxZtBB2SQHI4VxMNUYkhYKBTAHzWh8kmZVRaJBmE8EWMopBFYJCnwSY+GlUCVDwC1thg\nGoXkkBA66MZGJHGRURa916ftbmFZBtPZJMr8C4xbCdxem97iebaiCE0PSKVS5A0DtdUml93Jc1df\nICMKWHqGMOhSq7Vpt1eY3n0I206i6waFwhiWleTBB4+yb9/eN/X+V1WVbTMTHNq/h3a7jabNcuFC\nkna7iyWh2dzi6aeP4roqmcxtNJtdfL9MLBKgTKAQEQdnBujH2CKhJWj1wDBzqEqBIA4JlAmiWAKb\ngE6CSZK0GIRswD+EbWTwSNNEYiJQCVHw6ZPBoIJJjEsKjyYDlHcZSY1B3kwdyWUStJnFZBLQ2KCG\n4DIKdUIK6GTRuEySKjY9wKPDZWKSpERESsREsUovjLms+kxmTGZGZ0mbaSpui3L5FipXj3HPVB7b\nNKlvbTFimqRTKc6eP8/OnTtZXP4J16X3oMUx6UQSXVNorp2k33ttavmbVa1WI/0qo8Gln+tk/rxe\nT2dkBPgQA+jcz+vJ13Nyv6qmpnYBoOsmc3M3cOnSMy/b63rhhTMYxviLhQiAbaeBIhMTOa67rsz6\n+haappJJHMByLnD58hXOnr2E02pSKmUhl8MeHyenBlhS0PZ8AplhWSRwogZ6u0FLBiQxyKPC0O0h\nsBHDkbABKU8jRmKgkyKJh0OCVQQKNnlcSgjajOGj0GWLGm1sAsDGBXbj4iMwiTBQ2UbMGhYhFkkk\nW0T0UTlNgioGBhERHaCIO3TsCzrDqR+DSSRNAo4iKZEiJEGXDJJcZNDwVrly6VkSVpqkUiVav8p+\na4QdmQJRIsextWXaW4s880yV97xnlvn5Jq3W87iuxurKCTqdJrnsPnbuvAfT1Gk256lUrvLpT9/9\nT6oYOX4c8nl4izqev5Luuw9uvRU+/3l4C4Ye3hYdPfos5fIeDGOAt1UUhcnJ3Vy48CRbW1uUy+UX\nHzsyMsKf/Mkf0mw2ieOYfD7P/d/4BrtLJe7as4eVjQ1+8OjTHL7zPTx75jlOtJfRoi6GKOCyjb5k\nOFqro6pp+pFDG4mHTUyfiMH9HSKQ2EMGahuN5HBjVpBiJyYOnSF/WVLgypAjtA0fQR+BIGQCl01m\nGMUiRDCKS5VlHibAYJCINYYgiyAANGIUFGIMfLpDA+U6An/4x0USWgmSGCiBSjr2SBgO28pzdPDZ\nVbQxui61rosX+liKwsr8Me7+6D0YhoHT7WLpOkvNFpn8XtzGCskoQpUqMtaBHmEiSSZTfPE1TyTS\n1Gox7XabfP5XD8cUQjA6NUXQbjMzzMcplUqcOXOeZ4+d5OT3v0SvV+SWW+7k8uUllpaWkXIGaBBL\nD4Zb15BAyg5Xl1bQlBaKZRLEPmFcYmBW3WRgZZ1A0h4uMBWghUADSnisE+MQsjksRNyhgdgiJEWX\nFB2abBCRIuDcYGyAJLBORJMsJrsxsZCAQYoIlZgLQJqYy8xQI42GwBhu73nYqJhSJxJjuIpEigZl\nI4fob7JWOc4FK0Np90dIJCfpVB5namI7hmFgWhYBoAjB2fl5NtfXmYrWubq2jhXuwqzH6GqHf/au\n61mdn/+Vr9EvUzabpRfHr/h5s9f7hce9nmLkASAlpTzx878QQhx9vSd4LaSqeSqVtReLkW7XwTDs\nlz2mXC6hqjHdbpsdOw4wNjZGHMecipY4f6rNwnceJx0bGJrgwsJFotEks7fcwnM/epyO28XIFhCd\nOoq6k7WogicLJNUsUXSWGmuksVAxkEAHSY08VbKEQ9Jikh4+FgUmqLNGBR/JBAaQYpMCCgliZgno\nDIPuLmJjDt8SLlU8RlDx0ZHD/UOXmCwudWaIKJJmlIj0kBdYHb79JghoMErMDHUsAgrDRvFJyuik\n8NCYIMSlpBdota6y2UugdTfYIWwsXUFTVbq+x+GDN3EldulbgmJxhPX1Gt3uGv16C9mvsXt8B1JE\nnD35OGNTO7AsnV6vyuHDr037+03UAw/AR99hWYBzcwPw2YMPwu/8ztt9NtdGW1sNRkZeTnMTQqCq\nSTqdzsuKkX/Qz9KAQ9/HVFWEEJhCUEiWSNkpxkbGSHTOIa1ZanGalnRIxavkZBaNKjJq0REatpwg\nok2AhqCFTwaNMgHrSEwUZvBYQKFBjMGAzzn46ukhSBKRxWSSOj08VCQOOZqskac4ZAulEOiYQxPk\nwMAekiUEPMSQFdrGIYeKT4EqDQpojA0hAjYCC5V1t4elK6Q0nTlpMp5VaGs1Vrckj56skU9q9NrQ\nbUZI0SaVkmRzg5VrByhNTrB0pspU6UY2ZA/fdxCRSiadoOY28dMFisWX6JxxHCFE+IZH+p977hiV\nyhblcp79+/eRTqe54557+O4Xv4iiKBQzGcI4puI65GZ2o7pJRkf3cv58jaWlVXzfJQxd4jiJogw+\nlVVVEEdNEiSxUdD9Llv+KiGjCDE2hHzlGBQfmzjk6bJKnjKgo1Anoo5DGp/OED5nIlFpE1PHw6VP\nmzweJmmyhLjUucIBurQQ9DBQySExiAGfCBUFiyJdBBGrZDEpMsgGG3ReXAoINvBIUMKPDVapMxKq\njMQmydI+4rhNTk2zWb1Kr98gXxDsvX6waB8plzlvGDx27hzlIODmfJ5Ks0mcilhLd9i/XeG2vbfT\n7fdZewsNZdu3b+dHpRKLm5vMlMsIIWh0OlTC8Bcep/yyJ5ZS/pGU8iev8bvf+xXP91dSHLukUi+5\nBK+7bpZud+Nlj7Esi+uuyyHEBouLp1lZucDS0tNMTZnk5t7Fpp5nw1BZVjWMmUP0XZXq889z5Mb9\nWOlNOvoauhngxs8Thw6WKKFKaBFTGVJBNnBZos15FNpk0MnTJ8c6B7nALJvkuELMVTIMgqS3cFmh\nRMQaznBTRWISEiKIh6sckxCbEJOQCA9JSDSMxuoOQTsJVPq4LNBjARedkCqDOCdBkgwFTFTygEGI\nyggaGbLDTSZJHVXpoUaLmMESpuzT7Tu4fhXDUql5LunRMYqlMtWVCp0OjIzcwZEj/wK/ucL1hQ77\nZgrcdfNBPnDLDdw8lyFlNXjXu/Zz6NCtxK9SEf8m653kF/lZfeYz8D/+x9t9FtdO09NjNJtbL/tZ\nHMdEUZtCofBLj9+5fz8rzcHAXrXTYb5ymZ+ee4anL7+A03bQ/QgrqkIk6cgkawhWiOkoLpoaoyh9\ndObJUB0G3g1oqwZXh2b1JpAc+j00PCQ+kzTQ0YlRgCQxE5jsIYeGTZsyggxJDFw82lRosU6LLgbq\ncIpGY5kmDgs4VFlkmTYeHpIIgxiNNAYT6AhUfMRwqSSJg4CW0CnqKQpWilSzR+g0aPdMms4+hDXD\n3gNHiCfnqMkUR595jmOLi+RuuIG5m28mnTXp92skkzu4oqQ4p/g443n0PXspTr588mJ19QI33rjz\nZf6d16Nvf/sUJ0+6PPjgBf7iL75EpVJh586dfOSzn2XJMDi6tMSxZpMVNc3hd/0+IyMTRFFApyMp\nFg+QTicIw8tI2UGIDqoSoylFdKoorCHoEyltVCKS+EgZYbFEglMIOsAaUKWCwxZX6FOnRZsVdCz2\n0KXMOmUccvRJsIzOMnnW2UaDMTzKRMOZSpMyHRTqQ4pJQIxHjzbzRJxBcB6HKjYhOfrY9DCRGITI\nIY+mi00dlYsoXBZFUAukZI7Q69LYWkfxHbLSIaw+z5EjGf7s//jfuFSt4gUBmq4ztns3K+025UKB\ndhSxEUVMzM5yZGaGTqOBoWlcrVY5ePjwG7pOb0S6rvPPP/MZ+uPjPL68zFPLy8wD937mM7/wuHd0\nNo3r9rCsQfHRbtew7Q67du168fd79+5lZuYEi4unKJVmkTJma+sq7373Lu699wNcvnwFz/OZm3sP\n99//Q0zDYM+2W8ilBpmYl64+R7kfcrBgMzU6yu8cOcIXvv51SlGbZrvHla0YRV4hKVWmUPDIs0LM\nBbIoWJgUUemRpkNIhz5JYJzm0FKmAAKLPDaCrWGdHLFBxDKDtY4gHg4JLhOhopJGskrIGCE2AR46\naSQNEjhDAoFGn4AeA4iSisTGo4FFhAa4wADBFhHiYxHSxECgYJEw+mSTNj1pkE6qdEONXMomXU6R\nzY4RBiGXLp1nq9fk3js+h2FYLC6ex2lHnKu6xEYP26qwbXya2dExLtZrJJMJgsB/w9kV8c+Q//6x\nqVKBS5fenpTeX6b77oN/+29hawtepWnwj053330HX/jCt9A0nWy2hOf1WV09yx137H5deUh79+7l\nzJ49/P3DD+OtrpJ16pytNtihqJxzffKKpKhZrEV9ivoEfjhCPwqZVerodswp5yrTuCi0qWDjkxqM\nXZIjRkPFJ0QhwsQnCdSH70Abn4iANjuJsUkQD6HjVaq4ZGlTZRzJGBoK0AdO0ySgiMRig5gaCQZr\nx+0oTBHioFCniYNLSAadEgkW6A4NrlAmZCLSsWyDVr+PFwkMPcALBcXMDFJGbNRPs23yBuoTHls5\nl/s++lF27NhBp9OhF8EjD53H0MrsO3APB2+8kTBsMznpkUwmOH36CRQlTRx32bNnjA9/+I2nvM7M\nHHjx3/X6Ot/85kP8m3/zWXbt2sXOnTs5f/48Tz11jPbZGv1+j7m5HVy69BOkHMW2c9RqSdLpNp3O\ncaScIYosFFEnTxpLqTFtW4SxQtTziahRYIscaQQGDudZxSSgSMwcFaoonCfCJ2YHSRKE5GiwnS06\nxGwQsgtYQyegiIaNwEMZGlot+kgKmOwkwXE2sOkyQwaDDH0c2lwlpktMGWgDq8OeCdiodJD0GKHH\nBMgCRryIpuhoQYRu+piqj4lD2YzQpceHP/YxHk+n+elPfoIaRWwFAXfcdRd37tlDHMfsvf12zj73\nHFq3y9VajacWFpg+dIiDN9zwhq/VG1GhUOCTn/sczWaTMAwpFAq/9HP+HV2MNJsnCAIbKSMyGcmn\nP/2/vKzyNgyDT3/6Ezz77DGOHz+Pqgo+/vED3HLLIXRdf9mKybJMBBDFMaqi0u13iDtbjFhJhJBo\nmkZ9a4s9hoGaTLI3myVsnccOPFQp8KSKis00PvNECBKotCgS4lGlT5uIERJDTqJLiErICCUgRJLE\np0eGFFk6mKj0iDiHHDZ8+2S4wAIWAn24xklh0EejA2wyiktumFJjEJNGQ+JTYYCpr+FhUsdEwx9S\nChxcJD16Q+BOmwZrngnYCF3HFAEpXaVS20Dz+ixdPE4ymWax0yBRnsK2k6yszHPixDlCuZ2ibWGm\nupy6epYwitkxMU0Y+ayuvsDHPnYz1uuMrD116jQ//OFTVKstRkZy3HPPHdfsvvl16atfHWyDvBN9\nGZkM3HsvfPnL8Gd/9nafzZvX7Owsn/vcvTz00I9ZWjqNZWl86EM3vSyk8Rfp6tWrbK2vc+7cObYJ\ngTk2wlQcU45V6o0F1sI6aX2UYgT9qIFCSNrssWu8yPjcNPOPP8EuVBxiIppow3DKRTw8UUaXKjGL\nBKQYWBgvo7CMSZ6AGmm2yBAwCIT3UFGZJuQFAlR6CMxhalWEQGeEBB269DEAB4OABDkGqVcXCJkm\n5DoUYs5xnhAHH58yxjAMThIC1aDKaqDRq0KsmDiGgp1IstnpYCgKPQ/KusZdd32UhYUneOZHP+K5\nBx8EYLRU4pN/dA/Ly10UJYPjXGF6OsEnPjGYSNza2qLZbJLJZK7JBF2hMMbS0jyNRoNWq8XnP/9F\nzpypkctNsbQErdZT7No1zZ49szz22NOEYYlW6wK2nWPHjg9Sqy3Q711BFzGG7LPNyJHTc9S7ywhi\nkjQoUERgAh2ymIQ4tDmNiUaAJMAmiY2vp2gFl1HwsKkQ0MchiU0HQRKJR2JYIFr0CfDo4RMzSh8N\nmw4jtEjRG9JGIEGXEg0qSOo0yVCmSoMcKhoGDj2qNHBQiEkiSOKLMn1ZR409jKDOdrNExwsIgpDn\nv/cwRz9+lAMHDpBIp4njGMuy+NJ//s/MVyqMj4wwMTZG4f3v54ULF9hVLvM7n/scU1NTr8iekVKy\nvr5OFEWMjY29YjT+V9UbCU4VrxaS806QEEK6rsva2hqqqr7pELbTp0/zhS88yMZ8m225PB2nQf3i\nE4yoPcKkIDk1xebSErYfcLrt0uhHGNUFDgoDNR6MadWIWIj7rKEwY+6kH8S04wo5Ohik6aPRwKZN\nAZcQjRzTWLj4xPQxqDNCmyJ1dGKuoLFCmiRpFDpk6SERLBPhk0cjg02XUQwEgjIb5PCxULEAC8Ei\nEQtIkgyC9GzSSBK0EISkqCEwlSS6oeC65wmYwWAKzS6gqSFJbYM99jqFnIYE/CCgretcv2MXWphn\nWdNx9AKqupfNygJyc5EDe2Zwwy7nlp+lkEkxuns7/+pP/5DbbrvldQUsPfvsMb7+9ScYHb2eVCpH\nu12nWj3Ln//5//qqoU3vVN1+O/zH/wgf/ODbfSavrh/8AP7dvxuYbN/Jeq2wrteS7/tomvaaK60w\nDOn1eiQSCXRd5+LFizz4pS+RCkM2zpxhezrNseVlQseh53o8v9Sm0tfwRQkpBabiMmb0GbE9bhgr\nIIpZHn7mGNkgIoOkhaCJJCLFEkkke1BED1UOMkXybFAmpEsWjyQhKjY10nSZG1pSLwEtFFQk25Ck\nhu6uPgYZcoSEnKdLjSlS1NiGh0kZSOAiWcamxTQKPXTOU2CTgwgGGeMKbQIksGpnsLQ5EnYJaaUR\n5RlWV09hajlscwypLfH7n/okqqrz5GN/xR//1s1MDkMHK7UaV8OQez/1KVzXJZ1OMzk5ec1C1IQQ\nfOELLyc6LC09zt1338Df//0jnDvXY2TkFly3zerqBUZGtqMo6xw5cis/fOT7XDn/JKpZRrdvIJkc\nod2ukM9bbFSeRmxcYI+9A5B0fZ9q2MeigkkRhsuyPgKLDjYaJjkEClt02aSLmtpG2kpypXYBi70Y\nZHDk1nBIYUDXTTCKiYGPR5M+CXqMk0FD0CHA4wJ78dCB9NB1IoAFoApsMM7A7uqjEQI+ATqSEIMs\nQmSRukLsLzNGj722xLLz1FWTyfIcjV6LjZLOvXe/ixFd53Klwvzly0ykUiitFsK2KW/bxnVzc1xx\nHO770z9lamrqFddhbW2N737lK3QqFTzXRc/n+djv/R579ux5xWOvxTWXUr7qDfSO7oyYpsnc3Nw1\nea7rr7+eD3xgmW+0f8Txy+dQgg6N9iJVJcBoSrbX6/jVKhU/JizMMF7ehtWtY4Qemuaj2gnMOKbh\nSGxTI6muQOSwU8Qo2DSjHCPCIC9dLtPCZxLw6RFQQBIS4KByfuiLzyDoksIkj8cIEQm2WAcqWLSI\nkfQp4TFNRBWNy5TwkECdEAOFFBqgkWXgC9+DQX24OWMSskadLAkyWRvUBh1jBz1nB7qwscw0buDS\ndzs0DJO5lM3h2VlMXed0o8Hc7p1cOrVEUPdZDR127ryFXGmS1U6Fmu9jawkyuRIf/md38kf/+l9j\n2y8ZieM4Znl5GcdxGBkZoVh8yXUfhiGPPPIUk5M3vrgFl8kU0LS3tm14rXXlyuDPWwChvGZ63/sG\n2zQnT8LBg2/32Vw7vVYuipSSJ598mkcffRbPA9OE9773EPMnn2dvoYDjulQAU9dJRjE/vrqEq02B\n3MakEhMbFltBC1fUmTWTuFqWuqmyVKsRIUmhcYUEYhg4ucUWMZuM0COQJl0UtgF5Eug0KeOwSEiF\nJDY2DvAEHQwGUDKdmDEGAPISETkUloio0cIgGiZTVdlNSAmTPgzh4oJRunSJgRwqY5iEBLRIoNBH\noqsFIjPAkVlSdp7MzDhbjoLaF0zmdtDsXMBSDAzV5aeP/4jCqODOHaNMlkpcXF7h2QvLNLs+buBQ\nnNvGJ//gU2/5da3X1ymVbI4efZ4gyKCqKarVBpqmkc/PDUM7XX747c8zqUp0xUHX4YX1h9hghnRm\nB92ug6KrRCMW56oL5IVKFNk0FEEhTmASIoQKcjAVNI5JG0GMii4ylKSgQZtOaFFMz1CWLRrtTfxg\nA4U0EQV8XHTqSM4g0AiJSZAlT4kYFUlEEp0OaUw8Br0BiQvDecxBCZJjjZASdQqU0MiTponAwSfJ\nKj5pUtokTqSzFlUQUYtZmSCDTWOrSl/VaKw2GFFUZstlTp84wd2FAtUwZOrWW1m5coXTp0/jjY3x\nyT/+41ctRPr9Pl/74hfpXL5Ma3OTBLARBPy/Z8/yf/2X//Kqx7xVekcXI9dKjuMghODeez/Mbbcd\n4uzZs2xubvLtv+3ROXmSu0slkobBfKMNsUdWqKw21ygnyxhxQBh12H/TAZLJJFcefZTrtm1jLpvl\ne8ePUwojGlGMSoiJSlFobEqXDjVMmhQYI0nMJgF9iuRIoVGkT5sMCjBKlyI61pDqGFPARUOhS4MG\nApeIKWwauBSQTKLhAwEKPcQwolqiIDBR0YfDwnn6rODiBRq+n6HlG6CYyMjH6rcxkQTo1NGIFYWN\n9U3y2TSWlLRcl7q3SXtxgXac4WRNML59B/f9/n3EcYzj9Mh2VT7zJ3/yskKkXq/zP//nN9jYCFEU\nCylbHD68m4985AOoqkqn06Hfl5RKL8eVJhJvTSz5W6WvfGXgy3gnU05VFf7gD+Bv/gb+0396u8/m\nrdeTTz7N/fefYGpqwCLxfZfvfvcE/bWfcsO730WQTPKMYVCpVok6IX0thU8ZFAm6gh/4xOSI0Hm8\nf4UUSUjmcXUDYpgXRSy5HV2oRNIlN+SM7KBHjMcGfTwSKEP3VxeF7hA+NoFBjZBZFEaI6QATwByw\nyAC1paJTGhIvemh4RIwBoxiYgIeDiUGMIETDpkVAjEoKgU0PhwgwRBpTt7DzZURHx56e4siHPsgD\n9z9EdekChmqimXV2TCjMjpVxojW27z3I9iDgzMIijx5fJ5/eyXghSaW6xne+/VP27d//utLS36gW\nF1/AsvJ4XhvLanHnnUf4xjeeZX7+ImtrKRKJBFL2iWOHQkGnkG6xW01zzx1H+N73HuOFhS5pdRpV\nK1AojZFKZdjYaJLIqcQli42NBu22glCmiL1HSVHEVJMY4QDKEGMhyGESEQgHofWxlDJ1NLZaAaO5\nEfLhPOttE12qeGpdLmAAACAASURBVITo5IlZZS8qeXyeRJBjDJMULjExLgY+EWkuUWM3kgSD/JrO\n8O8J4AmgiTmcjlSH0Ag5/C7QB7QbpUChmMerbZHWk6QMmy2niuL7tMOQpm7wdz98io/efoCClOSS\nSTr1Oplcjrs+8hH21ev0xsdfE/V+8eJFKufOkajXuTWfR1UUojjmmeVl/r///t/53//Df7jm1/y1\n9BtdjGxtbfHd7/6Ay5fXAcmuXVN89KN38773vY+1tTUu/OQnVNbXWe90iFotXN2gVCyx0GywFUky\nepZm4JAxFBr9PpeqVTaA6zSN6sYGGWDSMtF6Dg4OKdUiUkISfocCTRQ8fHq0SBGxHYOAcRQ8knRI\nsU6DHFkkHv6wg6KTRiHLHnTWqKMREuEwSoYWME+HAhExkhqSHaTp0Adieiho2OjYWEhaGHSxiPwy\n3XAdKQ104TKSGUPTVFynjQkE/Sat/hSLtQ7NusuFoE3e87i1UGD2gM17Rif46SUXRfExTRPbtuh2\nV7n77ttezDyAwcr0y1/+Np1OmdnZaWDQJXniiWOMjh7ntttuxbZtFCUiikJU9aXbLwi8X+Od8eb1\n5S8POB7vdH3qUwP42Z//+aA4+U1VGIY89tizTE4eepFFYhgWMzM38dgLj9Bot8lnMtx522187Vvf\nQQQRnoR13yMIIIw0YpHATOSw09PkC7sIN07jXlyiUJ6hY1q0nRSSiEjGRPioCCzKdIgoEDBKSIUW\nm2i0sbEwSGPRpsUWHbYNbYtjCCpIthhYUgvAEhoGBn0ittAJmCXGJ6ZCC58CARbgvugvUYnxyFIi\nwKRPhEAjQGWmUCKfTHK6uUooLG45chunTs0T+TpjiSTtfpUiLreMZrjrfbdzYXmZeGKC2rlznDi/\nSim7D1MfvIaxYjAzt5+HH36CgwcPXHOG0O/+7k2srm5QLk+yf/8+2u02q6tfB4pE0TyNRpUo8tE0\nm36/R3Ksyt333kW326Xd8djoeqSMfThOh+XlDRKJTTwvIoqKTEyMEMcRfXcRMOnFsyyGfUrhBhkk\nXaHTkBKFPoHw8OM+kTqOq5bpuxLHPY9fXyVPTHZIto5IIxFkqNFFsIxAxULio6Kgo6CSQBKTIaCP\n5HkG0YdVBm6iHQicYVdsDR8dlQBAERhxQIQcbEFqgkIuYqt9CaFsUBcmtrPJTKyCZmHEfXTFprnR\n4ZHn5rnJHnyGKgyQ7EIINFX9hROOzUaD6soK9wyx7QCqorC3WOSZEydwXfd1+wDfrH5ji5Fer8df\n//VXiaJJpqffDcDi4iL/9b/+DXv3zvHkk8d54ejTxLUm+/NToEKtt0JWU5CaiZkbp6kZ7LB30dg8\nw4mri4RxiKEonD11ilQyiapprPo+NhJb6VCL+tixSkJXGAs8dCICOixiUMSlBej8Q2rjIF7aAMwh\nmSCFRoTEISamwziDTJoIgU8aC5MsPQpDHmSbmDYtVtBRMMiTQyMmNVxBNYiBBP2gSCwFQvRQ5Do9\nV2d8dAdS8ag1LnM4o2JnSvi6xfn6BpuxSm5jk7plsfumm5iemSGTm+eHx07z/AnJ9MwIhw/v4kMf\nerl7fm1tjUrFYXb2pS0XRVEYHd3N448PihHLsjh8eB+PP36GmZn9KIpKHEesrJz5Nd0Zb15nzkC9\n/s6covl57dsHIyNw9Og7e0vpzcpxnOHWzEtdujAMWLxyknq1yn/76le5ee9ebj5wgJv3H+RrR59B\n6hp5GTCSmORqo01PzaPp0yhqjd7GRSadDpae4OraOmt9UEnTRyfAwxp2InVCejiU8RlF4BEjMJhF\n0iAmQR4DSZZNVCQqgy+GMoNJuDqDLdaQNC55asT4zKEzSsgabZbRCRhDUAIaRKzisoWBSUiWFQTQ\nIWAThyIhC72Q+UCnRkyhmODRR+9HylmcbozldkiZfWazu3juuSvMzk7R0XXuvOkmHl5cZL3eZ9eU\nQSxj6p0OoZ1gbttONjaexXGclxGsr4UOHbqJQ4de+n8ymaTd3sDzsoShxPctFGWKTqeCql4lt6eE\nnUjw2KNPIWWWXncVjyqRpiFlRL2+STKZJY67VKs1HEfD8wIUxSCObbraDH2/PkhlVnv0qFGSLiUr\nQ62vUlEEm65HHFexccjjMwKk6dEmZp0GZTJkgTYRdQpIygg2iTFJksBA0qaDR5VRBtsy8XBzT0dS\nR+KgoqGTxqE9zMkhtkCoxLJGXm7hSwur7XFADekkBItxgIhj6qFAEGEKhUzYwHM1ongn5xqX2VMu\n4/CScXSp0eDWe157yimby+GHIcbPFZn9ICBfLtPv93/zixEhxIeB/weoSinffa2f//TpM/R6SWZm\npl/8WS43zre+9Sirqx7j4zew1nsKK9RpdQJmxyeQocblpbP4+REmdr4Hw8pz8ux3UIkQrQ6782k+\nPD7OheVlgm6XVSG4EoaMAHMK9GWfdQmmYeFFkkwsyCG5OjSYdgEPiImJEAjauLgEqJhECAIMQjQ6\nFEmioJIf1uMKDQSCIjpJVCBik4hlNNaZQxARE5HGpEsXhwYuJhpFTC1FV2rY5gKG5xP656l1VzFV\nl905n9HJbVztO4xNXkfq+iP4q1fobpzlpve+98WJpNv37aKUSRBu385v33cfqVTqFa+553koyiuh\nR5aVYHPzpSTf97//fXje9zl27AkUJUkc97jzzr2vOO6dqq98BT7xCfjHMpH8yU/C3/3db3Yxkkgk\nME3wvP6LBcmp5x5BrFzijtEx9u6a5oUXXuBvFhawR0cxNMHhsSkqjQ6doEtGl0TBGn2/Qd9vMKXV\nKdg5amGTZcdCFbN4skmCDGBTQ2IQYNHDpEsKC4lKnZgpYAYTj5AuDgIdG406LjEggBKDdv08kESh\nRUwP2CKPSQGNEJUUPjHbUNkAzhEQkKKHTZIiWYq4bDBJjTIRHSXCVwWFnAnZEu/ddiurdoJK2+XE\niVNomo6i1zAUnc1eGyXWeeDo47z3D36fffv2US6Xeeb5/5OL9RqKolIcH+eW6/cjhERV41/Ll5IQ\ngv37r+PcuSdIpW4miiSeV6NQyJBK3Ul2wuHHx49z5coGuj5NxirQDWM8BLqewjQN+v0mnreEYeRx\nXRW4DinHABfTrBGLBJaw0UWCltKlH7Wp+222hEqLcbw4BibJscwUMaN0h5wSyRgKK7jUEbQpkSZJ\nl/EhHXuVNpIEEZIGc7jDxaZOE0GPQQYzgIpGC4kgoE2b/5+99w6y7DzvM5+Tz7k59e2cpyf1DGaA\nSQgDcJBIMIOEQIJUpiibWluyWbRL3l17xZLtqq0SVdLW2pIs2aZMizRFIZAESQggiDwAJmNy6u7p\nnG6OJ5+zf3RjKJAiBZIARgD3qerqvrdu+Pp8957zft/7vr+fyjYiUgSJFmEosiI22K/DUBQEI4bi\n6fRkMkxfnkRFIqNEcQOLnJGm4FgslRaQO+J8Z3qa7WNjVE2T84UCyU2b2LZ9+4883uPj46jd3Uys\nrDCUyyGKIqV6nYYskx8cJBaLsbKygud5dHZ2vmFdNn8f13Jn5CVgB/C9N+PFFxcLGMZrZYnn5xfw\nvAyKkmB29hKR5GYCocbp6jms0jIKIfOigqeKDGs2krzCyNbdLJ57llxrhc4wxHVdeuNxJM9jvt7A\nkTW0wGM5CFkCOhFI2jZtQaAuKchBAGGTJdo4RCgBEQQ8QmK0KDOJRTcKPiI+MM8QFgEhdXRcJCSi\n1KmSQkZCwETiCj4NQiqkyZJAQcRe98lpE0GhQQcBBWL4bgNBCknEtiEGj5MUYFN/J4P5EZbmp5By\nvRzYfy/5fD++7/HKK89yfuEiFxZX2ShJ5Na1Qxq+z94bbvh7AxFYk+GGJq7roCjfLzIsFObZsmX4\n6m1FUfjIRz7AnXfWqdfrJJPJN3zF9WYRhmspmq985VqP5PXzwANrBaz/6T/BW7TIecuRZZnbb9+z\nXjOyg1arTnv+Mr2Cy/ato4xt3MCGsTHOTk1RSKfJ2S7LZy6xI5lh0SxgmlVkVUXOpGlZUbpjGmLN\nYs42iQTddGudXDTPUKRMSIIAlYAi/azSQ0gNhyoiATJr1ngCBiIeDh4CC/hXjbxmgUXWTr5N4PK6\nQJZEDIUMbUxkIvi0kQlwsRGAAilEehCQya5rQGtEWGKB3TQoEGKGMqFpocQVPEkk17cRr1gkpkwj\n2WVMq8UFL4YgugSCS1qw+T/uugtJkujq6uLXP/0AzzwzRX//dlRVw/c9ZmdPceedO1DeogKpnTs3\n8/TT8+RyA3iei65vQJZVTHOOeMrh7OQ5lnyPqFdFVmTq4SqysQvTtNC0KkEwj+M0CYIxZLkbx5km\nCDQMo4Ourh5UtcrS5CE0b5UeNaQ/HmWqUqLpK9jCPNCPKBooQQ0DH5MQAROQ6ENiAZcGMUQSSOue\nYyEbqFFHZhWROt2E9CEwS0gTlxIiifU0XRsoIjFDAos4Gn0IkouotpCDNnGjAxMJxVimY7CbRCLO\ngmVhWhaCCGnJRwxMFEVHlXXagoPrtunespdP/MoD2K0WjmXxri1bGBsb+7EBhKIo/Oa//tf89R/+\nIY1ymYiiEMvlkFMptt14I1/6sz/DXFlZW/5GItz5kY+wZcubs3C8ZsFIGIZV4A1rE/tBurpyHD9+\nEfh+NXChUAEcLl8+RaHQpNnKg5TFi2xiISnR099DIl9kbGyInTtvQdMiPP34N7CLMwxKAn2yzGq9\nzmKzScPzMH0fQ1FpiyIdhMRDuC4MCEOBMqCEIpfDEAmHNvP45Kmh0yREogqkSJMiwKHJEtCilxZR\noIXLDB4iOgYZVnCp0sBCoAZ4dNHCRidCBwJrkjkGDlGWcLAo0MLGoIiMTCho1GorpOM9OOYKVr3G\nRLNIW4OuXC+5XC+u6/Dyy99jaqqAH9nG9060OHLhJAeu70NRZMTu7h/b7hWNRrn77j185ztHSac3\nYBgxKpW1DqEDB35YrDeRSPyQDfw/do4fXwtIdu++1iN5/fT1wY4da/LwH/3otR7Nm8fNN99IGIY8\n/fRR5uYWUe1lrtuzk3x3Jy+dPMni0hIBUC0U2DzQx9zlS0zVFsjFInxs1wgHryywJIuEkgSGjNNa\nIAg9YqKG5/tEyaNgElAixCbKLCJwEQGXEGe9AqxBi9y6tJWCj4RJNz5p1hYiLiFzwOV1fYkBIoio\nrFJGQkdBosgc4lolAUskcbCIkiCBQR1nvSvDR2bNWjMpwkwYMixA6NhcbpTJqjq9sRSTz32TZOU8\nTS9BRttMLJGh6FRw9C6EsMmTTz5/9Xt9110HcF2Xw4cPIYoGYWiyf/9WDhx4wzevfyQ33bSPv/zL\nx3HdJooSw3HaOM4q27cPEYsto27ZhxTdxMnj52iJG+hNDNNuL2NZx9F1HcfxEIQOfD9LEEiE4Sqi\n6OO6FtBHJhNndfkMmaaB7kisOiZRUWOIkCuBQEvciBxeJIJJ13o9xyohVTzqeDiAgbuu5yTiMIdD\nhhgRbGSgTAc2K0AL0JDYjYiHSgGXZaBOlCgD1LHQSCMKEiJNtEQaSdVR2iZ6RCGXzbBiWaTyPZSn\nZ7loWogIdEYiJKMpCoFHKGukDIHf+Myn2LNnz098vPft20f8936PF598ksrqKlo2y0233srhp55i\nIAjoXvcIapomj3/5y6T+2T+ju7v7H3jVn5x3bM3Itm1beeqpw5RKS2Sz3YRhiOfVKRZPMTR0J729\nClNT08Ri4xR9mQ3jg9xyy02cPPldRLFFo7HmC1hfPU9SDAlliflKhdB1UXyfqr+20km7DjIipwnI\nI7AKZAUJTVEwXQ8NEQWJEWRmKNEAdHrQ6GMRD4mQCFEidGFxnovruWiLGAIxEsSI4KJgIOFj4yMw\njEYch0vEsAjR10WOFGQCFGxsXAaIs0wFWQBXUtEljYYTpS54dEcFNg70EE0kmKjNMTt7jnK5wORk\nge7uQfbu3cHK0iKzE5f52pGz/PPf+WVuv/vuH9lW+Sq33bafXC7DwYPHqVZn2LGjn/37f5HcunbB\n252vfnVtp+FNiqHfND75Sfjyl9/ZwYggCOzffzP79u3h7NmzPPU/bCzX5n899BCDqsp4ZyeFep2V\nQoE/uTxLVuhBtNNMNdo8PXeO0aTEoCYiakVGBzaR2XgDE098j3ZrmTBQEdcVJnrRaLJA77rRpUYc\nmTYOCQTSmMxwmjLV9VJTFZeQkGVUNEEiDH1AJoZKgI+OhkLIMBY+RZq0cNalwX06aFJnEyoTOLRQ\nsHDREfGQ1nv0fGqBQESWiItQCQMsQSI/ej0vv3wU1VKJxZNUyg6G7+M4ZdIy1ASHoXwPLx48zj/9\npy6KoqAoCh/60Pu4/fZbr+5a/qid0DeLvr4+7r33Vk6erCOKBrqeJJ/fQrF4ngMH9vDEE4fYu/cu\nVDXC88+/gGWBqgYMDg5g2wKFwiyath3f93CcC6hqDt/3cd0ay8szlMsNdNeiw8jgOw7R6EaajcvE\npAYpv06DFVLUEDGo0KaORzdrRagl1gKMEHO9eylKnCw+FipVVFbJ4rBAhEU8BHz6UREJ6UamjgDE\nCFHwkNDRceUQRU1TDxuk81ki0Rjm4gxXfJdkq4Vji/REkth+DEtJURR0Cq6DX1ogLovkDZXJhky9\nXv+pFa23jo+zdXwc3/eRJIlz586h1ut0/50unJhh0KeqvHLkCN0f+tAbNNvf500PRgRB6AS++gN3\nL78eX5vPf/7zV/8+cOAABw4ceN3vG4/H+Y3fuJ+vf/1xZmcngZDR0YDz56PE471IkkwiMUu5fAZV\n1VlaWmJq6ggjI1GSWoyLF55jaUlkMC+SNK7jpZdeYsDz6JckLgUBedaqlkNRQg1hGBHCtYzwDCEq\nAg0lSsVxWMGjSp000I1CkVUKVBggQZQAhwoFHEyi+AjY9JJkGAWJCk0KTCEj0E+U8/joZIggE6CR\noEWTMjpRZARs2sACEjJFIU5ccnFo4KMDJhIz/P6n7mfXpk3I60VLL5w/T2zEZ3V1iT17djI2thlV\nVUmnU2zeupWZmSFGNm58TefMj2Pr1q1s3br1dc/V24UgWAtGHnvsWo/kJ+e+++Bzn4NmE97ia8tb\nzqsX1WNnz6KurJA1TWRVZb7dJkynUWptOpUMUmIIt2lTKhbR/G6m2yts6OuhX49x6tI0d9y0k/fe\nfQdPPHGQpiVj+Ckqgc8yRfKsIgItEgTkKGOyiEGJMqCiENKPTwIfEDCQcUWNnJZANE08YJYWPgoi\nHj41NARsbFSSRJFp0oWERJsyq7iotGmjoJCigICKgySUSYYOy5JEjyoix+MM5vNMlBqcPn0cwxhB\nUxZRIhkijWUM1ScMfeK6gSu5DHfnKZuzP3QM4/H4NU2dPvDAvYjiN5maKiGKBrXaAnfeuYObb76J\nSqXOSy9NsHfvHQwMjHL48LOUSnV0PQREdH2YxUWfdvssmrYJUexBVetY7Tkss4rrxonqBq7tIQoC\nVvMSGc9HEUQs2tQ4RAKdBHnOMcX4+q5Wc/0nC1zBo8ACNn0k0NDRaFBEoMkMaXxUdCwSNEkTUMal\nik8CCREJDWjRwiVCIMwRixh0d/SghDZuo0B/3KJTiDB58hSBluTs8ip1IUum+05ka55Io0RO17H8\nFRqCS9Lz+OK//bccvesuHvj0p39kK+8/xKvdUo16HePvWXHFDYNKqfRTzuqP500PRsIwXAFu/2me\n+3eDkZ+Grq4uPvOZX6VWqyEIAo1Gg8VFi+XleTxPJpnswjAWSSZlHGeOvq4OgqUlutNp+gZ6mFxd\n5bjvcNPNN1O4fBm7VOIS666WskxGFJnzfbQwoFeUuOgH9AsiqqJRERVko5+WUEG0m3SgUcLAQ0Wm\nTZwWOlmixDDw0JlnEp0GOnGStFlkTe8xSUAHm6UJfCDwO4EUVVxsckg4dLNCCR8bGYUmEKKxB0lI\nEMo2hryIQIG+zm6SyX52jY2xvLREq9EglkgwksthaQq7dl1Hq9XzQ7sfgvDmpdPeTrz4IqRSsG3b\ntR7JT04ms6YY+9hjcP/913o0by6WZfHkQw/xwIEDfOnhh8m6LqYgUKpU6Ovvx2ovM5rsQOjvod4K\niCoKtutzpSbS3X0L8UgK6Ofw3Aofu/8uyOWYOHqMCydPkhHB8ltE1The6BM6Ph5NVgnx0WiSRWKR\nJAbDqLg0mMMmC/ihvdaRJwm0fI8IOgXaBMgYdODgI64rtK4JZOkoJLGZJE7IMAYlTIq0kQgpY0Eo\nUlSidBkxMnmVLWNjWKLI1myLC+Vp0ukeKmaZ8XSCTnuteJXAI5nSSCbzrNZW2PPuLW9ZPcg/xNLS\nEoVCgWg0yq/92gOUSiVarRa5XO5qcHT33bfTaHxr3Rsnxo4do/T2RqjVmijKOM1mhW9/+3EuX76C\n667iuiZRySEbKSOqgzTaEUK1TkgN0VGQvRqKIBEECp6s0OeHeOEiOhF0fCTgGDpV4gQY6NhYlGkg\nIePQoIiCRR6HZWJ4JEhRYs0BzUBDJk6TOj5tFCRsGuiokkqXItHbmadoTtBqWkiNKlHFZUtMZ3Nv\nL/MeFMM1w0QSGwiDDIoaY6ZxHFMIqDg+N2cjjGSzZLJZ5s+d48/+4A/49Gc/y+jo6E89D/nOTo4F\nAZVKhWKhgCSKdHR2Umw06P8pUkGvh2vZTbML+L+BbYIgPAF8MAzDN0Vs4lXzNl3X6e1NsnnzDizL\nQRRFksnbKZcX0fVewsI8N42MXO23zqfTXJqa4vDZs2waHMTTdUTf57GFBTKqhgZI7TaarBAEPkVg\nwYiRF2Wanstyu8RSmKYDn5KQxwiH8QgQKRPQYvWq/VUVGQmdNjl0EjRQUbDVKle8Nk6QZDbMkJdM\nDN/GpUVAEoFhpoQ2Q2GFDhqECCwiUaMPkQhOAJlQoxlkUaMucucAWc3kuSefZHllleWmjxcERBMy\nB37919m1ayePPPIKicT3PX0sq4Uk1X/qSPudxKspmrcr990HDz30zg9GZmdniTgOPV1d7N62Da1Q\nIK1pjAoCc/baKcZBIKnoBEaIpygU2xKGkkSRVQRBoCPThecneOq5Y5RKNi19I3bOJmwVSEkaVywX\nwbNBCij6AS6DSAwQoiOul53PsIQh+HRLMo1AIBF4NOwyrmhQElXEUCYMMxSx6UUDdJp4FKlTYYSQ\nDC4RImjri4wEGVSyNAnFCBdEjVkhRlmu0BFX6BkaogxYhsENGzeSdDV6enaxOBrBnjzOYNhgaukS\njp+k7QjEfI94UuDXfv0Xr+V0AeC6Lg899E1On15EEBKEoUkuJ/Irv3Ifw8PDr3mspml84hP3XfXG\nSSaTpNNp/uN//EOee+5R6vUy9XoFQUij6ypO6zyjuV5ynb2UGhk8r0AyMsicfZqcWyItRCg7izSV\nCIY+hhZYLHomEj4xFwqBhsUoBgkCZEJ8KqRxMYiwEREbhRqrTCICfdTpwyWKTBGXRaCfCDFMLuEQ\nCi4NESTBxQ9kanaJjWmXVnmJnbkkF02fvKIwOz1Nw/WIJXoItRiF5gqJoetYmiiSUPKkkjIJr0Fa\nhkRHB4eWqsy0NKIrMf73f/MFtm3tZc/uHWzYvJnR0dGfKH0zMDDAXLPJuWefZWMigSgIvPzyyyjj\n43zw7/Ziv4FcywLWY8Ddb+V7qqrKe9+7n4cfPkgyOYphJFhdncHz5ujujFO7WKKRSpFMJq/uBBy4\n4QYeO3+eWcch9Dy8MMTTdKpeSFaSERSNWDTFYmDSpyoIapwVNUrVh7ofxS86+GIMQejF8UXWNhLX\nFBVr2JjUiaADMfJMrUslZQipIzshXYJFSU4TejF8sZs2K0AJkRQiCZrhJs7wChEkZETipBlBx2Se\nFTTm3By6HGeoU2Vo+/WULjzDyckq7aCLmJpBDENemb2C+9RBPvbLv8yFC1OcP38IXc9TqRRYXjzF\n9ePdHD96lJ0/ppPmnY7nwd/8DRw8eK1H8tNz773wu78LlvXO7aqBNfG9V0+7Y6OjHFteplvT8H2f\naCSCEJFZtGwGYhlk2eKK59GyHeJJiabVoN6usVppMVFZpdG0ueGGe4nFZIJgjImJ57GSBrnUOCsX\nH8JoLJBAIY2BTZkGGgEeCklKzHCzENKhaBQdn3l8WsjUAp0udYBZr4Ec5pmlQZ0WFhY2nZhEUdmE\njIFPHYhRp4VHA40mCAaOoBKEKq4fUA0STAdZnqsK3Lqjj5vHRrnsurx/9z6efXaaLdtuZD6ZZvbc\nIQLnKJLUZGBDD/vvuJmPfeKB9S64a8vBgy9x/HiJdHoToiiRTCYpleb52tce5TOf+VWCIGBiYoLT\np8+wslKjoyPDrl3b2bBhAwBf/vKDLC9LVCoBtVoCVd1CKjWL58UwQhU9aVFqtJgv+viBSaUBnjzM\njCJQcJaJyCJpJY5gzeOJ4KJyzPNIBDI+SdLEAQUJmRYiFgOEVJBQCdGoYyOTZoACOlFUAiL4jKJx\nFptFVFQkCoJIPQyJCimQfBKqiy7LOJaFHARM1esUm00s0ySlabi2xfLqDLlNnQTFBolEmnp+gKZV\npmrXyMkeY5u3caLYpNjK05XtwxYtmpOzzC7NE5mdZLq7m1fGx/nIxz/+ultzp6amyGsa/bt2MT09\nje/7dG7YgGsYuK77pnwG3rEFrD+K4eFBtmw8xcFnHsETFPbetIdWS+GFg5cILi1SmquTz0fZdcN1\n+EFA6Pts2raNIysrqI5DUK6gCApnQwfJc0hFEpwWQnzF4IPvfw+ri0u8ePwUbVHD9XxERaHpeER9\nEAgIUfBRcXAQMPCoEpCnxTIxQMIkwCZEQCYgF3o0vGligkXLB1EaQlMlVMWl3ZrH912QN6GEFqOk\nINDxwwhJWSUatpkUHBDbjIyN8MEP3sgjpbOcmS/Rradp2gErdg05muGllyb58z//73ziE/dz001V\nvvvdpyhPvMw9I910RwyufPe7nD50iE/85m/+RE6M7xSefhoGB2H93Pe2pLMTdu6EJ56AN6H+7Jri\nOA7tdptY2LXCigAAIABJREFULMbAwAANWca0bQY7O6ls28ax8+exqlXiIyMM3Hkb80cucn72HDE9\nST2oU7YukI+lmT/xOPVmm1VBZr6tIIsjnDp0lGgqRVdfN6LYj22XqBWniLSLbAKm1zQv8bFRsKgh\nUsMhSkgs8AksGy0MiACxdeOGquNg4WHh44sixTCCFyZZ02Nt468Lg4OEjY+NikgLBIOokUQUNJqO\nTS7SS48u0BTjZFKbOHj+En4mxS/+1m/R39+P4zzB4cMvI8kRBrdt5IOfvJt7730fmvbDekDXkkce\neYKJCYMwXEszRyICe/bsYGFhjm9961t88YuPcObMFYIgSkfHEMPDvTzxxGH6OwS6uvIcObXCrt0f\nZnp6kXpdA1QEIYoorqJEDS7MriBgEoQ+o703AxJzlXmSmT784iqDchLHbKDG84SyDH4OQ7mFpZW/\nRQkb+AjEsHFxKCJi049ADV8MCQOTkAQiF0nQIIkNmECIh0iWgEC28AkY0VXKYTfbM9uYbzaZ9306\n4r1MLLQQPYuUKNAtywSui+m6a0XKIUzNnKcVTTA7+wzd3QNkEiO0lk/Sb/SgGAYLtQaCEAFFZGHq\nJLdsHCefy9Euz/KufQMcP32aM+Pj7Nz5+iT9z588yUgqRV9HB3vHx4G1VP252VkmLl9+jd/YG8XP\nVTAyMzPDV//kT6henMSo27Rcl6+ePMHorvcxvu3dPD85Sc6ROHVqhonzZ+nJpjlSKJDK5/n0u9/N\nzOQkZ44eR5HiTIsyHdtuxG01aBYX6FJ1Dh0/Sb20SmdHihs7OvifR07htpPYCISU0UkTEmIh0Aai\nNBFwaFGhSAsDbT0EKSEhoQImLZJIDIYRFqjTlnrJJg0UKYkYgGu2UGWNTCiRVFPU2xU0OYGhiqS0\nNHW7QLJD5cBtO9i6dRNfFzW2btqNiM58YQbHjxMzBqnYZb797Ummp/+Ez372U7iFZe7fuxtj/aSV\nSya5vLDAi889x/veaVey18GrQmdvd15N1bxTptD3fZ596ilOHjyIEgSEmsa+u+7iwIc/zLMPPUSX\nLJNLp2lv2UI7keDej3+cDRs2sLy8zLce/TbTU/NsftctPPbfJ1ArDUxHJm1oCO0aZcciHRlDN03E\nMOB8YQE12oGuN6A5Q1SQEBHR8PDXBQclPDygvC5o1UTEFEQaoURIgEkVEwMXkzo2Dhph2Ltu3iYA\nU0CNgOz670Vk4hRp00NISghw3BIrchQ9uoVsLKAj0UUiFiezZRtxt4+dt40xPDyM53ls2TJGJpNA\nURTGxsbIZDL4vs+JE69w5MhpXNdjx46N7Np1w2s8pt5KlpaWOHbsIj0996Kqa2MwzSYvvXSceLzM\nM88cxPdHkeU+VDVCvT7F2VeOszHuYBgesaEOWhdLvNQKCcOAsbFRBEHBNCOUiw5Tl6cxTZN0TCQW\nibJUOkLU6Ke7J0smW2H//fdRuXCBs4cuoSf6uVCaJ9n7AVZW6mTyN2OvfhstlNcbrUMiqNiUkBDw\nBBUHC58QnQYJFNZM8SKAhY6Dg0cylUEWBIqWDXIHK5ZFLp0mKsuEqRStYpqBeBeaXcNqOxx0PNRA\nQgoN0t3dlGWZ8b23cv31PYyNbUIUYfHKAC985zu8MDNDsS2jqTAzNU205bK6XEFXNdb0X2Ewk+HC\niROvOxjxPQ95PTvwd+sFRSDw/Tdq6l/Dz00wEoYhjz34IM3zk+hhlnxPFt/3WT18iBMvPkexWKfo\ndzB15SyRWhFdrkMsQm93N3q5zMLsLNfv3o2k6kxO1skJEpGtNzE0vG1Nn+OlR7l46G+4b3ycfDTK\nVw4fZpPfxldCzrsRChQRiBFg4BMFXHwCPJKY6ETopUaJHlR8JBSWiCHSwKCHTsAiRcCcM4PEZkQ8\nvNBE1Hqwg1WQFJpOk0S0A4QmggCSKON5i3Qovfztoy8yM2cxsbhMo2CjykkK1VW6MntYKbeomyHV\nqsGRIy0+97n/i/0DWYwf6CUfzOc5dPLkz10w4nnwjW/Av/t313okPzsf/Sh8/vPgOPAPdGm/LXjq\niSeYfu45buzrQ1UU2pbF4Uce4ZaPfYwHfvu3OXf6NM1ajRsHBti+fftVFVHDMLjnve8hk8nwuX/+\nO2Q9A0WScXBwbQHfDukWbXzJRhFiKJJM3BNYqsxjG4uklW4UqYHnlejAY4pFQnoBFZkQjSq6oDMn\nBqQCDYhiYFJDYJ4csBGPFUKShGEIoYAmRrCDLNBCQgRERGKkCBBwKdHAJiDiKxQDC0UpkjaGEGNx\nspkMg4MDrKy4HD78Cs1mi8unjpMHdEGgAcyNj/OhX/gFvvnNxzh6dJFsdgRBEHn00XO88soFfvM3\nf+ma7JicOHGazs5BLKtyNRgxjBhLS0tMTx+lo+M2Gg0BXY+jKFEcp4ZcPkZKHyGVzSD5HmKlwezK\nYUrRHkzzFQYHxykVFlldXCAd78J1SyTVTYSejqCbxHImd717D2E4x//5+7/LM888w6X2X1FtxvAs\nAd8XSCQ02uVVjFDEpIFCChUJnRY6V5BIE/gVFFw8ZogRsIRLJx0YqHg4FKlxmTabQpHhiM50INJG\npRHLEuIh+T6hopDLd1AtXERtOyTCDhzBZp4EuqJQFzJkh7dw662/wMLCy9x6676rUgkf/tjH+MaD\nD/LsF/4HUTmGksiQjYJh5JicnGbHjszVWpEf51Hzg2zcvp3nT56kO5u9Gox4vk8pCLjzZyiM/XH8\n3AQj1WqVpYkJ8HSSmbWJ9P2ApJ5hojTH/HydzZvv4UKrgyBaZrF5kRtynfQlI2iCwMqVK4xt2sTw\n0ABTU4eRggiubQLgOBaq5rA1lyOp63zn9GkqxSLZMGRQddGFIiecLA0maKMjEEGmC4FttDhNjAIZ\nerFJsiC01wpYQ4sm2npFvQzrYkkeJaaKa+1ugS8icIlIUsTIjKNWlmk1isQiCTKJkKnSLLqRYand\nSf1SiXOTT9Jq1SBo0J26DtNKc2G2SChI5DoT9PdvQpZlFhYe43TzErds3PiaY+j6/j+oM/JO5Nln\nYWhoLU3zdqe3FzZuXEs7vec913o0PxvtdpszL77IzQMDV9vUI7rOtq4uXv7e9/jMv/pXlHt7+dvT\nUxw6Mcvjj7/I3r3jVFeX15xKRZErxSIvfvcF3pXbALpD0GrTdhxCW8UNBQreDLIcxTcFfLdFu30S\nXRvAtpM05Tgxt0U6cBmkQZFLFNFwEUhKIWOyQTEQMYM1KXELWCCkzsj6vqdPgovIgosbBphBBpEe\n1hK6ZQIMNGqAj6pYjMSvR5XKKGYFz66x7DfoGNhANBLBjEaZn7/IoUOHuO666zl59GWU1iI3jefY\ntWNtm/2V06d5VJY5/soKg4P7mLlymsXLxwlsk4vH23R2Jrn//l94w+fJsizOnTvP/PwKHR1ptm3b\n+pq24XK5zpYt13Pq1GlqNQ9dz+C6LRqNC8TjBvV6gXq9TRhmSSRGEAKLuB/geR5B4LO4WEQQIK8n\nEBI5KpLFhQtHaNZW0JQUlrMW5JhSnVQkhZzsI5evEoul6OqSkSSJXbt2cf2u03R37+OZZ77D0pJA\nsShRqywyTIIo0GCKEJcMFmlclnBRxDphUEOnShSVWRLUaZOkRYhPC40GnZxprjJVWSYiGDjCBSpB\nmiDdTSzmsvfmG3n0a/8vu7uyHLsiI6AghiI5eRDJSKCoBno8hywrCEKKpaWlq8FIT08P4ztv4Na7\naywstJHlLipTcyStKkHQJJFYEyybrVTYe/frL9HcvHkz57Zt4+iZM3THYvhBwEK7zfjtt9PV1fWG\nfj5e5ecmGJEkiZZpooffv5gqioIkg+UERMUIYRgSuJA08iSiAtVGle3DGebm5ohK0lpRUTrN7t1b\n+OozL5J1yszOHkXXbT75yffyB//ycR6emUdpmvQGCh2BhW/btIBeMYURxjkdKrSIIyAhUEOhziht\nHC6uS0yrmFKCitdmEJ2YYGOGc9iYVAmw2UgmmUdsXkSTJRS3gtZyWBEGqfk6Eb+MZ03haDoVNUNn\ndjeTlSrZrndRLBZQVRNRXKYtTOFJMVwvjqa2GRnZgq5Hsaw6PT1DrBZPcmV+nuG+7yvYXl5e5rp7\n7rkGs3dtefBB+IU3/hx9zXg1VfN2D0YajQY6XA1EXiUeiWDOznLmzBm+/OXvkc9vZ2AghW2b/Nmf\nPMSIXuSB2/cjCAKF2VlkX2S1UWMglqHZahPV1gwsHUkkq1Upto6BJKNIJgMZCzUaY3G1jqdl8bUq\nlt1EDTwCbMBHVbuQwgY2Jj1KF/NehVVUJDpo0wQ8Qs7STZFuupBQkbCoscISPjY1XBoEgo6mQsL3\n6TQyxCIdSJKCGkkTbyxT90yWKleIiENs3jzE008/QTTaR6HQprRcY2vPGCcn5xntKdCfz7Opu5tv\nPvU0Wm4/kxeP0LxwhPFkB1o0xWplhSe+9GW2b9/2Y1WWf1Kq1Sr/7b99lUpFQ9NSOM4qTz55iE99\n6r6rjxkZ6ePChYscOHA3U1MXKBanSCRiiGKUK1dWaDZ9BKGDcnkW2y6jyRpe4BGL6bhuGYjQ2Rnn\n9OVzFAOTXPc4y8uHkUQRWayhyEkE4rRMH0NdQfKSeJ5FozHBJz/5EWDNWG7v3o28+OIp8vlujh17\nBlUdwREUbAISWMSQSay7L58jRBJWGNQ1BjSFY1Wfc6GKwFZMDFqYiLQJKRHFJu+YbAwVMqpKTXQ5\n1XiaOXsrSjPGxsIxtgxoZK0ogz2DVJsrBM0anudRtdtElAwpX8A0TcLQwbIsHnv0Ua6cO0ckHqcV\nCAwMbGFoSOLChdPUsxGWGysMdKSpmG0OX7lCduvWH+tR84NIksRHH3iAS5cucfnsWXRF4QPXXcfQ\n0NAb9tn4QX5ugpFEIkHv5s1cnnqRXHYt/SAKAkpCpi0odMoqvu/i49E0V9m1sQfbq9HX0cF0Os3l\nmRm2BAGVRoNV1+GDn/pF9txyC5IkkUql+OsvfYkLcyVGLBFVyODis+DXiYdV2qLMXNBEI4GERRKP\nAAFoIlImgUhaMlAMmVXXwfRUylIHS4FEOhRxKOMSsrpelKW3JxhWEihyDCXRTb1+Gs1cZdJTEeUE\nqtRBo1qhI97L5dIEqjhMu3gZ3woJtSix2GaGhtr4fouJCTCMPMlkliDwaTan2LVrE63uCBftCrWZ\nGXRBoBoE5DZvZu+NN17biXyL8X145BF44YVrPZI3jvvug3374E//FN5gR/i3lEQigSUIeL7/moCk\n3mphJJM8++wRstktxGJrBddBAKIVoeKEmLZNRNcRgoDhTILpqk0sYoEs4tkWS4JNUwy5LylQVmtk\nMhmmbIHs1l2UGxn8wCUQkrRtmRlTx2eOKG1iNBADG01NMG2Z9HtLJMOQFh4r654mEt66VJoCgoSy\n3qWRpEWFOQaI0RJCSmIaLT1KUHgO/AS12iqdnXG0WB+rQYgnWgjpkJY/z5NPHqbV6se1RFZmFjCr\nNVqrZeIJiVNT8/Tn86iKQhj4OE6TlYlX2JnpQhLXjpsuK2xJpnnxySff0GDk8cefptnMMDDw/a39\nSmWVBx/8vnLgjh3bOXjwBPV6ka1bd627eF+gUDjN1q3v5sqVNrWaQCKxkVptAriMLLnokSZDA528\ncPA8opTHjPQQS28kDKsMDm5n/sosqtSNLPZjaApBc46l0klyssm+DRv59Kc/xPz8PF/4wn9hcbHI\n2FgfW7eO8PDDT9PToyOKS1QqLkurTSQ0IkSp0+YMNRQkhjQZAai54ItxPL8PlRAdFYEoNgFNXDJc\npi90iAkigVsnEnoMEVL1TiHKnayuJNm3dRP2/DzWaoNcYgxLWGCh1iYU80Q9Ga+wzJPfeJDOYXjx\nb1fo8jyuy+Uw220OX7zIuZJIvmMUsTrDaFynFR9iFZt9t9zEu+66i9HR0auCZq8XSZLYsmXLm+ZF\n84P83AQjAL/0G7/BZw8d5/jMOfLxNE2gnk4zNu6Ty0Xw/SXGNqVwSjZ+YJNLKER1nXxvL8nrr2dJ\n15EkiZ0f+Qg7r78eRVEIw5D/+Rd/wdSh4wx1jtJZahJaDmXbwwkTtAQRCQkfmRKgYpATbaJBC5hf\nF3GXqBOQk/OkpAC3VaTpC9SkTpa9ZZI4ZEjTi0dVWMZwWyixNIYcx/NsQl+iQ47g6ClSiS2ksgkO\nTx6l3pwioSbpTWaQBYmV5golp0qk+zoURebGG2+mWv0WxeIS1WoCQWgwNjZAPt9PrVbit//l/8bc\n3BytZpPOri4GBgZ+7sTPDh6Erq63dxfNDzI8vOZX8/zz8BOIGv+jwzAMrrvlFk4+8wzb+vrQFIWW\nZXFmZYX9H/sYDz70PQYHd1x9vOM4aJKEQJR6u00IpLJZhnIGyy2TRTmOb4CtSJTCOOmEzmkBdN+n\nHIb0btnCvXfcwcPPncBQHRpehooZIjLLGAoddKIITaL4nLLKdIkinpGkaVu4YRJfjCGFQ3jOJSSK\nKEIeXa6ghhqBJyBjYdBAF0QIBQpCDVVr00j2ErSrJP0GXtPHDANMOUlv737uee89yLLAF7/4x7Sb\nIumURHeuhxU3JPAbBO0iFyYrvP/GG5gvFNh1880cOTWD7NhXA5E12fQK2zZfx6nl5auS4D8rruty\n5swUvb2v9bVJp/PMzU1cvR2NRvkn/+STPPPMQU6ceAlFkdi8OQ3so7d3J7J8kitXlqlW16TgslmF\nX/ml38Kcn+f8yXMUzBAvLhId2k+ucxvl8hUmJ7+OpPWiS3naZgvblRCEOEGo8Z57RvnCF36fb33r\nW/zRH32DaHQ7sdgYR44scPToU4yMpLjrrvvQNIOvf/1LPPXUYS7bGjpFQlKAyQAtpFiamh3Sr0Zo\nug5RP42NSQUNmTVPGhmRKC3SeCQFBUMUEXwJLQyYEj1ykgKFNi9UzvMv3n83Be8EpZrBWO9eGueO\nYXoLKGKTfCpLIlrDLtTRUhIbNm1a+w5oGnfs3MlTf/5f0Ram2dK/GVEQWS0vUtEt7njPe34m8bO3\nkp+rYKSjo4P/57/+KX/5l1/mzKkJjGiM/Vs3sG/fdr797RcJw05isTSXL59l7srLdA508OiFCwyN\nj/O+e+5hcHDwhy7Gy8vL1GdmcByRbKaPlFpBD0Wc2QUKdoAkRKlSx/WzxHBpe8s4oUkckx4CQlSW\nBJFUKBC6LkEoYqlxoqpMXqlRKrtsCvtoCh4zfoBHHy2/zVS9SV9GIWxWkUIPMZQRJYFcLo2PTRBU\nEF2ddgAzwQrZSAxdlolbFaKGRBi2Sac7ufHG61lYeIWengi9vTuAkOXlE9x//20kEgnG19u6fl55\np6VoXuW++9b+t7dzMAJw4K67kBWFw88/j+T7CLrOzffdx/U33MAzzx6l2axe3RmJRKI4goDXqvDM\nKzbleoDru1yaX0X1HHCitBwHXzR54Fffz+/9+3/Po48+yvN/8zfcNj7OQGcnkijy0duuZ2Lx60yc\nPkvoieRZREZnngRB2IUUFNGCImlDZu9tu1lYqDI93QTboRIskkhthraLgk5HMo5XKa/tUIUGi4GK\nISs4gktf2kKJNVC7N7G0NE9T3UbFbbFl0wBqRWJkZIB4PM7c3CXS6U0szh5HTvUiiCLxVJriqkXN\nLKC5EscuXcJKpfjkBz7Aputm+Q+f/TcUSyGCIAIm27cPoxgGUUV5QwKRn5RkMsmHP/w+Pvzh9wFw\n6dIlJiaeRdM0brllL9u317FtGwiIRhf57X/xaWZnZ/n85/+ITCpFoQix5DCe5wI6zWaBSGQzLSFK\ntT2H5/koikoi3Y9hRGm1Wvz5n3+dzs7biUbXRB6j0RQrKwaXL79If/8KqVQH9XqLWCxH1Vul6fci\niiDLBupwQBi4dPlJSmJIoLWor/qonkyUKjItQESigIdHBpADHz8IkQWRUBARwhCFFqOpPJe8Ns9P\nTbF/5xjnZpd54dRhdLnG/l0b2DHWT1cmQ1cmw4OPPIJlmq85dtVmk+GowZ7xQVrtOmEQctPuEeSI\nzomXX/7/g5F/rGSzWT73ud/BNE18378q4jUyMsKxYydZWFhlx46d9PXdw8MPP4HT1JiZi/AXf/Et\ntmzp5OMfv/c10smtVgtDFInoCslUhuV6gREtihGJogQ+juZhdFyPtiyguAYpzjEUBCTVPI5fQQpW\n6ZI6WPYdCp5DLt2F62tE5AhBMEVO8TDUDFfsJnFlE45rYoUCsh+naLl0RirEFJG6BF09m5Blicml\nKWSpn7hqokU0qo5JoRHSFQ8Y6siyvHqEnr5RCoUT3HHHBm666QGOHn2FqalFcrkkN930QUZGRq7V\nFP2jIQjg4YfhySev9UjeeD7+cdi/H/74j+F16iD9o0SSJN51xx3cfOutmKZJNBq9ejG9444b+cpX\nnkVVb0BVdSRJQEuKXLwyR0S/ha5MD4vFIiuOQ6bDZWC4nz4jRqZ3A6LaoN1u89GPfpTa0hJhpYK4\nvhDxgwBfCUjoeaz2moJyhX5SQgqEAFuI4QsxGuIqN910A+VyhW8//izTMz7Z2AjZnhEWZpcxPYuW\nLRCGEglkCqKFJkWJ6RpLboRMPM/1++9idPM+JifPMjFxhWZTRpIadHcPsmvX2q6PIAhoWpyYodJo\nnUeQhhFEATlWIqMHKIk06d27ues97yGdTpPL5fjFz/w6E9/7Hhs6O+nM5xFlmRNzc9z4BkbeiqKw\nbdsIFy5M09392jRNLvfj24gHBgZQlBaW1ULXo1fdvaenT/Gud62lDbLZLD09A/T17WdxcZHJyTlM\n0yYa9Umn80iSi2XV0I1OBEFHFFts3jxMoeDwV3/115imQmdn5jXvm8n0srSkU69foFYrsrRURFHi\nZDI70XWZZDKO51l40hE6t6coz0js6h3F9x2+9tQjWPUkQSgQEX1coYkQlnEDkWUEBoAAhUbocR4P\nTdIYzHUiCBDR4ux5/wcQXIeNvQWiI33kGg12/UDKLGoYtNrt19zXsiwMUWRoeOg1hqSmbXNmaekn\nnbZrxtv4NPSz8YM99dlslne/+w5grQ34P//nLyKKI4yM9F6979y5k7zwwkvcfvttV5+Xy+VohCHb\nR7pYLC2THdzJ6SuvUPr/2Dvv8KjuK+9/7vTeVEZlRgVJCASidwzIFHfcsB3XOE5sJ9kUO5v33fI+\nu1lvdt+0zSbZbHY3zbG9fh0n6xobG7BN7wgJECBUUe+j6b3d94+RZQQYYwcYCfR5nnnQXO6dOXd+\nM/ee3++c8z0hF/3RGApDLqX26xjwngSfnIRUR1RwoNEaUaJlwO1CL4pI5AayjSWU2Ivo8HrpiAUZ\n7PWQHY/QEeslIStFr8lAEY8S9QdxSiLYtAYybIV4BnpxBkTyBAn9njZ84QgWvQVJXM60ghwcPgcD\nvmGUBhmWbJFFCyp47IkvYLVaMZvNAKxff+lbQk90Dh4EoxEuYQh93FBaCgUFqaqaT5FkP275sDne\nmcyaVUkoFOK99w4Si0mBKHPmmpErbiEeUNLscjHgDZJXtBCtNkF+eT4lJakkv87OepqamlmyZDH3\nPvooW956i92NjUiBiFyON6QiJzMflzOKz9WDVbQSIYZcjKGUQFRmwiuJoNFqycrKwptM0r+tFyGj\niHy7jaysubSdPI3PN4AgJIknw4hIyJcJnE7GCQu5dA8PsUCViVKpprJyMRqNiqKiBLm5VmpqvKNl\nyhkZuUiltRjNNoqNAkpllKSYJMuk5qaFK4lkZHD3vfeOOmk9PT0MuiMcc8fZ33iI4vxM8ktLWHLL\nLcybP/+SjsuNN15PV9fLdHYGUKnMRCJeFAo3Dz+8gaef/vjjVCoV99xzA3/4w3sIQjZyuYpQaIji\nYg0LFy4AUuGd0tIcurq6sdkKsI0k22/c+BYzZ84jGEzS2hpBrc5FoVASjwvE4/3MmnUXTU3bgSiJ\nRAyp9KPvTSIRR6OR8+Uv38dLL72C398LzMZs1hKLeXA6XcRiYZRKCYWFRajVMpq7PLgH+jBJwiSN\nEZz+IAqlFJs6jgY9p71ymuN++sQYcjGBZ6RVXq7BgqhQEorHUWXpmTt3DoWFhQwPD1NXV0fNn/6E\nKIpjVuOlWVmEYUyeVCgSwa9SYbGMdayGvV6yz5LSH8+kszfNk8BjI09/Loriy+my5WwGBgbo7w9S\nUJByRGKxOC0trTQ19bF//xaGhpysWbOCjIwMTCYT05cu5fSuXcwqUrL1wBH8vhgRjYaoMEzUE6H1\nyA7CkQRJUYNOp8MVUZIpiZGIJUCpZUAI45PloBBktAeDqMxmQt1DZNiXEnAMIgsNkkgkCYaGkQgC\nSq2cqvW3kJGpJzvbgyIeoHX3ftzudjQKCMc0RCVqFBo1mTlWysvL8QW9BMLHmTarhM9/61tYrdYx\n5yyKIpFIJFVhNJGzGi8hV2uI5kMefBB+//urwxk5H4IgsGTJYubNm4vH40Gj0bB7936CQQ9mcy7H\namro7RsiFBzGOxRGLh2muHgGEokEiUQ2KnttNBq575FH8Pv9xGIxqqtr2b7bgSc6gKg34nCrCBFH\nhZQEEbQyGBRk5GVaCcdiqJNJBt1epEYj8xfPRKGQoddX0lR/imBchiBoMGhVqEUvnoQav5BHWBJG\nq4xxcMtL1NeVMHv+bGw2BQ8/fD+iKHLy5H8zNNRNZmY+SqWa/PwM/P4u/KIeSUJALgtgzwCvXM7N\nd945+pt2OBz85jevolSWsGrd1wkEvHR2nkRn07N8xYpLnhNmMpn4+tcfO6O0N/ec0t6PY8aMCp56\nKpsTJ+rx+YKUlq6krKxsjKT5bbet49ln/4eODjcqlZFIxIsodrJo0e34fG46O99AodAhCBCNdmG3\nz0MmU2E0WigocDA4eAKrdQ6CICCKIr29tdxxxxzKysp44IEN7N9/iqamOIFAP5CBVGohHnchCGHq\n6urJzzXjGuwhEJRAIkGZNI5QqKAyL5cSs5napn6csQCIGoR4EK3EgC4cZ1j0445GCPvdyDwD3Hv3\n9Vh54nTDAAAgAElEQVStVl7/4x/pOn4cNdDQ1kZfezvXL1qEXC6n3eGgYNEicu129u/dix6IiiJC\nRgZL77iD+u5upuXnI5NKcXq9tAWDbFix4uM+3nGHIIpiet5YEApFUewQBEEGHBBFccFZ/y+my7au\nri5+/et3sdsXIIoiO3bsoaWxG2JRIvFTLLnuegqL9HzjG49iMBhIJpMcPnSIza+9xrFdu9BqNPT7\nksQGHDjcTmKRKHqZlqRShVumIEIW6pgPpRAlGu0l02QigIGMjCLyc+w0dtejsuRSPn0FdXUdDLXt\nJOjxosSK0qjHmJ/Fo196lO7uYzzyyAoKCgrY9Oab7Hv/A9rbumkeTLB4+eeYOrWUhuPHCbtceHx9\nlJZL+cZffZupZ+mHNDY2smnTbhwOHwqFhOuum8PKlcsvuo/BpeLDC8J4QBRTiZ5vvw2foiJuQtHb\nCzNmpP5Nk/gmcGXH/ciRo7z22hGGekMkBgcQgJNtPhAi6LVB5qy6ieIpU+jsPMBf/MVdo7PtM3nr\nrU289adTDDU00dLWQrfTQSyaiVKMoRDC6DItzFy6kLwcP1PzTSSiUSIyGbu27GOKKR+v20PTgBd5\nViVdHdXEvKcREiqQq4gLMjItuUjCTczPUJMMBhkIhclcMJ9/+dWvRu0ZHBxk06ZtNDf3Iggwa1YJ\n8+dXcuLEKU7U1SEX40ydNo0Fy5aRn58/avs772yhutpNXt7YjOyOjoM8+eStV7Qh5qUa91AoRH39\nKQYGHGRnZzA87GTXrl7s9go2b36VYNDMwIAbv99JaWkZ8biHkpIQ3/rW4/zDP/yUnp44EomBaHSQ\nTEuMlQumYTKbmTZ3Lm++tZNNm2pxOm3I5RakUgkkuzCJpygyC8jw0edPoLVUkAi5KBUgEHQjWCRM\nyc7k+MlWuoN6kll5JGMhEt4+opEw/uAwZjlUTCnCNmMai267Fa1ez/Dhw8wcKRSIxeNsPnyYmF6P\nwWyh3x1DrTGh1SqZP7+cwkI7Go0Gm81GLBZj23vv0VhTg5BIoMvMZNWtt1JWVnYJRurSMTLm5/V4\n09kor2PkzwQfataOE7Kzs5HJQoTDQYaHXdTX1JGjMiCKESxGPbKuJmoHVHwwfTt33rkeiUTCoiVL\ncA4NkZVIcKjeiT4URqKKka9LYFLFcYpBDBmZ9Plj9EijWDJn4I/0My3LRnigjWF5gDVLsvBEvHil\nBpasvB+lUovD4cVkuof+/qP09fVhsBpYtnI+3d3HmDHDQnl5Sqjsvkce4fZ77yUej7N9+2727m1D\nJhOZt3gBXV3NlCp1/OVfPnHOUl5raysvvLAZi6WCggIL0WiY99+vx+8PcPvtt6RpBNJPTU1KoXTm\nzHRbcvnIy4N58+Ddd1MJrdcC06dPQy7fRmdrC3NspYiiiErZhcfXzbSC2dQfqwbBwdKlxWNu4mcy\ndWoxRlMTx4Ng1BajU1vodTkJxg1Y8kq46eblqNU+vvCFhykrKyMYDPKbH/+Y2yoK6e3y4nUFmK4x\n09y/H53ZgCzrTtzuBJFIAI3gIRZuZIE8zkyZDENWFr5QiJa2Nv7jRz/i+z//OZC6Rj366P2Ew2Ek\nEsmoGGFRURFLlixEKpWet39IR0c/BsO5DhbocDqdE7I7t1qtZv78jzrJBoNBGht/T1fXCUpKStm4\ncQvhsJHS0mmoVFoikSHASHd3Lz/84d/S2tpKd3cPDTWHmWM2U2C1EolGadyyhcJcCxaLSCjkGll5\nGcIQPMLSYjtqlQpP73FydHa640Hs5cvobqtFrzIS8TnRLChAIVOQ6JFQWHgLOl0mfr+DU0deoaqi\ngoVl2axYsQRRFDlYV8chj4fPzZs3ujoll8m4acEC3jh+AkfAgL1gFjpdSi9nx47jrFkjY926VGqB\nVCrllttvZ82NNxKNRtHpdBOu8nE85Ix8BXgz3UaciVKp5Pbbq3jllZ2cONaLOhYBZQCZdICybBuu\n/iEGBup58b96GWhtYt1dd1FaWopULmfviSYcwxn43H0ofUPMU6mRSBXIZUpMJugf7kenUpOdn0mV\n1Uq2wYhGM53qzk6SdhtVixczfdBDW1uEjAwrVVWL6ezsxmpdSF5eLStXTmfKlCwqK6dSXl4+JqSi\nUqlIJBKUl5fg87lpba0jmdSwenUZy5bdg9FoPOdct27dh9E4FYMh5aQoFCoKC2dz6NBeVq1aft5j\nrgU+DNFMsN/zp+bDUE26nRGPx0N7ezuQuqFeru+dSqViw4YbOF17kEGXDxBYWqHAnjWDfpefsMvJ\n5z//GNOnT//Yi3lZWRlW6xYEpYjaUkLY58KslWHTJjEYtITDjXzrW19HKpWyeeNGTp08Sai9nVVz\n5qBWNNDX14XRaKBIUNIuz6WkYi0+n5P6k7vJ1WYz2NtJkU6CZWS5Si6RMDMzk301NbS1tVF8Rh6A\n6oz2y21tbWx+7TUSHg9JUcSQl8ct99wzpitvTk4GJ058VGH0EcHRJNHxhNvtxuPxYDQaL9igMx6P\nc/r0afx+P5mZmTz++IPU1Z2gurqO4mI5Ol0WoujGZBIoKlpGe2s7//b9n3Pr8llE5XLkZjOVJhNl\nIytPSrmcecXF7O/s5NFH72Tz5gZCoSgB5wCzi8ooyi2mvb2eUCRBfoYJX9BNNB4jr2gup1pqcIWT\nzLXZ+Ml3vsOOHbv5zW/+hMtlJpkMUmKKUZpppnJmqjxXEARsRiM19fXIFi4cc15ymYzm1j4WVN0y\nOmZKpZrCwnns3r2P5cuXoNFoRvdXKpXjrgnixXLZnRFBEKzAH87a3CeK4oOCICwGbgLuPN+xzzzz\nzOjfVVVVVF3BOsS5c+dgsZj522/9DUFlN8VZRdgsJfSebkedTJKvkGOz6JkqlbLxhRe476tfpaWh\ngfbmNiQJPyFfNx5/P71yDRqNgazMDPIsRnqdQ0yxZrOyaiH27GxEUeRQQwtN/VFiViX+XQ2YTBLc\nbj86nQmt1sDUqaUYDG0sXLiUr33tsdFeA2fj8Xh44YVXGBhIIAhaRFGL1apl1arlY76wZ9LdPUBe\n3tgMTYlEikSix+VyXZPOiCimFEr/+Md0W3L5uftu+Pa3YXgYLkMjzovmxz9+jmQydbEVhO2sX7+c\nxYsXfsJRn43S0lLmzqugUq9HKZePNoPsdzopscz9xHJ2qVTKmjXX0djoJhpNIAhGCgtnk5dXQjgc\nRCZrwzE4yO7XXydfqUQyNETn0aM8d/gkGdkFhEIicnmAZFxErpTj8/Uz3HmATLGTmC9GKBQkIaQu\nzUlRJJhMYjObUQ0NMTg4OMYZ+ZDh4WHeev55ZhgMmO12AHodDl557jm+9NRTo07L4sVzqa19hUDA\njFab6oszMNBOdrb0sqprflpisRhvvbWJ2tpWJBIdohhg7twp3H77zeckKg8PD/P886/gdEoANeCl\ntNTMgw9uwGbLY3Awjt3+0Xep5sBBkoPDZCk1LLTZiMRi/Oatt1g7e/aY1xUEAaMgUFBeQm+vH71+\nOs3HdiLraaXx6E4kCT/xiI++4S7kKh0uzyAxVzfZkTAl2VmYXC7+9NJLPPDEE6xYsYzduw9y6lQj\nYnOU1UsWjlZyAqiUSlAo8AWD6M+4Vg97vYQSUiyWsRLsUqkMUI/mQl0NXHZnRBTFAeD6s7cLgpAP\n/Bi4/eOSQ850RtJBYWEht6+/gcPBNzFrTMQiMYRoFIVKSSjpY3pBHiadjjyfj7fffJNgWxtqFfja\njlEk09AvSElGQ6CU4w17GA5pyJ4yhZ5gkKwRL7+hs4s9dQ60pjlUVKxCJpPR29uC2RwmGq3H6RRJ\nJuOUleVw1133fKwjAvDmm5txuYwUFn5Ultvd3cCWLdu4667bzntMdrYFv989ujICqWTWRMJ/UUlm\nVyPHjqWa482dm25LLj9mM9x2G7z4IhesbrjcWK0LUShSN8xYLMJbb+2lsNB+WfpgqFQqFq9dy+G3\n3mJaVhZymYxBl4vWQIC7Hnjgol5DoVDgc7QijcmRKdVEQ1kAuFz9zJ+fza6332ZhXh4qhYJYPM4m\nX5wpskwkgpHcXA1DQ1763EOEtFORtG4jNxalrHQqCCLb+lup7Y+QJZEQFwQseXkERBGZwTCmdPNM\njtXWYgXMZ/xm8zIzGezooKmpiVmzZgGQn5/PI4/czJtvbsXpTCKKCUpKsrjrrnvHVeL6++9vp6bG\nQUHBdUgkEpLJJDU1x1Grt3PLLTeM2ffVVzcSDudQWGgf3dbScpwdO/awcuUyJJIwsVgUuVyB3+/H\n3d9HplIgw2BAEARUCgXFWVk0NzQw/awci7Aokpuby2OPFfHaa1voc50mdmI35Qo5Rr0ai8nA6f5W\nOrSZSEIhyhRq1CYT06dlsXj6dE739bF761buuPdeCgsL8fl8/PZHP0J2Vo+vLpeLdffey7ETJ5hq\nMmExGHB6vTS6XMyYM5Nw2I9G89HYJpMJRDE8xqGZ6KQzTPP3QDbw+shy6M2iKIbTaM95WbBiBW1H\njpDsdTA87CISceBIxMkttlI5osVh1GjYc+gQse5uLLEIsyx6YjE5apmE1rCHvHgYWUygYto0ZGo1\nCVGkoa+PLK2W96rrCQjFzFuwcDRhNC+vlI6OAb70pbuRyWQoFIpPXKHwer00N/dht183ZntubilH\nj+7j1luj521yV1W1iBdf3IZSOQ+lUj0ixXyKmTPt5405Xwu88grce+/VH6L5kMcfh699DZ56Kn3n\n/KEjAiCXK5HJcjhx4tRla8q1ZNky9EYj1Tt24B4cJK+4mA3XX4/dbv/EY4eHh9n2+utUquOEInHU\ngoaeul3s6ahnxtwS8vJKcVQnUI383hyeAFJjCcNBN6HBPkrKptLnH2YgoCUxeIxcuY6iwmIyMzPw\neh0sXzSLmlPHaFMomJ6bixfoCAQoXbbsY3M6XIODGM4zQ9bJZHhcrjHbysvL+V//qxSn04lcLr9g\n+CMdRCIRDh48ic22dHTyJZFIsNkqOHhwP2vWrBoNRTgcDrq6PBQUjE3uysubyoEDB7nhhtWsWbOA\nd96pISurnFAoSjTkJoyHxdMrRvefNW0ar23ZQjgaHR23AZeLmF7PlClTkMvlfOtbT9BUs5MhvQql\nQkGGRoMvEiGpkeCTBLFpLVizddjtmcyfl3L+Cq1WdtXVId5zD4IgoNfrWbF+PXvffJMchQKVXM5A\nIIC2tJS777mHzkWLOLB9e+r+kJfH+nvuweVy8+qrB7DZ5qBQqEgk4nR1nWThwtKrasKYzgTWr6Tr\nvT8NpaWlXP/AA+x7910s2k5aokMUFZWwasmS0Tpvh89HOJFAHwohV6koNZlwev2og0mighLdtDIi\nWg2GefNYV1VFYWEh9SdP0t3Whniii0UzricjY2yprUSiIhKJkJt7cfofqTJEyTlxbolESiIBiUQC\nSK16dHZ2MjAwgFarpaysjA0bQmzZsp9oVIooRpk3r5RbbrlK6z0/AVFMOSMvvZRuS64cq1ZBLAb7\n98OyZem2JoVMpiAUily21xcEgZkzZzLzM2QoH9q3jxxRZFnVStrbOmg93UmuKoo02cNddz2JXC7H\nFwzS0d6OIJEw5PZRbK/E43fT6epGIpNRcP3t5CTA2fke+aE4CmkIl6uVnBwT69bdhuFAJqe8Xhqk\nUjQGA+UVFdz/pS99bIVbTmEhpxsasI7oBn2IJxZj9lll/JAKNWVlZX3qc78ShMNhkkkpMtnYcIxM\nJieRkBIOh0edkVgshiCc+5lIpXKi0TjJZJIVK5ZjNhvZufMww8P9aAyD3LlkDjlnJPMr5HLKV66k\nemgIbTJJPJlEsFjY8NBDo2Ehj8eDp6uLu+bPp8PppNntRqbRMHPGjFTovqSEm2bMQKZQjK4yJRIJ\npGeN2YJFi8iz2aivqyMUCDDHbkcikVBXV4fdbueRJ58cs39KdiHK1q2HiMXkCEKEJUvKuemmtX/+\nhz2OGA8JrOOeJUuXMmv2bLq7u3n71VfJDoUwarUkk0m6h4YYVigoKiwk0NGBj9SFzmo2kmlMknRK\nKJ8/j1hBAQ8/8QQDAwNsfO01TtfX0+9w4O1u5EjvELqMfAoqFmOzl5NIxIHAxy7Jng+z2YzJpMDj\nGSYWixCNhtDrLcRiEez2DFQqFS6Xi3ffeAN3SwtGQSAMbNdq2fDYY/zN33wVt9uNWq2+qpb+Pi11\ndakb84IFn7zv1YIgpFZHfvvb9DkjZ4s7BYMDlJevuaTvEQ6nFl7PTPo8H/39/QwPD6PX67Hb7ec4\n+D2trZSZzUgkEoqKCwkKIk0tLfgG+tn05pvk2e0cqKkhIpejUShwuD0MCTFUBhuL166kuCS1otre\nfoiZ69ZgGhwkS69HJpOhVquJJxJ4gJKiImSiiNpiYfVtt41JRD2bWbNnc3T3btr7+ynIziYpirT0\n9SHLz6d0gjVW0ul06HRSgkHfmNBEMOhDr5eOuT5lZWWhVicJhfyo1ant0WgUh6OH6dOLRp2CyspK\nKkdq9Ddv3Ejn3r2YdTrUSiUOj4dmr5eHn3gCq9VKX18fCoWC/Pz8MWFxn8836gRV5ORQMbJqF08m\nOdHVhTori7d27kQai4FEgr2wEI1Ox4xVqxCEVNfdzs5ORFGkoKCAtTfdxJEjR3j2X/8VX1cXEkCT\nnc2ae+/lrnvvHf3eCYLA8uVLWbhwPh6PB61We9XkiZxJ2nRGPol06oxciEAgwM6tW2k4fJhkMknB\n1KlU3XQTB3fvpv7112lrakJ0OilWKklKpQS0WuQzZ3L7V79KTm4uv/7BD8gDApEIjtZWFJEI/cEk\nFus0ehMxsmatRCqLsXp1OVVVK+ju7iaZTGKz2T42S9rpdBIIBGhvb+cn//QT1GEJRqWaoXAAVa6J\nL3/jixw71szBg3V42lpZPbuERRVlKOVyBl0uOmQynvzWty6Yj3IlGA86I3/3dxCJwL/8S1rNuOIM\nDkJ5ObS1wZVetRcEgb/+619isaRCEC5XJxUVJh58cMMlyWNwOp28++5WGhq6EEUoL7dx661rzglD\nxmIx3nrtNXqOH8cgCIREEWVeHhsefng0TBoOh3n+l7/ENDREWWEhB44fZ6i5mRKDgQGfD1l+Poca\nGlizbBlNp05hTiSIRyK82TpA/sybWXvjnQgCnD59lIyMEDffvJqdr79OviiikctRqFRsra0l7PVy\n3223oVIocPv9nBga4ubHHjtHI+hMHA4HO7ZsoePUKQSJhPJ581i1du24nVxc6Pd+7FgdL7+8nYyM\naej1Fnw+J8PDDdx/fxVz5oxNND15sp7f//494nEL7e0D9PZ2I5UO8MADN3L//XefE+JOJBLs27OH\n2t27SYTDmHJyWHnTTRd02jweD52dnfz2Rz9CNzhIhcmEWi4nEo9zwuGgXasl22hE3tWFTa1GBhwZ\nGiKYn8/3f/5z/D4f7736KvpYDEQRn0zGgrVr+dX3v095PE6JxYJEEOj0eDgeifDtn/yE2Wcl1F4N\nXEhnZNIZ+YwkEgmSyeToEl53dzev/ud/UqRUUnfqFN3d3UgFAZ9Wy1/8/d+Tb7Pxg//zfzB1d5Oh\nUnGwtZXri4qwWq3UdXejzMxl2OOnX6vh6b/7K8xmE5v++EeU4TACEJDJWLdhAzPOWFYOBoO8/vo7\nNDT0AkpO1XzAbKOcfEsmXm8Ak0lPb8hPS1xLxcxbqd1/mByZFF+gH3t2iNuWpqSfD3Z2cvtXvnJe\ngacrSbqdkdSNKhWiWXh5CjnGNQ89lNId+fa3r+z7CoLAkSNHqK09hSiKzJ9fwcyZMy+J6F4oFOIX\nv3ieUCib7OyUmNTQUCdyeT/f+MYXxswwt3/wAW3btjHrjIaYp/v6iBUU8OBjj3Hw4CE2bdrL0JCf\n/iO7mJWbgdvjYL7ZTCAcJqRWYzCb6W1pQT1lCosqK+kcGCAcjdLvdqMom4HPH6eztQEjYSoK7AQT\nCY6ePk3M6UQVjeKNxwnHYvzlAw9gPKPU1uHx0K/T8ehXv/qJ5xyLxZBIJOMqIfV8fNLvvaGhgW3b\nDtDX5yA3N5PVq5cw7WN6M5w6dYp/+qefEwhoKSwsobCwDL/fidHo4Wtf+8I5FTgAyWSSeDx+3ly6\nD4lGo7z99maOHDmNIGhoOLYDS3gYk0qJJJEgnEjQPjyMRK2mNJHAqNUSUyhwxmIQChFJJLBUVOBw\nOrn/uuswarVASsL997t2EWpvZ/1IB94Pqe7pwXT99fz1d75zMR/jhGJcip5NdKRS6Zgfu81mY+0D\nD7DtzTfJKi3FWFyMxGxmw8MPY7FY+M2//itqj4eZOTmE43FyVSqcPT143W68bjdaUcSek4M6K4sp\nU4r5f//+71QajRhH4rqBcJj3//AHsr75zdHl2tdff4empih2+3J8Pid6UUfEHcU8xcCcOaklSc++\nQ3j7XBiXZxIKBvElk0gFDY0dQyye7ibLZEImCMTjn6w7FwqFqKmp5dixJuRyGYsXz2LmzJnj/qJ3\nsVRXp5rjXUshmjN5+ulU4u5TT1355nlz5sxhzpw5l/x16+tP4XYrKSwsGt2WnV1IZ6eXEydOsmhR\nyutMJpMc27ePhXl5Y8IyxTk57G1tpbq6mjfeOIDNtoi8PBUmYyFbNv4WZXc9UbMRiVpNxcKFRKNR\nsrVaTg8NoVGpmDaScNrY3U3hsgX4vV6kHceZmp1LptFIZ1sb+UNDyPPzUevNNHcP4Wk+RXVtLWvP\nkDLIMBg43tV1Ued8vhvvRGTatGkf63ycjcPhpKRkOXb79NFter2Zjo5ampubqaioOOeYM8XiPo7N\nmz+gtnYYu305EomErKxp7Hr/eVTaMFPsNuoaGjAYjbj6+kiKIgG/n7ZgEJvJxJLycnqcTojFCPX3\n09zRwYIRO9RKJUqvlyGXi6HBQdQaDTqtFgSBTKWSgZEGdynp/5McPFhHMBhm5swSFi6cP25Xu/4c\nrhlnJBaL4fP50Gq1l00UZmZlJeXTptHf349MJiMnJwdBEDh58iSaYJBMs5lgIIBGLicC+L1elIEA\neoOB4owMIuEwpxsbOXjgAOZ4fNSLBtCqVOTKZJw4dozV69YxPDzM4cNNBINWTp7cBQTRhCIYrHk0\nNbdTWJS6CAb9QaQSOe1tbTiHhoh4vZiVSgbCwxytq2PZwoUEZbJPTJQNh8P87ncv09srISOjgGAw\nzssv72fRok7uuuu2Caf2dz6eew6+8IVrp4rmbBYuBJsN3nzz6unJ098/hEplPme7Wm2mv98x+jyZ\nTJKIRlGedSMXBAG5ILB7dzVmc+lo1Y9ObyHXbCXq7GFueTkms5nBwUGGBQFHXz/tgoL/9/5+ymwZ\nzCi0MRyPkxOJ8Ny//AsL5XIcg4M0h8MMezzMKSzkD9XHyZlyPTr1DMIkePdgJ9m2VmaVprrduv1+\nTBfIGbnW6eoaQKtNjXMymSQUCiOXy5DJDAwMDHG2L+L1etm/v5rjx1tQq5UsWTKLOXNmj5lYhUIh\nqqsbsdmWjYawVSotVTd+ie7unax+aD0nvvtdpkSjBIxGTIEAaqmUEy4XMlEkKYrEAJUgUGo00nr6\nNHOnTUMqkeB0OvEMDDDkduPv7cUFyPV6CouKGPD5KPkwv2XzB+zc2YTZPAWFQsnWrZ0cOdLAk08+\ndNU5JOlNErgCiKLIwQMH+K8f/IDf//Sn/Of3vsfWLVsuaiXgsyCXy7Hb7eTm5o7eoCORCAqgvKyM\n9mAQqUSCVqulZ2QZT1CrUSoU9ESjzC0tpa66GvV5pqZqhQK/xwNAS0sLNTWn6e8XkcvzicetNPQ4\ncLo9BALh0eXPmCAiqPS0HDvGnKIiBL2eiCCglEZob2piW2Mj199xxyc6aHV1x+npgcLCSnQ6E0Zj\nJsXFCzh8uJ3e3t5L+yGmgXAY/ud/4NFH021Jenn6afjZz9JtxaUjK8tCJOI5Z3s47CEr66NqCplM\nRu6UKfQ7nWP2C4TDxJVKYjERtfqjZMqulqNMN2WhMGUxGAohEQRyzGb6O7qocUQISksJhm3sPOrn\n3zduJ3P6dI5s306mVEoyEqGvp4fwwACO9nYO1jehEAwYtRmYdEZycwpIJrPZdayDaCxGMBymfnCQ\nJatXX74PaoKTm5tBMOimt7eXne+9x8EP3mfnu+9Sf7warXZs4yW/38+vf/0Se/b0o1BMJxy28cor\nh/jTnzaN2S8YDALyEYGxj1AoVMjlGhQKBYH+fqZbLJTl5NCVSBCMx7HI5YR8PvqdTuRmM4XFxURE\nEeJxYvFUhU9ddTVmgwF9bi498TgKmYyA00l1UxNDJhPr77wTh8PBnj0nKSpaiNmcjVZrpKCgAqdT\nw+HDtZf7I73iXPXOSO3hw1S/+SbzTCaW2u0stVo5vWMHW7dsuWI25Obm4gYKsrMpmz2bWp+PiFRK\nu0TCEaWSgNlMXShE6ezZzC0rQxBFhqPRc15nKBCgoCQ1U6qtrUcmU6DTGZHJ5Oj1GZiLVrKn6SQo\npATCYVr7+sCWgyhPII+F0Ks1TC8rJaoTUJohs6SE4rlzmX0Ry+OnTrVhNI5dPREEAYnEQldX9yX5\nnNLJG2/A/PlwETITVzV33gnd3XDoULotuTTMmFGBWu3D4fjIYR4e7kOpdDNz5tjp8sobbqAlFKK9\nv59AOEzf8DBH+vpYeeutlJYW4HYPju4b9AyhU2uYkptLKCuLGpeLQ729HHf7Kau6m0Vr70TMtGKe\nMovM0hUkBAlmUcQfizHY30+hSsUUvZ4ilYqO7gECyFArUyuh1sxMFHk2uoMC7zc2ctTnY/k993ym\nMuRrhTlzZuH1tlC78wPyZDKmmMxkyBLIvC001tWN2bem5ghutw67PdWrRq83U1Q0f2Ry1z+6n9Fo\nRKUSiURCY44PBDyYTCr0Iwq+8XicDI2G6cXFdEuldMbjdMfjyHJymLd4MdnZ2UQNBpyxGKFIhM7e\nXtr6+zEXFvLF++4jXFBAHdAgl3NCLufbP/wheXl5I5M8ExLJ2DC4xZLHyZOtl+ujTBtXdZhGFB/0\nkiYAACAASURBVEUObt/OzJycUclnuUzGrIIC9h04wHVVVWjPCIVcLnJzcymaP5/Dhw5RkpVF3qpV\n7Dp+nAKplC/dcQeiRIJOrUYmlXK6r4+K2bPxOJ3UnT7NFKsViSDQPjiIaLUyvaKCRCJBd7eD2bPn\n0NBwAr2+FIVCi1ZvZTjDiqqynMZEAtvcuXxt2TI2b9rEOy+8Rr/LiUCcZTMNrJh1N06fj+RFyr1r\ntSpisXN1H0Qxilp94VLJicDPfw7/+3+n24r0I5OlElj/7/+FP/0p3db8+Wi1Wh5//D7eeGMznZ2t\ngEBenpG77rr3HMEom83GA1/7GtV799LQ3o7JZmP98uVMmTKFvPx8jh9/maEhGRkZecg1Rro66pgz\nPZ9582Yz7PXS0nqahpCa6TOXYTRmUjCSL+J2D9HWdoKMcBi1RIJXLmc4EsGsUCDT6Rh0DUBMRVIU\ncfl9OKJRqm66Gb+/kXsevYGpU6de8Q7aEw2z2UyZXUeo9RRuvweRJPmZKu6tWkl9Wxv9/f2jAnoN\nDe2YzWMnVqkwjJG+vr7R/WQyGevWLeH11w+QlTUdvd6Mx+PA6WzgoYfWYrFYyC0vp/30aXLUarK1\nWlR2O2GJBL9USkF5ORKpNLVCUlzMTRs20Dk4iEMQ0JWWsmbRIhRyOV+4+24cHg/haJSOZHLU6VQo\nFAjCuSv40WgYi+XqK+29qr/h0WiUsNeLvqBgzHaZVIoKRnNIrgS33HEHdUVF1B08SCQcZvXDD9Ny\n6hT9TielublIJRIcHg89iQQPLF+OyWTi4P79nKyuJhGPYywtJddioebwYcqnTUOjUWK1VqDRaGlq\nOoXLFcJiyWDp0ll85emnxpQtXr96NY6TJ5mRlYVKLkczorPQ09ND1Uhs8pOYP7+Smpq3icdzRsWI\nAgEvCoV3wukYnM3+/anS1jvuSLcl44MnnoAf/ABqa1PVNRMdq9XKV77yKG63G+CCiqNWq5Xb7r77\nnO3Z2dl8+cv38f77u2lq2oElV0ZMNFAwJeVwGLVaAvEYsswcjMax+kCRSJDCQhutgx1kq9XYpk7l\neHc3NU4noViM0jkzqHdATzSGISuL+aWlxOMBCgqMF2zYN8lZxGI8csNyYvE4kpEJHoDW6cTj8Yw6\nGXq9huHhIHr92blEsXM0aBYtWohKpWLbtoN0dh4hNzeT9etvHE2sXbdhA9WvvUYwEMATDKKwWJhq\ntzN97Vr6enrYdfIkSo2G5TfcQFVVFQqFgkgkwi9/+ENiiQQKuRypRILVbKaxu5uKxYtH37u4uBi1\n+n28Xudou45EIo7b3cYdd1xaDZ7xQNpKewVB+DzwJUAJ/FoUxd+d9f9/dmmvKIr86ic/YapEMiYZ\nNJ5IsL+/ny//zd+gVqsv8AqXl0AgwNZNm2g9dgxBFDHk5LBm/foxks+xWIzXX34ZZ0MDmQoF0WSS\nIVHENKWUxqYYRUVzRkvk+vvbsNujfPGLD53zXlveeYfmPXuw63RIBIEen4+MGTO4+4EHLroaZteu\nPbz3XjVgBuIoFAEefPDWS+aMpKu09447YO1a+MY3rvhbj1v+/d/hgw+uzOpIuku6Py0fCrQ1Nzez\nfeNGQsPDJCUSCioqOFbfg8k0Z7TDaiwWoafnMF/+8h001Nfzwj//MyUyGT0DA+jicRRqNXGzmSaJ\ngtlLb0MiMSEIETIyBD7/+Q1XdUuGSz3ur7z4IsquLvLPEIsURZF9HR187qmnsI4o0ba0tPDss5uw\n2xeOTqy83mGi0Sa+/e0nPjZ/7mxhPkhJPOzdtYuju3dDLIZErWbJ2rXk2Wy89txz6EMh9AoFrkgE\nMSuLz33xixgMBk4cP84Hf/gDeQoFWqWSIb+fiNnMA088MaZ7cmdnJy+++CdCIRUgRxTdrFpVybp1\nqyekkzoudUYEQZCJohgXBEECHBJFccFZ/39JdEaOHT3KzpdfZnZeHjq1mnA0yonubsrWrGH1uvEh\neR4Oh4nFYuh0unO+YNWHDnH0jTeYd0anzkA4zOGhIazTKqmv70MiMZBMhrDZ1Dz00IbztgIXRZHW\n1lZOHTtGPBajfNYsysvLP3VZrsfjoaurC5lMRlFR0SeqWX4a0nFT2rsXHnwQGhvhEp7KhCcchpKS\nVGXN5dZcmWjOyJmIoojf70ehUKBUKmlvb+ell94mFFICUiQSH7feuozFixcB8Mtf/IJ3/uM/WGYw\nkJ2ZiUKtptfnI15QwNIHHiArKwuNRkNRUdFVUzL/cVzqce/s7OT1X/6SGRYLFoOBWDxOQ08PuooK\n7nlo7ARt9+69vPfeIUTRCMTQ6WI8/PCdn1lrKRaLEQqF0Gq1SCQSfveLX5ATCIyRnG/u6UE7axbr\nN2wAoK+vj+NHjuBzubCXljKzsvK8yqrRaJS2tjai0Sj5+flYznjNica4dEZGDRAENbBZFMVVZ22/\nZKJnR2pr2ff++8T9fgSFgjkrVrB8xYoJ8WN/4T//k/xQaEw3ToCjHR0se/hhMjMzcTgc6HQ6bDbb\nBb1lt9uNKIqYTKZx6VVf6ZtSMgnXXQdPPpkq6Z1kLM8+m3rs3Xt5y50nsjNyPmKxGJ2dncTjcWw2\n25hQcG1tLX/68Y/R+nyQSCBTqymdORNBqaRfp+ORJ5+8pA7+eOZyjHtzczM73nmHgMOBKJVSsWgR\nVWvXnne1w+fz0dvbi1wup6Cg4JLl5TgcDn7/s5+x/Kz0gHgiwd6+Pr75ne8QCoWIRqOYR9oKXCuM\nW9EzQRC+AzwB/N3lfJ+58+Yxe84cgsEgKpUq7clggUCAvTt3cvLwYQAq5s9n+apV560bTyST53Uc\nPvwhZ2VlfWLDq4GBATa/8Qau7m4EwJiXx4133XXRTfiuVn7+c5BK4ZFH0m3J+OSxx+CXv0wp0j78\ncLqtmTjI5XJKRqrezkYqlVJcXEyFzUY8FkOuUHC6pYXj+/bRr1QSGB6mctkyqtau/VSTpYaGBg5u\n385Qby+ZubksWb36ogXDribKysoofeopAoEACoXigqJmer2e8rPUTz8rAwMD7N22jbZTp4gDru5u\nkjbbGEdDEATC4TCvvvQSfc3NyAUBqcHA6ttvv2R2TGQuu0smCIJVEITtZz1eBhBF8btACfC4IAiX\nVcFFIpGg0+nS7ohEo1H++NxzDO7fz+KMDJZkZOA4cIA//O53RCLnVqtMnzePdodjzLZwNIpXIvnY\nduJnEggEePV3v8PidLKioIDrCgrI8np55dln8fl8l+y8Jhp798L3vpcSOpsAC2RpQSJJ5Y789V/D\n8HC6rbk6KCwsxC2RkEgmUapUtLe10X3iBFJB4PrZs1litdK6Ywc7Pvjgol+z7tgxtrzwAjl+P1U2\nG7mBAFuef55jR49exjMZvwiCgE6n+0R11UuFw+HgD7/8JbS0sCIvj8UWCwNdXezZt2/Mfh39/fQ7\nHAhtbVxns7HUbmeqVMqm//5venp6roit45nL7oyIojggiuL1Zz0eEAThw29KDEgC50z/n3nmmdHH\njh07LrepV4TGxkYSvb1Mt9tRyuUo5HKm2e0wMEBjY+M5+8+bPx9FcTE17e10Dw3R0tNDdV8fK++4\n46IqgU7V16MNBMg7I6krx2LBHIlw4vjxS3puE4XqatiwAf77v2GCFwJddpYsgc99Dr785VTvnkn+\nPEwmE0tuuYXqnh6ae3qoqa3FmUigysuj1GZLSQ/Y7Rzft2+0y/CFSCaT7Nm8mdlWK5lGI4IgkGk0\nMic3lz1btpBIJK7AWV3bHNq3j1yg0GpFKpGg12jYsHYt1e3t1DQ20uNwcLyzk+ZIhAKTidK8vNEV\nE5NOR6FKxeGzHJdrkXQuE/ytIAhVpKpp/iCK4jnT9GeeeeZK23TZ6e3oIPM8FTyZajW97e3MmjVr\nzHalUsn9X/gCDQ0NdDQ3k6XTsbKy8qJDLM6hIQzniZcaVCqcAwOf7SQmKPE4/Nd/wXe/m8qFuOmm\ndFs0Mfje91JJrM8+C48/nm5rJj5Lli7FXlDAkepq3CdPsrayEnt2NrKRJTq5TIZiJDH2k/JH/H4/\ncb8fvXlsmapOrSbpcOD3+8/pWjvJpaW7tZXys8rFczMyuG7RIjSVlQg6HRU2G9OBxo0bzznerNdz\neqQXzbVM2pwRURT/EfjHdL1/utCbzQydR101EI2SZT63hwakYtCVlZVUXqQmyJlk5+bSc57wjzsc\npiI//1O/3kSkrw9++1v4zW9SFSJ79qS6805ycahUKan8qiqYOhVWrky3RROf/Px8cnNz6WxsJEul\nGnVEACKxGFGJ5BxRtvOhUqlISCTE4nHkZ4Sg44kEcYnkmkmGTScGkwn/wMCorsmHCEoly1eupHik\nErKrq4vDyeQ5xw97vVjPmoRei1w7abzjhBkzZzIsleL2+0e3uf1+HIJAxWWQe542fTphk4m2/n6S\nySSiKNIxOIhfp2PGVSwvLYopp+O++6CiAnp64O23Yfv2SUfkszB9eiqR9d574dixdFtzdSCRSFiy\ndi11fX34QynJ8WA4zNGuLuZVVV1UQ0+FQsHMJUuo7+4mOXKjSyaT1Hd3U7Fo0WVrCjrJR8y/7jpa\n3W7CZ0wyu4aGkGVnj8nrs9lsmEpKqO/qIj4SPht0ueiKx1mwdOkVt3u8kfbS3o/jUpb2pptoNIrH\n40Gr1aLRaGhra+OdP/4R6YhDktDpuOW++5gyZcpleX+Xy8XWd9+ls6EBRBHb1KmsvuUWMjMzP/ng\nK8ilKvU7ehS+/nUYGIBvfjPV/O480iuTfAZefRW+9jXYuPHS6Y9M1NLeeDyO2+1GpVL9WR1Ua2tq\n2P/BB8T8fqQqFQuqqli8dOlFl3zGYjE2v/02LTU16CQSAqLIlLlzuWn9+iuWxPlZmKjjfiY+n49I\nJEJzYyMH3nsPbTJJVBTR5uVxx/33n6MJEgqF2P7++zTW1EAigTkvj+tvvfWiihGuBsa1zsjHcTU4\nI6IocmDfPqq3bkUaixETBKYuWMDam25CKpWOdrvNzc29IlU+HybEjdel2z/34uTxwHe+Ay+/DP/8\nz/ClL01WylwO3n4bvvhF+Ld/SwnG/blMxJvSkdpa9mzahBAOExdFimbN4sb16z+zonOq7X0IlUr1\nmfWP3G43Ho8Hg8GA+WNCvuOJiTjuHxIIBNjy9tt0nDiBXBBArWbRmjVYc3JQKpVYrdYLajlFo1Hi\n8fh5Rc6uZiadkTRRW1PDvldeYa7NhkqhIJ5IUN/dTdaCBdx2113pNm/c8VkvTqKYCiH81V/BLbek\n+qqMs0Wfq466Orj7blixAn70I/gEqZsLMtFuSk1NTWx+7jnm5OaiValIJJM09fQgLyvjc5//fLrN\nmzBMtHH/EFEU+f3vfgcdHUwdqYzxh0Ic7e9n/RNPXLYV7quBCzkjkzkjlwlRFDm4bRszrFZUI0ul\nMqmUGXY7LTU117TGx6Vk//5UQuVPfwqvvZZKVJ10RC4/s2bBkSNgMsGMGfAP/5AKi10LHNyxg6lm\nM9qRFUapRMI0m42BxkYGBwfTbN0kl5u+vj5cp08z7QxRM51aTYnBQPXu3Wm2buIy6YxcJhKJBAGP\nB8NZWiBSiQSVRDLpjPwZOBypMtMVK+Chh+Dzn4dDh2AyB+zKotennMDdu6G/P1VpU1UF3/9+qsme\ny5VuCy8PzsFBTGfliAiCgFYiwev1psmqSa4UXq8X7Xnyecx6PcP9/Wmw6OogvXKkVzEymQxTVhYu\nn29MX5l4IkFopD/MJBcmmUyV5ba0QHMzHD4MBw7A6dNw443w9NOpjrtpFtW95ikvh1/9Cn72s5QT\nsnMn/NM/pVZODIZUJU5FxUeP6dMn9uqV1WbD0ddH7hkddUVRxJdMTugmZpNcHGazGV8icU4XX4fH\nQ84ZDU0n+XRMXsYvI8vWreP9F19kpiBg0ukIRSKc7O1lVlXVNZe49GkIBFLKn62tYDSmVFJLSmDe\nvFTi5OzZMFmxOP5Qq2H9+tQDUs5kdzfU16ce1dXwwgupv7/5zZT43ERk6fXX88avfoVCLifDYCAS\ni3Gqp4cp8+dPOiPXAFarlfzKSo6fOMG0vDwUcjkOj4e2YJB7JkV4PjPjOoE13TZMMskkk0wyySSX\njnHZtfeTGK+O0njC6/Xys589j1JZhtmcDYDLNUAs1sLTT3/xz9I/uNKMh+z6oaEhfvGL32MwzECv\nN49s60ah6OWb3/zipIjUZWA8jPskV54LjbsoivzmNy/S06MgL690pONtgL6+Izz++G0f2xV5kvHN\nhcqdJxNYJzgnTpwkFjOPOiIAZrOVcNjIyZP1abRsYlJbW4cg5Iw6IgBZWTbcbjktLS1ptGySSa4d\nenp66OjwkZ9fNnoDU6m0GAwl7NlzOM3WTXI5mHRGJjiDgy5UqnPlRZVKPcPD7jRYNLEZGBhGrT73\n85RItLhcnjRYNMkk1x4+nw+J5Ny8Op3OxODgVVqmdY0z6YxMcPLzswmFnOdsD4dd5OVln+eISS5E\nQUEOgcC5n2cy6SU7ewKXgEwyyQTCYrGQTPrOCeO43UMUFuakyapJLieTzsgEZ+bMGRiNYfr6TpNM\nJkgmE/T1tZKREWfatGnpNm/CMW/eHJRKFwMDnYiiSCIRp7u7gbw8+WScepJJrhBWq5XKynw6OuqI\nxVJdx12uAaLRDq67blGarZvkcjCuq2nGq23jDZfLxXvv7eD48dMIAlRWlnDDDVUTTstkvCQyDg4O\nsnnzDpqbuxAEgblzp3LDDdejPUvAbpJLw3gZ90muLJ807tFolJ0797BvXx2xWBKbLZObb151zTSV\nuxqZ7E1zjRCLxQCQy+VptuSzMd5uStFoFIlEckWaGF7LjLdxn+TKcLHjnkgkiMfjk5VsVwGTzsgk\nE4LJm9K1yeS4X5tMjvu1x7hslCcIwgxBEPYKgrBLEIT/Spcdk0wyySSTTDJJeklnAmujKIrLRVFc\nCSgFQZibRlsmJJFIBJfLNRqemWRiEQgEcLlck7PDSSaZQMTjcVwuF+FwON2mXFWkLRguimL8jKdq\nYFIU4yJJJBJs376LPXuOkkjIUSiSrF69kGXLllxQ4W6S8YHP5+Ptt9+jvr4TkGKxqLj99tWUlpam\n27RJJpnkAhw+XMt77+0jFAKJJM6iRdNZt+56FApFuk2b8KS1tFcQhNsFQTgOhEVRbEunLROJrVt3\nsnVrM1lZS7Dbl2I2z+ftt2s5ePBQuk2b5BNIJpO8+OKrNDbGsNmuo6BgOaI4heef30hfX1+6zZvk\nMtPUBMuXg90OP/0pTC6KTRxOnDjBq6/uQaebhd2+lJycpezd28PGjVvSbdpVQVqdEVEU3xJFsRLw\nCYKwLp22TBTC4TB799Zht89CLk954wqFiry8SrZtqyaZTKbZwkkuREdHBz09YfLzy5BIUj8/vd6M\nQmFn//6aNFs3yeXE44EbboAHHoBNm+DZZ+Hf/i3dVk1ysWzbdoCsrApUqlSJv1Qqo6CgktraVjye\nSXXmP5e0hWkEQVCIohgdeeoFzlnneuaZZ0b/rqqqoqqq6orYNp7x+/0kk3JksrHluyqVlqGhOOFw\nGI3mXBnlScYHXq8XQThXr0Svt9DX136lzZnkCvKP/whr1sDXv556vnEjLFwIN98M5eXptW2SCyOK\nIgMDTgoLx6Y2SiQSBEGDx+PBaDSmybqrg3QKKNwkCMJfAgLQBmw6e4cznZGJQn9/P/+fvfeMkuM6\nz3WfqurqnHt6csYMMMiZIACCBHNQIG2QkkWbkmzKtpIty9b1ObZP0NKRfe27tHSP5WUtidKhSF4G\nkAQzGEASJAgQYYDBDDAzmJzzdM6puqruj4EgQACTBGY8v4Dq2lW7dlXXvP3tb7/f5OQksrzg2Olw\nOC7q8R0OBwaDgqIUzkRGALLZFHa7jNlsvqjnu8TFxe12o+tpADRNJRyeJZmMkk7H2L698UPu3SXe\nL4JB+NWvoK/vN9vq6+Gf/gn++q9hz6VI/0caQRCorPSTSIRxOn1ntmuaiq5nLprBZD6fZ2hoiFQy\nSWlZGfX19Z+aPMAPM4H1WeDZD+v8Fxtd13n5hRfoP3gQjyCgAvskiRu++EWWLV9+Zr9oNMrJk12E\nw3FqaytYsWI5FovlXZ0jHo+TyWTYtGkZ+/adpLp6JUaj+XRp7S527Nh8JvR/iY8mtbW11Nfb6e4+\nSGBiAHs2hZ6MMxudIhNoprq6jA0bNiBJ0ofd1UtcRO65B3bsgLKyc7d/61vwk5/AgQOwbduH07eP\nI8VikVAohCzL+Hy+d25wmrm5OTo7e0ilMixeXM+SJUvetUnktddu5v779yBJq7DZnChKnqmpU2ze\nvBin8/zimu+Vubk5dv3qV5hTKSyCwHFNw93czI477/xUGL5dMj27SPT39/PKr37FZfX1SKcFQTqX\noz0c5u7vfQ+Hw8Ho6Cj33/8sqlqCxeIgk4ngdmf52te+9LbKOpvN8uyzL9LVNYEgmBDFHD6fmXi8\nQCyWJR4PsmRJLddddyXLli372D64nwYTpHA4zMMPP8muR55GGB3FpOSRZZHGxmVgtjIpC3zxqzu4\n447bPjWC5JN+33UdGhrgySdh3brzP7/3XnjoIdi794Pv24fJ73rfu7q6ee65fWSzIpqm0NDgY8eO\nz+DxeN62XXt7B08+uR9JKsdoNJNOz1Nfb+YrX/niu35ndnV189JLB0gkChgMOlu3rmb79m1v69Ic\niUTo7OwmEklQX1/FsmVLz4tg67rOL//936nK5yk76zo6x8ZouPZatl977bvq30edSw6sHwBPPPQQ\nxvFxKkvOrezaOTbGui9+kRUrVvDjH9+DKDbjcPzmYZueHmLZMiNLFtfT29EBwNJ161ixYsWZB/yh\nh3bR25uluroFURRRlDwTE+1cdlkFb7xxknRKxGi0YTIbaGx0cPfdX/pY1lH5pP9RUhSFn/zk/5BO\n+9n3zH24QjnisTSSlKakxENVVQVjagHFYuSKLS1su/56Vq9d+64jZx9XPun3vbUVvvIV6O2FC0Xc\nFQVaWuC++z5d0ZHf5b5PTEzws589RVnZGiwWOwDz82M4nRG+/e0/e0sBn06n+bd/u4fS0sswGn8j\nBMbGTvKZz7SwdeuWd90HTdPIZDKYTKZ3jKoMDw/zwAO7SactpNNJctkIjYu8/M3f/MU5U/gzMzM8\n/dOfsqm29pz22Xye9kSCv/6nfzqzLRwO0370KHMTE3hKS1m3aROVlZXvuv8fJh9JB9ZPGkVFQb6A\nOpYEAUVRCAQCxOPaOUIEoLS0hicfeZwjO3fiCYXwhEK07tzJU48+iqqqRCIRenqmqKlZemYKRpZN\nlJQs4Uc/updg7wjOuQksk31EB7poPzbKgQOH0XWdZDJJPp//QK7/EudSKBRIJs8tgT46OkokIpLL\nwfT4FKQyODQdWTGQjAQYGeojPtZDVb6IPjBC3/PP89AvfkE2m/0Qr+QSvy+PPQZf/OKFhQiALMM/\n/AP8r//1wfbr48iRI+1YrXVnhAhAWVk9gYDK2NjYW7abmJhA01znCBFd17Hb/Rw92vWe+iCKIna7\n/R2FiKqqPP74iyTjMsHeo5jHe/AE5+jYc4D/+N//cc6+xWIR8QIPiGwwoJz1Dp+dneWh//xPIq2t\nVKbT5Lu6eOynP6Xv7GSkjymXKoBdJBYtX86JgQH8Z023FFWVKFBXV4emaRd8GQWD04ihOTbcdCXC\nabFR4nJxtLubkZERTCYTomg9L4kpGk0QmZzlD7etQJYWbmOVptI5P8Fjjz1NT88wkUgOSdK47LJl\nXHfd9o/t9M3HiXw+z6uv7uPo0R5UVcTrNXPLLVfR0tJCMpkELJw83oFZciHoBUySEZMoUyzGSEfD\nGMsrKHOV4LIJrKyro2t8nBMdHWze8u5/uV3io4OmweOPLyzlfTu+/GX4wQ8WoiibNn0wffs4EgxG\nsdnqL/CJhVQq9ZbtFt6fv7E9CIWm6exsJxSKIssx6uoquemmay/qSsTZ2VkCgSyhwT5WOHwYT6+A\nLHd4aXt5L2N33Ul9/cK1lJeXUzAaSedy2M6awhkPBFiy9jcrePa9+CL1BgNVpyPwbrsdbzrN3mee\nobm5+WM9tXspMnKRWLlqFcb6ejrGxghEo0yHQhybmMDT1MTLzzzDznvuYXKgleHhznPaDfcdYWVt\n5RkhAgtfnDKLhZH+fsLhMMODJ+k9deqctewTY4OUmg1nhAiAJErYC3lOHOsBmqitvYLy8i0cOjTL\nk0/uft/H4BLw5JO7OXRolvLyLZSWbmRiwsj//G//wTNPP43NZqNYjJKKhCn1NjNrMBBWk6SKSQq6\nymwxh24w0dF/mK6RAY50duI2mxnqem+/3C7x0aGjA6xWOCuH/YIYjfBf/gv88IcfTL8+rtTXVxKP\nBy7wSfJtE1nr6uqQ5RS5XJp4PMTBgwdRlBpkuYFVq27hxIkEDz30xLuaNtJ1nfbjx/nlv/87P/nh\nD3nm8ccJBM7vkyAIxKLzlACiIBCOhJmemiIajlIiiPScPHlmX6PRyDW33Ub7/Dyjs7OE4nF6JiYI\nms1sPW1poSgK08PDVP7WdTptNkilCIfD79j3jzKXIiMXCZPJxBe/8hVOdXcz1N2NbDbTaLfTv38/\niz0eFvl8lDZmePLNh4nHZqisaiGXi+DxQbWj+rzj5RSFU4cO4dd1GuU0ncf3MNZTydINm/B4Haja\nDA2lVnL5DGbTb9T83Ow4pdUrsNsXIjQLxjwr6O4+SDAYxO/3f2Bj8mkjGAzS3T1Fbe1WEokExw8e\nxFIoYFRMPPvLh1i/bQN+vw1NjyFiw1++kUmhm0xiiFKLi0wujC0VZH19FXU+H7NjY7w+MsL6P/iD\nD/vSLvE78tJLCz4i74a774Z/+ZcFAbP2UqWuC7Jp03qOH3+YYNBMSUkVxWKBmZkBFi8uoaqq6i3b\nWSwWbr/9Bh599GV6e6fJZBxoWozycjv19Q1IksTY2BEmJyep/a28jd9m7549DOzbx5LSNYg2twAA\nIABJREFUUqweDzO9vTzS08Od3/zmOe/X8vJyzCaVbCrFyGwEsVDAJEnMpyNgzxCYmzvnuCtWrsTj\n9XKyrY1oJELDpk2sXrv2TG6JKIpIskxRVc9JCdB1naKuv+tVQR9VLomR98ivlfOF1n5HIhHCgQAm\nq5XapiYOvvgia8rLF5QrsLihgbudTg7MzbFx42XU1CzB5bqJJ372M3KFAubT9Q1yhQLdMzP4bDYu\nW7ECra6OxsoxjvZO0nbgfm647Wa+/o0dHHi0SHZimlBIJBlLkc1EmE4E2Lhswzn9EgQBUXQQi8Uu\niZH3kVgshijaEQSBnhMn8CHg9vooqi4SmSBlhQLZCh+Xb63g5L7jhONF6krs1Cxax1RwlIJi5LpV\nLfi9XnL5POZslvDUFJOzs2Sz2TOJrLquc+rUKU4cPkw6maShpYWNmze/42qCS3zw7Nmz4CXybjCb\n4XvfW4iOPPHE+9uvjyslJSX8+Z/fwcsvv8Hg4D5k2cD27au48sqt7+jHsXz5Mr773Qp+8IMf4/OV\nU11dQ0lJyZlcPEGwE4lE3laMxONxut98ky319YhAIBgkMTNDOh7nmccf5+5vfONMPyRJ4q6vfIF/\n+urXadTsOKxOFDVNuUcna7EzNTmJruvn9LuqquotRZUkSSzbuJGBw4dZflYfxwMBShoa3vH7r2ka\nnZ2ddB4+TC6Xo2nFCjZefvlF98L6XfnUi5FoNEqhUKCkpORt59uSySQHXn+dvvZ2AFrWrWPb1Vef\nuZEd7e288cQTVMgyFqOR/YcP09nby/rPfOac48iiiJZOk0hEOHF4DLVYxFFby8GREUpPq92YKGKv\nqGDF6bXroiiyelEjqxobODk2xpqrN2G327HW1TE2O0s2NoZVkDB4ZXz2Mka6e6isXHQmbKnrOpqW\nuuQQ+D7jcrnQtDSZTIZ0NEqld2H8M7kkfreVutJS9o+N8Y3vfJud5p8z1dVFZG6O6fg8Rb+Tm9fc\nQDyVIjIxQWh6mkyxiM1qpWfvXv45HueGW29l2bJldHZ08OrOnQiJBOg6811ddBw8yK133UVtbe0l\nB96PCPH4QpTjyivffZu/+Av413+F7m5YseL969vHmYqKCr7ylT9aSPoUxffkreTxeNi6dSO9vUVK\nS0vPbI/HQwx0vs6ueBsHystZvXUrm7duPS/aEAgEcLCQ33Cyo4PYxARuoxFnscgTv/wlw319LF22\njJa1a1m9Zg0NDQ3IJXbm5wMYtDRVfg+K0U55VRVGTSMajeL1es8cv1AoEI1GsVgsF/QuufKaa3hy\nbo7WkREcQAYQ/X5u/8M/fMdrf/G55xg/dIgmvx+TLDO1fz8PnjzJXV//Ona7/R3bv998asVINBrl\nySdfYHQ0hCAYsFp1brvtWpYuXXrevvl8np333os1FGJLRQUAI21t7BwZ4cvf+AaqqvLGM8+wsaLi\nTHSjxOWi/ehRRkZGaGlpQVVVTra3E56YoGNykmBXFxVeL+s2bSKuKFi9XpZu347ZbKahoYHdjz8O\n4TCqpp3xLREEgVw+z3OPPkqlwYBX0zg4PY3BaKSxpYXG+nquNRjYufcUXe1H2X79zahqkenpPpYu\nrTjny3eJd2ZBxGnvOimstLSUpUsrOHGi90yNoGw+Qyo7znUbms/s53a7sdhs1Pl8rPD7sdrtzCST\njAYC/PENN/DCU0+RkyQ8skwknWaiv5/M7CyMj3O4ro7D7e0sl2Xq7XYkQaC9u4fj+9toH0iwuKWR\nLVtWcMMN13ysk9k+Cbz22kJRvPeyMttmg+9+d2G65uGH37++fRJ4O2+Pt2PLlg2cOPEYyaQTh8ND\nPB7i0PO/YKlT5/PLNpFXFPr37CESCHDbF75wTluz2Uxe1wkGg8QmJmjw+dB1nRODg5Rksxi6urC4\nXHSOjbF71y5m+vuxjI1hFEVOJROMFvN8/sYb2bBkCUemp885dmvrUfbsOYyiyOh6gRUrarn11pvP\nWdpvsVi488/+jImJCcLhMA6Hg4aGhncci/n5eYZaW9nS0HBGvLXU1NAzMUF7WxtXfgRKrXyYtWk2\nAT9mIcX5mK7rf/tBnVtVVe6/fxfJpJeamoXwXjqd4MEH9/DNbzrPC5P19/cjBAK01NWd2bakupqO\n8XH6+vowm804VPWMEAEwyTKLGxs50NZGXV0dM9PTpCYnSSgKpRYLNy5aRDqXY7ynhyuuuYauiQnQ\nNFavXo2u6+R0nfuefZYKux2X282KpUup8PloGxzkulWraKmrI5VKsfn0tItstdJ0ut+3X6Xy/715\njJERK7IssH59MzfffN0HMLKfDFRV5WhrK8f37yebTFJeV8e2G244k/n+dtx+++ew2/cy0LOfoekh\nyr0WbtpUR7Xfz/DMDPbyck50dOApFFh52lQin8tRlkgwNDJCe38/2UiERVYrkijSEw5zU0UFsWKR\n0PQ0i+vryQ4MUL9hAz6rldHZAELGwiKjlWCgQOU1W9i//yRG4wGuvXb7+ztQl3hbXnoJbrzxvbf7\n1regsXGhwu/ixRe/X59ENE0jFAohSRJer/dtp2wqKyv56lc/y7PPvsbERI7RgZOs8hu4cdsWJEnC\nKkmsqa/n0IkTzF91FWVn2eZWV1djKi+n8/BhfKff97PJJPOhEFcvXYqmaQx3d5NNpTh88iRlTieX\nV1djzmbRBYHj6TSDg4PU+P04KyrOTK2cOnWKp55qpbp6A0ajGU3T6OkZQFGe4667zhVEgiBQV1dH\n3Vl/j96J2dlZ3IJwXhSp0utlrK/v0y1GgDHgal3XC4IgPCgIwgpd17s/iBOPjo4SDGrU1dWf2Waz\nOUmlajlypJ0dO84VIzPj4/guUPPFZzYzOz5OY0sLZ9fK1TSNU6f6CE5H6I4V+PFju5FSQar9JehO\nJ0tlGUEQyOfzzExOMjg0RFV5OUOnTrFy9Wp+9G8/pvvl1zDEFGbHR1HcZvZMTGBrbqbU72fJ6flC\nXdeJxGI4NYHO+TYWV1dT6vdTWeJj66bl3P3du7Db7Z9406zfB0VRGB0dJZPJ4Pf7qaysZO+ePYzs\n38/KigoyxSKdbxzkh7tf4o5v/SXXXHPN2yaKmc1mbrvtM6xZs5xHf/lL/LqO0WDg+aNttE3GaF6x\nidf2PkCDEsdnMBAMhhkbmwdkdMXAiydPIicSGN1uZlMpqpxOvCYTVkniUCxGKpejUpKIRqO4bTYm\ngwkc1mq0XIa5bARJMuB217Nr1x5KS30sXrz40pLuDwFdX8gX+c533ntbhwP+6q8Wpmvuvffi9+2T\nxujoKLt2vUQ8riIIOhUVDnbsuPkcEfHbNDU18d3vLiIej/Pwz3/OcrMZ01nveEEQcIoioVAIu93O\niRMn6ezso1jMUVtbS2dHB+MTE5QVCvRHItT5/eiaRkdfHyUuFz63m0Zdp5DLEYzHURIpjEUNqVik\n/XgHYmUl/9cPfnBGNL3++lFKSpac8UERRZGqqiX09V2chQcmkwnlAgItm89j+YjkEX6YtWnmz/qv\nAhQ/qHP/2u/ht7HZXAQC0+dtd/l8BC9gHpYuFPA6HKRSKXoDAZySxKLKSgb6BxkaClEw+Ljyltvx\n+Cp4bue/0uLxUVNbzWRHB28ePYoSj1NUFF4LBDBVVXH53Xfz8MNP0Lavgwa5iqiYJm8qZyw0iVvP\n47JYqCopQRAECoUCx46dJJQSyedzJDWV1/e14yiz0zEZxVJZy3337eL667ewZs3q92MYP/YEAgHu\nv/8JYjEJMKPrcRobXcRH+thWX09fTz8Dg3OYTB7cBbjnJw8zMxPmT/7kjvMESaFQQBTFM+HSqqoq\nbtixgxMdHQzMzTGieLny+i8ABk619dE1NslUdw+SbKFuyWV43KXEdBMui4VkPElFVRXudJqJkUna\np+NklTwxtxmrzYZqNJLKZimqKrouIooC8VyWksYl9HR1MTs8TDbRz2v33cc+r/dMLsmv0XWdQCBA\noVCgtLT0klh5Hxgbg3weLjDr+6749rehqQm+/314h8Udn2rC4TD33fcsTudyamsXogyh0Az33beL\n73zn7rctHCoIAm63m5LKSpJTU9h/60dbVtdRVZWf/vQBurpmmJqKUizaSaWOIAghyKksko3YXF7G\nuk8SHxhAyWaJJhKEIxE0wC7LxAMhkkYHJU4XslLAYLKQkTxYLBby+Twmk4lQKEpZ2bLz+ieKNlKp\n1O8tRhobG9lrtRJOJPCdzkUpqiqj8Tg33X7773Xsi8WHnjMiCMIqwK/r+gdmIbeQMJQ8b3siEaKl\npfy87cuWL+foyy8TSSQwALlcjoKmMZ7NMvv663hUlTpR5MW9e3F4PCjxHHlTGWJZDQ5XCUNDnYRS\nBp54fYiayjCTEydZphQxS2aSio5TSNHb1cXEY49R03Q5Ft1ANJzDbvdjtws4nS4gyHDvCJXXVxNN\nJgnMzJJISDQvvZzevjbSqkJ/NEtfb5iN225m8xXbKRQy7Nz5BpIksXLlpWy4s9F1nUceeYZisYa6\nuooz244ff4WS9DQpj4eBwVm83gZEQcRmdTGbCDMwkKKnp4fVqxcE3sjICL+692F6u4ex2m1cuf0y\nrrjiMt544QWEUAibKNJ7coCk0Ew2m+X44YNUWLyEnT5Ss0mWlNsJj/VQqNWJySYu33wbr870ECkU\nmJqKkM05cRutKMYiotXPqbF58j4fabOZmUSCTD5Nshgj7bRQWd3M/MAAVS47eZOdzc3NRBIJnrr/\nfr7+93+PyWQiEonw6KPPMjWVRBSNGAw5brnlCjZuXH/O+PT19bH/1VcJjI/j8nhYtXkzm7duxXjW\nVOQl3pp9+2D79rd2XX0nvF742tfgRz9aKKR3iQvT0dEJlJ3jbF1SUsn4eJCBgQFWrVr1jsdYv2UL\nu3/xCzwOx5mp9vFAANHv5/jxTrq6ZhgZCeL1rkTXRYJBHV2vwGKeYiosMjN2gPJ8lDKbhVK7HZ/d\nTk80So+q4s7kCRWsFCQjhlQWxZClevliYjGBv//7f8bvr8DpNDA+1E3nm23Y7G7K6lfQ0LwGSTKg\n66lzElx/V0wmE7fedRfPPPggxvFxZEEgDqy76Saam5vfsf0HwYcqRgRB8AL/Adxxoc+///3vn/n3\n9u3b2X6R5rVqa2tZtMjNyEg3FRWLMRhkwuEZRHGeTZuuQ9d10uk0sixjMplwuVzc+Ed/xP/7P/4H\nhZkZZEEgaTBg9Hq5Y8MGKnw+qKtj/dKlvHz0KPtCaRxCjlDrXva9/DSzCQ2D4MImWHEEDUwn3GTF\nApViFq8kM5MXKLXZyHV1MVqwk4qmaZJLgYXaDQVdI5VNUnT4WLp+Pd2HDjFxagCbsYpAKk6xZjGr\nWzbS2tqKp9qB3WUmHp/H662gtHQ5r7xyiBUrliMIAsPDw7zxxlFmZgJUVpayffsmGhs/faXrZ2dn\nCQYL1NZWnNkmCAI1NcvpfGUfKysqEEUborAwx5opZDHbXbhcVXR2DrB69WpGR0f5ztf/HmOhDJ+9\njsFTM/zzG48jiT/i2lovN165lbraWg50DtM71E3/0ChCQcVnF/G7q+mbmUTKZwCBodg8V9/6DZxO\nL3UrNhGY7UF3GzBZBAKpGBmri/qadZyaGGTtlVfis1rJTE1h1qF7KoZoX8nUwZP49AJqNs+2NX72\nHj5MOBhkLpXC7vfzxT/5Ex544AnSaT91dSsBKBRyPPnkm3i9bhYtWkQmk2HnAw+w99FHqVFVXFYr\nhqoqBuJx5iYn+cJdd31qSpr/PvxajPw+fPe7C2Zp/+2/waXc8wszPx/BYjl/aarBYCMSib1lO1VV\nyWQyWK1WFi1axBU7dvDmiy9iUhQUTSNSVJkej7Lv5YdJJuIUiiWYLPMoegqDwYnZXIuaFXE6M/h1\nIw7ZSZ9eoEzTGIrHmSoWmcrlmBNKKKEGm+RAQSBSSKGEY5SIKi7XEsrLl3Jwz/0Y50eotVjw6G4i\n/W20zY9TUl3LsmU+crkcMzMz7N9/jGAwRm1tGVdfvYWampr3NFY1NTX85fe+x/j4OIqiUFlZ+ZFa\nYflhJrAagAeB7+m6fiFLvXPEyEU+N3feuYPXXtvP0aNHKBZV6urK2LjxSiYnJ3nqoYdIBQLookjz\n2rVce9NN9HZ2csXixfg3LHh4FIpFdj//PIlAYEGMAJLBgGw0ERvtx2Iqp0L3YUhriMU885KHrJhi\nPJdBlprJ6AlESwCX3U21ZEIpRlDkDOlkkJBcSjATx4POXHQYIRcnp6cQLAYUReFL3/42P/yf/zcT\nEZGSikbW1i8jlYoTDofJ5Yq0txdpf/NlZJI0Nq/GUiJTKBQYGhrmwQdfweVqwuttIBAI84tfPMtd\nd93IsmW/Yzz5Y4qiKCw8gufi8ZSBy8tEOISmqQv7qkXGUjGqNt6EqhYxmRamaB745a8oRM2AyqGB\nDvKqiULRTj5jYkrQeeyxV9m8ZTmTgQiatgitaMdtNiFLBqYifdhcXirrGzHLJuK+cjyeMnK5DGar\nxFhRIqQYEUUdW9MaSkvqyQgabudSrrtlO9MjIxwdHiaQyxFLxzAYZ8nnixQoYMiq9HXNstzpZLHH\nw4SmEWlv55exGIGEi/r637zEjEYzTuciDh06zqJFi9izezejBw+yxmpl0enkusmZGVxOJ8G+Plpb\nWwmFYmSzeVpaGmlpafnYmy1dbHR9QYz84z/+fsepqIDbb4d77lkQJJc4n7q6cnp7h/F6z41oK0oM\nk6mW+fn5c2wbdF3naGsrR/fuRcvlEEwmVmzejMlswde4FFleiGb1vTFCcDyMRyonoXnRtHJyaYW0\n4kIy5IhFDlPtK8VutiOYZKw4MRjS9KaTLDMauc7ppDUPmtXFqWwEh6kEt83LEruN7mAXFZVeSktL\nmZ4aoFzT8NesRNPmsFrSFJUME4N9CGoNWWMTP/mHfXRNRFm9+Q7KyzcyNRXkZz/bxde+dhsNDQ3v\nabxkWaapqeld7ZvP5zl84AAnDx9GURSaV65k27XXXpRIzYX4MCMjdwAbgP/n9C+tf9B1/cjFPIGm\naYTDYQwGw3mGMGazmVtuuYEbb7yWY62tHH31VV65v50Tx47RUF3NjVu2YJRlBo4f5393dtLX2ooP\nsNlsLF2yhLyikM3l2P3aawQVhdqyMl7rGKL9VBCh2MxYRgN1HmdexKd7Sagx0mIl2cI0ssGJSYvh\nN1jwGxfWdyezEhaXlcbGCmIBkRnFzMRsOw2aiiQoLFm0EtkqcWr/fjZv3syX7/4TnnjiODU1q8jn\nMwwMdJHNOpENbqypMWpNXsSiBcPUCNmoQltrK4daT2E2VzM2NkgodBi73UFlZSUvvLCPlpYl72m9\n/sed8vJyDIYc+XwWk+k3c8WBwCSf2XEbaibGwb5deDUoyEaqVm6jorKB8fGjrF17E4qi0HrwGNmI\nGZusU6KbiOcLFFWJnG5HNDrQJR87X2sjhp2iPo4qlFIwVuEQjeQLFqr9RhxSgYQCjpIq5ubGGB4+\ngiExhEfJoFudVFe0MBsJMj92lHq/l0h8hnv//SRVSDhyEpF5mRbjImbiAfxNS1ksiWSSUYozA+B0\nEspkyAsCW5Yu5bWeHpLmJeeNhSQZOPLmIWb6TnL8wAEcokj1WTWWKtxuxoaHUVxufv7zJ6iv34Qs\nG2lvP0RTUyd33XXHpembsxgbg0Lh4qyE+cu/XBAk//iP8Cn6er5rVq9exYEDJ5ibG6O0tBZd1xga\n6mRu4iCtz43TLkkIDgc37tjBokWLaD1yhOPPPMOaykqsfj+js7N8/3s/wOheQlPzKuxOMx0dr1NZ\ntgyf0cI4KhZDFclcGkksx2SQKKgpTMUk2WiAcSzMJNKUSG5EyUwsJ6PrCpl8krxooNJZwhJTCsXt\npczbQDwTpqhYsFg0ysvLOdXeSanZisXiIB6fZfvVW4lEIiR3z7Ko1M+G6mpC3cMsN5cw2P463uvu\npKSkCoPByIsvvsE3v/nexMi7RdM0nnj4YQpDQ2yoqMAgSUz09PDI8DBf/ta33hejtA8zgfUR4JH3\n6/gjIyM88cQeEgkVXVeprfWyY8ct59UvGBoa4uizz7KuqoqB6Wmu8nhIpVK8cewYN11xBU6LhRNP\nP021LLOloYFUocCBV18lXCgQmZrCpii0vfACOwsqvqrLQXVQ6feTycqMz4wTZw6/CE7RQFF2klem\nUNQ4GUVhLp3FYchiEAXiapb16y7HU1eHe0sZj+96GTECJosbWTQQmp+lrt6DK5+ns72dK6+5huef\nf5lHHvkJhYLEzMwEFksTRnWQepsHq9GGKpmIRib47NatvPnii0wkjIyPjyGK1VgsS4nHU8zP91BV\npZJKpc4x2cnn88zMzJzO6q56V2v6dV1nfn6eXC5HWVnZR3oVj8lk4rOf3cauXQew2+uxWOzE4/OY\nTBFuueVL+Hw+Gpcu44kn9mKxVGMwmJiaamXbtiU0NTWRSCSYHh/CmqgiLhVJZADBhF92EMuPki7A\ndF4kW6xFlUqxO2wE02OEM2GC4TSyQSVi0shVqQyFZogefg5dN5IJ9LNC1lhZXUVPpJ/hyCRZtUi9\nyU2Z102lz87A2CCjcZHlq67AYFCRBTuOtMKptmPEK6tRo2O4MlEkrUBK07BUV7NeVSmzWplMzZ/j\n+qiqRY7ue5QVzjxrG1eDzcZQIEBnKMRVK1dikCQMkkQum6UvmGbRdTdTUbHwAiwpqWJoqIOTJzvZ\nuHHD24z2p4vfN1/kbNavX8gfefVVuOGG3/94nzQcDgd//udf5OWX36CnZz+appIM9HHb8kYaKysB\niKVS7H7gAf7wa1/jkf/zK/KBNCe6Jyn3Wjna2YmcKkfOZchb5gkCuVwFQyMDrPLXYbE4yOVlxJSB\nYrGAIITxqf2U6nlETSc2P0u5ZiejTJEVfJilVcQ1lU59ArscoDyfwWeQmSzOMx/JkcxmsTkLXHnl\n5ciyAZPVRTYwhUnMYLcvmBXOzcxgEAR8p/8WBQJR0uk8kUycpxJPs2z5alauXMrMTM+ZBNiLzfj4\nOLHBQTadZWfQWFFBfnKSE+3tbLvqqot+zg89gfVik0wmef75l/jFL57BZlvC0qUt1NfXEQhM86tf\nPcZf//Xd5/yKO7Z/P80eDxaTiWQsRqnVSoksczwcJpxI0NnTwwq7nRygFIsYRRF7IsFgLMYKmw05\nl8NvtZKNJYlMDpKwVNLgryI3FcNqLEEhhV7IkANy2VMYijNohBGESkaKOYrhDFZTgcYmDza3mz0d\n3Sxa72T7lRuIm/IUZsP4bCL15ZWYjUb6urpQa2qwu73MTOcot1nIFULkSCGZcojZOIJqJJPJIYoa\npaVuGhvqSczNMTDQj812FXb7wpI3WbYgy1aGh58/Jw+gq6ubp57ai6JY0HUNu13lzjs/97Y2ydFo\nlJ07nzmdGGlCFDNcf/1lXHHFR7fa7Pr16/D5vLS2dhAOT7FyZQ0bN96C+3RUoLm5ibXLeug8egTM\nZq68+SZuvGnBr+XBB3dhkx0IUgxB8gAKhUKRvBbFJGcZyxowq/XYLRYC2Sx2UxUVjiVMjuzGpklk\nVZmZgpdXtTwFPYfVWkooFCU6UyBsUOkPTbCqxochME0+nSHl9iMZncwVBaZnkziLPnp6hsik00h6\nBofBhE20YpadzEVj1GlZrAU7TTVVWDwe9h05QlVzM6saaxgb66CiogWj0cSpU0ewJqe4+roFcyXR\nZGJNVRVvnDrFVDhMfWkpqWyWWKFAylx6Roj8Gq+3hhMn+i6JkbO4GPkiZ/NnfwYPPHBJjLwVJSUl\n3HnnDhRFobu7m45dcRorK9F1ndnZWQYHxxmeneWbbd0kAjIbG9cgSzJHujoYm0yytW45SUXDY7WS\nDIwxNjyIYAAxk0KSROwOM668SDwdwlgcptZkIpWbxlDIUIMboySS1rykdZlZbQabcTlmg4hZNBHK\nzRBO6cxp89iNNopinoqmGoLBUVwuF5W1Szg50IaSDtLSVMKBV1+ls7ubqKZRMznJkcFxenunsFhK\nEQxglB1MTKTJZttoapLetynSwPw8rguE4vxOJ9MjI3BJjLw96XSae+55mLa2cYzG1ZjNVXR2ThMK\nRbnssnWMj4cYHh4+x2U1FgxS73AwNTXFbCBMJB6nrrIMC5DIZIhFo3hFEUmSeL2tDV1VSSWTqNks\nuttNZVMTqqZhChcos7mxVnlJaTq5XAzl9Bx+SpYIZuexkcSCB5kMqjhDUhcZk3KU6FkykzHanitw\n1a3foKJiDX19R+kemuTLa5fiOsuq12QwMDUxwdSTL5IeG2Gt24/VX06PqhJIx+lPR6hbuQazbKKo\n5DBb7BiNRgqiiN1uI5dTONv5N5WKUVpaRSqVwuFwMDs7yyOPvIrXu1BsTxQFEokI99//NH/7t3dj\nO11n52w0TePBB58kHvecSYxUlAK7d7dRUuKlpaXlfbvnvy/19fUXNDObm5vjsZ/9jHqjkT/auIFs\nPk/fm2/ysq6zat06JidT1DatwTDRz1igj2ShSK4IRtWIxe4ijRfdWops0ynx6yjZEGIwgaNgZ6VN\nRpJUMj6JQFJiMpKhpNJCMW9CFCVyqpvJVIz5gSCKomKlSFiNEB8dp6piC0V5BFm3oWkWYpF5JCGF\nIBuJIRDuO0lN0UhCUjBY/URjCroeJiMJRBYv5u/+4k9pa2vnzTfbCQbzuGxxNm5ee8YOumnFCoaO\nH6e6rIzWcJgZRSFYKOBdvpwGyzIMhnNffpqm/c5OmJ9ELla+yNns2LGQM5LPw6VV2G+NLMukEgls\np5/H4eERTp4cx2EvQ5Y1RoYiSJqNfF5BthnRCyKSVMNsMojNUsLgzCAT8zmKhTLyuQLjugG7IYBB\nzJLIqhiNNbhkMzYxSTKfx6fnMKEhoqGJFiwGByk9SV7LoOaLKIKF2XyahKLTaKnGYXKyfNUyAuk5\nhnpewGRKIopm3M1VBCd6SHR347XZiJjNqHNzHH3mRYqiDYMCaQ1CQh5tfpTVq1dx8IBrAAAgAElE\nQVQxOPgqt956y/s2tW53OMheoIJxMpvF+QnMGbnonDhxkmjUjMnkwmr1YjSa8flqmZ0dJRqNIkk2\nYrH4OW3Kamt57dnnKSQlDOYa5mZiZAenmbMIbDSbCaVSpCMR1jU0UNXURPeJE4STSTRBwGezMTsz\ng9Fux2CEVD7L9OQk2WIGk66QNYbJFGaYz4qADRu1GEU3qpjFJEQo0+LEZSeO8iaKxRyN/hUExgL4\n/RHc7lqSBj+v9w+ytqYat81Kolgk73TiNBo50dPLEqsH2+mKvXU19SjDQ1h06JgcoNruQhCT3Lj2\ncvqmpqhasoRVBi/j4yKBwBCCYELX81RUuPH7KzGZTOi6zqOPPsWxY9PIcgGzWaKlpYG6ulqiUQf9\n/f2sW7fuvHGfmppibq5wjiOgLBvxeJo4cKDtIy1GLoSiKLz47LN4CgWqT7va2i0W1tbXc+jIETx+\nP7LspHrxBtKqSoM+j8+cIpEMEcomiVtqUfI5nOU2mpvLaG6u5djLrxCZj2OggMtqwWq0MReLkkql\nMakWkokw8cgcRq2OgqYh6gUMRTNWcSUGbQKX5qJ/MM30/HFsRgcjqUnKihqiLpMuRpjJFwnpEh4h\nSonJiKqb6AkE8DsdzGSLSFUl3HL11VgsFrZt28q2bVsBONraSt/u3Weuvba2FpPJRLi1FX9JCQ2r\nV/OFrVtpaWnhRz+6dyHB1rzwzOm6TjQ6zs03f3SjXx80FzNf5NeUl8PKlQtTNb9V6upTT6FQIJlM\nYrfbMZlMON1u2hIJqrxeenpG8XjqicXinBjoJ6E0YLd56egf5PJVKxBFkVKrnbHIJEvqvJwamaWo\nLUIQzXhcEoKgMhcJItJNUTOiFtMI+QHSap4iOSqQSJOhoNrRJB2XzYk5mWI6E0UyqqhCjowusszi\nxyYb8frd+P1+PB4Hx8bbuPzyZpYvX47P5+M//+VfqDesQFFVlLY2xsNRpJyGnirgkW0M5UeZMy6i\nOBPA5dpNVZWHFSvev0UHTU1NvO5wMBeJUH5afKSyWabyeb6wceP7cs5PlBgZHJzE5Sonk8kTDEax\nWH6dtGohFosjSQlKSnzk83l6e3uZnZggGItxZCzIhqoWPFYnuiDSPdJJOKtwcGICU309UqGAx+Fg\nbnqa2pISosUiyUyGyVgMjyCgJJNIBYVAMUHMsQijrhLOZlGkIJooIRnsmIqlGAUBXcugaTny5EmQ\nAQXyhSRWcw2JaIrAyEEOHWxFlCTiGSMRm8hEMYmuz9HUUMlN69fz+ugEY4O9GAQ7qZIK/P5y7HY3\nTU2LmU5PEMzNYshM4XXY+PnTT2OrqGCtojAzM09BreHqq68ln89hsVhIpYLU1Njwer20th5l796T\nmM0rcbkqUZQ87e0j6LqGJBk5erSdtrZT6DqsXdvC2rVrkGWZTCaDIJz/k81qdRCNjn2gz8A7USgU\nGBwcJBIK4fP7aW5uPifU2d7Wxpsvvkj7a68hKAovH+lgRfMiVjRUU+Hz4RRFNE1D05IsWrKJ9liE\ngaEpfK4K8mYHLo+BFY3rmJ4eJZmcpKx0Ma+88BL63BzZQhi3sUAhkSKuhAkqKbJKgbwuIhcn8AlV\nWASVLHGSpFF0H2ZVJo2KJ5fDipNIMoe9rJbR4jSj8XEE3QC6hl124NdSaALYZAdmXSUpysxnskiy\nhWy8yAsvHCYez/KZz1x/Jp9n6bJlHH7ppXPMkEw2G+Xr1vHlv/mbczLnd+y4hl27XgNKEEWZQiHI\n+vXVLF++/AO9hx9lLma+yNncfjvs2nVJjPwaXdd5881DvP56G4oiAXmMRpVcTqC3b4YTh9rRc0UC\niTFmoglSFitWpwvZVMt4ZB5vOExUUcilwqhqiN6xLuaTXkRUVCmGy1dPMpnAaGyiocGPxVLHQNdR\n3LkcfkElrasUACtpcoKAoqokUhJRNYnR4KLB6SOnRzFn3JTJbhSlQCyRZG52mNj8BIXQJPf89/+O\nxe2maDKRnp0lXFFBIJViudWK7vHTlYgSVmMYEMgKJowWP2aTDZvNwOLF9Rc0QhsaGuLIkRPE40kW\nL67jssvW/07Ld00mE7d/9as8t3MnYxMTiIBiNnP9l75E5elcnIvNJ0qMuFw2JifT1NYuZnh4D8mk\nFbu9DE3LEY1Osnr1gjJ94Gc/QwwE8FkszHX1oEsmhnQdITqPKBtpvvlulsgy67aUEpuZJGQ2c2x6\nmsDMDLqmkTEYUDWNoViMJlFE1XWydi/eqmrG5saw2KzU+r2MzcZxGhsIplOoyKi6gsAo1UhYMJIj\ny5wSRcrkCcUL5DNW7LIVj8OLms1QVGTiaZ3mjduJJEK0DnbxRu8TyI5qsnE7udgcAxOTWCwSNdX1\nOGSBQi7OVc0rqausRAXKR0aYTaWYHJwhk9Q5NfEao2N9bNlyDdksVFVZuP32HRSLRV555QiLF2+g\ntzcEgCybcDgqaWvrRtOGKSurAkzEYnGeffYQV121hL/7u7/C7/ej6wk0TTsnbBiNzrFy5XtbC/9O\nZLNZCoUCTqfzPftdRKNRHr33XqRIBKfBQF+xyJslJXzhT/8Ut9vN4OAg+x57DGtRpX8ySiZlw2E2\nMB2O0DeR4bKlPrCZqaurY+nSaXp7e6ldtJbxGQO6JGIrTrN58+XEw7NIOQdHxl9j18NdSLoDoRDF\nqkeR0nniRh9ZMUcJCiYB4nqQZNFOSsqiajroaXRSJMmTJYsIzAEqUTI5EyPxYdDdyIITTRBR1CgG\nMUudoZFRZYqBfIRmUYM0ZDUzMUHH6F9MU9P1nDw5TDr9DF/5yh8BCwmAf/Cnf8runTsZmphAAFSb\njc9++cvnLeFbvXoVtbU19Pb2k8/naWy8nNra2ku+I2dxsfNFfs3nPrdQPE/XL77Q+SgzOzvLgQOt\njI5O4/W6uPLKjSxZsoTW1qPs3n2CmpoN5HIKe/fuo7//JEuXVrLlij9m/96naO3Yi1HwYzc3ouU0\ngtmjlJa7MVu8xOIJKv0+js6ewKcK5ImDbkcRVETRTjqdR1HMqGqeWCxOKtFHuRajUrBQEFSMqsA0\neTyoSHocJwmmCgk00YtZipBSAlxW5uH1bJS5XJxiUWEmPEt7ZBJJM6KoKpc5UyTn5kjl83g1jVA+\nT0rTmJYkrBYHxjw0mCqRDHYSFJAQieZmCQYtLF9edd4K0YMHD/Pcc8dwuRoxm70cODBLW9uDfP3r\nd56377uhvLycr33nO8zNzVEsFikvL39fl/F/osTIhg2rOXbsSTyeMrZtu5ru7g4mJ0+haWGuueYL\nfPazN7L/tdewhcMsOT2lkKyIkItJzEsSl33mbgwGI4IgMDU1gCSJTM7Ok54JUe4rI18awxwMcnlN\nDbOZDDZdZx6I5/KYBZEqq5MKUxabq45oegoxn8SoJ/DpOZK4UFBoRMWOQJECMgVWopHIZhCLMxSp\nJaqb8QgSmmjGYkqiKhl2HzuIUXeTShXJKk6KswWccoYKLU2VZkLKFZnt7+CQDjabG3JF1Pl5uoaH\nqSkv59RwBFO0htrKOprK/PQHRti3byeLF9VSX78dVVVJp9PkctDQsIyJiZeIRkdQVStTU/OEQocx\nGApMTxepr78Mt7uFfD7BU08dZvHi3dx2261cdlkzhw+3U16+BJPJQig0g65Pc8UVd16Ue5vNZnn1\nxRcZ6uhA1HVMHg/XfO5zLH4P8fA9zzyDP52m/qzppJHZWfa+8AI77ryTI6+/ztjwNOPzGqniYjTN\nSSpfQIxmsDYu5dXjnVz1mY1UVlZyxx2f54UXXmbPnjeIRLqpqlrKqlVrGDvxBhW6TkkmhRgJslry\n4HFZmAtE0fNp4uTJFlLUY0SVZaxGASGn4iVNpzpCiDwaXgRqUDEAIkZmECkjS5EcA+ixIhU0Iwoy\nRhPIhnLmlBARQwxVt2GXUxTNNk7G59F1K2ZrOXrMyHPPvcwNN2xnYKCTzs5OkokEAIuamvjLv/s7\n5ubm0HWdioqKt6z46/F42LLl8t/rXn6SeeMN+K//9eIft6EB7Hbo6oJ3YSr6iWB6epqf//xxZLkW\nj2cNkUiC++57mc9/Psbrrx+jqmoVyWSa/fuPMzycxencxuDgUXK5vcxOzlHi3k4unaTGU48gwFRC\nJhR6BafFiRozYKl14vN6sBhXkEtOUCwEMVtKUBQDweA8suxBVUeZmwtgN6pUZoMkNA2XWIFPzBPU\nZpglixcwo+Mmi1mbppifJy452T8+g5wv0KeK2BERxWpqRR8pVSEoeHlzIkwLYZZaTNgsFgzJJJrJ\nxGQiiS0SQy0U0Ex2JDSiWh6lmMQtBSnzL+LWW285Z6zS6TQvvXSEmprLkeWFBRo2m4vp6SEOHDjM\n5z9/ywVGeAFd1xkbG2Oorw/JYGDx0qVUV1cDC55cFRUVb9n2YvKJEiM1NTX8wR9cwe7dB1BVO9XV\nLpqamvnjP/7eGXOY3uPH2VL+G4Ocyooy+vtnkNIJUqk4Hk8pipInmRzlyBGJVMpLMGtGDkvE40WU\nVIZxUSSnaaxxubCKIoF0FsnuIpkII8lW5rNh5OgQDZoVm2gkJ6iE9RRhkgi4yKFQII2dHKX8/+y9\nZ5Al133l+btpXz7vynVVdVd7g26g0QAajhBAOA6tMBxxJHKWJrSjkAvNF0mxG9qdWO1+2piYjZBC\noR0GR6IISSPRgSQgkiABQg0CaABsg/a+uqq63Cvz6tnMlz7vfqhCixBAADTdBLE8n6pevcwblfle\n3nPv/3/O0fDDHpUopKkLhCzRdl1E7DKcG+RyyyQKEnLKDG6wiEjKKJQo+UsI+qmrTeLIQ1KmoEXo\nyggn5k1mU8skzSYvLtbxwzEWV6aYvDiJJgR2EILSJT05yz+8eIqvPPqP/K//1//G0tIUmjbI3Xff\nz8mTh3nhhQOkUnmKxQRFGUZRdrG46FEq6WQyfZRK+3jssWf48Ic/xIc+9G8YGDjK888fpdHosXPn\nRu6//zd+6kwFWP2yfP2LXyS+fJm7hofRVJWWbfPtL3wB63d/9205Edq2TW18nHv+1XvHBgZ4/uxZ\nXNfl7JkzNLtZkAnVYpUoo2K32qzYDucXFslVNrBr3y0IIZi4fJkrJ19hq+nTMtuMH/kaE4e+QQZo\n5YvYSY9hxWRHYYhLi4sYkUmIg0+CTYxNhAwFmpKmhEoBnQ4Jl7HxGCbGRVLEJI+GRosaIVV0II1F\nWrggHZRIx8r2URZFVpI5cvkcg0IniWM8USRjbmZ0ZBO6btBc8Tl06DiGvsIX//Iv2dXXRyIlR6Rk\n8+23s2vPHgqFwo8kIr/Em2NuDmwbrlWL1MMPw1NP/f+HjHz3u8+RSm2mWl0tCxhGikwmzze/+Rxx\nLKhU0rz00nFUtYJpCkwzi+8XcRyTVtNh29B+xqeO4/krqIpGQc0Q6hp7htPsXZdl47aNnLsS0Ffc\nRC6zjoXWPxMEp0mSPEnSRMoZwEbKLVhpjZR/jiBo0I6X6VNzzKNTwmMnCpKYNGCj0EkUzto2XXQy\niiBPD48yZpKmmXgA5CUsUWCOOlWnSxSGKJpGsVjkZKdLSU8xkNXpJU1mgoi6orFv/TqquU303bzj\ndUKCWq2GlLmrRORV9PWNcPr0MT7ykTe+xlJKvvX441w5dIgB0ySWktMHDnDTgw9y7/33/1T3z7Zt\nJiYmiKKI0dHRt5wL3lVkBOC2225h9+5dzM3NoWkaIyMjr+n2F2LVYv1VFEsl9uzZwKUXjzE3d4FO\nZwkhmqxbl8G2B7nhhi3M5vuYPPE8vewQJ+YmCXsL5IBTrRYVXaeSzxPFPppm0BEh6UwKc1GCSEgQ\nSCyK1LHxCFExccjhMiRUYrm6RyKRZMM2WbXHsreClej4gY0Td9mmwJCZJZMYBLhc4SIZ0qgijxdH\nxBRQ0DHDFRqtOvRMprWEqq/ihBFNFXIkrFdV5j2PAaHSVrLEUZOby9t5+fRp/uIP/5hbdu3i1Hf/\nBmt0F0p2M9u3P0AYLpJOFzh1ao5yeQDHaWDbXQqFAopiIKVJs9mkWq1yxx37ueOO/T/ze1qr1WiM\nj3PnD+1oFLNZNrouh55/ntFPvPXuSxzHKGv3/4chhEARgjiO8aQBUkVRbKRMyGVLpNMZnKWEkW07\n0HWXo0dP4Loep75/gJv7+3l+epo7i0WGC03mLk+g6DpNvw26igglLcchCnqo0iaFgUpAA9iAQo/V\npmcNA4kkJqFMFo2AaSJ0sgR4+JiAg4HERMUkpt9IEYYuvSTG8R0CJJEWkjbaNGTC5Y6NJy2iRGF8\nqYtlxFQ2bGZxsU3UPsyOvUOcPHGCKAxxej2+//TT3HHXXRjZLOtvvJEPPvLILwP0fkwcPAh33XXt\nyigPPQSf/Sz80R9dm/O/k5AkCRMTc4yO3vea11dTbbMoSoNWa4V226NQGMLzpmk0WoThPJ2OT9vu\n0nbaFHIm5WIOXTcJZQ7PX0EjZP/eG+iEId3ePPNyhmw6Rzq9kZ7XQog2mtZFyi5CDKBpFWIlYjFY\nYYMI0PCpxx4Qo6MTkMLCQycmi06diCyCdQjCJEOER1OYKFIQA2VABUJUMhjUgEIQoApB7Hmk8xW0\nbbexNHeRYGWRnK6zQUis+mVW4jT//uHfZ3JykpcPHGBpfp7KwACj27YhZfi66xgEHun0j/4ej4+P\nc+UHP2D/hg1XS+xjcczL3/se23ftYnDw9Vltbwfnzp3jqS99iXwYogLPScnut5ADv+vICIBlWT/S\n8nbXrbcy8fLL7PihFXJloJ/bHryLX/nAXWiaxsaNG/lv/+3v6etb3aoaGd3O4NAmzp07yiuXT3BL\n2mK7rjPv+yhRxEy3i16uMOO1SPVvwW9eYV25it9tkwQxehRRSFIsyi4By2wmwUPQkJI2sBKFFJCE\n+DixRJAmSiKWZJ08MYVkHa2OjYGCSYoibSIkQuZJCJCssmRPWtQihSDqYRppEsUkSGLa+GzWU0gp\n0QFDCDLCpeP3+O7kRfJSoTs9x72f/iQZcZSXXvkeZ/1nKA/fzL59dzA4eBunTv0lUdQDVKIoIo5D\n4rhFX1/hTZMxfxZot9tk30DCVs7lODs//7bOkc/nKaxbx2KzycAP1U8XGg3KIyNks1n27L2JLx87\niBkmNNoTxJGxenWLeWZm5giCBYaGHuTrXz9D6/JlxNY2pSAA3ydaWSEvJb0wpOWHeEJghDGTroqK\nTx6VhAgTBYuE1fWRJIVAoLAaYa0g+ZcHioGHgYvAJ6ZOmRJdYjzqePRTyGYJHZuO3yWw2gwN6VRH\n1nP5+HEMBthTWk/Nd4j8EvVAQ7UdZGeefmUJZUFwS6HAcq3G3MICHUD1PN6zaxenT57kGcviAz9q\nOfVLvCEOHoS7775253/ve+FTnwLPg2v8lbtuaDabNBoN8vn8a1bOiqKQTpv4vntVveW6LlEUIWXA\n/fffyZNPniCKenS7HXw/wLZnSJICvV4ffugxWTvDrsF+hOISxzFz7TkGtqQZ29zP+HKD4+NtStl1\nzNfHmVtJoRigKALDcIAenqcQBGmiaBZpX2BzxqIjQ0qRhpQRCTE+Fg4xRSQNoEnELCECgUcCKCRo\nWLi4JKgoCCABIiIMfNYBDaBfCGbaXVbyBu9/6D/w/cf/X3ZpBkOpNI7dRi3q1IsFLl+8yKlnnmFr\nocDGcplmo8Er3/42XmjSbC6uRlrwajr3OB/96OsVkK/i4unTDGcyr+n101SVqqoyfunST0RGut0u\nT33pS+wtla4mIUdxzKEDB970uJ9nNs0Q8C1gJ5CRUibXY9y7772XL16+zCtTU1QsCycIaKgqv/aZ\nz7zGb8KyUoRhgGGkiKKQr335z5g98X1KdovFtmRRFdwyMMBSz6UeC/xIRa30MTCUJylCrmFjiYRG\nc5oMksT3MXFZIeEIkEXSAoaBu5HYwAWgS8TmOECgE67x7l7YQJEWGhaSHjlClnBIoyJxAIgQ1OgR\nsZVFQkQwT6TFVEtj6O15mpFBSRhIoIuDjJdRRAE3KKErKgv2Mv/9S19lXzHHg5tGCScmCf0a2XSa\ncnmAW27Zy5Ejh0mSPjwvptttMDKic+ed2696VFwrFAoFusnrPx6Nbpe+t5nNIITgoV/9VR7767+m\nOTtLKZOh6Tis6DofW5t0b775Bv7qr76J0y7Q8W1q7cNY2XVYaY+UZ3Dvve+lWByhvuSQS23j+eOH\neKjf4tylS3Qdh1oiCZKItBDYwsBBp0xEyCoh1EmwgRGyTOMgSRCAIKZNjiwpVujRIUAiyNCmhEVI\nlzLQYQUdH4HNZf8Uql9FQycxe2zfVKW/fxfTi12y+gBqvIGuE1BNGdTDy4BOtztPX9lji2mwrVwm\nSRLajQYbi0X8Vosrc3OIW25h58gILx09yv0PP3zNiea7CQcPwp/92bU7f7EI27fDkSPwnvdcu3Gu\nJ/7rf30URcmSJD127Bjk137tw1eVXvfcs49vfesMfX3bOHHiLPW6jeMsMjjY5T/+xw/zG79RoFb7\nK1544SBBoAA6cTyGqi5hpgbwoym6kUbY1clUDLbsy/Fnf/F/MzM9zf/5v/w/jBR3c+PmIZbbL2A7\nNioGUCcIugixFRl1sZIWVjxHHyskPQsjX6XWqKGoOeJEoMuQaUIaBKgISkg2AKOozCCJCOiQUJEd\nFlmhQBkXlQYxMXWq2BjALKCFIQ1FoRCH/PNjf06vXWdK1ZlzHVQl4ZZtW/nYvn38/RNP8JkHH6Sc\nz+P7/uok3moxcf48F80z5MpbGVm/GU1zue22MW655UeTEfkGXiI/LSYmJiiE4VUiAqsEZ8MPOXy/\nEX6eOyMN4H7g6z/pCXq9HmEY/ljKimw2y6d+53e4cOEC89PTrCuV2HnDDa+TP+3evZG/+fwTDPRt\n4viJgzgnnme/XsG0YDCT4WJ9mh/MzrI7lWWDZvLM8hKEVfJtQZxE1GmwNauRDdIkzTp1fAwS9gBT\nwBJwB5BZ+7kF9KMiMYhFFguLPhHgJj2Qy0CWkDwWCSlcIgxmWcDCIaKDTR8h+8hg0mORAJ260NlW\n6iOIGhj+FRIjS9fpUpIBFbWfU4mHm+QQSR5pDvDCuSvs2J9hfaXC5pFhNC3FmYPfoNo/yv79D2Db\nX8K2F9i6dYBCQWPnzkE+9KH3/aS3721jaGiI6tatnB0fZ9taz0iz22Wy1+Pf3XPP2z7P8PAwn/yD\nP+DEK69Qr9UYHRnhg3v3XnVcfeWVs+zceRO1WouhZD2e16LZPI9hONx3328xM36FieMXWarXWVpY\nwI97KEs1gmaMcGMGE0lZVViMBS5Z6qj0SKGjsIBDSIubMElhsg7BHAELuAhgkDQZNBISznIZSQoL\ngwiPAj4lBGVC5kjwUMkTETPPEhI/NpmaC5B+np5dxwtDtq3fxPTsBCveEkY6g5XEKErIex+8E++F\n55FSEicJIklWS1WKgr62OtJUFTVJ8Dzvl2TkbcJx4Nw5uPUaG9G+5z3wwgvvHjIyOno3iqIgpeTC\nhXN885tP8bGP/SoAd955OwsLy3z2s58nigbJZHRGRgrs3HkPjz76T/zmbz7C/v17OXjwIp5XJIpi\nVPUcuVwfxeJDrNQPEaaXKFWqfOIzD/PJT34Sy7JYWlpi69776LQdLl04zuD6W7mhuhPH6RBFs5w4\ncQQ1iqgkLnk5Q5k8VdIYQUzHayOzGpYfgjRpBjF5+qjTYgyPkJjsGq0ZQTJOSD8x54GAaWZpEWKh\nErGRJsPAWaArBC3LYlc+T6vnkWksspyE3FTs41J7meHtG/nQfffR831i28bSdY4dOcLS9DRnZmcp\nRhE7q1Xec98tnJmdxRbj/M+/8/tv6poNsH3PHp46fJjhH1JCRnFMPY65/20G6v1rBEGA9gbzsfEW\n5og/z2waH/B/ElngquX705w5cwUpFfr7M3zkIw++oZPmG8EwDPbs2cOePXte97c4jvnyl7/Go5/7\nBzoLTS44zzG/dJk71BzZtEKkpkhin2EtxbRnc7QXYaoJTpJj1C2zcWQHnttCs8Z48dIzDA0MM9Vo\nkMFkM6ARs4mQM0hmAJPVm5AFNCQQ4sqInBCkpU6NhFEJlu7SDDt45GhioaJQIcDHpIFOQIaYSRIi\ndNajsosgcTk842KKmG306Et8BtKw4CRMRQ5tMQoUiDSTvkI/oZ/h6XOniR0HUS7xb+67h+SlQ1y6\n9CQjIyP84R9+gq1bN+M4Dvl8/rp1WQsheOTXf51nvvMdDr7yChqQKpX4wKc//WPHaJdKJe574IHX\nvd5ut5mcrLN//0P0el0ajRqKolIqfZCvfOXPuXD8NAOGyUy9Ts7t0e61mO00kUaPQuRSTRIuYuHF\nKhEKg2ik0WmxnTYeCQ4SjQt0ABsdgUbIAJJJJDOsACoJghESfJrkMMmQIgUEBKgkeHjkSZOmiIaG\nRYrFyKHVsEl1T5EiJJ2EnJ3+Fu24TBj2o9oWqhpTVgIqlSGW161jqtGgaBj0pGSy3UbJ5xla25Lt\n9noo2ew1CcN6t+LQIbjppmtfPrnnHvibv7m2Y1xPvDoBCiEYGdnOiRMHef/7bbLZLJqmsXv3dvbs\n2Uu5vAHTtCgW+xFCMD/v84Uv/CNRNMKNNz7AmTMtXBfC0MXvTdP2JvG9Gp1AkPhNWi0HVVXxfZ/H\nHnuMp//pcUJXZbnjEckzpLNHqFQ2Uy5nEUk/STCJJXsMYxLSwcfDICBrt2nlSrjSxw1SzLAeBZsC\nOg45ElwiHAwSFDR6JCwCaUCngMoIfZikSVihyPeYAQLymsVEYDHZCLljuMqugT6+c/48TWeRSlpl\nujbDycuXMU2TXH8/Rw8dQm+3yWgaA1KyOZPhVK2GjCLu37uXY1eu0Gw235KMbNmyhQv79/ODQ4cY\nTKWIpWTB97npwQd/4uf7+vXreSlJiJME9YfKP7Ot1pse9wvXM5IkCX/3d19lcdFiePg9KIpCu13n\n85//Br//+x9nYGDgpzr/008f4G//+ik25/dSHC6w1Fim9swX0JUQzRAIkUOvpx8AACAASURBVOXC\n9EWcJIVHlWlZxIl8QGWxO0X7nE3aSNFfLhDFZc7NOijxNlLASZpYLDNAxCCSfkAHbAQuMEyCQGAT\nUJYaLi4xkjOYVGKLWPEQqZg4iSn5XUBnUeoEDJFbm8J6ZFHRSaHSiaEndCI1Q6s6Sst3yWd0ulWV\nyaUYKGJaJpHosdy9ghoKRGTy3GyTHXqJqalptu3Yyj2f/CTbt78+7fV6wrIsPvRv/y3e+99PEATk\ncrmfqb9FkiSAQAhBJpMnk8kjpaTT6aAIH785SzNVJews0+h1mQ/AT3QWwzLNaJqWGEHIAgUUJBqz\ndFBwUGkTYJKwCUmBWVosc4k8HgohVSSbgQQPG4UsFstIfAr0YRBhsoxLBZ8SATHQwaCFTh6TBAcN\nSY8M3VCnh40K9LqLeGSJhEZKzRNGMalUkQMHTpKRXRaXlug3TayhIULHwTNNNm/YwHKrxflGg/s/\n/vFfqmp+DFzrfpFXcffd8Fu/BUny7kvxVRQVIQxc171a+m23O2SzAwwOjr3mvZaV54UXzrNr1yBB\nsES3O046vQXPzZD4Lo4yQy41hKknGKHPt//pCIbxOb7xje9x5sQk7bZFJHVgGEkffrNFu3WJuVlJ\n5OfRZYROhI6BgoaPj4WHQYbYVXAUkxk0AlJIKmhM0iNPBp8AwSwJBmnqRNQwULHJsYEKBhGSBipd\nCjg4lFUXU99KXslQDzzOOQaZUJAa6KPW6bBFptB9OPrss3QHBrjtgQc499Wv8sDYGKfn5ymqKm3f\np79SYX56msHBQfrSaWYnJrjpppve9JoLIfjgI48wtXfvqrRXVbl7166r0t6fBAMDA2y/+24OPf88\nY4UCuqYx22yivwUxekeTkT/90z+9+vN9993Hfffdx9TUFHNzPhs2/Iu+rVCo0usNc+jQK3z4w+9/\n03NKKVlYWKDdblMqlV5DXlzX5emnXyan9VHI5ZmtL3H09GGCwOFCYOP2GqiKxkoiiCkzRYTLRiJy\nSDosJR2ynsCLYxZnjtELJBZVBB6SFfqAHhoRMIbARVJCp4zOBSIuEeEi8ehxmFnKQIs+coyhaApa\nIYvt15H2MXoyTUCJEBPBGC4mCi101qOg4LCCRKLKLNnCPpSKy86dO2i3p1DsDmrTI5W6jWKxiKYJ\nJie+jyUa9OWr7Nk5yEhliNPnLpDdvf4t2fX1RCqVuialg2KxSH9/mna7TqFQxXEcjhw5wcTEJMtz\n89Tap3GjFKZWRFEK6N4cW5QUkexQQ0XKfgwgJkRFYDDIPOOENDAYxsUjpkjCOhIEMbOoBNg0iFAx\n6SeDwTQBDhXSKHRoktCln4gyaRxCLDKUyHIJD5scDeq49JMnu0ZGB/HRCVggpkosXfy4R39/P75n\ncuiFCXZWp8gqCouKQiWOSa1fz/Y9exgPQ6qVCh945JEfy7/ll1glI7/929d+nMFBqFTg7FnYvfva\nj3c94XkOqVTyGoOuSqWMlPbr3ttuL7C4uECrdRrLGiabjWi1ruB7LZKoQTFdoeU00bUCfcV+Ji47\n/B//+38hzSieFxPLYSQxEAPnMQiIpErgFVBoEWDTYpEQHwOFEEkdSYRgMurSIY3GTnT60UkTY9Hh\nzKqqER2TLD4uDXQEm5E0URmmC6RoMECEh0AqJTy1QEg/qpEmLT2a3R7PXFqkqi7xQKVCx3VpJQn3\n7N1Lks9jFQoYAwMcbjZpeh6B47Cpr4+8ZnD4pSPUlruQ1rn9DaI73ghCCDZu3HjV/uJngYc/8AHG\ntmzh9JEjdH2fG++9lxtvuonP/O7v/shj3ilk5A2XuD9MRl5Fu90GXh/WlsuVmZube9NBer0eX//i\nF2lcvkxWUegmCUM7d/KRj30M0zSxbZsk0VEVlUvTUxw79jQVf5kbiAgRLCUSI/GI0Jmkjc9uLNbT\npYlkExIfLz5LWmYJEwsNhxQJkhXWYaGgI/AZxiZE0kZFRcMEQhLGMShTRcGiQZkWPobQUKRCTgqS\nQCWOLRqJAQyTpYxOipAS4Vojq4GLpIBPSFHkcFFotWdxvZhLl05jmiHV6nYGBjaxsrJMoxGhaRH5\nwkZ0NQbTAQTnF6eYd2M+uP2Gqw1l72YIIXjkkYf5/Oe/TqdT5dixSzQaPRZqZ8lIiwHNoNGbY8Vr\ns86yyBs5wqBHUUoC0jhAnhiVVULSwkWjzTpiDJZwmGOJEjZVJFV0bBQEbfqQqERo9PCJKCKp0kUw\njYqFTR8xSyg4GKRJ8NbudY0FLCxy5NHx6WIiKRNhE1FBoQ8wSJKAer2GIQUpEVAJE24oZZnyfTAM\nRtet49O//dtXt2WllExOTjI9NYWVTrNt+/arfTU/LVbLYZNIKRkbG/uJnCHfaUgSePllePTR6zPe\nq30j7wYy0mgsUChUse0WKyvn+bVfuwdN0wiCgImJCRzHIZt1mZu7wODgZhRFZWVlnqmpl3GaEhk3\naLoLhEGClFUS2cAwbGw/IGEzmlJhqRMTu12ieAhX6+LHPoJFQJBFMogghUbIMkss0SWkyApDxPgY\nFDEQwCIB8zjYpNAYJiImYpEICxWTGUqsMIFFGghIUPEZIUuVHj08EvpJ0yOPQ4MQ8JOASmo9mpkl\nihOEpmPbMdILuaWsMpzNUjZN8kKgaxrrh4c5VauxeedOdlUqLDQavPyDHxDUm7QaAZm+9SjaIEdm\np9GPX+C+++//uUj0hRBs3779x9pR/3mqaTTgO8BNwHeFEH8ipTz0VsetNpq+nil3uw22bn1zU5Wn\nvvlNmJrirjW/Ciklp8+d49tPPEGpUuHiyZNMT5xlcUVn4cILDHqL5GKPhAwZ8kR0mcAjj6REgEIL\nmwUUciSr7v2kSJFNHFKYtLFp47KBFGkyxECCRoCGwmppR5DQIUECVUxUVJbxidiAQKLKZWza1ESK\nnOiRBP7aduBmNEDDRpDGQyGhQcAECSNoQCQFXtxExF1CP0csh+j1Qnq9DqWSRNM8FKWO50nS6Rya\nEbD9tjs5fGWWROaRZDh3boJ2u/0T5Rv8omH9+vX8p//0Sb797e9y4sQi6bTGgCbYWdqG2xBYno3h\nJ1QDm0jTsRIbZEwKk5iYJhIDcAGVZbYQopEgSdDQMWlzmQTJKBEOeSwGSCOJaRBQp00WnRRzRGjY\npIkZpIODToiJh4HOqq1RiEKJ9prGKiFGp4pNB8EYKu7aWm77mgy7hoKDrjYYVAXDuo4WBHzv3Dmc\nZpP/0ulw30c+wkPvfz9PPvEECydPUtV1gjjmxW99i/d9/OPs3Llz1Y/FW801+nETQw8fPsoTTzxP\nkhRZXX88ywc+8Ivv5nrmDPT1QX//9Rnv7rvhwAH4nd+5PuNdS/T3d5idvUR/f5kPf/h97Nixg/n5\neR599GvYtokQJq7rI8Q5jh07Qa1WJ5NRaM6Mc+PwDYyfm0fxTPKJSpg08ESKKG4j2Eo+czOg4fSW\nCOIGESlEdJEMPiHzJFQYJUOaEiDWWssvM0+bMWAdWRYxuIhDCYmGJCZFijIJWVQGUZGE2CS4ZHEo\nIgCXLhoOaSzyePgEZPFZgTXiMoeCj4vCCkFvHW4iEFoKz20RyRBLhZ7bY3xmhr7RUXZv3syV6WlK\nQ0NYuRzpgQFmp6bYMTyMs3MnX//WP4PQ6Dcz1OOQfQ/9T9h2k/Pnz79lqeadgp9nA2sEPPjjHjc2\nNsbISIq5uYsMDa0y5VZrmSSZ5/bbP/4jj3Mch8mTJ7n7h2phQgjGKhX+++c+x8P797O5UmFnDo4e\neJqc02FUSoQ0UJE0scki2IZFhzQpPHJYzDJDj00ohBh4KHhEeKTRWMHDpICFjoaKIMYkYRmNMSLS\naDhEFIlpobGezJp2HZosETKAh8qAJrl70yZWXJdTrUUEFiYmDpDQJKZJTIGEFFm6eJwmIYfDPAoG\nhjZAmBRIZAWhqETRMYIgQxz7CNHDMCyiaAnLipmdbbNu5H3oepp6fQIhcvzd3z3G7/3eZ65ZXPXP\nA0EQMDU1RbPZZHR09DXhT/PzCzSbgunJKbZIG1cIQpEiTOVx3UW0RKUTNcnKEEGFCh492qQZwsTH\np0eRgFGgjotKGZCAQgaXDtOUiBimiGR11ZJjkQw2aSpY5JAIHHymkXSJGKJBGRWNCgEuCZIiAbNo\n+GhEJEg8EhIkGRQUQiLgPGABsxi4GEnA3GIHnIjI7zIUR3RXeqjTXR7/88/y/PefY1smze1jY1d7\ncmzX5Ttf+hIL997Hiy+ewnVjMhmNBx+8k1tv3fe2eneWl5d5/PEXGBy8bc24CsIw4Fvfesv1xzse\n16tf5FXcffdqTs27Ab/5m699ZsdxzN///eOo6hZKJYWzZ49Tqy0yNXWKoaEB7rnnIzTqs6ycOMNs\nMEccCRAhhiapKjqqXmG5nkYRGcIoIQxaJJGNII/OFCP0sCizQIiOSxGNgIBVGzIDHY0iCSqCkDQG\nPrvIoCKZI0alyjRtlnDJYhLTATIMcIUhDFIUEYToRFykzQIdNDYiqKAwQ5sZEiQa85i4qKy6YWuq\nRtf28BDEicRU2niGQbZYxDAMDMOgNTPD1598kqHdu6kODNADXjl8mOlLl7HLw9xwy4OsX7+DUqkf\nVdVYXtaYnJz7JRm5VlAUhU984qN885vf5fz5F0gShaGhPL/+64/Q/yZLE8/z0IR4TXcvwNz0NLRa\nuPUG48srNCfH2WX0WOl5JBLAJANYJBiAj0oKgUMANCiTYZl55NpuhyZcFJnGo02JFbpYtInIIpHY\n5BB0SHMenywBEskyCSohbRx8KmTJU6VJhxIhbdyozeFLV1DUgJAlFAQ9uuTJo1IloIZgntWpbwUF\nG0kVQQFD3EjMCsg8CiqqliaK8nQ6FxAii65b6HqPoSGNXi/D3JxHodAjihYZG6uwc+ceZmYOMz09\n/bbVSu8ESCk59sorHPn+9+k0GqzbuJG7H3yQDRs2MDMzwxf+4i+4cvIkiW3TA3b9yq/wW3/wB/zt\n336Nej1LNptHUzQ69RVwVPL5KqF06cp5aoSAQEfFwqMfjyU6xAR0UEhoY9CjgEKXkJAmOilWPRv9\nNSXUanEOQKKg02MDBot0gQIKAVlS5OgyQweLBA2VkC4rKKSokCGijYvNMiYFOnTwMZDYKBhEDAFN\nVi2WHCx81gkDIUp03C79mCyGEVJNkQgTHXjqq4+z/pEPvIZgZC2L2pFjnJ17gT177qWvL43r2jz2\n2EvAquvxW+Hs2fMoSt9VIgKg6wameX0UWdcSBw/CW5hL/kyxfTu0WlCrwXUStF03zMzM0G4LqlWT\nZ5/9LjBKKrWHOBYsLHhMTl6iUswzNjDMgSNnUcItpKwCftSjEzRx9BZCSYPoYHsX0bGI5Kr9WJUG\nubUyKNQQgIlLRIMEi9XvY7xWPgUdnz4UDFRiYiIEoFNBo0GdgNpa11+dCh46LhIVA0lInQKSWeaQ\nDKMRYlDCxyJmghiQZOhh4ocuLXmEMEqhKWkUdYkR4TIcC15eWaHPcbjiupxtNnnwgQd47y23sNRs\n8pUnn6S/VKI/8PBq81z4/lexd97OntvfT6nUj+fZlErvnH6/t8IvFBmJoojnnjvIwYPH8byYajXL\ne9+7n5tuuuk1D884jjlx4iQ/+MFJXNejWLTw/ZgfnDyHurjEuoF+0uk0xWKRFw++RKcTsDCf0FiZ\nZ2lqls1WCiMMCMMQ0w3Xpg9BQEQDjQyCDBER84SkUMghcfFJ0GSJJXxUVtiGxMShjaBEjywmGjor\nuFxBxUAji88eVDTStAGP7JpHX5OQWdLMkmYJP14mE6vcLAKWpcISNdq4KKSwSJFmlkEmKJEwg0mb\nNp6ioeo+IJBr7n9xEpMkFTTNBmZJEkk228/AwBCq2sfCgqRUCti2bRfVah+KIhBiVZu/tLTM3NwS\nAwNldu++gVQqRbvdJpPJkE6nf06fijfGcwcOcPqpp9g5MEB+dJTF5WW+9rnP8cFPf5qvPfooy8eO\ncXsuh5lK0Ww2Of61r/HH5y8wuv2DbN16E41Gk5MnmzjkycQq9dYVpt0mMRuYo0GVBNbsi1x08qhU\n6DKJzyZ8AkxsElIoZIlwaFMnwAVWu0t6xPTB2r5bQg8PSYcuOgukKRDjkqFDC5UEk0UUBApZBCrR\nWvlHkKe5ptxJkCgkWCQMskpENFbLmgqZtQbYbhSunVtlCZ10r8PlU8+TBaquzTPfO0C5WGTnGvkM\no4iLVxrccM+Oq26YlpVlaGgP3/veS+zbt/ctlTe+H6Ior0/8fKPXftFw8CD8yZ9cv/EUBe68E156\nCT760es37vVAGIYIoXPlykXiuI9icYh6fR5dL2MYKsvLPSoVjYVGnUHLYCaYwQlc7CAiSFpIkSVJ\n2iSJTsroIoRJFHZJaJDGRmXjWo6MwMHAxkdFJUEDPAI82iiUECzTI4/JEpIeEpsEiYuBiolOzBIR\nc+i0UUhISGHiY2GsSfd9FpklxEcyCJioJKQZRUGhQJomEMk8fphCIaGoCmQSsMI8RU+SiWIaUnKh\nVuOmm2/m9htvZKFe58lnn2XM95k+cYLbtm9nyI1ZiRWasxc5E4fsvOODCLHMnj1vLuh4J+EXioz8\n0z99h0OHagwP34phpGi363zlK89SKpXY8EO5JY8//iSHDs1QrW5mfPw0R48eJJ+vUClv4G+efJph\n02LLhhHcqMMrS01u234HxUKV5uI0/flBVupXsDSTyUAgcMkR4hCzDJRJEeKgowIaHXRCYjKKQE1W\nVTU5soSsZ5qLKDSBYRbQMPHwCKijYrGVEiliarjEV42tAqZxyGKvjZDFYAAdlx4SA02aDBAANVbo\n0CWFSpcsK2tOfmmCNYVOSJ1O9CKRsh5FFIkTY9WIXrgkSQ7T7DE0VObWWz9Eu32eYjHCcXx27dr+\nmvh4x1niiSdqwBCWVeLo0Uv89V9/mVKpjGWVgYA77tjFww/ff00jpt8uer0erzz7LHeuX4++ZrQz\nuPb/PPHlL7M0Ps5G08RvNqkvL2OpKlsVhe8cfBEn3sTY2I1s376HU6fOc8U+RuIsEguDKOonQaWF\nTgMbg1f7l3xSa/3yGQxMAnQUThIziEYGyQIRExj4a2uiFjCEjUQgAEkfHWwihqjTpZ/6mmTXQ2EQ\nm5h+Vq+thodOQAtJG0kfCR1ielhkGKTLFWARqLBaHtJQ2USN84hkkQI9OiJkWmhU8xswojq3FPsQ\nUhAGHlnf4/Tx4wxWKpRyOZrdLj1pMDDw2mW4ZWWp11d7SP51cNe/xpYtYxw4cA4pN75m4dDrLfwM\n7vjPD7UatNuruxXXE3fdBS+++O4iI1JKfN9nfv4ki4sxhrGqmFQUhSCw6e8fQQgFRdGoSZNipkTJ\nmWcmnCdOqiTKBuIoQlEGUdUFwjCPFD2StedlD52YHiAokCVgnikicmum7iEtlpC0KSPpEBPiAevW\nSuCrSWMtuiREWEh0YmISbsBjFguVGA2XBkMEdFHZDPTTY4rLTLGOHDtJCIhpo9GgjxiHNAklfMoo\nMsLSQjqByhUpVsXFvk6fmaJz5Qqf/R//A7XVYm55mXYqRdrzWJ6bQ8/l8KbnmFi6QsVvMTWQ4o/+\n+Pde8xx/p+MXhow0m02OHBlnw4a7r/YuFApVomgLBw68xGc+s0pGarUaR49OMDZ2J3Nz4xw48M9o\n2hhLS/Nckg22bf931JYv4/sBsTqIV7LoseozoekGWd3gJT+hJDLcuXU/P7h0gStenUUSBClMbCxi\nuqgsk2JByWEaeXTrPpzWOIkUxExTpUluLQDNZZ4YjQYWDj6CsTUVjERSZYE2IRH9gMSjjk7CIKNo\npBmjgYFFnQ5pdPoI8DCokWIFC8lGYDuC+TW+XgVaGEgG8eIFriQ2PZqEsg9JCkXJoihLJElINrsV\nVdUBk2Ixw/z8EVqtJbLZHEIkzM9fwPOWKJXuZHBwjDiOOH16krNne6xbN8jDD99OksQcPHiaOH76\nTaOqrweSJOHMmTN4rRbiX+1hD5RKPHvkCF63iyEEneVlKpkMCqBpGkOmw/TkRS5dOoPduEJgz5Iu\nb6edArv1CsFaFFaCjs4+ekSseq326LGATRuFRWYxkSiYpAlQECTU0HEpk6FHCkGAT5caFipQoUlE\nA5M0GQQ5Gkxg0cYmIkuFLi0sGlTQAIMuXToEFAGTwTW/gwKKqmHEtxJQB1azhFbdEDz6UKmKAUx1\nGdNK0fM6tP02e02dJJEsBC6ZbAElbRK22xy7cIGNIyNM2zYbtm9E0167+7GaG6K8qdT6VbvpsbEx\n9u5dx7FjRygWRxFCodWaYdeuys/y9l93vPQS3HHH9ff8uPNO+M//+fqOeS3h+z7/8A+PMT7eIo7X\nMT5+mChaYNeu+4migCRZRFGquG4d0xykPLSLruWy5CxjN0ZB27hq0R5OoGllNE0SKSvIKI0mCkQy\nT4MmOVrk6EOlS4U8M7hM4qIRo7GReI3AL+ECU7ikSRGRIULFok2WaVYI1ppWBQPAErMEqERrxZ4O\nDoIIQT8SSNiByiIOEBBzhg20GVrbQbGpc4UGy8S4QqUbLrJOmpTFIIE0QNeYXxmnu7KAp6qU9TSV\nMMb12nQUgbG8TKbVYnd/H91ul6Ie0ZdXf2Q+2zsVvzBkpNFooCi51zVRFot9zMyMX/29VqsBJTzP\n4fnnD6Aoe8hmN+M4FwnDdSwuzlGp3EgnXGagUqYbzBL25TjZWEDTdE61l2mrQ+T6B7mc+AT5DO0k\njR8ZKMkcF1CZIEISEOJiaeuJEhW700YKBU0mrEMlTz/qWkavQpNpMmgMkSdEYRMhNjlauJi4jDDJ\nPMsss0KagB2kkWg4SBRiKrgkQEKLAJOQeXRcSqQwaeEwh02AIE3CLGk6IoPQLcy4SDpxCRQbMw5R\ntYRQ5siZG4gDi8mLU8hYwcq0EcKhWk1z9Oi3efHFkK1bR/noRx/ihReWqFaHOXLkaY6+/DyLCx00\na4CVlQY33riNoaH1jI7u5vDhF3nggXvfcpX808DzPGzbJp/PYxivjcuu1Wr84z8+wdyczamji1y+\nvMwDN29h2/pVl9aO42Ck01yJYy4sLTEmBK9+mjq+j8hlWVg8zje+cJF15SruyjStdh6NAn4iCFmH\nikChiqSARkBIHZ8OEQkKPSKGgRE0THp06dFEZY4MMWnmkOSBDBrQxaOGvkYw88R4a/tfgoAYnSyg\n0E+IJEdIQg0ba815dxcBbVSu0EKsJTf78fBacaiAohQhCYEVEk6SIyYhRaGwjThxSAmFGW+BC6HC\ncQ9ikcHQYjZX02zetImLvR4L09OMbNzIvrEKV6ZPMDp6I7puEIY+c3Mn+fCHb33DEk232+X5Awc4\nd/QoMknYsW8fDz10L7t2zXHs2DmSRPK+9+1n9+7dfOpT1+zjcs3x0kuruxTXG/v3w/Hj4PvwbghX\nfu65g4yPB2zYcDsbNsDg4EaeeOK7XLjwXfL59ZTLA4yPnyWKztNonML3XTZvvgvb3UQgN+D7FmHY\nRQgVISxct0UmExErNomvIuI+AkymgAw9tLVuEYdRwCBigoR+VhtZ26x6Y4/gk6GJywodQjR8Svik\ngBSSLnJtCrVRuIxBBm9Nl5OwFY3LeMS4rHqP9uhxkgpd1mOgk0YCaQKGCFjiIoosYZBCX7MGaBKA\nk9AXaaREkV7YQwYRCwjWo7KIx7CwMdNpWlHExsFBhnI5Fut1Zmdnf2yH6p8nfmHISC6XI0mc171u\n2y36+v5lK2pVUx0wO3sZGEBVV//FKArQ9RL1ukunc5FyuUKrJZidnWffvveyad/9tNt16oUqytEp\nBv4/9t40WK7zPu/8vWc/va93xwUuVoLgBpAUF4mbKNqWTImJPKLHlk1HZY/tSWrkyVKqVE1NxckX\npZxUeaZqZqoUJ5JipWYsK0pFimWRlEhxB0FKAEEQCwHcfe/l9n72c9750E1qIWVRpCiImnk+XVz0\n7fdUv6e7n/f//z/PM3MtQlPQ1C1Kege/1qSbaOjswaaADgzYQgnOoStphJomjCws1igiMfHR6WMS\nU0MnxwQ6BhHQRxJQYZMEm4AIsMmQ0MdhFxEGCjt4yFHagUmCJMBjDxEmIXmK+DhsIxmQYoGECBeP\nKUpMYGMRSIvNxBquG6cwtVnCeBlNLqPGGjk9hRe5NJa+g112MAdjlEuTpO00SnUX2WyZcrmIqqqc\neOZrnHn+BcYyR1DUBnGUZtvtcvz4k3z0o7+JrhuARb/ff1fISBRFfOdb3+Ls88+jJwmRpnHjPffw\n/jvuQAiB53l84QtfRVX3kcmEeMElLl2oM//qt/n4XVdz+NAhvvLoo5R27WJfKsWzq6tcAq6tVFCk\n5PLA4ZXAwBtMkEKlubZFJnJIxwE90acjQcEFLIZerS4RPgo7ZFkdnXBc+kyiURg5DQz3dAyVFC42\nBXwkdZqkKeBi0MMnYBdy5LbrM4uPDvRQKJFwDm8076OSwyI76m6vkVAZyXxTI31NQoiGwEdhHCnj\nUZLNgBiDDnnaOLQ7lxjTEtKGii0VlqIi09EEKdPGj1QubWtc+Paz/M4Dv8Ithw8ThCGXlxdJGRa1\nmkOS6Oh6zIc/fIzbbrvlDXsVBAFf/sIXSDUafGBUnVo6fZqvLCzw0D/8h28aw/BexfHj8K/+1c9/\n3Uxm2Bo6eXJYJXmv4/nnzzA5+f1gn4mJCfbsmeXEifM4ToRp6mSzPrZ9GCnz7N+fZmNjnmazTSo1\njusmGEYG2y7Q7V4ijvv4/izZ7CSx3CDyX0UmRUKmaGMxFOBHwBbDmLQUyevVxKsZkpEVYir4NCgi\n2SIgYQ6FDhoaMbPE7CA5BARELAGTwBn61NjGoUHMfobWateSsMk2HQRgEZPQYIBAksKkiMdWtEOW\nNBFQlDrLwmcuKaOikEiGE2NJjz4uO6pJkPj0k4TeYEAGOJzJEKVSHBgfZ2119f8nI+8GxsbGOHhw\njPn5C0xNHURRFHzfpdl8lfvvv+/1x+3btw/Leoz19QHZ7BidzjZBrJ3mYAAAIABJREFU0EfTFMKw\nT5KkkbLB9PRu8vkqrdZLnDr1FOVyGSEEk9Nj6Gaaa669m+3tbeJY0lMNtnc2UcMyRSYwERiqTjZJ\n0RIOk3aNulihI2Yg2MFAouCQIUYjRmARoCNR8dFxaGNQJcInJqFLnQEraFg4dEan7pAdJIKYhBaC\nJmPYI5dPmxRZ0gQImoyTxSTHK0RoJLSoococ3UBBYQ4PDxUxlBcnk0TUyXoXSPQUiWyi4SNXXLS8\nQXcnJpe3yYQhHeDpp08yNpbhif/yNcYyR8jZOQZGlzhSqWoGnXZMrbbC+PhuFMUn9xOSGd8uvvOt\nb7H01FPcNjuLpqp4QcDpv/1bdMPglltv5dKlSwwGKUwz4cILL3D9rl2s6zrbtZBvPvcij5w+zc1H\njvCRW27BcRy6m01OnH6VLwcSyzJIFIFq7cV2O2TlKntUnU6o4wtJIgUaETGLxEQMc3angW1mqDE1\nCrhzsWlg08PDxCBkG4tlNCBAJYegQkAFyTo9prAxcFjiFIIJQiYZGvptAmkEkwgW6VHHZRcFVCxi\n2rTJoKBiMcAHLCCHwgYxHeAQYJBIF4lOxADBboQooUiBG63QYp2M4tMPFUwxia9aGCjomslOoBGK\nLOlkqKTBtrk5m+X48jK//qkHyOfzZLPZN1SmXsPFixeR29sc+oE5rv1TU7y8ssL5c+c4duNPVt+8\nFxAEcOrUsEpxJfDa3Mh7nYxIKQnDEE3TX//3iy+eBsYolfZx4MB1mGaOM2eeoFqdJpebxXG2eOCB\n3+FLX/o/cJw1TDOLphkkiUMcLyJEBdseIww7GIaJZR0jCLZx3T4yKSKxgHlghiExiRl+HbYYvgfH\ngcHoiJHFoEmKHH1cTAYoTCKxiZAIWkjGicnTYZEMOisYdOmxG4mDjkAhR0iRhHNAjR10LErAJDoh\nEGCQQhLholPhghLQTnSWUQjwyQJjZIeqSFwCkaGuhGQ1SUrTmMnl6KZSCMPg0ssvw8GD3HD06HvG\ntPI9Q0YAPvGJj/E3f/MIZ848C+gYRsxv/Mb7OXz48OuPsSyLhx56gD/7s/+Ty5c3KBanWF+/QKVS\nYnFxhSQZMD09i23bNJuvcMstN2MYDtdcY1Aulzlw4HY+97n/xPHjT7G91iJublNQE8KogcUeskKg\nSEmSREihYFLEj7YomQ6d5CI+ber45Ecm8DrDE/IAExuNkCIGCQHnkYS4eEgao6qGRGIDKwzYjUqZ\nIVOPSI18JhSC0cSBioXDBAo7xOh4lIAq4BPRp0UHSDhALExsQoKwjkIKizxjmks78enLFCJIU0os\n3J5GMGjTb/t0WjsErTZnzj/P7LjFoLlBbE4hIg3DUOi6TcbK4zQdn263je+3uO++G96VG991Xc4+\n//zrRATAMgyumZrixccf5+b3vY9ut4+iWCy++ioTqTQZ2ya3dx/lUhZVsdiprXDPDTcghOC7L55m\nYuIa7k7N8fTSZVT7EKu1DfzWKpNRnywxl4KQIOohiXGRWOzCZwbwgBaSHBlaVMii0kLFR6OCg8TH\nxWeNSdpMEpFBoUZMjy5VNFRsJApQJY3EYok2AaAjqL8+cqoxT0yIQ5OIPA1ifJpk6KORZoWA1jAa\nD40cCQEJbXQ8BAnDeL11JAV0EhzZwUbBJoemJTTiRVTFJJ2oeBL6EsZL4wS9FuXUBJcWVrj1pqGl\ntBCCoqLQbDbZu3fv37lfW2trlN6kd1CybTaWl39pyMipU3Dw4LBKcSVw++3w1a/CP/2nV2b9nxWE\nEFxzzX4uXFhhYmKObrdLu+2j6xaKElAs7qbXaxMEZc6fP0W1KnDdTWZnJ7jlljs5ceIEk5O7ieOY\nbreNrs8wPX0dtVqTIPBw3Zh+v4Oq1hBCRygRMsmR4ACvGfAJhtLeMrDBkOCXECwTs4VLB7AxaaCj\n4mCgkSbCBRpIdCRdVFr45OkikcSUyJMhzQCfGA8dH0HEFglVBFW00bs2ISRFhZABbXS6LCQ5XHaT\nlhlioEELaDOJRRcNP3aJjTy5Aty0dy+tQoGlhQVySYJiGPRPn+b/cV1+6/d//z1BSN5TZCSVSvHg\ng3+fD3+4h+u6FIvFN1Vv7N69m3/9r/9XPvvZ/51OJ8OHP/wJer0eX//6KqapMzFhoigLHD26n927\nD7G29iL79u0hk8mwtLSM46jk8wbryxv0evPEfgNCD5ilL4dfI5ocmngn0sf3fZxQRSQWRdJUMaii\noBPRwiHEHRlQaQg0DEqAD1wmhyBLAZWIHhnWyZAwgyCNgofAwmCagC0SauQwhs6sBDhEKCj4xNiE\nFEY+sBKVFII8A1ZoEUlt5AXqIumSo0476tEXKimxlyjYQgOSyECKHCQD3K0BW9s14qxJqqkiulu0\nxUXMxMfOpLn66lk26y1cfwtFmeL++3+F229/d9w0+/0+epK8TkQA/DBkcWOD7505w//9+c8zNjtL\nHLfpdTpM5vOEUYAXuHh+m6MHxznf3sJzXaIoot0JKBan6PV8QjTqboxHAYsVAlVn3VOYE4KcSLMj\nA2IMGmzTR0dTriFIMsA2Jg1yI2ddmwiXDiExkGecPkXARpLDwSJmiQgfC4GOgkqCDhTQURiWjEFi\nYrDKNA45IKbDDhpNdCJ88jiMEaIR0EHBRzBAEtEnGCX/Cl7BFDqG1FBoE7IPTUTYShY36dKWklRs\nYCHZrwo6MiQrDGIkQXOLJAoYeOvUF2FlZeX1bKJAyreUC5QrFlkPgjfuo++zu1J5h3fDLw6udFXi\n9tuHRERK+BlmRl4R3HvvHczP/xVraz5RpDIYNEil6szM7CKOY3Z2aqN2TRZVLZLLCZ544gWgi6Js\ns7LSYHb2WsbHLTKZFNPTc6yvrw5Vg5rAtAf48ToibhBHLmiLBFGBoRpuN695jAxJyWVgGsggOQCc\nQLBJFo2QEiqCgGHKeoIHKMQjSf4uImxauPjUsInI0sFljIApDBI01umyBNQI2EYlROCgk2Bj4qEj\ngAEmM7gYdIjJkkZjijo+fRp0lCxCyVBKudx09wf4zksvoV6+zPtSKTTDIJPN4q+toWgaL7/0Ere8\nB8pnV5SMCCH+HLgROCml/J/f6t9ls9mfGG+ezWb55//80zz++NM89th3WF1YoJrewjSrXH/dUaZn\nDiCEYGtrmcVzT/NcvEZaVXn0+HexJ2/i+utvJYr6XJ5/iv0jFUyTFUwyWOi0cfBlB8EaChFO4qGh\nU0UjpsA2wbAaARQwGdAjoodHjwGLCOrY2ERM0KJDmhRlxumzTpurMCggWMTGQ6VHRA6Pbcp4+Ehi\nBAawODImzhNiI+jhEpNCR2EMjRUuITiGrswhEw+fl3FpECQQaxX6UQeDmJAuOiqKNPAjD4nKQEYc\nKx/D7/ZIlB3sZJ0kLjNml9lp1Igzkk9+7IN85jN/8q5KenO5HKGmEYQhhq7jhyHfevZZZK3GHtOk\nUKvx7LPP8r35FdbWNJaFIKe6pAiJlD7u1FE6DD9qiCKEUFlZWWd1e4ds5TCT1et56XvPEwcOvjmB\nzjZVmcITLopMI9ApEbHBDq500RRA9jAlI7GuOvpIMqgQ0GUBGw0d8Ea9aRsooNIhwSMaiblDXBQ8\nFEx8ApaQ7GUSlypZYhq0SUgYQ8dHxSFFFQjwEeQwAIdFXGI0NBRU8sNBPDkgS4SLSpcaiixiyQEm\nMXViEtlnUtcpRwNabKMlk9hSpRu4REZASrSYCNN89/HHyT3wAOg6fct6SxP6h6++mucffZRGp0Nl\nFCPQ6vVoKAof+SWbF/noR6/c+rt3D0nI0hL8DDPOrgiy2Sy33nqEb3zjcer1Nra9xe23/xZRpHHi\nxFkajQaq2gcS+q3vYvur5COFjreAUh1DVdOcf+UFJseqdDo9zr6yCSJHLlPFUCAxatx26AYuryzS\n2LpMOjXGluPghJMM50Pi0ZUMgDzQZUhG2ghcTCq47OCTIY0xqnXuoLBFhESioSEZMMDCxQIENgMC\ncgRU0QgReECITpGYSyjUMFGwEQgMPDQSPAx8LHTyZBDsYOEgMJAEWAjFpmgdIk6WmNtVxJqdZdZx\nmNraYm+xiGWamJZFs9vF29lh/uzZXx4yIoQ4DEwBJ+QPRCgKIX5NSvnw21lYCHEMSEsp7xRC/F9C\niJuklN99O8/145DL5bj66gMsnXiGD99xHXn7Fr795HO88u3/yObVH2BsYpoXnvxPzAx2OH/5PEI3\nCBp9avNNLlxapdnapB8rEDuUCJlimcs4dCiQQZKigUkTByihoRAxSUyAxwAbB3OkvvAxKGHQRWGZ\nNDo+k5TJIzEIydDHHc2ZQJsdVHxKhOgEIx2FwEdyGSgj2cKhjUYLiYaHBCxSRAQMCDGJ8YlRMIE6\nsewT00ChTMQ19LlEJmqSQaGNwToRk4QjlwyHDi6o4yiRTtnMo6pHaA1eZuCfYbXfohX4/MpHPso/\n+2f/07vuLWKaJsfuuotTDz/MtVNTLG1uIut10prG/qNH8bpdUuvr7CfEKnTYOHcJQ9OZ2zPDjYcO\ncPryZYp79/Jqv8+0YdBzdpjf8Oimq5RnbsK2C6Sz0O949PyACiptQkwNlEQSxAYJaTTpI0kQMkER\nKm2ZZp0GBRwgB0giAkw8xkiojipVLYZuH11iVvBIkyGDQpcBMR1mSaFiMiCkxslRJUWlhorKDHlS\npIABGVbZQSEihUKendEwaxtBFpMpQlooLBOR4NFlCn8kMwwIE4s0CRktIJRrhL7LmqKSZ4u27OFI\nkzYR6cTnyFiFdjqFs7aGe/w4e266iY/97u++pXJvNpvl45/6FN/48pe5tLKCIgQil+OBf/APfimC\n8V7D8ePw2c9eufWF+P7cyHuZjIRhyF/+5V+zsOAxPv5+KpUIKZ/n5MlHeN/77ufYsX1cvvwymlZH\nJl1Krk8hziFEj7SSJkWWV3p1MkqJ2to6KbWJnawRa4dwui6usomqwcmLPbTEYUwfkO5tECSvfVKq\nJGSBAFgHKsAa0ELQRWc/LguUcPBYRmJQwEbDJSBgm92kyZCniMoUG1xkLzWmSdNHJ0OfPgIfcFDQ\nUcgQj1xPekwwICIaOWsbCGxqSPTXDxhdIuLR53yXUqqMrnRBG3DPb/0ud33wg2wuLrK+sUXn8gqK\nopHKpBifKLFQr5O/9b2R//QTyYgQ4tPAPwLOA58XQvyJlPK/jv77swzD7t4ObgEeHf38beA24GdK\nRgCeevhhri6XSVsWrV6P991yjMPtNk+vXcIfNEjmz5GNJJrQafseXScCs0q3f4LA87GlgsRhCqgI\nKMltmmyRAlwUatiU8MkQ0xxJJ3OkiInokyakRxsflx46bfag0cTCxEIjGpl3J0CVHufQ8VA5jcUE\nOYaufBYRHjX2ouABAg2bYeheC5UaASEBMT4Sgyw2CTu0SIjYBfSJ5RoJeSx2Y3KamRFNgl3kgQYO\n8+iobBMToFJiwtpDEseoQlAxywRxieKeMp+8/366gwFXfezXf26JkB+48050Xed7Tz7JyTNnmNV1\n9h87xtTUFE8+/DC78nnWVleJHIePzY7T73RY21rj5ZTBdTffTDOX457f/E2eefxxVi3BudChYhZo\nrBwnSEKEso6anSMcaEgDhKKhmQl+a5sQm1gmJKQQ0gPq2DKFic0GHeq4GCQYKPgETBLhMHxzFYEM\nw4SYJVQGpImxadNHpc8kkyi0gYACgjRtLCRZVNapjEaToU1CgEqGKbpcBEy6SNoMEJSwmUSlS5Yq\nCesIesCANgY6OTT6bNFH0mUy6TMjfISU5JH0FED2mVUcphQVLZvhSC6DNTbGwmCAMTfHH3/mMz92\nYPXNMDMzw//wj/8xtVoNKSXj4+O/VNlGq6tDWe1PGJ951/EaGfnkJ6/sdbwTnD17lvl5l7m570fe\n3377x3jhha9x6tSXOXdukU6nzuzsPeheg2q3ju94qKqCrqcI2x1SQcJAKw3tECKfORMu9RfxpURn\nFtOaoeuH5M00iVFDdzY5iEZCnR36o9apjkDFpzFqtwLkENj49Amx2E1ImhiFFjoZIvIEDIhGyVHD\nY8cYJi0U2gTMEpLBR8FHIcYjh08XwdhIVbOGRCEEJD4KkjQJJl0iIEVZtCgSo0sVjw6Nfg1dFxye\nGSe8fJmvLC9z+oXvIrsBR1NFNClpb9VobW2wkLHIvfQSf/v1r/Nr99//d74HXdclSZJ31Zrh78Jb\nqYz8IXCjlLIvhNgD/GchxB4p5f/2DtcuAAujnzvAkXf4fG+A7/t0azVWPY9XL1wgnST0owhX1/Es\nm/MvnaSaSCpWniD0cT2PTByguVu0ogxX6RauYjGfOKho+FIyj04RcJE4WGTxuQqBROIjWcQjhwNA\nD4EkRiFgnIvEJKSBDgY6CR4xaVR0EkLWsahTJaRCBPTokUIjjUGHQ3SJUIhQGMciJKGDSpaYcdIk\nSHbQKaHSoM8qCi42GpCjgEKWLgExJ0kzwFRUgqSCyjBLuIqgg0vCDBEbCDFJShfkMhnCXo9YRgxk\nxMduvpm5yUlOLC0x8QPhcu82FEXhtve/n/fdeit//aUvkVpbY2ZsjF63ixrH9DodIt8npetMFovI\nYpGk26VQKDC3bx/d7W2+9rVH8f081T33ob38Rey1p5gsjhGLGOlJinO3sbn2MlGSodGvY3YC/Mgi\nYpMaMQ77UFhCZ5sUFqbQqAifJEkxwEMlhcRnL8MO9CJDXYzBcCROR+EaAtbp4VKkSA+FDYa+IxY2\nbWxUVggoo5Ae5SIpJAxQsEiRIFAJmMPFIs0GFk22cLAokyHAQDKOyQ4NPBwqVMlSQWWTBBWDTNLl\nRtuk77n0DYNp0yQMApY9D0WAEwQsOg7lWg01n+eqa69lcXGRTqdDsVhk7969P9H+/bU9m5iYeBfv\niiuH48eH8yJXelbj9tvhS1+6stfwTnHu3AL5/A9/lrTbbR595BSh30aJJpEyz8VXX2AqIzkyeT2r\nK5dxnG0sq4xM8piyRcMJsaXPeKwxlbi0pUOLfSRMIHxBIh28sEsiM+REmoppYPpdyrKPSYaQMoIC\nHosMSOEzQ8IiKZ5nEg8bQXlUcbZIiGgzQKeEwTID8qOvUxOVAJMKbQas0cEYVdIjsrgYo+ZPlSwe\nJsPE7QCVNBfQsKggcRna1l9iQkqEiFAViZd4XKcl6KpOse/x3cefQBursN1yOVbZy6VBA7XXIEPC\nYpRQKI/x966/nu899xwnJye56eab3/D6dzodvv2Nb7B8/jxCSsq7dnHfxz7G5M85+OitkBHxWmtG\nSrkkhLgb+KoQYjfDaZ+3iw7D2jYMm3TtH33An/7pn77+8913383dd9/9Uy2g6zqNbpftc+e4sVql\n5bpcWO/TdBRe7S5xQLZZGTggIAk9elFIGvBliBK6pE0bS7coRQqXSNDFGKG08HCIcJgZ+USkUQgR\nqIRMI0mhExIQ0GAdjSMjHcY8Q7VLh95I1BnQJCBBABtMjHqGKiHjJAwL8DtMMeTnyySEI/XMCqBi\ncfD1vFYDA4MBaXq06aIj2I/KJAmgEWFTJGADnT6RzDAcrxTYIkSRFmliPEx6gJoWaKUs7SShE3g0\n/FVuun43xw4e5LGXXqImJccfe4ytzU2uv+GGnxubVlWVm97/fh75/OeZiGMMwyCSku16Hd+yGLNt\n2kFAWtMwTJOsqlJvNHhlYZny/sPMzV1Lb+c73FCeRAsM8lkAgaWYnGu+wn/33z/EiRNP8eq5LsJv\nAztEjNEBNPaQosUkPXRsirpOJ6wzDVik2R7poWKGzNpjaMq+DugwavWlqOCzwjoaLhoF1FFuTA6J\nik2IZJMQlx4KxdE8ikBFp0uTXURYaDhopLCANl022GR8mD9El3F67EfBwSHCw6OKgUqVDD2RQc9Y\nCNrkBJwfDChJSS1JmAN2WxZZ3+eFTgc7n2dqZYUnL18mrSj0peTpqSk+8dBDP3Fu65cZzz13ZczO\nfhRHj8LFi9DrwXt1O2zbJAy/P/Dc6XT4D3/xH2k1JOPZXRh6hVS6SK2zSKP/HNutM2SzgkbDRVEy\nOGFIK4oRImRaUdGTLG60SZWADpKYOo5UETiUZEJAmr6Sou43OCSHOhgHnzot6mxQxkaOYjpy1NhF\nijQpHGqoxEwQ0kfDJsDFQcUC0vSQ5IgZ0MPBpYnBbjw0HJoMGz/Dw8XQ7ixHSIBGnhQhLgE+DoIW\nqVFj3sUgQCBRRI5Q0ajS5irVZjsMSfoBpdjg5eYlhDpGXTOx7Dy9fpu+ZWBrafaXhoTi4NgYLz33\n3BvISBiG/PUXv0i+3eaO6enhHOXODl/5i7/goU9/mkKh8HO7D94KGakJIW6QUr4EMKqQ3A/8B+C6\nd7D2ceCPgK8A9wJf+NEH/CAZeTtQFAXdMDDjGAk8tdTEUPdTNhMKqYitTpMwnMJJOvgyj5vMoBDi\n0qaixNTDHooAocQ0EgtNzgARDgPGSMhgEKNSI0IQUkGliEqAzhZQIotCl1UUHCwiHBxgN32W2UKS\nwSGHh8cEPikydBmg49MBxMhSGGCJhFUEJio1LPIUkPTR8YlGj5QY2ARUCdmmgmQchRQG6ij+qc0w\nxD5CCBMpBySkCVUdP/HoUsRXdcrFIg89dCetVsLWWo1c4PO+I/exq1jgv507h+j1uO3QIbKdDpe+\n+U3OnDjBJ//wD8n8lBrHMAwZDAak0+mfau5k//79rH7wgxx/4gmKQNu2OeM43L5rFznb5pX5eTKO\nw67ZWZwo4uzWFoFVZHZ2KAHfWb/MDYcOs7Feo1a7hGkqQImDE3nK5SJTU9fQ6VRZWXmFQbgITCCQ\nhHQRXEKni47FRuizV4nJSY0kkRhETDAkH22GTHsGhdrITulWhlWOFBn2EfIqPlkEGQISHGI8GqgU\nSBPTJkeHbZpUKBCh0qePyiZlEjrYJOQI6bNDGpghYBoDgWAFA0EKlRiBBDaokaJIxFANM/Ac0vkK\nQaeOJiVFKdEUhcUkwRsMsDQN1TQpz8ywRwj2/kBi86X1dR775jf5ew8++FPt9y8Tjh+Hf/NvrvRV\nDN1Xjx6FF16Ae++90lfz9nDDDVfzwgv/jTieot8f8Oijz7C9WcfUPHR1BncQoagDqrndrHYWCKo5\nJjSNQW+VRnuJRmTS1vaQEQMIHIQMWCXBpwIoQ8MwPDJKjkh2iGSIjLtMo+DhkkejjCRLHw+XDDY6\nCTHrWCSEGHTxicmwQ4dxdDqEdLAJgfooP8olosslMtQIMQiAVSxyOHSJSAN7UbBIs4JDRIREGwmL\nNfr08JggRqVCl7QQeNJBQyWREqF0mVR0lDgZzmHFoCCZMbOccQaUK0eIVAdPxhzMVum7HoV8BlVV\nsU0Tt9N5w2s/Pz+PrNXY9wOeQJPlMp21NU6fOsVd99zzc7oL3hoZeYjXss5HkFKGQojfA/7d211Y\nSnlKCOEJIZ4CTr3Z8Gocx9TrdVRVpVKp/FDA1ltFuVgkfdVVnDx/nvrAIGcmpAoFKlbApU6Pillg\no7+CELPEDJ0ZLKp04kvMeB2mTBNF02hgIsnQiAO8uIBBD3eUwTpkswozBPRRRw57aVQkJgkm03Qo\nEhKwzQLjxMRcYoMikgq50ezIAJ8pQKBgkBAhOYMcGY0PmfUUClVscvRQiBmMZL02MTGSEoI1VAKG\nsdcFdAxUJGlMBkT0aOGzRZ08MYaqEhgFlkNJYlXJWmv88R//Nv/yX/4vNJtNPM+jUqlgmia9Xo9/\n/2d/xq3XX48xIg/lXI7zq6t89/nnuftDH3pLe5IkCU899QxPPnmSKFLRdck997x17wkhBB+87z6u\nO3qU1dVVrkkSKo88wqm/+Rv2GwZxpUJTCBwp6SgKv//JTxI8foo4Tlicv8TK4jK2plEdmyCVmmb/\n/jEWFnrUNQvX9dhYXaG5uU7gbWPqB0jCs2TxSdFmF2Lk7GEhZQ8llkRmGQmIwEGTw7bMJowcBSR1\nBAkSlWFGr8Alpo9KzCIuB+mTYRim1yJCEqEgmSAkYJk2zdEoWzw6TWVQqKKj0MFjaHKmExEDg5HH\nzTQrbOJSxaREQsAOIYIaFdln2xf4UcggjOhLhUtxxB7DIGfpWLZNKAT+7CyG5zH3I62WvZOTPHPm\nDP4DD/zcZoZ+kTAYwNmz8CYV7yuC1+ZG3qtkZG5ujl/91Rv41reOc+bMBouLFwiiVVRtPx2/iZQh\nDMYxDYsoirhYr3O2vkHJ1nBTEY4/hZLATtCjKn1aDOixmxJVYqWHg4qQYyTCY0cmJGxj4RJi4WCM\nqhUeCQl7kKg49NGQSFJ4FJH46NTQaKByHo+QBJcCPSwcwOcsCi4VBsxRRdBDp8OAiHMMTeMPA+7o\n3V9HUEMlx3Ber49DE4lBQooas5SpjO1mJ9gi6Z6jpMX0FJU4UujEPrFioccBgRvg6xYxIYtr53nf\n0Q/g1JcI/ZBYdTh69P0ArDUazF33xtpBs9Eg9yYt11I6TW1t7d3c9jfgJ5IRKeXqj/m9BJ55J4v/\nJDnvv/23n6PfByljxsdTPPjg/YyPj/9Ua+w+eJAojjlaKrH+3BZT1YPous7Sqy0KE9fS2l5iwBgp\nSgQwSv24wG50DMALPRA6k4nDxeQEFhYpTHpYrBFhYVEgQsGlQ4RCMhLdevhEqGSQWEQEtAhJY2PQ\nGYnJEjLkiEmo0WIcjwk0BMrImXVoLjzUxKRI49JCUqaBNWoNbY1O43lggMI2CQuo+JRJaBGTImKY\nayNQUalhotI099IXO8iwSyJ0jGKZ2WrCHXd8kE9/+o8BKJd/OMRsfX2dvJSvE5HXsKtS4cLLL79l\nMvLkk8/wyCPnmJm5GcOwCAKPb3zj9E+1rwCVSoXKyLfi2LFj/Jd9+3j56ae50bLQTZOOqnLThz6E\nIgSK4vOtb/5XConOdGU3g81XUZYXUDMe1157L83u83xveZPVJx9D6zWw3PPsV03q0QI2fTIUKdBh\nbFTSjdkYVTWgFzbpYaLICI+hTZ0LJCgEKETopJFcxmOChCa8B2iSAAAgAElEQVQaHcr0EHj4o1By\nQY+YPcSoRAQMqystFHRUAlwiQjpoWCSk6KCioJBBouBjI+iTpsMUsIWFS4YCJRTsoTcOWbo0KeFR\nDwQzSDKKSVFV2U4kamIROT6byYAPXn8950cVxR88BPRdl77rvu7Z8v9FMvLcc8NqxC+Kj9Ttt8Pn\nPnelr+Kd4e677+S6667h937vH1GtzuF0bQK3gK5UCdQNnGADt7aDE22jtw4wYcygSoU4XsP3NkkJ\ngSt1FnCBFAoG0CdDBkfdhrBBJ+6gCQfDmqLha6zLPik0tvDRibAQNGBUpxTMjeS0Nj3KKJQYOpBI\nJEtk0Ef17CpFOnQJOMckFmkcVBzyaCRoSGIaSC6SMIdPi4RN8mTJU2OHaTyqJJQxiXDZwkVg0+k2\nUGzBhghxZYfEUwkEZKVGNlEJcQiDmG3LJpObYrP+XZ453QBNw4n7/P0P3kGhXOLyxgbbmsYn77zz\nDa97sVTiXBy/4fdtx2HiF3Bm5IpB1w+xa9ewZ9VsbvLFL/5n/uRPfv8tGS+9hlvvvJO/OnuWMUXB\nsn2COGaj22VidpaMm+GS38dvtQhRUTQDIVT0JESJNVyp0CchGydMSp8ElQw6NQJ8DDbwKODiIxFE\nNIF9SHJESBLWkKyh0EUDplDZZoJxHBKuZjCyGI8YoGEANsMbPRr5c2ZGM94DUkyTI0KwiM/6SAhm\noFNBZR1YwMRHEpCnQxaLAgFLxCyTJYVPSI8egghF38VV40VCLYdi1dlz4CDVapX77ruLj3zkw6RS\nqTd9LYMgoNXt4nkelmXR6nR45uRpXl7YIipkOfqBD3DTTTf9nRPbQRDw9NOn2LXrZnR9+EVmGBbT\n0++k4zfEDTfdRKsXsLW1zf79uzAGfc48/DAlVSVaWmL97GlSe26jWBhjvrVCp7/CrDR58swZ0tcc\n5pbpFna7Ryk9y7e/cZF2wyIKNskS0qeDhU1A8vppydE0dpKEbCIBh5CYGoI2GtOoNIhoo1KlyAo+\nPVS2UIiZJouFTkKBgDoNfHYoY5LBIBk1hNJEpPGpI5ihzF5cdgg4h6RAQhaLPgMaxBgUkNQxR/6t\nFj4SlYQcw0g+lwwdBiSsoXKImDYKemKSVyRjQmGJiIyZJZtW6DQakMkQmiaPPvooWcuiHgQ4/T54\nHk3T5LGHH+bXPvrRn0pl88uAJ56Au+660lfxfdx2G3zqU5AkP//04J8l8vk8SWIwMXEdljXNuZde\nYBD4qCKNk9RAbDMzeyOab5GRaUwzS1iPcGSEJjdQCehxBGVkLOlSo540SRljuKFDBOjKFGFsgpyi\nzgZVTBSRoi8vkcHFQGMPOssEpPDwEXRQ0QGLiCxQwyJDHpM8AZIOPhYFVDSMUTBECRjmSaXJ42Oi\nsU7CZTxy9MiNZgxTDBAMo/oSVCQBZWI22cAKaxyys8ymMywnARdjgamXyEcDitLH1mwWkpCsZnG9\naTB7zSG2kUzddBP3fvzjbC4s8Gqnw65jx7juwAGiKEJK+UOHi/379/N0uczS1ha7x8cRQlBrtagp\nCr967Nibb9S7hF9oMpLJfH94plyeZHl5m4sXL3Ldm5SbfhzGx8d58I/+iGcffxx7bZMLS2eZO3gr\nhWKWRx75Op6voJoamrafJHKJoiUCVEJ8iqqCoiRUEomKpEVCAR+NiA0kEwQ0RlMdhxhKOM+gU0RB\nI2ILhR5pJHMkmJiskcGmhYqCRpEB8+wAVRQ0HAxao1syg0IOBUmCSkIPjzQmeXwKQGb0/BuUUChj\nkaWLQkBImiYBF5gmpkIKSX/kagFLaOxXXQrt8yjphChWyG2vcPPhvay9coalw1dx9ZEfFjbFccwj\njzzG00+f5uVT86ydXWRqvMBjp+fpe9N4chKRVPnMZ/6CP/iDRX7nd37zx+7HYDAgDNXXichrMM13\ndsx87LEn+fa3Xyab3Y2ul3nkke8RbZ3kf/z1ezENg8bODh8/MM6qc47xguDIXYcp5m5kdXub0g03\n8BsPPshf/vmfc8fNBwDQfJ/nnrtA7VyXFDGBUHHwSRGSF5KUFOQNnZrnsURECkETBYscGlm2UJCE\ntGjTJMRFI0sZBxOdFB4JPioVVCBPhxYzmCgYxOiAgSCmTIM0CTZZHDzUUS7RymhCadg/7aHQw8Qh\nR0wbH4MGFiabrOIyzM9Q6bOLCJWYKjAgwUCgopExJCIMmfc9JtIZukJQDwIOGAab29vM7+wQNhrM\nlstkZ2b4ldtvZ+3kSR4zDD78A85fYRiyvb2NruuMjY29rdbqLzqefBL+xb+40lfxfYyPQ7kMFy7A\n1Vdf6at5+wiCgOnpKZaXW0xN7cUwLFbmz9Bub2KpHoeuvpnBYJqN+gIZ20JRfHw/xNJnENEisSyg\naTcTx2uESoZ8fjeedw6p9agUr6HXeQklLhEnRXyWaIscvgjRk5CEhDIWB8mjk6DRJDWyGbTI0xl5\nAnWACGvkmF0jzRgxAV1sJAYu26RRGYVWAII+ERVMQgSLGBwAAvojQ8xhBbQDWKgMIyFsHCQiNlHC\nAbvG8qj1GlUrpmH4WGqRnU6fmhR4xBx2e+hGyFT+aoqKwp5CgfXLl/nkH/wBCwsLfOUrD/Pci2sk\nSczYmM2DD/7660oZwzB48FOf4pGvfY1n5ucRUpKdmODjv/3blEqlN9umdw2/0GTkR6Gqabrd3k/9\nd5OTkxy99VbaLijZ85w79wRxrGEYEeCi6x5h+AKqWiafnWGwcwFX2SJWYLgdIV0gRmCToOGxDZRR\n2GI4qDjLUDGxioZDlhxtsihso6COpqMtdBwGKCSo6AzFbHXmGZAQs0mIxTCAPiBiDckqEgUXD4Ek\nYWxov8U6KXaYw2SWCIUOTVxMdASGukk2rjM+YtoKJRTGSdNmhjp71DaTdoZBCFnNZnVjg2nbJp3L\n8ehf/RWT/+Sf/JA51ZNPPsNXvnKCnR0DV7+eZ1ZfxD35LLE+R2lskmxpgqldB+l0Gnz1q09x7713\n/lhZWCaTQddjgsDDML5f4fI856fe19fQaDT4zndeYvfu215PaZZeiiiocml9g2vm9mCZJoFpckjX\nObB36nXJqQT2HDlCOp0mkpLOYIAmBJOT41SrK9iGRSJddlkl1v0NujKkFMd4JDQ9Hz8RzGDSwCfE\nZII0DnLUoMvSJyHGoQT0MYioMCCDjUOeiACJgUlChnhEDPp4SPKE9HGJyTJssnURRFik6JCnRw8X\nhWkgQOFZxhEYxGgEmGgsE9GhgopBlTQ6HWwWqaAwRjJqA7mEsY0X+2wi0YVG1tIQ6TReEPCJO+5g\np9vlL7/6VQ5MTOAkCceuv55SuUyuUOC5F1/k7g99CNu2efn0aZ74+tcxgoAwSUhPTfHRBx+kWq2+\n7b39RYPjwEsv/WIoaX4Qt902bB+9l8mIZVkcObIPRYlYXZ1H00zmDh4kmxXUatBsShwHpDlG0/VI\nuz0kJlL2cYVPJA9g6CaqOk4ULQIpNK2EEC2KRcn+/R9iZ22VZqOPHk4hFIFDlhYdxlHJkybAQxuR\ngh4qChILhR4qPUp0ULGoMkCiUicaaWgiGtjUCHHwUAgYRpPu4AMqGTRW8UZBeJBl+H2RAHuAk4CP\nholHhEJMGk0WWPBWSHV8xqanSdoRrX6X7SSkFQtULcu4+v+S9+ZBkp3lme/v7Cf3pTKztqy1V3W3\nelEjtO8SICEjLLABg7FsbGaMh/GM74QdMTcctiN8x8ydCIe3e8f7WAaD8YANBiRLAoR2qdWLel+r\nqmuvzMp9O/v57h+VNBJiEQIhiftEVETXic7KL86XJ8973vdZGuzOxxlNp1hZWEAZHGSsUOCpuTlW\nVla4//4vkUrtujRhqNdL/O3ffo7//J8/cqkDnslkeP9999FutwnDkGQy+bo8RLypipEgaFIo/OCt\no5MnT/GpTz1COr2FbrdIEJgYRgfTbDM6upcXXngSVbVxXRvbPo9mSDhylJYc4HZqBEKhg8ImEgT4\n2H3CqYROFJjFJSRgBAhxkNHoEaWMhUOr7wjiUSPARkIjzTHq7CEkQshmeqwjaBGwhkabEAsZH58B\nJCZQaAHzWGRQ6WDSoIhLCgMNDwWLMWTOMUACXcQwkBhCo4egSRNd8lBFABi4ssRKRyWhpwh8k0Zn\njQcPHuG9N15HtNfj1MmTXHf99QD4vs/nP/8Qy8txMplxEgmDdmITj69/Co0s2zbvIR7fKFxSqRzz\n8xILCwvftRjRNI2bbrqCBx88SrG4B103cRyLlZVjr+5DASwuLgKZS4UIQChCUrECF5bX2TU1ydTo\nKI+cOUO236qEDf7DOnDnzp2cOXOWY3MV/unTX8WprpGmRcRzCF2fZSGjBWvklChnnZBzKBt8+xAK\n/SSJFi4+ENAhhYRFSBuNEIlpbGQUztPGoYFgApccLdaIIVOjRQLBEj4hIR5xdFR6hNQRFHBo06QL\npHEZRaaCRZMVaqziI9hLg+2o2ISsABtMlyKgEaFLpN9TCUhg0qPOhi4/icKyEASKSk+EFGSLmXrA\n850277/nHhRZJmaajOdy7MlkWG80sLpdAFRFQRMCy7I2CsLPfpZ9Q0PE+mPU5UqFz91/P7/8669t\nXMCPE888A7t3w+vkC/Vdcd118OST8Mu//Hqv5NVDkiTuuusmSqWvMDy8BVk2cN0etr2ELOcRIkcY\nrmOaERwlS6d9ET/oIeklXCWG8Dx8fwkheiiKTzLpYlllPK9OGCrU6yGBkcFTanTwCIMWmqKRYL3P\n7hqgRYQOFgKDDbKkh0uXBWTWiaOSwsPq5/AmUCkj6KDjMECXKBsGhSVC4jhESJIlQgmPCipRHDYi\nMkGgUiWkRYiBxLY+aXYeBxMDJAmXGE23xv7BArPlOSqOybo5BmqbpCQjpBJxLYahaVjVKh3f57Gv\nfpX5SIQnn3wWIQrEYinq9QZB4JNMZlhdjXP27Fn27dv3kvP/ekv139DFyNraRQqFMcIwZG1thrEx\ng02bNv1AfyMMQx544DEKhcuRJI3V1RajoztwnA5LSw+hqj0uv/xmZmaeZ/PmbQihcuboPzBuZEhm\nijxz7BmKSopM6BAKjwCXKgo9oISEQZQoERZo4eGzmZAFVllFIYLEMA1KnCEgSZRpQgIceiyTpMZF\nNmMTINNEwQUEXYxLJc2G9XsVjxCdETSauKyRxCNND6XvyBqioqFgYuLhhi1MIlhESCJt3OKEj0yb\nLiFKN4WpRolI4KsSppLk+eMrRBv/ih+GnO10GBkdZWpqCtu2OX9+hVTq9hdxPKLEYmNYlo0kffuQ\n2vu+HIIbbrgOSZJ47LFDeJ6EYcA991zJf//vP9DWXsKGAVf4kmODo6MceewQ1fISn2uXGRoaYnLr\nVr5x5Ajxbpe1hQU6msbbf+7nKJfLfOYzj7K6FmN1RSEVDFH2dTQu0pMFkWiWGUfGCwPajOESZwCJ\nJBolqpRYoovCOILx/iVlonABmyXkvjW/TwyPkBSCdXTSyKRwgR4LuBjUKFCmRR4ZQZd1GsSQmMMn\nRRUNhQIxHAIk4uQwiWKzik1N1TjpByQIqRCyBhhSlKio9Z/TNsaIPhkUynhoXMQngsey5DIsm7wt\nFkXRJPLZLIebTVbX1mh0OsQjEZRIhLbjEAiB1t/frm1DJEIymeSJr32N8UjkUiECMJrLsTY/z9zc\nHFu3bn11m/sGw9e/Dj+g3dGPBbfeCr//+2/+0LwtW7bw0Y++m0cffZbFxQVGR7Ps2LGfRx4xGRnJ\ncPDgYTqdM3S7Hhg6rigRi03g2yvIwTyQRZIgHjcxDJsgqGNZKo6TJR4fwfcdhNwgkE8gwiZm0EMi\nwCVHmxoZMgQkkBHYuDSIMIcgYCsak3jYqLjYrKFQQ8FDxSZGwNa+TBd8LiCxjkuWkCYO6+g00ChS\nJsJGnGWIQEOi0/+9g4eLTIYEOQJWhU3Wd6DX4+kTswgpj2NKqGqBUDGwmWM4nuJ0pU7ZtsD3Keo6\nvm2TjUZ58PNfJFu8lacefRS/1UKRJBxJIlFIUK+3XtF+dLtdFhcXURSF8fHx15Sw/oYuRrZulTh5\n8glkWeKqq3Zyyy03vCLnxxej0+nQbLqMj29Uh5LUd8kz4kSjORznIsnkborFUbZvT3Ps+a+wKe8S\nFQrV2iyuMkCdGB3RZFkK6IY+NoJo3zHCQSDo4iH1ORngErCLAIWNLFaLMmUGaeGjEKLioWDQZIDz\ntJEY6nu5dghZQNDGRLCfjbgmHwWdkA4yNoIaOjpDRAEHHQ8PlRo+NVp0SdBGQWWFLpMYhPg4pGmj\nIdHDDzVs32Cx5aC2AhYUi5RWACERjZpMZzL869/9HR/8+MdJp9P4vo0kiUvn1DAMUqkc7fZBgsC/\ndLxSWWBkRKZYLHLkyBFarQ6jo8NMTU29ZN9kWebGG6/n2muvptfrEY1GUdVX/1Gcnp5G0x7FsjqY\nZoxGo8zy4mG80jGmR5NMhSGrZ85wNgj48G/+Jlu2bqVer7O0VOKRR57hyJGjZLNXcOHwl5iUFNpC\nJpQL+KLN5dQ5ZLeAIl7QJdn3x232uxZQIECQoIuEyywdEigECDxkUjj9ryqJKg6CbUjY+Jzpl6Eu\nCjoBBgoOTWLU6RDSQiVOyCgdBEtUGWGdChIyWaLECeiRoEMPi6lAZlUKmFcU6kJGEhoaKogYgm7f\nPydkQ5u1oQIyJY2GKjGeSXFXMkm92yWWyZAfHmZMUXj+yBHivo8Si5EtFDg+M0ME2Dk4SL3d5tT6\nOte95z2oqkqzWmX0O7QLTDa+0H5S8OCD8Md//Hqv4uXYsgUUZYM3ctllr/dqfjhMTk7yi784een3\narXKQw8dYdu2LRSLo1SrV1MqzbK8PMfx4wt0Om1keTuRiIfrHsU0C0iSgud1yOcHUVWT5cVHWV3Q\nURUT2y2BLBFXpknLScpeg4AKS/TwlSZ+4NPEQ8NgmCiLyLjk+saWMjZxJMaxaDCAQYCLjoKFQhQI\n8JlEJSDgFL2+409InDV0fM6h0UQhBbTx6LLRKWmjkSBKCCRwmaeGEA1WfZ+gadHSLYLIHnQ5QZcO\nw5mtbJnSWF4+QS/oMR6NsqyqTBQKXLF5M4uPP8GDz/0Feza9hcnBCWRZwQ8Cjpw+iOO83PDccRza\n7TbxeBzTNDl44ABPfOlLJMOQUJKwDIO7PvCBVxSW+Wrwhi5G3v/+ewmCAEmSXnWuhWEYKEpIEPjE\nYlEkyScMA0BgmjpXXvlWDh16BiFqzB47wA3DUW57789TWlvj0ccf59DKLOtGkWh8ACSBUz1ODJWQ\nKaJyBsKQLlVCzhHDY4gNOW67/6MSIUaCKBptLBJImCRxqCAIEIyQJE6IjNYXCXe5wAAW5zFRSKGh\nYdNBo0MPFZUAlzUMxulSJ0TD7U8aZXyyBERRKBFlBoVa32xYleOkwo2yKYa24YEhyfSCMey6zFeO\nnuKK7dPsUzVM4OihQ9z29rezf/82Dh06QjZ7OaaZwnHa5PPgOC7l8uM0m6P4fodksskv/dIH+fM/\n/wyOk0RRIvj+SaanE3zoQ+99WVWtqirJZPJle1Yul2m1WmQymZfJi78T4vE4P/uzb+P++7/IuWOn\nCasl2ivnuCKfIT00hMhkGB8ZIWLbLF68yMTkJA8++CySNEwyOcXs7NM88dgjOM02TSIoGJiSTJcs\nnujg+V1M1okQI42AvtqpQZaQAQJCZASCYXrMUKGNRtD/vxJldCQMWqSRaaChQV+S61NExUNlFocu\nARo6yX5i5wg9OigoqBRZ5xQ6ZeJ9PpJCnRg+jiwj58cYcCxycZWTPR+lO0DDsxEM05U0KvSICA+V\nFdbRKEUlBsaKoCgM2DaRQoHRfJ54PM7p2Vl0y2J7sUhKltE6Hc6WSqhTU6THx3muWiU7OMitH/oQ\nu3btAqC4aROlJ54g/W3Gdy0hLsmv3+xYW4O5uQ1+xhsNkgS33w6PPPLmL0a+HQMDA0xNDbCyMsfQ\n0BSx2ARjY+OUSnPceOPPsLbmE4YZXNdDlndjWUeIxy+jVDpDrSbTavpIYYgfSghaSFKIShpVkeiE\nPkJKI5PD0pKshlUC1hhFR8XHI0Anht+PMo30ozw2XK177KBDCUGbCA6DSLRwaZBHQUZnFIk8BjYB\nx5FZYwSPNCUcDLoIWowT4ONj0qSHi0uUBjoQRyFGl1XWPBmh7iDmZRCSAsY4pd4iLdti88QkoVVH\n6DrXX301Fy5c4J/+/u+J2jb5eo+25HG2u86mib3UO2U25QX1lZVL5zcMQ5587DEOPfYYehDgyTLD\nW7eyevw4by0WMfud0Ga3y1f+4R/4pd/4jddkpPOGLkaAH7gT8u0wDIMrr7yMZ545zfj4LrZuHePQ\noaO0WksMD8fodpvs2DHKW996HfOPPca+8XF0XcdIJukmxzGjTVquiRDjqEoHh6MYDJKRCuiAJEuI\nME+XNikuoLKR+ZgDDiPTI0EUBRMHG5MICWCOPB3qeCSI0MNH6qssNrglSQJAI8FI3yo4DVgYSMAU\neZa4SFOyCEUSmR4yJXIYJIjS7huwmQScRSZkFz4mmnIUP9wY9YSSBKqOFwpsYYNvoyQmGC/s5ODB\nC4xOZpBLJQA+/OGfoV7/NNXqWWo1D9PUmZpK8Ku/+pvkcmnOnr3AyEiBm266ib/6q88QiWxncPBb\nRcTs7HGefvpZbrnl++sh//enPsXq6dPEZJl2GDK1dy93vfvd35dzsGPHZezY9ARDdQNGx2gkPPYM\nD7NUrSKrKrVymbDd5uDiIs/921eRsrt567XXEgQ+9XqJahkUESGUMgR4mGHY7yZEsOkwQRu7r5Iy\nMXAJ8LBp0kPg0kanRROQGUGh2Ccc6whW6bBKhBg5WrTwGUXgIuEQw0L0CasBNhFSJOmiMYpPBI0E\nUEPgo5MlQY0EDi3WGAIsSSWjGWSL0+SHNrO4eBCnscZ4bATTaTFnn0VTNuGGOqFcIhEf5FyQZ3hE\n8Gu//VtcvmcPv//xj4Ou0wpDVkolltfWKORyZLdu5aYrr2R5eZloo4G+Ywcf/U//6WXyQIB9b3kL\nn3zuOfS1NcYKBTzf5+zKCvnt2ykWi6/0cn1D49/+beOG/0M08V5T3HEHfPrT8B//4+u9kh893vve\nu/nUp/6Z+fkDSFIE162gqh779l3D17/+PNnsKABCCA4ePEg6beI4CWS5h9VukTCuRxDghfOEoYoQ\nFnbQIK4kiSrgBjJhaIJ2Jb7/KDI5BB4GHhpd0jTxsQmJ4QIR2hRoM0iIjUQEBRefCFlkGqj4NNmI\nOV3Ho0OLUbS+f5RDgzxtNhGyiKDEEDIZqvgEuKh0kRgmjYmKhQaUyEXTSEGIqht4skbb1zhRmSMx\ntoVYTOGd113HC0eOMHv8ODdkMjQ7HYTjEAlrLJeOMKM2uH7PVnZMXMFi61tjmqeffJKTDz3E1WNj\n6JqG5/v8y7/8C7FYDPNFSZCpWIxUpcL5c+fYum0bKysrqKrK+Pj4D9XZ/ibeoJfVjxZ33HEL3e5X\nOHbsSdbXS9Rqp7AsA0nS8LyD3HLLZo49/zzNw4cRMzMEqsrJrky1m2A0fy1qV+B4CrYdxyOGTxRP\n+EhCIgB8AgwSNNFJ41JnwzMkhkqZgAIaC6whULGpMEGDGHLfnkfBIGSdAIkWHQISKGRIASlmqWLQ\npYmMhYyJikKUcVTOiI1XRQnJECWBRBPokmCGVbJEAJMIBj5NNNUg6kNGzyJLaUJhkJZ9NH8Fxxhm\nIFlEUQ3SsXGOnHqB9/30PQBcfvkuPvaxn+Ghh56i3fbQdbjmmt3ceutGku5tt90KbBBJ222ZsbGX\ndjMGBzfx3HNHX1ExYp05w7Xj40iShBCCY0eO8HgyyW1vf/v3fF2j0aA+P88N+/ezUq1yaGUZgEIq\nxeNPPcVbt23Dj8fxIhHsms16eZ7lpXNYto3vmMS0BnW0jdxjoVFnhRxd1hB4pEgSEsdjmdU+NVjG\nxKJGlQhtBpFIsk6PDilkBDptAqLEGcSjiUebeN//JSQkgkIBl/NEyfbt5g0G0HHp9D1jNvKHbDzy\n+KiYlwzUTFzOAtPCQAp9IvEMsVicZCbN2KYshj+MacVZW1lFVyPIWgJFTzG0aS/rlWWk6By1hkM0\nGuX2n/s5PvkHf0DBdRFAzXFwi0Xu3rqV08ePU19ZQQjBUzMz7L/uOvb3rUfn5+d55tFHWVtYIJvP\nc8XNN1NeWuLxkyfRdJ09t93GtTfc8BMj733wQbjzztd7Fd8dt90G/+7fgefBTwhf+BLS6TQf+9h9\nLCws0Ol0iEaj/O3ffpF4PE4qFaHbbeJ5DpVKhWazQafzLInEDoJgAYGOJG3waWRZx3LPo6DgiC6S\nUImQ2eiYKOu4qkmIDXSAYQJK5LHo0CFOwIbmxSbFOkM0aSGIo7KGoMrKpaFrCQ+bkBwy61iM9P2w\nFQzyKFxklYsUkNlHgyU81rFxABkLCRgjIIUl+fjCJUBiIKugK2narS6+u44qStzyjrfxe7/3m/zF\nH/4hp2dnKa2sUDRNVEmiLQSJVIpx02QsnUZM5bhpz04urKww3r+Gfd/n8OOPs79YvGRmqakqE/E4\nJ5aWcD3vJSaXhizz/IEDPPbFL5IMQ3zAi8d594c+9EM/dLxuxYgkSXcCfwhUhBA3vJbvZRgG73vf\nvezde5bf+q3/gfDSmGi4zYBGIPOVLxzg+k0q6USCqUyG1WaT2QtlKmENXwyTHxxC15JUV8osd+J4\nwsMnREJGQULgY+GSIkBiI4o4j4SHQALaUkgc0MV5DDwKKJgEtFFo0sEmoI3oDwAUsnQJiWOj0GYz\nIWVMokRxCVlFZgWdJAoWJgFjmCRxibIxe7wAdPruIzY+Cuto2DSdCgVVRcUgCAJkqY2QJNJKlJos\nI0sWEc2g3mtTlk1GxsYuncMrrtjHnj27aTabrK2tYds2y8vLjI+PXxqhBUGAEC+/8SiKgu+HLzv+\nnbC9WLx085IkictGR3nu2We58dZbv2d3xHEcdFlGkoC7ZxwAACAASURBVCSGslm6isLM6ipJVUU4\nDoZhcKHR4PJduzjTOsOImmBp9jhNTyOdmCTqXqDZu8iqVyKKTRyLEjZlptDkDo4oMyhMVOpUaSL6\nlnUxZDaTR8ZAwiRGC5WQcwR4JImhEMdlIyI8iiE5qMLGp4eN2xfjbmR8QhuBxyCCFeoEpJAI0XGJ\nouHT6PuNtInhofRlw5pQqK/MUa/XcCI9BsZ2EFWnkFo1Ep0evhWna3XxnDbt86eZmJwklzNYX0/w\niU/8FTmq/B+/8AuUlpZoVqvMzswgGwYXTp0i2ukwnclwsVQianv8zf/1Cdb//a+wefNmvvy//heb\n43GuyedpdDoc/vKXuebee/np973vJ6YA+SYsCx56CP7kT17vlXx35POwaRM89xz0xXA/UZBlmckX\nZSRNThYol1fZvn2cT3/609RqHkLIOI6L561h24OYpo4s9fCCJSQJ3GAeWZjAGDICVTGwwjkEPSQt\njiE71FGw6RGVFlFEhwJxSlRYxyeNgoLFJjoUkNCAeXwUXCZQMAjQkFkkpIBLiEuOjZwxmRCdkICQ\nHFEqrNJhAB+XNhmiOHSAQXJ0iPU1NhodLFRVY2IESrUZklnB5lSKXrCFZFznM3/6p6Rcl68dO0Z3\ncZGiriMDg8UijutSL5UI221iQjC3ukpJUbijP2u0LAvhOJdGMd/E0MgIhy9cwHbdS8WIEIJzlQpy\npcLtu3ZdOl5ttfiX++/no//lv/xQBNfXszPyDLAH+NqP6w1PnTrFscMliuk9xFNJBIJyvcz8wgzX\nT40iUinmm02CIKDc7rJuJ9HMJPZqmW77SUw5gioitKgiSJFCx6FNl/V+DyQgoaqkA0FZhCzis45E\nQiQZ1G02RzMcb8ySwkVHJYPDTN+3NSRBDQuZM2yhSRmfJiOYDOHSREEhxCBKgpTUoC06yLjolDAZ\n6btthsiEJKhj0WRjMprBQbCueUTik4jOLErYRldCTC1P03bwJYkgrRPGJY63a8TyRSYnh19mvd9u\nt/n8Jz9JWC4TkyRaQpCYnOQ9H/wg0WiUkZERdN3BtruY5rfIjKXSRa66atsr2iPl27hBuqaB7+O6\n7vcsRrLZLL5h0Gy3OXPyHGFP4enVFm5jHde3iNbrbN+5k02jozjNNidPl/FlBSGpRFI5RKPCWC6H\nqkzS6rSodVZwwh5GfAcZo0q15aM7NqbQKNIhRKKLIKHqaH69TwrtYqGySoQmBXwiVJGxKWGzjsop\nTBGhh46PQFBAkMPFIqCCit23hDfwabHCRSyyGHRx6DJAmygCiy4hPioboXxTepxaaY0VFkntvp7q\nwjyh2yAWydByGshyCjXqkVJ1UjEZ315H10wuHHmU1YunqHWW2XzHbezavRtV00gdPMixF17gQrPJ\nHVu2cHJmhiPlNtObr0C2ZP7ij+5naiLD2zZNku+neuZSKWKmyTMPPcTefft+YqS838QDD8Bb3rJh\nMPZGxjd5Iz+Jxci346d+6nb+6I/+hsceO02vF0VVI7Rai2Szw2SzSRYWFoAigdTGVAeJRn3KjQ1X\nY4eDCDLYwQYnIqlY9IIkjhsSM0ZZdTukhE+KkApNumgU0cjRReCTAZJotHCpATlsVjGQkcggM4rP\nBcAABoACAosWMpF+8lSMjaSqJj5FNMp0kQnoUEehi0yUAEcEdHEYS2pENIlrdrwFRVZp9eqcWnoW\nuSZxzZVXoioKw8kkDz/0EGulEjdt2UI6FiMUgtNBwLF2m8lUCn3nTn7u5psvGZpFo1GUaJSubb9E\nCZfN5/FSKWZLJTYNDRGEITPlMpaqcvXg4Eu6JQPJJJH5eWZmZtjxQxjdvG7FiBCiAfxYn6Aef+wJ\nNGLEI33SpABZ9rAdiwMnT/Ox997FwvIyjx44iiUKhHKUpNQjLSdohmO47gkMHCTAZ5EVBHnq7MIm\ni00POOr7jMkKDVmhFwosYYHSZkKWEJJFSpdouSFRJCokyTCOi04Dq09zHMGmThqPBmAR4JNFYYUB\nIC4ZKJIgEL3+6KCEg0zIAC4CQZUCZRbxuUgTRTLp0CKTmkD1ZbpylGLMJ234NK0F4lFY8z1ue8cv\nsG/fzQCUyxeZnpZeRh598AtfINNsMvWihMfTCwt846tf5a53vQtd17n33tv4x3/8Kqo6hGnGabfL\nDAy43HDD3a9ojzqWRfxFoR+1Vov4wMB3taj/JjRN48Z3vpO/+W+fQKoEjA5uwYwOcbK1TqO2xujg\nMFds3w7Atq2bOT2/iKc6mFqcbncBEdfZMjjNeqOOrEWwAoHvCfIDKQLbp6VvRpYrxIIubuDTCcGN\nDaBZK6R0G8318ZBZQ6bLMDpR0v2gvDiDNLAYpodCwGlUYDc6eTzWkFAIMDDoIeExh0ScCCaz2JzG\nxyRJSAKBQovxfiHiKgohEhVZZnp6GzuicZZdi+uHi8wtz9HsrpA3W1jKWWJqHqvZpR2sYzcrDBsT\nXDa1i1gyi9xZoz03xzHX5Yq3vpXL9+3jYrnMgQsX+PrSEitNj+07r2cwlcNybLROg/MnZrhzavwl\nexAxDFTXpVar/cAZUm90fPaz8L7vbiz8hsHb3w7/9b/C7/3e672S1xaO49DtdkkkTAYGxrCsEN9X\nyOWm0TQVIc6xZct2Wq1VDCNJqzlHubHAoBeQIkpEi4IhuODN0QsHCaWQrreCpigk1M0ERsiafYpF\n0kzTZIocCgpL+Oj4HANG8CkBNVSaBBQQZPGJA+vIKARMsBGaOQBk6PWZJRpVOgQ4SAwTlaJEmKQr\nAmI0aFHDJrGRri5bJGMSE5k4mnOWubVFFFlnKBtjfCzO9Vu2oPZ5leODgwwWi0iuy+FajUnXJfA8\nZoC7PvYxPvwrv/IyDqaiKFx922088/nPs3tkhHgkQte2OVkqcd9v/AaKonD2yBEUXWffvfdiHDpE\n7Duo4wzAtu0fak//f8EZ+SZcR6CrHYLQQ5ZUyo1zVJo9bD9NqyfzwHML7N2cpDA8zf5EgaPnL5IU\nLqErI/kCFYNhapRJUZQGaYlTbKfHEAEmEpIsEQtDZhWZrdksru8zIgS+02S12yPqKwwIiRVFJ6sa\n2F4CIRJYRLGFxyA+MdJUiLOVNsO0sZCoILFMlCZt6sIiLnzGUTGRKdNlkmV8GkhI6NjUCXBQiSNR\nUwSqlmZSDTF6VXqyykyvye50jKt3b6cKpD2fSMRiYeEQsuyzZUue97znnpecu2azSen8ea4ff+kN\naMvICE8fPMgdd96Jpmns2rWTj388x+HDx6jX22zatJPduy8n8gpTxV5YXWVrJkMmkaDaanG+1eKu\n++57RUXrzl27kIY3Y5syp60W8eEJrr/xp1lbvsCzB/6Z6c1rpJNJVmo1ilft5+fvuYdOp8NDDz1O\nrabTrLvYCxdwa2e5YkSh147Q7NRohYKmE0VL7sBRKwgpiWJuJpfI0D37KYJApoaES54eMh2GSGER\n4CEjESGCTo6AeVTymGg0kVCo92MXNzx5HRLEaGJSwkYlBGKYDESilJxVIqHPhAx+COuKwi5dp6so\nrMSTXLnzas5fPEHC7jCd28dgNMnq4gFGi8N84cQJ0qIMoYMiTKpuF7eqoW3eh2nGqMswOjDAhZUV\nOp0O8Xicgakp9uTzjAUShZSCqprMnD9Ppb7OiplEBA6zF+dfYhkdhiGuEK94r98saDTg4Yfhf/7P\n13sl3x833ABnz0Kp9Mbv4rxanDhxkn/+569i2zqPP34QVZ0ilUpiWQaeZ6JpBr2eQqEwwubNWSQp\nYGpK5qnPlZBWZeQwSUyNoygastzkjNcmDBfQ9CG2jdxGvdrCsVxy+l5W3FM08elIFq5wSOHTJaAD\nHMBAZhAPwRY6RPAQeAhgFMEiUAQqwDzwVkDGZwkfjyjDqMwRggxuaKGg0kNGUtOMJ3Q0RSUgi2Ks\nYcRclmfPsa1YpCXLWOo4u/fuJ/KisYimqtx67bV8rtdDGxhgVZYRus6HP/ABbr755u+qSN1/5ZVI\nksSzX/86XqWCGolw5bvfzVuvugpJkrjxRcY6jm0z9/DDZF+kghRC0IBLrtavFq95MSJJ0iDwj992\neE0I8YHv99rf/d3fvfTvm2++mZt/SLeh/Vfu5chTs3SsUziuRrneRJYLKFobVU8SN6d5+sQpKs0S\noTHAjk0TuOsVapWN513kDkPROC0roC4HZIOQBAo6EJVCNF1jwnVZ9DxONBrcMj3NrvFxDhw+TMOy\ncDWNkUiC6UieE50a6z5YahZJyaHYayg0kYSPgYKFRosKXWL4ZNEo0KRCjIuME8EEDARlDC7iskmS\nMJGpCoOyEmVQUQk0HT25hU1+g81GhpbqENVMQgMWfR9lYoJ3bN3KAydPY8RNOp0q8bjBtm3TL+tE\neJ6H2udkvBiKLCOCgCAILrXmBwcHufPOO17VHt31kY/w7KOPcrZUYnB0lHe///0vmRN/L3ieRzKZ\nZ9eul1KQkskBes4q5VSKKjB53XW88+qrSaVSAOzbt48zZ84wM7NINLqPg9/4GtcNDmK7Lp/7xhHq\nnSgvnO/Q9lfA75HOjGM5bZxWhbihc77VRmOKAgNUaaIAUeJYdEmhIyMhEZIGOqyjk0OnhkuUgCQS\nMhu7JzCw0TFpKFkUbQhTbpOLrGPGU3RqdZYEoMpkNY10LIYRwKlGnaNHn2Jx9QKReJrFuRO4AsqV\nDscuLpFst7l6dATDjFBrWVxwbNYqKyxVljClgOTkGOeqVYTvs7C8jK0o5HbuZCqV4ul/+hzCMmiV\nlxC+i6Wr7JnezcnZIzx26BB7d19+iUl/bmWF8V27vqNc+82M++/fIK6+ApX56w5d31DVPPgg3Hff\n672aHz1KpRKf+cwjDA5ega6bpNOzKMoUp08fZHBwC92uhaYZeF6P1YVHaS116HRqNCtb2Foo0BY+\n3XYUt+1shN8JCL0lmqFENJKiadUoToxRL1dpNUNUN4MjV1nEpSgsooTklBirQZcu4wTEGaBEgTh6\n32DSxaaFIErAOjJDhJSBOUCBvgNrlCgyJdZBGcRB4AdJFDlDRLHImCk8IdEJKyT1dW4bHaOby7H1\niitIJZOsdLs0VZXVev0lcvpkNMr2fft4x4c/fMka4fspUiVJYv+VV7Jv//5LIajfrXDZe8UVHD9w\ngDOLi4zl83i+z4VymfG3vIWRkZEfam9f82JECFECbnk1r31xMfKjwN1338mX/+VruDWdRmsdWVbp\n2k2i8WG86CD//MwxhOiRSoeIXh1rucSErjMYSdMIA+xuC0EISgYl9NkwV5dwEJgyKEIQCoEHpMIQ\nymUeL5dJOg5DkQgNVeWC75HttWn5YIkQXAuVGjI1Qno49BjGYmckTdex6YRtBODgEdKliUsLGRUH\nlwBT0ZkVUdZFgC5CZNkgGx9gKBllxmogOavk9DS+76AaCnbQYE8mgWT1kGWZJ06cYr4e4cY91xGJ\nxHEciy996Qi+73PTTd+6qWezWZRkkkan85IP/1qtRmFy8gdKUv5e2LJlC1u2bHlVr41EIhQKcZrN\nCqnUt7wter02k5PDfOQ//PvveGFqmsbll1/O5ZdfzvLyMjOPP0o8EiEeifCem/by2Ue+htM7Qq2V\nI5a4AtsexrZXgDYEAlWO0woyfTm2jkQbSBOg4yL6rgRVkggG0HBpY9HBRkWig4uJoEyUNcYRhBhU\nghAlOoyeGKIW0dC1HGrvOIOGgR/YtO0OJ7sBmqzRQ2FlaZ6yb3NzLopdWmC20mN6+x5ma08yrZjU\nmg6B3yGwXLIB1DotnnjqX7n2mqsYmdrChfkLnD5/nqLnMTQ1xe3XXsvtb387ru/zx//tz9B6EpmB\nYUZHthOPpJgcyaCq8OXjx5nI5eiFIYWtW3nHu971qvbujQohNjoif/mXr/dKXjnuvhu+9KWfzGLk\n2LGTaNrwJU7axMQ4c3NVMpk8nc4snqezsnIOp/0EKRQ8USASm2Dp9AotZ52R5BC5Qoyq7NJp1ahb\nVRxAM7MEQmW1uka1tcxwZhJiJrofMKCGFDyPYigBKiIQ1DD7/iMKGjr2RiYwPlFkXJqoOAjWcMgh\nMYAgyYYJpg5UsPGJockp3DCCFxqE9AjDPEq4TrV3lFSywHTeYMJIko9EUOJxNm/ejCRJpDyPJ5aX\naaZSnF1aYnRggPVGg8ePHUNJpzl64AD7r72WQqHwis+tLMvfdxwej8f54Ec/yvPPPMPJo0fRIxH2\nv+c97PsRJPy+nmqa/cAngF2SJD0M/JQQwnkt37NQKPA//uh3+H//n7/loQdP0XIGGC3uYvtl26jV\nVrHtndh2ifxgyPHjZ7E6dQJZJamvkVZbbDOjnLfWsYwMilCoOgpNYTEiCTqhoOk4LMkyviwzrChE\nbBvZ81B0nbF4HMW2WQtcrNBHtVTSoY7NWTQiRNHwaGCyikaXJV+lFw4iMPs19hAKJj4rHOUYgxio\nsoIuJyBsoAvBZiVKSpNB6VFRdYq7b2DlwtM4nQUSiRRDAxHy8WHCToem6zLb6WCR5Jrr7yUS2Sgw\nDCPC2NhevvGN57nmmqsuWbvLssxt99zDA3//94z1C5JKq8WaJPHeu+56LbftFUOSJO6++1b+5m/+\nFdedIpkcoN2u027P8KEPve0VedZomsY3PWUdz+PzDz1EZ2YG1UswHduDUBV6vQr79l9Po7HI0swy\nhlUjI0fohSCQCChRp4NGgiYdknKLbcKmLiRGN8Rw+FTQSRGioFNHpkoKnQFCIrJBS/GoSxWsYIra\nusWNN+zi+PIJqs0qBjpOkEIoJutywJo8gBsKiokCs/V1YqFMITGIKsno0She28NyXWTLI2HGCdQQ\nYbfoBjoPP7vOZe0xFlcC0rkpPvi2OxjMZDh54ABfE4Kf+cAHOPz8YS4cnicVG8P2uljuPDftKeIF\ng7SHR7H0CJumx7npphu/75fZmw0PPLDRbbjhNdX7/Whx553w678Orrux9jcjfN/nzJkznD07RyRi\nsHv3DorFIo1GG13/1mdsaGiUp576JLWahK7HcZwyjjOHGULS2M7Q4BRmxKRcXWBxfQlhrTCUE2zb\nvpVWu8NXT9RR9W1kMvuo1yoIuYIdxChbMwzmJohEetTLIXXPIt23J/QI2AjhCDe4W+i08VCR8TGA\nFD4yFUBQIyDEIWQYgYTEgCyhCYsKNXoUcfx1JCkgEdcxzAEktlDtnmYsZXH7FZtZOtdlzbbZc911\nlzrTuqqiyjLv+8hHeOHgQQ48+yynDh5k7+goe7Zvp7O0xJf/+q+5/t57L0nxf1RI9q0Wvp/dwg+K\n15PAegh4db38l/8tms0msix/zxZxs9nkwpkzTOVi7N02jKIKLtt5GYqiUqlUiUaL1GovcPFiGkns\nIBWtYLnPYbgOwuuxFkkgxbPkYw4xrU2pk+KFZo+epBITsBq4EDG5MjdAqV4nqWkITaMpBC3fZ8W2\nQZLwRZVKCDZJDHpkkYkQ4iLTkhLMSIO0vA356MbT9QQbNmoyEBLQQpM9YoqEE5XQbSj4XSL5BOnM\nANF4mqxqQHGKkWGD5OI5tsdi5NNpgjBkuVolNTrKb/zO73D//V8mmUy95DxpmoHvq7Tb7ZeQWLdu\n3Uri136Nw889x0qpxOD27dx+1VWvyCX1x4Xp6Wl+9VffyxNPHGBu7jCJhMHdd9/Kzp2vjOWdz+eJ\nDw+zXKlQazapLSwwquuEQZSIEcM0THTfo7xaZnxqE4a+j0jtLKfOtkhSIKolGZUKXHRPI3GWgg6h\n5zKrSKjIvCACepjEwxxu2MblIglkQMMmzTw1hkSACCNIVo1OECEMB/nG1x9mJIS6OYhvdzFI0JGg\nrqWZHN5HQvXJaCU8t8dyzyOvS5y/eBY3MYBtGFBaQkel7XkIVaKqmfjqNvxA58j5Bfbv3MXY4ACP\nHDzLz7/tGnaNj/PUoUO0bruNW++4lUn5a6iyiizDeGEvtuvy5w88zfjl4xSLRZ59tsKxY/fzK7/y\nvp8Yx1Uh4Hd/F377t99ceS+FwoYL6+OPb6hr3mxwXZc/+7O/4tnHjuD3LBQ9QmYkz32/+C42bRrn\nhReOkMuN4HkOhw49z/T0XcjyccKww9jYNczPOZjEkDGQFUG9Vsa3TbTI5ZS0dVR0qheOse71aMe2\nMD58F7oew3VVWi0ZRVlE0wx274syOfkOPv2nf0IdQQaTjJZgUNFQvSYngx5CMkiJBGWgg02CHl3g\nPCZdNhNymmm6VBDM4lFQAlQJyorClZvG+PrsBXyvQSa7hVjUZGRkGyOj21hbKzJUmGdo3x6WrS47\ntm9/yXVVqtcpjI+Ty+W4/R3voFmrsVlRGO8ThRKxGJlEgicfeIBdu3e/ppkyPyq86Qmsy8vLfOEL\nD7O62kIIwfR0nne9620viy3vdDp8+i//kkynw758HieZoiXOM3PmH8kNX4dllQmCBkIIZHkYTQ8w\n0JCC7QgCVqWL7NMVpMDB8zpklYDs+DUoik917TSNXg+/bZHXJcxkEtl1eaHXQw1DmkJw0bIIg4Bd\nqkrD96mg9bkEE7hkaVDGI8qElsBVNBzfoe21CEkjoSCQCVGxAJkEiyyRUFMIM8+OwghyrUEk6pFI\n5/FaNUzaHHrqi+y74xbGbr6ZlRMnWK1UCCUJP5/n5++7j6mpKSIRFdvuYZrfetrwfQ9F8Yh9h6yR\n4eFh3vnud7/W2/pDoVgsMjW5SPnccdT1gK999rOcP3mSO++55/s+uUuSxN0/+7N87u/+joPHj6PZ\nNpWuRRgqENi4vQDCkEa1wuj4MJlsnMLoZcxdfBTb9oAc7cAiVENGEkOMDuZoJEPijQb7CgUifsAz\nR89zwi4RlRRiIoKBAALKNFnCZ0n4qEEMQ0yApyMYQZd6xENB1ExxMVTAM1E0g6QRo2X1GBsq4rhl\nbrlyP184dIZ1O4UWz5PLDXD46EPkHIWMkJFRWBeCnhZn+8B25rtV0ANymSRhGNDsQaXR2PCG6Xap\n1+vsfctbOPXss2yPx8mlUoRhyKceeRo9tZtdu65GURQGBoYpleb5t397lA996Gd+LPv8WuPLXwbH\ngfe85/VeyQ+Ou+/eWP+bsRh5+OFH+MbnH2TXwBixZAIncFm8uMRf/8Vn+IP/+/9kcPAQCwunCEPo\ndjUUpYcQsHXrbeh6hOXFE3S9HjHNpFpdR4QKhpFF8pIYhWEm9u8lFpPwjj2JXxlDVXU6nSZBoBKL\nTdLpVFBVnZWlWZpzHWy3QJck85Tpeg0cX0FTdZxgBSEa1IgSEMNB/f/Ye88oOc7zzvdXsXOc7p7Q\nkwczAwwwyERkAKNEUgwiKVKUKNsKlmVZpmyv7p71OfKxd8/1Xttrr+zrteyVbVm0gmVpmURRFGkR\nAgiCBAiCyMAkTI7dPT2duyvfDwOBhEhJFBMIXv0+zdTUdL/9VlfVU8/7PP8/Ol5KeBDpw8GmSIiB\ncxaoeTQCOAiKiuZy4fN6iSdArjbiFYKoFTdL4xnymRp1jT6amlv5jc9+lo07d/Ljb38bO5Mh7PeT\nzuWYtizuOKfA5zgOY6dPc9VPiY65VRWXaZJKpWh5hWbUu5VLOhjJ5/P88z8/iKp20dq6FsdxmJ+f\n4atf/S733//xC6r6jxw+jD+fp/tcN0h3RwuLCzX8uomnyaJatZHlJvL5Gm53AEURWJw7i2QVCckt\nlOw087UUS+gEbZPTS/NE8y8RdHlRAn5EX4L56gyWrOAu1qgWq7hMg5JtL3fEOCLtLg9zjommuohp\nAYq2hEYEN0HyaECSaSNL0DaQBT9BuULRNJAFAd0pYWEBOUQphia6sYigahKZ/CQJLCqFLI6oEVFc\nLBbyCNUy1bNn2HTX/4V41VWMnTmD1+9n/bZt9PT0IAgCmzf38sBXv4ujg2WbhMIJBJfEBz+4/S2r\nA3mnOXH8OIceeYTNLS24VRXbthk6c4bvmyZ3f+xjv/D/4/E4n/q930Py+3lsaIgeWSZiVcgZZ/Ar\nzVRMlUy2xNGjo9x220p6WnuRSyV+tPdZSsY8iiLRqfrxGDaF7DT+aCstLjdmOsdcIY9Z1fA6GmH8\nmFICy8oTJEMcg0lsFNxMUUbAQCCEaZXQHBvTFqlVS7ilBiTCiKKAIUgILg+LpUWCSgVbEehyW4zk\nc3gCrUyePYJBgrNSiYCtE5ACuN1NWOYMBb2CJdqo5Bg5vZuE18dMYZYvL40Si3YxU6pQfeAh7rvv\nNm77+Mf50SOPMDg5SbFaJadEuOqa912w9BWPtzAw8AzaOZG5S5lqFX7/95dN8d6gLdZF5QMfgDvu\ngC996dLK6gB8//88QoOtMjE0ga5byLJELBFhbGSc8fFxPvnJe3nuuYN873tPYts6PT2dCEISVfWQ\nzS6gGbCkLeExFKSqgd8Xo2po5K1FXAWHwcEJvF43uVwRvx9yuXkqFXC56rAsE49HJZkMUc1q5Gse\nlvQGXCxhYbGIxbRTxm9I9Ig+VLWKpecZsy0MkpTpQiaBA3jIUkEjj049VXoFmxZZRQsECHR1Ybe3\ns7bNZvcPjuJ2OciqD5k6tLzBWPkkv/3bnwBg7bp1BEMhXnz2WQZSKRpXr+aenTvPd68IgoDL66Wm\n63h/6ppt2PYvdFF/vTiOw9jYGEOnTuE4Dj2rV9PZ2fmWyXNc0sHIsWMnMM26Cw5KPN7MxMQig4OD\nrF+//vy+k8PD1J8TaILlNqSmplnmB2fwej1s3ryd/fv3Egotuz16PD4E1yK65mHGGMNnT4Bt0OqS\nGaiJ6FaAmu7HNIvEtRxWuA5X0xrmUoMoVo2V7jrmizlM/LRH/bTUipysGthSEE3TcGwNNy5S6OeK\nUUGgiuaAYQlogkhToButcgzR8WCZIiIOguBgWlNghxAFHdOqpyiF8NXOEBPKaHmNqu1mzrFoTvYS\nsSP8y999hX/81gPsuuYa0uk0zzxzgAcffArHMShODePOjJAZGSPkCCyJDon+NVQLvdi2/YYNCi8m\nL+zdy8p4/LyqoCiK9CaT7B8YIJ1OvyprBssnwLtm7gAAIABJREFU2sTEBFNT07jdbnp7e/jQhz/M\nl/7vP2UwW8FnCySsAmVthJztxXInicV6WZhxMXj6ea5Z0ciNV+xg9MggilWHZZtkq3kWrDqkk9PY\nipsxq8hkyaJkR1Ao4FDDsrK4qRDEwQX4kXHhI4nNDEtIUgyfUEMxRBYpE6goaNIYft9qBMFF3i7T\n2tBGJn2Uvt4Ezx45SiBXxsEmffYsXsOgW4lR8DjM2mFMK4FtKuCojJUnaG+KEqoatKhhPAiYmoa9\nZDEvmPRtuQm/v4UHHniM+++/j09+/vPkcjmKxSLVrzz8Glkm502ZWr6b+LM/g3Xr4OabL/ZI3hhr\n1y7Lwp85A29Ch+odx3EcJoeHMIdqqGoCUXRTq+lUKmlK7jyFQgGfz8f1119DX18vf/d3D9HQ0M3Y\n2ALFYpaJiRk8nmakhhrZrIVV0UEbx1ZtdKeM4ksyNpanVhtCEKZJJpNUq2kqlSBut4TjZAmHDRob\nE8wVskylq7gZow2NBH4MXExh0YCJW4ENPR2cHBpmRc1mCB0DhRKLGIhIGEAZGRUXUMIio8r09vdz\n6513cmZqir/6+tfpd2k4eg3BCJJhlKLoxhco0df3sjtue3v7z+0q3HD55Qw88QQdkQgjI+OkU1lK\nlkFwfd9rXu/eyHH54eOPM7J/P00eD4Ig8MTzz9O+dSs333bbWxKQXNLByPz8Ih5P6FXbVTVIJrN0\nwTZ/KERlfp66czUlkiSxZctGCjIITRbt7XV84AOf4tCh43zlKw9hms1s2LCVgRMvoWTP0OuW6Q24\nOVpRiTsJFgUB1XLjskMs6BM0ySkIemlduQZPagRUL5ohIgh15LQcsmGi4yUkr8HUFjEwWWCeMgYa\nE0RZop4CBjZ5RaFqhDCxiapudGMBARmLEjWngJcKXqEF1RHR9CEKhokUiCBWsqiSiu7zUNfQwtqO\nNSAIDEyc4NSp07S2tvDlL38LQWgmGt3IwT3fRZo+i2Lm+ci2zdiWRU3XKXo9zB45wsj69fT09Lwj\nx/KtJJdO0/9TbWaCIOAVRUql0qtOTtM0+e53H+H48XkUJYZtazjOHmqFSSpVL00mxAQPmmAj2zpR\nr8yCS2NFsJ4GwYepx/nBvgP0dbZTqeuEapm5zBI1fxPeWBPZoR/h8amM1jzYVgKvFESzRs55/y7g\nBkQUNBRKmMhYy57KTh5VMglLKo4VJWVnmZV04rLCeOkouhIlWh8n6JvmE5/4CD09HfzXL/wJnT1r\nkGfPEhG9pApZqqZAg+Ij4pOZNiFbquH2eWhMmFSyE6zq7MOxLeamzyC7gvhcYapijZ6VvSiKSj4f\n5+jRE1x77S4ikQiRSISmphCZzAyxWPL8PM7Pj9Hf33nJq68ODcHf/R0cOXKxR/LGEQS4/XZ46KFL\nLxiZT2eJOF5crvD5m1y1ukgmnznfjg/Q1NTEunXNHDlyinjcw0svncQ0RbzeGsHgFiqVE0gek1Jp\nAU0rEonsxDCacBwJURRRFJlK5Szx+ApkeQlRzOJy5bn66hsIBlsZPvISVS1Dt1Ch04kjnLOAMBAJ\nI1Kjiss0WRUJMziXJkGBcYaxacGDjUwOk3os5okAsqjieP1EzmnzZGZn8ZTL3NbexlypzEwhR4MN\neXceX2PDLxXUb92+naHTp/mHbz1ISAiB20vZHSFR8PPMM8+ya9eVb+q4TE5Ocva559ja1nZeJbvF\ntjl48CDj69bR0dHxpl4fLvFgJJmMc/z4CHV1jRds1/U8icSFN9H1W7bwyEsvEdf180/MS6USRihE\nb1MdtewcdizApz/967z//Vfzt3/7LwwPH8XvGWJVQmVdLMbY7Dx5M4QbhToJTElGckRkIYGmjyJW\nJrj5A/fz4pPfYHqxwpLShCwHSFdLREUXgWAMBy/UClStCnl8QAwfEUT8FMnQgJ8Obx0v5gaZyZvU\nCQ4uJCKSwaJVoU1wERED6EoVQ55CEkRmigVyjptyVcPQPbhrZfzuAoapUzF0wvF2RkYmGR+fAZI0\nNLRTq1UQqyUC/jja+DQ4Di6XC5fLRTqbpVWSGDp58pIMRhrb20mnUjS8QpDLsm3KjnOBSNdPOHz4\nJY4fz9Levu38xe/E0b0ceOJZWgJRetQwqihR0mpIuoCk6JiOSSLiI+j10d28Ar+6wOFTp9CcHnRd\nYsGKEXH3sZTJo9mdPFucRHEa8IoKXkklZ/kpiBYeu+5ctYjMEiIZghSw8ZPHclRqlSw+TGxJxKc6\naILEiG1jCCZtDVW+cO9mZEkiPTbE4WKFrv5rmT62l1ZEyjUNSTeo6FmKhoVsuentXkHeduGPl/ng\nB6/l9L599EdieL1uCoV6xsdrRKMJjFwax1n2E3K7gywu5i+Ys7vuuomvfvW7TE4uIst+DCNHPA7v\ne9/db+ORfftxHPjsZ5dVTC+BZfafy113LXfVfPGLF3skr5/Z2VlEfwtaeRFNm0YU/TiORcmax/QF\nLwhGBEHgzjtvob39JZ555jDHjp3G603icjWSSs3T3b2RcDjKkSM/IJOZp1h0YZqjiKJMMNiKKNax\ntLSb9rYaqekXcHvbqatby9jYAomEjiEUUawF4o6MIEjnDOuW/cZ8CJQMA7Ncxevz4VVzCJaD34K4\nqGHbDsI5yfcMJktM0mrblFML7PvRXvbtfY5FJHJOmO/PFtke93BlewSAk/k8g/C69ZVguQvQFYjR\nuf0juN1eXC4P0WgDtm3z9NPPc9llm16zBvD1cnZwkISqXmDXIYoijR4Pw2fO/CoYWbu2n717XyKd\nniYWS+I4DgsL40SjJr29F3qhtLW1sfODH+TZxx/HZ9uYts1kPo8H8M7MEHe7md+3j2+8+CL3/tZv\n8ZWv/E+KxSLf+frXOfnww2TyeTIeF5WKjOM4eGQ3ohrAJ6uggym7CXi9GIbOVMEmJnehOAtUszU0\nM8SgU8QywCvkEV0Si3oVi15ElvAi46IZHRtTmgOtRkIoUXY0VigNKLbAAhKO5CeqJhCsJfxCgOVq\nFBm3rVEpimhCgoLh4BXrmJ7IsJD9AfXrNhPv20ow6OPIkUHq6jYAy18kGwcEYdlNuFY7/0TrnJsz\n8XW0wr4b2XnttTz8v/83kigSD4ep1GqcmZtj1eWXX3AxGxoaYv9//AePPfY0grwKUYjR2rbsGLw4\nPYgieHG5ZETHBNPC73KRrVUo1wwiiRCOA1WtTE2rYFZLtKgyabFMwakgC0lqxSCGlsIvBLDsBnRb\npU4wSOkZCsSoCBZBYY4lxwSCWETwEkFAIMNZNEqI0jim44CoYFhhAv46/A6IioppVwBY2dpKOJvl\n4aPH6Fp5M6MDL5AZO41UKOE1dURAdGxKJYWTA4fYdMVG/ubLf0EymeTvUylWhMN4XC7m5uaYmBim\nqteQvEEUZbnuI5OZIOi1eODLXyYcj7Nh61ZaW1v5/Oc/wcDAIIuLSzQ0rKKnp+ctW5++WPzbv0E6\nDffff7FH8ubZuRPm5uDs2WUDvUsBy7Joal5BVlnB0tIwqlFEFwTs+jVEPSXCr1hqB5Blma1bt7B1\n6xa6u1vZvz/NwMAs8XgHwWCEkydfQlFkPJ5mlr3UZRQlgSjKyLIL23AzeXqARk8vUX8jM6MzTEke\nTnKccKCMbRfJYWM7Gsui5xV0BIrYuF0+DPzotSI+r4dKTUe2VDQ7h4mGjJsgUfz4mMWhzZGIYVPJ\nF5kXQ4wi0xReQcmyeXohxfZoDtWyOJ7J4InH+fY//RPbrr2WNf39r2vuhocnaW/fiSS9fFsXRQnw\nk0ql3lTAIIgijuO8artt27+qGQEIBAJ86lN38/jjT3P27D7Aoa+vjRtvvPs1C+g2b9nC6v5+Zmdn\nMQyDH3zzm2xraMB17iYc9vsZmZ3l+Wee4ebbbycQCOCPRFgslejx+/HV17NYWGCh5qVi1VMHWJaB\noZoEQ2F00WRg4CWiiU1MDJxCKC4iGSaiKGMQQRQksoBRzmJRj4gHgTxlZGpUCBLHVEs0qn7yRgVF\ncpN1tyDbFo7gwigNk63m8AoV3I6FbScwLTeaNYktJZCVFczaNSqUkRUX+eISW1U/bT6T9evXMDY2\nQ6VSQVXdqKqbQEMHztQgi46Ffe4LtVgoEIzHyVgWl61Z884dzLeQtrY2bv3Up9j35JOcnJzE5fWy\n8aab2LZjx/l9BgcH+eHXvsbKaJSucIRs0eTAjx7lVGMjq/pWY+kaHkVCcUdALeNBRq9pKFUNzbEp\nCiIHjr1AuWxS1rM0SAskfRINapqlrIm7FqYizWBZRcJYiGqEaa2MS/bQYFlUrCqGECPjLGLQSUj0\n43EUFEdFFxU0VuATqlSpIplzZM0QbqUHwwxiOFVq1gIxj5+TYwus6eigPhLBxSADp/YTlVUyNQ2/\nbVCWVSzHosslM+ho+ByDe+67jfb2djKZDPHOTnbv3cu27m4SiQSieoqXZkfou/pebNtidPQYUyd/\nyHpXP02xGIWBAR4+coSr77mHtevWsWHD+p9zJC4tcjn4whfgwQdBvqSvjMtIEnzwg8uf5z//54s9\nmtdHY2Mj3d0xjlfB27AaMJEklVRqhMsuk3+u59HOnVs4evRbOE4Nt9tDPp8mkzmJKOpYVo1q1UaS\nGhFFN5pWQKvNUOd2oRsi8cYkHslFzCNSzqVoCMQpzE3Q7fWSLVdxOS78ogfHdqEicoJ5GgSZuYrN\nfLGC4VSJIZJlnjYxhGQLmFRYoIqGhyASi5iMYZOzBTx2EFUOY9d08HgQXS28UBigySkTaW7m/jvu\nwLAsdn/zm5j33MP6DRt+4dwFg35qtQo+34XyFrZde9MWDd0rV3L86adpt6zzXjimZTGnaWxdvfpN\nvfZPuORPuUQiwcc/fi/VahVBEH5hB4jH46Grq4vR0VECcD4Q+Qkt8TgvnjwJt99OLpdj5uRJtqxY\ngZnJ0BwOUy1r7DmbYUGKoMgOObFKwF9jTfc6xowMsRicHZnGY+rUcEAC2TEJ2g7l6jC2HMC23eey\nDxoirYgYCDjkmUPSayw6VQpCiaZAAr+7jlJpiXLpDM12GT8GFg55Q8YtejGlErogorqieNV2RC2H\n5XIhyG7s2hJT0yP81//2aYLBIHV1Hvbte4KVK7dTX99GT//l7J8bxYoGOJDJEMxkwOslHo2ydudO\nOjs7367D9rbT2dlJ52//9rKMvSy/Knrf9+ST9NXVEQ0GiYVUnj58DLe6gtRgjZo2SWp6Fn9hikpV\nI2cYdHg9RLx+TJ9JUYKxVJaYtwWfIlPvCbM47zBpL/CxDfWMLIwTUUUw5qlio8gygl5GduYoGRoR\nOUxEUdClLEW9jCj14bY0qrYHDTei6Ea0K9j2FJITZY45BJpQLR+Vmo2tePD7V+MIg2QLVWDZYLAx\n2cjAi8dY4YmSFb3IkkWLANOCwIDLTzjajl/LMT48zJOPP86Z554jLAhYjsM39uyhvauLpiu30egN\nMDc3z+zsLII+z+2b19J7zhwx7PdTV6ux57HHWNXXd8nXh7ySL34RbrkFzrmrvye4887lJadLJRhR\nVZVPfOIu/tf/+jZjY6PouoRh5OjpUfnDP/xPP/d/4/E4v/Vbd2MY/8zevU9imjq2rdPQ8H48ngkm\nJ0/gOFEqlTkkKY9XnaM+GGMmn0KSZXRNxqRGUpaJBOswqhHCgk0oGGKivESd42CLkHYkCq4kPo/C\ntK6DFMVnmtTEKs3ouB0foqDicQRkdNKk8QPxczarMvXECeM4Em6fj5ppEgvESOdd9Pe2seuqq/Cf\nW1JZJ8vsf+op+teuRZIkSqUSAwODlEplWlqSdHR0nK8tueKKjTz44CHa2zedy4jA/Pw4ra3BN21c\n2dzczLprr+Xg7t3Ez11PU4bB6quvfsvahi+mAuungY+f+/X/dRzn397M6/2ykZ+iKMvp759C03Vc\n57oExsbGcJVKuPxBppaKLJUrtPevYqU9gFaq4HbnaQ54SNR1MVQuUNfWgixLWNoCLlsjrkrologH\nSGkVYlQZNo9iEkQABDqR8KBRxIWJgY5mVxm2JfCFibkV8s4oC/l5VgoBBLwgzFMn1pizdTLiElJ0\nDULRwLQdRFFEFhUawl5UjwexWGTTpnWEwyG+9KV/ploNIEkJnnrqCcJhhTVrVrHj+i1s2/abLMzN\nUSgUaGpspLdvWe3wnXRUfrt4rZulruvkUymira04jsNMukzIn0Q33EiIFPIC2UWFUMDNhoTC2bTJ\nyaUF0FNcd+sNrHT70B85TViSCCsy+YqOqQQJCTbTqUVWJyLM1hT8mouzpRyOCIIq0CLouLVhUo4f\nW/ISDLiRhBCGDWZBQpXiFCsaliGCoyERpGZbOLgQ8ZK3TWy7gkuWcFsilZpEailFOpdjNJulsbOT\nZtvGY9ucPqnAkoLtCRFBAH89yXAr4+kMVU3j7L597GhvRxJF+ltbyeTzDJkmn/zd30VRFBzHwXEc\n/ucf/zHdyeQF8+dzu1HSaVKpFMmf+tulytAQfOc7MDBwsUfy1nLVVTA6ChMT8Aqz7Xc1q1f38cd/\n/FkOHz7G/Hyanp52Nm7c8LpqHhobG/niF/8TjY3f4uGHnyUQiFKraShKjI6OJLOzY2iaRl2dn1i4\nkUZ/gJo4j60bKEoQvbpASFLQzQrRoAppFy3Nq6lUFqjJIVKLVYpli6hriRZ/gLG5IWzDwEZEdhyS\nCNScNApeBAQEqkTRcZBZRCFIlBwCJRwsyyDucmEnEmREi0hLA3fdeitelwvHWe5M83s8WJkM5XKZ\nbDbLAw88iq6HkGUPhnGK7u4QH/3oXaiqyqZNG0mnszz33HMIQgDbrpFMernnng++JdfyXdddR/eq\nVYwMDeE4Dlf09r6l5//FzIw86TjOVwRBkIEDwJsKRn5ZkskkYjTKfDZ7vtDRcRyGFxZYf9uyY+3k\n5CSHD5+mLdKJ291OjRLFaokdOzZhLdRoX7kLy9SYmRllMTdB1GpBqwQpl/dSKtlIooLHgjJlwtIS\nquMiZ5cwqJKnhSrHWfbfdVEgjUQW21NPx6qtZFOLLNljWJZCo6zgtR0cycGnJrGlPA2Kw3hVoqHh\nGrzKIQqZU1T0JWRBQJAklip5GpMe1q/v46GHnsTl6iWRiNHWBpdddjkDA4dobJRoaWlifHyO1atX\nsGrVqvfUk+7PQlEUXD4f5VoN3TAo12S2rOwjlVvizFwGya5y7caNGIaPvr4m4uk0WyUJo66OL/75\nn/O53/oDNq3sx6V6KFerUKlgmiZWWSdfSdMRSJLVZ5gxXSiqiqCKyE6ejY0xlFqM4aUs8wEPm9v6\nmJ6b5eD8GcpmA5JZwLT8ONSAPDbNwNJyXRAVXMzgx0TSoSoEyYk6i5Uk/+PRZ7jq+i3Y0ymEiSmu\n2Lie9994DT96+Al8igsQyds6pcokTtSLX1Ho8vsvKEaLhUJMTE4yOTlJV1fX+YuXrKropnm+6Psn\nmI7znvqu/Nmfwec+B69R33xJoyhw223LSzV/8AcXezSvn4aGBm6++Y25wHo8Hj71qY9y5MhpotFG\nxsfnkaQQi4sNuN1FJKlCU1M/jpMnZ0xwy44VPHd4FsNUMGydEiaKUaQ7FGYyPUWhkEZyewk3bWZm\nYT8Ru4zfWmJ6foGaFUOiibJQROUstuPgoooq2Xg8XoolEwkVNyYl3NSjEKXKKAV8+BlZKpGMhJDk\nHO3Ndbywdy+2pqH6fHStXEmioQFbkpBlmW996/sEAmvw+1+umxkePsoLLxzi8st3IooiN910Azt3\nbiWVSuH1emlqanpLHyqTyeTb9gByMeXgJ879aMF5O5B3DFEUuf2jH+XBBx5gZmICF5AHWjdtYvOW\nLdi2zdGjI1TcCXz+MLIk43H7KBZVhuan+fhnP83w8ATT0ynmZ8/Q4O1BTOWYnB9ArSrU7GFSukG9\n6JCghmgLDOGwGhdL2Ewh0ECIWcYADw4CHqWRoK+GK1xPoqGN/IiNZOl4ywot4QSyIlEuGThSCK9S\nxGMWKJdfwhfw4/W2Mjt9EElsQDWqtLbHWL8hzmWX9fG9772Iy2UwPn4Kt1uhqakRSQrz0ENPcf31\nzciyyokTB+juPsl9933oPXGTyeVynDx5imy2QGtrI6tWrTpfRyQIApt37eLoo4/SHo2CAJIogCCw\nbvM6lmZnSYTCpPMK63t7kc/1Rh6YmiKfz9PWkeTI2BRdoSi2XQVBJO/3oJsmls/DTDlLc12UKX2c\ngLWsN+C3qnjcHUyUc5QFWJfsZlXrShLhOBP5AxR8Kun8MWwxjEttRjdasawUsmBhOW14OUUXAWQU\nHBssI00uYrPzhvs5fvwQzx1YYtOmTQxOH0ZbOsimjT10rutjenCMlF5DCnlY9DvcdO+H8WLhfo22\nQQXQtJftoQRBYN327Qzu3s26V1T2T6fTBJLJt0S/4N3A5CQ88giMjFzskbw9fPjD8Id/eGkFI2+E\nn4hyDQyMIMsybW1NeL39bN9+GY888gT19SG6u6+lWDxMT08cw/Djc8tEY2E2VErsfekweUHHI6u0\nCn48FYumsMJidYy83ICveIaWYA1DmyKh5XHbMWasHHkhSL0cJiu0UjUnCAhBBKeCV/azKBlgh3Cc\nKllBIOPoSNiUmadGDFWzKU8sEWxS0Qt+SrZFfyKBbhicOXiQE83N7PzIR1hYWKBSUYjFLizgra9f\nwYEDJ7j88p3nt4VCoQsK9S8V3g01I58BHrkYb1xfX89v/v7vMzY2RrVapb6+/ryAWjqdxjBUOjdf\nz8njz5AQl42JMlqNjOJhbmwMV2aexmIaZ3IM4m5Kup8Wn48mVw8vaCWqlRESVPHICgO6SYPjJqS4\nsG2NlDWPhpsYHtIIhN0evO4KSiRKXXuUUDBIqdZMW1s78ycOIJc16nwBFKXAwuICS8YS/sYk8aRE\nd3cPqrqecnkGVTVpaGiip6edK6/cSq1W4/jxM2haEUGQEASJY8eGqVRqRCKN1NcvK9LW1TUyNHSY\nU6dOXSAWdykyPj7O1772KJZVh8vl5+DBw8Tjh/jkJz9MIBAAYMvWrVRKJY4+8wxFc4mF2Qlae1bT\n19/Ps+k089lp2hp8LBYKhHw+ZElCB3w+H3d86Haeevz3yL50ikZFRXIcqoUFikqFLdffytnBsxwa\nHCUSiNArSjSoInJQJS9AY0sTkfk0NaNEdmmKdHGBFZ1rCEY7GMrOMj1tIggClUqJUr5GSOylYh6l\nxSlQJ4jYjgdLqOIRakSFICeO7UFR12DbJvX1HRhbbmTq+DPkn3+JbVs3oEdDGIZA37q1vP/917B1\n61b2PP000888w8pXrPWalkUeXmUDvuOKK0jNzvL84CBBoAbY0Sgfuvvun/nElc1mGThzhmqpRGtn\nJ52dna/LpPBi8Zd/CZ/61HsvK/ITrrkG5ufh1Cl4i2oN33XYts0jjzzOoUOTeDwN2LbFzEyGUulJ\n+vp24ffHCIVayOWG6e9fz/r1O3Ech6mpvdzzO8s3+64DhzhwYIATP95DzSpSlSxaOxrJZbMEFmcI\nzM/iEqGkZnEbCiHFg1WTqNiL6JYHr7+TifIShpMmIQGORlqV8AteclWDOrkBVfJwsjaHQgNtbh/+\neB3uaJzFXIZCoULdhm4OTUzgFQRygoBl2+y44gqmp6eBV59voihhWdY7Pt9vB297MCIIQj3w7Z/a\nPOc4zkcEQdgKvB94TbOTP/mTPzn/865du9i1a9dbPj5FUV5TS2M5O2DR1rGGSF0jCzNnqZg6IY+P\nwT0PcPTf/532eBxTEOjxuCllF8iSp9G/ClmSSPibGNRm0FwC7dEoYq2GtVRGEi0MUaFTkEhZp8nh\nRkVGdDwIpkTQMgjNj8Ccg5o5Rc5n0bP1Wsaee5JiIYuCQF6tEF2/jq//6Z8iSRKnT5/F7VZZt+7W\nV/Wm79mzl4mJs1hWFUlajtAFwSKfr7BmzeYL9g2Hmzl+fOiSDkYsy+I73/kBgcBqAoHIua0tTE8P\n8uMf7+PWW5cdhkVR5Jrrr2fbzp1cdeYMDz+8G1DJZmcRvVVODT+PbnYwnR4FykTDIld/+EN4vV46\nOzvZ3N9C+sBhqDmAw7oGNxV/hIFikYZtm1ntd9PtDnDs9HFa6xPEIhHKtRoHR0fxtCa5dts2gh4P\nRa2NHx5OYwNdXV2kUsPE4zvQtBJTvEC5YIEzTxwJhwp5lpAFB7/sRdBqjIydYfWm6ygUJhFFkRW9\nm6hLtHDq+A+hp4f7P/1pOjo6LggcNm/dyjePHuXM1BTJaJSKpjGWy7Huuute1Trpcrm4+2MfY3p6\nmkwmg9/vp6OjA/lntJucOXOGJ7/1LWKAW5YZ2rOHcG8vd330o+/KjFsqBd/4xvKN+r2KJMF998G/\n/iv8+Z9f7NG8PYyMjHDo0CTt7VvPf9fr69t48cWHyOcPUygMI0kpenu76O1dvr5ZlokkCSQSCRob\nG1m/fj31sf/DCimHIkmogkBR11kjSYTr6igWi0RUldOnc7yk1yjZKWqChYYHUxDArFKyZc4SZ9as\nEq/prA4GGM9NkHf5QXVRM3PoQok2fwu+aJQVq1YR8fsZPWMyv7hER0sLG1atolyt4vd4eCmVQtd1\nkskkilJ5lY9YKjXOlVeuuihz/lbztgcjjuMsAFf/9HZBEJLAXwK3Oq/VwMyFwcg7TTgcpqMjzuzs\nBPX17YRCMUqlHLsf/lti1TxXrliDbVmcGBnB0vO4TRnLqmHaJpIgoYkVemJuwiiMWRahSISKbaMa\nJg3+IG7HpKEoM1zO0w6YukLRkGgpCmjZOMGQh3uv2sb+0TEqeo62y29k5uwJsoUZrv31T/Lbn/vs\n+af8/p/Th/7oo0/h83VSKgURhOg5h+IjaNowsdhtF+xrWRaK8m5Ilr1xFhYWKBSgtTVywfbGxi4O\nH97PLbfceMGN2ev1smnTJlauXMmpU6fJZvNABIEb0QsWCAI10yBXq3BX/XLW7MSJE3grFdb3dlLV\nNERVRSqXEVnuagmmUtQWF9l4yw5au1oFu25pAAAgAElEQVQ5dPgwC9kstm1z1nHY1tbGinPVhFHL\nwnNinIm8i6uvvYaFhVlGR/dj2wrJZISz1RewzRrzmHQ6Jv1Y+AWBgm1yVDOwRZF8Pk1zc+y8xkck\nkqC1YyW7rr/+NSvdg8Eg933mMxw+eJDRM2fwhsNce9ttrFy58jXnVBAEWlpafmHVfLVa5cnvfIcN\nsRj+cwXlHcCRwUGOHD7Mlm3bXs8hfEf567+Ge++FxsZfvO+lzMc+BjfcAP/9vy8HJ+81TpwYxO+/\nsOhekmSSyXVcd10LLS2N5HJRGhtf7hCcnR1m+/bVF2TtwuEw3c3NrDhXF/GDPXvoDocpFYvMmiYu\ny0ISRZqwCAgmoiJRcaosKnlKdpGAXI/fNklICjVqDFUmuXLTeibzWQZSZ2nziliCRIPHTTAYJB4K\nIQoigigi2RbppSWm5+aYm59HlCSq0SgulwtVVbn99mv4znd2o6pNuFw+CoUFEgmL7du3vHMT/TZy\nMe88fwQkgIfOfYFudByndhHH8yruuOMmvva17zIxsQh4GR95jk6PgduXpFouMz89jbtSwcjncFw6\npZpAujSNJFTx+TL01bfT5veTXL8eS5LY98ILFE+fJtkQZ3pmhoJl4ZFl+kSRRUXBMi3qrCKZ8cPs\nvO8j1NXXE1tcZK42TV3SxY4d17N9+xZaz5n9/SIcx2FkZJaGhp3IsoulpTSaplNXt47BwUkMQz+/\nr21bFAoTbNx4/ds0mxeX5er0n/13n8/Hli2Xkclk2LfvFFfuugbDMKhWq7hcbkyzyv79R1izZjXf\n+/d/pzoxQV9zMzXL4sVjx+hqaCDS2EgVWLdiBSPHjnFieJgd69bReMMNzGezzGez3HnLLUiCwJHx\ncRqDQTTDoLE1glayOXLk+wQCIitWlAgGfXR1JTl1OMyZ54cxqjohQUARBKq2BZaAR5IQ/G5se4z+\n/pedcvP5DMHghUsumqaRz+fx+/14vV4CgQC7rruOXW+hrevk5CR+wzgfiPyEjnicky+++K4LRnI5\n+MpX4MUXL/ZI3n5Wr14OuJ5+ejko+f8Lyy7sEvfddxdf+9p3GR9fQhC8QJH2dj/XXHOhTHr3ypWc\n2L2bwNISY3NpTpydpCaYLC4uong8HJucJGFZJINBKgholsjqcJxnMsNIUjer4kHscpmgouIPJVjU\nVNpWtBBJ+diwdi3XbtnCX3/ru9hlF17HIZ1K0diURPar1PJZjp86RZso0uP1MrqwgCQI7PnRj7jh\npptYt24tiUSco0dPks+X6OpaS3//mkvW0PSnuZgFrJ+5WO/9eolEInzucx9ndHSUQqHA048OsDW6\ngsd372ZoaIhmvx81FKJaqzGnaViyRtKfRgkEaOnaxumREUouF52trYiiSDQQ4JuSxKFUCluWKbvd\nrDYM6urqQBCQKhUCqopbUfjh84c4NldjMR9E8ARZu5RF1xW2bt38c8dcKBR49tkDnDgxjCSJWJaJ\nYZSIxaI0Ni63xpmmTi4Xo1odYnLSRhAkLGuRnTu7L0n591dSX19PKCRQKGQJBl8uApifH+Wyy1b9\nwsrycrmMKC4bQamqej7bYNsKMzMFjh89SswwmA2FkCUJy3Go93jQ8nkmXS6aN27E6/WysqeHfceO\n0d/djd/jwa2q6D4ft956K4lEglMnT3L29Gm8fj87w2FqTx+lUHCTSLgRxdU0NcHtt1/Pv/yPBWrD\nw/jnqui2zYQtoyFiOjYtne2suXknkWQXhw79iHxeQJIMWlvd/O7v/hqSJOE4Dnv37mPPnsPL+jZO\njW3b+rjhhmve8mUTx3EQXiPJKQgCjm2/pe/1VvDlLy8b4f0SqtuXNL/xG/DVr773gpHx8XFGRkZ5\n6qkXaGtbTW/vauLxZizLxLYzdHdfR11dHfff/8nz1/JYLEZbW9ur/F+am5vxtXfwNw98n4DcyEzO\nz/zsaZp8Il5DpWYpZCs6E0aR69atpbGujlylwlnFQHQlCXpD2KpKa10dgihiFA1Gz44SkyXc9fX4\n/X5uumoHjzyxl7JZJTWTx3FVcdQ5Ovu7cAoFCAaZLZfp7O+ne+VKDuzfz+Zt24hGozQ2NtL4Hk3j\nXdo5+XcARVHOS8uPDwxQmpoiFghwxrLw6jpBRaGoKIiNjawPhVA7OvDJMmJdHe/btYvs/DwHp6cR\nHYehuQVCHWvxtYoUjj+PoBVprZRpCgbx6jrHy2V8jsOc4fD8iQyish5BiOLyJDh5MkO5PEcw+AO+\n8IXPvKaJUrlc5itf+SaFQoh4fB2maaBphyiXRwAbVQ1g2wa6vkhnR4S+zjDZpRGau7q45prbX3fG\n5d2MJEncffdNfO1rj5DPR1FVP7XaIomEw65dt/zC/6+rqwPK59aTXz49crkUHR1JxgcH6U0mkSyL\nE8PDhB2HsmVR1XVsUWRXczOnTw9wdirNvC7ztz94mrbmOBu3b+eOe+89v9SxcdMmNm7ahGma/MVf\n/AN1detobX25An5mZpj9+19gfnqaK7q7Oa3rVPPgwo9HkMg7FrIvgf9cjcey5LXNUrbAyaNjfPvr\n3+BDH7mXubl5nnzyFM3N21AUFcsyefbZE8Bubr75fW/p3Le2tvJDWaaqaXheoYA8kU6z6l1mf1up\nwN/8DezZc7FH8s5x333wR3+0XMza8Ma6Zt91DA4O8sADT+DzddHT42F4eJLR0R/S37+CaFTh+us3\nnBf8euW1/GehaRoz8xV2vu+T5JcK5I+4yRSynM1ladBEbCnCgkvGtBwWylV8CYlkfz+rfQGmFjys\n7Ozl5OnT2IAI5AszyFqOKU2nXfIwOTnFhp4eLNPk4JEjVDOzVI0S9e1JJFHk6s2bCfp8eDye8w9C\nIUFgbm7uNX213kv8Khj5Jdi4Ywff/6d/QjFNLuvtZS6f52w+jxaPc99tt5EpFFj7oQ+xdu1aBEFY\nfiJ0HFKpFE8++TQus4Xu1nU4js3+iTmM6TOMFIs0BQJ4JQlDFDmm60zURMq6is8Tw+WvIxxOYNtR\nJiZOMDIyTzqdfk1FvSNHjpLLeWltXT7hXC4PV111M0888TBtbS5U1YVlwejIOG0ugy7LojPgZ2Jw\ngBdcKs3Nze8J+/e2tjZ+7/d+41wNSIHW1i56e3tf0yLgp/H7/VxxxTp2736JxsY+3G4fS0sLFItD\n3HvvHRw7dIjqzAxb16zhbDTKyOgoQwsLRN1u3nfZZYydHWN4eJG8E2LbdXeRqG9jZuYoay7bQttr\nqE7Nz89TqUjEYhe24sViLbzwwg/IlkqscbmYFdx0hCKEZC+6ZSKKIktSkCOnxkgkgvT0XMkL+54h\nQRivP8ah/3gRM51iWlPpXXkzirJ8YZMkmdbWfg4efJ6rr74Cr9f7qjG9UbxeL7tuv509Dz5IgyTh\nUVUWymXc7e1s2vzzM3rvNP/4j3D55bDqvVH797oIh+Huu5c/+x/90cUezZvHcRwef3wPsVg/fn+Y\nWKyRjo42xsfHsaxhPvOZz//S6qAzMzMYhpeWliQNDUmmRs4y4bRgeZvJW8OE/c2IWo6ko1AyTXbd\neCMz2Szrm5rI7D5EJr9AfVMjE9PTFLOTWNosieZ+qkaNaKCDF18cQpElLlu9mmK5jB1Jc01fH83x\nOI/t2cOL09Ncc/31F3g86Y7zM5dilpaWmJ+fx+1209ra+q7uWvtF/CoY+Rk4joNhGCiKcj6139XV\nxeV33MHXvvQlxIUF/IEA7S0tXL5587KvTTbL0tISx48fJx6Pk0wmEQSBQCDA8PAC7e07zj9t91z2\nPs5oNcYzU2QmJ5E1DUeSKHm9pMoyljuIP96CxxMABERRQZK8zM4u/MyAYWhoklDowkeehoZ21q9f\nTzCYQZYrGEaNjUmHO7btPP+5YqEQB48fZ2zLFrouFUetX0AoFGLHjjem633ddbsIhQLs3XuIVKpM\ne3sDd975AVpbW7Ftm8cOH6Y+EmFFMsmKZJLuri4e2b+f2VqN40dOY/mThLpW09K6ElGUaGzs5+mn\nn2fdurWvWib6ScD6StLpNEef349WPEbcpbD31CkMokyKKlKtgChJFD1+dmy/hdNn9tPd3cjo8BB+\nXScRXi7crdSaSKgquw8Psarvwma15e+gi1KpdD4YqdVqjI6Oous6TU1NJBKJNzR36zdsoLGpiVPH\nj1MpFtnR00Nvb++7qpNG15fbeR9++GKP5J3nd34HbroJ/st/WRZEu5QplUosLdVoaVnODgqCQCwW\nIxaLMTmpnS/wt20b0zRfl4nj8vn48pKi4vGgGxIRfwe2bdPe1E8mP8HAwgm82SI/OHaMjg0b+PV7\n7uHqm27ir/+fvyI9vYjjrVIszbNi/dX0bb8FQRAYeeFJAqbMvhePsaJf42QqxT07dlB/LuOxY8MG\nnvvxjzl9/Djbr7gCgNTSElYo9KoHGcdxePrJJzmxbx8hQUB3HIhGufPXfu2S1f/5VTDyGgwMDPDs\nU09RSKVQvV427drF1m3bEEWRTZddRv1f/AX/9Fd/RZfHw8rWVmzH4dCZMxyfmsL1H/+BRxDIOw5N\na9dy6513UigUEAT3BWn/ZHM3wZs/ydOKhjl+imaPh/pgELfbjTCR42xBxbazwLLpkWXpWFaBujoX\nsVjsNccdDPqYmanw03o30WiEe+99P6tXr+aHjz1G7RgX3BQFQaDe7WZ8ZOQ9E4y8GURRZOvWy9iy\nZTMHDxzgxb17eeyBB/DX1XH5DTew5dZbef6JJwjZNiageTz8t7//e+bn5zld9tHXcyXBYN351/P5\nQkxOljBN81U35cbGRiIRgXw+QygUW9aFOXAQl7bElet66ErW831dZ2ogTaJtA6pXpWxbtHetpGvF\nGgaH9iMIIumZGdoCrzTIcgh6PIRdDnNz07S1vdxFYBg6olg7L4w0MTHBo//6r3hrNRRgL9C7fTvv\nu/nmN6TeWF9fT/31795C6K9/Hfr64F2WrHlHWLsWOjrg0Ufhrrsu9mjeHC6XC1G0X7WkalkmgmAh\niiJ7nn6aY889h6lpxJubufL973+V/MEraW5uxus1KJVy+P1hVqxaye4fPUe+OklbXZhSOcditoDg\naUdjCFMU6envJxKJEIlE+IcH/pHR0VEmJyd56qlT9PZedf61A9fey/zsWabH9/G+66+nIgjnAxGA\nzqYmshs2sOfwYdzNzViShB0M8sGPfexVrfTHjx9naM8edp6zdACYW1zkoa9/nU99/vOXZIbkV8HI\nT/ETN9fVsRjR1lbKtRrHvvc9apUKV5/rPGhubuY3v/AFdj/+OPsmJkCSmCoWuXHtWtrPLcY6jsPR\nY8d4obmZDRs34ji1V500oihRHw1y+xUfwy2KGIZBKBikbnySv/7OAUxzjHK5huO4qVanCIX+P/be\nOzqO+7rbf2b7YhdYtEXvBEE09iqJBRIpUpLVu+RIsiXLLeW4JHnjnOS1U97Esf3+3hzHSVzUIsmS\nTImiRDVSlEiKTawACwCCAIjeF9jed2fm98dCMECCRSSABYh9zsEhODvlYr4zs3fu997PHeLZZ//m\nol8Qy5cvpLr6XYLBNDSaSFjP6RwiLs5LcXExgiCg1elwjiOSExRFNNdJVvZEsW/PHmp37GBBVhaG\n5GRsLhcfv/IKG594gm/81V/R3d09rPSYj1qtJjMzk48/PorBMNYb9HgcJCUZx9XmUCgUPPLInbz0\n0lYcjl4sFieeobNUFuhZUlKKTqPhto0baXW+S4urj6K0RRQUFVJcUkJ3dz0bN66gt7cThUqFKEU6\nagZCfpQKB1mppZTkm7HZGklNTcFgMOH3e+jtrWPTpqVotVoCgQDvvvIK5XFxJA1P/YmSxNH9+6kr\nKKByhnZuvhiiGJF+f+65aFsSPb73PfjZzyJN9GZy+ymNRsOKFeUcPHiGvLzKkShjd3cDS5fOZc/O\nnQwcP86yrCx0Gg0DNhvvPPccD3772+Tk5Iy7T7VazaOP3sHLL7+H1ZqISqUnq1BFd0cz1lAFPmsX\nqfGJCIKFG0pLuLOykqMffEBuXh65ublotVrKysrIyspi374zSJI40rTOYEjAnJ5Hbn4VixYt4vSu\nXSM9aGBY8bikhCGdjlVf/SpxcXHk5+eP61jUHDhAcWrqmJYOmSkpdLa309XVNe6U8HRn5icITDAH\ndu6kPDWV5ITIW6ZBp2Nxfj4n9u7F6/WOrJednc0T3/wm3/37v+eBZ56hOD19xBGByIVVkpnJyQMH\niIuL48YbK+noOEkoFJHb9vs99PfXUlSQiTEujtTUVDIzM4kzGFheXsr6pWYMBisaTQsazSnKy+Gv\n//opbrrpJi5Gfn4+9957IxbLUTo6aujoOEo43MRTT903MudYWllJXzBIIBQa2c4fDDIgipQOy57H\niExbVH/2GYtzczEMn7uk+HgqzWYO7NyJ0WiktLSU4uLikWiHwWBg1aoKOjpOjYyzz+emr6+W9etv\nuKgTmZuby/e//zT33FNJWZlA1UIT961ZNtIPJjs1lWfvu5NlN2QxpzIRY0KYnp7DLFyYyLPPfo3K\nyiTUBg9nu8/Rb23H7q5nw9I5OD0ecstK+eY370SSGuns3IvHc4p77lnCunWRMHBbWxt6n4+k4ZA2\ngFKhoCgpiVOHD0/a+Y0Wb74J6emwdu3l171eufdecDhg9+5oW3LtbNhQRUWFkY6OA3R2nqSj4yDz\n5ulZsWIxLdXVLMrPH7mP0pKSKNTrOfTZZ5fcZ1FRET/4wde5664yVq8281//9Vc8+MgtKIwWDNoB\n9KpWFufJ3HXLGjRqNVlaLfWnTo3Zh8lkYunS4uFnQURCwet1MTTUwPr1kcqYlIIC2gcGxmzX2NvL\nsrVrqaysvKRysdflIm6cHDitQoHfP60UMq6YWGRkFKIoYu3rY+F5VSUqpRI9kWSh8xP+vviSV4+T\nx6FVq/FbrQBs3HgLGs0+9u8/QjisQK9X8MADN+JxOejes4dEo3FkO1mWmbegku/+9HH6+voRBAVz\n584hNzf3smHzFSuWUVlZTk9PDyqVipycnDFv5FlZWay6+24+f/99EodzFWwKBevuv3/GzjVOBna7\nHZ0koTlvWiUpPp5TnZ2EQqFx56A3bVqPRrOX/fuPIIoK4uIUPPTQahYtWnjJ4xmNRpYvX4bZnMr7\nv+kZ88YDYPf7+ca3v0ZObi4ul4vExMSR8Xr88QdYvnwBv3/597g6OyhJTcURDjEg63jg8cfJzMxk\n4cIFBAIBNBrNmJyjYDCIepxrSqvR4B/lfF8PSBL88z/Dz38+syMC14pSGckZ+Zd/iUjFz2S0Wi2P\nP/4gAwMD2O12TCYT6enpNDY2kqBQXPC8NCcmUt3efpG9/ZGEhARWrvyjmNjChQt59eWX6d79GQvn\nFJKRmTnyEqJRq8e9V+68cxM63R4OHz6EKCoxGlU88sg6yoazpr/ywAO8+dJLDLa3E1E+AVNREWuv\nYFAKysrorq6meJSWUFgUccjySEuTmUbMGRmFUqnEYDLh8nqJH+V0SJKEX5JGEqLOJz09HY9SiT8Y\nHNPdtKO/n7nD6qhKpZL166tYu/YmfD4fBoMBpVKJy+XizPHjNHR2kms2EwgGaR4cpPiGG6isrLyq\nMHlcXBzFxcUX/XzlqlXMKy2lffimLCwsJCEh4aLrz0aMRiM+SUKUpDGOgdvnQ2MwXDQhU6lUsmHD\nzaxbt3rMOF8p+fn5pFdWUlNbS5HZjEqppN1iQUpPp3L+fHQ63QUPG4VCwbx58/jH//OPdHd3MzAw\ngF6vp6ioaMRhEgRh3Iz8nJwcPpVlwmJkiucLuoeGKJ5AQbTpwJYtYDDAbbdF25Lo89Wvwo9/DIcP\nw8qV0bbm2klLSxuTdB0fH49nHG0bh9tN4lW8dOl0OjZs3MgHbW3knPdS2Od2c+M4ZVlqtZrbb7+V\n9evX4ff7L3gWJCUl8fSf/zmtra24XC5SUlLIy8u7ojytVatX89rp09DdTVZKCt5AgOahIRZt2DAj\nm+QBCBdRYo86giBcTCV+Ujl+7BiH3nqLxbm5aNVqREmivrOT5MWLufsSGV/Hjx5l/9tvU2A0YtTr\n6Xc4sGq1PPatbw1rV1wcp9PJkYMHOVdbizYujoWrVrFw0SIUCgUej4eBgQG0Wi2ZmZkT2g56ujFe\nZUk0eX/rVizHjlGRm4tSoSAYClHT2cnSe+9l5TWqiQ4NDeFwOEhMTLxAPyAUClFTXc3pI0cIh0KU\nLl7MshUrMBgM13TMi7H7k0+o/eQTihIT0arVdNtsBFNTefzZZyftmKOZinGXJFi4MNKb5Y47JvVQ\nM4Zf/xreegt27oxOpGgyx12WZV574QWEjg5KsrIizSf9fqp7erj96aevStxRlmXe2byZ/pqaSL8x\nhYKOoSH0xcU8/OSTqNVqQqEQPT09QGQq/2I9nCYCq9XKkYMHaWtoIC4+niU33URFRcW0/o4YHvNx\nDYyaMyIIwpPAM4AW+K0syy+c93lUnBFZljmwbx9Hd+1CJ4oEZJk5S5aw8StfuaxORVtbG9WHDuGy\nWsmdO5cly5df0HjsSvB4PNTW1rFnzwGam/tISSlAqRTJyjLw2GP3XLfiN9PNGQkGg+z88EMajx1D\nJwj4FQqWVlWxpqrqqm/4QCDAO+98wKlTHSgURmTZzcKFhdxzz+1XVHp4NciyTEdHB2fPnkOhECgr\nKyF7uPfGF583NjZy8sgR/B4PRRUVLF6yZEocEZiacX/9dfh//y8SCZjGz+opJRSCykr45S9h08Tq\n310Rkz3uHo+Hj955h876erQKBWGNhtW3386SKyyjkiSJtrY2Ghtb0GrVlJeXkpqaSm1tLXXHjiGK\nIqWLFrFw0SI0Gg2NjY1s3rydQECLLMvExYV59NE7KCoquvzBZgnT1RlRybIcFgRBARyRZXnZeZ9H\nxRn5gkAggN1uH+njMVX09fXx/PNv0tHhpL6+D4OhCKNR5qabluPxDJKQMMSf/dnT14U42flMN2fk\nC9xuNx6PB5PJdM19ILZt+5DDhwfGZP+3t59i9eoc7rhj4nW6ZVnm/fe3c/BgM1pt+rB+Tj/r1y9g\n/fqqCT/e1TDZ4+7zQWlppKR3Nieujsc770Sma6qrp76B3lTd7w6HA7/fT3Jy8hXr3YiiyJYt71FT\n041Ol44khQmH+7jrrhtYterCea2hoSF++ctXSUxcgMEQmfJ2u+04nbV8//tfm7FTJxPNpZyRqH2j\nybIcHv5VC3iiZcfF0Gq1pKenT6kjIssyb7+9HaWyCI8H0tIWkZqaTyBgpK7uLGlpefT3h+jq6poy\nm2JE8kfS09Ov2RHx+/0cP95ITs4fe+QIgkBOTjmHD9cRDAYvs4cvT0tLCwcPniM/fxVZWXPIzi4m\nN3cln356it7e3gk/3nTk//5fWLEi5oiMxz33gMkEv/lNtC2ZPL5Iav0ywntnzpyhurqHgoKVZGYW\nkp09l6ysFbz//ufYbLYL1j99ug4wjzgiAEZjIuFwMnV1Zybiz7juierrtSAI/xtoBF643LqzAbvd\nTk+Pg+TkDLxeL2p1pPtpQkIyvb2DhMNhFAodPp8vypbGuBr8fj+SpByjNQOgUqkRRQWBQGDCj1lb\ne5a4uKwxkTSlUoVKlUpjY/OEH2+60dIC//7vEV2NGBciCJHckR//GGLvOH+kpuYMiYn5Y6Zj1Wot\nkExLS8sF69vtbjSaC6c1NZo4HA7XZJp63TDp1TSCIKQDb5y3uE+W5cdkWf5HQRB+CnwqCMIWWZbd\no1f6yU9+MvJ7VVUVVVVVk21uVImELCMXf3p6Gt3dgyQk5AACshwJHUqS46qlumNEl/j4eIxGBV6v\ni7i4P0bcPB4HJpNmEnM0xouKTs8psYlEkuCZZyJlrIWF0bZm+lJeHpGJ/9a34P33Yzk1l0KWGfe+\nKSzM5ujRo8BYMTW/f4j8/FnUAOkamHRnRJblfuDm85cLgqCRZTkIhACJcZ6Yo52R2UBSUhLp6ZHG\nbMXFFXR1fYLTqUCSlCQlaenuPsnq1aUkJSVF29QYV4FSqeS229bwxhu7SUqaR3x8Ek6nFZvtLE88\nsXFS8oAqKko4dGgHkvTHJoiiGCYctjB37vU9b/HrX0fyRb7//WhbMv3527+NTGP94hfwV38VbWui\nz6JFpdTVHSApKX0kOhIRL7NSOI5nW1paSnr6UTo7z5CeXogsy/T3t5Cbq2bu3LlTbP3MJJoJrD8G\nqojkjLwhy/Ivz/s8qgms0aK7u5sXXthCIJCIKMo0NFTj8VhYs2Y5mzatZtmypddl8ipM3wTWiaap\nqYlduz6nr2+IrCwzt9xyw6T1BJJlmXfe+YAjR9rQ6zORJIlAoJdbbqnk1lunh+LVZIx7dXWkQmTf\nvkjyaozL09ERya158UW4/fbJP950vt9FUWTz5q2cOjVAXFwGohgiGOznjjuWsXr1jeNu4/F42Lfv\nc44fr0cQBJYvr2D16hvQ6/VTbP30ZVpW01yO2eqMALhcLk6frsVisZOVZaaionxCW71PV6bzw2km\nI8syra2tnDnThEKhoKJiHnnnqQxHk4ked5st0gTvX/8VHn54wnY7Kzh4MJLUumXL5Cf8Tvf7XZIk\nzp07R0PDObRaDRUV88aUxMf48sSckRgzgun+cIoxOUzkuAcCEVGzBQsiuiIxvjyffgqPPQa/+tXk\nOnOx+332EXNGZhFut5va2noGBobIykqjoqJ8xoQJJ/vhFAqFaGpqorm5g4SEOCory0lNTZ2048W4\nMiZq3EUxInMeCsHmzVOvm3E9cfIk3HUXPPhgpIfNZDT0nsj73eFwUFdXz+CgndzcTMrKSq+5FD/G\nxBNzRmYJvb29PP/8mwQCiWi1Cfj9dkwmH08//fBlJemnA5PpjPj9fl5+eTNtbX70ejOhkA9ZHuDR\nRzdSURHrVhxNJmLcg0F48kkYGIAPPoAZ4n9PawYH4TvfgTNn4Lnn4Bo7IFzARN3vHR0dvPjiVsLh\nZLTaeHw+KykpIZ555tGY2Ng0Y4ZOqdEAACAASURBVFqKnsWYeLZu3YFKNYfc3ArS0nLJy5uP35/G\nRx/tirZpUefIkWO0t0sUFCwlPT2PnJx5mM1LeOutnZOi7xFj6ujvjyRc+nzw4YcxR2SiSE2NRJj+\n7u/ggQfg6acjzt50QpIk3nzzIwyGMnJzy0lLyyU/fyFOZyK7du2LtnkxvgQxZ+Q6wWaz0dPjJDl5\nbEdXszmPhoZO/H5/lCybHhw/Xo/ZXDBmmU5nIBQy0NHRER2jYlwTkgQvvwxLlsCNN0aSLmOR+YlF\nEODRRyPRkeRkqKiINBt0uy+/7VRgsViw2UIkJIyN/KanF1BTcxZpnM69MaYnMWfkumL8kKcgMK07\nOUaX2FTgTEKWoaEhoodRVgb//d+RzrP/9E8wiQ1SZz0JCZFzvm8f1NTAnDmRaqXp0FEg9my7Pojd\nvtcJSUlJZGWZGBrqJSUlc2T5wEAHpaV5l+04fL2zdGk527c3UVCwYGSZz+dGo/FOqzLX2YwogsMR\n+bHb//gzNARnz0bezmtqIompmzbBCy9EIiKx76Kpo7QU3ngDamsj1Url5bB8OaxfDytXQnExZGZO\nXfKw2WwmMVGFwzGIyfTHZPS+vlYWL5533WoyXY/EElivI77o+OvzxaPVmggE7JhMfp555hGSk5Oj\nbd5lmcwE1kAgwMsvb6a11TsqgdXC449voqwsJtccTb4Y93/+50hTu8TEyI/JFPk3KQnmzo1EQhYs\ngKKimAMyXXC7YedO2L07IjR37lwkh0etjkyZyXJkOk0UI/92dYHZHNl2ou73zs5OXnjhbUKhJLTa\nePx+K6mpIs888ygJCQmX30GMKWPGVtNE24YYMWLEiBEjxsRxMWdkWk/TTFdH6Xri9889h7G/n5wv\nXleA7sFB7CkpPPmtb02pLbNFBCkcDvPrn/2Mcr0e06jmeA2dnaSuWsWmr3wlitZNPbNl3CeakydP\ncuj111lWVDSyLBgKcainh6/95V9O+x5WsXGffVwqvyc2oTaL8Xg8DLS1kX2e8FdWSgpDHR24XLHW\n15NBb28vKp9vjCMCUJSRQf2xY1GyKsZMo6GmhrzzHA6NWk0y0NbWFhWbYsS4WqLujAiC8H1BEGIF\n4dMMQRBiWeqTxMXeCOXIh1NuT4yZiaBQIF3kOordu9FDkuA//xP+5E9g//5oWzNziKozIgiCFlhI\nrL4yKhgMBjKKi+mwWMYs77JYSCsqwmg0Rsmy65vMzEzk+Hhs50WeWvr6mL9iRZSsijHTKFu8mE67\nfYxj6w8GsQvCuG3uY0wNP/pRRP9m1Sq4/344fjzaFs0Mop0z8gzwP8A/RtmOWcvGu+5i8wsvYG9v\nx6TV4gwG8cbH88jdd0fbtOsWpVLJVx59lHdeeokkmw2DRsOQ348qO5sb1qyJtnkxZgjl5eU0L17M\n4RMnSNNqCUkSA5LEmnvuicmgR4lDh+DVV+HUKUhJAaMR/vRP4fPPY0HPyxG1ahpBENTAq7IsPyII\nwj5Zltec93mstHeK8Pl8nG1oYLC/n5S0NErLyqLSXG+2JbQ5nU7O1NXhcjjIystj7ty5qNXqaJs1\n5cy2cZ9IZFmmra2N1qYm1FotpeXlmEclo09nrsdxX7MGnnkGvva1yP8lKaLF8rvfRT6b7UzL0l5B\nEJ4GhmRZfvdizsiPf/zjkf9XVVVRVVU1xVbGmEqux4dTjMsTG/fZyfU27kePwkMPRbRWRou+/fKX\ncPgw/P730bNtujBdnZGfAouI5IusBP5eluX/HPV5LDJyhciyTHd3N263m5SUlBnzZnQ+19vDaSbh\n9/vp7OwEIC9vahV7Z+K42+12+vr60Ol05ObmopwqydHriJk47pfiySehshL++q/HLu/vh3nzoK8v\n1jtpWjojY4wQhL2yLK89b1nMGbkCXC4XW37/e7ydnegVChyiSOGSJXzl3ntRzbBmHdfbw2mmUFdb\ny8dvvYUxHAbAq9Gw6eGHKS0tnZLjz6Rxl2WZXR9/zOl9+0gAArKMIiWF+594Ysa+BESLmTTul8Nq\njSgDnzsXyRU5nzVr4G/+BmaZhNAFXMoZmRbfVuc7IjGunA+2bEHf18f8/Hwg8rA8cfw4B1NTWfsl\nprWGhoZobmpClmUKCgvJyMi4/EYxpjUWi4Vzzc0AzCkuHvfL0mKx8Mkf/sBSsxnD8Gub2+dj+2uv\nkfa9782INgITxeDgIOeam5FlmcKiItLT0y9Y5/Tp0zTs3s0N+fmohqMhvUNDbH31VZ75i7+IRUhm\nKVu2wK23ju+IANxzD7z/fswZuRTTwhmJcXVYrVb6m5u5KTd3ZJkgCJRlZ3N8/37WrFt3RXoDRw4f\n5uC2baQIAgpB4IgoUnnzzdy8YUNMr2CGsu+zzzj+8cekDo/fIUli6aZNrFm3bsx6dadOkSYII44I\ngFGvxwycqa/nptWrp9LsqHHo88859P77pA7r6xwWRRauX0/V+vVj1qs5cIC5qakjjghAZkoKne3t\ndHV1kT/8UhBjdvH66/Bnf3bxz2+5JdLYMcbFiTkjMxi/349mHHEyrVpN0O9HkqTLvqlZLBYOvvce\nK7Ky0A5XcoRFkSO7dlE0dy4FBQWTZX6MSaK7u5vqHTtYlZODeniqLhQOc2THDubMnUtWVtbIul6X\nC71Gc8E+dCoV3lmiwNvf38+h999nZVYWmlH3wOFPPqFo7twxXZ09TidxcXEX7EMrCPj9/imzOcb0\noacn0k36jjsuvs7ChdDbG8kbiQWdxyfqCqwxrp7U1FRCajW+QGDM8j6rlcyCgisKGTeePYtZEEYc\nEQCVUkmWXs+ZU6cm3OYYk8/Z+noy1OoRRwRArVKRrlZztr5+zLp5xcUMeL0X7GPQ7yd3lghnNTY0\nkKZUjjgiMHwP6HScOX16zLoFZWV0Dw2NWRYWRRyyHJvanKVs3gx3333p5FSlEtauhT17psysGUfM\nGZnBaDQabrr9dqp7euizWvEFArT399PgdGLKyOCDrVs5sH8/DodjzHaSJNHW1sbJkyfp7e4e9yJQ\nKZWEQ6Gp+UNmEFarlVOnTnHmzBn8fj8ej4cjhw/zwdatHDp4cFr08xHD4THTCF+gVCguGNN58+ah\nzcvjdHs7Lq8Xp8fDybY2jHPmUFxcPFUmRxUxHEY5znSkSqlEPO98rVq9mgG1mububnyBAIMOB3vr\n64nPy6Ovr49gMDhVZn8pbDYb+/fu5YOtWzlRUxOL4kwgmzfDo49efr01a+Dgwcm3Z6YyLappxiNW\nTXPlNDU1cWzfPmwWCyazmc62NjIkiSS9Hpffz5BKxf1PP01ubi4ul4u3Xn0Vf1cXcYJAl8NB+7lz\nPHXbbeiGXXtZljna1sbNTz01ZRUVML2z62VZZvcnn3Bqzx4SgTAwIIqIkkSuRkOSXo/T78em1fLQ\nM8+QmZkZNVvPnTvH9ueeY2VBwcgUnizLHG5r4/Znn6VoVJdXiEz3HT18mPrjx1EIAuXLl7Ns+fIp\nK++N9ri3t7fz3m9+w8q8PBSKiGsuyzJH2trY8PWvU1JSMmZ9q9XKof37aTtzhrb2dggGKU9PJyQI\nBAwG7nvySbKzs6Pxp4xLS0sL7/3P/5Aqyxi1Woa8XkSzmUefeYb4+Pio2RXtcZ8Ivijb7e+Hy90u\nn30Wqaj5/POpsW06Mu1Le8cj5oxcHe9s3kzwzBnmjPoyHHQ4aFepePZ73+Pt118ndPYsc4cflrIs\n8+bu3QSDQaqWLkUhCHQ5nZgXLOC+Rx6Z0uqA6fxwamxsZMcLL7BiVBXFu7t34+/v577770cznHfR\nZ7UyaDLx1He+EzVbZVlm25YtdB07Rm5CAgBdLhfZS5dy9wMPTLuk5GiPuyzLfPDuu7QdOkRufHzk\nHnC5SFu4kHsfeuii98DJkyc58PrrLCsoQDnsxAw6HDSJIt/64Q+nhZquKIr8+he/oFStJnFUr6mz\nXV0kLlvGHVFs+xDtcZ8Inn8eduyIREcuh8sVyRex22EaXBpRYdqX9saYGMLhMC21tawelaAIkGoy\n0djRQVtbGx319azOyRn5TBAE7lu7lm11dYSLilAIAusWLGDevHmxMsVRnDpyhEKTacQR8QeD+JxO\nsrVaBgcHR5JCM5KTaerowOFwRK0/iCAI3HX//TRWVtIwnPdzy4IFlJSUTDtHZDogCAJfuecemsrL\nqT9xgrAkUbVwISUlJZe8B04ePEhxauqIIwKRe62tvZ2Ojg7mzJkzFeZfkr6+PhQuF4mjknABijIy\nOFhdHVVn5Hpg27aI6uqVEB8PBQVQWwuLF0+qWTOSmDNyHTE6JD8e4XAYJYyEor9ArVKRlpTEbXff\njcFgmGwzZyQ+jwfT+a8zsoyCyHkdzXT4ulcoFJSWlk7pNNtMRhAESkpKLpiSuRQ+n29M4vcXqAVh\nWuWOjPc0kGV5WlynMxmvF3bvhhdfvPJtli+PyMbHnJELiSWwziAkSSIQCFzU2VAqlRQvWEBbf/+Y\n5QM2G3qzmTlz5qBJSrqgdb3FbseUmTluyWKMCHMqK+m22Ub+r9NoSE5Lo8PjISkxcWR59+AgSbm5\nJCQkXHKsYsx8iisr6bRYCIZCI+McFkUcMKZ8OppkZGQgmExYnc4xy1v6+ihfvjxKVl0ffPIJLF0K\nX0YXcNkyOH588myayUQtMiIIQgXwW0AE6mRZjt4k+zRHkiSOHD7MsT17cA4N4ZMkzPn55GZmYs7I\noKyigpRh6b+qjRt5o7OTmvZ2krRaXIEATr2eB/7kT1AoFKy/+24+eOklcj0ekuPjGXK56AqFuO+R\nR2Ih/EuwaPFi6o4do7ajg5zkZIKhEEqTiXBxMa12OwleL65gEI/BQFlxMf/xr/9Kd0sLAVFkybp1\n3P/ggxhHzdlfCVarlY6ODpRKJYWFhV96+xiTS5zRyMcnTqDcs4ekxETy8vJQxMezZNOmC6boPB4P\n9XV1WC2WyD1bXj6hnbEdDgdtbW0AFBQUjBxfqVRyx8MP885LL5Fkt2PQaLD6/Sizslgdazx6TWzb\nFlFW/TLMnw+vvTY59sx0otkoTyXLcnj49xeA/5BluWbU57EE1mE+27WLuo8/xhQM0nHmDB2trXS4\nXKRnZlK+cCGqrCw2Pf44ZWVlAAQCAc6ePUt/dzeJKSmUlZeP+SLr6enh2MGDDPb2kp6by7IbbhhX\n+nqqme4JbV6vl5rjx2k6dQpdXByVy5dTVFRE49mzWPr6SDabCfj97H/zTYItLSSIIgB1djvx8+fz\nl//wD1esRbF3zx6O79xJkiwjCwJOtZoNDz5IRWXlZP6JUWG6j/t4nDxxgs/eeIO5JhO2gQG6Ojvp\n9Pm48bHHePSrXx3j2A8MDPDm889j8HgwabU4AgG88fE88o1vjLxEXAvHjhxh/3vvkShJANgVCtbc\nfTdLR0U+nE4nZ+rqcNrtZObmMm/evKgn2M7Ecf8CUYSsrEhlzHnFaZfEao3kjTgcMBvf/aZ9NY0g\nCK8DfyvLcuuoZTFnhMi89K9/+lPK9XpO7t2LKhjE29eHQaOhUZYpyMig4qabOCdJfPt//a8p7bY6\n0czkhxNEKhf+++c/R6ytJc7pJGW4ksUfDnNgaIgl99zDM5fSjB6mra2NbcOlpl8kzHr8fqoHB/n6\nD38YtcTYyWKmjbssy5EKFZWKhFE5Vv5gkKNDQ3z3Rz8aqa4CeOW3vyXBYiFnVG+g9oEBAjk5PPa1\nr12TLf39/bzxH//BsowMdMPH9AeDHO3t5bG/+Itp8ZJxMWbauI/m88/hm9+E8zTxroicHNi/P+KU\nzDYu5YxENWdEEIS7BUE4DfhHOyIx/ojD4UAvywz195OgUOCw20nUaolXqxHDYQyCgHNoCEMwSEdH\nR7TNndV4vV6CDgc+q5XkUfoNOpWKRI2GgdZW7Hb7ZfdTd+IEOXFxY4TLDDodyZJEU2PjpNge48rx\n+XwEHI4xjghE8ojU4TDOUfkZTqeToY4OslNTx6ybZzbT19yMdxz12y/Dmdpa0pXKEUfkCzsyVCrO\n1NZe075jXJxt2yKqq1fD/PlX58Rc70S1mkaW5W3ANkEQfikIwq2yLO8c/flPfvKTkd+rqqqomoVz\nnEajEZ8koQsGIyWEsowgCHjDYZQqFRqlknA4PG7GfIypRa/XI6vVhIanZ74gJIqEBAGNWn1Fb4IB\nr3fcKg2VIBA4T/o/xtSj1WpR6HT4AgH0oyKRYVEkKAgXVqQN37OTQcDvRz1O+bFaqSQQU1mdNN5/\nH37726vbdv58OHUK7rprYm2a6UQtMiIIwujuXE7ggm5dP/nJT0Z+ZqMjAhFnpGTZMoZEEUcwSHJK\nChavl3N+P4Xp6bjCYQwmE161mtxR3XtjTD0qlYrlt9zCkFrNwPDbcViSOGuzkZSWRkpeHklJSZfd\nz5yKCnrGkfAfEkXyZ2Nsd5qhVCpZVlVFbXc3oeGy7rAocrqzk/KVK8ckpiYkJJCcl0f34OCYfXQO\nDJBRXHzNFWxFJSUM+HwXLO/3+Sj6EmXKMa6crq5Ic7wVK65u+1hkZHyiGRm5TRCEHxCRZWgFPoqi\nLdOaW++4AxnY9uKLhAcG6JdlkrVaDB4PipQUAl4vWRUVfPj226Tn5bFg4cKoyjzPZm5aswbr4CBv\n/vrXGG02BLWaxIwM0vPz2XTffVe0j/Lyck4VFVHT0kJucjKiJNFms1GwYsWIzHhPTw+1J07gcTrJ\nnzuXisrKGZ0vNNNYdeONBAMBDu3di0aSCAoCZTfdxC0bN16w7qZ77+XN55/H1tFBol6PzefDYzTy\n8Fe+cs12FBUVkVpRwfG6OvKGHd0Omw1zRcUFsv+Xoru7m9oTJ/C6XBSUlFBeURG7ni7Cjh2wcWOk\n+d3VsGAB/PSnE2vT9cC0SGAdj1gC64U4HA6OHT1KW0MDQ1YrxoQEks1mzp08SaFej0mvx+rx4NDr\neeTZZzGPSpibCczkhLbzGRoa4tjRo3hdLrJyciivrPxSDmIgEODUyZOcPXkStVpNxbJllJeXo1Ao\nqKmu5rO33iJbqyVOq6XP5ULIzOTRp5+ekVoxM3nc/X4/DoeD+Pj4S557t9tNfW0tQwMDpGZkUF5R\nMWECg+FwmNrTp6mvrgagfMkSKufPR6W6snfN40ePsn/rVrK0WvQaDf1uN0JWFo89/fSElh+fz0wd\n94cegjvvhKeeurrtAwEwmcDpBM0F8wHXN9O+mmY8Ys7I5ZFlmd/9+7+THw6TOqrConNggEBeHo88\n+WQUrfvyzNSH01Ti9Xr57b/9G8vN5jFJi3UdHeSvX8+6m2+OonVXR2zco4fH4+F3//ZvLE9LG3M9\nnW5vp3jTJlavXTtpx56J4x4Og9kM9fVwLb0wS0rg3XdhWI1h1hDrTXOd0tjYyOkjR7BqNCSnpFCS\nl0d8XBw5ZjN7GxsJBAITFmqVJIn29nbsdjsJCQkUFBTEetdcJaIo0tDQQMOJE8iyTP68eWg0GmRZ\nJjc395LaE11dXcSL4pgvDoB8s5mG6uoZ6YzMdDweDydqauhqbsaYmEhqZiYajQaj0UhhYeEVRyii\nQWdn5/jXU2oqDdXVk+qMzEQOH46U5F5rU+7SUmhomH3OyKWYvndJjEvS2trK1ueeQ9XVhTktDfvQ\nENubm7l5zRqS4uNBEC7oQXO1eDweXnnlLTo7vYAR8JCVpeGJJx4kYVhLI8aVIUkS723ZQm9NDbkJ\nCfQMDvLSr99AZy5lbul8FIo9VFUtYMOGm8etwFAoFIjj7FeUJJTT+EvvesXhcPDab39LnMNBssHA\nR+9u52x/mPzylaSnm0hO/pSvfe2hCRE3mwwUCgXSONeZJMsoZmtr2Uvw0Udw++3Xvp+yMjhzBq4w\njWxWEOtNMwORJIkdb7/N0vR05uTngyhSmJhIvkJBdW0trX19zFmwYMIUFnfs2EV3t4r8/BXk55eT\nn78ci8XAe+99PCH7n020trbSXVPD8oICEo1GjjUOUJJ1Ixq/DoMhjZycG/j00zqam5vH3T4vLw+/\nTofT4xmzvGVggPlXm94f46o5uHcvSW43lXl5dPQP4Q2ksThvJa5+L1lZC/H7M3jzzfeibeZFyc/P\nx6fR4BqldyLLMi0WS+x6Goft2+G22659P19ERmL8kdir1Ayjr6+PPR9/zKGdOwkUFJAzZw5tp0/j\ntloJBoPsaWykUxR5eN06fD7fNSegBQIBTpxoJivrxjHLMzKKOHPmAG63e1b0TBFFkcbGRprr61Gp\n1ZQtWEDBlyyz7evr442XXmLg5EnCNhtqnY6wmIReE0eCOsRAXx9paWkkJORz/Hgtc+fOvWAfGo2G\nOx59lA9efZXEoSF0SiWDwSCpZWUsWbZsgv7aGFeCLMt8vns3Jrebvr4+DjX1kpd2E2qVGrUk4nDY\nMZtz6ejowGKxoNPpqD52jJb6euKMRhatWkVJSUlUe0JptVpue/RRPvz970kaHBy5ntIqKlgUay07\nhoEBaG6GG2649n2VlsJ///e17+d6IuaMTFNkWaajo4PG+npEUWRuWRkKhYJ3X3gBsyhSIIooeno4\n2tnJ0mXLGLBYOH38OHlxcWwoKaHt0085W13NY88+e8FUSigUwmazodPpLjvNEg6HkSRQKsdeKpEp\nIAWhUGii//RpRzgc5u3XX2eoro6s+Hi8osi2zz9nwYYNVK1ff0X7aG1t5d0XXkDb0UHe8Ngd6u+n\n15eJ5FXjl2UyhqfVVCoNPt+FSq1fVG5kZWXx9A9/yNmGBrweD8vz8igoKJiwabnZitPpxO/3k5SU\ndNmooizLbN28mfo9e5gLGAwGnN2DtAUTKc5fhCzLI+MhCGpsNhufbttGvMNBXlISfpeLj198kd5b\nb73ia2iyKCkpIWP4evL7fKzIyyM/Pz92PZ3H7t2wbh1MRMB53rxIZESWZ2ePmvGIOSPTlF07d1K/\nZw+ZWi2CIPDR/v2cs1jYNG8e5sREHF1daBwO5un1nKyrIxgMkqBU4jcY6OzpoTAvD7fdzv49e7hj\nlG5xdXUNH364j0BAhSwHKS/P5Z57brtomaHBYCA7O5nBwW48Hhft7W0ApKQkkpOjJjExcSpOR1Q5\nc+YMtvp6VozSbcgRRT7/9FPK588nLS3tgm3C4TBNTU0019ej0ek4eewYCxMSUFdWcsxiQRcOYx4a\not4+QIqUQIfPj5SSwtx587Dbe6iqmj+yL0mS2L17L3v3nkAU1fh8NrKzEzCZUgkEQqBQkZ6ePmGl\norMNj8fDtm3bqavrRBDUaLUit922mmXLluB2uwkEAiQlJY35cj5y5Ajv/OpXlKnVSDYb2mCQfDFI\nZ89Zug1mMKaQmJiIz+dGrxdpb2khweGgdJQwYarJxEfvvovdakWpUFA4b941NbCTZZmGhgYOHz6F\n1+unsnIOS5cuvqLrIiEhgeWxaZlLsns3TFR+eHIy6PUR8bRh6aBZT8wZiQKSJNHW1kZ3dw9Go4GS\nkpIxD4zu7m7q9uxhZW7uSH+SJLeb7R9+iGZwEL/Ph9cbwmMZIkmjpEcOca6/n2S/nxy9npqWFs5k\nZFC2ZAl91dUjzkhTUxNvvrmPzMzF6HRxSJJEQ0Mjfv87PP30Vy9q7+23r+N73/tHBgdNJCUVEwz6\naGk5SXZ2BZIkXVdVNX19fVQfPozNYiEzP5+FS5awb+dOJKuNep8Pu92N3e4mLk6HYNTQ2tJygTMS\nCoXY8tpr2BsayDQaGfR4OLVnDyk33siikhJyy8r4bNs2sjUaEtUOmtwtFOYtRHAMcujQdhYvTict\nzYzX6yUuLo6DBw+xc2cDBkMeNQe30n62GotTQ3pOGXfedz89Peeorj7Ds88+HnNIroLNm9+ltVUm\nJ+cmFAoFfr+X1177hEOf7SZss6EUBFQJCdx8112UlpYiyzJb/ud/mKfVUpKbS2NbG/2Dg4R8Ljxe\nB21ouPPhP8Vi6cLna+fxx2/l0Cc7mZuaytDgIKdrzzI0ZKfDOURfdwdDNTXMmTuXjs8/52RZGQ89\n8cSYRnsQKelubGzE6XSTlZVBYWHhBffdzp272LXrDImJhWg0qXz8cUvsuphA9uyBb3974vZXVhaJ\njsSckQgxZ2SKCQaDvPbaFhobbahUyUiSH41mH089dQ/5+fkANDc2YlapRhwRWZbZfewYwb4+XA4n\nGlU8Hm+QfgkCqniOWBopJMTG1FQ0KhXeQIC+9nZqBYGcm24aOfZnnx0hMXEuOl1EnEmhUJCTU8q5\ncwfp7e0l8yL1aqFQiPz8CnJyzNhsTkymVAoLl2C1NtLc3My8efMm+axNDY2NjXz48svkaDSkxcXR\n09LCK//1G6w+NRkuD46BQZTKeObNKyEYVHK29gzGU7WsXLVqzH7qamtxNjSwvLAQgFBiIqUmE2fr\n6ijMzsaUmEhRQQF6pZLcJBcPrFhOv82P3TVEn/0coqWC7S+8gE+WyV+wgE/3HEWnK2bXll9idtkw\nBg2k6/OxdAyw7Y23ePwb32BwsJvq6hrWrFkdjVM3Y+nr66O5eYj8/D/mRGm1evpaO1E2dvHwnZtQ\nKBQ4PB62v/IKhm9/G51OR8jtRqfVolQoMCUkYBscJMtkIqjykJQB7U0fcPs9d3LzzQ+Qm5tLzcED\nnKuv5+Du44T9KnrdVhzWVipVSgryQd3XR8jtxiqKvLdtGyXz5pGVlUVKSgpdXV289NLb+HzxKJV6\nRLGWrCwVS5dWEgoEyMzOJiEhgb17T5Off8PIlKrRmEhHRx3HjlWzbt2aaJ3i64Le3kjOyIIFE7fP\nL5JYozxLN22ImjMiCMJK4P8DJOCoLMs/iJYtU8mhQ0dobPRSULASi6WL9obTWPs7+FH1AX70T3/H\n/Pnzx4SDRUniwwMHOH3wINmiiMPiIE6jIF2rRSmHaHFaUIQgDRGrw0GKyYRJpyPk9dLY2YlplArr\nwIANk6nwApsUCgMul+uizkhzcxspKQVkZBSMWe73p3P2bOt14YyIosgnW7cyPzmZxOGEXEtvH3FW\nCV9yCl3dvaTp81Gp9HR0cLeqZQAAIABJREFU9JCemYpF1HHoUD2PPOLANEp07uzJk+QmJuL3+3E6\nnajVajLz8nDW19M7NESyVovX76fFZsOhVmO3WllWWsqZlhbENh/r8vNRKhScqa/nvV/8gn6viKg8\njLLjLCmpOXQG4pBkP8myAtvAAO/+4Q+s3XgLp0+fizkjXxKXy4VCMVY51WbrR+d1kqDXjtyLJoOB\nQq+XowcOsGTVKlQKBZ1eL+l6PT09PRSbTMiCQLMs89VNG6htbaV6zw6GWhsorqwkb948/u3f/5M8\nOQ1jnJ4uaxtzVVoUCAwO2FiWl0dLTw/N7e3Unj2LY+FCWm02UoqK6Ox3kpq6kvz8LACs1j52/OE5\nBg7uobx4DnXhMHaNhnA454LcruTkbGprm2POyDXy2Wewdi1MZBpNrKJmLNHMUGoDbpZleQ2QJghC\nZRRtmTIOHz5Nenoxvb2tNO3bSpbHxY2pOaQ5A7z6s5+x8+OPKSgqwhIOExZFmjo7qT96lDS3G60o\n4kCN1efG5nbgdjsZ8PtIVuhQKpS4gkF6rVbsPh8S4AoGqRyVEZ+fn4HdbhljjyzLSJLzkjoIer2W\ncPjCbrGiGCQuTjdh5yaaDA0NIbvdI44IQGtrD/kZhSj9XizqeLpEPza/nabOFvbWnUSjSqO/sYf/\n/PnPsdlsI9sJCgXNTU3s37GDxs8/5+Rnn2EfHMSn1VLb18fxs2c53NpKSKHgvuJikp1O9uzZw+Ga\nGm5YsAClQsFAfz9tJ09yY1oaunAAld9PvlKNc7AHMeRFo1SiUgmYdTpUfj/1x4+i0Vx6ukwUxRmn\nePllCAQCdHV1YbFYLr/yMMnJyUiSa8x58fncqII+kpNNY9Y1GQwc2b+ft597DmtvLw67nS01NQy6\nXPT6/RyxWskuKaGlowOpuxuzxcINZjPeU6fY9d579Isa+pQyLc4BCAfxAKZ4M26Xl0AggNtiQen1\nkm0y4W5rI6mtjfrNmzn76W7OHvsEt9uOJImcObqDRclZqDxhirOzWZ6fj9TTQ3dn6wV/XygUIC5u\n8iTdZwt79sBE92otLY1ojcSIELXIiCzL/aP+GwLC0bJlKgmHRbRaBW21BygyJBDyuTnbfAJbfyum\nDi3/e88elAkJSKEQb8sysiiS4fPhA/KTk3G7VAS84JBFgpJIqj4en28QNwI5KiUIAnZJIs5oRJmQ\nQOWouOLatSupr9+C3a4lMdFMMOinu/sMS5YUXtIZqagoY+fOagKBPLTayIMtGPQTCvUyf37VJJ+x\nqUGtVhM+74taFCWUKhCUKrLzKwmF0mlpP4Wsy2RBUQmCrKTP2kawGba+8QZPf+c7AKiMRk6ePs2m\nOXNQDr9K9dntOBQKnvr2t9n8/PPcfe+9OFpbcXm9qJVKBI8HXyDAnKIiHA4HH23dirKvD7dCgTcU\nxq9LwitLJIclFPIADq+aOJUaR0hGk5pC0N1FVtaGMfYHAgGUSiU2m429O3fSWl+PUq1m/sqV3LRu\n3aT2HZlqjhw+zMHt29GFwwQliaSCAu5++OExEavxSElJYcmSIo4fP0FWVhkajQ5RDGMNWikpWTJm\n3YbmZhzd3dxbXk75+vV8duAAdHXR0tuLPi2N/Px8Sior2btrF3miSFcoxM733kMlCPR4vahQkDd3\nNT1DHSiQCftcCCoVkj+E3+9HCgRwxcWRHAohud24gkFcDgdWl59kfTKnj+xg3qJ1KJw2/OEAA9YW\n6k+byc7LY8mcORz85Agul434+EjDPEkSsdlaueuumCrvtbJnDwzf3hPGFzkjMSJEPWdEEIQFgFmW\n5VkxLIsXl7J7dyMhlw2rfYCQtR/RPkC6144UUCKFQhS73SiUShTx8TT399MfF0deaioJWi04BvCF\ndSjCMKgIkxKXhicwhFuWaREEspRKhvx+htRq7n7ySTIyMkaOrVAoKCgwsX//h4CSvLwsNmxYztq1\nN13cYMBsNvPgg1Vs3boHUUwABBQKO/feu5b09PTJPWFTRFJSEikFBXT09ZFrNuN0OklKjKO6uYnU\nRTeTE59MdXUzirCWxLgUXANWwmEXWXEezC4Nn/7hD6y99VbC4TC7PvwYm1LPjuYWSpITUSiVDAI5\nOTnIskxhaiorcnPxzJlDb28vIb+f1YsX0757N06Ph88+/BBPVxf5SiUKIAEZY9hJqxRAGfBSJDjo\nVQbxyilYZCXJrjPkZqaO6J50d3ez+8MPGWhvxx8K0dPTw+rCQtbl5BAWRRr37+ft7m4e+/rXr4vy\nzcbGRg5t3crynJwRWfPW3l62vPoqX//udy+r43H33beTmHiAAweOEQiIZGYmknbPRnqcThJMJlRK\nJRa7naOtraxfvBi1SoU5MZE71q/nXHc3r3/0EUWVlZTPncuH27ejtVoZ8PtRAG5RpKiwEFcwyGBf\nC7XKExRml9CnN5Gi1nPC0kK2UUWn00m118uckhL8g4MMOJ0kBYMsMxrRu31o7QM0OIcwpOYw0FZH\nogD5KTqajx7lwI4dJGdkoFWp6Orah8GQiyyrADvr1lVQdg2a436/n3A4PCu0hC5Gby9YLDB//uXX\n/TLk5oLNBi4XxJqsR9kZEQQhGfgP4KHxPv/JT34y8ntVVRVVEx0niwI33bSSuromjgy0YXI5EX0u\nBLcNdzjIgE9ElCR6RRFZpSJBktAoFHh8PsKSxEetrSSEQtgkgV5ZhUJOQO9pZkGKkk6PHp9CwbFg\nEFdcHN/+wQ/4i+9/f+S4J0+e4g9/2IVWm0NFxR3YbN0YjX6WLVt8RaWEixcvorh4DufOnUOhUFBY\nWPilutDOBO64/35e/NWv2LllCxqPB6co0uzyUuweJC17DklJAVrrj6FTGjCqlGSawixMTcQzMEB7\nRwdP3H478XGpDNj8JJnS8RvMWF12qpbM5dbCQtptNgRBICDLyLKMwWCguLgYSZLw+f1kFhfzyocf\n4jtxgnilkhafDzEujjKzGUIh4rOzOdrYSJYoYtKFsCkt3JGfT2V6Op85HKSnp2OxWHjrd79jjlZL\naW4u9XV12NvaaFEoKM7ORqNWU5mXx+Fz52hvb6ew8MIcopnG8f37mZOYOKa/SmFGBkfa2+ns7CQv\nL++S26vVatavr6Kqag3hcBitVovf72fXxx9z8PhxEEUSMzMpWriQnFGVU3E6HfPnzGGoqoohhYLt\nBw4Q8HiwhsOYBYH5GRkERZGjp+vwa1LRGtJp6zhEV+dpdLoEurCTEq/GuHgBzcEgrsREUj0ejp4+\njcHvJ9loZFCnIz83C9Er0uqwU39iF+pwAGOCHlkhoHS4KTMYaBkcZOnKlWjUPhbfXEhqairZ2dmk\npqZe1Tn1eDx8+tFHNJ88iUKWMWVmsv6uuy57Lq9H9uyZ+HwRiOyvpCQSHVm+fGL3PROJZgKrCngV\n+EtZlgfGW2e0MzKRiKKI2+1Gp9NNWCO5KyU+Pp7vfvdrNFQfwF9dg+i3I8gicUCvLJMIKAMBpGAQ\ng0pFkVbLGbebE+3t3JCQgEqvJxgI4JVlwkovoiQhGNO4vbKMfoeDPqWSrzz7LDdv3Mi5c+cwm83o\ndDpefPFNbDY9odAZzOZUCgpKsdv72bv3IHfddflmC01NTXz88X56e60YjVqqqnysWLH8qt+sA4EA\nTU1NDA3ZMJtTxlUbnWri4+PRajTMr6jAqNdjMhqJU6vZWVuHwdDDU09toDhHxLZ/P0uys5EDAVqb\nmrAEAiQBaqsTj0dLWtiPxj2ILy4Rq85ITVMHuWlp2CWJ4uJi2svLOdvQQF5yMg0NTbR39NNiH0JM\nNaETRbpFmYCswRGWSff6KBMEQmo1/VYry9auxRwIgNtNcUoKgizjCIUomTOHUChEzdGjZAoCmcPT\nbh67nfnp6Zy1WOi32UhPSiIQCmGUZQYHB8c4I36/n0AgQHx8/IyKmDisVnLi4i5YrhMEPOfJ5kcU\nhU9SU9OAWq1i6dJy5s+fj1KpHPkB0Ol03HH33dx6++2EQiHi4uL4cNs2equrKc7KGtmfKEko4uN5\n5pvf5B9++EO0xmQs/Vbi/AGcPh/uYBCL3UOPXoM25CdDCWqNn4GAlew5BRQuXcqjX/86B7ZvZ47J\nRN3Bg/iCQdJkGZvHQ1iWyQkGycjNJEst0Rsa4Nabb6CtrYW+zk7mGAz0hkL0SxK3l5QQBiydnay/\nhhINSZJ485VX0PT2sjo7O5LDZLPx9nPP8dU//3PMo5LiZwOTkS/yBV/kjcSckehGRh4ClgE/Gw6j\n/kiW5UOTfdDq6hq2bz+A1yuhVIqsWlXJhg1VX1poqLe3l8bGJhwOB/PmlVxW1vkL9Uyj0YjBYODW\n2zZx0OVkX3cn+mAQqySRBaQCGUQSS7v9ftxJSaQAAyoVVpWKLL2eBSYT69PTsSUmcra7m363G2tX\nF2qVCk1qKkdr6qhv8qBQ6AAXKpWHI0c6MZtXoNEYOHduiHPnPiAnJ4OXXvoElUrFokWVxMXFjeug\nNTU18eKLH5KUVEpe3gJ8PjfvvFON2+1lw4YvPx9ttVp54YU/YLOpUaniCYcbSE3d/6X3c60EAgH8\nfj9GoxGlUklLSwsap5Ol54W1b5hbjJCVwh13bCQrK42fHz1K08AALU3dBMMKmgNuKnUaBkIhcjUi\nJoWGoCDSOdiDT53IJ73dnKxvIaesgLssFm6/9142v/IK//L8K7icAoLegDmvDHrbaO/qxRLIJk6Z\ngF6hoF9y8O6AnXyTHm9SMlZngAytjtTcVNBr0BkM/P/svXmYXdV55vvb45nnmucqqTQLIQkkkEQA\nM3m2iWPTnbTdsbsdP5l8czu+N91OP7np/iPPvX2TuJ1OuhPcja8DBmISMziMAiMhBALNU0mlmsdT\np8487Xm4f5SQESKOHUcYsN+/qnadWuvZe52zzru+7/3eb7CnhzP1OqFQiKXZWQbe5KobikbRKxVi\nwLmZGQ4dPYrZbJJtNBDWrmXr1q24rsuzz77AkSOjeJ5EIqHw4Q/fzMaNG97ZBfknontwkOWzZxl4\nU0rS932qvn9ZZMC2bf76r7/D1JRFOt2H73s8/PCrXLgwzac//Ym3/fwqinJpb9i5ezffPnkScXGR\n7tZWdNPk0Pg4dqaVb3zjAV4/Mc61rf0M9m9n9Nxhzk7lEAiw4KhIRp6tvkVSjaAKEbrUIPWmRq+i\ncPr0aY6+sI8Lk4sUyiaiCwXPIiIKtALe9DRTtRptW7YQTSTYs+M6Mu2t7K/XqaoqqWiUGBCLRJBk\nmYn5+Z/oec7MzKDPzbH5otUAQFsqRd0wOPraa3zwox/9icZ/r2HfPviN37g6Y/9cN/ID/DQFrA8B\nD72Tc545c5bvfOcAnZ1baGmJ4jg2Bw6cwbKe4xOf+MiPNIbv+zz77As8/PAzTE6W8Lww8B1uumkN\nX/nKb1whBPU8j+effZbvPfQQlfl5LN9n7c6d7LrlFhYKBbpVFa3RpA/oAXKACrhA2raZbTSIBQK0\nhsNUTJPeYJDWzk76urrwNI2hNWuYnpxk59AQff39nB+b5tzxCUI3rmdg9bUYhsb9938dSRoiFuug\nViuRzZaYmZkgGDzD0NAGHn/8BH/8x99kzZph2tqS7Ny5kdtvv+WS8dLzz79CKrWORGJlYw+FovT3\nb+Oll15h166dhN/mVPrD8MQTz6LrbfT3D1y6ls1O/lhj/CSwbZu9e1/ktdfO4roSsZjEBz94E57n\nEnybL6RYOMxCsQjAli1bWH3jjbz0zGsYUgeZeIpUdQ7Jk6jbU3TIKrV6Adu2UD1I6zUMXHr9LryR\nGX7zlz7DR3/1c8xnS+S99aR6V2PoeUZPHqS0NIpm9+PTjeRAUALfiVCyNDS3yqZrP0pvz1rKZw4i\nVQUUVWDbxo28euYMY6bH1772v8gtzqKF4YYNK0Sib3CQI9PTTFUqSI0G17W14akqmUyG5sgIzz/z\nDKWawdmzDXp6diFJMs1mjQce2MsXvxhk6E2us+9W7Nizh4dPn0bO5+luaUE3Tc5nswxdd91lp/hz\n584xNWUwMPADYWo8nuHEiUPs3Dl7yefnrcjn87yybx+TIyN4wGwwyPjCAqPnzzM1U0ZR6oxMTWO7\n3Xy/ZNMZ9cnrCoq3CsfTUIQqA0gEbQHbtbDsOoIsolRlXtp3gNOPPotRkXBdmTbPo0PMEBLrxHyD\nhm3TiEYZbmlhIp9neP16JrJZujIZOlpbuS6dplCr4WcyBINB8pUKqbdELnRdp1wuMzExyeHDI9Tr\nTYaH+7j11l1vW85fLpd5O4VIJhZj4SckOu81LC5CofDPrxd5A+vXw4MPXp2x32v4qQtY30m88MKr\ntLZuIBRa+ajJskJf3zUcPvwKt95a+0f7tABMTk7y2GMHWFpS6Oq6A1kO4Lo2r756lL/6q/v5vd/7\n7cucEQ8eOMB3/uzPGPQ8NsbjjCwucuyBB3jpu98lFg4jCQIRQSCESNL3yAMFwAeqnseCrhNSFMJA\nR1sbMVGkXigwalkUJJnXFpa4oX891brH0lIeUxe4tnuY0+cP0z+4CU2rkUisIp/XWFqaIZst0mwa\nqOpmdP0E5XKD06dnaW29hVyuxqZNN/Dyy+fQ9Wf41Kc+jud5zM8v09+/Cdd1yGanWFycR5ZlZLlJ\nsVj8schIvV5nfDxHb+/lfhjt7QM/8hj/EHzfZ3JykhMnRrAsm02bhlm/fj2yfPnb/Iknnubo0QI9\nPTciywqaVuehh17kgx/cQu3iOG8+JeeqVXou7kaCINC3ZjOB13Uqy1OUyi4lwycmOogo1OsFRNtA\nkcLgNmlXIuiuTsR1iaZamVg6x2Nf/zPyVph4zy+AWydSngBbIme1EBJ6ccQUvqeiOZOEmUd1HDTN\noL48T+eNH8U0NWanTjM1mWXS2s98Q+Lanb9Ea2s3ljXJd1/8DkFF5drh1cTjcaKrVjG6bx97Wlsp\naBrBZJKd27cTjkTY+/3vUxbbGR6+7dI9RyJxEonV7Nv32nuCjLS3t/PpX/s1Xn7+eV68cIFgJMK2\nD3+YnW/paHbu3CTRaMdl1wRBQJZbmJ5+ezJSLBZ56C//km7f58bWVgzL4lw2y0yhQEIMsa5rDaVq\nmaDbSUDppW5ozBXmEPwBDK+C7NRISwKW52ESQhZ8fNfAdX0sJM5Va/iB9QSkNIZ1Dsu3KHkaHgJJ\nUaJLFFgyTcKBAB+/7TZmHId6Ok11eZmmJPHy1BQ9XV1cv2ULmmFwoVTizouOy57n8cIL+3j55VOM\njU0zM1Nj/frruPbanUxOLjM6+h1+/dfvuUzkDpBIJGhe8SSg3GjQsmrVT7ZY7zFcDX+RN2P9+p+X\n976Bnxky4vs+y8tl+vsv70QpihKWJfDII48zN5cHBK6/fgO33LLnbS2UT5wYoVAwCQYHkOWVdIYk\nKYTD/YyN5ZiZmbm0gbuuy97HH6fddRlKp3np/HlSjQbX2jZHpqZoRqOUfJ+Q5xMUBTKCRJsPRd9D\nFQQCosj2lgxWrYYFdKXTaK5Ls15ndHwcp3MN3X3XMtCzBs/3mJ4ZpdFo0pJZheI6GEYTSZJRFInW\n1gzZ7Bie14WmFRDFEJFIGEmSKBYhk3HQdQtN0+nr28yxYwfZsydHJBIhkYhQr5c5ffowS0sWwWA7\nvu+Sz1/gyJHj9L6p38Y/Bs/zAOGKkPg/R+fS5557gX37zhGJ9CJJKqdOvcLatWf4lV/5pUuh9kql\nwrFjE/T17bmkiwiHY2Qy6zh7dorWtWt5/tVXicky0UgEURQph8Nc09nJ5OTkxZOkSDDRitAZQK/k\naU23otdGEaoqy1qRdiVE2dIQBRnXdxHVIL7jspifYYOsUHMFWsQY1eVRsgs1rm/fzFG7iEIcx/MI\nAk1vll6xRJwAoiAgShblkVd52nH4wEf/DUNrtnHhwlFKtTHWbL5xxSW0WmV5uY4h9PNfH9/HB3cu\n0dHTTff27dyqquxub0eSJKLR6KXnLZsmpnjlesRiaRYXJ37iNXmn0NXVxWc+97kriOSbEQ4HcBzt\niuueZxMMvr127PCrr9LuOAxc9OxWZJn+aJRXDxzADXfS19bGyPQE4UAHjgMaKmq0A9vRwPdJ+1WS\nkkShZhLCpNOzSYoqviRywdap2wLhgEjBvEC7r7OaLsDEoYKLTUkJ0pqK86HbbqO/s5Ozp07RMTBA\nLZ1my913U1hcZOLUKU4/8QROIMAtd9+Nrut87Y+/xoGDx5idq9HTM0i53KSv7y4WFpYIhSbYvHkD\nuZzP/v2vcs89d192zwMDA6hdXYwvLjLU0YEoihRrNeZtm3/5Frfh9zuupl4EYHgYpqfBsuAtHQB+\n5vAzQ0YEQaC9PXVZHT6AaeqcOHEYQbid/v5d+L7PoUOTTE4+zJe+dGWPCMuyMQyTcDhyxfi+H0DT\ntDe91qKSzzOoKMxVKpiLi9iNBjOeh+R4pKo6IVFmDGh6Lg0gDniIJCWZoizSD+ixGIOtrUxls2wb\nHiaRTFKQggzc/lnyEyexHBtVVmhrG2Rh4SU0vYktiKhqiHA4jig2icWCyHIfstyKaS4jihW6u1cz\nNnYI225lfHwMy1pgYCDC5s07mZzM8Ud/9OfEYhl0vcTU1CkajXba2rbg+x6Fwjzt7et55JF9xGIR\ndu268UeKkMTjcTo745TLOVKpH5QFF4vZf8qyXkIul2P//hH6+nZecqHMZDo5f/4I586d45qLfivV\nahVRjF4h0IzHM8zMnCC5upVKrcZyNotu2zSTSdKrrmH54QMIgowkNQmHXfL5POvW7SGfm6Wen6ds\ndVKujFLzHGzJxfIdFCXCvOfREWmjZNbpEGxSMZWSbuFjEHJ9YnqVutmkqVkofgiDIoKXQCFLwovj\nihWqXpYuw6NThPzo64zGErRv3sP87BlyEyeQsxUEQebMfIFEzy0MDO4mHxWpRzJsWNPLv/jVz/I/\n/+zP8G37sgoo3/fxAgEkz2Z+fozi4gSCINLWuwZZVunqeu8JFX8Yqb322k28+uqj2HYXirLyuTaM\nJqJYZO3aNW/7P7NjY6xNpy+7Zug6aWDeNvE8Fx+BeDRCbrmG6IuIok3Im0TS80RVDVsKUpYixDwT\nW5Spij5ZV2fRgxaCTNUWgSQmMiVc0gSABKKXp2jrtLUMkUkmefXUKaZOnGBTSwvpUIips2cZm5tj\nR38/nVu34vk+jz/yCE//5b3EA22MTy5S8pPkclk0LU+9LtLWNsTZs2cYHh4kne5gbOzwFfcsSRKf\n/tzneO573+PlkREkIJjJ8IkvfOF9U8r/o+LFF+E3f/PqjR8IrJT4jo/DhveGROuq4WeGjADcfvsu\n/vqvn0eWtxAKRbFti+PHnyOR6GXVqh8kBXt71zE9fYwLFy6wadPlxrCbNg0TDO5H14uo6goh8X0P\n120QjwuX5aiDwSCRTIb8/DznZ2aolMvMCgKC69EvBLDEALLbZB0CVWSCOBQRKeHjSBKbhlczu7RE\nRpaRfR9PEHDa2rj9+uuZ/M73iMVSKMPbmDxzkNWpdgJqkGQqxvHpk7RsvwuA5eVZNmxoQ1VF9u8f\nIxr1Sadr2LZHo+EhCAPIcjuK0oaipDh5cpxz58YwzRrbt/8rJCnE/Pwkk5OvIQguc3M5KsUlbNMi\nEEgTSSgIwl5ef/0cX/jCL10R8n0rBEHgE5+4g/vu+y7z82UikRTNZhlFKf5Eazs5OYUkZa6ww04m\nezh16sIlMpJIJPC8Bp7nXUZIarUittVEH6vw6ZtvBsCybf7nkweYOmfywU9uR5IkLMvgpZcepLr0\nGmO5EdRQCjXejVAvcfPwtchynQgutWaTY4s5AmIU0ahR0Iu0KC4nFwVcOUXTc0lmwpjGDNnlCRxL\nRxE7SAoOdX+ckKfh4lL3FulVVLrlIIqvIuk10obB3gf/b4JmjW4lSNObwBHDDJImu3wCO9WFqkps\n2nQL4+NHWFpa4oZbb+XFb3+brapKKBDA9TxGZmdR29qYeHYvxvS3Ge5aQzzVxuTkSfREmI/9p/+d\nsbExZFmmt7f3inTXew29vb189KPX89RTrwFJfN9Dlmvcc8+d/2D36XgySSOXIxoKUa1WGT1zhuzc\nHBfm5ugYjpKvzNOWTLJU0hBlD61ZQnVHWKPKSGGHZDCG3qhy3hGpoTKnBjFcB09oIyY0sfw4KkEE\nelCAJebxKNCCikiQoFdFq9V48uBBTh09ysZMhqkTJ+hdtYqYbSPPzBAaHqYzk+G5gwfJVCo4+RpG\nZxeO005KTlK2BHwTtIkjOMWz+EqQ176vsXbbraTTb1+eH4vF+NQv/zLNZhPbtkkkEv8s0cv3EhYW\noFiETVfZG/yNVM3PycjPEDZs2MA991g88siTzMzk8DybTCZMX9+NV7w2GEwzO7t4BRlZv349t966\niYcffgnDMAiHM2hajlSqyZ49Oy87OQiCwIc/9Sm++sQTdBWLrBcEll0X1YMyNrLrI+CQQiQI5BC4\nRoCjPuA5nJucpN91UQUBVVEYDoepZbPMFgqY0TDhcIz29n5eX57l0dNHER0HWdX51GfvwRNj5POv\n0tPTwuc+96/o7u7mvvu+xcGDk6RSPRw/foiZGRfP6wWmyWYrxGIpGo0opdJL9PcP8/3vH2Rpdgnf\nl5hdrONoIyTEKLJj4okB4oqEXigxdcFjePh6HnnkSX7rt77wj25aPT09/PZvf5bjx0+SzRbp7u5l\n69aP8gd/8L/9k9dWUWR8373iuus6qOoP3ubJZJJt21Zx9Ohpeno2IMsKjUaVYvE8McVm1Zt8JObz\neUw7gdEw2b//ALIA1dISufOv0e/V6Otso1pfZnlxnIwssGbgeiKRBstz07i1GkOKyMlmnbwbxPJC\nCGaVqNBCyFGRVB9TtzECLVSMEl0hGV02MIw4Na1OEwOHMgoGaVfCdHVquk9DkDj5yuNEPIgm+4kr\ncRr5Ek0/R7gtRtIVyGYPs2XLWlQ1AMTJ5/Ns3rwZ7e67OfTcc0iWhQVUXRf7wgXWeg5tnWnml0fJ\nl2cYGh5myS3xnW9aW0vsAAAgAElEQVR8g/54HBewo1E+8Su/8mOl5H7a8H2fpaUlTNOkra2NcDjM\nrl03smHDemZnZ5EkiYGBAYLBf7ilwbbdu3nmvvsISBLHDxwgI4q0R6P4iQTL8wtM18bJ1Vx0XUdE\nxEUlqdjEw2Fu2DDEzNIyy3WdwYCI44aIuyqOFUIUJRzfxxHA8AO8oTITyFAlTydgIFDzgqQbJi/s\n388Nra3sXrMGy7Y5u28fM4UCUVXl8Wee4fzAECdPjjDsiZg1k9crZ4gTJW2XsKwyGd8gLQ4Ssn0y\n8ShttsGxg4/wn//f//BDn+HPcrffq60XeQM/142s4GeKjAA0mxqeF6G393oCgSAjI68xNfU8H/nI\nv0aWf5CSsawmqVTPFf8vyzJf+tLn2bhxmL/922dYWppgy5YePv7xj3DNNZvY9/zzXDh9GlVV6Vq9\nmhOHD9MaClG3bZq2jQW0IhJHpIqJCqQQsfFpRcASBVo8nzHb5jrPo12WcVyXqbk5jFSKNS0tvDw+\nzq/+zm+wb995zp6ts7wskuy6g3I5S3efRCCSxnEcDh8+zaOP5viTP7mPgYFObrttD7q+RDYbJZ3e\nTC53GkWRkWUJy6pTreoEgx7hsILkZxh79SiruleRrRaQ6gUCrkRciCPJAQQhTqWZIxLVEEsiy0sF\nHMekWCz+SEZLqVSKD3zgln+uZWX16tUIwstYloGqrny5eJ5LozHH1q13Xfbaj3/8Q4RCL/Lkk3/P\n7MQsrlVl65ZVWJ57WbRksVhkZLqE5bWzWJogZjdxnXn6PbCrRYpanfb2flRVYrFZJV+ZQjKhIxjE\ncBxCrkQ63IkqD1Aq58h6Lt1CAk8QsHWoG/PkVBHRayAoCoJtsWyCI4bB0/HQERFwPJUQCgYmti8Q\ntnRcMYhb1WnoIogBXL3MlHWMztYeMqu6WL1648V+K8alL5QdO3eydds2KpXKiuX8N7+JqygoySSd\nsRhD/b3MFYvEOtOUz5yhva+XrRdNrkq1Go9+61t88Xd/9z1hI18qlXj8oYdoZrMEBIGmKLLjjjvY\ntWcPsViMzZs3c+T11/nWn/85Wr1OprOTPXfeeYXfzZo1ayh+7GM8+Bd/gVSpMCsIHF4sUjbSVBsa\n5YpCDJUWHGSaSCwg2E3MkszB40UiqspgdzfkSxyqVQmhIfoqrhsAVCoCCEh4eDQxiSMgCyqe4FOW\nPOKRNSxV5+kMeDRrNRbn5zFNk4RlEfd9YqKIbRicPTaCpwSIhSKUCyXStsNAoB2QqPkWQ3KYiruI\npin09EQICVVWtQTo6OjANE0qlcol24G3otlscvjQIS6cOoWsKFxz8X30ZqH++xEvvgi3vgNO+uvX\nw/PPX/153u34mSIjxWKRp59+nd7enViWw/HjpymVkly4cJ56/X9w220fp7NzkFqthKKU2bjx7W2U\nZVm+whFW0zS+fe+9BAsF1ra2UikWeeShhzBlmU2ZDLlajaVsFtF1mcOnBxcNkSQgACV8evDB8zF9\nH5cVK+m87+MLAoqiYOo6alsbv3DXXXzoQx9kfn6eJx97GsFrIxKLsXXndq65ZjMPPngvmmYjSaux\n7V4kSWB09Cz5/H4kKcSdd36A6elTZLNJWltvIJudRZGqSG4NvTaHHKjTWFog7EcpLC2yUM3R7Ym4\nlLEQMd0ooufgCXNopohTVdj34l5Wr01RrVaRJImzZ0eoVBr093exbt26H9vH5cdFMpnk7rtv5tFH\n9+P7GQRBxHWL7N69htWrV1/2WkVRGBrqYyhscvvuYbpbW9EMg8cPHeJgucxde/bg+z7HRmdpNkyq\nepC4XyeshinXsiScCmvjYDs6dmWBWDCMr5UIBvrpDIZZWl5GdV0MKUR7rItC2SIe6qZqwDgyAacB\nYhDXleixQ8huFdO1mXMlbLqQ8IlRpYCPQwAFnTQeImkEPFw0mp5L1PMRBQtH8nCFAHnDYLlYZWju\nAkee+2t016FruI1E4tOX3XtrayvT09MkgZqi4HoeAKIkkYnFOH/+PDFZJvSmiEE6HidSLjMxMXFF\ntPDdBs/z+LsHHqClVuOai2TKtCye/MY3eO7xx4moKqV6naius2fTJqKpFIVqlae++U0+/PnPX0FI\nbty9m7PHjpE/dYrvH5slX+/Gd9NU6guECJMWZGR0gn4YHReLOS64cdAChHQDw6zjyAk64wM4ns1y\nbRrXFzBxafpdpPBxaaAjYmAS9etMYBK0VUJVD93XUA2NZaC8tES1UmG4t5ekZXFe1+kSVdbE0hxr\n1ig4Jg0s2pUojmsh4mG7OjKQCIukV3Xw8Y/fRCIe52Q+z0svvczZs7M4jgqYXHfdGj70oTsuaeV0\nXefBb3zj0r5mmyZH/+7vmJuc5JOf+cz7OnXz4ovw5S9f/XnWr4f/9t+u/jzvdvxMkZGpqSkgjSTJ\nHDr0Go1GEElqIRJZx8TEWSqV+7n55uvo7c3wq7/6SeLxOJZlUSgUCAQCP7SZ3Injx1ELBTZc3Pxm\nxsfZlkiwL5vleC7HGkVBlCS6XJcFfM4DQQR0HHRcIqy0UDZ9yAIbLv5ueB4xVUUBfNfl/NQUn7jm\nGk4cP86x519kS+9aOtPd5Co5Jk+/huPolEoBJElF13UkKUa5nMWyIlSrM4RCUU6cOEIwCD09qykW\nR9AbBVQ9jyo7hOxxfLNG2bGIS920RMJIvk1Q1Eh4QRxBx5MraG4Qy5eQxbUE1R6UUAumafDNb34H\nQQgiCG0oSohXXjlEd/dhPv/5f/Fj+5H8uNi2bSuDgwOMjY1jWTZDQ7fS9Sa3zDfj5eee45r2dtIX\ny7lj4TAf27GD+/bupWViAsGyOH8+C24QnFkiRLEbdUzHxadG0peRImHqisiqwR4mph3OTE2hKyGq\ntSZGw+C8IRLWZ9AtQGxB8AWq3gAiAlG/wCAycd9EF2VqbowkQ1RRcQmjoSFTIMwGlshioJECqpjM\nAh346CKYtobjhak6MTS5A09LsTSnk3FGkbwGSwWZr321zuCmTdx0113MzMxz9uwk5XKe8PIyGwYH\neWVigg7PQxZFbNfFdhwagQDXxmKMLywgiSJdLS0EWPlyerdjbm4OJ5ej702lunPT00izs3iGwa6b\nbuLh114jJoo0enuJhkK0JBKsAw7u3cvQ0BD5fB7HcRgdHePgweNMjY+xMDLKcl4l5LfhYuC5YUJI\nuL6Ej4JHg2UUHFoI+RlSXgjNdThul1GVJhmli9ZEP4VamSwxQEGkCajEcQhQo0mVtGCzwY9SFQQc\n30bBA1Emadu8VioRsSwqCwtMui5yKkVheYl0xKYhyZyRwgTSbUTLBcrNOpKSJhWOo0guAgYbNq7G\nBEYXFji1uEjUaGVgYCeKouJ5Lq+/fhbYe8l36dSJEyhv2tcAtkejvHryJPO7dr2n0nY/DubmoFqF\njRuv/lzr1sHoKHje1U8JvZvx07SD7wSeBNYDEd/3vXdm5hUb7ErFpVyuo2mgKAm6utYhCCKatsy/\n+3f/AVmWOXz4KE8//TK2reJ5FqtWtfCpT330bTuBzpw/T0ySOHH0KMWlJWamplAMA6NcYbzawEZB\n8FQqWADkcRGAANDOSnTkEFBGoESQDDoO0AA6LAsHmBdFgrbNmrVr+ebXv866thYOl2yOj5/EsELY\nrsTY3ucwbY+Wlg6KxQnq9SoQRZYVBCGCZYV46aVniUUhGh1GEg3c+kv4vkDME9koQzCg8mp1gpqT\np2amCcgalgcqYWzPpD+QZEQv43h9SEIITbDpirvcdNMtPP/8d9m16yYGBtZdfDL9zM6OcPDgIe64\n4wNXfXVTqRQ7dqx4K+fzeR789reZGRuju6+P2+66i+7ubizLorq8TPotfTYS0Sg7tm6l/xd+gWcf\newwlFuX6VVs5f+4gjpbDd1ziooYjePi+j27bxONxzszM0AwmmC4JTJohDEfCNiq0OjqiEEbxbVx3\nCp8UMAF0IHlLqIDglakLMjJpfCxAx0QnSBSXMgpNIEmZCFlqOGi0oiKiU/PK1BEIuCkWBAlB7Ccl\nKeiGzvGJo9zTE0UxXOb37qV+6hR/+V//B6nBnbTGotSqeWYnjrG99zyptlYO5nJ0KQrztRpmezuO\npvHaoUMkWTHgOyzLBLq7ufkfESi/G6Bp2mXmdbZtM33+PKszGS64K+LiTCBAbyjE+MjIJdF1LBTi\nviee4PFHHkHUNC4sN2j6g/T0bcNxopw5b9Cq1kmGOqnqNh4CBi4qNiI6FllacEhiUmOZqquioyD7\nHhHLIW5VyTWb2Pi4eIRpIlLHpEgEnzaaiASw/QTjNJF9FZslyoIPPnSYAhOah04SrykRiEp8JN1B\nZzLNyGIJJZbijnu+wovPfIt8OUdLAjraQxi+SK5WRHDh4IkTzM7MYFgW87ZPuzjI0NDKN6AoSvT2\nbuTIkYPcdtvNRKNRpkdH6XiL/5IgCKRFkezi4vuWjLxR0vtOkINEAuLxFQL0D/ju/UzgpxkZKQEf\nAB59pyZc8f84QKMRotm00DSJcDhFs3mWjo5BgsEk8/P7V05WjsN3v3uQrq7tBAIhfN9nbm6Kb37z\nYX75l+8mkUhcZpvuACcPHmQoFGIwGmWy0cAvFhG8IF3RfgytQs2uUQdCrEQ+dCDNymavsEJIaqi0\nEqSJRx8W3fh4QBOIeR7JtraV8mFdZ11vNw8+/xSydB2hYIq4JNGw41TrJ8nnx9H1QQRhGEEIY5rn\ncZwFBLpQnThuo0HJe4UAS/Rj0yZKLNkOxx2BQSFCNxZBqcSgDKKc4rTeYN6rEVeDZF2TomfiqhBM\nCazd0s9Nv3DTxQ6fsYt38gN0dAxx+PCxd4SMvIHTp0/zp//+35OsVEgFArxuWex77DG+9Pu/z44d\nOwhEIjQNg8ibUhGu5+GJIrt27+bCsWP463UWF5sMZYYoCudpFywalosvypz1faqGQUbTmDVd5MhW\nMu0Z/HIDsVqi4gqU/QpRvwWLAA41HLIIVAnTQGYRHZkAErofJUISAwkfkBGJ4WEi4FMlRAQfHwed\n1ahIGDhECaFRAcYBVewmQpagVUNxLTRqVOo+vb6PbxjUPRDqHs7IEYS2HkJOjY3I5EbOEWw2mNY0\nzkajbL7hBm6/806e+PrX6RFFWhMJXM9julhktlAg/ZYy13cTbNvm8Ouvc3DvXk4cOIC/YQPDa9Zg\nOw4KUDZN2np7CQeD6L5PKBBAL5dxXZflSoUHHnmE+clJNra2krVtauUWwmonlbzDus3bGT2fZ6nx\nClXjHLYTRKVMiCQhHHQW6cJDxSNOiDY88pSxCKAQxEOnyBw6GfK0o6LQRgOPAnE8JAwkLMDCwqFA\nEEkMYPomGbWPgiMz59bx/HZkQcZHJOgoHJ5z2BxvYGslTKPBA3/xu6QFaFg6LaEYqugy1NdNRE8y\nWigQ1TTWXX89XX19HDp0itLyHNMTp1i1ZsWVVhQlBCFEo9EgGo0SjsXQ5+aueNaW7xN8D2iH/ql4\n8cWr6y/yVrwhYv05GfkpwPd9EzCvds6xUCgwPT0NrJCRj31sF/ff/wz5/CSi2EOzOU86HSEW66Je\nXyCd7mR2dp7Tpy9QKOhMT7+AYVRR1TCm2SSbnWVqqkwqFeCWW7Zz8803IQgCtutSNQwSra2YjkNU\nlsk5PnnHp0VR8IiyQJ1eBJL4OEAKiLES/WgDWhEQcZnFIIyCjEcTmyArKZuoqtIVi1Eul7GBuq7j\nujKLhQVcr4KPixww6ezsZmFhEklKoGnNlWSQncX1+wjTJI2PQw0VBxlwcXE9l5uAhg+OZ1OTRQxF\nQYmKFPUCLVEJVw1giBCMR2gPpBne9EmuvfbGS+3FDcMAmoTDV5YLrogpry4ajQZHXn+d0RMnePq7\n32WT67LtTY6RJ3M5/ubee9m0aRPX3XILxx9/nG39/ciShOd5jMzNsWr7dmKxGLFkkh3r+/he4SQF\nwyYQ6+RU7RQxoU4iqFC1LDoiEboVhfM1kagXxvIcHK2OYTRQ/B4QPKK+h4aFTRQBgU6WacEliEoE\nnRyg4xGgiUsQmxAqUUx0AliYTFEigQJ00LyYzrMJICAjEEbC8wvoXo1ON0JKkDEEC9NXeCVbIyFC\np+pS1wsIvkzAlZhbGGdHezutHQNM4mPoOluSSZaDQXpMk7/57/+dWzZuJCKKLM7PI8kyQ9dei1yr\n8cILL3DHHXe860Ssvu/zxN/9HaWTJ9nR0YG0bh2nTp9mcXaW63fvZrFexwuHuT6TwfU82rq7OT8z\ngxoOY9o2z+/bh5jNsiedZjid5sWpRaKuQUjx0Op1crkpJKmM4bThunlkb5Y4YFDBIUIrGgFMFARk\n0pg0WYXCFD4raqkgChLnEBAwUJilgUQCjSAOUQQ8QtjIVLGo0SQhKYheBvwWRCmC51YIii2ERZ9U\nQMF3bar5AvuLOW5KyojFPAOeT18igZCMU1FVRjWNhVKJD+zZg3zqFJ2xGNt27MD3faLRILIVZuJN\nZMS2LQRBv1TqfM111/H4kSN02DbqG8aBjQb1YPAKLdb7CS++CF/5yjs33xtk5IMffOfmfLfhfa0Z\nOXDgIM8+exjff+M0d4CPfWwX//E//hrZ7P/BhQvTDA7uJBbrRNMKwBKdnb0Yhs7f//0+THOQXK6G\nbYOun0EQQgQCKqLYRjDYzre+9TSLiwv84i/ejVWrseW66zg6NoZWqXAkl6Ni6Li+i9aYQ7J9bDS6\ngAYBargorLhtWnjYCMhIxIAALhIyKUKsJGh8IoIAoRDNUglFUVi9dSsP/Pm9WE6SaLiDWrNJQ2vg\n6BqaYSPYS7j1p3HdGAIBRCp4rEGhhMcSGepkEPAQqMKKsZEgEEFg2rFpU1Uq4TCRvj62bNiAUygw\nVijQd+21bLnxRrbv2sX99/89ltUAoniei6blSaWMS3b7byCXm+Kmm65u8rXRaPDte+8lUi4Tdl2C\ny8uoosjiwgJdF90zh5JJDs7PMzs7y9Zt2zh96hTfeOYZQrJMoq2NHbfeyp0f+QjZbJZYezujp07x\nuQ/t5qmnn0EwbBJKnHNFj0ggSK2YI+Y4nGo0EJN9yEKIuakpMpKKQQiZEIKvEBRVZM/Fx6WGTw8t\nSMhYSDSIEMUjj8MMCwi0EiaDio1FgQHqNLEZpoiAgIJDCIE6/oq+CImVKFSTdl9DQqDi2wjEiCOS\nwGDSUykaVWyqJAUJw7Op+h7NcIBMOIajaTi2TbXRYMY0ies69eVl9k9O8m9+7ddYt3EjMzOznDhx\ngYVKkwveYY4fn+Qzn7mL9evfXuD908Di4iKLp05x48AAgiCwZ+tWzqVSHDx6lOzICMvRKLPnpzh0\noQiSwmBvGkmCoKJw8LGnWRybJU6AoYvRTgmBdkRKbgnfUZifO4Ntyfh+BJcEKhUa2IQoEMJEwEBF\nQ0WmTpMILgIKJg4Bqsg4SCiEKNAHJAgjobJMkzgCLomLxw6LDnw0LMp2FVXqJWepeBeTQhk5SCgU\nQJRMZEUhZIZYcgQWm026fZ+MIkOzgWfKDKZSLEcipBIJouEwtUaDdatW8dqho9TqTcClWp5BC6yY\nQBpGk8XFM9x557ZL5c79/f3s/MQneOWpp0h4Hg5ghkJ8/LOfveoasJ8WpqdB11cIwjuF9evh5Ml3\nbr53I97VZOQP//APL/381uqVfwwLCws888xRurtvQJZXGL1tm3zve6/y5S8P8F/+yx/y1a9+jUZj\nikplltbWDKtWXY/rzjE/v0wisY7R0TrQgWW5VCo6vr9IMNjO3r2P0dW1Fkhw7737GRvLUVqaoDo2\njW5qFHI5gpZLvxAGT0RzbaJqgIYloCHQQMUgQJU63YiY2Aj4KPg0EZEAF5EqFml8ZEkmnkwgBoOc\nmltg//6X2bhxHXqoi7I2i+N00zQdLC+N6gtIlRmifpkoLlXmaSBjEcblBHHKZHDYhIqKjEaDJpAA\n5n2RTjw814V0mr5YjFIgQLizk8D69dyxezfXbNlyqfzv3/7bT/G9773A3NwY4LF58xC/+Iu/w6OP\n7qdabUVRwuh6ge5uid27f3Ib6UKhwKnjxykuLdHe28uWrVsv6XeOHTlCuFRifV8f00tLBBSFRCBA\nLZ8n3dJCMLBiq+56Ho7j8LcPPAAzM3xk61Zq9Tp51yUSj/PQQ4+wf99RzLpFqZrn2IUpdm7cwCvH\nTjKmxZHiw4zklkmIKkrMRZJDzJaholsIdFM1ari+ju3rRLDwPBkVgUUaKAQJouJiIJNGRMVEQ8DB\npAeYwaeCh0SKImnAYqWTcx6VIgKbcUkAEiI+HlM46Pj0EMHCBtL4CDSp4+JSwUZEZQ3Q6/u0iAqn\n7Aa1pTmOFZaxzSqZkEpHJMKc4zA5OUlAVSmVSjz27W+z6/bbOXN2lniin7o2S9RwuHB0lP90/DBf\n/c+/d8lM7g24rkvpImH+h4zErgaWl5dJCD+wtZdEkU1DQ3S3tvLU6CgsVGhLbEcxBXzg7FgRMW0S\nqepoWpJ0fDt6tcCBwixBxaAjFmC+2cCxG9hKnKZmUG8YiEI3klhH9MIECVH3J2ngYBAkSIEWKoQo\nU2Cl6aWFj41PCAGwSSPSRQhwsdBWql0QsQgi0SCNQQqZAAGamCy4Y9RYRZMOwrJONBzA9Vw8WcA0\ndBRfI+w2WdIMoq6L6DhkBAEXMHWdYrNJXlFINxo0kklGx3PEI50Egh1oWoNicwGlJcbMzH6iUZVP\nfvL6S5qrN7DzhhvYuGkT8/MrPan6+vqucKZ+P+ENvcg7WSi0fj38zd+8c/O9G/FuISNvu+xvJiM/\nLs6cOY+qdlwiIgCKEkCWOxgZOc+tt97MV77yeZ544iVcN4okicA899xzJw8++BSbN2/n9df/Fk2T\nEcUAjqPgugq+bzI5WcP3oatLwrYVDrw0zfTIQdbJErrdxCkXEL0WlItmZiHPZ9wuYCMxj0OKGFEU\nShiMYSKiYOBi4KIj00RGAuYxcIDeaIQLlsOiK5Ls38LeZ6Y4dGiMVEsHiRabhYVxdCON4Puo7gQh\nJonSxATWEsNBpIxCFQ0TlwwWPqAhIbJyChQRaCBSEMCQBPra2/FbWvj9P/1Turu7icViV1io9/T0\n8Ou//q9pNptIknTpNDUwMMCZMyOUy3UGB29g7dq1P/HmNT09zWP33UeHIJAIh5kbG+PEyy9zzxe/\nSHt7O1MjI/Rc1DO0p1KIqRT5YpGEJKFrGsFAgKlKhWh3N416HW18nG2DgyuDd3TguC7/3199g8kl\nnaFIirQk0yInGC3rnK4btF1zC2tv3syRVw7R39KLWqsxXz2H4EbpCIc4vnQegT5kVwLfweAcIaJU\n8DHwWcYlgoiLg49IAAUDCQ8FixAyG/ERMLGBadJoLOChAlUyeAQJUmEJnVZcmvgISNRwiaCQxSJJ\nAFFoIvgeLinqOOikiLCARYg6OlG7QdD3cWwdy9VI4xO1baaaTUKSxHXhMMcdBzMUolQs8swzzxFN\nr2WsPka1WWV1LE0iHGU+V+D+P/4TPv97/ycbLpYcjI6O8sJjj+E1Gji+T9uqVXz47rvfEVISCoUw\n3+Z6vlJhYXKSaGCYNRvWYtsWlmWhT08zMnuCTP9qkrJAdn6eoChi+50cys9yV2eMY8UFCuYigqxS\nLi7ieX2EZAFZVHGRMHwBy+9AIUuTdpYpECFAHZ0kK923w8AskEdBQCFGCOWiBqhOAx8ZBQcTgQgO\naSQCCNi4pFEIYHOaEjJJfNenZo0heBF8JUTNnifoLuC4TVqBTlb0Z2d9n3bTRFBVqrJMsrWVL331\nq/xff/D/kB1bJAAIrkfD89BS/ey4YSdf/vIXURTlis/4G4hGo6xbt+5t//Z+w/PPwwfeOXkb8HPj\nM/jpVtPIwDPAFuBZQRC+6vv+6/9c45umjSheeXuCIGHbK06dO3Zcx4YN65ibm0MURfr7+wkEAijK\ns0SjESKRAI7j0Wjk8X0PVVVQlCCG4bO0NEmhUEYQapi1URKKTjkmU6gs0eWE8T0BHReHFabl+isR\nkHEUWtBII2AicxKHVtSLKZs6OjZ1FCR8SsgUghJLgQC23MHmDR9AEIKIUpRotJ29e/8XhtGD1szh\nORdQKJOiiUCMAt2EgWWatGAQZaVyZwaJOQR6L9osSYQJIrCIRRAPM5wgEg3RsWULN9xyCxt+BI/i\ntxolpVIpbrpp90+8hm/A932ee/RRNsTjZC4q+9tSKebzeb7/1FP8y89/nmAkglGrARAKBLh5924e\nefxx3FyOHkEgUCxSS6X43d/5HUZPnKA3lbpsDkkUWTx9Fk+MUKmWqTg2i6UCDiHOjI0hh9eyuqOA\nXylTEwTmCgV8x8ZyDBTfxLd9RCZpYhBCp5U5bMIsEENBIY6GRYQmDRJIuIiI+DTwaNBy8fxsABYm\nLcyRZo4aESpEkZFw6UZEQOLsxWhICx4tgIPEIioyEaK+gouBhcQCBi4uJi0sE6PGIp5fJSmKLEsS\nDR+iaoAF06QuCKwNBAhIEp6uI4fDLNk29VyOeqGJIstsi8Spzp1H6hggHUnSHVHZ9+STrF23jlwu\nx9P33881mQyJ3l5832dmbo5HvvUtvvBbv3XVDbKGhob4fjxOrlym/eLa1jWN74+MUMsXqTopVD9F\nOpNBt230cgG7CYtTi6xNx1AvklYpGGDS8HhkdpZKSGHLtl7Gx6Yw5BKml0T1DUyrjEULPuBTwSGM\nS5ocWXzmWY9EFLDx8fFoBY4joBFgCJUaDj42EEKmSR6PIAYyK+LlPA4OIgGiiJiEaaKhofkeQeMs\nLgrlUoqAKNPwIIXMNTgUgTwh6qgUsenXdORUEtnzaDabpDMDdPfcxPzEacxmhcTQZnYNbqJYPA5w\niYiYponv+z/Umfb9Cs+DZ5+FP/qjd3bejg6wbSgU4EfwjHxf4qcpYHWA26/W+OvX///svXlwJed5\n3vv7ej37joMdA2B2cnZyxEUSRUqiRJlSSRQtXdvaLDuS4orjkvJHqpxcV2T7Vm6lcmP94VLK5Uoi\nOqE2O7RJRxs7Q90AACAASURBVCYZUhL3ZWY4nI2cDZjBYMcBzr713t/945wZiqQWyiY1tOKnClVA\noxv9ob/uPu/3vs/zvJt57rlHkXLiSupWSonjlNi69for+yUSidfVvg8evJZnnrmIlD6u28b3AwzD\nBlr4vk8Yhvj+VrrtCxSUiwy5NlGnTtR3UXwHOwxwaKNgkMMkjSSKRwHBCgERBGUCPEJcIqwTwcDC\nwUCKATJaCgWNih+QyrZJp/NsNAc5f+4SoevR1Uw60md15QxJniRLgIFCQEiXQYqM4qGRx8TGY44L\njJImQowULTaA06yzFZ8AnShwHoUuLsUwJJ1OMXnrrXz47rvfqun5uVCtVnGqVfKvkRGOFgo8eeEC\njuOw94Yb+P4991Doqz+WVlaYyucpS0mYTNIdHOQrf/AH7Nu3j5lTp/CDV6zjG40GL710jvMLS+Qj\nCTqmwUJtA9sPCRSVbqhietPUo5KCohDxfTphyJLnoYcqaiAYIMAkjgN0WWcQQRILmwZr/fN4bKJD\nggZ1oE4HnSZFNMaRlAlpI5lC4hDSBCZo00GlRYIEc8wRo0UByQQ9UvMaYOKRIMYKDioWkhhdAiTj\nqGxCZY0EEp8Eq5xjJBqQyWQ4btsUslk2VlcZDQIs32fFcVh0XfYmk2weHOS8bbNSauHabTblBtFV\nnfWFc4SpJDfddAszrRaNRoMXDx1i3DBI9wNTIQQTxSJzp0/z3HPPcdNNN72lAYlhGHz8c5/jgW99\ni/mFBZCSQ6dOMZFMYsWjNKst6svLVMtlSrUanfUyjtPAcQQvNcqg6DiKxLYWmEy7vOummxicmmKu\n1WK0U6OTUnjmzDEGgwwaknVKlJAICoDARqIwBTRJ0SSLh0SlhqSKRCGGSQaLjb5bq0YXjw4d1gCP\nBlUkNTQEkgKJPp1doqKSwaFGFwsVlWFSxFBCECRRqXCSBUoUUSmioVPFpyJrfCATodVsMjs7i5Qe\n+fwIhcIoYRhSqVRYWlrFtjeulNd++NBDLJw9iwxDogMDjG3aRC6fZ9uOHRR/pFXCLyuOHoViEV6j\n+n/LIUSvB86pU78Y19e3I95QMCKEeBdQlVKeFkLcClwPHJNS/uCtHNw/BNPT0+zZU+TEiRfIZHor\ntWZzkQMHxpicnPypx95227v5wQ/+Pd3uCkEQwfe7qKqHoviE4UXCcIogaJFTFpkQBnGpo4oUKa9E\nI/SJEDCJikSlTIcZPHQ0JJJNSBpY7MQggoqFz0t0KBOQI0lM1UhGY6S0NEqzit7q4gidWDdBLLAp\nB4KKM48TnGUbPh69ScwSsoSBRQEHgUYISFQ0bIZxCUgisAiJk2cViWSZCBarxCiThriCP7ELfTjK\n4RMXadh/zY037mXXrl0/02kxCAIOHz7C008fo9XqsmPHJO997zt/ZuO8NwJVVQmkfF17+CAMQQgU\nRWH79u2svO99PPv446xfuoR16RKbBgb46Ec+Qi6Xo9xocOj732fv3r3suv56Hjt9msFslna7zRNP\nHGGm1KLlQ7pts9ioEsdlr9AJAo8FJAvOMdrNAbS4INluM55MsmDNYofrGKFOmp5UGyRbaVFAQ8Vh\nEzAFnAYES9gUgSx1bNqYqESARTTqGBiYWKSwCPBYJ8ChSJMyOlVGqDOKjk5Al15avg0sEjCGwQAq\nF0lSJwl00IgCLQQGDdqkUPEosCzXyBoGm5NJbMtiMpNhybLwVJWmYRDxPCaSSfIjI9Reeol9gxmO\nraxRr5UYKI4TCz06bpV0JoO/toZpmlRLJUYTrxCXq9Uqp44cYbFUompZHH/6aX7lk5/sy+vfGgwN\nDfGFL3+ZlZUVzpw5Q+B53LRlC08nkzz8+BEMkaK2XKZp26xabVwqtNGZkEliYcBG2GRI6TKs69x1\n550IIZj75jc5ceECmmWxR7j4UhISxaZDigAdFbBYZ4Umo7jEadJkmJCg/wyagMSnQ4coTv8+8akR\nkkWSQWADZXyWcZhAA3wCQtZxaRLBx8VBIogQJ0YBSADrCHJkOUuTDEOMoKEAAp0WRZ6Yn2dbssGf\n/t9/iDk8ipQFisVJnnrqOZpNSaezzuhowFe/+h+I+C32pNO8c3iYZ0+e5KUnnuBFxyGaHqACvOfu\nj/K5z3/ulzpj8tBDV0/RsmcPnDz5T8HIT4QQ4v8FbgNUIcRjwC30zMr+nRDigJTyP75Vg9vY2GB+\nfh5N05ienib1GvOdnwZVVfnkJ+9i9+4zHD9+FiEE+/e/hx07dvzMD9YwDIlGM3zkIx/m0KHjVCpV\nwjCPrpu02yr1uooQNRJuF4mClC5Il3LYZRrZJ6kqqPjEUOgQ0Mu86Ug8tuASR+CikSRkGzY+IfvJ\nEvgSaa1z1l+jJVVStk/ZXiKpKDT9OKvhEinKZFBoEieOzwFUTFwEKm1U1gEFSRkbFQNI4VOmTQcX\n0SdOJjmLAQzjk0OJOdx0081omorvF5iZgWKxwDe/+SS33lrijjt+ehLre997mOeeW2J4+BpGRqJc\nuLDMzMx3+Z3f+fV/8Ioqk8lQmJxkqVRi/Ee6Il9cXWXL3r1XrObfe/vt7L/+ev7TV7/KLdPTjA4P\nX+k0W0inubiwwMrKCtu3b+fijTfy/OHDlM7OcGKxzNmqJGFmyLmwRof9KCSEIEABGZJUfI42nkHR\ndmJ7LVatMrZfYYqQIjEkUXxcSlQpEmABQ0AChYuEqMAAAVVWCaBvatZEso7GZkwSWKwwSIooHhYq\nFhoKHgEdCoTk0IihYOKQRHKGHrk1hkIKDxeVLDYOLWxiqKRQ0GnTpEtAE58QjXU3IL8RkBUhTbtO\nTHaJx2P4sRhd16WgaWy4Livz86RTKfZu305TkawurzKk5JmaLFAFzi4uMnngAPF4nKGJCcqHD5NJ\nJLBtm2PPPMOwaVJLpbhhepqoYfC//uIv+OyXv0z2NSWyNxNLS0s89dRhHn/k+wy3a1SyWW7cu5dQ\nCB5+6jBz7TKlro+KyRA6Weo08WlIgccKW6VEcRMcOXSIZqNBc2aGSKdDxvfJEAJN6jQZATLEqNBF\nQSOJwQXWqRGlRECqX3TrzTWodBgkZAsRMgjOYjFJz+fRQkMDUsAisI7PAlV0ItRIoLATH4HEwyFO\nwBBVLGzaaAS4fbF3vs81g55v0YBUacokY/ksU8VrOLs0yxMr32BlXaFZU9B0m+JgBNvMc+il5wib\nK/g3voPm5s1U5uYo+LBYVYmliwyl0zx47/dod31+7/e++Ja3d7haeOgh+OM/vjrn3rMHjhy5Oud+\nO+CNZEY+Cuyhx8cqAWNSyoYQ4v8DDgFvWTDyta99EyFyQIiqPsbdd7+PvXv3/MzjLkNVVXbt2vVz\n99KoVCoIkWTXrutIpYocOXKKmZkLdLsWimIRj6u0agtoio8qVTRCQiwCJBlAQ9LFowkIFNKEGPRI\nbx4Bw6i42LQBv79yygOnaKMQo+N5WOQRROn6Weq0qTJPGpdd9F40cbI0sXGQxDGRGCRo42CTRafZ\n/9tNHALqrNNBYpAlS6P/Yaka1+BRYGg4x/btWRwnZHk5YGysgOOUSSZzpFI5nnrqGQ4e3P8T7fAr\nlQqHD88wOfnOK3XnwcEJ1tYCnnnmMHfd9eGf6/r/OHzorrv4y298g/L8PAlVZa3dZqHdZigMWbp4\nkb033cQ7bryRbDZLPp9nOJ9/Xct7RQjCMERRFO786EdZvv56/uir/4FK3GTLyH7WjvwZTmgx4At0\ndDzpoygqeqgwGKpEZR3TPY7uWUTwicnLXh8BKlU0AiAkCjiApKePSQJxeg/QKhqzZLDZQpwkHUqE\nnEMQkkVBI9InMAoEITptojSIkUAQoPVlvTo9w7wsUCbse1l4gItJHtkXEwuKKMQR1FAAnxbCj9Ds\nCtpKhIRxLTV9nemJKI5pYrfbqI7DQDKJNAxO1mp4QcC14+N4qRSNeBwnDJlzHEamp/ngh3tze90N\nN3DvkSPEymXsZhPD91kNQyKFAkO5HEIICrUap06c4Ja3yE3q/Pnz3HPPg8TjU8RT11BZeIYnnzzG\nTTft4pb9+9k9NcUff+1rhGGaUTnAqn2RYXSydGhQw8EiESqUaw5PPfoD/HaTAdfFD3qZKBlKLrOj\nJoEuPmavpzF+X0rdRsXD42VUVKK4GLQJUXEp0kGg4QO9p1NQI40K5AhJEKFLhyIBLwElUkTZA0SR\nLGIwjaQC6MQw6GCQpMw6Djo2HiFNFLz+GFOKQV0LSA2MkUhkmUhP8vzhR4kndjAxOEwYCi5cfAm5\ncpbr4jG8rsXF48c5ce4c7ywWWW0r5BJFQl8SjyaYTg/w0qllzp49y+7du9+SObyaqFTg5Zfh3e++\nOuffswf+y3+5Oud+O+CNBCNun9/hCyEuSCkbAFJKSwjxllq4j4/fhKr2hmjbXe6774ds2jTxM9n5\nQRBw4sRJDh06iW077N69jRtvvP6KOZdlWbiu+yqFyNLSEk8/fZjl5Q2SSZN6fZ2xMcnw8CBDQ2ew\n7QzNpk+nE6NZP4mQOcqhRVJq2HRI0AKgSc+zwwOKeAT0LN7bfRt4gaRDSAOFBKL/4RJgA1VMonTR\nUVFo0MGnSwqDDIImW9lgGqiiEiBJIkgDdXzy6GTQaLCCxxghUQxCFFpYVNAZwSXKMgJf14jEdWLx\nAp3OMsVinjAcoV6/hGFsYXGxTCRSIgwluq4hRJbV1dWfGIxsbGwgROp1TPxsdoiZmVN/j5l/PfL5\nPL/9e7/HzMwMK8vLnH/0UQ4ODjI5NITr+5x58EGWL13iE5/+NNmREb7zwANoYUg8Hmfntm0MFwo4\npvmqXjWjo6Ns3rqF2YsLZDKjrESzuN0qUgQoEkIp+9bdgqZv4ykuN6RylKTLRt1iBxo5QppYmMAA\nJm0ENZy+T2pIF8kQPbvhXg/dAhlytPEISKOTxCMgz8sMAkvMIogCKj5lBCYRNCJ9iquLTQTZJ0/C\nOr2Evk+DEoIuEXLo1IEul/DxUEihoaFRYxNtJlGphk02sPGNkIQ5xEsL5wmtOpuiUSzD4NlOh/fu\n3cuAbfP0hQsUUim2Dg2xtr7OiWaT3Xfcwd2f+tQVr4l8Ps8nvvAFHn/4YX54+DDl5WWGR0a4aXQU\nPwjQNY1EJEKrVntT7ofXQkrJ9773OPn8LpLJLJFInBMXT1DQTR579ggTk6M4vs+aJ4kaeeg6CELW\ncUjgMIbOBiFe/1pXS03cwMYXHpdChQwK01dMAnsIcQlw++wvgY4NOKxh0mWELB5ZHIoY1DBYxieG\nSxnoAi2iGMQwaBNDQ0P2vUYsJgiosIHPGRwSqMTQiOFiUWcFhQIRNOoEmKxg0KRGnSRZBAIPyYas\no2NTWq7Rrh1nvdrACCNkonEG0mOslBYYEimkUyeVMzFsnaFYjPtLJZaFhqEM4YYhabNXlhFCYEYy\nzM4u/FIGIw8+2CuR/Iix9i8Uu3fD6dPg+6C9XXSuv0C8kX/ZEULEpJRd4MDljUKIDPCWBiOXAxGA\nSCRGGOaYmZnl4MHrf8pR8MADD3L48BKFwhZ03eCJJxY5efIcn/3s3Tz55HMcOzaLlCqZjMGHP3wr\nqqpyzz1/RzQ6SSq1k42NGnNzTyDlIcIwYGNDZWzs3ayuzqKFNh1/HStYxCHNEnWKBDj0ApAqMAGM\n0Xvh9F5cglUCVHq28SYBmxHoaLgoWICDZJAqWQICBhAIBG3qSLJkKWEi6Tm2+kANr+9IEtLpZ2QE\nClO0qTCLJEqHECFssrpJTakTKAZGNMem4STpdIpYLOTaa3fy/PNt8vlJ1tcXqNXWCUObSMRgZWWZ\nTZs2IaX7Kuv7y/A8jwsXLjAzM0OttsbY2B4U5ZUSWLfbIp9/46W1nwXDMLj22muplstMmSbb+oRW\nQ9fZNznJobNneeaZZyidPUsqDCmEIUqnw9OPP442NcWXfv/3X5devvXWG7n//ufxfQ/0OFI1KCPY\nICRFQCUIqaOzRIitxphvd0moKpF+nkLvq6NWCejgYyA5jsIoCpIAE6jRy2R00QhI9rMc3b7YU8ei\nSIMLSGz20iWJTR2VETxeQsclRUATBYcuHrH+vbVIL/BV6TXQSwEdVEIkBhoGERqUCFlD0mWYFbah\nkSaKpE0sdFmtN5FqAjtosFOXaFJyS7HIxU6Hvzl1ik1TU7SiUZY7HcZKJeLJJB/Yt4+YonDfN7/J\np//ZP7sShI6MjLBz3z5OPv002XKZ6UiE+RMnuLSwwPtvvpmqZbHvLfK7brVaVKsWExO9ElAymWXT\n/vfx9EPfQC/NoLWqBLrOWDbF2aV5pC8pEqDQoo7f9/1RuUTAmBSkfEkHnZr0SJAijcsaHiqSFnAc\nGAVitGjRBRQcdPaQZhaJhmArISNEsJFk8JlH5RyQoZfR8tFI9jOjCrBOgEIEG58YDtvxKVBhljLL\nbMVBQTJGyAJtlungI1hilAYmMM0iTdHCJYYjLfTQYSjIEpbr1PU2bc+l7XfJYVNpLNNoVkkDXV+j\n3G1TEKALwZCus9RtM6R2EZE06WyaIAyohpJCIkMy+ctpdnbfffCrv3r1zp9MwvAwzM72muf9n4Y3\nEoy8R0ppA7ymmZ0GfO4tGdVPgBAqruv91H1WV1c5evQSU1M3XeGGjI/vZH7+FH/yJ/8ZRZlibOyd\nKIpKu13nv//3h1EUi1zuIMlk70UWicS5+eaPc+zYA6yutkkmD1KvX8C1V2gtLGIGaTq4jIkxBBbL\nsoqJg8oGUZps0CMWtoEGYBCio6AwBqSZYw4Vlyg+NVSWiQIaeTxsLGJ0iKDi90TB6KSI0DNrcvt/\nzyCkTZQyDgY+Jgo+DmWgjY9Ki5QeY3TrO4iO7WRsaiezs2c4e/ZlVFVj27YpvvjFX6PZ7LC+/jgn\nT/5PSqUNXFejULiBTkfh2WePkkpFSSbd15F+K5UK99zzV1QqCkLEmJ2dYWnJ5vbbP4RhGHieS602\ny0c/evubeAf0sDgzw+BrsmNC9LJEP/y7v+PgwACZyUmWl5dZWVhgSzZLNZ1meHiYJx57jDNHjwJw\n7cGDHLzhBu64Yx9/9Zd/TazZwhcpPM3ikNckCghUWkRpiDxdV+f4+hxb8RHo1PtFtiJJIrRYACx8\nsoQYKCzSi9Zz9D5s2gRIFHw8fGLEURCAiiRCSBH6XhkhOhITwRgeAXUCNGwcTKCEoIyk0M+sLSC4\nQJYsaTqEuLQoEkMhTwZBgMUGG0yTQuDiYBPHJYJCFIV60GYID0uqjAcBJcfhHcUikUqFyPAwQ2Nj\n1E+fRgGkomDqOjvHxnjh0iXm5ubY3Lfc73Q6PH7//fzK3r0ctyxks8mOdJrzlQqPHjnCyL597HwD\nUvGfBCklCwsLrK2ViMdjbNmy5QqZ0jRNFCUkCPwrixgzEqMQjUMsjm2abN66FV8KKpcOEzemaDld\nAtoE+CygYTCGRpxZ2mhUUdDwgAyCYQRLKISExJCsARfpmQXGCKihESVJHA2JQwGbJAbLtHHwiKGR\nBRZQ2YwkTcgpFLL4RAlYQ2Kjk8JAInv+RPReslsRrLCGz1Z0wCRJlAG6VAmoImiwBagQkpF1oILf\nCzeJazHiZpR1u86CtUbGMBlqr1L2l6i2bGIyiyoa6B0HbWiAjqaBlHQyaWaqZXaNjVPtNFjzXdJb\n9mGaXfbs+QW0sv0Fo9WCH/4Q7rnn6o7jMon1n4KRH4PLgciP2V4Gym/6iH4CwjAkCCpMTt76U/db\nXV0FMq8jqSqKydGjS3zsY3de2ZZIZKjXRzh58lF+5Vc+8Kr90+kiiUSWgQGFyckhotEIf/71Jyi4\nBo1QxSHBknRICx2DOCoGJj6SFioxlgkZRbAZD4HHaQzK0K8LZ7AIOM86HWJEiaHSIiBkmggaPil0\nfKCCRb1PZ+ygcAHYTIiHRQONVZJ0kczRJNrPviRQWdWy1I1BNtYU9Moljhxfw/M04vFhUqkoQhS4\n997/xW23XUeptEqno5PLXYdlLdBuHyUaHaVUarC+rvOv/tUXXpdRuO++B7GsQSYnexq4QmGURx75\nK5588rts334NitLlIx+54U01SpJSsra2hu371JrNK54jl9ENQzrVKsWpKRzbZn15GadWwxCChbk5\n/s1XvsLBkRF2Dg4CcOGRR5g7d47Pf/7XefrhB4nVGgwVclxab3Gq5rNBhpACAT4x6TFMmxFiFGlj\nYjCKygw2ixg4QAOPJCEpeuqJGFABzgFbgQCJwwarDABbsPpcApdlMrik6BnRdVDx0FBxCfFZA9L4\ndFHoEDKIxMdkkQQugjpRHAbx0Eng9qXjNQbwcQnQWSVHE48oEVRcWqh97kkFjw4hCSRN32cqkaBm\n9x75qKpyenWVbK3GO6JRRrJZLM9j5tQpHNcllUxSqVSYmJhA0zQWFxdJBQHxaJTrb76Z2fPnuXjp\nEq6UtHWdr/zWb/29lRiu6/Kd7/wNZ8+WUZQMUtrE44/zm7/5cUZGRjBNkwMHtvHCC2eZmOhxxE4e\n+d8snjmGbuTorkQ5ceElarVLbM4McL5TYkgNiAUqLhrjpFnFI0YcmzgLROiyBmRoodGiTZEuFlBE\nsBXJPDBPj0ScIUINqNAFXHSiNAEdl3FiKKh4fappnRgpOkTx6DBIBZ0EHjFMbLpouMwgiKPg4FBB\nomETcBTBKDHitCmjM0cejwgaIZIBNGwiPTqs2iFByJzSZMXpUvPqJDWfCSNOQiokojF0u8uctcR2\ns02+UKRl27QUhfg11/D//OmfMjc3x7f/4n9SxSQ7ME0mF/Lxj7/vl1Li++CD8K53wS/QNPjHYu/e\nni38Jz95dcdxNfC2rkzNzb1IJjNGGAY0GvPcfPMWRvt9Rn4SeuUE93Xbm80Kpvl6Fn8mM0Cr1X7V\niqrdbnPkqadorp8laUguHHmWmVIDxzGpul1sqaBgoDNOU14kwioxfHxatIgRQ2Oq/3IwiFClTowk\nZp866mHRpsMYKilcKlg08ZkAkqh9YWeIjk6SgFVWOYhClRgXUFjBpouHpNWXGepYmKiRBB5pLDFN\nJD5Ip1MlCCJ0uy6atoVUKkWz+SwXLqjMzh7DMAIeeuhRul0VTdtFMpknldpOp3MJ236ed77z/dx4\n47Wvu+bVapWFhSoTE6+scuPxFB/+8Ge4ePF/8/nPv5/h4eE3tZlatVrlgW9/m87KCu1Wi1Mvvsgd\n119/xZRtvVbDSSQY6XfjPf3iiyjVKptzOaSUnG00sF9+GXVoiER/XLs3beKZc+f463abd++YJojr\n5BSFs+tL6GILqszhU0ASEjBLlioR0ji4/VBRoYjGEoIGcXyaTAF5BPNI1jExyLGIygZNInSRtGgR\nR6dCQBmXKmkqFDEJ6fXsDZEk8ciisY5GrzWeiqBNDLBQ6aKSRiOCQENjBRuXGCE+g0iaKEjOkyVC\nghZtDNbxiSEI8XAAQYBOTx7nAqeAI5bFtGmy3G5zzrIY2rSJ3ZEIRrm37ojqOtfkchydnUUfHOTS\n/ffz5N/+LbFUisGpqSt1W9M0uXb3bq7dvZtaq8WCaf5carjX4vnnD3P2bJvJyVfaCtTrG3zrWw/w\nla98EVVVueOO99Fo3M/588/iugpnjj1GVB1h9+geFFWlFqYpuwHn/XkGIhEmTZ2u26LeFSQxkYQs\nUUUnhQ7o7EDHpEuMOl18XsamQRUbh14J9rJapoZFsi/TNfGZo46GzmZMekWsDgJI9cnlFTTG6bDB\nEho5lglRaGBgkUJnGp1xBGs45IAdBH35cJsGaZJYbMEngUYRFROPRTwUQkwidEOdeATePzHG0UqH\nTpDG0KKUjTal9gJZP0ALPVwsapjUajUUIbjQbvPuO+9ky5Yt7Nixg/e+970sLCwgpWR8fPxt1yDx\nzcJ998HbwVZpzx74xjeu9iiuDt7WwcgnPnE9J0+eR9c1rrvufWzfvv3K717rOXEZmzdvJhr9Aa1W\n7UrZxfc9wrDG8HDiyrHNZgXb7uI4XXbtmmJlZYbx8Z752UvHj+PXFtlZjOHUW7ywdJLFeQeXOC4S\nlQqg0WGFYSrkSKILF0U2SWKwgEO0n9L1CakgKdNCJ9IX2/pkkaiEtFAYwidOz6k1SoiKwMVD4pFC\nR0WlQcAKChZZ1tEI6ZKh2etkoexAarOYw3upl7poWpIwVIBxWq0TCHEAx1nHdc8DCYQYxTA8otEU\ny8shul5D0yxs+xSRiEImM8Hw8DYymSLx+OtfPr7v0zPQfTU0TScaTTA+Pv6mSv/CMOS+e++l0Gyy\np885GI7FePDpp1lyHDL5PCKb5e7PfIbHf/AD/vzrXye8cIFhw2AtkyHIZtEiEfanUpyfmWHX9DSO\nbXPs+Eu8eOocJ6uPcm3cRI2qBKZB3ekRC7uEOIRkUGkRR6CgE6OLgcRBQcPBptprM8gYFilCVtEp\noxBjijhJkgT4FLHokmOJYWzmOYUBGNik0HBQWMGnSEAKhSS99XUbiCOZw2UCHYGLgc5Wosxj0e77\nTEgkC0RoYRClQa7v+pojQZ0kyzSBgBUssvTUPXFgt6qSVBQc3ycnJU0piRYKrJomUzfeyEChwO6B\nAY489hhxxyFqmmiKwvrGBt1ajc/v2MFAJkPbsjhx6BAXKxW2FYtXAj6AuXKZvR/7GGEYcu7cOY4f\nP0MYSvbu3f6Gm+0999xJhoZerYrLZAaYn59jZWWF8fFxIpEIn/vcr7G6usqRI0d48QdDqPYIQlGQ\nQLPRJEqUOVtlMOzQDQSO9PrmYgIN8LD6S4AUITEM0n1B/stMAiYaKRSyhKyiohKwQI+sPkCvHV4C\nDRObTj8TIogQAm0EHgkcbAIEKgkyODisAhEsNObIEgBNQubpYAJFQgQGKpJRBCfpogJxonjUUPCI\n9S3XDhNSx0FKgavGebHcIqJtQyp1AmEiRZ62DBlXLnFtOkGj5bNdVVFjMabGxxnUdUYUhVMnT7L/\nwAFM02Tr1q1/zyf3HwfqdXjkEfizP7vaI3mlTPN/Iq5qMCKE+BpwHfCilPLLr/39gQP7OXBg/5Wf\nLxtr+DWx0wAAIABJREFUPfnkUVqtLtPTY9x++7sY/xFnzkgkwmc/+zHuvfcBqlWTIABFafLJT76X\nixcXeemlI6yslKjVXDxP0GrNcPvtO9G0RebmKnieyeLFp9mZE4hWyHjxGk7N/pA8czT6r6IMBm06\nhCyRQ+8FHbKJRhSDHBFsXiZGhBLDWFhAlzx6P8E+hN9fNRfoEkNi47NKhy41BA5+T0oI1FBpoGOR\nxGOEGql+A/kKrmoSBAPoyhJSKpRK4HmbiMVGaLcvEYZlFEVBUQRhaBOGIWE4Thgm6XYX8H0bw9iG\nps2hqjA4eB22fZ7x8SKgY1kr7Nr1gddOC/l8nkRC0G7XSSReyWuWy8ts2/bmBiIAi4uL+KUSEz9C\nftw1PU0mmWROVfnwpz7F6OgoRw4f5uKzz2I1mzTDkKjvM1sqEfN9du3cieZ5WJZFGIYcPnyMs+fK\nNKs+caOIsF06jSovGA4rbogmARx87D57I0ETyOERQcElRo00DSQN8hRoEMHnAlE8UmioxBnBQgId\nDHx04rRJkKLBOA7ZftfmFiEVQEFlBY8GAh1BBIUaSdZJI1BYpoNghWlCPHySCMqoxImQxMSggWSc\nMiGCJQrYrLNOCShiYvT9bSr0VDjvo6cYshSFqqriSklaVZl1HH7jN3+Tz/z2b/Pd//bfQFHYdeON\nnDl2DGo13CBgvtXiSx//OAP9vHYiGuXg1BTrjsORUolBRcHUNMqOQ37nTvbt38/99/8dR44skkr1\nXJFPnXqaPXvOvqF7wHVdEonX31eKouL7/qu2DQ8Ps3nzZiLRGOnMKAvr62iOQ8e1qYQ+HaJUvA6D\nSgwn8PHooooEKCpqYCAUgRPqqIQYqLicYBsNhvs6ORUBKAwCJUwmCKgSUsIlQCGKylYkc8AKPlEk\nEhVBFEGSVUpIRoiTwenpXpjARiOLQQ6fgBm6SDy2AR2yGMRQ8PDxSNDCJ0aXbt8NttcYr46PA4yi\nMIJgzWozFyi4soHlqeSjSXQvQig9lrUaudBjwjTZm05zrtvFCwKyo6MMxWK8fPQo+w8ceO3l/qXE\nX/4l3H475HI/e9+3GtPTUK32vt4O4/lF4mr2pjkAxKWUtwgh/rMQ4nop5Qs/7ZiHH/4+Tz01x/Dw\nLjKZOKXSGn/+5/fxz//5J15VSpiYmOAzn/kY9977V1y6VCKTSbOxUeXOO9/P0aP/iaUli3h8hCBY\nplZr8I1vPEc2G2N42ORXf/W9pL0RYhsNXD1NtdHAbdbZrCqcC5pESCLQKVDBpkmiZ3tGmZAOaRLE\nUACFKHk2EWcWiUqeASr0mmG10BCMk0RBIkgRp4HOCrPE8THopX9tdBaIoDONyhAS8IgCZVQtRhhW\nQSwj1BS+l0HXN6EoAtftVaulVAAPKVfR9SKwQhhqqKqJ70OrVUXXwfMsdB0qlVlisSRLS6fJZlt8\n7GNfZOLH+CKrqspdd72f//E/HqLVGiEeT9NqldG0Mh/84P/1D7ov1tbWePHQoSudeQ+84x10u10i\nPyYLlk0mWXNdxsfHcV2X5x95hFSrxQc2b+Z5IZhSVTYDjmEQdDrMOQ7J0VGajQZLyzWcto0fjbFz\n8gDrl15kUC3QLc9jRk3aLR2FEIUqbRJ4+JSRpFmniE4XHwePMhoKVUJaXCJBm01EaKPhYyAIUfCJ\nIPraKoeAKg5b6TVRW0P0OQgK5wELBR0VgU+TBFEmUBH07NeyVDGpM0+ckN7j2yvcCGwEBgrtvt1d\njTISlw4xIIVFTuhsTSWpuQ7Peh4138fWNEzDwBGCXVNTdHI59t51F1/4l/8SgBtuu41nvvtd9o+P\nc8sHPkCj2eT00hJb43G2vEYZY+g6o5kM7/vMZ6hVKljdLtdNTjI1NcX8/DwvvLDA5OQNVzKa2ewg\np069sXZUe/du4+jReUZHX1mlO46FqnZfJde+jOnpabKDGSKOQmHbNs7PzBBGY7S6Ab5QWRRpdGlh\nEEVgEcgNloMYNkO0wxqCkCjT+KyTpttvJGmgkSCCRRsbQY+gnuvnq1JsQqWGQReBRhqfOiFdQqJk\n8VBYpUmbEUYYoNeJRkWQZ4OXSaCh0KFJkhS7EQQ49NoqSrr4aChoqHRp0cYlh0KcFqDQQgPG0JhA\no4NLJQiQbhNVWowoCTx3nU4QI6YOs2wbSNpcYxi0bBun1WJ+ZYXd6TTHnnwSsW/fG5qXXwbccw/8\n2397tUfRg6LAgQPwwgvwgdevA3+pcTUzIzcAj/S//z5wE/ATg5FGo8Fzz51hcvJmFKXnM5jPDxOG\nAY8//hyf+tQrmqx6vc499/wNirKZAwduwfc9nnzyBQ4dOoxhZLn77o9Qra7x7W8/iWHcTCpVxPNq\naFqMb3/7ce64ZStrZy8xlBvk4tw5yq6OyiR+vz+ExiojdJhEsA2Bh0+eKJfw6NKgQ0AMFZ82awQE\nCGL49CyydCpEGSaFRRsNid93NwiJsk6DJgobRAhRMIj0/SV8akSAOlDC90PAwjD2I2UZRVFRlJAw\nvESn4yFlEinrSLmOorRIpQaxLB8o4TgNPM8iCGIIoRMEdSAgFtuO5y2Qy7n84R/+Lu95zy0/cfK2\nbdvGv/gXKY4cOUapVGbfvmGuu+5D/2B3ze98/euM6TrD8TiVw4f55uHD3Pbxj9OQ8oph2WWUajXG\n9u4FoFarYXge9XqdkXSarSMjrK2sMGma1C0LPR7HHR8nMjDAU+fPc3p9g5YnGBnciaGZFDcd4NTp\nx+i4OjE1pB1v4lgJEqFOlzU0lingUsLgYp/V4RNHR5LHpspQn4g8gE+MCMtY2MSIoqD2g5AmGjE0\n0sxjEVAhj00OlTJQJ0Ci0cBFR/Z5IRIFnRoBKQJUBtigyggebUJ6omGFNi0ssgjmGGONHUSJomNh\noyGYRxCXIcvtFqqmMaiqrAvBZCRCNJUinUxi5HJ0Uyn23XDDlWu8b/9+rG6Xw9//PkYQ4EjJ9C23\nIM+coWPbxH+EkBqEIbaUjIyMsG3btlfN6+zsHIYx8KrSqhCCWGz4Dd0Xt9xyM+fOfZuFhZdJpwex\nrDa2vcQnPnHrj5WdR6NRvvSV3+Hf/8GfQCWL5Tucr1ewFCjEtqMrMebt8xjhEjGpkY9ITM/GUhZJ\nB5J4qFDvM7c66JgkyRBBJYogQZcKLj4eAhuVBiEmHka/6UIUQQ1BDZMuaWLYuAR0SWKwjS7NfuFP\nEKDSIEOZkC4DCBK0KKNh4uBjEMElRMHGxqBBgQ4RWnQRJNCxkHRoETIImLho9Ez2CmGFAX0LmcQo\njXadjaBOSTbJRFOMxlxWXZuU46BHIuzeuZN4LMbpixcpPfMM3/3Wt7jjzjtJp9NvaI7+MeL8eZib\ngw9+8GqP5BUcPPhPwcgvGhl66jjoLTB+ql6sXO5pUS4HIpeRzQ5y8eLzr9p29OhxPC/P2NgYzWaV\nQ4eepNMRLC+fodksMzh4hm53jVYrz9jYEEIo+H5ANjtGs7lEYMaoxQ3qSzPMllu03XzfUUVFYNLF\nQ9AhjcIyAVFUfEKS+JSo4ZNkmDqD6ICKg2SdGoIcgigBSaqoGAgEkjo9EpyPggPUiNEgio+FLgKE\nWMOjRSgVVCWKlAIpfaQcwnXnMc0EipKl03kRKdP0uqEEgI6qhuj6Krq+iGmGVKun8bxBwnAMKVsE\nQQkhrkFKi2p1hnS6w+/+7m/91EDkMoaGhvjIRz70s2f658CuTIZsMgn0Mh+JapUTzz/PloMHefH5\n59kxPEzEMFgul1kBfuOdve7A0WgUR0rMaBTHddleLBI1DGbX1pjzfSJhSA4onTqFAC7UVyiIJGZ5\nnvXyJdxIAi05ghBDDKZz3DJS5NHnHsBstxgOOqhhkwuYtJlGsq0v1W4Qp0OdSyQZoU4HH5cEWWzK\nSJZQGAIU6tSwSJNDxQY80rRIABd4GR8FhWFgCJ8mklNAF4mLh4Wgi4qLSoQoTp8vUidClC5loqxx\nDTBJhOMUsVBZx0IB4iTQSePQJYIZtBhWAjwZ0oxEOOT7DHkebq2G02gwMDzMM489xuTUFAMDveDh\n5ne9i+sOHqRerxOPx0kkEjz/3HMce+AB9k9MoGsaQRj2MibXXXfFXPBHYRg6YRi8bnsQ+K/b9uOQ\nyWT4nd/5DMePn2BmZpFsNsn119/N2NgYUkouXbrE/MWLGJEI23fsIJ/Pc+DAAT505808/vAPWFq8\nSOBWiBvbkLaDwCajDLOGAeI8kzJE0112mibdbhc/dKmzygwQsp02Lg26JPtLiiYmNTpMATVM0uhA\njRUkKj4ukhpRHKZQ2YYOeFTp6asStGjR7olvCXDpkgQGgQySPB41PDaYR2GcEBOHkCh1IjQZQyHO\nEm0MZkliE8Ukd6UbeE+jJYFxadH2Nmg2eoFPSoQ0wzJqMIYMYgSex0m/w0g2Q7nb5fnZWWKpFO9O\nJjn7t39LeWGB3/jSl37sIsN1XVqtFolE4scGhP8Y8F//K3z6028vk7GDB+E737nao/jF42pOQYNe\nOwagbyT6Gnz1q1+98v2ePXuQ0rrycxAE1Go1Go0yg4OvlgsuLpZIJgsEgc/zzz+O748Tj0fpdmcJ\ngk3U61N4XhPHiVKplEilMiQSUYQQRCI5LCvky3/07/j9f/1HbHhJQpqMKQIpFToyxCaGiUKRgDIw\n2y+qpAhIohJSJ04KgU+sX9sP8VihQZMkCtBEcnm9UQXAIY5NF506WaSaRhEhRnQC37fBXULXcqTT\n11OvP4vvTwEmIHCcEkL0jNxgAkUx0PUIQeAhRB7f36BcLqFpMSYn97GwcI4guAQEqOogup5CiDhS\nHiMWS76pctyfF5cDkcsYyuU4v7DAx3791zkzNMTRp57CqtWY3LGDX7vtNgb6vWpSqRSb9uxhdm2N\n1YUFJgcGGEunafo+3WyWeqNBYXWV9+RynF5dpeu00R2LVLrApkSBlVaZFatEPHMNqVyRdCLPaDrO\nhOJiOhamSDLfimGyCQ8fExWNAVx0XExi6OjEcNjomU6xBcEcIbN4eIRoZBgmQa9ba7tvYVfGIE5I\ngZAavYdiDOgAJ2jSpNinO2u00eiyjobOSxRRGEBSxWUM2AS0UKkjkLT5/9l70yA57vPM8/fPO+s+\nurr6QF+4AQIkARAESIKHTB20SEmWJUqrlWVrFPbOTMjembU+7Wwownasw+H1jGMixrO2xvbYonXZ\nsg5LtkSbpChRvAmqQRIHiaPRjb6rj7or7/zvhyyCokTrskiQWj9fqiu7joz8V1U++bzv+zwCDRsp\nTEI8ClLFRUeKAvV4g1IhTysIOHrgAPOLi4iNDQY1k2HH5fm/+zv+r+lp/uATn7h8VWyaJtX+SDTA\n9UeO4PZ6PP7QQ1hS4sYx2w4e5C1vf/srruvu3Tv5p396miCYQNeTE1cYBvj+8o/82chkMhw7dhPH\njr20LYoivvz5z7PyzDNUTBM/injy3nt503vew5kTJ6h0Orxn/24uBj2ei3SeW5uhJ1MYMkeglsmL\nAkIq9LQKBOtUM2nMcoFWu43fbLI1kCzILhkqrFJnE48QnzopCjRZJySNS54QBwWTmGUMklCINCYa\n0MLDoEgBnwUsHqWMTkRMnTWa5FGJUYmJqPWnqopAig4KZylisomkikMVcJGAye5+n8gce4npErCM\nhUUSUeH1PW/SdFHiGkJREIpCOrJYjRpskTaeKHJJMZjYs5czzTrX79rFRLFIu9dDKRRIOQ6Pffvb\nvP2d77x8zOM45qGHHuZb35omDDVUNeDYsWt405tueVWTmX/acBz4n/8THn/8hz/2tcR118HHPnal\n9+K1x5UkI48B/xb4PEkv3fcNNH03GQHY3PwUCwvnsawyTz75DN1uRLt9nquvLvDII49x0003AFCt\nlpid3cT3XXo9nVJpkKWl54Aq4+NVarVNokhDiC6dTg9dj5iaSoyber1l9u07xr59+/jo//4RfvVD\n/zdbdA1bRmwGScOhid73XEwcUTPAlv4AqIbGOLBMA52QEjEaNjYdJD4dQmANgxUCiriYgEvIBmtU\nEKKAaaZwXQddH6HbUbDN7ejKVvxgmm57ASEGkLJCItH7QA4pnyTxZm0SxzpBAKpqEgSbJFwvTxC4\nXLx4El3XMM0yQlTJZIooSkQUeQhhUSgUcRyHBx/8FidOvICqqhw5sp+DBw+8JuFY3zslFUYRqCqm\naXL90aNcf/ToP/vcO97xDr7q+zzx9a/z/KVL+FKiVypErstEscjBgQE0RaHlOBwerFDvuVxcPUO9\nncMyFKppldK+EjLOc3r2PBXN5qw7yx4iGlJBVXIosY2hptEIEJEgyWgOadAkj0EWjYgZYlK08UgT\nsJOI05gILAQmNm1WAIsNJlGpoFBCZ5iQVSJmSBJ5N2hSZ5YVtH7BJsDCR6UKtInI0sEi6RtZwCYg\ni4qNAqj4KCAtVunSwCeDiSOgLhUqoWQLCrqU1NsBFXsnmsgzW+tRlpByz/J3X/oSv/zhD7/isVYU\nhdtuv50jN95Io9Egk8mQ/R4i+d2oVqu84x038Pd//xhQRkqADd72tkP83u/9mB+S78LJkydZO3GC\nI1NTlz83jufxlb/6K3QpuX3HDh48cYJyNosMZ7hKk8xGHQrSYCm6yKZSxFR1pBYzag8hVFCkQ7lS\nwRoe5vjZi3TcLrGoYsgiLuAQoVInTchekqmkJUIqqGRR6WHi08PGJ6SFTrnvC+RSRDBCEx0DiUkJ\ngwUu0mQLERL6PrqCZSQC8AioIxlAYwITh4gMAZsE9BB4RORpMU8BnTlUUvSQRNSBQaAku7hCwY9s\nIsBXegyVRzC27MN3PcawCUWHfVWDbf2uyZbnsWNoiFKlwvHnnoPvIiOPPvo49957irGxw+i6SRD4\nPPDAcwghuP32237yxXyN8ZnPwJEj0Pfse91g69aEKC0vJ46s/3/BFSMjUsppIYQrhHgImP5hzasA\n73//u/jc577EZz5zD6o6hGXBjTceoVod5y/+4u9ot5vcfPPNXHfdtTz++Geo122SAgisrS2SSg0x\nMbGdbHaFpaU2rvscQSAYGroewzCYnz9BpdLmjjuSAuLhw4cxlDqjxQmiIGK10UCLILnGjC47bA6R\n1Gd9Iobp4ZLQhHVgDZMQnTYmESl0BD0qwCXSzKJiEaOTYT8dDHw1RxB0gA2CoAZYdN1VEtNvA9c9\nTcwAcJHklJUj8XpNhODEKNxCSpsgmAOyCFHBMHYi5QwwSBg+RT5/LZ4XEkUhqVSFXu8ipinZsqXA\nP/7jt3GcMoODuwjDkC9/+RnOnZvjgx987w9NPP6XYnZ1lamhocv3zy8vs+PAAQzD+KHPtW2b9/3S\nL/Fzd9xBrVYjDEM6nQ5P/M3fUD9/Hq3fbxKEISXbBk2jrhuYhQkUxSDurRITMzEVs75ZpzG/QslS\naHYCZn1BJAM05ulF0CUk8WeN0WiQokWJEUxM2iiE1BlmjRgNB0GHAJsQC7Of5qqTQkOSp0NElmR6\nyiCiQ/KpzSOYZINHaeGSAVJY5EghUSjQI6TLGhKdDClSuGQos0iTLcQIukT9Qd8FTCIUiDtstQYw\nVBu12+Abx0+hxVso58v0AGSGOMqz0bnAMw8/DP8MGfnuY/6jek8cPXqEnTt3MDMzQxxLtm6dYmBg\n4Ed67j+HU8ePM9kP4gPwXJcHH32Sv31sGs11OD8yREoNGLJMbAJiTZBSFAYUE92LCfQNRge3s9Jb\nJXY2aDkRrtfBMA2i2CTwk+bRSDYJsBEoJD67q4yhUkalSUAInMNmhiw9MqT6rrqSDg4NcpTxaZDD\nxyKkRJM2Ji45bFQ6DGMwiYogoNt36l0GXDIM9Qu665hU8YiIiRCsYVBjCzGGptEOQaNHCw0fkwwR\nbTwKRORli0WaNLFIa2U2mm0u6D2kksLOhcysrlMpqXRsm81eD6taZbBapeu6mN+1vmEY8s1vHmfL\nlkOXFS5dN9iyZT8PP/wEx47d8IYo2UgJ/+2/we///pXek++HEIk6cvw4vOMdV3pvXjtc0UrZK43z\n/iBks1mOHTvMmTMbDA7uJJMpsLh4gW9+8z66XZU/+ZMHeOyx57n77rfw4Q+/k7/6qy/Sap1ESigW\nVTKZMkIoqKrGLbfcyOjoXXz5y39Kt3s/y8s211+/h9/4jd++LE2Xy2UmJ3OcPfkCvpfBiWK6NPom\nZ4n7oguMkFCBUaBCUnaJSehDmwwxOc4jcdkDVJB0oN+uOoLDDCUMqqRxcOOAOF4BxkhSbmwS9eMU\nUOubhpsk12NW/zYDOCT9v2eBEaQc6G/LIESMlF0MYwAhUrjuBRTlPEKMoesb9HozSDnP0aNHGB62\n6HZzTE295OmQTh/g1KknmJ2dZWpq6sde5x8H9UKBjbk5UiQUKzU2xpt+zE6ujY0NHnzwCZaW1lDV\nmLjZJJCSKI5RFYVyLsfK5iaNdg8tN8L27ddy7sIpLtUFz33LxbKeI5MJsQsF6gsLlKVOmogSm8yj\nELIHSQmDJQxmKNHGIkajh4NFgEIenwoqLyBYpExAiM8KDYr9huQYaNLFIsRGJyCPhoKP6Heb5Ihp\nA1UCLOoUqLNCD4cCAQvEOJh4+LTQGSaDQBLhEbCCoIVGQIoO4yhsQcchYppmKIh7PcqKhSN0DM/A\na7XIGAbdKGKlqaEaJsGrQDxLpRKln+LMYhzHl4lIFEV84esP8NhZhzDYgRfMsjYfstqZR1Ha7M6k\nWQlbtIRKPpYESoCl5bnU7rDuCxq9OlcjKEmFbujj4FFD5bCRxws3WZIesZQM4tLou4NU+wrERSo0\n2IrspxLFzJMkeafQWabHJh5NbDp94zkLi5gOPULyCGIiukgEJh4eAZBGoYFCCwUTnwv06PQTkTqE\nLDClR5TwSKkWmzKNHYGCZEitUI8j6nKFafykfV4k6pwVqnQjk43VVapDR1FDC8Vq4lSzLAG7Dx1i\nZHQURVE4t7rKte961+Xj7bounicxjJeXxnXdIAw1ut3uG4KMPPxwoj685aefVvFTweHD8NRT/0pG\nXtdwXRfbLlMqDVGv1zhx4jSFwkFSqRDTbFIu7+ev//o+fvM3f4WPf/w3mZz8HNPTNTKZm3niie+w\nsQGmGbB161X0ehu8//1v59//+19GUZTvu/o+MT1NoZhnxX2SfKyQEIhEl3jR51WSZI/kSALRIKEP\n8yQJvj16dFDosgNJGkm3X/3PsoZLi5AuENAhokEcByQdA8MkNmhpkjLLnv47qP3/X9N/h27/cR6J\nMXWRpIC0DKwCIyhKFlhFVXcQxwG2bTE8nKZWm8W2C6RSKpOT13L11ZOk0zrnz4c888wpcrk0IyPD\nmKaJrpeZn1981cnIRz76UWZmZmi1WpRKJSYmJr4vDfgH4dSp03zqU/dRKu1mYuJqms11Hpp7gikL\nXqjX2VEosL1a5Svz84hAsmt0G7NLMzw+s0jDuBbPr+B5LYSocvLi86SlQYmYq7F4BIUyQ3Tp4tFg\nCI00g2g0GWSTNVxUXApYaJisYdCmiMIuAtYw8PEBnx4qHQRdhghQ8VnDZxWJjsIyEYMIAhRcJFuR\nbJIQ3gnq1GiQRusnQqdZ6Y+TWggy+Ogo1MggGMUlj0aOkAY+HgZVnLBFQ7bQjAARhJgyj+6HiDjG\nVhQCx2HGaXHH+DhPPfUUruOgKAo7du68olbgvV6PS5cuATAxMYFt2+y+9lqmv/hFBvJ5VlZWeHa2\ngRBTqEGdgfJuNppnsRTBkBeT11z0dIrhOOZS1GM9ytP0R9gMbPJ+gy2yzCZtXJIcqBVCGoQoYciE\nnkfxlhlAINU0M1GEisJFFFZR6DCEQxENA4GKygg+Z8liEeKi02AADwuNYQwcfFbQiBA4eGj0EMz2\np2uSdBqBh4ZHlXXy6LjEbFDDIYdHizQRNjliW8UhIPJdcoqCkBEbUZecOoAhUlixwmqsYKfHcMIs\ni76Hox5C1ZqE0SpRNA6UeceH3s/86dPU2m2aCwu0gLGDBzl0+PDlNUiUMBXX7WJZ6cvbfd9F1+Mf\nWKp7PeG//lf49V9PRmlfjzh8GD7xiSu9F68t3nBkZGhoCCm/jZSSxcWLaNoQqmrQam0yPl7uf0EG\nOHPmBW688Sgf/OD72LNnmkcfPcHOnRqbm2cZHt7G+vo0Y2M57r77Pd+Xl7GxscGnP/lJ7v/0p/Fr\nNZQ4pkHMGLCThAKkSEozs8Aa9OdmktO/6P+dRMb7tLEQZFHw+8N6HhoDhGRwKRCTx2eZgDKJ2lEm\nUTsWSWjPi3m9FsmSdUnKMSoJ6aD/uFT/eWP9PQHYwLK2YBgZQOA4s1QqDr/wC3dxzTU7cRwXwzDY\nvn0rpVKJj3/8D7h4MUexuJUgWOL552c5duwQUeSSSr36VtCqqv7Ejo9SSu699yEqlX2Xzdjy+QFu\nePNHOP7QnyPyJucWFoiBzNVXs9HRWM2WOL18mmbmCEQVbD1HFPloWoYoHCEmwqfOHCEuKQxs1L4Z\neA4TgY6DhSBRyEJgEpilxxlcJBV8uoRkUPppJTDOAM9QxkKjRwqVHDku4HKBFAE6Nuvk0RCEbODi\nAxEK54gZQhCi0UWQwmErIYu0KaNS0VN0Y5XlKDmVpZUsKFl6UUQsczhIenQZVTMMqR1CbwMosClV\nrEiS0nVavTautk7z6af571//OtlymYNXXcVTisKRO+/khv4E02uJEyee4UtfepAwzCKERNPu5T3v\neTNXX3MNZ0+e5PjZs2wuLLHZC2m7TabKI+RyZS46KwxqdTrYzMuAPSMjpEyT2soaSjxFt2OSNlSq\ngU5O5okQGOioaEh8HBqsxgGGTOIZVCTNyCdLiiYqOiEeNh5Jkm3ctyZLCm5pDFax6ZDtJ9OsY6AR\nU0DDRmMdlS4uCj0yaH1qWkYhg0aDUYoU6KBhY2GTw+McG5TpMU6aiaBDGLq0MxXi/ACN7gb5UNCT\nBlG8TE5RuYBgVdMpKAU2wx6OMoUu8vhBjONcYv/+G+l0YGFhmf/tYx9jZmYGx3GoVqsMf0/Tgqo+\nWyreAAAgAElEQVSqvPnNR/niFx9neHg/tp3BdXssLT3HnXceek36yv6lOHMmUUbuuedK78k/jyNH\n4CMfgTh+/RKmnzbecGRkeHiYgwcnOH78aZrNOlJmaTRWsSyXiYnEiVVRdBwnCftSVZXDh6/j8OHr\ngCT2vlarYRgGlUqFdrvNffd9g5Mnz2NZJppwOPnoo1x85BEG63UarRbjJAN5ZRICIkhO/QYv6RAO\ncIGkayPs3y+hcADJCuvMs4YkhSDAooqCRoMmEUUENj6bJCSiTjKWO0ZCQs6SLJPsv7pJMhXd6t+H\nREWJSEhKUhxKtBoDVX2WIDAAE0U5z9DQJn/8x7/DsWM3ceLEs5w5c5FcziCbzXLffd9maOgAtdpZ\nbDtFNluk06nz5JPH2bNHZ9eul3tHvN7Q6/VoNFzGxl6edjUwMMLe636O9773FhRFIZfLUS6X+cM/\n/HPK5cOcW/kkVjhMqxUhpYNtZ2g2m8RS6Se3jtCg0/d6EAgEFhARoRGi4DJKshovADYRFholFCR1\nPAroOAg0AgIs5ihjIvBpIgn7Vt8WaVIM4JCiQ8AwIRmSVF4NldOEfZ+SEh4KNjE6bWxabAIrRHQD\nH8M0WI86hARYIsCPJJrIEksfjzYmA2wEa3R1SYYYTVvBUcdw1RTSCLHMJlsNgVqvc9fUFDP1Ot12\nmyN79/LE177G1u3bXzZZ82qjVqvx+c8/yNDQdZhmQohdt8vf/M39/Mf/OMz7PvQhzp49y71f+SrB\n9Aq2USDWQi6uvUCn12CLnqdYSpHKCDzLwjQMEBrG4Ah7d1xFc/lptIZEUQRRnMYgREPDwiPCYgOV\njN8hR4gQKo5UcLEZpcQiG2wSohHi4vSHem1MIKDJID6FfnG1i+AFMtSABh00VDbRKRDSZR6FASRF\nMnTpsoIFlMgi0YlZxUJBRzJFjwAFnVZSfpEm+bbHhhEh7BwLTpcBs4jvR6zZZdZji06oEXEVnlon\njioYiiStBlhqHsPQ0HWHOFbRdf1lsRuvhMOHDyGE4P77H2N9PcS2Nd71rus4evTID3ze6wW///vw\nG78B6fQPf+yVwtAQFItw+jTs2/fDH/+zgDccGQF497vvYmJimi984R+4dOk0+/ffxLZt+7EsCykl\nQbDB1NThV3yuruuMjo7S6/VYX1/nL//y8zSbOQYGdjEzM8/0Qw9QiC5Rchyqqko9ivpuDS+d4oF+\nRTchJCZJacYk6XOoAVOo7MLGIMYgJmYFGOr/xBj08JF08ciRKB4F4ByJsqGSNKh2+u9Y7d83++9c\nJWmP7ZK0z7ZIlJBJEnXkPDCGYSgYRo5KpcnAgM11113Nxz72USqVCv/jf3yaRiNDoTDE+nqP48e/\nxPr6Ajfe+EuoqsGzz04TxzmkjGk0TvOf/tP/+bqXYJNyksD33ZfVtKMoRIiIXbt2vazZ8u1vv5kv\nfvFh0mmTpaVL+H4K09QQYhDPa6Eoddx4EJdlzP74bosmBnY/E8ZD0qFAh6QQlhTUYkIyWBRRqAOB\n2AQJtpgCuURMBY11BA4mGXQqQNxPNkmTIsMGJgPo2GhUcJHYrKHi9LtTICaFR44YA50RAjLAU4SE\nQRebEEObZSNcxWE3hhwiYgUbFRsXU1oEbmKwd0QLwFpi3c5QMRSKls53WoKFtTVUKanm88zNzXF4\n3z4GVZXz5869pmTkuedOo2lDl4kIgGWlEaLCqVNnuOWWY+zdu5eJiQlOn1/ha199nC7jpI0tBLgs\nd8+QMkMMV2OgUsELAuoywvPWEKuPo0UdNkQHM9IwCFGFhpQR6/TwKPf7es4xiKSjalyKDMawQQpi\nJNtQaONho9OghQ+E1BmgSx4Q5IlokUZSJWQdgyyDtGiygcCghE0bhwtIRlDIMESKNl1iIlRU8iiM\noSKQ+Ch9Q7uYOjlsJCY6gd9lKbbIjb2VpaBDp+2SKQ2xdfgavvP0V/H8RbLpcVqdDkFUR1cNPHed\n9fWTjI/nuOqqH02RFEJw+PAhDh06gOM4WJb1hhnpnZuDr34Vzp+/0nvyw3HzzYmC869k5HWMF9WO\na6+9hk9+8q+ZmfEIQ5dms8vm5hz79w8yOTn5is9dXl7m7//+Aebm1pibu0C3W+DWW/dj2zYbK+uM\nZCc5e+YZrhWCdhDgk5xgKiQlmRRJgeTF/pBNXiqoeEBMiWHSWGywiQJE2MRUqXEWjw5FBD6CgMQI\nfASJQVLsyfdvCyTtsZP9V10haYmtkFCdNgkRCUmIjNLfC4uEFklUdRPLCikUNO644yj/5b/8zuUT\n8b333k+zmWN8/EU/kRK2nefJJ49z8GCPyck9DA9PUq8nRSfXTbHt9Tb/9grQNI2bbrqG++8/zcTE\nNSiKShzHLCyc5siRlxORKIoYHBzgLW/ZTzodsLR0L4qSQspRms1LqGqLTKaM67ZZCnoMyRI2ApcV\nWkIQShONDlM0qOCzBKyjMIROB4WQkC4ChS6VjGDOKRGGbWwydMjSZpEBXFR0JBKwqNPuu88oxOjM\n0KFEi5gUbl87kZRYoUkOiY5HFo05AkAlhU0JB02CZWTRfJMqERc4TZN5LGw0TFKKJEuRHE1Q4FTQ\nY2cuxWQ5Q7fb5XS3SzYIGI9j7GaT5zc2aGazRHGMIgRR+KMZlf200O06aNr3N0VqmkWn07t8P51O\n85GP3M0jjzxPfdknjmoomo6fz7HcXmP7WJXRwUHO1+sUilmytVly6e2kM0NcTM2z1F5kEIkuU2zg\nMYtGlwolbRVNh5UwR2CotB2YiQMKrJInokKBeZZwSJGigMo5AjpMAEWyuARs0CJHhNVXTnrACgaC\nQwTEOJxFUkHBJGSUiHbf+H2FYt/3VUMlJKKOoIyCQCGkQpsuHdKsotMSu6BlEwQuup4nnU2haSuY\nZo+hgkraNMhoAV6g4oSrCLHC1q23smPHAAcP/ngW8IqikH49ywuvgP/8n+FXfzVRHV7vOHYMvvEN\n+Hf/7krvyWuDNyQZeRG6rvOhD93N9PQzTE+fQVUVbr/9MFdfvf8Vmx7r9Tp//Mefod0uETgZ5i66\nxBg8/PCTDJZznJmephwE1NZ71NUmQgpUEgLikhCQF0iowibwPIIekjIJQalhoVOmxSYWPqMEmCgs\nEzJPBo0KNhE9OsRUEGT7J6JFEvIxTuIMkCVRO14kGSFJGSYGYgzDx/f3AAskZlcWCWl5saF1DSkv\nMjKylzvv/GVMM2Rtbe1yzszJk+epVPa+7NhkMlny+WEuXjzJ3r1HME2boaFJ1tYW2LZt+BVdNV+P\nuPXWYziOy+OPP4IQaeK4y8GD27jjjjdffszKygpf/vSnkZubGIpCGvjwh+7g7IV1Tpx4nna7RjY7\nwtatEyhKwLPPdjjfMbEIyBb3oSt5euuPorGGJyJOS4FEZT8qJhpNNGrobNClp2qMDO4iuz5Po/k8\nKiVieqzjEuAxjA+s0yZLgzIaNj0WiRnAIc0yNhpZBD2Mvhq2gkWHNiHRZZq6HUGPLhViMnoKqVjU\nNYmtFBiNQtwoTw6VFAXSpkEUzVHUbVQvYh6bk9iUsUB2GAJ2b92K0e0yYFkYrssT3S6u77MWBBzb\nvv01XdMdOyZ5/PGHSL4fL8Fxamzbtu97tvncffev0G6HnD99GiWOabYrtGpneM538H0fs1rlQBCw\n0FlkYeMFms0Clm6RSemcdFx0JcZVtmBbw+wbUBgoSK657R38wxceYH7ZIJQ6Tdps0OEq6qzTRiXP\nMCouG4DKMrJvdeYjEf22c5UWPZoo9NBoMEXis1snMaAuE3MOD/AYRKXWd97doExMHUGNGIMU6/Qw\n+2VDE5MVHBxlnDi2cN1LRNEmnpfl0qUyS0sRcTyGkC0sbQFjwKbT3mQAaMochw6N8OY338zm5iZC\nCHK5HD+LWFhIvEVOnbrSe/Kj4eab4bd/+0rvxWuHNzQZgUSaP3r0eo4evf4HPm56+gR/8ief4tsP\nncWQgu3VEdROl0ZvndryMrtHTLYNDXHu1Gk6Ms0pr84WTSVN0iOy2L/1SXpDasAoRSZpM0jAkyi4\njBMy3L/6kZxDYKJg0KOAzRwqNhOkqFFng5hu/5UgISBpXupG0frbXjQ28wAHXc8gZYp0eoow9PG8\ndWAKVdWJojqJaqKhqoLx8S0MDk7Ras3ied7lY2FZBr4f8L3YsWMcXV/j0qXnsKwCntcklerwzne+\n7yddntccmqZx1113cOutN1Gv18nlchQKL/WQBEHAF++5h0kpqfaD3oIw5Mm5Of7Nv/kFVPUX+bM/\n+zTZ7FWMjm4jnc7ziU/8Ho6zjzCMCMMQtxOQLd9Jq/FZdioSKzDokOUUNQQhPQxc0tQBLxpCa5YZ\nHxzC4hQrTZcUVWwsuvgs00Rngya9fifAGiExkkMI1oiokOIU45QpYhPjskmGdUZYY5ExYsq4pIEm\ngiwqSiwwpA1qC1mq0Nu4iBq3EXKCSDFp+GsU9Bb1IGYlhmZphGp5P422S6O+SNGKsAwDhGBmfR1X\n0xjJ57n/1Cluffe7qVQqdLvd1+yqeMeOHWzd+jQzMycYGJgEYG3tIjt35tn+PcTIti2kDNmzZw97\n9uwhjmPOPv88Cyc0br7a5MZ9u3l4eprnag0y9jhbd6aYazRYbnQI9CLjYzrddpqSyJBLGQg1ROaK\nbNRBsQ9QKZoE7R5R5FL3T9KkhCoikCPE1DGp0UAhhyBGJUVMCocuMQFp2ki6iH4G8HYCFkkuOJKw\nP8kEgjUkq4QEhLhs4HAeKKGTxiJDjxU8LmBREiGeVGgpWXzho+vn+xlOoyjKfjTNQlW7FIoHaYfL\nDJkqO7ZMIuOtbLgO6eEpymmNb3z2s9iKQkdK9t10E7e/7W0/1hTbGwG/8zvwa7+W9GO8EbBjB3he\nUlr6nkzKn0m84cnIj4KnnnqaL3zhUVZW8ujxLgYyKRbXZxku2XTdTWorPZxCDlMpMNOKsPQ8gVHk\npHOOAlw2pLoe0FFoELOMRpcOBQIuAl1MRnDYFBdRJHTFIXTpExGwjgPU8Ajoihgpy/3w+AXgAPQT\naZJ36ZKoIJn+9pCkR6QHtAiCVRRljDBcQMo0L+o1cawixCJC2ICGEIL1dY8HH3yaIDjJBz5ww+Xj\nceTI1XzhC0+TTieNaGEYcuHCC7Tb83z4w7+IlFCvdxgaGuWqq/a+4aRYSDxpXqnHZXZ2Fq3ZvExE\nAHRNY1uxyKWzZ3n/r/wKqqrx2c8+iJQSz3MwzTT1+nnGxw+yseGSywkai/cSKhrnRIBJl5gidXay\nKUxCkph2WERRcrR6G3i9kJRukFYqdOIWKRaYQkEwgmCNIlnmUKlzkBiDhPIOouFjYGChUcBC4qHT\npEObLj4BLbp9u7QAA19XqMQKgYxQQo9m4yLCKKKZJZzuDJaSZjiVRw9z9FSTDcNnpLqDW/YcwDJN\njp/oMWU1WO50GJ6YoLptG7qmMd/rcfSd76TjRvzu7/6/xDGMjpa4666fY2xs7FVdS03T+NCH7ubp\np6d5+unTCAHvfOd+Dh068H29Cnv27OLrX38c1+1hWSkURSFfLHLSX2LrSNJg6YYhTVdgazFzLR/D\n2MXUaJaV5irLnVVuf8ubKeZHuDT3PCtra8xcqnN25jRBICkaU6QzaRothZy5k6Z/mrT0+6qVjcTA\np8MQOSQBy/hofW/mTSKGgGFCBCu42Lx0SbDGi6VWyT4SpXQVGMWmjSSkTQcVSafvQ7PBEA1pJClX\nehldtzCMZTzPwvclQjTJ5w0ymQJh2GO9GXG2VsPTTCa37qSyJcVQUUdbWOCm/vchjCKmv/Ut8sXi\nD3Q7fqPh7Fn40peS2zcKhEhKNd/+9r+SkZ8JRFHEffc9xsjINZx9/ttoMsTQ0ij2dmr1afSwRs47\njzOXYzGKsFSbLZUDxKGktryOGTdJEWGS/FwUiekACiF54ASgINhJHqlayNinTRqkSkiRiDYRNi4R\nMQ6oNoqQREGDhGDMk/R5bJI0o6b6e66REA2HRBm5BOhY1mHiuInva0jZItFr8ki5iqJsQVUnieMN\nQKAoKlJ22LbtGj7/+fsZHh6mVCpx8OAB5uYWmZ5+DM+zOHHiBGHY4eDBo3z962fJ5Vw+8pG7L+e+\n/CzBdV1eycs1ZZpcqtX4oz/6E+677zjNZhtdf5zt26fIZGLe9KYDLC5ewnFWUDsX2IbEV4sIrciq\nP8ciHo44jBBZ4vg8EGGqVcqmgh7M4gWrOJiYlGnTpICJRp6YEEkJQZoSMRtEJOpYETDQ+70DMREx\nEgOVgb5tno9GrBtciCSDikXaztMLPPwoQEqfUGo0nZB5JcYzLWItjxBdDNFCipAmTUJjiF67y7dO\nPIRFB+m1eGpznVt3bGN4fJy9+/bR6nbxmk3m5mrUajYjIzeiqhr1+ip/9mdf5Nd//X991T8rpmly\n441HufHGH3yCLBaLvO99b+Zv//Z+oihpH4U6b33nDcw260m8gKJwMZCkwi5+kEWjST3eoOb7qJkR\n1tbqFIsFnj/3AuvrMY6TqIphkCMw5tg/dYSev0gc2vgiwwV3ExsHgY2CxyAaWfIIWlTRkQgcurg4\nFFAJ0RFkqLGGxygRAyTE4xzJhccoApCEQI5lsv1WVYUOMU0U2uSAITzKaKYJygqKvEAcjxDHORSl\nCJSp19s0NldI2Tl0YRIHGugDLNdOccedd7Fx5iQ7RkYuHz9NVdkzPMzxhx76mSIjH/84/OZvvjF6\nRb4bt94KDz6YhPn9rOOKkREhxM8DfwisSylvfrXep9Pp4DgxAwNpqkODzJ6+iBcUMDSL+uY8B1Ia\nQxlBLhtSb0QsRz69dpNMtkBJj9geGFgEFInpCcELUjJIEoMFghDJLgwcVLpqQBA1yRBh8AINDDoM\no1LBRcNnDcIaQhgkVmljJOrHNAkJGSH58XwpbyQp01wk0WdGCAIJOEg5ixAaUnokV1EqlrUXKbtI\naWDbI7Ra8xw9ehVXXXUjy8vnmJ5+lttvvw1VVXnve9/FTTct8xd/8Wl27drG3r03oOvJaXptbYEv\nf/kf+bVfe2N9A8IwZH5+niAIGB0dfUVFp1qt0oS+lP2SDL2wscE/TJ9jY3OIavUoxaLG5uYMy8vL\nfOADb2V2VmX//sN87tOfZMQco7U0SxzrRGSwNJWpsM6a/DYdkcfXJKZaYZwuxTDEliEhw6zgsITE\nQEOlSESahOImCo6Og0qLiBeVhvOE+FjEgKBLiI6PUNJgCPKqgmnbpEwDt+0wbti0QoVn4w4dNBwM\neph4sYJwdTKZfWSLZdY6F3D8F4ASo8WjGDImaq8SEFE1u4wV80zPzLCm60TZLE1d55pbbuGBB15g\nYuLA5WNWLFZx3Q5PPPE0d911x6u1rD829u/fx9atU8zOzhLHMePj42SzWc6dO8eZZ56hMjDAzrbJ\now88SEEKpCYQZpqxVJ41p0W7HXD//V9hc3McTZvEtj16vRlUdRPXEyxvLjEwUOCF+e+gKkWymTxu\nbKDHRZTgOxhsoEQBMTYOLUxsVokQSBxCNnHpEmCzlxRN2qyTjOdPkkzQXUBSQ2EKBQ+bHmVMLHQE\nCikkIRYdDHSrzv6rDwDDnDnTJoqqKEpMHLcwTRWv56KjkspGZDMq45UJzJzN1N5bSaUseqr6fREP\nactibW6Oc+fOUSwW/8WW/VcaDz0Ejz6ahOK90fDWt8If/EFiX/8qJ3FccVzpoLxrgAdezTdJpVKo\nakwQ+ExOTbEw8jxuZ51ao4XWW4FMhnrssr7axYkUbL3KYuM0MxsxO1SNntBIyRApDLYognaUBIG7\npOkgCIjpEuLSIZA6ByybjmcRSkGamEUatBgiUgSqGCGOF5AygxB+P+xuhISQNEhIx2D/fodEFfFI\nxnlHAJ84bvdLMWq/TPNii62D617AsvLkcjrF4lbCcJmTJy+wvl5n5849rK+/PBi5VCrhOAr79x9D\nUV6SuwcGRpmbe4Rms3nZGv/1joWFBT71qb+j3VYRQkeIFm9/+w3ccMPLr+48z2PNdfnzz3+e3aOj\n7Nixg04YMr22xmrNZNeuWy8/Np2+lrk5l1arzfh4nosXT2IbHdzVSwRBjUgrgX+e7VIFzSQbe7Tk\nArORTkE2qcYBvnRBHcPEYpg6KwgCJvFYx2SYZG19wKBNRIRBooitkXiAdogJkMS08ZAESby9L1jT\nDDqBYLct0PQSZ7wGftihLibwlTE81SKMgKgOCHQ9QxSp6PpuPG+JQmES15P43WV2Z/OEocGau8y7\nD+2iVKtRq1QY+7mfo+q6nJyeZnVVMjoaon1X3no2W2ZhYfFVX98fF+l0mquuuupl23bt2nXZQ6Pt\n/ndeePQxSulhbCODjAKEcDGMDJcWThKLLFBF1y3iuEcmU8VxII6XWK2fY1l2cUOfjGkS0IWwRigh\n0gZZ99YxaJBlgDoaXZqk8Nnab1ffTch52nRoIImBrSSE9MXPQg5oIYjRaTFIjM0oyfc8i4lDlQXa\ndPB9m42NHtXqThSljGlI4iiPI+dwnW+iyRSxogMxo+UB9k7uYr3VodeL6PUCHEXBDwKMvllZGATc\n99CjPNeJueeeh4jjNldfPc4v/MKdbwib9+9FEMBHPwp/+Ievb1+Rfw67diUk5PnnYc+eK703ry6u\nZFBeA3jVg9d0Xefmm6/l/vufY3z8GnYeOMil0yfxg4uQAdFpMhokrote5HDOn6dHDpUhdJHFV2zW\n4gW6sosbSTxgEwtJhhU0DHx0NNpsUA5dKlYFL2zTjdIIWaBAxJqoY6cknieIojJC6KiqJAwXSMoz\nkuRHaJykX8SBvlCb1JHnSSTcEaRsI6UPHCaZtvERAlR1DFW9hKo6mOYgmcw2HKfDwMAher02Tzzx\nDd761l952bGJ47jPuF/eqPbimsRx/Kqty08Tnudxzz1fRtd3MDGRXMUFgcdXvvIkQ0PVyxb2Z8+e\n5Wuf/CQHCwU2DxzgudOneeLSJd7ygQ8wki1in1n9vtfOZrdw+vQsn/jE/8P8/Dx7d+d49FOf5tQT\ndRrdJSYiULUCrpQouko2chiJPQqKTsXMsOkoqJFHkMTUYRDhsIVl1lBZw0bve6J2WMMmmdVaAxZQ\nKaIzyDqz9NjERjAvcjhqilidwEjvJgjOcyY+j9FrEAmd9SDXz0cpIuI80EJRikh5lk6ngBA+Q0NF\nTHMbO3bspdn0WX7+DK2uSzFrk0pXuLS5ydDkJFEqxdP33ceYYWB0OiyfWeKJruDwTTdejk7odOps\n2/bGu3I+duwo5x+4j2dfmEETo2imgaIqOJ0G3eZ5jOxRXHcdIWKy2RS53DDr6yFra8fxehuU9Jis\nOYGgyXrPQ6GMogwQ+xl61HHYwOorm4KIEXRcAkoIdAyGgVnWiS9nTEHynYfkAiMi4gIBXSxyvOQ/\npAMWBmHi/hrnaDYvsnPnjcRRTOzDjtERhDLG4uoT0DmP1PPsG92PGRhcOHk6sSAIGrz//XczOT7E\n01/7GrsHB8mmUnzr8Sc5vtDiyF3/lnJ5GCklzz77HJnMN7nzzre9xqv0L8cf/VGSfPve917pPfnJ\nIAS87W3wT//0r2TkZwK33XYzvh/w6KOPks7abNlrs/PQIY5/8TxlJ6YrQop2ltjM0mzUuIjAxyeK\nzmMTEZLCVRVqms28V6dOBkNRGCEgJmRTOmhammzcIKV4DGRVlMhns9PAiJNI8jA8hKpmCYIZpDQI\nQ52XekIE0CRpXh0lGdGNSH6kQpIegjywBNQRYhdS5oAAIQxUNYWUSwhhIUQWMGk0zjIwkMYwMnie\nj+cFDAyUX3ZcbNtm27ZhlpYWqVS2XN5er9eoVjMvm0J5PePChQt0u/ZlIgKg6yaZzARPPnmCqakp\n4jjmG1/9KvvLZQqZDBPVKgd27mSj1eKS4zA8PNTv9Xg5HKdJpZJHCMH4+Di/+N738p1HHmPxiRl8\nmUfoaRqyRWwYZFNb6TSfZUfZYqbVY92L8GWqb+peJyYiIEOMT4cK50lj0wBsetSISKPxBIJ2YlqG\nhYqJwzh1JljnIinlegy7SizTCKHheSaYk6QGriZlNFm/+BDIgX7vkIKUMXEs+2pRA8tKMzQ0TBSt\nIgRs374Pb3OWXRNDuJ0Om50aE9dcw9iWLTxy7728Zc8e8uk0URxzYanBsxe+w5Oqx1X7D6AoKr6/\nwJEj/8truNo/HYyMjLB9316K+WW+8tg5Gis6YeRjaC127j3ARkPF9zfJZAbI50tEkU+ncw7CJraa\nwleG8KM8quKiKgZ2XCJWJE4kUKgS4rNBih5VJmmD0AnkOVRiBBEpInzaxJj9TpBhkiFtk0QNFUCV\nkLM4GKRxiDH62gp4KPhowADt9tPU6xfJGCGSENfvMVQaJShtw3fm6CktZhfOM1msUs1WmG9s0F6d\nRRHv5dgtt5AvFHjym99kc3GRp1sBh9/+a5TLiQ28lKAoBf78z79ArbbJddftY8+ePS9Tx16vWFqC\n3/1deOSRN3aJ461vhb/8S/gP/+FK78mri1f9EyWEqAKf+57NK1LKD/yw5/7Wb/3W5b9vu+02brvt\ntp9oH1RV5ed//i3ceutNtFotcrkctVqNlSceofnCHFocAYK21yESCraIKMkWkeww1K/1tqKIVtSl\ngSAgoCxVbMWkKFS6UuFC3EOqGtLtUCoMUw4DNmWPLjkCJomDUaJok0Tl2Ely6CdIpNllkv6RBslo\n7kD/7ymSH6dFEjKSBrpIWQMchDBRFAMpe4CPZTWIYw/LkoyMlDHNKvX6OQoFlXS6yKlTp0in0ziO\ng2EYbNmyhTvvvJ0//dO/5tKlJplMmV6vgaZt8MEP/uKrrlr9tOC6LrxCW6pppmg2E7Wj1Wrh1+sU\nxl/uVVHO5TgzP8+td97JPff8A/X6RQqFSYQQOE4Tz3ued7/7/2BhYYFHHnmK8+dnObvoEaT30fMW\nqEc9bG0MSZugtwrSoOb06CklWiSTNikEKjGLuGRQ6ZIYHYRYtBn7/9h78yC5z/rO//V8r3h46lEA\nACAASURBVL7v7rnvGY1G0kiWJUuyLNnY2ICBGGyDMeEMBgJZjmSXbJLdLLskW/klW0VCqNpUWNil\nEog3AQKYy5jDxiaSJV+yDuuaS3Nffd/f+/v7o8eyBUkIxLZkNu+qrur6TvfM08/T0/15Ps/7oMX5\n6SSMSztLdOLhR6WChEOQKnnWSWKKFJpooJglGuY6jYaOLHcCMq6bZH19ZaMw9eG667iuuhG86AAQ\niYyg6zYTE0+STjexrAK2bSACAYp6k2hUcNNV42wdG+PhEyfo6+4mttHbNi0Lz3OoN4ocOnSE6Qvn\n6evz8/GP/yYdLxOtpGVZPPbY4xw5chLDMClU6jxzfp2RtnGW3Tz5Wp6sHqF6bo5EIkYmMwjkKZeL\nVMtThBsn6XZcUoE2mpJg2s1RtgbxSX6aLBMWXQi5TpAodUfCk/qIomF7FYRr4hJgjRoBLGxUZGER\n90zyLNHqQTZpbUAStDYnGpENb9YMTcLY6HjUCLJ2kfhcQHJNTP0st+w+wLHJkxRrR3HcPkw7RxFI\nSd0EtQRThRpThWk6Mz5+41dezamjRzlw8CA7rrqKHVddRalU4k//9ItkMt1AK+vp+PFTzM0V0HWN\n+XmF8+cPMz5+jl/91TuveNfV//gf4dd/vXXU8XLGzTfDe98Lug4/EaP2S4UXvRjxPG8NuOkXee7z\ni5EXAsFgkGCwpVaJxWJoyTRuh0SxXqFq1kEISpJC0LVp8wKYSKxsCC1LOHgbGRPrpEFsorFhYuRT\nVhkJhmiGHdZyNVzdpVitUvU0VnAACcfJAzO0PmieDbqL0TqmqdPiijg862DSukm0uCNpYAVZ3owk\nqbjuLJK0hG13oqoentckGHTZtu16lpePsXPnGDfffBuWZXHq1FFmZ1eo1Sz+7u+O86lPfZmxsS20\ntbWRTAre8Y47+OhHf42TJ0+xuLhOe3svO3e+/mXTFQE2rMkP43neJQVUqbTK3r2tIxpN07CFwHFd\nZEkiWypxbHKepWyZnG1wy1tNfvd338unPvXXzM6eBhR8vhof+cgbiMVifOYzf4/fP0A262N5OYxh\nN1AiW8gZE/RKGp7hxxdwWbM9CpZKRNnEmlhAE0WaHhhoQJQ2NCQazDNOa31nAAmZKD1MEyWKumH5\nHqTGOiXaRS+6KFCXNXySguwVUGSPPFEQfmxbxnXB8+IIIRMINNH1ALbt0XqPTeN5KzTqp8G2kI11\nRruHWK+e4cjUEcLhDqaKTYKFPG2ZUQ4vL9O1bx+x53lm//jkOcr1DNeOjzPfbLL/xpvI5WaYmppl\n69ZLDfSuRHiex5e+dB+nT5fp6NhKMKhy9myOkttBrlRhvrCO7fYSDA/jOAXK5fPkco8yODhMV1eY\ntcpZ9m8eZ25qkbASIy6r4KxxzFhGd/pxyOI6LkFJoepAxTPAKRJW4uieRo4yGQRJ/GhIFPC4yhei\nrK9xjhxlpYFuR3guhTtFgCn6CVPA5gIKwQ1OSRaTOiHEhnNzJuJjbPMu/HWLazZ3s2/LFhzX5ccn\nTWpdY6xmCyT8fqJOFJ0Y1+9JsG1ggEMLCzQajYsS+Gg0SiSi0GhUCQYjFAoF5ubyhMMZQqEiHR2D\nCDHE6dOPMzU19TMzbC4nHn64ZaX+2c9e7pH865FMws6d8MMfwq/8yuUezYuHy6mm2Q38CTAuhPg+\ncJvXkoa8JEgkEmw/uJ9HF+4n0TVMRG8yszJDwamTIIwPiCCRJIiJRRqbKhoVNCqApvlI+EJIIk7O\n8NC0RapEKMTamK2uUnddGmzDVXrAPkmr0LBp+YpYtI5cqjxrdtT6YvLT2hFBq0gJ0Irn8zZ+XgBA\nljUyGT/5/BRCRJCkHMlkEoCDBzfT0eHjyJH7mZ29wIULeSKRAcbGeqhUBJ2dr2d5+RTj41tpNmv8\n9V9/jf/wH97PgQPXvfiT/iKhu7ubnTt7eeqpp2hrG0FRNHK5BWKx2kWL62AwyPCOHUyeOkUsEOC+\nQ+dQlR7qephAW5L/+T+/TCKhMTY2Qq1WYnx8kLvuejORSISPfey/MT9vo2lZlhen0Yth2sJpCpUa\n/vg4s405JE/gOA0agRQ0TYJOBMcOkiKBioyESasNHyNKDI0iJls2rikEeAY/YRRkfLgbiUZhZBYx\naaB6VeJymhV9moAII3sKnjBwvQqadhXl8grBoIqqtuN5RYTIIkkyQii4bgnoAsMm7NvwO8EhWc7R\nH43z6rvfSSLRhuNYTE8f4RW338qOHTv4y//xP6jU66iKwsxylbb4MMvFIn1bthAKBfH7x3jqqUe5\n9dZbLnJIrlQsLi5y5swaAwPXXixYg8E4imaRK5xBt3vw+XppfSSGsKx2HMchHB5geLgNafYU7ZkM\n+bUyZtXAh4RiefjJYTKIwI/wglSdOrbXwBNpFNqw7AgNdEx8FIVNyaug4kOICLLZRMJmQIqwHlJZ\nrK1hOzvwyAAlgsj4MMjQQYE6Tfx4gEcRgQpIyMLBH/SIJaNMzv2YV1/VyXBbG8dPnyO7bkJYomdg\ngOFEAlmSUGSZ1fwxdNMEVb0ksVySJF73uhu4994fEo9vYmUlh2la1Gpn2bfvmovzFgp1cvbs9BVb\njFgW/Lt/B3/+5y9P0uo/hje9Cb761X8rRl4UeJ73FPCqF/r31ut1jh59ghMnzqNpKnv3bmf37l3/\naEvx197/fiYmZzn8wEM0s0tgG8Rx0TBwRAXJM5AxCCOho2HjoGx4skqyScXUUYREMhKmYNjMVi0k\nXzsVI46NgSRFUCQfsjyC4zRo7XietTlaATbRWoJnc35tWjujEEK4eN6zEt8VZLkPIXzAM7S3C7Zu\nHaVUajIz8ziaVmFwsIuDB5Ps338LDzzwEEtLVYpFi0hkjFSqnYmJWXp7x9G0ELVakvX1Rfr7x5ib\nW2R2dvannCxfbrjzztvo7z/GkSMn0HWL/ftHOHDgVy6xsX/V61/P18pl/uar9+PoPSgBiVBHB71D\n3Rw+fAgIcPvtb6BWK/LUU/+AbX+ZhYUVfvTQPJHgGMgy+RULz52nM7mb5fwCTj1MrZnEQScUirJj\n/FeYnzvO6mIFD5kmHrKSRjhVPA8ghkcDjwStYrMbWVrDcyVaGbr1i0F4EgIblZK3jCcFaJoGEgJF\njlK3dYSoIAkJvDrhsJ8tW/o4e/Y8jcYKknQ1mlbDMFYRog2fkiSMS1cmScO9QNHL09HRTVc0jeNY\n+P2tjmFv79WcODHB7t27ed1b38p3/uZv0KpVSrUmultATaUZHBoCQJYVHKd1/HE5i5HFxUWOHT1K\nYW2NzoEBdu/b91Ny1PX1dYRocX9c12Vy8gTnzp1iYmKNWq2M5/WiqkEajSaGMUck0ouqguMoyHIc\nSYkyNzdNMh0h70GjWqFpNvHhx2ABTwhkKYFlr4FnE4luQ3ILaB7Y5iY8FhBqP8sNmygdKJ6PnFcl\nFq3is6rozSzCjSFJRqvLhX/DgyaMgksHbbQO3HJYKJg00aQ5/GGZG19zgDvuGKf5mn4OfevbfPFb\nD6E7KnPlJooF9toijVie7SPDSAIkSXB6aYmdr3oV6oaK5lmMj2/jfe/z86MfHWVi4gTBoM21177y\nEk6ZbVtoWpArFZ/+dMsk7PbbL/dIXjjceSf89//eKrR+Ysl+aXDls5B+DjSbTT73uf9LPh8gnR7D\nMCy+9rVjXLiwyFvecvvFyr5er/PMyZM8fvgw1eU5ehQTPeSj6plIoQClskWv5wImAWQsXJaR0YCm\n7FEnTiYQZMf4KGazyczSDPN1i7oVxdHB81rZra4LjrOIEElUtRfLegiYQpYHcJwKrc7Is2ZRRVpR\nfBKSNIPnJWh1U04DBq7bRjDYAHK0tfWxtvYo4bDG7//+Hbz3vfewuLjIl770Pb7zndMcO1YiHB4h\nEpkglRoiFEqxujpLoVAmHk8jhIzntXgEQvg2OBcvb8iyzN69e9i79x9Pa4ZWd+Qt73oXj59cIJHY\nTTAYIh6Pcfjw9wmFxmg2Sxw//hgXLkzjunG+//0fUCktIAsPrS2I40TQzAxNkWNy8XF8ah896RSz\na+cpVEtYWobVVQtEBuGbwfDaydpF/K6J55VpOXSWKWFhi/FWspGXRRYVDBGk4pVRUKjRRBZgey55\nBAoKJRc0KUC3kkSWwriqiiQPEQwUEOoCgbCGaWbp6tKZnZVx3XWwVwCHQGA3QZ8PWS+RL12gLeiy\nvlTCU0t4tQoh67mGpKYFqNVWABgZGeHdv/VbnHnmGZ4u/z2J1DYGBoYvFvblco6OjtjFo8/LgbNn\nz/K9L36RvkCA3lCI3BNPcO+TT3LX+99P1/PMvFohia3XOTV1ktOnFwiHdyFJD6JpAQzDRtfXEcJp\n8WiEh9/vsbAwT71eoVFrYjXz9HT2EI6qNPQmVXQaShRZGGhSN3hVJElFkzIMDl6Drs8hN/MsrxWx\nbYOmvowqBjd8ZjwaIkNdDFILrBFQJeR8HsddQ0gqnhuijo8GJUKEaaUfVdCpYOAjLGuE/Am6x0L8\n6Z//GeFwmHw+z2f+1/9loSio1wvUTIdUJIEa6mWhMU/+1FlSCZdNm2QGb7iBg694xT86p8PDwwwP\nD/PGN76aT3/6XmKx5wo7x7ExzRW2b78yDdEWF+FP/gSOHHl5k1Z/Er29MDzcOn561Qu+hb8y8EtV\njBw/fpJsVqW//zkNVDi8mxMnjnDddYv09vZSKpX42899DrG+zrljx4jlcsQsk9lAmHMliVJTbYVa\nyXWCjk4BE2sjW7UqJGa8OgR6WXaKpM0K4UiCnFxEpwPYhiS14zjP2rvbOM46qlrGcVrcACjhOOdp\neQmEgCmEAM9TaB3JtMLuhGgiSXE8T8V1I3heFtv2IcsKr3/9B8hkumk0yqysnGdiYpIHHjhEJDKO\n6+aIRHSSyUHK5VWmpo4iy100Ggb5/BSKohIIZEkmr9qQ9pZe0jj4yw1FUWhrSxKPp9C0Vos6n89j\nWWGmpyeYnKygqqPUanUq5RjRwCCmtcRKPkc4WMbvxbEMD0m2aU+UCPp0hFNHSJup1XTm5pbw+ZLo\nehBYpyiB58yRQkalSo0mOnF83iw6Koq0iiw0bK/OEhKWMIhLETxZI+u6FBwdRA2EhusFWPUcTNvC\nFX5sO0fDrCErK1w9tI1XvGIEx7mBwz++n8KZGdKhFDO1OnVrnoYbQDHXGI+EGevuIl/PsZk6ZysF\nauXcxfkpFJZ5xSueS2iOx+Ncd/AgyXSaL3zhAQqFIOFwnEolj2HM8+Y3v/GyEZ0dx+HB++5j54Ys\nFSAeDhPI5XjkgQf41XvuufjY4eFhQqGHyOVWmJiYJB6/iuXlBSKRTSQSy1y4MINlhQmH24Eoslyg\nUDhHQFaoNUxcO8iCuYBcXGTT6CDLVo2VmksmNkC5ISHTgQc0zToCC0Xxo6oh4pko87lp6kYOHz7C\ncoa669DwqnhenGYzSDxhsGfrKN97/CjCBY8azWYWE5ijQRqbEOvUCZCjDYMOPCeL617gne/8TwQC\nASzL4rc+8jvMnqzQHd9EVs/iWGXWV79Hpv06dKOBGqrjS0n83h99kv5/gb94JpPhttsO8K1vHQaS\nG529Aq9+9a4XPQLgF8V//a8t0uqmTZd7JC883vQm+MpX/q0YeVng/PlZYrFLmf1CCCQpyfT0DACP\nPvwwyVoNS1Xp9fmoCMFjhSbzjXZsbzNxV6PkNci78+Txk2CVTjRkPJpCwZU6keU40WQHFVtCURaJ\nxEOs5yMEAhksS8VxbIRI43nrSJKGqhax7SLgoKojOM4srpuhxRFpR9NKeF4Dx1FxHEHryEZBUQZo\nFSgCz1tFlhfp7LyKubkc3d2DaFoGVfXx5S/fj22HSKddXFfgeU0AgsEEk5OPEY368fuT2PYCMzOH\n2LKlGyEkZmefYv/+Tb80tu/lcplKpUIikfgnU4YlSWL//qt48MGz9PfvRAiB4xhMTp4jEkngugk8\nL4aug2NbKIpK0DdIXZ+kXMuSs5YxLZd4NEgqGqScMzCdToLBNPX6NI5To1qVgRCKoqP4/JStUTBP\nEvTCNAAZB5kCPjwSkRGS8UEMc52l3I/IeqMUtS4CwSC1WpFQSEHXc6hUwU5jewI8D8sNIOjGE1kU\n2U+zKWEYBqFQmL6Aj7a4RrPpElclgsjUKBCIKHSlEhQaBZJBcFHJ+IOszpxiZPM15HKLRKMVdu9+\nHQsLC7iuS1dXF6qqMjY2xm/8RojDh59gZeU8Y2PtHDx4N52dnS/pGj8fuVwO0WgQSV0qWe9KpXhk\nZgbTNC8eH/l8Pt7znjfx+c9/iUJhGcfpwLazpNMxarU4PT1LZLPnkaQwrjtPobCEX2ljIDROUAth\nWnXcSDdZ9xyRUIz9d1/Hqc88jmmG8NwmQtYQnockNXGERKWSQ5YrFIsGkdg4euMMGjZNLwjeOi4h\n/CIOElQaDQ4/M48qj1AzqkSjGXT9FHgRmtRYwAC6URlAIKNQQpFDRKLb+dY3nsDvDxEKacyfKzAQ\n70eRfQSUMLFgNxeqp9Erj9Iuw1Xtg3iNEt/4whd40z330N3d/TPneN++PYyOjjAzM4PrugwODl6x\njqznz8O3vgWTk5d7JC8O3vY22LGjxYW5jM3IFw2/VMVIJBJkYaF5yTXXdZmdepLvZX/MQFsbDz78\nMK/cvBk5GkUTgrVGg6oRQRYpkr4E67UCGgaeFyBOFlsE8CQLx7PwgoNsiQxBOsmmq3cRjUao12dp\nNl0kqYnnZQkEtiBES27qeTpC5DGMJqoawHFkfD4Nv//VFIsncV0Zz7uAZQlUdTOyXCIY3I5pygQC\nNWq1KSTJQZIkVLWComTZufNu1tez1Go1wuEwfn+IkycnKRRcUilw3SaVyhK2HebcuRN43hiuq1Au\nH6e3N053dw+VygqWdZa77jrA1VfvvEyr9cLBMAwe+OY3mTl+nKAk0QC27NvHwMgIzWaTTCZDd3f3\nxR38DTccoFAoc/z4IYSIUq8vo6oB2tt7WVmp0GzqSFKrEPFcC0/24VNNHDdJLJSkUFklHh7g9FSW\nSnMeW+zApyRR1RlMcxkhPKCG657H84JIboKMpxKRw8hyg6YisaK7yG4M07SJhSwimRg+bYilbBWb\nJVQ1TSaTQpK6WFs6QlQVlEUT4bbjeCVkYmg4CKmIX+0iGBzkhz98hC1jBt2BMJk9B5mbPw8rRS5U\nztCdGkL1h/ESCl4zx45tI4yOjqIbBl956gSOc47rrx+hq+sqPvvZv6VWkwCBz2fw5je/mrGxMXp7\ne3nrW6+cHbGmadie91MqKsu2kRTlEp5YtVoll8vx2tfeQDZbIBbrJxDYxle/+gOEyJBMbsO2ZxGi\njM/no1JRUSwN4ToYRglNg3R6mLm1ClNnJwmnxghHFdaWZ1ClKKY5iYeOP5QiGlNYW/s2mmbjOEk8\nTxDyh5GdHDiNDU6Qg+XZOHoOSThIYgtCKRMIuDiOg6b14lgNcMexnw3hE6AIGaH0I2s1Qopg6ewS\nn/zjz9HRlUAvSoRDJrajAh5CgOqoBBoVbt57A7FYGFn2M+rzcf9XvsL7fvM3/0VdrUQiwe7du1/4\nBXyB8YlPtPJnXkZCwJ8LPT2wbx987Wu/nFk1v1TFyDXX7ODJJ+/DstpR1ZZ18ZlnDiMtneJ1+28j\nGAgwGY/TWFjATqepuC6GZSNEEscTILn4ZIOwo2B4YWJqmF5VUBI2shzF1lK4wqNiuszOlikWp8lm\np/G8JWR5GMPI47rH8bwwklTD887h8zloWhu1moLn9dNoVDHNcwSDUer1tY0smT48r4rPZ9PePsbq\n6jSepxCNagSDNTRNIhqNoKojaFqIZrOErhsEg0GOHj3K6mqZTKaPSKQNWfZhmh4zM4eo1daIxfbh\neQax2Ajlso9IJIEsN7jhht3s3r3rkvmrVCqcPn2WQqFEb28nmzdvfllYQP/g/vspHj/Owd5eJEki\nVy7zuT/7XwR7dtLbuwmoMDbWxt13346maaiqyl13vZGbbsqRz+eRpByFQoCJiUl0fRHbbsPn01CV\nTiI+m0p9DsspgTeI6ZTYvG2IpeUSItzfYhRZDRxnDduW0LR9KEoTxykTjw8RDDoU1wooboOIP0bI\n18+aWUCSAjhCYFs5ZJFgMVdibq2MEN0kUm00GmtUKk0ss4nqlvERQnKbmEziEsRHAUkukQx3ITwf\ns5MruLJNPvcwaddi16YtDPePMTAwxs7aLCIe5vELC9y4u4ftw3cQ2lBRLKyvc8fb3sJd73gH1WqV\nP/uzzxMOb6O3t5Uo1mzWuPfeB/joR1NXXActkUiQHhxkbmmJged5nUysrLDtuusuFiPHjj3Nffc9\nvNH18iiXqxSLx9i9+1V0dyc5c2aeQmEOkEilttLb28eJE99BX9ep1VZIxFPEE+0YpkmtopPoTqBp\nESKROFZGxXV1FKWBLGvIcoh43EQIF11P4DgpbLuEpa8xIAXRWaRJcIOJVmvFArhb0V0BiiCkaei6\nQjQ6RLN+Asu0kbwkqhpCuAqSSBIIxDDtOfKlFdJhH7VmjUKgjOTEqDZNSnqNfKWJIqo0jRwDHSHS\nqST5wgJ79gyRiceZnJ8nm83S1tZ2mVbvhcXJk61Auc997nKP5MXFPffAZz7zb8XIFY/+/n7e+MZr\nuf/+I7huBLBZOv9D3vXKAwQDAQBGhoYoTkwgFQqE2tspnTuHpFoI1ybbLBGTZHxCxvaaKJ5FWHLI\nhMLkInFW15pYlgZuk+ncKZpeCmjDthcJBASOE8JxTIQooWlFhJCIRnsplfyoagemqSLLg9j2eRSl\nhiQ5uO4SEMTv70KWY6yszOH3q9TrZWIxmZ6ebSQSEcLhGrFYjNOnj1IsNqnV8uTzBXK5C/T0ZND1\nOktLD6Eo7ayuLpDNLhGJyITDBqVSi4+iKDKNhkw87ud73zvMnj17LrLpFxYW+Pznv4ZlJfD5Ijz6\n6ONkMo/x3ve+9aIPwZWIWq3G5FNPcWCjEPE8j4eePkcyuI1KRaO3dyuSJDh79jjf/vZ3AYlz52aJ\nRIIcOLCLnTuvYs+e7Tz5ZIU3vGEXJ04c4uzZedbWTEwTytY6kpzFaOq4VOjrGiMQbEeWpzcks1WE\nWMR146jqOI7jYNtlgkGIRjuJxwM4zjS1RpZuKUDFzLGsF6k7KWyRQfeaPDExDxh4dheaLGgWHPD1\nYppzCAr4hAOWiiYFEPZZbNYIKVHiyTGEp2CaTRTXoOaYDAxcz/qFGZ48W2JqZZVd/RGi7RmenMuS\n7h3i7OICiaCPTDJJsdFgBbj7llsAOHv2HJYVJxJ5Lto0EAgjSR2cOPEMt9zyC9kF/Yvw0EMP89RT\nZ3Fdjz17trJ//74N0uk/j9fdeSd//4UvkJ2bI0iLEp4YGeHgjTdimialUomvfe0ROjr2XuQIdXRs\n4umnv87q6qMkkwU6OkrU6wrp9E0kEp2srS3hOD6kgMBxFAxDZnVlCdezcVin6XSwvCyjKGEajQU0\nbZB0eiuVyjyKkqfREPj921HVMK7rR9OGqTQepemWiRNC4gIJ8hQIYYs0imJTa6wRDnvIcgQhVOr1\ndVTVxXbquFYajwKmGyESCCCEi2EWERSom91UdR1zPUW9cp6APERf+xgDfSFW1hYwjDW6Er2UyhcY\nHe2kt6elihG0VEjLy8tEIhEGBgaueBOzfw4f/zj83u/BP3E6+0uDN7wBPvxhmJiA0dHLPZoXFr9U\nxQjAtdfuY3x8G0tLS9i2zf3uHD3POxvdvmkTDxUKzM/MsHdsjPToKDPHzhNL9mOWPWJSGLNZwzSW\n8ESTrAtBR1Aq5TFdk0CoBz8BNNdj1Srh+Q1CoU3U66cRIoGu26iqSSQCsVgfuRz4/YNYlgk0cF0f\nkhSi2SwjhA7YCFGgXnfwPANJascwFGS5jiTFOXfuOwwPdyPLo0xPTzA/P0Eq1cfqqo5lGYBJMrkF\nSZK4cOGHmOYshuHH80K4rsrExMP4/XvRtCiu26BQWOC223bTbPqZm5tjZGQE13X58pfvJxgcex5z\nvo/FxQl++MNHuOOOK1fc3mg08AmBvJHAW6hWyZU8OpIdFAt5HMdGklSi0Q7+4i/u5YYb7iSd3o1h\nNPnyl4+wuprluuv2cvz4vRQKCps27SSXW2Nu7hClUpl0updkew/VCznCwQ56BzbjeR6RyNBGMuoc\nfv84y8s1HGcF217DcXLYdoxGI4hhVEkkJGazFudrZ7AIY3gZGpSxPT8uEWx3EVXE6I3FUQXkqlk0\nKYprW8jKOiH/IH5PpWbNYFJGExJVr0bQ8vCsGsFQgLXyKWIdSUZG9uDYBgszx1nPuUwXl0nEdULJ\nHpxygolsnSPnHqanI8PYji28/0Pvv+igWqnUUJSfPoz2+UIUi5UXdR0ffHCW9vZtG/cvcP78Bd73\nvnf8lPT0J5FIJLjnwx9mdnaWarVKNBpldnaBP/3Tz2EYNvV6Acdpp6/vOT8Nny9AX99errsuza5d\nV/H5z3+Jb33rCRKJLkxTZ35+ls7O7ZRKT7G2WsB2PPxAzZhGlwwkulhamicQCNPbm2Fy8gkUpZMt\nW/bhur2cPPk4stykWi1iWTJCdKDQTp0iHiXCFMng0efzmFcrzFqn8Rhn7943sro6z7FjT+N5WUzT\nh98fwfVWMG2Q5QJ1vYku1fC8VSL+HupGk6BvB4n0GLXadyk1Z9GXcySjCUJxmfHBq1GUAjffvO/i\npmKlUOCJqQWWvnIYWY7heQ3a2mTe9a43k0gk/omZvnLx+ONw7Bh86UuXeyQvPnw++MAH4FOfgr/8\ny8s9mhcWv3TFCEA4HL5oyHOko4NCpUIyGgXAr2m8Ys8evhePM/z617P97rvZ8dBDnHz0KWbmS6wv\nTGPqOdJKmO7YDmzX5WR1Fttns2s0zezqIk27k4bZxLaWsEih6wFMM4OqhvH7PWKxNhzHoFRawDQj\nSJJAlgWRSJhqdQ3HWQPW8PtrxGJ7qFYlmk1vQ92ygixLdHbuIxTqQpLmWV2dQ5JM9lie7gAAIABJ\nREFULCvD+PhearVzuK7E0NBNnDlznmeeeYh4fBvr6+C6MprWg6aptHwsVHT9CTyvhus2kaQyR48+\nSSYTxeer8v73vwNN0ygWLfr6LiWmdXYOcfz4Id74xtchSZeG6V0piMfjWKqKbpr4NQ3bcRBCoWHo\n+MORixkas7OTWFYbHR0tq3dV9REMXsPhw4e57rq9fPCDv8r99/+QL37xr5DlPq6++jYsK45hrOF5\ni2zffgu5XIWZmXOMjY1j22U8L0tvbw87d17Lfff9DcvLefz+OLadwLJ60PUIjlPGdSGcHKXmM2hW\nm+i2AhxAuPlWHKIXwfFsVCCqRkBzcChQlop4siBnT5G3iggRRpJ3EnRNdLHKamWNoBpE2DKammXL\nljuYnPwHVtcKOPIIkuIjX7pAvtYgrfuZnllHCJ10eoCxa15DKBTmG994kI98pA9N0+jt7cI0J2il\nyD6Hej3L0NCLyy3q79/+vPvjzM4e4/z584yPj//M58qyzPBwSwH01a9+kyefXKe7+xo0zc/Ro4eY\nmjpNV9cwyWTH856jbuQ1pfngB9/JwsIi58+fAFSSyTCuW0DTBvDHZzEVC8MpYno6qu96YrHrEELC\nMApUq0tomopt55mbe5R4PABIlMsejuNDltuxrCweVVTK+KnQRhJdKJTNOiVhEJE8fP4C2exJlpZW\nkeUVZLkHIQZxXQPP03DdpwEFvEVkScenpig1V9CUNgQVqtXTCNGDL7CLUDhLqitBKuVx002v4okf\n/RVnlpfpTiap6jqHZheIZnYzOPic0eHq6ixf+9r9vPe9b3+hlvQlw3/5L63bL7NV+vPxoQ/B2Bj8\n4R/CFXZy+q/CZfuGEUL8uhDiyMbtZ+bU/KK4/jWv4XQuR67ccjbNlst89/hxekZH6ejqYvfu3Xz4\nt3+bj/3xJ/jgx95Fx2iC3rYuuru20xCCdUzqgU0EItvZNjbGeMbPYLxJRF1FoOK5KXRdwXFSOA44\njh/L6kaShnAcgePMo+vn0PU8oZBDd3eUaNRPMhkgFGrH87oJhbYiyxkkKQm0oSgG6fR2JMlPLrfG\nwMCNtLf3EAj4KRTyZLMSy8tTOI6BzyfRbKoIkcTzJIQYQJIy+HwKjUYTVR0D2vD7O/H5ooTDeygU\nugmHN6MoW/g//+frLVXCP0Fka8n5rlxomsbem2/m6cVFSrUayUgEyy4xV8yzaXzbxdc1MzPB4OCm\nS15ny6E0xtraGplMhuHhPq699rXceeddOI5CMtlJV9cuGg2VSnmRTCqJEItUKo+TSKwQDnukUp30\n9W2ip2eA7u5dxGIJQqEhQqEklUqOSKSTTOY6fL4tdHTvx8QG0YksSyClkeVRNHkbEgor1So2NgKP\nqllGkCYSuYlU5q1Y8iZsOY0a2oTW3svOTTexe+gqYtoqmzokeke2U6tlmZ2doV4P4boBGo05XDeE\nEP3kckuYph/Py1As1pmaOkNHxyCFgszExATQkr92dUlcuHAcw2hiWQYLC+fIZBy2bXtpLd8DgTQz\nM4s/13Py+TzHjs0wMLDz4pHM4OAoQqSYnDxzyWMbjTVGR1tRAdFolN/+7Q+yZ08b11wzBhSp11UU\nJcn27a/ihle8j9Etr0XRBggE4uh6Hdd1AB+5nIGqdjIw8Fr27HkPfv849foynudHksLIcgpJGsTB\nRKJBnDiOiOBpKdalDpoM0vTStGXiaFqZaFQiGr2aaHQMy1rGMFbxvAY+Xx8Bf5R05nocbwdNO4Us\ntSPUaxByB6XSEpBEklpHh7reZHExx9NPH2bz7n1cdccdKFu30nfLLSR6xhgbu9SPp729nwsXchQK\nhV9wxS4PHnkEpqbgPe+53CN56dDe3koh/ou/uNwjeWFxOTsj3/M877NCCAU4Cvzti/FHNm/ejLjn\nHo48+CBHzp7lwtQUo21tJLJZDt97L4czGd7ynvcwNDREJBLhew89yYSwKboOricIRQcYl2IsTR2h\npHuMDGY4eXKNhgeG04Yrj4A3i/B6wdGx3Gew7Tp+fwe6DtHoOKXSIp6nUCyayHIdyDE0dC1nzjyG\nLPsJhwNoWgzLauJ5IYRYx3UNZBlM00ZRfDzxxCGqVQu/v51wuAPDWOXcuUdxnCDpdApVBdMsEgpt\npb29DdNUN0ycQti2BsyiaSkUJYNpTtHVFaezs4+VFYvp6TliMYlKJU80+pxMcnX1AldfvfmK7Yo8\ni2uvuw5/IMATDz9MeWmJoV0jLBcUJMmiVitRKq3j9zcZGPjpQDfPMy5aYs/NrRKJpBFCoCgKrutQ\nzJ1FZKdJmVlipoVplBnbtIftO6/n6NHv0tbmsLT0CJIkEwyaXLhQQlFGURRQ1TZqNZdw2KDRkHAc\nBUXtQHcsXNdGliO4rgkigCqpuKyTa3oY5gqmFEJWFCRJxbbrCJFEkhVkpc7m7fsRwsQqriObi4RG\n+lDMCMePH8O2R5GkNKGQn3weYAnPC2wUql3Ydh3TPE2x2NpSqWqUbDbP4uIiD3372zQWLlBbWuap\n+SP0Do2yf/9Orr9+/yW24S8FLKtxyXvxX4JCoYAkRS8pODOZNAMD3UxOHmVsbAcA+fwcW7cmL3Ed\n7u/v5wMfuJMHH3yUr3/9HEJsZ2Cga8Mm36ZQWCAU6iYcdggEXBqNIoZRIhTqwnVzpNMZZFkFkqjq\nALr+NK47iGNVUFhCZYEGfZwVBkk1iOlEcEUQv6KhyessrK4RzQwSjSYpFCR0HWQ5CUTw7GlcfZGw\nmiZmgqUksZQkQqwTjVroegDHiSLLs0hSAFneRCQyimGUOXbsMDt3HuDAwYMb82rx/R88gaJcevwl\nhEAIFcuy+EkUi0VyuRzhcPiySrl/Ep4H/+k/wR/8AVzhaQQvOH73d+Haa+EjH4HUz/dvcsXictrB\nz23cfTa05UXD6Ogoo6OjfPFzn+OqVIq+5zHIzy0s8Mk//EOSwSDCslg5dwJJjNC96fUXP9Rs22Z2\nxsawba6/6QCW8wgP/3AB1O0oXgEPB0my8PsSNM0IVnOespPDtutomsvu3a8ml1sin58mFpMZGtqK\nz9eP338C0zRoNPIbjqh1ZLnVQnYcnXq9giRVefrpf0DXi0hSjGo1S70+j6KUaTZ7qddPs3XrQcLh\nDLqewbYdAoEArlvD71exrCbt7W0kEh65HECW3t4EIyOtVnwkkmJpaZG77nodf/VX91Eup/D5wjSb\nBVIpi1e+8rUv5tK8IBBCcPWuXVy9axeu6yJJEnNzczz22NPkcoscONDDrbe+n29+8xiO04Mst972\n2ewimYxy0cCprS3BxMQ6iUQ7Q0PdHD8+gZQ9zog/TLo7ztpagSGfyvrpf+CU3OTmm8e4++7b+fSn\n/5JmcwHXjdDevoNazcOqLxMUAhoexbUSFT3P0NCNWNYAi4vHgBaHR5IauEhIqIRkj6pxGkVTgXaQ\nQtj2PIoiIcsGQmhEoy7pdAZJkkgkMsiBJT78kXdy+PBjnD49BzTw+VygjiRJCNGN560iSamNuYph\n2ybBYCu0w7IqSFI7X/3f/5sRv59tw8PYAwNMrazgdMe49dZbXpJi9NlwNmgpeCDL9u23/ly/IxwO\n47r1S65JksTYWD+9vWXi8Za52ytfeQ07dmz/KcJmX18f73lPHysr65w8aVGpVCkUGqyuzuM4Eo1G\nnUikg2x2kr6+TRSLCtWqjaa1iL7QMtWTpCia5uJacwSpEXYlBD5MKUhDSVMVPiJimahSwnQtDFUi\nFIwzN3ea/v592PYctp1EVSOYRgPZzaGKJFEtgc+FjOSnqjQQwU50fZpIZBzT9OHzlVCUTfh8Gs1m\nCcMo0t8/hmGIi54rqqoyNNTN6uoy6fRzXLpms0Yg4F7iIWLbNt/61gM8+eQUkhTBdRsMDiZ561vf\n+E/6+LyU+M53oFJp+W/8v4aREbjrLvjjP4ZPfvJyj+aFwZXAGfkgcN+L/UfK5TL5uTm2/IRz4Mrq\nKvmzZ3nt3Xfj8/lwl9a479DTLPvb6O7ZC0C1mmVg2M+BO27g5NISbdftY0ddsLiYRDNkdMtHrlpF\nSBqKDJ5bwjDW8Pk6CQY7aDSWSSYjdHffgCzLdHU5rK7OEQjICFHE8xJomksgkKDRmELXC5TLZwiF\nZBTFoFJZRJZ3IstduK6BZbXUF7K8QjhcR4gGg4Mhdu36Nb7xja9QKHgoikZnp8zCwgzBoI94fBP1\n+jypVCcdHdJFolqtVmJoKE1/fz+/9Vu/xjPPnCafL9PTczVbt255yXfE/1o8+8XZ399/icuk53k0\nmyYPP/woEMXzDNraVN7+9jsvPufqq3dw6NC9VKtpRkaGOX/mcait4/o8/P4eurt9dHakqXseA7s7\nedvb3sTKygq5nEsoJKjVwoRCUSrZH5DyMsiOSiQao6LPYrhL6PpO6vV1QqEU9XoBRRlAVcN43hSq\nWsYScWKBIP0DQzhSF/H4EBMTT2IYNcLhGNVqDs/rZH5+kp6eAfL5MwwMxNi7dy8+X4BarZOHHz7F\n+rpJItFDs1nBceobHKUUlpVFlnUCgRC9vX2src2SSFhUCwU6gI6NsEVFlhnr6eHxuTnm5uYYHBx8\n0detVjtJLteSkft8Bm97262kfs4tX2dnJ8PDSebmztPVNYoQAsNoUi5P8573vOlfHOx2/fW7qdXO\nk0oNMT09jW33EokkmJi4j87ODjo6hqhWZ0mnPSRJ5+ab38zExDKFQhYhmsA8gUAftjND0OsCOUzD\nmsViFZ/chc+cp09LEFD9uBRQIxEWVR1HFZTLU0QiNYLBGI2GhdGYxy8X8SntaFII16ujCEFMlene\nMoJhgKLIGEYeEGzfPkYkEqVer2IYJq961X5qtbNUq9WL8/na197IZz/7ZZaXm8RiGWq1Ms3mHG9/\n+6svKdAOHz7C44+v0N9/4OL/yMLCBF//+v28851v+bnW5oWG48Dv/z780R/By1gE9K/Cxz8O27fD\nRz8KfX2XezT/erzoxYgQoh34u5+4vOJ53tuEEPuAW4EXPdLIdV2k1nguXqs2GmSXluiJRC5e37Nr\nB2vZHA/OPcK8W8F1XYLBGv/5P7+fG298LsuhY9M3+OP/7+tABE3zkSuX0I3zeEyiiAiynNnofgxS\nqSxSLJ7GNFO4bpF6fZhIpI1MJk0ut4wQWTZtGqNUWsU0oatrC6lUgFgswKFDXeh6iWq1juuuIYSD\npgVQlA4SCcE99/wG5XKDer2Vv3Hw4F5OnTrCwMAwiUScYlFHiAiqGkMIFyHW2Lv3NciyTKVSwLIW\n2bev9cESi8Ve1um9/xyEENx8843s3bubtbU1fD4fPT09l7wf0uk07373bXz1q99jddUlmdBJDAUZ\n7m5ncTGL35+mVJYpNtdpb+rIskw+n0dVk1x11W6+/e0HEV4bfapLw1tAdxuoTpSeuEwvbUzVnkTX\nG8TjwwSDBRqNGXw+H11dnXR3D1MoFHnDG95MIBDhoYceQFFsVDWI50Xx+y1se4JKxeTs2UWWlx1G\nRjK8730f2pBm9qGqx3jDG17NN7/5ffL5SWS5iOtOIEl+/P4gQtSxrAuEww6qWqOvz+a22+7mO1/5\nCl0bBO/nI0yrRf9SFCO/8zsfZHGxxRHp6en5hYP37r77du6777ucPXsIITQ0zeZNbzr4cyXM7t17\nDRMTs0xPn2N6ehYIYRjr3HbbW1hdXWJ1dQXHWeXqqzdhGJtIp1MMDIxQLlc4d+4kk5NVCoUSqtWN\nJoLg6ST8vTSVFRR5lpStEI9FcJwKrithFPMYbhm17wBbtgxx4sST1GrnSaf9KO4s7aZDxS5hmGGC\nAZBVGymYQNdzXHvtPkKhEAcPRjh27AyGsU69XkXTPPbs2Uk4HKTZtC/pZHR2dvKhD72dxx57itnZ\necbGElx77ZsusXj3PI9Dh56mq2vXJZ2xrq5NnD9/mGKxeFmVN5/9LMRiLanr/6vo6mrJfP/9v28l\n+r7c8aIXI57nrQE/ZVAghOgGPgm8wfP+cZrkJz7xiYv3b7zxRm688cZfeBzxeJxQezvZUonMhkVf\nXdexm018qRQnT56hXKqRSEa4+Yb9uBcucM0tN5NIRNi/fz8AR448xtpanq6uDPv3X8Pua37M6cOz\nVIou3XFBsbZKQ3cQtOELh5CkKrXaEooSxrLSGIaOz6dRrRq0tSXo6roJTfsRW7b0kMl0o2ld7Nw5\nwk03HSSVSnHs2DHOn/8sS0uCcLgT11VQlAiua2GaFyiV5rj11hvJZDKcPHmKhYU1rr12D3/wB7+G\n4zioqko8Hmdubo7FxSVgL1NTC0xPn2V+foJk0s+73/36K+oc+MVGJBL5Z31ThoaG+NjHPkA2m2Vx\n8Voe+uIXWT09i+OkyGYtNA2yIsjJMytks1nC4TCe12TLlr0sLMxx/tQknZEwES2EP2RhWzlSiTDH\nz05iyxE6O19BPL6Fej2LJE0wMjKAJEEu9xTxeA+Vikkk4uO6667n4Ye/Sy53AdsWDAwMMjr6bs6f\nn6BQmCEaddi+/XoeeeQYIyPDdHd3s3v3AE88cYHbb7+J5eUVfvCD7+DzafT27sUwbDStVSR3dRX4\noz/62MV5SHV0UDxxgvhPtN4btArUlwKapjE0NPSzH/gzEAqFePvb30y5/P+3d97BbV1nov+di94I\ngA3sFKlmqlAk1SxZkiVZtoq9lmQ7TrLuduzYWW/8NnnZN0ne2+Tt5M3uzk422U3ZxNk42djjxHGP\nW9xkWZLVeydFUiLBBjYAJACin/cHFFlUsRokkPT9zWAGvMT97of7Hdz73XO+4iccDpOdnX3B9OAz\nMRgMPPjgl2hubqar62c4neMpK5uEyWRl3LgqIpEhWlp288gjK9Hr9bz00p9pa6unoaERn2+AqqqZ\n7NzZiUhq0WsUHPZx6PVmfAMG0OzAaQ4wOHgAIUyYTFnodArZynj6YyYKCq5j+vSZvP76Hygvr6bd\nXYy1swFjwEtvuBFX9kRKS0rZ3VIP4W4aG71Mnz6ORx+9jxMnWnnxxW0UFFThdOaQTCZwu/ezdGn1\nWcULc3NzufXW5ec9B4lEgqGhGLm5w2dGU7El+ow21+zqSvWgWb9+bDXDuxy+/e3U7Mibb8JtI7cC\nw0WRyWWa/wPkA6+cfDpdKaUcNsJPd0auFCEEt6xZwyvPPENfIIDDbKbT66UpGERgJSsmMRrz6egI\ncPjYFkoWz+GLX7wTgK6uLn7965cIh7MwGu3s3HkIq3U7Tz75AN869D+woOAwWYn5s2nwaxjSFWNy\nZFNSUsSuXVtwOksIhTwUFbnQaFxEo4KGhvXYbAZCoT5crunMmjWOxYsXDatyWVJSQm6uHikDWCxO\nwuEA8fgAsVgfer2X8ePzTz21zp8/77zfvaKi4tTnFi5MdS2ORqM4HI5LbnIWi8UIBAKYzeZRUZ31\nclAUBZfLRX5+Pq+++BIf7K8nS5oQQhDQKESzx2EZsnLw4GEWLVqAy6XB42lh4cKVRIYGiRzZTTIZ\npCAvh1mzlqLX63APBgkbJtPb5yMUCqAoWkpKJjBlSgmHDu2momIq3d1B9u51U1/fwpw506iqms6+\nfW6mTJlFWdlUWlrcmEzlFBbmo9HsYfLkufT3d/HKK3/ma197kDVrVjFp0mF27jyE3a4lGKykoOAu\njh49TDRqAOIUFRWSk1M4LFCxbu5cXti5E8fgIE6bDSklx7u60LhcjBs3LmN2uBLsdvsVOVIajYaJ\nEydy550r2b7deyomBFLXEoslSXFxMWazmW984zHq6+v55S8HWLLkHnbs+IgdO9ox2icwFGrHEk8g\nlBAAfcEkM6fU4O3uZnDQRCIhAQshReJwlPPnP29m6tRKKiquY9++9ygrm4MvYKDAmsWMvHyautrp\nCvYxfXYZRUUzsdsLSCQi/OY3r/Dgg2tZsSLAxx/vJBi0odEkWLKkmqVLz92d97PQarWUlubh9XqG\npURHo2G02gjZJ5f0rjVSphrhPfooTJ2aERVGFEZjqt7IV74CN94II7g+5QXJZADr49f6mKWlpdz/\n9a+zb/du+j0eJl9/PZ909uNrD5BvsqHX6ogm4ngGzVijmlM9L1599V0UZRylpX+ZQSjB42ll9+5D\nTLt+If1tQbqbj+FFg3DkYtTmoigmhFCwWBwYjZCVpVBVdRPhsJ9g0E9LSy8Wy3xycqZis01n375+\nOjtf5atffeDUTd7lcrFsWS27dx/D692FopShKBGysgKMH5/H4sWpGgzxeJxDhw6xZ89RAOrqqpg6\ndep5KypaLBYsFsslnTspJZs3b2Xduh1EowpabZwbbpjBkiWLRl3lxlgshlarPa8jFo1G2bdvP/v3\nN/D2e9tok0U4LSVoFD0JrRG9CNPQ0E5vrw+NRsP993+Bl19+i+PH9zGtehJHIieYVZrPwlmziEQi\nvLdxE36TndW338GuXZvp6uomN3cSUibZtu0TXC4rN9xwO21tzezde5jm5j6OHt2KyaQjEmnBaJxD\nMinx+4OYzfkEAh40GvB4WgCB292Hz+fD6XQybdo0pk2bRjQaxeP5GYWFkygvn0woNIhWq8dgMOF2\nbxo2W1BQUMCtDzzAB6+/TsztJiElhZMm8YXVq0edbdPNggXXc/jw87jdR7DbXUQiIQKBFtasmY/5\nZLeyVLPFBBZLMRqNhsLCCWRlbSAeDxHQGQmFOsnW2OiPh7C6iujVG9DoDYwbNwlPz3H6ooOEjZMQ\nkSz0+gSxWBZudycWSxZz59YQCk1AJhPEg34mTogzONRGVdVyCgrGndLT42nh+9//IUVF5QhhRqOJ\nsHr1TdTV1V72d1+x4kZ+9atXSSTiOBz5hEID9PXVs3bt/Et6EOnv72fnzj20tHSSn5/NnDm1lz0b\n+2//Bh4PvPTSZe0+Jlm2DJYuTS3X/Nd/ZVqby2ckBLBedTo7O/lk3Tpa6usxWa1MnDGDpatWIaWk\nsGQv8TwzBxr3QCyK1mpn8uIvEIu1EQwGSSQStLf7KCsbXnwpP7+UxsYNlJWV4nKVoLNPJNEapiQr\nm2PHtuD1nqC5OQuvt4dotAONJswnn/ye7OxphMM+/P4oFks+8XgfXm8n7e1trFvXxLFjLXzxi7cy\nb95cNBoNDzxwDwcPNtLQ0I/H48ZkMjFpUjVWq8KCBbM5cuQI7777EZ2dguzscYDk+ec3U1NzjLvv\nXsvQ0BDbtu1g374GdDotc+dWU1dXe8k3mW3btvPGG7spKZmJXm8kFouybt1BpJTcfPPS9BnrKnLo\n0GHef38zvb0+7HYLS5bMYebMumFOSTQa5Xe/+yNNTWF0OiceTy6JhILUObE5U2MgFGqlv38vDsfJ\ntvUOBw8//Nds2rSJrVv3M+OGxXT2unn6/Q/p7QsQ0eQSkAVs3ryBGTOqmTAhTnNzIz09HZjNfSxc\nuAaNRseECdM5cmQ3fm8/0SFJ3vgCClx1NDbuJhIJEYvFCQR8JBItBAIhtmw5BEAgcJijR284tZwI\nqWWPmpoJ7N3bSEnJdVitqaXJrq5UWfAzl6omTJhA5d/9HT6fD51Od1EtAKSUdHV1MTAwQHZ29ojr\nXXM5DA4O4vP5SCQS9Pb2YrPZePDBuzh06Aj19S2UldmYPfuvzoqjSQV6RwDIycmltHQSPl+QaNSO\n0WgjEunH33eMSHcWm31daGIe8ockJquLtugQmqSeiG8/8bifwkITihKiq6ufLVv2YDLlIOUAJSX5\nlI2rYOvW4+TnD49YbG5u4NixBFOm1JwMYB3gxRc/xul0XHbMT3l5OY8/fhcff7yVEyd2kptr57bb\nbqaqquqiZXR1dfH0038kkcgnK6uAzk4f27e/wP33X3qW3osvwg9/CJs3f/5SeS/Ev/871NTAq6/C\n2rWZ1ubyGPPOiMfj4Y+//CXlWi3j9Xo2b97M9tde40+lpcy+6Sai0RATJt5A5cQa4vEYOp2BZDJB\nZ6cbnU5HIpH4TPmLFs3khRc2UlRUjtvdgEajJy+vgHC4AYPBisORJCenjGAwiterIxjUEggIotHx\nbNz4PKWlZTQ2HsRgKCE/v5pIxM7rr+/F4+nhjjtux2Aw8M1vfpX//u/XiUQs+HxBWluP4PH08uMf\nn8BqzaGhwUNRURW5uQbsdjsORz779m1j+vQjfPDBZnp6jOTlTSYSifHyy7tobm7l7rvXXvQSTTKZ\nZN26HRQVVZ8qJqXT6Skpmc6mTVtZuHD+iM+6OXjwEM899wF5eVMpK3MSCg3y0ktbCYcjLFjwadDu\n4cOHaW4eoqKijvb2dqzWMrRaM15vPQZDHnq9nXg8lYZ9elDku+9+yEcf1SOlnUOHvHg8MdzudnJz\np1FePh5t3I+iVLB3736WLVtBUdE4tmx8Fq97kKZP3iCm0aDLdtF48AATrVPQZUUZX+hifzBIr3AC\n7RQUWAkEoKPDi9NZS3+/BbNZQ35+LW+/vY1JkyYNy0BZvnwp3d0v0tKyHSFsSBkkP19h9epzZ0Io\ninLR0+/BYJAXXniNpqZ+FMVCMjnIjBllrF172yXHaIwEBgcH+clPfsmHH+6kp6OFuLebfEceNpeL\nkusm8sTfPMBXv7rovPuPGzcOp1PS19dJTk4htbW1HDhQT39/PXa7lr07t2AT0ynOngoCugeP0zJw\njCml42EwxNBQFCkdGAwumpr2YDYPIsQENJoy4nEjXq+etrZmWlsPUVIyvFKy399LV9cAWVmlKErq\nkm6xZJGVNYENG7ZfUQBySUkJ99xz12Xv/847H6HRlFNQkOqJY7M5CQazee21Dy9JznvvpSqPvvce\njNKVw6uKzQbPPgt33JGqPzIawwBHdjWrNLB1wwZKFAWz0ciWLVuo0mq5raKCkoEBxPHjBHuaaG8/\niqJo0OuNCCFob2+grm4SBkPq5l5a6qS3t32Y3O7uFiZPLqG2tpY777wBrbYFh6OL1tbXUZRW4nEb\ng4M68vIm4/W2EQ7rsNmy6etrAAYQIoGijKe7O4RePwOz+Trc7lZaWo5w+PDYZkOoAAAbNklEQVRx\nfvSjP/Cv//pzmpqaKC8v51vfepSaGjuhUCuFheOIxSoIh6s5eNCDxTKZZDKbrVv3kEgkEEJgNLp4\n772P6O7WUlY2BZPJis3mpKJiJvv2dZzKXLgYwuEwoVAco3H40o5WqyOZ1BEIBNJhqquGlJJ3391I\nfv60U03gzGYbJSU1J5edoqc+e/BgI1lZRQDodDqys81YLGZstkJisWaE6MFqjVJbO/FU9kF/fz8b\nNx4kN/c6Dh3qwGyuIBg0Eo1OJhjU0doaR6PJprX1IF5vmP3732f/7j8yJSvJLRPKGafTM1Gj5cg7\nzxLu7cPX56Orr489DS3EkgYCvgH6+93U1pbR27uNeNwOOPD5/LjdDSenzPM4eHB4lVGLxcJjj93P\nww/fwtq1VTz44FKefPLhtASlvvHGuxw/DuXl8yktnUFZ2Q3s3etl/fqNVyz7WhOJRPjOd/4fb77Z\nRshrxNYTZJwcjz2QxbiklUBTJ7/4xR/weDznlaHRaLjvvjswGjtoadmO3R7B5erFbo9x9NA+kols\nFEVhwO8jEU9QaJ+EVrhoanoHozGf7GwXFRU5VFdPZerUxQwN6cjPL6a5+QDNzS0Eg1FCIT0nThzH\n6TTh8Zw4deyhoQDhsMThMGGxfNpbyGZz0tHRczVP3WcSjUZpahpezwTAYrETCFx8aeetW+Gee+CV\nV1JP/yrnZv78VN+ae+5JpT6PNsb8zIi7sZHa7Gz2Hj1KoaJgP/kEb1IUsk0mprpy6Nd10tIyiBBm\npAxSWelg+fJPlx7WrFnOM8+8RGtrPwZDFuGwD4cjwqpVqSfM2bNnUlNTjdfrpa+vjx/+8Ge0t2cx\nYcI8LBYLDQ0R+voMaDRxCgtLqaycxM6dO1EUI8lkH4GAgsUiCIU8dHQUMG3aPKAYrzeHZ555gyee\nuAuXy0V9fQe1tbeze/cWbLYJWCy5eL3ZdHd7cLkq6e/30dvbh8uVTyIRw+Ppx+kcP+x8CCFQFCdt\nbe3DUvk+C6PRiM2mO1kY6dNAvlgsilYbG9FdfSHlTHm9Q5SVOYZtTy036fD7/aeWGEwmA/F4Krgz\nJyeHwkI7yWSESCQVtGe1mhgaOsZjjz12amaps7MTIey0tXWhKHZisTCBQASzuRwpOwEzNls2ZrMR\np3OQJUsq6DlWz7yCAqLhMBs2bOPokTaccS29CT/RpCQo7US8RooLC3DadFjsGsrKTFRXz8Hvz0dR\nDBiNWWRlVdHf347LFSYQCJ313RVFOdW3JV0MDg5y8GALJSULTm0TQlBcfB1btuxg6dIbR1Wsyd69\n+9i3z4fLNZOufb/HqSvCaMwjEumnv8fP+MnlHHX3sHfvQZYvd51XTn5+Pk899RXa29tpbGwkEvGi\n0Uyk8YiCxVgIDBJKdJEcAJM5il6xYs92cuutKzlwoJ3c3PEoioaBgTZiMS1CBCkrm4BGYySRSGCz\nVRGLSWIxHVK20tIyiNHooL+/jWSyjZqaZcP0GRjoo7T0/PpebTQaDRqNIJGID6v4KqVEyourc3ng\nAKxeDb/7HSxYcOHPf975h3+AW26B730PfvCDTGtzaYx5ZyQrO5vAwAB+v5/C04KuYlJiMBhwRKPM\nXbkEl8uF3+/H4XCcVX/C5XLx1FMPcejQYXp6+ikoqKCq6rphLc51Oh35+fkkk0mysysoL/dgMKRO\nr8PhwufrxecLUlHhoKVlB8nkIENDjWg0UZLJFgYHBzCZzBiNZQihEAj0EYu50Gpz2bhxO4sXzyMS\n0WI0WgiHh9BqU/NwBQWT2Lv3feLxWkBDPB4jGg2TSHiYNKmS9vahc5yVGGbzhduz/wVFUVi69Hpe\nfnkLRUXVGI0WotEwbW0HuOWW2hGfVWMwGDCZtEQiQxgMn37vRCKOEJFhwby1tVPZufMtEolCNBot\n8+fPZNOmLUQibvR6I729+5k2rYYPP9xDf/8gK1cuw2g0ImWUYDCBTmdgYMCH0ehgYMCLXq9DUbRE\nozEsliyGhpqorV3D+mP1GHQ6DDodVVWV9PZG0SWT+HwePHRjNtQgpIJvsI9Iop1l825j8+btlJZO\nJBYbJCfn06l3rdZKV1cTlZXXpkZMOBxGCP1ZlVl1OgPRaIJoNDrstzHSOXjwGFptNslkFGMyiaLo\nAIEQBqLRIAatnsSAn4GBC88AKopCaWkp77+/CaOxHL+/hSy7k77uMGb9OGKJgxiNGhLJfoS+j6lT\nx+Ny5aHXm9m+fSednW6iUcnAQCtWq6C4eCo2W8pRDgZ7cDjyMJuLWLVqCjqdns7ObnJz5zN9eg7N\nzW5sNisajZbBQS+BQDOLFmUugECj0TBrVhXbth2jrOzT3kY9Pa2MG3fhgnbNzbByZSoeYuXILwQ9\nItBo4PnnYeZMmDcPbr010xpdPGPeGZm5YAHrfvc7rDYbPp8Pu9FI38AAOrsdh8NB48ngu7ILlLAz\nm83Mnj3rgscLBAIYjU6qq13s2bMfvb4Es9mJEHsIh7vw+ysQohxF6aGg4DqSyQG83t2UlKyktXUI\nvV6wZ88n6PUGDh/uIx73097eyc03L0LKGFJKCgoKaWzswWCwotdbKSzMw+/fy8BAkIEBDYlEM6tX\nL8DlyuMXv3iNWKwAnc5wUj8fev3AsL4cF8OsWXUAvP/+Fnp6EhgMglWr6obFW4xUFEXhxhtn8uab\n+ykvr0WjSfWdaWs7zNy5k09lRUCqzsiyZdNZt24L4CQej5BM1lNa6qK9PYrDMYNYzE529gx2724h\nFHqTL31pLXZ7Aq83daPW6bTodEY0mnoUJYtIpBchcujtPcKiRXlMnjyZj/T6U52GY7E42dn5WKx2\nWhqHsMWCxBINxBOSeDDMdXUzmThxOh0dRzAYTOTmhujtPYrVmlqH7+9vYMoUGxMnTrwm59PpdGIy\nybNmyvz+XgoLnaPKEQHIzXWi1SYALVGdgWQkCDhJJmNotQpDiQiKQc/EieUXEnWK9nYPBsNEhNBT\nVjkVX99mInETiST0hg4TiRqxOLRYrQXs3v0udXXLMRgSlJdfjxBahobKaW/voL5+PdXVKwmHB0gk\n3EyZsojBwU6sVitTpkyh9mSyzIwZ1XzwwXq2b99MMqmQk2PmwQdXDatCnAmWLVtMV9dLHD++DUVJ\ntUDIzZXccccXePTR8+/X05N6wv/ud+FLX7p2+o4FXC74/e9TzfS2b4cMD4GLZsw7I1OmTMF76618\n/MYb1Pv99AQCFBUXM722lvr2dgwlJWmtpZCTk0MiMUBZ2Q3YbA6OHz9GMBhk7twq6ut76e5OkJur\noNNZSSSMCOFEiB683u1EIlF6emLY7WVMmDAJjUZDIKDF63Vz7FgT48fn0dp6nIqK62hpeRevVxCN\nJpg2bRpGY4CyMi1Ll86noqLiVFzA6tXX8/bbm0km7UgZx2QKc999f3XJqb1CCGbPnkldXQ2hUAiT\nyYRWO3qGz/z51xMOR9iwYTNgQsows2dPZMWKZWd99qabFjNjxjTcbjebNm1Dyhvo7OxGp8vHbM7B\n7+9l374jzJs3iyNHNuP1ernvvrX8+tcvUF9/mKEhM9FoIxUVU5ASEoku8vIMmM1GHn/8QfR6PbOX\nLmX3G29QXVSE3Z5FKOLGK4yUzlmBf88ObMLFUGSI0gnVLF62kmQyQX6+FUUZZObMhXR0NHHiRBPx\neIzx4+M89dRj18weWq2WVasW8sIL67HbJ2C1OvD7ewmFjnPnnaOvJGZd3XRKSz+htbUX4RzPYGgX\nsUALMhnHmVfCoW43NcsXXlIWicuVQ1dXDCmjuFyVTJwySGP9AQKDx9BpC3Hk2Hjk0ftwufL5+OOX\n+fjj5wgESrHZ4phMMZYuvRm3u4233noFr/cTKiquY+LEpWi1OqLR4FlBqQaDgVtvXc7NNy8hGo1i\nsVguuYbQ1cBkMvHII/fQ0tJCf38/NpuNysrKzxyrQ0OppZkvfxmeeOIaKjuGWLgQvvUtuPPOVGfj\nS7zcZwRxnuKnGUcIcb7CrJdFKBTiwIED7NiwgajPh9BomDBjBktXrLjkG/P55Ot0OnQ6Ha+//hZb\ntrRTXDwFvd6Iz9fNwEA9VqvC7t0hgkE9yaQOr7eTUGgAiyXJsmVFDA0NsXlzkMrKhQihEI0GGRw8\nxMyZ1WRnD/LII1/iuedepqMjQjicxO0+jEaTZO7cOhYsqKOurvacTc0CgQBtbW1oNBrKy8svu9T2\n1UYIwdUej6FQCL/fj9VqvWCsSzwe5wc/+An5+fN4991XMZvrTnZmhf7+RpYvn09vbz0PPHAjEyZM\nIB6Pc+DAATZu3MK+fUdpbu7G5Rp/slR7iFtumcOcObMwGAxIKdm+bRs71q0jFgyy88BRTDnV1M1e\nTmPjfjZu3EZ2dgm33bYcrVaD232A+fNLyMlx8NZbW5DSiRCgKD7uuGMJNTUzrup5OxeNjY1s2LAD\nj6ePsrICFi2ae9FxSKdzLex+IbZt285vf/s6jY0+utz1JAdPUJiXTV5ZOcvvuJ27775z2AzahWho\naOCZZ97B6zXS0hIiK8tFW9suOjoOU1o6k5UrF5Gbm1qq6Ovr5MiRP+NyzcXhyCM7OxuNJlXnaP36\ndzAY+ikurgHiGAwB7r33r6isrDzZb2kIvV4/qh4M/sK57J5MppwQRUktN4wAf2rUIiU88AD4/ang\n35EQxnXS5ue06ufGGTmdUCiERqNJS6xDa2srb765jo4OL4oCs2ZNZunSRezatYdNm/YwNBSjtDSP\nFStupKGhiY0buzCZcgkGg5hMJnJycmht3cVDD91EOBzme997mnDYhBA6DAbJ9Ok15OeX4PXu5H//\n768jpaS1tZVAIEBOTg4FBQUXVnKUMBJuSqcTiUT4x3/8GWVli9i8+X0GBrKxWFLr915vM0uWzMTr\n3cc3vnHfWU3dpJSEw2FaW1vxeDwcOtREe7sXIWD69EpWrrwJm81GIpEgHA6TSCRYv34Tu3YdJZFI\notfHGRoCrdaGosSYO3cKN9+8BJ1Oh8/no6WlBUVRGDdu3IgPIL4QI8XugUAAt9uNoigUFxcjhMBs\nNl/2DMOePXt5++0NNDR00NraikYTRogylixZOaw77sBAH+3t67HZplNSMmmYjJaWHdx+eyouK9Vx\ntxKTyURDQwNvv/0xvb1BdDqYP7+axYsXjqq06nPZ/TvfST3Jf/hhqrqoypURjcKKFTB5MvzsZykn\nL5OMSGdECHE/8AhgAJ6WUj5zxv+vmjOSLjweDz//+R8wmyfhdOaTSMRpb2+gslLhoYdSfa0TicSp\npxav18tPfvIsOl0l2dkFSJmko6MJl2uIxx9/gEgkwr/8y9PY7dMAgdlsQ1E0dHY2UV1tZu3aUd58\n4AKMlJvS6Tz99LP092eTTCbZuPETLJbJKIqBSMTNlCk51NXl8YUvrD7v/n6/n//4j/9GUcrJzS1G\nyiSdnc3k5AT42tcePOuJNplMIqVEo9EQi8UYGBjAbDaPujiMS2Ek2j1dxONx/H4/BoOBgYEBfvrT\nFykrm4eifPqY2tJygAULCtixo2HYtaGzs5H8/DCPP/7AsOyk48eP86tfvU529lSysrKJxaK0tx9m\n5sy8UbVMdqbdf/Qj+PnPU0XNxkD9vBGD358KAL7uOvjlLyGT/upnOSOZ9JOel1LeCMwHvpZBPS6b\nLVt2otEU43TmA6DRpGp6NDX5aGtrQwgx7GbjdDr5ylfuIifHi9u9kY6OT6iutvDAA3ej0Wgwm82s\nWHE93d2HCIdDDA0FaGurR6/v4cYbR36g6Fhk1aolDA01EosNUVMzhWBwN+3tb1BaOsDixRWsWbPq\nM/ffs2cfsVgOeXklJ9OqNRQXT8TjSdLU1HTW5xVFOXXj0el05OTkjGlHZKyj1WrJycnBarVSVFTE\n/PmTOXFiB15vN4GAj9bWg+Tnx7jxxkVnXRumT7eeujaczkcfbSUrayJZWakCdTqdnvLyGezZ00x/\nf38mvuYVIWWqzPtPfgLr1qmOSLqx2+H996G7GxYtgoaGTGt0bjLmjMhPE80NQDAdMtevX58OMRct\nv7XVg812doqaEFa8Xu85ZRQVFfHYY/fx3e8+zne/+zXuuuv2U+29169fz7x51/Poo7dRVhZBp2th\nwQIXTzxxT9oaU13rczQajvVZckpKSnjyyb+mpsZKUVGchx66id/85v/yox99n+XLbxo2LX4uOW63\nB4vlbNtpNFn09PReki6XwliVky5ZVyrjcve/9dbl3HvvjeTl+WhpeZ/lyyfw6KP3YDabT10bvvOd\nr551bTid9nYPdntqmae+fifwl266tvNed67Gd0nH/h9+uJ4nnoBnnoGPPoLLCDnKqP4jScZn7W+x\nwJ/+lMpMmj8f7r0XXn8d3O6UM5guHa5ERkZXkIQQ/wA0AM9c6LMXw7W+0RYW5hAI+M76nJQhsrKy\nPlOWyWQ6K2blL/LHjx/PvffexZNPPsQtt9yEw+E4h4TLQ3VGLl1OXl4eq1ev4m//9mHuvnsNkyZN\nOufa/LnkFBTkEAr5z9qeTAZwOs+260i7+Y80OemSlakbmBCCadOm8fDDX8bpNLJw4Q1nBcZeqCN2\nfn42g4Mpp6OhYReQilFKJgMXvO6ci0zezDdsWE9lZWpp5nJTUFVn5OL2VxR46ilobITZs+GnP4U5\nc0CrBbMZnE5YtWo9BQVQXJyyR2UlVFXBDTekMpwefhi+/W341a9SzmNrayroOB3f46qHYAshXMAf\nztjcJaX8spTyH4UQ/wx8KIR4WUo5rKrQ97///VPvFy9ezOLFi6+2upfE/Pmz2Lv3RQKBLKxWB8lk\nkq6uZoqLjResW6Ly+aCubgaffPIcfr8Tuz0XKSU9PW4cjtg1qwuiMrZYvHguv/3tu6cK+KVq5hyl\nqqpo1DUrFAL+/u8zrcXnC4cj5ZQ89VTq70QCIhEIh+Gf/gm++U2Ix1Pb4/HU9v5+6OuD3l7o6ko5\nj88+C01NqW1FRalZrZKS1DLQ4CCYTCknp6YGVn32ajZwDZwRKaUHWHLmdiGEXkoZBWJAEjgrqOV0\nZ2QkUlxczP33r+RPf1qH2x1HyjhVVaXcfvtd50yxVfn8kZOTw0MPreHVV9+ntbUeKZNUVuaxZs3d\nIzbFWmVkM3nyZO6+e4h33tmE399Ge/sn1NaOZ9WqmzOtmsooRKNJOQ1mc2o551ITNMNhaGv79OX3\np5yTUCjllAwOXpycTGbTfA9YTCpm5A9Syv844/9jM7xeRUVFRUXlc8qIS+1VUVFRUVFRUYEMB7Cq\nqKioqKioqKjOyOcMIcScTOugcm1QbT32UW08dvi823JMLdMIIYxSyvBVPoZBShlJk6xZwDzAAfiA\nLVLKnWmSfS5HUwDvSinP7g53eceYBsSllEdP23a9lHJrOuRf4NhWUuP3IsOjLijvisfO5YyNdIyB\ndNk6XfYUQtQCPinlcSHEzYAeeEdKmbzArheSmzabZ8LeV2LrkWTjdNh3NNvySn+zY82WZ8j7Gynl\nzy5r39HojAghvgx8E4gDrwH/IqWUQoiPpJRnZe6k+djvSSlvSYOcH5My/AeAH7ADN5EaXE+lQf4Q\ncK5BOUNKecUV1IQQ/wbkk8qGygMellJ2Xy0bCCEeJlWpN0iqLs1XSGVhvXxm8PMF5Fy1sXOpYyNd\nYyAdtk6XPYUQ/0kqKN0EhIFBYAAokVI+eLFyTsq6YpuPFHtfqa1Hio0v175jxZbp+M2Odluetv9G\nQDI8E3YqcFBKuehidBiGlHLUvYAtpNKSBfAE8DrgBD5K4zE2nuflTZP8DZey/TLk7wYc59j+QbrO\nz2nvq4GPgdnptMEZx9tKalnRBLhJXRAEsPlaj510jY10jYF02Dpd9jxdd+DAae8/zoTNR4q9r9TW\nI8XGl2vfsWLLdPxmR7stT/vc3wG/BZactu2diz3+ma/R13f6JPLTcvL/KYTYDfyJlKeYLnJJearR\n0zcKId5Pk/xdQoingfdIeaRZpDzs3WmSfyswdI7tK9IkX/lLrRgp5X4hxFrgOVKe8dUgIlNTh0NC\niF/9xS5CiEteMkvD2EnX2EjXGEiHrdNlz9MbqXz3tPeXMwWbFpuPEHtfqa1Hio0v175jxZbp+M2O\ndlumPiTlj4QQBuARIcTjwPOco17YRXO5XkwmX8BjQPkZ24qBX6TxGCs5t/c6M43HqCPl4X+b1BRm\nbabP7SXoPhdwnbFNC3z5Kh3vfkB7xjY98L1rPXbSOTZGyhhIlz1JXQzPZafbM2HzkWTvTNs6HTa+\nXPuOJVtm2o6ZtuV5ZOmAh4F/vtzvNCpjRs5ECPG8lPKvr/Ixfi+l/PLVPIbKxZMue6Rj7Khj49qQ\njvOs2ntkoNpS5UzGSmpv4TU4xiUWyVW5yqTLHukYO+rYuDak4zyr9h4ZqLZUGcZYcUZUVFRUVFRU\nRimqM6KioqKioqKSUVRnREVFRUVFRSWjjJUAVpeU0jPaj6Fy8aTLHumQo46Na8NIsZVq7ytnpNhB\nteXIYUw4IyoqKioqKiqjF3WZRkVFRUVFRSWjqM6IioqKioqKSkZRnREVFRUVFRWVjKI6IyMIIcQK\nIcRRIcQxIcT/yrQ+KlcfIcQzQgiPEOJApnVRuTYIIUqFEB8JIQ4JIQ4KIb6eaZ1Urj5CCKMQYpsQ\nYq8Q4rAQ4p8yrdNIQg1gHSEIITRAPbAMaAd2kOozcCSjiqlcVYQQC4EA8Dsp5fRM66Ny9RFCFAAF\nUsq9QggrsAtYo/7Wxz5CCLOUMiSE0AKbgP8ppdyUab1GAurMyMhhDtAopTwhpYwBfwBWZ1gnlauM\nlHIj4M20HirXDilll5Ry78n3AeAIUJRZrVSuBVLK0Mm3elJdc/szqM6IQnVGRg7FgPu0v9tOblNR\nURmjCCHGAbXAtsxqonItEEIoQoi9gAf4SEp5ONM6jRRUZ2TkoK6Xqah8jji5RPMS8NTJGRKVMY6U\nMimlrAFKgEVCiMUZVmnEoDojI4d2oPS0v0tJzY6oqKiMMYQQOuBl4Dkp5WuZ1kfl2iKl9ANvAbMy\nrctIQXVGRg47gYlCiHFCCD3wReBPGdZJRUUlzQghBPBr4LCU8seZ1kfl2iCEyBVCOE6+NwE3A3sy\nq9XIQXVGRghSyjjwJPAucBh4QY2uH/sIIX4PbAYmCSHcQoiHMq2TylXnBuBeYIkQYs/J14pMK6Vy\n1SkE1p2MGdkGvCGl/DDDOo0Y1NReFRUVFRUVlYyizoyoqKioqKioZBTVGVFRUVFRUVHJKKozoqKi\noqKiopJRVGdERUVFRUVFJaOozoiKioqKiopKRlGdERUVFRUVFZWMojojKioqKioqKhlFdUZUVFRU\nVFRUMsr/B18y5d10ojlGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "X, y = sklearn.datasets.make_classification(\n", + " n_samples=10000, n_features=4, n_redundant=0, n_informative=2, \n", + " n_clusters_per_class=2, hypercube=False, random_state=0\n", + ")\n", + "\n", + "# Split into train and test\n", + "X, Xt, y, yt = sklearn.cross_validation.train_test_split(X, y)\n", + "\n", + "# Visualize sample of the data\n", + "ind = np.random.permutation(X.shape[0])[:1000]\n", + "df = pd.DataFrame(X[ind])\n", + "_ = pd.scatter_matrix(df, figsize=(9, 9), diagonal='kde', marker='o', s=40, alpha=.4, c=y[ind])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Learn and evaluate scikit-learn's logistic regression with stochastic gradient descent (SGD) training. Time and check the classifier's accuracy." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.781\n", + "Accuracy: 0.781\n", + "Accuracy: 0.781\n", + "Accuracy: 0.781\n", + "1 loop, best of 3: 372 ms per loop\n" + ] + } + ], + "source": [ + "%%timeit\n", + "# Train and test the scikit-learn SGD logistic regression.\n", + "clf = sklearn.linear_model.SGDClassifier(\n", + " loss='log', n_iter=1000, penalty='l2', alpha=5e-4, class_weight='auto')\n", + "\n", + "clf.fit(X, y)\n", + "yt_pred = clf.predict(Xt)\n", + "print('Accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(yt, yt_pred)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save the dataset to HDF5 for loading in Caffe." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Write out the data to HDF5 files in a temp directory.\n", + "# This file is assumed to be caffe_root/examples/hdf5_classification.ipynb\n", + "dirname = os.path.abspath('./examples/hdf5_classification/data')\n", + "if not os.path.exists(dirname):\n", + " os.makedirs(dirname)\n", + "\n", + "train_filename = os.path.join(dirname, 'train.h5')\n", + "test_filename = os.path.join(dirname, 'test.h5')\n", + "\n", + "# HDF5DataLayer source should be a file containing a list of HDF5 filenames.\n", + "# To show this off, we'll list the same data file twice.\n", + "with h5py.File(train_filename, 'w') as f:\n", + " f['data'] = X\n", + " f['label'] = y.astype(np.float32)\n", + "with open(os.path.join(dirname, 'train.txt'), 'w') as f:\n", + " f.write(train_filename + '\\n')\n", + " f.write(train_filename + '\\n')\n", + " \n", + "# HDF5 is pretty efficient, but can be further compressed.\n", + "comp_kwargs = {'compression': 'gzip', 'compression_opts': 1}\n", + "with h5py.File(test_filename, 'w') as f:\n", + " f.create_dataset('data', data=Xt, **comp_kwargs)\n", + " f.create_dataset('label', data=yt.astype(np.float32), **comp_kwargs)\n", + "with open(os.path.join(dirname, 'test.txt'), 'w') as f:\n", + " f.write(test_filename + '\\n')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's define logistic regression in Caffe through Python net specification. This is a quick and natural way to define nets that sidesteps manually editing the protobuf model." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from caffe import layers as L\n", + "from caffe import params as P\n", + "\n", + "def logreg(hdf5, batch_size):\n", + " # logistic regression: data, matrix multiplication, and 2-class softmax loss\n", + " n = caffe.NetSpec()\n", + " n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)\n", + " n.ip1 = L.InnerProduct(n.data, num_output=2, weight_filler=dict(type='xavier'))\n", + " n.accuracy = L.Accuracy(n.ip1, n.label)\n", + " n.loss = L.SoftmaxWithLoss(n.ip1, n.label)\n", + " return n.to_proto()\n", + "\n", + "train_net_path = 'examples/hdf5_classification/logreg_auto_train.prototxt'\n", + "with open(train_net_path, 'w') as f:\n", + " f.write(str(logreg('examples/hdf5_classification/data/train.txt', 10)))\n", + "\n", + "test_net_path = 'examples/hdf5_classification/logreg_auto_test.prototxt'\n", + "with open(test_net_path, 'w') as f:\n", + " f.write(str(logreg('examples/hdf5_classification/data/test.txt', 10)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we'll define our \"solver\" which trains the network by specifying the locations of the train and test nets we defined above, as well as setting values for various parameters used for learning, display, and \"snapshotting\"." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from caffe.proto import caffe_pb2\n", + "\n", + "def solver(train_net_path, test_net_path):\n", + " s = caffe_pb2.SolverParameter()\n", + "\n", + " # Specify locations of the train and test networks.\n", + " s.train_net = train_net_path\n", + " s.test_net.append(test_net_path)\n", + "\n", + " s.test_interval = 1000 # Test after every 1000 training iterations.\n", + " s.test_iter.append(250) # Test 250 \"batches\" each time we test.\n", + "\n", + " s.max_iter = 10000 # # of times to update the net (training iterations)\n", + "\n", + " # Set the initial learning rate for stochastic gradient descent (SGD).\n", + " s.base_lr = 0.01 \n", + "\n", + " # Set `lr_policy` to define how the learning rate changes during training.\n", + " # Here, we 'step' the learning rate by multiplying it by a factor `gamma`\n", + " # every `stepsize` iterations.\n", + " s.lr_policy = 'step'\n", + " s.gamma = 0.1\n", + " s.stepsize = 5000\n", + "\n", + " # Set other optimization parameters. Setting a non-zero `momentum` takes a\n", + " # weighted average of the current gradient and previous gradients to make\n", + " # learning more stable. L2 weight decay regularizes learning, to help prevent\n", + " # the model from overfitting.\n", + " s.momentum = 0.9\n", + " s.weight_decay = 5e-4\n", + "\n", + " # Display the current training loss and accuracy every 1000 iterations.\n", + " s.display = 1000\n", + "\n", + " # Snapshots are files used to store networks we've trained. Here, we'll\n", + " # snapshot every 10K iterations -- just once at the end of training.\n", + " # For larger networks that take longer to train, you may want to set\n", + " # snapshot < max_iter to save the network and training state to disk during\n", + " # optimization, preventing disaster in case of machine crashes, etc.\n", + " s.snapshot = 10000\n", + " s.snapshot_prefix = 'examples/hdf5_classification/data/train'\n", + "\n", + " # We'll train on the CPU for fair benchmarking against scikit-learn.\n", + " # Changing to GPU should result in much faster training!\n", + " s.solver_mode = caffe_pb2.SolverParameter.CPU\n", + " \n", + " return s\n", + "\n", + "solver_path = 'examples/hdf5_classification/logreg_solver.prototxt'\n", + "with open(solver_path, 'w') as f:\n", + " f.write(str(solver(train_net_path, test_net_path)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Time to learn and evaluate our Caffeinated logistic regression in Python." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.770\n", + "Accuracy: 0.770\n", + "Accuracy: 0.770\n", + "Accuracy: 0.770\n", + "1 loop, best of 3: 195 ms per loop\n" + ] + } + ], + "source": [ + "%%timeit\n", + "caffe.set_mode_cpu()\n", + "solver = caffe.get_solver(solver_path)\n", + "solver.solve()\n", + "\n", + "accuracy = 0\n", + "batch_size = solver.test_nets[0].blobs['data'].num\n", + "test_iters = int(len(Xt) / batch_size)\n", + "for i in range(test_iters):\n", + " solver.test_nets[0].forward()\n", + " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", + "accuracy /= test_iters\n", + "\n", + "print(\"Accuracy: {:.3f}\".format(accuracy))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do the same through the command line interface for detailed output on the model and solving." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I0224 00:32:03.232779 655 caffe.cpp:178] Use CPU.\n", + "I0224 00:32:03.391911 655 solver.cpp:48] Initializing solver from parameters: \n", + "train_net: \"examples/hdf5_classification/logreg_auto_train.prototxt\"\n", + "test_net: \"examples/hdf5_classification/logreg_auto_test.prototxt\"\n", + "test_iter: 250\n", + "test_interval: 1000\n", + "base_lr: 0.01\n", + "display: 1000\n", + "max_iter: 10000\n", + "lr_policy: \"step\"\n", + "gamma: 0.1\n", + "momentum: 0.9\n", + "weight_decay: 0.0005\n", + "stepsize: 5000\n", + "snapshot: 10000\n", + "snapshot_prefix: \"examples/hdf5_classification/data/train\"\n", + "solver_mode: CPU\n", + "I0224 00:32:03.392065 655 solver.cpp:81] Creating training net from train_net file: examples/hdf5_classification/logreg_auto_train.prototxt\n", + "I0224 00:32:03.392215 655 net.cpp:49] Initializing net from parameters: \n", + "state {\n", + " phase: TRAIN\n", + "}\n", + "layer {\n", + " name: \"data\"\n", + " type: \"HDF5Data\"\n", + " top: \"data\"\n", + " top: \"label\"\n", + " hdf5_data_param {\n", + " source: \"examples/hdf5_classification/data/train.txt\"\n", + " batch_size: 10\n", + " }\n", + "}\n", + "layer {\n", + " name: \"ip1\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"data\"\n", + " top: \"ip1\"\n", + " inner_product_param {\n", + " num_output: 2\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"accuracy\"\n", + " type: \"Accuracy\"\n", + " bottom: \"ip1\"\n", + " bottom: \"label\"\n", + " top: \"accuracy\"\n", + "}\n", + "layer {\n", + " name: \"loss\"\n", + " type: \"SoftmaxWithLoss\"\n", + " bottom: \"ip1\"\n", + " bottom: \"label\"\n", + " top: \"loss\"\n", + "}\n", + "I0224 00:32:03.392365 655 layer_factory.hpp:77] Creating layer data\n", + "I0224 00:32:03.392382 655 net.cpp:106] Creating Layer data\n", + "I0224 00:32:03.392395 655 net.cpp:411] data -> data\n", + "I0224 00:32:03.392423 655 net.cpp:411] data -> label\n", + "I0224 00:32:03.392442 655 hdf5_data_layer.cpp:79] Loading list of HDF5 filenames from: examples/hdf5_classification/data/train.txt\n", + "I0224 00:32:03.392473 655 hdf5_data_layer.cpp:93] Number of HDF5 files: 2\n", + "I0224 00:32:03.393473 655 hdf5.cpp:32] Datatype class: H5T_FLOAT\n", + "I0224 00:32:03.393862 655 net.cpp:150] Setting up data\n", + "I0224 00:32:03.393884 655 net.cpp:157] Top shape: 10 4 (40)\n", + "I0224 00:32:03.393894 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.393901 655 net.cpp:165] Memory required for data: 200\n", + "I0224 00:32:03.393911 655 layer_factory.hpp:77] Creating layer label_data_1_split\n", + "I0224 00:32:03.393924 655 net.cpp:106] Creating Layer label_data_1_split\n", + "I0224 00:32:03.393934 655 net.cpp:454] label_data_1_split <- label\n", + "I0224 00:32:03.393945 655 net.cpp:411] label_data_1_split -> label_data_1_split_0\n", + "I0224 00:32:03.393956 655 net.cpp:411] label_data_1_split -> label_data_1_split_1\n", + "I0224 00:32:03.393970 655 net.cpp:150] Setting up label_data_1_split\n", + "I0224 00:32:03.393978 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.393986 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.393995 655 net.cpp:165] Memory required for data: 280\n", + "I0224 00:32:03.394001 655 layer_factory.hpp:77] Creating layer ip1\n", + "I0224 00:32:03.394012 655 net.cpp:106] Creating Layer ip1\n", + "I0224 00:32:03.394021 655 net.cpp:454] ip1 <- data\n", + "I0224 00:32:03.394029 655 net.cpp:411] ip1 -> ip1\n", + "I0224 00:32:03.394311 655 net.cpp:150] Setting up ip1\n", + "I0224 00:32:03.394323 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.394331 655 net.cpp:165] Memory required for data: 360\n", + "I0224 00:32:03.394348 655 layer_factory.hpp:77] Creating layer ip1_ip1_0_split\n", + "I0224 00:32:03.394358 655 net.cpp:106] Creating Layer ip1_ip1_0_split\n", + "I0224 00:32:03.394366 655 net.cpp:454] ip1_ip1_0_split <- ip1\n", + "I0224 00:32:03.394374 655 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_0\n", + "I0224 00:32:03.394386 655 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_1\n", + "I0224 00:32:03.394395 655 net.cpp:150] Setting up ip1_ip1_0_split\n", + "I0224 00:32:03.394404 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.394424 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.394443 655 net.cpp:165] Memory required for data: 520\n", + "I0224 00:32:03.394450 655 layer_factory.hpp:77] Creating layer accuracy\n", + "I0224 00:32:03.394462 655 net.cpp:106] Creating Layer accuracy\n", + "I0224 00:32:03.394479 655 net.cpp:454] accuracy <- ip1_ip1_0_split_0\n", + "I0224 00:32:03.394489 655 net.cpp:454] accuracy <- label_data_1_split_0\n", + "I0224 00:32:03.394497 655 net.cpp:411] accuracy -> accuracy\n", + "I0224 00:32:03.394510 655 net.cpp:150] Setting up accuracy\n", + "I0224 00:32:03.394536 655 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:03.394543 655 net.cpp:165] Memory required for data: 524\n", + "I0224 00:32:03.394551 655 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:03.394562 655 net.cpp:106] Creating Layer loss\n", + "I0224 00:32:03.394569 655 net.cpp:454] loss <- ip1_ip1_0_split_1\n", + "I0224 00:32:03.394577 655 net.cpp:454] loss <- label_data_1_split_1\n", + "I0224 00:32:03.394587 655 net.cpp:411] loss -> loss\n", + "I0224 00:32:03.394603 655 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:03.394624 655 net.cpp:150] Setting up loss\n", + "I0224 00:32:03.394634 655 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:03.394641 655 net.cpp:160] with loss weight 1\n", + "I0224 00:32:03.394659 655 net.cpp:165] Memory required for data: 528\n", + "I0224 00:32:03.394665 655 net.cpp:226] loss needs backward computation.\n", + "I0224 00:32:03.394673 655 net.cpp:228] accuracy does not need backward computation.\n", + "I0224 00:32:03.394682 655 net.cpp:226] ip1_ip1_0_split needs backward computation.\n", + "I0224 00:32:03.394690 655 net.cpp:226] ip1 needs backward computation.\n", + "I0224 00:32:03.394697 655 net.cpp:228] label_data_1_split does not need backward computation.\n", + "I0224 00:32:03.394706 655 net.cpp:228] data does not need backward computation.\n", + "I0224 00:32:03.394712 655 net.cpp:270] This network produces output accuracy\n", + "I0224 00:32:03.394721 655 net.cpp:270] This network produces output loss\n", + "I0224 00:32:03.394731 655 net.cpp:283] Network initialization done.\n", + "I0224 00:32:03.394804 655 solver.cpp:181] Creating test net (#0) specified by test_net file: examples/hdf5_classification/logreg_auto_test.prototxt\n", + "I0224 00:32:03.394836 655 net.cpp:49] Initializing net from parameters: \n", + "state {\n", + " phase: TEST\n", + "}\n", + "layer {\n", + " name: \"data\"\n", + " type: \"HDF5Data\"\n", + " top: \"data\"\n", + " top: \"label\"\n", + " hdf5_data_param {\n", + " source: \"examples/hdf5_classification/data/test.txt\"\n", + " batch_size: 10\n", + " }\n", + "}\n", + "layer {\n", + " name: \"ip1\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"data\"\n", + " top: \"ip1\"\n", + " inner_product_param {\n", + " num_output: 2\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"accuracy\"\n", + " type: \"Accuracy\"\n", + " bottom: \"ip1\"\n", + " bottom: \"label\"\n", + " top: \"accuracy\"\n", + "}\n", + "layer {\n", + " name: \"loss\"\n", + " type: \"SoftmaxWithLoss\"\n", + " bottom: \"ip1\"\n", + " bottom: \"label\"\n", + " top: \"loss\"\n", + "}\n", + "I0224 00:32:03.394953 655 layer_factory.hpp:77] Creating layer data\n", + "I0224 00:32:03.394964 655 net.cpp:106] Creating Layer data\n", + "I0224 00:32:03.394973 655 net.cpp:411] data -> data\n", + "I0224 00:32:03.394984 655 net.cpp:411] data -> label\n", + "I0224 00:32:03.394994 655 hdf5_data_layer.cpp:79] Loading list of HDF5 filenames from: examples/hdf5_classification/data/test.txt\n", + "I0224 00:32:03.395009 655 hdf5_data_layer.cpp:93] Number of HDF5 files: 1\n", + "I0224 00:32:03.395937 655 net.cpp:150] Setting up data\n", + "I0224 00:32:03.395953 655 net.cpp:157] Top shape: 10 4 (40)\n", + "I0224 00:32:03.395963 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.395970 655 net.cpp:165] Memory required for data: 200\n", + "I0224 00:32:03.395978 655 layer_factory.hpp:77] Creating layer label_data_1_split\n", + "I0224 00:32:03.395989 655 net.cpp:106] Creating Layer label_data_1_split\n", + "I0224 00:32:03.395997 655 net.cpp:454] label_data_1_split <- label\n", + "I0224 00:32:03.396005 655 net.cpp:411] label_data_1_split -> label_data_1_split_0\n", + "I0224 00:32:03.396016 655 net.cpp:411] label_data_1_split -> label_data_1_split_1\n", + "I0224 00:32:03.396028 655 net.cpp:150] Setting up label_data_1_split\n", + "I0224 00:32:03.396036 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.396044 655 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:03.396051 655 net.cpp:165] Memory required for data: 280\n", + "I0224 00:32:03.396059 655 layer_factory.hpp:77] Creating layer ip1\n", + "I0224 00:32:03.396069 655 net.cpp:106] Creating Layer ip1\n", + "I0224 00:32:03.396075 655 net.cpp:454] ip1 <- data\n", + "I0224 00:32:03.396085 655 net.cpp:411] ip1 -> ip1\n", + "I0224 00:32:03.396100 655 net.cpp:150] Setting up ip1\n", + "I0224 00:32:03.396109 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.396116 655 net.cpp:165] Memory required for data: 360\n", + "I0224 00:32:03.396138 655 layer_factory.hpp:77] Creating layer ip1_ip1_0_split\n", + "I0224 00:32:03.396148 655 net.cpp:106] Creating Layer ip1_ip1_0_split\n", + "I0224 00:32:03.396157 655 net.cpp:454] ip1_ip1_0_split <- ip1\n", + "I0224 00:32:03.396164 655 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_0\n", + "I0224 00:32:03.396174 655 net.cpp:411] ip1_ip1_0_split -> ip1_ip1_0_split_1\n", + "I0224 00:32:03.396185 655 net.cpp:150] Setting up ip1_ip1_0_split\n", + "I0224 00:32:03.396194 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.396203 655 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:03.396209 655 net.cpp:165] Memory required for data: 520\n", + "I0224 00:32:03.396216 655 layer_factory.hpp:77] Creating layer accuracy\n", + "I0224 00:32:03.396225 655 net.cpp:106] Creating Layer accuracy\n", + "I0224 00:32:03.396234 655 net.cpp:454] accuracy <- ip1_ip1_0_split_0\n", + "I0224 00:32:03.396241 655 net.cpp:454] accuracy <- label_data_1_split_0\n", + "I0224 00:32:03.396250 655 net.cpp:411] accuracy -> accuracy\n", + "I0224 00:32:03.396260 655 net.cpp:150] Setting up accuracy\n", + "I0224 00:32:03.396270 655 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:03.396276 655 net.cpp:165] Memory required for data: 524\n", + "I0224 00:32:03.396283 655 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:03.396291 655 net.cpp:106] Creating Layer loss\n", + "I0224 00:32:03.396299 655 net.cpp:454] loss <- ip1_ip1_0_split_1\n", + "I0224 00:32:03.396307 655 net.cpp:454] loss <- label_data_1_split_1\n", + "I0224 00:32:03.396317 655 net.cpp:411] loss -> loss\n", + "I0224 00:32:03.396327 655 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:03.396339 655 net.cpp:150] Setting up loss\n", + "I0224 00:32:03.396349 655 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:03.396356 655 net.cpp:160] with loss weight 1\n", + "I0224 00:32:03.396365 655 net.cpp:165] Memory required for data: 528\n", + "I0224 00:32:03.396373 655 net.cpp:226] loss needs backward computation.\n", + "I0224 00:32:03.396381 655 net.cpp:228] accuracy does not need backward computation.\n", + "I0224 00:32:03.396389 655 net.cpp:226] ip1_ip1_0_split needs backward computation.\n", + "I0224 00:32:03.396396 655 net.cpp:226] ip1 needs backward computation.\n", + "I0224 00:32:03.396404 655 net.cpp:228] label_data_1_split does not need backward computation.\n", + "I0224 00:32:03.396412 655 net.cpp:228] data does not need backward computation.\n", + "I0224 00:32:03.396420 655 net.cpp:270] This network produces output accuracy\n", + "I0224 00:32:03.396427 655 net.cpp:270] This network produces output loss\n", + "I0224 00:32:03.396437 655 net.cpp:283] Network initialization done.\n", + "I0224 00:32:03.396455 655 solver.cpp:60] Solver scaffolding done.\n", + "I0224 00:32:03.396473 655 caffe.cpp:219] Starting Optimization\n", + "I0224 00:32:03.396482 655 solver.cpp:280] Solving \n", + "I0224 00:32:03.396489 655 solver.cpp:281] Learning Rate Policy: step\n", + "I0224 00:32:03.396499 655 solver.cpp:338] Iteration 0, Testing net (#0)\n", + "I0224 00:32:03.932615 655 solver.cpp:406] Test net output #0: accuracy = 0.4268\n", + "I0224 00:32:03.932656 655 solver.cpp:406] Test net output #1: loss = 1.33093 (* 1 = 1.33093 loss)\n", + "I0224 00:32:03.932723 655 solver.cpp:229] Iteration 0, loss = 1.06081\n", + "I0224 00:32:03.932737 655 solver.cpp:245] Train net output #0: accuracy = 0.4\n", + "I0224 00:32:03.932749 655 solver.cpp:245] Train net output #1: loss = 1.06081 (* 1 = 1.06081 loss)\n", + "I0224 00:32:03.932765 655 sgd_solver.cpp:106] Iteration 0, lr = 0.01\n", + "I0224 00:32:03.945551 655 solver.cpp:338] Iteration 1000, Testing net (#0)\n", + "I0224 00:32:03.948048 655 solver.cpp:406] Test net output #0: accuracy = 0.694\n", + "I0224 00:32:03.948065 655 solver.cpp:406] Test net output #1: loss = 0.60406 (* 1 = 0.60406 loss)\n", + "I0224 00:32:03.948091 655 solver.cpp:229] Iteration 1000, loss = 0.505853\n", + "I0224 00:32:03.948102 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:03.948113 655 solver.cpp:245] Train net output #1: loss = 0.505853 (* 1 = 0.505853 loss)\n", + "I0224 00:32:03.948122 655 sgd_solver.cpp:106] Iteration 1000, lr = 0.01\n", + "I0224 00:32:03.960741 655 solver.cpp:338] Iteration 2000, Testing net (#0)\n", + "I0224 00:32:03.963214 655 solver.cpp:406] Test net output #0: accuracy = 0.7372\n", + "I0224 00:32:03.963249 655 solver.cpp:406] Test net output #1: loss = 0.595267 (* 1 = 0.595267 loss)\n", + "I0224 00:32:03.963276 655 solver.cpp:229] Iteration 2000, loss = 0.549211\n", + "I0224 00:32:03.963289 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:03.963299 655 solver.cpp:245] Train net output #1: loss = 0.549211 (* 1 = 0.549211 loss)\n", + "I0224 00:32:03.963309 655 sgd_solver.cpp:106] Iteration 2000, lr = 0.01\n", + "I0224 00:32:03.975945 655 solver.cpp:338] Iteration 3000, Testing net (#0)\n", + "I0224 00:32:03.978435 655 solver.cpp:406] Test net output #0: accuracy = 0.7732\n", + "I0224 00:32:03.978451 655 solver.cpp:406] Test net output #1: loss = 0.594998 (* 1 = 0.594998 loss)\n", + "I0224 00:32:03.978884 655 solver.cpp:229] Iteration 3000, loss = 0.66133\n", + "I0224 00:32:03.978911 655 solver.cpp:245] Train net output #0: accuracy = 0.8\n", + "I0224 00:32:03.978932 655 solver.cpp:245] Train net output #1: loss = 0.66133 (* 1 = 0.66133 loss)\n", + "I0224 00:32:03.978950 655 sgd_solver.cpp:106] Iteration 3000, lr = 0.01\n", + "I0224 00:32:03.992017 655 solver.cpp:338] Iteration 4000, Testing net (#0)\n", + "I0224 00:32:03.994509 655 solver.cpp:406] Test net output #0: accuracy = 0.694\n", + "I0224 00:32:03.994525 655 solver.cpp:406] Test net output #1: loss = 0.60406 (* 1 = 0.60406 loss)\n", + "I0224 00:32:03.994551 655 solver.cpp:229] Iteration 4000, loss = 0.505853\n", + "I0224 00:32:03.994562 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:03.994573 655 solver.cpp:245] Train net output #1: loss = 0.505853 (* 1 = 0.505853 loss)\n", + "I0224 00:32:03.994583 655 sgd_solver.cpp:106] Iteration 4000, lr = 0.01\n", + "I0224 00:32:04.007200 655 solver.cpp:338] Iteration 5000, Testing net (#0)\n", + "I0224 00:32:04.009686 655 solver.cpp:406] Test net output #0: accuracy = 0.7372\n", + "I0224 00:32:04.009702 655 solver.cpp:406] Test net output #1: loss = 0.595267 (* 1 = 0.595267 loss)\n", + "I0224 00:32:04.009727 655 solver.cpp:229] Iteration 5000, loss = 0.549211\n", + "I0224 00:32:04.009738 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:04.009749 655 solver.cpp:245] Train net output #1: loss = 0.549211 (* 1 = 0.549211 loss)\n", + "I0224 00:32:04.009758 655 sgd_solver.cpp:106] Iteration 5000, lr = 0.001\n", + "I0224 00:32:04.022734 655 solver.cpp:338] Iteration 6000, Testing net (#0)\n", + "I0224 00:32:04.025177 655 solver.cpp:406] Test net output #0: accuracy = 0.7824\n", + "I0224 00:32:04.025193 655 solver.cpp:406] Test net output #1: loss = 0.593367 (* 1 = 0.593367 loss)\n", + "I0224 00:32:04.025545 655 solver.cpp:229] Iteration 6000, loss = 0.654873\n", + "I0224 00:32:04.025562 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:04.025573 655 solver.cpp:245] Train net output #1: loss = 0.654873 (* 1 = 0.654873 loss)\n", + "I0224 00:32:04.025583 655 sgd_solver.cpp:106] Iteration 6000, lr = 0.001\n", + "I0224 00:32:04.038586 655 solver.cpp:338] Iteration 7000, Testing net (#0)\n", + "I0224 00:32:04.041016 655 solver.cpp:406] Test net output #0: accuracy = 0.7704\n", + "I0224 00:32:04.041033 655 solver.cpp:406] Test net output #1: loss = 0.593842 (* 1 = 0.593842 loss)\n", + "I0224 00:32:04.041059 655 solver.cpp:229] Iteration 7000, loss = 0.46611\n", + "I0224 00:32:04.041071 655 solver.cpp:245] Train net output #0: accuracy = 0.6\n", + "I0224 00:32:04.041082 655 solver.cpp:245] Train net output #1: loss = 0.46611 (* 1 = 0.46611 loss)\n", + "I0224 00:32:04.041091 655 sgd_solver.cpp:106] Iteration 7000, lr = 0.001\n", + "I0224 00:32:04.053722 655 solver.cpp:338] Iteration 8000, Testing net (#0)\n", + "I0224 00:32:04.056171 655 solver.cpp:406] Test net output #0: accuracy = 0.7788\n", + "I0224 00:32:04.056187 655 solver.cpp:406] Test net output #1: loss = 0.592847 (* 1 = 0.592847 loss)\n", + "I0224 00:32:04.056213 655 solver.cpp:229] Iteration 8000, loss = 0.615126\n", + "I0224 00:32:04.056224 655 solver.cpp:245] Train net output #0: accuracy = 0.8\n", + "I0224 00:32:04.056236 655 solver.cpp:245] Train net output #1: loss = 0.615126 (* 1 = 0.615126 loss)\n", + "I0224 00:32:04.056244 655 sgd_solver.cpp:106] Iteration 8000, lr = 0.001\n", + "I0224 00:32:04.068853 655 solver.cpp:338] Iteration 9000, Testing net (#0)\n", + "I0224 00:32:04.071291 655 solver.cpp:406] Test net output #0: accuracy = 0.7808\n", + "I0224 00:32:04.071307 655 solver.cpp:406] Test net output #1: loss = 0.593293 (* 1 = 0.593293 loss)\n", + "I0224 00:32:04.071650 655 solver.cpp:229] Iteration 9000, loss = 0.654997\n", + "I0224 00:32:04.071666 655 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:04.071677 655 solver.cpp:245] Train net output #1: loss = 0.654998 (* 1 = 0.654998 loss)\n", + "I0224 00:32:04.071687 655 sgd_solver.cpp:106] Iteration 9000, lr = 0.001\n", + "I0224 00:32:04.084717 655 solver.cpp:456] Snapshotting to binary proto file examples/hdf5_classification/data/train_iter_10000.caffemodel\n", + "I0224 00:32:04.084885 655 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/hdf5_classification/data/train_iter_10000.solverstate\n", + "I0224 00:32:04.084960 655 solver.cpp:318] Iteration 10000, loss = 0.466505\n", + "I0224 00:32:04.084977 655 solver.cpp:338] Iteration 10000, Testing net (#0)\n", + "I0224 00:32:04.087514 655 solver.cpp:406] Test net output #0: accuracy = 0.77\n", + "I0224 00:32:04.087532 655 solver.cpp:406] Test net output #1: loss = 0.593815 (* 1 = 0.593815 loss)\n", + "I0224 00:32:04.087541 655 solver.cpp:323] Optimization Done.\n", + "I0224 00:32:04.087548 655 caffe.cpp:222] Optimization Done.\n" + ] + } + ], + "source": [ + "!./build/tools/caffe train -solver examples/hdf5_classification/logreg_solver.prototxt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you look at output or the `logreg_auto_train.prototxt`, you'll see that the model is simple logistic regression.\n", + "We can make it a little more advanced by introducing a non-linearity between weights that take the input and weights that give the output -- now we have a two-layer network.\n", + "That network is given in `nonlinear_auto_train.prototxt`, and that's the only change made in `nonlinear_logreg_solver.prototxt` which we will now use.\n", + "\n", + "The final accuracy of the new network should be higher than logistic regression!" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from caffe import layers as L\n", + "from caffe import params as P\n", + "\n", + "def nonlinear_net(hdf5, batch_size):\n", + " # one small nonlinearity, one leap for model kind\n", + " n = caffe.NetSpec()\n", + " n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)\n", + " # define a hidden layer of dimension 40\n", + " n.ip1 = L.InnerProduct(n.data, num_output=40, weight_filler=dict(type='xavier'))\n", + " # transform the output through the ReLU (rectified linear) non-linearity\n", + " n.relu1 = L.ReLU(n.ip1, in_place=True)\n", + " # score the (now non-linear) features\n", + " n.ip2 = L.InnerProduct(n.ip1, num_output=2, weight_filler=dict(type='xavier'))\n", + " # same accuracy and loss as before\n", + " n.accuracy = L.Accuracy(n.ip2, n.label)\n", + " n.loss = L.SoftmaxWithLoss(n.ip2, n.label)\n", + " return n.to_proto()\n", + "\n", + "train_net_path = 'examples/hdf5_classification/nonlinear_auto_train.prototxt'\n", + "with open(train_net_path, 'w') as f:\n", + " f.write(str(nonlinear_net('examples/hdf5_classification/data/train.txt', 10)))\n", + "\n", + "test_net_path = 'examples/hdf5_classification/nonlinear_auto_test.prototxt'\n", + "with open(test_net_path, 'w') as f:\n", + " f.write(str(nonlinear_net('examples/hdf5_classification/data/test.txt', 10)))\n", + "\n", + "solver_path = 'examples/hdf5_classification/nonlinear_logreg_solver.prototxt'\n", + "with open(solver_path, 'w') as f:\n", + " f.write(str(solver(train_net_path, test_net_path)))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.838\n", + "Accuracy: 0.837\n", + "Accuracy: 0.838\n", + "Accuracy: 0.834\n", + "1 loop, best of 3: 277 ms per loop\n" + ] + } + ], + "source": [ + "%%timeit\n", + "caffe.set_mode_cpu()\n", + "solver = caffe.get_solver(solver_path)\n", + "solver.solve()\n", + "\n", + "accuracy = 0\n", + "batch_size = solver.test_nets[0].blobs['data'].num\n", + "test_iters = int(len(Xt) / batch_size)\n", + "for i in range(test_iters):\n", + " solver.test_nets[0].forward()\n", + " accuracy += solver.test_nets[0].blobs['accuracy'].data\n", + "accuracy /= test_iters\n", + "\n", + "print(\"Accuracy: {:.3f}\".format(accuracy))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do the same through the command line interface for detailed output on the model and solving." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I0224 00:32:05.654265 658 caffe.cpp:178] Use CPU.\n", + "I0224 00:32:05.810444 658 solver.cpp:48] Initializing solver from parameters: \n", + "train_net: \"examples/hdf5_classification/nonlinear_auto_train.prototxt\"\n", + "test_net: \"examples/hdf5_classification/nonlinear_auto_test.prototxt\"\n", + "test_iter: 250\n", + "test_interval: 1000\n", + "base_lr: 0.01\n", + "display: 1000\n", + "max_iter: 10000\n", + "lr_policy: \"step\"\n", + "gamma: 0.1\n", + "momentum: 0.9\n", + "weight_decay: 0.0005\n", + "stepsize: 5000\n", + "snapshot: 10000\n", + "snapshot_prefix: \"examples/hdf5_classification/data/train\"\n", + "solver_mode: CPU\n", + "I0224 00:32:05.810634 658 solver.cpp:81] Creating training net from train_net file: examples/hdf5_classification/nonlinear_auto_train.prototxt\n", + "I0224 00:32:05.810835 658 net.cpp:49] Initializing net from parameters: \n", + "state {\n", + " phase: TRAIN\n", + "}\n", + "layer {\n", + " name: \"data\"\n", + " type: \"HDF5Data\"\n", + " top: \"data\"\n", + " top: \"label\"\n", + " hdf5_data_param {\n", + " source: \"examples/hdf5_classification/data/train.txt\"\n", + " batch_size: 10\n", + " }\n", + "}\n", + "layer {\n", + " name: \"ip1\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"data\"\n", + " top: \"ip1\"\n", + " inner_product_param {\n", + " num_output: 40\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"relu1\"\n", + " type: \"ReLU\"\n", + " bottom: \"ip1\"\n", + " top: \"ip1\"\n", + "}\n", + "layer {\n", + " name: \"ip2\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"ip1\"\n", + " top: \"ip2\"\n", + " inner_product_param {\n", + " num_output: 2\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"accuracy\"\n", + " type: \"Accuracy\"\n", + " bottom: \"ip2\"\n", + " bottom: \"label\"\n", + " top: \"accuracy\"\n", + "}\n", + "layer {\n", + " name: \"loss\"\n", + " type: \"SoftmaxWithLoss\"\n", + " bottom: \"ip2\"\n", + " bottom: \"label\"\n", + " top: \"loss\"\n", + "}\n", + "I0224 00:32:05.811061 658 layer_factory.hpp:77] Creating layer data\n", + "I0224 00:32:05.811079 658 net.cpp:106] Creating Layer data\n", + "I0224 00:32:05.811092 658 net.cpp:411] data -> data\n", + "I0224 00:32:05.811121 658 net.cpp:411] data -> label\n", + "I0224 00:32:05.811143 658 hdf5_data_layer.cpp:79] Loading list of HDF5 filenames from: examples/hdf5_classification/data/train.txt\n", + "I0224 00:32:05.811189 658 hdf5_data_layer.cpp:93] Number of HDF5 files: 2\n", + "I0224 00:32:05.812254 658 hdf5.cpp:32] Datatype class: H5T_FLOAT\n", + "I0224 00:32:05.812677 658 net.cpp:150] Setting up data\n", + "I0224 00:32:05.812705 658 net.cpp:157] Top shape: 10 4 (40)\n", + "I0224 00:32:05.812721 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.812729 658 net.cpp:165] Memory required for data: 200\n", + "I0224 00:32:05.812739 658 layer_factory.hpp:77] Creating layer label_data_1_split\n", + "I0224 00:32:05.812752 658 net.cpp:106] Creating Layer label_data_1_split\n", + "I0224 00:32:05.812762 658 net.cpp:454] label_data_1_split <- label\n", + "I0224 00:32:05.812774 658 net.cpp:411] label_data_1_split -> label_data_1_split_0\n", + "I0224 00:32:05.812785 658 net.cpp:411] label_data_1_split -> label_data_1_split_1\n", + "I0224 00:32:05.812798 658 net.cpp:150] Setting up label_data_1_split\n", + "I0224 00:32:05.812808 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.812816 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.812824 658 net.cpp:165] Memory required for data: 280\n", + "I0224 00:32:05.812831 658 layer_factory.hpp:77] Creating layer ip1\n", + "I0224 00:32:05.812841 658 net.cpp:106] Creating Layer ip1\n", + "I0224 00:32:05.812849 658 net.cpp:454] ip1 <- data\n", + "I0224 00:32:05.812860 658 net.cpp:411] ip1 -> ip1\n", + "I0224 00:32:05.813179 658 net.cpp:150] Setting up ip1\n", + "I0224 00:32:05.813196 658 net.cpp:157] Top shape: 10 40 (400)\n", + "I0224 00:32:05.813210 658 net.cpp:165] Memory required for data: 1880\n", + "I0224 00:32:05.813230 658 layer_factory.hpp:77] Creating layer relu1\n", + "I0224 00:32:05.813241 658 net.cpp:106] Creating Layer relu1\n", + "I0224 00:32:05.813251 658 net.cpp:454] relu1 <- ip1\n", + "I0224 00:32:05.813258 658 net.cpp:397] relu1 -> ip1 (in-place)\n", + "I0224 00:32:05.813271 658 net.cpp:150] Setting up relu1\n", + "I0224 00:32:05.813279 658 net.cpp:157] Top shape: 10 40 (400)\n", + "I0224 00:32:05.813287 658 net.cpp:165] Memory required for data: 3480\n", + "I0224 00:32:05.813294 658 layer_factory.hpp:77] Creating layer ip2\n", + "I0224 00:32:05.813304 658 net.cpp:106] Creating Layer ip2\n", + "I0224 00:32:05.813313 658 net.cpp:454] ip2 <- ip1\n", + "I0224 00:32:05.813321 658 net.cpp:411] ip2 -> ip2\n", + "I0224 00:32:05.813336 658 net.cpp:150] Setting up ip2\n", + "I0224 00:32:05.813345 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.813379 658 net.cpp:165] Memory required for data: 3560\n", + "I0224 00:32:05.813401 658 layer_factory.hpp:77] Creating layer ip2_ip2_0_split\n", + "I0224 00:32:05.813417 658 net.cpp:106] Creating Layer ip2_ip2_0_split\n", + "I0224 00:32:05.813426 658 net.cpp:454] ip2_ip2_0_split <- ip2\n", + "I0224 00:32:05.813434 658 net.cpp:411] ip2_ip2_0_split -> ip2_ip2_0_split_0\n", + "I0224 00:32:05.813446 658 net.cpp:411] ip2_ip2_0_split -> ip2_ip2_0_split_1\n", + "I0224 00:32:05.813457 658 net.cpp:150] Setting up ip2_ip2_0_split\n", + "I0224 00:32:05.813465 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.813473 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.813480 658 net.cpp:165] Memory required for data: 3720\n", + "I0224 00:32:05.813488 658 layer_factory.hpp:77] Creating layer accuracy\n", + "I0224 00:32:05.813499 658 net.cpp:106] Creating Layer accuracy\n", + "I0224 00:32:05.813508 658 net.cpp:454] accuracy <- ip2_ip2_0_split_0\n", + "I0224 00:32:05.813515 658 net.cpp:454] accuracy <- label_data_1_split_0\n", + "I0224 00:32:05.813524 658 net.cpp:411] accuracy -> accuracy\n", + "I0224 00:32:05.813539 658 net.cpp:150] Setting up accuracy\n", + "I0224 00:32:05.813547 658 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:05.813555 658 net.cpp:165] Memory required for data: 3724\n", + "I0224 00:32:05.813565 658 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:05.813585 658 net.cpp:106] Creating Layer loss\n", + "I0224 00:32:05.813599 658 net.cpp:454] loss <- ip2_ip2_0_split_1\n", + "I0224 00:32:05.813616 658 net.cpp:454] loss <- label_data_1_split_1\n", + "I0224 00:32:05.813627 658 net.cpp:411] loss -> loss\n", + "I0224 00:32:05.813642 658 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:05.813663 658 net.cpp:150] Setting up loss\n", + "I0224 00:32:05.813671 658 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:05.813679 658 net.cpp:160] with loss weight 1\n", + "I0224 00:32:05.813695 658 net.cpp:165] Memory required for data: 3728\n", + "I0224 00:32:05.813704 658 net.cpp:226] loss needs backward computation.\n", + "I0224 00:32:05.813712 658 net.cpp:228] accuracy does not need backward computation.\n", + "I0224 00:32:05.813720 658 net.cpp:226] ip2_ip2_0_split needs backward computation.\n", + "I0224 00:32:05.813729 658 net.cpp:226] ip2 needs backward computation.\n", + "I0224 00:32:05.813735 658 net.cpp:226] relu1 needs backward computation.\n", + "I0224 00:32:05.813743 658 net.cpp:226] ip1 needs backward computation.\n", + "I0224 00:32:05.813751 658 net.cpp:228] label_data_1_split does not need backward computation.\n", + "I0224 00:32:05.813760 658 net.cpp:228] data does not need backward computation.\n", + "I0224 00:32:05.813772 658 net.cpp:270] This network produces output accuracy\n", + "I0224 00:32:05.813787 658 net.cpp:270] This network produces output loss\n", + "I0224 00:32:05.813809 658 net.cpp:283] Network initialization done.\n", + "I0224 00:32:05.813905 658 solver.cpp:181] Creating test net (#0) specified by test_net file: examples/hdf5_classification/nonlinear_auto_test.prototxt\n", + "I0224 00:32:05.813944 658 net.cpp:49] Initializing net from parameters: \n", + "state {\n", + " phase: TEST\n", + "}\n", + "layer {\n", + " name: \"data\"\n", + " type: \"HDF5Data\"\n", + " top: \"data\"\n", + " top: \"label\"\n", + " hdf5_data_param {\n", + " source: \"examples/hdf5_classification/data/test.txt\"\n", + " batch_size: 10\n", + " }\n", + "}\n", + "layer {\n", + " name: \"ip1\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"data\"\n", + " top: \"ip1\"\n", + " inner_product_param {\n", + " num_output: 40\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"relu1\"\n", + " type: \"ReLU\"\n", + " bottom: \"ip1\"\n", + " top: \"ip1\"\n", + "}\n", + "layer {\n", + " name: \"ip2\"\n", + " type: \"InnerProduct\"\n", + " bottom: \"ip1\"\n", + " top: \"ip2\"\n", + " inner_product_param {\n", + " num_output: 2\n", + " weight_filler {\n", + " type: \"xavier\"\n", + " }\n", + " }\n", + "}\n", + "layer {\n", + " name: \"accuracy\"\n", + " type: \"Accuracy\"\n", + " bottom: \"ip2\"\n", + " bottom: \"label\"\n", + " top: \"accuracy\"\n", + "}\n", + "layer {\n", + " name: \"loss\"\n", + " type: \"SoftmaxWithLoss\"\n", + " bottom: \"ip2\"\n", + " bottom: \"label\"\n", + " top: \"loss\"\n", + "}\n", + "I0224 00:32:05.814131 658 layer_factory.hpp:77] Creating layer data\n", + "I0224 00:32:05.814142 658 net.cpp:106] Creating Layer data\n", + "I0224 00:32:05.814152 658 net.cpp:411] data -> data\n", + "I0224 00:32:05.814162 658 net.cpp:411] data -> label\n", + "I0224 00:32:05.814180 658 hdf5_data_layer.cpp:79] Loading list of HDF5 filenames from: examples/hdf5_classification/data/test.txt\n", + "I0224 00:32:05.814220 658 hdf5_data_layer.cpp:93] Number of HDF5 files: 1\n", + "I0224 00:32:05.815207 658 net.cpp:150] Setting up data\n", + "I0224 00:32:05.815227 658 net.cpp:157] Top shape: 10 4 (40)\n", + "I0224 00:32:05.815243 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.815253 658 net.cpp:165] Memory required for data: 200\n", + "I0224 00:32:05.815260 658 layer_factory.hpp:77] Creating layer label_data_1_split\n", + "I0224 00:32:05.815270 658 net.cpp:106] Creating Layer label_data_1_split\n", + "I0224 00:32:05.815279 658 net.cpp:454] label_data_1_split <- label\n", + "I0224 00:32:05.815287 658 net.cpp:411] label_data_1_split -> label_data_1_split_0\n", + "I0224 00:32:05.815299 658 net.cpp:411] label_data_1_split -> label_data_1_split_1\n", + "I0224 00:32:05.815310 658 net.cpp:150] Setting up label_data_1_split\n", + "I0224 00:32:05.815318 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.815326 658 net.cpp:157] Top shape: 10 (10)\n", + "I0224 00:32:05.815335 658 net.cpp:165] Memory required for data: 280\n", + "I0224 00:32:05.815341 658 layer_factory.hpp:77] Creating layer ip1\n", + "I0224 00:32:05.815351 658 net.cpp:106] Creating Layer ip1\n", + "I0224 00:32:05.815358 658 net.cpp:454] ip1 <- data\n", + "I0224 00:32:05.815367 658 net.cpp:411] ip1 -> ip1\n", + "I0224 00:32:05.815383 658 net.cpp:150] Setting up ip1\n", + "I0224 00:32:05.815398 658 net.cpp:157] Top shape: 10 40 (400)\n", + "I0224 00:32:05.815413 658 net.cpp:165] Memory required for data: 1880\n", + "I0224 00:32:05.815435 658 layer_factory.hpp:77] Creating layer relu1\n", + "I0224 00:32:05.815450 658 net.cpp:106] Creating Layer relu1\n", + "I0224 00:32:05.815459 658 net.cpp:454] relu1 <- ip1\n", + "I0224 00:32:05.815469 658 net.cpp:397] relu1 -> ip1 (in-place)\n", + "I0224 00:32:05.815479 658 net.cpp:150] Setting up relu1\n", + "I0224 00:32:05.815486 658 net.cpp:157] Top shape: 10 40 (400)\n", + "I0224 00:32:05.815495 658 net.cpp:165] Memory required for data: 3480\n", + "I0224 00:32:05.815501 658 layer_factory.hpp:77] Creating layer ip2\n", + "I0224 00:32:05.815510 658 net.cpp:106] Creating Layer ip2\n", + "I0224 00:32:05.815518 658 net.cpp:454] ip2 <- ip1\n", + "I0224 00:32:05.815527 658 net.cpp:411] ip2 -> ip2\n", + "I0224 00:32:05.815542 658 net.cpp:150] Setting up ip2\n", + "I0224 00:32:05.815551 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.815559 658 net.cpp:165] Memory required for data: 3560\n", + "I0224 00:32:05.815570 658 layer_factory.hpp:77] Creating layer ip2_ip2_0_split\n", + "I0224 00:32:05.815579 658 net.cpp:106] Creating Layer ip2_ip2_0_split\n", + "I0224 00:32:05.815587 658 net.cpp:454] ip2_ip2_0_split <- ip2\n", + "I0224 00:32:05.815600 658 net.cpp:411] ip2_ip2_0_split -> ip2_ip2_0_split_0\n", + "I0224 00:32:05.815619 658 net.cpp:411] ip2_ip2_0_split -> ip2_ip2_0_split_1\n", + "I0224 00:32:05.815640 658 net.cpp:150] Setting up ip2_ip2_0_split\n", + "I0224 00:32:05.815654 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.815662 658 net.cpp:157] Top shape: 10 2 (20)\n", + "I0224 00:32:05.815670 658 net.cpp:165] Memory required for data: 3720\n", + "I0224 00:32:05.815677 658 layer_factory.hpp:77] Creating layer accuracy\n", + "I0224 00:32:05.815685 658 net.cpp:106] Creating Layer accuracy\n", + "I0224 00:32:05.815693 658 net.cpp:454] accuracy <- ip2_ip2_0_split_0\n", + "I0224 00:32:05.815702 658 net.cpp:454] accuracy <- label_data_1_split_0\n", + "I0224 00:32:05.815711 658 net.cpp:411] accuracy -> accuracy\n", + "I0224 00:32:05.815722 658 net.cpp:150] Setting up accuracy\n", + "I0224 00:32:05.815732 658 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:05.815738 658 net.cpp:165] Memory required for data: 3724\n", + "I0224 00:32:05.815747 658 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:05.815754 658 net.cpp:106] Creating Layer loss\n", + "I0224 00:32:05.815762 658 net.cpp:454] loss <- ip2_ip2_0_split_1\n", + "I0224 00:32:05.815770 658 net.cpp:454] loss <- label_data_1_split_1\n", + "I0224 00:32:05.815779 658 net.cpp:411] loss -> loss\n", + "I0224 00:32:05.815790 658 layer_factory.hpp:77] Creating layer loss\n", + "I0224 00:32:05.815811 658 net.cpp:150] Setting up loss\n", + "I0224 00:32:05.815829 658 net.cpp:157] Top shape: (1)\n", + "I0224 00:32:05.815843 658 net.cpp:160] with loss weight 1\n", + "I0224 00:32:05.815867 658 net.cpp:165] Memory required for data: 3728\n", + "I0224 00:32:05.815876 658 net.cpp:226] loss needs backward computation.\n", + "I0224 00:32:05.815884 658 net.cpp:228] accuracy does not need backward computation.\n", + "I0224 00:32:05.815892 658 net.cpp:226] ip2_ip2_0_split needs backward computation.\n", + "I0224 00:32:05.815901 658 net.cpp:226] ip2 needs backward computation.\n", + "I0224 00:32:05.815908 658 net.cpp:226] relu1 needs backward computation.\n", + "I0224 00:32:05.815915 658 net.cpp:226] ip1 needs backward computation.\n", + "I0224 00:32:05.815923 658 net.cpp:228] label_data_1_split does not need backward computation.\n", + "I0224 00:32:05.815932 658 net.cpp:228] data does not need backward computation.\n", + "I0224 00:32:05.815938 658 net.cpp:270] This network produces output accuracy\n", + "I0224 00:32:05.815946 658 net.cpp:270] This network produces output loss\n", + "I0224 00:32:05.815958 658 net.cpp:283] Network initialization done.\n", + "I0224 00:32:05.815978 658 solver.cpp:60] Solver scaffolding done.\n", + "I0224 00:32:05.816000 658 caffe.cpp:219] Starting Optimization\n", + "I0224 00:32:05.816016 658 solver.cpp:280] Solving \n", + "I0224 00:32:05.816030 658 solver.cpp:281] Learning Rate Policy: step\n", + "I0224 00:32:05.816048 658 solver.cpp:338] Iteration 0, Testing net (#0)\n", + "I0224 00:32:05.831967 658 solver.cpp:406] Test net output #0: accuracy = 0.4464\n", + "I0224 00:32:05.832033 658 solver.cpp:406] Test net output #1: loss = 0.909841 (* 1 = 0.909841 loss)\n", + "I0224 00:32:05.832186 658 solver.cpp:229] Iteration 0, loss = 0.798509\n", + "I0224 00:32:05.832218 658 solver.cpp:245] Train net output #0: accuracy = 0.6\n", + "I0224 00:32:05.832247 658 solver.cpp:245] Train net output #1: loss = 0.798509 (* 1 = 0.798509 loss)\n", + "I0224 00:32:05.832281 658 sgd_solver.cpp:106] Iteration 0, lr = 0.01\n", + "I0224 00:32:05.859506 658 solver.cpp:338] Iteration 1000, Testing net (#0)\n", + "I0224 00:32:05.862799 658 solver.cpp:406] Test net output #0: accuracy = 0.8156\n", + "I0224 00:32:05.862818 658 solver.cpp:406] Test net output #1: loss = 0.44259 (* 1 = 0.44259 loss)\n", + "I0224 00:32:05.862853 658 solver.cpp:229] Iteration 1000, loss = 0.537015\n", + "I0224 00:32:05.862864 658 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:05.862875 658 solver.cpp:245] Train net output #1: loss = 0.537015 (* 1 = 0.537015 loss)\n", + "I0224 00:32:05.862885 658 sgd_solver.cpp:106] Iteration 1000, lr = 0.01\n", + "I0224 00:32:05.883155 658 solver.cpp:338] Iteration 2000, Testing net (#0)\n", + "I0224 00:32:05.886435 658 solver.cpp:406] Test net output #0: accuracy = 0.8116\n", + "I0224 00:32:05.886451 658 solver.cpp:406] Test net output #1: loss = 0.434079 (* 1 = 0.434079 loss)\n", + "I0224 00:32:05.886484 658 solver.cpp:229] Iteration 2000, loss = 0.43109\n", + "I0224 00:32:05.886497 658 solver.cpp:245] Train net output #0: accuracy = 0.9\n", + "I0224 00:32:05.886508 658 solver.cpp:245] Train net output #1: loss = 0.43109 (* 1 = 0.43109 loss)\n", + "I0224 00:32:05.886518 658 sgd_solver.cpp:106] Iteration 2000, lr = 0.01\n", + "I0224 00:32:05.907243 658 solver.cpp:338] Iteration 3000, Testing net (#0)\n", + "I0224 00:32:05.910521 658 solver.cpp:406] Test net output #0: accuracy = 0.8168\n", + "I0224 00:32:05.910537 658 solver.cpp:406] Test net output #1: loss = 0.425661 (* 1 = 0.425661 loss)\n", + "I0224 00:32:05.910905 658 solver.cpp:229] Iteration 3000, loss = 0.430245\n", + "I0224 00:32:05.910922 658 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:05.910933 658 solver.cpp:245] Train net output #1: loss = 0.430245 (* 1 = 0.430245 loss)\n", + "I0224 00:32:05.910943 658 sgd_solver.cpp:106] Iteration 3000, lr = 0.01\n", + "I0224 00:32:05.931205 658 solver.cpp:338] Iteration 4000, Testing net (#0)\n", + "I0224 00:32:05.934479 658 solver.cpp:406] Test net output #0: accuracy = 0.8324\n", + "I0224 00:32:05.934496 658 solver.cpp:406] Test net output #1: loss = 0.404891 (* 1 = 0.404891 loss)\n", + "I0224 00:32:05.934530 658 solver.cpp:229] Iteration 4000, loss = 0.628955\n", + "I0224 00:32:05.934542 658 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:05.934553 658 solver.cpp:245] Train net output #1: loss = 0.628955 (* 1 = 0.628955 loss)\n", + "I0224 00:32:05.934583 658 sgd_solver.cpp:106] Iteration 4000, lr = 0.01\n", + "I0224 00:32:05.955108 658 solver.cpp:338] Iteration 5000, Testing net (#0)\n", + "I0224 00:32:05.958377 658 solver.cpp:406] Test net output #0: accuracy = 0.8364\n", + "I0224 00:32:05.958395 658 solver.cpp:406] Test net output #1: loss = 0.404235 (* 1 = 0.404235 loss)\n", + "I0224 00:32:05.958432 658 solver.cpp:229] Iteration 5000, loss = 0.394939\n", + "I0224 00:32:05.958444 658 solver.cpp:245] Train net output #0: accuracy = 0.9\n", + "I0224 00:32:05.958456 658 solver.cpp:245] Train net output #1: loss = 0.39494 (* 1 = 0.39494 loss)\n", + "I0224 00:32:05.958466 658 sgd_solver.cpp:106] Iteration 5000, lr = 0.001\n", + "I0224 00:32:05.978703 658 solver.cpp:338] Iteration 6000, Testing net (#0)\n", + "I0224 00:32:05.981973 658 solver.cpp:406] Test net output #0: accuracy = 0.838\n", + "I0224 00:32:05.981991 658 solver.cpp:406] Test net output #1: loss = 0.385743 (* 1 = 0.385743 loss)\n", + "I0224 00:32:05.982347 658 solver.cpp:229] Iteration 6000, loss = 0.411537\n", + "I0224 00:32:05.982362 658 solver.cpp:245] Train net output #0: accuracy = 0.8\n", + "I0224 00:32:05.982373 658 solver.cpp:245] Train net output #1: loss = 0.411537 (* 1 = 0.411537 loss)\n", + "I0224 00:32:05.982383 658 sgd_solver.cpp:106] Iteration 6000, lr = 0.001\n", + "I0224 00:32:06.003015 658 solver.cpp:338] Iteration 7000, Testing net (#0)\n", + "I0224 00:32:06.006283 658 solver.cpp:406] Test net output #0: accuracy = 0.8388\n", + "I0224 00:32:06.006301 658 solver.cpp:406] Test net output #1: loss = 0.384648 (* 1 = 0.384648 loss)\n", + "I0224 00:32:06.006335 658 solver.cpp:229] Iteration 7000, loss = 0.521072\n", + "I0224 00:32:06.006347 658 solver.cpp:245] Train net output #0: accuracy = 0.7\n", + "I0224 00:32:06.006358 658 solver.cpp:245] Train net output #1: loss = 0.521073 (* 1 = 0.521073 loss)\n", + "I0224 00:32:06.006368 658 sgd_solver.cpp:106] Iteration 7000, lr = 0.001\n", + "I0224 00:32:06.026715 658 solver.cpp:338] Iteration 8000, Testing net (#0)\n", + "I0224 00:32:06.029965 658 solver.cpp:406] Test net output #0: accuracy = 0.8404\n", + "I0224 00:32:06.029983 658 solver.cpp:406] Test net output #1: loss = 0.380889 (* 1 = 0.380889 loss)\n", + "I0224 00:32:06.030015 658 solver.cpp:229] Iteration 8000, loss = 0.329477\n", + "I0224 00:32:06.030028 658 solver.cpp:245] Train net output #0: accuracy = 0.9\n", + "I0224 00:32:06.030040 658 solver.cpp:245] Train net output #1: loss = 0.329477 (* 1 = 0.329477 loss)\n", + "I0224 00:32:06.030048 658 sgd_solver.cpp:106] Iteration 8000, lr = 0.001\n", + "I0224 00:32:06.050626 658 solver.cpp:338] Iteration 9000, Testing net (#0)\n", + "I0224 00:32:06.053889 658 solver.cpp:406] Test net output #0: accuracy = 0.8376\n", + "I0224 00:32:06.053906 658 solver.cpp:406] Test net output #1: loss = 0.382756 (* 1 = 0.382756 loss)\n", + "I0224 00:32:06.054271 658 solver.cpp:229] Iteration 9000, loss = 0.412227\n", + "I0224 00:32:06.054291 658 solver.cpp:245] Train net output #0: accuracy = 0.8\n", + "I0224 00:32:06.054314 658 solver.cpp:245] Train net output #1: loss = 0.412228 (* 1 = 0.412228 loss)\n", + "I0224 00:32:06.054337 658 sgd_solver.cpp:106] Iteration 9000, lr = 0.001\n", + "I0224 00:32:06.074646 658 solver.cpp:456] Snapshotting to binary proto file examples/hdf5_classification/data/train_iter_10000.caffemodel\n", + "I0224 00:32:06.074808 658 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/hdf5_classification/data/train_iter_10000.solverstate\n", + "I0224 00:32:06.074889 658 solver.cpp:318] Iteration 10000, loss = 0.532798\n", + "I0224 00:32:06.074906 658 solver.cpp:338] Iteration 10000, Testing net (#0)\n", + "I0224 00:32:06.078208 658 solver.cpp:406] Test net output #0: accuracy = 0.8388\n", + "I0224 00:32:06.078225 658 solver.cpp:406] Test net output #1: loss = 0.382042 (* 1 = 0.382042 loss)\n", + "I0224 00:32:06.078234 658 solver.cpp:323] Optimization Done.\n", + "I0224 00:32:06.078241 658 caffe.cpp:222] Optimization Done.\n" + ] + } + ], + "source": [ + "!./build/tools/caffe train -solver examples/hdf5_classification/nonlinear_logreg_solver.prototxt" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Clean up (comment this out if you want to examine the hdf5_classification/data directory).\n", + "shutil.rmtree(dirname)" + ] + } + ], + "metadata": { + "description": "Use Caffe as a generic SGD optimizer to train logistic regression on non-image HDF5 data.", + "example_name": "Off-the-shelf SGD for classification", + "include_in_docs": true, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + }, + "priority": 4 + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/cifar10/cifar10_full.prototxt b/examples/cifar10/cifar10_full.prototxt index 446479da9..83cf0d86b 100644 --- a/examples/cifar10/cifar10_full.prototxt +++ b/examples/cifar10/cifar10_full.prototxt @@ -1,12 +1,11 @@ name: "CIFAR10_full_deploy" # N.B. input image must be in CIFAR-10 format # as described at http://www.cs.toronto.edu/~kriz/cifar.html -input: "data" -input_shape { - dim: 1 - dim: 3 - dim: 32 - dim: 32 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } } } layer { name: "conv1" diff --git a/examples/cifar10/cifar10_full_sigmoid_solver.prototxt b/examples/cifar10/cifar10_full_sigmoid_solver.prototxt new file mode 100644 index 000000000..a8e553993 --- /dev/null +++ b/examples/cifar10/cifar10_full_sigmoid_solver.prototxt @@ -0,0 +1,28 @@ +# reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 +# then another factor of 10 after 10 more epochs (5000 iters) + +# The train/test net protocol buffer definition +net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" +# test_iter specifies how many forward passes the test should carry out. +# In the case of CIFAR10, we have test batch size 100 and 100 test iterations, +# covering the full 10,000 testing images. +test_iter: 10 +# Carry out testing every 1000 training iterations. +test_interval: 1000 +# The base learning rate, momentum and the weight decay of the network. +base_lr: 0.001 +momentum: 0.9 +#weight_decay: 0.004 +# The learning rate policy +lr_policy: "step" +gamma: 1 +stepsize: 5000 +# Display every 100 iterations +display: 100 +# The maximum number of iterations +max_iter: 60000 +# snapshot intermediate results +snapshot: 10000 +snapshot_prefix: "examples/cifar10_full_sigmoid" +# solver mode: CPU or GPU +solver_mode: GPU diff --git a/examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt b/examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt new file mode 100644 index 000000000..a4dabd67c --- /dev/null +++ b/examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt @@ -0,0 +1,28 @@ +# reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 +# then another factor of 10 after 10 more epochs (5000 iters) + +# The train/test net protocol buffer definition +net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" +# test_iter specifies how many forward passes the test should carry out. +# In the case of CIFAR10, we have test batch size 100 and 100 test iterations, +# covering the full 10,000 testing images. +test_iter: 10 +# Carry out testing every 1000 training iterations. +test_interval: 1000 +# The base learning rate, momentum and the weight decay of the network. +base_lr: 0.001 +momentum: 0.9 +#weight_decay: 0.004 +# The learning rate policy +lr_policy: "step" +gamma: 1 +stepsize: 5000 +# Display every 100 iterations +display: 100 +# The maximum number of iterations +max_iter: 60000 +# snapshot intermediate results +snapshot: 10000 +snapshot_prefix: "examples/cifar10_full_sigmoid_bn" +# solver mode: CPU or GPU +solver_mode: GPU diff --git a/examples/cifar10/cifar10_full_sigmoid_train_test.prototxt b/examples/cifar10/cifar10_full_sigmoid_train_test.prototxt new file mode 100644 index 000000000..fba69b814 --- /dev/null +++ b/examples/cifar10/cifar10_full_sigmoid_train_test.prototxt @@ -0,0 +1,212 @@ +name: "CIFAR10_full" +layer { + name: "cifar" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mean_file: "examples/cifar10/mean.binaryproto" + } + data_param { + source: "examples/cifar10/cifar10_train_lmdb" + batch_size: 111 + backend: LMDB + } +} +layer { + name: "cifar" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + mean_file: "examples/cifar10/mean.binaryproto" + } + data_param { + source: "examples/cifar10/cifar10_test_lmdb" + batch_size: 1000 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1 + } + param { + lr_mult: 2 + } + convolution_param { + num_output: 32 + pad: 2 + kernel_size: 5 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.0001 + } + bias_filler { + type: "constant" + } + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "conv1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} + + + +layer { + name: "Sigmoid1" + type: "Sigmoid" + bottom: "pool1" + top: "Sigmoid1" +} + +layer { + name: "conv2" + type: "Convolution" + bottom: "Sigmoid1" + top: "conv2" + param { + lr_mult: 1 + } + param { + lr_mult: 2 + } + convolution_param { + num_output: 32 + pad: 2 + kernel_size: 5 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + } + } +} + + +layer { + name: "Sigmoid2" + type: "Sigmoid" + bottom: "conv2" + top: "Sigmoid2" +} +layer { + name: "pool2" + type: "Pooling" + bottom: "Sigmoid2" + top: "pool2" + pooling_param { + pool: AVE + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + convolution_param { + num_output: 64 + pad: 2 + kernel_size: 5 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + } + } + param { + lr_mult: 1 + } + param { + lr_mult: 1 + } + +} + +layer { + name: "Sigmoid3" + type: "Sigmoid" + bottom: "conv3" + top: "Sigmoid3" +} + +layer { + name: "pool3" + type: "Pooling" + bottom: "Sigmoid3" + top: "pool3" + pooling_param { + pool: AVE + kernel_size: 3 + stride: 2 + } +} + +layer { + name: "ip1" + type: "InnerProduct" + bottom: "pool3" + top: "ip1" + param { + lr_mult: 1 + decay_mult: 0 + } + param { + lr_mult: 2 + decay_mult: 0 + } + inner_product_param { + num_output: 10 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "ip1" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "ip1" + bottom: "label" + top: "loss" +} diff --git a/examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt b/examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt new file mode 100644 index 000000000..1a8107511 --- /dev/null +++ b/examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt @@ -0,0 +1,240 @@ +name: "CIFAR10_full" +layer { + name: "cifar" + type: "Data" + top: "data" + top: "label" + include { + phase: TRAIN + } + transform_param { + mean_file: "examples/cifar10/mean.binaryproto" + } + data_param { + source: "examples/cifar10/cifar10_train_lmdb" + batch_size: 100 + backend: LMDB + } +} +layer { + name: "cifar" + type: "Data" + top: "data" + top: "label" + include { + phase: TEST + } + transform_param { + mean_file: "examples/cifar10/mean.binaryproto" + } + data_param { + source: "examples/cifar10/cifar10_test_lmdb" + batch_size: 1000 + backend: LMDB + } +} +layer { + name: "conv1" + type: "Convolution" + bottom: "data" + top: "conv1" + param { + lr_mult: 1 + } + convolution_param { + num_output: 32 + pad: 2 + kernel_size: 5 + stride: 1 + bias_term: false + weight_filler { + type: "gaussian" + std: 0.0001 + } + } +} +layer { + name: "pool1" + type: "Pooling" + bottom: "conv1" + top: "pool1" + pooling_param { + pool: MAX + kernel_size: 3 + stride: 2 + } +} + +layer { + name: "bn1" + type: "BatchNorm" + bottom: "pool1" + top: "bn1" + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } +} + +layer { + name: "Sigmoid1" + type: "Sigmoid" + bottom: "bn1" + top: "Sigmoid1" +} + +layer { + name: "conv2" + type: "Convolution" + bottom: "Sigmoid1" + top: "conv2" + param { + lr_mult: 1 + } + convolution_param { + num_output: 32 + pad: 2 + kernel_size: 5 + stride: 1 + bias_term: false + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} + +layer { + name: "bn2" + type: "BatchNorm" + bottom: "conv2" + top: "bn2" + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } +} + +layer { + name: "Sigmoid2" + type: "Sigmoid" + bottom: "bn2" + top: "Sigmoid2" +} +layer { + name: "pool2" + type: "Pooling" + bottom: "Sigmoid2" + top: "pool2" + pooling_param { + pool: AVE + kernel_size: 3 + stride: 2 + } +} +layer { + name: "conv3" + type: "Convolution" + bottom: "pool2" + top: "conv3" + param { + lr_mult: 1 + } + convolution_param { + num_output: 64 + pad: 2 + kernel_size: 5 + stride: 1 + bias_term: false + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} + +layer { + name: "bn3" + type: "BatchNorm" + bottom: "conv3" + top: "bn3" + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } + param { + lr_mult: 0 + } +} + +layer { + name: "Sigmoid3" + type: "Sigmoid" + bottom: "bn3" + top: "Sigmoid3" +} +layer { + name: "pool3" + type: "Pooling" + bottom: "Sigmoid3" + top: "pool3" + pooling_param { + pool: AVE + kernel_size: 3 + stride: 2 + } +} + +layer { + name: "ip1" + type: "InnerProduct" + bottom: "pool3" + top: "ip1" + param { + lr_mult: 1 + decay_mult: 1 + } + param { + lr_mult: 1 + decay_mult: 0 + } + inner_product_param { + num_output: 10 + weight_filler { + type: "gaussian" + std: 0.01 + } + bias_filler { + type: "constant" + } + } +} +layer { + name: "accuracy" + type: "Accuracy" + bottom: "ip1" + bottom: "label" + top: "accuracy" + include { + phase: TEST + } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "ip1" + bottom: "label" + top: "loss" +} diff --git a/examples/cifar10/cifar10_quick.prototxt b/examples/cifar10/cifar10_quick.prototxt index 9352fbf65..cf3b2a358 100644 --- a/examples/cifar10/cifar10_quick.prototxt +++ b/examples/cifar10/cifar10_quick.prototxt @@ -1,10 +1,9 @@ name: "CIFAR10_quick_test" -input: "data" -input_shape { - dim: 1 - dim: 3 - dim: 32 - dim: 32 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 1 dim: 3 dim: 32 dim: 32 } } } layer { name: "conv1" diff --git a/examples/cifar10/cifar10_quick_solver.prototxt b/examples/cifar10/cifar10_quick_solver.prototxt index 5de276f72..14b4401ba 100644 --- a/examples/cifar10/cifar10_quick_solver.prototxt +++ b/examples/cifar10/cifar10_quick_solver.prototxt @@ -20,7 +20,6 @@ display: 100 max_iter: 4000 # snapshot intermediate results snapshot: 4000 -snapshot_format: HDF5 snapshot_prefix: "examples/cifar10/cifar10_quick" # solver mode: CPU or GPU solver_mode: GPU diff --git a/examples/cifar10/convert_cifar_data.cpp b/examples/cifar10/convert_cifar_data.cpp index f4c42e4d2..7385a74a6 100644 --- a/examples/cifar10/convert_cifar_data.cpp +++ b/examples/cifar10/convert_cifar_data.cpp @@ -16,6 +16,7 @@ #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" +#include "caffe/util/format.hpp" using caffe::Datum; using boost::scoped_ptr; @@ -52,19 +53,18 @@ void convert_dataset(const string& input_folder, const string& output_folder, for (int fileid = 0; fileid < kCIFARTrainBatches; ++fileid) { // Open files LOG(INFO) << "Training Batch " << fileid + 1; - snprintf(str_buffer, kCIFARImageNBytes, "/data_batch_%d.bin", fileid + 1); - std::ifstream data_file((input_folder + str_buffer).c_str(), + string batchFileName = input_folder + "/data_batch_" + + caffe::format_int(fileid+1) + ".bin"; + std::ifstream data_file(batchFileName.c_str(), std::ios::in | std::ios::binary); CHECK(data_file) << "Unable to open train file #" << fileid + 1; for (int itemid = 0; itemid < kCIFARBatchSize; ++itemid) { read_image(&data_file, &label, str_buffer); datum.set_label(label); datum.set_data(str_buffer, kCIFARImageNBytes); - int length = snprintf(str_buffer, kCIFARImageNBytes, "%05d", - fileid * kCIFARBatchSize + itemid); string out; CHECK(datum.SerializeToString(&out)); - txn->Put(string(str_buffer, length), out); + txn->Put(caffe::format_int(fileid * kCIFARBatchSize + itemid, 5), out); } } txn->Commit(); @@ -82,16 +82,17 @@ void convert_dataset(const string& input_folder, const string& output_folder, read_image(&data_file, &label, str_buffer); datum.set_label(label); datum.set_data(str_buffer, kCIFARImageNBytes); - int length = snprintf(str_buffer, kCIFARImageNBytes, "%05d", itemid); string out; CHECK(datum.SerializeToString(&out)); - txn->Put(string(str_buffer, length), out); + txn->Put(caffe::format_int(itemid, 5), out); } txn->Commit(); test_db->Close(); } int main(int argc, char** argv) { + FLAGS_alsologtostderr = 1; + if (argc != 4) { printf("This script converts the CIFAR dataset to the leveldb format used\n" "by caffe to perform classification.\n" diff --git a/examples/cifar10/create_cifar10.sh b/examples/cifar10/create_cifar10.sh index a42725cb6..7ee1d6ad0 100755 --- a/examples/cifar10/create_cifar10.sh +++ b/examples/cifar10/create_cifar10.sh @@ -1,5 +1,6 @@ #!/usr/bin/env sh # This script converts the cifar data into leveldb format. +set -e EXAMPLE=examples/cifar10 DATA=data/cifar10 diff --git a/examples/cifar10/train_full.sh b/examples/cifar10/train_full.sh index ef112e1f6..fe46e60d7 100755 --- a/examples/cifar10/train_full.sh +++ b/examples/cifar10/train_full.sh @@ -1,16 +1,17 @@ #!/usr/bin/env sh +set -e TOOLS=./build/tools $TOOLS/caffe train \ - --solver=examples/cifar10/cifar10_full_solver.prototxt + --solver=examples/cifar10/cifar10_full_solver.prototxt $@ # reduce learning rate by factor of 10 $TOOLS/caffe train \ --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \ - --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate.h5 + --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate $@ # reduce learning rate by factor of 10 $TOOLS/caffe train \ --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \ - --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate.h5 + --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate $@ diff --git a/examples/cifar10/train_full_sigmoid.sh b/examples/cifar10/train_full_sigmoid.sh new file mode 100755 index 000000000..9b5d5213b --- /dev/null +++ b/examples/cifar10/train_full_sigmoid.sh @@ -0,0 +1,8 @@ +#!/usr/bin/env sh +set -e + +TOOLS=./build/tools + +$TOOLS/caffe train \ + --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@ + diff --git a/examples/cifar10/train_full_sigmoid_bn.sh b/examples/cifar10/train_full_sigmoid_bn.sh new file mode 100755 index 000000000..05547f3a1 --- /dev/null +++ b/examples/cifar10/train_full_sigmoid_bn.sh @@ -0,0 +1,8 @@ +#!/usr/bin/env sh +set -e + +TOOLS=./build/tools + +$TOOLS/caffe train \ + --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@ + diff --git a/examples/cifar10/train_quick.sh b/examples/cifar10/train_quick.sh index 6b7d22887..257479e0d 100755 --- a/examples/cifar10/train_quick.sh +++ b/examples/cifar10/train_quick.sh @@ -1,11 +1,12 @@ #!/usr/bin/env sh +set -e TOOLS=./build/tools $TOOLS/caffe train \ - --solver=examples/cifar10/cifar10_quick_solver.prototxt + --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ # reduce learning rate by factor of 10 after 8 epochs $TOOLS/caffe train \ --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ - --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate.h5 + --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate $@ diff --git a/examples/cpp_classification/classification.cpp b/examples/cpp_classification/classification.cpp index dc8b863f5..6b67c537a 100644 --- a/examples/cpp_classification/classification.cpp +++ b/examples/cpp_classification/classification.cpp @@ -1,7 +1,9 @@ #include +#ifdef USE_OPENCV #include #include #include +#endif // USE_OPENCV #include #include #include @@ -9,6 +11,7 @@ #include #include +#ifdef USE_OPENCV using namespace caffe; // NOLINT(build/namespaces) using std::string; @@ -156,7 +159,7 @@ std::vector Classifier::Predict(const cv::Mat& img) { Preprocess(img, &input_channels); - net_->ForwardPrefilled(); + net_->Forward(); /* Copy the output layer to a std::vector */ Blob* output_layer = net_->output_blobs()[0]; @@ -188,13 +191,13 @@ void Classifier::Preprocess(const cv::Mat& img, /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) - cv::cvtColor(img, sample, CV_BGR2GRAY); + cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) - cv::cvtColor(img, sample, CV_BGRA2GRAY); + cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) - cv::cvtColor(img, sample, CV_BGRA2BGR); + cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) - cv::cvtColor(img, sample, CV_GRAY2BGR); + cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; @@ -255,3 +258,8 @@ int main(int argc, char** argv) { << p.first << "\"" << std::endl; } } +#else +int main(int argc, char** argv) { + LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV."; +} +#endif // USE_OPENCV diff --git a/examples/cpp_classification/readme.md b/examples/cpp_classification/readme.md index a086db1a0..4f683aa62 100644 --- a/examples/cpp_classification/readme.md +++ b/examples/cpp_classification/readme.md @@ -10,7 +10,7 @@ priority: 10 Caffe, at its core, is written in C++. It is possible to use the C++ API of Caffe to implement an image classification application similar -to the Python code presented in one of the Notebook example. To look +to the Python code presented in one of the Notebook examples. To look at a more general-purpose example of the Caffe C++ API, you should study the source code of the command line tool `caffe` in `tools/caffe.cpp`. @@ -19,7 +19,7 @@ study the source code of the command line tool `caffe` in `tools/caffe.cpp`. A simple C++ code is proposed in `examples/cpp_classification/classification.cpp`. For the sake of simplicity, this example does not support oversampling of a single -sample nor batching of multiple independant samples. This example is +sample nor batching of multiple independent samples. This example is not trying to reach the maximum possible classification throughput on a system, but special care was given to avoid unnecessary pessimization while keeping the code readable. @@ -42,7 +42,7 @@ script: The ImageNet labels file (also called the *synset file*) is also required in order to map a prediction to the name of the class: ``` -./data/ilsvrc12/get_ilsvrc_aux.sh. +./data/ilsvrc12/get_ilsvrc_aux.sh ``` Using the files that were downloaded, we can classify the provided cat image (`examples/images/cat.jpg`) using this command: diff --git a/examples/feature_extraction/readme.md b/examples/feature_extraction/readme.md index a980b8b32..5612b020a 100644 --- a/examples/feature_extraction/readme.md +++ b/examples/feature_extraction/readme.md @@ -51,7 +51,7 @@ Extract Features Now everything necessary is in place. - ./build/tools/extract_features.bin models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel examples/_temp/imagenet_val.prototxt fc7 examples/_temp/features 10 lmdb + ./build/tools/extract_features.bin models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel examples/_temp/imagenet_val.prototxt fc7 examples/_temp/features 10 leveldb The name of feature blob that you extract is `fc7`, which represents the highest level feature of the reference model. We can use any other layer, as well, such as `conv5` or `pool3`. @@ -64,7 +64,7 @@ If you meet with the error "Check failed: status.ok() Failed to open leveldb exa rm -rf examples/_temp/features/ -If you'd like to use the Python wrapper for extracting features, check out the [layer visualization notebook](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb). +If you'd like to use the Python wrapper for extracting features, check out the [filter visualization notebook](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb). Clean Up -------- diff --git a/examples/finetune_flickr_style/readme.md b/examples/finetune_flickr_style/readme.md index ecb9d3d2e..dacfd01c8 100644 --- a/examples/finetune_flickr_style/readme.md +++ b/examples/finetune_flickr_style/readme.md @@ -9,23 +9,23 @@ priority: 5 # Fine-tuning CaffeNet for Style Recognition on "Flickr Style" Data Fine-tuning takes an already learned model, adapts the architecture, and resumes training from the already learned model weights. -Let's fine-tune the BVLC-distributed CaffeNet model on a different dataset, [Flickr Style](http://sergeykarayev.com/files/1311.3715v3.pdf), to predict image style instead of object category. +Let's fine-tune the BAIR-distributed CaffeNet model on a different dataset, [Flickr Style](http://sergeykarayev.com/files/1311.3715v3.pdf), to predict image style instead of object category. ## Explanation The Flickr-sourced images of the Style dataset are visually very similar to the ImageNet dataset, on which the `bvlc_reference_caffenet` was trained. -Since that model works well for object category classification, we'd like to use it architecture for our style classifier. +Since that model works well for object category classification, we'd like to use this architecture for our style classifier. We also only have 80,000 images to train on, so we'd like to start with the parameters learned on the 1,000,000 ImageNet images, and fine-tune as needed. -If we give provide the `weights` argument to the `caffe train` command, the pretrained weights will be loaded into our model, matching layers by name. +If we provide the `weights` argument to the `caffe train` command, the pretrained weights will be loaded into our model, matching layers by name. Because we are predicting 20 classes instead of a 1,000, we do need to change the last layer in the model. Therefore, we change the name of the last layer from `fc8` to `fc8_flickr` in our prototxt. Since there is no layer named that in the `bvlc_reference_caffenet`, that layer will begin training with random weights. -We will also decrease the overall learning rate `base_lr` in the solver prototxt, but boost the `blobs_lr` on the newly introduced layer. +We will also decrease the overall learning rate `base_lr` in the solver prototxt, but boost the `lr_mult` on the newly introduced layer. The idea is to have the rest of the model change very slowly with new data, but let the new layer learn fast. Additionally, we set `stepsize` in the solver to a lower value than if we were training from scratch, since we're virtually far along in training and therefore want the learning rate to go down faster. -Note that we could also entirely prevent fine-tuning of all layers other than `fc8_flickr` by setting their `blobs_lr` to 0. +Note that we could also entirely prevent fine-tuning of all layers other than `fc8_flickr` by setting their `lr_mult` to 0. ## Procedure @@ -57,7 +57,11 @@ The prototxts in this example assume this, and also assume the presence of the I We'll also need the ImageNet-trained model, which you can obtain by running `./scripts/download_model_binary.py models/bvlc_reference_caffenet`. -Now we can train! (You can fine-tune in CPU mode by leaving out the `-gpu` flag.) +Now we can train! The key to fine-tuning is the `-weights` argument in the +command below, which tells Caffe that we want to load weights from a pre-trained +Caffe model. + +(You can fine-tune in CPU mode by leaving out the `-gpu` flag.) caffe % ./build/tools/caffe train -solver models/finetune_flickr_style/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel -gpu 0 diff --git a/examples/hdf5_classification/nonlinear_solver.prototxt b/examples/hdf5_classification/nonlinear_solver.prototxt deleted file mode 100644 index b4aacf6e4..000000000 --- a/examples/hdf5_classification/nonlinear_solver.prototxt +++ /dev/null @@ -1,15 +0,0 @@ -train_net: "examples/hdf5_classification/nonlinear_auto_train.prototxt" -test_net: "examples/hdf5_classification/nonlinear_auto_test.prototxt" -test_iter: 250 -test_interval: 1000 -base_lr: 0.01 -lr_policy: "step" -gamma: 0.1 -stepsize: 5000 -display: 1000 -max_iter: 10000 -momentum: 0.9 -weight_decay: 0.0005 -snapshot: 10000 -snapshot_prefix: "examples/hdf5_classification/data/train" -solver_mode: CPU diff --git a/examples/hdf5_classification/solver.prototxt b/examples/hdf5_classification/solver.prototxt deleted file mode 100644 index 8587b5a1e..000000000 --- a/examples/hdf5_classification/solver.prototxt +++ /dev/null @@ -1,15 +0,0 @@ -train_net: "examples/hdf5_classification/logreg_auto_train.prototxt" -test_net: "examples/hdf5_classification/logreg_auto_test.prototxt" -test_iter: 250 -test_interval: 1000 -base_lr: 0.01 -lr_policy: "step" -gamma: 0.1 -stepsize: 5000 -display: 1000 -max_iter: 10000 -momentum: 0.9 -weight_decay: 0.0005 -snapshot: 10000 -snapshot_prefix: "examples/hdf5_classification/data/train" -solver_mode: CPU diff --git a/examples/imagenet/create_imagenet.sh b/examples/imagenet/create_imagenet.sh index e912ac43c..1bf08b1aa 100755 --- a/examples/imagenet/create_imagenet.sh +++ b/examples/imagenet/create_imagenet.sh @@ -1,6 +1,7 @@ #!/usr/bin/env sh # Create the imagenet lmdb inputs # N.B. set the path to the imagenet train + val data dirs +set -e EXAMPLE=examples/imagenet DATA=data/ilsvrc12 diff --git a/examples/imagenet/resume_training.sh b/examples/imagenet/resume_training.sh index bf7945c0f..4aef20436 100755 --- a/examples/imagenet/resume_training.sh +++ b/examples/imagenet/resume_training.sh @@ -1,5 +1,7 @@ #!/usr/bin/env sh +set -e ./build/tools/caffe train \ --solver=models/bvlc_reference_caffenet/solver.prototxt \ - --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 + --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \ + $@ diff --git a/examples/imagenet/train_caffenet.sh b/examples/imagenet/train_caffenet.sh index 94558ec54..a5094d44a 100755 --- a/examples/imagenet/train_caffenet.sh +++ b/examples/imagenet/train_caffenet.sh @@ -1,4 +1,5 @@ #!/usr/bin/env sh +set -e ./build/tools/caffe train \ - --solver=models/bvlc_reference_caffenet/solver.prototxt + --solver=models/bvlc_reference_caffenet/solver.prototxt $@ diff --git a/examples/images/cat gray.jpg b/examples/images/cat gray.jpg new file mode 100644 index 000000000..43c5ce377 Binary files /dev/null and b/examples/images/cat gray.jpg differ diff --git a/examples/mnist/convert_mnist_data.cpp b/examples/mnist/convert_mnist_data.cpp index 54443f11d..57ddef770 100644 --- a/examples/mnist/convert_mnist_data.cpp +++ b/examples/mnist/convert_mnist_data.cpp @@ -9,18 +9,28 @@ #include #include #include + +#if defined(USE_LEVELDB) && defined(USE_LMDB) #include #include #include +#endif + #include #include #include // NOLINT(readability/streams) #include +#include "boost/scoped_ptr.hpp" #include "caffe/proto/caffe.pb.h" +#include "caffe/util/db.hpp" +#include "caffe/util/format.hpp" + +#if defined(USE_LEVELDB) && defined(USE_LMDB) using namespace caffe; // NOLINT(build/namespaces) +using boost::scoped_ptr; using std::string; DEFINE_string(backend, "lmdb", "The backend for storing the result"); @@ -60,50 +70,15 @@ void convert_dataset(const char* image_filename, const char* label_filename, image_file.read(reinterpret_cast(&cols), 4); cols = swap_endian(cols); - // lmdb - MDB_env *mdb_env; - MDB_dbi mdb_dbi; - MDB_val mdb_key, mdb_data; - MDB_txn *mdb_txn; - // leveldb - leveldb::DB* db; - leveldb::Options options; - options.error_if_exists = true; - options.create_if_missing = true; - options.write_buffer_size = 268435456; - leveldb::WriteBatch* batch = NULL; - - // Open db - if (db_backend == "leveldb") { // leveldb - LOG(INFO) << "Opening leveldb " << db_path; - leveldb::Status status = leveldb::DB::Open( - options, db_path, &db); - CHECK(status.ok()) << "Failed to open leveldb " << db_path - << ". Is it already existing?"; - batch = new leveldb::WriteBatch(); - } else if (db_backend == "lmdb") { // lmdb - LOG(INFO) << "Opening lmdb " << db_path; - CHECK_EQ(mkdir(db_path, 0744), 0) - << "mkdir " << db_path << "failed"; - CHECK_EQ(mdb_env_create(&mdb_env), MDB_SUCCESS) << "mdb_env_create failed"; - CHECK_EQ(mdb_env_set_mapsize(mdb_env, 1099511627776), MDB_SUCCESS) // 1TB - << "mdb_env_set_mapsize failed"; - CHECK_EQ(mdb_env_open(mdb_env, db_path, 0, 0664), MDB_SUCCESS) - << "mdb_env_open failed"; - CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS) - << "mdb_txn_begin failed"; - CHECK_EQ(mdb_open(mdb_txn, NULL, 0, &mdb_dbi), MDB_SUCCESS) - << "mdb_open failed. Does the lmdb already exist? "; - } else { - LOG(FATAL) << "Unknown db backend " << db_backend; - } + + scoped_ptr db(db::GetDB(db_backend)); + db->Open(db_path, db::NEW); + scoped_ptr txn(db->NewTransaction()); // Storing to db char label; char* pixels = new char[rows * cols]; int count = 0; - const int kMaxKeyLength = 10; - char key_cstr[kMaxKeyLength]; string value; Datum datum; @@ -117,56 +92,22 @@ void convert_dataset(const char* image_filename, const char* label_filename, label_file.read(&label, 1); datum.set_data(pixels, rows*cols); datum.set_label(label); - snprintf(key_cstr, kMaxKeyLength, "%08d", item_id); + string key_str = caffe::format_int(item_id, 8); datum.SerializeToString(&value); - string keystr(key_cstr); - - // Put in db - if (db_backend == "leveldb") { // leveldb - batch->Put(keystr, value); - } else if (db_backend == "lmdb") { // lmdb - mdb_data.mv_size = value.size(); - mdb_data.mv_data = reinterpret_cast(&value[0]); - mdb_key.mv_size = keystr.size(); - mdb_key.mv_data = reinterpret_cast(&keystr[0]); - CHECK_EQ(mdb_put(mdb_txn, mdb_dbi, &mdb_key, &mdb_data, 0), MDB_SUCCESS) - << "mdb_put failed"; - } else { - LOG(FATAL) << "Unknown db backend " << db_backend; - } + + txn->Put(key_str, value); if (++count % 1000 == 0) { - // Commit txn - if (db_backend == "leveldb") { // leveldb - db->Write(leveldb::WriteOptions(), batch); - delete batch; - batch = new leveldb::WriteBatch(); - } else if (db_backend == "lmdb") { // lmdb - CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS) - << "mdb_txn_commit failed"; - CHECK_EQ(mdb_txn_begin(mdb_env, NULL, 0, &mdb_txn), MDB_SUCCESS) - << "mdb_txn_begin failed"; - } else { - LOG(FATAL) << "Unknown db backend " << db_backend; - } + txn->Commit(); } } // write the last batch if (count % 1000 != 0) { - if (db_backend == "leveldb") { // leveldb - db->Write(leveldb::WriteOptions(), batch); - delete batch; - delete db; - } else if (db_backend == "lmdb") { // lmdb - CHECK_EQ(mdb_txn_commit(mdb_txn), MDB_SUCCESS) << "mdb_txn_commit failed"; - mdb_close(mdb_env, mdb_dbi); - mdb_env_close(mdb_env); - } else { - LOG(FATAL) << "Unknown db backend " << db_backend; - } - LOG(ERROR) << "Processed " << count << " files."; + txn->Commit(); } + LOG(INFO) << "Processed " << count << " files."; delete[] pixels; + db->Close(); } int main(int argc, char** argv) { @@ -174,6 +115,8 @@ int main(int argc, char** argv) { namespace gflags = google; #endif + FLAGS_alsologtostderr = 1; + gflags::SetUsageMessage("This script converts the MNIST dataset to\n" "the lmdb/leveldb format used by Caffe to load data.\n" "Usage:\n" @@ -196,3 +139,9 @@ int main(int argc, char** argv) { } return 0; } +#else +int main(int argc, char** argv) { + LOG(FATAL) << "This example requires LevelDB and LMDB; " << + "compile with USE_LEVELDB and USE_LMDB."; +} +#endif // USE_LEVELDB and USE_LMDB diff --git a/examples/mnist/create_mnist.sh b/examples/mnist/create_mnist.sh index 06ecc27de..f5e2e7960 100755 --- a/examples/mnist/create_mnist.sh +++ b/examples/mnist/create_mnist.sh @@ -1,6 +1,7 @@ #!/usr/bin/env sh # This script converts the mnist data into lmdb/leveldb format, # depending on the value assigned to $BACKEND. +set -e EXAMPLE=examples/mnist DATA=data/mnist diff --git a/examples/mnist/lenet.prototxt b/examples/mnist/lenet.prototxt index dff7123bf..8cf78e62c 100644 --- a/examples/mnist/lenet.prototxt +++ b/examples/mnist/lenet.prototxt @@ -1,10 +1,9 @@ name: "LeNet" -input: "data" -input_shape { - dim: 64 - dim: 1 - dim: 28 - dim: 28 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } } } layer { name: "conv1" diff --git a/examples/mnist/lenet_adadelta_solver.prototxt b/examples/mnist/lenet_adadelta_solver.prototxt index 776d1e061..16176c0ff 100644 --- a/examples/mnist/lenet_adadelta_solver.prototxt +++ b/examples/mnist/lenet_adadelta_solver.prototxt @@ -20,5 +20,5 @@ snapshot: 5000 snapshot_prefix: "examples/mnist/lenet_adadelta" # solver mode: CPU or GPU solver_mode: GPU -solver_type: ADADELTA +type: "AdaDelta" delta: 1e-6 diff --git a/examples/mnist/lenet_auto_solver.prototxt b/examples/mnist/lenet_auto_solver.prototxt index fa4bbf027..481c84491 100644 --- a/examples/mnist/lenet_auto_solver.prototxt +++ b/examples/mnist/lenet_auto_solver.prototxt @@ -1,6 +1,6 @@ # The train/test net protocol buffer definition -train_net: "examples/mnist/lenet_auto_train.prototxt" -test_net: "examples/mnist/lenet_auto_test.prototxt" +train_net: "mnist/lenet_auto_train.prototxt" +test_net: "mnist/lenet_auto_test.prototxt" # test_iter specifies how many forward passes the test should carry out. # In the case of MNIST, we have test batch size 100 and 100 test iterations, # covering the full 10,000 testing images. @@ -21,4 +21,4 @@ display: 100 max_iter: 10000 # snapshot intermediate results snapshot: 5000 -snapshot_prefix: "examples/mnist/lenet" +snapshot_prefix: "mnist/lenet" diff --git a/examples/mnist/lenet_solver_adam.prototxt b/examples/mnist/lenet_solver_adam.prototxt index d22c5718f..4b5336b1a 100644 --- a/examples/mnist/lenet_solver_adam.prototxt +++ b/examples/mnist/lenet_solver_adam.prototxt @@ -22,5 +22,5 @@ max_iter: 10000 snapshot: 5000 snapshot_prefix: "examples/mnist/lenet" # solver mode: CPU or GPU -solver_type: ADAM +type: "Adam" solver_mode: GPU diff --git a/examples/mnist/lenet_solver_rmsprop.prototxt b/examples/mnist/lenet_solver_rmsprop.prototxt index 74dadc510..924b72d30 100644 --- a/examples/mnist/lenet_solver_rmsprop.prototxt +++ b/examples/mnist/lenet_solver_rmsprop.prototxt @@ -23,5 +23,5 @@ snapshot: 5000 snapshot_prefix: "examples/mnist/lenet_rmsprop" # solver mode: CPU or GPU solver_mode: GPU -solver_type: RMSPROP +type: "RMSProp" rms_decay: 0.98 diff --git a/examples/mnist/lenet_stepearly_solver.prototxt b/examples/mnist/lenet_stepearly_solver.prototxt deleted file mode 100644 index efc6a335d..000000000 --- a/examples/mnist/lenet_stepearly_solver.prototxt +++ /dev/null @@ -1,28 +0,0 @@ -# The training protocol buffer definition -train_net: "lenet_train.prototxt" -# The testing protocol buffer definition -test_net: "lenet_test.prototxt" -# test_iter specifies how many forward passes the test should carry out. -# In the case of MNIST, we have test batch size 100 and 100 test iterations, -# covering the full 10,000 testing images. -test_iter: 100 -# Carry out testing every 500 training iterations. -test_interval: 500 -# The base learning rate, momentum and the weight decay of the network. -base_lr: 0.01 -momentum: 0.9 -weight_decay: 0.0005 -# The learning rate policy -lr_policy: "stepearly" -gamma: 0.9 -stepearly: 1 -# Display every 100 iterations -display: 100 -# The maximum number of iterations -max_iter: 10000 -# snapshot intermediate results -snapshot: 5000 -snapshot_prefix: "lenet" -# solver mode: 0 for CPU and 1 for GPU -solver_mode: 1 -device_id: 1 diff --git a/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt b/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt index 065647df3..26c4084a3 100644 --- a/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt +++ b/examples/mnist/mnist_autoencoder_solver_adadelta.prototxt @@ -16,4 +16,4 @@ snapshot: 10000 snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train" # solver mode: CPU or GPU solver_mode: GPU -solver_type: ADADELTA +type: "AdaDelta" diff --git a/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt b/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt index cc0ed9e31..065cdb20d 100644 --- a/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt +++ b/examples/mnist/mnist_autoencoder_solver_adagrad.prototxt @@ -14,4 +14,4 @@ snapshot: 10000 snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" # solver mode: CPU or GPU solver_mode: GPU -solver_type: ADAGRAD +type: "AdaGrad" diff --git a/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt b/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt index 2a59fd45c..c95e3fe7e 100644 --- a/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt +++ b/examples/mnist/mnist_autoencoder_solver_nesterov.prototxt @@ -17,4 +17,4 @@ snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" momentum: 0.95 # solver mode: CPU or GPU solver_mode: GPU -solver_type: NESTEROV +type: "Nesterov" diff --git a/examples/mnist/readme.md b/examples/mnist/readme.md index 413d4a1f4..35952155a 100644 --- a/examples/mnist/readme.md +++ b/examples/mnist/readme.md @@ -41,11 +41,13 @@ Currently, we will read the MNIST data from the lmdb we created earlier in the d layer { name: "mnist" type: "Data" + transform_param { + scale: 0.00390625 + } data_param { source: "mnist_train_lmdb" backend: LMDB batch_size: 64 - scale: 0.00390625 } top: "data" top: "label" @@ -246,7 +248,7 @@ These messages tell you the details about each layer, its connections and its ou I1203 solver.cpp:36] Solver scaffolding done. I1203 solver.cpp:44] Solving LeNet -Based on the solver setting, we will print the training loss function every 100 iterations, and test the network every 1000 iterations. You will see messages like this: +Based on the solver setting, we will print the training loss function every 100 iterations, and test the network every 500 iterations. You will see messages like this: I1203 solver.cpp:204] Iteration 100, lr = 0.00992565 I1203 solver.cpp:66] Iteration 100, loss = 0.26044 diff --git a/examples/mnist/train_lenet.sh b/examples/mnist/train_lenet.sh index 1b6bf7d97..f7f9b8619 100755 --- a/examples/mnist/train_lenet.sh +++ b/examples/mnist/train_lenet.sh @@ -1,3 +1,4 @@ #!/usr/bin/env sh +set -e -./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt +./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@ diff --git a/examples/mnist/train_lenet_adam.sh b/examples/mnist/train_lenet_adam.sh index a32ecf2d9..7b4e90568 100755 --- a/examples/mnist/train_lenet_adam.sh +++ b/examples/mnist/train_lenet_adam.sh @@ -1,3 +1,4 @@ #!/usr/bin/env sh +set -e -./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt +./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@ diff --git a/examples/mnist/train_lenet_consolidated.sh b/examples/mnist/train_lenet_consolidated.sh index c85546789..c5f026668 100755 --- a/examples/mnist/train_lenet_consolidated.sh +++ b/examples/mnist/train_lenet_consolidated.sh @@ -1,4 +1,5 @@ #!/usr/bin/env sh +set -e ./build/tools/caffe train \ - --solver=examples/mnist/lenet_consolidated_solver.prototxt + --solver=examples/mnist/lenet_consolidated_solver.prototxt $@ diff --git a/examples/mnist/train_lenet_docker.sh b/examples/mnist/train_lenet_docker.sh new file mode 100755 index 000000000..e946ba0f4 --- /dev/null +++ b/examples/mnist/train_lenet_docker.sh @@ -0,0 +1,119 @@ +#!/usr/bin/env sh +set -e +# The following example allows for the MNIST example (using LeNet) to be +# trained using the caffe docker image instead of building from source. +# +# The GPU-enabled version of Caffe can be used, assuming that nvidia-docker +# is installed, and the GPU-enabled Caffe image has been built. +# Setting the GPU environment variable to 1 will enable the use of nvidia-docker. +# e.g. +# GPU=1 ./examples/mnist/train_lenet_docker.sh [ADDITIONAL_CAFFE_ARGS] +# +# With any arguments following the script being passed directly to caffe +# when training the network. +# +# The steps that are performed by the script are as follows: +# 1. The MNIST data set is downloaded +# (see data/mnist/get_mnist.sh) +# 2. An LMDB database is created from the downloaded data +# (see examples/mnist/create_mnist.sh. +# 3. A caffe network based on the LeNet solver is trained. +# (see examples/mnist/lenet_solver.prototxt) +# +# For each of these, a step is executed to ensure that certain prerequisites +# are available, after which a command that actually performs the work is +# executed. +# +# In order to provide additional flexibility, the following shell (environment) +# variables can be used to control the execution of each of the phases: +# +# DOWNLOAD_DATA: Enable (1) or disable (0) the downloading of the MNIST dataset +# CREATE_LMDB: Enable (1) or disable (0) the creation of the LMDB database +# TRAIN: Enable (1) or disable (0) the training of the LeNet networkd. +# +# As an example, assuming that the data set has been downloaded, and an LMDB +# database created, the following command can be used to train the LeNet +# network with GPU computing enabled. +# +# DOWNLOAD_DATA=0 CREATE_LMDB=0 GPU=1 ./examples/mnist/train_lenet_docker.sh +# + + +if [ x"$(uname -s)" != x"Linux" ] +then +echo "" +echo "This script is designed to run on Linux." +echo "There may be problems with the way Docker mounts host volumes on other" +echo "systems which will cause the docker commands to fail." +echo "" +read -p "Press [ENTER] to continue..." key +echo "" +fi + + +# Check if GPU mode has been enabled and set the docker executable accordingly +if [ ${GPU:-0} -eq 1 ] +then +DOCKER_CMD=nvidia-docker +IMAGE=caffe:gpu +else +DOCKER_CMD=docker +IMAGE=caffe:cpu +fi +echo "Using $DOCKER_CMD to launch $IMAGE" + +# On non-Linux systems, the Docker host is typically a virtual machine. +# This means that the user and group id's may be different. +# On OS X, for example, the user and group are 1000 and 50, respectively. +if [ x"$(uname -s)" != x"Linux" ] +then +CUID=1000 +CGID=50 +else +CUID=$(id -u) +CGID=$(id -g) +fi + +# Define some helper variables to make the running of the actual docker +# commands less verbose. +# Note: +# -u $CUID:$CGID runs the docker image as the current user to ensure +# that the file permissions are compatible with the +# host system. The variables CUID and CGID have been +# set above depending on the host operating system. +# --volume $(pwd):/workspace mounts the current directory as the docker volume +# /workspace +# --workdir /workspace Ensures that the docker container starts in the right +# working directory +DOCKER_OPTIONS="--rm -ti -u $CUID:$CGID --volume=$(pwd):/workspace --workdir=/workspace" +DOCKER_RUN="$DOCKER_CMD run $DOCKER_OPTIONS $IMAGE" + +# Download the data +if [ ${DOWNLOAD_DATA:-1} -eq 1 ] +then +$DOCKER_RUN bash -c "mkdir -p ./data/mnist; + cp -ru \$CAFFE_ROOT/data/mnist/get_mnist.sh ./data/mnist/" +$DOCKER_RUN ./data/mnist/get_mnist.sh +fi + +# Create the LMDB database +if [ ${CREATE_LMDB:-1} -eq 1 ] +then +$DOCKER_RUN bash -c "mkdir -p ./examples/mnist; + cp -ru \$CAFFE_ROOT/examples/mnist/create_mnist.sh ./examples/mnist/; + sed -i s#BUILD=build#BUILD=\$CAFFE_ROOT/build## ./examples/mnist/create_mnist.sh" +$DOCKER_RUN ./examples/mnist/create_mnist.sh +fi + +# Train the network +if [ ${TRAIN:-1} -eq 1 ] +then +$DOCKER_RUN bash -c "cp \$CAFFE_ROOT/examples/mnist/lenet_solver.prototxt ./examples/mnist/; + cp \$CAFFE_ROOT/examples/mnist/lenet_train_test.prototxt ./examples/mnist/" + # Ensure that the solver_mode is compatible with the desired GPU mode. + if [ ${GPU:-0} -eq 0 ] + then + $DOCKER_RUN sed -i 's#solver_mode: GPU#solver_mode: CPU##' ./examples/mnist/lenet_solver.prototxt + fi +$DOCKER_RUN caffe train --solver=examples/mnist/lenet_solver.prototxt $* +fi diff --git a/examples/mnist/train_lenet_rmsprop.sh b/examples/mnist/train_lenet_rmsprop.sh index 621cab238..adfa7ab0f 100755 --- a/examples/mnist/train_lenet_rmsprop.sh +++ b/examples/mnist/train_lenet_rmsprop.sh @@ -1,3 +1,5 @@ #!/usr/bin/env sh +set -e -./build/tools/caffe train --solver=examples/mnist/lenet_solver_rmsprop.prototxt +./build/tools/caffe train \ + --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@ diff --git a/examples/mnist/train_mnist_autoencoder.sh b/examples/mnist/train_mnist_autoencoder.sh index cfd67e82f..724a0f14a 100755 --- a/examples/mnist/train_mnist_autoencoder.sh +++ b/examples/mnist/train_mnist_autoencoder.sh @@ -1,4 +1,5 @@ #!/usr/bin/env sh +set -e ./build/tools/caffe train \ - --solver=examples/mnist/mnist_autoencoder_solver.prototxt + --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@ diff --git a/examples/mnist/train_mnist_autoencoder_adadelta.sh b/examples/mnist/train_mnist_autoencoder_adadelta.sh index 4be0ebdde..a660dbb9e 100755 --- a/examples/mnist/train_mnist_autoencoder_adadelta.sh +++ b/examples/mnist/train_mnist_autoencoder_adadelta.sh @@ -1,4 +1,5 @@ #!/bin/bash +set -e ./build/tools/caffe train \ - --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt + --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@ diff --git a/examples/mnist/train_mnist_autoencoder_adagrad.sh b/examples/mnist/train_mnist_autoencoder_adagrad.sh index 95fe1b17b..4c11dfa67 100755 --- a/examples/mnist/train_mnist_autoencoder_adagrad.sh +++ b/examples/mnist/train_mnist_autoencoder_adagrad.sh @@ -1,4 +1,5 @@ #!/bin/bash +set -e ./build/tools/caffe train \ - --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt + --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@ diff --git a/examples/mnist/train_mnist_autoencoder_nesterov.sh b/examples/mnist/train_mnist_autoencoder_nesterov.sh index cf19ea749..fd0559d24 100755 --- a/examples/mnist/train_mnist_autoencoder_nesterov.sh +++ b/examples/mnist/train_mnist_autoencoder_nesterov.sh @@ -1,4 +1,5 @@ #!/bin/bash +set -e ./build/tools/caffe train \ - --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt + --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@ diff --git a/examples/net_surgery.ipynb b/examples/net_surgery.ipynb index ff780fbb9..217c2d1a7 100644 --- a/examples/net_surgery.ipynb +++ b/examples/net_surgery.ipynb @@ -22,7 +22,6 @@ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", - "import Image\n", "\n", "# Make sure that caffe is on the python path:\n", "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", @@ -3511,7 +3510,7 @@ "print(\"blobs {}\\nparams {}\".format(net.blobs.keys(), net.params.keys()))\n", "\n", "# load image and prepare as a single input batch for Caffe\n", - "im = np.array(Image.open('images/cat_gray.jpg'))\n", + "im = np.array(caffe.io.load_image('images/cat_gray.jpg', color=False)).squeeze()\n", "plt.title(\"original image\")\n", "plt.imshow(im)\n", "plt.axis('off')\n", @@ -4480,8 +4479,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "pre-surgery output mean -12.93\n", - "post-surgery output mean -11.93\n" + "pre-surgery output mean -0.02\n", + "post-surgery output mean 0.98\n" ] } ], @@ -4489,7 +4488,7 @@ "# pick first filter output\n", "conv0 = net.blobs['conv'].data[0, 0]\n", "print(\"pre-surgery output mean {:.2f}\".format(conv0.mean()))\n", - "# set first filter bias to 10\n", + "# set first filter bias to 1\n", "net.params['conv'][1].data[0] = 1.\n", "net.forward()\n", "print(\"post-surgery output mean {:.2f}\".format(conv0.mean()))" @@ -5480,7 +5479,7 @@ "\n", "Let's take the standard Caffe Reference ImageNet model \"CaffeNet\" and transform it into a fully convolutional net for efficient, dense inference on large inputs. This model generates a classification map that covers a given input size instead of a single classification. In particular a 8 $\\times$ 8 classification map on a 451 $\\times$ 451 input gives 64x the output in only 3x the time. The computation exploits a natural efficiency of convolutional network (convnet) structure by amortizing the computation of overlapping receptive fields.\n", "\n", - "To do so we translate the `InnerProduct` matrix multiplication layers of CaffeNet into `Convolutional` layers. This is the only change: the other layer types are agnostic to spatial size. Convolution is translation-invariant, activations are elementwise operations, and so on. The `fc6` inner product when carried out as convolution by `fc6-conv` turns into a 6 \\times 6 filter with stride 1 on `pool5`. Back in image space this gives a classification for each 227 $\\times$ 227 box with stride 32 in pixels. Remember the equation for output map / receptive field size, output = (input - kernel_size) / stride + 1, and work out the indexing details for a clear understanding." + "To do so we translate the `InnerProduct` matrix multiplication layers of CaffeNet into `Convolutional` layers. This is the only change: the other layer types are agnostic to spatial size. Convolution is translation-invariant, activations are elementwise operations, and so on. The `fc6` inner product when carried out as convolution by `fc6-conv` turns into a 6 $\\times$ 6 filter with stride 1 on `pool5`. Back in image space this gives a classification for each 227 $\\times$ 227 box with stride 32 in pixels. Remember the equation for output map / receptive field size, output = (input - kernel_size) / stride + 1, and work out the indexing details for a clear understanding." ] }, { @@ -5499,43 +5498,41 @@ "< name: \"CaffeNetConv\"\r\n", "---\r\n", "> name: \"CaffeNet\"\r\n", - "4c3\r\n", - "< input_dim: 1\r\n", + "7,11c6\r\n", + "< input_param {\r\n", + "< # initial shape for a fully convolutional network:\r\n", + "< # the shape can be set for each input by reshape.\r\n", + "< shape: { dim: 1 dim: 3 dim: 451 dim: 451 }\r\n", + "< }\r\n", "---\r\n", - "> input_dim: 10\r\n", - "6,7c5,6\r\n", - "< input_dim: 451\r\n", - "< input_dim: 451\r\n", - "---\r\n", - "> input_dim: 227\r\n", - "> input_dim: 227\r\n", - "152,153c151,152\r\n", + "> input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }\r\n", + "157,158c152,153\r\n", "< name: \"fc6-conv\"\r\n", "< type: \"Convolution\"\r\n", "---\r\n", "> name: \"fc6\"\r\n", "> type: \"InnerProduct\"\r\n", - "155,156c154,155\r\n", + "160,161c155,156\r\n", "< top: \"fc6-conv\"\r\n", "< convolution_param {\r\n", "---\r\n", "> top: \"fc6\"\r\n", "> inner_product_param {\r\n", - "158d156\r\n", + "163d157\r\n", "< kernel_size: 6\r\n", - "164,165c162,163\r\n", + "169,170c163,164\r\n", "< bottom: \"fc6-conv\"\r\n", "< top: \"fc6-conv\"\r\n", "---\r\n", "> bottom: \"fc6\"\r\n", "> top: \"fc6\"\r\n", - "170,171c168,169\r\n", + "175,176c169,170\r\n", "< bottom: \"fc6-conv\"\r\n", "< top: \"fc6-conv\"\r\n", "---\r\n", "> bottom: \"fc6\"\r\n", "> top: \"fc6\"\r\n", - "177,181c175,179\r\n", + "182,186c176,180\r\n", "< name: \"fc7-conv\"\r\n", "< type: \"Convolution\"\r\n", "< bottom: \"fc6-conv\"\r\n", @@ -5547,21 +5544,21 @@ "> bottom: \"fc6\"\r\n", "> top: \"fc7\"\r\n", "> inner_product_param {\r\n", - "183d180\r\n", + "188d181\r\n", "< kernel_size: 1\r\n", - "189,190c186,187\r\n", + "194,195c187,188\r\n", "< bottom: \"fc7-conv\"\r\n", "< top: \"fc7-conv\"\r\n", "---\r\n", "> bottom: \"fc7\"\r\n", "> top: \"fc7\"\r\n", - "195,196c192,193\r\n", + "200,201c193,194\r\n", "< bottom: \"fc7-conv\"\r\n", "< top: \"fc7-conv\"\r\n", "---\r\n", "> bottom: \"fc7\"\r\n", "> top: \"fc7\"\r\n", - "202,206c199,203\r\n", + "207,211c200,204\r\n", "< name: \"fc8-conv\"\r\n", "< type: \"Convolution\"\r\n", "< bottom: \"fc7-conv\"\r\n", @@ -5573,9 +5570,9 @@ "> bottom: \"fc7\"\r\n", "> top: \"fc8\"\r\n", "> inner_product_param {\r\n", - "208d204\r\n", + "213d205\r\n", "< kernel_size: 1\r\n", - "214c210\r\n", + "219c211\r\n", "< bottom: \"fc8-conv\"\r\n", "---\r\n", "> bottom: \"fc8\"\r\n" @@ -5611,13 +5608,6 @@ } ], "source": [ - "# Make sure that caffe is on the python path:\n", - "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", - "import sys\n", - "sys.path.insert(0, caffe_root + 'python')\n", - "\n", - "import caffe\n", - "\n", "# Load the original network and extract the fully connected layers' parameters.\n", "net = caffe.Net('../models/bvlc_reference_caffenet/deploy.prototxt', \n", " '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', \n", diff --git a/examples/net_surgery/bvlc_caffenet_full_conv.prototxt b/examples/net_surgery/bvlc_caffenet_full_conv.prototxt index 0cadde9b5..f8f5c3c32 100644 --- a/examples/net_surgery/bvlc_caffenet_full_conv.prototxt +++ b/examples/net_surgery/bvlc_caffenet_full_conv.prototxt @@ -1,11 +1,14 @@ # Fully convolutional network version of CaffeNet. name: "CaffeNetConv" -input: "data" -input_shape { - dim: 1 - dim: 3 - dim: 451 - dim: 451 +layer { + name: "data" + type: "Input" + top: "data" + input_param { + # initial shape for a fully convolutional network: + # the shape can be set for each input by reshape. + shape: { dim: 1 dim: 3 dim: 451 dim: 451 } + } } layer { name: "conv1" diff --git a/examples/net_surgery/conv.prototxt b/examples/net_surgery/conv.prototxt index 6b3e5c768..8671bb5bf 100644 --- a/examples/net_surgery/conv.prototxt +++ b/examples/net_surgery/conv.prototxt @@ -1,11 +1,10 @@ # Simple single-layer network to showcase editing model parameters. name: "convolution" -input: "data" -input_shape { - dim: 1 - dim: 1 - dim: 100 - dim: 100 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } } } layer { name: "conv" diff --git a/examples/pascal-multilabel-with-datalayer.ipynb b/examples/pascal-multilabel-with-datalayer.ipynb new file mode 100644 index 000000000..94b9b4fed --- /dev/null +++ b/examples/pascal-multilabel-with-datalayer.ipynb @@ -0,0 +1,479 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multilabel classification on PASCAL using python data-layers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this tutorial we will do multilabel classification on PASCAL VOC 2012.\n", + "\n", + "Multilabel classification is a generalization of multiclass classification, where each instance (image) can belong to many classes. For example, an image may both belong to a \"beach\" category and a \"vacation pictures\" category. In multiclass classification, on the other hand, each image belongs to a single class.\n", + "\n", + "Caffe supports multilabel classification through the SigmoidCrossEntropyLoss layer, and we will load data using a Python data layer. Data could also be provided through HDF5 or LMDB data layers, but the python data layer provides endless flexibility, so that's what we will use." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Preliminaries\n", + "\n", + "* First, make sure you compile caffe using\n", + "WITH_PYTHON_LAYER := 1\n", + "\n", + "* Second, download PASCAL VOC 2012. It's available here: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html\n", + "\n", + "* Third, import modules:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import sys \n", + "import os\n", + "\n", + "import numpy as np\n", + "import os.path as osp\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from copy import copy\n", + "\n", + "% matplotlib inline\n", + "plt.rcParams['figure.figsize'] = (6, 6)\n", + "\n", + "caffe_root = '../' # this file is expected to be in {caffe_root}/examples\n", + "sys.path.append(caffe_root + 'python')\n", + "import caffe # If you get \"No module named _caffe\", either you have not built pycaffe or you have the wrong path.\n", + "\n", + "from caffe import layers as L, params as P # Shortcuts to define the net prototxt.\n", + "\n", + "sys.path.append(\"pycaffe/layers\") # the datalayers we will use are in this directory.\n", + "sys.path.append(\"pycaffe\") # the tools file is in this folder\n", + "\n", + "import tools #this contains some tools that we need" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Fourth, set data directories and initialize caffe" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# set data root directory, e.g:\n", + "pascal_root = osp.join(caffe_root, 'data/pascal/VOC2012')\n", + "\n", + "# these are the PASCAL classes, we'll need them later.\n", + "classes = np.asarray(['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'])\n", + "\n", + "# make sure we have the caffenet weight downloaded.\n", + "if not os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):\n", + " print(\"Downloading pre-trained CaffeNet model...\")\n", + " !../scripts/download_model_binary.py ../models/bvlc_reference_caffenet\n", + "\n", + "# initialize caffe for gpu mode\n", + "caffe.set_mode_gpu()\n", + "caffe.set_device(0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Define network prototxts\n", + "\n", + "* Let's start by defining the nets using caffe.NetSpec. Note how we used the SigmoidCrossEntropyLoss layer. This is the right loss for multilabel classification. Also note how the data layer is defined." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# helper function for common structures\n", + "def conv_relu(bottom, ks, nout, stride=1, pad=0, group=1):\n", + " conv = L.Convolution(bottom, kernel_size=ks, stride=stride,\n", + " num_output=nout, pad=pad, group=group)\n", + " return conv, L.ReLU(conv, in_place=True)\n", + "\n", + "# another helper function\n", + "def fc_relu(bottom, nout):\n", + " fc = L.InnerProduct(bottom, num_output=nout)\n", + " return fc, L.ReLU(fc, in_place=True)\n", + "\n", + "# yet another helper function\n", + "def max_pool(bottom, ks, stride=1):\n", + " return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride)\n", + "\n", + "# main netspec wrapper\n", + "def caffenet_multilabel(data_layer_params, datalayer):\n", + " # setup the python data layer \n", + " n = caffe.NetSpec()\n", + " n.data, n.label = L.Python(module = 'pascal_multilabel_datalayers', layer = datalayer, \n", + " ntop = 2, param_str=str(data_layer_params))\n", + "\n", + " # the net itself\n", + " n.conv1, n.relu1 = conv_relu(n.data, 11, 96, stride=4)\n", + " n.pool1 = max_pool(n.relu1, 3, stride=2)\n", + " n.norm1 = L.LRN(n.pool1, local_size=5, alpha=1e-4, beta=0.75)\n", + " n.conv2, n.relu2 = conv_relu(n.norm1, 5, 256, pad=2, group=2)\n", + " n.pool2 = max_pool(n.relu2, 3, stride=2)\n", + " n.norm2 = L.LRN(n.pool2, local_size=5, alpha=1e-4, beta=0.75)\n", + " n.conv3, n.relu3 = conv_relu(n.norm2, 3, 384, pad=1)\n", + " n.conv4, n.relu4 = conv_relu(n.relu3, 3, 384, pad=1, group=2)\n", + " n.conv5, n.relu5 = conv_relu(n.relu4, 3, 256, pad=1, group=2)\n", + " n.pool5 = max_pool(n.relu5, 3, stride=2)\n", + " n.fc6, n.relu6 = fc_relu(n.pool5, 4096)\n", + " n.drop6 = L.Dropout(n.relu6, in_place=True)\n", + " n.fc7, n.relu7 = fc_relu(n.drop6, 4096)\n", + " n.drop7 = L.Dropout(n.relu7, in_place=True)\n", + " n.score = L.InnerProduct(n.drop7, num_output=20)\n", + " n.loss = L.SigmoidCrossEntropyLoss(n.score, n.label)\n", + " \n", + " return str(n.to_proto())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Write nets and solver files\n", + "\n", + "* Now we can crete net and solver prototxts. For the solver, we use the CaffeSolver class from the \"tools\" module" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "workdir = './pascal_multilabel_with_datalayer'\n", + "if not os.path.isdir(workdir):\n", + " os.makedirs(workdir)\n", + "\n", + "solverprototxt = tools.CaffeSolver(trainnet_prototxt_path = osp.join(workdir, \"trainnet.prototxt\"), testnet_prototxt_path = osp.join(workdir, \"valnet.prototxt\"))\n", + "solverprototxt.sp['display'] = \"1\"\n", + "solverprototxt.sp['base_lr'] = \"0.0001\"\n", + "solverprototxt.write(osp.join(workdir, 'solver.prototxt'))\n", + "\n", + "# write train net.\n", + "with open(osp.join(workdir, 'trainnet.prototxt'), 'w') as f:\n", + " # provide parameters to the data layer as a python dictionary. Easy as pie!\n", + " data_layer_params = dict(batch_size = 128, im_shape = [227, 227], split = 'train', pascal_root = pascal_root)\n", + " f.write(caffenet_multilabel(data_layer_params, 'PascalMultilabelDataLayerSync'))\n", + "\n", + "# write validation net.\n", + "with open(osp.join(workdir, 'valnet.prototxt'), 'w') as f:\n", + " data_layer_params = dict(batch_size = 128, im_shape = [227, 227], split = 'val', pascal_root = pascal_root)\n", + " f.write(caffenet_multilabel(data_layer_params, 'PascalMultilabelDataLayerSync'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* This net uses a python datalayer: 'PascalMultilabelDataLayerSync', which is defined in './pycaffe/layers/pascal_multilabel_datalayers.py'. \n", + "\n", + "* Take a look at the code. It's quite straight-forward, and gives you full control over data and labels.\n", + "\n", + "* Now we can load the caffe solver as usual." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BatchLoader initialized with 5717 images\n", + "PascalMultilabelDataLayerSync initialized for split: train, with bs: 128, im_shape: [227, 227].\n", + "BatchLoader initialized with 5823 images\n", + "PascalMultilabelDataLayerSync initialized for split: val, with bs: 128, im_shape: [227, 227].\n" + ] + } + ], + "source": [ + "solver = caffe.SGDSolver(osp.join(workdir, 'solver.prototxt'))\n", + "solver.net.copy_from(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')\n", + "solver.test_nets[0].share_with(solver.net)\n", + "solver.step(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Let's check the data we have loaded." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAF6CAYAAAAEd9NkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWmsZUlyHvZFnnvv26vqvaree7p7Znp6SM5Mz9IUJYsQ\nQNMwLciEYMOAZAOEIQs2bP0wDC+gFxASSRiUCcKwDHiRAduSbdmWBHiBbBo2RVoWaYoSORQ5C2em\nt+qe7uqqrlf19u0u52T4R2ZkROY5575X1d3zqsc3C6/uvefkyYyMjPwiMjIyDzEzFmmRFmmRFunj\nm9xlE7BIi7RIi7RIHywtgHyRFmmRFuljnhZAvkiLtEiL9DFPCyBfpEVapEX6mKcFkC/SIi3SIn3M\n0wLIF2mRFmmRPuZpAeSLdCmJiH6MiDwRHRLRT3TcfyHeX8joR5SI6OeI6HjB549/WnTeIp2biOif\nJaJ/EAf9XSL6+0T054jouXjtKP754vePnlP0e8x8hZl/JdbzZ4jor3wPmnThREQ/S0R/oefeI0fv\neYmI3iai5wCAmf8CgM9dMkmL9CGkBZAv0txERP8mgL8E4BcBPMHMTwD4VwD8KIA7zLzOzBvMvBEf\neVl+M/NvXhLZWSKiwQd4/Hu+Y+4D0nteKttDH2Fdi/Q9SgsgX6TeRERXAfwcgD/HzP8zM58AADP/\nPjP/FDPPPuQqGW2g+Ski+i4R3SOif8/QtkREf4mI3ot//xERjeK9HyOiW0T000R0B8B/RUTXieh/\nJ6I9Itohol8nIor5nyai/4mItonoJhH9qx10zaXXuIL+pUjP7agEhV4ion+HiN4govtE9DeIaLN4\n9s8S0XcB/Gps31+LefeI6LeJ6HFD79+K7XidiP5FU8/PEtHfJKL/JrqtvklErzxEXyzSxykx8+Jv\n8df5B+CPA5gBcBfM7wF8yvz+3wD8dE/eHwPw7pyyXojl/RcAlgC8DGAM4LPx/s8D+HsAbsS/3wTw\n86bsGYC/CGAIYDl+/88BVPHvR2NeB+B3AfwMgAGATwJ4E8BPPCCvhN7/HsAKgM8D2Abwj8X7/1qk\n9+lI018G8D8Uz/7V+OwygH8ZwN+K3wnAlwFsxPy/DuA/ATAC8MVYzz8a7/0sgLPYdwTgFwD81gXo\nvlAfL/4ezb9LJ2Dx9+j+AfgpBPeJvfb3AOwBOAXwx4p7GZCfU/ZFgfxpc+0fAPhT8fsbAP64ufcT\nAN4yZU8AjMz9nwPwvwL4dFHPHwbw3eLavwvgv35AXgm9L5lrvwjgv4zfvw3gx829pwBMoyKRZ18w\n9/8FBOX0haKeTwCoAayZa78A4K/E7z8L4FfMvR8CcHoBuhdA/jH+W7hWFmle2gFww0Y0MPMfZebN\neO974V9933w/BbAevz8N4Lvm3jvxmqR7zDw1v38JAfx/hYjeJKJ/O15/HsDT0X2xR0R7CED++EPS\n+24PTc8D+F9MHd9CAOQnep797wD8XwD+enTV/GL0nT8NYJejm8vU84z5fdd8PwWwvIhK+f5Oi85d\npHnptxAs23/qsgnpSLcRrElJz8VrkjK/NjMfM/O/xcyfBvAnAfwbRPTjCCD4FjNvmr8rzPyTD0nX\nc8X39+L3dxBmELaeVWa+00UzM9fM/PPM/DkAfxTATwL452N5W0S0bp57DsCth6R3kb4P0gLIF6k3\nMfM+gkviPyOif4aINojIEdGXAKxdMnn/I4CfIaIbRHQDwJ9HsGI7ExH9k0T0YlzgPATQxL/fBnAU\nF0ZXiKgios8T0Q8/JF0/E8v5HIA/A+BvxOt/GcAvSOgfET1GRH9yDr0/RkRfIKIKwBGCz79h5lsI\n7q2/GBdEXwbwZwH8tYekd5G+D9JHGea0SN8HiZl/iYjeA/DTAP5bACcAbsbfv1Vmtz+I6P8A8OvM\n/B88bPVz7v37AK4A+Hr8/Tfjtb5nP4OwQPgYgo//P2Xmvxvp/EkA/yFCu5YAfAdh8fNh0t9FcOE4\nAL/EzL8ar//HCK6oXyGipxEWKP86woJmF71PIoD/swCOY15RVP9cvHc7tuXPM/P/bcopy1q8dOD7\nPBHzoo8X6XufiOiPIfiAxwD+NDP/7Usm6QMlInoBQREMmNlfLjUXS3Gj07+OEP2yxgsw+NimBZAv\n0iJ9COnjCOSL9P2TFj7yRVqkDy8trKJFupS0sMgXaZEWaZE+5mlhkS/SIi3SIn3M02VFrVx4GsAI\nS/3MDA+CBzBvEkEQ7RQydeUlIhCFzGyes5/ZTIXyrwQCMyMe1ZHRCgDeM7zPds+BmVLd9rN8nhGe\n8ab+vubaEiic+AHiWA4xOAUwkKFd2wDq4o9e6CAxb4Nk4jxQIp5g0kFluNdXbqIg4xsHeomQAjJi\nVUwAg1LNzCIrZNqVy4GQywxTR05TxhMmMBOIQuFZv3GeN3wP+VzMl7NX2xRY5syz2k/InqQWnakt\nIOn49IzcYyZ4jhLAD79vS3rWQ/uCQaDA/EQbUdsqlHqlvRT5Z9vDqY35mPNmlUFo0LZ1jyMrN+e2\niz/Y8+GBbr5aOjuve9N2I4tpFGUyxYlHscfxlS8OWxU/0uGHOkAZniPIzdlMKCCVXaOcOQnEe/Lr\ncwRGR6dGOvrqnycGXeDdlWy7+1AvlZWADmmkt9tlQIJEHKScVslRSXXTa6+RXoxVcyvPh+G5Y/vJ\nhstMJtZOQMPWSUUJOT0CKmUzLVjOp6hDGXN4WDC6VChJes7hi33OggszmeZzXk4iS0EqtI8/EJir\n7tQxYdUOkUhU23hKSisnLVNKbSWm5UoZ8mzZf13PXBSMP+jz5w74vsecMbgYIOakeAnRQDF4BdP+\nvl58ZIFcGpm0VvxdtsRaWpIyizABnN6bB+A2EQQoLqjlgRYACC1EWqsVlEw4JW+LkKxnswEECkJB\nYNOosoRyJFntRhnvdKZBZtApQOcWqW2HgAfgnCsGg203p8GbKQUzaEuLHGlwRSBhKbPNzww3DY63\n+0VnDN1AwYWiEFHKUMoApAUAirMCTm1upzYKdOEHp7aa+yIKKY8BUKvnWoXJxwUQyPBPaGA7uzM6\npOzrNDMxfS33ZKaqhXeVgbZsZJbpA1rOfU3sKGNeuRbkSSxEora8oksmACuvRAHAQdIfhXFWgjni\nMz3I9cgCeZ66TaR8Csy9KK0y0ceGuTUXBVrrqO1eSbZL67oORgt68il2jn0qs2yLqSSZAihMdgvL\nklr/s63MCpD9vxCg7jZ2JwVjLS/Rb8FGBrh1x3TcVwuPkwslL1saYviEODMQV4zFfS0yyy+ME8gt\nXWKMeChRKoizciytecmZhi5SD0EdqcBvRK+YTtWjYlYlx53PcWyPrb+7Z2XWULbV8Dlaj11Kow8L\n85lFG8xTzXNmD2SVCbq590BWdQ99c++zpb8EcTU+tB8KhS1lQAwBC/523AHaSgGLbhofWSDnonH9\n3Sb52xheDPfW9YumrOZifnc+0OU1a1btqDAoIuiQsa7L/hO3CalfWH6H8nI6qOCZKgyTRCCpe2iX\n01vb7qyFpEOsHA+579FMzpnya9mA1i+MuDYCJMHX/JYT1pLRgaatoohN+XQ/r0v+xd/xppd+5n75\nMaxEZIleT6nv6baxIK5EC8R98B/UhspmjoWUeGfbmu4WJJW86dNT5bhqu5Gs4uUiT5uOeTNfa5UH\nF958MJ+Xumc+Fysln2DlOMApQ+wHM04lv85uoDPTZBxQYbNapTufvkcWyDMcSwPiPAiWQVtY3pEH\nFzQse+nRH6SD3dwn+4tQgD4VIGOJY6VPpm5lpcZ6724HdQB5i3JzgzNjKymIgr6+xaDSnUEmT1dq\nuz+6VatVjGmxDGYhKF7PB04staWMdIbDWTtsG6U9ukDKCK4Ra4nKACY2axIWtSEXI/wyhzqJwnfT\nUsUB01bzvwxmUWCiuDPjhtl85aSluSUcwjnK+CjyypTIRu62glzUOizb0PkT2SrWueBo3SVieGj7\nJalitOtWuWKYt3bGxmB44JQZDlqnWM1sucmAZ8rYJy1Q/oW81qCT/+1sJBn1UN4H/Ohu5yML5GXK\n5KsjUc9KwIcdJ6+2kqm7RYz9KC3ctnx3Wb19Vv68qJcHSbnvUsEtG0A9dfSt7quwqhS6Yprb3Rtk\n6hafo96TQapWDACmTPBTBkXZCGyGphYRCowBF020S0S8tnVknyQdhgmsA7U6oLlotFV7lNHCEWzh\nta1lpUnyillFyjJP3i3AJBkVJaXT/JaF3vpyfhXhR4ewdz1g3SztUvofvZCBVyrwBzDoDKiy+W2v\nMQuIR1ngLn4Z9ZaxwyrxNlFto6nfMv/YAPm8dJGO+aDAp+kcEC+vlYNi3jg7h8YHBfFyeKhF2wfE\n/bT0WuMd3/OQwYslqwMyfQC1KRXIGYDLrdgC0Hv9pHaUdRlqrL/ZIw1OnRERPBm6mHWgpwfzMtPj\nJDouXinJixaXzDYInGZJ1oCz/EmP0nlGC6viSYUZGow/nFGMKRtG8QCJImFdBgq3iH/g4rWWXnzr\nk7+LyGWhWLq0mYRgpsuF0dIyAri4rvcyO6NnTAH9Y+oRBvIH08oA2pKNDxPAAW86MU6QOuhRO9xa\nVRcxTvrSgwFiTmMLozKTc950NBemMprkYWjrq6NrdtC6hgBF4nKweYtSu0GcKZVrrc6EIVJfNjA5\ns7SIKMb3c9rPwNGSza0qAntWTSTFpVxlpJA8m6kDOBBctOo7mtmK9JFkF/ctAGiPixXJKT87jlEU\nXf35kCBufxOlv26wK+s7X66s0u+nQPl6EVlVyI2qNLP2cyBObiwzGwtlUNGTZfKds4iWyHYqwO4S\nLwXI2wuZHR0v/xkgTN8hVgNnvEr+4w8RvLnjW8sH35MskJbW7ofh8rnwDDGr3EKOujMsrdbajAWk\n6+rTNeVQFN44TWaiBFYSW67ATBkn5xuRuVUkhi6l+hUo07CNwKdlJCYkCypcljbHvoibNJJFCsBL\nm2LpaS9D/PRCUGwXkfi8dcE0gXRyhSh4WlmNJajcmzJE2mx4mpXxLJIpliasS24pO4ByxoT+I2Wn\nRlKE5BK/hda2/Fpl1DKw7aIfdyilIgkIpnyEJAtsMnGWX2+oi659ty91jekMnCnraqQxQ5H/Ij9k\n1kPIbtDKa+ukwXRvZ7KL1UW6JCBvN6XrWuo/hgo4J3ui1agPEb87UzlcLvpMF5hfJM2LiOm+WsSf\nmsxs7pvsusBKVGwSzIkN/Kf8d/ySgITDIHeU5UCuDsXSKdrTpdw6Gik4be1X2aXa1zMklhunh/Sr\n3PNQVwryPNp/YcctUwB1z2EhUwpyjuBcnBHIwPfyLDIlkfz7RpgJEisc1VYJiLAyyNnFDvvT6q2i\nDPXZWnnIZ5O2JKU5KUCrK4tK+gz7fE9Ad7LgnHRDx32YNnTevehYK8YKmctsjJCUxHgslWcGwqWS\n4zxTkS5q2M3TS5fuWlHR6E6lZZ7f01XstNZpgOnDSB3Q9VCpC7jC9f4OLDdF9Oe14m+jV3QgQr7l\nRm4irLSi1CvAbWlFz2ae9DvktQM+W6RLcKaWpigtu0Kf20S51a1xvCQXckGXAUpq1aZbEgXC4TgF\nQUzrWvFsLLDkTolWOIUFWI+o/GIe9gyuApi7uLOTHMU6LK9CS7w8F+slAly06skxXGybVczERQPj\nV+cUgH3UETCWcx7IGPsnoFUELNmdq3vjrZUtbLBRI2pttpXCXDCfk2SoM6mCtpaoRos8QCplsLgu\nMpSUFcVPqYeK/F1QEAkP7Y6qOLm85mNHe9NQ24XJfn4Zl2ORG9/hhZNYLQI4LDGlUHyiMGA/asv8\nw0wlQLd2j8X0IK4YKs7fUDswMKoUnDTNF+BkKaOsU4WyC8jLOhPG2bbBXEjWudRrQRxoa/DCCpJf\nyRpSUJaCFHYiwDHSGSQeCL7sRDKpbMW8bG9zKCf4xGM0DSOdc+PlOQJ88EfAumJESaT/SdSdi8AV\nkhOgRzjThGMdya8f/7ecaXyUfSgAq1sogm6yIkXxEpIrIPWB9FwSCogrJfWlzEJKXDT994HGIBka\nC1k9z7rt85t3Qb8tSjfgWLml5KJKoetJeZXl2bEKtJjTQ2t36plKzUmXAuQPvr+ybZmnjTNQIHmY\nch/FZM9XePBng8SVRVijonMmk+5aULewM392ki+iyjX5M4oq/qeXcoslVwo9iqTLAux6yuANewVn\nXyiZ5HpJj5kQyDRwI/CZ58J4jbRIGcRoCCBvLNnYclEGFshdRD1G8EV7qCyTqSjZPhR7Lw0IbSuh\nGAMC/jYWulDEJR6zkQ3bpQnY4jVd3u1S4kA4aAwPnkjVTJ+MtOsT0L84iKuVTkkIkh0g7eU8Oxl+\nqFKeW0vvTLp9iZFCatNsNVdiGeFFuhwgf0h1bWXXTpXl96OcWsCarEibS4VS4uK7hDlvqYEKstfs\np16n6JcV/hF3PZ+obP1SHLIDiDMg1yl5UbuZEpd1yZQ0E/yMaRrnnDVPiEp/aoFKfR6IZ3wI2FI0\ncfPhYhWPjWUXkBYwS5UXbSAjoGzAxcfLwR1jESC6mWLbPcWFReGBUSa5ISq7gbPakwJ20bp31rI1\nslNCjvemQwx59gRO+CKCI90qFW/3ImP/mOdIuyoWLZdRXAw/0+whN0+4k6a+1DJfUtlJlHINB2dk\nK9MtxRi2rhWgH8yze+lsnhLA++m26ZIs8g/+fOx+tR4w39d+WSlbTCru6XJNITHGKoNxccjzueuk\nu67w2wpQMbDSZ64OOY3kLsvYRlWY6yytsfUq+AE6QMSqlGtSQA6C8scQX1riQNl0H8P/7M5MhoYH\nAvAEeBs5IeUIQCagVAVgk+KFxjaQ0C9tUaFU6lmt8KBjOIWwEhDcJlK0D6cUJp84x6gVBjS8Uenq\nBssgG46ASnRewmdOERaOKIGSEJe5t9JhYSoLpZtJbEZIH0GcTWSe0cV1ZVUOVCUYp/4xZakcMawy\naYfwlXJ1sRR23mrdJAQXwzKwvMM9aPJ1rReUKbP0jRE0n+r5dy99sfNhkwXzUo8/aolaX5AsKjv5\n1ky6mKjQ1j9VnSc0bWuAMzBqpQ55KRXkOYZ7y6WTFSntOmexN+NKiv1q15EUhtdrFsST8WTcC8FN\nYeo3ZUEsXcr56hmgGNUi4XhpMpDAWxSvKi5RjrLdvsWvhLRx9sCcHXEqz2Q9KMrHXJMoFxBQxWJ9\nvJ7Yl4CeUBEnV4FwRsE6gnkBoBJpY/U82boBOIYGdqAr9QNS5soyytPyMrX2wbC6qKhjZmEJFmZZ\nzSUfBbgn7hX09G2a672WCn84BPvYAjlgm/wowneZSknR1H0usuTT5/Js3WU9EEWt6blel1Lt0bVd\nAtlFu7hWWj7sQri7XDBt+dbZiaHKWJAC4uoO0VwRcDmCL3MMG4SYr8WMKEIuAc6Zl48wg5oIqoqX\nAHSTmDdgJuUkIqBx3ba52cSGVOVl03sUPZyBivJAtIrkbxAszRD5EsrnaK07YjREcPEx51TGUrnM\nKXLHXIKAFhOb6EkKAE5hQRlAOuRNDHZ53h541VJFcTYA5rBYnNRIwbiMg90ymclqWrG0PFMa0syK\nzRjTDs6M7640D8TtNZ2p9vDgAmfG9xk+H2sgl3Te9tXLSV0MV8DQaWZmBqSceeRG1/f4lBW+i1B1\nEVOGchs8jyrJlUq3ZZE/27ImO76nRxOImbck2ZAzcQVI3mBeW2dUBGDSCKeYfAJ8JDcGGfZzRO4U\ndWFM7roCmgbwXtwlDO91RihvjUosBCVLvSuSyva8/ZZkWUoxAG0bk8Ax8krdCtkczhiVgRnih3ck\nLyBhkNc5WlDu0rlqdKZTJ1nqpXQ/7RqNfIvxPOmNQTIbsvSV7W5Z2VLH3PSAlm5SRgqsoWoFehsV\nYze5aWGl4dE9ntrgrp/J/WL+P29Ynhet830B5I9W4uITmDdj6F4IKfPPF+h5YF764+Sz05IWq7JD\nqKz1rGPDomAElTTQOQ2cFJNrBlUZX6vheeKKsLSLv1QrEaC1NjVRWMwlRyGuOipLATt7omEK5zMK\nk+ONpGMjDd4LU8JFH3mhO4vT0nE380irsZ/O3E8ziYjQnOXk7ARFLZciLwpwMd9T+LFxE8iGJrGm\n7eb9zCo1lirMpdzjQIk1wk4HJPeKuHk6cSqJW5v+C5gb7eLmgqpdhOzJ36qY0nP5WlPXjKKsr/07\nuY6scr1wS+djwPcFkD8alngXgJf35tHZDd69VkkhLW0ZpuJeDuLps0Ult0iRzQjZGSeAOnBlQZLt\nAp3WnVwe1geAkv58tUBAghGn6eBwTFbCDXF9iKUYKnWO4CqAnOBcRBSnNrsqhdhi0kVJaSkzUty5\nWOWmOgUxCHhp6Jha1bG0aJknumMbHWssetpbQcodBlK7+lLb7aVcZNu/osBgQRwwDE39pTzglM+u\nr2cK2Vixks/H7xXn/SWKUi6mgylTY4rPDyW1wbIVQWb6LHdvKNTK0QtKsWygileyKqzPvGhMpgOC\ncdEXvNBbRkf6vgDyRyNdVLvOm5rl4Fuea6I3jTwkpOmiRQa5pU0F0AJ8UXz7moCOmhNKl7FwFLS1\nLT46l9v1yUgQq9nSns144QwA5iwMQBem9S5Y4za0MBZMXkddCvkz01rmcBCWHDPAHDbZhL/g+208\n66YieYFuBgiR68W5IMTh2IJgZ3O6JhqBrRYxui4FLBXI09U/fVY5mTIpo7UgHBKqaWckpsxWpXrP\nWvBW2TcU4uId5+4qZ903qXhG0bEfWurbIW2BWM/i7wD+jE5bLlI5RY3IwbwoReo3ZfRQ3rrSHa2+\nAPLvceoyOc4D/zaIp+4US67zmRzMy+mggnkhuGlqb0qLgKJLeMkkzcGZ1ZJFMTB7jcqUrdtyoTIb\nDDjJPQqg7IiCJV4Uk9wWJSvFOIxWZMPIIkZmXsFc49Cjv95Hi92bwahmrhYMZApJjTpVgukRlggT\nVWyp/R1gXlqWWhelWYwyQRWXWJoZL0wTkhLUylugpUoLra6T8oQEH7fbi8slvWO2BZofDMy7+NFN\nWaj3gSfyJDtn25XYupNLL/dB9dh6H44CWwD5h5pysMyvPXhKror2jTQdnL94WU4Hu+oI+bKBai1N\nihtDYr58BlBsr08gmA9SLgBIKLM0ZMPZsNG2vnvBhzNrLxucJlpBdnaGyzp4yDM8CJ4JTSRGgLxu\nGLUPAB+aHT3KbPnk0+xJXgWXgJOsmyURksjTSUIoU3zmUj5HWg21RS/qormdHfUdU+EK5a4WOqV6\nkpaMylEmTSJvqpQU1KQ+4ZtlvbjaHIXwy3hyQaRC5ZtjmdkQYkuTYY5QnQE3dVzrTho5U8pT33gS\nhewg+1Xs3KM9hiR/7H8Nf8ppBZtyig1XnVQUA8WkBZCfk/pkIu/ErjvxV5e1WeTv27TTUZyh6zwA\nLx+U6Z7EA+cDItECoNwdCajl3fdbh6bYeyp056mylnVoD+y3CgEJHbpLJRlmlOUPoXJmc44ARBw4\n4i5pZFMOAHKEKmyNhOPgSvE+WOLwapErLkafsoSxJWAhMUFDXucSQLnYDLlsrXnJnseRl5BOhseq\ntAgC0hr1kqYDqds5YyEBCsYkgKqAb7YuJVM8We+kz2dhlKq+jEQGN5PL7grw2c7U8MYsGoil27qA\n2IJ5OT7a7bVaV+S5HS1mXCQSe0/mWZYuVVrshjhAZc6SnNw4DD3XvMsOVCraF01aALlJ5yjykCfv\nj9xHmglBAT5lJQbrOBYUZallTbXoynCfihvdsCll59vP1XLQKJAib0c7VUA5+0y4QkjKgGL56UEb\n6SLDKQGFAkfY1KOLsnYgBhwRxUFI4W5MafBLwQLe6UAraRuS0aebiWI7nIvb2x1QRVo8BZ9vA9YZ\nSkTjNCNAsPaITCSIxRgZ3DLQ5VwcYReEZwrbcqhV2iWaARJrmVKS3BaWWeGxhm1xUWgIykXDCZOi\nyLot0k3qrElgbqWVrELT+snSqJQX4FrSaVLWyfPMBOq/nR2cYpRgNpski/UZmFrFqW5K82Qh5vYn\nJ9m1OyPmtDfmmAfmCyCPKQEqMI+bCQyiHk/5dbFEOpGyZ7KKsuvljjoRDAW5di+fI7yddHPxB0GP\nMAhdtGSjgEsMdxA6Z8oxNRUaxye5F0CSSA8yAq7Dtd0wM2rKxUQDBEoHp8HjqOw/9dd70x4A8SyT\nADnetkesRfMnqXHRX06EGgHQiRgElyJkCIjfhQsycTaDlkVB6RksQOHTFjkwPOFoima6m1mPBjBn\nBGg0SECXBKJGlrqioZLSbUXCRPlO7bF9T50gLn0CcHI7le9PtQaRbRZg2mV4lBs+yGrMzJmC7qDQ\n89qyeoVO/aF0eKsYlYEZWEPi70uwj/wBtO1xgOtat5giGWsMluQagTPNrGkB5GWaA+IpCxe6kfM1\n99LwzPPm1/OtvOZhAdKOZ7t3U4qV1HVdy5ezsa3bRF6O4BylMqzFXlpJZdLjBIwmi05ksfYFFAU8\nrSWXl00gz2lnogp0jHSQASBKwxpdzEk5WSWhoIJkbXovbRYrLNBPJDHoqqQZIR7aVYSKgMpR2hwk\n/mPBP9lolEiSAcgafx4WTrnTWs7aCBhL3HQFFLvtbEhPz0sXAGP1mw7LfxtZE1BL3V+MB9tfVJRT\nHpchIBWUqikTnM6ZsRLm40xGmhS9WEmhyfnptn1J9ScDwRKc02IvJS5FHnbNrK1xrv5pVkPLEp+6\noRgrtl8RXXwUlK1npAgn5VeQ2C6X7LxR+P8DIJ8PQpIj/9KTz4BfyM4K1Gx8hpwp75j6wDf/LmXl\nCzzt5/rOKrePtsu3II64MzG2I2KvS8Z3e0C03I5FIm1A+G1BnNRisYNABVZHBRFQuWipmH3x1pVo\nfcfWR0sph5YVrijiM1CuuulTVEQzUMJCY3HHGYA316Ut8qfjPoGuHBPgIq/t7shEGAfwFuhhKc9k\nkXzelB2UmyoNUaKtBTRCWxKpkJv038Mk05fRBZKszNQIUxHZ6xKgGdoui8wSl65gSXl5QLZhyqqy\nrsbY9nfJdHktX3DXz64F5d6K4u84FMJYk4PeCLBuQGEMi+Vu2tHXLd+XQM6IzGqZFF0Wqz6TX8+v\n6ACyAiNin7LqAAAgAElEQVTfi+gEzgUP6O7087bLt6a2Ugfp5hNwf+RKCeThp1hIcl8WOBXA0jkj\npvE9NSBHmbgDkR3AHswcTx5UhhCF3TrOVGBfYpEiIwioRMGYGs1mcqWBzPQ+KonSwrKbnyg+n5RK\n0aK8bYW/mDieKwJwpXmtIgngKlYnpfuyGJs0PuzZG7KgivCyCzIbkMCqYJIlq0ogKYVIi8TB9/VU\nWhI2lqeCuK4l5L07xxAR11n6aWqSgUNKrzK6EDLDzYYZDXOaxaQx1aai55uVE/ObE0xmpXSdJzTv\nLHHLu5YrR39ZMcouO7lnXGIyDtVtyHrQWofysunS3tn5UT5o9VbuA1Xw0gLLLkXif3rfoskLwDBa\njAvRpgFBgtbNN7CoxZCDZOucGBK6OZWrSsnQbWiwLbdlWuvMWqNqkSssJnxhEVQlUtwYFghNdWpR\nMOAbD+9rnJ2dYjw+xWw6iWOWQM5hZWUVKyurWF1eiQAcwc4sECp8Ig2C5EeMA7tlaCZL2GdtlN7J\nAUSKVjdSUHTaB9ZvGXiifZ/ALrmzzCCUKnwuh+QipJOWrHo1vDYuMD40Jp0hI+2PWoITPepqEOD2\niS6IZ0t5A0Cbpx2XFEXqVYJDBBA7VjKLxyAZkG80KlZICdKe8Fy+KUmIi3w07hfPZtOVsCkSkFSj\nUQzCVTtO9LV6GiFDiDuEL5DKYySkNnGjWRwox2/imbK1LNzIPGeKIbQrbtxLmGNb304fG4v8vGl9\nyofS+jCaLBXCxRNFJ7AKkB2gcraG+vsikMaBZ3FN4ylQbJrg9HKHXjpMOwAY0NIdcQpqRfuTYih4\nxra8uGhCpnADUGJdiQfE/pX8IwKapsH47AyTyRRnp2c4OjzEwf4Ojo4PMJmMgz+aHMgNsLq2jitX\nruLG1hauXruK1bU1jEajsCMTdtGvnEBLAwgp9M0MAGG8BbL0ZHFUbGtXIdsFZ2Mwm+o5au0kFya/\nHbCJfAEgq80NoKQrbMGXFdzlsxjgAm7etNMjrCkwIxgfzFlNSXYpN1tSqKXxqRDMQpzIUMELS2L4\nnsuugLkugsaFcNOVicdsjaAgg+FFIMoTRM5lrh9hs7ihDJ+zENnk0tP2lvDcf8SHtbjyS1KS9nGu\n3Fq1cPYR+1NnRlF/q7IX/iOXu750+Rb5RQH6AvkS4GTqDbCLQF0WLIB88QIa2ZGEDFGfG1dGNpDN\nc7KgJgsp8qzWZS1OEWCRgyDxMohyr5iG2rX4FpFbLZLube/JAiIJ1SvabSwMPUlP/bVakgfYwfsG\n4/EYd7fv4ujwGAf7B3j//fexe/8ujo/2MaunqBsPZgfnBhitrOLq1Wt48okn8IlPPIvHHn8M6+vr\nWFtdxWg4Si6XpGMENcVgFevUDOds9mA+sxcysAF0O+CosGKzpKM3Aa0ca5ryq8ZjO5jJ9Hmk107J\nAQVkzxwWQGEGb5ytpHxxdugN4HtI5I26UxKPYtuEl8E4VXBNzbdNNWytCPAxnFPkxM5sbESPFNA1\nRhM7MiNKx2dSSMhdOiwHqssTySdCWTlpZHPO+wSUHIEx6H8F8yjj/X5u1aa9rsvEMMN0M8MQEA6Z\ntS/twi+Bw0tAzLHJVvbDh487e3uJvSQgT4ct5UKV5bHaPxP+fkRPA8FMA1MnF1OU8smWT9wCdnEt\nDWBpRAfdFsTl2cwPlz0mQAPYuaedJspiZQkGiYYW/TDPKU2pfMfhDAxZTCwsqJIvKUJBhIsJvvY4\nPT3F9vYdfO3rv4/Dw0OMz8Y4Oz7FbDqGb+owmDyDfY2Zb9A0DabjMfZ2d/HWW29hfW0VV69cwSs/\n/AqeffZZjJaWdAix8jfnueU79Vw398pjCBKPOPijs1u5f9nGygvwIpEi6CDKhTKcEelJ+EIBSEoR\nJIRIGbksG41YAD7FKcoOSoIXFxJM3wDgykQ8JFlRWVX6FNBg8sPIqXNkzkXj8GINoxzaozdRlHhm\nXZvyZEFCj7WplmqawBq3FEDg+KaPdMVYy2y+uGwGpyGx2SwsNaUcz9r/mkmMHPuwbYQYR10bgywv\nNG4/1Rv56yi4+tjrLJIBfVl4kS4HyDuUs14ovyEx5WKFF88n5vUrgJw2zj/N9y46OxoRn28Dbr51\ntwuCOJeHrDoFa84fsh8wG35bgGGGWGalZS2grCqlC0ihUk3dYDadYjb1eP/2Ldx8+w3ceudtnJ2d\nwtcN6mkNcLAXiXRhxzceHjV8PcFs4nB65HH3do3pdIrBIFgwn/zUp0FE+SFZOjkuGq7KTRqY/Nbh\nTvoERLmi9YyU15rImcGYoCsBow7qxEubjM8//MwBPbOcjWXJ0ICaVKs1f0V3NOa3ZUmiCKqVWRuV\nAFjcgR10t5MYEGyUqxZu7OLIN7v0mtOmlqoB3I5kTwSUWVjiVTKIihGUgFyv5z0FNUTKFpZjpcwg\ndcpfS/tE6jiXUjvby+RUikx/kdL4kc7ONy6meV6JywXy1vU4CAmZYMiiSddjmcDba3MafV60iJTI\nHZZ6JKdogx2wRojmVJOE3xCe+jk1QIc5ejqyKxTL/hZLRq5mFggp2Km0tzgZwSLm88BsPMXJyQkm\n4wluvfs2br7+HRzs3UPTNGEq6z2IQyCZI4KrBqjg4NEEf3n0h9f1DCeHB7j9/jY2N6/iyrVrePa5\n5zEcDOKWegVkGX5cxuMZUgWvdL0i9oVBFZkpKS/L6XXed70gTgFIJPZ8fuqWIWudivYU+FGr2MUr\nrG3xes54zo1SncslAR3lKBBe9lwISmsWWRJNKZ+RTaiSTwaQNVjj/1qVWbg2xxewsjaSozuD8xMM\npZXIXaLmq33BRmu2agppj2+Rs1RDGh8iX17kkLUeqZkgL71WHlrXWMYRYpBT+Uy0ywFtBsyTwv44\nbAhiligCM6Uz19MVVpg3YhfLaGt6NUryg24EdNkIQp7OG6B9qfs5tfgMdQkoyg4yuyl7FIqU1Qck\nztChz5uFMEIy/9KmHjOgpVgnuz6ZMZlNcXp6jMPDfZyeHGFv5w6O9u/CT8+CJU0Oroqajj3gmwDq\nNEDlpD8D0FfEuLqxjtXVFYAbHOzt4uTwEBtXrmAwHHW8TMEMvgSq0n9qzSjPpO2SN7PNDG/aPLV1\nWh7bkDQnh6V08Di5NwCAnBrFWdk++LnL+k1zKb7yjIx8C1gksW1N/aD6S3hIAJHLlbb4+6P/lUng\nNkBpWk6JeYhlZAnyAvkJZ/nis9zybOaJrHRbg6v0VwdDgCLdwkexoArVYOqRce6FgESj0RIhc8br\nVLXqPFWqIC2K5dRLeSOqPE2mHHmlnshrBO3Svy++ezmGwWurBMyJdaNe71GTeMSAPCTV9MK8MiVG\nUz7oOHWk9rlV2OG+6dTS/5WEJLfKMurIhPQ9UOoCFgWGjF7OO/zcunr7N4+SAGAGa2yPAaNk3Zvd\nn3aDUF3XODzYx9npMSZnx9h+/z0c7t9HMxvDcQ2Ci0eVxgHPDJCPgtqgaRjjeobxZILTs1OMJxM0\nTQNHDiuHJ9i68QQODg6xsrKKpcHoAm2m/HeWCOSQrBlpXaZDbbd3FwKVFXR2hYA8c27tZrLHJm9W\nBOXfBXRLMqStCfTkr93pBueSgiMAcGIaKJhlLzRIh2CpYpGz/oQIaz6ReS6RbMmRWbThj7SzICN7\nLvGwbJtxbei4Ne0Gx/N5GA3LjMXGy1utBPugYYG60dIeixwqkHRZtjNVolcofWe9inRkQyrHdrDh\nKttfsY+dHnUwLz0yQN45w7H3O77bkL/gelAgt4xvv6opfGZVtu6308O8iahLGeRCnQul9fuJJj+3\nDtiQRi052QkRQDwV4yMDsRzE1boKmTwzprMp9vZ3MT07wenJId6/8y6Ojw7gwKjA4V2QYISjXT08\nGB4es9kE06nH8ekEh6dnODg6wt7BAU5OTlHPZnDO4cqVq7i6eQPb23exubmJtZXVc9vdAnODtmn2\nU4xfHUxiLfW7z1pVlYo4DXIFM7OUp30aH9KBL5X0tInLC8U1AsiY5Jb8zHCBWrUuoy0kOVo2q4so\nnnMjbg3O+KXaxP5S90Ngi9aTvY2KpTwD5qXNIo3I2qyWbcZLO85JInn0T1SrnTglz2caZtGISVhi\nQdyAOZDLCRMyJRbvy74SwxUIiCd4NzMXaYPMuaSKMLvldOZPWlfoiVy5FCCPJ3m2Ur7tHH2zCCS9\nVxYSpTgz1Jjho4OqtfnmAVNXZEv3bzKfeq0VtwvbcSFPPj2nlP8ifv12PhlgxstcFpOsQEElpUfI\n9ExomgaT8QQHB/vY372Hw737uHfvfUwnY1SugkeDyg0wqCowe8zqGrPpBMfjMfYPj3F/9wB3t3ew\nd3iEk9MzTKezdO4LEWE43MHK6hV89ge+iWeeeRab1zYzl0ZvMsAnG3PCgOB8ul4o93x2ZIHHXldm\nZX51AsImHs7OyrDGQVc52Ts6kW9Ws8Bv6enlQbEYmNooMEqIm9KkI9mEAEoGgktAEmkkgidOwKHl\nCx3JPEjt0zZTslhz5UKmnJ7d1VYh5qKYeMMG6dLXZKnbscYAXNH/kTPM6eUWhoPxf4ozEssn8z0d\n68BRceT9JJ9UBR4xI/E8jx7T+6m9yHf5JroJYfz6OGPLne0pXdJiZ75wNw+jOm+xjF+dykiijmes\nVfBRJsq4H0mda4Jxlk+my9YSsC0sLa9W6mBWwBGNAc53holwI4GAXC/sLzADjW8wHp/hYH8Pezs7\nmE0m4MYn5TmZTXF4MsPx8QkODo9wcHSMg5NjHJ2McXR8huOTM4zHE9R1HS3/MHCIgLr2eO/2bXz1\nq1/F5z7/BVy/fh2rmVXe5kF38ynvB4s00EHTw67M+uoVFwG4PktDyqHuOuR+bs9pX+VXu42bLjkP\nxjdlv1OuCHqZMjdKRqCMhYSEzrl/OxEirJXzVHKii7ZajcBp/MpBMnYmnbhCShkByW1imcPZ9zhm\nYA2TQhmYliod5tPS3NkQxa6+IANHLnsXqVU+mkyfAmkTl5YRc0TD1MpCH4ZdWtRK3gnmR5YxfmYW\n7ByGzxnkfYdMfXRJp1MPXZ1M1Qz4mFs6TQTiMafF48k+M347Ay6URiPyvmC0w9JinU0ddnGeHh+j\nqRtw3cDXNSbTGXYPj7Czux/+9g6wf3CEo9NTTOsG3iN40OOOGoLTvRIcTiO8v7OLr33j63jzzTfx\nzDPPYPWZ1ci/XOEBiPG1dhAGhpBzCG9yKQdB0b74/XzV3s6h3RFjj9jmte4+GEvTblcXpVS69zpE\nOFV2vhy1FIu1rOMswhQHWRAOstSlQLigSaM1xMK1OGXbzeZHkkPW8tgIogKeKYNg3BR253Tea1z8\ntnxL3M1m6PJJ6QclC7s7aft68hhgpwLipV2dZZrZgjQ1rGvGWU+m4NqL4jZdCpB7Up9a+X5HEXYX\ntR8B6RChdswrcsQxjOlLHxTEz3u+z5K7kK+7y1WUBltatUu3rJB0+nTTtzjoZGza1XQBPHPKYPgW\nB31a+CQ4qjCshiAQ6qYO8eSTGuOzMXb39vHazbfwznu3cXo2waxp0HgfHieHgXNYrhx8w6g9Y8ox\njCuNesLJ6TFu3bqFf/j7v4dnnn0Wz37iWaDxYB9f5iDR5UyoZw3qpkbd1PDcAMRwjjAYDFANR6iq\nQZiOCgsMkHh9xXDmQ293m7gEQiZvi0pcEi5rZ9goo9J1Y1GPJYbQDv2W5pH+Sx2mLop5aoiQrGV5\n1JtdxLJls5Q5Pb+s9EN7VY5iSStlZoaRBCgRwlJdKs+G9yFORYvHgIK3GUIUeS0qUtGfZrpQKC+d\n3rDhZZy5sykaOh4YDHZA2CdByX0lbNRYM8raYn8wZIaB1KcOwa3ljDtIXG82xLwPfy4FyLMwI/O/\nvcaimazq6hTy0lL96ED8Isn6A9XawYX93B0ltiMU2LSaMhHuLQOAmfIZUyjRbYq3i00sw4QwqIa4\nsn4VS0urYFTwrkJDwOlkjDt37mB3dxdnp6eoZz4dsUpEWBlWuLI8xPXVZUxnNY7HM+yeTjBlb064\nU2v/1q1beOvtt/HJT72A+3fvYDaZYDAaYOv6dSyPlkBMmE4mODk7wdHxEY6PjjAejzFrGlTVACsr\n69jYuIrNzRu4eu0a1tY2MByOEtSyHWRsB3FPkszUJYKFm9D85YO3R45NhFKXeJSzEZJnkrUqiTKZ\nKIGVpCwBMfs9ayqnNgmvtKYQ25+eSQaBsRyteU4iS5RCAyFliqKJeamLt8iKulBqr1vJF0ol2tlC\n+1tOAEF5AOSEBLo4v8yW4/MTGY1DiC6VSKa+JzfkTNFjj9Ji50Vc1cpYsar6pz7pmVYnfvTA3U5q\n7X4opRlm2UUtAsxrqaA3LDjr1Vys5EIxeFTUOwSbCINqgJXVVYyGSwAc2DmMZ1McHR9ib/c+mukY\ny8MBKmJMa4/aM5xzWB9V2FoZ4vG1EWazAZaJMKtnOKk9xo0dbAzfeGzfvYdXX30V6+uruPXdNzGb\nnWFtfQXPPf8cNq9ew2gwxGQ8xt7+Lu7t3MP23Xs4OjrBeDIDUGF1dR2bm9fx1FPP4KmnnsHjTzyJ\nreuPYWV5DcPRCDHmMmvneSLZ1506VVfLPXfLW3kwphWQv1SgA1Sl4tyyo05apO+su80SLl2e1WMV\njVirhv4AzGRkIg+XFABOZaU/EwECRnpfakYWGfQ+f7BcBMz791pcqIp5BSOZzRk9YuIgKc/smVZn\naBIQl6CCckaYXj8o+c9p/KWHH5JhgCVcZp2ZT9dYoszWLdNO3SFlD2sVz085/Xm0SRctD7rwSqaX\nZaJCrOXnPd7xPLTdFAsMnyZuOVp4bERK45oDveE8EJ8s+sYz9vcPsH33Ltxsiq2lJVwdLuG4rnFw\nMsZ4VmM4cNgYDbFaOWByhhEqXBk5NOtL2D0j0KTGKZt6mbG7u4OvfvV38Opr34afnmI4BNY3VnDn\n/Vt45qmncH1zC+PxFPfu38Pt929j++59nJ1NMZsF696RQzWosDRaxubmFj7xiefwxS99BS+++Fk8\n+cTTGIxW0jSZiDo3y+UHcc2TMWrlzztivm+zXWiLkm4A67CkA03t51tXWKxM7lBAlKb9pWsmVWsG\nLZsgilhKxHIFcGuNg2ykTz9j7FhNKz1G5qX/zuetdX/1p8xLQIQoSPnhOmlKhCQ3RBJymxgAMbGT\ndMQZdZoVidzJTDuOZ2eKsLgIeOSbItvp0qJWwhfD3NLyQPClh1umQ1PnxnISmLVb2e5kA1wXp7b7\nSimLLG1QwBQgDJ1iztqA+TyHFpKoARbNLQJgOr1rzg+d9kmbNQuruwf2JulfFKSwNkkYn51hZ+c+\n3nrrJra37+L4+Bh37t7B7VvvYe/efYx8g9GgAjmHQUNo6hqAh3OE4XAA5yqMZzWWBg4DR1gbDeDJ\noRo0GExqzHzYyOFcBWKP8ekJ6ukZKvJYWgohjd99+13s7x5iY3UD4/EY+4eH2D3Yx8nJBE0dfLjB\nxyjtO8TR8SH2D/Zwf3cXb7/9Dl78zEv49Isv4drmFpaWl9Oo6QUEoyxLQ9fAOGTTR1p3kB7g2A+Z\n0IQSshA/U+55qc9S69tuLuXa6b9GMSG96o+hJyomk9xufDEWZDid0C7/kfEtB2E1nhNjjHUoFspz\npWMu0kdp7mo7ulP3tCTtWiWht69AhpyKaemwpcun7j5FNHh68kkeFAduRcYXS6QgAqoq4gnbUNru\nRl/S6YeZWBnNa/Ik/W5F0d5X7O5SVHZ6q2wrLNMy9cyEOoZCVrYQqXy2FgglEE75xWK3xPaoW/sK\nSDmGswRzudeXKFoSeRbKnm8xhDjssCdGUzfY39/Fu+9+F++88zbuvv8+dnd2cPvd97CzfR/TkxMs\njYYYOGAwCAuOk9kANXvU3ofzQpxDE1+CUJHDkmP40QBwYRF3XHvMGICrMCACvEc9q8Hk4WgAcoTj\nkzPs7hxiWA0xnUxxNpngbDpF4wEiB+cIVeXiAAudMh6PcXR8hHv3d3Bv+x7u3d/GydkJPvXiZ/Dk\nE09hbWUNIAfqAnOxovo5Kx1ouZosdQXEnsc7le98MLezgPDbWm+FojB5813QaiCJFS6VdpktScZI\nLNCg4L0DUFjk4WaEOLFKWeJWotwbA005HP5aMxtjolLrcseYKdaS8gcEdCnPaixpsZhTe2Ij8lMf\nhRdqlctsQUwhazgRRf93dM2IeyuRlwSFkjKws3Clpd1cSZfjI4/AIlarWC65HBYiJYJmfcYwAGZ2\nWbFhvHm06Ni8wgSWRGkDUVYROnyTsUPscattOVSNnblIMqL02bLZoY1qqSiIF2dTdD0cy5eFtkJ9\nhLvGYarKhxN93jc4Pj7ErVvv4PXXvo29/R3c39nGe+/dwt07d9BMzjAaDcCO0cBjAIelQYWVpSHO\nmgaTsxlq9mAaYjgaoapc2AnKwJAYSxWjHhAIDgN2YDfAkAYYgODhUc+mYJ6h4Rkm07DNX7buNWA0\nkW5HLmxc8oFHDkBFDsyMum7QNB7v3f4uDo/28N777+IP/cgfwZe+9Ape+vRnMaiWECzI9jTcQrT8\n31LpHF+kSzpI5ShaAdT8DPX4mHGxBTdEB4wWbjh7RnkC5HnIr11q3nOaBlNb3jIDSIGJHCMd+UEc\nN0NFuo2VLREcDDm2ILoMrG/fWg8dbkGZwdoys/anmW7eV10Ynp7liOMkCsMaUqr6M+s/A3qC+JGI\n9PyhpJLiI06eN+DuHFA5pYoZaMw5N7KbOpxJpECexjiRkZ9uNL+kxc7yECxA5h+ZxcyFhdISWBOr\nbe53Lwch9770Opw4e+N7LkbtukRScx90+s9UlVtDSIKkOz61PXl9pZXSChmDHA1ahj4GLUPpuaJk\nM6UWQYcMUAT3yMnxMd5+8w289cZruPXu29i+u4333nsX23fvgqcz+LrB2M/QkActL2FYDUAABhVh\nNHQY1g6MBjXXGDigZg+HcP6Kg0flGMMqCMCAHbyrwuFaFGlowomJnj3qmuN3JBASP3c4WF21JTNQ\n+yY0zAHsG8DXgG9Q1zP8XuVwenyC8ckpnn/+09i8dh3OOT1syXahtWzlK6sc2BllWkzMmG0B05q+\nar0j1Zv7feevpZRybtQLmzN8TF77RM8oMXIZxZtMRAWQAbTEX7cVX3yW1fhKjphoRMnaoZZLyVhJ\n5TGShuR0wWBrlAFrVVtOcARtM+lIwzMbllHuYepT8xpav7QrmuJRFDLlI3JBhGCFmzPopcjKBU5T\nNCCS8Aht8pcMwfna+pK26LfM1pAsE81ludWVpNtSZ8pV4XBWBmWFnhsTbuswgmItJwZiXGlOT6sB\n6becfxFudh6IU1YcJaNrUxOJJcd5k5OC6yk6LVYJ8BhLxDMwm01xeLCH92/fwh98/Wt488038O67\n72L7/jb29/Yxmc6wtrqGsxMfdmvGLctEDsSMAQGjgcPyUgVXIQBxtD4qxLeigOHIo6oYDg4DJnhH\nGJitcU3jAWqiSUmJXuakebRVduxxcAmlM7Q90HCFCTeYzaZ4640ZxqenqGdTzKY1PvXpl7C1eR0g\neaOyLoJaHuYzR+UvA/HF02R4mmXN+Q8r9nYBMKnlflsjS4WBMCdXG/ZlGTHPqQdNheM0chAXRaXU\n5kpCx56D7l1AVMxsfYXmq7RajwFQXlsec1pwlJo1sFOpoHSl5KNyixOtAuDaZ0YxpMPE0OoQOYdG\nQFz85PFmfMZSpffk/Je03sBpSTdmyRXSeenSgbx1dIDxF2dAnjqwjfvhBxmhkE43mhWSWSWD7Qty\nWyPM1G58pTYeWA7J8aaDVXw6rCnp2yiw8r1XTYnAEqVzSQxHUJ6FLMKYFlWEahvmliRWaw9t0ZJ9\n43F4cIDXX30VX//a7+IPvvF1vHfrNu7f38XO/i6WV1axuXkdW6sb2L//PvbuT0HOYzQcYVBVgK/h\nwBhVDmsrS3BwYA9MmgYDECpCdJ2Etg+qQOaAgcYFkGcEhdLEI2/BEWAAMPv04uhMUjwAZ8EhHN7F\nnuMZIh6oG/hmhqPDGWazCfb39zEeTzGd1XjllR/BYLgE5wY5W822ed+n/JMytAxV/uYSkj0Uu5lR\nStG8ZGe01s1iT9OU+wJa+cYaITnKhyUr8S8IE1MwVtRtZCN9yvlv5ghJbdP6SI0PHVThaxr3nCkL\nhWvb7jhzNP0h1jtFcGYgc5eZ0W4Kp9yVw3rQWPiIY9WFs+EZce3I1F2ebyR0BjcJJzxX963gvCoJ\njsCveoCK9hdkF+kSo1baoi20d9kYNOd6+2LInQZ5qdaEoxWg2x0tgabQQnmkaV+aOagrpqSqPH84\nO+gIeVRuVnE2CM1dUUppxpK7eTiCtlxLAilT9lSQEWxjiQgJ3jNm0xkODg5x5/Zd3Lu/h9PxFKOV\nNbz42ON48aWX8Ilnn8XRzn289rUGk6MdEDEGjsDs0bCH9z68YELUHxMYDhPv4aLFLpaPg4tTTYZz\njMp5NPAIB55J6JkDOFj7LvWZAYN4SFIApXhgknOBjthAx2GHqAOhnjHGIFTVAK+++i2ACIPREJ/8\n1GewtXkD5IJlnkVZZK4K7Z9s1isiU0k/dFlWxmrrTNzxU4yH1NPpZlYK6f1Aq8g2xzA5swpgDRbb\nrlSGABXAjdZvyNEv1uWRALy7dWRoYlOpSGmqAwYPutYYhL5YHkUE17Eq7bI9hrIBiRcFO5Qu66Nm\nBF+2GXNWJkSJiIKQ9iaffMtNagiTcuW7NQTm6/VH5w1BXX1e2i4tPO4tn5H3ZnfhdmGrL5tlvLWv\n0jv/Yllpi7vmMMIXP40w5CqrP4WsnCwtSywDZkt1psARRQz5wgBQLp7Z8z40qgAYjpZw9domnn72\nOTQMnJ2NMRyN8MSTT+Gllz6LG9e38O2v/S7ev/kaRtUAoDiVjpZKeNdkBPEIIB6ExjPYe1RgDBDA\nv6pc9IuHhSHnwkImfBOPZwDYU5q6BjDXzSvhRngZdKaDKxcUmw+Lc2AgvuYRDRM8EwaTMe7evQ04\nwgkwOgQAACAASURBVGA0QjUYYjgc4cqVq5Dj7lJES7LSNIml1QbTfBB29fTFXCfIHg78zYa4Qad8\nBmAnbBTDSBUPDTCadnEmG22jq+8Y1by4LpeNKcXaI5zzQVtmxhKJzjYGCWmVydwhqCVry7T2FFSO\n8kzdTUptknEmRgHCkQ22OiMiWRmy+K6awhiZhiet7xeVD1zahqD5FD4A/Z2J2U6nLpAnCew5tBiX\nj6wqJ0vJcebFQQJy+7wMNu6t7yLJbvBROyg2pbNcleT2oWPm2ZjVVRW2trbw5a+8gpc++wM4PNzH\ndDZDVQ1w7doWlleWcXywj7e/801UFM4/8SEIHA4Ezw7gJr6BJoCgR9ggMm08fFOjYgY7AqGCcxSi\nAOKqmnMODQHcNMH3RgCzj+4oD4qbksTCEVXkObhQRFnJa9KahkEuj+n3PrgI6tkMTKfYvnsbZ2en\nWF/bwOrKKjY21mP5ruhT1ZwiB9InicvGtaGLddpbqTQjItYK7ZZcBR5ZCG7dRrFQaCxFOT67NEYV\n11W2y2MH1PiwpZdJSrIAnCuFzqcozydA66NhlCkkuV88L+WT0agafJA3th3EGL/Fwcumn8QKF56I\nQSUVy9KYo3zcyfqU1C8oYSOOUs0WywsetY/F1nLLdOk7Oy+aLrIT0i4Anp856fZ+KXuAVC5OlFZF\nbiE8gKqKQNDeDWojIUrh7IaE3Jrq3wQj/rrBcIT1dYfR0lLw0RNhOBzBVQ6D0RKubt7A2rUtDFbW\nMT47w9QjWr6EGhVqAN4HV0sTwXzmA4g2CEJeETAU3jEjHA4WPpk94H1cTG6ie4bB8WkdtfE/iVyR\nFlJcfCUH75s0hWGOh3k14dx0dg6T8RnAHt/8+j8EsUdFjKeeehbr61dBqBToisEOirHE0IWvbCC3\nfNbasX1ikECp1aWKAK1Hc5+PoZVTn+bLaQpqGfxmX4z1GK3YXPGXFTJaC9CRF8kI7qBP2mt3Qqd3\nFkT5b7Mqrz3RGL+4YhjYMFuyz5iH7fqXWPzmi/mej/Vc2XQruy7l8zCpb8w+ckCeWTI99/vvfTRb\n8C+acqBlHXzn5jVPtaS9XQSLVY/cwlCvWmFlc/t7qMvSY+qTr85hMBxhIAdOiUlHwGh5GU9/4jn8\n4Be+hNmswVs3b+Jw7z5Oz05QETBloAah5hAz23hGww3qxsfdzxQWPFleLmz2ljCHt6NISz3D+ya4\nbgR2MgOwVFg683CuQuU86kkNdgxQKCsMSh8iW1yNGQDf1Hj3nZsgMCoH/OAPvoxnn30Bm5s34Kqw\nKclyV62tMvo8761y4Oc9JM3Rqyydk/sEkIFEYaVKqWGmqR2e7lDOKrO216JN6yoqokgnU9qnkcd7\nF+2zC7iU66PWQ6b25EqxSqtjuIh3xNYnFXUpui5a87YRMmc0wx7LE+ui8rHIZ8utfNB2fbt4KsZy\nT3pkD83q7LlznhWr9SJgPs8qvshZKNlmji7wDXcS8LTW8tOAyp9t1cvJxDOr5DBTcQMAHXM2C2op\nOwttOdEZmLP91HvsQltWVlfx6c/+AG7ceAyffPEl/PIv/zK++fu/i73DIwyI0ThGDWAWjOoA5E3Y\nhi9higGqXXBzkEQzVHAABgQMq2BZhcXTBiEkBcbHGUEFLo44bbOPO0orV4ErD980QBP40/gmnFvu\nwqKsr5ugRBrC0f4ubk7G2N25h/39fXzpy2d4+eUvY2l5DZUbpjooxjw7ppLlic3SV3IrZ28EZTOr\navmHjRVZltyWTgGhvEzAGEcE2Om9yJCtMzvNuHcIWAugfbcMhCEpTCzwzqLKcQAj2p17OAPtrVm4\n8qc1lAT10WEQUvurKMDuZHuL0xXtxVy1Z0PQKKkW1uQ+uayM7H6RLsciL5f5UzKWRI/lfRGD+zyQ\nfpD881Kvwkij12yusBpbBhNMJ6amc6sYJDCmOBBYD8Ivxq3abkaI0hi35ku7Lck9ZCW40tKywe0I\ntLSMzRuP4QUA/8jRETaubuD1b30T7775Ok7OjlFPp2jqYIFLuJZzDiurq9ja3ALVDZz3GMHj6pUr\nIDCOz45RDYeBNxXCZp4GYbE0hhGm91VGNHK6kwOyxVo2l7gYNkZgNL4Jlr8Puz7BFKNrGvgaIOcw\n8x6MU/D+Dr7xzd/H0ckx7u/u4Atf+DKefPJpLC+tRJCg9CaXDHMs31lkK4aglfa8UZYybskWkPrV\nyIgoMjGxs9BSNUpz1aECovLI6QXF0v9SlTU0WuQUDaVWRjUmzKb8TCmVb9JSZdIi19Bd5OB4PUN8\njWOhnLKsvLbitcxXIO2ChWxGVCghznLpwLQKJxadfWajPpsmI45v7mGQpssB8k6iCmZcALAf6ZSF\nGrZBXK5zp2DYzo5Wp7Gi0/nPKLmWD2pE0A9K0Q5hmwpLKMl0PphNjvhBGAwqDAYruPHY4/j8F7+I\njSsbuLKxjsPdXdR1g9msgecGTVRETIQbNx7DC5/6FL7w+S9gNpmCpzOQb3B96zqOjw/w+huvokGN\nk8kZplyjqmIIYSSVgRAhJH5TyjkgCo8obEKq4EAEuMqh9jWaJpwkJ2+Ul5h0RwQg1DWbzYDTE2zf\nvROO2z09BRHQNDWef+5TGLhB2AtB2s2Zksu6gyO2cUceDdOT3ZJdtkFmIWYAlfdlIUK95ajVytlD\nLNBb9ntRiUz8Wp7E4jkj9a0C04mLQncv4SXVetnGsrefalssVGRNfO0xbuYmY1i1+IN8sXg+iMeF\n3S69K2O+V9NpegTCD3tg5QHdI/1yQL0vLP2okp1KpmsdFoIxyMyzJiIlnUmssbUMpJc25KVIvWJh\niQAVUpoNAHOLVPQtnfkZIeKDDbkoHk2wvLKMFz75Ah5//DGsr67iW1/7BmaTGtPaw09n8MwgF2K2\nX3zps/ixH/9x/Ik/8ZOYjieYTqfwdYPNzU3cfPN1TP9PxvHJPnb37mNST7E0HMI3Pm7EoaTIXNxu\n6NgceQwzaEgVJTlgsDTCtA5vFJLzOiiawuw92MU4dB8WaOu6Rj2bYn/3Po6PDtHUM3jvcf36Dayt\nXgHRCA7hUDFjY7f6AZEmIgvaQNhybd4nQ/mAz5OWa49zEIXVferh/KRR4pHW2M0tdwTnhoC2r6PK\nFiJSmm30LvZGhdZC2TxrBywDZvoBGSNGnNO1C/Gjh/dtsnUWIRjVF5JpF8WzA8yKulRkyVjhlv4O\nLVmkRwDIu+5Hi6Ho/T5mzwV/toxEZ7ll6toK/8CpHBB2nhUziF0kvs00hbJxY8iFwM5DQx+HeGgZ\nhGlxhu1iKKkFUZLHgI1L4/wGstGRDVRjdVDg2Wh5Cc8+/wL+6T/1p/HG66/hG9/4On7jt34TdV3j\n2uYmXnzxM/jHf+KfwB/6kT+Mra0b4ZzquGGHAFSjCh4zUOWxvDLC1WtXMD0LL3ieTGegqgr+b+Zo\nQXMKRAwKjjOTx/vgpyeqMByuwLkajjxcRahcPCWRBczDln7PPvCgAXxdoyECNw1u33obf7C2hpW1\nNXzx5R/G9a3HUGGQFmTbyfAqs3qReJ3l7pDT7qRgoIrDXGuNmQ7KWms67YVNzWKVU1e5OcTmETpR\nAikXnbQ0XJ6c2GeOEXUCmcxLLWD20f8wqWV42XN5W/XI7z7zPs5Air63QK0+/Hwnp/Xt96VHLmql\nS/LYfM5dZIyJTH4ps23355ZmLkiW6Q+eBBtL+nMiIg1kmixgGvEoWdVclMFhwW42nWE8nsG5IQbD\nIYbDClzXyV0wHAxQVa5dZ8kBthZhx4aMmKkcbKk0CjS7aoCrW1t4+ZUfxvWnnsTG9S1MY57Hn3gC\nn/vc5/Glr7yCTzz3PJaWV+SgGTAzpuMxat/gbHqGw6NDjMdnYGYMl4YYTQZofANQiAln38Tt/RFg\nDHAodQ7kKgxGK1haWsbScBmVG+HwYB/1bBxB3MdYd8CjQUPhlWQIhjmapgaBURPh8GAf73z3LYyW\nVnDt2nUMhiNcu7IJ+AR1MEhluxdAfE9B4ndLQhMfLP7YXGK9ZlYe5i/KG53fHhN9v/ttof5KkI8v\npbFQD6LM7NA7N/VYu/azteOqZa70l3ERS9yC7xwQPy/l+UuDSOQ5Dwu+aB2PBJBnTCtWOTlN67j9\nyqgWY7qOAOJWHwhc2SiP4PJUs8lGiDx4e9pgaF1p6sRIlMSbLtUtGyJEg6etyxyOZT09O8HR0TEO\n9k6wsrqO1fV1LK8MUdcz+MaDqMLa6gocOZDTLcLRa96iuQXi1tyOXCcguQiU5jCjCLkdhkvLuP7k\nE9jYuobrTzyOx598EqPREm7cuIEXnv8khqMlVFWV9yMItW8wmU5xcnaKu/e2MRlPMBwtwVUOo+Uh\nZn4GXzM8PIgbNLMZyFUhLLAATXYOVI0wGC5jZf0KrmxcxZXVdQwHQ4Ab7O+OgzIgAnMDx+GwF/IE\ntagYTdOAmdH4wM+9nR28+u1v4Yknn8ba6ho21tbBqEDyUmhS4JJ3LsqhXTps4+yplA8DhhJdknog\nDW7OBNK6VWwUhCqU1ub09KBVGtZv2yfvvePAVBc6VY+IQDazNdWna1YO54Bvj0Gq+jDKqFlY7p5d\n5LXNDUfMnj3fIu5+1ipabV+5H0TydvnSy9lOX7qc8EOX6+piMqgdTKFbMm+e4kqm2TUEyCpomfaK\ny4CT4Fklq4AZnyF7bb7135XKDSCdj4o7RYQ/Hjvqo482bZSIU1MixnQ2xfHxMe7e3cabb76OnZ1d\nXL16HVevbWEwHGD/cBej4QjXrm3huU88j7oeoaoqAGHnpCjFbMhweViTHj0Q9+aEKBGKtFhum0Fs\nT4YgApwbYmvzcbz8pZX4lqARBktLMeww8qRJ3A/rAR5oZoxmBsxmHp5nGA4dBktDLPMSzo7HqCrC\nYDDCdDpVcIv+cqJwYtbqyjrW1q9ifXUjUFXPcLRzF5OjA/B0DHANz/LSZw6x5jwE4i5VINyrqQG5\nYPvXdYPpeIKjw0N8/eu/h6XlZWxtbuLalRsYDpaRqWkWOInRM7CSntRgyxBpGSjFeE/sFuXeO/BJ\neZwA2yoNZM+xjCd0y3nLE5OBi3UHGOUejRKtbw5Qz71ujKqSeDKfxgBkexzpB07dIH6xEGfFJaO9\nWnly3vQZWfPT5Zx+GObj6XdOup13xeWqVtsiMDObF0hQxg+L2/I7B+88lcLeSc4DJO4SYrtQAgVy\nboDJdIqz0zMcHh3j9PQUs9kMw+EQy0vLGAwqnJ2d4O72Xdy5cxu3b9/B7u59TCYTrK6uA1TBVRVG\noyGeePIpDKsRDg4OhXtwVdgm56Pf2FUDVIMKw0EVgDoaM96H+OvaezRNA4JDVQ0xGJJGaRjGiBLS\n6LgIVwwAFYZLFa4tLRkwiXHKvis0jOBcBeeGAKowI2kaVBVQDSosr65gOpkBdYgwqQaD6AYJIB7a\nNMLy6hpWllfCC6JnU9STMZrJGH42QTM+A0/H4LoOJ1bG8R789A0INShu6/fsAXJwlbw9KFjo49NT\n3Lr1DtbW17GxtoHP/9CXcH3rCYxGS2pcFMLDjNaRrt0yZabbiY/pV7J4VcZIWJfkreUjj2GKFsbL\nqbsAuaXZ5Mho67KhHzQ9zCyX06cYC10DuV8ZPEzK+dJdU29TSlKiUWaNR5uxa0aVlPHcikK6pDcE\nFa0sf3YE92eZTVytBcpu/145jemGbJlq5gtIasG35g1zpNHObjVyhAF2ZsCF+nzDGJ9NsLe3j+3t\nbbz33nvY3dvDeDzG6uoqrmxsYDAY4O72HXznO9/Gm2++iYODfVy7dhWrq6s4OjrCzu4+RqMlfOEL\nX8T1rRto6gb3793DdDbD8soyAKQXNDADyyurWFldwcrKMhxcPNCHMZs1mM1mmE5naGqP4XAJq6vB\n1ywbPEJMerQcOJv4mW9mgStZjqzWZBJqtVZcVWEwWsLyyjqoGoA5gKn3hMFwhKXREs6WJmBMAQYG\no2G4H0seDEdYWd3A5uYWHDNmZ6c43NmBH5+iamYYuArU1KB6Ct808M4B0SUSLOgwPQhHlYa6yTkM\nMIxx6EHR1c0Ek70ZXn3125hMZlhZXsOgGmJr6zG4amCMBwE+I3MRne0559l6jxH7ZMAk8FahKnme\nrOIkp12yKfVYsGiPmy6A6oo4aUdqUPHZZTrb6w8Huhfb89ENsxfZ6KeZowKU2XVhCaajF1DyyvSO\nDIJCyeZuW86Nfts/bMD8UQTyi/dhX0bhTO4Py1fLZaD0caAAZgT3hrXebQw3Zczuig4wswg9Kg0J\nwhioG3WXuIpQNx6nJ2e4efMtfPvb38Zrr30He3u7WF5ewvr6OqaTMQ4OD7G7u4vt7W3s7Ozg7OwU\nK6srODk5QtM0ODg4xNWrm7h6dRP1rMH+7j6GgxHW1tfwjW99Dfd3d3F4dISqcljfWMdjjz+Ora3r\n2Ni4ipXlVVzd2MTScATPHifHJzg9PcFsNsXmtU1sXb+BNbcCOI1b9004IMs34fjeahBeEksGl/XM\njcBJ+yq8lnBGWSc3wNraBh57/AncfOsNzJoao6oKbo8qvNR5uDQKZ5Q3HqPKofEN6qaBq5awfuUK\n1lY2MD07wfhgH7PjI1SzGUbcYACgAsHDwVEFZhddHhSUVOy75NIC4uzFB0CPbSECEKNbDvb3cfPm\na/g7/88Qx0dHeOUrfwRbm9cxHA2L9ZDwX1pyNu9+tNNqkhmm5EnGm0Y32RePJ16ysVKRuyE9Wypy\nmdWQQoa8OFpv2wPA8k/NYevUp7qj5HJQt+eeXBQMzrWADf0JPwti+kC8Q08l2vpwv9NQpvw8G53t\ncNZUKV7XPQIVdv3KHvpVupe70iOx2Plwqa9hqr7mKt9kGiMxMov/zhaN4n9qTptibBSNXFWxIwK4\nYdQNx4P8wqiuZw3u3b+Pmzffxu989Xfw7rvv4Pj4AEtLS5hMxjg+OsD779/B9vY97O7u4PDoCLPp\nDCBg9WwFIIqbV2qMlpZxenqMe/fu4vTkGG+8+RoYHnfv38PB4SHGkwmWRiOsbaxhcysA9ObmFq5c\nuYbl4QocVSHsjgnra2u4cf0GBsMhHBEm0ykmMw/fzDCb1ZhMazg3wNJoGWvrq3BVpbyI/3Gjbc/P\naje8jTzVM2MqXNu8gR/6/Mt46+2bODo+wGx6huWlJbAPr4gDVfHV4oRqMAR8A5DHyvoGlkdLQD3D\neH8Ps+Mj8GSMCmGrfzgnPVTp4OK7PJHGkMy+PMJLKMDxpRbeo4rhJt43wTJ3FF4XN53g+PAAb998\nHSujZQzcAM899zyuXb2G1bVVrK9fRVUNtdmF9dYpmlEZ2jNzIpx0i3DxxR76lG9KaR9d0RWOe+Hz\nfyCKx7TlgQzs0novZgVlWaViBIrR3wPQhJYCusBTHb85qzDNZ1odahRtUoBsS9Ey0mv9KBmJ3UqT\nL8TfRxzI54F13/V8q0NftsJ4R8Yp1jw2xkMiCaxlDjNA2rG24ltlzKY++FvjsWzHJ8d448038Bu/\n8f/it3/778OzxxNPPoGrm9dwsL+Hd269i5tvvIn9/T2cnZ2haQKQOOewP5kAAKrBAEtLyzg7O8W9\ne9s4Oz3BeDzByckJDo8OUfsGRBR87ctLGI6GcIMBNq5ewdbWFra2rmN6Ng0HR1UVbtx4Ep/97A/i\n2WeewWg0xHQ2w+npDqbTMSbjMSaTCabTGmvrG9jc2sLyyghh67ycG0Lh7SlN4EVVIbycMFmh+SmO\nDLHcw93NrRt4+Yuv4M0338DR8SHeu/U2mAlNw0nRANHN44ZwqEAOWFtdB2qP8eERJvt7cE2NJQIG\nRKjivFjizR0Bw7hbtOEw0KqobXx8m1BYaKawEakKgFjXYSNRNRyCwnkD4HqGw/0dvP7aH+Dk6BB3\nPvlpPPnUk3jyyafxmc/8INbWr8C5CrJjMtsFijZwinuF8lwtwyFLghAJDLplf97RFHZxft4eisyi\nT8q4QODzAN3Ozto3OuuSWWz6naoxLh6LqvaQ/jlw3cUpmakka7koQxAmzUmK4oUldtIRIucsvuhJ\nixbES0VLzmUvqp+X6KE3vHywdMFK+4QyfFIpSD3P9J+JEv4Ld/XQJXkmW7BktfU5K8CIGBchRN5h\nMm1Q1+FtOcNRBeeA6WSKb37zG/jVv/Nr+LVf+9tofIPNzS1sbm7i9u3buL+9jb3dHRwfHWE6nWVv\nuQntJpBzqJxDNRiA4htxgOAe8P7/4+5NnyXL0fO+H3CW3PMutS9dXdXT00NyZswhKVERlhUhhR0O\nR8jyJ33xf0n5G23ZEVbIlEWJ5LBneq3qru7a735v7mcB4A8AzpYn897q7pmuMSKqMu9JHBwcLA9e\nPHgX5VTmhBsEBilDwjim0+sSRiFBEFrJVGviOGZnd49/9s/+OR9++BE3rt8gTROS1FpeesvYbrfD\n+w8ecevWXXZ2923ghuJdlQupJonjmCiUhKE3fce1bUV7iMoAxgalsIGRVzx/9pS//du/4f/6P/93\nTo4PMCan241Jc1gsE5JVQq/bc5skQyeOMMsENZ9jVkuEVi5yu+9VYfXChWSlNZMkZZ5nJNo6y4rC\nwIaCw7i2tjWOY7v4RVGEMHbhDOPIaQK5RSAMCWRAEIR0Oh2GwzEPHjzk3/7b/5VHH3zEYLjjmBJh\nKRrRDiHbrTpLwK3nK/fqpgCEq9k/CFEuLKVkUwJjgUOthZU0TzXv9i2wLw/a+Jdti4beZMMuKvWt\nRj6qfPpzmva6tL9bVROnUSm8r6O1u/yhshvUJXZ4qVAU7+0FPP88arun9e2IF358lX7+83jthd5x\nibwiblQ/RfVvqEFri2qAqeUTlVucFFne7cooPwurQeV8cAiBDAIHYlYSlY52qR5iKGXIspw0sYdo\nYWRBb7lMOD464tcff8xvPv6Y58+fcfPmTSaTC05PT3n16hXTyQXpckWe55snuNYox+PasaPdgPdN\nZ/VVC3N0oeyBp1K1ZguDgH6/TxRGPP36KyYXF/T7facZEtDtdrh16zbX9q+xu7tLEARMphPmi4Vt\nTSFthJ8gIA4jOnEXKSVhGFEsjh4nRCl1+t4t62K1azqyy3vvPSTLMvJc8ff/9T9zdPQGpXLCUBDH\n1i1urgwG6/AqS5aEWU6QZyWFYYw1t/cA5caDBGfV6Q45hbXqNLJaISdxufZVSmGUJlc5uc6Joxgh\nBNpoktWyOEgWQtDpdsnSlK++esze3jVGo7F78VKyrmjiV7qr3K2UZvFeQqwv4k2AKSTUioBTAvH6\ndHFLamNRKfn5Kvit18tJq5VCS2b4Kulq+ao7t6aRTFFfL4g1Fp/KkLry8xoP33LdrGUre9ODre88\n/1t9B1pw51D0c73mlUf6+8126fcdB3KobTEbn+XYFDUQbTbImsTgsKTaoPUOMsX5hBEGpTSL+YKD\ngzcgBN1ul/HuDnHcJQhCe2exJbdOcNJUkyQ5ea4Iw4C4G6K04fxiwtdPn/Lrf/wHvvrqCcvFgizN\nmEym1hBmuUJluZOCt4tWHrhL/yL1QeZdrfpgt0ZnqDy3WaUkDAICBCpXLBcLfvPxPzrw7nH71i1u\n3rrF3bvW+GVvb4/BcMjp6RnT6XNWqxVSSjqdrtWuGY8Yj3cQI0Gcx+R5gBDSOap19XD+wI3rM1EB\noFIAk3S7Ax4+/JDBYIhRhs8+/4TDwzckaYI2EmMky+XS+kNRGflqQQ/oCcAFXBbGbv81ThByusUC\nC+Q+MnzRNg5oPa0iHI+uvem+WwCVc4Aj3BlFkibo3Po3D6MQEFxcnPHk8Rfcu3efW7dvE4W9eqCD\nYhz7yS7WgMt+mtqwrd9bScaTN5UF0w7J8l7X1gWFAo0KlZJhuXg06+M/m/UQxXy6LLXvR9qTMc13\nLxcUC3DGd+6Vnm3LrC+KdQrFf98gwVcXX4fpdfgwBej6BQ7h28bbjLTXp20DYAWfijHglvd6Z4C8\n6V/FS26X9o/fwlQy1uiNqtTtB3GlUaoLQGE6UXDhdmoslnMeP3nMX/3VXzFfLLl9+xb/3T//b3n0\nwU/Y27+GQaJyq0qolEHlhjRVJElmgwlH1lBlleS8Ojjk1598zOdffM7R8RHGwNHxMclqxWo+RytP\no1QGbZVXruwWtjSH28bX28TfI4OgIJLSNHGGRlNkENDt9YjjkL39XX720U/5yQc/YbVc8fd/9194\n8eIF88USpQwgCUPJ3t4+d+7c5dEHP6Hb7aGFJlUZ+ULjeeFu3KHTCQljv7DU+6u+abaTq9Ppc+vW\nPf6H//F/4tEHH/Cb33zMb377W/KzM6JQoGKNVhqVpySZQghDGEoCjyjKgbl0pRsDaIwow8pJ5Rd2\nv9CVgoB0TrSMMmR5hnE7BmkgVxqlctI0LeocCEEQxEgZsFqt+OST37K7u8toNOCDD/6IbmdQTOr6\nm5fjru4S1kl4oh2k1ua8v1BZMZr2GtW23sQB13cC688t85Xj0Yc8FIL6rrB4lYrGTKF7eVXJ3Nev\nWRmHigJKNdLmwlQtY/179VqxYGwBWlOEaqxK2KZ8VNGm1Xez41k3gb9yTuSbRDf7wwuTV/Bp8E4A\n+abT9LXdH9TAXbR2cGMxqFAn3kmP7w6tNVmekWeZ1VAIQoLIcaCFBaJByAClDcenZ3z91RO+/PwT\n5hfH/It/8a/4oz/+JYPxNTDuAC3PWC0zFosV89kcITX9YRdtdpgvM14dvObLJ19weHTAYrEAA1ma\nkmWZlfpa+quuNta+jbRNURlAogSGGtdPOdl0BdyFEIRhSDgaMRoN0Vrx4vlzjt4ccHp6wpuDA05O\nTjAYhoMx+/s3uH3nNsPhkDiKmU4nPHuRc3R6RK/fI4479Dp9RoMd5FgSdcKy79xY93q4RZUrP0op\nieMuN2/eIQwj+oMR3e6Ap0+/5vXrV5ydadLVEq1ytNFkxrDKDR3fPtrYIM3Oja1P2kniLjxoYVSk\nvWWtp2awao44TtQGkbBtmee5o1MgCKSLQmTPKgyQZilHRwf89pOPieOIXnfI7dv36fcGJRnRNw7D\nHwAAIABJREFUIoLVIaBqKVkKFf4X36+iWYxplrkO1v7RNZte4f6u7WzXU7vlp2n9u+bJc61evlZN\nAG57Zr3+ZRJFBlPJXOhvN8Z/89mmMjFM7cdmT3hA9d9NebE6qFvWmlKd1T+zodJYKcpUL7r3azLy\nm5a/dwLIt0b1aVuIr7aYV/jE5sQxKG1YrVYcHx9zcnJMmmZ0ul2GwzG7e7v0+n2iKMYIa2zSHwwY\nj0aoZMHx0Wv+YXnGjdGIYXfAvYcdslyxSpbM5+dMJwsuzqdcnJ9hUAxHfa7duE6i4MlXX/L1149t\nQOMkQSBRKrNUiqtedXm6zEGYy+TeanuX+3K9lWKRy9EvNqqO5cZPT0949s23nB4fM5/PUMoQRlFB\nofQHPfZ29xj0+uR5xquXL0lUigwle3t77O/tc/36TbqdXsUCs9mRle6szCQ7HuyAD8IO12/cZjTe\npd8fsr+3z2ef/ZZvnkK6WjBFI4Q9k0i0IQxDqznj2jNAW38z7vHa2PctKPHKNl1VKlQcMLu6B4G0\nUdOVjUFqDAQytOcBgT3s9OcRWiuWyxnfPP0KgeDhw58yHIzp9wa1iVvlUYu3N5ZSMaLsc92kCr3W\ngyurqQ3jX8M0+G7c+9dKK7GwVoe2tNl837/RZhXH9nL8jtOW0W6bsX2yF883lXoXPERJdVSXs/V1\nz9DcIQjREAKNtUrWlG1a+tARG6RmW3/t7i0FK1P5q2wH1kqoHJqayoFnS3ongBxKMK91ZnVwifUX\nbR6xtOnBeh7MDuwS8FSe8ubNAf/hP/zf/Mf/5z8yn80YDEe8d/8B//Qv/yl//Ed/xN179yAICaRk\n3B/w0YO7mKO7nPczdvtdVm+e8uyzMYPBkBcHhzz+6is++eQ3XFxccHFxweT8AqUU3W6H3d09+uMx\nxydHPP3qK+azueOrBabc01/aPs02aBKoBY9Zu9oO8aayhzZY68/TE6stYwzWAlJpok7M7t4ut2/f\n4acffcR4tAMIXr9+xSeffsJ0NkNrRacXs3/jOj/98Gfs791gNNhlPNqh2+0gg8aR2MbtYnmwZXxt\nRUDc6fPog5+yv7/Pg4cP+M//6W/QWnF+cUYmJAaN1pA5YyVtdQsJjCCUhlBIjBTWPYCQSISLAVoa\nYmitka6dsyyzhkhukVN5jlJ2pxAE1khJOnN+4yUvY/2kS0u+k+cZ8/mEV69e8N57D7l58w7VgznP\na9f6RlDjN3TjcKzZViWANUzvhQX8EsRMkUdUKZe1ctepnDaOvq514e68ZAyXFXNlVHYAVcqiXrHq\n7xQgWsN4U15v3unf3Y+lNvvAglatCBOFcFQAqadbTSFd1wzdoHwf4Smsss7W9bLPaXvdVJ5niv/X\nMewqFqnvDJBDCxCviQ4tveAub9Z/bZdMhYBOx3Kai/mCx48fk+eKx4+f8OzZt/zlX/4lf/FP/gk/\n+elH9LpdOqHg1rjPYn9Mfz6APOfszRsIB4xu3uOTL7/k408+4Te//Q2L+YLlckWSWNW9MAzpdrrE\nvS5JmnBxcU6eZhXe2o7ENgrlstS2rS35SF90JU+r1OOkVa1Jk5QszTAYwjBiMBzy/sOH7Ozs0u10\nOTk95c2bNywWCyYTqx4ppWQ4GnHj+g0ePfqAnzz6Ce/deY/r+zcY9PtEkVW7rDhypZTF64dAxVW/\n1feAJAxRp8fu3g2iKEaYgF63T7fb5csnn7OaTZHaEMuA5XxOkqRINzkFggBTqAEGwlp6CmElJa9S\nJhrtqV3FjJu5gbAHuKISkdeGk5OlhpCbvForsjxjOp3wzTdf8+jhh9y/94Ao6kJxBkMDvKioQHsg\nqUutlZ5zH+272bpk7J9RglMVy5v5q3nbgL21HhufX1JC5R1VUG6XuW3fm1rxJe61L0JFm1bfvZat\nHHP1ckUJ5r5GpuxLKn1SSv21bqqPauOf5MZvsVup1ra6iLk8LXP+qurh7xSQX57awFwUK2BVx7M2\njsz6XYGUjMdj3rt/n4cPH/HFl19weHTEy1ev+eabbzg5OWU2XxDGETf291ldnGFWc0KjkUYwmSec\npSvOVEi4/xmffvopX3z+Gd9++5Q8s+pofsAJYCamxQS22/7qiPB1fgtfEM1kGgOhTU2N9UlTVS3z\n5RhASKuFMRgOuXvvHp1Ol+lkyrdPv+Hs7JRktSQMI8bjHa5du86tWzd59OgDfvbRH/PgwUOuX7/F\neDQiisro8z54aFWG8apa1YnthfUi8k+J7ARhh52da/zJn4zodXt0Oh2Uyjg9fOOcY1kvhdo4FT43\nkfzE8pKS97SCk7CM+7vO7+pKrFEL1NJJ4lKW0nkYhoX0LqVABtZnixSQJCueP/+W58+/4cH773P9\n+l2CMLIH6qLsIeGaw39WEcJL/HUKshwz9dQG7O2SXjNVDy6vkrdSc9dmzd/KR1ez28Wz/u7lezfB\nt3jTak6sdF1ZzHD9XCm3+VmU4tHZiFJYKJdyt/A1mQHXruU08aBTzOtq/av3FuU2rnuZvaqSW79v\nvR03pT8cIK8s3/WD77KbTeV7bWvU3E8Zq7kxHA75+S9+gTaGr59+zXy25ODwgOlkyj/8+h+4mJyT\nqoQPH7xHkK747Ne/5uDlC05Pz7mYL5nkBrkwHOd/z+s3Lzk9OUXl9sBSCh/ZvQRqV/1i+46rZ1Nj\n57JUhehytybqn9VnetrKX2+ok7U9W8oAgSDPc85OT8nSjOOjY05PT1A6p9PtcP36De7du8fdO3e5\nfv0Ge3t7ICUKTWYyEp0gcoiIbTQdad9dCiuTeYMlkG4w1492DAXOF5PGysIBMuxw9/77BGFAli54\n/vVjjl+/5NXLVwhhrTUDIQiEDc6sBQhpijFjgVgglJuIhuKgE5xhFYB04O1c5GpjaZooiunEMZ1O\nTBxHxHFEGATIwAV8DqX1JqkMp8cHfPHFb9nZ3+Mv/nLHhoqTQa0Pi3nqX7oi8lXphNIApjEAnBi4\nxr8WzekjYFR2azR9iYja9/qC0B7QpTKM164XRjoelCoH9X4nVMr99v/qgu4ltDVA821T4J8H8ML8\nplKPBgKa5jNKXPGgW+5+RK2c+s62rEZRzhqQ15egWptV87atOPgFoHZhY/qDAPKa7me1Lf1qX15p\ndGKtlMqNIIydoDu7Ozx8+JA/+9WfcXx0zPHxMbnbEj99+pR//3/8ez69fo1+IJi8fsFyNmeVpqw0\nhP0R0WBAmqUobf1adztd8lyjVMVAZ5Mul7v+XaTwlgW89Xr5qO3aAU09Zh+EeD6b8vzZt4WuuVYZ\nAHmWM51MeGkMF2fndLtdur0Bw9GYazducO/efd578ICHDx9x7dptxuM9Ot0uYQBCOG8itcnkpGZR\n34JWrQ+lwDqtyjJWywXnp8ccH7xhPplwcXrK0ZsDLs7OyFaJpU+EKSLd4yaicYuIFIJQSEJpAddq\nplALPyaF49OFtaKN4w69Xo/hcMCgP6DX69GNY+IoIAwkgbQO04QEEbituTaoXLNaTHj+7Vc8ePRT\n5K2QXm+Et+QxBfCaApxKXnwdNG0fVTu3BHgvUBceRkUlUwFaJdBvHnvebL+2zFTKaqvL+hizd5a0\nVd37fQnjBZYZGmV46disLRSewiioJ1EvC6pllTuc8mNdhK7SUNtZDVE+qS2jadSj+j7Fbc0FanO6\n5Oc/DCDfltYaqybF+AvNJa8cTJ045vr1a/z5n/8ZT58+5euvn3Jxfkae55yfnfPxrz/maa/LsBMx\nkO5wSggyIRkMBAGC5XJl/ZUISRREaJWhnHeP2gil8d2su8HclpoHwqZZ5lvw6pctHsYY8ixDa0W6\nWhV1DkNrAJUlCRdZxuT83OXXIGwAif5gyL379/noo59x8Wd/zkcf/ZL79wW7e3vITkBQcSlgJ7dH\nTwFIq7WhDTjNEW002ijIctJVwnI+5+jwgFcvnvHs6RO+efIlL779lsPXr1kslhitCBxYS9fGElEY\nCQksRx4IezAp3K7JVIDIUiOy8L7Y6XQYDPrs7OwwGo0ckHfpRBFhYHl36w7Y6jYgneGRDDDaoE3O\n+ekbjt48Z9gf0+0MHaCWi2cpr7b3VXuXVQHblGWt5RX1r6YJ4vWRWNM5WNP5rgJ7u7ZJ4Xu7ObgL\nAdgZ9PnFotx2uTKosYNVPC6NayoH49sI90qdTVH49nzri9dbpG0rQAuIm7W+ePv0zgL5VUn+clE1\njU7fNEirI9Q24GDQ55e//CWPHz/hyy+/5LNPF+QL6zskSzLOs4xVFKGHQ6JAonTOdJVwPF3YgAZB\naA8K04QkyayesbaBfIs6eo4TMN4PCuWW7cq0SoMOqXG6zWbZ0IbbDseK8o2VUpWy+vZeLlJaF4d/\n9pAPl89aoibLFfPZjOnkgrOTY6YXF+SJsnREAOHOkDjo2IhFRmBQKJVaydfpYlvpOUdlVsc/TVYk\nyYLFdML5yQmHb17z9ZPHfPP0K14++5aT40NWi4U7QNaOviq950gDoTuQxDjVQ0dQa6UK/ypGm9rB\npRAQSEGnE3P92j57e7uO97c0ipfAi4aXDpgN6FxhAtuvcWzfKyLn6OVTbly7zf7+rUJqL+kDUynP\nSsTlIWpLP7r/HMxXB0nBopT92gQ62xbtgOzvqYNM/fyg+rhKGV7+9s+uSetWlbKot6g+o/qsOpC2\njVe/a/F/Van9qixc1lVcuitdT1cH86rx3sbS/Is3snxfEIcfCcibr7qJJrja3f6y3yyJRr6qRF7Z\nXlUaPAhCdnf3+NWf/orj42MmkykvX7xguVhgtEJpWBnDxXxBFARoY1gkK2slGASEQYhSiizPrWGP\nVhTaKJWqtOnYflftlFZVS98OGzV46uWt0+mVyeP+Kw5jqLRksVA6FwEYvAqljQCkWC40hwcHGKWZ\nTqZ8+ulvuH3nDg8fvs+DBw+4e+cuQkguLs759tk37O1d49q1G+zuX+fw8ICT40MuTk5IFjOS5YIs\nWbCYz5hdnHN+esrx4QHnZ6dMLy5Ik8QtJBQStnUK5aTygl4paluOIi+xC4EIPdjbnzpxxGA4YGd3\nl/F4xKDfIwpDR7lY5DBG2KDNQIh0hkYBJk9RuQaUvUcKUIrZ+RnJYo7RuY03WgBQOVZMgXC+E6p9\nWG79a5Kl7yM3tkvtTlH9uXxOg4KoL/oV0DfNq6bEIuOHW2OMmcYUM2DPP0pV4EJCrglf/qCxBPa1\n1H6x8m0Terj5hmFtg7Eh1efH2ywAmwqkaIu2Sng7hLUnXWG3/U5I5NV17+1B3FQ6t+LmXnhe7fKn\nS2n9p3z405+yShJevniJFPDs229JVglKa3KlmK9WBNJ6vstU7qLJWBogzTKUyl0UnnUz5W3p7SWF\ny15pW8ebtaz1pbShj+ywQrfUTxcKtZWSXT6dKxazGa+SFScnR3zxxSeMd3Z59OgRH3zwAR88+gAZ\nBJycnPLkyWPu3LnHvffe5/a993jy1Ve8ev6Ms4PXpPMJebJE5QlZsmK1XLJaLkhXS1TqAk37/YJw\nHDUV/rR4D78g2cpqZ4UpsECPo0HQgLQS/GjYZ3d3h929HeJOx/pSqb6rEGiEjbEkBArwcUNFgPVt\noxS5skZJGMiSDJ0rR/eUc7sAtwp+t7MTjcV2rd8cOPpslc8mHhWQURVv/Xe/TheicuPe6rSryEll\neDoK0K65xKAqXFSccFWq4FMbM1NmFOv13pg2tdnVkqi4SaiCe32xMZsXn1ph1PtmS5biQVdIP5JE\n3pAuqU86f615V/3T/+lX2ubN7VJFtQ7FT47auH5tn//ml78kz1LiOGK5XPD69Wt0ZrfeWZ6TCQvg\ngQwIQqtyZqOtlz5SbJFXo0u2UStr1EnL92ZZtSbYmLcivRX5qFyrLq11MKyWUWyFK59Fgwtr0Zam\nijxfsliuOD0958XzF/zXv/0vDEcjuxAaQ57n7F27wbWbd9i9cYtvnz1nenqCWc4JsgVSpwRCY3A+\nwrV1eq6VAWVqnLCvtTamAI2aNpMDACVAGWN9rlToFG00URAy7Pe5ce0ao9GQKI4LaUm7e6wLB4kQ\nIUIGjirK0cbGHo06ITqX6DwhTVICJKITEkcDorBHKCLrFwZrbamFR0ZvtVnhkJ305vXaPa9ckxTL\nTqKuZ13+vWaSLsCr7InaDxXgqi4ORddvGNcevb207UutzMHmbK2CeF3+cJJ5UbOWSSzWv7eZ/F/F\nOro8f6JsfwNSlnOi6lPG17k5be39VXqorbp+hbNXix2vKfkE0azvJYD+zkjk3zVtA8tigLaAWU0l\nz0nvQSDZ2Rnxi1/8nPl8DsBf//VfOxP+tJDoPPfnzdzfWn2wwae1coBCbP39stTUQinLadbRTrw1\naWiNdtn8nLqYUW8Hg0EZjVACpbTjvBPmi7njxa0udpZrlquc6dwGsJBSQCTRqwyTJ9bcHFn4h/EB\nICwC2AAaeFqFartZnyseXgzSBngXmhxsEGYHVErldDtdxoMhezu7DHp94iBy/lp82LkQKSOECAoQ\n90COcJrpri5BECKNsoff2rqFCKMYGQQl5vmtvgdMGvOhom4oTPX3BiibMn8BgZskxCrOF73UkoEK\nKF11CIr6/eXFEsLbx5RYp2j8+HX/N8+DRGXMFe9kmvr21eK27/v97sDLJKLxW3lvJZpYJdUFsra5\nRon+AkxjhVtrtRqe/AEA+e8m+YG8XYqt3SEgjiNu377FL3/5C87Ozvnbv/1bptMJWZo6fwl2KhXx\nHRvS9GWrvs+zCczb8nzXtHlXsG1Al8Bcf3S9nKZxSrn1LA/nrLRnao8xxrZdnucW7KQkDEPy3ACS\nKIoIoog4FNYdMMpSVhi0sJy09iDuDau0KdwvuDlSPMtL5AaD0qDRNhhHIAvA9XJQIEP6vQGj4ZjR\n0Bsz2YNKe6gdIWWEDEKkCJEyQDp/K0IKq3YILqqLlfQJQzD2zERjkKFESEu/GEfjeE6iaCZT+aw3\n3zoQGm9U0iKebtu/X/rrd03l2BLF/1e4q3XR8YOqBcz9r1crvqWOm8C8FAC9zUHl2KSs1waOu5Sq\nN1SsWHBEQdkUC9gW8v4yGfH/x0C+nuqN0TTEKbtKSsHYmZyPhjs2gnuwKLRQPB1Q5pclaFwBeFv9\nyrSkbSDfLGvTgrK9PpsAfdPZwrYFq1qnAHv4Wd5Tbuvr9ymtMVnmBOuMjjRAhlYJebpAq5Rc5zaf\ncEY23hTTOOnblPywl8ytyKMLR0dKa1KlMUgiGdCNAmQYgFaYXBEEIYPBkPF4l35/gJAByAAjJUYG\niCBEeCAXHsCd10PppXznJVEAaLsAENj7rTUUBJY/95JrRaO7bJoakK8f37dASOvVtsP16h12B1Ma\n57SmlsvN8deWCvVC/xr+r9Zd4fbxVKlxyzsUBVTKuBzdm9Vu0oxlLcuFo1r29ja4+vuJSpPUdhjN\nPdIfwmFnM22v8rZfmzOh7XulS0T5WfJgttHiuMNgMGAw6BPH1ieLFAJtVHnI50s1FS8NW7Z127d7\n9fK25WnTJf9uKkxvI4/V5cLqbqf6u3AgVuT0+Yxv/Qox4O7XCPLcMJ2e80JnCEuiEKAwee7iaxo3\n2CWe20V4EHc6+xik903iwNsz5MoYFMIBaojCBo4wCAvaCPIs4+LinMV8RhiGdncQBsggpDcYMBqN\nGQ13rDdFKa3FZyBttCjpAmW4sxLvPEsCMrDtIKW1CJWBnXaF1apvEdMAFFOSHtt2R/Zu096dxTqx\nbqnZ7NX6DVXuvHJXY6fYrhro9q2i7GezBoWXpXapeU2YaQo71bqulefH56adaOUNCsl5Qz5h37PC\nkdXzVKTrSzVpGlxOsfuo5vxD4MiracvmgsuAp76ZazZfYwXcCPY2hXFEb9BnNB7R7fWIwgitUrSq\nD2bhtvtWKLKFC6Evbfht6QfXYmlNV19s6vdUucx2Sd5q7ZTDsXrg2OxH4yaCFprVSpMkKwSGSAri\n0FpUIiQiCOj1hoRBgDE2jF6ubMQj5ekbR18YrCm9chabpZl/QBh16A9GRLFTCcTGUxVYAx4ApRUq\nVaSZpdO0gXi+YJVkGCUZDIZ0uwFhaKV/v/gLCWiJQBUUk5SCUNqDUR9RyUaVcnysbwtTaRY3PusS\n7SXJ1D42Su+1chwF1F52HRKrw+KysVnUYcPasj1tktgbtds4VkXxeyk9ePCv1u4tq1QWfcX81d5r\nqWUzYIjLWiyjhapPlSbbnH4UIG9zJVn85hpdG90iZbZ0cOVSbZUW7a3fKpWYZj5DFAYMBl1293YY\njYacnXVIiogwJZgXnLAfWAW5tt3Q56pA3SZx13joDeVse64H4ua9V6tT+0SrlqGdwVM52SqiZmUr\nXC3R/ukAEMBYrRcpIIwC+t0eN2/dodPpkmW5ixs6I18tXNxSF5TDOdzWCHIPk65fwiCg3+tz8+ZN\ner0OQSid9ksOxuqcIy0Hn+Y5q9WKxWLFcrHk7HzKxfmM+XTJvXv3CAJJFId2hwDY8ELWmVZgAoTQ\nVhoX1tZAOW2WTndAEMbF65fYskETqSEpbm17l79NEm37pdkPuHav3rlJ8l63Cl0vrixK1LNedVV6\ni9RuV9E8PL5MSLF3rf8iKh3Vkm9DmxXCI/XW32SpW86D5tmS5LL0o0vkbyt5tg/2tozbwcZ/1gDR\nb7uEQQbQ7cRcu7ZP3Im3BkKuWc0V5ZTlNqWH5vdN1prb0vc7BP3Ot2589lUXrMvutRyzcxUrJAZh\nDbJWGa/fHCKkRKncxevMUSp3TI509EWppge2F4IwpD/o8+jRT7h9+w5hFJEmK1arBelyibcGjaOQ\nIIzKg1B2AYEygpPTcyYXU05PT0jThOXyFvfu3WfQ7xO6A9HA+ZARjlLxLm+NccGpez2GO3tEnR4I\nuTZGt7FjV+2zbWOtUSLti0L79e3UXfMZb0/zfZdd6FXUCt+2LFte4zcPwtXwiVsPJhvvIkRbi1a+\n+52so2vwgpovQ4OouD1oST86kDfTNpBrzd/4e5u0Xy2/VdIw5fSXwjpJ2t3bo9frW80EP0ll3R91\nccDmt6qmfVJ+lwH3+6FZfpjUnFhXOhQrpBP/Kd0/AdajuKVIspxsMsUYjdIuupFbMKWQBH6EV3Yw\nYQD9wYDrN67z8OFDbt++S6fT4eTkmFz4mJZWEg+kIA4jZBgigwCkpNPtEnW6BGGHTrdPFB5zmB8y\nnU3pnMXs7OzQ7cREJsCaBhWmSeVuDbsghXGHfn/EeGefuNvzHn2breE+1/fc7Vod63e/GyPFz6JN\ntM0Pm35fc8SPN8+BrO/k63Uq//BSfXsdq+ckSbIkWS1J0qUbQ24uuXMnW+qHa2W8c0DeTBbMoeS+\nNgFixT/xd3hGWTgYIzBaImXEaDhmOBzR6XZZLVcU254KgNcGksSqw5k6sDU1Wi6TYJsGQN831cuF\nH3rKV+me6vP8b9XPtntKY4s6J6idbxctNMJIC+ROfx+cu+DAeikMsAY9CIEMBVGnw4P3H/Gnv/pT\n/tW//JccHB7yxeef8/L5c6IoIJQCjCYMAiJ3uIlw/HqW0e33icKIMI65du0acdShE3d48eI5SZIw\nm03Z29u1HLl9aTtWHUXjd2hSCjqdPsPRngXyTscx+Zv6tbpD4XfSX2vUwGUS0BXS2rx0EmYtlOyP\nuNJcRU24lYvHL86Uu+0KiG+CnTY98K3kjlFMZyccvHnB0eErwtj68wFKtx8G/vt/+Q4C+TaVuerJ\nccnrQrU56m4LrjBKPHBQ8lae57SWiCmnp+e8eX3AkydP+Ozzzzg+OUZrTRAGtg+1rhimlK5qRVFu\n+T6XgfdVQLptu7xJ2+Vqku9VXBdcLQkhirBnnh9vvncbvdSs19p17CJZ+DURxgU8rh8kW0nF6pEr\nF/BhOBxx5+4dfvWrP+dPf/Wn3Lx1i6OjQz799FO++fprMJoojOl1u4xHQ+uGQeXkSqEcvx9E1hBI\na0iTlIvJlIuLCbPZzN63M2Jvb5cwCkt9Y2OlcuuwSyBQWG+IkvH4Gjdvvke3NySQIegt/VjjVqEc\nUf5Kc6Rt7aEN+ezEWVsjLlk03k7yvboA8n0l6tr4qixMVSGw8jDYMB5by3YFlZpBV6OSWsd7lQAQ\nZd1tmZo0m4FY0e0LknRBfzC0wkIxVtqf9aMDeVuq80PVQVz9u5LfUMT0vGryUWfKBdbGZby4mPCP\n//gxjx8/5smTJ3z+xWccHh6SpqkDb8vBaq1roBKEVldYOmDz/ryhXcpef9+34Z7XJdu3OTz9IUDc\n18uDeFWfvfUcY6ME1A7ylpYQGBecwwdUtqqfVSAXoK2xkDBWM0SGAcPRmPfee5/xeIfFYsFnn33O\ns2+fMbm4II6slaYQEm0gcdam1vTeUmchguVqxXyVsFymTGczklWK1orhcMjOjg1AHQSykNasIG7c\nIafVXhJCEIV9dvdvcePmPeK4iygVydfbozLuq5Ts26Q6dG8BZf+fqM6tzQvE24OtL8/V60eSxguZ\n2r3a5dWo19vv1MvfvmOq3erih9Y0wHIgdRpRI05PU3q9mGv7Y+cMbrMnzHcKyNcr2WhQtoDhlvZt\nnkt4sKlTH5DlGScnx/y//+lv+OTTT3j+/FtevzpgsVySZTbGplbK+VYxFYAGKULC0PqwDsPQBZZQ\nZFm+JnldRXK+PE+5OFxFqm/T1nnbtHYo6czrwbor8O3ytqkVxCtnEdYIaJNKp6no9WuklOR5Tpqm\nTKcT/u7v/o7Xb17z9ddfI9B0whCwVqOrJGO+mFvL3SwjigK6vR5hGJFkOcs0Y7FMOD05Q2uI4pjR\naMh4Z4fhaGRN8B14B0K6YBYOzKUbF0FId7jL3o077N+8g4wiawXawq+WAcYb7VGZB6WE3k7MlPEi\nXTlrASbKUmufhUSzWWB6+ySKOn2f9NZDqvWBxtGml9zaIrxbjmgzx732HOpzvfU5jWcYo9AqJQoF\n8XhAEIxI0hWDQZ/RaIQ0or6eNNI7BeRXTd/ncKOdd7bfoyji9u07/Ov/+V/z81/8gt9M4ivSAAAg\nAElEQVR8/DH/7t/9b6ySpABu3ZA6pRREUUi/3yUIJGlqvSAqpQsw8up4l9Vpc/3a7mkvp814qPJX\n4462Z2zfFdQDDbO2qH2fVFPnhBp4X1U10hjDdHrBkydfcnp6gjGGJE1JksSGfgsEgbAGPMaA0nah\nldL6RonmS8uLhyGj8Q7j8Zi9vWtYrRhJEEgX1i30LD4+BmjgPq21qcIIQRD3uXPvEXs37hD3+xBa\nL4h1aaz2BmV7sA7X1ag6G9ux0LMw68hU3Otqb2wEoyCwB76bjVe+S1oXxL5L2qZRUl6/ZOfhvrwF\nmdJ4Vn2O1uaZtAWLWt5yodyqVuoWCqUS0nRGFAJIZ9tQGihinBuGPwSJ/G3SdwfzTRyx1fMdjEb8\n9Gc/o9cfMJlO6XRjBGwE40JyFDaPd2VrqfNSsrzKQee23zdJ9E0p+fJUH2Tb863XwQYe9pKyLnhx\nX6/vmqogfhlNsz0Z0jQlTTMmkwuqfeADKNv+LCErCG0UoMD5TOl1u+zs7NLpdhmPx44OcRBtQEpD\nGAbOetMCt3Rh5aQA6zdFE0Y9huN9bt9/n539fWRkdwObGYw6iLf/UpESuazPtwkPtg3y3JAkijgK\nEHHgcGJDm19ZKr38+T9G+qGWqKLNK7Em18kE1z/2hlq7tcF6licsVxM6sUAQkKWVqFmi5Pw3pT9Y\nIC9TbZOyMVd1/BlTXQR8dBEr/8hA0B8M6Pb7hHHk1H1NoWXQpDL89yzNXJSg1D1LOKdKFsSrtMMm\nTnhb8uDdBuDbwK7M5yXbzc8oD1MMzZ2BB8MwtEPGnxEUcUm/R/Jl+/drnj98t1SlXKCi6OKfWjzb\n7p7yAsSCIKTXt77IB4MhSmlXP//PEASCMHDeG4UseXFKJ13d3ohrN+5x++57DEbjxpMbtTUtsrBj\nOiq47SQzSgUAJ7GVVs3egZanNepyYvV5ShmyTDGfJ5heTBBIbPeWc2MtvTWY/xDp8p3k70IFsZxi\nXgutfHap6dbUPnJ0lgCMwwy8UzdTy2LLAdBkWcJyMaPfGxEIQZZmb1XXdwrIW0MDbjp4gUpLi8rF\n9sy24csVlIKjLL1/CGM1l4W00WH63R7dbocwtAdu2kXBqYKo1tZcXGvnP8NIB24GrXOCIKgBcJOf\nr6ZtetjFq7Tw7dX7Nw9mt1HfYPHant9+Wi68lMSbfPj3mUCbqJrvm4p51vKapUqr/+7d0FqT+kF/\nwPXrN4iiCGO09XUlrX8VIawmTeioiEBId6/BGIUQxnHjMddv3Of9h39Mb7BLEEQVUPXaUk3ahNpV\n75DXA7cxpthNqAyi2N6jvXRO3XpTVCX3gmMXThqHPFeskoTp/ALE0LktkAW/X97dnFqi8v/lfXCV\ntJ0SvHoZrednjS/l2Ng0X9p2o/X3Kc6pDDVFC9/HxRlIZTFw2I4Q+Ii+gCHLEvI8sQKCDOyuztFv\nFZFxa3u/M0DuByxAqQS/LVV5rKt1ujGiMrFLqaVKovl1U8qAMIyI48hGjnELQNuTtDZIWecDmyDn\nuXJ/bdthZr3O2yX35mC8XDK5yna39B/iqRRPSzQl8R8SxN+eE19P9r46p1ptsrZyi52GkHS7HUbj\nMTs7u4RhGQtSBhbkJTaOZyAFoRSE0muqOKMdIZBhxHDnBjduPeDGrftEcddGEcKP1xZepWVjaf2o\nW5cBStm4qFJI8kyRLFMGokOIRFO6Tm1a/3kqqdZGGLI0YzabcDE5ZzK7ADKnS99H1uCjZcxfvtN3\nz/5dCe/1Pq4/c/P49+9SfafvJ8m7htjSlc1rHv+tAz6N0jnz2QVpuiSOI4JA2lW2gPlmaq/rjxMh\nqNlwNU2NJjhXAfsKZW1J1a3RhhyUXe0ivUQxYRgihQ1q0HYcVNbBrF1XShUqeh7M3xastknwbSD+\nXQdnXWPGaqQEgSykD+9H/G1pj23aN00Q/2G2x81+2J5bBhbIpQwZjyyI93p9jMkwxnIyViqHQHhH\nWIIoEIW6oV34JEZKwnjAzTuPuHn7PcY7ewgprRBBOZFNAyGFqI74ijGYMRa404w0TZEyJE1yFvMF\nMtwhUgG5yt3OISAM47LPhI1m5GM82zXE2j4kyYLT0zccHb8h1QuMUcRRh9GohwlEUafiEG+N3WiI\ntxvSNtXa75Pa5sSVxn3Lz99vN9DsSPuf2FaOW2uFMaByZtMzECt29jrWxYS2zpftallxnralXj+q\nRN7sjFp7Vni+dqHbbPj+3ZLvDuP2P1JYl6M7OzsMBgMmFzPSNHcS3jovvGlgAYX0WlWpawOtTX8X\nJ9e1a9sPBDcN6m0SfrVs6RYfEBij3UHu91MvrPLt1fr7PD/0ZL9qyrPMHnR3Oox3xoxGI4JAorUo\n+GYbitMUIB7IEsQlXjAThGGP4egmD97/Gbv7t0FYd7nNpUy4MgvatEXstW7XDZPZOWdnR1xMjpFB\nhDESoyUiSjEm5+z8mNlsRr+/w43r94mjDnEcEYUBSik6cUS327G0DwKjNcvlhJOTVxwcPEPGAilC\nhoMhxtygdNLkCaDS3qKa2sWX323ygt4myuz7pu+ym72q4FTfodixFIUClS8QMiUMexicnYpxNJnj\nwTy1tmnh/NGA3EoHZcimdmbrKg30tqvn5T8bsNoLvR53797n1as3nJ9NyLMZijrHBts7vw2AmzRL\nezKsL1abn3c5TeM1dar3VncgZTlVzRSrlaK+F51SLbO6+LSpXf6+UnXhlVLS63bY29vl+vVr7IyH\n4M9DAFHEhBCVfxQ65IVSgQgYjfe4c/8h12/eoz8Ylk3b1uz+YLngsYvKkaaKLFfkRnF88ooXL77k\nxcsv0QREUY9eb8zJ+S5ZlnByesB0OmV//za5Tul1hnQ6HeIoROeK8XiPqHONwNF/WuekyZLTs0Ne\nvfmWTq/PeHSDXrdb1FU2qJ5CKq/tHOqvs40GaKVoNnZOIdO2lHQ5ZdNs8urfxULQqOU6/dTI07IY\n159Zp6PapqMVyOpgDorJ5JQo1gixy3Q64fzsjJPjI84uJixXK5TWSENx45/96udrZf9IwZfrzdjW\nJ2urXM22tXLtyqND1OdP9caGEYSTwYjjDjdv3GRnZ4c4jl0ezbaHNjVamoecJee8DuZVDZPLQdct\ngcbUJNzildake39PlYopy7VSjlirswVwH0zju4Gt56DDMCTLsh9U9/z7piAI6Ha77OzscP/+Xe7d\nuU2v32e1SjBGu8NLx487y13vnlZIq3IoHCUYxB2u3bzN+49+ynhn1/luAa/FUOtSd1/VklO4g8hc\n5UynM2aLOYlKePnyK7766td88fjvyTV0uyP29m8RBjGr1ZLzizOSNOHOnft0uoZed0wcdSxdZCSa\nhwx3xjb4hYE0TZjPJ5ycHPDqzQt6vTEP3/9jer1+EX3Ja1sUYfWkRLhDoprQUD+AWBux/oULeqAF\nDlupm2oJLSi6Dcw9NVXy0uurkv29Dr4+r3GukIX/ZSOvW6lM5aIQa9Vt1MNpHmlFli05OT2kPwwx\n3OPi4oxXr17y+tUrVlnGfLlklSQEZv2so5p+JIlcNL6vb9LsLqICWlXwro2jdWpg0/Pq67tp/lxK\nHkKglGI+m/HixSuODo+YzaYonddoktoTKgDYljxwey64DXybqQ7mZbAGX2kPMm3aLlWJs9TYaZZf\n10f3C4w/1DRaY4z+XgdWvswgCFxszs3ugH/fKYoiBoMBw+GQO3du84tf/JybN26QpSnffPOsEB7s\nltbuHEuawTrqAo02EAQR127e5c79R9y8fY8oiinQ272uoSnClJ8eq7IsYzqb8PjrT3h98C3z5IJX\nL57w5vXXnJ68xhAwjybM5+cYI0iTlMVyQX/QZzKJ+ObbgCiMUUqRq5y9vVuYQDLcuc5oOEBnGafH\nRzx+/AnPnn3F0eFrwvicb59/xf6127x3NyAY7xCGVnDJcmsXEcZx4QesamlaP/Tc4u9QeLXI6s6y\nxMAmB1yM3bfpUHz91q+VzygXlMLQxv/mHyhKKqkuK9Z3TqbRBv7+4p22nA2BYZVYED+7OIFgiBCC\nKIy4c+sW1/f3OT47Z2dvj9t37iK12x1uKPOd0VpZ6zKx3rmXpbdRJ2r+bool2E5WpXJmsynPnz/n\n5OSUJElrANzkeNvqsql+VQm8LV9JhW2rdzn8qlVo8s5XScKBUv3g0Rv7fDdJvCnde4+FP5R64fdN\nYRjS7w+4det2sTgrpRiNBigVE4WgdAm+ogi97XWCBUYEaCMQUhD3Rty9/xNu3rpPtzdw0YegMpDr\nFTC2ZANoBVlqMCZnNj/n5eunfPHkH3j2/EsW6ZSTw9dMJ8ckyZQgiMhVSp4vUbkhzTLyPCeONdMp\nZOncqhYqhRFY1UICslxx49odulHE5PykAPHpxTkinPDV00/pDQYMBrt0u12reolmtlyRK83QWbVa\nlUsH2I2ACsWrtbS316Ypx3VVg8xnEm0w8INx8LWFwl4ov1eeJaoXm1Wsfi889pXlbHFTXq0JYMiy\nFdPpGWm6QumeXTCjkCgYIoRkleUMRyN2d3cQent4iXcIyOvJQdSlfNjafVulXA9Km6Th8m+lchaL\nGa9fv2YymRSTXToLQJunDkpVSXibemGr5NEKvtWhJfzNxZJf59rYurBsSlUQt/X2XPj3c65VPdj1\nO5HvovHyu0hCWNpsNBpz8+Ytjo+PmE5tXz96dJ9uHBGFAnK7kFlJ1AWTFhbItQBhBBpJJ+4y2L3O\nnfc+YHf/pnXIBVRktuIvo0tG3Dthy3PNfJ6R5nOOT1/x5de/4csnH/Pi5ROSbMl8MkFlCWHkBAll\nyFROmim00iANSi1ZzDOmF2cslinaCMJOx0Y5mi85OT7iwf0P2d/bJ0+WHBy8YHJ+Srqao6Xi+Ysv\nibodHr7/J+yMdomiDspopouVDTQeBHQ6MXEU2khKxcZYFCKpC6FazN02orjQ2sFTGw0pvoGqpv5n\ntaS13fiVMPTS5OabKdcVsQ2ExFqtymLWM+MxSKmMLFuRJHM3tqw9ShCGhML6zvTWxkFQ0S3fUOt3\nFshLdXmXNhNp5T1XAogNTeGB1I0erZSNQpNnBbcthHCqiKJ2+Nf6lC00S3UREcJ2mOejq5K457D9\nVtBXXxRTyEs5praIbE7V7a0roSI5e0n8Mt8w25Ivq35YWrbT+kJVn++/e5C3C1e/P2AwGKC1JklS\nprMpT5/Cgwe3ubY3RusUgSEQuMNMbwzm3sWDlowYjPe4dfcB473rxJ0uwhgkARQyt5PrtbHA60ga\npUEITZatOD8/5uziFc9fP+bzL/6Rl6+/4fT0CK0ysiS1B6udDoiAXFvKwyjHzQuBVjbUXZ4ZFrMF\nWS6QgSJbZExOpxy/OWQ5n3Bt/zoCmM5PydUKIRRxLEjTBWdnJ5yenTAenpArQEiy1FI0q5Mjdnd3\nGQ0HRDKybnqNoWqmjjsrwGB9x+N/KiVWO6Qrs7uinSaFaFy3jSwLQb1YIlp6lRrQve34LUQmUfrr\n17p0HSuFtLuxtfOslpIcPVPaNDgB0i1gxmgmk3MWyxlxHBKFATpXLOcLur0OQRCisrzSYg4BtrzS\nOwvktQ77XYN48cQyj3HqdoUk7oDJ0z1VyfKqhj1t6oXrVItbU9wECYOwMFJZrVYkqxVRFJHnijyz\nIc/K19tWj5LZqwN43W+KMdW8V9nYVrbXojQk8u/0LkjgZfK7D0muchaLBSenp8xmM7LcguWL5y/I\nkn2USrETWFgDGQNCC4S2fxtjyJVCSk0njtjbu0Yn7hLIwAKaAwJtrJpZ1agHbB9nuQGRM52e8/z5\nY94cP+X5qyc8f/ENZyenzGdLDJpAQhiFLvA0KKXJU7voS0fbJKscUOSZYbXMsB6UNfkiJQiWLDsr\nQhmyWs3oxDHz5QWalCiGIIRU56yWU87OXhGHgtOzl2SZIgxijNHMFhc8ePAhgvfojPcsJYQNrSew\nNiw6t64LpBAl/BRgXxsp5cgSPk+xr6yPOFFl5Mt7KfKWoura6K9RjvU72zKKIp8fK/X8ouX/zU7G\nmlSa+8/xpqvVgjRbEoR2l7ZaLLk4P2fQv0MUhOg0t4fo4I4F38nDzs1pfdJvB5MfCiSaHWKoHvTV\neXF9RZetm2ie5pawGqxYCIFBg7NCjTsxu3u7vP/oAWfnp5ydntHrdUlXGcvFiuViZTVBclV7g/Zn\nlxJwlRNv10cXW8pZz+M//att03Ev7y2f/x03AG+VqotXsko41xcslkuWyyW4uJ1vDg6RQtHvBoSB\nDdPmIUAagVA2rBsYlMlQJkMaTS/uIEVQ8qvaArlVHZNkSpGlijTJCJyhR5oZNIrzszNevPiSZ6+f\n8PLNtxwdHjKbzEmSDCMM/UFMGIXIQJJnOSpV5M6pkpE4eiZHK0OWatKVJs+s5Kecj/a8ozkKDtEm\npz/ssUhmGJESRjY+rVSaPF9xcfGKLLtAK81svqTfsXz/dH5OGAq6nR7doEMUOkM5Y8Fc5YZkqel2\nA+LQHsQbY4FOawXuzMVK7db1sZ1adccCJUBWKD8XAKN9jFRoShrjtxTqLxHhKjvk6v1F+aLxzY4I\n43bH23HAFJ9e0hcYVssZyWpB4OgypRTJckUgA6IgJHG32d1dlR9vf9Y7BeRve1D5tiB+ZaldWCdJ\nYRA403T3S0E/1HWhhaivlpv0y9uuFwegGOunQUgk0h2aaLq9LvvX93n00QOGJx2ioaATdUEJkmXG\nxdmE05NTZtO5VWcz9Xf1f9fVIquc+DrgXm1b6vjNAhz99at4QyxBvLjrdyy1N985zyxfr/KcLMsQ\nArJMsFouSZIVvU6/kKxlsU2SGBNYekpabjdLZixmZ8xmF2idu3cBhEBpQ5KB0oosT1gsppyfHdEJ\nA8IoIkkNBsnpxRmnkzccHb/k5PiA5WJKkmZkuUEEjuYSjldNM5JEkaTGOrkKAqQIyLLc/ktztPKC\nnyn84hsU06lES0130UHlCYKcQCqEiAgCCETOYnHMZHLAZDLj7PyCOIjodrt0+x2OT1/Q749I5wk3\nr99hMNghkCFC2t3hYp4hRc+6MQhsiD6lc3KdkiYrVJ6hVW5jouJ2bzJw7ycA6dQ67TyIow5h1MEY\nWexU26XktmQuzVHk3IA7nlYxJRZfITVWjYYJr3U/ophMjlksz9jZ7bGzM6bb6XLt2j7dTseGL6zU\nS3hGwtR96VTTj2qiX3TKu7LzBvy669XlvNMru5XObPzINnNysQ5MV7H4Kn43oNGFnwshwGosG9J8\nxdHZISaC63dv0I36dKMeRgkuzi4YvnzD0cER5+cX5FlWeP0rz0XX439u1265bEEVxSD3flhseVcx\nGhKVCeK4w9/5AKhQRZ7/dPW1OyztgDxjsViwXC4Z9mMCEViOHP/PtpkWLuCzDBEiYLFYcnh4yO3Z\nBUG3SyeMMRhyrVmtUuaLGalaMp+f8ezbT4GcKIoJwj5R3Of09JDnr77i9OyQ5WJGmiQore2iLgOU\nFuSZpSjSRJOlmjx32lX2dchSQ5pqssxbAYLRVv9dGOvhcbVcodAk6YoogjDQmMCgjAIhSJYLXr96\nxipJmc3mTKcLhJF0Ol3Gu2O6vcekScLe8DpG/5xr+7eRIkQIyLOcZJXR6dzCaMFqec5iOWW1mrFM\nbPCOPMsQQBCEhduKIAjI8xylcqIwKqgUpQz333vEnTsPCMIe1h/8FQQMA7Vjz0uG1sZxKvwuvU4d\nrj+rfe6YmvpK6bJMK0WaLjg9OSTNZuzu9hmPd+j3+wyHQ2Rg+fJc5WRZSpIuWa0WeAO1d1Iiv/xw\n7odNVwFWsE0VhCFxp+Mi4AjHd+Z4F7jabDI42C5dNsGz1Je10rSmNCiQUqBNznw55cXrF1y7dYO9\nvX3ioEe/2ycKIkY7YzqdDmEUkqQJi7lGZ3lrf79dPf09vkWq5VAcaHpJ1xhVGo9sSb/H7m4+GfCs\nqigPrgrp1dIT8/mC2WzOzqhLKDsuQLNdVA0GLRSCAESAlBFh2GOVKg6Oj3h18BrCmL3xLnEYo7QF\nzePTN6TZgtn8mOcvPmexmICUDIZ7DEd7XFyc8frgGfPpjCxNMdoQxV26YUQcxwRSI8jJ85Qsgzw3\nVtpVBrRGIckyQ54ZVG6KsSRwiyw2f5Jm5EaRq5D+IMREVsVSqxwpDSqbk+cZSZKyXKYslxkqhzCM\nSdIMzWOmk1P2xnvEsSFJz8EEdOIOQgRoJdjNx2RpztGb55xPDpnNLaBfXFygcmWFIxla7a9AEoUh\nyWpFmiR0ex0AslyxTDKiOOT69ZuEYfftxs0V5YKt2m0ew7fqE7bf7ymU5r0GyFVmd2bnpyAygjBg\nMOjT6/aQQjKfzVgtl5ydnXF+cUKmEoJQOF1Y+7y/+Iu/WHvmj06trEu1vhGbq1+Zr8qK0XL1aqnC\ngTVWcWMMYRTT7fWI424Rzqw4CBSeA/SuKdupiaZqYluqGeX46hgDEkQQYITVCV4tMtKlYtXVLLIZ\nx9kZcRRx5/Ztrt3cR+uUk5MDcpXaQ9qa/+32QBTNurbpxm8a6zaijtXMsNv37Rav/lnrRkq/n+1Y\nTTOmQpwWNXA0xGKxZDqbMVv2CENBFIAhRLlgERqN0BIpI6SIiTsdtIg5n8z49PPPmS4SHj54n1vX\nb2IQZPmSo+PnTGdnzGannJ4e8+bNC6azKb3BiJ29PXKVM1/MSZIVWht6vQHj3RuMxvuMRmNWqzmz\nySlnpwcYFKCspkquiohV9tNZhuZ2VxRIYWe4sQekCuvHQwjQcUCmbXT2PFNIKYmiEJVr0iRjtUxZ\nLTO0kuQBYCasVgsuzo+5trdHEGoOjr5GK3jv3vvsjG8QBTtok5Gu5pyevmaxPCdJF2iV0e1EyF6X\nMIysxpdS4A5yoyhAiIhuN0ZphdI5Kk/IspQ8V9bSUtqe26zSyyWg28zfwJ2186Eqp7293OocLotx\ndJGrk3b/p1nKZHJOmmd0upI4tiqiWZ5yfn7KwZsDzs/OmE7OOT47IohCvnoyctpOFm/+zb/5X9bq\n8KMDeZlEMadN8V/77/XU9FRRgsNGq0+zaTHwdxuiKKLfH9Dv9wnDqDggNJqit4oyHcdXW1aucBBa\nf7uK6pW7EkXWrL3T7XH39n0G4zFSRhiRE4UxUgouLi6YTc84PT1CRJreIEYgWC3yFoBd12+v7gwu\no1iqqoXWb4quxNO8XDtlfYH4fYB4nY/3oF1dukUxtISlFeZLpvMl3TgiDiRhYBBB5Hhx7CGiUggU\nQsZMZwvOD895eTLlzdEpr98c8OD+fQa9EavlkucvnnF0/Irp9Jj57Ijzi1MuJueo42N6x8dEcYdO\nPOTm9Xvs7V5nd/cm/cEeQdAhy3KODl6QpxlRdE4YrtB5hs4VRmmU2wVpd7hqtI1HWjt01l7tFNBg\nFFY9MNdOkwZUrqw0ry3oawVGCVRmUC5ebZJCkiQkyxV5njEY9BBAki24dXPBaHiL8c51VJKwXM1Q\nOrNOxsKwGHdBIAkCQYaxXhsxBKF0u5uQkBApAwzWylErXSE46gFhqmkNh2Gjq92a+ODnbRPLaxop\nG4Qwqjtsf1HUociVYrA7eqUScpUQRpIwDkEau6h3Olzf3yff30OnCbOzExYX58goQDhhqdPp0HG7\nlmZ6h4Dcprc982rNXxnEbQDViiEV6cxTK91ul16/T+RCdJVbcs+B2b8lXAnEL6OSqoJB1T9JFMXs\n7u7TH44wQrCSKzpxDFpxfHzI0dFrZpNzZAD9fodQRAizIkkyssyHnfMvfZnU4tusriPvQdyfGUBp\n6LNdO2W9DX7fyXPyZQOXB1A1Sd1AmuYsFgnT2ZJRv0s/ClFg+XBj81sKSaGNQoaG+SLh6PCM5OiC\nw5NzDo9OODw6Ym9nD2HgxauXHB29YDY7JRAJWW53TYtljgx6DAb73Lp1hzt37nPz5l12926SZYbp\nZMbBmwOSlSJNFPZMwqmoao1WpS8UC+jFGkXB6psqi1t1t2g9O1qFEoHKrWaJ1+s2yo137XZ3xkBm\nyDOr175aLYljSRgKgjBkscrY310w7O8RS0mu7AFy4DRbvIWw9VkTOG+aoI22Ri9RSBCGdoyFoY2f\nGoU2mAv1PnLfKnOpfqBY5LBnxHVhhTqQCzcI7LDw43hduGtLTeGw/r0+sAyaNF2SpUsgJwxtWD2r\nAnvM/t4e/eGAbqcDWcbZ4QEmS9BGInSGMZqo02c0GrbW5d3wR/6DllNbDjeAzDqYNbNIKQmjgF6n\nQ+Ckz+LuygAqueI6dbFOUWyP7FOrnTvkCoIAA6Rpyvn5OTt7++xe2+fi/ILRYEiWrvjm6VOSldV5\njsMYGUjiAEIZMZ3OMGjyzINt/flbOcKW5A+nrDbE1VQw15NofFLQVD908gDu+8hO0Sa1U81rD9lW\nSc50uiIZ52RdjQo0JtPIQNrQf2CtKY31R6NNQBh2OZ9MyZQFzmSVEAXPMUazWk1IkxxJhBCCTjxG\njrrsjGM+/Omf8OGHf8zd+w+Jog5ppjk7n/HNN9/w7dOv+fbpU1bzC7SeE4YpWZqTZ5osUyht0IVA\nYaU+/45CuHiixRomSp8gxlgXucaCOBpUbhdmGdie8Yu/V8NFSwwCy9YrFnpJGgniSPLy+XOmkwU7\nu4fsDva5vnvN6pPLsCJUlYZmXpHA2mkY4iikE3co9sMCwihwi2YlduVGKXzz2LlsVG3Hhiv69Tey\nhh/V3ZCtgwajmU4u+P+oe9MmSZIjTe8xMz/izLOu7ga6e4DBzArnWHL4hULyH+zKCpf8PZT9f6Ss\njMgcAAYDTKO7quvMI+7www5+UDN3j8jMquoeDAvj0tWZGYe5uR1qqq+qvrrfLdFaoqF2mx2vvv+e\nV69fo4yhCZ7xeEQ5HpNlRuAz73C2xkUoMMvye7vwR6eRv+/68Zv9/hP7uN1Ozg0gBCmy20dxppaS\nQzJ9ftjWHQvgo/stKp82miwXzz4h0NQ1i8WC89WKcjRit9tTVxW77YbFYkG1qwL/pVAAACAASURB\nVCA4fBBhW2SGfJ5J2FkIVEhZL+eOIKGjPg7Pk+Ps0yxqSSmk7Q/FmZIcp/9WUEtqX2kJuPbcnZt0\nf4EooG0d+23FbldRjwvGmelUXSOijdZaauvY7ldstjWbfUOmNSo0VJtbgt0zLsfCWWIdvg1YC5nJ\nGZcXnM1yivGU3Iy4enfNYrFhXzWsVlvevb3l3bvXLG7fsd0sUcphtMNoC8ERPPiQ+pweJPVfkHxD\nXyu2z56M8IY28vnoMLURYgkBbOtRkSj9gDjNq+6+XmnBrb1GY1gtdjS1Z7erufryJeNMS+UkbbqM\nyCzLOq3cGEPbtgTvyXKpiqNS+qaKIKOKyWpRu+0hsfdf961J9Z733vf6x13DvX/cLvQWkBCsKRXI\nM0NmDJum4er6mtvFktY5ijxnOhpxe3XF8xcvWO4rynGOR9ZvU1uWy+29vfh3I8gfiva4/8McK+Yc\nnLQfM2+K6ADK0UYftNuh2SEKCR7CmH+gEI+9NEZT5MKz4BHNd7PdsFzcUhQFznn2Tc1icct2u8W1\nDZkGrzVFkVHmJaCxjcVZ4ePw/riU2vv7Af0YS6iYQCqiRf2hhPixVv6vbvK+u6CUOGed6yXfUDtP\nVwjyueADdd2yr2rqusWWJWSJf8ZT24ZNZdlWlqAyTGY4O50xmowjB0oFrsKgKY0hx6BcRqty8ixj\nMhoxGU8YjSes12tevnjJar1mvdmxWm1ZLTfU1QbvJWGnyA3BgFeSru4jjJJ+Joq+49DYEF/rH7B/\nZu8SPu6xNtEUEwtNi9Dv/Sux3ViwzmtQXuFQOK3Z+5amcTSt4+2b75mPSi7OzlDKRAGtYh3QBK/0\nVM5FnmNM1vlcunXh+xqXEYzu9ttD18dGpP3hltlxX2RV3aeUKAXWtjjXYnIoioI8L/A4glK0bctm\ntcZWNbe3t9wslzRecTo/58nnP43Vn0qy7N8JRv6h604IXfcGA9Nx+IGP9GQfQFriqc4iV3Vmsv4z\ncSUk595xJMbxYrpv4d3FyvtDSqqGiCDXKkhhV63wzrJcLsiLgs8+/4L9PmO92gBCvuQBkxlOT8+Y\nlBOqXUVVNBRZS51bjJVi0L2pGu4suKHvNg2IwCny/MI9k2ho32/l/DFcMs79Aamiids5RAaFqOVz\nvotxDkHC4Kq2Yd/WTLSkqtvacrvZc71Ys6la/vIv/5qvvvqaR48e47xnsbjh+vod+92OzBiKIkNn\nBjfP8H4s2icaFcA3FS+/+5ZvvvmG6+trrE8eF41WDpMFMpSEk3qFygxeqc6x2XPz0D1TSFzvKFEC\nYxalXB68x1tolcV5j7XJz9HTJKelmegMQDD45BTuHNvO07agWjB5QGvLy++/Yz4puTifo43AKEkT\nDyGNtSLPcxRQlmUkGZOKSF3oFimM0nf78W4g28etv/DA7w+19VBCX7duukEK3cvJGet9hFKI0S5K\n1qBWge1uxW63ZD4rGU8nZGUuFrZ1PHv8mP/lf/4bvLX8069/xeJ2gTMZP/vFX/C//m//O4WRjM+0\nF4+vP3pB/t5Y5/RT3fPqBwT4h2LKtdEURcFsNiMv8iNM9f2a94/RVkNA6ivmGdr0qc06A7SU59qs\n1xDENK7qluViiXMepTXj8YhHT54QgmKx3rBb76iqRsxak5HnsiHadsjt0t97sEK7n8boWHiaPkPw\n4Nl+rDDvN0ryP/5baOP9YdkLBBFYmuFBNjy4QggdS+NuV7Mbj5iOPN7W2LZiva14t1iy3GyjNp4z\nm884PZ1LEk+wONtQ5sKRMxlPhPnRtQQcRZHjvcJ7hVY5L148JwQn2posAtFWI46c5wbnWjrBgIpr\nW/fPFZOHCEI85ZIT2gMR2pDiIE4Es9cEd2wBqQ6THioZPsI1Ms3RGZq2mFcxmUqBE/a+m5sblstF\nVBjSmKbx7Sc6i8x+UqxD2tMmhb/SKUgJ40/Xw3vrAYfnj1hX74VgBjUSBqtr8GgBgkcpgVFCFOxO\nWa5v3rDb3TIaP2EyLvA+A63IVZB6sMaggdFownR2wraR5L79fk9rtDiam5a/+Zv/eKdvf9SC/KNM\npQPEpNe+Prbt+yJaFMSanTmz2ZQi7x0MvZf7bmz2j4UbkoKrtGDjypjOcaW1QRstBXP3Fd6JYLYe\nqqpGa82omDKbTimLMfvtjs12x2azjqRaXoibjAgHZe/CInfCaEkhhuIfcM525d4Ocas0Ij9eCsum\n/dFf/8h7hIHWyd0za3A5F+OWlWO93lPkOZnJwVXsq5blZs9ivaZqLOV4IoljRSGhogHGozGz6YzM\naKaTMZPpFNu2WNuC8pRlgfMK7xTG5DG8NUOKIotVEEIAFSM3ioJQizXV4fgBOtw7QiwiOPoCJvK6\n77hYUnRLimJJbd3nhE9Wm4QzpuSiNE++M2oIuhf8Xiy2zXbDbrcTfhV6CKjP5pXElhQg0EdI+UNH\ntOoVpx7hf+gaOtDvWpjvWxfwAZi2+zADYSMb5kDTT3PjA227p6rWbLYL6n2DMZr5fMKb1y9Yba5R\nqmZUFDhrWa2WrG7eoVzLb34zQ3l4/fo1+51wsbx985Jf/fLvMUpRVTX7as9/+c//6U73/qgF+Q+5\n7ginH/j5w0WgOgffZDolLyQ2+15HSrcYH+Yseej143a0Npg8R2eaoEWwK2PAaFwbwDtUaNlvd5ii\npMhzJqMRl2fnjMuS5c0a7y02OGrbst/taVsnpnwMG0x1M6Vf3Wjc6UsWQ8H6osvHQvyOE+IHXIeH\nwXEEyR/qOo6RT5r/QAEnzXWISqdgwQJZLFdbrHXsdg111VDVLVXTyrzEQy7Psug8FPtawlZLskxT\nloX4WLQhzwtxdBUG7xXBa8BQlqWE2XW0yBIWaLxYDllW0DZt1Np7hkrvA95JJFIKidRa/CtZZsTE\nDwOcOwygDYhauvChKH1XkKef6fvGZH3YaRrX4DtCq+A8QWla22LjwZ/G23uPMToeQgEdUky5QakY\nx+58DCoIUZMd7qeHdvPQx9LTxr7Xig/9Hh9aYcM2h38eqCyDaLUkuPu/Ywy+9SyXS54//w3/+Mv/\nl+urK+azOX/1F3/Ni+e/4+r6FS9f/Javv/ya/WbLb/7pV7TVDmUU//h3/x3lBUuv24bGOt6+fs6v\n/v5v416M8/l//7c7z/VHLcg/BH900MDR6+ngPE4IeNBkiv/vxEnc7dpIMk4WOSC6CbsH4+6F0f3q\n3vBZ7j0QtCIvck7Pz/He0dQ7glYoI5weXrW4ICRPdd2QB/HqZzoX4qxW2BDzwuC8Zb+vsF5glyyT\nlGhnfVepxzuHI9zprlY6bjA6IT4c4cPF/K8R4uHotT/8NfRf9K8d36+HmbqjKWpbznm2u1pC/ZyL\nkAVkSlhwTHSiSnxy6ByLSUAlegeltGTqKtAml8PUiwAsR0X0w5h4mEiEglDnpgxIADWgwE3wQ4oL\n91GIJzgslRVEoJeD9Sn/Pyzyobs2B7ugP9CBPMv7MQiiPacYbdXh814gG99r9SkJKASxdtq2QZUl\nJoRuzKwVOCpLRSsSrDLYToF7rOcP/H3/a2ow6/G3OwKEAe59rPQI7j2MflLxOYnwyHx+wuNHT3n2\n9AvevXnFenlFvVtSb9cE2zAZTdmt16xub9mv1yjfopTH1Vva1vZZuNqQFyMKkwmQpiDo+/fKH7Ug\nhw8L8/ddR8Rjg2V8uLmPX5ffRIiW5ajTTkOySdP3DmCBQ4084a7HwvuuOSd/ay2Y/Hx+Qt1UEvkQ\nT+HQWokscCF6uC3eR83Ktuy3e+p9RdM0jMZFR2KltUFpjclMx6iWZRqvFE4pcYxFk136pNGmjxXv\nIyCOoZR/7TWcg38bIX58Da2RXpu6e6gM15oIw3DA+d5DAYKRJtKw9F2tJKFFuSRoY/sd5mtQShNi\nO0WeUxR5hwenfhJxbRvD9JLZHnt5BzboMeUhU6AfzKMf+ER6bTvhvknY+yjIuwzeTAjCtNYxbl6+\nq7WWDeZD9OEcZph6er4XiUiSsXQurqn4fM5arq+vWK8XXF6eM53MyPOyg1kS/a26I7QZzNvHRYyl\n/SpPeKzlSTtq+HdyB6TD5EAD556lq1AaRuWEs/NH/PSLr3n5/HdsVjdsVre01Y4MmE8m7Ldb1qsV\nrm3JdSAzSuLLjaIO4lyezk559OgplxeP0NFkfEgW/tEL8vddcQ3e/176RR2/dvcLaWGlLyQhrLWY\nx0mQp4EcQhNBjsm4wOm09eFCuy+ape9hr8UVZUlZljhvZVNrRdNYWiuV57UW51drvdT5a1vq3VaC\nEZyntRaqICGIZUlXnyZIkoVSiNmtQRuPaiVmOmlVWimM1jFUqifB6p2Bd7XbH3nGcs8u+De5hgdn\n4syxsaBwCA/NzUELd55RhKDr5lrpXgs2maGgoGmi0Ge4FmVdqKidKy+RUVnMdJSDIM5aZ33RCdnD\ntdf/nayMEMQCOIbOQpB4cpPCaA+eIwzYK6MgV70gN0awbAmd85EnRfoYEMtVytcFUPH9I2xCDpcw\nOGjk28579vsdv/3tb/j9N7/lL//qL/jyp3/C+ZlQCAcf8MlJHRs7DCro5+h9V68MxkQo6PoeVbbB\ndCe/V7JQ+tdCP6Ai59Prg3vJbTSjYsbnn33Jn/3pn/P9899y9fYNbdOQFxnj0ZibdzfstluZ8yxn\nNM6Zjgt0lrHc7ljuKn7y1df8xV/8NX/2p38u0UbHYzu4Pokgf5AD5T2fv88p+Yfuj0xanOAQUEpT\njkryPMdoqdPY3f8Yu+tM9rhZB3HR7xcWPUxjneX6+h3OW0jajXN466IZ67GhRXuFtY62aXAiMQRm\nyTPKUUGWaWnjmHdcQeJlVZHA3g0iUZKgS5WRkvY6eMAjiOhHD/n/L1cnaFWf4AWHz3k/VPbhdlPR\nCGct3rmDg8J7L/UXjaYwfUKZaO79Id9p9MaIxtpVpOpJrIxRHYZ9LMyH8EVyHt7FeweaN4ft9ErL\n4UQqVAcZ+eiA9RFSCVESqpDaJ+6Z0G2HEALO9kJHnlv8BIl7RWspT9e2lv1uz3q1Yb1c0zxu6CVo\ngi36dodz8OGJ6jVv6adoM3IwpkZ7fPYALA1p7Bwo4Uk/AFuSdqwOhEI3gqBR5JydXbJcvOHNm+8Z\nT0sm07H4wYqS2fkF84tzqRZU76g2W7Iso7FCK/zm7Tu0+TXr5YY8Znn7EPgv/8f/eedR/91o5A9B\nLO/3Zv/rLq0149GIosgHXvZ+vrRWZEZLuSYbK6W4tGEOT/GPiWzxwbHdreO3RRvJjWGU5wQUbWNp\nWylSYK3DW0vAoxFMO2lQWqsupTf1t4MSkkNJtismy0TDCEkzo3NuDhSQ7hl+LMz1qa+hUE/Qwof8\nFg+1M5AzuEECjlZa4v4h1nqVEMKhlQf0STpKRShLxznwJA4fmTdp2yTHap53mn9d15IdGQ413WEf\noY9WibcbvB/10qFCknDh9KfqhVlI/UvtDNez6nHikDRpn/IspMEkzIU1M94rHn7TyZSz03PGo2mM\nk04w0/17+4NzFdJD9IpVek3mLs77wJy//xgXx7O01O/9dHYNv9uNcRpHLQk8k8mcPC/Y7jdcXJxy\nfnnB/OScyWzH9OScJ48fcX1zxdtXL3j36oUwPyLfd86xuF3gG8+oKChGI/KiuLenn1yQP6QJ3Su0\nB4snDVj4Afb9+wVRwjL7v43WTMZjyqLotK3YOySpQaAOY2TziYJ0v3b3PitENmLCEaXkmIqb/fT8\nnLPTU5zzrFZrlosV+10VtbmIx0Ys1nuHc7bbZIIJ029EheCZgJSSU2RFLtmCznVt3K2zKWPzqWX4\njw3zHGqxCSdPAvHHHE4Hh3MY1G9VCQbxXeKUtfaAiwc626bLbjTG9LBLOpB1n02bRQK30WjEeDym\naRpub2/ZbDY4Z7sDKvZu8Dy903FIdtbh4QPoTDKUFX5Q4rDH0mNiVbIkOitHDhuVpC4DOGQwXsMM\n4RAECw5ItMx0OuXLL79mPp3z9OlT5vPTKPT7MntHtu8H5kV1a1tsi0PLuIdJ1MF4DEav63M6aEL3\nnX7uk2CX34cHjtzTGIMuxxhd4D3UdcX87Kc8/fxzTk8es9w0nJyc8D/+x7/mzZvX/OYfJuxvl+zr\nPR5HlmdcXl5iTE7Ttmjg5PSUi8eP7332Tw+txP+HwV8RgOIYAE8HbUf5OtAcus+Ew2G9e++heXZ3\nc3V3UhJ7PRqNYuiYJOUkbSooJcxtJuP0ZMx2W0n1DxWrX6seeTvu0xBZSxs1yzJyo7sj3cTwtfl8\nTlmOef36Dev1hqZpUUpI+U2hyUrTJYAYehPbpI0V1QexoJMmIk65PDNor3FkeK1om/aOGZ40qo/F\nI9Mz3RWOB4bre957+B4/xhoYwhCCB0cNUtNZID8O648C24nANhEeSevLZDEjMkb9JN6SLDNd9iik\nWP1eSVBKok+KIu94SLwPNDE5xLZSTcfFqBMfIvtmxOO9Ew5bHwIuJB5sRUBIr1CpkLgoHsOKTiFE\nOERH5sOQBJ5YeV45dIzGGRas8E7CEDNtmM5PmJ2cUZQjTMdR1Gv/Ad8rPEhy28XFJfPZjKIoyfIi\n4tgSqugOfBkPa869Dhbhk07gDi0oBR32HUBJPS4VQod3H6ybbl1EUX+gSAyDAAYyZTCPWa7Z7Fas\nNiuUyTg5u+D09JzMCDWtbRv2+x0nJ3OePHnK40fP2FQ79q6BzPDks885PTnHBM3bV68xeUFeju4d\ngU+vkQNdJezBi31ywNGHiVp4d93Vbo9Nyb6dw8aON/Bxq0qJxqujxjSYJojmmSIwLnOqfZ2+dXe1\nHWvogwNIa81oPOLkdM50NqFuGqEUJaYvK0PTtGy3O+q6IQTEXDeSfZqXBcpZrLOd3ddhvukAGZrP\nQNZxXUCIZj1x4/S46+GIPCzsPkYC3hmQD3zvQ+//8KuDBkJyvNH9+xGtdVDIIXmYrIsEGwjVrAU0\ni9sbNqs1o1HJ6dk5s/kJkj6voiDvhYQPoq0aY/pSg1GIt22Lc1aiWcIg2zPiEAm18dAxHIog7x9Y\n6bi/1CDtfYhLByQ+POHhSsfIFblVFsNTQwhoIpWzMeRlweT0hNFshs6Fv/1g1NRBSEEUnp7xaERZ\nlvEQ0aSMBR8iLh/etxqG+MvhDg5pPJPihwjtqt6w2a0oxzPKYkxpim5aDzt8ZAuEYXBmvMcdnUQ+\nI/m0luXqlvVmRTEqGI+nFOUIb8E5SQZ6/uI5WiluFre0zuHSYeoDTSPRalobmsayXK4O/HTD65MK\n8kMM7FA7Tlu5w5+ifAzHOy8tvoFpORQEhyZnfwdZiKpbkAf9QgnWOehfkmtquCniEaSVOG5cdHrF\nnSLFkEEsiy7ml/i9lBSRMZ+f8OzpUy4uT7m5WbDdbmnblszk7Pc1TdNS7WsR4pFkSArqCr9KMOAt\n2EZqiurOXA6dppK2kEawVqWEAEu0U4Xyh5K6z8Qbzlcawx8rZO8T0Gm277v+MML8UCv3ZJnC01tn\nH6ONH8M6XZRHnPfDG/Y4vNzX8vLFC777/e85OTnh53/6C8bjCT5SwwrXSNSSgydY28WM94RSAoWk\najIhuGhNJD10cIBEaSNLOI1vxNF1dJ7GaBVJ/YyCdZAun9rs4Z9YoxSJtEEJSYBWiqBA5xn5eMT4\n7BQzm+K0kb06cPqr430T5LdEA+CCl8ipzo8ROAibvGdOhnu6v89Q3A6tf8mQvV285rtXv+HRk6+4\nPP+MfHoZDywYxiyrTkCpfuUOFstw3RzLEBcs1u24XVyx3a2ZzCZSjzMSlbVNzWK5ZL1Zs1wu2CyX\n7DcrqfAVPMpkOB9YXi0Z5SXr1ZrG1oTvD/nZ0/WJa3b2cIlcPeiQnOCBQRklNRTM8Rs/wGE1TGa5\n7/Xh91Mmp4Thue61aJ0BIWKWI9LSIdZInM1nQl/qPdsYYlQUJT64TqvySBX0yXTC119/zenpHOsb\n2rZlv9/TNJbTkxFNa9nt9iitKExBZgzWObRGknxibK6zQjXaHTgqRguIWhK5oaN5HaSyu1Cc+kH2\n5sGoDEzw4wiW+8f2feN/1zr60HVXuB+2cY+pJu882GKXGRedbj7o936+v6+69/ehsB5uekm39130\nj9wrYH2gbluqppGkrjIX8zyRUykVDwGo66Z7rqIouyQjpVM8fN8/PbRCER5yomafadN9JzOGIjfk\nmSHkEVZCkWWxOk+so5lyD8pyxHQ6ZTwek2cZWZ5R5IXUiM3EWjDa0NqWvW1Z2obrdsdGeWoFiWxS\nRVjlvmlKY+i8P0BSVYSuXBrfwfgfRE2FI4EaNZeQMk4TxBlEiL9++w2/+eZv+d13f8dXzQalNfPJ\nCZqcpC12cFvXzZD++4g1IodU3dQsbt9wu7ilaVsuH52w2+1YrVZMxlOKouD8/IzLR5e8fK7xbUtT\n79huFygF0/mc2XjC+dkZJ7MTLs4v2GzXbHebe+//yaGV+67hfHcT12nD93y+G/w+9O8+YX0YMqgG\nDpweSuFImHcm2qBn4ug0XF6cc346p8gCVe0JIaduPXmex9hzMQ/LPOfs7BTvWvZVxW63xzqLMTkn\nJ2d88cVPKIqM28UVo1HBfl9gWy/aeNvQtk2HrSqlwDVieiJhiM578NJfo6XyO5FxLQRQwUfNKkNp\nLfBNSrsP4UEhrWIiiIShfVxx5fuuQ5jmh8AmD+MeD0M9D7efoJUUNtY7CX+4Izc5NV0XMtj3Sw8i\nSKRhw3g65+zyEVprGutZrDcUTWC3r2mt74R5woO987RtI/SvKCgk1V944TVGKylgPHCYJrrhJOhD\nCGTGdARc4/GI2WzMaDwi+KRxm3hQ9O346MAsi5LZbMYoFjrIjCHPc1nfsV2tFU3b8ma1ZP/uFc2q\nZkegRiCNNB/dOZc0X6JVQ+h2WLQb4j7vHa3Deb2DfnTv9e+G7l/S6BXW1qw3C37//Ff8/vmveHP9\ngunZY6bjM3JKnl58RllMOgumd14fLqcPL5PQZWavVzdUlfCHz2ZzNqs13nrCpUQ7TaYznj37TOLy\nNRAsq8UVCpiMx1xeXPDZ51/w+PKxkOZt12w263vv+ukFeaIZHSIj9wnhBxs4gkUOhAaHu/1Im0oa\n9rCdrtRq1P6VTlSefZaeMYbJZMzTp0958ugCb2tMNmI02rDc7KnrSjahMYxHIx5dnPHTL57hvVRp\nXy5X1G2L1jnzkzMeXz4C5anrLednZ5GzAW5uVvjgyDJi9l+MQEGKSAQXCBYxiY3GI4dIbjICAeda\nwWhjJiFaxeIQ4phVKRHkDgzVH1gH0Q4hOXgemo3he/fDKHcPgvfqOUcWWN/PTmu6M73vF8oSQqe7\ndrRWuEEd1vu/cxi6mLoiloztLLYQBZaOGq3zTgSXNpxfPMJkJdv9jsYF3l7dkhUV282G1kl1+dzn\nXXKN1kqKJwcRDIqcsiwij4uhKArKUUmRC2FXnuVS07EsMfHQF6FvuvdOTuZcXJ4xn89xtuc7KYqy\ng5201lRVjbVtl23cZzZHgasYOAc9tbO83W14t1qybhsmwdP4FAsS91hIk5V2mCQfeeJHdFKmiPst\nWoHe99r10XqRFP60NoerROGCxTnh/87zgn215s3bb/nm97/k9dsXNN5S7Te8fvUt25sds/9pRlGM\nBGqKa69zij68MrrPdosxBNpGSLOqaoP3UtZtNJry+tVLVqs1LgR2VcV4OmM6P+XRM7FGnK15/f13\nKGA6mXN++Yhnn3/O5599ASFQNxVVXd3bk09T6m2AFYf+1+EHgLgxH1bKDj58iLj0mNaB8zN9I4Sj\nz/fu1u6b0RJMpEgJUxecOuPs/IyiyAGJRPjs6WOm0xn2+Uu8b9hVDVVdMSoydJhyUhrKosDOS3Zn\nU6wX7VBnBavFO87Oz/jZV1/x8tX3LBdLttsNiUND6YGGEjwYwRF1ZsjynPFkAihWyxVFWXIyP+Hs\n/IzXb16xWCywweKbFoJFqxpnrQiMmOxBEBhGG432eqAF3b0egqeGY3//a+o9n/nQZlFHcjZZVoff\ne1/EUp9Mg/gRdHLgxWiNQT8+RjlP7aVCGyLgelzX2UQ0JpQKbWOpq4b1aov1DqUNJttRFAVnFxf8\nyc9/jncWozVlUVCWRcz0LRiPS+bzOWdn5zHkNacoik7ICkOl+GeyTA7xhEenKKuUiJMXuVS9GmRa\n9rzmknaf5wWZyQhBrAvJXk7KVJw7JZCONprVbsW7zZKb7YpWi5DXoedKCYQOMvIelElwh4yj857g\nRbFQJGEu9/FBHLfpLBjOTxeA1k1Ywj09V1ffc3X9ktXqip988QtaV/Pm+jv2tkabgpHW+Kal1jsy\ntaV2LTZ4snhod1r9UFE4WGd0Qke09riOXMtqfcVmc01RaMoyY7dXrFYbtjvxb+zblrpu2Wz3XN3e\nUlV76v2W/XoZLUbPYrEk/Ms3LBZrfve730GQYtXOO/6v//pf76zHTyLIq6rqaj4exCx32qFoI+Px\nmKIs7uDi77vuExeHZi732uVJiPc4XQrRyzGZ7rQ9WX0e2zbUTYVzJZPxCK0UZa6ZjjPK8pT1Nufq\n+gatwGhFkSnGRYZSGeMix4WA9WBdYL9Zgm+p92OWi1v2uy3BW7IsnvQaUCF68cVBafKM8XjMyekZ\nzjuqqkLwlQAqYJ1UHsEYcF6qrntPSoYIIFVYklGiVHSEadRBkYFBvO1ww7xXGA8jgkKnPd8/Ux8W\n4sdt9/DZQ/d/oLVus+lYz3KANweP80fr5J7rACP3oVvDQ6e5HBY94VXbOppmj3MtRZ4xykfkRUmW\nl4zHE7RSXJ6foYInM3LgF5E5Mc8NRZEzHo+ZTqddvcseShENMvHBHPsqengirvA4dX1axCDTND6b\nlnI+nSWS2unGWCf8GRzw6uaKlzfv2LctPjcSzgc9bDLUmkOIusMwSzVEUrEkiIcWeujW64Hcjpb7\n8TJo2prtfsHbd9/w8vXvuL55CcqD1qw275jOx1g/Z71cCgSJxYaGqt3TGI2t3gAAIABJREFU2BZj\nch5YsJ3AHr4wPFwkD8TSNFuaZodSnqIsRI6NxlKL0xfMTuYEG9ht97x79YamrbC2xrc1eZ51Y1dV\nWxa3sI+4+DAf4vj6JIJ8tVhS1RX7qqJt2+7o6zUbRZZnPHn6lPP8PGZ7fXijfkhXHBr9h54z1eFh\nioG815L0kxmNiaWqtAJrJSFjPCqYjkrO51P22w3NfsO40MxOz5ntJuz3O0x0YrWto9GN1OtTGq1E\nPWm9pdrtuL6+Yl9X7PY7dlVFkUvsr4smqNTYCt3mykzOZDLl0aNHvHv3lt12g3cWZ1u22w3rzRYb\nPNpkKO1RWuKLjTa4FriHSElHqCF42dxdseXBeCVfxN0ojnvmYxBVcH9c+cfovqmt/mBI3/+xceU+\nauY6OsJSAkrgMK76bh/UHUF5jJEzEFDBe5x3NE2NcxVZFriYnjA/PWM2OyErSvK8IM+kBJxRYHQi\n4ko4u7/3viEE2TuDv4eCd/h6+pkikQjDAynQH7YJDgkdwinYdsAH27WlgxYh7qF2jm/evOL7q3fi\n3OyHoRPAQx1oeHD0/DKCrXT9I0Z1pb4RD8fumWLoYkifhaBkXrf7Nd+/+h1vrn7H25vfcXX9kmI0\nJstLtvsl5xfnKCybxYIyz8iMwrma3X5NM6sYm0mvYR9BukKTMXyBgyXsg6dt9+z3W/b7DVkmkNl0\nNuP07IzG1pjM8OyzZ9AGrt68ZbtaxnDLQFCB0Vj8FVmRU5QZeaYwui/A8tCW+SSC/OU3z7ndLLhd\nLairGkiQho/aQkY5GlEUJacnp0gY9z0ZXgPnZa/Lcwf/7nyayYN90ERIkp3jUdJaEjOKZI7qGHJG\noKprXr58TV1VsXxWi4tMdbZtMAouz8+4vV3y7uoG37aMi5zpeMxsOqEsMzxQNS03ixU3qxW7quL8\n/FSgEl1RtS3BiQUgXCo6WgfisFtvtjQvXrBdr6n3NQpo9hVt1eCChIQFFHihHc0iMVdDHeOQ+7Jv\nSnb3gQMQEPw9ZpvKEA400qFj+AdYTeme8ZuDsX9YMB8L1h8jxO/eP2rkUaOWAsG+sxbvu+7TeIdx\n5J0VErE5bRR5DudnU7KsoBzNGE9mlKOJwCs664S2HpSlS2FbauAnODYkBZLtGQ7T1Ycr+oOfw2IO\nw+zM4TMMLQv5OxZx9q7nggkBpxWrtuLlesHz5Q3LpsYr1YU86uhbSpRUPtLpJhPQOx+zXvt96oMX\nlj96Dbdfo/36SttVEUQjj2O1rzdc3b7kt9/+is32Ncv1mtWupnYNbXDcLq5o2h37fQUKxuOx7L/b\n16w3NzSnzwijdH/VWQMHS+aeNUSUXdV+y4sX/8Kvf/n/sF694dGjc1bLJc57bq6vWa/XoALOWUZZ\ngbUNpycz2jandQW2rWmqnUC6ZUE5GTEaTSiLkZy/HRx69/okgny7XLHdrNmsV9R1TYom6WKrs4ym\nbWmaWjDheB2I2nvB9eElds+HSnbe1fR6fggTS6hdXJzz7OkTjIa6aSVBZ1/RtI7dvmGzqxjlOSYv\nCBZsZJq7vDinaRyb9YaXb2/IlGJUFsxmEy4uTsjznKa1XC9WLLeiQY+tk8lWCpXlKFq8kwWdNGTB\nNaGNfWnrmuAi/7UHYlFb0TAd3kd0RkWzWSv5l3DPQIRWhIol6KOSX0rda2r+Ya/7oJY//D1D4EBo\nAVEjlM17mO5+Ty+P3j8W+kMITqVh1p6yKCWMrxQFJc9yEXRJ4HWWUZ8QktpTsX9JSXHOSyxy23aw\nzhAKS3ALHJrjIQzXuGCxQ1rZHsboPx+8CHFrLW3TSN1W52iN4l2945+v33BV7ahUIFMSTZNi1YfD\n+JAjXawhqRCUHJ9djH4IQhnQPUwPvaRRTv303nN1/Zq31y+o7IblZs2+dYwmp6x3W2xbc7N8x+2y\nJXiNViU3t9fsqobFesf3L79hWp4yyqeMypkUC/nQ+gud7RKfSVNkRSzJ1lCWBdootMk5Pz1lu11R\n1RVNVZOVEILDZArrQHkZs7ZtIEhlJ+OdPHJmojLq8XcgRbk+iSD3tkUFH6uZ6CioZCA6rbkzTwMh\nJr/04YO9nZVO7BAdNzqao847AhJyl5Ic0uFNamXIXH8IvAA9R/izp0/5+c9+xmQ8YrFasViuqFsX\nw8wMdeOYTqZkRlE7S1s1FEXOdHbC6ckJtnXcLhZsW8tqX7GqaigyxmVJ07QsN1sa58jLgtbLwnXa\nUIxGUO/x+223YeUZDQEPcUMrtBQVUJosH1GWUmJMTLydEGgNnXMhbg+t6et2ycGFcR23dBzgblSO\nY/bvi7//Idd9AvNuU0Nt9GPuc9/mO/ye912cjqyNmI2XsgjhLpTxUL+lEIA7el9+ynkpiS5GBcFk\ng4fgCN5FoUWkDdCyUb0nBPFnEGJYmhKKYUniEk22bdvoazo84OGQV+W+foFYmz7mEvjgoiXi6dgS\nE7ujs5L7YFvqfUXdtLTe0ZSGN+2eb27esfWeYDJ0iNQQUSnoraw0hzE0BckENZkSoRUhC6NSmGIU\n4l1mZ+hghY65I/Sp98EHWme5uXnD7fIduoBdW2OD5vzknNvFgvXmhqq6Zre5Jc9GzGdP+P13v6e1\nHh/g229/Q5lNGI/mPHv8FVqPZfwfWAfDV5JVnxcljx495fTkHKh48vQpq9UapTQ//eILbm+vaZuG\nTGuh82hq2aNVJVQPrmW72eK9pbAt3uTovMTkpTz3HQ6k/vo0XCs50EISyGm6RdD2qbUhiMZTVw11\n1AaG5iQhYNu9OCVLEWAmM/jguLm5Ictyzs4vKTKJn75zdZrZ8FztBZh3jnpf8fjykv/hP/w5s9mI\nf/zVr3l3dUUWF1xT11xdX5Nlwp/w8tVr2qYWVrfZlNl8zuMnj3jy9BF1VYtTdFRQjgy7ase62pCX\nOYUuGY1HPHr6BBsCtXM8evSE5fU1716/otrvCB68Fc5rozTKKHSsA6kV7HZ7zi8fcXH5mNlsxquX\nz2ltQ11XgBA4NdaKxhcXqY5ZqASxhGhbXGuBlNKeDpBDwfBQkgw8DLm8P2EoOTEPD4f+K/dp7Hda\n4a4g7w//YYanc17qshoRPJ5EIzsoZXanL4G+/qRciac7vd9Hxjgpzaekcr1rLY2u8Y2Vs3Mk/Q2I\nwpBpQxcF2ZXVCwQv/UuWpbMO65yENqpIZtnhzbIvmqbpDm1rLU3T0DTClti2beRjd3HMhRN8X1U0\ndXPwmSGckir52BBwRmGenFNNSzZ4nJKkIxerJ4l1Myi+oZTgzT7SDySnZtLJvMN7i/AbxXF1jnwo\nrAMx9p1B/eNYGo+A0przswuW2ze8fPGdKHZasdttefnqBdvtAqMtTVXTaEfbXFPtG8rRiPn8lLdv\nX1DkY0ajORenTynzcTxzese/T2sp/uhWgZw+GJVRFjNGozFVXWAiVKdUQGe6O2Bta7m6veH2+orF\n7TUOKIqC8aikqWratqaqa1o0DoW1XqKA3mMhfJrwwxiS3SXgpFOWobebblFuN1veXV2x3W5RkcWA\nICFLzf6K4C15MWE6O0XpQF1vWG9rxtM5T59+xmwyYTKZRW6FojM9h7p4LzDiL6lYQ1OTaxiXhkx5\nXFPT1jWZ0Tgni3u/rbi9XeK9Z7Fc46yEUu3qhqppmU4nTCeSBToZj5lMR+QF5FuD9Zbp3NC0NmZb\nWkFHomNVdYtdxsQYRVlKBRVrHVVdiYkcpDTZvtqzWi9pmorNZk3T1PTRA70gUlHL00lYeVlMCiJU\n09frHJI6fcz1oSzPj/new20cAGwf0+rB59ORnUI5lcq6iu5ZnrOvGvygItDwCoEu1jodPNa6A17z\ndEdxEjsUHhUC1jYRNjEYAG9pY1p6IHKWaMlXMEpRVzVVVbHf9xFezvtYUFvgDRvLgqXwwT4css/W\nTdp72zZRQKdoMRdLAEp19rquqWtRlpyzneWWNCyFwquAGhVk53O0rbFO08bwF6N6AatEA+t1oqPp\nGCoGIQSurq+5vX7HeFpydnbBdHbSved8oG0DQUVrKcIrSgW09vJ+U7Or1ixur1ne3rC4vmZXbyWT\nWilaW9E0FcE3uKZF4anrDc56tDbRt6Vomloc0wfZpGrw22EYbBg+FABSy1VCS6VwtlAURygpM0wm\nE87OzhiPRzjb8ubNK3SeM53NefLokt+vV9i2kWSs6YwvPvuczz77ibBhpnqB91yfRpB3Cz5OJglG\ncRDrFSaNu2karq6v+Oabb7i5uYkx3WKSeW+p17/HtVu0HjGdX+BDzWb9FpWfMJtfsLh+yfnJKecX\nTzm//JyTs3PyPEe0mEM8jg4rlE1b7XfU+x1tvcPWW3brW+r9FpylyEtqb2mto3aem9sF3nuqqu2c\nMa1zVHXNar1mPh3z+PIRo7IUnvNxicoEGXROs1qvWa4rNptVDBtUrBfXVNsNzrYdZq21ZjwZk5uM\npm2o27rDSp1zrJa3bLZrlFK0TdUVPVBp8asQzXTR5pRSndJhjMYnEz2IZirxyYcFKoZzmK6HcOWP\nEepD4X0szO9+7n1t9WZ8//2jBKH4ESmSIIIqxVYrrSP+bOncwKG3Fvq2+igCEXxH0IpW5HmOV44Q\n+Wxc29A2FTgFbc0+y1g3rayhSB2ss4w8KyjzEavFmpurG67fXlFVNU3TYG2LbR2tFTKldG8RzKGj\nID7+lwR3qoqUxlAykHOMMZ3wPiQBo3O2KqXRRUYxLsjPZrTjgjYzByPefct5aCyUA+s29PMw/I4L\nntevX/PPv/k1jx+f87Ofa6azeWROVNEXFHAqljr0EILFhxZoqKqa9XrB1c1LXr/8Z169+YbF7Rua\nYEEHMqNBOYLy7Pf7WIIvoJxFIfH3bdMwno4o8pKiHPfW4ZGFFw6fcmAaDK3O9HyxgEYsSL2v9njv\nGY3HPHnyBP3sKQTP8+++pZhOePz0KV9+/hNev/iOEBwnJ2c8unjEVz/9ij/7s/9AUY4OyNWOr0+D\nkQ9MJhVNSeeEY2RUjjpK0J6cPjk5ROJIRIoIpSKzeL/H+xrfeNpmjV1/z8nFn9BuWr65+obX5Zj5\n2edcPPk5P/3yZxTlSLQU6+RnI7SgLgbch5jUEbwj2JrdZkVb76i2awqlmI/HYAyNtVgn7TRtHTUX\nwTu1VmSRlMjWnttmw2q559XkirOLE778+hlZpmnqlsVyy2a7o27rTn903lIt191mNVpHn6SiLArO\nz87wwVM1NbvdHhc1LDRdqJjRiiym5bdNS8CiQ0ycTgkawZMy8OqqwraxKC9EDf5wHn6Itv1QSNzw\n/eO/j6GYH+tjfW9fo5meakiORyWjUYl3no3Z0mhNZsR34zp+lvtElgjP5KdJB63WkspuQ4sL4tRr\nmz3Vbku9lzHeVBXf3S5Ye0elPF4pijzndH7KF09/wupmzduXb3jx22+xdUri8nHOonXVHS6HB9yx\ng/MhmEq08xTeeAQNDcZNLEMvTKCTCerkhDYztFHhMTpuZhQuVq5q6wZmMmbOe5qmQcJmswhlyX52\n1rFeb3n79hpjFJ9/0YpfyxiyvMDoHIKmaYSLxLmG9XrBYnHF9fUrXr3+ntdvnvP6zXdU21tcqMhK\nxcnlJSY3rDYb9rsNzX6PbVtG+ZSymJCZkuubd3jXUhQZuZtSjsecn5+Tmfzg4E45Cz5axtDzENG9\nP9DWo3Vc1w27fcViccs//vJXbDYbxpMx2/2ezAjv0XQ+5+Tigul0jrWeUTHBaM1sNkMrzeJ2wXff\nPufy8ZOO4ve+65MIcrevCNaSuFOcs2w2G75/8YLHjx9zaR5hnef6+gZQ3C6WtE2KmQ3RvFCAiSLI\nCh4ZSpRv0LYiC47W19hqyb7dABmOGftKsuqcdbTOYVuHtS5ixtJ0qjBuVGAy0ixXt+y2G1TwjMqc\n0ahkWwtfiU1aUAidQ8oY4WYutIRfWe+pWkvjG4IKFFXBcr0mM4HdbkvbSEbfdDxjMp1EH6Ql2BYf\nCiTbSxJXssxQ5obMKCBjMh3H0nCeoIPEnQ8EaKpKnuLDoxdKxtEPU/SVOL1cj21KNukAMrhHOL5P\nUH/s1Ud6HAv3PploqEl+uL1hf4ZaUy/QksaV5zmTyYjxqKSuGqnIVOSUI3FE162lSYdb15fQ/bxX\ni1UpOkgsmVQlqG1bNts13jv2dcN2u2HhPTsF1iiytmHjA1uvcXVgay2N0dSNxVVVTOhKIzN83rvj\n8vBhe3hQHls/h5ZHB/+ilaaYz8hP57RFjuteT+QVMqhGK3IdS9zFA+LAkks9EK0EYwynp2d89vlP\nuLw8ZTyegTJxugLOWnbbJe/eveTtm+es1ze8ffuKq6vXLBY3LBZXLBY3rFa3WFujtCcvMzbbhmJU\n4HxD3W5oW1F2HC1tqLFKao8aU1CWE7K8oKp2XF+/5ctnNaNi1O9rnaG16Q5+gELlvRgaLKrgA846\nNpst3794wXqzFoXPWpRWbDcbfv3rX2MUrGOf97sN1wE2twvqZh+pPLY0DuracXuzYjx9ETnsA//1\nP/+nO7P6SQR5u97gdQ/dOy+lq5a3t8ymU5y1tM7z5s0bNusdVVNTVXU86cSM1UqjSMVmPSE0oqWj\nMEjCgFaQmYCmwbma/W7H7eI7nItwipKU4eBAaS3EVFpMIUmXhmaas91V1K3F+STwoKoamlacY72u\npiKPtGjjudJkWsuEuBCdOYosNzS2oW5qqmrHqJxxPjlhNjuV7C+jULSEdhc3m4nc0iKUs0yjgqJq\n2hj5Y3C5JljXkVAH7wlKd2Ze0hZVrGY+1B6SaZTy51T3BhzHKA+v+zTo498fcpLeFTS9kD2OUPkR\ncPud+8W/DmA9k2VMZ2MhkipydAhMxyVFnjGdTdhXDdt9RaASqy2kmfadwDusb5rGVQ0EropCAPZV\nw3K9oSwNJpd6sKax+ADWaLwWR9jq+prCjNCZprw4xdYNvmnA+QGnd28d3HfI3e9rSIfZEH5Kn08O\n27twgdIKXeQUp3PMyZydUvj4xb66vThbMwyFEmFuohBXkeArdTHJP6UU2mQ8ffqMPM8ZT8bMT84B\nTQgOa1u2m1tWy4rf/fYf+OabX3J19YrXb77n5uaapm4in4rDRfI4H2SMVuua0SinLDXQgHagoQ01\nbePwUanJ8xF5Pib4wGJ5w/evvuXPv/5LsC1VvSNoxWR8wng0wzmF8yJjIBtg6F3AZpxxhW1brq+v\nqZuGvCg4Oz/Htg03Nzc8f/4cZxuaakdb7VBGy4EVFHVTxSi9gFc5UNE0gbdvryPP0h8RjW2z3eLK\nEjKh8cxMxvnZGX/9V3/JaDwmLwqsD9ze3rK4XREIGKNwrmW33TCbzyVI3gs3hBhp0fxVsRrKQGAE\nXCR5gDw3kvoO6FyjVAYYGutoWkttbczG1Fjv2Owt2eiU0ewxV4t/4sWbW65vVtTWEfNQERNL3NjJ\nISIhVDElXgWSFz/PMqaTCbPpFOsNSgc+f/oFP/v6F3z15c9QykBweLuj3r5DIY7TppECBTrLKMox\nv/3td/zTb7/h+vpKNPIowDXJCSchmB3/RjKZVVp20u+h40lFLeh90Ml9GPkwgeh91/shlj+E4E7P\nk35X3clwbFWYTKyZJ08ecXI6pswMk1Lqs1pryfKMunEsNzv89YKN2+ODHfQvdIfc8UEnTjov0SVO\nCmevt3tev73lzet3PHp8xsnFKacnc5brHaFucQjeHCILYhUETivOpmTbLb6paVMafhytYVz40Yge\nje3w9UNhfgxfdWl3Ax5xnWWUJzP0yRQ/LmkHLXjB6cSiDQ5lgboRq/tESjp0HOYRkpDbCSSlFFxc\nnnN2diqOQqUlOkVBtV1wdfUtf/8Pv+G7b7/h7bvXbHcb6ro6TGiL8+BCjDsPgd1mS71X5JliOiko\nygyda1wbcKHFeyijw3G9WLCrKh41LZdnl7x79zsWNzc8//5bpmdnfP3Vn/GTz3+OVmOMGZNnI/rj\nSKSPrC0Zy5OTGc+ePeHkbEbTtuRFwZ/+4k8pi4LNesWzJ0+4vb3i9fff8/r7is+ffs7F5WMybfjV\n3/8tbVtxfnnJT77+BZ99/hVnZ49YLG5Zbdbsqt29K//TCPK2IWQZwWSyZpQmzzLyyQSdxde07rBq\noHMsrTcbKUKal8SgMRFS0QzyIcIL3smmgEj+34qDw2g0GqMMWaFBGxqr2Oxa6qYB75nkeQffOK+p\nG89iXfPmZs1yU1G1TnDKbgPEFT9IsHHOUwVH4xw2RG3Bh1g1vOLscho5LaTSz2Qy4eL8AoImeIdr\nCyo2KNWgFeyNB7QQH0UGPOe8WCpKNn1KWw6IFpVK01lr7zhqBGdN+LgIO0MsLqAli1Xw3w/N5lDw\n3xXUHwO99NDJv+5Kh1JK9T6Ohe8/A7PZmIuLU87OZ0xHOZnSeBMwWgtPTQiYzFE1bcfL0qeQ9882\n/Ne1r/sq9CRHqdIoY7BBoXTBaDRDjxQblbHb7GitJH8E3deq9CiszsjO5oTW4SqxFFN2310fwMcO\n4iHW32v0SRlJYxUtzHFB+fgMPy1pM1kvKn5ORSpkDZQ6wy23NPkWF4ucJBhLa9MpCX2Qg4yXMYbM\n5EDyn4mZ29Z7bq7e8Jtf/x1v370TuKFt8ImCmT78kJDsyZQv4cXiNmI1OBcoRgWmkHh951yXjFjt\nK2HBbGv2uwX/+Kv/zn63Zb1b05qK3/6+5t31az57+iWPLn5KMX9Kl5CS5lYFGtuyXN6wWN6wXCxw\nwVJXNdY53r59zXg0wjZyDBqTMZlMOD8/ZzQadbLg7OIc5xomszkmM1hnxVEa/MBqvnt9GmjFOpT3\nfaeiJghIJIFSiNDKhX3Nh27g0sKQSyZ9WDDYByG09ykrKgpV6yzaW/K8xGhDpgy5EROxVp5t01A1\nlkwpxlnM9pMaKKw3O95e33Kz3LCvbTSXxfwjxbR3mq70T/ogJFc+ZesFqOuW1WrN+X6GziROt20a\nbIp8CKBiIpOJLIcKj1EORcAowYJUTEbyTnhURGZI8QijYnx4kCpAgSBjqWXBJadN8IoslwxD7z22\nbQGLN2aQtn1fZuBw/HvzvJ/Mo0/9AXD0j716qOD+Pisl/DlnZydcXp4xnY4Ezw0SJ5yYBFvrsKFF\nx7FJyoVS4J3qhPcQWklyvkt/jwLdeyhHJSdnp5zv98xOTplMTphmhlpn1Dpjt9xQq4DXoIysu4Cm\nVUqw6dbTbnaw3YsFlgCWH+g/OBotemwttTGEVhQ6z8mmE/KLE/ajjFZLAloYfEcRyFCMgqJebKjN\nWIRt8meFWB/V0+H8gaSkRUdr4p+M+0kBtm3ZbTZcvX3NarWidRK54kPU5onRZtx1isftRvCwDw3O\ngwuascpQRgbNti22tRhTczI/QYdAW+95/eY5ymhMnlHbHcvXC96+e8V4bDg9OUOpy95yAVL0inOW\n7W7FYnnL7eIWrwJ1XePrHd98+y+M8gIVJCO7roUmYDqbYJ1lvV1DCJSjEsjRRrPdbbD+FfntLRAE\nim2ae2fyE2nkLVk0OSHisCGgghRxJXIyZ7mc1JJx5hiNRjx9+rSLdw6EmOkmDsvgFQGD95q2K0Ir\n0QnKewieIs8oshKNJqgWhXA/6zxHBwl9NCZDB9stmvV6yc3tNU0jdRK1UmRxww/DqlDxIDIxXMvk\nEsoWAkRkzVnHdrvj5vqGYgQoCVGUhI2GtnFkkUQpL8dkKkMrT+tAY9AmJ6gMYwpMNkKTS59j4Yg8\nL9E6I/jAfl/RtuJUPrs4pygKrLMUZRkhHMXTJ0/IMsNmveG7b59ze7ug5W4c9aHmOfyXBElKyT7E\nYIffh4fglUMN8cde/SF/FHKY7qIgy3Lm8xkX5+ecnZyQx+QqvMBzShs0Ch3AeYEzrOvLqulo6aRn\nkmQbcXznuVDIBu8lyiQ6xlCBk9MZo0nBk2eP0UqTaYneoCjxecmictzaRiJYtOnw14CCUYE5mTF6\ndMHeXknbwQ9G+YeM21Cbl3vcHSj5oQPkkzHmdEY7H9EWBgdkARyhK4eYaUPeevS2plmsqctpZFwU\ni0SnA87E7FQr+RIhWIKJpe7UkB9G/DseSYSy3mFdSmRKkxzvH9KhQPdcaS2kh7HW40OL85IpW5Q5\nJssijYDs9yIr0EqSdr788it0XrCr9ry5eodznpP5mLOLU0ajUtgbQ2+dqaAJOIw2TCcTsiyjHJU8\ne/aUqt6zWN6yXN6w9lG2OUdrG5q6om32mHov/iwfwFm08uIfqXYUxYjc5BAk0uchy/WTCPL9fs94\nNKZgkJSitQgqrWUSg5hceZ6htaVtRXNdLBecnJwyGo0B8C5gW09TW6zXBHKCKmjbgDIBpTKs9YTW\nUQQxabI8Ax+oaktdt+xaDz7yU8c6ngpJnVZB2A7rao/zbRfa5+LhI3sh2aNR2CElsHRmcLXviIbk\nYwG8w7sWFXJMJuFVmRFe8aIIsU6jo6rF3EyJJFpnGF3glMSnaqUiw17SyFuUMhgTrYKYEOJ9YLVc\nYbIMF3wX32qynM8/+4zpZNpVeE/p3tbaeyGPYUz14XWonQ8jUeQZDn8efHOw6Ybt/djr8B694MpM\nzmw65dmTp5yfnDIZjch0TJdSgEnCBKz3rLc71tstTWv7/qf4r8ABRi4OZBUtpayzjkT4G7JcobOc\nvBgjnhTR6jWKvdOM/CuySCssCWHJh2FwKMy4pLg4x+4qvG0JddU96A9PwDoWCP1BOoRVdJaTnc4w\np3OsyehBkcOZKnWGqresXr2h3mxwF61wjEdD2h/BNRCtG4aMh0P4KibWqMjDHySTNaSM18Feu/Nk\nR6+lP8Xy9ey3YiGMpxNykyPVfBqWYSVhktZRlCOm8xNa69guV4zHEzKlePn9c3xdUp8oRvlO9oo2\nFCYn4GmaLVW1IQQXmTU9BhjlBbP5hO1yzX63o97v2e3XwquiAtO5Ji9GYBSr5RrvGvJSMtTbuiIE\nTdukxK77k9U+EdeKVHyX8CQhDtJBk8UT0qNQrtfwxGnosbZltVoYpQf9AAAgAElEQVRSlmOKYiTa\nUdS45dRVSOhShnX+/2PuPbskOY403cdFqBQlWwAgCHJmODu7Z+895/7/P7K7owESBFqUSB3CxX4w\n94jIquoGCO5e0HEa3ZWZFRnhwsRrZq9hMCgM3kG0ccYcJva88yGRTjmUqrDKUmhhGbSIpgWoqlQw\nkjAqKSZJFukouSZoRWtNUUpl1+AG+X4lx1cI/iVPuSxLqqqmLhfSzbuqCVb6MkqTVkbh6IaAMgGj\nIyGFWTP/lffSYV3ywDRmxMYHIaP3kWG7I8dkQbJ+iqLk8eER7xxtK+3nMmZpErwijNPnIwcTnwv0\nl6CW6Xc+L2ueCvHs9v/1QyFCoq4rLi8uePPqlvVqSWEtSgvvSVRReLZDZAiBUzew2R3YHo4SZEy4\ntcRjJqxyxGNDfvYszE2CIOTfWgmFg05WqUL6eFoMi6LD9h7jBrTVBGvHOIfSGh9BFRZ7scRerfF9\nh++7FI/5pXP0kueUE4KlH6xZ1OjLFayX+GRWnwEvSlNoRekjbndi9+4DnHopqgp5np5/rVIqVSma\n88A0M0GvjMQX1ATDTEyIf+lzJqXrEJoMraX4x5ZEH+m7nq7rOLUnTm2LsZbLy2u0Mjw+fICrK/ZF\nwX67Y/fQ8/pmR2lXwh1vLYtGUoadbzkeN7TdnsH1HPY7fN9TaM16scIfezpO+N7R7g/0Q4cpDKvl\nmspKm76HrqPrjjgnufTOOmJUtO3A8XiiPf0NdQhaVQsKW44nXtLjdOo1Oe3NoRcMq+3axAtuqeta\nGsSqiS/bWkthrXSzD57oHTpZAz4kFC8IVu4Hj1ceDRgrzRm0CexOUvDQ1BUXq5LKCEoZI3zxxZe8\nf/+B//E//xdtO4ykS3JYQTGnAVVUZcGiaSjrmlN7ZOhjCiKplGZV0zQL1qs1y+Wa25tb6nrB0IcR\nO4th4Hg8UiiPMdB1JxxKNLS2BN9iLTR1xan1KZc8EsJAjJ7gpahIa7DGznp7TniidwP//u//hjaK\nEBxukIMigVQzkio9Dejl5/wUhAEv4enz8f8PXj7h1uL1XawXvHp1ycVFQ1lplM759okfnsjgIn0/\nsNsf2e72HI9tojWY4gUZw4WJ/dA5R1mW4/eGMOXz61QgFkelnyzolLuqfIBjB30LpcGUBd7qMZSH\nUjgjv19cXUDXM2z3hASx/KUK73kK6KQ0MwioC0txewkXS1xd4FQ2RuRTWkFlDKuygvcPDHePuO0B\njRLDKkzV0mcpqjNLeowljIbBbJ/lIqsnweVfNCYnihgCQ9dz1Idp7rwXlsIY6bsj3/7Hv2NNgVGa\nyMDD3Xvev/uBslrx7oePNPX/whpLqTVNJcbBoqmwFgbX8fj4Z7pTi4mBw36H1prjocXamtXqEnyk\nb08jOZ2OEROhUBqDAa9wnac/DVQLS1HWLBqLQidWxufjVxHk1eg2TdZb23b8+eN7FosFy+UaTDnd\npJHbVFpRlfXYQzCEgNKSvhjLQqoffQAGtA4oJYFQo8FYYWSL0UuQMnElT25dxAeHcxrnwEThO4kB\nLtYrfvvNN/zX//b/8O0fv+f+8ZHoBghSgu18P2USpBL6q+tLlqslx6PwnYQQqIqS129u+c3XXxBj\nR/Cew35DYUqOhz1+GARD05kjGiCiYhTbTknnJK/jyC43DAN+kMCutSZZjI7gFdKeWbwAPVo3zJoW\nRE6pOawcToNWdmzym924lwT554THTx+4l97/PyPcJwhn+g6hNai5ulxzdbGkKJQwDnKO2edWbadT\nx/39I6dTlwpAnraam54gQytzoSQpn6IMfdSQGjYo9Oy7VMoskmwhHSJh3xIsmGVNVIUo/wgxkQZ6\nBaapBC+/vqLbbHFtl9w2fpY8fzlGkecCQKGsRS8b1M0FoSkJWvwyle6HkLpnoWjQbO42nO4eid5L\n1k0UZs580RH6GWMpiikoPHlfudYhjoZSaj847tdfOmYQXxDl23cdRgtrqFKJ19w7fC/9RikqVGGJ\nOIY+0p0UVVFRmciq0pSFJEtUNmI5gZN6ABU8cejpj0ce+p7oPVVd47suGawRXWiWFytsaRi8Q5mC\ngNAVlFUJLMFoISJzgRA76bGqNcvl6sUn/FUEeZFwQDcLnPXDwIePd1xfB4qyodJlcvM1Wpf44GbW\nkCxqPkDGGmKwGA2S3d2jlUNMW4cxEWNiagwhTGtKm1ncHSJhJOhxfcAUauxCX1UVr1+/5fd/+Cd6\ns0B//IhyHb490B22bLcb8mbRoyC/4Prmio8f33M8HgghslqvuLm55tWrW7abjxyOGzrXU9pKOF36\ngSG51yIQ9Iira4Q3wlpDVGCsxmgpJPAhJJddgi5jAHaMAIlFmdVWJuPKWRdAasSsQAtkk9uIvZz9\nMVmnf/n4vyfEP3V9aw2rRcNq2bCoS+n2xFyQ56IyySra7088Pm7puj4948vCbwrOPRGESSBppVIF\npAhxEeRxhFYgErTCKCPZWaeOED3mUlJTo532KGlNY2HQqwXV7TWu7wmDIzhR2Dn497Nm6cl65nlQ\nWqHrGrNewdWSUBaEFLTMsxaB0hjKCOxPtPePtFvJuiCSMqIm2oKn8zZ6SToyV5K5HwE6bd1ROU6w\nyy+2ymcj+IDD0ZueqrRYq1BBGAY1ERUlAFpghNTMDYS+RbmWxkSuFgXLZoHVQhYmAJqTgHkIaOcJ\nfUfXtZIUoaDdbkArqS0YhHSPskQ70dKuH0A7Cm1QRSWfjY7okrHoImVRUVfFi8/0qwhyndOH8sKn\nRSuqWoJ/SWMbrSisZBH0feDQO3bbHXW9oChLIKa8Z53w4iDEj7FHkdN0BhQOrb2wpXnHwIDXgVho\nVGnQgDu2uIDQ00aFikJ671VAY8S9uXrDF39Ysv6mpVae0/2PfPzTt5z+dU/s5VmslsKSq4sL3ry5\n5bvvFuwPFSpq3ry+oalLtpt7uv4IccDqQG3Fte/6js12y2LZsFzWIpyjIhOEKSzGSPu3whaUZYXV\nlkENo9soRrxi1JEjR00Y4QFJmZTDYRQpTc4krFfIhKyWJgETnMBficl+fszd618+JqggX09rKQJb\nrhZUZSE2cYijRTj17BRulf3uyGaz5Xg4iZKLT8nCnnxjnPDbeUZPmKUljt1yEiYsgjwraKFzKIyV\n3qrtCe53mMISqxKfrEUVFSp1pldVRfnqhn5/JHQDeC8ZN6gznfO5uRzRcHX2ouDe6wX2+gLfVARj\niTkhIUqqYTSRZdNQHjq23/2Z9nGH751sLaSDlg8hhXTVCEVl2yIywakwzdm0enFcw09VDp/d9LP1\n//yIxFRu7wlBkiysDxIf0wY3eKxxYjQFD0PA9Z42ROJqRX19yUWxQMU45vUbLbQCw+Cxg6P0ITEf\nRtzhwN3mcfaEjDn2AKHvccm4NYMnDAO98ygrhVTaGEqlUc4T/enFZ/p1uFaGDkLKikjCpSorvvry\nK+kOnvi1++6E744U2hKVpmka3n7xBU2zSME4JwdRSzd0CZOmajIlQUOjDdGkLvGAP3XEmFpMLWuc\nixw7ibL7IeCHnhhEgHsCAwFTrHDOcoga1SxYLRrWNvLlwnIVBrZ//p5Hv6d1Dk+gGzq8H6gLw6v1\nkmq4pSlrXr+6YbmsUCqw3fecfEdwkUtTsTDSuXy5XFGWNj0DZ1a0NB7wBMAqzdJYboyh1ZagAiZA\n5lKJesI0VdTJPY9jsCn9M/XpzNajiBYAl/4ciPh81sbxf0eYw19vdU2ViuLGlmUp7fUWQkbkBuGl\nKcoCWxZgxGIeBs/ucOLuYcNms0spr9M1X7jTFGgPzHPus2WSSd9CiBijU0s3Mz6jIlmtUax1nVIO\nQ9/TP2woFxW6qlDWjti6yr1FldQ/VNcX0Pecug78VDz3M2Y5yb+Yf0rX19i6xq6XmPWCQcl3KQQ/\nVlG4VIwtMYPDbXbsfviAOwm8k5BAcjpxnM0H09eNtzAZBpnnIo4fi5/ohPPJ5xnH538ve/SRSHAe\nbS0LDEulaYDSSxGg7iLKDzgcCjF4quFIzw982JzYVpXAoEkg69S9xvvAbneg7/uUjJGqTv2UMire\nWT6DYlRoBTrKnhi8x6WGIdGk+MqLzzqNX0WQd8cD9uJCBHn6zxrD1eXlBJrHwPFxgzsdKW1Bc3VD\nuVhyVZaQ2lTFZEGgp9Ls3LRVUhoFY8OnjRsDp8cNofNYo1kWbyQ6HmRxh+MRv9uyDy2tH4jBMxCo\nbr6gra9ph4htaspCU/iOpTYoW/Bl1WDajl2MDFphnUO3LcXxxGtjuWwaGluyJlINDqU8qnOUfSA4\nWPaRykGhDKZpUAZi6GXRdbZeQPgsPDEqKqW50AWvVUGvHTF6VIhjbixATEJdLDWdZLzKJhExSnMF\nnXPcUQSl8UpxjNAhjBJTu62MycD/cWE+RdL42YDv5y+IUpq6KlmvFiybStxcl9LYlMwJ2uATD8r9\nw5aHzZb98YSP8cU7UMljy+NZ4VQS4jkA6oOnTBz4Ws879yQFkNYmC/ngPHF/xGyOqLpB1w3BII0Z\ntCgdgToMxcWK2HYMuwOhPRLdTwlyNfuT4ZSIDhC1whSW6nJFcbGCpsq9jQXXRSCEQmkaWxI2e9q7\nB9qHLb4fZss1BXnnVuf8DvIZz/OVhfnEZTOt/+jB/FUY+fkYQwo+onzA+shKa5YRqpQjHvtAGKS1\nmgjyiOkcvrtje7d9+QjERP0cpOuQTvBlznCLISDJUQlmy8pUxZQjnr07eTk3fw7p7H/uTPw6PTt3\nO5rrG8p4noebu4cYJXRYu3fv2bz7kbKq+Oq/FJTNMh0wSUeUFVEjlqZ17oEoWF8i3CY3UvVu4O6H\n7+k3R5qq5uLtLcuLNUUJ24cj9/eP7P/tX3EP77B9B8HjFKz+/r8RvvoHPAsurxrqSrF/98jdf/6R\n+Ofv+Z0uWFYNG2M4KrhVhuW+he/fcXvqGNoed9rRf/zAQMp4iJ5ljKnKdI/ZnShcxJeGseY1P5eS\nw6QyDOKgwXKtK46qxEWHihpDQAU9GVwkma2yMhDrL87+g9EQEiGhNE5rHkLgpBSPWuGDWDBRpW4v\n+drPLNW/5LBNjvT4e096Mv6SMcdTlVIsFzWXF0vqSjqm59hA3/f4EBMOCrvDkXfvP0hD69xYYjQq\n5pWD50pmnksek/APIdAnjDTiaZpaFHKGcpCcc7GsU5513qsJX3bbA7qqqS8u6EuDM+ASvAFKqCaW\nDeXVGn844u/E8PhUc94XZgrSXlRK4MmiqVm9vYXLFUNp0/sJx9YRFaBUigttefzwwOHHO4F25vsg\nCaFczZyx8tyJag7PRWKiaQmE6BiCSxXNhfRhPxPiz5k3P/dcPzUiiet8CPTGEcsCrZWcoRhGeDKq\nKUytiNAHvOozaDQ+0xn8mM6swJ1JESTHI3vapPRKpfP9huTViAEiRWriBakYUHi5r78l0iw/SNVb\njBBUSstSE9/1FOmWnojD4On7WYuyNEvjz0w9DfPii6eWcc2YOaUQQz1KWbuWDJGYXJioI1F7ovFE\nmymxNCcvHVSGakFlNEurOCmRO7bQrFclZbPmNkYGpamKkkYH3GlHjA5TaJQqSaz4EFXC8wVTj4Ul\nJDzeh2z1zpQTKjVGTtknMaCMoahLqouGotbyrDP8dT6yEJICDMElx82XT97o1moMmqIfqAw0MdAe\nTygfxCEcZdu8Z+f4TXPZd/bdz0c+lLODOv7Cp9Maf+7QWlPXNZcXa24u1zRVlW6MpNyl/qBtW07d\nwOPjhsfHbWqTBqM5yvnz5HvPEmue0TNi30pTFAVVXRNxCcqatOt4ZTV9g8qNZRPm5U8dbrvH3W9R\nl0tMU+KzRa5kIw9GYRY1zatrhu5E9F6s4yfjaTD2XNjJmpmmpLpas3h9i2sqglHYGW2uioHSWooQ\nGO4eaO8e6baHyYqcC88k0fJ6jl87GgwRZpWpHz585N27H+h9z9u3X/LmzRfSWELlnPwpa+V56uR8\nYf6STSOkAEOMdDESmxpTF5RGidDNvn3yiDUCfWTPP0NIWfiO0JISAzKfr1y4oZTKudCy7ook9xL8\n4j0htfFrB083eIwpqMqCpiwoTEw9TV9+xl9FkE+8H0yCW+e2Y2mmtCEYQ4+0vep8wEVpmSUB0fy7\nnP1Rs8mRocmMyUprFusVwVjKsgAjDId9EGJ/0zQ0t9dcLsDGXnA0Zdg1S05GowtLbTWNlUyI8vqS\nReFZDSu8iqKUSHmeMRITW57K/lH0yZNUSBswWehOVcSmpI+BvneYwlAYxvxjzaSk5PAHTCkHb/3b\nt8RUhp+LjrJFnkXzZEyKG58hrclyCqnNnBel2Q2ctp5B0leeubZTYHL6eY5Nz1/7uVb6ucDPlnP+\n+S+T6kpJ1s16teBivWS1WlAYkxoKxxHDdT7Q9Z7tdsfmcSMNOvzzAqjzcX4vc4s837tWiqIoiXhi\nHBBQQtLedrvdWLGMBh8jQwyzQ53WbnD4w4nh/lEC/lbjC5OEgCYQcQpUVVBcrqh2F8TBM4TjKFiy\nokmFxTxdi7nhZJcLyVFf1mLUxIBRamxkoKKi0hrT9RzffaB93OLa9pkQj+OfGTQy02AjmsC0Rx8e\nHvj3f/8PetdT2Jrb2zcps+h8Taeq4vn+er4mPz3i+H9PYFDAoqG4WtLUhTSQRirMs/4dpYiCzPY4\nNilXTHhN9jwiaU/Ik8ZRkMt3BzXZ1iEEcB7fO4au53A4sfU9ZVmxXi0pVw1W6hylWc0L41cR5MvV\nClNWyXqRPpREhY6TC4XWhLKks5b7fsspBIbgOZ721PWCsiykMAiNyMsUSNBKClyQjACthRRKobHG\ncvvlFwLdGI2yBW0/0PaRGDXN9Q3rZcU3ZU+hPUFFBq35j0fwp5JF09CUmtoE6rrg1e9/x235NWvd\nkgsdwmhqZUKf8UyNHV4AKcDxnn7wPB4G9OWazge2hx2LuqZY1hJYmgly2c1SbWkXFcvmEr0qwKeU\nzBnskd3Q+aFO7sjs4CkpXR4cbd+xPxw4Pmz4+OGeH9qWh9OJY9+TG+TkZzyHGebjuaD4pUO8p5zV\n8Bew/ClQWlOVluvrNatVQ1kWlKkWQap5e4IXBeacY7Pd8bjZjs295d5fvKtnzz8Fs+YKQAQ5eJxP\nBzVC27b8539+y2LRcH19xXK1pHOekxumgCaMUGDoOob7R+yiRtcWZcts5goOrwRiUXVJdXOFchHt\nQtpnIWH14o5PQmVSxFpJDEkZjb1Yoi9X7BgIQZr+xlRroZU0Va6jIR47tt//KBkzaWOceWR58eZV\nnTPPQzxKEY1KiTV/OJx4/+EO5xxf/+ZI8FFylNOZmb7jqYL/ib3wmZE9qAB4rSSl89UNy6slRhly\nUuG092Y9dNUUDzkzKNP8CqSS90QS5GT4JQlycsFUagbuPLHrifsTrbLs/ZF6saK+uMBfrnDGY0uD\nLl4W2b9S82Ulk5EaDAfAh0jft4kDxGKVYnm55u3Xv2F9c8vF5RXeBR4etlxdCeRgrcEklRlTi205\nCCmCr4THXJHyx4moqiJqQ0gZAMFHgg9Erzg5RQgFp7oBLayFh6jYxJ5OWX5zc8nF0qJDR1AFoarx\ntcHpHqGEHT0nchAnzsTmDERDE7AhEn1gvQhUzZqyqLi6NIkOYLrefJOAzBvWYOxCBFRMTTbUJKQz\nT8WIRwYh6u/7juPpyP6wZ7/ds9ls2O52HA4HjqeW47HldGw5nTq6waWO7WGWhZDHzOb/Cyzvnz/U\n7O/59Z/++/mwxlDXFctlTVVaaaxshZjJ2oDWilPX4fuew/HE/nAQOuAZNPTSkKmMSclMLn4ObMbZ\nwdY6ZQMFTVQR5z273Z5vv/2W9XpFjIFyUTPEiIsIvDePP5AaevQ9w3aHrSymtoQkfIiKAi3Bx6Li\n1Ve/Yf3Fb6kHT9+1eDfggzTn3mx3bDZbDscTSimKsqSqpRm4rUpaFekvavq6ILU0EOiJHLPS1NbS\nb7Z07z7SbY+EYUhe5/O1z96OLF+m8SV5gPFsCZVS3L56xX/5L/+Ec47Xr99Q2ELAjJGYKnukWvrK\nhpy//1Pe00+NfEYVulpQX73m4u1rSlslI2LyG7IwPxfkkBGEEVJEPOZJ0Gc3eqaB1KQcsmccYyD4\nQNs5fts52iFiioKysNSFwWqwesqOeTp+NUEuRDopRxahrPx4d0dZlKm607BYLjFFwZWPLJcrYkRo\naE2BSlpzxOCSRT79nAWaTo6tfELbkmiKtEZCMFWYgAqek4ucnGFvVxgbiN6x7wPHCNEYrlYlTaUY\nOgXKEG1NLEu8LmedUrIwjbOFmxRMtru0UolGIGIbgZuE9bBAAcF3o4t6XlWZvA2jUWWNsRUKi1YG\nlJ5tuBRUS5bBfrvh4WHH/d0Hdrst2+2WzWbLZrNhvz8kpsTcZX0WOYcJB8ybNU7z+9ekCn7OYn8K\ntUxC+6lAj7PfkRBUUViapmJRS7cfq4UdUuZEYWNE9Zph8Gx3O47H09i04VNjSi+cfs5ej3NOrPyQ\n9yAjrivBajWuo/dO8NAk3SITVjoJjvwlgegibn9A1QXluiE25YjbNqbgulryarHmi/UFr+oFF6bg\nuJVO7D542qHjYbPl7v6eh4eN5CcbQ7NoqJoaygKlPYONuEIJXDNCDz513IoUXnG633D8+CAdi2aF\nUOfKlbT1z+GW+XJGSDEd+cz19bWsTQhcXF5K5fYovGf9MUnnWee955N1/0v3YIbYIkMAippqfU1V\nNGKVZ0M7n+hkHGYkZb5ec8UeCSlIKiabrNa5IJ9mYv53ohGJmojJFiFCYz3PuX8+fh1BnhRUtloJ\nQu7+7bffsVwuefPmDYtmQb1YUC+XQi0aNATFb778GmOlsMJ7j8akriowRiLynD3dQUqhlEXpQgqJ\nlBEaUxP5eNjSDZGd0+xVTWMUmoGdaxkQ0qyl9RRa4VIneq01ytgRPMv52TMTfHaw1eiWSzwgZ9SA\nmgFmSsucTCUjjOlc41VjBKXBWOFNVhaNRWs9EtBnWlA3OPzg+eP3P/LP//w/+dd/+WdhYOva1Ity\nsqpmNv+T/fJ0w02bdja1nxzPA1Qvv/+p9+bcHNMcnN/f/NBXZcmyqakKoQM2GecfA5MQA/S94/Fh\nQ9d2kl3w5D5+jpIKITAMA23bjji5IINpH6Z7s4VhuVry1VdfsVotub6+xtgCEyNG2XzUz545c474\nwxFTWNRqibEChSgFV2XD3716wz998VsuFg3ruqHRht39PUPfoYh4Dae+Z7c/cP/wyP3jlt3piCkt\nXilOKtIaT6sdQ9o3sm+FA8QSsd6jh5727oHjw+a8VeDzFTtbl2l99Pizmp3PEGC1WrNaXSSBnT6P\nSm0TzViinwOrucDK+wkm+iUGRcaxh2Fgvz/SdgNoI8yLqRWlzim7SB3ZdC4yiC9Q0ZhkECORiYs9\nZeHP1jftvwylKcW8fZu2UEiHETHZchEf+olBdz5+FUGeKzolxUcEVl3V/P53v0vNcBdorTmdTpy6\nlr4buL64oWmW5AwAUYgpRSgphOwGmlTjmxsiJxog+ROFm1xB6lAkWJ01hqgUrXc8HHvWylKFwGZ7\nQFHQVJbhuGGIJcFFFB7LICyJOFmqJ3M8taKaae0IMcRUuhTxwTN0Dq1LbFHh2kGCYWYuHOdWuRLB\n7wPR9YlOV41dj+bQyjA4No8b/vSnP/PP//LPfPfH73h8fJCyfu8T+dcktKewaLrK7HnU7P/zAzm+\nPzfIZt7D08q8l4T2pwOlzIT4kxs6G9M1jVZUhaEuLWWi641RLJ3gXbJ4IrvdjoeHDfv9Sbjsf0IQ\nzANtT79TgsTD7F61UBEri6KXA60Nq9WKf/qv/5XCWsktLwqihmXVUOYEgCfzFxUQIv7U0n58oKoK\nFnXNcrHiH3/zNX9/+wVvlxfCpqlE+NWLBgj0XUtZVGgrTHohQjc4Tn2PB7oYOBI44hFmfqkkziaE\nDgEbApw6Dnc7hu2eOPjPGYbjG2q2m0CdtcOTsxvJ7Q9Hry/vjyTpjRJPyqTECPF+PMY8tdJ+qUUu\nssT7IB7q4x37zR16saBMyj+oTKZw7lGnhR6/PicaqEhia80fSdCQPLJcJ0SCikyZonG8/jB4unag\nawesMYlF1aYOQs8baOTxqwhynEf5OLruESiKgpvbm5HcPQKHw577u3t2DxuKfyiom4aR1hDGv7Om\nHvkzyJbxmDgkn48CoWgUOqScaR/o+kAm0XJDYHvoOBjRrPtjS7EouGgKKuNSY2eAiAkDhQ/YOGRH\nIH3PhKFFJuslKx0pEgj4GBi843hoKesVzfqafugpVUlh8sLFpOUzG1z6nuAJQ4fr+5RvKlkukh8b\ncd6x2Wz58d0H/uM/vuO777/n7u6O9tR+2iWewxQ8OR4/GwaJT/79eWv8fOTPqxQIewqnvPT56X2t\nFIXR1KWlLgsKY1BJiDjvcE4a9boAj5vdyKfif2bu9aeE+RTsnJ5X2uXltm2gtKG0htvberx3HyNl\nVFRFQVmUqcxbpfWWz2TBHvqBYbujvlpz+eqWb16/5e9ev+WL9RUrU5wpSVuWmKEn9h1KKcqiQNuC\nGDXHU8v+eGDvejo/cFSBXoNXOhWQ5dRd0CFinEedOoFUju3ULGN8/hfmbhYInF6a+FzOJ3XyBWOC\nW7L1KibY/DdyFs7T7/xr4BWIIXA87Nk+3LN5+EDp11DY0WvOwnsU5Eo9eYo4zplCYhjPYgejR0hq\nSRmmwqmYIR7P4XDi4X7L5vFA1dSs1yvWF0vKwmALjTYvn4Vfh4+87dGDIxOfRRRoTV3Vo/UaiBx2\nOz7+8AMf/vQjr9+85fbNK+FSAeSwy9+gxkg9hFS4ItCJ8FukhY4ehh6FT4JXceo9u9YRtDRUDS6w\n23dsdGQwnkPf83oF103J1apBKcvgB2IEPfTYDqzq0pMlC3fsYkJSKCno6eOM9tTjgmPwA/vdiebq\nFdVilWAYRiGe73OSIMk68Y7gTwybbaoYi8QoZfad9+yPR+cFX9YAACAASURBVL774/f88fs/8+cf\nPrDbH2n77kwQzbucwHNZ/fznCR56OuZWdP73U/zyqTX+Eo/G9NL8d58f0pfuVaxxEeJ1YsNUSK/X\nvpPeic55Tp3j/mHDZreXdMQsNuP5Pf00z0e+z/y802sqCYHslSg19eIUa5TkRab7rsoUkM1MgdOz\nRyWtC2k79OHEK1vx/37ze96ur1jaEhMljXE0FI1GWQva4EKkVJqmLilswfF4ZLPbcNj19G6gjY6o\nS3Ibn6BIRSgRnaoeY+cYdkfC4Hjmqr04BBLKxS/zqZsZ3EmIT55qZvwcuVaiVJ2e79IsyPPc/lwj\n4VMrR2K8PLJ5fODhwweWQ0esyyQ0J4s6/854Jkd1O18vxaTS1ah0BPacsl3CzCMOQfZl1/fcfXzg\n++8/8MO7e5YXa16/fc3bN7csmpKqtpTF3xCN7XG3Z9H3VDBq39kZQAEFisJFmiFyrUsWKLQbOPVH\nCltKwNNockm+TKcn48NZ+QeVXKIYwPUctncMuxZ84O0//iPLugET6TswbkC1R9rg+K49YqKnax00\nLbrv0OoCSXf0DIcTP3z3I5vDA6UTIhtZvAmHHS1zpoOevQfp+u1xRAavKP5QUL/9hmbRpOfqCfkh\ncrFUmqmIcHK0mxPv/8e/otoekLziuFjQGstD3/HH77/n3cc7jm07tisbJ5mnQjM/wafH5w7MUyjk\nOa6drdn47HeeXufzMMrzkYVhYYVetCoMpdGoGAjDQAietm1BKU7dwI8fHnjcHegGdw4A/AKM/Ol9\npmUffcPn3kSyOJVUS+KFr7yqKqwtntxDghuSdtdKc3txxZcX19wUC2pVYFKlrgT/JyFnbEFZ17Sn\nI9YWlIsSawuuLi84tTc4P3ByHce+px168XRNIQ0fSBzZwKIoscsV9uaGO3eH649n9/fJWTnb79Pc\nCi6dC2smoOLcj1Nj6i7jJ6brvmQQ/JKgZz6vEPDDwObuke+VIi6WNFaI+LKiyTEWiV8lmCS74eps\nV88AmKySQOJhKeUwPDH2SM1xvMcfW5bHnremwLiAfdzQ9h3Oaqz9G7PIfdsnXohpIkZMX2WNF9Ex\nYCPUSmNjxPcd280jdbWgqqVxg8pRExWRHOs4TlpMAnCczADdqeP4uCM6z5sYKYuCUoHuO4zvMf0R\nT2SjpENO6RzadZjhhHMNWlmC97h+YPPhjsOHP1N1aXPH2UNEiDOsTN6O4/PFEPBEvIpEXRG+OGGj\nYKkY4ameb/6cq5otueAd7thyfPcBdRTSImcVXVOz04Z3p467hw37w4m+H2atsl4an7Z8pzE/TM8t\n4vH5Zn8/VxT/F0baP0YrSmuoK0tVGCmgSCldPrVa6ofAbt/y8X7D8dTh/S93x2FCEOZKazy8OdCl\nzj+cC0yyTstzWZQl2phnQip9DGMMddPw2y+/4uu3X7KqUtNolcgcs5WbLqi1pPH2Q4+xlhijkLIt\nllxfXHDYbTh1FZ0f2Pcd3iiU1ZIrHQImBkolnD5NVdPc3tIdWrquZ+iHz6IZ8zmZniArtWx0xdEj\nefk6L0Fr0/6ae+N/FayS/u+957g/cBcCZXNiqRVFDMlRmVnkyVtJiyxnUp3fXx65OC/b7yFO1rvK\na4XsFZHtkeACpYtcJLZDczgS2hODVgwK/qYqO3WcXJQXbDIJAuiYALKptVrfDWwetgyLSIwGW9bC\nGJasXBHicmGfqFuNAh8VRCmNikrjtSZqqeaMOpFJxYClp6QnUNCZEmcLqnCiUAMmtHTtEWtqCRSm\nxY/9gB76SUtnC4pxuzI5YsKfjn6SRxq8FD6EkHplZk8jXSXKNfL8QM5+Seh/nF47Ho987AZ+3Lcc\n+x7vM4mPZ+pUPs323Pr9HHwwD0aKdR35/AGauaWzjf5TRu4Ig82FIOeW2Py7Mz2DNZrSaprSUhbS\nbUpFn7hLIkZb2vbI4/bAZrunH/y4Oj/TIXnhHtMaxjimHmboYGaKMc2v/BTSD2HG221tgTGpFmAm\nwLJjXxYFV5eX/N3f/R2//fpr6rISDD6KRzo5W5kbRKJDfd+jtKEbBhpbUFUV68WCy6Zm6BoG57g/\nnYjW4wvJyzYxUMZIg6IIkUobmpsb9ts9p1PLbhC6jPgUN5lWa8R+pwk+L+bJ3tncap3Q6On9ca+T\nlWQ8//1sLX/qVj67kOPdpkDwwO4I6yh1AMTILJEm3WMcg5b5nkOcstMgW/lpvVOqqDSGZ7rJmYKf\nSQLhQldGiOyCR/URpcJknH5ik/46HYIua0xlzm5KDkHWj7LZB2s4WM2PrudLH1jXS776+u8obIkt\nCklDHKRRM6mNWYSx4Ehwp4Hj0VHWgXptWL++ZX1zKxu9rhh8YHASeLy6vsTWFQeveNca+mj4/duG\nry8s1wuLFzJr6UpUF7z6w++4+N0ritjOrKyYFl1NUWqSizkT7JEU7AyB43HA3l5x6Hv2bSfFLI0V\niy1vlIw5AjFEbFGxerXm7f/336Ht8UPPoW/59ts/8uPDA9t2wKemtVO3oecS61wgP7cGzy2fuRBL\nz/Hk9Dy3KGdCVz19/dm3TXvgydtPCZNGEaekSrewZsTHS2NSE5FBAlZaMwyRzW7P/eOGwYXk2SZl\nMcOjXxqTkHjuccwLgnJDjxgjPlVYZmKlM4WW90KM42dKa6SKd5yjNG9JYa/XK/7xD//A69tXLJqF\ndIEnGw7pmjPgOff7DFHw3932kbooMEBppM9kc2pZtB2vmhUflWM/eNCaAmiUYWUstQebnv3m+grX\nO46Ho3QDemZ1y3PmOXmWcZTzjpM1GnXOLNMiwGIGSgWeCCgp3Ju2Hzmtdlp7M8PJw7P9+Lk9NN9k\nUcWRd6Wz0rxjUZconXoLpx0ntqVkE+Wq00wIdn7NLJ7zmqskjIFEazDi5emPDxE3eLpuoO1cCtwX\nVKWVuhH9NMg6jV+Ha6UU7og4q5AK3tO2R2KMQqTe1Niqor68YHEaME2DKSpWVTPSgUrivcq+3Dgx\nYvYEuv7EoR1wXUdRilYrmgZrSrF+tKEfBrreE6I05zV1SRUU+0ePGhTXNw3rhaYqYAAiFkwkFgXN\n4paL4hqTmlickT/NLI8syEM816chRgbnUIcTZrFmUNL0VmvRyFFpYmJhy3BcuiraGky5ovnqK2I/\n0J4OdA93bGNg07b0zqfvCOMc5/HTLHJZaE+f/xQ8Miczeinf+/nnP2c5fd5ifwkb1Vqs8aowNGVB\nXdhUzZusJ60JHvanlu3+wP5wmjoovfD9n/jmJ+9NyiYLrVwQJDZFYBj6RJmb5yQrtHOlqLWWNDMj\nglwl93m+PsZYLpM1fnmxxqb+tPkaSqmJfXG0+KTLTVXVHI57Hh/vuVytUiaPcHETAqU2vFqu6LsD\ng+9QMVKGSA3USlHEzBQTWV+sGPqB9+/fc2o7onNPTDEZ0gzdPcsuyYZODAliCBHU5HGqqJMRJ1BD\nVMJRonJtfHLhs3ExWeMyj+LchJ+1D18aIUb6GDgRiasFzesbbOrEZbRJ7Ih6AoiyIM+t6EadM8mh\nyXCbnd6EIMQgNBEhCP945sRv7zbcnbYs6wJzsWR9taYsS6l5GV2E8/Hr5JHnDQuj4eGGgfv7e+lt\nWdVc24K6WfDqzVua5RXry6sRQxxzTefuO4hFnvCnMDjafc9m29OUEa08kmCvJeteGyIK7x39MAAW\npaUUdmkb6tOJLnqKqoZSgYVSa4agCDbgjSU2FVSaQD/qa21yAvgU9JwL87y1tdLoANZ76uok1WxF\nwbpZUNkCg8c5acQamZ5ZhLoIKFWVqPUF3nk6pXj4+JFtP9AOvfTsVJzRmmbMbl6VmN+ZrOaXhPbT\nfPD06uxjcpDCMwhkHtSav3ZuGP2UVf9cUcTkVhutKYymsjl33GDTZs+ZIr133G+2bA9H+mHgPDCm\nXnye+Xha+PT03nNB0GhhBVHQzrvZfMRJCCVBpJWSnHJrhRjrE4e0LEuurq747W+/lmC4muZjqnzk\nTJArJS0Q1+u1CPLNI69vbljWDSF4jscDQ9dTKsVN03AIfSqMChQuUAZFQcAilNKKSN3UXF6uuLhY\npwygp9Wwed2Th5KzUPLazaxPeSMSVUjyWaRezNZuXqGMV70Az8yHMZYY3bi/8hycFVf9xMjtJw/e\nMZQlxe0Ny8UCm4rKiqLAKp2avEdCgiqNnVXxagmKZhAoB6qTE5JmKRJ9IPjkMXvP4D1tP+DuN4Qe\nDrsWs1jCq1vqL16zqmuqsqSwf0NcK9oHKcqJQkmrosAHXdfhnZOqS2NYLhbUVcPVVUpNRBY/EKUF\n2mzyfF5o4aXluDty3Pe4PlA0JdZGovLJZZNmCtoYFosCXcJpe2IYAp2L+GSlO+fYHjquTMnSWEyM\n+ADeg4uGaGooS1RI1KdKg0n2i5qsvhingJTsS4W03AUbIrZaoLTwwgjlLSkYMs+iTcqBIBtIg7YF\n1aKhiHDsPYd2oOslV1q6Uzy3Mc+F7HQ45mO+5/Pn5wUd6VPJ6JAHe/4+nxRMT6/9KQ/hqVKYKyAR\n4lAYRWM1i9IKPm5FsFtjUEbT+cDm0PH+TgKcyZYecdWZT/yCwnn5vp6+7pwbKzsz1FPXDX0X6Z0I\nKp0EwPhtSoQW6T2jpwrG87mBxWLBer2maRqMsWf38TRdcj7nSsFqtWKxXbDdPHJ3f4+6uaY0mkiQ\nADEG7z2XRuOsYXtqKYKiUAaFQxXi1htlsFazWNR89dVb2rZL/DTn8FzeU9Nr8dl+EsoCLXGwDJJF\nUQAhvTd7Ksa9/2QtcmzCWotNAd38nSHId1lrnnRxem44jN8TwfvI/tjx7mFLc7flm+UVlSllrm2T\nOjZpfPTjrQnztB73VM5uiRGBRJg8JoUQlUUnAXgFqBCwMdCEyE1zRXHxmre//0dsZVksalaLmspo\nbM7Ge2H8SgVBIsgFXxKL09qCy8tLQggUZTm6i9Lx2kmptVWpICELcJOd1NGNiWhisLSnAe8CdVNR\nlGYizyJ9TpEURspa0R2g8SFycAO9G3DBsT2dOC0Mrdf4/Q50gfPJglB6LPXPiM4cQ1ZqssAVjFib\nmBVhfEObUcITgscrUj1wSquKyYuZ/UeUgJZVRjqcR4UfvHTdDlM2wKcskblAlPGywFJKjS7kNOLZ\nv0be9/zaE4H7VHm8lEL2l4wRUtGKyiqWpWVRWurKUpZWyNS0JirD/nji/nHHdn9icMJG96nI/9Px\nc/HWkILUOStJq1Rabgzap8IuZqDKaGomriHFyDv/0ri4WHN1dUld19IH8jP3eC7YDWVZsVwuWSyX\n7HZbVHDUZcEw9KhENTF0HcY7qhDQp07qL6wi6gAxoJTGWIPWUFYFt69u+PHdB7a7HcOQrfLpCc89\ng/zedH85rTYXzySgJdFLpLMQ1VkbwvysL6WIKiUFhSFlZslrk7dijBkhsOxFnHtZMwUeoB8cD487\nqnd3rC5uubwwVFXFEDSKAmssRJ84vXKWUjbQ8iOke05edFRhJCFTSs8kr2TBWKUotMI2nsXac+sE\nNjZG+udK/4m/sWCnch58mIim0kK8eftmwh0R2s/tds/mfs+Xv/mSC71icG2yeixlUWFG1sFUNRUM\nPljaHpQpubi+oVSnVIshFr1kxCTXLgSCT66oll6Zp+4k3cyV59CeOLqG1mna3ZayWiB9ZUARUNFj\ndOYZzhkrMQnRMJKeqRDH5heEqYNKzh9VifUxuEjQBVapkVBMcLgEFSTeBh2VVMeGQYT+0BOdSzlO\n+UCddzJ/6mI+FbDGpr6RIc6EsLicOSNnDg/J0o2qdFwHuWb2iJ+Lp1+Sr/30vo1WWCvY+LKyLGpL\nXRnKQmONWEcuRDb7Ix8fNuKpZD6VFzyVnztestIniy93rZqU4GilyQfpU1BUKYUtheAhK/lpopKl\nqkSBX1xccHV9RVmVqEQ5kOd3XJNPQlpCDXB1dcWfvv2WD6cjhdGSzZKE7tD3xDBIkV7vUkfuSLBx\n1Dli6Udsobm6WrNcNhRFkQT53JOZLOVRaDFX3ur875AoDpzD9QOmKjBVNb5vUnP1+S46z16SGywK\nixsMXqdMJRVGQS7WOmjtRuPwRW8ryv71PrDfH3j/7iPr5SUEzdW1BQaUKiSTRWV2xrSCMaWWZpRg\nfG7ZE0pp1GiciQE4ei7JqLRGUxRQZQydiYIkqsy59DfUISj4gei9CJ3UFFgEsRo1agiB/W7Du+//\nzB//7U8sqgKjA9//+C1GG5aLFTc3r1mWIWlsmSQfNF1v8JRU9ZKLq1v6w3uBRIKjIormM+CGnvZ0\n5NQ6vNAD4RS0PnDRlBSm4HCQwhFvaq5f3UIw+NZRqEiJp0RhQp+yDeY+ZHafwwi1hBgmcqwgGI0b\nhA87KktZNaAiVdnQ1BVVIUBQUKkhBYz5p9LqzhEHYdQb+gP96UhInd9zNkPMN0O2jma3mDZz3uxv\nv/gCrTXH45HddksIQvnqvYLkGgYfRgxz2lJqZo5ngzMpsxA+KzR/Cl5Bnd+7QoJfNpXiL5qS5bKi\naQqKQqONfLfzju2p4+Fxx3Z3wIecejnPXZ7ddNp/5/cze8IXPIi5QPFuIiDLuDDI4TMiVen6nh9/\n+JHHx0e0NfzhH/+AtSVZUevxO/LDKrQxNAuhnNVZqM0oVsW7OA/wCR6d34dFs+Tm6pa7Dx857Le0\nYxckyVuOMaICmKioTYFWBpPav40bWb4FoxV1WQtks1hwOnWz+QsIuVMYMfJ8LvNciHs580xi5OH+\nnvc/vuP+/o6vvv6Kr3/3DVpbcp9KpdR5L9qYrqn0uIJZ6FttCGOwOMeUpEFLCBFjC9m7E+PWmULI\nG3gYeva7Dd9995+E4PChpyxLLi8uiKulFOekAKhAp2mv6MkSV2pMRARItRxMa5hoQSIC6Qx9RKce\nss4FlMm/GyYF/mwXyvhVBPnpcIC+owiy8MmTArLVKW3QTPCYoce0R1R7QrmBspBu5NpooQQNCRdH\nhH/XRXaHHm1r6sWaulnj+50U2oSAP504bI+E4Fle3QirYgRU4OAGHk+ethswxwNl7FBecVou2C9q\nqtpilJKWWqcjj7t7QuywdNI+jtm2Tf8b0w7nQi1OufHOeXa7I9X6kvrNF1QXS2xVouxESzvXzrly\nKoaB7rDj/oc7+q5n8/DAsNkRe+n6/XnxKeNccCpshgPSITZaU1YFMQQssll8NzA4xxA9Q8xpfIzt\nNqcs+pe+4+V7+BTMkl3VfH+QIRUJbi7rgstVTdNUFKUEpEDjfOQ0DLy/27HZHuj6Yb4yT+4pg235\nfp4rvE/N2YhJJ7c95JS7xK8iCk+l7Avoh573Hz/w4f17yqrkt9/8Fq3tBK3MjXIlfC1FUdA0DVUl\nAj/Z6uN88ASDns9bxqOVLVgsllxf3xJ94HjYYa2W5hoqCttfEKiuUAZlTKI3SP5lqkTOGL/RitVy\nwXLRcHf3yLl4iQlq8jNcelKYT7YcoNgfjvz44zt+/PEH6kXDmy+/oCw1WV5/AnEaL6GzELeG3Ewj\naE1ugp3nxGiNKgrJrw8T18n83sc5DZF+6HncPGCsxvmei6sL+uHI6dSwaGrqsqQsColvADk3RZuc\nnDAzABI0QoTomZTj6MFIv4BTO/CwOfC4OVAvCparmtWiobIF1hRjk+6n49cp0T8csH1PGeMIH8ia\nZldFo1WgUpqlNlxZgw0DVgVub25Sip5FyOd1ajMtVlHXevb7E4tFQ90ssLbG2koCKCHiTke2Hzcc\nD3v+/r+vKRcrnLLs3cDhOHB37HGnI+b+z8R2AxdvODUL7ssSHSwLpem7nnZ34McfvuNu84EytKMg\nz2PMrInPD1oW7jkjres9N7/5Lc2rL1iv1qi6EdfUd+NCZzMmJosm+oF298j7f/0Xut1J0uoed6jB\nTQpl7KqcLaYnVttshOA5tSe00vT9kHLVrRAuxUhjLAtliLqj7zvaoaeLnj5I/q0n4qMaq9di+psn\nEEvMz/8Z7P7M8ooZZpD5NFpTGsWiNFwuKq6WNWVZJAtJoKfOCfHZ+7tHdsd2TIObQxEvueeToIdJ\n+Kjx9z51v8BYeBRjzLQl80+J1RUDbd/S9h1oNeVaz2CY6QykZ038/HVdM6aRzq79khB/OpdKacqi\n4vbmFUPfM/QdBnAMeB/OrHzBpGeB2aSpBSJIMakYWC1qVssmNYY5p1/I6YeTdzK7wREXSnOuhH2w\n7XpOp5auG/AuEorJuHvRJpmsJfFc0t6IqVON12LlBu8QQj0JjltdoIkENzB4/8Kl43jNEAJt23J3\n95G+PzH4N5wOG3Z1ydVqxbKpWVQ1dVVRKC1GXggoKx5EnK3BOAlpDbOSy43nvRvo+o6P91v++P17\n/vTjRy4ul7x5c8Pb1zesq4amrFPnqefjVxHkRhvZKDFiNFL1NHtYsWIMKgnf0Pf4oSPGQFmWUgyh\nxEaUcIlMXD+0tG2H6/eU64LSgAoRFaSCU5wUT9+3nI5HgkJSegwYL9Vdve8Jxw3t3Q/EwwOVLjlW\nlQisvWXdlPjB0Q4Dw+YR/e4dTX/Mji4kCt1pQzAJI2YvqQQTRIhRE69ep+auqQP3E/d/9HKR+IGO\nitANnH78SP+4Z+gGcD3GeQxpoyTeJq31uGlgEkrz4KPznvu7e2HgQ7qwdF1L350olUaZgsoWXBiL\nKWtiUeJioA+RLgS6GGhDoPOBUxgYgsdHCTrpnIdrpJmD9+GZlfU0S2QUkGQGQBGohYFlY7i5qLle\nVayagqjlEKlk+e5PHR8e92wOnVRwRs6E8VMPYPr5aUomM6z5ZWGesWBbSOaEWEz50JIOtmD2TbPg\nH/7hH3j95g1aa5bLJcYYvI9jcHSuyLSWJs7r9ZrVajVCK5/qEvP0mbIAUYDSmmaxZLFYcqhqwjCg\nlJc9qFIRTlYUEQiRMEh9dDTnZGkxeMmmWArddAwC9Y3XipF5lsg4d0mG52C8NhIUvrq55pvf/566\nqXn95g1VXY/XzTnk8wbMeWHyz94FYfUMjuAdwTkkWV3uYehaopVOUTlEVmiLD5HwQpehp9lLXdfL\nM0VYL2qWVU1X7mlKK0ybRUmhDJU2lFoDjpFjfKZMRRnmrZGMHHJSh6RBD4eWcn/gxgeqY4u+29B3\njmNRMZTlWdbSfPwqgnxRL4Qn2UybXiHc3DEFBLQyBKVpIzw6R68MuqjQI72k9C4Rd164pvf7B9pT\nT1UMlLbHKjdmBUSE18RWJavba8plg6kLggaiQmvJQ9UxcLUqWX9xQ9OV6IslD8Zz2G9wG8+mKonW\n4Kzl4tVrlrWmci1zC465nEqCfMznnkEtRMkn7YZAWDQcg8d0ferRGbBEpJbMiOKK0kcwBgvGYkrD\n4tUrinKB7Xp8cDzcfWC7DSLYR4vo05b43Dp1zhN0lLmPHmLAaKiXC0otmTmDUpSp8CbGiIuRIcKg\nYAiRLoogb73HBSmDz80BAIbe0fU9Xd/L980s5Ln1diYEkPhbVRguFgW3lzWvr1es6oLCaOGMToq/\nHyLbQ8fD7kg/+NEa/ynI5LP++0+NBLHkwGa+dTmgAe09WhuMMVxf37BarQHJD4+pHNwYnQJ75xZ1\nVVYsmiVV1TDvOjStXTZwR83PmNk0mz+UEphmsZAMloeHqYgowSbWaEzq6RqDZFnIs0i6rE6Wr1aR\nuiypqwqj8145n7/J2gzjM8XZexlmicByueLLr37DxeUF64s1RVmmamYhA8uw00vznr2FoR/QSmgu\niAE9Km3BwwMkfNyhA5Ta4LTszxw/md/7XJiHEOj7gf1uj+8H+rKjtyWNNVTWUmlNqTSV0lRaEUM/\nUxCJLmFupJA9ZjXmpPvg8cHhnKfsHJdEdOex4YQ7DRyTIcQnlPivI8jLhsKWYr0kbEXcmBND36O1\nYb26JBqLK0rasiLWC0xVo/XEa6GtRQWxUb0b2G8f6PvAaqko7IBSA5J1LtnXioipK66atVhaZUHv\neroeIgYVPaUO/ObtDW+/aFjFgU6XmH2H35zo9ic2xxOhqlhdXnL7zTe81V9Sxp6owgxOUAlSEM6U\nGBIrXdp0Us0ViT7nqp9QiyWHGNBtJ11jDCzKCFETokVRAEYMDW+hsNhlxeXf/55w7Bj6gdr1bBcl\n+x807f0DvneCg44ZBOeWxjiURNknASF4rzaasq65vL7BhIg7ndh7R1FZlusVpbXiGitF0EKV4EOg\njZ4ueIYQ8MGfNUxw3tOeOra7Pce2pe8HYWYMc/jn/N6MUlijuFiU3F42vLlZcHuxFB4d54TPQv1v\n5t6sS5IjydL7dLPN14jMRAK19kxX15BzOJz//w/4yiE5S8/0dHdVASjkEotvtujGB1Ez94jMqkM+\noewcIBOICA93M1VRkSv3XtHEaOiHgeNp4HTqy8i66+vNH/kvNlZfXX898N983/yazL8qL9l4jBEd\n5bu0NtRNS9t28tpZ1oXWwi3W8+QoebdoranKfM3KVSwQU/n6XGVc3+fcR7m+t1uOkTaGtu1Yrzec\nnp6u35PFk8gZg1ZisBZJxVlRgqVinoolR0RVYDdjTJnP+SpBgDJb80oFJF8ZNrOiM5Op6pqqatjf\n75amZk6xJERX5ssXD6dERGnCR0xRyhs19wmk6n/RhM4ZgzSRQzbLEOS/luAApf82kUIkjJ5oA9FV\nRBvxSuFSYiBTK8hxYp4nqpjnA32ZKuiy71ISbcisVFdZ0aBkqHqcCONEgCWSfe36eVgrs/fH/DCU\nYvKen376icPTE5Wr+P3v/x2urtm9fcuvfvcPbN6+RbmKaTrjpwljKtbVBp0VMSdSiIL9Kcduu0ER\nyTkw36K5ZFTaYqoWYzVTjDJ8+DJQ7d5hCKwrzd/95pd82ylWKhLQ7M4j3zxfeHo88T8/PPM4JZRr\nae471p3GJS8jmWbQO89tjwKdLJnNHKxSGfocCd4Tj0d8hqA1IUuAlw2kSVmTokZTkaIMtc1ZC4Og\ndux/+UtiSMSU2OQEb+9xd3v8//NfOTweGIaelKV53sJZVAAAIABJREFUjKJI1q/S8TmT1AXYXTKp\nnOiajvu7N2x2e2GynE+kEDBKsV6vuP/mPVUtXtaRTAwyKWcMHuMsKWdOp7ME25IROusIIXA8Hvn0\n+ZGn5yPny4VpmoTpEOMSmOaN5Kxh3VZ8927H27uWXeeorRZNgWBHZGUYp8zD05nDsS+Qyi1M8qrM\n5xbOuVmct6UvV7jnNUxwy4fPN6+5yP+VsBRCDNhsyqPPN2/jVlF65TtrM0/DkWdT1zXOOpk49GJ2\n5Vxl3MA4XA1U532mbjI4Ywxd1xHDjqeHz0sPYhiEMKBAhjZnUGbG8gqtMknVrMratUZ6E84ZpsWn\n/BqucmmOzIjpLU2SF0H96gMk/YX5ZxS5eAXdHgDXz5uLDz8LfDGPgMxK6KkgPu0+JOmnaYNRCleg\nvmgUYcqEVKbdz+vi1TqZ4fiMDMomipyvqWp0VWOdIY8jMXqSVShjyigb9SKQX5/MjfmXUoX+JbBs\nSuBjJgDGglVKqMhlwMxf0hr8PDM7U3mwKYO5boymaZmaseC0Mu17u7/DVC2bzY4UM6fjmRgjdS1G\nOzO3OmdFVdUYU9E0DcEPzN7+wvcWSXzOmpAUKQBKo43GGikXrYJKK1wJxkF+ktpZVq3l4TmRjAFj\nSCi8UozYeewzIDDGvIjnyUSCr5WByYLzMDMBcIFaV1SIf4p1Mk9U1roiRUUMc6Ymp7bSWeiMBmga\n6TFkWR474/i1bcA2/PDH7/n40088PT3IIigBY34/QBE0qSWgydeu+F7MicfDM8MwMIQgGO1qjd7u\nOWRFoyxNU1PVFS5nzDjiT0fGceJyPvP48CiHSVHgrdqOtutYb7astnf8KmbGKXA6HXl4+MzHDx8I\nQWChuaTerVq+ebPhzX3LprPUTlRu8i4TWMNljDyfJz4/n7gME1/ybb8ezG9W5U1Azzf//eXPfI0H\nHwoUcU2P8xJgyqsv3/vaNXA+SGem0PxOtVIvcPecAPOyuphx1mu9fv0EL/a8kv9rrKFpG1brNdM4\nMgXPOE0onZbRgwmFSurFIASlri+YU0IbsEoXa4Hb+1Sgw8Ua4vVBeesU+OoEvaksZtEb+Qbv5yZT\nfnFIyys1qzXOGYa+F+tehKNufVqmQM0N/MpZTGrIF4OPZeD4ixv76poP+JSJJEYCQw40VtFtV+jY\nYHOitobaiTe+MaIgv7Kvbu/JdeLX0vCMkeOl5/h84ul4ZlXXbNbCDqqdxRX47WvXzxPImYM5JagJ\n1Wq32+OMJafSIDNQ1zXGOpxzxOiZxlAepF6wQaWF07nqaowVg/4Up3KyZ1SOIsiJmZzA+0hWmbqu\nqaqKNieiVlRaUSkI/YVzUIwFo05GutznYSApJc6LWuNjoveBkK6Zx5KVq2vWJs5mCYtZsqqMmIZh\nDLbRi8BFmyLnTZmcSiBP4LQE/0wClRalWFSKoDRB8iVc63j7vmG13rJabWU83h+E8hlDwBhzzcgz\nV5ES5fVvREQpJfpx5HA6SoMSaJqWZrOn2t7x+PRMi2Fra1JRzg4+cjj1HJ6eeX564unhkb6/4L0H\npVh3Hff3d7z/9jveffOe1WaLNpbD4Ujddgz9yDRNoCQTt1rxZr/iu292rJuMM+Xzl+G3WRliUhwv\nIx+fjjyeewYfbjblywz263THvwSzfMk4+tqVUiK+UnamlF80/+Z1vhhi3WSlwA1HvDTHSgCbB0fP\nv+dWxj9/lhd4+E2EXyhwJcqLZkAtDdTD8xOTn8Sz3CmpXnOSGbBKkZKIV26OsiUQKwXGiFfM9XbK\n/Z7v8+0ljehrsF4y1GuCvdyv+TuEP65LYvPyMy7BvBQBSSm6zYambdDuLHhyRhwFp4ifApOfsJXD\n1hVVXdFYQzaGYZwYp1FYRPObebEKXqYB88HdB0+VPJ0ztF2LNQbjDO2qKROZ7LVBrV6+3gL5zUld\nTCKKejyg+MjoA/Vmjb7f09zt6OqKusyh/dr18wTyMpJNbpicMFobmqaVAcJZTKHCNHE+nfj88My7\nb96zXq3Y799Kc8i6kqFIEDfOsWl2KFWh8vQKiwuQNMRAjpGUBQN0zpXNYok5Y7WiURl/PnEyEm4N\noCuHnyLjmKltQ+VqukoLK0ZltJ6BlHm3phLL09K0MYDOAZVKll4eYsqZEDxZg9EW4ypCSEzjhFNW\nNo5WBRuLKCJkqRU0ovDMoeCAas7kDF234d/8/d+z223ZbDb8j3/8bzx8/iSqNq2F2RKvLJbXTAOl\nhB43Dv3yNa0Nbbtis92zXu34+OEBozwX1fPpzx84Hp85Hp85PD/jRy8imRgJIROTHAzPxxP9MPD5\n4ZFvPj+wv7+nW22QIdiG3d0bgRQqR9vWNM6wbh3r1hD9hSkOTCFgESwxRMWhn/j+04EfPx3ofeIL\nHoJ6mU3fBvMv8fL/D5H71ZWyzARd7p+6/v8YI8ZokhaHnxeGXa+y8uUfLYfiDIssasFXAW3BgW/g\nncx8IMthYa29OUyKyZOxrLcbqroW2bgRqC6Wn0/Fx92UTF8VWGHBmY0qKkRLVVeYGzho/lzSE3qZ\nTc+fLQWZ5GV0saD44pLQOcNN5obN8wIWWx4uZJVpuhWb7Q7jGibvUSicdUyjZ+gHVH8RBEAbsJbV\ndgvGMvqJfDgwDsPCO//6O7q2kROZix9JpyPBaN7evYHVCh8zRlkwNaMyWGMlwBsj9golQaIkmXO1\no8jYmFlVHW+rDrt7Q9PWdF2LaSq8UiSrmP6Wmp05emlm5OviAIEPqrrwZTWEyfP08Mg//eP/oHY1\nu82WplsXiKJwX3Mx4FHim6KUFdVoERqpPLNEInD9R2XJsvvLhVM/0uxqLKBTwPcjyiE+18qgk2zA\nKTnqtqaua2oVWFvN2sokkVmdytyQeIGZFiFHEQHlEtxl4GrifDoLnKCgaZvlfnTNTpRjKpNyQKzB\n5LVnFeA0ToyDZ5otReemGxJIqsry9s09H3c7+vOZvj9f3fLSdVNcg5BavEKUUqLkLIGvchWrrqM/\nnfjjv/wzn/78Z968uccpODw98vHjTzw/PRHKJpo3rtYaizjLgYig+r7n06ePXIYL3WrNu2++Zbvb\nsF4LJU8rVfi+E0ZDzAblDMa2ECdC8IzDhdNp5NPTiYfnnn4MSwB5mUX+lbX4Ipjewhav87C/fM02\nC6msA/nssn6sNS9e4y82WW+yT/nPLzfsaxrknHEvh4eiNNbT8n5mw6sXHHWlqauWrluzXm0IkyfE\nCR8mETaV9ZWXdT2/+YKTgyQrKi3B9PZjzUyY172FazBOJf7OsOgNVTHPryf30Wg5MMzNfVm+dzkw\ny/pFUdUNVd3y/PwsTqqN/LdMYNKSNClhWMUEVdOy3d/TD6USLPL9rz+rglEXj6WcwE+ey/nCuW5x\n1lHXFVMEGzW1bUjKENBkDLlU5KpYICh1XZtKgXWwsh222bG7D9IAL0wiUXdm/qYmBPnpgvUTOiVy\nUtcERc180QwIt3I4nfj0w49Mf/dvseVBLUbuOZHCLEIpU8CVIXMN9LOPWi4BNudECsKUsMbgJ884\njDRb0DmR/ciYerKlmC+Jv4VPloBhW9dsW0caRpkwTkblILLgedHfLLQ8K8hSevFPyomQYYyZ/nSi\nL8OB604c7qqqxseVQAk6i+Ui1+ES82KfppFp6PFhAq4jo8p+QOXIZrPi7ds3jMOF+FFEIGRkStKN\nwk2yebW4TypkMceYFitPYzTPjw+cz2fO5zNtZaiM4nh44vD0xOnwLPxn67DOYnQxYCrsjDksKJUZ\nhgshTAxDz2a9ZrNesbnbo40lp0iYJsaL3LuYtFBPqcjKkfKAJzDEnsuU8UmhjEWlwMIcUjfP4v/H\ndW0kXu/zX7oyefHvSGn2WpEsyxbr05Tish6ucMrc35l/p1AQXzhGfiWgLHDK66D+Yp2XwzmWxOF2\n7kH5XdZWrNcbtrs9/flM6v3CsklI1n3llr9ssklDMZGJxZL29j7NidPVcfALRsgCKcxp/G2VMkMP\n8otkLdnlgPva/QeBLmfPotVqxTAMjMWKoGoqtBX1d99f8MEzhchlGARaXa2uo/ZmiIyvVWvXzHyB\nSFPGDyOX0xmnBUrpB482UZqgaAyFNphk9y4VTFkTkrcKc8kZRVVL3h+zCPVSCuXup6Wqen39LIH8\ndDrAcEF5T35VNs0PmeLMVlnDuqqoCxwgmWjJFsqINMlyy8IomYfWBquMBBIUiUzICZ0j/WXicrnQ\nNi1d15G1RSlNDIFpHDiHA5ckczCtcri7t/TNlkCiqy2ryvL43PPwdOYcByoViJpZmoS2Yv2plS7S\nbYEYcvAQIiom8dwxlmgsyZcz25ZOfcwErzhdzqxaaK1gpsTbUmx23fNkAkZLM3UYRkJxpHOVxTlL\nW3X89je/xBnxuXl+OjCURT/7dMwbfC7hgcU3OkYZPxdC5PB8kGx4HFFk+suZFD0Pnz8xFBgmRqEc\n2mywzhasUKCaGNNN5ipCp5wiHz/8mZyTUOCsK0KQRNU04vOSIlOYiMFDDBiraFYbbL1C11vcwzPq\n8YnL+YT3CL7LTIv7MhD/NZHPfH1tQ3+RKedyWIe4VFszdqtLRu6n+cDPi3VCzkKrnLELgRHsYvA0\nJwS5HA5XeEu/3C+v3lfOeYEjbtk1zHehICxKabrVmv3+jo9//lECTWluxwwkmRR0e/fmJmVWuQTx\nOWN/cUwIZFhELt77JaDPDd1FEKSvCY+6PTALJEO+UvTmpOLVrV/+f0qJoe8Zhp7VqpPMuEjsd/s9\nVeXo1p1wtWPA+5HD80jbddRti6kk8Qh+Kqjvl+tieSZF5WqdKXEjcTmfKUcfIeay/jRNVVPVDqUM\nMfiy5jXGqBsFsCZrjbAXynMstkwheGL01K70Iv7Cev15hi/HRI4zhsa1vJDaTd5rWZC73Zbf/8Pf\nc3e3RetiTlRO/jmgqcLDVWVU1nxK3+J7izsdCldXdFrhmgqrDMrVXIIsyKpp2TlNrXMxDnKcbMch\nWgksWtFYqCpDqxrsBKE/ipWsEUzMWLuo9Ix1y6FDFMGRQyAHnxJnH1Eh4ipH11Q0rXCGtbbiCjd5\nLGJPMLs3zk6OxmrWqxbWrSyinDgeBIMGCeRVXVPXLfvtindv7vjuu/f84V//yPff/8BPP31Yytp5\ngOxtQFioiCVT895zuZxLMSTUsOenB5RSTKMMJZizWSl1M9ZaqqaWJuvsErj8Iwq4rCClQE5RPNmt\nLnNNRVZNSsQAKopQTDtLXVUYW+yDbYutOtr1mtPpRH/u6YeBaRyE3hnnLOvL7PBrEMbXGqJfw9Rv\nm5AxRoH0XuHvS+BF1upMS0PdeOeokiWXimeGH1IZ0BBnL+ubZ/Pa//110/Tmjd80Fq9S+owwWKq6\nwlYVehRvn6S0CLlios4zTJJvkqV5bczV2pdDveevp3SFTZW6vYev7vsrWEZiQtFJF6jvq1DTTZWQ\nMwzjwPl8om1rUpLehKscw9ATw4Q1lrqykCu0kvU8DQPTNJKCX2T+i8HazRt72WyVr2pVKtfCBR+G\nEaXO5CwZtTGK5Af8JE37WTCmFgFY6YeoOXGCcfJiVTCM4rNuNM4ZurYtPlN/Qxj5MroJChWLUoqJ\nnWXOiH+Gc+zv9my7jtV2R9aZYRQGhNKarmlEsqBm9dTNGKbCwMj5ihtShiZXdU3dNtjKgbZknTgf\nPWiDrVvWuxVrK+O3lHX0FwinSF2lQi0CYw3O1pLl+gFbS8Bq63ZpagBFvQqQUDlhlHgPpxS5TBPp\nMpKMxThHu2ppWpkEglKcjicUEzkFcUK7YcSAZDhNW4vXgxU2ilEK58Q8yFaWpmlYrdZUriKmt3z7\n/hs26zXWWs7nM8fjeSnF4RqoXjZAAYT37r2XxZSlGljG8+kZC749mRXOVbiqxlpb3B9jybATMYgq\nMJFwVuNsoW05GcOXM9JwS6kYYl0zzqZqMEWQZKqOqlux2m25XHoupwvn85nL5cw4DPhpJMYgFUEI\nxWztmmsun7eYmn0taLxYv6++nvPsfngrS5/hA/m7FNWSXcswbDBGOPhz5mmMweo585JAOPnpxknw\n5e9caIc37+s2Y5+/b/n6/C+lXgTypm0499LwDzkLfkxiChFnEsleqyiW/TWzdWa+/qtseWFA5cUC\nV19T0Jt7VNbdNRkvwfxqo3zbCP4iU1bX1wrB48NIiLJGm6bCWiNDP6L4h8vINE3lDNM0STCfPBaF\n04akLUl55l7HV54+S0KgBH5VyizwWU4RlRNWZ5zJWB3ROUHMS3KXY1pG2c0wsUyVErjnfLrQ9wOV\ntdRNRdvUGCJEh13iycvr5/FasWXQQ2nUZKR8v5zPPD0/k8h894tfUDU1ruuonCVluAwjT88Hjscj\ndV3R/vIXUoIkuRE2S84Tk5Lp8TEVjEnGKmUCISXqclKjtTALUgSdRZ2oHVQ1sfiVK6tFbh7hbrOi\nq8tpniJj8igidVuz2e/Y7nbsNtslOKWcFy/l+SQWPC9yODzjRsemadkojbUVzlULpg6Z/X5LCpB9\nQKtY4LGSzeb5swkWt+5arBF73rathC1hNU1Ts15tyCi8D6QQ+c2vfomfZLRejH8mnc9LtgyycW7/\n2xi94OMKkTzH6BnH4eZ78ovgqLUMC3FOPpdxRt53VCWYa5yR4B4JtI3Qq3RhMxjn0MaJ7/oMS3SF\nDUTxjjearMG2LVXoaL1nUyYkBS9Te/rLmaG/MI0DQz/Q973AL9O0MBRm+mC4ef9LsH6Rif0FiKZk\npjFIJovNCxvJ+1GMm8rwEbFnPuJ9ZLO9k89Zejm2yPglLcnF72bEe/+STTHjyss4d/Xy/dz8/Zbl\nsfz/cnhYa2malvVmy/PxgI+Ji/f4lDDZwDBitQwAzqXChSsMEqMc5td1c71P0jMIKJVLw1d+UpID\nOdiM1mRKy7MEs/zinucXr/u1zyR7a4YGM84Z1usWjRFXR63F5K3vGfqBuq5wrsXoDSlFoo9Mw8in\njx85xITyUarPeHtsLb99+XOuNrQ2dG1HiB6jNZv1hvv7Hfd3O+7udzgzD8bI1FVNzplhHK6j8Ers\nCjmQNKzahrauSLGo18sAFaMzRE9Kr8fryfXzBPLKoBeMqJS8yMDaoe8F2UyZbLTg166BmNAOutWq\nnISlBEWTkiLEhAmpUPUcPibwHlc2gZSAcip3qzW73Y6Y4fn5yOl0ZkqGy+Q5+8jBW5IJOJ1QEU4+\n4ZPm3aahqwwpBmIG4ypWVcPGGrbbLd1qTdPUXIaecbhw6S9lJp9kYtIwtBhrsLamNW5hFigMOSmm\nkES9SaZrLEkp4mKRm1+uKxI+jIyDpTIKt2ppmgqtBb5q2pq6qrDOia9JDKhiJrTdrvj9739HVVX8\n+ONPPDw+EEKBUmJahh9IY8wuk2nkXoZlA8+bSu6vvCuloG5a1usNq9VansmCLUrvw1USwMoxzv2b\nHe++ecebN3uycijt0AUzlpmW0jjNJQtMKc2W24QUF/8WP/nyWRPrVUvcb8RrowTraRq5XC5M40Tw\nngxM00Tf95yOx5sMWA6DpYkJS+Z5/bMEFkogT+EKM5Qgo5UGLbBfSoHD4cg///M/czqe+fvf/Tv2\nd29o23apKE1xIixJLOM4MQwD0zTJhCBteFkRfB0C+tqVX32fUuJDv1kXKmLOTOOER6GMrKHKGOrK\n0eUrPJlz8QeJkkUuPPny7JdnvSDsiVsPdWccYv02B2SpxIe+RzuLW8yh5EB78RleHKYvqw1nDetV\nwzdv97iSRFhbM/lRDvWS5VaVpXYWo8V8LobE50/f8OP3P/L99z+Qnx45DyNTCHJovbrXcwUXg9gI\ndG2HdYqqdmzWK+7vdry533F/v6epKhSK4KeFaRbzujwDSZCCD6VKy4u7YQwB7ye0KmMLl3v5N4SR\nm4L9LAjEHACKJFlwPXnoCY0M/FYoZambhkyaezMlkIP3CaMT2ooPmw8RdBAa1pxdip4X5yq6bs04\nBbTqSRGmEOi95zhFnkaNrjOdliG6Q5AyaFsrKpMZgrxO07bs1g37phLhUpm8chl6jucLp4uoULOU\nDGilqJuG9WpN23VkElOQkVuySVSxEC1zSWeTJG6c55YHWZgRhd4WYyCmgFKSQeeccdYuXHkZ64VA\nGE6z322lY980rFcr/vBHx+PjE+dLj49enkcp901Rf86ZZwi+2JSyvJeXuLE8x27V0bbN0pRNMROD\nwBdWi2OgVGaZ+/0d37x7x/v375l8Kv4diqapaZuGpmmwRgJ58CJ9n+9GyonJe8ZxwvuALwF4xlvn\noCXT7T39IBikNOIEvpBAfmKcRvw0SkO3HySwBS+BP4QyHODKyJhVmRRG1NLEVddRZWRdqpzMMI58\n/vzA0+Mz3/3i12y2O2Z2stYza6tkvWR88Ax9zzgO5LyRZtt8n2cki6/j+rfXXGW9FtwYY9lsN3Rt\nh7MVRsmc04xUo2NMjEGmvKeUS1WoliDuY+IV6sMccERZLYH82h1QpRELIHzycRg4H575+PEjm92W\nuzdvaJruOmjjrzSkl6wdRV1Z9rsNv/rVexpXYYxDYfBBIJQQpAlfO0tTu6KUNJAUh/dv2a46yJl+\nGhm8hzDfp/JbXmH5MYTClFHs9ls2m46mrtjt1qxWDbXTVM5itSY5I7CL1lhXl4rI0TQNqQycQAnF\nF5UXGFApGZYxD2n+m5oQZI3FaiOijiRNLW0M3XrNZrtdfKVl82X6YeTq61o8htXcssnEDMEnsivY\nazFpVzos5ZpSpYEG+JiYxkAIUFUtm/We54+PTD4zhMTTMLCpHco4zhMEFMaAyxMqWzIZqy3bzYa7\n/ZrOwDiNHA9HDocjl3FiilGydmOxVg6tob/QKMVq3dG0K4axZ7oc8WFCobG6pnItttYkEjqHZa+W\ncF5KT7kTxljut3fF2D6LAZWfmKaJcfTMsyRd5WRRkFl14pGxXgemKfD+3Tf8+pe/5Lvv3vN//qf/\nm+9/+JFQMhFjDNbKoAlyXgLy4qPNdY+9LH8FPqtchXPzUNzENMI0xfI6iaoyJTPPdF3H/f1bfvWr\nX3M8HTmfz0xjz7qzrFc1XdcUBocBKmasUilZTyLKSRJcfGCaPNM0CS5fNomfPMM4UteWoamYSiYk\nH6T8UVR2MXj684X+cmHoez59/szxdFwUgAuUkjPOuaXBOENomus4r3mSTUaa365uqNuJqhYH0HkA\nBQUTnjnDoMkxcrlc6C89lGxYIAr1IpjPVY+8hy/x8dfXTFM01sooud2O/XbLbrNhOp6YUsa1LUnB\nGBODD3Q1si8xTD4xTrO0/aVp1rwWdOHFS+VyrWKWFa0UWWeOpwP/+s//zH/5z/+Z3/6b3/K/NhV1\nVYuHzl8N4tc1oFSmbWu+ebvn93//GyrniCFxPvVMk0HrFXUta6iylrapynQfRU6K+/s9lRMfoD9/\n+sTj6SS/Qavr2niVDccUmcaB0/nIr37znrfv3hCmAWsVMXieHh/QGJqqZr3ZoJTASZU1jMMIWlNZ\nXaxFxD46Rtnz2kjvSykZACJJyrTMHH19/TzDl9P1hly5p+XhLtN/kohgimR48eGN1yWziImyZOu3\nGckLyXPJdkRIlOn7ns/5EaUsqdgB7DZrfll17GNmW0e+u1uxbhz9pyOdkdF0oR+wqi6/T8Qy0zSh\nVCpNOEu76nBNQ+TKyybLe20bMdgJKXIZLgTv5TOXzz6vcelHXRfQ0uwpn23GKFOSTGnukDtr0Koq\nk2VqnLNlI+US3AROiClD6bgbo3j7dk/bVTgnY8X+63/970yTzGLMCZKSbPMKUc1ZwbXcW2CGkrqk\ngpFqPTe7HH5y9P0oizFHJu+oKoVxhp8+/ES3XvPrX/8GoxSrpqJ1AiNEPzGcRcI829LqkmGSI1WB\nj7Q2QvGMCasSpjIYK2W6VppxHOl7g7PQOIMPwryx1oqfuHHYUs0EH3h6fKa/XAgh8P79OzkcSjUy\nT8ABmZizWq1ZrVYvMNyZzSL3Rzzd15sdv/uH3zONnvu3b6jqaklKNts13/7iPYmwUBlTymiVGYcL\nfhrJxqKNsKLmNFGgjS+Vn1+7XnDSZXGB0mw2G969ecvn4zOHYaTve8bgUc4ykjlOE11MtChiUpzP\nA+fzZTnU89wHUtfDXarL29F0L9fMHAv6vvS+TsK4mgkP8zuVJiEvf4750LuKkWLwBfKLTFPCD57h\nfOZ0PgsktUm0TYNVWpwFC6V2GCZiCNSV4927N+zvd3x6fuIyDEv1IOv/y0MlZZlv8Pz8RFUprIba\narrasd1sqV0tNORCk8ZIpVxvRVjYtW2hZEq1OPQ9obCsnktMqZzMYLBW6MRfu34mZWeSzu3MkV36\nSjPuzRVjWybRS3mfFGVx3NSVRd59zWgEfxdbUCn1lcplWn0mhJG+z2hTIVOGFG1leGMs26xodGJl\nW2pjaczAvgFSprIKrWSCNklsd5/zhPYiLHCVo6lFWFDq4wJFRCYfBPPPmculXz5jiBIUIJNUwKpI\nUomYE5WWzzhjrXO4V+XvMUaGS0+whlw56qpbStYQfDlkxBtGqIyCt2bEAsEYK2PcjGW3XfG73/0d\n4zTy9PjEhw+fGUpWj5JufCzTVq6xQL3YuJIdyntOxV9ZqVQ67SX7Xg6WyDh6qsJ1f3x6ovvpAx8/\nfqSpLFYrdM5y2MWIqoroIwTxpPCBECZSDIWZs6Juasah0CC1Wdz5pEmrhKebLDk7KlNoZkpRFVzW\nOWEFxJi4XHriNOGKN6qxMig5xMj5fGHyXtg6SyNL/DsoAWcerJ0KVp7LM6wby/tvvyPnLFBRgVAS\nsL3b8tu/+zVv7neyD1Jmmibu7/coEpfTEWMcVV3TtO21QqMcourLrPyrV3lo17CY6dqG+/2OdbvC\nGWFhjMGjrMbkjBontiGwigmnNadzmUqV5kP81R7PN/vzmtIiB09hwOR5judVoFQ3rcwGYBb6cTOv\n8zU+fk1toAizkhws0zQtfZAUhPUl82zLEk2gWav2AAAgAElEQVQykKLvB46ns0B9VrPfb/n2/Ts+\nfH7g8fl41VSkG9fWm0ua2tds2VoNSfQQu+2Gtm4hK4ZhLHYNRsRxtiSDQqu7GpSVpC2VZ2/MzeAS\nJ/Tmr10/D488iFDA+ECuG1lQSgmmpVQpIaPM2VRS6qI1KLtIdqUYVaCEx8nspz1Tr9ScbGi0Mig1\n48wZrRJGScaZoiJG8R2pgBqNTYbpdCGMhk5r2k2Hs45VU+FjYDyeiT5weD4wpInp+MRms2K/Lw2O\nBVKAviwmoTkJVhdDKCN/AJJg0llhVYXK4u8cYsRsWnF4nO0GykE1468xRBFXKVh1Lauuw3uxiP3w\n4SN9P6KNZrvdLtliLJleGEcmf2IceowxrFYd+/0d//bf/JrT8cTl3DOOT+X7Z/73bZAo7dd8m4Xl\nZX+lGMnJY0xGWIKq4POWYdRMo6cfAtYl6kZK9U8PD/y3f/xHfv3dt3RNRQwTMSZW3Yq2bamaphgc\nHXl6fhYxUoqCwxc62Pl8giyGaF1Xk3MSmGnOHHMSMYYW1W7bNsyqyqpypJQ5X3r6y4lY+hfaOrqu\nw1jh9g9DT56uY9qM1lgnDcp5DV7xclWw4qvYarFImGGfLEFiv9+z361pnKNtarRWDNNIfxnoLwNP\nTw9oZVgVlz9BWcRrSLLel5XuX5T5q2uQTEhl11SuzIa0aNQCo6lkUUkq5PM0sfaeSmtOl4HLZVh8\n5G9+Q2HnSLM0RvEiMsW1cRERZXHZDCnRdWt+8atfU9UNb96+oW3X5DKlKmWWIJ6Xg+D289xk+0r2\nujaOsR+FAOEc290ea8T1cH6r2hiGaeR0PnM4HthvN1TOsll3/Oa3v+GHnz7zp+9/KvTAklAtVQHL\n78xZ+mhd13G322NSpKlq6qqW52Qd1li2my1+mqQqHAfOlzPGWlnXcxJhLdt6sySz0zQtz9GWfpdz\n7qsx9WcJ5M5o4QvbMvkjUeCWGe+ieH1IaWadeBTEGLhcRj59/oQxhl/9spMXVIqZw6S0QmXJyBdX\ncDVn6LlMQjE0VQWImVHQCWskC07SPcNHmQWaCoY/KoUfNDlriPBmu6M1CYcntjWb7Yrtds1qsxJ2\nRcx47zkejjw8PPH5+UBIguOmnJamZO0sbSciIGcqqsphUkaH4pFMycmXJlgWf+MMkEgBuT9KMY5j\n8WxRrNbrsoCFj6+UKoeJNALHcaQfBpzR1JUsEq3gfr/j9//wb/n++x9lSMPx/ArCupVKFxwoz2nO\njASXR1JsTtvGys/mjJ+aUoVMTN5z7nuUNaSkOJx6/vs//U+8H9nv1tRO0zYdKysioWHoufQ90zSw\n6ho2mw5nDcZYttsNq9WKzWazVHpKq8VKYJomnHNUVY2rKhHfaC0iLlvolVaTpmtz3AfPME7EfOF8\nOWGdw1WWpnVYCyEEgcusZMm2ONPNWbH0GGzhGF8D3kxZzFzhQYVANAppRuckwjenwXYtVhnCdOBw\nODFNnqpxQs+t6huf8lcGVTdY+WtBEeRZXwalJogxcD73+BhL4iRKT59lfuvZTzxdzqiUeT6dOV+G\nm7VwbXjP+gMJ5AmtUzlsSlIwO2xqjdWOzW5H3TTc3d9TVWJDPU+Nf/1Z5u0+V95q+dySIPZ9z/PT\nM9MwkKMwwpytFt8SpSVWZCXNxu1mg3OOHCPTFDj1PcfTkcmPGFOqAK0wSpOSedVEl7U/ec/z8zP7\nzZo32y1+9Dw9PANwf3fHfrtjtenELtsolCkWwWV/h8kTfEBpRe2qRTPRDwNKKxlvaYr6PP4NNTsV\nEc3V+Akotp1Fkky+Qgl5NpdRJdgrgi8l0pKB82IBz+q4+eWVKlkRUqY4V7Nq5ww14MOIDwkfi1Kt\nyNbJCoORyTcxM/pEzpaULbU2OK2xWkQH2TguMTH2A9Y4jDIYDFk7tHVUzokQaG4aRo8uB1ZTNVRV\nLUHXWnRWaC0d/dvmkFxp2XxGi6+Ec4aqKSd1FhVeCAFVSlThuxaXSGNRKKJNOBvZrFesVy1t1yy2\nvgC/+/vfMk0Tfwg/0Bd/73xzn6/PkpKBZnKOy1sVGmNApYRViP1AbZlayzRZplHwSe8n+mHAWEua\nPE/eM377DdoYmpVYKNRNjTLi71w5i6KhroUpVDnxnZ4Dc9W2kmkWfNrZaclixPvE0rUN1rqltHXO\nSlIBeCVBp6krYteWrNjjgwcS1kLXNuiuBTKrrkVbC8osDKH50sWzZmElzNeMNMxAcJaz0FmHtU7U\nhylAnqfyOBSWy2UixgPH0xH9Wcksz82O1UqaYlqrL5/PK7jlhWgpl19c9Ag+Bs7jgE9JJONKBkZH\nEtFoLjlippHory6Wf+maD47Z82j+3TOdU6oTI7qBes5gVzc/DzkWCueC/b/CNRTMKkoQfYb3AT95\nUkwYrWR4eNGLTNNE5RweRYgSa1KKaDTnYeBwPPL49MTpdEZpxXqzXuJJBoZhpC9DUObbLJL8yOF4\n4vn5wK7tishx4ng4s2pXpLVwwm2xtbXWEjNL3yrdsKCSF/hFaUUottMxyqg5rcMXt2C+fh5oxY/k\nIldXOaNLnFZEopehAs41UFz/UpgwpkZpoQ3e3d0DkvHN9ipQuspaYbDXIQ7kkqXLdyg0rmpZbe5w\nzhDCwDCe6C9ntE8EQJXZfxkl028yhJjBy4DUECAkTTKScRrneOwPnMJET2C73XG/3fN2s6d98w2r\n/R3fhRFtgJSJPnA6nxi9J2deZCDGGAwSdEOaCqwosol531GWblVX3O++LYfUPFknEU+BTx8/kcqw\njdVqxd3dnqqq2GzWzGKOlBL3+z1tWxUaoCoBK/Mf//d/D8D5cuHDxwfGcZJD8+ZQWe57LoMq8lUV\n6ifP2I/4YSDVBqcdTQVtoxgnzTQaxjGRiIQo90ZpizUV796+57e//Q37e9lIomJXbLcblNpCFk6+\ntaVvkiKn05nT8UDbdlKmak1lLU1V8eb+HnJinCZSStR1LY1RBOO01hSed6GnVRX7/Z7tZlvopBeO\nRTRlrWXdtrRdR9u2dF1DSDIcQyn3ouE4N9q/jiGzNG5BDpSubejaisrqMuosFvdOQ86W1XpL1Rx4\nfHrg+Mc/cnd/z3sU6/Vu8TGZ8dXbZ3P9nVe17lwVqJTIhYEzBU8/TUxZBnfPB3TIGa9gMOIddDic\neDyeGMeR15XGbfZ8CwcoJQZQs/7AWivPDhF7KXip/MxKKldd7uGrGHKF8q5fmRlq1jnhi1tL17X0\n/cjQD0zDSNd26EJLnsZRNBMxcbr0/PDTB3788BNKw2rV8f79uyJoE+bV8+HAx4+fhHor7NhlT57P\nF56enrlbbVh1ApcYLWSDlMXcrnKOuhIl7eQjlyzeMNfnlhjL4aiNWYZQBx/oS/Xzwn7h5vp53A/9\nSPATMchpqJUYtZ8vR/78ww9EH/nd734v2VaK+HEQ+MOBrRvapmWu3+eWhxHdRVE8vxyGq42WLBdZ\nzH0/8Iln8ZlwGmvXrPdrcpwIY894eib6UUpilRZvk5QS2Sa0hjqDLrVpTpnTcOFfHz/zjx/+jK0b\nuqZl165YV5ZNbVnXIrVtrKNRDqc1la1xxlDXswhAOKlzg3T2QVE5k3MgF5/oOTnJMZNCLI0TuRHW\nWva7PfXvW8ZJ5MfeSwCbJl9omTIQYLVaoa1aJOOQySlirebN2z3/23/4X1ht1vyn/+u/8PT4RM6w\n227Y7/e0XVf4zWJA9vnhQVSIheJHhqEfODwd2HSOqqvQThOCI3pHGitCVclhWWANayxNXVPpTJpG\nxrMMHzbGLmwS730Z9SdZc11XaAWVteSqwE6oIqxRi/NkSgmrDaoElxBj0Rjk8pwFs3bWYVdC16QE\nvbVfsdtt8cETg9ABnx4HDs+C+ccMMcF294au09KsyzPEEJd7DmKKNAuhJGQJhGGMMH0u5zOnMKD1\n1TY4Zk1yCt021OsVrj8zjGKNMNtPSCJwhSfhCqHMAXyOOgqKM6Jwk0mZfuh5Oh44XI7Ss9GzkEmT\nlWJKCatlKhcoklJkrZZh6bfX9cC4iqco8OBsj7wEpFwSMHXjAyOYk9wjpb6YYnVT0szY0PL7tJIR\nbEaBUapAO1r2ujalEToyTaHssUzwkU+fHzDG8rt/+B3b3Zp//pc/8J//y3/n4eEBkATL+1D8hOQA\nutLjFaCxzrHbbXj75p79fst6s0JrxTgOxODZrtfUAFExjBMpRbq2pa4EntNay6jESQRMl8uZcfJ4\nH5bs/G8KI09Ih30emqvLwwjBczgc8GMgR3l3MQQupwOu7lDa4ZSiqmteND0KI0VpEf0oii8HIpRh\nbjbljCYRwsS5PzGFGlvVC99ZRUWaInmaMDFiRcux4O1RJbBgs8YUbnVGBhlM04WH4yN/+vwT0Vis\nrVhZmTa/qqoiva3pqoZ11bBrOnZtw7ZpWZur4KZxlhA9w1QabTGjsiITlnmQqozWSikyjj02ifLS\nWBFqZGRMniqN4RgrqqpkoVkWgnOOtmnK5ig+N16ycaMVq67j2/e2KM1k9qbWms1mzapbFcP+kRgi\n/TDy6ZM0V/tBGkhDL1WXmElJEFitGpq6Zt21bLqOcQxS4irQRiimddXQ1Q6rQKcs48RmPFuJ0Zjw\n3KWZFmKUv5eANkahNyqlFs6tnj2tixWvwHbFyjdnQkgLnObs7YRFaSzXVVVsImY1X+LS96IADYFc\nvPDzbBs7z2BcON8SQHPWZVUWSOUVrp1SJOVALrS/mOTePg8TU1JoW9N0MirvdHyWGanTxDQOZU+4\nK3ZcGnN5njZSDrSc09LwzsXoK6fIMFw4Xw6E7MlaWE1ZK0qphBhcFBy/rqGqUNaioqwZuCbHt1j5\nC2uA2wDO/LZyaZbffu8tHKTLLM65D5Bv/iy/9Obg0lqm9ag4K3mn6xDu0o+LIeLHkdEHhtFzOp/5\n4/c/UjU19+YNIQUOx6OIxE6X4ttSY21FVTU454lxrlB1gS4Vde3Y7tbs9mu6VYNScLkIzVgp6Ivj\nalXXpffnFuW1NWIpMMMvi88RV7Mta+zfViDH1GhbYVyxKy1NNK0N1jpygOISRfATx8Mjm62ibjdo\nLR8oczN3Us2WmLn03ySQxxjwsXR+Ebzd5IxKnljk6MMYgEE2k7+gxmfscKCtLE3bopwilM1nlyas\nqLUonipZQ0oXJn8i6YmghAaVvOe5l877DJvUrmZVN+y6FW/XG97vtry729E4S20s3632jFPgOE6C\n8WVQ6MLlliBdLGVIOdD3Z4x3ZVFYpslzGXoul7NIq7uO/Zt7nLWyYKxZAuHsSOi9ZxxDKZWhrisq\nY6lcZrte8R//w7+XRmFdgvrxxOV0odI7mlbYHJfzmXEKMhrueBK88eGBjz/+gNIGZy33+x1V3ZJQ\nhTt8kswk52L7K8ylzaqla2qaqqatmxeWrLMTiStrx/u5TBYhVAph6RGcz+dl4PB+v6fRRkr2VF6r\nON3FdGXlBD8sQSUEL2tGiVK1qWpMY7DGcLlchKIYhYde1R3a1OisISrxAFezx7gCdRXNzA3OVMhY\nzIGMhDFQOWlixph5ej7wPz98ImjDt9/+krptWa3XPD44KbnPF86nA0pvS7/ILP2jBS8vtgyqGJ35\nIH0AUpSmapgY+xPTcKauFC4pAhCFIQBKDrcYI8Eamu0K+7wiXkb8FEoEf5mZLw1ybvFyliBVvlK+\nzhLMF4YK5TMYjbFWGGzL6+eb1xWMIxdYTxtNt1ox9QOTF7rtnHlrFLV16BIbzucLHz4/8uNPH/jT\n9z+gtKb50594eHxgKCrhcRRrBGsrttsdoIvYLMhKVIqQIkZrmtqx3XZUtcX7iceHE+fLpRjNybDw\nrml4c/+GN2/esF6t6dq2VOCBmKbSV9G0bSs9gwJvTWVv/k1BK8fBU08eF6MEQbEswDnH3f090SeU\n1sScCCkWaa1soMXkCpmaPS+hlGetGktb2xRT+hAUSSt01qXJCkpntCqOZdkTpsDzx+85/fQn9OVJ\n8NVuTbO/Y7W/o92sadsNEcUUIqdLT9U6lDFMfuJ0OTL0J2xO5BCkgaEis+9dVErIOWkiTJFzGPh4\neuJ/fDR0dU1XVXR1zX71RxrrqLVh363ZVoroKrTLBDMRidecJCWm2DOdxcHQOUsOku0Z7WjqFU3d\nCPXOUIzEVBnxpjAmLosohFAcDOf+VyL4KxfdTyPD2IugyMdS3YihT+0c9W7L7I+XEcuDYRg4PT+j\nc6KpDJuuEYe9mGi6zHe/+q1k/Eoz9BeGoWeavBygSgOGvmS+wsiR4c+mMEFSyoLrDoP4t5QMR5kr\nY8QYszRxr3itYhgDl77neDotJmVzma+Kv8U8DMPoWXxEaZ6tyggvy9APZa0p7MxZfzGiTUQj5IzW\nwtjQSPReWCRJ1m4oDp2oTF0bqCxTpzjFP3MJgb3W0i+wFc1qjR96DucD+kFEVXLJa+uiyl0U0SXz\nFc+ZkaQ1pEAYL5yePnB+/gTjmberGk8kTIGksxxIM06dpPKZrKLab8Vg6tJDEFhq2XulL7Bk2epl\ngJ/vzfUe5Fdff920/bKJ+7URcVKhjjwfjwJHKkXVNFS5uEsqDVG44NpoPn76zD/9yx/4w/c/cDpf\nhPOvdfHTl888JwRTsZcVqb9Ha2RqkZIqWGDeMv0oF/pr8w0+BHwRkcUQqKxjtZIpWCF4+mE+xNUX\nwzNu6aruL8zqnK+fJZCfp8DKR7obC0wFGGfY7XeQFBhFJIKGummomwZrLSFMHJ4PoDT399L0LJUj\nL5ouiI/CXKpIPjTTsMAatRhI5ZQI04Vw+Mzw8Gd0f2DShsvpiCt82W6zpW5q6rZFW0etFF3dYGqL\nm0Z+8fYdI7A67zkNE6d+4HQe6MPElJLgIdaSiQQ0PsCpNLyMNqU542jcJ5qqYlU33DUrdo1m28C+\nhSpkbKqocThdYU2NsQ1WxyKUiRASlXFsVmvapll8V6QRJMEv+JKhLEb/xaa0bMaU1KJezCmhrRUx\njpeAqtFUxlFVwsYR21zJPLU1pSuf8TFwv98SpwmdM3XlxNS/2Bes1hsqV5PJNHXFMDTCLKjqQplE\nxD9lassSBCjtXnXl2BpjCgTiCm4cxZysGG/NlMJ5OIM4JAq/X9w4iw1BiTvaaCkKM1cox4YiSorL\n68wiJ+scxllmOf5NvX9tdpYZjfPwojkThwK3KvGorozwvE/jwJ+eH/nxfCTYim9SwqBRVUW73RLC\nxDgNHA6Z3W5bjMUcMWVU1ORspOE2Hxhlj2iVIXv81HM+PfL4+IH+9IQOI/tK0wdRc3oysQTzeXpw\nQpg99abFhoA7nAinM3m6QiwzfPQ1aOV1QE4lKVO6HKJz50BfG+dq2eV//cpJTL8eHx/FQVMVL/ME\naFExD+PE6Xzm+XDk8fDM4/MTT4cDMchBmnLCaIMrlN6UxZ1RoMepwHYs/G9QHM5nFvV02SPGGNpV\nR13XEp+UWDIbLa6faMUYJvppKJBJJcQJa9HzmijrdfY8+mvXzxLIxxCZvFhI6nKCzXSk9XaDxiyY\npzKGzXZP260w1tIPEx8+/ITWhv3d/gVUVpAVZiWkiD6KBzBZhi7njCs3JosSiJw82V/QocelEYuY\nI/kRLj7JCW8sVinevXvD22/esdm/ZVtXuK7DNyu6f9jwd7/+Oz6cjnx8fOKHnz7yrz/8yI+PI3Ea\nQYFOFlNZtLak0vxJRpNJDGHiEiZyf0I4KlAnzaqybNqKu03HfbfibtWxtzXrXLGxDbvVHV2GME0M\n/Rl8oK0q3r7ZE7NI0KViAQq9chxHaeYB3bqTU780WeeNN00SDGdxldbizDff06qqaNuWuhEe8zgO\noAw6S5c9pEBIUSpzZzGqeErkhImRkBKTDwxFMKVL1tW0DW0xTArBk3PCOku3WsmBVOhrcw+AQrmb\nqaypDOMIPhe+viqfZyrrRBSVM3vCaIFeqtqhclq8V5Q2aBTT6LmMZwCM96hh4Hw+L9WBsxZXucXb\nPiZNTCVQZwkuKl+zWmCR9guhuaxfMqbAY6va8jyN/OHxM//HP/0j35/OtJs7DtNEY6XP0G23XC7P\n+NOFYTgzDhe6psVWhuAnCbjBFMfE6wBmpcFZJR4uw4nD0yceHz8yDWcckbWGu9oxKsVpkqHgC4NF\nKcHKc8I0FWa/orrckXwglalUc0N1DsIzDp6XDFwgybl69j7IbFNtl/szB/zbg+DLQ+Hln/PPee95\nfnoSpWYRAaUQsVrGDz4/H3l4eOTT58+cLhdiymJ5oDU6yjAPUywBcpb+i6vcYtoGshfW6zXr9ZqY\nM2PwxCTCs3HwaHrIUDuhFdd1TdM1rLsOrTTTOHEezkV41guMYjSVrpdh2Vprceksdsuzn8/f1GAJ\nIWZLGZkL31iakuJrEHOaYT20tti6I2SZpVZVLe/ffydYuJoVajdlSb7JBpIoRBf5a57zcvF0MUoT\nQfjOzpKdI9mKGEYyCW0y1mSykqbQOAY++guHhw/YqmV7f8/u/g3bu3dUXcu7qmJ394Zv6w3v3Jat\n7ui05ePhkSGOKCf+2TF5QkpEpYnKELHl75qoIJXVGXXmnDxjH3iaRv74eKQyltZZVnXFtlvxZnvH\nru1YuZpKw/1mRbVq8Q40Bis5nHTsU2JMgrVhNM650gDUZZHmhdkSPAs1axrHxfUPFCkGvFfkti2C\nhZKVI7DN6AWOqcrItlB8uvuibDv3Queb+b85Z7qmZbvdcncnJmDjODL1wroxJVOZPVFmTvz8nOds\nJcUoeHeZ1NPU9bW5qfWyGXyM9MNAP4zMTBhjNF1bSxzimhg0jaF2jpnz7UMQjruTikQUtoFxGFFW\nlU60WbjBcTZtY/7a/8vcezbJkWVnms9VrkKlQAIlupvdFD1DWy5t/v8fWLO12TXjhx2zGZIz7Gah\nBIAUoVxdtR/Odc8ssjlfq8MMhUICKSLC/dxz3vMKxePjF06nM03TcjgcaNu24NpiBVC1Dafrme/O\nR/7l/MI1yTX6dDqx2RdKX12BVSQlh1vwnuAlfu/z5y/MPuDqhv1uz2a7pWmaFfhKMTD1Vy7HZ66n\nZ3L0qJI4ZYxmbzWT0Zxy5qI0/u3yEXldfE5QWeoPd8RLT5o9scBwLBBOiWL8uTCJguUL7FRVbv2c\nnymzWW/Xlcb5SnB4nbxXLF2JcObmsOdX33xFU1XoYjg1TxNh9szjzJenJ56eX7iOc2EbiX12ZWu2\n264cfJoQPcM4rA6ZcaFMGk3bNvzud7/l7u6WYRh5eX4W+IyMq8TsqrIVOQm11VWyzPTeFwOsiX7o\nhQ6rMuM8lYlHJsVFhr+wVBZ4RSi3f0bBEjolDJKWs6Kqip8l/MjYbEgkQo7oCCrKm7XZCpdYsTAM\nVHkhFpjm7Sn+Rgm1jGkZUsG1ppAYfUSZCnb3cBeZz4/YNGOIcqMmERuQRvyQ8MOZhKY/v3B+fGR3\n+MJmt6Pb7+n2B/amgW5LuntHHK60JM7DCeMUmExUws0NaAIWryumrJhiYogBn0SEobNMElPMDDGQ\nsweEMVNZTXu+sD2d2Ncdu7qhtY6Hw5bbTcfGVbRVTVs58YzRFgOkEIuIVpFTwk8TUWuMApXkPVnC\nBGNRwWktTCChghlIYLShrptiWGVXWCKqiE3F90bLskpniRtNMZIU5WaVRHNKIV7wbWvsKo5YLt6l\niBsrfN4QIzrJHkUpRfThZ5t9bCKqYmyQM7m4zgErjKSNpOMsXY5Wi+MmK2NAl1HYmCLNnyf6YURo\ninJTW60JJTnJqgplCgsDVr/0BUdZzM6+fHnk48ePbLdbtP4LmmX8LgVjCJEfXp757vmZZ++JxuKC\n5/F05KZuaXWGHFHOsNlvOVQ1deXkPUiReRoYRlnWVU6S3XNVif/NPOL7C+eXJy7nF/zUs4Q/5KxR\nOdGh2OvEjVfEqEkYYkmyKQi4eCUZA7uW6nZPnmbGJ2FnvCm7b+DM1xfj1XJCrqPl3/D25UosWNAK\nQ5WbWD62/nn5DFFwOlfJe6bL9e09quhVQggcjyd++vzI+dpzvvTihlk5drsNu+2Otm0l9H2ayDnS\nGyNEgroukWs1u92Wu9s9TWUZrrG4sWasM+xvdhzajsYJG6WpGyor1gCrj345tRfhTwxy/Yx6RAEz\nxTJ5FU+VZCP3Z1bITUpYxJM6sIztUihWn2etUEh82TQLn1sOKo01rhTl8iauJ35CLECX9z1Deg1I\nWLm7KRO8jJnTHOmngGs60v4rktkz1Ds2/kobB+J8Jc8TMXqMluDkHCVst58m+pcXPn/3HXXbsL+9\n5f1X37C9eY+tOu4qhz8caLPn2SScy2gH2iqSNgRl8TiCaelD5jSOvFyvXOeZKQpXJgFBKWHCIJa9\nKcPsA2c/8fl6wmFwSlgvu7pmXzfs2pbb/Z7DpmPfNGyMoysFvbIa8faJzCmiFVij0TmJOtJZtHOE\nnPAxUpl2pQDmbNbw3rpuiphGLD0XJkzTNOKUuC6utLA2tBZIxMjv1yKyqauKw80NbdMIT7yEgdi1\ngBtsVZGBaRwZ+l5+zqqisk7k99aVGC+HLYeE9zOp6AdQFFc5gTnaIup5e80tiIck3wScNihj1loR\nQuDay8/snJO0qZLJuoh7FGq9JBd/cdBrIUspcTwe+f77H9jtdtzf33N3d49CDtlhnBjCxL98/sx3\nz09MwtFlDDPP5xdO2w2dSiQCurLcHN7xm7sHpuuwFjxnDZOihH57cgzkKOwUP4qPzPn4zDz2KETZ\nSraFSROpMrQxss2Za4IRRXKLUAN0OeiS1nirqe4OMHmm01WK5hvfowVaWe5XxUI3Fn0EqnDRF8Wp\nKpPLwluAcvD/HEZ5symRr6uUHPTA5XphHg2xOBu21kra/TRzuVz59OWRT4+PjMMsuoubAx/ev2O3\n22Kto++v2B5yDpwvjqZt2e+3aJU57Hfc3R7YdBX95cLx6QvzOGJrg6vka91td9RW4hptiSP0JXgZ\nFh/yjA1CMZ3ySE5yfQUrlNLz+bzSaOzPxt0AACAASURBVJ2zdF2HtWIE96cevwyPXLEyHFhd/WTB\n9unTJ8Zx5MOHD1i7mNwIHzz4meTEclLwNwslB5G1l8/Fdzy/uRgWDqrMakqxwglmt6NuOy4zPI+e\nH2MmNO/Z3hsONnF++onz02eu0xMme9Lck/2MykV0AmQS0zDxEkeGywtV+6/U7Zaq67jtNty8v2d+\n2DOGM3OeSCbTbvY03S1Vc0PSFQHNGAI/fXni+XTi2F859heu08TVTwxxYkyeOQdititLx6gMKhGJ\njAnClDjNI/pyxD5/obaOzlRsqorOyq+Hw5aHw467/ZZd1+GspVIaFSVvUKLVwCqJXGvqCpLALKpA\nWanADCFFQMZoq+26eNRaY8pBlIpoZOXGlqJXVZXwtGtJMgLWNJxXJo3wiPU4MhZoxntP5RxNCMSS\nwCKHXlpNyUQIUsbaMmaHGCDl1xxV9brshVdqnKScyySxGJRlpYsydiceIUYolVWZIHyILDlOy2+h\ndFoyGar1exwOB775+mt2uz3bza7gxjK1nIeRj+cn/uXlmad5Fql8Wbhe85XBD1znRJgGNl1VFtoi\n7lIIe2u325KyhAHn6ElhIgUDMdI1jk19x6ZxHI8bLucjIc5yD2Zhm/zh4yc+fnzm+8czU9Ogdh22\n6Yi6sL9KT70YRlWbBnu3pz6e8efra4e9tN1lQlmLri4GX6s0XTxZhqEXVWZVlwmJQhP9jwKYU2nS\nlrhBsaDIaNCGqq1oui0W6M9XrsMguPQwMo0BaysOhx1ff/3Af/r9X/Hu/paqquivPZ8fH/nu44/0\n/UjdtNzeHNhuam72O+5vb3j37o6XlxPz5Nm0HVklKM9hLpRZMvg5FBbYa2PiCkS4dOIGI6ymEpyS\nUhJL7LZFVNjy756fjzw/H/9kTf1lMHIKtUZpIsvJLaPP6XTier1yd3eH1qUjnyZyVjhbCfZYFI+6\nmE8t5lplVcLP7HDJsq0pwojM4kqXV+wpa0f2gckHhlnRVFtc63BVpoqRGg11yyZ7nn78Vy5PX9A5\nYmPEKNAqkSP4KRP8xDD0OPdC07S02z2u3WDrio0z7Jottqlodze0m1vq9oakDHPBkKsQuatq+mnH\ncbjSzyNDmPDZcxwunIaROWp6H5hCIGXW1yTlgFeKmeJqN0vAgcPgrEAstbb8eGm5fdlws+242XTs\nmoatq+iqisYYaqsl4qtezKAMfpoY5lk8sZMqSSdWhFgKyJloxEtDlcUYsN60C2SxbOCNkYWp4pUb\nu05j5WOuFPdF0aeUWu1mF3qhLGrl8yXkQARnMUu6TtYadCjZjbI40l7+vSl7ApCl2zAM8nErP5sr\n3jTOObnhUlz//bKMWxg1wmkrGO96lb/Z1ehlYlTc3d3hXEVTt2w2WyhgYB8Cn65n/vuPP/Bp6BHD\n4aKJKPuN8/XIXm3YOcu7g3R/janQpeeJMbLZdOQcqSvHfrdhu+3ouhZVFr1aIQIiYzCuFntVrdcl\n349PI/P8mfOxJ41BAr23LdkKt3yBrZYCFa3BbBqa93ekEMCHBQBZLWgXq4KcX61/5d6UTvl4OvLH\nP/yR3X7H+/cf2G73a+H+3/msq4KtG6PZbDcFrrLC3FFgK0sKwibpx4lxmpnnQEoSF9m2LTeHgwQc\nGyPXXnkPjRJX0d1+z/v397y/v2XbtWy6lv1uR5gD267lsN/io6epBR/PKksASUoCPRohOFhj18Qt\nYwzZiN2thpXrnhF19mYj1544porHyuKi+acevwxGrgr2qBRevW6k3zqmLfLeRbBiTSV/XuLRKKKQ\nUsSlOy5vwJJrqJYlulqL+WLutFiIprLwyEqRY8DEyH23Z98oahfh7hbdNeT4wE2lmeLE8XoizCOw\nxGGw5jJCJvqR6Efm/sz55QVbtdTdhsPdnu72wKbbUqmOOle4pMlak4NI2zda07QNt3XD+92OkD1R\nBbTLfHn6zJfnZ4YAT9eB0zDjs2KOkSkE5hAJGSLI6wqEHPE5wOzREknL0+WEVRqrFdu2Yd+23Gy2\nPBwO3G46Do1AM3e24sbWBK0Y48R5mDkdz+RcVGaVo6odVVXirFIiZP+a91mKLbB2FqZQ9ZxbMF0p\n/iFFNMLNVZWjKtTRJfE+5Ywry8tFILQkb78KbBK2cmRkWuiHgXGe1ykhhEAqB42EQwsf3RrLOA58\n+vwJrTRN03C4OaBcReWqNc9Se4nAW8IiIkhaGcJysfUbNsXbhiKnYusqVLvb2xtub+9Q6HWjk1Tm\nOAx8PL7wPx8/c8qRqGWBrMr9EXLkej2SWsu79/d8/e4d26qFqdg5lGmgbZtCp0zstlsxHqsb4VGj\nZNGOpokZTA2oknFp0AZufnyh6X4UiOk6gNVUhy3aNUQnuxNpuIXW6lNE147q/S3+fIFzX5hovC4x\ny2Qt5mtvCjkyhX366RP/8A//wIevvsIaS9t2Kyyhyv2soBhSvcVdWN/L25sDh8NB6KXBk3NAG0vy\nntkHQkjMIZYFtPwMpmDg59OFsR/JGRHzvLww9APbTcv93YEPD+/49bffUJUpvDJOSATGcNhvmeaZ\nTdvRthtijhKw7AM37kYaHlRxgFSrXYTWBmUhWLPacmgjk59c+1L7csroyhac/s8IWjEqS/LPehMK\nNlZVNb/+9a/xPtA0LVqJ38SHdw9CEbISkPDTTz+hlOJ3v/0tcssYtDLCUEF4ukmx3gDrFrxc6Jm8\nyqGHYeYyTWTdUKvAXa35/bfv+d1Dy22rGOaRYbgy9hfm84nd7Z6b/h1pHIuMPBGmGZWUCG+CMAeM\nEtxfGxFejJcj83Dm+dNPuKZld3vH4e6Bw+0D28MNrVbkclE9DxfO15HtfotztZhJ2YjuNnRZgW64\nTjNzzDSbPXNKnIeRp9OR58uZ5/7KaRwYQ2QmE5UiK+EU19qytS0pZ87zRD9eeZxHqvOF5vMXNs6x\nq2tuthu+ur3lm7t7HvY7VIgMw8zLZWAYhMVSOcdhv+H2Zsf9frd2MovUeJHJL14RORYjsiRmTQAq\nlY7VmLWjrVwtWYpaYaJ5w/5QqzAMBTF6YWssPhSVKFx9CIzTyMvLC+M4CuOgYPe73Y539/dUzsn7\nU76n0Qb9Xg6AxWPEx8gwT2QtbBxl5JBNUeCAN869AjcB5CRWEYAxYr8bs7CepHtcilKZHZSYsg05\n8t3piT++fGaIgVhM3zQivNIpoUNgYy0PhwO//uZbNrYmzZ6+JOsYo2maFufEGVIXb5OMJkYxGvMh\n0o8zwxxIymDqZoWPKClat7e3PLx/h/3H/0mYJuIwMj+fULXB1BavFoNoys+fCUphmor69gDKvDZN\nSTxdXvnh4maa3xTjWMKzL/2V7nLmOvSkHFHalYbPSHTeG8ZK+VRQYKym7Rpu727Y7Tr8OFI5R+Vq\nEXBZ8fmfZoE3Ygk9SVgm73k5XugvV4EUlWK73QJCl62qmk3X0NSObddAkvBvay3jJMvvpu2kaQqB\nz18+y04mR1DSbMYgkJ61VYHvVlo+CyyZM2W6faUBiyq5pWleG5g/K2WnPNHXBUhO4sankCVUXb+y\nTqzRNJVYk0YUKcs4vLyJqtgfaqWJuYjp80Ify8XIvtw2WfBcVQq6NgpXWTZGUW/2NNs9c9J8uN9h\nbWKcBq7Dhev5mevpifPzI9N8pqoUaCkEKitU1VKZSjDlHAjzRJw9ycu2PKeZnAJhzvhRM/RX/DQx\nXnrOjy9stnvcpsN0Labu2NQbtO2ou5aYPTEM5BCwWbOxFltVdNagtONw+x5ta0JKnPsLz+cTz5cL\nL0PPaRo4TSPnaaSfZryXgpIY8TkTk8eXQ3RQnnNWHLWhGRxfxp7P1zMfnx55v91To0ghMM4zIQiG\n3iRQIbPBgGsk7ccIq0aoX+Kqt1BCldaoonyUjk4waqcdykiQQAieBFibMZgy5ShyzCUuqyzMtEjt\nQ/HOVuUgyCzeKk5ofbDycDcbGb2bUuRyFnGPKRz5rm0Ji7+FMcWrQ0yL3tLAyKKQjSkKR9lYrHX4\npdDk4qZUFnSpeIujFNYIw0LM0KTDHFPk89Dz4+mFL/2ZSSUibxz/csIp2FUV7zZbHrZ7brsthMgY\nJQJPFsRCy1zcHXWxICBEFJoUJi7XntP5TD+VkG2VxQOoHABNXXF7e8P93S1tU8vX9R5/OuN2DaZx\nRFPJoVSAbzmSICqFO+wkD2CYy1pq3Yax9OGvD5maXVWx2+/46qsPHA4H6qZ6VceWsVrln33Wv/s/\n4XZ33N4c2LetiKOMEYGaMlS2QinDN19/zePTC+dLT0qJaz/w+fEJXSL/6qYmpAKdYZj9yOxjsZEQ\nGqxiZpxG+n5g9p6maQBRpqeYRA1sLHVV42ypE8UfaRxHhn4oiEFGfKI0latoarECWGrfcu0KPdas\nkOKfevxCfuRAyqtUPGdWbFVu7uJyVjbgVVXUalmR0Nzc3PJK+H3dWi+YZMqvnNXle6AgISOo0kXO\n3bQ0RoPRdNsd75QjJBlJj8cX+tMTQ3/mfPyR8/ET19MT+BFNwjihxild47qKzeZAVzfURjFez4yX\nM8PxTJwG0jyISjULRz6FzHA5M/QDz+oL1tR0Nwd2Dw/cPXzD7u6Bw/ZAUIpx6hkHCHMoRUxh9eLJ\nYblpWrpuj3MVmSTpI9NIP8+8DFceLyc+vTzz+HLk5XLhPEz0wRNSpFLSHcWyT4jAlCUYeRg8z/2J\nj1/gtu6oC+/e1jXGCjukixodIo1PtD5x2xhsU2GVQSfweZa3qcAsGlBGeswQ0toxVk5MmWIKqyPh\nUnyXEXOa5SAS+bzEw8UkS826rouClbIoMqsMelk2OieijnoZW0tcXIwRnJPlt5WIuVSWuTnBHDx+\nnlDK4hyliAtXfYnP07V8bopJuvK1TS/QUQjrQfaWXkmS5uQ8T3x8eeLT9cTJTwQlUAu55KWQaKzl\nvun4sL/hvtvRastcBCvaiMKU9bpfvGJeXfNiSoQ5cjqdOZ5OjIWJpY10/Zu2FYy3ctzs97y7v+Pu\n9obZz1yHgXDtMecrtq1wtZNDs+wuZMgSSq3btNgMzk4oIxYab1MZl09YGjGyNG8PDw/8zd/8nqap\nORwOYpTFqyhoZZxl1j3E26ZtYRJtt1vuD4cVcksKnLHUlcJax1//7nccj2eeX07igDl7rpcrRima\nBoyruPYj1hpSypzOV1xV0fcj0zTTtQ1ozen5eVVw1k21UhiFbijskm23FbO2MvlN08wQJFpOa7W6\nqi44+lt3w8U6YxgG+r5/vX7r+k/W1F8msxOYvWccJ/RyUZfO/DVMYYFAAtM0oJQhF3/fpq7XTbdR\nyOi5hrwiHeDakQvfXD4eSTlhbc1+f8f9/R3KaEbvufY9l+uJy3VgGAbm4Ur0A1YH/DiQ/YRVEWUF\naUY7XL2hbXe0m1va7kBdiZhglwJxGpkvV/qXL/THR/rzs/hyRHH0w5giegqA5np+ofczUVnuux2H\n2/fUTUe32xP9LdPwwsuj4Xp5ZC0SMTH5QLhe0XrAaFmUHDYb7vY7vsq3gp97z+l65fF05vPLCz+9\nvHDse4Z54jyPXMeR6zzjUxTcV+SYJKUIWhMryyUIPzmHqUAIYJXmDy+fufm84cPNDR9u97y/OfCw\nv2XrKmyGOSY0FqXFyizEyORn5mmiqRtq54hZvEIq59YF6BL0HBbPlsuVcfRiNKU0TVtT146mqei6\n7o17o3RGdS2KOu/9WtBylq5exyiiHiuju+D4mdnPAs3FZWmrqV1N5ZrCs45FICK+5U3T0FaNHDiu\nIoeIj4lYCngonbIPUeLllFqLjvhzaPoU+DJe+ePpkWc/4bV47C+OmzpmWqO4a2t+fXvLh92eXVVD\nELl+2zRY92qbm8v3XXYPS0cnhT2iDNzeHVYevCmYbO0cRit5X5qab775wN/+7e8Fpvr+e3kNTxdU\n7ai2G5ITBsuCWSdEJKStRnUNddNB5QozSBVGzBuKIVLOM7Jv2W63/O53v5MFdLE9KP9orQdvGnA5\nKrN6xem953q9cj6d2BY1pzYaV1dEAjFIsMRvfv0tMUWM0Xz8/nvQmpubG+7fvRMTvXFAK835cuF8\nPjIMA0/PYK1h0zbc3d6glOLL05Gm7fi226BQpCwhLe/u7nClILdLzkCR96PAOnmuoskAZRRtK2pd\nW6Dj5T1brh/glYr759SRw8JaefsuLeKdVymzLDczMQSUWeAWYRXkLKM7hTGhtUSwvX6D5SRPoMx6\n0ZApVKeRx8dnIkmEHn3P9XplHAeiD+QU0DmAiagwY7J4mGjboIwjacf2cMd+d0vb7dG6QinL0jbY\nusVtDrQ3N+yHrxguRy7HI9fzkeF6KcUqkH1JAlJJFKSVxhPphwEdZOwyGur6hts7Q7fZk/PEPPak\nCGhXxDahLFEUJhtcWcTUxrBxNY0WH/Q6a/a2FsaLUszJ088Tp2Gk9xPXeaKfRq7TxOi93MjDRVJK\nYiBHvU48oLmGkZfxyufrkT8+Ntx0G+53B7ZVTesqamvpqpraWExWK6c5x0gXEm1d0TQVVRGlLPae\nWqmCrwqOXFdVCb4WHFdEGlbELm+60HWyK+wYvTAEyt/FGAnlY846TFOXUAnpYGcfCFm8cSrboIra\nbiG3aq1wtsY5oZGprFZIKEaZBiUeMBc++pIOVCCipUtPmaQUT/2VHy5HHqeeIadV1avJmJzQZG7r\njt/c3fF3v/kLvt7dsKkbZj8XmqbshWTo/PnzXn4tz9uYhalT0ZTJRIq5MClIopFojOXd/R3/x9/+\nZ4Fhhp7n52fSOJFOV/KuR+06VKOX2aPsCWAmi4GXq8nOCuzFKwUxl5tY9p/lnlRSqLbbrUCeZW+x\noDDLAnktFbxp8bMq6k3PDz/8yB/ub1EhUlkrhdRosdtV8tx3246/+PW31JXjN7/+Gq0Nu/2e3X6P\n957L5cw8z7y8HHnedYzjUIpvR4yB5+cXpnnm8fGRh/t33N3eCGnDzzhn8dOIqRswwl0X08bXE8gY\nS9sJ5BdixMeZaZLJNbmV67MeZP+WofUfPX6ZQl4uNmstsbBLQPBsipfzcsrlMvprLaqzVDbRcmMl\nUWi+kQHLZ8vXyyTIEaUr1qSZ8qIfT0c+f/nE7D1z8CUAYCLFmdponNFYnSHNqJwwWmTR2tZkUzEr\nx+bmA4ebWypXE3wihHLwpCSjeOPodns0if080r48YT//RP7yY8HMJ8IwQQRtDaarcNuaqBKXy5lE\nX2h6ju3mQNPe020OxDww9GfBbquNsHCShzCLYZQXMc6iokR6YhpjOdQ1W+Mw1lF3LcZqfAxcxpHL\nOHLsLzydj3x6fubleuUyTcwxMpNAC/wRSwcWUULZDBPH4cJPSlFrJ4XbOtq64Wa3Zd9t6FyNywqb\nM7VWdM4yxYgng9Wr7YhVSTIW1WsRcsVQLOcyeRlZRhorCj7pQMspXgqlXGZqVYc654qlaSgpUApn\nPZlc4JxEP45rElJV18ViWWiMtiyiqqLWs9ZitAQXTNMs1gYZEpqUlfxauPeFeb10zSlJ6PCUE5+v\nZ348v3BOHl+uXk0WL3bAKXjYbPjtuwd+/+2vaLVFpYwvFq0+LD71efV+WdkeSmiiKr1JYreWuqpW\nFe0rPbBAYOVzNm3Lb//i1zw+PYldbwhch4HYj8TnM8Y5tHMk87q0VIjlc9AQnCXZ4mleJpGslvsS\n+UOBjyjXqdbLXmEp0vysZi+PvC499TrBex/44fufuNnv2XcbdpuNwCMxQvFSsc5CytzfHbi72fO7\n3/4KrTV108iuYhy5Xi+czxd22467uz3jOILKAudZy/F44unpheP5xO3hhqpy1NYyG0XOkcvlzMKc\n87NHufJjFpqstUKAiCEJ5bUfGRB4pWtkunNlUlSKtRH53xVx+MWWnapkEWqUseIPnmNJKJ9JMeNs\nRc4RbcopZh3GWELMayK60UagiQwZK2lDBVIpJRWIaFI5K6SYhzAzj57z+biqp6wrnW+lcCpjS9yb\njxGUxTU7NtsdWVfMSTPPCeU6tK1RyuEcWCOH0VhEK/M4MluD0XLR6rZj//4D9WZLjp7xeuH6/ML1\ndAarMW0tnXmaUMoAjpgUQzTMs1j5OmdoWkvd3rLZW6qqJkVPmEf82EMZ7VXhLsNiKCUS4s12sy5P\n6toJJqw1NYqDq/iw2TLff6D/dqafZy7zyGnseT4fhRVzOtJPE2MMzEnYChFN0uCsmP7MOdJPnsep\n58frWQyLCmNmU1cc2o777ZZ3xpIQN76kFJ02GOMIC+5ZtoWCEyNLUiWrNWOkiIPQxXLOWG2omprV\nJG3hpStVVKiOGHwJoZ7ph5Hz9SpUPShdq3jipxQ5nV/Ee3qa2W06tpsN27YT17ssQSjjOMnC1Wh0\nghiKgCNKYAVocgnxThlRBicR0jxNI5+uRx7HKxERDaksyklFxmjYOsevbu/5dn9Lk4EYADGEaroW\nF6PQ1IL4eIQSphBCEHy/7AEysOkKnxyJElPleYcY8dPM7MXAbPGVUcB//v1f0W1aqrrin//5f/F4\nPOKfj9iuRTeOWF4L9SY7M6XIFASqS+XvlrxXVaT+cpvmV+oJrxO3vGe6EBTk661kxbwcBQqlX0kR\nQJHcB3Y3d+y6mq4TyGKJW1udT7VGOwXUAvWNIz4GjucTL88vYp0cQ9mjiPYgVxXvbu8Y+7FMv5nr\n0PNyPLKpK1EfW2FTubrCNVWxXIhlOW9wlQLvxUfIzwzDwPXSy3tQR3Fp7OQaSCozDQPT7Ikpl1jB\nbs3U/bePX6YjXxaVvB66iy+CnP6J/d5htCvBp46UDQqLMnA+PpJiZH/YS5JQ0pAtKRXfDJaLprg6\nvF2EkiAFok+E4QoUfrKSLtwZQ2NNsQQ1BDKfHx85Xs704Yq2HrQjYEogw0zWEaPl1FcgdqrWFk+T\nTIweHyR/07oGu68IfibjCNESdU3SGdtUomCde7RO+AgogzaOaD3GVKRk8UFjrWCJbSvxZMZ26LaC\nFDAknFPrxShJMiJZX6hX0skErG3QTvIv5aZP1BkaW7FvEiEGrtPAue247PYMD+8Zg8Axx37gOA5c\npokpxQKVJaYUxEsegbGmIDe5UZqzt7xMA1/6Cz+cjuyamk1Tse9atk3Ltm7oKgnf2DY1jXHUWknQ\ntdGoAsEZY0snFglzcdOzoIurY0xxdTfUhU44zxPTNDKOo6hNcykJSyeq1Gp7a8qirrIGQ0Vb17RF\ngZozK6NliYl7jZZLhOJjLrimA5QUdRWw1jClxNFPfDw/8zT1jCmS1OviTtbBmY2r+OZw4Nu7O+53\nB5yxhW0jlqtL7ihlesllUUzOBGPR1uBcZBzkOffX68oUi6XILjuIaZrEHM17mVaKsrBrW/7yt7+h\naSWj9L//4z/x6fMj6XyBxmIaRzCapJQ0UQU+ClH42kuq1dJ1/4wKvJSDUgVeKYmvWEpKkblYNsCb\nnem/69Ilxep8vhBTFuqgq4gxMo/TOqVVzmGLqjtoifuLUZaKQlWNWGeLq6dht/Orda28p4amqfEx\nMo0Tj8/P+O2G3X4r6VabDldXYlvhxTTMLGZvi35G67UZrZw0qHVdrVbdoonJhUwhCU2Lp/6fFUYu\n3XGW5WZmsWkWelleLG0truB4Shlisqhs0MbgfSrCDnmSSlVATcoVKTtQtuDisOQkSrLOskxN4vgW\nPc5Z2sqStSlBFI5N14lznnMEpfh8unAeHonnoaTBNFRNR/SeGDzR8CpIUohxjxHCv9wovRTyXNwc\nrUZrB6pC2RbTbYgpkHVajayUFvGCNk645AXaIGUmDyMZY03h3G+oXI1GnoO24CoLfiKniVC6U/n1\nmnS/JrcUWiARyTbNSuT1WREB52q21pD3e1xlicAwz3w5Hfn08szT+cycpDOcQ+B5HDhFz5gS5GI6\nRiIgnPLrPPF0PeOUodIa5zTbrmPbtGyaln3Tcr/b8+Hmhtu2ZVdVbJ2jc0JvdFphlCX6hM8TIWRi\nFrsAHyVXUbi5eR1VtdFrEZeJxGKsK1Sx4j2dhAFjC9WwcpWEs6a8Ml7ESkI6+nmeCTGSdVEwIgt3\n4UprqErcXOHTR2SCOceJz9OVj9cXjmEkqqWsLf9NOKW4bVr+8v1XfHN7z2GzxSjBtGWBH1jU0Urn\nolA2K/0tA20pjhdzWRulGCMhBtIoRWycJXN1HEf8PBHnIEW8jPnGGO73e949vF85+/35wjyOpPMV\ns99AXZGLh3ph2QnEtyw3WeAQtRbpBVVZn3l+Le0/08bmTPB+9eXO66nw7x9D33M6nTmfL7y72ZNR\njOPEOI3FiVCKZEqmUJ5jyS7NhQQhVgfW2jWI5HVpPeO9Z7PteEj3dE3LpR84ny+EFKk3LaauaDcb\ntFkEPl7YKKvPfyoHRxSVcQgr7Nc0kkVsrSlqceGRK2PQb9wQ/6wKudEShqxSXg5qtJLl3MP7B5yt\n8T6WzsiilC2qKIszjg8fvpWv4yRwNwZF8gNxlliqqFpirsnMRLQwXpTwlyV5KBOTFMKmbek2Gwaf\nZJS3DTd376nripAiL5eLfN9Kvl7KiRhmDBVNZdluNnRNV4Kd0+rxoVcCvyLnRvzNi9eHQrPZbdlb\nRyJzPL4Q4kzKkdPxiRCloGO1pM5YTUwepypcbalNTUoUmh6cL1dCODEMPdtWJMRdU4vHkbLY2tJZ\nRx09MYdyMShyFI8Q7wdmL37dTV3TNR0qK66XC9fzlcnP2NrRdS3bzQZXORKKd4cbvrl7x+g9TbeB\nnDn3PX/84Ue+e/7C58uJfpoZ8ZI6oyiLUs2irJuIjDFwOQf05SwxbkbTVhWHpuV+s+X9fs/7/Q0f\nbm95d7jhZrujrSpwCaMU6XphHCKhnwleXOuW7dtmu2XTddhsV6FMtfLIRVSU0uIBk9auaMHDZema\nC+Mkr0lF3osY6dJfiTljrMO5FrRliS3UJUrPOMcQPD4GTNZ8Hno+Xo88hZERUTqaJJ2rImNS5lDX\n/Opwx//5m7/km5tbNq4mzYGQRxDkPwAAIABJREFUw+sEYN16OOcgRYmCyQuTRqhsVokVb6K46FVV\n8fQQD6Ox24jHzTSRC52zLVQ3cYhURD/xm199zTRPXM8X/vD991zOV+ypR99YsjGkYqhVbMJeud8/\nq72vlrivXfgrU21xsVz/rAvrZTkA1CsMQ37b14vM/XK+8P3HH7jd77BaE72owI2TnVxGwif8ONEP\nk+zrnOWwP3BrRWymi6VzyrlYhMihnXPi/v6O5BPX85WPH3/g+x9/4sunL9zf3WG1I4bEFCYxBEvQ\nNg5XVaScuV57rlcRbx2PJ3yMYjo3KjKJrmvLEl2KubGOjBKVct8D+c/L/dCi0SlB8JBfu3BXVXIq\nmYoUxV4z5Uj0Xjr0XGGMwlYVSpsSegu2Emilah5QJLRR1LtvCL4n2w1aW9AVUTkWS/tsDNk6Apo5\nakxVSzxW5RhiZBp6iRibJ7qu5auH94QUiXMAJNEm+cDQ9zTOoe1bpoAtHiNq9cZ2xYYVFAYxgko5\nMS8RakGwSZ+kszLGCg9XG2IWmpdPoHyi1gbnqrIcEsaL956MdFmn05nTywnrZEO+P+xwXUelMil4\nxlE6iePxhWkaCWEi58R+u5XFYmVL51nR+YZOd0WOL0sywRyhq2pUhk2IWCNFb2sqtrri65s7TlNP\nH2au88ClMGKuw8h1mBnmmTllfM74nEgkYhYmw5hgiJ6rn3jpL/xwfGZb/8S+6zh0O262O242O3aN\nWPeanLFdS6daiAGVRE6jFLL8Mwal8uqbUtfNCoORq5JCFGUfAqt9aPBexmljBdbJcnhWhbFSVZUI\nh1ISGbl2xAQh8bNlYyRzHAfO84hLHZ+uF770V8YUCcgWUGfp/A1QoXjXbvhqe+C27XCFwrZ0uAt/\nfegFy5XpwVG7iqZrsdoQUlw70ZST7FIoocp5MQZTVNZSO0mkWvZFb1WEqw+Oihx2O/7md7+lqxr+\n7//6//BP333k5csLuqok/cq90n+FdCKbqrRU9DdV95WAkt826m8eqZAiCsVyiTpb2Sw/V23Ll8qc\nLxf+8Z/+mW3XMvRXcgo0TUXbNnRthwmKqtADN123cCvAyvs4T5Kb6b1Eu/X9deXi7/c7MSlrNI0V\nUWLT1Hz60qFj4uXLI37byTK52DtQ9jUxJ1zt2OgtddvgqurNTkbcDbfbLc46IJEXb/1y2MLS9P7p\naeSX6chRECPJz6gyAmcl+JO1rmyIxb5z6YCVA6WERiTJMIacJbfT6gpjNugN5BwJeWabBsLUo4rH\nckwZkwLoCqUqbKXwc2BOijxHNnWHrSuUUZyHKykGKLauu65j07TCbghyMxkjRXocBnonKi4Z1WXU\nVRQMdlmwWMn31NqULi8y+0CMs+C+KRFiAm3Rxoqc15h1naCUIUbFNEXIkVRFrANjpGuxlWOjNvhp\nxhcv6pAAE6lCBmuwRg6JEGemOdOPIruPYcZoyF0Za7PYCLvKstlKMlMuoo/Zh3X0NVnTGEda3NvQ\nNJXjUHd8dXPLnDxTDlz9xHnseRmuHI9nXi4XjteePkSGGBiiZ0qROSZCBp8lhSb5mXGaeLpegIxR\nhspVbOqW282Ou82O+82O+92Wm03Hvms4tB21ln1HZY3YtxZqpjEy2S2LGaMV1jiM0swqkAu8EkIQ\ny9sUxXe9qtFK/p0xuignNTEmbLGzTQlChtknok+vHagSCf5Lf+HH0wtV3PM4XjhPE0HnEvuW0RlU\nEkbPvqr45uaOrw43OISyGZKWhV/M+FG64vPlQsxizKS3W9pWbAi0UoShZxgHgpciZKyVwBZYlYSu\nHFDWViRXCf23FO5Xf/DSQZtM5QybruPr9x+YxxEfIi//459QlwFVVyjbrItMlkKe80pQWf5icUfM\nC64qL9P6Sx6C5RttSvjxfxx19gq5wPXa8y9/+CM3hz3jPFJXhv1+I/sOV0mUmpFGyDlHyhkfRbk5\nzRP9tQclfPr+Kpi7Uoq2a1GbLTpljIXaOR7u79huNux2W86nE/MwFkdMh6rEx55y36Cg7Tq6Mm50\nbSeahqKLsQXG0lqTYiDkZVkvSnRpRkpj+Ccev4wgqKRyzNOIS68/WM6pMEcshrbgSQnTatpuQ922\nWOeIUQJ8U8yScKNtWWpqlFU4A7dVA0k2wcH3VP0Bcz2Q2aBUR+0MMWj6/so8zFRdQpdtdAgjRkHj\nKnabHcTMPI6cekl1aZoGbaQg+nni+eko2KqVbrVrBU+VTbbGWjFdoizEtNKgLFXt2Gw67u/uuF57\njqcTl2EiozHGrZBQKqNmDKokex/XRZt1Bl2WM7vdnv3hjvqhwqAZp5lxnjide16OZ8mDtI66crx7\n/zXvv/4V09QT/ATRU1uN0VmEWkVgVbmKYZo4Xy9crlfpQuqGruvYtRsaW6FcMclfWQsZlxR11nTZ\nsqtq7rotX8XAeDvRjyOXYWQIgcs0chp6Ph+fee4vnKeZMUlBT4VhJvJvCEow8X70PPdn/vjJUGFp\nnWHf1Hy4ueHvf/OXfHVzy+12R1M3oCJKBcH8iw+99zNGKSqrwdl14WmsRiW5DpfsU2eseJwbJ7Fu\n5VcseKfWSvjxZFJ8PbjTWzjBKE59z3dfPmHnntkogn6FByi8YZsSW+f45uaWv/72W75990CaZ0IG\njEEpXRbsE+M4CjXV1jRdK524SE9XSm2MkWmeVhFOTOlVBYrAmW61HWCF6yi0t7ULTplUIAddjMD+\ny9//HT5E/te//JHrdSBXDtvW5HI4RfUaiF4MC1i0HGsRX/gn5XX62e9ZIBajkB2HLr7wBYpZWvp/\nmwM6TROPj4/86/ffYyrDN1+/F+aTkeXzbr9fLZNFbZyxCoZhIkweX+6rFIVE8PDunQimKkED/DTj\np4xWmqquqZuapm247Hf42VM1dcG67aoqV0qairowqoIXJhRIg2etRSuKXkaaDVcvEd1yPU7Fwrnv\nr3+ypv4yhbxso0MM2Cw/aIoRRSKGkWTFk0IrTTIKmzTOKvQiKU9ScI02mJJgk1MiRk+OCmVVyUpU\nqKzBbql3FW77gMoVfs4Mw0gTIso2pBQIUYllp5EF2bZrhXJWdczjSJi9sEMKmyEUdsSyVZ6mQM6a\n7bb4SyM0J1eJJV6IkXESqlpOqYyTefVZjrHIqbUmY0r350BLIZ9njyKh8kIxk028dRvxQOkhxQt9\nPwk+agy6MGnquntVCiJxbkM/EHPGWinWddNRWyPdfhA8MESPD7IsSqXzW0KO67L9V+X9zOvzCyWU\nuaIyEgaRyGKslCLe1YR2Q9gFQsrMITAGz2UaOE09x6HnPA1cJ88we65jz3kaucwjvhT4mCMhKWKO\nzESGGYY0g9Yc+4Ft1WKzYZ5CuWZ45eJmVaLRRlRO1CWmThnJowRZVNZVQ2UcVtsilik7iZyJJUl9\nmqYitikumlmVcAr1Vs8i70dTQW0ZVBLKZoF6xfJNYYV0w7aq+IuvvuLD7R2HbgPek7PCe4ktNNpQ\ntxuMdcIySgKnyfUByXvBV7Vm021om3atkL4I6IyRblHYTq+eQQCpqGBTgV8W2wyj9aqQHYeR2Xs2\nXcO3X3/gD18eCS8n7KYmdhXKGZJCoMgkHkoqL1uRJWzj7UG2VoZXaiJ5lfYbowsj6pXl9kpX/Pnv\nKUV8yJxOR6L/mg8PD7S1pWs72Y04Sy6sEGU0fpq4XnumYcIHX4JV5ECM5XUV249EDnnFsBd2kzK6\nTNBWDthpWn9GyU0NhJjQQZXnUvYmVgq2KZ328jKkJNYV2mjCPEvgsy8hM8V+4k89fjGJ/itXdTlN\nEzkFpumKyp7aVZhyExmtUERyLGGwMUAWKEbrDDkQg+Q7JjLKLmEBCq0sxlW4ak/lDCFk+unIZRjx\nMaNMhTaOeR7JSQq5sTXWNVIAjSMzg9JYJ5afiwDFORGqmM4yDAMpywJ14TG/Rs0J3avve+GohiCd\nkTNUTmLE+mEU32Ftiw+DLssZ8XzOpVooldAqAr5ANhqyIWaYxolhHFFGS/Zj1dBUDV0jIgSRM0eC\nLwsc79lsOipnULoSC4QUi81oJJNKZ6kEf60V1kl3UluLzqxBDijFMA4lc1BDVbjKwLK9ismQnVuZ\nCikVnnAWVssUPNe5F3XpLDz25/ORp8uZp+uFfp65ek/vi2VvFBgm5sycA1MUPUIInmkcCNMs4czG\nlOlIKGApJvwo0MkcM22ucZW8Rou+QWuNU2ZVH4eSeCQ+LBFf+OgxRLFaQOyIWewgWJZzJXuxrjBN\nzWApXiqgksCMFoVNYCI4NF3V0Lma2lXEBOPkiy+1L+ZdwhCZQmSaRryfaP1MqCpi5ejaRkyYmldh\nEArmENYimJOM66aYmOmkWXI2fYkZWxWy2pCNxOzNs2RZZjLb7Ya/+Zu/4nQdmC8neDlh7EHwvlw8\naZbYJfX6m9TnRdX5c28YEQYV98TySr71I88/K/z87GNvrT6ulyvTNNE2LXXB7q9Dv+bJaqR++Nkz\nDIPw97WmriuatoEsgd0pLSZYeg1BaepXGmBc7skCSQ3DQEq5TOiFgkwkBfl61toV616MtBa4ZD3A\nihBtGAeG61USsAoUZNyfLtm/UPiysA2cNWU01VijSDnT9yeGa6JrWrqm+CgbUyTQnpwbVNZYpSXz\nM/pC6h8YJ+GBCg5t0dZiXBD3uRiZvOX59Mz333/k0w8/UDmHq2oqVxcVWCInIeAb7cjZUDuPnzwh\nKbSrRHySIs5qnDW0TU3TNHx5emSaZ2bfU9c1MRmGMXC5nkvmJzw+PnK+XPDeU7c1+/2O3XbD89Oz\nnNrWgREfFowFa8UlcZAQ2CUtp2trUgr4ELBGnNYUhlRMOrLWJKUJIXIazxyfXyBnrFZUzrLbbtnt\nb3FOlrs5wTwFxnEWOCpHKgfONdSNI3lPKupXUznarsE5y+V85jJeGcaxqNGUOL41yxQiU4uzsgxW\nSaPFHEeKbxC2RU4ZHaHTlm23x91KKr12hkvfcx56TsPAy+XKTy8v/PD8xJeXF16Ggcs8M8ZApSxd\npTlsHJtGUSFpRxEtzAwvmKsujBKjNMY5MBZlKqytqKrFy6IEGqcoN1kpcFqpgvlKIRRBGyU0QvYP\nUdIGhQFVCota4gaNIamSW4rczDqBSWBjBp8YziMf//UH/vrmA6ndi4FZP3K5XrhcLsK6KGKScZ7J\nKWGN4u7mwH63QW23HHaSPam0keYmS4qWfsMGkX1hySZdBFQ5rR4fOQtdz77hrldVRdM0bDYb5jBT\ntR3d/sDz8cTwP/6RLz99oW1rtHMobVfKq3Rsy5MWzOw1REQBMv31/bUIZ2qsqfjZWMPyJcqTeENt\nWTDyt3qAaz/w9PTM509fuL/dcwozX56+MC/+3kqhC81yt91ye3MjGoamZbfbEWNkGMZCDxQvcKul\n+Vq6aB8CYZro+0F8Xs5nXo4vuKpiu9vx8PBQTLP0+uPmFIUskMKa4bmGhychRSglNg/99crlcsZP\nszh5qm4Vcf3bxy+j7CweEkKCE9qhNZZxnhiGkXnq6a8nurqha1u6dls651qKlbLivRKXzv41azJn\nIdzHlMnZk3zEOtn6z+PMd3/8jp9++pHL5UxVOaydyoLVrCNpyqD1TEo9lZOEkRRTMRXyeD+R48w3\n7x9oW8M0L6o6z+k6c2NvMUYXC91clmqG/W6L1pphHHAlrOB4PstiTWmyUoJDlpsHxFembiqqWhal\nxgrcoq1w1IW9YlFZpOFKa8HVUUQSSUmnuCjb5pg49QN6miCLyEGCOSxVXVM5swYMzH5kOp/xwwWj\nMnXtpHMloXLEakVbL97hWrxREBhIziRJnMllQS3irlQwyABRtvN+nuW5K4EZ0uiZxomYAsM4Ck8X\nzftux77q+Ob2HcM8MYRA72cuYw8xs6sa3m9atk5jik7BkIiAUYkYZCmZkyEqQ1KGEAx+nrgWZZ4E\n4go1UWlpNupK7AFiisTJg5ZFqXmjjpSO3DL7TJjjCgOojNj6lh5Ua+Hok8WTXyeFSVAlJVF5GU7H\nCx9/+kSFpmsabFOzc5aqaQhRFrG7IEEJWitqZ9h1DW0jSkZtnETP5UJJpGDVRYSSskCR1jqM06+5\nAJSlvNbl/wt7ZcnQVKy2GcZauk2HdTX/5e//jpgi/9d//X9JpyvaWuxtU6h8esXDl/l7JQIUk7ww\nB16eX/hv/+3/o24bPvz/zL3Xl1zZld75O/aacJkJW4bFpumWWj2akWZppDXz/6+ZedFoSVQbdrPJ\nqmIZIIE04a49Zh72uZFZZL0XAwuFQgLIjIy4d5+9v/2Zt2/45O3nWFcVEY253A+Xx7PO/HmXLgeS\nSPY/fLzjf/7DP/Gf/9N/5Pp6h3G2TMSxnC3SeDRNgzP2sti9iAm1EpjQC23VGYGElrCbaZroB/Fp\nmouQqm1a2S8YcwmesNaIonwxw5pDaUyLYKi4eUp2amCepAFqa0/jb0ApbGHV/Qi9B/ipBEE5YQBT\n8DetBM9NyzdbjNhTGAnzADHRrnZoLRJrpVIxVAqkkrqhlYTOKiWS+DlEQhL6EzkS40jf9bz79lvu\nHh7IZMIc0GaSCzclKicKvhA9OWnCHAs2/zRuj2MQGXMMDAHapMRgy3m8gpBkQggpCne3dBVaG9pW\ntvpCtNUM48DQ93gnAcMXyhpItxQDqqg0QXBNbawUfRwh6Es3vnh5iKWa/H9QipwVyllihlCk3P00\nitlSEMzUGSniVYxUlcU7zVy4w1M3MY8z3ghEEKaZSUEyGkKkdp7KVZdotVjUhSmmYg2wuN4lspLd\nQgxyMaOEvZRTYopi/mSUKARzDiU4IqC02Am0zQrjnIhPkOXdtAQix4hBJO06Z6HrxUzMUUKlWaLo\nKAycJCKsrJhKhqjWGm2km6TwwL134k+dk3TWhbGkndBMdbm3JF5Ok0s3e7FSLpi7uK2IapMsm8Uc\nAjoqvDJcVTUrX1M7ccHr+pG7/ZGYoG4kl9PWDSoGbF6SqRTWaLy31IUSabQhyNZSvidAkork8Mkl\nUT4V2bhS0rhM08wwDAz9KDmsRZDinagSrTaFzSRNhHUOqxTORX71q5/zuH/kH/7xt5zPA9E67GYn\nV6USyooEdi8VQFhdsl+RBf5xf+D3//p72rX4/7x6+Qasl2K4QFwoxOv9h0X8B5S8BWuOicfHA//8\nu3/lr/7q51xfX/H69RvGYZDDrfw9MU8TodnCDAEuNMwnrxOFtqaoZ9NlX7AoTl1x7txuJaLOe0/b\nNKLo1FIDQhATtb4foMRU6qL0dNZQO3tRJOecaZtaOnRjCVkxjBPjMP5oTf3JJPpGqXJxqMtFiaLE\nHEHjDWN/Zp4n+v7Mei2RSf0UyESIMwQxe9faiKrRiPgHBMvVqjAe5pmhnzg8Hrj/eMvxeMZVNdHF\n0oFHulMnKe7rFXVdE6aJobMYlVmtWqq6IiMmUQrLar1hzJbjmGm8Z3O1w3lLVpEP79/RjzPX1y+Y\n+kFUYWGWwqEiSkfOY8/peKLveq53W6yV6CgZOwM5BxIKpbL01jmCCWQjVrPzPEFGaEtaGDsLN0DC\nkWVioVA0U4I5CjUy9HIQybLUklVmmkfO3UludAWVs7S1l1Gz3aARNezpONAfB5xRWOfE/6GqCCFi\nlSaaUikVUqyUdMBLqn2cY+lEZHGklfB6j92ZYZSLdFWyD+uVUOmsFUFW07YiSy+YdQqJrCNB+QuO\nGWMUz5AwE3VknGUhSU54a1FOppW5KOxiTBJIkiFjSsfpSDgSM+du4BGFt4baO5rKY6wHbUmq3KQa\nSJl5HAlTLNmhT06HCyaqUZgonXiOkTROmJRZ1S2f3Vzx9volu9UW7SpM1sSkeDh0cBpY3EJVYVkI\npCbX/DTNBO8xNsihocSrvqqqC+ZsjSkhxlLD4qULF7vbw/HM7e0tH+/uC9Ml4bylbWrWq5bNqqGq\nKtrVis1qS1U35CyY8Ha75u3b13zxs8/5l6++Zjyc0DcTegroVKiV5b5f7v/F4S8kCR+ZxolpGNAG\nxr4nxaWgcTFQEzvcP9mP8sNivnTTOWf6vuf9+1v+8Z9+y2q14j/+b/8LTVXjtBaKYME75HoqnkvW\nlsZLaKZLUQ2h7H5KgfdeoB+lDbbg195XhSq5CBglVET86xN9NxEmKeaVczRNxWrVFvdJeW9SfrJZ\nWIRQMUb2xzMf7x54fPwLCl/WiO+GUZpIeaFSkOikrifMA8EbkalqwxwTh/MZnxRJW4z2shAp46KK\nYjObtHDNUR592SgrlFHkNNOd95xPjxz2BwlHcB5jdXFWlG5J5UQYR2YyOov0+Hg8cj6dQWt83VI1\nLVl5Hk+SY9l4x/HLb0gxsF411JXj5mqLMh5Xa0KMdMMR5yUJJ2a5kXzlqZyFFDkfD8whk7RcLIpM\njgGrFXUlad/eOLSRbspqwdWskWXL4gutiv9GKHh/zoLBajROg7IKVRlm7eQCk0RXAJwqSsEYGWeR\n05/OfVGpaqyG2hhaX6GtBa0YoyYO4lchaSeLUOYyHMgGfp4Zxo5pDKQo+HIiXXxNdps16/UKjRR2\nlSWEQyh3kX448rg/XkbeJUrPFle5RVhhymIzBFsMh1IxYXvqsARmdUVGPTHPmRgiIc0oLd16TjMp\niEgJpYnBMAfLMIqwyxjpfp19cmFcMOGFzgiU9yIITl02fZriS5IyW615VXs+3a25WTes2wZbtRg8\ny8GcWEKrbWF3CVyniqgpA1NUAjUSySmi9Ywxk7weJdPWWoXVJaEp5ctrqbVis72mbta8ePWWcRqY\nw4xSmaauaKqauoR8KK2JM+z7A+M00fcD2sgh+rPPP+O7798zdj3z4wk9J0wqrqPPC0Dp0osZEc5Z\nNps1b9++wTcV291O4DrK8k89+daEwq1+3pX/qSjo+cdijHz55ddcXV3x2aef8vrlNVVV47QpkyJy\n3SZ9YYssnjlL570cFLIbE5uEZQGbkvic7/d7pkkohaIgrmnb5rJ3USjO3YnDcc/xeKSuPPPckHOi\nqnxJNFogHYEhzcJoM7BqpXKu15sfrak/DbSyLDEE3iaSCj96evbCyWJPAyFmzn3PlA2+2ZARBxWt\npYNSaSaljhwHjPZYtyMlhbYakw1KeUgzKYykeWAaziR6EYNYUVFWzhGsYbaaoDRayXIoBHG5S1HU\ne806ESKMk/gvpLJsuvv4gZwCL66u+Lu//RtuXr5lvdlBDiL7rmrqppZoqNWBU9fJ4iNF+sOB4/FE\nN/X0FzFKIKcZpxWbtmGz8mjnsJjilCfjr1Uy22coNqQyuGqV0CoJtERAqYLZKcDI6xKUFr6vvCtg\nxFs7akmcH8tuIGvBgq01rLxmBoacMTrj5lk80BH5cGUsWIdxigXSiykwF0VpDBmtinJVLYHZIofP\nC5tClzTzJEVnWtwKh+lSyJy1tHVDUzd4/+SUJ0VdphITM7aIM2TEhcVrhyxeayIlV8y5NAVZXjul\nIOVQCrxg4GM5nYTWKfoFYyzWGpzRKE3RDVisXdJtUkGoS8aN1qgYsYiq8sY7Xq0aXqxbVrUc7M45\nvBERUlIULFmWcykKm2gxg8vIny+JWAusE4LI9Y1Bvh+KW/Aid3/WFTujpaloKmzVCOUtzkC6qBSd\nssW3PV280McxMs8JnTV1veJnX/yM77+/pX3c0253bOuWytoLjfCp3j5joGTxIm/alt3VFb72rNrV\nZaFodMnjvN5xfbXj9u7ugufzJ7DKpeA++3hK8PHunj/84WvevPkdVfW3NHUlTc2CBih9sWVQ5Tpa\nvFguZl1KfIeMEQsCmbiepoMlzWea5PCsq4YQZqraC+RLpu9PTNOA3HGp8Pyn8jyT0Hk1ZfkpZA2h\nfiqqymOdY/vnpB3gp6IfKnmxYmEsxJiZx8g0zjhnaJuG3XZHmGTcGoIYHSkTqBsjS6uyQAQxwMnh\nRH94j3ctu+taDIBCFumwXkMMeANei9/zXHDaxRdjUIp5kuSayteF352LtadwQRXia6Kdw9rigpcS\nU5wgZ9q6Yg6Zzz77OX/917+mqR0xSBxU3bRoa5mnSRgI5yPd+UB3PHB4vOf+4x2YO6b9nq7vGPoT\n1kAgo9JM161wxgjWW8ZGyNRXVyWrMoufzBJSjMI5wT8vftPlhl+wXp2z2K+qUhTKOCfTjkwPc8wk\nZcQiAHjsZ+5PcghZo6krgRvWbUNrDAkJf6gRAYfKmXM3cjqe6PqeyleS6tOsUEpgkhQD8zQxTAN9\nP9BUNet2zWazkU7WaAKyqO3DLJarasYZx7qVUOmcYIrh4qez3GTOV1TlRkgxiIXxPBGDTBFCkRMP\n+RgC1ggtr/IGFSfSNAjHOGXBwJVFa4FXrPVoJYEXWgv7om48bduIiVVZKpqlCy6caArOvasqXq1b\nXm+2bOoavShokxikGS17pGyLNESBtsKFl21d+bgt+DE8+/VydJRJIJPK/mbxlREBU7q4haLUJeFe\n4hANMQbmWeGMFBRh6tTUjcdVkSaKdYCvJ3yzhqQ5n3t8U/PpJ29Y1RVKZXKhZUouQCrJubIJV0ow\nd2MdxshPVXZfrnK8fHXNL3/xcw6nIw/7/SWc+LkY6DkFcSnmuYiKpinwzbff8n//P/8v19cbVqsa\nt11fzNI0go8vVF/KTue5DbIwxooyuECXqUw1kjNccbXbFQvcxKJKFStcMSQbxhHvDbsrERktKuME\nhU4r05RSQmNuqubijkiWQm/MXxD9MGiISuCUrjtzSoFpGKmNFU+ElSx8jJKxEBLW1lR1jbeedx9u\nmebAdnslLoUaEQSFnqQVpJnT4Z5pPAGJevMWlKPxM5++2TLNPe/vD6SFB5Yg5ETXRaZpRGvL/nQQ\nc6hLSIGM8npJ6lCSASgQQcQ4J1zxvuPLL79EkbjarXn96iXXN1tWm60UmDazWm+5KQnwcZ6Yxl6o\nS497Hvd7Hh8f2D/eczod6E97wtgxjoHedOQYmVJkDhJXNk0j1gHaSqanlkKqUkHLsxxIYJ4WQalQ\nsLSIE9LCsFgGpSjRWSlLQGvPAAAgAElEQVTLHiOLD4B0IVqTtC60NZiTIo2JIQwYPWCNovaW2im8\nke5YiNYe395Q15V0F5VHIylJcZyFo6vEerRyoj41Rb7tjKapxNelKQ6E3jvqqsJbx1z4vijQWZcI\nPRHQLNhwmIcL/99YI0V9nuj6TvjVWbr3yleFK2zZbbcM48DD/sDD455zNzLNHSHK66m1BeXIJUwC\nFLvdFqVeoI1gm+M4yo2JiH50zlRas/Wal5XjpmlY1zXaCGSjCyWXUq9VLkGFailSuXiyZ7lwWSh6\nSwEX6GiJehMIQDo9rYwc3EVVKnRbMRh7SvFRZekunyskCGNgIP7AvEpuinJBlb/rfc1nn39OiBFl\nLFVdS1FdOnCWieHJslfqryYrI5TFLOZXKecCKSWMV/zsi0+Z48Td/R3fvXvP8XS6TCB//ng+oUj/\n3HU933/3Pb/5zd9Te8f67/4Wk5JQCo0l5wUvl0IegzBLlmXnJWZNLTmlsnsiix+URmFrOcTV8pqj\nyvQyoDIMw8ThdOT7d++ZY3rySC/slso7rnYbtts1m81K3E1D5LA/cjwdpea4vyA/8qgh5MgcZ2Ic\nxTAqzTSVpGRU3hfPEnWhsGkjUIvSmnmaGcaRqhYVo0aJomse0ChCmBiHE+fjnShFlUMZyzyeubly\njPMVyjnGMYif9Sy2kikGhiBMhn7sZWFBFljCGKy2aGdKCnwuCkoLKuObWtRrMfHHb74BMm/fvBLZ\nfJTpQ2lxRvRVRaUkeZssfuW765EXrwbGaaI7nzgeDxIAfdzTnw+EqccQmaeBhw/vGYYRpUUR2jQt\nvqrLdOFQiEeLKnhsRpEIEm6QFCnNRaiQC8c9X4QPoIhJFH652LIatXRskieZFqphWebNoSwfyxd1\n/YxVGaNy8fIwOCtJ5hhH1paoNb7gkZiEShqrhOlSOY8zuhg+CZSyyOnxgtVWlaQIxVAWwSr/wOcm\nl4InFq+iElROA4KhqxSZR31JjUJpWVz5mrppWbWVBBcohT6cJFg5RnmPUyCEUdgu2qK0A+1ISRFj\ny3JiLqIPozVeG2plSCQ21nKjFBul8AjDph9GnLKYbLFmLruexdK0vIvPyRnLQpkFes+X/1siHmTB\nuHxY2GHPwWqtkvDfUyyFXBef76fF4QIPpZRQP4hSpLAuSg5pTsSUsHWNLxTaHJ/RMH/w3POfFGBp\nim5evAAy3tdcdgMFRlyvGz779DV//etfME5jSUeKP6Qe5uU1Kq9IWeaSM/McORxmfvvPv2O9WnG1\nu+LViyva2svztCJ4WkI4UrGeXT7vArEsr8vTqyQMLYnQc/iqImd1oRrGGJjGmaGfmabAOM50/cAw\nSYziouR01tDWNZvNWmqNE2PAOI2MJShkgdJ+7PHTFHIFcwqEOMkCJiesTqzaBud9oSPq8g066sox\nToOMvzFKNFNx/oNyyidRuaWA/N0wEcPA3B+ZhgNTGDgePtLUN/z8Z6959UnFfi+Lh9PxzP4gCro5\npPJ1hKqn0nJryILDFDl3iiI8MloKez1PzPVEcJ7b2w9U3tO0LV0/cD6fmaehGFH5S1rNcqNM5Xtz\nznN1dXPh3iYhPRPDzPl05PHuPV/94V/41z9+w+2Hj4Qws91suLq6YrNZU/kKaxJGiYe7KqbPKcMc\nRZSU0IRicZCSImZFjKLCUwpK0FhplyJpLrbDunRpMoeTVcmCLEOz0YakjUjVY2CYR1IIgkEX5oS3\nDu8iTR1ZrSo2q6qwQBwpDMJEShKTB1o402EW+N4U3F8rnMlYlQUmmSZxwCzilacDKTOOBaNWiqZt\nhcpV8jkNQJSbPCAh0cMY0K7CNSuqtqEfzpy6iY/3B47nkZwVTd2Qc2YYJN3cmEzdeup6RQiK9bq9\neJdnRN0acqK2lpWxWJW5cYZrBaY7M6vMIUM/J5pVxDcJYx1tC7UC7yqczhj0Bc+XKLlSsC/d89ND\nlfdDa/OsGGexqyiPjAQ8g7gTqrL0zn/yyZTS5Kxlof6D4rsYwyGL7Hmim0fQShhGlUaHjDXCUHuG\n+PzZQylo6oZf//rXzGU6EqVkESlNEzkH6trx7//u3/Lw8MD9/QOxExXlnzfli5dLeiLKIASAr7/+\nphAtDP/X//mfsDc75hyJ1l1wcW10MdZyhCBTVUrpQjF0zpXPFwsjLdDaptzTohM5nc4cD0fxxhkE\nWow5o4zl5uZVoVnPl7Qu70Sc9PLlK66utrRNdWmWnHO8evWKS7j8jzx+Ih65MJ+91lhvSVWDqUQy\nm5K4x+mkJCzBPCWqi1Anl1HHlNO6dAwxEUNEqyihAkSMSuDBGhkjvZqwKuDbiqvmNZ998pIUZ8Zp\n4nQceNyfeHw8sD+eOHd9yXCcC6Yoi7AYNDlwGYnmcuGPYeR8sjhtGfuBGCKrzYaPd/ciLCjsGGss\n1vni5ia83mkaUdrgfcX51IkcWIs4qK5rvK/YbCwhRFa7R9a714yzJN4YawjJ0o8yilaVKv4hFdM4\ncuo6Hh/3srDLCI6O4MhPeN8SOiEHWFzMfooASVGhyvJJMh7lgpqnqeRgRuqmFdGCdVJ0eYJgUkrE\nnBhCYk6RMQb6aWZ/7HBO1HLWaSpraJwjTwaS+MmEuUfrLMrfFIqZ04zWo1gAaFGwxmLZqo0qdgTq\nEnsmftJCbTTGUHtPWyLK5gjHvmN/6nh4PLHdHNluNmzWLX1xEMRUGCsUue40CrXP1VRXNe16RdXW\n+KrCugrvW3zlLmpIrRRGGWpr2ThLkyNtiugoUYBd39HfPbDvZpSvsb7BOEfV1HIguIq2qlnVLet2\nxauthC8bpWQaNSIke+rWlhZcHss6maXjXv7ggrNT2C9lEbv88Z/dtAr9g4Og4Mg5M8XIYRy4PR3o\nxoFNu+aLV29pFiFPXuaFp07/8jWWgybFEtQheyth95UpyVnWqw1NXRHmzOHYMU6R3/z9PzDN4dkB\n84zJshxy5Wss30OMmXe3d/zX//Y/yDnx7/721/zyr36GVxpfW2FnWUdKmTkUw7USFCFRlAPjMBaG\nrZDjbfnzYeiFNZahaRq894RicrZeN5zOZxKZuqmp60o+b2HGGG2pfUXbNkCm6ztx8s1ilWvtkzvi\njz1+okIuHhOu4FOVcySrSTlw2h/oug6tDTfX15i6lvE5Jun9VOGOx0JPSuJlvSR95FI4REWXRYWn\n5OBQWRY2tXesNhua1qJ1JoaZ7jxxOJzYX2/o+pFz33Hqeg6njvO5p+8GpnFmCsVutnQCGfHNyGNg\nRjOiiPPEqm05Ho48Ph6KyU7h/T5jOqglrQjpvFISMy8p4kK5kgQgwSdDBIynajY064ApvGtlLFlZ\nIo5I4Te7ijDODHPiNMyUjOqS7C7KsUVMYox0TClEQohP0VbGkJKD7C+qsgvchUaliM4ThoTJBosq\nMIzBakUu2ZcC3YipVCYR0kwcI3qUr2GcEd8aZ6isxpmAKotClcUwrdKy6Ek50Y+Rfjg9LaqniWmc\nCVHMiCStRyh24ySiq2HosdbQ1DW7dYvZ7XDWkrSmnyPHc8/j8XxhJHVdL37druLFzZb1amIaxCHP\nOyPQDQlfV1SNp64r6naF0hUZS06anCMKcRlsnee6aQhRYeeB2M08POzpU+IYIx8OZ7JxaOfRzmK8\n2BR466hdxbpp2W02/Idf/w3rVcXaO1wRkUUo0WplOadVMZGLJJ6685T1hfFRpHhcMHYlVgJPB8Jy\nOBSIiufHwxNHPsRAN418PB356u4DwzTyJmc+efGKpsCicqMu8E/5DH/CNokpitcQGWOXo6csSLUp\n3bDD6MybVy/57JO3/P4PfyCfe+Y5XJb6y0EmQ4DAPs9njJzhdOr4Zv6+qK8jzjl+/vlnggYsOLgg\n+uUae3qeuTBaUtktLGLBy58niRe01qIrTwxe/OudwlqZtKu6uhTynBLTLIW88hWZLPGMccZoMTbz\nxeJ2YfL82OMni3rTFD3iskjQkEPi4fGR2/fvsUYMqWrvZfmRMoVpV0Z9DcRSCGPBhFVxqVuCBYTD\nqpUFPDlVshW3DmMtznqMKjeA1dhNy/WmpaobYYaMEx8f9rx7f8uHDx+4fzhwOg8M40yc04XqJfdC\ngSISTBMMQ8/QnzmfTlSF+mbKBtpoc6EaaS0xYtY7Yk5FuZXlezSavu/RRm64cRrp+xGlHc63oASe\nEXlviYRShTmiHSFrIhrbrCBm4hQYp4H9oWOeBoyGm+sVq7YqwbFiyGWUTDTCatBSyBd+u9ZEpbHa\nUnmHb4QqZawu3HE5mIz1aO3IKl/sUUNMFyw1hVlYKyimCEMIpLOwKVxJeq+9pym0K1076koT54Hx\nsOfu/sA4DISYOPcj4yRuipLQIxe7zooYJ3ISg7HtVg5v6zzKGrI14DxRaQIajMTYjSGSu4FPXr/i\n1Ysbtttdec6BFAIxBU7dif1RGBQ6Z7wxVFbw/zmaor4V6qFSmVXlebFaE4JhOifup8C37z4yWcPs\nHP3CLhJ6EXEeIU7SUaeMt5bVY8OvfvkF7a7hk+0VOsluYiwJ91OKRBJWW+YYCFNPikG8x31FjMK0\ngMWIqrC+sohRpPqVm0yVw3Dp81Vm6e9RFP/8wDhNPA5nvjvc87v33+KdY71eExbaZVlIPi92y+Pi\nXcNTFOGyWJQXQrwhKZbM0zhwOpwgzVzv1ry4viIEsV6QA0qjitvlD9ksy5QiP1MSq+bf/+HrsgBP\nbDYbqtpLZOAs1z6oC8SjFE++KcA4ScB6ihFVIuRsUdZeBgByYRlZYjBUu+1l95dSFA+jVFKdlEEr\nGCcJe1ZZLBK8c7iS9PSnr9/zx08jCCo81hRT6Wo1ORtiUqzWG94UbLxthaJWVTU2WRLSUVjnqLUm\nE+RzxSKvVkoUo0UAIYK7jNLCUZ5TxZTMEsNIygpnhPOcQ7xwc2vvUUbjvSPGmcq94e3rG0KC0/HM\n4fHIfn+g70a6ceQ8TozzxDxHiFnyNqeOh/sPTOMnxNiQs7BbwizHmNjVyo+qH/HnTuTnqQT3lgt6\n8bugiA+UUrRtyzzPwNPWPwRFmgOKyNAHum4kpih468rS9SOPx45vv3vH6XBgu1nxq1/8Ff/2b37J\ndtOWnUIizhJjNseROUxFkVlCakuaufRySjrOC69aobXkEpQ6IOuqwutGK7yRkTylRLSRnESNmrSk\n6MRiTgVKtvpTYJxmTucBaxWV1+JTEsHVVxgrdDplB8w4MM4BUxarEpdlyCmgcsJbc2EDrJpKPLm1\npjWW9TAyjkJHvb66Yrfdsmlbdps1VmuOx0eGYeDcdZxPR7qhp+t7xnlit9lQ+5es6hZfNYRkyi6i\niHi0hEa3dU1cr5kmzSkGtBe3Sa0Nzjha49he32C85/50oCcTNYDBFBy/m2f++auv2fia9pcOM82i\nEF342LoIxRRgLbppsOoJWnFK7p3KVzgnfizjFC7JQNrokrwlXXoqylxyLt5FsaxOxA7Z6EzUkffH\nO759vOW+O7Kqas59T9d3bIyjclzIAcvjYqaVyzK5FMGqqrgsijMsDog5K07HM2N/5vHxEa00L15c\n8V/+8//Of/8f/8iXX33D6dw/ux/k8efN6/PFqEC2Hz7e8ff/8FtevHhB133Odt1w//GBcZwgi9Te\ne0vTVLy4uZGELEUJHRFYK8XIXL4nX/JeKQfdcqD4wraKMTL2YhMtTxJSzMypaCQKVGOdLT7sAk+O\n4yg5n39JwRKLIirGiE3C95SNf6aqZWlQecEcFxdMMZYXu9ZpmhjnGWOS0LXK8sIoUxal4n6oEGs6\npRy2qqjXAVc1hKg5Hk6EMLJbN6xqJ7hYWfqFecLi8EZztV1xtduQUcScOR2OnK42DP0NMSnGKbLv\nOm4/3rE/HBj7kZgS5Jn7+/cc9nes10Jp06Vw5Qyx4JU5C0NkmkQ9uVx9Swq7hASLxDqlzDgMGGOp\n66bwS8VlXGCTeLlWQxD8MqTMHBIPjwdu33/k9v0t8ziwXa14+eIVn376Ode7DXGe5eaNJSA2TbLs\nO50kpzKlUoQLHJSSqDnzQi/Tl68tHvHpsjy7dHGFJidhGYqcyr/VhpAzQcGMPG+QRW+IiansPKzV\nWCU9Wo6FZqkz9arCtxtARElGK0wRdKU4i0FXivL7EIhB+OsoOUBUjlTOcLVZcbVZsV1Lery1sod4\nPDxwOp85n890504SZcoIXddCizXGEqaZOSdiLDEKpTNcotjqqkaRmOuR1WbDm7evZUHsHH1KvHj1\nGqwV//ZpoE+RpE3J3JZYvG8+fOB6veGTF6+4dp5ai0I6KwlhSEq0DUoV3xotS1KywFiVc2J+ZiWa\nL8bAPM1kJcHgzhZfEwUCgCrGaeK83zPHZRHbUlWeISoeQsdtt+f2fKDPAU8m5Cgug7l4kVOCz/NC\nTHjiaGvFD673pVm5ID65mK9ZS/b+kiVqreP169dlWk/87vdfFRYIXC7EPwf6f/C7lBPnc8e797f8\ny7/+ntWqom0/L4eLwIdLiPrSmYcYiEX8Y4oP+cW3XZV8Ucq6NUunjRK0IJRIwR86NWoJ4yivyeXz\nXeAraWyW+MGY/oIKOXCRv/qCOcVSdLR1WFfJyZfEDD+nGedtOZ0Uh8OBc9dRNxazrcoo5oqJkRUK\nnnagKsS3u6JpVxjfoo3h3M08PH6kajVa3dDWNyWdPDEOA+OI+CY0NdvVGlfXZOB8PqPCROsMdf0J\n280Vyjgez2d++y//yrfffs/hcGCchFJ5Pj3wcH/LZl1hb65AGxYvGOEdazmcpiyG/lpuxMV2V/Be\nW7ba/pK+nVKirhvadoVW5nIIxrjAPVJkz72kH53OPd98/S3fffsdh/1jUWLCulnhjMfZhtq3+JLE\nohQoC8fjnvv7O0IQ7rVxQtGSFPmxBBFHQkiM48Q8jsVWIGF0Kk6MpfBnOWwWvbb4w8gCDq2wKTOD\neM1cutkilkhJ5PZRMyFGYHEOKCXxY9v1ilVb09QVlXfEMBHmgZzDhad/Puw5jD392TCtV6IsLVPR\n1HdYnXixW9PUFqMSYeoJYaDrex6Pe04n8YVGwXq1pq5r2qZmt9uyahpSThyPZyIO5RpxqSxwxXLD\nLvuRuqq5vr7COwtKDJGO48jVzQ1JSdTX+HjPOAxErUloTBY44+5w4o8f7vjm7p71Z5+yW61xlIIc\ngwSUxFDEdpGQwWojKUdawJIUSpRYFBfKfuhkMnSiLNVGFMPOS0cYp14oryHQrNdstytWm5o8a7rD\nxF1/4nHqSdagvUQapuLDD1wKlxzm+VKUyFn84p9TIrXsYeTfJSR3wNKud1iz4+WLF+IdY0vjg8B2\n79/dcuw6pnkujJ7lyy+YuUwlzzv2nKUw9sPI13/8lp9/8Rltu2LTbqUx1KY8H7lUtZImsut67u7u\nqKqK1WpF24pfinNL8Iw0CU45UFqo0UFsenNGnBSde8ZCWei/T6lMQl2MF7m+1qK+9fwF8cjJS5SU\nnHSSlVhYFVmREFm+4Nuaqqqpa09GM3eR1Wol8lWVS05mBO1QpkFZh3Ie316hlCNUPcrX0vkkxzAG\nzv3MMM34pmEcA4fD4eKL7euKum7E4raYOqU5EFOGBN7VZJ3Q2tL1A+N84n7/iDeKn33yBvvF5zJK\nIqk5VVWR00yYBpS1l622QkEuZiTLBa8AK513LPQk6Q4swYUiUpDxdsmfVEgAtdJgHT/g/jrv8L7G\n+nPh0spSBSIPj4/8z7//e97fvuNqt2O9ljSZVdvSrhqUysxFRLPdXbHbXbFabzDFhvd8Pl0SckJI\nTNPMeD4yj2cyxV7XOIlsS6qIdHh2Mwu3dzEIsnoxd1JieDUH0jzhrCVnSY/3pkJpK9ORtZebshsS\n49BhdI9zFms1zmqauqVerWjWOza7G8I8iqOkWoqbxhnFdtNK0UjlBponsjZUTV2837dsN+vCvS8h\nG76iqSpc5VFk5qkETZAlQ9Y6AaAuZmYX0ACtDXVVy3IrS6bnqqTXK+NY/eKXDH9QDHcfOaV4YZto\nrZlT4u505B++/AOvthu2TY0vodIhRvqu53g6kaLYDDtjCVoz65nJPHmJoBQhZYZx5vFxjzaSHRnm\nuaiC3cXQKcyBpq2YTuKv/+Ufv6Q5bLnrz/x/X/6eD8cTM4qsZfGK1mJad8HFJeztuV/48hzUsw5W\nF/8TCraeYihq5ARKPHz8UgBzJs0TN1cbfvb5W7744lO++uY7HveHcp0twRXynz/lrRdUBxACwMPj\nI99+9z1f//EbXl6/YLNaY8thHGMg54grgRmLodY8zzw+PjKOot62zl0OePFPkRSnEGKxudWFGvuU\nWLXQGi+L1Gc/5bXjoj7mR6imy+MnK+SXnzyjECYIoYzViOjEakVlfVm8ADnJxtc6Uk6FuwnZeJrN\nC6ra06435LSity2HfKAbA/080vUT85SY5jKeKCmEJMEyF3vOqm4uWFeIgXGYGKeJOSSmYWQcBdpJ\nZdk0h0lM9yuhtFVVdTkEhmEgTCPdqVCSSnIIZWySsIyyK1AKnZ3Il9OCoMvyVpMvIh4p4iX780Lp\nKmVi2dZjQHlSSgzjSIpRMgHLTdAPI+9vb+n7jrv1Pau2xfuKVduyWrdoLXQ/cmZ76Lg6dGw3W9n0\nJ8HLxcjJYWuhVeoUcAacNwKROQ9KE2IqHsyC58YYmefI4+NB/MZDFFpkadBTYQWRRZnqtEJ5i6+E\nH59K8UslYUgudlmmzjGVMd0wR4TaaBVGO5Q1aJvLayjYvTWJyjcYBWGOnE4nOfCMwZYAitZX0tfp\n4stjhUEhgRmLn7dkmYasUYX+KNf605KN8lyVMlgr/tLCC4cqy3OyznHdNHxxPNHPga8eHohKro2s\nhT56nEa+/nDLt/d33KxXrLc75hI9Nw6j+AJlMIjP/1I0rJPQgpwpmaNJwhGSWNtmRuZxxBpDXVWi\neVDy73a7Lb6uBAvWlrvzid9/vOV3t+/Zx0h8xnFWWr6PC1XuGXVksYe9/F0lhX6eA935XKyQ5VqZ\nJlkmVk5hPn/LqnkhxTUjVshhxlnNqxdX/N2/+zfMURhXx9O5eAypS90QqD9f3odLHSqNRZjFDvlx\nv6dyvgSkZxGe6aeEouX512VKDyEwzTO6JEjphRqtFVEJ6jCXPcSyyF346Evs23OoaYGcpZmTQ22J\ngtPmiSHzp4+fKLNT/eAJSxGXJy6hwumiLrRGURvNvODHOVM5CTiIWdwRSZFsPNubt6zamvV2C8qS\nqAiHmcP5wOPxwPHQARZjHHVTlxtKBDq+JO2Ia6KYREnmXuJ07jmdO+Yg4/PxeORwFCe+qnZs1y3r\ndQtZUoDWqxVt4ZHmKEk+09AjZk8GW8l4FEIkhhKVhtwARDGVUiiSWop3IuWC213i0zIQy1ZfipMs\nvXIxz9KXjNOcwjOsWHDrEBLnrkcpzTQHjscToEpEmBw2OZc9hrW0bcOqbTBG0TR1SQ/f0K5WYvdZ\n6G/KeTZX1zStpDvJUk3CZseSWToHwVAPp1Oxzx3K9ymMJGMX8ZDDGOGXW9dKuLCSqDa5RrJABKXr\nj4tvzzwzTBPnbmKxtzVW0dSeqnYC0ykldgfziLXiG21swBgPiEBDl7FYLGVFlOOdw1tfFl0lTlBr\n4fpvDXPIzOnpoGGZvi4wAyzdqcYJnVMpXEGanHO0dcUv3rxlionbxz0dSczNtFjZjiny4XTgqw/v\nebPb8Wa3ox8G+r4nxiT7Ja3xRgK+JeBXmpRMyaKcZyIT2gScr8tkFRjnCe8d2hjmEHDeiVnTZsOL\nm2uUtczK8s0//QPfPj7yfuiIxpEL6wIlDYZdPEF+hGXxA7peFt1C3w98/+495/OJoYRLT5NAdXXl\nWLWeFy92OOsv2HGIgVysMP7D//p3HA4n8fQ5ny+MGXjisT+B5k8d+fLrkmKfSIzTwLkzkGTn4n1V\nvPglJs5aewlgn+e5hHBrljzfcTkcE5By8asJF5vbJQZumUyeNBzxAqeEIJz15eDXi88Nf0GFXPin\nkTkGqsXeE8kD7M4d0zgVwUoxZfIO62WsDimhjLRui7cySqNMRbte0dRWjPNzQmklS87ccKU0bb2S\nwIi4bOPF0dBXLVZLtJU24i54OJ/YH04cjmeOx65kasqLjYL11Y4X1zt22zVtXTGWkIhV29LUNVbL\nSJqTyPPnMMH+cMkxXDihqnSPi/qx8pIcNEfJpRTDPg15Juv4RAlhGdlFFAOiyYTShygpFkYlVA7E\neWAeO1IU86YYxAPiWDX4qlj6FpyvqtyF57o8r2EcOZ9OGKMkNbzt2O9PF5OnlCLGaNqmpusGKl/h\nrb8o4ZYuxFcVZmUwzvHq5mVJhJ9EtjwMjONQXhOhn8YshWm1EsWkMQJN5ZSYZzkcxmliGCf6Etg8\nTYZ5ioVutxi0Jc7dQD+IO9089Bwe7nj/3de8vNlxfbVlva5xxcOlwaAQOGua5mLhWmC/4nFi1FMq\nfIypqPwyES3rj0sXpy/FXAvntGCughsvTAUFeG1YW8/6s0/BWX7/7nveDyfOKZC0RRchTyDz1Ydb\nXmy3fPrqFY2xbDZb1q2Ir3LRUlRVdSkwS97mMAyyT1HCP6rrWvYeY2aIgfEkae2H01H85p1YGjRt\nS7KWhynxL+/e8d1+T9KLh08mlkVrTGJI1vcdujQGzx+LodhSwKZJIIrf/OY33N7eMs4T7WrFbrth\nvW6Zwszp3HE8dVTXTuZNY2g3a7RVpJA4Hwc+ffOa7759x7v3t0Lvy4vE/0eKkHr6VWnDZr3m888+\n4d/89a9ZNy2Vq7CFyhpjZOgHxqJFWK7lBb7JcHmNz+czSktDtKpbsRKYRlIKYtyWZEo+n88scXq+\nWJJcjNZyFpdFLZDzMrX0/Znwl8RauXQnPI1cKSeGoed8OtH3A0ppnPekWGMKNxetOZ36y/JI8OWl\nM52p/QZrtWyVx5m+n9BGi4uY9XLxRhim6bKQnKaRKQRM5Vk4tDlmDscz7z/ece4GxkFocPMUUFqz\nXje8ffuK1y9u2KoEXqMAACAASURBVKxaDMIbH+uG7SbgrUcpddmoz2FmnEYglY8HoRa6Z5FupYg6\nY4kpMc4zMQ103cAwTgIjmeUiWixgZYGmVPF/YekwVBE2aLRKOCte4opEjBlUZoqyEBz7XlRjVjxM\nnLU4b0vAh3gvG22LYMfivZghnc49xopAJ2XhvTtnqeuK43nAWyvYrRW2RtM0NG0DWsyGqqa+JLJY\na9huVlxfbfGVFP0lfi+WTX5T1/hq8aEHVZauc+Hz9pMcBvvDUbj+g9ApJWRDrq/nrIHTQ8+H2w/8\n/g9f8d13ntVKzNrWqxXr9YrNZs2qRKf5yoPWpJCZ40CVHR5PpZ343VPYCkoDQUyUlIa8pFfpoogt\ngiqKf5AyTwCAKqrKrIjjjPeejXe83W44xZFhioTS8WbEFfP2fOSrjx/47PY9v3rxip2r0DrJJJdE\neSkKYoGrpmli6Ef6QSTnShswMtl2Xc/pdKTvThfHxqoOBU5qqa1niIn77sjv7h746vGB+2kklrAH\nCi015Ug/9tzvH1DWY1YbqurHF3SpTHzzNNGdOz58+MDt7a0sXqtKJjPvUTnx8Ljn/fsP7DYrnNKX\nRfKCs7vK8frNaz777BO+v33P/WFPP44XptQFXym/XZhUCjlQvbO0TcN2s6K2UsRBi8R+lMV+DKF0\nxcIAsqXTX7BucVSVvVZOGZ010zjB8wM150tM3MJoEsuHgdPpJErizCWcYqEgix5BNDM/9vjJ6IdP\nP+VjMl71nLszfT9gjLjKKR2Jx45+FkjmeDoRprEY4+vS0WS0STiXSanGq8R+fyQksL7B+vqJF5sk\nqksseSL9MLA/ntB6B9pgsjBlTp0UhTlKTJUuiytfObbbDZ998pbr7RpvLGGaaKqKC16tjVD/gvDc\nU4pMYaIfJNsvk4vBjmfJRFxOeZUgpEjWhnM3cjz13D08EnOkrjyrpmbd1oX8oS5FTwp34c0rBVkW\nq4ZE7Q1t46krSwjjZaQNc5ILDy245sWfXRfzfOGw21KQvfe0bY2ve2GwIGepsYa6bsWY/3jGqj3e\nGHzBZ6tKQnvrkjmptKJqxI/Ee0dVea52O16/ec3nn39K267wTop2Li3JMroqvXS2lLg/geemMHPu\nOm5vbzkczgzDVKAzc/HRHkeR64/DROiPfKwM3hvO3ZH94R4UVM7Tti2b7ZqXNze8ePGCFy9eIDGK\niRgnVk3NagVKW7Qt/G0lnuohJggzYC6duExH+jIeA0URKCwgypIfJeyjru8JOaLmmc9urvnYnziF\niViw0lQw8+M88c3DPf/0xz/yarVh7aToWWvIVnZMSgsUteDOKQlLbJ5mIjMR6aIf7u/ZPz4yhwln\n5EB2XsgETbtm3bbcno58e7jjN99/x3fdmXOO5OJFv8yHOSfO/Zl3d++x7Y7WOTZpI+ZlPF/G58u0\nusSmQYk+s6Lqvrm+Yd02hGni4WGP1YpffPEpxnvB1WMg5VCcEjWv3rzkF7/4OR8+3jH8fmYYxgvH\nfgG44OkMQF3OAnmU55STxETGKCyVaRLbY7kXnt7HpTAvxXkuQdc5Q5oSYQoYpajritV6fVlqjuOT\nXYQ2hhAi+8Oe77//nr7vscawWq3Z7LZYb0r4jeg0jP0LglZyKajPZ55URuVMku7P14Wv2sjyqHhO\ne1/TnTuOxyN9N0hgsDd4rzif1xgVUaGncp5VVWNdzRTKuJI1IQSJWGpr1uuWx/2Bd+/fE2LkarfF\nVxV9P5CyoqobmGYSAnZW1vLy9QvevHnJbrPGKC3mWeppIw8UKmMmJzmpAWyhnWmtmWbxKDHGsGpX\nOFuw35QJs6TznPqR7z8+cvd44jwEjAbnJf7rdBo4HY6Mw0DT1Lx4ecNmsy5MvjLGpwCI1WxdKd68\n3HF/t2UYb8lRxFBq4bIjO7mI5HjO8w8TyVVRARpthA9fUpe0FgjBGGEWPYVXCJZc+Yqqrp66+6IW\nMsbgC3zTNjWrlRhRScH3tG1HU7ViUVwWdVprsn1a3FFG3jnI0rnrex4e99y+/4ivPG9ev+T65gV1\n5bDFhEywSuma/u3f/Iz/8n/8e/YP9xxPJw7HE/vjmfOp8MW7M9M48v3373j37hZVbtzKO26ur3nx\nEnFyVBpnC+O68I1zlv2HmDBJItQyfIr5FHDpwvPlPVjoeBiD9Y6bpuJvm5rHaeQcI0PfIbt52XNo\nrTn0I//6zXf88tVbdlXN67UwTVKxYgXBWMW3RN6DGCN393ccTifGeQJUEQXJe7BZr1itWlzxBJpj\n5DCM/OH2jn9+d8s3hwNdDALNlIV0Wa+L13+cOA4nQruSJa26uKwUmOCpmIcgHWbbtvzir36BNZYQ\nA7/85S/55M0b6spzPOz549dfst8/XnyB4lyCSnJEWYNvV7x4eQ0ZwhT4eH/P4+OeSwjFc4hFPXdf\nVJfiOs+zeJtUFTnBkObSrTvw4sjpiqZDaWFXnc8SkReiuBNqK8ZxRhtqV2Orxdc/MBf822pp3GwJ\nTn/YP3I89RjjWK2Lal0rPt7dYfaGulrYOuoHNfP546cp5OTLSAPLcxOzVVPoUbqEATRtDVpkxClL\n0chpJ0owPwh3Ns2MQ+B87rC6wpvMy+sNla+ZI4Qsy4YYo3SeWlM5y26zASSH8/bugfMw0TQt0zRz\n6gbBo3KiqRyrquF6u+Pm5RWb7RpvBMJZUrHVs7gxlXLpyGcZvcrmX5tSFLW+FKcYxEZ3KPaW4zAx\nzIFumHh4PNGNMyHJDWCt0JtMhtFNhCBObahEzrLItJUV6p/W4l8RAirPfPrJS+YwYq2m60b6YWKY\n5iL+yZdis9C9Lo1M4cSCYL1znC/v40JUUEqJl3aRcBulsM5e0seXZZFggqYs3qTra5pa9gpNw9XV\njvO5E1HSFJnHWSYDJVFqttxE0snIMnpJc+nOHcfDiXGciue5w9kl21KV175CZU9Oie2m5ZM3rwhz\nYChp6KduYOgHuu7M+XySUbfvhbFUoLUwyzV07mb6+Y6qEquCxjkaXwk2mwT+WAzIZLkvdhILh2L5\ngVI/LOZKaHxamzKtVPzVqzfsh5G7vkNye2DJRZ1C5O505svbD7zcbnh9vZOIsFgiW8sbqRSS7F54\n285ZVm1DlfylAYEyXTUVxiiGfpSYw2FEVRVf33/km/0jxzgzP+VKsWxsSBKVaDVUVoIpTLGXUOhn\nXyeV+14KqtaGVdvy8y++YJxGjscDN9c37HY7nNFCByUzTVOBGNRlWtQodEmg98ry8uaK+Iuf81//\n2zXf+nd04/hs2QnPrurL60Kh+JHBWSshE1phY5lcUsldLWIpVfZCRhuaqmK7WUvwShLGTD9O5JQZ\n9CAkCA3Wi+2Ed9LUiOtQYpwnhkFYcGFZ/s4j0xTougHnLatVy6ppMFr/ZRXyxbd6UXWJvi+jtdDF\ncvHmUIoy5huW3G2Npqlrrq+vmaaZh4cHTqc98yjYeu0N6+2K3fYK5xyHcw9zZAoSq9Q0zaUYOOvY\n7XZMCb777T9zf+ho6rbg2D05TTij2W1WvH35ks/ffkrTeCDR9T0pzkzTQFfYH846fFUDS/SYWN0q\nKzL2jMKYjC1c1Jgy+8OJcZw5njoOJYx5mCNTzIQsvFyhPGkq52ibBqdkwVTVnqqSE9sUjLaqqrJR\n12K/GWdyCnzy5iVN41mvau4fDjzuzxzOnTgDzoE5pLIgLDa+zyhRFDJXIjHHLKLLcnMsVptLYdKl\n6xL/+HKD+UoMr1IsdMAnyMX7iqapePv2rfg1D3IThDkx2ZmlizNaYU2RLxuLtvrCMCLLkul8Ol+e\nc5gnTodHBmuLmEmYKK74YnjnqH0tOLE2Fyxdlw4tpsBYRE/DMNCdzxz2Jx7uDny4v+P240c+PNwD\nSFBBU7NpI97JUlQv6UdZ1LaLnzlQQpSfURQv9AkpMCGmIhGXVJjXmy2fXV3z+9t37EkELiAeETjH\nwB9u3/P25opfffqJsG2KAVq+KCWXQ0PM0m5KspTI8vXTclBJYzBNA33XcTqPjEkxOcM3j/d8HE7M\nxdJWk9F5+U6kEauN47qp+fTmmu1KaLzLgSX4fvozrrTRmqZpePPmDbcfPjBNE01TF3FMLl5DZake\n5VrkklZUlM9KAQnnDC9urnh5c8VmvWKYJqJwD/+kCj3ryOHiQ660KJR1mRxjEsg3xYhmhcaRsyzc\nrTFstxsJk7CaU98zzN8Vr/GZECecN7SpRhtF0zYylSvNOPZM08w0i1/NXH6NcWQYevp+YJ4zdRI7\nico7xDs+8WOPn6aQl+VAmgPEDE5oclplCSNGE6PifDrQdWequqVuWipfizkTCmeFXdG2FeO4oz8f\nOJ32hADrzTXWNaULmwgpiydK1+GqGqc0SYkQaXk7nfccjj1dN9G0NVoHWu/47M1r3rx8yYurK9ZN\nW0Ireqa+E8aL88w+MofEOEem2Evai5ZuRBlDQnHuxwvXtx96hl5c22JKxV9aEWKimwJziCWgOZcu\nVrOuV3gNeRqYFcxTBynRNmtWbV260FpyThccFoVRlsrJ4qiqKjarNcdzRz+OjNNM9/8z917NliTZ\ndebnKtSRV2RmZWZVdQHdBEHCOMSYzc+fv8CxIUHMDEmgWlSlvuqokC7mYXvEzWqANi9jVn2s70Nn\nXXFEhPv2vdf6VtvTdj3tpePx8cj53NFlnfzchggxiHY8qyES8t6FvPgoZPg4q9pTxtaKXnwQTK/S\npBSXk8jcZ7TW0TQ1h8MTl8uJshC5l7WDRLgx80qMVHiZqaO0zuHaovY4no5cujN9d+GIJ/mBVSVa\naFsUwmApRNIo0kKRnhZVtei7Q2b/6DyQrSt5XzfrDdzcEvJm93g48NOHj/zx53e0bSehITEyJU/0\nUDiDMyXWgs3SM5DNUeV0HtQv74m5QhTZWcv74wE/9hK+vdlQxsjb3RZ/OknLJJeSUYFXivdPD/y3\nn99xu9nyZrWmIhHDtAzInRNGyKouaepSipU4P6eZ/S7PVatEKkuqquHiEx8PR/7Hn/7A/XBmYMqH\ngblZP9MRE6VW/PDiJX//mx/4++9+gCESvcltvPn0LaTDEGerOhJVGNLSj/beZ8xGjh9U0q6axomn\n45G+GwjBMwyiIqkqOdVN08TQDXSXjuvrPd+8esnd4Uk08um5Pw+iCJnX9hCkMDscTxyORxwSdDEO\nnvP5zOPDA+MwMA07mqaiKuW60FohCBAyZ6Xgu2+/ZRpF7aRSZL1qaOoqU0bFPxL8SBhHpl6UWpfT\nkfOlZZxGcdUay2azA0xWb1likNPOXxT9cOZBBO9J2bwwmzhiiBjtsLUMDyOiER66Fj+OMggrCnEo\nZqVEWTrWTSUEMys0vhlcFLJQtCgrUEIIjEkzebh/OtIPPcfTCaMk+rCPE30X2G5qNusNq3oNaNp+\nJHho2zN914rrDHkd/TTR92Nu38RlEGKszXpRPc9bALlprStJygivuJ8YMiBq6MclnSRGiSorrGVV\nFTSVo6kKbK7OY4KmrlHZX2GMTNRj1gRrBABmtJb5gxejjTWa9apmv9+ilZEc0dOFh4cn4a+jCSmr\nHPpusSVf2pahlypiHLMWOcYlWm0uKcO8PSaIQYJE5CaKhJgX4mwAkh5pYhiH58FSjGg9LVWtyjCo\nWaYpShDpR0orDs6XM113oR86UjYyJR9wbsLYHm0sVV3hy5LJ2tym6ykHny3Uwj8X6ZdEDhalaKht\nVvQYK1rzVWzYnFdsN2u0Nkyjz7rmSZDJWmLLJO0+EY1U4nNyPVp60o+nA9Mk0sb9/moZfBeuoKkb\nvDWolNg3a1ZWoeuCyx/+wHA4MKW0VOVJJS7TyE/3d/znf/o9fP8dr9YrGqvycxbOtlEyJJbnoBc9\nv+TSTozTxDBOOUhbZImnfuQQPD+djxynCU8+Pcw9f+T82TjLbVPzN69f87tXr3m13tLrka4L9GN6\nFmx/NfydP0tZ3GUxHcaBJRxEqdzZ08SYOJ3P/Pjj73HWyUAyjBTOsVmveXl7KyjhShQnf/Nv/prL\nMPDTx48cj2fGcfqzvni+RJO0egXO1nI8X7je7UTSPM9zioLlBWdpWIgBHb9Kz2LOOXWSB0uO0UsR\nlXNRYxDSogx4xdehUqKpK6xzct2blKW10m4dh5GuvaCQ9Cyj/4IW8pA/uBDC4powSuOsxacJY5Sw\nM+oGlObS9hyPJ6ahYzQSKEGR0MqhtPycrUqu9tcQPXEaxGGXxDSC0lRVTVU1xCgGktFHDqcT7eXE\n0HUYrdisSqrC0o89ZWGpihrv4f7xTExHCmvpLmfGoccYqWJCkEp1HMYsURxBZR10WYrBJYdJVFW1\n8BhcWaC8Z4gwhpFz2+d2DVmalmcGhaEqbY7BkyFtmTX1MVcpw9gzxCBDGSUKDT9O1FWFyUOSrmvp\nuk6clDHiioJVVbNZr0ghclnV7FYNaE1Z1aK1DhP90NO1PY9PBx4fnjhnTX3XyfP1Xtox4zQKUjQm\npiiyS+lfy7QdhVinSbmFkYdPal5ER8ZJmOI+jCg1NxDmJBzNnHgzf4k7UxAFXdctOvQUJVJPo7GT\nz8Mj8Q8ELwv15D0JRVmN+GlkGHq6TnIgi8IJQ2PVUOVgXZ1bQ+PY03Yj49TlhdpAoQCLw4mjMs2E\nT5E/quzAXYacKMZx4P3797RtR9M0rNfbfPKQnvvVbotSiegnNmVJ1Ipqs+LHT595OJ5E/ZNbFkmB\nB76czujpZ765umK/XnFV14s5SGswyMlJhoWBMHkJHzlf5FqOEZ9PWVpZjFI8dS3vj0986vpMZNTw\nZ8d7pxTbquL7mxt++/Ibvllt0MOECuIYJX+S0rtQi6PxWSAg12zbtsKz+bOHQjZu7wP3d/d5wwNt\nEoV1GKUYNxvWq0YSnCqF0pa7xyde3l4zDZOgaWdR9vzIJ4KUFWbnS8vj4cS3bxJOyQKvc7EY86B8\nzMP2QMzOcrkPJYRdirHLWdYITYIU0EqUcrOHZPZdaKXl8ykq8TrEhDEwDAOn05lxOAvjZxhQzOHL\n5l+8P/CrGYICoqlOC2sBDa5wGZs6MHQX6rJgtVqxrkv2mxVt13M8XTg8XTCu4Or6Cq2FmDZ4obgV\n1tLUa6pmQyJgpkBsx4x9zfrO3Afr+4lhEIZ4Uxbc3tyw3qw5ticOhxP3j08cji1t2zEMg/TkUn7u\nOh/BtVqYFoU1qGzQWa3X3NzcoJX0iJu6oalr2q7jy5cvfPzyhcP5zOnSc+knsffmgamwyAWhWdcl\ndVXgCvm9Kc0qEgjTxOl4ZJgGtBXgjmAuRd4YUpSjetdJpJQ1bHc7UArnSuq6JkU5RRjluLm5lR5h\nlhSWZYF1hr7rOV8unE8tp2OLn8SBNvRSwU5+4ulwEAPV5SKY176j60fGQeYEYtWXk0IMiYjcxCFC\niJ5jTmW63ofcrglLBbTQFZV/Vggx0wXla8y+gBACXkulqZXBxZyik+R0NowTxjgmL0Am14lSKuTY\nOJECpoUDFHyku3T0Q0/bnmnbE2OIDGNkGhKa7ARWyMkoRojSapnZLETFTPhUUdqI4zjw+csXLueW\n/X6P9144MRoK57i92VGVjnHoGc8th7Mc+8sIjbWcppGYiXyiGtH4kDiNI8d+witDtdrglMDHtJKj\n+TRO9KP4E4ZBToDn9kLdNKw3W9abDVVhCSly37b8/OUL//zhA0NKRKWy7FUCXsgLVeUKXm43/O71\nG27qFbGf+HR8kOpdFyhTMQu5l7CIuRGnZGieUqQf+q8Co595LDEmtpstq6bkf/2Pf4e1soE3VbEk\nJTVVRd/3HA9H2rbn7u6e8/GJt69ecDqc8yxoyrC6udWS5cv5JHk4nvjp3Qe+e/sGX0e6c8v9/T0f\nP37g8eERUmKz2bDbb9ls11S5RdUNPe2l53JpZeGdRFSw365Z1RVKbTHGMo4d4yQzIKMNTS7K7u7v\neXx44Hg6st1uCSFwOp04HZ7wPuCspWlExVV+xSb/+vGrLOQmy+KM1lhF7peabEwxQu5rTzijsDqx\n3mzQlcWYGq0VrrBMPnA5H9FW41xB4WqUcaJHHyYOpw5XOJxbUxYT3l8k0RzRhs4wm7IssU1FsUiL\nFJUzPMXApe1IjIyTfL9SUFlLXcmArnBGKveywM6oy7ywlFXFerOlbwfIi5bP9MJxGiUlZPJc+kmg\nX0neE02iLC3rVcNm07BuatbZEl8V8ne6XuSL4zAQY8pmIpMrxiH3pp8TwJNSFFVFbYTtHqI4Hcdh\noiwsdVXQVDLwuXQd5/ZMTJGmqdls1qSUqKoaZ0uaer2kMZESzon7re06ufguJy59x+l84Xi+cDpe\n5Jg4TrRdxzj65b2PuUebUuDL54/cvbjmmxfXzKdq4PlILqkVJKWZMZ/PA6tEjKLZLbJDlQTjKLCz\neVgWoqSxaGWZAxbMaPJpQYaDgg+NWBtIacBowYi23YmuvzCObV55REEzZ+eorAaR5KAc+puDJea/\n7b0sUkmL4ePq6pq6WrFer5cWXIiJfhh4PJxynqli9AHvEzoqXl9d05O4jCNtksFnSrmlliL9OPGn\nDx94vdvw7Ytr2ZCUQhEECZwdwz7KwpysQRcF3TAwThPT0FOvGtoU+W8fP/H7+wce+p6g5kbOIsvG\nKCi14cVmzbdXN3x//RIXYZg6ulF078ZpCiuZZfIrsrQhKzRyr2JRpYjreVZJ5RFqkLCRqjTs80kF\nErWzmdvvskZbVhetHaAoypqr/TUKg/mn3/PTh4/5knq+dmbFHMDpdOHjpy8Mo6cp05Jyb63DlQXD\nMHLuO8bHwHm4sFoJzlchzBWFZrPe4KNAs25vrtjtryjLihgFWuenIAoibZaTQNe2XE4nzqeTeDbm\n/M6ba7l+tQg8qrLEuX99yf6VEoISWd0uJpI8vDKZvw0D49BzSJ4YR7ROFGVFYS1201DVBZe253A6\nMfU5qxMtmZpE+mEUotxqlaffFc76nLgeGbqW8/ks/bXdht12TZomisKigco56rKkLHq6MYhm14q4\nrigLVk3Dbr+RwZyzEkSRsjuzcIuLL6HE2juOIpeylnGSi7VZrQhoTv2Ej0JY00oStZuqYLOuxf5f\nVrnPLYvG4D2n44nj4YCfRrbbjagvlOJyueBzeO1sgZ4johY6W1lJf3sQuR7rFU0tqd3DcOF8vvD5\n/o5+GBZJYF3VVHUlJ4TGCdQqCfOmqkqcddni3TOMHUMYOZ9bDqczx8OJths4tS2H45muE0v+DMn3\nXvS17fmJ+7tPtOe3lIVb+v2ykM+JFcKbj18ZaxZ5HdL7d0bUzCCzgpiRDjorM5T3KMzz/qBYerEx\n97AjCtVPTFOUqi1J1RX8BElhnFkCrmOWms7PNUVBw0rVt4gKl0p/VuGUZcnbN2/xPubwgjyA9J5z\n3/Pp8xeUgvVmjQ6zgkjzcn+D14an85mPbcslRGKWgUZgDJ6fP37im92W7795gdnu0E6MYVMITCES\nUCgraVWFcyhrOR4OdKcTfuh47C58GUf+0x//xJ+ORy4xCdKCecwjw02nFRvn+Gaz5c3uihf1mtiL\nE9kjzB+dI/G+ThT9Oh92Dk+esdbAgoaY/97M6jZaij90fp9jXHJGEwgzqaiom8h2u+XFNNG3AzHA\nNHm+PD5KutesfMmPDGekazueHg+MOeF+nEamEHBFwWa7xY0DPgYikX4asZPJoRMNpWtyG1EzTAOu\nsFxfX9OsVsJpyXGVMS/M8poDfcj98iQnuK7viUkwt3XdZN18Qhs5+Rn7F1SRe60I1hHKCm8NIZtY\n5jDg2UF5Ph04HR9puxPX1y9Yr7doW+CsYbddsdmuOF9aurbndDygOGNchmCFQnrCXQ8pUpUN2+2G\ntrtwOh05Hp/Y73dsd2u+/+5bkp8Hi2LweHH7ks/3j/z86Z6Hx0f6rhNdrzHolPBDT5zgEgPjMMhm\norWYWuoGHyKHw4HDkyRpK2PYbDZsd3J87ceR4+XCub0QQsCoRGkNTd3gCkuYBi6nSH86SXxdykEN\ngA9e+vQKqtoRkqhhvny54+rqitvbW25ubpjZz1qLFLHreo7pTAyRrpPe6NPjPc5ZmqomxMgxm2PO\nbYc+XDgeO26ub9jvFc0q9+dylJ7Riq6LnP2J4/GY5aMWWzg2qzVVWfPi6pqkZLB2vrQ8Ph0Wpccs\n7xqGgYfHB8Jw5uPPf+DVq5esmjofxudlQ6ryGQiWdEbEftUzF9MLcmcmlc0osheEnBmqokJLt3hp\n3Mac17eoI8LIOPW5yMibhwhBMZl7j9KIAEU2tRTmqrLHT0LDnLNDlZrbZBVKiSa5KApevlwtQz8g\nOwQjT4cz//Bf/5Evd3esViuu9zuu9zuurve8rF/xzfaK4dvfcPnD72kvF6KKc/uZqOEw9vz+00d2\n/71B/9UPvFivKDUkLUA2Z40MYXO7qSwqQUNsdrjS8cenJ358eOKfH594DBPeKHTe5FReoE0KNNry\noml41azYa0u8dETvIQqywZaVGPnyhjZvdtPk86lYVPFL/qeX93gGSqHmWl0WuFHLCa6uS5zRlMYu\nUmIZiAoFU/reEwoJLv7bf/s7+mni/ecvvP/46as0obTMGcihKVOmIIZp4PHunsenJ1IS1Ox6vaJZ\n1VR1KcPgQuZeTdVQlyuGbuT3f/gj9w8PRGRuNAySItWUJdo4bAYGzmNiYxT762uSNgQ0h+OZLw8H\npnFkClNWUYnbdbPZsFmv/tU19dfpkTtHsdvT3L4klRUYu1Q+OkPwMYnoK8ah53Q+UdcNrihwMaGM\nBEgYa1mvasqioK69hCtEsVGfzwe0doJZNYaUhIuxWm344Ye/4ub2mseHOz59+sjjwx0GUYeUhaUp\nhT44Th6TPKWBat3w+vVrmrLKie5CzosxYLY7yGB4wV7KMK20BZtmwzAJDa3r5ch8PHf4IEYUYwxN\nVVIWhrqwbNfbXM0HisJKy0ZpSR0SYT3aWMahJ0yS5p1IGGvZ7rZYZxnGkcPxIIOUTKEz2qKsEZ24\nj/nfNM6WBHbUqQAAIABJREFUFIXFFQ6ToEmJXUoYWwIyjEHprHO/EKOnKCxNXWXWinDF20HMT9Yn\nymhwrqCsLE4rfAwMw0gIYK4tYSd/f1bFXFpN4W5FlULAaShzxJ33kwxUYw7TzoteDHMP9TlVCaWe\n1Q6INCwp9XV4kby3ShbiWcc9d2+XOi0m/KwSVDrzcCRoVySrkg8ZosR0xTS3ByJTfk3aGCzPhDsZ\n8soAW+WoP2OkqgeWalTub8Ol7bm7e+Lx4cT93QNNU7FaNex+3KDLgpbA2J6xMYgBzQv/Hi+I4PsI\nv1eGt9sdjbGYqkJFwRcfn458/PCJy+UiTJ+Un5tz1Fcb/nQ58+PhiYN/Nv7MHQgF6BSpneHVdsu/\n+/Y7/vb2G96sd2xMuSzAEUnBGqdIPwYJxsibZsgpO8L5fpbUzSlBM5pa5ZlWn8mOWkeGcaBuChEQ\nWLdY5lUmVXo/0XUDKWOWtdGs1g3ffvuav/9f/k7Iitk7sYw9Z09ElikWZcn1fsuqrri+uc6gqoQz\nhqoqcE7UZikk+ktHf+6Zxi+cjxc+fPpEO/a40jGsRyYvodJtTISMz57VV5JZIKfwqq7ZXV2hXYE7\nixktdNJu8iFQZgOUK34JIJsfv1JFrgnGEoxjyo5NlVQW2VtUWUAEq9eMpaNtW/q+R+szVRXR1mKc\nwyVLUYqqoGlkKtz3A+dLy9B3JAasqzDaMHkR6e+vtlxf3/Ly1Uv+ZA3v3/3Ehw8fGLtswNCKVWFZ\nNRXOFXQZCl9V0kcvnEEl6MeeGBNlUbLf77BaXGGlK/E+c4i3gWGa6IaJc9fz7sOnPJyUpBlrHU1d\ncb3fUhcGZxSbzVb6nTEIesA5rJEFEy1sBmMdXd/RtheG9pzNNZbNZiNozwTjMOJMIaRIJMHbe1lQ\nRd0hm1BRFvmrhKQxrqCoatZrySw01pIy07zrWvqhpyglxGC2AY3jxLkf8SGR9ERhPU1VCzbWmUyG\n7Gl7iceSdB6DDxFtDM5Z1uuV3JSKBaSUtMGHKSeka6KfFsPSokDQkjM5u4H11+EJSazOxK8P9ool\nCnCWw2mJy3uuztTSCkkEYi7eJVBZ53R6Jan08bnLC4nRj/RDT1U3WIGLLAs5KRLzX0oLqzI97zLk\nvFZns7Y7iLvyfJL/ZpQA0MoC21TEVQWlk0DgwZOmQPKBOHoOp44/dQP/tNoQLj23ux3OaU5PT3x6\n/5Hf/48fOTwd6IeRKUWSs+h1Q/nNDfcq8iV6hll/DV+9fwkL7KqKt1dX/O3bb/nN7pq9q1AhCaPd\naCKKfvKEOOZ5wcwmj7mlJe9xmFVFsDijn5UZssH0w8AwDhiTcpiJBIEM44jPaF9jDD4zd4ZxEC6o\n0WgnC/3Llzf8x//w7/nDH37i8fGwZN6C9MwVEHzIxcWItpbd1Z7NdiebjveSfpWv0TEIoXSaPF0/\ncng6cjyeuLQt+msTXMh5m0kUQ6Jak40qBDmZDONEPwozxhWOoiopM5OoKApSTKzXa/a7Pbvd9l9d\nU3+Vhbzret6/e8+JgjfrHWa7IaZACkl6doURRYCzrJqG/W7P58/3HE+f2e+vBbhUFoRg88CtwlgJ\nTBaErOZiesYp4KMXdkoONX46Hbi+3vPy5S3/5t/+O16//Zaffv4T//hf/oHPH97Tnk9YBcWsWlgC\nFAz//E//hNGGGBKXtuXt27d8991bOfasKpydwzDECBSizwqFnsPTk6g8lMaVNVonqrJkt9nw/dtX\nGBWZho6mKcS5mBclk8MNQJQkSimGYcSkgDMKVVdYbSlcQd3UcgzTBmcLopdFQhtN3/ecTo+8e/+e\ny+UsrQ0rzJPNZstuf0XhKoqyZLVas3RDY6DvO+K6xsctD09PtF3Lw9MjHz9/Ysg9R1fURKXkRDT5\nXO3LxjeOA36c8DFIRadkHlLXtYDAVhsJQ0Ys0Z++PJH8HSkE6qZkt9+z2Wx5OD5xPl9kBhK8uPus\noSjLbIiSYZDBZDszXy2SUiyAHPKD0hmXIEqK2ahktF0Gq2RpGlFkhCm3LojibwgxPo/q8t+Z8cwx\nztEGGpD3WrTCWT2VJDXpGXOAfLcCq1VWZii8jqQgg+UQpO8+hh76AT30KGcBReh6dEg4ZfD9wCVG\n+i93/O/vP3G133N7fcWL6z3d6cTT5zvGs7RBUpRltrM6L4yRdl3SFwaPwOJAETRiv1fQGMs32z3f\nX93yZrvFEZnGjvlco5MlKb0oqGYshUJwCXVZiPw0Bsa+Ew9CECXHjBGIWd4X8+aXjCbpwBBGQl7E\nnx4PGYInpiCbo+lcaUl5qDhHtW33K6qq4vvv3/LpyxfO52M+a+jl8+iHiS9fHvg//8s/8nB/x37b\nUNiC0jrJQHAalTTGOXa7Ldo4QlIMg+fFi5Gu6ziez5ltLxLJaRg49C3OGtarFa54FiZ0fcfD4xP3\nT0dO5zPd0OOjX0xQm/WG/W5LU6/YrFY0qxVV+RdUkasY8ePI2LdCPptGRgLGSV4iaSJqtQQLhODZ\nX11xvgwcTi3q0uFKR9001JWnqSOrRrCgGkXhFL4woBImJApb5DSUgJ8mDk8nGYAMgdW65Ifvvme/\navjw7ifevfuZu8+fF2azscUCalIaCifs7u1uy9XVnqquSCnR9gPjOGG0pPH0w8Dl0qKN5dL1nC4n\nxjBmVrFlt1uz28jX9X6LJjIOZV6sdeazZKJhkCP7OE2kGHNFr6jLClU1C52wdMUvdLIi5ZSgjq4X\nCaVEocnHbq1U8av1CqPN4uwj8RWR0VFWBUprQkqMwZNUIqTAMA7yemzJ1dUVrigIKdKdL5I36Sem\nIcgQsq7yKaMUuuB6k288aWL7ECUqLWvNk5ZKc7PboJ3l8dTy6V4W8mEcJYRWJZQRjo2EG5ds1iuu\nr69YbVcokJPYOMiQedZI57aGUQYTVT7Ci909aumBK/V8ayxGEkE9LpK4MMeQ5QEmSqHShEo+f0kb\nRTH/TVGlpD8bhM4f2fx35iixupY5wTQ9h4/IxiJ8GS7SakoJkvey6VuVe8XC/D9MEhT8+PjEhw81\nKkYYPSYm6fGn7A7VmqlwjIVhNOC1EJFiHiSLsSVQaM3eFaxiRJ0vHD5+YtCGupDnqx3EYaIdRy7d\nQFAWUzTLa1PpGcg2V9IpSuJ813ZcLhfKUOBzYMM8xLTG0vcd7z98pGuFEHi5dIvRR3rYjai9mgan\n5TRLmhkzBhy8+eYVtzfX/PTzO2ZHb8pnyxgjl7blH//r/8PPf/qJzbpmv93w6vqam+0Ga2G1bths\nNiL1HX12dPvFpbrOw02tZKOS3NMi4yhyIEmKC2SramqulKFerRjGQYxESWIuRdJciDPbWFlX+v5f\nXVN/HflhAp0yq8GATxGPZEzq5CEElHM5bk3kYFVdM0yJ892BMXi0sdQrT1V2rOuecT1KwnYh4RDG\nJAo0yYJShskH1JDwAYKPnA4XxmHk5nrFi5sNP3z3ihfXDa9f7fn97//Il7t7TucWjVkWirIsWNUN\nTVXnXM+Cosj88HbKA0mNn0a6TlQhdbOSgYXRrFa1JJkXJS9eXLPbNKzqirosUClhtZaEM3LVaqz0\nFdOUc0yDuMaCUOrKcobfz9pqI66xHMA79EJ08xnupZRmv99TlqXIpbTi+vqKshI+zDBMi3lillLa\nLLHURhbyZlXjo0z0JUk8ZeZ4SdMIQsE3FWM/iJs0xAXXm1IULnnd0DQNiZQlmeIqVPmIHYxQday1\nFM1K5Ki9wIj6yQsqdmlZkHuYkvCUkswDrHEZWzwyeU8/DIxhwkcJMjEZwCVxbiqHPCisdljtcKZY\nSJLSHxYOiYoeH5PEioV8wjA5f1ZpDBPOJLRsC1kSAYsuNf8uvqripSLM/wlpO9jccnJeVAqCQ57z\nLLPZapgW1Q4AVlw/83sds2Gt7TrarufpcKByjsoVwopHFGNRK0JVEFcVvnJEq7JKZdGAolOkVImN\n0dyUJXtjsOPI8e6eWNWoVRSj1eAZcyuxnyZstWbt8kL+taQUmM1BPiX8NHE+nzmeTlS+pO97mmaF\nQkKHldKM48TheCL6gMvO5mGU61vclh6toClLCiOqHJsHokopool88+qW25trtDbEFJZkKnK7J/jA\np893XC4t63XNw/0Tw7klvLxlt1sJRyef3mKCKUhEpcmfV1VXzwmtMaByaLyxgraevF+QF9poKaQ2\nOac3K2JCkIIzTMLpMUgR8LWy588fv85CHqUXXTgZLupC0I9WS7WujEEXNTOfQ3ktie6PR9q+Zwry\noR3OIyoFSmvZNg2vX92y32+oa9mJnTYYI/1cT0ArqKsSYyQooOuO/OmP73n/08C3r274zfdv+fu/\n+zf89fdv+PGPP/HHn99xOFxkELHbcX11zaqsJT3EGsZBtNHH84l+zAuM1iS8EAz9hBonNisxB9mi\nWBaPpinQOpGCJ/hRZgQhZd2z9JAlBAK0tlSNzXI6uXELKzyXFKPof70nxkTX9dl0EIleFpqZM7Ku\nSlbrFXPqyTiN0oqwMnQbZgdciDKrUMipxonhJUUoC5eHqA4/eeF7pxE/eVZNyW634ZuXL9m8fZ1h\n+va5GsuLb98PPD485uGXJMoUzkrlrpUAg7xnHDwPD30mXVr2uw11VUqWYlXiCoHuRxJlkTnia2kL\nDcNE27ZMY8849QzTxLlrOfctl74jKQkHmHnornAYa6lMSWVLGltSOYfNQRZp1tB4xelyoet7Jh+o\nCkddVaiqRBmL1cJ/1zqJeSyJEzLlBV1aDM9M6V+GArNUqsF7/DihkrQbk5XPP8291bxJLr4clcMz\nYsA5S0JyUucg8IhU8vNGWLpC2gXWkpzFNyVhVTBZlSFToDMjRXKoYGsdt1XFN6uGb6/27MoC5Sea\npqauRfV09+kLbdsRk6Jq1ktb8OvXl7567Ql53uM0cTqfOByeGIaSy+XMdrOlcOXiBE0JNus12/Wa\npq5pmgayZLPvWqnG12u2641EBVp5fdnFhC41L29vuL4SoF6IEtYA2dxnZEi/3Wz5zQ/f8eL2ij/8\n8488PElS0m//5rcYnRgGmTFVVUVZ11RNKUVkWWELye1VebDtp4lhHOk6+ZmUA2LKsqBqGupmBZhl\ntkOSOUCfXdMpqV8QFyXH818+fiWMrWYcJvTpwnDp0KVICrXKhowgsjRjLClnU57PA09PF/pBTB4h\ng99VUkw6MHbC/3g8nNjua7brlRz1kDe1MApTOiJaHHgqUJgRH450lwfeDV+Y+nsur95we/uSv/72\nFbdXWz7dPfB0PNEPHXd3nzmaIgORCgHrTBP3T2fabpA0G5elkc2auihpypq6rqirUvqxCXQKqDCJ\nI0/JwGeuylISK7L3gSlMuVeusgRLJIR+nOQiNUZiqMZBcLUoxmmCBFVZCDYzD5+0kVaJnnuXSVE4\nYYv3/cDheBYNbS986jKHSKzWDVsnbRABFGmqsqYuSzRJnGyjVPubzZqbqyv2u/2yiAOL1MxPnpiE\nJvfwdC+s50Kg+zOrPcRA17bCh/by/XP/+Gq7kZAPLXFzZVVRFC4vbBP9MPDu3bts1x8YJ1FGxBDw\nMTJ6z5iH3oFIUkn8AYVBO2FMW2UptKXQjjIvBM4+m06MMVyOF86nM33bslk1rJuGuq4AUMZgizIb\njERPjlILgz8tcz/1i3tiXuCUEjVRirIIjMOwaKXl3pFBeAqyscz2o7k1EEKgLIpcDExfhRAnFokd\nETwoq8EWpNLiS8NktYRXIGufYCLAkHAJvtnu+d3NDX9zc8O+qaiMnFCcLYTH0/eM04AymtKVVE1D\nkTn15MWIr17H/NznomKcpqWvHoPExcVcCMzV6DhOKOT0SoxUdYVratRmjTWCTi6cGOfm1CwSpPz7\nnNU0Vcm6qWVRDGHxEcybqnOW25sdv/2rbyk1vHv3gXefvvDtlzvevn7Ji1evKDODx1ibQ1lkMZZ3\nejY65Q9UiQdCGSdwOWOISTOOHlQv3PdkF1xJGCfGXvJtrbEYV6CtbKd/vvHPj18p6k0TxsDY9viu\npwyShEE+6gzjxNPTkc1mm9OqLdMkwx5nLTpGmKR9EJPGe8WQJoZp4tJ3nId62blMI1eP0XJU9yGR\nkGQRFVtMujD6I6d+IvozU3+COHJz84rXt3u265qPd/d8uX/ieGw59yPBn4lRU9UrQoxyUhgE9lNa\nS+Uc5WbFuikzgzhXt+k5HT4FtYD+Rf4kWmmfe5uCteyRNC7hhAid7cw4jJSZ4ic3RFxgSyGETI0j\nY3WLRRVAItPlQuacyEV3aVsOhyOn00miqRKMRYnW0KxkgGqNW6RhZVFSOEv0ok5pM8mxLiusFWhQ\nnwZQgygTstN0HMQENIy9AMGc4DnXKxkqgfT1KQuMSoxeLVFyJIUpbWaTa2zO1iyKYgEQTX3P08MD\nx7ME+Io8UFQuPgoXfDZLhSTHWAzoaDExYqwh6UTA04Y+t1Oy67jIEXTaMLQ9/bllbDuGoaVrJVA3\nxkBZVmy2e1arHUpn3naW0s0qmawZhT/rlc/D2VnREfP7Nh/7tdLLKYb4L3GwID8joLEccpCZ+vMf\nSAj/xuOZUkARBWKnhNcSs2IHNXtWIwZwWnNVr3i9v+HNzStKp8R5rRTJR8ZhwOiJumlQSmOLUob6\nzi1Iia9eYo55i/kvSLdFCoVyCf8GMt9dNkRj5Bqvq5q6EhxsaaxY162T2VLGHCtgzlJNM70zq05W\nTcV2s6btB0IS05eQL3OOaBLF2NXVltL8QIrw8PgI2uDKkvVmI4VM9r38Ai2bsq8gB2DMRZkPaZGr\n+mmUHnmKsumVFS4PeZ01+BCyqiyCkyJX5fbKci//2eNXcnZqOe2EiPJRhi5KggK89zw8PPFf/uH/\n5ne/+x1v374loSnKks12RVEWQuu7tIQwMUxiN04pSfJNPzJGMYQoFFVRAhJyao3wXXwM+KllvNwR\nxycKPaJLIPU8PX7meDjw9s33fP/9X/PN6ze8uL3h1A58+HjH+49f+PTlicPjmVPXMfnI8XiW3mtK\nDLnv6KeJ3W4jkj8n1n9n1DLAmGV4Ju+0KE0IibG/cGlbaZEMg9xQKjEME18eHnh8OhATuS1VUjUV\n17sd+92O7WqN99IXnYNdRW9rhHk8yCJurRVta9vSTzI8ca7gzZvXUrGNE0opNps1u/1eFAE5Q5Dc\n6nTWst1sxIHW1ZzPZ8Zx5PPnz9zd3WPzUNVZR13VMjh1BZMaMaZi1dSs12v5b9YyDjnw93gSmV7+\nSlrSVrQR23VKiilFhk6Gt9ZofJhkHjCOVGVJTOCKUiRww0g/jvhxlPUszE5Dg82bwrpsWG8bms2K\nsioJKXE6XzidLpy7lkvf4i95M4gRFRIWTaEU/enI4+mAUZBCZNWseDEFbl68oSqKfIsl8UBM5bKJ\nzotvIi5URGF1x2VwtoC3Ym6d5LxGiUnLrPj5S1wwS6tNNMcFISexL9+THzHPJ9IkwoI0FkRfkJwm\nZf5R0nnIiaIyDpc0NmiscssmXBelEACTJNsPQ58Bah6fLPEr01Yuexdr+uSnrP2X53p1dS2+iqZi\ns17jrFmokkqLU/v1m9e8urmmqSpBuxIxWRxQZLhZys9FYu2ydDD36ItCEpCudlvuH58YxucA5fSV\nIeh4vjBMgRcvXnC1vybGxO2LHVoF+mlgmjzOCNseZKM1uReus47eB59luwN9L3z7vuto25b2cmac\nBBAmfCWFc5rtdstqJQobkpgnJ5+FG6bEub8gaNbXWYZo4WcsO7PW2KJgu92KO04ptLG8eHHDfr/F\nOk0ME8MwcekmHk8tXa70ZmmgZAAmjucOpZ+wWlNXJau6yjrQgFUeFVpM7FFqWvgOMcoF/uXLBzEX\n9C3X1y+o6jVvXgoqs1lVKH7mfOmJIbBqCtphZJpkEHk8d/TjxMPxhLVGzD6V43q/ZbfZoK1lDIF2\nHMSQ4ZMA5oeB4/kszA8tm1BZ5krYFYwhgha7b1PXbLcbtrsN66qmdG6pQpYPN2N0nbPLYGkyz+qH\nonS40mYHvFnSvKV+1BSulAo7SNpRjDI8leFhz/39A23bfVXlywCnqioqJLTBqrn68mKvTOJsRIka\nQytFihaIFM6wWdcL5TCkyOly5tx1tP2BycfFXm2NEWddIVRChaZqKqqmZp9y9ZOgnyTL8+HpSYZS\n2mY+RsIZTVMW0oaqLK50YppKiU25ws8+gLHn2F449a2wNjITZIwJ7bTEzY0jMVu7nS0XVEL2EjEn\nSGltmOP/YgqMg8wzilIKDrk/pOVUluUCkopfVd7xq2o8/wCzqSXmwaHOJ1ARC/ySBy5Fj+RMxjl1\nppMWi3JavpS4OQutcT7hTxf+cPdPnP7HT/y437Pdrtnvtlzt91ztd2zWK6qyQKFJWFKSU2XUBqPi\n8pl+/Rq/zu9USrFaNYTgs6nOEaPAxfqhQypywVzH/LolIcgsATV+8stnsFTXGZcdc/B5zC7pZiWE\nz1lBNKdiEaHvRn788Sf86Hlxfc2rFy+5vb7meDpD8oQwEb3QIxVJ7hujMw+mxOXA68lPHI9CMLxc\nOpllTRPTJKfeOcvWuUJSrJSiLN2CKOj6lsmL1LaqSlQu6v61x6/TI9fZcm20pLPkvlxMCpShrGpe\nvHxJ0zTMAc2rZoVSEWMgRZH9bKbIertm9CFPwmXIdTmLrHGYAg+HsySQ9MJabmpHVWgMEZMCENB4\nLCb340UzfGmPmdUsLYEXL16z2V1xvWvQeo+KA/cPRw7HjkvnCSkjbSMMk2fwHj1Iqo1zmrLQebBW\nURQS+9UNA+fLJe/YPV03ZMrifMQUvklTyxClqGo22y3TKAqd9VoS322+Gf04LfREpbWEKji36M9F\nU6szuF8uPKXnQZ70RMv8HAUspIhBhjtzmnjbtTK86TseHx7pesETiLEGbCHzDWstdSNOV6H6ia1e\n1CGi2NC5dxyCWP6VnquqXHX4kE8qURDBOQdzHgjOxwMx0eQhrLXMaUyiLvG03UrmCXkhr6oSiDit\naMpCYGUKASyiiQqs1djSkpQ4U09ty7G78NSdufRddgeOIrHsxa2I0QRSjh+ck5Pk8eeB44nIMHiO\nRzGnXF1d4ZyDjOu9ubmh+65n/bSh67uMm5jldnwlYWRZEPNfkoU/zkM8/YsWzPJFko01b6b0I6l3\nqMqCdlmBA0UEN3r844nP90e+DBN/KEs26zW7rUhwb25vuL66Yrfb0lQFZWFwWqFdgXG/bP3kHuPy\nXsTc9pht8PMcQl5HzNddv/gjpmlakpYE66HkRMBcMIjiI6bnQfo8m5kPJlpLss+cQBTn9yN/WCHA\n08OJ6COPDwcOhxNPt09stjXb7Yq6KjICWAq5ohCDjzFmGSCb7FGYJpHKxkxNNVbjioa6qmjqRhzr\nLj+P4BezVEri6pyxCCYPY/9nj19lIZ+MkvACo0hZ6iT5i3khr2tev/kmS+vUAmRXSlxx3suHEybP\ny6stdSNBsZFE13U8HY7cPxw4nlounRhWjueew8mw3zXcbCu2lcKoTK+LMvjCiOQPaUHSTwOf7z4S\nomjQXxOxVnHVWL75u99x/3jk3Yc7fvzTB7qBDFkyhCRuQ2MtzmhS9FzantOlk+cZoaxKxpDofZCI\nqK7H+0BRyACvKkuqsma9WrPbrnPFJoD96CdSkt5njJ7gU3Y/mpxEYpaFepYRaqWleln0VnJ8H4cx\nV4+RoirkZiqspOFMnr6fOJ3OXC4Xzucz5/NJQiCmSSquNNuuI9oorBf5ZdNUOGfYbNYyGDLCB9c6\n93nTcxBFSpGhl2GxbB4il+zHgSlETFGyyYA1q00mTYIr5LShkuQ+amNyOr20gIbJUxhDbR0rV+QT\nUyQRmaZBCoLB48Mk6UewIBEUCsqKoqyoy4pNVfMi7rlMI5e25dReOLZnWditZtKGolGUWRPMos5Q\ni2pi+b8a/BQ4n4+8f/9ODF7GsNvtKFyF0fDb3/6WN2+/5XQ68eXujo8fP/H+3TuOx0PGQMvq9fUC\nLp9qrsq9X66DmbmztHOSfP+cZE9IMHkYJxgngYwpS2EM5RTQl57wcGQ6npn6iZO6cH/3uIDgyrpi\nu93Kgr7fcnuz59XtNd99/x2FFTqgXhYoWYDnPnIIYfma20qzBl7r58BsVziKwuLDxMwJnwe+KrfI\nUt4gAEkhCsLWiTEKwiAbu6q65vb2lrIs5H2IM/NeZemypSwbqmpFP4z8X//tv/MP/9fIq1e3/Mf/\n8O/53V//IC1SZ7NXQ06k/dBzymERVVFKm6SpWa83TMHntqbJ/PkNpSvyZhYZx4GhFwbMMAxcLpnB\npHXO0U3iPE3/ktcOv9JCvv7d9/T9BFXFaHLKRprnBNKxUiLvIKmAj7IYaxTWFLhCiHvBeYyCvm05\n9E8YZ7HOcb3dUmhLZR1f1IFLO0hVN8Hh1BF9oKsMJjq0qlBKbmpNQKeEUY6oNDEpQpy4XJ54etTU\ntaIqZLCldGS7ril/84brqx0/fbjj3cd73n9+5NJPTPnGCaMiRU+Kni+fHzgdLrm3XeMKh3WWq6sb\n7Au5GAubNb5WLpS6LqUVMN+QuXKYB0TzEMQoTUJCHJSS6nj0U7545YgqCTxeBoDhWVVhtKEsKlbN\nSqBdzhLTCCFJ9JRTVLXD2jXbbZNpihJYEaK47E6nMzEF5o7jqhHW+eHwmKVgovKZpomu7yVtaBhy\nwDUMo/Qdg48Z5hSeB1B5SbTWUBiD0wZNom5q1tsN69UKa8RirUAGhUkS2qUKS8RpQsWc9G41VVHn\nnuZXg7i5U5F/xlonm0MOELZBNopKWdZFxVW94mbacbpcaM9nUp73NFWdNfEyoIyJrBOOi+QupSgt\nql4+lxngpJVgbpumpFmvubq+5uWrV+x2O4ZOosGGcViGpcsA9blrQUrZRDZJ1JukbMVlAV/aGvnf\nlZ8w3qJHT+hzWwZDjUIdWtLTCRcCBph0yr3nWQ4nvgUJLG/59Kliv93w5dULytWe125FVTxLUJeB\nLs+Obz6kAAAgAElEQVSyOhkMhnzKyjOB5InJ5GtK5ROqQ2vJHHXOgtWLB8AotSzkSoHLhMuYoK5r\nKYBiZBwlvOTFzQ1N0wj+9usUVCVaoO12xV/91Xe8eHHFzz/9xKdPH3lxc8V207BqSjZ1LQow72nb\nucg5044TZQ4db5pGTEDWUqs6J/xIi02liPcjRmfnsxcXeAjSApKWi0UrJeiPssyL/l9Qa8W+eYXt\nBqKyjMbgksLN8rvc2xQJdUIluQHOlwvTMGGtEYZH4SiMyZN9T3tpCSTKqmK32dIUBWFdM/gBP3m6\nOGVzhEyRu8FQOUWpLA4B1Ns4gQ4YM6JJeXGEMAXO54n7u8hmvWez2WELiytyCMDVJqeSiwzt8/2B\n02Vg8jCNEZ8gRMW5HWi7CWsGinNPVUu/XRgTZTYwZG2zcxgjd+eSpJQrraHvRVqXB5tK5dAJQBmV\nj2GKmGPUZLg5SUWaF5OFtZwzHcu8OSqUKB+ioEeNUVRVQVWKKsBZ4UgUrsi8FHGxHo6HHOzgc+9b\nE0OgbVtCURBswGhZxE/ns2Qv9j0xRrSxhBgYh+fIvBhjbnIp0NIiaKqCWBYo57AKUiwFH6xt7isi\nn1lKxDBnPUqfVCPcC5TKdnmp5t3cemKOnXt+pMTy8yFILKFJuS2oDcaVkuJeJqxP0ouNCZcdtnOV\np5ixpVmWlp5jwVbrNeU0SQpR1qwrhRzBncjbVqua8+mUB2lfafjUjP16/rf5Nv/aPLJsIOmr751b\nUzEBAT159DhBJ+5oFxLOBdLpQjy3aB+w+Xgf0tdD17Dom4dx5GzEaGes43TuuR4DziXM80HwuSUE\n+TMSuaFa9qM8S1EzEGuGaWm8FypgjEE0/vlajrnBLVV9XN53nfNA51PJOApQqyjcIs/1IX3Vnkpy\n2kWCwt+8eklTWF5cbXn96pbX37zkarNhs2pyd8BTFU5SmEDcnFmaOEfa6aymKXLbSGud71u5TyWu\nULKKfaaCzqod0pxS5PLz++U1uqyp/9/L7v//j2G7gdUapwsmZfFJYeeebFL4AD6CyhLPEOHu/pEv\nX+4Y+4HddsXN1Y6XtzfS78w358PjIxxPDN3IdtUI7nazou1EUzx6ccL5EGgnjdOexihWtqDJwPbE\ngDIdyva4HK2UkmLsWz5+OhHjtxSlow4rTg8twQcKW3B985KXN7f88P13/PjjH3j/6Y7HY8vTZeTS\nTYxjrsqSJkZNGCP91HI4XTg8HahKS1FYyqJgtxLTQ+l07nGL+kMrUfUcDmfB92Zly3x/Kq2wTlgO\nhZNIvLIs2O32mUdeoJTLyhbZBNzCt9BLq2TyEypPkKzRFKtGhm9FSVE4tDKQpDqYQsikw3JJnR86\ngWRNfsxzB7lJhmEQ+lyePZD7+HME3jTl4dCpZRhGuSGzdM1qTVM37LYrtqtGmPGrhrppclizLMrC\nhpcwAh+lWgx5QDv3SlWWcTlnlwGvDMWiyPby5z6NE+MoQ+i+77Lk2DzH0nnPkDnsYZoWBUmcB2e5\nWOZfWcSssey2O8qiJGYokkIvi1LwI4pADDKgG/oL59NJ3LKZD66Ye+/6+e8tapi0KJggn0q+TjqL\ncamIdUwoH9DDJAqhELC9DA7UpUdPnjh5nNFEZfPGIMdC6S2rfAyIKC3BEEXhMo3Q52o4yWlxLtiy\nisRkE8zXrZ/5eVlriNEuGvSYAqfLifP5xLqqqYs80AzylVLIXzHnpmoShja3Lvuupxs6xinQXwac\nVlL1Tv4Xqp8QAw+PD7x79zO/efOKv3r7lv/t3/8tN9c7+f6cDjZNYtgyq5XMhKqKuqoZ8jC8a3vm\nrRYvLRddltivZgHGaEEx5A0oxpgLmmH5PSgJOldKYf6SEoIulw6tc3+zH9FW+sPT1C260Sm7E0mQ\nVKJuNuz2kU+fPnG8tBhr2O227K8k+MD7iC1L2q6TNoyVoVa9WoEuqOszp/NZNM0hStSXMnhlmWiY\nbMKYEUPLNJ3QYUAzofAYDSRNCBOHx48iKRwDVdXgXIlSga49YuwASfP29Q3bbcP905E/vf/Cx7tD\nlvT9kj09X8z9GCjKkrpes1k3bJo6w79UjjbTxJBAa7R2bHZ7XFHhijOHw0HSgjKUarWqxfFYOApr\nqaqaslgRQpKWSmaXD8OAnyYKY/MNRk6OLzGqWhJvADwyoe/ajhildz4ME1MQk40wMXLodDZHKGsw\nOKYgZqDoAymKUsUoxfV+D1pTOGHmmAzbf3kb6fse72d8qlS6fpqAJGCyBD4K6TKkRBVEUmkGTafM\nwiKZEQA+KwVk0CUadJu1/SHzKy6XC8fjUU4nZblsLkuQthElxhw+IRt8wgHkRSdFCW9QGXqWX0Be\nsKTK6gep+rRWWONoGtkU5fVnCSL5BBATGuiHidPxSTjZ+ejNvFkwr0Fpua7+Z0nr80MtlXya/ye2\ndx9ZJUWRoCRRW0OvoA+RMcQ8Y1GkICEXy+/KvWXrJOv0ar9jt93hXLEEx7C8HXmjCqKxVooFPzs/\n/3lRlxZgfo5J4X2kDyN3Xx7QQfPNy2/y+5bygNfLzChXu1pbjHXPc4MgOZmCxVhze33D3eORSz/k\nNzFjilNiHEa+fLrnP/0f/5m7b1/zux++Z7tbUVZSfSsUWFGGyVoji3jTrIXQGSLPhrCUTWx1BrvJ\ndTW3gea2V4yy+fZDz+ks7mERLbicfPUXpiN3tiAkxegjvutI6JzX2QtsJkWZ9uZe7hxbljKxLsSA\nRC5qrCup6gbQ6KKgzvbZOb9y1k8TA84IVF97D4jyZQqWNinSpAg4CmXAe6xOuDQAEy4ljIaEYexP\nhGiIsWC727FerdFVhQ896v9l7r26JDmTNL3nky4iIiMzS6ABzLBnuWe5Sx7y8IbL//87hmfVdDeA\nUqlCuPoEL8zcM4HG7C0mcKq7kJXICuFun9lrrzAV5wJ9G2jiDft9T4yBvmv4W/PI6TQyzVmd8Vb+\n+LoUE65013aihrOOJQu9yRoxBTJGPD2iXaXlQTI110KeE23X0vWNpgpJatL5NDAMk0wkCDa7zAtL\nmuli3MRFq08yCCxhVVE4p0Qq0q3Py8LlOnC5jkwpMU6zmHgVSSMSPC9K51UKtSb5+cqdN0YghaBK\nyaZt2PWvpkqlGtKul3dEl5erMGZZFlYbVGuUuUFV3vIiUIZaklqMdDKawLLCPXi/dV4pSUd3Op0E\n37xe8d4LO+d6FXxzDS4wRo3T5JfVYiGFSRhYNga8UkRX5oU83rI0iv67092GToJv6ITGVKiZWhKl\nZqZh4Hp9YRgH8rYkNq8//S0V8c1DGgcQXFxgojd/KP+tUfpfKdSciQV6oDPQGSPRc7lgigibHBCc\noyhctHmoGLEDFrqtMK2CWr6+PVhWWuBqRWyt2ZadXjtUsaYw237DWUff9jRNoJaFUhyX68JlmOja\nKNcIbIt32UOYLfg5BA99t7GkvBd+/4f37/np81e+Pj6Lbz3rYFHIBa7DxC+fvwlzZpnY3e74xx++\n426/x63Zoxo+4hyEoPyvKqSEZZlZ0kKtRbB9pQO/TUBax7W1kCuCKn4uzq0ftXzu1fxd8PX6+EMK\n+e39PafrwOkykOczS87EGCkl0QRJL1kXVfOSNl+OWgs+BKyJxKbHhZaCpSAS6l0I7G4OVAsvXx/4\n+ukzn37+zPNFchbbriM2DdE58FkMfrJhNo4hVZpgaVyDzTsJk6jQ1ITxSdixtpJMIS0zD9++MU0D\ny+0R9/49sY34AN7B+TJhQ8PHj+95//6eH77/yLu//Mz/91/+ha8PJ6a5UK0HE8B4nKlgJPTBWEcF\npkV8XGqVpPDbEFRgIyNj10ZuDjvu7m50HEcmGOWZVu1YX57OfP70jccn8UE3XhSfFfGrOXQdtzc3\nHA57PXj8hsmJT4VhuQ6guKix4jWdamUphWGWDfs8TRT1/lgdDZ01dE3gsJeFZN/1NHHd1IuHSNc0\ntE0jEn7tquSil4LQBPGnEcxdLU2rPPdpnhinUcKlS1FyiIiujPPbiL520E7NrdZMz1V1t2L1Nzc3\nKgOfuV6vv4oeu7u7Y7/f0zRRu8OkcJHAKrkkyXE1jmL8tgx+y1Nel4Og2PAaCaj49SunWmTxhowp\nM3m5sExXUpo361x+VRzf4M7mjYJU/91uf88bwyWzGmNpF68FllpE7IQTuDNXaiqYApgi3Pu2pRih\nd87zGkxRNBNV8OsYvLCLdflONVpos5pGFV3cCfOqlkzTyXJQGjeJ7BM9Q+C7D3/i7v6etGSGy4WS\nFl4uA9Y7mhgQm2GjzDPFpa3DeUcbA846uDOkedHJsPDhw3tuj0eC+0W95nU6KRIYblzAxZZfvj3y\n5fkbycH/W/8v4j/9L0Tk52Mtc8ragS/bc1/3I04X5eY3B9qrAdoKPbL9vmlafAh0KbMUnXjXyel3\nDmz4gwr58/lMrYYmBM7TwDwbMsJ4OJ8u1Jzodz373R7nHKcXCWQOseHw/h2lSpTU8+nCNCec+wZY\nSpUi4IKjCx4XPO8/3tONe5Xmy00TQuTG3xD9ies0MWme3jIXEglbLbOLLFW6dGMmqDPBJooppDqx\nZIMhYYwYZQ3jTN/v2PU9xfQYDOM8UnOmbwP/2//6D9wd9/zt56/8y9++8PQyM86rVL5QsmEcZn7+\n6bNghkUwXmNFlvxyHrg/3nB7I57E1grbxzlLsI41aSZnpdMh6svYBLq+4ToGifpSZVguMrovOTGM\nA+ezJwaLDzsJrY5RRkxdPK4RYSE0OB/odzswApWMo/Dgl1mtR4twgpsQaINs3IMPr0ULVsoNaVkk\n/cWrp0QDUDdTNe+Ez1xLJqfViF87HSpY1MRfeMYUtnG+qAFbtZZ5GMhFlqDVaJapDbjGczzektQa\n+JdffuFZud211I3d8/XbV7yPuE1hKkUpLTOFLJ4104QNLaHp2O8Wgi8qVnn1DqkrpKz3wq87aaM/\nW9kNxVDKwnQ5MV5O1JRk1yXesr+CU94+3sIrKzZu3xwar9+IMkjWxaX4uyTnmEpmvI5chkl0GkW8\nxo2BGD3VOpwuGFOSyDjxTBF/oMO+J3qLpa69xbaAFabLwpIXgmLTxshn7tXBUt5rSwiZ3W5HKpXT\nZcLaiOuORGfwDhbjoFisj9SiJgMGas4UdRSzyoAqqTBeL6RZoEFrC20jpmlLltW6THEAlhgjP3z/\nPcsyMo5nnh5feHoSKCZvi1ZpkrOqfmstG9+7ZCnWzouDo3vTjVedHlZxl0wlqqkw0myFGDc3h1KE\nev2rZfebxx9SyK/DIBzuKlhfKRlTxAZymieGyxkJI1bLSAPGi2PY4XCQLnFZhNt8GQVbrFBrlgvC\nW46HHbuuIXYtxQbm5ZXO1rQNbdMSvOMmJ5acmMeFvCRKTgjJb6GiPul5gHKl2qv4UtRMThOzWcAI\nzCPLiYmSZ/CV0IpCziI+L30T+NP7O5oQ6NuWX7488/B44eUsmaLBSjc/TRptlkWeXjGMkwSzWidc\n2TZOkruomNmK4XofyCUxjgOnl2eGceJ6ufLycuJ8uTCnhJndBkkYU9l1DU0rXtJN0xKiGIJVrLzO\nCsY6HR9loLTG0oSMsZBzQ+5blrQnrSHBiLVt8AGHWLKu+ZVbR6oLRkBcA2N8HSVr1r9HLIzzih/m\nJIVA/bmNs2qOpF708htZ2FmhRpacyVXSamYtzsGujBVPiIKVx6bBO8t+vxMXQU2uWRZxUZx1ketc\nUdGR0j6dKO5ssPS7HutbsJGUVtUmcmC9Eemsj98WXPm0AQzBB3rvaPeB5+cT0TnM6nH8phi/VUb+\nz762FozffwhMU4qoQrOHXK2YdmlMoS9yH9p1s27FZ8WayGQScy5k7bBjdByPO5pGpmujOLGxcg07\nZWIIdLfuC9yG3b/9X+GuyVLdLAXr1eK5WpZcmSbwRhhmVMGdvVoMWFNwVfzWJchCmrmsLpFNE9nv\new6HHddxJpWidlfyvbIPmtn3Pbf7HUteMDjF7F8FRmWdpuTK5u12e/XqeQvR/cobR6e07V6wBmuE\ngKAmPbrslX3Zb90k18cfIwiaF6YiF/kK+K9qxhdrmaeJx3liWSaaRlR4MQhdyFrJkTQYnpYn5qXI\nCVot1sqFZKiaWF04HHZqe1vJlc0zxDrL7e2NSGK9ZbwMpFkKxFIr12lmGCeWaWbJI6acoT5h7Cgj\nqgpxxiExTjJS5bxQ60Q2C+0uY4KnjZGSMuMwEHzgw92BD/e3/OnDM//y10/8j7/8wjxXmsbRdpGB\njDFe8guceDDLaV05X0fmZcHr8kRuBo/R17Xb74DK6fTCX//6F15eTgzXgWWZX4uIrNwJwdN1LX3f\ncf/ujg/376XTdwLtjPMiAp1aMdYr5i1dhjGyMyg5YYvgf+1OgnatQhjwSgM0euN651XYpRFWytCo\nRmwYQE2fdNQutWx8fLTrEYaSQD5rMS2lUJZErhXnwybqwcKc8obrn85npnHCVLEBFitR8VHf9R1t\n0/Pdx++4v3/HksRhMi1J7FVfnkm5aBpRu7EOJMdTitTucEMunnEqzHNiGEUF65zfZOObiesbKET+\n9ZUeaI2liYH7m4Y/3XVcrxP/7b9/UqBBvfVqfVM8fv14K+VfBUHr11esfyv0uhMx2hnPy0LRRbDQ\n9kSzYIxwtZ345WJrperOCUC42JJa1bWB401P13pRYpO3EAnvHcllmtSQ0kwpi/jOR6HXJWUXifpY\nwk6u14Hed7jWsCieXhSGEKGbxSOZnc4aYnB4J7bY3kHMhuAN3lp824MLFDPSL5Wb4w23tzfYy8Co\nLp01GzKFaZn461//yn/4d//EDz/+wDBP7Lo93kWczSpuswg7WKEinS4MlWqFDeYUzlu7ackCeFXc\nrjCdGH4FbUTEQ2jdQYQQ8ebf2LLTrNvyUkm14F2hkl/lt8YQgqNrW3a7DjDawcHXr1857PfEELm/\nu+P5+cQ0CvXLOja70ZIL5/PMMIg5lKTPlE3OLQeDowkSRxZVfeisJbjA7f7AcX/DNA7YmnDc4eoH\nhutn5vEJaxaCSViToM6UsXApM8s0cllGQjtzGSr7vmffd+z6VrjSw5W8LOy6yL//8/d8fH/H0/OJ\nx6cXHp5eeHmZSQVCjBzaG6hwTSMvLxemObLf7TjeHKilchlmzqdHkjIZgneS3j1NnM5nljlRndwk\nu11P33XiBREDbduw6zsOu44mRKZl4vRyZhhGWapRFaZRAy4nXPMmNrRNJDbi82yoEqxgrPLeZRaU\nhaQVab6O7eOyejJXmqYRQode6HXrw1aYvwCvdEAJLHYQ6tY9rou0snY0xhBixFphlIzTSMkLNc14\nU+ijw1Wvua4DLyeRTHdtQ9c29F1HVix7jRADuUljbDg0Df2ul5R3u3LEla7oHW3fE+KOSuDh4YGH\nxyeeXx6hiimUc8r1Z6XaFswaCMor7G0Q5W/TdVgXmebMOC8agiDfX0XK+4ZBLo/fwi2/14W/nQy2\ngwTBX5ciTKRoYElZD3M9BNQQzlaDw1KLYS4JcoKaFXYRb6HgDc5JYLacFVlhJbsdwNYKG2tVfH77\n9o3PX76Ko+jDN/b7nTRlqmmwFIwRYWCmakiIvB+lQjayu5mTdO+UDEVok9GrTUawGBzZRIgV3+5p\n+h0xSTdund2W5FRJWvr05YHrsHAZrjhn2fUNf/7xA7kUxmlgGuctiWst2Ebxb2NlL9M0kdJ1GEUT\n1sX3ytBxTlSyQgtO24HrjFz3drs3/g1h5G3bM4wTk1IMO2tog9jY7rqO6ORU3e06XS7JBTdPM+fT\nwKhjyn63gwpzu0ARzDLEQNd3jMPEOM4Mw6KFzhKC2zDdaRwZvcU7cM5shdx7J5zptiWGQHBV4t18\ni2UvznsJ5uWEKRPBZKxdqOlMKuK5fZ4LYYm03SQhj9UqgyBRs8AvfXD0XUvbdPSt0JKMs8zpkdN5\nYp5H0hLxDvrWc75OzFPlqhFs1oq5U8GQK6IwG0dZqtWCsYHQiBLOOpGNH/Y7jode8y2jioDEiXI1\nIypVppdxFl+Vy3BlnpMwZpzEyTXNasSlTAZrN7fDGBs6fT2NCodA8dNp0i0+MiUoYOy9XMTOWh0f\npUusCKZvcVTE/raWqhe33dSTG39Fpc65ZIWnMssybxBSGzxL0zC2jUIGspeRJagXUoDSxnJK23OL\nUYp80zREL548Mrq/KvWcczgZvPWAS9Q6k/NIKV67slemwjq+rz/rbZp8rUVfS+Ipz3z6+sDD02nN\nHALeFuDf7cn/1Xvv92CYlb5YgEUplBN1M0MrFYqprIRQgwh8aqnYotbNu552v6ONVvJrnbCt1u5U\n9qhZcXY5mFcKnveScvX16wPfvj1ineX55Vk8ilQotcEutbwyTEyBKnawa5h1kT8QCmqGmi1LMUwZ\nhlxxo9CJLZZcI747cLh7T8JhhyvTOCrfXtll1XAeJqalUmriy9dv/PWvP7FvnLozFpYlM4wj1+vA\n6SLeTs7KdblST2MIEhHnHGlZcM5vOoYYoy7hLeM8bztAr+6oqw1yzZn0r3y0f0gh3+1vGNMTc74S\nnaVrAjdtyziP7O6OhPAO52GNeVs0zNdQiUFGjiUtOO+4vZWuteTKNA6isDzsuDYT5uXMkhK7plfz\npsjpdGEYLnrDa+7ilHmuA9SCs1ZjyyK7PnKz6/Cup2sC1gemfM+UDONkceYqFpq2YOtMTZm0GKiN\nJIRkQ5ozgxnFC9knvMt4W5iXiZot1rTsugOhaemPO2zw/PzzI89PF6bhyuEg9qq1Cnd9nmdeTmcZ\n770oA3MWtsA4CstFnO8kzFi4qVmxPcXrrAQTT/NCWuwWett0HaFpaHc9j89PDPPMvBShGirEQ1kd\n2KToW1NFFeuFErnre97dveP2eCsxVn2PNa987bXjEROsZRv/21aDk43T8VGir2KVQI6UEo+PT+Sc\niepBHX3YsPaV1payHGhLWjSoVp7bvr+hJOm2i5WgDaM3W0p585Sel5lpHDfOfGgi+8OBNkTpBDVG\nz6o3tnMeh8HkCimx5AtLqizjGUuibTy5iCpx/fuqMozqBnuYraCCmD9N88xLmXlarvzLz7/w6eER\nKYNKrbPabb9hrMBrgVek5DfQzauCcX2P0RkB/V3WrnwqhWmS6bAYQ7FWA5ENvlZMUavdUul2LXff\nfeAf/pd/JE1X3t0did5KwVT0pmbJZa21ELx8LnbNpvUB6zzPLydeXs7EGLleLqTbPb1v8SXirBf0\nucqEYAGvfHsAdI+zqinFmM+DleefamWaC3lZsEAITjJOuwN3H7/HhIbzywuX84VqA8ssjqqr0jwV\n2O/2zPPCp0+fObSOu+OBrusksLvC6XTmv/z3/7qJ8qx5PTidc9zf3hFDpKREEyKHmwP39/fYtlF1\nJxLcnQv4gKFgjcBSFt7Yavz944+BVirifVELHz985HgQAxmRJXv13K0bTc2YWTwHQmTX7/jp5194\nenwk58Kd+mVbCyWJi9g8T3hnxKUsSVSUjwHnAl2bFYaRD3ItAFFX62I833N3u+fudsdx12FzltEx\neD68/8Dt8Y7L3Qe8WfBmxNgz1+efGc4v1LkQ/EIwF8r8DeyOVCLL6Iix0jQV2xgIi/g1Z1lgosXm\nf/9Pt/z4/cjXL898/fKZlEXIcn97j0YbYZwR2t14JeVKjA1tJwGvxiAe4V3H9Trw8nLidDpxvRae\nnp759MnhvVKnlJfedy03hx19J53BSoXq+x4XIv1lYBz01ziqm5t2R6XIDQ74GNgd9tzdS0rQXn2V\nV2rbfr9biRnUyuZMtywT8zQxKOyyJgWlnOm6jmmaeHx65OvDA85ajocDdze3BO9VCTez2+84HG5o\nupbYtqSSiSFsMEIMAbsyNBRnl0PlNXyiaJFYtQtZYT6vxlxOWQPVyE4ihkAIypnXopiSdOO7rsf6\nSJcqBU9FlLNvD571Gn8Lb2CgWsOSkrBCcqEah7GvvHQ1CdhsFn4rAHpbzN9axa7fu35t3U3J1Ftf\nrQh0byEY+hthFmp2Vu0WVmeB2LT86buP/N//5/+Bo7DrIrfHnYBjJlCN7jJqJqfX9Bx5lqIEbVsx\n3jqdrwCiZlYI1GA0jjSBNnelFDHNKsI28QSMr+qmWqFIMacailUHemdZhANFdYZkKqHvuQ+R/fFe\nLC8WpZ9erpzPcu9czidKWri7veFPH+/48U/veP+nd9zue9oY1NQqc3+7x/37f8IHSdMyVthnBoMP\nkb7tRNavuhhjDOfLiWG6EoKgAQDOBUoWr6Q0W2aFH3Mpmk/7948/pJB/+/aNNkbe3f3Ix4/vscbp\nEs1sI6hYVRqcBRMtyzxRi37oXcecCo+Pjxhj2KckN3XO4utbZVxOTjbY4qVh1KdcixAOqnhsWN2m\nW2vUKN5TikjprZELylIxXpZypakE12BqwZqEcxMh7vHNV8rTV2qq5PnE9XliuXZY12J8R9t7coK8\niEeF9cKVj21H0/bEJlCrwZueJuy4v73l6fTE0/MTl/OZUmeC9+zaHc6Kn/J1mDQpqYiMX/061nzA\n1cthmhbGJXHObxgDVmx2r13DvMzc390QgyenxOPTk1APK8xzolJoWvFdTlmKbMkZZyAGty1N393f\nc3+8kxvQGOZxQmxKtePULfzqN5GLdMOlZHW5lLXZkiS6bU1KKaXQqMjJq0py9aOQMIKe3X6HD0FY\nSNpRra81xiidc904O2qhKzdHVn6zU7jGW7sVbazBZFh3NasdQFB+slinyoJuXkRoZrBE32C9oxq3\nLY4ltFeeQamV8/lMSkkmmibK99fKMI2MaWKZLiwpi3mXPIWtj4Zfc5NfD4XXTnvtzN9+768YiFUx\n8zdnwW9/9q8ER/rzrR4mzojadr9r+e7DHZaq0KgnV0iIBYcsu1+PovVvWg807y1397e8nE6iaFS2\nh3WeMk3UMgu11L4emgb1IEIPnCLglrFe6biKd8s7Ia8nyDFojNEluyP4SGhaapbPqGSBlYZhZCB3\nwvcAACAASURBVBoHhuuFNI/0TeBm32Jjz2WuhEVqQrCWtut55x337+424ZvYBUhot9NF/xphOC2L\n0IRzwnsr2a8az7hZME9ZGxvJ3JVdwL8hjPz56ZH/9B//A//xP/x7rHO8nC+cz1c8UlAl13HSRYHg\nSOMwMI2inuz7npQrDw8/UUtlGkf2ux3OCDfdRI8pBassgVrrRqUaxklGJsQLeY0Ok02xdD3TmDiZ\nK45K5zy3+x1NbKiuAllsKruGkgUnDdHQ7e9od+9INsLzE9P1xOX6SK0G63tCdyTllmU2jK6wzCOh\nTYQ2sIuRrtsr9HOGYrnZ7/nxhx/49vjI//jL/+Dh4YHr9SJskzaw3wln3ZgXnl/OjONI27QafZYY\nhkH8rYGua9WrWWAEqqhKnZFOS6icV3Z9B1U8Ub49PHC5DtJRGKP+yR37die81ySFvPGyy7i7v+P9\n+3ccjzcEJ6PpOE5M15GkXZ7VQi4LTFnslCI343rBWytdX1EO96KGUnd3d9zf3wPynh92e4U2pKi3\nbStWv9ZitYhfLxescxvbyaJMjCy2xPOyMGveadLn4px06tZYzKpoKcKKkCVY3eT5tVTmNDNNE8Mw\nKL9dDr/Q9BjX4mygWkdFFljGWowKPHLKfPnyhcvlInYT97e0vqPUwjiNzNcT59MTKWfxuNapcXO+\nfENl26Tyb2id8PdFXL+6fX11BLQr1U3+WD6n7eRdpwf1QUGmAmvAGwiuEryhaRw1JSUzVIE6kK7Y\nOjWQsiJ8eyXvKP3Ywt3dkYfHB5YkB/g8LczTwnA941mItlFvffQ6qFhUi1EyNVuoHlPDVswNdlss\nGO3K6/ZeyHFUq6FgVFQnh4rzkb6XBKyaE2mZWKaBtIycp4Xx4cK4wN0BDn1DbCQnuA0Bq4ytlBZt\nDuUdO1+vjOPEdRi4XC+akFTp2oiz0LfS/Jgq1/40ivZhDSNx3r1uxH/z+EMK+X/+z/8P/+7P/8A/\n/PA9l+tIyl+4XCTWjArX84V//ud/pus7bm/lBk5ZudTGiiHTMtN1LZfhSjVwuLlhGkeulzNPj1ms\nTTWO6nwdmTQ9XKCHV15zCGIZm5JaXGo6j0GgF+8D3okFayYLhdZWvLGYarGoT4ZpcDcNze7IdHrm\n+dvPfPnpvzLOJ3J5oY4TKTnG6GliYBpH2r1jZ244XwdKjbRNIYYW76XgfvnyFRc8//RP/4537+75\n61//wpfPn7lcrrJAaVpiEHe8JjeafiP4Y61s3az3gV2/I/jINC54F4gx0rUN1iXthjPLXOjahvcf\nbvEx8vDwjcenZ8XAPc4a2iZwPN5ws9+90vii+JO44LVyFHzw7KylVc9lufUVhtHRuJSstrbDK2el\nVhyW3nu6vtuWYSJQKsqIkQSdoAKLGOXAmtUWd15mxmliXmZa2wqnfEksOkVsi109pJy1OBPAxo36\nZazFBY8NSqnUJeyKVUoBnDffmnlZWNZCDlgnvHRnA9nAMguNbhonUI5OzpWffvqJT58+8eOPPxDb\nSNu18ppjowefZXdOtN2LNDmaRbvmsr7NIYW3fPH1/y2vnfornm7feOmIIKVshVpi9nSZbFRVaNbc\ngKq5niJQic7RhUjjnSwyNWA850yqhbKRz5VlY1bIZ32+VQVnlt1uRwyR63Xgn//5n3l4eODd/T1t\n6yn3e7zZEXedwGAYmtDigxXbW1Ze90JOC9Y2GCtBHZSq1g0Gg3+FqX4z3VTt9nNexE65AEmbigSV\nKHBHzuzbnrEEHq+Gccn0raNtoPFFYCBrsCbgUgZniFGajRBlYpyWmUKlaxoON0cOu53Yc4SIQZLO\nJGmpaOpW96uD+7ePP6SQz9PAl0+fmK9XcrWch4VSxWOhWlU7kaWwm9VgJ0lSvBGpr/eB/X4vC5qc\n+fbtm/QOOVGWhVLE0tY6pynuWR3ENCPPiFmUsxXvK33XkJIIhyqVtgnC6EDG/FoyqSRCFGqk80K3\nc9aJuMkKHhhsS7At1kgQwun8mcvlieF6IU8TJRnK4pl9prpbQg/jlICRnAqxbSV3UMNzjTrx9X3P\n+3cfCM6TllmKYsk00YMRIdE4zqCdLZhNNrx1abWqf7Pu+E2lbSVkOScxMXo5nbbQ57vbO25vjjgn\nKLCMwF6Mvfa7LWXeK00vlUJOCyUl2bg7R2ibbSFXEZ/xRSlWKYnM/jpIlJdAF0ZZQl4Nw8zm4cIb\nlkjUv3cN1Qahiolx0utrdSoQCiFQrKTEF1vIVbjQtjiC5lKuP9uqcx5eOnJjjXDTYcvKLNsUofzo\nUqje6/grnTHGqPT71Wp1PdSsZsAJTCPMBStxTVhjSFlyWl8uI6UanBe73VyLeDyvIMVWjHURuMIG\n9bVz++3N/9umbvvzlZ1SK8Uo/TJlKpmM4ObY14zLlbnTKJa9PpGSJZklFajOYuL6dJXFYlZoaTVa\nc2Sbtz/3zhLbhnlaeH56xt7tqaXDUSDPzMPIkguxXQihwasdQkGftxEVKiSoZjuEwcnfXcsGz6yh\n5/4N7JcqEpyNiIqstdjgAaH3+uKxLoq9x5x4XC4c9i37viHGgjdGKI/REa0hVkNC/FtCbPnw4SOH\nmyOVQvBeGFExivp5Fd95h/MS/2edkRjC3/ks18cfUsj/+3/7r/yLYrqH4zv2x3eEZseyVLyTE+h4\neyPOfU0DBk2WFoJ8CMJA8Sr7Pp1PfP7ymb7rJUG7iKNgqqP8t5qgs2Jy68kro2jFOzjsG0o1zPPC\nnBaiEyOcUhPTXJlqJaeFrjY4G7fAV4fc79UZ4bFiwDW0+3eSMvJyg/32N6b5b6TlqiKICZcdYUqk\nBX1dk0wFpUhEW4zEriOnJKZY08Su79n1wmB5en7gfD4RVly/FK6XhXFewFisD5skWoyE1m5WaGBL\nmqhjomn30tk3jpenM49PzyzLyN3tDR/ev+PDu3tCsNQqEvlcxNwoOIlx824tomIfKp7cRTi6zko4\n8iKd8OrvsiwzwySL03ESvxRWzq3zahD29zCBeLVLipHAYVb9VATvfoWHBb/1bzrpGDzFWZIKiGwp\nZIRGZ7S79M6pUtRSjRxMqWRKKlQnPt1V1aIg6tSmaTa8PoawLYKLCcr0UEW9HjjeB4WZxIv6/fsP\nxNjw4cM72kbZTkYWo6fLwNcHESKtfHuj4zh6PctDi+P2tdVl87VTfwvBrCyZV3hGf4xcHMKMMfKc\njcJI69eqEahECTOy7FRvb++c4P9i2SIv3IpEv76ePYrbZ9YwCecdNhvSIl7hbdvw/Y//QFoyNSeC\nRqjF4KFm8jKzzAuUjN+JZ753QQ4ba0CvG7nuDcZIFy7vyEqzhTXOEGPFKkC7dOsMtqK2IQnjI8Z6\nKuAbqxOswHPjtPDycmLOhakYYhOEFeMMbfT0jSc4MMNCzTPBOz5++O51yZ6SforCoBOvFtk7+NAK\nW8+AW1GV30dW/phC/re//Q1voWtaKo6m2xObjqR+4aVA8IIvGmVqlCKUrGmaCWGRHEjvqLUQg2e/\n65gmybg73tzSNS05ixhIcCbhX3eteGVkJDR1v+vYdQ2lJJ5fXng+vZBSYt/1mJsb2uhxXScimL4j\neCs+5Tqy5SoKRBnN5UYQfHgkLTPZ7Ij99+zfNVxPX5nHr+T0iKsTNY8s00AhkAvQAcluLoO1FIIX\namD0YaMedfsD3a5lGC48Pz0xT7NQEfsd12Hkcp246ggv2/Eq9C0rkvY1y7AUYbJM08ThsKftAqkE\n5uXK6eUFcmIZBvZ74fPHIH9H20R88OJFoovMVdQgnGA1qbJWR95MzouYXM0T13HYLFmdd9wdjjSt\nBD2/sjpElAOvy7Z1cbkuajECJUzjuMEdtVYuF7EADbqUzDlzuVzEmzxrurrml1o5rTFVJq+cZJGb\nUmKYBlk6jpMs2aM4NTojy9Ou67aDJcaoDB7xHZmTZcqOuazB1i0lZ4ZBdjTS/Bl++OEHvvvuO0Kw\n2zLLZAkXCEpvRN0vQwxM84xRc7WsEYjrY2WpvC46fz2K/2tUxNeH7in0H3UvU8RL318j9s8FGQxq\nAR8j3W7Hzc0NRrvxmiupwpgMw4J2wEanM5Wmp8Sa1wmFkkUd7Z3ju4/f0TWNOEDmkb4Xw7vGG5qm\nV5aR7CMqiz5vhcNLxqhoyeg1SBGb4JWC660j1SqOqkaUyBvbpySuwwsvLydKNRxu7jnc3FEwmFIo\nBkywRG/wrlLoCG2kOsdSBZOfE1ymxOlaoWbSODIPz0SXuT20OC/PKyuNmlrJy8L1eqGUSoiBw/6W\nrm116hUdzNo4/fbxhxTypm25u9nz7u6W3c0tbSv2lJK8LSwCYwIVRymCbLVtp934KAEBOVFUNRaj\nx/ueWi9A0QzGKCedXZkGbsOFjbESOqDdrqjSBIagVrHhVNl21zV0XUMbIl6J/tbKtruUIlmPBWq2\norqqqkIzgo8SHO3OYXxL398wD3vma0OaxURpvJ4hWeHr1kqYlw2WMMZgotCqUlo2vFhYG8LeaGLk\ncr5wvV4lQu2SmKcrw2UQ74j1RveOEFp2O4lqy7lo1NoCGJYl0cTA8Xjg5tDjnaVTd8IQHEHhjE6j\nq1hvRi16a1wZBoGbtJCbuib16EBexcBXunrB9A/7vfi8qOx9XmZdQGa88sx/mz+Zs3SDVIk0K9rl\nxhDIbQuwsZWmaWJZFmGylKLxbWohrJ1RSYmcFl38Obq+Y3XczGnB4CXSbJqUHWSZpglAE2EkZtBY\nEWgVCvO6ZDOrnYK6OPJKwRN8f+X8Zw2lEMXi6/OUQt62LcN1ZEEyVv8eMnm7rYSVZfN74/hbiiKw\nvb+lrkk9clCaIF42dc7bgpc3GcBCO22ITaNaDyPdrwOnDdOY1nALtt3NNMpewZgsWgSd8D68f8/N\nzZF3725pQ0NOM5eLuJ760NA0whWX6yBtAjNjnFBEFT6VCaIo2aHoLmEVkMnC31L1ayJQWu0gRcm9\n4FlYSsXWCVsnDFYmvyqfeamAN+z7BuNE7Vv1vV0nk7HKoZaTHGqXMXEdT0iQvMVHTxMlXGOeCsNV\n/F0qAw8vEzForkD0dK3YU//e4w8p5Pd39/zjD3/ixx8+YnzgMixcziOlLCQVDmA8tcoiA4z4G6uc\nfhgG8S/2VgMILMY48f+dF8bxrPi3ly21tWoqJSeaD55QK08vkuc5z2I2H0LgeHOg7TqO+z3H/Z79\nrqONUsSrco1rFXHSOnrnVPCl6Bgka7voPdV5ci2E2NLtjtj6njQdGU47Xp4emGfHMg7kJAnvJWd5\nfk4SgWLTYEohu4WUZtqmxcdGVGuIT/Pt8U7Tg0SsYhAIaJrGTTkJbDTEtpPM0Vor0xgVehGzMeuM\nqj/3tE0geoETsk4HztqNmz2nZTOlWo2ltgQedbHzVi7QGOMWBO2slTFcMfA1yGFlQ3hnqVWhFedW\naJVVwViL4Ntr9ypGSGy0wKjmW00TKbUyTTPjMIjVrh42PgTpNjHk+noQrRF6bdfxXROwTu18gyxU\n304bq8R6SemVUql2u7KkrKz72+2xTu9vKIFFC7Lgn2+/9vrvIAdf33W8+BNMCpXxWzaKPn7FOmH7\nvt96rqzfbIxw5eUQfaswreA9xhlKEj3D+qQUYaFWhCJYKufTWaP3rMIshpQFg14tBWqtrw6Wy4IP\nAjEF4+n7nu+//w6M5XjYY7HME4zWYa0EOEggiHihyz0d9Xk5YUApm0b8WAoYYWtJPJ96ACHwl1V8\nXCAWu11nplQaXyi9Z0mV6CuWhYrDVpHu27ou5gt9EzexFpTtcy52fa/BhYAvHVOtPE9XyiKB223v\n6KrsTFKJZGtIZmSeR56vVwwZ7wy7JrLvO3ptUn77+GM6cr96MRhwsCwTp8uJ6zDjfMS6IKZRby78\nJS2Mw5Xr+YWbw4G+k/DiT58+cT6fhTZExXjLUgvDeMK5VbDhqMWQFpitBVNx3tFEL0o179gf9nSN\nRJnF6GmD5II2aqVKqXrxJenqjIg2UlpINRNDlCVdCPIBK3fZOofRBVrNmdI13Oz23BxeeHm58vwy\ncplHlqFQ84JVLM4Yq2OVWgc4AzkL5cvvSVmw5svLmbZteH//jvvbWw77A137iWn+FxEPWHHSa9qG\nGBuFGa6vha8J2t1DWmaCNTTWEK1QywyCixoNhHbWyuJ5Xjas2GCIPtCGCEasbQGNLFMDJCcQkQ9i\nz9k5r5S/wuV6ZVTmStcKhdKHQNAl6rLIUjRoRFbQZahhNSsqW2GbV8GE87Jwy5nrIMKoFTMenp/E\ndlSLby6ZZU5M40TOlesok4p3FqrsGWIjgo7Q7bcEIe/9dsDkkpmmGeuF9iYGSoK1Cpa8esPIknl9\niGc56ify+rVFqZHzMgmDoRb6rsV7WZKWujYwa2BF3V7fWohXVs7vPTZREGZrPlY2jVHv1CVXiofq\nPbZtqHMWJkddVaiVVDLTMvP5y2fm6UwMgb7r6LuOORdc2BH7O4yVqEJrpZmY5oFpEvM07yw1Z7yb\naRuxZvZOsGuXBa6zGtSRS9VFpqRl9U3EB1F+rkyovCxyX5aFUpc3sNtbkwH1igdVb6ZNH4EB7yv7\nfQNGFpvWaUHWnNplvsok4CQjwFZIJVNLFo8XPYmNsWA9xnt86Om6hpQOpGnicr3w8HgixJHd/sBh\nfyR2nq4Ucp65jCdSGoAF6x02Nrjwb6gjb7049i1LxuOYpoWzps60nfBRhZYkEIq1hrb13B5veXdz\nw93tkbZtKFVSf4brsI31uWTGeeaXT5+w1nB/d8Px5l64xFLSSUnizpK15FLFFc1YGu9pnKMuSYr2\nYJg1A7JWEY8s6htctRubl5lpHokx0vc9h8MBg/gJu+AxWKyAgsLoyJVqWtreY21PjCP7OXGdFsZJ\nkkhSkrM9LaN05j7Qt0JHc86IL4u1eBd1fFwN+B1/+vgd+/2Rm9t7Hp+exb5WO9FaROYv1LfENM3E\n6NnvO25v9uy7jr6JROfEBEsLhfUCeXj1FIkaDrGaYZVat2BZY8RjPGtq/IqhAxu+XaoIXr59e1Cs\nXBSPbYzM/Y6+7+n6jq7tRIJdq0xFXiEML5bHtVbIctIvSby0V3ZIVS56KeJYeDwehVs+XBmeRjED\nE9qFeraIj32Iq5eNUd6z10zSSNe0qiK2G6S0ZMkfneaFaVwoRTrFptsT2gM+9ttS0Rg2XHst4LKf\nFCsF86tMSz0ArJihde2Ru9ujKAGHK4PuQNb2T7r8VwMq+Fe6dd5051UVnEjIhlV+d3UCD6WSmbMl\nW4OPQe0eigqaBL5YamZeJi6XM3kZaZvIOI6SJ5sL/QFu+1vRU64TR1mtW/PGEipFFpbilLkeeChr\ny0v3XJFCrjCasRLC0DQtEsUoO5A17DggPj8rk0kmyPKr61LPWzkMLRj1bJKibbEOOTjU61zutELO\nI3KYyDHt9PnUUpmXkXG4cL6cBfKxYkEgzCNRmMcmbtPamr6VapEp2AfIHpcL1QWsLbRtJIb1QPv7\nxx9SyGNoqEWEN6V6xklimy7XEUzQjqaQ08xcCynNBH8rnWwvmZbWGoZ55LA/0Le9/mRZvo3jyMOX\nLwDsmoYPd0f6VsQuZZk5n07Ml6SRbxVfHU6ZDOTMPA7ktIAx5KbZgntRWpcOwnIhpMwyi8+1eIYI\nDxhjsEsiAMUWKLCkSS0HLE1o6Q8NXb9nXjLfnp6Zpgdyeu36S14IzpFixFlJ/5GOZqZpxLVQujHZ\noltj6Xc7Dsc77t995POXz3z9+k2UoZcz4ySLNhc8y5y4XF6YJod3FQ47+q5ltxZyxXSNtdigDBG3\nKmHtptxcC1p+Ay2VKIZVuYoX9G95zvM8M48j3x4eeHx6IOfM7fGI0wJZStb3VZJ61i7O6G7CqHpV\nFm5yUy7LwqRCoFUxCuCM2B7vup5hGET6ropBrBE6mRcITg5gwbqDF7qZLB09bRdoY0PjhU65Rs+N\n88h1HDlfrjw/n5kGYQ29e/+Rdx8tx9izrh/l9b+q/dZiLYdPwWoO5uqvb1ij0zz73Z7b4y0///Iz\nj09PDIrPy3eZrdtcH/9KDd8er5RDIRdI8VJNBJCpzNqsFGuwTSB5h6uwlEpGOefe4FRebnTfME/S\nOCyl4ruD7iL0eWoRzzmp2MyCUjSd8xoOkaEWqhU4xr5h2pQV1tB9ixzqgZyq7NOMHMzexi3PYN07\nyEG0bL9k4V8pVqEXfT9SWd0WK64KjbGW9bCVvY8hgdHszmK2/QcWpjQyXl44Pz6wamBLrTRtT9vv\naLs9XbejbyUd6zJc9HsKhayHgsX6Bo/I/WPfYK35t6XsDM2eVAPnoRBy4jrMTOPMNC0YM5Bz1axG\n2WJfLolxuPD40LJrW7yRCzcpla3k9Eov1APg8nIG4Kf0F56+fpNFGgZnKjVlYSekgoueYMAVg9RK\nWbzE2MuioWl4fn7mfD4zjhPeR5q2Y7fr2e/3hBBIZXn1IClSGFYsULBeFT1Yh/erXFlNdbxnYUFk\nuYUQHLVm6izYe9WUGFBBlI8ioLFukxeLQ5rQsM7nC7me8b7hZrejC553xz1Pj0+8nE5chiuhiZTD\nnuNxTy6ZXdtx6HcSq+aDuLIFwbStwg+yxy2va7Q3WDHGUNXGE6TRWIt+qXVLrV8fK8xzf/+CdXIB\nv3v3juPhhkO/I8ZAmhdOLy98+vSJJSWaruXdhw8cj7d0fc+45E1iP8+zJNukV2k+iF9HqomEoYlR\nlpO18vHDB26OR5pOPFmgsiwTl8tJb36P9434phhLiGLS1cRIcGJhIP7RskT3Xtzt2qZhHGaulzPV\nOdrdkZvjO7CvVVUsdl+7Qd52z1UKijWOsqbOaHcevOX2pue79/d8/vSFbw9PvIlQ1sXsW+aKPP5n\nrJW337Pms0IlK897IZMylGQxwVP0Mx2XSjDQxEDb7/jHP/8jP/74HVkNx1YjNFM1dm/7R56fQIVe\nD+6kz209WF4Pt7oeypo6ZUBN6qSAlqLJP+U1iFoCLF5ff9EwCUMgeEMIjf53wlDKumBOueDdgreW\n5JyAL4Ir6mS3qJWEvI9dEGqmMHrEP79Wg6kWykIMlvv7IzlVhmHg6fkZbyvZVWYylkTXH+i7vbDv\njGD4wq3PWO/Z+06xd8OcK/OUJSXqdx5/SCGfauV6nUgnCZM9nU9crwPjOLPMmcGPm/MhekIPw5WX\nFy8XRikaPJDINW0XpU7KG65pgCUlTpezGtBLITe66PDOYyfHOI8ApLyn71uMEyFJNUYc+GKk63qm\nado+eKfLO+ucOL05Sd5Zx24QHu6yzNRFRtF14Yq1LKXgtJt+fnnh6eWZ6zCw33X0fUvb+C11aJ5H\npbs6qrGkXDmfB7GM7eT7Q3CUvJCK2I1aIzzbWrKm1h/ZdS2ny4Wnk+R3Ahx2stw8HA5EZ4ne4Z2a\nVi1CB5XX9spykNex+klojJli4etnsZr/W+cE37Myfs7LwnW48vxyogL3797JzmMneZ7BiqLWGEOb\nOt5/+CgCsOjxseE6DpwuIm+2mM0zfO2+YoxywztZfALClFHGz36/V2aFRjwoW6hkoBhVJsqklRYJ\n9BjHyjyNm/hpxXqtKn/3O0cTW9q2p+93XIcZ6wTPX5YF4yqFvHlPr46HKETxamoFkqajmY/azeUs\niUVpnul3HfvDTgy/Vh50latfxDZrsYb1lJAv/b268xWa0YNAf5+UeSUOO/JdqVRwlmQNU0kEa+j6\nlo8/fuTjdx/4+PEDeVmYBlHUppyZZqXWbacVAjVap8ZSXp05VXinIdpQRBHprU4M6vlo1L3TrIlG\na5FdO3t9sdpQyCFYlNFkMSreMwoBWmMJCNOoVo1XVCbb8/ML5/NZUqg0rERovJKMVHWhXU1Wef+a\nm2toosW7DuioFcaxI0ZP1/eE2GDsauKXyflKLWJZIfed7AAsciBZpA6VCsUa6puG6O3jDynkL9cr\n07QwDDPjPJHSRFoWlrkwlZl1ky5+12JOzypowahhfEYkHYKlrUG7Kz3QqM8zs57KFZXpFpyRjrhr\nhc8ZykKIHucNxkFoIqR1CZVZbVabpmHJZTv1U8nUtIhJvtK3JNlDgnuNsYzjQNbsTaNxad5LsVrT\nVZ6eXyQIYpnBtHRdS/A90zjx9PLC5XplSTNMAylXxmnBVMEOu67j7u6Wfie8+Y1WV2ZqWjQrMrPr\npVAuaaE+i0GVj9JFtrEhBhHPoNSpZZLxs+SiY7Nwt6ULf0sDVKxYO+L1EFu0c2jaVnImtV08n048\nPj/x+PTEje47Pn74+FpkVK4dTGRnLP3+oB7piesgEMYwXKlV4uRkORo2T3BrLdELr1vsClD7gRna\nVvi6ufByOnE+n7nO0/Y6Skp0bVROd1H0efW9KCxmVsxa4Je4qnyNl0QaF2hiy/6QSdkQmygsHvWI\nf8t1B3SKfFvIpXd0FpXHW0oxpCr2EcM0YYLDdQ02Bkjqua33wLq4fPUYXztds2H0r127Fnuzdqwb\n2i5FiUpWSGSDf5wnG5hrZbIGv+/4/h9+4PbuyM1+Lxmwve6NponrMGJ1+c+bPYGkSHmFUpQiW+Fy\nHRiHM1A4GEPTWoVj1gPJbFOiqagTokAeTkOeNy7OtifRjt1YiZr71XSkVgxOU60UKjQYvn79xpev\n35hLUdpySxscjRIanBPVtUEEOyv1uFRoo+DiIkKy9H2m61pilASuUsE4iSKc00jJBmsbvPHb8Gb0\nCLUGqpVQnWIt5fch8j+mkP/06WdyqiILz2qapBjUWnhkKy8LIKl3OmMaMDVrUsZKa5GdF7VoLqDB\n6A1EfQ1IrZp5KJQ3iymZfYjs9j27vsN7oTCleSYvC845dn3HUiQCbr/fM86z2iUKkyblrNFjqHfI\nzDhemWbhLo+DWLN6H5imeRODdF3Hfr+n6zumecFYEYDkXPDOc3d7x67reHx64tPXLzyfXpjnYYMQ\nxBPAcj6dSTlxm4/s9jtmtQkNQXIwr5cLnz592ixfp3kCZ7m7u2V/c8NwOTNcL1BEVi+ysCvshgAA\nIABJREFUeChqfrTictZUxWLrVqxrrRtWvBbx9c8k+Flsh1faWSlFFmGXK945jocdh12PLVk9SsRe\n1umEg/VM88Lz+ZnHpweGywBGlr37/Z7Dfi8CHWtlp1CKcG6blrYR++JahGee9bCZ1czr4fGJh6cn\nHp6fGKcJYwx91/Hdh/d0fdRQ3nabPFaRUEp57XMpsH2my5KkGckixcZGmu5A0zZULEt67X5RGKSo\nYlMIIK+dpbdW2C/WSgoOIq6ZrOGpZi6u4nY96XylJKXDrXDKrzDU1w79Vfn5Wsj1rpKFr3kFQEop\nJFspVq1gV9jHQI2e2niWnKWQ//inbRFvvExfsY30u55+nFiyU/fBtZ7LcnA10JJIQHkfH56e+Pz5\nZ5Zl5s9//jMf3ksqlR5FMqHoQSTwyrpTkEbpFat6ZfAUXXBWW7HFsnLJVxuH9X2HoH5Csh/KKfP4\n+Mx/+ctfyBX6tue477g7Hrm9PXKzP2hxDlhngIKxKhZSjFvESFYtPTQukRXuyVRT8c7obqJiaiZo\nWlapGqdn3hzUBoz9N4SRD5ezFm35BWx1el1UrYqvXBLLPArnso3c3OwxWJGuDxPzopQoI9t97x2u\nGKhiSdr4gFe8Vy5kPYW93fzPu6bh9njDfr/Hh0BaFnVfmxiHKyEEdrsdd3f3DNPEnBYt+kLeP5+l\nmM6zyM3VZuPNL1kCioOd1e5kXcKsuYG32u0J7XDXdbR6+vf7HafzmW8Pjzw/n5nnEbHhlUzPagrz\nMtNfr1jraFp5PaGJ7J1YqE7DIApFL6HOTdNye7wlWMvT4zc+/+UXFC7GGLFx7duG/V4j4tqWGP2W\nTlRrVVMuKdxrwgnErcNZ7V5XrLyUwt3xli7K4qbrGjoVPBhjSbq5vzw/byHUPojx0c3hyO3NnaaL\nC2zhFa4Rr3qnSy4RIqVl5nKedbGVN778mlLe73qMs3T7HddhoNRM2zTs9v0WyGzN6okihcQ5j7We\nYRwVPkiUlJhHcT+8nM9M80K1lpvb93S7G6mByPX51gt8w3XVwGtJi0xsXplCvCYQQeWyJMZvD3y6\nnDkbcMc9aV6oqUioxRtcXIrm2yL+Cou9ZbTU9ZslsQEo4m+lyU/FiFcM1lKdkTBwbzFR3vt4PNDt\n95Krebm8Fq8qTVNOaiC7vgcrAF7XGmq21KRaC5frwLeHJ8Zx4P7+HbfHO1q9VtbsyxAiToZ1qRcp\nsdgVYtO/ZS3gOv2skXqrrbFZP1OFKVZv8E1B7Bx3t3f88P2P/PT5gYfHFy7nJx6fXvjp84NcJ13L\n7c2B2+OBw0GCa2KUwHHvDdYUjKq+VxkSdRUMyTMVOBBylsOopIlarLznyES2fUjFiI3v79fxP6aQ\np2UUbLJAzlUoOuuFpcQmMbSvrDabMQqm1bYN3su41TYt81LUpMjRarBCymIf38ZA37U0TVDMvWJt\n0HGx4i3su8DxsON4c0O/2+G9Z55nTdGpnC8zbdvS9z03NwfCFLlOk8rT1TfkemFZZnHAW2aaRoqN\nLMEajCa829XvQbFRH0TgsOt3qmz0WGvwxhKsmAn1XU/bdRwON1grLo2Pj89QE7Ua5mWmnitzSpzV\nuvZw2LPb9TRtJDSRm+MtZyOiiphbprQQfEPbSjc7TSNfv37h5XxhuIpyttfDzXlJTFrVlcJUke52\nGEbFzJ0WObvx00E+L4EtJbhX7BNu/n/m3qxHkiTL0vtk0d3MfAuPzKysZWrpwYDAoBtDgP8fBAiQ\nzwOQmKV7smvLyIj0zczUVFVWPlxRNa/qfM+2gqMqKsI3NVWRK/ee8x1udhJ5FVPAGC2wIJPJoWBL\nl5l5lnBuU4lapBp6Gltvs4kYxGXpnLTi1sxDr5QYQkLgeDpLz1VR7O6rCqWmaVsONwcSMLtlk0DK\nIlFs5vlKOoxpbffpQlgsrae1reQ93sl/6+I9kErtOlhcWwtSxAjgal4WYc7MM/vDYfMhwFqFShbl\n6Dynpwufp5mL0ZjbHWqcwEdy9Ftr5P0w+qde/2YxXz8RyuzomoW6DeCMAMSSUdKntRbVNuihh7rG\nhYhJc2m9lRDtVNpFSvM32sPye4kK5XpNUCVFaglMs8OHNVk+bzAz4fDUmFXUEEtCkGeblbxPi1r/\n9/ohC7kphdbVILXNtMoKq5Tm5vaWX0X466cfmafA56cXTlHkpmRhoXy4u+Hx4ZaHuxu6rqWphSfe\ntaKj7/oebUTltrV3WX9f2SRlXpNL6HiUE0NR8qxSUpkDqPeX8N+8fpaFXKdALkGuiSTDs6raelQp\nKmKSI37bNuyGXeGk1DR1S981HA4HPtw/UNXCoV6ZF6fziU+fvmfXtez7jqFrickVjkagaddBEVit\naKymKfK69Rje9z1933Nze8uyzKJr7rpNi6pQaKuxGEiJqdJUphZ3qK1X7zg5J7p+V25uRd/3aCPJ\n4PMyyWZSgjR8WFjcZTtF5KoBC8lFYpYp9v3tHTkr3t5OzPOFnBPGVmTixtUGCMEzDMMmCQxOqr1+\n2GOM4XQZsbYhJcXhcMd+v+fj11/x3Xf/yp//9Bd+/PJFqtuqoq5b+t1OWgQ58/b2xjiOW6xc3/fs\ndgPW1htQH9jwBevCvqoiKlvLw6IVRldbtUUIpJgJMdIPA7e3d7LRKCNDtGViulxYYUjzPLEs87aY\nS1tCZiR1CTpeZXB103B/L9iFpm2xBSiWsqTLKHNb+tGJZV4Ii7TW1oc/hIJyzZmQBQAmlMYKVVUM\nXYe6vUV9I8RK2zS03Y5sxOtQTsbXxTWv6AQtgcOfP3M8HvnDH/6BvhPdecqZWNQUs4HX6Pm0nBlJ\nxKZGW4s5z3J/LFclw/vK8u/VK3+/uEvPWZE2AQBYnbF6XWQ0i9Jko8lW2izSI084rViUYk6ZoDRJ\nKZHw6pUrX4aRSm05o/I9ufa5YRunKiXzlL7v5cTUdRt3R5uVBigUTE0ugdviGVgHlOupe5V4vn+t\ni/u6aL/3Aryv1HW575u24eHhjn/4/W+5XCZeTydigEBBA6TE7DynUZ7DEEKBfMHNYc/XX3/kD7//\nDZ2t0SrjixBgLeLQRk5gpeo2xbdAuSax+FZW5tCG1f33VJEPQy8DMzQpStVlrMCsVlJfypKXt7ZD\nTHEWVpU457yD83mhbuUizYtUZjF4hqHjw/0NXVORY+RynEUWFSI5Zobdnt1uR1NbtBJHZQyx9Kmr\nbXBpK7sNJOdpkkqsMEBWYFSMgbZtC1vEXB1mWcjNOSVO05lxurDb7WmbRoaHrLwRs50WVOEYA6UN\ncL3ZVBnQvb68kHOUTEBdlYGqIzhPVTegNMs08/Tjk7Rz6pp5vEgIRN1w2B8YBsH/nk4nYnC0nSCB\nf/f7P/Dw4SOvzy8Etwhrum1k0DaOTJeRsei667oqtm69LXLLMpOScEE21yCQoyyY2hjmomgARd1Y\nqiKjtFpT5YwNfkP35iwBxMEtOCd9bGMNxMRlmvjh82eeX56IKdK1Lfvdjrubm5Iypelshy35nkMv\nx1+tFG6Zcc6LhryqyNHgfOB8vvDy9Mp0mSAm+q4pWa/miqAtape1L55SJMeVv2HE8VkLO2XtCOf3\n0rpNtSKL1zRNHI9HLpdJqvyUBcyUBFUxO8+rCjwTOKqELwoUqwz2sIM5kCZH9qFQrOR76VXFUV5/\nbxRSXM1AqihetMqSdmOkEkdpYiFGKq03rEEui+fL8ch//+5fiY93fHtz4KHvaUrrLaVMSJklitNa\nr01e1nbjOtzOoKSgefzwATIsy8zd/T22qkSxVNWlUKjk53jHonmvznmvxrluWgpRxbM9kyssZqWD\nLsVfsQ5Vq8LXV0pxexh4eDhw99ST3s6QFFmLPHfoWomoVFroh7NjXgKLjzRdR9aG/eFA19S4xZV5\nksM5jy/h4Anxprzvq4NGZ6nUVSpAsRy2ltRPvX6WhfzDhwfWo1XwK8RIcg1TmUKnLQm9HEm0MEjk\nzVM4n3g7jlTzsvUVYwxUlWG360BlnF+4jCMvz8+4xaFQNE4gUZWxEC0xepybcM5jjICJuj5IuG9l\n5bheuBAhylBOzCYSR2e0pt/ttiTwHAv8qFSk0zIzTiPPb6+4GNj1PV3TUhmDqgoxUaIhy7E+k2Ig\nlLR4aWFMTG7h9e2Nt9MRXXrcVS0LuTEL8+xJOZCTxi0Lx9c32qalaRumeSKFQE6JYdhRtw0pZ+Zl\nIkQDWQZ7Xb/ncLjhw8MD83ghOkcKktByOh45nY54L9V+VQ+FmVJvGnE56kbZDAtvO8WIC7EcJQ3n\n6SJHcWPpUkMVri46H+TkpIIi6IBXDj8veCeLf1PA/EpLS8CXoGVlNIM1m7N2DTqurBU3Zt1S1XU5\nvsssw/sgC6xWjOeR4+nMy+uRpy/PXMYZlWE3dOyGjq5vQZWczqJECSEwzZOgCpK0IwYaieQqYr6/\nGb1ti+pqDV99BeKUFUlevR2lcxYX4yV4jnhOOjLZ0lsFUVf1DdW+I40NaczkFKQjqTbV9ibbk9f7\nVWA9HSgpIMhUZBqjabWSloBSLFbhtYQvr8d9EGv+2zjyL3/9KzeN5eN+T9f34tpGQjNcTAQy2f/b\nb8t6lcqPZLTh5uYGay3eO3a7QZbgBNZWW0ttHTKjpI0jrcqCIigs9VwG8+QSZKF1WRDzdgnezyvW\nxdx7MfbVTUUInqquqBvDh4cbvv36kZwz02zJGZqqou8auroS1ZoSI1WIiTgvXJaFBLSt3EO+dtv3\nmaaJOE74UAKey0VRZdiPNoAp70spCFcm/DvO/PvXz7KQ/+Y3vyZFYVOcTyNwdey5UBQAQVxgIUTh\nMRdJlc1FiK81PmXC4jaIUIxBqi6t+Rw+4/0s4anjhFaarm0IWfqbL88vKMC5mXmZJQJNKeGWfLjn\n4+MH7m5vqN/lQmaQ4WKCvm83tspagXovxiBrbdEme2Gfi8BEZhZZrOTROfkIYsAxJTN0UzMojbWa\neZl4en7mz9//lZhTaXc09ENH13U0tUjsLuOFT59+KETDgM/w+vRM1TZkI7mCIScmv2CbIs9ra3a7\nTuSOlWVeRAaqgYeHe1KITONJ2ihIuEHbiRmqKy0KcUVWRbctN1nXdQLxKjCt6TIxzY7ZB47jRAL6\nYUfXtmXDnbHGyJHSy/xB5JkVrgwWY04M+x1N7CTxaLfjm2++Yb/fU7UVt4cDt/s9tbEkElllKmPY\n9QNd3ZEyXC4XFueLy65BG03MipfnT3z6/JnTOHK5LLglkBOcxrNQ+dqatqnpupZ+6ETJFAKXaWJZ\nZPA99B3t0NPverqho2oaXDL4cF3E11bGdSFXPHy4p+06QLM/3Eivt6irQs5cUuKiE7NKRHUddiUU\nqjaYXYO6HVii4CzEsWK24Wouw7Irn7w8hBvTXLTKFZlWQ280rUFOHkazGEUw4LUq6F8Z0GVg8oEv\n55FLTFA3DPsbGqT/Pzsvi2hKqFC+HzLgJK99bFhPJiBpXX3fEaLQJaWllcvAXHTzRcmI0opaWWnd\n5JV1H1nNVu93jFW2mFfJC+9aPKsbubRdcsrEaOQ5L9fq8eGeyhrqynI6X6SFmVMZhlM+rgNZlGwu\n3otRLacapQQeZ2yFrWoWV04Chd+/ftRNgzaV8FnezS4MqwLv35Fq5fe//pVwSwp/1/tYSH2asWiF\nj+eREDUmCvdBFRlOSpGYysOQC5ehSKRWCts4zngnOYL73YGh35dQAtFpLvPCOE6smZDeeUJheizL\nwuwmxsuZ4/GOu8NBwD5FgTHNE25x1FVV3vRVEXFFul4uF1xwJKBuau5ubtnt9tQrAEtJj1Bcau/t\n1dJ3Na3dSH4xKvaHwDdkkXY1ctxv6nrTT8eYmPqJylreXk+czxfJOF0qqV6sEYdYkNNODNIOEhlm\nTVNnklGs8XZRRcbLJID8quGbb37B/rDnfD4CSdg01pYJ/TvkrrqGE6cYCSnhY+A8XXh6fuPL0wun\ni+QQVnVpMSlFVpHd0NPUkksZnKMqGnkFhWkSrmqVEroxNC3x/p6QI421VErj5pmAxGupWljkIQah\nZCrBQ1BVsil7z/E8Fo69pmlaliWitCw0AamOCZGkPC5FxmVivDR0bcvd4VYkaOt70jQy6LYVCYtL\n75EO8v6+1zprLfFmTd2S0VKNATFnphQ458Crjlx0JpRFXOoBVaq/QGcVh7uBbtczvZx4+fxSBAB/\n105dK9H159C6LAoCmxus5mAMO5NLWo4oZoKS1tCoMt7I4p5L7mXIMMXIX1+P/PHLMx+GPXkchb0d\nAqqp0FWPrnaspxTF2sNORbGithPsdg+VhCtdBAeQSTkWZorQCzWQC8ZavuaaDhXetZDEWGWVJpdq\nXdQjeRvGru/DOszPOm/P+jrbaZqGYRi4ub1hXhzTvHA+nTi+vXI+j7jFb4NMazSm0lS1IviJ8+kZ\nkxfh92eRsbrFi79kHbCX50drLSx7H3B+kYALdTVybZKXn3j9LAv5YRhYwfKHoSOmFXQE4zTzejpJ\n9ZoSIQZMXnfRlS2cNnxpztdJsyn9y8WJokNrgU315UGrawtkxouE8oYCwAoh4hZHKHZ/HwLnccQa\nAWltHPDqmobjvb/ah/O1R6e1sM59CKiCQW1WI0BJ6VasIbbye4UQgQTGYBpLXTcl/Ug078NuoGrq\n69dr6tJzlK8TdUJ3EkfWVg1tfeTl5UhWSfguQcnQMMrgNMQgk/W+l6xNLVwRuRlFgeILXqBqWrq+\npela6q7Zqj5FxpbWgAylrsqMnGVusTjHtCyM88x5unAcz5zHC4sPrA+qsRpbGXIMxK6hsprgHL4M\nnzc4ViqnspTIMUpAspG4PT875tnjUpbcThK60uhhwFceqywxSZWmlWjOF+e4TBPn05kYU1EUFXJi\n6VdqI1PKNS0HpYo5ScKQ724O3N3d0rad4FWNlfcjJd6OF1yQhkVJuS73CFv7EERNY0sRnko7JZA4\nuolnd+GsAosWZo2Cv6HjqhjZNRW/frjhq+HA9Dry5933fP/pR07jhPeJzfquyjdfv46CujLU1shm\ngGIg0yA+B7S8L6aryyxJcTYaZ3SJqzEkpfAJPr0e+a77kft+oF1mTBRXtVWZSjfodWSgKKds/y4U\n41oMxRKosaqe1h9b1q4yN0Oq7phFW6+VDAfF/BPkFJyK1UOvi3n5OkWEsCqJVszEilJelS+rcGJN\nflr/9wf1gRDj5vz88csXfnx64uX5jdkFtPPorNntO25uBvquIrgLl7On6VpSlKQz5wI5hS3m732b\n5zyOLMvMvARBb5TBsCn981Uy+fevn2UhH89nUQUgg8/d0GGrmpQyNyGw3+0wq7rDLcWiW3YmnUtv\nsyzc74dHWuQ8ctAyxKhYFs/tsGff72kLbOvu9p6MJBOkpPA+cj6dGc8n5uXCyjVuKunNNW1DP/TS\n79rtAVU4GLlM1K/xZCklkpIe4opu1VmRYyIu0utdHWdiV9bFBUoJD5AqcNU9p5wlE1NrqSy98CCm\nRY5tot2WjaypKtoPD9wc9twc9nx5eeXtfGFykbZqUKph8ZnFLUUDntHasvGYkQTxum6KjlmqE5QS\nGWDXy+aRZVHNMZYj5RWluj6U0zxzvlzEiTkvZAWH24Mczy/zpsUX/EEjCUGVBDybpikUOU/Owq5p\n25quqdBk3GXCqYnFey7TxNv5BDlRFR15RCz9tbX42lGZCmNqYoy4AuI6j2cu84wPYTteXy4XIUWm\nhDUVRkuog9KZYWjo+o66rhjaln3Xcxh27FqRh9qqgqKGGS8XPn/+EUxHv7+XYz2RNQxhXbRkIbtS\n/XJWxJzxOfHl/Man8wsTnoiwOFTpK6gMFkUVEo83B/7xH37L73/xS7LL/PlPn/k//6//m+/+9S8c\no6TNKLW2EtT2rOSsGLqG+5s990ODnWfUZZKwYQCjqdqK+4c7Qt9RLY7v3UJImaxkHqSUJgI/ni98\n9+WJfdvwH+/v+er2jr6V6xFVVZjkQBbZ4PvQamN0IXFOHI9n9vs9Nzc327O0RviVUgml5BrmGCGL\nfHUt8FIMwsFJCbXOE0wuvXKpbnOR/8n1MNsJ0hbDHLD92VoJPhHvhC73d6CtG/bDntubG25v7/jO\n/hEXEpPzhBy4/3DDt7/8im+//cj8+oyfxwIDEwxvCJmubYriTtQ5y7JwPB45nc7yvKDI2W73Zixt\nG/PTBfnPs5DntAYEZ7wLZGasD6iiD9Y5cXfY4f091mqO5xG/wuGVRq+6bCXKhnW3t7ZYevPVhOAj\n/Ph25mWcyEYyNvu25rBr2e97aXMYQ3U4cNj3kBOmMqzIyrZpyuCzRmnFUExDKyVOr2aErfcmA4vg\nIss883K54OaFFAK7YZB4sIL6XKflwzDIsSolXl9fSltFhigi6ZPq1E2TnAS8qGzIEomnyuCnqetN\nFldXtmBZLU/PLygiKczEqEvFrTmfT0INLA9VVZlynMtolbBGvtZutxezUlVLvzqBUYqqrlZvHSkm\ngpcq93Q68fJ25O14FCv85YJzgg9oG+k3Oy9BBVVl6fqOoetoqqooOS6kJJubMoa6bRiGvnCnpZd+\nHkdm53AxUK05iVpjtRXAv4LxPOIXj9GvxKQ2lYL3EopBwbNapQvxsCoERelfa0RFZKwRFkxTY6yh\na2qGtmPXDXRNLy29DMEFzpcLzy+vvJ1HuqFi0GrrR+f1IyFmOMklIyUIMZOUYkqB1/nCl3nkLSwE\nU3rs+Xr6zCGSXGDQmjZn3PHMk/6BxjYchpr/43//z/zy26/46/efi8FmLYak39x3Hfd3t/yH3/yS\nX3/7NYe+hmnGn0fmcRSHbVXR7Xf0twcmBf/85Zn/53/+Ty5PLwThvpKQxTHkzMkvfDqf+E+/+iX7\n+3t2VuNzZvbCNRd1ysoEL7sRAivTRtF2rQzK60qaMOna/khBWDPRG3Rr0VkMVM55UduURS7FwhfK\nMvhdgy9ypuA5FEqZ7T0wZi1CrtygDQNQPlY3ckqJZXElBN7jfWBeZiY30w0djx8/0O8HfAp8eLzn\n5nCDKfLCECPj8YjWlpjBhcjucCdJZF0Lhdkjz3ArGvqMyKTXk7cWPgz/nhbyL09PpbelCutApH5N\nAR6BPJRD2+B3PcZopsWz+LAZM7QSqZ+kmqdyY0iFs7nnUPio8NNcKh2JghraGu8GcsriWqwbuq7G\n2LXHVY7zWUiIpmBTQ/BkJawIWxadjGxMKWdWhrU1lmBkaOu9Z5pnovc0dSVD0tqyLDDNF07nEWWk\nD6egaEfXAZBljdeanUy7Vyu4VrIgx6KcSTkgtpAyFLaW26ICsEqREjgfuMwLMXmCF7R+CK4gRSN1\nZVBKQGVNpWhrQ+wEoWurBkrUVc75nZwslYcncrmceHl55eXtjdM4cioV+eIkU7FtGoFz1VU5Wss1\nq+qKtl4X6SwqIVdwozGKA7PrSnUpD/jinOjHVcY2FZU2IpesW8lPDyL1uvgLKUslNE2r5jzLSatp\n6LTIP7XSMrBsKnIuAQi1uE6roiu21qCMoq4tTdXQVB0pacbzxOk8MjnP2+nE89srr+eRx7oXg97K\n1lalZ16yI1dQVozyOzkFZ7fw+fTKq5uYcpAhOWyr+Rpn1uTM47Djtm6I08xrfKZrOrqu55e/eOTh\n/sC3Xz/y/HoqGAFpTTRNw36/48P9Pb/69mu+/vhAWxmS8/hpErY/Cl1Z2q6j7jvmmOjvXvj+eOT5\nMvPifFGOQFKZqBIX7/l8OvHmHEEr2q5DhYBPAcWarIW0RaIvkDUJz2hbOZF1ff/OUPQuJSlLoZBS\nKi02SXeO0RV6Yi6JU9fKW57MVD6Kez9KV2gVtie1UjlVkbv+rXno72df0yxAMFdQD2sGbFVb7h5u\nuEkHQkrs9gNd228bhneB8XxGW0tMMDuPrVv6YUddV+SCLFBK0RUk92oiCvGqklvnPT/1+lkW8v/6\n3/6/kjtpSz6lpmkq9n3P0ArcSVtDWCYsmYfDnrfThRwunNyM0iWhvfQsc6G1+QJ5ojyIMrwQuaLA\n7WRLGyePn1+5XBa++vhA97GnaiQNSIwMibhN+2152ALTJCqYEIJI8Eo7JcSARezbprJYMg1sk/K6\nqgne/Y0sLhfq418//YCPgbu7u8Jv6KjsanE3uGVhHEfe3o7bQMgvC3XJSZxntZmZgpdjuzGGYbdj\nX7AD97d3pJQ4nc98+vwDz69HkVdVwpZxTnE6CpwsJQ9xZqg0+6GC0JLCRN3sqOpeeseqbGw+oHNA\nIRjPt7cvfP/D95zGC8pW2EpwAW0nban72zt2u7Uvv3Iy8ja5j+WhmeuZcbzw+nbEO8dutyNFuL+V\na7eZdJBBt1ZCqOvqhrvbW3JGWjvnI77c+EZbXt9OvL6+EZNkwIYo8rZ1aF4ZaaVYY2gqw2G/o+8E\nZ7wer1EZW+mCKVC8nSb+/JdP/PGPf+Y0XhjnC7Nf0HXFcLiDddSprhZ9VSZ0mXVIl0lZscTAcbrw\n/eszI04s8ll0JddPiNQK7ruW3zw+8lhb7DIxX2QIvzjHV7Xhm8d7/uPvfkNVNRLYoDU+ycC4q2sJ\n8c0yb0gpooyh7Vp2d3dr6pmY37RmqGt+/+0v+MOnT3w+nXj99L20PlSRN6KYvOPL8cy/fP+Jj7uB\nX9we0Cluqo6YhS8Sk2dxM9M8MU3T5g+oy7B447TnvEHFNFIgKShsmSQhK1bj/TUvVgbHTQHUqTLX\ngLUnnsvmIJRIeb5TAcXBVVf+vvW1tlvWwJrFyzUOBdu8zs92u16Q1gUrYbUlxsTiI9PsOJ/OGFvh\nYmScFzCWruv58PCBkFcnKtvpXxvNPC9FGeWKiXAWVtJPvH6Whfwf/+mfyk1ctqzCI7BKSTxX8GS/\nUBlFe9jR9Xse7h+YXeA8zRxP5yIT8+QYNsBWTkjbxawJ7pJoEkJJgylhvAlwwGXxfH56ZXaOu7sD\nldEiY0yJru3Y9T1a1awEubqp2as9KaZtMLIqTmQwG8sDK33mqmrou53cdFqJzhcOZ+T3AAAgAElE\nQVQAxX5/w+NjJCsx/RyPR+ZxklZOAc5Lj65mt9tjbcU4jizzslWITSP5fXLTGplBaRmIdn0vgKp5\nkqi3puH+7pa2rbm7O/J2PHM8n/E+C4jLe4xVxDAR/YlsE9kpwlxR9zvqdk/d7WnagarqSs85k6Ij\nR4cxidvbPU1Xc55m0BaUJUW5Hrr0VJum5HcqjXNOePKZshDLz3l7d8uHDw+8vL4xXRa0EjzttIgj\n2FYVPkp7xQdPN/So3Z6uanF+7dsb6qZDBcfsHKeTtJEqW9PVLfPi+PL0gnOL8DAUVFZxe3Pg8f6e\nfdlYV4LiqhRRWuYVLkTG08i//vEzn7+8MC6egAJj0UWV4b1jmReEpquK3nxt++VtEQ8xMefM0+XM\n5/GNU3Y4FeV8uYYloETKtyzcdC3/8PVHfv3hnvu6QgcHSnTobdPycHcjKqByf6TibWi0ptZaHvoY\nSCGWk1EsKTkyTJPnUtpBVgvSuVGG//TLb3m9jPzp+TNjBqfWaaOcSF2MfPflR766ueG3X3+kt4aq\nBr0sEK/V7qrsOp3P7HeCp9BKetRaXa+VFFLCSkk5EqMSRnxZe9foQMjldCc//0brLJtmCOmdLLEk\naq19ir/ZYKVCX+XE67MFMqD2MUhGbwlyWU/PK35i3ZjlxG5kzlC3KG2ZpoWQJlwxFaasqJuO27sP\ntMNA27W0nZZNF7XhBYyRLFOAxjXM8/STa+rPk9lZN9JrSmKmSFHGk2uf0lTVpg21VU3fyWAg5sww\nXlA5kIMj+dKGyEJGS2pV6KwXlY0xnBRSgSgBLaENPmXGecHHsOle14V5NwzM+8i+j1SVxlqFtarI\n14rKJonMy1ZqS47XxhC8xKhdLhOqaNMPw7A5/kKI1HXLzc0N2phSmThyLLgCU2NNXfrSohtfj37G\nWDEttR2mVKfTNInKBAnR1QXotRSqX9u0soAYy77gDpqmoa4t58vCNHmWaQIdiWEi+JGkPcllojfU\n/kK9nKncic7d0LZ7mnpA6YocgzwkMWJtxb5uaXcHVFHCxIKwXRVIqrwxUskJR0PVEou3qgPmZS5t\nKWmlhRTwQeRqKWdsENZ1jPKwS7dV2lKXyyQtqiR+gZjCVvGvrmBT1ZwvI+fLiWmaMMXBOjQ9N/sD\n97d3Avfqexm6r7yVGInBEy6ecbzw8nzkT3/5gdfjiAtJPAM5o40VSl0WlYJZDVElhUeq3YxPgRAz\nkw+coufH6cjTPHIh4RFVltzbCM0zeO6bmt9+uOc//+bXfOg6eq1QKWBtiy25sbv+Hf0xi9VflXaS\nRsn1WFkmORWduyIr0benEmUo9nGh8GkSv7i74fdff+SXd7f8+SyyYRnCyrMVUuTz25HvvvzIP//w\nhd99fEAiGso7lFfJsCyOOefCGKrkz0laNZT3c13UpaKWPE4fIsZcF19rxNAWy0lcKuirHFa+TyoS\nR9lI0Xq7ayRAYi02yvd7N++Sn1X+dV3EB6uscxvG5uvJqkjSCndGoboBW7U4F5gWJ5sBENPI6+uR\n55dn7pQEXsj9rEuguejM1155VdrO7xU9718/y0L+p+++k7ivciRKSRyZjx8e+frxkZubG4xWWxWV\nc8Jo2fmczdQ60ZhMbjQuKjIGoyt82e1cSXPf+l2lys6F6VuVdo628qYuPnH8/Cz9Ni3yo+O48Hac\nuBl6dkPDMLSCui3GHaUQiZYypTW0Ik/h+fmFp6cn/vynPzPNC0Pf8/XXX/N4f0/fdoUQp2jajqZE\nw7lFrkdXi8nHWkMmbBrTEDx9P7DfH+j7YXtDl2Xh9eWF17c3mkYYNCkljqdj2URamqYm+EhyaXt4\nur7n4+MjP/74xqcffuSH8TPzMuHDQk6BgEeCiRI+eZYwUfkTyzzS97cM/Q1dfygySUMImcVLoHHX\n77BVUzT95xI4IZWymxe8C6QIVVOJwam1mx7+dDrxv777jk+ffuDl5bW8t4amaXh8fBBnbQhi/mqF\n3a4q0WC7IC7YGPyGrNVl5iGwNYm4W3zEx5mQFmyl2O92fHx85Ne/+pZvHj8WY5ERHXwK4qvLSSr7\nceT15Une4+c3nl9PzEuQ6DMrC+nmO7DVppsWznfJ6kzClMk+MPvIaVn4cbnweTrxGia8lrbCJr1T\nGUJALwu/+/Uv+C+/+y3/5Q9/wI0XgnfkHOmavrwXUr2LmWa1fss9WtW2DLcdwQlbffVXoGURzUk2\n5RwzyhS1lSzv7CrDr+5u+N9+9S3nf/0Tp+NJCqSyIJIyp2Xhu88/sv8f/8zQWO66gVDYSusSXVcS\niOLcItW4NtucYB2EqlVaItpi+cxiEMxJoYza2qfylyVLN0tBZgxF0SJ9+ZSC/L2AzFE6orOkGFGu\nc/lVpDjU6+fmTb6ouW4OWmuyWVVE17AQbfS7xVwGvk3bEWOWNlCUUzgqMY4jXz5/LsWnYTxPhJjw\nTnJgU8rbPG63220CiJ96/SwL+ePDB9FTKyVDwwL8qiqBS72dTgByMylDcIEFOQLPlwmjNfvdwH6n\nqfueqmpAGz798JnntyOu3MTbmFeVqkYLntXo8q6lcsQtu2zKAqlKcSb6SHCBeZp4fjXC0agrmtrS\n9y23t4diYmkKKF/Y14tbWOYZ7xZ88Exu4TRNfHl95dD3PN4/8PHxI9oqxmnk9fWF0+mEWxwpJmrT\nXAOGa8PhsOfm5lAIjMOWerPeUNZadvs9a1oRILFzUZKNvPccj0eqShyva1qKlVRZ7u9uaeqG28OO\nHz5/5uX1hdN5JGWYF0+Mjmrx2CpT14a+dzLcjJ7LdKLrBtpuwJgGWzVkVZNzRYgymBx2vQxUvScF\nj2ltMVMZztPI2+nIspTrHRMhKdyS6Lo9GcuKyTVaMS8XOiVgpWEYBCWcI6fLyNs4kkKgNiJVbNsK\npaWK9m5iHN9E+RAzKM3N0HN/eyNAtKaTVhbw8vTE0+fPLPMswSFk0KYMuLwgBMricjjsWUIkqYnJ\nBVJMLNETXKJqJP3GKNEp55TRXk4U4zTxej4z3NxxWhxPl5Evy4mTX/ClJ6uR+WYyolLpNTzuB/7x\nd7/jD19/Q14WopP4MaMLRz+I1C4qVXgz8Qqa0op5njZZa12wq3Vl0UpInilHlLHUxkIuhhyliEnS\nibz3mLjw2w+3/K8vn3kaR45KUmuKqpEEvE4T//zpM7/+6hF3EzEBaTVkTS44WeETPWyxiKs0NAT5\nnbQVJntljaiZKKAsohhX8zUtR/reamt1xCj+iqxEMZQLbTKEACqjE+iUUCqU3rvaZH7rmHQtAlfG\nznvjjmAx1nahbJwpiP8kxIitbaGfVlhT0fY9u5s9HvDTjC9sHoF9TZATbddT122Jnyunv7KQV1VD\n23eCwf73tJCnGCXjsOvY7/dF7pfx3nE6ynFXKb3xu93iWeaFTGZxM1qpYiuv6Hc7TFURU2JeekLy\nhBSY57Adt/QqQyrDm/dWaQk5lp5XiuuEOhO8hCpPRoaJ1hhRMNSG/tKwOM9lt9A2DSA8bKnWIQV5\nuJq6ZokJP02cpxGdE11d03cdSWVO5yNPTz/y8vJC8EH6YXVf0m0qoNk07UoLS2aaJVZNElZk4V5d\nmlqvfWf/dxpYU1xqJdQ6RdIi7Q2ttbSu7B1Gy3V9fXvj9PqMnz1xccTosC4QFshBrOBumTC2JoYb\nYgpo1WGqfWG/JyqjSgK5VHYWTdaWZDRuCYzLxDSVlJ7xgl8CziVcgagprejalpQjWq/S0kzTVAx9\nx93tLVUtLbimbWTz8r4ES9RYazZ+hoCKRB+O0oIUqGpMVZcwAY1K4iidy5F2nmep+oxBW8vzy6vo\ne7MMpLqupRsGbpIiZM3sjoRy1A4qipojXHMm0ZlQfA7neebL2xujNoze8bJcePMzSwokEqunXyrE\njIqBXVXzm/t7HoeBGsV4OsnXVwptxR0pRayRDSBnSJGwCO4XCt659ICrSlNXVjJiy2apUmkjbD18\nUUyE4FguF9yyEN3MfVPx2NV8qi3jUuY8iF09objEwJfzmX/54TMk+Gp3g6XY2LnOkCTqLWy8+Gma\neH15YZovMqjf7wWVm1f2UsAS5ZrotUXCtonI5ZKMg2y2K4iEV6yxcAF0RsUkjpMsszpT0oN0acDn\nvGK12UxDWttNe27MKoHWrNAFnSW8fa3gpXg01HXDbr9jcp4lBoITtHKMUZAa3qOVEgZS2YxkA5VW\nalXX4lUo5rufev0sC/nz85NUVJWlqsXdlGIiuICbHdMoXG2NIhKZLpfrlQEZJJaQA6MyOcoU+bAX\nWFbMiRyPwp8AjKbY6SURXClbcvpEjRLD1Vm27oYATsnxrDJSRaYMvkyvX48nurqRNJGUaOuaw37g\n4f4OqxRd03F7c4vtZuqp5jJX3PU7uq5h8RPjJCRBqUICSksbZL8/SPLNrqNrGw6HgX7oSFkW/nG8\nSOVeN6Vt0hRTTUddAoZDwdmuPefVwaaU9JHHsRhfitlGPiq++uoj9w93HE9H/vt/m3nzR6IL5BCI\nyYt+OSx4N1O3Z+p2ABLBR5yraDvPsE9Y3VG1NcYo5lkCj41SVE1FDBG3zLwdP3O5CIY2xlDCFSLn\nyywY0bqiaaQCaVtB0BqtqG1N23b0fUc/9NRNzfv+awlOFDhWmfanFIvPwGKNbGw+JqZ55u14LPmc\nHl9wuCCbY9sLbCuh+PHphXnxZKXJKmAbRVe13Ny2zC7x+jpCyY9dh15x7ZsinHNbFoHRzXx/fMZk\nj9eKmciUowCmkJ7uhnmNmSp47vue33/1EWbHi38ieidtnDLso0Dl6qreWhJbItM04ZaFutbsdzu6\nVp4bRSx67avUbw3fkAV2IUS5Lstl3O6tCs2H2vKhtvx4ccxGE7XeYuGCyswk/tcPn+mrlo+3H0Xt\nlOU+FEa/IsSMc1cC4TiO/OnPf+Lp6Ylf/4dfY+uKfujx3qNjxNiAJZENAgdbpQPqGgACVwmvvKQp\nAoaclLBPVBT+fQlvjjGgVRKlWKFxai1OXWEIVVtguDXV31jqKe+1pCNZbF2J63jtAiD33TAMnKcL\nS3AiQMqZnEsYzTzTe1/yPEWwIUWaeFKqYprbws5/4vWzLOS73Y6bmxvu7u5K8vjMNM1Yo/nw8MCH\nh4dSXYiYfmpb3o5SvU3zhFTAFcPQs9/LA932HRmoTEXf9rzuDpxOZ8bzRVJ9PIQo02C3CIhJUYw8\nee3eXQ0LucgPcxbcbiy9FwmmlSpLbgDpd80+MC4zT29H9qWffnt/j72cJU+QSNtY0bHmwP6wY7ff\nkR5lWFvXtYRXDDtBw1IkVlWFMgo/z2StMXVFWjxLcbxW7xZqYBscLcvC+XxmnmdCCKVvuyJzefc5\nchpKSXS9s5uZ3cSw64l+z3ReZAGPnkQskjDB1UYfBLnae6r6Bq1OpBi5jJqcWuq6RelKBkxJzB9K\nKfrO8utffcXxPPJ2HHl7PXO5eBHqFVNXW1cMfYu1WgKHd9JWWkOOm7YVCeM2EKP0P1dCnMJaMZ5J\nxeeZ54WcZnlvS+5oW1fopkZROOBFcrYiIHxcK/SF8TLhk8Jax3nyPL9dMMbinKfvd3JzF7660hpb\nV/gYhCdfToJGC9d7ITFNJ2JTEa3GF0mcyko+lIIUUYvjFzcHfvvhgQ9NizudcWWjblfmTlNTeXmU\n66qRAX9xAa/Rgk1dsd91cvoyipxXq/gKmyo00iABByE6lnkihAXvFpZpwi0TwTlSiOjLyBAj+yz9\n86VUsposMtDhwE2/p7YdwUMuah9UEvMORphJOW2wuXEcGccLl2liniTgJCeZu6yqNDllv3tGS/Wq\nlClyQ0OMwpL33pZQ8kQsMD5XNPDaRMAg0vQki7sSpYnRWlojBXJlbCmCVuZ4Gd5v7RiltvtmLRqk\n565oqgpUxtiV2ZKo20bmcVl+/6enF8CgTcVu11+LL20wVgQglTXltBF/ck39WRbyjx8f6Qofep5n\nLuOId46q76WhX4whqRhjYgk/DcVg47aMyCC7F4bkE84t0lcCKpWpNXidyVZULYrIEmIxRwhWVetr\nIPJqNFoVKaiCypQ03KJ8kY+1glQqonUxHxQp5fnScHez5/HDXVEPHKgbi0DlJC3H1nVpj1Tsd3sJ\nd20a2rpGIT3LWE4Ui/eczpIDSs5UdYVRmrqSxb9t281Kv2Jvj8cj8zzji97Ve1fYDpaVCWPtNTkJ\nhMwozs1E1/dY/YG4b1Fx5jK+ch5f8P5C9pGUFuGuZGHmdH0g54UYW2xtCKGlaXrqWoBlEsumCcWY\nonRmt2uorKFrWqbJ43wmZr09AF1To42haSq6rsWUk4O1wqfIxSiyxnnl1Qn4zsSxLuJiBIplkKXK\nwyFtmPUlx+/ywC+OECLeR7yT5JacjTBboiItER8WrF2j7mQDXcsw6WyIgWOlYGdYDw8ySM3IIB5I\n5ALFUqVBnrA50xrFbx8f+e2HRw5VzeIjycgwTr/TSWsj180Hz+vb23ba07oweJoaa4aSfJVKNm7a\npHTyTfU7S7/c7G5ZmC8jyzQRg5N5h3PY6NlrxX1tt98jKF0ULPJLGlNhdFVaRVIQCfJAZjUrLmF1\nOMt1tNvmJD8rRUYc8cpjkicVk9UGvsoKpUQLr3QqBWBAe41ZpJ3onBjzfBCmrirBDqsM0ehcPCSi\neSdGovOoEFlNRiWAD5C2yFoMrZX5Km/UpU0DiqghJk9KkaqyDDvxYkh70m8a86puOdzdkXInjZqU\ntg0oaM88i9oohvdM4OvrZ1nIv/r6Y7m4jrfXN7xz0kdEzCERqThSlsRzlTO7QRb5upHMRKUkcefm\ncIM1hvN55Hh6K20KzTRNhMWhc6C25emKEFIsi0nhGtuSxWgkeFUs/vJ9c0kvWh9OVZrtOUr0V0pC\nPZP3cZU4RcZ5ZloWYk58/eGO3bCj7zvGcSwMc0NM8vAqLeqVruuprEFrGUZK/1nhUyIuC2/HI84L\ndfH2cOAw7Nn1A33Xb8YjH0uf8fWVp6enrbWyQvIlnKNmXubiiFMsi8KY4hbT5VivNV3Xc7sf6Opv\nMCrx45e/8pe/al5fZQETypxIumThm6inI03X0/Y93tV4P9E0gabom+tuYHaOaRHFyG53w+3tnrtb\niw+JnA2oGqNMyd4sieNFziWBHXmTfa1/XuFlUcIPhQkdry0C2fwdRpdZhpX7qKkbqqou/yaWayIP\n6XgRuJdglDPWNjRNIvtYFoH1WF1u6rKZrBz6GCM3zonHQRWidL4O3iQdygrnm3enQgXKKPCRViu+\n7nf84auv+c3dA3Zy1DtL1kWRUZRA1hpJUzKWaZr4y1/+wvPrC4tbqKua/TBwf3fLw92hmF5EZhij\n3LN5Xbw1Wx/WJEWOkWk8E5y0VzZeTBZC4s5qHtuacXHMKROLJz74wPk8EodbYBOdQOmPU05Jl2nm\neDyxhk63rUhybWXktN4WHTwIOjYtGBvK7OXKbV+/di4Df1MGqCsqVyrxUo0XebEu7+HKhM9WzGAZ\nUWnlxZd7S1Q0IhAoBkZtNgXSFaOx2v0zTb2yaCBEh3cLIXiMNQxNK9jiHDmfRpb5hfM800ySibC4\nRU5IZWYnUtBcThgC9vup18/TI3/6UnrRYt21laHScvFXSeIqrzNG09SdTLeB/X7Al+y9tm0llipJ\n/FrfteUCU3gIXpJfLqNMlEPm7XXkeL5wnheSuvKV3wlcZChj1sTt6414Dc19x4xA3mzRlJdKJ60Z\njgvTeGa366jqCu9CCctIJSFEbpAvT0ceH+74cHdH39WiJNCGnLX8Gyx3h3tB6PqF5+cX6V2nAtAH\nFucYLyMvLy8sy8Jut9sehvfxVtYYmkUekKqqOR7fSCnT9y0+OEGr9kPxEsqQabqMLMGizR70SPQy\nW8gYdNKEKG0TFzUuGtySaXtH9IHoIbdy4yoyVWVo+gFdHSAbGbBlRGOvhPk+TRPLLAlRSteiy1ai\ndlhVvO+jvFYWfPDh+j69+3tJNJKevWBxpJW0OHDuPcBKJGSr5v35+Zlp8ShTkZUYjJL2pQ2Ry0nH\nX9sxObEmXK3KB6OkVYJSJAUhi95cGwvmqpTAaFLRjOcEdVTc7/f80+9/z7e3H7hpe7St8TlI3FxK\nkMAaOZnFGCUg43jkMl3ke5dnRpXTV4ylMEILakIX9oiSof8KnMqrdDcmurpF7W/QKE7jkWkp2bQh\nolKiy5keRQMsCDDO58ScAqObmfxCKIoYk7Xo+E0ulayh67rynBuGoS/3YdhmaDklQk7Y8nyFECCU\n3VN0e+VaF3ZlYR+Zkm8AMjSMKZO5WvLhmvK0LLIGrBrErMpgtCi81t65NaIAskWhxrZ+XAeggjE2\nVChSiMwlSEJp8a/UTcthd4AUiS6h1Cs5CT777XgkpEjbNtSVtIirTiSluXgY1mLj718/j2olpU03\nrbTalANZI8eXJH0vs3JYVk1uARgtzkl1k6UapJgMJPpMKrgqWlIrWmZjJW3e+0j28m+brkFXVhaP\nwi2Bq+xofShXoX9MqTjh3lcxRU++mgRWGVRIuOiZJ7Ehd524NbWWFKRc3HwhypBpcpHLtHA8Xzj0\nrcSSdS0qI+HO88z5NOK8K/3ECwqLNnU5xQrQ53wZcSFgq4ph2DEMA23bbFZiqZ49K3UvpcT5fGZF\ngDovRESlLV3XYo3I2o6nmdMYWIIh0aGsVIOxVDwxZwieoBVB5dKbdQS34JdAdD3RzUQ/0fQtje6w\nzUAOSSodI+2slD0pBs7nF8ZxJgQwtkfpClUSU9be4/rgmDXP0WgUIl9dF9E1izHnXHgV0voSTfHK\nPCmnr1IAGCPSz6ZpyqaysIQJbRoSuvSRw3YfXMOZY6mcig1cqw0Op1YptJLFJmsNVvARqOscf11A\nVIg02XJX7/j2/iOHfi9tplxTIT13IQAGDHLSSjFvg7HD4UDb91IkGctuGEpyUqkUtQbWcIe4hT87\n52AtUtY2TypBKPJLoUxVZjqaQSdUnTnbwOxEE++Ulgo6J+YQcEWJk8l/k5KkjaFuarrYA8UYVtRo\nMRUDVdksN0VKAhe8KE9WfXmp8BOFp6IVRkeMtduGgSrqo7QWY2uK19peKqENrCiB9YBUjD3alA3T\n0lRVCUnXRU1zdXhaY+i6BpUCixWioeQXLMTgsVUtcsq6IrosbcWuxQfRqp/OJya3UNctbdty2CMw\nuVrmTLauqah+ck39WRbyumm2yLQUyoVUihrpgyolyE5xORppacC2YC8FIJVyptKSe7kuxALgksGA\nVhpbG4aux6gZrRy7oaFpKzCapu9lkJnEZxijDDNCYZJ771m8x7ko8WvOE0KpvpA3bht45Cu/Ieci\nX/QCobenC3Vb0/c70XMrTUKRsizqx8vMZVl4fntj37YcbiRTVCvFMpUh0PkMyAIRU0LZBV1NpTec\ncN4zzZOAoDoxGq0Pwyo9XEmH0zSRkihWjscja/xZCDJ/iCFxd1+SaxScLjPj7FmCQlcDdbPDaElL\nEqJdwC0jKVRErUkqEv2CnyXBKSwTrm1YlprWd7R+R4gJoyqaSpQhzgdSdPgw83r6xMvLmdllrB3Q\nusVqoSausi9jNFVVF4mlwdT11u6QFqcw49cpv/y59HiLxl2CgtfVRW0pL3Vds9tp+v7Ey9uF1+Mb\nxjp0YZYszm9ApdU0kuIKhloNJOtpbkW4it44q0w2ZSEvP68CdGlZqJSofGRne3amo8LKyUwZtJWT\na6Uy5AKKKYsQlbj/ur7j1t3K80WirmvauqGtauoVCmfEWRqjuH9PpyNvb29M01QQAhJdZxBkhWyy\ngLFUjUbZTFVFmpjpM/hlYTlPnNwojHIUKYNLAZ8jWVMGlmz9c0EoNFBOF9spuKCQffACyIPCktfE\nBKF4G1KBjistQ85M2RSVliSl4LE2IyKeYhzKquQIhGJSK3CsotmOKW0LOQUpIfuv4HJjORVEEm3b\nogqMbRUUKMC5muAmtEqM51E6DEBdV+yqWmiaKhNywBrNzWGHsRWzT8yLw18WlJmp6pZxDhx2Pfu+\no61r2qbaEsv+/vWzLOQATdOg9RV6s8wLRpdhVmVl6LdNha9gm5wzx9ORt7cjZOjbVrIjjQz76rrC\n2LZsAPL5dVWVfEkrk3ByUYDURb1wtfKvMKbn52e+PD0zTiIPWuZALIYLKIPBUvGZYokPhV0RSnBC\nXbeCYa2rwlIQCdE6xJCqLmONcJJDzIyLx7+ceDtPYjCaF6apVEsU3bAxhKzRpmIYBkylsArSdB2I\nrryG0DR0XUPOsvjk8p91UW+ahpyrsiFBbS2msXRtg600IUf6fUvVGmIYUCpJFmgtrBVJq5/54x//\nhct8YZocUSeCFtRuipHgZ5yzOFezuJ7L5KjOgboyDF1LinuapqWuZaGLYeI0vnA8OYzdsRtuub25\np2ktdSX3jUgs19MTZUh3zWtfYUYrPKnOYjhz3uKcLic4GRDWdWFrlM0/K0XdGPY3B4bzBfX8Kmx0\nH0tm7BpKoLeNIBuKmoLtPVqhautAUv5SF++5QglJ96o5TokqJ/bWsNeG5Xzhv/6//4O/HnbcH/bc\n7/fcHAb2Q0tbN1i74rSurZ3cyuK0hmFUtsIohc6gckArSduZp5l5mVgWAVfFGAhRFjej5foIc28N\npgO0EZYRYtTTNlOheKwqlqx4uzgBkWXJDPDBl9ZpuQ7FNSmnkFz060U9oMrpRYtSTGZTsfwMkRgi\n2YsENvhYzEsKZTLiEKKoV2STVhSqZBns69IPr+tqe89Wme4mvcxlX1x/643PIj+zcI6kol4WV4JZ\nJIRiWWaCF0PTeHEoBC2BlnzgumkZ+oGuaSBFtFa0fYNtGoZDZloC58nzNs4sPhGWQMpnvHPMl4m2\n+Ce6tvnJ9fRnWchFldDQVA3L4iS9Jkkgr0JR4umkUkeodCvUffZOKvG6LsqGViR4yIMlErUaYQ+X\nKqCi6EFrghU8asxJrPrWymJeduQQA4vz5BSZp5Hz6cg8ObxPpFTUL0ptQ6IGahAAAAySSURBVDcU\naKM2M5FYjZMYiBoZplV1XRLcKZV6Ud0U/S5Jo6nI2uB8wvmFzCyTbedLtp9Ul8YabAXnaUK/rn3G\nStjhBYV7zdIsA1yli02c4uarcMvC5TJyuUiQhih3RNuTMnIiKpVMvau34U1OgaZpaeqWlAQXO55P\n7Hc35IxEWIWZTCJpOck4n6mcxvmGxWWqWWMbTdskkq8gTYS+x9iaVBYSoww+JELyKD2iVCb6C7th\nT9/vhD+jq4IyFpUPbMslKwBJslAlJWYlStYl6Umq5bUvXZRKyP+nc2bYDQy7nrqtiLO49oKP2z38\nN+2dEiJSWxmeGWM47MV9Kqc0SrWeMRl0ypCC9KkRNkyjMoe64pv/v71z220kObboyktdWCxS09Mz\nDb+d//+s82DYMNwtiSLrljc/RFS1zvG8GDAwIJDrAwSJYkVlRuzYexwZ3UBnOlIx3KaNGD+YHoH3\n+8J4PnEeOs59r9vGToMwJES5lAC67OWdO0K9RXb1uY20+2DLsouzTr3cjUoFHUeh3eW4QDHpuE04\nazgZyy9dz7dx5H6fRRkG/LQq1ud6f2kdNyeZSezfrb13ba3F62eWip7GUyZugbyKBW4miaFYyiIb\nNF5bLbvJmHiU5CISXdkhkNu69w7fWJZlk783ZRmoF7HUKwBZB9NFb1pkYi6EYAmb+ADtyVWN93Rt\nQ9/646a3NxHkpue01eN1Vrfp8NsQk2GNhS1Kq3X/PArozkXAag99Xbf/o7L6zJ9SyL2Roro/sI0m\nq1jnjyGWKTrcstJikfX3jft0x3nPyy89l+FMq0naOZfjYToCJoDdpEceZkfJQf4RMciXFyuJ4ToB\nN7mwLTPLPLPME9P9Lq2VLBIqg/TkCqo/FSmMLn+gUig5pUuGY4dvpMd13D7W9djYxBhMcWRryc4f\nygeRh8VjiBdjlAKhV8gtRt4+7syLtIuulxMvl7NejR3icewOhYVBFh5a50kxsq4LuWTujzvrutB4\nx+Uy4JCk6BwzDidRZGoZYIwhhFU3T0+UDPf7B6YUrpcr3jom/+Bxv7GFxBoDOQeMCfggLaEtNDRb\nS7N5clgoCUgP1vWEb04Y29G4hr4bcDaSsczzxDq/M7UNy/UXvuRvfPnyTRQWWHnAdcCYtThYZ2l1\nG69ou8s7T9N0lKY95K1ZC3hGlEySISolpe9aTkPP6dwTWaWYx0xJ+TjN71t/bSuxguMgRdZ7x3A+\n0+ip/bg1ZHC54LJuAVpZFnI5cW4cv/cd//Pbrwx+xNqOWBwpyC3v/WPmPq80tzunU8d1PHMZToxD\nz9B39I3DAdsiiiLvjGxRe7GlMOxyPeQ76axGHmbaTVoZRU2rxFdfzayKFLFSshS9cohsKMbgbeHS\n9fzl6vjnmpjiwsKnFC0+bSPqXEnaXzpPYJcH22OY7b34r8iQXOdOa2CbN0oOFFM0Y3rXkKuBl9nD\noQ0uiU5cXrqG4mTBxlmx3CiIim2LUZaV9heWDjopn0QM2gY2QHCREEXOmkLg3PeM48BZ5dMS0LJ7\ntRjxeMqFsM3Mq7QwYymEWFhDYV6TnMLVBM6geb4AGWIs5CB1a56XP66p/53S/J+xR7ntJ+amaX72\n4fTaKteVVU2z5EONMRyxaFa1nfswJOcsfTXN0BwG0cwmlQp6L4U6JjkFdV0nFgA6DFvWSW1fJV8S\nEuM4MC8Li5O+MYgXt7Fi0nT4HR99RBmg7S6Ibtf2hk1aOnqKt0aMjAoaAuGcRJutm5wQd40w7ijq\n8jMlp7L1zZEesq4byzLx48cPSQVSU7C+6xjHgS8vL/z+21dab8X9zzqG4Sz67FOP9463t1fR8q+B\naCzeiuPicBq0HbFye3tnmh9AYRxHxvEq12sj0tDTqaNkQ9git/uNv/39f3l7/SshrHgng664JUqJ\nlLwSUyHFOylkcujpwhnnFkppSUW259rOs4UiyS+sbNvE29vCND94THeG05Xen35e20E/Vy1EmrMq\nUj049bL9ajDyAAcJwQ2rBFiQC23X0fZy5d0Dwduup88O51WVkvbcVfl/eO/Ev4fM6dTy9esL3iFW\nviTIiVzsIZczIENKZJPSOsPYt1ybhi9tz8W3DH0vs4j2dMjQck46W5Gf87EEHmvAvd0lWKPxtN5J\nHqQtdI3jcu4ZT60so/GzVWmsIadCymBsw2m40HaD3Nys3mCbXk+HEnCQi7QE1y2wrdKGxMiSinEZ\n4zr+8ZiZNFg9ZQngzqoFR+W2P4Mb5HZsjZh3GbMP8nblj2SOWu1Pz4u0GXIWzxQch/oF7GFUJf1w\nsLbQ6i1a7xVHS4xcMEWCxBvvdSdEbtelGDK6i5DVujZlchRlk40QklFrDxVbODm8iXeMvpqMkZog\nfxHFeLLNbBT+8f2V948H07IRghR8o8+uV//7tmnxtsE4j0fkkbtH+//nzzmRazr1bsE6zTNbCOxK\nij25elcEOOdIGrG0hJW27+j04T0GJDkxTzPzsrCGjWGYSSkxTbIJOpxOXC8XTr2YBXnXaG+7sG0r\nj/uDNYiGs+9arL9KYHPTSIgtFu/3JR6P846Us4QMh5VtC2xbJAQ5ZeT9i7tfHWk+TczVWjeLnega\n47EoUnSi73WT67NGOhfxud6vqTmX47QuDpHqC6PeKqe+5cfbO2+3Gy+Xketl5Dqe8d6oVKplvJxJ\nacPo1J0sv28uP6V16zYzLxPbtjCcT2InmwMxiabVWLA4YoZcHNZ1DMMLYZu43xYtkhlSIKeV5A02\nbqRwI4dMChsxZtou4z0UY7EUvIVgIsYGXNmg7Kb/8tk92ht9M9C1Pd53ONeQUfMkkBabytGkry9e\nFuu6crvfeUx35nkhaa/Ue08qBdd0DOeRj2ni8XhgjKNtrW7lIhI9HcRJDzyTi6ZX2UzXWbRWiBwW\nGbZuYVOtu0TlifFSobGGzlrGtmFsW1rnZGnMQt84bNfIQTFJdm3WU15S9UzKhS1DWAvTGrU5VPA2\nMW0Ljzkx9A2tt3Sto2ssDo910LQGjOc06G2kJB0mO7xrCTGyhYCNcqCKLgIeYyJtLlhnmKeJlDda\nMr+0Lddm5X1fRNPeO/7nwe1zEs+u+NoPOZ9dD432zvenSd8w2rVPKkdMGESHjnXiy6OyYVckb9Wm\njEviA4PZ4yA1QNwZusZ/+pnweSck5/0lKsokShEfnax2BjntoxHVmsuhtMnSGfCuo2k8jc5eHlvg\n+/uDf749+LjPYn9c9pZtZjOZJmY6CU7FmKg3xV1M8ceV/M/pkX9SEtzvd368vjLN82HqtC/77FtT\n3vsjhGDLUc3k5X4mfT35sOdl4fbxwbQsPKaZeV54fX3DOcfLy5WUI233O41ajWZdG1+WlXmeiDni\nGs84jhQD57DR9x0Ug/cdp/6sqece4wzLtvKYZz7uHzweM4/HInFiQcJhcym63mtp2n0in/XWkElJ\nTPbj7vFRNH7K7W92fZeXIm9+MimZY5sxqaPbPkvYPSecFa+Hjzu83268vb/z7etXvv32FWcsfd9o\nKG2h68TNscSEs40OYKU/t+jiVQgylbfOHNmVkIlxYw/hjSEzz5F5kWLbdQPn8YXH/TtpWyglYZL4\n4pgEJhtSmsUXOyQwDmtbWr9LzrI+oAlrIpaEMSoJTfC4RxY7MTcnzsOV83ClbWFL+Vg935eGnJf2\nx67imaaZ79+/8/r2qp7touzpTz3vHw+K8by8/Mpjmpi3AMctS/qoRReSJIdSpal5n3lItNnefTdi\nsXmoaHZNv3iPyKnSOxlWd07kbdaIWqTkhC2ZVm9/KWUdNjoMYji1xUzImaBS3BDECKrozWFeAnOX\nGPrEqbNcxw5rWzUDM7Te45t8zFQMYvhmjSzH3aeJIP4Uh5rFmEzjRZrXNA3bGiCvmJA4W8fZOVwR\nz6OYxOQNJ/Ob/WQMHHMsw956yvpyM3obkpqekB629eIljzW63q+e9EUHnMVIazDp4NQYknSDxGLD\nON02LTozKseSWMhR5OlGNo/3Fufecv0sS9bBFllzYMmaUuU8XdernNdRise7XtuTjfyP0o3v7x/c\nHguLGo6J4m6Pdksafu3URiAQU9ZCbnbNx7/X1M+LFZVKpVJ5Pv7YE7FSqVQqT0Mt5JVKpfLk1EJe\nqVQqT04t5JVKpfLk1EJeqVQqT04t5JVKpfLk1EJeqVQqT04t5JVKpfLk1EJeqVQqT04t5JVKpfLk\n1EJeqVQqT04t5JVKpfLk1EJeqVQqT04t5JVKpfLk1EJeqVQqT04t5JVKpfLk1EJeqVQqT04t5JVK\npfLk1EJeqVQqT04t5JVKpfLk/AsNeRHC6zkzzAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transformer = tools.SimpleTransformer() # This is simply to add back the bias, re-shuffle the color channels to RGB, and so on...\n", + "image_index = 0 # First image in the batch.\n", + "plt.figure()\n", + "plt.imshow(transformer.deprocess(copy(solver.net.blobs['data'].data[image_index, ...])))\n", + "gtlist = solver.net.blobs['label'].data[image_index, ...].astype(np.int)\n", + "plt.title('GT: {}'.format(classes[np.where(gtlist)]))\n", + "plt.axis('off');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* NOTE: we are readin the image from the data layer, so the resolution is lower than the original PASCAL image." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Train a net.\n", + "\n", + "* Let's train the net. First, though, we need some way to measure the accuracy. Hamming distance is commonly used in multilabel problems. We also need a simple test loop. Let's write that down. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def hamming_distance(gt, est):\n", + " return sum([1 for (g, e) in zip(gt, est) if g == e]) / float(len(gt))\n", + "\n", + "def check_accuracy(net, num_batches, batch_size = 128):\n", + " acc = 0.0\n", + " for t in range(num_batches):\n", + " net.forward()\n", + " gts = net.blobs['label'].data\n", + " ests = net.blobs['score'].data > 0\n", + " for gt, est in zip(gts, ests): #for each ground truth and estimated label vector\n", + " acc += hamming_distance(gt, est)\n", + " return acc / (num_batches * batch_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Alright, now let's train for a while" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "itt:100 accuracy:0.9526\n", + "itt:200 accuracy:0.9563\n", + "itt:300 accuracy:0.9582\n", + "itt:400 accuracy:0.9586\n", + "itt:500 accuracy:0.9597\n", + "itt:600 accuracy:0.9591\n" + ] + } + ], + "source": [ + "for itt in range(6):\n", + " solver.step(100)\n", + " print 'itt:{:3d}'.format((itt + 1) * 100), 'accuracy:{0:.4f}'.format(check_accuracy(solver.test_nets[0], 50))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "* Great, the accuracy is increasing, and it seems to converge rather quickly. It may seem strange that it starts off so high but it is because the ground truth is sparse. There are 20 classes in PASCAL, and usually only one or two is present. So predicting all zeros yields rather high accuracy. Let's check to make sure." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Baseline accuracy:0.9238\n" + ] + } + ], + "source": [ + "def check_baseline_accuracy(net, num_batches, batch_size = 128):\n", + " acc = 0.0\n", + " for t in range(num_batches):\n", + " net.forward()\n", + " gts = net.blobs['label'].data\n", + " ests = np.zeros((batch_size, len(gts)))\n", + " for gt, est in zip(gts, ests): #for each ground truth and estimated label vector\n", + " acc += hamming_distance(gt, est)\n", + " return acc / (num_batches * batch_size)\n", + "\n", + "print 'Baseline accuracy:{0:.4f}'.format(check_baseline_accuracy(solver.test_nets[0], 5823/128))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### 6. Look at some prediction results" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAGJCAYAAACXcbjTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXusfUty1/epXmvtfc7ved93Zjwvhgz4gQciRgnCQIhM\nLCvEECk45iWEnKBABETExDwE2CYJFkEhIUoiokRgGCNsHJwIIuQACiQIcBIr2AlMGOzYHo/v3LnP\n3/09zzl7r+7KH9WP6rXX+f3uzHh85o53X93f2XvtXt3V1d3fqq6urhZV5ZiO6ZiO6ZjeuSlcNQHH\ndEzHdEzH9PmlI5Af0zEd0zG9w9MRyI/pmI7pmN7h6Qjkx3RMx3RM7/B0BPJjOqZjOqZ3eDoC+TEd\n0zEd0zs8HYH8mK40icivFpEkIvdE5Os+y3e/S0T+w8+x3j8kIv/t5/LuOz2JyC8QkQciMovIv3XV\n9BzT55+OQH5MbzuJyG8Ukf89g8ArIvKDIvK7ROT9+dn9/H9afP+aJxT9kqreUtW/mev57SLy598G\nSZr//6yTqn6nqv6Oy34XkQ+KyE885vf0udR7VUlEvl1Evg1AVf+Zqt4A/h6fI/+O6YsrHYH8mN5W\nEpFvAf5z4E8CL6rqi8DvBL4GeFlVb6jqTVW9mV/5SPmuqn//isj+nJKIjFdUr4iIfIGKPwL2l3A6\nAvkxPTGJyG3gO4Dfparfr6oPAVT1h1X1t6rq/me4yk7TFpFfISL/QETuiMhPichvc3mfEZH/KZtm\nflBEPuTe+zM5/10R+SER+RXut28XkY/lzx/Mq4hvFpFPAn97ScMlNJay/q6IfGderdwVkf9RRJ52\nv/8yR/8Pi8i/tHj3PxKRvw88BD6UVyT/X27Tj4vIb855RUT+iIj8ZF4R/QURubVow28TkU+KyGsi\n8ocvo/mYvsSSqh7/P/7/2P+Brwf2QHib+RPwIff9rwPfekneXw186jFlfQC4B3wTMADPAL84//Zd\nwOvAR/Nv3w38ZffubwGexhSWfx94Gdjk374N+Fj+/MFM83cBp8D2s+TP3wV+GvhK4Brw37uyvyzT\n+PX5+6/J35917/4k8BWZztvAXeDD+fcXga/Mn78Z+NFM73XgrwJ/cdGG/wbYAh8BzoEvfwzdfwf4\n5qseX8f/P///jxr5Mb2d9BzwuqpWu7DTMB+JyK983Muq+g2q+p98jnX/ZuBvqer3qmpU1TdV9UdK\n0cD3q+oPqWoE/hLwS1y9f0lV76hqUtU/jQHcLyxNWKnr21X1TFUvPksaFQPUj6vqI+CPAv+miATg\ntwJ/Q1V/INP0t4EfAn6te/e7VPX/zfydMUD+ahE5VdVXVPXjOe9vAf5TVf1JtVXRHwJ+Y66npO9Q\n1QtV/b+BHwF+8WfZlmN6B6YjkB/T20lvAM95wFDVX66qT+ffvlB2XYD3Aj/+mN9fcZ/PgBvli4j8\nfhH5uIi8JSJ3MG33uceU9anPg07/7k8BU67rA8A3ZqF3J9PxNcC71t7NAP1N2P7Dp7PZqAifdwOf\nXNQzYlp7SZ9xnx9hmvsxfYmnI5Af09tJ/xC4AP71K6j7U8DP/2xfyquE/wD4RlV9Kguduzxe6Hw+\nNuT3Lz7vgdcwsP2Yqj7t/r+5WKF09arq31TVr8PA/p8CxU3y05gJxdcz0wuzY/o5mI5AfkxPTKr6\nFrbZ+V+LyL8hIjdFJIjIL+ELr/H9JeDXiMg3isgoIs+KSDEXPA6Ub2Ig97qIbETkjwG3vkA0CvBb\nReQrROQa8MeB71NVxez23yAiXycig4iciPnOf9niffsg8oKI/HoRuY4Jg4dAzD//ZeD35Y3NG8Cf\nAL7Hm7wuoe2YvsTTEciP6W0lVf1T2Ibht2LL988AfzZ//4fL7P6LiPwNEfmDn2O9nwL+VeBbMDPO\nP8I28ko9Sy26fP+B/P8/wzYTzzDt2OfTlfc+JzKBj2GbpS8DG+D3Zvp/Gvj1wB8GXs00fAs9wPq6\nA/D7gJew9v5K4Hfl3/5crud/w8xNj4Df84Q2PK5dR5D/EkliSsMxHdPVpGwC+Z8xD4tvUtW/dcUk\nfdZJRP4OZj75c1dNy9tJIvJh4P/E7Ov/rqr+xSsm6Zg+z3QlBx+O6ZhKUtW/h7nsvdPTO0a7VdUf\nBZ66ajqO6WcuHU0rx3RMPzPpuLQ9pitLR9PKMR3TMR3TOzwdNfJjOqZjOqZ3eDoC+TF9ySf5PELl\nfrEmEfmOHGEyLU52HtPPwXQcAMf0s57kMMztfRH5/fm3p0Tkz4nIyxl4PyEif0BE3idXEyr3iybl\nYFnvB1DVbwO+6opJOqYvknT0Wjmmq0ofUdW1o/f/GRa46stV9W4+nv6Lsj+5P36fHlPGlSURGVV1\n/gIVv9zQesd4yhzTFzYdNfJj+mJLH8UiGN4FUNVPqOpf/QLUUw8EuRCwv0NEXhKRT4vFXyf/LiLy\nB0Xkx0TkdRH53hKmVlZC4IrIVkS+O+e9IyL/h4i8kPO/R0T+moi8ISI/KiL/tqvn20Xkr+TwtPdE\n5B+LyC/9ArT9mL7E0hHIj+mq0mXa5A8C/3E2fXz4bRcm8tdF5Fvfbn5V/Quq+s2Lx78a+OeArwP+\ngIh8bX7+e4FfB/wqLHDVHeC/Wrz7q4Avx0L+/nYsHMB7sbC7/w52shTge7DTne8GfgPwJ0TkX3bl\nfAN2FP828NeA/9LR/PNU1Z9OPaZjAo5AfkxXl/4vHxFQRP6V/Pz3YPFVfjfwT7LW+vVPKuzzDJVb\n0nfkMLb/GPjzwG/Kz38n8EdU9dNql2h8B/AbFpuMJQTuObADnsViiquq/iNVvS8i7wN+OfAHVHWX\nw/H+d4C/KOPvqeoPuDgtxzC0x/TEdATyY7qq9M8vIgL+LQBVPVe7T/OjGBj+FeD7xN248wVMy1C0\n78mfPwD8Dy4M7cexgFwvXvLux7CwA9+TTTV/Uuz6uPcAb+ZQtb4eH0DLRzJ8BJwcvVKO6UnpOECO\n6Ys2qep94DuxCIsf/FmochmK9qX8+aewG3684Lmmqi97cusH1VlV/7iqfhWmgf9rmNb9EnY13Q33\n3vux24WO6Zg+53QE8mO6qrRqIxeRPyoiH82hZ0+Afw+zSX/iZ4GmPyIipyLyVZid+3vz8z+L2bLf\nn2l8XkR+3WWFZL/1rxaRAbiPhaONORLiPwC+M2+IfgS7vu27v3BNOqafC+kI5Md0VelHFn7kfzo/\nT5h9+jVMg/1a4NfmK9R8+hkLlevS/wr8GHb58p/K17IB/Bls4/Fvisg9LGzvv3AZLdiFEN+HXWTx\ncexezo/l334Ttrr4NPD9wB9T1f/FlXNZWN5jOqZL0zHWyjF9yacnhcoVkQ9i8b3HJ1zS8EWTROTb\nsLjlG+C6Hifyz+l0BPJj+jmf3olAfkzH5NPRtHJMx2TpqNEc0zs2HTXyYzqmYzqmd3g6auTHdEzH\ndEzv8HQlQbO+9nd/twq0xWxxRBNBkPqDXysI6h4Ikt/R8lBqId1b5ZuWf+Qw11qSdq85tepCtKMD\npD3vyrVPbcWj+Yk4InJbOyL7+v2CqaNZAJXla1a6LFdZoXLUc7ajR9vz9Qr9d7ncEFHb0hrVPmnu\n4y7jZZU8OR20c5HUl6WIiONnGTc2SrT0o2ruktYv6qrSVfqWA3nxW0fG49vX8ao8WKn7spubn8g9\nXRlkl2brSxbx47kvQ1zetSyVQ6qtTeLmAitlOxLbiM2TeG28dhUe/taP/ZW2q/Yl+vFe52OpX9v8\ndeUe0LYyHzj4tJ46mCkPVPnb/8VvPCD+iqIfZmZI+ywiB2Bs86oxSCr/erBen0jSddZluQo9PUgu\nchRS8z+6eGcJ4X1RstIjHLT1gMiarcziRT4WX0UWP/WtlUyx/2afvGSTyu/C41qKEyw2/xwRblC3\npmonOEsbVieQyygcvuZed9k9o/o3Ku1emIj/e1i6dZO0fLW+piiIGvBoAaNl81Zorpyv9WY+1WIL\nn90YVA9+7UvttQUmyMqzS5M8jsN9tkajf344Rnw7l4AvstLjFcTfBqmV1oUQW2C1qua6Wl6t3pxl\nbD2hThHEg/kKnbKsGMn1iMuh9blUWhoVXqE5mG8LAVSG8JO4dSVAXogWIU8OmiC7LO/KoGI5SFZH\nTPlYhAVOSVqH9tIVh7+6rtCG7pcxuQ50cR29RMYDii8TN4c9upxgtQIRpxQswFPLIFqb+bKYnEth\n1VNahZQIKkUw9EuIRtai7ArE/q8TRquK30LLqenQQtjjdQPopYbk9SMbj3gUNV4JSFIQLTC8qKh8\nbEC2Qg1oeTeX2Wl0LV9lqweIpcQ4UGi0Z4VTHnrwV5Yj9lDk16YftmHZMjfufMktqkABKlaAUTrg\nCiG072uDwFGxpLXRYmNbpaOm/blsRVQAfE3wFFLKsOjGMQQPXl0b13l5uTB0aJLlUeu29fwlXY1G\nvgrA3qjiHruGHc6PMkEcSPbC+5L6F4DTvSCLgX0I5K2MxUS6ZODL4r0DYsqfqtn2v3egdGlRrf66\nQsjAtErWZaPVY9QyjydP+gfrPHL6SPeiLv6W4jPyq66xoRP6rZ3lZelKOqRfWE7ABbVu1uSXfZ7u\n1UVrnzTePAkHlRkfZDHAl1zVKpQd7dL/dtjZfU3tJV39veZzE0A5yN4JoGb6KOoPeT62Qto09eoR\n/bAopXj6fGM72ekF5trIUyeLPVNXFKqSJWvjtYRuHqwjU1FGKnYv8Kdx5FAhqmtj34e9Yt8z/8Ak\n2acrvVjioAvKWO5UCDfQu5fc77nRviM7TQto9rgy2Hw5y5lxAC/Y8Gm9JQ7I/VJ7vWWL9lX6xAa9\n5MG5GC+5pgVp5c3F0LhsAjvtshYvK/lKadKPd59HfZuXYLnQcC9bdq/USOkDx91qUtJlEQelOv4s\nJHDPobU6fbFLLXsBmq7V4sfJYuLpkshFi3VJRv512b99g51ZcVlg91XobevinkNZUcACqLpPeQD0\nxXTd5/leHgiFPvvSzDK9sF9YJQ7oESlrkYWwqfylY2YBWc1oanWoh4WDhooWGh1DM5jngmp/H+BQ\nWy5ZGaXsNd1kZfD6Obg0NNY1TQHBBfMv08bhioA8VPCiMUP8ZBTqGrH8rh0kYo8WQ9DPqir9Hbu8\nkbUCeyu1gZB/GhbAXmh1w8R/7MpdvOTyy9oSUvqB52Vwm8ihtS0PxmoZVONJBXBXtVaRnzMuqdTC\nqcajNuCWE8jo6GiVntuH5gfJQkIcr5YakJhSKW4yaWmnPWliNeW/zbosS2GdeVt7VwtQOZ7nOiHk\nOay1XJ+q5bNOroWe1dloIanjcdcVDSQ7oVBLFJrZSTrG1zHn6dfWbi1A0yqzbHX8OlDwLZOFXXhB\nuBh7HJnufUeLrztIoD9btWhD177lCsyN1fyO5tVq6AJBtvkbgnurTJja4kxf2aMpwyQdyP4GQnUs\n9eafOgiCdtkrT0UpNvCuKz3HXb+U30QW/Sp+HnmT1TqYX6mNnP5P/dLkYel812UFk3FAoE2j8Rpi\n4VMFmBXbVf99BUarLdwv12Bts80Lk17Lk/6VPBjWPCCW/SSlZLH2Ni1CqBqCr6P+0wNpzn3Q4v5B\nz4diVy401PcraNOBhF/qei4AVZvvgU26CddPXmq/Vu4KXQsaLJUXVtrX2bsXbXWSuylSS756FrWZ\nWfTG2kOyoGk5thcftBuzrS5thftu7niFf94x9LK2rqS+I6izpa/U5c8t9sPKl7Eyhfp5rq0dtZ2l\nT/v6emu7vfNEe71nj5bqpMvdusCP7/aLDTk9eMMZjWjoJG0eyLIU+5RW7O3eG+pyHHJPpDf1Xrbi\nuyIbef2Hfi3iJmWW+up42nVtPw/bu64gcWB+OfP6MvqdellkSI6Z0jXhwF4ni6lQXsl/i4dE0dta\nM3Wx7BU/NhZA4SvxDDrs7CoM18eBo3mZoYFvqduDXm8CkcWbB6XUh31+PezfMlHqOHCTUv20ogPx\nbjR1GuwhfR4/+rGTO0rXMkvXj337euBwBC8fHIBIK8X5QJQJcDiwHUnLelf6Q7AVQ19xTS3vks4V\nuunBqzSmCYI2JpsZydNb2rlCS10NNYHh9w7UV+zt8G5+1Acirgv9CmKp4EilqY7xzpbenncdI7ry\nvNXlFQxjv/dc0sO2u/aUfJqFX5/ziwjI26T2Qy9rzAufpwIUzWtF1l1ypF8CHWpw0Mu2VnP5LLna\nZrJxMt1h5nI3PO+TUztIWj7nPekVkv5NSV25nuaDSVZxfSHoWo21pNo6NcC19vlldD+gqmVSltq7\nW924pXHvK6INLCrNbgLVVYjjkyNeqinCMcjVtWYDr+/6ceSW89JX3gDGvxs8DYvmVFD0HHBj1NFi\n5Lnxd4jmudyA31/o3nFVVG020G2EiVzChAoQ/lenRXtJnnFoWVIFtYJhHd1WfqW5mvAWwr+CrTOX\n6NLmXea2n++LfskCobNWd5N5IUmdwCsrybaYbi3VCqZtTGkmwwNvo9tRXGnUxWAJi+95djobfJC+\nf7WS3zrMai7j12sYGSd0qVy0dOUa+RLUD5a0vrH0wHWYd2HPkgJCTUtZDv+1guXgg9MUDn46kBbt\n47Kzcg827a3nQQdlThi4xtTPTSnrAR4NGeCVaxq5LTPPj3s2khg0EVJk2Gu2RQvDEEDMpptSIqZE\nVAUJEALIgCDMIbATYVZFo3ChA6+HkXMZmCWwXDIu8aa0OeG++4kcONA+JE9GcnsqLtC2nX2vWLv7\nyb34uuwiVxd0B4Yc7jX/8vKb7y/6rnFtWM45yUBS7MRe0Pv2LVcvjcCMOs47RbravDZOnfzdvk1u\nVLVVL2VSaVttk/aaaJH9FWBaaoqKN2po/Vdd+fYxdTkPDBFSSlhMxTomDvuyqTG+kNSEp+8s3/ZO\n+PgVAd0H8SaCOvcOkUW9IKvvlQofd6Dejy3tnhxYCVy6Uq+Vkg42aGrqOJ3BYeE5sFJW3bXuDOql\nyGUn02tYtAnX0eM6dm3HvthZu2bIYiAUtUKpk6u6jnl1sWtaHuh1sLgJWX1L+zpLus3MzwsXfMXp\nnu0Eo0bY7ZB5B3OEQTgNWyQIc4rMcc+cZlJKSBgRmexvGNmLcAHMKDPCvSj8k/3Iw+mUNG5JmmjD\nz6On/96AvCNU29GNCoSuMUpRbg6PeKyZghoNmnndcil0/V3ml7SuaXkKYHbjZwHQFdSdZl050ejv\nAc/KLrhcTlHKos0tv2uZ9DxoKxU9aM8BVw5xsvNI6WSFb0P9koWIa7dnUX1A3QvsKqssdPXVehHG\nFJlQRmdiaYqutVoyHU1stfGvVcLYKjcBSUMdszOLvqu16MEvvWl0waQ1MF9r68FPb+c9qeOhE0lL\nPFqkK/Mjtz9eczvcdfen3zrt9pLGSCftPdiK/3OYRwRNXqsrn6jPKi6UpZefXdXLQlhbdpPz9/4c\njqay2XYo2FtFVbssg8AjXv5fAUkZJIQX0p4v38z8i7eE4dYWDTDfH3h48YDz+SExCM9unmYMA7t5\nxy6eQZoJooxMDCExTDBOQopKjDOMwl4ir8x73rq3I117mu31p9inmVQAWYQkbSgmlKSQCCTEJpwE\nA/UM9Cq2qNROzWrAb6tKrWVLeQ9BQ2GJGzvuqyZjT8r5Gxg33hYaKvhjl3Kq1MVCJ2yWM0tpLnAl\nz4HZSxTUtEPjR3leQNF5PNSGeGDX2s2aB2rdcBVPWxlI7ryogDpPH78Y6vQSB2CqBRzz82zj8d5G\nkk1kykKYLV0YcYUWwJViNxJGVa4x82zac5uIDoFBYVBlSGq0iyJJMo+F5FcmkmkVIYiwQ9kBexXu\n68h9Ru7rRCJlWkIV9t5cVTahc1d2/Sx1DPb9evhtRaGp/Ovf6A/ylf6S+m/vSL0cUy1drdcKnrBD\nT4F2ArSgKE6SX9KiRfneDtctq1zSg3cOiKuahnSZWrm9C1w/qDuaCiB3dCwPhOjib5dr8W6utwzL\nuiOvnKBcV+Uk2aRICQYVZoV9gItRkZSYIsicGHYKOjCMI0MYkTAg2GRCFB0GwmbinAvGdI/xtU/x\n7ucu+OB1Ie7PSTEaxaHZIotLZAJUAhoCYbDykypJEykmGANIyJMxN0t60C0DOdWNLKmgUIBEQqj8\nSUmrdqPJJpKikEy4lMmq0Z5raAJRVZnVJn0QQSQ0QeAETRVAtS9MUBUAVC2eRgIhELP5RoEUQKL2\n+6olbx6zmkBDLjO3MWkiJUUkVFDT8p+2YirvxISFBuz/Igg101LeqcBhtKcOlqSCWO2PshGdK1RV\n0iWbqmvfLJ8yEDhR5en9A94zKs9uA2kIEBNhHxlizALO5pEUIRCEpAlNiaSJMA6EYSDIwL35IRca\n0WHg/j7wE3qdfzw8xXkYidL7oTRRjVv5UrFmsWB/zP6HP3PCAZ6191ee12elUj+m9ICfy3R1phUn\niMCDdn5cn7us9XDB4xvV2tyD62PpcF8rA8VlkXwMfYmxNU+vTntp6p+ug7W4v46KWvaaq6IcfpJm\n+xSFDcoJMBIIe6MxzTANE9vTU+K1gXAuyD4x7BMSBRkGwniCDKGSp6qEEAghMEwbJM5onAkP3uTZ\n2zf4UHiGxDmqMyWokPfdJQgaQp58A0MYmcJIUogaibojMCFhsBVPBnFvGisTWSWXlRwXlQokMg71\nvRhTfm6/JxSGATk5sdXDPCNnF6S4R1NW2xV0GEibiShASsgcCTEZqIq0ASYGfgXIrd5gAkHMsVlT\nIqUIIaBhZL/Z2G+AaiKkPTJHt9LLMJnRXpPCYAJQRUgp2V7GPBPGkbqyQbOgKn0m9bsEMQFHFjpl\nuJWVSBGKipnIpGiTzehQBJOtrtw8yKtZ1QQpEWN+cxiK6M3KZttnKH1capiGgS1wY3eP58eJp8ct\nSSClGZXIQKxjPWThZYAeSBqNJxoZdCQwIoy8NT9kp3uEiYcXiT3Kj25usAtj9T1rw2th6++ncpOr\nUuZiGXSLOViVu6VDZSmnVzD9sftl3lZooZFa7lq6Io28aApNgi3NBt2yRlpDKBJ5mbwgXUjMx8Up\nKFpZmUS1QzxQFyFTXxKaTVz9D+6lvjtFtWmprtsK7K0KJy/c3Og6LMHoDmVCYprFNigngzBtJnSX\n0BiRvbI9vc50coubt08ZX76LXjwCVYYQCNMG2W6N53NEo9nSCYEwDcg4kARi3rQdQ2AaB+bNaGCj\nptlqnCFGtLw7mKavISAhICKMEmw3f7blsAQTJGZ5KeDTYmAggowDOgyQFE2mjRENRBRBpkAYAoIw\nzwk0IcmgLoURbt0gvP/dxre7D9BPfhp9NMOsiCbTKrcT8YXbcP0U2e3h9bcY7j9Edns0Fa1f6lAo\nKWgB+YAw5KeJxGyAOWyZb56gpycEIDw8Y5h3hP0FiljMDgzgi2BCIehg5YWAkohpJqY9k2whDG5/\nQiE1WEo0PobBDuiYCVHzYZjM0xAowlfTnMswnqcy1kLW6lMizXPTqSUY4MYIMZH2EZFAmEZQ05RV\nbWxWZXcYzNFDDOCn7cQwDJzpBWEYYQyMF3vmlLL5xFZEItLisRRFT4VAQCQwyEBgAAls40CIEZLA\nReRUZoZhj4w2tqX2VZlWHrkXKlVViB0O9LLMa5tuQ/Qx0RS1ALjb0F8im3/u2ruWrs79sNiVPYMK\n4a71NRBO5exyWeS4uArkvay7VDsv/ar0zKy1SVsC555sJC2ERece4cC8jICu9DWnw0KQp7u92sn7\nKnSKu5X9F3RmG4TtGAjjaBuYqE3spISLxPBwhjlBghBBhhGZRmQzELYT6XxHfBht8iuIBHQQZk3s\ndjbhQ0yEmBjHkTSoaWdkMB8GUkqEcSRME+Nmk/2wAgHT5AIwnJ4wbDdIENP29nt0VhgHZLJ3ZRoN\n6IYA42AmjTCg04Rev5YFqxJGIZzt4NEF49kFerqF61t0M9n7N64zfuDLkDSjn36V+JnX0Hk2oFJB\nU0Seusnw4Q8SXnwWvf+A9PEfy8MsILdvINPGBul+B/fuI2cXSFL02ilcv4ZcOzGBNCc42xHu3yNt\nJvSpWwzvexfh2aeQcSC+8gb82E+ir91BT7bojWvIZjJXzLsPkLMLNCb0xg043SLTCDEic0TmGYaR\nsJ8JZxekkw26GY1nClzMjGcXSJqRYYBpQ9pMyBjMvDInwtkFcrFjGMRWG1FhzmYGxWxxEtDB+l0E\nSEoaTZCKAiGQUkBn21LMMpMhmL0ZhrpKKDO105GCMAJBE0GUoEqIisyaN0wFGRqQexfXdjparP/K\nCiJFpjAQzxOP3rrDPiqcbNkGIQRt87KHjUaXSieglyt8VPMKqs3rBupeS1/Vy+sfvxYv2n5h1qVu\nl+u6+9W5HxabsAHU4uRUaZ14Ji9cwPriFijsu0YOOurgXcpyU5wIXtBaaVvvmKXnTXMh600N/Zuy\nfHBpWsiELqtIPwACygBsQ2AzmpabkZiQbbQyJ+RsxkwBZv8N0wbG0cB+O9lE288VxAmmZc4xsYvR\nlrfFBJLt6ZmbpBRJc0R3ZhoI40AYTVuyfhd0NnNGGEb7LYhpz9HARIIYgG9MwAQZcum5LTevo889\niz59C00RYiRcP0UenSN37sOde/DcU+gzt9FB0EcXsN0QXngWmffowzN0M0GMENVAK85w+wa8+DzD\ne19A77zF/NMvw2YD16/B809D1LyqgPTqG/DmXQPz974Lbl6HaYT9Hhkm6/7XXkf2e/TaNeTF5xje\n8wIyWp/oq6+jj87R2zfQ2zfgxjU4OUVefR196z56sSe87z3IzetonNGzPQyB4doWOd8j9x7C3QeE\ndz2Lbicz44wjYR+RB+dw547RfusmcnpCMuXbNOa7D5E378K9+7CbM88DzLaK0azN6xhsD4MMpONo\nXk9KFoCBVEwsxbSSVyaI7TGU0S4KMUWry7uHSi4LkLzA8GtvySsCUbEVmLr8NHt+CUM7SCAkZX9+\nzpwEHWdbWFLMMks8aG6Sl9rA24SjbTKXFffilYrS4l+zmhbYdlhPK6BZLxqda+mKgNz5tmaEKsqq\n1O9eLfcvLzXs9eflxQMG1/cc7Kh2+S5zhzyIZXFZKioIvhPX3+sPEB4eufdlNhm11OqpjBBsGTsq\nbMbAZqIHyZpxAAAgAElEQVQuiTUlRLK2FBViQqYRjRt0jsh2Y7bNmDf+TiYknhhgDMHAJyVinJk1\nMU4Tw8kG3W6I+71p29NAGgfm83PmOaKaOJWADAMxJfMVCBkYhryJFxPEGTTYhD3ZANnUMk1mUlC1\n8vcRPb8gKcjzzxPe/27SzVP0/kO4uCC8711IjOide/DSq4T3vhuef4b04AH605+B/d5MRdH4MkxT\nWxMNg23Y3riOnmxtJTMMyGYyMH3+WeSpm8yvvka4dsr04vOk1++QPvky6Y27DB/9atiOpLv3mF9+\nlfDuFxheeA5eegU++RI8PDNtdhhMwyUSNhPcvMH8/G10u0GfukV4/3vQ26foa28S7z9i80u/gnD7\nJvvPvEa6c5/h9g02H/4A6eXXSZ9+nfTmXcZf8gvNU+jVNxievolMG+R8R/x/fhS5cY3w/ndZ+RcX\nprG+50X0zn3Sj7+E/vAnSBd7W9FMI7KPsI/INGR7vxPYhLyhKU4zDQbQc0JCQuopxjb2QzbfCIru\nY+enLYL1yWBnFyRI3YsQsolPnYko7c38NA62EkpqAiaZyjQEsf2NPGZ1F/P412qK6W2xi7laQX0R\n6aTLJt17/aEow7WyMVyETXe2wnv++E/aikjiiutW44fpSk92NkwyKr2/cRsJSl1qdNq2K+1Agq41\ntnczktWyWgmrYuFSEM+y3JWp7l97d2Eyqpr8opjLaJKWRS+h0Iu/IAUrbSNKYjJNZxxhjJhv1wD7\nGSWhYjZnGczeKOc7K1GEVCZh9pSYk5pGPo3IyRaubwgxf95MZpfemEmEiz3hxjUDxbML26jMNmZR\ncwKLYmYYCXawqGzMCWKmhJg3Iqc8uaYBUSWdPSS99GnTOGOEaTIBlfKiKhg4SIAwz6S8ugATZJoS\nUYLtCYRAEEUfzAY0krW7OaJnF8yfeR0ePkJuXTegm7ZoGOHkBL1xjXSxZzjdmjnibAcPL2AfzQy0\nnWz18eCctNsTNCFJCA/OzCSx3SDPPE146iacnpiv/90H6NkObt6Ek2zXPT8nPHyU9zCGPCgSut8x\nv/a6ge7ZOfL0zdwXG+T2DbNV37tPGgIpJZgm2yC9toVb15AhEDQL9zTbyB2D22zOYBnyuFOFYmuH\n7Jlj80OmwWgdQtbaswaS3Wg0a9p1CKeIZlea6k1YBEd+JygGxKLMRNjvzCZPIuT9FoLzFJGAEBiH\nidOTayT2MNjmem4QLUiVn6c9dhSUciqfs5r2rqwN38v8LxijPYAvVfEqS3LdISuWiIkbr+9qp+B3\n6cq8VtYkS9XGPaB1TOg/Lu1HyzL7JUkvTPt6D1C2Me6AZg/RTiD1Ruw6dvudai+1GxmluYeeKZ5c\nOaTfDcw2IkyjCALjKIRJTNvJk6NpOmKa4fkOndsmmKpCirDDQLAIWk2mOQdhP8/s5tkANxRZbKYQ\npoEgI2P2dOFky3CytYk5J2QMpnkptpxXDMA3m4xLMU9GG8HdGYIg2SVSswkmog8foftsBx4GeHSG\nXuzgrXvIw3O4/xA9mZD93jQ9BT07s3y7PWwm9MY12E6mjStma5ZEevQI7j+AR+cGSmB1jCMSE3p2\njj54aOA5z+ijM+OBCGGzMXvyg4fo3fswz2g2H+k8w8UM9x4aQJ1uCbdvwrUT680Hj5DznQnOcTLx\nPM/IxQ652MNuRudo/RRndLdDH56Zhpr7UpJp1ez3tucQMDNSCOYddH4BZ/n/lHJATQfQwUClqMxF\nAwcqwHaukuW3YgIJThkrq+/qh16AS5utXfrxXYG81pnQWUlqJjRRkBgt82B2dJuvpf7AOE1sT07Z\nJTPfWcVuqq5MtypzChZ1E86paUJ1gT3Qv1xbpGVcaGP5eSnR62YOS6TKPCf8VtKV+ZGvR5dbobOa\nDLR+X4O7tlFAFaxymGNRmXvhwAZzUMCK8GndXAPteO+SS9pZ00JILUOadnV0trZ2erWTNlL1BEZV\nhikQTgS2o03qpGiKBshF4ueJTox5TkbSPhFC2avIoImARNOKLnbsLnakFInznv3ZGXq2I2Q3PU43\nDMAwjoSTEQSz3W5t85Ihe7eUnbEQkO1krd4VlzmzyUsRcCJwukGy7ZN9JMgIYSRd28IwIkMgvfEm\n8tY95PW78OiMJIruLwibibQZTWC98Sby6AzOHiGnW/Rdz8CN67DboeOAbkZUZ3j9dXj1NXj0iDDc\ngmlCblxDwmCa5GuvE1/6DPLaWwwXM7z0MvrULeRkg7zwDEoivfQy+hM/bZvKz9xATib0/By9/5Bw\n94H13bUtcn1D3F2gD8+QR7tshx8Z5oicnaNDgF2EOaL7PfHRI7jYoRc75PzChkAYQBSNkXTvvnnl\nfOa1PDhu20aqmH82b91DX30L/eRnGM/3bS64YadZ02WQNuay2aRzrVVqf9rM0RYyRPJGZcmcvWUk\nmzNFbd+GEKo+bDLbxntUSCGPwXkmne8Im9E20MuBIrX83YGkIRBkYhRl2s3mIZWFTG+Y73Uwj7eK\n8aDMvaJhNzhv87s5qjizUiVHasOaH36rv309VBt9Vq88LtMVHghagtzjyMz5D8qpr7WB0vfRQTnr\nwkIP3HqKNt9pIkUbl9aVQFsudoRc1o4maWtdRVgVSe2zrzbHbOnqGl9ipwTMajIBU4BxDDBNMEWY\nEyElzKQYSTNoTIgKwzjZBMeWqrrfw2xufOwTMgoSzGq4m/e8eXaPT7z2Eq9f3OWfvvIp87XO3iUE\ns9MHEYZQ/NHNhjlkP29VZYhqecYRGUdTAlNiBCYJjDISxpBdEwNhM9mSXYQQ1cBtHNEpHwQJAzoN\n5umxn9H9DD9lNnwdQjYvqfnKp4jsZvT8Av1J8wgJMcHF3kDl4x9H9hE5uzDvjtdeR17eIj9+Sths\nzZYczDwSLvYmXB68BScbEwZzQmIk7PbIwzPT5E+3yBtvgARkt0fu3DO3ybfeIt69QxrMXCIK8ui8\nmmZ4eNfmyt2H8OAMXnkVfeM1whyRB4/g7gNSnE3QIMjLn0FiRB6dm7AIAX10hr7yRuVfBOTRBfLo\ngpRMQNs5jbwyE6mfSUrCDuUUMLcVXNaaxU5eJrXVlPVXVcApK70aE1+0epkMkPsxGI+Kolank42R\nVmcW8tNo+atvYHkvCx23jh2HiVFGCub04XUXzr+Z/91qX8qeQFHwtJbtZ2i9Xq5M86USVwLXrdpH\nChU+nEQpyJtt11XyqzOtNM458FtoBav5lz8sQO5xGnB75cDs0vFIFiyT9azrVT2+/iJKOrxfil7I\nA7KYO3ylniapJkhxNAYRNiJsQmAUO4gj40iYEmmOraxiLsmF6D5avdNgoC5qoFa0KhFIyjzveXD2\nkE/deY2X7r7Oj72yNQ2r5FWtE7poVpKFXdWKkhKCMEhgGMy33CybylaE68PIjbAhZG0wZLMKIdix\necW8JFKqk1dESENgH4Q9Fhem9GEKNoHMLu/CFmmqh3FCxgTbEJPqTx2CEybZlbI8G2KyY+SIbcRl\nDRaFELN7ZsI8P6bBTECKmTBiqrTN40Acs/tgCLCfISbDjnEAxIB7Z66SerIxGmIyU8towCbZHBZi\ntFOReTwU4LQ+AeaIxOz+KcFMPDGDdOkw8mlQbLwklIgdCFLN2mqZBHMk7WdEAkMQwiDVbdWKq6he\n46UAjEkJpxumayfcDltuTRNT6YeCm06LDYPxMOQ9leWxywLpqkDClAcJhLy6K3mKq67N47wJ6+ce\n2k036jt+jnZVU8woZW4vDxaVeXe5surq8r+46i6Dtys7EFSWKYWRpQvQohUs33kyQD+53lbGQWmd\ny6HvrnUJ2PWPrD1de7eVuy58tCkYS+1dG/1LH9flrnoANgG2YWCUYP7aw4BOI2m/r1qPiNSohwp2\nJHoI5omikkFpsAMXGWA0ReI8c3ZxzpsPH/Dw4two1US2pDY6fYvVdB9ZjOTyTg2yJMr1ceL5zQnv\n3lzDRSTJAJI1uxCIyQSTBZ6yY+uzwMMUeZAiD1xkDS3RoAp9fiVnnKfEIDFNsZkDlAz+WTANmBtb\nkMAowiTCBAzZH0Lyikkk2AGV1LTdICEDogHhrJjQkXxqsnBNCsi0oVn8PkQaiJYj64XXQUpeo22Q\nwACMKBsVNghT0UxzewPFbJLHhOneBDXPiWQyjQtNXGhin3slOd6A0RmkCP4ivK0NVUgWIZy1owFb\nkd2+cZOPvu/DfOj0lOtcdyAubR9GhLCZbOWXTTEtQF7WTeoKwL6YsMqCuKwWnJZmvCyW7v7Upndm\n8Vpym7/9/NbFo85kUwK3Cb3QWIF1Wfl2aK7p0xXHWskQpI2Fl6aFJFtbnXRg3xWnVWsD6uEd/55T\nxi8Xe77Eg+O1BZIOKvd2mkP6yiDMeczN2kZAKRdPUwbhFoBnMSoFBhFOQ2C7DYxTQGbT/jRm98Zq\n6xTz344jJR6IHa3GAlGVOqfBvC+GgM7CLiXOk8J0HRlvEaaskVM0ulw+xQ5qJGo9zK511Jfltpl7\n7J0Xn3qGj77nffyy93+Q1DyEsx02T7WTibSPpIs9MWXdW2AeBj7z1h0+8crL/MOXfoJH8y5PcNc7\nVTkscU7sQeseO+VZw0b4//PsFITNMPILX3g3773xFM9sT/KKIu8TStbqI8TdjhQjSRNzgH20zeJ9\nTPzEgzu8fHafBzrnqm2a1/gt4vWadlDE9Trm4VAA3vIFDCRRYQjCzWnDVz77Lp7enLCRkE9c2klW\nSdmUEgJDsENcZaUTBgtBsNvtefnOK3z60X3OitjIvCvCAy3j0VaTPlhrSIWBJiDKYR8VYbvZ8mVR\nSe8p/ZxblVcuCnZYbRgpG5ktZpFUkBfyJivF40PqidQWo6WspqXjX6G7CzB7oHH5Rw3aa6GZjqqA\n1X9KLd20X5Tqk8+l9d3HpS8qrxVLXqTVf1ru0sldzjUN3j9esE0Oj+1/1hq/LG15a2Qsd7R7u7YH\nd6NXuoIEzafjDmWLl9C+KMlAfiLCNA12am/e2zIzZ6w+qcFOSUrMx9yD+XsbmDu+jEN1K2MK7IEL\nRjZPv59w+wWmW89RfP5MY87gq5o9D6joWQJXSQHxclKvfFbluRvXeN+7nuMXvO9ddtIzqdmSixdD\nELNFz8mAfM4+7MNAGgI3X7/Dg+kW18dbxBgx73UnPMhlasoHSDJsqhOQXth3dEJZJUzjyAc/8F6+\n4umnefHkWr48QLMJOANdTKRH56T9TNJEHAL7uGcf98xR2b32Cq/dfZM785zrzaQVOrNQLJS3o9rU\n1YaQQZtyIjH7cmNlnQThmevX+fkf+DDvvn6DjQhpnut6RWaFMZvfhgGdLX4JeWURY+L87IKXY2I3\nw/3cxuqtkrXMYjIpQNfMV+TwMi5vbtccI08lAQmMw8hQNkb9nFWp3jClPBvQLVRCWU1IVmYkH3Qz\nk2DqzGn1hOjBJCq2cDpsLtR4Qd//LXkWCqF7o0EyLC0OJT5RzSkOKTp3lst1zCvzI5cVtjTU8yB7\nqOVWJtWZ1YNx1bilMHcN6NdlYjNtHKZONjrSsqLhOsh3oK6/b0Q0EKvaQtswqbR0NC3a4nbJi1kg\niLIZlDEfq07znmEw75Gi0QjZ3rgZ84anmi/1OJrr3H5vNuIg5jY3ZJo2IzsJXIQtJy++l/FDH+H0\nvR8ixewzrBZ4STxDtbW+auw0MNDCJ7XNzqf1ITe2OzZbg1g7IWqHQEQwj4RhQoOiYSDtbMXAZgIC\n128N3JTbPP3iR5hkskNHih0iyWFkSRafhSx4yHFIDPBTFUBaNNfilqeKaCSocnsIfPj9t/nK26e8\nuNkYWGXbt2aw0H1EH12g+xynZRxt41BnJAXeuvUin37zPvfnVM0B5X8l0+U3CVuoRVpY2jIVCtNT\npVVVuTkI7751nY/8ol/MB27dZJvU+Cn5QE9UO/Q0jWbnzzF2NJvd9ruZ8/tn/Hga+anNM1zU+MOa\nQwSnzBccjw71zIqXRDPpxRm9eMi1TeDZ67c4nSbGEKqapsEJ4KJwpdx/IjUqZBlm5dQmYgfaZAjV\nzzyLuQaXue2AHcnPTC1hiy/TM+vs6wT7AohravQd4NfCKlDMO06Xz3TmcvDIeJiuBshb1EgO5ViP\npKbYCJ12mwd2D/Su/M7G3dfgyy1i133sQNwfiFiro6u5ZtWFIDjQL/pvWYMwOhw9BslW5oKmLq6x\nR/GcBoQTsc4VQIeheiEIIJsx/50Yoh2q0Kjm0TCVeB15ciIW+ArQqKR9ZJ4jUWHYnNihn6wJtXs1\n19rsW6+1bOinQQCmODPKDPNFDhlgdEmyyHzVRznlQGCAZJfERCKpEDenjNdfZBqmPOBSZWTRb+sq\noX5fo7aAaukje2dUuIlycnLGKLOtakpDSuTIhK1wTjekAHqxR9Pe6lQhJSU8916uPX+Np6cTkgrF\ntNLGnOIJ64Zi01ccb0El1XGkCLc0cnuITDdPEGKOi0JdlURVQrSQA3Hn+kU1Hy8MsNlw8sGPcPvL\nBuZxU/llCvniejJ1nx1r215OtHEVZ3ZvvMIz91/iaX3ARkY7mIQpA6nwfh8NnIt5hAzWc7RzBWIr\nkRKdtGysSzYXlY1ps7r0ZpbSZ72SLB0M9Zp5+cH6yqF5NWu1nij09mPL7yGVypueVp5Kj0Vg+1as\np6sPY1s+1iNTnqsNqHtsXMDiAWK4B9WEcgkZSzou+Vb6ffW3rrw1wdLe6iai3yuoMsy1N2uSLlur\nwxXU2XLFTktu08ywF9tFq9qomk/wmCPzhUDYbkyrnSMyhLpxmBGhhW0VARJxjuz3swUiGrfIMNXf\n8yv0Iq4NzC75pa1SJ1lAGZMwZL/hchJUZIBkYFOAXJPmoF/J8VNIIqRhQranhHFDYW4ZZ02H6FdL\nHZNrHyzJzoetFLYpMjATJLa+zXGy67uiZrYIBgJ6savYnEiwvcZw8hzb0+vE7CJSBIsWwdFpdY7+\nFa23rQzz2k6ETdyz0XNCOLNQCLGZkmqkw5RIs8IczcMjhLxiyetnCQw3n2IabnKyOanKhMF+qtT1\nbF3yN4Mf0XzA48w4bLkVdtw+SwzZ2G43OjmznBhfJWT+ulZXs4RQaSIq9a5TMbNMECnn4urYLuO1\n0/hzWV7JWKBwp0CZzJLKc0o7Fy13r3fldALOvbuCIksrS5eu/GKJMhTyL7SLERqIgyysFoeuQSJS\nsa1q22Uwu/cupan8u6LxePtGq2MhrjvOrz6krSL8zw5kcD21qMdH3az3MNYxnN/O69mgic1+h+wS\nusmXNZSQzjmeRd1EKqf9MpBqMo2t0FAmA9ltbp4jF7uZ3azIaLFZqrztJkDjQdM2fN87myfqJhgM\nKRLmaCEZR0N5GQQNFiIgBCHO0Y7ZF7OQKARzgUwCMZ9M7K1z0rG4C2i01l0Z7PwmWZvwipBs5eKW\n6caE0H1UUULYAJB2OWZ7Dp1g3h9S+aSLMVLYL4i3wDmiXXtotNVrzwIWmiGphTGY88GwULosM6TE\nLJkjOmZBGbMQUczs5OOhrIzxzhtoqZXXvAHFhN0QYNhuubE54ca8zQK6eA5ZGaqQhhzIbQjVZGXM\nNGGX0LxH4Lya1O6htSrNtXV046zMutLv5Vg8ro8b1c30UuHe5UlZoh7Mdl3M98onutlRhJF4jFpZ\nERyW1NIV2cjLh14SVem0aHyzWRXJ52zLDiUqgEsezJrBzde7KPsA2g9mdM/Gxuw8q0Lp6JJrUX4H\nyMsBkv8pWqL3dyoDQ2umWn7VyN2grFNSbKpc04iMA/ut0ThEIcwKu2RLUlVEczTBEpNETLtKpi5a\nmYNU/+eEsteZXZrZq8I45ciKh6kuXTMCGrj4DNKa5nhuK4rFxlTudsnIrGBH1BW7XCGp2ciLi2RI\npOglHyhhfZ9hAYYdiJY5lYG0btI50JAYQaN5+YRg46365tskjfsd5di6bCYL6hUjaRYiQpLg4mp4\ngdCPpyBtHBTCu30yqOaHNiYCMJuwy7HKRSzMgYGc2lH/wiqFcvF2CDY2yrgy0eU2GDE3R6+b19ja\nAv7C4UJPpTWbPU7HkRvTxPVxgjCQhsE2KS2aOjKMeX/GUF2S8VVE2glh10fdqsXkRj4kZ1fGSe7j\nMre0kuX6vcOMctCnjRMTMm08h8wbO7Ha+sLfFYvvu25uN+40CdPm9kFacc2GKzWt9CDeS7SVT6Xl\n3cRbAVz3qGnmBz+t6RNtsJU8S1BfahmLcbnsHLdiO6BBfG/K8ldXn4jL4obbYlKXfhfsVOdpUGSO\npBSQmxt0D3oWkTO1YFfYpGdoFz3UOxkHuxTADhLZxALQlJjnmX2MzIBMEyGYx3USoRtiC3AuS9lV\nZvjval43Q75VqAZBKtK8DPTsvSJhsucl1KraRMyW84OVky767/BzQ8bDDXHxRZluWdz3EkjIGnwy\nd8piT7cveQU05tOIMeZ7O413RVWs7pCy5NdixObxb8NjOQ76SWDPiqki+8No8XVfDGstwy7zPAjk\nyyEKnUHsggs/LkvnNSjt/ulYXBQfATZD4GQc2AzmnW99nHOKbXzKEFCNrd9dNxVB30JWZAqK9MnF\nBbXI6B1PpeamJ7zxzv9UaBf3bmNdodn1l0r/SFo5tXy1NvjeVTe3l7C9MouAK7x8WZZATlViumeW\n2gaijxtehJMueKiu7LW5WnUq7btn2ckHJazw8NB9sTn7HzLd+wG7BuTvpg3p8pU8UL3QaPwqA6pM\n4IAyiXA6QrjYozth2J4akFwkO1GZ45qkGM1zRQQZBuZ5NgvFJCh2VD1MY/bxThnII3NMzALTtDHf\nXhb9doDomuk85EdukOOnCaJBAppttXVZ7T0FxJ6ZaWfIwbgw33IxTVfzLJblpFiLqwNu9Zanprbf\nuiTmlTGIhUMosUWk2Jtto8HoVTtinvJ1aN7n2twMs57vx/WCJ+s6mG/Bgka3CSfeVAFGV41xk09o\ntrCAFt6gaoTmvleQyzTfsiLM47fbtO4FUGda8KaLKnBgHAamYWAMA3U1HgSVUPujmGxUc/1F2JU9\nn/Kel3G5n9AcKkLErHR0Pd7vV8phGwq9y722Lv5dxR8vFaWyqMyPshlazDiln+2MgxPHld9aWEfd\noL0kfRHYyMuzbuxSmOG16jIdS74Q/LJnHbwXtXQa2ZN8yD1Atb3FpRDy+d3AYNkeT1kDOw/KkifP\natmrPBOnSYMdtrDj+dfHgY3uCecz6a0dYQZ2mqPv2dI+ztEuGJjMlS8wZr/tfIdktolqaku9Oe7Z\np0hCkHzCTnNj64TuZTCX6xE9gBeNbhBlkBw9MQ+MYgZv+UMVQISBEoaXZB41cwaEw3q8y9QTINLP\n8PrIOrh4QQwku1JMFWSqMdYNzGOO+xKJoswowzwTktEREVKQasOtK8BLxlfWPtpKrWub1q8F6ArA\nCcVclQVMjG0IqlqM9yLuZruyjXxHaQVroUU29FAY6rqDxXGaDrbb9JH2o+SQAeY4SIzZrz0MyKi2\nMVtunAII+ao3yPbxcsUftu+DzYmQN8PNF942h4JI9uKS+q92tBgPV1S6A1t3L2gXW5XliLL69cli\n/op/qw1sb4l3JDUXSzpNt0tX6rWyBOD6Q2384S8d48QPEu3ysHjasX0VYJda2sGYe+y0Xy7hH3fA\nSNw/ndZBK6K3fYojUftynGBDhEBiEuU0CONgd2xqjp1S/Gg1RdJ+b0Gl9BRBTWOMMd+Wk/2rkTxB\nygEemGO0uxQJ5rFSNjuX3HRrxWWfHPLO960yYjccaZGK4vhfViHlgmORuomidmsdESFKaB43biJ2\ny+D1nrmcTtceEWjGAPcwa7Gq7XZogbwXq+Zlg2lhCYgSSDl+zGXpYOwdDNfFmBBqYCbN8mwIQg4r\nX32lNeYTnClfLF2E+LzPlxoIkiTf/JM3nqXVsVhPHnLNE+4nkxYim0Awn3Vzy5R6OXUWzur5W+hW\nKGEhQm/WE6cVarGpYyY7w3iHPLKcUYd9358YdxPTldMiQGREcnDQrcIdx5a1tpJ7jPMmh8sw6Oo0\nctev0JYP/VP3Tn2hj1LgG9+/+RggXQXZx88kKUS6Z48t85LiSjuCA37Jg0skH2L0gL2Q5G3Gq3tf\n6gQLKKMk8yOfRttcm0Zkv7ciNE/YHCGwXpuFwjxXrwarqrgfZi0wJfbzTFQlhQHGqQax8kfgC9m6\nmMRdjuWGjtrvgcCgZntGhHIKFC+wVdsSv2jsgEpAEaIIM0Ot0WyQReS7sg5OzTrp0yVlqaUZrzM4\n5CvRRMpVdn7VpjAIQ1Q7N5OktithJqDolAsvbmpzPUWFsXVjXP2LzgTQwEakuN5JlX31+HvUBpgl\nJv2+hDzIl1dkbxY2bkzmjUxFHYBlrfGyaeKxXNqwK+admE/vipJBPfdXPphWSDGDfT7nMA75WL6r\nMLTCTaCGrJErwQ+6hvfNbOfY3+RNEzZVOOViDMTVac2+vc2EUkSd1P8aU3oR6HDBPWrQsw7lV3Zn\nJzQAK2D0pNvu68tl3HeNPYTwbgIsSVgwvs93+FTr17Y3XgHKz6eFuUZxWkx92wumoi3l7zFPJqTD\n7Go9Ce2ZJ9HYKATNIWwHGLYWpU/vnSMXSoh2mjOhMEQIQiqa+may0LUpb3ymbJtOiXR+QfGU2c97\nZgWGDWHcGHhVIdybuQ42Cx3YLA85FZ7YppSZzcplAeYulzIQZr/xqHayUzDXRMkn/caRNJjXSgH6\nfppkseBtYJU215FPSBZF0QDSNL1s4y228ewLjWTPGmYLbVti2aREUrsrtZ0mbKOkUtGT2fGrixmU\nSa8bZ9LMBybnlRZGley6aX9jtuOHcuGHArNdZN0OvhkvJTSCqimlTkatfD2026f60W92FhA2BUZJ\n0Q55laicKlSTjvEt7+uMo+1357ZW80s2w1UBgZpJBhglNaUJmqsz4uaw1CBd4mit3eNAvAKwLFvr\nsEjad7+XUMWGtl96E1T9sf7ayjtMV2ojb0TJ4vlyoErXgMVrGV8PW3gZiD85z6Xw3y/LFq/IQQfW\nH7nw7pUAACAASURBVHxX5N9b9wzZp7ZYCZIKJQJoU0C0yJFVGkt5I8IkMEmOhBch7PJFuZo102CX\nIacxgwruTsUMiJLd6cgC1saVcjHv2SMwbgjjmONbFyLCKuf6WBI0kFGtPCiTxGy5imgy00osszLk\nCap1dVs09BqHIy8uZuwcFFIUhTbhOueGTuQv+XqZUmGVDwITmiMXlPGaoLA6H6+vYzNrw9lIRc5K\nlKzcZrA92PFZI7GycUFbNx/sn6oRZi22hpZVzSaTZJc6007mmpO5rW7MFVFr8ClffufX/rjJlvtB\niwoujTLbazD3yxJTpyBxdWWkhc6VIEiOUa/RqXfedz8/S9nUVdZgQ5kTlazLT0p2PvH9Px2vVwvw\n/ZAHqluvNJBWOulQnTdW6VlW3KcrC2PbP8BpdT5fFZPtJW/v1CW4fS7E5L+u/mV0xEbLSp7aaXKQ\nF/rj+v0JTKnAbXH1DcyjmLXDXNPUQL1sOvUVHqwbBGHMID4Kdfkc9uS4FJhmlCdDBeG8gdYds5dg\nN88LlPV4As7n2YB82iLjWO2Th2YxrX8NSw/XR4dAZGqUaMo3wljMDFTMPcQQwdxFlgyQ0hS7AmG/\n+Lnc4NRw/bJJ6fuxI4464cS08TEDQ8gA5ZfedeWgdjtS0QyL257mzc8Ej7WPH1TveOfH6aHXVBbR\nkiMjFnNavoC4CRTNm7GBFCxEbw2BIJKv5dMq1Ot+gJJXHZfxsaF8GR9SjtCXfsy+/pLBXPIlyuVA\nTylFk51tEBHCmC8XQaCcVoZ8nqOQYfWK2sEjkvXRSN3S7fq4klvaUM1SONt330Z/IG+JBQddt4Cx\nA61bTdB44VF08W7/44vtiL6UW6y9aO8AD/e9imX3Y/nYDyJh8c5KquFanVa4fEUuqaPzeFk4l4j/\n1w2EZS6BGhO5jBm7SUcYBwhBGbJiss93OxTg9wBUB7vDzwRMSdmijGBL5XHIbswmHVIyu2Jx45Lq\noWB80SG0/YqMemHI5+YSXOz2RB0I04kBeQV+pcYJcRxrfFx+X+mjDHCSzAceTSZMkp1ElSHYDUTj\nYL7Mc7RgXXPKE9YYFxHmrE16+bIS06xP1bYK1JvWC91FQ7detJVDalEHy/uZZxJzwC9V5OzCjrwP\n+URkdvczIM+be3lMPn7Xk0vAu3zOVlg3pMvheVGFfcoeM2YimYOQBuvzFMRugZLAOI2EcUAGIYzB\nbMCB+r/nXzNPFz70c3kpvjsjhNSFIio5vnm211fOqxJjsj2IHJmzmMukCBmaYKs3GIWQL8XILqCa\nmFBb7WWXTC2Ajxf2ZZ4X84trS4+rrh3i/6yn7LKqkK+la+2r9XWCsPG011bXofwKbeSuS8MlHHAN\n8P9C3xxZDB6vvCybvzxh+TjvkkNyfIct3yuD4hDED3zmC15kJE8oUQVN5s2QFen6uWya9FqZ+OKA\nDOQC2yCEKQ/8MCAh2xzSjMyz5c/AWBE6teiF9RSgFFptWRtj5Gy3IyKEzdbeDxm4gBagf0HjGi+d\nRtmtYNQiILKfifNsN+uEAMOInkj1ErHLJQQJI1LulMyAq5p9c6sG2bTDOkFXBbinsB9hTaXKQC52\nwKRcNtF3seQwCKA1NgIVwOvvQ76urIZjlZ4e9++hHtPztmhwB0OzmOzEhK0dzc+3CE0DKSjFKV6H\nbNLb2N2qQfJJ2RwJsUyzzu4rjr6Fm95aqgtrccpC+Z8MbGr7NhYXfbYj+OPWInMOg9VW4tLjwDXT\nWMRuDTkwKyIDw9hW8M3dtxSSx1XHvjaa/bRrXdB6SN1vJQSyLvL1zoWuz6oAqQVYDnUMqyxf5+/V\nxiOX+oV1SdPPsjqBcfwX/62X+MsO8X6Yl1ZJGZzqTKttkC1XAZRyBNbG8Jp2X0OcYnpfVPLN5zay\nFBtoqSzrahGZ/rqYMQJDIUZhI7AZsAtqywXK2VYoZXms2PdpNLDPy1qjIR8IidqOvOdDInOMnO/2\nzAgybbPdtPH/cTbHNX54Fkr+rdzbKfNM0h2a7Ho3GRSmIXs1JKstHxQqyxvr5YRqgfvcKQcnxnDA\nv0LIshHdOBXsKjjblB2y6aKX3wbUUo7EjyMVYUpRIT8PQz1WvxQdSxIMLB4jHHG0Oy2xyQmtD0LR\nDgcoXuSKEjUxhsns0OX4fbang9bxJN7mIG4+amXxoh1968oZCKPRbapmjdr4lbJ2Xswqg+3l5Gea\nJ4myHFeZmpTs3tOoEJLdTX3AMGq/+hOyZY71PHeNWyK8639vStEn9VeVbI0Gv7pyHLu0HLiyMLZe\n13AiMX8tA7I7oemv6YL2Zn1NumWWz1Pm0MHpKPexSUvqaFyOjaDNnuKD7JideOUd5AC4yru5UmIG\nlc7lsNIkl/KoARc18FoQ2ARlE8Q8JbJfsAyCBVwZLOzsYLfAyH5v12YNQy5wBp1hnilxTRiC3dqu\nypxmLuY9s0zIZlsnnyj1GH/f/Co+C8kLD87WOqNQs/ukgaTGREw5VMCQCNsRjWYGqOFzM54YaIcW\nzU8GOltKd5qo/Altukj/Y/e1A3cboEE0b3a2DdtqL4MSrsSqDdkckBJ67jR0pJoVhOKl5E79lV53\nivzSA3b18FUZECId70UzqBfhl0BmZRxG9g8fEs/PQcRuricgU35Ti0afBaYU7XGhvzo+eaFSci1X\nFQX0yiXd9VKJ7PVj0b60xRkHKKuDpIRkHjeU1V0R0EOwVSZZOZFg0RZr5cajRpNkv3k3y3Ibe/FT\nBpvzKKsdpXkM569S+kLyz/6Ua3tPLmFYxaGFqe0yQL+6oFn97HG/LQB9HXcPCjzYbPT88UzKXOwE\nIU1QrNZVCnHqRt2IFXte+/WJS8v139c12X6iPKFgACaF7SCEkw3NZFLv2TINEDV74JBdDNHs7pU1\noJgvNK7LAtOOUkyc7yNRtoTNtm6AEQoYrtHqwPqSplTeqRJItlErXuPKm3KPLuz+0RM7+RPyZcMF\nsDSlfLvNZD7lHljzB/UVshw3dONGV3KV/gvABmXQZKATpJ1yVHOPNETM2m49IZltuZj9vAXKagv7\ng1Wlp1ecIlAoW/K1CoZWlrTcNX88v2B/dk5QQaIyjiMyjoz5cmmUHIegbHQuqCu2iaqESLf4WWrl\nXjhWEM8eUgdjQzAADmp7MQq6j/kkbOZ1slqamayBbClfymZ5pT8/d3xpQTGtD9yIdfR0InEVvg6b\n4F0XG+BUeFp0nQntiuKr6HhZunrTimbpjj4WBJerm/651C+1E7qj+2WnXg8ERDdh6yR2HF7xtmjE\nyKXgtN6GzyLzJakGOyrAtKBvI8rJKMi1rR3w2ZNd+PKAVs02z+ynO8/UyZjyxmdMdpGDYoIAso08\nsZtn4hAI06bGQdEcKZHyZ9lH7p8uIlx5nAWjACOJcRDGcUDSYDbOlA+snO9siZ8MJGUzoZup3lrP\nbPeSJsUmPOLGRFsZ2LdlXyz1Rjrp0/ypjY2DKBtNdnhJbHOteHjojEVnzEf3lZQ9hpqUKKdQc+GP\nmbwd0ZWWYiZcrMwdODjhU35wUkwlj4PdHiUwhGAXjWw2DNNIyHaI4jVU7Nlt38ERVPm54OrqF60f\ni2m8mlmqWcV+lJDdEofR9hvm2W6rcocpavTD3M7Kj7I6CXmHVoqrI62uSpa6d91vjvSy7irCfrkn\nLa7i5fjuvucHa1CwMnXcw8djx9X6kXcDItsJvRAseXBaiNABYtUAFlHX6yAu/SKlo3uG1MntJeGi\nfA9Evg2PO8C0bOvj0tpu+GWukB5QaskFcFTZCmzHwHCyQfYCwdwPzS2gxadgnkkxonuLtyKnW2wp\nakA+nIz55qC5lp3mmV1M6BQI48ZuJ8fmSTWF1W44gGt6ch0CZW0nqDCqsJ0mNpwSNgPp7Azdz6QE\nYTY3Prs5xny07fYg86wo9n07+k7BcaNNqYApB2p5g3gvxIspoRKqVS1oGnmx048DTCNpjsz7Gb3Y\nmWfLEMz1023EZbXdTi96gKga3GJz23V403KLeCqfy1hsrDfAt1+DkkPAYlanYWC6fmp3dO6sj2UY\n7GxAPq1bomIW7b4gb9sEL6y7ZIyro6k+k9oXRf8trrj1TlaUYRxJ2XRiMjCvziIWM7+0O8dn0SEw\nFIRNmDKSNF9rODAQGKXVJdLuNSrjsV6W4bRGyfsEXpEsC5HWTG3l1H5qmZbcEehWLl05ZeVQVm4Z\nl1q/rvP6iyBoll+q9U2XS99ZAcgCwuW7Piavf1b9UJ1LUJHQteBDwNYnlLtuKml5DmBO1rvIm4la\n5ib/ysC0oaNMKTLNifTogpBi3hgyY62ixBTh4RlEi1dOBm6Z8xVgWYssdn+NOTYIZgrYp2Txs6d2\nM1ChyH3ksDXrA1DqqDaNaRRl3JjWFXdKnLLNdj9DCAwFjEMOv5tPeeTbzex/MeAJecapZJOGHyPd\nur+fVXXO+gmrLa9gNvyx9E/IB2gkkAZFx0CaxFYNwUDTXDznKkztftBQ2138yaUypdGi/osflUsT\nS+mpxftGYxlHRVQA2415gYS9ZRxsz0FyaGNKsLTid35grmq0ejaVT20zkyxMcw8lCwGQ0kxMZ+x0\nx3n27jnTyHmyC7NFCqiqnc4UMSUkm1YoAbRQwhCa8MtAbeMjuCiW2ikRnrdaCP3/mXvvJ9uR7M7v\nczITwDXlnmszPdOc5dItSYlSxAYlhf7/CIkhsxuiluSO62n7+vky18BkHv2QBolbVd3U/vKImX51\nLy6QSKT5Hn/OQ95M1XUPctI1lmSUP8mwmedLUhvznk94UenQ5bTd3LWTEa6Pj5c0qzqWi6CafKof\nqsG6Z/A8aed+AyfPWwyQLChhYZsWm/pkVufOPt7uw5cswf/042PonxurwP5UNyoJFprgscOA3zmy\nvyzGEDQwDSPj4Yg99lHMbGKYMyHmXVHv58i6uPLQEDN7EzSWeQuBYCKQFy8YZlH20RcvLzlvluWG\nkhK0YQioeiY/EZwQPPghEhhjItdoG4dpbMmnHosqU/yR602y5KzvDT310C842kfuEKKnioXkOht3\nWeYCZ5ejxMVni2YiiDmhjqfmdPNmPQGB9HUJJFKkg0UPC9CfsPGZyJrcduqXtdBZmJInUKXHz4m/\nchwDkoHcVNN8f4/NwyfVt4D6Hj/sGYcDOu5R9ZgwYQ93/Hh8Rxf2OBFuRuHtbuRMG846S9eZlEbC\nYtXSepi8MnoYxOC9R1Rw1tFaR2saWnFYiWBvTATyEo+RBxp9OJKyxoGT93tcxlxMwCPrRk+kpdNb\nM7V76Px8z6nWJx//BjjyyumnlllOEFrmm++3V665/1uRRvJE1lx1GhUjVXhyvRRP1TCPBWPc68z8\n8UGThVReLvmd9MFXO2k4BzLke/OSixKEEbBhRPoDwz6kKuIOrGOaBg77PYfrWzZtx6pbY7qOqR8J\n4xRxJoN4EukEjVkTNXLmfhwZfUyYJa5JYms1X1J9ngdt8XsBhVMORGJ2wCYEZH8kHPeEqY+6fmti\ndOQw4pzDrhpk1aSApKiXzhs1JHDULPXk1V/5uOvJHM8Jk5b9L8RV6rnJQrMW4lmMxeOInQIyTAy3\nQwTOzqCa1FPlfeMMjsQEXzmfyMkiqQdx7t/pIqnUKPFDpa4hSSFGyZWsADSEWOTYpFqiooR+jFJa\n4yD7W2tAjC1vGx8fQT7LPzHgZt5gJXla+pw5cL//gd27r7l98zXT4R2iI1aEG698EMvvGsvZusHf\nvcTejHz6vOEv/+SSz5+v6e96dOdo+pZLs+LmMPH+2PO+HzhMAbBs7IbnqwtebC74bHPB1tqoSlFF\n1ES1HaSEuTOY/9xRGyyXrObpvelspTaq+f3i5SYkP/OHW8kL7hSnyjp9BCM+KkdecxfxU9XL+wTx\nQVDMl1aE7/Sm5d/F8+tn3+vYw9eXix8B8keO+/7TFXT8/HpacFun6pZM/hxK5wNtzvGhgvpAmAZC\nmDAI3WqFFRMNhI1FWgfjFI2JKfcKk6KNifrypGIJwTNOnlFBrYsc+YLuPgDiqeNZBT3n8liCeCZO\nBqUFrAZs1ofeHWGasEEw2KiVT2HlBZqtLAiQItGPu6idqk3BTEyo/3KyvqqJyeNdO/NFNVB8F4WY\nU9wISEyt2p5tySqBnOBDQuTkNSlIY/ravGlPMq0olYtbPrvs3ywEVe9Qq7pI+mCS6ilLWkXVkgDG\nRre/oCQpy5R3yv7aZVxP133dN1n8goYJq29Y8w3PPnnHXXPLD8Fg3DOaztF1DY1ztM2KVdfy5GLi\n+tUNh/e3nH3as/33lrPPhItgYRRkDDT+yLgfmfYDsh/4w7d3/OGPe77+amRjG666DZ9sL/hy+4Qv\nN5d8ubnkiWlBXLSfFBHjdERnVnkh4SfQrZf1Q0T/5CbqQ5nVjpnEArMq7cGjZhrz38ev/nheK3L6\n+X4nTznOBZF7pK1ZNDqlBQ8JgvW9p+Hl5fTJl0wxH+7LQwTlQV36A7f+3JE3TtE0VYvHEEP7W4HO\nGlzTYlWiATB4jFcaY3HrDdIPiE8cZddGQJmmqHtMlXiwNqkpotjt/RTLvCmosTFFbslAtCBLD1j0\nT1+kBoNZlWVI1YHI2Cf4IXKKRlNypUA0zhXNhSAuoZrGZFSRezSJCZakMsh51e/3c0mg64+S/1/O\nZkNpDNGHLEqJjc8kSSliJBqTfQxeyQCa71fJQL4MaFpwXz85iEtGpO5+/VeE0tfsvVIiKrMKKPcN\nU0Lg54aSTv9Ed7zYYzJ/y31SDQy7N2zsH7g8/z2//MRytzWoOWNyHefnK84vOoZJCcFhraO7GmhD\nYNQR3w4Mqwm9slxdNtGO4KOXlR4n3HFie/R8E/a8+fYt//fLDxiBVdNw1q74cv2Ev7z8lL/75Av+\n+/NP8G0T14HcfwdYosOp/azs+gqnMjKV+3ObjzGSJzs+MwX3Lr+nBeBfdfwbUK0sz9eeIEt98n14\nvtfKiY5qibVJzMqDdw9s5FFgnvHytD9J13ii916oc0Tu9/O/9ajfL4v8VSCC00DbOlarNavtGWac\nIrctBrxGQ+Gqwe96GAe0bbCbDmkcfn9MRYFnDlODJwTF+IAfJ4ZpxKsg1mGdi8anRFhMrSw6feFH\n9IKFKJJC3RNXG0tzWYwJGGPnSjUiMHn8/ohdtVF94gSZMjBFrlNTvc8aIJedmscxemTGDX4yjct/\nTzZ/fPVQ8mQj6ZmEklY3csIaVVcupjMI5AQ6hkD0aIkgOg/SfUN+zY7UUoIuO5ffKRNHjS8oSIlA\nLepLAVL+HU19j7lVXBmTWkaofbUlEaTknl1UK6UyEoHge25e/iOri9/z7Fd7zp/9Cc3lGUdnePkB\nNlcNnz03/P4P17x9e6A/jrzZWsJhz3h3w4cf3qG0rNbnPL18hm0E6zzaKusm0Kzju2++CkgzcRwG\ncMJeB14fb/nq5Wv+y+p7/un9S1Z/8fd8/mQDblVWwpLZmA3gQsqamAczQA72yV5APMb0saATCyZ9\nmba5mrp7dz906COf5+PjBQRBRb5OKDqnm0oyZi7ArOih7pE1zc3dZ6hn4foesjzkcfLY5q4B61GR\np8a0PHs/cdScTf3ER68n68wiEDgUZ6KPs/FTTE+ash2a9SqG3HcOGSf0OBCGEbNZxVD9tiFcH2Og\nzaqLJeBQ1FowwhQ8/TgyETlyY92sWsnsSs20la4/OAnzZ9VyqxCTGxkNSY+YakbGWHhs46LhVpiL\nHYwWtVGXqwqjD0wGgjW1BuFkQvI8zyHnpxLbUkWRX2UGzlh1h+Q9k7a1ajQca0gAHdUUODcT+JL0\nyRBCTpY19yl+rDxr0m96b6+c9K1aOkUHnOdHtOyJzCDFvWQwhATKgto8FqDZOS9oKv2W7wdJ7Uki\nFLmPQhyPaX9L//Yr3v3hP+M33/BsDVfbnpubhj/+88CP7zybv7xidX7JxeEDu5sj++uJ61fZKDlh\nGFlvzri8OMNaAfUEnQgaC1AM48Sx3/Pdtzd8/90d/TAiHlQUP3pkEF6PN0zB8/tP/pTV5jnOnVc1\nO6XMyalacN6GMjMQeezqaXmAo66PfC1lny5nrdYY6Ml9QKUTzwRkqWOoj49Y6m3e9XPHT4BT5vP1\n93Jj1YCU3VrRysItLM4uAFmXJxddy9zcPNiZ57wP5qc9e3CCqx9qtVF8txOA+5mjbP7MTWrUkTvR\n6E87TdFAmD0PmhbJuSpWLd579NBDCLGAsjVoKkMmVf3DWBPTMAXlOE4xq6CJovBCzVyc4atJrMGc\nBQldcOkZvGyARkLO8JE2mykZ96SJfTEhg0g0MkquUp82eSBxmGWa6o1Qr6PIWRl5eLxPZala5WFQ\nHKGAoqKVp0oaAxOlF2OjjUF9mEvjqRDULozsS6GwWlsyA08t7i8W2kwN6xaYMV0rcK8ASm0cvywZ\nLHzeoxSruVpPVvdULOWiCwhWAjq9g9t/xh6+wbp3MKwYbt9w/VJ5+bsj7248784P3Hwy4O9uCbue\n4Xri2Mdo3aY1WBe4vvF8/7KnP4445zHW4xpQHRmHI7vdLT98d8vrH3f4aSSXywy9ol6ZmBjDyA/7\na74YD3TM718TT4XZjlPOxjEqQF/etSKy6XiM8TuZifLpIXzIMtl85QKE0tQ/jgsfSbWyROxTFxs4\nZV4zp35CD2U5QIX7qyYpc/Nx7+R7Z4v+3EKYwbW+v56Zqk8Peb8s3vHemUrPv7juERB5jMt/sP24\nwazGPCW5NmTQQAgeM8Ziu4aABjsHPoQQudqs15VY7T0Ejx3HqLYxBozFa6CfPEFMLK9l51K2pUen\nXdaZE8yIsjTy1lweOAMriSl9s/pdJCptvAYm7zE+EaZVG0E+gXp+TNDkfmjMcuPdG8+KHOcOMM/l\nvQCtvNWS90u0SaToWNUcx5JUXUkAtyapWYCjwugJJhXz8LG2aG0Im9fjcqvf0+WX8ZsXgpYpqMR+\nTcQ47wGRlABfCEaLB4cIYCNBNM5GVVC+Pm3V7NIZ250jK2Nel5xnR2lMj+VHNPwTv3y248VnHb/6\n1SV4y931xN2NoR8tr97AP/9uRHvD+6PldvD0h4A1HjcGcMp//sf3/O6rG842sD0Tzi8MT55a1usR\nI0fG/Z7XP96xuzkiwWOtRTW6G4b0P4tyHQ7cak87GwsWaxEoScRO/b+p1s4po7kA/eqOPAOKVGv8\ngf38k7/N5+u4k8dUOh8pje0DIEne0EtQrwdPZH6dGtRrDitzIOV7xTbMaojT5yrUNScXPz9GOOpE\nWT8NunWbDwG3VoD2EAlYclnxZSJDpKV/RiI3a6PmNVrobRq/0SNdun5ItTuNxdhYcxOlFFzGT2jf\no20bvVhsrIk4BuUwTQRrwbkI5pmzUVLQTR6vJZeWe5p1qzOAQlEjGMF5aAlV3YiopgCwxqKjj7nI\nmya5jMax06AEowQNqTK9LYmqZF4mj06MPDDxiymtDI+ZPFiUhsyU6BzhKHXofTxnrCnBK0VylOx6\nmAicLiD4PuFZgPyCV7l/TdJZF2mnPlIqASMUIhQg6vqNxKAgLxhPCSLSkjkzq4JquaHKr6LKefuB\n7dO3tO2R5q8+5cXnZ3zxJ1exUlW448PbD3z3amTce777+hZRZRgC3utc9i2A8Yb+Thl2I9fii4aq\n6wzGTUDP6I988xLW5y1/8yVMe8/1tfLjGwiT0BhL2xn+39ff06ye87fbXzEGjbns52Gq5ioTrwXH\ndm8u6rGfWcPclsy3USnsChGk7IX5EVVHagnrdG4ld/r+8fG9VqoXnH+bX2wW2+vLpdxyyt1XrSzb\nT18WoeH5fpZN3O/SCeGom11s+AdEpsWEPzwJi4msF9eDr5H7qwsthlHoRGkkVkuPxWvnfB9Z64H3\nkZu2NurBkxoFTYmyRKIBLAQQl4p/CpMGeu8LkGPMnEde8lycdLtKEVfUBguiStJAxFVqUZowRdVK\nBvIkjUkCQuNiruyswig50VP7ExBK6sF50z22B+5z3tV8pXmpiVI2LlvAaaXiIeXzyQWEA6iEUp9C\nk2ERyc+c/d1P5JRqltPc1v0+XR/59APrV6r/lieqRaUUo2VRB8EMZhnIilqmelbal5mAWyYuVm/4\n/OmOp786Z312zvnVGWcXa/r9yJNngU8/O3AclbvDxGHXM3llSkE+fopzakzMhqgh5iTPRlkBjDFM\nfmQKA5Mo+7uG1cry/BPDcNszTSPh1RhnywjGWr69fs/59jXPf3HLFAJGJGZNTGNQxktOh3ZWwcwS\nT438M2GWahIWeWfmwSpDNmPPKWmuuJzqKPF5J/NcHx+v1Fua/HtA/dBmq1iL5YLPqpQEkw9KHVrf\nWLZMfGS4tygXzy335w09e9LOv6VO37tf5/fLXZWq1eyfKlI+I/P1p1btmlvLwmyRYDRO5FqgawTj\nJG6AYUC8R8SWG1WzDlzQFBlJVkCYmOpWXARvTSAeXRIDUwggqVhFLrdV51hdcBUzii6ZngTSZVPE\nMTCSKu6ECZK7W+1HLTblj0k51MO+j6DjYn+zsD+pEIjc42ngWSE4nBxaXyMn52p96py6IXoJaQqW\nSrrUXHpMs241Zj300xQjZ9UTQipEQYyULH7mGeTLSFVzX6unHpEuFlkHdR7ruD20jE+8OENNHGOz\nYCtJtT0DopETNzkUPoH97PmlZF27wdOYnifbH/nl5wNffPonGNfhFY7DyM1xYJSJ7aVwtRfsDez2\nnn707HrlcFSGMdp0YvR9nFMjEdgbG//DBPrDxNArAYdTR9cIXi3S9IjdMQzHVI3J4YPj9njk9d0N\nL3cfYlrnohGYp/qBpBnpHSuYPQVtzZ46SpEsy0pK9pSKw86EIsDJldVzHzYI/ozP+cesEJQJ/D3W\nHOA0DH+p96tBX4GiFjkhBpr+WYou971Wakq8HL8TnjwbTiuiUESonNWvohtGoElecBpgUi1FlRec\nTen73BGpgC6ezv2eJQIp10UOsbNCIzGvc2w8RT2msGolprXVEItFhHFEQhcNXKbiFvzsdmY0lohF\n9AAAIABJREFUPjFABHIT9eMmJVYqxW2zeqH0N42tFmXQgpBV22MONlHFhimVcAuEEKK+P3g0CJIy\nHYYpFUmTlKEv5LS7gk/gaVKSvCyILJ67EA1YHgUrpbpY0rrJ6gpJHHmIpfLSu2v9NCGWoBs9WlIJ\nx/ZisQQhWEcuWJ2ZlYVBeNGv3P8HuRWkfh8zMzVCIpIp30wE9tKV+E9KLCVI9MMXSS45+aLZuycy\nD7M/vqYBa8zEWXPH+WpECLz7oPz46i1ff3PDN19fM02e/jhy2A8cD4Hh6DkcPXe30cg5TrHYc9bj\nK4EJSbECAWuVxgmr1iCtoRHwo+JH2N8qx35ERDgeVzy5uuIw9lFLLoHt2rFqLSb59Nf7p4xDGT5Z\nSG61XeveUjkF2zxPFRjnkorVwjvBGLn36XSG/zWq249afLkIlIlF1+qFH9hfy895w/2E/uoh53wp\n27oKrEGoc4qXQdf6vmqDU4GozAxVPJ/Lf8XqMa2NT/KiECSnqF5w1zPhqfSPJ5xXLQ2X56sCHvU9\n07TndrjhG9kxSUxNyuRpVNi4lq07p20cRgNMECZPGEfaECLwq8bEYblauo3VgSQFqMTCEgFsLLcl\nKeqPei4jRavmT5a/18CpM0nKso5RaIrrYZ7bEMElVYVhCmg/kqND5xwVcQMFwDihbQzBwKSxWn2a\n4hPW5tQfOPe63szZyJkIN9GYbInunpK5cjLHlVUTEvuac9jkPNqR8sTyfikgqLi1Sd2DmQOsd/6D\ne7riQvKemIdZyhpd3GzMXOXbkuZaoufSqQwvkShGqQmCmZ8ZGRwwOiDjO27ef6C/fs/ubuC3v3vP\nH373nm++uU7gr4UIqIdpDByPgXEUgppZXWcN1tlUqtCkXEExaZtHER+loBA0EusAw0HxXvHe0HUd\nKoEpTIhVWiesneFMLIfElCwklLKpavZi+Vs97PXWlGrc52mQ+cLq5pOvi3NzX6TywFvspIJ5Dx0f\nPSAoe0ucou9Dknr8WQpLXN+22I6PzYRo2fjLWAqtqGbVmlTtpVEs+szEmSBEI36IlNcIOImFlBsr\nMWxbFSRyjSYB+ZQMTfFpWl59XgO1VJIpe4I+k6IydUI4EMI7jrs3/PH9S279jk0YCcHQiuHctTzr\ntnwRPuHp5ox1a5nGHj+M6OBZDy0r62gHn3yJDUGkpDPFT1E9oIExeDAdhd1NGevyNMSIypPVtsDN\nOcSknnNN2fUM0Col4ZGojZw3GkG6H6L+fpiwzhG9R5KuOXuPGINrLF1rmIJk9WqMUC3kO41pPcnM\nRLqsAs3vVv0rGoFcFZc0C3kAJOfJVmaduKfKvidVmoJUbDgzMWl95h4Vr5G5N5xKqvMv84BLpeYr\nT83TInldmRigFPxcUckKEiQSyVT8OAf9ACVQK3v4zKMXx9UPR3b7H/nNy5fcvP2O77694Xe/+cCb\n13cc9seZSSXpwEWwArkKawobiME4ztJ1De2qpV21NF0HavAejr1n8jGC1xhh3UHbCjYY7q5Hht4j\nAq1paSxgBpzAxjietyt+FMOYx+n+Ul0Sel2ukOw9kpmbB4/MYKR5mdnDGXOWnnBVDxI3/1A8y6Ij\nDxwflSOHeTuV8wklsxEze2dkrWN2e6gYpupDxcnlr3lF1teeJACf8XJBZx/ot5SJKE2jlORAeY8K\nBBUGL5igSW1aUW2Jy3fOhzwTGyOl4XIENOorBSyezvRcrj7wdPuGq+0rhuMNL7/9wH/63Wt+NJGb\nAYv1BjMJMgTOv/uOZ5dP+cVnn3N7+MDt9Xvurt9zdrbhTy4u+Q9XT3mxPUdUOB6VZmfYjB1rBTd5\nBh/og8aCE8UXOnU7cXBl+ZUNUi3IBCbzCFcUWCT5ZSsdSmMtVh1BU6rdtLj1OJTGpImeMyTpgRAI\nAkcRejWMwcQKPJkjrWKoizRWLZ24iZf8uRGppnUJXiWFSnmpxN3rfG8QUm6PTLDiC2dPkalM9TyY\nWvWxdK78MB+LpGNySp5qcKg/zoxDsdFkbxSb8qr4SNAxUhKpacrdUwN5ISwIBM/u7Qfe/8tvuX39\nR24/vOLm9sjNzZHQT1hJAU2JOMXI3fhf7l4QUp55RcfAcZo4HnqMNdjG0rQtTdfgWocYB1j8pOyC\nchDFYQjG4NqUlVKVyQvjAFYazun4dLPhnTWze7EshidN48nez3t+Hvg5YyWZ6NbSfMUYnEpG1fnc\n1hIME5F8wJ05z9tjWP5xk2Y99mXxbkvu+XHPj3st1qSUGR3lgXb03q3LZmagPZE45xM1IacEws1B\npgU5sqGoBoble9Tdro2enR3Ytrc8P/+R5+dveXb+gcvtHdd3ytA7Lj+9YFqtka6NzhKhIQzKtO+5\nmRyct6yeC8MovG+U744D+7c/8t2ho3ef8pdPn2Ma4cOxZ3zbsjId59LQTfD18TU3esS7C6zNiyoT\n13kM5uE8AfH8u96fQUkSkVNoEaw1GLWRa9WQihiDTtEIamwy0tZ6XI069RFhwDBqlBhmL4FMvKsN\nyP1pP1kpNb0q85l1zkaiaF+AOsxgmfUZWWtVIUHSBGlUUZysm5mXSDclRiZ35FTQPP2ahrjcHt+h\nlim0YnCkkq7ibxp8tIPU6oHMtaOzG3bVZ+NH9LCjf/OO6x9uuL3ZM44eMymtCCbFIYTUqZkjj3sg\n5HfM46ekwK4pAqCBqRmZ2gjkxrXJ88rFtAc52lezSpMoBXmLhoYvzp7y5dkTrtoVrgp2q5JKzMD8\nc1bFn9BXLzhpfQB0K8JbQPwh42bmzKtbZ4L/8PGRgDx7AuiDi3im9acDXXt5VPhct1E9I/6pwlzv\niaun9z1CJOor00Nrp7FTAS1DXHZLi31dtBI3Q2mr3rRxF0YjVQ7NjuL8RXfL55ff8qe/+CeenN+x\nXYNxZxzlCZvnW/7s7yy62WJXDUZHvHSxZGffc+wNjYOzC9isLJt3LXdrxzf/6SW3uzdwuIX2PY0E\n3tzsePuqx/iG83bNKrRcjz236wmzvcK6HtFjGgsHmvop84zNo1ONrmZxs0xNAoXZpa+TVJneRkul\neh/HSEFNiPV4hchBmtiIJqOjBs+kMGrUjUeGWpOLH1X/Tud1PjGrU2riM18vCFZjFK2NiTgKTJZ3\ny0tPJKpbUtSppL6UdZLzuc9cCrNReF5X91QnJ/3X6rukdTcT1ySRFAZmvqkECOVGQtQ950GWJEEI\npMCrrNKbpQdRxYxHmnHPWgc6DUzG0LWG1gq99/Q+0KfsiyH3w8QkaHORZAp4zUMu0QF1Ckw+ptrt\niakaXNfRrNY0qxYRwQcllppVsNFIHwIYLH/z/Bf89bPP2DoXU9tm5kOz9Djv6Xl/z8OyWCdpDJcu\ngfdBWE9w5jEIlpM1eXq+Ig38FJR/RB35qWdK7U0S/5H5R2br00mgQ7UyH/aAqcTOxXjXMHNP2H6g\nz1SzejpJUghr1EPeJyi6uG0Wcpf9LQ55pV0rSmNHrrobPn/yBz5/8hUXmw84MzKOjmmcuD0qNyN8\nmDx3r3eMk0f0gNeY+IrpQL8fmQ4ToQ9sLy0TE+9vd4hRJhW+f9sz/T9veXpuuDwz/OnfnnF52bBZ\nG8bjwN3NxIvbwF7fMLh/ZLC3DPyKUZ8zcl4BxzwfJ6M/v5nU7z5fboiV6REhiBAsKaRdk3teJHLl\nBg2oJ4aEAiImejqIKeA4E8zMDZ08thJja8Npnc1OUDBhvj5EoHA+9SFVqxGRWFPURzUPqVBHqcSU\nQ/gzsTeWkDyG5hVwQgDvifonw5zvqRi73EIBTSo1kCUF/hALSvjYr0CMOfDBI5gScCWeOB4keJPK\nqBsCdjzi33zF9ONv8TevsGGidQ0qFj8csZrUWili2OuUpDKHSQFrMZo4St4hkcOQcDakdRLS/m4k\n1nW100A4eIYxFowWY/HJVdIHw3gckUlZmY5fP3nBLy6fEmqVhVaeOMiML2ndzLVx55Vab/+aoazn\nIwP7Q0jyWD2Dn2QudKlQeQj04d9CQFD+Xn2umYSfur4GzMde8LTt2NZ9ruZnQfynL0mLOx8/RRR+\n4rws+yMSWLs7Ltdv+fzqe55ffsv59hVWBrz3eB/1fcMBbt5c8/W/7NjdBUbvUTOgNtoaRDzTbmC8\nGRluAm5jkJWgXQAdUFFuDyP9twPvOuHqzHF9O/Dik4bnnziunsDFubIalOOw527/NbvDB47+R47h\nM9DPGc3nqFkj9ZJaED3lnjNsGbTI6VkUm9j0QDKlRoY23ZoMmykvyIJEJHDxEo21S+L/APo9MH91\nl2ujtiaVgjPQCJxZZYUlyIrBaKrsbiLo+5T2YJqQKeZikZxAi2jwVg2oSAxcyhV3FpR+uZqL6awC\n6Xl7545X95Z3mSU7g5Tw9CL6RxSdVT8a5uCg3JpEL4+wAK3o2SLHHXx4yfjyt0zvv8P4kcYI3jk8\nBuuaWElJQpRiNL5nDvgRsQuGJuruk+2oSBJpDRSinCTYVARFiETVGMUTi26PxiDDxFnT8ouLDU/P\nNqy7ll2Vo17zoplf6mQ91JL/bOQ81YHXqhGBpb68OrS6/hSrTrHspCMny+FhpPtI2Q9PFyrzhk4d\nL+qQdC6L4QtRphqUOmhoYQl+iKup72Fe2Mvz+hOjqwv1Vs08LYxQ1ebUBxuTe59zwigkYKXnfPWK\nzy5+zy+ff0XX3WFkZPIB1EcDYTMw3d7w4Y8H/vAPL/FDQBywEdzG4TqHcw49eHQXsHtl2E3IRuie\nNqwbD06QQel3A/u3nh96pfcTT543/Om/3/Af/37Ls2cO04LVEcMNMnyPGX6LnZ5j9E/x7f+EtL/A\nuAtqt8TlmJ3yHhHBlJQChJi5EeJmnlIgi0kbfFZBSEnylOMCskw1GUlAXhuN7ou6i1moQFDS8wRK\nyLiI0Imwccq2gQsjnG9bRn/B3koxUFuicduOE7IfMGYf125rI8B7TxBBCYQAPj3JIBVInK67gvLM\napx4vib6emLAr0aYNBylDiuqSIrelRz8Y6NePNe+rD1WlEhUsyyBKtYHONwSXn/D9PYbwu49nbW0\n1uHVoypYa3EIXgJtiMZS1ZjywWbuWdMri0/ceHo3qfT6tTcPibMVMGJK3IRFCNPIGAITUa1z0Tm+\nfLrFucCIT+/IvXYLk8Ep83gP3RfXSHWuZhl+Kq/K6fWn1xRHiqojUtl2HrGDfhwgfzDbXHHslAcH\npRaVq4YWOZlKC3nGgcWuKIbTmq9ZMo6LqRKqdiWJmDOVzpdGCh/PmxxPnVibmdrO6pTyfhEtMg2r\nCBpY0/Ns80c+OfsdT8++pm2OGJ1iZBoTRixiHD5Yfvj2PX/87XvG3YG2EZ6cOT77vOPy+Yazy47V\nuqE1qShDD0FCFOcdHP1E308cd56bt5abdz3X7wa+e+/54duR63c9jR341a8d2zO4fj9y967ncDMw\njQE/vWHQt+y6wPkv/1fOnl8s52L5ZflR84YyWHz0zdYQC0uoYAIxM99MrePacTnSJ/5Wu96PRI68\ngH6+uXLJq3kiY2b5L8OkAZzAtlUuWrjqlIu143xl2LSKDZ42CIM2DAkArAibVYcTYQqB6TDE7JL9\nhENgf0RuDzS7I6JKGDJHntQ45r7vfb0UZ44vXmOY11whksnNsdYSZCJnMIVJioYTLW6GpERoxqbq\nS6oF3EkEgGSPEFWMCjIeI6d++Rluf007eobhK1bORYfRACPKGCZEA401ONuAEayx5AJyEzAYGL1G\nV828J6v8wyUNQmaMJHLzzjZ0TUfnXPR0GoR+mpiCsnEW40fevXnNP3dfoaz49IunhclYGjvjmBfB\nhOrZiTOfSf18Lv+eOXFN8/SgCuVEF17aLExfBJLMtGoNBmkmH0uYBR9VtXJK7R76WOuS74N/DcD1\nFUIlVZ/cl4ekpowP0IIIvHWDeZvV+ZfzYGdAWhANWdADhQW43OtV3qVJ9BbtkekbGr6jNR8wSKzQ\nM0VuZxwDw6Ac+8Dr1xPDAVZtwy+/2PLnf37BX//1OWcXLatNQ9taGpfSPfmog1RiHotJoR8C/X5i\nfzdye93z7s2e33xzy29+e8urV0fevRk4v4hFFI6HiXH0DKNnfzPy4f2Rm73naP+ZX7Z/xvry32E7\nV8ZjXpT1rFLGIJ815BJvMZozg2ne1MZEUqhCSQUrRI8GEILGzCw+VXqvN0l82jJmsv49V88xEjnu\ny87wZGO4WAnnLZy1sO0sXSO0FoKPucRDcLHQhiQ3vq5FTcwg6TctYVzH6E6Sf/a+Z9r1mHc3jLcj\nFodx0Z9aq56WHublVK/l6vOCX6kXWrlN5nWX3f+Cpj5piWIzLubdMdYgQWOMQQgllUMUgKQ80fhY\nZo92jTxpWYUR60fYvcP7gA89E0JD9kiJxb9DcvnprEtZOj3DJBxH6EcYTajeN4GrBvzks00UMQZn\nHI1zNK5h3bZ0TYMzFlCswDRObKxjJQYTPEYDSmAIvkpoNnO/9/bpydpZDHEFzLL8YQH+j6lQ6uvv\n3f/APC5+exzHP56xU047noewkkBm1ztZ3AswG41yE/NGzeug/FY1LSwnIzVWQHTu0D1oJjMEJy8z\n/1rew5y8V6b697becggSiIMSfM/h7iXj+j0aBoYedseJu0Ng9B03Hyaurz27Hbx9a3Bmw/m24de/\nfs7f/Q/P+Y9//xzXRN1h8YRJHnvZj9iHgDEtGsCPnqDQHwY+fLjjl795i3OG3d3E2MPuTunWRJG5\ndbgVTNfKmw8j3788MukPXPziHS9+3eO6Zpag8jxJTQTzO0shukZiWljnYwBQ9OozqaKOYJo5Fk9t\nBpgIoDkLog+xMHSu9F6NLIu4AWZOyorQGOis0hl4vhE+v7B8+bRhs7K0LrsaJk5JA95ACDG/R1CZ\nq7VbmwhPwLYNOBcFh9SfEJRhmJCrDf7dgc2d4YwYoDIpJeq3LEk5WX+SmYBZBMln5lWoZVzzKo4R\nlSl/jdeku0++5EYwrYtAbmKOHslpbANRcpMUwJ/UVdZPeOOQVYe1hsYa7Lhnevs1fjwy+Yl+glYc\nRiyti5kpp8RTrp2lNdGjZPJCZ+AgEqOfhUS0DQEYvafXIQlUBmMs1rlU67Nh1Xa0ziEiBG0Q9Yze\ns7KWTdNwuW759PyCi9Uq2o7QChfz+quxY0ny/zWFj8vKKuqgxH5W4r7UVypL/Ku8gO6hw6lO/pHj\no/qRQ+5cBtE6qEIeHbgCetT7Vepxgmoxz0zyHFu88Fop96Y7qptqaJ/bqX9Zfjy549H+lz6KUKqQ\n580bIAzK7W1Pf+kZNfDymxt+fBN4/c7x/kbYX3uGXUxspCOE0dK0ytu3B/7lv77Dtp7zC0fTCiEl\nCjo7a3jxYo011UKzkcP3GqLvrnhca1lv12zPNnRuz8210A+B77+faJqRxiVgazvExk0KElPjllqZ\nzCiUFrgpw6yLxQtzyLtTXVSUV2XOAyMxKtFYW2ikhAAhZsoDCMaR86urzCvBVKJ0VBEInRUuGvj8\n3PB8K1yuhItNw7ozNE5xxd85B3WlpE4m6metRN100AiKk58KwRYxYALBp1DxLDZbQ7ja4DYtfzbA\n5VF4c/S828O7Xth5IeicFC0kkSa+vlQc66wiimORIN3MTMhizWWUCCG6dKaC1VGqmTk+MbEgd/b0\nkSTJCSS3ywhuwaUUDiFWZzJNh1ttaNcbvJ/wOmGDMklMTzFpYNSAR6NqhyhYWSM0q4azdfQRHyZP\nCHB+tubQD9zeHblJkVPGGIzYqHtvHG3b0TUN1sTgL5FIDAcf2AJnmw2/evGcp2dXbNyKXrP9Q4tR\n957Qw7w2YcbRErVb7eH6mFUl843mxPtp0WjNkNZgXV2ycLIp5x/GlY8bEHSPM86c6/yt1lyVvwtR\nI3PCQuXeMONxyc18/1m5D5rarHuxGPf6b7nolHY+dMcD7/zQFeX1Zr2ZsZZ21fHuw8jtzQfe/Hjk\n9Vvh3fuJ3c6jg2DU0LWO7VbYbi2uEdwK3t8e+S//4mlXFmPBJ/F+s7U8e9ZFsTbln+66NqpeWqFr\nDC6tiIuLjmdPOy4vG+52ym4HPniMAyOxWsuqc4weVusWz5Z2tca17cm7yYLwyWIe59fPhRqM+liy\nS0Os/hPl+rL4F9KcKohJOtxo5PTWomKLFLJMtZr5V8PGwbO18OWV4cWZ4Wpt2LZC28a6oUFTwE+e\nmyLbZxtPYjyUqPMOyXVOY6SvyXneVQk+lPtEBE3cb2c9L1rlbCO82Ajf38KPe+VtL1VfTxiG+qvM\nbq9Lzm95i0m2BSMUT5WYhz4xDwnIcxWgmAUz9luSQTS7YRqil46k+qoFoJqO9vwZxveJaNzCOMV7\ni7HO0VjhvLGct5Z1I6h6fIiZNb0oPunCrTFM/YgNwtq1Uc6VVNfVRq68bRw2GTDVBxCDs471as2q\naznv1jxfX7Ft1rQm6u6zP/08XjWUx8/3sfIE6os+5qfumZ+xUDPMP1SfterLQ/Obo2oe1638m1Ct\n5E9LS+3JSxfSVt9b8eTCDOLpurn9h4F1YYjIclDFQeZnzNi9VLQ8Pqz1vdVOy4tHs8g2vwWJAhvi\nhnNNFA3f/NDz47cfuH3vuL2zHA+K+onGNaxWLWICbmVZXUK3MkyT8v6u5+XbXQyS8DBNgaBC08B6\nI1iNOmfnDOtNw9mZ4+K84fKi4/zMsdnaWJF8Zbh6YukHpT+CH2AcDIejZxgmViuPAbquQZsrus0Z\nrm1RQhmrgnnzkBRiNYN78ljREGuNpvFR1VT2MiJxDrcvxiZJIJ2SLfkM5KZSi0mt2omqlM4KL1bK\nLy/hz184NiuhdRKNkinzHpqIiEr0x05FkyMHmzh+heStHZ8TNJZFy6sjATkaz3uJUauS1phXz7oz\nXGwEc27ZNB4nymES+qClclwZpPLhPsd4eszWpWjktCZ7gmhyOawD9pNKJmgERNWkrgpYT0yuldey\nkBKqxTkxEgmB6dY0V5/Riqcl4MKIHI6YaaQPcb6ME1zX8unlGc/PVlx0limM9OPEfhi4OR5AokSy\nuzvgB494ZW1d9Msn5tqXlFTLpeImuY4nIjRNy6pp2K46zrsNT7szNq6jM5aAJCPrqe/PMpCrLNWi\nApnXal1Hczkx9ydi4WlVMZxxa0g1+pVSuALBfNlsBl8aUuvjoybNKmOky/Pzj0l0rF78lCPJx+kl\nWZKs2eiZYJxQvtN2a4ieFfWzGoglptfn5x/vdXfJs9congFe0gkJqB/Y799z+/7IzeuGu5uGMURx\n1jSWYIVjim4cjp63fWCaRg53E8fdyHAcYyrYKeC9R6wkl+UQ9aQhpTa14KyhaRyrlWW1cWzPGi6v\nOqwR2pXls18I1nR0rdCuHT++uuWbb655/erA4W5EbOCTXz+h3WwxzhAmH19Kak5lHrDFeKfhbYLS\nhIAJvqQrNIaYojYI4iIBlBCBKOfJNhJ15AEikKeMgoUYp/ZFY1/OG+XLS+HzC+HZVmidxjEJxMpC\nIUVohpQjT5IOPOd0T3MXMToUEPTqGcYRIbrd1fxV3IzpSjXlM2LxKlgMXeP49FIQ8fTe88NeuB0N\nBlNSJAuGObT1/hHXtS5+r2GoEJhaJZPWroa4VsIU1UfonI8l74gY+GQjZy7RuIwxWLdCtlcInrYJ\nGDNyIQfOVjEX+M3hyPWhx6jlou14sXJ8ul1xsVkxhJH9NND1Dkzg+nbP3V3P0McapzYVhM46+ky4\n49zHyE/vPeM4kguMeAKbdsWz7TmfXF5wtdrgbMsocb2YChzvbdJ67B6hkvdo672jwrfqnpm5kMW5\nMk95XZ1y5rkNfbxPH7WwRKGL9/o2v+j8dQ6FZvnrAsRrsKjhtX7EaVRW/F1Ovtedvf/L4nQe4AeJ\npTzwad5EFY4XXXmYJob9gfff3XHzVjn2HbsD9METZKT4nRjF3ChoIEwT0zgxHiam3uOnmHskAmFI\nHFTa7Mmlb47Xi+HSxoFzlqa1rDYNXWdoG4MYy3rtODtvuXiyRpxwdtlyOMY6i8MkIDYWA0heI9kn\nRcunepyTioIkLgOdUVoBKwZJHgWSEvSRaouGcUxVX0x0lavmNxADV3KVesnPqpbLWSN8emb4d88M\nF2tYNykvx3xJ/FeJOtFEiAQtATF5muMwpgRYIRC853jYY62jW60wYtNvHu99sSOEJG1M3sfK70aY\nJsPkJqyxnK3hy6vIkU8+0AdJ3Gj9ttU6eowlJ66nJI+QZyQLCpK8KkTj+lGVuaBElhq8Ft26EjMT\nanILzIE9ChgruLbFcsY2nGPHM/ywYbNuuAwbej+w73tEDKum5UnXcdG0bJxD+ol+9Eg/0IyBJsSg\nKy+KM+Bt9uo3BcitNcWLqR9HDv3A8XhEnMVZS2ctL9bnfL694qpZs7ENIibm8SGD5smuzJvwoT1c\nMcpLA/SJEbPMkpR/IXPxiQhVV0tiEue9MXPtD871ozP9EQtL1EEzuYOhHswCbPmYN1JmtWtjT/5U\nBqUAa/WARybpX3Hqsdc47d7PHNVF+f2rf7KBw/vA4TDy5qXncC3se8vt/kDvR7yOMZe4xnDqEAJh\nmCIn5X2pvSlELlU0FYeoB7peu5k5TIvqmH2RgRx4aJxltW7ZXnRcPdvQrixBlG4dA44mdVjnkqEz\nq77mh0jqR3ztedSMpAINIrSitAaccyBJXWFANEYe6pgkCzWRMEFJAZv7G0SK2G8KhMWXFIHLFXx2\nbvj0wmFtzhuynEetAoxKtj9mbleT+k7TuUwsNSh+8qBSqs5riH0OforeKOlB3gfGcYpcJIFRlD3C\nqlthjOOim7hqlf3R4tUw1jaBahWdgnjeGzVzgM7EaE6aL0WizJ4s+BDdElWhTWM4hNRlX/ZcqIlk\nGgtrFOeEhpb1Zo3p14y7FQbHRQPNOhpMCQKTIONEk3zWwzDiDz3hMNCqcNY0GGI+lxBCJNA5dbVI\nKmIV15kPgWEYOBwPHPoe4x2brmPVrvh0e8Fnmws2pqVL9Vsb5qRfp3A8G8bjmMUrtHBoQx94AAAg\nAElEQVSdeW/mX+aApTgv5W7JdgMhG/XvEY3cet4b+dfHiEj+7SeA6eMEBNVFCKuEzsvgnplU1RlI\nFrRqvnUG/3R+OWRLUIEHOJnq62mK0Pp8ufwnOKGfPerXX+j748Ix1uLcCjFP2N295u3r99x+iIVq\nc+pPDRHIJ+9jngofuUaT2oy6ZIqRq4yCPNiNsiBLX5JnBx4keIbxyLjref/jHWpjUWbTONQL27M1\n50+f067XiMwVc6Re2HkKinXfFFvklKQEA7GOqE1coigGl6QKxa26+E55Y6W+ion5VbwQixJYgxNJ\n6YSjTNCI8mxjeHGW9KyagLxUU4peEcGHNC/MY1HmSWZpTmfdshLn7Pz8vCzOaRijJwVgkjoi1+cc\nvGcKgaZZodOeaew5DBN9PzAF5W6/R6aWC7vBq+UuWAYVpKhYHl5QNZ3W6oQhRsxKCHnRUdhSERgm\nwnFEhwlpG4yz4FL1pZQX3ho/G5U1pSPIY0hM6yvWIpstcjxDXcvt7Y4uGNbnF1xenuEah58Ch9s7\njnd77vZ79sORnoDZtDy7uGAaR+7udhi5A+0xOjH6QInmdAZMVJ+MXhl9wKuAsTjjOGvXfH7+lGeb\nc7bdOvqbG0dIKpXKbh4Zgczs3R/OeyOdh62C/ByDVZjOuKbvM2z1WpqxShb7bnHfKVcuiz/3jo+W\n/fAhpcc9XTOnSzTrj6QMZp6LxXgtPj9m6nzgcpFHQfyh7/UzTh/7rz1OnoAQMMYSmhVNe4HQYMeJ\nKydYsSCOPoDxHmFEvKZgi5QPo1ogwqy6oMZo0ZMhyhROEkBpGTfJsmTydggEJvUx8KaZsMbg7C3X\nb/7Am+8/xXYt24tnWOuiPrUyQMc+zdLC3CUpQUCZydakdoq7xyBWY9WYdI+xdvYekKQjV5gwyfw4\nJ1ezAmsLZ52yaRXRbLhMunCTAXoeo7p0n5b/FCW6FGZjbNAwMw5VTHvuuwCqgWmaokGOyJGHoCAT\nmlUow8i47zn0Ize7PWJacBOXXcswrhiDo7CFVGvxFINO16JEkLUQ0wTk3CpJwpBJCaNHfIgSFQI+\nlqLLjoeaVV1E/261JqpdCEhKFYEIo+04yBbbXuDXF/RHxYeedj+wPVNWm5bNtuH87AzfjwyHI3f7\nHTf7Ow5DjzGCHydCEEKQxNQkI7QmFDYGT65YFfO6qwExhnXbctWted5tMAHGMUZ5ZtfEmO4hRXlk\nXDhlbKo9XqPOYowrnr6+WBLrvDCgPnAsYaQsnoozn1lXPdmrj6HMR3Q/TOYgYSZrpZN68m3+UjvZ\nl5YymOdr846Uk8kp50++V+f+f3PahSI/8vMjHH39BpLGwuBpxx0OZTQTd23DWduiXcP52tG1HR7H\n693AfhjpB0ujMMnIFDxBzKKwa4msPiVIzNxFBv6oNqDkda4vTj4aiMRNZQIMIUSDlBGOcsOHH/6F\npm1QP/DiV/+BzeUz2vUWZ5qF4PTQ8Kpk90MtnFKpniT5nmjgygYtMSmjYLouoEwKE9nLBPKqsAKb\nRlk3SmOT6qmoTELipqqAI1WCj+JCaUljbvSggRB8xkFAlyrAxO5ln3kfFD8GhmFknKZoSJQIJ1OY\nCH5inJRxnLjbHdkdjuyOA8aMuE7pbINRi+AqlcnJ88pynxmhev/MEfYa67H6kPRuaU36yDyYlG8l\nhMQdGoMawRvBd2BbR9s6vI05ZYx6TAg0CohlFEvvBdNdwuYpY79i7G+R4y3ruwnXTLRtx3rTYddC\nOPM0dytoLOH6mt1ux/7Qsz9GT5ZM+KzJBEXwSJznBNBIXN9iDa1r2LiWc9vgx4l9f+SwWnFmA060\nEO/M6BQOWGf72wJzFvJPYR3rrbGE6wLmCcEe8DCpl//Mymr1PUnTOoP4zLw+jk0fKWlW+iuGU7ol\nC5COf2NeiaVIE1+sWrSZgzt9CFDuNJndOxlCObm8aqv23jzl7WuZQk7Oca9P9/M1ZA5VFax61v6O\nT27+wJkMBJ2AHXbj2D9/youN49nlBSqOf/zjD7y62XMngUlahknpPYx+LiEnRC4spy/NuaWzz0PC\nw7JQAjGqL3Lfp2MZjaG5jkPGEe995EyngbB7xfUf/neGt1/x4Yff84u/+p/55Mu/ot04aifM3F4m\nXnn8nMaAIGNMTFkaJHmO5EELhGNMCSudK1JD3sgJo6rIzpmrcUbZtkprdU5KpplI1NxmcmXzU/wv\n6cijr3L0khBjy/eibkkcbsb22IZPBtIQ0ymM0bMi+AmX0q6GaWKYPH0/MowTx35gGEesieqDvj/y\n4e57+vMV0nWRG5Z5/c9cd7X2kgomw5IJORlZwnwf0CFF2OSFoFH3H/BgYqUd3zjUGnxrORjL7szS\nPdnw9LxFU0VxQ8Bqi0weH+CIoOMKH46Mt8/Qywum4yXX/R3hw2t2h/dc3dzRJskqeM/heOD2bsfN\n7Y673YH94cju2NP3Q/RaQaMqRaMz0xBgpKrDKkSCI0KvyuADJiQPruHI7XHPWbNiZdsFXhhkrtAl\nUmwYC9tatUMWjGPaMzUfKlVby8SzNd84E4NFizrfW76nGIYSSZCZikcYzY+ba0Xml3oo5WjNZRdj\nGRUk1gBcPuvMXd97aD6X/ZDTdqjaqcG5/L5ookqYE1+kXFukpOUj5ztleS5rkkSE9njD5v3v6f/r\nP2DNyOpswy/lyOqyY7d+wvOzLc8vzmmc42zT8Zuvf+APP7zmx75PdiphDIExpOrzJMOQiYllY66M\nnBM2Rma2JiVfgiiqSuQggxB9ost4xnY6Y3DGxKyEEtU5gwpit2wuv+Bs09F1DWb/lttv/wWHZfXv\n/xbTtJURdB6DmmZbjdGdZf7ShtLsSRFisibFlgLRkjaTIniByUAwptJwZElH6YxiUtbBgIlJqnIS\ntFg6npidVaNXjGmiqsHEgCMphCFFeTJ7spQVmfVCIpHwTNE7ZZgmhmnC+5ACWgyNc6zXHcPgOTqX\n1oLinKEffXTDO3qOvsGuPdJF+Lkn5p+qWKo1lsfXoEXeCAKjESYBugZtW3COsFqh2zXhfMO0XeO7\nFm0cU2sZreUglm235rOmLV40qU4y+BDXDxLdXXct4+cb+t2B492e4W5HeLvl+sOPfHj1Fu13MA0E\nPzKNI/0wJGI20Cfilm0/XmN6Wk9MUeyRShqa39T7wE5HXpsDXx/3eOOwTYMberbDkSCOsckMQJqr\n4so572GpNnEp4bgY77KbK8Iw441IXpP3MXfGmBNO/aELK7zLAFXz7afHRw7RT92U+917CIRNHiAo\n3M8CDYCfVY1I/THPihR3rIfaKQSi9PchKi1lM0KtnZinT+aPpY3sedGNd2yvv2X4/ndIK7TmBett\ng9k6dpstzy6e8PRsy1nb8MmTM7YWGqIR8McbGHwPqnOS/sxlA1iZK6OQGTHBmagFDZpBKVO0aEC0\nUAhCZwwra+mcY/ABxePF4toLVk++4NM//R+5OF/TuolpuIub7rhPREWT/jU+vWBONUZOA1ZnDjxJ\nwuRgGk2h4GIlVtYxkvS0iRAlFUDI1ixmcdmgOBMz92lI3i2hykOTNmVI5eKC97HYQghMfmKaJqbg\n8VP8HF0KA96Hsrni/NvoUZESZ5lUD3OcAsM4EUKga6L6om0sm/WGqQsx6ZM1rNqGTT+wOwz0h4E9\nnuw6JKUc2wwED6nM6k9la4igBqa2wTvDAaVvHGGTwLtt8dsN/mJLuNziNytC16LOEazBW4MXYaVK\nqzl6NaZLcM6W7yqR4w/jhml4Qn97y2F34HB35PDqjN0PW3bfWfq3rzh+uON4/ZZpGJh8jO4M6iNw\nKwnEI+c9pVB3NaC2dh2e7SAalMM08YYjdn/LJAbfNqhfczb1YBuCaaMqrcx6WmjlzEwhiuuq1jTj\nhKOWE6bu3jyU7f7fcCzxJbf7WFsfyf1wueSW1CsOaeQ9tLpFFu8Vr5GCmFJm5l/z/Hv4X4k3cx8S\nps3Z++SkEV2+h0BM4qSVaFWJwvMiSQAkma4LLgS26nnx5IJnLy45++JTfnj7GhkHLNCayEGvWse6\n23DxV3/Grz55zpf/9Sv+r999y29evuO9TDRGGINP+sUIagETrfZI8iGf3cmmEBi85+gDQzIeIcrK\nCJ21bK3DGaExQmMsq6ZlP3r6MOHU8MkXf8Xnf/2/8Ku//Xu6zQYRRcOEqsHYBrvqSv4VwyxSZuk1\nj44LHhtiMIp6UtCSlrQsgmC6FtomuhiSuJ/UiEqs3YjYSrhLwJdrZxLwChaXhibmxbbOAYIPE8f+\nyN1ux+3dLR8+XPPh/XvevXvLYb9jf7djf3fHMA6M48g0TUDy6lNoXEPTNjRd9Px4+uw5n3/2BS8+\n/RxjXASnARqzxaxXOCM462JAVmsJ4Yxx9BwOI+erFe9uD7y+C9y2LT1V3o7TDS7VGdWFi6CGyCyM\nbcPNes10dcbu6Tnj+TZy3uuWqbFxTJ3FOFuiQMu+yN4ppXanzXqp4s8PiVAagzgDrcPZgN10tE+U\nqy+eo3/zZ/jbG26++Zbv/o9/4Lv/83/j4Hv6YWTwE0FDrO2ZpCxFUrWnHBsglWQejdaxGElkTAYN\n3A49w+0NB4G7dcMgW85NLFOiY49Xj5EAYpMTQFojUite5mfMsF0fVaxlToNcxIR8T8a1tNcrtcLP\nuV8U19B7+dIfv/PjBQQxA9psLMpiz6xOSQxFTHYj81CpJs+Hn+HAS+ay9MT8nKzf1Oq6jNdFO1YT\nRRF+5lGFwtcgXr1ZIQySVQcVsBtncKsVl08vEfF8eP2aD6/esPMjftWhFzFThBNHZyzr7RmbbsPV\n9oLnz57x5Vff8k9//J7vb+94fxwYfHp+2pS5IjwSkt48cuFTUMaQjUeppJZGMXZUoQ8Ba1KghWto\nXIv4AbGwXV/wyZd/wS/+4r9jc/UkAmJetQV1UhKtBYhLBcQx93ijiktuhll/rpr9vKvx0oB4H8+F\nFDpuDJpKfWmuCl+eAc4oKzvR2vgeNoFV8CO3d7e8fvOWV69e8/3Ll7x7946b6xv2dzuO+z3Hw57j\n8YCfohrAj2PyOkn+43kWNbov2hSsJEbYbLZcXT3hsy9+yadf/JJPPvuMp5dPSp4Sk7ImGmNi8FPQ\nFGHbst22XF6NPN2P/Di0vB8Du8kwJi4VKs60VjumdZorGq3WQvf0knFzzs3VBn++YdisCG2DuljE\n2iR3IZPWiyb1XLUdi2osSnMZvCVt0hSc5QM+5ToXFLGWbmXpjMUKME1MmxXWNNy9esX7r7/icDwS\nhiF6HPkY2KV5vnP5vLSXKHsyrWlMTORlwFlFpiQhGYu0LeurLZ/8yXPa8yvuevjwYc/1zXeMTJiz\np0i7QsWlVLs1PpwM6s9yiLVO9eFr5SfaKd5X6f6cmXJGD/nZ9j+ejjz/rcZAT7luqVyGRAsgBIrR\nPVUVkUdkjnl6lgz7A59OnotWzPRjlDB3N1PQ+ny98OpHSKbWs1CPKKFZ4bdPaKcr2L+n3+1xYnBI\nFPUzV0rMqtaahs1Zx7Mnz7g82/LiYstl5/jnH97w9fsb3u+GqMsUgzM2Zv8LgXGa8H5MeuFaX2ji\nGGtyMpPo3jepxox1yehnjUOMxxhYdx3nF5dsL59inSvcST1u9wXEiiNnfnxRrSQgnx2PKuKrRN29\npKyPIQVVGCFYi/embP58GFFaE/OMtynxdz/0HPc73r9/xw8/fM9Xf/yKP/7xa77++ls+fHjP/u6O\n8Tig01QMrpJS2ZrcoxMivZDoZJ7rtu344bvv+PWfv2Ucjvx/zL3nkyTJeeb5cxEqdZboqlbTGAyA\nAQiKI5fcWzu7+//P7NZ2yV2SAzHgiJ7uLp2VKpSr++ARKap7QH4bhllZZUaGdI94Xv28+meS0SiH\niFOxpiIEVBCxfZ93XVaMR0lPri2jdkXrtrhWgsxBZniR0Gs2+2d7/0xlqWRcKGaThMksgVlGNR0Q\nshQv1XEOeM9e2e3bc7wE9kRfCLoahih8+qKn7gdCXwjV0eVKBFLpLj1VIQkxz9+l5JMpg9NzirNn\nyOv3UHexiK4Bc+g03adxlX60I5OlRKiYoaQDJB6kdLEKOS84Pzvl9atL3ry5ZFQU1JuG1rfY8gpr\nKpQtSWbnqGwEKsUEgessAUS8hhCePrud9v6R7v7Ue8CBD3j/tB8+80duXI5B4iDp7j+8/MQa+TGk\nip3K2v8Le5wRe61A9iPcPW17iX0ED/FjYPd512psV2d7cCGH13c8yscf9yr8p2MUR9sfXNORRD6Q\ntd31temY1eQF1t8zVJAPPa/nU97e3fJhsdhpu9GXKwleEpyARDKbz/kyT7k4n/Hqm7f86zfv+N33\n11QdI1yeZLEFl7NsqoplvaU2pgvmdPwdQtK1C0ARfepKCrToswUCqQskKuazJzgSs8Wvbmkfb0mK\nIfQseruhPZyD3g0Sx+TI2AldZ6CuQrJf73v2wd3DLTqlvKMoCPFIQYnoy5VqpwyI7mXUAnItGOUp\niYKmrblf3PP7333Fv/zzv/C//uUr7m7vKDcbhI3gqUQcA+f7fPF46ki61PebDMSYqdxZviF0QeYD\nPnRrDHfX15i2Ybtc4ayjKFJO5rMu26LjabGGdbllvdmwXG1YbzZsy4qqqTvBppBekwxfQH6BSU67\neeMILHqNbjbWvH4+4PTZiGyQIHT0dQchdlZODy+7/OfAzoespe7AtJtCCX1muRQCa0w3zwIpY+G7\nRZIoFYWfc1G4d++sqyrauqGtm0j3m6bo8RSZJpEAK3QpkbtMpd6VEtW1mMURdhTCQki8CJGrRgq0\n9ihhkTphMhryF1/+gr/+8nPeXM5xOEyRk+cZ1e/e0tzc0jx8z+TzLxmfvyYtzlgYSelk9Mf3kydA\nHmQjyZ1PXOzGbRfyPHzUu+8HDpbux04AiAO05mDn3Vex3+4/uPykGvkuoNCv6+8v7G+iH0RHVBNE\n2A/WPslKHByVPch/8qx7belo2YlfsdeonsrjT4zr4T0cyoadtSXEbv1eQOwleq/tWJVRZ3Pa0Rnz\nQjPRgXRSUOuASxQkKd57qqoiNJZWN+hEQylpXUtVl6zXKxLheX0+YTrMaVoLSNI8ZzjICd6zWm/5\nt/dXvH9Y8lhXBKB1Mjav9cepi1oIEilJlCBTCYnS8TcBWgRCXeHLLaGuuvE5zqo4UMx3c7QPFHX3\n32mGOvgdF3nU7ujajvUPdTxO7zfsG3D0riOHoO3NcSIApdIxVA2JLXn//p7bq/e8e/cDb9+94/37\n99xc33B/v8C0NXhH1hXESBkFQfS97oG6VzZUJ+SUitAWQgxuBiFi/0glO9dVlzbnPdv1hg8/vMV7\nT7l65PqH75lOxxhj2JYly9WG+8cli+Wa1XrLtqqpTYt1loHWDJKUPM0pTi4ZvvwLRj/7e0Q6AKnj\nOByUsE8GipN5yuw0Q2bghYvl8ISuuMcTpNx7dEUf1O4Ee9grTXConIj9q6JUVKjYv5Cx4jbysQQ6\nmly/J27rFS7TtJRVw6YyNC6CcbQI/V6ZCx1pGSCVZFhkDPKMPE1oW0PVWkrr6CQLyitOplNevHrB\n3//D3/I3f/UbXp7NKbBUTdVxmCe8fnUGIvD+dsnm3bfk0nMyksxmM7ZGsSgNG6tpiQHenjWzL4w7\nAmexf5OfIFCnu0TF5VNw/B9JytgnY/z5TeEnzCM/hN8jvfwoErwH8/j/AMUPQPfIRfUfOftT5Z1D\nkP7YGSB2v/eT93T69tsdKOz7LJuDWT6sSerHISDwUtPqAWV+gkeQJg0qkQyHA6bOU9mAt4a6abGu\n3rH+td6yrUq2VUnTVKR5zsXpjNcvUpaLNduqxQnJeJiCCKTCc/uQMkwUrVFYws7acTtzufOxihhg\nTZUk1wmp0vScI0r0CqFEKL2/oSdzsROIB8JR7O56XwiU4FH4TrkM+xfhEG26xbOvApVdOzLfaYRB\nCJQMKN8gq3uq6o7V5obfP77j22+iC+X91RXltsS0hhBiA4lU7dM1lYxFRD50f90l9NpY7+7bxR7o\n3A0i8mhrKWLgznucDxgfaOqG2hiqqqEqN9x8eMdoNKBualbrDQ/LNQ/LNY/rLduyib0nXWxIPEpT\nxnnGbDBgevKBZ06Qnf2MZPYCqSJtcD86UgrGA8VkrMiKyIkTrO1c2SqW0WvFvjQmCuDebXSoiRxy\n5uySUQ8s4L3idVhvvf/r+WaCs/RFN0IKvLXUdcumbmmt37k0ejdZn61EiKmgWZown4w4m4+ZDgdU\nVc26rHksW7Y+UBlP1XouXrzgL/7y1/w//9ff8/z5BUWaYLebyJ9uWpT3PLs8wVhHVbXUTYlb30M1\n5nSWM80yCuG52TrWTlOjY4bTkzd8l4IsDh7N0AdiD5wsB/vulMeD/Y78Kwf7RAWnm4X/ILD9NFwr\n/Su9C8Ad/37IE75b13tTjlwoYfejeFodunsen47WAZLuj97VRTx1Th2j/f5yxfEv/bUdrNuB/+Fp\nwsExdjZr99AjMEKzUFNmtmRcrxBNzD1OkxwrYpFKawxV3WKspWoaHjdb7haPlHVNlii++OJnzE/n\njEYjHpcbru8X3CxK8iICVWM87x6WlE1LITRlsJGuVnauGvaVgFp0WrkQFCpyVqxNgwseJTQqyUnH\nZ6ST0y6heB/HOCab2s9rCPJoiAUC3QO5CHug6KlUfT/icQ/fuVOQ8oDeOAJ5EPEvlZakeWD1/f/H\nv/3+f/PNN3/i/d0Nm01F01ps8B3rXzcpncYliUCYKEWiFcZ6auepO26UPm88lZIERSYFmRZo2Wnm\nHQNkENAYQ208lbE0zhEEaKcwvsS/u2J9vyDNFK0xlHXDtmnZtpbaOOyuR2UEwjrEOdFKEe7vyKbv\nmT9eoUfPEJmKY9QF2ZWAURFIk5g+qYJAW4+yLo5VnhKUxHbWRegskN73vweYPSzHeew1j/3aiLXd\nnB+kJe7+XOcqE9EdFaTfWWHOBRobaEOsyO1P1Lsw+hcuSRTT0ZDnz0549fyUs9kU7x1l1bJ43LKy\ngXVjWW5q/uH//j/5q7/5S37+s1eRYhdBMpnHtt7bDa6tKEZDLi5BipS7xRoTHKuba05Pp8wmmlmi\nyPyWq0pzbwtaobs+sFHp2L/rB1lEvZLSAfqnll0sUOwJuo5A46Md/tyPHy8/Hfth/3I+tUk+3vTo\n0y4x8AlAhl4qHoLnE03uY2vmcMN/x9zpELsf3iMxIPZX9nTwj7R28fG63bFELFR5SOb4AHc2RbZb\nrFQE4Rn5K3So4rl0Zxk4jw0tXniSLGF2Nmd8MiUdDiDRXL5+QTGd8GpTsV6vuF8sWWyW1K2lsbEt\nWcyCiLwZiVJda7O+rVfMNU+6rJUgwFiL95BkE+av/4rJm1+RTmc75sPD+zoe09CNXz/Wey6TvdA4\nGMUDrUWEbqPOtSYEEdE7qRhC6IAchqJiff+Ou+//N3/4p/+X9+/fc794ZFvXtDamZQZiMK5/n6Q4\nqD0NscrPOI8NEYQynZD25wmBLocK4wXax7TMTOnotwWMd7TW0TqP8yA7mFRdTrhxntoYECEGNcXu\nbSAmi3ZaW+jcIcFjrGNTNwTvmGyX2OU7shc/J5UTai92Y6qEI13XaLuEB41OU5JiiCoK2uCgXEVL\n4tlJzFzpSLH+3GMfOtDvA5F7BNoHQnt1ZGetBuiuHsI+Rz+4uC7NUoajISsdGz7sGl30YyFj44jh\nIOfZyZiL0znnJydMpxO0VFgH83PD99cPhE3NYDbnzeevuXx+QZIk3XMa02mTYkAhJapO8EA6nDI6\nPeeF8QQh0UnKcDxECjBtxVBumHiLMZpHNSfIAV6mHHjPn+iLgp3Pt3el7GDgUOnsheFeAexB6aMK\n98OTPD3UJ5afvGcn8BEu/9g2+w2fqrl8RM7Uf36iU8MnJuOpIt4/UMCO3vXgbMcg3v8/BJ7dNRzf\n1ZOrPrjWThsSklIUGC14dBnClwSlSEUL7SNFWKNDVM8EInZcSQXjUYZQCbPZFBEE1bqikQ1aSObD\nEQOdkgZPU7Ukuowdx7vgJvTBr4CSgazTziOQx0pOraKJWbuY46uSAcOTl5x8+V8YvXiDynMOxdOn\n6YL6yTkgB+qGSBLQRN/zzmSn+7wTAAf79CZsIPqvfIDg8aaiullw/cNXvP3DP/KnP/6exXpL3bod\nCAdi0Cxm5uznq+dGV6LjZkeQSqLbgQh0nr4VmUAoSaIl8yLjZDJiNhohhGS53XC3XNJYg3EqFl2J\n7thKoLXugmbxwVNItFAoIXcUq10iy+6eY5qop7UWJWC9fuTh3dfMTl+glUZlZzjRdZYSntBUVJsl\nZVsxGA4YXjynyJ4TtCYS2zeI2RihFUh1MLK9MDu2WvuAXq8kHlIu9CXpn8rk6B9072PxVF9Q5YIn\nG+TMz054GIwwZYUNLTth37VsGxYZp/Mxr59f8PLygvPzU4rhEC01jXW06y1CbcgLwfzilNlsRKLB\ntA1ta7BdeqiUGp1mSKlojEHoQDYcopSmd5M4YzC2JdiGlJphqChbx0NT44szRDHrmotEOH9KLhLY\nC7Te8u4tGw7HTxyM6A40urens0g/VhKh5wH4z9UhiH2Vo+ilfb+E4y13n0T4xFPCE0Tst2WPpuFg\nsA4G7uOUk+O0/49Y5D61T786hKPLOGRP/FTl19H3w6BSt8okA0wy7ASUx7Ur1vWQ4B/IbWz+GwCt\nBONhynw6QusMRMb65pFFdYNAkKcZSkqctwgRGCcpz6ZjtlWLDVBbi+yrGbuOQVpBriQJMmZoiNhW\nq7Se1jq0Sijmz5l+9ltmX/4NyXQe082keHJ3O9vpeP0umh3nRobIM6OCjwx9MvKNx7Q3TRDmyBvW\nR/x98DEDw0twHuEb7PaKb//4P/nq69/z7t07to2hcRbXJav25dl7nhuxO64UoosJRO066SyRREqU\nUFgRsCF09ASCItFMhwU/e3bKF29e8/r1K4L3fP3dt/zT7/8YC0+kobExYCplzFPLbOQAACAASURB\nVHeWKo5rIiQpMSjakyP1AqV3H+7qJDow9CH62x8fF/zpq38iVZIX1jL5+X8jyAwlon++lI7H9R2r\n998xmky5SAWXz05JJjNoDa6qUKbjrlc9kB+zXkY5c2hB7fPyHRy4LCW7fqad9n3ozowEZH7HwV43\nDa2xFKMBF6+ec/fHM2xZ04QS79NOoRAkieZkNub183N+9cXPeXZxzng6JckyrHOUD0veXT/wuC7J\nRkNev36O9C3rxQ1KaZomusOECGT5iCwboLOC5WaDMYYk0SRaEpylbWqapqVPT5J4UuFImhXVu7e4\n+RvyixSRjuhz5o8Ta8UBJu8tzY/V9/3z9kkc+vTHeFTx6fX98pP37DzUtP6sWv5kUA5N8MPvH7k2\nDvnOf8x1Iv78b/3yVBbutfFjKSKe/O+3/YTM2R13V5B05D4LBCGxOmczeomr1zTbBZltEd4QnMOH\nmJUynkwYDKeYWUu7rGgXW4QH11jaMma1NHWFKSsoG4SJnWtcZwBHtOj+VMxskMSKOk+sAI2NHRTF\n9BmTV1+g86IrQ9/nxvfByk8OJUSt42CFEKAJMWMlhCdk++EALwQi0fG/c/vCIRlpVcv1kpvr7/n+\nm3/j8eFhx5zX2S4gBErSadyiqxqNwB4rLBVKKqZ5zvPZlFen0R87Ho5Is2zXCd56h1KSPNOMBinz\n0YjT01Nm8xmmbdHSgbckWcbN44Z1ZWIQuRvbQCzd10qRJoqAow1N9MFH2kGEiARWAfYd7qETYIG2\nNWw3W25u7iku1wxCZGZUeHIa7MM71PaBqRK0t1eYTOGGGUEqaBoIniC7CowQOiVpzwu4e6cOMrmO\ntM8uVTFeUn/dfdzhQKsP0f3nbGzbJgJoEStpfZaTDEecXTwnbRrq5AHnYxZSliZMpiNeX57y5uU5\nr15eMhyN0FmGF4Kbm3u+fXvF1c2CfFRwejYh1QrbtJTE1oXbssG4gFAS/1iSpDn5YMB2vYwcL1rS\ndBaf9x5rHE3dsi0rHhZrHh83LB9Lyo2hkBnDyYD5+A3bkLO1khBUfD5FPzpyN2aHFn3/hu/cU934\nHuLB/gX5cU11hw0/glM/HZAffufHvhxLvcP9dz8f/r7D8iPdevfTj8mJj5gTn5yxH/RPGQ49WO8K\nlUM4AvYf08SPgoFHQu143wB4mdLkz/D5Pa2+I9tuyIIlEQKdZqR5QT4YMBgN8ElKoxSlc9Srirqp\n2W63bMoy+onbFmwkoYoNgUP3GIrOPy52bHm9VuyTMUmeMZwlCJEwefVLBpevkWlKVxZ4dHM9YIud\nrckn5jsGJiWBpCsGEoRdZeJuw54PVojY7EAKRIgVn/2kBqBuW1brFevHJXVVd/7RyPFSpJIiz0kT\nhZIS7wLbKo5FCB6tFInS5Erx8nTGr1+95MtXrzidzxmPR2R5gZMe4yytaUF40lSR5ympTsiKAVme\noURgNCw4m015ua0YZBm1cQgkwQZMa6malsZFThGpJcYZBG3M7ugxkD5wG3bvSh8AjOCqEKpAFmeI\nfNalIAokhoSK3DckSQLDCYv1GqqSsFnT3N0jhEInXZroIfjurJ291bOrhw4B3drODRy79wTdZXQc\naB99wPNwCaFjguyYMqWUpFkWowbjCc9eveY8AVZj2tYhpCQrUubzKRdnU56dThmPx6gkobGW+9WW\n79/f8OF2gfGB+bAgSxOWixWbZYnumjKvtxVIwWA8xDtIkoqmKSnXq8jiWWQ4FwPLpo1ZLOtNxWq1\n4WGxptzWtCYmGkyywFnheDETrCzcl4F1E1kYe3Vh/9z/yFsvjtcGIQ6arOxz+ne/f4QCxx+fLj+d\nj/zPBRaPluM0qGgd7/S1PcKK/SF7DTd+eapN7Af9WIB8+nrEwd+f08iPgOpQiz8sAjg85oHw2GfL\n9OlseynsO3CzyRQ7fEFdLtg+/sBcBdI8Jx9kpMUAoWKAJ0iPH4A/0azKigezZNlsaYOjkY5GgVew\nK4/txk/KSOSUK0kqxV5zTVLC8DnDZ59zcv4CnaTkl69Izy+gL8mHo2ftUKM+HttwMF1iJwATH4Fc\ndkIwdGkzvS+a0AG8FEQSKdVZuAEvIvOe8QLrolYthIxUssGhlWY6GPDy8oz5qCBRkrI0fHd9w93K\nEkLMUsm1YpgofvHyOX/z61/wqzevSZOMJE1QSYKTgcbUbMstjamjoAPqtok0BnWNbQyr1Za6aRkN\nC0ajgiJLmQ5GBBuotg13ixU3jysWZRmBILg4HiHsGh7sS1BAhJjSqDrtUQpBlg8Zn7/mxa//G6ef\n/SUiSZEhoKjQoeRkOiVhQtt4qu2WdDhBJRnbq1v0bIo6n8dmC72b60BN6d1XfVg/CJDGka+qXWMK\nrKOdDrBFipNdRko/p94dgXn0bEYWSB8CQmnSQpJoRSYE2Zs3nF5MObErtqsIvkmWMpwMyLQi6Xp2\nNq3hbrnmn//0He+uH2iM4+RkxnBYYBrLu+/f4oNASUWWp6w2G4pRzsvPLimyFIejbktWi3vyPGeQ\nndHULavVlsVizf39mtVyS1k2XbNyST4YcHZxwsXLZ7x4ecqry5yqFVwtLF/fwdZLrJC7WodAB9B8\n+v3v3+woN/durMMAaTi0WA8RYyfkP738ZBr5XkL1j8CPA/tHnYOONL/j/3sTZr/tIXTvI89dPmj3\n29My2R0Z18HKI0GxO0a/pr/Wp9e93+eJ4rrbfl/2zU47Ojz6LuCXDgnFKVbmLNstJhhOkozUQ9ZR\nfiqhyNICPU0RQZMNRgyWSx7XWx7XWzbrLcELNIqhkjvTUBIYJDqm1glBrjKUyAlqxDqfkT7/nNkv\n/yJqh1mBVMn+Ady/xsdzshvG/RzvH9z9vSkfffWRCGn/QuwoRzunozeGnpxaAEGJHdOgKmYML7/g\ncrXC/PA14eEK1wTGgwGXZ3N+/tkLRplE+EhKdb96ZLGKLiMhIUs0ZydjxqMcKTyPj4/oNEWqaELX\ndUXd1hhvGM2nrOuG2+t7ru8eMM7HgLALLMuKxbaicZ6T+ZTnzzJkqpDSEaxkNi0wOJyEdV1TtTHF\n0AMmBExwuzTK+JoItJKkSpGohOnZc85ff8nzX/4dp69+TjYcdQJQ4uqK9faacWIwVclyuUHXDUFu\ncP4dqnTIX/2C8OoS7x3K+y5WHBA+VnT2547PhUQGT7LcMvyf35JfL5Fli9WC1d99TvX5M/xkEOfJ\nxYYbfREMApRSpEkalS8XqOuabVmxvL7C1AYRBMoblAukQTGaDsmzSDympATncKalbgJvb+757sMt\nb6/uqFuLUIrNtqSuW/BgWhvjD1rjvSfRCWmS4I0hKEFdV5TbDVIpqsrw3XdXLBarWHy1rWgag0Ay\nHBZM5xPmZyfMTk4YTabIPEdriQ+GNBjmquZ1ZrkzGUuXU4k8cuAfI8ETjNljwEGi58H7/QQ8PrWE\nH9/kJ0w/PPj6RKs72vTIzoan5CVHWck9mB92dnlyjt15w8H2/WGfnOroRAdH24PQ8cGeCqPDvY4n\nYK9xBwLy4LxHvv/9O4GWDpmK2Po9z2jaLcuqxorIh2K9Z+AceZKQSI0QiiQvKCYerwIukRgFpXek\n3mMEiC5wGjW9QCoVWkbAOJ9eEKxm1UpEPiaZnFCcPiN4tzMnRTiei08NnXj6Wez0cRACRSAJbt/J\nqK8u7JtcsMNxQmN3K4TWICRByFjlqTTpaMbF61/EdEwl0I+PDAcZs8mI+XRELj2ubQjGkMg+QBWi\nP10IijxDSkHTNDw8RlqEEALWGOqqBC3JxgOETlCpQOgU6wXrdUld1ay2NevWUroAUiOSjPHE0FiD\nqFvqbUnTGJw1ndAKtNZSGkPVpyuGQEf2h5SxI1MiBUWWMxqf8Pzz33Lx+V9y9voXFKNJx9Xi0Fqg\nfYtYL2i2S0pneUSQG0t+fUf27gYbBMnZjGA/j8VPXZD6wHh98nz2pr/E5QkuUYREYXONT3W0nGBH\nM8zOVcBOECklSdMETIr3AdsaRNVgbhe0dYPLM/QoZTKccqItg1SilYzVoN5RNy3v7x75+t0VP1w/\nsN7WUUBkEm8cNkiKYsCzyzkqkSilYp2KFHhvqLZb8Jamrlk8PKKTHOegLFvW6xJjLVJKprMJ4/GE\n6XTG7HTGdD5lOB6hVUppDK1tqDYrtDdo1zD0LcuNxZaCrSvQo1NUMepcjXEMj5SaDl+OFLojvNuD\nwKFSGZ78/GNQ/xNp5GF/c8c//OiFHup++4DYPhf4yCsuPgUo4Qgou5X0e4uDdfvu7Pvf99uJ3fbH\n+eC7K6LPzNiVVAgOM426gMgezMXBh723PfJo9CllqTSopETlFck44aGSPJYN99sNq7LkpBpzMh4w\nynMynSCRmL69mJTkRcbIWWpjaLzD4RF1BBTVsfCJromtSgdcXnxGWRoebpeIvEAmmj7RbN9kQdDz\n1/R5If1wfSp4HA2dAyEoIhVA5mMuNV1TZyE8uO5svbDwIQJ5FxCVKqZQBilxWJxrEFJw9vINeZYw\nLQakP/wRKQODPEMLSfAO27a02y3O2njFAhoXYqk4gqppWK7XVCLegzOWpqox3jE6nTGeXKCyAeNB\nSj6YMprMuHp/xdu373h/v2JZGwwKnWq2VcvDcsM4V7j1hs39I9uqpfRQeYFxnm3T8ljVrJoYFJUy\nBn/7NMhMKJSEYjDg/PkbXv/FPzB/8XO0SsBbvKnRSYrWikJbCrPB/OkbmtEI+9lLHpcN4cN7/Ps7\n3GzC4PPXjFYrsvmUVEik0CBjrWzMkOmLdgSyM4/cbMjqH75guywRxmGLBDvK8InGO4+3Nvq/xaEw\ngBC6gKqCJM9QOjJ3ytGUh/d33F/dshgMGIw+w51eIP0S4WpwsSWeC4FV1fCvf/qOH24fWZctWmmy\nNCFPMnKdMjqZcfn6Bb/+za+ROp7cu0C52fLh/Vv+9Kf3VHVOVTbc3y2xZom1kbNfSMlwVHByNuez\nn33G5eUls/kJKtEx1dQa2tpg24qmrlg2G1IJwTnaTcn2/RXLmyW3JmHy+d8yvPw5Okt3/EnHb8CB\nprjLOT8sZNwrb731H7p36kk26CeXn7D58v7C9slX+5+P03vCwQ3uB2jXJebwsJ01vg/YHPwW1fV4\nRNHD7pOzh0ORwV6KdtfwNCy6O8LuXsIO3Pb30v3fTcixeN3TDu/HQAhIFYwyz0DVuPqGzfIHto/v\nGVnD+WzEJNN89+GWh8cVi+Wam0HGME3ItEYRm8865/A+9oysm4ayqmlbE1Osktif0flA1VpaK6iM\nofY1v1/890grqnIuLz5nImJX+xhs7MRNb8YcCMi9wNzNMj+6iJhDngZLz/wROuKs0PdkPNjWtS0C\ngUx0JHcKAXygti21FNg0QwpLcXrBSZKCbDHNhlQLRNdr0zoXO7c7i5CSaVqwqR3LxvDH+wXT4RAN\nTFJN2sUAfBqZIFd1yfrrbxDhLaa1NNuKZltSlxVlWROqhtDEsvNaljhT0TYbqvWCoZRo66mNpfWe\n2nrua8PNtuKxMRjvO/+0RAlNmuUUWcE4H9LUa3KdkHWEUTHYqTuemfjU5Ykhy4A8Y9VUlKslptzS\nisCjENQXZyR5jhKaWevJiiEqTeNj5/e59WE/E9Hf3b0JUincpCAYS+sspm1wbYW3DhkEHk/rPVmS\nIqTEB0+7LbFti3eWjhAebx3t6YTx3/2WyV//mkvrKYY5ephRmhS2C7JqhcJz8/DIH759yzfvr2iM\nJ8ty5vM5rz57xfMXl5ydzshHQ9IsRUmomorWRqbQ1eKW26srfnh7RfASZyPAZ1nOcDRkOptwcXnB\n2bMzZvMZg2FOkiYICdbW1E1NVW7ZbkrqpomNL7KU+82G2+s7/vCH77i6uuaxajHFKT8/+Zzhs+iq\n2r0HP+bQfmLZP30n9lizB/M/+x7xEwP5/ttTEP/EHh+tfJKnfGi2dLb4U9f6p67iqf9dPNlgP5Cf\nPsDedfP0nvb/j4TJ3lF2AP7H55UCEgWzoWGUtBSyBi1xG0fTlpi2YTbMmQ4ynPO8u13wsNqw2ZQk\nKpriWkDYBZ4iRaoxse2YtQ7rPNZ6jA+01tNYR2Vg3XjWraNdPCKUZjCcU2wfmK3vqNcLkrwrpBDy\naFR6AOfAIjm2sMSR/7/fWRFIvYtUqj4Q8JHO9OnoBeiJo3fiW8SOQJVtacjxaQZ2hS7GFDpjun5L\nszQE12BtFF4hEFuJeY+QktFggA0NW2N4v9jwdXZPsJaX44JBlpJojdASnSfoNEEphaksvqxw6y2q\nbilsiGyBxQCN5CE0lAGctVR1w1IGQqLJhaCxlq2xPDSGD2XNY9vSdFzwfaOJNMkY5UNGgzHj4ZhK\nuqh1SxnB1btdUJLgCa5FA8UkI3nzGe3tAv+4jK6hIkdmOUmWk2QZ6YtLRKJpraHdrGPmkjME6yLB\nFbExCUCeZVRViWlbEhGrfpuq5OHmFidiI2qcRwmJcZbatAyLIUIKTNtSr9e0ZXxeZZYCkf62RZCm\nKZlOMa1lOB5Szaf40QSbjhggkNWGdw8rvr+6xSE4vzjj8vKSyxfPuXxxydn5KZPxEKk1TV1xf3vL\nw2OkqvABlje33Fxfs3zcIEjIiwHT+ZTTs1NOz044OZ3HY0zG5EUe6S/ahqasqeuaqqqoq5JyW1JV\nNXXdULWG65s73r2/5od3t5ig0KMTRhdvyMYztNI7+pHdI/4Et44t+b2lf9j38xAV9m/Anwfzn9C1\n8il59ARUD++3x75Pchk89VGHp8PJ3uWx96ofYu9uIDvuiEPfeu+j/TjouvOH7Fd9ys9P51LYAdk+\navHRBMrYlmyUes6nNQkblLcMR6fUy3s2XmKbBjnMmE6GjMdDkkTjrOft9T3GtIjg0B0BVN9kOYTI\nwme8j8BtPE3raJyndR7jArWFso1A471HJQFlG1aLGx6vv2M4HjO9eI0cTCBJu7noqtEO3VE9Q+Eh\nuB+NWT8GnUbuLLKjCuy5OYSI3WeCdQfzKdg1Pe6m0iuoKkubSEgyMAFUgpAarRUWh7EtdS3J00jN\nGohl+FJK8jyncF2bsFXFH7ilaWrc6YRpnkbGvSLnpEiZz8bMTmaE0tI+VjSDLVQG07RUbUNlHeNt\nRV6WPDiLkaCSyOHuQ6DxlsoZFpXhqqx5X24xYe/KU0KR6pQ8HzAshoyKAUWeI1yGVBqpFc62eNNA\nlsZ59Q5nW5SH4dmQyZu/IhnNqBaP2KZF5zkqzxBpAmmKHg4olWN79Q5rLLZtMVWFrUpc2wCCsmkI\nMnY4eri5plwvyVW0UDaPj/zp91/FR7Vz/wgCpjXUZcV4PAYBVbXFbjbU2w1VVaIGBQiJc4EqQNAp\nQmdYH3j++iW/+PJXfPnlb7Hn55jRAN8G3q1q7ldbLi4v+PLXv+QXv/yC569fRuEK4D3GGartmofb\nK25urlmtN7Q2sL5/ZLFY4l1gOCp4dnHOZ29e8epnrzk7P2U0GiJCbA5i2oqqLNmWG7ab2J7OmhZn\nLKZpKNdrbu8f+f6HK/70wxU3izWqGHH++ksuf/E3vPjNf2UwnpGkKcIfIMRTZW2nre9qZbsslZ6u\nO+ys8nCAZfvl0zXT8FNmrfSfD9Va9gGCviIzfj8w1MVBkcgODz92h3zyXE9S+w5+YO+IgkOE72ks\n93h9uOeBtvjknD2U9dqj2B0gdKQ5cYc+yCc6l0yqYVRYJkUJ8g7nLcFLymrB4uoHlu9+4DSYXd51\npjWvL88osozJMOf7D9fcL5asa7s7PsQqwUipGrDOd/9jpaILYAMR0L3vKGJj2luqBYSGzd23XMsa\na2qmL79gcHKBcMR7ORCCu/Hcz+5uDA6LfYSM1LPSB7LguwbRRF8r7HzjIdA1u2DHztcXyTgfBVBw\nIKRDKIuSGgsxg+Jg/tvWkWkZuaulQguBc5bFZhuFlogB303T8v5xTXCWi0HGyaBgOnIUg5y2NThr\nSfMEZrHhc7lYUwMNglZBojJORilDKdjWFVVVI10kw2ralutNze224aFpqazBhd4ED0ipUDohTXPy\nfEDWZUvQ5WIb52J2Seg64QhFsBWuvmNYPGcymzI6mZOPxrimxdYV6/t73v/wlre/+5b7uzuatsHZ\nGPxz1hCsxRuLM/FzQOC8QynFaDSiXm8wdR3HTGusMayWS5SKaZ50Yx06F95KdUVkwcfjdS3cfFVh\nvacxltoHKuupbUwr3dxesbr+wOOHa37127/iszdvSIxnMJ/z5a9/wS9/80tevHjBbDZHEqi2a9qm\nxpkWYw1lucU7Q5rERhbl+pFtWYJSPHt+wWdv3vDi1UsuLs8ZjUboRNHUW9q6oq7in2kbTNNg2hbf\nNghrUdZA21B4w1QFZmnCfHqCmL3m4pd/x8mLz5mcvSAfT5EqibDV+1aOFNWAeIobvc5zBB3HvvGd\nBvaJIz5dfjIa26P/B4ruUxfKJ4NmPSB+lCL4iZOEJ9+fbt8P6KdcIwcX+lGnn93hn/i7Dv4dnjrA\nwSRFH7OQkeRIyYDWnjT1DDJFlpQkeomUDQQRgzf1gtXDLdViwfB8RiIFeIdQmtEg7zqxgJKBRAqu\nbh8jOZaLpPyOA1pWH0HdHwB8bPnmcCH6apXWTGdjnr+45NmLC7wPrBcfCDJHZAXpYEyq83hTfWuq\n49zLzoKKo7Qfyr01Jgld1kpHi9sLVB9iwVK3/U5eiiOZHotNAIREBA++RRLwpsWaBkSC0hopoXUW\n57quoTJWeQbv2FYlqVZoCYM0IRCorWVRNkjvMdbTGIdK5I7jZj6fkRUZ4ywjHw0xjaFtTex9aiyl\naVmWJeHBUJeOpnVsmoZFXXO9iZkttY3dgFznAlR9hF4IlE5I0owkzZBaxqpab8ltS88K6YzB+SWp\ntsynmul0QD4sINEkeY5uGvyD5ermij/+/nd8/bvf8XDzAVPXEVzb2CVKdrEG0VlDrivqEVKwSBKC\ndUjn0SK2sCOAcxYv1S5Do89YIUDTPfChD4gLETv52Njj1NoW6wJta2mMRSqNUZJtovkgJCkBv1ky\nL1JSDecvLnjx8pLxaADBsF1vaOqStmlihaa1bNZbHh9W3N8vuLl74Or2nm1ZUwyHvHh2wfnzc87O\n52R5gjU1TdnSNDVtU9PWFW1dIZxDhkAWYsAZFQOiVoLUApdp5sOcZ8mMwegVL379XxjMzkiynFjU\nIDuFZq/chQMUEL0CF/qnf0cM/BGmROz5lLv3x/3EPyGQHyKt2IH5U0CEj8F9v8EePH5UVu3A8985\n3pPg6PFxwyeoAA6vov8k6PvtxUndWwp9o2DZuRO09Cjl0NqQJpYidwyHMMoTrFtTt0sECXiJtZay\nWrLdPmLrmskwJ091vN4uh7jIU55fzEkTSZ4ovLHcLUs2dcs+ZLW3SkQkVyG40BXUeIx3sdRbSsbT\nMa/fvOBXf/FLnr/6jKurO/7t67fcXX+LGowpRjPU/BKZpp2AOjBdDkdJ7LWRWMm2l4oCUHhS/I4w\nKgS61MNwVCl4SNTUl5Z3HvWuQ00A20Kw+NZi6wqBQHXNjYMxsRUcMWc75u97msaQiIRUKabDnNaa\nmFtNoDQefINpWqwz1HVNU7d4Lzg7P2M6mzI/SSFIrI2kVtuqZLFcUr2v8d7Sti3LxnK7LbnZViya\nlp7I+bDwJxbV7KtRtY6NENCK1kfgDsZ0c+6xbY2zJYNZxsWzUwajnABUdYVKM+xmw8OH9/zz//jv\nfPWP/4v3335PU65QwZNI2XWAir1DlegbZMSxtz4yP5q6IZUqkqjJgHQx11wJEQnIvN+51GIII+y5\n27tenkIqpJSR70b0DRpjYVOiNFmWMh0WzLIMNise/vR7xMMV7vyEl5cXTJ49J000bV1impqqqmk7\nq4LOpfO4WHP1/p63P1zx4eaOm+UjxlrOLwWvkgSdKJw3rJY1rqlp65qmraNQdBZhDZkQ5ErHIiQp\n8Q6MgJYQ+Y5cwmyU02SvGJ39mvnlZ0gp8aHvq/VEwTvsgLP73lP+cgDUe1/4R9QWP0J18anlJ+Ij\nfwrjvab146AcFbsn5e+H2R+BT2rvnzreU2X9qcb4qShp78I5PPdR1WaveYqnJfo+atzKkyY1WrtI\nTJUHksQhtUGrQKo1qc7QgHeAC1R1g6s8pmyo6w1SOYbjlOFoQDEokFrHKw8e33VAGKQpF6czZIBv\n391wfb9k1ZFkORHdKKLLPsELHJEP2nrwIfZZHI6G/O3f/zW//bvf8Pmv3uCCpvGW4c09V4s1H97/\nDuNqXn3xfzCeX5AORqiOGW5nNu6tx52ZeJSa1qG2Cp7UW1RvLrjOteMjn3V3wbs2cr1C3rMZxgrO\nQPAm8n6YCmEcbNds796Rq4Y01ciqxdkoqFpjEYCWEitiDvsg1ZznAx7XG5wxFFowKRIyFUm5ltua\nujEsVhtu7xaczaecTGcMsxwpBM55mr6V3nrDzWLJ/XrLoqxZGsuiaqiM6bQtv3M1ySB25GQiAM4R\nTI0IJrqQ9AihsgiiIloRwVmUEgwKTaYD2/WSDz8YVJpGtsx8wObulrdf/TO/+x//yLtvvqFcr0lE\nINOKQkbhF/3bxACkj4HvxkXKXNMVKUlhSZWk6KpfU6W6VncxzuA6K6S2ltZHUFMyVm4WaUKuFZnW\ntN5jnSdgoiUZIifKaJDz4vyM1y+eR8oJGXvHru6umRYJ9cmY1cMdUnTB48ayXm1iIc+6oiwbNpst\nj4sVm7JBSsV0MCB4x0hJmuWCr3/3FZPxkOFwQJaorimKJwmeXCmKoiDbxZMC3llCiM9KIMYBlFJk\naUKiZYw/iUBXdNyRiLELge3qLI5cueIApw6xRXxk8T8BnQOs+s/mI2dvguzNiD+vWYtDZDhc/6Oq\n+KfPe/jleNfD4z91ej/5unOnP9mGjrNEebQOpAloaUkTT5YFBDXO1ThnGQ5y8lyjlCbgaaqGxWpL\nkWR4DMEJhIGEFKEFG+fIp1NynTF5dkmRqC7Q1ZNfWfAxJ7zIEk5mI9rWHC3slQAAIABJREFURO6U\nhxWbJhad+F4YhoAXXSPr0D18QjCeTvjszSu+/MvfMD8/5X7xyLv3tywfNuhcMBxLlKqw5gN37yXb\n9RnFcE6ejVFpjk5y0nyA0hlCqP0cfWxoRTANgcRasJZgHMH2RT8diPfXK/bTIIhCyeJpnGOzfcQ6\nRyo8tBtEWRLWK+TqgWKSQ55Qdf0jrY1AroQg1YqqNUgRGCSSi2mB9oa2jg0jzidF9LlWDW1tuhRN\nGwF9uWFc3FPoNHYHCgETArUxbJuWZVWzaQwbE4PHlbVdiqHYveyC2JRCdQ+xFJAqyShPSJIUZNIR\nFGpUknYMl3EElM5QGprNIzc33xLmKWnadXmSmturG775wx9YfXiH3a5RzpKnmpFWDJMErRO0VCjR\n88x7auuorKEWltp62s5CdQEsIjZt1nFf7wPOxfuqrKdxARtbvxKCQHqBdQEXZTJdW4ZIZ+uixaVU\nzzmeMRsPoDXUVUVjWrJckejoClsuHmkaE0F7W7PZVpTbirpqu65WkA2GjKZTkjQhzTXNZkVbl7TV\nmodmi63HJPKc1CekaUKeaDKZRNpmFSkQeoXId+4rKfqWfpHOOdGKRHiS0FJIh1QiKg8h9tGNz3S8\nnv69cqG3u7ont9PUj7Dn31O8exnwZ9oF/YRcK/2Hw0DAU4f28fdeKT6MqR26Yg7l1XGo4UkBT3+g\nXf/Hj0H+aHR32+837gNwUdMMOxM1EYI0NRS5YzCALDHkeSDPBXXjWa9rVus11k4wJsc5jTGG6w+3\n3N/cc3F+xmCUkiaxeCIrhtjM87i5YfLsJSdJzvTijNTU+HKLbRuMaTGmwQQfg3lKUmQpl6czMh1d\nC9eLDWFb43smOtFxmBCrGqWS5EnCs8szvvjVzzl/ecFqs+Krf/lXvvrqD4wnE169esF8npEVKTpx\nbB7/hCk/0AxmDAbn6GxEUowZTc7JiikqjZkKomvEcOx0CZGcK3i0dWBi0M17tzczDysFd26I6NmP\ngbOWsm1YL64RwTNTIJol1fKRbL2CpkYOUoxQbLMUFwJ1a2iNQUtJrjUrEQnCci2YDTWYjFbHebyc\nj5BSci+gEpK6sRjrWHdtyu4e1yTIrjoy9ni0CIwP1N7SWEfT0f9aFzVcJcSuO5FCRppcKTDBkWjJ\nqEg5mYxIihHIFGcaEiVRqiApRjF/XCt0WuCDpVmsKL/7V05fDdEZ+LahrA2rq3vW378ntRXjRBGU\nYJhoJnnOpCgYpDlFmpElaQxiWk/VGjZ1xbpp2bSGrXG0XfehRAkmg4JhXpDqlNo0rMuSTWNxxMBn\nqvtWeRItJD4IjAPp4jsTeclt1MyF6Phj+tfNUZdbHh+XWG95NXtJmuUEF7i7XfC43PK43LJclzgT\nA9mJ0hTDAaPxmPFkxGw+YzafMJ2PeLx6z7vvvuHrP/6BTW2xeUqmJAMpmWjNMM/JEo3sgrKRWZK+\nBVXnQpIEGauqtVIopTpKgYpcRoKv4EPkN+rSfLv+J5FDPkiMD9gg8DuAEUeYdATihxr4YfLFodb5\nI6D/k5Xo7z92IC36i++rBQ/dE4dXv0fdj7JQDgCeI1Dfrz8+R6d7H2nnB9ZBf/ywP15P1BU6f58k\nIHFM85TJUDMeaKSuUdqidEw901qSJLHQo21arL3lq6++Y7UuaRrLZrPl4fqeZlvzX//hb/niFz9j\nPnnGcDRDkdO2DdPJGdk852R8xuDsFL28IiyvEabGtC2mbqnrCiETlErIEsMgLxiNxpyfn/Pu6o4f\nru74/vaBkoB3ASEDUgkUniJVvP75a569fkY2T/jq9//K3e0DP7x9z+LhkazICNpjMZydTXnx8jmp\nGzEYjEnSjLryLBdbtuUVdv1IzjO0nBNkDmpIIO1GsNNcRMfv4QPC+eizJxBkx28diP8R0Z3gPSG0\n0dxtPdvtmsdmzabdMmpqTvIEnWu2ZkuDo1KaByVZNjWtEowGBZVtoYo584oO2LKURIC1nm1VMcxT\nZlmKJvBsPkFrTaYSqk4bXG0bWmcJIbpFZPeSORFfVhdCpAYOXSZQCLQd818st1e7KlgZoEg1Wgrq\nFs5HBc/nIybDITbNYmqirRikGVmWM5rMyQZDdJIgpcc9fEBvbzgdBN48nzMdZ7RNTdU2zEeKWe75\nfiDZbBuc9SjnOZ3MuDw953x+wulszmQ8IUtzBALTGlarFVe3d1w/PHJXVVTGIgSMBwmvX79gPp2C\nCTw8PvDu5pav311zv22oTfRZJzK6R5RUXfPi6GKwzuB6bvidmyx2Q9ps1rx/LyhXW6x1ZEWOlBl3\nt2sWt1uqssVYhxeQpSnD2ZDJdMLJ2Snz0zmz+YzxZIJSEmtbqu2aYjxmenrGs8cF5uqGJHgmieJk\nOGCQpmgVm6dEBbknoo1uPCUVAomXgYBF2IhSWtD5yx2V61oT9p2qOrdqjzpeiE5Jimiy45nfYdQT\nBfTQn77DsAM8Cwexh08s/3myVghHF//n7A2x3+kTx/mRfY7O8dSV8/Rc4UhIfBRBFvFFTLVjkAlG\nRcLJqGA41KSZp/EG6ysCEi8kDklwEo9DJp5ilDDc5CwXK27fX3N/f8/D3T1NXTMcJrjQ4IPnxbMM\nXMt2vWXTNKjRAJGnVKkmLXJSOyJvNWliMUmL0hqlE7KswDvf3XTk4j47PePi2T3nH274cLfkbrXl\nsWrZNA2jQUIxn/DFb39GPi3Y1hVvv7/i5uqe5WJJ8AKEpHWOsm5oaoOWipeXzxiOB6AE203FaCQw\nTQClSDOB0g0+GESQOC+ojcL4aKZD6Bove6Tzu6dXSNH5eSL4BTxCeAQOoQwhGII1aGkYSAfCgfQU\n0kcucOlxOJxrqZoGgmOYKEQ6ARHiS9pZU0pKijTBexdNamsphjnDJCURgslwgFQS2zoGacaoKBgN\nahbLDXVjIqdP9272WYTRd+/p+1bGpgoh+peTGPiruzZyiVZdv09I85STQcp8kDAuNDZPsUFhUchi\nTFqMKGYTBqMRWZogXQ3bK1R7zyCDLFORcEoFpPLYcUZ7MmL1uI75+UFwNp3y4vwZl2fPOBmOmQxG\nUcNOMqSQeO+pp2NmwwFnszF35QYnBGmSMBnmXDy/YDIegRdcXw0YpArvHfOyxXmihq8ViuhCedhU\nrJuGypnY69UHEBKpiGyPIsYH/n/m3rQ5jizN0nvu6kus2AiQzL2yuqtnpnskmclMpk8y05/Q3+5p\nWc9MV1VWkskFJJbYfbubPlwPLMzs/poKM5BAMOBEONzPfe95z3vO0Dm2HGgPHUVRUhQ10Qv6PmCU\npJpMOalrJrOayXzKZDphOp0ym8+YTCejTFNx2O9Zr+64/vCe9XrN3c1nPt/cs2saJnWJIY1N3tHZ\n89n9nKdahczlWRR5Cjj3vNK4p8zsd0owJIGKApFG90PB2MzP2JL3jjyJxR439I8Q84RuzOzAsyL8\nV+j2COi/9fjdBoIePn/4g+fdsF+94Dd6w0+R+6Hx+OyA/8FP8Wvwfn7Y45kW46rJw2ZAihyLNq0C\np3PFi6VlPikxVuJEQ990DOFACPmCkXHceidHkAPTeUlhXiGcZHfb0OgdZaHxIfHuwzuKSlNPSyaT\nmqEL3N3es9pvEFqziHPuukgtBmaFoSJhlEUpgxASpQuqEACJNll+p5Tk8srz1es93351x1/fvOOX\nT3d8ut+xaVrErGb27SWXP75g3/dsbj9z/fmG+7s1QzdQVzXa2HyhJ03oBaGPTKYl1dQQRCAJyWK+\nwOiCpLMaJnlP8AHpC/yg2R00WydJMe9jJBGZxqnOY5NZyZFnTTnQOfn8EQcQOVBDpkBdagpbMy0E\n/T5ijUZIhVKSnsAuOobgqYKgTolkFH0yeYeEJuBAQGk03XD0ZM/N4nldo7VmMpkggM46VKlgKlgu\nPBrY7Bq6wY8c8tj4HpU0D43Y0WogJVhMSk6mJf0wsOs9fYS6tPiQHQOnRjOvNFMrKXUk6UhSGqUM\nyCKD+WxKOZ2hjSLt1+jhDh23GCsYXI/z+oHr1UpSjwNNh/1ATIKXr1/yzatXvJifUCAxSSK8J45U\nB2R/lUldgFxQLUuKqqAsCgqpqaYTbFmitKHZVyymFRcnc2azQFlUXMxPmRgFIdI0HX+7vuV6s+O2\nObCL+0w/CIUaFVxKjvRFSHiXUNqyWCy5OLugqiZMpxOmsxnL0xNOz05ZnC6YzmfZHVFJpADvA01z\n4LDfc/3xA+/fv+Pt27fc3t6x2Wxp2oZZVXB5lkjRE4MnRoWSDyj60LdIAlJS+f4PIEUY4X1ElBgR\nSIQ05Ba5HMNQHgEipadKnif/B/ka+RWGja98qMITPISvjJ8/f/1vV6u/E5D/1nPiV58/arRHkB3f\n3fNA3+M3PX3Dxxlv8QWd8h/9VP8e6B8JgcdfgZEwncDZaWI5D1jbEZWkj4kh7nCxxcWO3oVRcKGQ\nKFxsSQSUFJTVhO9++JGLs69ZrT5ze/+Ou9U13ifOz884OZuAGljv73j/+T332y3zk5JBzri7eUtt\nDae6QETJDIVVFmtBKQsiN8i0LpA6X5gxJqp6xmx5wsXlFf9pf2B7aNm0DdtSsl1a7potn24+8f7j\nNZ0fkEZihCVKsKXh6vKcF5cvmS8rZsuKKBM+eoSKaKMgBRwtYVSeSCkwVlFVktQncHtiEBANvZgg\n8ajkUTGnxyBBKAFaIo1C6gIRHEOzo902DLstpbXMpjPy0IlCyES/3SGTxChLIRVJSUxp+ceqJqWI\ns5qgFathACJKQvD5Bq2MxnmPGCvPxaTibD5FKcPJ8hxiwreBYfBIrZjNZhTacnuz4vPNPX1IWR4Y\nQaSQuWAEPoncqyWrM15fnPD1izl//vkDkJgIlTXUMvcqKpObbiJ63H6F7z3alpSFIkSFICJMlS2E\nBaRuzcR6kg907cD9/RqjBMt5TYo5iWdal7y6XBJDZLPp0EqPqVEDh86BC7laD4Hgs1Ry37bs2g5s\nwYtvv0Lpiqbp+Ondz/m60gptCz5+vuFmtWHT9EymBYtpxcncUilFHDzCS87nNV3wbLs+JwWNma9P\noxClhMJqThZzLl5c8vVXr3n1+iWn52fM5hOqusIWJUqrzEmnhBs6Dn1P17fcfv7M+3cf+Omnv/Hz\nuw9cf75jtdky9B6jJItpyVeXl8xncwbnGIJDhzzhq8UxqxVIIdcSYytmXNaQQo1Ne4EPAVWYTG+N\nWafj0s2xCf1oevecEn7wYHo2yn30uHkCP+J4zCdwhhgXmX+fdfjdMjufP/F05frtNedZof2rx3Na\nJj174a/plF8d+3jw9PTEi2c/z4NqRiSMDUxmA0UdkOY48p3VFill06fgA/3QZfdCqdHK4p0DAkIr\nlIV6PmM5ecFkWjJZapaHCik008l0TEWRCB1RFqqpQRaJQfY4HG1MrH0ieUBUnAiLtiU6gZBZRqi1\nySZLQEgRqS3SWJQtqOczTgfHGsfP7YZf1p948/YXPny4oekapBbYSfaSXkynfP31Bd9/95Lz8yuS\nhJQC/dAjTMTIfLHneLJx0SQihcSogsIWJKHQukWmBuElpCUag04RScThQAp0oZGFQuq82fUp0fYt\n280aEwJRK1wYslwvBpSLoxxO4Xxku2/ohgGlJKf1hOgdjRzzSb2HGHJCDDxUzZXR1KXGGsVEK+Za\nYYxiWpYYW1IZw2a9xceIKizTyYT5bM7JcsmnmxX3u4bYDzjIFThjM1kIlFYsq4JZXVIazaQwFEYT\nhaL1fqQXJKUWlFpilCB5x9CvCcYykVOiTwQMbr+Fw47SSGzsqEtFSgbveu5u79EC6sLkY2qF0op6\nUjKdlvR9GL1DDtRJ4puOMHi8C7hhYL/fs9ntWTcNpqw4vbhAGosuyjx0tliyurvj0+d77vYH7vYN\nh8FndaiW7HZ7PoT3FFIRXaBrHZtuoG1bhjDQB0dI8aGSFkBpDRfnZ/zdjz/y4x9+5PLlFbPZjLqq\nKKoSBIQY8ri/dwx9R9M0dIcDu92W+9WKt7984Jf317z7+Jn17oDzAWsMr19d8erqgm9eX/Ly4oxp\nIel9hwt5ECvFPIH64FAa01gZi/y8ONpBZJdNEiMfLhE6e6pkAM8Sxd8eGHwc+nmCySPMpIfXHDHq\n0cn1uczweEf9B6KV30u18mT5EU+fe15pC34bfsUTtUn++vFw+R+O1fN/XGU/fu9jtf7gMCny6Zfj\nL0FIgVKgVKSsBsr6gNARnxRZ+Sczz5giMYxA3vVoKRAajDCkkBUXEUEyAa0VZTnBp46gFqjaU0+m\nVEWFUYZh6KnqkpOzBbM4oZwWWfdssn68DZ4heaqomSjL1OYAXiGzvauSMie2x3xxRJH1u9IkrJLo\nsuCgPE234pcPH/nw7iPr7Z4kBEVpqSeKqir45vUVP/79N3z19SV1taDrBpquzYDqE0JZBAIfcwKo\nVWbcRgqUKNC6yIoANeDcNcN+wIcTlL1Aup7Bt0QRQGtMKVBFTp6PQ6A57Dlst/T7A9V0gpQC5wak\nVIgQEC5glAIB3eBYrXf0YcCWFmU0SoFNgaF34DwixnGK9AjkkdJoamtyao2ESiQKEaliYlKUnM2n\nlMZw6HqilNR1jXqhePXKMf35PeWnWz6ttqSmzVYvIaJlQkuFkILTeY2WgsEF5nVBQuIiDPsBJbLk\nsDSK0mqMklmq2HUkP5BqzXDoaA8ON5T0WKZ1wTytsTNQpaVvFXf3GzSJ03mFMVlqKZRCW0NdF7TN\nQNsc2BlLESF2LoO487Rtx/1mw/1my6breVFWyLIg+MjQZ+17PZlyd3PP/XrHX95/ZB8gCInWmrLQ\n4B3b2zsMIg/TuEgXI1vnaYcel3y2szUq53ZKwWRS8+rVFf/wn//EP/7TPzKbTen6nv2+YbVZcTgc\naJsG5wdc39E1Dc1uR7Pfs1qv+Xh9w9uPN9ysdjQuUNc1y8WCq/NT/vDDN3z39SteXV0y+IF+v2Xf\n98xjyMKUJz4fYpQbHieHHzhvme+lB7hPj0Avya8/ynmP/HiOcDti0ZFuO2LNI8n9QLM89V96gnuP\nSHicD31qoPXrx+9TkT9sL76E6MdmwVMQ/5VZ1dNjHQFYPIHtJ6nkR7OsfJrS0+L/yTGeTBCOY9iP\n5E5ena0WzCdQVh2mbBGqxSeIDmK/Jw0CJXOjcQgdg+vphx4vsu2r1QXeBxKZbslDBx5ERCkFSeCG\nQCiztEpKhVSK2XKGLS2khCrGwFctEEllkLaKwxDZpcDc5lH9x588a3fjMadBQJIhT3SS03Gu91s+\nrTd0+57JbELUkqbzqKC5ujjnD3/4ij/+6XvmiznWlNTFjMlMMIsdu/YOHx2xDUgpcTH7ajilUSmS\nVEnUo8+1CqB61nfX3FzfIETJdPlH+hY+bq45P5tTVgatEyIGUooMQ8/tuzek5sBiNmGyWGSPjxiQ\nIeRYPKWwKrvvDV3LsG/QPlB4QVN32EIjhYKuA+dy/uSx2ZUEJEHXewqddxVOS5yIFG7A3txTBYm5\nOoP5grryDCFQT2fYukQZw9VXr/l0fcPffnrLv/30lk+rNeuYUCHlqk0k5qUmuJ5D4zmbT0gIdu3A\nagOkhFZQjIMzUgrafiCJHMogU2C/3rHa3tDGd8j/+c9MZjMuzue8+qfXVJWhNBLXD6zv13yuFbPF\nlLIsMcpgtKcsC+pJj+s8+2aLCB4rDISsO0cpqumEs9KyABYnJ1ir+fz+Pd2+pT20tF3P7rBntdvj\nnSf6PIcQiNyuBvqq4GxW41zIHu4+MgAHN9AODaVRFEJnFZA2FIVlfjLjxeUptlSsVrf89NNfuLu7\n5+5uxf1qTdM0tF1H17UQ8/SvEoKu69nsGj7drmh7h5Cay9MFP3z/LV9/dcWL8xPaoeft+/f8t3/+\nV67v75nVhn/49orz+QI5yf77UkpkSsg4lsMPen6R5aLpmFv7aJ8tRZarPtSOY8P2EYQfjyPESPJ+\n2cQUT0D7SCMnxgzbx9DwI1am8WBf5qE+ffwuQJ5DZR+/fvY5PH/jD9KeLw9yrMzH1fNJk0B88XEE\n9qeUi/jiRI5L8bNXCQFGwLRWzCeaaSVBtwTpGXCkKAgpMYRhXEgC0stxwZBIpbK7nHDEYlRhjPRM\nEmkcJsip7EqNo8wx4GPAjFSOVAJt86XiXCAMAV2OY/Gj9Gm92aN9z3m1QBbZOIhxKo103KrFcSso\nkVLjSbTJ8fb2hve3N3RDT5IwnU85u6h4cXLBy6sLrl6eMZnXCJWyAkXl1HQ39AztMPKciRh7Qsq+\nLkkFhNQgFRFF5/bs13f8+d/+hZ//8hcOmwOLxYINmqoTVO09YtXQHgxSyXzuEMgYkUNDJQMTArJr\niCLzpNJaxBjDFpvM8+oUWZiCoKEuKxaqwJPogstZmz4QvUdrjVIeJTOn6bxn3w18vNvxYjHlpC4p\npKQ/7Ak+Mh0GRJEHf5SQVDOBVQZdFJjplElVslzOuLw85/rzPTd3a+43Gzb7PV3fUmhIIWCE4HRa\n4WIihsBSZz94LQVa5inJPoU8eSoVKQT6Q4tpB2Ztjw2Rkxgp0gD+QHdZoBclQ9sTnccrQes8psux\nZWocgirLgtl8Sm8cMoJL2aMkeUEKeULTlAWTyYLZYs5sPsdoTbtr2Ntd1rELEMETQ2AQYAaf1Tci\nUVjDbDbl/OKEZrVlF5rMjfuBLnq0kVwtF5SFxWjFMISsrQ6JX959YLs7YG3Bdrtlvdmx3e7ZHxp6\n53CjR0sOB8+7TOcD3eA4NB1KaUprsGXBZr9j+Hng7fsPNF1Le2ho9g27tuXqYsm3l8uH3k0e9pEo\n8m77McAhjc6YAhFzSSfFY4atJGV/mlxhjv7j6RGlxSOhcsSwpwKMJ1zEs7+P7qjPaWEeqJg0vub/\nVxX5cfUTX7xhxm3Jg8PhsRJ/WAHF82M86+oezZiegPkTjvv5CUgcF87jYiCSHLXh8eG/kUJQFYnl\nFJYzQWk1A5IuJpKLD1V+FBGpIcSBto9oKzCqwJpA03tCdqjKlaEEJXM1jcj/h1YaYyzGGELMEVdH\nakKM5Fki0bc9ro/MVQE2W7gqIdh1DekQeVmfo5SmKnNTi8S4YBwvrvG8y8xnNyFyu92xPjR5HFtr\nFicLXl1d8cM333JyOkcVikNzIPqY/a0JtF3LZrulax3WWLSRDC5PuimlcmCwsChZEomsN595//av\n/Ou//DOrj2t0Ukzrgt3hmmqA0+Tor2/ou56tdyCzZepMa74vLfPCUCaPaw/jFKrEIUArRMyTmil4\nTBKc1VOSlBRlydKW7IVj53MTrwt5cMMWFjNkRU0i4oOgHTyHuy1fnS84m9bUdU3jeqadQzU9tq5I\nxpC0wRYlVqicNTmBqio5nbzk9XLJ/dWGz5/v+PTpmpubG1brFQd3YOgCOiYWRtPEwKAE50Zl21Ol\nGMiZpB7wIWFEpuda5ymdpwKSlHxrNFbAtj0wfPjM6lDSE0kugNX0LuJ8QodEkqMaRymszZ4wcrRB\n6PoON0SiF4BiUhiqSc3FizPm8znGGNzJQLtc0GwPtJsdu82O+f5A3basmp5107JrGmaTivl0yqSu\naHYHBqCNgTYEhJYspzWXF0smpYUYuF03bFrPvum4/+ntQ69icANdN+Q4vJgdOmNK2eRMjDYGjIZv\nKRclxmqszQv659tb2ran7brs2Q5okbXsbpgwuGzjcNzlSzny9aMdc7a1zUWeGIH7y79T8AQ3kFLg\ngZJ9NlH4uJfnCGFPYOfhL/FYdR+/K37x/UfcSg8H+bKafXz8bl4r8IT6OH7x+NcTymR84suVD56D\n+APgPV/tHkyixu9/KLzFlzuB4xRhFhxJoNCR2SKhy2ac2LMkGRHCkMjVs5RQ2oK2azk0B7rdwOXF\nSyo7wxuDF6CSQGKxCsToq6KFxUpLYSoUisrUNKaidQ3RgyTnZ0YJQSYiQ/ZG3nTIqKhOCsqpwWjN\nTsK6a/l4/YmyKCmr8sjE5VX+qApBPNhsuhQ5xIAuaibVkhQUtha8+uqSP/zwHcvFgkikaVucC8yq\nBYv6lBBhdxhYbToUCq0sIlmIiaIsKEsDyVPZOdqUeFp+/um/8+f/9v/y7q8fmNRT6sUEqRNBB4JU\nxIXhzZ/f8/O7a/7WdnghKKzlfDbh/3j1iv/14ozZwmAQSJ8YnKNb3RKMRitN27SkFNBSspzOCQKk\nkhTWooXJ/iEx4kKmgGZVwTAMeO9ycLPWpJDYtwMf7racVBVXkylOCfqUde9q36LdHuMDRevQsymi\ntDCpoLRIa5goRakkZ8s5r/DcK/ikBT+vArveZUrDBboYsClxaS0ToUgSPgfH4AIOkavBFIkucOg9\n85iYKkUFnGrF0hZIo3jzac3tbaKpDLY2xEGyvd8xmy/R5QxrNM1uS3vIfiQxwbQsqcqCYd/gho6u\njyAMSUnkVufw4pA4WS6YTKZMJ3PiRWRoc+jCoW3Zdg2f79e8/3TLm3cfMFrRti2/vOty9GDb0QZH\nURmWiymX5wsuTuf4oefufkXXD+wOPet2wCc/au7JPZYYx0lZhVbjvTkOGWmR/VCOVWtKj+fKdQ0q\nQm00la6JMY5DZNlHBmBweV4gZ9RmADgmreWJzGyqRnzcsT96hGbQ6JuGvVqhhw5bVA/Wyke6JB3r\npeP99wRkjoAsn6DUU3iTDzJGnv37QyH6Bfw9ffxuI/pP3t4z6eEDTfJQiYtn25WHt/dku/KrNyie\nnqRHnuYxai0/8WxNEEeHw7wrKA1Ma6hKRzus2Xcts7qkKC3IgJARHzwqSUpTEQN4FYl4cpavpLAF\nUtnRZE1n6ZYUGKmxssSqOYWeo+gobUNlZjgPWlQYkYdRoESIAhdaTk8KTmtJYaYE00EccgU+neKb\nxPqwp+laZsMEjlFopNGpLlumJpHwJA4+seoShVlydVYQTwO6cixPpxSmhqBICLQoKasls2qGUQV3\n60/cre/YHQ6czk6JKSfuaF2gtUVrgxIVUhe0bcf19Rv+9m8/8fEoKnf2AAAgAElEQVSXawbnOZsW\nLM7nLJdTdGkpXYT7hsoKVAzsupZkCxbLOd/88TumL684aMnbvuXUJaokM58t9dhrcKQUGJzDS8l8\nXuFSwguB1xZrJJMUMEIhk8dIyWQxoRsG+sERPNmTm7ybaHrPoR+ywZjM7nd9cMxshUqC1A3YpkMn\nQWp60vZAkGIc/MoDQDlgeI867CkOLbMkqLRFxEhqB4yCUklMYXmh82Rp7CN3MeLIKhoBhN7R9I5p\nEFRacVUWvJzPqZSmHXrmPrHpBjZNi9trylnFaRJ8/rSid+SeR4A+SVwUWWYYE0JpZos5wxDY7be0\nw8C+69k2DZvdnt1mx+ZkwXw2wxqDSOCH3Bht+p5de2C739J2DUCWAu4HDv1A5wNCCcrKMqsNi6ll\nUlpiyIqiz3cbNk1gfWi5bzqUetqRgqMtQx7MyRWvHE260vHjyfb6weM+jVW2IFOeAuKIi1aCESlX\n0yGD+dEC4sjlPucG8lcPjpwxjdLJxND1tGwpmy2FVlhbPLg+xpETeMSr59XosVh8JFCOC9KIg8+B\n8eFneu5m/tvkyu+nWhlP/HHFgbGTe+RDnq5qvwLdZ0dCPFnJ/r0V69lJ+qL6/7KM1zIxqSTTCQjZ\ns+/uaLoNqAmYJUZalMymQCDQ0lJqTbSKvpTZZGh0qMsZgIm+95TSIIVGojNYyxqrKohgVInVBUY6\ntChQoszRUSIAGhJMZgvK5YRCLNgPt7RxhRSSsp4xzODQ7TgMHW3XjBODx8smjXab2fZ1HzzrfmA/\nQGnnaD1HW4WZDNhaoVQJyaCFQGtJXc4RCXa7HR9vPnCzuse7yHwyJbmIipLZdIbS40UsJU3bcH9z\ny1//x5+5fndN2zkWF0vOXp1xcXXOdDZFGkO56wibhkVpOSkN1U6ip1O+/vYr/uv//k+cnJwgmwN3\n19fIzQHhIzOhMFoTUyS4ASESPuYbbW40IeZE+gGBLcsc1jGpMN6hBczqkklV0rQ9TghSl7fJ07JA\nqzxC70kElRufrXPMJ3M0iiA7bPDofiC5iJdjryLEDBQ+e31LP6D6FuMdMyExRYGMsPaRoBXSGqJP\nzEzBXAq8DAx9Tx8iWht8jDjhGVxASc3MWq6mU5aTGpUE3nuWyrCKkegj+y4QLcyC4u52x7ZxFJMK\nZXS28O2zXr+0iSgk08WCvvfsmo5d29J1Hdv9nvVmx3q14eZmwmxSY7VGjsk+IWZTsH3Xsjoc2DYd\nrR/Ytz3bLk9xWmuZVxXLec1iYpjPasqqoOscq23D/faAKCZIo7N6yydgNBMbFSJ5GDnTGUoKzOi4\nKGX2O4E81yGPRlZaoR5CLvII/QNgkwNDltM62yOEkPsDYzZsvufTI+akxwWEkTaJcTSmiymHd8cD\n3f6eeV1hSvsQzJKSeAyiOZK8T8DqyAb8mu59kkr2BKePr3kQgDz/pmeP30m1EhBCcWwkfOm7e6Q4\nnn790CT4okv6jEZ5+IcnK+wXx3m+zo3PPhb2KBITK1nMBWUdud3v2LVrOrehconC1ShpMVhQIGSe\n8NKyoC4rhJzQdVt8t6OoJUl2uOjYtC3CzFCmQMU0cmxHfwZPTP6Bv8vEWBqd6bL6QeVlHoFmUp6i\nlUIPhja1CJNgknAOtjim7ZZ5URLFKJ1K2Qs6A5Tg427DzRCIFNhCg4/46JmXM6q6QBcFhS5HS1EB\nWK4/v+Wnd/+dt58/EGOkKiru9p+xRlFXJUtbIbTCp56h3fHpl8+8/+k9b/78hmHwnF694Ie//5bL\n1xfMZhOEj4QhIbaOftuzkIKLQnNlDfWLM/7ww9f88U9/oKwqgnO056cc/vIT8vMKfWhR2uSdjkvo\ncbPqgMFamral7TtsYXHVAllWnLQXFH1D6nuUyv7tk7qkbTsQAqMVl/OKi3nFclIRoyBKjZeOJuYk\nHz1efzoGTAogDeV0mpuuiVwFxkAMjtA5bLNFNFuSaykjmCSQOMqq4GAEdz4glWSmDD8UmsN2Q9v3\nRCXZxUgY05qm1nAxqbmazvGjm8FiMkUaxWmqeKE0EwVmUlNNZ3nBfXvLer9FKEVVWGZVwemkoDSW\nOJPosuL08hJhCkL6yP39LjsLtj2r3T6DpMwAinh0yfQx0ceYaaAYCUR2bccQHIURvDjJ4/0niwl1\nXVPPZ9h6wvb9J9reI5Lg+29fcdEFqo+3XN/eM3j3ANqZjwYl1KMdbmGoizF2ryzQUmGtoa5KppOK\ncgxf9j7r4r0POSw5CUbSBKUEldXEBP3g8DbksAxk7pMdK70neCTIC0McfxcxjmETrqfZ3uIXS+R0\nihDyoSEZxFNI+WL38IQ2eYp4T7MPnjEr6WmVPqpWfqX6yI/fBcjvPn+gnsypJ3MYo6Hgt6vpfF6e\nbnyegPTT9yWeL1b5pPx7S1h6pFme/GlkorCC0xOFsT3tsGa9/cy+3ZDoQUBMAZkkdXGBCz0+eoKT\nKCRKQmk1fR/wcWDwAmQ2mmrbHcoEoiiJyWKVwcWW3h/o3JYu7BhSQ58a8BEzCJIcCCkyxB4XO2Ly\nKAx92JFkwpqSEByUBVJEpBHsm47bfo8hYW2Bkoqj48OQPCvX8efbd6yGyHR6QVFMMUUkpY5t39Bi\nqHxNefKKwlYQBbv9nkO7p/cdSWTjoyEM9L5FKIOPis63dL6haxrWn1dcv71jfbOjKGd888N3vHx9\nzovX52gtSD7iugEtS0Jq2XeJWcimUpXSnMwmzGcTrDW5CisV6lwxCEEsP3D/5j3VoaMQCm0tloRx\nOaHHdT0hBYKVHFRET0rU2Yy56KhWd4jPPUPvMErlEXnn0Foyanyy/jt6xP4wNh4FqOxDIqWmnE0x\nNlNIqAKMyZVkytxnIBGiIElBWRRMqDnsBrT36ATnVUlXF6ytYOcGGHX2J0pyFR0HBRskKiWKaoJ5\nMWd5ck51eko8OUVMJihbYIWkFomvypL5ZE4YVUkxRG5vbvh884n79T3GlpRlSV1ZJoXkbFqynFfM\nZjMEidnijMXJObef7ri5ueP2bsWh63DOM/i8+I/2+A8UgktHi1YIZFoJOc42DInVwdGLntNiQnAJ\ns2tYb3YYa/nmh++4ev0KoRSXL7OZ24frWz7fren6HgHZ+bOwLGYTlrMJs2lNXVgKO4ZhHxUkModT\npCRxLhG8xPuEc5GY5GiRkKv9qPLvp++z+6UPnihlNqGSGQOOWHCMGsw8e3hi2hbxztH7HXJzQ392\nyTA/A21GkyweF4RnliGPGPOlhPDfweVRqHDcUY+YNTIZv/X4XYD8/vaalCLWWlIyKDVqfY+Pp+z+\n+MRTP/LHLcfzZgE8XQyOqpinr376yucVugAKLZnXisVc0YeOfbNi19zRuSa7Fyo9Kl0EVk4RaEgt\nvR9AehKRmAYSAzF5gpcoJUFEmuGA7kAoj1QVkzjgQk/vD/R+zxAODLHDpR5CxDgQOnt5uOhGIDco\nWg7DJnOXKmuutRZEofFSszl09Pseues4OzlhUlfj+5Ts3cDPmxs+7tY4aZlpgRcdPnV0YUt/GChD\nidE5Ck1JhXeB9XrFarNi3zb44EeHvwAi0bYtbhioypqhb1nf3XP95prDxmFkzetvv+aHP3zD1dU5\n9aTMYbzDgRAgusSh6fm8PzD1AaRkpjXzSUlV2vzbiSn3FqoS/fKSNqXcgP3lA7XzVFKTxsGN5AYO\n+z2uNsSJpbGCqtTU8ykz+5LqzS+IuzXb3QFlDWVhaFqFVQLvE90wEL1CO0fdZZ4cFFAQfUDYAjst\nUMYgpcngpdTY6zrGpeXKTQkw1lKKgN5D8hGJ4qKs6AuLNInbyqCKGqkrZj5x5ivuUmDnPFFIVFEw\nP71g8c33VFcvSacnmJMTbFmiEZRKUdY1V9MFIoYMMl3L8vaGs/s7Dvs9tqwe/Ha0TswMzK1gUhfo\nTChz+arnxYt7bq5veP/+I7e396w3W/ZtTx/Cs2zXkBJR5NIgCkFIAiENAkVIif0gaVNADS2D6Tj0\noIms9j1VXTG/eIGdTJlNKl6cn3J6smA+m1KVn7i9X+FGr/i6sMzqisV0mikeY7JEd7RfJiW8y/2I\nlLIFxZH2TlGCyA1NocYpZyMpjCKExDCMskYpUVI/2umKo1f8WBWOC8ERxGMM9H1P03aEO83h/DWT\n5SVmYjLoike+/zlX8pxFyBf208beIzZ9SbnkOzcdJ0J+xV4cH78LkB+2K4pCU5YGaUrKcoK1JTKN\n7YB0rLzHxkd63H6kh+fHk/+YwfZYuT9bBL6o04/nUTxtOOTPZ7XhfGkpi0BzaGmHNX1oiCKgjKW0\nJdoYItANHZEenzp8avApW3W23R4Xhzw4kDRWavSYoj44j/P+SVZmTnh30eFC/kgxEkXAhQHtFUhB\nSPkmlVISpacdGpLQCOUZ4o4QE857hv7A3WHD8HnN6t7xj3//95SFzRmEUnDXHPjn929Jesbl2RWv\nX73ip+v/yafNRw7DDm0sr8pXLOZzClsQY2LfHPh084FfPvzCh/sPDNFRVQWlzR/v371ju95Qq4LD\ndsenj9e8f/eJi9NXfP/Dt/zTf/1fqIsFVpZor5CqxpQHLDs+vPsLb6//xs93H6hjZGkMFzbTAIXV\nuXqJfrTByDs3c3pK+BHutxt2n1ZMDgNW6+z97SKr1RozOcUu5+T8gogVIM4umJxcIMw1n27vODs/\nxY6JL1YKWh/Ydj29FRS24GWt2SUPIRK8YxCOaBO2KnO0nNQwNlxJeSYgjQIyjQBriSKhRZaShhhR\nSnM2mdJbgU89SyEpT6aoeor6tKNWlloanBvoXIKypDq/Yvp3/5n59z8wPV1iS5N3WRGicxkmpCIi\n0bXFzqfY2ZTLb75DigzgITicG0BAIaHWiakJGJEgBdzQcXJ2wdVXX/P19/e8/ekNP//0hrfvPxK6\nHkcgBXKaFI9NxJhEjtpT+SZ1PhEpiQ5CN9D2dxRWY41GF4YgClSb8OsDAcnpfMr5i3NOTk7443df\n8/bdR+7u1my3B4Z+IPSBzWrPYdsyMtcIoXJc4tH3XI2xeFphrMVagzVmlCVaqqKgrEqMNUiZSM0G\n5x29G7BSjcEealTKkFOTFKO6JcNHinmn43yk6TrWmw41DExOPlGfvGReL8YFhkyzPIky/PJxpI3T\n0Q7qSYGajjj3UHhnm18tEoUcm7XR/yam/i5Avl29IYQ1bXOL0hUnp69YnlxS2CrfJF9ozI+uco8V\n+QMDxWNF/YQkeXoGHz5PR9pp7HQf176EEoJZWXA6nzCfGYa0ftCpptE4R8vsLS4E2RkkdARa+rDn\n0O948GhQEkXWB4PiZHLF1L5koi7woUWoAcYV/mjmJRG5MtAGpUKe6pQaJUx+lyJnTyqpcyV4rDxS\nNq0K44CJiIoQYds23H34zIuzc+azKbPFhJXv+NQdWO17fvzhj5ydXtD6lkO/RynB5fkls9mM5ewE\nKSSr1T3r+x0frz/y8/u/cru7pXEtUSTmesa8mlGXlsqWdKqj7wfubles7rZM6jnffvcV3377FRqN\noaQ0M8qywLsD29Cy2d9wu/nE7WHNVkQO311y0gTO3txQL6ZU1jwOQsDDSLPSGjOdUX73DYck2b69\nZljtCd2AiIHaWjh0+EOHWC4IRuNDIOwaLk4vePX6Oz7e/wt92yNJFEpQKkk7XifFEJhFwUU9QYWO\nrnNEH0AohLYIU4zX1aOSIuvVJEImhFIPDXgtwUaDEAKjDUVZURQVSiZmPrBICVzLrgctBnahpxs6\nnHPsDwN4w+WwpzKJui6wVY1g3PKHhJD6QVGRh38ghoQUGmEk2lhsoYne4wYH4jhaHnEqoFTA4tBK\nUZiCqigpy4qqnnL64pLLt+9588sHPn6+Y3VoaMe4nyCOSgqBTIJAQMUcfSa1ySPuCQIFHovAEIMm\nHASHYc/9tmO97XlxOnB1MWNSGBbLGT+WBa9etbRNS9t2mVaTGonMAc+kLAAYpzIfQFwptM4DeEop\npBIPO2cpc1MUIIZI1w8oD31hMjWnJFrlginryseBsxFfRMzDZt55hsHRtC37fYNF4JzPirCxGoen\nBeJvgdHTXt/ji572/x5olJTQAlQKpKHl9uYD2/vP7Pdr+H/+719h6u8C5OvbXzjsPrO+m6BNzdAe\nSMGxPLlEm7ylDmEAQEqNNROkeiTDv5xvEv/BV/nxOLJ/JNMfrXQTWkkWU8t0qjFFomn60UMhX4Ra\nJIw0424pEMhUxxAO7NsN99s7YhRYa5lOp/R9RwoJQ+TFfMqinFKqKbvDLZ1bE+KBwff0oUVGwxD6\nzNn5SHCeQEJGw2S0oRXS4enGfEqPIdujRnK6et5WCqTINq1DCHzc3HN9d8f52SnFsubN9o73uy1a\nTzg7vWQyrbnZvEdpwbJecH52QT2psdIQfaDb7bm/v+PTzTX32zuaoSGIPCxVFxNOJqdYmahtSWcr\nuqYnuERdzji/uOLy6hWz+QKZFFrpnJupJb7v2e7vef/pDTerzxxChz6ZYP70LcUAtdTMzhZUZfFQ\nvTz9lUohMNZSXV7StT3tdsdqvcU3e8qYWBYWicJjkLMT0mxJLKfQOy5OLvjmquNvf/4JP3gG4SgL\nw8RonFbZCyUI5kKzqCf4NldDQeQ0GKTOE6s8sR0dm93INA6ViYeqSkkwSuVJ0lJl32xjUQqmwXOC\nZr1v2HQdTR/ZuI4m5rxIiaAqLK/PZpxPNVObcpABEGL2+05Cj7QC6NFAJrpIjJlSSOLIrEpSUoSQ\nNdpJawQaQXZ9LLRCSY9WGm0KqsmU+ekpp6dnLJYnnLz7yKe7FetDy74faJ3HxzErdQxgEMYiiwlS\nlzif6IYuS1KVzUoTmQOQfRgIQdC0is0uspxDWSiKwlBOppycZB66G3qEyJO0JEEcw5aNyRa2SmYr\nWjk25J9gKUcr4UyH5KIphEQKCRcCfQh0XU+hc/UeLHkhVjnpiJgeaBZSJPjAMAw03UDXDzg/oELE\n+wHve1LMtOBzWclvk9+/7tp9QaaMsmElcnM9up5uv2G3XrHZrmmazW8e93cB8ttP7xFSIpXGFiXd\nYcXQbUjpv2Crmpgcze4OElTlgrOLHzDCPKysR/H9Yw0+noyRUnmmbHl21kYZD+MU16g7LTQsFgpd\ndPSxZQh7QkiIVKBlBVKhpcFHz9HJxCVB0x24W63429s3KCSzyYR0/oLb9S3eBabFjJcnB+qypiwV\nLlg8Budg328IyjOIJqe6tAcOzZ7Dfk9wgkJ7lsULSjNB4Wj8hjY0OOVYlBUhisxXRw8IpFIYYyiK\nPCyyCwOfVvdcrO+pvznlXz684eYw8PXVjyxOTgii59BvODs/ZT6fMZ8uGIYe33t87xCpoCpqFvMT\ndv2a0EYIHSlF5tWc89kLmvYWqwyFNRxWe84XF5x+d87Fq9ekIGibyOyspJwrpHHsDzs+3vzEz7/8\nd/781/9B07VIa3j5wyuu/ulH5lEwaIEt5xRViXowD37E8yRyLF1RVswuL3IizGbLerujHYZMJc2X\n9GcvERdfoS5eoeZzpHOc6Bu+XW3504tL/nLziaZ3LBcTFnWHbgd8FziXhqUqKG3JrO0xMhIrMEJy\nlJOJdBSFiXwDK5WTjWIA5Uh+QIS8LTYqq3qSDqhCI6zBSMk0RC5SxW6z4n5oOISIE5JG5dT6F4sp\nX3/3Df/X//m/cXK6RCtH61soa5LM11CMmQJAgDC5Qo4+y19lzJV71/T4ITK0A03XUNSG6axCYAlR\n0COZqVw3Zx8RgdASPcsh3C9eX/F36x2fP37m/YdPfPp8x91mx6Hrs+UBAl2XLM5fcPnV9xhb0g6O\n1XYDST1MTSYpcCFP4RKzAkPLBMoQRU4TwueoQmMLlDlOA43hHD7bVBRWo1WmQgBSyNx1cAHSkUPO\n7+WI7MdxfG0MWylxztN1HZW1uKIkq4glQiqkVCQRs3adzJHnSnxg13TEGLEm7wCG4UCzX7HwLVrl\n738cs/8Srh8LkqObbUaSR5V4SongPEZErBaICPv9nvvVmlQuOf3mkktrfxNTfxcgd64fp7IkInl2\n62tSbDkcbqmqGVobQvB0zQ6tCnarO5ZnL5nOTinKCWo0F3rWFP1C5vO8G/zY9xUiPqhdtAzUE8F8\nJsDsaHzL4A50Pjv7gWdqp0Q8xkD2b80J5NYYBpNDcsuqpm0a1tst/WguFLxnp9Z8dfk1WktCEDjn\nEElQ6IIhdHjX421WTmQnukjXDQSXkKUhFweZm5Oixjzo0h0hZH4+6MzB5gAGDVoibEFQktvdlp/v\nPuP3JzQ+Mpsu+fbb7/OOwrcs5zPq+YSqmqBFiUsREUElKMycWFq62nGYb1Glpo8DKUZenn/DxfJr\n/rJaM7RgRMWL11cUtqIoShQaO7WY0tDrHZu+J+w86+sVf3nzr7y/fsPBDVTzGRcXL/j2m+9ZLBeE\n3YGm0qi6zgEGYxamFBIl1CgGyIu4TNnaoCgr9LymnFbYKKmMwe8PiA/X2MkUO19i5yeIsxNUUbJM\ngh92LXdC065u6IeUG2l1Qewcr5dLLudLjDDM6wWVcQTvSVEjU+YpH8o/KUBrMAa0gpAbwAT/0I7R\nyrCYzem6JldbwSOSxgjFspzycuyR/O2wpUmRQ5K4KPnT3/3AP/ynf+Dy/JSynCCMQquBg1ekqEee\ndQRxLfBuvB1SIh4NoFLmYqWQaGspRUJocPGYAJ8tmvaASRFDopR5ulGm8aOQiBOJsYbF+QnfHloO\nbUfbO5wPBASqqrHTBcXsHG1Nlvg5T/QB1zv6wWXTNCEBDaOHiZICWwm0Hs2oSKTgcENDs18RQkfE\nZw25kQ/n3cd4TAvPwDkGJnvnGHpH2/SEmO1qwxgA7UPKAL7fclJq5uUy7yhE3vVLlXe/8kFKmPNF\nB+fYHlpuNnvum54WhTAGYwr2Nzd80n+mOr3i5ExTlVPiQxbC88czFuEBxB/L0BgS3jna/QZVWqpq\nxrbtEOWExYsx+1bpTD3/xuN3AXKt0khdJBCeod+xWTXsd/eU5ZSymGKLkmZ/T4yRoW3ZbTOYL5cv\nmC3OKar6Yfz++TYmPTlpj93gR0omHYso6jIynymms0QQWwa/pw9NlrHFnExjlCQJi1ESkkZhKFVF\nqWcMPlAUNZPplP3hQNsc6LuWru8JztOlA7v9PbPpNPuOjAkjSmi8D0g3ENwwRo3loQM3uPzjyogL\nLWLIW2klyzFt/RhLFnLat8pmSykJtFbYsqCazqgWS7wqWMWI2O+op6ecLV5y+eIlu+6eJBSni1Ns\nPUVJk10cB0nyCo2m1DMoKoY60LgtdII+9pS25mL5kkl5QtdG9puWlCKTr2bUk2kOAFARVCDKSBsc\noVe4xrHd3nNo96AEpy9ecHZ6xsurl3z99TcIEWndBhcS2hYY8/8x9569lV1Zmuaz3XHX0UQwvKRU\nKtVZNVXdQPUMMMD8j0H/6AHGNKarK1NSyoZjBMnrjtl2PqxzyVBmZX/VHICBMIxL8p591l77Xa+p\nThks9x8yL0j3Q3DxqdG42rFadCyyEybGMFDnwurDR5pHj7BXT6BbQlWxRPMqFn7yif1fNMNxS6Mr\nqspTajOLhVqsdtja4kzFFD0+arI1RKHzyHekHjxz7ikTudwH+KJks1l3K8Gvo6ekRMnSbdXKcqZq\n9tnyo4+MPjDZhvXFBV9/+QVff/k568USY2uKMRidickTU8FnK7bIRozVok/3eSoFGdDFIENKEOzW\nGDEISzngumo+4WpGFL4UXIFiCk5ljEroLP45Va0wzrFYr0gp4WMSA7ckeDnVgmRboq6xtRV2F5ro\nA9PkmcIcPmIMVlfkPEvrtQjgY0zkKPYJOXqOh1vev3tPTBPG5pmGOlsbl5MM/kRskPc6qzlWscAU\nIzEGmY3kh0IeYyIrsfcVqEzYTlrr2Sdd7mcmwhwUPY4T20PPzf7IwUcCFtu0bM42EDyl3xH6HXlz\nKZtq+bTm/I+v02dqFDEGxv5I9CO6NlTGiHlX1dBVzf2r/T0DxN+kkK+Wdl7rckzOpczG8ZE4ZVJT\nMGtJ8JjiwNtf/sy7dz+zPnvMy5df8dmX/wnnhAZ2kqF/WswfQlDlDHPqzsXSNmNtoWkzFxeFxcJh\nrebgD0zpiE+BWDKJSCqemAPW1hhdQa6pdceyWtPV54SYOTZHVsslr9++YQwe17ZoK57M2cM4jfgw\n0jbCiU7JEcKEHwOUTKzDaZo3S4gjVV1RNZp9/566WlGZJZVezIPOTMoCS2kUvgRKkqe1MhWrpeHy\n0WOevviCrmoxy4bdMfGH5//I88evWLRr0IFUHMYpoCGEhPc905AgieWu1S1drUgLOIQtxzDiMzy7\nfMXZ8hE5a477iQ/vb4hh4vmz5yw3HYtNS8wDR78nDgFXOZZtJyETVc2zZy94ap6xXq/ZrFYsuyVN\n1bLffiBue9R+orrQVNpIriMPIhE+wT4f2EuFuhQ2i461QVwQKTQxcHl3h9tuUcNARmOajvax5Wq5\n4MtcOKD5b//vnzBKPM1tpci6kACjZ9aMhqQtqbHkrkZ1NcU6VFbYWHA5o8cJVTIqRggeYhSoxYg1\n7sq20BWmNJJCRpUk8WZjwKRCXTQ2F4axwLrlP3z5Fb/77DMeX15iTIWyBmUEE16WLNBjyKSkxLlP\nK8bJU6JACLrS5JjoxyAsCp0pJIiFYZDszM60qMaAVRQNPsOUFV5lljrRzoX2pFakPNi4OqMx2sm7\nbzWTaslFDN/sjDbpIoPgpq6puhZrHU4rDOLdX3QiqcA4ZlJI5JCgUmjryEXz/c9vSHhW65bHF2c4\nfQKzTurv+UQykyC0NtRzNJ42mjhj6tqYWTUqsEkaRZnrNBKFaKwMadVM8yvzZpEzMUb648B2f2Tb\nj3jE0bPpOl58/hwbRrRxNMqj52CZv+aNn65P+eMzkHKatKAVhGlkv72lazWVlfBnreWEoJS6Fwvq\nX7/s/fWbSfTvMa45+DYlBRlCHtEZRgXaSDKe0YkQJw7bW81r84kAACAASURBVN7yLUZLKsr501dY\nbedprwwztFZY6+6P4BKvpGfJbaFyiW6ZWa2RQFarScWLsCaLmlIpg7IK6kLK4qtSVCAli84Ntb6g\nc48IjWJsA/t+z4tHz1jYhn440jYLcIriNcZWJBK+jGjbYoslpppFu0JXmaISEVDW0C0XEgZgDG3T\noKzBOUvjamxpsFoc7KYYMA60jXhdESqP1oquXRJyxNBh/nmBxuLqhmbZ8urqdywXKxIT1jmYTwEx\n9UzTxDAe8eGALoakLUUFitZk5TkMd9wdbvA54qxBkUhxwDpNCIH9Ycsxbnlzk6iPFctFh6kcVd1i\nrMPSUbuW9vEV67QjlIFcMpNHDN3rmjIaOlpWzYrGWBF8zAVcA2oWo9wX8pykI02FGsXKGM5qDdlg\n64Z6vaJ+/Bj15Bl5cwb7W8LtHenmI2p7x+Ptji+dJb54yrhzxJtMyTvu+iPX21sety3q7Bx/vmRf\nFaJxUFfYpmYqGhWhnhLr2wPNMGLnFPkZuJZlbi04izIamxXBZw6HI41tcLbGuBpXErWtaL1l07R0\nz57zD3/8mrOzM5Q2KGU5pQ2VorC60NjEwkRKMUxBM2wV0yD0QldbTDSkIFL1unEooyVirUAwMkwt\npRB9lPdvadBFk7NlCnLfvYZaiQujLgowoOcZgZYNNitDwtEHmEqiaCOfVzQlz8/4zL8uSTpmPeex\n5jmph8RM30z4kCgxsrvb8vrNNdt+T91WPLna8fLpBRfrBeZUaE8noNnQqiAQkjaadtHhvafMiURl\ndldMyROTR+dEmmcep81Bwr7VrNz0eC8uirvjEeMMZ5sVw24kBE8ej/ih59GjDevVhmzBzgQE/TcZ\nm3+LGTz86TTby+ToCeNAvVpSV0ZCbJSYT3NSfP8Prt+kkMcgHtxKaVJMhFiIaeZwktEZ0gzqi7Vs\nIsUEReGnlpuPP4MuRBJ11Yp380yWr1xN0y6xtkLPvgzqNMixhbYLdAvoWktlDbkEfDwSsyfnDEj0\nltJGFFtNnqlvGYoci0t2GF3TVEsWzZquXnJ1/ozWLrjb35FKJPlMMoK/xRIhD9TKkosiRXB1i7ES\n/YYW0YvRHU21EEzY6Pk9svdiB60rjK5IahJ/CZeAcB9CUVcLbIlUZx3n7RP2x5GYClXV0HYdusoc\nhx0hj/OijuKAN/b0Y4/3vQx1bUUsEwVFLCPHccfhuCOWjFGZlCe8LyhT8F7yIn/48WdWZws26zXO\nPWfVtvL9qAada8g1CodmIIeefhowxmGaCtU6jHLUpmHZraiNwVCQvuQT86LTyYU5Tm/Omiwh4Yyl\nq1tQClPX2G4hgpXdjvjjD4ShJ1x/IN98RO33WBQXBV7lyBbFvhh6D/s88L7c8cjUNOs1eVEzrgzZ\nWLAyF8lZic9KSVR+QB+PqBDvQwTUPMAq2oMxmMqhyVRRMYZMmWmKtqopTtPGwNoteHl5zuazz3jx\n7Cld10lDcRrw31NVBfroTGIKgWFS9F6Rc0JZUClRkvi45JPopBRIRUR3Ss06hjRTZCHHjEbCq1MI\nTGiyUkQydTE4mAuU4d7bX2lSMUzR0k8DhykQS8HZx1hlyVmyUXVRmJkeG8lghdVTciJHSdPKKQkj\nK2fCOLLb7vlwu+Vmt8U4w+Q9XetYdY2cMDgV8lMRn09qukgN0QIzljLL7wtQ5oi32XNIzYNdMxMe\nyEUglTQX8mkS75sYaaqK85Xl5hjJcWQYeo77A/rqnG7RzKZpDwFt/z7h8Nd/I8NP+d6EipxQRJrK\nzMHilspqCYT51ev8+yX9Nynk0xCwTopPDJlxTIRUqOYABYue8WCh16XoSTFjbMNifc447Xnz+k/c\n3b2natYY60AlnDN03ZrV+or12RV1081hAIIPLtpMu5poGodFjs5T7On9HSH72RVN47RGFYXVhkXT\nEkKQhakgxMDgR5YpoC2SvtKuBHJpz7k4f8bN7Uf2+x1TkS4ppUBJAa0tIUoizdK5OVlEAh1AVGaN\n65BDXkEbR/CBwzDQmAqj27kTR/I4tZGHgSxJInmmrTUdFxdXfP/6Zz7c3tIPntXa4VTibnqHD5Kc\nTs5zIR8Zh5HoPcXVpNLg8xGSJqSeceoZhiOpZAqiRh2mRFaJ0Xuu394y+H/l1e+e89UfKrRxVK6h\ntQtsXpJGxXEI9OOefnxLP95wDEceXT5htVzTrRdMYaBqKlbLBU5p9Dx0nV13Zc41u9ZJXRIq2egn\n+n4kugV2s6FpKkqWwVZ//YHp7VsmPzHtdsRhIId4qmtopXjsDJ3RNMeBd31iKIH3U2aRFI9ePaGx\nZ5QZFsNYshGf9DwFpmHAhwnrJ3TIcyPwIFbJPpFTwlmHqSpqY9GmxdgaXTl002FKy0ppLs8PXH75\nBWe//5zFosOcJoCnQpSzdI6piPmVybhwJPeJ3htcU2HQ+BDR92nvWuYvMYmRV21IOeNzIOCpdIsq\nhtgnbMV911+0IpqCT5oxQ4Vi4SKmiNe8VopUDD4p+lDo+5Hbuzs+7vesFitqV5NyRlkhNNgE4xRE\noKU0rlKipcgy4ItRtBDFKKZJ8kMP/cDkPSZpbj7esbs6YzhfY+rqfuhdspidnSC3nONpkjInZc36\nCoSXbSgkrTGUmTvvqIzBIMVUxmKZ4D3BTxIpaA2dseCgrQbIPcNxYHuzZ3915Oxsg1kuUCeE4T6d\n7NRt/9rV8CR4ZP6eipJTnFGFpjIsGkfX1nRdTTOOxCkTCkJvnYe7/9712/iRzzzblAoxFhmaxMI0\nm8GrHJnCRAyRVIJMs2MijD3bm7eg5Q3bbW8wpkFRyGWSIaZ1WNux2lzgqhptLM+ffMbvfv8Z56+e\nEJFoJ50MEY9PA1Me55snR01rnOzyKt+rvRrT0NUXWNMQ0sTt4TXFDIxpj668mNZr5rSUBcbANA3U\ndSU8YqspKWNtxXopkuPaKWyT8NmLoX1xVLRish89/eCJ0c83+o6AwqqMMtJpFZXQNpHiSEyC0Rrj\nJEz3OPB//+t/Zewnvv7ya0I6EEbP6HtilIdIZXF2OyUXKSM2BNZZwR2thPgejwNxCjSdWPjm7Mkx\nUTkr5kWrjs+/eMkf/+EPfP7FK9q2Y5wGxuMA/oY0QQ5iPKRcoDuraWzFZrOkXhpCObL78AuL2wNP\ndD2nm5c5B5G5eKv7AAKho4nB/ziOvL65Y1I9RHh1toEkToIhitNd9J44TiQfSSGQUyTGRCzi0+6s\nZZkTuXYch4kyeD6ULe7bH8EY6uZ3mOUpA9SgcsQME4vdSDMllA/0kyfHBxzTaPPgz2EzNiXhUyuh\nvqqUUTlxPOzY3t7iU+Bs2bHerGe9gtgpnyxOKZJcc4JuSkpUKlGVEcaR41RTTpgqlmbR0C4advs7\nVJCAbGsN0zhyPO5pnGW10NSVWDCnlFBGo610seXeIKoQUaBqKlNwRmiVhyHRh0LAsD47p1ttuPKR\nzWIlNMiSSUXPWK9Gkcg5E32GxH1xTSESvBdMW2mG7Y5+e8e6rhgGwxgSxhVCyjKstJ924XKCBmYG\nz8mPJJNTui/2Eus3Q17znyujqQwYlUU9nBFhXYyitk5ij9FUFl9kGGyMkU45B8Z+z+uf3uKDZvVq\nwVmbabsyK+9Pc7vTvXuofSd8/ITtn9a21prKQo6BkhPGqHvs/mHG97cgzen6TQq5MSf61JwlWdSM\nmxWUVsSU2B16Of6pQl2Jsiv6ieP+BmXlgUg5QpGuI4YJpU4cck27WOJcRdt0vHh8QddBuzBMvqJS\nLZVZ4MvhvjCUotHKzsf2TCzC0VaqUBmH1i1O12hlyNlzGA5MecZ7VURaSKRYO4WrxGWtlIKhonEN\nIUeUdrhmiaGi0pZKF0g7SbkJ4qNsjaMzNbpMTLknlJ5QjvgsZkpG1WSVKSXi00BIo/BtscQYOOxH\n3r655fXbn1lUCxZdTUoTPh2ZhpGYpYM3mHkRGZyrKHOSjKsczlYiy06R3XZPDJG2XqENFB5wVpSi\nbmpevHrK0+dXrM8WTHFkHI4EH9CpwpYKp2uqpsK2Nbq2qBoWyw5jFcfDLYfr97hjoDp/9kAtZaaS\nzuu+zNzoh0IeiZNnHEZ6lRnHieg9BlHmWWPucx6tsZSum/F1Ga7HEMghEnJmkRMLZ9mqA/0wcRw9\n2/e36MUKtT7DrmrKokY1FWqcsHc97vqAOvSk0RNiEGoqzHwy7o/+Oc1sCaWwbi62WRKB7m5v+XB7\nw6gVrutou/ZeWCJH9SzPx/xeyM+fyDFIFF4YSYc79tGCa2nrBUUJXEdJ9HvhS3erGoyiIP4ku+0R\njXgcaWtQRQo0Wt07/pUiHjSxiCd40Uri/FKi9xFfwDaGytXoGQI02tw3BznJwFNpgVFPCslsRPUq\nHO2REIMU9NEzHnYQRy5WHdtjz3EKjFNgdxjYHXpaox/Yag94230BFYhV7nGZC0z5hBOeQkI5gzMK\nC5KROeP4pCKngxTldKWgqgwlKZgkj7aUjNGZykI/jtwePZ1boYw79eD8qnL/TQP90KE/gCUFZzXL\nrqKtLI3T1E7P7qMCGatPBs7/3vXbFHJXCYyRZeeX44cMtqwRbuvt7oDWisoZtHLz/CgyjHuUVmij\ncE4RM3if8GOYMxjlEYjR0zUNS2d5+eIRV08uMNZQ5yWd3dC6DWVM6OxQyVIZ6ZoVEOJI8T0hSYSW\nsZqkZbJubKKowpiPfNxfM8aermtxzqBsYQqerBI+Hdkeb+iqJeuuonVnlNADDqcbShZRhskFxpGw\nGxmOE057zs7OWJ+v2LTn7IZb7obAkHeoKN14zUboymWiHw+kIuwQYzX9vueXt7/wf/xf/w9n7oIX\nl89ZrTpxNhx6hl4UokZbsCJpds5gXAUqU9tq9qhYMBwG+uHI3e2WYhJt285FVni74xQIIWKt4dGT\nC9pVhc8Dd7s7hkHi4Tq3oO4alssVq8WaYkeymSg60jQNeQps371jeH/DpjjslZ1x4U97FzX7XUjm\nZooSEJBCBJ+ocqZzEr5QVME6R9U0Yi+rBLHOgHNWmE6mJqdA9BN+HAi7A+M4csyRlau5vtvxZn9k\nO3q4vsGaHzC1wW463Nmadj/g9gP6MDD2g3R9WmPnjl3P4hY5+ovHiphWCZ9bWznxpGniw8cbXm/v\nUC+eo9oGW1ezSlB+esF0JeTj5MiXTgUxRtI04nc79hO45TmLbkVKhfEwMO6PRA+LJx3L8xUhF2wv\nCtv9YcBq8UFpXCuFXyvESTCToxh/pSgzomAdJWlUgugjUzIYp2kXlSha5xOej/6eIqji7Iyo1MzP\nzoTJk60ma0UpkXE6EmMmhcz+4wfiuKerFVfnK663e653e4Yxcv1hy6qtWdUO507DcH1vdaFOIsHT\nIPxTv/F5MFpyIs0nZ3sSdp3gupQpSSiHOSUoYrplrRG73pwYQ2AMnlwyZ+uGaBtoF2yuXlK1S/4m\nupLTGJZfiRRli5Z4OqWlBtZO40zLxbpls6hpnZlDwsUYTzj4f5/S+JsU8r73p9MiKPEKVrMU98TD\ndM5ymkinPOufZgaDUdJxlShdmlEyvCzzNDslRY5wvnnMP/+nf+HpZ89oV43EtzVLKtVRULNoAEqp\n0MXhbDN7qoxo3WC0QCc5gE+JKQ8EHUh4+rLjz9/+G9c313R1y/MXz7m8vGTRdfg0kY6Zu+OOpRs4\nWyU0FUp56fgZEF4b4BWdL3x8/Z7vvv2OrC3njy65ePKE3Czpx5FhvMPbWy4uF9jzCmfXKKWxuqKt\nO4qKaCvF73A48vH9Rz6+fs/65YaiMtd31+z7D+z7G47jFlfXYlFLoWBBQ5b5OAqFUyPOjNzcXfP9\nj3/hbr+lXQi9zAcP6cD2cOT9+3cc9sfZrN/T9wdSqrDGcrY5o65qls2aVXtJV5/R1h1JDyR6Qhkg\nJPbvP/LLn77hfPC0iw4QnFYYKsj3WPJM0RZnwZLk1HQKcxhTYps9N33P0mp8yeSYpICnk0eHYXV2\nRrvZwLKhdCuSu2ByFW6/ZT0OrFJh4T3q/TX7f/uGEiJmf6SubgS79xF1e6DKYJJAA4uulRBfY9GV\ng6qiuFowaj+AH6XrnWmCJ/+PPMMK70LijXF88eyKarXAnMIVZt8NqUVispvnE0mKkRgCKcpHTh5r\na5G51xXj5GmWS9arFSprnHPESTpYg6TatEvLar2kWbbzkDMTwxyePYdoK20wxsma1TCOnjwXOlfV\nVK6ihHkgOzNPconC9AJSyaiY0chr5BTx00CJCqUKcfK8e3NNmkZMiZRpZFlrOrfmuNvhhOpNKYrb\nux1/KVJQn1ys2SxbKmsf8GYjWPNpjpJzvmd7pAw5JYKfSN6DlQLJTDPMKQkrKqW5GxeV6Em/kGMm\n+IAPkTTPpMbkefXl51z97j/StpLmdcoO+BWUov62h1YK2XDkW0dpwxQyu/2BpnZs1pGmUvdUQ3WC\n2YB7/+2/un6TQr5enIsAJsuCOfkGAzNNKBNzIpfThFvNqSEz4T6fWMRALsIBtZoY08zuMJyvz/n8\ny8/56p++YnXeUTmD0xWVbVFFEeNAZBK5t+swWsQfCg0lYTRUTkNVUNlSqRanWlKKhBQYw0GEStsd\nH8aPDMPE9m7Ho8sLiilstzsOh56xEROkQkSpRNYBXzykgC4dteroXE2lHWkMjMOeaXfg5sMN1cUj\nsgIfBw75A3WjeXQpBeHEVKlURUK4vikmhn6gPxxJ/cR6ueb88pKqqqlCQ13VhCyRcyLGSOKdXcS3\nRSlNUpEpeqzvudvd8u7DO8ZppOqsnHRCpB9u+fnn9/z0/U/stzuMU3jvpZOBGaox1HVF09bUTUvT\ntDR1SySLMdRxYn99w/sffuLN9z+yaS5wa/twdCxzN1NO3HHZtE8fOSVKCuQQGEPE+4jhjo0qtEqG\naVkZiBFdCrquyJMneU8JHtW2qKbFNUJBtVOHDgKlBaMZt3s+Xn+U47iPtGgWWrj72mpUpSla44zk\nXGojir9cObJ1aFNB6FBhRJ0GlRSYaYopJo4h8DFl9nXF5ukVzaKbhS+a08jsfjObN7SU4xygIMyK\naRwZhwG7XNA2DW3b4pqabtGxXi3JUdLqSy4oramqmsVygWssTVdhnJ6ZI8zPDvf548aq2SOliH1D\nkGe0qgyuFiWk5FzO0MUsVjuRZShZ/OsLZCIxeyY/kUikGBgPRz6++YXGFC6WDVWjqSvL5PnV6VoB\n0xi4KXugMA4Dj8/XPDrfUFnh13+C00rRm38gNc+LY4hMk0eniMpZILCSZ9th2QBSkuH0qRYxs1lS\nkijBMQRSkZZn10+Ydsnq4rF4088F+69hk9Na/vQ6RcSf/odSmpQL/eC56yeexIi1s2iKE8z499MV\n4Dcq5H/48mt8mITrOUthc0koLYViGCYOx3HOvpwBf13mHwzBwZR0KXMjKrJkiVinchVffvUFX//z\n73n+9RWuku6pti1GW0IamfKOyAHjoHPt7LAmKSNSeAtGV3TthlqtqPUKpxyjP+D7gTwF1u2K9WLN\njze/8N23f+GXn37h4vycxWpBzInxMBFWEymNpHwEPZLKREiB7DWYMxbWUS8WnD9+wtXTO25/+pm3\n76/Z/vyGp1/01OuWaCJ3+xuevTynqitJT7EWbUAnMxtnCewwDANh8rTK8uzqCZ999jnr1YrFouEw\n1OzGijAvXrJIg3PJZJ2wVuTJMUUm33Pod+wOe9KMnQJ4H3j39gPf/Olbvv/mB4Z+4OzRinGY0Bja\npmUMgUwmpIgPE8lJejkacooM/YGPb97y+pvvePf9T9y+uearl+t7poH4Fp/kEsynt5lylkUvINCK\nJ/mJaZK5gB8jL2uLbhuscSTrcNpQKaibGpQiTBNZa0zdYKqKrshcBusoUYQiF8uW5uVzfEgcjz2D\nsti2Y3G2xtVuVo9oUNKzyZRdg7WSNakU2taUtoGyQMVJjo8poXpPiZEQInfTyJZC7DoeP7mk61oZ\nzOmT997DVUomF+kYYwyEEBjHkcPhyG5/oFs/kQ27qlm0NXVj0ZUwe1ACRWI0TddiKmFhGKvn1xTo\nSs0VaGY6YqwUkjhE9rs7wFK3Le2qvRerkEURmTmdgBQUPUvJBVrKJYhhVpQA8Sl5xuOBw81HDte/\nsL7ccLU+o+1avA/4cbyX3ZcszpKlFPwUuL6+Y78/sNv3aGM4W7a0zgrOPUMoesbD1dwhlywbZwyR\nioQqGVOydMXzYBTU3Bx8MpxU0jzEnJhSZIjh3u1w3weOQRGUw51W6txofuqAeHovfwWb/7X6c/73\nGGE3BvqYpFlTp3lA/pvX+OvrNynk/+V//y+knInzDpiyYJ4lS8Crnzz9JKyVEAIhTKRZ9ZhiJETx\n7k5JpLQ+eI7DQH/sKaXQrVr+p3/5R559foWPI7WtiTnQ+54Qbhn8jjFuZ14pUAyVrkkx40MgREn2\nNgpq46gaN/O7HYmESy02dKzac56eGaxa8v76Dfv9ll9+ecuqW6GtJaTAfrfncNgyxTNiHmWISmII\nAZUty2rNVCoWFxe8+ur3bD+8Zz9ObHc9n0fFRV1hVg3LR47z8/XMVhEo5D5s456OBbuPdzKky4ZF\ns2bRbFDJUpslpUlgJU0+xkiKQYQaSOfE7DbnlMFmR21aFs0KZysqW1GS4i/f/MAP37zmuz/9zHAY\nCSkxDJ7rtx959eo5i+WShZHvTyuotaNbtEILJHDz4R1vfvyW1998y4f377m72dL3CYVYBZ/6OzlO\n3uel3+PDOSVyiqKenAJ5kMLYGcOjRcv5ZonLWYQb1lAtW1zb4qxDzUfzsN+Kp3YYMc7SuGqmPCZs\nKfIePL7g85z5+OGWfrsjJoF1MPa+cBetUPc2asz2xMx4AChjydrJ54UJFQtUDrQmTJ4Phx5VOTbn\nGxarNa6q5s0BEd7MCsZcpCPP8zMTYhBPn92Bt+8/8O2Pb7iyK0IxHPcHioK6rVksFrSN2F2Y2mFt\nQFeGuhKZvLg0zjj8XDhTlshBrSGEwn7f8/H6Pa9//pZmecbjp8+5fHwuroPMLBcUMSSG8UBOM3at\n574zC8yZggwaY4r0+4Hbt285Xr/m8brj+dUF5+slMSV8TrN/epitJ2QTOxls5JyZpsh2N/Dm/S1O\nK9yyhXzyHBLwUpUim6rmPks1xUTWD4wROezMO9fc+Co1b9LayAaCPFd5zkooCnRds372O1YXT6mb\njjLnhZ7K81+V6Ye/+1V1/xRPn08OWkkuaCrE2WxM2D0Pn/l3kJXfppB/9dUf5oV5ekDLTNWa/RuS\n3PB0oo+F2QRnDlWNUTqT06ILwTMMwoVOOaEqzfnFmmE/8v7de7pqgTWt2LzaDHUEJ/SimArRJ1Kf\n8KOfTwkz00EbWttQLh32rMNYWRzGyU3WWvjSm8WKEiO6GK5vPtAfPTH0DH3Ps+WVbD5hmnfq+chM\npKhI1hGvMqo21JuG0lnMpqapFCwUbuNYXy05X1a0m1asPbWRI70pBIRpo60FY2mrNcv2DHfRsWjP\nMKolRdC0WB2w6igCJJfAZFRxYjiEF6VdTlDAmY6uPmO1vKSrlySf+fD2lt3Nlnevb9jdDeJkpxQp\nKm4+7DkcxAytrZtZ4GRwyuJcLXLn/ZYPv7zh+ue33L7fMh4jqjQs2o62WVA5d7/I5aFCuLbzMCrP\nm3lOkRwDafLkwaNiYulqnqyXnJ9vMDHS9wPTLOJKORKVxc0QiFWa3HQUZVAhSLo9zKZmQh2sqprH\nlxdU1rKdPWyY7Vhn/1q5j0qJB0tVEdtOWBo5Y2ehZ0my5SpboebNRI0T/nDktu9pFy3rx49om2b2\nFJdCouYqJD73Ao2cmp8QIt577nY7bndHDj7xsqklb9UptLU4V6GUJYRISD2MCuWS2OjqBlWMSNSt\nDJfVvQozzLatkeMY8VOComnqdqbSinLTMKf1zPBPnr+v2YVKnkOFoMxRCzNs3oiPux27D9eE7S0X\nL37PZrXAGSMb9Pw5cp/n/zOLdu7nBXPKzzCMeB/F0vceVpH1o5HhK1pRYrofkN/j0vw6Om0mhcyu\nhCfK1ENOaUqSkIRxdKtzXn71j2wun2CMmzeFTzr58jDgzHler1mox3JS+bS9/gRDV4oQE8MU6cdA\nzHNmQWHOUHhwSvzr67cxzXLyZWUjFIzoHls6HetOQ58ZWzwdtB9+kPkBp8gCTPIxxcBx7Pnhl+/4\n4afv+OX1j1BO6TyJ9XnH+vGS7qIVUUkIDIeBu7c3jIeRFCPWClbXVA2dW2N9S02DrRt0V0hlwscJ\nnzy5JKyGR+ePqVxLSIXjvmd/t+XD63f88dXvIWb8OOHqSgIjAGsNxkFxmaBlIBdtwl40XOorNqqg\nNzXqqqZ9tmF9vkGm8pbaNDRVJ4V8Oohizxms7bh69Ip4tPjB03YbUtSkBNbWqFKRokJhcLrG1IZK\nt6SSmdJAiB7vB1L0uHrBojtntbigqxdsdzdsP+64vd4xDZGM5FzWdUvdLAle48dCCgqjKxb1ksY1\nwqdOln5/5PqXN3x8fc3htqdQ0TY1y7qiNUvOzzbUlbt/GH/NIS+zEjDNw7ZIChN5nKSQh8K6djxZ\nLjk/W2OA5tiz2+4IfhTbAqVw6zVuvaZanIGtIAXY31HCjDn3PRSFsY66zTRtjbs4Y+UcTin0nM95\nDz/MFMNY1wzrNeOjJxRrscFjb27QuyNMnlhb6Jaoppb5y+0tA4XdOLJ++pgXT66oKitrXuv7TpzT\nM5FPsyNpbEKMTD5ws92xHz1useHp8xc8ffEUWznqdoXRjhQKd9st/fHI5D1ZRZxzONdglaNtFzSL\nDtdUWCtfN8fAcZzY7g8chz1NtaJdrvhi/UdUJfbBOSHeL0pL9FsWhSb385ZITAKPyczJonK6hzEO\ndzcMuztc9GxWC5q6noNRHu496RSxJlBGPkEmc8EsswYg53yvi9Cz2vM0jziljIkdxVzs55OCLqeT\nH/NaewC2T016KeK5HnMhpILPGVXVrC6v+N3X/8TZKFPr1QAAIABJREFUxeN7e5AH7vj8OrOfeZ6f\nKe9H2m6Nc83sac/9+lYnL6EyC9lGz74P+DTDRZ9c5d+v47+RIEjPRzpksClYmnQFU99TUqZdr2ch\nAQ8m78ibe8IT5O8LBY0xQuVprME6w1eff8XV+WO+evkHPt5e8+1fvuXf/vwnvvvTtyQiqjZzVqhM\nkPGRtq1pFxVFQbtcsO7WPH3+kvX5gqgP7I/vONxsOQx3HI470A6ra5p2TciJkBOXlxcM+x7fj0x7\nz+31npv3O1bnS5ZrhWsdpjK0pkOjGfOBWrU0TcdFe8V//t/+Vwa/Z4oDWWesE263VWIIVOmOpb6g\nsSuKjlhzQJckO7ZSbB6tMVahsTRLQ8hHKttiXSabgo6glZmFPw6nHZaCylClirqy5ORZNA3mo1gO\nD/1RsjBDEEBHi+9GVTV89vkrvvr69zx/+ZSv/8PvefnkJZVr6eoOraH3N/ipZxoPRO9puyVPXtQY\nV7GsOxb1mmV1xtXxHU0a7yf0p478NNYW8Yc8jCkm0uTxw8jYj4whoZCkH50VrqnRtqJyNT54ilZU\nyxV2scQsFrCopRj0keRHhv2e6diT+4FUIGpNNIamaajNXMSbGuWE3qjm9atSls3gmIXh8egZbM5R\nVjNk6bxVSuQXL9CXl+imJux25N2e28OR/TjxYtlxcXmGUnP2qJkH/HM9OAUA5xTJIQjlMIhn/Ifb\nPVE7Pv/95zx7+RkXF2ek4FHKMo6e3WHP9Yd3eB9ROCpnSTmRp4HDtGdX7ai7muW6oa4anBUrge//\n8i3f//QTUwoY1/Hk6jn/+T/+E20tISEKM3eJGWXkvTfWUtUtMQbpQkNkmvrZL90AnnGcGKeJ490t\nuiTOzzesVkvqykkSz5z644wW6p20+rM9wOn55x6LNkpRUiaGeM8Zn2M0ZrO1uaDPg09rLM4q7MlI\n6zR/U9zj8afhZ85ZbG6LImWFz+Kl7jZnrC8es1xtcPbErJvX633s5FyvcqGkgB8P7Ha3xOhpuxVV\ns8Tpk4cOfLLK54Frnn2fZguBE8OFkxf+316/DY989o+QY4NYTZaSKElx/PCRMI7UXYey9h4rvB98\nPTQq8qtSs5+COKtptHCjrZNghOWGs7Nz2mbJstvwww/f8/rdG65vrxn6gZwipiSaoinLlnbTsVrU\nPHI1j0PiMgy0wx2q9Kh4JI87sh+wtqCtwlpN5Sz4TFMMZ2dL7tYd3aqj6RrevHmLceBzz6svXnJx\ndUZjarSCQiLmgTHuMc7Q1WseLZ6RyyNiGhhDT0gSJ2WUw6qKSi+onETiJeI8FBQ3wJQ97dJRuTOc\nqsXgSk3EUohxwucDGX8faiOeG9Ln5CLQTyEQkud2d82b9z/x+u3PDONELhptahYrx3IpR+lxd+D5\n8yv++A+/4/lnT7h69Ihlu6IyK5yxpDyQgmeapNs3zrJab1Ba03SNJLRki/WJSitskbSXk+Oh1hLw\ne2J9nGTYKU4kHwjDRBg9jRUb2+VqgTYGbaVzNq7G5iRReVUFTszU4jiQxhF/ONDvbhn3PakfUN5T\nUCStScagS8E68XEpVlOCIRt93y3f0wTrmrJcgtYzhxlyU6MuL9AhkRctxRrJaRUKBTYnNsuO87MV\nq1Unm8PJ1U89bF4ng6l7/vysVPXTRMiK5eaC33/9NZuNFJbkJ8bDgX4YmI5HdPLYuSCVUBinHu89\nw2yyZZymahyPnlxxfiE5popMDmJSF9UWpRTv715wdbZh1VZYrYkpEnMCnclJPYiBXIY4i2+iZMlC\nFH+e0RNCIE4Di7biyYsnLBcddeUoSaiClbXUztFU4paocoJ52C7FkrnBk6LrJ8+gT6f7jJ5Dl08+\nPUoVDDK7UErYMHoutPLvD3Xpk+1CnqmZLRVTZgoJHyLr5ZqLq6fUrhHb3ZzvcYJPm82HQX0ip0CY\neo5F8P+ugG4XWCsmeGqGTchZbHdn9t19oXsgrnzyVX59/TbQin34slpriHEWOCQO19dM+yOPP/8C\nZe3D4Of0+erhCMS9vSkPbxwaiiFrcUJzlaNbrnjy5AX/8Md/5rvvvuW//+m/8a9/+ld++fkndrcf\nScOIVZpGaVbG8GrRcaUM5zHS3X3AFU/pGrCJHD1GK2LXEpWZE2sCKnm0SbS1ZXW+YHNY0x963r59\ny7HfkRil4+8cdW3EOEkpii5MfoezjqZaYtUSY5dku8TqHUMYCDGilMWoGqNaWUB4fD7OToKJTCIm\nj6scjW1xuUEpRUgT+35PUj1ZjWQ9yftVEioq0FGglTjO/ssDx/2Bw+3IN999x8+vf6SgaBcrUcrW\nLV1boUh8+PkdT56c8+T5OY+fLlnUFquhsTWpBEIc8aHH+5GUI6511I3DzgrSnDzj7o74fs+l02hn\n505JPQg+tGgL1LySc47EOJG9J4wTYfKsqprz1ZLVanmvTFRaQ1WLinhW9iWjiCXhjyPjdsthv+N2\nOFDGgIoJp8AojXGOqhYGiJ29OHJKxGmcDZ4yaI22whsPdU1cLijBU+5uKVrsmc3lhazXw458M5IA\nNQ3Y4cjKKF5ePeLR2Zq2qSTv85O1XOahXcmFkiLlfjYQJZx5HFG6YnN+yWefv6KqqzlKLXI87PHD\ngIqBdd0QbcGHImykfs/usGWcRJZOFoW0Lom60oS6oaktF+sl4+GGox857G74y4/fU8Ir1Llm2WjG\nMJByQBvh/UsAiKTrFCV2AkUJc0WU14ng0+yRHlmeL3jy/Iq2a6itJaeMUgqXInXlWLYttdGYnISP\nXgT6OWVmkGftwtCTU5hrg5CHjFJYJX5NWkOlmambYrwnk4fM34wj55PQ/T2Ym4cQpZDHUlienXF5\n9QyrzcPJ8dOXgHlwPA9eTyeqHBkHmUMpY7HzyesEIasZLrrvyE8cznszrpme93ewld9Iom9+9Xtj\nDF7BbtgyxUBCchmtk5zMk6m8+tXoV65T9uanYwCBm8zDjZiNebRWfP2HP/DyxUv+53/5X/j22z/z\nzX/9P7n+7k+8WFa82Kx4dr7icr2ga2vcSYVHJg09oSSqEGhSZNgWRmvpreVgDfsY6P3E2Asepm3B\nNXOyymbF5188Y7npsEZsRiud0EajZ4WXznM3oSu0chQc2ojwJKoDqkSsarHGkMrI4Pcc/S192N6L\nTUIJNNphdIWmJkbPx9stf/7hezYbw2pd0a3aewaIONdrfPIchwPb21s+vL/m3dt33F5vORw86+WK\n54sz6s5Rt5pu0XD56Jy2rfj5+59wznJz+57NZc2iEgl/VAMh94z5lpgP+DjgYxA4Yjb693l2pNSB\nto44Xc3UO2EaoIWGZ7QofYki2igpkXwgTSP9MLAfJhbGUuWMGgbG4OXIqsWoQi1WmMUK03aUTUdx\nBX17gwotJkFdFEVPqDrjlKaqG+rFkur8jMY6bEqo/kiaRsZ+YNzumKZhtmm14mz48SP67VvcYolu\nKqE/PrlC1Q15mkg/fU8axQc8FbA3N9iSef70EYvVAqcN0kNKQSyfVHShHeZZDCQBwmEKHPuecRyp\np4k4TZTKobSlqjtW55bYebKPUAQSGGc21pRGXFBgarpmTWNqxu0Hdj//zPvv/sx+8LTLjm7Z8er5\nc277Hp8VaX/L+wS79x9xKHwQDUbXdVRNTV3XuKpmCsNclOWZNc7ilEWhGPvINE7klCQdqBIOvrEO\nMweGuGipa/EjWtYVNQjDa/ZkVwVUSiQPw6FHxchoDcrIO2g02JnfL+HMELQYysWU6EwtBZ0HQGMu\nJPJ3nzJYkHUYcsKnQrvecPH4GReXjwXi+MRe9r4qFUVOnhAnYvDEMOK9ZwojztVCh5wm7sJb2nbF\nev1kDlmX+y12IeJUaZQMlMVGYP6E/z8Jgv5a7WStJQZPfzyQSsHUtSR2zJ4basZ/1ScduLzQ/S8n\n1Pz+9+WT3VbUdHo2valYLVdcnJ+xbGtW/sDbtOeqq7hctpwvWpZtjZ0ZDjNQK+6HGXTRVGi6kBhS\npp4mVEn040gcJoZxYvIJJlg3Kx7/4ZLPvnjGV//4B84352xMw3ICMwsT5LitMMdMHDL9ciJoxZD8\nHMosCUJWN+ybLA5vpSeGAzkM6FwwKs8FMKNq6VxCTLx++543799we/ORxXJN0ZaQIrFImkyOmWm6\n47Dfc7e9Y3+348O7a96/ecdhe0QpS9OucCRcke6IUAiDxeqGbuHIOXLc3/HjN5nXfEDnVvDeMgID\nWg3iMWItTdtinUMbRSqJWBIqe3T2GO1kQ1InBSRyF0sWAcdMBzVzcVcpMU6B7TRhK5kIGgopRRQS\nD6eMnPZyDBK/NgzQB/Sup4qgrMN1K3LdzuvEYhRoYyjTyLQ/MAwDcb9jOoocfxxHSo6irHUVVV1j\nfcROExwO2Ep8y9PxQLaOEgP67hbjA7pIt1imiWw0bim0QDG6mjNAT+yHT37+nMVwLOcyH/MDh2Mv\nkyUrqfExB0rMTGNgGj1+8kQfZvEcwpxxjna5pJhCKprWLam1o9WJd28O9LsDuSjImbquefz0KauQ\nmCaxb27qhtpVWCVYfikCmRwPI/utJBIdj3tKKdSNWCfXtYQl+9Gz3+447LZEfzKCmzFgLUCHyXJv\nnbUsuoZFW9O42SN9ZsFYo2eRlue4PxBGyc/UWmGVxMcZo6mMZHtaOwc3JCnky2pDykWaw9N6m1Xl\np5PQiSlCEZfNMSaitlx9/pLHT1+y6FanbpGTL87DdYLFEiFNYqnrHNZYou8J457j/h3K1YT1FXWz\nwprVfbDFKdJJmVNq0QPh4+/BKvAbFfJSHgKSS5E3tZTCYbujFEXddZ/AJvID/DXGfyrup+QNNQ8/\n56/wK5qOtRat9cydFtphpSuePLqkPHvM8uaSzhlJE3eGomRc8jDXlgeQmaRfFUNOmUXKtDHgfCDs\nR/ww4UNmDJkVNY/Pz/jsy2e8/Oo5L373nCUN3THSHo7o0ZP9SEiRVAqpOpDaO/zqmh2B29BzCCOp\nGJTusO0ThnXF0BVyOWJzoCmwokaXgNGRxhqq2mGUwYfAz2/e8f76mnpWWVpniFkGZcFHwpjYb2+5\nu7lle3OH7z37my3jXU/xUdR/RqHCyBSO9FtPUYmb9+7/Y+69eiy5sizN7yiTV7kKTZVMZonuwjQK\nGDQwmN8w/3peGoMBCiOqsyuZ1CFdXGHyyHk4dt2ZVTnPzAs4g2QI9/Brtu3svdf6Vj6FVQZjFGNK\nvP/xPYdPM+PRI5OgrQTbVnG5Nmw2LZvdGnO5o1qtkCjmYLNZaJhhcoi2WeRsPLWUKUvNCBEVI1qI\nPEMtSialCVIwpESbIklmIJVXWd+shEIYnYORYyDMI6I/gLUwzhSmpNCGtigJKbtjPZI4DfjTCXs3\nEU49tuuZhwE72UzfA0yRF8VRZqWUt44gBNZm3o8C0tv3BFLWdMslDX75u43B40pDYRTl+bDA+X7I\nvygXlacifv7wITLOlkM/EoQGrYkpMbsJbz3TkDXms7VLbGB+iOrCoIymLbbUq5YYJUoYVAJRZ6a4\nA6rVClMVrLYbrp695EYYrIsMw0zTrqjKbKrzfsbakWk+0R17ulPHcX/g8LAnxkhd17Rtkw1sSuGd\nY+h7uv0DbpogxGVYIB7PY+cDl9YqK5rqirYq6eZ5Ga/EfI0ISN4zOsesxEIKPH8sI1WpMnRKZzjf\n7HJ84/NtnR2sSmVTk1TLrPs8TInLbiI/OG2ITCmRqoY33/wjV89fUejiEVks4HEx/fjPlMc+s+0x\nygABSeTU3zP0D1g/sdq8RKqSoT1SGEOMjvPWKpEeI+jkci8skn/+8qHx9PpNCnmMcSm6+WkTl/HH\n6fYBLTRV2+anWgx/cZE/nVbE+Q96+jmxPCDOn+RxgSwW67HEmKy5DiERo8AvJxzvAzalHDZLQj7G\nGUhU9vLyGPqbd/QIqSlFbq9LXdCYmpfO0ztP5wSqabl4dsPqZk2xrdHTTNMNNIOjnD0x2HxxxvxU\nD+OEP3W4j5/Q80QcTrw93vNhnjiYCvfZPyBffoG8uiEWilSUSFXSiIRMmjomblB8yZobapRyCLPm\n6kLyuzevEHUH0oEUHG4PPNwf6A8zGk+ZBC82G6yZuCwLXlxfMNhAu9qx215hh55fvv+Od9/9RDcO\nmV5X5oVUVZdoo4k+8fCpY9pPbKXhszeX/G6140oUVLOluD9gjj1oRRRgFoJhNpXUUEZSkW+KmDKR\nkuAWGFMu5EUSYArkao148Zztxz3rTwdKFzF1TbHeYOpquUlzsn30eSnqDweCy7F6RldoPMk7bEq4\nacJOc565O5cRtzFAzLyNarVhdWkwZYkuSwqTVQ8hJmY7M8wz3Tgwe4e1Dm8t0eZxng8ZERBTwpOw\nAm4RyJsr/vmz59RSsFoOLYKnyz38yj6eFlCW8w7nLN048enQ06k1VTfx/pePFI2hrGuqdk2z2i33\nymJiSvmBIqQkO6IjpBxzprVC6cTq5ppxHJG6QC9jj+ox3CKPkIxRpJiYxoCzBYUrqauKwqypm4HN\n1Yb2dkW3PzKdOm5/eYuzMzGGLMGXAhF8fqiSFq07nGWC565bKUlRZBbMdrdhb+fM+MmzpizRBILL\n/BPhwah8yDo7Y+1ygI2CPOP2gUjW4Uul0KpA6QKlTWbhEBYZtEQsck8bIv0YCMWKdnvFm6/+wGq9\nwfuJEGNGZkv9yMw/F9l5OLB/eMfDw3ticszzSN8d6A97pmkgEKirS/zcc9i/g2gznmMaMqAr5b3A\n+eEkBI8H1r+pZef5aXa+2ELMZpHhcOT65gWr3WZxmZ1P2uFXIxaZ51O/ru//bvP8/9+AZJMPi/FI\nKg2mwClNHAeCFYTCEItICJGiiGglnz6VEMR8QMQtTJgksqypkoIkc0u/awuaVcu21DBb0oMn7RN1\nUBRRoM4t2aLG8dZmCt84EV3AkLgAvjQNaxR3QvPOOj4ej/SqoL664mvd8Lpu0CI9hkVHEt/P8G2a\n6K3juG65ahq+XO2IQ0c6nIjzhLi7ZzNM7LxAR4dKedEnZUEoDZPy3PqRsqjYrdcoA8+fX/AVLzgG\nx+1p5O40YW1CRocxkcoYtqsaXdVcFjWfXa54Xlc0QqFcRLiZlKZMUViMYNLlTMlQWuLmilCd2RiZ\nYnd2OZ5vcK3V0/zy6oov//A7yqpGHTq2V9ew3iALnefozme2yrI8UmWJLMt84lM6jzhSQoaQZ6ra\nEMoyS8/SgqlaFq5a5k4t73P0kmWZDwGmLDB1RelzKLF1lnmecKeesR8YrKOfJ4YQ6GLkEAO3UrFa\nr/lnU+Rr8Fy9l2viPGR5KsZhYag77DzRdz2fHk7MpUHfd7z/+ROqNDnrtchmLLkcdv4yFu1p5CiS\nRKiMsJUmc3qCj0g5Z2WHBCkPi1BCZjOT9Av46qwbz9JhH3IkYsJjTMFqvaEyBWNRMJxO9N2ReRwI\ndiZ6i/QWrRVlWT5+nY9LbrkY3oymrSt2mzX3s82GuuAWRUc+iEkB3kZm75ljXlQ/KlKWuufJqpMQ\nA1qJjGzQmVKppFri9AQinFUxS/BbApcSU5KY7Y7t9WvKqsROJwY7gy5omw1a6uV8+TRbl4tpTyKZ\npplxODH2J/ruhPMOVRRMY8dx/4F+2jP29yQPc2+J5SofZNKy8CQ9/fi3NloZ+iMpelJ0ED3zPHH/\n8Y7heEQ+f0FRmsyKDmJZdManGbnMp3ABjzNV4LE1y61O4rFpW4r+mW8gpVzmygJMiV5tEZtLutOJ\neconqrl01N5ThYLCLHNTmcNQrc+QexfAxYAQgqo0zC7iXAIv2baGjRZU04gdcoyVlAJdNQhtCEJk\nizhL3F3MMq15ngmTRWjDqqpYb1e8SZF9hG+TwJ46jsLgN5e8kIb/qcib/SFEDt5zHxw/Ost3buZP\nfqKpDd8kwYMdqe+PqIdb4vFAPYzUCLZVTZgcyXsUibZpQMJApHKBMIzUXUcbJz7b1JjVG+Za8f2n\njj+/O3LfjeA9lRJs65L1ZcGqKFmXNaUUaJELZQo5qi8sLIu4bPXjnJkag56Znw24ZpVlciKRFKBE\nHpHIfJqUCczScmpj+LyqePb8GdPdAxs0zpTIGLJ6ZJ6Js8tOS20wbY0ySxp7CogoICSM98SqenIG\niidQUZ51shh/lozQmN/PSL7eyqKkKCtaAT7lBClrJ2xZMlYlXVmixpHkM6+D2eYA47KgLiu00o/X\n79OMAc6ulLMbMviM3Z2nkX4Y2XcDxlzifaI7DXBSj+MYsUgkc3FZ+v4FZvX4SjwxY9TipE1y0Vjn\nX5BSxJ9HOjERkyUlnw1BCyhLyoSQegG5ZaNbDrIuqFYrEgnnLH134HTY48aBm21DWZVUVfUoZGC5\nn+WyAylMVq5s2pamH4mxQMQsvZxdHnORNFMMhMU4Uyj15FBNT/hiAK0ETaFpq5LKmFxolcrz8V9/\nT8jh2yFlm7xThmJ3RXF1zTyemIYO52aq1QV1UcGShoQ8VxwB5HqllYEoFrJkfhjlr1Mvf84IWjAU\nt0gKUjRUulzGOuFRfppplOf9yd/QaOXnb/8FNx1w054UZ6bO0u093T5x2L9ndVdSzVfookAZg9Im\nt3hLHl+I+YbLrHL5FwVdiLPqIV9oIvIkGF1ukJyFWeCEYPfqc+Zg+eP9A4dPH9CngaYytHVJU1dU\npaHQ2QihdOI0zMwuYIxBak0ScBwd/WQhJpqiwOgMf7LOY0NAakmpC6zLhojzKUcZgzEF1apEmpIk\nDPv5lv54wj0cqFct2iiqlPjdfEfUFWoc+LdVy/+pJMfo+aqqqKWmkoqvTMVKSkie78eZcp5QQ0ff\n7bna33IxDBQhMIwj3nts3+GdIwHKmEzOM5pGFVxOBfvDAw/v3nPnHZWGTaNZX694udqw+/0N0zAg\nncfEiFnavxAiznl8ypZyGc9Zp/GRd5Et1Sl3IdbjI1w9HCjrlqqGqPWTZFZKhFCLjljkLFUVc1em\nNFIbiqZCTI7TMCP3HYUPlGVJsVpzlq4KKUlKkaQgRpHT7m1eOHufjTbJhyfpI8vNHEPm0i9dxNl4\n9Sh2ICfLuOCZrMVZS/B5Vl6vWjaXF3xeFkQhsCFwOnW8HXr8ZsWqNEhx9gTGMyssX7PxjCWIROdw\n84wd+rxwtY6kNF/87jNev/6Cy9Umn0zn7PjMO6W0MPzjkqwEIJdiuYw0WZ4Xy3151lnHEBf2UX6I\n+JBwLhC8IIQc5OLc2Qk840PIIC9vyfPghUgqMnWb4Lm7u+OwvyOFma++eMH2YktRZK44gicpn8x0\nycIYNnXNuiiZTj1FU7LebCiN5NSd6Lqe2br8MDAFaMnFqqE2GrHosSN5cX6OgGuN5nqzpi7KhY+S\nn54x/goXAngiIWXlW6wqTNUSYuL9D/8dn6BqN1yXNVoIvB2xbkLpvFwFwf7uFz59+onTdMJNI9Z2\nzG4gLUE5KY5Zbh0VOI0MCSXzz/nZZlVWWEiLixkoe2Xi05v1716/SSH/f77vKNIMPnDsRuKhg8GT\n5Ia7hxPz9z8SwlvyLkdmmJAqEapEqxKpFWWZi61WeVkBuYCLRc6oTLYFR2uJqMxu8FnGpFW2Qzs7\nMM8jow18nBL7wwT9iXWhaauCtsnZeW1V0JQldVmRx7QKoxWzD8w+5lO6jxiVlRJJiHyS8R5QGGko\nq3rhn+dCFmLMTOmQ07u9c4SUxz39bPl4f2D+dEDVJWWhqGZLaWo+myNOlVyZhpv1Bc+k4lP0fGdH\n9sFRTiPqtOd/uf/Iduy5nnpu5h7TdYTJYn3e+AcpoMhBB0IIhMomD3wuK4VRlAL6eabrR2YpcHPB\n7CLCzIiy5GJTg5L4OZJsIPlI9DHD+1MutiIu9voQ8IsEzvuA95FhGOjGmX72lJcfiKrg5iZRliWl\nKSAZkhJEnbIUi6eH+WMuo1RIY4jaEqXCpYi0Du1z9qsInmgdzlpsAp9ynFeBwCxjlnm2TP3A3A8U\nSmKUwugse5xCoJ/njFImyyOBx4J/NvKkpZ8vCoU0uX0vypy2JJXi1A10+yMf9nsO3mIqkxkvKWuu\n5XnB+av75Kwz1sZQFQWurmkbz+XFjs9fB775/ee8+vwL2qrFjT4HNCzwqxhSDoVgWZj6gHcZV4xI\nZ64X52ImlUJpidZxgVyRlTLkB3M/DMyTy4vdkEdI1uaDSQg+87rtjLUzzs3Mdsbb+VEDfxwGJu+o\nleLq+pLNZs15aHneDQiRHwBKKbTWbNYtV9uWRkB/6jnEwPV1doOu2gYfMmNIGUNRaJqqyOlFh57v\n3n3MWbeFoTCSpjRs25q2qSmLpTOTZ3PXE/MphKfv3ewc+2GiDz9h79/zcPeOol1zXUjqImK7W7ru\nxGBHmnZDWdWkGLm/+5n7ux/pphPeOlKSmHKDEiXBjTjXI6JD+BwYEuyIKRrKMvNmUvQQA0pA8pZp\nOKJMgVKGvEr/j6/fpJB//zGwq0pKBD98ssiHE4111FvB4TRxsjPdvmOyHT4tKfGmRpsGo1tMXdC0\nJdt1RdMUmFJnA4bO+vOyqjKAKTrcODCPkvE4MZxOjClRVAV1qZmnEyFEulPPz3cHDocJMTo2RWLl\nBG2QtFGxjpp1iqxSoKpyqopQWTI5uYB1Idt/jaGsSqRU+BSYvKNcJERS5gIfhUAQ8okvxCV8Np8K\n3WwZreO+G/nh7sgdGn+xpdy0PHeJi+BZp4GX6T03zz7j9WvBK11ysCMf7cR/G458sX/g7+4+8T9/\nfMvGDtTRoaUgWo9zAedCbpOlQiidqYAkfPT044Sc84IF0mObG0NktonZJbp+RsQ9plCoz66YI/Sj\nIw6BUiq0EMvDKSynWJa0+0y0m53D2swPPw0Dx35kPzhU+54gDWjJum1p6xpiRTARnQwmpUezh8rH\nPYSUaJORqUEoglSkQhFGix0tcnKIyeKHgWEcGUPCxkRyfnkwlxipmGJi8IFhmimVpNSSMuWuYHYZ\nzhTT0hGos+osv6csxVyqnJijpaAQglJJjMj/MBImAAAgAElEQVT7EDdZHu7u+f7dB344HuklXFQl\n3uYZfogRmc6r/zOJnEcFR0WeJeclboGXBard8vXnz7l4eYEpGtyUdwpS6QwJC/Ex3SctEKp5zjC6\nSESrXy2ZhERrgykkykRSUESfJaxCCULwdH3H2M/Mk81UUmuZrWWc5tyV+KwR74eecdG4j12HnWe8\nn2nljqoyrI3g2bMbVm3zNMpaFp7i7MqUEmU0q3XL9eWWZ6uWb99/4G7s0Qa2qxVNXaK0pl23tE1F\nU2RZ69jPxClw7EduHw40VcGmKSlUS2lk7rBN7vAfu3SWbjLm3VgKEHxinC2fHu55CB+xKTJ0J1YX\nVzSrinG443B7x93tLVNwrDc7yrLGBc/d7U8c9u8Yxo7gIsq0NNsNpVHY4BnmGXRAIJdMBiAl6mL9\nxIVJkVJpkpvoD5+gMBhTY3T1V2vqb8NaiRYjKzQl/RBJJ5s3wcVIEVpqYShk5E/3t/x8e0s/WJqy\npClKjNZ4CboSrDeK11/uuLhpqNeadmUoi5aq3VCXGVA064n51tH9sOfnP3/k/3r7jlRJNruG06GH\nqEhR8v7DHVoq1u2GuF4T25bUNMSmYtSSIBK995RjonKBSoFUmqISxDTSVobdesX17gLvJ8Z5xEZQ\nwjPbCY55GRZTTl4pq5KiylZ7HwJD13M8dvzx+5/49sM9b+fE9PIZ97//PfbVC/5we8fYD5Rz4JOT\nxG5k3fd8dnnFN2WLSPBuHHjT9Tz7+JHil1+IGmxhSGVNUa8xK4UOiXmemJ1jdj4vbp1jHAas82iZ\nL3ZTqIwSTdmoMVnL7GOOLCMhu8jbhyO3s6ebIk2Cz68vebZbkcKCH/aRALiFv22dY5xnxtkyzZZ5\nmhlGSzcF/vjTJ7qkccrw6nLkersmrDfURUlR5JQooyImb+FIakndERKpFm6GLBBa4pVhUgrrHTI4\nopsZU8IZjZcKVpJRSNySbCPbCqqCYr0ihoAlzzxVcGgr2ShwIebdhtGAIJIX39Y6onWkYUJ6hwwe\nHSOVlNRljs1zSXJ3+8DtsWMUii4G1JS7ADtOqMYijMkLN5GRqQBaSLQyFMpQFSVt07DbBG6eXfM7\nG1CVJtkTLnoSJagqR9IlgQoR7/KZWy47hpjEY8RiodRSvBbsK+KMWF98ADC7GV1ohIKLtGEesztx\nGiaCXXjofU9ZVZAS8zByf7zHBY/ShuSWpKboUUpguz2pf+D5zXV29saEUE8n4nMykVRZStq0DTdX\nl/zhy8+4Px64e/uWH4eeqiyp64p2lSWOdVVS6XyYG2fH3cOB2/s998cTh5PkYDK64LrRaCEyBXMR\nJpwdlRmtcIZrZSrqOFo+3d5yjAGhFSl6xsMdH74P2Cnn3wbrKMs1c/dAjBmmN/QHxnlg9gEZJclO\n7IefKLQiRIedHKJUkHLykDCJukwUOn/fz7iCptQIP3L4+BN9tGhTUpUN8L/9h5r6mxTy+cMfkfI1\nq/WOZ2bGX5TIqAh+pNWR63VDLxPN6UR16Bl8t8yLAoUwfPnlC559vmL3IrG9KanXGlVICiMpS09Z\njhiZNbRGB0Y9E+2J4XDPeH/PxWcrPv9ig0stx73gcK94WW1Zr3dc7HaUdUVdN8uMvMgSxBRJ3mVr\ncAqMJPTiGAv1xBgdMgnMOEO0WOeZQ6LS4lEpkURO0pn6juP9Qz7lqbx0GeeZT3f3/Hx34ENveRCa\nwzhzMgXp+XPeX16QXKCwnl8my8/bmvd+4NQ98J/qFa90wX9tN7ytWn40JY3SvFhMFRhDjIl+mpm7\nTGb0PmQJYVMjlcpdTBmXOekyQZV5KVcUltBPnPoxj6aWGWxnLQOQtKSoSgbvuD0OtEbTDTP94ma0\nwWMXDMNsl4WyzSaPaDRF02JXDXc+8P2PH5nu7jnu1lzcXHCx3bJetdR1TWkMpdYYpZEkVMoEvnwq\nzvsSLWSOLlOapBSh0Ni25jgMnGKkj4ExhcdWPkZHURlSgpHcViugNBKVCqIVzCrhAbRCl2Yxl+XW\nPLqQHZTOUymZjT+TpRawMoZGa/CwKhRfXm55geBuHBCVJk4D03EPRZZKhhRRMSy5n/Kx/T/b3yUm\ns19iSR0jKQo8ARcGPC7zcqImijNpRIHUWZkiJQiVZ+Upz8IRAZ0iIeZQFTirR/Ti73Bk5AUQc0ci\nU0I5B8FSKyi2G5TODzdfVxS1wTqbyaILFtp7R9PU6E2LiddsLlqKolzGUiwL2TOy96wlzzPs3XbL\nN19/xbvbO+4OBz4ej9g55w8c+x5jVMYoLHpw6wOncaIfp8VEFRkW+WZTaqoiL2PlWf22IBDiGRkL\nJCFwMTJ6R29nBu+QWoGIeAKh88zvpqyGkiZ3Qb7D2S6jC3wOylEq5vSglDuhfGVFlM5mqpQSyBzI\n4bxlHHuMdIvsNOGDYJpGjof3PEwP2ZQo/nrJ/m2cneMD0u2o1Zo3G0Vab4g+MtzdcoPnUoKra1ar\nDZfrLcr2TLNDq8jlheLv//6KL/7xgtWLmaQCUcQ8+3Rztsb6gYIGo9aItM6z1CUUQiuTbecvn2F2\nhttbwcd3CiEu2O6u2O42CCUpinyaMkqTxBJIYHPKiPceHz2WBDEQSsc4HpnchB0DKiW8h9EC0ZMT\nU843lEIA8zgxTjPOR6KAfpr5dDjx4TjwMDuOMnF/v8cdOxRw++IZXhlUiLwf88z6l2TZnx4QwO/L\nihtT8v/WLferDfV6k8c6EcLs8LPFjRNzN9J1AxJYKUWwAVFKdKGBJdbKO1LMbG6ts9Y4JhitRyxM\njBATwxyQjaZt86hr7PJ88qqtOfQTx34ghMAcAi7GhUFBVgOIHFasy4Jm3SKbFWWU+IeO2wfH8WFP\neTzw4uaKm8sLLrcb1nVDU1WUZYlKCa0iWv4K/7oUc6E00hTEuiS0NWxG6E74KXdKh3nICpMUmYLD\nGJnfA++JIbf3hYaYJE4o5qQRWmNKQ1WZTOgzmW9OSATr8LPL3cJkkeNMqyRrY2iVQtmA2ja0CbZC\nUp5O2JADU4buQDCSqDQ6eFSZXcV6ecBL/VSkskkkq3jUoqaJKRJSJKQZHy0+SgIaJTRKGpAGooKk\nciFHLYu+lJ3AZDVA4GmXJh75HoLoM7QqLrsGnEN7iwpTNt5UZSZiCgGiYKUbZqeZrWMiMCKZpKKs\nS+piTaMlukoZQvZI/2Mp4nIZWaVHldhqLXnz2Su++fA5tw8P3PUdk3XM3jPM9hFQhRBI5OLE9LgY\nlnDmjEVQWrFt60WxsnzSmMdOZ+55SrmICynwKTF4h40BG3zmyItIIOu85zABClNUmLkg+B5nO2Y3\nAeLx7yFkWPY5EYHPyh4hiNHlTkgnEBIfHMM0sq5yB5wLOczWMgwHjqf3zNNI9JG/9vpNCvnV5/9A\n0ZYgI29evaHpZqpDh2m2FP3M/OEDD4WmdpbruuTV6xf8j5/fEo3j+e9LVq9HXOX56cORbhiYrMX6\nQH+YsL0DD8+Lr9lt/5H24nP8PEPh0e17zKVmcNe8/f6S9ZstSTVsX5SUuqSpskoFIkIpIoJpCbJw\n3hN9Ng9lHkJchPoCnzRRb0C07FPAzz127rF9oOjv2SnPs3XFzeUlm/WKy5s1u6tn9MeO2493vPv4\nkQ8Pe97tT+zHicM4cwwJF4+kP31LuL7g7p//iX2VTxGhLgBBEIL/expwAv7VluiU+LNWHLc77Pic\n99/+md2Hj8hpYFdX7NqG3WbF66sLKmPQCU6nE+M8YafANFuGYWIeLW1dsmoqSqPx4ZxUnheA2V6f\nw20bLWmMZPIzp8HhhoC3jt5O9NOUtdU+EIVEFxWqbsBkLb8SilYKLoTgc1mx0xopND+eDvzw6YFf\nPnzg+cUtXz675vevnvH85oqL7Y5VEggVs1LAJEqtKZNALyAyueioU0poU2Dqmna95tmUkbzH04GH\nceRhnrmPEUciKDCNRkhFjInZRbphIriA0pJ2VWY+eZEjzpRSCK0JITLGwL6b+PhxzzgMiBS5uFjR\nioZCFPnkKwWl1mybiqLdUrlApyR+nrCnA1ZqjHWYqkIXBq3VgonQKJP/PY8EzkU9K3nOZ28tBMWi\nP84BwpYQIEaFjwKXcqK9VCWYiqCKLK8UGY0qkyCKlN2q0i+4WElyDhE9RmXedylBrQ0yOmQKCIZH\nRVySCdRMJBG0hNowOMPRSeJqmwc4wTMAOiWKBDotkhWZgCz1BUAotABVFAit+cM3X9ONE9++f48L\nPT7kZHmfQl4WL1ruECM25ieSJI+UkIKqLNit2ixRTOS9QSLHBnqIcYltWDoCnyKj8zlCUiaSjPnX\npTxP1yogJFg/cb9/jxQBkicmTwy5e9FKYP0MAlSZgX/5+hR4mz0oUpGXLjLkz3MmX5JVrzFBCIl5\nynmnj3mi/+71mxTyi0bQbGpUWTH98g757hZz+0C7PxGjZSw19uaCVVNRbzdQveLLzQuGdOLW90z/\n/Q75bxPDdELISJSJkARuBrykEAVXa8NMZByPfPj0ibtPe/axpr26ZLW9QbTPCWKN0CWlUUgENoId\nc2uT8MRlXhlDWFK5n2hmIuWtciRhF7B9lnkKkqxIpULIioP1fDzc8q/vfmFl3rOpS3ZtTVsawuw4\nHTv2XU83O+xivECFrLBJkfjzW8L/8S9Q16TPX8N2s2jmZb4QSfwyT3QuW/ZVErxoNlw9l0wny4MV\nbPZ36HWDqAo6BIfTgJtmbDcy9T1aS9pVToOvioamXFEXEmNE1rSS8CmD9WPKS9uz3luaCtNeIozB\nHT9wP91xPw4M1jK6vHRrqop2taG+vOHm5Uucd3z7b3/E9T1FyiqVcfIMQnCKgXFlYLNjR+A4eP7t\n7oG9tbzpel5enXh2cUHbtBRVTVHUlEWi0rmgay3RgoVfwtKqKyQRd+iJH28RhyPFNNNYS/SOsdJM\njUI0GtloUllgyszIcC6f0pUxOeTaB4zKig43jHy623N3t+dw7PIJclWz27asVjVaa2IEZx2n2RH6\niQ+TxwAliVYILp1m6wL15KmanrKpcydYFo/gOG3ygs4Yg9YLaErp5XR+Vm2dZZMSqXKBTgogXych\npZyrKWZS9FlnnbEepKQJMacChHPhAoqgwM2I4NAqm7SE8iAtyQ54N+OtIy7BHC5Yoo8kYUiqZpos\nD3PgkxXQHDFVSVUW1GWDVBrtJVoEKpU111LpLI8UT3mVKSXKooQ3kWmeePvxE//ypz/z8+0dLi2R\nDikuuu9l5p/OM/d8v9bGUJeGXVstaGeWXE+fpYeErPkUT4Y06x29m7LKR4KUCXS234cU0eTdjFzG\nrjH6RZ21kA/JaICUcl7q2Wh0phlmpWIeLUUH0UXc7BExZ4pmQ1p2l6costIt/I3JD8NaIbYlSijG\n0x3m01vC2zv83YHBWR5Kw8Nska+vkHWDVRuu3ryiTgM/ffoTn24/MJ4OHI8PXF421KsaWdUY1VDo\nCq1KSDvmKXHqHvju518YrKVcv2C3WtNuLtCbHUlVj8aGmCLWn40r+ZsdE7il1c6L5Yj3OehYpkxw\nSykrIc4RUzHmhaBSFVpXuNbx0E3c9feE/g4VLJWEdZGTgoJPeARRZnh9H2EO4Pwih/p4SxxmZLNs\n+X//FaIs0GpRRyDAeYbk8THxEsUzCnbVjtPla4Q3VOWKoi1JMnGaJ47Die7o6PcDOgYuWkOr6xwO\noLMVm+SY/cQ4jhxGy2l2DN4TUUs7nL8Xl9qwbjdQ1aTiwIMPnIaRwTqsy1zll1XLypQkZfKDynrs\ncSAej8wxMjQNsi6ZC82tkZSbDdWmplGCd+/3HIaZ7uFA7x3HeeIwjVxtt6zaNU21oiormqqkKQvK\nZCiiwpzhWoJ8ipkt9nbP+Msnpm7I72PwxOhhVGhfstItslYkqfFSUgqJ1YrZLrp4l/PbgnTMs2V/\n7Pnhp/fsDydCTLx8cc1mt+LyakdZFKSUF70hQXSBKXjcPC12dLKZS8AAlMOIORwpTElVV/mjqimr\nirLMcK6yLJ8K+rmoL1r6PLL7NbdEPlneOWfYxGzES25JnGdxJYql2EMQkG382T1J8vnQEnIGKzLv\nFRyO6EdCf6I79YzTzBQjSjfIUiEKwf1x4sOx58PoMe3Aartms9uiVMUcJEOQFMmhyywnlqrI9448\nsyDzl2iMQYtEcK/5r//0n+jGkUPfc9vn4IqcZxBxMRfzFLMpMC6z5pVSlEZTqNxtuRCROi/Ko4wk\nFbNhcDmhxxCY5pluGvF+KaqZapVzWWHxJ5xzc8WT6c2f34C0pN7lh2zwLF1H/sgywtx+nLG3MYQl\nezQsKGb1+L7mw2V6lFr/+9dvUsi/fbnjSyNZjQNV4VhraAXMbuJeKd4Vmp/mGXd3IFlIFXzW/iOm\n2aBjj4+KsYv8/N0Dpduwki9pV6/Y7S6piwq9GDRGmziGnodpZrW94ovf/4G4IF+VEAjhCS4uc9Gn\nZJDkQ55HIojOYoosKRzGmXGcsS6L9c9tmEAt2ZKZVW1ULoZGQ9lsuHwuKaqWTx/e8en9W27fv8OO\nPVKIzO8w1WPO4TDkm8Jal+OuUiQNI/zv/y232+s14vUr1lJyieQKgTy7/5znmQ/cOEFtA1u1Rl5X\nqN0LfIrZdThPxGJANgP1rueq1ty0BRdtwXDqsPPE4CzdsedwPHI4njieerpxZnQ5JCCeZ+nW8qWI\nvG4lkxF8awwnUXLnRsYp7xKkkLxA4KeJd3/6Iz//jz+C9RTDRJU8TiS+O3n+y/olz55dUN6s8FUF\nRiFk5PJmS9eNjMPEvXcMD3s+DAMv+p7rzYqLVcuqbNi2G/xqTRUqKmOotMYohVIC4T3h1DE9nJiO\nAzZFOgV3RvBWgRKRrYbXukDJkilK9qMlPHLA80w2Lnrr3s3c3e/55e0dH+8OlGXB8+eXvH55yWrV\nLJCmpzmvMYm6zq5H7yLDMOVRnZG4puSkJLefOuaHE7hA29Ss1yvWq1Ve9DY1TVPnhW+V03zKwqD1\n0wn97FIUQmaLvpSPp9uzcxLOFnLyoeBc+BdQ0yPUVfilI40ko8itp3g8/QoUXhakNGNnx/tPRx4s\n2PaCq+svaC+eIYuGo/2OQ/+eIezZSI3SJUZn70dCMnnB3lkqU7MrS7Qyj9AxfnWqFgKSUlxs1vzn\nf/iG97e3fLh74O2xy+/LMub0acnX9DF/7YBMIo8RpWIcHQ/dSNI1rTEUVZMRsXYipHE59YKbPd0w\ns+8m+sHlsVta1FEsDlQE0ecDoJQQfFYJWRvRWuZc34WTEkPEzyxwrfNYNuVOUStSiEgT0WY5DIbs\n7JRaPnZhiDyjl1rw116/SSF/9/0PrMqKHQKTEuPlCmLETh3fucAfgbfjjJaSVhRcFQM//PhnvFDY\nbs92U/Hi5jlyHKiVwvUj08OBIWlSGymKiqreYQFnZ65ffUZd1SgCtYBKiqWdA6HTsozIo6pzelck\n4iMMIoLKF7U2EWwg+QAxEZNY9LpuibhaUAJMKAWFlphlUYgymGbL5gZ01XB/94m+6+hmh/I2ByCH\nkCV/PjzCjkiAC7A/UP/wjtXzn5HNlquV4EZqLkJCuYAMGSq1DZEmgAoRkkRIA0oSUgBhULqmqlYU\na0fyjkJJZi14kAkrVtnhGDxq84J6HAhdB12PHAZU39MdDwynE9M8IoThp4ee8Oe3RF2w7yfKumG1\nyLec7/Eh8mF/ZOx7Su9QIVHEhFmcdMoo2rpm/eKS9rMb/K4BpfP33zvWUWCUYlVXyOWkZpYotoP3\nzH1P0Q+s+55td2TTNGzbFeu6oSwrjJaoGJGVRl+tKHEgEvdhYmQmGsV2VXGzu+T58zeUmyuSKBh7\ny3B8YBxOzHbKi1HvOY0j33265f7jA8dTz9XlhsvLLc+uL9htVmiVaYQixkfDkFYKUeab0ntPVZUI\noCgUdV2iRS4Mw+x4+Ljnx31PU57YNDW7dct202Y+d1PT1C1VXT9+lGVNUVRIFf6CVyIXw1J2MS/O\nZ7G48iEXhQhycX+mc5yYlAiZsmYxLVrzJJbZ7CJnFIJSG+RqhdYC1Wx4HgShbCibNTbOHPZHDJbL\nyxXbqzVV3VBWLWVZIbXi/vYj3f0tF42glc+42VSElLKKS8q/wG5nt7bAGEW7qvnyzSu+fv+Rf/nx\nl0xADMtCNorHGXZafp/Riq9fXvF3nz3nxc0lu7alKjQEi+2y5d+NI9ZZXAgLQykx+MToFodnTESf\nT/pFKTBakhKLIzRz/dMZ77/I0yX5wS1SIiz4DiHTrzqdhFQRnQ3KKCNQCrQAsfCnlEiZqW4yjteH\nLE38a6/fpJD7H36mLyoejKGeZ0JTMDzf4eeRD/uBX/qZd7OlQLJTE2U7cbv/gclFVkrRVM9oqxWv\nb65I85jNJ+OAbzbYMhGMAlXmiLNk2bQNq0KxEZa1UawLRaNzIX+84JeOJUaB9zns1YXE5BQ+kU9x\nMlGHxDEGBiJzzHP1sCyYQgQpNSFYsBEnycTFlG3eqqho1hJd1kRpSOqesD8Q/JwXqs4t9nVxtrqB\nECipqKuG50lzPURU59ni2QhofUD7iA5QCYE5740g34PpzJlRj6oOY0rO+ZeJxJgiY0yksoYis78F\nCbO2NJsJNU2YcaDoOtTDPeLhHtWd0AJ6Bd/vLSlZhgBSGZq6ZRozUN9ay2kcEV6zqgqMdxQxUiws\nBVNV7J5dop9fIK+3eQmeEtHHbKJC5jHFuTAm8cjPcVLkLiYEphAYnWOwE6PNbXFd1tRlQa01jZGI\nqzVFrZFa0KSRrRwp9cz1bsvN5XOurr+grC+QQZMOI53R9Eox9EdMYfApchxHxvsDp6pn3iRevLzh\n8mLLuq2z+mW5uYXwS7aFRmiJSsvyVWfJ5HmEIJfxnKwrYlXiyoJhFghVkoKke+jwqiDpiE8OG2ca\nWRAqRRIlSdYkWf+K4X4uzmmRaC67giXzVC3/HyIqJWR8SssRIjujHznd5D0IKT1qm8/IAyUloiiQ\nOkfqrUPEIxHK0o+Oeeq51JF1aaAwJCToxXmtNd57+mNHJQzTODGPI1prkjGgFzb9r8YrcumGisLw\n8vkNX71+xbPNhsE7BueylX3R3y8DC0ptuFg1/OH1DX9484wXVxe0ZY3UmojE2TxeI2RXcggRv4yY\nImIZt4gFVRBzV2I0OTzi7ASF4Bb+06J/z7koec7PWZfuE498tPMuLfF0wpfZNayX9zEszmglRHai\nn/MZ4t/QaOX5pwMiPnCHoKoKqssLit2K2HyJ/eUW+cstcX5gmC3+ZJmKmePhnuA8c3uBLAauW81O\nVlyus7j/JEuqzSVpfcUsS5wLxLkn9A8YN7Lbrvj68oaLTUFTaAolWd6nR/gcv3qanxclwQd8zPPz\ncfacRGIvAve95RgkncxqAi0lPilEUTEPyyIoRuZ+yoU9OlCagGKwinJ1xVYWSF1y2t9n0mPI7W5i\ngTqJgJCJuml48+Uf+OYP/8Rnb36PCSXpGElpJgcqZKBUiIHA8uZLuSxi8onijAeJyS9X+hletYDs\nkQsgSiBSttSTJOiKoi3Q9Zr24hk3L79YzBA9yXuOpyPHwykHL/QnnB8RQlGWFVU147zPy9S64sXl\nBdP9gTROGKlBScrLDdXXL+gv14SyQAiJ8wu+VhVUVZEvmhSJ3i9SsUT+7UshjBCS4JRkTpef7jDc\n0qqCi/Waq82G6+0GsWngYoWpKr5Yeb6sZoTsKaorTP0M3T5HzAlOI2LuqWJijok4TbSlYbvdUb18\nxXXV8Or5J/7cHahXq9zWO4dzcQkwyIuqSki0Idv9Y8YnK6Xz6W357xAzddDZgJeC5uqCizdXXF9c\n42bLt9/+GXX5imK3QyAIhSatLyhevEY3K4SpiarI2N7lfQ3BLwjgkA8o3pHcBN7mj+BIyaFSysVc\nJJTIXan+VXrX02ECiOlJdbFo3FOKBGcZDnuGIbNPyqbFFCUvWkMKMMwT+9M93ejw9Q61e01RN1xd\nv6QtGioGBJLucKKsDbGsSEXMI6OznDQ+USi1llxcbPj81Uv+/s0b9tPEYRx/VfLPhVywqkt+9+KS\nv3tzw5fPrrhYrWnqGm1KolJ4FwhrR5izIqSfJ07jRNdNlFrSGINMIlMrRC7Wzi0O2gXMF0PCzjFL\nMXXm/suFXBhDPpCEkE/sIoFU+eQdU9bKV2U+woskEUnkIAy1UCsXTLcQGpJCCr1o9v/j6zcp5F8f\nZwbr6JznFviq3LC7bDnMHS8vL0hJ8vF4YrZQpMh1SFxryZw8vfvE/sMeX5WEVY0tC6r1Gr19SapW\nOG/pjh853H2kIfLZbsXXL655ebnmclVSnVUN8KhhfdJPpQVhmr+RWZYFCjBCgFaopqLSmk3jOc2O\n4zizH3r23jIGSaKhKkqsLphstkPHmPBRoJVEaahKjZ0DShnqdoWQhqLqH3GXIVmEiJiq4vL6Oc9e\nf8GrL75id/2MJBTRBaSIOWxaJLTIkP7EcmoVEREdJvNWsdZnK/vCgpnmzHURQiIe5UyLjpYESWKD\nyPuwkLXyeaYaid5hfcBFQcIgi4bVVrO5uKbtjhz299zd3WXXa1FR6Jkvnl3yzbNLvr5a86/ecztb\nBIn2ckX18ormxSWUhgAYJMHnZV1pTN5bhLCQMPONnUgorZY5arY4x3TujPKpc06Jzvbc9ife39/z\n1csX3FzfsLm8pHz+DF0HhMxmFS1apGoQUeGGE2LsKZLPvJmiwEhNf/+Atpb62XNuNhummHAp8XEc\nscvXEGJazE4ekPjZ4+asUz//vI9PGH0pJWmRt3rr83VH4P7hA23bcHP9gv/19ec01dOMPC4L5EPv\nOU4nytLTNC2FNnk2rsRjslVMgSQU0jTIepOzLYOH6JHCEaYRNw7EqUd4m3HG+twp5K6BZbkWQ+Ac\n3iIXtHMMATtNdF3Pqe84DSPu/Uecy7NmVdZEbZiQvLs9IlaRS7nji8trtpc7ttstWnhMmhmSJZCD\nnJP3AAhFHkcsLBuh5JI0VXJ9teO/fOrUyZQAACAASURBVPM7fry/48PxwOgsv2pE0VKyqyu+vrlg\nVxoKsVBdpMwdksxs9agEaIGRJa3WqKJivUrsXeTTMHLrRga/gMZC7g0k+aECiSgCcpUw2lCagros\niTE7omMSIBVKRIiessqn6hQkUeQFqkjZYaqSQoRE9JmSOHtHUgZlirwLEYo5gif81Zr6mxTy1wfH\n3Tzj7IxWko0ouChX3N8eCC7jG0mJVfC8iI5vVMC2ikNQfPQTfonzSmbDqGucKNEhcfj0kWE40t1/\nwgTLy8sdX22f8dWzLRfrhkKeuQ4LsjTJ/JgkLSOI9LTJj+ecxEV6uPAwCqnQpeD/Y+69eizLsju/\n3zbHXR8mbVVl2e5iD9mkCImaESToSQLmTdAHmBd9V+lRIwkEMTTd7C6XJjIj4prjttXD2vdmUdOC\nnoRiFAJVGZEVcc05a6/1X3/TVYZFpVjbzFp71krRz4EpnwgmM1UNY11zGAV3d06266DK0ksWYcbW\n1K2Y56Scid6TlMRd3Tx9zovPvuT5p5+zvbmhbsT03ySxnbUKLImuMjRGYzXURgkXN2WsaHyYdcJa\nwe8ymT6K3D6j8JQFEeCzJmYlnymLz3TpKnTOaBIqBQk5iFk2+kmhTYWtahYridR6PBzQPmBtRVfV\nfPXiOb/94gWfrC2v7+750Pe4BFdPdnRPd+hFQ8wKfCQlhfexqGGTbPGTOPhdGBnF40QSx/N5wJDw\nhpQusVkhRfwwMs0zT3ZbblBU7YJqtaNugeSJ8wDRoFxCuZG435OHQeAlq2m6muVywf7tgT4m1u2S\nqutYGcMKxTsfiCpjKglQBnF7VEomhRQSEZmhQ0yMLgrLggJPgEi1Qyj4tiLEkWF4JN1c8/LTb7C2\nxVY1pqoZTz1+csSQMEr42DFFQjLkWAqDzqUpkTFMKznEs5ZwZOHwR1KuSMkQkyLnCeUn9OyojKI2\ncqjqAr+lWBwnlUJHgYP8PDP0PfePRx5PJw7DyHgaGIaJwUV0vYRuRahb3j+MdHmmngMxiuLRtJWo\no8PM5EfhsCPXVyqLwZpc3m9536211HXN1W7Nn331iv/jD3/gD+/uGPcOLsvbjDWGbdfwcrsQWK3c\n2GfOiOa8NxAxkzIKi6LTBozl5e0135xOfHd44DjOqATTOBGR17hSkqmLScLGShqdDWouj9MYbGVp\njSW4wCH20jAGhUoaVRd7AmWwymIw6JjJTjJYvZc4QaMralVRY3FKQln+1McvUsiv91EMg3Lg+dWO\nr9Y7usWavp/4h59e8/2He4Zh4tc+8Vur+KvW8/eLilmveeZaTL2k6bYs1td4VXGaRu5e/56fvv8j\n+w/vYZ759//13/Bvv/mCv/r2K5SVxbtGSWCBcK5IlIBeXQp3WWDkJGNNPrsUFi/tmD7amSoFi6pi\nUTfcbLe44Dmejnz4cM/BHZjMkrB+gtG5GAopQgjkHIESS+YDKVAsLTPGVnTdAtW0rNc7/vxv/jue\nPH9G10ngQWOgNRmNRyHy6ioGrquaq7Zlu6hZVprWIIb3JUIvR1PwPBE2jSYyzJ7eeQYUpwx9ALIR\nnnjSmEthlGniXBA6YzE2gvNM80TynhwiLvTY2qKrhsV6QwgBPykWdcOXn77kN19/zoqe57dr7oae\nh6RZvrxhcbXGOXGJTCkS/SjKRaUIzl3gEyhTUnkfY8p4nwg+ylSiRQTkQy42qlk6mibRVBXLtqGr\nDZZMmBxGd+Aj/sNBRC85CwSyvxcHv8rSrTqaVcWWK44Pj8yj4/ThgFoHxuGIG04YLZ7kpm3LUtuj\nbU1lDdbI7kUrYTWkKKlEwcciH4+0JYLvvKRsjOGmqhiGe96+1exunvDJyy+pbMPhcc/D/QNKa7bX\n11xfb2mbGpUhJeEbJ59wMXD2Ug+uLM4Re9hc+n5llYQeL65R3ZY0TcT+iD+8o4mZThs6LCYLf/ys\nk0AJJz3GyDDOPDwe+endA/eHnsF7stJMVOwjjMeA60dindG6oqkaCVsYHJWesI1QeMUQbEmqKnzy\nzGkiRLHEVUjE3xnWMdpQWct6teCzz57zzcsX/NMPr/lp//jRqRrxklnUlm1rhHSTM0nlYoOQCl9c\numuF7FpSeZ5JZXbLjq+fP+OP9w8cDj1unHnTzyQFJmtskkPeNhqvIqejYzyJwVq1qlluOm6Wa24X\nS4JzfNcH7o8T3gcao1lsLaayJGsxqcZkjQmQJkecHMnJAteiqbEscgVVQ6r/FWHkp/nEu+T50cBK\nRZaHR9bvKuLhiNofWY4zV+sl/1VW/Ga94vbpDb/3PQbF1fU1x8nxODnePH7Pw+Oe0+nAOEi24pPF\ngt9+9QV/85uv+fzFLbaSTD9FoaQUZzGgLIAUoClVvGygc/FhloxEVyK7UuGQKpSkkRSKF9rQVKCX\nK2pt2Ywjj9PM+4fvqUYwUyA6J7Mi5yiziHOiNIzBkaOnUpnNds3VdsfTp8/55HZDV2eIPeM0cjrt\nOQ4nquR5drPlxe0VT25W7FZLVm1DYw2V5hIPdaZwYQuemTQhGhaVZdMFQoq4IOGyg48cnedhdNyP\nkSmZMuYK1ndeifUBYtRkXdO0mTnDMDsOx9MlF7RqOirbkCr584fTwO9ev+NaOza7Nd9UNW98ousa\nlMpUlSHGwoxQ+SIGSekcvqyKda18HRRVJf7wodIEL+9VjkXOV/jjGkWylqQUh37gtD9gtSUcTyzW\na2qj0GMvghatsbqlspXEw/UjdC26rjCNpt1sOKUDPw4DyWYeU2LfLUSAopQIYQquqaAc2oYsRj2y\nONNGfn6WTteaBq0FL/c+lnT3XOxdDdo0GF2L46DKuMlxdX2NrSqMMeQE0yTwzTx45tHhJomYy8hr\ndpbdn6PURB8h3h+zmxingWE4MU893g1EP9FVlkVTs6wboXAqMCUGEQBdDMNmT38a2fdwmgzDLCre\nYRZ/fp8dts4sVg1X22tavcP3hnc/9Tw2TtSx5aA25rwABmsSjYnsWsX10nC1VLRGIFGlDNZUNHXD\nYtXx7Vev+PHDPb9/+4aT87gYISs2i5pNY8R3PosXj+ySlFgbKC5GXSVoTjDVQvm1GnbrJd9+/gVO\nt4xzJP/H/4ibDhglzUOnLSkb3j4ONCiWbUPdKtrVAlvX5DmQtUdh2axuyYzoELjSkOpMqgxR15zG\nkZgTuq0R17IsO7UCdW0XS768fUYwN6iu/pM19Rcp5H10HA3sm4q0ang99dy/jRxOB6axJ/uJrq3Z\nXW1Z314zrVrCKclCoFnxePcD797dcdgfOOwfmMaBFALbtuPV7TX/7W9/w7evXnB7taKyGmuUdNfF\n5UydL8hitp8v5jnFSD9lMcuPER+kkPsLX1W6AmVUCY8t/hDKYOqmeH8oYnScDke6AE0UMyS50JNg\npCkQ/USlE7YYZygiTS0Wu42Fef8WfxBTH6MSTXR0BNaLipfrmpfbjtvdkmUnvGKj1MfnRv7YRWVF\nymc5t3TbtYacNMEEvMmsdGKpoI4R42cep4SfI2lKKNuAqUEZXEjie12gGWVsCQAp2I221O1CljJK\noXXFhyHx+/cD9+nI1fWK28WK/jSIZ7yScVmdcZOcpUiVZTPnzX5WGGNKoVboyqLLYjqmQhEjXcJ3\ntVJyMCvNnDJvjyfqqibmTLOY0G6EpqZRmlDgsxAiylRoZYnuxHg8YZoWdEWoLUNtOAZPTIFewdzU\n0gCEVGwbcrHWFV/rmBPRn1ksqgyCGqU+HjghyVQxO2kWcpbdR0bjnBy+3kcobI/FaoExBj97+uOA\nnyPTFHDjzDw6/OQvEN5Hv+0CKoinhAjbYmCcRvrhxLE/cBqPDOOJYZTGQpGoy8FTGSuQnbz0koWa\nxIPfuSBRayFIkEoIxAgZMWLr6g3rxRWb5TVttSI5zSk5TO8/smM0GFNweSuNlzWZvjMMk2V2iU1n\nWNWathKRTFVVtG3HF5+84M8/PPB3v/8Dv7u7477viVmxairWjcVS0r2ULfma5/eh0ATVxxCR0tJd\n1LwWeLa7wmxu8dkwfniHP3UQPVOAOWf208xwmtktWrZdRaPharejqmv600Ei7dY3vPj6M4H9ppHq\n9Mjj8ECfAo6KuZdcg5QE1lG6mJMpiiGYJSVDt1iyvLr+kzX1l4l6M4rYWPRmQX5+w0/JMb994Ngf\neUiy+JhPR+6+/oLtZ885hpG+XpC85nAc+P0//RM/fPdHfIjFylTegOfbLb/9/BX/7rd/xnLTUbf1\nhcsZgoyznLFWFJS0bCKXpVoIQaLckjAQJIcxFIWeLNmyFQvb8lOKNlROdaUMuvh8r+qGyfUsdaQx\n8NOHOw7HQWTHVrPsaq7XLTob/JyYJkd0Aw/3jn7/DhVFsttZw5fPb/j6s5d88+pzPv3sOW27EFmz\n0lgtkVtndgGpZF4WR7ezyi1GYeGkeF4gSrJLjBGVEguj0J2hRmEmyVpMhxmzfYZebMna4JNE0s2z\nI6dEV1nW6y1t2+BjyaVIAaWVhEhoywfXEo4Vr497/vpqS9c0+PtH2q4WT/TKog0YnUhaFROhhI+p\niFyMFKVSyJXOaGNK8AHCIjAf4QlTusiQHAEYQ+CxHxlTZlbwddfhpgGTAuv1jpzk0J6dk+g1XZFy\n5v7NHVQVzW7HY3A81oreNiSt8UnMpmxB6nxKZLQkuhuBicbRM04O52OhIipISgRVwDw7YggEL5BX\nTpEcA1NwOJ8x1Y5xiqyXUHc1i0WHtkryO93M3bsD/dHhnXCPz7oDpWXyU6mIfAor62w2qJWhqSoq\n27LoNmw2NxyOe97f33E6/IGfXr/lw/0dLjqMttS2pq3rErMni1QfAiGKCjqqwt9Ocgh33Yqr7S03\n15/w7PYZ11c3VLaRDlyJm2JKSVTxunTIUQpuCCVdSCvmMXI4Bj4cDE83hue7imc7acwMliY1PHty\nw7efv+Lf/upbjvPMfhwgZxaVZdXULNoWYyqMtlhdFdpfoRwX58yoxO1Q+AyaYfBMk2eOiabqWDY1\ndbek/vYVebzB+cibEf7uj3/k3d0H+nnm6aplU2ly8Nzutmw2G6YHmOua66++4S/++/+Zq/Waef/I\nj//pb/n9P/xfvL+/5xhhPwTcMBKzJptadk5KUZ9zP33id6/vuXnxnC9e3v7JmvqLFPL//VnLSWV6\n6+HxNTklWmN4+dkzrr94zpQiyUWqbz/j/XrJP//9a+ZQsT95Xr+5Y/+4L2+GOAnW2rBua/7LX3/F\nX3zzOYtlR21rrJJxCq0wlSYrg4rnVHKJ9oqlG0sl9y/mn2HipbCHkqweZSOKVkZ8F5QqlD7pclIx\n8I/ekwqVsJwdKCC6GUNkteywOhJcz7v9HfM0FAN+L/45WmONprGGv/zyFX/zm1/xZ998zpPrK9aL\nBVVti3opiKtiUZrpM60wi8rzjOUrrbHlMaBEhi0USwl8mKaJcZpEDJHFeKg2wrc/Ks/bn37PbDrs\n6ort1S3NesHUtszOE7wjzE66/ZyEx24tilTSxsGoiZurHS9e/hqfJt6/fsub1++kuBhNipGuE/64\nmxxN18hzMpqmaVG6MCS8FzVsZXAh42bPPDmqqqJqKrQCNwcm7yFnKnVmWgrW/34YiR/umWJkU1tu\nFgtMQg6FGBmHA5WtCfPE/v6RP7x/j2ssKxWYU8Yp8CBdqAvMrizYyrLMoGiaiqauCNGT0ohzCXXe\ntZzj3LQwb7wPeBcYx5nH/QEN1JVltWww2RPDyPu3P7LqxKMkZw0Bxn7m4f2e/jgTvcANMZWffeYu\no8jl/Sz7+6JoLpCgAXRGGahVxWa9papqlss1T25e8O7uNd/99AceDg+cZkn3ETqgKTsL4fSrok9Y\ntB3r5Zrd9ord5ort5prlYk3XLtC6AsoeqrCjzpOj0h8zUiUImYv81ChwPjP5xDBFHk6R+1PkdlOx\nbRW1VjSN5fmTK/6bv/wN3z9+4L7veX04MniPi4m2rkjThO970mJFBsI4khCjMTcL66afJpngQuDN\nuz0fHo6cZkfz5Irb44Hrqx1LmzCrhhAzqU7crVvysxtu/803XK9bbI68f//A9dWam90OvaoIRtMt\nKtqH74h+i9ENTz//NWE+oRQMb+/IysjEVbxbjBZChLEWtMXUCz759bf8+ttv+cu/+Os/WVN/kUL+\ndmEv3gWpeAsYY7naLFjc3qBXS0KKLDYbxnnmqDLRTwTn0D6wWayxVgQ/GsWua/jiZs2ff/2KT59d\nY4uUlos4UvBJZRUQydlL0S6BB6EEPqAkFDnGVHIISxF3XjDyLPi4tQVXy6L8ooTyxhAkAmt2+Nnh\nnWccPS5AZWsqDdlAV8PYD/SnI6fTiXEai4dLwegRIdFys+GzJ9f85a+/5PNXn9C2LQqF806okWWp\nJ9Y6xQoiRtLs5LUqEmAj0TplvM9FlVr+HWK5mI9iC4p4pIeQ0CliU8AfHznM94QP9/jxRLe5purW\ndG2Ds4boLSZFxtOBeezlMY4jOkU2tuFJpXneVHyy2fD2/Q8c9ifGYeR4OEn+qlY8ud3SVPZygCoj\nSeptV2GM8LDnqbxGSKBDCAmlDMaakhQk3VZyklgjlqRaTKaqjMuZ/TTBHg7WMEwzPmWhi04z797c\noYwFlUnJ8XoaGb2ivjMgnB1ZFSYuAdK6SOKNEcjt7H+SMxgbMFXA5ESYRPAlij5ZPk+Tw4fI5DzD\nMOOdwxqND0vqWuPcxMP9W549f06IG8iKaXIc9z0PH/akUCA9IywSmTJ/1lgkLkHRGYVKiqTBcE7j\nodAJLXVdcGRTU5karSt8iGSl2B/3hTUksIYxutwHNW3d0XVLVss1m/WG7fqK9WrLoltitJVDq3j4\nCxR55qOX353PdrYyIV+YJBGSygQFhMw8Z8byeRwT1yvDts00WrNeL/nm85f8xZevePv4yPvTgNaa\n2hrWdUN2nvFwordiguZCwOdEow3TOLM/nuSgMhqVMm/ffuD1+z0H59lZg9OKYTyy6iybRUtdtawW\nFS9vd1yvFnz56Qu6zjK4kWxgubAsG+iaJdkYjInEd7/n+NCi109prl6xaGpqoyUZzAuDj0pfEoJC\nkoPOVBWL7ZavXmz46utf8fL5yz9ZU3+RQm5zxbKuWbTVRYTTVpZ1VrzYXLF79Sl63fLw/Y+8fvee\n1XJNPz6yNponn7zi6ALHGOnJWAyf7Zb8zRfXfP3yltWiJgVPVJmsLEoJ/nqOWTvbfIqAQzo67wNZ\nK7QVpkciF8xUJLzBe2EdAFqbiwl9TBKOmrIUxOAFdhiHkeHUczqceDj0jLqhWm1Y1DU2B4yK3N9/\noD/1smxJ8nOVMaggh0Ntaz67ueZXn77ky09fUDWN3KRRLAK0FvGAVUkUZCDfd444TsTJoUscljUG\nVYohyGJOZcF2c4x45+nHgYeHoxwiTYOLmWmcCSFgc2Y6PPJu/z0/fP9Hnn7yipeff8XuyQu6xZqM\nIswj+/u3vH/zI3H2nA4PNErzzfqar+qOl0mxngJ3QwCXqIyhP42chok5CfRwtV1RGYsPgUpr2qah\nrSX70lqDd55pckzTzDjNGGNp21Ziy4qmu+0alNbMsyKliLo8f3uRN/cpMc2Bg3PcDQMLU3F8PPCP\n//h7nFJ06wVPXlzjq4o5Zcaf7olBQqq1sdRNRde1dF2H0VUp4lryOpVgrDEW6KWqqJCi7ebi0YOS\nwINxKk1gBGU49iPTNPH+/sDz51dUVcf+cI/zc7luYX+/5/HhyNCP1KYTu2VpxT8K2WI+7+0v9LqS\nASTvVRb1Z754BeVLelAqDpd1s+TF81cYbVnW75kmEXppbbBGk1WmaTqudrc8uXrCarmSJayu0dqi\nyETxuuC86FBlkWuNQDTamEIELJdvPlMJ5H8RwV5GFTrskBLTnHl/CCw7xe3W8NlOs6trNrslf/nV\n57y7f+TvvvuJVdOybjs2dctpnhkOB+7nmcPhxBg8QUFrLNPoOBxHUmNYLDrqqhZ9SEgcMFhq+v3I\nj497lq3h1fNbXtxWmKbjs2fPqLXm5dUWXRv2fuDISEUg+x5dtaJWDQP9m/ccZ4/ZfcJO1UyHD4zD\nkcFPzMOReRyIdUWcHc55htkRU6JqG3ZPb3n+8obb3VXJAf4TNfX/j0L9//XxP11/i61ksXF+66w2\nLHNF/VPE7t+iWo0+9SxGw7O0ZaprIFBj8StFDxxihtpwvev49HpFYwQ/jDGUCyCJLaS2IhpJiTDN\n+Fk+Zyd0oJRAKxn/ZN8myyDvz2k2ToJelcZoS7RBQmi1uOGllIlOOvFxGDnsDzw8PnL34ZF9Mpy0\nZ+pHjvt7tNZ0ywVttyZlSSTP8RzKHMg6oVOmspa2a6nquuCKJcQ4CG4u1qz5oygmlhs3lzCIpcW2\nDbapxZjnLHpCnl8Mgo/PsxTFYZg5jRMpQx0TLiQOw8z+OHAY5mIalZimIz989zs+3L/n6dOXPP/0\nFbubp0KxmyemoySHx9mjtCUEzdv3D5yOPbXVnNJAthXPPnlK23YSaGEUm82Kpq7lps0ZXYIcUMJm\niV4gjZTB2IqqylirqWtR1HkfmFzpbrzgzposWa5a7IFtLYvGmCI5aSYfeLt/ZBon+lPPwQWubnZM\nteUff7rjMAZ8kg56s2pZLjoWraVtG2wlOLjSRhSwKdNVkq2ZClU15FBizyzL5UK6bSc2DM4HrDWM\n48w4TRz7Hsrid5xG3r0XWK6xlYTxkgkxcDwe6U89ZCVLWqI4BZbYOymAmrNJZQEwLoZaYqMqNrwZ\ndfH0yUhws48JHyWWb5odVdWw21zhmq7smAQa2u6u2G62bJZrjJFmKQYxVEN5MYtKEv7MeamoRWwU\nreyQrJIGRkYDc7EF+GjyVa5Z9REXTDmTI/SjWLuOQ2ZpA50KVOsbvvnic/7dmzek6MghF5m7xlY1\nuu2I/UQMUQ7lusYkhXGJujEl8StR7a5Bd7jJccqKu/d79kPP8+dPWH9xw9PbT2lCJOUDMTgGN7Ay\nC2ptqbuOPimCarH1WqyMgaldkNVMmGbu//H/5P7xnsdh4HAaUVqzXi1ZLqUpyUkQgqxyid4TkiQ5\nE9O/okL+rd2UJaUSnZK4+IjQ4OjJQ4BW0ZBZU3FjDflqAUrGwpjARTG1Sa2h3lrWiwqjueDaKieI\nsSTHnE11ImH2BfZw4m2SEtIjFR/jUlBDkEI+O8mXjCGWZY26UKYoQokQAm6aGPuR07Hn8Ljn7mHP\n64cDQ7cSrvY4oYaeVbfk1lhWt0/w6UaYNNGLM6GX6SDERFNbdpsNla2IMYkwIwRSCJdNu0RVnRWZ\nstw6j+7GWExdi8qPsyS8PDcf8MHh/Cz4+DgyDTOxiFeSc2JH0I+c+pHJzXITA9EHTsMjh8MJP81U\n1tDWlmaxxE8902lP8EFuHmXog8cfTzycBP+LNqAWClM3NJ1mtVpxdb2mbhpSFtxbR5E8gyzVYkwY\nJfJ7kJu/OSf1WEkISiljdMRlX9hFWehsJWFHFX8TVCZ5oZWeJs/bB4G35klCJOoYaZLBZYWyllop\n6loK8Xq9YLVciNGVNYX5IPCBKfFkGkUkEZKwL6pai9UsIHhBKrarsh+oKktVlJJGy+ItZjieBozW\nbFdL3r//wGKxoa0t/alnGkasrUnaUtkkHh7nQi7bkgsuzplaV+LiKGv5y260/EXp5uXvgS7sm4q2\nXci9ET3ZS5jHarVhtyme8NZKmHcKYpWQ5p/ZXBQzrsJEqqqKumkwWV67ixgHhMnzc7HLz12zyn9K\nL5LICnyCEBTjGKh0oNaRzlrW21v+7b/5NT++eUNnM/PgCDlhitFJQsnjzUXwJ4OpcPtDBG2J7RUh\nWCZ/II8TDk17/ZTPf/Nb1p+8JK6W4EdcHJiHkehOZCO7h9ZUhPUOu3rCev0cXfYXZg7MD+8YDw+c\njkfuTz2P48TkItpWqBIzmAq0mFK8bKej89x/+ICKgbTxf7Km/jLQyixYoLYap3KBQSg3oEZXmpws\nVSvxaDFBvVtiFjWJjD858hB4OiXCUhM6TTwbvBdf4NJmy4WifLloE9ELh1a6GUhKeCeJs5ozXcKC\nvRff6TO7wBS5sjCYhP3hncdNM8MwcDqceHw4cNofeXcY+P40oncKHxPj44EnVc3LyvJJVbN88gzT\ntSSjyX6WSCcn3fEc5bHfbISXHuZZ2ApBundTVUAx3fm5SKkwzLTWaCscXTKkECVZ3TncPF8wuXme\nGMeBaRhxs8MUfDLGXLr0iXGcZJzLGY0W1kXMRDyn/sjx8Eh/2GB1xg0HxuGIxtA1C6w2HNwoomYl\nBvvZzcQ5EXtDUpr1ds1us6VpK5wP7OOpYLBi/+m9Q4zDBHIxRuxEm9pijaT15CTWoY2SBHlyIhtZ\nPNqSFpRkwSEdvdFMMdBPMx8OJ9w8Er0Uqv3hxFZvuL7ZseyWNLXFWCUS7LahWzTUlS2Hw5m2ds5l\nPXOThRXR1Ea+hoEQcQjS4EtqEkqJE2KGvp849dLRKmOZ3cxxGHnYn/jn774jY/jk2VPGYWCeHLlW\ngv3buuxBzKWQlzauTGH5AqtckuNz8dm5hDAIDKRUxuqKyla0TYu1mslakZwfIz7MVJXl6mpHbSti\n8BzdCEowc5UVsxf7X3JCa+mgU0pYW4NaUDdNyak9W+9yUVdTune5yc76o0KfzIWZQ/wII5GYgydG\nkcRXBq6bBX/1mz9jWRni4z37w4AvC9bYtkL1nAMhehpjmOZIPzkm72XHWrecbmsmlRgjTP2B9dNn\nfPXnf8G//x//B0Y3cNi/JXWGk1Pcu8R7N5Ay7EzLUhvM7acsP/sNz5/9ihyl+YnTyLvf/S2jh2nK\nPEzv2Y+ehMLWNdM4cjgdua0XIhzLkkBEzrhx4sP9A9NwIqd/RRL9/y38iPGSO6jUxw22DhmTxVhG\n1RW2qajqispUmGONsQaVILmA9okqQlffUOklWltyDIX77bFWFlRZq0vnkc9GKlmJAY2RmKtzxNMl\nK684Ec7OS0EPQWh7OsPsCDEy95DPVQAAIABJREFUDjBNM1M/MvQDYz8wnAb6fuDu2PO+n3iYAysX\n+Xyz489f/YrPdjtuliuWbUdV14LJG01UDd4GfBOJS/HwSAqq2rINmvDYg+ZSrJOxJJ2LZWe6jMda\nn8OH5fmkGMlZHrsLM9758ulw88Q09IzDgPdeVIWVJWSYgoRU+BDxQWiK3kdG55lSpFks2V1d8cUX\nX/HJJ5/QtQ0/fvdHjo+P4q2sFdE7XMpYram1dMVV1iQiy7Zm9/KKxbojRce7t2+5fXpD09ZsNwuc\nCyKs0YquK3sUMjmXA4yMd56goqg5nS9FOpeD1wsenjM0NVVVim5hj6jCfLFGEbxnnOR1ySHy9MUt\nNzdbdpu1ONmVlPfZR9BBQqbHWWif1lBXVXGm4+Jn73xgGCT8V4amCApsZfGH0wXjD8FTGyONRxYK\npPOhwH0JHyLHfub+4cDV5sCT7YYUpFvzIWBqysErz8laMWQS9mHpvIsoLJfKmCm+JRSBTxb8POVC\n4zWZphWHwBgDbbNg0S5Ydkv2+/e4eWL/cAcoKlvTLTs0Vq4R57B1jVKZEBzORaq6ZrFcYo0kHn20\n2C2DOKXxPEMIhU6cz5xJpFtXpMKSEWwfpMinKEyzHDw+waA1+3bBk+cvOVnF7378CaMiV2LGw+9+\nuuNhmMBoPnEwuMT3jwN3YyAkha4TaXhP0AodFKejZ/ukorENb396yzQ84Ib31LvMu3zgh6onMjEM\nni9Y8sX1Detmia4aTjpdmGQ5ah7GwLvi839/GphCxDYNzjuGkNgPjm0s06QqYrhCiQTYbLd89urV\nn6ypv0gh/4fqgE5iSKV/RsTXBjjzS70V2aq31KYinXLB0mWzbJKizpov84obvaDKZwphIEVLKtLf\n88VL/jitaaXJuoyclAURBX4oiSPnaKUQU+H5RhRRcNqUcGWpOZXPYRjph4l+mHicPb0PEDMtnhdY\n/ovVDU8WaxZ1g8VgA+icUFHCiEMyxKxQpozFZ/xwiKS7AzMRaoOxFbWxMhXkwl8vS8ysRF6ssviM\nnEU1stgVS1nvBBef5olxGpndTExRDL0qi0qJOaifvQaRcfYMsxcoC8t6e82Ll59yc3NL9I539+95\n/d13jMcjC2O5XSx4slizaVq0glYbGi2pPYGI2lZUL3ZEo9CVIkWHnyc5WLW+5BJaLSZQ5W1EK83s\nAsM4MU1zWaAphmG8mDzNhZIYSzyf80FS6fW5MChUyfY0Rn6X94KZrtZLVquFfK4XciAV2mPOgtEf\njwOVNRgty1RrzqwRyk5FhDHxbIYVErOL5WcVUy+tqKwp1seyMG/aGj1MpanQLBcdm/WSp7fX3F5v\nWHY10TlSdKRCO73gIkghPFPt1aXDFZz1PL2lkm9JBqVk6tNZE1XhcoM0xbqI3oRciNWaqtLi6Okd\n/WkvpmZNgzWZUKDHrBRt7ogxMI69hEerBTk2VE1H2zQ0bUtVN1RGJiql9c8KeHHs/H8UchHLnQv6\n+UYWeuWZrpe1EBmmkHiYYFVtUFvQvmZdJTY1NJVm5cGfRuYQ6LPhfg7cTYE3vWeOgIno+b2EdeSE\nHwNx3+O+f837ydNkT4ujOVmussPHjE8GcwrMeiLVEX1/JDR3vNFGGsmYSC7w3fvXvHv7luF4zxwj\ntm4wlWKaBsZxZJhnbK1ZLRu2ywaVBWJcbdcsdi3Pnj1js978yZr6ixTyd60riw0ZnxVcusgYUknu\ndnICZyBI15VTpq4NRmsqZWio2GjPRiVsLEnf2RSjKyM8WT6q20rZlmBebcpFLq50OaWLh0RMwhxJ\nWYqZ95F5luCI4DzzNHE69kzTyDzNBD9zGh2naeY4zMTCDmi0YqUU66xZBnCHgWgmefwFU8OoIqgo\nWGLBW42WlJE4JsIRjq5H75a02xWtFYochY+cy5PLWRwApUMXXvG5U/JuLoV8Zp6EHTHOMy54IFNX\nUjRT8fsW0ZC8F/3o6GcvsXe2YbO54vrqhuQd3//he97+8APzqadRmieLJX92+5Rvnz7l+WoNOVJr\nI1054FXksFTcPak4uJmkMm1TEYJnHAQumCZ3EfboopY0RsQRQ5joT4OYTBUvmf1hkO64toQCh3kf\nLkstOQSMZGFWghM3TXVZyPkQaeqKZ8+vWa8WkivZNWgkxXyaRE4eQmD/OLHbrlCVHBq2OJNpJQKf\naXI4F6hqcdebJ8cwzufRE6Wg6xqaukIbhZsdOWXRPgwz1RwwJnG9W/L86TWvPnnBi2fPWDZL/DhA\ndBcipCp0WK2Ls6bRxZpB/FQkGgxALJuJ56slX+h/F2k6cq/lYmEcY5AJFpn0qrrBVg2gmMZe/qzB\nnTKHhw9kYLHZ4qJjnkaOpwPL9QajYbaW5XJD07QslxK+ce7MBQ46J+/oy6GdOGPi55MnI1ayUszP\n8npZAalCl3SElHgYHWNV0y5e8OTrVzxbJK7qwNI4Fi8G9seex/2R+4cDMR1gjEgUaakB0yDMngy1\n0uiHPf4ffsfwwxs2yzVPlkvWHxqWZD6jIumavR/JNjJwovI/Mp0m3vWPeKsJWZhMP/z0Bx7f/Egc\nB+r1hm5ZQ0rs33riOBDDTNMZdtuOm3WHjgmjDZvrHbvdkt169a+LtaIoLAwofuDqX9hvogXTlM5A\nTmy7qJE3NRQbyZa2WqO7ikjCTQ6VwFQyVKachE1Q8L8CuAkWf7l2S/VDKInenbtWh3Mz0zwzDCOn\n00Dfj8yzo+97xnHEu8DsPL1zsrTwAuucDfjP2N7rGHB33/P9aS/jbzGEqpQqLJjCdVYigba6BA+U\nZBmjFLrSxF3Hi1+94tOvP2fVLshKi4+HymXSKDBRlFs4FTFMDPK8/DwVps7MOA2M84yPgjde6HlK\nyQ4hBEKQAud8ZPIOYqRVmppAfHzPmzDhhoE0Dqx85MvVlq+vbvj65gmf396wWXQ0tVxepgi3cop4\nnVBN5MEmqpQkYzHLxR6CJ8+O2UeUghCDFFStSGlG5cw8zWgi60WNrazkqnrpwMlRlLxal/TxJNeV\nuKLhvSMlQ1VXDOPM4+HEw/7E6TTCaoFGOuXaaowSf/dMpqosdS0yaWfB6Fi674j3SpacujQIxUog\nBpHb17WmqpdFrxBoNi3BJ5yPrHXLqDWjmpmmmboybNcLurbiyc2W3WZBjp4//tPfY5xilStutjds\nujVD1dEtljRNh62sQGkFPpTutTwmXZaOUQ54rTRK21LEucAuGSVJSkhDFIotrLz2gXmeUFpSjiCR\n3MA4HRmdI6RI1y5oVeZ4f4dzM1orhv17NInNZoe9HDbmow0usqxXZ9YNssPI5+3m5RgWuEHOQl1q\nSMaajCERdcKrhNJW3DpTIObI6BVjyAyjJ24NT54tWXQdL26vSTEzB89pmtj3Ax8eB/anmX6Qe985\nR5g9KmSe1C3PmgUbW9NqS6W0XG+UCLgMVW5lLfc+kPcPVK97bv/pDUkLTz4B2w8TY+5wRtPUG3Rl\n8d6jdEMyDY1JVKcZ93hiPA4SwB4j7njkP/3ubzE607QNr/7D//Kf1dRfpJBPcyiFXN4oazUoU8aq\nsmHXuaRmFPy6dMhn0QM6Y4t0T1zzvEhus5EcPZKEJiQZLy84ec6X7jcn4YLHwlBxs7t0qv0wcjwN\nHI49x8OJ02lgGEdOfc84SmDCFCKjj/TeiTQ9Z3QSr4xz/z/mzNt0EiFKwQXNBR88S4XPCehcDKP+\nxdeNJt9VfKNBLxbc7K7KLG0uhVxlgVQSRZ1Zxu4UxcMjeI+bZcHpnMjyZXzVxevCEApzRyCBeNk3\nZO9RQZgjJiWm/SP+dCLME2tl2DUtz+uWK2OpY2Q8nfDzWLouXZ5HOWCt4thpZqPxOREVqKiorBSN\nrBEKFhTutGzzYwxIJF9mtaipqhqlFS4mmtrgXElxUeZiP2wqXbBwczmzswKtIrMPTGWR7cruYJ5F\nWxBKdN80O5yXYICmsQVrr8rjEN742VVSK6F9ai2huuMUZeGnoFtUBG/w3hBzYsqeFBOmrulPI30/\nMhRxUNNYnj7ZcnO1pqkqXO/w93vaGZ4vdjxZRWYyo5IDxlZFXIcUcYHkfsbFjvEjc0SXkUCd2wy5\nTKWzzx8X5arAM1kVxbLcI03bsd1ek/zA3B+Y+z1uFIViUhCOlvH0SIyRumk5zQPKVizHgW2QoAtR\nRhfYJAusdF6WXtgu56kBPuKhSg4nuTIiSgWUikAEEgFfrByQ1PlyqGmVeRgdral5cVNz3UInwzop\nZ7arjtvtimcbyZmd5kCM0swFJ8ZnC12xVBYdIM6B6AIh5sugkDJopFmR69WDC9h+vNSBjMLGRNA1\nsTLYKIdZSIq4uuaGmkNw7OoNt0eP/e4tM78TYdDdHad//idGL9g+/+E/r6m/jGnW4GWjXoJL69pA\nVgLwl8Xd2WQoxYxS4nuSknxdk6hUROcgaRzF8IqymMpEMppzJJPYKX0MjEhnm9okeZtntdc0TYzD\nxGkYOfQD+1PP/iDCntOppx9GhnFimGemEBiDJHfLtr9s7ikLnNIlZyCkxIC7PH/FR3yeTDFJKh0K\nZUop3ytmbUQUc1Ox3mz4s6+/Oo8yclOeu/JcmDdZkr9zkuy/lGNRkEnRkkxQeSRnJZ02Iu2OOeOT\n8NpDoUHpGDFB7HcTMM0CjRkFtmlpEbz/w/HAw/GAVhR4SCwSKlWwW6uxtiLtOmZ2uNZIyHLO1DXU\nxQzLWDGTuiwKUyIljzFCBayrCoXGR6Fknt0tU+FGCyxQmCy1KESt0cXgMkl+KQU6ujCVPP04Mo4j\n4yj0wlM/iy2uNiy6quDhhhQj1la0VS0wkIK20cJmMRU5wzzri3tjU2nayuK9YZgdXscLA2qeHY/7\nE/0o3OtFV/PkZs16vSTHzHycWQfFK1Xx14stCsPbEPjBevEoM6o0LOp8cV0Ku0BswkGXnYAlY37W\n9V7KebkWJGfSWkMI51zKdGFKdO2Crm6ojeHh/WtUiDBN1ESa6FH9EROF/bQgMYSAGweGwyNuc4Wf\n1/jWU1XVx2E4g3Db5T69UGkLvn9mYgkbp2DkeCRKL1xgwJxDmb6NTKtZY5Sm0oZHn/kwJr47Qq0S\n1opqOUd5f2yCdVWxUJpQGbSqyKmVfrHpQFlSAjd6xuNE7B1qiiKoSx+9m+SxFxQgy1JWnzvIJPe5\nNVZ8mryEvDcafrW75ZvtEyKJaDIMGfPPPzE/DESrseNI8+YD0zQw539FrJUz3q0U1FVFiqJumzmv\nbvIF9sjp44kslCpdyqBmaVtqKzeY1vpfuL3JBRhK4s85lfBnGPLFn9sz+6IYHEb608ixFPHDUT7H\nkj9JiNLZeoEeMsIWyNpgs3iNZF08KJT6GRU2gwaTy2Cozvt6eWL6wii4/A/y7XJRC91RMR563ry7\n49SfWG86dNUUuEguplw68XTm7yZRbqaz4Kh4YEcfJWkmJHFMPI+7UUIcQjz7YchzOS+lP/6DKAEz\n3KWBBzfxu9Oec4LMRxl28YBBFWaCfO3q6TVfX3UsF0sZwecRaxNWN8V0qjBQnBeYBTBWeNDBJ3IM\nNI3YeaaYmefIaRBsXGmFcxJmrbQqDKRYsko1xsr+oaktbSMF/lxUYhbF5/E04aMkKymlaVrxgQlB\nFr85I/FoTm4q29iSdK7KoZAYRk/fSxRf29a0jbBb6sagVC3mTP100VOc+p6r3ZqbqxXPn+5ompoU\nEq3S3ISGL0LL59sn3FvLnbVoXRcaXuEc52IHq9WlA5eJQO6lrHSRfReoUdpdztmR5QoqC1M5sLwX\nwuTZy8e5Ga0Ui+WGuul4en2LenzH0zixSIGUM6Pz5aCEu0VDnzJp3jM+vEEZQzaSx1lXzeVaEfg7\nFSqwfFymZmSS0BdrunMnnlBoSUFCJgmyJicwJBKalA0+WhbNkpwCr989sjkEsJFOJ3ldJPmYnOHu\nzQd++uFHBu+wBpZtzXa3Zble0S4WMgUuLW1j0C7je4+fPFmy4EozlcvjkJtXXw4r+Z7KwtLhYiue\nIRWYq3DOswcVAio8Qs50MfBKLYh18y+EfT//+EUK+ZlSppRgktp8FNiccTCltYzK53V6gbmlW4dG\nWzbtkq5q5ITPjUAWuqjbUiapJAXnXHz4SBGLRcgze880z4zjRN8PnPqe42nk1A/0w4SbXUmWT3jv\nxTe6SL1V2V6lgsnqpGU5pz525ufiBhSbWTh7ap9rueVj0T935qVhvpR2hQQtHI9H9ocDm6s1urHS\n/atcRmEuJmBkOfGJHxN2ZBo5L5EowiYpQLkcbKFQ9FIJ4DBKUV3Gw/N78PHQySmJFSuhNIXlYCpP\nT+Vzp/jx+YaD5fphz+Kqo17UEiOmIFGgFMDNjtOhL9Q6SRIPdYU1lqrKVE198ctxzl8gkm5RY6wG\nn5hLw5CzFKcmW6osDJZU3sOzb4hw1oVt4pyXsGwt6eXp7EWfFd4HjLES4edl+Y4SplMqzYlYIcjr\nOTuHORi6tqauLblAC1rBMIzEGEX8tV1yc7VivWyJzuMQ1tJi1RBrRx8CBz/zUFcM1mDK/ZDKNKqN\nvvQH+dLqlseVz94rH03cKIvOmBQxCPc9ZURv4F3ZO3gRl1lNVVtSUTfXdS07gBCxMfLpas2tlSJ0\n/n0pR07eM4XARGbfdYzANI0YbYhdomlahCp9tgbIF2HT5Tmcl58lIBk8Wke0LjYEhVkWgyrXsewE\nzq9FQhfbBMf7ceC21jQqolOQFZoxoCu5Tx9mulGjUoXWUCWDUpHoZnwPuYmgxdPcnAOYs/oYvnY+\nHM+NqIJzIDSldp1BI3Xu1MrfvTRsZbLXCNvFpIQJmRYx0Pp/qeO/TCFfr2T7LQUtXxJgYhnfdaE/\nxeKjrbQY6OQyRhmjabRl1S5oqobKNtIFlp+lypgD6sI5PdP0zi6FIQgX9yxFHoeJfhg4DSP9NDGM\nM+5MqyojsnhGS8q93IzSaSctyzpNpo7y284F+4KFlz9fZMiIbNlqxbqqqfQ5dEI6w5AvQIsc6EqW\nwTZm+sOJYRypl624Dp4LueICGamUSjp4hFRw0jP6KL+80DBFtOGjLDbloDr/TkGrKn023CqF/Nw5\n5Vzw1oJply9r1CUI+OPlKnNUypngHI8fHnj2yTV2u5Bu1cqkFYof/DjMHA998aDRKK8JAeqawtYR\n2MV7Rwxe5PIK+VkKxpQZhlkOXaWo66o0A1JIQzFGk4M/E0NkHJ0UjCR00+VyUSiK8eIprjIFFhGm\nkUAbmXEWlpUs51Vhi4jD4eEw4nykbS211VSmIsXI6dTjvaNpDE/bHTe7FYumEopjU9N2Latly71y\nDJMjTIGp/pShtaALhJakEColS/aU1McpthwmoQQAn31dQnlNUhLGVoqycE4548Msdro5gUqixDSW\nurIEFS9c7n5/j/vwmuX4SLv+lKtuUUI1SnhzaSxyjvic+b7q+FHXvAuesT/JfW4kuFxS6mVq1MUq\nN1MaDbQU7BDJJTRam4wxJUO2RA+m9BFCDSlhlUHpSMyBlGK5z2ceQ8MmRJbjQDa5CAYNKinaBC/a\nK7knKAeiV2QP/jSTbOCSG2v0Rb+h4DLxQzGkK/Xngi6c6Tjly+pyI8qfk/pYyA1nwRNyaCjK1/K/\nmFp+/vGLFPJzQE8qnh+6qPWEF1qw8ZQvRePMbCGXFBgouXiVqMMqg9Y1mlzM7zUI8CEXLGdRhHhM\nhIIBx7MpVjHG8iHgUyCk8HG0y+fOKjI6Mc3Xpd00ZZHn4fLm1YihEKr8vTNE8TNoQSP83KWxPO2W\n/M2nX3KzXAsUUBaTwXtClmITUyRpRQCaVcdyiqRBDprGWJnfyrWSigxcpVxglVBuglT48qX4ao3K\nsuz1xXN9nGbmYlugS+7gmQqZy2t6wfYRDPC8OMvIBSdd+BkOKhNWGd0F78/gA4f7A6dDz2LdUVnZ\nZ5xHaTfNBC9udG1XFxbK2YNDQZab23vh9Wst3u5KK9pGRCfeRx4eezJQVQK95SRsDaN14XqXkN+c\n8bNn/3givLiiqgytqWgaK3aiJYtTa0vXSWJ9TPIktdK4KdD3E5CxxmK0ZXayR+ha8cCmQHralIWn\n88xFPRyihIuI/YMFI0KjpjJonRkt/PN05H99/QNfLhZc1f83c2/SZEmSXOt9Nrj7HWLKoaq6qyd0\nAyBAEQIrCjfkgiLkH+OPo3DNDcnH9yAYiEYPVVmZGcO97m6DcqFq5h7VjbdN3JKozIy44dcHMx2O\nHj0aCFE45YQLowY6VUfI5VzIqRl4R+uLMqRFax9ZNWBa1uVo3y8sa7LsQ+G16Wj87xhZl0WHb9fK\nH377D7jnD7y7P/GSr3x3FWpKqqDoPFryteu2zG6cBobo1QAXlUAOjp4NiggpJ0pdTKBOeeYIWrSt\nBcj4oI5LaqZaDaia/HQV0ajZFbxPEGaGcCDEO47upAyX8qRwiGhDmRNU7hpt4W/yv9XskN4gnV0r\nJEq/Nt0HTdWxoyj7BqwWmTs2uNE3Q+0M+tX+D2XxaPm2Zb06KxdCNfEz1zGZV68vYsjvTw/kkkh5\npfRmAGe4kTUI+dC7GatFGFU8xMbuMBW1RmnyQlNXa3pqDYrKLW0Tw5GrCQNllacttSBO0+8hRpMi\nzcZrdQbDWLEVjVIF9ZKDbZaA02kk3c5tkIrr37cJPWbM305n/ubhG/7uJ7/k/d29yfpWalbjW4pq\noFcEiUYviw7nRiQV0jozDJPi8naxYgMl2tfmuGpP+bWDtRorpWihd1Ud71wrzntTxdN7HdAF+eO0\nrkIvltrSZnSeWz9wiqoh0tN6gQwUKkRPLI71aebp8cLxPHEImp1o16KOK2s49zgOWji1NnTv9DrX\nlHmZV67zqnBbUMzbu0iaBiuOKR1wHALHw8D5NBGcRv/DEFpoRCmFl5eZWpUNcpgmfHDEQTteY6sj\nGKsoeKE41fbRLFE1pEWcZnEGHYYQlAZpDjHnyjwvfH56YU3aLJRSoo6By+VC9I7jYbQ1rM6tRM/F\nV/756SP3lxem5Z4Dkcv8TBUYYjSxMFPqbOqHJrerRe6Fdbmano/q7OSS1PGL6RDVSq4gBEIcmaYz\nN+WWko4k77jMF+bLM+vLZ37/3b9Sro+k5cgHawTD1k5wOsi452oeyukOefMN/t1PmcYjSCWvCyWt\nXS4A3AYNOo/zeQvgajPk+qV896R/igU7jdUWIkgGt4APTKNGyWldOBwn7lLhbl6ITmtEwXsqClO2\nPqRmO3xb306NdePuux510zBUgFd7xKyWWrR2mA6Sq7xDFmG1Kl4wWKx6lRtuv12ksloEvw+k9q8v\nYsjf3b/VCuxy0cjVaHa4VoGWbkw0hd60lUtVRcNpUB2NEExzWwGpHaRhXY8i1AzeugUFsYHKGpWU\nqhGqj8ovPtRKLkJaCmtIlq5qyo9sBrmiEgMAo93INsigIeSCFfncRjcMOAKe6D1fn27523c/5Rdv\nvuLu5qyZh1gEWxXjFucgeFzUbZEpfJYXPubCvC6MTtkhOp9xA9qdYcMVyLYYqiWAipdqZLYmpeIt\nlnIL9Gk7Lbr2ssFBQIdW2v9brcDhOPrIz6YbfnFzy8N0IElTAlTpgUyleCgxsiRhvSz4KeBSUG13\nUTiiGFQSgk5NnwZNw4s5p1oLyRzRvCQtyFmDUIxB54fGYHrnyow6HQdORzWSayl9ZqTSW4U1ZcPT\nlbaYS4bqGayBRdUDrfsQpfm9vCSKCMMYOBwipUBazBC5YLBGCyA06lXKoQ7dWFNhXlZyDXj3rJFn\nOVNzNRropFG1E5a0cLm+GM585uXlkZILh+mGuQ0nSasV+rdBJ+vywvXyxPX6zLrOrHlhTWkz/iZt\nUUQoeIobidOJ27v35LKSpxO+Fl4uTzw9fuD54x/49PgDyzLz4emRgNV/eoGbPjAZNHsOxxPvrwvf\nhpGH+3c40Cy4qJMHxberRdm+6Rqhz1qpi/ql/85W5FWacarZnk9AXKC6CC7gfOR00Ole83rl4B8Y\nrzPp8yfGWohOobJo6ouaabseXHZJgaYXZIGikwab6v/6gAy2clDbLw1ObVh4p+K0NAkV9XPeDIDO\np8M5p7WYWjqdkrrzFLvXFzHkb89H5gDrGBnjwDTp1PFqOaAYQ6AVPvZ0qmxMjLvpyHGy4bA+6NR4\nU71rrfnGnwKnWJhiii1ttEHKwREZwIfOe86lMsfFFAa3G9gifbHF2rIuD0S7/y0Kxx763rMre0PT\n8fs48ovbB/7q/U+ZWjW6NGejhsVVs+oO3AqYENYkEZ+FkhJrjIzeEQhKw7RAwblgoXTAFd+V1MRJ\nj2B040J1Cge5OKiTIfcGDdd6utF72KCiBqm0zdswvEOI/PJ8x//47a/5yzfvSR2iUkfSxpwlB//n\n6cpvj5V1iLw8Xzv0kNaVEDy35yNvTPNEO24NbgueVDIxeG5vTuiQhsTlmonDyvk0EqM6y8vlQkor\n9zeq5y5VWGvh8nLlel2JTQc+hD46r+TK9XLh5boSolLPpuNEHMyRhwZHVDPCopTJUjgdDtzdnljX\nmWVxXK/Cslaeni+UWjlMI6WKdaIqe2RZM/O6giiN9TBEi0IVSnz6fOHlaabmwtPTJz6dz3gPKa8K\nLy2JvGbWdSYtL+R1pqwX6vqC1AWpGUflNnrC6HHuQK4Ta5pY1oWXeeb5uujA5LTwtDwzP37ku08f\nWb658PZ8j1sSl6cPXJ4/sl4fGbLK5xbRkAWp9NZ5HBltPlI2kFDTquoupZK//pZxOiEu4qczISod\nMS8zaX0hrTo3dE0m8FYS1KIt69TefNW455pNFA3AxFoGxzPDdMPhcMt688A0nRjHA0sW/vOnD3z/\nL/+J+XqBWszp+B5QqmFXaYIGLUan6ymaqqc29XmiMYWi8xvl1jn7suzEh97o581JDF7pkZrM6jGC\n7cMaHHlwel5Yo6A0ds9/IEN+fzpxnkblKHcsNmzpiTXqtGkwTcVP8XIHtXIKA2OMBqu0KElx3Iba\nKuZqRQL7EnMW3rWOPE8Gx8tHAAAgAElEQVQIEKwjs+RCdL6zgxqNi8YXdZvnLb7BC2as2Qy52321\nBeLNtEfn+OXtW355/563N7ea1OWq+ulGoWz4IkjnqkrWKFWdhi42sHKoQ52enrQukOrAInbtqNMC\nkAteo/wqhKiLsHrfO15T0YYX77bGEtfyzX5xbvu7nUXLVC4lE53nbjj0Aqg6AisHOShO+NcDfBpX\nstOuzlwqoUZSysQ4cj4fGMdALlXb3HGEIRAGzzIr/x9QHBpYV4PAShtgECybkw6RrasqDOai93Ya\nIuMQkDpyPJwYzIiWZA0yzlFEtWx0iLVQXNUuTiz1LY0pFKij9Ait1bumaaBKweXMOAbiNHCcRoYY\nefz8zKdcmFftTKZq4XWIURvcCjw/vvDp4xOUwvXyQk4rh+kAOEpOPM8L6fLC6AsPx8DN2xtOhwem\nwRFMuEm5/dYSL6rIua4rl/nK56cnfv/9D/z+u4/87vuPPM2rQjCCNrdIpqaZmmbIC1JyD0raWvVI\nQ0ZpHPVW83AI5Mry/MgPtZIuT5xu7jmcHzjevaMiLMsL1+cfoMxEJxyGwM0YGU+RYdLh4odx4DAN\njMPAMOjelyKWWSaeL1c+Pz7z/ccnfvfpMx8/fSC5gfu7t7y5f8/b+/e4deDz82d+//LM0+WZWpLi\n+bt6T7s2BybmZdfYDD7Wle1ag5/reuttr/emPnbj9doxmuE3Y79vAFQ6M4hXOxH2TgYth/2vf8am\nfhFDfj5M4A4AvaAI1pRiAWBjMHRjjt3QoLHfwceNP+68YVi1QwCNbymNdieNMLd5XbyNBhOnmGzJ\nLXDFMJ2tUsQ+2kbxKqet8MiebtjeslsUmBG3ItDBR/7i4T0/f3jHcZoMErHCk9sMplbU7YCm3obT\nrGNwqsWt/HldUd57461qIUctkac4FdvypajWdymEKhpFG0bkSrFiMETb/A0m2nBw+n1ojUp6jVpN\nd+gQ4u+WC5/XmTVn4mCDk83JGJxOcMI0DsSQ++AEbcNWxbchBqaDFvLyqhi+954pOrw45uuqhTmE\naVJpB+dyZ2kE76y9XGywcuY6q7OoIsyLdlcOURt5HJ7bmyPTELUDUoRDGIijGo0YNfVu9FWC3vcQ\nICehZqH6wJoKzqmU63Vema+LzhSNqrZ5nDQAqSrmw6jat6rgaIX1eVmJeMiV9TIzv8ykNeEqOrRj\nXVWnvk2kul6Y6gsP9wd+8dMHvvnJV7x7+8Dt7Zlh0EHUztazdjJX1qTiaS+XCz98/szDb3/P6HXQ\nxQ/XGbcmHQlXM6SVul4JUojek1ugY+vCAwMqO9EK6iqTYcGUMc4krVwfPzI/f+Z8/4b7d6pauaSF\n58tH8vKJ2+PA7e0N7+5vePvmnjf3d9ze33C+OXE+qR78NE2M46jNZTbhap4XPn165A9//I5/+Zd/\n4+Xyn/n99z/wh8uVp+sjOc2MUkk+8Pz4kSUnhVZL6XTZDnt3hLIFgN0s9f0tGE5Oy0GcBVObFWiq\nrs1BgJEeMKPcHYbbIvOdjQnNYRh7pzHy/rc/Y1O/iCH3ppfcIu1mzJvRaIyHtjAaXou01nPzUq0B\nyDUeOla4qf2zGk6uhqIVq6w46pWCRakb3gUbFCDtATdIAXMYJv1pDzlKM9gbz79dS4tX9FHA5ANv\nxgO/fPOedze3iBe8cY8EDB7ROMaZwJOzNLtJ17kAwQfGOOCHqPQ802xpTQdOtFlC703A+6gLv4oZ\nMwde8EXwxcaPBcihEr3rLf8aiLYiy8YcEbBIFYs8FMnJtfD9euXDcuE5LTxMN7hoKne0YpI6pBog\nu8qaM0NUIbQYPOfjgePxQPCBWvRab84Hk4v15Fq4zImXy4I44ZvTrTJLqvD0oqJV3jlyrSyp8Pyy\n8G+/+8S7h8J0GLjOV55fZi6XmbQqjBSMITIMnsNhIEZHKY7xcODu/qwc8qz3zlk3r/eOgw3CXpNq\naV8uVx4fX/De8cOHTzx+fuR8PnE4TpyOEw6vBeYlcZ0XqohpDEHK2lRTc8GliiyZuiSkVkK1mswy\nsz4/8fL5M2lZmecLuVz5m//mZ/zNr3/GL3/xU27ONxymA4NpsLRhKSXr/FlXE8UpNjwMkdPhwLuH\ne66XKz98/MzvH5+I14XJQfr8A09Pn5E1MQ6RMUSyC32/DDiig0MI3ISh7+WKKYmKTR5C+62L6BpZ\nL898co7leiHVBD7zy5++5a9//Ut+86tf8NX7d9zf3HA8TBp9R5VaiDYX1UfNMEtr0lsSx2HkOAzc\njBMfPj7yw+ML379ckGVhff7MxTmerjPr9QWXEpPz4GO/FvFWmpQt01X7sdELpXeh6j7wbLWyhug2\nS9J7LexbLcaiH1M6z1xsJoNDeenZstcoTuW+oTNg/tzrixjyXFQ03YnvxkekWpT7+ib0KJh2I0yy\nVbZb1rycxYa9mLwVlTcnEWIEHM7brMMiiGiKLlWdQLEKvkYU23k3LrXeVLEo0FIrMWhFNs/8urNR\nv27HAz+/f8c3b99xe3+rE+ezGL5Px7IbjAMC1e5TNT2VUPX3Qpu03Tw9vegisksVayXKYEG9Y6gg\nPuNK1TbrrEM2XDbpW+OfS61m0O2a6QgXDkxdwj7X3lMRllp5SonnosNrXQjdkDstX1HRTsNSdDHn\n0rRVhMNBO+3WZOeD9vGlWWVftWnJsNdaNNMZPOMEw6IFy1yajrp27ubqOge32ECQZANDkmlnzGHF\ngWr/4MDpGLeaBR8cQ7RRf6ZAp/UqVQc8jDosoZSKIzEvqashatu7p5g6Y9sDqVbwKgf7xqFCZmui\npIpfi47BKTZfFYUDy3zl6fs/8nsf+M145ptjJN8f+NU3b/nm3QPnw4HDoFG/KjMaR1kqBbd7hr5H\nj84pvHkYBm7Hkbsw8IxnFAjzrL9XCwUdZTcGnQvQnvn9MPKbmwf+/u03lg3rs6xSe3G6WG1krYV/\nffrIv8wv/OHlCVkWpmPk3Vf3/Hf/7V/zV7/+C7795mtub85MLZOx7KoFb723wHS6a6kEX0wfPnKY\nRm6PR+6nibODqWbq9ZnPOWlzX9bM+26clPXeWHFWw5EWXLI15xVROLBBtFms7mYbI7aubdsRrh2n\nWbItzuzfU4riRiIQt7UKeZq8tzPo53W28OPXl+GRWyODc9Lb0/WaXsMYYoUUt4u2e7TsVKPjFZzh\n9p+xpXablVMD7k2kC9HSW2v2AHYc0p0Rt/P7sTNsGKp3ruuqt8yqwxJseJnHcT+d+NWbr3hzd8fh\neKRJjnaBFSXgamenSdH2eYuWtjpXdSE7W9RW7XbitntFM+qCl0p0il9nW3QSMuSC+KRG3KCVKrVL\nwGLRZzAHsJPz0EXmWk3iNayURXjOK0957VzzTuGyVd02djUM0NSONFPAmaphJqViXFu4zlrcq0Wd\nXvAqViQtUTXjpEJW1XBqXQM66b7JvDYp1Epes47/q8IyjuYcmkCbp1RYFoWIxjEwTANX42BLUWeD\noNHqOADCGj0l510ars9Yaiat4LwW1JOxZKZp5HQYGa6R68uV/Dzr/LFe/LbWbq+zYZ8/fcQtC3/3\n7lu+PX0F72/5+v6G8zThlfxMa9PX4EN2YwFlY4lY+UesBhK95xgHbkLgxnliBU/pxqfkBM6Gl/Tg\nUHg3Hvnb+/f8zz/9TWeLdVjFuoSb8ZpL5v/+/nfw/W/54+c/UNLK4fTAT9488Fe//gt++fNvub+9\nNdjQin1tn+3ID80JiWWyUqVPyhJ0sPI5Rs7OM0jFrYsWlIHoPFOI/MXNPbdh2Ay5VM0gWsRsQURy\nmlGkZsQRFqkULybJYQNxzLlJtz82Tg6rFLgGOTWkoEHAes+KCN7WXpWq+HqXyNhqfX/u9WVGvcVo\n4kXVlOO8yWu6zq7RYpL+o9HK2ny/UivVbRNDELHNYhGiNK2V2hdVFcPD7aY6722SeDWM2XeD2Xnt\n7dXhiq2A5XaC/Q1yAacRtWxmvNOVnGKIb49H/vLte07DoGPacukb1Rw0xamwky/VaE4eJ6Ffp4QC\nRNMv8Ua9e+1mdHFrU4WPDlxWZ1MKTgbNTpzyvJ1TrY5tzF2i5oSUQgNVwnZ3Xzmo/mnN69m3XtLK\n46xj4jwmHuTVoYmDxRXy5HCDZ6xVZRZMd9xhsBmOZU5crjoKL+dKThqVH44jx8PI8TDhiuqyXK4L\nl5dZT8M7psOkjKglMdjUnNaCH4JnjJGn9UpNNmFn0EaiyzUhwDRF0w8puJQ4ysjtMJCyUhWrwPWq\n7eLBOcbzgRgC06BT5J8fn7i8mAOIyn/POYPzrKlweb5SUsZ77Ui9OU2k04mP9Qcu6wurQWO6zjVz\ncQ5ySbxcXni5XfGD593Djc6rNQ52qdra3XU5dnWelt+XqqJhLevSmaMDYxwYnWcwJ7BFk94cqJIC\ndPi3w1V4N5346njD7XhUQ9ODIPlRGKmfKw+F316e+H8f/8hVhMNh4u7+jvPpqIJoTruYFRv+UQC1\n07KozXA3o9lZadrPcCJwcpGoaDNY1nxwka+GM//L17/mN+cHTj7YqEk9jlZs1G4UKgtVR79ZzJ5F\nuPrKEoTktZmn1Np7ClaprDVrw1c2fr6DFNQJ1Fq7jcpFZx8UUTkFrglJ2sCnjUDglWXZe0r+3OvL\nQCtV52amrBoWQ9A5gYGgKbFUYtA23VIL65x6ZyKWyk6+UbSaTKfFhN2ymle0RgPtmvP4KojpNGhA\nuUWM0sPpjRPrpCU7PZzsIlbbLd0VOzukYdHDzqjfDCNf3dzxkzfvdMqPnWsvhdgmc4AX3ztI7QN7\nVlCc4mXOuKbuTxyP/q9vwqCCQs5r0TO40qMGZccYV79op21KRQcxF+Uit0yjy4/urldPfIOD2rXM\nOXPJSTfP7l4iikXmIDBohHsW3++5946aYb6ufHp84bf/9kc+P15Y1sw2Y1IsAtbW8TbEu5iGzuF4\n4HA8EEalv01D5M3DmcM4aKTsPeuSeHm+cn2ekVI53hz4+u0tMWpAcXM+4XwgZ2G+XgnBVAFLVn/d\nWvutMxYR4jBzmEZ7r9YFUs48PQlpLca4iMp9nxPzdVEoxytu7rxQU6YsWvhUFshOu6ctByBL5bvl\nha/XK+8RGxierJM3U2OgFHWIVbbJVyoJrM+5NGNvhnMwQx5tOlCBThJoOkGbTda1M3jHV8cT7w9n\nomkOST9P2yV97arRe3+65a/v3/GH6yP/z/NHoqhD6Nmr99sXaObtWsa9pbyuBRBNzdTmATRDGZzW\nXVSD0/W91jquBxe4Gw68GQ8dcmohYXNCFZ0pnNF+DHqUrhH5Nm9YumPRWkAlWWG8IBQPc6gk1OFE\nNKhcqMxemCOsAW6eMsO1EpIQ8IQKLttz+1H9b//6Ioa8YWfZpFK1cAguJ5akQvXBDHkqmet87Xic\nA4ZhJOLJY9F5fbv0ZMNp2kNuF27Yk7PYveVANNzKjPMeBmALAKDZVDO6TkfVqQ7j/h1qsBqU0qlL\nwLvDmW9u7nlzc0s0qKRhMZYoquETS10t6sdh+Lj+szoQ45Rt9YHdVbZ/bqsfnHXB1kjEICTDers2\nex9PVqw7sHZxKbcz4vvXnsnTrtPhWGtlKcVgJW9Ft+bS9BdCFYai0FmMo06Uj4G8FtxceF4y5Xlm\n+fTMy7yQcumiTGpMXWeSNMcWQ+B4c+J4PjEeB5Y54ZyqHXoHq+lyXC8LL09X1uuCi4Gb04Fvv77n\nMCkue3tzolRR5slSqFX1WXTkn1L5vOiftUAqxTpMHePYojvIRbhcZ3IuBilWLpeFy2Uh50qMg/Ld\nl4VShHyZyfOqBfjt1u7uGm2l8P184fv5wi9S5mysq1qKNtWUaDNbZYMMqnRnV1oNyAxnjJFhGJjG\nkRAizrpfi0XyrRGuvURQnaA48JPTHe+O583h9GxNd1VjUulyF87jgd/cveOaV661svioMFIPunyn\n3OmxdmGT7U07pB63N0AZo6hKz2SV1x16w2HLJmsVkq2bIQxbUNbOW5ozarpBdBsEBo24Fi7Znmtp\nq51flRb4CdXD4oXsFBOI4qhOmENljsLLCHMU3hwqxxlicspXb4bc6nebjs7r15eZEGTpfnAO8Zlc\nK/NyYVlnXq5Xlpxw1tpcLHI/jtr8UxRcp6TM+/HMg4jCIj4YFrdJuFpFjIaTbuwYnYRSZIermTGv\nbpPQbM6gF1YN627uIkpja0iTO9kiJ4tAvNHuojh+fvOGb28fOAyKpTaJQ+ddD7qdtfsrRLsvhKh0\nZ1sU4u3nu4Xd7+/uXKtz2g3rHb6qbkiVQHVlc1Syda/mlCkpW4RT+7CCzT/snIbbvqMORE15k/+v\nCM4H/XJOL84251Ac8dOC9xfKADdvJh5ON9zfnUnXxNWdeB/OfH048d33H/njh498fH7meV64JhXW\narRSnNPUNCXSvPLyclEZgGkk4zmeTjw/zXi2cWwvLwvzRWVmxzhyd3Pk26/eKAtpiAxxIKLMlBAw\n+Vo1glhjCh5Oh0ExcZsmpN2bmlFU06yZ58TxODKOA7VUliXr1Bop3A6R6D1lWbk+L+TLQk3VMhmv\nNaTdy+8i4k/rzPfXC4/Lwp1RdbtRM5hFG9eEUqBmjcSbgW+ReIg6oGIYFeePvZbgunFWiHCTJ0a0\n+etnp3t+efeGd6cbo8u2NbFz2Q4LqCzbDIGf3bzhFEZSqfxzXBRiLJuh0jXsLQs0MgTSjykti6wb\npNLXQ98HKn2sX7rYNwkPIYvq73vXRibuAx+29MfO2xktlbZv9Jv9384utuH0fh/3VBjrxnfRWFO4\nEWVvLa5ypTBmiC4QQySKDspgkN6Y+B9KxvYffv//dYW/UssrjzqnZFGP6w8JdB0Erx19UitD9Sy3\na48Y6Q/B4wLKjTZMbM8H91Z42Tzna/3uWrapNNJStl6wME9t0UkbCOF71GBwCnSoAGeUw2HiL95+\nxTe3dyqq0zpLewzLzt3bwyrSo4F+MQ4ksH2fbQHtX3uopcFEEsBXTWNbtFTRaC0bLVFFl0xoq0UB\n0rbQ68/Yn7Lij66LEO0doEiLcHQjBIGTi/yKM8dp4vFt5M3btx0nlTdKC82pMs9Xnl+e+fT0xA+f\nPvPh42e+//iZ7z5+4vPTC0+XmbUUUqlkVylol19KmUvKZDxpLfzLv3iGqJOCStUCpxgjRIo6Led0\n7qUPoTePOQfjqEYueKXAzSkpnmk3IAZPjEpbHKNGf3nQoRaHaeRwzByPB8Zx5PHzC8+XhcfLjHMq\nsjWFoCqVKeNSsUxPX15cd6QNL273POXMdV25LKs1JG0pfhueUp0z7txrBtZ+XXgfCSESw0CMA0MI\njDaNpxFzdRThxn8WHAcfeT+duBkmBh87NKnJrrQN9ipTbhQ7HwK3hyN///XPecjPfAyBYFBeo+A2\nWGmfOetFaqS0D856kCaitSeTb1b1wF2mYNcgaESesUDQ2rS1DtdulNuyYrtfTevEIUbL1XPq261n\n2LuH2M69w1Ptt2w8YAUnjqhVUNZBuI6Vu+wZqqbgzaH9yUO01xcx5L/94bue7lXD6Rz09vhiaVZT\nQAzeU4rRr6pqLZzjyJp1gECzamo4tXOtGfJ2N12tdEytpWZbmLmloLVY1KLt0c3Ti/BaC8Vtk31g\nD2m4DjO06PTG2vF//uYtb843XR1NP7riTNBYEMsgaCfVJWddC/W9R0I1SVb7nUYl65uGVw/ceYvw\ne5SxTcapVqTJJRtLJJNy2oYv19fRPtu63o6//7Jn2TSmpUdTbXkr9jvh+TqcGA+OHx4mHu4fuLk5\nMx4m/DDgw6ByprWwppXrcuXx8YkPP3zkj9994Hd/+I4/fPjIh0+PfHy58jIvXJfEmhNrcUhSFUkp\nmXUtfJczo0E3IUJeVqP22X2uUKrCDKUIl+uKiE6wGobANI6KxRs0k6sW1xtDBicEb0qNRTd5jJHD\nOPShE80hNicvxhAiFWrKkCqutNmfem/97pa3gKHdc29OqKzJ9krLPumGrUV+LXbZVmtrjAsQHDkM\nZswD0QUG5wHTjOmruXcT4BzcDBPfnu84DaPVDPSnsoMt95/ZtohuE88YB35x+5Yxjfxx0OK+5NIh\nBPF742z7JehnvzLgPVI14y9Ni7/i8URH76QUMDmTZoS3gKt9NWaV/ngDtcwWWzD348DJ3tPMQM+c\n2l+3bAI7/07/FIVafPFkX5l94VMoHKsn1rBBtzun9uPXFzHkS1L96GZAAHCqF9LT0yUZTUe7MFNM\n9Cnbxq7IWaNzbPG69nMRjVorXfGvifk02+5sobYoWrmiVnlOOj2+VGVIqMwkXWOlYYCbP8a+u1MM\ndFsU8+Zw4m/efcNXt3ccRp1s0zerCGSdWC4mWtWae0Tza42gvaYCEhwyeLBuybqP1Jxs0QxuJyvg\nTT1OedutiFmyDhHIedVhAmubWanwSsm1y7X269xxXVvDUHdg5qBwTusfVZXpRNTr5LqfwxqM9xuY\nxkHbx9sxa8X5jZUUQ2AaJ+7v4DBE3t6e+dk37/j46ZHvPnzin373B373xw98+PTI8+IJOeuzyJUo\nmZJVs3x2jtU5QtB2fSnqTr1preQKPldySTxfFGs+HiJv39yoUxFhXVXTo6rICKVUXi4zy2J88VDJ\nWVhzRsQzxIF1TTw/KWR2PBx4/8ZznEYu1yvFtFLKNVHXghToxXK7tb5FsU7zvxYBHoAjjiEZW6VF\nG4praaTnN8Pfraolr55G5RNCqfgQTS+k1XjsPcYi8kLvZhyc493xzF+9/wk349H2k9+smL23Z6oN\nqoSOhTer+W48MRzghwxSivHO7flXCFXwWWE5GezkK5ZF76PURkXUfSxV1Q1H7zh5z9FF7V1w2hk+\n+WByHKo2qAJxO1vZHe6PDJjb6nGO9vFm7o0m2EL0/e+6P/mL/rxlOMUJ2QnPZD5I4h0jEwEvbW+9\nzsT3ry8zs/Pp2Ta03UQzCC5YxTooV9UyDUSk67F47zViFGFeV1XsK9VInNAxqmZUMEYgdm+9Mhma\nJnrD2opBCjkbZchYGyXrbD+3u4N197Dd7v+2etnvmOAc9+OBn9++4eQD3vBqEVSh0KL/liyIE93M\nxpV23kFwHX900B0L0CPK/vkWvcgu+4At49gkC2p3piUVSsqkNZFTRrI6smrNOv3q3I/+zebM9GTa\n5twxDwyjxJKlRplkxwduaXTrpvWtgOUMu8/KohFzwCFEpnHk5nTUVNzBw82JHz4/84cfPvP94zMf\nn16QNSlc0Z6XRW3V7pkz2OJ0OnA+qWTEmjIpayZyPA2aDeZKSqoW+fT8wpqKKSxG5jmxrpllzVzm\nTPTWro9G22sp+Bh1UMRh5HBQnfExBobg+fThkfllxs0ZV7bEfYtezdCiioKIRpfHEPn7d9/w67df\n8028IVZsHbXFvYcH2DFfNhy7UUHbMxWbD1BtgXv7L7jA6FQkKtiiq1VIufDxeuXb0wPehd3cAFt3\nLZrehTrSskzZAsyRwEng6ZpgVnkDKYPeBxUwUhtRKpSAi64fv8GmPSMWqLmY5EZl9J6/e/sNv7l9\nw1eHG57nmSKVaYj85f1XvD2cTAPImYHm9ZruIfaPE1H3ygZ08Mbt1lrbe90l77Ltdp/sSM6+50xo\nrOaKy9rH0a23tM/509cXMeQq6B+Jpg+imHHDgcxgaRcAgmo+B9McaCyIKsKSdKJLf6DQPWHvdOiR\nwBapWsCivyZiE4M0FU/ryrqoQS+lsmYrrGnstn8U7NMvDCxxFpGIU+WX6D3nYeDt6Uw0aKg7haqL\nszVvqOqhnZg0B9QWjAmDmXBTu5J9pNOc3oaH6p/VGW2vmjFv3XY7ymFOmdUGbGi0binuj56d7ZXX\n39tRONt/wQeG0ETNmhYKjXRAX5KCFee2yrwzZ0OjzO1ggrY+vFfM+zgNvH244XScuLs5M00jIQad\nx3qdKW7r9m3nXUWsTrDVUNKqdMTLsnC5qsb53e2R82niMESOx4lSCpfrDDgOx5Hz6cDlZVaRq6Dz\nRKtDAwsnNts1Mx3GLqsbY8BVIcfAGCOuVOqSiUm5/PttqtG4OstTiLyfjhxC4BwGHsYD/8NXv+Sb\nN/dUP/Bcpe+Fvi5+/KR2B3f7SlyxwKcU8qrPH2ikPU4h8rPTLfdxZDI5gc/zhXMYlG1TW2bLbh2g\nYm/W5LftOjYLbqcX8EwVhpdEnnWoSh1HG6TgNPtsImTSIFN2meG2pkTEKLQqzRu941c3D/z9u2/5\n9uael3k2enPkbjx0mvOW/9ASBV2bbnsmr6Nh2f7oBd6doe2h+mtoxi6B5jL2z0iFszxHCdzmwJB3\ndanmbP8jGfLD8dA3o2/4rdkjnRRCl4XUdVFtYTQYRY1fzqtqE0tV5NUaJ7w4ak+5WqRXrHCqSJ+0\naKRNCkqZtCTSdSXNq/67FK4lc5VCQdAZ5G7zFeiDluC2CN9tugw4IThtPDlMA8WLMnKqdBU1h0a6\nFWs37/9BdnbNRXDVQ4DirYmn4Z+wbZFu8OxnIr2BoReOZWteaM6qNcksqyoKSik/EiyzyEGUBdPa\n5lvKr+/pCRG+CqP3TFEZGSGaIfeGu4oo/GpRlhT6OLValQGkFQ2btuTFJvxsDSK9cxflCx/HsTsO\nQViXhafPTyx+MywtImrDAdpGevr4SC1CDAPP61Uj++8fmSaNnqfgOE0T0xgZhsAwjpzOauRFhJvb\nEw9vbjWSxzLDKsoAKoW7mxPBO1KuxCwsS+Z6XViWFUlCLKrXsaXhzXU7om2M9+OB//79z/jp6czX\nxxveHW/42c0bZIA/1hcuWbpKZrtWPWBzYpXG/KBFzsa4kJK3fTCvGg1iDK0qvB0n/qef/Ipfnh94\nmA7gPP/w4d/4PF+JiEkiV6LftY05zEsqrCJ1a9jzrp2e5pdOPEGE6SVTLgt5XamHAzVGxFs2OsbN\nhAld+E5CoHSNIf2ckjPLmlQKG8cpjNwME6c4cjqPvHr6jlZSA5qa6c4Y1y2y3hMKpN3iVwZb9j/t\n64v2lv7vnfEWy2fw1lkAACAASURBVGydI4qOeXsrE+caOVdtZap+X3T9D2TIN5xbPX87tSrVKEem\nbl3qzgtaDGrVRk033RZ92gNpuJYTrw7AbW3aGvVWIx82I1ItFVNDdl0Tc1pYc1JYJUtnDmxx92bA\nGoShpMZNg7yd8eC9jg0LA37/0xa5eAcFnJgShoPOaHG+t+J3xxc2ZkiDjxqbRg+rmQwNXqmuZyet\nZbprXddKyjqzdF4WjcZyUV503unNtHTR2fX2hW13oLVJ23k4y0Sic0jOOjBi132qsgMOJxmXQao6\npyLakVilKrtIbCqSLfZ+vQ16sQfvfQCqOchNG7oNANDT3DoV63by6jQFyrry+OETWQpuXplMMlhq\nwQ9BtTVSYPUeHxYuTxc+RS13j+PAeBip4nBBHdfgvTW3CWMcqcAslWQMk5QLy7xSUrZntWUrsj83\ne6YVWFLm25s3/OruDYcQGWMgUTlIJOSqM1oblioKtThfejbUhpz09Wl7p0OLS2K5Lrru7fO9g2OM\nfHW64evzLXfjAXEQ/besRWdY3g6TkgOano6tzwYfqFF3qD5rM2R7GEkN1SEJy1xYlqQ1jH1maQGU\n7j39/jbowa6pquDYOidWo6julTu3AmWLbqXbxn2kK+xYKDsyf//9HkzbUWxziO1rkZalstnsbuzd\n3mMDikiYS8XhOIhptzRxQbcd5k/zYX19EUMevN/RDqWPVBPjiFsHgRVLXCdkChvJXumVzjCkxnzp\nT5o9jxrYIn6pvaouUjprIyX14vOiIkspZXLW83OihartLIyB0B2s0GKfBr20coizB1GlkkumVu1W\nq05ZOkHagnJgkWtf7N53wam2eASN0BvjxFuk0zVWWvTppOsz6OKhL6BGqyy12tzLxLKuWkBOWh/I\nBmvQLhFeLfUtNthFL93NoRS2oKPUNBrEUpVtUwlFh6Pk0NdCczDasauf1Oihrf28NbPox+o4Nf1n\n6Q7b1eZUWjFpe7Uuv3aE4BRXfXl8Vi+TCgcwjNUx2ZLUqUvq/FPKZMtOZj/rBkalmEMMDDYaLsTI\nYAXKYswp573Ox7wu1JRNTdF1jng3hn3N6USjP16fSbUy+sjNONHAPjXkovosLbCotdcPNBOySLwd\n3+5J10MpmbSuzNeZlHO/NzhH9JHTMHIaRo7DiDgdq9ece8m1r6vNVrZ1qDd6bwO3xbTtJYApCXFR\nGd9N492ep2tmjn4ddOOu/zVYZZlXmzJVtzXbo+wt0Gr3QKmEuwXSo2c7/b7Y3e4+7gz1Hn6xFdZf\n7vXx2jU7W9uvr8UkgUU7wttnb/6gwcN/+voihnwYwrbYEBtwG0jZbfoJTh9e8F4nrIsa8bXq4vTi\nGIvDF7FuNo1WN/zMKI1o6l2cp4qOEGsbvCsdlkLKqo3Q9BGSFQCt76PfyFbF7pi2YYDVFqazSSn6\ncJTXvJbE03Il1NCnjniJvevMOW2S8INSwRx0imIrcgoguQ2MzuQ8ILUSc8UZP3rD6qwM6TCmjesD\nXS3kV7y8t+RnlkWNeLJ/tzmpgDWl6L2te4MgG2NmF6Zot1yMTNOIG3SIhYh2jrrmBKvq5Uh1JhAl\nljlUpGSNmr0eCxFqacqHOuKtm/EWeTujEBZNrXNTb3R0XXLY76vNkDnnkFK5Xq6dPnm0n0/eczsM\nuBDAB2hG0YxccxzdueQKWVhctjmdmXyZbUiAPZvgyQLLywxr7jLI+5Q82MYWa0J5zol/eP6B//Lx\ne95PJ+6nA4I664nIkLIqSbaHZvdMKZQB19bVLirX5NbWb1Z8/HKdSVln2FbbZ+1ade3oeQZr8lJB\nMt/rGHo//S6woBvzboza03MbLdZXYQDCUnCzqRTW2rNThU2NrbUz6F3+2fZzWhPzZWZNybRhGklg\nK/KyHUEP0bIH+j82Y72d/u4vfdH3wGvvB/oP98GlrTWEHbRH7xQHqMHhWxmBRk+U7b7Jf7AW/ZRU\nhhSnIkkhRFsYXjWuRXHSGFXQH6ea1CLgciY7pT/FLKboBkjb0E55pGYUWrSsqZm3wcmNQ70ZxrIo\nRr4sqzXFFMM8LSJt5PGWRrleutm67fbGzHjyfyiP/B+//0f+6eUD7jjBNOLGgWkYGbxnCJ6b44Hj\nFDlMiqWPznOsnp+WIzc1MFXTXa9F9buPQl1HU1zUuKJx8QU1ks6ojBqROXyxKKDamDcraKY2szNl\nbQqqwlJMF9v2bQsCWlTUFtc+UqA3rmhkOfrA6OLWqWeW4RXM1fTorbVaMV79Xi1Kl3Qh2Aao5rB3\nWUW767bAlYGTLZtSwy+NgeFeu5v+xPr3pReh+sYPjvPpwM+/ec/D3S23t2eOpwPLsvbpVjfnGx3e\nqx1r4DylCk8vF+Z5oaRC8I4hBqKDdVn4/PmZHz49cZ2TTn1qmefuzLwZ820Bqk7HS1p4sfFnvbDs\nHDEJNSl1D0yDPqq0bjOqSVBapxOc0/2hXZ+VdVmZL1eVEzCH215VtOtXDAJorB/ZGZk2aKLfzR9H\nji0j3H9fNFRXGMbjRRhSJV4TZU0U04wRgyDbHfKG7VfKpiho2HhaE+t1UZYT0gu2WxS+ffaGhe9W\nhNu9y/6+Zdk/eq95p1eQy4/es0X9uw83Om57r6tiNSFDQtF9JkY26BIBTrPPP/f6Qoa8mOFR790u\nKg6RSKu6wzBEvA8U0c0guxTNVSGmCtlScdsIDTveCn62dloq3go8KBe4TavPRi9TnRGjHrYIZx8s\n7RZ4S+t8X85tvdriksJzLVyeF357/UR8c0N4ODMczxzcwOA9Y/DcD4nTMHAYAqdpJAicV89UhHEd\nmXI0yqI1ngQj6Vi00Qo9ehIGT+SsRri1/xtcUU2nuxvyrDDSmjIFgWMgTEfqmsEG4zZj7J3H20Qb\nMYlba1Du0JYzp5onxyVmvs8XgtNWVG+FI+c2/u0inlpcH7rdb6RFe016tWPi9iWNlWTvbxF/Sqov\nnlI2+uTuqZmhEfmRMUf6s7NVZDWJwMPdLX/9F7/gp1+/5+3DHafzkXXVRjTvPLfnsxViKy5od2Mu\nwtPzC9fLRQuaRe99WROPj4/Ul5WnAn7VNbZ/9c+3v2/xv2PAMcVADI5cc+d4u+AZUlUaac49ywhe\n2+8VY1dapy8V72t3iNU0dtKisMq8rApJtEBSTNrYpHv73fqRndbb67rZ296zZYn9fdIesv1pka7H\nEVMlzoWyKgGhDgPVVzXHfne8liS0oMka+dKama+LaduY8XOuO3J2H93XLOygFffqD2jG+M9c8Kt1\n5Pbp3o8X2O7fbvd/esbSWTL29trWuL1JJ4F53CtHsr2+DP0w2dRoBz54imF549jmdzagPyhDLxeN\nokVIUsiSEQkMVQcjqB5Ii5LbZncgftvw9qViQB5x1dqYBcxwZxMTkqbfA2g62dC59tibEVeDFOxn\nFR06W5pP9Y5ahFW0gHhz9BzfH7n9yS2DUx7xMHiGwxFiIEXPcpzIKXF9ycy14rJnctH0ICrFK8Xt\nGU/p5wFNzlEHQ1QkZTPi2gBRDJaphj2+olymRC6JGivx/kC4n4yKWKjmKBGlih6PRyiiEdOqgp+A\nzsDMFYwN+nxT+V28IukDQTy+eh3s7J1+BY+vjlIiuRyUsmfPwykvlYZ7iqn20Q1Ai/ikb2YsKl+T\nFq3XlJVB4tXV7lm/rv/eLhpvP5XNmAYfePtwz9/+9W/41c++4eHutk+n2dQxpZ+jM/W/bHDfuq4s\ny8z8cuXp6YlPHz9xfXa96YliVRWnutPObJVmlpoFinO4qhDPXRz56fmWN4cDxfaAN835KavCYs5J\n1zDs1DH1+hu3v0X/uvRVlmE1DZo5JSUdtFuNOtGctYlP6x3S72R7Rs3x7KPXBovB9oza+/vN3tl7\nB4QsxGtmXZM1pWnm42h1IAvEelAnVj/RTDOlxPWiWQXQhxp36Yh2LqBZZAvC9lG0QRo/Nub/3mtz\nu+xYLGzBiNP70j/fbavRI73W5rOAd73PQ6TS6NbbSMv/QIb8dDqxhz1wjhC1EaiKaHTccVC9RcUM\ntQ+aJg8SOMtE1K4REBW+d83LuoB40TTGrJ0WP+2g9pxExLSAt/S+twi/SgOxB2Ln1Io4SMshrDAh\nJpPZkOra0yofHH6o1JhY0sKcKnKtfH6xMVaDKtAhwn2O1HSz4WmvMgxLcdvnyraJerEQExVCNZWL\nSJd6rQ1rT9rMooUhcFMg3oyE+wPMnpCLdlnS9b2I04jDEcuApKxzU4MnV03PSyp4HB/Ojv/rcOG/\ncCG6gKtOJWRFR9sNPhCr47ac+Dq/JcqZoxiLYh+LmlQxUncw5g6esUJ3KZmU1BglV3E3kdNwo0JF\n0qAd/oSi1/n1RsN0Fhl6b9h+EK7LhVqyngNm7F3rVdGjSaCvG6ogZct+RJSvn7OOnluSOhonbtdo\npuuorc8ANAnlCpyGA391/46f37/lzelWSbQSaPNqxxqI2XFdGr5c2NMNle7q+3W31s8qhZxX5nnm\netU5q8UcTHUaxRcppJLJol/VAqXN2Ldo3NEL27avOw97n021/0xDvE3SAn3sfnbURRuDihSiRIvw\nW3pdd+tgtx6K6tVf5rUbcmUxqR5+rYW+Uzp+7TrW/wonb9G12xnxhlnL7j005yVmuOnrS/bHYXvO\ne59QzYJUx+4aa8+q9m/uP/8zry/DIz+MGiGJYrJ6wRvVqDbjalrY0zB0uVqNNGAgcJRIsC7IxkBx\n0BtQQN/cqHvNMFdpecxWQMi1WOt6E9xvDwz+JFX6r/hniyNbIP/qd3QRFKQYtdGE/UtxrMETSmDI\nI8E5TlW0088Ertp6EGmdkBabtOCiLadmmGS7r7rAdqO3Gm++dXNmxRr9ccQfIm7wRAk6kELEWDd2\n36JuWh8DbtA6RhgCQYSQgk6wd4EyRD6FghchWOSVsrb/IzBG5ci+dY6jrKzSxmzZJts9o3Yj+xSY\nPcwCmlrbWLd5WZABDu9PBH8go12aVG/cdddlAqBh62JQU7JORme1FDi+ncjO5JJr61TcYIf9q+t+\ntPb/Rm/dFZXXlMgB3HlgDEcbAAFdcxvX9XycYPNchek48fBwxk2e2esMTiceLxqhriTy6shrEzyr\n/T61tfoqnReFVWou5KSG/HKdVUO7GSu3BVri/dZ7sT+iQQPt3y2g0Y1q/RoWdvc1bMcQHFk0UtX5\n4Q5fUMh0SVRrThPr/2CXBe+SMw2aRB1pNiGxYkyg3o/iTSp72ynNTtv59VCIFrG5/kFbJt4jbr1B\nVkOSP/UB21todr/dsq2yYGvQnJPfqys69yprbAf/82b8CxnycYqKWQmE3JpPNHrxXrUvolOw34lj\njBNrWkk5IbXgRhX2GWvQ6RlFU6tWcOkKZs6CcZvzpze3pY0tJdvBKlZ0K1k6hthtObC/r9sNdX8S\nqXvjy3b1P3vKFd04MivlLDhHiAMuWKONd13rIjiPS+2DpH9wXxQtMKnSkw4rEHTD1ji0jeqnXZ3Z\nWDr6taQ2OxKG04BMgVIz6gudRbC+0zBrtmKZjd2yW4nDMU0HvFcGUovkhxjwxtv3EpB1UUgrDhQR\n8uBY2IyHyspIj8ClmQ0R6wBtmVPtxkHb+DUdn5cZd/TcPtzgz1o8z0UoRRvGog9ae7HR8qqvoyJY\nRRKDi4qpUqDC/XSDTFZz7IXHHz+XFhC0jMggO3s+NWsRNhvkI6fAcDxzw0HrNNXUF8GaWvTZShFI\nEKsQpoly5/m9f2EpGSma2TRZ1loqaT1S02FH3TMaZ3WdgticBeg5llzJRju8LAvZqc/rQad3SAjU\nGCnBU4KnD2vBdYhJ2kJoam5meJvJdG6Dw2ybIuKoWY1nsIArIgxZcGtGUlY4p+pErLa/+jbcB7cC\ntahswNXqPc57hqCzS30IO7XC/UvsMcqWhe/gix6596h8+3571Z2zVJaNs0e/YdwCOtzZaaf1q0i7\nViKeMao+EHi82xVj2Sia/97rywyWyNuEmtwmeoCNebKHNTgWPHktzLNGj0hliBERh6uOkLRg5LNo\nJGXt4M4aRKRkak0aBTcVIXOVDbIQcSrhUKxFXDB8yt66uWU2Ye5/x0vK7mE7PUeVtVWjdDpO3JxP\njMcj1GKyqFrMAd1sh2HAiXBIwUSK9IAaUb8+BdcQCLeLFBrI2+sMrnd02sWBteavubLkTK4Foicc\nB9wUcV5ZCi1UqlVHgU3WYu6ts6RIMT0VpYcqm8CZZnzbrG1cnF7fEAeEig9eI1QKC1vE21JlV0WZ\nQrVpw9jGqIqlN42ZWoS8JNY5sSyJtRYzRnYMe47OCalm1rQSqieGaF3FDYdEB1mXDZKqVVhK4bom\nsumN91hKNproXkJARwVq25myhKygmBWLTjUzPIzc3h5IaO1ErOnR0zqXwbtArY60JiiFhOc/ucTv\nxo8cgmYzYno80Tqk74dbvlkP3NbcVTtDswDO6bxaF/Q5yS6TWRJXEsup4n4y4VYHtWpjXoXLWPhH\n/5GyZt5wNJhGqYlO7PPxaoxrg6YsGLGtoeP+WoJoQYndXydCdI5DiDgHJXtVgzRhvG1sY7uUlinq\nAZt5bqPTcq5UXGcLjTFod3HY65vvjekWdO0AEPuM9pxd3+sb4qHvDg3aAZz4LcaiBXS2N4NHHBQp\nnREGOu1Jj+N3c3EbXXL/xS60f/36IoZ8nlOHNFIyLMs7ciq9bd8H38eNlZL7wF2pIGZjBgnEDC5r\nCult5iPeqfAUok2OZuSaWpo09T9rRW+j5/JO8+PHnlmP1v4ir/7sMUJbJOyes4OGJ4YYiMPAMI7U\nnHVO4hCJY+gGLAad4HNwUQfQVte72jfx+u3rVZbQjAlGt+tROt2QNyw4WRvzuiayCIyO2mjSsEXz\nOAgGGXmHD0qBct519cBqH9NmKO9HsmmHvWGa2SJtD4JnrZk5e+Z2761oVYsDm5LU2vZLNY1pacU2\ni4JNJyYthvdTSWAQltK6lIGox89SKFmdjbf01Rv0RoWaW06sdYXZJa4pdfnaKkY3df2298fRFC33\n+ZPUTctnzYmVTB0i/hBMSrUvks7mUdZItAwIKJ5UKnMpvMSVwReCU0ldsTU+xMhXfuCQr6w5vTZ+\nzgIKr1Gq20FLIjYVKgr1LjCcD5CHrs/uxLOGkX88XPg0ZE7hWYeltPUoQvRRC4pY1zEKlYwxEhxQ\nNdBy0gYJYwXzyvyog6YjntGKkv5mIr7/hvt84rDfb20XdtitQC36rKXYUA+9zzqSz5Nr5vN84fvL\nE9M4aE3HqIxb1UAjpCZnu3+u3m2Kpg0zadh6f6/4Dh/13zPwqO3JKto/IOi1O6c1CEFgilAdLllk\nVptz2kVtsj+rP319EUN+XVaNpIwu5Ew2E6nKK486GcPbjShV9Ri8d6ylmtChMLpAyOgoJDMW2i+g\nBT4HxvE1ApEt7lpyx4lV7VA1uEvJ3XB0709PBtl8P/ZAm3f+UeplD8jRmnJ01YueED4G2oRucXCc\nJgQdIIwTvI9MbmQcBnwJpjFim50/+Sg7t1206NQRYp/hzKC2e6kwxMq8LixrVvnTwZOd8s/7Rzjl\nrAaLXDNFuxA9Kjlsx8M2Z/A6QNk7LViXUs24OWOUrPpco4ItS8pE77muiWQOtRTFkzquWduQ7m0I\nid3+3r2YrXi45kwOULyYsqNo0buxJ5w6pIojl4xDpQRwypxqbeFORCfWCySfWVLSzFHaoA3j8rZC\nnqMbKY3EtyJsY1SkrB3Dq68kydRsbI8QdFZnzdBYL1kQSSbsZlLAKINFoqN4KEif/lRr5eA9FzJP\naWZJysF+XbB3BjM2aqU3zRObcj96wt3IIQaGfeAQD+A9vyszv/cXy7L8FhRVzZJDq0HtAqhpGogO\npZBWp7IZ4rQbea7kZeX5j5+Ra1Gtk6KyG3dv7vjbn038VX7DGztnNZpbgdtJVSNedMRdkbI5zKJd\nysU5np3wTx+/J9XEdDMwHUbGqI15kahsIcuAvHMajJiBVxnqYAbfRMS6HbU1JRqFtx4W375P+5nu\ny+rQmQj2o+YcKgKHAalqwBvFeM+yatDlf+31ZTDywcPocYzdwUqt1DXjgu8UHB0om1mL6kt7F4jR\nMwDiVPQ/ZMEli5Sg38QWaVXTbvE+4L01TLSiVBWLAPM2FccKVe1md5yblhJuBaDtpYa8xVdq5Fvx\nVl/inV0bumlrUTzZeaXeieDNE5e0krL0KT3ArhdJNtEMNJV3RqHQKFyFpqqrHYrohqwUait0Gqac\nS6UGh5uipoKN6NAjE09tzTUihOjUsBSlaeacqbl2bZMB3XiDD3jRVnScU+lZ75T9kARZTTM8eNaq\nGUJaV51CEzJYkawHIlVIaVVju2vd1knnOotzKYU6BtzkCEPokAlomhuDRwKmsW6byXtzNqI6K45e\npykijHFSOmSLxn68n5qnb6E4vDLg1Yroa8osNZFHRw6mK4RDSoaMdc2WPlNTBcGkGzCP1k+cqDPb\nUDKT5Q2B6h2zZNaaSLUxPux+ucbIUSPbZmIqx1pHiw3DyHFUvDqia/Nw9x4JkefH35HKilBNXbJN\njS+KQTuHVHp7v3O+DyYm6PBicZYFVRQyrStPOZFz6ppHVOF+Et5fnvlZSr2u1bp+G2xamwOyOkAp\nqq2f0sqSM2tVnHyVlf/9u3/mppw5Hu+4PR6ZDkGnBsnQJZy9NQsGD14UJgp4dHSzMl9atadF8+Wa\nkblCcoxxZPRR5RzmjM/aQR5d0L3h9HfOw8ibw9mcic0SnYvZC3NyDX5q8YfrFmiHm79+fRFDHoPf\ncCPTUXFON6APWh1PRdOm4pxNCLL5ekTbhHZDi7I7LOAyT2Zz+LzicBqkW3qyE3hSCdtqjUDZNMib\n13fNqfYvaDHxn8eptl3t+u80NgJmyJ1lDMrSUf2VNVm0bBFsFOWftzmg/bPFRs55vbb2YNtADTXw\neuzinHZSNkdUN8XDZsSXpIyV2uSE2UWYLR1vx8FZiUHvT8BUDQWyFB2RZpOM2mIrrlIlA0o/FGr3\nEK2LU2rrDShdl36bv1g7FNCuX8xB9qlN6N+TGXJ38iZ1oOcW7JwqmNHStZdNd7uvQ2k+0gqicaDU\nqvIOxqjpbI4WGe4gLTGRr3Z/6u5+51xYc9KO2UkjajXk3hyTWOeyGETYzlPIJXcecQxW+zF81zun\nGv7iGGxtZRSHL3VHQbTqaWNCeO80CAo62i5Gv1HwRKgUsoI2rOmKq5Yhi6PaNepxFIfzJpYl3non\nqtYjxAWiwXHZmsuw5b+WxCUl5lpIdSM7SK2EtHJZF6vTND+524luy0D73hTLNHPW4yF9Atl3y4VP\ni3AonjtXmUJzPIESC5VC9A3oqgSnRja4oBmE3WsvVlMRwRO45pn5siIJYhiZQuQYKuWHZ+rzooY8\nqEMMDt4NJ35xfuAmDAwc0OFMjmEVgg2OeW2mrZ9ggwH+XcvzRQy5x1kaXRB00UbnGaLCDu3h1BCI\noloO2hbdIm0ITnnZoQJFpTr0ZfiXyb3WVygkrxeAFXty01cppvjXG4L+f+be7EuS4zrz/Nnm7hGR\na+0ASIKESDZbavX8/w/zNi/zNKfPtI7OkajWQooAqiorl4jwxdZ5uGYekQVAPW9QHFShKjMrM9zc\n/Nq93/3u9zV6EazHxFmaLZnHud7I6WNyEJxgipOd1AmEi+3n1Ycz54wzFrFzrg2i+l2bdG8p0siT\n5pWisVJaSShKArnqoQNZU8pJpyRGmeJcQsTX6bloxDDAaYUxWppIRQ5QXcv9XNq4u8AezkoGZ4wh\nxFhLdtpEiwRjleRXyTQddQkcapVWyQVCyTJEZRTGueqonilFTA2Urmx9ayDW6q0GVhkfL/iY8Dmi\nOtGsKaoybZSRGYXSXJvkmpYSWCoNtPVPck41JdM1Y6vZY25CXfWnVmZC2wrN/Leg14DT5FQF9gks\nMbCUROpUtTCjHlrSsD2hP0q0h6yM+udFmo4iZaHXykiqibqzi9w7hbBvYorVIadR96TMqgWbyHub\n+vwYLRrpSuCdFLM0YUvFh/2E1prOGQlzBVKITQFX9mM6VSoKTSkJHyvf3Bk6ZSr1tSYwGRlCq7De\nudhc6xXFUP89p76DQJGqgdecPZagZNo1pAoVcl4jq7rPIktKkCTpSFmabaqTCkxIAAXjivSLFGty\n0SqylMUIRufCfV7Y+4kcCpgFa+GiJA6PH1g+HSBXBp7W9Ebxh+0rbkwHKWOdyNbqjDSILSjbAvfK\n1ZLreJYw/Hgo/3kwcr+sgUghcp8+R0LWlFAxpfqbqsGlFOGSa60Yup6t3tAVhy3VI7GW3EqJi9Ca\nhkHN4M/0NvIPFQ99FaJv3WdgLW0kAzh9o9JKnCro0wZ9a764jlW3zzWKSQLmkAhjIfkKObi6geqD\nn2sWdowyjdmC5wmaU+tmblinqvK2RlVcPCtKZB3bL+cUuBhXR5vFS0BPzmAUdMoIJKKlcrFaoKw2\nnKBRpBwlW9EyWZpQBIrY97WMGbCdWQNHqZ6kxhqctbXpGjFGzCGMs6vGhLUWZaXxtToI5UzMDW6R\nycU2ReljYvY1KOuM2fQoI0FQYqqSwyxnlhwoJWO0IYZU1yHUPSJ4e9c5oVUuC8661Y2mNdJijOuE\nJLo2r1SttM6CTssiU66wSox4MtkZdC+TrVZZgpbvC4UYZEJ28QHXyWh9SgW0lNs5J3IdyCm56nHX\nQGqdApXRpbDEuHrb5hwpxdKAAQOkFgthnbLtnWPT90Tj10a5KpoQ5AALOeNMj0bh41Jx/Swa69pi\nrPh9UjN1Z6t+eKFWuad80jpDNkLzpNTDoK1bfWzXAb1VN6kySHStG9t8BKfnoR0CqUJuVApfKRl0\nRlthcDVzd2FXFYxW5EoqoGSwhpISqmrR5PrcaWMEAkuF8ehZZpHbpWiMLlhbMLaIOFrlBCvEs/er\n4YI/XL3m690NXYVUm53eGqhXTPM0MfssbJ/Hgc9eP49n5zRjrMVYKSdDDMJt1mq9WadxYmkIaFOx\nbqOEG6osYa4eyQAAIABJREFUOldIoZR1CGIFlWqZ2BYjg/CWk0zXTUvgMC88jfJr9FFw6RZRqP9T\nZ2O8Z9fQytsfW9j2dW0aUmmNcuYM/0ew7CJO8RIOha9N03ROrA9CTd7W35s4VStNlKm65VpBhWSE\nfpdXGCM1H85wMpHwNTsvWTEYefg2XVfd5itO2FIvuWhSEgqb0hqVEpFcW0FUWqImZ8EZrdZ0nZEx\nf6ij7ZpExiihQIbiWYwhRMkClVJCDbQWo61kyilSYkGp2N5GhfzlWmbvWXIkqHrt5WwOoD54TQNc\nhsxOw18FTlIN9Z6FJH6tsUblHkOo2uKyJRqcVQ94LQe2TN3nOhchQTzEwDQvjDGwkIiVBUFp8JBw\nD7UxUC0MU8VXtal1ZIU7SmpEdnkPwkyRazyOC14Fis7Mwa/aKC0jb5CX4OOqwisabQzOOTrrMOha\nSZWV0dM2uNDiT9iIqlCaplWHyN5OdV6h7geh20nF1QyiqfcuxQZjnj059ZmN1c+3kQ/kKup9VVK0\nLTFz9JG9jxxTIWhLtq5Wbqkit4qiMsoorJMp5JWL3pY3S6bdoMUQZMCwJYYtPTHWoQtEXxiPgeCr\nr6jWkmGbFodaZFDcdANfbS/57faWN8MlW9dLolDh13XS/Cy6yNv6PIifPvNjr5/HWKIK9+is11JF\nNEAEt7NKshFlKtaaylpaGqMxRbArpRSpFJaQOEyeZA2uUBkbMk0nDT0Zi54XzzTPHMaJ/X7i09PE\nh/3MxzHwFAolqYrl1um0mmWvDL610SAc5XOYpJw+w9pxrt9DWY3uJNNs2gnK6RM+H1LNToWO6Ao4\nLDo2PPmz26fUKZjXIL5u0Ib3tiBeKhQRm7xrZPFeHFS8VCU6m/XgNMbiOitZd83iFOrMKNtQW28V\nc02S7SmDdcI4yhEo4gzed5ZiKq5rhHWUS8Epx5wmcWFCi2hXa/QYeR/GGHJCDldoF8Np5D2JbKlf\npKJTiPbOWvcDVSFP4I9KQ8+nIG6dFQqskn0jFLE63xCl3uiVrrgrlZWjV9xa+uKZojSplvaidyIN\nOO8Dx2lijJ5ZJVLR0tMRTzjR8lZgtD1Vfi1IF4Wxam3qliIDcw3ySqnx9RXz7PEobKeFHROl2UnJ\nZ3LDlVlRA7kkAAbTOfHDzTIbEEtBVahTfsApS5YTRgnnXsv+O3VXqvtUbtmwNIlT6xuUKlRHIHjR\nUUn5FLJOTNmCj0HWMssB35Kw4gOxKHyIHMeZ/XHmMHpGn1lMh97u2F1fMR1HQgioDKkePLZzMols\nK79b69O0MFT2nKxrCEJndLbuO2R2IBcIS2aavJjOVAVX14FWhTTKsJZRCmcMX24v+ebill9vb7mw\nEsRL68BTqbsqn6fla5K4xo//HzH1Zwnk725fVIqhYl6E3hWyDAmZaqSQ1vO/iC6HM0ItzBGrHaaI\noP0hFb59zPyxeIb+iHG16ROEBSGGCTLBOIfI7D3zEpjnhadp5jAtHGbFEi0XObFFbmjLdM5f67xP\nVXsXHqjCSIxCbow60884w7CNxvuAXhYcHZ3TuGrCm4o0XDKsgdzEKngEKFWnKkuVu9SnLFxrXTm8\nksnL5Bhn4j1FxLM0xAJziIw+4peACokUMiWKBOpxnPDRV2Ery9ANDP2Gzjh8TEx+IWRpmskwk1kx\nToF3LNY6tAU/B2LMUCK77YA2msl7lmUhp8K222C1WidQZQIzrXBk6wucuP7n6ocn4+gYo7gblYxy\n0gRufpTNak1rjXOij14KNTsXrW7jDNqKIJm1gslrVRtUTpzrBcsvNcu0Kz5eqtCVFMiivpeCeE42\nE28fItM0M+eAt4UcQ+WiSUDOLUAkmWJUqtANNdDUoNhsaZUqDL1Da1sby3qtJoZeZI3lEakMDh8o\nQ17XTPQeTpu6TaPGLFVVbxx96fFhISdZD0VBVc3+eFYmqiT/Zh0CS5kQ5rUCNcqu2W4bvjPGYg3y\nvjKUrNbGNbnBBoqUi6zZ4vEp0pWMDokYCz4VPh0mHg4T+3GWQ51CzAnfDVx/+RV/22357t//xKcP\nH9k/HqRCtAbbOZxz0jOhzg5Qm+pKZD1ygRwz1oTqLVwwytRegiWHTC4BP0dMksnRzllcV1Ckmqhk\nttbxy4tr/nD1ki83l/SN3ljve+PbU/eVuFvVyrBQUQW5T61SlQX98bD+swTyq8sdpsIMrgu42Up5\n7MXPUiG4lTI1CFJOTUUFgzJ0WaFiJhb4lAJ/v8ysTSsyKfgTGyXlOpIuWGuMMim6RE8IQRzSfeai\naAZtpfNfD5ITpFEz3YZ30LDQUnHzswB0nj+vyXllCqia0zapAESLRBgIVC67gqLP1NqgCeyXArGG\nu9VtXuv11FmrgfoQtQGgmCJL8IzzwnGcUT7zSnV8LEesMdxudwyXHdpUaQQldD0hJiSMlnF70XnO\ndT8VlJLPGdNxff2K7XbHMh95CA9M04FlETzbWCMHQRST4VQKxloZ/MqZUIS90MwE2uoqLZmyKZqU\n9EoXFJgn46MkAp5MMoiEQ6wwSc4rm0fX6k6j6LoOHajYdEZpyaysta3WQLfmO4Vm35zzZ4GQs3tb\nw3lTNkxNMsALAyMZMINF5o4E/w1VkkIpLYJvZKxV9H2DlGQiNKxQkRwqMUgTM1ZnHlMPKquMON1X\nSCZm2fMhRpQxWFsDJ7VpmYRNE+rAE0V0ipyxZCOMi5yaSFZerQZl9F08s1JJOGfBtHUSTrb0V+y6\nd5siYykFiybpyLlJQqlzHwIRGqYlc5g8h2nB2Z55DhyXwPePBw7TwuIlUx/6jq53bLqOzli6vqPb\nDLjBcnVzw/5xz9P+Ca40F9strrcCA+VSSQasWTVU5UErhzQIm05X3N8YQ5wzYakWkEbXKlThOg3Z\n4BNc2YG3u4H/evOad8MFO9PJDlGtdln5YXV9yvq8th31bI+dxZyfev0sgbzvHNrWZpYRZmbK0qmG\nKqBjWhYuF5WrjZW1jj5bXNLomIla85QK/z56kb5MkVyEG94w8yaeL1IAlSGCohhXGTNKOMza0KNY\nVFg76W0QY1UCKufL/PzPnxGiOOvAoCk4a3BODAZUGxhBdK21kaZlDoGUFUQLpY2iy/fOBQKap6Iw\nsTD4jDZV0c0UrNHrGH5jUkh571kqrPQ0TizTwhALb+yGP/KARnFlB15vhd8aY8anxJwzfl6ItfLT\nCP8710Au2ttSO+li6c2Gjb3EZy/l53Gph0jBOlMxTym5vQoSACq7ZqkTeTmf1gUl7lByUGZMtpja\nbCxFKIRLHQRKtlCsyB6rdPKC1UZkBYxpLBbF0Hd1UYXhoUqpgdsJnRWkCaYa/1fWs5meNHJpm75r\nh6dRbSBEmB3L4hmXhWMMpF7Rbbr6fVJt5sV1urDkjDUKY43AUblQDGAL0ZRqvye9lFRhJe+jHCB9\nh7IKawy97TDWEpXiGBLMAY+hTwrTCeWxJPl+vlYMyyLPToiJ0okPgFIK5yyhJJQumKKwVtdn0lQN\ndhme6qvmuVGKmIUf74yj6/uzZvXJXNthmPUik751HUt98DcXF1ze3NBfXBPQ7KcZZx3jHHn/eORf\nPtxRUqEzhovtBrvpuOgdF5seZRVzjHSbge3Flpdv3zGNE58+vieahe7aomxe1Rzn4IX2usKnQj/U\nuk6Ew8mdrD7VPiSWJcpkuTaiJWQLprPo6OgxvB2u+MZe8ldXr7ClQkZVybJp08h117hxNity4ok/\nx8hXeuhPvH4eYwmfZaxes5bMnbMM7gpb3YK0Fiwuk+uUVrXSMhrlTS3XMg/Gcl/HXTdDh3MbTF8V\nwtXp5Gu0MAMN8ZABCzLzPPJv//qvmMc9cZyl9Mnn2IqqJaNida9XzVThjH7YcOszJbWyfr7gnEMb\nJzS30ppPVgJVkgDgrMZkhYpFqEml1QOKqOFBFf4ueIanhZfDwsusuegL285QnFx302b2Ubw4/bIw\nTjOPh5m7pyM2FF6qji/cFps1h7uJwx8/8td5x9vLHaZo7sYD//hwx58ePhHrdYleSZKDrTb4qAEd\nbbj7tz0oJQJnwVd6lyJ0Gdc5XGeqD2gmGY9GJj2N0YzaM19E0VyhrDhu613r1ltQBhBIIdQgFFLG\nDh1mMxBk9ERuhdaYThICZyRnbmYLKWaylsBGiljluNhcymRrbRBqexrPbqP2Tey/vaf2gEkQkCwu\nlVwldSfGaWJSkVSptSTJWDul2JjKTqgZvOs6rDGSndYekXEKszWi++IXOcxrEB86cc7qnGT6g7Fs\nuy1ZDzwumocYUIc9/RDp+0hGtFec0mw3HWRFQDMtC4dl5hA8wQjDw1gZElJ9QRux0HNVs0RZUblE\nK/puWHsWCiVNCET+N1dbxiZwJh3qTDNNXqea6rOgrOUXf/gdv/8//pbbyxs2JrIPCX+ceHgauX8c\n69SrsHTsYLnaWd5cdtxcXaKtIQCvbxMfDgt7X5ix/Gr6FX2esMrzsDxyDDNT8OznidFPzHGRYbK1\nClfrpGYKJ5CXUkS9MmbxEqgCdxipOgfTcdvt+F13xS/NBYOxq2HKKl8g3WYaiaKcOUqUOsHeYk4j\ncsiPzi3K/OjrZwnk47xIluQEl2p4Vd91qGr5JiWviMxYbaETrrgvWYxmEfGZBRFegsyLmyvevn3F\n63evaghVCDsknzVUM957vF+IPjJPIzEsRO/Z5MJr27O3QR6cfFq8s4Rc/g60RsR6Tq5mx6w0tBbb\ndRUW0kULr7oyHxqvuTWDFKZi7HoVyGoPQVSKx1z4X8fI8u0jm4eJq43jYrDsOsvGiYKa0ZJtBu/x\n88w0jtzdj3z7MPHvT57rBV5RTYFzwvnC1bHw67Djq3RJzpnrmLnf3/EP3+9l+q7IiZJLkUGrdT3U\n6SLrdbdgLEukWKpmua3ejkBl55R6oCqu3hae3CXlq9MKN1jr2XASpaogClwkjjCB4zjj7w/1YayP\nY9Xs0UavZiVKSW8hVPy88feNtcQH0V+nBmZthOXhtMbbW8r1ipPRTMFVzQrWQaCK9fsYmRaBBuaQ\n8OOJQdT40dpIua6AnES8DVOf3SLZbqTQdbUqCYKvNtlWqoZ93zm2my296XHFcjcW7g8juShs57i4\nyGyHzPE4UmLGKkW/6bGqkJeJp9FznAveW+xgCGnCp0DOWjIJpFqUyhlUlMaj0AzN6h8gUgJy73LJ\nLMHLHqnXW5JAfSDMnJMmjzw72lhuXr/my2++4bIfGO8/st/fc8iKwxKYk+gTFZWxDrZO0amE1Zm+\nN3SDyAnskjSfN8XB9orNo6X3Ax2Fh2PHkiNZwXEamZeRcR75cHzigz/yEJfanKVCIbLPc8kEnwhe\n2EO2eu0WMmiBdAcsX2+ueJt3XCi3QqfQKBCyOvoMWGmwClAJFHIQnoKMYsVYT/jtD14/SyD3KYJR\naKRMK7pmy1o6urligU3MSAyLjVCYUhSD1togy0WCuFGKq4sdv/rqS/7wN78nlVRlK9Vpwq4OwRyP\nR/b7Jw5PhzpRlpmnERMK17rHuJ5jGzV+hledSqAWj87V3Nava13u+vdTg0MCia5TGdoIH9tqK0MM\nuY4gK4DKhW9MhgKzgodc+MuUuDsspJzpdGGwlsEZBqsYOk1vFU4XShIDiRA8j08HPj5MfNgHehzU\nAKJypgNus+MrteULNvgS2OnMt/S88Ir7/cgSI00E/zTRWPfaeeXS1ucMXvLrOpyvoVob9VrBp6DZ\nv3h1amiuaw6iKX/qKbROdMky0TlPnsfHA8dpWfsVp8PlfFq1UgYbtxhWZoU2mif3tOqglwLaKoxR\n9J3Dv/pqVVxs19gC+joF3ISbaiAfF89+nDkeZuaxUB4ri6Myd7SuuHzVxTHOy6EOnJyHMl3XobQi\npSgB2Dl6vaHf7hi2G7abDZcXVxAV037h/mkiLDMKxcXFgLaWkuH+YU9agkA5ztZx9ETxCZ8sJfc4\nbxj9yBgmtPKiKGqlx6Eqrlgqq8YYTekRN6ksWHob/1c+nDxTqYlJdU4qZKYpEIM0c0sWGMt1HbvL\nK65ubukUHB8NcxSpjqWxe4ySrHgJ5MUQTCZsOpRRdFYE3XqtmY2SAbeLnv6o6JOupImNVCauY9ID\nwW6Y9YZNlPsy1snQUupchtJyL5ISpk0QnEU+V0R2wCoomR7NF92Wy2gxqbKN1qPtBLmqCrkW5B6r\nNY6c7frC+Qf+t6+fx1hiM2CslLimmuuGEpiip2gpnRuu3IJ7bCFAKbQzKKtJpdCbzEYpTB4ISYPu\nuLp5yWleTAZsYkyk6hI/bLdsNhv6fkMB9k+PKGPZ54lPWXFlLF0dmQa1Bi4Fa76XK1eqYWmngkhA\nsZZMg6oqhxrTWWxflQ5VG5U25PXAklNc54RWUo7VsIIGDkbzwcBxCfgq/uVDYr8ETpOkWaiHpZkL\nyKj2skxM05FxnPib7YYb02Op2YGSTa5QNIeci27gV1cv+G+v3nK3jPgUCacrXINlG5Y4Bd9WCrY/\nn+F6LbE4KxlblA2zxy/SoC4rTl5a9K/QjhzupjXbtCIhNmRhmomHqb6/02GzZjv1DZ+GR86ya6CN\nPKqSaLCYNEANeTtQQpQrr8Jrp3nzdqdlND2lWPFxoR0+Pu55/+0HpiVSiiKrvC6LqsGgrUHjep++\nr6yTDLjJWl+/esmrL7/gq69/yRe//BVv333Bi9uXLMcnPnz3HeOnP8tBgUhhDEMvYnMxUHKuDdmM\nX2bGIgQaZzrcFi6U4nj/xP2nJ+4PT9iaVEizuo65KSQJqRWOMWeHt6Jmqm090lodlZX2mUg5sDx6\nlqnOB+SCdortxY5N32FLJvqMto5u2DCOI6b2MUqGu/cf8dOeeHOJf/OCobPYnNDeY5Tg1/a4p2SY\ncsTu9yS/kBQcxyd8iuQC4zQRq1JiTpkL0/HaXTAWz5iE95/WfaTQSaOSqoOKgu1ri4hxKUO/KPos\n3rTPp39LHadV6x6SpnBLMk5V5xrq131V1++UnfBjr5+HR67ruG8uworQBm3KKvokjtpKVPKMBKg5\nLELaNxayBixBF0YSCwarXc0Qz4c1hAqki2hEFy2qdlYjk1iqMDjDbrthd7GjzIEQCy/7LZ+W5ZTJ\nUU7ZpzrBfeufoVLRpDHa6IelZuuFOsyABAkBjuQLchHBqZLFbzKnzCaLkJHKUm4lFHsD/0sV/qEU\nloaXKSODIiiq7KNI/zaetJCwKSVV4wTJBi5tx9Y4cl4E69fCeVWV1lfqcMTtdstvX77hXx7vWVLm\nzi/P7mPLtU7Zdzn7/YevFe76PLarIvovFX8UAbizaoSWYItBiDUySWicZLOrK09jdtRM5/P32g6h\n55uxVIZCqveq3VElh3XNmnvX4ayTda6VUpu+y7UybA3mkAOLnziOI/vDiB8XUgvkZ9//BMuVNYC3\nB/t01eX084zmy3e/5L/87X/n17/7HdeXl+y6jl4XgjW4qx3u3Ru+f9wzxYIyFuMUtrNsrOFi6FEh\n4eeFj/s90+xFoldGSknzwrw/Mt8dWJ72xBZMKqNqPRRrtdMO1nZAFtUUAuthX86G7wtVjVGajXFJ\npDkjaVuhJJj2R/74//4d435Pv9uxvRiwVrNMx6rgWVAl4MPEx0/3fHz/kV88PKJS5je3L8h1BiCk\nzMN44FgK3u8ZxwnlZUhq9rPw0YHFhzqMGFlyJhXNxgxoa9DKognMhJU4sfhAitJXMUqjrUJZhPWU\npaels17XY828M4I61ENQVcYPhVUPxihhv6z7dU2E/oMH6uz18xhLFJnAS0XKf8k6THUJOVmzaaMo\nSrQ02oLbUtBJeOTUQY1YT7SUS52qy8LJpFSNEGlgiURphpxQOaLJdNaw3fZcX1+y7I+Mfl5deuoe\nXuGDZzK2nJpbzXnkdBtO4a0dBu3U1VphiiGUZv4sLIwYIsss7jm96USsf5VGhScLf1GJP1cGQBtN\nLkWx2Qxsdxu2uwHvl2qcLA9oToEcAzF0hNkRB8tVv6VXmjzP5FKFe0zNuOp6FaXZdT2/uL7lt7ev\nePQLj34hrVffrvQUvNe1Wf9wwgWfffj87/WwCxWOaDIJLVNWSjjwKlVM2QqtzXYO21XN9vPv96w6\n+PznnX9cPfvMKf9pQVY+b53l8nLHbrehH7qVMrkKeVW8PlVWi2jby5DScZw4jpOYjVdarS7ltGJn\n8KeqFV5DhPL5+2sZm1a8evmSX//qa37/zV/hYgA/kqcDW53YXW253vVsrq+ZlaO4jjA+sVOZK6fp\nlSL5wP7pwMPhiRilCT5Po0hBz57x8YlwGEX0Scn4OZyqqFOhU4/G2txv9m26JTGqHYl1Z6wbRGh/\nqdREp2b3LZD/6z/8Ix+//5aXX77hi19+yfXtDX6Z5J5rIE30VqZe7x6PqA+FF9uBuy/fY4wExiVF\nJp0J1pDLwpgSIQd89NK/qVskGvBZERLEIjCs0VqqcQy5KJYcajAWM+2c8joQZpzGdqJNpHPBpNNB\nBshwYZYDjOYKpDXKGkoqhBwY44IqisF0dLh1W8og4o9l3z++t3+WQB5zwhmHVop5maWE1SLcY41a\nFetSTsTq6qIAq2UBbDEMWHbKcUlhKOK5uE4sxkRnJUNWRbSLVc4YxIFeK3E12fQDMUS2mw23N9f8\n+fv3/NkfuJ00j8mLktta+Z4ChCB+5+CJqqWv5N6r1KVWtaoydF0vAzbDBqUgThPRi3UdZOISCVPA\n1kGh3nbCqkl10MeAaGlEMolUZOI1hsgvvrzit7/7Nb/53dcs88w4jszjxDIdWSbBS71fCPNMmiau\nnzzq8Qgj6FKwQFcbr40iVRQ4ZbgeNvzN63d8mkf+/fjEmCKhbaasTtDE+VGmyhlsfhbq1wRDvv/J\np5IVW045r1OrRVV9C1UbklQ4zjlc59j0HduhO6n3cR7ET4ySz1/nj4dqpgDrm1P130oDuu87Xr2+\n4frqgu1mQ9d3WCeTkJI8nOznUhHFvVgbnePsmRYp44s67ZaGjz4vZGpSILXq2t+htNwdKJmHD9/x\n8O//Qnp9hcPTq+qbajtwlltjuPmix1y9xF1cc3z/J9T+E918RIWFcUwwZRgPzPs9oxfKZ/Yev9/z\n8OkevyzoupSK+uYbk4a6xM/OxHLaA2eQ1goPFHnv59d8qn0ypYrE5SQDUa6DXZcwZSH5CUpGOy2y\nDoeJL243vLz8gsPxBfvjxLFE/vjwAWsLRct9sJst/eaKzcU15EKXM31Ows1PkvCFkNA+oBcP6yBX\nIilJakyO5BApMVJCIvuEKkKzVFrRbRzdVqNMwniwGTolPqEqN/ZY7ecUs+4rpTXeT3ya9ny/PHE1\n7HhlDTt12htrUfbMUOKzGZWz18/W7PS1XDmJEBlKyvTOMXSi/SCpVnWlxwjfUykchq5YOmXpiHIR\nitWoIsVMtlYeiBwo4yMcD7DMYHpUCKhxouz3pHEiTCMlifznQ5j5n8mL+UgBW/fxTy3gc2r/+Sfq\nk1vKOrAhD4VUH05bii3EpAhRONP9MMgEmXGoqmCSVWbS8HHIGJN5nWDCMQZEvRDYXVzw6tUr3rx5\nRQyBeZpYppnxeGA8HBiPex4+fSIdDqj9kXex40XRvM+RJohlq+pfMRrqFBoKbHG8u7rmm5uX/OXw\nyD89PZBSXKGl9kg+l/dtfy7Ph5rO4IPP+zhncX/9Fm2cvIi6Uz1LnahEho7tdsvN9SWXlzs+3R/g\nMPI5dPO/499+Prz1zK3Paq6uLvj1L77g+vqSbugxzq2aMVRKYqoHUG6TqJUe2NQlTwDKZ7uonK7z\n9AHpiLSHWWlNP3RcXm55dXvNX3/5it9sHZeHR0gLqrfoi8uT7IXpUCRUiRgibmNQZQCTCceC0gsp\nJg6HI8dxZM6ZzljCIvtlnmZSjHUNTgdzgwLWM+ez6yjP7v2p2jqL3Ov6PjPOPtsr7W/OaHZbx+CU\nzFxYQ2ctViUWVSt6rdhuO6wVWPDjYc+w7ek3A/1uSzEdk9ccvn/icDxKcjPPZ5x5caVK9f41wkUB\nGaFXUHTG6yTc8UniiqHOJJiyShRkCl0RM3irxDyjNFGvdvKVXKEo0BXa6bue190tW+0YtH2+P9bl\nLM8LzP9Mk52pag+nOriRS6ZU155c9SHIRbIxkU05yaMpMBlcUeL0XqrsqtJ1nDmvzTLZUwXmI+Xx\ne9LTA2l7SyqKdJxYPr1n3I+Mj0fmw4HFLxziwiEFBt2xVR07ate6lUactt2PL+nz1xqXlDR/BPKQ\n65eS1BBSxCiFdbayFsSUVpWC14VHV3jfZYrNXCfoQyfQTCoEY9hut1xeXbIZBpKzomZnrVQ2CNMH\nBWleUI8HXnQvuEbzbdMPUQprlCj9mdaAa0G3cLnZ8vXtC+6mIw/eE6aRKYkbgmSNLVs4D+bP1+As\nT372ubaWzonGi67641IZnAV9JaYQthhScljr2GwGrq4uuLq+oO8/nb7zZ6fEqoD3H96xH76vfuh4\n+eKaX//iHZcXO2wN4k0FT6C7qj3eZIKrsbX3sVIcTxKc55nsCSFXZz9zLf+grsnucsfV9cDr2yt+\n8fIl37y85I0u2PtPJJUgDmA6ssrozkmgWKJ40C4TGx3QGpI1BGMIqXAcZ+4enniaJoIVy7mweJZp\nFvnYs4nLn1ytFXP8Ccjsx9Z3TedbjC/rXEZbinboDn3H0HdYZ4lF0zuxk0ubgbIIbbbvFMPQAzCl\nQvaFoApzSYRwZBo9h8eRh/0T++ORaZoEI49V2KsWDEqD6YSdo63AH9oKNdR2lmXJzLOIfFlTPRO0\nIlFIsYhwXLJ0RfSJ5DqyNDeVJDBtXsIoIEkPamMHtlbjMthy9pSs2yKfBfH2nP0nCuRWabTTaOeq\ni08tSYOIbVIKPkZUknIsxSQLoBRBQ4kdOhZMxUkKcG6woEpElcrCUB0AaR5ZHj8Q9cCM5TiNPH78\njvsPn7j7dODh0xPT4UiMEQPMJVNUYgAs0sA8zx5Effpsb55XQPVj7XzNORH8QkpZGkzLgk4JbSzK\nWXxvSQMGAAAgAElEQVSUzDjYRGctfSn4KJSxQ1f4fpP4pBMTmVg0sejapARrDcNmYDMM9a2VWsrV\naqH1HarfiS4ap6Q8rEZIq2mBMlKCqDX2CIulWMPbm1v+lsK344ExJcYprherlKqHHSd4Q322GFAb\nmCe61RrXFFxebLm63Il8q64ZTc1knhNi5J4rLaP2u+2Wy4sdw6ZHW5E0Xp+HcjqQfkoAtDU418Hp\nmgEl4OrmkndvX/LLN6/ZDoP0TkxjZbQSuDazm0tNiiuHfPmJoHh+4JQf+YSqglMXV5d88/tf8e5V\nx+1guUwWDk88hojvOra7LUPIsMjQlbrY0hlDXhaW+09EFJuXLzBOtISNUszTwsdPD/zpwx1TiQy7\nLSFCmDzJx2e85latff4GzzP1xnlvHaMT1HbWqF4ZONT7+tk6nL1CSMxLRNuBbtjSDxtiLnSdxRhw\n5oUM6VRFxBhCHTzSLMeZD99/4MOHBx4fnjiOo4jmaUW0mmIUGEXXO4ZhwHUO42SeRRlW05cmopUB\nH2Dx1Vs4IxobSoJ9CJk4ZmIOpOiE0aL0auJVtMCqSsmAVecszhjIBYcknnGOdaDOoszpMM/tWV6j\n+mkNf+z1swRypyRr7Kyhd249iUOK5DZYV1gZAVoLPJEVBCVqbiplSgyUvMgos3EYLaJNpo4MU7Gs\nogyl26C312g/UpZIeDowz57DFHg6LozHmRI8XclkpYgIhc+rKrCzonrPAYQ1KH12WK6d/fqXosC5\nDjt0aCX2aRiFru8114sW17eGGiqOqvBJBeboGXPi4DXTrAixUFKpMqQWaxQlBmnkVj6v0aoOwsib\nzlX8qQldtWtRSnSpS6fIrtRqAMinYNh3Ha+vrvibt19wiJ4nP7HkxsZhtVQr68WfFuoEV5y3RuX+\n6Cpy9ebVS169uEWZxng47ViBVCq9L6fVOUhrLdROa3Gdw7qOkP1ntcGP7fwfVg5r8w6Fdha72fKb\n3/+Wr3/zNV1n0cZUsao6wFN56OdG0OL2VBudSxUYM7o29M/Oth95S2etcXkf1jDsBt68veH22rE1\nirIk/m1/z/jd94xL5qubG768ueXdzQ1u12EVmO0FJkSM96gCZprBQ0kB7SOHT5/4/vv3zNljnWEw\nimnx+CCKjT/VKP7szdb/nYL3Dz75I9d5QlpO+NXn09cpRMb9xLd//sjhacG5rvGyZAI2yLAeRSCQ\n0lyvlsAyzkzjLMNhi6/mFImldyzOEqxUmyZmnE+ij+8s1pkTixTq0FJ9g6VgVRb6o4wz433kMEbS\nXpLQkCOvOodyBe0qKWKNXzVJqGyVog11BlYMJdSpOiu0Z6TKFqi2I2GV+/2J+/PzBHJtRD1PW5xx\n4l1XB4FSkWaETH7JL5xgkhEJ9rpAip79+MhRHfGdg01Pp7VgadaidGNhVAaAG1DDJTx9ohyOxOOE\nXxaWJRLmSBcC1yg2zvEIJCVKhh5wcLJdO3/eWtYLPwgd58uttcY4R+e6MzVBv054GqVXcSuf5OTX\nVabXq8KhJOYU2fvM01JE5CtKC8E5UV+z1tDMpcWU1pPDQvILYZlJTYem+UEWqsazXJQuErmLqjDS\nKg8gF2uN4XLY8LuXb3h/eOLb/SMfZk8o9QvPYKf1N4XAR2cr1HjnIiIk/8waw4ubK66vLtZsFxqs\nIl+klBw9qTrgyNuuLKVSULbDbDYiJBWjlO3PHpDPX4oG4J/gHjn4h4st11+846uvf8GrNy8rxdys\nErbtLq9TrUWCTE6JEETrfQ7iVKO0/mHgPgtyPwRY5EE21rC72PL67Su2Pegc8cw87vfc+SP3hwVf\nEqNfeBz3vLi5JGmwtmMJC2FaKEtkPC6YzpKtkAwe7u748OmOzdYydB2d1hz8TKx+qJ+/zedvrqzv\n+AeXpE4F4Q9hqhOD5fzZWHNNdboHOSXm48y3f3rPp/4BbYzonCTx1E3x1JFRlUwQY2KZF+mPpfTZ\nsF4hOMVSFEuzG0wJHTJdZ9mi2FojUGejUtYhplIKOQXQqiqCntCCx+NCKFVeNyfCRcLsQLnzCy+1\nQhE6MdpQrMiwqVRq5fW8lG/bv/nsPl/J/IN1b6+fJZAbLT82xEyKnk0neFjXWawT0H8eF0quMpJW\nE0tmjhE/JbSGyU/8+eN3fGcij9sLir1gULCxBmMs0FzPZaQ2F03BkpeJNB1J80IcR8o4MswLvwTM\nMDA5wz8WudkpF6EmZXCFFTpWpWVi6hRsymfbtEJaCpHm3fQbhq6nd0IttMbgg2cJQW50ET60zgkV\nJQNtmWlKMEbDg9c8RAPKoLSc673rGYYe13dkpYlEQgyE8Ynx8Yn9/SOP9/f44568LCKVipSAsZzE\n+ksosCS0q5rgUcoM4UpL6tApy1dXt/z29jXfPj2yjx/IocqwqoxuVbM6r1pOG1WGbNpHRfpVo+iM\nYTc4ht6eTsH6jXSdvCxF3nMqBR+9CD/5wDTN4tRiO9TlNSYk8jRDkL7AyttuB8LpDtFwgEYjpYj5\nwM2rW775b3/g+vYSGbps9MT6dUrJyV6bYu2b5lyqkFciZBFmW+34KkPnWVKl1Omfr29KxNFc57i8\nuuLNu68oeWaZ9qQQuXx5zeZqy9sg4+J/3o/83Z/v+M1yy2+WifH+UYy0n0bS+yfuk2F4c8vwxQuS\nLnz4eM/98cAvv7xFF8345MF7yhIg1MqhnNanBfPTmpV1+Kf+9fT/xrQ5feV6XcJYKWtmmes1NxRO\nq5Z1KuIS+PjdXV3n9j7K+l7OBtzXzXauVSr7th239X7VgKl1rXU17HYbXr+85OXNlhBmuc9a5LJL\nEZhnfDqS54hJBWd0tRXMzDFLgqgUZE2HpmsDP+ueYzUlN8gcANZQiqEU8V/IFE6OTLJPn8FZZ2v2\ngwzx7PWzBPKLzWbV6qBA33V0XVfV8ESc3hhNwhCz6E0LSa/Q9z2LN3zUnk9hz59C5C9h5sPiMeM9\nf7ITlxy5fvuO4foK2xnS/Qfy/pE8ziz7ieXugXj3AI9HzDhD9jyWwLEkDjlzTAEfq4tMqVCQMpi1\n6Dl//fBv53leC/RKqxU+8stCqLQvgxK2iKY2WhSDdXRBMx0emZMib4oI3CtDzLr6HybRJa9KdIYC\nOQq45hd4eM/y3feMd/dMD3v8ccEfR+I04YeAzwlfUh1RQgZalki2kawU5HZI1ccjSwZkjeWLyxv+\n68u3/OW45/s8MeW84t8/WBZ1/qyrNXkX0TGN7Tv66wtK15GqN2cOkWISVR9LXklip1UaZxyzXwjV\nJGOcZ4rVbK53MB8FN42pHqS1Wc2a87T/5D21w1kplNX86rdf84vf/5Yvf/1rOjUTgidmJ/6ZqTbT\nEV5xm4FYs9DabA/VEzVUh5vTIXBaEzhPADg9vEpkjuM08+2//oX/6//8v3nz7iUvXl1xdfNOBKzi\nwjweWMaJbjNwfXvJMHQcXeHP+YAKBtcr+ncXMCVsF2F+5NPjI3fLkc31jhdXVzx8PPDw4Ynp4Yk4\neXGXOl+cdY2eZ4bn4ep5PG//9nSit57D55m4fFqtwX8VYGtfUIe7SFSBNvkm+hTS5WNnMJ6qScJ5\nvbDWgqpRShXGQO80F0PHxhmchn4ztO8ISiz3yIVOGwJN7VCzhMgcEqmeZBrZk8PQ0W86StH1cBJj\nEMnGoXm9Ukoj49Govs8ShHr4lWeLptY1/5zt1V4/SyBf0aD6prQSCU5njAy7tCaLEoL/HEI9tjVK\nOfYZfI6Y4nkKC/t85OF4QM2PFL9nfLzj5osv2d7eMmx7tg9/ZvAzOsLd/R2Pd3fs7x/YL0lsonLg\nU448lcxY5P3lcnLhnjVYBQ61xpUWpNsVtaxqde45f9VGbClAKqtOuELhrF1pecUorLJsosEEeJwf\nOCRLMY7BVb/FrKt3Y0YjkEpjp5AKJSbyMhP3d/i79/j3d5SnEbUkOMzEaeRjv8eXgieLLdbGMe8s\njyaTCaQiqnpqFcBfI4+way4HXsUXvDreMB3FogxUnXDMq5bIs0yiLpqqT2qmMGy27G5uuHn3Gntz\nS3QDASVTqSmvGZs87DIPq5XBaEfGE3MhpMKSC/1uy4urjo/jkbIEShSlQr1mhD+4JbVkkgjgho7d\n7RVffPNrvvj6V1xcXsGi8EYxuwu23QVp2GF7BylBCqCCsENUPfyUYOc+JXyBbCy661DNzq/IAdaM\nSdaDhefBXAHJR+4/3DMeZh7uvuDdV295/cVLNrsB1ym07tlcdOyuRA9GqN6JYxSnJWcNXWdIKlGY\nCYeR958+cT9PoBTTGHi6H3m63+PHSZyKnu3p54u1BnMlz+1zDtD509DC++fEwtNnn2fqp9d6XKiT\nfDNAyfDDr15/zPk3+MFBIodDqeeCvHdnDLut4/piYLcRswvn7JpspSIxSNdr1u1OKUXIZc3G25Fi\ntaE34neb0/M1bAJZMuBT0FnmTKhVSQvScDqsntMzawJU1/4/VUZ+9/SIre7SpoBViqFzKGURcaQs\n5U2SZqectpkcYfGJaZ/ZzJEXpuCWhFlEhvL7uHA3Hfmnj9+j/uf/QClFpzV/ZQtfDD27oeefxpmP\n1UOxaEXMBZ8Lh5TISjSYS4aiIsWDz5kpJ5SGjbI4xBGoLX37nzQ0nsdwJeey+PJZ0bZ2SmNth6s6\nFkZJEzcX8fqzvaM/QomBj/6JMXfkfsNl0riYSaFQlEUhQ1R9Z6v0qRIM0QfCMjONB8LhgHo6st0f\nYPKk40Q4jvxjgWvrCCXTb3r0yx1PX+74522hMwupCLfYarNubnJG1W47FwrfbXmp3jKPO1wIYmgc\nAyEszIu4MsUosFYTFhOtjKYHn3nx7gve/uprvvzmG7YXG/xgGEvmQiuKLkRd0ywtOGkqhVQx/KIM\nRVuKseS+5+b6Fd3FFYenPX7yqBBRfhFFubMgsz4e5fRwZq0Yri/5+q9/z8uvf4W9umacZrrNNcvl\nJcfrG7YvXrC9vsRuOoievMyUaSQ9PYgtmF5kYk8pYskEZ9GXF/SuI8VPFdbKNB28NdBwAnyeB0bR\nNB/DgX/6+z/yz3/8Z7q+48WbF7z78i2/+OWXvHn3movbHf3OYlBEvzBNR6ZpZJpmnuYDflmYfbU5\nXBb288zD08y/f/fEfH9g2Y9ijlyhgM9F4M5Xrw2+NWSJZ+/3TIOHxmBqn22G5C17buH8+Uu1N3Be\nrq+PWf3zWdV3YsnWg0a1ZKpUDSH5V6uRs5K+TN8Zbq423N5s2G0sSsv1i0mEZpqyQGFZEiOK6Lzk\novCp4FOrQOWXsRoXC26JFGNppUXTthGNeiWTn7Eg9ognuKkdPqWcLq9tj3Ud/wNYBX6mQA5FtHdR\ndBUzVhRC9MgEmeiEGFVwSjGlhJ8DISgWn4lLxmtFf32Dur7ipmS+SYmoTNU4kJunYmJIiQujeYye\nf3qc+TB7DkGgBZXrBitFXFLqaZhTOLlnV3pjpLAgN8ZwNmSiqFN4clNU+1i9TsXJv096AT0pRYaq\ntZ6zOOPMi8AEJmamPXzYB25y5mUKbPeFxydP9qC85qgsyjlK33OfHvkf/4/n3/757wnek0Og9xMv\n5gfs3QNmP/JxXtiXwt5p9oPDEZlT4VIVuqHDXm2ZX+147yyuGmBrZMMJPz+vAy9Wi3nDEjLBXXAR\nevpSsNbiw8K4zEzzIsEtJVQWI5H2K+eCD5HZL7x591dcvfiS0l9Qug1x6JgHy3F3QXd9zeb2Bf1m\nqE4zmsV7nvZHjvcP3OePPM2GeKN5/esN4+w5PO2hKHYvbzEvr9BMWC37YQnh7BCpzetVDtZy+/Yd\nv/wvf2B3eYlCk3QhKU3SHdntMLuX9Lcvubi+QJFJMbBMM8cP7xn1ex78B442M2499o3iq91rnh73\nHB4fGbqB5BdUESVDmbwd5XCsMELTqD/tHE47qBSKUoQcuX94YJpn3n/3gc12w/ZiYHMxcHF5yWY7\n0PcyPyDaHTsGt8WmTOcjtl9Y4iOH4z3h+ECYRb9ozfnKD2PF+m7WANqC7HNQZaWerl8l694y90o9\nqJosJ6hr9fusAVi+6LMK5ScC2LOKeKWdyHO4qmtqhXHCatLG0PWGq+stN7eX7LYOozMpBdnnsZCi\nVEPEBEmcgBQGtKqDjKJbdLpojVVZuOD5ZM9YgNxouTXLP2X3VdJAV5kNI7l9Pl/mzw/Huk/+U2Xk\n1hjBupRYK6XqodhO0VwSMcS6IYX85xeY5mrsiiZvBvxug3OaWwWbnAnVuTylRNYaYsTMCyZnDsvC\n3XHkyS8sdbKqxATVhGFpRrBFDhFVxZGauUFCTFxLhV5qpbZu1OcH5tlq12O2qEJWmYTIDhhtq9C8\nNMlUqcpwIbI/RA57zzZHfgf8IhfiPEkDLxamAmboIXaE0TAd70Thzi+oGHmjFNvBUWbPg/d8mwOT\n0oxKMRpNlyOuFDotetV221MuOo4FcUfRa48JKNL0zRmfEzmLNnkyGbYGo4wI7BsNiyLNUDYGG9Pq\n19j3jr7v6JwjZ3AxYpaFi1fX9NsduWiU7VDdlrTZEK9eUF6+xr1+w7AbRKwKSNNMVPccjoq9WRhd\noGwzl7pn+fCB+dMDShs2V5dsNhbjRjaDrY3lUEX+RXnOFGEGURTK9ly9eMvtm9dEH5jHkWnxXCuN\nih4VIyUJdzkpgzEOTEcpltBNjHbkSR3Ys2F0F+hd4nYD2na1SWvJfsFpuL65Yp6PTOOeshqPC5RU\nS8/VS1Ke3VK1PWoNWKQ57XMiTAemODEsPWMIbJctm6GvlWw9sJoDV8osS+BxjBx9YkmFqA2l71Ba\n4AFr9OrKVRD2mMBjudrXSQ8gtWG2ttWVyFGsUrfnsECF11rTN+eC915MsotMaJ4y/vr1nAfp02sF\nntYkSq0fe378nf0LxWrmoAwMg2G7c2y2TpQba6AVqSHZ6+RCiZkcZKS/QWFzkECesjBO2nFlY8Gk\nUpv9bc1KfQdqRZ4aHq5W8TS1Qsjt1Cuw/rwmG33qw/wE9MXPZfXWd0J9y4UxeMpSKGQcHW0SMfiI\n6h1KW9A9SygsPmNMx3ZwbHpH2TgGa9gqZKNV0SyfM3YYSDkxTRPTYSQcjmyB/XGk0wrtHFkLH/Qw\nSdmba3mpVaUctlqtUhFbrdaCeDX1EWGrOsDSMHTZb5KjpJKZs+cQRia94OeAU47BWXqnUSlji+g0\nzBn2k+e7pwPaKQat2Lk6rVAg50BIgeITKgVCiNwF4QHHFOljZDCWzeUlf1Saf9WKOwMqZ1KUqcOp\nwKRgQqM7LfRFrUVUKGYxgTDiX6lKdTZRMpF7v98Tq2WaVpq+cziF+FMuHu+l4WpqpkEpAjUsC2VZ\nUNWLVFEIwWPDLA0oDcY5lBnQ/QV2d0V3eV0zciMBZCnM2XCIwuIJWIrpsDaitQEtUsH9ZmB74TCu\ncHU1sNttUBgJnEWcYKw6acsYvcX1NxijOU4jD3f33N8/cPGrRDcYzNGw3Cmeiqf4ka7vKShmHzge\nj4xLYEpwSIopQSx1KtD2mG5AOXFZ7QbLyy/f4nrBrcWGTyzWaNmjsfRdtwbBnBKbvpeBLSX6OmL1\nlokhQBOIU4ocM8d55Lv393y4O3D/NItRS+11lCyaRCUnrDVwdSE2blbG3S92AzcXW7QRrf/FS8M/\nxUjygekQGI8LfpzX7Fsej4LtNJtdh27QSJGqmCxZqHVOnpkYOd4f8LMIUFUdwNOE54++Cm146lnT\neI2A8kZOiNDZVyl5/mKJUHR1qiooFQlJzLUx4g2glUanyuRKWXjoKWFqk/ToA0sQAgQVvtFFGG2m\nFAqJiECQlFL9eSUZVK4KAdZnqkGzdQapFj1qHcaTHEP6aeRSvYx/Koz/bBm5Yg5BqHepELRiiQpP\nxGrJoIbtQCiwHwN39zOLF2qQMZphcHTOSgZbyxOKmCikqhOdcxbVxJTxKTPGxN57DkvAWcfG9owx\noYyuuHhzKznhWk0qWgEGcJUzlWr5t74UVQfmh5heKycxBp8yJimyBtsZlDEEBQlFVJqsLBTF0Flu\nrrboroPLC+63AzlGVE68y4mb1iYpQuNLJYqptI8MPnGdEg8UxijMij5KNh2iDKvMyuG1rVz5yljJ\nUUwElK2KuOU0ch7CWupebXfEaqari8Amzhjpd1q3qr81r9VUMjFVaCYn0ZKpyo62LCyHDxwOET3d\nUa6v0VfXHA4f0Q9/IXx7TT/0q8zv4TBxf/+Iv7+H/YEy7pnHJ54envj4/zH3Jk2uJMmW3mejuwMI\nRNwhh6qXVa9fcxZhL0ghpbngijv+fS4ehaQ0+3VNmXmniMDgg41cqLkDNysft9mecodEBOLCATM1\n1aPnHP3yyul8kQG5MXI5BYYhoY8W7zxxSTjrcLaXSs+0IjcXYvLUDHG68uFvf+L8/AWvFb/f/ZF/\nOnY89GDLGXsO1PkTU5EG/GWc+Xy68Pxy4vn5hefXE+fLyBIDpuuZx5EwX9EqgSkUFQn5yr4bGPp9\nG/7csjKjmJoHyBq0agWDpWpNtSJ8Urmgc8WWSoq62RVXpjlwmQIvp5EP18BrrIzKtMXZDKsae0pb\ni+o8fW/YHxxvn3Y8HHbsh57Bma1pXasmhMA8L1yugXO9cE2ViVvmSa0cdp79045v3h1wVjJ7hWDE\ngvWKQ6d3jpoKf/nnP/H88zPTZZJZvHf6mxu0cBfY71AddY+R/ysUjs3oSwFVkTOU3LzDvSSB3svB\naI3GGamOjZIRgvNVrApSEruQWiFXxRgyceXal/bCNHijRYeRClXfzMVUkUBumlGWUrqhEDcyAEjF\nsJm+rbV9ueu3qeY39P/jnPAb8cg1Viuyap7jG1e3bkpBlCKEzDhFrteAKloGIZQodKSoKTmjvacY\nqEV8LXJtYp4iQTwukWkOXMeZ8zgTUsZoS2nE/tQEBALYyL+7NnNUc+LTiHmWLbJIVnrQiocDdyvw\nLpi3jF0Zg22wgi7CG7XNBCqlxnev0hJSiIry4WDBdbDfMR4GKbGBR1V5pFBTQuUqmLUq5JJIMeNi\nwYTEJS7kELAh0YeEipDSauYj4FCpVbyRjaboikJv/hBl85Ku26ZVtOy9KSxVBW+sUEVTwhqH1vYO\nPRXIyGqoJTdqt+C33jmcKeS0YEh0eWSIhn3SdHPBnAIpnlDOScM1V/IccOPIw3LBlQVXruRw5tPL\nR758+MzHy8S7t2+lCiDhjMFoS+87dFU47/DO3VSopUBtPuG5kONCmc/oeGUYDjwNlreDZXAAEUKG\ncCWHIBbA04y+TtjrBT+dsOMr+XThdF1YtMFo8Bb2B48xDuc1u4Oh6zW+EzWuMRZjDWjQs2IKsm4F\n5gOlNLk2b6KWVdYCJRWmJTAvkXlJnE4T5+vMeQycr4E5lWbvTFtfGYXGGoX1Brc37I8dT489T097\n9ruBznucVsQYKalSE02/kTkviUvMjKUSG/SjtCRlw+PAw5s9x7cHkaFbI0MpGjyEboHcWvIS+bLr\nGb0jmUBMq8jlF9j7r9Ba7rPsX89O5Wfc8axYqYfWGfrBcxg6Bu+wWoFq1ae1rSJv/bKUiDFTUrn1\n0HJlSZKNbzh3+73Xmk4ZzNpdXYVmdY0nre+0TpKiwVWtMt1MsBUbkepeDLQehlXfvS+/uH6bwRJK\n0VlHZywiOJHHeuca5CLNv3nMhDFSQsIVZJJ3qsSTmD0ZFGboUEbGYCWtW2ZbKVoLxS4XxsuV8+nM\n+XyR8rJUpsY/XprHcKkFp5oLoJLhyzoXMHKAiEkXN7OkFSfnvsC7f4QtizXGSDBRwnhx2mBowSM0\namWVkkwrS+csDIqoDVgjw4+RqThOK0oOGFUwqjSOasvqtaE6TdKaxcjIrV4llE44K3awISd8segq\n5bP1Dts7sG0oRZZ+gBwrGmdkzF5IkZwSuqimcm2lohKlWkEOZVWlfM5ptfAsDF7Mj0JVzHOCDG7w\neKcxnWM3PPDDrueb/Y7joWPoHJ0HaxNGrzyPSrKZY68IyjHZykkHbDD8nGdOXz7wt0+v7HYdTpvm\nR29xxjJ0Pd7ZzUs8FzG1yilTU2aOCYXBFsubwbAvHd7t8N5hrGoVigx+VmuqZDTKW3S2dNWzo8eF\nM+Pzwt9ePvPX88i7bx/54z++55tvH3g4DHTeyaFRUrNslcY+COxhdMGaSi5RfPYzKGWgiAw9hIBz\nPSUr5jHyepl4Po18OU28nmYp+1Gb7FsSjeYnXkEhkMowwPFR8ebRcdw7jMqkOENNRKVZwsI0zVxe\nFy6XyOm88Pw6MYVCah05rcBZw35wHPc9D4On0xqrFA6NUzKntZW3eK0hZcK4EEMm5xvGLEEBblj3\nXfxev3wXt381hN/zse93pVYYZ+iGjjdPO94cduy8Q5fakpcCqrQZpZUUsrCuYqLkilWKUKr0FNqh\noFsTMyODMQ7asLMObxy13PkEtZcg8KvsG92yxnt6ZQtmrOjt7U1Yq/oqn6OSBumvXb8Na6WVZLWU\n1rmVzCMWmbSyTrMZS6TUhbdqYZgzPkrjJ+ZMrIVUIC8zGBlUnLUhK0g1M8ZMUIpoDJfLmWWeUKXg\ntAxjFhe0JJzs1ca/8QdrrSRayYM4k/k735EGgLcOvMAT9+G7LQ/5HmQSdxhH9sNAZ3u876SZVJqM\nuzS+qlHMoZCLlGouZdI5cb1qNIWsjVANtcAaGlGLrdl1qVKm1tWaszFNYhXuqreWh8MBnyEtkdO0\nCEVq9dMGsUaIGatE/KO1bhmK8JOruQ3+cK4T+l4umCKiJhnMrHB9Jw1QJY1FmVRk2/g0y2HXk0tE\nUTl4T+dda5axmZG1txNY98St8VPaNKOcpRLrO8vbx4GHXoYCoBS7fY91khlqhcjQl0ZFaz/VOItJ\nNFy/ChbtxOfctXtVbdSauNG1ddu8fmIIxBDIIaKLwqLQJTONI0odORwGrJasWDLtDHn1x6+NdtqS\nggwqa0wx1JApKaNMxVuD955OW2JRnK4Tf/3xmefzzGUKzCEKyaLZ6KpmOyteNA6lKt4pDjvP22Hz\nLgkAACAASURBVMeBd08Db447nJUgH0MmLALp9F0n1LusmK6BT5+vvJwDIdWbAZhWDIPj4aHjzVPP\nN8cdx11PZ8WTRsY4GpxzlJJFwZwz13Hh+dOZcZxlJq82oLJgEPeB7Y6SJ5/STam5rQbFJvS633l3\nQYaKNAxdZzg+9Xz/zZFd70Wt2wwqSusd5ViIIbJMgbgkciyUVLBGEStMSbjoq6+Q0jJI3WvL0Tq8\nXqf+SEO9VmGtFMoNJ9eyX4UtdWMLCQwjb0BdRwjW+0RRbffzSzniev0mgXya5zb2SdgcqikUYxNx\nFIrIzUtC6UK3s6ioJEspMFGJtVKNaC2l3lGt61xYUuQ8RYox6A5ikjFenXOoooSB0RwHNwxcq40Z\ncAseLbuoIrGVEqfdxDoJhV+sQW5BfYVrjFJ0xrDzHZ3323gypa2Mi0K696XANMXW5KosYWpD3RXk\nSG8M3hmK21pEjV99G24gJBkRM4ScBNPLclAZY+iNFeVgLVymQt+wyFIFpkHXNrZMuN5U2WdidEbz\nsZFS0WkJBLlBKGIdoDFGsEdrxSlQVamydK0oXaXRBuRS0arglRywto34o/HWZWR7m7jSNkJVNOe7\nNhwgRFJK7DrHOz2gS2LJInTynaGSmZeZWjNziITUhgS3Q9EaRcyiZ1DVYpQwPbw12xizTcxVBY+u\njS6YUyKGhbgs5BilKdUgQqXAeXkNKSfiNMmhXzJWabzWdG3kV61CyVzNqwpFXPtyRlfTbAIUKRZO\nl4WPn8789PGVy5xauS9uiaWNUZPX0LjVWuOdYug1xwfH49Fz3HcMTu6vVlAGQkxNvVrIITNeIudL\n5DIlpiA12rqwtYLdznF86HjYS2WldYMFGgsjU6CINfW8zMxL4vnlypdP5zb2jo2Ns7Ez7vbebQf+\nMgO/S3PX77/7hq+fXkUjMDj2u45d77AbU4VtDoI2ol9JsTBPkRwEVqmlUrUWWCXXDaZZ4ddV6by3\nHq/Mpm6uZa3YNZb1UFqfy+3Pu8Jhpc5v/uW/vJeyKRB+9fpNAvn5Osp9VFFPaiMez6u7mFIK47VM\n9nGGanteKVxtZJwDc2LLHjZVZKlYqkxnqYpRaTSaHmnu+K7H2UKJhRwWSpR/t1JRWYQ5WyBXgke7\nqtgVvUEqa323vs2q3uhDrUAW1Vb7UFZ/jc5ZHh8OPOx3aKeJKYsHg7Hg5H6dtdQKr6cXQpVGy+U6\ntglFmhRmktH03pEHB0UaODEllpSISaaZ5CJBahg6UlM29mhxWjRKRD5GiWOcUfi7zKe3joJhSmzD\nEqgVp8UhzhgZUyUFSaXmtEnoCwJPaG1R7XAqWdgrymhxNSwFjORCS0gC7eiMyQu27jDo1puoLYgX\n0FV+3poZI43lqoQVsYTEEiO73uEGw3mcuISKG3q0rSxxoVzEROsyL0wxUqhYI5ainTXUZOh0J9VG\nLQ0Oa0G84ZvrqEDJtgSzTjmRomTkKcXN5K3UwjB4uk6y4XERAdqSxUp25zsO/YC2Trw/amVaIs/n\nC9MS0FZ6DqiK1eKznWNlvkR+/PDKhy9nXk4Tqd6zqVqzXt0S3FKhlIRzjsPB8fDg6Lym1Mw4Tnhr\n8d6x8x6rNCFlSobzeeHzl5GXSyIUjbJOst9SULrinOZw8DwcHN4qUk7Mge2wFUStUJaFmALLsvD8\nZeTTlyuvzxMPoYqwTqmNX37Lkm555zYGr33e6/9tOepWIcu1xQLqLVvX0PcdnXdslsjtl7Eebzqc\nd4RQyWUmLJkSJTmUyk9EQHNuRGOltn9TaXFPHKyTgRIg4j4liRF1fd0NG19phOrudlV73U2vIh/a\nnRoUGoLR7vs/p8ESD7uB1UtAa71BE6CJubEcQqFURSmKECvnJbPEQtUarQylVlIqWNdm/iFKuJAi\nS050LRuMKaGNxVYJNiFEYvONXnnOutGzpKGpGqNCyuQGXW2f4XpySrLWQvp66N4tMvmwmgpRK9CG\nXBRkhaoaY2ST5zYgwrQsse8t05iEGWJlg3ljSL2l8w7vPWnlnqfGP04JNS/M8cq4COVst9sJ6yRG\nppRk4IB1mK7DeIcyBj30eG/pnMEqzTSOpKbITLmAliw+AaYWVFaUZjGwUi2NFqP93bAjV4G1SokY\n2xwtS8Joh1WKnEX4ZZpfikKz05qDtW3UXNuIuVB0wTRef6kizV+zEVUrtUFHtRZCDHij6DvPh9cT\nc5Jeg7KVmCMxBxSKHOWwG3OQakgpKAWL42gHHqoixYBTmqHvcFZMvHLOomRsDoe3ARKJlMRxr2TR\nB8Q23iuGxDhNnK+jjCGMgayqeK5bQ1WFVDNhioSYuM4zU4ob7uqtFVGPslzHhc8vV378+MrreWGa\nM0o58eivlUxucNHqAS32vp03PD32HB8kkA+dwxjZb1kpxhy5ThG9WDH7WhLna+D1tHC+BKalEosA\nFNSC7wz7vefd2x3v3+zYDw5bC+O0yLAGKrkmcSzU4igYQmQcEy+XxPmamObMrihcC3S3aw3iDUP+\nxaO3zLveBf5fXg1SaptVaVFd+s7Qd4bOG9apUwojbKhaxRsnBGKQoS+bg6KCOSXm1CiiRjQtm6Fd\ng8l2Sjz+BToxmCJDmE1pFGalJOtvGV+ltAxb4FHd2HCCLtxV9euBgWqKKvXVwXV//TY8ct9tH4TQ\nBKU8tKa5JDW/Dq01uSpKKXhr0bs2JzG1afTa4L1uWYBs7hATXZQG6TgFxmmh62QCempNzVxyG3ws\nRV2nFb/v95jcPtQ2uUg3bwbWjEB9jVfdrso9y3M7SdcFJXUYJcuUEGeFsifTtzO5VsEzlaZ3DqtD\ns2a1OOfYdx7jDdaaJvBYucQyd9BG4SmnGHA5o5QWT/aSNvVYqRWdE3mBlAImZmzKstibGf5KJ1Ny\n7mwbJze6Iaze5nKSaa0p6lbCi3hhNQZqIgtUgyn09vO1kiG3NmZ8rTirG8NEb0KxWpujXUvMVzYZ\nQF1Nw1gFL+CdwXeekESN2nmDBkKQxpVqVsGpTaJSBpJSMo9RVRK20TAz1huOh51USUjfoCqaR45s\n9Jilb5CSCMpkXmfdMr6Ve51jQumKN0I9MwqBIVr1GJbIskRKzQJHaeHUkzUxVq7LwufXKx9fLnx6\naQ3NIo3oVTaU77A9jYizhs5y2DvevxnY7yzeNagLhFpX6ybSSUtknAKX68Lr68x1iq1Xo9oSVmhT\n2e0dT089b556doOjs/J5uWxvop+WmORmOjdPkdM58HoJjFNrcmYaFvz1Pvr1ELXWv/UO8uSr/bY9\nv66oRfPlMRrTW3a7jmHX4bxtFa7a1qBCejzkloUXgVhK8/qZYiYkGaytqziB6kYVVEUSsH0Txa1y\neqU0WtWWBDbR0DoCrt7dc12LqbpRndek8D7x/tq/6dfBld+ItSKZAVTGeSYEUXn5QWbeoTW6KNAW\nCxgVGPYajIg+aqkbB3QtgXOV/89FpvB8/PSZ03VkHGfJroyGZL7ygFjdyHbG8z8e3pFT4ufrmZ/y\nJAOGFW3+3u21//JDuOXgDedrP1+qoTU/aPM3mx2sc56GUGC1IZuCkQkLbSi1YMhKK/rec3x8YH/Y\nySGUElqJUi82JkMKRih+tWC9F6imc3hVJEuwnlKkCkkpsIwBEzKHpKjlSEXofVZbjNMyabyutMhG\nX2tNGGOtsFOMeKyXlsHnnNCrwKb9ski23lupAIqq21AApRQqBtl0TmOMlVFqrAffas5/f8Cs/hnS\nC0EhzUprGn/ZkHLBDZb9zkOFGCLTvKD0DRJyd3DsShgwrRGljaLzjsfjQdw4SzNR0gIN5QapxBgJ\nMTaHw9aYalCb1gpKRtciwrIGicm4vzaKUGuBt0KgpryxakCEV1PInM8LH59HPrxcOI+BmKCiWzOz\n3uA74esKtKUUndcc9o63TwNvH3d4K6HPGC3VVhRhWNd5rLHEOXJ6XfjyOnK5xE29WGlU4TYt/nD0\nHI8dnVcoMqXK1/udjFvTVWFVE9MEYX3M18jLy8TpMhNDkpFmglk0h0Pu0p67ILdWu+3xr9LwO5jl\nPrzdHpZNaIzCDo7hMNDtOpQFUku6tBI77VohxWbZAORCbIdloTKl0qqSZudAbT0WgQFthb2Wilay\n9NqIOnp7PcJRVxtMUtZMW63q2LpBSWsQV21t1vU+G224/Ctk8t8kkC8xY5rrToiNZN9Ov1w0IUKM\nwlG1RmOcpbNOMtK7WqsidB7dPhS165hjksk/48QUItZ5OutwVtSRfRKL2pgiFMVOGX7vD/zPb3/P\nx/HEaR4xaHJjstwLhuvdalmltltH/Su7NnlWRibvWG8Zdj3VQsmFaZ6hFqw1dM6jrcEYQy5wmQOx\nFJy16BB5PD7ywz98hzGFOM+ESRZ1MUqann0v/uNxIB8PzDGSSgZleIg9MbWGUwiElkEqO6PUgqkZ\n1wJhbSZlRhuccaQipX8thU7LwVIQTxqKWIHqKnbDGgi54o3FG4daBUtKJhRVBaUmUEWUm6bH2V48\n0EvFdD3Od3jvMcpIs5ZbWdoiMFKFabx1dN6zhAXvDLvOA2IPnEvBO4PpNFMUxeewGxoDRzJiUyEp\nsR1YFhjcwK7fYVzHftjx+PDA4/FRHPFUxWjJgFPzG49BAnmMsdEGNZ1z7LoiwdFbus7wtOt5t9/z\n2uAJa8B6L1VoSKSCrAOj8EbTeY9SmrBkPl2f+enzmZ++jEyzlPbC7V/x4baZWmYpgjTZM8dDx5tj\nz5tDj7eOofd0zmG0ML6WEIk5E2LhPCa+PC88nxYu19QmVK2BBsHpTeWhDUPWSmCHOcj0LGtsY2Ao\nlBKqbi2VFLPg/qeJL68j1zlCkkk7tTTD723LrBGsbR91a+xJPG+BbA3c6777FZhB4Iqy+SQpryk1\nMc8LoUqVb61FayuuqlkoqHGJUkGlTMjN6gOYEqSqNu3BCs1oZTAKvNL4RvEsdXVBbbJ/JTOHWT3p\nV4rkSvRob/Ja5W/PVYrSsPOtbqmVUlJ7r//++k0CuTarx0o7nVasqrQhB4jHtkLw8K5zeCMcVepq\n4CRVfCoFUzVWUl5yTEzTzPU6k3Nh6AectSKMoG4Zk27/7kE5vvUD/7B7IOeINzemBfxr5d4tM1d3\nv+6/XxBL1bK+QqySoaQokIgGhq5Ha8uwvr4qLA3dvEu0Ep+S3TAQ0igLu6kiNU04VYAqMALOoJ0h\nFvHC6JyRie4poZ3FhEhYRD1YVERMsSpVCduhFmELFWU2H5mqhCa5euKkWjBYDCJM0Ua1qfIVp42Y\nVDVF4broBRoUcZW1O1z3SNcfwA10taL7HXnoyd6J6rNkTBWsuLIyfxpn3RaK6+hzJvhA5zqGvmNJ\n4jr4cHyg33d4b6XKc6ICtqb5tmuZzJ5qJebMYB3e79gNT/jDN/QPb3g47HAPj9SaSTlSQ0QrK4MA\nUqKkRM1SRXnvZR3XSsIwPBw5vk186waOb7/B928wSyaniVqCCJJqpaTCkiqpbXqrDWHJTFPg+TTx\n48cLn15nrnPafPFX6Uitq8lVy9eUagyQNjsbTUqV6zURwszVF7wTNss2JLpkpiVxuQZO55lxioQk\nCVVteK00r6VPYrQmzJlLDcSgW5ZpMDoDWYJbo+CVXAkhcxlnXi8L0yzsKVsLqonq/n4zfYWbtOB1\nv/vuGSwr5Hn/1bVC3uptlNZYL0pl1eDaVG6qyhxym6jV5PgpU1KVHp0gQMRKs6xdm97t9amK1Rqv\nDE6tnuOyH2ttz1gph01v0c7FrdK8J8mtWon1871DkoAq/veNmfZr128SyH2nCSGLB7JSaKtErdZO\nX2sMxkrZris469BKeKwlJ8YQialAlkaUMZrdUCFlzuPI+XRmnqTBtd8J3S+myLIspJy2eYtGK3ba\n8mg9e+vojcVpc1skd1nC+kbfX1tZp24n6sYlpW5+CaVmQg7C1kiReVoENzaaLneATAzJOWONxRiL\n0hGt5QMMIXCZJpZ5ocZMp4SznWslxSgNzwaupXJTn1klisGkwTlpkMZZDpS1aZmRzDuV1HBB4RBr\na6hVyvzcmnqlVEznG1XQbFx2YxS2KTpV47JrI+P5VJVQrLTBKEfXPzLs3tHtDqjH78SThcpkKtrI\nZ2JrxJSMLmJqpmnNIgWYSjYZ7zp8l+mGhf3hSA0zpcK333a4DgavRX7tZKSZMeJgJ973clDbUtG+\nikvg4S3D2x942HWyZnYddT6TxhNxGjFKHBhLlc9Eq8ajd55YIeaKsYldsby1O/w3muPxQLZ7bAjN\nLkKw+t5ajFX4mJmAkCK1wJfniZ8/Xvjrx1dOc2SO+bbmVAvkG4h6VwFyz65RLEslp8hZRdlfjcK5\nNofXgLGExLKIEVRdm0Cbtlq1ikr6GynBOUSul4jrtDTIG8asasVohbNG5uommKbCZVq4TonYBmJL\nOCxtTdwy7O12/u6+brts41vf90ruv0vdk/Paz26N+JXhlVMRyw4SRkVizNv76WKiJMH3ZRaBKM+r\nuoGn0ucpmz7DWEOnmvipvTAxNSs3eNAosbBe4eK1EFG3X7d7acyuX2aJtW4Yvqpfx6D1+m0k+gVR\nTaYgs/KQN8khSrBaM6VqrpcrcY5cn084IwY3ORd+fnnlMs6QJC33Xcfh+EB1hiVGzucRZTSDcwzO\nMIeFcZ65LjMhiblUKTefbKu0sFSq8MbvvZbX8q02vHzNgvT6NbVmD9wQANSt8aE1fd/z7vEJ5cSY\nahrmVgZbtK7MYWnsi0KtUhGs1MwPHz8xXUYqlTRN1HlhX2T8HaY1ebWmakO1ilgkwIuJvXCtrzEy\nLguXaeZ8mcgp41Oha3hdqYocCimsDURRoaVmXibZhKhKO+PpjahyraQ6m3fEWgtrRct6ErUUfPeW\n4fCO/vAOZweM6UBbUePWSlGGoh1JG4JVuBLZ68hDjZg4Sq8C4aLHHIklUoylDkeM3vFUB1xYmJaF\n8vwZZyOdL4QqdsVxmdn1Xdu4sO89qXHBVc70eqDDiE/84Q3dm7cMb99g4kh4+cDlpz/B5QWVFull\nGI3uOzSGjGHOMOZK8BXjE0/HxKFRyEopaC2ykJDg+TwSvac3tjnraXJUfHo986efT/z85cp5anz3\nUlCKZj2xYrs3ZNh7D1UYMrUWEpAU5CpWtlpLL6MRNiXjbD2KWqTZmnIWszHdxuohrCrx95Z6MqRK\nvAo1USmFnRXOAaUQJhmNbKzBdxbnZLr89ZqavkFgxzX+bAG50noxt8ebbd0vMvH1ql89f+1ByWNs\nVETFBr0TQmL+cuGcq9CYWwNTt0ox5SyZtdV8M3hSLJIgCvrRRiEiEA1iZaF12fD9rukybBO+3Qwt\nmuNsLWAs1egmWmwJa3v9WUHVdz2AljjeEsJ2ALbIf0sX//76bQK5cVhXpayOqwJNQ1mphIolaXzn\nKUXECqFVFKpWlpgJsQ0pVqBKZUpyIKRcMcbysBfWgfOWUMqGUQmeLidkXUn+FVRRDMZxdJ2U8Q3n\n3Xig20Liq4X2FYtlDeYte6KyBbUlietcRXC6dfSTqBPl+bHAEsX7o+s8Q5Wm02lapJE3R8p1IuUk\n4hgtTV7nHNY7YTqUNo4sSnNzSYlLTIzLwrQItGK03jyhvXN0zkkl4oR5onRjg5RCXIMybVWHiFWG\nXluM1W3osBwYIrCQDYluw7RzwmmH9Y8Mu29EDFQRqXfDjkUJusN2HVUrriGTagQd2XUdnQZlneDB\nh4orkItCzwl1nehKRxwvxPMrSr8gs48KqCqVWMrMcd5cG1PpW10riYBDEWPiy88/ySCIhyeicqjd\nE0o7NJ7w/JEyXVBJhlhn7Sh+h+32uFyx80ycA2occXph5z0pRMI841zG2o5YeiqJkIWDX1NhHANf\nThN/+3jiw8uV8zXI6MzWwFz37TpZaZ1yY7TieOxxVpFCani2rPGC2MrqpkjdGsQpUTIiIy+FWr0E\nbLOW/sIJZw12Ruh7lUqIAdBYZ9ntHLVklimItF9pjDPYzopIqlH40AprFcpYbCm4VPBR2B9raqpW\nXHndUF8lnOqrv91DmF/xx7fHb39DKXJRTIuinKFoqea1bhREhO1jDAy+UL3AuqkRKUpt0FcpSINZ\n9r1psE41Cm8tO2NxWm+HydpTux/jt30GLXDf3+NWm+hfvAetMlkP7arW3/5zCuTO4lqA1MjmV0oJ\nL9woUIaIwu8GMJ55nFgabmUpuN2enfXSNVeC4Snn2+I1jZxfW7ATnrg1MvBY4ahO5LexxnbyCjtj\nZz1PXS8Kw1ao1VYuyYFft0aQXLe6SDICod2l9eOs0gQJKfF8uQqFSYO1GmqW4GmQHoFSpKqYlkhV\nhmEYUMYwxUwsiIpVG7LWTEWCa86C5w3G0FdRc8ZaBAaZF6YcmXJmToUxpC3YGmfE8yFXaRxah7cG\n6/WWUyigFsGBUxVcNTdamUWUqs4J7azmKgIrq9rBJZlVoRJypC+KWm0LIM03pXmxSDNRcTgMdMNB\nXOZUJtWMdRlnM9aANhbtHNYLnFFDRn16IYUPZHUlxCpNwZjJJqKMUAxLzSxh4XRdBDM1hpgSzjez\nKjQHDPM48fnTB469JxwfmB+f0IcH1P4dxj5Q3CPL6Zk8nkhhptoOs39kePseUwrqfKK+nlnyR0IM\n9H1PVIqSIrrr6MsBrMZ3lRLOXKcLYVr4/Dzx85crf/t8IsT2nlR9Gzqtm4EbrepBnBv7zvDu/Y7D\nzot5WuutKKUIRQZP69VkSf99IJdZok01a4RbVbN4EGlEOGac+JOXWrheR7SzdDvP8aFnGQOX80zv\nxZ7WeUvXWc6XCaNjo9euPZRGf50z/hrRU/4qaglZQG3ZuWytG755C9K3jHT71nbWrYwPqK2iVVQM\nVXWU2pOKJteAqh6jvRi8GYUhYJhlDTdYUinxIQopk6pI+XWbVqVU0ztoTWcdO+OEQ84aJ+qtqXmH\nEukWmLdmdXut6yPr/ZQ1s1+nHLU3pQq2s8WUX16/zczO1lyYl4V5XoR1kcXE3VmL1p4lO1LS4j/R\n0txaKguaw+NbAMZ5EuZALaiat+k1WSHDk4MINeYlEkIUS1frMJ1gpNckJetcpOnkteHgunbCqo32\ntp6oajUg4nbSSlNQPggN6AJKrSShut1vDJG04o9BDhynFckkdoMnpsJ1ylSMUPGspdMadMLERKiF\nag1qGFD55gOSUkYZQzJaeHSIejI6gz/0Qv1Tlss0MU8TcV6gFnSQDnhqsu6qxI+lVinlpyhClZwS\n1qomJJH7ySUyLxPGgFGCPbu+a835ilWw5MQSA+O8oM0ztXaMY6TvnYiMlDTFnHMcDwcOuz1ud+A0\nZYyZ8UYz7Pdo56nOUp0D29SlVDQT0zTy01/+xJ//47/w4cMHxunK+3d7nvYHdkNe8S9iSeSiqUqG\nLCxR+iSuOLwfCCERpjOvn/6Gmv+BngVjKsYocinMU+CyVObkSHVHbiwenwtv+qH5t2v6bqCWSAoz\n1lpSSijr6J3HDTsKwoD59NO/8PnLJ378+TPP54XrHBFHWwnGVNU43mw+QEVpKBVtK4dDx7fvD/zx\n+0eeHga8MtiN/aBYsphu1Srsp5AiSwyg1sO/UQuVWAqjKxah9V6Dx2iZA1tKpu8HUIrL1WE7K0SF\nklEO7IPneOjkvfSavu+Yp54chfi/2jwUCsZa4mlh+elCDiMllV/klvUOG76BxIp1+s/6Lbese3Um\nhDuYZYXhVME6xcPRYfZHsH1r9FqGw3vefPMDh4cn5tMHTj/+X4zjn4lzFLGZamtFGVROt39TN42F\n0qAdg3HstGmHSIsBbcqRghZ4Kyq357UKJLMmhqrBuHIAlBtyu1Vgm/VKcyf9FaIO8BsF8hITuoK3\nDtUrTDCYHNsQA0PBERE3MbFsCMQcoZ3cNKk2zYDJKBH1aKtFHGE0OmqhiLVMOZVGuwqxQSzNa6MK\nPqiUotOWg5Vmnli3rAvmBp3cHbLtWpswdwux/TUj1pen04z5yxcqteGAFWMkoHlreNh5lPVEZYlZ\nkY2wTrQzdA2uSONIpJK1RmuLc0KnC/Pcsn9ZKMLOMChvxVCr+TEbLab6RinSslBVarCIHHbkKjRE\nJHiUIswa67xs6lopSsQ8nZOJP8oY0jqsoLLWMKJYLILzbtxnLQKo2nDTKlEKiiblyOn0gp0XxlBJ\ny4w2mqX2MOwp7MhavF3E80YGK4QQmMYLLy+fOJ0+A4X97j3Hg2booigqfSKkBFnKZjEz00IBjGKx\n64879g9HHo9vePz9P+Ie3lKqZRqFsjleR6ZxZByvLNOFsAh91Psrx+MR33viPDOezlxPr5zPJ+Zl\nZlkW4hIYvIfmdZ3izE8fnvnTj898eL4whyQq2nX5tICs65o0sDEcrNUcj55v3x/44bsn3j70PAyd\nHBRGDMkosORIKuIlpI2MyFtis2bIhRCTeBVlYWxIpimQWr/ZEIuZmzZSxfWDwXqxe73OgZQSFZo9\nc4MbasKa2vpZzSu9atGDNBm8dpZRqU3C/vVWUl89tsasG3zcgqRaab+3r69PXx9VGvqd5fh+R3Wa\nqqWavk4JqydsvrIzRwqZtMzEKYgnkdbU2oaUOIVR7cDR0u8yLSuvWDyWXhlUUc3+WRhgtGqgBYYW\n9G63thX1dZXg393+evPrY9v9/zrdcr1+k0CeU+veOy/sAxspOWG1JmVNyAaqR2tHKYXpmlGqlYvN\nhrQUoVJ1RtNZTWfF+VAhizcpvZ3YJsqbGrOo7Yw2m/lTj+XBOpwWPuhOO1zzXcm08U1tJQlB/66l\nsZ682/srTJDVa6FUxRIyry9XliiY7erZoY04xVlnOQ2e3eOR7nikWmHBJkrjZUvwmq5X4Z8qBcah\nvfhq5yhloamgi0JZgU686ygpsSyREBYZYlClf5BMlEOl8ZmXMTBdFjovpXzIkbhEFGJhW7JqODko\no9rwCSdmQsvSrIDXAbuVpWQyrXGqHAqR4+cUmGJoBl8Zp2XAQVaZLz/OaOskC5pnMIbx5WQJZAAA\nIABJREFUOhB3B+Z+j+v29Psd1llQME/TVo0op+h3FmfE8bDrlDgOZvDasnMdqhPG0Ip5LrFs9gi7\n3Z7vvvsjh4e3HN+8J7s918tCmF+Yp5HrdeR0fmWZLuRlZBlHSspY5zl0Gj/0zMvM8+dnPn/6yMvr\nMyjTDrhK6ntU1YQQOZ2e+fNff+ZvH1+5xsDma1/FkkLwW9XcZ9Wm9LPW0HeWf/j2kR++e+L790cM\nBacESrTrsOyqsFpTceLfoaQpF6xBG0XMmdkEppSZ8yL+KhusLOwgGWsn/ZyYYrOjlTQkNR56bgpi\n1QaHkAoxLcjAHVHq5pTEJVMbbPOFadrtXwRhtWWsZY1mK6h8913rdY+X36HiW0VCe/+GwfHtNwdi\nliqylEpZFpZp5pxGfBkZzy8sly/kGEVVa6T5DG0AimsH2y/oMiWLsKxrE68a4C8WtmssUGzsFWrz\n/1/JE/XudW9Bu34dzNu/q9Z72zD4v79+k0Ae2niqNdONJZKbKc24ZEIW68mYI8sSWKal0X0avqsM\nJRe8FQc5rStzjuLxLE1nUsuGUlOTDc5Rh56oDSlE4jxTcuZtf+Cf+gODEtxa13UprKzddlVAle0R\n4XKz8Uf1VtKtk4ZkYdZSCFMgLLF1v1s8p9n3aph8x1PSPPV7HvYHfCeUyZzaTEMri8obyQi8dzjv\ngYILDmtqGwgNqWRSLDgsFrHZzDpRVGHJiRCl2YnzhDny5WWiVHh5HZtdq1QNuXX4K2qrYLTRQpns\nHNZZUhGPipTFXdJqLQpLq8nN1bJ3lun1lenlyucvJ67zwrxEllD47tDzj9+84b/+4XuqNtB5fN9x\nfX5GGc3++MC1wFwNQQ+8/eO/oXs4SiXQnBHfffc7tDPM1xNpvpKiDFiwOhByJKQItYonutEsKUlD\nuQhjwSiN0bY14D2X1xdefv6Z+Xzm+vKZ1y+f+fT5C+fzK4NVfPM4UJIIgZJxvHImVvh8vjAtiXGa\nmZaFqjTWS+VSM8RUuZxHfv7pJ86XiaIszjZctYgR14anqpVOKKW0szL1/R++e8N/8cd3fPO0p3OW\ncZmYloXzPKGVxlvP4Do6K/0L42ToR3GivK2qEmJsTpYBUyTrvmZx3DRVBFM0T6BIo89pqRBys7K1\nTuO8GN1Z7bher6QUULk9V4OuRqrKKmPQVE6UJZLmdEd1vF2ruI62h9YIrbbdKBtzVUxuQVCtkMbt\n5xVV0FrhvGW336GrIobEdZwpWcbzTeGFl5cPGBLaTAyswipRA8cUhN67Qqtt36pGSSwFjNP4OlBq\nhioSfa3dNpatIOIzVWRPGdXqyY0LflN23sCG1WV1q0FYzW4Vkqz92vXb+JGjcFbUZlprUleIMbOE\nTKiJOVUgURAeca3CS9ZtgcaYqCXhtMY5g1CwAqkN2KUg01NCYFmEZ10V9N6Tg9C6SsocteXfDkf+\nu4d39MYQcxO1rNapW0ddbWZZaw389VJsGP66/urq09KifCnUVn7etKByUBilUFqEElo17w8jzI6a\nC6U1pjSNhdAadhrBsql187Ney9mYMzGEdpBIY5EkNrLr82LOhFz4/Czjyawz22aojS72lfpMSRBX\nSprLWqvNPrdWKc9l8tNqXwv7zvOHN4rd9wvKLpyXj5ATpiRUiJipw1wz/bVHdz1OJTwRVwOmGnya\nydPMPEeyctjfv8ckTZoL0zSzjDOkmb7v0OyZSuL1+RPkK1ZHasuwjBLnu5gKJUBMAs3IDEVDjpHL\nl0+cfvyATRM2L5gUsWHGX07Y8ZldWPhm98B/+f6B8XIhRvHvfkoXni8j8afPLEvk4+uFn09XihWx\n0NB7DvsdfddRqiKlRTBmpL9Qaia3NbQO6rBKRFUiDFO8eez5/psH/vi7Nzw+9C2zFtfHMSxcl0W8\nhKrYx4Zs6KqnV9Bh0cqgrRLaZhF74zlEQhb14gpXWGPYe09JcpD3RrVGaSEUEbKFGImzJCXalDad\nSyxfU8lQFNWAUaLJ8NbQWytNWK2bY2jbMm1ttb/c9seWrt7vsFUZeQehr19r+MRG0GtV9GVc+NOP\nXyipChVxTlznxLxkYs4oEsZWvK6iSK2QCsTafHNahrxW0aXSZhRI1eQBqyCWjNXtkGk+K6t30TY3\nQK8xRd1ubYspDQ6qoMpKXZaTrH71vV/bhdxfv42ys5WCznnZ/IBWWXjeubDEDHFBm/pVkNBa6D8h\nJyi5TYIRO9Pchh+IkVFliZE5yIzKGrOY8ztHTTK53KH5p+7Af3t4wz8dnvDGUGtpHGkJ5mFFxLfT\n/u/xu68ebc2M9YPegn1zLdsKv7omLsJh74yMx9JaExaBKYxtbmlKtRO8BdP2c0uT3tfSDK2qapOS\nSnNxi5s/OUqh2rQerRRLCM3vunCeg3ytlfTb4mk3dC9YuEF+svkKm/r4lj2tCkMU73Y7vp09/fsH\n9kdLOkjZnZPhckl0KrFTE3U6Y1Wl15WhZrzWMh6vQI6BbpmoVdGPJzSZOE8slwvX68R5CmRrBX9O\nideXE8t4QpWI9YbOd1hryTkyL5EpBuYiPineQekqy+XC6Tpz/fkTjyZyMAJHeK0xZSHaiDoY/vDu\ngf/m+2/4+BHGeQEUA4nL9UT8/JF5Wji9nPhyvmB6sYjNXYdLe4bHRxEQlQylTYNCNrtqfGo5CAUi\nMVrjnWHoHT98e+T33z3w7dsd1CpQWXNUDEn8XpQ2qCLujhPQlUgsieJkVqYxmpwLIUXmGLmGIKyM\npkpd8z/dsGARPFlyzXIAKBmMkRaB4mg9qWTWXot4rIj4S6wpvHMM3rPzHqUqwYatMQi3RuUa0NTd\nGtt6Lk1Tobb/1tW4cqtu11e5VqmcLzOf//yREAsxVsTAUIRlSotJX6cVHoXWlSXBkmTWQW42AUoB\nRbc4dFehKpme5ZQ4fqrGLTT3GV57X0VF3l7/FlJuAqc1NlBp/kxrEL97U1aPgFL5tes3m9kZYmAO\ni5gOVUgZLovmumRCyKQUZFGpKv2YXKhRUZmxRqOtQaNIQTLv6zhvXiIpy+CIOQTmZYFcyEmTZgns\nDvh9v+N/e/sD//3hvTA7qHhtebCeB+vx2jDmLJj09n6qGx7WgqzwxdswgdpoRvWOxcK6wG4Zvnyu\n8rM0MkvSeEdRmnGJ1CVitWHn/TYQthQ53XOthHnZSvIVUsmlkKtAJyHKWLbVdKcqJeVto0fFGMkx\nomtlaMVqqbndz9c43JqZQ7vlNUVogfy2GNfKRb63orhMM//Ph498F7/l3f4t335bGFxF1ch8vRJD\npsbCj+ef6a4n3nQPuOEJ1XmMt+hSYIq4kNFZkf6P/5tsNVedmNTCl+dXPrxesQ+P9A+PxFx5+fTK\nx7/9zPV8Ec5uE7nk2ixe6y04HA57fN7R57+iesuDCvzueOSgDOl5ooxXVI70Bobe8aANZo7Eq3DG\ntTKMl8Cnn5/500+feS0JtzP8u+/f8f5pYD/07Pqe49MerR2fXiP/8h8/kscZ3TQMq5LPVIVTGtsq\nwt4ZHh8Gvv/myB9+98Tjg0c1JlAupcEXmU6BMkYcKmOhKMGylzhznSxzt2ff9TJGsVZKRhwlqU1g\nJe6NMSauqXDVE9aIt9G+74Quq5WMKsyRqAIpBoyz1FzFSbGZSjltcZ1j33sehgFjDLuu5zAMqJKZ\n3CjeJnUdynwHkXDXf9pKW9kz+m4xFthwZtUq5fv0Y12PpYp75OUSqMpQq1STuYp4ylBxpg2KTjJ5\nLNfMnMSiODf4wxiJM0IH1duGVmic0ri25sua9NXcOkLrVCCpootS2x4uqGZx23QmCkrDZjeZfgve\nq/OhmLYBv2618hs1O6tgq/MSSCnjnKMqx7xowpIIoZC3oIl8mE1ebdppqIDarETnEJlCIixBPKJz\naX7RgpvrKnziXAuP1vFvuwf+h4dv+HfH7/im3wvVCymN3KrWWnm87SWIkVMre6ocMKw5wRqgWbON\ne7l+e75as9t6t/jkt93Djm7oSCVzvo5UFN55RBhmQSmyNhRkAvdq45qzZHcp3zyUUxaBjVIbE755\nZYt3eQqJuEQelOGHYU9ZpAF5SivYs3JZ15d+y3y23+8SKTnAWimpbu+FRkFMjJeRL58vvP/mkePj\nI50t6BJwRhGXSIrib0HJXMqFdF5Qk2+Zk+b59YQtlUfXE8tMpDCqyNVmzq8vjNcrPzw5aoLTKbJM\nE/M4M11GspJ1L0xgeY0G2uFX0VVxejnzu7c9RlWu4ysXC9YNOKtJqnCZZz7MM0/HB/b6xKdQ+fT5\nC9cYqUpznUf+8vrK7CvfPh54OnoeHxzH/cD+cGD/sGe/H/j46crrpy+8fn5mmhMZGte5tAEkGnRE\nW8HVv3M7fq8dP+ie97OhrzSGkAHVvN6zIZeOkAtzuXGec0nC3LKWLmt8rHgjtq5dsnTBM0QYo2YK\ngSXCEiRjlUxaM/SWXbLCsqpFJjlF2GdLMoNYwCpFMaCcaWZr4pQ49J6971C6TaivWlSlMVNTuSU+\ncAvSd+tNtQi/GWbdFt923dae/I/+6lvqpp5c9wNtnVYlVhDOKoyqkiwUqFqCf67S4K/NspZKY6s0\nFlGTZjqtNsMsBcRaqEUIG6ZqaH5Faq021qlBSl5dVXprMkvgrtvfJd5Azc1qWCvp/bU5AL92/UbQ\nimykksXIxyhFVavFZiKnSm0KwK0JQGssrp7VRYYmxJBYglDMlhgFWmlZRskZjeDeDsW+Kv7Q7fmf\njt/y7x+/5/vuAd9GZKGU+INrhdd304JuBdv2Otak/L6Kur9uz+D2txa95Y92U+0P33mZUqIRQ6uq\nQBmUStLlbzaw6wcKUGtmtWWIpRBWGuFKX9NC2yi5CMySxVAsLRFf4Q/dnn//8A3TPPHjeOZfLmfG\nFgzWTKfCDff/lbvbFiktcN+14nVtVVRJvH448fr+iTfvvkc7MDiM1Tgvk3XEuzsT5sBlvKKTRRVF\njoWPL1c8muAHdsUScuS1BF5s5bpcsTrzZlA8T1dePr0wXS7kEFA5b2dOUSt9dO1jyIYoITJfJ/EJ\ncZZrzXw6nRj1zGA6xvnKx8uZv75emQqoXKnXkZ/OZ6acKUZzmiYuRPZvBv743RNPD46+s/R9z3B4\nwO8G8VH5NPKXv3zherqQYqaqG5C1aRSUBhPRJeONYTf1HMfEe13ZLYpYDUrZmzq5CCc51sqUZRhJ\nKbL2sUoYQ9qhMeiisdWQsyEWS6ieCc/MwlwTC4m8Ngm1pcPjqxfr4yw9qV01HDAcncGYpizWqjFm\nmlDGgK+GLjuppItGhUKKmS4ojrZj8JqoLTFFaspboSQqi9qET9z2f1t3K5Fgy8jr7Zvu6YgZYbdF\nrfHqNj9XMmZwWjN4S1elUq1ZqIm1KDQy5MQ2Cm5hlfTL00vDvTsUXePhGwUJod0KH7zRMVVjHbX7\nKY1JIWMeW2W49j3v4vO219Ym6Ppgab9+5fpNAvljv2fvBtI+b69rXBJaTVt5UUrePBGUNnKCapp6\nSrrwMll8IYQgwaD5Ra/YsVEyY3KwlnfV8Y/0/K9vf+C/2j/x3g9NPyPj0NYTUSqZG2al1L2DQnvw\n7tdX308b9bb+nPa1rVnKPU6+/huK5bowvKs8PAxcp4kliumOZJEFXXPDTmWSOzWTrGqTaSrM0uQq\nNVNSapiHYm7vTUlZqIvNzP/f+AP/y9Pv+N+/+ydSTfyfX36Gv/2//IfxTExiiL/upVIVZWXr1Jtk\neH1/4G5DbRvs1nn3WhO+XDj/+ML0h2/RDx7Tezp/gDATl5F5PFNzRXuDt/KexJQZp8CyS3w5B/78\n6QXfDvspJq458uap4/e/e4P3HacPz/zlLx/48vGZNC3IaEZ5tXbrVEsGZ9vLdaWic4Wicd3Au+/e\n8fNfP/AfPn/kfI5Mi9D0IjB3itgVpmHPq48UwDlNd9zxOyPDM469p+89/b7jcDyirWeeEn/6l5/4\n53/+K3/6T59QpeJbInN7z9aMsVBz5vr/MfdmzbIkuZ3fD+4ekctZ7lq3qou9sdmkZoZDyUwyk43p\nUZ9ZT/oQkplspKFGJLuLXXvd7Sy5xOIOPQDuEXmqqNerKDt1z8mMjIzwBfgD+AMYBv5pHLg7HSnT\nxO9+s+dX/bXVUXFhIKqUADlADsIzXBipkPNsyisKYbshbjtCn2wNzwWdMmWY0U1tKGx1WLTo6l7c\nxRFsb1gHImWOhTFlBKEEq+2i2a75tOBTFss9AOuidF2u+NWrjnkuTM4oyt7EoSamZSzQmGt8ByyX\nBFNaswcecWZYKbm5Yqp3OaOMArtkDUaKLrx1VaWL1p5tB5DNHatOkdyKsIlQotFT5zwz10Y06qWC\nQ2CPeNXDQBSlWyVw1ecPweZ4metq5ctSXTSoJRFqzf6kBYRrwS6KWplp6ms/Pz6JIK8Rf0Eoo2XZ\naS7sd4HzYDXKg3OYQxTczQRYEsM4j4zjyDCMThWywB+opeKTSEG4CpEXkvhNt+d36Zrfpxt+v3vG\ns7ixAl2+btXNuFqqdSzWtqoKZ/v/8pd9bHGmND+6a1/xDMKmSv076t9Wb7kZjRweDuzvj9y8uOHV\n7TWP55HjaWKeRiiRqJZGJH1nDTLUShtkUUpQtETIkXm0JsB5zs5gsR6R201Hn+FWEm/ilv/++jX/\ncP2aF/0ODcrfvMjW9uu7r/jm+MiolTFfzdewGodLv2ZzJFWPi/8vqJCAXoTfb2/4m3hN9+7MMWeG\nm44b7diEDWkT2caOuTuba2wa0aL0WkjbDukiyCPvppGT2oKOm8TrzYZXr264efmc93cnvv3xIz+9\nvzf+e1FLLntiG1Epoy7YNRfOD0fu7088f77nZrPjxauXxL5nc33ifLb65jEGnl1veXl7xe2zKzbT\nzkvLmgWXkgUm933PZtsTu47Hx4l3Hz7y3Q8f+cu/vuWnH+4ZztbJKdb7kVUIT2kp2eZugYmRtx8f\nGF8M9L2yj50J6Box8+5Pi57yNaq1iQcg0SDq4C6NosgsMMWlgJMoosndFEJNNdeirQ2ZZWmay2J2\nmFiw2IwWW58l2PVrXGXWQqnuBSmUTWYOliNhnDTroVuyNw9nhcprgB/Lci2yvEf2ZCW12EfGcjcq\nMAKYXJiP0Z04BSjeXcldQNEV55wLOQQGhNEtNmOpWOZ3dV0Wr9aaYuAqJX5/dcvNdk8XTHZM88x5\nGOmxRuIaxeoKh0As4jKGRmNsNoRU2bFYFa1An1RX7L9l/9vxaQR5Me2fc2Y4j/ZiEG62iWFnrhGd\nLd3VqDxWeQ1VNGfyNDJXtDllQikk4Comq9CX4Cb1vI49X8iGP3TX/La/4Yvuyuqt1GSDFV8VxSlU\nLsh1SSGup7RkhYa6LwdXnvy7PvOps0Wh1cA4H89MHx9Jt7d8+eqGx23i3Xzgfh6gWBas/Zjpp5qp\nnU6DqFVBjMKALb7gtbyvJLHrIzddxzMSv4pb/rq/5t9fv+aLzZVVbQvCm/0N//GV8qe7DzwOIz/N\n54tnqt72snKdCHZP9e+yesKqpOrnXqQNX+iG/GHmXSmc5pk8zuy3vTWBiFfEbUeXRhgnKxNLIUkx\nvnwIFATT/yY4r/c9u6s9c+j4+vt7vnt7z+NxIGVd5QKsXGFttpbNUnJhOJz4+P6B65sd6dWWzf6a\nl5sN+5sT8zAiWuhiYLvtuNpvubrao2CZpdOMl5BHApQQOU7KeBj46e09X3/7nm++fc/H94/MQ2lF\n3qqwafeja1iAV1kQmAp3jwceHk5Mu5nr3Qa8uYRxlk1KepHC5fDlrQWjrw6KMlPr7IciyBxaBygV\nadYvuiS+oRCKxz9csZd67WDXry33rD6IePau/czUpBgX5p1SUmF0AFLE3RpuLdZ+Ac2l4h+UuAT9\nRIC5EHyMMmqWiqzWnQqz51Bnd8WIYqSHVYcqHLBlUWa3bHLAgrHqUrdg9ebnbFaH30+XIs83G677\nzjLD58I0DDyMmY1GIymsGECRYIPn1F5xY6yyeCpMrGuhgcXVnnMTn186Pg1rJQUeD5YxVwpsu45N\n6tn1kfBsT5c63r8/GIfcg3pm2uE9Ji0NePYdu42R267jhsRzTbzSnl+nK77o9nzW7bxCWbRmCFUW\nN9lqi8gxmjUI0NJ6+9V+egsKBwuLLuO7YAc/lHa96s8LyKWwW81HUWX6eADe8rebW+b9nu+uIl/L\nIydmNAqpj4gUyjRQslkftgis72dP5iYK+01H7HquQ8cLTXwWen7V7fj19pbPuz0v4sb6Y0aLpFOU\nTiKvN9f88fo5b09H3t6PaKj4CCojIEhotT8qZepSeNfzbDxmAo+58MPjI7+9O/B3uyvifeHbYeDb\nuwObTWS/67nZ79hsE31/zWYXKXlCi/tlux1pe8WzF8+ZRiucVkTQDPeHkR8/3PNPX7/nw/2JJMES\nPHwOgtRaFYrlWNNQuXHlC3mcePfDBzQETvNzbvY9+02k7/bsNzuSWAyn660naOh6AoHUQdzYBrfm\nvRP3D0d+evfA9z/d8+1PdxwPA+U8082+vsRQ5HqdNAWjtraX9HNjOTyOIz8cDrw7nXi1vzaedltj\noS3Atv4E9yO7iysvQbsQKvqX5mZQQMNCi8PLGFywtZTFKqvoUFx4l8ByG9rOR712SBXQYSn1OpWa\nOaoNoRYtnDUTJbKpjaUxYyIXbYomEZqrIoi0VoS5CkaxMcyO+DPFE6xsCczFLJOgQoj27DlCiYJ2\nAZIV2iuloFMhjYWQLbFJpmLWkAfsJC6VW1NSphwJYUTVa7UEWnlsq2Vex9LlmFYLjEV5aZUP0ij2\n7hXyfbayMFfHp2kskQK7TYeWrU9SaJS8q20EUaYBZmvPQdhYYu82w/Mhsp0VKT1TtyOkwg2JN3HH\ntXRckbiSxFXouAodu5C8ySrNr0bVdNV35S8JFkTaBCtCBG7iYBQoV+YAi0JYB2b8dVbnrUF73Whm\nQi8niAjDNHE4nLh+zLwOV/w+9bzvOg46M2hmHs2SMR9huEDp1aUTNkrqAxsi+9D5OFgJgqvYsQ2R\nDe6nCgIJ800XoZfI6+0VLzY7gnwEoKw5BbJ+HGmbuR4tBuDjoU4dU5R/fbwjqPL2dOTz1y/44vmO\n26ued+PM4Xji/uFkdS2SFZ+y/kLqyKh4OQZlmgrjbHkGx9PI6Tjy8DhwOgzIeaIbZ3AEWee4dVLy\nOQp1wyyPxOH+kZwzx8cDV7d79ldbdttElwLJXXtdDHRpIKbYmgtP08w4TpyHmeN55O7+yOPDmdPj\nwHAarLVZWb4PlqDZ5WguN6MVXOAWkBb+dP+B237LVUo863fsYmesqpUiqJdYGZj2e6nV9cSEcZMM\ni/BXXe0HxYKWykI7VafJVdy4KgwVfPKrgbusF2mZ2ybcZZkXgYw01F+51EFnRAMJ+8FpfdkpvRHL\nu6A+2+r72je5oiwEipjbpfqcBWk+7Cr0ccvFxlvAa64bGaMQSu3B6YJfKkpTpHj11iIEVYacOZTI\njHjnJ5xpF4xx4rsKj80sQVtdmemr51F+Vrn2l8X4p3Kt5Mm0dApIsUzDUjI6z9bHMilXO2FOgAb6\nlOhT5MUU+O37yPVktTTmXsixcB17Pg9XXE2BXp0qVJFNk7y6WuTqE+6lM507F8QKM+1jopOwGr91\nRtXPh3J9Xnlyhj455wK5r94Zc+ZxHMiHgecbeBH3nGPHWTPnYlmYoxozQakNjo1KFyWQknGQNxLo\nJdGH2BJLlvrntlokWKXEEqByoGII3G53XHW95x7Y65WKuPB0l7uvdEV1kFeToepnK83yp/OJ8zTz\n4+HI/xQif9dv+WK7ZZsHftKR++PEGAoTpRXmQhZ3TVWY1tS3MI2Zcp7ZjpDOkQ/HzHCeKZMh9jay\n6olXlT3gz3ExAwLT2Uo5nA8nHu52bPZbttue1EdCCsQAz/sNN5uebdeR50KZZsqYLcYzzEzHM28/\nfOBwHmFWohYSdY2t/JxLivDPV5CyWkzuDxb49vRA/yGSUP747DVf7p/xrN/62r207ioNVJ6kAK5r\nfNSkkirIngqSZmnqpWKoc3p53Xa7TxSUI3b/W1frJ4hYNUdq5qPt11DstXqOuee0SdqAu5OaWryQ\nce0bTBlZq8W00mpm7cQV7K1zoujsVtrM4mLywmXVTSjVDBeFbKg+luDKrJCLUQ/XVO/aiLwpkYbK\nLy3any0J1WYVLcvj3xLjn0iQ/3R/Z41si6Wgay2rGUc2ThXcdYHcmRDapQ3P9zu+HHv+7hy59RT6\nww7uNjOy6UjdNd27gXR2KqGjDEN2NdGgTqZrXdYI05ZQFwPP+p6tp8kLy+KVmvu71vJiASdz4Rtz\nwE5eoXYqepHmG2uvmqnAjHLIMz+cHvmr+ZbP4jV77dhLhy31pRkEtc2ab0rxpgBmylqgLDjK0Uq/\nEv98sHIHlf4Z1RIXigQ2m56+7zz5QZvwM0FaEOdK1Ucs9TnBxrr6erVhdgRhRPmYJx7nmb85PvK7\n8zN+W57xXBND2XPQzAcmPpaR+zxy1sJAYVIrgaqloFnZIWyzsM891+GK511Hnkf+l/M75lHJ7oNc\nKlnY/5e/HYGxZKxWPrOUQhkmTuPE8OGegwSkS0g0n/yrl2/48vmOv7q5QYuSROg6oU+B3Gfeh0f+\n1w+PfJNHhmJskmaZLYPY9oCyrAP19YSj2oX5alL6Pk/84/07/vLwgf/5VzOb15EX/WZBtbIstDW3\nellfNCpcRd6hvieeOezvhXWThNqyrN7jyod+UYmvNglRahCgCVnFfOFztJsKvmDsdUP/NYU9IMaX\nbuaE1t4jVI0lT6Iei3d5DdP0AnGXsrh8QpA2L/WzJgt8b5VFRoSaEi91/xoAQrCyso40glrtFVM2\nYiU3gv0e8XiH1qyO5b7qRFc2TA16t9W6crtoWO21Xzg+iSA/nyz5fVYYh5k+WV/FvrMWYl0IpLTl\nOA+M88w4T4xjooyJTelJEslkxjzwMJwpJSHZ/FHmZ8RMl0qhqmisUb38WJHra1AqcqYIAAAgAElE\nQVSml8hnuyuuunuQQxvstjDVWqNVIWUTpKtrrVSD1kUiq00rLSOyZnW5LOdcMt8c7vn98ILf2Ypi\nvVxDdXX49wfB0HXdQ1U6yLLca3U9M699v3nvv5hXSE2sOUE1aytzpSKkhnZWgqEeTTnWgXwisNaJ\nRlEinSa6yQNsarzjqxx5ox2j7swv6sGq6p7R4PcXhJjMX79R4WE+cS2JhDTU2+Rg/dFl09Y5gfW5\ndqYWPEsPkIwUSyaZA+R05nYr/N3zZ7ZJ1YKGASGHwnWJfNFdcRcGzmXwNaduFVzaMXXMLgRSTQlf\nj54s9XtmVU5kjtlcbdVSqht+OVbP5JKjWks2nKtznUNd125dhy27cn1Vd5WxEpBQGTPaFKSshRPY\nfowCSZmC9brsRiDbvBZ6990vuufiu/37alXIqiTsvWXPqY+tKWl/nmp1VwW5doPq6tpruCV1y4tT\nj1c3oopkqaYBNRkOMdphJUhECZQo5C5YM/MCtVCYQHNtLu5ITIHUXJOqVHSxZKjnrMTX+vgkgnzf\nbdriDBn2/Yar3c6q6nnabAxCPlnWIlpaZlitblhQzmVmzhPMM3lKDDkR1GqMpyKEslqgLCyKX9Jq\ndfF0EnmzueZZvzEONJUbuwhvWV1zrSWX1xbxsDaN6i9NK7e/LBA0qfLD6cC74ci5zGxCt9Q/CbL4\nGT0Sr6H6OHEO8LLJmhCvmzQsW1zzko1ZS52qWq/NJJY9K08GqW6I1WP774tQbK87mrIvW565YK34\n8lwgm9KNCF0RdkVA0yIkXICvpXKQOn9K9q/IMbONieiUzxqL0gWWrlX3xfNczOMKCbWtVKDW2Hg8\nnDgfB7YTXHUbuhCbrzhb6jBfbK74tnvgbR5aUGtZAKv5lvVdcPFzoYUu7teVYLLORm58XB5tIS5C\nHFkQeiNA+O8V7rVaJiv3S7Ve7XK/PIJUIOKZ0VIRyup+RAISQZJJodozFEfJRBfNa/0il8MUnX+9\nrKQFmPgT+OeqQqExbUQNPf9sTO0BV+Olq4mo3+SB4vVHXDNKkWUPCV7xtGbpCoTKJCskLfQs9yCB\nxSIUGjC7HNtFmDflpRdq7OL4JIL8d5+9YVK1Kn15ZlO7qFjLGQtwTFZvpA+J0AVPhnEuafFkiBS5\nPie6UbgSYZRMUWXvWWxWjUwoq0FcOoosC2C9oKMKbzZXfNZtuY6Ru7wm9FdkUE3TxT1Tjyc4pv3/\nAjOp11nAFn+VXUWUD+PA2/OJu3Hg9dYaQQjBm0RgvrmyIOIcBVf5vgZtJWd/rd2FYPpCxQro+7nF\nuciUWtJ1ldXahNFa+fzsaeq6W/+5ir47ynU0+HE48WE4WyC1blaneZkwCdSgdGuo62wO615uTakD\nFgvpQ/TiaYZeGndcZamz7U+gLEKilh1uz0kVDtoUgikFq9j3w3DkTw8f+MvH9/z1izd0fXL+tbkH\ntl3i8901t4cNcn64HCddKdGVVbh2DawXkazcWlWIJhH2KfHZ1TXPd/ulzEOTZoswbAHni2UoKw+M\ngNYyxf6ep9yv0XBFwlDnYrln1cpusZuo1mG9jbYvgkAMSBA6FboSCVqsdkiwFPTaRYcqnJ9YK3Vu\nm9JZASVt7+BuTm2gwdx9hSksayu4AMbdGRebV6zmiYTFqmnuKJ+7UtfGnNv4Bj+nst+qksmiPGZr\nJ7nDqrQ2oLPeV/WGFbwQ/Xra2vrR9sLPj08iyA9e+EcV5xGb/zar1UseZuvkM87WoXvO1gKtoi3E\nBjVKtKQShVg81V4LpWCddFCjMdVBc635hHLbxsbAV+A69Xy+veKL7TWPxzuyrBbZCgfUK1TKmOqy\nkGqwVWX5XHOR+ApakoZMYBXgVDJ3w5mPpyMvtlfWIAErexrUfOFVoyug2bglzR+IUqllC8oTR5dm\nzCKgrUiPZdeWoBbYixaXqAteXWE1aV3RwxNhsZivVWhdnoff49145v1wYsqFGM0FVC2DRaPRFq+0\n8XXWhC4sAhEhxsib7TXPuzt+Gk9tY1/6cVcmckWnq7/bEqkmOcsc1qD4WDJvhxP/dPeBN9fPuer6\n+lAAJAKvNnuedRs6FTLBsxr1cryacv25AG/C74KiWOfVqHOVimtra6H+Sc3KXJvjIvUR2neLLEi2\nCWbxkg51f1QQ4DEWwNPKFxehDZfTB1cPUvvbQvWpC6FAykLBrBhJy31KqX7x5cJ1DBZQIBfzWsep\nMsrqDFfFZADFZ71kxgQikTBD59MsoYIwH61K/QyrwKw6xREHkLK8Ti4k9e9ysJhRVKxyZ7TC7px0\nQhVm2bamGtE3r7aHlcvaH0+erSm2XwyU2/FpfOSzpezaYklMqxohY5k5z9btHbD7nzObLMxTt0y4\nD6b1ODeBkL11VSGab+qJi2AJzi+Bz3aIEzhU2ITI59trfru/5ZvzoyUE4OnIzdSpCMuuWa230pYZ\njc3xVOs/+aVtmAKMJXPIE/fTaPzWhFdN0yaU2xCwKhEQDNGzcietn2+hehlPVv384pljKtB1iW3X\nsY2RoczM1I1bMe2id56aeMtT2/mX23JZkB+ngbenA4/nM9ebvpUVrenL7VQAQpPtdQKFheUAkCTw\n2+vnfHX4yNfHe84s9TiMu68X92p7YuWP/iVB2m7ElIuawcBxnnk3nKyrTlHceEAw8//V7opX/Y6r\nkDiUBSmC+211/cr6Wy7HUtb/2kQ2dBxlYWUtCsm06Np6ak+x2i7rX3SZEmdpWHAz59kBUV0/0gRz\nJDY3yuKn0QsUia7f8/03Y5mNoSJetc3mBavCMiyXI+H3sFYUJsCXE2tUYd3XU4AS8blXSljFjJYR\nczaRNIzSsMpqEOs6KShjKFSXWxDrNGUWA42zXuqg+v3MWPmBRtlsw7bsqTbRcgE5FrT+ZEx+6fg0\nPTsxdDHOEw/jyf1L9qAFvIP1DI7AkwqpZM5TgHwDrmn1dCJITyQRxQpOabawtxK8NKSjDZZJV8yn\nVX3m1jU7YwsChMDnuyv+5uYF/3j/jikrJy0u8DyZoH62XdE26lLO8hL5VEFt/ts2z03SKzVrTjlT\nOFIYe0hRYBbi5ADR+2eKeqanBN9cipa5Cb5mKrMEriQIIUVyKM6x9QXmSnTbbbjuNtymjsM8MaKI\nc/hq4EdXG6qa1fXvprP0UjwtgsUE+fenAz893rPhueUTxJUJX8+uCMn99zV5JXgbPlVTcJHAH28/\n418fP/Jf794y5qk2qWkbtSpbWVspbW5WAmCtjWTZdE2ZuSwurd5HdcaYe+XV/oo3+2tedBtO49BQ\nLW4JqZQW0GrjshYY/lZQZ9X4vQe//jYl9v2GTdcZi6GNs6wAxvIMlgi0JOKEUr/XUuDrvkC11Sia\ny9j2hIg1ZK6gJ1Tueg1ursenIn3Vy3lXkNk2coguFhXf6OKsq+r2WVsievmvP2krb/BEmIfVpNaG\nDiUIc7JWibGYZSAWclsQGGpuHgdBa8aPal1vlv15CjNTsTjdxpML8XuatViFUbVS0xmL45gL0BOK\nFKqFd7kIWPz7K8ld+e2Nf//z1duOTyLIf3j3ttGbFv+1l490wROxwvR9jFakJkd66ZGzPUhUYa+W\n4BIVSpm9FrjxQrTYxtGaCeZItGWtuTCwVNziwrGiFWHfbfjy+ob/+OwV//n+PV8PR6pXTNC2yepk\nOjEPWflmA44E1NCvMYhWftGK+NrrIBIYcuEwjsisdAiUVRlNL15kEXkX1m1TeSTdL11WO83qIruy\nKMv9NSQMJA282ez54+0LPs4jx5JdwNSmxRXFrjHSIqib37a+d4FqDJ1NWrgfB765v+Oz3U3zqzZB\nWj9RpVpDa0KMPvqKM2+gQ5C+5+Xuis/3N9w/3pPVZ6py2cSy6Kr0WVtTC+NjdfPwhEJpx6yF4zww\nq6V2h6rO/f62seez7Q2/uXrO2/knplwF98IsapZRva600WkD1tLU61hWa00zo2ZmSmOL1Loy1dys\nirleR9tEVIlh14xOWUU9i7E0roSd1qwHo6eGFTCoz9Jc2fWzFW3W8VWg1R5f5lkLrSRrQ/0slmYN\nGLZ41mqdLVbHU4G2SHZBSDMWyA8BKSbIU+3SFaiCwD6WlwkRhCU2amF1xQCUpI4uR0IpdLOdW4kC\n1iUprzj6gR6IRPaarHCbLvNblV5lvIkaeeEiyKB1+a4Rxi8fn0SQa1ELqnXG1S6+EUK0xJWixd0k\n6vxJ812FsIjAiLBT60spLlGjsz9CbdXGU/Tl4yNWajL4l6uuB8qWcxciLzY7/sOz1zzmzGOZeT+P\nTNj9XCA5X1brBJYl1bqm/9e1Iqt//Te58CozztkSS6biPRRDi8KvhYDtZW0BGWnRpwXB4pTMehON\n3YJ4YLHetFkaLzdX/PH5a/50uOc4z5ycILuImacCXC6g7CIcK8pa3at/7nGe+Orxjr958YbXpSz3\nUcdg9QXVRx/AnkO9J2rddBLoAry5uuH3Ny/57nxinpRZ1AKqKwVq97f4Rp8qoqoBl/GVRVgJjFp4\nmEdOOZNVm5JuazJYduzvr1/w/zx+ZMjZ6upjyMxomKUJjKoYLxR7G1P7K7Sbowm6i03ugrR+TO3L\nFhdBveL6D7hwRbTxDIEgsQlqE+Jh5UMHXSu+qjPK6rWVO6/xoFfuQLQK8WUv2Mvannu9WKpb53In\nu9prz6QXz1f3XSoBjSwASlfPvfJD2dlt+lcKqX43hAKbSazUbRZSqZaSCdpaL6ZeJ2pg46p+i9dk\nX0fnVtqpfW/xFxSXaZdzpk9fWB2fRJC/un5G77zx4o0R5pxRMZP/nCfuDyeO00CYJjZdoqOjzF0z\nTyKRvfSWvosFPhHQUFyQR1qN53aY9jOzp9AVT3HHfNSCbwDf7LvY87fPPud+nrmfBx4fPxoaoi6M\nRUhUgVPEqihVJOXiw3t4hoZA1kivvlI37TzPnM4DOmbzJyJNALfNhQvxslgSdYM3d4rvKyF40pV7\nDaMh9BCjZdT6xtIiPNvs+eOrN/zXu594GAfO5/PF2DwFBo3m98RH2Z5QFgSHc6VPeebPpzveD0e+\nnG/Zha6Nec2nre6Uak2EEFqwWqnVp/xbAnx+dcu/e/GGf7p7y5BnHr3GfKi+aWf6LPuj3qE2iVBd\nCBdCvO57EaZSuJtGczuVQhftgVu8RYUXmyv+cPuSl++/5XGeODqyrTkAReQCZFz475tgW73mboeI\nlVHoCVa7YxUgbFxuP7/Iwp2uFNxF6bKILV2Eg7UjiySJrWRrXWutf4Cj66dsFguihra+FS/ehitf\ntwYVDP22WhdVYq+0jqwCrCvEugzJau9IVSxKLVnsM9LGMuVg9EPxPIaLc5YLNZfPaj2ghsQphTQp\n+8HL+arSqTe6CebWER8z9XWZVOg0EYlWabVZy9qAk22JFaCq+7bOVwVldqKt1pWraX18GkSOdQ0v\nxSh1JVst49QFznnmfB64PxzoJbHrrN1ZraNcuaqKF+mRincC0Xt8CpUZYt/WXCi+cCtADYR2rXVS\niwkQy8uKUfjrZy/JQRlRvjo88HG0io3RTd7ZTbVQaOnllfEcN8Gi9ECQWLHESusvDpd6vwSxcrq5\nMPqGMMMkuD9foThn1R3uIo62V+iM+ixzbune+KKD0rivbVOJsUBu+g3/8PILTnPhbvqBM6VZnzZY\nCzZolny7vCLrTbLag1U4TihvxzP/+njHm901f9i8pFCpa4sXvgmMsDQHUBbhrnh1O4XrbsNvbl7w\nP7z5NeH9d/zzw8dmlSjS3EpNEKyQUEt2aTOxQoassxS91rU3W5DYLcjShd02Jd7sbvgPt2+YCnx1\nerAMTLErBdbWB8svuv6jDpz/rtZD9M3mimfdlq0ka3LRnmXl8lhZsSq07EN9ivBkmRjxWkc2xMaI\nqTEWceHRBLtgY6+L0FkLcZp7c3lAARfe6jkMT9UVC+deF3fQcrsryLN6r6F1vbxWO+qa9ESvX/q+\nn8UWVusZxMv42ietUTqgpcXJBByRFyuvW+9Lg3PN/VZqsJNVPECX71zmYnmuJyrYjzUwXY5PIshT\n1xG9nKyI9cWzrtyCZhe27pcL0RBBVCGqCQoVQ9RFCqbzbCNFIq0AkB81/bUpdrHghFL5qfAzK6au\nErFzXvY7/ubmJefagPXhjiEvrIQa7CFYYKWuoChw+9kN2/0GBPq+tzK6SPPxigghpoYIVAtvxsTn\nureAzZwRKZ5NavdUXJBXd0gtZ6qlLBs3LEtBVJogl2B0zkwhC8Q+InHJGDUNF/jy+Qv+ehr4cT7z\nzemR02wlW8svIoLF8vilRKL1sIrQyhG8PR/5OJ0burZzVlJuDYnbbjWhvJ5mQehS4uX+ir9//StG\nDzz95XjgrNkBoFIrUK6FjLqgFKkW0aVIWLvHWiVLrYHmqhmX50sh8myz498//4yP08CH8cxDmchK\nxWMXglsW7di+DViEBMYhf9b1/OHmBc+6jWWxlipxfE/ga1apLNGmkBrAXOQgq38Wb8hqQbdgpytP\nhRW/+skc+z6uiHKl5v37tAlyqe4DxADBWqHiDJklBeJyJi4UXr3nXxThLGqOp4Dev09W62d5/iUW\n7f+vY+JHjSvVXJJFAVbLxOdRFkCgQVtnoaf33x5J68StJ+vy5H8DjAOfKrNzu7PF4n/HmMgUZp0h\nCqlLXF/trSiN1/3oJbKR6GntyizWUaRzQe5SytdiZRUs+qx5pC+oUg2vOVpb/M1ULS5CHxJvttfs\nd1tmJnKZ+O44ci7WSDaqsyMIVo/Z/aApCV/85g3P3tyCwM31FdvtlpSS9S7EEHzXb7wGhEIuvPlp\n5jc/FbaI1ecOxhcsOte92sReUXX0hAt2QL2GslSfXWjNlaMGHscjj3niFOBmd03aduaymBeEtU07\nfhNe8ZBmju8ynAdyNtOymt6/pPzagq7BxbWUUJqJrVk4MnNkZk5L4Nn0pwtWYZlH/2y9XvaFH1aI\neBs3/OHFGwMHAsfvv+btODBooZBbnXJT3ob8ltKr61IE+KpZi1dbPxFrFdZ5nWlivW9jiIgI267n\nj88/4+1w5PvTHcMpM7hoqXu5zsySOOXK2IeqBspFhF0MfL694u+fv+G231wIIdpd+xVVkezrwznR\nLYh48XxrsLOY7PV5QdpzKZVDbmCjlMXX+zMhXq9TOeeucZfM4/qdK0u5xpNqUEWrIP63jnqXvyAV\nV4/WhHmVA/V9WfnY22e0WYQXCL+6bqjU1/WFDCSplOXZg7N76tpfPa8Xf28ypt79ArjW8TqllSn2\nfaDrh3tyfKIytj0VnyjegWOaOUwnxjyStTDpzDTO6JytBZNeMecNFGmCfJLMRpW0EiCL+dJmzRfP\nshkX00Xb77WYjn1k0cZN2UjgWhP/zdUrrkLPu3nmT3cf+frwwLvZKZQ4lQrLkNx2PS+f3fL69WtC\nCvRdR+oSMQZfFIv/V7xWdFLh5Xni+cPMdvA2ZaUiR1ogsaJfQdyd4ijd342eMWfNA2bmebIqid2G\n7x8+8s/DPV93E3/3h7/l9uXWkivzsoiTKsObPTe/+yv+/vyc0zQxz97JpQndBdqVXJimiXEaGaap\nNdYORGNWuNumFljSDN3VNcdngZ82g9XeyAUmr1fhjXubEFVBolEOS7H6ciFF63KeMfdRNjrl86s9\n/4HPUSn8l4/v+erxgYfJ3CImxLWNX6qaseGwFdKtUl+qYIOpKIMWJixgvgjAYF2sxJTEdtfzh+cv\neZwHHn74C++mgXEBolzUqlkLBlw4ujDvRfjb56/5h1e/4te3z9mmzu+tSohyUXGzVczLaiyK1bqv\nx1p+LeKwSnsXQBeuk+o6ogkjO60i/tVakOV8oL1eqY4t4QgDDBZM9fhBdcvIxeA3IdrcPGKv/oxF\n8+QJ5elDswjNttXbuK1GoSYjVcm9FuyLeG2jqhVouMsvBctjGTRbOzgsVqeiKwNCmjCv4OViHvg5\n4Ky39kvHpyljO8/eQFYukIg6XcsKEplJWYJ14Ga14dTJ9+dY2JZCKhDbQlowBVw+eJ10+LmGW7ia\n6ohH1x80wSvCbez5q+0VnwXhJiSeb3r+fLrjx+M9h8m7HWFuoa5LXO323F5fE5K7iiq3XaRxov3i\nBBF6FbZJ2QQlepLH2jRUQGqpNWr2nGvzimKaC8AWS1GjRhW/2GEc+HF45C868bov6JWQC2iR9l0W\no+rpZMPrvGXKlgQDTzepLt2ehoFhHJnyxOk8ME/ea1S8nG6K1t8xmzC47TaM/Zavt6aw8zQzj5M1\nEIjRFF+wOioBwSG6+SPFGpTEhKV3T4UyO4u/JKbTnq3c0JczkgeGYCheV1u5sT58Va1kOLCw0gJe\nejUGShc4xsxDnEhxNI+an1d7ldqeVm6v9vxR3/Axj/zzw0d+OB05FutL+XO7vgIQ+30TIy+6Db++\nuuG/ffUr/vb5a64326ZupKHZlfCmwZNl6Tr6rLx6WS3ztieeCL02r3V91f3SttgqEFzvo95XQ+hy\noQjs7xqXqcHRupZWlnB7vsV1yUpGUNF/26urjbE+VriMtWVQUbff588SburFah7Iymq/vPwyAKqX\nox7a/SoLUWU5pz7qxSM3RfrzZ2mf+bdNlE+U2TkMdF2Czpo+ICbkNrEn5hlRyDqTekuDHsaBTe5I\nRCPvY3UMxlCYsbFKtdcTK7QCNE22Rg3QFkT9dVGUK73uqraWAM0omjNdKdx0G14+f8mX11c8O3b8\n7z8YEs0+gRICISX6vmPTJUuICOb6sYQS56DWsp+e66yKISk1b+7iMxZDQqqod+u2/RFWiSuBtqdX\nsgLhYhHlUpiLkkXI4p3YawMCr8pWO7WnEEhRCcXqd6aUWhq/LWJDWPM8M40dU55AlWmaKEXpYsdm\ns6FLyYK4OYPi5qcyK3xdCnMujNPEeTibEoyRPhW6Tq2uupurtexpEQgRQigEDzSVIhQtTGPh8FD4\n4Si8f0wczj2HuNSfaWi0CWAwt9SKHubuo+DfmbpIv4mEq4673cSP3ZGhgz6Ya89jYNYEIxdkVmKK\n3N5e89+FvyKkwFktkD+XWr3wcmcu7hS46np+e/uc//HNr/n97UtebPfkJoVdcauXmbWuD47wrKZ7\nzfat66flObByD1QL9omAqIJJfL2iXBRlC3HtClsr9yXo22rfO3PM6uQsaDx4gpCqLo2NkSbgzQpd\nUIWKrDj/dlO6Ho/VHq55Im0P1xOq8hKsnLNviCWm4KcpzWqr5Ilq2dTPG/7yRD5PBFoDrlpLqSYi\nIdoSfJ66JZfiZItyXjCnrp51mc+nxycR5M+ur40T7kKsdtHYxo6cM/M0sQtWgwWBOW15NnZsS6Jq\n4aiWJJScqxlCcHJdFWR1GJ5m8+myOFdKsP62Srxbzl6jJgWZCpMOhBjZBfj9/oZ/6Xp+CNJaxAUX\nNEIxn2+wBgUARVe8VS1ewlnRbA1zNRd301tHe0s6qxrd3AcLoanCSm8n5ZGiqsEzVuvcmuCqcegD\npkB8o659hdVkXkUVEImEUK9prhWy+4VZu7RoXP7Yx2VsSyHPEyGmljyy9P8UiEKXOmKf6LfbhjYV\nKCEyiXVcCSFYb8ZGlbHa61EKREuTPg8zP71/4JvvP/Cnb97x4XDmWDJTsJINzW8qq4BUbSBcsvs7\nSwu4hQhdJ3z2as/tyx3PXmz4Osy8Dx/ZxgPXmx19jIQgaIHxPHN8GHh3d2A4zWYlFOU+D3zcdNwz\nc85LbKNOgGCWaMT69X5xtSPut7yVmfF8x3Y6WBnfaIojqgn9GIQYYvtbBOvMLhAy7rYLDUGbgBFS\nsXo60dfqUutEV26GBQ2EhqDrmvF4RliEeAt0+hoydpN6dmht1eguFrykRvWRh9pL19b4es+tVO8T\nCC0XFuiCXZe/YL24uTxEWWoh+WdW0rjVK1Ifi9XXaH2jui8RdEW/nDVzZqYvPbEYEcFYmE+skPX9\n+u3r6gVLkVme/5ctiE/lI++6ZbAwp34URZIVuc/JGprWh82S2ZHopkTBqD8dgmCdfCK12Gu95upY\nzWPTylVJ+4TUU4pU94R/t7AS7CawUohsYufmU4Sg3CQLiIYWRKk+YfOLFacr5bws7CpIlkxrn8GV\nw7MKPKt5HBezmAoJqolbmpVSF4LJ2uojX2t0r0Hhmy27b3vOMyFadm2IsdWwwp8/qzLlmXEabVFq\noJPQ+n8abTt4sSCaizNnL0WcldiokYKIGh0zVCvCxiO65aH1vte518HvXYsnrihoRoMwz5nDceSH\nt/d8/cNHvv3xnh8fjlbXx11CFcGJS7RWjMuzcUsQt5a81kiAzSawu+l4+fkVL55v6bdwP43c60gi\nccVMJ7GN7TlP3A0n/vJ4z+PjSJ6VJMn862QOMTBLagk4rrHb+q1JJj+IMs9nvj+8t16kPjYxRBP2\nxYRLdBddEu8a5fGWKMbOCh50VNTzHixrOnlLtY5AkujuL8uiNrefuQiMhGvXDRUxuwBaf3+tOlnd\nTCgQ3KIpkU00Vyp+TfH7t/UQWop9nd8LZFEtpZWvuKJjm0Ntp1Z32SVy1cvF7Ii8BL+PbEKguZ7q\nZ/TiCk2p+Y01N81cM9TXhd/QBiwNaymi5n2ovv4WSFWai7S6up5IsdVN/PLxSQR55QA3bmqsaSCW\nbSnR0rFytgCWSKTXROqSpUar0Bn2IxHNF0w1iy6fdl0Bbz1A9a/K5bRJKWTx9PcqlKtf1oVqFxNp\nYxtKg3AKBZGh+fpNMAAixGTDWxtHl2J+5qJqG9JNRg3r+V+iK4aozRXRSWo3K61okjM73ITOa4Gt\ntv5rSn+DzBhKzy5IcjFBPk0jKXVIhyeBePDOxyvnzGk48+F8xzRNhBK4jjuutlu2fUJr4Cos5YmK\n2iIfp9lqe8TZ3TImMGJ06iQw5+zUxrrQjSpoWfnqj2usmVwyIdSsYGux9XgY+fHtPf/1qx/49t0j\nHx7P5JLJJTdXlrh7RnyO61JpSqNaCljwu++Fm6vEZy/3fP5qz34Tmcah3S1SLzAAACAASURBVOsc\nFMniFpN9x+E88vZ44uvjIw+niTxDkLRaH4IkS1aTsHJD+JoRR+V/ngf+nAcrSdEEmLsfFKTkBS2D\nC3or5RBjtNrlDhSKWhNzKdblKWDxp06sBHAvHZtkDdC3qafzhsJRhD4Eb+gR3IXkMSyx70xiDZGt\nsp8Qqcwpk6g9gWvpebPdsEvJXKiSXOCbog7VvUJhzDNDnlsGdWXu1E0bROjFAooSHMRJGz7fQ8rc\nSg64oNeatLeANw2rDj65kUMRV3pUAUv9nRVF1WNDWDPp7OCI1Tw3pVbt25p82GZTG+hrSmQVV1hA\npe/n/w9J/okEuY2mrCLF1ZAvKBogps7MuKBIB122Aa/aXrCFmDw4WoVtU/I12OCHnVIu3C/VPRFq\nYMM1euXwNi0svtkxGlYKHZt+QxGYyoTmobooV8FCIYXoGYkwTaMh3zmjBTabnq5LpBgIK4uiqR1h\ntay0NRJQf0+CtM7kRaD2A6QuUhcuVr+9NGRQTUEEQgp0faLfJMwFZArCBFpBsyN+LUzjmcPhkbvD\nHUOegcCjjuzPR3ZdQiRxvd2y7fu2QOeSOY8jx7MJv9hHerdo9t0GYUZKaDVsqiKc5olhnBjHkf1u\nS9+nFugUTImKBLJmzsPEh7szX333nq++fc+7+wOH08B5GsnzxKzmCjI6YzKLI4ihMLyyZK0lEiKp\nF/pNYL/vefGs59n1hpt9BxGGXNCQiL1ZI31M3Gy3iCrjNJJLZghzQ2mmSGzNqNhqq4kpohkp4r54\nmtCQZnovR8kzpcxknVduLFmlnq+yfQXIhpIjHstwl0Wlt9XqhkGynRdmkk6kMpHms1mWPhfVFVNf\nq6i2FiALLtxFtdUbUVeeULgOiV+lLf/p5jVf9Dt2MfGq37MPiaDKPM9UC3PWwk8PH/jq/j1/Hh4Z\nPQaQ3P3RSeQmbfjD7Ut+dfWMXd83t0NWq6c/a+ExT3wzHjnkyXJGfF+WInRRrKl2CoRkSqj3/gXW\n/1ZI6oX6WKyN4HtahGbRWOntwuQlG0o9r4AUoVdzXzmKs8DAWi//TDCu7YEKNRd517JCf+H4NNUP\nczM6WgZmFa9aCiVn5nFmmmc7V5WrszBOiaJiTSMcvTQBvj5k0V71/83FUMVjXZQr8Vn7cF62XV5+\nq9pTvOawLeDZEFrdkEANqBmlsZDzxOg11ksxNF43Vi1yX406rQX//WLr7MulTgQtyLU0Rl9pdP9Z\n+h+qmQmiLT1aWConGgUy0iL59TpSL2X+niCgWTmfR8a5sJGZPG0om55NtyF3nQmvnM2aKMUCjMEp\nWJjAicmSkCqlMjhjR4L3Hi0ZRCmSmcpEcUoiBQKRIJEYlcfjmbcfHvj2x0e+fXfPTx8PnIaBaR6Z\nZ3MXZS+IFiSgoaDFXEdRLHhbfGxsBpSrfeLmJnFz03G9j2x6U+nnaXLTXQgpEKIQPLlrkzr2/das\ngynwPg2GGDEFO5eZGiGrWYsVNFRU0cZHgrl9qGZ6sLhRnshlXlmcznzCfdeluiMUY2dWhsqSdVkL\nr/kG8PkPvpeUkGckz1S/WJ17W8vLZ4sWWnPkVdkJQ67Fg3+2x5+p0km0FnV5triOm4virrEKk+d5\n5uPxwF/u3/N/Hd9zrrEDUVSFPkRepA37EHmeNuw9kdCKNpjr4pxn3k4H/o/Hd/wwH4kBhhyYszGz\nYoAk5r4K0V1H7mZKYmOaFHM5OY04huiuK9jkzKYUOglcp459TCSXRSlED7QGokQvmuWRJnHgqLCu\ncCgXwvvnUmctzxsC/YXjkwjyPHvNYzzttWp7NSE+jROn05lxMGE+l8x26jgPW0pOtpGp5saSqr8O\n2q2PSnlaIulVYC0BvfrhoFUxVqMIKlyvArV2eTFFqwzTTPYApR3aJm/OM8M4Mswjec6+MJKXCViE\nbpO3lbDSGIYulLFYglW0s5vUKEz98rkyzWYiFu8RW4TSCvfbfV0IgtCwhm344EqqPbcJuMo0SSHS\nhYRkIQ+ZnGZySI503FWEkkt233ewtn3JWvtpKWz7DX3XGar2MQoxtDE3/72iQdEIx2lgPit5yuRR\nCRqJMRGC8Pb9I3/5/iPfvjtwGLKxQdpcg5e1cipbtjmytu2s695Y3MVaGd/se17eJvZ7V9JjIc+R\nmCw4Hwh0IYHa/c9zZtdtuN5fISjnc2bXH+hrpyW1etRtGbkQV6pStWsGsWBfEUv+qmnvuEIsxQrJ\nXdLyjHohLe3frlW0uDtlbms1SDT2T/Tx82qjoZLffQ/kkpsgz8WAFdC61xtLKRt/X2JTBvXH4h7W\nDUcRYkh0qTfrVCpgsjXtrbWNRaPKMA18HE/8MBz4YTwyeNeg4vm4nQQOYeD31885zyORK9sbvl4o\npvg/jEf+79N7/jQ+EBI8TIkhB7IaddkyoOtYmrWbHL4Fp/xGnLElNmYpCF2B23Hgdp7Zp8ibzZ7P\nt1d8tr3iWdpyHbd0Bt1t7YtYwJlqEVa3Yd2B7j6RxWd+EditcqQpP3jqOq7HJxHkwzhSvNNJEBMC\nyf3kwzhxOp85HI6UXMjFWsJJsVKQ7TG1Bgsrkl1w+drFYufav4Y8FvRtv9QPLfBIqx+ioibXuJqL\n87iim7bmPrg7nzjl2eqNh0DJxQVt5DCMlNOROc/Eull1ZpwN2aSY6KW6MAygSHbKUlFbYB7IqoI1\nqDJcd4y3kXlj0z2cMh9/eGB/VG5K4nq7MWFTIHihHwM+1S9nPOyUAl2qhQW0IfJczOGRS+Z0OnMe\nB87jSCDxfH/Ls51ViNxutmw3G3ZdIiXji9M5WhXQktAqoHP28gzJF7bFSsY8M84jp2ngOA1Mc+Y8\nDRyGM8M0c3gcebwbGU4ZihCIzHPhcB55PE3MJbQlr2o+6RSX2ju5WEJUcWZK1EgNoFVRvttEXj7b\n8rvPn3F9lTjPoylGLUgQdmlDn3pSsufsgj+rwjBN6OlACIHzPDFZnjKqc4tRLNmfNPeXdyGw9RqM\nqhfESgZbdquzT4Kgan5l9R62FiS3Gjh4jcUQIuplLSiFWaVR44pmsgS6rjPgk+cmWKpSr/EKkWhK\nQrx8hCzbBEJTpNT95Iu3+JpZisWZdbuRYAjYhRnu9sNGiViUPGfePt7xzeGO74cTY7F63m2YXCGf\nNHPME6c8kbF4mVmjBVTIJdvcMaOhUAjMKsyIZxW70qmC0fd5YeVOFbHG8FoVvhI9gztQuEmRV1c3\nvN5ecdNtmLF7VdyqjJbxay0VLaBdxAP5VPfwKqy5AnP1qHuxuhtpwv4XkCqfqtXbcGaeZ9vYIdKn\nRJdMJ06zmcPiDZilKBqFbgx03uqsoWZZUpovjmau6OKSWAvntpMWx0ppwn+1anX5tfoXzZ2CmeOi\n5FI4z5MVlae6ZSyIaT6xQIodKSb3mxubJYbaVg1DCZ7BWQpQZEmMco+IuI++oJSNcNrBeS+UCOOU\neX965J+//4b9OfCr/pp/133WBOVaiasHIIuo+efNEjTh4un3MzAOA4hlY4aY2PSBLvXs94vZExAT\n3jF5/Ro3JEJk9oGrmzdZGLtRJOeizmfPjPPE4+nIYThzmgbGeeY8jZyGgWGY+PjxzPt3A8M5Y7lA\ngZKV2emaIXXEaCg/EDy5KmK1PAqhmNWx7nJerYEUhGe317x5dc1vvnjOy5ueLiqncbQEtSDm2/fk\nJCGg6pml7pKqNUhKzojAtk/sNx3HPlplz7kut1qkzYVfWLk3QmyskHUjFJHgTBQL7qkV32exrqpA\ncgHqFeEqog+BmpLgqD86BNFVX1dP6xdTBiGa26FaLRVRar2rKrt9rzQGSd1UWml9hrZ7Z91UBozt\nJz81Zx6HkY+nA/949yN/Pn7k/TzY+qCWUah70ai0o6+bWl4BbJ8EzFV2nidwLv2U1dlbC5O+AcDV\nM1jtLAeFNct78ZVSgE6EV5sdv00bPtvuuO625k4ppfU5kCDkaA25p1yc3ilVnPi/2pS7q5IqZVj/\nWqtcLB9e4opPj08iyMeSzX85Z7pQBYNNclGIKbFLxhlXVWYt7B4S3Vg9iXbY4OtK4DpKqP4QvRiF\nNu01INlQ8M8GR1YfW7ikRkexO1AX5EWV0RfVynj2+7C0/P1mSwzBEZkigUbbM7QFtVu3CW1BtBY+\nXbtDlDkUztvEcSuco2nyj4cjf3n7nn/8+htiidzfvOTL61uuOllyRXybFYVJzZyMwdCGZdyVpkSL\nwuF0IsXIbrtj02+dfsZFB/BSWn6dsV/mJbiX1WrhkAu9U9vMGsnkKTPmidM4MuSJKRfuHx45DZYs\nM5aZcbR2f6fjwMPdmY8fz4yjM3PAg1BmykfJ5hoSQRpDxGfSmwskqbx2Jfh8dylytdvw2y9f8rsv\nX/HbX70k6IyW2YLSqoQYSJtoQlyFkgvn4Wx+4hDpup7gtMVpmtl2Pc+urvj85Wjp2vdHHg8TeXaF\n6vdWlZpx9IP72+0OmylNRSws1NbqqtayZHfqiuq2qvJkgfZFYMXoyihY7R0DEE63zLb+UqcQAqKx\n1f+vcaFlezTsuvLxLu4ZrbeB+aJ7qQHTasu6K7VAniY+HO758/17/svdT/xlPPBQZmYNtDihXz3X\nHy2NoaXtlirSV4Yyt304Zqs71PZYRS04H74KyzXYuZAClR4I+xj5cnPN7/sr+mgMoWoJFpz+G4Qc\n1Kulmi89NVdstXuXTmI/L4NQhVnD602B2vT+/wiRv7y9YZgmxnGizIWUkiWEiLBxHmyNENdFvy8z\ncVD0tEDphsbFtWEzFJeOPb627NW10F7P1sWeWQbUXDSL/72VCMXQq0a8q/uyeUpZTN8uRbZed92u\nZ3S/PM/UgGh01CzB2DMxutYtxbjZ1SVCQaMwbxIfrxKTQB6sGe+337/lq6+/4/544j5nzii/vrvl\nj8/f8KzfOgKbHSlZGdnZvxMxM3ecZw7jmexlTMfZAmt9zoROES1kIC6xKdoKF8sItSzRzC4kIsJ5\nVu7PR3o1tkpKiUkzp2ng/vjIeRoZ84wC0zi1hiP7bsNGesYyMZWCzBNBIymYW0nd5KUF62p99kJh\nZnG4wRIMV0KAlAKbbSKFwPOrPb/98jW//vwZL5/t6bvkQdDeTPTzgGpGirLpekKIjW8PWPmB1GEy\nyWIJu+2O26trXj9/yfu7R757e8efvn7H3XFinD3oWhegXgrJZnKrsSFy9mCxF4Ermj2GUZWAP2JF\n+X7lnL1mO9oSlajIcJUgUAOrxmqq6Fzaf82arVeu36fVsl3twSe4Uh25JxEvMLZmudhZWQsPpyPf\nPn7kXx7f8/145lCyo1tzR1RhXr+rsDBvMtX9YEluqXjGd60/o8JQvaH4mqmKMixjvhaXrdxBkymG\n9pMI+xjZxkQfK7trma9qLc9iYjrjTDKpY7jQTBfrf60IaWSKOgstCLga21/G45+qjG2IkCxSX2Jx\nV4OlYVdu7ZRrD00XFB7EC0Qzt9SCMcY9kNXAwsLcqC+wsloWZsZqDB1FVPRSTR+biNag2AX7+muK\nOo9UK/PB3o0psN9t6DpDNkZzs+fLLgRti1ZtvSxYW+weqKMuNmGIwkOChzyjY2CaZz7c3/HN92/5\n4cMdx5x5yBP59Mj/9u579mlDf23FW4sHhSz4lskBJEVwKl+ssQo1ulXaGgrvgqDzxKyeYCQ0posF\nXu2nYDXmc555nCYIwlQywzRzmkYoHrCVwJQz98fB6F+hJ4RgyjwGrrYbisLdw4m748jjQRknIYSO\ntF7bVdjIglbNF2lKp45biObXnKaJECJ9L1zvzcW13yl9ygzjicNRCXpF2nYkz9SktzVgbrDUEphS\n17kwdT95U7QdfSpsusy2K+RR+ZjO9HFDF2sJYF8/K2vvl44mrIr72bVY8NLXemWL1A4+y+rWJlyq\nAhNW5n1tgehW2II4q383NjfOavfwZNSXV1qyzvJqBU6IAZFejDJaaws1aiOBPnVsU88mdHbfvk46\n58RnEW+irs3NuISzChqiAZwEYRZKgByNuTMjzCtq8SJ4DUOvffmyfn+RFM1KCgR2IbIN0XI6go+l\nZ1rX8SiotRpUk2kULyGt6g6t6vNu/1sdwuWrl1mnPHl3fXwaHjnW0UdSsDtwP2rtApPzzDBNTSAX\nlHkMkJ1bjm2cXBTq4uBnFtLPv7f5Ulgk+VrerxCHVVlzMx6WIGFYFIBiyGnM86pOt30mxchu1xNT\ndCXjvmIxBDnPs7ULU72gYBoKF090UERKy0A9RuUuFM6TUiZ4PJ741+9+4Lu37/l4OFpVPlU+TGf+\n88ef+HJ7w03oeLnbNnZARXvF71HcbxoksAnJfMoIm01sbqwamK4ZoqFWbHTFW8TQsOZMnicezyMh\nGT/8PI2czxPTNKMlkyRRsnIcRvb7LV3f0YeOEjPbLvFsu+XhOHA+HHn3fuDjw8xxVGNz+Byul/uy\nrGt/1tI2YAwQEyCFYSz0XeR6F3l+bQybbQ/oyPGYCZrZpR7ZdOZGKhD7ts3NFy5GW6xp6U1AOkND\nxKwSLcJ5PnM6TRwOE9MMaCCSm7+3/fjMy8XLDZNRLcSKIYr752s9kaCmZNDVWNTgWQ2OS+UvV1eK\nfUsu2dF1BVLSvq+VL6AC9RWKvHBDVNqr/6VLTEa1QOyMveFrpnFk1JTRtttw3e+4ShtL/nLA0Ytx\n73MMDfgELYS8IOhaK6cm1bVevMEszlyERaX7KFdfuRaq83LxFDmgUm2grgl1gR2BjSdHicDkAKk9\nPq581Z6vw6p3NgUh6++qK+vyuLBrFJam51zO8ZPjkwjyGiCqaNr6cdp7pRQsXhWYp5lpGhmHkZwT\nRaOZ/mq6z1zW9uhxnYO+qNS2JVpK7JPocPvMaoRq2m/B6XSiXkOFtshVXMFoYSh5CRxVF4+IJR20\nDSHMuTREUgDNhVxGdl3n2a3irdcMr1jesunxcxLuQ+ZejH1wPJ/58e4DX33/PR8PB8ZiQjwDY1He\nTmf+z48/sQuR/7T5svHuS/Hgj60SVIVcjH2T89wa8ZqQMsZEipEUU7OEwF2quRaGdXOxWKenuShl\nnhnzxN3hnmkQRCL9NnH/eOJ8Gshz5jyNbLqefW/dDQeZeLg/8y9fv+W7d/d8eDwxz9mSa9S/q2bd\nOofbrCvjEElQLP/Q3UYRYuelbgm8vN3x+sWe57cbUgxsUmK/3bLbdP5vIgUbJwnBgs5rpMpSRMpv\nZVk67m4oOXM6nPnqLz/xL9++4+u39xyH2carmnEOXC6D9RXxgjFDnHPf2XtaTEnmbAgdrWVf7TvN\nVWfjUTncq9KOKIXZa+BT3SKavcOSZ8xKIKk2iyt69ixmyLkAtYB4VeKLe6U05VEpoGAJQkG1JQ61\nZGGp1gLMZeY8j4zVXQJ0GP1UYkTVeAMRpTOz3ECPYO7IWQhFrWyBK6+p2A8a2xq17eR+7UXr0WqA\nt5eXuFhdcyD0LMFa/6RndIrVNHKwU7ISVemKkzXU7rNITbBiUXZ17bRvrkBxLe217cl/6/gkgjxG\n/1q/r+DRXgELTGlEOyWn5EHByP4c6GMgizJJtkQLlI5I78gEuAgGNIxc0Ukpy0DJLwxKNZEuEIdt\nuOJVApsvTW2jqCrTXHwfX2gDRCzJYZ4md20s1wtAFrvOnIulCossC14sdVkFpii838JjJ0xiFKt3\n9/d88/Yt745HhnlmBmaK9yO1+/zX8wPXDx1vtnu+2F9z028NyVSh4kHJUvnMwTZNwfyzIQY6iRSc\nddDKFdhYzWX2lPlifPl55jzPjT54HE48HB4pczT/cgmcTiPTmIn/b3vv8SNJkqV5/kSUGXHuwSOy\nKrNquma6e4DZ02D/f+xpscBiLzPdPd1VWRkZxMOZcTNVFbKH90RUPTJr9xiVgEki0pmZmqqQR7/3\nvQixCFgijTW0B8fdtuN+ueX2cctqd+DgemXNG1AHcnwkXARGy56jdpOPBBuGjlGFlKvPJhVnl3Oe\nn59wdTblZF5TFbK3qrpU+GsJhcnrI1BAgZFaqyaHGUJfqJJPsMIQPK53LBY7Pt+u+POHez4vNmxb\nKWrLvRiSsDDDPht8Cw3PjeK0KUUbLEQ9NtGInTkUuI0Fasx8JanZrwhWowyGJm/9IaEqx8FohatK\nypzMTorKZ2EtgtWmsneSFzFCYyRvgEgJonwK9Q70s0MIdK5n27esXUufIaFKCBZFcHol2GvKguum\nYT6ZqOGTiurARqHA9i6wd57WRVwge9bpeA/cLCbzu0CiShif+6eC1Bo0rKJhIZPqv8meRJqBDo+J\nkVlMfPrC6zKufRk+KI4iA0m2DPlBvRlGt/qr4xsJ8qfCNoPlh0AVxliCCVRFSV3XnGwCdSEHtTUy\nWc5EGsG7UaELylOBGtUKysIcctJjCMakf18rgeGARJNItQbNKa5uoMs8ITryiVcSMC/+YC6xjxDV\n8osIVptkRYbBcjEY+iKyrWDZQFsYvIft/sDN4pFPj49slS42EDXBMiR37vuWP29XXFZfqIqCWVVJ\nJWCykOxwqOT2NdGssVlJJmpOQkuVYwwKCdMm1lrJ52OkdY591+Gc43DYczgc8K3P82u8QOwqU1Ir\na1+JhRDZblu+3G/4+W5F54QrI8XgDTHTKOTKSN34if4Uo1jiAKYUyGRdW+aTiqvTGW+enXJxMuN0\nNmHSlFSFlOtjJUnZB8eh9TgfaXxFXVZiBdkUbiDDBaXyUg9diDgX6Lqe5XLDx5slP3165MPdmm3n\nkVTPSEijwi+K9znmEYl55cgW7nhfpiQndlAq5L8kojEvDUIYutbIlJksyFIIAaN0FOp1PGnyEJS1\nU28ucYmj5ycSCHHgORnOzdiylXNdYLXLPAJj0T3nvSj8VXdg2R/oo8xQEpEVIqBaI4VSZVlxeXHG\nrJhIi8LseWvRVwAXPLve0QZwOZaRT2xeyyHvK38ft7vNDoPOkUFgqrOioDYSkEmFjAlSmXsEG0On\nCPieIPtbQ1tJig+29VhmjH7Mc2og75lfxBGejG8iyBOwNU1xinvmG1ZpVxghnpICjJ4yerCWUFq8\nsfS+15CHZRoFKZFcu7SAmYoSlK9j+MwheRmfJIxyBxN54bAHCoMpbE4EBSJdiOw12Ul+qkFQlmVJ\nURbSek0rV70PpIIYo1agjwHjwPUQfAkUBAO7MrJooCvl6r53fLy75/PjgsX+IJYWEi7pMWSxqWGW\nu67l/3y84Xoy46JuuJrKkhfWUFcFdSn2Za/EVkW652Ig5pKQilpRTjlEovBpmBipy4KTegIWWt+x\n33cUwEnTMK0bCgomVcl8NmW5a+nanipEem9oW8+nxYYPd2sWmxYXpKBCugMFTfiJMgzaWi/GKLGd\nxGNdCIo9We31tOT0rOHkpOL1xTmvLs54djalKCpsUYApiFic9/T7luV+y7Zt6QM0Rcl8MuFifirh\nsUIahJR5LUtsNLm0PWLoOsfD45Y/v7/l/c0jXxZbWmcJqpRJFMApnqoexrhlmmxFBYqaAaoag9eY\nQFYdUtCZ4YAp9mzVM1DEjovqzfhs0VnNz4gUkzOQ4IADmiUQQp89k6jFZIGgNQFF5iNPNmQmmDNJ\npZgc27UKYghBQw+FAmHVWNi1Bxbtjsf+gGMEwTXK8x6hAQ4xCGS2LLGzCbaekNSpQCzFQu9jZO09\nHYZoSl0jjQ0N+BV5dqvNbax6LVrH4YlZh6Znk5L8miZTcwzY9cIkkjmFwCYyPFUkRp9jpOHI0joH\nzcXjTVa95FLGinR4y6+Nb8S1IkQ52eLyCpZSZIe1Iw2GfFsE+VdFQwwWZw1dETFFpPSR0KWstjpO\no+RjnsCYtPEg5JMbOPZYBO+cHR1Z0BiFDKcgKwmPtP3aBaeCXDdUDNpYImVGh42dQi4RjXEGsDZg\ngnnSoNebyN5EVjawJRJ9ZH9ouV0u+en2jsftToqQTMxWeBLiaeGDkUo41wf+dfXAaVlzUk/wKPeM\n9wTvhM60LHCK9RJuErU4CvvEHY6FHopgGLI3QtFrsEyrhvq0oCoF/ZF2njVSRVqYmod+x91izXrf\nszv0tJ1j3XqcsZgyiYIon8EgNENIlYqyJsGELGAigmiqq4LL0xlXFydUlWE+qZlUpXg6yq3h9bmj\nDzjX0Tuhguicx5ReoHImUmCZTibUTUVEGBr7EJTqVQD1213Ll/s1P39+5KebBx7XO/adI1KQ7IRB\ngCtLYkoca1x9cDJSCCBx2Atc8mQ+ZTqtpUFJOuoBep8OuKyFeH9C25uKrYJ3uN7RdT6DA5I5moSE\nUa6ZiFRnWg2zFNYKwoUohnQEa+TerE3G0Mj/1crrwSG1NLZgWpRK8PbklOkZCPgYshBPB35Ae4sg\nN0XBrK6YT6fUJzNC2bBzhpmHMpINGhcj2yANS2RS9WZMCtjkm83hrnTP1hoKI6GSZKEbRKYURipU\ny0TtMCI7k3oGFeAJex/TSR48Ovn9SK6ZNA8Dag2SVy0/WVWoJivaXx/fhmvFKx42Wba6ub3zlIVY\nPYVS3UoMTIR9EQQraqKlKwyhkn2ZrIPBPxk98BM/afhdssYHXmDzZJ6SM5yvGWPmLDGIjPEh0EdP\nFyQ2rYHGfAhtOQjA5Lfl5Fm6x7yYWS+DMfQmsrSetY1CHnRwLBYrPt7d8Xm5ZN91utghOTAj5TM8\nekrC/MdmyVnV8Hp+xt57fBQucuccNZVgqKOEeYITdEWRrIkMRcuqTeYrpu4pkiewWKbVlKIxTJqa\nuiwzDt75wKHr8X3LZuv4/HhgtWs5dE5CQwYGXmpdVD3QknYusiUaI8KXYQwmSjioLAqmTcnV2YxX\nL865vJzho+dsOqOpaiRsJFDL3vfK0hcUFlpQlzUGR6MUAr0T4q8YDdaW4iuqgCRIgvFw6Li5W/Pz\nlwU/3yy5X29pXSosd1mQ57BbVGjaiGAtHeYxGscYKIqCSVMwn1W8fHbO5dmM2aSW+9C8RueCEtCB\nd8L77rzHGPEA+17a7603e5brA/vey+dqxXGGKhoxA4z+aVqXTCclTd5KLwAAIABJREFUk0k5nAIj\n1moMhkhBjCXOQ9s59dayoY8GWATSaguxYnMln0lfwBiqsmRaVsyLilWMOMWZWGKuCq4xlNYyK0tK\nW9BjWBH4HDpehJJTrO4LSXBufRAjJwKEkUgYwiwxiuEj2ApDodiCxN+e4I5EMCFSGqnsLGwqCEzX\nN8O5NsJ/hBnkxCBPRs+txmF6+1iIp9kbhc7l3XZ8tV+Ob2ORx6HsGKSIxgXZiD4EyhBoqkoRH1E6\nzvuICZKdNiFSB0NVWBpvmDqhnTQ6MyYOwHr5vBFEaizv42D4P5kmk46UbONsVaU4viG7xql/pIzk\nwkU1eiSm7J2ELVJncWNRrLJU9XklprcRql4SawcTeKwDBysFHu1qx6fbe97f37HrRx5AHFyxdKBE\nHYwsA2P44vb86+aRy/sJi74lmAnRSOPrGCJ1VUNR4Jyn5UCnfDipSMFqY4GiqijKEl9KQjQodWmI\njqqsqYzciOscrnOUhaGqSlzvebjf8i9/ueHn2xWbJMBDIPjI6Exkzg9B1YzWJQ7WTSwkuVVEqe68\nOJvx+sU5/+X3L3h2fsKkKTk4J/h0W6rgF0ik9B8Vg6CwFdO6YVrLdeuqxmDo+55J3dA0NSaW0vik\nkCpF72G13fLh8z3/8eGO28WOzcHRuZCNCpk7zSWEOJCWobStWInnayIvccCnuonZtOT6cs7vXl/y\n9vkFF6dT6rJg2NWSnxC20EDXdnSdFFBNJxNc51mvd9w9rPl537LoxTKPqpjNIFmTzUhRGmbTitcv\nLnn17Jyr0wmF0TMAdM7Ru0DvIm0Li2XLp9sVrZcaA2PE2EnqPlVDSP2A/Ms9ahGKiIv5KW/bCx7a\nPZvdo3hLkGPP6YmnxjIJkc1mS9f2PJiCj9HwT/UJVTllXtRK2xDYO0evoRiTLFq12GMqHgtIzoMU\nf5bUrAcNxyavLObuXlWljVOCyXUjMHhcKQzpEUWUUDSp+XjKrkZDKrfWCvG0CIoGiinkxch6/zsU\n5NkIHrvdtiDaIfnjvKdILnNkFJOSxFsdLFdtSYWlidJcYhR1z4nN7NaihvnYWM8W7PC+4fcpQUqG\nOGbkS0hCNPnOT54uP5O1hbLHajOJOBzDrBRgoHENsv23RcTWEKsSnGO/P/DX+1s+rBYsDwd84hfX\nDeijtnPLrjmDy27EovXRct+3/D+rO3YxMD0vOS2Uv0PDDTaKB5Ti5GnunHPSYky72qem2caIhRaC\nPIeEawLehYxm2fnAbr/hYbnj/c0jN48b1ruOhIRLSdN034LLHgrBiqIk9QU1I8Fu1Upp6pJX12e8\ne3nJ25fnPDufMW0ayrLgTAWHwAbleiFGTlydwzPZ88qWsVh2zpUq8OT5+ygGR9877h7WfPyy4MOX\nBferHfveiyuuIRMUxeJj4iQfJS5NZCj5spho837FRKrSMp1WvHlxztuXF7x9cc7ZbMKkrp5QyZIt\nc69UF4amkvoEGwN937LfbrlfrFjs9hyCk7L8qF5G1OYWyqA4aUrOTie8fnHG2xdXvLg45WQqnboM\nCpeN4nkdWsfnLytWi4NUkYbklw3GBUa5vwtlAVSb1ETpLpVCD5O64e35NdFYylXN+92Kx+5AU5TU\nRYmxBXskMbrZ7XnoepwtpJFJjGzm57TzK/7bybWGVgKtEm6lIjgT7YhrSr1vtXqbacnV+YRXz86Y\n1JXef8h7rm871ss90z1MS6l5KIwwuCb5m1YlqNdWYwVxE0WJRRu1h4CKiyS8RzLHjObuiSX/lQD/\nu2I/zJnzUSJSMvLpJxHkMSVjoskkUnoBylhwps0mhEQ/bSYVpV897yCqR1px/LsnCz1cZ8yqmBVF\nEjQjV+3r54uI2xbCUCM8ICxkwYIWr6RGxjZEQufYq3cevaE/dCzWG35cPHCz27D3iZpUrYg4xNSS\nnspGj95eUOti43t+3K/AFLzwJxL/Vq/Ie8n0pGsU1g6UsCEIv57xKlDlWRLmPAQV4CHges/+0LFv\nO3aHju2+43G5426x5eZhRacuqYlaHo640ylPIf1bJdwxcF1bTfyrkMdgy5L5rOHZ+Zw/vL3i7ctL\nnl3MKQsR3MaKEMmhC31OgBgqXbWk7Effgya9qhyPjyHQ9YHdrmW53vLTx3s+3i75stjS+wRpTW3i\nFDmiCWGvAl1Ca+rVIXwvVslrJD4LTW05PWl4fnXC92+uePP8gqvzWW6/ZuwA90sr673Ne6gsLa63\nuIPUXqw2e+5WO1aHDhdhoAJQ4aEEbk1dcH0549Xzc75/c8Wzi1POZlOqQpt4KB+QNdD1jtX6QPQr\nuk7pmxVfn3DXxsj+OZ3VnDSVMEViMwmcJHFFkdZVxdXslKooacqS82rCp/2aXikhuijcTL0PtN6z\nbls2GFqMgG1doI4l3zdnVEYMmh4S7f7T82nMKHcmNzyfVbx9dcE//O4l80kzhFpjwDnPbrvnpngk\nPByYlRW1LSl8HAE0no4YpPCuHBuWBmJ2gGK2AdMFBuKAfKpHq5Qu/NQw/Xp8G/hhOTpUCb7mFc+s\nrnkIQRMHUphhFQGQizCMle5AkLX9k6XTAyPzNprQkViOT99COs5JlOcCGP1Qo9adTYGLmIT1aNfo\nNX0I7LsW6wSBAYAVPHZZFCIQ1QJMRRKxC4RFh9tC3wvL3nK75vPikU/rJdveaQgiZjZGafyKlDGT\nhPjTsuSIFCP04ssB8r21EuKyxuBNyMnScZgm6sELwUvCzPf5eaVjvLizXuPNXed4XG75eLfk5n7N\n/XrHoe9xijJJsSWheUkNsz3OdcSo92RKSquMkZorgSg8NIgHM503/PDmmj/97jkvz+dM6loQFUaS\nfsHFJDeVffFrxasi0cgaGIzyKamREcgNmX3wHPY7lqstP3164OP9hsW+J1hxgKOiamJ0BGQ/O6fI\nHo3RphRu4ohLkNtCk4pFabk4m/Dm5SV/ePeCZxdzTqcTQe/o61NoYiAFEw4TSUZHQqwpKocPFmd2\n7F1k3wecA2sqTGWzIWGAojRMmpLrizk/vH3G799c8/rZuShANW6EjliNnyDrv9m2PG72rPadMBSm\n+kkV5NYapnXJy2enPCvmTA7CXGq1uC2oNR6NVHjXheWsMczrhhfzU77s1nzaL7k97LlvW0qDBqQM\nEwNtNHSakP+4PzAzK/7QLPndRCqYffLc4uBtpdBWwvwGZE5PTxrevb7m9dUp07rONAoGhCCtaYib\nnsPOMK0qSgpMHDhUEo49ifUQDT1xoMk16V8UpFAUeZXI30ReGCXLYzCSNMCU5Za2iHyCdBqNbxRa\nSdakWHJDBj+hEmTzxyhPbpFkZ/TiFgYjlo9oeLXnTT6aQ9IyKWK1XMdhDSCjHcZezmB1S0gkvSYf\nxZTUMBrS0LZWeXpjVIRGST2tKWsVRklw20LLvdOHCBTQ7AN25ai2Hg6Rg4ts+z0/Lx/4afnAznVS\n+pu4PfIuGKoDhaJ0cOOzQB9mflBVJhUADVA4Y23OByQoVFJi3nu6vmffHnA+iIu976irgqoocX3g\ncbXnNhX0bA9s9z2H3hOiOqA235p4CYmrIiUAQyT6QCwDwUhCNvGzGGNpmoLptOR0XvPs4pRXl6ec\nNpXmIkRJxZAStMM+EF6ekJtd6GnJ4ZWktJNJnrAYvevY7VpW6z3vPz/w6W7Fl8ct20PHoXc4H7KR\nJVvE5lqGwkqSfmjtllxoQGPUpYbfJk3N1eWc37++4t2LC15cnzGtS+rSUNqnVlqiT0Y9FGsNxgrj\nY1Kmhzaw2nqW+0g0FWVtFTIp+8UaqTq+PJ/y/OqEN88veXV9xvX5nElTZyNlDMM2iOfVtj3L1Zb1\nZi8J91ERDwaqquDibMrrZ+f88Oycl21F0wViH1l2Wx66jglgEc+uqZosoApraL3j0Pc8HPYs2lYS\n82jxHEJpUQO9gT3QxcDn9sD/sbzjv8cLFkHCYANtku54YzIxZMqZNWXFaVNyVhWEvqMLCtXUWHbw\nEaKntFDboVAvC+expa+KOVqy55FpqNM86hJGa7RHqEYnkkeoUNugFpThKY8OGP5WrPybCHLnHBkP\nHDS1YYyS+Yj7LsZjEIxmLLW/ITmBlMS2yeJqcEWeCmfzJDaerLB8cI0KvCHiQerCAiLsAyk+n1j1\n5PN99DiFTw3vELerLAvqRhoRWKvXz0UXqaO4CE3jI+UhUG4DVQ/RBXZdx+ftig+bBV92a3ofRFAA\nKSVukPZXVRSLZRc0zWLG9/PLSYnpR40HZ+UZkrWnh14t8Vy9GAcvxXlP23U4Z4Gezabj88Oam8ct\ni00rIQel/ZXQrh4OvZYoar3PZLEa9XdMkQWuMdJjsakrLi8mnJ3VnJ40XM4mzBtL9D1tJ1Zxoc1J\nyrIUYiu1VPPjpxOlSehc2ahSK3lxSTFutgfu7ld8+rLi/ZdH7pZbNocuw/ukgcjwbKT9aKUxQ5FM\ngFEYTgS5lt9jmE0bri9P+P3ba3736pIXlyfMJrU2YhhKH2J+t36n4T2TCeUFGdR2noflnrvVgdXe\nEUwhnkzyTrR+4Px0ytuXF7x7dcnL63NOZ1MmdUVhxVgauM4H7LVzgf2hZ7HasTkIb7zckyKHSsvF\nuVz3hzfPeDWbcfrQ4/ya5WHPYrthtd1SxqAKGuqyAkSJl4UYEjvX82G3ZeMdHRCsxTEI89IYKuAA\n+AgL3/M/tkvm1tDZQBdTaVUcBHn2itRQMTCbVMybksaC6zqNAJicCI4h4rzDhEiFFDZloZtXggyP\nTcnZIlpqDQUblTFijSd3TM2vSI4BhSBcRb1y6Yji9yQvW7yugTvy6/FNBPmhPQg/RAgURUFVSlJj\n6HiuoRYvDRdOzATjS2zQA2g1DsdQ0g5PBbgYrCncIPjQhHsdQhIxC5AkVIHsISSXKbGWFaONEBmw\nukPcarD0C2u1/Zl2bCls5gcJMRUMSdGD2XfYXaDaC6nWwfSs+gN/WS34tN2wcU4taHGvpWpPLLqz\nwjK1Na13vHc7TRyagY5T90suUBiNhBsOQQ6QCQFbSE9LrMEHp8k0J4mhSmBpvfO0rWNaFDwu93y5\n3/L+ZsHjtmXXOQLCs20KFUQiRQW7rEiL6JMgFdiitHvTBgt6D4WVOZ82NVdXU354e87pvMYYaA87\ntrsDviuZ1BPqqhY+GO+YzWZSOKJhE2BgCVTTaCitH4rTjNFS+BiJLvL4sOWvHxf8+4c7NodOWvqN\nXFwXPUGtcklum1wYkjk5DAp7HEIaqTDHWnjx/JTfv73iP//+FefzhmktZGV63vX1ur+joC7ydGrS\nOQmq9tDz8LDlr5/Ee1jvexI9rYTiDFVlOZ/X/P7VOd+/e86bF1dMm0pbt9nkrGSrUJSaXL/rA5tt\nz+PqwKEPhOShYqlKy2xa8rvXV/zw7jm/e3nNxEXiw4L77Za/LL7wcb3kfr8TTp4kDjXckFgN8zro\nP4zFIs23JUQo+Z7KGJpoORDpguOhi/xfqzuChQMBZzQHFaXZucgDQaYQIxSGs3nNfFJioqd3gVAk\nGKMXYyIa2i4QnLSCK63FBHIf4ewUq4FWYZkGiwmGIhjJAyUFkjD/yoBAhOhlD1pSeK4XmZSatgf1\nVmNUr2sEW/5qfJvGEr6HIA9Qa7ccVU/SNLd3mgwTtIE79BgnMbaQXKMIjLVTTF/SBKcwi1ox+RDr\ni6NgvZP0T7bYGEokX/VLFAuWqBhPfa0gcOPwlhRFKAxVWVBVZbYUB/MqYgrV2H3AbBy2larKYCOL\nvuXjdsndYcPOu6xoUrw3PfdZWfLfzq543kxZ9y17/zPLvuMQvSADkKKgke2gmyn7naSm1AYj8220\nKk2ROVVRSY9KvYoLjq7teHzc8fHLkpvHDQ+rPbtDL/A7xuGQhB5KHlQKT1lxL8WPfbo1tb6gMIam\ntLx+fsGb52e8fn7G2byiLCT/0DUViWK2LmspQLIF3nuqSUNZlTmRK17SoJxFG2tIIOHSkTBf33k2\n25b7hw1//fjI54cNuzbgg+YzbBQrqjDaoEGpIQz5mXPnel203AdVjQmDWK/zacmr61PePj/nfN7Q\nVKUaCuHJgU2BuxjNkxhuyg55H9lsWz7fLvnrh3tuHtdsDp16WlINayxMm5rr8wmvn5/y3esLrs9n\nTBTSGENQIclonZLhI0pkv+9YbvYsdy3OI/j6aCgqy+X5jLcvL/j+7TNeXJ3R1CWuPfCwWfHh4TP3\n7Y6172iVSMLHgDcINE83l09HLxqhusaAiRQEkQdm8K8KYAI4I96ox7P0SnRXaC2HqsIh5Drs83pS\n8fLFJc+fXTCfzzJRWAJcxBA47DruHlbsFzvO9gZbxhwiq20JRmDDCYTubWSPZxpLzQeQSfMElazK\nMRrlBiIrhHRKUsg1Bi0zTWFok171dxQjF0uiIHVOz8LSmLzZ81NpMdAgqJOFqc0R0paPv/pReeTz\nm6yx9IaRFEmOaxz/YvTXcZ5aQjwKuUuWRBxceDnQw+Ed+Px1YQ3Qe8w2UO4CZS/ieed77g9bPu1W\nrPsOF3xWAjnJFQ1Ta3k5mfLP59e8mMxZdC2f9lv+fbPgrtvjxo+geQThSNE5tlK1qXplFBhCG+4m\nFIm2CzOG3nlWqwM3d2s+3a74eLviYb1j23Zq+aaYXszNeseTa0gKM9+Yrnt6gcxNYS3zWc3V2ZQ/\nvL3k3csLnl3MFY6qDRcmtVQqgjbHldyDD4GqqkZ5iHQWBgvTpjnQryFE+k7QNovVltuHDZ/uVtw8\nblnveqmgTAcNZVmMUkmaO7zkZzRZoI+NiRRDNsi5n9QF1xdzXlydcn02Y1IVCjNWUZVhDV8d9iix\n6hgisYOu82x2HbcPaz7dLvnwZcFis6ftA0FDJGVhmE5KXlyd8vrZKa+en/Hs4oRZU2FUgaWeoUXS\nOKNzFUKgbSWJfb/Ystp3OK9nz1rms4bn16d8/+45L6/POJs1WGPYdz33+x0/7Za0QYp0vF5UxPkQ\nJhpXJiev12h+DP1eDJOBCrdCLPOeiI9wQIVk+s+KF2pUlhgjKJmyLpnPG55dX3J+dkbV1HnNjCpk\n1zn60PG4bQmHnjNfZcQNURPUSrstTJtCt9tFL0R+w0o+lU2KLc+prHTm0qHIBpbPciSdDfW1+bXx\nTQT5rJlmXRkSWgXpljNtJoQq0jtxd0xEeTdSY4OIN0H5h70kcWIKeQB6ONMhGsIe2sUjJrf6KVxv\nZLRmVzL9LIpj+DmQYsVBscMJmaDuoW4IFwLGCcVoMMLbYVXzxxAwB4dZdjRdQR0MwXsedls+b9bc\n7raC9IiDe53u04fIZdPwh/kZfzq7ZFrWzMuG//36LTvfs+wPujkU/6tvTJQI1gorYBJ4Ub2MgBec\nrx01IgCBTkXD4dDzl/d3/Mf7ez7cbaTFXQzZ6kxttEaygIz44Wm8N3XUSXFyUXbCQlhVludXc/7L\n9y/4/uW5CAabYs8lpoxA8yQ8lhanLCvhiWEQfElTxWQRG8Xtk8JLgbbtufuy5N9/uuHnuyUPu166\nricFkIRyTJa3boakLLKVn4SgGQn5pIBlF1ojZF5vn5+rQK0hpAIWuccYkoU29mpkPwcnVZu7Xcft\n44YPNwt+vl3yuNlzaBU5o5ZoNIbprOHVsxP+9P0rXl2fcj6f5Ov22pTaFCW2LMEWirpX1RFRQrAt\nn26WfL5dsd23oBz2poCLE0luvn1xwXxSURlL6APtoWPbtqyDyzUUck+WXHHJsCcYcW/3RCrVhUkg\n5iYmRgCPhTE0iEXekRQmEsYoCwnNWI0qW7CFZXZ2wsnJlPOzGWfnF9TNNGFuhn2KpYuGgzdsvaWm\nUA8h3asqGGORbjfyOdEYDsEzjaKoSpIsURZNbKYQyX7qSAgZYyHI+kUDZVGSeqwm5fQENz0a36b5\n8nZHVRbS2AB0pWLeyBhoyhpbBEobKTs5bL2XmfY2sLeebRm57qVrfB0LnsSqv4bp5GubLJjThCbY\nVNCDFmO6qZRK1TijzSdN7iNGwbsm6xwlV7WWoiqpJ0kAieAIacEiHLYdh9st/aeduGI+cOhaflre\n82W9pHOO1Cx4bNhaDJPC8seTc/7x7Bl1UWGwTIqK359c8qfDio3r+HG3zla5DTFXeqLWeFEI7rgs\nCmxhVZlq7NcFtQ6lh2rf9dw+bPj5ZsH7L48sNi3eyHwUUYlWzRhSOggwEeip5D4JCPmbNXbglDCG\npi44O53yw9tr3r045+X1CU1TaVzY5qKgIaAWh8S0Scus2HZlaUxCPOdbjSVYcZ2d91Lccrvk45cF\nP988sljv2R6cNiUgm0spOZr4UdKnWZPK3UfqxDCEQFThD5h4iflfKB/MbNIoxNJkgyYlMIe1LyRv\n5AKbTcvjYsuXhxWLzYHlpmW969i2PX0wmMJKWM2I53syr3n76pIf3j3n7YsLZnWpiXY5AC7KPFhj\nKDyE4AT2GQyubVltD9wvtny8eeT9lyWP271ymHvxTIxh2hTM6oLaQnSOtcbqP/70mdu7BePgWWLL\n8KBx7JjDxtJsgpzfSbms9DspChzQHtGIAJsAHVoUl7xjRYmlHWeNpalrvv/uHS9fPuf0dM7J2RRf\nFxyMGeXL5G597SkuTnn7pwumtxte3G+JnVGmUrn/5IENu8EwjQV1tNJSIjn9I8s6Ce+QZI4qyyFB\nUEh83mozk2TyJnTeWBiMxjdDrSSIV1kWOZTig/BTWGOwZaEWrweXWMkkDNMax64IrBs49QHvYj44\noILkVzyQrDSyla2WGqnDYYIpJkSMXi8MSAtiwsCi8MOnGeyIJNaqsqKpa4GfDQaZHB7vub/dsPy0\n4nC7ozaW6B1td+Bmt2TXtlq9GfMmSO55Ywte1xN+mJ/zdnaSG8CWxnJRT/jj6RVr1/HQtay9wwef\nP3+wyAervEgEUNYrQVzA947WB9res1OUwqfbFZ/uVix3LX02I1IIYbAcB1eGYXPqg8cwtkVUwcUC\nYwInswnXFye8fnnBD2+ueXY+Y9YMjZSz68nIKMmTrglLXWC5jQFamsI5ciuB6GHfdqzWO+4eNrz/\nvODj/Yq7xRqXQpPZ1NbjFkcwWdRKZ6jglU5L+lyj0ERyh7PLb2A6KTk/nXB2MqVReGrKgOXgj5Gf\niILN3+07Nps9dw8bbh9W3DwI6Vjbe9mDWoKe9klRCEb81fNzbSx9zfl8ijWKRTaiGKPThLd+xQS8\nr6QD1WLNxztZ9y8Paxbblr2W+eejZCJVYalLyWt451guN7z/dM/HT/ccVjtJ5sU4LFmScHGwxgcT\nbBBUY0E+3lMJgmcwwnVuYG4MzhYExb33JkoxEanBBOA9/eGAbw+YSc1uHWiV5CrhypMgl30kBGkn\ndclJVWE67Xs73sP6HAkfbtR+HuTPCBGXnjcO3mJaYzVtSMo/h+O+Ety/QKPp+DYFQUnjhkBhpAw4\nRCHNil6sl8IYDv0Bu+/xbUWMkiALRWRXeHZVwExqioPyZI8Cok8E+ZO5MPnvqY1b2ky5ptFookGv\nF0JCN8SMQ00L55WHG2Py4psoPCp1VdLUDVKAHjJfcu8Dh13P+5/vuf24ot16LJ4YOoJrca4XpQHq\nbmmTCUVfzMuSfzy95rv5KadVncMi6VG/P7nExcjP2zU/7dccolcLR4WLGb5mgiCLwDtV2Pa9Y7Pv\nuHvc8vluzYdbQUB0PgzzRhQmDSVfGsP5BrshZoKohBJ5yodtKQqoioI3Ly754+9e8A/fv2SmnXoI\nYWhHFoNYKrpmKdmMfh2O9qBMYlaAqmhAia8ci4UIm3/58xfu1gd2nSPVMsi9+pG8ibiY7sOQSrhT\nk11rCwpb5qOdhbsdQizRB7BQFjBrSs7mDdOm0nZ7wjs0rlxOn0GE1WrP5y8L3n+65+ZhzWJ74OC8\nhigGNTVsc6ljOJ1P+O7VNe9eXPHsbC6WOBEowFopM4+eHlHePZFoI23s2e96br888L/e3/PxfsOh\nl/0bQGNkWWQNhoE1dHvHYrXhp093PC63FK3jVFZLw3zD+tmsXnWeRwo63WkSmtk7MbrDYuJhiTTG\nMLElZtoQq5pYWKHI9Y6ld+x6IRNrN45/+5//yt3Hn3nz/IKzeUNdJk+1IMXRrU2NVCw+RmZtgT2U\nqjZExgS9SRMBH7CloOg6wpA3SzF30v5XtT7KeSRjx8BQa6DyJWYDRc/mWON9Nb5RY4maopCEgXOe\noBvMGkuvBExNXTFrGioqJq2hNMID7G3ENRbmJbOTOcXayaZPOCYdkSF2msVKPvBk1+3pvMT8+lTM\nnCYwFREEBlhi0AOeOrWItg1DwjZJfjH/CTGwWu/5+eMD9/dbtvteBV2PCQ4bvPBPYzS5iQgWAz4G\nzouKd5M5/3j+nGf1XO9wEFoAjSl5OT3hvz9/Q3/7gc1mQTvi60yWbUSqy5yXLj0hBg7bjofFlpv7\nNXfLHYvNnvW+Zdc69TxM9mgwaU7iIIDkRkgQT7LloR8/Ci8A1JVUM75Vq/HVs3NOmkosMC39z4Iz\neHxUGKb+y4VMcvpECecDZJS9UR1SI+GUtu1ZLPf8+f0Xfvz0yO16z8H5DLdD11DQHqPUUlALUVkT\nM+8C6rFpqMkaS7RCkRoSras1+TCXxlIWAmntdi2FD7hSvKM8P/p67zyHzvHhZsFPn4QWYN85ugCY\n1H0m6roOCn24f+HPwQtxW7RDIjaqgiwLw3w6EZqFCNiI6wNtkBL/zb6j7XUuzEhZyNakKCxVVVBW\n2rC5EB6UrxsSjzEk+Q9pfkZnDUSgieyS9R8MFTMIO5kmpkXNSd1w2cyYn84pZxN8LUyZu95xvzvw\nPx7uud3v8cEwO51w8WzO5bM55SBlSeExQGHFUVgukcIg46U5RjrSqXYkXaIMhiYY6lgIhpzk3ZN5\n2jGDYorkP6giGQr75Pzons0GyxPx9ovxTQR5WRYDBjZxbwCFLQg2pXOlaKYuLHWM2r6LjHQpKGh8\nSaG9HAcB+0thPuYniPkvg6uTrEiVcYP4T3/Pguipm+OjWOSYx7RmAAAbu0lEQVQ50kDaE1bbhiWu\nDhFKu33P3cOGjx8WbLc9zsmuCMFRBCcY66yhv4LlhcCzyYQ/zi54PZkzTWX/BBXi8uoCw3nV8Kfz\na97v1tx1B9b77ZONmkMUSGn5ofOst3vu7jd8edhy+7hjuT2w73thCszxueHdycomxaKzq6gTFkcb\n0CRLVQWuqsHL8ynvXpxLKOXyhNNpTWGG6t7smTwJaRhF3tiRlTPcV4abPvmt3Gvb9jwuNvz1wwN/\n/fTAzcNWce8xhfAH1zl5bjE9qzRpSI0W0nMloyoYxQMrL0lUBZ5j+noKQ4zCYX63otv3miuyFKWy\nYRZKX2AEVrhvHe9vFtw8bljtO43ba2LsVw52jGhSX9d237Fe7ygNuaahyEixIamZNr+xhu7gJRa/\nOrA7OO3WNMxn+tZaQ90UTJqKuiyzp2qNUj9ALlUnr0p2O+BJ2CSqKP8qlKDK01pDVAhiaY00AKkq\nLuopl/WUy3rCrJlSNg3MakxV0oXA9WTPsj3Q9o5H57i6POHNy0u+e3mZuYJktVJgRJpSh0w1HDld\nQtWOQodJUMgCZ4hhAl7kkxtDrt8Y5yjHhFm5NeU49JQ8rKQA9DUxge1/ZXwji3woPTVFMWwMIk2d\nEmMWYsC4gHWMinOgcFDuI7ULFE4eONHAps00eG3xF8+ewwNfuXKQjYAhURFV+5NI5RUREaVEP2tm\nvU6MBhKrYIxaPBBwPkiS6vOKLx9XsoBWSbWE2EOcz0EmY0Zbu8DwbnLKfz65ZlaUWnEaM3eHlA0b\nTIhMrFjlP5yec9Nu+fmwHeCPaatECSH1vedxteXHD3f85cMDj5uW3if2jCemNpFU4JNMjcEbGJBA\n6frynhzft0LAFLViszDw+vk53799xttnZ7KG3tP3hqFTDlmIR3jC/idV/7IjhFlS5ywHI6WYDFLD\nZM96s+PjzSP/8udP3G8O7HovllAY3F5BTsjnpcKfNFeoYs5QNVKFcIrbJgU5KBUzYFCJBjof+Xy/\n4X6xodJwRC4iKgvpM2oFwRWjoXOwaTsOfU9Iyjh5atljGW1iXRqvfOWPqy02RrbrvbJaFpKXIhVJ\n6ZkcVZsuN3tu7jbcLQ/sU+EP45CZfFBhYdpUTKqSAqRJeu8hQGVLiV/HpNTNk3OWpms4d8Kz80RO\n6q4LXjqDFTZQmpJpUXLWTHg+m/O8OeGsbGiMKFDrApU3MCmZ1JZ5aflhc8am7Vhv17y4PuP7N8/5\n4eWVoEOChD2DHTE2hcQSKfc5f79jstmNitjQtU9JZQn7esSbEErySMSLxNK1HM7fsF+yoZkMo2w1\nJmFuhyrrmDhYfjm+mSCHtL9VfyVUgHybbzxGKILYDcGKUKs9FCFQtR3WMWyQZFwMPspXGl6QMZGY\nuYrj8KdBhur7x9cZDIeY43wuSIm++kwkqzS5x0EXqescm92en36658vnlSSYiGrhddjoSAUqgcFt\nTNpkYkp+Pzvhj/NLXjQzIJLaF8SEmMhxN9kQzjvezE/4h/6Knw87ll1Lqy3mjAHnPMvlnpvHNTeP\nG24ed2wPDhe1om40n8MMDp7M+DcxDL/I9prRn7KAE0KhSGRSF1ydTXl9fc7l2ZxYiiAQBsGR4tXD\nLYpUJibF9tHnDCaoMhNhmTrLq7FEJNA7x2a95y8/3/Pnj/fcb1taH0mFVQKLHKymrMQ1txGCV0U7\neBbGFKpYTN7L6f5ST1ijFZwpyZl0jNOwS0eyBkWhSIeawcKT/WAEf53j8inBlvYcKhCHebcYQoDt\nzvHTpwWfb9cUxajyNMVuRzmE4Rmk7d/+0LPcdkINoUJGotxqRRpD1wcWyz3/9ufP3NwsmFQlwQdW\nuwN3iw2uc9RRoLfERCQVs7GVlMLgSanhYgYPOSnUCjgpa16dnHPeTDipKmZFybSUfIpA9yL0ATqH\naUpMaaGZ8N3lJdvg2VnH9emUaVUSepc9r6AFXll5mGRAaVewACYM4Q6MkWrdVG8RocXjjYAOCirp\n1RntUHmeH8+ooTmyxONX5ycp6hiRmN7QBORvhVe+HY1tfoChw43ev1paJh/IKkjMzSlUOWGAy8RQ\npyrcZq1vcrjDfPXZaTsqr/xoQ6HvjcMcy2WzcIzJPFfp1hO087chmqhoB6n28iHQ9R3Re9abPZ8/\nL/hys2SzOgjxEYEYHISe1Gkn9/hLxE4EamO5Lhv++ewF76anNGUxShglaKTcb0BcWR+lfPy0rHg3\nm/OPpxf8r9WCu3DA6eZdbvb820+33C23LHYt29YPnV7IIntkJWgo7BcbyQweSRIno0l/UtSgszqp\nC15fn3GVut6MBFHeFulzbGqEYPTeclZArm/tGATxC+XcdoK6+fB5wY+fFtw87mhdwIchP5L3nTHZ\nnDZqnSesY+IfSYJaWhJqgkwe9BfP+hRxRIa5xghDjdsQNTWebOmPrqIeZHrIrGVG92+SuyXKD7HW\n+xBZu254SL2uYiN+/XwYCXWmHpvZQs6kX8nfkPzK7hC5ud/wuNiJYotRKGd7R+OCKpw4vFf3V0Lc\n2/y5ab8M98nobxbDrKh4e3LOaV3T6GeVqpisUnwQIqHz2N5DVUJpOZ/PeOvP2dATdh2fP92zulsl\nihr5PJuaeyRhLcnYMlperAJTNxD1JWMoJ32tQIs9QakZhufMPozRqtPxHh15H3lZR0aUTF2Skap0\n/p5CK2M3Io42SyKxTzFCgmivMojA6o1Q24ZSCGyst3ik00yBTKodUT+mkRELJEE+0oAa10o3kbZp\nMCrQjdHNPYRjUqcfFwNdlIIAKdePuW2d84623RMcPDxs+fHHe5aPO1yrDTOCw8Re8a4x33Ky4NIt\nndiSd5M5//X8JdeThmBlh5jktYw8j0iK20szgwJ4Vtb8b2cX7NuO1jmWXkq3b5dbfjr0srkyI6BR\nYp9RfJgoCVgjBTvjiR1IqVTIpfkx49eMrD61rGd1yZtnp5zNGurCqlczCCZGRoowwKVyf0ZJyZiv\nrybqcA0j7Diu61ks9vz8ecH//PEL95sD+65/YgENfozJFYDpGRO3jS1CjtvrXxSVUjy1bJ8oLIb5\n+Grvp2+GQMUQHnx6TGUTpLDPEP8fW3Gjq+u5ysZfjBKzZ3gbJKhtsrK//kw1TFATKym3LH6U5U/3\nSO/Be5eMTVICzwKTYIZwJ8N9EQfm0q/STqMnN2oiyJrYCLUpuKxnzGppvdd6R6aV1iKjECPGeWzn\nofKEqqCsS56dneBN5F++3PLX918UbTQIb5vohPPvBF03NSVlnHMVJuCHFUv3ZSwSSjVQRJCqjic7\nAEhnyWQFmnJhTwAY+pZkxOYwpYkM8Ndfn69vIsh71w9dcVSzDpy+ZGFQGktlAoV2Qo0xYgIUXaCI\nkcpbvI/a+OArTHOehKTlZctm6vCkTCK52krGaKODJi50c447yyPdSHrtJp/eYKLwrddVSV2VfLxd\n8fHTirsvW6KTF/joIfZYLb/Py20gEd8bQavxZnLCP55dc1430kUJcfPzVMVkXam7rCXARnHLjSl4\nUU/557MrMJb/e3VHiFLo4/Nth/yMSUiOjeKEb01wqMHi5MlXgWkOCekU006HNwZHWRVMJyVnJw1l\nKddNCGr5wIBgsiVM0ntHiBIWSL0Z7BibP47NR1GEIQgvyO3dir9+lqrH+/WettckFmopJuHNKCQy\ndinUKIeI0SR8spdTz9nsTYwkkrxllKgdhQoS58ugupN9q9/rswwUuKOd+dUpNsnM189JVuBQ3m8Y\ni4khFR1HP41XVAV3zisMH5TCVCb/2mTDIxVbyVQO/lk0yYvVc6HGgJ7E9CmjMZqVrECgRApx1u2O\nD6sH3p1fclI3GJzMv1ICB2MlhhwjpnVEYwkWbFUysSXPZyd8Wq25Xe/5uNkO1r9+tRqiSdTDlTFc\nlBPezUuYTHNezBi1jFOxH9LADxOZqEGUHy0tzzgmnh9SgR1x2G95ZcxohZIyj/C3JPm3EeS9k0qy\nwgycGFH7/jGsYYxBBHe0A/OgEaFuPBgfsVEtyjw7v67i0xyMuTHGOOEnrzXJupA35b9q/DJGsVt6\n5Y9IWzcdOmtFmKxXez5/WnJ3u6FvgwqsQAw9RfQMdWejo6wPbw1clg3fTU/53eyc2tpBzuYnGhRO\nzNZksvDEa2lshS0ifzi9pMPwc7vlzvus0MY86vk4jzX/yGXP2R9Gzr/hKwEjyrJI1mGK9cUIMXA6\nnXBx2jCblJRW5syi9Av6urIQZZyw8xGUV0UsZMbrlX1/WUfnPOv1gbuHNT9+fODTw4aH9Z7W+bz+\ng5jTnZBc5VG8OCe8DZD8PEUNGCBHv9IlRneV13G0RrK+SQGqpc0w58Plh/fkUIx+gBlfP31i9qBG\nN5IvOHoexvc4UsTx62sOf5BCntGyk7wCVGk8DYF8PSySpK8snBYNp6ZgFkUot8HTRmFXSfsw02fo\nbYXRHEWkQnm5XXM9nTPX3qoJimqsMA7mGLSLmM5h9hImsmXB1Ba8nM253+75FDbsnVeZMyoeMyZD\nJ2traSqLb+TsCj48ZO9b2hKqNY6hMDajUJIyiGmjje2k9IS/IpNjUqb52EUV5P8fE823EuRdL4Km\nMJRlFApTEJzm+DhEqcKzphQu4BReIW2idNhVgOYDyZNJSnOXvhrdpDZPqkkeoVjbY20Yxu8dLhqQ\nqk6nGO3UxyZhY/f7jk+fHvn0ccFqsae0VmFNTgT5aD6SaJTrSFinsoZ3kznfzc54NpkjbqMZDl9S\n+mPuhpg+XzZV+keIvKobWgw/7test8uB8dAM95yvQ7Jw04do3WscEBt5ifKcxOFfFCVMEGz36A65\nOG14fj6lKcV9JYp1LRBNvVKM6vZKDDoplmF/D585ds0F4tlxc7vkxw8P/OXmkW3r6EMUaGc+UIMA\nGpTF8EwwWMaD0Ev3EbKyHXTcU8s3x1C/Fp0mCouffp8TEqO9ZdL32ZgZXcaMBCrJ6xzCYCk8Bmmu\nvoo1532Wbj7m3w1K7clTD4IkPddwK/m+4/CYTz6pRMjdzm3Bm+mc19WMZ7ah8z0H37MPPcFEZTQd\nwAOpoCbBezNHEmC9JzqpsCytViYr14kxZuiLKxekOHg6H6ApsFXJ6+mc9emBm82aT9u94MV1/0Xd\nTzGtXxCWxcR2opFqgXbGCFozAFAZobEtRvOKXivnT7K8Ia9dhmeqzEkRhHE+KjKs1N+KRX2bGLlB\n48x2dFC1Gkr5ea3GnRVmogsZcDEqqY9AtIKyJKg6VeE2xN0Ng2UjIRx5b+J2SAImCet0nFIYNlVl\njjVkiEJd2we5n/T6GAPWSCJtsTywftyxXnUEF1WjO4ieIhUNMYrLmuHw1Fiuqpp/urjk1WyeBWcK\n+pgxfNKOrLZsXWmCMN0vBgic2JLvp2f8+bDji+uGw68bbqhcHEyILJDUAkO9n0jMfDaDDTWqwFOh\nF41yCllhgzyfT7g4mVKWWn6v0ip1V4nJCo0hh9sStUByMaMqYzPe9D6y3zn++uGev3x84MPtmm0n\nPDii3FPWcqx8yB1uRCmpe81YEI/mAjm46WANiafB+DCj34jgG0q+Bwt/9FwxL5p+fZKuffoZ+bUK\nBtR7Hs72yGLWe86i2prROUhrlO40ZqWRC6yeWEPDG2JEz8NIYD3hTEjrYzgta37XTPh+dsLryZw3\n1Zxn5RTvHX2QJgqDMpRQ5Tg34zWUEVSIChw0MmkaKArWxgGKDFJESTCGgOSHbADjAiYGXHS44KmM\n4Xnd8J/Oztj2jse2EzSVQYjLotAXRCLBRm0cncKKEmoVhJNKipi8RW2CM9rTAkVWNRlGuYoszFED\nMuazllExo72Rz38+9L8c3wa1wmD9jjW5AWIQTRxCpIhRO26j9odOaNQo3tf+xljgpslKsmnkFg1X\nG145sqeGElkSGVbMi5Pi49IdSBvrMjyGNbDdt8RQsO0jsRPlEQgQvDRv0DcID4tYQemzI3BZN/yn\n+Tm/m59xVtcqpuPoYCZZaxjtm3wf+ecY6Lxj13d0rmfTdVJJGwZh9Iv5l6fQzxvuKwnCv2EQjK6Q\n/j/ckNyPeEFNVdBUZUYeJTVUJM4LL/cdgghuk+l7E26abCFiorIoRpbLHZ/vlvzHz3fcPG7ZHHot\nZIKx6/yV4T0SwX/r2UYTi6z/AAEbDAAQZVRVJU1TUldiLQ4hKLXm9ECnmGcIMYcQ0vMloyPGhGUX\nizEQf3GPgzD/+g/xyWt+6alm9T8WK8OCffX+YTo0XpsURNqTOj9BIXmlsbyZn/HD/IzvJnMuqobL\nasqlneSG1J4w7IM4hFJS+CErF4bkq9cz3hppCO7Q588PKj+nsJIJSgVgIt46irrmrGn47uyMm8Oe\nnsi689L4PCGg9IGtsdRGIISpN27iVHlCk6ZefHiqz4Z/aadnwzHNeVLCqQ5lMBzG+3LYu7+GGpPx\njeCHI+xzSDSo8jfZ0CJwC+2gkxocJTfPxIRgCE8nBUZPneUuyXpKQnccl07zbOMIXTGSYdEkQa4b\n2IgAdolfOY4Pgwjy3b4juIKIVCrGAnovvBY2NQ1ImuKrm66M4e1kzj+dX/NsMqcuhPnOjj4jjJTR\n8DUpnqjUuh4XPLuu5WG/xcfIQ3fg837NPjhlgEnwMH2CkaQb7MJITIQFNkENY57vZMUPgiSFYMiT\nmESGhNOs1BGosEgKpRDjBR/RatmIjyYjG9Qgl0/VALYPihHf9rz/9MBf3t/y4WFD28s9J4a8vENG\nSaWnhkSyfAabOh26dP9PNB7prA/zYa2hLgtOTxsuzmeczBqhLVZTS/zJiPNROEuiFIt5FdTSOi7t\n/ZAFvA+RrpXG113f570+PuImGQS6560dCnyyW2+S1xjzORpIwAQVlqqQY1IejAJGo7h+anyR50vP\nWOaoIVJbw7uTU76bn3FZ1tQp1JcqX40BUwiNgobw8i6OeceoApfPj1bCjiZGDjHQArsQ6dVLzmcg\n24eidMtohGLCi4c4rWteGPju9IS9D+z8TrHuhpjcQiM893VRiucfB2Mp+Vl2/L3G6p/cSLIEM/Xm\nWGkOSiD32Y2MZnxkZMX0uuE6X49v1FgideIQTupxl5V0TiOGEkuljQ0McqiLYHHBYwOEWJBiwvLW\nrybLoO2ejAryOOKhRjmE0woNExSDkEOFfOIhi38tapHu6gJLs5FMCBTU9KltQV3XVIWhdy2bnRey\neEWIWBgJO7l2aeDlZMofzy75w/kVhRFXr6DIByl9po8hozhkkeVghOBxvqfrO9b9gYfDjs/7NVvv\neOh7PnUHtrEXGKfzI3NLLQEVbBlOlzVbEtoDc0bGcJhB6EkMXVdAERoGpalVNE9RFIJCSpOgOHGD\nCCHpgRufKNYIGh6Q4xOi43DoWS53/PjxkZ9vl3x53NM6FT/mK9x5JvsS63YcwhhHksfCRBSVWIS5\nQBMV7KpcrDGURcG0KXl2ecKrZ2fSXGHeUJWl0tySN3dqLScWqJ71KCEN4ebXf0Ttwdnz5X7N3cOa\nu/s1nR8hr9LRHrnhtjCczCrOTqacncxEaRpRHN6HoVWdV4WvlL+pB6lznrZzdJ22PxuVsed/Fslv\nFVb6bKIKIgScLyiBedlwUlXU2kUpdaXKoR4z1HGohhlzDZNyP0Rkn6R3GnneMhrmlDjjJNyaGFDV\n+w1K4WAwWC8FRbGwCuCPTKLlh/kZ+96z6FrWbTJA0iLLeysYGVFJYQbwXgwcbfHWhJKagkIhvBF5\nwGjjCH00ZDZyTmRkH6T4ePbO9B2iY9SS+Xuq7LTKBx1CyJ2/Cdr7sEiwLiPtkLxwH2CkV6dNhzpZ\njyZZlNm+zvviiRWlGyApCQN6uJ7qyGQhpsOfNtQ4bolaNr+G+43RcFo1nJ+ecHl2Stu3PK471k4K\nf0a3M7qcbJC6qvjD1TXvzs45qSq60OUDGlWI98HR9T2d88KDEuS91haUtiTGSOd7tt2eL+2Wz4ct\nH/cbdt6zDp5FcLQmELSfYCY3SgL8iVCLWXENlquGQYxRq+3p3MRRzBkGISPPV+J95HDosCEId3Zh\nsWWpeRHyaxPs05DQAlEStwStWjxwe7/m45cl72/XLDYHDr3PBtFg4Xx1b/ocTyCAujdGy6t6U0I7\ndWE5mVU0tXAEeS/zYAvpODObNJydCA3v1dmM83nDpK6E1zvxmoyvnw2HwYpO/UOTcI363M55JlXJ\npCopC8tqe2B36Old7q+TvYu6KphPa15cnfDs8pTLsxOqctyHM/GwoJztg2fgvMP1jrZ3bLYHVps9\nq21L23V0vcNrKbE1hqK0nJ7MODuZcjqbiNz1Aa8sgzbCiSk5LyaUWntgld5iOF/pjP3SwnwSch8f\nmPxS4WhpsNTW0oZIP7IEs7eVDRNBvBROON2pDEVRcD6d8to7HlzHX9wSlwjr8t6PYkiODMUkd7L5\nE6GIhjpa6oH1f2xzZ/jpEyv7yW6L47qp4ZHNYINnAMYv3i/j24RWrMH7gHNONqw2WiYGilhSlpp0\nUrCz91F6T1ooPLlbtQgJFebEPE8DtpgnbqchCXIVWUkZ6F/Hnkz6SxK940keXjfekunD4bRueHV6\nyqvrC+7XC3ZbCL170iwX5WnISRNraOqSdxdXXE/nFKqfTLbeJC7fe8eh79h3Pa1zOC9WdVmUNGUN\nUXqirtoDt4c9nw47PrV72hjZx8jeRKErZdiOiYs9Ce0xxEx20VBCNSQuk3UpczlMkgQRhgrFZBkL\nva9znt2uJfSOoiooq4oqGqGtJQl9mZtcbo94QLKWFucDm82Bm7slf/30wP22o3cxhw7M6HbS2mRO\nbP17xuUaQ2qKkT9TBW/0IjBq7Ul5MqspSmHsJEaKAubTCeenc67OTzg7mdBUBaWVMpVCqz+jSbh1\nkjGuIZDh2IdopHgniIJM4cdYl2rQi0IwKbm974YcgJFk5nRac3Ux5+3LS15en3N5OqeubG4SkhpY\nyOdrXDcJctfTdR2HzvG43HD3uKYo16x2EfaRrpPmE2VpaZqSF89OePnskhdX5zJvzuPaHuc8JkSa\nYDhZlhRd2siD30w6o2YIgZFs1Sz9xkaYSfqWFMLBREqDlMTbSGuCwJBtBBM0XGOG3RkjxkVwgVgK\nn3Bd1VzFGW/6jo+rNVttjzdWLYVJLJriPljViimFnUMrMVE3mByCHTzafCuDVM4qbThqY+Gf1nXY\nx095mL4e5usig+M4juM4juP4bQ37//+S4ziO4ziO4/h7HkdBfhzHcRzH8RsfR0F+HMdxHMfxGx9H\nQX4cx3Ecx/EbH0dBfhzHcRzH8RsfR0F+HMdxHMfxGx9HQX4cx3Ecx/EbH0dBfhzHcRzH8RsfR0F+\nHMdxHMfxGx9HQX4cx3Ecx/EbH0dBfhzHcRzH8RsfR0F+HMdxHMfxGx9HQX4cx3Ecx/EbH0dBfhzH\ncRzH8RsfR0F+HMdxHMfxGx9HQX4cx3Ecx/EbH0dBfhzHcRzH8RsfR0F+HMdxHMfxGx9HQX4cx3Ec\nx/EbH0dBfhzHcRzH8Rsf/y8kbXZODisB/AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAGJCAYAAACXcbjTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVuobeuW3/Vr3633Mcacc132WnufS9VJqiqpHMsQIimE\nMlEjQRGCRBC8gA/RoBjw8qB4AYXkQaNGE598CRqiiKgkIIKQpBSNxEQQSUGClKeqck6d2mfvtddt\nXsYYvffv1nxofcy1zjn7VJ267rVT47+Z7DnH6KOPr/f+fe1r7d/+rS1RVc4444wzzvj8wn3WAzjj\njDPOOONXh7MhP+OMM874nONsyM8444wzPuc4G/IzzjjjjM85zob8jDPOOONzjrMhP+OMM874nONs\nyM8444wzPuc4G/IzftNBRH6/iHQRuRWRf+RT3v+t6/ufuj5E5N8RkT/zy/i+73k+EfkjInK3vv/D\nv7wrOeMMw9mQn/FOQ0T+aRH5v0RkLyLPROSvi8gfFZGvrK/dvWUI3/779/4Sp/5QVa9U9S+t3/OH\nReTPfj9jUtU/oar/wq/imv43EfkH13P9F6p6+Ss91xlnwNmQn/EOQ0T+deA/A/4j4ANV/QD4l4Df\nC3ykqheqevmWIfxdp79V9a9+RmMO38dhuv6cccavCc6G/Ix3EiLyAPjjwB9V1b+gqgcAVf0bqvrP\nqmr5Nf7KTzOuf0REPhSRb62bymlsf0xE/uv19xNt8s+LyDeAnxQRJyL/iYg8F5GfBf7gr/FYzzjj\n2/D9eA9nnPFZ4CeAAfgffyUfFpH/Cfg/VPU//n6OV9U/B/y573j59wO/DfgR4H8Vkb+hqv8Ln+5N\n/wPAV9f3/kXMeP9u4Aj8hbc/o6r/0C/rYs4445fA2SM/413FE+CFqvbTCyLyf4rIaxE5isjf/4t9\nWFX/se/XiP8i+OOqOqnq3wT+LPDPnIbyKcf+sfXYGfgngT+tqh+q6mvgP/genznjjF8TnA35Ge8q\nXgJP3lZ6qOrfp6qP1vd+IwzjN9/6/eeBL32fx37xUz57xhm/bjgb8jPeVfw1YAH+8c9wDF/5jt8/\n/EWOfZtu+ehTPnvGGb9uOBvyM95JqOo1luz8z0XknxCRyzWJ+LuB3W/QMP5dEdmIyN8N/GHgv/s+\nP/ffA/+qiHxZRB4B//av1wDPOAPOyc4z3mGo6p8UkQ+BfxP4r4AD8HPr33/tOw9/+w8R+Z+Bv6Kq\n/+Gv9OuB/x34Gczh+ZOq+pNvvaffcezb+DPAjwI/BdwA/ymWOP1UiMiZPz/jVwU5/wtBZ/xmw5oo\n/YvADPxTqvqXP8Ox/HPAn8IUOj+mql//rMZyxucXZ0N+xhlnnPE5x5kjP+OMM874nONsyM8444wz\nPuc4G/IzzjjjjM85zob8jDM4t7Y94/ONsyE/453Ep7SlvRORf2N976GI/Jci8tFqeH9aRP4tEfnB\nc2vbM34z4qwjP+Ndxu9S1Z/7lNf/NLABvqqqNyLyO4DfqarfBC5OB4lI/0XO8RsGEQmqWn+Jw86t\nbc/4FePskZ/xecSPA/+tqt4AqOpPq+qf/3X4nnNr2zM+Fzh75Ge8y/heFY9/Hfj31/L3v6qqX/u+\nTnZubXvG36E4e+RnvMv4f9a2taeff3h9/V8B/hvgXwb+loh8TUT+0V/qZOfWtmf8nYqzIT/jXcbf\no6qP3vr5ywCqOq/JxR8H3sOaVP0Pq4f+641za9sz3jmcDfkZn2uo6h3wJ7COiL/1N+Arz61tz3jn\ncDbkZ7zL+FTqQUT+PRH5cRFJIjIC/xrwGvjp34AxnVvbnvHO4WzIz3iX8VPfoSP/U+vrHeOnn2Me\n8R8A/qCqHr/j89/V2lZEfjUG9O3Wtj/JL7+17V/EWtv+38Cf/5Rj3h7rmT8/4/vGufvhGWdwbm17\nxucbZ0N+xhlnnPE5x5laOeOMM874nONsyM8444wzPuf4TCo7/9Dv+7s0uAgEXs8ZAlxcDPzgl97j\nardhPmb+5v/78/x/33jGy7sDu93Ij/zgE7xzfO1nP2FaMsE7Hl5tuNpFghdaVW4PmZILop27qZBb\nB4HkHShUVbp4fuLv/R38gd/3Y8yvj/ztrz/jZ7/xEfN05O5YuJsLh1LYjiPvPdzxpfcvCSJM08KH\nz++4mxa6wsWYiKK01tgvhf1cEXE83I5sN5HdmNiNiVYar26PfPjijqkUau+oKiIgIgTn2I4JBXJt\n9N7x3hOCo/dOK522Xkf0gncORQmieAF6pwFdBY8wNchN6aoYbWbUWfSOzZi4uthQAUFw6z1x3uGD\nYzou1NpQIAWHKmiH7W7Db/9tv4Wv/ugPcblLfOPnn/HTX/t5Pv7kEzYRhuh4dTszLY3alOCF4B3e\nOxCHOEG7Ukqja0NESCHcv3ZcMs4JTx5e8MM/8ISvfOEpm81A1Y7DUWpjP2U++ugFh+NEbXaO2hql\ndYILHHNhygW8MM+Zec5o77ydMwxOiMEzDJHald4VJ8Jv/6Ev8oNf/oBHjx/zxQ/ex6ny4qNnzHkh\neM92s+XF9WsQ5Wq3YTMm7vYTv/DRK37mmx/x6mZPbY1HFyOPLjeMm8jLmz2lVHpT5qUy58ZSO713\ngnMMMXC5HfDe07pyKJnkHGMMpNHTurAshbv9RKkNVYjB8fT9pzgn3N3ckpLncjPw6HLHB++/x3tP\nnzDuLvmpv/U1nn38CfPhSPCe3XbkcrclxYEn7z/iyZNHeBe5ub3l+vqatj9yfbvn7jCROzx4cMnl\nbkSc8upuYj/NoAs2w8z3e/L4IQ+vduy2Aw8fP0akc7x5hfcjcXuB317w4Tc+5O72jlIyN4cjd/sj\novATv+fH+MoPfJEHD67wHZZWuDke+fjDTyi14YLHJcc3fuETPnr2Co89J+cAFUCJ0XOx27DdbBlT\nIgbBBeGwLHzy4pY+LUhvRO+pNdMUGp45F2prdFVCTIQQcd4x14K2TkC4uBjQ3pmXwmHOOBHGGLja\n7BgvEl2Uly/uSCq8/+Qhv/P3fJVXz+/Ix4X339ug0fNqP/G1v/0MlxvRO4bNwDeffcLNzS09Zy6H\ngWEzINuRXMpqCzyHKdNaQ0TRDsE7gvf01mm90+j8wreef1ci/DMx5MF3vANVwQdPGCLDMKC9MU8T\nh0Om1E5TxTlhTI4hOaSbQWhNcR6cD/QOXcCJ2MUrtArau128CF0bTkzLVhvM88ThcIc0pbdKLZVa\nG0suTEuhasM5wTnPcW5so6N3OC4FVezGqqAidO0spVFbwzkl14ZvkRHBBc80Z5ZSqa2uxtXugSr3\nxtx7hwJe9V7GoN1+s8lrxznn8E4QAS+CWyc4q1HKXWn9ZLq/XUTRVMmtc8iVMUVi8Djx+NNxojgv\nuO7oCqV2nHPE4PEdfFccHenQazcjVTuLdmoVpqVSSkcR9DRmQJwAQuudXCohOkLw+BAopdJ03XS6\nkkvlMBWmudFbJpfMo0eXDDGwLPXeAA7J4xFKrSylURAUO08QZ4se6KsRt/8J4mQdjz0A74TtMLDb\nRB5cjnzxg8dsN4G6ZNLgyU3JdaHeNqbDgeCEivD65pZXh5kXt0embJtz70qrnSVXuiilNVqzTbh0\n++mqdk+jZ0iesI5F1+vH2TNOKYAITpR5ctTS6N2OefTwEucc0/GIE1hK4eXtnscPL0lOuNgmhjHi\ngwdRxNvE79oBRRDEB5wLxJTwMXCTK8elULqSYkDE5ucuRpZRaV1ZlmIvqqIqXF4OXF4OaFFcs3nW\nKwzBsR0Sw9WWj2MCHE6F4IQUPF6EFD3iHKV1lkMh94UlT+znjPOOMdh6aL2h2hhSIMRom3dRZJ2r\nZTXIPni2m0Qc7Lj5ULldCqUUutpzcOIYg+CjZ1LlWKo5OmK2JCLmEDXlsCygujpQwjAkdpuRNI60\nVlnyQu1KLY39Uqna8cGThkhIgdw6rTRbd73hAcHjnSNEj8pAFcGrMOIIPtC1U1qjtop2tbkhb/S3\n/d4efDqJ8tkY8pZZMszaUXEEB047N6+PjNEzzwu3d3taqZzW3WG/0GpnWhZaVwKO1guSBnwM9Ca4\nOdNR5tZYulLWBeKcQ0+emUDOhf3dkZiFWgsqne49TRxVoXUhrIut1crSHdNSWWq3U2hnqRWfPCqC\ndgAH4lHv6L1Sq1ALTHlmqpkq+m1aMxHBibOxqY3LOUdEKLWRs20+DtukvBcEW/RO1DYAERxCW72U\n2s1gf1oC23lHjJGLccsweJxzdByqnd5tAjlxpOBw4nFBUO1oa9AbtRZKyeQYmeaFw2FiKZXDZAtC\nEWRdqE5snK02vEAIEYLHCfj1mp2zDeR0V1SVpTRuDwu5N4YQEYmUBikmtheJ4l6ztE5ynRQdm5TI\nXfj45mCbZW2EaAvGe4+2tm6Wb99zIfqA8+bVPdrtCHjmw8LrF6/wjx+CdpaaQZWSM4f9Dcuy0LVz\nfXvLMmfm2lhaw6NE5ykdau3cHSck20TrXejVnptz4BS8WAQzJoc4RbUjqG2YXlBRSlW8M6OJM6NW\ne6dV5VsfPcM7xzwtJITuHToor15cM3hHXY6QM9Gbh6qi9PW/uVX2y8JmmXn6ZMegA3LtuNnvOc4z\nXoTNdmAcAykJKTqCa4g2tDm8B5zQumMcB3bbLXkR5typpTBnGAdliI4Hu8g4OnwSaoPtdgsKrRSc\nCK0Wjocj+TAzzwcO85HWCiEMOBWWY4EKQRwiDb86HuROHGwDonUGF9imxNXllnHc4m8PfKs8J3qH\nBm+ba7NNEQpLK+TVi1JAnMOHSOkNReiqtNJwziHOI86u52KMhCGQlw7qiUOkuYYPjgFhodHINBe4\nvZ24vdnTyoT2RsbjykxHcSGgHlQ7eAhOEfHkBrlnam225kOkO0cTpWmltEYKnk16hwx5zY25FWaE\n8WLDMCS888zHCanKsnTmpYITtuPAw8sLBEdeMortxsE7ovdsYsI5x2HJ1GZeTz8ZbjEDJwCqmNNj\nhgr11NaYlsrdlGkrHXEymil6UvTQOrma1921450DEXrviHjECbUrznmiDwTnQcxIdnUsTSn9jSf+\nBhZthOgRL/c0iGpHu41FYPXSZN3Q7CQCRGdeTu/mbbVmRvx7KZNFjC7ZbRJKp2ELPCXbBGtreDEv\nzmEbYO+d3pTuheNx4eXLW1Qdc67U2qnrvRGBzSay242kGCi5kpdCq+YNdTUyx7xEQRD86bqcwzlB\nFWpr7KcFlY6PtouVthCjsNuOPH3/Ic+lc3h9QyuNmBR1DlUleAfRE7yjrlGLc288cotoBHEOwULW\nIUUuNokQI7kpL64PDOPIJgbGEKB07nLn1c0d81JorSIom2Gg1c5+vzDPha6dEOzB9A5aoLcGCl2h\nd0G7IF0RZzRXjMGepzoQKLkTPHiv9izUQ5N1Xr4VuXWj2bw4llJpgFfh7liIr+9o2kA7IThEjJaK\nviG9sxk9vTbubo/stjtyMWrqblpwrbIZI5cRHu4GduMAvXHbO641bDsyai/4wJASISaWaptNFyEr\nzKVxOB7htadUozFKLjiBwTt83OBwLHOlaaNOC6V2anf0NXLoraGrlxtioPSFoFg06sB7R/QOjxoV\nFTz0SgoOHzxzaaiArPfLOUV7J1elAcF5Bh9wySEemtraPlGe42YAjK7ttSNAo6G12D2rjaYdL4rX\nTl8KeZqptRJCoCOU3lE1unRInnEzcNkucT6QlwXVRkyRGCM1N1rX9aeZnaqCOtvcvThGL2xSZDt8\nusn+TAz5nCH3RguN4B2bIRG9Z3+zN060gYrDh0BKnocXG2ou9NMkXrnOMUY2MaIot9VCGXEO79UW\nbLf4/uQh9g5xcMRgoWVtxl0el4bDwmPvheAju3FkN47M08K8LExLQbBJFJyjrXRNR6l9nXTB471j\nGDdsdyMXF4kXdzOtcW/IT/QPmKEJ3qiAfvJOV4N+8iKdrPSKgKx0hRMz4tEJS7fJ2lWx4PnTLbms\nCyFFz1Kb8cfOMaZArY55zshKT4muRtwsCEMaQM2Ybzcz2jvBh5XOsnsyDoGri4FxSExTYXa28Zba\n0G7XdtoEWY1sCJ7QOqE44/9aZ5oW9seJYXCrVRSih93W84UPHtB647CfOEwL0oxbp3cG70je0df7\neaKiThSTXdub9/x6vPdi3mptSM/UbtHLGAPzMTMvlde3R46zGXIvin8UyKWz32emUnAeUnT4YN/R\nWqfkdv8AW7dcwyllIeJwft2AXMB3YS4N3DqfWiV0sU30NIedW50Eu4UhOJo6fAyMmxFiZCoduZsI\nw0DyHu8CS15o1SbgJkW0K/Nh4rA/UmtlyZnDUthqIxAI2th54cI7ppqR1pCu6zx0hBAY0sBus2Ec\nRo7zTEyJpkpDyLWx3x/JrVJzgdbppeC8MKbIbrulNeU4ZVoHakNdxCWPL8YPz32h9mYOW4ocDwtD\nBwlmE+xeCIMTiy69kOeFusnUWlhKJXpFPDh1bJzSKpSieOctB+UjeKWLUnV9Vus82W1GSlOOJSMK\nXdc1LhWVdeOq1ajQVjnuD8yHGRzmzMWAjwHnA+I7MSUePLhAYsR5z20rK60cEO/p0uisa9sZVdpW\n2hf1xODZpMgmRYbwDhnyqXnwkAL03hlHz26MvPwEcmtUUbYXG3JvOFGcFpw0xJlh8x7GwbHbDoxD\nNH7aC9vtBu8Ksp9YWLlzZ4u2NqWjjCmSIqCZJS+oKilGasvgBU9kuxl5/PARjx9e8kl+yWHec3uY\nSd6xiYHoHbUKop1WKq0qIYLzIF54//0n/MAHj/nig5Hrm4kXL/f09oZGOHmLzplnuvqNOHF0sfwB\nsC56S0xqM+NujqcQRXGqaAVU7qOON075txt08wzNM0GV5GAThYvkmREO4iiaEVFidAQRYnc4F/mB\np494/N5Dtg92RKfsBs97D7ZMeY9bwCEM3ry9IhmPcjUGejTvqHUlV+Nhg/cE70HFjIJCqx0tldY7\nc8587ec+5qNtYjMEnj68xLdK7JXHX/kC6p4yF8ezjz/mcHeg5kyQTgoB543/dG71/tvKLatt5N6B\nE0+IkSF4Ao7jcWZujcuLzgdPHvPk4QXbIfLJ4ZbDdOB6f8v1YSLnRimN1juH5TW9K9PSKL1bDgEY\ndxahzbnTRYxjXTnljtLWZ1J6p3UlukDwie4ECY05F+gNEJrLFiF6h+9i3hqdw3EieU+KgQcXGx5d\n7Xjy6Ao3bmwDmRcckRiUzVhYckOdpztveQEPiFLmhXmamPd7SincNaMxQwpEd82cElk7Uyl0Ot53\nYohshsTuYsPjBw/YbTccDzO73QbnPdfXt3gVyI3ajyRRhihkL4xDYHexZXdxwe3hQFwy4zhCDAzb\nDRvvabVwc33L9XFPcXYfhuiZGrjmiBLpYTWWTvCuEweHiLK/man1FXeHGcmZuBGch4DjIgVaqdwd\nZjR5Cp65dHru+OAIMaAuWP5EIYTAnBeOy4xrldbNARm3kY1EltxZXt5QtbHPM89ffEKrwma7IdC5\n2o7MV53DsbLZbHl4seULj69Im5nWC9evjDPvDXIpOKek6BBJuFNU1+FwnNDWSES22wG8cCiNT8Nn\nYsgvdomijSonjiqBj+yXSkpGbQRR6J3aK8uS6V3p3UK86IXgQHtjmisdMz7L3NHeV97XQlIU2ltU\nhapxdnNp3E4LuTTCGi6WZsnKXOw7l1yovZFrpynshsG88WZ87nFpLNn+4Rfz1j3DOPDlLz3lS08f\nE2um42j6hqc9pS9EBOcF7z0iQm8dePOQZPXKBbFEvdhilg4By0Y1FF2jgrae08L173HjRSB4pDUz\nclqZ3cLSFBXbaNyqhgk+os6ik3FIjOPAuB0YgmOzz0QfKcXUFCF6nPfUBq01nAoN87CPS7nPuHdd\n4441wRlDJEhEm66JQTP6N/sjx3khBs/xmDlebaiPL/Bj5OLqiq/+yPvQJz7qjdtqz6fT8TiarvkD\n580Txe7hyav1QQgBklNcr8xLp5dqUdHVSJ1umYrn1etbrg8H5lxxOGIwz3opjf1ULLm6Rizee2II\ncL9RdmKwpC5iieO2qosES6i1qgyDEqKg4hlaoGaotZJLZQjRkqtd6eqhrhtiU7oz6ms7RPxKhQ0B\nCJ4uA5vthm0fSdtASI5aCq0VSqvENa8yTwuvXt/y/MU1tVa0dY65MefG7XGxpH2waAW/GhdtOBrb\nAL1M3N7MfPytj/nBmOwe9073kBWoFoF5JxTttOPMOAwMTjhMC8VllM64u2QIgXEcyOPInbd8xzEf\n2e4SMbr7Oe1EiNE82a6dm0NB0kJKneOycH2cmKbFcgq1mUIpJmqpHI6F1/sFP3TUByqOmjODGjXj\nAJzDIQSx5+m9Z55n4iz0YWD70GjTmi2vxGpTclOj3nAc7grEyDBGxjFCa+tzhBQjF7sLrh4+ZJlm\nwJxTabKqcSD4gAShA3POaGuU1tjPC+I8/Xsoxj8TQ+69ULslvWJK64MR7pbCpXOMIrS6qkla5ThZ\nCN27LdLgbYJ07cy5Ik4IPnCsEyVX2skL62+MHJwMnSAmeWEqlaU240yDx/uKardwczqyP3rjIXsH\nHCkGWjNFQu1KrkpubyXRQmC73fGF9x/z6GrHi1+4vZeOiRNE31Af5o2b7E9w9NWV7m/YlVX2cRq8\nqTC6WtKsd6j65vr69+TGV/5dbAw+OEo2br20TtGFotg1rhyhE0GwhOGQIt4HfAqkcWAMgRgnEKGW\nZsbfmcywd/P6pStoozTzwk9RgDq5N+J9pXoQIXhvSgksjF1yJa+exzxnaqkIUHrjC18Wrt57xJgC\nMQUkeGq3wFS75Ri8c8QIuQiiJ05q5eS9EIIjOrtpx2x5gGVeOB723F2/wjnP65tbDvNC074qd3SV\nZiq16T01pEAMaz6lc6/ACX7lxOQ0b1kdCVanRBHpiOumzIqOKpHshNYbMVpCOvdO62uu4ZSzEBA1\nLj3XyrwspDERo/G+lxeRLpE4CE4619d3zMeZuZQ1J+GoNbPfH7m5PaJqCrG5mbLpWBqdzgaHqj0j\ncZb8brVQlplnn3zCkhsfffScBw8fENNAb40W3Zo0FDwmi60d6nFhkybm3YbDcSImz7CJFiUAEWwz\nFKG2yjLNjKNRK32l+uhKHAIuBkrtHJdOmgqtw9wq02Gh5EpIkVJnEGUYAtNc2GflUCH0ik+Ci45S\nKo5OCx5cwK8SwOCEFAPDENnfdvJSabngWqfRVsqj4wW884iL5FpoWpgmSNETYyAE20RrqeTa2IwJ\nvXLMufPqxXNqbpbgbrbZ9a5EEcR7Ex7EcL/5H5eCuIa8S6qV5/sjPiQ2uw273ZbkjU895mrSJBH2\nh8xxqcaJTpXtJq6cp1EQ3jt8XJUVODyRedkzLZVu4hJbON0MmGKypZQcV5db3nv8kA+/+YrSuumV\nVRGMC2xdmevCfnHkktFuus6mylwKpTaGwTHExOwbpR7w4kgxcXl5yYMHO4I0Xn7yITVPeG+cpvZu\nng0WHqYQCM407vbAhNpWpQ0WjgfAiylSBId4U6n0pmaAsQ5SiNwbzLdxUrAYtw5JlEWVqqDiaVVN\nHldXgysexTHXxnYMbLYJosfFRBpHorg1OujfLo9SxeEQhdoKqt28yXVsJoE76dsBNaPemjIXS1Tf\nj/WU6MU80ru58tH1xKtD4dl1Ztw8Yz9lpilbcmpMeFHoDSng1oV0nJf7qKbr6pWLkLxn9DZ3Dt04\n897h1es9n+xek1JgLjOdjgQIEeal0tQWsDhhHCxRuuRiC9+DD0Kr5rl3bYjt4GuUuEpjV89cRegI\ntRScdJIIMQXz5L2SvKcDPnh0NgrylEdRhKqwVGW/KrVSGq02wCtOTKq59VCGgTs5MJfCVDJD9Gyc\nw4eKC4p6ixxaN+dkUQiqxAa6rGoVcYSYTG63X7i5OfIz33xBt7Q1Hz9/xWYzmrx0HI06Q5mmwrKe\no6jj9WFmfvaC/bHwwdMH7K5Gk81OC751ypIp2WSn2hpaGg1HqZ2lVEqtbLYjPibUd1KKDMmRglCK\nt/XkA34YeP2qsdRKapUqHj9u2YVEXSZC8KQUmQ+6JquFzXZnnw/eqFtvksbXziMqliS+O1CdZ6pq\nlEyD6DxpGMBnugTwIzEkvHaqwu1+oqbK+08e8t52y4OtefA31y8pRYleIAiumVQxuLAmlh3JJ0S8\nrX9VsnZK+/R/+vUzMeSCJU0uLnb80G/5Enk/8+LVNUlg8OClM5dMria7eXU3M5W2JqlMg3rSOgeg\nt85xyZRcqa1Re+WkjQbTC5uZNtWCFyF0xa2urGnTBdTdF+NoU+Ypc5wypVb6auxyMVXA4COFlQ5Z\naQnvHbvdhuTEMv29MybPZgi03hAJ1NYp1Xbi6IXBm9ut3ZFP+mfbglCV++jiJDFElXnN3nds02FV\nZbwx2d/tnqtCzpWX13sORyuourzY0mujlcayFLsv3jywUgqLs0UUQyTFSBBHq53DYeL27s6Snqtn\nHIJtSB1TkHQ1j3QjfpU3Nnqt99GB854uQumNOddVJyurhlnvFQRm+BQJju3VjpQS4gMPH19xJTb5\ne8kcD0dL4LVKa928dNV7hUwUx+VuY6qdrrTgUBytZTa7LcF79svC8+uJzRhoteHUm5LHu5XGMgov\nhsDFJrIbI3u33nXvwZmGvuNNLRLs2OrXwqRTZLSqp1IcCc6chxACuSl1UcpSSTsL+bvAPK0ODAKe\ntThmlXl2pebOdFxIMTFsduyPRoGoCkJAcdTaKTUzZcVRGGWLoIToKdXmTNPOlCvbaBrzGIVUFDqI\ng+agAEur63x0RKe8fPWax48f8uTJU4bdSK6Z25tru9wgpNGTiyeXih6NThHv2d8eUQfzZEV8U555\nfXfHPC94cWYQY0ScwwXBJ0dKDnUm2dzuEila0t1y2kr0ngfbgXwwLrt3XdVsa+3KWsPgfSD6CKEz\njnGVw5q0sHU1jvx4RMRkzHe54OeIBKGq4CWCVOZaefn6FR7PxXaAKJS8UKcJtJNrpbfGzfUdDx/u\nWFrnxYvnlCUj6oBIa4WcK3nO+NAZZCQOHmLEdUcQJbNGeV6+a23DZ2TIuwohJi4vLvjgvYd8/eZb\nvHy9N/79u4y1AAAgAElEQVSud0opzCc5YYfaIddO8Ca69551l7SbX3Njf1jIpdLUHlp/yxM1usAW\nblz5MC3dnltXWu9oM/4rhWBeUFeOx8xhKpRq3lBeiwi8mGKkVKtUdM4WaIyBhw8uaEsmHw9Mc8E5\nIUZPWATnA4gVMZzkjWktfihl9URPEfm9xnulTxROxr0E28ndySisSeA3+G5j7tbk22FamJbMZhzW\nRVxprVFbxwV/vyHU1lhKMb42JTYpEcQxLTN3+wO3d/v7e2xD0/sCixhXuqMrIQilmqzsVOQkIqb9\nR43eKXWNmHiTrF2vR9fCjNo6LjrG7chm2DJuR9IYcQHm/cTLl9fUBrkeKbUYVy92Ir8WEu3GxJAi\n82Gh9JMw1Qo+vPfcToW7yaSSKQUUk36dOHZxjhiFbfJskmcIQsVoQe887nQN0ulqBWUhBFwt93p2\ncc7+r0pwHi8d7yElj2Yl09aIRXEOxugJKx1igsWTCmf94bRJZ0vcDyPTNOEEovdW3iAWjrdWyWWl\n5lju52FeTAXSOuTSULGag7TxSIJQzRPUgslW12iCld652d+x3W642I7E7ZZ6aCzLQhpGQvKEwSPH\nNTfQOyF6am3c3OwZtn6N8KzQZl5MSx2dkEIkpsHUTd6tFcNQ6DgHlxcDu+2GVpV2d7TNHyVox4ug\nKlYw1tt9stunSAgRHyLeR6DhRCzqdqaAUfpK5XQrzFFzrrpzpnpRB17JtXOcMyUvPH1wxSZ51FWm\nw8R0OIKaTFEbLHPmuEwclsyLF6+oS7Z6Bjy9Z8rJmaqd6Dwuxftiut47KlbZG9M7pFo55s5VsOy3\n18LN/o7nN3dE5zncTewPB45ztoRQijx9dGken1hSX7SZMUVM8F+qefDNNL3OebS21auzsNl502xv\nx4R3jpytJLQ142RDMLnaGB0hCrlUpqUyZSsUcAglN0K0Y7w4tK+l0970q+Mu8YX3r7i5vubFx8/5\n+ed3TKWu/I5xnWAGf1iNSvCOslIOVoGmiDPOXZrxqx1A+8o92iYWENYKeKSvvClvqPW3zbisPHSK\ngRQtKojRE4PjdtV6B2/aanH2HbV1RIyT3Y6BizERnOPlYeJuf+C4LIBSa2U+zsgQwVvEk5JbM14W\nDZU1Mdh7xyErrRSZy2KVbHqSW77h80FQMapmWQqvX98Rgudqt+XpezsQZXdl9Nx+GIBA0cBxrqsm\nuOGdR+l4L2xjxKla3mUtPhIRYkqkkPA+EFK1UNZHLjYb9vOCI+O64PEEDypmEFDz+lPwOB9xEmkl\n46TjnRX4xOSJ0SPZvcmjrB5k75VSZ2SVCXa1ZPk4JC6aghovG1MkOE/yEYKylGwLm3VzXKs3VSte\nKtsk4Ky2InrPcnfEeYuATQLpqOqZbzOlN4bgyM7RfaDJSgFhEUYKiXEXWVS5vd3TpkKt4CSYvLA2\nem/E6lhyppUZXxO9dHpRhsuACwKLQ2k4b9TmdNyT1ZROw7Bje7HFhYHD0XG3nyxn1CrJw3YTGIeE\nV5BSoTVYOezHlzsuH7/HYS5889lzcELtnZfXtxymyjE3CoXgLTfkXSB5R0gJ9QPqj+SpUpaZOHjG\nq8hm661uwQ9mO+aKc8JuN/DgcsS7gdacVYHPJoONrfNwLNAzrc3cXd+yP0xI8oia5HEYRvIycdgf\nrH1ELcRVeeOcOSw5VxBTD7kglDUybrnQBbY94PUdMuTiA1cPr7h6eMmzZ695/fqOpsrFmHj9+sir\nfaZVSCny3uMdP/rD7/H6euL61kT3KRhH7hzMvTG3RlGltLU/QbgvA1qlaKZWiNHhTPlGEzN+pr02\nYxyCs/BLLCHVmlUmltYp3TSnpuKyhMyp7D7GxG634cFu5HIQvvnhNd/65JrDmkwtzYpCajMBmvem\nNxcv97LAturAZeXMtVsSSEWQtVBJMS/8lPzxyJsw252kMd9DtSIgXvApEKsR9fOS11YBDseqZ2+m\n2jFPvXN7OPL69pbHj6+IyXN9fc3t/kBeJZ9dLfmbNOB1pYZWFUpvHfFWmCLONNYigqwUUS+VVo0G\n0zXJe9p8bci6cusmS90fJ+7ujhwOkxnp1um58uDBI9QllgbHuz15UloVgk9rhWanCRzn/OZ2qBWb\nDGlgOw6IE2IQhhTZjAMXFxuKdGIODDFQewOs6rL2ztIUvJK8M0lrGjhMipZCb8o4RIbkjQJr9mh8\ncG8VFFiE6IMVhXi/asSjow/Q+1rxq6agSNESklLWDLg4SlPm0ugUemmMdwvbu4mlmmPSo8lNjNbx\n9KpoMqfDoSQXTb67dFqd6D1Ta2WaJo6j52oT0W4tAo5TpreGSLd+OsHjglsrPs3zn5eZIp7pcKQu\nBV8V8aYcsZyPPdVeKtvNhidXFzy+HBEPuWZELZFYSkG10WsjdGFMI17rSl1Zktk7Z1RqqWspvTNn\nDECFTjH6R8FFEzOkmKDVVYcvDEOgFEcpilY1dVHr+O7u73EXaK2zLI0yLfSgtO6Yl7q2mOiImuZ8\nP00Mh4n9dGTKCyGMFqWhdC0c9pX9XSbXTs3V1kfv3B4XpmlG6VQVikKvuhY0Qa1W3zJEczA+DZ8R\ntWJGOobIL3z9Ga+uD+Dg6sHIzcGTO4h4ri63fPD0IV96/wGHQ6HWRmsVDRHFEm7T2idiWeVZ98qP\n9bss9NS1iMg+U5r1R+iyGkqRlc90qFg1Vq1rT5eVRulvh/q9U5usagmIMfLgYsPFEMj7Azc31oCo\nqVK7JaecD/RqhtN7NcmjczjUlAirVw731P63iVZO1Imc1FhrxV8Xo1v0/kh425LfG0WRtUzfU5yV\nLt8dZivKEGzyN1uk9dQnRGDKmZc3dzw9HAhD4PXtLYdptoZTfqUJTgZ65SpbbfTa73uI6PpArOzZ\nvk+1r8Z+pWf0LRu3Fhqdzm1zRplzZT/NHA4TV9stZe4cWuPR48c8eHBBUyEf9ty9bkxHRYLHTcqS\nM6X1VY5odEIIZiAvtgPjWi03RCs9H8YNISZEjiv3utYvOIcGpTejB7sKY0psx4gLjrnI/bWEtbrU\n5kq3iuHoAbsHJ683xEQaonnuKqSmOPHkLKs66k2PmJbX9KJzOG9J6dbV+t6oY3/M7PczjU4MgjTL\nVWi38ebcGAejBn2yiuLahIvNaIl4rAXGtGTmJZugwCcohXlpVjmM9ZQJm0j0gnQrZe/aubm9xc2Z\neSrUpdBKxcSyDpVVzdKtbiBgpe+9ZJZjYT/PHEtjnuc1n2S9THppDCnS69qrBqs/cM6R50JZrDeJ\nX2W11s9kQPYZcrHtQ7lXldVuOS604p1Rf9pNxdZPdG1cK5ubrv2UrLnbMjdiqnRxtGa5MRGhO2Wp\n1vztcllYSmaulaHVVQmmtF6ZZ2FeKrVbnqyXgpbM3VzI1SSwOHef+xLX14Q5jCkyxESM8VNt6mdT\n2Tln6pKZDxNf//AlL28ODKPj/Q+2HKYNr64TReCD9x/x5S88ZYwblqocc2Fwxhkt1YT6N4eF/XEh\nr2XEbqUGTtWErStUSDEQvSfnwrwslJItLHUO54Pt5l4oXTkujSlbMygraw9W+l0KpTd7EM6ZEcRo\niyeXIxunfOPrHzMdZrwo0QlZrcOh26R1IzLuNgKDs8rCY67UVWt9z8GfhOer9tqtpeX2Wetc2JuS\nu+3itWOqk7dwklvCOpGdY/CeyZkKI0+VcQimbaYz5X6fkENl7VHjeH135PntHRo9r/cTS7EqV5TV\nWwykuEoLuylseu/3mulabGMQt0YcTujSachbutg3hJBz3DcHizG8SViJZymNeZn54pMH9A5Trtze\n3fLe0/f5oa98Ac0zX88zh8PMdkj0JdPawtKtJkCckFwwTe9m4NHVyJCsYGxMA5vdljhuKEVYDtbU\naVkKS6uoE1IybbCoEFzk4dWOEDzznE01s26pWisFUxbVWqwSOUXEe2q1ZmFGdxmdshkCwUerPvaZ\nWxplrlStNDWlwzQtxGCdI2M0CsiJ4NXutXnTmTiYrrt3o75aN/VXXrKNYeeIKVJ7RlvmwTYRgiBB\nmLOpslpTLjcDbrsju0xhbSql1kMndRtDCJa0XnLmo2fPSXEAdaukM9NrY1pMGdJUyLWjpVGWhf3t\nDZ/MldvjxH5ayGA1F17wLjDnyuE4McTEsVhSN6qyiVbgdLfPaDPqLKXAss94cVxeXPLqdsblbG0A\nmhLbm4iwt0qfmlFXCMM40MWSn6JCXJte1aXgxd17U0VXQYRzDIOQq6dWh9a1KV3tLLVR1aTBdSn3\nsuDSjOrr6No2AFqt3M7Ww0nV7Ijz1uWxaiU0ARohOB5d7ojRM+c3UeXb+EwM+dWjEZ86pRzJZbGs\nvXMc7ibmuYA4LjZbvvylp3z5i09o08pTquDEo9gOObdGqdbTQNSaBPm1dwfS18TZquZwJg/zziHd\n0RoEL2wGRxkdQ1wVK2qSqlY6tVTj1p31dtAWqKo0tYlemxUKtVI5HGeiFzoe6RWnnWUpTLnSBdKa\nSPR+XdBi/WDUW5KpNYsARFYPVcyLOukOrJWnubNV1w0KK4vua9L2Plu4Qk9sC2sPi94RLHtvDZEi\nQ4rGS6sSQzCddO8mIcSKTcYx4b2j1ELJjd6MsjpVmg7BWiaAUCvMreGcR7B7dJIWWnm1UUXa+kk3\nuXrduo5XTuIcG3d/I1l0WDvhZ89fcbVJXO52DCEx7WemzYS7iKQU8THQFObjzJQLS1WWEw0W/CqR\nbCw5Mx8s+e2DVRdfXW4ZUyQfJ6acOSyZpZhB8OoJDnyMbIaRq92Wq4vN2jWzMc+VWtrqbgdK68xr\nglzUGqDF4NDuTLFQhTxXgixskgfpxBR4vLniUCbKsWNyeku6ulVy69c6ihTXhlpFGfwaAagyxGCJ\na+24bq1ZY3B0DzHYj0tCPnSmqbL15qGiq45ZlFwzL2+uGVpnzrqqtvqa+O9rMtYRx0TOhVZNITIO\njs04kobE5mKgi7VNqMeBUu055zpTu3IonRf7hdv9wrJko2u8KVTA2jYosL3YMS2Zw/HAq5tbNtqQ\nkJiWzmbK4JQ6LQyDFUOlXWDcRsYSzMErEFxEnCfnSsda5eZmtF7wAW2N1mApEMRzmAuHaUFXGmYM\nngcXW8R7cq0cpoVcLSdn0l9bq3H09FuLxEYCcYwMPhCx4qrejVVoqzMU40ClWnVzNzqlq1VCxyEy\nJCv1320Hply53r9DhvziMiE0pmlCtTFEzxADx31mWRqIYzNuePreQ957/ICPvvHcLhJATE5W+9oy\n9CTpWjcD54VTYYushsGvlEKMHkdYey04hhTYjYGag4VkzpKIGhzW30nvm1VZ10HjkrtaJzobjoI2\npnkxeiYmqIUlF45zYa7VKsbEOE8rVgn3RTTAfcOcvhZHyPqdq7LQGkzxhmZpavyRqvH8be16aAPi\n2zjyE+fsvWlnx5SYgpWuS7BJ3HqjBWEIkQYs1QySrly8c9YEalkyuZjqRtypX4knrv3enbMcRNdq\nPWQQ5lLseHHWaCmsVElta2tV623SW7+XHtq4bfx9bT4EayFZ7dzuZz55dQM4HlxGlrkyT5mUCoiY\n4iJF67/RV51865z6rcQQ1jbKppippeCdMEaP2dPKMh84zjNTzqvqwZLNdMXHtbf75ZY0BOZSV1mp\n9fNxYlRaK1YdbHPXitZ2mxHvijUd6515yYh0tmOgaWccHZe7kZis54PNwWbKpDVpJ6sCycJ7ObE/\nWAxq3QFTDEir+FatUjoILawdF03JbsVtpVFolFrR1kzXjJJb4+Xtka06ypr7UD1VeJ4S1zCkBB3L\nA2Gtj8cxsr3cWssKtR4rYzJeXoEWK0tTpv3Mq/3MNBW0drx4y/ess72tFbFXgynJcoebw4LGyDBa\nt9FcrAfOfJz54Isf8PDxFWmTuLzc2XvHildL9jpvstDaqxUrdVPCxRTQxYx66525ihULlkZMHrdS\nM2OwYiR1Qjkc76XB3OfUbJNT1CI2MXsUvUVNPgRCNBWUsQemDsrd6KrWrJtiXwvcupryKEZzXpdc\n/3/m3rRJkiu9znzu7u4RkZm1AA00W+LQRNE4I+r//w3ZyEwzQw2HS28EUFWZGYsvd50P7/VINASJ\nH9HRC7oLaHRWRPhdznvOc7jO28+uqb/IQn7wjrIWruuCUprDKECYuBZSbijtCMPA6XhkGgJx2yg5\n9wRaZXQeUys3Uo+vy4LtO6Rk65AgrfoH4C2Tt4zeUlvAB8c0GY6T4zYG1i2RurtEq0bNBSgYLQzu\nVIr4o7U4DnQTn7k1+n7Sz1Um+EcHny6R59vKeUkUKko3anu7BVgjGqdWWgA5nb3RqvjDu9JK6dq+\n1mq3yXaNvmvPDdH6eRvaslvl+JPDOeMYeDwdeHc6dt53ReuKUsKgMRaRIoCm5ZouwyRJ8i3z2oMZ\nqQ/+wFsrrGgjTBXvRP65uzm0Im+tD5cs0zRCq3cGvBQ/CHRrX4rqHTC2O476Yq+MDK2VoVT47ssN\nrQPWjWhvZCCdCyXD4ANPDwcwmmWLlFnmJtZorHeM4yCYViO2vlK6XOA1eV5Yc+b5yyu320xMcjNp\nfQHLOqObBl0xDlJfFsXXr/pBQ2BWNUrSUAbSmsEH3p+euLmZ27qwtUzOjbYW/FWGkDTNh3eG4D2D\nFwJhzVlShEpuh601li2xpYpzlsFbKpXSMko1xsPAEBzECC3hbA/1GEupjWWLGOcQ67Ri3RLbmigp\nEawmVZFyXpZK0lEY6VoTlSEpSbfWUlAVJudwTbEpzZYSussXxsAWBVGBtmix40PTuOB5vcw8v16Z\nlySIAdMPUtqgEUdCzsIy8ibLDEE51lR5aJbgAoOX7828blyuC3/zcOLbX31NbpXlvRBLr/OCdQrr\nNcYJLiMlgVRppQjBMRwGCisahTKahJgbSgNvxAFXSqPlTJgEUKbON5oy7KmPXCtrSszziqrgOwk1\nlSgkxKo5TAfWKs+CYcdTa4FxIbA0nXXvJ1DE2jCiE3OZZ5Gftj+jhXy0jZQ2rlFi11MIHA6BtEXh\nIwyK9x8fCePIulV+/8dnrmsUfq/Zr+btrsMKeRB8cHJSiVnwsOw40+6cwDKdBp6eDjydDnz6/oo2\n4l5Yt8jWtcYlZnIBlMgFd5dFFY27tcroLZNzoOVEnbP4QLO3XBdpDNpywTmF06BVpWohDkoMWQZI\nrVVihzH1pEj3vYtro3UP6z4cpcGSJJlZmwxjdsuYvN5OtHckgVLiyumWnB1Ba7WilELMcq0soXQp\nRxbpWsR/H8IB70YU+n7bMU4TgsM6SdzqAvOaxO2SC81rWsf86mYYB8/H90deXi4sW5H3VokLQuyy\n4i03wYqtrckms6MNQNjgShuMNuQorgI/DBTVcMFzejzIadzKorHk77Gd9+G1AJhGZ0TKaZqYYVk2\nTkcwxpKz4nad2bbIZY4iyxTZ9GquOCODbWcCg58Y/MCaZainmvxegtcYZKGXibXqgS5h43hnKc2D\nbgzjRC5FWp6MzFzOt5Xyh+9Y1ohzFqN0RwSPDPNKqZVtXaktdS6IxpuuVxtLzhGjM4dpQE+BUhcw\nkhKuWjAKJRbWdWPJmTln1nm5+/xzzoIgyA2nNqyxDKPHjw6rROYTALK4UKzTrKtshLomUlHEpEmb\nhiryyFZWSpa2J2MsmT58zQVrd5Kp4TBKY0/TMpQsSomUs0Yegsd+fES3zDB2e6W2LLlIA1PK3F5f\n2Y4jw3Dk3XikfWjoVknryrZtXF5eaCXfn6XUGltMmFm+18aIIaJpWfRt0gzOCWIgF+aYYFmoSmGb\nNI8Vb1HK4rRC2UCKTmQqldlyIsaEbY1QG1/7QDtZDtNA3jaxL8tXXzYRJadx5yxjCPdbe6mK67Iw\nzxsppZ9dU3+RhbzETKqNWAzjcZQwRMuiOSEL8tP7B0JwxJh4OV9JOYtEYnUftPU4h+oFC0ZgW3tK\nXVwDqp8GTX9DGseDZ3SalhKtFGETe89iVrYkjI/bmkml9jIKGUIYo8mxn4Z7WGNnhRQtbPKUK5/P\nM+c5iv+8tR7m2Dkge5wDueI1STSmVO7SkZzA5X1q7JEVesOKXDm3WlGt3rXkvnS/vcE/+o+q31ZK\nrqQts3nx/+Yi+mOsldz1zWWLKMRbb7TGO4fWhuEwCEg/yel412hNvymUbmEspUlqld06KDY1TOu3\nIsdiNdlqlHZy06lVuOP7NRXumj3d/w6S3k0xywJpRHZaN0GWHk7yHbIajtNAiRO360gYvHx2iDtJ\nijj6d7DfamIsjN2hFBWsaWVZV25bvLcXxdxoubIzcXRrAqtSjXneWNbUWTV98GY1qf6pG2cfZHtn\nqcqjjObhdJR5RM6onkauDS7XRYZmRQBw3lrM6FFWbG/iWqoYLXJYcFJ60FRjWTfW20weHN5K8Cal\nQsm18+AhFqBTKdGKQp/TVBnWlSyzEYg47zBW44KV/EMTRkzJIiGwI2C7zWjLGbtFYfRoJ8OeAlob\nIXdqw1LLfe4xDpYxOMYgt2brAmgrtYdRGCVx3RjCgeADOa74MTAMgwCxbgtysVB8/vLCZC2/+mAY\npoGn04GUI88/JK4xcbveupMGUqvElDC19tuKQhuxNSpnsDZjtFida1ZsqYl9VXjQwptH0tzWOqwW\n5o7kEHTHfGRizNjaCPR2oybSXk1SP7fPGoy1mNZvXdbinOsHOQH53ZYoPvP2p4aG/fWLLOSvrxH8\ngJsC3zydiNczry+vvC6RNTfGw8jjwwHvNOua5HrbpOtw8Ob+3bFaLGCtW8Pk5PwGft6v7S5IK0es\nmdNgUTny/P1n0hJxaI4+sAXPbU283jLLIgZ8YyVy7b3DG8s5ycPdigx9cmk0o6jWcHCeXCr/9PnM\nmjKpw5uslYVoi/K/sVZOPrEIE7yU/lB0KehuW3tby/oiDt5KWs1oRdFvQ84fSyj7a9fTd5linjcu\n2uDRdw98TKU3Isnz+BwX9u7AaRoIXmG9ZzwF3CBtSXSZxOwhhpRQSveJu8ZW+VLrjhHwTvzpwRp0\nrozWoMcA1gv6oMnmlaJ412MSO5n8voXFvG84u54bTSU0eLncOL288tU373AGtuWKd0dZYDT44LHW\n3N+LXAXkVXuQq5bGjgCu3Rmyrol5XUUm0FLgkHOmVYWpcvIsaSXHmRgdX84Xli1LDWFrGGMkwdu1\nfdGVJQzWqDin+0IuernSitQhUc7Ie7oshe22Mq8bpWWOwRGCZxyk7sxpJZjgHSLnNMpqUkxs18SX\nH17QuXIYBq4vK8t1I2+R09ORgmItDZKkUachoFrjtqxsS2ZLVYbuVFKr+EX0aYzC98ShppHoILP9\nlmS98F/iBhRG1/Cuoq1ldBZVCtY0rIG6ifZttOIwBU7HwDh4fK0471DWk2rjep6JKbOuG4/jAecN\n11Uz+cDD05FxGkga/PWGdY4//vCFvCWC9rwLHwjeEoaBrSe/5yWia6XUTCziFvE24JRFO4OyYJoW\nDovJLCrKrMw0CmKNbNQu2aWOo5BgndPgnWIIitikU2FbU0+bKzbTeD0vxK5973MxpYTm6DrSwhqL\nd0YOSgpylazAuiWBhvWDzU9fv8xCviS+Okz86t3Aw8nzLy+Vl/NGcxbvNWMIWK2YLzO35wsoCM6i\nlBjonTFko0Qfrn1qrBtbkoET/Tqum7SnHLxjHIOcMIvieonMrbBFGWAZo5mclQYTLcGhUioG0Y0n\n78TpkGWy3xTMRR5uZTReSz1dydLNSNe+Wl8hdq9vabXvrqL5i4SiqT86Qqdc+wy0a8RNEAVGC11P\nbIrtPsR7O+P/5NXdHx25SK2FLUVu88y6bT1FKpKUUzKYVIhEVHKVQgA0VUvwqFWZpFdEt7dWTsmt\niWyEkelyU/u1Wza8uCZG79GtUVKipkTeIrEXNbRWxbNfRYfeQ01SEGLk9FnlxrDfwHRfvEpJvL68\n8sMf/pXXTw7rPN98+2sphJgL82UVaWgMIh+UhooFN2+MQSShomAaB949HDHa8UUnlppIayQ3Of2H\nQXz3KEWslZdlY/nuhT98ufE6b92GaWhVbnhaaWrdWej71LZRUma+XdHWYbRi3WZC0HhrcNNAjCu5\n42N9MKRqaFshlUZeInXdOE0j2nm2CMu8gWq9SUfTmiVnwTCk9BlqJabKPK9AJa8rp8cDwzSy3YTF\nH6zl5E88a/nOxyiNTvvPHXNi2bY+bDVIyvltEz+/zmgjnbtPDw/ctignby8BuwJyMi2Jphq6B/OC\nMzitaHs4xmgYAiiFakUkLG+JtXLZCkPKWB9wo6dRqGnFKodGOgusNZyvCc2Nz+cz4TEQ9MQYHFU1\ntpLYcsT2YJc8m1BzJuVIcIPcNK3cQpUScmZKjVql8et13bAxoY3MEbxTMmuxWuSqJXObt24ZNqAs\njUxTCu0tuUtS1lqUeZvNpCK3d9fnBK1Wti3fzR37TV5+vj+jZKcxUqA7DYbJC9dk2QreOEYfeDhM\nnIaRlivLEsk9naa1+RP3yG4BFB1WyIG51j7klP+vWmVBsUoz+oAPgVQK83Xrf53uV/n9IN9EJ6sN\n+gKqkQLn3AeuIClSpQxO9cag2gt3f2SXU0pSoeJQkAejlMq6SszaWYPxXaKxEgTYHQEoOuh+38GF\nuRJ7aKfcaYE/s4jvr3tGaL+iiWc3FnEGGaN7rL73o3epZEuFLWUp6FUaZx21NJY1Qp870N7KKkrf\nUPc0KFpTiurRY+4nkK2fwGvtg7AmckTuiNa2/8h7uIg3F4vpmuybRaMRc+I233j58koIEuRZnmZa\nLWhde+GEVLrpdZVgSlOsWwQE/2Cd4zAFjocgA9FNS6JOiWMkOMvopDIt759lLKypoLS03OgednEy\n2JChaOkNS/1GVKrosefLjePpiB+CDChzt4Sq4c7c11p06dKaVOYJl6EPGfcyBEdTW4/ot3uBijaW\nLcvthdoDXrUB4u1WFXStxBgxuteHOUvJjnXz3JaIKpLDtD0ME1NCaU1wsmA6bdjIpFyY14R3MATH\nFARH/7sAACAASURBVAzoIFbXXmelmtyS5dkpkiK2shELUlc265ylrpBWMa3hvL/PeGrriOhxwA5Q\ntpXltnI4DPcIvHOW0hqv88LvPn0iHB3vdcP6ICdcayX3UXY06lsHbqn13vyDMcTcMct3BkbHETeh\nje63rFrE9CCM/QoYnAtQLa1GRgfVZqiVVAspRorSYqrYccJ9RiIZkbtZmtLEKaa7+8H0v17fW2f+\n9PWLLORPhxHvrDyk5a0EQtXGNHjen458OD5StoXcyx5Q7Q4wasjQrhaBLukmDIvSEbBWicZbmyKW\nxrwkxlBwJ8vh4cjtMnOdE6dJrtYlw5IlHVpLwzlFgv73oycQBZAF/c1uIhsMXvodc6vU0rsnu7fd\nGEVM9b7o7lp5qlkGdd0LLCEFRTXiINi/a9bIQt6A2PtIUxErXb3bVH7iN2T/tR/9upIFJpfKGiVa\n773q0pF8MVprKC1l0rlWSkx4pzlaxzAMbGvkel3uD1cpBZqcPHOWTa42SR5iZVM1fYBZlej6phTQ\njmYg1cheMrG/X/fTax8Q1lKoWqQZawwxyQ2k6kbOktpbFNzmDec83hla3tC2MU5wnCxxMyyLwSmR\nPLRSrGnrvYuNj4eBaTAEr7huEekXbWhjMUjz+xQ8sSaua+T1uhGTkOhGbxh0QOL2YJEEZ6nlbVND\nPoZcKvOaeT4vuDAyHvYyjkjpgSFJ+Co0jXEcaGgurzN0N4W2mnmL+Fzxw9DBVeJZ2t97awwFhXWW\nwVjmbSM1keSasqxzJq6Jz9eF02CZjCIEzSlo5tHy6SILhqoKrzW6/+xlSxITV4ZgHDOJVAobwlTP\nuVBzwilDorGViFXCqPE0zt0F1bJGja63aYleLHZK2FYB0FmnsUNPBNfGYC2P08SHxxMzik9/XLme\nVw7HSKuq0zlFArrdZv7pX3/gePB4r3h4OnIYPdM4dhRI6e40sTGIfbP/S2uKkqxCKhXjDdZbdF94\nvbf4YNFGc5s3SoEYGzZlTKsE73h69468bGxq7riKwrYKcnlbNyF+xg2jFN5YyVPodl9ftJKbj7YC\ntGutYJXBaycSw8+v479QRL9KPDXOM58uN9ZtwQ+Wh9Ez9iBDjDM1rVATg7e8zgvkytNpYiuFJaV7\ndVaj406LuFm0lh1t16GMNXhvGZzcAGqwhMFxGDXzkjjfNpaYCc7yeBqZlwi6Yp1iPDlGqympMQ5O\n3lwaQ2e4WCtWK4N8GZWSAUjd9e/6dnLey960Ev3YWc3oHYZCrI3UXTP7Eqz3ZGYTyaUpyP2E3pA5\n0s8K5Pub0gedShm8dfJz0VN+GdCJ1h0xrhMftVIEb6A2xiBOAhc887Kxrj28ZcQXP04jqtMqr0tk\njXLTkP7KfoKojYP3DMFjnRaSZa1o58gp925Q2ZX28JL+0Ym8Kjn95CS3IdXtmLbflGQDohPyDNsc\nSTlyWxZyQRqakI2lpo3dqJkBFhksfnm9kaKEum5bJG2FmjKhd7BWJbHyEoX/UXIRAJP1vP/qKx4e\nn3DO8ft/+P9oNfaAk1wL5ValuwNByUA9SuJxGDpDvBUGpxn1QCyFJWfGIWCM5XJceyer6PuS6K2s\n6yJ2WONAWV5fBScwDo6Hh4nTYcJZx+eXM+0i3z+rpWg4blJGcfCSUqxKnGBBNR4OAYC0ycZcUsNg\nGFyQOZRSlJL7eqKIpaJyYo6a15tIk01B1Y1EorQiLJN+k7baAAaNcETSFqUrNDgU3L3jJmRybVjr\neHp64PAw4idPbRZtBlDgjEebJMC6EBjDIGXJGtaYWZfM06PFaGnGziWLmUAZdFPYJr7t4KTDV5hA\niKOqSQ/AcQpCQ22w0oR/7kXKmi9CXDVxIyiNIqOZMUrsy7mzVLT8zVg2CRCmXPrttw/TU+6YhYbR\nuc+XTPehi0Tb4zJvh52fvH4ZaFZrbMvGl7QxL5nYNA+nkcn5rg+tpPXKy/OZ7z59kQWiNby3HIZA\nzYWcq+jmiIczRjkBmSZX3b24YLfLtdbE0rRFah/aqW7tWbOcCmtfcEv3LlsrpcLeKGIVOUIKfEXP\nqsjJUWk6EdGyrE7kj6zk5H1fvuk/i+pTaqHT7RTFUnb3CDKAU/tCvt/OG7WqLtv86O/5v36noUsm\nx+OIs4bX28q6beKISAXfYU2tCrfFKMXgbK8S8xwPAz5Yubb3q3KrDWVh8sLrzlYm/tyknmqnLRot\nv7fgBDyVOq3PWEHHtlpJST4j2dzUXdtXXVpScimRjc30FGijy0uN1jLXeeU4bdQcqFkLR/62dWeF\nEl5GbfdNWO86fJKE3qcXYWDnmFhLlyWanLqNkdo6SfH2YFNwHa418pf/7ls+fHhHKZXPf/g921Lu\nn5t8BKpr6JZx8NjgyLWwrCshBJxWOCMnyqwrVctJOISA0lkSs/1UnKuEnZyVtN80Cj9HG01KUrNn\nnMU731OS8iw4a6muEtN258/T+okUaE1uFM4oHg8DpcKlNtImfZ2+inVVa4n05CLznlxLL1pRpCQn\n/SGIzGGcwQ6Sms1VPodSKzEWghVchg+OWnOXI+nypmjTtdefaQ3BCtMHBcEHtHUUNjncVHrTmCU4\nQ7SGQmNdpa5RU+W96HkB4ySkI963+sa9UbKpOS3NPC3LYSYET1UKvyWqd734Q5AY+/eT0oitcJkX\nfvjhExbdC2QkCOadxQ+O2jRrzMSYcM7ciaAlF2oFpbXw9ZvCNoX2TnC8qhGcyMr/s3PbL7KQaxq3\n28ZtjbwulY+/esfH9w/orXJeEvV2I80jv/vDd/z3f/mOl9vC4TDwcBh4mgKtSjDkuq5YBfMWua7d\nV2skTl/b3gqkRKPKmdu6cX2d2XKi1EzO4t3tdXmkVJhjlLYcwGhhrJi+mqTypte2rsk3BB51HA3F\na+bYJNFZM0VrUG9Rnf3h0Vq8s0bLhhOTDF5joi8W+5mF/UCOujfqvKFG36wp/+N7vOvNSoun+vHx\ngA8yPMolE2OjFHBBUq17HNpoRXAWChzGgdNpwltJ3g7ec71c5RqIwlAwKJRRnEbPliJbEg3cqo5R\nzXJDURqWOaOs/EzT4MlR7I4SIOmaJYrcuza10XR1iWo6FxyBQK1RAkVGa6y5MnnD42iYBkfNmbgJ\np4Q+nN03g9Z1ThqoUlm2yPPrhRg9zmpi3qvchIipjSK2RkY8+9aJXTV4zzhN/PtvP/LwMPH88oLz\nhhTNfbP7kZ+SITgeHg6M00ities8453hMIx4N8gNpUUqihAGrLOknNHdn960sF2maeI4HRjHA0qL\ndbO2xjBMrClJgYcyLGuGmkgx9fYqx+t8JW4ZVcE5j1XmDb7W5BT4dHCkCluqnFd5DrzSBCuLVq2t\ntwnJHOU6b73nVXFWC6fjwGEKjGMgOGgGiq6gFSmJBVbKry3Hw8AyL6TW0LXitcykxDJq0Yh8llNk\nW1bSYWKcLMpqcpOCk9SPq9qAsUj4Lgv6OK4bLa9YI3q3tET1m6JCbmqtQW/d0T1wNTiFKo5WhdEU\ni3zPxt6jSmnEbtX1zuKNY14j88uV6+3C43FkmibMMEpQ0Xnefzjx+XUj3lbWdYPm5XnOYj02WmGd\nI2ZRT4RVr7tuTp8BcJ+1/fT1iyzkKUlx6uscwTk+vn/Hv/vVR7777Q8oJNI9L5GXy8K8RobBczyO\nDMGRtkhumtSN884p0HBZs9gQjWLwWk6cuUmfXy4MWVwYscmAZXCiJVYtoQalnGjk+yykIcUTpRDZ\nB3UNp2X4IG3WmmPQvDsOjBaWEik5k6I0fuSeMFVdj+vRorvks5MYt5R760rfGBBNG3lO5X/Tq9NK\nbW9DwR+tFf+z176Yl5oRGJtoeXu57Dg4UpKIuzECwDLaoXTDeIcfHKpkdE44BcdxAIRVclszNAnM\nNBTrukoAQltSKv0qqKhKBsHX29IlK8M4jF3/l03RWhk65x6O0k1Rs3iclXrz7GslQS9JmMot67pu\nvM4bD7cN42/clpV5WcDISe10mnhcNm43CfvkfvxrTYpMgjWM3mGNodYkAzetxTKpNbpW9CC+3lIr\nk5fGpJYLf////AMAl8uNT19eqDmLne+2sMV8Z+BYo5mC5fE4ss6QtoV5PaNIGFMYRyM+d2sYRi+k\nx+vK5bZhnQS6Dt7y6/ePfP31Vzx9+MASI2vc2HLsaVNDaY3nT1+Yr68sWyKlhDOawet+E5QB/XFw\nBCtD+lgr/WJEKIXHYMmnQYqMe/jt3WGQBqMiHPdGxymXirZaGpKMeeuPVZotFrQqoGAcR5QyLPMs\nGQ3kdrGarc9KxLI6+IEhBPwQyDmxLTOfni/4wTMeR6a8oE2jqMbz9UIpijUWOaTdZPYxjAGl4bIs\n/O4P35PtgFaS3BUrqLhIWjV91lMxVpFy5vnlQm0Vb8QaOQ0DpTRmrUm7bARUbWi64a3h3cd3qPON\n6/VGrZktNlyoDMFxO6+onNGtSSjpNnO53iTMqBUxJXIrkmZFVAethK3TlNTvtSq3H21EAvq51y+y\nkN/WjcuycYuZx2nidJx493DgJbzg40ZphcttZdmEnfF4mnh6mBicId82liRJLpk8d8znbqXo1j85\nLfeH3/R6Jy1fNIMk4mLnXew2wF2T3hdS0+WNnCR9KVzhLkM0GUaGrruXnFlivUfF847V7ahLsc5x\nHxbSRNePmR7vb3cbolZCP7RaPORNwVaUTMj/rZX7J6/9FBqjnDoUe4G10BBVd8nUKljRwzhwOo5Q\nFcfjERcGGQiXSumVd1KgXPuQsvWkaGGLUlStkSCL0Qbrpdk+piTebENHyMrwyCXTgw4/4lX032Lt\nUC1xyuyoXwnm7BmB3SGyxsx1i/hlZd6kJtApy8GPHAYp2q1FrrWtt/DsV9Wc3+QUmmAZWncf6dqg\nn5p2yccYQFW2tPK7P3wvslepfehbyN31U3b+vNZA7fZEkZ02FC+Xhdscud1WSQU3kZyG4OXAkhLO\nW1JOsmB6IwuxE6lrGAPaWUx01LShtWzyP8SFZVn7Zy4zBG16q71TjM4x+V7akSFvkuxt1ZBrwVvH\nIXh8sPfi67a7cJQA5q5rt1fS7rKEtZppHAnB92uUSD+q4wlaU2xbkgUJRWiKzTtakaIYhaAuYk4E\nJC1ZjAWtiSlzvdykYUgrTqdDRyispJRQWvDTKRcmLYPLect89+mKPxRKjnhvSJt8B8Pg2I9Emt4I\npRpLL1pmcBynAaNFvt1LZHKWjl+Jq4jxQtPk++wsaSv351xrTWniTIrreu9dFV1dIGHiwecuLaru\nULFKk6t8h6gNa73ULVr/s8/5L7KQn28rtzWSGmIbc1YWlmDxi2KJhZfbjVwLwxB4/3Tk6WlCtcrz\nbWGJSXoekUUk9VZzmuhWzRhSrZQmkeBpmpgG0SNLrf1crElVTtmSfFfQyxVkLiUbAk2uhDGKnpa6\n7mqtZnBWKr+M4nltXKOwYlIRJkxrP9LRZHp590HrrtvGuvdVtvvPZZUiaBitMCKq1tStEEtD3Vkk\n/8aryy5NLOHclt3GJqXDsiiJla70tpxp9Hx4OvDxwwMla9x0wPuR2jQpVdaYuG0bW07Q9k1F0o5L\nTKTc9XPdcEbmBs5Z1ly49eGZxqKVeIiHYIjJsswStNo98iIb7Zvw3qhTabknKGtBWSkYUN3hkqv8\nDPMa7xuKq5XJWcZxINfM+Xrl9dLuu1ttwtNYNskHWKt7Olh8/9pYnNa0ktgK4pqpjVwTuWWWrRDX\nwuAd0xiwzhJzZUlJhqt9gKuU6Ncxio/eGo22nufzSlpnLGdeXm4UNMfjgTHIVb2WzOEYeH5JbFlO\njbEqGci+vDAeD3KLsoHn8ws1LahWeP70idu8iTSlZdOr99Sp5eAdRjdKM9RmqNVIq5Cv1NzZKlY4\nJDvfaF5XmjESEBsG1FXY+vTDju1Uz8eHI85Y4ppwvTRDG8PoPbU2Vi/hHwliJfIwUHISBVJp1pSI\nWSyNisbovchRDZ5fL3z68sxX33zDh3cnKoGSv2BqYexs/Fprr0xUpAKvW2LsM4bgPSVFjFGMg+uW\nwQ6wsm/NWDGmXuVY79/LVDKlClYgl14Lh6EmmC83aFXop0a+884aahM7dE2R23WWZ7t78UsuAp3z\nHvsjb7jqN/L991KLuJGCkzSrdX9mC/maMspavJF6t+945nJdmNfEsiZyTTSleDiNfHx34OEgp5Rn\nMVtjFFhjeZ4jKVVJvTWJgjtjyS2C0hynwMd3J4K3ArW5zZI8VJXDYeCkZFBzvi7MuWBiImcBJcVc\n+Px8pdW33j8pohDb4Rgsh9FxHAe2ahi2itbrXT6B/WsiL1Vl9Fx165Aliefnns7sqBW8hslrHkaP\n856qFbqtvXlHvOm79/3n7Ydvr4bYJ1/PMzE4hkFqxbSStpV1ExKfeHEN02h4GA3nc8EaSzgciKVw\nW5OUOiyrJDa93eGNwhfvJ2qN0O4m7xmdkDniFolbwVpJIy7Lhq4yWIyp3Hkq4q2VU57p/u9pCn1Q\nVUnRCIGxJHSVYIV3tnuolVggU4KaaC2xJTnBGw2eitlpi30mIG+Q/OxLLMR567ZV+ewvW2FwhsFq\nYmef35bIsmygJNauqmCMaymY4GhIcnA/GOy+YLnFFGqLOOd4MB7cE99//4XzZSaVldIUL9fI5bYy\neCNWN2+YgmN8HPn4/j0fvvqI954UE0Mr+GFkfBj54ctnvv/hxuvzM99/OWOU4jQOtKYoqlKVhJWU\nUqRaua6Vr3/9LV998xdQ9xsrlBR5/vIdy+fvBLcM0CprrcIMooHR++8Ka7SUUg+Oj1+/x7kgacfB\ny2bgHcEFrPeU2ngYIl+/H8kpc75m/PTI7SpQNusMQxhBKV5nGcxao/G5CkUUSXdP1yvvveMv/+Ij\n55Ph9fLCeT5zmDw1F1SuuFFok2TPMHpsbcRqWOaVHCtxyXtvuqA1Xi5YbWhV3esWa1PCS6kiyyqD\noIyN6PtbKtwWIXEaK0Pwh9OBIRiUE8xAq7UP9cVLTy1MfhDYnDP3YbXqt/RWxEqaSy/PVn2G1ZQY\nOvKfUUQ/NzDWMoyBafLM28q2rby+XFm2SC4ZpSF4x/E48nQ6MFjNZStvYn+DHDOtwTh4DpMnrhLl\nT7lQKjhvOB1Fltm2xOv5hlFwGj3BS9glF7kOW6PxVlJ2yci106h9Wt7/2Mp9MGeNxgch8sUsV+uS\nKzG9NcJD68Cn/urXLZEWTE/+9Ws+fdHv6FzTT+1WK7lOT45SGmtsXTbqb8K/9eq6e0oZaxSDsiiE\nyz0dhs5XT+wtSjVXbreV12vm4+N7Hk4HltcrqUiStHRNWTjJAqAKqnU92N43U5Rol6mUDtPq8Wul\nKK1xXcVrnTu+Vt5mdSchBicuD98hV0pBitzfq31CLY4DeQhqUSjlUGRUqTSVaWUjR3g5Sxl2/ZE8\n1Zpo9zsZtJSCd6JVys9WiMmQvBG+eRT5KKbGXlKgEcupiuBVI8X0Nhtpu9QnD79R+h6u0cYyOctx\nGtFoBj9wnRcJDhVFXDJ6TWineXc6Mo0jx+OJpw8f8CGwzjcMG+QVrGaZF663RayzqA5nk9tApQ/6\ntJwma21oG/j1b37D3/7d39GqyDXWGmqF3/3un/H//I8U81vm2ywusjhTMyhTCVW42c5ZWpNnzSgt\nmrIf8d7JItV2PpLBBccaZdD3epaU67olhpOjOE1z0kLvBw9asWormOvuFqvdtaWU5nZLBL8yTBsp\ndiJgTgRnSF6kEKrcYNwQGLwlNzgUuI2ekuQW2mrq8L3GPBdBxlor8Cxvcd71zVdO7oIJEbSBQaOU\neL/nLWKSPK/hZHn3dMR6x+uayTTWlOAm2RQajMERfOjAvYy1sjbUIoiH2hRFiW1caSU/l5ZOAlX+\njBZy7RzBGk6nkcMxEGtiuSyczzfRVq0hWJFcHo4Tx8NEy4XaxPJnjIFUuM0RZRSHY+Drd0deX25c\nbjIgbTTG4Hn3eOTheOBLunCdN4bBchgt3hoojXWOXNdV6r+6w0P3kIyzhiFYcoZcZdOwVgnb3HRY\nv4LX28ptTaxrZFnznaGwU/to8kQJV8HcS5cLP7Gq7S8lxMNUG65VgtY8Hj1LrLzc0ptU8784jP/I\nuHi/SexCvVHiTDlMA1uSOUHJooUuayLGwstceK/g6eHAehZtcvffGKM7ptbIKcZAHjNOi+zhnAyj\n1yQgrjUWuQUYKX1GGZlPlK79/gi2rp24dUIvihYyYutXTUGoqu5nbruubuT0BBprB6l0a5FaC3Fb\nqGXju89nrst2P4mr7vyJWSiVqm+agb2hqMlwL7Uuk3WLanf3aC32xKbkz6eSqFu7D7n37MDOIQ9e\narpSKihdcTQsjafDyGk6ME0Hvv/8hS0l3j098Xq5cZsXyrJyOhxx3jOME+8+vGecRq4Xx+W73zO/\n3GjuwvX8QkoR6ywHNcp3pLdeoax0gCJ9kVppPpyOfPvtr/iP//GvpG7OOayzaON599V7xtMjygxc\nXl+4nF95fvnMuqwsuWFjkqYlZ2k5iXe7NbxSPJ0mDocR4zQ1J0pJ5NZQrhJz5Pn1yvnSevpW8ZW1\nqFoJtnEIYl7QxvAwHng5K5ZlwTtHqUYq4BosS+WZBa0/88PnFy63K1ZnnFZ4Z6hRCJzYRhjE+moR\nMNthDKxqoxXpB5XQkbrXRCqlpHQ6eMbR9y6A3RJZsd1+GGMh5ni/vafciH3O8ngY8ePAUmeqaiw5\ns2UpbtEoYcAEJ2aHdUN7A12GccbJTEXLXMooKQLxum8m/BmxVh5Pcv06jY6DU7RiadZzU5uwVgaH\nMRbtLcPgsd4Ra0YbeDgOPZVXWZ6TkN+Mwiq5Di8xs0a5xj+eJr79+MiHD09oH3iZE+vtzOtllTSY\nFtiQD5YUxT0SO/vAGE3TilwQ7TUmCrLAHEbP6AWjmWJjTjeho3Uve6tvJ0zd3Rb7Auj6abwUYZqo\nupcN6zelRMl2XFS3vWmFPzjCLIUNUhsjC8XPL+Z/+gta7RZKSFtlsBbbFGnZZJjVFIMT3XLbepGD\nsgzjyHgcWdeVZV065KqxrAmF4uNjwPfwU/YWaiFF4TIPQxA2RxJm+u7TH4eRw2TR2vF6kRRdzrKh\nGU2PXKs+0RedWmkp5XDOyXCpFFrJaC1e/zB4mfIjIavsA8Ulrucryx9fqa3yck3CrLECtNr9+Hdf\nIq33NJb+DsrG15q4rGgy4FZaGPKtNnJrUnpNn4ckwUmg+hegD+Kt1UyT4+EYaK123d9iFTSnadow\nHgaOS2Cqlm++euB0DFyuN14vL7LxhpFf/7vf8PHjR0pOfDrf+O77V15evrCkjZfzSqkNN1h0Fk62\n0XAcAhUZ/KVN7InD6Dk+PBC3jefvv+fXv/mNtEBZT2uKb3/1NcF7ToeJ+fLKfLtynWf+2//19/z+\nd7/n0+czzgmqN+Z6H+iVWHl6PPL4MFFKxtiR8/XGdz98Yf70he9/eOXL5dYJpXITu8yFIRiG4Kjm\nKpueDbx/DIzeY7RmGjxbqWxR2Pi53w63skqYK0UeRvHja105rzMP3griuTa8d6TWKMt2RxILA0kc\nU50OfZ+bKCXa9WGaMM4zu4y1GlXk+6atYd3qvY/XObESojXnNfL58yvHg9TOeSXtQs52320DCoRB\nk0plifSDjEI100NxMnTPpUjosRVa/1nrzx/If5mF/MPjI5SK6xLG3rq+5UQIHufEqKeMurMFUirE\nlEDK1GRhQnXITOF8XQV92R0lo7ecRsfDIO3uUwj86sMT/zLfRJ7RmjBKz6ZPlu+/eyGl2v3nGqMN\ng3OcJtd9wZUxOI6TlO0Gq8hVmm20USyr0Psq9X663AuP99Ojs+Jx11qxbVIYQG2Yff6mfoSx7Tt0\nLI2tNAkttfb2QffXzx/Kf3LK7yeNXYLwRqxuW8w9cackdecsoMkJpoeR6TBgjWKZF7b+ELS6F1Er\nhsGjWiPHAihyqWz9/Sh9cUz5DdHb/YiyMHlFnmRwc71KenG/ZORcJcKte+Cqe83F//umcxurcU4z\nWNM3Txm0hsEzlJGX843rLHrMwziwJMEwKBAvdO5Vgf0drA35+TvXxvTmo9KDWjIjbfu6T6NCD4YY\npe6fgzip+lC6NUov4TVGS4LQiIPKaQO5kFuj5iQtOkrjdaYFRauWkgOHKfQi8ke8aby8Xvjy+TM/\nfHrh05dnlrjILa9X9e1pUpDSi5yTlLNU0MZxPBz4q7/8DY/TyHI58/LpO1p9z+F4QhvP4DTvHo/w\n73/Db/+pEWPi40fPf/q7v+Wrr7/iD3/4I89fvidfLhLs2kROen29kteV7BUxbgwPB25r5Pf/+sLr\n65nLdWGNSUiZ/YIYS4UoTqYxWMZhxFnhtbRSMTSGQVO3Ri4KMwa2rTKnxG3dep6gcL3BWmBZI7dl\nQ1t5hoO1xOwlMTuvdxa/bNjqLuvVUqn9wFCrSBzjGHDjgeuySlq825t9sPjR0s4SsnJWwjrG9JhR\ngRgLc5b5Xa397+lUTyOLcaJmeT503zicN9QYBe3Qz2mmp65T53O3nz7b/fULsVYeiNtKrZm0FWJ3\nRCxpY6qahhXuAP6entxiZl1Th8woVBWyoUaGAPM1kvvk2zrLcfIcBotTjbz2UtYxdFKcZRwDx9OE\ndYp5ncl/kLSovHmG4BxT8JwOnp3N4J1lCI7gDd5o4ZYDg7M8100QqdS7fqqQD14p1ZkQ0ppzTxlm\nCdQILxsKPeEI94FpKlLquqbST3v7EFX+/acJz7e0Xtfo+19sjQQttBZPMvRQTX/wlRZeTavi0nl4\nPDFNgZKlJHtbY9f+hS3tOlEypkTeZPFdU2HLhUM/2YmdUH4ArVUHJAm8qZZK8DJ4jbF0OFShACll\nXJNqOuHrvBEiWz+t7Ju81lKEUfqv15KxoTsjjCABnDZ8fDzyclto64Y1ipRFd8+d5yG1eT30paQ7\ndbCiM2c6zbHb7eSf8seKANvufIG+Mtw/xSbziRQTpTRccJ3NLQ4GZQ26NGrODN1N0tLWbyYw1X2w\nkAAAIABJREFUhMDhMHKcPMFWlvMXvvzwPZ8/febLy5mX88yWN775aLFG2txbE3SvavIZy7A5Mo4H\nhiHw9Yf3/OVffMvgHdvtxr+uCzVFdC24cBDpCHh6euCPfqBhcA7+97/9a/7DX/8H/vGf/sh//S//\nhT+k36KY+6C7cr7OvL68otLKukWevOVyW/nXTxfOrxdKzhhjcE6kOfFKm17sJqGyx8cjxgZezysp\nZ1AVa8FE0adDGChNnFOxy3K1KW6roA1ui/S0qlnmLeNgucyWlAtx2To2QyifxpiOg+ifJ+0eugMJ\n4QxT6CU1/XvRA3PD6UBMG/OsOlq24Z3kEbz3tKa53GaRLos4xIzrzBzEi55ylYBWvxErZ7nVJGaG\nKrJK8JZxCNz6/E//OS3ktaY7O+L5fINub0u5sqwZp3eoFNRq0NoSs2IrCu0CtQnDIeaMWmURjFF6\nDZ2zHI8jX79/4HAIbCVhUmbeMp9eXkHB6fHAh68eGZwlp0hJwoMQTG0hOM1pchxGy20VposfDF7D\nloQB4UdPzpVlTcwtc71F4ipcamPeyon357sppFiVRlpj1xW7dr4vuK0DuqQwVB52wLbGaDTBaN5i\n+/sff3IeV3/yB/GkW800DRIDr5VqhAOz9GGadTLsUqrdtfD37x8J1nL5fJb0XUqUJgkl7x3TOBDC\n2wlwjSspZRSKYXBYbagFTtPEvG6CwC21+3It85zQ/cr5/sMT18uNdY1SMZdkwGWtJfggWnfcqFU8\nusaa/mtSDkJRIgsYzXVd8EVOiIbGafIMThwCVTcqhYbq5EuDNW9zhH0DllNZIef9+/qjRfzH77na\nPzNJ5vY/CXuquH8GpVTmjg2YpoP4pYs4XZ7eP+HDwOXcG2OqVOHFbe2nObEqXm8L//f/+d+IKfJy\nmXm5XJnjRurlv7U1OfQoQyxJ+NhGM28bJTeG6chf/83f8Pj4wDgElii8lpIjaduE4FihqGe01oQh\n8PjxPX/3n/+a61/9ht//y28Zh8BD8Lx//w1WB7w/8N///r9ibUbTUNbwcllIm8yJhrVitOPhOEHd\nSEmOLdZp8cv7ICUWShgm25JIQ0IpTzWGqC21JuYkeAI5tlVGVxkePGF45HK+cbstrLqwLQ2MwMhA\nNOYtJmKdO0PI9YxHJhfBYJumMdoSBiun8lLYSiTnSMsbcV1IURw02goRs+TEepMbqjUGbC9OGQLH\nw8Q0hS670M0NtsPBhDgavKEqvV9QhVOdE1oJXjcV6XKdguE4eMLgQRvhDfXU809fv8hCfr3d7kWy\n2lrhN3dTaimNnJtwNejBFScdl856Rm+5pCRatKgr7FVspTYcYs4P3hC8wTnF4MXoH2MUN4zTHAbN\nZBWXLZPXiNM92l8LTYNzMtQ43zLT4JgGIwOStUggiMa6ZS6zDNXWKNN77mEAWSx2v3Vrb37y3EmG\nVDkF0j3nFXprCFiUVGt1f/z1FpmXRO6nhf1L8FNp5S332QdtznCcBqbRi9a8JW5rpPQQj7cCoArO\n462DWnEWjscDGsP5eeZyndmitKO4ftXb2cmqSWmsSBSyOLa+mTmr0NqxpQhJfr/BO4L3xFuW0U2P\nwtduM1xX8ZTbznah1bsM0moPSxhFzkrgaw2athwenjieDpBuxFi7rt04DprjYH4U0pB/KRS2whbf\nSr33bs3dIZFLP3X/aBH/H/bNvlrvtxWF6j7mbqdUqrNGNMpYhmGgtExMEnxqDVwY+OrX70nbSlwW\n0rqQq0hqjcR4CBin+O7TM8ttERdEq5ymgLPisR8Gf6dXNiUOGmGfWSICn3r/+MC3v/6G4/FIyY2U\nEuuysMbI958/M8eNr77+hoeHBw7ThNXi3uAw8PT4KG6OEHBh5D/95/+DYRwxVvNP//D33C4v8lnl\nih6lB1MpgVV5J4ykZA0Ncbt453CmV6RR5SaCNFm1UhiCl6q9rZC2RGsGtCbHJJ+HUoJP7tRH7wwn\nPdBorMuK9TK8Vag7UE3XJt9jIOUsQ3PAKHn/ilHEBEYZVEPcLVvsDpce4KsVSkElCep450UhAKgN\n1Z+p3VvvnUW3PujUuuOYW980JNNyW4UN773pmNwOGUNLmnsTZDBFGoZ+7vWLLOSX241xDBw6k0Aq\njXqku77xgYVJ0k+M1hK84xDg8nomliz+1V79lmO5L4KKvXhZ3AWqJUreBOjUZKyocqbWRFw24pol\nZWgNKSeUlq6/nAvzkng4BB6mkZgTW9qI3Vc+R6H+CSe8sfci7Lqb7C99Z+66/j5kq/3P0fnp3R4v\n2ID+hGva/fr/+SVy2WQh7/sXP3Me/9NXl1QOh6GfuKFVw/UapWxayTTPoEQ31wZrNLWTDWuF12dx\nAsWS79Yrq5RYo3gLuqQsJ1rbQyh3DblrgqWX9SqFRLq7Z1wrsVUFLycWrXbmcpXy5ipkuFyEnifV\nWqJ/5iIuFm0DTx8+8vVXH/jyu39mm5fOkqkM1nDwAkaTdnsjPmGj78UP3SXYF9/+YcC91u9nd8z+\nGUhqs3+e9yPW258zRlOiLDxt/++ZroOKjGW05Vd/8S3n52cuVGgJGy0mGiDinQJVOc8L823tcCyJ\n2U+Do7QmUXJAxyItTS3jWwYvtxeQpPJxGvnw8Z1U2+XKvKxUDa8vz+TLhV998y3DODBOI8Y6Sk60\nmjkeB4nRd+/+X/1vf8HDw1FQBSXz23/8f0nrWRakIfDu43twcgjRNAbncEZOoj44NApdZLPbHT4F\niCljbWI8DazekbeNbV6xfkAbK/O0CkU16halSLnH3YMzPVwoKALdb7CDFxxFikm+j1VQEMarvkkL\nPlb1jWZwAdU02xah82i00uSUqClTkkK7grUBbx1bLGwxoXJl0BpavqeXnRErnO7ul1bFfr0npJWG\n67oRU2LwDjcO0m16p2VW8hbR7IeYP6OF/LpFqlH4GjgeBnKK3K5V4FYlsqSGzoUjJ4wxyD/khDc8\nONbfN25rotbK6BxaIUGV/cqM6INxSzynyJWZ754XPn26cXo6sC2V77+78Xq59RQmNO/JZiNVxcMg\ntVm3OXJZVt5Hj2Jg8o6zjmxJ/KNrzqQm7pPUedy6W+Nqa/chn7WGIXi8Fa0O+skb+XDugNs+9NxK\n5dYbQmoTjfaySI+oQuOMIlHJfRG63/TV/YoiOnLbT6Gy2BhtOB1GtiitM3KNb5ScyTmxbJqmnXhv\nx4G4JH749MISJclmrb6XXpciU/t1K9zm1DtVFcPo+PD+yPPzzOvrQmmF2xqJqaIqfD5fibUT8HRn\nyXS2ircW/+CYUugNO51D00sdpiCLgdGKYVDEYoilYa3l3bv3/z9zb/ok13Wm+f3OepdcqgoAQYKk\npG5Jvc/0Zvv//+YI2xOOdoxjwm3PtNSSuAGoLZe7nNUf3pMJiC322J+ojAC3AAtZWfee+y7P83v4\n7LM3PH39G0IKzGGR8IrcoavGVrDt2qB8uEhkRN66Fy3dkaoFrcp1YSs/m9+fTSpFAywZmfO3UJEP\n4xd17QJQNDjXid2mJ7boLmMU++2OsfO8ur3l+PjEaVpZF0EJkBIOxen+QOisML47TZkzx6cTzgib\nxfYdr1/eUrXh4bCIlyEs1DATk+SakmVmu6yL6KGtZtxsefnyBZ+8/pSHh0fWacKYjofHA1OI/ORn\nX0qnFTJWW2hz3q7TeK/49JM9m//pr+k7zf++3fJP/+l/YY3ytN7ut8wpXvEMplScsWjvRRGWEjkn\nYpXOTOvKcV5awESlH3oc0sU9HY5sd4XtdoPznpoTqlRh+phIVBIHeZwCx2kh5kpZo+xOjEZVGdc9\nnxeWEBuWQ2OrFIExi9rNeYnU22425Jp5eHpmuJVbyjpHmQIpi1Sx02C8PBSm85kwB2YjITPnecZV\niyKRSmBNEVsaJrddP8ZZ4Z13imXOLcO38sluFIVMBYy65uvejRuMt1TzRzQjH/uB3WZkM4zEIKMJ\n1dIv1iwyKa0KuxjIJcvTqLXsy1liwkoR91+I8s8hCaTGWnXVTS+xEOeVWuDhuLCmxE9vRm5vNvR9\nT7EO24nU8enhIAzmEBi8Zlmj2NpzYQ1SmVtrWNdMCIKavIQwp8ssvFXZl8VcKVWqWKXkptMfqUc+\nuuXldSnjm3qiVEzM1FwlC7FVlMaKPr0AOf3+zFbej27Lm8vXEuCX873gV52jO6/XeCmjtahDECvy\n0Flu7vZ0vuP8PPH0fCBnSdQpBaG1WdfGE2JdDi1EQWaBUoW4xtiIqyz5LoflNK8Sp7fdEIJUulXJ\nQalNFaTC0JNi5HwOMvaxFXKV/M+2e/BWkJ9GK15/+pqf/vRL3nz2Kf/8T45piZzngFaGUjW5gukM\nZhH8gdaqLbzqtTKCS5XcOqZLi9Qehh/9lAAxAmn50KWA0FoeDOUDnTK1IuHCnH4+TZIrmS7LNgG4\nDZsNb744YoHtZstms+fsn5jsETXPKGRZDo41rIScUV7iwvq+Y7sbmFcJ81UUus4Ta2GNEec9L0bP\nfrfjy88/Zb/bysKsFlTNGJXxFl69vKXc7CgxoKxj3O3wXY9x5XoApRTIObOcJtIaJY9zHPj5L35G\niIFpWXh++xWnRfwB49DTDb0YkppKzegW3BAEMFeVxlmFQxPnyLJmQsz4zpOq3BO5ajQGh7DFdSrk\nKtxubQ3KNO14FoSCsZqaCylmQSVURUiFw2khRSk64PKQVc1hXXBOxjBLWCUQw3kphiS1jVSlAzTK\nNDOUXDPGapQ1xFx4PJ65PXnG2reAbNnDXI/wVqylnITHn6qcb43b9GI/CNY3FXTL+6WW5gI1vxcL\n+fHrx1Gt7Dbsdls2Q888nZAYK3mlgqhEtPC8U47kJEaAmgqn54nYksS9sywhEpuMrO+kIhJ1h8SN\nnabEmgXJWSjc7Hpu9wObfuBm6Bn3W6w2/CZVTk8nlnlCa1jTyhwiICakkIW0l5LMtgLt4LzMOS4j\n1Msh0NptkMPHtAP9+vsv/8+lrefDgrIiFfucZDknYhyR2xkt0j6TpR3M3/u5XqrAy7igVjGp2K2m\na/sIGU/IqMU00XuuFVOK2Mf3W4yWrmSazuQcREJXFCmV69ggBrkpUpERimvKmBSF9y5p4vK+RB2g\npRpdJLHp8oaVkVScSkHlguub1jsXXOflcC0ZZy5ByRVqaVFYjs8//5TPPnvNdrshF8XcPAGDd6At\nmTaOaWMfoxu7pfCRnryFTdQPnVG9frYfKYCun/MHHgZtZGKBnAX8BDIbF92iItXMNK+8qw3I1Tja\nKWec93z55i0lF3abkWG759GbK6PFXuSK1hKIWO/YDBtUhd5JaMrD41Eq4e0gn1kprMvKbrdnt9/z\n8u6Wu5stnXNQKrFEYZxM8pDY3byg226ZpxPduGGz2+GtpcC1o1uWSpgDcQms04rxjmE7cne75ee/\n+BlzSPyn//nIHGbm6cx+uJFroIoSSRlNpyTmb57XxizRDFgJ4I5J7qtSOJ1nrJOgZ6UdznR414E1\nqBDbZ5guu2VyGzk6qyWubW7MEq2pVRNTYl4jOQa5bowszZUWqBv1UnBpznPAa4dWHbrKHLuqSlbS\nyQiP3rf7vOC9oxQIa+A0L5zOEaUtKbZOxsmDhSrM/1QKMQRRgsVKZ8RbMnjPftOxxsyzabkFWkkV\nruSa/6FZ6o9jCLoZ2PQeZzSnKA6/ZQkCklEa6y3OObwx1JQ5HmfiOlPCItFVSaoEbzQxhhbcWznP\nAitCmWZvtyjjWeMsS4p2dyoNrtPs9hv2d3dUDJpvuOiVj+vKYRHK4mYcZZa/G1iXSOcNS4CnaSGV\n0iA70v7UUn5vTlorjTwnDjuZwddrlqPmcsDJokd+ycFagFDqB0u/+wjiFfJ1bPv9V2ltI5U2lxON\nbKcF2fp8mKTVRg6jGKXKsNZSlMzrjdPEsJDWhZplyx9SFEmjEulfRXH/MHOeIloLe2Y/9AzGcf84\nEbLkFKac2tc0GGPJSSr407ww9r3MNJv+GSoqK5ESaln+KAM0UJgrstiKBaYUmUPCD56XL19itOLx\n8YHzOpNbBdN1Am1S2soS7fKZNOyBseb6sJNnw0fKk48UR7/3UhddO+K+q2CoTSViiaawij1AFlpF\nfp6Vltc6x+YtEPlZfD5h7Tt+89uv2Aw9+5sdL/aeGD3TJMECGoGQmV6z22zp+57tZsfpfObp+cA3\n371nPmfubne83G/xfsNDKSyr480Xn8oeqlb+9df/yqevZz558xkhR56fD8znmc73fPETx+thy/7m\nDuMM/vJwrZJ/Omw82ggTPanA6XQizBPohFWyUP6zX37Ob/7lFfff/I77d9+R68rp+ciyrsxTwGjD\njVJY61AmkWOmxEJnCtpfohwbGoOKVgWjZPfiOsewlS76HAMpLpT1LLLkhvNVRg7FrjpWlemsYTv4\nq+hAcM5iROqdYzt20jVmMeYNzjI4wxpEHqoppDBRkmSdGq3ZDgO3mwGjBLFctWZOMzZrSjGopFlT\nQS2S6+q1wXkt3UeRMU6shdNpJqxirNtshxZVp4WlFCWknRTbNVmJIYh89w/e9T/SQd5pyCGQasIa\nS87CgEil4DpHP3ic6+g7CWA9nQPH08rxvDLHQKVgraKgWHNjj1RplZ1TeCsqE2ctU3B0NYlVfI0c\nTisvl8zdzmCqRiex2r59eOK8SOp6TpLjWYocWK6zjGOPypqTWYmlNpWKiP21MahyQVteDmd5iEqA\nRGvxC9ccQsHkKEHlakSLXBX5clhqoKq26BXZFa3yNQ1vm5t08d88pNuD5KKZd9pwngPTvHI4y/tX\nVol71kj8ltOi19bG4azn+Hjg+emZeV1FAaLEcXu7Hfn0ZsO+73iaVrZ9L/Q2rRmdQSPjhWUJzKuw\n5X1LCHLOMM+S7BNDQo/grSxYlZM2siYZb0mykKcoUE5hRs0yz/LAxGC8oes7xs1ILZnj6ch0noQX\nPvatmkqoNu5QReaZtcr+YrcZcc7zfDq35XP9qASXn8VVOsqH2+eKQGtdDzQ+dRupaS0+hhgSF4Km\nbcgH6VLsNfVnWlZSraxr4HR6pvcGVRLh9ITOCa8NxlvWXAjTSqHQOSAJRfFwmnl8PvP8vHKz2+E7\nx2E6sbx7pla4GXv2HoZORknfvp0o6VtCWNjtR6bDicenM1YbqX5NZrff4TtPjp4SE9P5SC6J4XYD\nVZKHqhezzLosnJ+OorpqeAtnLdMSeXj3hPv2kdMcmM4z1Cr68d7SRUMuDmMUtcgD1/Ydu82GuAZK\nDCwxNhSEY7u3wjXPKy9ebalqR8yRt821S4XBd2QuiVCWZT0TYmJZZKkaYmqJVcLA0bZSYpRqvsg1\ndV4DmSK+FlV4OlY4LtjOt/GSKKVSjljjqVXMZEPfUYoip0q1Ge2sLHSdw3tFipnjQcaAViksUmwW\nJDJPtY5OIeq0JUYxLCnxXmjE5ayQXdUfev040Kw1EJLMvoT3oa5huF1rXfqhF64xmsO08nxeOc2B\nkKLcMEZB5rqsqu0WM1o3loEYD7re0gWDbdvx+6cTr+5u+PwTgyqVtCyczxPvn56ZmnHIGAlX0Ko0\nzK1I7pJpbO1GIZTqX8JfU2lp2LleK65aK7ZJ0EqBmOQQkzHKBZClWpaiuroHm6sfa7SgYK1mjfka\nUiB2dvkVLwCU9rrMey9LTttAYNMSSDmzrBkM2CIxbOoC5TIGpT19P7LZjJzePXB4PhCSxOyNY8cn\nL/Z8ervjtneYWjnMgaH3DLqjagMpiYMwVTH5XKp9I8veoXfUUoW4mEUzrVRTd1gLVHLN1BivVmlV\nstyADp4OkRgL1sNN32OdY+h7puORJ2tYQ8A5xc3NFmvgfHim1iIteDMo0WRhY99jTJLuhe99iJfX\nR7Mu1cZissjmOn65jLFyEaOJMuKSpS3ejdH0reOQ61bCnBVKIgzb8jius7hWS+Lh3Tsi4n7sh564\nBtHx50RcAufzhLKGaYrMS0ah2O82KF355v0j58eJ/WbDbvTk84FMpGhDiisP5zPL+cjnn98xzZHz\naWaZIzFFYpj44svPGbdbuq5nVTOnpydKzVSV6fo9WjtZeFZLCorlPDNNRznI+x7bjF/npTA9PZOL\nsLSdFWS1s3I9d06MQGhPPwxs9zvuXtyRQmA5nUjzkVwrzii8c4SwMJ0rn5o7toPj0HVE4YO1cYcl\n1Sz3kbZUzoSUmNeKb2HtzjhAOqMYMzULqbSoinIdNYm2XA5OOGVRLu21wfemqYwSMWi221GyRWul\nNx3zkrlITJ01DJ1Ha4vxlXkJPB3WlvhTZMRnZKxTS26BMlIAijCgmX/0JUtUsa5Twwn8EUGzvrl/\npCiL63p2u4FUCuuamupEdKb7zcDgHbUUgVKFtSXdFxlPNK2hUjIHk0gz0Y8PfZu4VoluEr2yPA2/\nffvE61d3IjVShfP5zP39M8saCTnTW8Nuv2mpKaUximVEEPPKGgIhZ5w31CA3c+c0MUslX3WTsGma\niSRTigKlxYhQhJ15MQMqXdCXGCoqkt4l6eObzjB6jVGanC6LjiqVgPqB2QofiRJrvcbfLS2Rfhjt\nNdB4XRPOOqRvd3T9yO3LW15/+oKnr78lrgvGZPpe8flnN/zyTz5n7wzLHLl/OnF/PDEOPfthSy5a\nTCZrZp5lwSnxdEglai2bYduYEZM48JYVax2261E5Q0nUBjKKSQIGFMIMX5MkElUlXc7+boNRDpLi\n/rv3xBBwneb2rsda4aHMp0NTRsgNnhFo18ubDSgIU/i9ZefHn+BlhHL5d6PlczTmw0P14t68YCG0\nbqz72h7Gus0+O0tBRk05FfrO03nHaV4gJFEo5EhvodbEr3/7HX4c6MeR292W2GVSA1C9ffeeeV1R\nxkJKDM6yezEwbh1vH4/86rfvGZ2l85bT4Ynp8R2dc8KytpYlZN6fJmqZwRjWJfH110+8/e4tz/dP\n7Ie9HHg5c5gX8pow2jI9TqidwQ89xipSiVdc79t37whhZbe7YbCGn7x5zcubHd++uydWgx+3pHlh\nsAlykWV9KqIPN5WXL2/44rOXbHd7xiaA+K//9z+Ta2SuiTlWYotI2759RCnLoBSvXt4yhYVcpLK1\nVXJ2ilYtTFzkjuPYUZUhKQ1PmiUGQi6IcVccwrve4Iy95naK1FbC0cduQDlD5UyOheo1w2aLQ2Nj\nYFmPpFSJIeO5ROM1NLBVJFPAXPYyteWMivghJskb9s7hvCNQSM0drhVCSATm1Ba5l+7ue68fh0c+\nZ6oq9AgrWWlxr3U+iQRNGQYn4QPlIpNTBW1hMJZSBJqVsxyKnTPsRo/Tit2mYzv09H6gsx30lqOe\nuLBLMmC6ju2LO0aTOT4eWM8znbXQebresN/tmELi+TRTKpyOM+8VLEsg5oozBl2rGAbacpb6IUTg\naj6xps1N5KJIubDGTGjzWjnIZQFXMy3JXLVDgybzUxgLnTWkWohZnuCXuLgfWn6A5P45Y2Q+r5pi\nQ2lSraSE2KOVWIa1Vuy3PbvRYVTm+XhiWhacMYxDT+8cusK8VN4/rnz3fmFeHL7bgLlhHEZSnTFx\nx+ZmxSVpQQuRsfOMfYe1lpSDZJOWwnleobX1zkg+oXyOSuL32kxdWCctuNoovNNsN16g/ksipZX5\n9EwIYu6Yp5VpWom5QCqEUklFNNBD3zEMPU8H0cdfjDz/5lUvh/mHyltrqaRMrjRCNdbaFj4gC06j\nGoYhR5w1bIZOWPopyRI2Z8IqSq3Om6s88bv7I/v9I7e3uxZMULEEdIbpeCLGRNfZhnzQ5CjGlKQL\na4DlfeI0RbqmKFpC4P1jQmcBkllr6L1F6CWa+4cV6zwJjbbSut8/PfPr3/6GKc7sthvIBWsc3hni\nHHlOz9jzGectyiiMV+zutmzuN6THyHw6461i7Bx1Dby+veXF51/ys7/4a6bTmfff/JbvvvoXzJJR\nKlKqouTM4fnAt1rz4m4i7XaAIodVsjaxWAxzUkwpM88r1lcSRQoSdOuOIyFKIpL3ls5prJYc1pwS\nIQdxDueGpa0KbRy+Wep95+VnqxS90WxGuWYVlmoVIWe81gzOc7vf8/rTV5ymGbNUbu5esGQZxzKf\nGJxi0xmKtWL+KxKoDaXlxWqUupjGlEhEg0EZxZJWSinoKvJWrzXaarLXLY/1j0i1cglGlgM5oa3I\nqFIuDN5LBeEkxFaUCWIcsVaMK/LDqCQFvZW57KYXfepm7Bi6jt51eGMJSqRQuS2dnDVYawUn6zT3\na+Dp8QA546ym7z03NzuejjOupVirAssSmYMoLZwx1CQdBLWQs8CnFAi3BJpUUDeOiZgTlkZXTC3M\n9bIEkyq1tKWWZvAG73TLEBUDhCgtZGafSkuRL3/YEHSROPad6GKrEi37dRRQoCjd9DBAu6B2u57O\nadbpzPE8Ma2BimLse5ztiEExJ8eSR5T3vH4z8uLFLS/ubhmGkf05cNuq3JQzuSQKgb6F1tYaqXYD\n9h47PctCNdE06P4jwL7o5Y0WtUPOl0xHfV3g1pQ/uBOXiZRmtC44rzmfFp6PE6qlq8j3p9l2HZuh\nRyvDtERO03pddP7Q6yrwrFzDM5QShYNSwqdRjdMOjSXfFqrWafpOAkicbYLFnMklU2OmcwbvDLXC\nw2Hi7f0jqILSkmQzx5UpVu4fj+Rc2G5GShFbuKpC70u5MM0ra5rJVbEZvHR+qTDnQo6JnCO1ZAar\nsc5jnUcHy7jZ4IeBcdMRQ8Jaxbycmc8jnRVmtnUObQ0xJcI8oYwoY/zYoZ2j155x6DkfDOfT+apW\nUlVxs93xpz/7KX//j3/LdJ74b//PwLpM5CKpTHUO1Jo4Hk+sy8p8PnDc7rDGcj6eGAePMxZVJIBl\nzYHnw4nNfkNVBusNNhoyunFysiTSp4jGYFzroEKQh+gq3pPLRe+cZTP0DEOHMvJQNSiGzrLfjex2\nIzFWziGSYsQqxdh59puB25sNuURi0uz2I/tj4HycWOaCarF+MSbBNScJxLh00VqZq+rwKNI5AAAg\nAElEQVRJa6hV2PwqapYQgUrXjHeujfRGb1mzIv3AdfrjqFY2FlTFOkVMAWMt212PQg70zSBqhnWJ\nEuarMrZlX47eELNI51TR7FSFJPNpvMM631JKIOeF0/TM6TxJ1NPg2XQOkxYOb9+xf/2K56eJX/32\nG06pMG56nB3ZbjqGsWMce17ue/ZDJzduq+BCSMQoMVC5VeYlVzl8WjCCUQqvTZtpy+hHMh3bwrKV\nemuqZCXmH63BWM3Nrme/6Xj3MAnkJyuKlj9PoD71w0H+A6NdazSb3cBm7CX2qz1oMjK3z4iJyUpc\nEspYht1AKYWHb59YQmSJiVQSd7e3eDMS0khRe15+dsvPX7zki5+84eXdnt2mAyrx0iXQOOFVKidb\nDSUXzuuZd9898N3Xb/nmt1/x3dt/ZV2fRUM7WEnEQcmCtaUKnabUFpxyA1CFQ/Hdt8/iLciVx7DK\n96wV223HGjI5V7qacd7Se8/OdwxOdi6Pc2KaA0uI/84hrq7ZoRXVPu9E1KrR+/R1Bl6RB3jNksRj\nQORtGrTKGMRsYoxDKZl1QwaNjF1q5f5p4vl4xqiKt55SCvOy8nScSVW6u+O80Hcdne8YRs+86rbQ\ny2DBOjkcwpJxzkvn8fzEeV0JceWkNIoJbSy7mx3j7YbdTc+YNJbKbjPwky8+YX9zy3a3Z9jcYqyM\nBA+HM8u6YI3G3o5QFSUWSsoYCqVEDvMZ5ztitSTt6DcbhqFjcNDfGMKXnxCWv8DoyrwsHE4nSlaE\nKD6N5+cjY/eIt5Y1Bl7cbKi1EqtlWs6s68zvvp74Ur/m9u6WVy92PNUzk1zwFK04H2dOxwnrJfFK\nVSPXcsjSwbfxrdyfmsEZtp27RjNaY9mMI+NmxA89SifmlCm5UVGNxjvQSh6OOVfKUjCIFjykwnla\nQZ84BrmfL9meVgsZtFaL0g7F2uSVrbCNuSnZRIAgYg+Ia0Jpi1OWPzxY+ZEO8qfDmc5btnpAK1FJ\nWFVJoUoyh7N46zmXIJFw1CZPTPROlkVaKU6HlRSSHKwFtp0HXSkl8nw8cT4vfPXtE0/nmVgqXllq\nyjy8e+b/+i+/4qtff8NX377n3fOZJWVSLWy2PXIQc2W2OKdxSrEfnYCaSiVcSICq4cERdClN0yqL\nibYVg5b3ebmYRGN+USrGKoe4bZyMfnTc3fVM88ppLqwpE1LLDmwYzg9LTa6Lt8tLtcPGfpRjeA1N\nprZIKxkHFeq1wu+6jpgyb9/eczyeWddI1bBGjR/v+PwnP+eTNz9hs79h3I7s9hsG53HaUGpp3YNU\nprnKoijlemWh74oEKNy+uOWzN59w//Yznp/eMZ2fUHqBGqgpEU0iO4sDtlUJyyXnpm6S53ZIlU1v\n8J1hjYGUakMc0BacmbktTU2TLKpm0JnmyHrBhf7A6/vSw4vzNhdQqlBlCC5xXvWyg9EtEMNgq6gL\n1jUzW4N3QlQUPbtU4QISu+x6Ko+nmTVkYYhXmNbI03ECrRiHjnFwdN6y3/ZstgPLKgqLlAtTmolZ\n7pErasCIoGAKcJoiTmkMchD1XSQvAdaAMx5FIaxn3n37tQQ51yw292Tbw1nQwlVX1hgwyFKzVNFk\ne6vxSnN3s0e9tMwvV4ZhxDrDt7/7HSmciDFzt98SvvwJp9OZ9/f3lNLeb+sUc7OwG2Mlai0XlpKJ\npZBy5TQnwpooMbXDL1BSpKoi92lvWBepXMOaSHGVIBqlZenqy5XXY53DtlxRsiCwFc0bkCsWhe48\nfSysPpOHDE6i8sIi3gqlSlOUJWrNYAzKe2zfC+QuN6yGkmV7qZVconTvSjps1dRnpci4zlzGrUUg\ndUrJoqleRPN/4PWjHOQPh5lt3ypn7bBKy2aclvhtpX3OKbGs4sw8zSs5J4ZepIClaGJIzGtiWRNL\nrXTtBg7ryn0MHE4rT+dFgmu1yMB0VSzTwtvvHvg6RR5OE6dllVFNisQQWaZZkJtaKG2dM9IRVPnA\nP5DN5IC6qCFo1nwhCCp0yjIOKJeZdoNl0Q7epni7QJpQSKRaI7RpJRV4SJklt1DnXETG2CrsjwRz\nbXTyYZ6rkIVrzh8S4kuFVPJ11KSVyCONsfjOE5eV9w9PhDVIFWF7dnevefPln/KLv/wrvvjyC8bt\nKGOjNnaqWZbPpZldKo2HkStZf1hKdyiME+na7W7Dy7s9z48veXx4x7w8s5yfmE9PKAJaiYzLqUY6\nTKnNOMv1htBG47xjDmtTFxm0sRiT0ZeHSRYFzZIUKX3geaQ2tvrvver3/7leHlZSkdfG+XDOYJAQ\nCWcNvb6kIGXOS6aS8V7hrKJW4bzErAnNYCYHd2JdC8uaxI2YM1MU41fnHc5ahmFgGDtRUSiD72R8\n56OTcOnlWdp0pTBBckVjhiVUIlmwCFoOqzivLKcz/SDL8xIrhxjwWtNZh/EWYzsqGsG1iDEiRuG+\nK9XSnS5O2RBwWtH1HuflvWoKj+/vWc5P9OPI/uYFSr/h3f17ht/+KyUFshJqAlpyZDEaU4U1kmu9\nDAAppTKvhXkWvjrWUWum5CxuVysL6dpGWzkVzkvgZrthHEds37NfEyGspLDgtchDtZHleKlZvl4R\nFrrOVeLi2pJbaVhT4jjPPD8fmWdxiuasUTULZMx5lBU8cecc4ShjmZRBt+tWXM5yOJf6IbzaGENO\nuRmZZFSkZJwvYogqe7Q/9PpRDvLnKRAz+D7QO00IhcNx4bysuN6iVCHHQA4LYZqZ18ThvFBqoesU\n/Si/Z1kz51CYYyYpxKATE3MunIOkzjvv6IuYasbBYZQwnjvreDxNnBZJddkOjtFZVM48vH9iOs9o\nrRk3I6MFlVbCEq9hrN5Zak7EBlaSEITaqnGoFEJKDF2HUqalorQPQF20yRe7eGm8jkpZE9++O7Gc\nFiiVNRTWWIilED8ap6hmJKJ+NCdX178A0gFcKgHVWMpWWdYY5SIxis55xmFku9vge8t0PnE4nAQ2\n1I2M+xf89X/4e/7+H/6On//8T/DONcRAG5+kLNblUjDKyM1Y256gVqwSd2Ip0obrWrG14rXhZj8y\nDoKxfX565P3bbwhTpOaJmmU8pHRBGYezhqNbRdJYhNsCYsg5TwumasbRs/Ed5EK0BlQn+YdFM2eN\nyxU0FCX7gnoR/v+BTcP3lSwXLfnle69VlvC+czKeMupqzYfCbhhYUuWwBA5LEFdjbwUclSU1yTkv\nod9LuO411lI4Pk/SSVzog02K6YxnHLYYazlOZ0qG3nm2w8i46ym18PbdA8+nCas0cQ0SJqFAKU0q\nRbojq1HaMM1See9uVqwV+qWxhpIK87xiDge8HzDakSrkImoqjUVXjVMSmZiSBKq/u39g23cMm4EI\n+JqpQ6UYxzxF/GAY9zv0sOHFq5fc3t4QzmfWIigOpaBqMdlc8lkMldEZVqNYqtzrp/PEduMYbgym\nZbou5xnfOVSS4sV1khtrF1k4f/rpKz75/A1ox+H5kbfffMV0PEkHr4RbtEbBIu/HHnKlrlHCtXMi\n5kxYIlOOLIvcmzkn0BVnZY83dJ4wSihGzAE9WM7rwvk4kxHDmLZGCtU2W82pYgbF0Du6vuN8mFvN\nJYgREJOh1V7uqR+ICPpxlp2Ath7vRzSemmYomU3fyTwa+Oq7J94+PPN4PBNSZVkDRsMyGb5Lz6wh\n8zivjQ8u32xMlaIt/X5DVyvzGjmeF+GwDB0vX9zS99JGhSXgvWM79Hhj8N5QsuJ8jli7ssYMWiiA\ncVl4epz55u0zT6eVHMQaHGNqmZcVSv7AUWlzcWOkvY4pSbRb000r3ebmIKEGSOteK8QCxzVJyLHW\n7WtL6sjlYfDhedASc9p8RfSo7cD2ltqIIL11YvVvVvdaW0q9kQpxGD03L0QaGJZECplUHJ998RP+\n6j/+Lf/4P/wjX375BUM/Cre61pYW1NQ6tEzNKoabq5NYNakkuRkpxEBFls7GGoPRPd53WOOw2mKw\nJBRPz2+JqyzXjNIym1K6OTBrCwsWmWnO8ueFnDmcF9YYSc101Qq7K5cnhMTcQrKbM/vfVf783kup\nayclyGH5vLWqWCW8a5Dl9bIWWW4HIU1Oq8I5xX4cpJ1G0muMjWiTJOZOyVyh2VpklNPepzgYVxKR\nHBLvH46kkNj2DkqgGMvpeGKaYsMpF9aYJC2oKSRknJM5TsJ2fzKa3mv2J8FWvLzdcXezpSrNPK+s\nYabvPb7vMK5DmQ50ZZkqtfaAIxfNskzEsABF2PUpCSuIyrIsFGWhgK4FUwqd1YzDyGZzgzL3GJNx\nZEJcRTKrRVJ8XALP5xmrz8xLQFd4dbOj24ysVbHcHxj6DbubjYDvlHRrox/E9FMQp6dzeCeBHg+P\n9xyfHqlxYTt4nHVY5agm4fteiis0a0ictaZTDqp0rQqN1YK5OC3yXp21lOwoTRm1rInBFkavGXZC\negx9QpfC2PWgNVNjvVijGQaPNboFzW8kQq7x+JUqrbMtlBzotaU3f0SGINVSfLpBpGA5pmtOoyqF\nsBbeP584zEGq0dTGGVVoe8sSJVuzFFItjZUgs89pSWy3EvUWYmq5j4ph8Oz3Wz795IZ1WXi8f7qG\nLR/bTROjoHD9IjNXP3g2Q89xWTlNiffPC/MSGmZXrLTX+dfFTdnoh8JXaSaXXFhDktlbm41ro1Cl\nAbbaEvNSG66pSQ+tnDS5XrC3H505rURUVzXzh78aLUtj6yQnUMxHQkKmjWuUkvxRYxTD6Lh7uSPG\nyPm8EhIMmxt+9vNf8g//4z/ysz/9GbvNpsVUifW8oqDpxC/jIWGXlDavFnt3LeLalfn2hWsipiaU\nvY6BtHKAgWpkVFIKj/EtxjaUb+OdC4NeYRoFLrdF6GUkZ4zGYyl4apauiJrBWBQaqqamfH3f/z8u\n2vY39VG4h1T1QqTUbHpHrZIypDDtzxF8RIwCW9OjXOdVy4NHVVG5KMoVxCXOhw9u5VJhWSNPhzOb\nwwGjNcfjRM2JHDU5rxRteDoGQnOUQuvItBK6pFwuAmSK6YpOcFpxXAIhC8r5tVaoFtxxeH7CeoXr\nnWBkVYcxHdZ57l7ewnbEGNNCMCIpRdYgnXMsMJ1nljWQ0eyGkbyuTIcD1TnG3vPFl5+TUuLd2/c8\nPck4T1fwLT1pKZoUEzHLglhrw9A7MeRNAU/h9sbhfE+umiUInqFzjlQSINdD36SvIQTev33P6fkR\nUyP7jXCWlBIOEbbdTaoIMxyZ2ZfSFMZUvGtxj5uBch2/jpxW4T2tMRGDLOGtlsNaGyk4nLdoY0jN\nJKjbfeq0uNGHYUDbiZIy1II1MnqJJaNzpvempRH929ePcpBLVJii32huX45oXTnNC4/TiedjlEM5\nRIls05p1yVQKqSSWnKU91Jqhs9foploqz0exAptaudt2HM4r9/cnXr3YMXSOcXT87IuX5CXw1iim\naeJrEsdpYpkDVcn2fp0XlPEMzrMfOtajpSKLo7XF0gkDWaO1xjtNyrXJ0cyV0EcVE4BY+S8Kk8uS\nVIGujXr1QRJFk7mlqlhb+kuuMkK4tPfXYcDlJFIfvi5IavtuM9L3TpjqIcoM11hRwE0rWles8lgN\nm9Hz8tWO+6+feHw+syTFz7/4nD//qz/nL//6z9m4oTHGm6a/ypWt2kMht3T50hQ1IYiKodbUknby\nddmqVVMcKeFGiEvViHKlG7i5u+Nzfg4YwprwPhHiyrpOUqnqy5JNItRKyz90XrMdHJ/f3RDIHNaF\neQ6sT0fCGnBGt/SWEfTCcQqoJXx0mP/3T/XLIW6t+RD9VqW+dlaCwkFhU8X6DiZFzMJTF+2i6MyN\nU6LyeD4TkyB8UxIVy+VgT805LD/3ynkJpHcHSilsRg9K0XWKJay8++2BgmqmMgljoSA7gZIEF1BF\nGnmVUbYl61phipIu1Hc9X8bISy8HzfHbA+EgvP2KJi0Kg2Oz2fDLP/sprr4ULXrMhJiYpom8Heg7\nS2ec7AiCXBtb3zEdz4QQMaNnsxn4u7/9S7746Rv+83/+Z/7P/+O/oI9nLJpeW4ZOs+s3pDIyhUA5\niPIs5Mzp/ozVml+8ecF+M+CHDUk71KmQS2BdQRUFWVGVpt/2aKc5PB95//aB8+FA5xTedKAtRkn4\nszw4s9wb3tD1YsNPKRIaiXUYOj59fcsXbz5jPZ1YQ8DfbniYTjKyLJmCbfdykcV7LqRY0LXSOUH5\nPtyL8qlzFq/AW0dnnHT6KaIpGNtTaYVBKWRVUfaPyBDUOcPtpufldqCsK2EW9YmvhriI3Mw1JGrJ\nmRDODJ0j1wafAdGrtpY2oUgtyfw8R75++8y7B+mpnTXsNz2dUUyniYf7B2wt1ByoZJYYeZ5WapX2\n2zoL1uGcpesUOq3UuFJLklBoIy2+MVqQshpUSwT/oA1tlL5S26+25KygzeX/NdD4H6rREi8v+VqV\nXPWV4SHfslRaF3PXpUL/uFLXChSVHAJLlcitomtrz6QdSLnglcFqj9GdtIslc//uifM5sb97xd/9\nw3/kF7/8E5zzLWtTKrtS5LCQJ9WF5Fcl1DZJkkkI4kQsOX0YwTR+jLViUXbWYJRty0mD9VE+Tyq7\n7ZbXr1+ja+J0esfh8ITVC5015Ka7NsZi3eVAk0VTVYriFBSDVhZrk+wySqGzls7KmME4UJclbP0o\n/ef/6+uyaK7yfa9KlBdWKzabns1GtNrGSFAGCpY1cF4Ch2kRx3KtLci3Q2tFCI6cEylnRlvJyRBi\nYQ5yGNQqS/D3zycOk8FbzWZwpFw4ToELVlMpxdh70OKGjTFSKVgnS/fYlEQ0N6o4oAunOfLd44lf\n/+Y7np7OKAUPj8+klK4IDKcs275n6AzT+cCpt7h+JMSZlCNrLHzz9p67m5XXr25R1uHw1w58TSvH\nZWKTepyG0Ru++GxHSn9KyvBP/+v/Rs0rOS4E5fCdo/eWofNs+40EEFvZJfXG8uLuBTfbPd24wfXw\noGQ2uSyVOE9YwPcOciStZ0qodKqSrMU4SVPSCnorOZwpSZHSOwu6MqUVVWBeV9Y1YCt0VeOyYl1E\nnptJ9L5gnboinLve4YaOah0xt67dWOYgqATb94KGaIqsJFpqnCuMvSeGQFhWpiV8QPMqISFeusHv\nv36Ug9w7y2bo2HaesMYWuyQf5hqkehU+hyVnaU2Uka0vV/jRx6qND5VpLkWMLIvAmnZjjzPilKRE\nHt894nQlx8BhWjmvkaIUw7ZnHHqGzjNaYT131pBCJAThMBuj8V50v6qqlv8oP3xZ8BUoWqR4bY6c\nW0Vea72ef1qpqxHlgznzw2hEdpbXf0IhEj4ZsahrZaWakqaoD3py01JRckq0dCip6nO5ImxF7qTR\nyjJutvRdT1kz03HF2Z7P3vyEP/uLX/Lpp59g2yH+MV/ksujL7SJNKZNiIsRwnQnHmEgxN7xoW7Ya\naVNlvt2B02hT0UYeyKUYsrcMfU++uRFp17vMGiPmPOFaOk1FrMrOWGm3ncMajXeequS9qVzIUfYW\n3orBzBkIRTjd+QeWRj/0utw+1xAQ5MGdcmFFfACziXgvlbkBvDJ0xuKMZUVwy+cltPcvEWh9L4k2\nqzPMy4LO4J0hp8K8ZiqpsWLkz1xjg7VlSW5PubLE3FKVpKIX3omoWVzn5LAulRAiqspirnzU2lVE\nyfN4mPn1V+/p3z2BgnkVqS3Ic6J3lnUMoMB6TQiBzf6GdT5DDXinOU4zpWScVdy+6hkHi7Md2sj1\nq5qaJMyB1QdebLf89ItPKdnw7puvOT7eo0qiYkipYHRmt+3Zbz0JxZJXSJWN73j96hW77RbjO3Bw\nPgrqdhzEPZtJ6FoI84yuhVp0UxkJn8W266nz8ndqbp4O2e3k0u67LCIKUys6F2qQgkUi/ERJ4r0k\nmClo16lvsYdAAeutPEBjolr5eZYq8lG0YHZLSVIUIrrzEESqbFSLVbxIEP/A68epyDtP7zxWW6Y1\nkVH43qNLpirhQtda0dZIPJZzpCwxbc60MIlcqEY28blehg6IXMgJ5Uwj/OwQJKhi8PDw9glLRtnM\nV48zpyUxbAbefHbH7XbD0HlMyaxRlALzlJnXJHOqRgB0zlBz4TTLD0LRln9ojGo2+jby+filVL3O\ntFOQajm3oM/Lg/aijFCAMpLdqRC0Z8yiXKH9qAFMeyjQ/qsx4lrNVeLvCqCdpdSM1Zqh88zzKqB7\npXnx8iXb8YZ4hrxqXrz4hL/527/i88/fsB236DYekpu+NHmWjEvEGBWJMRLiSlhXYlxbgHIhBKnS\nlSpXS3KMtcX2VWpN7ZeVC75mtK2CoB1HioElLZyXCXt4xBlLtTIeclpcb9ZokjX0Xcd2HKkZakyU\nNTIfZfHnnMUbi9KKEALPzyfRyP87y071UeXzfQVLqbWZvEQiBgWrZA8yTxGrAsZrUirEJVLS5fpU\nwmlRBe80fdcxdBpjwXpDKhqTLHe7npSgsxHFQsySTykPZAk28NYyx0RMlVq1xBKXSoiZNSQx1m1H\ntptepI1zYAnPUl0reSBxtXuLXPQ8R369PgsqAQG56dZpOKsZnOY8CUHzcDzx6uGZ15+8ILuKU5Hb\nnWeZZ+6fTpymlb/Z3XJ7e8t26Fjjiu88m2EgLIl5KeSyMA4b7u629H/Wc//ur/n1r37D0/0DumaW\n6UxOK6/2I8PgwDrWqOnR7MYNn71+ibZWUAw5kmpBWcPddmSeF5Z5YVkWzHOhxITvRuam2BqVk3Hr\n0NH3Hm2tdJZGEWNAKy24EG/RWuBmRsnYI4SVUReJ78uGump66xkGMXJZbei0xReLrRajHN46YpVz\npCwzpaSWdRvJ1jCHyDSvzIuEmIvkM2GbRt8ibtn0/QCC9vpRDvLdZqDzvrUX9crlTlXgMm7w6CqH\nZsmZ0XcyVsmGvKyEGoWuV/NHpo5GkUv1irakCoHv23slpgUF67Lyfhbe+ClmbNex349su57BOTqj\nyciBApk5HAlhpuYsietaYzJCXquioUZkqFBLS8upHwILaDLDpniQKqpV6G3UIvtOqcaFnAcXJJOm\nHexVxgAysqF9Xdr8sh3tqja0i5xOpVYJqM2VFGXOF2JbKHmL0oabuz3jbkueFrp+y6eff84v/+LP\nGccdtUplf1ntXbI3YyzEUBrYKhNyIMRVllIlU2sCCkpn0JFSkpAhlSGtlagS0Sa61eN8hzGOQhFl\nTZEuRyuFUZaxHxmHDc535FqJRTwB2jswwp9YU2R/t+PFq1tqqjxOj5yXtfHQC9TMaiBkOC+RdYm/\nbwa6SDr4/QMc/oAMsbbgEFWuD9xam/S1FqYYKGeoSRQHa0wUMrlm1pSI58SQDPSOHitSQGNaJ2XI\ntRBDImVJWJKDuCEpimJZokg3x561Fmndk8SphRgxWtQiu97x2YsNN692rKnw/uHM8fnIR5YCLkTH\nj0dzBdlfKKUwVTop4dsYhl74I93Q8+64cn9+xzePBzYbi3eyTu07BXTUanh8eGI79uy2A2kp9Eqx\nHXr0pscNW5zviacHfvVff83z+ciuM/yHv/kzljXyu//2Lzw/KEpcSLEpcGqV4BfjKCh++7tvubnd\nYfueWGHY7DHaocKZx6PlaA1JG85RUo3UeWVaRW2SciKsC6lz0HVobVDILsMag9UK25j43luMkcxO\n7Qx+49EacpKQjUWrZjAThEeKTefe3mdVlXVdULoKAx997XSssRgFJVXWKRFDpmTZm0iBWElUtBXZ\nr9V/RKOV25uBfvSgFWGJzaAhMjKlrDyBnMUgGmqrRBGRciUmiXVbUyFcRhPtKhRZnPy7hub0y5zX\nxPNpxWvNdFo5TIFTSHhvGIymd5ax93TeYhBZGSWRU+QwRw6HM+dpJdZCKhCzKGtKqajmEisNR0mb\nh/9e564ux3J7v6WITrbN1S99+8dnxmXmqi+HRUsEMkqcb5eWOF/SldpsvnO2hc1qtJGZtow2LhVb\nondOeDPOs7sZscbw7nll2N/x+vM3vH7zGuc6UaHk3ObIpUkIsxziUebDMUlFvoZVzBGtRQwxtUo9\nUHJAUp8cNSqpLIympETyCW09mcRViKlUc7lVvPcMw8g4brHGoVlRVVRBcjNG5hDRRrHdePJaeVRI\n11aLEPoqJDzLJDz6EJL87K4PQX5PlXK5lr7/uqh9xCHL1S4tygKphi8LX4fI0aaYSSU11IJIVUUt\nYggqSgIMiupqUzRpAXxpTW+1wNOqqLZiktm2QeG0UEILUqUti2ExhmBFpaMUzMuKOojpaJ6W9plC\nVaKcuQ4mm2wU5Jva7ndsxw1aa6bpRFgXeYjmypIyZQ08nmZiTDwcTuxGx2awDIOl4lANZPX4+Izz\nFuMdfbfDWI81jnGzZdzfYZ3n3eE9Tw+PvH965MXdLZ98+grXj9gKv9Gap/fvCBHqklA2kVPGdZ5c\nC989HpjDynY/Mux3bAaHU5klHYVTciEZWkNVbSzV7tEQS5v9SxHUdZKnG6uCUFo8myivJAhcrhHf\nWZw3hNgiDBNMU5L8XJp6rSZUTShdSUWCVMRq0IKma9PEKBndiBpFRk4XvLNtYo5LgWesQRn9Q8bO\nHyshqGcYHFUpTvPCvGRSVhg0xom+djMIOGedJlIz48xL5DivYva5AKNqu/lr5ZqtWBCrbDsYjLFM\nofC7hzOnaSGVirWGu9EzeIvVogE2RpNjJMdMmheWeSbOM+/vJ+7PK8rCGgshtoeOVo1UZ0glUGpq\nWuOrrkRe14qnflhOVnGvmlo+/J4KGYmssko44hcYfsyX7FIaDL+2kZIcPqaNGYZGGqxKSXVVSlNC\nGFm8Nl66wO87NhtHmiPffXfgs1/8Oa/efMZ2OwpqtLRRShYwWC5SjacoIKCUCykGYgwss/w9Zzkk\n17CwrgtxWUhJNMbWeVS2mGooVlMRQqK2K5ncHmSN/aJkiSxa24Hd9pahG4nLQqmCvJ1j4nBcWNdE\nTYlOZYrXaC3uS60qpSYKimwtx8PE40F8BZcnrbrczE2R8nE+5+Wa+kgn1N7jJQiWhccAACAASURB\nVBdWWPWVSk0w14TLcrOuVrgbU0jkWq7ZkVQaX6RyrisFST6qEcjglKFi6byn94bO0tAMlWhaBR4S\nyxrZ+J7eSZbt6Cxryvy/zL3ZklxXlqb37fEM7h4DJoJTkpnMaqsuSd3S+9/ITE8ga+tSDV1Dkskk\nCSACEeHDOXvWxdrugWxRpisZ281AAEREmA/nrL3Wv/5hiZFUM8sSuPvxA/mHctEfSMRfX5h1AVs9\nL7BbX6YbePvmFV9++RXjNPPDD9/z008/sX/aE9KKWQLWKtYok4A6NQ5LZBo18+SYxwGnLK0o7lPg\nlAuHmPlPf/efcG6iVCXpX1ZLWERLXVEdqbkwD45Xr2/R+j9yXAMPT3vx8Q8JnbqXN3LQP62Zh6dH\nXhwG/sPW4N2Gmiqn9YSqMCgDRrHdbUhoHo4rxiykUgm5oayXcBXV2OwGQoWVI2nJWGPYTo24BnKO\nKN0YBsvoHUZrnk4rqppeWxrFWUmiqg3dKs42/KgJOXIKK1fTBJh+7WRQUshpsB0cs7cXFlijYrVi\nnkdKg9jJH9rorpT+fz5+k0J+2gfiSTDbViqh5z4OzuNNo9XITz+fuHs88XhYCVEWZymXnqguSwDp\npKQoKtU5m53S4Qffl3KFly+u2MwDjcY4DKhW8aYXvtExDob1dORxCRz2J2JMsghdIzllDovEil34\n4kr4qcMgyjatFSGImKe2Z9ik9U74vMF02lyw8LOV7dlN71Nes+rME43ATrX/gEaHUj4tPlrhvbBs\nnNZ4JxSmEJPg4koxuIFYxGGNVjHWME6eq5sZ0wynUAnV8vKLV9y+vOqiFAl+LrlSi+B5OXdfmySe\nHqU24hJYTyshJAlW0I5pMzLfbIhx4eHuibIvpLBQSsCQqVq8oluqspAqTlJ2+njVjO0uhzIFKGMZ\nt1vsOJMfPnI6HjC6cFoTj/uAUnA8nHi4f6IWiMuKVVxySUtr5HxOiYrPBbp32J+g4X8FMzyzkEzv\nWlv/vPpXnz+/XthzAVTFFEVqjYRMT62rUI2W7zWmgS6spaByoxnfYRW5RrbesNvOvfNb5UqoIqy6\nngYOwP3jkUOOzINjO0qwtnUePxiWlDottGCqEY+fWnBOFnFGa4nS6F1FKQ3dZKFZFGjV2O4m/vP/\n9r8w7wZySTzt95R89s/hAg+KBbWRVJ5kSClhVcZpodl557naXXO9GXG6six7Hj82DocHQlz54d/+\nnbv378kpoq63PLz7C+H4SMHyuy9ecXM1sT/s+eWnn3m4f4BU0KbiPUxWk6rjsGT+4R9+ZLPbis1v\nbrx4cQXa8MOPJ1wtVCU2BM6Lz5ACrNP4sd8Lw0jdWvbXmaVWRu9Q2vBwWIhrYWMdr1+9YDSK9ZTQ\nVjM4id+z2VDInE5iF3C/XxnGgbe7LPekNpScmaepG2st/X2vQtFso9S1ULDKYHsoTqlC3tC1MlrD\nZnCM9n8gHnkpipwzrVXZKicJDBgHR26FdY3cPR758Hhkf4zkLEb+Z8yXdqbZPfdKje5X0JVszoqf\nRaX2LD4r2Pkg3GmvIQQx3ElRc7cs7J8WHp9OxCxwzJqE/5wui0vVb0QlnhLO4pym5nrBudunleC/\newjuJlVAOMJnX3L1V4wWyX9U+G56lZHDo3L2auDCZ54Gh3EOaw3eaJy31CaeEN5qRucYvSeti3SQ\nRuTZm+3E51+8IK2Jdcn4zczrz15zdXUl3im1d925ULJAJjmLMjLFSE6BUgphiaxrIlfw88g4e7yF\nSgSVmK8tuVhK1qQ10YwUpFY0qELDYWylNt1N98UCVHdYqdSGUpZxntlcXWPu3rOsklq0xsyyCEd+\nvz/x4cMDNE3OicFbclMM3dkuhkiMYmAE9Pf70zn1sgm4/F2KuBb/DuhWCoXn0v8MTdDEsIsCMVUO\nqxx06Rwc3r9D90XjWSQFwggyzkETPvw8OObJC0VVFciK2hIlNRG7ZFH+xqWIiC03brXGOGTnpJRQ\nOq3EhGkDuUqQgTFabAI6FEBDfL97F5FaZVlOHPePmBaYB800erlOz9duN2G7vPbeaJTOh89KoCLX\nYUZF47R/ghopWhHWwGlZeXp65OHunhoD82AZnKHmzOl4wk+byxLSesMSArE01lPslrX14joac2Y5\nrJTa5HOPGT12Kbz14nveJw5nLTg5uBSiBci5EtdMKxVvDXUQn3JtHWuRyDjXG7dWCmvIUPSFtugn\nx/v7E09P4ht/XGQXI+HYtrOQSqeR6m7L/JwsZboD6RqySPi1QpnWc2aFZZNLplUjNhi/Vlv+P6vu\n/w8PeXNLXxYEQsiSZXgr3cPTktnHwhprx1rzZeRtiA3rOZS2cNbUnClpCq0aBgS3ao2WCzWkniSi\nu/oSwioj3bqu7I+J/TGwX4KMcuebr9XLTdjON3dXZRkrB0csqcMQPGOu8Pyn/j+tVgx9ubmqQlF9\nrviEH+qNZjAwWMXgNBXxY0CLTD8LvM7oLNtx4GY3UZRwqAcn3VFIslibhw2TH+RCOgltzTtZMm+3\nG77+3Rvef//AaWncvHnBq1cv2c4bau4LtD7yCvYdyTmJ+CNEYajkQFjFEEj5kflmYLM1xKc7lv07\nQgn4+ZpxUqTFEI4rrYNHFUloaqqitDAvWhUr2EYSDj2GWjUowzAM3Nze8P7dhlxgeZLw69YapsLT\n8cTPH8SvfhiEuroPDe8VpRUeHwXTPU9yZ59yOUPPuPj5MD7vL6Twaq1FiVu6b80nhfmCpXcIplRY\nUyXk+Ey77FOigr4YF2viFFXvyjLWwqAVyjqGwcmk5wxNjSgtUFDRqh/wIjs/rpnjmlljkoPcmS4s\n0qgOHyoDDiXhC908zmiNroKV06c6SpV9SIGnxyf+/P2f+Jd/mHg6rNS8Qq3d1wTW9ZkOWbtATCi5\nPTgBCSamVmKMHPd7fvjhe25fXLG5vuK4FH755Y737z7gjOJqcozDwGaasONMs45h2nJcFkIImKa5\nvbnFuJHHxxNpPZKWE2vIlJqoudCSJNO3WljWjCmRlAqDF6fUWiq6Kry2KNudP3MlrBlaxJmDTE8l\nYgwYL+9/URBq7iZnAZomNWgxU73FTAa38Tx+f+Knd4/EGFm17NG0Fuzde8MxZUIK6Co7EKklQgX2\nXuwDiipy+CpoTQ5rrYUQsa4B18D9v9TU30jZqdj4AaMG9g1SOglWaIycYtZwvRtFnpvzs7S7QxXj\n4LE93CEDqojqU9HEStQIbbF0Jdjd056PWtJIXr24RlfFEjK/PCykkoQWl7vrYO/8L49PGQ0IXzyX\nQl1lYWGNJqee16gQAPsTKqE+FwQ0ToPRckgIJiT/2Hp3YLVi9rLkchpo9YKP5vpJgWkNbw3TOOAG\nT8uCXyMsLGqueCMf7ZqyZJ0GsSXdbWaMHthur9hsr/inx3cURr795gs2k3hU5FwJnT8fY6LkQEmR\nnCMpFEJIhBAIIRBLxXjHyzcjh/0H/vR//cS//f1/Y3l6QOnC5uWOzc0t1gysS8KYhnGW6kcURjb2\nOqGahqqEqtdZIZUCyqJMw6jG1XYjdLbrKx4fHmmlXFhA+1OgtorTiu3omcYBpQ05K9aY2Z8CKZcO\nxT0rMs/Xo+4fVCkCl7T6fGhLoru44ClnL4vL86F93n9c+vn23NmrJp/Xs35A4a2XwG6VJDgjZnyT\nfE5jjZg3rSd0NuJRgnjisLHENVOozPMg12oQZs7TacEgApNhdIyDZzNuUC1TlRTWmKPYoDeRwBct\nAd4A4dgPOgW1Zt5/eOB//z/+z+44mHoXmZ9f8IX2qljWxBp6s1XFK2W1wpHXjxJy/NFbXj5e8frN\nS65urxlH2YctxyPEyKANcV15+fYtL7/8muvbN/z808/88Kc/cffzO642E69evaRUw8PjA/f393x4\n/5H9/UeWsCekE+FhZfQe70bG0lCtsJqK9oY1VfIibCpjDBrNmhI2BIy2KErf7QRqSpRoqBpSSKja\nmAbL7TxhnZflcUy0UjkeVlQVjYAysodqCKRb4pFSkzSbKHLK2C6oc1rLPVphXQrGCpXYdiO3XEXN\nOfuBeR54UoFjTOLx8iuP38Zr5bzZqxISsIQoQoGSUE0c86zSXer+12PsmY1ytjLtSLngxahOnje4\ncaTpyCkE9ssqX9Ua4xIxOrOuiUMPOkX9NftFX4DT5zH7jJ9C9xUpjRASqSu0anv+ur8a2JV8QCIA\nMRgNOZ1xdpGmSwCBfJ03EnGnkZBnYfPU870jBlJUnDU4byTZpBZUFRn/WTzkvaUCS5TFl3WG0XuM\nNuyuN8zzSA6FZalsb2a++upzBu8lOLkXaxH3CIyS40qMK2HtbJSYSLFSjUZRCMueH/7l3/jX//pP\n/OlfvyceTxjdf/Z333D94hW5SKGxrYH23c9C7EOfBVAC1Mo+ALAK3aujd57tdsv1zQ2HwxFix4KL\nWMCmUrAaYipsUhVWh1EsMffu7a8xL4HJxLDIWqHchRBF4adksXzG0s+LUG2eU1paOfef/Yf99X67\n/94P4F71C/J5niGb3NX7soiUzn0JSQIsqsMoI9azRjHaiZRWjIPN1pD6AnptTYQlrVFqwXvx+DEa\nRutRWpEbRNNYg1BHa00oa1HGdEaKUEnPe6AcMo/704UOK02SHHrV2C70ElFNiP2Q7PemUoKh1yZC\nsdNpZXa2e/lXrFWi/q3iMz90vUhYM0oZNpsN293M1WnLdrvlI+/wRnOzndhev2Q7j8zjwM3VFT8O\nA+/fado+c/bt1sZQcqRm8SspNUtqUpOYN6M1g7GUpgi54HMk5CQTfO27oJRASYiMVqJG78RBaQaM\n4WF/JIfAnOTgfHF7zd3dI7k0Tmvkab/InkIrjBP/hValqXt1+5KwLTw87VHGXprH3J1Chfkktcz0\noIPQG6xfe/w27odVcKYcAvePBw6nFe8MISx4Zboqr1LyOXHm3BHLr5QSCUVtFd1NZFTvqgRv1gzD\n0G84JcHOSjLwHvYnQJwLU8k9dQfOVkWqX6xSV9RfjdvwDJ0oJV4WStVPcKv+XFVXYXEOh1Y96Vu+\nrmURyDijGAeNPR8aTV0UXLKtFn/yMyx7lui2qtBWFK9VyYiGruQGTgnmOWpLqaLYW1Pi1VZUq63C\nze2WcXI83h2oRbPbXfH556+xxpJCI6w9BenclaeVuJ5Y11WglCzueTV5zKxpZN79cMc//5d/4B//\n/h/ZxwM1ihJuvx7YvXnBdHWNUmPH/RrGNpqqgLBimkWcDo2lpW7ApYS5UptCNbkBNvOGF7cvePfL\ne5RaAdkZxFRJWV47LUtglE0UDWsWzvunlMKzWZe14o/uvbsYSwWVKLn7uvC8ENXna0MLna20jnNd\nCv5z0/F8vajepXWmS20okkCBXkRFRqkuNBMGzBIzg3NgxBKi0DBKlIOrh6yiCM/iIDqGfk2UWmR/\n0snhOSfcNEoh6aZjS5Wfn+OK9x7nvVgkp0SuYn4tZlHyvtZWRRRkFKPrVD5jiLFhtGEeR+73Vb73\nk9eeS6WshQUxcVu9gyYNzTB6QlXiWaTAdofFdS0yccREWPdYA5vNKEEcOaFK4fZ6BzkzGoX74jXD\nMErm688VskzXxlrCSTBz7S3L4SRe9lW8eazWeG9o2pBpLCWy5AAogYdqEfOrBjEmZieFvBSJajyl\nwoLi3cMT6+nAZ2rDzau3KDvw/Q/viGFlf0o8PEWqEqaQ9QZdxH5ZN83Xn39FUYoff/mZmiMhrH0P\nVSlZDuXBO1qFELLsQqp09r/2+E0KeQqZEAOH48LTMUAR/C2GDFbJyaikU6tVaGn6Qg/ro28ThzJj\nxZCdpgk5U3Oh2sIx37PmQqoFahfSqErMHdtrz8pL1Rrd8ARx9KtYawS+Qboqkdz3UIEmuOlzSo/g\npqp3ZeosF+zSeVlMypJUXAYU3mtJSZrEVjdlUelpc3ZMTBc4RWtFD4aX7k1JhFzTDW81oShqbKQQ\nyE0WveM0sLnadN6yYjcPWOuIRfPq1S2TH3n/40fGzcTtm1s2ux0tmu7SF0lBuOExLqzLwrIuhHWR\nRJwcaVWW1UZDyoEf/u2/8Zef/8zD4YF4/jclSsS1CM/WGUMKgjfOFQxFbHg1ko0m2ziogmVrJbzZ\n1l+30prNZsOrV6+4uvqJdV1ZltzbXaECDs5ytRvYzJ4YZHG+LkkOnp5edHGnNNJR2p6dqZCcU4DQ\nskSFIX7qZ0WucH/PMW7qrNjizCrqFJVLBNwZxrkUdiUsmpCLyMYbeGsYncE7i3UOg8WbgdE6vEYM\nz/pCzBiw3XphNzkGp9mUyseHhdMi75sxinEweC+wX6hVMi9DYlkzMUqX2GolhEhIQiuliiEZNDCt\nuzIKVOKtYrAWqyVSLevUpe7i+1KKMGHKBQY9T7hCk42lcuz88+HhAMZIyk/K5JBkae4iOQZKXDg+\nCc21lcz+uOf4VDAo3nz+FbE7SdaceHF7Ta6NJawsTx/Jy0mmFhTDNGAmz+MhEFKl5SxNkQZl+0Gu\npeutVaIYl5BpysgeJ2dyTCg74M3IYAeelsDD05G7xyeOxwWlICZJ63Be4b2n1YL1Fj971twoSyOf\nsmSMotAVXt7s2NzecvPyhh//9D0f7j+ggrx33sv0rFHsYyDsY2cbcZna/vvHb4ORG0k3UcpgnRWv\nEBAMydjOk5ZR7TzSwnNffl6uABeFnup/rnT3wNRHpXbGOTvrI/ckIrhwhy832yfP0fRurci6Wzpl\n1S1cmxSNknvobms9QYX+PJ9/0pl3bI3qTBrwFrZd6m+tmOPbpNE691GwR7N1/i/qvIiTnzl48eeg\nQes+6Gfa5bnzHAdhvgzecHu1kdgu69jOMze7HaoY7u5OvP3jd7x8+watXQ+vzdTS8fAkntRrEKlz\niAsxJmpKsnl1skAK6cQvP7/j8emRkIMUXdUkIEBr7DDg5wmvJuHf9y4S3aQiGtOXCYamDMo0tKoX\nnrMUxILSMI4D19dX3NzcsN/vWdblcmXQIbeYKzpkkcyHLOKPC6yiPvldMOvzrkJrfVlaqi5TP9Mi\nc+f2WiPF2zSN0Z/KgvqHpMzl+Zz92c8MGMHOu5NlDxNxxkght6JHMMbgLod5JiugaHI1VCWZr61H\nC27nCbQitCILtNaIa2QJIoayQdOKFNdUxFYhJLF5GKySJqcr04yVZkjLDSq0QqRQoyTkuimFMsKU\nit3MiSae6JvRgjGsIXX76PJsuNVk+XdKCbUsDE8H8SVpCm+fCQrOQQxHPn74BeO95Lw+PJFioITI\n/jBKbqj3+HlDXA4Mg+f29povvnhLvL3m6eGR9+/eAQVlDcZ6oe82scdFC4S2hsTohbBgjUMbsQgx\nWlgi2uhLIIpuAtnmIgrTEESB6ZxjHD3zLFm3KWUGZ2hF47vff+7CPxAxXioNI3mEXO1m5ustH+/e\nYZ40xlq87sZb1lKVpcRCzJXNZOV+/nR/98njNynkbhhp3ca0qcbpJPFjIWWMKxTUJU3aWSOYXntm\nhYgsXf6Sew7muSDXLvund0y6aelmkA07uTwX187JFKvKesFNxL+7i0NqRVtR0Q3eXmxcVYMYO/2r\nSov0XHQ/wWGg0/46q0RC7JiHgYoi1CbmT0qjlMYoLss0+uFyphyWKgfMPFjhpFdhBlhjqL4fXrlS\nqkR85Zjwg2U3DyyxYuzAq9evmIeRw2Pk6ZT5n794y6vPXlOzEpOrnKg1UWog5ZUQV9awEKP8CutK\njolWBdtXSbMsK4+PB/Fq74ekBgmQnUZ219dc3d5iskehKSmjrIg1mjV03px8ZxUVW21QU6J1tSS6\noLXFWcs8T9y+uOb+/o6Hh4/PC8Yq6r12CBwXoRrmInjjXwHY/cM5HxS5s3SUP5v4t84/79a8raFL\nT+npDBbTWVLnA+HcamgtMF8uYi94zvM8Ow2eF6Gl461Wa0Zr8dZitDhBOm+oNROSfB3ZoPoeoUR5\nfk3BvBmwg2VthRAbFNiXxmkN7E/r5bmdX4MYu8kuKYvEWGC/weO0lqmyJpz3GOvQDawz5Fq4T1l2\nFV2gFZLYuyoKVxvBiO0w8HRYOJwCxyWwrI2UZQKpVaYQFSOH0wnywOgdw2aSCDzTGAZYT0/88peE\nseIGeTgu1JIIKXE4rez3B3Y3L7F+5KHI89/Niq/fvkHZgQ93H9kvkRJPYvpQBB41WuGVXGuxVE5L\nxGuLGTXeOpwb0GSqk4W40HR1j2DrLLckOQgN8G7AecNmO3C1m1lzZlkWBm9oVTQdKlVsA6clGPt4\nkknXVjguCwq4eXHFdjew2U1UJxx3XWT60OMVDQulstttMVYYWL/2+E0K+ejdJZA31Sq5mzHz4WFB\nP62UJgsfY2UBZI0i5i4Y+ZT7daGNycV69gOfxwE/SmjB+aY8W62GKLmPKJjGUU7SmMSMpp8UlcYa\nshSFWvHNMXjHZhqhNVKWAFitGkafZb7nwvspDkt/fmKqtfWK69FRimMfK08hs8ZKs1ZuOa2F39p0\nFzmd8VkpcMKcsGy8p6EwVbMbZuxgWFOixIjqMBIG7h6PWKPY7SZqkQSS3//hK1LKPB1OKK+5vtky\nTxMpFlLIssRMSUbusLKGEzGdWMORsJxYTwspFZo2jLPDK4XSHmNntPH9EJTXMs4zn339Ja/fvuX2\nxUtUkDisFBMl5YvsuWlJQ9EUdCso7BmokEXuZcss0IhBsdvtmLcbrHPUKiHG4vIHIRaU6sd9ez70\nzwIfpSRvE5rsa9ZALYUhu+5HLcKqlCMVhfOSZm76VNb6Iav7PsMosavNrVy42t7ZLp6pnTPe+i+J\nM1J0uqyzEvChDINVGAvoSkoykWmh9cjPdYYcs2SulkjKMr3QFBvnKbMIUtQJ1pgEaizPbjyoHh/X\nw09SFgoeOrMdRzaTRWsr+ZZuYI3w8fGRw2mR16mN2EsPjhe3VygKThdayX0HZFmDYxzktWmlOa2B\nNUZA7s1x8JRUKEbcOEtNpGJZc+Bw3Esc3SF073GJVpR0pER5eOTf/+lf+cPfGl59/pZp/px1jZwO\nR/KamHcD2uzY7z/nlx9+4nQ8kIrsDZpSlG6KVFu31vBezMXGAWcaNWcaGYPnat7gnOV0CGy8wQ3C\nZ/fF4ILBRWg1k5OiZE+KVQQ91jCOM61Vfrk7st15vFEXqC01Odj2p5U1JF64gT9+8Tlf3N4QreP9\n3QNPD0+UNfO7b7/jeHzi/S8/4TdXpLgSTsdfram/kY2tRilDa45cBg52oYIk0/clS0NuCOATDPIT\nfOGTEfl8g47esd2M3OwmCZhtCJ2s9M7KCd4couDPSquOZ/flZB+nz12wdNnS1dXSLukcrYoc+0I2\n5uIScnmN547+7HGzxsLHfSTFSquKh1A4pirMFFd76r1I8nUfr60qKHGRZQmFnOVdKK1K2ITKhBzR\n3qJUkYLWMZ6YUhcqaXIsGDcJvvz6hn//5z/zcX9i3k1it9m/5ln0E4gxENZAWAJrWAhhZVlWliVQ\nK6I+s+LCpwbF9atXPB335FpopTBvJt68fcN3f/s3vHn9mnkcSDXLTawEVqDKgarqMyLRiphPtctH\nnMW6uMkiEC1Lz+28YbvZME0jIazkvuAUBlIH1S+fJp/8+cxAOtshV2hiDGa07iZbQmO1SqOMQhkn\nNMFckCGoXiADpTv80hW9Co3R8lmixLo1dZ/2lMonO55+kZ99N7QUAWvF6dDQ+4rcJ4I+FRhrKEUT\nYudzo4V77g277Yg2inl0HJbAfonEECUEBTBODh1D9+p3/nzls9uM7DYDKa4inzdKFuhFmCdaa6qu\nl4ZpOw8YXal1IUVZvBvbbSGaElbIIDulXDKXVChEzLPECEDCoJrCGcMpOmJVtLaSYkRbSStS2uK8\nxrsRZ0eW44nj0xMvX78R2LTKorNpOYQ3VxvGzcSyLiynI95qmvfUJL4nSms208A8jwzTgLKG/XGl\n5oy1js1mZjMNfbfWxKmwSj6nNYbRedQgwTLijigogNGGzXbD6bBQQmStlSHXi45AK81mHLnazOx2\nW/zgMUrjlWK62jC/fs3u6pb37z7ycP8IreKV5tX1Da+/+Y7TGvj48PCrNfU3K+S0StZIbuGZS200\nWov3Ca3grFiBCoz51+Ox6v85M1WU1uy2Ey+uJq7nkTVFWbxoTUT8NkxnENTaqEnYErXbQuouMkI/\nG2+db/xWe2hCFE/y2pDRVPUbOX16wMjdLUVcY7R05Guo/HwfcCZSgKVHeIn5U2PwjQElbojaYK3t\nGKWcBDmJxLi1Riylj+aV/XKkag+t9UIsHUhpMHqPtYaUG9PkmaeJeRp53AeW0Hj9xQusdpQk2/Ta\nsnR6MQrVMApXPKyRNQTWkAhReLjWGAZjcFpjJs2brz8jt4yfRmrK3L685suvP+ePf/M3XG3FDjeW\n/t6WXkzoyTVnnLopatZiBKa6mAZhUrQiCU3aqG4nPLLbbNjMs8BBudCULJQFHvnUtex5OpI/q0sh\nVT0H9NlPRiCRQsX3BaS2lkMuhNp64tNzERdmkxQ4TbuESRilUUYYSWJgljtfXdhOtYiKNZfS2VPl\nQlWNqUqKPLJPOO+DVEXYLA1CEKtldMUpcFYKuPOOuh0YTxFzWDgdF3KU5fMwSOxfk/OTwXucscQQ\nmCfpTksWD/JW0sXrxlrLOXM1JVkA6k6lLa2hjRFevBEDMJTGaZm+Si2kHC9L0Nw/p1wKp5DYJoeu\nisE6lk1BpVUsnnNkMw9MdkYbh3eWedpyfXtDWCKP9x+5ub7GGs04WloZORyPEkrjLbubHWtY2B+f\nGAePQXEqQiLwRrObJ8ZxEBvcBk/7BWcMN7sNu5sNpsLh8cCyLDSnWIJhzKM0MUqj/cA4TPjBgc0Y\nE3GuoawjLbHnEltxm+xZtRrNZhr58rNXvLjZdcm+IYbIpBzXmxk73TLNt8ybe077jxiteHHzgu++\n/ZZTgw+P+1+tqb+NH7k3UhjiSi7SBeYsKqx5HJlGh3aNGBKH48KnGOS5pAOTgwAAIABJREFUXp5p\nfVorjLU4b3nz+pZ5sCynlcMqXcTcaT9yw4gN65nDLUWv42zbkcFblFGclkiOmVp6B1Yaa0j8/P6e\nYfS9yEo3XjlzZp+78DP9UFFR7WxO1DjE+ry8VXJTay2WmoQqvOQqlCNZ9jbomOiaxONCa2lkTY8F\nC1HoUhqF1p6mRL4uLnMbrJG09M2oUU6R1oozV7x8PfHdf/wjw2agtYRRFqUykKklkHMg56X/kg4p\n5YJSlmFwDKMlx0SOK8Nu5Os/vuXlF7esx4AKmXkzsdtuuNlu0ShiKORTRjexQ/XGk1mpLUErPchZ\nPs+zg6JClqmqyQ1YQXyZtRasfJrZzTsOT3Jxay3MitQyscNnl2ulF2+lelRb3y3M81bYPjmxLJHS\nRBFpvMWPlo13zNYzaUlEP6yrLBP75Fg6Tqt0PxDacwddY5Lu2sqB4KzhBFgtC8g1BHHyjJkcCtmJ\nB80+JAadGazB+4GWxVP95mqL0ZoQo3T2TVSyKVdKjtKMOPEhH6YRvxk5PI0cDysxRgZ7dsGU99h3\nbL52rndMCdekQTFG8WI7YJXD+4nH04nSPegf7z6S1pFhMBhdxdrWOhyW6+3M6jMlRVppTK12UZEo\nLU85XmZprcRDZnSeEMU7p2RIa8a0Ir7ePuOnih8d46gJ4R7rJkry3L+/Y9puUKqR0wmrG5OxrNrw\nzVdfsNtuKCj2j4+EdCABVRmsG5jGiRArMa3dDsIyTyOb7YTVhvuPD/z44zvu90d2k2fwjsKelIQa\nPQwDG6+Z5gFjPSlBDPL+aBTj2O1740JISSaaDuPG00INK97A1c2OP2nH6bBi3j/w+ts/8sW3f2D0\nnqePH3m8f2A9rrx6sWO43vK3mz/8ak39TQr5n//ygdMaCSkzOi2dUDmT9ZV4AA+akooEBXxC2VC9\nFT/Tx86joUaMkZI1NOXAVGmZjMF40Anh8BrDYB2TNpfFgTOGq2liGMRhLORGCpJ2cwprVzkKCyLX\ngHNFPBuozwyTy/N7ltur/nw1iqoE96YzH5TWiJZIxnGlNbUpTmu+iJ28UxIOa/pEopssXq3uAIGi\nIWoyZRTj7KlaAiUMQBOGwnENfHN9xe7qltPRcf32G9y8Y9y+JiXxKdG1ApmYFtZ05Hh65PHpgaeH\nR06nE60pjPVsr7cMg8E51dVrkZYM02gZr7e03Q6The1gtQQQx1jJsfun9GSWwVpcHchFlsbURqvS\nmebSE3zObIEqYR0SJmJRzgGawXo24yT+IyVdIItGn7CsxjlxqytVAkZqFVqj6/82eQvdP/1s82qd\nle8dPU0bjlEOhizNukxNSpazucgh6rR0qNYIK6K01hetYp3qmiwyvbWM2xFQvPvwkVqFSXJcI+MY\nhavtpEtrFfyouN6NzNPAZnQsUXzQB28uVskNKFEs1rQSX/PBGa6UxtaGU7AsCmrqZldSXNeYSJ1j\nb6jy3jdYosKumXHMtGaYvEKZUTQEQby2x8GQVOVUxGfeaJnOtpNYDMRsyUk422efJKAfOmfWWeaw\nNoxZxFteNwbrsEqEcilFDofGlbaX93qJgetryzBUlmWlamG8pGXluF84Hk/E5cTm1Uuud1tev3rJ\nZrNhs90z33/ktAYGL0HHS8ffSyhsBoO1gGo8Hk7cP504rIlhGJgnj3dWRFelMjjN1W5i2o6Ywcnr\nU7qzfzTGe9Ia2D/tqTUJOUNpci0cQ+H9/QOff/xIPJ0YreHLb76mlMrV1Q27eYMpkXw4MpoMW4PX\nmhoeaGtC+/irNfU3KeT/8u8/dYzOonfDhVnQzmwTLZv12pWNFxoecMbEzwulc5elgWWNgqc53+NP\nm9DfjKYqTW4apavQhgZhSkgSiONqmnDeSOK1sp1ju/Lh8YHTsnI6rTzmI6lDMgygVO0HUDs/M2Fs\nGN0VqLJcErhdfBOcVQxOoJOK6v/fSvGv0qUJbCPLTGt0X7IVtBEWwTicF2mA1pcib0fHxiiyzbSQ\naDmSmijCbl+84vbFW1LbcfPlDWacqVie9gs1HKnpyDBqclrY7x+4u/vA3Yd7Hj4+si6BzW7Ly9cb\nbm62nSIpEX01Z8oaKU7jPFgzYL2RpXEuhBApsVCrwjiL9lqwWqMwxULMJCVFtOREToFYMqWCapaq\nan+tsrhTVlGUXLbWOKZ5ZBwcKVvxcm5SxCUnUmwMrLVi0lbP4brgjCwZ5f3VFKMFKusduzGCz8bS\nOC6rwC2l9N2NQRsurBetxElzHJz4erTWsxqFUaVaxSiJphu8Z7edUUrz8HggRMnRPMTInFbsKJF1\n+0UakzFlbq8N82hRTRxAU5a4NqtlgVZVo5scS1vThTejAT06HI3BwrJADZGWS4/pa6BEC2A7BHiM\nnVPeYDzCPI34ybMbLV4pllo5BVnep9Z4XHJ3pRDl5zh4RmtJzVKiHIwxSeCIVmB0YW2SmlRrY02Z\ndlxIVZabt1czV/NIaYZ4SixrQGuHWiMYjx5mhmHHvCnEFElHeX9ZFx7uHzjsT6Qc2V3t8NZye3PN\ny9evOe0P3HnPYTlRWxFbZ6ckGCVGNoNHcnIrD08nDkugobnabriaxSH1FCrGKKbRst2O+NmDsYQl\nXcLX51kYeU8l8/DuA643LsapPjlkjofK6XgiriuqFN5+/gZjPc6OpFK4/+kvPL7/STIbVJV74rgw\nPoxM15tfram/SSH/8PFRTHLmgeNJ0tB177Ktk2K6BpHRhyj2qOdS2fro65xjGJ2oHbUW3NZ5kaxb\njcVeQpG9H7ogR9ScgzdMg9B6NPK9CrH9rLVgrWI7j1xtB4qSAApjIITA0mlthCAWs62r9dSzGtT3\nAiEcVC62u1ab/twt280EWhOLFHJKlVE8ixJMWUNJpUfJCR/VGIV1Fj+NrKlQgghApAgqVGxcTyNu\nrMSnA0XJR3yz23B1/RnXr75Cj694qhKEcMyRw7tHDnfvWfZ3bK40kDgdDvz4/U98vPvI6XhCa8M4\nz8zziB+EKkkCTBMb4tNKLQXrEs4ErPEXJ8NaJY9TG4PSHV/XcghWpDskVeIpEpZALomsRCIvzH8j\nvOlO2ztTT1X3tZ62E8M4EFKELBPMOSdViFHiqS6Tnu07FQmCPrv5lVZJOVNy97s2Bm0c4RTFta5n\nUApe7LotbOsxcqbDfDyLiUIiRfHfoDWslbDpeXR0TISYI0rJ8kzRSKmyP6zQYN7Kcyy18PTwBC3z\nsav89DDLfZArg9G0Vgg5UKrpEAFi3YCCAlZZ3CxBzU+Dh0MgtRWVll54DbtpBETxeVwKa5QDKFmN\nmzReGVGJGkV1hqM2fDzI1CRZk4WaZaqy3rHxitlbsoGaNEensWokOMsSI1oh+5bUANk/HY6VdY0c\nT4HdPGAw6FoZnCE3g3UOP07szMCSIod1YWwVlkrLEVIg1ExojdMpczwlho1jnLfcvrxm2U7UdcEM\nisPxSFgim+1MipnjU+2MKA3KiqweGAeLHQyYZ+dLrcXlMuSCrWLjkFY5HEdjubnZsVyDGyxP+wOO\nxmTELK84C8ZyM0xcX99ghpHDupCWPVqDHTz3jwfe/fiOdz/8RE4HSl6pOVJD5u3bF3z+xatfram/\njbIzVyB1K9JESgXru1TaOoxyoDWbzQ5tR7a7zNPTI6dlEbHLODB4hzYwjg6jDa02ptExDJLpqLCy\nSVagtGXylt1G8j5pFa0KrSqhEqZENKWn20tntq4C9cSwYs5WuIMsBkN9tpN9jmh7FuVA79bOgQLd\nxUxZ8erQRvXuXIKDc4OiJD1mHMSbuyglB0uHlVqrsvQZHOM0okyhtkhMwrgQ9adQKGQRZ6hops0V\nX372NbefvcVMO9ageXo8cjgcCMcnnt5/YHm8Iy4P2DuBN8IS+Xi3Z10SrRkGPzLPGzabGec81N4F\nqgylu8jlQFKJaCzejpfXqJUCawXlsqY7V0KjiOujtTg/Em1GW7F8tepM42yovnhWiPTa9LANpWEY\nHNvNlnnesgQxzZq87wtJCXSAM2tJuilj5LoQrFi81p0xMAwUXdlsJ169uuXL333Gh/cP3H34yN3y\n8ElWorpYR9QmRmfaiC+QwDb0w0AAPzoUU2sjpII14jGeS+Nqu+u+NUL1zLmdiTzyvJUYrB1OEZcq\nTmt2oxxoS0o4JaHTo5tYkqiD26nivTQL2gjM1voi1RvLbhK4at/hyNEb5smJglo1puxF9JIqqttj\neCfuk7ppwlCoxnIMURhMSewM1lB4MgFnj9AK0+xJqb+/XZV6tr7QpUGtXf1rLnTIY6g8HgJLyCKj\nN4rRWSKPOGvZbjLTuKWWRCoR1kpcIyUGaAFjBrbTwGgHSi2UkrjZbriZR65Hz6gt//rD95zWRC4L\nRsFgNc4ZQogc90doGlPlkPTK4gcvPisKbMsMVjMNA5MdGBFjvpQTqZZOubS8efmSV2+/4rMvf8f7\nP//E6eEelVdeTyPXux1ff/aGz//wB958+Rnz6IjN8vj4xN1ffuZ0Wvh4v+f+cOTu/TtSODFYxWev\nbpmvb7l++fZXa+pvY5rVx8+QJFPTGMVmM3FzveVmt2N0npIL212XtJfK9z9KccwlMfQgBTHLtyKI\nyY1xsDinRD3Vx2vdec3eajaD46SglF6AFISSWVJCmyacXm0xrZCXQIqR5bTiuv/47D1llKryqWjH\nfoKLV7r6sy8sqzhZ9ZR38S/XRiYLQ2MwithkvMZIMENGy6gZ80XhWVsXJnknMuAmAccCFYjn8eBk\niRdzpWCoemC+fsm3f/sfmK5fsmbF/d2eu5/v+Hh/x+HpjuNeinhNx+5zruXmsiPDzYR3lu1u4tXr\nV2y3W6yx4oNjGqpqWqu0oijd56LqinIa5zTKCX0PJcpNbfSzSrcWoc515aebZJmprOn8T+mESyvC\n91QanMFZObiVLgzKMU8z4zTj93tKjNLh9qIamywVa2eZGCMsIuo5mEN8f0bvmIaBUhovX1zx5Vdv\n+O6Pv+P66oZxnMkVDoeDmD61SiutUxdbtyDmssySxbvBZQlAUEr1g8cIFIYo/BqK66udQE+1UhZh\nQtX63BTo7gZau8WvtRp7pm62RmsFrQdG68lt5bQGYogX2FBpRcoyQSol/PHNIFGKNFmuO9MNnVLB\nGtjOjjU5ci3dO792t01huAwj2HFgvyw8PB1IKaG0plTFMRT044mUEps4dIteuSkMqjvDGZo1ZGto\nVBwCNSqtWVIgRAmPdlaizgqN5VECjVOGm6tF0oRSIqnKclyJYUXpwG4yDM4yOMc+rjRV2U4Spj5O\nE+PnE+8+7jH2kVIfZCFbRQB0PC7iW1PlLrZK9k6DEahNG4NXksC1mSfmccQ0aXz8YLDFintnhVcv\nXvH6yy8w88w//v0/89P337M8vedq9nzx2Sv++Ptv2L7+jHEcMC1gB8W+FY5PR+JyouWAHzVYhyoD\nw+z5/Hdf8fUf/4avfvfNr9bU30bZ6Qzee6wVAYY1iqvNzJdvP+PLt6+Yx4H94x5tZQSuRVFLhgqH\n44FWGqlJTmMtoK1hHGQBmFIVFaOXlHWN3Gg1rZzCiccl4JxjM08op8iSAilLUWex3mGsIxXEZ7yI\nCk4h8nCsw6dEXiPrGqkp41qTRJjWscoswpVWW/dskcK2myes6VFPDVngUXDGMxiNwZDUiNUWmyun\nY+xjvJgSaSO8VfpBWGvthkuecbAoU1FFUaohNTDuhvH6C66//pZjMRzv7vnw4z337+55fLjndLwj\n5wfCuicsC5qRF7ev+PLLz3nz9gWbzYT3jnE2F1uAXCJZd4FFkWVyRaGrwBLOymFldGeb5EYzXZSl\nuhlTFSHOMwUJ/DjIIjRZ4e+XIrxfguC+xqCcCMTOjJ3WBVJWOwndVYZUM7ZKULXE4nWWizEdApAg\n6KEHN5QM02YQfLspXtzObAdDOiz88Q/f8u23f+DbP7zjv/6Xv+fnn37hdDyBFnl6rU3oeoCyEtox\njAO2x66ZpjptztGaWOS2WlHGXK6P2iT/M1cJylhjkufnPNaKz8vVPDF5i1OVtJ6oKMZhEFZVqRgP\n42gl/Dk3DoeFGIN4mhfB5yuaUuVem62i7SbWEMUVsFZClCzWzeBoVzPzNMrzy4X7j3ueDkde3+64\n3m3ZXW+42XgmZwgh0XLrDC7NL/uV+8PKZr9iznBjU0xGls6m00q9E8VkqwVtTV8WalDCeW8NahWG\nTapCVdZr4N39Pburmd04YqcZZZUonJvilAKHdSUsCxkL2nD/4YFvf/8VL1/cYI3FO4fzI6Vqjvsj\nh3VhfzwR9ispV5pRUCvOCBzW1oKy4Ee5huarDfNmR6NxPO0xqvLHb9/wy/2Bx6eAqpXbq5lvvnrL\nzevP+MPvfsfHD3f88v2fcCZxczXz+Rdv0cayHj7y+MuP0BIvdgNXf/d7fvrhB05H+KJ5/vbrt7LY\nHi2/++Yrvv7Dd3z2xde/WlN/k0L+v/7nv2EaNwzD3Jkqhe3k+PqL14zDSI5FiPhJMOvTMTF7yxdv\nbohh4pf7Jw7L2jMrZXxNKUuiiDFysxtzWRTmKIEINWVOKTNpw6S6IyEOZTS1idmQM5IelFsTl8Im\nHZLR0llZD1OxRKMvZlcDMi1I812f8XKjRDTjLeNgsEaWsq2KnWvJtXfrXOwx8eJZjqlYCyEK+6Gh\nsFYWuWeLAWM0rWm0EvRYK9ODOKDZmdvPvmb74i2HfeLu3c/cv7vj4f0HDo8H1tOBlBZSOlJyRmF4\n8/Y1v//91/zhu6+4vt0xOFneaduoXRhSqkapIhYpZ9odUJTImFsTPrYoyrt5fi/KpamLTBzd0Mp2\nKmbDdPhFGST5JcokYr0U4lY1GC1p59pCkVg/5xPzdsY/OA4H6Wj94PHGcFpXxkEiu0JMNK2o2pBT\n7PCU5vGjBGvTYDcNosJrlboERhqbFzuurmaW/QO6Ze7vDafTyhpCTzISGbfTFqMNox8Yx4l1jSgE\nl1f6Of4v5kpOYqt6KItYxuaC1kZUzlEWfMMgFNnSFGtc0Vj8NBByRWnDbrLEqMmtcUxr9wwBpWSv\nUjKkc0anlV1SLpm1VEwXwTnV8XtjxDazSvjKMDjG2eH0QImJWgpNCVtjNIXt2FgTpNny5npDygIL\nFmRZfwiJY0i9kMsE5rXpS3tFLOIPZKzBuQk/bzFuIKoDx8OBsJyEZZTzxXbWGYWhkmMgrKssC3PB\nOsfkPSllrDMUp0jKMDSN0RbvBmIsHE4r0zgyjobXr67R6it8Ddx/vCfEgs4iRHs4njAaduPIaBwG\nJb73uTD5icl6DIgFxJqZB8M4DBi9dEsGRUmFtAZOhxPb2x3WIUX73U8cj4rUoIbA0/0D73/4ie3G\nMu92+MkwG1B+BGvQasI4I/Bxc6yHwMPd/0CCoP/p775lGnbM8w4/DhhV8LoI9LFEntKpm1IVcqrE\nkLjaenYby7p4Hg4nnk5i/i+uZZWcEsNY5YayMkaesdRSm3iixHJJRaEXDaeMuPRVsZY1uuGUSMXP\nada2Y6BNiVNdrYaWRSxRtOq+Qz2tvrsNaiNqt8FZxsExDIIPq9K694QII5TWrFFsdo3ReIUoP1q9\nYIqtg8S1Cqe9ljPbxorMnUrJIhFKVVHtwHj1it2rN9hh5v2Pd/z53/+Vu3c/cjx8JC4rOXWYoFXG\nacOLF6/57m++4bvvvuLLr17jnJVOuFRqy8TYSEmdzf0uz1e3Jla66MuUIBJ2Lhx/lbuDdy4XhZ9x\nIiBB675j0Cgj+w2qwF61v25R6cpiDGVRneqltcIPA7ubK8aPM+qjdJ1ohbEOpRLbeWKcBh4PJ0KQ\nzNF6VnKhpFgsYI3l9srLIrdUyhoI+z3zPHK9u+Lt6xvicsIaw8+/fJBMVBAutnN4awXXdZbtNBDW\nCRAZ/xJXwfyVQms5dGNOrGvsEKAcyiVX1pg5nBYAnPegDMfTQs3S2RfEYyfHDE0sblNK/N/Mvcmv\nbteZn/esdndfc7rbk5QoqSSxJJXLqTguDwKU7UkG/muDAAGCZGBkEhhI2YgRV68SxUvyduecr9vt\n6jJ4972qAJqrDnDBCUmc+zVrr/Wu3+95Ol1htcI5zTwJICtE8AiIyaxjpBiTiES13AVZbaisJ+dE\nSIV5nqgqT7tp2NRbSizEuLDECW/WnkGcoRRqq7jb1MxZWtlzSsxLEtJhP64X1EguXf2OYFpQVN6y\nazpefv4Dnjx/RbfdcT5e+Oabr/n29decTgeWKBsHb8Uyn1MkLBOX8wlnNdo7bvbXMr9HENDOemzT\nYNB446nrRr4fScQx1sD1fkPXNLi0sGkbnLWcz2ceThfO40xTV3RtS1tX6CIlL6cMRlv5bAYhSBIB\npwghE+YosV8r78c4DGCP1K2BNKKSiMiD1WStGfqBh8cTb7+/Rz/dYZ3HGYczDtXW6KaFYuQSVMMy\nZx4/nBjGf0bxw9vtBm08bVPx4tULKqspITD3A8t8xvqF/c2GHAMpJfZ3G5wuXC49v/36JHVZZDeR\nUmBMimUJaDNQp4SvLK0zqFKYp7jG9Ay2kqNuUzvhdq9H8Rjl4tVaLYWdEtbZmcZXToh3CuaUMCvi\ncoyJpBTZGsYsO6CSC3Kvo7HGUlWerqlw1qB1oa08ORVmFvl3rFhSLsMs3HEUFYaSFCEUchKUvVHi\nSez7EWctlXV4I4WVQGGZRtKKns31lvrmKc8++yHGNpweT5zePfL22+84Ht4SwokYl5XBoei2ez7/\n4Uv+9L/7JT/84nO2XScjqlkkAGW90A0hryxxvR55hQOStRbG8qJ/J2uOSU4IGiqyuEljJFoBpWmt\nscpi82pr0WZNkWistiJ+zpq4yAwyryYgrSR1gtZypDYGR83VzQ0Pj0fu7x84nw8czwOTW0BB03qR\nb+/3/Pabt1wOZ2IM6BOfLraVNjjfsN3dSEErFEIZefPme07DSHd1i8qK25trjK94PF7Q/YDJRi6f\nvZdRiIHKFFqfyVcbxnlhnBaWqNbPK3Sbem1AyiJv1eqWzaJJW2Lm0E+klOmaRN11nJay6uEKde0Z\nxoWv39xzu9tQV5Jfz0vGaGk/hnhZx3zIYh8yJmYsCpL9RPFLMeNtYbupSGFmXAmJDYrWO3b7jgIs\n88BwkF3yYci8Oy40TYXTis6BN46gDEvRaFsLSXOShNjvRORSnpOutMLYmpsnL/if/sN/4F/+2Z/x\n7PlLTocz//E//kf+j//9f+O//tf/wjiMKzo6rifYyGqA5nw6U29b0pLYbTfYWqPGTNs5rm5anGvx\nvsb5SgxiKTKHhTAlbJEWOCpzc73lj758Tv/4lq+/ecu37448e/4Uoz1xFr2brwzGKo5TpAw9jXFU\nrqWkRIqJh4czl5MkYWzrSTmiVKD2gfOHbxkOB8Z333G723D76hVPnz/nN9PXnKaFD+eZzY1BBYMe\nwXZ7uu0V1dUNpMxyuTCezywo5r6nnP8ZNTtLcRQ0uUTCdJHw/zjx9s0D96czU1hoGysApZwgB/ox\ncn9/5pvvH7kM86d247xIa8poTUF2j0LBE4WT1itO8qNFXisoHoNdtWLlU8NMFWGvZD4af8AqcCve\nNIm3S1IQFJwX5VzMibjIbm8OsuhUWrNta6l4aygqY6ySKn3JonMzBq2M8E60fMRTyljnqJuKcZ4J\nQZOsFmqss3i3wsDW11LrVaKhLXNQtPsnNLun5NwwL4F5PHPp3xHjmZwnYpikTm4srqq5eXLFzd2e\ntvNolYhhJsciD4X1RZAKu2BVcwyUFMhZcAAfoVRZyR+0oihZIIuSk8Ka6JdLS62B1c+5Ds6VksI+\nJa9z7ED5xACXMoiILMq6AK4JIG1AO/ad5mq3ZbPZMPc9IJKNFBPvH05kNE+ePeXJ0xtSybx9+45x\nWmjbmru7a372s5/x+WevuN7t6B8fGI+PzMOR6iOPw0lb0GlD5R23t9eA4tz3lBjWC+bAOEfUKvba\n7K/ISjEsUdRtJNxauy8p4VbMr4zCJF/pnKOUzBwTLkSsDdhlwVpN0fB4Gbja7vHegzUch5Fx0dTe\nUCz4SssuXutPoxbnnIwpk8zBrVb4SkOxjFNkCpHv7w+ELJf33tdUTuJ/YRzZ7vd4ZzmeBuZlouSI\ndcLxViVLnLdtqH1NUobGGWwRZv3xciHHhNWaVOR0VlWeguaPfvoz/vzf/Dl//uf/ms9/8AVN3eC9\n4bMvXvD5Dz7nb//2r1jmRRJGWhNLZgwJiuS7ExDJVLbCaMVGtQxpIWWFbgf22xrvPfWuk+RMKvgk\nG5EwjeQY8F1F5RymGErYset6xi7y7O4a1+zIpSKWRIpyoRrMKDo2Y9DGyzsdFs7nnhADICm3eVo4\nH3vGvqe/nJj6njBOdEFR7U4M5wfCfKbyirsnN7SNo+ka3NUTwhBQ3ksxcQkM88IwTqQ1Fmv/STLu\nn/78QRbyfojUjcLbheP9PacUGfuBb7+75/E8kErmal/jtFz29NPI6TLx7sOZN+9P6Mqz2VRUzjIu\ncsxzTkoaH3OpMSW887RVA7oQSyaG5VOiQaBJcoGqWVkvBdZ5Bx9DYNaAWVPszhrCmqQwRmMKFK0g\nqU8FoCVJ39IZxbYRLkaiCFcaaWh+bHOyJnJYPX5lzZxbZ4VVvl5uKgM2Q9eI4sqs6Y+yjhe09Win\nCLPC+g6ja1JQpDQxDEcul/csy4mSZ0DYGNZ5qqajbRus1YRl5nI+MWtHilLm+QSTQa2Z8ExOyyc4\nlyxA8prnT48WKPpj6n9FB6e0wpRAZY0uhqLl9y/rQ7SskcMUAzkskFf5gbLyxc3CJlBFYZRBGY0x\nDmMclfZc76+5ub6mfzwQcqAoYWA/ngYSim63Y7uVMsX50jNPE8ZYXj2741/8yc/40U9+RGUrXv/9\nr3mbFpa5x1U1zXbDdn8lqYZ+QKXMk+sttTccThXv331gWcSuk2LikGSuu9nvaeqKJWbOfS/eWRTj\nuKBXKJY1hmFaWGKUpIkyYqeZIjHLKGCeF3xTgVKchonaNxhr6bo/VgiiAAAgAElEQVSay6knxYDG\nYwqf0jHGyD+dkSx0ziKXWJKM35xVEqezmpRhWOJ6V2Npao+1FSlm+nPPtuuoq4q23aK0I4SFEhc5\neeVIyIXaSD+CrKitfO7nq42c/MJCbQxT0lRty/7qmqvbO/71n/85f/Fv/4Kf/OQnVFXFNE+ktGCs\noqo8Rls2XSetzO2ew+HA+fjIEBbBUCihlBpzEoORUswh4EJANZ7KNtRtJw8CqzFO44omLEGMPH2P\n33jQhoLD1Fu67cht0Nzd3dFePUH7DZnE8eGB4+Mj2OqTjAQUi60Y+gv9+Z68PuBE6+ZIWXF5ONGf\nj+QcqbtW8MZTz+X+DWE4YnVhf7XHO6jqiu7mhhNnMVAVoXKO08IUVueAVTJ+/D0/f5hC0Id77m63\n1Lbh7YcHDocTx9OFvp+Et5ATx6Pkhqcl8e7DkcN5oB/Fp/jDV0+Fq1Jbvv7mPZfLgHVShKAopjEw\np0TbFGpXUVKUmWRMWJtYUmBJAacKWlYXSomo4j55P5XSK2Be4oqlKIwXgl+hUFnPEidBvoYot9zO\n4hKonGgs7HxmDKs1Ja9RuCJvxhQTepEd7WXJclGqpfBjdEDljC6FpqnoXIdGU1eepvY4ZyUPrRQx\nJ4z1KAymZOZxppSe7VVFmkam05Hjw3um8SLmEuvRzmNchTWWuV84fTjzoX4kXAaM0qQE3nms99LG\nLHJfIaxyAV1RPqru5E/WSeJbKwxqZVXK2EAVtEroLK9tKZmyln6Skt26ynKhmmOkpCjiHWNIGkqS\n+adO6ymochjnsNqJUckorvd3PHva8/7tW/J4Jq50ygxc+om///XX/NFPfsDTp9eM08K7dx/YNI4v\nnt/w9K7l5rqm8h3vv16FCq5mToBruXn5Ge/uTyzv75mHgdsrz93tDZdxy/F4pB9GlFZUzhNC4OE0\n8bSfeXK3Yb/pgMgwB6Yp8HA54FWRdq/3mHnBlkLbtcSUmeY11VOEKT8vC5tdjTKGwzTz9uHIftPy\n9HYLMRGWGa0FlDbNI4QF39QkCqRA5TQxFpZ1sBFDZI6RqDLWyY5V+1bSPGSauiPHmcswUlKkfXzg\n9nrLj1/smcot7x4u/P3f/COuLHgLvnWkDGEMXIawXphm2sZTOQs50WqFKpqm6Xj+2Rf823/37/lX\n/+rP+OlPf4yxFX3f8/j4yOH4yHevv+W7198SQuL58xf8/Kuv+OlXf8L/85//kv/6X/6S+/dvuEzy\n/V5iEsdlCPLZDwJts42nco1EPkOg3XVCeiwrdlpl5rjg57hGdz3+qmKHo97e8vzVK3Y3d7imJS8D\n38WF0A+0bYtrasEaA+fzSHwH796/obKFTetod1c8ffmMm7snPLzVVM7QtJ4nL5+jxjPEgfnhPfEy\nkJZAQC7ic9ZUVU1VhRX3Iae8WEC7hnrTCdrjdxX3/9/PH2Qhv9paSDPHw8I4JfCO3e0V2xvFMC0M\n08y8TMxzoJ8X5lSYF7GjGGvZblpurzoar7lvHNOoZawxi2TZKDl2q6IIKVJbWQRTLOBkEVDOiF2n\nFNT65iqVEEaiJEw++glRYt12VsQIOWrG2MsHKQvkf4qRGDIxyLE5hsS5n0nKELJ4IyXPK6OKsiJ7\nS05My0JYrTk2aBQNGuFxeOdpNi1dVSHQsARZcshFSRIhFKkan08T6EQVAtaMHO7fc7h/x9if5XLS\nWoy1WKtpWstuX7Pftuw3Bht7ptMASZGjYjAK7R22crKQ5ywPDa2xCN2vKLOyb+RBWNZ8s86yuy5F\n2o85F4iiqJOjaaIgl4M5K1SJkgzIiZwiKcSVwW3J1sjJQzCC4CzKylzdOIe1HnRht9vw7PkT3r95\nwv2HzLk/MSwBjEY5K+CnY09Ohad3V3hTcCqjUuTtN99RlsB+u+Ph/feM4wVrNbe3t7x4+ZwXL55x\n+HDP5XDgcv9ADoGp73l3f2aeZmHdFMhGRlZKKU6XEWMOWGs4Hc4sWVJNZs1OLrkwD8OKcdCMw7TO\ngaUUFUKSWKyzpJBorOH6asM4S1xxmZe1uaoYxoAm4KylriqsUlBk5Df1E9Y7NpsNVZXJQRqY2muq\nxtO2Gzb720+vvdGW4+nMNEkRZb/f0bQNpchYZtManr645XI4Mk8joV9IXDDWQdLkuDJvsqJuWpKt\n0cbz45c/4Mdf/Zxf/Omv+ONffMWrly+w1rKEyJs37/j29TeAor8sNM2Wf/fv/z1//Muv+NnPf8bV\nzQ05zdzfv+V4umee55W7EvBWAHzny4lms8Faw3gc6O0BS4a8kOIor3vJGOOxGvndQiAqhVeaYgxN\n19JVNVYrlqlnmHrOD498eC8boabpsNmjYmC8DIRFOOzXd0/QceR61/HDn/yU/a5F64RrNHXToEvi\n8f0bCCNpmliGiVgKuWi891TNDuNa0jThdUFbh3IVlQ/ECpKOWOtp2paqrn/vmvoHypEjnOspkpWl\nbivarqFpW8Jqip7mmdPxiP7wwGWYPpEOvTd4p/HO0HhD6x3OaMY5r7Ycha0cpeh15g3eGciZ2RjJ\ni1txI+qoIAvDgzUdUkpGFf2pwKONLCQKJUkMJQv9EgSG9FF+nHKS43WSaN4cIofLjGsq0BaFJqay\nth0hK70CorLskOLH38GQUvUpsWGMZO7bphG79yKGHnQio5lTIqvCvEB/6jEukNJIjg8c7u+5nM6k\nFIQ/Yy3eS3lo2xiuNpamUqiyMJ8W+d2VxRvPFAPFaMyq5IpZ6vHeOSrrcdahjUOpIrPvnFfmBnKz\nv4LEytpaLQoMMlLIa9yzIIxrouzGS0rkIvcNSmmcq0CrdeHWFG3RzqKMRRuLsQ7jPJqMaVsKN7x8\n8ZK0zExDL81EJY3I3XYj5Zt05tXzJ9zsOizSXnx8d08cR4ZNx/nwKKjTqqFyhnqNjtZeSIFKCeh+\nHCYePhw+FXqMMdLyNQKtOl2kGGO04ng8o4zUzJ0XyxGl0J8un5j1yxJW+mUWSFIqLCqthqwoRZfa\ns8REiJnjeUTOPYpxyeiSBAZm1qw2mowlhUhVWbpuQ1GwzEFwzOvfadNW3F1vKcA8zfT9iPcWZ1u6\nxtJ1HQrF6XShbTy72sGLO94azcM99KcTc+rls2UrGVcW0Bjadkuz2fPkyUt++cs/4atffsVPvvox\nN9fXNFVFAaZ55sOHe759/T23N3dc72/4xS9/xU9+8kN++rM/4vnLZywp8vzFU66urzDOwKJIa1N2\njolhXrDnjGtqbI4cj2eRPixC7xwukkZSFLa7a7S1WMN6AlwIk9zFGGuw3srJc5K7isfHR4HG5YRb\nRdkpFaZpAq2p64q4vyJdwDnP1dWOnCPDeAYi2kBeAsPhhCKT5sjSR8nLW4epK6ruCm0bpl6wDVou\nmLDG09RAnTGuot1saDeb37um/kEW8uN5YurlBrluKopzaAy73Z6qrqkrz3ZjuX94z6//4beM54Hz\n6UJKidobUgjM00zrWol+rfCs7cbTNZ7KOR6OEyC889pa0hJIOWCKxyizogA0OQrfG8Q6r1OhGCkt\nycWckUuNlGQHkuWCNSZZbKyFEKQVCpIhjRSGmAn9wt5VtI2TtmoOJNLqHFXEIkbuZfWAGqWonBPB\nqi5gkJh8LoxR5vkxy+6tkMlas2RDphCWwjzPVIgA4eHt5ZMz0XovMCit2NaOprF0raXWhf505jQn\nVBRkwc31ht2dYxgn4lSIk5EmZ8kUDaVq0E2DruTSVue87sBZ2bqSk8xRKI5FSdVcfoTLnLWCmCSK\nqbUIMPLKh88rjc85dFWtsgXhu5R1LKStxVqHMRajLEYVsJbNRvH551/Qn8/cf/hAZUciGWcUt/uW\n+2NiGEYe7h/YbxqapsWohrxk+uOZeOpJRdg8VeU5PXzgw7c1+6sdh3fvGC9nlDMYb0BbQhROUM4i\n6y6rwDuVzGlInC7rqatk6Th4S107rnZXGGOYU2YZ5QGqlFmNU0Lj7GOUnoTJTCFCP+NCYQnC+Tik\nxPW+o2hDUJpaQ1M5dq1nKYlULNrXqFJoqpZt04At9M6SJ3loxCUS9EycLiTtOfYz//Dr1zzZ1dxd\nb6i8gKSGceS7Nw98+fKG29uOzX6DcYKSeDicWS4jikLtZmq3pqqcpdns+dmv/iX/41/8BV/94mfs\nrnegNV45tDLkJHyV06nndLzw7Olz/uzP/iW3dzfcPd1jjGUJgX4cVmqjZq34CR8nFYZZHhxxCZj6\niJ8nhrFwPDxyOjbM8xVGO7SSzwxYqtpRVKBqOkiJ/nxCRYexlmAMqqqp2xpnDa6uqaPkyLvtFqwX\n9lPd0KzsnCFlxpw5Dz3vHt/CxaOVxStNUAmdAj5FtHWU2uOsYjifSFksSd43UDz9OYLXmDCjlNAv\n27b51I9xdYX1it/384ep6JtM3TmBMPmGmGSBevH8OdZq5nHg8P6R3/zjt/z2t2/IqnB3d8M+ZmKO\ngCbFgioWa5zIU9XKLF/ZJFVT441FFZhGgfEM88K+6+TJisiJpzmTwoKzIj91ztFUjrwsTCmsfkQJ\nczrjmceZJYaV17H+fQpUds2jx0hYotTdrZERg1a42tO6ihhmLpeeaZg+oXxzXHevWUZLksJRNN6h\nSmGZJ6raSCNQwZwKzqyuQeM5XcQEY01BKymbLLNw17URVd62a2hrT20llplCJC2BytdSBgmBECeK\nmpnChUSmmI8ln4/z68RQBHcaUsQYoTZqJMKnkZSQymtWfsUEf0T9plJQRXagYQETZrmPKIjgQepU\nYCwYD0o8lt5W1N5jmgZl3BrJlPdblYw2cu9QuY6bJ8+4unug/f4DHw5HUYaFyOVyIOfMfr/jJz/+\nkrJM5GVijiOJQkqKqEQiUVeaptKcxpG3H97jf/M19w+PzIt8TuYQOA8zp2EiFkkwpZxorGXTtThf\n8fB4lir56poNIaBGcAXGoZedPUJ1nII0eHVOiHZ55fhkGKZIbR0FeWjEKPcT1gqoq3IWazvCNBOV\nIpDZ1DXKWLK2GO2pao2yEWMKXe3xriWUQFmE2a+AttLk4ug6Rz/NlAd4cntDLqKM05Xn1I9oa2hv\naq73LSXfsEw9H+6PTNMs+N5cmEImKfjTn3/Ff/8//Bm//NVXbLYdzlqU1hgUKYk1qW4qvvzyM66v\nWl6+eMF2t6Nparxz8rkBrLW8ePmSL3/8E/7u7/6WUh5Y5omUA0vK5DkQk0KfBqoqkrJCeUvKjpQX\nAW55R+VrrBdwVQwwHXrCNBHnmWQFiNZWDe7J3ZqTLLSuUO1bShFZvDKKjXF0u1f42pOLwrUzv71M\nLJcHhsMF7SpQmnl9n9Iy0T8+4itPKoZxygx9T73d8mz/hH4J1Aq0KcSQyVFOdSlDWmbmS8FWVkin\n/DNayJd5hqKxtqJpa4ZJcqJxWTBYSoyMp4G3393z5u2BYjS7fSvttxi42m3YbbdsNx39FDlPC4/n\nXpIUMWOtkjduXWjGZWGY5U1XCqwuwlIoAjn6KHv4HcHwn75cak1IiBFnjitXe9U7iRBhdQCisVaE\nFUZrmlpwud5qacb5Ci06XeZpZpoWQdauqRhhLovdRhVpKH6cMWst7U9rFFVT0ziLc5Y5axQLVWW4\ne3lF3/ccDme52HSOpq7YbGpurjY4o5h6sc7HEBlR3D2/YtN1WFV4//49KQcu00zWogGDFctbFDlm\nUpiZs2TFjbGfmCDWWhyFVTpJVpLoUUUuenPK0iCVwS6UjIpR8vRFyYjESgvTWId1FcZWWOtlh1zX\nVG0Hyq72dnE+6ZXhYqwBqzFmz9MXr3g4Xjj2Zy79iVISh8MZ6yrafcXd7RXnhwf6eSDlZSU5Goqz\neLVSF0tiCRE9LlwuA9M0EZPECIdR5MJziDJq09I+9Faolpt1HPGxAbrM88oJypQlEmMvDyElJ7lc\nABXIYS2K8fEEoyFLc7RyDm20dB4oWCcGKWcNtfdcUl7NO3IC8ZUhGyMJCFUYp5kQFpxrqaoNppIO\ngsp69Z4mcpzZ1I7DHBiWiLJWRgBKxnunXjDOT6oG66WAtG3FmjOOCyEE4hwpyuHaPT/80Y/58sdf\ncnt3y7LMlJxxRvy0ISVCkD7F06d3PL27ZrvbyD2UkrZwXNtn3jpevHzJL371K46HI998/TXv337H\n8fSOaVyIMTEsCXWZqZeEsZrGNuScWKaZkg0go61lnsUzawzL9NE1sJCDwugEQRGvAlORMWlViUlJ\nW08pckp3vqa5uqHqGgqatp05v3nN43RiHmaMF5mIMpoYNMMw8/bhQlV5OcklhdIOXdUoZxmmgZIt\ndeOJi5zWCyJ1n4eBNI1s9xuMM+Tyz2ghP96fGJeI9RV3d7c0rWWeZ/76r/6Ku5srNk2DxTBNiWGM\nbK83OO8kwdFe8+zumtv9hk1dYZuKQOH+8cylv5ByxlWy6PoViTtOmTEVMuJ9VDpjbSKHjHWWVnX0\n40hMUpIgy1PdKkt2shN2ztJWDXG9eB2nSFgWWWhhRe2uJQ+jqb1l21Xc7FoKmss0kb2RE4Pm0607\n/K7qLuYbja8sVWWxzq7RRI1TTrjWVtM+uaZtBBX73fseYw03txv+/N/8nL/6b79hGEe0yTSV4fZq\nw8uXd1ztO4Zh5NeHo4ynEoxz5se7hi9/8JRd1/B//+fE2/ePTCGz7axMSVLCeYe2oBapSLMsxCUR\njUEZuUDFe3QG5RTZrkJlxO9BhJKkDVtIq0UHShRJskXhtaNyhspVeOvxrqZycrljG4/yHuMcRlth\na6zQLbQRmP/apDVO8dkXn2GrhlgU3333jxwe33F/GLjaygknhgvzJBFE6wSZgNa4usYiOfa+T5CE\n/NhtthhnyTkyzz3nYWFaEw+N18C6kLuG1tfcbFqutx2H88j944nD6SSZ+yxi6GkeoRRu9h3Xuy0Y\nzTBMnI9nwjQL04aENoqubujqhqttQ9N4QjyQl4Q3FotCrwgJbR0g8uWcI2DQShPCzBQy53Hm7YcP\n7Dctz54tdK6WS+ji8G3Du3cf+PD+nkYbpsqhvKe7ajAZ7GCIU+L1uweO6YLzirlYAVz1I0+ub0lX\nmsP5xOPDBe83PH/1Q168ekm32zKGyDRO1N5SeeHOxJSZpwBA20pe/yPSgXULIeNAg/aK58+e0XU7\n/vjnP+cv/9N/5r/85X/i7//m/+L+4czhNHC69OQRlpBonUK1nhwTl8eRyEhV91ztt8RhZn93xfbu\nmqQakjZE7amskcYrGpUXlqDoQ8IG2LWF3cZQbTqUtlhXs9l07G73aGepqwOnF1v03AoQzRRcXbHd\n1cQA/Wi4BMNUCk2j2V1vefb8Oe22AR0ZHk6k2ZHL1UpkFTRxjBP94ZFw6akrRe03uMr/3jX1D7KQ\nY4SzEELk//3rX2PXC71us+HqaktTW1SQL6jU6AXeo1E8udrhnZMacJipnebzp1c09kf81d9+zePp\nwjBMOOfQVhyG19pxfXWLtgYIchk5BRl7ZJn1Zi2LfKEwLwshK5IyGO/wtaNtanaNZGNPZwjLLLV+\nLRwJ6yWt4LUmOwF2mZi4fzihV/t4CZIh9oA3hnlllhsNbVuz3W25u95ilRy5pVJs8FYR5xmVI0Zr\nqqbFFMUcEmGIPLm94umLKyiK/jIxT4Hr/Yb9Zsvd7Z7b2z2V1aRloWsaaYrGQtJyOnp8eOD4qHg8\nnShasdt2WKUpSU4f286ilSVGy3AuhFCIWbEkqd4XpbAf2eI5obOWi08hJmG0QTuNsp6cZlJOIlyG\nT7tp753sMr3FeUe1vu5uHR85V8msE0l9SJ3fgDbrAm6wbhVK7CpcZWm6P+Obf7ziu9e/4XQ8kFLC\nakuYCyl8HFFoNnVHW4seLczTyoqR8Zsz4JtMXUPtIU+KRRu8ttTe0dYVfr3X8FbhycznnuI8Vimu\ndy1d64ghkVLBasfx0rMsC9e7Flc50Iq2MniVOZ1gHGeBi1GYQuA0znRtxctNJwrDflobk0qURSRq\nLxX/wxC4Pz+ufB850RVlKNpgKpGJnA8Tl1NPKRrrKn7z9XcrPcHzeD6TgMoYLvdHvFXM88Lj5cIQ\nZLd4GCK3z27ptOVw/0jT7tC2otrc8urziheffc7Pf/EVX3zxCmcM03Bh7HvOh8D9hw/cXF/jfMVm\n2xJDlFy2UjKGSh/F2xLvUgCp4Kziatdwu+t4991T3n1/y+XxDu8qvL+gtGVZFlKOjDFzuEyUpNk0\nDVhLIBPKyBxgCIHH05nrmyt2Tcu+u5aNwVp8++77B3ztqDYtaSmMSk4OmI628TSVZ7upcE4zTCPf\nvv6Gx4cHQpjFVhUnhtPE3I/UdU3bVvzxV1/K58+I+BkWDvcXDpcLNipub69pd5bL/YU0j5S40F/k\ndSMGluHI+8tBuEC/5+cPspBnJDOdQ+TN2w9YY+i6lqQVMQZArB1lnQjN8ww60zQ1lXdQxJ5itIWY\nqI3m7mrDza5jHGUWbowwlNu6ptpXdJsNTVvz8PiB/nRimia812tEThZyEedCCpmQMkVpvNXUjaeq\nHTEHsZIsgr+MSRCY3mhq73HOUKIlLwLaiSkzhIRSmq6SC5nKafa1pd+1oBSXYUJrzXbT8er5HU9u\n9gxDz/3jgRgj3ii8LjKDzBFnDVUMJC01eescz57f8fTpnuEwQMxsm4q2q+iqmt224WrfEqcFozS1\nrySdYgq11TS1QSOkxWVZ0NpR1zU6B4rWa9lJHijOOpzeMk6BYQwsWU4UAr5C+kNrSams0gaRJwhs\nQ2tFjmLa0WmFkVmDrVark6swzmOdXUtRMtIy2mKVLOK/851K6UV9HO249QJUG5xK2BWNulxOmDjB\nc3ldNdB5B21DYxWu0nRNR1PV+BW3sCjR7gn7HOaxJy4TFGHv1K7C+xltDdu2paq8GIPCxDJNTCmD\nr3HeUXvD1a5hCZkQM5VxVN4yLQu7TsBdhUJOmjLPpHlmWRYsmlSQeXwP28YTQ6SrLUpVTEtCYz6R\nMBWiT5uSsPRtKMwRUJq6sXRNzU27x5YCS2ScxvXCPDPPEWU9xtf4Rnb1psBwGriUwBwWxiWhjF1b\nzo6mFSny8Txz9+Iz9tdPMM5ze3fHy88/4/Mffk4M8n05n0/849//hqEfaNqaX/7qF9zc3uG8BWVW\nHlIihLB2EIRTX8jiUu0n4dk7ucPyrtA1hudPbum6Lburmf31hX4cGIaBYeiZU+QyR5zNNLWMRmJW\njCkTLiOXfhQ8tXW025Y4S/ork5nmAEpR1YKxWJaMIuD8siKeLcs0MMeF+8cjr//xa4bjiXleOF8G\n5hAARVW13N55rlrPZrNjmsQNm2LkeJZ4bJCUAPM8cjk/8nj/SH8+MY4D534kRUnLfP99YOgnjqfh\n966pf5CFPH6k52uIMTLPgVQK7b5lWSbGfuTxcBK2B4qH0xljK6qmZklyC6yyRNDG88g0zSwUtk3N\ntm3ox4W68jKvrBtub2+5vb1ls+n4xhpeT4H7Y0/rHJnMsvKunfc4pxl7yGGhFIW3jq6tMEbx9s0H\n3t8/cLr0WKUZ40JMCeUNVWXZdg05RuZeMU4zUwoUIzPdYVrwlaOtLNebFtc0nwpP2hj2uy2fP39C\nXVf040Q/BZF3FYPKiX6eUTlRRY2yPb4UlGvY3+549dlztm3Ff/vr1+yco3t1h/aWHEUysOksx2mm\nFLDek6YJ5xRdV/P8yZaurvkQB7wWnKhWmsrKQkaGYZzQRtO0NTe3N1wuIzEdJe2jZRE1a6zTeCdj\nCGQULmym9f6BDMaRk8NEsYxbZ/GVoXJessh65Y0bjbbqd//9Gv9UWqHMyutex1F6Nfd4VwtsLUfm\nJXB8GFgugV1V86MvbwnLyDIHTLGErhKee1IUgyRGVKHy8jDJSsu4omjuv/vA6eHENC5o5WnaCt8v\ngtH1FmcVS1yYh4FxGJmWBG5mt224u+7YdxVzVkxLpCJjTE3MNW0lur8QEmEKNKYQnCLWjilmpiCm\n+ZQS94+KN5Vhf91yvfOMS2GaCzFJVj+ERXoK2rDfdCitKEbjfMXNbsuz2z3Pnu5hCfTHnvfrgmOt\n5fbmminJZfT+yQ2Xw5n+dGEaAx8OD8xxYXe1Y9vVVM6z37bUzhKKIuD44c9+yR/99Ge0m5pXL57R\ndi0hF968ecvxdOLdd9/zv/zP/yv9pefHP/6Sl599TrvZkZB0WCIzzwvjMKCKaPh8Xcnuehx4uH+g\nqmtcVXEuA4+P74jhzLMne+5US8Qyx4Vxnvhw/8jXv/mO+3fvCXEhqcJ2s6FuGyKCiIhLYB5nPrw/\nid9XORFwF5Fr1NsapwxpSdiVUz+OGd8shCUw9D1TGBlD5t37e779h1/TeMs0J/76168JS6FrO16+\naLhDims5JPISOJ8vfHg88eH+Pd2244sf/ZA0TgznI4eHNxw/nPlw/8jj44FSoKmlzf39t28ZxoVh\nDL93Tf2DLOTGi5DVZEW7qVhCQhm49APfvj2wzDAMM7ubLT+wisf7Ix8OF+7vj3z97VthIXtHfxkx\nEj9Bp0Ld1Tx9dsPmZsfLp7e0dQMYLv1ZYEs503nH9W7LNE3MYUQbQ9U0mLWYoYuiqzxWO4oS56PB\nYDJsfMVYV4Qm4nyhGMswTszzwvEgueV91xCMomkrtjd79rsrpinw/v0919c7Gq+ZcwBruLne0tYV\nCcX1viNTWOKM0YW2siwpEkpCJYUzhnFJTHMg6pFdVXN7s+EHP/gB1/uOOPZsW+FUJyO4VuG4GM6H\nHuscX/zwJX9yfcXr198znC9YCt9/84GYhOZWUqCuHV5rKI67Jze8evkcULz+5g2vX39PST0xRnnd\n6npFCZcVbyCERpWVtFS1oHf1SviTVBGgNEo5wdKuqGG7lri0lssuYy3KaNSKhzUIr/3jjlxpBQaU\nkYets06wvtoI6iBY5j7TNg3tJmGLYH6dkYzzUhROi94rfRyrlQwmYwrCWDeaXBLLsEDWmDVTYrTi\ner8jo1iGM31YyBnOQ2CZBG61hBmjCvtG09V7Km1Rk6JMkfkVz1EAACAASURBVKayWGtoW09IhXGc\nOI3rzgaFLoVNZXHWsCQZyTz2M3/3/SMv5oXdtsFVNXUji1vlPcsycRknTv0sXI/Gc3t3xe3tczpf\n41DMU2Q4HhmORyqr2W5qbFWR55lt09DtNlxdX/FQ19xrxeXxke1mR50TxilI8vrrnCnZcHP3jJdf\n/oqvfvFznjx9SogLSmspM8WINYpxHPjt628FQ1A3tF3HpT/x+HiPr2qM9bx/944P797Tdg3Pntyx\nv9pzOTxyuL/neDiwhIXPvvgC5zz/+Ou/42/+6m9489tveHbb8uTpNXXTMc6BrLY8vd3z8vkt371+\ny+H+wDJM8jlzhq5uWKYFZQuq0eKzHSaW6kTVdVSmBgUOAeppZSneoPWajLOWkiLzMPH95cLxfOFw\nPguzfZK/+8+/+iPauqF2Hmeg8prD4ZHj8YTKmWFaeDgN1E5jyLx7+4bD/YmhH5mXheOpZ5xEnbht\nauYI83kmhoB3juubf0bOTuclv10ykpG04nZc5sD5MuJX4URVGW72DSyR03lgHCfevr2nfnWNN4p5\niVSdRA9jSKAzvjYYb4khcI5iPhdGtkgY7Aq72mw2nE+BshpcdBawUEkZp6HyBmNrurbFGUNJcsEk\nlnJxi1aVWxfB5RO+VaLUMmcwWkzyWgl/w65j3ZgLTb2q4xrHaQp4J7vQRILV5TiFQCiyU7RWRghL\nKkwpsVGGbrvhs8+fksaZh4eZFfS6CojNmpuFoV/oNpa2dTy761j6hiMLyzjz3fdHzv1EpOB9Q6NF\npRZjodt0fPbZU5RyHI4D4/yaYb78bq5dCwc6p4xFr6MPTVESMTPrgiwOTPPptdPaYIwTtukaXxTE\nqUXhhEVjVs7wP+He5KLQa9FL89GVaURevY5ZlJZYn9aGrmuo2i2NUTg9fCohCYJBYQSWQ15TNqlk\njBGmeS4KpWV8ZpDKuTNaML5GvKmbtuH+wXDuB/p+YokSGzTaUK2v4xIyh2MPviJmKRNV1lE5S0rl\nEw5YoWUstKaRKmexKdM7w7imsY6D3AkZo7nyDq0ld26Qz4f3ljoVklLsNi1Prq/54rPn1F4WsHcf\n3vJ4GugPZ3atw65e0MuUuTOKrduwrQ1p3zCPDf3hkcZ7aquxlURGVZZCjK87nr/4gh///Bd89uoV\nddswTRNWW1Y2AykGoNC2HT/7+U/p2pbPP39FXdcrzTEy9DMP9wcOhyPeO8EUTAsPj0e+/c1rjg8P\nbG/3LMtCiIF/+Nu/5c133/F4/4jOC5WrsUBrK3CWtrbsNhWtNpxvboip4IgypqssYVpEqVcQu1CM\nnE8nfOOp6gpjPHq9w0EblPO03ZamaYVJ1PcM84nTw4HD+UQ/Coe8rVs2uw3Pnl9jjSUugeF0oD9P\nnC8jH+4PqJxZYuISMqWtmGJmfrwwDRMxiGR8miNKOdquXSv5ciJtfMPN7RU3N1e/d039gyzk3hph\nQRRFzhpjCiGJIUWSI4GUZqxSOJXpKkVXW+Zl5ng4kV/sME4TgmBOl5QY+plYIiFJaeL9uwemkMha\nsW87yAW3xgaV0nRdxxhm4jKvlhRkPp8SxSmJvHnNpmsEhjWJQT2ELCcIW3BWFvzFm9XSs5LmgLAk\n4jwynhemeaYfe+bB4RpHUbBtHQbNTObhOJKbBus9IY2sGUiWUEAXfKWkOFA5ijZkDa6u6TYd3abm\n/nTmdLzQz2J8L6rQbjQ5axSKtCScX5jGM6eHDMsZlQameaAfRh6PM2Mq3N227NYUSIgBpTPeZWIK\npJKYUqa/9NRtxWYnMKUCpBJx2kjkykrK5yOTXWn9qcBj9YoI0Csu2EjcU5WCcXLELdmQyoIs3rKQ\nFyWiD7Ne8Mn+fJ2ZI3KN/JFzrjRaZarK8uqza0zQqEURl0wASgxYrci6QCjkIP+XgiAMZBGXk0VK\nWXDHtcFWHSkpUlCw7uRL0VztO968u+fb797ivCMrhTeWrq1QzjCXwt/++lHay5uGpnJU1hJj4thP\n1I37GPLEeU+dExGFp2BCpHWGnBDRs1XMKTOtaZ8SF6YQ6VMGC0pburrCb/fsu46r7oqn11c0m45+\nWvjm/Vsex8DpspCXwHQZUQrOc6bWhdutI7aGSmuaRrSBxhiaxtHta/pesNAhR7bXt3z+wy/5xVe/\nRFn5vLrWrfA4+d7N00RTN/zij/+Yf/Enf8puv2W77bhcLitrX3O8/4BGc3Nzw9NnT/Hec7kMPD6c\n+P71Wy6nA9fPnjBNE8fjI7/++7+jPx+JMfD62w9M/cCLp3d88eozWEA5+Z7cbTo+e/qMu89e0D/c\nM41nYl4Q9arcP3z7/QOH+wcezhe6XUNdN9jKkkaRd0PCmYp2u+fm5gbnHef7e+ZhIsZlVe0pclF8\n8fI5z58/wbeaw+OZ4/nM+7fvmKaFcYr0U2YeRkIpZGeZz4WwRKZhZN/WdG2NqzxeW6q6YrvpOJ4O\nKApN3XB1c8erzz/j6ctnv3dN/cMUggKkUAgBgdZosc5Mc+JwGlkmKR97I6jMZX3qOaMZloVpCIQu\nYH2kJI3wkQzESJgClz5K0QZxZVbeYnQhLxNTjqu70eC1Yo6ZcRQSnpjfCyElWjTGjlyOD2hnWGLm\nOCxykWU0lXcsc6G2FrffsKkdVkOcIyqvJnZlBIYfE+MYePPhwr6r2Daeh3TGGBEAh6IoRhgiaTEs\noTAvkWUJgoFN4HyFs46rrqbdb/nRj77ks5cvWIaF0+OFSz+IGqzI3LRKmtubHaUkXr8+EHMgzYF0\nXBiHnnGeGFLCNy27YvEh0rXQtoq2c6Qw8ub19/yf90feP5w59iOaxH7fsbva0XYtfX8mZXmdcRbl\nHdZbqjWSaJxBO4M1QrMTBvsaF1QrKjiDSops7Dr7zujiPhEanavX3bbCWCUI1Y+tTr3KnE2Fq9z/\nx9yb9Wh2nVeaz57O+I0xZiYzk4NEm5ZdVa5CFQr91xt9VUA30K625LZsSbYlikySOcT8TWfaU1+8\nJ6lCQ/d0AEkQRGREMCK+9+y93rXWgyk03ieyjthSovkpZSlWiojLA434IoRer5Umqww6YXQiKSsV\nuzpjcMIjzVp65gGbMxnBDCqrKcoFTVlwtV2xH3oOx57DoWc89Xhhu6GNkqZGJTuIMYIOAjtxSpoy\ny9pSNgvqWFF1PcddxzgkUtSsl7UUphUOYzVWZfb7iWZZkHVm8JFSO9aLls1mjbIij6Xkef/2OwJw\n6CdOxx2FU6zWLU1hGPuB3aHn8djzcOz5+rt3rNcLms0K7Uq8MkLYSYruwxPGNZTtiuVmy8/+8he8\nfP0p2uo/BePMvMeYYRZXF1fEbRJZwvzpdmatFWixD6zXC1brVrr7F/VcfdFhqwblSpSxVFXF22+/\n5e2bP5K6Ay5JgMa5EgIMp4H9aS8NnMaiy4a7Hz5Q1xW6NPgp4Ufpp8kpCH0oZ1yRaJY1pww3H06M\nfWJz3mNthTHlvKw8Z7VZUzQlel7am8Jx9uKCcKuJhxOl1Rg9cti95/D2wOHg6ftA0gXbbcPzuqCo\nS/7w3Q0PjyfCJJXW2WlqpxmHgf0pUOeaq4sFz55dcnl9wTgIE6GqarbXzzi7fsZqc/ZnZ+pPMsiH\nLuBRJKWxrhAbmNa0aJ5dX3Cx3cpFXcsVZXd/h0+yvNA5o2MgTR5TIEzLIDDjECLTGBgGL1CDwlKU\nDkUkeE+voB97CmcpCsdw6tntjhxOHXVRYhBZpKgd0pkNYzcSVaYbPfePJ6YYcM4IfVtVqLqmLK1o\n7sNI1weiUtiyoG0q1AwRPp6kn6XrPTprBi9kdx8TUf0pUarJjH3FsSqxpwEDmCxYuqoqWS6XbC+v\nOJ/7KvpjTwge5zR24Ui6ZvAi8eQUSCnIyQHDOAy8O3QUVqGckW7zvkNp9WO1afSB07En+EgXMkN/\n4Pb+iaIqubregtLUTYMxht3jRPBB0GtGy4LSSE+NcbL4dIXB6BKlpAxYGyOSi9GYrOYOHQErY6Qh\nJCczD3Lzv4AnZoeLczg7I/2MFmZn6Zh8YH8Y6PqBolK0jZzMBZYMKUDOmowmzMAMhZZOdJ1+TFpq\nLf0lSlQXQKOTJauIyomsEzC7ZbQshk1dUlrLMrV0G0kRH/Y9o/eEFORuoeXGMEWBZqcQxNWRxOET\nSbjSUpkCjcAtxqBZZMN6s2C5qGnKgtF7+lNHd+qoGqkkNlbTlCWLsmRZluBKpHo40vVyau8Gj8mw\naitiaYl+ousUh5AZs+a477l/OlDd7Tm/6Li4uuTq6oqyaogpc3zaUy43XDz/hC/+4i/47Iufs92e\n/2gxhdkxiIS/fPBY4yhLKfL6OO1jyhgTyVmcU3VdYoylKEu0VjiraZqasy08/+QZtzrw7rs3fPP7\nf+Hdd9+QwkAaB0zOQu7KmRgm/Nj/2HUfQ+L97T2QUIVhtdlgjUh0RltSlqxAGAPOWFbrDdNBltT7\n3ZHl1mFKI3UQKpOTJ/iR7BMhjCQVSVoTkwTrDIbHpycUkaHrGQex5yqnOXYjp6HDnqRmu13U+D4S\nw4R2lrZpOB4kuLhcNHzy4pLnLy7Znm8Jk8a4knqxZHv9nMX2TKp5/8zbTzLID0ePLi22kuKlOJ+S\nL1cL/vZvv+Qvv/wcjSVRsD/0/PD1t/j4j4zjgXWhqZVHBU9SFZMXuxRZ6OSjly6TReFE16wc/Thx\n6qUedOhHQiG8zPv7J27vdxz6gVVd4ZTYCJfLhrIsMdaRQuLY9Twcjtw+HqibgrZ2WKUom4qmqVmt\nG95894GnhxP7pyOutGycYbkoKRVYnTj1nZRlpcyhnyhSQTdOHE8jl1dn1IWjLS1tZVBZYv5DP6Fj\npC4tpjQ0TclisZAh7gri6GXhazXrdU32iXrh6KbAaT9yPO1JMVKXhmVrmSbPh7sdz643LFctyjnu\nHk74EEQKyYb+ONGdnmbXjyzUzrRme7bk/HLDYT+SsmKaJqZBHBXOSOcEH12I6k+UJFlCyuI4zoVk\nGoudS4qMmd0nTiSnnOTBjJFrMolZP7YYK13ZzpZghf5uSoepLLs3T3z/x/d0/YlnL5Y0xVI0EjFS\nQ5JBnrCE4GdupQzrjwtUssLKoYuUM17J4JZZH0kEEc5UBdnKAyJ6cVdF6Ui5WLVcn63oJsMYJmKe\nMFq+96djz+PDgaHr8ONIjpEpgM+JKXmqWFIWDoehbRq0qVi0kfPtisWypigtj4878UvPlqDCWarK\nsm1qloXDRumdydqQbUYphcuJqgiUxqB1wofAh9s7hpxJrqAuGtAHhtOJw5goDyPXZ4nPP7nGNQsm\nr9i1Z1Tbcz79+Zf89//tv7NariiKYq5cBdl0i/Y8TaOE0rSi1POOYy5QyynJyThLWtkWlpwM05hJ\n2VOUltWyFU1aeZI/8D/+j/+d3//L7zjuH7g8W1DogkI7nA0z3NnANFA0C5RzeKt5PB3ZP+0JMfLl\nV59zframrAqcc/gQSceeh/d7yrLg4mrBuGjp9gf6rqfdzJxTaxhOB1SOhLEkBk/fnRingaf9kdPx\nxNB1jGge4oDKkaYoiUlK9GIYeXvzwMPTgb6f+MUvvmRzdsZoNaf9jqIoWJ+dsWgjhTFsljWfvLxg\nvV1QFAU6K6p2weL8nMV6K+2HpfuzM/Wn8ZHnSJikb1e7EaXFJH+xqhh3D7z5fcAWC5QRHflq23K5\nXXN6WtAfJ6JWmEKzXBY8HUbGUX6JlJZgSKkMq7WUyu/3PT5E6sagl45n63Pxce7FjL8fBsYQMKOn\ncYZKO8rKsli1lFXJ1I90YUJbIwEVZ8goTn6CwiFlbIb1ZkWYgmDbUuTU9zw9Pc4SSZAraJYTSQye\n0zSRlKJuS9bbBZnEzc092ShyzLR1wXa1YBpGsTQ+9RAdy2Xm7OKcZbtAxQTqRAK6KbK7PZKt2M6y\nLUnThEFxtloxdAOHo2eKmqwrYrb4zlNqzfl2yWK94nyzhZwZ+kF2ECGwP+1YtRWbZUFTaHZEirKg\nLErBzhUVdbsQRiYSyVfGoJ3YQ7OSpkOtMk5bnLG4OVBjnZWQljFSmq8UORXEILo4FpwqMLNrwDo3\nU9At2mpMZdGF4jR0fPvmB/7tt99wftmSYgkpoHKaqUTIlTshFa4aIb/DDLcQMpROkFUkpSQBmTyL\n5R9P9Un00GzCvKSVxZ7RcmvAZOm4TxkdPG5uzHPOsqhK1m3DqmnojieOxxO744E0RcZhZLfveDpN\nlJVj3dZMMVJXJa9fXLA5X4OBh+MeVZbUmxVmUdM2DYu6ZlFWlDnQVI6qrem8lLxpMsoZlm3NZmV4\neJwYhp5pmDAJrjdLXj6raZoNp8OB434nEOMssubTwx3XZc1qsSSj+OKrL/nsy69YLVZYY/mYSVLI\nASUGLxUCKVNVFcZYrLUSt49y4IoxkpKXm5hxuKIkRS39KJF5uQ1aR77/5mv+37/7v/n6n/+J2B9Y\nl5qqFGcZKZCmEYyl7+Hu4cBVVVMaRQxR3scn+qcjt9+9RYeB68stVa0heuLUk3KgOw2oDwOrzYqr\nTU2xbbGNo20tzaKURsoQGHae3eMdMSdpbHx/SxoH6hkPmedMSs7gMdwfBv747ffSx5OgLEqSrqma\nNctty6dffM5ytWS1WdN3nvFwIvYnXNGQcUxB4yPCIC4qTFnM9uh/R4NcG1nC8bF2Uyt0jDw97HFK\nMQ2RlPfELBSVVVVjk+eiLfBFS9NaaptwyRPGkaEPc/RaujyqwlEUBSEE5HfDzn80ZV0TJo/Ww+ww\nUJTW8iMIQUFIcqpXWlPUJdVUUQ8T3ThSzGT5MU4zMScwDANaZ5brllfqBdPYYUiU1nDq5kIkpagL\nK7KGznQTYCx1U7NaLbDOzVxMuV5WhaOt5RQwerG0aWOom4rNpkVNkf3Tnsf7J7TNWFtiioaI2L7K\npqY/KdIk7XrTFEBpFssWZQz94Dkej6AS6+WS58+vub6+ZuxH3r+/ZRh6jseBYfJsVy05Zk6HAe+D\nlAdlKcYy2kiysarFNmgMyhm0FXlEqbk7XJu54MxijZ3TmFJShTJoI6dHqRk2ZESq+fHvaQFqFKXF\nlQbjFN3Y83Cz580f3/Ptv33P0B1ZLTcsaovNiRw8WWCqgBCYUgLpgpmLyhTzIAdiwue5njjNFCb0\n3K+t53pW6TMhB+lJRxw3zB9Hzx9Lk8Qdo2f5x2rUXKxWOkNVFdSrhnH0HA8dY4ZDd2T0iYA4UNar\nJc+eX7DYLMhGYZcVy5X0liur0FnhMBRao6cRrRI+RoZxmgHdimGS9HHrWul+146qkai8tvJ6OFtf\ncjgteHqqOe6PhBlSfn+/o1mes6lXlIsNl9fPuLoSMDdqDjLlDFmky2EYiSngrKUua4wRRqtAn0VK\nCiGIWyd/tAUolFVYNCkbToc9D/e3fPfmDb/6u7/jn371D9x+uGFlM40taVQkJEhZo42S5WEMqHFk\nHHqyNRyDmWWtREiJ42mk3nc0ZSHJ5ymwO3Y8HQ6oFNGUXFxs2G5WVGXFOPUYEipNUn89jvTdyOPD\nLcPk6QbP09MT2XuiDwzjQIhBACra4eolY8g4W/H8+QXLzYaziwu+/OwVV5cXNG3LerumXS4oq5Kh\nHzntD/T7vVhTC4u2BUpZ6UhfLGSvEALDR5D5/+/tp7EfWovSone2bYkl4/uR7765IaeCTM1p/0Q3\njqScWZSOOvac1Zlm25KUAFn94cRp37EfAibDlBXKFJTlfDqcB7FRBdUcpVbaYgvReZu6nheciRQj\n2hnyHEnuu2FmZ1bUZUVbjRwHS/ERtZSBGAn9SBhGtFUsFi2fvv6Ubv/E1J/w00gIiiPS47KqHevW\n0TSWk7ckU+KKiqKpsDOQYAhJMFw64zSCqdMZXVja1YL1dklVKu7vdrz74R13j0+cX2xolw2bc8XQ\nH1AqsVxWWKU4HjLHwxMpQ1UXVIuGrOB06njYHVjVlkVbcbVd8+LZJU+7E3d3B/rTgdPB4wGUZRgi\nfpoIqB95nSElnJITeNnUWCv/D1mLFi4DXBoMP8os1ph52KsfAREKKyVYSskJXVmUcrOvfB7ktsBZ\nQ1FqTAkpB24/3PCbX3/NP/3ya7TKvHq55eWLNeerigLEGhnEHplTnrm9CpRUEyeVkKYUgCQlRVGq\ndrXKM5xZSQOmllO7SkCcUBGMUbIbgPkgoMjyZJCk55xENcqg55O906CqgrIq2DhLP3n2xw7XFNy+\nv2UcRoqiZNU2nJ2vWZ8tqZoSVxWcPTvHj146SArL2I2MvdDZ8QX9Seqej/0gtkatOQ0jiYw2Gh81\nrmhp25Kq0sQgH+tss6SoLOiMjwHtIPjIw+5AsztSbDKbq2uW6zPquv6RYJOYDz1B2jf7fkLrLCR7\nZ39EGcYY8N4zjbJT0WZeKIeMcQKl1lq07vc3P/CPv/wH/s//8X/x/Td/5PBwj0kZC1Qp0cRAlxJe\nFbiyYQyztTcHutOBIXp22TH4iawVti7RZU1IlsfdwP5J9lyJzN3jnsppVk1JVdY0iyVlWRN20qOU\nUsQqzbEbeNwdeHq852F3ZH8ciCkydCP7/YnbxyemANo6VsuGq6uCzXLFX3z+Ga+++IJPPvuMZ69e\nsVwtWbQNbVVSNY00Mc5hqHEc8cOAHyfZGdQNZVlJDxNZKquHEd/3f3am/iSD3NqENYa6NmzWDdum\nIgye3X6iWdS0m3Zm4MkVqlAZP0x0fkDFSMiGISiOo5w4UgQSTDFjy4yzUqFalCVX6xVV1bBetqyX\ntSwuppHCwmG4YvewEzp1ylRNRd1UwjIMQldJKdN3HTF4Nm1N3090/YQfI7vpxF6diAmqpmKzOedv\n/8PPuLv5wP3dHfePj3zaFPSD53CUp+7+KNzMSRdyYotyDa7qgqYqCU9HQj8wTQNddySnRFVWONey\nOb+gWSx4/8MH3n77nvubB1yhmcYDWY1EjOwIvGfsPc+ur1i2S74bpajKOE1ZWum3UFA7y7JtKJ1h\nmI487R4ISbO9WlNUhvPJk01mu2lwWRPHxGGasEUBaIbxHDeTS1wpIGqNVHBqCgwOZ8xMBhKE2iyg\nzzbQ+cSuNOTZ/aDFUoiSpaNWGlMYitrhKoexMA49v/317/n1L/+Ff/vdN8Q48NUvPuWv/9NrLs5W\nossGL1ALFBEt3TmzY0VH9aPNUGtZvKU0u120nQezpABleEtXSQgJHyXRKTNcoQoHyFCKM2BDGJJg\njBWghIEUkb+f0gwNUegpU+LYNAvqa835oiVNgcJamramXVa0jUXrTKGgKSyjNoQoDyRB/lXkZiJG\nReJJdhjJi2feGNp6gbPiz26aWkhLGmIUIL1RmRBGrIFFXRKaErW0+JD48MGDtizXa/7Lf/tPnF+c\nS04hBsiZlIUadTqeUEo6erSRvUeM0osffMAHAUx7H4gxURVyQwOFLRT96cTD/S3ffPNHvv36D7z7\n/gc2y5bVL36ByhHiCMMJhiPTdKSqa+pS6EPqeMQPA9MwQjbUS4NbVKzrGlM1fPbqJV989QVF4dg9\nPOK9QodIsoZyP1A5Q9ssKIsSP/QM+z0aLz5wn1Cu5O5px7vbW+4+3PO4O3EaJpSBYfCEkCnqNc+2\nZzy7vuaTV5/QtA2Vc9Qq8/rLn3P+/Bmubqiqiqr4EwLPD4GcE1ZZbFlDUZITKGMwzopGkCIksFVB\nTIHw56tWfppBXtcl1jjqqqKqSpq6AldydrZmsWypmlpshydFHHt0lG6RiGKKCq3lRGMWlmIY2R96\n7h87TkNEe49Wibop2dSOs03DarmWYI+17HcT0+RRGl5/+pKn5ZKHD7ec9geqwkgzYM6yiOpHhn6g\nHwZ88DhnpZlskl9I0X7lZGm1MDN9v+dxt+Pm8YnHpz2VsYKAiwlX1VSFwlWW3TGipglTSd/HNE2k\nEBiOR3x/IowDwzARs5TbX1894+r6iqquufnhHXf3j3R9x1m1EEuVh2gKyqqWeswYKUthC66XS0Y/\noaymaSr2+wPGGNZrWerGrDh1I/nuEVuUOKspK0dZO6zTFIVGxYzOUCoDOpNyoKlKtLLzEjdKrF3L\nlf9jhF6ISPNA1lr0cyMSg57ZqGj14w1KKY02BdpI02FROGxp0aUiKs/9/RPff/uWX/3P3/Lm6/cM\no+eLn7/gi5+/5Nnzc2nXC4GQIj5DzIo0u1UyaZZX8gzbVrIAnZd0Uv4lwSaIxDzzRM1HrBOzNq7n\nZKm4XlKS3UdKaWaYyumdJDxTVJrh1ZkpCKdVFrhyUi6MwTYVpTPkKKzWqqxxzpFChpmJmqbANIwS\nPFKy/K2qmrrZ0A+BaZiwpaXOlfjqtZVGycpKn01ZYJw4gGIQLqzKmWGYhNg+jKAt2jmsgapd0I+e\nrh9YLhfYws1Zn8xxv6PrOybvKcpKXGBDT1VXaO3kewzz92cOShmLKzSuMIQQ6E89t29ueLy/Y/fw\nwGH3RJomztYrXr18RmELWTyHQTIZ+x33797LUt05VFFjXTH3xkhORCmNSYHGWZqq4tnV6scmz8Eq\nqqqgNNJkWFmNU5nNoqLvOsZDJM8M1GEMdENgyIYPjzs+3D3w8LBnHANZQVVXnF9dsN5uubi45Ori\ngmfXV7x4+QI780HzNHB+fUWzWpKNlaSzlgBYSvI7QcqE7LFzcZzSZjYO5B/zDCkLvEVeI+bPztSf\nJhDkCsxMe8kofMwYFJvtSoa8tdhlK3WSYZL6VlfK1dVEqmpJvWgoNjXheOTtu3s+3D3RD17QazmB\nyWxpWVaa7aKQDfQYOB5Gun7AuMyLT6+pq4Y4BYbTiZzTDEOQj5G853A4cfITUSFx+gTaWAnppIwx\nmrIpWNUVyo988/s/8Jtv3/PhfoefJhpXQoYpZK4uz9hsWurC8P54R/KetnCYnBmOPV034LsT49hL\nMVfMJF3gaseLFy+4uDgnEbi73bE7HKUSVksjHTGSSbSbFU1ZoSZpeUwpsFxUcBKaeFU1HI8drrAU\nRQFZE5Li1EX64UDTTDSNaPNF4agLi55lh5jkc4yjekG2TwAAIABJREFUXAFTVHML3+z8KDTaCgle\nFRnMRwufeIw/BobMx0GO4SPkWn2M6CuHcRWuKCmKgqKwRAL91HE6Hfj9v/6RX//yd/z+Nz+gtePl\nq2f8l//2H3n9+pzFooTg8SniU2bKsqCMaZY8+GiBk/QsCumqTnnWy/9Uo5qyJaYkHvOZ94iKaJNQ\nMQveT+sZqp0ERJ2lCxstCc4chcmaSNLJnuebQJTHijLyofWczjcYaeGMQnYKUyJ46baWF3TmeDji\nY0bZgqpdsFqtOL+4Zn880R0PuMbJdUBZrCmxSlOUGldpwFKULaYoGYYTaehgmhinyOEoxHZTOPHS\nG0W9XNINE0/7A9M0USXpBQLY7/c8PDwwTJ7Xn34qeLv9npQjdV1TFGIrFNh4krSkrMU4nXbs93tu\nP9zyu9/+ht3DIypFrs7OeH55wWLZsLlYYVCkEIlxRJE5HU58szqXjvkUqOuGtq2Z/IQtNKGfCNNE\nyJ6mcCybgtXScdg9CDx88JSlpmwbVts1Z0sne5RpYvfwQBonTBL+bDcG9kNgP2X2/UQ3Arahraw4\n1VYrPv/553z+s8958clz1ouW1WrJZrtBaYv3gdNBsiLaGLAGHf2s47k5wyC3034YSMnMsBDxcOYY\nUXpeoMZM8kF6aOy/o2Xnzf0O4wrqShwZgzoSQ2I/JHTZYE1FCp7u6IkT1EWNKi1VBWfrkmJRoytH\n1orgYXI9QVe0CwE5nK0amrqk0ob+cOCoNLaoiGis1ZSuJMbA7vaW01FOvyFmOu/pYubifElZlMSQ\nGPeJ0UuqMznF2cUFdVtTqsRw6JjGgaQDy7kf/M2be96+feI4TCyakn3vSSGgyEQ/UNqWs7OW1ziU\n1qxqS/Qj97ePdA8PDOPEafJ0PmBCwpRQbBLtdiEpvPsDD/dPnPoeYxP7Do5ZY3RB3SrOzi1lXRJS\nYJhGxnHgOPScphHjFc4mVq2lnyoOh4n1doNWmnGcKErNMEbi2KN0oCoNZVWgiRwmz27f8e7mid1h\nzziNQv22TlBi55cUrpKyJkTaSilBLtBOM++9fjydy1FdhmZOgFbkpMnaSRijrikXFT6MvH97wx/+\n9d9488c3vPnjW27fPVI1DV/94nP+83/9az7/4gVNaSF4Wahlub1JcjiRoidFsQ7KKVE4opBR6ePC\n0sw6eJplA4FXzDtQ+UdM4iU3WiSGkGZZBlRitloK7CKYQIxzy2wSf7PSUBgkfISW+garxOKYMwRF\nnhJh8niTSNbKAAgRH2AcRXcnZqZhoLCCNby4PMdVLYdDR3bvOD6+oy4LztYtdbNEGyUJ6D6wqCq2\nV1e4uuXD2++5e/8W5xTb5YptNgJiIApo23nq9YbN+RnjNBGDx1mDsrBcfzyhK1brFTlr3JSIAfzk\n5YZqhQZljADabm5u+MPXv+dXv/ol7354S388saprnl1ecP38ivOLFWeXZyzWK1LOTFMgqYiralQM\ntKrg5ReO7nBgGjrQE0VpSTHR1CUOwzRNPB2fYMyonNg/nfjh9sA4TtSl5vrlNcbC4+0993d3hLHD\n5pnClCGlhLOWx37idj+wOr/ib/7yFc8+eUGzWFKXFXVZUtcVm+2a1XopXU36TzdMwTZCWc8gbBQx\nMdOwMt6Pc07GoKyiqEpCCOyPR1ACEimMsF0VgDbkhAThij8/sn+SQV65mm7ydMMRnRQ2BazKLFYb\nlo2lqRRhsphlC1RSSN97uXYWioCGMFt/taVZLvjk5TVhCmgyhVPUdc2iKVk2huB7QvJgLCpnrIoY\nlcCPpEk2zyFlcbOoiMktRkvaUrsKPQZyCCjvOVvVbM83+NMR353wURYVKglh4nAcsGXB5aJlu6x5\ne3NPN42YFEnDwNidOPbiUS0LTWkT948n+lNHDkG6ip0jDhP9ccS4kmqxoG5r/DBx2h0oSkdLBSqS\nArOeDF0/cjgcIURC39FPPVMI+JSxZUNVOFypGYKXdNrFis1mg588T94LdFcrVEzkrBgmTzocsCni\nJ/HsloWlKitZVhvDFCIxD1TzKVIpJTH8OXmpsiEnLTclZpsfs29bfyzFshhnsa7EupaybaXKwCZu\n3j3xL7/5hn/8f/6Z92/f0Z96iqLgL7/6jF/8zee8/vSaxaJCz9XGcgKHGKXDPscoN62Z+pOIhBlu\nQc6o9CdKlLTRy/um2ZUTM+SspCc7Co4vK35c+JFlkSr8po9YPCngymhQ0uOikBexznKa/yg7fYzn\nG+VIKqJVRGGkeyN6NBnj5IWcU5I+mgxGiXTzMQzTlJa6FOvmzc0Ti8qxnBdmKE3yE2kaOTzckWPm\n6tVrVqstKWd2uweqpqVwJafdDj/0Qqki07QNy9USYy39qWPse7SRHIGZXWDGGFLKwi1NHj8JCtGH\nA4+Pj7z/8IHHh0e++eZb/vVf/4Vvvv6aHALbxYKr1YK2qWgqgYOnmY2LshRFiSsKlFaM3YmYEov1\nEnJmHCc+fLhBJSidIRUaVWihBOrMYr0kxUzKlqJscGXDsnF4D6fuSLc/cXf7QO00V9uGuigIUWy8\npyni6hUvt895/bMv+OzzT3n24jlVJfKsM3Nrp3PCPZiZwfmjRDeHwArnBEqepI47+AAkTLKURQk5\nESZxlMUYRB4qK5TSpBjpuxPGOWzToK2dWb/pz87Un2SQn69XdDcP7HY9lS4o4kTtFBfXjrY21JWG\n0qF0ibHS9308jpyOHceum1mDhsJqQgiUheX6ekPqZ2dFkHrOorQ0teHhaSBk5AQRBBggsWlwZg6u\nGI3SiZKEy0Fo8U3LhWkpzR3D/gnjBxodqU3k2J04nqQBrZ8mejugUPQh8fzlM843K1pn2B0OTN0J\nqyBNI/vdkV5lXNlicUwh83i/pztNFKU01q1Sptj3vE9HmvWGzdk5lXM8Puw47Q9sNkvCVDJNI8PQ\ngzVkpRj8yNPDI4PZMw4DQ/Aoa6mXKxbrMxZNiTWJft9RFpar8w2Fs+wfd5AjhRVCEUkRombwkcPu\ngJ0XcGXhOD9b0i4axinOp4iOkLJIKLM+7FyBnTVusiJHNdvFtAAlFJLinOtnnatnlFuNqxfYqiGR\nOHQ7vv3De377j9/wu3/6hhhHNtsFn/7sE/72v/4Vrz/9hOWihijyRkqzphgF0xX9RI5RXlzzci7m\nSFTyoiNK/sCaOcykMiHJ++ScCVlemGQ1g6Hzjx9LMevhaQYhACErUhTHCzmiEI96yrOUkuX9lRGd\nGi06shKbD9p8jPPPJPeUoBBALyiIM/BaaTkZkxlOHY83N6w3K1T0+Cny8HCkd5rNcoUtClxhycHj\n+4HH+yfubh+xzrG+vOTs/Ir9scMUFa50hKeA96MElnKmaSpWqyW2cHTHE9MwIjKuVOQWuWTyI9M4\ncdjt6fuTeMlz5ng48ObNt/zud7/jzZsf+O677/jw/j2F1tJNcnnGs+eXbLZLCmchJU6HA113pKgW\nbM9L6rqUBPSowQg311YlPsO7DwcKDYvKEKPD1yU5Bfw0UC4XEhSKgbPzmqoqaeuSb797z9PjjvF4\nYuoCm7MVZ+sLrFYMPhN0YOpHLq8uePXZZ3zx1c+4vLygbduP9iahJGj1IxfBqo8e8ixovfkXwhoJ\nwckAhsnLXkKjoJDb4th1dF0vUfymoaoaFDB1J06PD5R1zbKSIJz3mTBOf3am/iSDvCzF+tSdesx2\nQ8Ly1Hl2f3jH4xB48SJxfX6BVhLDXSxqjrsDu6cd7x8ObNcr2soxhsDD7Y6n/ZHjMLJsWhZty2q5\nput77m73PD5EhlEArk0dqVxB4TTGASbTLmteWketE9MxovNAVTiev3jF88++ZLFa8u2vf8vXv/41\nt+++4f7NGx7ev+f+aWA/TgwhQobRR4wxFGXJp68uWS8XPNzsSBGssyxrAbUeBw8PA6tViQkKT6Qb\nMtpWbDYLnj+/YooRVx7w0XFxdcUn15foHDnuDxwPHdfPzwmx5GmfuHm4JysonBXf+djzNAVuHp6w\nlXRFPLu8ZLNqZFmbI6+351RlSekUjw87Hp8O3N89oPE0tewTnKtoXEVSmm48kWJCO0VpDNlCJlM4\nWLUrrC1JRUNZFFgrUWSlP6KUJcChmEEQH5edhRGd3glooVq0lMslxULQeLvHA7ffPfL1b97y/vsH\n0JqXn77kq7/+nL/5j1/y8sU1TdmANwJOTnF2lUR8ioQYCEmsaSklCQApSYhqowjMC+uYSEbPJ1zm\nbhZ5UcYQ5/2m1NnOBkMgzbsB0S9FM5LnQlTyeex8YlYpyvBWUs1lZr6n1qDNXL5FImb5N6MykYBx\nzNUHjuwFYB1m3dSajM6BbBP9ruPD+J7H4oG73Z4cIvVyIXLYOFEdR5pGDi6HKdGPEaMGdve3hBSw\nTct2c0ZZFwx9x9t3N6Rxkgd3U3Nxecnl1SXBT2QNSSn608hmu8Y6x/F4YJwmvvv2O/7h7/+Bb998\nw+5phw8i7e12Ox4fHun7gRwDpTO8enHJ559+wsuXz9icL1mvapZlgTGRKSemmOl6iO9GDrcG4zS2\nqnFFhS6Ee3kZ4YuQefv1tzw9HYAsNk+ViWOi2kraeDr2xLFnCj3aFzB2FHHEucTl62uqqmTwkWqu\nJm2XNZ/+xZdcXF9zdnHJarMWQImfcMpKpxOa4EU+sVZJpanghchBbiopG7wXEElSiWkcUCScExoa\nIGnfU0d3OFHXNc26pDCGKXr6qWd/2FOOg4S6yPiQGPt/R4M8YGkWa65SwWa1kjDBOKEcTD7Q9xNl\nZWkqQ1Vq2sYSz2uib+jGAFmx2/d0u0fe3z6xO/YMIXJ5AbapWbUVhTH0fce+PzH1AWelKKk0GoVo\nT8M4oZAin+3ZmlB4wnjEY2jqhsvLM87O1hzfrXm3bIh3JaqQDmhXKayPVCpSWkXyEn0egRgmjI4s\nmoIX11vuHuDUneh9oioV67LAKnEL+MljnGO5bNmebfAZkrK0izVXz2pevHzO8+sLVJj7IeLE/vDE\nsRvYHY74KASiQKJnYsgTSikWmxWX1xdcXV1yeXHOsilxhSUoJXWaw8Dd45HH+0cODw/E4QAeXL2i\ndqUM3KJAlyWVseTogUDKYPWITpGpHwBHNop+yBhTYOp2XmSqGXSNOFmsgCJSVoQAecpoHYkmksji\nKbeOpAyHp46HmxO72wmy5ZNXL/jir6757ItrXr6+5vrqnKaoUEnL9TkK2Nj7KN01cR7e/4tDRSAU\n/JgcTGGGHM+3iATz4vLjKVwGr87CGUUhg3sOiwmgO8/JdAnHEGXhSZJT/8cKUgWyXJ37hWSoa5Ev\ndObjAU8ZI59GMS9gFXn+ejOQmcnqKRJ9IioPeUCFhNcjeZpY1Y7XL68JYcJqQ3caCN5jrGIYRwkB\nFSXDOKL6gcrVLNcbwtDRPe1I3kuaWHuKomA8nnj88IFut6NuW4qqoqod4zjw/v07vv7D70Epfvj+\nB37597/izfffsdtJNF6WwCJdWqNZLmouz9f87PNXfPrqJZdXFzRlicrgo5/NBrIHyDkyDF4OSiTa\nzRnLs4pm2WIz+MXA2XrJnbUMMRKDR+slzlpsmdBW9j6PuwNWgbYa4kBrI6aR5GRUiX7yeB/wJrJY\nrji7OOfZi2tW2zMWi5amqslkYkhY86dGT6ull17K8eQm56eJqTtR1DXKGEnXaiXNocNA5fRc4TyT\nnWJkGgZyivhh4PBwR8qjkLlyFMdOCoxDT3Eq5Hvj45+dqT8NWKJecPWs4eIysy4N4zAyTSPWRYaY\nGYYB8kRZ1NSVprCJy/MaZ7aEYHl/1/H4eOL9D7d82B0YY6Ksa7xSJKvRlaMqK4I2pDES8glCxn+k\n0lgBBMRpIuWE0Y6qrUhmzXgyTJO8iC0Rkz1lZag3C8qzcxbbBXVZklwnP4AusnCKgczRR3rvOZ2O\nnK1KtssK9XyLUZmvu5ExBiptWFYFPkdGHxl9Zr1ecH5xznqz5ml/EKDFoublWcGLF5dsN0se39/j\nvceHke/fPfH4dKQfPE1bUtiSBPRRiOBVU/Pqk2tevbpiu9lgUJSlEJay1dy/f8uHtx949+6WsesZ\nTwfi1KNTQeWgrSvGKBJIYTXLs1bSbf0gQZ/kSceJ7ngS2ACe0VjadiH+6rleVistiy47U33EIEIO\n8xJQBZQOOIfouCjiBKddz2k3kAJcPzvn05+d8ezViufPt1SVQ8VMmiAF6c8JORGT6Iwpxlkbl46V\nj14VY+2cvhTbl/yE569NS+ozRNHF8zyAPyrYElb6mGScT+lzKhTmbFjO6Jg/kjVIKHHjaOm7Z35Y\nJKFhQNZSGZAT6Cy3GLRUD1jRSHPI5Cj7BGXF2imVtomUFNlHjPZEzbxAzaybkrK+YPSesZ847XsJ\n6hixQtZNRdu0Ym3LGm0cRVXRPT3Q7Z4k4q4yKQTiNHH/7i3dfgdKc3Z5zvb8guV2y+39jt//2x/4\n5d/9T4q65PHpid//4WvuHx5nF4akNq3RFFZA5BfbBS+uz3j98hnPn1+xXq9F+kqJyQt2LivhsFot\nhxNJ0WaiT6SQxRoaPTqNVAaa0jCV4oKy1uGqmjKJTBqCp+sn2sqiAZczq6airBtOIfF4HFExYpwc\nIOq25eLynOVqIV1LM2vXx0gMYSYMyYA1Sn6+mSQP9xiYxpHD/kCTEq4WC2icQdMhBLBSZhZTlJBP\n8KRpwhpF9AOPH3b4cU+5aNHWYY3sY6KfGE4nqQ4K/44G+V/+1WekkPBTYBoC0zgw9SfGwwN9d2Q/\n9bz5OtKfLdhuFrSLlqZx1E3Fi2vNzd2B/eHEYzfR+cRqu+Krrz5nvSxZtRVVoZkiuMJQ1xWEhCZR\nlJrVuqSwCj9O1HXJ6OUqPX1chtYtpfL0hwdufvgGFa6oa8fnX7ykWddMY8c0TqxShT8WjNlRFTMj\nwRlUVpgo9PhFZfGl4XKzwGrL+4cjKXoOpxP7MVDUDdvLcy7Otqy2ZzTLFc3ZM7yXF8HF9ZamNPi+\n48PNHbcPj9w87rm5u6frByDjQ8OikV4O65yENMJECD0P9/fsHp/ojiNfffUl67Mt3TTx97/8Z777\n4xtOhxN17SR0EANXqSSZmmQtwzgSfYebAnpREydPmCLFoiHGE303sT926GwpS01VV1it5iWfmiES\nEvjJs0tF/xj20fNCR5GSQVmHmasPYggs2xJz3dC2mddffIo2GeMEoJCGIBpjkE6amBIxS8sjMaDi\nJFbMIEKInetzo5oXkFmRlUFZLb3oWgZoCh+XVLNvOyamEMgpYlQmqzxrnVkkD/gx2PMRNK3mU7uI\npCLViOVOz/9ZwkIZ0d/d7HPPSeoZdQbQRKWIIYsTRoNHHghOFdgsghXIbcfMnn6UtCgabSiSwZWa\nRSW096H3TGOkqeVab7Qjk2kXDZvtAvRETAPkwLIxFLphmhLBT3z/5hvGaSSEiMoaV1Y06zVvP9zz\n7uaW25tbxhAYxpG+7/E+kuQpLQlUY4RWtF5wuVlxtmopraIsFFVlGUfRkp3T5DSSssZaiabTKrSx\nNMs1KEsMmZubG3Y33zHsH9AYzlcVlT4jhIg2DmUMRVVh7IhuK/TVOQZoyoJlUzMZcbdUMVG3A4WF\nVVtQtyua5YJmuRCJBtlbhCygjoSi709Yr4UHa61UAySwtiAjQPau60k5UadE3a7AJ3RStHWNRRCS\nJ9+jUsb3AzZ5bGUZgqc7Huh2D6wutmyuLvDjKB0+1nEcdozDKPziP/P2kwzyqR8hSoAiK7DWgLX0\nOLo+cDidCNPE/U3Jsq1pli2vXz/j4vyMs8sFZ2d7qrf3nCbPcrvm5atnfP7ZC6buxDhIvN5nCFMk\njAI7zUSmwfPt9++Y93IUTYs2BQojEsfsI07Rs398wBiFQUAS3dCDgjEkQlIsNluMsYSxx5lMGDz9\n6Gl84NgH3t3usVozBY81iWWt8YuCcZRht2hqVudnXD9/Rts2rM/O2FxccLY5I/oodqnGcXx84P7h\niYf7R/quJ6UZTJ0TReFYLFuWTUNhHVOMbDcbtIG7mwce7nY466is482337PeH7FlxdhN5AzOapF3\nvAywYApU0WLKJVUumMaROE48TVF6x3Mko/H9SNd53t3sqYqCi7OCTVngjJWyGukDFleKkZO2ytKI\nKINSJpxWkvCTJKAnjz1xykz9RA4ThUmSAFR53v7PMgx6DuEk6bjAk+JEjvKzjjEJuIRMmj3amUwK\nSfy5GRQGNTcbMjtCspp9KzEhzwUpegoigcuJXus5ho/8mQe4+Si1KGn70nl2saQIUU75MTHbM6UY\nIMwpzzzX7c7AJFDy8JETvQDBZWkqUotS8gUplaQbiCzSW2IupYp/YpsqTVGWuELRzDCTnBQhJ9Fo\nD0fKVmpmjZOO/RhFJgzTxH6343Q8Mk6evpsICWxds5uLv7qu5+RFnvgoZ6n5e+WMpqkKVsuG1XJB\n2zSUpiJNidPTgRxB24KcIETPOJ5YLJasN0Ke0kZuKFpLt03KERUnka+ynIab5YJ6ucYUFfVSKl77\nY0e/vyONCqcLiqqgXbZstmuiq0E5SJn+dCKFCWOgWSwp6gpljLhL9CBVEzajzUfgu8cPQj2yhfvx\n5uYKQR+qHCmtQWfIIZJ8IEw9PkyEHNk/7MgxyK0yZckLhInxeOTpccf7d/coH/BBbJUQSUn4v9M0\n4b0nxn9HzM7+NIkGSCbPncIKTTbSiXA8eXbHnlpr6tLRrGqUKijLJc8/2XJxsebqas3i3YIXr1/w\n2esXXJ5v+TBM7E4H9sejXHWzwmQ9B1mkp/z97T05CWR3s03U9YLCligihcloEt57hqedcABTJmlD\nSHJ9njwkHNViTd20pOCJcZIF0TCQTx3vH3YM/iTdI9GTgsdPgcoZnK7wWbNoFpxdXnNxcUkInqIs\n2G43vPzkGTlBd+oYhgOPb3se7x45HI5MfhJBYD4BOmtpm5r1ekXhCvpx5Oz/Y+49eqTLrjW9Z7vj\nwmSk+2wVq3gv2SCEhgBBaEA/Qf9aGghoQMPWQK3uFnlZ5nPpwh27nQZrR5K6osZ1A8jJV1mZcU7G\nWXutd73m+orgPf/1v/2FYZxp6or397d8+vUL/Xng9u6OylquNmsmpzmdBpYgcnRdtdh2RdNtMK5G\nc6QfJ86TJxPRWnxp4ryQQubQLyw+sVkvIsUvCiCtStiyVpK7mQrVL1OUjhml86uFLUl40eBJPjEP\nnhTld0pCvMACOhe8R0k3HGIgRk/K8v0xeqIvcntEZi+ccTkIUooQI5dIOrBC6ysq3aQFI49RhDjR\nR2EdKDBZijBKPEQEmHk9rzClS5ZCa4SJkiI5B2HMFEaNyppMFIZMTMW0S9graOFdgxRwlYX1AhfW\nTeaVuSk0+QKRFD+OmAg+SCFXokhNSYlRWS3iKpVkktHWkVJiGkask0W0dhUpG0IUPv4yT/h5Fp/9\naWZ/6BlnL0KoGIhRootyEoonOZf3JiKYbddye73l/s01u/WGTdtR2YYUYexHYky06y3LEun7gWnp\nsbZmhyInJZ5KwbOcTwgkIadhVdXk9YYUI7V1VE1Ht72iahqCD5zMnuV0RsUZqxXd+orN9RWbmy26\nblFZk3yiqTXTNMk9Kz9f+UhMCRsiKQVZUFaNTJZZdktxWXB1JVFwWlSq1mhpEvwiE9eimfKZeTji\n/Uw0mZenR/LiWa9aTAZTULZxeObwvOfYn7BJ0557jvs9lavJRhFCZvGLNAUq/3/qKfxGhfzq9o1w\nt72MdHlBlGprxe72jmGO/OXnX8g5smocdwp+/fSNtqnYbFo2K8sf//k9ZrXi7u1bVt0KUsSYDtKZ\nqRd1nzGW1tXUTQ1J4yeP97l0PYmpP7HMC8ZWrDtLLpQij+HQj0wvA9/OI7e3b7m5vmW9rsiITJ8i\nMloyHPcHlF4Y/Mjz6UTMmhwUXx7PTOdeut6oePvuns16zcpVVE1L13WYbPj0+TMxwt31Pc/fnjHO\n4peZw9evPH39yn5/KBmHSUQSCZY5kOPI8Xjmzf097z68pakdxsDz856qrjmeR4Zx4jyOJAX1NLL0\nR1adJcSGyU/srndcocjasNps6dYrtrs1fT8wjwNZa+pW44Nge9koqtqyWTdcX18xTzPncRbBSEoo\nFFa7UqQvzoAirokxYQrWa6zGagUhMZ8mwiRukwmBV3IJxACxwAUKD1wRleQbhlwmhehJXoRXF+6X\nVhlTPvM5Q/SCm2fKYlEIgYSCU8ccCAqWkAhLIAUp6FFBMppY+N8q64KRys8xKhe8VBKPLtCRPHDi\nvY6hSPezwCIXv5WsybpMAsq+QvICs1hiVnKQpFLAteSMai04OlEXuCgJfq6UMCoXGTOUiRhlsTlj\nCWSVMFpCTKrdBls8941WTFmhtKXurmS3EGf8uGC1TMxJJSKRxS8sQXQYF3WiUZmoZQegtcJaQ1NX\nfPf+jh9/+Mj3v/sOoxw5JulaVy3NuqNtW4yVEBdFx/aq42p7Rd12rHbXxFTiEo8nliXhoxxm7WbF\ndnNdGoaENmAcWAdKWbpVx3a3xZqMD543796y2awlF1drxmHifDiRdERbReUcp1OPGQeaykG2uKoq\nexaDdxlbyWGolCaHhLLFiI1ImDP9PDKde/rnI93Njnq1Aq1ZDntCmMm1oTKQdeb88Iw1Cdc5bNew\nfzlDtnz//Y9iGkfmcB7p6kCzXeG6logjLKJ0/Uev3yZY4nRiGkfGfmDxC11d0TUN221bHvjAeZ6Y\nZ7GTTCnzy5cnYs7UXUVXWVnsrBqJv9IaHzNt23Bze4U2kcfnA8Y6dtc3XG83PH77xqdPD+SccZUk\nsvTzQpwiMNGfZTGjkAzKrCQpqK4b1ps1m92atlJM08g8B87nnq62qORxJPp5ph9nxjkyTlJQstfs\n1h13tzuUa7i+v2G7u2K1WkMEi5HOZprYf3vkp6ohLjPtqiX4hU8/f+LzlwfO88Ttm1vabYetHYde\ngoTrumaz3nBze8Xt7RZS5Hg4MY8Lm/WGxcfiu2FaAAAgAElEQVSyIA1klVmC53m/J2RFVTv+8Mfv\n0QmWJTF72LQthMhwPGK0pqkdvmvISTEugXERS955npmWEVTpKFFYZzFOS9yX0q/eKlobgS1AloCl\no9ZaFe55JONFRBOVFMzLtJZFfSkbg4vfntgCZIqHR8rE8DdOeE6lWy4K0pSFYpiDQDtc8pxThiSB\nz1lFoUsmI4+EAoxwgk3xxtAX3FuJuZemTBxlJyq+3KqwXRChkLq8c14hmMu1KZVKloVgNDmXKNDX\nzlsKv0WRC+/clkPwkqqUi2ApJmHuKBRV5UiqFHhkSZhJZBUw3oAWuwAGwaOVScRlJgTPerPi7v6O\nw8MnnvyR/mXBaU1T1TTRo8xUrHvFcz2R8RTRVLnGyjnWTcXVesWH+1vev73j7v6atABJloRd1+Aq\nizGiW6gqh1YdtpaFY9VWGHOhgibGeUFph2uFTbXarqnbRuiiUUzPcooyRRrwbsLqRFtbNlcb2tWK\nrBTDOFDVtXyuXn2A5D6GUZxWbYpU7YbKaSqnaZoKU1UoBcEvPD8+cnp4ZNVWVG2HripyToynA0vf\nk5aIzh1W14QM03DitD8wes963eCMTIExZ7JXkALZVBKBV1XgBOZdJg9hAWdoKi2QHlmmyn/w+g0L\n+cA0jJJyXVXo2tE0muAdu13Hx/SWZRyIXmT8z4cT4y9fqRrD+7srmrbDUpF8IJqEcY7VpqOpNet1\nRcwKtOXm/pb762vO54nzlFl1Dls7bGNJyeDnwDx5plFGYJRQyNpVxaapqSuLc0q8nr3g037xaByL\nEswuBS+htCFT1y0pT0TvSSGx7sSOtN1sWN9esd3t2Gy2hCGwDDPD6UTjDMu88PzwyHbdEP3IPE18\n+fzAqZ+wTc3d2xtSStR1xbdvj1SVY7Ve8e7tPVebDmcy8zzTn3qmYaFtGrbbNeM0ERexnR0nWcaA\n5u3bG3738Z44LZxOM4eTx5IJ08gQZBGscxS1XtRYCyZncoSQYPKBGAJtbdldrVmvGqpKONpKX5ad\nhWqnEEzz0llTtBUXQyk8sdAEY4yyJC3feTHrJyPda7GJBRHaCDRS+NzpAlsXiCJT8O7LAvaSBlYE\nQVkKclKXw8diDWRnwaWCeYt/vlX5lWcuNV1oaKrg73I5JfX88oYpAD2UQq5QiHoTReGky/dlpMin\nogxVhclijRKPdqPlvfG3MSP/3VfKuUw6lqSEwidIxCKcep+wWRceO0SlcRGUsczTgKs0q3XH9nrH\nfH4W5WlWVFaTlKaloW1GkfDnQAgyzfgCG4HCGE3jHOu24Xrdse0a2rqSmDWbscpS2YqqrkBnFBHn\nNFUJTDBOo50i54UUJLhCKU1WmqqpqVcrbF3TVLaIbRQoI8U8RZSyKBVFv5AD1mpWJRRjmmfm8UwT\nvIgJ60ogqJxlrzItov61MmEQPWnJEDuBoxT4ceL49Mjjr78wNI7N9Q7XdXjvGfd74jzTNBVx6VlG\nmEPmeNhzfDkwzQvkNd2qw1U1GU1U4FMCW73+vcSxU5OyFm3KOKMrRcIRo7DW/tHrNynkmUy7qtls\nG6EYdh3GaPrTkb4fiCFwf3tDU92ikud4PDP4xMv+xH/6zz9x/t1b3r25Y7u6ZhnF7nZ3vSUlT44L\nm2XFtCh8ynSblqqxNJuW7e0t1mi67Zrt7opu1XHaH3l+kGTscZ6Y54nkE6OfWXwkJ48i0h8OxAT9\nHLFVy8d3d4z9ieNhYP80Esl03YrvP+4IIXI+DTw/HTiPCX1ccHVRR1qLigmnJNMvtxVvPtwzz0mi\nzLRmOvfsX545nHvWuytu3tzgrKG2lsYYfvrLlqQ1t3c7fv/9ezSe/bcHxjEwD7MEOqeAa2pyhn44\ncdqf0VZJgpJ1ZL+gFy/QyOHI08OJVZVxaoPrKobDiaXQI6OyRCW5im3VQob9cSbFZz6+v+ZPf/jI\nbrMC61CIGEaBLD5zlmKpCye6NKg6idKRlEsRj8IokXZdBO8pil98KVS5iG2UEobJpWvPRVGZolD/\njJViHhbxTE9klJEgg5SE86FikiUkipRF4GOVkQBplwkqyMK0eKQ7nSAk4iSwTjby70JUKS1pKu+Z\nJAwUbQSj10nGgKQwGIwKKCKxLG6lpS8LWWRq0QWhMVrLfoAgC82ciQUKUwHICV3UnirLdV12KEYr\n0DXjAPMw4Y3HuoRzirwIlm+dwpkKlTJT70lxz9PjwOmUwa5wJkD2TNZyOzW0cWFk5jkVK9wsB5Qz\nEjvXVpbGiVJ6GieOL3sqZ1i1LcqIH5HPQRTbjaKpW7ROJD+TvRRVtEbdXuO6Ld26xQCubqjblso5\n/CyNTrYSFWkrB1rSfMI8EOdFiqESQz4/HQjLRPAzy3Bktd6wvbpmmhJxiRA98zyKuEdV+OnM8DwQ\nlomr2yeq1RpTN1ijSHNPnAaGOeNcIoaew1PPfOrFaG+3Yvl1JKI4j5nTcUQZzc39lma9xtUVWsvh\nhTX4nJmiF0gyW1Q0WGUxjSL7ieAT42lEmYlpmZnm6R/W1N/GxtYoKldhrRLFWLBkVaOpSNGy+Ixi\nZtOJ73BV1xjXst8fOR1eOPSe/HAm5xWtmqnigg+eujZUbYfJDT5AUob17oqr7RW7m/d8/+Mf6VpH\n01RUdS3Wm8PE6dgzDAPTPHM+93z59IXT6UT0M11jmIbI6fjENEd2tzfcXG+5uV1zcpp2teb3f/wT\n89QzDieGfk9XG9arG958/MCq3TANA88Pn1lSYB5G3r55i1GV6B6dZXdzBcqgtWzTv3155Ke//syx\nH4k60axrNpsd3mdSUtzd3qOcpm4dz/sDJksSzuwFE121FSZZzueJmGFdOfb9iSUFTG24entP7Sz9\nqcf7Ce9n4brmyBJm0tkznAfmORKSwdaVmFg1kvZSN467u2v8PLJd1cyj52Hc024d3WZFvLgIKgWB\nMuUAQaTqmoS6WLsqIGticZ00FwwZWawKLl7giCy4cy5cXOlGxR0vEcCU0BKVX/nJRVBNRkZShSz7\nLrU35ywirAQqp9cFJgUq0UpjAZuFbZKNLptP6bVVgXdSKglHRcCDUQWOyYSUpShfaCnZ/E3qn6SL\nT5d9AFDpjDFgS5hFjAEfBEKQzt68dv+icRJTLhAgKvlFrlRbgUKMxdU1JGFBzCHLwlV7oYTWprAl\nE9M0STjL+pqUNH7pIWa6ytFuHFOyvCTDnBXJQG0EPrMlGLu2RpaqRlHVFRrFdB5RMZIqR2MqbKwI\nJIZjYP90ZFoiMWVud1dy6+qa+vodcQokPxLnmcooCIZz3xOCJIFVrXTgWmeB0ZaR5XzgvH9kmRaW\nJXHsn0lhliLuZ4bzmdo9sdu9sNquUDmzjBPKaMbZ039+whTnU5UiYZpYX+2ouxUhLuQ4U68bhsOZ\nw/6MqybZpRihMc+nM9Y3YAyzh3a3pe0a1qsKWxlZ9qeIKotOMRkT7/YUEm3b0bQtrq3xS6I/HTk9\nHZmHCeMcVVv/w5r62yg7/UJlKnQyhLGXpQUGnTQah8KQw4JGiq2rV2w2O97cXvP0rS0ioMzsPWk4\noZzC1Q5Fg81O4rRqsfm8e/eB7XaHdTVKKdrGSrp6CigUIcISIvOyCPwwznz65RMPjy+cT2eMn/n1\n55/59vSJUz+y2m5xlcVWhuvbG7rVlu8+fsf5uOfLp1/4b//l/2Sczpgqs7m94cP33/P8+MSf//xn\nDseDuNYZS9dt0daBNrR1Q1XXKK04Pe05Hk98+/bMsMx4lajXLe/e/44cIuO4sLu5oV7VKAPfvnwl\nzQNETybT1B1VVWNtxdTPzCGiVWZZFvp5RnuL/SjYb38eSWkmpoitJY0+Id7kTy8nUlRUVUvWnsoZ\nTJSlnzUCp+h8h1WZjGGaIy4Ut8ACYVxo1VpdyCaaImQUMOECjRRPEyVYxysVO2fpbgUTB8FOMmTF\naxhEjqQkTAGldXH6i8UXpZhjKOl1JbTCQJClaRKqNxnhYKskxVuGBlXYKQirKkk8mb74suT8mvpD\nORS0vhRyoQiqGCWEIRXmjQaMkezPJDdFUX5vOciskvdbNESidoziRhiRfzc6YbJ+9fTQrzg84u8Y\ng0BQ2pA0YnBWFUvY1/1CIgaP16C1Fewdsdl1dUW326G04XxUhClTK3DNTO0rlrFiFQSGSFZYMa4Y\nSCmFqB2Npq7FCCvHJElG48CgNNv1lpxhnGaO/Ug/zWhr6KoG1zQY01CtdvjxzHg+o8KMd5qcxIZa\nW/l9US0EldAmU9WaZRgYDi88Pz6Qk2VZoJ89KgsDxYdFOuQ0Mp1n7r+7wxqDXwKuafFY5mFExwRY\njDIM5xmre0iJeZkljchpQs74fsIulq6rcesOlTLLsEDVYqsaVWe2t9c0TYWOMoUosjwgRnjqSmWM\nLfmnpeXQGpwzYCryoJlmT38YaTtN/W/J/fDz05ME0dY1eRjI2oJy5FlO+G3XiCRWaxFv6BpnDV1T\nc79bsXl+oh8nGguPj0+czyfIiaXvOCsNPjIqePf9ipvdNevtGlvoVss0Ms1n5nkgoVHKok2Fs5am\nrtltt/z4/XtiEjfB58dH/tf/5X/jL58fGPyR5+OZ9dORenXNH/74ge+//8j97TX9eYPWhud9z//+\nH/8j3x4eWO0+sfmfr8ka5pSZzwPBe3KE9x/es9leUbcrtK7RyqFyIKeZyimqpuKvX78xkbj78J5/\n+sMfWOYZZX/mMI68eXtP0zQsc+bzX/+F/nimaxwxKVqj2G2vOBgIwXMeRvp5YVoCOsK8LMzLgi2e\nJEobNtc1V1drDJqpj5zHme264+3bDaP3mBxJszxwlKi+zXZF19Q0VUteANuWEGWxEJXxvviraGFw\nKJMF4rHF8jNpSXhSiqwyIRU5vIRoFjzcQNKEvHCRw1wKeYqRy/+C4pVOmKOEL8dcpPpaloYoSSxK\nKbzCMrYUXlQmeVmOGkzp6sUtESXlMuu/5XIqcWoXmEVLuMirQIhE9sK+IRXjLhTY9LdO2ipMiY/T\n8aI15ZWfnpS8fygBz0ZJN0dGqViyRCGXIA9VAqyFwy4jgyr4e9SK5BRWGZzW6HKP5iGQRrBFxehq\nR1VZbNPRbTqwhvSsiDOQZ1Attop0rSf7yEIWJow1NLUR5ooy4n5ZWVxTURvLMow87/ec+57f//gd\nTdPiY+LQT6AiN6uG23fXbHZ3rHa3fPjwjsfPvzK8yOF9Oh0B+bys1ht0huH5wDCdQQVW24ZlnNk/\nvfD18yPNagVaZPLWgHUZay2NuxHWSZS/dVAOVa2pNyu6qpbpBZHkz8PI+O2h+PIETN0wn49MY49y\nME3gg2ZtO9bXW0xVE2dPe7XBNbVMTZWVEI3DmboVL6KUsuDi2qAUbG7Fi97phpC84PExYVzL1e6G\n2limzSKRidW/IT/yu+2auq7EBrLeUdU1aCXeCsvE6XRmnM5gMqaqqTtNVVfk4Nkfzjw/HHjaH1nm\nBaU1m82K4XQkL0Fohkvk+uMb2W43sh2/bHxzTkQvi8ZpkhHUWke7XuEqsZDNyeGcZdU6zJs7/sP/\n9D/y5t0bvn39hnOWN2/v+dN/9+/Ybjd0dU1YRsIyUlWK9x/vef/de4EDlOK0f2aeJs6HM4fDiYOB\ncfYchpEP7z/y3cff0baSvTWeTvzlLz/xl7/+wsN+z83djg/ff8cPP/7A7rojxRqtP7DZrllv1lJ8\nQmT/+MDz8zOtdTSrNV3bokNgt+mwytCPE7vrFcdzz8thoD8PHCtDte14eDmB1uyuN2Kxe5759dMz\nrlZUjQOVmaeRJWeiFQzPpIi2Dm0kOi1Ej9VONutKFbpgLsyNgMoWMPy/eHtZ/51dLFz6SgVkFYWT\nfPnA5Et3fYEQ8mtBRyFQAwmtJIg3BFnuxlgW2CALq6yICiIXWb9I762VQpgKdGOM/G6bAjl7mQp8\nICZKgLGYbOlcYKIsYh1ygcm5AMgS/KxIxeJU3oMuB4eJiVj2BCkFecBzxmQtHuZFKRtjLurRXIIo\nNGQl70GLr01WxWs9y3SRLuwelTBZdhIhJ4FslMK4AsUU64DoRT/xOiU4eY+rqzXGaaaho38wTJMi\n1YYcenKcyMEX0Y6W5Jy6YtOt2K23bLuGxhis0oSU6OqWqllRtyuUysQwswwDVWWwShG95Kv6eeHb\np5/w80zTdaRQvS51dUoil18887lnHI6kHAiTw1hHCJFpnOk2G7RWLMtEdgrtDNY6cBU5KUiKqtvQ\nrDc0qw3VpsVWJZmqxA6mFPDv3uDPJ/zYi46j07T1mo1zeAzGVtwUZoytHCmCqUSpbLQmG0nPCrcL\nTdWgJe0FrFgRoBQxB4igogi1rFE01mErS4gzYZ5QxdP+oiv416/fBiMvfMyUQdW1jIApknUW3wmr\naNoabST6ihRYZsRca4nkpFBZXO+ckbFkHEfCHDGmxtQrtrsdTePoz0cyEjOVYiT6meiDMDlm4R4L\nC8hTN2KIhXF0XUPTVDSN48cfPnJ3u2O/P+NDYLVZ8ePvfyCGwNwP7PcHDocT/TDibObmekNYbmRx\nEybCOOCUZDZOoyf4xHmcUbpme3VL03RMy8zT1y/89efPvJx62k3HH/7pB7774fd8/+MP1E4e0N3m\n4jIoqdq3Nxu22zUv6xXdZsNqvaGtLDZOXG06uk6S2lFXnIeRh8ezULuy4jzPPB16mXZax8vTnpfD\nwOPTnvs3a7h4ePtAiJEQoqQ3JfGtcLWToIW0SHeom1fmxUW4ZEQFJF9GU3Tows4oOs2sjRS8CyEj\npVJQ9OsSMKsSdVXGT4V+pfBdumVyFPvaGAnxwqYov7qwAlJKr/h5fmWX5PIzBQe60AQvNMVYOv8c\ncxH0UPzVU4FEgJxFP4B8f/HT5XL5KQsvHVQ57OT9UsK/Yw6yRE1gchKokcKg+Lt9AUYsBjS5dN7S\nBafkC74jVEWZFsq9yknsU2P4232zFlWi6uTeFR+XLCpRVcRHlbOYzRpb16SoiLoitz2LfiGqI2Ya\nqOsGbbXsT6yjdg6tNcMwEmaPM4YwDWRlBKoD2Uf1Pcs0oXOFnwLjMFLVAyTFPB6o6gZnHT5BygkV\nxZDMRxHx+KVnngYR7qiWqsh0tUGu3ifyOIOuUJUVzxsjzoRgqFdbVrtruu0W11aSsaqMLOytxjgF\nN9eMhxP9/oAez5gQQUtkoq6lXnRNTe0cxljxilFirqWN8O9BFutWSyg8OUpB1rpEuxUv8yBPhFWK\nyhi0hpg8IXqckRCPeMHT/tXrNynk/TgRg4zM3TrjlPBLTV1ztVtxc7vmZtfSj55p9KRh5LE/k5Xi\n5vqadr3iu+IP/fz0wjiPzEGiyna3DR9//zs+frhHRc9f/st/5c2H92zWW6yx+OmMnxZyUriqxqdE\nmEaOw0Td1LRdi1utiU4TnSLGGT/NOA0/fP9eHmCt8bMkbR8PJ779/BPfvj4zjCOmghRmrtcVK9ex\n7RwVDd+9vWFePPvjwLJElpeJx/WRm5cnLJnj8zP/8tef+PJ05vbNHX/60z/xH/6HP7G5ukfbjjwt\nzOMgJldLIGhFjJ5lPnKz69DpA912RY7yaHd1Q9RW4KOUkfPSEv9Yce4nHp8e+fT5V85ToKoUpz5y\nPDyz+IBRcDoc2HaW201LrS1+zvRjpGkqWezhaWpHY8CqxDSOxFihaFAuCZfZCHVPoBXxr8hI9FnM\n4tqotGzpYwzCULkcBEoXA6USt8bFCpaC5RYIBxHIpKhElZku/02WfKI2VBjjCCkQitLWKOloIZOi\n5wKYZ63EyW4umZYpkKNYShgE+w0XGChHdJKuP6qISqYoLYv6liKp14qUPDEnsbXVUsyj+AxATHJX\nSkcfcsIk8eF3hRkTAoTFExSgQvHUt6hsUVGT0ojS4FyFLt2gwuBTIKooNgYhoJOYZSkqcjKksiR1\nVY1qHEuUhXpekgh4DGin6NqazQ8fWd7fczzsaX5tOT3V+P74SsE7HQ5UGIZ+4dPXE8HP1E6xWVc0\nVlSQSp8gXjFMC0/7I2ERaGz/MtCfepyyMC+0qwa0JaKJ81RgtICfBrJWhUMf8FGmiGqzkr2XTWyv\nK/Iy43tPHCZstwJVw6UxSDIt1+stzWaLqStQlhiFDaUv2LU2OFehdjfY1YZ1HAQGROOsZV347Cll\nLEnCSYwr6T+abFTRMWTpuItSVAEhilbFGIe25RlRpaENgRgkJN7HSEyK4CWs4x/HSvxGhfzh8Yit\nHG3bkKmZSnccGVl3FatVxTAKJtW5hnAamc8T47IINrtqWNUOpxS13nKaHKdhJBpDu6poG4tVluAj\n8zjz+ZcvjDcLd7e3yCIKlJLusnItuXWcTxMKcRpL/QmVFvwkzBLhDmuOMQsFqmlK0K6YQi0eMX6q\nAlkFTvsz/enEsbKMS2CaF/bnnnffv6c9jnz+9RvWObrVmqaqeHx44vnpmcEHfv9P7/nw4Z7v3m/x\nc8/+RaFtx/Wq4XzoedkfGUMUPFvDeO4Fd0fc3sQHW2wzszYkZSTYIWmqRlN3jl1rqLvMagX3h5Fl\n8sQYOYwT5/NAP4yEFDgPM8fzxPXVDev1mpumwWgtfuWVo60rjIr4eeblNFCtO7pOOsDLklLoGrIg\nzDlddoO88hBzIqrpldctOaBKpjNT/g0x51cXFLlwy3PShfFSJoccBMPW4vkSvBfvcyt7EL3MaB9I\nPpK1IhoNzorIIiX5WQTJ6kyJ5MXMipwKhTKTdSpvW6iMyZelrS72toWCGIivsA6IvFuuQaOydOra\nXFSd+W8r1kIdlKBe4aobq4rznRaZerm/1lSihs2K6BMmJkxWaGuFKYR0/DGIdJ9iFZuVxpJRxoF2\noCAG8RChwGMX3xmVFHgR3mCESto2Hfdv3tBVFecXhzKaeRrxsxNhjrHsNlfkPOPDxKkfOUTBzl3l\nCEEYVtMSudlKuEnVVDJxZIm9Cz6Q+pGsF8IsvicxzJz3L9SVwxlH8qCyxtY13XrL0J8EpsuKcz8y\nnxb8HCF48I4UZSpr1y3X97fs7q7pNhtM6XZlu52L2rXAZ8pgXRKqqapfmw+tZVrRSuCQEBZ0Tigj\nBVo4SJcMWIoWojCbtEEZh85irieKqiiRf1H+vlrl4spYpP/Izsmqf0Phy8M00yrZNHs/i9KpdFla\nGTSGaUrClDAiO0b/zW5UG3AGTFQYDc4YalcRVJCAXxLzItzMppPOfhhm5qtI7SQl3KQoD7iGHDRu\nLqdgFJOrZfKERZOVlc7HSDbgZdkgKeiCzy5B7E9DiizLxDQKpXEPTHNgnhee9ic+XF2z3m64ngM3\ndzvev71l07W8nEYSUHcN79/dsu4c/fHIfB6o2i2r9Y46X7GERCrBCEppYlg47Y8kLwU8eY9rG7RW\nnI+RrHxJJpGutVsnrtsVzhm6VYPKG6zSvLyceXwe2J969sczwzCyLIFTP3EePf/0Y0Oz3mLrmuPh\ngFKKppW4N5UT8xgZveDILnhcbsRnuzAmXnM8U3pFMhSlYKsESHdOwZCFalEgFTKvIQ4X3L1ADfJ3\nEEnzBX4RaKSoLmMSn/OqQtsGC6KkncdXQY105On1IIkIPq+VKr7QZXEosD5J59dczxyRYNz8N346\nIUII+BzL06sKFlroO0gsGFHw62JTzuuOQImtgS0TQ75sP0tYNOWqExe4Spa0ceHViC4lmcoEYinU\nz6wKpTMLfp+DgDeFZZNiRAGmqtAKohYzroIjocjFNA2cdpj1hspoKqfIKTGOVclXUChTk01D8Bo/\nBOYAcUk4p9HAy6lnCanw2I2wW5zFz4FpnKQ4xwrjxYzqQkGd55FhOJOWiqAdOSD3kIroPdO4MA6e\ncUqMSyYoi2lrqnZFu17jbIt2DZvdjrt3N2yur6iqBlmiFkqpBuMsGqF4Aq9mZqp4ketiiKNyFJHO\nsqCWCRU9OYuaWJAThzYWUwLH0RJKcdlDQCpRhKW5KZAepHJdxbfowmZR5jX8+l+/fpNCXtUKaxPE\nmfMxsdps2NxsqWxDbQ0qQxwD4yiBufO80OzWrJ1htVpTW/EmHvvIw/6Aj5G22+BjJizSjT6fz1xf\nb3n/u+94eDygjcOnTGWLD4jRGKUJy8LiAxpYYiSryLquSNGzzJ6ULLZuqGpFU9U4I92SM+41YGCJ\ngX7sOR4PjOdzcdKD/fHMEhLTOPP4dEDpB65vb/j9P//Av//v/8C6ssz7A+7umrp1DGFi09V8/fTI\nLz9/Ybve8vHjRz5859gbS3t1xf3NjeCqy8Tz1yP7hxc0ipWrGfwkwgsMj48ncppZ/MS5n1iiZnMV\naVZb/GyIUVwiz8c9z497fv1y5Mvznn6ciUGWkOOSWIKhXR9p1juW5Pg//tP/RYqe6+stv/vxB6y2\n5AhV1bLEyLkfaNo12mlUGadBqHIhRaHw5UJ1C5fim6ks0hleYBR0OQBS6cPzqzFT/rvCqbVGK7Fl\nBQlqULowQLITXN5abNWQjCbpBGGCJKyW5P2rWjMX31ltNE5LMk1OllB8V5Jw68QitxR+saSVwm2R\nRKAUIiGm19qrTBD7FWvQVSOhzDHjU8YphVGGjEZr6Qt1luACnSXCTpKMAhWBoHWBQ+SAlHi4RDDC\nQg/aoFLG5IQ1mmQ1KZe8xxTL6C74v1IJraPco6wwSVFnCaEulmVy6GiJSfRlGanQZJWpVw3rzTvC\nIrYNm+sdfkmMIdH7yOHbkWHKZNWyaoo4b1Xz9dsz8+KpdGKaBiqjydZyOk0sY6Cuz3TbFauupW0a\nqsowzZ4wzkSfOA8jKg6YtGA3DSyRb58W+pPn3E+cxoCxLc2uZbNecfPmlqvrHavtFdubW5quwzhT\npkRk6lMCjRitMQUaEQtmWS5rXZbPCGHioghdloVpHNBBjPOm88ySFrTRdO0K6yqqpmG17qQhvGDi\nWczGxCuI12ZFvO/Fo16V0GXKgldcRfU/rKm/zbKzbTAkdFY469iuGjZrkdsvQy/Uw6Ylk/Aljqtu\naupGFHbDYSoBr9LtGG1BKeYlYPuJcLKj23YAACAASURBVDzz+XnP/qHj7v6Grrtm1a2pq0Y8rFEo\nLbJYYw1VbSDPJGXwYWLsPdM8MvsFRU2TDRHNuETcslD3I23Xg9KkHHj74Q2bqxWH52ceP30hTjNL\njKiuZVN3HPZnDseBSmmuVh3fvXvDbr1Fp8iUtUTBbVasVMdm1bDsRvy8pXYtsx94eH5ke7MTt7Ts\nmcaZ8bRn6PfcXDX0U2SYA/MS+Pr1QT5k3ss4isajadcbVpsOpROn44H+fOR4OvL49cDLYWCYPVdX\nO96/k4fn5XhkfzgyDBM///oFbQzfff+B7374/hXLfno+sV2vudpu6Nq2LKI9OgVsrrFZ8Pms5EOq\nUijLP41SDgk5Q7qYwqvOpXvMMcE8Fzgiv4Yjv37YdSgwgDA8tLKCp+vw2oU6LQ6HFmEhKaswBNJY\nE6MixUCKoTgm5ldIwZqMtYIlpxiIYRHkxRRXwxzlmkwm+ETIUkSzEpw7Fn+XVKYInWUisih08GWp\npiR+rgicXgVPxQkxpRJ2kSR9JiW5B5pLXJ14YiuAFKl0TSpdv/hna8iybFNGPFuUqgmLF/54CsSY\nMT5jci6dnkBSrqpxxqKMoR9mfAy0OGxtMSkTfZADuXSnrrXUXcU1G/ph5nAaiPsz95sr6vs7Nlcb\n5mXi69MzP33+Rn88C1OndkzLTNvWVKpm8AsRUc3iZ5S3ZG0JCfpx5tAP7I8n4hzRCVqrqCuhTdrs\nSNrRbTs2bxpWVzvWmw3rzZpu1Yqi0khQcsoZokAVlzFHvPKV/D3yxQCt2BpnqVXCTpI82JyS8PKj\ndN4ZwGiabU2j5H5WVYVxFcZWZC0maFmAePkClHFloS2vXP5bLslVOQcSEmwuPsXhH9bU3yYhSGma\nytI4g1aOpjHUlWJaFk77F6Zx4er+RrivWXyNKyvjZg6B/jRwPo/45DHW0TQtVS2czGkcef7yla+H\nI27VMk4T//yHK6qqoq7EVVABukQxKa0wVU2lLFlr1KzBL4SkWEJGq4AJHrwmJl+6I1ETyphk2Fxd\nsdms6eqaNC+kOIt51DSx6joRHBiL05rWWbarBp1Exdd2LetVhQ8LSwjUtaVrKtarBmsbIlZis0KQ\n8I0hcjoMnA5PjKejUM20ImTwIRG8FzP/9YpIwEaHqiqaekXtLOPpzOnlhf1+z/PxxMvLyBIz7arh\n9uaW3dUVXdPw8PyEc5pv356ZxomHhyfq2vHh3VvqWhae0yjUsVVXs1mvsf1I8ElcCGN6ta+VKphR\nUexVgVcMFihMDxnbU1YiGioeranQEGVBePl5seDKyDgqjMTi8i2qzpyymHYpjdUGW2LUiBbnKiAJ\nVOCLDWtMRAqXPENSWWT/KRZjpuJo+He0yIQIV2PZQKVSF7Iu3O2Cixsl1MSYQMUgfi9KQ05CW1SF\nC15gFaV55Yj7lAkFXtKo0sFrtLYCr2RQqRT3C+tG/w0yicVFUmvQEsVUDorltTjoGEkql4g5hVVW\nbG6zZlDifzPPC84ZjNbYyiBCVBEXGVvk+dbhmgXtKhSa0NasVi27my37ceSlH5m9iLGs0UIXjNL1\nmwuDxlpwlpASAYVHM8+BflwYpoUpQAgZpw1t05Fdja462tUOazuqpqPdbFhtN7TrFU3TFPqx+Nej\nKLsMyj0qBmvlngmxlWJuJov5C+SlVLFzKJ/rCzQnS07Zl2mn5dqMxhhbYDVT7nkp4uXQVsguKBXN\nhdbCmLkI3y7+9hlVzOny6wHwr1+/jbJzCax3G26uO/rRo20i5oVlWXh6eOb4chJmgxaZ75u7HYpA\nWjwxwrkf+fb4zMPzC+/e3vDunWbVbjjWmuPLkb98+8bnlyP1ekPWFR+/n0UtZTV+lA+1UZnZDyhj\nsFUtxdxptDMoP+PJLFmhkhcZePDEpMCJ4fswBlKIWFvT7VZ0qzXOGMbzkaaWcffx/95D277i+KKe\nS+SwcD7sWa87bu+v2K0Nx9OJrw8vGC0dbEKjXUtTr2jbljANHIY94zRw2PecTgfJXTSycU+It0xd\nV6zWa+5v7/HLKCKaCvw50B96nl+e6U9n9qczz8czPkVWm4637+549/Y9Xd2SY8aahCnue49Pe6Zz\nz5efPuGAN2/u2O223GwqYTN0FdfrlhbFMMz44LHRY4vs/NWMOyb5UGvISkIqksokFSS5PmVSMlgE\nMb4EUeQLrGtLVy48O+mSEhIQocX7O3qPXzw55mLrW2O1ke4rA0pSa2I0hQqWymQg+LIpdLyIErOt\nsqCS7xVmy4WT7skEjDyIqSyrlOQ4RnNZ7GbB8ZUhKk0O8bXgxstSOCnIFqVF86CsIiwStisc8lwO\nBo1kdxRL3GL6pLMqh4NBGTH+skb2DMlHYopoA1WlZelrZEGfX1WyQn27uH6qlNA5opLCKVhSYjid\nsUbTdA3r3YY4e4KPhAQGi1IOsHTbmmrdsV6v6A9HFBGFhEHUleN6u2GqrPysykJCmjlXY7QVY6ym\nIoYB4yqoGjGdmmYx2KvXGJtEvHd3h7aa1WbDuw8fWW2vqLsVpnbls1NsyS7CsVTUvaUDFsLCZcks\nUB4URkyhscYkuZtaK3K6UGpFzZpVJhYaqbbSNOhKHB2NNqhsCAXOSlDEXKCMgaSKQdqMDwGlhCFj\nrRU6rSrPDIqMee3Q/39o5L9NIf+vf/6ZGN5gzRvQDTlI5Nq3T3uGw8Qyer497Qk5kZXi88NzUUVZ\nwfKU5fbNNfdvr4jes98f+PTtiXM/k2LGoRhmj11D1TZUlSbMPS/TgakfWBbprK2zWOeo6prNlQS3\nGtXg8ejKUSXxMb8UgcooYvDMQN10KA3WOCyBsAhuu7665uHzZ16e9vjhTFh1tE3F99+94+7+ntvb\nHUYp+tOZeZ4YxpqXbwuH/ZGnpyPWwKEfGH1m9+6aD2/f0VWOX/7lz8zjEb9MnE4jf/3lKy+nnqvr\na3bXW1arhtubBo2iqaTTqCqNjoppnOjPE+M8g7UkWxGVjKx11dA4h/Ker58+YbXFGYMyiqtty/bq\ne+5ergnLjCaikufw8sLUD2LWRKJtKt6+uWU6L4Sg2L77iHYVpq5QQaML7av0vAI1ZPEXiaX7FdRE\nuvCI0PNySblJSR6sPPtS4K3sjZQcCDF4SBFCJnmBFCSl3gq1S7acLNPIPJzx8ySKSW3QzlKEpUIN\nVLkESJQONhrxO1eC3OfiyfLazZJKB1xJ0Sr+4EoqvmDTl6E9ZxnbL1a7+aJSlS4s5UDKFoOVcZpY\nuO/CStJoUhAhFWSyLsfaBYsv00lUuuD6XtgqMoIWkyvBZ41U/tcwYHXB+9HMS0QnMY1LwUMuBmUR\n/LRwPp5oXY2zTjjwIbFkTzYJHeVarbLsbnYyPYXAblNT/b7h7Zs7vnx5IPqFysp+4Hp3xXq9Zr8/\n8/K0J0RP6wy22lJ3lnZ7Rdd1UpadpaobVqs119c7MTSra7rVBmslSF3uSXGSLHqBXOAtozXGlGtW\n6vXLGM2yLMzzgrW2/L9RuvACc128d7RS6BREyJM8JM8lQpDgCkwnOoKk8uv06RcJ7PBF0JRDlH2G\nNVRNje5aUjSoAp1pBdYI2SL4UCbNf0M2tssSeXo+U1UNbz9uaVdbdEz4KbHMnmlZmI598bVQnIeF\nu/qWuqrJPpbNuKFrG/pzT5gWxikwzgJhNOuOrQ8CJYwj89hz2ifm/sw4zqQsAqGmvshdFdM4ULcd\n1lVC99EaVzWQHaZ4azsFSyh4FQBZXNXmoXgma1brFZWtqG3Dum4lM9I4rq4dt2+u6ZqGaZx5en4m\nK6jbmlZHwrywTAtjWDgNE1472rUkeB/2Rw6HF+LUs8wj3x4O/PrlkX0/kYwpYQ2ZtnWFMqVwlcb7\nxOI9/TCTc8Y6C0bx9mpDvVnjlSHFBa00wSfIMxiPdharLU3jaLuWyhmmcWTuRw6nSToxN6NSYp4m\n2eInT3+cSMmh11uqpsFVIvzSyMiYkQAEGTNLx1q65Jzzq9OhZHwKM0hoe6HwzEOhbkk3rcrfIKcg\nYoogzoRKlWW2E0xUFc79PI5Mw4D3U5HkF1aNkgWTQBvIoaL+xlxJUb0ad+VSfC+iJ60LTQ8JnZAW\n7cJUCYVvINi3UlLIVRbfFrk3vI70FHaPLHMlL5SSoFQsu6RApTLlFFaxWPtGeQ8xA1a8vEsIgb6I\nq+R2oZSoO5Uu/GXrpDMuXukpIV7FJUtU5YjVGlMOn7h4ojbYylC5CrxMU56EihSfcUvdtfL984Ih\n060Vu12iqSrC4rFGYSvDatVhrGOKmf04cu4naBu0rVlvd7QoKmtwTtwp67qmbhpxTS3FWxv7Kq4i\nCUz0aoHMZSle2FB/J6q5wCMhZLz3hLC8UkVjjFK8S96s0aJAVVmJEjfLF4VWKp/F8hm8TJKXGTJn\nvA+lkBf//Xyxayj7kCj3WumETrZ8viRly2pFTIp/XMZ/o0J+f3fDcB756Zdn7n/8Z67f3tIAf/3P\nfyEpxRgCLJpNW1NZS0iaD2/ecH9/w3Ie+PXrM+d+JnjJKWzaFc3mGv1ypLaG97dXXG9WHIeJhy9f\neH58Rzi39Psz52lhc7Xh9u6alERNNpxHwtdvNOsN6+2WVetwrsbZmqwUbd3QOItJnmEcmL0nxIXk\nPXM/0D+/8PR8oF13/Onf/5Hrqy3L2/cSKaUNAdAu0a1rSImXlyO//PSZxXu6dcfdVct23XJ1teJw\nSLLgyomu1nz+/As///kXuirRKCn4n78+sz+NLEq63KHvISbmqw3rqqKtNW1r6YeF/Xng1C/cbras\nrGaKM7//ww8Mo8fWHZ8/fWKZR0LS7LqapjIYq8g2oVUghYnaKcIEg0+Mk6eqNNX/w9ybdMl1ZVl6\n3+1eZ2beoyPBIBkRGZmrVFVZ0v+faWkkDbSWlJWpUgSjI0EQgMPdzex1t9Xg3OfMkkJjhq/FASMA\nwuFmdt+5++z9bQdaFdYg2v7lOPB4nIhJc3E60g87mqYX3VA7sU4VKFa82Llq6AowytQgjxzaqkoh\nGoFO5eTJyaOyFDmLl1vcL+VZeknEmMmq4IzBNg7rGoy1oEutLJtY5omYQ42362fudikVapjrdbyI\nAyaTiWrT5FV9uMhuBBCbpRKJ5HkhphRYjUoKHWvKEDk4SVUKQZGNxZZagKGllCNTUDGQfRCdvzGV\nbii7AzIV57sd5nIQpRjl1xgDLlI3C2grDfOm3jI2/oqm3jyMfk6Cyp8iQ4yp0oz3AYOSwmEQ65wy\nhBhQTnMYBtIiTp2UN0VZDj1MU1G8BlNkf6FJvHn9Um7W2tANYKwmZpEpplWohbZr2V9fc/f6NShD\nP/S0XSs44vrAR4Ex4vnWUI0RcrtTlVCpaiH1NkmvwT/LZdTX+RmDUB/SKclCOFZHkzYOZx3KbRiK\nKr0UWZKrIg4tCaZtILVEVmHLe4lVte5XGutwQ4vShoT46ynifjK5oEokx/jMpTcGrGvltf570si/\nfvuGZQ5oa9l1LQZxQO0ueoarAxMJnOL+eGZdPW3fc/P4QNs7OuPYX+xxbYcu9Y2u5Gm1O+xoLPSm\nMJ2OrMvCmjPL6Nk3O9phj24L1zcX3NxccDqeUTZhemhMQ8rw+PmJRzL73Y7D5YHd5QHXO5y15CUS\nU5Ey1PFI9p64eJYQ0VYTw8L33/2BZfL4MMsBkjPd0HN3e4E1isfjifv7z+SS2e1abq8Gbq4u6VsL\nKuIaxWHfkZVlevzM46cnpinw6u6G8emRT8cF5Tpeve7ZXx749jdfolOm63q++Pob4jQTlpnjcebj\nxzPnaabtLENnhW+THTlHuq7ht7/9ljev7ljmCb8s+NOZHGMl+8H5ceE0PqIUpFDIEW4udvSdxRnF\nNI6iGyLX1YvdQMpGdhkhPF9NRT6QQ/b5sNzqzpRCGWq4Z1sgZTISUsrVtZQzz5Vv4qMu5BgoOdRl\ncHlOIkqq0wjvwhi5Jsc6OdWJO9dgDQqRX7RFpVpw/GwrlOt1Lgldth2H5AUEZ14XX8ihkXx8birS\nRtxIpVIMJYug2ZqDZHGlkEYhYaioWjVYfJClALAVVavaBapzqbKRYE9LDTNtPuiS6hJZ1+Wblu/D\nOYfWlhADwS9S3rE1HJWKwbESdjFOMLSmKNRqUbqIEaAUSZQq5LAvkMJK0zhU48gxs4ZIypGwZpRR\nsiBFULzGKIamgbYTKSIVop/QxdK2LS/uei6vXpDR9N3A1c0Nh8sLYPNui5ZPnZJthbeB9LfmvFks\n66RrNMbIBK+NHJah8ndKlZhSlCk5hiibF60qdiKicxIZRdWyEyUW1a25aHNcSedr/JkWVBIQyTkI\nPqFs71klSWbjJLSljXzWlK16vpXbZclVoiukmPAho5YqraS/I2nl619/K+K+dRwuB9HdxhFfMtcv\nLhmuenJOsuxBc3t7TesMMXjGkOTFIKO1JkZxO2hlaJuGxlIXlBBTJoRIiFkeGkPDmgpN16EwwuNA\nYRvHxWHPsgTGcZa26hBIPjCfz6TVc1aakgLHh0eOT0+cl5G8BpRStEOP6SyqZE6nkWn2kpAcZ4K2\ndPue3dDy+dMDj58emKYJSsZohXGWfjfQtpYYPa5b6YssOFSOOJ1pnWJdJZyTdMPXv76j73t2+4Gr\n2wtOTycUis4URkT77YaBYb/INa+sxBxpjKPvW5Z5xZjCoba4rMvK+XTipDTrPBGjl0lGWYxyGKMw\nFHBwcegxWhG8JxUl11yliDGLvx5FWGaC93VLvwV5ZHLdapFTFseG0lKyW+qhWMi14rN6BmJma2cv\nRjb4GzucagGL1aUikopA0IwVfbyQyTEQvZeDHpEachZ/9iYuq20JW7X6TTMHjSmuTuNFwim51MlP\nDm1xNGy/d1vGiiYrTyl538sHfnPzKMiRrGyduKurJwnbZssixJikIUgbmT5rrkSbQgwLKURIUbDv\nWmNNtdaVIg+O+r9rK7mJnBQJXVuY/l3YRMshpm0jiztTQFsab6UfVcnBbepSUKyQBVL42XGhC53T\nxCx4aLEpin/+uZovJmynKz5BE0PBuoa2GxjaVmQ952g78WArbaqcJA90qG4PFKl69UvJxBhlcVvD\nYChhlDdVekEpYnWplVSIMcqOJor9NEax9RVdqz5KeebkbP+ec5RaQV3T4UhNXJYFkLzM9SFAkdqQ\n8hxQE3lRa4u1ksiV1iolB7vaAHQS7Iup4pErrrikRImyOP1bX7/MQf67f+Riv2PXtazjme9+/x1/\n+uMPHMeJVy+uuLrY4aeFnDXn2fPtN29oG0MIkc/HE5MXXfei73g6nskZ+n4nT1cjRQC5SDljSpms\nFe3QcHXYcZrlCjpNHr+Ktcw0iv2hoWkMWhWCh9ZZipdF6nOxsDNMD594enjg4TyTQmbYD3z57Rv2\nQ49BsZ4953nk89PE48MJdxi4rCGRjz984PPnJykRyEK+W3PGtA7btiRt0O2KjhKNbq3j6qLD+5nP\n95+YvWZ/fcc//+ffcRh6Ss4cpxMPPjCNZ9oyMQVFf3HD269+S9ft+PTjj/z07i+cF6HA3QyWp4cJ\npVYOB9j1O3TXEn2kHDxKRaZJCgcOFzsOF3uMsfjVE4LncLDM48roEzEr9vs9zhnmeaLPilZZ1mkk\n+rUiZkXLFQklEUuqkCfqhKmrpSs/65loKEnXKjfx7IoFq3qus0yeVFkl1gPaGtn8N42QNZUWP71f\nFuK6kqsH16gtaVoIQfRfVG0xqpq9QI8UJgl+tyhhWm8BnVI2Skn9wFN/P5WiWJvsS+2EJIrmnRTo\nWlWndCQZRdZGtFGfIET5uRUpfg4h4tBYraU5xmopqNCFFGf8GuS/SxHEcE3b6gK2CMSpVFBY0SLH\nqKLQ1IRgtW1KYEkOGqVB64yyGtfK4k9FMFWUSaq2FhVZMMdaz6dNvfUhaec1plrdJz/PlBKT93Sq\n0A4G27bYtpHXrOtw/Q5RgTOm6kg5IXH9Ig3ySotEt7FXVNWXc85VL5ebC2SsFY85CHBv9R5jFDkV\n/OqRrs+tT1bzvLRR8gDWasN5yN+3RE/MGoyhcY7tUrVJX9TD/rm4xDTy3zCmLi0lmamUIdY/V1ee\ni9A3xT8ekzR8Kb0FkxQKL9bc/x/byi9ykL/98o2QBq1l3Q10H+7Btfg8EpJCacf+ouO3v1acx5GU\nAvMpEII4F6zaSn21LBOdkZbsVgD5JSXacRFWBdA1VmiGuwFfPCA/vJvW8vTwkaeHT/zh8QFr5U3l\njGY6H1lmz+QXTCnEEHg4nplOR87nkad5ZddqKAvv/lz4+ptX9K1jPh7JawA0uJYXdy+5OlwQpoRf\nM0tIeCWLWKFYJooOhKxlkh8XwhJQqfDjXz8wrYHJR3aXt/zq7pbr22v6znEen5imkRB8LVhWPJ48\nVy/f8PLtW25f3KBRrN7zNB45jiPTT08cPz6Btgy7HUPXMetJJpdWc/9h5OHxkcXPvHn9Etc4Qoz4\nZSWHmTCu3M+JafUsPtPvOkoGv3hUFNtawUvoal0J60poF9nCK1V13W3ZKcOq0ojuWCP3WltxdlS3\nYK6TvAy34qYxWvjkKSVCTMKYsQZjHa6T6i9V4VfLPLOcJwlpBemvhFqZlsUrnnSdMk09yCmkknGV\nt2GNcE5KNJhUG4i0pHr1tuCqh+/zgi3zPK3lIkGOkpLQHyuSVDkrN5EUZMaMUYBJueZZa++p2Czr\n9T0pQqyl2vMqD2CKFFmnRPAi0yQCsVR8bSqsa0RnAS8pJaGbkiUhaq2p3vdI1otYHVMmjgG/eFLM\nGCtsELaezJwJMZGWiNUOZxuMc0BG2QatLV1jSakQfSQbkW5s61gXIYBaF+i6TpbtKaHTSphXwuIx\nzVmm9k13VuLusK4RNV8Z8W7Ly8VmJS1pc5sUQq57DCWESFVvjtFHkg/bb6x6udwcU6lS2+ZOqZKT\nthJuiykRojT6CAdHSsrrsxtV9x0ocE1DiCL5hJTE2lqomYkiIDmtibE2NWmRBJu2kwV0XYaqAsX8\nzMf/W1+/yEHeNdJQgwLbWLpBGnKWZSUUhWl37IYB46Rw9v7TIzGI33bfd0QKygpfxVpxAshySiaV\nGAPaQddZhuxIfuZ8fEDlFe8Txg4YrdA6o0sgLjOnecHYhq7raRuRH87nkfM4ynU3Ro7jxPF45Hie\nOM2e5q6HANMjfPxRJsLTx5FsWrRtuX2z59Xrl/TOshyPaGvo9z19q4nB43PifJ44nWb2uxbX7miG\nRMoj2XtM29GaBppE27VcXF5wcdizThNPjyceHh9Y10C3u+LV1Utaq7n78gvuXr9it9vhp0A/9Bjr\nsNqQayu8tg6VMvPTkUnLoRFD4fHhyPk84/PK43GUZhMDpQSJjxslD6IoV1xnTQVQwcWuxeYoyNs1\nEJeFdZ5wfSuSgJJItFbiGxRXwcZeqQGIop9DFzLHbwuoqqXXsmPYXAXi5S+VqWKchDDEWoa0kc8r\n6zyTQhRXQg6ynNwAF1lY2SgBxwL1ICsUI04lzRbcEQmBrWjCiByRQiJmkYxyjV5v2n7KVRPfvPRV\nCjBKfMSqtgypmEUXz0WcDkW+F5NBZ7muh1BJkLnU247owan8zFMhUwsmJPCUY5BFaCmovGK0NPi4\npmqyuBrCCmgdUAVCXXSm4IlrgFxwjUgKW8BFkCClOryqpVRJ9F8rjXJOglT1sKSmXUMxiDMvkeNS\n2SLim9TI7iIrTVwCKC/vh3rYmmgoqdSou4RqZM0i3v2ck4SwvJfX01oyMhxsqeEYvPw86m5Ale1B\nLBq5EeA7VMx2qVIgRR7qxhl0ztV1Isx7Ra4gLXFLxWj+nQ6PPJhLqoetrs4qhTGl6vZr/b3mecI3\nRj87WpTS5GTIJqLz3xFrJa3SMl+MfDC71nHY9fh1JYQCrmd/fYexsC4LVo9E7bHOcnU4sISFrAtN\n1zAUy7J4Tseplu4m1nmi6EQ7OA66MB0feP/9ykNnsdrQD9cM+xusCSzjGb/O+HUlL55lXrGux/uV\ncTrz8PmRsKyUekU8ns88nkbGNfHyylCSJfnMX/84EgKEKbO/vePuiwu+/PYLXlxfERfP8SnRHRqa\ng8PtWj7cP4h1clwZj4FhMOyurjC7HdjPLOczN1/cUFJhmhbWVYoH1nnl/DhyfDhzf3/i6bzwn/+n\nX/Ob3/2Otm3YXxwYdj3W1go568gxMbQOt5MAT84aP82cPz0whYlxDUxrIq6y2CsKfvzpXl6Xfceu\nN9jW0mpDmBQtCnKq7gtoG83bq46SIsdx5exn1nVims64fYd1BadEZ9ZG1QVVtSBuYM5SL+5ZnDhJ\nVz92lg9VKZXboiCX8EwopB5iVmucMbWsWB7scfH4ecWvXnjqKUjSkfRc3WaVkXShUmS1/fcrSMto\n6XegPC8H0epZF5fWng0vkEHL5L0dnrHaIZ8PA6qkgxxOmixgr7rcEp1Vga03/FLr5LabQ5LUqQwh\n9boPxFIwMrQ+c8Sx8rPOWfTfFAKqBLHR1oQnRrAEMRt0zGiCHL7KybW+yA1BlSK2xk7KRDBC01TZ\nSoiLLBydHChJY41IOz5I2411Fl05SCEHAa5RSCGxpqW+hgWTCnrocX3DMs2ksFJypFixkOYi+y/T\nitPHVEpHMSJBxCTgu7QsFK2xuYFKj1T1weklCYWxBpI8IHNKxBDrYSpH4jPJUkEKCpP1swXSGE0K\niRDkewxrom0d1kmoiyKL6BRjXXYKzXGT7SSXJKCyWDw5xPrZMBSVcY1ITRpELrKGqJQUZum/o4lc\n25ZCghxQuXB3aIhvbvjw4o6PHx/QzQ/8p//yP6DLHZc3L3HtX7m//0gIK93Qs55F41pr3L7kTKMB\n7wkxsk6erAs5RNLq+fjhkWlcaBrH+Wmk63/i8upA3xuOxyMf7+8ZzwsZg3Mth/7AcZ54Op9Y5pHz\neWZZAlAXR0bT9x2fjpHH06leN6GxDfvugsOh5+ay47IzjEf5s1cfuLy9YZom7u8f2A8Hbi5vGFrH\nr7/+ioziOJ/YHw6ow4FzEcB/d8u1ZAAAIABJREFUTlEYJTHhx4njuvD44ZEwLTTa4Jzj+uaWL9++\npe/ayjmWRdvh8sCw2zOePX0P1snUmhNSfrt6/vjjJx5OZ1IuvLy55LDvaNqOVDQ+Bs7LimsONM7S\ndkowBMkT1pVx9pQc6Iyi7zTnKTOFwJwT0zQRTyf2VxeYoskGsrPEIhpt2TzPicqEqanIWuumc/2Q\nVsaIrUULihoSTUUKRpSldYIUddZgrUaRpWj3eMTPkxysAsOV6TcXShQAVCo8W99SkMNwI+gqp6G2\n39jaGpRyokSZFJNy5M0prAsqiYYsa0ARn/Wzv7jeLlSNzytF8RVileUhoNnShQVBN5nnBCipJl21\nOGGCys+oX6VUtTVKYXOmCHfGQY6aVCSeLkXPslQLKEwDykFS0iZfQpRFt41oa2ubEFAKq19JeCxR\n2uZNpfhlKXguQEwFrROqRJxOtEaxhsTqF4wqGGNonIVQi7CVhgRxXliSJwdPrxK279Els3qPXxf5\nbHUNtpNlqNy4hFgoiGJJSvp1JcUoNzskmyBFzfWmlwTbkEuu+IQkh3mRGjiFMH6C96LHo4SLg0DO\n1pKJdTIvuWCNwfa9WGRjZD5NrIuXh6bSNF0PTnzgzpgqvclD2i++Asi23QPgV7QFQ33Aal0XpHWB\nb4TG+be+fhke+f0DQ+/oW6HwkQJWFTprmM8TH376yMPjZ+5u77h5/QbX7DHfWR4/f0Q5WVxiFHH1\nz4knrTMKkUCCDxJzjpFpmXk8jVjn6NqG8TShFXSthGOmZWacZvkgWEfTtJxbSf4tYeU0TjydZubZ\no1DsdwOHoefico8zltYYOmcZ5xVjHLdXdxz2O5xS+HFiWQIpFYa+oe9byJGj1hyGjt0gXHVLYA2J\n5BfOj5lxWpmXFYcUIXgf0MUQgsevmfM8sywLMSY651jniWk8c3N7LXJDTliryUbjGgE0tZ3FtZqc\nIzHCGiJTiKAsbdOhtIgZ4d9R1oxB6visbNqNNewbxzKOos8uK3trOAwNPgQexpWPp5lPp5W2NHQH\nL6UJSrCpWosHXCGWw42CWPI2qSaZVLeWnlqfRnUhlBQpubof8uZ/keuutdIAo7UEK/y6sCwLi1+I\nMVQPt0xZqkhbUwyBlAM5KyKFoAsGhUMg/7EkYpKrrbVRhvFUIAc0Gq3E9oZBFo2bO8EYdBEiY1ZC\nRPyZLVOeF91E/2xfFOKdQZcaz1aKYjTJZOFcy0daQnK6VGNyrjJv3RJXwViVUoNGgC4ViVBDR0V8\n8CkUiopyHjtVd3XVo52iHGTKUqrMEnOABEQF3mEaKzJWK0lasXfkn22PClzlteQcMIbKH9HV3qFq\nbZkcqsknQjpTNLRZtP60pR+VIi2ekDfujsG62gpVbawpyx6r5IRRur4zSn3wy60vp42TU55thBL4\n2Ra/8rAlFumWNbqy9eu3nCEu4kghy2BkjRKcbYiylK2SmrDVIa25OmlkYneNo20bkqndnZsjJcuv\nt6ZWD9rtBZTXQ5qLNnvu//frFyqWuOfl7SW79kDOgqldl1VSdTlxfnriX//rv/APv/sn3nzxli++\n+RXnp3um8yNLmmk6i7MaXxJj8JKuMlvKTTblBk2KkcV7Ph9nSoHWOVJMhNWLROE9CcF9HvqBfhDb\n1Dgu9H2H0orVZ2JWKONw2tC2LfvdwN2La64vLrnaDRxax/tPT8SsuL25wynxu54fTsQMXddyebGj\nkAiN5mLXMbSG3oIrgc8f3pO1oSjHp88nxkVcMoaOEAMxRoa+ky7KkMjWEIr4mYeh4+n+I+/++mde\nvn5B07iKMkiE5EnZi/vCyVXcL54QFN4H1py5vLzg+vqA1omnpzPjsqCD3Dr2O/m7OqUpdSnYdh0p\nJEoZUSEzDC27vuE0Lnx4nHn/MPP5tHBreiEYFrGJ5ZIwOlGsTEe6iH2LOs1RrYeRiKEeytv/r2Rq\nJNYPZLX5lWcfevffIUJjDKzLKn/H6Ik50OBkEZYKSmdiSvgQiHklJ0VEplynZBJFawkYxSpnWLX1\nYwAFUxKmRHxIKCeVbEbJcg7j0MWQqbeplLazC1WkMi/FRMlrtbbVicwAFV9bGkAjeNWK/n3efCF6\n+rO0RLU/KnHgm/rrBWeA2BCtEfjWRlvMiRIDmCTN7NaQshzywsIulcdtnlOSgjLPZB8YdMG1YFtp\nGioYipbwjLINyljJXmjBMGhTq/N03ZNsad6aAQkxs04jSwh08wxFFtaSyFQQxGYqNEyLKhpnBM8r\nh3iSWLxCbqTw/PcvdRLeOlGBukGkWil1zTVImtWUgtFKpCsJMAhQrJoexFqbJelpZB9Bfdi6ppHS\nkhjxUeL4uRTQK7tdR+cMnbUoJ8vsjMIvKykGVEk4Z0WKMtXjnwPBR1TQPw8Cf+Prl7Effv01u75l\naC2l9JAVu6vIr74NPM6BP/3wnv/lf/7fePf9Pf/hP/wj//w//keexiOfjyfG6cxhv4OUebp/Yg0r\naGjbhuC9/KWVEshOzAy7Azc3d4QQGccFreDpNDKugVQKbdNweRh4cX3JfuihwA8/feLDp8+EnEFp\nbq5vuLw4sBs6SEEsYLbl8vqWy/1AHkecc/LGNxrrHIZCCl5Iu9bQNIbT0xG/TCitWNYok3b0TNNM\nO/TsLi/ou4ama0BD1xliagk+UlJmWVaMMfz6n37D0/1njvcPUBI6Lpw/feC7f/sXbl7coI3m4dM9\nJRd++OuPvH//icfPma7TdF3DMEi5hHEWq6VJJqVSJwADRRGDIayKWQfuTyPnOaAby8V/+Qe+/PoN\n37x9wff/8m+MpzP3n0eSdkxrZlojWWmWXBh9Yg5JlpAqE0sSiURpErleXwts2Kq6+CrVeif9wwWj\nDIpag8W2jJQFnjG2atUGZRU5Jfy6si4LOcYKTMr45CmRuhCTppyt8SbngspgikbbamdL+dmiuAWO\njBFqX6H6u0MkpISODlsUSqd/R9GroCvkUNgWkckLPjbmAkWTS6pFFRpdEtoKv6eqIygllM6iCkYp\nko+VKe4pOcnwU3HM1Y0u7JiiIYvTRClQRm4bpQixUecsnZ+bjGXlJtQYK9KMMmjVYLQRCcvoCn6S\n35tDIKtMbgraSt+l1hrXNLR9i+tbCorlNDGus2AjrMU5Ld+LBWs12mlSgGlZ+OHdJ2Jc6bqGV69f\ncrE/0LetANw6J061pMlLxKeF0rvqbJLbhNYifWal61Su6wNf3jcbtlasroJkkJBPkn1FiVBi7UzV\nKKQ0vFSXjOxIpG8zVhtqivVjQ80naCgYVGPodpqdFdB+iYm0epFfplUW3tbR9L3o8krKpyNZ2EEz\nkjtIwrKR5KkC/o6klf3lHqu1gIhiwjQtFzeXuMay1hLm//qH7/jT7//AfDry+fM9j/ePrPPM0Is9\nMMbAuk6c5xVjLW3TEGORoc1IY/b+6or97TWEwDIvzPNCY+DzY4tzmsI1L+8u+fL1HVeHgc4Z4uq5\n3jf86d09n8eVq7sbvnr7Ja9f3NE6zTpNTMvMkiK7oePi4kCwjtz2pAqhcro8dzP2rXh/T+eJp/MM\nynL38o5mGDgfT3x6/56YFE1dHOqc8N7jUySnVg6uKgnEIP2Lfh4xKTI4od0ZVfDnE5++/ytP9x+Z\nl5V3P/7Ei5c3pJC4uz4wzxMxFjINCakD2+/3lCh8iZQSfdexN5quacTRUHVE1zgORvz28zhxtoou\nRcbzxMNxYkkFux9Ys/h8Ly92fPXNW7786kv2hx0hVHeKeh5pKbke1FrenGU7+upVNlcqoNGqllGU\naukT8NO6RqwxtFZKbyX8A+s8MY9n1vlMCquUXaYkzPCa1Iyx2v0oNcJN1eFFP84kOexKjbJTAzZZ\njsoYkyRXKz/bAHgjIC9rKlY3V2xAqglQkUK0smQlclOurgS9GTvgGfTUZETTRsoFIrLULFkO8Fx+\nrv+SQE59COaNK2IqyVEShQk5zEt1b6hUD4UsyUSllfjTlRHbrrE404irJxoSoVpBq68+Z3KEqAtO\nZ7RFUM2N8G2K1vgl4leJugsNUIkbRydsUmC1aNwKusZxfXvJ49OZ07Tw9Ifv6RvLfmgYdi2Hi4H9\nbkfX9DRabjE5bjZN+b6ljUcY5oJvkBuEqkb551i+KlWOLc/yi6r/O1p2bj9vOrY6PgD9XB0I1Oz9\n5j2X/1IsIuqoXJEBSgBl2ij5udTfIzbJQCjQX+2AQkjS6JVjIXgZSGIM9fa2HeJ/Rwe5qd7DVBIh\nyGJld7lnuOhQVlFU5v2nD3z68JHHT5/46/c/cnVxwd3tNZeHG/oG5rQCckVVKHTJhFoaYTuDdo4X\nL+744tuv+Pz+J5bWcn3Z0xlhmLSN4eJi4Nuv3/DNV69pW4fOgfU8cbtrZTFzP/LqV2/5x9/9li9f\nv6REzzzOfH545Icff8SUmuprWi76Paqm31KcSLHgtGY49MQQeHw4cRwDF1dXvHz9BYfLC96//4lP\nHz/TuYaub2mMoaSVOM/My0qqullJ8mYolQfx9PEnzBoxGcyuo+SMX2ZOD5HxB8+nhyN/ff8Tv/vH\nr7m9ueTVyys+fdaEmDGuRTtH02n6tmd8GllWWai0LtO3jv2up2kHztPC49PI5WFP11q0SUzjEz8+\nPFLGmffv7zmugaANnVGEUuj7npuba/7xd9/w9ldv8ZPn6VEKp9Xm3CjIG1OpmqLcDnKZlKh8v1Tk\nLaqLxtQtkSw6M35N2L6lcT3WSXw+pcQ0npnPR9bpLM6oGMWDDcDP7HGALbonwUq5yvosC9Cgoam8\naq0qLxpQuZBWQS6HFMCA02KNU0hKVW1Wu5gIvl6ti7RQNa4DFcWJEjMkI3LDNjqjCTmL3Jxy9Y8L\nyS+Ra++mIHMFx2ywGoquem9d0Nm6+KVSA3TJ1D2yaLZKV+cOUuRSA1BUTrhzDU3rSCsyLZqeFOXX\nG6UpSh6OKiqMEWulqdyWXDLBB8bjzDzOorkXyJX8iCqUKOzxaixh3zXsvnrNcBj54d0nvvv9nwh+\nxNrC4TBwdbXj+vrA1eUVNxfX7HcHmtxKp6U2KOfQ1EWoc5RYk8L5ZwxxodTpWd4HSpU6iUsADySJ\nWUv70LUejyrZZGTit85ijak8lLhl8KsEJb8wp0wIHmUCxmhaJ8gI21hImayzJDV9oGQvjWR+Ejui\nLyxzYl0mQvDklKQ4Rf2dHeR+XmlauWbpzpKDTJurD7jW8uLlFd9++wXrsjBNK2+/esPbN3fcXOxp\nrJZDe3WYpufVywFDpoSVeVzRvePmeiBMiegnnt69Yz6diNmjbGaKmRAWGpV5edkyNAofFqAIotZ7\nioGLy567el1rnaXvWuYx0bQ9fR9otOXD+3vevfvEcZr46puveXF3S28spyXiw4pScJqkG3HXDiwm\n4ZTDAmE64Uzk9ZsrhrqJB9Hxh8ueUKAoy+konvHT6cz1xYGbyx1OrxzHI8fHM/Hcgmlp+56LzqI7\ny+5y4GW6YR4n3o0z6xpRVkpy47Lw9tevub7ckfzKTz/c49ce2yjGccJ7Dzrz5VfXTGPAWUvf92K5\nSonVex4/nTj+9MDDOXBMmZlEPi/cHnZ88fKKly/v6Bz45QxJV3ud6I25JgtVhgpZIetqeysyEeUs\nPYZUfVTVnAClygq50DaG/aHncLtHm0LKkXWZWaaZZZ5Y1hmCSFKlSCN6zPLv4s2V20EqwjHPSQoP\nUvWUFwUqybSVSsbVQ31D6oaU8CljtSblTMhe3DYxkYtiCVl2CTFTSpSZWCmiiSitaK3FWkcJossq\nnbFGSOyhFHENJYXBiw855/p3iaKj2+p3UIpcROO1WtE4KwdG1+KajjBGcvHPOIKtbakxTlregYTB\nFI3K8nfRVWETV5E8CJ1qZWIHrC4SOCLJZ7HW3GUFYQ3488KyyMMupSg/NzKU9PMitjhy1uRFiJjW\nKWwDr14duLnteHU98ONPn3j/8RMfHh75w5/fE1ZB3377qzf85pu3fPvVW6zpsa7H9h1hO2CyxPON\ndbjGVWZJrLudTSfXdTqmetkLWy+wQaFztfvlOqmravurO4mYqv0V8bBvyeSCIqkkttosvBpTIAeR\nboquB7FRcoNQcPz0ieV8ZBnHOtyI3dZZQ2M2boT49591nP/X1y9ykJ+PTwy7Bt3bWrclT2uKqbYe\nxavba85fvOZ4nqrjo8E5Q/Tiu/RLrPp1jyMzfj5L9WAp5FiYxoX5uDA/TqALS1xZ48rQdexcy/Vd\nL72fU6DrE1qVOiVa+t2BYVjo10K3G2i6trI7HFaJ9fDq8sC8rJSY2F/s2fU9jTLiXZ4WpvmMjytN\nv2Pf77nsduRL6IYOkKBA1zTcXF1iVCKnQsrgXMuuMSir8T7R2Ia+bZnnnsOuZ9c45ikw+czJZ5xT\nwhuZZ4rKEns2At6yxqCVom83e9g2KZ3JfiWsC2iD6zpKkbRdQWNtg19WSox0BkyJWCScdRg6HlA8\nrQH6njfXF5iu4eP9Z756fcOXr24xqkVT8NOEnyLeZ1LR6Fw12cqzEC63TDASlS4yqdYmF52V5E+o\nboKSBaEbYdjv6fY9TSeMGr8uTOOJdZnFvVABQxJ336ZkSdlpJX7hArUBqLoNsqRBS12AsS0hSYSS\nCPU2EcrG95FWm1wyIQZSkg9pBkJEDugqgYBMbKgszTEIPqKg5NqPLNTFSpcpbHa1JG6eLWZfGTNb\n8KcUKYRQWmMUoIW+WESnI+eVlAI5R3SSP0cbcWVIiMWCksWiQKQE6Zt0FmhYAoXBakfZrJEqVw+7\n3Ja0aSnKkrJi9lJ8vqwLMXhKqfCqImlYUyBrRdabGwfIdVJPcott+5ZydyUmhEPHab3l/vOJTx8f\n+PThE3/6/iOn88zpOPLlF6+5ubml15lFJUIMaNfSdr1IIEaRgzhUcpGCCckAiH6eauH3Jlxs4TMo\n5BQpeXuN9WZgfd675Pqg11akqLoPFbREEdlOV/uqZmPAyOSfsqSMc4jc//iR+emRvC7gpCQmZ0hF\n0TSa3eAYdiI9a72ht//7r19mIl9XjA5CwUsRpR0oKwfSspLWld5aXr64ph86CRz4wKQUfp4JFW61\nrCttM9Brw6rFDrb4wPFp4nyaMFlTWnC9ZVkzp7OndXsurnbc7B1/+XBET4lhD21b/clZg2kpSvCh\nFxcHmqahoNDWoVF0bcP19YHmbMlK018fuOwvUbFwOo74aWGZRk7zmSFqhmbPbrejaR3amWpF0zS2\nwQ6KEGYkOiDXr6azMqHoSOtaLi/2hHCJM5oSIuM4kuyAGgz9YZCwS4ws44xNGeMczmiGoZMlbNIs\ny4LHo53h+HTi6SERlpWruxcYa1jnyBoy1jlcM/D54+nnYmIjm0elCqbKD3MpXF4e+PVvv+L29oLf\nf/dXXr285PbqwOlRXEHzuLBMK0VbjBVspzbiblBKtGjxNosNbTvIqdhXATNtFkWhG8ZYiEnTDj1N\n68QJ5D3LNDKfT/hlfm6ElyCN2NtUiTJtVzaAqlyVHP8dYTHp6i+WxWXJwuDWdVGbKSSlZLrWIjFk\nVT+4MROqDCKVdKJOa5WqnVKDrtYyXT+oMcoBVo+RonQ9kBWpGPk+ijDZn+XRjRIZxb9eSn5WeXNR\npIJ0tqZEjAshLqTsBSEru3sJTBlhsyjtxGlSED90dXfEWNAJ0EJtFCjW5pypKVhl0MpiXIO2lqQk\ne7CGRKp4AtGOK8i3VPcHsg8o9f0k35O89iVW0iVwdRi4vOwwQ8N58vz04YHf/99/4d27j7z/POLD\nX4gqkVXiOnpcGLBrh206jFbYxpKSfX6NKZULo5H3YT2PEgpbbyvbQf6c0M2aEjW5aCnloA7IVRoX\n0JjBOodSEhQSLIzc+EwjNYOmaAk3lWqXTJHkV+K8cj6OLMcJFQO6F5en95HzuNIPFq0PDIeCax3W\ndX/zTP1FDvK7Vy+YxyPHpyM6e9pOnjKPnx4p64w/H/nww0+sJUosNivOxyOTVpAzp6eRh+ORj6cn\nrveRnWt4f5y4P50ZV4960NxcXvD6V6/56ldf8fj4yDItvM6Zly8P2DxzPj2hrXiQlRGr2XmaeTqe\nmaeV9x8fWVJh6DqsUqSQERyXuCha18FBuNeXVzcQCqfziYenR4qKZAyUhpwyxmoONwdWXw8T+NnR\nogyaDmc1NIacPdM0kXKm72UJUkr6+QOnCt2w8qtfX6GswRHISRww8n0/8Ph0onEWra2UWNw/oZVi\n13VcXe3pL/dYrVDLgleQiDSd5fr2CmsbtDL88OGBdZpoW8OvXt9gdeH0+MSf/vIj3//0kZOPvNwP\nXFxfcHN7yZvxyDwtvJs8XbPj3fufOI0Tl/sDXdfRdgWMMMIpUkJglLC5ybra6qghn60IwYCy8vFK\nmRDlQ2ecoesdpMD0cGY5zyzjCT+NBD/JQV7DN1sTfZFRSpT4grQJ5SKdnZsGXZJgYrP8zCORpMCo\n+vvroQ4/OyBSkmu0BjLC9JAWq4oiQAlrRmusFftqiBFfbZFyu9dYJfhfk6QKztgG5yzGHojrTA6+\nYm4VJRm5qmNRqqZZzZZeVJhcCMuKnzM+JFKtgCPL0qxkK+/N4hAhIUq7jbYYV73wykjVonMYW33Z\n22Fe3T4y0TtMUwcUC2WeQCX5uza9PDSUglwfzFVZ2GyF2iLhI2sxzpKTSK+P9w/kUrCNoUuB3dDx\n62/f8OVXr/h0P/Hu3T1//u6P/Ovv3/H9Dx/47deveP36S66ubqAU1jNApkHcSCoVSgyUGCTCFVV9\nMMpbTzt5SCUKqlg5uHN1c2WRv6qJVHZh1Yrbtg27vqNpGnKBcZpZFkltGkUtfa5FFHMmrQs+eBTg\nMLT9jpevX7Hs9+R1pd0PFK1YQuTh8UyjFfuhx+kOrWWp/7e+fpGD/OHxnnlaiIvnondMU+B8PPLj\nH78nBXGXfLx/wvYO2zWoDE+PJ2IM0n2JPBGPjwvfv3vEasPHxwWfCkY7+rbl+vKC/b5HO8XF1YGm\nMazzxNBa5hM8PnmOa8L1Ua7dsUZotUPbQtcNWBS9k+Z1VVaMFXNvDJolFulHbFqM0SzLxOonQg4s\nXv7xPmFbCZ6sy4TSTeVCK0qR0ITRShjhpZBKIUSNVWIbs9ZBTa+5rqdpOkFwIhFibcCZUlGumYub\nAsYwn8/sOoMyDfMSaFtHay27oaMfZFrRyEQWZ88aheld0DQZGtfQDT2udTSNEbvc4jmfVh6fRoyx\nvH79gq+/+YK7F7d0ncMpw9MSWJbA2gTmRdKs52kWb3DMXNoW7Tq0kUN2u4JWabxS8jYPgdjCckki\nyZRMjAGUwraQwsKyJsI0MY8z3s/kEKB6xXP9AKYNOVsdgGrzVletU2tNYTvk6iQvOlRdjxWipFCk\neLhiAkoSCU+BXJfrIauSWBlt9cujDEZbCS05A1VTTxWRS3XlKLV1ReY6pac6GUqUnVSwWvghyiqS\nQhAXRrEZ3IUlIinD5wYkZ3C6ZgdXIX/K6enYWNqGIvKrke/PVffHFllXWlfPdZXFbK3b04LX1U6J\n02deycsIa0DO7vLMyylZDm5TteGiDcVYUgITpXrNT7Kj8CGwLl4gacoQlRRSmFbKy1/dXUqW4+6S\nH79/x8Onj/zbd+/5+DDz8u6GN69ecn11RYqRdYk0tWBEGSWAsMq3IRUJ2tS/d1EbMkKRMsSsZMGr\n6/ui1sTZyvPpdx1939E4J21SQSZuXba9hwD8YiqEdcafRsK6kkg0bSs7ESVe/F4pSj+gtOwanLHs\nDgqVMjkpljWQmHA+8Le+fpGD/M9/+QsKS2Na+rZlmSOfP498+PhIWBdCjISisKZBKYdPgafjxLws\n9G3D1X7AWocqlqdTIBfPw3nlYr/jYrfjcjdwud+jteJ8PnHY7ymtJXiJ7QcPS3SkIm+q7XB1tmXo\nLZ3rSdngY6K1BVNW8a+qjNEOjCEoI5toK6GE1U/4uGCsISwrGU2/P7Df72isY50Xmt7Jodo5IbSR\nMUrCEiklvA8i6VRXj0HaSJRR9PsO14iu34U9yS8ShW40MTosmm5ohYC3b7i+dJxHOJ5X0c61omkc\nTeukaipnTCks88I0e3xMKKspPThruLo+iDfZKopfWabAOon74PrqgtuXt3z5xR3Drqv8bCDJUmkt\nBesMbWnwUeBgRVt2oW75k5WCnVyQMnY5aFWVs6S6rLK/S4Bs6sIqyFXViv5evGedpPUn58iWdCxb\nhL+IzlvP8Uq0E4zt5jkzSlPQ6AQqpWosrhJPkeVYVEioqn6ApVo0oVSqMfoienVS1bpWhNBZWxg2\nSUlpTUiZmLNYD7V00KKV+J6VuCzE3SEYgRIh+1oBZqg8cotqjRAilaRHdVHCdSmygNRaAGK6k4dI\nhSOK/a/q/+IQKlKtpwpUjocEeyr1b8PClm2iVtWd4mrzjkgy0c+s45k0jpQQJOijpLw45USOpTpq\nDKZtpE9VmXq4C+WxxELIAiBLKFkwZ0gefPLoJaBbi9v1vLjZ8+aLl9xcX/DdH3r+9V/+L/7y/p7H\n45lxGnnz8gU3Vzfs9leEYaDdDTRDjzG2ouBr0EobtGvqbUfklFQEdhaTDBqmgFICxjLGVNKmoW0b\n2rZBoYhRAmYpBnIMdR9TCy9SJKwL6zjL/2/AuAZlSn0viK1TlAEvkDBj6Pqe4j0lBFnUryIx/62v\nX+Qg/+Mfvufy8pqr62s+Pp7lg9MMXL5+xTJO5Ji561qUtUzLyvHdT6w+471oq6dlRWvF27cv6Dth\nJwwXnuv9QOecxJwzTCdPPHlUKlijad3AuCSS67j58ksa57i9u+b65gqVIvY8YZeVxhpCShzHEash\nJ888RaZ0ZBiucM3Aze0tjU1YJTpsrDCew+GAsXKIf/H1t3StwZRMCYHsGlTX0R12rPOJEhYUGWec\ndAFu4cUsVL95DRQSyhXK0aOUpOhyznSNfAh89ORYpAnFNaSiiBjc/pome3ZYmp1lPE/V7qprKCWg\nVGI8nZmmSFKGw0VP31oEu0jCAAAgAElEQVT2g6MderSr9rvgeIqB2Sm+eHWD6zsOVwdynHm89yQv\nQZhh6AX4MwwyjY8TD48nnHF09XZRYqKYhMrb8g+S3ry3EtcXA4F4yEvKRF3dIjFgTEFlcTil1cuD\n3y9yKCmINQqvKzWPiqcoBayR5ZPckGvNXNXjlRKJJ1WXCwiPJNZlYm8tWkPS4nooqkg0X20fIQnc\nyCYty7LR6GfcQMmZdZWFqxRciL6slOisbWPJKUn4o8BWdydN7ooSixR8RyERuqYTREAurKn6zlW1\nz6na7pNBR3kgUeSmQA1ehbW2NxlNNIrshRGSYsA5R9u19ENH2+9xjSxnbcXqynNAnEIpRyk0H0f8\neCQFeUgVA8XIgRh8Ic1zlQgVunH1hRHYmTEGq+WfUhP/CYe1dT9SJBCTMlJ6HAphSdhd4OayY/iP\nv+b1ly/4b//6HX/981/50//6L7x5cck/fPOWf/6n36F1wljZcWXHs5TWGCnfNs5JWiAlYimE4IXq\nWBCUsbPiAa8NTylV3EQq8nrlTAiBNXhCycQcSUGKVfwqjiinswxwOHxNEcnNLOPngB9n/OJxztL0\nLc4aTANYSfr2h4boC2GOf/NM/UUO8v/jf/83fvO737DfHyhGin2XaUIpQ9N3YlEzFmUth6ZlPxzY\nDzuejieU0wS/4pcV7yOt62ibhvbQcn2xw1lLiZp+15JVYVkDTw/3tREGjHa0uz37qz131wcury7p\nDwNOZ6Z14vHjEe8jh4sdr794gTOa+4d77h+eGJfM7a3n7u4VF1fXkFdSmMlhoWsdrb3AGcef/3Jk\nmWdijgz7C/q2kQmg6Wr1VeZ4HonrKJCjtgMttjNfffHWOYzKJGUpRrgXtl4DkwJVIus08f79BwqK\npm1Z55F19aRieDx5lllYNHJoKfq+48XLOz78CMfjiWX1GNewv+px/cDl1Z7G2WfJgSJMkjDLwvLi\n5o72tqJDdSHGzK6TwIbCYFpHLpGhbzmPM0UF1sWyGwbaZpDXIEaSjhhbt156c8ZWPblUhoauEe4Y\nxRZYI+IxZlmgliwR8+yrBLMFM6QpiDrlUTZqHqAFOmVq7VcpBV1yhdwVVGNqa4zcjpRPNayjBGBW\nqv9Z10lSxtYaAEpC38tBHAsbLAuEN5NUzY9kkRe0yBEy5epnW5lSYJvtpgfZSy/t5qyI9XvWJYo9\nTlxzPzNqjH7mvwvp0NZFZkJiiPKzSUWIeyZrSR1GcQSVKA/MkIS8qDLkEChK9GtKJS/W4EyJXiLm\nfoaw/Gztk7Qf9XknELtUakuQ/NmqIOzulMhKk4xGWQVFyjNU1qQoC2ZdW5JKko1EWapWZg2NVby+\n2dP/p9/w5tUN33//nvPTyPtPE+n//G+8/vIFL1+/5kZrXBlwbYtpOhTyc0vBs2lT8toJ1VJXOU2C\nRSCBLrlplZxZlqVG8HPtBZCHoXUOrTuWeWGZz7IP66xIfwVytfGWumCO6yrFJz6hnNAOjTWEHFmW\nlXU8Ez/KQ/bvqurth7+84/b2hvhNoNkfGMOJcTzTOodtJJ4usVtN1w28urnDKU3ffyKoyDwunFGs\ni8fqhs41NM6w3+9RyjDPEZ8iBSnuPZ3OAq/KiqbpuWo6LppGOj5bS8oRpRI+BuZ1ZTxP3NwcuL46\nMM+J43nl/YcHQjB0bs/1hadxlnWaWecFPx5p2o6m/X+Ye68my67rWvNbbrvj0pZBASRBinIdrXv1\n/39Dd7T66kpXIgmBBMqkP3a75fphrpNQqBn91gFmRCEQARSQtTNz7bnGHOMbDqcVKmX8NDPPIrU0\nS2nZqSqxxvj+RJwF2p+MlqnOWryS1KIGUIqqscJtUNLQ7ko9Vy4c7nGY2D8fyAbqtiKHCUyNtob9\ncZRbQooy2SaFNZbFYoG1e3LuidHQdo6qa2nXa66uBZs7HM5ShQRwhmEWG+NmzaJxTNPEPA4ooKlq\nQRcYh6o10zyIvDJPzNOEIrNYtnRty/Ewk1LABy+VYSDaa5nOshKDl0ZJtZZoGDKNl2BHTIlxjKAi\nOovk8NpwnzKv1gxdFqaSmilTmCIruUpDsZGFWK5BAkkypWmd5CXskoULrUqsOxVLpC4aslI/MdI9\n4knPKZNSsRFmSRHGoEipwMAKLz2VTkjBD4gvWWuwtYGsSV5kiTNTRkhj4u8JMUAURrvRYpFDy+Gt\nCinPll8pZEKUA0TpXCbqVOxyiexl4leFoKhSJntZ9Hoti7qsHNNUIum6xOFTknRr9Kg8Y5Qvry9J\njJIENIbSJKuFmVNAUbI4FrdKKgCwrEphtTI4I1hcQSUAuUKVF2BWEUIgZYVXGlsZ2pXm+pu3fHh3\ny7t3b/juD194uH/k89OOXAkC2amKiyuNrWX4C0k6PH0IJXQsVlhQskQuyN5zVF5nWc6eMcnzNJGn\nkZgz0U+lsSjj2galLdHLDSSmyDAmlPeCRlCaZM4SXpQDujRKaXeW4ZTc9ENkHAKHY4/3IynNf/ZM\n/VkO8tWigRyZ5onFasVp2JN3EZRUnjWtozaK3X4mR4VyNaZyOAs5eN7fLEiXC543C+nkU/ID0q42\nDGPgaX/P3cMdJM+ydaC06IMhQx6FkGZrMjX9cWbs9wyHPRHF5eUF7y/XDH3P7/7tO5rVFf0Exi65\nuFhxc3PDouuYx5799onD9pHTac/11TWqaZjDTNvVrJoFF4sWZ6UAuKpNmWQMql3QrtYorVA5UXVL\n0Tu9p62ExXycexbrCq1rQBZLpEycZ46HQ2mjqri5fcMUBH+52nRo6/ABDocZpzLGaaq2YTvNHA8j\n95+f2b0cCT7TtEvaRlM1NXXXcnX7Bp00R7vj5eUJbaDrGvzQ48NMZKKrKqxxwpxWCldJJL2qLcfZ\n8Lyf+NPvf2D7vMfPkbptePtO/MAA/ZgJyeOTKaY7gRPp4k4p939eReyzFSxEdCN2wxwDtniqpTS9\nOE+KWHLW2E2RWJQyr4tEH71IWcaIQ6IU78ZS3Iz66fA0ViFCt+FckGC1kpeDkpCLjr6ERuJrtyhI\n5RdBvN26/F51npiVEPlSCiQl2rb3FPnP0jUVfT/LzTPMuKxfnSlnUF+MZ5smAusqJEnxiRfSnpHp\nep68hMKS5AFcTlQ2i+YUSow9RwxZXFxQtHBxxBijyTqTRy8gMUqGNGf0f8IFlAuRMNGJ6Jxfl8vW\nicCv4k8WU8gkdS7olsXm65JDSTRelZacHANJQXAOrRJaS4DLYOVmckpkN1NVhturlq77NafDBw7b\nA3d399x9OZGHO7p6wWLphbqqrThQzi/vEv4SJ1KEpIv7SFqXnBEiqBSTAMi/O3rhtlulaLsWq5TU\n4DlFvlqx2yvu719Iw4BTsGhqnDrXv1mmhAx0VoNzJKUIXrDDq3bBuu64eW942R7Yvuz+7Jn6sxzk\n/+3vf8XNV2+5vOik5DUlLNB1Na5xQOZwOBGpWKyWbK4vOeyeGIYOG8HPid32yA+f7rFWU1WWtqmg\nq6iqmus3K748PYqW3HQslx2rtqYxmqfnHbXVaBXl2hOCTOtBk3RGa4EBnXxg3yfqdOI0yDSvjYDl\nFZlhf+C0PXHcSYptbw70x5G+n4lJsbQ1fhh4eXgkxsT1m2us1YTJczoeUU5jakecfWF0yzd3DJH+\nNNIfTsCCulVYWw4pI3Q/VQJFrrLcvHsjS73k8WEiBol+i1dZSmljTFTOUtUVrjZsLtcsguiGKQZx\nIsRAf9iTA/SHA/M8YSuN9oZTP9H3Aykljs8nXG2xtbSTj8NIfzoxTpHdoWfYD1jbsFhkYh3RxhJ8\nFP3PWDRByINqlvJpJS3r4mARm18qbh5tJLE4B1ladlYYH372wrKhsLjL9RdAGQEUpRClrqxowkkB\nlGaXcRRY1llCiUUucAYVRI6pFEQVhIuCQJTODTBai46fyuf7iqvNIrfkrImpNACdp+RzKMTyE/I0\nZ5QzUFCoSYEPkXEY8VMQLTbF4rO25RZT5Ikk6FuZIuWlKlQYBLpUFplhFtyx7HEzpiyEjSqacCy+\neaSAGSOQL3MOsyhhpMTC8I4I3zuVwguKNKULYCqV/YKiMOZFCEEbKUJOyRK9SFAQ0MhBqpQgjjPy\nn00lAJaUQquELS+PlF+ZA/JiVMKqyVkz9CN51oRiEe4WjsqtqBtDGAMuG/opUJ0GWqeJWRjlKQuP\nPKYCQ8tiMFAmY8ozPlNZUhbJKVGKI0LEpFLIjWYYRjEtZLEaKmeoa8vFZslstSTFynBgnKNtK6pF\nXSJjUmWXk5gGjJJCF2sUtTHUnePm7ebPnqk/y0H+7TdvaS83dI1DIX7LylgqZyBGhnHk5WVLu77B\n1ZXA6JFroDGaMQb6YZbDTicJLFhHtJqryw1dU7HsGoiOi/WCy4slm0VNbRTjMAqZcBp4Gk4o46SK\nzDWMw475eCDXmnFWjF4zHk+M4ww5i36sIMwzh92ew+7E4TAxzTO2CthKMwRhnRurmceRYz8zhUTV\nLdisHbGwsrW1mLqS7bgPkGRK8F5QmcF7xtOEVQbbKOYQpZxZ/adiYGtxVYUG5lnTD4M4HYq6cLau\nxTlSVRZFJsSZprWAvDDnSa7cYRp5+PKFFDJ5DkxxxnjFqGB/GBjHmegDD4dHumXD5moNa0XKnslP\nzFPkeBgJU+Bis2azXLxCo5xWpBDQRuyXMctknAuESp1lkDKoJQUFXEFMYt8KJYBCKTNO5TCC4nYx\nBVmqee02lOmxhDhUccfERBxnwcCGSEgRpyxKOwkuGal0sEoz5YwXA3nhj5+LcEsdXTnIirsYW8oW\nYgnVUGRcbcQpIoAneSZhDiWFWSq9dEHEpkT0EyGokkLNr+5Gq+SgTlle+GiZVhMBoyAbCRKJjlyW\naX6W56plGZGL0wWl5XaTxUOu/nNlvD43Ocnzlf6F8iwVaApCIQsfRzSywpopT1yRSUW+UWRseQ7K\nOrzWzD5Lj+W5iFpBUuffW77GSerjUpnOzwhfkavOw42SGzcwjBPhHJAqFsqmsXTNRhaFk/jED31P\nnya2LwfmeUZbw+XlBU3TSTdpcedoo16/x1LOTNMkuGIN2crPTY4RUnxFLgOS8vUeP/VUqsEYy3LZ\nEKwhFmZ55RxN62jamqSLa6W8NIMPzJM8E2NFOtJasSzFMH/u42c5yMngh8B4nLnaZNqmZmxbwuTp\njyf2hyO7Y4+uLghzYP/8wOOXLzx9eaDuFLbqeHO9ZqUCh2Hgbnvih087TsPM7mrHzcWSq0VNVxvW\nK8OySozjkcfTxBQ89TzRPz3z48uRqze3fPP1OxqlePzyR778+B98/eaCZBaoVDH4TIie1tVcrtbo\npDnsTzw+v7A7HDmeek7DyOrmDVc3V9zWjraSqX2aPM8vA/sxkmyL/kbTVlbogspIOi4opmPPNBzw\n0x50S1dpmouWvp8h1DilGaaJ43gEBZeXG1xdE2Pi8fmJNHnS7PFxwmiLtgZtRDeOiOd4fzyx2+8x\nGjbrFbauiWhhjedEfzpx97RFa8dquSKmiWmcGPqZIUTqpsIZwx9+/yeavWWKnjkGtDWlZQd8EgTr\n1eWaqjaQI/MwsWwN1ipOc2BxcYmZ4On+EQhIdZB6bYfXykgisJgtUkzopGQ/EKT93dhKUoIlqEFp\nRELDHKJY7LQFJdObQrRzdf72C9KGk6Jos1HLIaGDwrlaZDAM8TSTZrn2l84ZIDH7kuBE0LJaFzua\nQjzfIZYErwIjnnKR9zLTnMSFgsbo0hiEdGCmUgqSoy96eCn9zRmjstzoiHKoxkAWXi0EudHp4tFG\ngQd0Et3bKrGUGu1QypSIvHo9sLOKRbeW5VQGWTAmyFG8+NOZK6I1eZ6laxSZjLU2BfaqXgNRIm9V\nqBxFK08Kq0HbjK1b0qiZj5GQAokk2N0stwL5Usr/X2XAmNLbKV76jCRy4zyja/laa6059tLQQ8y4\nqqVuanQnrPi6MjRtjTaa3XHgx+8e+b/+z//Bfv9Ct6j5h3/4G377V7/hw1dfoYyE4vQZG6syPs3s\nty8oFHXlqLsGW8kO63SM1E7RdY7Vask4TgxDDyUglqJ8v1SrDqM1xMxy0WC1LJoTSTIOqjwDU1HV\ntQC/rEHXTvDCfsKPw589Un+eiL7MSMQUOPR7Sfm1rdQumQldVSwvK1brjuAH/uf//CO/+93v2L28\nsFx3vH1n6KqKumvYjSNaay7XC7mxZLBKU1WiNyosk1eMY6TvJ4xJ1G2iW2l+tbxhfbHgcuExY4+L\ne+bTkR8+eqI5EWxL1BWXFxfcXl3JNwKKuql59+Edi4uex8dnjj9+wrWVtM6PMy/PA95Lb9g0JFzI\nPN7fUeFZLzsqa7GVKdcxhetahtOB3fPAkAac09QWxsEz+YHtqabpWiJiG3t4fMHW1WsNVfAzwQtw\nbLFckFA8b3ds9yemQayap9OJcZyIMfH115bNhaOqNKbSxGzw2bA7DCh6lAo0jWX2I9vDiYDC1VLT\nNSZJyylg93zA1TVV7bBasaiFGd02Tr6BgbpboGxi8jPb3cDqciUFECUABVkUozMMKKfip4YQwcdA\n0kb0Q2vkqp6LUBxk2jtjRc+HYM6AUhhnZXpKArgSARdAE5WwM3KGGKMAEmbHmCZ8wZz6OQiBUSFa\nLRRpS+yRgk8tYRot9MekFcmagi41YnvT4r6Q5RXS8XkGpWYIqej9qTTLINqwprS5l5ezspo4+8IL\nKbKKkmfmg4cA2sjNUBqBROuOxSGS00/0QtnulX8vRUH0KkNUxUOkpPk9JFHifRaZzCpFVPJQVNlp\nCDtHblBa5cIjAaKgCFTO5FKMoHTEtYaYHX62hJNHPCy8/nnEOlrIokohXPBygOdELlWBGiW+8zCh\n+sDQ98yTh6SZ58Q8e+a5oakNrnJi50sJrQOXFzVff/OO776b+PjxC6dTz49/+syvv/0Fv/rlL7i5\nuZb8iXL0p4HD/kh/ONJ1LdbWVE5hrJhOF8tO9ggZXp52jKcTKXqqxqGsJJRDtnJnyXLLIocycMC5\nvi1RUq5Klx2EyFvGWoxWRCrO9J//+vGzHORTgOwjZprohwGlLVXbQFY0KZOtkTQdid3zI7//3b/z\n6fMXhnFiSpnleqKyFlVVuLpmtVJ0nWYKE01Bmsoy0GBMwxhmDv1UCpoDUWd07bi+WbCoPBwPPD9t\nmaYJ1y6JSeOjIpJwjWGzXnF1tZE3cIpobVguFrSrlkTi45e7okdHVMw8Px+ZY+TiYkXtZAewf3mm\nyp75tGDRtbSrjozUkol2mOkPEzs/0dSa2BqmKbJ97Bl94N1X1zT1Ck3F3E+E04R1jstVK9axEHCN\npe0kKuzvI1Gab4W3MnmSCswxkbRFGSs/5DmSNYIBtZYw9fT9gRArToP0oqI1MXiCzkSVCwZVWtid\nq2nrBpVCAbTJXBaDXJJdUxGy5zQmdrueOT2jtBVHjzayxC2HisgS8fXQETRKImsLxqCtE8tWkAYk\ntDhetHVihSvUxFycEcbq13q2FM/oKqDY9YQDUlyLCVRI+BTwORZSHmVJmYsbo9jEtRwk5+WsHNgG\n7yNBabIRf3TlBCebUMQQS2F0fv0czpprzlHq4DhXUYt5kSwHr7Kl9o1SURcjIGhj+cHOrw03OUd5\nwVtD1roU4WiCKiEmgb0CZ7lJvdoK5cUkV/oQ5Up0bvFJKqO1OE3QWg5qhTC9VVlwvto/c8EKn4UV\nJeG7KK4QaxSVM1SuIqm5SFRlzyFvS9Hdy4tXKVk2x5xQKRClixBUIkVPSp48gR9HYgiAIWYvu4g5\nEpuKqpYXnLIJYw2bZc0vf/GOceh5fnrix493PD0+c/f5jt3zC3/161/y9Tfv6TYbvA/EGLGuoqpk\nYLNa9jdKaeqqEkfVHJiGkWkYC0qjwVnBKFilyLmA3MrPEpUTAmYpGJdiDlsmczmwjdLC5AestYWQ\n+f/++HkO8lExzRM+KBarBU0jtkPlLHXT0A492/2OpweRVB4+fSJMHmvkujqME3Vd0VYVN2+uuU4J\nP0WOp15CCjFJyUOjqbqWw25g1x+5f3rkeBxwVcXNzYH//veZrGYOT0/88/cHqos3XP/i71i3dWmu\n97TrJTc3lywWLYqMz0Em46RpGst62dDYit3zgUoZPry7Rd3taSvHt99+i5omdrsDX55eOFotrpPd\njrW/lDc2GaJ8E4bZk8NIspYQKwbv+eMPD3z8/MhXD/d8++vf8P7t11TacdpJgm1VNwSf8HPATCMG\nL6XMKK5vb6gWAuzabbf0hwN+GHjz9pq6sszjSD+eQBm6VcPbNxfsX+B4PHL/dCBnJXFtlQnDwDQU\nz3KWxc7brz6wubqgsobjwwvzNOCD59SP6CwafkLq8o6D53Qa+XT3SEqw7pYs1xtc3RQYk9jqIhmT\nSu+kzpgIKIt1DcZUxKhIOHIKmCy6ayw6bSpLzxxlopV6OxnExYIp4bGs4qsLRSrKivadRYo4c6zP\nwSByIhstCFKtsSU8lKMmGYM1DldZ5uBJqrwYi+/ZKotXqtgihSyotSyrwxktW6Re0f8ppD551ro4\nOGKWYM00SzjGFP64Ea+quKFiFptksdMZ+xNxLypFRLpGE+edk9g6Y0SQtDpjgZgMEVkaQxL/vTXl\nUAdlZampSGW/8VOiVuAlQo9MSoJRGUNEwFtZiwZtjRzk2UmFYSIX73+ZOZPQEkW6yfJyzQEVEwEr\n1YGKEqo56+lJPOtZkq4qiKtkmGdmozFWUXWOtmtoWsvNpiV++w6N5//4p//F3f0TDw/PfPrhE5//\n9lv+23//W/76737Lan1Fd3stFlsEARZTJs4BUsA1MoRoEqtFg7VaUrbWop2TmsCcSJNmmiP9/kQN\ntLaisrV8vbSlrhup3UOq60KWl7OKcusxVmrg/tzHz+Na+euv2fcT/exRYSCPXjorteZwmjgcB079\nxMPdE/f3zxxOA6vNis3FBavVFXOKvOwHtvHEsqsgR059T1dVGKUZR0/tLH1/YppGXo4n7p+OPLwM\naAyb6zVv3l2R4swPTzs+3Z2I3YZquURp2B0P6CyUQ2cVwU+cDqW84XRidzjyvDtxuVnRNQ23N5dU\njUXpzMPjlu12h2sa+mEiDCMBw+XNG3T2TNPEmGaCSaxWHcu2oe9Hnl6e+fL0gpLhk2gVp+NAVTm+\nen/LLz/csmw6gg9YJxZNbWs212vWl0spG556hjFRO8eHX35Dd3GFqZvXqHEMAT/P7E89btDoIMjR\nkAciB7bbHdvtgePpiLGidb+5vsI5i589h/2Jtxcr2taxXrZ0Xc3lxYq2rVF+JnkBYgUFRIk49wHW\nyxWVNZyOPQ/PL/TDhNOWxWKFLhNpTp6sdJkES1ejWLHRTmMruUGgDK6qZeKPHp8SKpRJsRy8WYkT\nAS/l1LoyhFBQxUomWJWlzNiqc4pUyIQpZMIshbcJREfGELOGqCVAI7YPciXyQgjCJw++2AGzLkxv\nSVkmZSR2HgI5B4SjApwXZEaLiwmFSul1IZYLez3MicRMjMKEBwXGiftBy2SqNOhUWNpKYcjCCI9i\nWXRWkY30uSpthSiaM0EqheR2iIKYyVkoiFEJu8hqjaVE+03ZF+QZUkZlIzLPuUVH/9TxaVSUEmMl\nNj5rKiElGocz0DagQmQOGl+spClniBmTkiysYwBCeRFlplhelsqILHS+vWWR6ExJtp6/D9Dy4gYw\nyZCnxJQ9KUHVWG6u12j7C7YnT4jw6dNHtocTf/iPH1EknIVf/PpXXL0VPrhRVqSbcZAKxiAYZHNO\n8eaM04aqdphWhr+UpHJQG0uzWAo3qe2ou5a6aXCzF148ov0rJbeW2rVALlJacVadJcj/8vHzVL11\nmsln+tHTH2e8Fq9tiLA7TRyHQIyKoR+LnALXbcN6s2S9WvB8ODFMM/PgqZsKBfST5/piQ46J3aEn\nxSQtOzHiM6SssXXLsm65urhks16BhuDW2M2C9+/fUDlLnD3HcZLKtkpwsClGppiYpxk/BcZ+Zvdy\nQGdwN5abqyvGWWxHM7BcLWkWHQnYnUaMdVxerQn9njmM+OiZx4HZKmaVmYaR/eHE9nBk0VVMg1zD\nximyWq9427bcXK7QrsFasQ92sUWpTL2osUYTfIXewzzNKKO4fnfF+uIKlGG3P2KNpnKOdtGKu6PE\ng2NMnPqB3fHIcddz6gcmH2m0o64aNpsNdVMz9iPRw8WyK9VZiqoy1I2hW1Skmw1+mAUXqgU7O8+R\ncBpxVkFdsVkvaZpa2oKM4GBzCsTCyabouj8Vbcl1XxnpF0UbkQZcsWpmqcuKqZAUxVFOKjF9dabW\nlmk/nzVXZchaDkRTZBBTYucpiDwhbg7pbdTSivzqORaHCAQDKZSYdhS9XWslwkUq7TKUCbukGvNZ\n19allUaXvs1KEphaFgPiMyeJlh9Fp45RpmttpNZMG1M8zaXIQIkd84z/1Vk6Q5USDzROKhAVCu+F\njBhiRCvzKhXFnAtPKjOTJE3MT/55SbUa2WednSWIkwWdS8OOOMyUSq98FautFAtXVlwyWRaXrlIk\nq37CxXopT88pgQnoKDkB2WlAjF7CTIX1ghL9X4JMxUevAV1cQoAQfZBFepSwU9ZySLeN483tJb/9\n7a849T3b7QvDqef+aYvKiYtVLd2iRrNYXNK2a6ytUGVXklElzFU450phK421Glc7gvfEIEqgFH4I\n8tdWFcY5CaElIEtCNJ3lNAXu/DdKem4V8Oqz/S8fPw8068c/cug9hzGilAQXdE7M80zvMzEbqmoh\n3uemRk0dOEfWmZBOuCrSJEvKhuVmjUY4Fm/evGHsB378eM+hn8gxY9Gsb1a8fddxfXvJpmpZtg6T\nDbTXfLi95G/WF3y4XXH/6RN/+v4HZtvIVb6qqaz4grPS1IsNbbfh6uKG92/f4xpL1TiquuLxj1um\nKXD9Zs0//O3f0nYLTqeBT5+eMCFz66yA4ZMj64q6suQQOW6P5KzwPjL5mS4q+lPkNBiyW3H75pqr\nqyXjsUcZw+pizU7f1VkAACAASURBVC//6hfEeaY/nZjCWHzoia6y7GaPV1m2+XjCNDDsHwnDgdrA\nxdsblM5M48hhf0BFzek08emHZ/EtW01Vt0SfGfrAaQgk5YjZYlyNqyqOp4GwHXj/S8hpRmXHm7c3\nPD/vOR5P1LXGKEsVZN+x3T8xjgOXqxXvbm5p6wN1azAqSx2bFjiSNrYEZiSQEZOCEhRRqiJph0yj\nGhU9WglAKJe/pjJhZmT5SGFghJQJYZIgi5EDRWlFJsl12wqJ8TRM+Fl6ErNKr95tg8TarTXURsBJ\nofiI52l+PcSzLm33gDOQlRUmyThDyChc2S1kVAnCaFtKsK1FJylyiP/Jejll0XzPOrVSTiazkt4k\nB3xIpBzkYHn9odeSuzERZUyJlldYrSElhn4SeBoJYwXdqrKhFJgWGqdCZ10Ssbr4tilWOVtkoIgx\nsuRU2hO0fa2l06hiGTVlx6EwrlARvSdOI5oJazLJGCKG7DPJR7lpxYQu3BphsslLxhbQlilulqwR\nKeUsiZX+TpU1OSRU9mAzVJYzcFjFSJoTSVW4pua3v/3Aqe+5u3vixx9/4DRN3L/s+d2/fS+S6jhz\ndXnN7dsPbK5upDNAW+ktJUtJSwjoSssQkCe0clLonCI5K0zVUDWdsFuMLNvHeSZMEyqDdaXNKEZS\nCITky8uvEgPA+cbyZz5+loP8h89brGupmxbbOBZtTWU1wzCQt0fmkLm6WdI0htVywdtxYpp6+sNM\nDuIa2SwqVgsn9VfAzfUNrl3js2N1ccNVlUuXZaSPHk2mqx1Na5nnieN+T32MXFwHVBj41y9/ou9H\nQlK8fXsr/YY5oVOmbhva1ZLFZkUcB067PWE6YIwsK7QTRGxdJdaLGqc8Ok9UDn75qw9yzdQIBZCM\nM5rjbscwzISY+fD1W9ZvL3iXv6GzlnEemYLn8mrDYtkIMnPdCCEujmwf7khR/KpJeXThT2+fDriu\nY7FZUNUdfg5MhxP+MBCLtjr1EzYn4jyRp0Clar569xW3b99J4xGlvzFHural7TrGcWaaRubkaVcL\nuosL6qYjhsD+Zc946EnxkZw12lpytrSLBlJkOB6YDidO/UCzXHJ9ueTmYsFys+C4G2Sh6meSE51Y\nF5a3sLUzMWa0k3CPTbL40hkSkpTFaFJJVVLiz6iSOixdoDEHWVgpcb1gKG1PYHQmRkk/zv0kpbxZ\nYXUl2rlWsuzURZc2chCFOTIPc5FLxDp2XoRao6Q3UulysCSsk5SpT5rsrSy4rIRCjHOlRi0LeVCc\ngWIDzKpMf3KTcFrhrBLyZpZJlmSRe4BM5tLxadDZkrEkbYia4m6RSHiYpyLTIPILqTxP9WqFq4pF\nVmWJ4gdtQMk+ICnxJZmy4MxaFXO1FcdFUY2yUgQtcozPkjQN44TvR8I0ULWmuItkYaxsIlnpzM6l\nozIqWcimc68mkHJgLl/vs4VTpu+iV8v7XoJPQXCwcZjRDcLzCZk8gzIBGy2uynz7zVuGf/zfGcee\nx/sH+jnw/f0OVX3B2oqL5UrCSdbQdhu0ki9SVnA8HOkPB/rjkcoZXHSyeNUaYyvqtsXWIvMZYyQf\nEQLRB9k9ACEIjOu8OIkx4/1IPhyx+szk+QvykR9PM8tlTYUqfsuIrxyTDxIHUIo5BrrlgqpuMfsD\n9w8Tp35kmiPv2xXr1Rrtag4vz4SQaNuWerHCtUvej54YD8zTxGQi85hx1rBoWpTShARjyDBO7J6e\nOO33hCi406puuO0aMolpGpimmWaxwFWGGGZ2uy2Pd/fcfb6nXizpViu69VIWNiFy3G8xaSZlxctp\nomo6OZSCR6cRpxKWxHQ4cjgNzEnzJl6zvljRLJdYLIfjgd3pgHUSf9daU9eteJ/nkcNuh7H1q+ND\nUocV2lUslkuWywUGhfeeGALWWLqmYfSBMHtUThDBYHBtw2K9ZH294jQKJyVHz/bhQUqOw8w4jcxB\nioa75ZLVekO3WBCDLGinfmQco5APm4aYMlYD0bPfbjnsDow+0KyWVLVE0N99dcudfsKnxGk/iW1E\nPqnivtCkJHySFARkldKZ2y2WLpRFGdFQhZmVf7LWAeJ+iMQsjfXiTxd0qNNWptwUxAkSojTQF+3c\nKGkykhySQhnxumvnmOeIL3JKGVBFqjYaZwzOWVxVi0UxRYwG5bQMp56SppSloSklycZqQvqJgiUF\n5UZeEpQC4VLnZtUZbUBhhEvAS4wkhSlTGuuVcjI9K10Wm544T6WdqNhykjQZyfMq8DKlcNqis0Cv\nTPGTnpexOUcU8aeKuJRLKMa8QsXOzKCsC+Z18qQxECY5zHMMZNVQa3kGdWXFmZOlkUmVQuz8+tUs\n/aQlIJSQ24o+24l0eenps1cmvzb4UKQtEwOCAxB6YfKJ7AIOuLlc81e/+Ya7uzu0gsfHZ/bDzMe7\nFxrnuF6vWKzWrK+uygte7IRKS0Avxchxd2C57tBG48OIa2q00/L9YE2RJc8hL1XqAnVpIzr7+VPp\nAC1Lz3nGI+4obf+Clp3GaIwW2PqfPn0iq4ythImyadc4V/Onj4988+EDddNxvHugnwLHMZDCwFdf\nf8Nyc4ExluPhwDT2hGGiXa24WC9ZdRV/+P5/MQwnnIbr5YKmbmirlt1uTzQ1zVVLoxXPj1v2h4EP\nv/imTFqjpBqzIk6J/f5Is2yxg+LLdw98/90f+eGHz9w9bFmvV9zc3vDu/TtUjng/MY49a+vYbY/8\n6/cfWW7WtIuWpnW8f3PB9apjrQ2cBowXoNV4mri6uuTm3Q1QczyduH+4549/+CMGWHUdrWuY5hN+\nnBjUzOpCbjRhitRthb0wbG6vqbsGV1niPJLCjLWa9fUli5g5HnseH57BOLTSVFlTX1xw8/6a919d\nMc8Ds585Hvb8/t/+F9vtEVe3wlZxFXVds2o7bq4vWV0sGfuB3XbHOAWSVgx+pJ8HVLIctho/jXz+\n8TP7occ1NdYa+j5iSSw3Lf3YcuxHXp4nopaFnbIZHzMkTcoWla1Ai3zBu5YpOymD0pITIHrOvmaD\nJiktS8ZMObyy6OuvY6K4GVKEVJClJCU2zSDgKFmMykFuREjHuBrtWuZ+z5wSubLY/FP60hhNbR21\nazB1LbCsYlGzVkNOIvMoAUgZbaWT1Ga0U+SpWBRLU7sxCh1zuXWWODqUCHdEOSWfl65JUyxtQyIn\nymRqsVSicyvNnOQmESePKvZOkXlkrwHSiHNerFkji16rNI2tC5FS6szIUhitlCb7wtY3GlUhqVAZ\nx6UizkA/DPR9zziOmOBLgMmgVBDNuM10C0OoHKO29FN4tTFKdxqi0Scry0sdMTYUuUH+f0ZnkXmM\nSDApyV7E2krQuD6DnyVgVdUkhA+fJ4/rNLW13F4t+cd//Huq2vGv//J7Hh8feNkP/PsfPpOHiaqp\nuHq7oVotyDGTfZRDexgLf2lP2zWgDbOPaBzoGmUqCT3FTMoe66pXO+EwjIQkvBtZNkfJE+TyInIV\nfpI8iP1L8pFvTwMJSZvNU2B3GphioK4c+hY2mw1NZVmtO1brFaOfub69JcZASjNfv3/LZrUkkxmP\nKzSaiOZ02PN495l/+5d/ZRx3GA3LpmPVLqkMECc2tyva9ZrVes2qcXz+eMfHT/dc3ayoqhpnKxZV\nQ/Ajs0pYp5jHEaDY0sCgWbUNlbVUleX6coVNgdMJPg8HTjP0QQ5pGxNpGNlPA1ZH0jwQuxZtKq5u\n37J+8xaT4fC05eXzD2hTY9oajGLRVlTOIaOQtNt7YBoHdC+4gApLjjNhUlKuPI1Yq2mqij/9xw8M\nw8jFzYZuscZUhvXNGkNm6Ef6GLm+WuNqw8PdZ/75//43XrYvhOC5//hI8BHXBNquZWEVxjhinDgd\n98RYZAWVqRYNzIGcPDonTLb88PGex6cXIHF7+4aqqbh/eGAaZ1LqeH5+4bg/4KepVKlFUkhFBzav\n2/lULFgpZ7LYEsrBYTG6QSkL2RByX8I7Utd2LgrAI/VmKhYIE6K9lh9+rYwcPNKdINH3JFMdNhcc\nQvXKjlZROjht0WeNQiBOZHKWr0HOM2ShR57Rp+JXl5ajmD1BQc5anC4hkNWM8gWtqyiwqIxTimxV\nmWwFE6CL3JGVcL1zSJhye4kpEw2EczmmKUGh4iShtOOkItkI0CtJcpJYFm0GrZw4zo34m5OWDkwM\nsnfIwloxQIrFpeMMxkoXawzyooox4CdPvz8y9iPeBxRBou5RXgDDoUhj2WCbjrptcK4nh3MzD+Jz\nRzz9RqdCX6zKPyyFIchuRhtZKJKFCaO0LA2t1cQoTJUxeNqqlgo85ZhGT0wePwWulx3/29/8mvVq\nyT/907/w+PDIOE3c7Y78/nc/slxt+Lt6Tdd1BTkL2oN1Wpq1moqqrbGrCuNqKZHAkII8f20VMQf5\n2mWwVU1GEeahyDVKkstRlvO2soLGVcUO+2c+fpaDXBklrpMJnK3ITHifaGvFHAKzn2kXrYCE4kzd\nWG5urmnbGgi0Vq6wymhWXcc8BvbDwHA6sH1+5v7LPZVNtE1FriJt7VBZMQ4TrrU0tWWz6midLZ7S\nWsA5ztK1DTqCnz3TPJJzZBgGhtkz+cB6tUS9izw/veBROGvo2oo6G1ScqLSAeJwzXGxW6JJCqa3B\nWUjJcxqgW1bixyVz9/mRp7tPnHaPrNdLbt5esblc05CpVUbnSIzCW5liQlvxQysS2hQQflDUdUOY\nR4Z+YFI9P/7xM7v9jsv9Urywyw3tcoHRpZMyeKKfOO4mtk/3fPf7P/H5yx3jNGKywVlL5YX1HWPE\nTzNd7SBF5knwwMoa0f6UIc4zs58hG152Ow5Dz+3NhvVmSc6J7ctWfvhV4suXR8I4koKntok5R1JU\niG3cFC6IuFNSFiZKzIXooRW5hEKUNmgbIc3kOFNg0UUrFr5SLL9H1Mf8CihTSkttWSExprJUy1km\nbEyWyT4mQZKqTLQSuQYgZbSzqFw6GZP0fnqyYGGVuFiccYVySGkIKhVoMSLOOAkwnT3UShUnJbwG\ncErCTVp/jHDpjXXiwojFN15uJSkpAqLNk4TOqKWVufyS5a4ml5uHftXW9bmgogR8FPJSTKYI90hx\ngoDmhJWSg+BqKzIqe9H2Z9DalNKVwNSPkpQtf3atEi5n8LncnEBrR4fFlNBNyGK9OwOrUApTnCES\nmBLNnNdHqKX1PhU5rASmlAryYtYKlCsBJCXcdlOhtWWeggS6fKRtLB/e3LBarwDFv//7H/j04ye2\ng+f7H+5oGtmZ3b67YblaUtUVL887dk8H5mEkTGLNdNYVH7ktg0XhjAXEI1+AYxGIZ0bMK4lRBpEz\nillzrrD+CzrI1+uW076nHz0XF5cEZXDjwO3VghgS4xi4vqwYdlv6w5YxKt6/fcfbN7dYEzm+bIkh\nSCioabDqwHQ8MfUVOXoWTUfrxDtrULR1hfeJcfKMLwdqY1loxd4nts87xn6iHwMpy/RhQuJw2HM4\nHEBleu/lBxHD1x/eYt/f8Pvf/YGX44ATrxnGQGUVC2dIBmrbsuwaHh73aKO4vllzceVI3nPaDVTL\nBdv9C58fHvnnf/meuy+PhHnk229uSTFSxUilBCSmY8DPin7wjHNk1TVUjXyza60ZdwMZw+XNDcM+\nMRx6ti977j4/cv/0wOf7RN2sub55wy9++Q2L2uLnmdD3vHz5jJ9nHh+f6fuJ/WHi/uGJi+WSrq1k\nKZMSu5cjZLi5XMCbTF0Hfv/dD1inubhYcbW5YDwdORwPDCkw+ZH1quarD5fUleawPTEej9TWMJ0S\nH3+MdK2mUppFpYhTFgJlVvhCtUOVyHeOxDATfCzpQiHXyVJNJtWkFImiOWZJ4nkvPJiUk3A+Xo8E\nJX41UxZ8ScuBn5OUdpT/Tkhizwt+IvuiJ5sZpbVUyKVUcLgSyDov4gqfUiZ3a17RETHBHBQpymIz\nEhElXKrezkArnWTJeZZThP9tMaWxXjkH1mErIyGynFA6Ya2CZIvGnF6DMZKSjRiryVqJmybNotUW\nb/65nEMlkaZQWoZ3LXnTrOUlJSXYidNxYhpmmeKRKkE3WbIuNrqAvI2C/DonRKWzVL3SIZNKhOwJ\nCTQnjIJm2VHVVkrFgxf3jdJSxK6ltk5lcTbJV0WTo7xscgLmCK6we3TBR6sS6reWXOytxhgB5lnL\neBqY51lsj0HMC5vLS65ubqiblmHwfPn4kY8PL0LpzJFvf/sVbz+8YbFY88fvv/DysGPpapZdy6Jb\nol2LcWLdVAZAkAUxFGtsTiWDEKA8w6ykn+AMHZNblNhilS4Atj/z8bMc5JvNJY1t8ONUeiQ3pLjE\nEDn1E85p3lw1PD7veNqemLJl1T1gyDStwo8e7wPb0wntMsu1o91pvny8I/jActkI7yCrYrpvaTpD\nNhVVpUkh8OMfP3MaPCEpjHVSyUbiuN3x+YfPPG+3jNNI3dR0i47b22v+4a9/Qzwc2N7fUaeRq86C\nhaePn3mYJ2kJCREfIraqZCK3jrZ13F4veLh/4uVlz2EYGKKi6Za4uuU3v/qGD+/fME8DKnv2w8yf\nvrzwzVe3mJTI/Yh1Ee0TLkEaPbFNxBrR3Lwn5pHT/qUkGhU+JlaXl5x84MvjI7dOM/YDH//wPXUn\nnBa0ZZklXGKqlq9/8Y52UbFZS1p0nDzH0XPVdFxedFKmMRy5v78HFIfdkcViQVpJHL5bLIjA/mVL\n21QYBT9+/wWjK1JKLLsOOGurgZRrsnbY2mBDkDqvCCoGWewZi5Q5BKbpRN6/oFYXmKYV/TPJgjKa\nhpS9hIqi0P5EnolY40hGdOAc5IBPKaNzxiZFNgpd/NBzCMxRrvPJaGIMAqhKZ0AsciAX4H/wkWOQ\nRnSSKho8rwtSY5zo4ArR4b0UfZyXl7q8iIzSWC3ujJwSmVBQrkXjLexqaytMJU1MpqkxCkY/kUNZ\nHJ7j9MX4kLQESm2Ql4WUO+TiPf9psvvp7wzJ2hLqkSEoF/ugAmkQApyt0XoipYl58oiqoslV+Rxy\nIicvrq+oMLE4i8rLNudYXtRCOZQbSsL6RDNDEzR124rt1dbE4IsjSGONFWBXkhsppRJP57IMLC4W\njJY0rrEoXZUykCycHy03GpVhCpFwmJjGIAgAI3LoPM5kk6lqzYevbvjNb37Nw9MTh/7ED09bxhDZ\njke+eXnh5uoKP2vW6w3vb29YX11gGinIQSHD0DxjTQVZFRZ9fH3udVW9dqGa0mAlrq3CuwkRp3Rx\nhv4FTeS2amlsjVoGpsmjVCIlz3Evh2HIkeftlqGfxUhPZu5PHPcOH4RM573neDiidGTyE01tGIaE\nNprVcslYO5SCtqupFw1aW6LStI1h6if8FEF5ukXLYrUkZy+px/2Rl5cXQWxaxzwG6iqgU8BFz92X\nB758/CK1XhrIE1OYGYeJmBLOGjQZZzJ1pVllS+VAp0nojoPncJpADRjbsFo7bt9eYK0h+pnDbst+\nd2D2AovKRpwLfpzJPmG1oa0qFl1N21YkH4XPEMH7WTRNZ+nWC27I4CzJGq42HZWG8TBw7I/Yqma5\nvkAZS1UZ2kWmo2JRG27XHc/bIw9Pe/bHgUXbcLFZ0bYVD19mTv0JHz1NU+NcWUZmCYTUbcO75j2G\nwDwOPNztmEapZjMa+lGu3p3StO0C4yo5BHUCJRNfChGlIxgLSpwnyY8wHrDuXAoh/twUsxw0yko5\nRSoVWkoYLKpQCimx6pxKaUGUK710b4qUcH4JS14nCRcjl171fJZTygI1JEIMr5O3li56zgY5raSy\nyzpJpIZXBnmBYsFrulRphbIaXWrpUglCZaT5R2kLxpKtFS07yUshJo+fRyEh5p8OcnHcyK0jvzpY\nxJGiCthKOO5ni5/U4+kyraM0uRx4uRzqxCjPT2msc1RVxVRJYUVM6dUdpLJCMqJSa0bS6BK3F/RA\n8dEbVdxFInPkM+88yi3IKun2tGj5PMS+I3ZTLW8puVnp4rGWAFdS5cVMYbPESCh/blIpjCgyVYqR\nMHviFGQx6yzWOmKWJaiZA84YLtcL3n91S9u2DP2J/TAy+0DAM/Qj0/uZDx++4e3bK66uLmlXHaZ2\nQq4sQDU4y1W8MoLUOVF8rnfTIp395/2QShFjY/mjC173z56p/38d1v+fH9qyXNS0VvP0sCUEYXTs\nDwOn2RPx/NsfPnJ1ec1mvcZqqHRkHnpitDRtJWGMU8/z4YVUPM+rzQKjLYumw1VXpBwIMUiaSmma\nmGhaR9s2LJYr2sOJxWLFcrlk9/LC3d0Dh/0RpRVvbq5p2o7HL890tejfP373Hf/jn7/j4WnH119f\nMYUZZeBq5VA2Y2LG6oC1QhZUOmDyxHyaeNjPBG/JWTNNiaqKWKO52nSsb9Z0rTSL7F+WPNaPoj8b\nuUYrrRh3PWGecHXNZr3g8nJJ09Yc9yeqtsIEOfRCQV9e326o2op21XL9dk1lItOx58kn7l9e0CHR\nri8wtaNuGhKGcMpcrC2LN5d8eXqhdo7Hhz3rRctiUVM3FV3dcjqNpJz56qu3pZo9MPtROMtNx998\n+2uCH9g+vTAOiuPhyDT2DPPE00tPzgqlLFcXFucc0yidjVmJ7SrGQA4aY8TJlEnEOMHcM48VRkhY\n5FhKEkoxsraWeS56o0qYyqGSLJgEdmbRJqOUhySYVE3GWFEfQ4zkIAd2RLzIIEEUGYQy5FiKgPOZ\na8RZqS0NnZI0VGJXtM5I7D6J1CMullL4/MriFv+2LuXTAYRTDmXClAPVa40KAWZPSidinMSHnNLr\nYpWccXKPlx7PorFmpUTTLy6bbM8pWnn5GCUslFiY7/rMV7GGqBT4QEyINdJC1dZ0KcnNbR7xMTD7\nIKKFSoV7IkPNuYYvF81bkpflLMjyZ5RfgZg9c/RkH8BYrJMXZAhy0KvX5QHyeZYnH3RCZy07qZwK\nPra8uGVrIaXIMZGEXiw+7yxyXV1VNKbFURGUxmYt8tCY6CrH9dWSi81ayspPgWGe+XK/I4yROjt+\n/e23vH1zQd1U2MbKzcnJlK2tlkBblIW70UKy1FpCZtbKFK7LQZ5yLvVzGaulcs57X+B2f0HSyu31\nBY2Wyqmrq47tfuI4ZXKz5NtfvuHq8oIweRadoW0UVmfmSQpLx91ImCxzCByGI/vdkXmY2KsdrrPU\nbY3Go4wEUuL/w9ybNVl2XFl6nw/Hzzl3jCEjBwAkCBZZrepuM7XVQz9I//9B1pKVSd1qFllgkQCY\nyCGmO57BRz1svwFaie+oMAOQMIvMiLxxz/bte6/1rXHmw/eR7dUVr169ktNSG+IY8VMiT54x7Unz\niIoBZwzX22sWXUvbWpq3r+lbg0qRD5+eOEwB27e8en3L4TgxzTNTKiwWlsYYSqm57I1s/dN44nAc\n2E8zbSNOB53hdB6Y54lGZ0z05Bl8Eb3y7d0V1zdVleMlRPm8OzGdznRdw6t3NxyeC/cfI9/98T3G\nWdbbJa/utpSkiCERvOdpd2acZrIqzEo0s6brMXakXy64e3OD1ZrsPaQRVTzD4DkdZLHbdY71dsnz\nceRhdxQEZ5LrXtu1XL+6RaXEPJyYhoEYhP72o5bH63Qc2e0OnE8npmlkDBOnYcZozTROghNQhtM5\nMM2pygQvDr6MTgldOSCqZCIBP47oIh1nFpcITlucrZFkBmJKpOBpgoxolEaK2GVRGMXarlXNx0SR\n00yOnoyAm3RRNdWnYHKsvBpRQJSqb1aIeeZiuzcv73CZS8fZV+45hNmTo8zEBRNQqk69VPS4FCsf\nA3OapeDWw6RUQ072XhKlUhSddY1TE+07oOqOTNclsKZ22qI/bmocXFaQhS4l322RpS76JzRCKuBj\nxiQvt4acQBs0MiZQumAbQ9s1KCMBJd7LrUYWydDIjEsWqfkn236pVs2UZHF5UaKYIgaqkCIqTNjS\n4nSDbRu8yQSfJIy7ritEAi9hFFnrmuEq8tFUl7hccm5L1aAX+X6KIB+lo9eKmGCaPbFA46Aoh24a\neuPYLh26dfxv//t/5Z/+6b/z7b98yziemXLh8TTxhx8+of/b/+A8DPyv/+W3bBcNRnXEOVVMQRHV\nVFUwWVvHKLahuYTm1P2KyGVldJdzghrOodHC8En/jgr5drNgPo1i9Y4R7yMxihlntV6x2awJ00xr\nI21TsI0mp8I8zYR5Zo6arJBCs1ritaGEyPE4MPuIvpIwW41cp9I80uiGuV/QOEssmnkIdSWV8XNk\nPI/ElGiahtY4FIUUYbVa0LVG8hOBzc0VTWPoFktKNhilCWUiRFE7NLbK3Yp0UinJgssXg8kSmSVs\nDHFtnQ+SbenqmCJn6tVXUmCiTwzDxMeHHSkENqXj8eGZ3dOR42nkxx8foNGsr5bkHGhNQw6itHna\nDYxzkOsdSuZvtmG9XbHarIUJ4xqCl3zInDKn08hhf8Q6R7tY8OX1K+6S5uH+kafP96L7rQ8qydM2\nDbrv2B8lQSjOgcf0xGa7pmkaFp2jxBatCrZtoMiVtpTMw9MObc74BCXXgtNoKFqCfVN6eRDJhVIC\nUc14bcBKJFZJSezurRWZnjWUIN1WDrmaeXSlMWpejHNapGyFTPK5GqUqgtUIW+MSvFtCte+hq5Lj\nJzWJqhpyoKJ0gSTW9Rx0NQWpipAtchOoqNdcLilGgjeNsUgs28sKr+q2UyKnjMqZOHsZ66nKta7V\nW1dnKEqUN0ZRM2IvLsvqei2iPilKSYeHqgjcUoOBMyj7YsiSMPAkQW4aQMagKPlzW2dfnKiCYwnE\nVI1WWVQuWcnroqh/PqCKRmehMmpEFSkBJQUVI9rPghZuRJeutUaZIrC0Iv+oiwpEiYO0VPZ5LtRU\nIeQwVlX1AlXKWG391bmrlRZ7f8mk5NHeElRhInFOkY2Dq1XPP/7jP+AaRd9a/vz9Dxx2e+bZ83Q8\n88c//whFcAe/+Gbm9vVb3GpL1lYKsK13By2LZ6UUKidSkjekjJcLkH7aMxQxCCmtRK307w2a1baW\n/dPMw9MOMP7nVgAAIABJREFURWIYIyVrlp0jp8A4HCFFVEqUpLC5I1WhfMoz5ylj25a7mzV940g+\nkHzk4Z//RBxnFiuYThNNo+mXDp0V83nk8cMnYgzECOMQaDt5AHxOnMaJmIsUVNcxz4GYM661mFaR\ntKHdLPjq1Za2aVA5sVwsaIzlOMJpmFEqs14KV0HVji4pg3ItfddDimQfQCVaZ4h+5vPHezB7lpsF\nm00PUUM9ia21ZAw5Rp4PJ1zrWCjD/ccd42niPHqihvM5sB8nbIGrRYdVcJ4mjkcvxgrpM2l7x2qr\nub5ZslqtsbrBOUtKvnYAinEuPJ9mlivH1Zsrvv67r3n7xRd8/917/uf/8z857R44HA/yczo80263\ntM5hVEdCEXPkfArcvHKs1wtKSJwWDh8CRSl2T3uGYSAR+Xj/zBwT1rV0TYtrHU41NNpBMdI1FbGR\nkzNgSdrjs8ZmA0mAUsEHoIiByMhsN+dCmgU5oLSSoNukLw0Yus7JUwI/ioVfLNCSV2kaTdJSKHIu\nVcp2yQlKtRBYtK6jm5SIJYlJJEkHprU4RE21fqoKE5OWUh7olIQl4suEQpO1rkx3KbolayIZXbJ0\nuJXwqMulNNWRBXJL0OhaBMyLRl4qYiZrc0lLk3GHEpVELqBzkluARlQTypCLIRVBw6p6CL6oWGoF\ndbYuG41IcV3wzN4zzxL6ELLoyi+3EM0luhlUloAPpeotp4DKGR0iUUhn5AKNUijToK2Sm1HMItvM\nYtoqL5rNSkNUAk7jRXetX75+VV/WQ0eWo6ZQTVEVNZwCacpMfiaqjCLxunf8/a+/YLN0XG9WtP/N\n8cc//pmH+wdCTNzvD8Q/Rk6ngf/wdODXf3/m3a++wXWBtl+xWMrPQ4Q8snBPuRBTllFLRTzkugg2\nWk4cfVHqGIPS+mWc928/fh6L/m5AK8vmaktJE/2ilWvlXDAZog80GgHS5ILRgeBnZj8zec/ne7HU\nD4c1JiuctfRdS991JAVN4yDBctmxebUlzp7kEz5BzJqu7+l7CGGskH5N2wqNrOk63ry5RTcyN9bJ\ns3u4xx8nVquuLpUmkRs2Pe1yiUtXbIOcoNpEnJIZaVSKU8xkY3h7s+V0GmpCi5WwZJ94PpyxzQwN\nmFa6SasNjbGQDUorFq3lF1/egjJ0rqPvW8IUWK46vvjNlxQjgbZlOMsbRCnavuPa9GwyWJVFXk0i\nZU+OhWk6Y46WknuaxvD61TXzFNlut3zz939H03Yslj2b7Yr1tuXXv/mSrjX8y+/+mf65I4eZtjMU\n5Uk50TSy4CsY1kazXnV0raVtNRhLSJCSIac1rXOUEpnmzOl5z8PTPY1pWS0X3FytcetGXIW5oCoP\npGQI2cu8NxnA17i3REGi7lI22LaaP5yDmEkx1NxPjxL0hXSWdXaOkhAMUML6UHIjSjEIiS4XnJX5\nfZ1bSKCLMWImKUVuIknShESDfjmASuVx1wdTS5GNIZFrKpF8fq4jGjEJaWXqAWAqlVG/WN6tyhCE\nFEodK6A0KVfynpIYt0sw8WX9KtK32rGrqkYpyCC9mBfXKNV0ZJSMIV6QsDkTU+VAKgFUUQMxjJJl\npjIV+6AdzhomL0iIFHS13Muy3lb+fEFwwpTKIFdFDpkEMdSrjY7VhKVxWlg+KdcMUZ1fLPzycstB\nVy7mMSWHWCZVDbdsMVS9EZkipiSd69euuIuitRAgNJAN42nm6eMzurG01vB3v3qLsf/Isl/wz7/7\nlh8/fGCMkXQ+M39M7KeJf/3zJ+7uvuXN69d89c0v+fV//C1Ns8KYRg40WzAXXwQitS1VzUK17uec\nRKVTtxkX4uTf+vhZCvnz4zNtv2C13VBSi7HywxxPnlxxnJZCCnK9jmNFhBpJbr+53pAz9G1Hmjzz\nHDidZ0qW3MLpPGBiIrWWEiV1PcWM1g0+FxwFp4XnUopQx1abNafTIGELxyPdCoxrK0sCJh94Oh7J\nOdFYxWbZEcpI0yj6qyucsWK0IVDyTMmJGMHHwOkkPJm2bVhteparBf3SAYKw/fTpkSHsmEJi21fS\nI2ANFJ+JMdN2HcY6Fl3LdrsgpcTpPDKMA+vVkr7RMgdHkbXGOMN6taCkgj+dSCXKqCYEYk4cTp6H\nxyPv3r3i5mrFatGgnbgqTSvRYsYINdAPI71zvH1zw8fvF8zDQKTgnCWEwDxNnEeJrnJtx/X1lmHw\nHPZHxuEMKqGNwnYGpRbMzjKdB9Z9Jyn2VVGhEQxvWqSXh1IezKqFTgGiIvmqXChGZsRWLM0lB0Lk\n0gHIm01dEmokv1NnJHEnivU950uc26VIVTpfkSKjUGj7UzkUb70lFVXT6evrmmuRQP6l1MXEo2uQ\nrxYKoQZKeZntApSiXnCzCnm4NdX4oq04OrXcBXSp+T5K2B5k6cwzYlVP1O5SJZkfZF2v5VZ0yyW/\nMN+puZv6YrTRdb6u8sW1Ioeekh9FqrmdyigxIeWEKrHeIKSwG1Uxu1qBMRI4PGtizSMl57qMvqhR\nLpLNWtyLIH8Fy1sLufEShKwtqpFnOqn08mKry0FQRSGq/s9PGqJcD0nRb8uyWYB4FVkuf++CHFA6\noYuEgrR9S985XOvwY8TYRFPgbrPkt1+/w+TMsmv5/PDI8XRid54Y5sDD7shfPjzw+uYzD/dPnI4H\n3v3ya25e3bFYLVFFbjyqyCjLGCNGuGJf3vraVNlpI7WiXOIG/8bHz1LInx6fuH1jWV5tIFv6hSA5\nrZ2IJVJIqJTwQyaMAT9GStNim5ZeKzZXW3mDZ8WwO/L4uOPz4w5nJdrq+LyntRKRZLRhGEe0tfTr\nhpATPsxAYZ5HlHU0rZhrjscTzw+PTKcjy+WSxXpJt1wKpchaPj/sCTGx6Ku1d5jouszi7pbFsqO1\nipxnhjkRQ6EBYgg8Pj3z9PzAr755y3qzxbolv/rVGxpreH488P37R077E95n1l86shG5GrqV3M45\n065WuLalX3Z0m4526DkME3/5yyfe3my4XrSUeSJoR1EaByw7Sw6Z4yxJ9yEEcizMYeY0zJzGmWVr\nWTnwyspDlgrzoFFNh3YO2/WoVNhereVhB1SSsYQ2DfPoJYHpNKGtY2M7+tWW+w8feX64R+tIYzWu\na+hWlraXuLbT/oSzhpvNiu1mjY8F7wNh9qSciVm6sFyv1ymJbpyIMDIKKCQbs8kFZcVAERKQPKpE\nxDdbzUWIqqMixiiIoSf5hFeKoqVDs8gMW+siqgst81dT9d4GQzGW2SfCODHHWQBYSkBRlyJ+gVwJ\nUEnkZVqbmhpSkQRFgqJLlUgqpbD1axhqqrpu6oy7doza1oR7TY4Gkqh3ElTqtpLI38t8NVuMsVil\niUWcpSlmYZQVIWFprV4OG2nLq9QQBJylJPCjVMSumGcTKoWq5ZbXVxQpl1uNojUCw8qNIgdTAVCJ\nUESlpIyVJd9lwF7RuylXrXtM9e9cqZLaYJ3F61BvInU/UG8e6eKMrYeCrAw06ZIIlUGny6z+p0ZB\nxDg1bLlaL7XSOC1hypurFV3v8KNnPIz4eYI48+XtmnX3K+6urvjdH//Md3/5kd1+zzl4TvPM0/HE\n0/ORh89PfH7/gf/8X0/8+n/5LW+//IoWRWPE/KNrVoBthKTyQv2ss3GjbdWeR5mb/42Pn6WQj1Pg\n6eGJaZpoTMdm22Gd4uH+QLdasd6uWfSOwexJqTBOE/7saxhsZAoRlKJrO5basl51vErXxOjxIcgC\nyTaMMeMfDxINt+yxfQ/ek0nMOTF5jyuZRhd80ez3Rx6fT7x+fUszTqjgCcPE7Zd33L65Znu74dP7\nz5yPZ9m2NxprCmU6MxXPOQT2uz0+B4Y5cDzNnIZJwpYx7B/27J7PJO0I/szbu1sW3YLb2yvatqVr\nLZqESsJ7TiOMQ2amcHt1Rd9aUpj5l9//yDCMoODN2zt60zCcPQ8fdxy8R7cNb97c8Pj5GVLC5kTR\nlpIKw3mqVMQkJo6UOO4Gdo+RnGbJDTQNxQr3oulWHJ8mnh92GFM4Pp9E/aKVYDetZrHqiDHTrTfc\nvL7iemNp8hanE5/vH5imwjjNPO4njBGuxePnA8+7HWi4vl1zfbUm58LhcEZXW3xUCUuskKhYF55Z\nVMoZcjZoNLnRlLbgmoIzloQhV5qhKhFbElZVUqSSeXlR4mSMs3SzFFnAiXobdFbkqrYggXYNjXPY\nppOC6SdKyqhceSXwAv9/6QS1LF/ldiNz0BiSSAFNA0HVw6WglcjyjNKY0sgoxmiSltCMy7z8p8Il\nBbJYKFFRSgRl0MZhZCiILqaOQTI5BhEVZJnPSqCYYG8Vps77rZx3F+u7Li+HjFFKmqwokkVTFNo0\naF2IWkNNsYmVa6IuIKt6TdHOYl0LC0NMkVCT5S8tdEaTL1RCpWrhzXKzBrKO5CaJS7JurHXMdWok\nr/gl6g8VUEY4LKXIzYtcg7YVkkqVLwdBQeVEIxpMUeigcMbSdo7lekGz6MgaxnlgGgbCNBPDhLaa\nzbJh9ZvXbK973r694X/8/o/c3z9wPsmYc4yBx9OR8D4w/h+Jj58+881vvuGX33zDu6++ZLNe0HUG\nVMHHGaU01hja1lZNeWXJFE0IMir8Wx8/T0LQZst6s2C5aJmnLPFng+e82/H0fKB5XPLq7Q29MbjF\nWuRoU4AYsbmg2wxK4axY8hWa9VWLNhBiZJon4YTnQvERpRu6ZffSNWsyqbI2ToczT/4J5RyZyGrd\nUyjMwZNiwaRMd+yJJRJDoO8cjVaYrhFtd85EPzEMJ6ZplkzQxqK0putb1usFm75h3WkedmeeTxNj\nHHm17Rg6h0qZm+sly96hUSwW9RqsLNa0nOdInuWNEzGEWaLaplkOCLkBa7RrWG4XjLtMQUsSjCpo\nC30j4b3zLDyT1XqFthrdGK6urtBFM4wnHp6PaArrrqfpGxa6oWllPjdPMzlFchIYWFGanCLOtXRt\nT+talHXokjjudsyTJ8Yopi7E9NAtWlrn6F2BbDmcR+Z5IvjM8TjSOMN61dG3C3JRzF6ke7lu8WWu\nKulRKQNZ0mZC1MIMV+BaK9rirCqHJEgxx1ar+0+yFXlI1E87MSGgVM6JFHIQNK5zDW3fYRpHnsNP\nygn5VDCV1HdRsFx+WaQTzKrybXwk1SWufhmuiPzw4txT5L8aG5QXPXsponQhZ0HZGnnIi65WfGUA\ni6nLbaVMNfnUgzGKjlrokeqnrhYLyoIytbhWQBXq5WteLOU5Q5wCbaNxTmNaOQRyksPDFzFRKWTH\nKocpde5s0LrBZosrdXxV8cOUIjmhNSACpElPqqBTTW5KwruRrt+QQkDZLEEjLytUgR7Iz0YOWpVT\nddRStfv1x13qz6cICVPzE/WxaRuavke1LadhZhrOpOEoPw9rsHRQM0Jda2m/uGO5XtGte/7w7Z/5\n4Ycfebx/xqdELjM+ReYfIsfTyOPnPR++/8wXv/yCL375BXdvX3N1c8Nqu6GxnexItCQdSdBElFFc\nyf++LPq3r19xe7Nhuep4uH9mOB04H8/Mhz3vH/acM7zev+NXX33Jq+srVl2LG2dSyHLddLLBJSuO\nh2ey92IwWnSUkhnHUZCaKVN8xHuP6yyLTYtJSeaiWQw5u2Hk/v4B3bcsVkte3W2YRsn0C0pml4+P\nO/Jj4XA+s6wSSdu1xEnkYD5FDifhi49jYL1aslr1bLYdhEirI3fXLdO3hedzIIQZVQrTJA6xZd+y\naB0lwnLlUMbU7sTihgkzTYzHPdFoUip1jyAaWj8GWutou4ZNsyYoSUFZrVZY67AV1hVJTGNAa8d6\ns6JftriuoVEd8xiZY2F+eqSEiLMFnVXloDc0riHHTJwFqq9oSEUxzxN931TJaM8weqYp8Pw4EVNi\n9EF6Q2NoFz2vXl2x6DpKgfV2w+50Yr8/4JqO8zCxVi3vXl2z6Bb1z5qkeFRKnDLU6uBr7KUUuZwz\nIchM3NQD7NJNxix8dbGcy9Y/R1VNhbLUUy8FNXNJkgeq7hmMUdhWTB5KK3mwUpS5cFUlipNdv/y+\nXAo6JVneZUtIqTJI6jwfCQ+Wj+oOrYdRKamqBCXoWSN69VAkPUaVRDYygBGZCbJIRVGKwWRdFSsW\n3ajK9BAHZqnMa1l4qmoWEl55UbIPKnXYrKuuu0j2GxlZPaSQJQhYG1QjDUfJRcYY8/yyoKZkmTvX\nsQdKmCPWWLkpKFnAhiSZp7L85eUQSFr4NFYpIWMmyQY1xqJVw5zOdewkBdwi5qqkrSxi6wEks/wq\nR67vJXmteNGdl5xBy76gaQyubzF9j8fwcP/I86dP9CayWHX0iwWtW5BjhBIxRbFYLVldXbG5u8Z1\nLdoYpikwDCNzDPgk0Xqn08znDzu++/YHbu6uePPVa371m1/yd3//a37161+zWl2xWKyg7aQOZJGk\nxphkZm5/civ89cfPUsivNg5rMyl6XN8QZkMJgfP9E+Pjnqdh5i/vPxL+S8D9p//AL3/xhuk8EmOh\n7RcyX9OGRjcsN2spiD7QGEUMnpQ8TWdojMwaU5hE45syj7sdfhowRK5Wa7arFvINn3cn5tnTtJZ2\n0dE2DufEEfq8P3IaRpq2xdi6DcdwdXNDCJHZzzSLBWWc+eH9PW2/Y7NZcHuzRRWFcT3ZWPrliqst\nNO2Mci1jVqQQOY+eRjd0fYdZtvR9T0rw48cniilsr5bEEDmfBmIsuL5ns1rTO0ktUY3lNMkbpF+u\nRcPdOhadE5MSYFIhO41fFeyqp1l0uNaQPbhe86Zbc/vmPxLmRJgSMQf63tEYSEHkiUkFlpuenBvm\neeJ4ODEMZ1yv2V734hKdhWI3+YlFjLz74it88LKBbxSmKfiQmFNgtenZXC346su3zGNksXC8ebti\n93Rm9M+VKS2Uk6wVqshC0pQiREYSMVdZXw16SAUap7E6S5B1bkixEH0gXjpdXbMrtca4BkpNcdeg\nbSOdWUqYIkUya8NhmNFTQGXww0gKuaoiLhbxqhRBWOF5Fot6UZbktCwIkQIaa/V3Ttcdn8jyJOFN\nk0uD0ZIc1DtLjJEYpCiVpEhFbgtOZWydy+dLN6kNFF1zTiXNJ8yeNAkBUJfLSOPi4FRAqgHGWjTd\nVIFOVXlcijpZDEjGKqyT8ONhiFgjHXjKWZbtSkYFuUr8TJb/lmrYyjnLc4FIBa0FbaV5ybVLVnUR\nm4scYFK+RM3hnCO2cD4WtJdwC20alM5iFCsaS7moLmVYViX06nJaXLp+qPI+eb21dTTdgna9xix6\nHu+PvP/uI59/+J6cJzZXPXdvrnn3i3fiwzAOZwvJGHLJOA2//eZL1ssF11e3/O53f+DDh4/MsyeR\nmHPkHD3HOPI4nvjL/QN//PY7/vv/9f/y5Zdv+fqbX/L1N1/zxS++RDVyIICunHhd//////GzFPJP\nH+9ZrpesNhuabsH1XUdvO/J+kABjL6Q7fz5x3O8Yrxb4Ocq8Umt8VljX0W2XdGqFMhbFmcPzI9M4\nUkhkZcnO0RhZIMSYmCcvDtEpUpLH6pFGaRZOs131ZCshtM5ZijbEomidpVssKFqRSmC13rDoelJM\nFKNojMWYAtowDKNEW+UCxrJcb2Rhsuy43naEsqDtjxxOZ7QGaxpWS8d4PGOMwVnHOAQOh4nh7Nmd\nR9qmwRnL4TAwzTOA2NpjEsfneca1LSEEnp+P2H5Lu9ywvbmit5D8xH63o1RJ02bVo1NiPp6YjpnG\ndTTW0BiwRaFbK113Fn1v9CMJ6ShTjD/R9FJBGUsuMIfANDeyuFMwTRPP+z0pZe5e3eCUIkVhZU+T\n7DAaZdisVjTOsrla0VyL6idHmYk759hsN8QpS3JUji8jBnkGxTiRSkYjCzZVZLRWgGwKllQVg5pc\nvLBZSiGphM1grcFYVTnWF9VJ1feGRK7GJxUjeZLyawvEIOOiouXxUVnQuNlXk1mWzEVV5PvIRTgw\nqtrwmywPp7VC6JNFqiQHxQjUOS2l1HSkSE65qrJ0bVvlqp2z3AQuKhCtZYGorUFbLQvdKK+fumjE\nkQNSJsKIX6NKJdNlWcnLLlFez2qkqXOnylXPFGXkllBVFZdUp1LqrUgBRly3WVegV7moXApKX9Ql\ndcx1uQ3ULy6UX4l6I8mYq131NG0nkLQQRLZHefEByF6gTk3I6Ar+0lWOKLHYNfDDVFWPc9i2xXUd\ndr0gNQ1zCBzPo4RizCPDeOI8njmfB6bRc3N1y3q1onOKpneoxqIzLFzHm1c39eaRcK3lu+/eSx5s\nSiREgjrHwGka2R+PPD7t+PHDPT/88IE//el7vvjFF2y2W65urri63tJ1PcY6gX79jY+fpZDff3zE\nzwltO15tb7nabOD6FjXOpOihJPpUcCVxfnri0dUAWDQcjpx8xi2WGKtxpqGxDapt+Xw8czzu0Y2h\npRNNtUnoVIhzYp4qY0M5spIDoeSIzpntqmPCEKqAVHgaCdMYlquOfuE4ng4s12s2yzVxnkgJgveo\nPBNKQiuFcy22tSyWa27vbrHKslr0bLdLjOlZr9ccjyc+Pz7TtQ2312t2MWGUwVnL+Tjx+Ljn+flA\n1JrlYkFrLc9PR5SGxUK65HEOHAePD4mrzQqnxQGYckbbRgJidWY4POHnGYyhcY7etQz7E+NwZvKe\n9e01qXXMRYhv1lr6ZUtnEVnnEFBNR6p6aV2vo6oomrZFGQghczx6jDWkmDnuznz++EiMCec0jRVL\nto+Z8ziSY6E1PX3bYVtLTNUgFT2n454YNI1zXN86xqOH45k4zuiiX6LABLuqyNlQsiSqKyNkuRhl\nmZWpbspapAvSyccsapaixOhjK7e6FCl6MWbCLPNYWfuJcUc6yCq9ruOXi+9E51w55VUymcvLvL2Q\nZD7ciMVa5VqqG8HcWiMKqzLJyE9muRliIUSh56UKxNJGim/JF+ki/DTzr+Lny0w9J4IPRD+RSwQj\nIxfhdmcqIUCMQEXkjxlTmd+iXtQysX/J/BQ5c5IO3xiUc6R6kCkyFCPPagatk4zD6vhHVSepquLv\n8kJ60VWGqOTvXdVFRcsSVF3EJFlm3NY16NbSz1eyc4iBEP2Ly1aVUheoikyU8ZnSskDOGYzMzIVt\nIl247hy2r8lOrePkI+dxZAyeZDI0ijjBeDhz3J847s7c3h65utrS95b1pqdfLjCuQ2lDbwxfvb1G\n62+wjcF7z+PDE+fzQKru3VRfzzkFhtnzfDzz6f6RP3//nutXW17fveLLr97y1S/f8erVDYvlGuv6\nv1lTf5ZC/u76BlwDKdN1Ld2qRxfH+t0rbs5viCaxioHZZ6b9Mw94wErhDImPuwFcw+7pE7/6+hte\n373iZvsKv9tBDDydDlxdb2ldVzsa0cj2CwjRs9gsWK+X9J3j8fMjj/cPLJYGbIMujuGYWK5a+r4h\nBI9utCzq2jdc3Hdf/OY3NCXz+PET//f/+QPPuz1PhxMlZVzT0LbCCjcackqM5xnXW95trvmSK5o/\nGeZZDpbNsiP5SJgnckKSh4zm/vMju/JEow2j97z76jWv393x+m7FOEaWB89+8Ly9u2LpLJ1rGOeJ\n/fMTxv6yUtgUV8NEKgUfAs+nET8OxGkgx5nsHcfhzO75SJhmNtuO1283FAzHY+T5GHDdLOHAShQA\n682KzWpFSIVUChTNMBa0TuQUmfyEnye8jzztjnStQ5XCPAY+fbpnGGdc2/H67R2d7vjw/oHT/ogm\ns1l2NF1H2ztx1aoGHyyHE8LDJlNyrF2vIkQrMjkHjTaiDVaGkgVRysUVWR9mpcTFWGqnGrKoHaqA\njjlWO3ySyLC6N5VxBEIWzLqOJYpAvpQuYIwEKlc9tbpAyGtToFNBWdFYGyO3I6wFo4m6EHJiShLI\naxCgUqn7kKIvzlIrv5bvBJ31i+svGUk1yko62uADMQVi8FIYtaq6bamKqigxEBlVl2uStZkQt6os\nXoXlLbdRxZRGYon4KCoQrYvURCWSTVMRq5Xogsp1p6XF6p+zgqxpakpRUQWNrTp2+RzRj2fRU78Q\nAgFtSBjmUJiOM1OYeHjcV5yxjEos8rnGZtrGoFuDxomD00gu6iWUwpSK1K3dOkpuNT5lTk9n9s8n\nzueR5e0a0zpc39OXwuw959MJXxI+JQ6nM65zmJLpnOH6ZsvVzTXLjezRbtYd//DbL7m5XvBP//R7\n/vzn9zzv9n9l7FF1lCVNWPCJ4Tnw+XjgTz98YP37f+X6asPbt1u++sVXvHnz9m/W1J+lkLuFozQN\n2lly8gyHPdF7TsPMOSbOqXCeA/MUaIxlve7Q2tBYg7Gad24D2tKmjD8dONpMnhrQntW6Rbk1q02P\n0Q1hirSNAoR3XVi9KAKGIXA8e45DRLlA5xZ0bcdm44jRM40DkPFDIM8yYthcb9hsW663Lel0ojeZ\nm6s1z/sz2jS8ef0K2zf0ix5jG2yFOx2OB6wzrFc9m3XH3asNz097zseR1hqiUcwhUbSiXy4pBT4+\nHdgfTgQfUChuvSgwFIVWazqt2AdP9jPFKFpnUK3DdY55lrzO6TTwvDuAKpyGkY+fnzgfD+jsWXaG\nScmDHH1gHAZCGBmnoc72VzSLa7rlAkUgxZlkNHNKTOczz4cDbdfSNT06Kvw4MY3C0JmmgPeB/fOR\n7s0ti8UCaz2L04Jh8tw/PVO0pl/0JGAaRuk0i6LPMM6TGICKFdQxgpillLrEyrKQLZFYxLpNrGMh\nXapyRVfOSSEqWWQprbGlFrwqxSv1Si4KgUpKrIHN6kLm04JTRokipHrBX9QSWusqY5RusjGXVJeq\n9giRrDSmbaB+bvKJzEyqoQ45xGpIqYnwSoskUkEVtPNX4kaoBVLi5UCpiIBeiqQapTriMUKIlE2q\nonrugBq2XG8sui4/5T8KaxohTVKYozgLcy3iKQnKN6UorlNTSEZCnDW6BiLLDFwwt6Kmokhknobq\nPq3hxVxUOXKjMUq9YAgEVwtRF8acmXYDp5Pn+bDnwnXXpZIQdabYRGvETSv4gEZuMlpVy7uiMQrd\nGIya/QK9AAAgAElEQVQTQmXOMAxnjscDh4cT0yBSXLuQ/AKjNYvOcbKWVGD2niMQYsDO0oiZUnh8\n3nPztOf65ort7TWm03RG8cXdmvCffkW/bPn22x/Y74/Mc9W+lsvNTRbdMSUIigHFMM7sDycenh75\n8cMTV5s//82a+rMU8mbhKNZhGkvwI+Nhz2l34vn5wOP+xH6cmbxwVlzb0C0WWNNQMXHcdC2qaKYh\nMh+PPPszQ1sgFoyFddOhDWLP9pFmacTkoRRm1ROCJHoP54nJJ7CSuNL2CzabNX3rJFPyNOEaxTAI\nLjRqzXrb0beKpsyE6YTOnrvXV3zenynOcXO3ZZgmGtsQU6Yxops9nc5Y24iDsR5IJScOhyN9vyAp\nQ7ANbd/SWk2/XvBqmvAG/P6IqZsaP8+iY88NKhUpLgWRO3YtxnYopXm8f2I6NpyPR358/wFtCofT\nwPsPj0yzx1rYrBxzUSxcR1MMKWVmnziPYjm/ft3z7s2GbrnATyfCNJKUYhyEXHg6j5JP2DqyVszT\nxDhM7HcDPgj3OaeMs5blsqPrDdO44nye+PS443A8EUuWLb+VBzEURZMLYRg57vZoIy7XnMSWrorC\nchlnFAyJrGQMlkMCWnFBmnpll7pD1rIYtFoCEwR1Kp1hqgoGub+/DGEo5cIC1BhTi0+55P9cJNBi\nSjJKwhMusjdxYta9eKkhGDFCK8Ut54L3iZhmUgkSIFEuNBeqiqROjWuGqQChLvNkWc6mTH2tSzUN\ngUqlEm0rRVJXvbS6fNNAlfpdUuu0EsStIcvSkZ9cqZJSIwwh0eLL75e0myiALgs08hobKitGV4t/\nlrFVQTAHsSRJRSqWrP6KCFmhV0DlslxEQUYOLQ1TzuwPnsPzwHk6i6JIWQxNXUzLOKkp1JuNwTYJ\nW92mhYrhdQqbDSZnVAjMU+Tp6Yn7T5/Yf95jlWa7XbM696RpgphZNJq+c5waR5pHJj+TSqKp47wc\nMs/HI/vDmd3+xOthol+1tIsG12ne3G1JFMbJA4XDvu5isrwfLpLWF327UsxBIuiOw5nP9zus/nck\nP9xuN4xB0tJDGHn8fM+n95/ZHQfO5xO5ZG62G9p2wXq95ubNNbmGN5xPntN4Ej7xVLBdQ98btr1i\nCkmA7zGhHo+EEPGjZ70Ra3vrGoHia41uLZmWu67htbql6Ttub16z7Jc8fPoIaLp2SY4jp/3I6TQQ\njWa1WbNZLOhyYTiPjCnSLODu9YZrLG9/8Yp//fY7DocTD58j19drKIoxFHqlOBwmnp5PzMOJ3dOe\np6cjWR9YXK25fnfH3a/f4hpDnDzLr6748v6J+89PTPsTK9uQUuHHD890bsliseL1V+94++4N6+WK\n6XTmT99/5P39D+w//CiUyXnk/fv34mAMkRgjr1+9oijF8Xxm3Yl2eIqBUgz9asVivWGYzrSrHmxi\nnAfuP+24/3CP1RKY0XWO26srrl/dsb6+IvhEMprDOHPYfcC5huvbLV98eUvXW2IaKcGT44wxsFku\nubsVP4G1lvNhQGvLcruhbTTDUTEcTpzOZ3wMUArWdhjbko2VzhDJftT8FEggC7RG5sVay1orCzPF\nVB96URVMVFUApVCv6KJquRRP2SmKjsNagS4JrqTUpZl6gWHpekBIokuo1/mqZCkFZYSvoXIiowi5\nkMgVBQCtsVxENRcnqnyGQhdZPqMvynYA/VKgU054LzZ21za1TtfDRsufVHLGxEsVVz8BmJQcVCUL\nsMmUmagtEUuKhawbGbk4i6ansRodJlTFyoZJXnPJAIVsRImTqCqRIpz+v7pHkHJ1WhJRdKIYypCL\nILVAMkeNlrm2bgTDi9JMc2QYJ7mx5SRMEp0RcIlAtExG0L5Kwphb52i7FtvIaMpITgchRp52ex4f\nnrn/9Mhhd2AeR1QprNqOzmriNBPGiTiOLKxlvV4w5czjh1Fu+KqgS6DpOmg10wRHHxjvH3naHaTu\ndA7XWUoD0cCbuzUxTDhnGU+BYZzw3pNyqGYs+THJ+CXV10Re43AJOPk3Hz9LIf/hux+YEgSgW2ge\nPz7yfL/HGEPXNfT9gs16jXM9jXOEJItEbeVNUmJAA/22w7oGowuzD2htJbHGKLpuwfl85nAcWZUa\np6U0fgqVSKpIMeBHj/eBvDuSvWdeLyWlnkJjNXOAaY6czjPZGs7Hid3Tiezlip1ikpHEOFNsYvIX\ny7Z00NMwi1rDRzaLjpwy+/2JH354z/k8oqzm9ssrtl9es367xi8znkRREdUarvsr+lc9eZiJhxm/\n90xpQrUd3XbNzesbvvj6l9ze3KIi3L695/PHDzz8+J5iCucw87A/s2odbd/QGcdq2WCsY7nsWTuZ\n74Uwk41juV5y82rLIjj2x4Hf/+4PqGIoqUgB3nQ0jZgVUvGgMrYRqdtabfB+ZrhZE3MW6WLJPDzu\n8OMIMXD/dGZ/nAkxSkBFRnYJaGyvMToSA3gfZP6upPPzPsI84NpM1/fSPNf3k0YWdilnfI5QGkgO\na60UNK2IsQACHbKGmg4v1L7kg1jdS53zKkV+EbwhGFIutnuZmesCmoS2tjLK5eunXIhSreS6bxSN\nknlvzEb07/UbLz/9QhQpNbZM3kC1M7t0YJJWUfVzdUZeHZUxBskM1fKaaCNgKmsUpViZwmbJitSX\nwq2q/akIvKlADdspKFIdG8n8OGuDj5lQICkt0YC6oE2isVoWjinImKVkktLkai5SRYuCSLaeogTK\n+UWKmTMv2UoGanZp1fIbLXurtkU1LVlbgk8oJZA7p4oofoxFm7YGOQiiQNXXNQONcygDqQhnaD5L\nytXTp0een/ccDkem80gIQcxWVuOMJmYxwJUYKTGiimG1XhJMw/OnZ1L0woJSClNEUWQXPdPxhJ8k\nBi/GQJdaOtUyH2dxtFJQPrKwDe3aslw4QoqSMXtpuCrDJ9el+eVov8gm/+3Hz1LI//D7bynGgmtw\nfcN5NzAPM6tlT991rFcdrWtoOwsahvOAcwajhASoi1DwFusW11pKzsxDprUNSYlZ4PrmFtf1jNNU\nRfSKFAvnwZMQGmCOiWkYOR5kOz2cd1xdLehbMdM4q0nG4rqObpkkLEJrzueR42GitQ0lJg67Hadx\nQHcNZuHIMVfTQuFwOJFzwThJp0kpMU4TT/sTIUeuNxvWb9as3y1pbxqGOBCjSKpc1lhn2LQL3M2C\n0+eBfRnonaNf9PRXHcvrJYvNiuVmQ6Md25sNt7dLfp9Gdqc9PkZOU2DRt9i2EbmdUWJCWixRqRDC\nTCLKzLOGJ2ilOJ3OvP/hE1Ybloue6+2Stu3IZE7TzDB4krVkbXBtj9aK9bLn7kbGS0lrxkFUOMfd\nkRRmnk8zGcVms0RR8HOgFNisl8JyjyPDKXI8nDlPEyllueLbhmmaQXvprKoFHKXF1EFGFWG4+5Sl\nJWyL6G7rsq7EJPI3bV7UE6KGkAfkwggBKdYvQc2I0UZ+D1xGLy/671KEpZ0yKdXQJKQoWuTQIBsJ\nNY5grMjuXo6iIgVN19QYjRR5Qa/qF7l6MZcACY1RTf1eBSyXan5pQWEaoBF3oNJa7PJZ9g+51FCL\nQp2NX2SAl3g5+bgQvIuSeOWQECRtEQkjulSDigUdKEEkviLRruOpagiiUHG69fe/2OO1PBtIHqeu\nC1mUIauCcg3GOYxrybolRE30ojZpuxaMwmqN1hZlmqoAUlgti+sLJlYkwZlSAkOceXza8fHDZz7/\n8IHj8UQIQUZupipblCEV2VtQjURWF4zRLDYr9AJ+7D8xnmW5H1XGpERTDE3r8KMhzIo5RpSHYiEH\nGM8zfvSEEMlK/s6NtSw6S1EtKRdmn5h9ZA5e5NIhEFKUSMPyt4s4/EyF/M//+hfa1YLlds2qrFl0\nHSvXkVKEkJmOE49PR25ut3Rtx3E/slq0rBctV9sevzRiUMmJVjtxYa17yhwZgygp1tc9m21LbxPP\nj/ccT2dhjUQlCSQEtq0YZmznSD7yvJ+ZfOaLNwsaK3xl0y9Z/3qFdkrewNlzPg18+LzDDxPzODOM\nE3P0rDcLumWPTmCyYhoC73/8TNtbvv7mLXOcGaaAz4m7tze0nWV7s6A0mWE6EU4BdCKGSJkzTAYf\n5EHcLjVZFdytY7NYY5FYOV+O3D/+yH63J82FV3drMTttVzw/PDDtz6iUmXyoQcIZYzrWK83aOeYI\nc8hMXnH/uOf5eOJ4OnE6zYRcuLq+YtlawjTx9PjA6XDgNM48HweOp4HN5iO3Nz9wtd3y7s0tq66l\nKJFfJlU4jhPJZ/yc2e8ngs7cvNryn//hGwkWCPK9LRcNKgXG04nD45nPTweeDkcyhevrK+5e3/L8\neHhJT5EA4xqcoGT3r8mYGkgx5wgKnKMuumpGY0qYKAtQHRIX1onSshwzdU6pSyHkKIoM4+SAi5XT\nYSrboxRUnGQMgyFfrOSxSJhFXRRGEjqLMiOrLOlDF4liuUjyLBqDNbLUR1VcQL4sIRVFSwCC0Za2\n7evr4CEHisovI4o4J3IylEagVVZbuTkokR2mLC5KGbFAUaJAUVoT0KisKsYWfExEJaOrUnklMWtS\nkZGKVmC7FusMeI2uip+SMqYYgVTlunPQNcqlyILYZLHji7rLivLHGOHTaE3Tt9i2BW2Zzplx8KRY\njz8DBQNF/slRMafMhAQ/y44DgauUgnWGpjPsDyMf3n/m+z9+R5xnYpK4t5xV3TzIoVfH+RRdaBqF\n6x2L5YLtds1SGbZvb4kfAtPpQEkShKF1oXOWftlRFBwOR1IMzMeEG2a0sxQjWA3vPbkEtPEYDV3b\nsOx7ms0GZS2RwnAe2B1OPO+PDMMkByX/jjry+6cjN7ZhdW1ojKNvhV9SisdVlUfwM2H2dK7haulw\nBhokJFWpixY1cXje0VjDatnVDbDGacN0eMIoaEymbw3TOfL4cODH5zPjPGNU4c3tmuVqges7vtrc\nMp5npmHm6XFP8oHVekXTrbh9e8f2akMuEP3E7mnH4VzYxSwa9L5jHEa6VmBHm+slucDheOZ9yuyf\nDnyvMou2J2Q4z55F39C3Dconnr470D03XL1eo61h3ff0rsNnTzKF0irCQpO7AqngSeSQiaNE3x31\nSKM7VNJkf42ziuN+YJoirev4+hdvWa8dxlhihLs3t1xt1vRdz81myzwHHj/dczqPouF3HXbbyChm\n4YjjzPFoyMUKbwVRcqgCnTNcbTteXa9YLTqJjtOa9bplseq4M5ppvON4GHh62HMcT5gGop8hN5Sk\nUFkznz3TcGb/tON4DtKNTIFsFNNcQ25niaArGhpdcI14CITIKphEMecIo3ye5WG2jfn/mHuvJsmS\nMz3zcXVEyBQlulpggAGGXM4secn//xe4XJsdPd1Ao7uqUoY4yuVefB5RAImr3YueaCtLs6rszBMn\nItw/f6WYYXLNPcziyhT3YkWN69d0DYxC3IWpyKJ1hTSqBrwShznViNSqkCjXTaWmJyrp7ETLxIyW\n56uoJqKLrBGNsg7TNjgr4Wml9mBepuVcF1Ky9GQuS2RZvODQ9blc3JgpZaKS0KisJefa1MleWXHI\nXtBWpapaPCtJaMRSipGoXi/1ZxfpoEz2IusUPtSQtZJF1diqjRb8SIqtJQQKY2oaqeDXl6Jha6TM\nWTsniaJWoJyCZvaKOAZi8pI2GWrXad14tJU0ROcqjl+1/DkJLFIoaKfEx2Ah6MjL0yuvT6/4ealN\n9rna/LkQFNXEJHuEj555nkjnM5lEMaBXK27vNpwPLeNZ3icpJlJIZB9oG0fpWjEIRjGhFaMxxuBa\ni+s6/OuBOAdKFNhYCE+FS0XgYqvpW0tzv2e7XfP0cuR0GuVU+hcev8hCHooWob82NNrSWktjFSlL\nM3pKiRIlqc9ow+1mhVMZcmTxMEc5xhElj2NCcr1RGu1abKcYjwec1Tg0feeY2kbS2aKQJSVn1psO\ntyqsnOHubsNRaebzwuPjKyl4lFb0TU+7WXP37h1KaSFDlON0mCkq084NnbOcXi3Warq+4eZ2g1aG\nxlj2mzX+ceb18xG/ChStWEpi3d+giiIMkfHzSDoZuqBo+xXt/ZbdbsWQFanLpHVh1JlgRaWQ5wyh\noKdMOnuiKiTjMRhOtuCcFSWDcWx3O95+dU/byJtlnDL7mz39qkcpw+Z2RxczfvFs93sMhfv7G2L2\nuNbgGsMpZbqVRbkNhYQbBpxzrLuGu/sd97db7u63dE1D8JGsMsYp+pXDtp1Ege637LcbTucz4zQy\nDwtt19L2PZ1zLNOZ4TxyOAdClAXLaINpLH3fsd2uscayxCR44jTWqTZfsV7J5i5ClRVRBMgRX6zq\nqpYSlzpNykNVAlOO/NK/KROwRpRFOYcr7KCUHOdVVUDUOBUKBSvi6ypLzpW0lBPVJX+lJNkBLhna\ngtxXwYwyFG1Jl6jbIqfLkqSh/pIHDpBZ8D6SfboSpIoLhFrq5JwlFlZLDLCrr4uuNUkXLbOq0saS\nlTT2IHBTIglWmyEbiy76+tuvsbp1sxA6w5K1OJ7luzIXAaFsfrWqTMnGd/kT5UURhVCu90TBOCfG\nIRF8rE5RMMaIgkhdei/lj9IFleXnZV1QUcxfioJzmqAS4zJzeDkwnQZ5DTRXaanIEiVxsGksrnNo\npxmnkeV0IhxP+HkmlUB/s8O5Dm3kM6VKvp4UwxJw1tFZR9/1zONESem6aRqjcbah6ztiTMxTBAqp\n9sLaEHGNXEPXtuKz6XuMNqz7jnn2f3FN/cVCs9quIYeEigmHkFXnk8jWUioQDY8PZ14PE+XrG7ad\nxVlLUoqXg8dPnobI7c6xxMC//fxASoVuteLuzT23akOrZcc3Xcfbt5b1Zsv7bxMPzwcOpzNv3u6k\nhisVFh85TxMvpzOPDyeIgcZC0IZxOpHVG3abG3LwOGe4f7NF95lpOMM44meDaRzrXcdq3dC6hnXb\ncDp9Q+daTscTbasYQ2AcE/OYKEkKmrumJ8yezz+eefO2YVIzjdcUY7G9phTP+fWAtwrbtOz0GlsM\npmRU59i2shimlCnJkzVs3t4REEL35mbFcD7x+nzk+HKm36wpWaFjwbZHfEy8vJ5p1mtu9lu++uqe\n58+fOJ4HHl4Woi80bcebux13b+84vLzw8vjAuhESsRRDzJlxXmSKTpFxHInJE0KSCcNZjLW8+/CW\nafD8+P3PvH37hq+/e8/79/e8PD3zr//0A4+vI2mYcQk2xtJte373u1/x3/72dzKVRhhPM//8f/8D\nL4cTU4jMXnB2VC0RuOqpFdFfNNZOCg+UQalAKhFdx/FS5IMs8rSqfUakjqpkSvG1Fq26i5MVwrAq\nVqrURfBfbdCuQalU7eUFh0A5JRdiDpjiwNgasiUwRMwZHyJZK3xS5HkmhUAqyKRXe06V1mQl5cgK\nrlrrXBdAat4L5GtJcS6SYFgy6FjQXoGzddMx6KYR1UgulCt2UZ9WvpC/BYWVzRM50Sik0xRyJUm1\nWEJNgWxISyDWHldjxAk6GWlJMkgujDJi28+AxWK1vE/oHLO3+KCIvghEZCzGGZoWnFMY6yhIw3wu\nHmMaSXw0Gack0G6ZAiVbpuB5fj0wHs7EGLBOThHmT7BxayxN07BZtay3a5yzvDy+4E8DefKESZRB\nAZjMgh9ncqzstUqoqNE+0NiFpmm4u9nxFAJTCCyxoEYFEZqucLtbY43hY8iUKC1bpKo0ypBCwU8J\n2y40fcPtfs23X9/Stt1fXFN/kYX87/72V5QgL+Z2t2Zzs0brzOF85Hg8cR5myZRWir44jtNCCQsa\nxRgtH371V6y6Hn945fPPP/H4/MzTeWCJhc02YJuOxjiImUBB19S6tmvYd+BWjnt/y3bXE5fAdJ7I\nMbLqer768Ja270l+4XVY2HUD//z3/8SnHz/y5u4eXRLLOPHyfARrMEbTNB05nRhPMx8/aXIs3N/u\nuNl0vL9f0Zg7lrBjnmZCynxwls3tLU3TSgnKLJVzWRv2N9taaCu9JqopjDPMPxwZSqbZrNnfr1hr\nh7Vi8sEWbO/oNo6cCqbt2Ly5p3Et58OpdmyCbTpubqQw12pRBRyfXolJpsfdfsNm26NVYRkXXp9P\nvI4z222PsbLofP70iDGK27sb4nDEapnoUkqCtdpIv20YhoGHp5FxXFh1Lbvtlpu7W1AF22hW647h\ndObH7yMvjy8s88LhcKZ1hu1XN1et/fsP99zd7midoijLTMT0mr/9r/+JYZx5Op75+NNnDscz0+zl\n6F0kMlZl0TFHpaEJNLpFWXslF6Ha8C8TthLteKoGI6sklVBlK/rti4SbiwVfQrpKPZfnLDb6rAxW\naaovU6AGqgW+ql6U1iRExy2RA5HiF0KKQgyGQC7pWpZQamoff2L9z/X31yuqkQK5lhILcW2MuDZ1\n7YCUBh5JYJTwLY1f/qQy7bJBqFpqUCuCcoyEWmpQqntUK41GLPmUSz5LvSCtMU1D1pINL5r9ev0F\nsspST4e68geYLyceYwxm02F7y3xaqoDFoJ2IBkBRoq4ZQAshzJQiTVwl1zYorbFNQ7Ka83nh08+f\nCGnBNQqnHBcjlzGX+Fpp5CkFzueR42kgzDMmZJoCqRSmECjTgjeFGIIQolXjH1NCefBa+LX1ds20\n2RJSER9G1eEXBZ1RNK1hf7dhOJxEOVfUVfufC8JNlCJEeFbgE6n9DwStfP31HX4IRJ9p1z3NuoPa\nlpJTJoZIqBhYUYpYQDlpu3l+PvHhN4bNzZak4Yfv/8Dzy8BpGhiWREiK7XaiaxqIjqjA5AZjXc3g\nVvSrhn5ludmvmM4z2UfmOUCGrml49+ENx+PAMs/klHj6+MDjHx95uX1mt3YYBdNpod/V1h5j2Wx7\nmBQpJOZpYWxGGiME3Hrl6HR3dRb22zXr21tc02AyuFSDnqxlte4pZAklylKczCHBs/Qj2pxxW8V6\n1dKuNXgvvX5a0/QdORW0dSil6LoOPy0sIaGRQoVV36GShFMZZVnGs4R8aYMymhwD81gIXmIFhvPA\nft9jdSHMEx8/vdCvW/b7DlsSjZVauBhTxZILTd9xPA+ch5nTaSQuAas1u92GGESe2fYNflkYx5HH\nh2diKszThFKF/X7NZrei7xvevruVVMtlIuWGrBTNquGb777G+8j24YWSMyEmhnGui1GVaeVCUTXT\nPEjfo0EyzNES+KVLFPOQkQ9ZToqUCjHVRVFVQ0pVqwjsQCUjhXC7qLNzXWBVTUJEyYJVSs010Urs\n/tVUE3IiZlnQlJbXXGVx9UlcVKkt85efZ5BKO3E5XSrMULpK1CqQUarBqeRrzna5atNrLG0WWCjm\nJBCU/pLRomu5gaqmIKVFqy46d1UdokCFJvLl76s6UgqRlYTZKYPSsRqKvigvCnIvTL60/8gJx1hx\nWrZNA+sVLY6SFapEtC4ULTLPmAoqJlL0hOAJoU7HJVIIwr2tV3TbniFGjscTzw8P5DTL9FwVSroi\naZfQr1TlhiEmQoyomOi0AWslSjgXCJEQCjEK5COUSyFWniZo2ficUWx2G2LJzNNZ/j1G0boHjesc\nd3cbkg/ELDENqnIgpSqmSqnvt5jJS2Bx/4FCs3JJ0Bi0bcnaEEJNeVsy29WK9apjLjCnJHGsqzUf\nvntHmBb+/fd/zw/ff88ynXm/3+OsxRpDDJlpXNB2Zl485/MRTYdZ9ZASPinirLCOmmtseHezIRiR\nQOVQeH54ZZg93/7n3/B2syUuC2k+YrMiR0VcImWl6dcN29UN7bbFtRZTFH9z8y0hZZZZbNbTeebj\nT4+oFCWKUxlSKTgLznvitGCzvNmzqm1DrUY7mRBN2xCLwVDIMbBxK1ZWsdnt2NiGdd+z63vu9hvO\ng0z6OotbcZ4Dr8cBqy0pZfpVJ2+WmMhLZJhmrNX0fYM1stCMc+J4nhkax367kiNqbRXqmwadM+Np\n4PXTAz8vE+uN47/93Xds1g2lWI6DZ5gXCor9zYa2WbNae1IROzQaUlpYhkzGgWloVwbjF4ZhZJwj\n0+zxUbR7rTWsWsvr0wGjEq1OpNjT3t6xff+W7c2eMHtCzpzPb3h4fsWnyDVLHIFZKFF6WwdJSdQo\ntHUYZUFRFyjBS401sohnsZ/rcpnYqRZz0EUL6ajEnIMyV4lirlJEstSiXfDorKtQuwZbZaWgZLxf\nCFIYWhvdBRSJpVQttEzXqYgkzjonxp0gENqlTq5cIKE68ZrK3pWaPy4hveYagSoZJl9iB6T0F1BK\nQtEsX+5jko0m1xOOLko2/CLPVSlFKtUKr6Sko2RRwsgYrcA4dLaQRI+tL5uB1pIXoxRWSWyC0QXj\nNE3XYFcromqZjpkYB2JeiCHXILBIDhmSZOOkUsTpq6R8fbvbc/Pulv3bPf/zf/wzj3/8xPjyTNH5\nqtHXNRFRcu3FQKSVroui+pICWUnprC5BXkWigaNk/nDZditZGpPk+GQ/ySm00Tw+PJLE9UQJhegd\nq96w3XbMZ3Gbp3Hm0jVQJHiAi/eBmpEjReH/++MXWcg//vGANpambXFaVVlRYLNrmeeCj4leGcqy\nSMZwmFHFs11rfvfrPakkhpcX/v1wIll49/Ubbt7u+OEPj4QE43lm3RmijywsLGXGo/Dast906CTt\n3j/828zhPPHp4ZVPDy8YDZvdmtPxROMa2QCmQAoJoegNT6eJwQd2W7grLZ026CKZCyFEYsqcDpPs\n5o2FYCDLB/LmdsN2u2a72sg0LhUgZBKL94yvC5OdMAaULoQQUSVyPp54OZzoth37UnBK4cPCsSRM\nKfS7Dbddh7OacRzRs5fSAqWgGLpmL5tJCHg/U4InTCPzeaBYQ1ZSYtEaJ9rusJCspd20bFlj+gbn\nLGsyt2+3uKO0LJ3PHusS/apnf7fibdfSrTr61Zqff28I08jh9UixhkTiPJwlac72aCf6f9Ma9us9\n923HMgWOzye+/eYrrCkMgxDWKcI5ZBqnJEhq8YRx5Ph65uMfP/HHH37CjzP7VU/KicUHlhwrVMvX\nP7UAACAASURBVCLvOZUjfholCnW1pViL1o0QltGjqzSxZAWZWoUmCXWlSFONukStGtF8iE46XbO7\nr9GzRfTLEscg0QOCU4thKSXpn5TpHfmA5gS22trrNUuRXZ2ulYSvaSWxq9k2ku5ZF07FdbSsovMi\nX+s1lVwEu1aKUqRKEKPRhloaXjHyWlpdyqVXVDYsdX3+l4cR6z2FomQxK3VBV7WsQ+Vc4Yu6cEvj\nKyZffkfduKrwXoHE/mbE2akKOUfGYcDPZ3Ja6oaVuVjYlRFopFWarnH0fUu37WlaR9GFTx8/8/nn\nnzm9vlLxqHqPAFWuzVLy+VZfOBPZ7sT9qy7uXTFGTUNgmbIUfRv7RflSe13RojBK00K/C3QGmrYj\nhIVY26F8jPgQSMGx3axYfGYYlysprkuuSZUCP8l9rT2mf+Hxy3R2nheM9qRlhjgRs7DL+77BWsEa\nnUq11R1M9MzHM7SGdW+Yp8Qwj5xiZrdZS561VrhmzTgFjNFsV47GClSQYmSImXMuJN9KKW9MWDvz\n/Drw+fMzP3584t27G25bx/PjS60kc/JCWsn68FGKoOdgadc9PoELcsSb5oU5BEKBafbkIvK4dt3X\nFhrY325ZrVc429Y4BSlU9XHhdBo5vo6gMo0DqzOn40RMgWEceT4c2anMZlzTtRM5K0Lj0CVh2o6+\nMvhWKxojLSeZOh1lIU47pUgqUpaJ8UXjp4VmLeluCsXUTZSS0AZGL8RbLorjYWQ2kLxnWiaJ7k2Z\n54cjYcmsN4GmW3P7xuKMxqhE1wjL3rcdIXmGSVqRskpYB/3GEhdfT2eat7s1q03Pbrvhdr9nOg8M\ng2fV2dpf2dPV72ltQw5ZIKzzxDIvbDYrbm62LNPMy+uRl9OZJeWK54ocMPkZnzJGaVy7kjYhbVE5\nkpFN2Chd7d3V5FOVFPmiSsxQahyr6KHzF6kdl6xWcU6mAuVySKiLaVIZHwvJWJStCpFSqvGJulhK\nwFS+bB2lvldKRlvJC7fWXsOycl105KGun7Pr4o5AGpcJWtfatZLrJlGLhkwpUuGX8xWnTVk2NKmx\nE/epTIh14SsX3U2FAS6uTKghN+LEVKVqH41Gq4uaSFXFCjUETdf3a9XyK4GFUpA4AEoS0tMZjDVS\nvqEvZiJD4zTOGUzTkEpkHEaeXw+cD6+kuIhy6bIX1ROEqfAK1VV76TjVUE8KFmcNTWMl4M0ZppSZ\nl0Gm6HxJa5QvWStiElPPNC60y0zJCuMcPixSqqE1MclzinNis16xxMLT60CMCyVHIcd1vadFy/2u\njti/9PhlOjv7hjgPLC9nPv+84GOWPIJv7zEF2uSxaWbfWbRtyLHw/NMroUS8n2jaDqzFucJmv2Gz\n3mC14t2H7zAoUlhY/JlpPDMNZ0oq+Gnm+TjyOXpQhtVqzd/85j3NuJBDwhrFfrNh26/5x3/6Htda\n7t/c8u3X7yEGxmHkfBglLkD3GN0wJ5EPlmEk+gWfEh6NtTJt+nHh9ldvuNltWWnJnF585HA6yLSY\nIzlGzvOZw8vI4XWi5MC61ThV+PGPz0zes8TI6+lI0hnlDNMQeff+Pbu9IceZxT9yOo28uVtTYkCp\nQttKhrsPhdF7dFG4vmW9WTOPoidfJ8VX337NZrtCqcjz44kYZNr54fc/Mx6f+PzTgcefHonBs8wz\n53FEl0zvLMtw5kEJlmptw937O27f7mjXjlXbsl33vH/zln/98UeGw4i6Mywho01mmwrnw8TxNHKa\nBn73X0Z++7tv+dVvv2Y+jBLiP8x4r9je7Lh7f8+7r+/YbW9wdsV0njB2ZLNe8f7dO9Y3Gzb7Feen\nV37/w8+EDPF8JKdIkQgoMokUIqfjQrva0/ZrmratOdWGFAU7FWldFmKyKFQqxGuPZSKWGqClQOv8\npbUdwFqUdSgHJaX6p+rbq1Qta8G3xaRDDb+SxVFXydxFgpcUCIEnGumIlCE0TjYCW5MOSeUqJ8xF\nBJECGVQXbBazkm2ESMwaQsqEmIkZ2s4ICW61aPh9IJKIRXB1k0EZK4trqVOinBcwWTYy0UvXTHSt\nyZeKtZQqlGUlaVJ/2WxyzlLJWKoGPsvGaQGnLVp1tM2GkuV93a8sXdfSty1d19M6hzGieZ+XgfF0\n5vjzZ0Y/MnnP4D2FTNs3tL3ESitxQXGtWq6bj9AgWQw+ReICGmPp2oZ+1bHdrmDTcfSBp8czS5yJ\naZHcHhRWGbJORKOJSfgPfZpI1oCVpMqURVhQUiYtmTBm9m9XBGVYvQ6Mr/Fa1BFrFg9ZCjyKkpz3\nv/T4ZSbyacGm2m4eA7u1Y7u1lHGWwKE0o/C8ngvR9WxvP7C/3WMbyzBPHA4z5+PMsngoB8Iebndb\ndCts/DgP5LgQfGCeIqdpYUmJxmqWsbDedrx7e8t2tSKuA3c3W2zXcHd/z83tPX/zN1rq4qxGq0K/\naVmvLG3bMswzMRcePx/Y35UaK9AwjzOHw8DTOPLdt28wVnN6ntjPkaVLaCIpVBt8ypLjEGVhmUb5\nsPe9JkaxUKcCum/pmoY2SvZ227Q47VDOYHuLdnB8PjMMkabp0PqNSDezom8SxgmJp6zhfDpRzgP9\nKMFHrWvQNzcoI9i90UbgJCQz4839huTvISd++ulnUsk0XcNNayiXxLu+kw9nlracaQgE/8wSZ9CK\ndtXx5t0Nv/71O2JM+DkSDzPBB6ZpqLBf4ng48z//x7/yh99/5v37H9j3HSrDvCRezwsnn5mQuNVl\nSmzXHooWSZ0urLYt25180GyMvOxWrA8dPgWmaSaEeCUcC4WcImEaINfsEVOzymvtWUYwbaU0tiiU\nEtVFyvV0XmSZ1EZIMhmTqsoIJVnkNYsbrckqytSbxeEpWE0iewmGoupSSknkYlBGYA5yLShGtMaq\nQKll1LGk2gIkWdslSORETlmCsi4QC19s8sY4nG1Q1uJDlCiBYkgJ5llIz7amBLZNI1BTLStJWYqM\nS84UK3EIAtOIOkRdqNZrpdAViKrSRLlHQoTqupYXTMXcvxDHoqpJUe6Naxt2Nx12aEk54ZympMQ0\nTWLUiUGSSX0mBS8pk0rhc+IwDnz8+InxfK5BZqVm7FSOoGayGy2lK6aWfGh9Uc5I6YiEbjXQNYxh\n4XA84v1QMXLBxzKKpOrzVYpUMjGnysHU36M0YNBF4LNc/zMFVk3Lzc2e6Xwi+4yphLgQnrV1rLpj\n/9LjF1nI7+52xEkzZU9JAzlGlmniOJxR0WMJdCbzEqCsDKu3hnbT03UtxVgOpyCxkamQYpDc6pxJ\ncSHnKAFQyTMvntfzwtNxwEdplJmXjG0j07Lw8nom5cLt/Y5b27C7uWO13bJat/hpIAVZzG1jMaZh\nrxvKUXE6T4zDRNs3dI2l9JaQC9McOZxG3i6RVd/Rdj1N22GsI/hAitSFPF2JMuMMTSPEj0mKkjWm\nvng3tkUXhVWKD1/VA6w12HUnmQ4h8vJ84nwU3epm50BZrG0wyoprzBmaVUMugeADOWXWfSP1bs5Q\nciRFjVTXCg7rQ6RtHXf3O1JODNOJl9fM4j1aaVKVUNlVy6rf0HUr1qs1ZfGMpxPTceY0e1w/0a4s\nd/sd61XPbBMUxzDNLMtM1/Ws1z1t2/LycuL1deDp8civvn5D3zT4OXEcRtTriefzwDLMnO7O3Oy2\n7G9uiDlgG8WuXbHZ9nRdQ+5b+nXPZrMm5cKq7/FL4PX1INNxrkYbP8v0pwqla3GuOjOrsiLDdVpT\nSguRXPKlJAcQA42iXHOtMhUOqNh0QTDYPw3HEreoQBclJrIpom3ngktfJsZyhRlQGa0EaLnUqcWS\nMZRrzjZaIeSKDAK1TO260ShEEVJqFnpIolSy2lKqCc/XvBbJUhdiTxeRLYrzMElUAamWa9RFpRh5\nzlr/yXRbsfLLCFnkeQh1o68TsPwI0edf2pdSqbnnRQAm8AQ/scxnvC5SBJ1FVx+9kI5k5JTiDNkZ\nDsOZ5+cXXh6fSDFUeEjulbp8LfIaG61xKWKdxZja2GTMNVhtyRmbImqeGKaJ4+FEWOYr0Uk9QV2C\nyC7qJYo4bAu5KmqqxLPeyxgTIUTCvKBsQ9dK70Lhknmj6r2RDfKSpfaXHr/IQv5//tff8vNPn/nh\n3xNLPvLy+cziJSrSkWm0xrYG71ZsGo3uNDg5kukCjYa+NbT9itvbjt3WYl3EL0vNeMiiZpg9n18H\nPj284kNG24aYM+fnA0+nI9uu5au393z99TvevXtPMY5YoG8b0qSJ00xRhTmDT4q+79DHhRIXUJEU\nIz4sLC4SSRLhqR2nY6Bt1nzz66/56qs3GOMYjyPKtOR5Ik2STe66Dte2bGPhdDpwPj3TOGrQk+XW\nOWwNtH/37h3DIFBEUIZ5Wnh+eObhYSD6mVXX8vr5TLfq2ewd7brl/DqSQ8Fterq1w5gFv4z4JVGi\nrkRcdd8VQwwL8zwzzgGnFW3f8v6bNywpMP9L4uPvD5RcCDHQtoave8eHb+758M3XfPjuWw6PT/z8\nwx8pNrM8Hph94PNPB8Ihcne75/arN2z3N7wez/zw/Y/Cb2y3QrwpMSD5OZBjZgozjw8vnMZZwoeM\n4fx45vZ2zf52xV//9teseke3dvSdFIIopShG49qWzXaDaSyr1ZqwRP7+//oHkh9RSfDyUiCmGZ8C\nufRAh3OWXHStP0uCIShVlSkJXU0zWUkQU06XbBYtAGldHOTjZ2ooVW0LqgRgISMJVJGSRIesrEgj\nLxZzlRVWSUFxSl82g6Iq7FIhCB+RogxjUU46I5VS2Cr1E04wV7MTKKMIOYqCK2W6rqNpWuIyM4ck\nnaFJ4l1R4hC2TuOKJhcttvYUKUWRTb4WcsjxURa/i5JG9rIL5p3rxpjlBKS+iCWvzwfJsCn1ueaU\nSN6T8sjh6ZmHjx8ZDs+Q43UDEM25oW0c/apld7+jtI6XaeLzwwMPP38mVElrQROLiERR8cqdAJU4\nhcoqyCKvLsqeusFzMXWJ9FPnfHXIor/k/lw2MV2hlpSUtD/NHp9jDeIqlAiGwKw1x+MJ3a1Q2WCw\nVdmUriS3qooapfR/LIz8H/7pjyzTREqgXYdnZkrQtStSzhxjZDhG9jeGvW6YJ01JDabt0Cayu7tj\n90azWnVYFasE2BKTZlykzDSGwDRHrHWs1j1qFpfh4pcK4Qmx6sPCp8cnno4nrOtpuxX7fUsYBsbT\niXlZGGahk253a9Z9xzdf311Ie9AKj2J3v+Xm/o6/Vg1Np2laR9u0lCWxhMBynui3Pevdhm7VS9ym\ntdhGNODdpmF3s8VoibOc5yBkSioEK3kf/arBOUPSipRX7HYtzhXOhzONc/zqN9+xu9nKMTBL+M8S\nFoo/0jcNjQJiFnGEFmIveUlvc0bR9S3KNTRLkUakFChZ8fbNG7p+w2//0++gFA4vrxyeXxgOC//P\n4Xv+7V9/5u2b72m0hpgwxvLXf/2Bvm9pjcNPEWMNzUqjTcc8R1QyGA3bXc9mu8JoxfF0wthC11lS\nzOxvdvzqN9/gWikNICtyyixz4NPPn1h1DmcMbTtyObx3fcfubs/qdi+1ZLPn8Hzkw4c7hmPLeZg4\nnEeZksjkFBmGSAieru9oXIszphpkZDrXdaER7XgltgpoJQl7+SIQKZCDF+JMd6gije6XaY2L+Uhe\nAEqSE0CGykrLJH2BHZQqWKOo1ciC39bI21TzYtSllCAXtLZYY2kbgVsykqYXatGEykVMSGhKcYQA\nEHCNoVGW4iEukZSqBT97EkL6aWdxbV+7RIPwDTlz0dEXAKOkXSmJ6oMqRzT1OSkUKlfDFpUnvUjr\nUFdGuWSJ3PXeyyJbPF1rYdOT4gIXOMRa1ps1682afrciO8vD8wv/8vf/xtPDE/M8kcl1EZTNTF8O\nR7UD+LJYXrTx8rfmC2Wcc3X0XiZvIbfzpTT7Mt1fFlsthexd27JZr+m3G86LZx49IQWpKQSyyWgF\nczCElFAh4b2sY9Y1otaD64ZyyZdS6nplf/b4RRby59eRHLyExIfE6BNLUqzWjbjfYiIXD67BNA2N\nbfFL5pw945woxtH3HTe3O4aXR6ZxJucgKWlz5HweeXo6MEwen2AOnpCk2NYZsWJbRO2Vknz/Eo9o\n3dC3K/y8xk8j58OJ0zgxjgHQDDcbvvv2Hdv9Hat1hw9BZGYK1quOvlvRuI0QmRdM04tFOdYpxzqL\nM0beVOZi9Ci4xmL0CqUzxgeU8jjj5UOlDT6XmvFh0CmSa3mu6zrsErHO0a5WrHdbGucYT4tgvErh\ndMGUKNNUSoSUKFb6J0uCqBRea1AWox19awk5EqqGdbvbsr29QVsJVxoO97w+Hnh4eOb1eGKeZ54/\nv7BuW/q+lTz5fU/TWpYxCvtu5eistaLvGu5vb2isVIl1Xcf97Y6+s2gdmZYZaxtu9jfc3m5YbXqa\nzhE9nA4Dh8OReZxJy1KxxBEfMspo3n/zDtetiMDxNBK9R5H4+ut7ltsNx+OIeXjhdBoYlwVKEk1y\nEht86gq57cAZUYmATEVaoYpCC68ojyJ4tbpCBtU1GSLGiWRVAWQttn+l0CpXMlDWjsuEVkdXAMl4\nUaIAMVBb6euvzFBSuWLBSpfqZBWzjM5FeBFj0MaSFYSSa0GyPJmiJG0xZcHqjZH3lTGS1FiKKMdA\nSpmT1hhF7ffU8rORzSxjvuSr51Sr2iqZq3SNRKg3sVxv24VWuMIzss9VJF1BUUUkvEj64HbTs+qr\nIUpL96mzjqbtRHPeWc5+4Xg88fjpgWUaoWQZmIypsIrcW1Wq1PJyDQg0VerV2bogXyKNL6u6XLd8\nl2SzCIZ+lSjW17V1DZv1iu1+T2kdaZaoglJJ6AxXbXoRpIgcI9O0iF5fV4XPlztTX/8vhPb/+vhF\nFnLrHOPiOU+Bl/PIsERAoRpD31lWSmP6hG1bdGvZ7dZM48yLTwQAo0nacJMKj49nji9Hclbsbnak\nHAjzwr//20+8nkds3+Crca11hpv1XuzApFqeKzfUj56wTJzVCT+tiT4wDBOHYcTL6MKwyFS9ud2y\nbrb0SpNjIgJNK4llEveJ7OQlYZKEHqELpcSrgoEqK8pRswSRGykj1l6tDV3fY/umqgoKsxemqyyB\nOAzS5TdIacQ0TfRd4vA64poVbatZhsQyyfFv3fVMx5H5PAnhGCYap7CbHq2dQBnngRI1pulwqx5r\n6tSixECjG4N1CkfhbvOO7776wDR5KZ1+fuHl8wuoQtNaNuuOQuT15cjHn55Zbbfsb7fMS4Li6VvL\nX//mA8Nwxk8RH2aaVk5IlIVp8aw2K779+gMpeFZdy+39Ddv1jqeHA3/4/icmPxLDzBQCfo4sIWO7\njv3bxLCceXh85R//8V/Yr1u+fn/Lt9/cY41hGBeaP6z4/fc/4x8jsRRRTcTAHAKxqjgwa2p431Xp\noFUlIlPhYlIslUBVRTTepWRUSqC8ZNJrQ461MeeCl1fNueSCGBQZFb04YzMiDZRVR4bFXCf7SoLL\nSJclHCpLiQQlSqdmKgSEUFTakbImJMFqZdqX6FptLj9GSk+slTRCbTOaVKv1vtStxSDuWWPAWk1r\npB+AoiuvIM5jhShRCglnG9nE1cU1Kot5+ZNF80LeiXhHslqKRbpBSsQkWHWOVSefL9s4srng94rJ\nBxbvmY8nXk5HDs/PRD+jkFOmq1LFS6jYFYP+U/VHJYYva7pRl3AuUyv76tVWeehl+rZa5L5S6Kyh\nXn/bCbS3fXPP8+HItHh5X1wJaLkOa0TaWLRhDoHj+YSP0nykFDVGourH4aqf/4tr6v+P9fj/82O9\nWrHbrXn/1R0fPuz5+PGJ55cTyoB1DShYDgcyiWmY+fzwxLuv3vP2uzv6zZqPnz4xTyNPT8+cpkjU\njm7d0m/WpFnTRA0xsyyesRKLzokeeQmLvNlKppwVTaswJqGLxlb36+Lle5rWsdU9pXRoDY013Kwc\nLZnD51eczpSUWJbIfGppmhZnWqyT46b3kbQIwYhRGJUIjbkSL1aJ03DOmVQipUT8kolR8Nbddi16\n8ZjI45nWNVg08xLwYcGazFfvb3h+Aq01m92GbrtitVqzv7ll2KyIfsI2CaUDRgUanVDGoVRhSZnG\nSBJlKZKMl03Ch1FItSp/Oj4f0UbRdY62aTAqYZVmvW6IyRFjj3FSBNK0mpI84zhigmO7WbPd9Gz6\nFudEvtbYQtc7rO44nMTYY1cCa6ik+fbDBmUM3ic0QjQ3tiXFQtv33H94x6fPD/iz1GNlrWn6hs1+\nw/uv3nE+njg8Jza9pWkMyxL54ftP7G739Os133z3DZvtDZ8/P/P97//IdB4J3lN0IfnAnM/EEFit\n17StqxN4VbgomdJTVSRofSGkNPmKY6oKAWSsdlfYR0osRENddwCMrvi1NrLQk2v2DehENRblCidY\nlJXNNSlp41FXDbtM8EUbaA3KGdCGUmRI4pJSWK/2Oh1Wh2apv0NbK5G4qqCrvwMKIQUoCh0K1mQi\nRbJJnBOI0DqMdtc0wUsp8jXjsRZa/Bk0oAqpXpFGpIG2xt4qrfCpfr6UJnhPnhPKjPiY8T4SZw8F\nbGvpblY8v555enpl8UvVzIulXvlYF3JBr+XlFDLjskhn/vy65HnUSb5CGrqGpGkjcReNsxRXe+NM\njeW1loLieBp5PgwcTidRjBUvA5EWYrhzjnVN9YzKMMwT59P5T8xOABqlagZ53QC+VH/8+eOXWcj3\nclzuO0debrh/c8vT04mQhWBJKWAaiXlsm0YWFCXCsBA8OQb8OPHwfOQ0erpVx927O1Zty5QSJC3B\nR5XppYgFt+s7/uqvvsJqI/nWPl74ZtCGrhX1gtjcPZP3zN7jauax0Yp5nHj89MQyJaQQXZGSYnuz\ngY3CNAZsqYRGZJ4mcs5Y55jOI8pqEhnnGlpjcArGZWFcpLdPq0Y8JUYRo6hzUpTaudJJiewSAomC\ntgrXOPb7LbaxrDYtTeuwjagRbGsJvnA+DoQYQBcaJw7VXCNKLaK6yFkmNe8X/CIVVtpqcc4p0dUS\nCliH0hlKYpkD59ORaRrZ7Pas1i1aZQ7PA+fzwHiepPBYxjSCTwzTiKGwXzeMU2CZFuZpYd1YnGvp\n2hVtvyZRmBdP1zVstxs2m54UNUuFUJZFGlTCEjhPEde0dKtAGEfm85H5dCCGheQcteqXtttxc3OD\n1obN3rPebXCt4/HnR15fXjmNY5W+eZYskINWBd00qDoey1R1ydvO12Ow6HzNdbKTNDuZ4sShJwta\nTgX5B1ncSv6ipECZ67RqLwFKIZF1lfgpOdIXZdDKcXFvlmrSUVpyv7NWhFIgVHepEvIx1wwPkVDG\n+mmU92oq/IkrU04fWUntWy65Qi2ymMT45eeAFmgAi9MGe3VBahTmSrRywamrmgUAVapOvWq6jSWj\nmJdC8CO5LEIWBnFi5xjBVNVXlEyUpu8pVuNPA8/Pr5wOJ0r6ItPLVS8qC7nIMb+Yo75oTmoDa31k\nsqqv/YXArfJBZUDXHlelcp2WMyYnTJZgLTKkKG5tPy9oYL3uMbbFWie8XScuVNd3PL4eOZ1Hgl9E\n/VMJTumGFchOJnP+7Cr/9PGLLOSruy3b7ZbtdkWrbrh//4Z5WshFsi7maeL9uzseng6EGFnv1sx+\nYfzpI8s8Y4rCjwuH5wO5tWzvt3z1zRvSHJiPAx5LrqoQ2zhyTPR9y93dnv/+3/+WtWt5/PTK73/6\nxHGUHX6J0O9W7DYrwhIY5weej2dO54HNZs12syIYzc+fn7EF8iQus6ZtaFdr+psVphU9qnbCbjdG\nM1asUxktBauzRJa264JpDZbM+Hrg4eXEeQ68vX/DeisL4svDE9McUFje3N7iSySaSKoOP62k+mq/\n37LerWhaUVdEv7CkmXE8cT68cnh5oG0dzmisLURVZVExknMQ8s1YYkqczyOHlyMpBJrOst727HY9\nuog93mpFYxU5Bh4fXvnjj5+YFs/f3G6xKuPnmcPDK58+PjJNM3frNWGRQC6VFT/99IRfFu5uOkoq\npCjH+zTP6MbQ7zas19LJ2VrDZr/i5m7Nbt8zTXAeF8bzyHiUotwYA4+PL7Rthy7w07//wPH4ysPn\nB15ezijbcdOueP/2Hd9+84H9fsuwzDRpYrVpeff2lh/++fd8/+8/svz0EdICUez6y3iCEtF6KxOX\nsmhlQFcosJJcXBdhS8aIRjgXfEjkDG1bF5Wqerm6IWv6oMpVhXHRNyuqkiiRKtciRRQyNwr52IKS\nU0Ciui0rbBJzIS8SBQDVGaukZjDXlihK5KJ5pi4U8iNEJqeLhmJqfgyAkkRKBcQv3xdjJoaMDpm2\ndzitpHLNaRoj/49yFl2hGF0UthIERRd0zHUjUEDDsqQKaR7xPpGC8A4IxYRqCs4qmkaKF/rdmkDh\n86dPvDy+MA3jNWvmWhhBJVrrIlgqxKMqqVy4SECFiIV0xfe1qdk46oscVaNATKuEUog+oAhUZhen\nJD9Ga8Oqb1G6F4lj1fG7pmW1dtAYpsx1aldchIfqcpV1U5X312Uz/0uPX2Qhv11vcdqQ54VjHFnm\nRSbgObLZbrFtR8mKMEcmv3AazzgTsNrRGC362c6QdmtK52jblmWJxGUh60J/v+E3v/sVv1aF3W7F\ndJplV9w0LOMA1qMobLYd7bohAq+HmZwLp+MkwTaxYNE4DIeXE6+vZ/q+47/8H1/zqw93tNHU+jRw\njeN239I1mWE6cn6SWianNbvdmq5fo02HIkni3zBRcmTxiZQLw3nBT4ESI3EeOM5nYko0fc/9/oZu\ntWa731yxPgqkuBBDkFJcHzi8nnh5ObLd9jjnWJaMUWK4cX2LojBNM6fDmckHyInWFEpMNOsVqpGs\nk3GYCD6y2TRQCsPrmeEwoQBrDOt9pLEGYiYuica2aGVxJRPGmfE4kAbP6TBwmmc2q45d69juN2xv\n97yeBia/MPnIyln6tcY2MjUOy8jj78/81Xdfs99t2KwcJgXGlyPzeSKpBts4/uo333KzpH061wAA\nIABJREFU7Xj6/JFPnz5yHGbAkFJiOA98/vzKH3585mmY+e63v+U//93v+O7Dd5hciN5X6zdSIrBp\n+PDrr2jXLXdvbvnjz594fH7hfBayLPqF4aRYrdeySRtbXYtO9OhZIIqCQpWmfhTTVfqXSiE7c5Xk\nab6oTC7SQEkIlNjbUi4LZ9WkNzUDXBViVa5YpeWeN1JITIZYROGUk3gVxH4v1npjKoTjJLcm5iIN\n8MjvkcYddSXsSilkJZi+UgZTap2esVVBYdE51NgA0c0rlEzqSkosUiqgIskaVOV9jBFXamlbrGsp\n2rDM4xceaJkIcxTPRZL7qm1BG0CLLNMYTbdq6Hct623P8TTw8PmZP/7hJ8bzSSZtY64xM+qCa1/g\nnopvay3KFyqMpJS5TsHlcmKCesKqm9xFYENNukyxihiEvFSVFI9G1ejgjNESaYzW4rLXiZA9L8eJ\nJUTGeSHNC52z0FpMfS+gFe6K0+uqfdc1jvh/f/wy6Ydx4njy+MWjHMQYmKaF55czISX6riXEakKI\nWcLhnUK5gjOGYZhYlkAKhbZ3pBB4fnyVCbMUNvd7vjIQU8A5xaZr0WSsKYzHM2NWhADaaMgFPwfi\nIrVauRRaZyklY5WicY6mkQhcZQ3rvmHdtxivCEUUBNoahvPMeJ4Yh8jrMBOiNIy7ztL0nWhorZZM\nbG2qoSDjc2YOBYHFFcXHKya63W1ZbbZ0/Yp209eFRJNDInrp0VRI23zwkXn2qBhw1jCnTNc10gVf\n+01jiJJ5XI+FKEWYvZAqLjANkirXGmgbydzIqdR6N0VQhSXMQIPV0nW6vdlQcoUYsqJxLbd3N9yc\nBkKBJQmhJZVcDdvdhpwLnTOsG40hEf1cixUKIUpXZtGi8InDyDIkorKobkW3WgvM5Zy06RRN6zrB\nkrNM0rbt6DdbynkBNF3b8e6rd/hh4nw8kXxhGgeWZcFaiyriZLzZbbCtY3+749PnJ87HE4sPpGVh\n0YpcMq7p5MNlzdX6zuUIXJzAgLkupDnJaxO0xChXF6dSF+OOfB7KVcpXFy8uZ/4i0MwFjlDSMJ+1\nJhmDMQ0JTchZGulrmXIRqfOVhLyoUJSRU4Cuemc5OdRmoJKkT/TPVsB6jRdYoV6DOGEv5Fu+blK5\n2s+VkgLqJUd0TFhrsbbULkotRS5LIETPeJLPSs6ZJQQRAxQlfQL2ohMpYpnXGtM12F6idV+PJ54e\nnnh+eGIez0g0RcWh9QWK+BO1ibpoQOS5XUyol1hieTEKmerYLBdG4X9R3JQ/m+0lrbRi6FImWDth\ncxbeo8jCH2NABbn33ie89yzLQo6xjgKaS8ywQpzLF1euyiKBLuU/0EJ+eH3g5eHI+TRx+/YWKAzD\nwOPHJ2LybPdbCTdyliZbVJDQ/6QlYfDx+YVxWGisY98aJqVYTjPOOla7Ndu7PbkEXp5feH45c3u7\nwTmNjonz68I8B3wurG42HA4Tj49HUhDbs7IFvemvMqC+b3n39ob9rmeYPdvWkaaF00kkk8oadKP4\n9OmEnxZyiJxjwkdxnvXrjpyha75Um612W+JJ/7/MvdeSJNuVpvdt7SJUiqo6AkBjKMaseUGj8f1f\ngUbyjkZOi8EBDk6JFKFcbcWL5ZFZ3YO5RruViqyQHhFrr/2vX7AskbEkirYoa1kdoLHO4fuWh0+P\n2NCA0mjvMK0XXwkWeeuUQxnFMskW3lpHjZkYI1FlrF8/buNCzomKou17fNECGQBlLizXhVwmxjGK\ny+HWY3WRfELjsGhSlW1krpmiC7rxeDy+9aJSNAqLo/EdDw87ZkA7x2mYxPckF8YxiqVBcLTeYXVh\nOl8YXk4sWYH1bPtOfJ+rCMOWZWYaIwsGj6PkgUrl+fnI8+vIdYIQGlwWCXZVlbvHO3TbcjwPzMPM\n8fUirBgtvGE9Ol6eXrkcB5SuTJeBeZioOfEPf/yZn+tP7P70F/70z7/w/PQqborjVcLBa8U0Hdpa\n0CLeqEpa/FqAHKlVcYu9KVW+sK5q7BoqfCMvCDMhUmqSc8g6DFRCkcvrl9qsg3Gl7FshT8aC0qSo\nGOeK8QLJKC289xtVrZRIiUJ6U7pgjcMai9WaXJAgpaQpOVJqlK7VSAetVrM3GVCqN+aHgPVWhpdk\nlF4fL69DubUDnVOUgGUEZgFNKZppqUzLyHCVXN68uiEqVXHW4p3DGr/S/2R5M1phg8FsA0teOL6+\n8Of/8guX04m4TFiLQF9GC4yzDikrEu+Y65qdWdcGMd9EU3WFm777v7pGy60F+x2C4nbp3cfcgDUS\nbn0rpzdcvtRCVgWVEmpRK6RV1+ckC1+pac1iFf/72+ItUYPr4qD1G07+tiX4d8ffpZBfnp6Zx5my\nGhOpUqgxMQ8TL19fiDGx2Wz53e8faLRiGRJfjzIQKFWy7UIT6DYtuRTGYZLtZq/QtuIczOPM9Thw\nPQ303tJsAloZlmVgXCJDKhIWcRw4nwZaZ+QNUJWcE9fLRIyZhw9bPn3a8HjYsiyVMkcuLwvnMXL/\nwwcefvjA48c9v/7LXzh+exU7Xi2MleE88O3zkfESeTzsoMqg9+HjHU1n0K6Sa2K37fDeQM1sO0to\nPKHraLqGaiypVOZp4bc/f2Y4X9i0Hs0agGsl5teHlp9/+sRwPHM5nlguE32naIKHLQzDSFoWljSv\nXHpHKQrbwC2Ewfkg2z9TKek9rCBsHDoW4rBwvcxEN7E0F+m0XcD5gMGTqRSVKKkQ2sBuv2UphTTB\n5SVS5oHzcEWpQnvQpFKo2uK3B5oQQBtyrDx9ORGnjP/xA67pmJcr42kidJI+Pk0T1ml2hz3WB7qm\n0vhMWkb++Z+/cl3OjEtm0wWuxxN/+dOfuY4Xtpsdd6FlX2COkZgiry9fcQ6aQ4O2Hb5RmFr59NMe\n6oIPht9+fabkKAEGZwkGb5oO37aymK7GYe8Gf4Zqq9gflwxFy9C65FuNQykwQsRe7WDhjSe8NsVC\nyRbqobitJBmoFtA5SeBvNuS4ktKN2Opqbd465IIYV1FEJh6zhDEbtw7QAG1Ed1mzkd3XjXZpBP8X\naCEjQRv6zccbFEWtK5gSHxNhxkhHadeEIeUsubEkFDmtuoqSwVR8Z1fmjnC3rXNY79DGrrRPwc/n\neeY8Dhz/9JmXp2dOL0eB8VIUJpAqb532bVdwu5zXQnk7p+8UvhsO/T2VdO241XsRNTffFavXRU4W\nuLxaFsisQ3ZgtYoBWll90m9SfRno3hYsvT5eEfdPZN5ltH57nkoJxfLNwVKvQ2v+A3XkzsgEu2Qk\n3WWScIE4TStnW7PtW+GuGk3bOcJsidVhtAhqUqrUohiniZorThsSmcjC8Xrk5esr0zCia2EZJoZV\ncjwuiSUlYsx8ez7z9HphHBcOm4bdpmXTd4RNQ9+31FrZbD1dczOrglQlpzLVRYQ1qtC0nhACPgRq\ncDgDOSUarbhMkg1ZcuFyHYm14DoHbUBXobR1rSN4ccKzpmKdfFCG44W5KOYifN4vv37m9emZu0OP\n1VVoUN6zPdzR9y2HQ08aBmqSQWZNieLErWJKEigxxxkvnyxSVvR9g/cWbWV7GFNmGRNRZRFQWMUw\nJozWBO+IOpGmmXmM5KrQ1hOalu1mh2801gvf2RhF4y193wiVLC6YAdI8oWwlZkucI8ucmRM4L5+F\nFBPDdcQouGw7as1c54UxZe68wRlNXjnK2nq0MSzTUSiZU+T59cLpKlCN0Yplnnh+euLXv/zKfjfR\nNj2b3Q6spWjNNM6iEG0CoW/EqniJ5JTZ7/u1a1J8fX7leh1JcRHopyRiiXjXYKxg58KXrjIENRZW\nb2mlVwVnvhm11DcGiroFa65f3n8LgUpRLOvWvuYVjb/Z0JIEGtFCdy1F3VCe9dZyf6sPosBkpUCV\n7xhq9RO/kQCVedspSBda1+4SZPVYn1PV3y0873CQUYqMwHF55U1XpcgarpcLyxxX/HsVw6yfkxtu\nDYhfi9ZvxVgokjBNM+MwcDpfuJwuTMMkLJZbpfzehETxbwr5m4hGIelN6jYPWCmFb7d7oyXJAqfX\nzvsNo77d3/v1Ffo72GUdVaoby+gdkpH7XGcNSnYntd4CovUbbv/9IXP0dUExesXx/wMV8qZtsGNG\nzaBLZRpnLpcrlUheCnGc0Tny/DSgNfz0wz2h01jf0XvL+TpxPM8cjzPDPFJKxhvHlCbiU+I6Tdiq\n6YNl13vSvHDOGe0s47iQksjgT8cTl/NASoXSWrZ94Mcf7gl9JwZDZKEPJsVwzRStCMHRWI2bEuM0\n8fryyrYPLPMib6x1eAPaGYKzNHMExIgnl8I4ife4zgVvRArchPCG6938YmJOXF+fOc+ZKUPbWo4v\nr7y+vFLLjDUKawyhbTncP9B3DU5XdEqQJCIuLjNKVXKpDHNkGGem8cp1SRLoW8B8epQtv9XS/WVI\ncyUTURZMNYxLpe9bui7QxcLpdWa4RGJBMhDtjPpo2RqN9je2QMUZxW7TSJRZLZQ0o6qE+85xZhoW\npqkQk8bULAO9WIjLwjgqXl9PjGkWnxwtU34XPMporHErDXHkT789E+eRFCPPryOXQST4m7YBUzmf\nzvy//88/sd18Zbfb8+mnn3g9nbiMo7CCtMF4hcUwjaPMO64jm23g8eMB13jSWojHYaDkyDRG6jLR\nNb0YozkH2onyVgkPGmegWiC/qTEFQxfc1KxDwlsKkVkLB/VmZFtBSZi0cP0NN291ZbR0+8quiltW\nqECLHwiAkq5aG+kFdYWyhkWIEfg62lPpjTdtlYSL3Mg4UvyFovomalkL+Due+518vK7ujFl87atR\nkODLlycuZzGbEnx+VTjeEIuKWA/k8gY1SNcqPxPn0LQmNd0KZObG0Zfetb6hD99L2mtVCDd8hSvW\n7le/4SPr6dK329zc3etK95QCXUC67CIL122AKjdeH0shw9bvHv/NKpeyQjL63y2Gche3R31fhFjD\njNTqY/MdDeffHX+XQv6XL18xpuFwv2XTNwzXC84bPv60F78B7cg54r1HacXluoaclsJ8SSuXX7Zp\nXRvwXtM4y+dvR748n3g5X9lvWnbbe3748Y7Ty8DpOnIargwXwYKHKXI+DzTesr/v+LjfsAlBuoYy\nklJinhfO14lNF9huWkLY4Juerm14OFiWErm+XPi/fz1irMY4+W27QNM4mr4hvlyZrjPLMHLY9oS+\nIQSL0ZZcHVU59ocdOc2M1wtNI3g+unB+PYvfcYkwXnEqE7xg63MWLN1uHMVW5nTl+fNAnAe0SUSS\nvL5Y2Rw69n1DoHI1hss4Y5pM6zXbh462aySSLBf6XcDoDcfXkeNl5DJFPn7a44JnjhKgUYqibTu2\nvef19SJ0sdMTl+sR13j2D1u0NWx3G5o5U5R0aGlJqKnKAHDShG5H0xtSruQ4CNyhYFpmcoyQK0Nc\nsN6z2wbmy8j4emE4DzR9Q6EwDmdenl9IOUvYgDeEGshZTKCstYzjyP/5f/xfPD4+cjjs+Zd/+Scu\n1yspRlrveXp+4fPnL2gjHthdCDxse5w3FAOhbdBYWu/55Ze/EuPMkhM5RoZ0Yh4GtLXY0GJdEJHM\nTQewLKvYxkjRNeoNlhCoRDBlobQJC8Ssoc8SQ2ZYFTpSkJCtf01gnXqDaRQyfM23Ln713L0NopXS\nGGslkLpkVDHrYlHW2xZKjqvB13ddq9Hrc16NoZRC67qmGClUETOwUsvKVJGOMZcqw9e4kJbC8fXE\n8fXIPI9rFfh33Sc3Fs2tKH/XzH4HOb3R/wBWlaVg1rfBLCuP/T267W3BWG0WBPeX85SLDGZLKZDe\nn8NNBWuMqEm9c1i3qjfrSkxAxFppVQTnnN5k9zfF7w1nZ4Wc5L5vA2WkUq/ukbf33FjxkWmsIQSH\nd57gnHDa/yPZ2B5fL2w2iiYExmnGWsNm2zEvE77ROOcI3oAyGCu+KqTMdL7y7a9PVOdZqoxB+r6h\n6xwWyDEzjwtpSXhvaFpxb8u1MM4Lx+PA+TyKx4TW3N1t2W0b7vYtvXFopSgxMs6JcYyknGm6wP5u\ny6ZviZOSzgBwVkO11FqJZLo2EFoHWrPEyBJHlFWUKKno1lq8Mzgtg6yUIsoaTAgcHh+IcVzxZbGH\nbVvBCLttyzROPP/2BasqbePxXjipvmnp9j3WKtISyZN0C0JZsqRYSTqiS8FqRXCO2sAUZajW71v6\n3Z6m9WhgmmeWZWYcZHcRGo+u6wfoZrnbd6Qiryu0ji4FUs7iW1IW/JJx3gm1s7VYpUlUlhhlgOnl\n/rxz+K5Ha02KCzlW8jkzHC/YYAjG4C1o77Ah4J3h62/fGK8jyzSxu+vxwZJjFI9qVala07SBJYtF\nqG8CKMU8SchzWiKvLy/r8KtijIRdB6NRtbJcIh8fP7LZ7thunFilagjeYj45SqkM08zL8wt5HMlZ\nQgByyrAsqDmK4MNZjDOkJRLnSCXLAFNbWfCNE+qbBpR5Y7GUdXNe1PpVV2snebO2VStcUsEUoQ0K\nayS9GW3d8iiVVu+WuEq9da5vwhwjpbLCm1fLjd9xAxtKuXXmsvu7wRFKV0qVrhq9UimLUA/NiusW\nJfj8OE4iDrteicssA2N5ItJD1++wIOpbYf4elXiHPuBGEHyDVNafv7NPVsx7XUje4KEVyvruJm9U\nzxsHX2tRlRoj8K01N48EwahjzlKsc5E0oLWQlzUp6DY0XV8JotBcYRr1Dp/dHktrhbEKoxzOutVv\nSc61c4Y+eLrgaUIg+LB64vwHKuQ1ZkgLOY7MuRCcZbfZ8NvniPaGEDyNd9SqsN6x225hWogvV779\n+gxdi24DNmhcMFirqTGT16iuXdew7QJaK87XgfMwcLoMHE8jl2Gi7QJ39x37fsNhH+hbS7yKfapg\n7xJxZVzgx9994IcPB7xxfPvrkbxElrygjazSTRs47Lf0XcBYy1IqT19euFxGYo1svKdvPW3rqOkm\nutCSx6kiRktupXIeN3lOrwO2GDrrxNfFapa54fL0jbCmwux6R9d1hLZFh4CrkMYFEwE01jZ0XhOR\nJG+zhk0jlGO6paCdZ7Pf03Y93hsZIk+J03nmfDzRt70MlJ2lLFnUqN4T+g3jLJbBIWecczRtw+v5\ngq4GkyvzdaHvHCZYilXUtHp55yIdRtvQti0mdLIQqkIyHnXVzHNivw9sgqO3BtVoqnIsc+SXXz5z\nPV/RqlLqTL9p0Uaz3bYMU2RKGe+cNDnAdrdhnGaWq0TYDacTl9OJ03XAeumc69fKH3//A9u+J0bF\n3YdPPD7u8WVmug6UWrHaYbeemAvDvLDMMzFFxFFElIYSbL2sRVJyNXNKYpZ0gwCUOF46H3DOY5xw\nspVafUvesGn9PuRCfD+0ucEbK8dbFUBSprSuksepb+yUdeqqq/wfEktX680aVb8V8hW9ee+wgdsJ\nLAmUkSbAGI3RIpqpKqOqEO1KFYplWTn1q2MBRYl//fl05vnpWaBHhIGzTgXkeXF7XAXkN0hDVFHr\nG7liz7dqXViL761QKgk/pr4X/7cLK4wjXbj8+M0+YC3uxoCx0kA67/HOr8wZTSqJmMXBdBxnSU6K\naZ1XrBDW6okiv1aHy1vDfevqVw64MQarhVVjnSF4Q/AtTdPQtH51VASnNV0TpJA7L0lWRv+7Gcr7\n8Xcp5P/4+y0FR1KO2Xc4oyhEQmglDikqYqosc8ZMlc4NlCkyjwuUymWcaBvLHx7veX458jTJF3WK\nkcPdhofDlufXV37501f+6jTX68jlMsnQzmo+fNzyxz9+wuqGtrE4U3mdrrStoe1afrQ70B7bOA4f\nAsyZ8TQLjl0TRldwsL3bst1u6IJmGTPjnJhiYnvY49uecY44U7FeYZ0hW4tvWtpty+n5xHSdGca/\ncnl+woeAtobL64Wnvy78qit3dwe2dy3ewcPDFhs0Q4xoI1L1JU50nSKdE0YZmtbRbjyhC/imxbUB\nbaCkAYVnnhPL6cTPf9jR9i2+a0hLYbjOnE8DL68nUspY2zPNhVIWfJAtc50SVQ2oWrmcr1zOV8ZB\nClcuhZQ1TXDY4CSBJ8r5uJynG9qL8Z5EQReBQUpaiFGofZfzSJwVD4+fyNOZeSroYLi+nrmsBmG/\nfX6m5EzfWZqNItWI1hZtLIpIHiau1wlKYdM3fPiw5eVFsSxCC/VWrBtKqRJ2Pc1M48LdoaftA5tD\nx6c/fOLhsOf67RsmZVSeoURqtbRN4Icf7rm8nGRoVwfxz0EhniaroKfUN157vXmZrArJkjMpRuYb\nvc/Y1aNDumhhSLh3+p8W+buu+V19qDRFyxDUIpHGudxsA0RReMOK11EaGkXRea2NahXBgKor1bDo\nlf1x6/RXZvPazcdYKAZkUShoXd9EN+M8Mo2zpPAoRa2FlBPXYWAcJFP1pioVBslaCL4bREp3voqr\nbl36G9XuVr2+68LfLq8rx9uf6z/WBeB7BEeCoMXPxTmLcxbvpWgbKzTSXCrLEplmSRtKa0JSqeug\nuCDB2bqieMfCxRVSwjvMWqhlPmGkw9ZmFX5WDGtakzOEYNjtDrT9Bt8ESo4YClavC4tSOCXUVRcc\n9mYI9e+Ov9Owc8M0VWpS+E2g33RCNfKeVIT61Dt4/nZiuEx8jonGWkzw/PjHH1mCpdtv+PnTB9qu\n5+nplaeXIz/9fKANAW8MT88njqeZXDIxR0qu+OD48Lhl07VMYyY0BV8F55ui4rpEpmr5+Cnw+PGR\nvm+ZhjPPz2dOzxci4my3AHVJNL1Yn5ZF8fpy4TpHVAg0bctm59HWUcvCMg6M5yvGK3AWbTxLqgzj\nzJJnxrP4aRvrpEsoCWdA20SqDUYrhuOJl9OF8zhh0ISmoe97tFeUCKlkYgW1KHQu5PiOly7ziLGF\nGDPXKaHUxLJE9OsZEzp80/Hx5wO266UDNYbxMlDijKoZo4U6l1KixCS5qt6B9QTvoSpiuuCtxweP\n1nUVqlSK0Uj2mHQwyxKpRGLKzJN40UzDhVgVTddwt91y+qaYrlfOl4k1PhNyoQ0O7xs2m8BlXEhF\n0TXSNY3jxDTPOG9wTtM0jr4x5K2jpIZpNlgXyAW60YuIw1jcYce261mmxNPnv7K/+yeWn39k3wYS\nsMQCSwIr8IEzmq5v6LqGeZ5JAnHKdl/Vt+DiW1iCwAW3gZZ0kSKyunXpkffkGtmtGX1zIrwl1Uix\nN1pgGK0NqhoqK2d77QTrWnyNLm+2rFq7FR8ub0PMN+OldZsvneOqPOT9uQvXWpp9ZW/e3fKaKpll\nXjhfBo6vJ8ZxkqxJwSzIRfjzKaWVhlfffq9n4ha19H4Z3iGe79ge3JxQ/k2llr/fWSC8M10Ub/j4\n2+K4UgjNamOt1qGjNusg8ztK4g2rBoup5m3hEfXubU5Rv3tPhHpILRi9PvYahu5Wh0NnrJATjKFx\nVkR+baDpvJjFab0qfoUAYW4w1u1xtVmbFvc3a+rfx8Z284BKI6SMs46m6wjBUpRCG4s3hkBiuCyc\nXq88XUfu7rZsNx0/3G9RrcE3DZt2KwG6bc+cDX/4h0+0wXN9vdB3zxxPI8MUscHTdo7NpuGPPz+w\nLJnnbwPttpJSwSnD6RoZl0iIirufFM2moW0DT79+4/XLifPphN040lLJEao2hHYkaIMyDZfzyJQy\n7bot2x22bO921BR5/vzE69cTrZeBS6nCMx+nmXEZhBM7TORS6LYNrTd0XqNfJ64XB1lxuY48vQjL\nRlXF4+Mdxhna2r5P1VNhzuLUVJJ0NbmIU5wPUWhcs/CtVc6QE5uHRz5uD3z43Y+4vqNUcYoczwPT\n5cIyjGKmNY3MV3EFLEZTvac4y2bTE1yD1mLY5RtDIsnCMiey0pBXeCUlcixoXUgpM88L4zAzXGZ0\nG2iDZb8LqKWjxEXMuFq/ijs0jbfisNhY/ulPX8jVEIJkwI7TLJz8zQavLcEajKp0XlO3zWrWb4mx\nEKyjawO7bc/hsEG5hqfXM3/6lz8TY2S8nPnf/tf/haVkxiWR5xnXriFeKdIES9M4nJEZSaGuw0wE\nM68I/PDWLN40e+qtUAkwIkU/33CB9biJcqwx4izo7CrkkcvaOLT2EoCsQK3JQW/1r9zAYk02FnTB\ncFOOsuLoes0elcg51gJe1l1FTkm83KvGWkdo6ipoElinpMjlfOHz52+cjhfJz+X71/FdQf4e1lXf\nX+2/xXv1urjU+l6gb+fknZJ4K6Y3Tv5NoKO4BWHfumLB94XPbp3AG5W6zjYKS0xUkuxaVvhDbH71\nmwL2lvGptAX0Wsw1wQeCC2iryWmmpgVdxINGOPEGbwzeWBE6BU/XNmy7nn67odl02NaTl4V5GJnH\nEWX8++vM6zumNcZ4jHZY/R+okP/0n/+R09cXjt9emSsMLxeOOfJ8PHP34Z7u8UDftGz3V4YxYmLE\nbTponIT1Ph2Z4zOFwI+fHmjbjh9/+sTHTx/ousDycAdGExrPf/3lN3746Z77xy27Xc+u83z9/Mrr\n88T5OHJ6GqixMsdK2Df0hw2H+y3TOHL++sLL8wvKFrqtI+XIeBkZx4xynq7zbNuOu8eWf9j/TK5Z\nFgPnsFRqnNjuetLYEayhCx6ntGCpKYvJ1zCijcI7zTxFXr69cDWKNmienyrBOZwTK9Q4zaR54Tos\nxHHh8jrw9HSmaVq8bwiNp2ktmsoyzmwOO6x3xATa2TX81UlQg1XompiWzOn8SvmL4vRywgXH4X7H\n/r5jf9exzCJXPj09keOM0wJhna8j1/EVPsDv/3Dgf//Hf8QGxRQHnp5e+PN/+a+8fn3B+oZlWsTT\nxSi2Dzu6bYvxmq5IyHLKmcu0sHw7kpaZxsJ+7whhL/BEhrZpuFwuXMaRb18vLFPGmMqcMiihZ/aN\nog2OYD1GG8ahMK+zE28sZMUyJ4Zx5vF+x/1hg1nj0UKFRitOT698/e0rxz9eKCVRy8L1cmHjWhlM\nkfBOwg60VWiMwLlZEUAUsAaW1YNF3UDNcuvQ5VBKAIP6fcDBWw0Uj5acEyzLmzet0PrNAAAgAElE\nQVS2W8OWnfOE0IFKbxg71d4a7BUall6u5LiKVFZl48pEcYg/yzRPDK/HVfm7puHkQlqdO7XSOOdl\nKBxEWYyqXK8j13WImWLinUx3e4HrH+rfFmTWTvh25VthvV1+r/Pv3bb6bjiodF19bKS7vwmJNIJF\nr/XvtvmhlMKUlrf7lxlkWUNDboi8LGy3ODWUeqNAai1Ehds5t85jbUApT9N37PYb9vstzipUidRp\nIOeMBry1ArdojddisOfbFr/ZyAxQK5ZSSWWmKvFsslpgNm2AcltsoTEeb6Wr/1vH36WQT0NhieIV\nPF4GjLfYJnD34ZEffnrk/n4LS8Q2AR0cqiSyqiLyyIXraWRJif7OUuuCVoq2cRxPF1LJ7Hc9h7st\nP3y8I8ZJCpwPbLsOQ8UbJ26GWhJ0dK1cr4mwbdg0gXQZ+Ta8cDmdicskjm+mMI2JOSVSLXhdEbvL\nTA3rB65qfNCUPDOMC+NsGYcr19MoNDNjKKqQc6TZBn53+AFrf+Db5288f3vm9SWxLGL3WqN0FcmB\nMYWlFqZRzMVyKczjRJkjn19O3D8+8OHDHaHRaOsEtx4q18tAKYppKGxypts07PY9oQ0YrSBqLpcj\n5+vIt6cTTWPodcc0Cn6ntUjCq1H4vmVzf2A6vlL1jDaG+8MOZx3juBCXiWlJnC9nvn155XoaReHZ\nO8hZ0oac0KdqTFyejjJzMIrdoae8CMdZ5SRqwlRRSZEyWO9pNg2hb3DHo3TAxtJvOva7ljJN5MVI\nEPeay1iUQllLWRTzUqkxctjt2fQbsoJNF/BW0QZLUYbYBz4+HpiXSF1mXl6eKDlzOZ759vWJ/hIw\nRlFK4jLMzHPEWSePpzRaZdLKutBaYWohJyRgBIF76zp8u1Wsd7jg33euqwv4WuFTEhl3TmIbsdjE\nsqR1OCdDd2PCCsnAe4akETFRZoV9RE6vlaIoxzyOXC5nrsdX0s3vY91GlLLCYBWMmZnnUeidq5hv\nWdIa5p1Rqwjqe45zVatVLIiY5vaabgX/u3Ohbpdr/Q5tqavC8vZv5PKb/PK9nigElhKTMrGD+B49\nEoWsMHxuu6LbAPT9ivpdmHQT86hbHNy7CMgYjfMiTETBsg5BTR/o245mt32DRG6pT+IYanHBoVdI\nMlXxkSoxUWKhpEpNsKhCKhptwVlpFqzRWOuxVnYWf+v4+9APv56Y4kysCmvlxIS+Jex2fPj4yLZv\nOD0dxbBdC30w5SRshVhIi4gN9ltHShPLMjMvladfr/Tbjj/+4QeWacJ7zYf7DUtBhgco0hSxWrM/\nbKnWEILFW800JKz3hMYzvV44ns6cLydhBRgxFhrHhLKaLjjapiE0GlRhXEZ5I0pF6cI0T8Qlk6MM\nhkqqa1yX+Klfh5Fa4OPjHT/+cIerihojaZmEYz1HSGKtWQvEAssatlvQYle7RMZx4Ms1op3jcNfh\nXY+1lVwUqcB0vjJPies1k1KHNpXNvqXUSE1VbBGmmdfjlesU+en3B5yDy0l239o6YRlbjbIK3zec\nT5qiFE2w3B86YtIM14HPv/6FuCxig3seIGe2m5b9vmd0MEzyGlJKzNdCnCPGG3wb6PqW1HhySlhV\nUWJ3TpVYHZSx2LbBd14KUi30udD1gW0foDEsg2YcFOdJzM9qLnirUMZgjYeS2d9v6Tc9yipSHElx\nxjaeYsQZ8+ffPzKcBmwwDJcjy1J4eTnx5ekF/yrxZrkWCYNWBmec5HXmsvKVxSjJKr0qKHlnWMB7\n0X4n0a0DR7UmB62lRbHaqb7Xq1KkS4cq+Y5TFC8iZ8Wi2MYVgrnJyB3GWJRKAvtUqDWhzLqw5Mw0\nDEyXK8s8rYuFFDezeq0E77hVzVozyxxRCjEaQ+GdEdHT9+W33NSjq+pz7ar1yk8Xb3PeRFHWqHcU\n5gZTIYthXu/r5oFyMyl7dzF8V2gqvqNBZsHUbywRKuJP/rYDUG9D3xvEcoN01uVVdgDmnd/NbVdT\nMtSEUhCXTEriqZ+WDlW3hIc7QiMMEwlqThjAG4v2BowW98klUWNCpSL1fg13SWvKE0nRNBm/4vyZ\nQqR8P1b4N8ffpZCP00yxhv7DA3/4+QPDZeD4ema5ToznAVMK1+OVuhQMRjyroxg2zUuk2XSEYGi0\n4a+fX/j2fOZ0mfn2dKJtG16+PDGdL1hV2W4aPny4Z7sNtKZwHhLWG7q2x6xdgnWGf/jxA00TSDHz\n9ZdveOdpQsef//kvvJ6uJFU5PG7440+PfHjYoV3AWUvJmb/+62ecteRVhj8vkRwzKlWGZaFpPR8e\n71Bx5nqd+PMvX3l+vfLDDw+k//w7pmvG2Z7tvtJ0wkDRwDicGYeJlDN3XUsukZwXlC6cXq/MpdJk\nRfAKZwsuQJwnhiFzOs3oUBnLxJeXF+bSE9VMUpFcVoqTqUxLIadInkeGoyVNEaWu1A8SqJApbFpP\nKZHrcOHldCKR8I1mzhcUhpIMn/90oiaxDThsNdsf7gihoSiL0pl5nrg8vZJCoO86+k3PkoRpQk7Y\nFUUeh8h219D0Ht8ItzqrQlquxFXZ1zY96TSTBpiV8MiTMixFzL2mKTKnBNeJh/2OTz8faDrP5v4g\nLpPPhsvrRImSieqbhnbT8If/6ZH5NJNSRblCnCIqZ0zV1FSYUmZcFsZpITSB3c6LYZIqokjMgv9n\nCtUUMb5SSFdexBSpvFHqgFpvVuCIE0ddU4Tevyv/lk994z1nMpmcM3FeGAYw5iLUNmvWTj3g3UpZ\nuxlZcRsGVlIeRUVMxXkZ/ubVhVApJZ/ZDweCd5ibKnmU5J22ade5AKC0RBmWgqqyw47TQkkJYySJ\nK9eCcaLErSiy0sRYSLnSN0F2vOvOJRdAa5q2YRhHrsNAWg2ubrsWu/K9rZEhoOREZ7lsZbG1ykhW\nQNsiNM0IJdJ1DcY4qrIU7bheJ86nK85JTOOyiLnc6iNJqVn0GCWyLIlljIx2kEXTeYxxoBTj9cz5\ndOZ4vnB3v2N/2LLd7NDVUVNmGmeYxftfW0NZxChNAcpb2QH7vLpCChw4jIVlqlgFimkd2v7tmvp3\nKeS7x0ds6+n2PYePB4w7EpNinibKUlmIVAx3j4+ErqVtHTEu5BTRtRJ6j3cGA9SsAYPxgR9/9xOb\nvmW/bbExUZaFshTymHDbls0mcHwauFwnriWT54Q28qHxOpA3In4IQTjhRike7u8lhcQVHj426Fx4\n+XpB2ZnD/Z62DXSdXj3AI+U84UJDE8CXQr1KZFzTOLzV0AY+PtyzP+z5+OnApx/vWA6F4brlOoyk\nJNu+UjPT0PPtyzOn40C/2dJtLM4DMfPZvRBCz+8bR98HrFL88q9fsdaSC1wukXRNXIeJ4+lMLqu8\nuVSWUQZaxhZMFXFK3zjmKYpqs3OQI2mKDMvCdKzMi4hqTpcr87wQl5l5vNCFhl2/oWs8KUdxYVQ9\ntVQZdqaZOE1oVbm72+CtJTSOptOoWQMV6yrGVWwxuGrZ7TuoyCxgWhjGkXEaaBpP07ZsD1tC24pz\nXlxYtHjgxFI5DzMU2DQdd49bdpuOrm1wTcN5WPjt2yv/5V//wnS5ylB516JiQo+R86uhRumWprP4\n40tqSxWhhgs0fcu+SqevjCFHsUQoNaG17NyqEly0GoGmZJp587i+CXR4M7O6sUTeiS31HaZYmSiA\nhHu89WTqnQVSxD4g6USMmnlZsNO80hhXqMcaWh/wTn5GjlASqgr322glASNFE4KT3dSmYdO38v3o\nPAYtQzvfoL0MBJW2a3qwdMQvn594/fbC5XjCGkhxkd1xuwpenEM3gdMQOV0iXdfyeH/g8WFP0zSA\nJebKFCd++dNf+Pz5qxhToUg5cx1G6ayBJjju9lv6psHVQtO1lFI5nq80PnB4OPDp5w88fXnh6ctX\nXp6eMMC2b9jt98TqmMeFuNvQtB60kANyrsQUiTmRgOE0cD2PJElJpsZCLGKfrZUCo5kGzfVy5nw6\ncnzp2O427Hdb+k1H1zQyt7EyTyEv0rasyUsCvSmKMlSzWjBk4favprjC889FYLK/cfzdCnnTi3uh\nCwHfJrptxlqPopIS4intHe2mx1K5XM+M48iyLPRNgzWGJSZ2uz3KNrQxs3+8Y7/p6K3mRWtOL0em\naWG+zJRDTwiSqjJNCy/nK+N1IHjPbr+j9T0KQ9d59oct8zijSuX+/sBObzGh0PeVL3868vrtjLKO\n0LVsDxuxffWGy2XCPF+wjaf1ls5oVBCVX79paZpA31l2uwOu8+z2LftdyzxltruOZc7krFhiZFpG\nrhfDNCViUvi2YX+/YbcVXrvWDdv9xG7vKTlzPF7465+fBHbRiuu4MMTIMM2MF8HVV6if6SKqVW3h\nbrfj7rBhu2s5XmeU0TQb6cBjTEzDyHAeuFwGhmFgyZlhmRmGieF85X7X45ThsPWkaWGaI25w5KTR\nOqFLJscFZxVd10vnpiolz+/yci3MC+ctjQ2EYNegkYHreeJ0PHO9njnc7zDO4xtoNw7ILBPEKROX\nTMyFecm0PrDf9Pz48X7lucOyFJ6ezvz5z1/5l19+w9TCw74jpcxCJCW4DInWGWouDONCygkFbDYi\nXApNoN9sMN4zzpnTZSSy5kPm/FZ8hT2h32lkK8Z6E7G8geF1ZRuVcvPSAlXfjZ3WjMi8Try0UmtS\n2bs/x61fL7VCFl8SIiwqotT0JlAK3rIJhq4JeOu4jgVVMrpIwlBC5Dhaw6ZrOOx69n3L4bCl3/bY\nNrBtA20IKCe7JeuM2Bxrh6qKnAtP+x3Phx2vzy9oCuPlwuXllaYxeC+Yvu0CGxfZ6Eiz6fnd7z/x\n+3/4ib7rsK4lZ/j2/A2VI+TIkpL46iT53BIz3hj6JnC37bnfdXROE7oNBcPuMrLpOz788MDP/+kT\n//X/+5WyRC6vR7SyBB/Y7zagHGwKpuxoGov1YoObcmWJiTlGlpJ4/vLCqzkyJ9kx5QpTEh8baxTa\nWaYlkdLEfF1YpivHlxe+BrHf2B927Hd7vPNSyEuUWDytVzMsJzsbWVElhUqBKWvcnCqrAAt0/dvg\nyt+lkOvQoIwRYcaYqMoSug3WN8S0QMk01jBNkWnMFN3Qbg22aRmuAx4LKKor/A//80dyTnz+coQQ\n2O97Ph561JoyEsuZlKLIg1Om6xpC8NTTiZgW2SJZQ9d7dtue/aZnuw98/fWZ0/OVWDNd5whOMT5d\nuJ4WrtOMajLFFUxvCE3AephSJUZRdGrVse137K3Be8tm19O3HW3f0GxEgp/myOll4DpHfPD0hx6n\nLPO0cHytvHx5IfiWhw9ePsBFY/D4reHHZsM0R8blKsZeegKtOV0mhnHi9TwyLXE17QfjpOO+cmIe\nIhWF7wL3Dzs+ftzTtIZkwG8bto8dly8X5mlhiZGX1wsvX8Q6NCslKe1a0bYb2qbBGo1RMI6Rl9eB\n86TY7hObbUvfBVoXxHI1Fc6vF+ZppmqFbz3eW7wV+1IXKspqLmfxEP/y2ytLgst1YBhGlHPMqXA8\nnmlaQ8mKJRauw0hJYtDfupbNpqHpPPOSuF5mLpeZmApDyWIVkJLQMufEMi4Uk6lqJmKwdzuhUVaF\nmif6NrB9eOT1+UhoHB8+3YNxvL5cmaZMmiWUWLjYawEvRQZmN96xYlXkKenokBmEBbLRZCXYr5Rz\n9UZdc87ivGOcIrlUrLUsy0yM6S1BR2aE9b/5jomm5h1P9trw4W7Lxw8PhKbh65cXhvNAdJGkCpdh\nZhwXqJWub7m/2/F4t+Xjpw843/Dl6cIljkx+Bufx54yzCuMC2/0eYz0xZpptz6eu5cMffybOM98+\nf2PRVkIWUKSkGZ4jnVZ82naE/YY+OMoceb68sD1kur6l85aff3gkWM3rywsqGMacKUWRhwmvFNtu\nI7bSxzOl9bxeIk274+PHH9nttnQbx3gd0EbRdqtDZ9fgQsuywP3O0e0ki1dVyeb1oUXjqcoQS+E6\nndhozV0TyFoCxHOpPH07sdu37PY9zlu+vZw4XQaoldfzzPE88vz8wpe/PgkM5CWgxjtH4x27bcf9\n/Y7HxwPbLuCcg7IOO+NqBKwFYtWrItaoglX/gQp5CHb1LlZr1zeL+X6wBBtW6SwEbdFr9ibIwLPd\njpRFMLOgLbv7njTPXM+Fqcp+RClF6Dv2Dw+EzZZcJA/yeFyIKDaHnp+C4vVbIM2FeVh4fj5itBT1\nqoRGWAxYL/afc6mMFdpDj920VGU4H2f+8q/fuL/r6Lcd8RpRKbPb9nRdAOBw2BKCx3pL0/eE1uOM\nlqFtAmUM3imohmkuRFtlYdvs+f3/2CLimZnT63E17rcY37LZWDaqkGLD85dXdIH73YbrOPP0fOaX\nX7/y/HJkHGfQ4C2iSNWaftuw2fQ8PD6wO2wwXlN1IqbE8bdnvv72TB4zoQu0u4Z+F0hLB2SUNygr\n74u3gdZVmk7jWyeGYBFCCFyuE6fLILJjU0VijqKaKpFjc2a+JkpW2F0jrz3OxJWSOV4nVFkI3pOS\nZZoMl/Mggc7W0G48VE1cxOI05YRzhp9/91H83Z1mzpmqjETkacU8ZXSpBGugKHKtvJwH7rcb+r5h\n1zT0fUdoPObOsFyv4jNdC/PqQ2ONwjQN4xRXCGR1DdQGayxKZarSZFYYpELWdWVM3EZpIrfXKIyW\n1PVbsMGtkDsrHWwbAt4n5uWWYMXbdf97RVyOFZ5R0Daeh/sdP376wOPjI13X8+OPP/Hy9YWXpxfG\nNKGfTyilabxj00nGZM4S+MI4cbkOnI4LKWfGKE6W1mi6puP+4wGU4rTGJPabjru7g4iEamF/vxXq\nelVYrECBOcIkjpXT6cxSMk/nhcMw8Pi4IzjLYd+Sc8/59cxwmhiXBV80Dz995H6/ofENl+NReP4V\nur7DNa0sdFWxRJhfRqxR3O07zA+P3H16pNvtcKEhXs4CMVEpEYyzND6gjDhZenl7aX+34eNPlWEU\nqK3kxIfHB9reE1qDUpWHjzvJwc3wdJz47duRv/zlM8sUqblgNfR9QCnDPC28lsgwDHz9+sru0HN3\nv+fh4Y627ei2vShxM2/isVISVhXxsP8bx99HEGQ0OYsbntaSOC1KKY21Fq0kespri/UBlxuZ2udE\naDtiFFqUM0JLi35ie0jYZcIHTTWOZrtdvTxgSQPzdeBymShaVFUmOGy2DJeZZcmMl4lLO+CDZ7yO\nTPNMqkKxGgeR6UZVadpAYwxpgdPryHCcUHFhuQrf2nvHftfT9h1ZKTa7nqaR0ITQdVhroWTGKVJU\nxTYB32hirCypklPBGEuzbXnYNFAXpuGM1YXraaIUgVnEKyNjtcei6Vzg8ZMM855ezljn6BrP6Xwh\nl8y2D7SNx1rPdtPweH/g44cPxJqZlkiZZq7ngdfXgWmYMNqxe9igO70GADj62uM6v0rijWCwRJQt\nYBShC2yyFKD5eOZyFQaL0QVrK86KItUbh7eOrCzWBmzTksaFkiLzMq1y/Qi1Yi2ExtIvjWytYyYt\niZRlp5ETIlRRGuu8GJw1gVoqc14wrtAoqCVRjWZOiQ8Pe6jgjEFbS2hbdvsN221PRlwC2y5gKFyv\nM+fjmcvpTC0ihPFdR6oSsqxWZoSqFlPLKnUHQ6Ss3iZK3QIFBFd+N6hau3hE3v3GmzYap7U8v1Xp\nqZQoa3O+Jd28U/n+1vE9/7ptPIddz3bb0Xcdm92Ow8OevuvQxvByeuJ8HVliYrPpaILg6LkWLpcr\nqRTOw8w8zEzjzDgm5jRjlGbTdjLbKZnnbye0UuwPO4ZPE/O8YHWla8R2INhAFxo+ftiTlonT8wvn\nrydSiuTLhS/fzlwuF5brhcfHPTpIyIr3geGyoBfFvu14OBx4eNzReIeqmTho9sGy+/EjRQcJJsmZ\nOlfm65VUF/Ky0AbP3f2W/f0dxjW8pMgyCrOkJFFyWuepqw2tLmC1o+kajPf468g4XKk1s9tsQa+x\ncCR2q0shGPy3iyzm84wEuEmhvf9wT62Kl+ezKLqnhdNpIOaFSsF5hzKWzpg1zlCER7VCWcVG+r/z\nnv9dCnnMhcvxwnSd2B162i7gw0Zkqqm+iRNutploSMtCTlmGk30n/hRKjJls0/CxbSFmyUlUhV24\nhQIUlsvEkVem6QUL4l09jPz/zL3XkmRJkp75GT3EWbDMrOrqbvQMBuz9X2SxewWRBTBoWpUkiJND\njOJCzT1ydntwWxMiKZUZFeHs2FFT+/UnDs/T4w5jDafjGYMWFsAlkqrQ+778+TOneSEphd9uudv1\neGuYp5VwDnTWUubKt9MrprMcPtzRH3b0WxG9uLHDdgPODRjbU6sixyi8XKfZ7Af6sadEiVyb5hU/\naIa9RxuYXgLnrxPr60oKCdM7NruO08uZ129HlnXl9LcjpMJms+XwcKD/ccBV+HAYeXl74+00cThs\n0Eozz5H7D1uGbc+SAyEmptPM8eXC5XhBabjbDqRqWWPm8y/PhGmWLEUtyyVdZsKU0F2P7yBXxWYN\nYq0wGtCGp4eRzsNfPx+Z32bKGjEK7Og53O/57acP9NstfhgwncWMK+t84XRKuGEgZC3dt044o3l6\n2OK6jmkOvL6JMGhZAkrBpx8+MnTCo17OM8vxgkau19B7UoZpTnz48YEPPz1xdz9ILBiWWgrdYNiO\nnsOu5/MvJ86XhXgJzClyOp55+fLCZZ6w9hpZZim2R2mLtolaNQqDVk4oh1mgEq25ueGBYNzOOgnQ\nSJmYMyWKP7ux4rZnTbOFLZVliRxPC2vMrDG1BqZwzZ/8P9RxQIq5c0IjNFZzvkz0/UQ39oS0ojuH\n2wxcfm6BLkqi6ZSRlC3nDaUo1pCZLyvTvFBSZvCGYRhliIphuUTWZSWcJ4wxPIfM8+sZoxTbwXJ3\n6Dhs92wetnx62rM/eFIWy2Fle3JOzGFhmSdevrzw5S+feXzY8vTbHxjvDjx8fGLoRsmT7T2ny8Tn\nz688PI0oq7l7uOP3n+65+8PvOV0SX/7yilaRVCrfjmf+9M9/JC0rd9stjJ45rHS+w1XN0HfU4lii\nkkGst8ICzYmaE3kJhCWItYbVbA4bsIaQMpeLUJ+NFrZV5yO+H/ny5ZXXr290RvH7P/yOh/s7TIVP\nv/mAc5bLaWIOCy+vR3755Y1ShHb48nzk29cjQ9ez327ZHjbsDnu22w2GgRIiOcS/e61/pfBl8Yke\nN6KUUsqQM8QQuPqgqatnr1YYLE47SinM88KwHSWGynBTg9mWYViLQdUiUtbmAhdtwPUbNg+PYoSz\nrsRlJWdxiqu54PtnrkF8pRQu55nTMRCiRiuPtwZvPbvtnv22p8REihnvLI+PW8KSSKVSqiZmhcsK\nkw01QlKFlCOVilEaQyUpIw58/UaeM0dyhr73OGdRuRCXxDoHcs0Mu44eS6Hw+vkrJWnGcctmv+fD\n4xPOKcaDOBHmlLG2MIxgbSWsiaEf0GjKCmVWXGKglkCqCapiOw4MfYfrDX5wLG1TmZaAim0AVyrr\n2wSImxslYqrGaCf0u1rEKW6RpPquc/zudx/4+U9feF4Cl3VlMIoxZaKG3lRqDYRpwhnpbq3vMWlt\nbAtL53sRvCjDEgPbhy0ff//EX/74ldfnIykGqkJgHd/z+jrx9u2NGCIff1vZ7Qa8c9RYcVXWmVFG\nBpSm0HcW6z1FaU5zJJRCSJF5DYScWEO42pmgUVhlW5aiQTuHMZWkFdFoarakVIhF4rskKUYS2q0R\nI6S+s5RSiSHLcxRxUGxjUpTSknZVqgyW10VS5nN5L+L/h6+ritJojXeGw34jxeOy8lm9yvNeJr5+\n/YqynvO08PXlxNvbhZAS0xKIKVFzxSqJXAux8HpeOZ/OqCqnu20/Mg4dgxPpuFZb6m/uxFv+6obY\npP+pFN7OF0KMvJ6OPOw6McrLhbRmlCp4Mj89bVh3A6V9hr/88pX69Y0Ui7CQDnuefvzAx6qIKRDX\nM71Z2HjPuL+nJCgpszt0nF5eWJeJ9XSiUxXjLbFWnj+/kdfM/jCy3chp2VkvHuFacT5dOL6d0TU3\nSuBA1/co65jnC/NxEjLCUvj87YXjWXQHZQ3sxoH/+I+/Z993bH76SOcNH3/4yG6/xyjL5rBBW8Ow\n2THPZ/resR09KIUyHnRHCBmrFUPfsTkcKFXqYkXU2dr8/ZL9qxRyFGKu1IutJ1pk2jFEOUq2IyXN\nc0C3LL+SKyGkW6cuZjXt2NrwxdqOqtcQVnGX8/hxZNssR0uW/MJairjRrYFh3AjdKBW8HVCuR5ke\n0w3k3Dg/znD/+MjTwx5vNTFEoND3Bl3FsfESE9pYYiiUNRDXgusLthexkFGiJkUb0BbxQlMoUzBN\nnKRUIa+B9RKJ80LOAWrGdRqq4uXtzLA7sLm7w/Ud49jRdQpYoCrCshJ2nrT2rJeB02Zgv9viXMd+\n3OO6jlIr67rwdjqKGZQ3+KHHdBbtFH2q5BCIRXy+S3lvArURbFepwmAVXouIKYQooR1zpO88m00v\n4q6x49RZprCSSyWmzBQDXXZUEmFe6TphDBhnKSyNBiYJ8MpYtDHksKKdYdgN2N4zbkdU7bGuR9se\n7TuqWphDYrosjJcJYzRj12GMx5oO1eCPZVlYqdB78b5JmpgiyySBwClmGRSnjLFabBe0k+KG5Dbi\npZArJfQxTKbWRKLc1qe6KgaNwZmKd3Jsd1aw8au51dB7SZKpsmGUImyNEN+j0dTfu5euNxTcoBmt\nFJ2zbIeOh7sNWhtCzDy/noghsc4Lzgv8GCusayLl0lSTirBmpvNKpxfc0ImX/2nifLqgakbpgu8d\nIx5rFL03dL3D9YbjSdTHKca2sSemNVHyLAPaWnna9OwHR98ZdGnZoEbhFLjRQoUlBKZ1YZ0XUlFU\n78VZ0BruH+4ptfLzn/+CqgXnJGbvfLxwOs9kMi9fn5nOR0pc0UoCGox31FzJa6KsiewjtbNSI7xl\nWRYurxe+fXkRTHs3snvy5BRJa+Lt5ZV1mQjryrQUvr2eOE4zGM10vHA3DmNY4S0AACAASURBVPzm\n8YH94cAwiNmdtxqrCrvdAFYTSmFuVridM3RPW/FC6nds948sa6SkhNWwezgwz4G3l0StWUI+/L+h\nQu69/RcL/Wr1aeo1QkqBM++KX1WxnROp9maEq7n6lX9bK6o2Gn+VAkDDcRVVzHNaOK513EJMteZW\nzO+fnm5hqrkUapIs0ZfXFy6nC9N5Yr7MPHy84/HTPXd3Wy4vR86vR+bpwu5hy3438NF53p5PHJ9P\nPL8cSaqyOWz44YcP9F2PrpocItYYEQq8zfinHcPBM9JT1pVwnomXmXBaKPFCXc58+3piu9+wO2zY\nbXfsf3xg9+EARTo4XRNpSqQE67RyPk/kNTA6w08fH9k93LN7uOfw8MBmuyHnzNvLK//Pf/1v/PK3\nX/h2eaEbR0pVxFR42DqMBuuFHZJTFvzzaSe+7Uuicz1DVzEqczleJMj6shIzPNyNOFVYLguWymE3\nEJMUuCUEXs8nnFf01hPWQiTivcY7TUiR8zRzOp2JwEFVDoeB7c5xOV/4/PWV529HdrsdH54+4Yw4\nMM5zZbvbEZ9Evp5WeP5y4dJH7j7e8XB3h0bx/MsLz6c3ztOFV2vY7Qa0NUwhsi4BVTKdNaRVsGhl\nFbthh1EO8GhlsFZhnGJVDl0qqrQtWUlkndGiSlRknGnrVYvM3HtP1ymUMnRZ+NVPT3esU2A6L5yn\nmRgSMQg75d19719+XeX033uaaKXwRjz5n+42PN1vSFVxPK+8HS/yfoxh3zlcs2Xd9iOd1jir2e0P\nxHkhhoWX45EujcwhcjydmaZFQigUgKKERBpXNtsRly11hr/+5YXX5zPLvOK0Bpkry5AviODmdex5\nuhu423lxlkT8xM8xM/aWh0PHjw8btO1JxbImRyyK5XziT//vxB/+s2LYbYixQMiQI+YosYgvbxc+\nf35menljnSdSFuXzfr/lcT8Kt7vr8cpQ18KqVlGbroq3lxNfvn7m/Ham6wbQjtovvLw98+XrG2Ga\n8V7CIJY1Yr3n7rDlcplxWcFaOR0D20dLMpqv396of/0r9/uBf/oP/46YPN+OM3/+4xc6XTnseg73\nW7788kY3ZtywZVpXwrygc8Z0Gq09m6EnLGeyzlT397fzXydYohXf2mS6IopohvjNN0FM1KWY51Ju\nvNxylRhfbTGb6qu2NBOaNPf757kqwiR15WqOI9Ji8UBp368JXQsOha6KMoqnd3gIt46zHz392KGt\nw/bgRsWaNCFZTLBsuoFleuPl24XnX96YU2DcTZSlst1OOO/RVjFstuyGDr/phD+KhB8XVahloq4r\n+Xzm/PqN8+WM0p5lXkgl43yHPZ9ZYuT4ZeLuYctmdOTlQuc7aoYwZWosWGPZ3XkOj3s2d3vcuKHf\nb8XhrTf8If4D1Wv+13//Ixg5DkvCkXCeS0FSkXJGWY1VGtNbcBpdMzmsrGtgiZnabBTE9FnhRs92\ns2O6LBSt6ZfAEiLH88zzeeb565HtZmDsesZNh7MKcuLt7UIlcbiTtJ/zZSbnSE6JaY2c10gMmXEL\nxSiUKlh7TU8xfPzxA08fP5BTYZ1mfO/4h3/6R/aHPTkE5t/+wFIi9RuUmIlrJJ4nXo4T3on7Zk2K\nPDXfm1roDx3OW0oBnZX8QXjEycq/S2me4qbFsyUJfqA2L+5cKTkwNw+TFFMzfdIscxQ3yHVhXmaW\nRjP8Xgj6r34p8NYw9p79pmdwHYf9gfvHA34QP35nMp8ed/TjQD9u8M4yzyvTZSGVgDHSWJ2niTCv\nUDObfqCqQszv9N1aKufzSopJcPPNiD8tWCte6efzwrImYi5i7dBk+ZoqTBxr6ccOnGGqcsKuIUHJ\n5KpYimVyCnU/YlRrvvIqHHon/jEmXVBRs+kN0yIWxqFG5hUul4U0B8KaUFpzt99gnGfoB4w24pPi\nrRhtVUCVJvryDLuOD+6Bw25HyYBSXF4upFWUx1MuEAoWjXJGgt8L3A0jH37ccH934B/+6fcMdzum\naeHl25Hp7YXPP1d+eT5yWRPTHMUDfzuSPj1gnBcSQ1LMxyNvp1kiHi8LOaz04watPc5UwrIwva1/\ndwn8OoW81Oa5cJUuv0/0r/tNjBFr680d7dacX02H2kH/3dymwSrqGmrboBkQ0u61Y6Gll2tunY5G\nU02FarnmRZkWwGqspYwyfCql3oKFqeB7KNWA7SQN2xq06bHdSL/ZMe4zrIuIl9bCrBa5ea1mDSIu\nMFaTciF7hzeadVpY3xbW00JeAzkkSsroEQoiVChFkb68kqvi9CrBB2nbsZ7O3D8exKRIWTAeZSq+\n63Cdb/iaIVWpM7bz7O43dGMnLoHTRE6ZuBZmq8QkqkLNYkGbqqLmLEIQZUjzQphm8QLP4qOiqBJ1\n5kUwdXi6w3YLuSqmZaWeK9Nx4pdvJ15ej4xjz2G34bAbsVqTY6TqQuc03jlI4tM8XQI5JqZVCqFC\nsywrx+ORaAxjL0Zf85zoxg39OEIqeK8ZtxuePn7Eas0lRpSBza4jl5E0JcKyErPg/YPp8cqiQsXm\nCjmTU6IzkhyTspgbpaVQTKQYaSZKC06o9arYyy0KLmEQD5CYMqGWllkvakqnHCUVpsvCvC5MyyKp\nRt934/86piLr3Ugo+P3dhk+PeyyOh6ePPP34iWk+sywJoxSHXU839CjnKLmwLoFpWqg1UxEZ/hpm\nKAXvDL5zJF0b5JhalFmRgPSUyKmgqqKLRRg2RYq29w7fe4yikTAFshGvdfHuCaWyrollDtiS8S1X\nNMXCfAkczyubnZY1WwTO0VWJi+VyJqEgRS6XicvlDJ0hZ0Nc5QS+JlHT7rQT+2NnZM1r3eioGnJu\namexdRpGTz9ocg/LHOQ6rBlvDYfdiOlkLkQtrAXyJUAu7O977nd7Hh7v2e7GFrOXQYsYbZpXjuEr\nyxKhQt958VVp77VkxPPo2zdej0KxrSHx8lXTDytdP/DwsMMqjf23xFq5poWUhm8b0zBtLUewlDKn\ntxO2CSJkot9wyXp1aBNYxGjBm4u+ekmom0PblWNbytWhjaaUKCKnrtc/VzmsaYyB0hSHqh2XQRcF\nVUt0lsqUmjF2xG9GdkBOSU4VSvHD73/H029+IIWVZVmISyAukVKEBpUuK7+8vvLt8zPHD3fsxi27\ncaB3huX1RDieycuC6RX93R3mbsMUL1jn0coxva28fD2Ta2H7sCHnlbfnhedfXtDOcbjbsd9uSd5S\nSkIZWJdCqZGRxFs5YywYlTm+vPL67ZWXbyfWNKOAznqscgyDw1o5qoclE5ZMWtaGmVfWV5HOX8LM\nFDI1F7S1+H4j0VWbDf1+h3EDShliiFitmObANAWOU0a9nPmbfuGwHcWEScFvf/eAc45lLtztN+Si\nuEyx+WxkrJLB8tvLG+fjK+PguduNdM7x178e8ZuBw8OOu82G+8d7Do93VKWZTwsvPz/zl//1z7hR\n8fg4oEbF6/MFrzvud090pqMslcvLRN87VIckDm0HrNfElDieE2tYqcuK6jUxJ0IQkVNOkZQCcVka\n5zhinUPVQgmBJQgN0nWSReub6OMyT2JFMMvPlPx9jmZb7/8fzrhWciJwzjKOnvvHDZ9+c8flGLn7\ncOCnP/yWP/3zn1H1GyoHjJb1kKaJdU3EkDEaijEyN8pCr9ztejbbAe8tKQRSjm1TKdzOB1XdTKo6\nZ+itx2TItuA2Pf12y+XlTE0CLa2lkIvMpZY1kuZCzIW4LNztOnb7EZU0aclMp8yf//bGJwV3dxuw\nwiYjJEx1pNOJOGVeT5G//vzM2+mI7yX30vuefjcw/1KZLzMqR54eZQPQfcUoJUQI45iXc2P2NK93\nXUR34IXXnwE9SAHQ1vLTfiQvgfPrmb9+fqPTAaMr49Bx93THuNvw/O0Z62Rm8vG3j2x7y3SZmHPi\n8bFjHDp2ux7nHApNWAL92LGGlb/89ReW84Vu7Ng9bbmsopQeh8DhYc/ucODu4f7v1tRfpyOvjZfS\nBpr/4nta45xmu9si/mTqtmhyyd8t5jbgaUfqKx/9+w1LIBa5EUoWs/xrpLZqA1TxRtbvj3jbCFq3\nc/VBllFUU+gZOVE0yXVFUYwR5zUqxVisdSTjcP0g3Vou0lmUgiqFp1XsWr13WJTgiQrsMMpNbDS6\nN9hBoWvg9a+i1qwsbLqeD795xPeOYiSstaTC7rGgvZMQ4k3H27oSk6LvOwyefujYP4xUrVmXmePz\nG1//8kw4z9xvB46nRMzC7d8dthz2G5SufP7rFxKGYmGOCWJCocRLPlbOc+Z0CRgFzitivdANPa47\nE0JBa8N0nvn27Y2aMrt+4B9++xv63QAK1mlmu+lQwLJGctLUohg3vikxZRP+4TcHjDfMKfH1y4nj\n65l5mpmS+OYoNM9vZ8rxyOdv3+id5+Hhnp9+N2PcjjQtPH954fnPz+zutuiNxUSFCQ5fLMa1gaOt\njNueaVqISSLcfHaU4iRV0ilUghQzawjEHIgpUDWEHFnjervmMRVSXNBUvDf4XrxESkUMyowUx3WN\nLCGKc2PzLr9i0dev7329tVKiinUW6xxWG8KUOX6b6WxHmhe+ff6ZlFcymSlE8rdT8xHyMowvV8aX\nQplr+HBHKQJRHN9mlpyZzuFdrNReh7USP6YNOKexTpFDQRvN0Pc8PBzolcFqxWbTgzViSjWvXM4T\np8vC6bKw1EC1FrcZ6GxHniIqFu6ftljnOZ8Lr89HrI50ppJDJEZF1RPLAr3V1M2GWisfPzzw8YcP\nPP7wAdv3fP7rZ9Q6CU1UGQbvMRpqjZBkML3GyHm58BoyY+cZ+541RJaYWLP4E/WdaB9UTKxrZFoS\nIWQ2m5GHw8i/+8NPbHdbvO9k7mcR5tIc6R8td4c7ii6ARPhZq+i9RleIsXDMF6rSWNdxuJOAbopB\n5SynyccHvO+JUQwH/97XrwStvBv/XOmG8k99O34p71oy9dVInpsvhXTeMrQsVRSDWr13LaWWm1/F\n1T2uXhVxrdNRWjB4Y5sQoxXkGw2M91tIoqHECAkQxV7Rt/RxEfgZCrpNl6+hsBr3vRKrypzWGsWu\n2W7UWqkptwStinYe3XlMGKhWYzyovOKHwCWcCDkxuo5+v2O3H0nUG87rNhWMpyqN67RwgFcxU9pu\nB1xncF704jEqYY+cJ3KIbEaHKh1rMihv2e4Hxr1w8VXj12oUIWbUmjDaEIoiJCXqyiCno0LGETm+\nnAmx0PkzfbOozTHR955xt+P+h55hJ+Ku5y9f6Z18tiFVUs4oxFQ/hUTOFWMN47bD9JYyrWJElUSp\nqaoiLsI4SjGxxEg6FYwyrGtEYRj7vXjZv54gGXTqUKsnL5m6KmEzlESx0mDY3hLPkTWtaK+ZQkCX\nItaqFKoG0OQg+aQpJUrNhBylqNdrRqc0IJ1RGNdc7lIhRjHtEKMxcb1LKd9i0b7vSK4NBq2RuMaW\neStKZGs0VstcpyaF7wxxXfj6+TNLyEzzwrIEYoQQMs5GYpJTaK2QkNmGM4q+N6xrZV2zBJErRS3S\nFF058RLCI6HGIWVCyehqKLrizftrGsYOZzT90IkhVdLYqui8px8j3TjjOs9mtBjbkdEUpTFOY7qe\njCGsK+clospKZypj59Be8O8YZa7mnKXUSt95UY1bxX4/sE4b4inTWUno0cbcHA2pcs3WNbLGSL4s\nqHGk055UxLGxfDeHy2ukhkiYAzkldmPHfjvw9CheKl0nbqjGGtCKNSbmUHAbhzMG21vCKjF/UBg7\ng9aVFAvVKNRkmacVlQVWC1PEKRHXbQ+yqV3mmdPp8ndr6q8GrXzPWrni16pBI/Du7HbzGboeL1Fo\nZW4+xLVKbBNatfDv2mhroqlSrSuXfERDVdI1K6UpVRb/DXf/zgNaNYz8tim0+KdS5GbLLdLp+mul\nqPcLL3rkhvlfO5n2fFqhzbWzEQlw0/gJ1Y5CLTtyToRUSHHFhMDjjyNmc+I8XVC6EnRP1AOb0bNO\nMyFNkkaPoyiHNlk81C+R89vEH/5xgzaVuJ5RXYcyhW5wbZMqWF94uutJQLSGcedRTpHWgh8dVfeU\nFMVaYE1Cm0salQ1kg76qdVOl9/DyfCR9O7HrezajY+gdd2PH+Lhn+3DP9v6BXBSvz6/MxxdUTljn\n2O43pDWxziun10XYIUphKoSSWd5WfvnbK5///FlyPMeObhwoKRFqpHaeWoVRARIxd3p+4b/9X/+V\n3bBl9D1Pn35k2+3RWXNZX8lrIawLSwx0uwE/dBinWXNkLRnvHJclkuJKjJF+Z7Fjh+57rK4kJBc2\npUCOkZJjM1ept4ZDta63ojDKoUyFUpqXfuNuV9CV5skN11X/fq9IF+6cFCah3Iq81RvLdhBVse8M\nMa5c3k6clsDb65F1jXS9Zl7FVyW2axVTYQkiU3eN565a5Jm1RhwJr0Km5sqplNgbLCGTUsF0gVgU\nzio6J/Oi+TShrRW63fHEep6oqeB9x8effuDug+NjziKsmxfmy8y31zdKyvTe4KdZ8mAB03e8fZs5\npsinT56nvUjxX5Yza0ikIoZrl2km/Oln/sc//42YExCx3rD1HZ23BFWw7USstWJeEmsotxO/NFoa\nP3aQDGpNFKSZCNMZ1Tauzhh++t0j+/2BYRjF1KxcEYYC1aAK2CIDXz84drsdp+OZFBJWO8bBYy1A\nYf904Pnlwl/++JnXl1fejkfmEPnwcABVsE7yAJY18PJ6+rs19ddRdsaE9bJzX7tcxTtmDe/G8zIE\nFTOiWz1vASD61m4LNCMsFW4sFpCLxvX3QFxEW79dciHWilKNlYFuqTXNPLIqStFtQ8nUq4ekokEy\nTaDRsEOFnAZqG+5Ak1E3gYRsPIpc2mZFpaYiG1ObEcDVSrM0r2tF0RbnBtxmw33OsqlohWsZjm4c\nGM0W00es0VSjWEmYbWZDT18r42YriT8JQpqZl8g8rXjroVpeXwJatVxKFEq90I0DWmtyzFAUFcOS\nC8VVTK8Zxj3dtqM/d9iXV85LZI2Fb+eFfhh43G95etgxePmsT6eAbyciXeH52yuvX16IcxJKpodi\nEyFIUayIyrNWWELifBQZeVrXxniqpJRRMeCcYbPrGJLYKIQiwp/Bd4zdyHa749CN9NZJMPC0kEKm\nuiw3r+8wxZIQab8yBjorYc5jfxOugUJJjCprKqxlZY4X5nVGpxbxpS0pZxy6sZSM7PY5t3zOFjpR\nJSUrN38gqxRFVaRHaAP6Bvs5b9hsOrabsdF35d7IWU4h2miO88zy82e8NbdueV0TyxpENxAFlw4h\n3wIMSjthXIMxCgWDiOKWJct9qBR9J8HPIbUussoKpsLlMhNixGjF+TzTuxO995gWdGEUxCVABesc\n5zUyjBI8PIwj437LuNuyezqQlkiJ4i2+zivTNHM6n4ipAoa/Pa98vfwN4yxVWZbm312V4c0vDJ2l\n6yxxSTKY15VFRWzxdMYSGo/cqIp2YLUhF03nd2SleVsmdLIysE6JdUnENVJzoh8tm97R9R3D6Kg1\nEKNis9minUUZQ+80ymrcYNGjIidFTXA8TszLKgZ9+wGTC7Vmis0or9GdxY+OJ//A/cc7UgZVM65z\nMjgPC0oXxs2/oczOZQ10GrQzN6WazCDFhlMpWeTAzS/ivfxKXFqrprxX91ZcVaVxh240Ra5El9vX\nd0W2SOkS0U9F16a+VBXQlIbr5CI3otZt6HpNXblSKAX4kWm1ArgOXBvc07qAHAspZ2yLZAOoWl/L\nuoTxJgnktY0qqZ1Fe40f2vM09Sm1Sqai9ijTY7vcOosiEMdWs+23KBRuEOlxTJUlBZa5EFZw/YZu\n3KPUhZBXciyQMxe3oK1n3HiMsqwpMq+RyxyIpWC85f7DgdRZqIlD2mB85m1a+fLtBes93hse7zeo\nJEKhqmWxa63QNVPCSphn5mkRb1BlcK3Qy8ddmVYRTyxzYI0BRSWGiHOGkkWoNE8BtenoRxnQ9VVT\ntWXseywWrz2bzRYnOWCgM2tYWZaVqqNcOQWJwhwCRYNRHtVZrDaYzoExEkGHYs2RZV2Z55VlnVjX\nhZQiXhu65gG+rIEkwBcGOcnlZkF7PQHmIpqFXEvr3BVKbGskN16pRgvUOGew9rrZXwVCSjyAUpZY\ntrI0DyJJYq+1itKynSBVhtACh6/D1Ob7BYpGg5UepJTCGiIx5xY+/H26/PvgNRfBbUOMN/jRmUVY\nLEb8y53R5PQdseE8M44d+/3IoRS6fsBaL3g/Soob3IRZISSyhqIU8xJJ5xmlFf1GZPshZVKGi57Z\nDh2P9yO9E5phrTKAr1qTC6yLwF5alTbDqJJpqzULBadg3GxwncN0hrIkjDO4wTHsfbs+un0Oco2s\n8xjvMd6JyV6tYsZVIa6JZYrMUwAyu/2A7yzz20SMC9kkTNakFKGREoyGYXCkrJiXlW+fX8QagILr\n/g1lds7LKtJ7a1HfvQKtjDA/rm02qqk49Y0qeD2q1jYEvdZzDTcYpQgt+wZ1ALybuNcb5qhvwqIr\nC6YNVIkoZaUbLbmltlRKSZLCYpxkI5bankPdGDU1iQJL6fcb9pacnivrunKZZoZhwHuPbUfWXErj\nFkcZjFbIlFvwrtbmth9VVbEGQN08UJQpbZeX15pSot91wtYRrSCxZGpJrEkREqRa8dt7to+Fu6ly\nPr2xnM6kGKBa+n7D3f0dZYW3t4Xn54kQVpbJ4rRl9+96zjmRgc1ug98qcBM///yVZV5JMTB0hnma\nyUvGb0Tu7K2BEumdwhqYlhlvPB6FLbSs0MIaA8fLhWmeWKYZrxTD4Bg3HZvtQEmwzonpMmG0Z9t3\ndMOW0Vp873l8uMckUBGcdbx9+cblcqRsNEtJTHFhmk5Y5ynoliwUwRp6Ba7vMM6BNsxRvLBTzpwu\nJ6bLhXVaZUhIk8T3nsE5nNIoY5jnWZSJQShrKMlhFbos5JqasVYD11r2pc7XBkbhnLrxscMaWVpa\nvdwX0pELnp0AyeM0bc6kFdQWO3fVYpQqfHZ5TnmMkgo07L0qoZzGLJCLUkkeq8GKt5OCeoc9YxIV\nLEj8WylK6InXz8VYiuJGNTbGEKKoP+d5EXqs84ze4azBeSvhMVG6XxssqWZSKZQWslAzTEukJqGH\nrqkwZ4GrHvcDH3+7p/Oe89si94+xhFA4vkykuKJ1Iq+FdSksq4BZnVfsth47DPhhxPYenTLbznDY\nj5hNx9uXI9NpoY9iJNd1I8Z12L7HdE5Ow5eV+RQ5Xy5cTotYKV8WdqNj24tt7vmycD6dKSXgxih+\n8Dnxp798xZB4fBjohpHL28zX5YV//59+Qg+e+q9U7F+lkA+dx2ktF6E0TBkwWorXVbFp9FWqzw1H\nN/pdnn91itMKVFUNnpDhZQypFcfmp1KlM4kpimtdFdN/Kt8t6pYPmCtLWoVudXtOkcfnVCg5YnTB\naCsFVrKqUKpinbttQxIdFRq22Um35GAcJVDV3NJb5D3WCjR7AoVqHaCknet8pX3JZ6O1dAXXE0fr\nD+QUYIQvq1SWTU5becMyfcN0hW4obPaS2bm5e+Lpx98S4yo5jpcJrTXd6PDeULLlbYqo1zMqV/Z3\ne374zScOD3fkVDF2ouTAGiNTClxSosyV4+uJ58/PxKVSrefuac+4GVFYpimicOz2d/zm97pRQxWl\nQDWFfu8Z7npOxxn9oikxY2oBLEYPfPrxJ3o3UCPCLGlp79vdjq4XHNl3nXDyzxPz8cJ0PrKEmaI9\n8yUyz4E1JUKRLNRUoTqLdpqqKzGtrHEhxkJYonS1qtD3Fj/2RGWpumCM2M523kOtsvZSJEcRMaUs\n1EmtjTjm5UTMmZCum3ZthV2yJq/8fenaoSbhO6drFw1cj5kyn3k/wVaqBHwX4ambxs82pukVGnFA\nVKCNCaPkZBxz4nQRuKSUSmpK3KQUWjdG1v9PodSyNL9rjK4/cy36tcqpgdqIA0azxkQ9zcxLwNgJ\n6wwb54UGaAx2cKgq8XP52v1qEQSlKmlLvTXY3r3ndirFtu853B0oxfB2Wvn67cQ4djx+fOLDj594\nfvtvvB6PlBQxypOrJpZKWQMpQdUJfTqz1krXSw5BLoWXlzPx+cI6LVil8N7R9x3ey/OL5mMlKGEj\n1ZTYeEv/uGF/N7IslXHwbPcjWM/u8YD1nvW8YHwhlMxqDZ1zcoJ2jnEcScuZKc4yjEZLoPff+fqV\nJPpdo/Q16KHJ5GNKkvJtkNBlJQ6I1wWiFGSlb2o4rQVD5nrke59XCsWwTRN1K4hyzOXW8crPXV/V\ne8tfq3gB51KpNVGaWk8r0+CaQq03J6VWJBtKrq58l3pjLlwfXboRjcOJH7W+qkzfESJJ8X5/bVdY\nRqZg9XbTKypF6fcHb09wsy9V33FwrpsfQLVYoHq5KbthYNhu2d+LlWYMEs2VgigSK5muP6Bcz7jb\nE8PC4bDlw8c7xv2WeVaMu8w6nwnLkXmtwiW3HotjviTWqDCDYu8MtSpSFLteqsF3A7sDnOeL5JMu\nCWPFxsF7J0fkw559c4j01rPd7Xl8/IA3nhIqNSdhfCDDwM45YTJIlKQkvswyqCwlk1JmjdJ9Z6XI\nufl8I1JxkiLMsa3LQkml2clKsvnQG4xylN6Ta8ZYcRkETQiRmCU/tWLkxFUMMQnMUUoh1SqsiPJu\nglVa8ML7sV02bFGDSmFPTW0I4lJ4W7ltPnT7rVpvw39d6411VXNtYjgp4u/U35ZSlOX5rmtKpiJt\nNV8hwu8ICKrNir7nt5da2jylbU7UW6ZprRVV2uxJZZJS2GwwRmOiIZl4Ix9Uq+UkgiLk0O7FK0lB\nbpHaWG0igDMSLxgjl3mSOUjInKaVFDOH+8xuu6HvekrVXObMbmPY7jb4vmM9XchpRRux+1jnmWWe\n0Fa43mlNWOvonWW/HcQbKkV0XBuDRzWefWmUZRpJQqN0gSpDy5wLl9NEBVznoSiUWqHCZuz59PGB\ndV1JOfN2uhDSiu/lM16WleMU/m5N/VUKuXM96AJKVFUlV9ISuRxne3cybgAAIABJREFUrJcpr+k8\nhYxSErTaaiW1Jq6p3NZm6WjbLv6+zltRb8935eNqpXHWUbTg0DcnOdW6B654um5QiWYJgUTBGc04\nCLUPZaWwWwVKcG2B22WYZIxpR1/p0EFESbph+FpXjLHSKdPStm9FWMvIqdbbQO99k6kNepICJd32\nVaLaoKgrNf+6KVTINYvRk/qexVPRqoofeKNNKaVgI4PdsIhlZskZ99Txw0+/FbFLjtI9I53neOe4\nS5bTywscE7VcuD888GEcedyMoByxFlLWhLVQY8AoI6ct0dSitObl5cTb2wlSYdf3FGtIeqHvBx6e\n7tnfb4lLwduecdhgOyf4YxBr1ZKDWBZPGZU8xThiFtZNaf45V6pQohJKJNYM3pDWQMyJQhU2xypF\ntqSCrcJV3h62DBuJoet6JxxqhMKpjEI7zbIkUpWlPYyWIWtU6rHKcLkE3s4Ll2UWDpMygvk0hDCX\niiqArjf9Qyky+NTX1VlFM1CRe+Z7ttUNdqu35X9rXuTQptBUTON/q+scop1Ur/Tca6dudLPdNRqN\nItUqTo2F7wq3QIrvDDOxdBBWWFNbAzXJjKk0AZHWhaREkdobEedQFFNOoiIumVjzbaBbqOQkEGHf\ndVgrzK8YAst6VWIL1VSryvFo2I53GOPJpXI+LizHGRMT97sDp93CvMC42/LT7z7y6YcPHL+9cXp9\nYZpPDL1niYnjeeLr25m345kSEz88HvjxwwPKjEzzImHw60pvZ2hxbZrEZjegrSUulRzkVL4sE6vv\n0EaG5uNmwDiL7jQ5yIa4GR3j7z/x/HrhLz9/5fPPv7DpDb95uiPlxHGe+PJ2/rs19deBVjaegngy\nhzUTl8R8PPHtL58xTjMcRrZPD9iuEzm4Vi0pA6CljZdEKVmOjCld4XIpDg1rr40bblrwgJztVEsr\neU9aKaXK1Ea9D5iuAbgdniJRHUznCWWEuK97CTkG6fBruUI3Ce8F5qmt+7lRDa8AiBIIQY6a8p6o\nlVry7ZRyvTmvd3rNRbps1V53sz7V9WpFIF7W12JfC8J1Vm3sq1qH9E7hF1vbKoXUOffdhqDRg6N4\n8Xe/MnSollKH2+zBdQXrB7aHe5bLxMff/QPTPJPigqO5DOcieYa1YFwhrwmKCEes1qxh4vjtxOnr\nmRIjjw8b/vF3P7LbjFAV/XZE95ZqDZ0yeG0wyhByxhiFVo5TiIQ1EtYFqyMTMyiNagPlkiJLXpnC\nzHmZeHvNxFIkJLkaphhYQ0SpStc5nJfcRqxm8I7DdsN2t6HrvBSfTYezGl1lcBxSJcbrYFH8yGOC\nGgsqV6yvKK/Y7DzGybqIuZBPInuvGVD6vfiqd9dEYbS1zrOte5D1Ueo1jKJKslUVOORa0IVxct3w\nVcsPFV40tBPk9eeuzBmrsc0qxiow9X2+ZJCB43dL6LsiLo/4XXOOUu0dXeE/JfOdWlteM5W6JFIW\nu2VjZMvKpRDiOyxqnSWVDDlJQ+cteCdNyfW9OYWtVrryqki14CyM1pNU5jJN/PmPf+Lf/6d/zx/+\nwz/wy89HUpy4fzrw9MMjw7ih23a8HTtOl1XyBzrPZjO0ximzud9TjGZeF/a7nvNxQQH3d3v6YSfh\n0mhUC2hWCskeOM8cX84cHgx+dGiruHvcE1Lir3/6mfPbmXmeyCXy+Hhg93DHf376A/H/Drx++cof\n//QL3XaL7Tz397u/W1N/JdMsbi2DqnL01068OdBVLF65LmZRXgr9r1Kr/B1EKCRGRXIsplY04qlQ\nyTdoQ+d33jkNclBKC6f8us4aridd0ZXKWEFJp1qUHGdryKS0UooW8x0jzAmKdCOtbN7e6HX4CG2j\nABk+KlGkXtkK75z5715TK/LX0N7aPGMq8phViZe1eG4JvCRFtjTxhpwKpCtTrQOTm1crJSeV9phG\nv7dxlcZ51ppaGs+fqxjqOyZOrfiuZ9hsyLs99znLQKwKe6bmTIqpQQqJnAJxDZSUUEoS5G1/ZgqZ\nsELJifu7no8//sBmGMmx0o0erKaoSmc0uhZKjKzrigJcB34wxGTJ1YrRUoFMbqcORdaJVUWWHFmi\nFN5QMqkWaoDLNMkxWSkqGec01NLsZ8WedbPrGYcOpzS6c1KUYmoU1cZ4Mpq+d1inmKMhoalk9HVD\nvdr0FlhDZEydcOS1MC9ykSKcrwG7V+z3uqquu/8VWrgJ1SRRvgC6GW39i0V4tYZGvFBq8xMSmi43\n3P07tOV2k7534FeR27UpEWGQVnLvldbhy8v+XpvR1tht3cjjyn8U5EJFuOBXdlqtlZgFUzffvY1c\nKmuIpFKwKYtvvxJ6sk7iL6SNYN6XdaFQ2fSdxMgdj4T/ETh8fOLjxx/4h3/6Se4VBSEXcoVqNNUa\n1lJvPjJD36HbUFlbS6hiQ3tZZtIaMSjSZiDaVd6XLtTUTipaE+NKykGuV5bZCUqxLivzGjgdL/z8\n8xfCujB0ml2vqBvH4C2Ph5Fw7pmOZ16ejwy9519Jevt1CnkKqS2i5orWWbTd48aBkqW7dt4Lq0WZ\nhgG+43SysFqxqrX5ZGphlgBFCS5Vq2DvuuabiCg3eqBuu/l1TGiuv19rGwJdu3Xp8ysW5bT4gzef\ncT9IFieNiaC0lkTxa7UFUQzmfNt8jDYCZTQankAtum1Q9Sb9rxVR6l0Xfqlkmvd187AWrwuR1Osr\nj56rGq1+B9kIxbJWceirVVEQ+Eib0jxu1Pu8oF6PxpWipFO6fk7XwRZt87kxgzovf0c+02tByKXR\n1xBYLCWxSig5EZaFzelMv7vj048zKQaMEoGENZYwN/zZgDYVlLgtpjUQ5kUKo3cMW0c1IzY4Omeb\ng2NiSVFoZrGQdSaSKQo671jnyLwsLGskhEUGmVpOcp1T2MbVD1axxBVtK0Nv6a0nK0OM4hK5TIlc\nE8aA7zRmMCgsbkkEayTRpYo2oNSC7wwhREpRbIceb22TfUdCirJWeC+KurmA6lLRReiJt+ukTfPq\nV/RDJ2cpI3CaNDmyOSplUNrirKzF3AK563dr7dqA5NadC9r7HYwis/7bWlO1tk1ICXOU9gvQHCDf\nKYeo61qt7/DNFbcHCc1Izcpai6FVubqZKi1Yv1ZkpcTCIKbbY5hGcEApNjsJ0aAU1vXCsiykOIjf\nfEj8/OUZ2/f8l/8S+Q//8Z+4//QbXl4v/PF//pnlfOJ0mThPq3iCLwFTCrZz4B0xJUlpolJSQr9U\nnNKMzpNCptSJ1Sw4rdDIcNk4xxJmMol+66gqEdJMLZnwty+EEFmmhZfXVzSFw3igzDPz56/k08Tj\ntqc83fNLrLx9eWWiYv8tZXZ2ThZZLnJxatboIgOum6BGAUUmxpTvJvVVYARaUSfLQK5cubhib9hu\nCFlUUqnaSiQ37DHJ/2sdT32fXIoEu4jHhla2DZza+KZlipZcWM6TDISsEaqS7xonV4uE/3oCaDde\nrVp2/lLQDft493tsxfT6Pmm4aTs6og215lsO5PVnUi6oBv+WutwsDExT512Lrr6GcbTuXGnT3BBL\nYz00muL7i5XPT8lnd/3+9TRxvRHlR7+DqGr7GIuwdqTja5tCUWhjMdahFXjf47uRzf5BfHCQwZyw\nPyBHYYmUUsgxEpYzNQu85X3X9AQCStvOYMcNT58OHF9e+frzV5awcn/YcNhK0O7ZCAMj1Yz3lp3p\n6Z0hrHJNjPXia19Bp0LIidO6sM6FsBZ++HTPj58ecP1A1ZKE460RiqqK1ALzLPOFeY2tKVBYpaGJ\nvELIzdYVeif+PMkKzbDve5RW5FyZl0hMBY1iM3YYo4k5k0IU/B4p1s5ZhtGjlGJdI2FNeOdutr61\nCuRSEFqu9QbnDSlViIkSJZn+fQ+X616qrIkrjKLb/EVwcYVqRnS62Yhqo7FWk+u7rTQ0CnB+Lz5G\nK6wzMmPQmhhlcy+lvrOwrmExSloorVtGALXBTkpgplqxbR3GnDkdL8J4sYZaMosSy9jNfhCVtVb8\nz//+v5l7019JsiS773c3d4/tbZlVWWv3dE83RyIEUBABARL/Cn3Rny2BgDYS5JAz3V1dVbm8LRZ3\nv5s+mF33yGER0AcBNdHo6urM9yI8rl+3e+zYsWN/4eXxzA8/fOS//x//Fbe3d3zz9QNPT47X04kP\nPz/JsJWU8YBxnqwF8pTk2oIznDYdQwjsho45zhxu9gzbDdHLwBWbDO4yc54vlFrofUcXNoyniQ/v\nf6brB7re4zv43W/eMJ5HzscL8TUx3UQegmcfdjzsO/JNz/PLhZyq1Oh+4fXrDF/2jlrBK1Lx2ZG9\npHm5tno3iiwquWaWVnejAVcLeUVIxaUgBNAcDGtVhMLyFyx8dNUqk1IRErREr01tNIlM9VHxC4Lc\nPThHSVlGWuUEKZIvBRMLrsv44NWtURJDaQxS9YyC9UKVQapmTWdbERfdpLIGEiSbdr4dO6Wu1rqS\nXbT/X5aqV60swbwYKCUS55GcIYSOzW638JhV0/VWJC21PUzNVKwdelpJZfV9B6MIqiwUUEX4e7d0\nyQrt1Rq8nLWYTobyDpuVCzBGgr1ZKAtRjqSU6aaBvJvIU2SYo9jEFhmQHVOmmIrtesImMxwS5wg+\nDDgnI9p22x1u2GE6T4oT8zQxXkbGi4daRdGgfi1xjtQkXPY4Zj59PGGNI3jP4VbmbM7TTIliNDaV\nyBiz2A7P0tDi1dXTIPfBW0ONWceKAaUSndYglLbwztJ3ni7I+DwL9EMH1hDnxFjFyrgFNucsfd+J\nd7lmqMaIPbJzTibKZwmUpULwluAdvjPgHS5k7fAUrjzn9Jklb2tMunJE0sfI6D4GnKptnIO09kSI\nw6g+RxgZimUNoRNxAgZKFqmnYCSV+uqIRotkkynrqDv9vt4JjZjzqtQxGLX+kH4U6f2SQd14aaaq\nqTJdIjEmaS7zlrdfvmUzbJhi5OV04nIZOR3P0hVqGl0pmYu1ooyZC5xVQvl6ufDx+ZWHhxtu7w4M\nm15MuhQMjHGiUmR2aozkVEl5po6Vkh19tULbbXsum8j4emaMlQ8fjlwmkdbOc+Q8zmJ77f4ZBXLr\nwsK1oel5zlIsSlkE/85aKJIKziDwo64IsQWTnI3SFqLOWFQrkhdKkS9XqqtXbnLK9WGVT4aKUAxS\n41SZYZGNJK5wIjGyaEHRO3JwlBTJ88w8ReqcCTlTsqeEoN2bOiKlWpUiSRAXtFOwuAUFSQbhZDiD\nIu/m2V7VfRGjg0qrZBYYq7+Ddo9e00/6fasUemNMnI4Xcq70Q6UbNur3oL9j0M9ohSwN2u1/aeG2\nLgXZlpLLuhkJ4qqCMEadGSvYUimqdjGl1T+cuFcqndoqZc5rIasCaD2kGqrZqCSwKpJLYrN6mYiz\n6Ngv84gfbrl7u6Gagc4DaabvD7zZ3uE2A93thvPLC6fnZ07Hk/hZ18p+tyPPhXGcOB5P2OgYY2Kc\nK9OYefx0whoY5wvBO8pcqKkypsQxRk5jxJbMxhsZBh2kozDVpIHMEBRNUit5TtK5qwqPlORw3/Ve\nWryt/GwGcirYAtkmoskLrWiMwVvPnCPUKtpxJ4oQ5yzzXNUDp2CkzkxFOkW7zmH6gLZuSMYwzSKh\nRDh7fVo+UzvVRvEhwMtZq/0caixXIZu6/Hst0nDknSF4i++EiiylEpxSJ6YQgsg4vXNU40CnfY1z\nVlmkofOOvnM4a5ijaN9rLeJYWiXQd51nVuo2l8r5NIETw7HBdcw58vj4xL/93/8vdoct+5st/XZg\nmmZikgEyJWYS4JReNN5w2MpYwFwgWcN5mgUInC58cb7w9nLh5rCV+FYNtsg+LTVTbWW7OTP0HaH3\nMmx9SqQ50+08h5sDt/d3PD2eePz4wodPrzw+XTBOQNhZ/an+KwOCfqVip/LPBtlwHi8KhJJxSZBD\n09JSHX3fglfjyfV9KuRshfcrGbIg+JIlGC/ypSxccnWmxZ7GCLIUcWQOl3iXO5bOTNEKCCKxlpWi\nsCIzLN5RgsOHQJoTaRbu1Ton/h2h04YcoY8a2ogpk60hubw8KNeWulRzhYq12cK0a5Q+bmPVp0OD\ndzucpICp/KE+cdYZNrYj+HtqlYEZIcgAjqI1h1YQbd4xTU5m26Gr1TB5T7tog4uiLzlQnFoF6/3C\nYgooGSBSeBq3LkysXczNWpHb6L1u66LUEX6hz4z1+FAp3UD0I6FkBio3Vb9HLnzx7ddUCnmeuX/3\nnSBECzFnnvwHhrDh3ReGjx8+Mk4Xhk1PiZXhNBFq4PX0Qi0Xok9SoIwzP71PfHw5MgTPJsgDG1Ph\nPM8cp4ngDXXwYBwdBuMK0ywueylnQhfEiU/TPGlpdwza4Rucw2EZfCdURc6cp0SOFV9g04Vl74sf\nuSXlLJYAKRIsBCccv3Nwe7fjdBx5fb5Qa2GeMtM0C8XhnKDz4Akh0PUdoQ/0MZNivqIUtHO01qW+\ntLg7qtyQWvAOAjKP1LiV604xSjdysITOa/ZcwVZcEPdCg1FELhl3avffGPpq8MZBlXqA06ek7y0m\nOnKWzu+SMzkVxnFWebHYgORcKWJewnY30HXSZ2CDZ0qJ+PRMeXpWzvoik7ii0ILOGHIt4t+vNZmM\n5fxy5HIeiVOEVHg5T5ggaNoZkXCKtXYlRSn63+yjZFpFei0MFUtiDoXj8UyoHt979jeB/e0DVCO2\nBd7x5ZQZk3QW/9Lr13E/jI3PNiIHbHyuIpDGlzVfiVYI1Bgs/9RgLkG8iNVTo2IypBRVQXFlZKUv\np8jAGCnIJO0wRQPKwscvlLVVsy3dtEgwa4WW6li6NK01xFmohJgiBXC+4lzQBKEh2yrZRFabKpWc\nGWtlOpFpTSJFA6l0/YlELCi1UrTjTusF1WuThNAR0vnazMXkz1PK+NDhQyCEIAZNqkmsVaWZ7bur\nVLPRNHrhFGugyeGqFPFKMdgqDVzkll8or1mX6hyrOKaIk17jPbk6LNqdNiwj/kCKbEvZ3qHKF/n/\n3nuZaq/UVM6FvN0p5VS4uX+QgjYylfzm5o44jjhrePP0zOVyltpIhnieOT+98OHDT4SnJ8x5FIqo\nVGJKhMFzf3/g3ds7nIHX45n3nx45/jgDBhc6pZPAYelCh/dipHW5REqMGMQ/v9bK4AO7YUMuFe8s\nN7uB25stwXvGmPjhxyfimAgW9rstd04m4CwoOibxhPEdnTPUIvsKK4Xb0nti50hFMtHgHfvdBorU\nWApV6ZWkqhYBHH0I9H23fO+SRNaKUoJFDb+GvmO/6bnZDrKftbZzc3fA94FSC8fThdP5zOUykrNO\nktJO12bLC0g9rKCmEvJdrF6PWBY4HQBjwVVCULfLIgHcWNjte6ZZDqOUmq2ADsDuA/1uEGOtpLGh\nGo7HM5fLhXmcJINRUzFp9ikycNxdGLYV47wcbln2fgiGUhKXcSTGzBCkXlCtJY2JmisOyzQlkacC\nvTYSplxIH1547UY2oRNfJZ2B4Lxlt+nZbQd8MHSIqO+XXr9KIC+xYEUWIGm/il2tdTKVnIoxVVC6\nFYlhVu7X2ua/0vhtq5l/axwSpDiOIzHOlCIFwrbpSoauM/S9FWXEnBnHiEky7gpN6Vr0aCZHzQCr\ncS5VDxqrSFIk7hbrA9YLgklqTG+1iWcRhhgNnEX1tMr/NVdDnKhamqytGIMxopl3zkuhT3XrYsak\ngds2eaHoiaVzFHBysKSUGMeJwThCJ0GS9mBqwDasihM5WO3qkV01myrNIZFlfakVk8Uhz1S1O6B5\na688uxQ9E3GeKSUJn+sCIXQ4T2sRQjIlu8rhSqUVGCqlnapyLVmK0t4KshQ1lBwS1om/dVN/mAo1\nZd68faseJJkvp5lpnDhfLhgj7dbj85HDX+/Yvf/I9vHI0HtyzkzjzHAY+PqbN3z//Tu8yTw+PvEP\nf/qB57MMbt4MGynCWela7IKn2wRKKfz1z4/M0yT3tlaGoWe323JzuyNGcbY8bHvu77aE4DlNmcdP\nZ+bjhcFZ3jwc2Oy3GOuIc+H59cSHjy+YjezH4AzPLyM5ZrEPMNAHy2bTkXOhD4Gb/ZavvnpDipnj\n8czL6cLpMjGOM3OaRX3lPc4GmT7vvahZYsUbx2bTYazRTCByu9/y9v7AFw93pFhIWjv45jfv2N5u\nqbby/ucn/vyXn/jLDz9xulyW+lWtCR8sXXDEWbyOSi4Y5xF7Wemydg68t8KvVw9V5MN+GHDOCyiw\nFusqt3cbxkvhdJpI81n2kpXRgb4T1OuGwOX5hDEWZ4IM9rgoRYrEilxWeabJwHEiV8swGLyVbIhq\nCV5qdGWOjGSccVTjicmRx4mAZbvbgbNkjQHOVqo1pGJ5/XSm9xOH/ZYpSVHc1kroLYfdwO1hS9j2\nUohvSqB/8vp1WvR7J0HCtYKZpNlWPSFs62BUemUJIqDFPaUR7NWg5SI0gbGG4DyYgA9iGCQxv2rw\nk6KccwVrPaETzl1kcZqyWu2eK3IyL2n+Iv1RvXZhoWVqNWAKxmZcDyYYXNFiJxZskWKqs6s+XItB\npZl3NcrJyPtKh6hRPTMMm4HNdsPQ9RhrSSlzOo5yaKm7okJpjGnKAEEr1lh86NhsRa2Sc+FynvQg\nbeutEkjNEq4LT8KZS9NSvaJ8UF1yyhHnxBComQO0wqY47QkySiny+vzCz3/5QbIF7/Bdz/39PbvD\nXmZK6nxH0/yKayvGgaiWqxYHrUx52kmThNHvKg+fVUCgB4hh2UetqGysxeFwzhP6nu3hsAAEvsm8\n/f4dvzufOV2Etpguo5h3DYGuD/jgcBTefrVje/uG4wWePn7Ekbi/u1sCvy1gqtBvX765l0BeC93Q\n8eW7tzy8vWe73fD6+srp9ch0uVCSuDFaC0NvyZvArgu8fbjh5uEW7zrGY2RjekKymA7CtsN1nn/3\n//yJ0+ksncymA1foewnyN/s9bx/e8JvfvMMFy+Uy8vPPH/nxp098+PhCGQWhp5yYXkZ2uw193wOw\nC1v+5rff8z/9m3+NcZ7T64mffviRzlfu7nZ89dVbzGYgT5Hp+cR2t6XUwnm8iJGXL4RQ+M//8DPn\ncRJAozWvUqRYKYmxxTkBNAXDPEcCBm8dIXQYbYevtTKNE9hE6Czey3P5/HSm77cC1HLWmAElJS6X\nSZqLXiFeolAwitCCd3g3iO1vaQILJYJqFdVKNQSVfUaXiBGZiRoMYXAMG0fOiN1ySgQqvhelULcb\nyLkyHs+MZaZaR8SJN8+cqKmIEmrT020Hpjjz8enEy+vI7f2OTecJC7L5/PWrBPJr2d/aPCA8qnDR\nTa+sBTPvpGNN8/uWenw2fsquzQogQU3UMa3Kqwl9O2FpBwE4V5fOzJYWVkT+l1Nei39a5GtITqhl\nea9mXNSuCXOlWkGLtLapE1QMrHTRGn/lXxYe3rglaIEG/SxSLMu6RqKnFZ9zb71+b7dw3CUVLuOF\nSiX0TSJZ1XOmLNIxMJScmWNehl/Umpeip7Aemo6qHlgoG01fa+NLM59TU3V58HLOzOPE66ejDslA\nBtamhKFIcLTCmVakKaMpd+Tj6/LgtbtqVBnSCt2LWNWatszUKFRPy4rkf6/oLO9X+khvh+sC25sD\ntzEJCEhSAxH1q/DCRgt5m5T5l/9d5eXxkTxPdH3P5Xzm/HrC5ES3CYQ+YA5IvYZCtZbNdou3AzmC\nsx3WdoyXI2XKhN7hNoG3X90JEncd3/7mK24e7vB+IM+F48uZp4/PjHkkUUi18M0XZ+rbB7b7LdM4\nc7pc6HxgOwSGYcNmM7A/bOmHjmE7MOeZMWWmXLm8TxgvtMx8KfSDpwuWyynR33a8/eqBv/2732JN\nx+n1zN1+jyHTBcd2O2CHDrO1mJsHck5cTmfMecKFjpvbA6Umnl5n8qdnxknksnMtJApx1m5l2yY2\nyeALqdPIfFJnWeaLplyYY6YQiVEy8lpl3oEtM7UUht4zTYlW7UoxElMUS4ZUoUiBeLsb2GwGfHC8\nvpxJUbpuY5bmrZgku45JVEpD8BgjwCanTPVe4kMpeC/mX96JxHQ79Gz3A9UHcpnJamksUldpGHPK\nKPTBs9lv6Lc95SVxGWfmy0zXeUiZ9Msutr9WZ+eSPC/IGtDW4SUa0wpfkoI1NL0OVy5FChLtV8zC\nr65NB4CickPzVG7Sw4aMgYWTXo2MtFstt6ALtUoVPGeZCNNa8xf6fRmMoXIttQUw+gFVXeakZlRX\nbls/X7S6njYfFFjUIdWI/KxWSFHQfa0sk+utk9LJWmtwaombKSnz+vhCqYXDm1s2fjXrylnHZXXa\n3lyqNFFZpwZIQl81mqNt1qIHWC1ZAm4rShrpgJVis1Jgy/2VlXHGEULPfHkh50hnLePxyLTbkA8H\ncR9sb2bsErLbfxbOvnUMolYIRu4rNHqO9d4VORjQPoNlb1mnxd4r+wM9kJwLyAzZTrxxdA1ijEvd\npeSs8rjMH/9uR5wm4iRNJafjK5fXV+o8E3pF8Visg0LmPEamS2QeIyXOuN4RwoBzPZDJxVBS5fbN\nDUPXsbEd33z/DTcPD7hui8Ewn0eOn1748OkTr0eRz/3NN19xuD1w/+YNf/rze56en4nzhaF3YCzd\n0NMNnm7oqdYzbDfc3BembHh5nQhDIXSVsXfstwMWR7wUtvsN+7sNfnB4G3DugHci18068CNPFd97\n/G5gfHliipkUJUMK/cDN3S0Pby5cpiSNN7VSU1nuaXCiWsml8ddtypIqSHIixkqMhRhFzZJrpUyV\n7TCIUiZXyjzjvFATlAs5yyjCmsVy9zLPUvR3Fuc6+q5jf9jQDZ2KJmQw9VwNr8cLr8ezIOdapDFP\nR0RafXadCHHISQ6Pvh/AWoauY+gD/eAZY13tNawwD74UghfKNHSefujpuyAiECsoJM6J8TJRc+S/\noj78lRB5C7gqL7ItmFVoDSrXTmeoa5yg9cabFm1+gYUwRbyOjTVLIUkeTkubAH4ty7vOBoxpSFp8\nUJrul+ufr1ZP00xFOEdBB1mplkIp+ucq6Vr8pqu0jheFgyuKabpUAAAgAElEQVTnLsUUoxQwOcum\nUJuANgDAaVU+xcjIRNGZi86LP4bzFu9EFZJilg5ZPYhyjFzOZ2KawSPSs+CFStHvbpDmDescfS+w\nVR6krBmEXYpKi9rEGTJymDl1pGwZgrWyOZ1z5JyW9bbGcvfFA5v9lq9/8xXjeCYVaajY7vdCgZS6\nDA8x+qRIcTgtB4hzXmkTfTUKBjlYqqlLN69ph5tZXflaELfWSqdpyWrjYBcaTjoXvdQujF+dA61m\nO5qddJollM2gHYzaTFOTWBPEpIqgqp8VSfNMf5IO1TROECObw4DvLb//w2+JU+Tjxyf+/u//kct8\nZn9IbB4Cw23H4e0eN9wwjZFqDbscGeOAM4V912PePPDw7h1vvvmG7/8Yef70iacPPzO+fgQKYejZ\n7w+4rse4TGDgfu8IpmN+nfFDwXeZaT5DBJMcu4c7vry/wZTKf/x3/8Dt3Z79Yc/uzZ6+Gygpc3k9\nkqYsKp7ThU8fHknThAuOLveUsZAulsNhx83thfP5wjwLpee9KHiGYaALHXESm99pjhzPFpOT+MWP\nUYJ4ElBlnZUWfVPJccJ7z27w7LYDzjtSLZQkWaaxVu5Frpgi5nTSASsZdozSVT7OE5u+4/Z2z/bm\nwOPTiZ9//sSnjy9st1tu7/ZseidDWEplMJkueJxOG/JOZm36vkfIN8N5LuQUl5pACPJzxVrKKIj/\nZczk1yPOi4snxjDmzFgz5Xgk2AUT/RevXyWQO+dBkWlLldegahZOe0HqtS5/B4ZmdiUxdpVTNIUK\nWR4kGvVihDduvHtDy43SELpE3/Pq/Rqgs1a4alMNplRskSAnX0AoEGHVpUBTSllollK0HXqhewu0\nkXFVT2e9Oa0rc/nO7du1AFRZ5jQaa3BtrSjaBWrXDKGKX4ixDt8Hbh9uSTnRbbulIaspX4zR4N8o\nC/VnKerZ0oqmjeoyrUFIs5QmQTStcErVQu16f2uVAI0REyTntvjg2M4bUpnp+x7fdctwA10eMYa6\nOoBtOwjtOq1mlStWyK0JZW0DFxpNgzcqdDFri0vbWVUp2yb1bCoka3ROrDZXObtaKWT1P5Ht6flM\nc6+KnpbBZLVrriWTc2Z7m0mTukymSDfIaDnjKqfjiRo2XBJgI6YmLpfMX3985hwNm/0F5gJjpJwn\nbDF45yFkXD9wuL/jq++/xdqO8/HEp59/4j//3/8n4+VIGAL721tyNkyXE6Fa9jd7vnx7x5u7HbZ3\nZCKfnn5mfJnIp4qJjkO3wcyFTz995NOPH+j6ntvbO3a3ezabnt45sUYYRy6XM+PLkRiTeGvvB4zZ\nkObM7U3m6flVMxytZaCBvO8Yup7XeMbUIh2kOVO0sQkkM89qIyBqW9mfLdly3mK9EwVIrYS+I5VZ\nRuIZ8KGp0KRpynnPNCfi05EKTOeZsq1shoG9sWyGjpuDZEDGwnSZsVkaloZerG2nuXCZEgZHnzJd\nyTidb2owZCPgxNhK3wmNF5PQyXGWpp8ck6jpfKAYK5lHyiLeiJlqoPvnxJF7768QrCo2dPMvbeWw\nBlnlSZveujXJLDI5WIKwqChWhUNr6NEEQAp37QE3jdpoh0BdPlfedL3mVni1n9EEqvpWhUJTebTA\nVaiqa2/IGlXQKN+tvfXCRTejq0prUjJX6F3+ThCjU/7fWiNa7lYUVErJWckeCgVjRSF0193LIWKF\n2miBXHj3Kmb9C14twqG31n3R0dF83U2TKZq6FIAl22g0UdGHLl8ZIZmlUG2bUVcI2ODo6AVZGVG9\nXC/9chAUaYlqJ8rVFlG3SrR/QIfgtr2kP2TMSrXY5f1Vy65GahrfJXhjdSiD0EENjbdDwy4KmvX3\nXCuSV9TGQVQXznsqBS+LLp9sxBOoJqXqkliwWiucf7Ydt8bTbfbUMnM+nnh6/5Gnx8jp8ol+c2TA\n0WWDTaJ+ygmmmHEmUbFsdjsON7fkt/f0254f/vQPXOYRnGXYbRlPkZph03Xc7HfcPOz57ts3EAKX\neWL7U+C8v5DPhZB7ur6Dajk/n/j4/pGSKjeHA7u7Hfdvbnj79o7zmGSi0+mF6XXC2kDoevpNJw6b\nBXyGp8dXtsMGY6STtqZK1T4N6ywxRuZpJo0zdZZJQFUWVux1vcoT5eGRLmKlNEuFqJYIGbN40piS\nCb2nU5GBA/HXMY7jODGfxUbXYJlc5Hga2V5kwIyYoXnOxzPzZYSIquwc2VTOc2IaM0PHors30eKC\nfKeMyJFJmc7o/cqSLdRSZSB0kgHkTUw2R+m69cbIujnHxv9yyP51Oju1hbIolSIccL0q8l35HCMp\ncguyi8rFiFStzem8VrnIqS18++IsqHIi6UIzVz97/dLDRD9f94gG4rwE/lrRIqwHp5x/U3cYoXVy\nKfKwW6seeCo5hIVHX9znEKSWS/rMja7q4VNLVv9ph3UO41vjjsy1bMOprVGvaWO1E0602rkkivVL\n1rGoW6p4cQgaFUhdqnqBGNHqtn4+FI07Y8SHXRGvzU51+GuNoaGmRo+tyywppUxUEnReiyFXuyBv\na8oyp9Igha2m5lkU5aoNRwGAnIeKlp1TDzP5no2ass29sX5+XUtm1QK4tn/LvpKbUEoW1VFph6o6\nVOr7oYdiRpB2yYXQdUqxFFC6zxij9QPdPxL9RRXdsrJaKbES3IbDwXM43FNLIsWZL77+mhQnXl9e\n+PjpI7kfKD7QBc/pPHI8Jo4vJ4KPHO4eeXz/ge1mAD0ci7eYTvZQSRJEvLO8+fKBLgzYHHA1Sw0m\nW+6399x0N+y2e77/5nc8fnjix7/+zF9++JHxeGGeZnKKvDx94vn9wKeHGx6PF06nC3Gc2PUdv/n9\nb/j+b39LmifyPOEMbPCkWWaIPr5+4sPPL7w8XqhWDLjmWng5TeTzCDFCkYHQVq9fpghZjHeMl4k4\nZ2k6q5WkxmipSHqVk3gneQObw4ALVr1eLDbBFAunUVpee2fpNx1d76nVEqMMd0DvefCW3cYzuMA8\nSw1jjoXzOJKmiDfS3CXhrRBLwuEgF8Yp8vp4hDlx6ETL3uyfbu82WAbiaebx5cx0PovswzmGYWCz\n6/E1cXfYcXvY/2JM/XWKnSWRUxPri57UCG8AVTr9rs3qm9JAgmpTr5glBadqQbNRNChSLVeUzdKR\nqdTK8iAqUm9vxGrYX/XU/Oxgqe070GLhEqiage3ahWkWS1WjwX7p3mzvg6ENp8glqEOcDkIAzVSM\ntum3Q641+Shqr0h2Y2SKjNE6A6Y5QFZQS1tQfaxy94s9bePzDRicrO3VoVWKBCrlemjeLtD8bMpV\ngUrSiWYd3AZkLKP0NNtYmry0Tf3zAu9KT7VGKCmAVijiVCMJSxEe19S17mBaURSwVtG20b3T1rUo\nvXJN0VWVPrZFbf4j7QC0Ur/Q6zSoJYHSLKZdlXFiU6DvUa8oMxCHxZYtyo83KwPJfiQr6KF2anwl\n9sC7Q6KkzO5wx/7mQQtiDm8cuzhzM16YLyPBee7fPlCr4fh6AuNIMbM73DBPE3GeeHociZeZNEZ8\n77AVhr7nzdf3Ops04frK8eWVrhv47o+/4e7dl4TdgdfXiXTJzJezKEmc0YanKB5EMZNjYvvuht3d\nhtAZ5nMEoN8G0uuF/Tbw/W/e8nAaePfwhtfnkefXI2OceXm8MM0JV6Fzns4p+vUW1zuMUpW5FFxp\nt3kdx5iiOBUWoBZD6MRCIBbDPBVsLDLpSYepOC+FxeA8u77DBBmsbjDUaaJgSaVyVndO18KOkcNj\nmgXJe6+eM9qOYhzMRTp7n59eidNEZy3JdsRJePHpMvF8tvTe0VuL845tF7DeyzVYj3Gw7TvuHra8\nfXPzizH112kI0gJcimkp99pmG6vo/FpiBtoKXFb6wxgpclSNxuLYqhy4+rSIlFCinSj/PMupgAZx\n/e811bLw07UhfbdwtMvv/ZPvJIi20saqOU3v8xX/3/hW07IEGu9sqdXhNUsRXl0CjjVtUMYaMNpF\nSHB0n62VWJBqANFuzpyb5YHRwN4CWlWq24ivjaKY1Wis6XdkLUpuJ4cuQltvUCUGkjPWdbyYnjca\nzLW4RGvFvqYt1gyoZWJyqOnPWKf3Uqgk01ptDSSyUjbS1VmXk7ksElDxyJADsxoJ2ItHfQvkdv1s\ndF80Y7IWeKXLmGW9F0qm0VqKyFozlyxVobZOEMSWWb/YchhbXcdqDa5ND9d9Zoy4VKKDtPcHeHiT\nydqIZXV0Wi1iD+ysI/hOtN6nCYwhpcz+cEuKmdPrkTg7UjTUYinFYaxj2A28/eYryShzpN97Pv70\nnloN3W7D2/0tuJ6XT2cO2wPj8YU6TxhbKbYQbWEzyFxbUxLdEMhFiq1pivSbnjD0zD/NkDO7bUfn\nDry5vSN/a/j5pyf++tMn4vzIzc2OrhZ6wBXx33Gdk3FpU1lklU4trp0S5LlCiZm5iCYbDM55knEy\n8CMK4Ase2AQx+kKajXrv6HygGhURWAEoSYHiNI54L81L6wi8qveyah2mZa/y7I5z5PU48vJ8xttK\n2ASyrZynmfN54nI6U3Jm6Dx3uw2H/cBuP9BtBtKUmKLc52qszB+ovzy081cK5M1/20hXni2iBV5i\nVCXpBS9xo8iDnXLGOod18jC0gpe1dikqUYo0p3gJNq1QKDROhuY21zoPDVI8qzr9pK4lT6fa1Ov5\nmw2ht+k/wtmvE+xbE4+xBlzB4IQPre1hbwXRVbcuEVWLis5Ih2tD3Q3ra4u6UCeScawOcw3latBV\neqm0AMq6trUVaJ3+bGkKjBbAxaFPuGKzfOdGCSz8emmukS2A6WG82KJWUmpTjwopTjKzNHis7ZZA\nJY9EufoOLXCKARR6LbWhZq7P47q4LbbgL79cF9Smv6HUj1oeI1YIztmFWhGVVBWetB187fKM8PxV\nG1fa4bnUnkzT/0tnqrVX61ratCrNINTcWzxqYP0IPVicrFejaRp15qwUXXEG764VUYhfO0mCud5f\n9Fqk96Cy24rCJL8pXM4z4+mV+XyGCuGwIexvqKanksgFzufKPHvinPj5zz/z8OWXPHzxwL/6n/8H\nHn/4mdOnR+bjKy/Pj5zPJxk0vg+arc28/+ETn358ZrfZ8v3vv2J78w2+P3B8gdeXC8WIt/zd2wP3\n7+65vf89b999yadPT0zlAjlS50g6XfChw4VAxZBmsaz98a8/EWMk5aSDqxu+qALkFKWlLKqwVCrz\nLCMXDYHzWYqPVesbUgOSDLALjs0QsEFcFudY6IYljSZPSVQrWf38EWCZaqTWHorBzJXT85HLacRT\n6L3FmUqKE3EuxCioPKVC0mdpvwt4D12vYKBk0gSfHs+8PF0I7sMvxtRfJ5AbpHsrOEFHxoh9qHqE\nGw1OS9dmLdTl4WkqglXNsCLSqgF6RdOYRpXIwsRaVm+HpWgmPOg1ddIQ8aKf1mDeHraWfS/DaK/S\nbaEC2tQd1ZLbqqqIKw+ZYvXfFVqadqJf5W56CBkA65YE3WpTj0jVZZ3E9lq+gDeO4rP4spRmCSAt\n0Dlqbmoa6pfDw2ijSzVlCdrWtO5YsxaNkQMSU4WbLNL+/0+zlkZTye8ZjOm0Vnk1sLfRJ61QqsRF\n853WZVE0XK447StJo9Zcqipllg7cugbkUg21JKhqXcCq+GnIOMZIM7Ly3i97qf2cHGCfC3lzLotF\nQdXssi7o/UpJJXmLeNtU9fK2akdgjLRut/uuEantK0Hw6h+jqHzZh3a9RtHsO5nqo3RSew9jHd0w\nEHS9u83I9hDI8VYQdx8I255prlCdBPRScH5PrYmSPfNY8TvL7cMDh/2ONH1NnM+8fnzi57/8lb/8\np39kfnoiTgmL4zJNpDhxPl4gVIr3vPvGc/PFLdZVxtMrDBs2my296em3HUN/y81Nz4fHZ3764WdO\nTyO3/cCmH9gcNuzu96RsePzwzPl4ZDrLQJIkqZ4+J7KLXJFnyGSlyCpsgmc/DNzutnKPQJG7+Nw4\n75a1H+ck3jtzZp4SMUWxGQ6O7aaj85WgevB5TjhTCYrYvZPnZjN4jOmJk+45xLG1FBmisdvumJMM\n+k6l8HrSxr3zKGZrc2aaCmlOsoMW5PD569cb9aZa45alliycuXVW51AiyBGzPgxVgsASgNdcnDbf\nb9nQtdKkYDLFRFUyKcsIsyr+yWuQb4hbcV6RgGVto0YaBbM+NI2daAFFE+EVWWmwEKRq1FKmPXxi\nWVpbGm3Xh3/NQq7WTJF5O3iane5CjWA0OMj1WGuxVZC9/H7RgOtwRnTmRYNydQ0JG81fMtdNScsF\n6PKYq2OrGkE/MhgCLbrqWlQ+CzjOh1W18fluAFY3lqtFbh9Jm3JklmypoehmAyBoe7Up0H3RKBhE\nUglVnena3pKieKliKGaMBR3mfQW2V7qHvL6f0i5NW9++iSBt066CNhWnZTO1ZKpplsPqpF8r4gTW\n1uSqRlLNUjuhKYWMWVQ1GLN8plXXz5btXIsEjO8WzOA66POgz5hd7tsU25Qe8RwK/R7npfs3zpXZ\nZzY7y/b2ButuyDWxvbmlGsfT05FwmvAuQ++YI+R8FtfIHx8xvseHDTeHA8FZLl0gu0wwljpVXC+t\n9s52nM4DJltKrGzvNuy2G/aHAw9fv2GaKmWu7LuBS9+TY2LMiWosqYrMzzpB2K5KYC0GbC3c9IE3\nhx1v7g5Y3w47QyGRgZgr43kkpsQYC5lCTpUcC3HO4AsBsL6j87J2WMtoZ6yp7DY9XefxzpAReaJk\n+y2myPPqHRr0A1OcGceRaRw5nifmKeKcIxXRy0+zKHvaffyl169U7GyJ8Dqf0BjRf8pGq4sM0aAF\nBBMUEcl/TRUT/oXrLSuakd8VMZKg1orRaTU5K7LJRV0JvShZlF8tqr4wKHq+Nm5q+mka6lo7F9tB\n0H50fYhaYL5G8xp4FY3ZRdUgro1rcBPO2hhBZO06rieX618tKbzV91l5dh3VpsHLe9nUxco8xutg\n24JKNWtan3XIQFFeP7RGIlXbtGYMjKeFWGvNgrRTyYokhB7JVdzmXCtoI5mEUz0xbe2NAWNlkhPN\nU0e+h7hF2pXjLkbVPVWD2oruRSW4Bv129rffb06RTcXhvKTJtQol1gLrkrlVKfgWlZXKQSLyQqoO\nRqlrkXjJqJZTQbcRCHJUgNAa3uQHJGCD1g5qK/BLXwCIGqYkbZoyMgjEGDFysprJXB8i1ogbnxwC\nFVv7xVrY6AEgw0uygivxQAl9YDnocuV0moixyEBzJ8qmFMFvb/n6d3+AsOPx4yOn05lhe+Tl+MrL\ny5HL8cyHH44E3tP9oefm9sDuZs/79++lkSgd8abTGZqVwXi++fKed3dbHh429GFLv92z39+Rz0+Y\nS6TPcBh2GAJjjORaOM0zpyni+oE+9GxCx2HfU21ljDP7znG373m427Db76QBqQvYUHidEh8eL/z4\njz8yjjMxJ1JJdN3A0A9cXidcjZQp8zpdcF3ABunG3PSB4B3b3QaqSEm7fpDRkKnq2qvqy8F2u6Hr\nxJRsiomnxxfm88glJmazTj5KGVKqxNyA7BW6u3r9SoH889R9CcaqxljUHYoqqG0Dio2jQR7clApG\n5YvC2VZMkcBq1ZCrFfmoTTKmcKWh3lokFS1rEFon+6zp7qo3RzjgBeUB+apw2VCzXhNFUFytrfBW\nl4BnzNVhoA/zytfKGjS0jUN5+CIPWW1HihZRWa9Bvoe+N0an9DR9s5QKizHYuqLOWlsaLiyhNZZi\nhXKSkW0VsNLqvlBQmgE5I+3Taie8SEmrtFW3wLccFkV4yxZE1Gp6Cf61VD2oZT9UINWimnndB2XN\nJOR9JADTuBha4fiqDgLLWtdS1S9MDgzrDB5z5c8ik6lYDmFWOq1U1QoXgncyVk+7kG1tap5G+bX1\nlWtqh3TF0Kb2SBFflU1G9nprWq01s1JsguzUW3gBBLW9fxWZa10CuVn2STVS/LMSn9XwzansUe9R\n84wvqvW3bR/qfVBpbNLpWDbL1ByqIWwGbr98ixt6vvj2K/H2nkeOxxPPz6+cX444a9nttvT9gRQN\naZ6xMTD4LcZFnj+OXKYLxVZuv/qC+y/uIWeCg+mcKEw8dJ6Huxs2f2N5d3/gpw+P/PjTJ3748QM1\nR3ZxZjP0/M2//ANf//Z7Hu6/4PH9J37+8a/89Ne/MnQyOq8ftgTX4a2MHvQ9bK3jPgHfvqV7fOHT\n4ysvR5E29i6wve8INlFy5Pk1c4mZmjOd9wydGuIZKajWkqkB0hzJUXTlwQgwqLngQk/fdwy7juOH\niXmO655VMNA7I0K+Wkm1Kga4ypKvXr9ai76YFYGpVf3s2ki1hihUZFlbuNREfwmuVSV5LYVefZBl\n9xZtc2/okIUeWOgNRWi04ppd1SVrZm+WB3PtLmW5rkpDxtdBRP++BRE0hWgfVa8c/OQHF0QNq38D\njfttx4+iN8x1V2NbGbMGiwV9tgzA6vlQqbYuwf/6cJJr07FWehhKB6PD2aTF1Xb9LElDI1msdeLj\nHMW+N4QgHuF25cNbHbIdBuY6uOp3a4jWqh2vBHK1FdULsFaQdrNysCYv61JX5Ttt8pTUStbPcsZR\nG92lWZGxja4qes+vPez1YNKEUbKdNg7NLJ+93ImFIrvaLzQ1TVs4HYR9pcYyzXveGjEL+6w/QmkA\n3eMryNB9wGotUC2L7/1C5yxAAUyRrKW5W9b2Xetyg9Q6Wag20za0rkgqGVO1ucsKOLDOM+wd3abX\nw1gktONl4nS6MJ5PlCXwQ5xmZnOhv+uwrpJL5OmvH5lPlUzCukF9TwpR+eKYIq9PZ26Hgfvvv2Dz\nd99x/5cP9H//F+ZccHUm58Q4Jv74++/57o9/4OHdd3z8+T03d3ux8p1mgqkE76Urc9Phhx4bwDjp\nzAyDpxtkAAhKbTkMuz5wuNmAqUz5yHS8iP9REdWM9yLznKakRXVpDqrKh8vQ64I1omsPXoL/OM5M\nc9T413orZG95KzOO57bP/is9+r9OZ2fwV0hXuKtWyGzWtLUhjyr+1cvfG+GCG1JoGt8Vxa6bW6R4\nrZotG7Eh1dZ8JKeoXYcr66tN6BaFSCbnzxH6gvSWB7YsD8w19UGjAZSPb9SNVYq7DVNuHKttB0LV\ns0wfCvS7hRAWzax8L1WmlOtDakXjkrsbloPIyBg9kZ0VKlkLfyqXzFZQXa1KeTjxUS5t+roGwOp1\nqEddUvocJ07PZ54enznc7jncHRi2gwSZUmUwgXRyrTp4dW40Rgb3Lk1bRrIGoVJg7cxE94EcHDnJ\nBHv0wGrZlMgl0aYc2UsybMNighObBUVAVteolKzmY+j3zBrc7FLfwCi9QpUBx6ZKI1fWxrV2sFu5\nxpaFlEXvDKYoTYRIyooBVNaYK5hql4Nf7lvbY6L0MqbirB6iCn5M0SIdmqWiVY4rmsWijXil0X5C\n3dUm09X1kKHKGapbgn/bW3JFRa9JFGdWu42tM6v6zDo659hsdtzeFVKKmik4sSlQNIu2rs9TZHf3\nke6H9xxfXqlsiAlynDkfZ4rpKKny7//tn/jjf/OON+++5qvvvqR0PWOqHI/P9J3o8OdThlj46c8/\n83IsfPObNzx8+Xf89m+/4U//8Ude3j/CdOb+fsf+dovvB2IqzHEmhJGQJva7LV883LE/7Pjw8wuX\n1wu5Zg7ffsX+bs/p/IOY0Z0Kc8qMk6GWSIlF5scCyWRSzdjOsRk2PL1/Ik4zoZNRe8EaYkyM00jK\nM04594yMk5tS5bCx3AyO9JoZ04JF/8uY+v8p8v7//LKmcY/QuOPWwt3mCy6omBZ4m+ytgBpmre6H\n9ip4NlWIW1Gw/tMYloAnm7uh4KKpZnNVlJ+XQlj7LG1yQXJT4dQFYS3vU+WhSkkGJgj6aIXb1tgi\ngV5oa0FZ+Urxcc2jG4xKzkQWd51JYNY8pdFOn2UEemXms4fwquhmzaI4MZiFezWayaxnWkOuwqtL\nH/y6nmrtJZV/U3DeELwjpUSMMzfdHhRJtqG+BnTAMnqDBfU56+hC9xmaLZpplTYHtJVEmya8aCDU\nLt/GJYteXv8cHUyia5MaMrJWvNkLEgSrpbkfllJlQDCqaNLlpdE4KjVcUbn5zHfFYNWyoPm3y/fJ\nOj3JtJqG1nC8sTo8paxqLYDadDyavel3nFPG1Ew7EKwpTVVLm8hU1AZYktEGZCTA26o1qIree1mz\nVstoeGJ5WK5ftXn/tCcriwKrrkO7G6XZ6hgybNlirQfnIVwfHpW+zwTfcXi4ZZ4mjDNk7WiNly+I\nsTBdIufHV1y/5zR6fv7pxOmU8WHD/RfvmI4nTuczr6fE+fjI+I8fiek/8PVvHnj37RvefvmW7/7w\nHenbL5menxnczLDrCLstcY7YS6JceuL5iDMzbmv54s0tve9JMfNmv2V3u8cEx/ffwaHf8fx05GUa\nBWAZiOcLMes+iQZipdhEdDNd5xi6Lf2uw3jPnDLTJCqyFFsGL1lp1iY6Xyudhf2hg0vhPP4zGvW2\ncMXX1UGgPTSCFtxqkIRRSREiBa9qWlQSMkBANm9KCZAHUPw3Gg3SuIC6BGRB/426QFFr+3HVN2gW\n0NC3sYJ3jP5529B66fLzKvFrXHtr/sm56HiyVQ3SukxzSyJqC+R2oXjkespndQWj67J88LKILVvR\nwF3b+rUmlvXVFC5tqPNSoBTIuPLgVZBgC1ymld81u1ksBqrQR84Zui5oClgXy+FaKnjxOwfNPOp1\nwq4Hd5CDsPUNGKM/tK6aBs4rSqjon7ej0TQKaA2CLPSXasmL7EOZBbkeoo2uKUUsThfqqwVShLYw\nVqwQSl1+XfXpsq9TTHJbmumWk0M2F/R99KCxrSfOtNKj3EP9PoX2WcsXlZRdtdGgVJyr6t2uB2Bt\njVOa1ZSqk5T4rHbU7quyi2sW1/Z/XTPnda+ttJzcTymQV/zSkSzSWwEMWGkClC2mIwtto6qq+vY4\n/G1ge9jK85bFmySlKNazc2a6zIy3Z4aNpxjL6zmTCKWh/DgAACAASURBVHT7Gx7ewbN7ZC4v2HQk\nH48cX458+vDI89NHPn184nd/m/nuN9+y3205bHpcPsl+No5kJJ7EqRLPRbtxC53ruD04nHG8e3NL\nLpYxJR7ubzn0A28fbnmeRzCWkgrj64nH44lpigTnKOlCKmKU1gXP0Pfsb/cUbe+PUxLb3Apzkkwu\nV0PSTHIuhmIch32gUpjnf0bUysqbFkU1DbUIQmlouOC0uFNEmdAeYnlCRC2wbLTCNI3UWun6Tj1H\n2s+qBlm7F2utZFPouk7QNdAGxTa3Pwnw+mAsxaaVx16DQysgCQeQc9LU2wnKd3I4zXNU1z/RAQsn\nKkW2lQ5qCgKBQy3wNESsX5Sl4chAThq1loeyqlZbDxljcdar3rk1Lq065qX4V9f6gqmsgzOWQNWo\ni8ZNZ5w31IzOkZAAYKzFdR4fHH3Xtcdeis/OAk7uQ6oyVxJxwxTUiB6S0IZXtIPAWada8Lrw11Xv\nWztwAXHMM0JrVP0+8udWMyz5jFoFyTeaQP5i7bi1rdXaWApBkbHQCe2wtdbJQG/9j9VbkVPi9fGE\ntcIZh75r1WeRwFY5HGoR7r2W1qCmAKdooNOMx7mmKqo68LplsYJ8nW2dy6icVfsFasJ1spdKreJp\nrT7bXd8RfMDhl3qJAKRMUZ16s1UATcQWILEquVq/RjVS56rq819RJVWWUXwlt5mz6gho7VUtyrTH\naQEPznlx7gwdtWb6bWF3WzHv7pcaS6kRWys+JrrdHd3NPdvjK3fHVx4/PtH/8J6c4PHxhfPLz7z8\nZebjdx/5mz98y+/++D039w/MpzNP758458Tz0wufPjwzHSdKTVQndKe3MhrS1sI4JuYp028cb759\nQ7/rGW3lfImkKeGo/Kf/9BOfPr5gqiGbZ+p0wVsxv9puNtzf3vH0fGEaR0rUvpZmSKcWDnlB545i\nA4dtoKTK5fzLkyV+HdWK8sLNpXDVQSt9ojRFbR2GbvUDoVr1HFeOsa4pXtdJocUaq9x5XhGsBk4Z\ngnzNt8rLGJU/ghZRWekF2/CgFtJaAeqKyWiFLB9kOs+CqBUhtU2LIp5atWWcvBwgi7+MKRpkS4vR\nNIvaqijI2n9KgawgvRVnrb2qBVgrg3Gv1mtpR9e1rTpsliVwVg08qpOu+bOh1mInKjabAlyrZvp1\nyXqSTuaBgnWrNJFcKSmqP4tQHOZKIyudom4J5A29t+DQCqfQ9hG0wnbLloxpDUJmoblE9VMorCZo\na/PXmoUJOi9XyFH3QBUf66XJKlfmeWYeJ5lO3wVC3xGGHucMLigNVrLYArDMkBe7VXH4ksLsAmbs\n0jdRqaRs1n2MyB0dhmoFdYvaRE3O9AAvtTKNieP7E5fjhfkyQUn0247d7R7XBfHbt3J9S1bSqDvW\nQSEoJVdp/kWtWH/9XGhxWu99rahxnaiY0G9tVCIq67C6U66xQda/NXfJvXD6v9qYpoZulU5AQUgE\n39Hteg4Pt6Q08+V54rvfn/jD4zPPT6/kuRB8x82h583bW4bdDa7z9G7D3vQc//wekzv2uxse3vak\nlDifLjx9fAQDvu8IfU9vKrnO5GkihI7d/kCZMu/f/8TLhye6YHmzPfD12y/Z3ez5y5/fc3x5wbso\n39c6jPXcHRwPN1tCJwDy8eXED++fOJ4uzPMMJTN4z/3DlvuHLS5O3N90/M3vBn7p9SsF8qugtfg3\nr6mePipQ68LzycssCLh1xTU/bJCqcZO5XX/O0sZeVVBvVv5d+YwWX+VPDGvjSdusuuPEd0OKROsX\nWpUSBtYhC/qdZBapWz+PttkFYQm18XmBVA4M5Vs+WzuWVN/S0LReKKwa/doC04qaVi5DH/bSVDes\ngZgrxFWbXlqGaaSUlnmT6AM+RzFAa2xPqYKS5fA1y4BoKNgs126oKtOTiUe1aEOKEBMsQz5qEd8O\nYxcOHwPGW3xd90vLlqTAqQM8al3WR4LfGshFNdTqFTIib/GwYQ2albZuLFnTdWZUs9ZPdApTiVkO\nJCMueqb1MJiyrHuz6cXIOrVLrNf/VJpqObyS0mW2dXXqWpnWPyAo2pr19xrSzamS5kKeM961ifVO\nab+GrOuyv40egi1DslbzX4seukLhGK5UOcbo3teh3O251oPItD2mZmamGh11tnwsclis1yDFf3O1\n9itax7UhJnIINaDiascgG5lyL01qcZ45Hy8kna4VvGUYeobtoOMNK7XbsjsVbLeh1kzY9ZSYOR8v\n+LDBlsymd7hhg0kjxhQZwxcGrO8ZSmXbbSibyHbjuXm4Y3d7IAwdfeiYpgdCnzm9zhxfR44vI34I\n7PcDb768I/Qdx8vMl++f+dOff+L0/IrNia+/vuPuzZ7Ntmd6PbI/7Ll5uOOXXr9aIF/MiLjidI3R\nkVqOlOPyEF2rNARp6k1XDfDy4JOX97se87bMr6wFpx7CztoFWcprnerTLEybRLD5WVwjB0OTP7YT\nQGiQFAshCF5oG9CqgiHlBDXTDKWqFtacszjTDpu6BtUV7nPtKFiLAim0MaTB9nKtlGmySQngq+/K\nyi1LCl7WB0RPhVobWhVVUFITpRgjl8tF11f8zs/niXmaCd6Kzah1eN/jfcCodW6bt+qdYxpnao70\nnTQ9eCu2vJ061OVSSAliErP9aUqgo+GMtRhvsMHSWZ1ApB4ZKArNsazqGhoNpEHfgkXnuGoHpPeG\nSF5cLqUorRzvcthmWt2iohTRcsgVnLNsdgPd0GOc02YZC1VkaFJzEJsAC4uLY0Uv0IAoQFRnX1tR\nWu6H+PIo2HAVa1XFRLtlVbKPWlRdIxN3tvsO5265f7iBWuk6kf9Z67Eu6B6SIu9iG9xoi+YPYyvW\nSSHaaGaVc+tdkM/HarCmCt+rz4Q05YExqiAygC2qnmnjAhvyr4s9hzFNsy4UmlPVU86aLfuCdRVj\ndZ6sFipsVfmpcTgPXegYNht2u8PSfeuDl67PRSABZkh8/S82YhaWMuN5BApvTOWr331PPE/Ey8g4\nz1w+/UzMM+++/RrbOVKEw75j999+jzOWw7YnW8f5MvP08RNfvN0zHO7Z3nf847/7kTx+5BQv2FDZ\n32z59rff4XfSWPT7VPk//rd/z0//+CPMF/71v/kXbG+2TJOM0bu/v+PtF29/Mab+SoEcDQYaHzXD\na50hxQqyaEZV1x1yckPsEhyNaV1w0Lo5a6mqopDPa8ZRuSZyybhScN7L4Fy9HvlXi8EujRHypmqy\nY1sTTqOCkPdvLIKm9kZRkqllcbRr/J9Tp7V2KAhqr59lAy34L8i9fZByPQrI1R+iLA896OfqB7Y1\nbuu2ZgJaNahaGW+HUdVDQU8zcZbUqTZNIqkIeJ4nckmIbFNUKNM8YZNQBcbKMGYZwxXoNKCXUrhc\nxMO6Wsd+6GXYsgFbJ8iqpJkKNEP9EEADT9srporDXi2ZYts6yo2UDkeUV27ce8tuaDdKaxSylmJK\nJXuvHaaVrMOp6xJoMMJJiyueEcqgsnitSHDRIG4MIDwvRrT5Nbeic1Pe/FPtf3s+zFVH5toUJZmi\n1IuEwnJY5wk2UBEfmRb8Ktq275o2Hoz1LEZaJKk71fXwkitpckO510IjSVbRlCoy59VS164lpYIa\n8JJgPM0jxoiKyXkZqC1eNY2KYdmPy3qwPk+t0CpDSuSAKgiaxxScFRpVOqtbCtrWdH1EvXOgVGGz\num0Uo0HqIV3XQ5Bnpe+HBRCVUih3WvwslYcv3nI+n3Cdp84RWwvO9fR9EDBGZrwkXl8mHj+8ymc4\nsUSI5wuWzP6mZ//wBXdv7zDGM18K6XhinC5s+sBu6DmeTvz01xPzn1/5+PGFeJk47Dfc3uz4X/5X\n/ovXr2Oa1QjOxgED1ayVdJkEI8WtljaDhjFzRQe0xgsNUtYY6iIJ0w2hT0eOmWmaGC8R3wc2hw2d\nnsyghwssKWVLdQ1QnURio2m31ULNclJU2aC2VjF7YqVFhGduiobPntbl86ioeRhwReOsPH7j2xtn\nbpY1kP+rvGZD5rSPKAsaXZH61Wfqe5kliOcFuZSKSkFlqEWpRTlPWZucZDZmeyAv50luqbUY79lU\nmUzU5YDXxhNpT7akYsnFgPP4LhAclPlCmjMxQ5oB43Gdx3jhFI1r/sz6FdUtrpSKqXm9N8auliVX\nAKDqfWovW1uTlDQ+1drey2kwzOt+KNIxaa0VW4j/l7k325Ikx5FEBSRVbXP32HOtzFp6ps/pM///\nQz3Tc7sq1whfzExVScwDICAtKu9zlHVHRYa7ubkqlQQEAgFAVy7wPhpW2k7ULolUm8RniMtWe4td\n+PPkARge3RCdaeQNGC2pB1/Jbbk1gDMEu9l+g6lvqtdGhHMHG0L5vQkdSgM5cYj12QF6noAXR8EA\nVT22n72KUQkqbO9LEqzrYuuBOaq1tYGozY1orwmBnxX2xOlOrtdA2KW5PWADM3c88cjjTPiPOLUq\nDkbi7GiNBnw59b5LJZfhPYGIkMUmKy3LBVutqNcVUht2By9+g0K3K7a0YL8p7h5e43xe8fz4gk//\n9yOyrKh1xbI1vJ4PmPd3aDLh6fEZz0+fcH76hOW8IVVFRsGn3xdcriuefrsaEFrOuD5d8UevL2TI\nLXGmQ/8Re5Ef83+lvqFJv/T3K1TXGwMFYcUiDyOLPRTbdcPLry/4+R+fsHvY410GyvGEVLoaw/ha\n/zvAMKvpjM9IriopZQq977ausHrvgTJxB7RtHqa25r/HnUBz3O/SOUYopJESM2ywr0OsEhANkJzi\nvttA1QAIA00ETBmdlaLTOWiUcbO7IdsIcODEtq1YrhuWZaBkYOF/ThmtTFiWxVssKF6eF6yrI/FZ\n0FJDnjPkpWA3TZh94Ozxbo+yFJOt5YK0mzHPgsvlguW84rw0tDwj7zLKtLOJK8X/aDdqRIa19qgk\ne3IUjkkjiQk6SlIIXhrviiQVk4dFZbAYUs05RbXqWq2RUdpnL2TpdI34hglHrAkqNh2794dXoMHK\nPZxWaSB6MAvVfAJRzk47NjFFi3EwYIGSDmckJUXK1oOlNXPK25act9+g2PyeGZ00NLWv2b5Tz2FY\nFJGzdyBFgnhbaIVdR89HsdbCDLElu1tELariY2nNGNbWINvqvzNDkN14wkf8Ef36n0DjjIIa2Gcn\nFZap+57miEI6QukRQThzcSPOGhICxFatgjUlp3sQjs/IUVdPEQCIYHfY43B3QE6mi2d0azTthowV\nu7Xi7u0bfPj6a3z6/Yz/+58/4e//dcG6WWOs83XBqw8btpawyg6/f/oVv/33Rzz9+jv0ukBUsd8d\nUS8Ns0z49u1bzIcDWltR1/Mf2tQvRK2wP7NvcJf+Ae2z9yEMUIT/jQ/JDxEHGbtRQjaDQZmhOfWG\nMmfs7mY8bCfIZKOu6rpZIrLYxpQAzNRs23T6LtGzrL2Vh1s1owRZTS59mL3pljhJghSHkkz4gIU4\no3Py0DLkhr2QRJJl+hs0yrQBM162WIwm1JtdjU6yU0iswrGKUcVSK6ii2Fr14cDWt3lbe4+YrVaj\nMzJ6K1mFr49poR8fz1iWFfu7CeenBFTgUlbs5hm7OWOaPZEKQcmC5XzB7+dnfFyv2NaKqoKaZ+z2\ne8z7A+bdzke35VgfellLYieUou4kTc1QSu9nY0M1LBkJ8USfI6+qPSdi+8ebf7FxmKMxhSAVxc4b\nm3HtBOh1CEqKwh6EQJGKUxpJrSGYWh9xm77kfW8S9fpG/SVN0TytZFIGEgg0Qazq0wEPHQKjP+Ot\nTW/c6YUEgUU17AeDaoojVozm0iMVScWxMtB0c2PV8zkm+00RobFtRFQUu1KrVQF8iiZpEzgqb6oQ\nV12ZKsloreq94lmkZolR5qEQ0bA2BLjIHn2xnbSI5Tcq818sEBwNuxvrPJVA5APBA6rTTAqbojin\ntepyURsfF86cxl8SVIs30wLmvSId7zC9usfr7z9guTxjvVyxXhe8eveAPE24LisO8xHn/T3O0wrI\n3mxATrh7OOLV3R73xx1yMXDa6r/QYAllL+sIh3poBTb9se8gYs7oHQHQO8MXGtIXciyYiWINTSjz\nhP3pAEgysRbldWxCFbEywza70s4fimvZeUho5Czcl5ztkGk11Q0RgF9+V0L0EJWbPyJIv10Nw6ux\nPoYStfPgjFpEhkPLn5fh5xWtje/R+CxDtBaOG5VSIwEc6Kj5YAMzGVjXDRyabQfRei8fDjMuLwlo\nwG4qKEjWJ6Mt1r2vZqyLoaVpKjjs95DqPPemQJmR84wy7bA/HDDNM0opVg+QaLjccHrEY8oX7wsC\nhLa+2+axgraGbt6AQC98En9vyaSgJGg9MzjjzwlaYy90K7FXolBtN/SNXbdL50Cn6hOxFN7jpIWk\nUtAHkiTpjsH2UAKSl9MHG2NJwboZrZhSjy5TNjWOJxH8HtUVYBkUBgQAEqJcUlF2L3ReljsZQEeU\nUzi9Bl+DluLffQZv8hNkz6lqBbsfKNh/JXmtA2GFgyEF2iC/zJ4A5juMG6cz9MSpIowvwLYDDqpS\nP9ekVZuffYd9hE4eJft5Ja3lv5gUkECApNEfyvVQFq1nwXHeYXc64uHNK9R1RV02aysxWYuL88sF\n+90ed3cPePP+vY3K2+z3nU473J9m3B0s+s85+bzbf359MUQeCUT0oo+bUDjMJxN33ahRXUAk1oc3\n+EHWCjKUVBqUMiGVjLKbrOdH42ZwyiBUMTbdpVaX520Nxbl0cspwVLxxKG9WzPPeEI8NzQz5YpxF\nIRol9eFUCiQ2bwIPTg8xaZgU1EAbsqSHIOKJtRKqdjQqGIN1CY9hBnCrNQz6uq3OgXdNNcQ1/Uz0\nJeByWdHaZga5OPUhgodXJ6S24XqZsTseME87SLLy9yQKbavRTLWi7SYcDzMmySjTAfn+AWmeIWVC\nkuKVjHZvWXo+QnL2iMipCY8maLkVpjDpK29Uio0/TOEI2XBMYWF/gg5FGRp8qnVEVJRZ0XFwMuqi\naaw79/TYb6cBQaOxF709I4OQCfBkpxWaVBGfF0rtP0A6JdpH5AkqYQGhagh7Wy1qyk79eUUYWHxl\na+lFO2romFW69pxTOBybfmT7QLysHgPa5QZOLvuUAD4uKRyoUjrOaDcMA0KcSbuqIqUNOXlrZKjh\nstC2E90zegUEzZQvYmeqqRUcqTJPJNgI4IbzR/VWSh0k2XQyz2kkun+NBLMplYX4kpjMloB0owNI\n+PPjWgEwBZfvoUkaZN4BJ08Muzb+zTuNQr3WKrZ1xXJesJ43B4ANkhqmnLE7ztZI7A9eX6j7oTc2\ncokdN4mL9nyTdu9oSUwgvHQYG0MRt4bKQzCVvvNco520QooAxQ6ChZfcfIPumwAFXlod16I9vIZi\nWxsuzxc8PT8CtWK7LDg/Wp/i4/0Jr9+9xrw/YJqsuTx12qWYtzYnrshE0WoGQYnKlBydGwi2CqDt\nuumoSCrA105HeWdyvpxct32/B4aWMNyWBeu6omnFNJXgHas3LWvVkV+ZUKaC0+mE3TwjJcF8mnE8\nHW2SiWuUoUBbN7TVKgqRC/JuwjTPyJLRJKPlCdO8RyomC8ve45rdMVManm/dhkhBQU0484G2h3pl\nLGV0t+PuxA4HrGIvzZN18hOTQjJRrhAr34YaV6xcS5Ow+QPwHe1JZEYyHnFZzsN16kPBl/+EgxRL\nHFrbFIb/Xl0MUwE9Pj5h2zbMhxn7/cEqYZvTBuqqoqaoarNfkwgyZiArmqzomm8DRCkbNRj2HgrV\n2wlPUAmdvF1V7qAgKjJTfGZEiXRCYi0ImCviOql/tiB533sMQ0nsggyINN+dCSWxr9FgVP1oa7Pf\nWbJNX2I+qkfpGvsXAqQ8G3hCL8ITVSBsAdA8HwZSXUmQJxYldfbAlFNACZaAlG/P4w34Hr3HvO9x\n/w5gLaNVJ+zmPY5HDUcR/Zy0yzP/6PVFDDngtpFFD6qOTqQbJG9URF4sGkNJ/DB6eb55wWzxoyGi\n6AeSA9HZQx8XorcqHfcwqQwz6p1P7mGoNSRKjuISEtZ1wboYqtUtmfa69fBVRKJCtBcL6WgL7FrC\nsfi1wNn0G8Mh/H9fsxZ0Q0cgfs9hzJpzkBXNaTaqIWu1cK9uG7Z1xVZ53X3yvHVwTNjtdoBIJCAl\nM2lm5dTJJW7TNGEuBZM0PP76G14en7CuC8rpiGmeMM87SLZe0FKKl2wncCxcd1Kt7wnth4/ywZwF\nfWMwQuEe07j/iNCcykr+LE2XTwURP9tXnoffG4zx2XCARYpnlQKQpGZSw5Y0AIFIQpWuzeZzFUmQ\n5jhfugEwkGz3k4tingtyFkxzwbwryLmAYhLLhwzAJzmSFTpByxlQSZWg6P1yYrOArXm9pVacIwAd\ndfYY03caqaPaaQghCh72durRoFFZ2SNuOlxzRim+Bqgj5yTq5f/+YU3oscEjdPsPDSPu2Cj2D7l+\n61BpBUehhR/60tieEd+GnU4ajqpFhE6JASY9JUVlkbbfb+t7sa+JU5Vj9GKxhk198n0QSXK1WcVs\nqvVHry9GrdAXmREStOR7y3lrDhGIGx1CHQCd/0Y/6Cn3RE3l4AIZmldJ8oIFe5nTNLpCvSoNyp4g\nAN8p8WbcFHSWKSMlqxC7nHdYj0fom4aGZImUQhmT8fB0AsKwEd3YjHw4keWoxlDYhubFd8lhPyRD\nSIIk2WkT9Xaz1fpH6IbVeosF77etFctivZytNWzDmryQpdkotGnaYZ5n1yybC9yqO1sVXC9X6+II\nRZ4y9vs9jncHPJwm1MszXn6vOD89oRx2kHnC7nhELrMrk9rAp0rkF6IVQkQb4y7W4OiJ3Oi4bpDv\n8N8pktOu93Zj1Q24Bt0EVy0kpysiqQ04Rw5ILsHLByRNgmQF9OjtljMk2f2YsZQwjMatJy9jxxBJ\n2U4uJeHhzb0DAa8QphaaVbe1NyMDnG4wFOTr4kVH7jRUmKD1wyCclFSRszrwSagthY0UAeXog1FS\npy79Pex7Q3phXJvP9N38Wk4p+syHbVDbX2yyVbUbMItWcz8fjGz82iRRjuznq8lNgpi931kciMG+\nMFXAlg9QsuBDwzq2WHaAwDqL3Oy5pCRonqug0KBHPXQK9rkpJetCCul5J7XzhJQtBnGv0bY23NU/\nv76IId+2DTmnKBO2q+uFDIFUx0hP1duSUlEAC9G4yTykM1RnxtKGBrvZcSVILl7a3zSGC8CRWmXJ\ntYfaVhTTr0NEwkHYK0FyQZkF+5Qx7fp4tegJ4VwY74yPIgIDlWj9CcBDaiEgDooB8ApL5gWAKCsP\n6sHDegCeFOnRxrZWtLZBsn2/tor1YpK7bduwrCugwFYrrssV6wbsdgW7/QStCVkyEhJKyaFaWNbN\nStNrxXa9YrtcIVpRDgVP1wtePhV8Osy4PF6Qd0d8/ae3mO/vsDseIblEEpMcI5y/RdyXxN8dEdqr\nOcqM9raiUbTF8XTcN1zX7FWX0aPGkb+6vrup0Q46JKLjOQkjRSa2ugExQzYorkStMtSNDXMhxoum\n7nSorHKj2Jy+YlJNRSGMFiSBuM2i64xtYwGXI3hVqCcxaYy3zUGDKqJhFa2zerGSWuQqyH4uxREn\nqQVnGjyCttF2dq3LejXjWQV17c42oh/xa3LduyRuWDpGz1KpUTF06EYlpH4e7K2ea4Lz5QPQAm0B\nP5sRiqCGfl87HaR0/IizlCDWrVFTjz2iHYVfQiVF585KvfK3iHdchY/g84lgbp9sy6nbLMsHVKfE\ncmZvJqCiQRqMznP7YLYgjZfxT68vNiEI8Iwzw43xxETIOoTJnuQCeM57q9euVAFMB90NANG9DAgr\nZFI5mTrBD1IS4+1Ajtr52R7aN5BvTJkDDAwxp5zRpj7l3YqALPS0BBNQpUsCbx6KV9fZ9fdELmDX\nKYFmegjZm195mMYD4QU9NtGnoVWrzry8nLHVBU7ID8hVsCx9qsnmrUNzEmCXMBXBBitln6aMMplT\namvD+eWMrW4Q+MSTbIZn0oaXy4rqAWaZ9tgfZ+xPR5R5Z9GKI+IbpgudCqJTNnUTD3csGFgcdfP+\n2DsIY80eNqRtuPIxNLnVQI0KfzaZXLU4qu4RFMNhFrjEHvbnFwiRURIwIHM+P3NabXBUluxWaOp6\nbHNyGVHyVqsbmxYH39ZMfKIQ7B68nQP3u3rVcjjC+EuBxsimACaM8bU2nTeS3z+viajUDiVSssHM\nAuPdicY1zrb9Uc/uF1eZ0Y5b3gmQyuSpR9AApql4/ySjKmPwdbTkgP8+ve10yVyD/waro3DDwajB\nz7sMC0JpZnTDhNtx0d5Ww88Mxt8XRYUae8u9qzvQYfkpAfX7bm64wc/259KHjPOADPK2P3h9EUOe\nczbP1ay9pd8fOOaNYeTIeCq6caP3Td6ciVxkDApuiEXn9Bxxb9zQ1SEpZ0hUMvqGpqqAB1+YcDQV\niPU6LyilgE2nRASpSX+feguN6oerKZoYfRMGKgyz35/ZJlitkMkCIYKsXhTir5RYXtyLM5i8NJTQ\nsG1bDE+wvt7A+eUZ1+UK5oCtIrAAKt7recW2LVDdXHI3Gf+fM6RtNgtgzkgZWDdD7U+Pj1iWBSUD\n79+eDO1WG4uVtMLUQnscT3fY7w8oszdrQjdqMhxM0inBybshD/PYz25I8DwV5IbdueZs6K9VHdaN\nPLY7t2rVqbWu/qypV8eAWrnXhghMEM9RkhlXPoc0GGqbRqQeTbUeartT/rzvTSTjRMCIXxw1h4Nu\n1flia388Fat+rlV9jzCBncgMAAk+OBtu0GkgWkhNcyq9fQSq37ufq2SJQ1IlLHxLCdZbRyZDovDz\n3Oze6SjhRtCu3Q66JBZt2HPkNC463uyNx6Z5wjRl1FWg7YqtVvRcmUI0oU8P6wY2KZPFvhpJw7GL\nK5N6dALw+PCZ9NIMW6vEVXNKC/HJGCLvOMn+x505ow6PAI0OctrNr7eGXaOjQZznbiLMTnYbePv6\nYv3IbfMh0DPci0e1GxqS+GDbbBtL9famicRsSAco1QAAIABJREFUMX0qOob+1ArbeO7lU069n0jj\nUdXPrk3iQNG4CJOamvygedk4WhTQBMriZHUAEE6Edy+LvnEisiQucQMWczuTN5Bi4QYQNJSthg8i\nULmZvMOy+uuyGGftFaVbtT4z6u+xqMI6Gm5LxbZ48jZPKJPgsN9jvz8gpR2aXrA1wVIrSjMt+bZc\ngeWK+vICLQCwt4pTCK6bYj6dMO0P2N8/YO/KneSac48pgkLweNtPjKC1jnAEnCNKugDBw0a/DKFx\n7AaTlFv2viddWuhTPRN6gU4PpB1xuxSRFI8nqVtraFvFtlwjOjufz5CcMO33KGXG2OhKkim2++dS\nvcKooE+fqpUgwYqa2MXSDETPh9S6+fpkzDkZzaLWlpeDNLiHjZ5g9CWoa/Iqzi4ksEtjI7rU0TSq\n72lGcO5AhUnyTuuoEm76QBVJ0ATvq2I/04SoVyE+u9PUTQ05A8mTspReqlqLZGshI5DMIqnhHAHx\n35KIdFkAhBunGc44IlG1EyS3a5X5+3mt4o6GiFwQKLsrWBit8TnTpjCp4JESv+qtARSwRl/0CrD8\nimtT+88DIUWWyN/dvr5QslOGMMGONc9SEyf8kyVpzDmlvqHRkysQOKoQaPTA5ss9vtCQdlH/6PGY\nyOqtcv0a+5V5CGZIiOiEzYmI8njQ7P76IeShEozfxxA++9UKPPHXN4lFLjpsvp44oXFT7c2uWm1Y\n1xXLukTy0hKJYv23o5LOtMfX5QoRq1CdjhMgNodyt8s4HPbIpZiRWTa0dUNdlohgtFUcDxPamrEs\nV3z65RNOd3fYH48oux2m3QHzbo9pt8c0Tch5it9tGfscz8LWOVYbgMYaRjrL14pJJtJPlGX5pxIL\nxdMz40YVky0+MT51zjEshAAg+qv2vSRxwM1p1m0FWkXdNpQ0o7hmnPuTiS6T17EXe3ZHb4exNYbm\nHRFKashePWkIDBH1lalg2wStAutiAxytp7l0Y+rIORB9sjW0dTOHZmvA4c8tZG12y5Z4FSA4357f\nSXEWAAc7vme53xnNaFL0omsJaaGdyYCqoBVjEjD1A+vGvJ9TpIQYysFHJAmQBo0eMeifTcmii8AZ\npSOeD+IahD82ULrJz3fqOk2LBELuak7jRg2niLWk8+t7SSK6MqeZbJ1uNpvGvbOFSezN4do+f30Z\n+WGEJwkiQ1jBsxyIWKFaUeuQYJL+4FPy5KPTJ7kUR61ehQZxtYB9joXaPTyKEN4bGpmBVDBdLHQO\nRIye2SKqjbAp0Jy9NQyDX/OIMm4UKkB8nUagsdOb9zSxJG+NyTDKCC96qXQ1xLasuC5mxNdltWQK\nqkUOWpFyxjRPyEmsQOfSsDtYb+Z5N2PZFiQB5jnbxPFasbxcsF0u7hhW6FIxTYL9Ycbp7gSte+hW\n8fLxit18h+n1CYeHV5jmGVMpkdAmUqOCIg2I1yIShHPVNNbOWySS/GSoVxhqa7EmWbLvj+E8adfR\nayT7/DnE4xFIylBY5MIh1wrmSvzamnpBpkSyjgcy54J5mjFNNm1K4X5ArLS7tWqVl41FWuT8zRpE\n0Qy3mHuj5LLKGjkAM+SQjFUrluuKphtmFMy7GZzrOpbnC8SduBvm4qfO0W+rKahN8OhJNsmfahSr\nsXoyaTfkQgoAfZqUgQ87R7Wqn0MAIE1mf+hyhXw6VSXixoqIVOjE1PIWkhATlqAAetuEqj6zFNnP\nd+1I3dtqiC+wVc6yZkBu7JD6uXUr4wV2Es5W6OjpzrjvApX1s/xHZx0OyKAhUAQBqv2r3UQN/P3c\nV58hjHh9MWpFpKGJOkfWO4/1Qg97WOQyp2lCKcN0oAgLJRIrTDTdJh+4QLHmsRYtDDpAJGj+26rn\nWlOkbD0OgDSI8RVAHx1XN0vrUV2RWKWmVn2IpCh0Mv77UuJ1DchcNcKuJBGUh+6clWNwhGYb0/tQ\nt4atGs+9bos1vdo2p1RWZJFo9FWXBSUJDm/v8fDqAce7I8pc8Pz0hPPzM5aXM9AuqOuGy/OC5bLg\n119/w+8//4r2tOB42uHh3QPWr95jnvd489UH7E/3uHt4wP50Qi7FBxj0XEJrNkm9lGycYjwfDBOg\nbPOWgDz9IGhs4gbkXhzS1Gm13HMato/s/WaEmofMRMKuv5SewGLSkoocaY6sPJAKY5YTpt3sBSLO\ny6ds0RoBvYMN9s0vxZQqBiY3sGlc8iSjzbAdk300khwj6KoGSUhJUYoAmm18nvce6bUHKaK/oJI8\nEtPIl3nrBaghav8/RinagN5gqjs0aswt0sxxjazZiJDz5uxZtECHpf49tp82etWcrUW57rRBOtFH\nF4Ln3QBggD01Ckcx9epbPya8f3rIhuqUjuVEmJM0CnRUlvHgaf8s5TXxjAv6mzVkiaRduGcZJYzi\ngqk4wEvWElml16oQXNjerbfXwLzDH7y+kGqlF/P0pCL5NM/fh8HSgFBEAMkNJrGwOrc6RGWBkkPZ\nEQeM608emyGTxINIaobazyPsVLTw0PSYgCslcu6ORFxpQerF0Qs7OWrjFQxhkta4XkqR+nr4hmE1\nozcWqrVi26yk18atVazrgk0tVJ6mjGXbcL2ueH5+wTwX7GbvD9MUp9MBbz68wuF4QkoZtVYUUeBy\nxfnn33Et9nmX84Kn8xX/+Mcv+PXvv2KnCdoesD8dAcnYne5wvLvH/njCvN8jT4b4hYaWoMwPFZuZ\nBcIRhmGIzUxoLY7SO/4hxWGO0dQInlATCUfLs2tKA39W0veApjQgV05oEttDPJCxd+x5aThLo6tM\n1cTCHO8fHvSEG9bB6AkSrBNlC6QazpzrARof9P0a0SmvxDdlgBLfzcn6yjCq4CI0v9bskJ+BTxJF\nk2b9atxYM/nX26jZ4er4VOgJELSYWBFLo0baLsZkjKJRuMSFkdjTROYuAPBIyNTCA30KWGvqIer1\n5iiQzNoPWOJTvcwo0SQP1y1DtSc3SaBl6XmQwRAjdmZffZA64qr4/6TBkMe7wwF1+snygL4kCUiT\n9cppPsDFBs+YyMCiWEYoJk3UentFfH0xQ85DaW0siYwQmmm+TLfbK+KIzDonrX0TCuxh+YLxWckI\nw2/QORcZNxs50Af3An93/HznueiIlHpex/SQ5JWBPdFatxrFBlYkYrRODQsvhrZ8Q/iX4rfWVlHX\nFa0ZF76uqyHuWrHVinVZoR6mT1NBuqyoq+Ll+Wra1tYg0jBLtsTOLKiouJyvuDy/ILcVy/MTzr/8\njrWesdYNS93w+HTGx7//ik8/f8Kr+6PJyPZHHO4ecPfqFQ6nO0PhbEUXJ1cdVSD+tNoGJR+HObv2\npFnbBFOH2IGy71Fm2vcPu+YpNDrCUcZH/pTtfhmO0zix/4lnYFzGN6hpiJA8MqTIyJynqSTMUKWo\nthPxAhNHduyqR17Z7gHo+R6NnAirDBnFKRvKCY2971/tjgKBH3VwWuIFJu4UmikjKLe1LoP20y0Z\nVWJrw9yFF4m16gWUhsEdUvlR4NkaE37WmTMMnfhg6iGZK1S+RDTp65DRo9hm98T3KQBUQYu7tslA\nWv3fyRF9s83FpKZhA3GFliNt2hh4LsKjbtoNVnCbqdAw1mGKaCNoM5pFM6DNoJ+R4WcGhxBzD1ze\nzPGHTY112FZreV2bRWrTVDBNk9kREQMrvUT2n15fiFrxTYUCUmdQNmgC3dxNqDoWdozyMGp/MThD\nhlfc5JEwBL/v71UzGraDXQEDE/gnHiJVsKCCB5Q/z9mP7KkB/5oZam/4730zcs5efWfVYEbl2wOy\n1qrOW7JSFQA10k2bd3O7NSjVpW+SBLoqnh+vaLAE2HE/QcT6upQEFFHTeqcEtA0///Qz/uu//45S\ndhaZ1IrjUVBfzljbC37+6Rekfcbh1RGHRXBIghcVpFxw//4dvvnbn/H+u29wOJwwuyKFYWRrxsdb\nRSrQm8M4ZaLohxuk06rLAgU3eRPfL3zObivBfjvwA5dYVdcapOO3iJ6sstX3jEmaw0iaQWJkaJQB\nS6KNQusbx8rjTVppHLjvwjSACTjacp1yGxLpKRkyH2fNGupObhQY76uvE0BlTvL8T5IW128gqKPL\nRI03zCFsGznXDlIYGaVkrRa0Vt+7joyz9hwNT5mUjirVnpftT5637kT70UrW5dHRe/OCu5SMeksp\nGW2UzJBbpapGboGGtLFlhAMD9SihrkBtrBMY1CpwABV2oQYAbDYvDoDtT6H9GW2Do2buC0qYIQL1\nDK4NSjHgYi0gXDqZKEWUGzELHKSKg5RWK5bzhu3xCm2bgb1p9jwfr7t5Wo5OnQWD//z6Qjpyb44V\nL/p8boKOi0WMbhgnnZu3pnxNA1F3Yy/9U+Ow+CHzM9K8P4lxdU5jJAl+TuEFPS2CKPvMNoSd9DRE\n/f7gh4g8UAwrEHkPdpisHWqSroWnFh20fX5wWu29wkna+LGyLn3ZKi9fns+QpDYhLQG7ueCwt37g\n+/2M3X5Gu17w/PEZ//1fP+OyrACAaco4vbLvvfz6EZdLRX0W6McXlNqQ5wO++9tbvP/hG3zz1x/w\n9qsPOBxPmMsUMxDDqHqC2WaUEg32jYxhHaA6yLySr58GOu3rXi2h1b8UPajjwyT570CM8SNKDDmp\n8hmaf06ftQUlX05JpyGh/p6xylRvfq5HFhS5m/QxeTUg+W/xSIKfYXtIxBAsn2yKzTP8ErFIzroy\n9sZidl0p1rmjx664YDGrAZLmCU1etw473OWDvpd7d8N+rgz52vXbvrVohg3D+OzMuPufaoq01irY\nkjX7po8ckJ06N1o5opJxTJ9q7m1iQDCUrOcOqzmlK4PMudDMuZTVvmGwaWjxTJqEa1ib6c21MXHu\n8YkA0ixxb8xvi3PO+3YvwODanDELiTzavjwv+PTz7wCu2N/vcffuNWYvlmM7Dqt7cIpsoA8/f30Z\n1UqQUL5i6sdiCEu48fuP9F2t4NQONjiCoxcPx+HGdwh3wtD6w+zl0YAkT1rBeh8kRjA6nIghMvDC\nOcAdzZiISd7nHGN46IhQW08oGbpwdJNs2kkYcr8faytgh6NumzkDNt8f/hSxCrhpytbPWDe0Zi1m\nd3PB6bjHNAnmudiosiJIdUN9fMKn3z5i2TZMu4KnTztczy94+v0Tyv4Ol1VxXRrevX3A99++xw8/\n/ohv//Y97t+8xv54xJQnsFoylsufW/NhzwJA1GoBcsqel+jPnkkgthO1Stgeichg8NjcqjfUUt/g\nORQQpGWSeM+WQPWjg9VAjxj2iT3z1hUsHmqbTUgYL1375op7t/YNzsX6vjO+tluelPOw34lWbYM1\nMPeiVhAnRtMR8QaNYRutgxrfp7bnByuXcCOrHQuujD5q0dcGgi4RjB0ddseMVWbExfavbDYQwu2g\nGBGO2ROZQg09VTrp5pmoO0CBMxaeV2KPdT6f5teiBADu0HimCAhJo1SnQO0DTAUkTcFWBqZSs3u2\nYjKe817TEUM1lHUrAJlu82ekc+C0noMK5st8r9KOi9utbal4eTyjrs9YtxVpnoGDYt7tkKap7w2F\nDTD//0l0Al/IkK/bdrMx7eFlQDQawkdhB1g44Q9JWHLcsygRdidxL9vAsu7s3Q/t4A7d5xLVLgDA\n9/VDS54tpUE9AkMpyF0fDvjDc3RXihc7OSUTMxr9uu1gOgfnv4PGhOhMXQ2z1eaTbDaT/lU7KOt6\nxfW6WHm8b3YAmHeC3aGgtoScJpuukxKOOCBjA+qG5dMFZVbcv97jx//5AXd/z3h5esK2XLFezzh/\numD5uODp4ydI2eH+1Sv8+3/8B/78tx/x4ev32B8PmHezD3zIN6gDQ+gNWEQgcFlcg83WpvHGoAAI\nowr0YoqOEYngarOByNV5V/pLEXMaObGiz39eDeEpmtdW9IQ61CfTN09YQ1w2aEamFLjR6XI1RgtR\nyKMtJuTY7Td+kht4u9fs04WYpGflI/cOeXJ6lN7H2xE917U53+/Id2TMrVBIXMnSc062Dw0l1wqs\nqzVGy3xf0EsyLJtZJAM5fu4SwC6bNFjs0c0IjO0h+vPr/dmNSvE15bcB/yyN39mGSIpnOAAUz5qD\nq5uCpgxLBCqj6R45qz9Xq6Ng5aY163LRV0e6irg/y1E5EwCj3Qzt+x6s4u0zSOuoRybm0BkxRf4B\nQ/5GgN39jNffv8bvPyk+/n7GT3//P9jtCh7e3uH1h9c47maU3QzkjO264fx0wfXlX2hmJwDCNwAI\njsyQGashZVhUZpLlZsMBXV+p4+e5e1TAk239YJgEyzWyNQ19pgNE9zYBUQRCA0XnMyob4Jvef1/i\nqe6cZBu+z/mMoGcX4wXjl0OjuGfbKtZtxbqahhtqQyAuL2dcLpcw5GUq5ghbw+l+D8BL/X1N5nmC\nrg3n8xUff/odKgvqdsX1fMbH337Hcr5AUXF5sRa396fXOL5+hYcP7/D+u6/x/b/9iHcf3uHu/oRS\nJi/Wchyu6I40Iqg2BlvWz0P6c+EpJvjEYJCC2iC9xG2glGaZ4YcC45G3X0OD7d9vPlBa6djtvTYO\nLjgJX/8WSJMnjxI87seuJ3bn2aim6Eia+2HbNpRcXP8scb3JjYvIMI6sb2hQb39jWGM9FGwnYQar\ng6E4I0rAQOqEhrc7V0ZO3HJ8NkSi/iTCAEEEVHSoo1jdKmrdrEVDmVxFVIbf48VWtWHdNrTUnBMf\nDObw3OP3yPCsBcO+Mdyfingfkh6NJ0koOaOh9cptRkyxQ6QjZ37VShK8NqAN+4hgz2pOgi0AnY7n\nPwIzeA4A8KlVXD97ThbV9eZ4dPaSM/anA+5bw3w4YF2qRyMZz7+e8bI+Ync3Y/fqCGg2qfN4W8Pr\ny6hWPv83N5HAB+w6MtXezY/v6393b2wbcjgQEXJa6IjWNxaAm+IiuUERHgYCIOdoz1CHze9Owjci\nEYeFqr1EnwnZEWl09MXqMLvmyn4zsINUvVdKbQ3bsmK5XrFuKwBLxJ6fL3h5ecF1uaKposwF87zD\nYbfD3d0B01SwLhs21+UWmXBdLrg8X/Drf/+M8+UJy3rBtm04//6EZV28jXDG3ek13r/7Gt/8+Xt8\n9cO3ePPNB8ynI/a7HeZ5QpIpkE7YGsEQApPttPeM5dF9kAhpJcTz4EEbK1b5in45wj4ZbtB1eA6+\nB5iMgg4Vr17dCrimOiVHmK431961UrVr0jE8PyUEBf/2favkv/3X8hlviurj5boTVwDch0Shre9F\n+rm+G0EqkPsH3IF8P282YO6wJ+lolajUokYW89w4VwaGdF6py3PHX2NrZknHZVnw8vKC3W4H1Z1r\nyzWeJUFMrZbIzjlFdBKA3J/f7dlG5/vBPeZFZaRQtBtycVoEOVmr3gBfvl6et7Lf1WK/2CPV7tP9\nflXhxb0pFDpE0s64oUzJo5UWgDP2C/R2/f2z42u+LgJBmSbcvXrA6aH52lYsLyuun65YXq4mEd0X\n5HmHNCUU/WOT/WVK9Fs3dr38vVcwwT1ek3r7c595e6Abk3ECC0Nae2/38rX1/iw2NDi5BFy68fBV\nZ3LCEIQVMFkXRXtfbZ3+MaTBIgEdNKWIB8udYx0GNzAz3WCThjo1pLiuC5brYk2t3EjU1UY/KYBU\nCuqmeP50wcvlGYfTEQ+vEu6OJ5Rpwv6wx8N9xvPFHECSDedPGy5Pj3j85Rd8/PgR1+sVEEFSwdN5\nxS8vL/jw3Tf44c/f49//13/gmx9/wN39Pco0QxTIxRpeWV91QzEc6hBrQKwhToM4DbCuRn3UbIaQ\nZfZs1qQpgcoWo6V4EK33hg1Q3iyOCupFY92DO/ev28ZAPExVwVar9fQglUC1kk+1ZySUXW1jstjs\niH6D1s2NgTtdj0CCgxdWhJr5VXCMXu3RJTx/4wY0sxBI+kE3hRIpM8blGveTmOSk4SV6BIJma0ME\nRMPLNTWnm/rZoEOrQKv2bKbi/V5o/Ogwfewc+6WXMuF4PHqxXnEpKSJZzPERpUwxELy1hlKKn2eE\nYSb9waIuqmAsSuIYuxzXzLPfmkWp1oXTnNSUZkAoRZRwMKyaprOruYX6izJoCKJAhwBCm0U5tQVZ\n4wbf9fdeXcr9ZMNK5GYAOh2k2RqYSi6Zwmyeip8La/c7TQWHhz3Q7qOzqgLIc8N8+Bcy5EBHpvzv\nMObkHACIZDcWf/wiF8j/ZmLQNhvf1Y1N6NcpFSMM8aPHJFhzNYsqD45/EkPQMAK3oW0lahPYmLY2\n9sZ2g+5GMBKEPHQwdLZuG67XBeeXBXU9Y7fLmOaEMmdD2WtF9epAUZsiPk08eM0HQ1SsSbCtG5bl\niloXKBpyERRRXF4ueLlcbFLPtMOrt2/x1V//gh/+57/hT3/+E7757hs8vHmDedrZPaqFxUm6Ttw2\nOpNIipaYiIQ7zhbyvHUzbhuaMU0F7Ptj6JDd6TCgGi44KycTkhRwIDILcjq91amNnKUbOncqqPCJ\nToOKgLtD4KP3bL4lC7I672B/kdMednAcah56/2dcDw3qtlEv3iVqRPwdyfdCqZHGSUmg2RQSrdLY\n0cj3SKcbwQTV2hU92o0ZB2IAPSK0ysoUa54D9QoYeTDK4EAGRo8pZZQC76XDHAIg0kJKGB4HPZJm\ntDXeiwircHnGhiiYzkqYs+pgTSDOv1svGRYGkh6xKMCTtCn1fu8gmCsxM5h/mqoNu6A+zOsORL2m\noDXvUGnUi0UyLQqSAJhyLOoEuGI9nmOfdzpW89cCeDK61Ya2KvKcjM4UCUv1R68vWNnZN3w/N+KO\nraNtJpjGn+XfvVjCF1WA5H2eU2JjJV/EAT3Dy377pvIH5GFyGzZPxFT8nTIaEH7dh1Iwq13ti4wS\n7E3oxgE8GPx4OzRsX7tt1SoyP11wuptwn2fklLDC9dcJmOaC/WGHSYHj3RGH4w6pmFrkuqxY64br\n9Yrr5YLrcoEuZ2hdbb6gAoKMebfHw9u3+PDtN/j2Lz/i+7/9Fa/evsZuv8M87wFXkDAJaOs4rs1g\nROMQ8vk2D0MlwlNKqFiSnwYjzvNuAq/uyNlnx2gVfq7EM4EG2cWdEAfSELj9ni0iJ9I4CGNgBzkh\ns8dvPNxuQFQ0pKdsXtZVVXY8O2XEfc19QsOqKChDu1vuwe6IgKGSczB4o2qLC23yPQx0v+3x2qqj\naPK5tua9Tz/AAdwsU2fnxFtKoztnntOUrbUyw0PJySOrrlyxe24Yz00kVUHglaLFQI7K7rGxna+J\noOvDZeifExGbfz8l75TYHU9fY+4L+wzLOdi+MACUhvcI0KyCkg7fkqmCIhkte/GfNIyOqWJDcodq\na6URHY2Oy8G8rbX3czJA76o533ttVWxLDcFCSZkI8A9fX8iQp+G8eFEBO6LZCblBWwAibDRUSGUv\nwxE7SOati3tnT3Sh9qoq6LDhukftNtsTXoHGNLylURwmj7ON2RU25LaM+3bDlZiYQ7xng0kIt9Uq\nMeHe2JoTsT809dgNy3VBrVesW8HhYHKkXDIOB2sLezztobphPh4w73eW4NwaluvFq0it3/ZyvuDp\nl1/w/NOvqNcVp90Rx9OE+/fv8Jf/9e/4/q8/4qtvv8LheMI0TwOy85A7nlMNA8YCHIDhrfUvsbOX\nohTf2rJ6P5AEUDqaPKanLr5P7VGAmnQNr9MLVDR5V8cgNcxgK+VgRFeASInqyZRMs88ojOvd2wbb\n/rOJ7v4e3wuKDAXbIKyodQtQUEr2Xt7FKm23LSZgdYRqLRySGEK0EYEp9kyPRHyXejWrONILxO/O\nh/QgUvEClA52FExo0uF05UTy6T8iwFZXNDUqi5WxppLJvl4OsLxBi6BhLgWqGTVv9nPk0yMqJo8N\nEy0ERVEHp2cRbS62L8Lxwq6xbRXrukVew2S1xSKTpli3JZxKLsknYcH7wo/VmHyGjCzc4NYWNR3W\nd8V+t4ktZIi8wsOBDmOaCjCl3vPEb6k1xPUBBqZYLJh9ShBkyDVYt/w4L4Gyhfu/AakhTxK90RvU\n8jGfB4b++iKGvOnmnl4g0bGZ8xcRhwSAbypH29Rmwpe5dZH8mGBEHGSinCFUduUJZKz8su81Zanx\nEDj797r8qKPx2JrCZkOsoruljehUWFhQq7U/DfST7KDXZka+1hWCimm26zek3mIDnV/OUK3QXNG2\nDefHR1wfn33yDkxrvl5QlysuL1c8fXpB2iru9ifsvpnw+k977F6/wqtvPuDDt1/jzds3ON3dRwOn\nURuO1Fxi1akB/uHkFXMwNExOH7QUVFmiQUtdRx3GCO7YY2/0Z2Wcbt+5t2HqsPkBhH48D4oPDCGv\npPgZdaOKJGDlpDmEHH2iG9EgQUdT0/sXMypGLaSb30fuN6qPIzIQiBQ3cv3+aawjSnDUPQ5pjr32\nWWtdVfjwEAX12DwLSbKVvjvCC0N508BJIJJRikBKSFk+O0vZxLK+FnQ6PJt2XCWMoTrKzVkGHlzN\n+HtdAR09r1+Gc7hVow0VnVsGbHAG+1WM9BOgMUDFSt6N/rOBKUx2qzctG2cZwH+WDlksVSEpksE5\nFbQs2GK4cgp6UTKiUZjC20rQ4QnlhwOog2J8kUa2s9Nu9mVL3bmZTSwdnKRRGXb7+jLJTmb9g3+W\nm43fH6K//EDxfeqeMo609BJ5ce+Xhx7mgfqi93FCjKtCp3ZY5EmejLIvC087lWI/Njwe34xtoFMq\n+6Rr9Sy/XbMls2wYcoIlG5s6QqwVdVlQ1xWqG6ZJfFCENa/SrWFbTY2Six3ubV2xPl+dT5swzQlJ\nNuD6jMvjCy5PF5yfNhyOOxyOJ7x6/xUOb97i9O4N7t69xfFwxG6erTOi+BzVlPyw9VCR9xWOM3Et\nbY3zZygwFV/diLbAmHKgHtJgOPr6BjId1CFj3mJMlg+PICK54DqpuW5t0JejO3I1JM4JQTQ+jVQR\n8bs/35yzUxRlAAxmUAg4csphiLlDhD/LIp+mvi4dhCTJcY1VttCq88RwReCHPwBG3K+jYSXqtqEN\nnR/w/yQ10XhuElgrwfMA8ffxzCUgsZHJMItPAAAgAElEQVSV/84spCudf1YrVgMG3js+0daGyU71\nHi/VnTlH3lVHsvD3C8zh1a2aeuPGyGkg7Or9hpJkoCQU6cCDz0ahdn2kJ1R9ipOtlQbl4fmDlMyG\npBrPkFGonQ67hup8triRZyM02x4JMaWLe2EwagR54xlLarmcXBLgnSxtnyCc/h+9viC1MuplyTXd\noq/mJcvJi3DM4I6Ilz+L8IYENvbdhJKTzcqMuhzf9H7Qu1qEVVy2WKkB1R+4qlpHOIZjMiIq8cw/\nOUeNhIoVr2xutHqfZ9tcmxn6Jl7g4oqW9YptXezaClDXBcvlGbpdcH28YL2skF3GvLNBDXVpuF6u\nWFc7RLtZMWGBvDzh8acnXJ83QDPa23vMrx7w9i8/4uHDe+xPJ5Q0YSpT0E02waf0eaTNEkgMtYP/\nbQ1VFZs3xCL1tK6rJWmyWrva3I0tKwg7f2k0g21MVup2ox/5heQIR40yMMdq3CErCsOIkw5JPWqK\n2ZzaE4I93E1uvDtNogqnhYYIQBskZRRGhvH5twg6oshmA8atXwgpCjbXyn5NTneQsssCuLySZ2Gs\nLmQkpw3oJesIdFpKgaoZjlw4T7YbCqMZuP9a/H6oGc+cxSs3xQxnUwgyymSKEThHa/t6A2jOPBKV\ncDDWkbJWDefFcy5itRHaNM5Wl1X6IQZzJ+zN0h1xFIb58CKJPi+mKjP6zYqiFAmZNgEDQmbkIYwg\nDH3TABO1k7IiFdVZAo1IUxVoG3A9r5jmgjT1ilXWWrQqVlvi9xefowSLLNbyEYdJIMoIvz/j5vTQ\nZ+A+Xl/EkNfqCynqI6CaB/Ic5zVs1CSWNa4ckotAyjZ1m6hmLCKQ8GQg7RGNmwB66ZEm0eFv8d+b\n/XNqZXFJL2+W/k5HBbcojLKoZVkBMane1ppragU5T3av7rVbq44sjGNd1w3barrv3/7+M0TP2F4u\nWK8LWhIcX93hcDpAteD55YLz5YK6Npz2BQdsSE+f8PRpRZr2eP3dV/jqbz/g3fff4tX799gdjih5\nckNok0rsXLEpUUO03UXf9BiaM0G7UR4TjSn3kXpaOxJNSiWBOLVQCaNh9BrlZhWUhTLZGvI7hY/c\nyoFi7Fo7IJCa4lnwsnprYAFgA7cdOgTCUW1YV/u8batYljWSo8mraOwzFSg5DiyRoWq9MbojAuvJ\nOwBIRiFsJnVs4TDE0Z8M1IqDHd/fjGVvIkPpFaPw30WjQA4+hRHiuRLnp+k4XXW1ebK/muOk9Nbu\nyVU/MGcUKFONe7fBExKGmWj9pobAz3clLaHU8ffoxGgo+7cmb00rcnPP6vvPUHjyM54jYrJjPdQj\nSE9O98/SWC8rJHPqwiOq6iMWUy6255IgJoE5UtRmzcumkmxWQmENQon9CSdSzGYAKhhaTyBsUE4J\naWKkq7hpqgYr0d+2hjUklLevL2TIrXqziYC9CABAUG9DZklOPXQvGsa3me5VJfkUanKqEhuXh2B8\ntWEhbpKu0NhsDeM13PApvQ0t7HCRYyUaZwhba8W2blg3S7IpBI0DkVVRptyvjT/fqrW5RDMU2BrW\nlysef/6E8/OvWM7P2NYVTTLun19wenWHPB1wXRZczhdcXhZcS8EhAfttg+wOOH34gA//9hd889cf\n8fDuLaZ5hyyld9sbuGNSP1BA2qAeCYTIzS+xHkSNPHChffbnNZaLswGZOYeOLlR6RMaIRYbPCAMk\nbB1MjXMd3u90kDRfPnfWoeigMUuorP4EQ/p2gwxbJMQUmVNohuZR/HMLjzrFwt7loxLFjF6z6sNK\nTlejj3atLfh230a+8p6MSwJrtdsrB2NSjki/kpvt3n83nSgNd8o9L6GOpmlcGdmmLIE8GYnx2Qay\nDZRpe0l186I4Bdv/5WgnjNtnDE9ou5Mr5KFJTyTAFNQEOxq2oN+bExCpOzMCLtKjlPtybSMqHKix\nptbWlyuu0h0Pc3QR9UO8O6K1U97tCiRna22cRpbB/goK2QEg8Uzi3ndKN56LcJ36c7Y9ulo9yR+8\nvogh37xKEQAExTeCZ7pBb2fSNNWEtrHfNKzHh3NHLMBhJr+qZ7PRNbXwsF/EQhb2k+6b7zZMVhoF\nAXBTPm+fye6EhiZsw1QvqW9xAhXbavI/9p9e1wryuwZk3Hw2hVYaQyBPgsn1sJr2uL874ffdjP/6\nz094fPyIWjfM+x3WVnG5XjHdH7GXjF2tWK5nPH1suJYJ797f40//46/47m9/xoc//4D98YRpmn29\nvdEQ+21wl/qhFTEEwIhDldPLvQhmBOZe/FEZwnvC0KYDJZQyctWklDyEppXVrswwOqJCmkQrYUNN\nLqNL7hRbC9UQ9wYlYikZXUV6w77f7y14RyEC3zzkhw+JLphT6i0QPMHZ6T7v9LeZMbYEXwYbUhl7\nYW1wGxDOTdU09UzYRe+SJtigyK1XlIpPUaKhtqX1Xh9eqLIuCxTmbNSNQOQ5YLK+Hh10RyQeBZMb\nt8IVhCHkf6chVwK1vj8YHJnZQKsPgAqSFEBrtFcmxd+FC82Tk9Xv0aQFlZFu6ZQrk+Hikc+2WQ/v\n6glS8TVPzHeJVVVvrQFCQGi+JKUcsmGjO43eSbmEkocRdEPDNDmlkvoeYYQndKKVXHbBNBWPXv8Z\n7Se3QaRgR4dg/kyxqRWbSeoFW5bj8QZ/mwOLpuhV6LevL2LIl2VF75SxhhcWekAfumC9jbqhppfL\nQ5tK0xfDhzPQSPocQdgCZedqBcAYttqYsI7+B5zpn6ORbYd29QyACLNbaz7Uwf5WbD1s9QxpgoQx\nr9Xnr8iK7bLg5bcn/PLT76ipYTpNmPc2aT6JoCbF/lXBVz88oG1f45d/ZDw9PUGToK1XPP12BZ4e\n8fbuDqfdDqd5xldfv8Xbr7/C13/6Gm++/oCHt29wvLtDmSbkNEEkx/VIZlhujmzsIWNOtMWBInrh\nczGDZqElExhEveIN8GutLi/3ggogHKE9PnLjvepPgWh0xnyGKIbuhs4rsm/FkDDl0xNxjXXOUBZ7\n8LpgjZMg7hgkA1NCkuqGXyFakZLROFDBulYvTOtFPmYb3XBbdszbLRvHvLxcrK1CEuyOB6RsUsis\nAk0Z0Ox0HmlCViL6JHkag9bQQurZo5i4d2hPwglg3Vz9GpMgC3ldhANhlNO7dBo9EoUzpAkbW2SY\nY8nBKnS+vVM5/awEn6/mXMoQreXcjZwdQ9NSC88LjIKLAr9BwcNcWWjN3YeEw/P7tGt0wytMdnJ/\nZrBtArgW/v5ITKpJRDOk/7x6fOp7LZfuHBznxXVI/0dEMD38BCzCGNAQHMjmFC2h7fIak0uQpChT\nQsoz/uj1ZRB5XW0juFxv1LdaOa5NW1Efd2QifkNCtSrgaJtIkuiYa8bmPr1PQi8eGqJdsFm8JRg0\nFl3doDBh2bzKIBJRbkz4Xo5dW2tFawtUXQaow0P1kNs48BXb2vDy2yf89r9/wn/95z+wpIbp1Q6H\nuz3u7/Y47CZsraGtZ0xzxeu7Aj3vMMuGNCecn684nxdsq2LKgtP9CbvDHd7/6Xu8//47vPvmKxzu\nTqYvzyVUEcmljl0x4YdImASmuoNUQ5eCBcfoBlwhUMmOnKhEYgir1o2uaSC/Ecl3rrLLr/j5RJYR\nLfn/iHRKg0k8YZVkhMjeCQk9OeVWohstt2bJ0U9MZRLfR/AiE6945P5CUCedIlCGyrx7GXhtz++M\n7Vh7eN8RPveGqk/w8Ta8gCmhRrYk9q90uW5w1zT0rMmAnR2BxNrRkJPSaNB4P3+UBnzszmn0UlxF\nOAOuTfNzYOuboBlBNfjSmCMj514VzROUvFeCKhr1XtYO0NhBBKg02dwdna7gPuLN9PXyZz+ol1jY\nNb64R5vTHSnsiwYtklLyqtDBuQqvO4HdJkXQqVj5PC/XD4MQsYtgfNrk7+06rWqZxXSfv76Qjrxa\nUcxSvdxV/CIzUmpISZFTRZksPE8xoUqhrWJTO8BZJpfq2UpGsjMMfIvQsrK82dETUVX0CE5uomPx\neLW+E8S05NvmyNuH55pRqVDntbWp9Q43+GmTz2GbPSdgbRXX5xc0XfHpHz/hl//83/j4f37Gx2XB\ndU7YnWa8fX3Em7s96lqRyga0C5ZPH5Hbgjd3E16/O+LpccLj04oVe7x+/xYfvvsGX/3wI15/+xVO\nr15hLjvMs00cgYjzdOYwlYoJT+KR5+xTcrh+6SZROEr64KG7qkJzj3SCRx+WL3IPRCGu2VVliG1R\nCJ2LeuiZUup92FXDcH2uQmHZdq0W8QjI13bknhLnMUpMYRnzMSklzN4DGnAnrLe0TDfiLRQVxmnS\nSXtoXDKOD/eoPos1hiSA4b16wyffb07DdEks5WziiTO4w6DzsGuapsmutQ0IWtwJ8ay1rUe5Xj2p\nRLwiEPWiINKDjkoBhaQKYfteiLdRtvcyiQ045eFrn1LCtJuwS9YzxJxGp3dE3NC7jCxnAYvgbpxg\nUD00hN0p2bqNtGinAYmSOd0ret0I4KEdogiQz7Wx1D8HndedQbcBjDxSUlr52BsCi/pKztHGWmEJ\n5H6fTv1mq2PoVMwQEdhdgHNgGX32yOBfiFp5fnpG3RrqaqWwkoEy2QSblBMkGRpozUY5QZLPtdtw\nvSxozZo4HU479HSQuGTIvSRLptWy6ezmNpoZ0i0AN1s/bFAmfgB4I6CqiykOvH8KS6Rb28wDp2Yl\n5t4fu9WGTe1htHVFU8Xycsb10ycslyertnz6iKfLJzw+veClVuwPO5TrHeblhEkKlm3Fdj0D16tV\nNArw868vABLmwwn702t8/be/4psf/4SHN2+xPx0xldmNXt9khkAt1G7UYg5I0uwKHZgNJ463qBnu\nIV4EYHwnEW804Ve4gQZiAji6ow3kXKn+6UlOCbqjh8BSBCmxmMRD7NTRevPnQeilgLdf4PPrySPe\ncKB5seETzHWoV6iyKRTD3TDkTcAZnYaIR6rNqyhDslaA5uXyttnApFeXugG5WD6hTQmi5JK55J0v\ntpxA9eipV6/aggja5lJFARLzFYwEG9CkQqQNBrUbBG2IPiEp5yFB3BPXHDtm7SOumOfJpZuuGslO\nhzpAyJ7847Pl806em+nRLbliiedkA4aJUFOcWa6LNqfqUor7gYMRAgdrfCVQzYF+W9PBofl7XZrI\nqMC+NebQehQkcf2kVYCu5DLgsG0t6MMeuTgwGJR1QaoM/1a1CBZJIzKFFBMeDE78j15fRrUSCUfX\nIjeX5HgoCmhsdt0SWjPkuK2rFbg8b8hThuSGkicv9wY0a6AE69tgi1MbN5dt7jGr3FrPVHPjejSE\n4MrHULr5pA5HYICi6WatZ6slY2wqjCf3YJnm9XK1z1muyNsVeH7C9vyIy/kZT+dHPL4847pWFD2h\nHgrqccI8A7qs2F4WL0E2Z3NV4PTqHg/v3uHuq2/wzZ9/xLtvvsJuf4jufdSxsjTegczNiw27dJAV\nkrMGgK7Y6VK/UKk4DwoAkmg0JdaLkVEPXd04+tozeaTotAUjAck5Lpa8JnvR8Gtd0tevfURk/Q/i\nMEb4za/BeVZy3cBwACX2gl2e9H1DgBc3dxsO+0V2hOkGiffdYi09J8SRcLatAnH3zyV9wOvqTkvg\nCeDceWsqj/wy/HHS8PDr/dn0RlLiNQQ03mbomNBu2pz77ueB18Vl6J/b+W0iWaJWtr3gJE7bMzIY\nRb9e8Bl0Ix5JcyByAbye5DJVITAheIDfB9cGY46Nv67vFz5f258jddbfNyDA2DvizmjsM3/bjgS+\nj28FA/ZxTtPxjULQYhFrlyL+sSn/Ioa8h1w2/WbbbIJ0O1+swnE3YSoFuWTzbouX2bYKLBtefjlD\npozD6wlpb9kOtoy0F0tgreze5gRWaEvQQeI0NtQyuSJDfh4UvdnkNArGSIiHpBWqG64vz7heLrhc\nF+x2xUrWM6CbYr2suL5cIALsRHGcAOiGvC1Y1jMeL894Wl4ACHbTCbspoUwJ097kl7oIXiogmiEy\nQ7DH6d33+Op//BXf/uUH3L++w36/Q/EkMUS8mIBGE35YPi//pvG2zZijUrtvPvsUQU9gtRuECKgp\nTKi2AHMdEiEyD6LEQbcPrz7guFaKiRGqAMB5yQiVu06ahry3Y+3IL8rjMTTyD2qCNEt3Op0qsq9N\n82RnVMQTsLY3p4n5g4Hi8GsZjXqLUNj+TRUJhjWsdYtCEKMuHL06ACD6oxHkuhEhgvei3TCmVOK5\n8J54fU3HKkYWrJjh1GYDmulUKM+NJKz3mNmu1VssJKPshq6kjFBFgKkUKBJq27ANKDr6sOSEnCe0\nai2RWaln7xvK1T13oopY87GWg+ebeuxO3/RIK3nUxBoSyh+bqz9IG8ae8VwG9wlVR31HDmtv7LkD\nxRZoO9oue1SUiwNEJdVLvp2OvY+PY+I0RAZhc9y7BBL559eXSXa+vKDBoog+UNiN45qxSbGKN3Rt\nbd0UioTDqyPelwmSBIfdDvNkE2syEyMs607kvDKaTjDNcfXy+C08bsrWm0EbsHmCz8JAXm03dtT/\n2sixiq2q9amuCx7/v3/g8R8/4/z4hLybMB132J92wOYJoJyxO00o0lC3K1re0KTa9JRaMZeM3X6H\n48Me+9OEKQukKu4OB9zv9/j0eIbmHXav3+D9n/+EV19/hVfv3uLu4d5Gr00FxasdVW0S0gglxO+B\nnCHDOSYn2QOkOv8vgiiGIZqxv21tjKpyuiBUIz1ZI4MemN/r3QN1+L10Nu4AcjdWIrgxSqFukm68\n+yEYiGG10ukuF6TxJjq3U03jwWhivB5AUIrJGE2/3uFTGDkWuYjELFJDnab37hDYWgqv6+pVvNam\nbzQcjSXzDJ/MmyAXRKLfDEWH1aODHg2SrQ1RuaDGWeI6iRsWc55j8yqrnGyOvhvqtuL8+IJf/+/v\nmPcZp1dH3L97bVSKSyR7Ob4ZbhuU0qOnJFYxXCYr2ol7ySn2hPiZBSkPpdMRR7U19gdljaQQWbHZ\n18Pvkx/HiC8JsmSnbNsQcXbkzBoAS1J64j0iXO7HimWpCKfehnxN7uDCnDeGYqg05C8knE/Uu4hF\nGVTlRLdQAdTnio4Aa3x9EUOek1ihD+CjsJovLDeouucaQg414zAfd5gPs3nbufQDnCTkYwrT3M4p\nmUdUoFZ3BpSueYIkcwMEZ+YeMKLTHj6a1tiQ6LZuoYuWuuHl0yM+/eMXvPz2G8qcsTtMaKc9chKU\necJ0mAHZYZOGdbliWS9Y2oq1mdqlNkUqCXev97h72GFXCvQqkGnCfr9HuXuNcv8apw8f8P6Hb3F6\nuMd+f7CpPd58vmQrN+fA1kAWIw3B+5MhAHUjFkUU6kUWA01C28JQOCIZ/ix8DTGE/v7moDhy6knR\nCG99cwfq7BFCa8MBBblxhslGncWcTVpp+244HPdgYEm0fY41WKJB5PV1RUPwD6BunXmTUalgdlB9\nbqfEj4oKJFMHLugRTK/gba0il4zsHC6jPjrDkdOPB2GbsxeSWVXKcM09HGdVrKoggxTOQJn49wTW\nRRDC5KrPWK1w3faGbVmxXRckKdh8wAkLs6hycmLqJiqOtY3orA9cbr62bJJGB08uXlVNHjsofmgk\nre84e43TyDrSduqlz9Q1g+1L15OpzfYpoynxfdIRe3d03aFIrFsgaRBFEyAMCHrcS+hRFb/mgiV3\nQDq8k+etA6RYm38lauV4vLOwFsDWGlYvTW8Yus35Prak4QaW4OZSMM89Y75V6++BZoZ82QwpT1MB\nRJEngc0x3LyYAJF5B2wRzWlYKJOS9TFRRRTqGJeq0YOiebGJIUtDa2utOHP01aVCXoD0WLA/HVBO\neyhmXK8FqyrObUOrKy7rilWBy1axbBv2dcXpoeD+1Q5ZZ7xcK9Y6YTfd4933H/Dqu29w9+4dyjxj\nKjOmqWAqVJVkJCk3hrdvgFtKhdQDk3gWosMUPMLsehqMhKNZEz3YS8dCD7n5vSLSqYNkjiWljMLO\nh+hFMWz1anIu++htq964auucarLWp1SM2HANIKx1cnlacict7qizwGSEQN2cGko9YWqI0g95utVH\nD2M9/d4sCmEy1J49IrqBH3JD6JYQa8qmSdTYV6yr7R9J8NEFffSXQE0KS8NG40hD4b/ZLpxr6HSC\nq08snBcwAdeROKMYBfuyAAjUmVxKWm/olYY0Ce5eHyFFUHaT52FK9CHvTkdCLoxBWiByY6LsnInG\n3HFCaTbI6pN1XPHjCUZSQ63mXpjn66XuWfu19EQjIxRGXilZD6Zercsz4vZgAD0WwdrgiqD4BDAA\n4hTeTWFaws05Y/RLsAiJrqHwKLc1BViB6vsyh7zaY1w1ifNW/4UqO/d3d/Hf1Y1o9SG5dthMTw5f\nhFLmaCNZt4qreic04YIIoA3Xy4LHTxc8fbpCSsLxfodXb4847XfIklCmEr2N4Qjb+hMPvBkU2ro8\nDaAutMvYWPzBHtySM+ZX99DjHr88vyDVBYeS8Pp4wKqCBYI5JUhWnM8bHp+umO6yVXtuK7Qa39k2\nwa8/X7CXO7y+22G+K3j48AHvvvsaD+/f4vBwj93xiJyLN/phlaZtmkbj6GsbjJpwrBi9vt1rrZS8\nCbQLP8JQ0AHQyHEjs3WogBbMw2KRqE6LHMXWon/EBngyz3twEAlHwQtRijmGSIw6wWl9WLpUUkIV\nY3iwIUErC1IUTaurYLrO3G5fvdzcroHrpC5dtF/nST70/AGUSdrO2ddaLRHts0KTSV2w4XYdmLSC\nIOi963VBzhOmQr6f8CxF4zKTJnYEvdWK1JpLdXtSV32PKtiQSwIxMjoirVTdGNDgsCeLRvtPn0oD\nRSmC3W7C/f0dkFyxkRhZrWhqSp3gzIVGjM6yd2M0uat9L0a0baya9AhBvGdKktChN4UrWYCUO53R\ntPcWb9p8j0s8F95Obx/gCNudIyPukVZTj97DOLthr21DSsU/v585EYtejQ3gAO8u47Xfo7HH+vwD\nA08ZEpFnh+fCgwgmfK3eoURDtM9fX8SQl90u/juNqgFlMkgj1HNTCmbrw3OSWxsQScz/rEBtG9aL\nYDlnTJKsq59koJjXlCwosEozJiaqN+biRLMkgKRsnN9mpoINsratBRe4AUj7GafXd3j9/jWef/uI\n67ri03WFTBn1vOC8CaRkrFvDulakllD2Ba/fHvHu6R7LtWI377BeBBV77F+/x5v7N3j11Vu8+vAW\nx7sHTPMcszPFG145BI6/MAZfHk/mlPr3tG/QSCwpkUk35pFUGhBcDFeWbsg6C3GbjIvwMvnPg4lh\nNgCNoCEMjDqdFl0So2uc3ZUMBSI6RAagE/PWwVQ2tNagSaxMOzh0Wx+lLNAu3p91zxVEJAZHs6QA\nWr8/UgOUJUI1enCYXe+0YOz3ZAcYqrherjZOb28RUDS5AowTHRwZmZWodFYNg0fEzj918+RboiIr\noQdYbXje9ve2WSUrMsBB2MLvi1GDJZUITboD97/TSAf16GakJPiMuWnUP7/FKMTOMZPGAsT19p1q\n0s9QswED0g7SnxV6lNST9xJRI+mQMfnev58RjX2bUb9WKJyM1mGZvnPv/H1c05tEuBvjymtN5rDG\n0JZ0DhgEMhnPfc+B8KlX/H7++iKGPOXedN5KjIl8FdM0oXm4ksSm5+D/tXdtS3LkNvaAZFZVX3Sz\ntLOyveOn/f9v2peN8MOGd8aaUVdlksQ+AAdkKeTYR01HEI5xKLqrKzOZJHBwO2B8iIuE0VE2lLwl\nC5+qQFtGbQe2AqTWUW8VPY/DWtQmBSVJgdD3XHG7HfadmehILIG4N2gDoB21HthvB47DY57SoXsH\nsuD9n97g6T9/xn//V8Gvv/yKAw16SmgK3L7s0JKQTwmXp4JUBI/nC07nD+hVcP16ACgo5zc4v/mI\nt3/9D/zlbz/j6c0DttOGrTwMt068KoUbBunusMwHhpn7+Xf8z7yKNn4WhwJAG2suYkmblBRJygip\nhPaY3UhDhyOJOcIE7Lq0A6TQLD60Ykpq9hkpwp+XaGUq25pi0snRFjk87nIBjtbUDYy917l2fBih\nXLIrpMFgaGWrxcEyE2Tj+3Ogs9EVquohE1ZZ+I2G9+Cezn7dUR+OQPnk0ugCm8+J5BNiFBwmHErs\nsDmobK0f1RtMNjK5VoxZD6Y89Bs9YMpUgXLfCauqNsUKCpQMeM18VILEuDfLIZCgaiSr6dExxNHB\npjQaMhHzmtqkyNlo1Nphyb4+hzMQzxj6I7yziQFzMtp8Fn7BfDa+Df/wdzlbbX/O1gugHqpLOUFa\nAqqi9+pd3y08tPvz1L1ypkSAhCBUnP6C58LCSXbtIhlZZLrvsWe+iVDdyQ+c2WmLy0PAEIDAR5/x\nRPi6s6vPlEe2Rp+pAgOi2Dbg+W3G5fGCfd8jjt0VkN6BlB3xmWXs2j3ZklFrx/XlwHFUoACnbbNy\nPlh3XSn2PU0V+37g628vuN4OdG3IZ0XqFa0DN1U8vH2Dtx/f4eOf3+LdB+Nr/vJrg7QKQQW04uWL\n4pdfv+Kf/7sD/YT3n97jw08f8f6ztdh/+vzveHh+RjmdbErItFkDgUzJTCaAYqO6N9NhG+U+NDRQ\nyNxco66srKzSR6ORxyPRExit5SNYMR8OAODEmtmwWAxY43P+PVBIk0DQNgB5asJxfBh8HDLi+jww\nrbY79rskVkpqITvnBWfTlmB0JWoyIiiBx+JzKHGWJHYoxMMsGq6zDKSZOeqNdA5c/hQDE8isyL3I\nCoQIEbSGnnwKvGRA5m7aEcPP2YYHt9bRJmVmc01H2zxzIPFS4eVyXeJVhVelsCpAyXFPFs4ELtgm\n1DoAAz0SJqJZtdRndHnnLfOaNr5N3CCmlHA6+TUA6zRNZuRj2IWDL3LSi1cQsWnMumQZvhrzP4m8\neW1SCFhfxVxRNcqJ+Y7EixgMJE3r6PuLA76N8lbucgrjLHnsvtuemDtMOSqQ66Ouv2y/axgwfp/l\nB73E9o+EyHnc6eJDPBPv7r7ISNHXbmoAAA6lSURBVCopi/+neFMnsJL770yexT6dBNsp4ziq8T4n\nxmFLNGgk9wB67ajacX3ZcbtWHLUhvTSgC1DMgnLOn5WITW3sHgaQZp7E6ekJGzrOD8/YzgVvPj0C\n6QUvX77iy8sLslYkVAAN+1VxvDRoy3j78T0+/PkTfvr5M97/22c8v3OiK09k0tKFi010S64YZbhg\nuPGMAYoqoBOX+7QP7pB71HzbZJnei39WJs73FPwX4Y7qvLXG9XnIhwcwDhX/NpxHP8nGeWO/GQpB\nzHVXHvLhG9v30xsZJVwE3ikJpBu6rdqmu7SF6DRIIuhiinisIxNpAmnTz8JV914EcE1tgDd0Mlz+\nTNkn0Ni6kIvaEqH7seO236A+pix5vFmIdqd3RNPM0j2Cn9kLAaa6+slj4ruwdz2PtHOPQTu0J8BL\n+SA+rk3H/qMhHRVCsPhjkm/eO70whidT7D2jamaIQAdQkLjAN8pf3AAzfIK4F9DAe222eStGqjcw\n+Pzs0z325oNNUjyPds/HmFXx6hcNvWRlhvweht58n/hNxd4O71Tvr991Cp1MhjWxmW06GUTkOgDC\nv5IfhsjhFssSMx7vZaIEuGNC42bSiJFrEGN1X/csai4kUVnasBWz2Gz04e5I3vqsjqL2w8Iq1Wva\nj1tHRoVWKwus1d3GZC5lThmXy9k6UltG2RSXhw1beYK8e8Z+q6i9Yk8VX/7nC375+2/4x9//gVw6\n8mZoJ18FTRMe377Fh5//ik9/+4yPf/kJl/MzSrlAA3E2DzGUmJ1p1Lq+VskglUAnNjvODRwZc86j\ntEKFEaay+OkUo/TStZnoiof+22x8KItw+3iaMVgO6X35Lc8JOtvLVrNMdMgPEqEDI4MfRj5JPKd9\n5ygSF8zKxMtccwJw+J5xFNtbJBK5Z+rUJt672rYL1ABHhDL2qwu9I9NFencAAfUElXi1FBAMfGLD\nhK/Xq4MMtSR25noRTceyxvoXD/fwjLBunArBkL/GGgXajDJDiS5NzrsEYJS48Z7dCwtXn4RiKZTW\nTCsMiDfQcck8Z6BUXB5q8VAR4EAo+UCIRMUtjlEc6WuHYJQnc09zLRIDy77m3UOETIzPn5XMfdt9\naESOzygNUoAmY+cMvOh/R8814vsqgINFrovEXrQ3NxLSQNIRmiL5Hom41I0GLV8gdGtPHwDqG/lx\nitxRXkmCDkG1nYecbDIPuJDQueQ3lE+OTLkn4JI6OPCX39g2SwuYAqmIW35+9uxx0OOwFvtcENUO\nW8noG5OwHa2ai/vwdMbpkuNF2KAIGPmR7MCxo9UbRB7w/PAOT5821OMrUmooWwaeL0jPb7B9eI+H\nd2/w+PyIJAlHbWhtR0rdulnFlF/J2zBuHoIQiDdZWJVN7zXoCppn9QXG4c7JO9GUIIwtf+8N6XRo\n5O5HbL4gARWVayAMIBJU48A5mobzl6QpHjtVAKgaDWvvalVGpYBdkjnnO0U9MP24roZ3oBFGIZJN\nktC1BTcL50WWUpw22BpcFEPJi5Ifm346r2nxeMbRR2zVkbpYtyR/b+EAutLWJXrBCU9Pj1ZWmbON\nmesW0tr30cxDNz5nr6PWYUA4WCIBfr0OtOR17R5ucG7tuwEu/jzW2Zigmv19DSVhgKFD/X1hMtQW\n57XPtkbNZ40/4iWWM4la683n5aojZlYt0bB22PwVDcppMzCz8U7hoVBJ81kY6nMtajTLYUz5uYlf\n3a1yTiOEV2sNvpnYuOJ7diIIY27KGuIKmLcYwIQL6GMfadSU1Tk0vC3CNiXnGPocydzOwRhGYZLp\nef+RFHm4R1RMtaO6pbaF857BNDYXX5iArh472Gh96f77wXXyZI7Iit9T8WC4igLL8KcsaM0OIhMz\nOWdvAhIctSLnE3rP2LbRJqyOhGiCJd+gKtj3ilIuKI9ATgXXr4J9v2E/OlI5Y9seIadHNE243jpq\n21GPA5JKDGaweKBG+VHKxmVccnaqgw2ska31MCKvQGEDCRgKtOGuOZSv79c+wiYaHYwDRd3F5QbM\nCJdy5gQf3zHQEzDCM8ld2Rglx3c6dsZwNyc3M5Jm/n6H7zYIn/indO1tHTRQlkzfZYcxe7J7IH77\n3gTZNvc0nNt8as+X6XtDkSvQ0af9yn6IHp2Zdu0GuGI/nc/D68gZSLirjSfiTdmqrnLJgdQt7NRj\nDbIOZMmwH2QKOwmgPqtT3QOKyptofrNrh5Ekq+MAw/Y9XQcdjwjEibN4b3YPKWhpgWFYVGF1/EKv\nykGBdrALz1D4KNPLpBQAy1M1DEvOg6s9wg8eQ5/DSbEO/j9EVY+DGbHYvYLDIIYB4P1zz3O1kqTZ\nrtrn2dDmm1HAElYunhsdJY/8xOUvlhu0x0tI0n0dnG73+6gLwI9S5H4goQA8U69NeVbiAM3Z53CP\nkiVtxJVDU+f7EDKSpaGgJSEltpWzIWNs1ZGEw1DmIj5hiKEGv14HkBRQc2mNutbuV13hiaPAnDLQ\nFXU/sD0mYDtDHi7QU8L+z9/w9fcrCjZoS8C1YT86cukQyXj5WiEpo2w+K1Cs6QhQnM4F5bQBXfD0\ndMGTd45aKWSzAQjRVs9pMYLeE0pWaM6wkA03/3DrqCR5QIxXeVbYQKBsqnbOvhROyDHvx8OK9hce\n0gqlNIVWTKHaNWPU2nT4+M4ZYiKqspuYkckwPoHOdMSKObnJ7D+VmzUo5VwcY4/DmnNGEePoMUAx\nhhG03gYSCcPjLnDvw1hFF2IPZa3qSS9foJILdh/ObcOkXflMSjh58xKrUwwp27OQ9NZcmQw2NIkY\ncNc+apmpsIEWidz0jdFXIJKFfjhjmg6AiCXbiMNRN88xe5Q4e26IVYGu1ZRS+EzDu+KeU1Woc8uo\nEqT5GfBErRFd+kZxgMMmGpaAkuOHSzM3f8X9paHYUxJkZHQ3XHP3ZRjt7kXpHOTsG4oNjH1ao+hy\nTV7JFAZCjJWRIZkEJMxc/W503PuTlI370Q0dz9z35IcocoDK1CzjVoCc2VmZfEKMIc9WybI3xQpt\nfhPA8IpML0pN7XAyvCXDGBcwc8cN1J0rmGVq6opFirf95gRkgTQgQZFR3LWCM9b5107x3SRA3jIu\nj2e8ff/WxjT1Bu0HjusL3v32gi9fXtA1AbkgZSM7qrWj3hr0pqj9wA173I+xQx5IGSinjO18wuHd\nj03hlRlWZZITnw9GboQNCQmHKDLUif0VjMHPRPt5SwMpN7aU92njs3ba86w6XG0fhGkKJhJxiFig\njDcern2gS52Iq1iiJnNFjSfO2OqNQWjlsGd6vYp2VLTeUTzk5JtmoOutwIx/Agd5i8B4eaaOVPGD\nOtfMm2HnszpSTyPBlzw00JqFV44aHH+Tp0ElXSFavXJlcHzbWWXIyVg/j+Mwzv5EPh1fTB28KPRC\n5mvxHxGegEBk4qHR4e3y43z21nqQmnE4i6RBo2DvfgziCKUuw4jZ9ZMZzmhmYapT4x51Cv2MUrvh\nZ42k4QCmsQ/Uzok2trCPkBTtvumCEf6IEtpQQ9xAwxMAgIMMn8wt5LHPgsNlWr95ni1k0AtY7sJM\ngBFrNSDuixVbnrtjklucakCNq6e1f530/DF15ADooZjHYVUkc5KoNSrxUfHAd8tDC/Aw2b8tJmxo\ni4ZeIGNT69g+cxbbnDqJqoksGfQWBQpNAtEEzysCkIgziwhSSVGehq7Y8oYtb8DJq168DG57eMTp\nqeLpT9XwDuksu01Vbz6b76gVu3NctN0naDeBagVE0WvD7fcbviiwXzsAaz0HhzaLIOcNt5Mi5d06\nHHNGKRtOJ0sCJw+5kAEOALbtZN1jzl8RScMOMKvM0kAiEhtE0CG9RRL5vr2fIYgAXkgeL6WTGgfX\nDwF5rVnJpG4kR5JUYlxdHH+hRzSMTY0hE+5F9GEQBpJ0lOgK7G6izV0Xqe3Ljh4xaChrtfm8k9ud\nLDcB7ltH8L2Z267ag01xdARaGaNVlVY07cHvA3jCOnePRU/IzL3Y0O3TL7pXWvTvaAAaLf7BbLSs\nXK+6Mfdzo/luFjlDPMlROs/m3PNBwzH3Hoz4NcLb4x5U99C4vwhKuI8gU8cvQ0wMIU6GgZVFsR7K\nHSc+BQnQ1BHT1FSDp8Xe67zGA6HDvYreuG/tWswJpNi7w4AYIOBNWE6Qa8G9QB0XRUIpIQZpKCt3\n2nffI/DDFLmMFz3tDPtZt4agBq8WcSTmB9Iedvx7lPh45j4OXbw23wiT9cRUWeD/dbFBsIY6HMUT\nzUDCrWL4JnGhE2wwAJqj44bMrtQE9CRW+VATtGRcToLn4q3HHaitI+kY0ACxKprr9Yb96xW3a8N+\na9iPglZ341u4Am2veGmK/ffuzom1TNdaIZJxvjwjb4ouFXu9opSC0+mE8+WCy6k4B4kG70Pvxk9z\nPl9wuVxsis7kescQX2EFjK1MUx0c7M66mPy9jLW2jWst0BKJ2oFQCYsA8n7PCJtJb6rdqFyJyiaA\nrZ4i4vTHsJ4AuvAwKgYBPKSSBvpp9iyzd2J7s4exHnYpdoyDkBT0EfM4OBGrVmGTEZ+FA6FbG97Q\n3NkMpYI1Ppbry24ljJ4PSmzMYomiKwrQJOnAsXwOcqrgm5+zMoMkU0IajGYGxDhv6NL7/8nkJbkn\nIVlcHY/k76CVpjIflU/jbGKANHFSM+6F8OGAAQaGpwSF00rodA0+3f26QOdac/geBATk1e8esp2U\nORKKh22oA4Z36BTJOq57N1s0D33FPgibsOhAAubJzQZvLhYgoBB2Nqvdh+YeYa5vRWZkumTJkiVL\nXp+k//8jS5YsWbLkjyxLkS9ZsmTJK5elyJcsWbLklctS5EuWLFnyymUp8iVLlix55bIU+ZIlS5a8\nclmKfMmSJUteuSxFvmTJkiWvXJYiX7JkyZJXLkuRL1myZMkrl6XIlyxZsuSVy1LkS5YsWfLKZSny\nJUuWLHnlshT5kiVLlrxyWYp8yZIlS165LEW+ZMmSJa9cliJfsmTJklcuS5EvWbJkySuXpciXLFmy\n5JXLUuRLlixZ8srl/wBoXs5YfiswVQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAGJCAYAAACXcbjTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmsbVt21vcbs1nN7k57+/devWptsDEQrESyheJAgpCw\nUKRIaSQUEZSI8EcUJUFAIgcMiiDISiBSGtJBGhI6QSISRYptRQEJiJFRbETjil3Na+6979577mn2\n2XuvZjYjf8x17rv1/KpeUeWqW8/enzR19l5rr7XmWnPNb475jTHHEVVljz322GOPjy/Mq67AHnvs\nscce3xz2RL7HHnvs8THHnsj32GOPPT7m2BP5HnvsscfHHHsi32OPPfb4mGNP5HvsscceH3PsiXyP\nVwIR+SERySKyFpHf8iH735z279/RbxFE5A+LyGb/nD/+2DfeHh8JEfkXReSnpk7/RET+HxH5PSLy\nxrTteir5A99/8CNO/VBVV6r649N1fqeI/Jlvwy193RCRHxWRP/RV9n3H1fejICJfFpE3AFT1DwHf\n84qrtMcvAfZEvsfXhIj8O8CfBP44cEdV7wD/OvCDwGNVXajqUlWX0yHfd/NdVf/GK6r2V0BE3Ddx\n+Ld9xdw3Wd+PwgfvR76F19rj24Q9ke/xVSEiB8AfBn6Pqv4VVd0CqOrPqOrvUNXwS3xJ5RcTze8Q\nkbdE5JmI/Hsv1a0WkT8pIg+n8idEpJr2/ZCIvCsiv09EHgP/rYiciMj/LiIXIvJcRP66iMj0+/si\n8pdF5KmIfFFE/o0PqdfXrO9LUtC/NtXn0TQI3tRXROQPiMgviMiZiPwFETn6wLG/S0TeAn5yur8/\nO/32QkT+tojcfqm+f3W6j58XkX/1pev8qIj8RRH57yfZ6u+JyG/4Btpij48TVHVf9uVDC/BbgQCY\nr/P3GfjUS9//N+D3fZXf/hDwztc415vT+f5LoAa+D+iB75r2/xHgbwKnU/kbwB956dwB+GOAB5rp\n838B2Kn84PRbA/wd4EcAB3wS+ALwW/4Rn9VNff8noAW+F3gK/OZp/7851ff+VKc/BfzPHzj2v5uO\nbYDfDfzV6bMAvx5YTr//68B/ClTAr52u809N+34U6Ka2E+CPAn/r66j319XG+/KdWV55BfblO7cA\nv4Min7y87W8CF8AO+I0f2PcVRP4R5/56ifz+S9t+Cvjnp8+/APzWl/b9FuBLL517AKqX9v9h4H8F\nPv2B6/wTwFsf2PbvAn/6H/FZ3dT3cy9t++PAfzN9/ofAb3pp3z1gnAaSm2PffGn/v0IZnH7NB67z\nOhCB+Uvb/ijwZ6bPPwr8+Ev7fjWw+zrqvSfyj3HZSyt7fC08B05fjmhQ1R9Q1aNp37dDX33vpc87\nYDF9vg+89dK+t6dtN3imquNL33+MQv4/LiJfEJHfP23/BHB/ki8uROSCQuS3v8H6vvNV6vQJ4H95\n6Rr/gELId77Ksf8j8H8Cf36Sav74pJ3fB851krleus6Dl74/eenzDmj2USm/vLFv3D2+Fv4WxbL9\nZ191RT4EjyjW5A3emLbd4Ct0bVXdqOrvVdVPA78d+LdF5DdRSPBLqnr0Ulmp6g9/g/V64wOfH06f\n36bMIF6+zkxVH39YnVU1quofUdXvAX4A+GHgX57Odywii5eOewN49xus7x6/DLAn8j2+KlT1kiJJ\n/Oci8s+JyFJEjIj8OmD+iqv354AfEZFTETkF/iDFiv1QiMhvE5HPTA7ONZCm8reB68kx2oqIFZHv\nFZHv/wbr9SPTeb4H+J3AX5i2/yngj96E/onILRH57V+jvj8kIr9GRCxwTdH8k6q+S5G3/tjkEP0+\n4HcBf/YbrO8evwzwrQxz2uOXAVT1x0TkIfD7gP8B2AJfnL7/rQ/+/OUvIvJ/AH9dVf/Db/TyX2Pf\nfwCsgL87ff+L07avduxnKQ7CWxSN/z9T1b821fOHgf+Icl818HMU5+c3gr9GkXAM8GOq+pPT9v+E\nIkX9uIjcpzgo/zzFoflh9b1LIf/XgM3025uB6l+a9j2a7uUPqur/9dJ5Pniu/T8d+GUOUd238R7f\nfojIb6RowD3wL6jqT7ziKn1TEJE3KQOBU9X8amvz9WFa6PRvUaJf5rong48t9kS+xx6/BPg4Evke\nv3yw18j32OOXDnuraI9Xgr1Fvscee+zxMcfeIt9jjz32+JhjT+R7fMdA9qltXzlkn9r2Y4l9Q+3x\nVSG/OC3ttYj83mnfoYj8aRF5PBHv50Xk94vI67JPbfsdVd+PguxT237ssY8j3+Oj8H2q+sUP2f4n\nKAmevltVr0Tku4DvVdV3eH8ZPSKSv8Y5XhlExKlq/AYPfyWpbb+J+n4U9qltP+bYW+R7fKP4fuDP\nqeoVgKp+XlX/8rfgOvvUtvvUtnt8FF511q59+c4tlKx4n/4q+/5r4O9RlqF/9iPOsU9tu09tuy/f\nwvLKK7Av37ll6sxXlGXgN+WfmfY1lCyBP01Jx/rzvJRW9gPn2Ke2fX/bPrXtvvySl720ssdH4dfr\nV2bs+wkAVe1V9Y+p6vcDJ5RcJ3/pRhr4FmOf2naf2naPl7BvyD2+aajqNUWmmPOVqWW/3dintv3K\n6+xT2/4KwZ7I9/gofGgEg4j8+yLy/SJSiUhD0XsvgM9/W2v3ldintt2ntv0ViT2R7/FR+Fn5yjjy\n/3janoE/AzyjWIS/Gfhtqrr7wPG/KLWtiPyBb6I+H5Xa9qcpqW3/7vT5o1Lb/gSFFP8mU2pbLUmv\nfhj4dZREWM+A/4qSNvcbwU1q25/kF6e2/asUaWdNSQv8j3+N+t4F/hLFb/EPgP+br0xt+yZlBvJX\n2Ke2/RWFfa6VPb5jIPvUtq8csk9t+7HEnsj32ONbhI8jke/x8cReWtljj28t9pbSHt9y7C3yPfbY\nY4+POfYW+R577LHHxxyvJGnW7/+R363jOLKcz/mn/8kf4NOf+l6Ojx+QNZE1kHNCM1RVhbWWlBKg\nIAqqKBlQjHWoOkSkBMmpBQyq8iJmbkqdQU6BGHZc797jncdf4N3Hb+FcRT90XG/WrHcbNt2WrJlb\nR7d49N4Z7z05w3rHYtbQVI4UEruYSTnRuMRnX3vAm/fvc3pyQpSBIfZs+47j2V2OV/c4PnyAdUu8\nX1BVM2IOhDgQ4oi1kHKi6zvefvIWn//S3+cLX/6HhDhgxOCNoxbD0WrJ6mCB9cLZ0zPS9SXfd1Rz\n77SlaSrWF8rPXQW+tB65XO/oYmbTj5xf7PDWYAVElTdev8e9u7c4PjqmrlqMcYSQ+fK7/x/D2FNX\nM8KQuFpvOL+4outHrBPqxgGOsR8hJe4/OMG6mhCVnALLVUPdeDabnraacbhYcuvggE9+4jO89uBT\nHB7dZ+i39P2WIY2cP3/KF37hi/z0T/0syShDHNluO5rWUM8rfFuz7ge6PjDsBs6eX5BzxDtHfzGQ\nO4URUhcgZXzrOP3cKbo09DmwOdvANiOdEvvEuEvEmHG1ZXE05/b9Ez7z2dcJYcf52RVvffEcWwum\nEvBw/bxnuB4hZlwlHN9e8olP3+G1N+/QDR1vvf0IVx/gZhY7TxgP26stF0+u2ZyPeO84OJpx/+4x\ntbeoZlThvScXXF5uOTpYsH58zfXVFntkGY0QMmhWUlDCkOm7kaYC7wUnhr6LxDEjSZCkiBiwDlUl\nkQgmQjBoVIiKSkIMGCOQShe3Xji6tcC48t6NgyEOEZMSS1dxOvfMjaW7TDx7cs35+YZuCIQUiZpI\nJJKmqY8mRAQRixWPGoNtPO2qoT5oMI1DrUFTJqFEMoJQO8esqljUNSIKJlMfLuiGyO5qIPdKDImc\nM6YyGBSSkoeEhoxGxaghxUSMiZgzIQWyRqwr7R2GQBp7jDhELNkKTBwgClYM3nmcq9hsN8Q4oJpA\nwIjFYIkksmbQjBWDqSpMVWNMja0dxgvWROraI0bYbnvGXSCHhHWQk050JeSUsMbQNDVhjISQCKG4\nSwyCNQZBKQ1mcVWD957K2cJnRlCBMIwYBYfw+bOf+UUhwa+EyD/x+gMuL69AM/3QE2NARBFVRAQj\nloQiWAQLKKoBzQlFgYyIQVXJOYIIIoW0yx0aXg5/VlWMWLxraJslVTVHTUXAsOl7LjfXIOCtm7Id\nWYx1uKrCOqGqLfO5w1tL3Sd2O0h95Hqz4+zyClNVuNoSMnR9ZCNrKjejbY6Yz5YYsYBgjMdIBo3l\npfEeEcvxwTG3jk65uDji4uKMunIcLBZUVlgt5yxXc5q6IvcbhiAsG+FgOWe+WNJY5ZIdAx3LyrEJ\ngYuNJYSRWdsiCrv1ltOjA9548IC7t+/RDyNnz57x+N23mVeWB3cecHR8l+cXG774pXd478k5i6bl\n6HjG4fGcYVDWF1u6TYfDo0kIY2K77VksZixnc3LIxKFjt1F0tcLaBmNnJDXErIQY6LsdKWfEWkxt\nOTqoMKZls61ZHS6IkrjYXLHrrth2gZSEbDJjTIRdLESVQXMmhQixyILr9ZqchJFMzooxgnjBZJCQ\n0ZwJKaF2ThLl/GpNjiP9EHGVZ4w9GgPGZuImkHvFGst8PuP05Ji7d+4gCJvrLefPLwlpTbX0LE9r\n6pmn63r6vgcr1DPHctVycLhkuxvY7EZO78xZji0g3L1zGzphux0mEnIg5R0v7zVYawiaEIW2tcSU\nSqcWhzKSYyKGhKghW1AraFJIYLIgCEYUZw3WV4SoJM1kdYhJZFGyU1Iqj3BHZECYe2G5dFxdGhQt\nhCqCNwbR8j2Xy4BqIVopS8RTiMRNR/RCJWCbiqSg1mJchbOWyllq72naCpFMIuGsoXaW3HiSM+gY\nySG+lC4ggxiyZlLOkMv7kHNGRMg5k1IiJUWToFiyMSiUwQJBU0JVEcA4X94/b8koUTOCYsUDQsyZ\npDodb4hM928NahTbCL6x5f1zgjiH05owKLGLjGPAWsGIgEKMkewctTGoMaiUgR0MKoJSeEyRwn0V\nuEqwxpKzIQkkzUQUW8jpQzn1lRB5XWfu3V1Re4/mQIwjqomUIkh5gN5ZRCyqk7WSE1njzeCKSAbJ\n5DyNtkYwJgETqQOqTC+foigpZy42W55eXvHuszMeP32CkURbCWGMpFhGT+c6dt3AEAKLpiGR6ANk\ntSQVxDp8A+1qRbNcka3HuAoTDSle03UbOrcmxpEbX1fWDCJY56lFyktWTAQa33J6cMJw/w1mvqKt\nK2ZNw7Nnj3n48BH5nci8rVnowN0aDluPuIouWXZXG67P1lycb7kIgTErISuL2QxnLSRo61npfVFp\nfctyfojJwm59ySff/Cy37zzANwt++mf/X0KKqAl88s1P8N2f+xz37t3n7Xff5vnTM3LM/Kpf9b08\nOTvn537+C1xdXrO92jFzFnJiuZhzcnjMvbv3OTq6Rd3MGcPI5dUFZ2cPOTt7TEI5vzrnervlu77r\ndW7fPmIMAbVwcX1Jn3tu2xOeX1zz7OwCV1uYiMJlqCqHax29q9hcj3RDJDxP6E7BZZwRclREwVcO\nGcBEwVWeqnIMYeALX3ybw9WcuqpZHLbgWmKMdFcD1mygitSN57t/1ef47He/yf03bvH46UP0yQU5\nWIZhRK3QDi3LZUtwIK7HAc3MM5vX+MrTX+x48vyKXi8Ju4AVz2xW0c5qfO0Z8kicyFGzkrOiolgn\n5Cy0Vc1rd2/RbTuuL3ecP+sQQyHiMUG2SGWx3pMkozmRQyp9KShxVOpZBqNYm3E1VPMGL55xPZBi\n6ROqyiZCa+CgElwtuMoio2JFAAsKQdNkNJV+mTGlk6HF+h4U20WMr7C1KcaYsfiqpvaek4MVD26d\ncOf0gPX1JU/OntHOFow2ILmjS9MsAiUNI0mLMa0GkoWUlBBGQk7kDNZYVAovxJAx1Kix4MrMHAxG\nCjnfDAzWO1ztsc6BAZXSP40p96iSijUtpgwUlBlTThkriaoWFgtPHg1hTITdiAJGDEYsMQW8s1Mb\nKjkKMUTSZoMgaBayGKyx0zFCShlMsfybeYWzBk0J6wSyojFRO4NEwaTvICKPKbBctKzmLSlFQhxJ\nOaDoiwdoRGCysEQAEQwGYw2oQLE7poYHRBHMdLyZGmPahZJSZAhbrq7O2FxfEsaOEAasySRbRmNj\nLCrCbugJGsHArh/IScjBI+2MGDI5JrwxhDGw2WwIIbKYtVijeDF48WjObHaX1PUK6yqcEYwxLywu\nQciayTkiWWlczcnymMp4VBMxlIEkpowxlhAtl1EZCHg/0OgVmR2bs47Hu4HOCGbZ4jFUxnPsK0Sh\ndjWr2SGtN7T1jLqaMVsegTr6zZbbp2+wWtwiZCWMxeJpW8982dI0Lc40LJo5s/s189mS1177FEOA\ntn6bVVNzvDrk9ultxJeO1VQNIWS22y3OX2Kc5eHDL/Ps6SOshW23Y3O1pkycPbsh8ezsKZt+RzcO\nhKgYLJW1VBYKdxiccXifOT5YcnhywPqq59E7F2weXZLWETOCqRT18kLOKIO6wTmHqKAxEntld91j\nENo2IcZQ+ZqcLcM2IEZpZpbZvOb+g9u89tprnJ4eM1+sqKslgudLb3+ZPgVCr2g0GBzWuiI9AGNI\nnF9e0w0j3nm8MbSLFquOftzRh56QI1EysTxyXsyujQGnkATrDM4ajlYzFnXNYr7k6dklm6sOY0C1\nvOvWWiyWlIWYMk3dYiZDoWodtjbYyiAmEUclAqgipvyNXWTbJ9pWWB7PyqBXO3xv3o+5UcdoEpOt\njqhQiHKa/aqgavCmxpsKoxZntBhYKJJzSTEpwjgOhBRxVcWtk9vkqFytr3n36RkOAWtJ3pFjQhMY\nZ/EI2QjeQIhFuvAINY6cajbdyBgNMWcw/qU6ZWQicUGoKk/lp5k3RaoVFKZ3RjWRKRKOTEQrmBfc\nYq3gvKDJEmNEx0zVVCSJk/VoyAqSKQQ9vYeaoUSgmtLGKKqZVCYNiCkWuas984XHe8PQJcIQkVHI\nKFLG5A/FKyHyMQSgxXkL0aC5WOMyEV1J5VOmclBeOKOmWLTGIpN0krU8gPIA84tBQJBJgnkfqoEY\nd4zdNY7I4ayhnxfd2hrBWjNZ/pl+HEiawQjDGCAJHku9qJEUSM4yq2tqV0GGNEayT9S1p5nNseJQ\nFa43FzTNCutrGmMx1mCsw4pHxJBTaUwBKuuYNwvqqmXbbbkYz0iqGO+pvIfsuAw7zmIim0A9blCF\nbh3YJUuqHH7RUNmaytXM6xrJcLg85lOvf5bN+pLa19TNgll7hDMNOgZWB7cxtqHfrRm6AQus5jNi\nSlxcXkJ2WAy3bt3l1u37zOa3mM+ecrBoMbePefDgNe7cf0AklPbKyhgym8011jjaxYyri2dsrq+4\n/+B1wpgwanDGsu0D2zjy5bcfcr6+BBEWiwXGGKwKi6bF6Mg4JjKJqjYcHM+5+/oJzWzH9cWOZxNJ\n1FRlcB0GbgS4QMLk0g1zUBxCJQZJSr8bSClTNRZxggbwYlgeLKhqS1V7jo8POT464eDghFt3HjCf\nr0AjQ9jw5PyCGDLjEMlJcdaV2V9Wuj7SddfklGm9ozUNTVNhjDD0G7qhI6QArpB4SkXCMGKLLGTA\nmELEwziwOFiwXDraZeZyu4PNiPUG5Ub/VeyNpqqO2aJl1lZU3pBMRjzghBBGhi4SkqIiiIJkJfeR\nLhrW0XGwhGQE6w3OWzQWghNrsNlitMxwjZ36oUoh9clyd+KwOKyWQVQAkzOikTQO9N0OZSBqoqpr\nKtcg3hKCYvMZNitGhGzNNFso7SLGgLMkb4lJ0QQuK0sDmhNGDNddRkMsEpSYMsOZ9GiZuKLyReYZ\nxoDmXIh84o+sStZikXMj04q8sLaNSpGRNEGCOCZSn7BO0ZwnopbSr3Muvj6lGKBiyTm94DPRm98o\nztmp/ct91sua1YHn+nLH0IEdigGnWb9qMOsrIfKUhCEoIQpHyxXOeWIM1PX8xdRKJ6eKTg6KYs0W\nq7lMgwRNuTTw1BConax0M3WqaUqVM+SIJ3A4q2jv3eXe6SHz6m0uN9cMcSCmTEyJIYyEGAg5kAW8\nr/ACy6bhzbunhDGBCgfLY1ZHhzRtAySWs5amchhJXFxes931DN2GTXeB8zUiDoxQVS2u8WXgIWMN\ntG3DGGq63uC9hzCSrKFdzBhDR0yJbtcV2UM8azw1jspA5XNx7iqEfqRtK1zOdJsttW+ofcPJ8S1W\n8xXOViwWx1T1grqeM2sanG/Z7Hbsukti2FF7j7WHPHr8hGdPn3F6cMD3fvev5eDgFoeHd8E0HKwO\neP3+fez9O9y6+zrN8pC3Hr9N3ba0VU0eEtYa0Ii3cLCaU3nDG69/jjvHOyr7Zd5994znV5cEk9mM\niSFBCoGxv6K2jqZtuHV0h43rWI9rNnmDm9UwsySbcU5ovGFRG9rjmtM7t6ibhp//hS8RQwbjECPk\nEEl9JMfM8eqYw1tLdrsvE1SJMcOodJtzlvWM7/7M6xwdHaIGLq+vmM1mNG3LanGMcZblbMPJyZJP\nf/o1XGN5+PSCzWaNGME7Q84GUUsaDX2IOCLOZsY1OCzVzCP2xn8j+KoikolaLFfnHcYYUhYUIaE8\nv7zi+HiJqQyb6wtCDogpFnaWTCQRQsD7CmMtvm2o24oHr93mwf1Tnpy9x9nVBde7HSKeFJRxCLiq\nQqJCUEyEFOG6izx6foUOiWwUay0xFunEeYuNgomKZC11FUtKGU0ZtAyYYzdgvaFqWkwufi+rghUI\n/Y7rNfj2hNligWJ4+613yZky9KaEy5kUE0aLTGbF4I2FG3J0hjFmYkhojAQimiMqGUhF7zYGNQ5I\nRIEy3SnyhzMWTcrY9+ScMCI4Yym0HckEROxUmAIriuNTs2EII/SR3GV2u8DYJcw4EGIkxlRksqgU\nG7pY4GIMRtyLYA1yxhiDvjh/4SxnPOOYyZrxc0ODw89rUrCsZc2gkZQ/nMlfCZE7ryyXc05Pb7Oa\nHdG2M6wxGGMnKV8nTd+gmomxTIELgU/TIIq+pUohb3nfUi+HywtCFxGcrTD1ipNbnyClkWEcUJ3z\n7Pw9rjeXWGcRZ+nDyFvvPSSMqURqRKhcxapZ8fq9T9I0C5yb0c4O2O7WhNRTV8JivqJtZhjrGeIj\n1G5QgaSRbrjG+5aqnmHEoBlS6kgpkVMmaaIPO677Cyrf0G8u6c6f046BWopccHjUctUJXQpUbcus\nnaFRee/5M/o+oGJp3QxfN6yWB9R1S+UqjlZHgGO5WJVBpK5fPGdTLRBx1D5ysFzw2c98Et/Cu++9\ng4uwaCuOj5ZUtaXrtzx99h4ihqHf4CtHysqzy+fEywvO1s8RlFnVcLI85mB+QDtbglQsV4fMFisO\njk7ZmS2z2SXtYkEXR667LWfPL8l5YDVruXN8yuWzS/p1T+xhtw3028Q4JKxLjIPS7SJPnl2w3nWY\n2uMXNXbhMI2lXnnSBnIUSDdTZEtImavzDWqhbjxpiIXIyTS+YjFfMV8cYmwNkpm3C2rf4G2Ft+We\n+92acRipfcNyseCgHxjzWGYQYpFUokbGMLDbDdw+XfLgzgHz1nC163h+fk7Xd0RNtLOKbRoRKzhb\n9NKMIpKovOCcK9N4hYt1h3cjKcKd2wfMm5Hzsy3ZGNKYCCGRcqB2gnc1GhLdtmO73XG4PMBai3dX\ndDERU2YMlAEuJFKcHIpOUQdXCZyAcYJxhtQrWRXvhFntEBLXfSLGgDJFmGCw3uJqx2zRUNUOYkJz\niW7BGZJmRs30mgjGUxmP5ESSLWNKpAh97IsvLGdiGEDLTNwgpDANGCJkmXxfMTLmTA7KblCSCOLK\nczTGo2qBkckEhpu+lyPjMACKM57a1lPgxBS9QiH2RH5hoZusZHWM14Y8FsMpxkzMuQyEKU4Wt5nI\nuUSlSO3wtadtavrrTBpikYZzGTqKzCKQM6IJSYaxj2w2gawUhjaKnYPphNh9B2nkR4cLjo8OOTo8\nprJzrHVlRNYb7waUVOmFqFPKGCvlAUkJ6blx3hYFRBA7jao3oUbT3/KgAFNjnaNqV6QUafoea1qa\nqubiqsE5g1hLF0aGYWToBoZth4rSuIq2nlM3Sw6P7tDMSlTG1W5N1/fUvoQY1vUBYmva2Q5xBjFC\n1+1IeSDnHqhRzeSUSHEoTlgtU8gxdfTjBTnVDLtzwu4Knwacz9jaMm9bcILuirWmeMYMZz30Q8I7\ncFocKb6uOT46paka5u0KxFA3S+p6Xhw8N4vAjAcM3jesVoc8eO01rocrHp29S9NWHKwWHB2uCHHg\n+eUzzHpdOl8eQTKjRvrNFd0Y6FLHbrspPgIVTg9uYa1js91R1TOqqqFpF/SbUKxl7+n6K9bXV2y2\nW+oKZm3Dvdu3yV3ker1j3I1064F+MxJCwvSJfhfZbgKXV9d0IaCNI1lh0IAitIcNCWHYBDTk4o9w\njkzi4mxNFwaqlUVjcdCJwOHJkjt3bnF65w7OCCIZMZmjwyNmbYsV6DYXdNeXaEw0vuZwdUDQzLOL\niyKtYJn5hixKGJU8DDgOWCwWHJ9YxqeBdDGy7Tpc5Zgta9bPR0xlcPVE5CFhVPHeMJucXjFmrrYd\nTixtU3FyOqdqOi42W4RJ1kglOsKKBaeEIXB1tcZWcPv0GO8qmqphTB0GsCghRoggakgGxCrZZUZJ\niC9U5oJDu5E4WYmVK1rQbhgK+WoqBpUVrAHriyRljSlWf12kUOctGQvOk52jCxl2PY6AqROaBvo+\nMsShkJeUsMqcKX0laJExbiQoV/p0jBGCkmMmpjIrslYhS4lOkUw2nigZMVocnCqklAgxgIKVInVm\nUjEIERyWLEKewi5FBdUpCmVn0d5iJllMRcgTcYtM7rubLxh865gdVBysGs7Hgb6MH0Wzn2YJN1p+\nTiMkQxozY58xFYjLYDN4QUss8Ydy6ish8s98+jO0zRKxji706CT2O1NhrCsjpyo5y4sitjgDbsKi\nlJc8zVDkhUkfZ/rdi2BEY6aBwRfNyyaq2rM0gthM3Tp22zVXmy1DH3hw+z79rqO/3iG1sGzniIMv\nPXmX875n1s4RSTw/ewgpMavLf+ISUxPjSO1ajGaidqgXvIPaKSlsGFWQqozaxjiMqUpUhUk40xGG\nNZgeOxfQ6YBsAAAgAElEQVQu1gHJSqtCbbRINEZ4enaFsyMqjiwG4yvECmNOXFxfY4ylcXPak5a6\nbqjruujApjiTyyzl/UFOxGN1TkyWmChWoqlBPV0fOD9/RNPOaGctY7ejrj11W+OscHS44thaLneX\nPA07dusNTx6/w8nqFCOWt999m9u3brNc3kKNY4yJ3eTwvNqdsxs2OGdo5zPq+QrbzLn/+gP66w3r\nyyu6qy0aRjQpMUb6vqfrHLay+JkjMLLbbcgmMosti+WsDP4aiYMioTjmnBf6bU/XD1RbUwb1yjOr\na+7dPuZz3/WAz3zyM6zmS5wzxDxy5+5rzOYrcsps1teEvudwPmM+a6jnLbZtePzknMvza7x47tw+\nol5ZwjiQxp6u2/L46TP88piDoxVvOos8fITBMA6gFzusg3YmtLUQeiGOZYbZLmucN6yvtmW6LY55\nPUeaFkKEqoQYVtZiXUW3G9EciXEkhYh2iXQVudquyyChyq4bCUOAUZGYqYynaiwjStKIGHAO6kao\ntfQZuzX048iu61hUDc44KuMm/xUwhfqpFsu935VIrZACh4s5zbKmWrQgLb7yuNpweXHJdQ40LnFw\n2jAEZYgdKZc+a52hqRuGPtPvIkMYSxhfyhgBgwdgDJk8BIyCr6tJay7vNwZyNJh6Th9LiGHdNFhj\niFOUkKqQVYmayMTJIVocuEq5n7JkUso9ZsXeyGcSwRbnZzIZQ4lBRyjHASqGauY5OKm4d6dl9/ya\n7ipTsu6UGYIxFiOQtcyWQvAYYNYYpEpklwlJCaHMgNW8/H9R3scrIfLD5QFZHSGUAPkYAikmKjej\nMsXho2LJuWhCMSXEQlJFJv3QiMEYVzzL2InEzfsWOUxRMO8PAKplBBVKkL2qUPklyzmEMBLjBdeb\nK4x3JJTZYs6sbSErm6Fj8/Y7zNsLVos5x4cNtY/MlnMWyxneV+Sc6fo1xBFrDN619P1ViXRJHYmM\nSCTGEubk3BxrZxhjsYZiVYtlOxj6BJdDwlkBI2wlsekj63XH1brD+0RVVTROEWdo6oqj1QHeeZbt\ngtX8kMrPUDX0/YBIR1LBWV8sG2PwxkzPRclqCEHJGZy12Moymy1YLo8x5hoRQ0qRMYbitA2ZfozY\nIeMrT1NVzJqWsOsZ+h3X23Osg2G4BE4wrjh7+6Gj221RTViBytqpLWCz3fHovfc4nM85PD3l1q27\nnJ3t2A4DVhzOe3xdHMWr1YoYYNePiLVYY7EYmKy2uq1YLmaM64ExDCXaKQQUsAgP7p2wOlgQwsgn\n3njAm2+8zunpAdZMoWFuTjtbUlUNcQwcrA7xToh55J333uPRo+d84d13ef58w+66x0vktfv3OD5e\n4p3S1jXr7Ybd2LMbEquZYb5wHB62XF8rfYhYL3hvWM1mPLh3QtcNXK93XF/v6IcSz77ZBpbzFYvZ\nktlsxnrTcXnVI+KpKvC1wS0d68s1ZKUyjj4FIKOSGFORClQhhhIFkcZUAg2MkHImaSEXY4W68hwe\nz2i9Y8sOf+EwW5litYuM0viaFMbie5q0/JwyQz9gjcfYsg7DegsWYi5yUQwjfT+QU2Y+m3E0XzB2\nGzQq81nLoinBA95ZDg8XPHt6yeP+nBRTCQ9OJfzYqyCm3BMi1K3nzv0ln/rkPSpf8eTxFefPN6wv\nd3RdmJyVJapKRCYjMU+eisITSctzKNFuJWLuRiLx3tPULSkpXixWhJiLf0GT4nLhErjhl0lasab0\nv045P+sYh0lJMCXUVF7EzpiyJiBb+qEEfjSVsjquWW8i62cdqYtITLivklLlFcWRt8RA8SprYEwB\nRAlpxGk9kW+xFjOZTCKpQr4JLyxhgnIzomFeeM5fRKwILyzy91G2l5jSTEoZwePcDCMe50p86XXf\nMeaErRxVW9HtOnbbHf0Q2TXXkFacHNxh3jYcLJeslgc478sLkgLkiLVgrS+anEZy7kk6lOmeq6dZ\nQ/ti4LHGUvmaZJSoPdtxpM+JhaupXIt1Naq7EtKEKX9zYrWomTcty9mCo8NjnK2Zzw45ObyNdRVW\nKm4WOmgYibHMZpwtxKqUGNkYQomVNZa2bsArdVPjqxo/dsSYGMeRYQx454snHkuKGaVsm89WEIXt\n5Zp+2DGMNbNZg6/KCjjVxHp9Rd/3nJ6ekC9G4nYkxDLV3W63eGDZ1LSzOav5Ic6XZ2Wc4GpHVi3R\nNWLJsSwGsd4BBpIQUtF+DYa6qokmFsVuClO1UpzLr71+m9M7R1ycr7l77z537txndXBICAMxZsaU\neX55heiaFEeMZGbzGWOoGcbHPHt2ydtvPaYPkTGURTZdPxDijKatODpZkEzgutuxue6obC4ymfdE\njQwxY53ijeDxNK5FGktOSogjm+3IbhcZ+siydVjjSDGyvtqyve6waqh9WWBTWU9TWXIsi2nyOOK9\noa09IdzMTQXjDfRlhmtciexQcqGsVKK+nHU0i5q2dYRdwDUWYwwhJtLkpGt8RciZrOXZ5qlPpZRQ\nEYx3YMFVNc57xFmyRsa+Z+y21PWMg+UBd+8e8+V3fx6jhsPlgoPFauoHjpPTYyr7Lrv1juuLforw\nKBZ5SglzM/oj+MqyPGz55Gdvc7hacHQ85913nvLwrUi/3r0gce/c+7P6KcqNyRmaXw5ZfaGPlPMb\nMVjrMEapKoPzhip5tteBtMs3UYcvAkomI75ILckwbJXzbc/Y50kWlfelYcrMWKybBqfMOAS665F5\nYwjXke4ykIeIUeVGKf4gXgmRo4a6qqi8BS26nLEQiWU5742vUzJiEmJL+JmmQuLGyLTgZ4oVRVAt\ny1d/EXdzEyNQnmzWUlAlp+K0Kda4cnx0h3Z5xN/70ucJOTPGwNXVJd1uxziMGFtR1YnloeHOvUOM\nWio/Zz47xZhikdf1ijA8I2lAg2CkQkxCKSkCyuCTEVuBlFCqGBUxNVV9yPU2sBkvWI8bfJU4OZzx\nxskp89USf/Gc0WSMrxm2A5Wz3D055d6t2xwdnNJUS5p2Rdsc0NRLxhAx1jFfLIhJGUOkG3c451Dv\nJ8tDyDEwjjusJOaN53CxKA5mgc3umvXVhpRLp91uO2ZNy2zWslo1DCnRjT2brmM1P+Jgfoun+hDF\nIsbziTc+QdWsyBn6bsvZ0yfEGPj1v+Ef4+/8zE9x1V0xxoEwZGyrVAcL6go0RzbrHd31wO6qJ0pm\nfggDHbEfSX2m60b6EMtMZgiYJEhOjGNkDJnUKeNmJIaMFYtSnIirg0Nuv3abuw9uUc8PODy+w2J5\nysHhMV3fc355wcP33uXxk2ds1mvQwOc+eY/j4xMwDaMWRVWMxRe1jpwS7zx+xOX1OYeHLXfvLaha\nS508l88v0dzQzCou18UaVzsikiBa+quRL3dP8S3YGhbLOefPnrN+1pEjXMmG8XoAiYxhhJBxCeqq\nwiQlpoHXX7+LauD5szNSH2jbisNFy+W6JxqD8R5TGzRbcg7gy2pFkzIEw7DriSOQF4QUGUVxC4dr\nLNYZQiySgQCVd/TRElNZbWkQ1BpsVeHbCltXqAVft8xnM6qZ5fnzK/rdBkLEL1uO7t7j3icf8OjZ\nQ0wInKyO+NSb91kt59R1RVXNqEQYtz0XT7fEcUTU4q0Uh+gUsaaaiUnpBuiGwJ2Z4Vd/3x1O7mTq\nqufs4QWhT1jrmLXtFE75gdBkKYusQDBa5JkbMhcgxIQZRqrKYytHM3NY2xDGDf0ulkU7L4xH82L9\nCjljopB76PuRNAJ5ijOX4kMTI1hfnrGxIB521yNf/PuXvDd3qFMCilGPMeDch2dDfjVRK7bG+6Zo\nVJuMsxV1PSsjEje5VBIpBVIcgICzDc7VJX9ClheSyc3iIc0liuWFFa5fOeq93ywgYnGupp0r280V\ncQgsFkc4X1GHgaP5I/rNJXncEcZQdGxr6cZAPWY2feTsqmPm54UUMYRUVnCFcUvXXwMjvsqMOaA5\nwi7R9cWp59yWuq2KNkZAjJCyoRtBbIWrGppmQVt57pzc5eTodrGawhWSLMeLOW5lWM5a7t27y9Hq\nmFm7wpiGys9wvsEYS1U5jPNY26BEbFTQktIgo4wxFO98GAnDQOUqlu0Bw+KEbrjGWUflKlLbFmut\n8pycwGLWMGsrjKlZ1i1ZhLOrM2Io8sh6syXmRNPOyeLZdQPpekC54umzZ5xfPqO6cGyGDWOOpDQt\n1nAV89mMpmnZbjY8e/iQbrdl1jb4WUWXeuK03qCqXbFsnGCcZQgj/W6gEsvYBUJI5LYqizYAbxxW\nEjnCdrvj+fkF2WUePzwnxsyTJ884Pj1hvdlyfnXB2flTtrstQ98Rw8h685yjw0PqZs7Tiyu23a6E\nq44DOSesEVIK+GrGYlHTDT1pCml99vSarg8085bnVwNJRnCZxWrJnaPbLNsZu27D9fWG9XkgZqHb\nZjQLFk8eFFdZDg4XdENPU3vunBxSVzXD0HO9XnP/zhHz2Yzw4AGP33pKHEeMV1Ky7MahDLa7nu02\nMAyZWV1NS/0zJgl1VeG9UM0drhYwmTEnfO1oZ3VxOuZc2lU9jTjUKL0kqD1SeVxdkYgYDFVdE4fM\n5qrD9oJVZdZacpVBOh4+/DKXV895+uwaZ6FtB2aLGavVHNHM1dVzQt/hRJB8Y9xN1ixKXTsOT1bs\ntjvEQtSxrKTOido5To9PuXXas1w8QoObIlEoDtpJVimSy004aAmzFLmx9G/I/kbGLast4xAJVjB1\nIeSMIraEG0oJpSNLKodmw7DdlgCDFMmJyRovMfrGlGga48B6g3X2hS8g6ZSTxYN4Q+1LzH/M30lE\n7iqcq1AEX9VY46jrGdZOGhZFq0opknLAmIgzBu8ciJs6/rTY4IbQjU6Ozxdrtt43zidtnKmRRAxi\nKypr6Icdxlrm82VZgTn03Dm6g+RyzfeePSWjJAwpKVmLk+X8co1ZNaQ59KFjHDv6/pq+ew90g5jM\nkBPbbktKiX4w9N2WthHqusP6QyyJmHtiSvRjZLsbEFs0PG89ta2ofUtdz8uKvWrOcjawmC1YtAsW\n8xWr1SFtu6DyLUYqjHHTojbFTsmBrHVTQFC8cduQc+mY1tgXL3bj5yxnh4TQ410ZEq1UyBzqqqGd\nzRFncAacCJia2reIsazanqu4K7ObHOmHjvXmmifPz+i3A7vtwNhnHj5+xKa/hKeRdb8maCht6MoK\nRVXDrg/sLnc8fvgYNHN4vGJ1suLtR+8yxowYi1WhaWuaWUV2hqvNjl3fk6gYdyNpDGVhmQjiDRrK\ne5BDZH215tGjZ6y7LU+enDH2I1frNcv/n7n3+JEsy9L8flc9acpVqNQlunrI7gEGA3BBgn88V1wN\nCJLD6Z7qyqrKygzl0sSTV3Jxn3lEVtdwQYLINiCQkR7ubu5m7517znc+cbvlYX9gfzrQ9Scy2zUS\nfaQbeurqNnP+Q+JwOOKcxU5zvua0IuQxkZQSj48nnI/MY+TpcaAfPGXjGGxA1h5TQaFryqqirEqG\n+cQ4Oo77KTcFczZsKoymLgw3lxf85tdf8fD0SN0UfPv1K0pTMU8Tx8OeV69es93uMEpz3f7E08Mj\np+EIQmP6ntR1PC1eICElrJdEl/BTRNiYaXeVRBa5U48pMbuAKgztqiLYwDRNuBgIZC8aU0iCipi2\nRhZ5wnPeEqNDJI2dLdYL0IGmESiTmS3Emfu7D7x7/5HoPEUhKUvDw/5AVWoqownOMk8T1jmq2jBb\nxzz7xTdJZB1BLbE++5cIFSBGtJBsVytWTcnhReDm5gfCfMTaM1HCZ9MvzoZV2WYgM+Jy7cj6lVxB\n0sLxl1IhYiS4wDymTC0UiarRlLUmWoubPM5+gm5FSrjZ5wYzpcx+WeAcIUXe2wgQWiL1UshdVrMS\nEzbEPNUbUMXiFxPC366p/79V6/+Hh9ZFVnFKyW53CUmipEbrjKWy4G0x5eJ8Po0FMkMoSgHqMwk+\nz0yV80d+hrAIeMZr5KfPIRqMqakbT1Ntlq9WfP3qN1xsr1ivf+L+cGI8PTJNM4WCttSUKjEenhCb\nS4QMHE53nPqe4+me7vgTN9eXFKag7zqOp4EYcmH2dsQHQ1NbqioSomNyE/M8MPQ9fX/ExYmhPxDd\nyDhNdPWGcX3JenXByxeJ9Sa7HrbFNUZtMnbpNFFKTKmW7XdW3ilZoLREKUkM+TWJWUpICokUPLIo\n0UphqgaSJImETzNVpXBzhiXMyrBpt6xWF8zB5z1AiAhZMPQW62aUlpRaU1X5xvfe8rS/5+7xwPHx\nyPGppz8Gjv0eUQZCM3GaTiQRqEqBiHlMfjgMPB0nfD9jZ0ezabl5fc3N6yvuj3f0dsJ6j508F5st\nFxc7rE/MFrow42JknhzezuhKUbYVSijC5Ije4pxlfHT89ENBdajoh47tas1se+zTxPu7ew7dCecC\nZVlQlhWmqHk8HvEPB7TMTYG1jnmccbPPl5NLCB847TtS8Nw/PjGMHmshBoHsPeo4oSqNjAnrBV7N\nvP94yy2Svus4HUamMQt+SInCSOoy8eJly9///Tf8z//T/8gf//w9Pjhurq9ZNbsslkmB1WpH27QY\npdiWO3768S+8+/ATZVmxaloqU/N4OzLLhCwidp5JThCnhDtYkvYkZXAh4EOJTILZQmUKzFoTLVhr\ncc4zElFGo7SiaBTFZkMSEtf32ejMe+ZxxMeMHQfh8dFRt4ayaZAu4qaJaXYIqQgRbu8c/+l/+8+M\nf/crfv3NV6w3W1z8QDf1XL/aICQcn7qspF2ogfvjnnkOlJWhLPNkXpctX3/xNS4WTJ3g62++oD8E\n9k/Ts/HWM2tLSETKplQpZZ8bRO7awzOpcGkKlUQrhY+ZnpyImBI2Fw03r7acHo483XU8PqZsFkZc\n1sB54UmSkNfCeS8Vs2hOKY1Ui8thyjsAZIaxUhSZguki82xR5APhb9bU/89V+f/Fw3mLEQItNZVp\ncN4RokeERWW1qPLKoiYZA3jUAqvkdlMuI5BYnMP+9i8nPqvmCZaR6fN/FxRFngS0KhcKY+5qR+9x\nXpIW4r6SUBlFXUjWdcmmvaBeOuWxu2eae2a/Z/YTh+5EiNllz7mI0Zp107BerWiqDSFqQgKtBLUq\nAEvC0g/7zNEOjkYbqlKzXa3ZrS5p2iusD8xupiyu0GaHoCAxZMqgBSECQiW0znzTlPIOgES2zwwe\nnyI6hYXGlcA7Ju9x80zdbpi94zSMNFXLZv2KuloRolvgl4lxGhAiH6ZCzVRtwUqtKYuGx322Fagq\nibUzXTdwe7vn8fGeh7s9wUrmMCNE4mkfUEZwc3XB1WbDx4+PdL1j353w1pNGjxgD2hhu7x449ieG\nfszcX6kA6PsZ657ytOUCm6omRaiMQQBlVbDZrVBCcD99hBligGFK3L4/UI2WelPwdBjwSVC2itWm\nRhWCjx/v6LqZrutRyjBPM6SE0RJtDFJKmrpAi8Ua1RSE6On7wKkb6YZIiMt2RoosvS4N28s1Xjhc\ntKQYOJ06oiNbnIaE0BqjNZu2RqbE4XCi6y1vP97zn/7P/51h6Gmbkl1oWa2+Yr26Qsozq8LR9weC\nkmyvLmk2LUjJx/s7fv/99xQ/vCP2DmtdxseXJsmHzLAQQTCfLPcuZetUGyhUgS7lc0PgbMLOM8Wm\nRO/W6G2LHyy2G5mGCV3ozDCLEZlitmQ2hquLDVEmhtGBDQilqFYaHwTJBaYxcvvuiWS/5+O7e7TW\n3D48cJon6rpCFwmRPHGe8UIgUMhCQXbSQMrEzasLXr65QcqW01PH/rFjHt0iesqTuw8OHxb4QgQg\n4Bfp/FkmH1P8VFPS+f3LWHkI5D3LukEp2FzU/PbvX/L2j5q5Txy7kSQMSWokLN5MMZvWJYGI5KId\nIkktz4nIwqeUDyNZ6GyONlhEWHD3cGbk/RsSBOVtt8kGUkKTVB5HfQzL6BAQqNy5i5KY3AIZSNLn\nx+RCnTvTDM/jkFhGpJ/VbfHXL0CGWpTO3HWRMoNDL45qIQasnTFaZm/gqDCFQohsk7pabyiqhpjg\n1O2xtmeae6wLHLoTs3Psj11mwpgaqfOI5mOgmwY43lO7kbIo81ZdSZQUOOfRQlJUJauyYbe6Yt1e\nos2GlB6ZbUSKQDAeYxRSGaQsAYP3AqMSUiq00kAWT7nIsgC0i4+zQ5HQJGbvCd4TiRQ0uRsJCaVK\n6mbLdn1FTIGxPzLEJyoEzlp8CJhCUjcNbX1BVWwXC1BLSNnreRwt3lmGoc/7AVNTGkWUgWkYubq5\n4PrikhcXlzw+ddhDzzhNeBsQU0RPYEjYo+fplFkzgvSsdJ4mSz/PFIXGSMWqzQyXoqgoiyorGgtF\n9JZ2XSGcx1pPmATTfmIOEV1oDoce5z2rWPB6+xKpMhrrnMvqzzQvcB4ErygitG3NbrNhHAakyK/3\nsTsxTJ55Dswu915SJbSU6EJSNwW7TYuNM/0YGcYJOwbcFHEuIWTu+rTSlEVJWmh3h2PPj+8+MgWL\nUZLryy2rdc2q7XA+L82r0uL9xNA/ZVteLShUy2q3ZRaR5v4d1Voj93naNVIt4GSm++nKUNUahcAP\nHucjUSZiHVGlpmkrhqPBzy7DMLVBNgahJWGyhHFeln5nUV4iheyLrjEYaZiCZxw9MiSKSmOUJrhc\nVJML+Mnh7QNPTye0MUxuxgdHSJHZ2VxgQyKIBCEL4MrS0LYlTdNwcbWjXa+Y5sDbtx/48Ye3PN4f\nsq3GQjl20RNihieyHmXh0Iu0sN9YFJ3puWbEmPDBE3z2ZpFowpmuWZa8evWC052lKDvqOqKUIqqE\nEhBcxM/5d8PJhZghsttlyCpWtYhrs3p/wdylWD6YC3muZ5LFiOpfPX6RQn6GqxfmJYUpkdrQDwPW\nWUxMaF3mJaM0Wc56Vnwu3NW0YL3ymUJ0fqS/brx//sQ/+6uA7Mn2fBgQAz4OjPMT1u1Z14Z5LOjw\niFIyRcvgLbIqUFWBd4nhNDBPPbOdmJ2gn3pcdCSRKOsi33TritPhSAgdUh/4uP+RuqzZrnZcX7ym\nLmouNi94ePpASom6atm1V+zWL6jLHS4a5jmx3w/c+4G67tltr3n14oZCt5AU3tt84xhDUdR5zI3Z\n6N5ah50tzjnGqUfgKZRg6I4Yo9jsdiA8SkvqOi+eQ4g4H1DSUFWrvLU3DXcfP/J4f0tZtVTFmrbd\nUJkN1o+ENHLqIvNk6U4d8zgSvMMYxeXVCqWzlez98XGZNi7QosY5GKaJfhwxQiOjwDvQpcYHzxws\nUi6rrsXawAVPkJG61BSFotSG0hRsN5esVluEVDw83HMaT2wvt0Qb6XuHTI5oHXPv6PYDYfbE4NEm\nET1kD/wM9wUyKyKGhWLnPc55tpsdb159Qdcdn319Dt2RGBaFoMqTp3MeqQuKsqBdF9S1poiCGBz7\nxz1uTlibGEdPUWX1sZCasctTkp0d4/xEN030k6MqFHb2FGXD0+M/k2JithPb9Zaq0hQFNG3JNHim\nLvDalIx4Up1odobiwSC7gBI6o4wiIWvN+rJidVVRNoppdAyDZfR5Ua8Kw+Zmw3Q84WdLLDVFo4HI\n9PhEOA2IkKjrimkxlDJKklwOiCFJ+oeOMQUm5yiUQoZEnD191+WivCiCnQ2k5Clag3Uwjo6HuwPM\nQJSgTTaPEomkIuuLkhc3O66vXtI0O0KUPHaP/Nd//mf+r//8L/z04x1+NqBMLuTBZ0/8xSE1Ekgi\nZIuPhamycOQyHCIE3jqm7AWC0hofA/d3PVUl2W43VOYSKe5RUrPdbJjkRFAOIQNKVLjRc3rICQvB\nZz3MmTUXrEMpk4X9MYvegg8ItwgfU1avJ7l06/+qIc2PXwZasS7ztpUHkVDSoFSJKRIpZVqWOs99\nAoTSnLtvFqph3jB/Op0+UYo+/ffn9fxsbfv5C/HZSlRkz/AYIsElCl1ys7tk2xq265a7p3ue+gOr\nekNbrjkdD4zDjLOB7nCgKkpW1ZayiDx2Hm89EU1/cuAG0pyYbWIOHhv3BOepjGEcLli3W4yp2G5e\nYYzBB4eWBVebL2jbayKG28ePHE57xnlkGHqeTo88nW6Z5294ffMtqzZ7qnifO0KZYhZlSI02Ohei\n8zQjQ5YDJ4tLE30/sx+eiFFTFYZVUxGiZn88sD901LWhKgtMUSClpZ9PDOOB7W6FkgaBzh4e88Q8\nTkSvuLt74uHhgcvLHY+Pe4SUXFysefniJQjJu9sPrFYNKQT2pyOTtYQIJI1IuSi324rrL27o7cD7\nh4+s6hZnA8NpIsnMw04agkw4kW+Cx8cj+8eeurknackwDARrWZWZNujJN2+MjjQ7hn1Ep4ZUaqJN\ndIcJnyLj6AkBQgBnszFZlptLovc83j0x91OGBROEmOi6npSy2ZSQaVHOGqTUKFWgZEm0imny9IfI\nPEisdcSQUErgo6MfPVM3IkMONGjXDbPPjIy7u3tKnZNmYrJI9KJQDGxXG64uL7i+vsh0wdnSn078\ny+9PHMY9tw8PZLmGJkUBUWWLggSmKilXLevdmouLhkIpvA08Ho5oCbXQrCgZLjf4lBhUglIgZKDw\nPjMyEEgNyeUAkJgkSWZb3Xl2BFkSC4HQuVuPIQPotTY4lgPDFJnKmALOTUAWjQkrMnxWADFjQeWq\n4IvvrrhYF7S1IYSZH396T3c4YvuODx+e6E8WZyPe+SW1R2C9Iy7vEfFss7Ww3VKuAdmMWKDOjpQp\nP69UgqoxFJXBDhZrIx/eHvhf/5f/g+1G8I//4YqkIn/44ZEPdzOztawu6sznHyach+RzcIVSarlO\nshI1CI9IAh88LmTYTaCQQmfuuEwkmT4xYv7q8Qu5H1piUMSgQBWL1ZVEqwISSJHyRpdcjqVQS6HO\nsMbZ1fAs8Dk/nsvyz2r1GWaJnxX+zwn/+f+XYZC0qNyqouHy4iWFecFmfUXbrklv/8jF+pK2XmFn\nyzRZvPNYN1GWFbooKbQiECjdioRiGsdMw4qOOQR6OzDMpxyAUFXUhWGeO7RqAMPlxUti8KQgKMsN\nCEp6KD0AACAASURBVE0/9bx9/yO3Dx/o+iNzmJjmiVO/R4TEqtmxajcolR3UlFDLRZDHdGNKCpMP\nqZgCUtdMs+d4PNENe6ybSUJxPPRs2hatrun3B8bRkkLk5YsLVqs1xhTM3nI4PpJEoK4bClORksR7\nx2wnpnlktoH+1NMdelamZrNa0TY1L19c89UXbxZnuYQXjslZurGnLCVXFxuEF1SiIE0JPwbKusLr\nSD2VrNqWqZ+ZThNKSLyISCkwWudIQJ+YvMsYpE/Ms8NbByEHJGQBGEgRUaR8+IwzvixxY2DsLIfj\nQBQR53I3JIWkMCoX3BgXZ0IYxom+G7JiMoJf2BT5svWkxcuaRevgZk9/HAlTYpwsp37COSDJnBpF\nIqSUlcwuECdHaTTlao1AEpNjngasDdl+IA5okcUzdVWwbVeIlAM43OwI3hH9xN3jgbvjI/f7Jw7H\nkdl6oshhFhmTBVNqkDJ70gcotMqCoqLKBVZIalPQbio6NzLOEyl4hIsoH3IBF0t3u9yTkuz7E1Km\nzEkXkTr7rigZKYzEKMUcBT5lcRGyyPdhzLBWTJHgItGdhYG5jicFqlQ0m5pmqygMRD/x40/vuNMG\nLRzdocOOHjdHYpTEGPAhOxQujPHsi7L4qJzpETHl/YBYcHgldMaok0ApRbMqKdsyG3bZQHcc+OP3\nb/nv//GGm8uGJCfUj5Fgs1tiURkkWX3qB/9zKrQ4a2ByQI4EUnTE4AjBo2QWKQiV/Vwkn37Ov378\nQoKgmRQhJomURd7kxoBEoXSDlCyYd+6+pRQLfU7kv7N4CYu48M7P2Dg8S6ryS5QBmPRJBCAW3ujZ\naF6caTGwRM3l56nLNWVZsV63XF7OrNob7DyzXq0oyoL98QFSvnCjSswiohVUdcGb9VcICkKQ3N/f\n0nUH7DwyTD3H4Ug3HrjZ7ah0QWkK7NwzhJFxjlxdfoVRCjdlxkM3HOmnjh/+8j2P+zt8mqnXFdZb\nvB1QKfDm1ZfE9IKqqKjKJkNVMvNUldIooTDaEIzH+omqqJnnI49PHzjub5Fa07QXTNMJmRxlofjT\nD+/oTkdKI2mqv4c445zjw92PFLrmxfVXbLaXSxZpwoeR2U3MdqLve/xs8YPn/u09u8s1u6sdFxcX\nXF9ek2KgO7Yc545+7pl8x9X1ii/VFRvVsCpaPr7f80//8heO/UhSgc26YV23YHNAAeRlUiTRFjWF\nVjgVCNuGdltTNgXh8ZD3KjZhnSWFLHHWZEUlUeB9IjjJNIE7TKT2hCxyAZLkIIKmqHh42jPMljn4\nzM9/lnqLxQUvsV5VRAIuOFTMHZ5MEeEj/VNH93RCKo2LOdxBG5Gtj1NkGOe8q1EKIWGaHdY5xsmS\nCpEFPAsl9zR5xo8D27bl6mLNZr3iV998y7ptcHYiWocIMdNrpxMPDw+8/fjAcW8Zp5moIlHkRaRQ\nEq0Vk5uZnizd0GOkQgu5YMaBZAxKS4paUzSCNEykoyBGlb3Ga0kUCRtmkpSLH0tJFBGrEkHDlBJl\nStRKURaJ9UpTlYaPPw1ZZ8ES6LAUKusC3jr8mLFp63w+iJNClIBMzMHidUFZRaS1/PiuQ0XNqxdr\nop8QweMnUGVWsFprnz29MyydC6lI8tl9MoiEWBwzkRohiud+0RQF1aqiXpVMp4mgswNjN06cZsu+\nV4zDiYePI8MhUq4qpFJoA0VrOO09IcUMo6REiuRYuExjyTUpBSSeJHMkZEr58EJlj37535B2/iKF\n3OgKKcySspEQIqEUaKXz9lyIZXNM7qg/a7w/FeTFiP0MuPPJrOZfnVnPJ2z+n0/4+Cfy/3m3oZSm\nadYYY4jJo5Uias16dcE3X32bl5Vjx+OpZ5rGvEB0Dr0oHjerlpeXX9PUNUYari8lm80O70fu7t8h\ndU5tKQpFXddcbC+oCsVkPUJaxrknaUOMkdn37A8jH+7v+PH2R8Z5ACk42BnvPEpCW3tMIWjbgrKo\nKVSdF6xKLa9TVpBprTFRU8bM9123a7775rcM19fs90/cPz6RokOrhlKXFDJxsWm5ub7iyzdfU5Ql\n+8Oe8S8Tsi7QWhPchIPc2doJIwUKyY9//oHD/kBZVnz95ReUrSGKyN3DAxcXl1xdXvG7puW//OGf\neDqdKGWTbYaVZhJ5eXYYhrwzUZGi0RgjebjfU+qKb7/5jqePR7p5JJaJ169v2G3WgODHDx+ZwkQM\nnnVTQ1XnQGIXOQwZz1bC5AgzkygqwRffXVFvah5P+8U8KcNRZVkgkUzWPRuTEjMXPbvy+UzrlJqq\nLNFaZ29xFoEH5I5bfuYDJCRakXURpaKQmbUhoyfFhJCJQmsCOtutTtnVUGlNUxaM3UQKEW0UTV1x\nfXXFd99+w7fffsdusyb6LLAKznM6Hvj9Tz8yTy5zxm2mjaol3DuRltCOEYJABpV97XHPJntaCmSI\n9HrEaE1lSpL1TMOwpCOB3BSYQmdmy1IcHZnXTUzIlAg2IISmbjWvX27wMdKdJlYXCjNlgyytNbgM\nU5EEcQ6EccbP7rkWOO+oGoMUif4wYmRAXzS8vNoR+gGJ4PK6xN1XaDOBmDDGIIn46Eg6WyTEEPLy\nkDPcujR1nIWG5LrAUkx9pO9n0kfPeq7ZbvNr6OZE3ZacDiN2GnOY+95ie0dwEfdiRV2U3FytGO9m\nnEjZYkQlTCkp6ypDUT6QQqQqSyppCCky9I4YJcicFKVEFlb9rccvs+xELtiPQYhlLiOfNlIonj1T\nFlD3c0nts/Xj4rVyTgX66887Qy9nBsvnX/9XP8wzAway74GUVY7uih5ImCRo6jVXly94ODww7i3H\nIRfx4LP6VFoPMdCU2ewrLSncVV2jg2SaMyZeGoNNhrR0IEKkbHErPEo7+uERyoayqNCl5nh35McP\nP/LUHUkxZCvOkKmLVWmomxIpAzHlrECjzWJcJJ5/QSFyApI2ChOz2VBdtVS14ViUdN1IdzoiSdnM\naHvFy5sTxmhevHjN1dVrEjBODqXzQRCC43Q6oHVPDGFhxDjcOPNwe4+bLavVmvVuS1SBce6Z5pEU\noSwbVuuSsvgBJQxGaOqiIQHTOCOkyiG/ISBjtk9IQXA8jqxqQbmqFow1F4lxGim0xhiTvV2CIBEo\nN9XiIZOtZ8PJ0z8MKGVQAaSGcl2yvmyo1iV90BSlRmi1iEAk0WerBuuzL370ibgUqehzMZBaIsLS\n8WW+WOYRi78ahJ/XNwlEXDBuCD7l7xvzVFfoHAyeoiS4RJIRnQRayUxfSylDIlqhdabLHbuOtmnZ\nrbcMw4SNFjA4G3E2EH1EhLNCUpJ8Fqv4yeN8TpA3RizhCHnDJpREKpN588FjlKYyBQrFNHuCzQ2C\n9NkLBykwi2o4hnwwERPSp5xcIRKxUpRiS1HmBiCm7P0SQmZhxXSm6yWi9bhxyqIrKUFl+9hmbVit\ny8zlcIJS1bx58YZa7CF5Li9rPop9VkYudUIJ0FLjpUIuwc9CLIHMIvvJx/NaTpylJ3n/cPYqTzYx\ndtlUrRIV0T+fVXifYV+PyoVXZwZZpQ2agn4Ycjg2OdlMG4kpBNqA99nfJZEdXaVWKBKTXLAGKTFF\n1h/g/g1h5CkGpFSYogJV5R8jLV0L4vnvn26CJXPv2SjrXMg/s67l0yLzTEU81/WFFJUxqfTzYv78\nOZ99/9xFSYTUxOiztWdR09Qrbh/v6YaBfppQWqGKgpQ8wmc+cV0VpOSYbUeMikrV+DDR93uCn0kh\n0+iQnmHq6IYDKo2oQqBM4tgPCHFF3dSs6h02/Jm7/S3Op2yUmSRGl6xWmt2m4vrygoSnH/asm4tF\n5SoXEWvi3GtIJdFIdMgua9l2oOZwyPLxrjux2dRsNxtevnxNYRRGl2x219TNFcM0gCxYrbfIJLDz\nxP7pfsGBAzEmQoj0x46xG9HaUDUNaMloe0Y7ZR9pqQEDy4JbKYOSglXd4KznNBzZ7dZUZY1Smqoq\niCJ3Q9PksPOR/jQwPo45FcbBn7oDRmvauubm1UvWTUtZa1bNisPxiPOWly9vGB4n9rcdc5/FO0or\nVps1stCgBU1bUa1rUJpxskzDhJ0czuWF3TzZDIjHgIiLulim3Dk7zzAEiionAWWnvjN4p5b5mOwp\nFPyy+wEXwdvsApoW5kwhBNPi95EC+DkQfCRID34RjcT89ePY85ef/sL+8Uj33a/57/7udxwPJ/rT\nwOPTnmnO0nCRElpAIqezu3Fm7h1uDqhSUlQKsxACUoyZ/VRKiqJAmwIvE6XSlLqgNiUDIdu6ioW6\nG7PIRUtJitmawCNy8bIRFSPJe/roGZ527F633Lwouf2Ylc8AxmTZewoR4RPRWdw4MI8TSWlMXdCs\nKy5vWrbXa2JMtFXJbrXhzasvuWxbvO/RRWSaLV0/ZbO2GElLHupiqYJSi3kYAmTurn08KzCX+0Ys\nqUSLPEgmiQgKPygexkVcJ7I//9X1it1NjcXRdxlFaGuRc4m94N2fT9g+QhQEApXRaCMgOkhqGday\njwwhH4qIpaHQOZwiWYe3/4YKeVllBoRWBVFohDCLN7d6Jr2fLQ9izKKWXFjVZ9330nUvCMnnbJQz\nnv45z/zTI332/dNnnftfURPPzBjy5lrJkkKvKUyNkobkfXZg1Dk+6vrFDYUueHw6ElOB0QPeR3Sn\nECJCtAiRGTlLNgjjbHk4PFKaa1IIjG6gMhVCeJyfeDq947B/wo0Z78y2r5K2kry5ueDF9SVNs8Ha\nmbv7D6yqK+S6oBTq/Jt84vSmBMisnl1YJkPf88cf/8T7+/eoUlM1NUJp+mni8XAihI6nzrPZWR4e\nbnn37o94f+TNyy959fpLdDIcDo+MQ0dTNxTGsGpXXF/foExBs25BJOZ5Zp4slSooigqpC8Ypcep7\nvLds1muuL65QSLZFQ3CRviy5vr4hllnibFTJNO2xk10MlLK9qCk0LnmklHgveP/uDqkihRG0bUtR\nGqq6pO96hIF6UzHsZ4TNLw9SoFRJVVaIKNhcbbDBczyccLPDLyk61rl8HUZIS2JuDnZIpOSJacmX\nVQLlE1qovBx12ZBMLiHQxuiFChwZuyHrGKTElDqH6wrB5OdMgUuRebQInTnLUeVkGikFIeS4NRcC\nH+7uuRcHvHWEeWIaJ/ZPR+4eHjmcDhRVyeX1NYXp6buZsbM460g2W6MmAYWsKLXC+5xhWxhN0xTY\neeZgJygrymaFKTR1U6OKidk6fAqZ3SEXjYWNWfUbI8KYrKScPd47Ah4XJfcfjnSTIxTQ9f2ichT4\nMFKVhrIwROkZHvPvSZIknxfVq23N+rJmtSuxU2SaZ96+u6XQv+fXX16xqhsOxyfs6Akx0wVDis/C\noexyGMgs7bz4lCyZmZ8KC4hFlroUhHOD56xFKsHuRYmRG0yh2ewUv/2HG1Y7zV9+/EBRRXoF05T4\n4fsPeBeYpg4fArkMK7zP1ghaqQzzxHxwuNnlnaEg212n/JNar7KuwP9bKuRFjdYVShWQPhXxTzCJ\nWDbHmQaUCxJAXIr7p2KdUlpyPrO39nMB/lwF9bwq/lS44edQDJw79Z/7LuS4OIGUBVo11OWGdbNh\n26wILKwJo7m+vEEKRT+MPB0PzwwSoySCAMFi/YyPlhAcCkHwgWG2DDYxz5Zj1/HqxjDbiRSf6IYA\naWbdGqwTkCKFzgnvV5cveHH9hhglp27PPI84PxOCX8bB81IkfdqSLweIkCoXJASn4Uhve9ASU1bY\nELh9emDf5dzRcHtLWZV03ROnwwNtrdBas2p3KFEyW7dc3NkvvKorttsdSUBZlTRNjVCXTFVLtJ6i\nqAHNOPWkEGnrhtdvXnN98WpJeyp4enzExYhzmT+exBlvDc8ahBAiwgWkkZiiIKaUFXwye2fHxXK1\nrkpKU+JmR91UbC/XHD6c0CYn23/55Wu++uo19argdNxTbmsOpx4/WfxoiT5jmkrkQOAsZ1gSY4QA\nuczWy/Iq+AxlpJB78egFySWiiLnbSnkfJAT4mBOiTGmoViUECXFJiRSRKPP1L6RAKZHTb8geIdoo\nlMlJNqN1KCLDnBfObVPibMHTEaSRFLpAI5hmi/GZXhtwOUUMQYwesfBTQwzLog+0zh71IURmAi7F\n3ExUJdWqysOJze+LigqpFCl4UiBDMmThS/I5X9MnT0KwfzxSp4BqC4L3SCkotGazKdmtWyQKG/Y5\nDIXcmbJMQNoYhJT4EOmHDG16H/nTD+94sa1Q0fDw4chwmgkuIqReYM7lno8xTxwCYvTkUzXbxz4f\nxpyJEHmnIcUi7kIRQraSvbguWTdrjDQkPITIeJrYvxvAwnpV0BSa+/uB7jSTUrYCWDSkz7tBYtYm\npEWc5ENYjIUznJie0YXEErH6Nx+/0LJzhVQ1QpRLcnjmU+ZxZlkKJRYYJX3qKmPKF8OSBnQu1DHm\n9yPmFFcSoM/0xc8+98w/Z+GJxvgpeOKTMjQ+d/Pnj5MSURikrGnrHTe7FwwvDhy7AykF1m3DbntB\njJKqOXF3/46UAhebHVJoop0ZTnswubNLwWdescj6ymGWHPaep8eR6+0l4zgxxAkfNE0tefVyxfGY\nPUakUhRNxWpzQ7t+Q3/oUXLM+KlIQCCl8OwQmX/j87b4ExMoW7CanPamIjECquA0Tdzt32Lnnv1+\nz9PTHh9GCiVZVSUxrhboqaAqN6zXLj9f8gglMYVhtV4x26y43O12vKm/wM2OD+/fUxYNkKGZuqxY\nr17z2+/+nqbecewH7vsBK/ec5on7h0dmkbMhVcrRX4XKB//RdZmiJj27dkfwOcR4vQibwNNUmu1m\nS9u2nE5HNps1WMlb/ZGy0lxdb/mHf/gd3/7mNcrA27c/MkTPYd+RbCTZHPOltKAqTIY0UiKGfLin\nlLLBeRTIQI6Pi4l58gQRMVLnVPlzJxgiHgdJoKTIgQ+ZPE/TlhBVpogimK1FxSxvl1JkMoDMikOl\nFVVdglZZKKI1Rhmqpma72/D1F1/QnTpkpel/8PTzjI/kJJtCUtUlQc8ElSdelxzRZ3+aqM/KxmwV\nZ4wmKUArPPlnNZVhc7UGqTjenRDOZ5qr1Mwh97iyKJEhs2dETM/MMe8j3alDN5p6Uy0aEsWqrfny\nzSXXlxuCT9zdd9lxUOqFrZYVlaQcUOxPM3d3PXWjiQbuHg7cPTxhO8O7Hx457Se8jYsP/mfT+ZJ2\nH1N6Ns+Si9ArRg/psyZQZO1AWIp7DncHbQq2FzUvrloIind/PvD2T4/M08Sf/8uR1a7m+lXD668a\nJucYRocyNbOPGXIjEHzOH046EpzNmZ8p5owAQc4jPh8oC5QcBfj/Rk39RQq51CUImV3Glhbrk30k\neZRK+QX/5HmwQCHx3IEvYankN0ssm27II9S5IOc3Rf3s+c9L1PzUS1r2MnLlf1uCoEUu9onMazdF\ny8Xui+dp4nC8JYSJVdOgiyrbt9oZmQTOR47diboowTvmyRNdpKg0X77csF1v0MbgIwzzzGwHEImy\nWLOqNwihSWhS0tg5IDc1T/s9/TAgOfDw8J7alFRmzbrdoLUghBnnJ7Qql4s/vxYpw4AIITAqu066\n6HHBo1AkD/0wchomrB24u3ti6A5oGakrRV0bVs2K3eaS3WbLZndBTIn7+/f03YFxPOL8RF2XSCm5\nvNyQCNRNw/XlK9r1FQLJZntN26wgwbop+btf/xZlNG17CcA8D/T7R6QPGKkRWiNiRAYoQl4SxRns\nlA399VZSX5fcvGlpdEOlGzavrnl4eOJ0OHJzteXlzQ11VfJQaLSu0KGmMjWqFay3Let2w+s332Eq\nyakfeff9HzjcH9hVK8rNjml23B06tFRgABGJXhLytJ6d90jopCmVYpwmhnFC6Cx31zJf337Jd6zr\nElNmjrm3S1Kkj8zdzOWuZbtpadqa29t7jt1AVJp+nJawDIXSIIwgakHvOmQQ2JBTkD4+PvLHnz4i\nVcPptOftx49MbqYoDK0p6ceeoZuySlYLLAkXIQmd7xEpiYJc2IJjnAWFKTNOnlUpCA1FXfHioqWq\nC8anEzIKks2sEGfzoS5jZsfIJLFaQ5iJKQcUhznie0dsErISvLxZ883XN7z5coM2JQ/3I3EMYBMy\nZuW2LjSr1YpdvaVSkigiZVGiZVz+QD8P2Elwd98zDYLoswlfZFF/p2VyT5nhFkRezhoEUp1FQZ88\nTfKdH5aasdhdCXBu5uGuoypWGCk47ffYx5FptgyzY1NUVFtJdRVpbwp2ClYryV/+64R9sJDiuZUk\nJEWIbmm2RKaDlgplBG50nF1r7TwTXUSmv13KfyGJfnk+45Yu8vznM/w7fsKwQwjLSXm2rWX5eE4W\nks+UQvVsa3v+bvL5RD4/0jOEAvKzYp8+PfeyKD0TXnLBzxdyJfMEoZRk3a5wbqSsKrIb457des+m\nXWPtRDd1RDeRoqcwGhcDq2rDF69es11v0aZk9oG3dx+oKoOSK7bra3bbS0iKrp8o9MyqCVRV5tZO\nbsbaicPxgbZquNpq2qamrku0zris8y7/jIh8XZKIIUNGWRjh6McTD4ePTPMpm2JFT0iJ2VlO3ZGx\n79iuK9p2RUyOlFgcAVu0LrHW8vRwCyTKsqaoS6qqyk6KugYRqaqG3e4FVb3Jcv95pirbHAWmS1yY\nccExuplpHOi7AzJGbDfg+inj4AuXe12WrLYbgoPj00ByD8g6d7LrTcOXL77i5uIVosmiEg188803\nfPn6C7TSuDlSNi3YkqI0SJOvrfdv3/Pr3/0KIWqG0wgucrXdcvXlFU1TsT8e0X/6C8dTx+BmbPIE\nS+7IRRZq5HVmohQabx0yZkM4rSVKgXMRXUhUIbMlqcoMlNJohCxIQuCD5Xq349uvv+Dy8pIPF+/4\n8HDHw6kDCWPviHMezJG5k7beYoxCF4vgaOp4f/8RRMK7mX7uscEhF1FOUoLVpmVtGqZ3HZGAjx6Z\nKdOYAlBpceDLHHsIpOjAaJzwKCEoK8HuZk1Tao7v94ReED0El7HnlBJ+thQqZ+o+T9oL1BJcYB5m\nxtPIqiq4uFzx5VdXvHhR83Q/crw7Mj5MpDEHn5ebghevLrl6uWO1axl8j42WL16vmaesb/Ah8LDv\nCYPn7bs94yiIUZIW/31EgBiIy2I+W3JI1PInN3ACJXUmRSybLCEy/JQEhGWi9zZw+/FAjHn5ezwM\njHZidh7roBsc+8NM+RSYZr/UnCxIzLa5GcZKMRBSfM4/zY6wYpnAJLqtcw5okozjDClm/cPfePxC\nhXyRFgPiuaSnHD2Vcqp0PJP2Y8S7HDiaKXTmuYPOW+O0wCc+d59nAHKp5J9DMJ/44+cD5Oc8UlCL\ncvTnzJYzRJEnAUMlFUVhqMoK6yakMmhpqMsLgvW0bcM4dfz0/s883P+U6X51zWThcvuCL178iqZu\nMxsgRUY7k2L2Wr66fMVmdYX3cDp+QMmWVauIAvp5pJtOzNPAOHacuj3r5orL8oL1eotWBlCEGDOj\nI2a0LZMc8sLJ+olpPvF4+Mj72z9zON3i44xaVHdCssAk2RCoadZ0w4muH5nGwM3la+bJIXzP8fjA\n7uKSy+sXFHWN0QUiwTiMxOgoypLV6hIhJN4O2MGxbvP3LJvIYXiiOzzwsL+j3x+w40ilC4bDwHDs\n0REqrdhsG168vOLNr74meLh9d08MHi8tq6qmLVrevPmKb7/9LadxoD/2GCH57le/5psvvyXZxE9/\n+kBdrbCrhKk1Kgqsc/z+n/6Jr755xe5yy/s/v6MqNV9/85rf/fbfYYzkw+1HQnTc3d/z1J042Il5\n9ESfL6gkJZDycs9lap+SJgehlAKlAjZGirakqjXDEjihlaFqCsqyJSXB6eh5cXXJb777Fa9efcnN\nzZbVTxXu+z/iAxAkk7MZyw6ZSkiIyEJjqjLLzaNlf3zAuoGiUCATLnnmfiR4cCJxvb2gqQveq7fE\nlBeQQih0kShqEJoskEmKFCXT6LDCEZqCWuew56qE6+s1u/WK7nbg/qcj/WHO/HalgCzACkTODqVS\nSmTUkLKD4DhMCH1ifXNN1ZQ0u5qqKekPd3z403tOHwfiFFk1NW++veHf/ftf8fKLS/rxxB++tzjr\n+eo3a+7uNI+PPeNsubvtGfcT794+YcIKgSaGbEYGgRgtMYZnd0MpcxEXLGZVSyEXMouDMpa+0JyX\nWgTZAfLh9sQ4BEpTQh+YfA5JTkHy9DhjY2CcNYd9yOrUGcIMEr0Y2S7PKZa9nVh47Ckv06OPrJqG\n0lTEJJiGGUFe8P+txy9SyH2cFt8PAUJnQD9mPqxcbowQwzMfO6djL4kefKLVZX/gsLzAaaHsnG0t\nPzFcPu+2P7Fe5HMnHuOnaSCnB32Oq3/OYc+jV0JAKjBmg1RtxvmEwqiWpqpIKfLw8I5b+Y51XaFX\nmsvtGqlattuX7LbXeJdIQaGU4Gb3krrM6e9tfUVZ7NAKNpuIUIZ+3HMae/phZpwsdZmXiBcXF3z7\nzW9YtxeURY3SxfI6ZjzN+YibbfatEJkSeTo+8XS44+nwwP74wOP+hPdQVmuUqvF+pB8m7DzQlAXD\nMDMO2XckycRPbz8wdoHdaoNWic1ux+XNa5SpSCEuy6sCO08IJUlC4Z3DO5tVbDl0kThPxOOAfzoy\n3j3Rd0dccCQkSZvczbeW7a7ii29f8+VvvkHUBucDpik5PZ0QInFxs850Q9NQNWs2ly8pRMHYnfjV\nd/9AW9Xs7++QIvB0e8vD3SN1JamqPBl0pwN//v0f0EXB7U93fPvrr7ioL6h0zdPTA6fHE2XS/Or1\nNxyGgZ9u7zjann4amK2lbg1aCZKIdHbCRo/XMAsLUVMWkvVVTpAHQRxVphvOFutAa0dRFKzbhraq\naKuaq901Qgb6aeL97SPz/IQRiubFJXiy8VkYwOT7RWIotcqOelFydfUCqRKH7ilz4IOHKHHec//x\nEbrAaT/iHSipcwK9KTBGYwqFnSPeRlLy2Q/ESFwMiFJTVg2tLPj661+hZUkYDfb0B8bTPT5EUPzy\nnAAAIABJREFUCmVQOmP63vnnxfP5HhMoUvQ5CHryuCny4cMBXb/nuzc3fHzb8/iux3dZHXt5seE/\n/g//nt/949fUa8n33/8BqSLz6Lh/NxKAsjQ4b+iOjuODZZ6yaZkkJ+1oNCkFnLfPsCqIRb3Ks095\nWqi7JLFM4dk9NLtnL3RokSeilKBdrVm3a4Z0YjplnBspsQ7iPjBPM9Fnaua09/g5ex+J551VOusd\nM/spxiwyWwzjwrxHKYMQCucsCvmZS/rPH79IIZ9tz1kUpM5GDWJJrUn5jXfOZp9embmeSiwKuWXh\nlOv2ueCeFZ753+LibnbuwM/w+6cue9lILy/iGRf/XFz0/JnLEvS5sC9fLWWGEDTZNlYgMNpQFQbr\nRoriSF21ENco6SirmlV7xXZ7w6q9ZhztEgCbuNq9YtXs8D5RmjVa1kgpqKsZFyZm1+Ocx82e6AVF\n838z917fkVxXuufvuLDpkPCFchTl2t25M73m/v9v8zQ9PdPdaqklisWy8EgX/ph5OJGJIqV+pmKx\nVhWBRCIyMmOffb79mTQ6BAYRuz+dxwBpZXDEwU07tHS9pe8j/q6Uw7meIAUueAY30A4DdoAkLTla\nnAOawUbsfBgcVdXwtNqM1reOQEfXeZqqoV8uefvmJXk5I00nIDX9UDN0HcPQUjcVUmkms5ODMERL\nwdC34D2utyRCMS/niDOBlpLO9iid8FFck6UpV1eXzI5yXr5+zZtvfknjBqq2JgTF5asrpA9MJhnK\nQFHEAOp8coT2gb6tmc+Wo5dIwnRUfrZFxsn5nCHukznJpmjt0cpzdnrEN69f8erqNbNyQVvXTLMJ\n/uiUxdER26ZCK8E63bLdVXS2Y76ckWUpfe/43e+/A/oovEoF2giU1igTcfJIlxY4G0bL34E0F2SF\nYnE0J02zmLxjJG3XUdcteMmsKJETwaTMaaoeKDDZCQ+7e5q+3xN68ENgEA7belCRS21dJAAoKUiN\nwe4GunUDPSgfja10okhSHTNAjUFai9UOoyJe7ERg8JY2eOrgUS6aYuVlwdWbK979/jPKKDQepWKx\nRoHtoyhOjP7b+0444KO9cm+pty2rVY25XWN3ji/vHnl6jGHfi+UR3/7yl/wf/+c/Mz02bKsHrCdi\n9srwdN8zPcpjHKGt6CpLXzmkV6P3yxiyzIiJO3eASwIx41cS3Qhd9AIZm0VxqDWDb2NXrlQMoAwu\nioOCj35LumNwdpznxdcnAlgrCbUcKXbgx53JWHb2veWhUdxbjUg/amiCwFqLFZHJEfYwwd+SsrPv\nGpTSY5xYLMaeyOschp7Bdgx9T5ZkSJlA+DrWbZTij7h13MjF7/kwfkhCiJ4MYQ+HPOPq8YjF/zDJ\nHov8IYWIvwxo3f+cIJrqSCExIg5OkGOaYBDgMxAObXKm0znGDODbKG7Jp+T5gjRbEMSAcz0ES5LM\nsKmj7x1aFaPiNRrYG60iIyWGkqLQZDojkUkcqvZ97CaQ0XDJe/qhZ1Pv6LohprrYmiSRGKOYlAva\nvmbX7pCbFSbJmU6OODk5Y1Ntsd4ShMe5EKPnWKOUoneW3llS2TH0DWkKaf4bkrQYt7DQ1DWb9QNN\ns2bXVCRpwXxxTugHvI1hFkPf4axHIcnyCeVswal6gdKSqtoipUa4QJoaLq4uSArN8fkFpycvqfsO\n1g9Uu46T0wvoHUaDyT3TScG0KDBJjpzOsKkeZySSLC85uziPDJY8p6mf+HL/wGAtx0cLJtMpk3JC\nmZb83d/9lpPTFwRhEDhyk7CcHjE/mlO1O9IssDut2NY7mr5jfnxElpU09cB3339EyoZMSiaTqDQV\nIg6zrPNxV7P3yvdgrSc3mrzMKCfROrgbBtq+4v7xnvv7R2znOJrOyXKDMh7vLUmScXp6Sv+xoV87\nbB/FObjIPqrWsVvvhmEs4pJEKNIso+0bfGhJpCaI6DmepIIkU9FmQCVkeEQWPcPrtqfqW1rv2Q0d\nSkQztk1VMZlNOXtxQjnNMGmE5eLIK6CEGgeHCi09DHsyQUzJAYm1lu2modjlZNuU1actjx82bLYD\nFsf51QX/+D/+iX/4p//Bw/ozn6+/sN1ZdJqS5Zb7mx1FCWhBV1v6eiD0Ywd+mLGN9+1YSEV4nokp\nxJgQFEeacdamkIBRcbcc7BC7cSEJCpy1I8UXttt4j4neRxWyEDgEJol+M3jFEIM6EahRWORGmuPY\nMO6ruggHsZIkWl34kbIYFyP53MT+lePnYa1IhVYJWqXRBlVoRu0x/dDQdhXOWlJjxkxJMfI95TPu\nLaKSUsiveOHOHt684P3hpnl2PXy2woUfX5OvmvV9Y/9VJx5/hRAjv30/MA1ivPgjvQoIIvK087zk\n9OQSa6cQLEpJElOi9IRASpoVBN/jbYN3Di0TkiJBKDOyHIbovy2iB83x8ojHp0fauqLIJ1yeX3F1\n+YbZbIYxEhf6aN5kYyDwMCb0tF2D8z1zNSdPS4xO0eopWrJKOD85ZTJdkGcGhybN4g1pvUfaga4b\nHfkCeCFAC3Q6ZTqfxqIpYh5ocI6Hh3vev/8jq80t3nsmkzlG5IS+RwOz+YRiWpIVU6QyICP334Ue\nLxW77Y7t/RN9VaO1JJuk0aDfZEzKJUlqqaoW13m6umWou4hpf/OGk+UJRhu0MnTB03UV7eCYTJcU\n5ZS33/wKgeDh8Y5V80CXKrZVxSAc5dGMy8srLk4vePHqG+aLM6QxLM7mNNWWelejjGawLScvT3DW\nc3t/y/vP71ltV1TrgWprqdsOnCU3KafzJdkkofeWz18e6Icxu1FYVAraROpgXqQoo3h4WlHmJVmW\nIVWgriJTJlUplyeXaCO4efxEOS1wLvDpyzVt3SN8QAnPbFqiQvSCKcs8ime9wPnA0PYkSnN1fkGf\nNNxViuZzZMKEJFDMogdKmmkSkXJ6fsykyGmGHR8+f2HTRO1D30mCyZkuS5LCkJYJ02zCZJGRF4qm\nCtghuocGxAGqkEqMrKkw3nSx6cI6ml1DX7eEIWNoXQzlsLGLv3rzgt/+42+YzmY8rG7YbXs+fd4i\nlcekEhi4u3nEOku1bWm2LUMT/W+U3KvEiYPFQ0H86iZnT7MIIGS0G5bqQGPGxxoz+Bg0E8QIuxDd\nWLt2wA4BHaIiVipDluWcnR6hleLhYUNouggTI8ZB696aYzwFsVemx1nhweFwD7kQA2fCHpr6WzLN\niiHL+8K8P3UZk3JEjHtTOvo4KKUIYkys9uMqKvb4t+BgKTLiTc7bA+k/CE84FPrn4r0nFu3fxgMs\nc2CzcPhePJ7hligS2E+048/Fz6YYF9foNZymBdPJKdaVeB+Tf7VMUCqFIKJ4QhjAgfCRT68ShIh+\nE4SAMZqymMdhoWsp85ST5RFXFy+5vHjLyckVeT4jCB078b5nsBbn4yKoZfRU1iYd7W01RhukUEzz\nKdmLNxGTz3KQsF7f0jU1wQXK0jDNE6ZZwuPTLg7WtCRPJUZ7QhggDPjQU9VrPn/8xIf3f+bTlx+4\ne7rGWUeZTRiqjuVsxvHxCUk5BR2VmMFajMnw3lPXFfd3d3y++cLmcc2q2lBMS0ymmR0dsVweY3SK\nUillWlKYjJ0GmUKemwgrhLiAeu9iapJO2DUV3dCPFLoYoTaZ5Vy9OadTFu4CXb3j5OyUqxdXTCdz\nkjxHpQkmzdCJIisKymmH9Q7nLRO/pG9agtTs6poffvjA7e2K7bana7toZSsEfrDgIkdaqsjdjxqi\n6BeifAzi7fqB1XqH9rCY7ri7f2CzfkLpBOE0RZpRV1Xk+gfITcKua7i7fqB3PUkaF/lXFy8xUlLV\nG3adZfCelIzz4zP6ukUFeHV+yU7uaL60yJFSqEtFNtfITOGEo3cDdVMjQ8SXJZo8yUlUyXwy5c2L\nC/7nb3/N0XLB0WLJYrrk9TevWd2u+PjuBu9jWqVEoLRiGFzUToyN0J65EWEKT992rG7X4C1i0LRV\nP95DkmKek89Strs1q6cHtpsVzluKIiFRYBRUdUvT9HRtz9BGFe7eolYcZmNxN8CIL+/vZk+U40ez\nvRgsIfxY6qVEqgiz4CPnPBbjfXXweNcTvEeO9rtR96KiMCw47BB3yy6Awo/FeISXwt6LJ56rPNSW\nWENifyhGOEUcFiLr/6bohzFWzY8XcUS5UUKS6gRFTKs3OuZnBgS9teMF0KP4Jb646Csixi3kSEsc\n8So/JlmLkbUpeM74/AkUzteOZ38JRYXDUvC1n8uPjhChGvCjbWwOmWAYDIOtGWwX/U2QhDBE6TEB\nhEIZM26dVNyduAEhJFmakyYlaVKw292xmE6YFSWvX37D2ekrptMTpEoZbBzkWOewNr7RRZbRZh1y\nnxikU7TSaCXQ0rCYLpmXLymyJUIq6m7L99//Ht8NpCohn2hOFyWLosBbS9W2SAnTUiOFpWl22KGl\nabestzv+83f/D+vVI5vdms1ux25XYcQjDC3pr3/JWX5OUk5ph5a2WTEMDXk6xfWe9cMT158/cX1z\nw2pXsa53pNOcYlJweX7JbDpnGGxc7IMgVYokhaAVaSrZbnbstjXdsUX6FqRC6Ixtc8t2s0EgOD+7\nZFLkIC0n50es6g1Vs2PoW46Ojjk+OsW5QF3VoBKmSYJSCUlmUCalaxvsGMu12zb0XaQh3n154v37\nj1S7Dt/bkW8dqEbaoMoNykTM1RELefTMYYSjWupdQyI1VdOwWq+o1jvOTi8pJxOMNtzd34LyLE7m\nTPIJtg3YMfR5Mp/w9sVr/uHXf49Snpv793z3+RP9ziK94ez4jC5rGNqO08UJYidRMoEsRauUdJ6S\nTgUYFxfYINnVW4auJU71JPPJgsl0wunxkl//4i3//M//k77rMabgaHHBt7/+NU+3T9x8vouReHvo\nMVUMLtC1/UGaLsfmx4dIhcV6Vndbmk3LtJwQrERriVYBoQM9DY9Ptzyt7ujaHXmqSI3Ceh89/W2I\nXjRdiLYlXo5NYoRfFQJCTB2KAMroCgqHgunHmhQ5hn4ks0UUYD+IFCMDLIzmVkG6Az1aSHPoAYMP\nVLuK4KN9gPWj3/mBUx2Rh7g7EKPIjLh7Gc877GHaESvflyI/ipn+2vHzBEsMHqQjqAHp+yhBHj/g\nqYmp7oONUuGwL/Zi70ImseOQUEiHJOKQwAF2iWqucejpPeO9NT7P+EDEj4rxc4Hm8AZ9bZm7N+b6\na9j5j742PlZJTdA5/VDRdTV184CeniGlYOi6iBKOyTFpUqBUEgM0vAAVO3YlCwISYzIuL95QZAXO\nOk6XF0zKJakp8ULivcWoQKKTPYqPUprpZEIZSkySRK8JKZBKUBQTBAXTyZQim43bt4TLk5cMTUtp\nFHWzJleK3GjOljPuHx3bqkJSYnvHruppe8/t7S2r9Zq7+08Uac7Lyxecvbjk/Zd3bHcrQu6RuQFj\naIaBz9c/cP/4mbpfMbSCdt1R3W0RGfSD5f7LPYMNzI+WvH39DVqXbFY77m7XCARPT3fc39/TDB12\naKnaiqLryG4KZKI5Wp4jpGK13fKHd3/i6eEWIzXewtXlC9JU0XcQvEaSQtB4q+j7QNe2fP/9eybT\nOf/wv/8zRqcjc2FgGDrapmG3q/i3f/+/+eMf/8C7dz/w6csNXT9G5Dl1GKr1ViCaBuGGWPS9x8s9\nX9ugEWw3FRBVniF4mqamzQxpniITiRWWqm+omh3lJOfs+Iw3r97QNi2p0eyqivl8yTevf8Xp6RVD\nv2OzfuBkOqevH1ltW5KThI6GumkYhhj2/Lh5QpYGYyQ6i3Q7EcAowWI+5eX5BYkyfP/9D+RGMZ1O\nePXqkvnsiJPTJQGD6zqk8wSnef2Lb7m7vuff//U/IHQxcNgLijLBh4GmjZ4pXkTfIoJFsM/LBOFi\n4ZpOJyipGdqB7baibiqqesNkZsizjOlkzqJsebxfsXrY0WwDwqUYKQmyHf1Eo896CA4pZHQbHRp6\nN0T+uIgF1ARBqjSWwBDCGH0n447COzo8vRVxWAtoISIbbBzW7gkXQsTdxyiqxvaOyo216lBnwqEI\nh7G5lIeN/1iY5T7oglF4FA7zPUI4NKF7zvlPj59n2Nn3aGNQWkW1FzqyUoREoEFGXwsp4igz4s+R\n2L93JItvVJyei3Fl3cv99z+z9557hltCtN0cqYlSyLHLHwv2/mK5Z0XpASf/aQMevg58jscBTg8H\nnAbnBgZXM9gt61006PHBoZOEJJmQpUdAdLQTAlwYQERBidzjfIlgVp4gg8BZS57NMSpDCBP7i688\nstSgsC5aqSZJgpJxyLX3c0BCkuQxNMFMSHQ23lyC49kScfWKs+WMqt5ESMh5nDNxh5Rpggg4Ar0f\n+PDlA/TQNwOLyYLzyxdMFnO2XcW2X+F8DcGzWq/Rnz/ztB6ouye6ocbajs9fblnfb7GNQyZxW3u2\nPGG73pFKzdAPVLs1213NZrumLHLatqFta+7vV7Rtg5KC06VitX5CGsVmt0MZzWq34vv373i8uydT\nCZN0ynw2wfmM6y+3XH+5ZfW4JvjA7e1tDP8detarp5Fz36FkEge0duD65jNfvnzk8/U1Hz7/mU+3\nn7ldP1J7yyACBIcU/iAi897Rth1h6EdYxhOkQBl5YFbtb9B9d2gHF5OIRKCuGyZSslzMkWGgLDIW\nxZTz40tccAxDQ9cNzGbHvHz1S44WRwQ3J0szFstzlPiOvnlHU6+pmy1t3/Dly2fu7u+pmobB9aAU\nSiecXZwRaBhsRVP1bDYNmfE4G2dQkuicaaQmTQrKyTGhd0gkUnmOTo+4eHnBxdUZ1x9u2K4bvPck\nuaYIGX0X7Y3DmFYvkPgxrYkxSSnPEt68fcF8MaFrW37373+mtz3r7ZqiNGw2W/q2Y1pkbGUssHlu\n4u52AMvINglx92N93PEqNfqaezeqOQNGCBL0aF0bK7Dk2aYj+vY4goyQiBznYdFYy4+j2j18Ewut\njDQZvIsMmL3v0wHeEYyztK8g2xFuO/zP/nH7UQL7BlMgR73Ms4fSj4+fp5DbHqlBCo0Q0eTJhzHV\ne+RrKjVOisPeE9iPux2LdUNcKaUkuP0gNHaxQki0Tggj8d8Hi3V2vHGiYiqqMEes+xk+j0dgnCr/\nFD75SSXnr3fnz9/zeN9jXc1gKwa3o+86nPM435MVBdPJOVk6G2GggeAH2r6OA0ldElfzmPKTptMx\neXvAmBIhEva7CqXGoZKWsbvqe3o3oKQiMYYsSbAimknZ4DAmQQtNoouRpyrQSpMlCceLBfJ4zmA7\nnlYrbu/uQXZM5wvyWcHN/QPOBZq+48/v/owZFPNswTf/8L9x/volKk/o7n5gOs2x7QSFZLfZ0jY/\noNIHJrOMNDcYM8fZzzEsQwj6pqM0BafLcxIfLVXXT09UjWWz3bCr1vRdwTA4dtstXz7fUdcNaWJI\nVUqaJnjhsHe3mFRT9w1397esHzdkKuX+4YbH1TFFn3Nze8PN9Q1VVTOdFjw+3tLutgx9R5GnGBNX\nxoNKOHju76/57t0fePf+BzbthlWzofYDTgucivQ6Lb+ixAbGIN04JPYRKI3WA+NzRltVEUuQiF1r\n20Zfe0FFkeWcHp9QZgajFalKyNICnWquXrxECs10uuT49AqjI9NpMlmQFVPqqmG9emBb7+j7CucH\nPn78xOPtlqbpaasaYRXFNKWclEhpaHae1f2Gp7CmLEqKbIKQnsSYaNs7nquUGqkVUgSE9mRZzvLs\nmKvXV6zu1qyfKgYHuUrI0pSycLQuEPoeGEVDAgYXacJGSsos5fXrS65eH1O3FZ8+32CdZb3eMZ+X\ndG2LCIHT0yV9148whOLhfsXjraOruj2achgkxj8BFxzO7wthjORLpB6fI9rTSinHti++V86P0KyS\nB2qgkDGlJ4Qo+4/zNjF21Xv9ix9nZgE5Llr7E/PPDfb4d6zY8ePy3JHvS82eTRdT0eQo1/8b6si9\n78cVR6NEBiFiu1LoWJSFHoU/X/mtCBGL8tDSdx14QZqUIHykMprkGVoZ3zBr+9j9uQGlNIlOGR0y\nvppj/mUy9U/jlA74+Vd1+y+dE8dtFAJEDHro7YZ2WNO0K6pqyyRfEkKgbhu6YcCYOSfL2FXUTU3b\nVTTthjI/QkpNYvLDcyudkeYC8CTJJMJJY9HYUzgJ4JTHqhiASwjR29mHaJfpPUM3kJiE1KSkaYoS\nAms72m7Dpn6irqNzozGau6cn/vPP3+HcwOnJCfP5OddfOqr1jqGtCO2ab16+5tWrV3zz7W9x2nO3\nuebL7Z8wxnF19YIsmfH48Mhmt2Xot0hzTpGfcTw/5vVFRyYyqt0OkQTapufz9SdOZ6fkecZ2u2Fb\nbUF6ZvOEx/sHHu7W3N2u+fLxC03TkhiN8j56kGjP02ZDXuQILckSDbOCRGj6ruXT5w+kqcGFnkBP\nCB0SQ55oVIDb+yd+8b/+F7/49jcU5RQtU0IIGK+RKlAWhovzOdt3a5qmo266KHRREBIFqUQ6gXQx\n4Wo0/WFwnuBi961lzNgUwUdnRS+QQmOkwVmodi3egVEpoMjyktl8CsHRdh2P6xXzxZKjoyvKoiDL\nSpK0BBWo64rHxwee1tdoE3j7+or3n79gHXR9zc2XNZuHirrqqO9XqFyzkZ4//pfg7dtzTo6OUK2n\nzHNOThZcXJ7j6JEqMC1zpuUEIVq++9O/obRlOpszG4tQXky4eHHJH//tO7yLLpDWOiSQak2uFIyG\nUJOyoO4NIarmSZBx11QWTOc5OnOUk5yut+x2PdPJEeqF4PR4ycn5KRdXV+x2FUWe8O5P7/jd//sd\n99crgvPsQyCUjJ2+szFr1Y/3uiBSI7U09MHhQzRiM4kZi3gM0w4u0gFDCAwhOhImxGZTi+hJ40Y1\naMT83diQxTohx2ASMVYc72NebvSX+rqOjPDMfgUKezYLPy7oMpri/Xe9488TLCGjwU5vu2hrGhQ+\nkrMPg0bvRitZ4REyXlQpJCIolIpq0DhBDvGm8J7IAIlpH4yDCe9HKa5UaGXGLv+wkTmwUPZHbNT3\ng0v40RXd75vDM5a+f8h4KkBMwt41a24f33N3/z1N/YhiINWWrut4XD0CEQOf5HdkaTaKaLb4YMmS\ncuTb7mlKsWMwRo7YmY6/VOzPKU6/lRAkKiCMQAlz6D7CmPWnhEcGQaITMpOi9BjtZTuq6gnnOpwf\naDrLarPiw+dPPG3WCAuhu2dzu2PzuMN5R5YaJpM5y+M5+bTAZBpra5xrUMKR5BMyM0WGhL6/pakb\n0iwyJWSQuDbQr1uykPDi7a+429zT7K7Z7J4okpJFWJKmKXXbsKt31HXN7d0DXTsgU0E2NaADUkg6\n71FJwmy+YAgORBQ95UnCLC/Jk5REatqmpWkamrYjzwrMOPztuo4hWJDQNg11VTMMFpXEG0iphJOT\nc3zoKYuMu7s192oTKW4mGh0Fr8gTgxwCrnUMXYTetBZkarzZEdhuoN93Yd7H4ec4I8pUhpCwqbes\n1lvU51uC0pydz5jPC/I04+HxAes9p6fnke2gBIlWSKWp3Za6XjH0O8oy42j6hjQrSD58pK0/EUIM\nNRnaDoOgLDLm8wlZosA5tNB88/YNV1evuLy84uhoyc3tB+pmzWJekqYFCEU7NPjBoZJoL7DbbQjS\n8/Lbt1y++i9Wj2vub3YMrUWE0WLDu4gASkmeZSil8NbTNF2kWZqM+WJJlk+jXkAptpuKh9sngtUc\nzY/xroXBY4Jmkk6YT0qu5WfEEKCPu+uAx7poqCUlWDfgxpSfgEALhRYxzzZ6NQkSETNKnQi4IDBK\njUPOvbWV3zsVj7ecOBA0Yp0Zs3uJZl6j2H5sQp+FQPsktH2nvefOCSJXQhpJlumo3m329tNjbytj\nXRJ/S14rATcG9loOHfJ+AzMqO60dkCq+gEP4AyBEFBKN1s7P0+L9cFOOnZAQCKkiT12GQwTanujz\nNVtmv6fZ1/PngWj8+znp5Xm1HBmHP+nM4/P0tmG1u+fjzZ+5v/+I9B1HZUHfdezqHav1Cq0TjH4g\nNR85WhwhhMe5Ni428qsPQojmPntq0/4ExtEr+4Dp/W5AiQgxJTqNWF+IIhIlFKhAohIynUYaIiMF\nbGipmw1axU6i6zu+3Fxz//hA3/ekJGwftzy1D9SWmKFZ5izmE8ppjjLQDBU29GglKPMCIXKcV9R1\nExWKDhblnGlWIoNg/biietqRJZrXL97QWItWTxijafuOfhhiKIALVLuO1WrHelOhjCQtU7JpAkZA\nkFjpUMYwm81BSXb1jm29w2jNyXLJYjrHNgPbqqHvOxKTUZ5OEAS6rqWrB1zfIpRgvVnx+PjAWRtd\nJLU0SGU4Ob0kTQ3TvOTDhzueVhWDDVR9TzvEQdpsEsOha9FSDx5jJGmuI22291gvMELjrMQFgaVA\n6wR0GuGzooBgGdZrqrbGP3ga22M5I8hTtE6x9RaTGlw4ieKt4NAqdvUKEL5DhJ4yX3By9ILJdIZE\nUm0a7q43RBMsS54lnJ4ecfbqjKTMKLKEIsv51S9/za9+9XecX1whhKZpa7ztmRRzgpA0fc+u3gGa\nLPM469lu13gRuPzmLa+/fc3j9QPruxrb2dEvvB9TgAJaalJt0FJhe4frbTR40wZjMqwT1G0MhajX\nW+6/3PN0t+Hqakmea7ZPTyQi7q4TmREGgesCwj7fE24PW4kQh5zBs/cb1EKjZRSL+TAyzGQU3SFi\n42OcjndT8FgE2hObTCmjyyr+MKzcs+/GYhLhzXH46V14bv4Od6g84OZ7/jjE51apopgaXBtwrf0K\nKQgH1elfsOXG4+fxWrEtSmZjZJscKVmxaltnGWzPMHQoL8dCPtIHDybwo1GRHHtRORa58PzChRzT\ncET0PpFCjSwY2BfnEBhz+saFQv6Yeij2UM2++90vpXB40P55BAIh4zCjaR55evrA9e33uKFlmqfk\nRUbT1+yaLb3vSXRCP1Q8PH5EK8/RYsnx0SlgMGZC7OwdRphxgBtfF1+dwv5LjOU8BMe5QYtsAAAg\nAElEQVTQVRACSTaNTmoIfFBoGc2cRB75+YIYgTXYhn5occ6S52WUG282ZFmBMSlKVJyfTHCtY/W4\no97WtENP2LUMu45JkeLcGQ8PXyinMybFnH445e7ukYf7G9aPK4J1LBfH/OLN36NMxnaz5eOH7xEi\nUExLVJpSlAXn5xfMiimruzV937JZr/nw4QPWBWbzOX0Y6F3E/6P174AUEkdD3W4YBstsekzdtjTN\njhA6ptMp52cvsbXFuU8kRvPtt69JEo33nrbt+Y9/+08eH1coJanqHU2zww0NfaMQoSBJM8piQWJS\nynzCm1d3IBTHp8f88eMPPDytGYbA0WIRk2zklsZZ8jKnnBa0VUtqHEamLE7OeGwFDzV0Loe8JMkT\ndO6QyYBvV/CkMZkkKyRZHqMGm6bhh+1Hfv3LXzCfzVBKjr4daiwYA4lWHM2mtM0TiS6ZzS5Iswla\nFmg14f3HB5S+RyeKIs25eHXO21+/Ic1SMm04WR7z27/7J05OX5AkMUzEuz4WSK/Y1R13Tw+8//wD\nL1+8ZTmDtolZrFlWcnJ+xbe//TV3H+/4/r8+0207uq7H+qhvkErFgHWpgNj5yrFAOuu5u7tn1Qru\nH2/ph7h7ur+55T/+9T+Q4re8fXvB+fk5Sqex0Dc1eTmJOoiDhXXUocj953sYRs52vFUSrdFSjeEN\nccelE00yyQCLbR2+j9CMEjJyv4VGizh/8m6ce4Qw1o1xfCslUht0kSCCwA+e3nYjYYORRrhvGsc/\nIu4gIArE0jxF6hCHrCLy2L0fqYpCoBITw3j+yvGzFPIyn2FMQqJzCIZouRa7ZSGid4mU8sAg8c5G\ngcS+K4Vohzmaah2SgoQ6DEhhXCSFihQn9sMMvoLIBXtk5Wu6Ifxk0PkjTOsnHXh4ru/ee5wbaJsV\nttuQyIDMCpRUbKuGXdPR9A1a6+h+KCXOVlhbgTgmyxYolSFlhpBmHAbvHRqfT+Tr17f3jvQhdvR1\ns4YQMGnBXji1txAVxCIen2OPJ1q0NkynpyjlScwUSYbtBW3ToMTA+eURQ2PjBzmVDK5HEki9Yjad\nsVyekBQFhBgacHd9R1VXaAXnZ6cUWcFycc7F1TfUu4bNY023a3n95i2z4ylP3YaOjs51bHYt08WM\nLE/ZVRXHx3MmkwmzoyPyz5q7+weeVlsyk1HmBeUkQ6vAYjbBKEVZFLghsH6s8H5gvdoyyVakQqNE\npGUediRKM5um/Hv4A6vNBgJcnL9ASMFmdY8rBwQBYxKUTBFGIjK4evGSJNOcVkds+y2dHdjuOrZN\njR8sTd/ig2cYOromDvWdShnkjJ14RZ1ntKmhCwmD1DTAphu4r3bIxtO7E2aF5ug04fg4RWlN10fK\n3t39DVW1RZnv+e2v/p70MsdngabdMPiWNM9IkgwXBLsmxr6tN01kknSRXSGVIKhAazuqpiFJNVIl\nEWr7KqlLisBsNqWrK77/7gduHh7Z1Duc6LF9S9dVPD3eRjhzFGydnL/g7OqS2fGUth1o2z5mhjL6\nmEgZjbRsnBuEsWkdesuXT9ccv5iSpSlHyxlSKhJtRgtXSZZNKPMUqTX9YOmGgd2uZrPZRUM2L9FC\nIJVGSRmDt2Ng6cg4kSRjJF3vYqRa1OMLVAomCHoLvQjRc4go5hkTqw80ZiEFygvAjbUlNnNKwaTU\nBC8YWovt5Jhpu3dXjPVNfKUu3zuwaq3J8gTEgPNDhGiERKgYQLJvJP+meOTT4jjypJUBEsAwWoyN\nAzx5SLHfpzTtTbb2G6h4YWXMu9sX4f1F+4ovLoQiSuqfk4f2KTlS/oQfHkIUm/5k+/K1VP9rbvnh\nRAIHGqPz0ZinSHPOj86RMsFaS91saIcWHxxFPqHIpygCznaAjbCILEiSEiGiHa0Qimd7gb889ruL\nPQzj3EDXV+Nr9COWNwJsYQ8HiZHTOk5lECRJgVEFQgQyM8OonLYZaNsdSvecn59T7VqaztFLR9cJ\nhIOZmnG8PGN5fEEQkl29YbddcXd7gzEJs+mCk+MzinwSO9os5+lhTdc0SKk5u3qJnmj+84ffsdk9\n8bhZcX+/4ZffvMakhn7oODmec3xyzGQ2p7MVXdtRbVtmkwnzxZSz8yV5lnKyWFLmWdQMeg8O8IK2\nbmmamsnRktlkgu0HmqpFyYREZyiZ4n3ksBOgKKeYJOHp6T4uiCYlL2ZEmpxG6ZSj5RKhB/TWs5iX\nPKwzms6ya2r8EAf3wYcRD4e0LLDpglaeUoVzdmZCpQ0OhRscvhvwbYuuWnRjSOyM45AQVIJJNW09\noOTAdKrZ7tY8Pt7RdT2XZ5dcnL0AxDjUb0EIpDLs6opt8z2b9YaH63s+/fCJzf2aoYlmdHmRIXTc\nAYsQvf27rqWqKmazHqMju2YymbFJ1lxf33B9f88QLIujCSJ4umbLbVczXZxRluAGy2Q25/j8lOOz\nOZtVTV23BBtnAFpppJDRFdFGf5L9bWcHy2a14fhiynwxYzGfxVDnIGnbBu8DWqdokxIIWGupthX3\nt0+sHtcIOQ4YUaRJBs5h8YfdqxaRN54oGYf+PuZ16lSTz3OOliVd3+GGnlZKevbBNfHGiTGr/mCv\nrcbZ0/4uCniE8KTJKOP3kkZGh1Y8WO/AR+ppZJiPiWXjwqCVwiSKYCPV2o3iJaXiDOXZrOuv14Kf\npZBn6XI0UY9y3SBUpN+EmL4dXcrGQFSlCNJgdAyj6PsOIaLM3+iUoMIzPs7oZ4E8KD4PWaB7EIuv\nFaVxGxNGjD3gET4+90+PrzvxH3Xl4ZBhBEKglI6MgnLGxcUv8D7QNFtWmxvclwFrLdPiiDydomRA\nMpCYOJyNVp8GIZNxARqZMGPx/eliwoHjvseDvoqp8vFrQfgxIeXZVuDrRUjLLH4olSJ4h9CKIvOc\nLl+wqzYMtub85Bvuwj0+PEQ+uvUYmbI8OuZoeUk5OaNpNnhrGfoa6yLT4GhxwfHiLGaT7hq2m/e8\n+9Of2KzXzE/mqDxl01W8+/QDm9Uj6/sN9bpjvTtCGhGDDrD0XUO11SQqochzyiKlyAxXL6/49ttf\ncLK8JJWKrqn48OUHEuN49fIk8qynE2aTBW/f/Ia22vFwd83nL5/IiilCGm6+3OKsZTabUBYTXrx4\nwWQy4fb+C0mSUUw6nLdIpUFEOE8aQTu03D/dEwgYrTBS0BN9cXSq6StQDjQ5Ij1myF+x0xf0YUoV\nFF0fIb3Qe+h6RLdB2CfCsKZuBj5+kbQN7DYdmoblccr5izMSoWgbcK5CyAGhAsoYtFb0g4vCH2v5\nfP2Z7z9+4vrjHevbLZvbDZ9/+EJTdRRlweu3r7j45oKj0wVlaqjrOgq7Hh6Yz4/JsgzrJIgElaQk\nRcLpRWRdKWVIjaarax4fHzkdwOicaZ6jU5gvJ5xdHnF/88Ruq+l6gVHRbkMgsNbhrBsbCg6W1Xma\nspjOmc1KpPxEliY4B7e3N6zWT3R9Q2EE1vas7+748+//wO37G6qnetSWEHUTOsH6FkkcBjOytqZJ\nTqoU/TNbgclswqtvXvLmxZKn+wdc3VHp6C3ugwDnCH4MPXZ+JBTKiLWLaCw7BEek4ES3Q60MTkX2\nmklylND0UjB0ka2nRs+ow7hzv3OWPoa2KI+jwQcX0QkjccOAc9Fa8K8dP8+wc999f4VZBJ6FO4y8\nTjlO+wVRBRlCwCk7civ3uDiHjvTgpSDHnx+72dgtx+1NrHfhsN0J++5dfCXO+O/O+yv45fnn9iyz\nuFBImWCSOVJlJOkUbzsEgaZdUaY5MlOcLl+Q5jMIDjtUQB+3bSKMbxZx0Cv2U+7wV3cJ8bdGfjwh\nIFAkJsPZge3uESljirgxxWjGJUeMfX/tQzQJCvHaD7YdE80Tysmcy8sX5GU8Rynh7OSSyaRk/bTC\nD4Hzy0sm0ylSSdIsPSyupycvECS0TRehlpsbuqbn6OiMIk9oe8nHh3f47z0Dlq5raOsBbyFJFNtd\nRVYkTBdzjNEU+YTF0QvKySlFvmS5OKXrOs7Ozjk/fYVEYvue4OHF5SsmkylP6yd2u12E7QgYY2jH\nrWlWZGRFRl4WLBZLLi/OkdIhhaHIU7I0IS9K0rJAGkVvWxSKvmtZb574cvORD18+8v7LF+quI01T\nlos5NzcPkUbrQDiL1xM6c0ZvXtOKE3pf0LnYTXoXP4NhsIiuxbRbTHWHrh7p20BrJzwMKb4JTMua\n2TwGXr84uyTYnvv7TxRFiRAKKROSNGewLaJtYiMiAkNf8/jwyNPNluquoV2PYdJZTCg6Xi54+fIF\niZL88U/fcXN3jdIFQgh21QalJQ/3d+zWK65evaUa2UNdHbFfa3s2qzXnLwTBdzzcvSNJDY6W6TSn\nKA1ZobE2RQsdmR0hjFmcHCCcgMf5gbqusMNAkRf8+le/4fHhkaZuSbOSV69fMD+aYLsGpGdwHZ8+\nf+LpaU3TDgx2wLuAxI80xL0UfuSNa0NmEsQ+jUfFwWVQQCZYvFzitSP7ckOysvQugBc4hmeSw4Ho\nHZtBhThANp4wplf1GB0fZZLswEOXSkXrCLfvyJ8bQAForUiThKGK2L1OIuQcBFgXtTACdcgi/unx\nsxRyxH44Fw5Uv6ioit67Uu7l69FwaBxj4L09TKPlaL6zdwMLBIKPsly1D3PeTzjG7+//HWW1z0ck\nJj3j5fBMEfrxaT8rOX8s798/0YhHqwwpDSEkOFmT2I48nzGfnpLohOPFJUlW4oKj7yoGu0PrdLwO\n+y3Xs9Pi18eBo3Igtge8H+iHjqbZxiBX29N2LWmSkYoCZdJR9xZhpb1X++E1hsh7t75DBKKVaT5h\nKU4xpuf+4RMCyenxOf0wRYeEpmrIpyVBOrquQkjP4CwIxcnJBV1rwQuGYWC33TJ0louzBD2fUdst\n60+PhFsLSkV3xT7eOFmaMPQ93nnKomA2mTGbnTCdLjH9gNYJeZaxWq8oJzOkNNxcf0Y4xyQvOLs8\nR6poxG9MwnqzZbfbslo/0rVV3OJKGR0ibc9kMuHly1fkeUJbd+RpRprlHJ+ck5clUsNgG5wXbHcr\nrm8+8fHLe24ebtjVEcbKTApJdB60vUX4cYSlp/jkAi/P6HyB9ZGaGixg4+fVWYcYenTXQbVDVGtk\n7xmsx/UpoQqo0x4/TEl0xsnyDK0CWjkSk46fOY2UBusDVVvR2m5ktMDQWtptT7sZ8N3+PgtYN1AW\nBRenZ+AtWkmapmK1vuP7Hzyr9QOL5ZzbL9fYfuDly1fUTUs/OPrBRiO2LGM2m5MmmuAHqqZHmAlS\nC5LcoBNJkiryIkEKzdBb3NCPYj+BdTEv14eAtQOb9YanpxUnl8ecX5wSRj742eU580WJ0pGf7q1j\n19R8+viF9aai7x2DjT4x+1wD7yzWx0BjpUbKoRA453+U+6vMyMKaJqiNQeg4gNVCgJAjCBJrwr5g\nxwXJPe/0hYCg8Bbq7YA2oBKNSsxYl8I4cxDRQfS5FHEYlwYRmwVnEUFgtMajone/taNDqvxvW82f\nycY24lTBByKPJ3aVEnVQdLKfBI8S3kCUPR9wKynHx6pDYYozATmyYWC/dREC5FgYD8lESP5iwMlz\npwrP5Puv4YifioV+dIyFNypUFZAgCGTFEUdSoWWBFJKimCOkxAhIkynOdwihCUFETGxUvnFg0Dzb\nAURY/HlOEEJgcA3b3T3XX35ACo8ZI/Gy7ApjiujOtpf7j/1F/ABGDxvn/chOCEitIw4pBXYokWFC\nWzl0YihnM6qtYFp0yCDZtBvuV9d44dEm4Wn3RD00nC+uWMxi8IX0EnvxAqUMb375K25v3mN2hvly\nhjTQO0fAxAAED4lJyI2iSA2TYsrLq9+Q5lPaYWBbb+j7mt42PKwe6IOnGXr+5V/+L06OjvntL38L\nXlHvdmy2TyxPzrl7eODh+gbnLcdHxwQBdw+PNG3PyXHF1cVrXl695fTknMeHG4qypCimHE/mDG6H\nD3Fg1veO9eaB+4ePXN9+pBtalvOSobGsnhrWdYW3UdrtHFhVIPNjZHFOIMe7Pac5RD+dEAg+uud5\nG+h6hWw0rgERWoL1+EbRKwiTBAaH7VuGrkUmEqVCZFA4S8DT9Z6H9Yp3199j+5ZNtaXvQTiDGCSh\n9Ugv8dIy0LHraqSQlHlJ12woy5yjoymTueb69gPvP/7AyxcXNLvdqD2QfPfnH3har8iLlN/849/z\n5tVL3rx5y2r9QG87ZvMzFstj+sqDltEoSwmSXKOUwQmP76NsXmmJDRpRQ7Cevrc83K149+49qoRf\n/d0vaLoddV0xhI77pzvSUrFcHrHdbbi5XvHuT7ds1i3WB3rnScYhpwiWznV0rsf6QKkNMiiafsAN\nA56AVOClI58YzpZxoLvdbGnaDudieLR2nsFHl08R9h7rcfzighttsveKy1ignXcEKcYYNx3dEb1A\nh8h8CVJifUCM3PbodBqHvd2uj9a5CJSPrBnnPdb6aP7lia6af+X4mZSd7jBwG91QDl2okGrEcveF\n1vO1mYgUMl4s9vDKV8k+e9tHYsV+9lH5qniNzmb7YcP+z/4IX33hLzryPc5zePDhGz/6YnzufRqp\nRApDkkxZLNLoByE1w9CBEBhjCEzGBciglB4luSMeHieXI3wUDtcs/icAjRQpWTLl6Og8Zn/6yAoY\nhkDfWzItwO0XN0dgGH9fpGN6F/nAMVQ6MmWMyUnTCUW24PzsLUonJOmEMluwmJxQN1seqgce1vc8\nbO/p+wFne4okQ7oBbWIua1M3HB0dYZKU3XbFavfE427F3XZNoiSu92zWPakSkGl6O5DplKzMmR8t\nSfKSJM3BGLqhQSswMgo71o9PrJ5WeOfJ84xyOiErCtIiR2rFavVEmqQcHR2x222oq4ahtzw83LEy\nT7RNS5bkVNsGCRwvZ6RpSZIUpEkBQ7Q+NUZjB8diOtCfXdB1FQHLdDbBdp4PH+/Y7QaMlPRSIZTB\npUeo8gSVz2mHeEMGGyKU6vddo0O7HhUqErVFG4vSCnqDBoT0SCEitDQ75nR5SlkUpIkGccFsdkqa\nZrTdhh9++P/4w7vf8e76PXmeU6071qsdw9AjVEBngtAE8rLk9OKEX/3ml8yPcpr2idXDGi0N8+mc\nqqq4f3qkqXuMESRSUmYFQsJsNkUqgdKCsphSTpaoMrDdVvgQyLOCYbCstzseVlv6waGURmuB1oZh\nsIfUHq00iTEkxhwalKqq+fD+mtZ1VG3D+nGLbQfyiWS5TGmWCV0Bf/r97/m3f/lXHu8eqeuawdlR\n9BMj3axzMZk+hBHHjjXD2iE6JhKwzuOlYvXQ8sd//0CRSXbriuqpoR+GaOvhYmd/aB7H+gPiUDkj\nAUUeGCWBuGCLANKkaJWBhf+fufd4kizLzvx+VzzlOnTqLLQEehpAYzgAuSGNXJAr/tFc0WzI4QzQ\nmEET6K7qykoR0tXT4gou7nOPqKrsBmBcFJ5ZZkZ4hnu4P39+7rnf+YStTMh3lQpxFA0d9CmSrrPs\n1u2oaBfgdVC6S0B7vAtBHcJ9f34HPxRG7p9YQI6dcVjBRivJA7QhIWRkumMnqlT0WJbHAv7YMT/B\n3Y9w1lMc/BEFP/z9fajkyc/zbYfEP3SIp0X38cYj1CJljBCaJJohGBey8f+iKOEQVRfipR691g+P\n58bF5amS9HGLFZwLoygjyxb0fcvQtxjX0nZ1MEaKA33Oe8cwlAgBWick8ew4NxDIEcpSCCkQqODM\nmEw5O3s9Ph+BsJJER0SxZlNtKKqCqi3I85xJmhKdXuCNpWz2dE2PGTxXz58hlePj+6+43l9zu7vn\nochJkYgBhsby7OVLvPHcXt+P4hFBFMVhkXHB0c4ai+kNprd0Tccuz7HOjs54i2AO5h29MbRdTz9Y\nYp0wm0yom7CwOeeI45i2qdlu12x3a97//hNpnPDs6t+TZlOSNOxikmiKlB6tI6wOilqt5Lij7EnT\niKps2Gzqo+JOCInUCfHkAjE5xasM0w+PO1ADOIfwPZGtSVxNTEmkKnzqcTYN6UTj9YAEGc9JkgXz\nyZI0yciylDSbM5msSNIM7wbqJqescsqmpust5aal2NbgPUmq8bOIulLEacJ8seDs7ITJLAER2COL\n+RwZSb76uKPtW9qhp6wrpknCbDpjvljgPUzShGHoyJKMNJmhpSbSGU1TUpU79nbg9v6WTV4wGIvS\nKtgoaE1Th6G+Nfa4006iGOdcSKDqBrYPOU3f05gB0w/MsoRIG7JUoKWnKUu+/u1X/O43v6PMm8BT\ntyZAhnjwDutG8oP3RDIA1sFvxSLVYSZkQWjqsuPmw5rEh2ur70wQ0REk9Y+UPz/a3XIkGBxJE+Jp\nMxiCNZwNxV2ObDnjLKOqg4Mo6GCEhRBYA209jH72Cq0j0jTB+eDM2XfD6ID7edrKD6Ts9OO2PlBv\nhBvhDzn+r3dYa1Bx8kiXE+HlJ3EKw9Oi+zks+/DXiJ/70XXtiVfBt4ru8X7hgdx3H/Oznff3j28V\n9HGoKKV6XMVdmAdIZUMSjxBIGYFXIz7vj885bCoe7XSfsla+lysqA5ZX1x11XdB3Fda3aCOwokLF\nnixe0Xc9D+tPRLFiNj0hiiajTDwsKEorDhRNOxqNCRmRxROsHWiakt1uA95gfc/Qtbh+wHWWvjEo\nYWgHj0HyzTdfs12vOT05ZzJPMHbgN//tv/Bg9tx3BXnbULeOVMTMJyt+9tNfYNqB3U1Ol/dU24o2\nbyltTpo5vISH2zuaqqRram4+XtN0Dek05eLsBfNFEEA9bB/4eH3Nzd0Di/kCa1riKOb582ekyRxc\nGOT9/uuvQjRdsefTpw/MsjlSRkwmM7JsirWKLJ0dDYu0FERxRprNma/Oqasd+/2a2yZnV5SUZckw\nGIz1iCgiXV5h9ILGCHob4CshgvJYGUM81GQ8kLocTYPQjmYSMegYk0YIlQR3TmdpiGiHCOE0Uiiy\nbEaaLhAqDsHkOJ5dfEHdDwxa8+H9NfttRbPvSHRMvFDEQlEWDUKDsT1VlSNFzMnqGdLGyEiwr/e8\nf3hHOo0Df1kLupDQzKtXr1jH96wRlIUj1ppIx2idkSYTdpsbbm+/pLOG6+s7yrbEOItSKvCjCYZ1\nB/qhHxu3JIoZjKEdOgQS2wvK3NJ/3JDGMednJ/zpL17yk5++YpKdcP9pz/3HHQ+ftpheYl2wl5VC\nHKXsB1hVIlEiwtoBLzxSSYbRzsPjkdKhlEdLcDW4QSB8MJ8Lo8zwOCGc2eDE4z7Zje+pJ+QoiEPh\n8aGA+MEy1B1eepRVyODzh3RinO8dBrHgRUgB0jK4QnoRHBdXqynW9ezznrYdRvjx3xBGrqTm4DIg\nhMQLixCPjoNiBLwPA73g/yvxQhBMEJ+KZL6NcxNuCv88IdAfsObjj4w5eIefk/IQVkFIs/aHvE+O\n7JfPHU+L9reO445gfK4c6C0B6pE8hkn44wBkdEsTj8812BWYI3PlMF84YvUiXGhSSrLJBIQBYanq\nAe81UkxI4yVd17PdPXC//sDlxfPj/YN/s0BF8dhugLOGptnTtjXOOiZxhrOGwXQoFZKLdJwg1Gsg\nZE8+7HZUbYXWMY6ILJvQTyqCIVhO27VUbckge/AOYUJiuB3nAbv9DlN0mLrn5YuXvH35Iy7PnxNH\nE4QU9K5jOk3Q0pHGmqtnV7z78DXvP74nL/YM1tD1PdZYttsHiiLn4eGBF89fMp/OyHc5XWQQUtO2\nNVXZ8LDestlUJEnE5bNznLPUVYnSEXE8wRpAa1QUhW5MBuvlSEC93fL1pzt+/+4D7z5es97sQkqN\nVQgliX2McAppPEqMVhBOIr0noiQRGzL2CKWx+oxGprSxpM8kzkYoJNo6/NCRm5aq1yg9I05mSB3T\nmz6kwHuFUgkX528RUYJOJtx+tabbtvR5R7acY1xH3xl0pLl6fsKPfvaC09OToNXwsDw5I6827PYb\n1usdTd1irCcvCmIV0fU9wzAQaU2WJrSNoih27Hb3rFZnaO1QytJ3NXGacnayonv5gvq6xZgepcNu\nSoxQYqQV1liGfgAfsOAsSsYZQvBYyqYaKQS7ouL/+fXvuN00aJnx8Xd3/ONv3lHkPd4Hlbc8JF+h\nR0gzcLClDLi2dYHppqRksAMIiGPN5GTG6dmKk8Wc8r6mLhvsYFmkU4Z2oHMNrTHHgabzBIm+YCzi\noYY9xkeO6IAPZnVD3YHyCB8TuWAFLVEh1WyEfI9lyTu8f8S/nTPB2sCZYxMn8Djxb4h+KMTBbmZ8\n8cfhoh87UxG653E1dKPENkwrIUAR33/ccPfQTj+GQ3zu5w6z4sPO4HMUvz/sNPbkJ4CgqjxYkR5f\nIwdk5wD1yMfbOHguPIp1xiX9W13/08c7ZpF6eyzCUsojdh7w9oSu1zgc3dCBDB2LEIqq3rDP78mL\nDWenlwihONAwhQhy78BiDFvKvFjTdTVaJUzmp+hIE8cxs/mcOJYkScx0ugQ0bd/TDJ6yami6jrqs\nmUymaOmDf3hX0/Qt6Tyld45UWOZxStPVKAGJhmK/xtaGONa8/eILXr/5gslsETzJ24qiyRlch9Ae\n5QTZNNAHoyKi6Ru2+w3TdTa+JkeapuRFTlPX7HVOvttxdnrBdDKjqTuKomH9sKfvDf/uT3/KZDbh\n0/VH8rri7PyC589fYs2AimKy6QKpdbBvRSHQ1HXHp5sbvv7wnvuHNcNgiHSEExFWJkgRI5xEWYdy\nHuU82nqks8S2I7ENyluMnNCrGT0ZQbsZOjTnHNaHEPG6g7z25DU4H+EcNF1OZAZS7xGpxiEZGk95\n37L7UFBc57R5SyoDPKVkxMtXz/nZL7/gZ3/5I+anM3QsKJsc6SMethtu7u5Zr3PqtkcgcMZgIkNe\nFXz89JHVdMZkklGUEXWzZ7e7QUpDN1Sjyhqm2QwtU+plGwq4DPJzMw7plAqZAQ4X1J3ejbayCtyA\n9IESOF9lmMHTDAO//eaG23WFa+DTb++4+7imaodjFyyFJlIJSsgArVhzZMMdPvfmI70AACAASURB\nVIxChElb7z1CBlbIfDZluZozX8wZOovBhKFwpBCDZfAHKPZAjjh86t3IsDt8zv1YaAOp4lDczWCQ\nVqHkuMUXAVoZCYkBrDxACp4Rag4DVWctVVUToCjAa4Iq1H62Fv1AhTwMAwGcEzgn8E5gnUOPRlnW\njviUDJ7B/hB9JOS3uudwDg7lMfx9iHPjOEB9/N1Pi7gYn4t4IgoCP5pTPa58T22pvnscF4zDzxyx\n+m+/3kfq4mPxPFwG31KJPtk1BLWnAh3OR/jjnyxSwVPmES4StF1HURfsmwemrEiGjLYvyctbyuoe\nY1pCpsHj+Qse2gfVGTg3sNne0PcNs/kJJ9KRpVPSWGFnM+S4TUVo6q5nV9/xzadP3Lx/hzCWzEe8\n+eIl5+crHh5uyesd1htefvGauNwg8z0xCQ/GoZ1nEQv6agtOcvFixU9/+VOev3pFZw13+zW399c8\n7O6YTWJirfAG6q7i9OyU04tTiqoISTBdTRxFnJ6esDxZoCIo9xV312v2my1/+RdTVovTMUmnYbet\ncECcTRjcwH/6z/8XcZzy9u1b4gjKskJHCauzc2bzBVk6RakMzEBbF2w3d9zcfqKqK7IsY5ZGNIOi\n8VNinWAHgRoMwlmU9cTOIWxHNFhkp+hcRqcTjJLgWqLeoHuDMwbPAD4kYvWRY7fv+ObjntevnxHF\nPbv9HVonTGenIBUfb97xd//33/J//h//kS///ncU6w3CBe+QbDbl9GzFr/7ql/zl3/ySL37+itqs\n2VdbHjbvubur2O623Nzdsds29GPi0WQWRHr363v+86//C//Df/fXnK1O2BV7eluyzT/Stlu6pqLt\nO5RMmU/P0KIFfw3SIzToSI6iHzdeZxybF2/dWIwF0gcPbxkJlqsZTWNp2p6i73hY1xQ3Dev3e0zX\nj8IbA0qjRPDX16MavO2bIzbqvD0W8sMvFj7AIZEeM3RVjJpqEhGjEkFb9zgzBAvog198KN9j2/lo\nwiXw6MOcLlQo/DjjCyiLwHqwcsSOwzT0uDyE+wWhlPchwkMQCvluW44Ln8a7KNQD8W+okDt34GAG\n3wMhA3whlR79UgSaQ1cethyH7YsaDeG9VzhHwB0FgQrkx+EnB6fCYMhzoC/6McvzUJq9t+FnDvc5\nElbGkKYRWnkslPB9oPxx1T/819NiLp7cFl7DYUArnzzU08cUx07ZE8QMjOwSY4P9rx8GxOgfIZSm\n6wuaNqeqK9b7Ndt8S1G1RNpRFCX73X8jzx/wdmA+OSHSCXiPGVqUVHjJceczmJaqLsiLPXm5ZV/l\nJOmMk+U5SRQxmFEqPO5YyrYO3XtbcLqYcDpf8Sc//vGY0pNzv16zy7dYLLPVEmuCJ46OBIvZhEmU\n8vzqOc556rKlybuAP5oW09dEyiDcQLnd8/7dFikFWZoAjB4UYUB+slhxtlyx2ezJ9w1OOpbLJUPr\nKXyD0Ir5csHy5ITNpsQMjqbtsd7z2y9/T1mdMVtOqMqWT9ef+PXf/i0XV1dBXHR/zfr2I9lkznJ1\nQZJEKAGLScaPX71CvY1YzJZ44/lwX/D1fU8fxfSdD+ykoWba1cRdia3WVPkDQ1ezmk3JJnOUjhkG\nR9Nams7SGhNCQKzDWiDyPIiS/0jNVHb85E8vma0c1jZ07Z69c/z9r3/N3/2nv+Ob//f3VA97/OCY\nzWf81X/4c97+7C3P3rzg7Z/8iOXZCcTQ1GvW64IPnz7x4eM9ddPSdC3pTCGH8JmMM81gLEXX4HYb\n/vY3/5VnF5cs5kuWJ+fMZpNxoGTpTYfqwWpHLzoG1XH+5pRqU1HXPWXe0zfmKHUXQhDFGqMsZjCY\nYRihJ4upej59uWa6ysimGltZdjclm5uSpmvw1iJ8yPVJdDyaWw04OQa0+OGYZ2C8JRqtAbxzTKMp\n6TTj5GLJz3/1M9IspipKTK/pSkFTeybTlEjGKBkjigp6wAp63+FGj6IQK/fo4HTAFpR/0rmPhVkh\ng/G6GJktfhhrUKhDUgiSOCabpIFyaC3WGiazCReXS+aLlN/+ww1FXgZ7788cP0xmp7UjQ+PQQ/OE\niRFerBhftCOkAwUK0OPKF9gfYpwi+4CLjUnqSj4xm+JgGnXowZ8Ofo/lflwIAFwYQvBtnedhhf0+\ni0U8Mlw+04l/9/tHW9o/PDn13/lCHhkt4UK1psX7UeGqIspqQ1FuqJqabbFhVxbB/1vvqMqc/W5L\nmsQs50sWizO01nR9Td/VTKcnxPEEsHRDTV5ueFh/4n5zx67YjF4PMcNVy8nihKou6NqW3vRYZ+ld\nT1nnOOeYpxknqxWr0yW7vKCsKox1DIMNocvOQiSJdUyyijmdnrDI5jy/vGKz2dJWA30b2ApD29I2\nOaZvSSPN6WLJ3d0dTdfQpgknqyXIkJikhWQ5X3F58YKugfzuhrzOmcwjdBSzPFkxm2fEWUzTtxRV\nSdd3oVuTkOdb0hSS7JKyqumagSxJiZMIrSTTbE7b1ljrUDpGqgVpEnN1cc5iPmcymbFcrGirCuJr\ntsOGfa+prME0Bb56YGYKVqZgaNe4/J6u77iYXHAZQ5YkdNKRO0PhLA2WyjpqY6lai+ih9A1fmZo3\nby44OU+4eHZB3ZYhOWm948vf/o53X71jc7NmaDqms4yrV8/5y//wK3765z/l/MUly9UJg3fk1Za2\na9nt9zw8rINYaghsjTRT6CRcq9NJStW0dL2hqAtu1rfEieby8orpdE6WZXR9TZTEOOXZdwXka6qi\npGxKiCROCuqmo+8DtKKVxAzj519FIEVIUnJ2TLEH1w2sb3ZYZ5jahKbv2T/UVEWDs4FWKAkaBRHQ\nUTwG4yze25DUhBj53o5obOacJxitLecszpdcvjzHDB3bu1ucsaTpBHU6J0kNne6xA3Rdx9HX3zqM\nCylbRyIFj00iY9WQB28jETICxFhADmlnYJ/0f4GdNpllvHh5QaQl+b5kuynJJhkvXl7x+s05rpfc\nfAhh4p87fphCbhwoUEqMeHZ4AxBBKu68R2s10vQC9ODsCImEpRbnA8wQdC6Hrl2gZISMA83p8wPI\nw2LhRwqUClg1Di+eLBpShQvr6WLD9x9OCHnEyD7/U///Dz9eLkJYBMMoUunC4uUi6qagrArqrqcs\nK6oyx/QND33OMAzs9yU/+8kvWJ2csVyeIhTk5Zp8v+P5858wmyuE1GyLNZ9uvubdh99yff+RusoB\nT101NHXJy6uXVFXBPt+S1znGDWTTCVKNXu9KYwVYeqp6R9eWLGZzTG9odwPXd7csTlacnZ5zeXLB\nPJ2zmM6ZLxYU5T/QdYa2aemajqZqKIqKtm+ZT+dc/rsr6qrk+uYW6zyzyRwhDV1Xo7xmNltxdvGK\ntvV8+HjD9YdboknE1dUVb764YppqBmv5/fuv+ebmPdVQIhNPFGuSzOPp2e5ydruCWTpDiIj1dk2S\npjy7/BFRnOFFYC94Qrf79osvUDIhSaZEOmb9cMdi1zCbdbRbiexrXLXBPXzFTDY8iwY6VTPIik72\nvJgOvD73LGeSvoV9JcgbTzN4HkrHfW5xvcF4hekM+b7k4X5DUxtWy0vavme/v+Pm+oGb62t22z1d\nF3jjq6sTfvKXP+MX//7f8/qL10SpwgmD6Uq6Iafuwo6rrAqkkggDeEeSaBIUWkum08kIO9a0zYCU\nljRRLOcJWmmc9RjbgxQ0Q8/Xt9dk+5q+asnXW4rNQJ23dHWH0j50plZgTQiA0aOnkZQj7Xh0pLLO\nUeYVvenQa0k79JhO4A2BskcomaHTDU2cVYFJIvEkOkYIEd4r49FSEo05vavFlPRkQrxKECnU+5KH\nT3dYFXN++ZKLy+fs1tds7YYmbtFaIJwmkgrVRzS+B9/jxXAwBAEvcCJg3wgdmC+CwLQTIMdgHHcs\n5u5QPQLjTDjmJxN++mdvmU4U33x1w37TIIVkuTzhRz/6KdN4wu+WKd989f6zNeIHKeRDkK8FnBXF\nUa4vwZhhHFZEqHG4ZIwNYhmpiHSM94+iigDNyPBSfLCwPHa8BxbGcUJ8SLI+4Nmjw+BhLyBGvqj7\nNoMmuCR+7njajYd/Of77B+4hDruCf2aSOh7HUA0hUSIm1h5BRFUN1G3JYPbsdmv2xZ5msNyvH9jn\nW5RzpFHI7Dw9Oacoa776+h3X8Q1vXr9GYNjtr9nXG+J0io4zbu6uuV/fst3f0w8NcSKZJhlaCvb7\nDabr0UqT1wVFXaASSV/2VFXLu9/eslrM6VyHTWBzv6atG04XJxRFgTGWt2/fss9z8t2eWTTF92Eg\n1I5yeq1iHu43/N3f/y0/7r7gxYtLzi7ehKgvHfHm1TfMZxkeSW8cOtEslydUu4o8r7i+fUCpmDdv\nXmNFzz/87h9RUYSUmkrFvP9wzcebW4qiRGnJyeoULRWvXzzn7ZtXvHr7kn/8hy8pixKvWk7OXjOZ\nTdnXd6xWZ0ynS+JkQppmGNuSprPAzwe6vqHvg03A66sL9g8VYn+LfrhGb9fomYdEE6uURbbEZ4IX\nly85X6RkiaQXlqEbMMoSC08yh9Q5bNHQ+gSdTlhdLvizP33L61dXDL2hHzoG02Ftjxksznp0FPHy\n7TP+5n/8a/6n/+1/5ur1S1Q6wWJo24Lt7p6bh2+4uX2PjARXL5+T5zXr9Zq2dcymE5SEJNYslxMW\ni4SyTtjtShZLjY4bivoDn+5+TzcYhPZ4F7He7dhXBZtdjW8NdANRaokzx1DAJEnxvaCtDMY1IX/W\nPZrkubGBMiP8KQHbu6OOINDuxiI4unpKcdg3j/TlgypyFBNKKUnjGD0uGskk46d/9WNWL5bITLCI\nY+6rgU3es7xY8fpHb/nVX/2CcveK//pf/oF8V451ZSAaoSbZO3wfoI9whO7beYcVhNB0EdI6g+f5\nwbHwAN2GmcABRw+NqkbrCBUrqrpCasvVi0nwjxGeyWzJr/56wcXZhGfny8/WiR9IEHTwfAig/zHW\njHGr4X1QGsYj51IcxBgaJaOxAz7QF8evR9dDKdWxAD/R+BwRqaOi9IhRP2WUPw5UnxbiIE46MGae\nHuJ7f/O9r5/cesTJ//nz8/Q8He4rhUZJkFFELQvarmO3u6VuSgYT6Fh125CXBRMVkeoJSZQymS3Y\n5SXbzRacRynPfJbiXM92e09nLA7Jbrenaku6ocFZQ6ymxFGEEpqyKdnt92TphG5oaYcG7TVt17Ld\n5KzXDwyuwyeW2lTURYXtDHVZU1Y1cRpzeXaK6XrKoubm5pY4iUmzlNlsSl8OVFVFXdd88/4d6Szi\n/GLFxXTObHGCQHF59QwhPfu8YJMXJC4jm2Rs9jlND4MVvH31mvOrC6qh5Nf/9Bs2ux1dZ6GBDx9u\nWG83eGk5PV0RJwnSgfSSSTblzeu3aBkyRLWGF8/fkGYTrO3JplOmswVJMkNJjfbBUlWJmLqtKKoc\ngSCLYuZao+pr2F+jizumpmWqYqIkNA3zWUocx1yeLzlZJcRK0EcGa4N5kvVBVJLKhiJvMWnM4sWS\nP/nFK37282dcXi5RKiaKUkDSNg2mG/BjIX/z47f8/M9/wY//9GekkwVCSKx1CKmw1tI0NVVT4ZCk\n2QRjQ0iDEJ7lfAneEmnBYjohdQYhQwTedJKgFKy3d3zzfkNRd8TTCO81Xd9jhoFqV6GMYhqlCN0h\ndYAe0izBK8HQhet6GOcAMPr4Pwk8lwdXE+uDuOdAEhg/E8KHuqCEColYIzVPjYESUkjsqB6NYg2D\nCU2dliyfrXj+xRUq8nRFjbeWdDrh/OqEl2+e88VP3lLuJ+z293z89I5iX4NxKEBLsE6HxYeB3rkx\nHegw02LcLRDq0aHOjRXBeoJXi5d44UdCW/B96YeB7WbH0DWA5+xywcM6R2qC8+TzJbMs4eLs5LM1\n4wfikQc1o3MeIc2IGwGIsfMew0ptsKFUUqN1HBJuRm65lI9Yc6Aceg6qyKdUQsG4pRm7/sPFI8fk\nITt6HRyYMGHBCHd86qsyMiO/dxxW23+JAhQei/m/riM/TLeD3F9pidYx1hoeNrdICTpOUWoSBpa2\nhzgmy+bMpkuSOOJhqNkXG7puII7g+bMLzs6X2KJnvblju88DHh5J0hjqosP2Gmcscaap6pZdvkPX\n+2MEVTf0bHd7tus9zhrqoeIuN6z3a4QVuM7yrvrAyWrJy+Uz5lnC6XxOWzZ88/5rRCLJZhknywXV\nfcP2dodzns12x+3DmodtzsXzkKPohWOxOuNhc8/twy13Dw8k2ZQknfLVN9+QRAnG9Hzx9hWTdMpk\nvkCpiN1+z+31muKuoW8GwBFnAu0d2llsZ9mtH9htz8HH/OIXvySOA2Vvki1w3tG0BUk6Q+kouNiJ\nMMSK5AThFX2/JS92RFoTOYEvStzmFnbX6GbNaao4mcZMZwnGDMy1YjqNODlLWM6DOnJIHEpnTLsW\naweEE8S6Yl0M6KsZb/78ir/+X37O69cnLJYZSTpnMjlBynvKoqZvDc55ojji1dvXXL14FqwN5IG5\n4UnTkLupVdAMDIMNsxalmEwykjhitVzR1i14S6ISPBLpW+zgg5JTZTzcb3j/cce+6kgWEc5ZYi2Z\nJxFNa1BEZPMVvd3hfIcx4XoVCJQORdXY4HSa6JiD54gemzCPo7ehO8f7oGgUjxRlKR4LuZYaLcF7\ncxx8OjsyybVmNp3SFiW9M7TeYKUgylKyacTuYY2KBK+/eMaf/OwZz1+dMZnNGWzO5es5P/rTE+4/\nbSkNSCsRvkcrSaI1RijsEHYRYhSNIQ4Wd24MbnbHXGFCbz7SKEaZvQieL0oLqrLk9199g5Jq9OBf\nUtQdUSqJMoHXGVev57z94vln68QPUsgjnYZthXV4OwS5LOBdKKRJEnHAuB/VjOOJGjlzB7EOhxM1\nQhyhLj+lAgKE3MrBDgxDT1gwgnJLjp7oh9+h5MFP4WmhFU8e7/vDzn/N8a8p4offefB/ETIowYT0\nxLFmOp2yXC7ph47eOtomR0jHajHjzfOXnK+ucIPj46f3LFdLVqcndG2LMJa+a6ibmK7ztLWnLAaS\niSfVEVGkmS9m+B7yvCCKZ0znM4gE+80DZrAIJ2i7nnyd09Ydy9WSeBkjYkFf9cHsxxqariftG4wf\nSLMJyxXUnWNXNZRDiXEGKQi4eN3S2QFb1TzcbfjwzUeuLl+HIADbk+drhFI8f/YcFSvqrqfrG6bL\nCba37PItn24/UdUtX339NZtNQd00eGdJpwpBkEmvzmb81a/+nKvLczZ3Dxgs0/kMKQRpMmM6mYcm\nQSq898FTWkbBT1schvHj9SAgSRMW0znbPCe/u+Pmy6+p727oyx3eNaTTGYupZJEoai2RJliWCsTo\nOZIg6PFEKGVpW4NUkjkxl1dTHnRLbSuQAfc1ZkAZR74vGTrHYn6KGI2a8BKHoe0r8vIhOEGanr7v\niaOIbswm7Y1jlxe0bZDLR1qRTaZ4JHXTYoeOxSSiaFuKvMMazcnyGZdnK5SUrDY5ve8ChOAkWZzx\n6nKBLGC77vj44YYoswwWdJJQtx3SgsehtECNtFmlFJHSwfBKKaz3mMCPHWGTsOt24449EuqYsxkr\nTTS+J8Pg8DKAGcNggk2t9Zh6jJuLII4lm4ct8muPnnomsebi+YrTc8HPf/6W2UxwffNPfPj0jqrY\nMT9Z8OLNCZuood4bqqKnMyGKUglJNDLCj4KgQ4zbWHdC8Ll7bCQJcK6UGqHAYXDCcHm1Ik0Ths5g\nhWe7K+mNwRhHFKWk2YLpdEZd7bje3POTv/h+nfhhbGwZ/VPGNy0Q4cFJj5bBZwAYYZDHlA9/ZLR8\nW2n52HuPPGz/bcDkcLIfC+i3Ze9SHuF0EEFA891ie2CJ/qHjjxXnf2m3/sfu58fF6sCbj3RClk6J\n45S6a+j6Fo9kMUkhjTldnCFFRNHsWW8f0Mkly8Wc+STkSiZJRpotkKrAE6iczgVPB2MMWaTpup6m\nrojSGUmW4L2lNz30FmkFth3AeGIVMVvOcVEQInXdgDEDfWdojaPsOrZlyc1mG/DYIqcxhroLVrK5\n1BT7gt70RDPNJMtIE40ZevLdmq6vqdqSpq1g3DJ7H9gOgxmQWtI2Lffre379939PXlRc396R5yXe\nG6JIMV1kRFGwS1idLLl8dsWLZ1dordjt90Q6Ik0z4iglijOk0MdrVPnoaM729H3x4/uupERLRVvl\n7B9u2d9d0xY7GDp0GAPhCXBh1RoG54iiQGFDKnQUArelEkjlA99CQuoNy0UcoJXVijSdY+zALl9j\ndgU3t+/Z77fBKRGLE6Hc3W3ueH/9e/TcobWi6weG3rCcLxlMOI9129C0LW1rMX3wn8lShzGetuuQ\nWISWdENQCbeNZ7+tmcQJSkrSJCLSkqrtMRZ8Flw3JUGPYH0f/Lq1QKeKoTeIIZQzJSVSCqwN2Hak\nNT5JjoPA40QqVD6EkEhPgE+EIpYRiYrQIxsFRk+T8f7eGbSKkM5hup7ODBgp8Naw2+fYqEdmA8/P\nT4hE8IFB9AxDztAMPNx9pChKbGf54qfPmU4Krt/tqOsGM+L6iBAQEYnAjvHH+nCImgwowbhhH2sE\nwTZgdGcN14/BecMwCLq6Dwwga3BuYDJJiCLFMDTYvuL25iNf/tM/8r/+79+vFT8Mj9ybY8Pr3YhL\ny1EUIIN504HTfTgpfjSj8d4H9deBDgiPlJ/xONx+UIoCIMQx+edgihXQq+/GqT1yvZ8e307W+fbx\nx7rs7+LiRyHPUxXodxSc373tW7cToKJIJyTxBCE0bTfQdj3zxYyr07OA+aoFD7sddw93lM2ebK9J\nI8Xq8pL5dEWaLfFySrLeECcJ00mGjqHpGsqqYjGf0NQtVdESpSlZN0HgsIPF9zawHJwkiVNiKYkn\nCUVTUhZN+PD0Pd1gsV5QtAPX6x3+y9+x2e4pihpn/cg4cZi8odq3CCVZnk+5mJ1xdnLCdBpRFTv2\nuzW7coehJ4kStIjYbkuaocMLjx0sTdex3+a8e3cb6G5DD1KRxJo4ipmvZtiZRUvFycmKOEkROiKd\nTvC7HO+Do5/WwTrhoMQNqOaYn/jU0Mz7YEHrxuvSesp8Q12u6dsC7zoiLVEipfdQ9JbOd9zu6xGO\nk/TOYaVARlEI1o2CYRnOY91AbDWzScTszXMuvviCxfQMYw279SceNnse9rd0VY+pCPMJ7TDA1x9+\njzoZaOSGOIqxA+AlL65e4HzDvthQ1hXWW6TwVFXDbl+FFJ1ZhhSO+SxGpQqDo24Hqmrgyy/fUe43\nnF+kQWruNW2R44SgTxVV1dB1BqFhPh+DJATICZg+nCNnXfBXkozGVJ5Ia5SStH2P8MEjRQoZYAl/\n+CyMUhshiJUOhVwE+iFCoFUUZmXeIUUQ6UjnMdbQGkMvPKYV5EWJVR2y7plqR6wS8JpPn77BujOy\nNKIu9nx6v8EOgv/+b/6MLMuoq5b7j6Oew4UFQwlFIiVmxMFDKLwM9Y1Hx8TQgcmR5cYo5raBeecs\n2+0WLTXCSU6SiCRWTCcRs8kUJQy7zS3LuOebr/6Rv/vP/+mzdeYH8iPX46okEFIcceuw7TgEKI/J\n0UqNq/RjR24DueSY/iFF2KZ9rjgeCmDI+9RIHaiOztsxjWjstv2xJT9um5/W5n9JEf9cMf9cus/n\nLQG+fzw1yQpMnUe7AucMwsNiOsPZCwYzkGUZSaTBQdcO3K1bBIbLswt+9cu/4dnlCzwCYweqtmVb\nfMSYnMvzCV+8PkNquLm956uv32OsIEomnMRTnDNEAhazFfNowvphw7rYMhiP9R6koL77FDxGkoiz\n1YKq6smLhlrUWKCoW3i4oSgqurZHeoVpe5T11MoSzSJmi4yTkxl0lqqrULUmTjLSJGO1PGGySBl6\nw26bI6OYvqnDkI6wDdc6wrgGREhniZMYpUBphY40aRoxn055+/oVpycz0lhi4og4kkg8ph9CBFnk\nkDjAYl3w/BaR+s7M5NEVT+mQgD47XfDs7VXwwiFje1fSlg2DbbjLW5zvaRqLEJBmhsFpvFQwFnAh\nLdIpZKSw/UCSpTxfrTj7i1+wfPOSbDZFKI8TEnYb4jhi6Ay97VCpIp5rEJaWjvt8g/8EsYxZTk+4\nOL1iMpuHIOayRAlJGsUMPrgfNnWPc46u65jNMoQS/Pabj2x3DVXTgXPk+z2SDhkviaKY2XTKZlPi\nR6uIZujQc8U0S/Da83Czh0EyjTK88tR9S5OHWLYQJmEx0oaUnlCxA2wiBFnkqIcBMzJaDhRc68eP\nqjiIccbPr1QIb0eLg4BVG++o3UDNgMWjjGS/2eKZMz+bsZheMJtMGYxgty9pmppIStY3e4p1RT94\nvv7wgWLfUDQ1gzE4Hwg0By55JASRlHgnQ7oiYizs4doQHGLcAg/d+gFrhgC5iCDz73uDV4JEa6aT\nCamOMa2h9R2bu4IP2QOi8dxdlxTb/rO14gfzWpEyXLzaRxy8xx/ZIk+9UkYl5jgQMdYeB5MHRWY4\nPCH95rF7PviTHAaFQjyGpUJ4w4VQPPqdH57feHn8KxGRz3XWT78+FO8/REH8XGF/vO0xgds6y9B3\nwX50uiJSYfAZxwmTbAJAXhRMHu5JqghlDKfLU85OntF2htv1J/b5nqLYMosly/lJUDwWOx62Chlp\n/DhISqKINIpYTBdM0inlEC7RAUv/ZIg8NBatNZPJJBSYxpApSTRNafsBoSRppOi0RKcJs2xBfrfH\nDB1eKpwElUQs5iuykwwpNUiJEx6pFdPJjMk0YzfsqZpuDC3QCKUwXR8S15MU5/OwpzoEdBDSY8qy\nZLWcMZ1lnJ6smM3CB6ZVkkka4t28tdRlwdAPJEkS7jt0NG3L6vRZsIP1Bwj0CZtIaeI0Y3EaBCZS\nxuQbhxMJMqtp8i1N2zMMQTRijaFsB8rWYbyASB6zY423tG1LUzeINGHybIWPFc3QMBQ9q9U50+mK\ns9MWIRVtdUdRr/HeomKBnMAgDEXbEBUlJ7MT4jRjOp9Tdx3N0I/kPoUfq7GacAAAIABJREFUO0Lr\nLNY7rHXUdRDAtF2H2xmsDWyQ1cmEaNRMXN9uybIUIT0nJ1MQgjhRDBYG7xCRIJvEpGmGh8BuMkHs\n1TY9URzYBJ5gyyGkQioZ8nm9QDvBJM1wCIxrsc4Hlgf+2MWPnDXk4T2QIRLNjgQG5x3Ge1pnGIRD\nRYooiWi6jmRIWCpJ2wiW8wmzZcbH25z19Z5y17K9z8n3HYNzGN0TRRFGeqT2CBl2aNY7BBbpJUqE\nDAHpR8adOEC7nqef6ODFbseFzI3e7hHeidEQMISFe2eQEprY4Pwdpnds7+64v75mu6k/W3t+mEJ+\nxLNDWDE8hgsfC7AL27AQqXSwknQMw4DWOvxRYRE4Pt7YXYfO6fBBe/KLvUAKFQYn3ocLSGgORfLb\nx2Fb9M+8ls8U36fd9nephAd+63cL/R+CWp7edmDsODvQ9y3OOubzU7JkirMOHUVk2RSPQKoZy+UN\nRbWhLOqjtFipiKoqqYotDBVXF1Muzk9IZnOu17fUXYvXkljGaKlIooiL80tSnWIGS1U39HZARMHJ\nL0ALYUo/9JZWdHRZh+s6UuGZn6zYlyVOwvlyFSw/veLZyXM+VILCFIhY0foOYwRaTnjx+g1SSvb7\nPVEcoyONkIphsORFxXq7o7YhJi5JM/qmRylNmilCL+0QuDF1PPCU90PHdJqitEYqTRJnpFGMVsE8\naTbJ8M6y3dwjpGA+X6Ckp2triqIcqYcZj01GmCmEuYUkijOWp1dIofA2ZrJcE7cSrbMQ1+VynOvJ\nYk3TWjpj2BcdrXHBFVOGD/pgBsqqpCxapAtX9vb2E6K8ZzIJObCz6YrzM8UweB7kjq5rwTtUFFBa\nK4Inez9YprM5JyenZNOM67sbjGmQOsY6STf0tH2P9QYVheHu0PXkeR1gRwFpGrNaJJxdzIlVQlnW\nvHv/kdWyZ7mc8PLlGQIRsPV2oO1bdCSYRRmr1RJTOkwRfL77bmAYLFEc3gOlVCh3ArwMUWzOBBl/\nmsQ4B4OxGG94OvU67oLFIVwmCG9658bEJI/xjsE7em/xSqCTmHSehQQnYZGR5e6uZDpbcvZihVhL\nHrYN775cU6yLwALCc5tvePbynJPZHJ0KhHJhRz/+DpwlkRKFPGb3hrxngXVPKBP+oFR3B6A4WFWo\nCHxgo0mlyYsSWQVhY5IpnAdrOj5+6qj2FVXefLYO/WCmWaHjleHCGzVShwLnrGUYBg588UdP7mDt\nqNT45skDyd4/nrFjJ+6OBfJYFsXBkjZ0e2LkjB/8Vp52/8fB6fee9x96Pd/+/nOF+gAhHb5/ipc/\ndTT83HEUBuHxbiCOI+JIEyUJNgoGP1EUh3QaD3Ea0VuJUJpXb14GBzobshZXy4wkWhCrhPPlkiTJ\n6GxQ3CohmCYpwUg1ZBc6AzfrNXd39/SuwQtDHCvcECKwwnnUVG1LWxeYzjCVimen5/zyl3/J79/9\nnrvtA009hFgsD3lRYS2kWcrkPGFTOJqq5cPXN6hYk6QRQ9tz9vKUpun46usPJGnEw3rD+083VGPU\nViQFiQzRdm4ImKgdzZnatkNrQZbGrJZzssmUtrd88+Gay9PnnK8uUFdBNIUQ5PmWT58+AI7nV8+Z\npnGAQZTDD4HJIXUYynVdT9u2oZPUCiFj0ulFSLinoGwED7XkoYmoK01XGhLX8er1kt7EGOu53+7Z\n5QVnZxPSJJglHVz5QLExHe9++xv06Yzl5Skvnl1RVgVl2XF3d892f4uS8Oe//DNMZzDO47oaL8H0\nlr7pUF5gh57N5p7f/Pa/oSPNdDqj7T3OK5AaLx3T+QQlE7YPewYHWInyHlpPy8CaCuuLwNiIJWfn\n5zx/dsnZckUWpRRlwTfX31DUNXXdc/upZJqEMJOmbmnqMAR3LuTyRnEMXmAGy2BtuH61Ps4b3GBJ\nVMQ8nWCaMX9z7ITtOJuQcRgcCsDbkABkcUQ6CgEjo8BIEGjMIlVkUUI8i+nMwHZzjVMtQ7xjW+wY\nhEFOFLpL6W2P6QzaKprOoWTH4Mfkr3GCafHgLcqPMz5UsB8mNItBzgl4P05aDgCRAgJE3PcDWkVM\nlglXV2ckiaAqWsqi5/mbF3zxxSUX5zPW+R2f3t3j7b+hqDfgCQSigMCB1foQEPzosR0wcw/OIr1D\n6wg9muDAI9PkKUfloPoMNMMRInnCSpHHYZb4Vqf7xzDrfy3z5Ls4+NPiffj+c4PPP4adh+cbknuk\njIKvjNI4GUzF5CF124TzmSYRkywligJG15uGZijREcxnExIZkSQpDiibmjwvMZ1hFmdcnJwjkXRt\nS1PW2MGQpglVUWC9CfmBxuEGGz58QuCMp+8t2JZsMSNKU6IkBSmDYs9DP3iGdgzxrdoQbjympzjn\nqdqGu/WaKFa4wTLJptjeUZZ7dntH0w/IJKXZb2m7Gu0dp4s5cZQc01j8OMbWkQ42oV4glaTpGigg\nkjFCRqNYJixwVVVxc3PN/cNtOGfxC+q2RApJHKd0bYuOW2IV0/cDRVmzy4vQWeoIpGS7b9jcd6z3\nitWrn7BSe7bXO7p1hxcFk9Tx4sUJCE9etuzWJQ8Pe86WU85OJwjnUFIymU4wUuDygevNmqmyTE5W\nzBcnAW6wA14KpA5F+fzsnI/vb9kUOfuhxltHIiNWkzlplAa7g7rgYX0PUjHJarq2ZzqNScZrBC/w\n1qKkwo7eRQrPNE2IEk1ZlYFdJz06kaSTEGrRVB2da6maiq43WCvpOk/fNGTnMdY46qJ7JBgcd6UK\nqT1d19ENwZJWyclxFtb2fZg9aMUsjql7HwQ4QoTd+QjFWkKDN5iO1hkQEEuFG3qcC9259IFhomTE\n8nxCHAvaqqHYhGJd9zVeG6qmxwmL1y6EVDiBdx5jDJ3pGawdU4LkcffvRYjxEyNL3CExPtg4HIZs\no8FGaDoPg9uxHnkHMtacnK/40Z+9pWsKhNoz2AAlpdMply+fw7Rjt9sh7v4NmWYd6pQYt6VHgbs4\n8OvCCVBKoXV4isIahBBoGQVvCNSIiT/FycfL4HsskkezrcNQRQrxZKh8KLI8eZzDc/xXAuV8m3ny\nLXHSH4FM/iW/R4wOkZHIOOxoPGF4HOCowAiydqBrS9JIMkkjnAmBsnWbs83vmU0SUq1QPrgjt8NA\nXpXkeYntHSezFT969SOkkKzvH/jd+iuyNGV18oz9l3vauscaj+0twjiwwWvCWwFe4QePUjFeKnbF\njrKr6Z0lRgSP6aJjt92jrUQlkm4/AEH45ZRnu89DMbYhm3UapwgFRV5ClDBbLrnL97RN8/8x92Y/\ncmRZmt/vLrb6Ghv3zKrsquoWuh8GIwjC/P8Q9CJBmtEIGnX1kpnMJIOx+WrrXfVwzSOCLGZNqQeD\nLCMIkOEe4R7ubsfO+c63EO3IoirShTsmPNfhkRLKqiIaR3QpnGNwHdZbLpZXyVtc56jco/Iasz/y\n4fqaw2GHUmfkhWa33xIjrHXB0LfovEYXM4bBsD923G2PeJERURgb+OHDPduHHdE4vv39P2BXW478\nyO6mRw4H1jPNm1fpZz9sjjzc7Li/37OaldQFZAJEjOgyJ5cR5QbsBmwICKWZL84ZXHJFrOYlIjtj\nvpizOj9nsUxK1RAD3gYqnXO5XJGpjOOh4dPtJ4YxXUCPhw4hFFV1RlVWLKqa3a6na0dESBJ3ZKTU\ngrP1DKklH24OKKXJCo3WEikjZujZ73f0TUNvDWMMDGOcsmJTyIfpk9+KECksPcaQLDcU2OhpzIgx\nI0okVWwyuwr0dqAgJ880VZbjvMMG99i0TYRLgvcYN6T3NoIWmhAF8QT5iQlunVLqZ/MMoudwPzIe\nHM3O8LBrmV0opBITnJvcCROSHx4fzYkUrCylQqakEQRiEuF5HAklC9FPhTzVkoicGC2QwK9TqlBi\nyCmdszpf8813b7i5/plhGLDWMQwd/eAIMl1MdQki/yuysX0KTX4qdF9CCl/eJ546KzkZR06FS0mJ\nkHJicjz5qEiZKEzJWzyxUh7RF2C6pPK8aD+/9b/l+Noy84mB8/mF5i9hr3z+s+WjGOpE0TxNFCm0\nNWJNx3b7gc3mmtEcWK3mNP2e433LTx/+he/eveLF2Zq8rokyEJGIUJLnBbNywTcv/4bV8iJRu5xg\nd34gCAhKJJ1xlCDBxoFcaLIsw0eREm1UpJYKhWAcRzYPd2QKZkXO4dhQqwKhI/vDJlG/vMAES1EV\nzGY1ZZ7RdgPOOYQUDM6RZSl8IMhA1+4ZNhvCMKCiAJVRzxaAnMKVDZJIpTNWRYnHQ/DkMkPrlCTT\ndS2b7QPH4wsW8wUfP37iw88/Yt3I7e0t+90usZxEZD6fkWU5MUSUztFlRT9aeu/po2RzNOyOI5t9\nz48fNzS7A4UIzM/XLJdzvvvmJR/+8Se0nbNaF5RlwXxWIITk9atLjoeGf/l+ZFbCvFDkWqLzHK80\n8/U5v6tmDGHEWcuH64+8/3iN856zszVv374Fqfjp4zX73RbT9+DT0tlaz+5hj9IFwzDSdS0iajKZ\noeTUieclecyIo2Y4OI67jhhjcspc1bx9eYZUkmPbYUZQAcQImVe4g0HpipfnK7q65m53YHN3w2As\nQTjyUtHujzS3PYftgVlZpR2Xd8S+J8TA4CydGQjekwtJPyT81wZP7wwmejKvknfK1LiE6BLlNHia\noQMRccEyBIsSGXLatzkCQZDC3JWc/PMdNzcPaCTSqESRDQ6ZCURXUJcVpcwZhSUKg1eRssopqoKi\n1phFQI0OZR3y0fiKybgrjf0nrsrpXDyhAdMKb4KLw+N5q6RA4Onbgc3NAT9GqqpAXUGW1TTtgf/0\nn/4jqugw3rG4KL9aF361Qv44WsC0MHoqfic3wefLz1NX/RhRNi1Ev9ToPGetCCEfqYk877jF5/f/\n73F8jYr4l3XdfxkOn74Gn/FwRMSMPW37wLF5T4hHsjxS1Tn7Zs/d5o7N9oZXZzV+OSdKxaFtMGPq\ncQqdUeUzlvU8mfwLRV3VzBcrNrstm4ctfTswujEV9umP8x7nAoJIoRWlyogRvA/kSrN68YpL57i+\nuWfoDE4YZrMZtncYY7E4ZKYYnUXakWEYcd4htWTfthjnEmKfC3KhiARmrsB5Q29GWmPx48Bx1+Cs\no9CSWaF4+2JN2ySKoi4ExoNzyZjt/v4TN6slmf4Nx8MBY0auXqzYbh7ouo4PH35mNq+JMZBnBa4K\nqKymmI9sDgM3u57r7cD1ZuR+37M99NwfDEPrKKPl9m7Lu1dnXJ7PqWtNHLPkOzI1I7Oq5M3rC/65\n7XjYHPnh/S0vz2rqKsNGSXlxRnm+5nfrJcduT9u3/NM//ZFde0RpjdKBVbek7VseHh6o6pLz9YqH\n4z29i/T9wPHY8/KtZrHU+GjpNwEzBmRQFFIjHdjOYVqP6wMiCOqqYLmsWC3ryX/e4UwgONAxKTLz\noIhjxA0OJz3Nsee47+gbgw8GLaHIFX7vCGNEywweldmk6DhvGZzBTYvyQMCHNIG5Cdu2LmCCIxOT\n/wypIUMm+MwGmxgk05Ytn1gsPjhM9DgVUXmOzDTlvGK5rvHaJfvbIBFZmxSai5yAZOxd2rEYl1xW\n86Qd8AYMaUEdJFOCUKIQPiaAxSfa41PmAJww3TjdR0zy/RMtUSrJ+cWSusrpDi0ImNUz1uslUhT0\npme/2zK6liyPLM+XX60PvxpGfhqRPlNgftGtfs3f+zmt8MuO9zmEISb45OkC8eXD/2UGVv8tx2c+\nKV/ALKfbvwarfLkI/XPPVTB5yYTksjaMDV2/xdgN1UyR5zNmsyW3mw903YEYXRrrRIaLmofdATMa\nRFApdVwptBIEa5A6J8syZvWC65tbbm9uMeOI9QYn0mLUx4B3DudS4c2zjFympRVI1sszXry8TKwk\np3jf/AwhcHF5zv2n5P1yUrrZ4GDsiYTHqePYdrT9gJKS8/MleZ6T5QqhFX2wtMGxbTrGZqA/tIQI\nSkmqQvPyasW9CgyhJwjPaKYQklnkeNxzd/eJuprRDR1SC9ZnK+pZTdt1bPfbZNEaQZBh56DKHlWP\nfLg98uNDz8fdyO1uYHscObQjvY04B9Y6rj8+cLUsOVtWzGYZQ5uKkfVph5NnihdXZ9zdbDnuW97/\nfI+IZ8xmJdtm5JvlGa/X51z8zbfsDvf88OP3/PGf/4m8zql0zWg69rstIUT2uz3vXrwgBsvtwzXd\n7kjXDTSqJ89yZosSqSWbdkSEQI4mF+B6x2g93aHHj2m5+OLinPOLGXWV4UeLGxM0VWQZ86xklucU\nhUSiGLrA0DXc3D6wOzQ448nLSJEpSpmxHy24FEF4wokFMuHZzmC8JTDBnFNnF2NMnymYXq9EhnjK\nFzhFOTB5C3oCPgXIkJhULnjGmNKD6rpEZIpyXjBblugyI1oYMMhCpezOVc3YOUw7EroRp0DnGXlV\noIXCDxHbWfrWJigR0qPHiDhBJo/ncMLAE7EiteKRtPObNp/pMzXlMSitePvuBVeX67QDzAvqecls\nURKDQnUS4xpu7nrmy5x6OftqHfgVWStPhTucttBSpuR4EkXv1LKfbv+SRXJiuXwOz3zOCDlJ+r8s\nmP9W2fzXji8vKF/7Xb/2tS9piP/GByd4i3UDzlmc7dFasV69pKrOKMsVeTbj+lNLXe6pX2W8fv07\nZotzjuPIvjNsHj7R7vaMo6fQBUK6tFTWkhgFi0XJbFaQFxmL1RzfHnHjkGArKUCBVs9HWEkIoGXO\n1dVrMqU5dg229+z3B4ah4+XLl/RdA0NAzTNiBWTpwz+vlmRK4wkcux5jRwTJrzvPNAKBVxJZZ2Sx\nwtsASlCUJURJWRaofMEwKlqj2feSfjfgjGVeleirnNV6jc4z/ulf/0hnOox1/PGff+Ln61uapqEs\nCrb7I8tDiw8SoSr8duDj8YH/+K8PfNgbjk4QRE5vBf3o6MYB2/eooeVDf+CbF0vOVwVnZzN2bQU+\nTA1IQCrFYl7wm29eQYDvf/iR26akCJGb+wPf/k8rrt79hsvXr7G+p65LLi7PcdEghceZEW8ts9mK\ns2/PeXVxiZKCy5/fc7/raZqO3dhwc71h0VeMLr2G716/4nJ1we31RzabB/a7Hc2+ZRws83rGq8sX\nvHlzTp4LHu7uMWakriS/O7/k1cUFhc44HBsEOU1j+HT9wDi0eOcplOb15Zqi0AyN5fq4Z/NwpO88\neVkQXRLReOfTFBcDEYUWSQgkosB7l5a5MDUciQChZdJ6eFKwhCfVC6FSimq0qT44AjY6gghkhWK2\nLHEi4ILjeGh4tXyBl569axOzBEUMJ+JDYrfoXHN5ecXF2Tlja9lvj+y2O8LREa0j2NS5x3gS5T85\nriJSdkKMTPbaJ6+kKRpO8EiXlBKkkrz79lvevrkkuJ68mBOIGGfRRcbl/ILFumC/NzSHPW17+9Uy\n8CtFvYVHQOB5IQ/+VLBJS84IPvqJhXFSfz5d+R4ZKZ8dz5gh/DLi/eiHMH3Pv/X4shD/UlH/JfHP\n1+7z5yT/Xzw6CE8IFu/GKXW7J2LIdESrhMsrnTGfFVz5BXm2QuUV26bnp5uPbLb3HDYHukNLlmms\nCzgfyPLkUGdHgxKRxazk4mKJ6hVOTKwBOz1XEScedBqFFYoooGl73r//iHOe47Hh4e6eECOr8wUv\n3pwTnOXQNPhcwExgcYzjiA824Ygi4tyYOPJSMrY9RgpQkhgUwUVyIbAkWTZapWARnS4wUgmW6wUj\nkbvbBzAW2/dcf/iEFpLb9R2D7YkB7Bhom4Hdbgt4dKlx0dP2I/ebhvVVgRkkP+22vN8MbMeIV4lx\nNVrH6ALd6LDWo2xk2xnuNgfOz3OKKkPnGa5NPHHrQIkIQTCvNW/erAnZSH15hihK3HzO1bffsLq8\nIgJD31HkGf/w93/PdndH0xwxxnG+PGOxOMP7gAsgs5yz80vq97d0rmccR374lw+UyxypI15GsqtX\nLOY1t1HRtCPb/RFvHN54hjhy93HDxWrFcrZmObdY41G6R1c5VVVTaIVzjiKbo4XhsGlZrSpGM7Lf\nN6gsNWCjcXS94dAOtK2hsAYVIDqHn3jYT4xh8ZikM5kcJiqmTKK0SCSTiXM+evuobk4NW0rbySb3\nQR8DJibzqUJClqcFq/eernH0raPINYvFnG0xJCEaER8tQoNaVpTzFX/42+/49u1rfvzhZ3w0NJ1C\nickbPZ7QglPHLSeeFIgoOBnX+iAfK8uJbHHC0lOATap9x+NAP1iqKkMX6fdERYJM55WUGbOq5nho\n2G/br1aCXy3qbWJEc/KsYCro3vtncEIq7N5NBpAniEGkK9qXnf2XMIp45Bw+8cIfbxP//xeNXx5f\nFtz/Gp/8y9u+pCP+hY/67PHThj1El6xK8Tg/YF2L9T1x2ONjJOIocsdyrsmynGbouN0cef/ze5zp\nGTuLGRIk4TwMxpNXEEPAOk+mM1arFZfmkuHekw89eZdjO5P2FAJODnWRtAtVUjAMPf/Pf/lj8oIZ\nRszQs7qoOL864+rFOaYbCCrShRFVaEQAMw70fZcW1VrgrEVMW37Xj3giUUkIkkwVzLOc1jpGkR5X\nKAlKgArIDOZlSZCAMbQy0h4brj9+ommO1MuKvJZkMscZwXE/IAkUlcJN9q5C53iR4fWcg9V8f7dn\nM4AhSfadsYzOYpxP3jI+4qOksXC/77h42CcOs5LYkNgcZogI5/A2oJXi8nLG/NV3iPWakBWcNZY3\nv/2GxWrFodtgnWU+m/PNb3/Hhw/fc3tzzX7fcHV+QZaV3N0/sDUG4wPrs3OqrCSLkmFwfPjxBj1T\n5POMxVnBOLTJj7wdaJqephvIpi6yM4affrjmxdUVF+cXzOdLRuuRQ4GuCqpyTqEFIgrm5Zx57omj\nozov2B73NGOLzNN55vH4GDHe044Dox/JokSHiIt+EsZMMYYTq4T46BGIElAoTa5yfPBoqVMBj2JS\ndwZkTJ22jKmjT7v5gJkk/QiIMtUXKTWCHDtI5mXF4rzm7vrIGAxaBxweNORFzmyx4PzinKsXZ9zc\nf0JXCl0olEyfsRNzJYSnYh5IrCk5qV+JJMjnhIULhYhP0EogOYg6F7j+cMdsVvLu2zOMGZLfjgDj\nR9zgMYNNVNqgGI5/RfRDG6aNb4RTcGmiAz5xL5kM5d2EvwopUjTcZDObPIB53CKcoJmTb8pJdASn\nJedpU5x+/HOq4ZcF9ZeK+5dF+zRNnP7//LY/Rzl8fnzt+77knJ+er3jWrsQYCTicSyZMWhUIqTDO\nsG/3dH2LFC15dk89yzm29wx9S4ieQ3/D7uBwZuRyXuO0YusDQqaxt+sH8rJiMTtjtXqTxA7VksYF\n/vj+R7pmwA2BsbFIBTqX6EyQKUle5Kzmc6pixtg73v9wg/NMG3yHUBV5nlHlJdYHmq7jaFpkrxBK\nIKOiaxJ7Ia9yBGqK84uTUlMgI+gIl8sFq/manz7esO0bXEiMCaU0Os8YYqA77DGj4dvXV4zrBfcP\nG/71x/eMYYQx4GVGa3tEUFRFwXq5JBLZPhyYVSWvX17wD//u37OPK67vA7cDmDAFBNgk/zfWYs1I\ndFNRkRqfZTRWsG88uY9ED8bC2HtGGUEJvLG4XFOu5ly8ek1xsSQWOf0QOD8/py4rjIU3r1+jVMbl\n+WuCGSmzgv6yp65zNrst73/+F/K8pipq1os1RZaizmKI+D5R5kQRCVbw8cMdD9fHlP94PBLHgFXJ\n/lnGwGgMh6alGTrOLypyk6PrjFdv3/Hm5StKJdjff8R1LSa3LKu3xNKT5ZbtRvP65ZpMSWZacv+v\nBza3LdtDh/GeiCeGiMUlVgmpAIkY8dHhg8BEjycma1udXA59EMmzPQaESed3ID4uRTUCZLoI+BCw\nEx/fRxicI2rJYrXg9Zs3LOtzzmcltfT8s/oZpx3FXBNcjmktXdPT2wf+r//7H/nw0wc2my3NccRZ\n8H5iz6iI8ImwEYMgTMHvKdxGnVpUAmmPJKZIyShkCm2O8XFxG6xnc3dH/25NPX/N/fUNZrREKTma\nntFanPX40eGNRY5/RV4rYSrkJxrg49JzWgLIyXvFOfforZIsPtNiIcQA/uknfCbs+YWC+ksd73OI\n5cvu+JcWlP81COTf0uV/WdB/yavly9cLMgQeG3rafkvbHZKCLmqkErjo2TU7Pt7d0TQNUgaaHvoh\n4lykLCsWqzWvLs+IQoHMML6n7XPyrKYoInawKJUzX6zxUdAbgw2es6szREgrJ5WBjZYYPSaMzLIZ\nWUi5q9GlDNZ6VpFnWXrfPLx++ZooNd9/+BE3WY9Ws4pmO2K8RWYR75NJURQRZzVxEkpoHYjO4NyQ\nunYBWaFBgAuG/WGPMYboAplU1EjqsuTybMWxOWd0yQfftAZjAuvFmr/7/R+YVSXH45H9tuXVq99y\n+er3GHnJT3eOD9u00Ax+khx5kRa91mKNwVsH03TphORoArvWclnI5BsTA2b0DFLgVfLjL8ucbLHk\n6t1vKVYLdFkitWa5Wk7eNcuJyiYQUVOXa9R5ASItBTPdMpvVLBfnVEWFHUd0ppBT4xM8uC758Pu2\np9HHtMCzHuE9GoExNgUnBHAuXZBiDFhvUUqyqGu+ffuWeV0jwkhcl+hlQd+M3NzuGd2Y1MZFQdOP\nSEkS52QSlSk0CXZj8kBJq0wSk4XJmmDCkJOHScr3LFRGlRf4kDI9U/5mSjny8ZmZlpRkUjJ6N03s\nqXASBHYMBBsIS09VQTmL2DDwsGsoKo2LimF0OCNxNr0Wxh/Re4hxYGh7+sZgB0u1LIlOY43F+/EZ\nU+VEwXtixsXn1S2eWkrxmN35SH2OafI11tG0Aw+bPTEIZosVi2rN0N5x8/EGvKDZN5jhr6iQx0l1\n+cTjfsK0T/xx79NCJMaI1jqJgFR6cR754vGpiD8tDuOfsF1Oxy/V168Vzafv+bxbf85V/+91/JIP\ny+lVelzkhkgIIhUk29N2W4axT0ZHKgcZGb3h2B75eLflcDiQa5mB5ijIAAAgAElEQVRoeP6UNL5g\nsVxxvjwHkbE5tNw87AgBlMwRQie3wiwjz0ryvEoMAhW4fH0JxjL2feKjjxEbXPJsDo4QBVoLMqGY\nVRWXL85QlSDTORLF61dvQGd8uL/B9z0CSSaTcjeFC5zCEtJrIckmPDWSZ4lm1vRHbHAoLVFapJHe\nWvaHnofbLbnKWNY1tdYs5zOKIqW/uyZgjcNZh3WRbF3w6sVrqiKnyEq2+5Z3v/lbyvW3/LyR/Hg3\ncHsYk+LOT8k1MSa3ROsINmXNxmmSjEJyNJFta5lPcWeCmMRaBpwEm5y/ELMl52++Ia8WZEVBVWVp\ntHYDWlWUeUq28tYhRU5ZaLJCcTjs0FKzXqy4uLxEq4z9bktRFsm4TDkiAjcYxv1Aj0MpQZFr6lmV\nrAUiRB+IPg3EzjvMODIOA93gKfKci7NzXl5cYO1A1w24MFDP5kmluNkxtgNDP+JsYLNriDLijEfP\nC+aLkplWGG/w4an4MrHK0oIyJthhglckKX1eS0WmFEqki6cXKUTZBnB+gvRkgt2UVODt50yvALb3\nODzeOJQIoDqOzcj2Zsd8rZGhZNcNeCfSXx8x0dCbjqKP+MHgBw8+Ui0LvFXENiI7m0goE6YQJ8/d\nk6HXiSkZI48MxVP5Sf34ZBAYE9R8PLZcf7rnYXNMex5Vc3G1QIsM043Jx2g0yRbgK8evU8in8YLA\nlLry5P99Uisaa5BSonUy1xHyCVOHZ93wVMxPX1cSEPKzAvwl1PElZPGl98mXx3MY5VTInzswPr/f\nn5sAvtapf02m/9WvP04OaQMeg0uKtmGfQhzsiCBDyhydZWQ5POy2bA4P7LsNu66l6S3CR3Su08/w\nls3ugWVVsFosyHROP/Z8ur1hURusjYzDiPdQFBUhwuXynOPyQNM2rJYlwWQoAcY5pLVkSnO2PsMZ\nT3vskQLOVitev3jBN799Tef7xH6Zz1FFhco0xjqsD/RDw+FwoKpn1LrCMSL6kAq80uQqwR91UaC0\nYjCGZhjJqhw1hfZ6QRrjI0lsZA2jUinF52LN6Cwfbz/RtWMSlE2+H844rj984uXVC1brK/7n//CW\nfPWOjwfFf/7hnq2JDC7gXXgMDo7BE3wAH5OcIU4MK1Ihb2zgvrEsVMQZhxRJ2OSjx5jAYYiM88Ay\n5hTrC8psDhHGsWPf3OOjZzE7nxqQSAgDgzmmMI1BcDgcGLp+Cl2Qk3Tds14vWS5n9MchFcNR4Yxk\naD1VXZDpEjt4gnAElSTiISSRjZKKm+09+YeMd+qKv/vD3/Lu3beURYk1Lc1xx48//sD5eklVzji7\nXNH3A0NjuL/9yOJ8jdAl1ku++e6K0oO73fJwHOg8uFPjNVEIfUxLbUhJ8zqmAq+EIjiPExYhkmI3\nU5pcKoxQeBmRapo8hHx2rqdzx3uPNYYoBVEqotMIX9D3DfvjkUPb8j/83SVelegbxXYc8DZF7CmZ\np/fHd9AFMlEwn2dY6bBMeLpMU6aIiuBJ08Z0fj4vtqfO/Gk5yqNjI9Pv//DwgFeO1rYoAd4Gbu4e\n+Na8JS8U33z3lvv7DSgQ+de9mH6VQj46k+SzCHJRpGXQqVhOnhw+hCR8UOoRE35eyB9FP9OfRxUo\nT/zNL4vqLy0fnxfxE9b+/Phal/6lN/UvXSj+3M/5pc77l74vBJcS032CMKztOLa3xBAZjWW32zPY\nDh8dwQR2+yP3Dzt27Y6uMxgbCCainCWTgkxpht5zuzlg/TVSFjxsDuy2R46bgcPsyNn5OZeXrynL\niizLeXV5xd39Hfv9juPxkNRws4puu8e7gFCSTOWMvmccLNZYyrOS5WLJvK7xo8VHx6450G4fuH64\nw0kSbcxbvDOITKOExOPQU+BIpiEvBEWZvMX3+5beOlyErMieTJN8SuKxNuBcAB8YjOPQdXy8vcVY\ny+AsKs8odEGVZylMQgR+/OknUDm/WV/x+t0f+McPR364aThYT28s1iXecCCNx96H1M3GUywZnLoy\niBgbOHrPre0p+oElAqUlQsI4Ru72I26lsdSovCTLc6JzOBsYxgNtf6TvjqxWZ8QQ2G4fcMEQgicE\naI4dUgheXL5A5Tn75sD95h4/eY4EwuR1HhE+INFI9ONElZUZ5HpKsA+EkM4fG5LkXKmM2WxFVS0Z\njccHgQ+CYXQMJlLWGYvFinp/oJpX1NUSQoYfI9E5ygpKnVjf8dSWPgNEY0ystPTZBz11qZEnUZAL\nyckSn/59moYm6gIxJLfHUbjHTMxA0kPkRUY1L4kyKUJv7+6RhcGPlrJQVGXJKBxKB+arPAUstyKx\nsXwiWSgBWakpq5qYOzYbi2uhmFdIJ4kmMvb21GIBUwSGAKb6JIWalp3+8XkTw3TVEVgbaI8dD3e7\nRK+dIuNu7++YL0u0TrTLUwrU145fpZD34wCkyCels0dSfXi+BJ2KpZByYmeEz7rU54VcCvkofz8V\n8K/VxD8ppDDNPekCEk4n5Wmh+hVq4Ofd/ecd/fP7/WlhfmLM/NLzOf38r309TmO5MT3WjQgRca7H\nmI4YUyBA026JwhJF8lvpup6uHXCjT8uYqLDWYY0lqyrWyzOCc9w9NNxsW4iaoTG0u45gAm3d4byn\nrBfUsyVSpVgyrTU+BLaHHVpryrxK+wzrUQGCi0k5FxXehVQ8x5F+6HAhiYk6N/Bpe8/tfoOXE9VK\np/fcR0+wqcPO0BM1Lb23zgecG9juG6LOKOeJSeGNIViHHz3OBryPWBeQRKzzbA4HRm9w3iGEpNA5\ndVFSFzlVXSCkxowCJzQm5vS+5v3NDT/dtowUEy4akSKbCgPJJ/sx+OD0LjHBLgEXofOWu+ORc0bW\nJUnMFASDddztLOJS0bsc6yPWDUQ7MAwNZmwY+j1D36B0xBjHTx/ec3ZxRqY1oxkZx56yKKirgig1\nxow8bDcYZ9IzkRA1kw1DYn2VVcH6fEG2ksRSYGOgPSaZfILpUgGz1uOdQIoc7yX3D3u8HxkNxJjT\ndB7kQBQ9XoIuK/JqwTg6xt7iesvBRtpdizMxRQk+EvCexICPROT4bNlP8mX3py53arDcREGWJ6w5\nhMeYtSgCnsQjj4DWGWVZUM9KdCUpKuhNQ+zTcnSRFwhyRAxIGSlyDVUGPtUCayzBhQSPKIEqJGVd\ncTi0BASqzJAmwSIJ/Zvqw7MaEeVpt3HKkpzcE1PFQcQkkIohTb6HfUOZZyiRJo37e4vxNbO6xIzJ\nLyk5tP7p8asU8nbokFKm0IJH69j0oqTuWpFn+ePS88S3PBXzE2vlyU9FftYhPx9jfhkumZYOp87A\nJ756jJFKlY/Kqy+Xm59THiFOhvzAo63u6Vmcfq8vmTKfPZt05v/igvN0pxgjxowMQwcioFSCocps\nzWAPRNFS1BHnBC5ADBYpIlVRMpvnHLqBfewZm5BsZtcz/vDbv+P9Tz/waXPHpmsgaELvCZ1NWYZS\n07cpyPjT/YayqGnNkc6NyDKjGXuqviVGMNbiXYAA/bEnzyoWswWNOvLx4zXH457OvqJalyzOl8zP\nFsh2g1eeoAIqk2RZSa5nBCfxNuCMTdioBIJk8ILd2NJ2A0pnXF6ccfnyCtvs6Xxg8COmtyRvJUWI\nDq01UQoetjuOR4mWklJqsJ7RtjAMrNevefX2Wy5efUdRXdCZgv/1//ie7+869gM45fEmQSpe+c9s\nIhIkkcbtkD4QqZCHiA+R0TpC01HnBlULZnVB1xiafmBzDKiD5+Fg2O4OdKLH9HuaZoePQ2Lr4Njt\nbtjujvz88SNv3nzHarniYXNDpxv6fs/dreHy5TtiiDRNi/OT177SBAlRRhAp7ejs8jV//+9+z+V3\n59y3D3z49IkQLMZFvI1EB33Ts73bcbfcctj3VEXD9z98T6YhegNuzof3d/T9B6QUnF9d0I3QmJHm\nONI+9HS3LT93A+ZgGQYmb+6kOThtxcLE7hAkiEue5hpxsqqazmatiC45bhZZnrScMWImd0NHxHJS\neia2SKYz8ixHa8HZRcnyoqSsS+5+GnBtwHgY+wiFptQVm27ADh4FlBqwMLrA4AWekSAleXaGjBkg\nGOyItJCMQE9inwkWOqEDEpxLt/oYU3QdYgr1PrFXAkIEnPWExiLqCmJyMM1HRfQWVgHTWjCgQ/bV\nmvor8chjCjyWyV7VeUfw6ZfJshyt0vLipOpSUk9dTqLgpU5cTgX9mfnWiW4InMrl5111KrwiNf04\nZx+xwXEYiECmM2Ispivf0wL1ZI0r5XNq4+lxpo9lfCryYqIdPRbxL5a7J3z/+YXidF/5aIz1fByN\naFWQ5wFEevNDdFSloihrZvUZi9lAb44c2xs2u1sILVXpObtakm0ygov0TUuV1RRFwTCO7I8th0NP\nP0zLOhPABsgkbW+IdweyhWF7POJjZLSGfgq1KHVFnVVUKkNFz9lqwXK95vLqgnm9otv3dJsDrWoJ\n0vHQ7Mlcyxg81WyeKHveQnAJb44CB2RRokiKOZ2lKaJtRnSuMEEQlaKYl+SFQotAUVX0x462Hxmm\nzjmElOYSYsC69FJGF/AaqiIjLzKEg6ExPOwsYiWR8YzjR8t2P3Bz9BMuHglxJHqfGCnCkonp/Zw6\nRR/CtPeaitT0vnoCQkbqakaRC3RuCTJn21luDwqbXzCoJfe94P/9ccvv39RcLC+ZzdeAo+n2fLr+\nmSyH2WzGd999i8BzOOxo+z3t0DP2A/tdy7Yd+PnTLT/9+Inh0NO3Q3IPVYIgYMCTa8XF2RkvX70m\n6kCelyxmS8wC9l3DEAd8FDR7yzhsGY8Rs5PMqjnXP39In/PosWagaduE1UvFfPkBEyObpkfIHHfQ\nmLskeXejxbn02p1ghaR4IGkCBCgSaU8LlRSeIimE1dR5P0KnWnxmoIUdpjT6iJnUoBJBhiK4gB09\naoj0Y0AOFicCRZ1zsa64WFY4a+nagfZgaLY9wUYynRSmUoJQ4K2j1iXn6zW/++07wmDZ3W5RVZ5S\niIybIJRpUpB5+r1icmZM5SFx56OIIFTqwmOiY6bzOEx7rwCiQukU91dV6WKEkGRViVIRvm5H/ivx\nyK1Fq5PHQuqGzWjwNhH/Zf4U+EBMTBbPk/z+6e+TcgpO2+DTIfjsRp7DLemFttZgrcFYQ9/16Ewj\n63q6WkpOPUEqtn5Sl566/+dd+ucd9PO0o+fPLT2n0/elDu9pL/D0/VophNCfwzVCoHUBQhFJ4a4x\nBhQlUqUuxvnA7viRYdzh/IjSllxFilJRFJoik2RZJJcpSmbX7NkfW9p2xLnUQXrnicGTiSxdvHwK\nOxj8yKFr6HuLCwGlFHlWUOmCUmXkUjCblZyfLVmfLSmzGmykrkp0LnDCcRw6xAhIwfnFOc6YqUA6\ntEwinxhSgRQh2YiekmKMGSavaMjKjHyWEYVj7BsqleGcox/HBA14n94DlSxGk0umwIZIEBEtA0Um\np7QoaPwMxhp/zPj04ch2P9JFjUHgQyQ4m8IAY3rNkRKlNUIwRaUlDFhw+lykz16IkSgF5WxGkUfI\nIps2cHOIPAwaXy2I1YI+5ry/6Xl7taasUzJRiI7ReNrOoZwjzzXVrGaz29D1Lbvmnu2hZewN2IgT\nN9zebHi43yJMEtMsLlZJRNMYeq2QUSOQmNHT+Z5utPheEo1m7AVdG4mWRF/1A8ebns37BhUlx90R\n75PwLOAJLjU6SilEJhFZQSznlDOF7BXhGBiHZB+c8N2p/xapgPupoJ9oeVoItJBoqVITJ9PXTk1U\ncjkFgqDQOQiBDw6lFV6EyWtoEtwISZhwfukDo/fIMeHMF8sZL88XXK3m/HT9QHccGRqbLHxRSKWS\nUtaFxIwhkmcZs6KkzDQagfKCXOc45QkyIoVP53UUIFSy8ZpQhBMzJ0b/WLN4rC3i8eIGqbEtq5Ki\nLJFKsphVVHWBLjQeMO3I2Ixfram/DkbeNmhZE6skXAg+RbjZ0VIU5Z/gzc/ZIo/4NKTsu+n/T8vO\nE9423euR3ThtxqfEoXTxGOi6hqFvGUdDVddUec5JmBQe2SzhcRF6el5CPMXTpWxIHm97fj/5zG/h\nhKSevjdOWOopjuy0I4g6ca2VEp/9HKmSL0UIT9F08USXEBGlBM5C3zms0xR1wegM95sDbTsxW0LE\nS0tvO2KrUuL8mDyuVZ4TZMDapFKbzWtev3jJy2+uOPYHPt1+YrfvOBxH7BCIeRK6iFxS5iVSBIbh\nyGYTGdtbun1PwHN2vsTh+PHTNVIKjE0iGj95RkcfWNYLpNSJ09smHxGIzDJNFiEbMhwWKSVZoVDK\n0w9HumZPrTPargV8UoAGh/cBleUpLDcAUuAj2BiJbiQCBTP07JLq5R8Iy2/4uLHcHh3tkHInrZvi\n4ryfjMncZKMKRVmh8xznEx4vQkqICadpS6TsK0jL2KyssMLxxx/33B0jjcihzKgXM+p6weByeqtp\nx0Ac99gwsjtu6X3P7mbPYAwgiS7QdAfu97fsDi0xSqqiIsrIcBxQQnC2WvD6PDkvPux2KBvodwNd\nG/nw8ycGb1i8XNMOI/ttw/6hZ//Q0R2HhBFPE5ILDqPdk8+Jd/hok/d8mPZReIKUqConLwqMiYhx\n+v7osXhs9MnWgcfAnAk6iY/KzgxFRqKqqgl6kCJBQi54yqxESUnfDagsJ1cZzqXIx+SF7wjWpBxZ\nCWQQi4gvA7IKSXGqBOvznOUqn5KF0rkZiFgBmRaIXDJ0PW1jGAdPWeZoIenblv/8f/4X7j/tCC4S\njZ+M4TRKRXxIAc/isfN+qjmniT3VgVPTloT98pQXLCDXBZcXV8wXM6SSrBZzyrpA5RJjLTfjDdtm\n89Wa+usIgrx//HvqSpMcPyWMf401IqRIVqbPOvLntz9BFGIqck9pQ5HUpXnvpp2DIATPaHr6rmEY\nuhRq4CzD2FM7O0Eh6YqZTuL0BjiXZptEm3zisH/1YvMZHZGpo0/JJiGcinh4hqGfFjtPv8/z3zPB\nLfJxyZpmSZEk+sFhnYUoyPMZ89kLTDD0zchm09K0I9Y6illFrhVagvAdq1WNlKmgRyXBJBzz8sUl\ndVnR2Y777QNSedarirquKIqOrh25OF/gomWz64lRELxjGBp6YzhuR0xryTUs1jNUrulGi4ueqiiJ\nwU+TmebV1QvWizOG3nA8fMKMA0pIqroiK3JsSAupdb1guZ4zXxaMY8c4jDjhKTNNqEqCBWMirerp\nzZjEdoHkXx0jQU7FwQqinhPnb8iW3xGWb7CxomkMx3ZKjdeWKE5YeEB4jwgO4R14h0IkGE4IPNPE\nqyQhJhogIU6+IXEKgpizyAsePm7J64p36wsWF2esL+cUyrHdHfjpWpKRs8wH7je33O/u2DZ7Pt7d\nst81uCFBizaMtLbFmPT56U1LpiLKw7qe8d3rd7y9uGBVlyyKmswp8pjz8dOevrfc/Lxhs09wWtuM\n2M5jRo9wpOcd/FSIA9EFrIAopvF/ggSfdjsRQsQNA3a/Q4tI7gfyYIh4vAi4qfueQgEnPsNkaBcT\nXKJRaCFRgtSZ5/k08QSscyhlCUql9PqYJsKqqrDO4KzlxGRJU75MWbxB43qBbQTSwhgj137LVrYw\nCsYQ6MxA07WMg8FLB87RHjq8V9RlzXq1pNSasR1pNi19m5CDw+4AZBBUqilSIEKapEBMEYip2Twh\nCUy1KMaYbAlOHfoJRQ1pP1EWJYtlldSgMeKcZeg7ZITFbP7VmvqrFPLHwGUfsNZNy8Jk6ZiK1Rf4\ntkhRTafjMzbInywip9H21BlxWkgajBlBkFz7QloeGjvig6MoK6IQGGtx3qVMz4m5kgy9/OPS9XRo\n/Tn88byQf8kzF+LRXYbnkE0IT3i61vKr9MfPpfvANMKnVO6A9QZrR7xLHWN6/IwQMpyVjANYkx4z\nzzRlli5yzhiKUhFiAUpgrMe6NGFUswqpJO3Y0W86Vsuas9WCs6JG6SPb3ZGyzmgOLU3TIr0klwEy\nTZbVeN/hnSGfVdTzCp3lVHmFwyGlpO1a+mFAIDhbrDhbrdnF43SBDyidGDJRRLJMcb5a8fbtbzhb\nLyhyOO63OJcWSP1wII+aUlU0/QgyFW0fIz6AdzEVPRFBaJAVsn6DWv8NnP2WUZYMYzLIGvqeoe0J\nckTmOSgFRIR3SOeQLnlgZ1ISimJaaqW4L5lqyBTCm95rFUnOgFXN2UXBcbOnXq44f/WC5fkSldcc\nR8G/Xu/5FzrMUfJibnj/4XvuD7c4Zbm727DfdIwHj85A5JGQgUATo8C7gHSWeVbxcnnBd2/fcjVf\nkMdIBsjLiDCCY+Nojlv2+4Z4GDDGY0cPPhXZCAhxWjO6ROWLAKnJkkIg4+TlDROckLZS3llM1xCi\nR2EAM3FIEpvktCM6FbA4MX0EoIUiV9nkbJl+bqaSWdYpo9M4h05PMEUNAlmZY9rEREpGfNPUDcni\nw3mEEdhGI0wqDfemJYwHTOMo5hVBJFuCaNOS1BqD8JLVfM767JzVfIZSKQ2pDQ1hIkWMpkfmgizT\nZELgkRPdNX72PE5cloQWTKlBIqI4GfLyJBxykeO+IdMZRVaQ6xypgZjQA2KkzP+KgiXqqiZTiuCg\n6/oJRlCURZZk5d6ipEiKzomRkuKTPu9SU7edjqfu+BknPSSHMYh47zC2x3uf5LtIjDUEAaooKOtZ\n2jBHgZsMeRL0fApKTQXGOf8ZnPI1sdCXt6X/MKWGn57xE1yTirh+irUTT/THL6ePdPvpQuAZ/Ujb\n7TGmI88U1rcM5sjh8IDpLZqC1VKznOe4cWBsO6RK1KggBUMY8AqqmcbszeOk1A89rlAMGGzXU1YF\nZbFkuT4HVeIJdM2R1gz01uDaQBXgYr7m7TffkYVrDmrDbFmQFRneBdpDiyo1HsfxdkfvDWVZpe72\npOKTkkxrtJAE5xn6nkU947s33/I//vv/gBKC3cMNL+Yp3kzpjP/9f/tfcMIhFwWfNpsUnBvthFMK\njPCMbQ9SIYoa6rcUV39PfvYtfSzphzEFBJsRN4yEbkhugnWFyJOTo/KBaCzBGIgOC4xaI4sZSslk\nGRECGZFMRHxMPagWgI+orODi1Uvevj7jbLVgPq+JImJCwY/XHfcffmb/qedDPXBZtbz/+I/sx3uK\ndaIr2jYybj1ZFcjnmrwoUVEgVZYak+7AxXzO3777Db959Yo8RMb9nplQuGJGW40IJxl6R9uaFPcT\nSZmmEwskiIiQSa8QhH0stAlmTAZQkJwKEeFpokQjJsWmjAGiT24qn+HWYroQiMkh8LQDSzubsigo\nqwJjDNa4tFdWEiE1MRqcS+dNlhf0tgNrKeozghRYEu/80VU1ekw/oDHJxXPwKJHi0oZRYbuA6y3W\n6alxzKgQ4CIywOVixtvfvubNNy/AOzKtsIMhDsnQ7dA5pBJkdaI4liEyHGNKz1JJjRwieBR+uoAp\npVINiwmOUkjkRL7gpJ2xkWZ/JLiAsxGtNLookerU3Sdh2deOX6WQzxcLcp1O2tG4KVlb4D1Y4yAa\nlEpjSCpuTxj0iZNyYq6c7CNPRwggZcS5pw9RGn0kSmXTEsOnpU2IyXc7y8jzAiHTYkxLjVJ6Ys6k\nN0ap9LHOZXK9y/P8iYaWnhDicRT/Au6Z4CIh9XR7TCN+lASZggjENKojpo05ny9QT9+Xir8nxClw\ndmjwwSBVBGEIYUDLyOX5JX3fE0KD1oFX5xcsyxId4f3dB242O5p+TFFYImIHQ6Ez5DzBPnmusc7S\ndV0ajKVCZyVSpMDnPM8xOk0RKlO4TOBEpLOOzWHH6AxZnrOcrzk/f4XOCuyoOfYbRt8TZEU29pRl\nzcXqBZkq8PaA6QYyqZjVFYvlMgUgy/+PuTdbkuvK0vS+PZ3BpxgxEJySlawulUmmC73/E+hKJlO1\nsqqzkkkSJIAYfTzTnnSx9vEAq6mb7guW00DCCHiEh/s5a6/1r38AWymUTlSu4uLikmW7oG2XxBj5\n+osviTGhTIVyFVOKjH4kJvBeVsPW1Jj2muriHe72z4T2FTFY8UnpR6Z+YOx7kduPUtDluG9QTg4V\nipSdlJn6EcyRylU4VQ7/lDEJdNagjewPEmiC+LNYw+XNDZu2xmrFaew4HTz75z19vye4gMonhsMv\n9LGXz+U0YTzEfWB8HmldS63le1q0CH1C4mp1xbdvvuSbL75kWTmm/ZbD0z2/fnzglw9bfvyw5f37\nOw7HnpgyFLe+8/6HMifGVIpLuZBRZRlZocgCGZRD6mXvpFHGYVxD8j0+io99UA6UE4n9zE5RhaGS\nhZIHYF2Nsg3aiIdMIjJFj9MWaw3L5YIYpPTXxjEGg8+B3k8Ya6mriimMzK9KI/L8HDUmW6q6pmor\ntNPooElDYgyCZVgnosOx68mTFNi6qtjePTEVyCXEgJ+CpE2NnowWPUGQXFnXtsRRIDuVFdM0kXjJ\nCxVbCVMOxFRQlJnoUCx9VaFgZ9DWsFgtWF1ecHu7YbE09KeeJ7flOe9+t6b+IYXcOodzTqxOR1/G\nLEXO+pwAb+0cJJHBzNvLXOiHsqT4nAYoGFTB335D65OLUSuDszUxQESWMcZYjLKFb1oV3q6S4q6t\nFDnKdI2sReZu3Dn3At2oWek5Y9/x/P1jjGfO+9mKoLw+U07vafJnDF4sLNULvp/nn+cFjokx4sPA\nFHpSHLHakLHEeJB8SutYLq95eH7EHLeMQ8+yueH2ekNlHB/3T8R8IASBWmIM+H5iuVizrIXJYbRh\nGMWQylihYcac0EqzbBaki0vsfPEJkQMfB07DxHa3I44DC1NxeXnD1eVrXNMyTRH7nDgcFaOPZKVZ\nNisW1YpuGJhGT22ky1mtVmyWS0IYsUbCfrfPdyzqBc5ULFeXLJcrUox88813dF3PoR9xu23hJINz\nFpUhWkfVLrCbd9iLb8mLLxhyRR4CeQoM+yPjaY/vOkLXEbsT4XRCW0s20rHlEMmhsGFSJo+eqDqq\niw3OViRt0NFTq0xtM04ptNViiYCmIaJioG1bqtqSYyCmyDpDJc8AACAASURBVPP2yN2nB47HHc3S\nok0kZk9IgTB54tFjTpFwDISDx7eKprG4RQs+4jCs6ppvXn/BN2/fcbPZwNgzHo/sn5/5+Msn/vbj\nIz/8uuXh1DEESXpXad5Lleuq3Ju5FBqB71KBbzUGsWHVpQk5CzULNRBtxd+n/FwZWTrO5l0hRsQM\nC5kkQDp7rbC2QtmajBXoS+kzy8VqzaKqmIaJVEyzjLaMIXLqB1rrqAqLJav5bi9QTlIQLZv1ksVV\nTTKZ8RAJXURbLdXPQjYKnzwxBEzW9H2PDxOP95lp9AyTRNKJnUSxf0ia5BO4TOUagksEE1FR3s08\nKzc/n6jLNKJQ57i6WUyUsxTz4hshzWVTs1guuVjX6KBRt5b1+uL3a+r/UCX+n3yMfsIYWUikLJ2B\n0hZrDN5HvA+fJQJJRz1DJMYorHJnyt9czP8jt1tgDXmeLv7B1hoWCycpJMFL6nxKYntqLLqczs46\njBEpc84Zo+f9fDgX8nM6Ubl0lLblc8vE+NLphBCEbWLn1ze/VuHSW5OwZrblTb+BUVTJGxVJdjw/\nL0ZJ2J58T1U5qnpJiJ6n0z0KaOuWqqm4vLhke3zi7uEDx/5EfarIybDvPCEYrGqxyTENnukw8Gr9\nimbREnNimEZySBjk/fAhcOqOvLq6Yb264mqzYb+5wJoP5PxIWinuH+85dR1Nc0T1nvWy5vb6FevN\nNVhDvXJs0hofJp6f72kXDY2tyR6eHrcM3cir6xu5gNuGxtW0VU1dWRSJH//2F2q34PryLVeXb9ls\naparGuf+iZ9/fc+H5x94fNpx2B+JY2C5aWSxbBxxscFsviK1bzgOmhzFGTGFxOnpiXH3TBpHpu0e\nfziQhw7qBqyRRMgoC++EsIxUjJg+cJEzzlQY57DRs9KRC5vZVInWiDdlCoprO+HGHpMVWWlSmeAe\nHrf8/P4D2+2Otd7QrCquLm+5//GB08ORcPLk7YQaRVW6/XUHSbFeXTIcetrFgnevr/kvf/ozb29v\ncSpzPBw4PO/Y73pOx8jhFNl1gSEEQum2dXFjFOXkbDCgSs8kS3Uph+XPyqQhy8hMVNLAkCl0QYNR\nlqAqOfxyjbYJ5zTWGsahI0UPqdhJZ7mntHYYW6GsJRTIxRiHNfMsAG1dkX1gCgGVwGmLVp5D11Ev\n11htsNowkc/ZBloXrNzDq9s11+9WjAQ+/v1IX3ncWqEsYDIhZSnEQaDTcDpKQU7y8wcSSSM7rDkQ\nIiTRO9Sa2raMZiJDaUSLyPFckUQgNi/AlVJFsT6nB8E8ISVE1+JTwEcv935IbB92vH73hm++//Z3\na+ofwyOPSSAVIx2dtYaqctS1IwSx3JyLsda6dL8FkyvLQq0tStnPgpxn0EV+LyIifkP5k+gy4b5a\n6wS3KsvGqqox2qCLEAk+Pyi0wB1K3q7zMnLeVMzfWUlnGoN8kPNrf7ETkMeMk6eczt0LiEIwhSwx\nUEgySIyJ4D0pCTYWY+B0OpLxWGdo6hVKG2KacBVMPjIOJ477Z553DxyPB2LKHIeR6fGJ7bbn1w87\ncnLcXNwwDT2xDlxeXXJ1fc3F1S3GVfz957+iph6XHVprur7n4909Ds3rq2vapqU7jhi9YNkmHp8+\nEcaJ7BP+5KlDRudcRD+SrLjdPfHh/QcO+y1OeZSvGI8Tj90Tp9ORyhkur94Qc6KuajarFd//+TvI\nkeN+z9PhI3VtuL664urymuXqEmMtMWV8SnTjkaap+P67f0ArxTidiLohmg0Dr/lp6/i4D/Shg+jL\n4gqm00DqJ/ATJkRcDKixh+MetMLoFbNFqVZyU6MKHbTrqU9HqmHPny/h29uadzdLNusVlVXkJNc6\nrqJqoDFZMOQQ8L3n+eGZ+7sHfD9idU3jVriQGe4Cu/cHcsg4n3HZYJwSu9VeoQbN91/+iW/eveHb\nL99wc3mBTYHTccvPP/7Mv/3lB/761595PgQe9h4fxdkv80KdnVlSs/3BrKpU6GLsNGPoBd8mz559\nzAw7lcEqiEqen5UqSsZI9gNTiMKQChGnFLU2okou0QMhToz9yDBJnJtRCk1iGAOVleVn3/X4KFZU\n3ovPkE7yvftxQJWlv85SeE1ptozRGJtp64rNckUymefa0ywDbqVl8vEaM1nM1QWD6+j3AznIz1Aw\nU2LZdfkgNOGYorBvUmLqex4+fWIchBVm5ti3eak7l/KcJH+asiMoTaBRRqaJrIgkUpprlOPtmzcY\nMh9/uaNZrLi8ueTyevG7NfWPUXaGyBBHglYoEtY66srhnGBiSlGWiv6zBeA8gsTS8XKOepOF5Pz4\njPqntWzZS/czF2BTYqOMERfAmcmilUEpU4gwnzNOZvz7t0vH8+vKhUOSz9PU+flnmuJ/eG5GsG5f\nDi6lNS/9vZjrVLYhpkwoF69cTJ5xGqgqU+AgKwKNNJDoGfyB3emZY3/kaffEOI00dSPjX8jcPezo\nOk9bOZpKEyaFcgbTNOimwTULXFWjrEVbjcWSSEx+4nDa8/RsWNaWyko6jnM1iwU8PnyUpSUG5aEy\nltq6YkcsVrGHXcd2t2MajlxdOPpDzzFEjOnINrJZb3j35i0PT8/SVSnNxfqCHAPjsUMlqKxltVqK\nURaJcRo4HHf03RGVAzcXG25vXrNarbm7/0TIhpCXnKYrno89n3yP7ydylMWuSNMn8eAeR3IM6BQx\n2aPCKL9SDVmfeQZJKbTKVDnB4Zk6D9zqjn/crPinNy1fv6lpVgu0UoQUGKZAFwzeRmyaCNHhx4nd\n/Z7HT89sH3fESROnwHScOG47pqeBsJ8IOeNchasdTVORjWPZrlm4BV/cvuarN295fSW+8Kf9gYdP\nd/zbf/uR//fffuaHn++YkqUPlpCkWAjwUKbDPEcil12S9MOFWTITeOWq10iDMTuFiHyhMLGz0Oxi\nEJ/ulAZymsh5xGQRxbiCby+NxeR8vm98TnQpMiRPUNBUFdZYUiwwYorEMYthVhZYRiiS8ssXvcFn\nnAL5lJRMAnVl8UMgDpl2vWDVtExToI9Z/HxiIo0i+LLaYI2BrGVRHovXilJgShddtAHWGqzW5JQ4\nHQ/4EGVqKYwldeaSv7Rv8p98rhXn2pJnyFU+lxAifT8SQ6SPE4f9ketXS4yVfdbvPf4YHnmIeN9D\nTixXDdY2OGfRylDXNTHCMIxn/xMpyvNJJhzwFDOWmdVh5new4M8znq4L1fFFESqVsni0KAuqiIQ+\ni22SYvwf2SJz5/1Cd+Rc6Av8kcXRUemXwv1CQ5z3Ry/PT0nUpV3XoTTifqcgBhlBF63QMs+jWuGz\nOyesBevqsq3vmMKeYXzieX/H3cMD28OR/eFATpmriw2vb95yOkyk8SNtVVFXmeC3JJXxKtHlxDEE\n9HDCTgNJJYwzRBXEPAiI2dP7E1McyDqiTKQ2FUrVOGNpbE1Mlgrh4LbLJUlppikw+MDxIDYA1kWa\npubXH3ecjrBct7x6d83r2xu+/OILdts9+/2BHCN3dY1RsktBaYyrMM7QTyemODJ0HR8//Mhxd8ey\nsmyur/jm2++5uHrFZn3DaddzPARMl7jSsLGwC5MUnWL0lXIUH/NpRKUASronY0UWnlQxa8oam42Y\ntOWACwNpfKZdZb68bfn67Ya3ry+5vFqDbiUUJWesSziVSHqC8QS5ZTj1/PL3D9z/8shp25PqltP+\nQO72PG9/xh96nNJMyeNax2qzYLNeUC83XF5f8+r2ls1yjVMG3w/0hyMP94/89NMH/u9/+Rs/vn9k\nexTudVQU9oQuOK0pYrdS+FSA4synAa1eOm+58ue/W7r38xJUcO4cIzGNTDES4oGUeyEsZC3UQlXR\naMvSVqysQ8dYBM6KpDU2B1TUnHyH1oq6qVHGCZSVMjEExhIB2TQOYUhmgWmUfhkP0gtkAxpjK5aL\nlqe7A5Vt+OqbDdfLJVM/sd32+GAkWORwEivgrKmVIxktWL8WcY82Gm0NtqqgLGnrWg4chcT3pSQL\nbaMUarYByXL48dm9n3Iqxm3CTCvLsDJJSHfuh4nHhwd+/vEnlsUKYJomTqee/e74uzX1DynkQ3di\n7DuCH+gHh8qvcNaJB0bVoJSwSKCEMJfuNYQJ74eCl2uM9tT1gsqpsoGH+UyeaYhKmfPpOOPmvy3S\n+fz/5kIOnP/8tz4o+Tf/b15GpizK1FTsQ00xnPr/s6WdH8bIhjw0NT6IoCflxOlwYBwGbq6gaRdU\nZTkcQiIojzaaytU4U5FRhHDieDzw8/v3/PTrL9w/bTkNXg7KtmLZNoQp0HcjIWay0fQp0B8G+m6i\n7yL9AGH8mfX6kfWqIatIu2xZqBalYBgGhmHgOASGZFDVktUKDseO5+2W0/HIcXckThHVZPJyRbVY\ncXnzipgUu+2e42GHMQo/aX742zPdmMEYcvYsFg2LRYs1hsvNJSlKtz1NnsViwWK94f7+jr/9/BO/\nPD/z6s1blm2DMwCB9cUFr19/Q8oWZVdCLWNJ8J4QPKuN44sEh5i4P/Z0AUKM4Ed0SpAUKSTSNKFC\nFHN/jHSdWTpSozNWJWyKNExsmsifv/mCP//pNd99ecPaetRSkayFVJZ7WhSLychSceoODMPI092e\nf//L33h6OpK1o6obNreXbJYG2xzowhJDL591U9Os1ty+ueK7777m+uqaSju2H+7pP91xtal4fHjm\n1w/P/PTzI7/enThOiqBrkrakMrbnXBJ0zkyv0pyUwixNTjrfA7NQTwFnaUOWf8kBIOKdUMT2OUth\nt8KnQauMyRqdZmtpTS5/f95boQ21cpBkYdm6mrZusLUStffkpVimJMHKyZ8PIVOiHWPOhDMVWZSa\nwnSyLBdLri+vePf2Hd99/Q0//fQTu/2JqtZkC8EbtHGkIZSfXzGGKLmzrUUpMcXz0Ys9b5T3YxgH\nXCWwoxdQpLxn4jQJnPM7cyqaD4pavPxzplNTFrRZthIpZIZTx/3dI+rNNetVy/F45Kcf3vNw//C7\nteSPWXYOHTl5rBWqXUwBP000boHWtsAG5gxVpBTox47udGB/2BW+sUFhuby6RStFylY61ywXiNbm\nvJT87wvq5y6Fv/NQL1t8eDlNf2vHVTbOKZFyLAZcstgUZ8LPl6/qs+d9djggE0NVN6BHxpIy46Nn\n8hNT8LgYyc5hrC3thuz+rbEFUhJfbD95hn7Ej0FGx8FTVw5dKI/TNKG14fXrt+yHjkN/5HQaSN6L\nEGjMHKaJ2iaqyxpdNShn0cailaLuDhiV8RP0w8ipP2JzYOz27B8fGQ89cfAAmEqsaMdpIqTI8fjE\n/fMn+vGAMoEpZvaniVzyOH2YsMZSVwIBXVxcYm1FSBNKKYZppOs6HrYHtvs92TzwuN9xdbnmcr1k\ntV6z2qxYbl7T95F+hHHqGIaED3JzOKe4aBXXbaZVE30YBVLxk1DulALrUCmiyVgrUJzK0qValalM\npHWKTWO52Vzy9nbB999/wRdvrtgsG8LzAz57Ys7Y0uGiFMboEnCcmMYj+73nww+PvP/pE6djRKuG\nxhgWbcN6U2PjBXm3wpiJy4sFF8uWL26u+NNXb/nTt1+waReEzvMvf3/Px8dH/q4iz88H7h9P3D/2\nbPuJMUJCciszQuBIZ5JhMYT77PrWv9ky5fM1PvsXzZqNGUGfC6lBxDBKKawSgzsxWwyoJJ29LnSS\nnAUiSSmKn5CRCDyLQJrRNlTaYdBSpIvRX/AjuYRmhGJlEbLsXawSKEgYa3MUJOQkEXxhjGwWF7y+\necWrV9c8PTxQO0elNTGKbzmVY5qQ7E2nMJU500xJEiNojOhaYpaIxJgTOb5QoHMR/MUs76/sFyii\nquKnpMRul7kpLIwVuaeB2Q45JPyoeH585uJyzas3r9Bk+mPH08Pz75asP6SQT0PHatWy3iyomwaF\nZvIjIUVccT+bC3lKkRBHDodn7u/v+PTxjot1S1NV5Kioq0oWijkTvOTZWWsx2gEVSlUvXfj5FCwv\nZE4mUXPnUc7G/GKKBXPhzS+Xt5q7lcIDjZ4YJ1LOmMIFl5Siz8MnKLDkZ4pTMiiNq+oSzKpKVqWj\nalPxBxHeeyaXUAJHSmIqBAgsUIItl/WSq/UlPsDkdzRVhdGWbphQ9LSLK/7pn/6Zf3//E6cPI90Y\naCuLrTKq7zFKs1k6vnxzy5QhaEcyFcSI04lae3a7QHfa8enTyFVbc3recXo8kk4Bi6ZaWC5erYiD\nZ7t94uHpjqfDnsfnewIdwWemmDCtJQVIPjFOIzkqDJXY364uuL55xWaz5qeff+CHH3/gh7//yPtf\n7ximCVNZ4W1raBcL6lTjU4NPNVOY2B87/DASpokYxJ0upUSVPKs8sE4dOz8Qx0AKItLIWqOWC0xT\nYcKE8RPWCyRSO8VCwapSXK4U777a8N2fv+Qfvv+W69tL0jRwuL+nO56oXcJbi9Oz77Ys7G3J2DTT\nwPP7O97/66883e+JVDRtw1LB0hiWVY1dbgibNasVvP76mnevr/j6zRv+9O4rFm2FDRGfDyg/8f6X\nT/zw4Z7RJyavmKLGi0MApCDWusaJdaoGSsziS2sjZbyMrC/FpFy05SoT2FAZgQCQRHmtxDYDVWG0\nobWaqnIQJ/wgXiLzpJxUIiTPFCIxeLKuMLoA5URUVtTKYZKBKRNNwFaGCkcXT+L/khMpBnxOjCkw\npMiymGzZrIuCVDrf7Ee6PWyTo/7nlov1Jct1S91UVMZSJcsUIpXSuEWNCprJePIisbIt4ZgZdhNx\nkiQiVzvaxYLT/sg0jFC0A2RxuNRFpBdSKNAqZa9V7HVzlMZLAVoYLPPhmMuOT5VdG0DyE4fdjmEM\nNKsNr2+X/PL3X/j4/u53a+oflBAU0OOI6pGhJEaBVhYNITg0lqYRDxClIXnFOAwcjweOxz2LxmC1\nYuoCYQrklNBmXjjKKHQ2pULi34TDbfit2rIsJX4HWoHP2SUl0islyTmUL3j+m2KVGqSgZo1pXRkl\nXx6fe5u/CH1KwdegtFyG4ziilGaxXKOtQxuLteKBrEp3p3VJSE+JKSSUbqiaS6rmksUqs0mWKTv6\noedw7NntB0ze07Z7Li5OxNBTO03tJBYuJ42rE1ebNRdXl7i6ISZJGLp/3jIOI21lWNSWMSRi6vDj\nkQ+HSIgKUztu3lwx+ZF6VfPd998RT4k4gR8jr1+95fL6il8/OLa7A8MwsGqXPD6I73blNNv9E58e\nPlI3DV3X8+rVO65vvuX+6ZmU4dQdi+2pjOjLZsPrm6/505d/ojILbHScHneMw8Q0TvhJfk1+Ejpr\nVIzjgAoj3960DKNnGDzHs4f8HKIrnGiswtmet29a/vF/+5q3r255dXXJzWbN5XVLs7AYq/Bjz3A8\n0HVHnoaeFDNNVVO1sibOOaOydI1OQa2gIbI0kdu1gabi4nbFu6+/5Pv/43+hXlX8+P888+3lP7Bq\n4erVkuv1kot2SeMseZo47Pdsf71ndzhx6AO7U6CowwsGm866A5RFmwplK2KqpZNMgXxeZfLSIaLO\nvxd2S6GWkIsnitD8ZDdVbKOVQRtYr1vWt1co5TnttzwOO3IWN8sEhJTwOWBKLFobQI0ak/Rv1q1K\nKaIWWEYYZRKqXSkHUWIjVJY0ocbIIp6UsEpDToQs8EUiE2Kg7weeHndMY+Tm6g2r9j2tbVnohinL\nrqZuKp7ZcRgi0yiQJJ9lcOokIdbjIOlNZATyamtMbQVRSIOEb8PZTCSdG7ZZZDXndKrP3vd09mfR\nef4UMplI1x25+/iRn3/ccL3+R7LPTP1/pvBlpZiCh77Q/lOisoFhPImU1tTAgrPveOGpzqWzqixN\nU5E8cuKnkuqjlQQRJM+ZUqVVUXvaUtAFjkiz6rO8JoFDTFlSpDN+lXOx4gwRlTMWh1H2s0Xny3+F\n9z13/qrgYZS/mz/7moUClufXMdMTFTGK14qzQoc0c2jGZ1i9UqoY1Sd8iIRM6eYzY8xMQQr88TTQ\ndSeC71EJ1suIcTWoSFM7Nus1GUUMkPVE1lpofNPElOHUn9g+34s74qIl5wWTT2LGFSbiSbHYLFmt\nF9ikGCdL1VTUC4ktCwN0U2BZr9jUl3g/gHLsd3uGvpOf22iq1tJNR+6f76mahqZeYKzD1Q3riwsu\nri5ZbZacpoCLDavFmm+++gfevfmWy9UbcpADYxp6/DTih6EUc4Goxkngo5QDTsHrZcV9rXiymS6J\nKCuTz5Q7tBimGBTXlw3//P1bvvr2a26vr1k2C5zL+KnjeNwznE6c9juOhz2nviMdPVVnWL/e0NbF\nOygLvKCzyPc3reHtVUP/5QXVasHtu1u+/6ev+e5/fYeuDNXxliavWdSwWFYsK4dDk/3E0B3ZPjzx\n4eM990979qeJMZTrgSLyOcMn8zUjWL0xFSmOZSkfyZ+zqc7j/suUqkhFyTnTD9XZK0W+rkaZQjQo\nYpYQAt6PhDRhs2OGcAIJn2T5Z8noGNB5wiZhg6CMvJ4s4qM5jzMhWLdJXvzplSWHCDmQlBEoS4HT\nhUr8WTOWyIQc2B+OHA8DORrauuVqs+Z03eOaCmW1+NwPI6PvGU/iwRSDdNSp1BdCLtPvPFq/NH4Z\nTdZaEoHS/GbOqu4Zp53h1Jnm+eKCmMlwti2QR8qJ5Ee2u2c+/Porb68u2D7s6I/D79bUP0bZaRwp\nTQzDSEoaq+UD7E4dTSUxSp87AyplaeoFy+WKxaJhvV6yWiywymPsTCU0pGTkzY9FtKHE8ZCyqFJW\nFTVl8awudrVKQcpOPNK1LmNc2TCHUGK+QgmMFQXWHBoNJdGoqkV8pOwLlfC82Cg45dm6tnT6SVg5\nWuuyZ5lvGKFCvnB2i1mXmkOfX3juMQamOHIcO56PO572Wx63W+6ftux2e8Z+IOdQMgwlP0VraNsK\nrStOw8Q4RhKKY9fztN+j6wpsRdd3+KlHYUSENI7EKN4V+MxqsWRzu2Z10TIeRpKVieXUnbhZLqhM\nTT/s0FFTm4bL9Q3eR4Zu5O7jIylDVTvqpWOKA8+HJ7S1fPfN9yir6Mcjq/WKt1+8Zbv/iqg0UPHq\n5h3//F/+dy5XV6isGf1A8LIMj2EiTAO+7wmTOON57xmmgHUapy3OBTYusrKZXRCf8pzLxHWGE6SY\nN7XjzdWKN28uWG1WkGAajpyOO/bPz/SHA91hz3F/oD+eGHcHiIFbq7DXS+rGFhWlEjGLgut1w5/e\nXdJUNc16wZuvXvGP//yWV1+syFqj//wOf9qRw4g1Rc4+TYyngcNOeOfvPzzy4X7H9jiSMKXrC0U4\nlkHNIEMg57KEtxUx2KKZnKHE4v9T6tP8mM+zmRCiZ6ohs2WbMLJ0VUEK9MPAcP/INA1M41E41VoY\nPrNl7UwOMEoi5YbsMQksttyXctgpragqh9KZnMI5PMYosUuO2aMiZJXxWRovoxxzQtBZsyE/Hqeh\n4/l5x9P9ltoabm82ZJW4jiK8GaeR06nmuLfkAXrfnw+5lMp7GcR/SYgWQM6EyRNSlFSiLCQCFWd4\ntryA/FLA9bxf0KV5OFftdH5n5d5O5/oz9CcePt3x77ZhPIkn0O/W1P/BWvw/9bharfC+Y/QDvvfo\nqiYpxe75RNoIGb4fjjR1g7GybFsul1xeXtL3B3KWEOLVakndVIV7rrDaoaywQXISKa8xTuxjVTn7\nSkCED55pGoTcr8RfOhrZQqOU8LunqbBREioL/3zu5q2zhcdtUKY6c9PJgoOF4mGt1YsT4ktX/cIK\n8DEwnAZ5/UaxbBeyBNWacegIU89giuK0ctR1LctRRGzifcfu+Mj9w698fPi1uDeOjNMJrTOukpTv\npm5oFyuaxRpdsPraic1oGypCXNJ3HcdhoDoeqdsWHyREolaGq5Vs/w/bgcOY8TmzvrAkep63R/pD\nwE+Rqq5o10uu1plFbVnWDt+fxMeaIux5fOT5acdi6bDOCBSQIiF6Ygrs9s+8f/839vsH8WTPiW++\n/prFcoNza64u3rFpr0hJ48eJyQtXPeRIIDIlzzANwowKxV1THEoJjJgMlepZGI+ZMt6LUk/HQC5K\n44gU+LtPO/6v//NfQFtefzlirWLqT5x2W3aPj5wOB/rtge5pz+HuGX3syVbzcLOhWdTUi5pZFyBZ\nsJblsubKixWFqQ2N9vjTM7uPGpQWCmj0kCPaZ8I4MQ0Dp1PPw92Wn35+5F9/+Mjd9sRpDPg0cyL4\n7DoXXDsSyHFEpQntHCZYolcFeimYbS5FZZ4Wke6aHNFZ1J5GZQzyS5ViaeuK9vKS4XjAT4HQQ0yW\nkB1ZO4FhlMahUFFJkSVL0ckQciAgC8EKK7vF+XUnKf8+BkbvhWGUMsTCeDESfKyTOu9AKD2tOG0I\n5TfpxPF05JdffuFf//IXrq9qlpuWXMHFzS3eBx4eHuj7ge32iLYnVBAOeSzvqiKTlRwTkUjMEass\nwUeyD2BkKS4qaFuU2Oms/lZZfvKZQ66LBUHMn0FgZ2GhKq9dnMpjiByOB379cM9qseTi1dXv1tQ/\npJAvncEri1OOYDRV3WKcZRy70kENzFaaVa7RyuGspW1lWZERdVVlhPWiTaE3zaZUaX4zJGlH699i\nf/Jeic+vDyOURaKfhNpY1TXeByY/SRGYCzKUJJ2I94qmoZhtFSpVWZTGspn3pduWyC1Tuv/P2x75\nfT8MxOAxGlJMhWc/0fdHmrqibRtSyiyWS6wzcrDMN2FKBD8fODBNQrerK4PKGaMyOeriKpk4nSZW\n7YK6NjR1ZD/uRUrdGkYvjpD7w54bJ6ZhzrUsrePdzRu+fvsVv+Y7bpoLjMnYFRyHHfvDXqK1gtj/\n+hhAZ5pFhbu94Ol5z2HXEytF359IUXxumramXYjjZfRe+PFOo4holaitw1WOnCvqqma1fIU1S5zd\nEMdcAohHuWamkWnqCNPENIg98eRHUhR+b/SZ7jQRY6CtNTZnlibSxID3iKI2hlLA5FdIkaeHA3/5\nl7/TLGr605bLmxV+6On2ew7bLd2xo3vYcfr0TP/x6004GwAAIABJREFUUdSLNxt2U+LKZzZJnbnE\nUsgNzaLhIsukqZ2mXlhSODHsig5h6lFhIgWh3039wOl44nm35+8/3vO3H+/45dOe/eAZk4QUzz4d\nM0KSsio+HomUAiGJj40uAjUpn/NoL3hu4XxAnguYsFmM1tgiglJIpGFGmpV+muj9yOCT5HKq2aFF\nOu9aaxSGnCLTC0mPGdY8+3aXZSqfNTlKlwDvLGZp2ikISe4lHCpM2CwOg6n4NSlVWDIz3l4m6GHo\neXx84O2XfyYkzfH5ifD0RI4Z309Ya3C1pJMxGUgKldJ5ukHFQiGMoME6K/dcSIVeKZx5p42El6gC\n7ebIC6FzLkOpHFiiddGfQatnSEYWdyKe7Aee0x5lDHbxnyizs7Hil9A6hXYNtl6QlWa796ASIUzk\nFNAqkLPH6BpdulJb1E1z6G0h+EBOYsSOlVElw6xkM8YyG7qDjITWWrQSeCOnQE6BYRgYp4ll3hRF\n4kvQrlKiJA1RhCMxzUHR8rVmFsmZHVOEDLlwXbMxLx9mWXzORT4Gz+GwI4wj1lr6vqM7Hglx5Prq\nEucUfgrUdQUgmJ0S/FI6EIM1NavlFd1J8jTXqwWDGfGjIYVMSJFhHHje7qh1w7JtqBca/RzITGiT\nsE4zDRPd6cirqw1NVbFabbh0Fe9uvuC7t/9A2GfWFwuublfcH574+Ok9cQzomMiMZREM6IyrDdeL\nFR8//cqnT78SK8s4DlSV4+rqks1VTdM6wDCNPYu6YtE4lm3NzeU133z5LUpr+qHjeDzSXl4Rg6Xv\nPd14ou87/NiTfGTsO8bhJAvOYcRPUrRz8ZIPo+ewPTKOE/GiQuFoNSzyJAG7AXQSSI4UIHpihv0U\n8YcdRnv64yN/+v5LYhgZ+57heGLoR7rtntPDM9PzHnW9Jq0ajiiOEYaYMVZuSmU0yjqcViy1CFa0\n1WinSXkk9FOBtiNp8vhhYurEOvXpeccvH+/5b3+746dfdzwdeiYkNi2pIkbLM2r7eXeHLNPihNYL\ntJGcW4qJ1bkLL1Cuyi84OQjF0JZCPm965KCAcZwY4xOHqcNnjTIr2f3I0YBSUGmD1Q4fEiErESdp\nhclioGXJRYyT0UZ9llUr9y3FRK5tG5wydNuD2EQbg/FOXmoK+DxnZ5bwCvRZ42GdJavEsTvi2pax\nj/z66YHd9gesMrRVLYZZRqMqhXai7sxKdnhKZ9CZGMWLXhktEXMxEHOBXYw+0zFDucfPgW4ZyBmj\nKIehvD+oLB41lP2fghh9OZQo77N8Fqfc44YKM32uYn95/CGFfH21EAwIhTY11jXkXJaaajbGMmJ/\n6Uem1IMS35H1+oKx79Da0CzWGFuRYmToDlTVQrocY89YslZzOsdMPSw4tLI4Jx9gUuJ4WDeyjRaV\nqRTZqqrPOyCtNOPpyDCNKJ3xYcB6g1IiYjIFVMxKbgDxiph9mIHPYJYZrpFDKEIMBD8yDB19d2Qc\nBpbLBSlF+r4TkYSxqGxBGaZJxm2ddUkpaWnaWxbLTuCaaeJ6s0alzO5wIumMsYa6cmAmwFHbShym\nYyTHkZRGnIXG1Sg8lam4XC64qBbkBM/bPX0MrOsFi8sv+HJ5w0W75u3FFc/bjm3XMaZIVTmGrmOr\nnmBxwRgGfJgYponjqSdrxc2rS169uUIbxfb5IPbB1lA5xc3lFevFihA8TbuiaTYSfpEsfhzpDkdO\nuy3d6cjYixlTnLx40oRAnEaSn0ghlHFcHPuqSkzU4iTpRPSRtQoco0wjMcsegxhROZFSCRXJgfc/\n3kOS77FaW1ASQhBDJjmDvWqxTtEsxcP80J147GqW3shkURaolMg+4yJVRkQ6KZFH8cKfjdzGYWDq\nBXp8ej7w4/sH/utf3/PrpxPb04hP4bOCKRdoygXrFnSXs/AnRUi+OBdalKkl6SjPODplSc9nBf28\nxishCJ85rWhNQoqyTwGPJymLM4qcIirF4tGiUcZinCV6j0fS7sniVSL884RGUonQRmCVnOW9QIKj\nQw5klc5fiwwqKyrjyDHi89zUlS64mN3llElTZLffoy2MDKz/65p2UdO0Dbunnfz0ypF8D2HCZUXl\nxF46RkUcI6aSibY/DkLIzzD2vQRa5FyYTi9ZvjNVstKOoLRwzHVJPtIKpWH0IyHPa2k5fFIW8EaE\nQ0VhjhIHzyQTWvrP5Ecu8WQSbOu9ZPDVdYNWF4xjBzmybBdQxCJD1/H8fE/X9WiVMFphWmG1SMch\n3a91SQ6Bz1WVZ6bffFa/nPjWWCpXk7MECVtbUbkGrQ2hdDnOVefnKAzjOKH8SIyeYeiYKYq62GuK\nBDqXkVTGWF0Mxn/rbFhWakpTO0daLKisoZ9GjNEsF0sWyyUxCo1u2TYlGkrYAiEE+m5gHEZA46oK\nToaqXrBaRWqfeHN1gzWWxXbH9vTI5PsSCTfQD6BUYBomcgxYlWkrg9GOtm5AK+q2ZePWmKh4Lpv/\n07jnwm/ICdaLDUsLm7phUR24DuKZMYQTOUzs9k8MxxOjH4QzPEZySLi64XJzycX6mrapuF3f0HUj\nishq4Xh1+xWXm1uBdqwoS60xjMNAfzxx3G457bb03Ylx6BmHThocNKQoXfkoXfnMyogpSmelEsPQ\n46dI8pnWQk2gixofbZnQ4jkgIWcPeWK3yyj1jE+Rt++WXFw1NK1FO4V2FW61oeGSuqqom5q2tYSF\n5ykd2LBmWfSOUjULfFPslGdMNWfOqVkzJr57PvH394/87acHfvplz7EPjCGeXRizepk0z9DhfI3N\nHTeJHD0peLQyVLbB+16mj1mVyYvrylzQZ57Y7Ff+wsAClBZ7hyyBzLlklOYcySmd7VrF40h0DzkK\n3RhVDq2scEpLilGRq0t4SyAGSfUJOUigdopiGdtU+CESgwS1ey0LxjTj40qVybwY5inFNHl2+yOB\nwF9/+JHrmwtMYdOI86kjjmCyERW0GhknMenSxtI0Na7S+NGjkiLHRAi+3PeadBZXyfcr/LTfTOBC\nf54/l3L/l4lBABt13mskhNl3DpfJsg+bxon+2P9uSf1jBEEl3GHyHj8NOOtYtkts3RCmgZQCTdOC\nsTCNpNPE/d0DD/d3GA2vbq+pnCWEgRCqwggRepDV8uHkWIJ9obypuiwfypuXJZnHuQqtKirbQFlO\npJzQWpacRs/qUINWjqaZ8GGkCz3DKN7LRlsq14gNXJ6hmLIQKnFwn99gZwpiudCrqsYoyIuWNnih\nq2mDtZbt8wOn/fPZAXEOy8gpMXnPdn9EtRltFZMfsNaxWV9hTcO723dUrmKxfMb/PDFNwu7wZmJ/\niuz2R47HTsZKDYu6wpoKV9XEpLCuZX1xw2l75O5py3g8sFwnhuGasT+ydJa2WVIbB2mJdo5A4HH3\niYen92x3T0wnT4xQVY4UFWGyOOdY1gsat+B6c8GrzZrtoWMYR1CZi8vXrBcXxOCxuibFLAW6HxmO\nR7rDlv50KEV84LDbo9CyfFYwjSNjLxREXcyO5hsmkxjGnhASOSkqa6h1xGWNRD9KYRW8eSTjyQSm\nZNgdR8KnB9wqsLjSXF+20pRgQLWslwsaU1EbQ9tqunjiMexZR4vSjpWuyvQTJSw4iJgsl8MjxYwP\ngbEf6ceJ5+2BH9/f869/vePnD3uedr4AiTPIUaAgVcb3eWRnZksJyCDWqwHvJypbU1ctYdzL9UT+\njJKbJcGHQvgolScVGq44EwrzJBtZ2IWS3CWjRPgszb5AjbzEuyk1v95IyuLylwuzxSj5uQS6RIyz\nUiJmD0kO4kSkWdT4qSPGiHFVMbp7wcSN0jgtGHdU8jpjgmHwxBR5//4j3TiwWiyZfMTqmpwM06jQ\nOBbLhkMUC+eswFpHUzfUjaWvT+InkxQQRDmuZFkPopzNCFkCJTuKuWhr9QKTzNMGBSlI5bObmW7z\nH+k5ILq4JU6D55D+E3mtpFyyKVGsFhWVzeQ0YZXFaU3MWmhUxpKSGGhplTEq0u1P9E3F0FYMjbjr\naeNkFCxja2NsKdYFE1GKjFDshNZYboPPcGqR98qpqVE4J2PS7M9CwcObpiUmT98fkNDjdDbMEpOc\n2fKWMoWWws68gC1TREpnj5a+7+mOR1IKrK8uJMZLix960/d0hwMffvnE5EHZBlM11HXNctmyO+7Y\nHe/Y9Q/4aU/O0NRLri/fslq9hgxGd1xf3WKdputOKJ04Hk/cf3oGnYghE3yP0Q6lPUqPkmwTWlp1\nwXDo6U8ngh94u9qwaA0p9Hy6O3CxXrNoWqpa5PZWweWy4f7Bczhu6U9SjBf1klfXV9zdPTCFiJ+O\naH1FJrM9dvRlEmud5fD8C/gTTbOSzi8pFIEUA6QonthGMymZ6kLKTONIjoMEZfhRFp7DUOAMBUoT\nY2QO75DbJqJzpNGRVsEQhMin5LQvHhmgjKJdJy5eV9x+teT66xWrL1Y0t4sSUJJxTlFXmnXbsqwW\nnIae0zZzHAZ0/4heZeqlwG06p+K2J2HNMUb8FJgmfxYq/Xq354ef7/jLX3/m7rljfwr4rJnpgsIb\nL7yKsgvScGafyDWXz1TBnBN+HOQeszOby5NzkJ1TCWVJ6gUnV+hSfIrfSvEohyxRgaizv7lSSRwP\nkzRQKC3LVpE2YnKJgUuelCMqW9ntaPFblNeuCCEIJbdMqtooalOdD7n1alUUzmVq0DL56qyLJ44U\nc10gmhiK/YJW2KS4/7hnfxipmxYdoK1OLNoDkchIoPMjvgvoaGiMK0wbRHRkDZOWaUhbS1PXGKXp\n+kEOucIY0kagtxxfHFZDUX7zWRKQQlhKqqQHUSih508vU1hvQnBIxYrj9x5/SCF31kHKhOgJ00hw\nPblq0FWLyhE/jRwPe+rFCj+NnPaPWDXROMXRizOgUYraaXL2jF1P3/UFA66gauUiLnjfvCFOOX+2\nRJClqjUGp6106OU0/Y9ZmfPkqlTGWkNTN6zWl7KQ1foMv+QsSxEhBahzEZfnlmO2jFepjErH45Hj\n4cTpeCCnxOpig9UW6ypAY20DyrE/9NSLjotxZBE91misg6xGcp5wVvHq6oacDUY3WNUSozqzAZq6\nJcQlMcLoB/oxszsNOKdRORMnyHZe7EQWtpJFVc7kaWRRO5qLG64uLxmGgR9+/DeGceJyveH28obN\nekNta3HOMzIh+SB0LaPk62qTWa4q6Ef2+0eqh4ppHEr35TEqM1nDohKsXCTOI1lVohFQYJyjWSzE\nbEtbPIomQz72DKeBY9eTw0T0k7jSzZ95WdaJfqBcF0mCJSqdaa2i0yNjKIUJRbPIVLXF1Y6L17C8\n1dQ3ARaBQfU899K1rlcVq1VDzolT7Oi6wLH33D0e2X565ukU4Gaifqu4uVpjgJwixEiaAn6cGPuB\nYzexO3Y8PO3595+f+Puvj/x8d6D3iZDEC+S3s516wbaZl5z686Eeyn0g8OMkE4DR4uevDTnORlrS\n8GgjJlcqzdySoo6m3DhwtnbNpTES9gkUgxJ5VjHqikWr4ZSmKTYUIQvE6VBUSBHSzJ1/YYWFgNMa\now2VrRhjjx89rARv1kbIB9ZYbDLYKCoPg8JqQyjTAikWwZc8yQ+RGEfGLkGCzgwcmw7VaEIqUGPI\nrBYty+WaYRoLc2TEz3CLFRVpzsKeyzGQjSlTRoHRy+EBan4jhUGTMy8O8Foo0sqdv9aZhjgLswR+\nJ6dMTrFkwf73jz+kkNfOoXMmhYFjd8IaRdu0qCqQUmAcerq+Z4OoNMOwpTaRZWPYanDG0FQ1q+WC\nafKM/Uh33OIvL0jxQi4oNS9vFLEoM8PM7aRgcV4of0oXQcgsOy7SHxnXZue2QolSClfVXF7MfM4i\nJda6FM3i5XL+PF4ohzOXIBWfhXEaORyOHA5H+q5DK/CTJzVR0kuKXDzjmEJmGMQYa5omVGVITIR4\nwprMptqwXF0ADj/B4STmWTl7MlmWr65m0Sh8UKR0EE+OGDFZICRVjIyMsWzWK1aLWtz+VOTicsXt\nqxuWyxV3n37hlw8/M/rAxXJN92rP9//wZ2wtxSSmCGi0qTBO8M8QI4fTAe00yiuePj0whshysaVp\nG1ylMRqsUlxeLGhDQ0pahFimxdoGZTSuaWgA+/8x9yZPciXZet/PxzvElAMSQFVXN1+/1xRJLWjS\nUguZSf++TCtKNCONlPp1NapQAHKIjOGOPmhx/EZk9eunbXfA0gDkEBmDX/dzvvMNzYrsKqK1qKrG\nuA448NL3hEnw4LlUd6mwmHQ5qAPFWClDmANWaWqXqW0sIRjgvOPjb1ZsbhzWw/o90EyMZiIwcOwy\n3dBLspTZsVrXzPPMue849Ylx0jz/vOflT0+kxyP6w0w7WxonHtmkSJhmpmGkP/ccjx3Px57Pj6/8\n8dMv/D8/PfHL85nzmEC7YuP85gJHYDxVKnCVFwrbUoGX3UMvm7yIa2KYiLowV4oSOavlsJNh/yKa\nz8v6RWGXa4BMVPr6Owpb5i/ZGBlNWIaQKeOVotaGlGzpjQ1WGWrAlWvtLVtGii9ZR0ZrmIs7ZRTo\nRmkRAdosvilOGcgJU6yrtQpFlSqHScyGmMXDPKdInIrFhYZx0uTZEFMmzwmNZrtd8fD+hpfXE/vn\nA30/MowleN0ZVMqEMJFmseYQQZKVgGQtkCnFrzwXmmEu9MtcDmCtxfxOa1uG3OU9zBfO0TIfJ6kl\nq/ev76l/k41cqlhDio5OKeZpZOhPVH5VxD6RU9/jakdTG96/3zEPHZrEet1Q1zVV3dA0G7QeUZSN\nfb3BW1fUmZTqN5cB38QcooiFygLVhV2itRaBwfL5kr8pw6JCuVJIS55k2Ohdw69wrYLRLUHSl9e7\nHMoLpHJpewseP40jp9OJGGaa2tOfu8I5T2hTCTaewVcNU4jsX1/xTc3oYRgPDOMZpaHxK3arB5xr\nmAMY0xHjSDcMjFPPHCecM7TNHXW7Zg4zXx8/E/MAOYgPdGvR1qCNZXuzAZU5Hp9ZrT3vHm65v79n\nHjNaG5wTCMw6oYSSM9M0lA4o0zRrdptbzv2ReQyc+o7Hl5HNdsswTjy9vNANgXE9cLtbkdc1xjlm\nbXk+d9TtDR9u1ji3I0bLOAWM9dgq47VBhUiNJiiDrmqqekVTr4DM89ev9J3gqHKIi0eGQqO0Wcx3\nSFkxR5mjGA2tF/We8Zb1fc3/+r/9e27fe55fvzCqnnPQmNFSmxU6KeIcCBr2L2emmHBWMYTMcUic\nDz3751cO344MvxwwrwnTZTa15/6mxVsI80R/Hng9dHz99sofPz/xz58f+dOXb+zPE/2cSdrJAZTF\npiGX9PrEUtmpMkRTlz+ywMq474KdZySZaCrfn5aF+Wu6Wwwl3V1Cq0HAnEVEJht5LsatZTBcDhYZ\n+0nwBihi5mIlIV4zmlpLJqdWGqcMjZYrLZYh8GIDm5GNdp5nQoglJMITo6icpTiR9B6DodKOSBLc\n2lp5uWIqzzkx58g0zTJY1QpltagsjSYmOWBSYdJrl6nWhnbn2Z+CcMeBxcLDWrDGM3SBOMbl1b0M\nKVMuNmRGE0MkI2HtKQxv5hLLvmMllKMMvGU2IXCLNZJiprRCmQKdpcWC+Ne3v8lGrhQXpaKzDnJi\nHDqO6pkQFb72bApfPKZIu1ozW0vKmodZc3//js1mhzE1vvJoU2N9Q91uMa6WCbo86zJYnAt+F0l5\nweESVdWyqKjgzTSZ64T5QuECYaRQFsKloS3tZtm5FxnycoeX/6vFbB4WQUVKyCILiXmcSqbhxDx1\nTNst3q0gZTbrlvTh/nLITPPMOHd0wzNjOsvQTEeaYUddrfFtA8oyTT3aBMa54tgVjDhldqsN+f1H\n5v7E0+Ezw9TJQMZqnLc0dcvD7QNpGDmOe969u+G7jx+4ufnI8XDi3K3Z9GtWCW63N9zf3dK2KzKz\n+FVMAVSmriW3Ua0t59PA6+kz08uBEAJ17bHOkFVkmDpiN+ObmqZtOPVHTt2R281ITGO5SmRgZozB\nJMF0nfPUleCxtviH34QHxmmiH4TRM4/SjcVIgWqEtqeNVJUxK3KUw9i5TLv1bN41vPvdlt/+QaK1\n1kd4Oe+xxzNaT1jjqb3HO8PYTxjlcVR4qzmdjuy/7jkfO/rTmRAj45z48nhAT4n1quIff7jn3a4h\nx5mnlwM/f9nzx5+e+dO3PZ+fD7yceuakiFlsIPIVkbvsyXId5aVWKVXwdd1JzaDLaPRKLSQF4czr\nwqC5gDJKZPjxamkbiFfBClK5J5VJSheF46LLlLGqSapsebpg5NIFp5ykI1T+MljVpcp3i4tnype8\nTbL8W2mFtgaKPYbK0rHGS2D0AlUs+H353SwbayIgKtFrroAcfDkqLBJU4pynbTeElGXgnjL9aeL5\n8ZXX/SvTOGIMbJpa4BqVqLwjzpHZyIwMbSV7FAnaEAYSKOPk1dNa8kkBXQ6q5RBdSAxGO6yVlDRR\nihuMt/KBKGLtZSH8+va3iXqLUhlb67CugiSxW+fzCetaqrpl7SzTPIjRUdWijKVVlne64vbmnvV6\nC8pjnUaZQFYa62p0SdSWmyqtTURYq1FsMKeJEDKVr1kMrsjXJV0KFaBs0GppdK7t63L/by4xwfdi\nuvy8UuLAljPFAGtJOJJWKcZImOVQGYaRPg70xyA0QRKVm6jrlrat0HZLiNKSKhT9NNANJ0LuGeeO\nOfZUrqWuV6xdTdt6KqeAiXPvOfVFNapgs1uzrhsaa/lvf5rZn55JSjHPAWsc62bNtt0yxiOjgdub\nNXe3t6zXd8SQaNqW9XqD1Vp8nu8/0DYrxulIPwTO3Zk5CGOksRWb1Q2reuTLlycOr2e0hg/v3xGz\nJqZAN/boMLFWgqHHKAZGw3xGJycZjHiWPkkrjdHiJR2dlza1TPfXt7f0w0jX9RxfXpmmRJgKSyIl\n8XsPM8ZZjJUhdwoyoLMebr9r+PD7LT/8D7es763Y8rotE5P4jBtPjJq2rlmvWp7HV1HOztJK9/ue\nl5++iY9QL5qCmDOH80joJpzRxGFg+LhDq8SnX574f3965L99euLraeQ4zsXfQxgRS/GgVBmELarF\nTFmk+ZIeLxBLGdCXSj0XQ4/LJZGjONlS+NgIVU8saRXmEgKhCgQiPuOqPI+oMkkbsUMQ1zrZ7PM1\nuFkVC+eYZCMPKVBZj0cGk7koaDXLY10eXzHryjJD0EbjKgchSZcQEkFlUlwGhgKbpDKYXgaxwnCR\nUXAsmLRKxStGKZISX3RyJqmEyoZV0zLPM3EYibPh/DIx9nsOhzM5Zaz21G3NMI3MccYaJ66SOsjj\n1xZjHVZb4jgKpJeT7G9KIEKULjkKJZ9Tie1tTgGVxShvu93giy33GBLKWVzjaZ2lsYbqzdzt7e1v\nkxB07qjrBmscSlVoayX/Lhu0FkqRNRaoyNnirMjfvYfUgK88xgqrA6UlTWYY8NZJm1+gkZQEv9ZG\nPLdRE6+HEzEmnKtwlQUlydemuK2JmEAqEaWFHpQvlcu/vC1wjEA4sYRLWFloKdJ3HWTwviZbcU0U\njDwyDz19d2bqBrpTxzQe0XnC1w0KTd915CSZjeeho65rVivxcMcMTNGTzgMwkxX04xPPey85nc0a\npx1pnjnsXxjOZ6z13G4fuNk+4J1ns3rgl8efmGPAVxUvr3ucqfCu4fVwIk0jznlyTMzjSK97zt3A\nNAdBUbWmWd+xvflImgZSUsxT5rDvOE5nQhqxSuF3Drvy3LUbqmRpVw3/8E8/8NPXL/zy+MjLocM7\nj3M1Jntu1nes2zUpR1atR2fLPKSLY6VWCmsM2QneqBGvixQTvvJsb2Ug++3zN0LqGYbANMyYkhq1\nmI2hwTlLDhllNLqF5q7i5uOW99+9Zwoz4+szU+zphgOVt9zv7jkcT4R54vQ68vWXPUMXCndZ8fLy\nwsvzKyEmHA41KIZuRoXMBPz58xMxjPzy2FJ5y5+/fOPHby88djNj1MRCk9VINa7VNTnzQk1jWadw\n4StfPn9dmMsfKLXIEofI4vFhCqtFVJamKCMFHoOAWDywQIw5CwU+K+YUiGXYr4vIbqnMF4OskBNT\nyoxhwimDM7Z8vQw2yYSsCtNL4Y1lzpQtGPEKcoq6bpj7mTAnwZJjIqSMSoExBcY0EdNi7xoJU5D3\nNyN5mJTBojKYBavOIiQ6x0AcO+LLC6TEPMyoVCNolsKbGpUjJmuc1swZ5ikyxYF5EAsPY4R3o/PS\n+8j9xyQ+9BCYwvkyL9MymIMsQ12VKJYVa7777W8xOnN63TOfeuZ5IibpVqd56Xj+5e1vI9H3Lc5W\naKNp261UV9aQspF2UMkwxhWlp1LgnFRPstCyVHzJ4HyNs562aTBGXhyJXBMPb8q0WuWENpaqagDh\nbnvnL7i20aYsfjk5327cVxjlL2/58pFyIsaZaR7xqhLuchK1Zk5J0tezA2QTyTlx7l44vH5lnE50\np1dOrwfa1pOiLIgUIylGcFcurjESphFzReUqnKuFkZMi5/4ZsjRv1jbENHE8PPH09Sem2HFz+46b\n3Y71ao1CM40TbdOS8o521UJSNM2a9+/eo6bEkAIxW7xvmMaBrvvEy+GFw+mZYRxZuy3KVGhToWxg\ntdqCMpwGiKdMN0SYkzgONhUfHt4xbAJJZQ6nI6+nI6ehkyGUFuinO55Y/W7L3c1H2mZL47fESTGP\ng8AEKgvEnRXZaMhWNvGCM87R4uqaZr2m2e44vByZpkgqNqT58p6BVpE4Z5RBpNlWMw8z55ee/ddX\nUApfK+qVwXupTL1NvLtZ051Hvn098OXnrzx9ORFG4aXP08QcJoyT8Is8SkegE8w5cxoiP33b83R8\nxVjNy6njpRvpYokhZHHAXJTJ8lzfQioU+O96K+4mapnpIDBIEQMtq3gBwrOSijdfexyWedDCrFhg\nCb2ImJb7UMthKFx7iwiHDCWwOedLQEICQr6mAqEk4V4V9XN+83wUSqL0tBalZi6wl9JY55gHgUgX\nWm7KMsyOWTrgrPLloIlZqmFpWAocqjRaGeH0E0jnAAAgAElEQVSrFzxebG5hSIutrszBmkahffFC\nQaPkTgnjTJqTODiEQAoIj93Ka5RCvAibZAtJgGTCpjjJTqJloiBzPFUwcRExSsh2RVVpyIFzNxKR\nxzVPI3OK5Ph3RD9sVxu0lgqmXYE1otzL2SAmZ4JwGWtKiEIk5RlQYoKUxaDJmIhHYb3H2g0Lnp1T\nRGknbZ42qGxROmOsYrWS+DNbhqIxSZu2TJXl1JTHprJ0Aij1ZjFfbxdmAJmcAyFOjGNXJuq22OkG\nUpyZp4BOTqqQMJNSpOsOnLo90zQw9Ce685m6qkiRYss6Q66xRlNV1cUfxhiNNQZrJFEnRphizzif\nqP0WciDHxNC/0ncvkEZqX7Fd7bjd3tI0jcSwxYm2rjBmTduuIGlWK6ETHp6embRCeYf3YhVwPu0Z\nhlem8SxdjHVyURVzobpeYV3DaYwcpyNdfxJ6mHa0TcPHjw8MY+Tl8Mqff/mR58Oefhwvw+FpnHh9\nfUVlQ1NtWbe3GFUzxrkc6CXMtvBKbYFTUsriRpkcNoj5VtU07O5uefz5G3NpzWNcmBC5MC2kyq1b\nT7V1+BtPDImXL0dUCOhGcfOu5bt2J6EOMTN2PU7XDMeJly+vfPnzN778/MrURUjiS+KcoarLQT5M\npDmiUkmwiYnn80g+T/KcU2ZOqgRmLOWC+os/XEgdy7z8Mssp61C9OaIWjcSVI0H5WxUtRSxDRdmG\ndZa1H0tSVirbeOTqqAhX2CQv6sWcZD0uGzmUj6tdQAaRol+6Kbk/o94+DzkcLn7nIH4lxohjo7No\nG1AhipFWgRdCKFX3crgsBVV+04mUD5ETLCVZKb7KoUWSDd1qjas0q50FrQkxo00FGHIOTENgnqPY\nMoBAJVY2Z4LAPBrE49wYpJRMMMcCY+XLDAAKR1yJfYdRMqOY5xnnPNbZN5u8ZppG5jAR/p42cutr\nYQ+QUTphtLBHUtYY50CJ54K4xclSnoN4iMzTjPOVDL2cEyOiIoXPxMtwUTQgphwYUU5n47B1dVGD\n5ZzQSexmF4/glMWfw5Y3aPEcRy0b969vsg6KuCeMnLujRNb5SvjgRhbENJxxvgUlWO35PDJOCWM8\n03ggp0BdaXydmeeO/cszGlgv4cu+wjox6IohioVmyljrcBZyEveK25sHbrfvSCkyjE/4KvI//cf/\nmc3mgfXqHW17R1aReX4hxIlVW2OnGa3g3f0tVlcMXceXzz+hVOT+3Q3G1XhT/GecISc4dT1N3WBN\nJoaOoduj1vegHVOYeX584fVw4Hff/YC1nrqu+Pjxgdf9mePpyOl0JkaFUpYUEse+pzeKuG54fN5z\nd7vHe4/ViRSV8J4JaJXk4i9Oe8qAShqdDS45/GwJztE0De/eP/DL+mcyiilO13WWIhqJE6wqz7vf\n3HLz2y2rDysev7xyfD7x/F+P2Nrw8Yctq9bTNoZ5jDx/O/HzP/+Rz5+e+eXnJ54fB4Y+QlDXTiEb\nueDjTIwjuoTvinxH1lvIquhMRYbtC/dj2SBlGqL5VdK6gktYSS6ydko1WpruRSy0bGrLYFHzdt6z\nbGMJcGQlociZSMiRpAK5uP3JdEjJtYgmqWIoVaAWVa41jcLkxSGxxLyV6yYhQ1JlkLlEkAPClq4D\nJcNOUr5QLLNS1Oua9d0alSfqLPTYaZbQGIOWChhhkmnKUFjJhpmT2BFrJVj0ZQ9VyCGWF6+ZTJwh\njxHfODa1Z7teoa0iZY13LXFMdIeO/usz05iYc8Z4Jz3RckgVB1TlrBSmzrKpLd1hoA9gtEcRLrMA\nymtnlUbnTJ4DY9fx/PjEuTKoODOPo4ibtGaME0FFcv13ZJoltq9L66hQKqCIqFSUCMqUFJ58qQbE\nZdCJIksXYyxjS3Ugp7TCllOvoHVKKm1rHSkVbwXtWUx1lBznUMRB4hWRpKLViqwFpljYLyD3d6V4\nwVLpCJvF4H0tLWUMJeGk+GKgsLYCbQjTSFIzISrGSSblq03D9vv7MuARZWoRREs1EEemlFGz/O6Q\nRqa5I4WZcTgzjhPGOGKA0/nA/rDHMFBXjrZpWTdbVs0G72piGtBEiD2tdzR+h/M1IUB3PnN4fSFM\nvQiOSvisrxpq39CudoQgs4eHu3fs1jsqXxFTw9Nhz+vhxJevv3B8PTIcBx7VE3EIHLZrVk3NOAW0\nUdze3XH++sg09iWaL+Odl25h7Did96xXDcQBTY1RFYuzZOmYyapsIkZjksFoiQz0NlBXnvVuw/Z+\ny2rb8vLlLHimNTjnsMUcrW7Ez957z/r2hjmDdoa+7nj9duTP/+2R82MHOjCNgeNp4uVrx/F1oDvN\nTKNGxcLryBmS4PVRFc7zwrDIIo5aqkFdvDdMvtbdi/x+IfMtfhxvdSVLBf4XVxRSB8dSiS9rLrMM\n84tM51Ily09lUIlc5D4JRVJLRZ4uEI1s/pGsPBHNVBSycnUsDkbyfUsFvEj/M4mQE3NOQjEsuD+6\nSJcW3QXlcCk+NCqL4+HN3Q2ZnpPKYnQWFEoZqegVJa+2CI+Qw81pmN7ac2QuB5PKZR9QBctHKKcO\nResNm41ls/E0TYX3Hl+t6fvIvvIMwyTPYxSmUk5iS0COUpgqI6llQLOu+fj9LV95Zp4iwzRfXniV\n4uXfugiAlM5oG/AOSJGhG0RLYhTZgDY1daNxq7+jjTyXqsJoDdoLvpSKCyARMGhthb+ZFw6nxhpP\n5RtiUki7I1X0EmV1McVSXC96pS64mgyLrpWPPJbi1xwmFjWoHAaCZ1Pw58U/Qi+Kz8tefq1UnPU0\nzYoxCAYe40xIM4mEcRZXVWQMKibQlpgooh1YbRref3zHNM0o7cV5UXtRPeZANxxQFpTOjFMPJEKa\nCPNImHvxS1EbTueOw+nEl8efuN+tseZGXABL22cK5cmQaJxBtxtRxNYt52PPcDoxjUeUkrmBAfFr\naTY4U2GMZRgnUgo0VX3B6W2eePr8mR9//DP7lz1j16MTDN2ZpzBxPh3ZrNZEMkOY8FUlMvgQwSia\ntmbTtmxWaypnZTCJEnhJWaytC5K7gA+CgWoNJmuiErWvKRmn3gWadc32dsv2dsv+6yMhyFpyJRDE\nOot1FhHWVKzWdyhXUa9WnDcnjq8T+88Hnj+dOZ+PjNPMHGEei3gji6eHsCFA2gS48L1Jl2p6ocpp\nlpZaX9dolmGcrP6Fh70YJhU0vGw86g1ssIQSLMjfMvx8+wclToWLF8sVcFhgjQVT50LlWyrxZcNf\nNtikRFo+ZWGrGKUw+RLlQPEzpbwSGCUsm5gyIRZ1ai7ZuRpQi0sipRK/+uEsD8BaS7vZMXUjik6S\ns8oBbnQix1h+7uqfrtAErs/tch2rhGx5IuNfTklnDY0z1F7jveDbtTesVxW2ssSYUAZ847GdQc2g\nZLpODkGsKbSwjNI0Y3TGG027rvGVw1iDdYo0a+EcL4WhWoAoYdIkI8ZuKUSmaUK3hqwSc5T53mZb\nsf1Q/dU99W/jtVIMaZRZTH3K8SpfLRepkhcqz2XIaVCIVDvGSI4Jk8MFSlli0i6Y9lI3F6xOXdgn\n+XryE0lJgizCPEDOWGPwXip7lcuyKqZGlBYza/WrZaK0xip79SbvJ8apZxw7chLKWV3XGCsGPsZq\nsoqyEceJ1XaF9Y5xDlT1CqUsRjtud3es1i2oyDD2tK7B157z+MI095cYM+dk88rZ8Pz6yKk78vz6\nja5rGfsB996wXd+R8yTV/TRhjePDw3dM006qEm0w2TFNJ4ahZeiESbJd3XGzfc9284A1DcYIG0dr\neHn+itM1zrVMc2B/eOLr408cXztaV3Nzs+bhfs25mxmHxOF45tgdOfZnTkNPHAcab9De892H71hX\nDSbDbz78lt9+/3tudu/ou4F5TMQ5S4eTrlixUldMViOf1EZjjRhz2RxYbVZsdhuauqE/J2KIjP0k\nzBdrmKdAxGGqHbu7H9ikifPmxGP1xO4bxL5mmF45jx3hPDMnfeVKUzzmlWLx0Fj43DFHliFbSkHW\nk+JiEGXesFGk+NCXzUsujkLpoxAEc6mu1cJMyRfF6rKqrxj59UO9ucs3O/MFMlzuaxHiUBSil7We\nZUiccqHMkpjTiCZismzkwrKR36jKL0rlmSVk849R+NwxLxx2YaBcrkhVbGjL40gZ9s8vrB9b3n/3\nO16MJwRxNtQmo4yS5r0UbVbpi99RLolgesH0S+rTZfir9EUJ6yovEZKrCnTm3I/MWRGmzNBFjD3x\n5duer18PkAwxDJAGUhpE9xHB6YbaGrRS9EMnAR5p5PnpK935DCrTblb0h5kwyjWYCyS08MljEjbM\ny+GAStJptM4zzQP9cKaynptby2//zd9RsIQ2rmDki3mRTJJDLFWWERP2pWUEkRJP08x+/0pVeawX\nwYG5QChLvVEgiXxtQRdFmixaqfJTmqVingcJskD45WPKaLVG64jSCRlls8B9XB3nloOh3BbqVgaj\nM5XTeOshm0uYstbFL8QYjNE0bc3t3Y55OENOjGNkt2lp2hXWeZyRKbavDLfpgaqpsc4wTwPHIrf2\nzknYcgzENHEaDrye95zHI3EeMCmxdp7d9h3r9UTOQr0UeueG3h7o+1e68yvn05GuO9MPAyHOrNcf\n+e7j7zHGE5PIor1t2aw/iJhpHun7Vz5/PnPsDzw/feN4fKXrR9raUzUOaytS6LEGPn73kee9x58q\n1mFm2nWM08gwRe43DTfbO9pqzcO779ms3+H9Go1n1BN9Gi8QxJK+ssi4tJZN/jI8KkZozlra9Yr1\nboO2VoZnGXGO7CdySMTZcetbNjfvub35HnKkrXuM3mH/cMuu/spj/YnjsSOdQ9kMC1cafdm4QUmC\nizHU1mC8YQoD09DJhlsS4XXWIiNXcuGrvIzf9IULLfWGugzolpWdL793UWzqN0rP5buWHnHZTi81\nKQvU8vYmPztd9njB3QXaE3m0HJNSjQcigZgHdLnO1IWJshRkyyOQayapYlmdRamZUyqqlqW7UgXb\nFoGQVTIbQGe0Uxh3VYemFEkhEcNMjJM4LyoKW03WRcyJKcwsYRmmXJOZN69iqQS0FgZYu2owlWEK\ngeE8knXkWQ94rVEqMowzYz/LeglzYbFYDJV08EHBJCE0la344eN7PvzmltW958/2Ky8vJxKKx/mV\nLmRS0Be8HrUclkCIjEPAKoPKhvOhJ4SRMCW0zbx+m7Dm78j90BiHKLyWRSX29dJ2qQvdVaoGsbmc\nQ2SaRrrujLUapzISFKIl2WOpxt8s1LdBx5eqI8uGF8IosEQUu1qrtXgwhMXRcEkQf8PTXaoXIuqt\njdACtecS6hylYnHeokQGgVKuwDrie2KUpqk9NzcbjvvIPE6QxYBrs9lQNy0xJKqmpmlq2SRchTaK\nnGdSnMhpJgHdcKIbOrLyDHPHUPJQQxwxKdMax+3NB9pmB8rjXYt1TXldh0swx5JOErPI8DfrG+7v\nv2OOE/14pkJRs6KuNrDJTNORx8dPPO4/cR46xu5MjsImCGkiEkAr6qbC+4qPHx5kOOs857EHKkKY\n6fvAzaZlt27YrG9Yr7fU1QqjKwKzSO2Xab280OVglQ1EJ64bOfJvYw0uW1brlRiRVR7dGWKW7moO\nsdjIZuYxk4JBzY6hC4xDRs81Tjf4qsWvV5hmhbI9pEmG5dpc23MArTC22OJ6T7NqGIaTpBOFDDqV\nkuTKzVDLMFN6ULQuAz8WVoRUwde0dS6bvOwB0sm+xb/lkFlw1Fw2jHT52aVK53KP0j1culglh90C\nygubS5fKutD98nyBLZfO6HoxcIGDlkMpKmGuxBSLGNAIlz+V3Uxx2dQXH/OsELsIq5lTZIqBOc7E\nErIdYiCm4l6KQaUkc60S9nBxfiyPaYGLbIFlVMHpvbfUtScrGEOg62ZCjhilJfQ6TkJdRBGGgZwT\nxhnaVUNOmjgm4hDQIaJtpnae794/8LvfvcevFWGYcU4zhshw7oiTYYjlQFEyL4wFbiFpcshgxD5g\n6Edxb0xCmNh/7elO41/dU/9GFblFvUVTjCs0nFxMYoRVYoxMyEERQs88S/it1pIi5L3HuQqt3dW7\nF3XZwN9Gu6UUiWEkzGfm2DGHgXkSbqcxIvOvvScZK4q6cj9LCIAqCfZvD4bl4FAFX4zFcL7vj2gC\nWq2wdoXWkiAkLV4osKkEZFSVYyiJRJWr0DrhvWG725JRZTBnUcpgnXDlnYOcR3KeGcaO0/HA0/6Z\narUrG16SmLkI567jc/zKevOJjGK3PXN395HV6g5tWqa5ZxxPpDRzd3eL9tCHExrLerOjqitO+2+k\nKZPySFu3eNNQ+YaHd7/ncHykH54ZzgNtVXF/847TceJ4PNFUhvfvdvz2H35g3e6odM26DZz7nm/7\nb6zXntvtDd83Qh1VKjPNPegZbQA0zy/PnI6vpBDxdiPvQVqw4lL9KcFjjVbManGMUzhjWa1WbG9v\nabcbzocj8yz4vtWSD5mnyLdPX2k3/8zDzXt+/PFHTucjVeX5859+4nQ4CivEVbhVKxxxIz4Yzlpx\ne1RSjeti/GWswa8aUBDGQD/JIN8ogQOgQKWUAWFRQhqVUCZjMswIBS8pYaFAMacqCTUAV+pewV4F\n4Smd4yJ8SVyjmRcsO1+N4N78uYakibWs0hqThYobC6Ml5nTB9FVWMiwtg0UJExaIaLGIysjUa8qJ\nKc6EMGKVI6bIVOYfWUuKTkqZKXNh9IQEU4SRRBcD52mCKRDnuQj9DGWhiIPnpQATRsxF+UkuEqNS\n+RuLsSKUt8ZgrKGfJuZCE3QVrJqKxlecTwOS/heFpBADVeX44R/viFPkvO85fc2oFMVgzil224ZN\n6+nHA+vWkmg5DSPjfUueIvMgmgi0bOR5nlFZOOjeKFlXWZOpmZORJKI4cTr2pMPfkfuheAkvu3hR\nhGlJpVcqXaqUKzUJrK1YrbY4a/BVhfO1VJVlkPlmdi6DiEv7KbcYZsb+RNc9MYUjIU0opfG2RduK\nFAXVs1bwVW0F/lka05yvcVILE2DBSOV3ysHjnGfV7oCIddJ55OXxFNbCYtZV1xVK7WgqD0m49EZH\nvDfUdV0UqlL1eOcxxqKMxqsW71qcqejTWTD4SjaWbjgTphmLETaHcRjnGKaep5dfeH19Zpx63r2b\n2W4feHr+if3+MylMtKsdqdgLuyI3JmtW7Q1KWZxriPPAeRyZ50A/HhnHQF3tuN19IETF7ngiqUB/\nPmK1pvIVc4i8vB4I52dCmukHwcqnVHPoJ+BEd+5RGTbrNevNHca03O1+YBg6zt0rOST8ZoXWhvjG\n/kYp8aROpTO7pigpnNbUVcVqs+L2/pb916/EOIlyMEtKjcUydD2Pn7/yX/7v/8wcZlbblu9/9x3n\n1zPDa8fr4wvjuSfMAsGltCTCR4xKZG2K9XBN1XicdyUQWbpPZyuIZfx2YXbIwk6AyiUIWYtdbFYZ\nWwJK5rS4ClIGluqyHslcWFsL+0otWPOl0MiXsnQpnH4FruSlLgdtDI2vZVJZ5kJGWTGFyBRKH2hl\nZaNn8QxKhQJZlIsIIkkud4UiEBlToJsnYhaL2SEGkopEJa9niIk5JUKWg+j1NGAe95hbx5QSpvL0\n54kcihKybq45AMYQJ6lWvXOYrAgpEuMVWloWjCrX33rVslqvqJxlGAeIWaT82YpOwyuMywxxZg4z\nARnnhpTpp0GglhQLrKvJ2mL9iv3zmcobbK3R2VP5RFAlR7cNvKpJDiAtB2xACwRlLKq2NGtHUzv6\nc+Z0iMxzORSTQkgY//L2t4l6W8QP6tr6iDevYzGXeoNlAFlgBW0kEk4btBFhD+oaU3Ud7Sw/XxY7\nwtSYwsgwnRgnqUCd8+BatLHEkMlJAlgv+XuF6ZLJRQkXpPVU9rJ5L79TlGkGnJdqj2LneXmCsqoV\nsj97Z8lNjXeKylqcdbLpzR1Ns8J7j/DpMzmJ05suVaQylST5WE/tau629zhXE5XlcDoSQy6bsDy8\nlDPdcBZsMURCloT4ECe+fP2R8+mZuqoIURR1OUPl6yJqgtrvMMZJGso8MAwDp+7E/viNOc7stg88\n3L/ncN4T8sT7hx3HChrn2bRrunHmdDoyHAaUyZy7E+fzmTEkdEloObyeSTFwPHV89/EXNus7yJZj\n98w4n7FKFj5F3Sx4Qi7tv4T2ymtU4BatUAjMsV6tuH+455d/rhArpVg8OhTaesI4cnp65pPOfPzd\nb3j/8T3/+O/+QJrAYCFk5hgZeySoG1krMYFBDKESFZVyVK2naVqO+3Op8BTWeDFyKy6DS4Sayqn4\nTJchXHm/FII755QJ+eo8uOB4uTz1BfO7whvXgf5yDeRfbdtXcdGvr0fZxH3lWK9XaCBOM2M3gLIX\nCIWwQBYKVSpvqcQLh70MqzRgs3QUufC7owqMOUKcGRAse0yBqMQ2eJHtp3K96izQwuHlQP3VUTnD\n5n5Ftz8RQSxw64YpjMQYBF6ZZ+nMtcJljU6aKUdM0iJuugx2BXLylb8I7aTWElroqqnZblvq2jBO\nHd04MxVfGZQmR8X5PKFTJs7ia46WvNbv/+Ejt++2tI3AoNMcUNlQV565mqmdFfGPFkZKSIHFtA9l\nMV5Tbx3bXYMy4oOOymjtirjx74h+eOF8XIuF8oUizy/0q+smCMoYoSsWvRRKXcztlwW8cHSVejvB\nl69HpclGQYn+IomdvTYGYy0xTgyhgznj2y0qX830xTdhJMUZZ9coK4o4WCb812dmtBVxxTIhz8LA\nUUpwv1iqnaauMCYzDHA+nqnrhrv7d5A11lYYXclFkQFdBjTLYVU8I2rnaHYP3G7u6caex8Oeb/s9\n2hwxRtP3pYoMM1aDdxUxwfjlE/1wpjt94+ef/0zKE3f3t8Rs0KrG2ZqVW+GsI4aIsS05K0IKgGWe\nZ06nJ74+/pHNZsf9ww/c3/6Gp5cnXl4e8ZXm4d0N22bNw+6OT7/8xDjsCSrLoLY70Z9HGjxt41k3\n91hmzv2BYdzTDxNfHn/i2/NnwtxTVZ71+hZsYVYsr0eGXNp7RSopUoX2ppUktQDrtub9xzt+3K5w\n1kgQcE5EFXBE0jwyn450KnD3H/8Dv//DH/jHf/8f2G7veP/D99z/7gP/9T/9X4T/cubwIhHClxWm\nIlopXHY00VP7d2zXG/ZfXxn6kTQFvHWQjTj6qcWgSrzXUxA4bp6ny4botCuzmYRS8bKS86V6VtcZ\nAZSKKJDU1QJWBEGKXNwG5YpSVziHayepNeJ6uWrY3W/xVjH3I0+fI1PMJA3ZV+gxX64xUpY1kbMQ\nJ5VGFXdDQwmjy5C1ISlHZmLImT6DCSWnsnDetcpYpajUm7mTyrgwo84D3dcDD//+A/a+5unnJ+YQ\nSCbha0McxQI3xcII0oass3SkaGqdmZJYM6QihgpZ0nbGOdGk8lpMmZzAVIYPH254+LDDesV5OHM6\n96Aky0AnhY6G/hCplEFPBmLGVoqH7zb8L//7f+APv/tIpeCnHz/zn//riaGb2d57RnPCLF15YdGk\nJGKiBSK0JlPVjnq9pjvOoDtQmqrZ4DDof8Vs5W/EI//XvqL+4u/y/Zcvy4aYLidAEUDEEl4bi5xC\niQnSwtPUyMbn7Arvt3i/EpeyOOP9CmdbjG5QyhDjjFKuqDrL4CVladHK8EdrIYVxuSh+/XgXubB4\nlwtEpJUmG3NRm2oj3greVZAUVS3hzworrB5lluu1tKyykecidqr8CrV+jzW1sEzyK95HmmpN5feE\n6Yy4L0ZOw4zGolTPue/YbtekPJDpUV6GLC+nM+c//hemceTc7TmbV+IoXt7N6oYQJ4bxRJyWxxJp\nmxsqVzPPA09Pn+j6F6zNtJsdbdWwbW9o1x/4/vuK9eaWw/HEP//4z3SnCYUjThAJqDzzUG/4sL2B\n6jegK/706We+fvlMziMfPzzwT7//J1J01NUN1rSXKla9gRlAMEdTxGbee0alqJuG24d7Nrc7XNPQ\nhUH8b2KAeaKyjtZmvIbudc/h+Zk4z7Rtw4fvP6CcJgw93X7Pt0+fJBUm54tfSCITQuT1Zc88Brz7\nzOnYESZRCTutsVp82ysr8WAaJfMfIyk2EemSZP0stFw5qJYKPGcu2PbCdrgwsy6VZr4GRVyOmyvE\novTys4XiqyRRp6k866bGGVsGiopq0xLHAaU1q90W03n0uWPo+3LviayiYPhZl2FzQpMkLd5onDfg\nLWF0hLk4L+ZU4KSEU9AaS2sclXZyRiTxQtfK4LVjZRwP726o144/7X5iHiZSSsxBKnCjDf0gxnGB\nTD/1oCtU1jK4V2Ugmq+YnJhXKVbrmncPO4auI+aIrSv+8G9/T0gjP3/+mfOpv3RWimUWI2EXCkXW\nmeTEA2noZ/703z9Tobi7rVGNyGTMoDC54nxOdHPGrWrCPEs+qU4oq1ExQ5wJ08TpeCajCUE0D6tV\n5ubdLcyRuev+6s75t4FW/n9vpbou6/UNUMKlhyx0JEWm78503Znz6USaSzOnldiUGvloViuc8+L3\naxqstVRVzTQNWFNhbVs2XEuIE8ZUKGVlMy9BEkaXCl6/aTWXx/tXnsM1Km5R6S24vxF4RluSFSWi\nLoeDMQ6FvVgOXJ54Xp72MlgF51r5GV0xxSNKDxL4YCUHcYqxHDBakmu6gZgTp+6IttA0jnGuySYz\nzoHj64kU91SuYVWtMDqADqTcMU6Wp/03vj7+TJrgZrvl5mZH7Vdk5D6P6YU+nMkqi9f7pmG9vsU1\nt7QaYgr0/UCYItMYpHMpzKDKajZWgkHqm4ZjGNj3rxxeT+Q0sGlbpmkgtiPKiDozhVxeC4k/UGo5\nZLWwmVBUzgtMVFdsbrasb3fU6xX74x6TFV4rKgW1zdQWvIHheOC4f2EaBqzRbLdrMIqX7z/y6e4W\nbx1zEKqdHGfyBqUEYzcyncWFL+dlHUBQFO8NhzIKp11RLisZ9GldLFfLDCaJYGhJmr9AKW+uA/nc\nlT2+/Pvi1J2XbfztLS8KfZaflIxLixmm0CcAACAASURBVDcebx3eGIZZ7DFW2waGTIpCPRXGUcU8\nzmKVUCCKINlmXKTxSGfkvMOvG+yq4mU/kZJ4fdtiYasRP/KVcaxdhdcOkrA4pihMGoemsY5tW1Pv\nKpp1hXuxhEEsoK2zaG0IaUAVrH0Is2y2aDkc1WJzvDxruSbrpmK3W3F7t+bbZ8fJyBUTQuRwOPPt\nyzNDN0OSw06lXOC9fOHYZ5NRdRmepsxhf+LTp194PThwidfTiaGfqX3D8TzTzxJcMoeRQCSrjLEG\npRJpDIQpMPUzzgW5FluB93bbNXmemMzf07DzV3DEX//a22pDLZ//FcAnft7PL4/8/NMnfv70iXmY\nyCScM3hf4byn8hXf/+Z77u4fWK13KGVBOZT2OKexpsaaVjAuXUmlok2xECjVnatIxbBKFR/nCy/9\nLSx/fRYItezaYSw+0lAuUnKx1bTYtbt8jcv3lco+53/xeuUMxtRkZQgxElQiqpmYR0gTKs2EMKOV\nwRlPstAPM6E43sWYUdrRrnbsT8+8HF759nigruEffvMH/t0//I9YPbPdNGw3G/pB8efPf+JPP/5Y\nhE+RzbbBuorzONBPJ4yLDET6nPn2yxfqquX+3qB9zfl14PH5G49fP9N1Z3JOWCtmaL7S3LzbYU5Q\nzXCrGpQxpO17qn9jmaYTN7sV3nrataNuZKIfxgApCde/iDuM0dhkUUWO4qwjpiTroG1Y3exodxvy\nZ0WlLSvr2Vaexmm8zXidiUPPdD4zjQO1r4Qd5SztqqVtW3HMLLxoQXViCRNOZQCYyzjk6sonvtwj\nY1BMYaJ2LbVrcLZGKwpHWwaf5MycZpkXFfWyWq6CYhy2XAJZc4n+ym9BlbdV+rJ15SukKZVSKfGV\nwmiPlpgFvJf8WmMd7cpSj9CdOk77ZzRS5Trj0SoWkV0mTOJLInCXiJ+ytqzaht27G1a3a/qxF5oe\nkQpJC7Ja4bShNh6vnRRLGnTUJfosolMqBF6hDfra4r0jTzDHhHUSdr5cNhlxXBzSjLA5pW9DyaFV\nEkZRGna7Dbd3G9arGqVFtNQNHf/n//GfmKaBfujQhTVmyMQ4k3UimUzWUrCgFHZd47XoQnbbiuen\nR378dOI0zZz3A055crAczyPjHNBZnE1zFM91byxZZaYQSYFiGrfiZn3LYHpOSlhUtrao5u9o2Pl2\nY/pL34i/bkz1dvL8tkZXDN3I8XDmcDgzjEIPUjpDsYh0zhWuaE3V1EDBurQtULvhwqEtkInwcBff\nB0CVWCi1XAy/Avb/ykab/+rnFx56+Slkcgfka1WvSsn0L886Rc5iJTDOA1MY6ccT+9Mzz6/fOJ/3\n5DygCKyaFus8cU4M/UQKMM49MSWstTzcv+eHj/+Gj+9/ICU4HHq8P7NaVeK+mDLP+1fmYSDOkZdD\nxzAOtOs1/el0MQl7PT5z7A508xlbK879yOG14/nxmcp7vG9QbHh8+sLx9MpqXfPb337P7buRbhqI\nc2Ld7tjdbxnnge7wSv/6QvSWZDMNBs8KPXmOjzPT/MJ6p9msxCRLqfRmvZSLVS/p7Vz48FU50G92\nN9ze3lHZiiomauOorcNbWyTWoHKUgWYSLNMYQ11XWF86PGUXF5LyHosG4uKSopA1dqmkr7zwnLPQ\nH6P4hjg7ChtJKaxvULNYOoQ0EVOQA2nJ4iyHwtVBZFlLy//zRQT3q6Hem7Wq3rxOKBFO1XXF7d0t\nTdvgvGWaJ9ptxbuHj/zhn37H49evfPnpK09fDzx+O3Lse2JO7G5vaVsPeebLl1e680DOQQ41pYgo\nzuNAeNrzej7RHwd0yKyUotEWtwyojWQPGGNALzOvLJ4qGsiR/nQmT5GVb/jw/oHuaWI87em6Xuic\nZaYWZilg1GUWoIvDqQQwyztTBs65qE2DDJxBbG4VECaBUuq6wq9r4rz4lAt7RHuDc5aYZuKc5L1y\nNc2q4d13txyeDOfjzJcfnxmHGaMH+iFyOHZMw4SZhc5IKsy8qEtHU6GxhD7x+u3A67cjcYrkICZr\nu/WKdbP6y40B+LuEVn59yzlfvIyX/8cFE0+ZvhsZ+lmc9IwrHPREDpIkEiIM48w0i9rLGCcMDO3K\n5L/4B4vzPpeLs7SNZYYu+PxfPrh/pbP4ax2H3N+VkSPVtvz718dD+tXPLVX5simkHIixpx+OPB2+\n8enLH3k5PDNPA413TOMoRvV4IGBUxDpLVTsqLE3ludvdcLPdsW633G7e0XU9wzSw2a7ICb5++czQ\nn9DsWG8auv5ATCPOW3LrqOqayq+wNhHzRMhFodkP9MPINE8czkcOpwM/fEiEODOFgHOW29s72m3k\n+fiEyYZ1vWO9qkluogsT4/EI3pO1IpDo5kjUHY/+hFrVbG8n3j8k3u3uJMS7qHiVkmmI1qBzJiax\nElgocUZr1psNt7e3tFWNGWesMoWyeB2yi8+OGDEZLXTUVKilSgvElnQubbZGJyODsCwsJWnXUnmv\nZDNNSDRaIhaus9iRTnEi5ApnKsFxrYekL3J2cpROvrAaIvlNDbEUBNfB/tUj5brBL/+7DEbLutUa\nrDXUlWN7W9GsarS2zGOgajybm5bbhw0wlUzdwOk0MUyBOCaSFqHPkoOqtS5mUFIBz1mYL1NMqLNm\nmgJ1gkopam0lK9cYrLdiz6wlrLmMnRanYnKKTOeB8TAQuijePlaw9HGcJNRCm6uYr0CKIoTKEiRR\n3gsUl64llr3jfOppV/Yi6NJzIoSRuvG06xazdgx9EaMlhTYZW1l8XRES6BwxlcBkYwjszwPHQ89x\nP9A9D8wxgtGMc2aYRdAU50SIYkOAUqiZMiyuUEkTxsx5OjPOc7FGdsTUQVBc8jP+4vY3M81abn+9\nmr1CKylFwjxfBogpJoYSpQSK7jwSZnB+xWZV45zBGFlgC0XNVy2iELUlE68Wv/K0QDb5zZ78RtKb\n3+7Vy2a+XCBcW9x/dXj7F8+bxeRI8Lor/XKpld56Xyy4+PJ6UCpOMDYzxxP7wy/8+PN/Z5gGNJpg\na8ZzJ1mV4eo77Zyh+f+Ye89nSbLkyu93RYhUT5bqqhYjAMyCq41mNNsvNH7gP08zkgsMgBkMemaq\nq6tLPpk6Iq5wfvAbma9aYLHcNWuE2Zt+k5UvRcQNv+7Hj58zndO2DfN2xmI+wRpBUuTR2WOERKJn\nOjvh/mbNN6+/5eJszqNHcyazhnojYAZg4OJixtnZGWcnTzi/uGSze8/V9Te8fv+GdYy4nDiZN6j4\nv+Ps9ITb+1PWqyXbfcfFdIJrhPvdHaezU07bU6bW0TlDqA259Qz9wG7XsVpt+LjcsQmJYB12fsLZ\n5YYXzzuqv665ODujqT2GdGgqq0CUhrWYY+HFq+TvdDrh9PSM2XRGTtvDBHGWUnKbcehf/947h/ee\nUIK08o+VFZFLxqdFlTb4Dm7nklUvI5dJXzIWR0K1g8YJyZAHQuqpfMvEz2mrBmdq8gB9VJaUEZWE\nyKJcGYySF8fpybFtdFxjPzwO4MwITxqoaldmMhzNPDM7NVSupt+0OOfYdXu++/BaN6zG0BOYni7A\nVdzc33K7viPdJ6VSRq/CdEW+IgrEnHEh4lUTTcXtKKYguoihrvCzlsZ7ZWf1Aylqn8CheHfOidwF\nlh/X2KZht+mIIR8kPbqu16zbSLFMkzKWfzSUHhkrI3NM0Gz8/m7N9aLBN2Aq0f92A0McuJg94dmL\nS4JLOoiTMjkJtvY004ZJPSFmg/hMezJnv9nz4fqO1d8O9Ddr+vsNDAOU6iT2QoqWlAySMwHtr0iG\nMGS80z6FFch9VAmCnJUJZA2bMLBfB67N8kdjy786aGV8TB13ItvNhqv37w/CVTEm1usNu92efhj4\n7vUb7u/uCUOgqZ1mntOGup7gfIWzjhh2ZSCoY7GYcXZ+ycnZI9W7eNhYPHw+OUAqhxBrxhvmp/H9\nH/sunz5uHvx87/0+faS837EKMeUmtrbGmIbNdsvd3TVD31H7Bmc82+2eSV3z6PySy9MnNBPl2X68\nfUtKPeenj/nlV/+R+/V7bm4+8urV/82zp5+x73dsVh21n3N5es7F9ISYdyTT8+H+I8uNnm+S8MXT\nX/HZ4684O33CdHZBO1lQN+eIO6MLf2DbdeoYjrDd7bi++0gMA23dYH3Dbr9n3W+53+wYBiHPDbPL\nGRdnjnaA202n2hZdJIrnyYvP+fL8gsnZGdk61ssty6t7/in/ka9++YIvvvrsaNFnnPLNjYGkJgA5\n56K8J9iqop42tG3N0O0haoZccZxC8M7pMJSvcEWDXbKW2ylqI8/aY4arAzDuUA2U4UkE9WuNxhyg\nqJQ1abCo+45u64mYO3YhEXKL9w2+aql9Q04DedgVJggKwT2A4VSCtrBUxubqCNkxTmtqBqBCXTqc\nVk88X375FO99+ZyG84szHp2f8f7VLTEJcT+wvF6BtSokVSV8Y5lKRTBTun3Fftuz33TaMKXCuRpn\nOyRHoqDN5MLvx3tqa6mcV7Etp05O509OsAhh1zMMpWkqek84UbMFSZmbNzds+sguK5ZsvMPaiiSB\nLAlvHLncM5V1ZRDIMBpAIEnlGcomKCawWq+5uqnwc8/88Zwskf1yQ07QdQP7zY5mUSFDZNgNSLaE\nkJC+p20rpHXkwbDt9qQQNBi3NadfPSY8WvD+uxvirsOL0DaG5V4lCqRQkJRiajEpYxiAiKWorhpD\nwhXYVcoasPw4i/xn45Hr8aNh78GDKSV22y3v370lDgMpqQ7KarVmtVqzXK25vr6h2+0xYqgdtJOG\n6VzNmpUJooMO+82Gfrvj4vKMqqpYnJ4ryf7TovOTD/FJJvOj3+DTCuKfO45Ny2Mg/+Hf/ESlImPJ\nLgVLc9qYcg0n0wvqplFHoPWW2lfMp1POFjMuLp/Tp6Holu95fP6EF89+xS6s2Oy3fPfuDb52DKFn\ntVxydnLG/EShh+/eveT67pbb9Ubxz2S4ONEN4mxxyWx6Ql3PETPFuJohCR9ur/l4f0U3bLAMrDZL\nXr76E/1+i5HM2fyUFAfiXtjsBtJgmfmAxVDXBjN1hEVNdi3VScNZNeXs6VMWjx8zPT8nZeHddx94\n/fI1613HcrvnccpMiwibGQ1DkjYYESGnSIyBlKIOitSeqqmI1gKxKAgeedWuqqjqWgOOU8nTlLL6\nMw6h2IEVOI6DcDJG5CDepYNko7I4SFZ1O4uAWGLRWUnFQEJyJpqeJBkvmcYYrK9wttHhkaLF4XI+\nDIhlMzbyRghnXJnfSxLQCtCVH3Hgq4rpbI6zav5r25rKVdSV59GTBdd3G9abPZv1FuM92Qh147HZ\nYLJhkmsdisvao8qHdex1IxJlizgxNMXkQ2RgUrcs2imy21F5T7uYMpm3pH6gFymsI5CsEgJiDSKq\nari529Abw/TZJYuLKZlIGhJD0UaSXJq8Rp1+cjYHsa1PemwymneIVvUG2smE2aSmcxaJCcmWfh9Z\nLXdMU8V+1TPsEoaKlIVsE/th0M2rrmicZ0haXkdJTM7mtPOGu+2ewSQkqM64D4Yhjg1X/UD6W/n8\nJpVpbooMhSmbdD4y5crE7/ePnw0jHy/9j8MspUzOQtd13NzeMex36sWJYbPZcn9/z8ePN2w2GxWX\n8hW5TCpXzrHbL4kxIlloJw378zPioEJTZ+eXRavhx/Hsf/F3+JEgPmLaD4/xPf5blchPvbYuQC0d\nc4oYMSym5zx7/CVtew4Edrslm/trau+RlFktbzk5fYalRoKlqSY0vsFkGLqO/X5PHwPLzS37bsf9\n6pbn8TNtPvma65slt8s7HW5K8MVnn/Pis1/QNtOibVMVL0n1Gzw9vWS+uMD6Ccuba2oXkCGzXa6R\nHDhdLDg9XbCYLhgE0puPZCqM1FSmxpiOZtpy+VnNiTvBzZ/QXjxncXFOPZth6ppsDIvLRzTzE/78\npz/RGcuyj1R1U5TqimFJ1uCYYiSGgTT05DBgcsQZ1bLojCk2f0dEOQGuVsVJ7ytcsQJMIdDv98Re\nG2nOGIw1D24uxcxt0c4oD+GxWKNB1xkhlkzLlBzWitVhFrSJlnMg5ETOA3U7o6mnNNUJJioMJqlH\n8oBYlYMNidKoGxcNBybVw8Bux8aiakPgjKfrdTjcOeHZyQnDLnJvtzz/8gm3Q8f1hy2760BtDPNF\nzflnM/owECVgxdDWNTIV9l3FMGRyiORkmDZaBac0IEOiahpOL88Z9ktm8wVnZ5d0Vx9oGs/8bIpz\njj5kQq/mDN6rEmp2rsi8JiSpDaBLkaefX3CWpkymlv6+I4sjiI73ixQXIuegiOFpNfSg6XvIowRf\nWS7OT/jy+TP2mzvSbiAMCUPD0MP97Z7NekffZUKnDlC5NogTNpsdbT3jZDbl4uKCJfdstxs23Z5z\nu6CaepqzlkBP2gtkJV5UATI9qjc/MoxyUYhUtzHJEGIsOjL6gXU6fXRe+uHx8wTyfxaCMBx7Ovol\n8og15qRj6uXfpGQnUox3va/wdU2zmGHbhr7r6bteJ6fKoEgIgaHviSHgfIOI/dFg/j8S4L//Gj9G\nIfznjodB/kDDlMww9KQYqJuGy/NnzGcn7PY7bpZvSaljOp0Qh8Qmddi559V3X6tGujNM2wVNNSOG\nSFudcbp4zOL0htvNHUOIVO2c129v+PhxB9nx/u0dfT+AceSYMN09pnvLx9mG2eSK6eyU05MLJtMG\nVwu7sOX6/Q3Lmw3dLjOYTGcyVnpEMl2E2Ycbnj55wZNHX/J//h+/IQ2Gab3g4uIp0m0hKidcqglU\nE0zdIkYFlwgBYy1xGBh2O9Z3S+5vbljfL/nl58948uQRi5MTUowM/UDfDQx9x9DtGfY7ht2e2O3J\nYUByJudR41+z2YQ279rFjNnJAltpc1NyIoVIt94Sdh3eHGWTbVlTCJicMfZTDRT9MmUtlBsXq0p9\nOg6ulDjlkEftWxgh54GuT4Q4MLgZjW3xYxO+9H00KKtBg5VMSMUBxxy55Rh1oHECJuuGYTxkC9s4\nUHsVvrq/WdK2LTEmqsU1m2FHdkLVOOJuYHUX1Dc1GCRkxW6toao8j56eQzL0m8jmrmM+rckSGXZ7\nOhL3w468hL7b06fM1nkm5xMW04a2qrm/WxOGgG8qkknlvFkqKnI25LJZOcl4EYyJPHp6SttWrN7v\nyDeQd8qYcaJ9qBhjEQsbg/jY89ITobyGEW4ySEh8fHXL+ranaibaTHW2IFQWSYkcA8YmUoY4CGEX\nkVowOyFvevb7nmyEyWLG+w/XygvPhifPL2isIF3Hu7cdMe7Jg7Lh0igaNPbFDt2ZQivNCevKEGTW\nNZR/Io787KyVh2S+0TloxPrMuBvlYpyb84FiNT5LEuQk4EUXQTFsbZsG49xR6KpoVMu4KaT0L25S\n/uRn/5Hs+1/6vP/W334/+B9xUTDW0fo5zlekGAjDwL7b6+PTKc541vuOsL2lqixnizMm7ZTJZA4G\nppMZZ6fnnK8v+Pbtls06IcFyu7knDXeKEW4CKWu5KzGT1/fsbqJS9XxFVbXMJjOm04aqtnRpz+sP\nr3l3c0Uf+0NjsHIVrvZMfI3kKdP2EU8ffcnZ+VOGIWOoaJo5aejIWY1CstUh7yw6MYkIzojCR9st\nd1cfuXv/nvV6zYfXFd3NLenf/AX+F0phG/qBYRiIQ08aOtLQEfsdw37P0O2JIR7XUgnoGYpP5Jzp\nYqH6G1b5vt1+z/puyX6zUQTaWpxT5octnouajmsZLEklVZHS1M76q1UOIdrMzsTxkooGr2PgyQfm\nSkyZ7BK1rfBQeOWqFDpKteaxpwIHN3ldKqO0b9EHF1Vm9JMKN3EYgThE7m/XtNNAkEjwA9tdrxBS\nBdkbhj6yv99geoWthIj1Fb7xVDPPZNLQenXqWSxq+l5glxGTGdLAdi+YIRKso+/2XD57jDOG3WbH\nfrNHRNeKq1R2wxoIYjDRqKytNbhskCGyvVtSz/TaVNMKv3I4Y0hGtY6yKFx06B2MufhIHhjvIZTU\n0Hc9q+WKzaojYWkWM0Ic2UUwOixhhJgGUnYaTJPQx0Dut3RbpfaaymG2FSnvMSTqpkVm6k+csit7\n6/f7ZbrNiNGm+2gGr88cp3Up1Yk5JgjfO372QP6AunHkX6M4pNo6acaTC+3w8Lwyqv4QG4PyPGDS\nNAiGvh/IcSgUNHcQxxkbDj/9sf5lMMjDrPvHnvvPvc5PBnPzKdapC9BgvT9wbTOWISTu76+4unnH\n7f0tYLl49ASD5Y8v/4khrpg0nvlsQt22NJMpOEPbOuazKSezC4jXbG879vd7dsuOOOgwjaTjEJPN\nwv7mno9yhxjVgc5RkBjxVivAJIku9SQSvq5xTkfkZzPHyfmU2eMnPLr4FU8e/ZrHF8+ZTBfITN1j\nYgYc5DAwBNWajjGTo2KDlVe6WoqJzXLJ+9ffcvvmDTdXNwwxcv/2LR5hPp/h24aYk06ChlB+BlLf\nEfZb+p36m6ZUpBXKMkjFAFQD+bwoV6qr+Xa9YXl9U2AiwXlTzEFK0SumSLoqO2YcrR/xTLEjBc7h\nsxuBFFKO2JKUeeOK6l8uDVTN0kPakHLPYFsmbqrzDCJYCSAjvbIEiENceBDIeWArZy2+rpnMJywu\nJsRNz24T2G1VeybaxKbbaxUHiM/IxBGNsNt0pE0gdoEoA7VvaactE9MwPW1pZxXGT5hPa1gl7K1O\nzpqygxgBSZkkielsRrfc8PHdDWSDq1zRe7FgDQkIw4NhJqNOSXkfuPnumoGEVBXZSmkeC2KL65IA\nKZSbyKgWe+GaGzmmiWCJUVivd1zf3JEMVPMJtrF0V2tC0P6FUrwdxntCtyNbq7LbzmhTOA7KLAJs\ncKQsOJtxDqTruUtbNtYSd0EZdlFnBEbpXwHE5MPGkouGjZjj2tTHXOm9/CvCyD/Bx3+ww5QSIxdW\nbME9rbXa/Bh3MCmCM3DARl3RXXBF28RbdYmJKSIp0/c9BtVoULbrjzU6/yd/Vxn/+7D2+H5Ql+/9\ndrwpjSlllqCm06OONpBSYNetqLzh7PQE6yvEGrpuT5IIxoFVt5ddv8auPsJmzXL5kdev3/CH33/L\nh1f3LK/3DNtE6ketDv0Mh3BQFpUq06nVXgqR1Af6VOAtI4hVTnGOyitmUCjgxa++4N/91X/i3/8v\n/5nTswsmkyneVQiqve2tCvx6cdjsiAjJZnKV1TDC6vfth577+3uuPl6x2+7odx3dvuMmBN589575\n5WuGlHCVp24qJo1DQkcYOuIwEIZBm+YhwIHTX6hxWTNj7yvqpqWqKnIS9rs99ze3bJYrQtcfcHDn\nUN6xMTqUMrrplKCaS/CwuRhoZ9XbztaCaRRBjNocE1G+swabTBQ1I4cRPxWCKIRYm5pC9CsGEA8y\nPDn2VEZkdfS3tNZg3HH4bdK2pGRglqmmc3yjPGoZoKo8zhmiDSQHvjGc1lOSH+hWluU6qpRr19Pf\n9aQoLBYTFvOa2WyGwXN2Ekn7jtlswuLyjNsPd8zmUx4/f0wKkfVqx2o7MGtaKmNxVvVKctL7OsZI\nCvEg42AQTBLiJtDvE8Z6bOWYTBpMKNlxDOSQHtxIclBUBBg5aGMAtWW24NHTp8R8xS4GhbmyJSXV\nYTfWq3GzSSTjVC/J65AR3mlDcggK1/WBNES805H+4C1hv8cbg02ZrguEXvnuOvVwtLhTPr5HBxLL\n3af0Gkgqu2sP9OcfHj8bj/yTAsN8bxRd5EizMqboautulIuWgy5Sc8CXGDOT0kwS0UlNX9VqPgzk\nlB9ANPknTsnxM/734Nr/PFTyIIiPF+kQKOWTZz34BGUTkMPOfGBliJBz0N09ReazBXWr4llDCGz3\nO0LoaRtPUytmeXN3zdX1ku0uc3e95P2bG7775orl7Y5uM5AGnSIsF0TPpS1gMPaQHYkYlZrLahKb\nQkLEYH2poHCYrNXPrJnx/NlzfvObv+Y3v/lrHj15VjRvPIfpu9H93LoSHMcMRUfcnTXknOi7jrub\nWz68fc+Htx9Y3a0Y9j0khTLuNzu+eXfNarnGVV5t9BYtrU84GUh9TxgG9eiMAclJdbONNtesgPc1\nTTuhbpRL3fUdm9WKq7fv2d6vSGEo04hgnQYea8A4gWRKv8bqZLEBk8sYP5ZsszZEs2CNV60SMgNB\nh0aM6oG4AtWkkXIqpkA2mjUbm8gonOAQjgTZIyCpqZAGcAdFNtVivTYQ+/3A/r7D5oSrLb6tlKEX\nMyFmQookAyEl6klNPfEMqi+GDMIkKpyj0EWi7xJtBX7WkoYKktA2LSll2rph3k6YfDllOm+Yz2vW\nd2tW6z0hHeZhNds0+v+TKEc8pIQkHfl3uaBXQyb0mewi+11HjBnrVXd+t406qVlgvZyVzy6loqVc\nb4wlW+Wa77qO2+WKLunmlKJuwikp4wVTID4RolGhLWuBrKyaLBTrt6OdnyRDNAJBr4ernJqJZzWL\n1tjyoIIq/Q+LUyhTYPR9GuODFjYKu/3Y8fOYL/8IU+UTjZWRV20MB61p7xBxiJRAXrKM8W80OI/p\n7+jAYrFVjY2DeoQeux6HjH/MXn6MPfMvwb8fHj+EWcaCQx5E6TF8j1imPHyBw68jl358Xf2nkexW\nFB9TwFnH6fSSmCKb1Sv2Q0/X7ZAcmbRzpk1NDD23Vxtub/Z8eL/m7uPA+rZnv+lJw6CLizGOlywT\nDSzGjiWdqGJdPg5PRUbnJEPVFLEva7HW0DYNl48f8e/+47/n3/2n/8BXv/4FrqnLlKKGmpzLvEDO\n+h7OYsSVf9XXscDQ96zuV7x++S3fvXzNzbuPdKstTqBtGyYnc3oxvLlZc/PumkymaT0Xi5bzecXJ\nxNJY6Pug2HkIkJPePM5p6YqlbSdM53MmE9VACUPP8u6O969es19tkJhwvnwuW9agG/nkY0WvF90g\nYEcsu5Tz5bxZ43C2xhm9QS1KlVM8VrW8Q1aTBURDdTJCpifmQDYVGbV7N4xGDuMg23j99LWdGQWX\nlc0xpEy37rl9d0878TQzz2Ru6OllOwAAIABJREFUIEPYQU6JECI5ZUKAx4uGdl6xWUWyCVS+ZnHa\nkoyU5mTEhBpvWqb+BE8FVcXZaaKvrTaHY+arv/iKuoHt+o6b2yWrdYdQkY0lGUMsKzsfgrkhpExM\nESM6eFRlQ50h9Ik+Zdb3W2KX8NYym7bshh1pUO0a79RacUjxcG9JgZewTjeNnLm5u2VPT123OOOR\nqFWB2gtGxqH+IIlkwZgy2IQpRhNSmtdKt/RG4d5MIkvG2ZqmcdTOMOxKSlSGogwqkKbceacSAWVY\ncEzi9H4csfV8iAnfP34eq7cHlmnfZ2joL2O81UA3ajJIdiCuyJTKQWkNpDARlNkyjsNr42TECEeY\nIh9oSeb778unmPb/3+MHuPgnQbwAFsfi45Pn/tT7m8KOGM+JSMJaw3Q6w7qafbfh6uYO7EDTWH71\nq69UN3m95erDHe/fdFx/7Fgte/ptIvSRPEQk5uP7PjhfbjTXoPBYy2e2FsRZnFd50uQ0CNdVVWBJ\nHTx5fH7Or3/9K/7zf/nfePbiOXXVMO5bmTKxd6CHldGYkSZmxjOV2W87Xr/8lt/99h/42//6W97+\n6SUuRx6dtnjv8NMJ02fPkMWCTnSkYhgG9n3H5m7FbQXni5rPnp6wWW9YrzeEMOC1tiajQbNyjsX5\nGafnZ0xnU8iZbrNh+fGKj6/fMuwHRis0R9lShYPH5giDiRGMFQ2sJakyMk6FmsONmg9KloqxK33O\nFCqi5XhrjjJPmYQtnqqhDL9U6tZj1A3JlI1RGIO4qgeK6HRrF/aY2he3KUeMgo+Gy4sLvDPs1js+\n7m5xziPZIjbSdR0h9gzbTNhHEKGZVjSnFW6iMq6mN/z6yxf87//lf+Xy8hxM5n51z9XVFVffXnP3\n7RKTM/cf1nx4846bdyv6LuF8RUtVss1i5uwspvKYuoIcySiFOGU9n1XI9Hc7dsYwdDq4Yz245DHe\n4+uKISlmDmpyncjgrIqnTSZgLCElHBk/0b7TdrXFJIPDkYMGZpFMDEF9U6GYZZcq0jAC2Lp+RTNy\nhwcpVoQixNjT9SrLG5NgnMe5mrppIAuxH5Q3j6qWWqufVzNve0jaR+/Wh0nww+Nna3Z+H4p4GNhz\nWehj81PlWh04B9nhnS03xRjUPkm2FTsvAQk/Wp654hqjRhFSAv4n0Mb/hCD+w0MefM+jrvhPBfSD\npvQPLtjDc5UOgdA5X2zpFHZyNjGpG56cPeXjd9fcvFnz9ts1N1cDq+VAt9PyM6eoI81IaYSZUgFp\nf8GOTejycyjVDWCK2YDXa2GsxXvFeJ211L7i8y9e8Be/+UtefPUF05OFNmkP17bgxXmcPix5T9mo\nDBALRPTdy9e8+tM3vPnuLZKEadtiF1OmlcVWFplMqE8WbMSw3uwJSTnFaRjYbzv2OdItLSYP7LZb\n7pcrYox4ozdwyEK0QtU2PH72lJOzM+q6IcfI+vaO2w8fWV5dk2MoolplrZRFpyyOg70JruD55sHg\niSm7oD6up1TxbasyxhicUZZEkow8WB9kpSWasoXoudI1HFWcFSuu8Iv1L51RN/qqzJymkjl2KVIb\nh68rHYqKKmHQNg3GJurWc3q5oNsMDPuIi9r0NtYyaR3SRZLLNHPPsy/POX28oJnWrG+2fPH8Eb/4\nq884PZsRJVMvG2YXM05PTrhefOT2as31Zs3qekPq5WC0nr0jG0sQwVM4+k7XUqY0w0X7AdowBdMX\n16Sg/Y2cMrt9r8WQdaqnUip0b5w6FY0QbVvrZhoT3ht8Xd4rZnKvm6RIoTwXI5AxSozxIZe4JGJK\no/M4eJSKpZ+AOjwFnX3ps8EkNcYxBowron02Y7NObarJs1YU5kFw0BxLir/Bv6Jm50NM/GHQOgSx\nLMeJO2PUxcfaAzVJaV8jPP5pMJYSJAwqa2pQfRVXAvrYRT9m7g+D6X8fLv7fOqRgWt8XzHqwNDiK\nZ8knQVwFvtzhfIzPF9GqIpYpV2cV0nCVp53WmJzxUlHFluX7Ne//fMPVm45dlwhDQmLGSEL1SXSS\nTBstelIf6qiP3DzJ+dAwc1ZDibGC8QY5aKnra1TeM5/N+fJXX/HL3/wl87MTXOULLUxKRcSBv814\nSsbzlTNpCGxXKz6+/8Dv//733FzfYp3nF7/6BctJw1Vx9kneEtsWaVt2y4HVcnsQS8tDJOw7+q5j\nWGVS2NEPHfvVWvW1C9UtpIRxjsl8yosvP2dxeqLZ6jBw+/Gam3cf2C2XmKRrjpKFH5KyoqY3bnTH\nhanZ9fgdDwGhZG6g59N7X6Yusw4fZSET1T9Sz8rREEFKcEP9X5MYgiiHyWmKcugdVcZS4/DWFQOM\nRMoBMQZXe3zjEIlqahESYgMY4eLxGSu3ZpnWmD7jTE3bNCoslWAIgenU8eTJKV/8+hmXTy/48PqK\ny5Mz5osJg/Tshsg+QT2Z8fhzz2xRsfm//oEQdgxdonIV4gzZG4z3Sr3LSemuI16OFD2aRJ8STpTZ\nkjLUKDTiDVTOEwnsdh1tVes5kqwDf6JewA5BnMF4g/Ha+3E4qrbWmZsUFaDKqnGOHY2bBSv2uD5z\nLgmHJUGpWCn9NoU+khSGTtmIQtC+nGRDPY7zlKGf4+L/lHahOjrHOHSoho0plcYPj58HI88/xHk+\nyUALrjyyUaxRPDXFpOPWYVD/yRQOSogPX2d0DLKimG1dVUVhbeT+jrfImBWbTzaT/9FgfmhSlvQr\n50hKqWiCaEmdsxQ2jvsEXnl4Ln6YnR/hlZwSYFjMH9GliPN7Li4u2dzesPy45e6P/8SHbz6yv9vr\niHcWVW8zppT1o2xnCeRmzCn1C0hpNEhORfdbKWC+YL3iDLlgjTp0pI3YyaTh8dNHPP/lFzz+/BnG\nWhWPytrAO/Bi9cSXmHf8njlnrt5f8fKf/sif/vA11aTh13/5a569eM5+s+WbGnZ370l9j2taqsUp\nXT3T18iQUiSFwiHv99D3hBz52K9ViGroqAtWKiisMmsbzh894qtf/4r5YkHOmc1qy+uXr3n/+g2p\n65QRNZqCoAqLZhzqKT0FNaQ6QkOj1jgUSKps2umQQFi8V6Dc2oxN2jhLMkoAlPtAVPIUQTdOk4BA\nEhXkCjiytaWczwdjitpZXNuAM1SSsDutekKMhNiBiWQR3r95z/RkymQ+oZ021FVF7Tyv7t/g7YSm\nbWjmDe0QMHtBknDz7o7ZtOXZ5QW//PIJjy8vOTmb8vbjO7qQmUzmrO4+sN/t2Aw9vbdI0fY2Tsf+\nkzOlCtHPPUjSIadStfU5sUmBfQxUtiYDVRaciBpSTDx1cuyjY91tSOgcgisQVBbFpL33uLainrXY\nxmsQLQE2Rq3eJBz527kMZqkKoz2qTya9F1Re1OrcQ8olCy/uSxiVXijvT07KSEJlC5Q6KuRgymxL\nqepE7w9XwoYrTWBDPohqmoLq/Njxs3p2wjGY/tizHmbaOSelEY6ZXNn5jBxPOA/wQFVMLBeilKCS\nYqHSFUyLY8D8lxxjCf39x8Zs+dPPfmx86hBSwODB2sPnH4OaQqxygIVi0QfJokJNMcRDGWwwVJVj\nGLbkHKldpUNRgxB3wvLDjtX7W8LtQLfZQ0hIDhgxOjlIYfeILefnQRlXmiqiab82QXPC2WJxZayq\n15XvqPQsV5yYdOJ2Npvy4quvuHz2lHYx18ZVykUXpJxrURDg6IKksNBuu+P26paXX/+Zu5s7Ts/P\nePb5c5589pSTi3Nurq+ZLRa0kwm9Mch0QZqesOsSwxALKyAoQ2W/J/Y9VrRZtt8PhNBjcqRxFjGW\naDSzOrk45+nnz3j82TPqSct+t+fDd+94+/Jbbj9cq4Vg2YBHCpgaWZRGlNGAYSxHmzXRO88eGH/m\noM1qjJp7SDZY48rkccY4xcutGG2Ejq+dE4aomblRRoQU6EYzdF1vylJRYSVfqqN63uKcVVGnOFC3\nFc2sQkymah3WGbZDR9zo557PdGzeVxWu9QwkNl1PUP0mnLekIdJUNeeLU148/YzZfMJk0uhYvmjS\nMsQ9Qwh0MbJPgcELtBY/8ZisMGnyjlzsCG3MZIlQKROnT5FdGtjkgUAiisPmSB8T06QuO/WsRrpI\nJY7G1bqUBKa+ZRf7IhUrB8jQuQrE6KRmSGVWolBFy12cRBOCA2fEjMwjvTfFKAxSeU/sB2XEFYs+\noagwPohcyrLT65wp2boINuXC8TcUmRZ9fukRaTYwRhw5QHI/FS9/XvPlT/DjYwY6No70uWNztNAG\ny9/b4ntoyk41yheJqGh7DCrGhC1BPGayHRBsCVA8gGWOQfdglPwgKx4/yKdbS/kGD15jfP/jJzfH\nDDrnUZTu8H7IEVrKWacYu27Pbr9lu9/Q7fcMfc/QD3T7PTGo1vJ8NsWYiPeW+ck5GMPufsvd2yU3\n396y+nCL3Q+FlyqFt6rGCfolxujtDn0GMy6WkonnlFXfQ1LpURi85RDUtddjcd6rMYDV8eHZfM7n\nv/wlp5ePcL7WTHy8ocaG7YONbtxAwhC4u77l5dd/4u13b5jN5/zVv/23fPbiM9rZhJASvqnxdU1d\nt0QsqZ2Tqinr6xuVYpBEDgOx6wh7lTOotDNJSImUMp6CoxoLhRd8+ewJz794wenlGVjHerni9dcv\n+fDtG9Z3S0bvVluawcrUAe9tkbMvjJ4RKswaYM2ohjiyjowGcVMA39GuboQTsFnZC9jS6iprvTit\nGxk0U8SSxRZtbVOke8fhH72pK+eomormZIIB+q1ga0czr5kuGogDrvH4tqJLke2uQ4IwP5nhoiXE\nTDVv2feJbrejGgamIwsFOD2Z8/jRJRfnl0ynM7JEdrt7jNEG391qowE9CX1MpEpwJ57pZUO3FpXH\naBti6LSCDhli0mlOa9jHgV0a2OVQAmNkSJHBBELMulEtJvRpA4PQVg19UnhoVlWaFedALJufVkMW\n6csMROGb57F3gQbxKFkDfLlNk3a0GTNtYwRTILHUB93kcy53UCbbMRLZB1RhXRtjMq17vEI0GiOO\n7PADKdocw5OgJuxjsvdjx8/U7DwGyZTSJ8Ez51yaYIpl1U3NyekJQ7clDB0hDQfDVTPuWlnIMSM1\nIxB5gE9yTgwxYSsQr7ohkpIOcVAghAcn5/uNxiPM8kMs/vhcwRo3AjUcNoYyVmuspaq8NsCy4qrm\nMNykGPpu13F3e883L1/x9t07Pn78yPL+XjHeflD2QB8gQ1vXOCfMZi2fffGcy8szchj49h9f0t+t\ncX2mqSr6lIhZ+bEj/FRgvSJ4JcevJWOzMRftZR25tga15HKWqnL4olExZuXOav8CBFfVzE9OePr8\nBZPpjFSseg69iDxueKWMdGpgnULk9uMVr1++4puXL3n+xee8+PILnn/+nLZtVaAqqZaO8xXiamgq\ngq3ZDomhL1BK6Im9Dv/klHDW6dRpzoSo2bgtE8M5K0bdTls++/IFn331OVXTsN1suX73gT/+7vfc\nX98Qh6G4B5Ufa7FOlE/slBqrZsKlkV5mFJwrnpyMScmDZIHSrCvZvUg+9FBsgRWVdmIxtsZlh43a\n6Ew5IpLxxS7wmKWN9xS6KXiHndXUZxOGXU+3HBAHtjaYyhBCpi9CU662pC6yX3a8efmB1qosct1M\niNIRglYDKQtV7ZhfzPFtxf12zd/9/necnJwwn09pJ54hCffrNa/evGMyPSEnw37b4SeOxy9OOPcN\n3359y5A9bjbBupbufkPXr8nZMAyZJJFtt2dIOrhHwfiziUQyg2Qa75hdnrHbdaR1LutZz0LOQl01\nJGsZ+j12ZMFYy3a5IoWENxVN05JE6EOPkXRIFMeGhmDwxYZNRG3ljC98/PK8Q+wqWjY5ZSrry4CX\nLVuAwo+kUnUbSj8gaUU2ro6y6Ryr+2NGe2iA/3iv8+ea7CwLUI5QhQbwwgU/ZL+6+1Xe0zQNTV2R\nwr4E3we0OD7FlVNSfQ49JxYhHTcJo/jyQ13gh/ztnzzMMR//IRRjyss8hFSO3+uY6Y8Zqd54WYTQ\nJ65vbnn96g1//vol3/z5Wz5+vGa5XNPt94Reec9hCMRBMTlnLHVlODmb0u97VucneElsr+7wIVNh\n8M6yi4OqqBlTpECM0uVsCeK5VAul2qEIkFEkWK0F74waEJQfbx9sAJSJQauv205aTs7OWFyc4+v6\nsHmMGc+Y8Y/lYZZMHAL79ZrXL7/h9vqa+ekJZ8Xxvm5qrDu6NVXe4eoa07QgjiCObsiEIRLHcfy+\nJwe15fLegUnkHMky4EolN/Yaqqri/MkjPvvyc86fPiYjrO7u+fDdG17/6SW79VrFrZxuxtZZnLd4\nLzqeP9ryHVaBKcwoWzZqc/zHcY0gjHorY9Y1DofIwyrUgHV618Z8hKFCFJVaxSlXGVF6nQhSDL61\noVnTLqZMFzN2QyAMPdaXwS1vMd6XCRtD6z2DgRAS/TIqD7tO+FlFVQaJtD+QDtjv1dWakGC92jKf\n3TCZtTRty3bf8/76itdv39JOT5jN58xPpjx7do6cTFi5Jc2HFQyOdjHl0dNLbt984O1qW5q9KoAX\nk5DzWNUqiBQl0klgE3tM7HEmIV5ZLhIzlfdkUWqtr2tqI5jAYb2nGIl9IMWkuijOYIool5QED5FC\nvB8bkGV9WxWPtt5hXOF7j6mbUTq0KQnksfoqsgGF7y8lhozxSsok2tGkfRzoOsbGh8OTx9Xxw+Nn\nGghS3EgKdvgJWwOODUFRbvjYTNAx1ULRymOwLovcjK+tmFvKmcoYnFczWczRfiulgrf/RJ3yYw3P\ngzjAgw1j/P0AFcmRiXP4qxIkdUCkKOCJiiHtu4G7+xV/+MMf+fvf/gO/++0fuHp/zXazJ4QEAjkq\n5igpF1xPR5Zns5raGnZ3a2S7w0vCdB3eeyrnlKMaEjFmpQdaM1Jd9bOClveIcmbLe1AWkPskiFtq\n76m9U5y9VE3AkRoFTGYzTi7OaeczrPc/en5FikmwUUGq3WbDxzdveffdG2LOvPjlV5ycn1E19afr\nQkQde5oGN51hqchdZNhs1eIrRh3RHgZIEWdEccwQiCEUiKgqtmAgFtrZhM9/8YKnXzxnfn5KCAO3\nHz7y/tV3fHjzln7fMbJADlKw3uKc4Fwu1c0RDqSIaB28yjCH9axrD5CjgBVoUy3LeB6PIJ04hWCM\n1vfHdZ6T6lYXYCUTFQ44LFcPouP4tq6w1qgm+zDg6lpnMKzFVzXG6e5hMthssQkkWQZRiqqrbBlo\nUrZSzJlhSEi0bFa33F9v2Txe4KuMrxzW12y7yN1yyfX9LVWz4rMvnnL6aM75+YShElY34CYWbxyT\nac3nv3iBiZEPr96S0Eow5oRIkfrFUwSAiWT2EiH1mNTTSEC8wnuxGzTRE8umH2icQ5yhil5hlZSI\nqTsEazFSuLSaVEnSH1OyXlMSFINuqKYy2JywTgO5Rmop1b/a/YEUVskRrrGuSJblMUSZwz02LgPD\nMQlUMsKn8fAQZ8oa/LHjZwrkxxLCPAD6bWESjFmiSlIO3N/fc3dzQ79bq0ZcUrL+4UuNGbxoaTNy\nQDGGpqmRyuHSgOTh8O8jfAM/lmF/evJGiuD4F0fcqzy5MCYOdUQB2EZsFdENxlr97iH2bHcdr169\n4R/+/g/81//nb3n9zRvurpeELhCGSAiq3zD+kEUpaSJU3nJ2csLTxyecTipS1yHDQGstrVdx/j5G\nQlbhn9q7IuaUdRqtNDOR0tBMSXXO8xG9tgLOOCpnaSpPXTlqp1mIyohoFjlCNYKwOD3l4vETbN3o\n5NoDyEzK+0qBGQwQh8Dtxyt+/3d/hwDnjy44f3TJZDbBe3c4zyMX2zlDM50wvbhApGJ9sySnpc4E\nxEgOAUkRKwnvhLoyxCGTQixcbc2MUgZbe04uz/jNf/hrHn/2BO89+82O999+p5OcyzXkVPB/vcZF\nYFQhEKvaJMg4yFTErsyxwBsbusZow5cRF1WIvFjSURr2UionzfzFFr2hlA8wjHce8RVGskq25kwS\nbX4qW1mH50Sg63rubpaswpbVck2OkdZPNHalTOU8KSe6Xc/2LuAGhxdfxLoyKSb8ziKjs44Rhqhi\nYy4GcjZs3I7VxyVD2CIOqumUhKMfEl0f8AvDxdOI98LV9Q331/e8f3dHFwJGPEg+eGO20wnL6/ti\nFCEIHmdqKlQVsJxhekm4CvLU4U8a3KpTz1DjmNYtyWT2YcBXylKbV3P2KRIH3eRNEh2ZbyxSC0TB\neJDhqGeSoFRfjpxTmVhWVU2bhIKalWtjaKpaGTB5vOcULUgGGvxhAHKsfAUKk4Wi0VNCfFk8h0Tp\nQczW5voP3czG42fDyKXs9IeubGkEKQ0nE2NASKQUShlSpGdJBwy88l6bCONwyShZCyXYSwkoKEtD\noK5r6rrWQZaf+nQPgvjDYR7dTI+ZuEIH+p4jo0RFrZTWJ+XmNIXyl0UYhsByveTlN6/43d/9E3/3\nN//Iyz9+y/JuxdAFclRn7xSTNhzHNDorxlw7y2I64Xwx42SqTSsTA04ylbMYoxZiQ0raMLMO61xR\nXDsGRsXCx1H/BCmXkl6zAme1YTYG8cpZnBkXnC2Bh0PU8s6xODnh9Pwc493h8bGhPWKDMp5KEW6v\nrnj/3Rvur294/MULTi7Pmc5nzCYT6rrBFyaMHGYKYDKfcf7kCbKPVMsNJgyQklYuQ0BCwBmhrpTa\nJ+j3swcxV20OLi7P+eyXX/DVb37FbDEn9gOr2zvevXrN9dt3EAPOqZa7KRuW3nuaWo1SBJJHmmGh\nDD4I5Id93pSKrpTTnzTaR3iPAs0ccFc0WzeFPzz2JbzHiuCyznpGEqGsNVMqQDE6RNNHwfSJPmhQ\nqac1zltyiKQi45sT9HuhRqV5swzlizrCPhDCoCJe3hBI5AyusKAEg/Sw3Xe41nN6plTalHSkvbLC\nbrfju1dXOBMZup4oFmO0Yswh0nc7UgpgtdJOJcGy1jH1M1ozJcQtfRoIRjB1RX0ypT2bYRtP1dbk\ntmHYa4KXjDpBDTFC4/AnU+x+UCptp5W5r2uaeYNtLUTw0RODYGPWpqLJKm1gVNUzi8WKK2MVSemd\nVmi8coQ8HnJQ9cqxKjdA4bMb8gFSNWN1V4buRmw/o1zz0ZtYDkNgD5JJjo99//jZMPIH/+ew8K3R\nsKjQQygZjBQ1Nr2p8+gEUvTFTXn+SMofs6XRISalpFrW5Wapq1qn6cZAM2LpnxQ75bex/JUH2fXD\nD04JjKQCNRgcpeQ2I01NF64x2uBb73a8efuB3/72d/z93/wjf/r9N6zvNoQ+IgIxpkOZJ7nc51m7\n1lag9p7z0zkn85bGG4b9HpuSCiM5UKd2UZ2OUhKPTvOUzHjM8nPJxCUnjGRtIpfyrXKGunI0taP2\nylixxctUZVZLYBYNQM57xUNPTzHOFdjse1dcjP5NzkiIfHjzlo/v3pNzZnZywsn5GZPJhEnTqrg/\nhiTpk3PeTlpOLs7ZXK80BYgBUiwZufYQvFdIyBgpgyZlcg7l7VdVxZMXT/nyL3/Bs8+fU1c1+82O\nu/dXvH/9hrura6wI3lodmzafBlhNFkZZAw5NSltgpodJ0xhgD+dBStLxAKIb74HxNQ4pO+Pj+j4Z\nwHkddBFDJFCR8fmTzkPB5o0q9TkHTrHd2dmMqrbkIZJSVpw3G0Q8tvLYyqqJSNmghi7R98pXr3DE\nw/BTxnuLdSDeQPL4icrZirOw3rMPHdOFJcaB7769ZlI76trhfI1zgSRC2PfcX9+y3WwQRoqqShVg\nDE1VjKDJRBGyz1SLCfPLBZOzKYJgvcPXnuSMGnGIDsoNhLLx1drsdOpXitU+QdUUGVwHvnZIVdqS\npSodk7ackhpqaCRWuYAUwQoTV1E1jtTLg0tmDsnbIWHKFlMYKsYWgThbWHd5xMt107BHjIzRgeoQ\nkYSjDtX3jp9Ha+Xhh2VkwwoipbE1MmOdp6oa6qbFugqMUxjDjCufQ1PBWnBWijKd04vZ93RbQ1N7\nvCiVLqZEiIEQdTE5yvivLRcKjoF9zL5NAUAPU14axPV9XeGhlnIqaUDWwaOCV1qPNYY+Rj5c3fA3\nv/2av/l/v+b1n9+xWXX0XVFtK1Q9lVTlwUUUDUAOZrOaJ48XTCcOSZrBG4FcnN0lCTELMQkWi8eU\nSsWAKT0G9L2UeZgxRbPGWYf3Fu8slTc0taWtLLUF54qJwaGpNioiGsUyXU01mVJNJrp5jPDCuMEC\nJhuigy4M7G7vePv6NavVitNnzzi/eMTp4oxpqxK3er7lsIrNeM6tBefp+4Fu3xGGHkkBUtKyGf38\n1lqGvieECLnI4Tq9gU8vFnz1V1/x5V/+knYyQzJs71d8ePUtdx8+sN+ssEaKtKotU6u6Rqw7woFS\n8FHj9EyMQlpl9XwC2dnyWsgIzaEBq9AQdKM2WMnHb1terMwPalViLdnr4y43+Jyp5GAWp7odVrAe\n/MThpxV17yFVfPb8kpgS9zdqqqy00ExVOdppRds4+n1FDKpsGY2Qa48xDustMihJwFmHrx2+ceRa\nmNYTmtbjTeTs4pSmduz3HRePpvjK0W0GYqi0z1J5hioTSew3W17/6TuGvifnWPDhTMiRbA0VFQ6j\nJg/W4KcN55+fc/JsRjO1hPWW1AWtNm0i5kyMidR3VKdT8EJYbbDZYoqzkbOVCrN1mYjeq2RlIEmB\n3RJWI1DKxASmj9igapV63Y3GC1thsOSkbLJR3kJKjLJjP3TUpi+DRHinmjKiMs+SQEzClIGhETM/\nDOmZw23wr0xrZUT4GXO10nCQBFic9dSVjoxXVdAyu1LqWUZ3RVMgA+s81qbD7qVYUoFoQqDvDM4I\nzumbhhDp+56h70uA08+QU+k4l6ENzIOG53hSH57Rko2nwk8ur4JIxpe5LLGFYJiFECNv3r7nd7/7\nmr/9m3/gzXfvWd2v6LpeR3hH+GGUw5TxJJWAazKzWcvloxkni4bKamlqc9m8rPo/pqI1oi0CzSRj\nLuauBX4a6YUpKsXQ2aLeVo9rAAAgAElEQVSRUhUdG2doKkdbOZrKlWx8/N7mAKnIKLlpFE+sKq9M\nkYIWjKyOMehRhM02d3e8+v0fWN0vaSYtn//iS84vz5lMWp0QtYpHj1k8qK5FFkuIQt8P7DZbLcuD\nmiLnEMmxZO/GkgV2XUeM8VCl+doxP5vx+VfPefHV51w8utRSPgZWNzd8/du/Z319C0kO+j66qVkY\nOfRWsVTn3IECKyJk87CyG5tUn8J01o1ZmqYvKcnxdKJwk2TNurSMH6Uqxo19xNG1Geqdo86V9oMk\nEjEkoxl5Fogx0697hk4ge7pNREjYbGjaRjfCnJi2E6aTmspbJNQM2z3dPuiGXReJC+uQ0BcJgTJi\nLpociIGhg/v3A2m4p896P6YAeYjsVgOhSvR9VGgniyobbjq6Lmqj1Oh1NyYfegY5DErTs4bZdE59\nPmGxmOGBuO0Y1h37mx1pPeCiNtCNsZoICKQhELc9UQwhBp2m9keIM+WoEGzSGDvKCCMUqFYJFiJS\n1lbxMCj/PkggWW1WJwt5zLpLYqrrTnXH9U1siVtKwEiSH8DLY9wxyh4bMbsxmEsBjR8kwQ+Pn90h\nKB8mLI/psLEaPEaszPsK53w5CQWPdh6clkxYW2LsKO5ki1WTlkEpOTU98E5J/2Vg6CH+rdhioQmN\nWJTRy6L41Pi8sXE3Mmo0w+dA99cJSlM62oIaIiyXK/7wj1/zD3/3e/709Z/Z3G/ou57QD7pbl7JN\nB3FSUUMtSoQGKiecnjRcXsxoG4uEQI6q4GaLMoNqOAvFHY2RITUGBKVdhjJ2nw6a3M5Z5Yl7Pe/O\nQVNZ2tLgtGVRHvawAhqrUJeeLW/tIRMf4d+xqjlkoQjDbs/9h2u++cMfMd5y+fgRzz9/weJkQd1U\nRyYIcrimIpQJUeU/d/ue3XarhsgxkAf9kZz06hUYq+s7ZTyNN3jtmC5aLp6cc3ZxRjuZEmKiX6+5\nfveOV7/7A/1qgzeu6KA4vHfa1CznxY6BvPwgBccei7XyP98fdIMCkSj8XLBkXTMjPU43O46bQAkm\nB6Gucupzobo556iy2oiNE88ZDkFcdj19jofZg34TcV6orGM2aSAGpNeKVTPSfNgsQ0jYWt/D+jIb\nbcuPM2WALSNRudJxgKELdLs1qYLoa7b3AxIzu3VPVXvwhuzRcfuk8wP9rmc2//+Ye7PmSJIkSfPT\nw8zcHXccedTV3TOzPUO0NP//PyzN9i7N7lCf1VVZWRmZcSIA+GGml+yDiJojqnKfsy0fIhIBwN3N\nVEVFWJhZdgxTUHqk750Mm5WJU2HT1SWb6x3RB+opU5dEelzYf36inAoXcUOMOrknSKPaBCvmoiw2\nqbqfVdG2EiNqUnFQwOG8/rzlETTpFXfVNlV7FqcQkhRbr3oPdJ6mrokeN3xQaE5qA6L2aYT1gPYd\nVkBjDdJ5CEowZTXJ6kH8P1AgbwaHgAUZ8xhX74+eoXgNwqWhCkjNAF2MemL5gNg8vYZ6NhgRA7Ay\np08WAvABH6MGm/D8Y+sPdAz+uRIreBWANMO6pDlEKmIeF1rQVkqbdeQTjhi3anMq6BQR4PHxkd//\n2x/4H//HP/BP/+uf2T8eTJikjIoYBz10svqE0LppjscFGMfA5S5wdzNxczXgmuLBvUEp0jTDkZ4V\nKBTQ8dhO4axVp6i4pjCJKjVtSIFXfD84GJxjCo7B6/CCM07rKFYN9Wkz3dzMO/UEEROsdFSk9cwS\nhX8eP93z8c2PfHr/gb//7/87v/u7v+P2xZ32O7y3MZdn+pX1eanNkYqw5EpKmWU+kdOijTub+iO1\n4KMG/1KU+dNas0rLE4dIGLxaH9RCLQUJlXc//MCff//vPL19DxXGqOKREKNBKWKDJLoVLZZH6cYO\nXtcm0iEsp4G1D2Omx3dtIksTvGu6/a3Uab3P0wTMGfBsQWE7wp8HfDgwtW1gcIHqGtnWaEOY5xkp\nM8U5Li93XN/s2A0jITqcb1xebAjGfmleOCxHciksx0Jqgo8DG4/aHLdElaiH9WZiGgZkqSxzolYI\nk2ccPGOAz/eJuTVkU/EJqEI6ZYYpEDcRvwlUTrjm8Vu0gToKfooK10QPLQBRk5ghMl5uGXYbBMfj\n5z2ehquNujRmq8S2Qac7CY1TWpCi3jUbPyh5APUGGqeBcbdRltJBlD/umg2dybgiSt10vQzV3tHa\ne6uaBDUBH8wYqya6XYXzDopTTvkQCUPEO6G5YvFDKCkDFe+8Nc3V/6C5tvZPBFNQ9+556wy4n1cE\n/WITgkA3XC6F1tT8XUdSOqO26YbTBqbnPElERR7ivG4l1wn00MsTZZOoKMP38hfdbE1k3TTPz7e/\nHArxnJt+xsotyKBUstYquczsj59J+UiMIzfjhiaFItpkPBxn/vT9D/zD//U/+e4P3/P5/oGaKvmU\nyEtWmMMWUimF1l3vLFh4GuMQ+OrlFXdXO7amTm1FqwG8BQ26x7WxdKwcq61Sinm11KrVWrRMslnF\nYUCdmNpx8JHBQ0TnIT7n9wSvwxicD6Ra6bMHnTRKWljmE1OpBG/Co7Vs1PL007v3PHy6Z3t9xe3X\nX3Hz8iUhjs86/b0zYHCbE8N/K3NKzMtCSsmEUsV8dYx5IzoyrdZMyrMaqkmzqi7ivfps5yUxHw8s\nhydGPG9+/wd++P0f1NYhRMXYo2cY3Bq4NZDbGEH/bHhD6BvMcO/WqyF/PoxaO0Mo1jT26J89yTJN\n1VqZdQ6zs/XXG9XNKha3lu7m8tk69OfWtdNhs9sXO373d19xc3nNvMyc8gkfeyXgVkOzavzzcTJe\ndFpUhOYcPjpwQnPVvLwt0xQYo+fycuR6GzmeMqenmXYqFEnas2iOOivX388amC6ud1y83jEfFoiQ\nXSNsI2GOVB1eig96+PohKHumCRKaUhRzhSS0inK3vWO729CoPBwfkFLVsVKMhYXyyr1z1JxIy6yM\nk2EAUEuH1vBBGMcBCREnQlmWNRPvVam4LizTz7IOJzE8XAM0ytO3qrI1B1LXQL02xw0y68e9c05j\ntaAognsWpbRM+9mY+gtBK+fgu/r+0k1prBQ2grIuVjXMaPZQ1mabzTmUXspaRt5qsyDC2j1uIlRR\nMVJ5hmuv70fO4qIvFJqcM0TLMc1Pu5LLwrwcOJ4+s6QDw7BhM12SnBlk4Xjzw3v++Z//lf/3//lH\n3r19z3w40Upb+eKt49f1zI/XUKZPc4hwsYu8fnXF9cVEBOas+HatzUKtnDF9+0iCStPVMbLQR+T1\nRiAIrXmDcpTeCeDFE50QEYLrPsn9Hj9vwrC6TIKjlMRh/8jTwwO71wXvC82ddQElZ47HJz789Jan\n/Z6br15zcXdL3Gwp9Ry4n52e2ucw9lEumSUlFpu92ce2ldzIWdlJDhiiJ+VEXhYNiLYBYwggnpIq\n82EhHQ/M+wfa/sSb3/+Bd9+/sTWgw5Xj4IhRce0u9FlFQQYhaUO0e7cr/7gbg3UqbRd39LzAIdY4\nVV78Kj/oXtRFG94YC8ob7awZgwLD671teEU73Fo1hRD04A0NNwp+E3nx4opXX18zykhrmVQdTbpK\nU6HGapBB8BGCYv6tGHziYTTbYp2f+sxWA2FwgSEE4iYwbiPjPFByw2XFvBEouSBLs8/uuLjcMO4C\n4iOtCkvOhO3AMI/UItSEKiijJl9pyRTX8KPSIuuig6vFEp+GME0DDY84VYdSepWvZm9NgwwlZeYl\ns9ls6V78KxTmHXE7QYiqirYKWc6hYo0PynEQe0bPoEfv9eAfPM0JVCyQ917YGRPvMO0KRTpFE/S1\n/IqZdzjnDOF+ef1ifuSWaqjyycU1o5RWdDO5gHODZkFDtMDexSV6KiqlyHiX9lC1RNJN7ZvXg8Lp\nBJZctCzKWYN5VyeC4pUdigk+rM1HkDUY6evohkolcTztOZxUEJHygZxnWhF82NBqZJ4L//A//pH/\n+X//I3/89z+xHE/UXHSD5ErNFsR9W6XxSOu5KAC77cSrFzte3e7YBE/t2WgxDxV0Y6gzYVgrkipC\nLjq2qxbdeMMQV3WsiFCppKKv7das0ducx6ZNYlu4K/UZPSibaFWgAb5xPBz48PYtVz/+yIvf/mcb\nDOI6GY7T/sC7Nz/w9qe3nFLi9Tdf4aaJuVRSPRnGe8aS++HcRCX2OWfmpHM3a07kdJ7BWYpqBmJw\nbKaRUmfzWnFK3TS8u+bKab+wf9zTUmJ+/MyfvnvHj7//jqdPD/gYzENFiFGHK4fgrR9wph/qGuEZ\nuql/6SW4SIdLBNfa6lvtLFj2DF/FQQLeM8RRmRfoCL+zJ4vBTa3RWsERzfNFA0NzfRQYxBjwQ0Ca\nDvoYd5Htywtubq/AN57uH8g2ri6VRJFKpZGOsz6nEBnjpNnvkhQKcN4si2GcRhXDUJG5GuwptATH\nfeE0z/gJLq8n6t4hkvXZlcqS1PwqBMWTj4eF6XAieK8TiJKw2Y1MVeHB+ZARH3Tvzgt4he9qqtRT\noi7FjMUEPKSSlP9tFUoWEwUCIUajoqqVQ0PX++l4Wp9pbeaRMg2Muy3iPW1xxDSoyKdUTQwM6qhN\nYSdcM3TM7G4tSXLBM2wGnRFbG614nOtjKlX1rInYuSegbVJt2mJ9nb64HOf48HPXLxLISymIU/61\nGgwFvNcMNpekkIr4FWd1RpvQQ0usaRFwYcCHAe+jus+JZbZ2032IalfaBN9gsOZFEZhLXUURvcmw\nJt0rzGL/hrcv6fi4Juqmtz8+cjw+0KQw+IFSMp8/veE4C5/uT/zwwyP/9k9/5s2f3pGOyzqsOM+F\nbBaY3qFQiVnGIsrjjT4wOXhxveGbV1dsx4iUQs6FXIpOwekJrDVItE/Qm7xWmeAYQjT+qjZfxCqS\n7tymZfsZPul9dO9sKJPGDHsN6wyILv5iGLhrwv3bdwz/9M9cXL7g5a9+w/bmFqKnVGH/8Mif//07\nSq3c3t3y62++5nK7YXCiPP/n0J+9TmlCy5UlJU7zzHJK5HmhzDO1ZFopWkI3EzIFLWfFGnFebACB\nj0zTQAwj211k3DiWw2fefbfwT//nv/H48ZHolRMcB1VsatalC6IjRM5EGt5pgI3B8Mv1jnV/H11P\n+tdzBQOagOCV1eTFmETizo00o61J689AgSVQaoW0oodGCNa0g1ohOsfF3RXX377i6cMTadZMchgi\nc0q8+/BISE4rOadmTWEKbF9OMAolQ6ueUirNC37Q5jVFsX4XPHLSZKjkZT1gShCCFFyLhKLNYaZG\nXSpLKuusSxkHunXBNA6Ijxz2lThZRZUbQ5hIVJYoyOVkuacjtEgtakO8lIxoM0ghihjA2X58POKd\nYtBFoDqdkOTiRBgcgytIW3CoPmBJaUUDaA3xQquF0/5Jp245pxz8EC2G6qg7J2ok1+FehRatKqYZ\nmy4gFds8Zx56jycdbuzAoVtZcn6F0/T1HK49V7Cck8/n1y8SyLU5oAOoggtK9QomAGmCtPOHFZxy\nLm1CUA9a2lyIqlx0Osi0B5pSVRXpYmW02lXw+v1BaC6QijYCEVYs94xKGizDs9vmVIWlzABjYOTE\nkhNDVO+KUoTHpyfe/HjPd3/6yL///gMff9pzeDhqhiPNAnmipgLSdIPYAAexE9eLeqPsNpEXNzte\n3l0yxMCc1ASr1mY0MF0MvimroyCrvLe180EUg7emnfYfqmiGJ0U51k5k/Zxu/dPgAG/3xQLb2oBs\n7fw+RAgYF/sP3xHjhsPnB+6++Zq421Kr58O7D/z0p++pNbOZImX/yFOaOYSgsnF7VbVr1edbnVL0\ncq7MuVJyo6REOp1oVTH/VnRzBaWXI6hXR2vKjnBOxSsxBm5vttzeXXL3+gJP5unTgXc/vKEm9ekY\npmDNQFY+rwbnDo10QVAX7/SN3CN9h1XOINFf2SJz9vBwoSu+tJJ8RvdZ/1QYu7+HXrU046/rPqnV\nBl5vN7x4eYubG8fiSEWpdcdj5pgrOz9q2HFCSxW384TRq7OiqINozola1NsoxgGqNWCdwT6nwjJn\n4hjxU8BFFX81AZc9YQA/QrwU3OxpRXFsL9Hk6EKYRggDqXlqFmoWJFdyK6RayVJpzhGjHiaxeaq9\ntzktBLEALWpbQNQE8Hg84VolJ7UQENTqwI0DfgyMPrCcVHOAiFlTWK9McV5qqSynI8M0EcZRA3Dw\n+BZW8kLfJ947xAWtwAy69B6GQQU/LatiusMiKw7+bL3oJu02uL2/Zc9/bfr3nszPB3H4hQJ5agkR\npYpps8Gyb8uYO0St//8lbl2qmDMaOKfMCXGKHBXEsnLFVl1QHDoOmrX7YSRGpxNK5FzK90lEf9nw\n1L9Xw57Ng8JwRRc8LkR8mNS7YRhpCxzTyB//+Il/+5c3vP3xgXJq5HkhzSe8j5RcSEmbnMEgkdX5\nsfVpIJ7oA7c3E3d3O66vdtQslmm3Ve6vAqCGdLikda8ZMVtVg11CsODSA/GZR94HWD9XLnr+IpN8\n1j1XzLPz45v5jBjlsxQePnzg6fGRH/7tX7l58ZKrly9x4wX7Y+Ljjz8yzwc+v/uB48efTF3bV66a\n7+uQCk8wwcl2s2OcdvhpB5srSkocTied7FKrslVaVjhkgFwWcs2Ig3G7xVFVQ+Aar7+64m//7hte\nfnVLDI6PSyKODrdT/DzY3NHuZLeG6N6cMln+8/6THW/P2FI9aJ9zqOdXh156BuacwmPV1Ll6hGoP\nRp9JXOmT3fI0OB1qIcFDhSiCLImUE6fDCY9jiBO1VpZjVfWi9yy1sNuOjNPIUzrAohPjj0ti2WfK\nviBLISV1bmHjOS1JR55NOqDCjUFVisET4sC43RhTA3J21Kkx7DyXt5GwBOIpczoWXI60U6UulVI8\n4WJkuJxos0KNLTdNrhahzY3j/MTF7VZ9d5pnXhpFMqVmRALORaKPjOOIHwM+GdaftRnuZFy1D34I\nOhkIgdlpRWuMJkQbzs7pOVNzQwIEX/G+rmI6FwNSTGnpdPiL94oIBBeRrCsh+MhmGHGi0M3KroaV\nmKEHcd+fJulvup/CsyrPeX0+Dd3zPbn6uesXCeT7wxPOiXl5bJ+tecMEnwUdAB+MHRA0K64i5KrZ\nmveBzW7DbjNycXXFtNkRh0GHMATPMI0Mw8B2u2FzsSUEz7jZEYbxfPLxZeDq+7DfuPPEd7PCrFUD\nWPAkaTx8fuTy4pbHp8IPPzzy0497Hj4ulJOQZy0bvdcmVPcB14cn56arZQSgzbTdNPLrb+94cXdJ\nDEEZLu2c0dG8sVU03PTSfOWn9saXHVA6Ek+ZLgo99caL/lwP4OYuYB5Rz3nzrM6Rq91orXogotJ7\nLwY/1Mzy+IkPpyfev3uDny6Zi+PDh3uW455A4/DTO8YYbOFaUMOD00PHBQcRhjASpwuGmxe8/t/+\nG/O8sCxpdTyUolSuaQpsd5794yPSMmN07DaBaTNxcTHw+vUlX39zxdX1yGajNNTdxcjtq0sO90+U\nk1aJ6juuzfaVGeIMwRSteHTQ4/MD/0v4pPv/PHere27R3JugfRpM/1GFDt3qDyTWVO8yfxXNKBYe\nB5Xe4x2uVJz3HA862egq7hhjxIdA3AbaBG5wjCEQxoAbPGOY1KclF4PhlFVUU9Y1GANuEKbtgCCE\nQRgAFyM+7jThCh6qMGwGaqss+cTNZsvt1zuuX1zw6WHP8DgzPCXqUW0jchZ1L2QghJGUEmnOlFNi\nTnXtHdFgOSxIrmz9hnYSfFV2Tl8rDs80TYybgeAFmZUt5ix79d7hB+WGt1qYl6MlL5Y09agjXUzk\n1j6D89Casshap38O0SZkCZJty0rFOx1+3q1C0jLbqdDWRqnzbkUSNHP31jjXHF284Cpr1aU2JOZZ\n5L+s6H7u+kUCec1FTyL70J6AHzqU0i+PiHKSnYPtxZbb22tqrez3R2rdc9gvxGFgGDy3d1e8/Oob\ndpfXhDCQcwbABb1hwzCwmQZ8CGx3GzabnTahnmXmf3kprtWoTTNoa60otCKajc4lcf/0QKmO+49H\nfvj+I58+HDjuEzU1bcq0ZjRIDHZVaiLWMAzBr5OOvHNshsjN9ZZvvrrj6nILon2FUtV/Wixr6yV9\n7yXIynTQplKMwTJEpUqWkg0br2cjKsP29I4bLu66LJwzRrD+D6zTmgwWQMQMukwU5KGVhSWdWEqj\nDU+k6jg+niinGS8NfzwxDTqzEN+DmWOtzpw2sTwet7lgOCYufvVbUpJnDaSq3HEvTJuBzSbw6eOC\n1MrgPF4yU4xcX2345ts7rq83imsbvW/cDNy9vqEuC3vjHmt6FtYAvv6pH/yMfjy7L71a+et1ZJxz\nCxJthQWf/QrvzAHCrVBYiFohSG0WyPUG9R5HjN5EStZ0k0ZFpyyxF64uJ6LBRH7ylChIcMQpIl7I\nreCClv45dRMojwueiqxMDp1PocM/FP+VlQwQBg0drTb7jACNm6tLXt1dc3k3ckqJZS60CdKS8dEx\nToG4Vbw8n06kw4wkhRNP86xU0ia44MhLpSVRvDm3FSvuYpuuFQk29CQvHVX3BLTp6ccINJ3jepqV\nvbWasPXSSg/KMHiGbUSiW5lk2sDUXgutN8AdYQosc6YU24leX9dHr7Tgor4pYupN5x212kPvis1u\ntNbXiSnDV5X3ihg8q/r+Iyk7N+OkGHmrPD4+IFdCiOo/rJmvYl+dgYITXr684+b6EhA+fXoghPc8\nfD4wbSbGIXD38gXf/u53XN++xIdBHdUcuBAoRcUzXoQQI7vNyOXVBTHqx//LDehsirdmRIViUuEY\nddBBcJElLyw1cUwn9mnP6bTw/s0jP/35PfuHA2lOtKTDDmggMWoQbqgTo7U5aFU3KcoQ8B4uLye+\nfn3Nq1fXbIaR+ZRJKa2BuLa2BoQeIDTINPNLCQyDiaFaM3GMDqgQiyZSZcXuekB3Ng7OP2NCmMTU\nAo6+P7pvuYPQ3duagHHHw+B0LmPV97fUBEslloUhwBAHLnaTctQ79qt3ns75x7Jyj0fGET+OCFBa\n1RK6dhWsNsunaWQaAylnFYOIY3nYMwXBy46rKxWBlNw47TPTVo3YXry64fHDAyJ79bkxBFNwiO8u\ndai9AILgTYfgjHBip9AzWO7/LzFY/52+ic36Fu1zdD3REALB6VDgktW7H1RsEmIwDnhD1Y+NnBJL\nS3gfuRy3ROfxrqk1ufWWqlO+cypqTzFsRpYlkU5Zx7cNA7IVlppoWT1YaB6xXpJzjeIcrjTKbCKZ\n4HR/tIzgGOOG1zdf8/JiRy176r7SjhDKgCyFgcDF5cSrr17w8WnPn9584HSoXF1csru8IJ0SKVdK\nVytLgBZIreGbSvD6esTM6Eop+CyqVDY82eEYfFC2yhQpTQeO+CXbszPltvTUQeemDruB8XpkmRNt\nEVz1jJsJhkh1sMwnXPSM08A0DTw+HDjsF0qrxOCIQ2CcNkpkaMVsQTShDMY1V63HmU4tVYidzup1\nbTnbl7V0y2Qs/cfEYX99/SKB/OriBpFGLolD2xsVR02teoGvmyQwTRtCuKNd9hpFGIaJeUm8ffee\nWkdojXmeSctMSQtx1LKoZzvSCo62coCHcTQjrrBmUt1yFgeYV4SI+qGnsmjQAKpAblkXkIvEMOHd\nQPAbpB45Ph7JszJS1KmxC0acDjlI2WxV9SGJ8XJ1+IS69t3dXPLNN3dsNxuo2LTvQq5Kmyy1Qx3O\nxqcBTu/XMKrfifcKp+SUmE9H5fE2NdKS1lZ2C421UnDRGW/cP2vJPPvPBCyCaJOz2cHEswaePcEz\nCUPQubsCU7fIdYRgxmgd0lo/Rqd4AU4bqiE6pt3G7I0LVay6KBmRxjBEmjROi/ZElMXioVXKXDg9\nzXy+33Nzd8VuOyjD3wnjJvLi9RWf3lxy/HxkbmBM8PXw0jitlZmzLEmqMTmcZoN9U1aeB3I9Djp4\n3pMpcee7Kp2q4xw+sjY8xaFsDImU0vq3aGU5eeII3gt0ypqxdqZhYDdN64BsJ448V4oPMA408ZTU\nOB0XjsfEUgtN4GKzwY/eDuFAPmYkCb5FSm245pnctPZThikSYkA81CLMqRCGSNwF/vTdn/jxDVQK\n7z/tSUlwbmA5LLhSWYJnGjcsh0Q7NFz2lCQs3gJeDIA2cluuCp15oUiitGQwXyU3pWiONRBRLyYX\nHDFObB1oH9npXE2a+ues6lvWfe84Q1utFDXwKqJYeamImwl+g58mNpcXOBoZoS2aVDmDvwhBIUZL\nLtRLhXWQC/UZecD1A51n0FuHVm35IYZGmAGHQSz/oQL5Ztwo08FHWmsqrX2WxPTmovdebWeHwGrp\n6NTw5vXpyOHwDU8POw5Pe+bTkcdPn8hLZhhGBM3UhiFSW2EcI+PFls3mku12w7jZqlTfXqsZjKKH\nSiZ49UXoKtDaKm2ZKSKaMXjPZtiym67YTdc8fUo83J84PB5VsGCinRXbqo2SCzUrW8VE62CNrY6b\n7bYbXtxd8frFNTFEFbdk5eKWqg5vTdakWDMzp6ZXMfoVF280lVwvC/OyKNWQvojaGoS1QlD50TlD\n0cXSA7gHuz8anVdoQEFd/d5Ob3QdbenUOm0UDsHhJz04e5OPfjhwZoMgmGmWNVRFy/thM5kWoFBb\npeZEq3ovQ4yUUlmWkwZ+c6l0TdkQZc4cj4mLazlzwr1nHCK77YbLmwu2u4k8L+aJ8eUG7wMgvN0C\n13oFYxCUW2/NOWL79QatQFiz+9URqW5s5pxY9aFNL+etElkNXAAn+ABhYKVH9kaaiFJML7Ybrm8u\n1b7BSvEyF9oQCG5Qt70CZa4stVK94EZlnXjvdaJWCPjmlfmTFE70XnTepCmIve+iJkccIs05xm3k\n+sUV9WnP4XHmcEzc3+8pRWnAJak1RPaB6D+TUqUtBScDNTeSU3MztaY2zNg3fDCRV8Mqog45NDJZ\nhUzeE8aBMOiaHoiqtaiZtmSF6ZoytnUugfSTzu5t72tASY2W7bAWbUJ78/AJw6DxoPWxcHRw04gP\nUQ/ipsG8WqIkDoirtckAACAASURBVIUyu+Jz3UtOITTpyZRl61ItwZIvLBp+PoTr9csIgrz6KQ/j\nyNVw++W/OQ/ilLLk1WukZzgaPCrTZuLrb77i+vaKw9OBn77/gX/9p3/i7Z+/p5SmU12cYxwjm82E\nC3D36oar7bdcXU5cX1+w2W5xxl3HWApVbMpHOjLELTGO4BwhDNQqnE4nilR8DGwvL5F2Rc1CScJ3\n//LPfP/dO/aPB9KSlGaYjXkg0FrWrLg2O21lhUOg4tBGy93NBa9eXnNzc4kDUi6ktBic0GymobPG\np0mQzYpAZejm51Aqy6xBPOesrSHnzcK2nRulhtutgdoWVc8YOh7Jc1zcnpP6uejy8qZU1NFidWXP\naKFjuKK5UvbrTHpkDVj9mLB8FkHZQWEcKaWSSlkHj9SipbLzjpQW5tNR4Rz0sBITftBETZScI4xm\nAuUHQpzYXoxc3mzZXo48farP2CRuLXFB1kxobQiLYprQBy/3qqJvOM2unjNYxCCo1X+masavlb1o\nT8Crxw8F+hGANKtS1KNFxXKeYkHDCWyHkZvrS158dcfhcNAG4qJNRL8ZGcNAcIIXhytem5pbtVvI\ntTJFE8LVoglWgFRODFE9T5Y0n8stcQSJjGFgO20RX7h5ecmv//43uIcjn99+5s9//oC0J+bjgrQF\nkYJ3geIix+N7PI4Q1Dah1UbW0bI6iq45Sq0MIaoLZ4y0lllyYnVcRBuNLnjiODBuRsqc8SIMceSx\nJFoqSK6rHbBWx94iSbPfoypWZSwFWnWUXNBehTbFXW1qUhfVNS2EwOiF6jPFZcQ7hmlkHCdYFrKo\neEt5vlqNN0BJR7rnnw+HF5S9FkPA49VK12xLMNjRrSzGn4ftfplmp83b7Fv23LywG27fJ3Rp96Ni\ngyFYlj0RQmTa7Li6uERK5uPbHzk+7jnu98wm291MI1zuGKZIyxPOF3a7yMXFpLQldw4XempqNj4v\nT5S6MLQJkUr0I95HUprZH/dUJ1yWE615vDhudy9ZDoWHz3tSqUaX1c+j5VwfKttRVs7NRnMzicFz\ncTHyzTe3vLi7ZBgG5tOJZUksSbvnq7SXjo9bttqtRs2HvZTMsizqrpiKZm292WbBTQfOainoO6VQ\nTOLgO3PCrf0CtVJQbLpPYkKsMeqdLkIn9vqFPoyjqxr79dx/pI+2+surHyS9OYjzuBDIWT02fHO6\nSYs1o5xjSZXjaVH/DOcZvFe+sc7XI88ZncASlaZJQ8z4/eJmx+Xtjvc/YF75bs2sKiqvltrHbwnO\nDwTsffWg8OzokS9WcD8fz418dd7TYF5NrBZjh7S0SpLSVqxfGUnVsje3UtG8a0yD52o7UYLn8nLH\n7es7fvVf/46HT5/54d+/J5aFFoRcFo7HE2mZcb4xjoqLhxDpgw3EsSJL3jum3bAutDBuSSkhrak7\npHNov1UoqFZht41cX94RvfD+/jMXt5cUAvN+wTe9n6klpUealYBzkPNCSZUxQnCRKEEPzBAhRkrw\nFB+oBJpgh5Kn1ExOlfmYiE2gVJxruFAQl/EexmGjPjJoj8yLJYpStA/gVFw19jmztdHKWTLfqmiG\nTMGFivOazBQjEBADwzASNzoftczVCAOOKmexnahT4DpZKnr9jN3/CFErjeBHnPPEOGp/ELcmS709\n8HPXLzSzs5ecdkJawDhzcE1UIX0CugpXxInhlioEcj7SQmC73bHdTDpguBbSnMEaabWOBJMm6mQT\nExqEHhD7RtRTMKWZOR2Ibaa0gdYq2+kaiCs2l2tCDpVp2NFq5Pi48Pjxkf3Dk7JCeiYqrJlsqXUN\nYudErxdmEAfP5eXEV69vuLragqjv9rIkUsqU0syUydkhgDn6hTWIg6OUwjwnlnk2vnq1Kt9CiQPf\nqwGzi5T+9WcYnj4g47I6a0AKK1xy5laryi0GZ2KknrV/eTg/v+TZ89eK6Mt/7yGx+43gNZB3g6xa\nKnnJ1Ko4tQ+RKkLKlegCg/NEOtSj7zvPWYUn4iA4gwbUsMwPER+HcwNT32RH3bRHkZtOU0KDRQjA\nEA0rt5XUIRY75PT3db8V/bJm4+fMXB0PLcv33l6vQMqIDeCWVmn4tRzXZdUIXkfayWYkO/DSSDnx\n1YtbwmbicJr5XGZOvrG0hdqyiVpEsf0mSG7qRhoUntH5pOoIKN6p0lOUeledZpYBWyfm+tQEgh+5\n2l6xiTDtjky7idtXjoYnLRVyn5Xb1qrb28CKUqtVHcre8mKOkna/suHNmMYkeK24a1WF9Mk5Ylbi\nQAjnA9M7zxQHiuhQCSd28Dez4W0aGbvLaV+bIZqcGQ0NTUTJErXircnepOiQaHfWvkgzR81ObVwX\nsu6zXrmp0Zn2t3q867a6OnD6mVnWOSdYI+bPXb+Q+6FfA/dzIc75crqQmmZMm81ItY313P62VLOf\nbAJ4hmEgxsjsMs05WvAwRNww4EK0BfQM4+p+0jRwjlIyc5pJeVFZf4VSFgQhhp0KBcZATnBc9gzj\nxLJU/vD773n35h2Hh701P2SlOBWbiVnNJFz3vFGWXJ8jCcMYuLre8vrlNbtpVCbCvLDM6vJXa1On\nN8vQNFFSjDJExRVLaSxLZp5nlnlRkyVkPSDPgoKuSHxGYnSod7I/f/3cMncr7awiq2ObcyoNj17r\nimKHVvfFOUMKz+CUZ6yOzqv+60huBbAOUDTb3EiZGyl386xs/jiBMA5wVG/0IQxEEXyr6hljTdi8\nZErSwb46WBfwjVQS81yZF/VxD83YOEb3Wy14m+HzxQ5H55mGUT0MnEVpwaAyWZ+rBmIzWhNrltpB\n3wMVZpSG1808n07KDRdVCtZWjfgq60FbWyWifRG/US75fNjz9s0b7n77ay5urvn2P/2WH58+sZ8f\nKVIYxogvlZIy3nv1qZkLYRoZNpHdMEEbOORFXTOzUj0LOoi79ErMYCC10df75hi52LxgPjywFM/2\n4oLxakfD8Xh/pLQC1a2Oi955e3aRSTyhOoagLBlXhNF7ltrIeaE53e/BB1wwe1dbNWlRlo0fYRoC\nflSmCxJxrmqCIx5x1Z59QJruldqUcBAI6oEkWgJuhg0EO2y9GSR4wVFpxWAWKXYQBPV4WrTxXlM2\n61/FGtSMssOW5noZ/Pnw7ywVO/C1X9YZCM3qd/QQcD8XK/X6RQL5ad4zDCPjMHHe8OZtbZcKg/RI\nU5vbLhZxq2Q4RvVSGacdm4tL/DCq2Y1za6BPuTJtAiKemtHA0M+1NUPWutJ77ajj7miSWPKBx6dH\npI1sNp6lJh6PT3x+/MTj4YHry0eOD5V//Mc/8unDB2qacbUYdNHW01lsfFunGIodHBpk1UFvs524\nurrgYrfFe8fplNTxrWPjXQ7fueLGn9UmjWLSKVVS0vFmKz6NlXS9Qw/0Y75bxPYmU1gX2NmGwCNn\n87X1zmmmPXivVDnvbLizMSxss/am5/PrC5vg9a3oofFFkO90PJQ2F2KkSOK0LBxOM805NU1r6sWS\nckZEZ7LGUnC1WEauWW5eEinNtJYZpy3HQ+LtT4/c3+/58OaBh7efOe4ru8kTB8OjrQxmzUMHpAh5\nycx+YYyDBpfoqDaY+HkK5da+Tj/AWAUifTBDT9VLLqRS1ekxZ7VPkKa8d4TooVJxQYM5VahNfWak\nCeMU1fZ0KTy8+YBkgUHnro5twAWhzom0JFKqxI3S+yKei80F2zgxop7wc11ocyXtjSWCcJof1Rt/\nUisDPDp+bRoJpbA/7Pnn//WvKlSi8eLVNX6EnDM//nnAO5TUUBqyFKKPxGGgBW3aeiu+rP1PaA0p\nghStmujQiHfoTACdZq82yoVGsXutk4nE9srSkh7EDvCmiO5Vsa2zVivtpBBk0JREn70DiY4wjbgY\nEZsS5L3TIRTNUJdFPdE9Qmg6nara5+gHvArszjzx2myegPReyrM9Yiyp8+XW/fdXSY9dv0wgX57A\nXzAMEZFAZ+6ep9LrRhfaM6oRUIsOZTZ6YpOGEMhNu9f9w/oeLLvXcoOUG8fjwjwv7EoxaKUhUqii\nNKzSMo1KjIMGjOOJj/efycVxWRupwmE+8vHxnp/e/cgmfGb/sfDHf/+ep4e9ntZNVql8z8INuaAb\nMSns61cZ+DAOXFyoFH8zRZBGMgVjKWXN5vrD9t4ThqBezVb+5pQNhjn/TGepYJWMQ7OZVaZvb8x5\ntWvtiXQT5fH2qy8+ZUApQ8ZhCkOv5XC1N+hAS0agR7GedHfY4S/Lzr8K+NKzWzQ7j4E4Djivdran\n45G8qJVtSzOFmWVZcC4wbTb4+UTLvYLDxoZV5v2Jzx+fKAt8/rTn08cn7j+pF07az7gkTKNmmipS\n0vsX41ma7wSWRShFmE+JaRwJzgKF0QmlVz2a4Cnb4hmsJtaPUHWtls9NlNWk0vFiHjINEXvtpt79\nKRVi8NSkDCYVf0WmQRlYVRqP7z7oYInJM+eZMHj8EHjaz6RUybnRXMWjY+wu4ghz41RmIg6yMOBp\ncdSpNy1zPJ1UWeoUemit6iSq5hDfOC4HfnjzZ4ZxYrOJ7DYenxr5sEDu3uC2pqwxH8YBt1GaYWsN\nQtBGbgBfCkEqXoRSlYXjnWLL1YRxPkS85NWFUtCh7a0kzYi7mKfPNfCW9LRuUKeHaKtuFTYRYIha\nlebakBDUgmOKlEOvqlXnUsV+Vym06lBGetT5m72YNeis9aSqoYI8cZrciTvvlX68yFkI5qzak+5d\n/2xfPr9+kUC+5CPDGGmywbtpXdit9SETYo27Sm0avFPNijM3xxD0Z1I+In7g4fiZ/elJ1ZyCLQYt\nRZpAqo3TnHjaH3k6PLK7uiUOVzhXEcnUpr/7uBxY8swwRI7zgYfHBz4/PFBaJbWCCxfs5yOf90/8\n9O499fCBp3eJn374wHJa6Go8qSBFJ/74ENaY1R+BUriCYnY0pu2O66tL7q4vGKOnLJo55ZQMo8SC\nsS4GHx3DoKIfgFqKDiOeZ8vGNfCuM0gd6n+t6Bu1VQueGghcsODsAZplltGqFpS6ZQpbHxzBBQKB\nYTRqYtHDy63rsK0Zz5o/2BdWgy7phzVr2dnhojXqN2AAF2zjR4+UyrI/sjwdOO335HSEg05Mn+LI\ntN3QaqadetPRDtIiHO5PpPyJXD/z6cMTT48nWgFas6lJajzW7HDrB2AMDoKqZcMQcIdAWQrLXMjb\nonYCwRqVuFXYcx5icn4v63llhxXVfDbErf4xrJCXNjYRRylCo+CPi3qyJO0fDUNguxuULhsdUjNP\n9584vX/PLIX9lbB9ccVmu+Fz+UzJjZqFnBPDFJjGyAbH08OJ4+OJaVSvm00cGC4j1Xt8TuzzyaoB\nPfxLqZRWcFTc5Cg1sTwdFd6Kkd12oh0WHt4fKE8LLetndg4Gm9YUp4jbeepxIS2FGDdMcWJonraf\nwReqU28mJ2qMNgXH4qzh69VPJYg+O/VWL6QlEYiMcWTYTJDV26k5VTU3yTR9Q1pxWLWMB4IwXUTS\nUihLUZdV10e2GV7eHINEsAEvToRWPeICcRhxkpSFZIFXmWKqkREBSRUXgo6XsxilzppYBSy2h82a\nxBs5QMd0/GxM/UUC+cXmhjFOemJSKbUonawVvPlqq8eBWHMvsMwHjsuRtCRe3L5mt90xjhe8efee\nd+9+5P7+AznN9NOrT8pptVJSQtoGH4Q57TnOD8RxMtZKJdeF/fGBN2//xOeHD9zdvsD7kRgHvv32\nb2lSOJ5O/PTxOx72B+4/7ZkfhcPHhaf3J8VfjW5YUlGcrDVi7D7qIN7KaHF4CXiBOEQ2u8jViyte\nfn3Ly5e3eOcpWdWLz+l+OLdOcPfBqx2tQM6FlLUcrzaYYs3+/BpGz4Ida/4ZzLlOnQ9BrT2D/e71\nJ+0A8Q79IQv6+k/VJht1HxGFcL6kGH4Z2KVXBx1a6i/Q4S5nFhVWhTgR6unI8f0H0vsn8ruP1E+P\nyGGhLplcCtJmNmNkEzfWrNODC3vPysdtPH56IH8+UBg5nQo5aVbaitoHB48NrtY12Jk73j6/anA8\nUk2Ik22CuwRiiBTBbBJYvXm0apQ1WemMHZ2hasHcOa2UYjQevk3A6qwHsTvlB06nohldrkTt6DI2\nNUGLIWjDPy+0pOPNJDnKDI7GaW60psEjnRaaCGNQnn0+zJRT4nK3JS0Lp9OJJSU2l5eE0bObRgpJ\nJ8svRRuPPuDbAK2Z57vjdJyZc6ZkRz0W9nOhtGIGVmI9HlbxEUEZHa1gPSN9ZiF4GAebsYlqBqzJ\n3yu4nIvSKXE2aatXO2cxW/QBFyM1ZU6nI80pJNUb/OdU4/z/NQtSNFsefGQk4LOQjwuSKq05Tvmc\nnXuj1Yrip7iqRIA4RNsbKBnA8gqFEbVSO9szmMDO9Z5VT/vOOPm6gX7m+kUC+Xa6VOK/lQ5apmkg\nCja/zhvOqrLxkdo0C+gskFbF+MOJZT6xpIUm9RyhQAOLQQqdYaGj2e4RL2zGDSLCkmf2hweOhweW\n5Yh3r9htLglxQwMe9/ecHu/59PCB4zGznDJt8ZweM4eHmZIKOalqs48dc6IZHK43D3swVcvQ4BxX\ntxvuvrnk5sU1X33zgrvbS2jqOV5KNYvYL/Ez3yl9okrAnOsaxL8I/KCL3nVYp8PyTSlazlgnaEOt\n48ne9UaUPwdb+94+XKHTILuh0zlI2ctaUIczgvKX2PgXBmUdAupv2wRLzd5/zon94wP7/YF5Pllp\nrRhts880BMd2DAwBZZLY8++VR2tOZ31Konpt0Kn61AYQWLaYi5zZMNbw1LVjB413VnU1tVsVVcn2\njIpnwaQn3bIGMTkH9dZZCpZ0BFTIhI6jE9yKqeJ0OEIcJl0bzZpi4sgNTrniU2G09V4qFDwlBppz\nlAJyqmoVPQhC0bUpUHNlOS6afTYYY6QsiZYq9ZRpMRHcwBg8QdSXuy6NOpia1Al3NxdMm0CrhZJm\nUtIst4o6Nk5DwBsLRFCWSNx44hZyUJjRuwEvOsU+OIcYq8M149WLIs6l92HotExtKNamfSjQ7Dz4\nqBWWCfCooj78q797B3Q1qxGzBZAKy7FoNuyjcsnFQWmY+b7i8FWIPhDNQA2nsakbZ4k0peraulf5\nPWvlWTthQTqz3a2V6RcbmA5trhjpz8bUX0jZueMsiHmudDOzGl+VVWBv3PtB8SIcm82ENKXmKZfW\nhuqaYg+vC6NP84ghMsRoUmoh5YWnw0fm9MT11R1NYFkWUlqIYeLu+jVfv/wtFxd3CJHP+3tyec/+\neOA4z+QkSEalxadCOiUNpqlYdqiVxAprIKw+49GGswpMU+Tumxt+8/dfc319weubay63W46fHjXD\nXgN53/ysyYNDg0WtTTFxC+T9cq4Hzi8BDssV9f1wDj6+B2qnJWZnbPTOOnQpseJ6GvfOUcoBfRbh\n8+t50HY9Y3dnjvrKWvkLeJwe6JTXxiKV5XTgcTlyapkcoA0B1wa8G/EhsZkmLjYjY1A7YzEwS+9T\nXf0qXNNS1fugbo5ZBUbO1mIpkAu6cfr7dRq0+mkYo9BG5f83p5LxvtnOhkfnPdkPFdCNizXJxHx2\nXK8gvdo9VbO5xSs9V2dXDsRhBBcRF7SZFh0ZR02NNleGpgfwUjx5DNSLETY675Zc2U5bsnMUJ0xt\n0PVVG8uc14lKUxzIPhJdYJSITw18Jo4Q/UAVVT8mCnGoXIyeb7++4upy4nDYc3p6pJWC855hjEyX\njh2emnQoC9GDE4bLgbBzZFH/ozGCb+Zp6D3Fo7bR1QgD6CCH2lRVHdyZvaX2CGoFoUZngSEOOJya\n8jmlxioVta4BVJ+NZdIYd7w0lkMiDANhM9qouYZk7bn18XYqcgumTlflp6CDKcQ0F6Ua1dJsL7x7\nlnmjiUovHH/+MohNAudG53+gQO40pq4lkvPOuNBeMa6cWOZHVQ6ip9ecjqQ862YUjxsd280Fr158\nRUuN/fsH0lPGu0yMWmrFqGKZYRhIqfDx4wOMgj9WhMzT/snUnZ7d5pJXL37N5e6GVzffEuLE/rjn\n/bsP/OGPf+D7n77j4bAQ3YZ80jJ9Oc7UrNm4VOWJtib2gJ1iuu2ZgAaVNofouflqy1e/u+Wbv3nJ\nJkR2ccCZl0jKlWR2sXqPzrBDx5WrjXHLOa+jzuAcPFczp56RclYJ9pLeoTaawXuG4FeZvqAUPR91\noAc2EcehXs5Kp2xnNk1tK1wiYLRHvgjsqzDoLzIKPcAbf/lFj6M5T/WRpTmWpXD/eOTh/onD50fK\nUhmi4+Likuubl1wEYWO9lfOklX6Q6IEVUT+UORcy2gSvWW1bveGupWojszadW6oUWdADUKsRH2CY\nAj6q/4igEJd4GzLQM5Nn5ZBCNM4wVuygaqvXhlYlznKz89BwHOtIwyUXQowMccJNXicM4al45jZy\nmlGYsjX8tGG6fcHr33xFPs08vfvIvP9MWRq1KryCaK8kxpHkTSXbnVPxBBe0U9JQl8RhxOGUUTNU\npsFzdzdytXPc7Dy7sOFD9DyeEstS+S+/+x2vb64ZPfz09hMlQLyI3N8/kKXBGJRWN2oPos6ZUy5G\n+2zmV6Rre23498DoVZDUn7Pzqs4MgJPGEAatyFwfjGH4mDFkvA2EqBSyqJJzJQeAKt2CjpBrSZvl\nYgc+Yl4+9L2m/kFUMcIDdIql2H6qUjXD94HgWdXVamDXKatuhT5tI8DaDLW14P5ir9j1y7BW0kHp\nPVael6rTc2Lc4COkZeGHt39myUcEIY4jx+OBvBxwLNzdfMMQN4zDhjhOXF3NXF/f8il8Qk8/TO7s\nrXPtyaWxPJ7ILrG5hO2lZ5wWRJL6mqOuhmXYUWsmxolxmLi6uGa3uWQIEy0nUqnM+8xpn0mnQslV\nH4SAw5sUHbqVsEjTQQBDxA+OaTtwebPlb//+V/zu73/Ft3/zFTs3MB0SfHpafVV6Nt5s4bhueelY\n1ZM553Xw8Gpj0DNl0GDyLMCq6MB44F3w4JpVNh271tdap7NHj1mfaL+hGCWyQ5btywOkp6FfZOeu\nH0Tn5mbPXFeYYf3+M37YxNGaYz5k7u8fuH/3wOHphIhjvJi4e/2CV1+/ZDtG8sM95fGeYRwYxlGd\n7+x1alUWAc1D89Ra9K/N2agvvbGtwxIddnE2Ps65jsPYfQmEFqhNtP8iSnX1RD3IWs/IZYW31s/b\n9BmohYG+tjgzW1oz+e4qst6SFSbyURko0UdKqjpwpKKWyU0nzKeadULNw8zVVwHaRGsTJQ2kOZNy\noRa1cYgIe5dIWacCpVpWUZstYLw4pjCSRS1aU04QhZaE+VT44Y+f2G837MYN6VFoR6UOXm83fPvN\nHbd3E7tXkX1W/Pyw95SjjperOVMPibosFJvrqQEYXG0EEbPI0DrLrV7wGOxkMJ9oX0WHbsRVRV0N\n5ijK0dLfgV/VqUUEke5po2u4uUIMAz46csmUpVBzXXF3j35/s7kEymoKlrTp7+kMny8YS00Q3827\neLZP9aVtJxnjxdvMUXfGxZXD+LMx9RcJ5IfTE+M4MsRAKQs5L/RNggukMvPD2+/5cP+WIpnb2xe0\nXCnpRE2PjHHDi+vXDHGk0BjiwLTZ4l1Yb06XbjfD1qTBkjOP8z23dWR3eUdwnmSeJMswWBMpczFt\niGFgM2751Te/5bQcmJfE4emPPOxPHB4Ty7GR5kZN3XbS4AfndQqRk5XiFIJaX7oIV7c7vvntK/7r\nf//P/OY/fcuLV7dcyoblzXs+vv2sAoxabBLRc5Uka1XVqmbjKRVj8uhCcWvAeBYU3TnItuZ0OHTP\nVeU5TGJNFq9ZuLcGqI8qeMhWeaRloRbFnCH03k3XVp0hIPnrYE6HiDi/T83Iz+pHHfSsw0OKNGpu\nzMvM4+eZ/ecDOQvDdsvlyyt+9V/+ht/87teU/YmPKZEePjNuJqbLHWleKMdZcVGbb+8M45UCEhQa\nWd+HHXjViUq6DfZx/pytO7D7otlc6bir8fa798z6eeif1YK7DXCota6DPpxZlLUVamTNQDsmT7WM\nPqgSMgwBoqdW5ZtLM/65DRhf8oykQi6O6eIFbhjIS6DmgeUUOM6QF/254CqUPVIzUwzsjydSymSj\nAremVsWbYatBrWaDISPp1Lj/NPP202euhi3fvn7N4b7hSmAXBzbjwPXtxNe/vcS/KLz9+JEf//xI\nPSXyQyNlT15OzMtMXhLVVKTN1m00Ln8MntwsCHttAktT2MWZCyUilKKy/jFE7RuJzh+VVtX0zu5r\nAFX/OmWN1+Y518xCcxVCIwQhnzKyZCjNhNjBrIGhSgWvgbyTKywSoFYOfUO01RYCw/HVDMv2ncE1\nZyFQV7z7FRtftS/u2Z56dv0igVyZXbrjfRjZ+FF9GJZEoXFaDuSaOcxHcl3YXlzRzFYyOthETwyQ\nS2af9tw/feT+4RNLmvWB9SZID2pNS8Zh1KzGAXmpHA+POOfZjRNf3X3FdnPJOGyZtpfrUOfduONX\nr35NTYVlFv7l4U/MT4+quCxKawpeVYhnua7CKc3YHD4GNhcj40Xkq9+84G//27f89ndf86tvv+X2\n5iXxWPngHki528OaqrXb2zk9IBA0wFX7PruH55Bh/QbLClZxoTsPXG614Xw429HiqE0Dp/qPAEMw\nNWzACRbA1S5Ajf97si9rQ9RSXsV2V1MIv0I1nU7HswC3YujeQa0dfDLuv0Ifh8OJY/Y0B5d3N0xF\nYZtf/eZXXF9csDwduH/7gYf7Rx3gux25m24Zh8D7735EcoHm0O2r5XA0fFI9ONAbJqhc3wm5CUUK\nzfVgD9hG7QyWLpbqe1cHULc1ED/PFGsVaoFS0BmVJvFuUm34tceZ2x5iPR6MN9w8VG82C56yqN9N\nDTrHsrbzCMJam062b4AXakkcHu5xcaTMmlXWVCgnHQQuUmk0nmrBSWP2nvLTPa5BqI3JNWJztOpY\nbEp9dwxrpuIZd5F2GsB7aqhMFwOX1ztubm65utlycbvjxdcveP8vn3l6e+Tjd0/MDzPHp8JpaStj\natxEatIZtySjogAAIABJREFUn9VGNYIG4IyjtmQWA+rHgkBuCWFRfjmeLKrc9s5pkJWm82xFAZjo\nAslU5cEmdmHQp+4HrczCMChMOhdIhdCazpUV2yft/2Puvb4kSa40v58Jdw+ZsmRXd6OhMbOjwJld\nLvnAw8Mn/vXk8pwluRzMYIAW1SWyUoVwYYoP95pHNoB97gmcalR1Z2VGuJtfu/bdT0QMQnMu2Wig\nhXbZVoNbinbnRsCybMQipFDItuCyPCtFCR31vFDfK0WvMWKoJe/WkvO/Ix65d2JCBSJmEVl7YN8/\nEHNkGHcYA+fn5xhrON9c8Hi3IxPYbrZYV5jSkcP4yOPxkcfDI/14FOFA3eHKCX8Vb5AqlzWQLTla\npiGxWa+4PHvG9cVnLJdbvGvx7ULf2zQX5TglxuNEvx8YjoNMw5GJei5Z/aGFgpXnLMyMby3d2rM8\nb3n9+RWfffWMz7644vrZlouzLWerDcNxRwyZaaxQSVaTqnzyM9ZuIuZMiJmoSs+nxzYxrdLuHNQx\nzVDqv6+E9LkzPg1RZ66sdzivpvymht7q+6qCp1KHgPXIJ0Mm6dJrh2Hmn2WebjYVZoH5PfAEDqqF\nsBZznGG5XdF1G7Jt6PuRGCOvPntNCBPff/uOu+8/Md7d4cOB+xu4vLxge77lfnFDLFKkajCjGBoV\nTBZNAuXk75OyISJOfFNMVHZgrkdcbQ5SqnbHMsgWJ8MERnByY4xutLJHhJCVv51Ik3TP+Ylx3CxQ\nQbBrq9dUYPYCGqmndBRhzjirJIky21TM+gHrwHqca1ksRCY/ppFh6JmmnpykAakOkSXKzzE5Ew9H\nnDE0xpCVOJCTIcdArsIoJx0pSiFcn695cX7BL3/2GQ9393Tdmpcv3rBcZc4vV2zOJPR6uV5SnAPv\nMV5OsrZtMWRcMIQkHv7OGU3aEXpnKBm8JB6lEBQcMTjfEMtEJgm0UQSLjgqlWeGhzE2E1S5XzPc8\nRqEtq7hGNlCswbctYAhj0ACWupY95ulC1cKfUvkBlCpCRnl2rfPMViQYmZE5SwkKnxnkHpQTqeFk\nqV3nOzLqlfXy7whasbaZTd5jDJQciXHgcLxnyhP9OOBbz/PtSxrfQnLs8wGD4+JiC7ZwGHdMpWF/\nPNKPvTiNoUdhzAwZVF8LdIds2gWLbs2yO8f7ls3qGddXbzjbPmex2GKtp5AYhiNTGPGN59gfub/f\ncfP+lsf7HUM/qmugBedEUKDmSeJFJLxkawvdumV1sWB7veQnv3zFmy+uuXy2ZbtdqtGXJwwjYz8w\naiEXsUUmPsHcMmL8E1IixjxL99HPSBaHtx/I3Gd+alYMtnCilstiqdDBjP2qy2Q1cBIsPmqgQ11c\nZsbR/7S7xkANftb/MC96GeaZE0SU8+k+1bdE1Q/IhtGtFpxfP2Nx/YKQCo8Pe/ph5PrFM95+8z3v\nvv3A7v099A+05cCHuGPRNlxcXtGuO0iBEqobo0BAzhRIkZwEM58/hDazMWXGKUmWpXZsYuhUr60M\ntNJs1VvmYm6NRKblKP8tZYSeGsTwqwQ1gtMB+ImKmH5wTWVvqwPqKH4es3mUFCNtIwWj1xPGfC+s\nxVhP1y6YUiTGiUO/Y5wOlDLJxTYyL8laQAqSSWsMBC1q1nu5RwFsHSBaKydQwBTL5fNLfvbTz/mH\nv/0ZH99/pFue8frNT+n371lvIBNplw3dpsOvW8wi4gK0TcYvl1hVIhfEbRJr6BYdUzAMk5hm+cWC\n1lvSsccEYbj4phPv8CKS+rrBllLmoaLRDbeuv0rftd5DiHLNjaeeG2t8XIpZIikzyDHEYn2DQymI\naT50ceLUVLV5OcFjVuEhIzCkOIVaYbhVwGQ+iqH3u8xzEuWEzY3QnzLD6utHsrHtAYe1jtZ3hGhI\neSRFGMeJECPr5YZUMrv7Pd9/8444Hbm8XLJevyYWw/4YoT+QLfimYbFY0LUtkx2ZgggW5mGnYpTW\nNXz+2RvefPEZL16+BCzdYslqtca3jdyUkkkpcP9wx/74yPnFBdY3tO2Kqc+SI5jSfAMrPbBpTtmA\n5CgFo/NsL1dcvthy/fqMV29ecPXsnK7zrBZnWFr648Bht6M/HATCCJEpZkKSgGm5f3L0n5JQHGuR\nqB1ZRWDmDrv6Y1fWytMu3VrgJLn3XvIOG1VOylDN6M/IjMOkdMgn/uJop6AzojJ3tfrnnH/YeXOC\n9sRHgnmDqVVUlqueoJSeZY3l7OKcizcv2bx6zWF3xHvD4SA+8943GCQwIWdhN4194PF+j/MNzaYj\nThMx5oowYih4V7AhC5xTvF4XpUUiePg46jDOi3IQezr9yPuvn1kLQ2NmuMton5ezYPw5y3GblChZ\nsGmJJjtJ9Cul7U+5+pUqWs24pGUrep11IFwglrr5qzAmjZQ4MvzuSCpZGoVhLxGIpYAe1WtiUd1s\ns96xjBRBVyR6kZwwoZBMEU9+LCkVxkPgl7/9Gb/+xU9YLhZ8/mbN9vKKZ5+95MPbPQ+PH3n3/37g\n//vd13z39oHDLpLGhEkJX6C1GnRsHLFYshHriClOBGXgpCJhNM2yo2AJe1F6ds2CRCKEnikE6cC9\nmOfVYYzYG8j0upQyd98xJZkVGalDMq+QE1R/6KU5SuCNAxLWZxabhhwLccjC9dfGJlEgZZJuhLUp\nMVRfKDklpeqJpKHOFBEdVchODo3VWK8CgbXI183h31FHPoWDWkd6ShaOZNOu2Gyucb6lTQHjOm7u\nPnE33RPCyNXlBZeXGyngppWC5MSsKVFoulawLSMRZ0L9qUdfCW6wTrCxzXLDs6sXYBvkUmWO/QFr\nR7xrZ1tLay3Hvufm5o7vv//E7ccH+n0/T7D1TkioupECFqNM/5vOs9wuWGwazq5WfPb5S168fMHF\nxRZLYdmdsezWYvczBcZxYJokDehpnJvCt5Qi3i0pRomhysxH86eb9Hz6AKn/xUgVrQu7Ns4KhzTe\n0XiHr0Uc5g4+xsSksEot5PI9ZHHZJ45scqRXxac5QRHUfxooOtR52lXMdq5P1scsonCW7XbD65fP\nef7lGz68v4EYlWuMnChMwXUeU5YYdcvrx0g3Bly7wPiRVCacqe8NGmdprDA2pko9K1aP3vJ+pqkw\nTYnUaNDxPIiEyiKQzy4DOIuciIReKF4aRdkpp9NwYb5hRWXbT6yMtcacnBJn06U8H7+llmu3X9Bf\nUlxDTsQisvaSDSUNHO96KQApyXBU8BqBDOdN9IlVAlCR/0hhzJIN2rROOvYqUiqWHDLjfmLYHxj7\nnrxZ8fzlazYXG6xLPOx3fPf2ho8fH/j4YeDhdmJ3e2R6HMQQrkApjtZYbLE03lekGBqLs57WGAiZ\nMiWSCRgMvvXzILExAiNltY6tm2GO0kx479VQ7dS8lCKeLB4P2pFX9W/RzThrwxKLzE2sBb80hAHK\nVOGaiq/nJxh3bRpOcYkUedaKUVplyVToUWAi7cbnQWaFUBS+4Ymb5r8nr5UQByL6IJQG65d433F+\ntmC5WAvW7VvuH3ZQ4Oxyw+dffslqseDd+/dier9oWW08YxykeKq8HCOUMnKVQ0vn56wMq+IUKMXQ\ntku8XxJyZBiPHI47rHV07ZLV4ozlcknME3ePO7755nv+7fffcHvzQH8QWAWQa1pqnRR+dsngW0+3\n6thcrFltWy6vt3zxxWuePX/BarEgTRPedjSuw7fikjgNoxTyGBX/ziJV16N9zkWm+jGRQ9YOQ4rj\nDwIaSpkLjcxK9Ig2f0k5YeJWpMPVFErqi+J7KZGSQCohJvUBUQGR1S4jq6+yQjOlMDsG5nIq5E9f\nFQM/QUC1Oj6BOJDv49uWi/MzXj6/5uWL5wyPB46rFaUYHT4lnC90246ysBA64n7HWBxDLKwXC3AD\n2Q6A+mgjFGHvDM4mTMpgHNUHmiLFagpayBcO05ycHCvjzTzZGKSpLfOJLkfISY76MvAWCGw+yehD\nX5TSWB/o+ifBeutxuu7mFUeVzTBmKbSxSLFJORGJhCIcHQCyIYwyy5E9JJ82IsMcYQfzVjKXDqO/\nD6VgizAz0M7W6o3MITPGiQ/fveN6u+JsteLVZw3FwO3dDd98944//OE9tx8PhGiZjpn+sWfaDQxT\nENvjsUDX0XlRUVpdD8ZbaTCcw+RIHiR83HZifYsr5H6SRCDriN7rSaWu/QzWzgHrlRUk96gQoqQL\nSUyiV2OuJ8uRyiNRTQSWBCRksFx1oXKL8rzpzhYYnODGCufMMv6shbl+7byp6rpAGlDM07txWm9/\n6fXj+JEj0VEpBrGNjQnnEtvNOZv1OTFGHvZHcswsVwtev7nm5fPPScHw/sOem083LJZHLq+27Cfx\np57GkQLzUKEKLgriQVyVigXBQGMUwZCzBu/FV6VCB06xxeNw4NOnT3z77Xe8/e4dQz/pgyz915wA\nZAtpkkFr27Wszzo2lyvOrzc8e7Hh889f8cUXn3F9fUUKifvHHfv9DlMsLsNw2DMOgxRxxb6zFvGg\nvisxKsMhZ/EG0b2kGEO195XOV3YXW8UllRmiXXTOipPrcNZoF1CKIcWMdQZfivrf6KaSJBgjRSm+\n3lmM8Vgrcn+5tqdu1jkHqYZMQC3oZV6kJ1OgWvyl8CsEZCxtu2B7dsGbV6+5ODsnToH720dMMbx8\n8ZxjzDReePnL7YqSDWmKDA9Likn0xeFLQ25XsEyEaSTnhC9ZBCFo9qQpiApGHyjFrEMUKp94njek\neBoYW1sfc+ma03zklY4rxEiaDCnk2TNHBpqVhXR6EmpnVj3cTycqTbLXylLDsqW46OAbLea5UEoi\nkkhGxF8ztIajenUUPX0+rUGmlNMaUNgLKt3NkktiShH6gcZZHOI/UjCUmJniyOF+4NPNJxabxMQO\n7zseH3t+97u3vHv7if39iPVOHCptIeTEmCIhJ8iDrOuuxblW1LYpkUKia1oa12C8ZAWUAo1vKc4S\nQ6CXHRNMoe0a0kyckGFyRjI3ayMjCFFWCEMKaa0X8xcYQynqTU6FDx0xGO4/DZQUMVk2DydttMyq\nTBWPOT1Fa5i1eRpagUImJ0hrLuIzTp5nfB1OStVS3A9OrX/6+pHcDyNTCOQUaJsljW9ovKjGrHVY\nJ4vde4t3hpwk7i1FSybRtBbnC8P0SH94pD8cCf2kvE5VraE4YxZOedM2LNYtL1694vzqUvyFTWHo\nj+z29wzjgcViTdMstFAbQszc3j5we3PP7n4vKTFPrmbV4ZUkB6nlZsHVs0tefP6MxaYhpp6Xr57x\n4sULzs4uaJslxRbOzwrL5RZy4fj4yHg4MI3ChJFCLhzjXItoyISQpfiUKsTRSm4sNs9jsfnIlykn\nA6m6BKQKnABrJwsm5UxMYubvnaNt3Fw0areYMgL35GqBW7FAi2/sPOwVpqQRKfzTQ8LTDrTokXQu\n8k+oooCxBd9Y2mXLvj/y/Ydbpvue97d7zrZrri7PSbcPtK1ntd1gvGSqTsOEyxtyCgRT2EfAt7Dd\n4qLY2zINwqVXNauzim0W8fY2CA0x5cw4BcbJkZKEg8vGGhV60z1Tr3yFwXIsxDGRk1G6p8xUqm3Y\nrH4tkBWnNlb44aYYZdKcTi7Cfjj9f6H8oJDX32NAYu68Fu76vkSiP6/beiqjnujmr+R0x5WqqX8n\nx8J0DOC9hLXo3zEOvJ5YjJOmZr/fMfT3fPyw49OHR467UXFjWRyucSQjSUtON/+QJvIQaJ3AQylH\nNWYTSCnVoOMEeQhifKXMlHrASBaR1WdEYVky4i1aP7MRloypSauJKU80NHjrcVZhnVKDHjLZVEdP\nPZGN8mSJU6IMk+WE556sZXtqquRCURuU6sGjBMP58+WSdROtfj16zMdKk6ERd/Wz/qXXj1LI98eB\nEHoMhe3SiwoKVUqprNV5Q9s12AM8PtwRxknM3F1ktW2xrrAfHglBdknqUVQZFaXUrlzZKr5hs91y\n/fI5q+2GVCIxT4xTz7E/EOLEYrmlaTsSmWEK7PY9Nx8eeLzbM/ajYMQVf0autc3i1rfoWl68uuY3\nf/MrXv3kJdjEx4/f8+rVK549e8F6dY63MqBbd2f4dsG4e2TY75n6njgFguLSKWqqUE1AShIeXDu5\nrPj4fCzPJ7xTtnz92uqhDTyBW58c4KizM6EeK+3QOie+zk8XsQ4Thbcs11VEC2nuJquf+VzMFVeu\nb6u+55lVQy3j5gcYJgbaZcP6Ys2u77n/+ImjXXJ3GDm7PGezXfPp9k5ocotGvEdyoJiMadxs+zml\nROMtTbPAl47iChkNATASitE45XmTZmRTzluFfoz0YyDEVplQ0qlna7DKRhCPa/keOUMKMsso2aoM\nW4p5MQgTyJyuvXTiDucaXONm3cF8awuz6jUXocfVe6UjULmGRrrnYhwWkRWXkkUWXrt8ynxSL3Mx\nl3uStaDod5t9SOrNKBniULAt0IBtpKX3jaVbN7iuzp8a4ph5vNvz7ruP7O56wqAugUUk/9bLQNMY\naKyoK0MKjCGR3All80bi1uqcxirdNR5HUkkyYJythi1Y8TKXWMcExtbcY05sf4NDgi8kaD1gNRqw\n8Y3EoqYJWzQYoj7rmlAuBgAV3rAyKDUGpyfRWfaBUnN1jpMV8snICVoGrpXdciricIK05PdVumfI\np1bgL9bUH6WQf7q/ZxyONNby4uJzjsc903TH5cUzmnaJsY62a1ksO6wzPO7u2e92LJYrzi/OGKIh\npMIQEmfnZ5xvDNPjxPf3k4YUoxJdoc9N00RhRdt1pBR53N9yGB65OLvGtw0XF88YxoG2XZCLDFXu\nHh/47u0Nb7/9xO7xKPQwvZT2KXsBoRhdvzjjN3/zc/63//1/IZvEsd+zPet48fwZz65fcnF+DdnR\nNgtWyxVgKcMElQecarhxEv74jIkXxdQKJanisJSZx3166E+7ueDYEjwsvl2ZTBUp1KMbYiHayvGy\naaBberCW45CEfheTCjOYwbmcpRtLBWIsOFfUX6aWZXlZpcCVunPo96iKxdl7pWLp+Qmu6Axnl2d8\n8fMvecwNOxpSkqFj11raxhLGgbE/MB0OpGyYhoFxGCghYik0zrBoPZ23tNbgTSYkyzB5RjNhjKUp\nhU6P+qkoE1FxaG884xQ49hP90NB1jao/LTEVTbnPs6I1ZTPPEuZhKPIsp1zULK1uYmYOFnHOize3\nd4gGVVknmNn5z3BiR4lSWTaa+tDL7xwFp78XPPfkhS4vZ50W8ie8Zb3muZy4/kVZUkLZdBjjBUpz\nHt8Z2pWoH/3C0W07UokcD0d2dweWiwXjbmT3SbyPJPw702ykyzQlKTwpZIeUkpgKYjSr09N1Ldvz\nM8Z+5DAcGWOYTegKELLkZRoDrfN0vqVt1wI5moxtJZy5jo7MPMioHXH1QamKWUtbGiiZlIQqmOdj\nUcWodQnr9RW5PWCcWjxDsTIPmYVj1s5GetX4+WT4JRTGpxMJg1xzip0PTlJmTuyu0///8PXjSPQP\ne1FjtS3TGDgej6QU8V4MrkJK3D/c8+7dO95+/z0P9/d46zlLhYuLDUY9hfsQWHQLVosFa7Pio/sI\nVMxVCldK4ndeJdPH4Ugwo4QpOMt2dcliuaJpW6EIlcRhv+ebb7/jX/75D7x7e8Pu8TgbUxkdPNXB\nj7OFRef56S8/5+e/+ZLNeUdMI+1iyWb7SsUZii1bh/cNzjXKO86EMcivKQgenvKM4ddfORZR/lVJ\nJYUfqEayKMvKk4Vr1Xkx5yJm+lmsV9WUAotI9o3mJtqupY+Z2I9SxItIiGX4xCxkqAv8yUx+PjbW\nSf+fvuahc6m4L1R6YvWYEi9qha6y4fDY8/brd4TFirw+p2k2pOnA1B8IY48zhdbC0hVs4xiLpU3C\n4HAUGgetSzQkfM7Ykkk54MhqTSuBuV0sDEmAolIkA9QiM4eYAsOYOBxHpQVatVM+DbarpQHUbtmo\nLzZz4S2UeTidsqgp581Yu8qcq3VvmTu3Ys0PbvfTR1nGHPURFwZ21ri5glG4qDJpZGGYJ0UpG4W2\najNgkP9uoHLlZXYg8xBDy2LRsr1wbK7gcX/AesfZ2QZnPYfdwLf9B5xxPNzvebjZc3FxDUtHfxyZ\njpExjPTTCFk2SmdbUhqlGFqLcxqq7iRQG8THxlpVVCaZNMcsbB1KwZaEc4EmBdWkSHCzUSvjqeof\nnsIbPOmagZjTqTnT/+aezBXml6nTA00oyxkjV1hmIKomxRSyMdhi57lbJgoMaovAMuaJqM48eZbr\nD6q/SoVZdJP9y3X8xynkQ39ks17TNi37w0G8G7yT4aOz9NPAx08fufn0id3uCHiMacnZMhwndmPP\nIQTGBK1xtCvPZXeOd2IV6Zybu9rKSxY6XeRwPNIZh28t++ODYvKepllSgHHoub2955s/fMu//csf\nuLu5YzgOclwuRShjohTBUlitOl68vuBXv/mKz3/yklRGnCt0iwVtd8bh0GMM5BSx3UoFR0b46jFJ\nhuI4zS6GQYt4COIwmGMSo6uMVopMsYjplX2CsJR5bDYLfORYl2eDJioVThWeKUExlmQsY4bjYaTv\nI+OUcY2l9ZbWG1otfI21mBosq8W9UjxL+SHr5IcPTpk3VWB+IOpD9bQ7lCmvYXe3px+/ZvHiGV02\nuBVMh0eG44pp7Fl2DZfbBf35AoOht4FDMoSC+r1nGiT70aREjpEyBYryh6XDs7TO0liEt1+SiNWs\nE3FQMUwxcxwibZfn4Imo96ScECwxc1IxVSnIvStlniUUFWzFHCl1HGlEjZhVWBTrkLswmz0V3Uhr\nezZfVyoOXNRJpsz+NEX9SjLMEYimWKxt8I3HeE8giDJYFDhqbVE7ynrUr32kwRpP4zxd61gt4HiU\nArtZdnQ4whg43B7oD4HjfmAcAs+uGrp2gc2OtD9SEuQgYcdYof5lpbA6Z/HezYWt+usDWOvUf6ie\ngo383SwDXhsNbhxEGVpETt81LRSEeaTK2FOhtvPpTwzPEq6UuehSUJ9wNejS9Uw9KclCpRTZOKWQ\nRynkgocJVGwk+Bk0j9hk/cxe7r9VQzp0qlXKDyu1AcxMEXgCyf3560cp5DEM5NQSw8jdIbBarFlu\ntnIMMT19v+PT7Sec73j9+ies1yuMsYz9kffvP/L24/f0cWJ1sWV3c8twdmDz+RJDEXmvM9gkN1pS\n3aVw9v1AN3YstlsWiwX74yP9MLDb77m6+gxrPYfdnu+//sB3f3jLx7fvmPpeHrSCyJRjhCQMkrZ1\nfPb6Gf/5f/1Hfv5XX7K9WHE4HjjfnLFcrGkWC4xb4PQY553AA8VADZEN06iFPOnQMYsgSOPTRJiQ\nRS1ZF3EpcuLTzrj+qso1p7aauViV6ddiW6hgaymFEguRxG6cuN2PPD5OTEEq9PKsYaX0rLZ1NM7I\noDXqAK92pUVsUb1/Qv16AuGcAiTyfC+MQixZxR5Cr1QMsMgmkdJASInu6oJpf6R/HDg+7JieXUDJ\nnJ+vMJ8/Z90mHm4/cRsiwU6kMsp8AaFHGozwy4eJ0I+kMVOSU0xYHvoGEf2EIowc7wSvrj40IRpi\nNBSnRlmIhNxag288xQlH2DiP8S0YR5gC/e5ADEENlhQ6K5JDCyoCyQZjpACkUmcQCANFsyZtxV2R\nolJPNlEhlkQh68/IRX6PAoGppFMh9gu2Z2cst0sGesZxEnFO8Rz6I8PQz8/oaVAt5cM6mIbA46eR\nMESO48T6zOBzYLnyFO+JU2T/4chxP2HwvHv/ie2mY7Nuefl6TT867u4Mn+KecRRWUEyZxlta7zCI\nT4olMw29RCXqPmap20rVO4gFrTUSz3ccxdCrFAmsbp0MqEfN7yw6LXSuVQhDsLxcRBwkxbYeWAU+\nqT+7yuIrXbbO4vS8qoytuumdarEpSjs0BfQkJjx1hVisw/lWVNPKR5/PBJaTP1apm3ie2Sx/+vpR\nCvnrl69YLdeslxu8XeJsRy6Fb99+x2a7xjrH1cU1IWZ2hz3D8EjTOob+yLv3N4SUaLuORbekibBa\nrFlvtkgART3KqxBIi8Y4BQ7Hnm1czxzl41HyOdtFSz8e+PTxgW/+8D2/+39+zx//9Rv2Dzt5ELUT\nzinNLJi2hS++eM4vfv0Fb948F5O6ENmut1ycP2Ox2mCco2vlPbS+wfkWUEpUDIz9gX73wDSNSvWT\n7kE6XmHdmCJtd866mI3RKDtA6Y8SnCwbmPMWq+GxdSMTSMZg8FiFeZKRwJOHQyDsBnb7gRAMpYi7\n31QiMbSYTYv3Fucd3hva1qvjXyJOWZVrwugw0l7MjBcpOsqMKSe1IKoXqpFu9fRkQGEKXbRkinMs\nz87ZLM4YjxP3H2/5r//Hf2HZWRY+s+0C3WVDw4rGJh4aS9+PhCDQ19QH4nES/UBKkBTn1MGqt4bW\nQmMKYxI5fXFAVpsHKyW0qlCjeq87Y8RUzMnAM5VMmCZKiMJmqClLXqiYtdUzSe5FKRKAPCtBjQp8\nqCKfOAuMHBansJlcviK0w1rE63UGTcCp4AtgBE0vxpKKKIPbWOgWKxbNEjbSobY7z35nGIZBbH4r\nvEKiEMklCmtsMpi2oc2Z88UZX756w/l5x3AY+fbwCYt4swhUIlS8oQ8stx1nXYdzZxweBqZhgJyl\ngJtCigGMwdlGZjvZ0FgLjaOkrJFuMgfo2kbK6RBEnFaAbHG2lW64VB+dcvLGRyETHbCWnCU0QgfV\n4n+ffzAIltCaVoy7UtCrDdqaM+t4TR1KnsIjpMBXbP7EKZN2X6DQ+n1mn7n6vbXrNzOAqfCLdXNj\n9KevH6WQX2wvWC5XbNbnrFcXxFh4eHzkfvdIKonNZsvlxRW3949Mwx0pBYapcDzs2T3u2Jyv2J6f\nc3Zxzca0PNte0nYLMCIbjmoVmotiwUUSyMcpzENAAGu9ynMzj7tbfv/7r/lv//X3/PF33/Jw+8DQ\nD8I40K3bZMGNO+84O1vyi19/xa/+6mecnW+YkkAkq/VWfq3OZICWZfjhnHoWY6RjDBNTf6A/PEgi\nfFTvlkbnAAAgAElEQVQ/Ey3kQnqVYl7JhZUPOw9xtLs1ylJyXn4ZK7O42umShTUg3TokI1LuMRWm\nfeA4DDzsDxg83nraRoZQOSiEpN7uzjU0Xj3XFVOt3tViLapv7gmsIh3OaVxT01FAURQE1y5qTFUd\nBefxjmtol2sW23Msjg9v3/LuD3uuLztePlvy7GrJsmkxZx3eFtrW8bDz7Pcj4TAxDZHxIF26M1Vv\nV0n44KyhsYbGyMOUQxQ66UwpQ9+rqDVTzsKTt5X7rZBShjiOpCIwi287QJLes9O1k2UTkGlAjSpL\ndQ73hI2iLIVS9YKVPVF/lHbipii74ocslpNukHoVKQjFchxHcI4FC7qFp2m8ZrSu8QYeS6EfIagB\n3amQB3JqIDX43GANrP2K89U5z89X7M2B9/YBZzzOZazzCnEWpsNEd3Ss1i2LrsE7R+OcFEBriWki\npSRJX6q+pij04OXZK9q4YKwYuiGqzlxEyDNrOoxVwZ4yoRRGnDvd+evKXBjtTIvV4qytsLGGtuuI\nMQgJQjfzPy+lc3kXeqNuLqYGI+gAvX7lDJBofSDnJ4XbzndOtcbUDt01ThqDv/D6UQr5bn+kaZc0\nbUvXtRiTaNuGs+050zSy2+25vHqOt7L7np1fcPd4wy5NNM5xttny4uoFz19+zovzS1rjOe4PajZV\nCEmP7EUNfpQXbophu9zQWkcaRpZdyziO3N09cne74/f/8ge+/v03PNztGYeRGKKEvhrZIV2ROrVe\ntbz58iX/4e//mp/98iv2/RGmxJQjj8c7npXXEuuWlcaEFDRbRQcUSoqkMBLGnhirDD6evEaqYdMT\n1gHaLYgRj9D9iuJosobNKXS4kkUUqqjRVI0zmJyZQmKYInEXmEKCbAkpgC14BBvOkySSl5x0IGYp\nZJZiYIeLVOiWysio2N/sJaLH1aJH1piq2RdUXzf5VChMI8frgjAsrHFMYaK//cT7dx94/8e3TIdH\nppdb6FeUYcXZ+ZpuueTqfE3XLWjbHsOe230gx6KFuQb76k+bL6rw7b2z+FiYMdA6a0IGlCmIZUAt\nBvU4LbNb/YCyc4NRc6ts8EqNwyYJw67NWK5H9pqNOk9I52YawxNNRMXEzUwWnLWfPzzP66cqp6P5\n/G8kn3Z8DDzuHlksWparlqZr2CzXXJ5dYiPk/CBKRyN4LyRKiZTiBS4oQvXLU+T2wy1nywVpdITR\n4FxDtzS41hFSYBgicZoY3x5YbxYsuiVkw3q5xvmGMQwcx0QxjsVyhXceiiNHlCKYT8piRD8y+/wj\n17OYDEa83YtCWLW7zvO9lmZI+OfiFJpyxhmP916LdTUmi0otFS1Lzk4LbJlvjJhtuScbfsGoirog\nehYJZTbkVCG0kyixDr5NUk2vrnVj1AxNG6W6OeAcruvwi+4v1tQfpZD/6x9+z3E4yqWNEWsbnC1s\nt2cMoxzt9ocdl5dblkvHFA+MQ4O7vOaL6y/57PVLrq6vWa7O6ZqOMA4cdzJFt95JRBiSsGGBccoU\nm7BN4HAccJ3Ft7BcrRj7npt3N3z3zS3ff/OB+9sHhqOklaQoMTi1u3EFrq42fPnVa/7uH/+K7dma\nKUy0XYPrNsQSCfk0lJEpvGT+pTp0LZmYImEamMaeOE1MUyCmdJpw5xPL40ROLaf/n3FnWTzOnoZF\nAllk4qRDuShwgnOC6GVjGUPgMAQOfVDLXQmebRW3k8IBY0iMQZLqj8PEoR95drnCbDs2rce20rUJ\nciA4ZDZZaWKnIlMP6RkZsErA8UkQZHWGMXus6IZRYuH2+3d8uttxnBL3Hz8w9SNxKHx6f2DaD9x9\neOTsrGO1WdAuGlIx7I8Tu/uB4+OROAVVL6qqMZ9Uc9KdSbH0FhqbCLmKvorMMFLmOEqsWNso115n\nENZIR5XiKTlJKTjEMOqR20laj9XeSt05izEYgWaRwe+TI7huclUE8AMhELXz1s3jtDvpmmAu5rXD\n1/9Cqpa+YpDB0EdCmHDeM3WJzjWEKc+c71Si/hwdqdZ7VApt22GK5+6mp+QPApFZh1s0khfQeKZh\nAt3YU44SoefluQghMQ0jxYgjqTetrA8VRMWUGONEiKN2wlYphYUcJ+p8qBgvnbNviJqTmbJQSg3l\n1B1zcj6sXuRjmsh6sk0mydfKysBYR9O1rFYrSjlw6NN8D0wRnNsZ7Y7LybGSp4zvIkVaYukspVhd\ng2a+ZdnUr4OTO+hJvFRnXykX0jSJGvYvvH4kQdCRx90jj4/3rLqF8LeRJPFUBBe/v7/jbLuhbSzj\nMHG2WtGePeN8+4LryzO2my1dtyHmwuOUCCHhmobFZk12C8IkykhjDN1qRdM2dKuWVDwpO2yxTFPi\n/vaB777+nj/+6w0f337iuDuSpkhJWaTD2tl4Z1h1DV/97A1//Xe/4td//WuG8cjj4z3bsw2L5QLj\n1sRS8Fb8jI0eBU1h9qcoit2nOEkRH8fZg/w0tJYlU6lMtXcFOMknmSEVq1RKEUJJ9FwKwkGv0W54\nweYSheMUOPQT/SAblTXglTngrFjY5lJmGuQYBsYpMk5ROecNXdvQNBXDFwuBrNeqpjPV91l7R4EA\nVCUafyhDrl7agPScBXKJTO8+MBlHP0am/YCJUpiHw0TsM8d7eFx6uqWj6STZaAoSQTYeIxIto9iD\ndlx1CGuNnNiMsTOdMeU8C54KiSlJTmOrdr+ttTNkJRROcbyLUyTF00MWY9JTkMe5BmPK3CFWymUt\nsnWIWecIyn3QOl2LuHxlvY7175l5vTz5X6VeUIGAyt9PSGqp/ruYCDFiTEMaYXSNQFvF4q0XOfuT\n/j+TMLbQdI7lusUYx93HIyEXulVHt17QHnuYAt55huNAAZq2pVnIRmtdg/WBbCJTjFhvaLoG560M\nX7NAglMKjEEcEJ16pjjNj61OkNZ7jM5o5PliPmzVbILTtVJOfrWTwMiw3kQiEHTTMkZ4+845mqah\nbRuOPZQ50lvKtPDus+6jRu2AdY3pm0g5qUmd4na6odRTWb1DokGttlin42D9q/OwfEqUMP3Fmvqj\nFPLP33xB1zTkbGh8RzHQT0ce9ns+3Hzi7Xdv+ePv/42X19dcX13Q+MKXX3zF1dVLcllw6A+knHn1\nYo3FkkLmsO+xvuHq2XNedls5ymCkW+1abOPFVvZiw2qzwHnD7c17vv7DDb/7v//I91/f0h8FqxMv\nDjPHSllbWC4bXry85Lf/6R/429/+He2y4Y9/+GcOj3fYPNK615xfXXF+8RzbNHrMK5o1iJrmKGvD\nChZcYiQohFPUM7kuRkM5Ta6L0WQfhGNr3ZwLOg84FZuWlBhdVUkKrTEaSuwMMReOU+Q4JkKUXnke\npAFGzYvqCF8m7YZ+SOQy0LQDXbdguVxwtlrgXcG4wHQ4Ujm/ouq0+t6fFjDd2IxF6TSUXIgz9Usd\nFgsqbc8QItl5LJauRKyNTC5KR1wMJcJwyPT7iVLUolVlzWj3BNKlnTrXomwCo54X4k3TGsNkEqEw\n+6dkpMueQqLRlKCUCs5lonP6wGbN4SxzfmqMUQqMi3SdMkqAULniWQyvtISLerLeNn2PlRcxK2GV\nrli79npSPJXw/KTUqL8IJ7ZLxdxnlNY4LM0sLIspU3LEOUvjOmKO6vNfv2vEtZnNZcdy2TINiU/v\nd6yuVqzP16w3K/ZH0VykkDkcj3hrOT+/4PL6Qor1MLHzPdZbPF5OCR5854jZyUkyR6Y0itrWGazz\nLLqOxjtyCnowldI35USIgXEaKcja8s4TwqRDfrDF4K2hse6ESxeBLnLJTGUkFGEXOfVKaVyDd56c\nArmcBp1Z/qJ+D7nGzlhSUUuBOmspEgBjjZx+CkVcFnUXL+gzZ9CTt/mBj79w+u3sF59ynk8Xf+n1\noxTyV89e0jUdXdtxOE4cpj0Px3se9g/cPT6yH3bio7Fc4XDcfPjA1flzCne8/XDPMD5ytlkRU2C/\nC9x8uOW7b7+hFMNyfcbl9TMppMofb5cLcEIVsqUhDoZQMsf7wt3HkZv3e6Y+gIYw1/Fina+sVwve\nfPGS//g//T2//pu/5vnrzygU3nw+MQ3PWS46Fqtzlpst7XKphH+Q43n1Ds9zOEPOib4/Mow9KacZ\nw6tDmfpHY8zccRkdOFonvHfrCs6JlYFz2mHkE29cNSeUUlPgJanmMATGqehQTmCfbCplTZz0KOlJ\ndqebMfAYMo8PR7rWYR2EsGTZOolOc5aig0+j3hj1AtY8w9nD3EkOJEmFHVnwQelL0rzILQg0FPXB\nywUXM03JuBk/1OtMpFq0itmgqhdNnVKcHqC5F5qfC52BmGpSJAWwYvsGYS1MAcUyC9ZmrI1P3Cnl\n/la+8kwzTBORRC6iCJ1STY9Rf5YnUm1NFqUYgwccwnGPVXmqHeZ/n1MsJdtwgrROn1b+/kmAomuT\nCEUyMRMS7TczN54Ye8zqUmPxi46L51viFDnsB5abjqvrK15/9pLbm1tyGPG2IaQNMUaKyXTLFigc\njgFTaeSl0PqGpnXyZy/7uy2Gbtmy8kuMMYxDYIoiVCs5i5jIyLA0FpHbZ21WvHVgioja9PTROEdr\nvczGtDESlriIqJLG7lncyYslJaZh4DEGUQzPA/taF8oMJxaTlQ8uS9XoOirUuUpNk5IFZzGnDbmO\n9f90gqpD2ZrneTqh/eXXj1LIX1y9wPuGEBJ//Pprbu4/cpgewWcOQ08ukavrC54/v2bdLTXIwfGw\n2/H1u2/o+we26yW+sdzfDNx9eOD25oazswvWm3O6RYfV6XWKibaTZJOUCjlmxhiJIbJ/nNg9jBx2\nEzlKmvxsQ2nEJdA7z8vXz/jNf/g5//BPv+X155+z2mzJKfH8xWtymoTO2Czw7VKmgMrzLaUQUiBF\n8S1JardrjCWEUR3dylxMqPiYedJt6T+MJs9Yr3RDZ7SIm5nylGtnqKwXGTwKBBNzZpgiu8PIqOZf\nJ66qdqaqJEyp4B1zmok0tRmjdL7H+x5rDTEk1suGrrGYknCAN4DafBYBSeQzWXWNyBIiLMU2oexK\nCsIeEJyyclbK00mpDtqKoESlKL4tLVABqerZilGUdtRQKPWhq4XZyPHdGPn2Rr3rDTIEs0Y588hD\nHUthTNJdlVBl8+LNImwW+f6xBvyiW0uWQiG2VY5cDKH8UJySSFrYkxZxmWALHqzD0rnTzic4xmhB\nrwXBVMoaP3ja66ZU6/Jc/hWikKN+BhMEOlERixQR+Zxz6o12hiFknOLgq4tG4T3YbBesNi3j2Mns\nKif6XoLVU5HA8H4YpDt1FlcKrhGLAqsNCb5omo5VRllhJBCC2Ng6NfTJFooVbx2Lk4GkEXWo95YY\ne0mAMmJT27iGxrWaqyrwhi4dTltjnUQjARDTRJgQEoBetur5YtVltJQ4n4Dq3MIgz45rHIvFkpIL\n++NhLsRKxH1COazv4SnYVv+t/NPMBl5/+fWjFPJnV8/JJfP+/Xv+z//yf/Hu/VtsAz/79ReQCovW\n8/nLV3z52WuuL6751a/+ik+Pd3zz7jvGcuQwHpjCEfddZvdu5HA3MBxHSc8eDsTQY3D64BZiHAGR\ny0blB0/TxG5/YBgmUqqMkjoekqFK4yyr1Ypf/9VP+cf/8e/56ue/FFqZyTgHq/UGkILhmwXGNkJ9\nLEFw8ARTODIF9Uwvha5dsmzXlV6qjBqhPBk1YardaC3wxYiy0jqDcQbjmQu6qz7HuYbvQk7SfRqn\ntCUPh3HgsR956CeyhDHijAGrTBNE+eewGP37QldUZoauepNgPEzc5czUB5aLhrbz+AY264bN0gvM\nk+XvxXQK9UhWwihclqeoGMBnihNTsKyYo6giE6mE+YERschJ2iz4umxw1dnP2EINSa54Qt0SBPLQ\nr8POxlBSvLVQFtnMHYUGo5AQxGLoc5HZg4m0iEgHVUJWi9lYqrUsFMuMLpsUtZibirDqJmKIJhJN\nUm8g+ayuuLngOiVkZpWCF5xcJaOQzCy1t/NnFvdOKQyuDsb1msm+XTc5ue9yUkm6OWUaOpxp9OsS\nxRSSyRiTmKbA3c2BizPHcuNZnnUchz139x952K9wnWV9tqZ1LQnwbcM4BB72e4bjyGHXY9HsAGsp\nOKxtabwjukiDpC1lCofjwOHQyzMaMxaHd50IxihEX1ifbXBYjmGn7JBC44VWXIx6z1iPdS2NX+AQ\nS+YpTsypWcZiVCSnbjeIPS1ioJYKFDvDKLLJWn0fUSA9FSlVIkLjHNvViuur56SUCZNkieaSyCXK\n99B1mFVXkAgY62ZmUDLSsGCK3scZlf+z149SyI1tSXFgzIGhTCQHXbdgvb6gW3TKwLA87vcY23B1\n+RIaR7aFkCcZtjUN1jdcPltxsTXEIdLvD9x8/47Dw272Dffe03QNBUMIid1hZH8YORx6DrsDnz7c\nYEqcd7uSwZpI1zZcXV/w67/+OX/z27/li69+ivMe8VM4cdArjlW7ulQiUzxy7Hfsdg9M4aCpKo5x\nfOR8e8mrZz+haZf4ZoWxjRbv2olqP5dPXaQ+nTKA8UYYKFYzQw2UnDRVKKvk2aBUXDKGKRmOY6Ef\nJWBYTJCkQ3Z4bF2gFJxBunyNEjKlsk9Kte0WHjmGEgvTkIhTwbhCHCNh2bBZL3jz5edsLq/Y9yPH\n3T3Dfkc+HLC24LwUveIcJSvvVyaHFIUeUtRwigzyIe0MLVDFNpVqWZt30HtQNCJMBrBZKWlyglXM\nWIfIpaBdno7zSiYVI1BGLYdaoKecMWpi5vS0MLucFM3NxOrRPIsdrkGKAE7EWzbTGY8tEFKSYTFZ\n8e/67gwZSzKGoRT9vefEYK7rws+6gtoVVtM0+eVwVBjCEEvSa5JP+HkxVZ9IXWp1rXnbkuMkcx7t\n/KcYeNgduLt35LIgKWNj9zDy9tsbUrDEaNg/PAobKwgsloKYRDnjxa45SAqWc+J66IzHYYgpM0wT\n/TjSjxPjFMgh460MYL2RWDaKfL/UKzauzaw1kgpkndMN/8T6wRi881KsQxS/cBpM8XraUdxb52PW\n2bmhSkXDaZDvR0kKBTKf+CpkIzOZxBgDtw/3s/+N3DqF/2SLnyU/pa63FOUZK7phoMI+85Sq+uev\nHyezs2QOw5H7/SPRJNrlgs3ZGdvNBdY7ocPZwjBOmMOBxWbiOA70YSSWSNd1rBcrlss1m/MzmtKS\nhsg3//JvPNzes7u9I8aEc47lYkG3WIA1jCHw4WbP7d2e3cOBFANhmjA5UoN1hS5UuLjc8tNffMFv\n/9Pf8dNf/oztxeXsGlcHmaV2NBhyToQ00U89IQ3sj/fc3H1LTIN4WpmOkkcWywWpBIx3ON9gnMd5\np97WspBO3iMqAFLVZuPl1+z9rd2dSPuFKge6AK1g4CEXxiEyJUMuTsU9Xif3Ql+0VlgrFoFqvCYt\nAbLwqqeLwg7eGbwTChdJIB2TC1OR0NvV2vP8y5/wxa9+wX6M3H38jt3NB8b7HePhSL/b8/jwiI1G\neLTGiGBGf6SxDmwFKMqfLf6iD1rRzU+ky+rXnWSgKwlLiv8X2Tik0wEQCCdrkXalPpCZKWcNMq4u\nhBXWgJg13q7ojGH+PplYMrEovqpQVzGWbA1Yh29avGtobKFJGRMSORtsSTqQrg+70WGwZkGWpCVa\npVImz3RKMfeqJ7es7IeiNORTKW9si3eeUiKhRKYcSFnpmOa0F9YjvTFyf72zRJyaVMlVCClx6Ef2\n+4mmcbjGk4tlHBKH/cRyuaYkw+72cfb4SakQg1BdRcUo3OocCo0V13BTRBSTY1IjvZEpBtEVIFQ/\n79S9sT4bWCnIWLzVDOC2wVs7zzoqZBGz0H4bK0rSYnX4aJxqHaIoWnWTk82yzHCUnmsE6avgSIX2\n9OQ/z7OQAfgwjYwhMWdTSfuvqm39HPX4aOr31xMbCWMabVJOm7T979TUHyfqLY98ur/h+49vKbaw\nOdtwdXXNdnPO3d09fX/k5bMLSikMY+T24ZFP93c87B9JObFYLTk7O+fsfMvV2RWda4nHwM3btzx8\nSgzHI8M44b3HkCXKrHEUIuPY0+8PHHcHSg6C51YZO+qf4T2fffGcv/sffsM//NM/0q2WIoWOo+CG\nAo6iem+KgZgG+nHP4/4OTMvh2HP/+BHMqCwFz+XFc5q2I6RJjrJOfpZrpLucU2QUt67eMb4xNI2j\nbUUmXzuygkiQY0jqnKicfG9wjaVpPWVMDLueghMjLJugqKLNGqzNOKOduLXCBrGWbCp4XbRr1IVk\nrRZyKyZaepp0XuT/zjkWmzVvfvVT/uZ//o8k33Lz9t+4//CO8aHn49t3fP/Hr9n96wBHKUoO8Z0x\nMJue4SBao54tSk2sCfNU3q7ACylHdZOEFMrcTadSFOKAhLBc6oMo7oCCf1uESmiMbEahCNBQOA2l\ninb8kSI4v96frJTOZCTtPVMoRaLjjPO4zkFjWW/XrJdLGgxpd2TaHXFRYBRLns2TDFaFIfLTxLnP\nUc8SBUnEcVrwi+L8CoPPRafiuBZH6xoWTYe3MKaJYxgkoat+9cyGkKJiVQizWnpCdozBzDh5KuLz\nPoyZcSwsbJJTYJH0nlcvn7Ff7Xm8vSPGQhkmhtgzDaP4rWdZZ956iol0raNrxCwvZNE+hJBmOq58\nrcMb+fSRTERmK9a7+ZTVtg2LxVKj3arl9Am7DilwTJklDcVIw4H1WOOxzpBzwBQZLBeT5fQSArY2\nCDD7AcmmV0kRynCrTQgCS6acCFNAoKOG1nVyB2eBl2688180YKyKnbK+R0v19D/Bgn/59eN05GGC\nlFg1HT978xOG40CDYTz0eDxX2ys+e/kZXbdgSombx3vuHh55eNyTgW7RsVqtWCwWDOOR5ALLrmOx\nWdAuOnFMdBbTiD2r0c6h9WKda72ICGpijV5DMAXfes4vN3z1iy/4+a9/RrdcU0ikPNJYr9FQmqBN\nmjvfGCeOw577h1vGMHAY7pjinrPtJc4tiNHStWtKzhz29xxuPnF/f8swTkzKg48hkUJRH3vFyp08\nVG0nHZLUV+3Fc5FEmiiued43NIuW8+sLvvjqS2we2d0/Ytv33D9MHPpAiAKo1MxOqyILq11YdYST\nrkFW0OwBZ8o8XK3q9Dp09R6MNazPVnzxi6+4evmcxWZJNpbLZ9csVi0xZS6/eMWzLz/j+s1LPn7/\ngftP9xx3R8bjwNhPTMMkizULo6WkBBGx4DV2drQE5iFnypDEy0zYAchxNxcVUiBQi3Tkin1rl54q\n1o5QFSPqdaIDKa2RM6sHhC42O8LkE4SVtblyjeHs7JzLF9ecP7+g27RkEjFMTIcjoUl4k9inIuCH\nfp5ci7kBi8eURs4gxs2QkNGCRlGqpxzZoDWY1mIXnouzDYuFqCBjMLx89hmfvXpNCiMPjzvevv/I\nf/vnf2Z/PM5FShhSFnCyGa9anj/fkjkyjkeFB7UvzYkQAevZnK/o2iW+8fTHPdYkWm08ukVHt1qy\nOFtByOxud9zd3FNnQr6TFChjjIQxD9K1o+utImdmNgOLTFkGvtY1tIsFLhZ8EghwHAaiZtCip2tR\nekbh9Ks/uCwv6auNlXBpbxwyfGKGWEQABfOZRU+lpz9XSKqefyr3W/9U5Jlw1tGoepRcT/GcBtao\nZUN1u5RVPW8Uc1wj1bfxz18/SiFvXcfF5gLzCj57YegPB2IMrNZrrGlYdkueX17j25bd8cB3Hz9w\nPAz0/ah5loJBhXGk5MRkDJNriES1lEOwaydm+Kb6HWMk1slUXJD5uGONZb1dcX55xuWzM16+ec35\n9TWpJGLsKSXSLTqqLLuUNPOipVN1NH7BYrnlMOyYwiDf13aAJ4SBnAJx6jn0A3efPvFw90h/FBmz\ndCFl5iMDYIUj3rTSjWPEnyOj/sy5yn81RLZ1nD+74Ce//Ip/+M//xPRww4dvviFORxrf0+5GDsMk\nHaMx6tmsi1an+5KslLFKlaIwd5+G/IOwZWMtxlthMHiD9YbNxRk/+fUvuXz+grZdCDNic45vPPvh\ngY3b0HWOi8s1775/y+PdI2HIDPuB/d2Oh093HPdHjvuBw2FkOPaEcYIQxctFXRdhPjCQkiVlLaoo\n2q1vXyxhlRY2r8ByogBShTkCXkTQJJ4/9dSQQp1BYSDZ2LL5/5l7zy67rjS/77fTSTdVQAGFQBJk\nN8nu0fQESR5L9it/fa9layzJ9ow8M+pmk0SqcOOJO/jFs88tzKj1mrpcXABJVBE4Ye9n/6NCW8mZ\nL5ykW9ZNwRdf3vLyq1dc3FwypsA4jQxDz9iXxE3DtO45Lnr6vqefBsYQsGWJdTYfIeT0U2QFllai\ngx5HUVAU1kjgW2HFaFNqgo1Em9gsGqpKo21kGDRv3rzlqy++YvvwiR/+8I7dcYfJHMj8Z58n2/mv\nwhnWm4a2rTkeC/opnJ8DUmAYJ3yEZlVjtZPvEiLj2DNNUtxRVgVXFysW6wWnxyN/9D9y/+ER4zSl\nsyirUYUl+oCfIiGXctgMifrJS9ooGTiKoqBR2mC1prAFTmUqePLEMOWmJs0cJfsEkWRJaN6RBbby\neSM22bSXXbdpPu3x9NDMBMIsPfn8uqn8C58wqvyl6gznfc55GYzg6p8t2xk9PEMssySV/PsBcRL/\nD7WQbxbXrBcbvriNcowPnhAmxugpbCXFC0HIgugjYztKc3xQpCkxDSPt6UQYe1xhsqX/SHdss1Ro\n3rs089laRWkidGhsAh3kKJ+UBq1wBbx884KvfvWGxbri8tkNiZLjaU8MHc5Z7LLIk58HAjqZTFCA\nsw2bTc1iecXkR4apz+5IRT8c2O0+UTgPoSEMid3Dgf2243gc6bqRcZKpOsTswktPEiZXGmxh8GHO\nrM71YlEeEKUs1ihcbbj98pbf/pt/xd/8b/8rj3/8BxZF4PDpJzF5lAZz0JJDnh/AmDIsEWVSnwO7\nZmnW2T7MnL5Ilj9qVNa0y48aVxnWV1e8/e57Lq5eYFUJcUTZhn7o2D++R8VIU9Xc/vYrLt+sSO4q\niXgAACAASURBVEmzqJ8znQYe3t/x0z/9ng8/v+fu4wPb+x2fPnzieDgyDhNxTMTB51jSWZ8PMc1G\nGZmAzhnp/+yArc5k6BPKml8UNcM16fw15wuQzvO6/J0dmudSCKNxdU2zbGiakrq2XFzW/NlfvuXV\nV7e4puL3P7xHTwWLVY0rNpg+kI6B8dFzOrUc25ZT33H1/BmLxRI/jvRDi60sz15co0gU1rAoSx7v\ntqiY2KyWLJqa1WrB6qImWc9pPLFtdyTvZ5CEYXK8en3L89sLOv+Jdtxy9/CeyQ9nLTvMxqknB7LW\n0DSW1aJmX9ccT2MWXMq02A8Do/cUTcHYDig0dVVzPJwYeikpN87y+ouXfPtnv+Kf/u6fuP/wSExQ\nO0dRl+jSMAQvnETMUlAti3zjlvTHlq5tiSoyBS+RvElh0RTKUCpDYQ0pedp+yJLfLMFNkTl98NyT\nGhPJCvQRQzzLRFHzJpWX/nmIUXL6DJ/Ba/AkADg/JvMGN39mwjlDTgSplQtJojDO2TrzxvC5Xl+J\nSm0+eSqyQksJJ2DUn0bJfxnVipqPJIILayNdkSbmTIyULc4oKldwvdyw/qZm9F/RDi1NXeOcuAd2\nxx0f79/z84efKXp5oa2zwpInYcF9StIAguRIGxFJizbZJKrG8fKrZ/z2d7/i2+9+RVXXPHt2i9WG\n/f6BonC4qgJtME5s13PKmfeBfuqZ/EQIWYurJfe47yIPjz8yDB0xBu4fH9myY9j3tB9ado9buq47\nt7X7kKNbdSazCo12oh+PmcCT+553dB1JVlMvSy6uV7z85jlv//w7XvzqFYdxhyocZbPEGotRPYVO\nLAvLFOciZTGazCFQKS9a8gCL9Eqrp3Q/os4Ji0qmKSRN0WpwRnF5dcGL17esLmQC9z4wjS3d8MDh\n9IFx+kRh1ii9JEZYL19gbE3hlqRGsVjdcP3yNbvdI117pD0c+I//4f/k/c/vOB5a9vd7+tPI1AfG\nzjP2nmmYEK5CGtUT5AhTjdHCkZioMEFITJEI+kwy2UykqUwQioXbWoN1DmsSfvK0pxEVcwaNlv7X\nsiyoFiW2NNTriuaixllDaRWX65pnzy9oGk1ILYXydKeeUxewJvHmxS03X18SXnREnWj9wMeHB168\nfEldVzx8uqftLNoZrm7WrJdr1osFy7Jie/8JpxXPr64p6iWulDrEn3/6Pf1+oNv3nPqBMHlUUhhb\n8rj4CG7k4bBjeziyP7RMYc5En5ewTHbn6V8jeTLLRcVm2XD/cJTyBBIpWfw0ycScDJvrFevVgs3q\ngmka6NsBo8Xgddg/8E//NPHj+4+0vqNa1RKENkz4fpDSaRLGapRVJC/vgcoSQKUUU5zwOTDsXAwd\nIY2eoETpkZhD2uQ9wcjokZI4KxUqm31kI59TUfNkInBp9KLCSU/odzpvXk+E5KzfJ5PvAs7IQh7n\nTPEkC7lVBoPJV3eWJ4gB6Uwxq1m9bjiHPCgtmfogYWtZ+aSU+5Nr6i+ykM8BPPMWp7WI/2fJWwhB\nbOhasaiX3F7fEJJE7SWVNckx0A2t2GC5o207dGwkQ9hapuBJSSRePgbMGU4Q/BSdKCrHalPz7MUF\nb799zdtv3nD78hnaGBaLksIZqqKirGqca4RMzIlnxjiCn0SPftrSjyfGqWPyE/t2x/64o21b2v6E\ns4bLixtWiyV+nBjiSHfq6U4dwyBhSz7L7vjM/WgLg3UmB29lTPwspUqCTVeG2zc3fPHrN7z97Ws2\nL55Trwra4UDhDMVyRVUvsabHoihMjghQOVs7CSyhMu4+vwB6DuOSY0uuNhNFjzaiYQexPhfOsFgt\n+PLrr/nVb37D6vICYx2THzkctzzsfuDUfiAxURQVZblE6YK6vMC6GpRBl5ayXrC82LC+uaIfDpwO\nj4zqyPWbDfvdnh9+/xPdcSB5Q38Y2T+cOGyPTN0kKZU64Zxh6Eb6fkK8BIkUA9oHdMwbj00YZzDa\nYJXOud/iiNXOUNQli/USZxNd23P3cc80yGCgtZHnoimoVzVF4yjXBeVS1BJNYbjYLFgsa7SGvh2Z\n+oGp7/BDwBYFy8WCF7c3mDBxHI/Y7kQqIs9uNywWDc3ScGprINEsG5ZNw2ax4nK1oS5Bp8C6abD1\nAm0dUwwMPnA89jxujxw7sacXRtPUib7fczwmhmHieBo4HFq8j+dT2Ywni6ZeNuWyMCybApsWnA4d\nVlumGGRqRkj2cZg4HXpubq64uGoorWXoZWgpSk3VrPAEfvzxJ/a7jkSkWpSE3jMNkvNiMyyYcnmL\nD3ONnj47NmUal9OTlacTIvh+zBLWkPtuc3JolpSkpM4ntRmRCJnf0FpDyP1JeUKetfaflzeciU01\nj54zNv6kbsnyA2YRwkwaw9OJYHZ6ngPPmIf+OUJhloKqDGcK0cnMg8QZhf8faCKPcfpsEZdMDJht\nreLwKkrRChdFiXOO3f6eGAObzSUAbd8RHyOrZs2iWlOoCqdLSTKzE3oSSdg0eYJ3JCc6aFQiqYCy\nifVlw1e/esU3337Bmy9ecX11iTWGcewIvsfWS66f3aK1JZLo+hPSvi6t6t57uqHLZc4PnLo9p67n\nYf9A13UkL8H5N1cv+PrLb2mqJd2h5cP0I49xJyTn3MsZ5RbPJydjhDCy1kp63OTPDSaJgDGKonas\nNgt+/btv+O6vvuf262e03cA09UxjoqjWuPWaenOF+3hCqw6tvLgFFUDWwBPxMcspFeeCWGPACNxI\n1CnnPMczcQQK6zTNouLZ7XO++4vf8du/+msWmw0paYa+Z7t/4Od3PzD6Hbe3tywX1yyba4y1OLfA\nmIKQRoR0Fo17VZX4cCKokbfffsmrr67Z77ekBbSnEacqum3Phx/vUD9p+sGTUsQVhsuLmsdPBx4+\n7Ek+DwYxkgYvM5GzuFVJ1ZQUZYFThoDHewkwc0XBcrXg8tkFRaU47I/Y6hOHbUeaxFJeOENRO4ql\no1xWmFqjC7DGsGgqVpsFyiqmKdG1nuO+Z5omisKw2Sy52Ky42KwpdGL3w57T4URdVJTG0tQVm82C\noVvhR8Gagw8kHyhMybJZMnUn9rs9xZhQrmAMgeNpYLvv+PRwpB8DhTWYxoH2hDDQd44wJvp24rBv\nxeRC5npSks0UhSJQWMWyKXh2vaIrLcd9hzU2Ry/ISTnFRN8NPH7a8evvrnAu0Z72HPZHhkGkiW9e\nXLE7SP+tSg5nHUVVcBymcwWdn7zo8UMiThID4UPARwUpZKLa5wXYPEllIwz9gLOyfszxyFJ0nPOd\n53WXOa4hEgOSbKgNY5hduXOhRHyCV84LNqjZPDdDIGpOtM8Q7iw3nTNTVFYCqBmuS2dMnDTLbDMb\noT4nTp9wepPmZE6E5P9s4/hTn18MWplzgyc/yrFOW6wVra3KmlClOKfixfCkDTbaUNiC9XKN0prn\nV8/54vYr1JAYdh2+24u0LptJUsyxqQqM02yultTLgi++esnrL5/z6osXvHrzBgLsHnb8/NMfuXk+\n8PoLx8XVM4bxxLHb8nB4j8ZQFwuWzSVaW3wYQHu2+0/c7z7Rj55jeyQlaIoFF6sNm2aDTQWb5gY3\nHrn3d/g+Mg7+HLsZEXxQayk7KKymKmy2yCdGn6NwIZOKC1598ZK/+Nd/zhe/+Q3V1Zp39+8JfUdT\nL7i9/RLjCqajZ3W9on5nKfaKKejcwJIfvIy3q0waSYEEWK2z+UiLmiYfIJVSIjU04j5cbZZ88fYr\n/vrf/Xt+/Rd/zvrZFZHE5E/0w47T6UBVbLjYXPPm1Zc05UtKt8ZajVJlDstSxNgDEzH2HA53HA4P\ntO0h50UbloslzWrN3f4D93fvaB9OHPctnZ4org2utKwWBV+9eU7xB8sQAv1R0hoTwOjFUr6uuXix\nwRSiJKhcwfX1NcYZ9rs9+/2ecRzADDSrBWW1JiXNY3NgbEd0AK0TtjLY2uBKhassrrJ50Uh0Q8f2\nsMdpzdBODO3IYlFz+/KGt19+xc31NTEFfv/7H/n53Xv6ceDlqxWXqxXr9YopTjTVC9GdW8U4jhSu\n4uLiksP9hO86hn6gKJeipFKOrps4nCa6PjFMkWmQ0u7CWbb3A+O7kT/8/pEPPz9m6ClzAGTilqyr\nVwlbGi6uFrz95pWUZcTA3/6n/yJ57WnWByj8GNjdt4zdlFt8IpVzrJoll88u2KzXhJDYLC6xuiCN\nj9yHRwJRTnXKMA09+JnDyvl/SlHVNcFPgotrg0kGpyy1rXDagdIkLZlA58pApbPBNSdakjBKQuNi\nmpiCODJT5OyQTLNUMI6in9cam6QKMBIyUiDLZAxT/v2RFT6y0qb4meeBOWJDZXw7MqVJcl+yX4BM\npp5rEOe/1cxDzeqUvDFocXaqXCr9pz6/UGfnxOSl9VpgFYtlVpvIjqazW0rcmY66WQjkoiwk+YNV\nhUOxIFw/J04T24+PPPR3aH0QIirLGsTdJQ+fKw0vXj1jtV7z9usvub65YHO55uLimvbQ4qct2/sj\nhd1xcXGgWqzpw4lD98D++AmjHCF4ikJI2ckP9H3H/nRku9/TjaOUSeuC2oi2tixqSldjcUytZ/dx\nR38amEYpkwgxGzOytK8wmrIwuFxGe87IVlK1trpa8vbbr/n2z77n+z//nvWLF/Qp4h8+4GzDorpi\n1VyTlOLkHinKAutEWVI4IwRviBICBWfTEUkWKaOhcBqXYwBSfntNDu5SWlpa6kXF2+9+zZ/99V/w\n/b/+Sy5vb3FVxRR6tEoUhWOzueZic0Fdl6yXVzi9xmiJOUiJHDY1MYx7QjgS44nH7UceHh/Y7o80\niwvWa+lYvbi+4cNDS9c/sDt29MNI0mAby/qi5Oqiolk5qtriKkPfe7QTNY+O0j5TNo6ykYW3LByL\nqmG1qSnKknJRsLleMXQdQ3/CFTCEidLJ/UiTBhVwzrBYNywvl0wEcLm1Jp9ilDW5WMBQFJZFLWmR\ndV3SLAqKwuD7kYf7B7aPB9Aap0p0dMQe2n4khoC1I3VtKauKqlzhihWJBzE85YVgGka2+5aH+z2H\nQ8c4RbQyhBBo25FT5dg+DNx/avnjH+94vN+fuZDzkqBAKUNRVKyWGxYXa2xd4SOUVcVqWYt0Vyli\ntv9Dwo+B47Zn/9hzfRUojEUzQiYctw87TvsTJkLXCXE5TSPTOEDQGCUqKXH0ymChkUFm5tE0htLV\nEMEpQ2EkIlo2HSEeYy6gED23zLRGC6xmjDhBZ1ZuJg/D3ICkhKfzacIqi9UOm0wuyZ4DO+R6GaVz\nUmG+aGcNyRP5CZksVTErzbMyKml0mjt//oTyZF7g1Xk4R0Ib4mfiDc7tRf/y84ss5MMw0g8iU6qb\ngtIYTG4gV+qf21C1NpSFLOYxd1p6L7JDoxJ1WWIur6hLxz90nt3dQ04KFLfgk81djC5FXfDi9jnf\n/OobvvzyKxZNI2SrcUxDwhUVWjtCSAzDQNf1dKGlHU5MvieoSBEnKXSOYjA6nk607cSp8xz7ljh6\nSgODGvFTRGsJz5mGkcdPd7z74Ufaw4lpnJgmYbNRSq6B4jPzjz4bI7QRmd9ys+D116/5y3/3b/n+\nL/6carVEOcPYnWiqimWx5nJ1Q+kaOb0kiYAF4RbK8ok4Pes5lGDHCbIxSHJmnNGQzSHCXyhsrqsr\nqpJXb17xu3/71/zlv/+fuXr5GowjxoBJYGxJsXIs640E+WtABYySyXXyE0rlachPnE57xnFLii3H\n04H73Z6fP225fl6jmyXOOp7dvOTuruNH+4kUj6Q0oY2Q2+tVzeW6Zjj1TP0kOC4BjMJWjtIZ0egn\nT9/3aFtAodEEjocdxVRSr5ZcXK5RKdEdjjzcv+fYHRjbjjgOpDASU6KwlvV6yctXt+zaI+00MKWI\nKxxFYSjrgnq1pLaG6By+C2Lhn6QwpakKkk90/UDfe5QpmEbL4WHktJ14POzZHQ4kAptNxavXX+Bu\nLwiLimGMDFM4Z5Yfdgf+6R9/4OOHe47HlhACTV3hFRJwtut5/HTixz/cc/ewZRjHjI3Py4w8A9YV\nNMs1L16+ZrVuiMbx87stN5tGSDstyYI+SPQBJMIU6Q4T27ue041nedOQ4o72NDL6yOnUE3wgBs/H\nD/fscxn12LakKGXQkHHjKAON1uC0IkwjYQQVLU2xlFiECFYpphjwKeCzVyDGXEo8K630PAzKgh6T\nf5qAlSy0PkRSjgWNefpGWQlEixm3jnNQmQyOWpnzYKiReA7kSsy0ZP7nrIH6LKzt3FSUPsvrhzMs\nw/mrIaqUcxvzux+ziWh+pv/E5xdZyOumkVaSsSeEfKSZTTopy25mtUQmK1KequdFKIRwLokdp4Fh\n6GlPR4ZeSJX5Zs6SJqVFKlcUlqpx2FLUF9Y5rJZMdOcK1pcXfP+b72kWDauLC7R1hBHGIdH3kTgN\npLFl0/S0fUvXt1htCBOcjiMP+wO+HSmVxa8DTVFxc3mLdY5ud2K/feSw3TL1HdE/PWAmcwVGK1wO\nwyI9mUTquubZ7TUvv7zl5deveP76lmJR0voDJhYoNJfrZxTG4kpAj+gERiV0MmjlpOCAdDZFpGyS\nMZk2T+RIAIUc5ZB/N7s9JQNa4SrH1e01v/ubf8PXv/kNq+tryPZpozXOVUi2zUjX7QUqKix1U0GS\ndD2rrOTVREXCEesVdVVgdUSrGlLNsr7k8vo1y8UKZwym7rlebbhcr3h090QnDtaiEAXS6TCyfX9k\n99iRoqYsC2whpLlKieRF962iAW+Y2sDjYYcrHNfPn/Hi2XMed48QE9fXzzjtdyj24i50BqUrtJUT\noXaWetFwcXPJx8d7/vj+HdoYmqakWTbUdcOmLlB1YDxKKYe1jhQRKeWUMK4gRs1+1/Kf/9N/lfyV\nceLYtvTDhDGwWjle3H7gu+/3/Nu/afB+oJ8G7nc7jC54uNvxhz/8wOFwIKaIc1KMUBcFlbXs7vfc\nfdryuN1JRjpk7FY+OutVGlezWay53FziSkMIisdtj/FwOIwYZVEp5HyZDMUkCWo7HUfaVniOqhZc\nfpxGumOHVlDXBatlyTgMnPYJP+T8lkJRFBUo4bNmoj+RGIaeOBlUEkLaZFjBe88UJjwRZW3+c8jz\nOWffpBQlcVTN7V5ziBjZKZvfLzVHIwjBGWLA48+Jlk+Ds7yjzjjJ0knxfOVmSEqWXhFtWGvz7ycy\n+UkMbIoM1+RbkKfseIZl5G7k0Uo2hvQUEKHULK3802vqLwOtBH9OX/v8k2I8E26c/8iccShphZ8v\nshh+2uOO3W7L9vGRx8dH+q4Xy7gx0h5yJnXEMKK1IaVAPxzohyOFK1GFBQVFWXJxeUlVFFnGlDhu\nt7STEDhDF3C6gKg4Hne8//iew+lIUZUY7WiqNfe7AylEppA47U90Fx3DMOKD5+OHD3z6+JG+bRmH\nkZA7OhWihpzlfDovoiH/Oaum4PbVS7773fe8/f5rmosFV89vMNYSThPKaogaQsKVEsK1P+4YTie2\n9x/xwwgxYPJUPo75/6ueDBBz7rH6bBFXKsdn5mncaENZVjz/4jlvf/srfv2777l++RzrHCmlLFdU\nGVNUBB2fYj+1xeiSlETGpzO+iErYZKmqJSkWaOW5WGuqcs0wdSRdELzwDt3UY0zk2fWG7vSM/d4R\n08D19RJi5OGu5f6uZWhFXlg3tQxNMeEnKW9QufMxhCCqAB+wtqB0FVeXV+z2W8YwYpyhXCyo12um\noHB1RVFKJtDhcOTiYsP68pJmVdLHkWa/Zblas75YsNw0OFegjJUwJwPVoqauG8DQtiNDN3LoB7rB\nczoMHLf3+HFiGieG0ROiODf3W+iOAyYZNsslUXe0/YlxGNnt9tzfP/K43TOEkKe+RN+N6KQIIfDh\nw46HxwP9MEjK3vxK5XdPKzHoNUVF7RxpmJiCwAwpLcXs5By2sKDGM8SX8kLuU+R0GjjuB/rOU1U1\nF5cNZbXh0/tHgvdoE2n7IybfC6LKLVaeZPMipkUR5KPwRuck0CjPnbayvAUy+ZiLF0AEHVaZc6jb\nHOkQ06wVn+30uUNTLgBujqLNawwZqlFzeFlWs8TcIaB0NhdmfFxlZ/EcR5uyUKAqK7TJUdXRn0ft\npGY3gzoXTJASST/dk7n3VhD+J8OQBKNFcknsf/P5RRbyrj9lB+wT4B9jRCVpFE856GiOLBVcKy/i\nZwGPYs4of/f+PR9+fs/j/SPDMDAXDZsclEM+4gQfSVHj/cQ4yDRdFg1G24xnllRVibOW4+HIYbvn\n7uETEwNDaOlPA4uLFXVV0fcn3n98x/3jI4vlis3lM64un3G3P2BDSew6hrZn6ibGfqA9Hfn5xz/y\n8f27M6zkg6gt1DwJ81SUEPOm5grH5fUlv/3db/mr/+Vv+Or7XzOGnqQUU/DoJKlxETm6G+1QyrDd\nb9l/+sDu408M7VG6URGpVcjtO9KNyUzRyDFOCRZ4Xmfzw6wzPn/1/Irvfvc9f/Y3f87Nm5eUVSUP\nedISm5sLPOQeaMqyFNerK1DKZUYflLLEFJgzpHWhGIfA0B+pygVNsybgudt+YnfYstve000jPk5c\n3yxR+pb7O0vX7nn5fM39xyPvt3uOnRiGisKxrGvCFBj6kdDLhqetIqlcJqykDalsaprlgrqu0Ap8\nmOj9QLFsWIdLMBYFbC4uuHnxnLtPD1R1w8WzG7SbaLqGy+tLLi+vWKwqylrgwclH4iS28s2qYXNx\nxdSNHNue7fbAw+FI24+Mg6fvRiGVz52hmhAS0ylAarH6Z4ieq+cL6qW01xyPLbv9kW6YCEaWiDAF\nxtPE2E+0p56f3z1yOnWiEklZDgdnHsooRWVL6rKk0JputwWrcGZBVVqWq4boR4qyRNmOqOT7zO9p\nIHA6DuwfOvaPHbcvr3jzxVd88eU3fHp3x/F44Nju+XD3HlJEBUncDCmcQ7XkVTYoowmDZwqJqirl\nOQqKojCoIufYKI2LTkjybGybe1eNNYBwLiGGPH0jT7fSGPTZnRvzMw3zwDTj0CoPMrOEMLc5qYSo\nvJ4iN1NexdWZNBbYxDmHMVpweK1y5dNn8MkcfpU+g36znp8kg5RVGgk/ll0iZUhI9Of/7eeX0ZHH\nHmsLTOFIUXTST7YpztpWuYg5Sxo5dmk0YztwOOzY7Xd8uvvI+3cf+Omnn9E+a0xTyhpoucjWaMkp\nUeIIXC82fPX6a66uXlAVjUAOxoG2TF5cojpF6sIwdi3b4yPHbs/htOPZxQ2Xl9eUteNud6APgFbY\nssIpg9GWYmPpUmR7/8jUBk6PR3764Qc+/fyO/cOWYRgY/MQ0P2xq3tFnHExCrAqtuHl2xde//ZY/\n/5/+Dc+/eIsp15SxZvQjOo1s1jcSrqM0q8UzyrLKD4emiInwsOOnwxGShIeJtd8Tk+RPPG3w6nzd\nRc8ujd5GCblpnWZxUfH629e8/vVbNtfPOe3vmYaRenFBVa3z/QrEGCXI35bohcmzn7jVtJ436Hyv\ntCEpS0gjh8MdP/z+/2WzvmS5WlE2NaWDorQkbTCmwLmEL0aM8ZSFwsSKRleERtFfJwyOmKAoHIu6\noT/1oMB7j6kt1apksW4w1pzNLxc3K0yt+Kcf/5GHw4Ok5A0l2mrKpqAarLAMOtJNHVe316zXF2zW\nG46nLUVVsd6sWa2WaBuZxpFkcqCVDyirqRY1i82KTnds90ced3tO3SBYrcohX0h8bZrzdKKotXxS\n7A4df//3f+DmbslX37zkuz97y939gSkqTr0nqvkhgr7z7B5PbB8P9H1AQrxmAlEkdtZYnBNC3ZBz\nUeqC2Oc0zJyh40pNVRcslyvcwxFFz5wfnHKO9nHb8unnHcuq4MXtK6p6Q9UsePFaczmu2B0W/N0/\nbND6jhgUTrscWpYoS4PSlmmCrh+kwDoqUpDTaVkY1lcNulIM08j204E5e12yS8SVarQwQXPkgghz\n5MkzSShGS46alssk5G2MpDwgRhXkHuRCktntKjCSIkQPn51q5D/NYMiMJCSGVopXYpTic+m1fYIu\n87c8/zCbi86KF4XEZ8QkxHGUCjrU00nqX35+mfTDocMZm4Nk5jyB9LRT5TkxBMHCx2lknEaZYqfA\n48M9u909h8OWbhBsbrlcwhQJ/cTY9ZloyDcpzXtwTtMLUfDSMRCY0FZhTYFImgylq7BOEuaaquHu\n/o722GO1E7doTFTaslxuuLryEgBkLXocWdWN/P+qialesllucMqwv3+k3e0FVpkmJh8yQZNPHbMt\nXkmWuC0slxeX/Po33/Jn/+avePX1VzSbC5QtMcnhlMVoCf+XIC/B1UyWYy2XitieIEJ7akWLTJYc\nfsZ8q6duL7nyKuWojyTmixxhsLpa8frrV3z921/x7NVLbFlzODyitVR4zQUL8r0kWhakPxFmmddM\nsD49wGLYkc1auhc9x+OBED3l1NOsaqqyoKlrfIQ61tRlSXc8EceJ4CylsZiV5GevVk1e9B1Exdbs\nmfL1LpaOclFIMqQVAnq9WXFze40rDNvdI1EL8dwPPUZbQvRoA1VZUVQFSoN1mrJylHXBqZeUQ+sc\n2koBhA8T1hQMk6fvOtpp5NB36P2e3eOej48PPOwPdJMX1Y0zOCsvus/28hTJp0ST27Q8p92JqZ1Y\nNAu++jqw25/YHVop0Z5Ptj6w357Y71radiL6nF6pNGSXo9GGpm5omgrnDGM3YpxEJSctEOfQ99w/\nPLBZWMZulNNFfkflHs+LueTQD+1I345UVUPd1CQCkYl+bNntdzmGImVTm8AiYs7KMuOQ89oRI1Dw\nQVq+EozBY8JcZZhy3pI8RbNGXJrtZ8MNZxm5SpIJZFASV2wUOgn0KfxbPOPhMaVzfQc8Ab9zAmb4\nHNZQ/3xJPVv8E3LySBqrNNM8VT994T/7eb5r5/WPpJ/KZiRzlZnoJK8Tf+rzC6UfiglA5zKGmA0n\nmrmlJcc8xoD3UvN0Ou05nk50p55PH95z2D/gQ0dZL9ms16xXK9r9iV1O00N7UvRIAL0nHyR3IQAA\nIABJREFURYsygpX5ceS0P2CipakXQr4aRzbB0jQLdJR85M1qQ1VUFLZifbnEuopx9AzjSFPV3Fxd\nY5xld9hhU+LFxSXDOFJFTXOjeX5zQ13U7O4fGI8dfhjORz85ZejzEQ1yB6fVlIua2y9f8+3v/hW/\n+cu/oL66RtlSICUszmmwBYk5ClNl4kSKJ2pj2E6R/tTRt7203OeX4POqqqcH8ikeQe5JPkJrjXJw\n+eKKr3/7K7767mtWl9fEWTqms1s25Xztc19pJCUhgOS7zzDNvIDLwxtCwE+eYehFe7+4gBjoB09I\nHXVTUlrDYlGTcE85PO2IxTC2J3SaWC5K1ps1l9OaiCFGRXscGcaRU9dRxkS1LHC1kSAmK+Try9cv\nubhcMEw93adW1EFqtmxnCazRuMrhStEvD6OYrlAC3fkgOvsxDJC8RJESGKeB/enEoesJD49sDx3b\nhy27xyPHY8c0BZwS6CBNyLX0QpCRT5JNVWKTVOy1R89wGlksHnnxwx0/3n3ifrtnyPh/nAJjP/L4\ncKRte8KUSTklrTNReXRSOGOpq4blYoFzmlM8YI3k3CejGH3geGr5+d0HaisFIqdTm8nSdNZCz3Bc\nCkmcmTFRNxVFoen6A4ftlru7O3766WceH3b03UhIsjwpY7BOTH8pipHHaIvRUsYRQyKoxKgCoWsp\nYm78ikqyzWPCWpNNcnNaoShF5pOJFL7kPP88FVtrBJLJGvWAJDGSVB5iPvv6z76RKE+eFvJZJz7/\nKpWhkZT5OWflFDRO4Qke+XwMh/x1OQMIcc1qZfO7Ie+UZAbNVYT//c8vo1oplxhVECbBdeXUoFBW\n4X3IOJKQHa6wKJ0IqSJETxg9wU+QAutVw82Ll5RVQ98PbIsHxrbjPvgz/l6WJcC5o7EqCurSYXVk\n93jP1A9i1fWB3LpAUTeMfpLgIpd4+foFz17dcHF1jatqjNNY7VmUJYUxVMuasT1gqpJfvXhFPwSO\nhwO7zR3X15f0+56Hnx/o255p8kzT9PQIpIwRKpH4GaspSsf64oIvf/sdN19/SXVxiTaOlILwCFq0\ntPBUczbjgJCP5QnuPt7z8d1HpiwYlxD9iFY2t/yI1Vo2lCcbccoYbUKTjKbelFy9uuH5l1/QrFaU\nZQ2q5PLmFQmpc3NuxtRTtu9/ljkxnyfV03RxLqQee9p2z27/Hh8mbp6/ZsrdjFXpgJboO6yKuKpm\n0VxRugVOLfjR/QPvfvxHjrsDG1ewXDSYaWR3ONGdBqypMFahC0O5bihryflu257oE2EZKJwDIuPQ\nczocSBjW60te377BWUfXnvh495FuHGkHj8IS04RRicWi4sPHd+yORzyBcBgoCkXhFP1wYvQTUUnh\ncve4J/gtbdsy9oFxEou7RvK26zIzXnnzJMNrmkkq0nYt28cjMQUmIiOejp4+BKxzHLYn2l1Le+po\ne6kWTDF3rxqHRiITtMpu6pgY+oHoFXVR0FQlZWEZJk/0iMfhMfADd6QpsN8fmCafcfYnbkvlIdSH\nxDhJnV7ftZzuduwfD+z3B7pjT38cJY6CiK4clXOURUFKib6b6Npe6EilqUopXRmHkSmMgEFbi025\nKSkvwKUr6GJHyFV9Russ7UuoHIpFesqTiTmKIaTIFD0mE4iBdE6YnKlRkyfplOb1aF6EZ03JXOyR\neYc81SejsYWjsJLqqHVe8rOv5XPF+ezszIhMFns8nRISOdsGiNFz3mH+xOcXWcgPjzvGasK6gm4Y\nKKoStVhgjcquK9A2R9AmcWJVhYOmRgVFWVYMfSELki0oygJjDe3xILkkMcuBlOS3+BDQIVCQcE6z\nWCy4uLxmHKAqG6pmgbVGpEKZgPRhohs7DqcdfhqomgU3z26wZcnkB477O8kZqSqaasGzzTWhmbhY\nXnHqRnzv+TR4fvrhPd3jif3jlu7USaHr5M/a12yMP/djWqO5urnk7fdf8/VvvufqxUuUE/gi5sot\nm6u7Zmwd5qhLWShDCAx9z6f3H6TKTml8DExeFhA5vguyx4xX52OuuCwTxmhWVytuv3jBq1+94e33\n33J1+wVFtcLYEqNrkoKQSzJ87CSeE4fS7vyGx5StJ3PH5CyrihNC6I0M3Ynt/QemMNAsr3BVAxra\nqUVFUVs4W+OMpbSOpqy53FzQHq847e7oj0dx/1mRqxljKRzUzYo3ZcPl9Y1k8ehI1504Pe6xSnJ0\n1ssN3fBI352oS0s3xOxS1FxvLjm5gvuHO6yzDKOnbztCmFD6gTFE7u4fmYi40gq2Hh3WFBROEWJP\nTBMhwqnt6bueru0JUyJOCj95SuOorKV0loRUDsZk8X5kGgb2vfRcng49XTsRVCDuQX/YMqUhLzaa\n3cOR7tgxDoMUPMd4bjIieM7tQ9agrOSmpCmhjOPyYsP6YoV1BeNwglF+z9Pg+fBxy9QPHLs+96+m\nc6zDPIXKrY6MPjuVg8BlVVnRu57gvWwCKFxVYKMsriFFwhjxYyCGhLZZSWM0dS0a89FL8qOdezVj\npLROTtfOMHqPzuUjWtmcVRKlqCUbhTJlSUzy7If878iS3xRn2445wzlnvYiaDTn5XVOgE0gByGfm\nHiUGJRI5mTSdieunxqZ5jMnQTT4ZG6QgIz0JZTKUk2bRncRK543oT31+kYX84dMDVdVSlKUcbVKN\nteBszijIVQbz0SYG2T2rosCsCzabS1IUrFIpidFxRZYp5ZwFaZSRm5DiDNkkCXhaLrm8fgEUWFti\nrRxn6DuZWmQUIsRA20klXF3XLJoGV1V0XWI7DhhlKYuayjU8v74lhoTTJYkWpbYc9z0PP71jPJww\nQcxFwzDlQK/PLL0INmiUpiwdt6+e8+2/+p43b9+y3Fwg4U/+vGOrrFkl65LkZJkXygRD13H/8RMf\nf37H9uFRAo/CQD8FhikwennA52QJSWPNzTxI6awrNNcvrvj1777j+7/6K66e31LWizyB2JwS6NBa\nEeLAOB0A4RpSXGCd5GhLxMJEYoI0oVUBKeFjL/h6kvqvOE30/YkpRRb6EjyMY0tlKwkuK6q8cEgr\nZlUUbFZr2qtntIcjRSFqHcFeC0pX0CwWvLi9QGnN/aePTGPP44Pmk3OUtqAuKtbNktPpjjCNrBY1\nwffEydOeWswLQ+EsKQasNQyjtMDHFJm2e3anE/00UtRCFFamoLAWqxx1UTEMiRRPuerMM/QD3akn\neCWEno9MShMNuMoSvCdNkeC1qE4O4hY+Hjv6QaCrZBIMGr1vmcY+NygljodWSNYcNDXH9cYovToa\nUEajrQNnGKM8K7U1LDZLlpsVCsNuK2RmyqUc21NL33YMswM5zWUHgTkxUWuVFUsqQyYldb1iWUPw\nAaM/yHNrNYUp5f5PgTB6aRFKOd/HSIBbSsL7GGexSvo6VRCIJwFl4TDWEFTKqamRECfmUm2FRC0r\nglxrYJ69Y4aAtBLnbUop932mM0eV8pCTzkqW/N/lh/ynNswqF4gS5pd/lc9NSDHOsMqTAgYQuCRP\n+FppTLLy9Ul9VlGXyybmRTNvLv9DqVbGMTKNLUU58eL1C7BI008MVEVNUdZoUg4ymujaEzF6jLU0\n9YavvnrLy1evsc4QoseHgXFoqYqGsqwz7pZnXSXZIDZHz1ZlmXHxFcrUaJNb30mYoiCECasTSgWm\nRcPF5gqjNKv1hQQHZaigcCVGF1Tlgrra0NQXkoyoHfVSpqdl/Qd+PLyj3e5ZlEpcnHNQz+fu1WzN\nt9aw3my4ffOG12/f4qriPAkoZVBOjt+ihc+4c/wcc5bJ5+HuE//5b/+W9z/+RHtsaaxm8pFpkqk8\npDm2IJ7NQPNTKrJBRdk4Lp5f8vKrN1w+e0FRLQlJSocn3zH5gUSQa4KiPbUM4wkULJtL1ptb6rIC\nPOPUMk0HxulEaZcoLJPvKYo1rqi5er6krGqO3ZbjuOXxdM/Yt6gIdlFg6pK6WTBMrUy4aUIbzXK5\n4eb5G/ykCdMgYWgq4qeBvpuw1cTNTcWiqTlt7wi9x6TIqinFGegHILJcLPBhzW6/QyuN957H3QPv\n3heE4PFeOiQPp55TP+JcDlHShmGYxCyyWvDmxS1xGjkeDwwk/DCBl4XCKI1VDsMk01aMkoQJdFZT\n146k5UVtDy33D4/s9gfaTkonfH5mUkycupbOj6iQDS9J5YLkmWuLT6qgHAU7xypoayVrIURsYSmb\nCltaqU0L+gyV+RCIRmPrikIp2mEEvGDhPCUl6qz3LqqCi6tLnj1/wdXNc7r2gO9ayrpksVxhywKR\nvkYxvZUO6wpIo2B5OVQqhoD3kZ3fZSVOoj8GopM0zmJRwiTcRFRPsEUI0gSkEUeytrLNFEpUWv48\nzOk8OpEJ09l6n4cqpYl4mbyVQs3T8uwMjfM0Le/urKeXkDmL1o4UksieNVjjpOsmpjxQ/nPHJ3CG\ncpLOqbr5+z7RqZ/97LN14/PPL7KQr9eXkkNus5RnvpFJGH89yfGYpLN+uRZc0hhcUbBaC0Fonabr\nW8bJUBaO6ZQoi0YWPRWyAkS+Rrr8niIgldbZTWrON8U5kWiN/YFp6DFa8eL2FUa7s3VfK4MzJU29\nFqlh0eSwL/le8uJMjIPn4X5H33eiWzeK0U/4GM4EY/oMH9NWUy9rvvjmLa/fvuXy+lmeGITwmLtC\nFTOv8xlrHiMhTEyh4+Hukf/6j//Af/4Pf8vx/oEQAr33DOPE6D1TkAzyGVsPKWbFzExKJmxpefX1\nG95885br21dUiw22qGS6DuN500BLFGnwQtSEEInJM0xHiZUlw1y5wkpnd61Cg0emcZUwxlHXa4ks\nVSPdhz/ip56LxSbLQy0+5rbGJBuRtSWLZS41tgtOh0dO7SOpjahLQ1gqirrGWJMNaImqqri82DBN\nAYxhdbFhGE+S46KuiUkxjiYTrYG77Z3glfl0Jp2q0r4uRhnZaP000Z5O7LZbdAqMfQ/REKcJFRNT\nP+bykQJnvfAcMZyLQXyKdFEIziF4Hrd79odWqvlCPj0lCbQS5ZUijKNMw7m84Cl6VT2d8ZScbo12\nGJcrDtWM1Z75wXPjvPREzjpqjVZgnc15Jx1DgClOxJSy30Aq/4yVdq0XL5+zWC+olw3GKYKztG2L\nKQp5z/Tn2T3SLuWaUgjmwYiyKiqSn/DjrPs3pCgnBG0tVVkSciWg957oA8nPkdhiojJGekATiSGO\nzEURKm9sIIv0rONmnsBzp+usJCE/t+evz/Lg+T15mrBlEyDN90dw+BRiXhP0ecpHnc8x53t0hr2Y\nJaKzugzm5XG+t3Pd3r/8/CIL+XK9Op82QvDE4CV/29pM0vSQFMYWGOMw9YKUPCozwjoH92gt/1yq\nClMvGY6RqmrQ2mQtdF7InROn52eqDBlnn7SfKmMMWmn8NOKnAY1ifXWNNhWzbUwW8oq6WgkkYZ2Q\nLDm3wQfP9mHLu58+8OMP7xiGHlEwwDgfT+FfyJcSrrSsry746vtf8/zNa4qmEQhPqA7gKV0vZiL3\nbKKPYkkexo6ff/qRf/gvf8/v/+EfqRW4lGiHgX6cMj6ek+KYAbn55JKNPAaKhePL777hzTffsL68\nwZUN1pbikETnggEJxx99zzROGG2xtpIS27POeD4tKLQq0M5hXJMTzDogEOMASeGDTGaFKSQ7noKm\naKgKwUrb/oCPAyhHWciRujBWmptshdKBwR+oo6NwJTEVJKUZp5G+8yStWa42XG4uaZZrmUoNHNsd\nzWKFdRVNs+ZwlA0Rndi3B0CCl6zTuPx3WSlcIcXVMwdzOB74OUyUzlAYTcLgh4AfJsZWcH6N+AyS\nkYo+IbhlgRuiyEL7FNm3Ld0gi3iYp2w1Pwfm/Byc24zg/PP59JbBOpTSWFfgylLythH1kiLn2+eW\n+vk7zQu5TkJgaiN9loV2TMoDflY8y/uloVo4Lq5XvHj1DFcI7lwWhRjffODY9me3pkGu17xgKqMw\nhZUeAZ8rGiKEMWKMmHzk2VI4Z6nqkjGI5DFMgZgduma2x2uNVVLoEGOQrtdM3utZOTIT8LPSJV/j\nAOg4OyvJjUNPmPZTJkq2zZ+vuGykKgrsGZNM3z5LV+Vr58X/qRRbiiIsSgnIKTJRiQoO5zurzuD5\n50Tpv/z8MnnkoadZLiiLku1+x+l4IKaJi6tLtC2ZYuR06Fgs1zSLJdY6wWXzRBpTln35kWGaZKIr\nGuq6p65risIRerFpi2V8Nn/o81SotTmH4qizW00wvrJuhBn3nhACxmmMLc47r1IJZ0umqSf5EedE\ng+595Hg88p/+r//I//G//x/8/h//wOXKUZjEOM4yNXmCPz8qaaNYrhe8/OKWL779muZyQTueWC02\nTxtXJjtSNgjIviEl0DHJsbLvOn74x9/z+//v9/jRE5wmxkDX9wQvmeMhxhxbq+V7mxyYlbFPW1jq\ni4ZXX33B9YtbXLHAmhKrC5QCqwsgEuJI2+0IviXEibKocbZCK0O9qCmLhjm90ugShSUpKdvzsRdD\nkw6kNBCnI4fDFkg0zYK3L39F150IcQQV6ceeffvIMLRcbhRNcQ1hwKhIYmQYW/anT2yPn2gKwzAE\nju1Rro+XNMCqWnJ985z1aoUPnvvtJ+4fPrF9fORhe5Ay36KgGzqGqcdRZFu27HfLusTloWB90TAF\nz3bfipNVRU5+ot2PLErHqq5QpmR/OPFwt2MaJqkzS+Q2qKyyt46yaijKQlQvBEYNqTTEThGVypZ4\nLb2PfL4gCIGX0DnM6ZzigZlVUDnGoqgLirqin0bCGInei3QvJGm2n6dQJWl7yQdCL+9WsFLbFsfs\nykyz2V2djV03txtef3nF9fOGcdhz2AqU9O6PP/F3f//3/N//z9+xOxzwUZy82si7Mg4DvhsorKUq\nK2wl03lUCayUKBeFwxVivzdZPkyWO6YEzlqcskjbUybSJ+kUDUnymJSRzUA8ExLREHPBq3R1Stl2\nSIL7O23yqSUQBN05L+hPueOJOWmRnIoYY2IKnNUvSudC5ZzvklQQ2CSfgKWkZu4WUiglhGyIAZ/8\nOV7gCWPnv7uY/yIL+ePdA9Mgtt/H7SOn0w4IOGelaWS5YhomkcMFj+zxiqdBOofeWFFISI6HxbkC\n51yGUTgTM1rNOxrMJ6KZZpSH8Wn308pgbIX3B7q2R5sCYyuMKc6TptaOoqjPWddKO/5/5t7rS5Ls\nOPP8XeUiIlKVblVdrQEQoJyZB54z//8enh3OLHdBgiAXBFp3VaWMCBdXzoNd98zGgM+N4CkUOyur\nMtPD3a7ZZ59IES7fXvOb3/wr/8///Cd+9++/Zxpn0kZRtLq3ql1pW3UEroZSz995zic//5zuZMMY\nR5L3gsOrVmT7i2nOA9kxGnF4VOKk981X3/PVf3zD2++vsNbikycFj09pzQDMuSDcYrXi4WsXZjXb\nsx3P3ntBf7Kj7Ta07QarrcigETioFI1WFmdbcrPD2rbG3zmMbnDWVT5sZPZ7xumGGD3KNJRiCGFk\nHC7Z9o6u6bFmR7c5Y5Eg28bgckMOmbvjDSEJDS2nRI6JHAOhCG875UHc4pIXxewQGebCFER+HudI\nY3uePH0P2+2g6emd4ZHVJBJXN2+5vr7Gh0y/6ZjnkZQjxUsH2bcNZ6cbrBJ72QS03YY0TsRwXB9g\nUWJCCIVJSSrQcT8wTp4lpSZTKFrVwF+NaRypFOY5kkyFUBrD7tGJMK7uRobj8AAKqZmhiHLxngdB\nHdmXiD7BrrUxtLse0zUUK0UvF3EjfFgOFIq2bTBKc+iO4nqZRVw0BYGyQsq1CRGFpNGW1jVsTza8\n9/IJT15sifmOH777A7eXHaYYvvrya77++lvuDkfigyCLjBS+kgqmyJJfxEgFnMJ0jq61mFLoO8uT\n56eEGOU6hfoTF4GlUllSfkCrSgs0EsaR0rKcVWhjxb0xSLanLBV1ZY4JfVDuvyLw6H1fzrI7Wr6O\nlJFSIc/6LBbWd0Og93t4pCy03spEvw+Guz+cM2UVJC2iJIEhDSWb1f9lgUD/+PXTKDt94HgYGIaR\n/e0tPgxYJ97Kxli2uxNiK52DXrfB92bwWmm01VgsGVtPN7WOYtbeLyjkJmfdTojtZYXlV3ijYlT1\n5DOmpShLzLKBTinVbNFqWG/A6la8jktBKcv+sOfrP3zL//0P/4vf/ObfefP67f33sMA5ShYzSxSV\nViLOODk75Z2X7/Php5+gnGb0e2KYCDtPdnV8W4KA79UY8rvOJB+5vbnjt//y73z75Xcc90dOdx3j\nHPHTXDnblbvNYlKva4hJ5a9rhdu0XDx/zLsff0C7adHGrMyUxZXlYYahs02le0o3qI0Vv/h6vVOc\nGaZbDofXhDiibUcMCu9n/Lwnpxa2ipPdIza7U/HQHi/Fd8MaStRM80gmYYwl60TJBT9P6KIJ4UiM\nR9q+X6GCu7sjPimKMsRc8KMnN1LUfIro4Gm6Hdvdltmf0DSWnDzjMBLDWKPuhBPdto7GGk42PY0R\n1ewwB7Qy5KSJoVSb1mo3WkdmEuyPA8fDxOSjYNpKyJcLHY36HviQCCGhnSapgnKG/uJERm40KUZi\niBRRh1NKls+rtwTruyGH8WJ4pq3Gdg396YZkxNPeGUsKgTSp+wDh5Z7XlsZpurbCVUb8s32KgtMv\nz5/SWMTWtusazi+2PHvnnNPzltkfubm6onhQ0fDNdz/w5uYWHx4EYZdK9SvUBb+lcRZjpdkpqmCc\ndKuWwnbreP7ilGkO3N6N7G8mlBHmoPji5CrqkaWhrfm/OfnVF4ZSvQq1YY2l1gv8BKoYQqpgxrqE\nXNwNc73GD6AOUcBVgGUJXOFBoS21FKcKl1DBq3oIL9BYLfZ5bdAWTF6+jLDIrLDLsvrRLuuPXz9J\nIX/nvQ9Eunw4YLTm9HRHt23ZbDYVy9Z02w2qqsmNvr8AAiuI/wdK33sqyJOENupe9lsdE+XkrCHG\nRa0HgryqM9qibACMsZycXOBcVyu+qbh0rik+QnssqNUU//tvv+c3//xb/ukf/5m3b6+IOdE3hoKk\n1udcaU5lKYeC2TeN490P3ufdV6+4eP6Mw3wDOWOVxShXvbzlZiirJU2VcZcERIbDHd/+4Wv+8f/6\nn1y+fkMpkZwCvhoyGa3XlHK5QeqBoiAp6eKshdPHO1589C4ffPExzbahIPuLop04tCmRe9c5R1gQ\ndZGjtGNR5MY0S2BEmhnGW3zYE9OMzhk/CcyUSmIaJzqXsLbHmBatEl27wZqWFG84+D3bbotpHMoY\nbu7eMMeZ/XBHa1timIkx0nQKa0SEEUtEKcFcQwgS8hv2fP/mS7a7LWdnp/R9RpVIKRN9r3nyeEfb\naObBkyn4LHFjrQKjAjoH2nZHdJnWDsToGf0sS9EYpJhXo65+4zjpG4b9iPeJcQyQIBlFRJG8uOih\nFDmIy6FC0SDLP601uc205z1FFUIMTPuRWJsBaULuxS4g74tRGqcMTmmSAts2tGcb7GlDTpk0Zxoj\neyWlKhdaFZIWbHiaZ5Hzq4hz0DaW4BtCLgQl9sSLnUJRBW0N/abh6bMtJztH0zimoPjm2x+4uxpI\nHq5u7vA5o6wjpZEUCxRhuRhTMI1GqSxpTY0lj1FsjRNApt06Ts96druGbtugnWbyE8ErjDfYWYEy\nxKzwJcJiaKU1QSUiSQ7EAoREjln0CwoxlysKMGhaQqZCKxlKJSQoy71vbPUhr7zvgiLWwLpCkmdV\nWawyxBKgiJO5LsJ8MUa66rWxU1TJf+3s61GnSqk7CytMlns8DcEl/ox45BRZErnWsbMndNsO11rm\naSAGuQhGHLLIMTCOR6xrRKFWJeFq2dUpXYefLEYz9VdlFNYgVxA4QRYp5GVH/PB7qr8JjIZzbWXO\nLFsZdf+J5f58Ljnjvec/fvc7fvubf+Xy8hrvg4hETeWwV9mwKMvKOiK3fceTd57wi7/5FS8/+Zi2\n3xIJtE4sAbabx1jbA7Yqx+qSqqrNhEUS+cPv/sA//9P/x3dff0eJAatgHEfJK10CaRd/C6tqjJ6u\nsAp0m46LJ+d8+ssv+OiLL3j+7AO6ZkvbnqC1xscD3ksB22xOhQuORuXaRRQoKa4TDShxn8tR0tFV\nS8mFkFRlfMBxmunaE6ztsNoAiWG64fXVV/T9llAmsg5S2F2PON/Y6hsdKTiZGHSL0pYUC74WyRIK\nJQZULOQ5Ekrg7mYvHFyVMKZgtWRMpjDTtxZTNowYilJMIZDTQKMKKgf8NDKPnmEOjMOIV4p58vIw\n19DsJbRgCqI6DglCVoRU0BmyUpVyWmebLCyf5UaWwHErMFwR64KkFM1uQyqgGovWEOdI9JESAnVl\njapwh1WiEjVGYRqHrb9UDSQOwwFfo9tQCqcbtJWwCO+D7POrn7azFqOSdK0VvnCVclko9Jue3dkJ\nJxenNH3P7APffX/J1fWB2+sBP0QOw0gxGtc1CDlBFnrW2TpZJCmmS9OVkjRJTgRsrrU0nSOngp8C\ncY70XU/sFeOQCYj2MalSG5UIKaOrUZVCk0uqjqIyfS6Eh1Sks9EAKtfPr7hrnXHWcX7poJcCsYCb\n6l6kL8vK+l9ZVdFUtYYm18mgFhcWc7xlEbv4psMiTSoZSkrVd2dRmuYf+708eP00ys79nSzOnGF7\n9pjNbgeqMI2jcGCrz0kpmZQ803igUzsau2x6H1hHsmC3BaUzWmRXq+1jjJkUa/q7QpY7abmg9wjF\nj5cIInZRygGCLafqYyKffv+5MUUOhwNf/eErvvrqa+ZZMDgxwhfYIdfvN6vlZpAx/ezRKS8/e8Un\nP/+cZ++8g2s6tpzhjKN1PcZuUCzh1GW9JqUq2UII7G9u+e1v/o3f/Po37G/39K3DWM04z8IOyIsl\nsCQMaVPVeDUsorGai0cXvPriM774y7/mnQ9fcnr6CKNbnG1RShHjzDjd4f1YDZ4yCrfO9sKLvrcB\nMKpl9p45TBhnadsTFL1E1uVJKJFppujHGNtjtCMmz+3hiq9/+D3nF09QFKY409H3NP9jAAAgAElE\nQVTXTl9jdYvWGucaYQupuoA1BqMbrOloXMDHiZKSeFYXCCFxOI5gFcoqibyzijBJgo1R0FhNckJ7\nNUrjZ8+msVit8LPnOAfGOTKHREBG+gLECplZIw3FOHvGqTCFJOyKUheEWVVfGnNfqFNGW4tRShqO\nJAK2nDM+CnfcdC0mJ1RncM4Sx4A/zqgjK9YtFq2SN+mMoThRbyotdDujNI02TJMn+iCFDFUFQpaU\nwYck+rkiTC9Jq9IiUslQSLXoaRKw3e04uTil223RxjFOkcurW+HajzPz4Akxrd0wWqMt6KJonBOc\nujY7jbNYo8g+gjYobfDJC9yUM8e7kXHwTHPEGItVVg5vRBoXi5RCoxHYpXbcWUFiruEySy9Wi2jF\nzxc15iL9ucfBl6Xm+vTVYr4sPWulqFj7EqUpz7eMz0otsIywdJZ/jyr/V5UVI5z8ZY9XDxrKSuFd\nrHPX4v8nXj9JIf/mm6/ZnWx59OQJj549o+t2EgE1DTjryEkKeUqBFCYRO1CtIjUs4c2lFEn+qRde\n/LYzGPmBQ06okMSsJ0PKIrMOMcrS78GbsQQtCEa+cMvvVWdKKdL/cQ0L3nvevn3L5eU1x8OA1vLQ\nSphC9XfIcsAI80QWRV3vePfle/zq7/6aR8+f0fYbjG3oXV/5v4rFqVC6iFS37dWzmsJhf+A3//xv\n/Pr//Rf+8Psv124hpoQP4rVBUeSUMKb6gMNKo9Jasek7PvjwJX/393/PB599xu7kVG7oUieYIjCQ\nNR3ZyYMue1vp8o2xFcYKwvIAcIq7w55xvmG7M5ycPEGfOkIKfP/mdxynI1OMpGJAtWjVMvuRm/0t\n3735noP3krkYEkZbcg/GNHTdlr7dstucUXLBOYdzEuB7dvqYEAvpzbcc0x0xz+Ig2DVyraYJ3Rq6\nTSN7l/rLaoOfJqbRMw6evu8xCnprOd+dYKzhOM3Esiz7DNZojA4irFKyXNPWkGNmCokYEvMcJTC7\n8rxZhFtVcBSDKHXJ1cdaGzE2W7DXgrjgmQKNMH+arse2CesmgtISjFw5/LqIT49tHdkZstWC+w5e\n7skYK2IgTKWUY9VSiEd8jIUpZlRKD+55YZ8YNDHF+uwJE+bk/JSTi1NU4/CpCl2KYfZiA1GAtmtl\n2gAJH8lFOmajMEoonZumYbdpcU5z29yKJF2LF3cKkZvbO443oLKhFE0pM2kGExUNrkKWBa0sXWfo\nGnHDHIdQp8BJGo3qfy68nMWqNrEEOchOwqwNXiatdrZrZ1hx7SWuQp4ndS/Vr8vSZWehUJSKpy4s\nGVlM1cXqAqWoh/+WQL+l1iSqZ/w9c+XPCCN/9u47bHc7SePpN1jXYJzl0dMXWNvgbLMu0GzTsDXn\nNG2PMU39gepJl+UJWRRhuY6n3faEk0eFLhSMaem6jYTrdg1n2148JfxMiMIRNlZoZQudan3zlmFn\nLXw/vogFmOeZy7eXHI9HYkwVzy41zLisJ3quRVVrRddaPvrsIz7/xc/54NXHbDYnWCMYm9aqZpOG\n+jXN6m0ck3jBKKU5HI589fsv+cd/+Ee++v3XTONM1zS1AxemwQoXKem+VJXMO2OqJNry/P33ePnp\nJ7z78hWb3SnGNqiU7+9dNM72mI2jz3VHoBYrhVIFVZpWb+XgzREfj9wc3nI4XoM6oTk9QWuDn/co\nFK5paZGHGwWxJEY/cRiP3A17lGs43Z1zenpOAfajBAZfnD2n73Z1dwHWVgN/lem7U87PNWMUh799\nvmE/HNCtYdNuUcpglULHQqMMulqljsOMn2bmOTB7obIaI91vQeiC0yzsDbRls+3JZAYvD6xu2hqF\np2rKeu3iUpGvqQtpkozZojVYLRNhRpZXRe7jKUpiFIBrrDAZKiRnGkvOhbkecG7X0bYN4+2e+TCS\np3kZ4ClGoVqLaQzZaOY5sog5TdPKgZsy2jV0G7GclRCMREwRvRYj2cGsHapSFUIq2FbjegO2MIxH\nvv72O7RShEQtQsLRF/OvRbUsE1zJWQgJRoLAnz46wyiYpvneerpS/5TWFCz744BVju1mw/OnT3j7\n+pbhbkIVRaONfG0ybduw3fbsNj3GHki3gWGujobLQF2quCqnmtgj/2eVQZW8qkml0C7Gb7UWqGUa\nX3Zq9eOFKp2vdrSUOq0uhbfiudw7geZ1U3c/3S/GjQLTyMc0MlGJ4cD9x//49dMsOz/4gL7v6Tdb\n6Qi0zD7bk/PKiRWMVehxLbbRGNPIn0G9weS0SimSUmT2E4e7PSEE+u0OZTtK0RjjsLahacRcqzEV\ny5xGlE5Y62hoalFZTr4/fsnHHspjl9Eq+MDl5ZU46mURUKgsU0N+gKdR5OTuNw1Pn5zzxS++4JPP\nv+DJ03ewrpWUosUKk8VDndqFKDEYylE8JYrih2+/419//S/8+p/+mcs3l2I6pGuSUmVRrPeIkiKu\ntIRrKK1oWsfJyQkvP/2EDz7+hLNHjzGuqzdSqdehsly0xVb6pZh9STBFzhVDVQajHCl5fBjYDzfc\nHV4zTgO7bcfkZ4zOjOMBrQ2N62EW6buPE3Ma2U+3HKY75jAx+YFd3mCtJubM7CdCipyfPRc8tWSc\nFb8NpZT4umiHto1kOeZMDJ7DdMS1BrdoBibPtC/MJxs22waDEn59lCxErR0F8RgJSUKOi1LErEh1\nylJFr3zkXArKWNC1iBaEg+0jKYpiVqPxXhZtcpg20kFWbFgmpEUXEVbmxT2rQSxfVcmEOaIajXEO\n01lMCOgQIMihnzUEstDwjF4Td5SWBbd2FhUyKhds62j7jqZpKChCSGQvVN+UpCjJGrQWMy24tdEF\n0xqKSYQ0E4eIVhFtNHMo5CId+6KKlFImKmppeBNt27JpHbtNw9PHJxwPAzd3EtgsXXMm5iQU1gxz\nKJjesjs/5eWrD5jnyA+vrwFhdsjUkGhcIxTkxnH+6ARI3O336/O3iCIXeCTX4qpr17JQgusxxtJb\n136Oh6DqQl2uNyS5Lj6XAr3u4JZiX//WEh6zfO7SGorXkig3H/bewkRagikelv0fv36SQv70xQvB\nIrWpneZcT+peQC6lpLiX+u0pDcrykPaznIrzNDGMA8fjnu+/+Ybr61u6tuPkdIs2dsXDRIhgiH5i\nnI8M04G+O6s89PuLt7w5y2JD6HllpQ/evylyZX0IXF/fMM2TvIl6eRuF8ifwloIiHsVPHj/ii198\nxC//+pd88NFH9N2JFFmo90QRpoprK0VSrkeVAlJKIcyef/vX3/KP//A/+PrLb0kxYo2RB3DF0JdL\npyvdUG486WIV25MN73/4Pp//8i9499Ur6XLRD/Y8qhbrIB4QupGirYUS58OBECec2+LslpwTh+Ga\n67vveH39FYdhxOgOtOX2cEdJCeIkgcjKcXd7wMZCYzSbk57r4/fsx0tQkZxHjsM1Kgb6zTkxKUKU\nsAerbwlx4uLsor5Xhr7fUUrBpZZm02JKIvuBMA+MYcbHgJ8m9pd3HFJGh4mPPnnJrt+w6TfVOtnQ\n7zaoAsM4cHN3RzIInNH0mFSYJs94uMb1Du8DMQYp/ElJ4YmReZwY9yO5CGBbUiHNUYRJzuI6RVIa\nRUYZeW/XBVZZQoClgyuIV7uzDUYZuetzkRR5rUhOo9qmKiKFlTRGjwkaZ7VI87WVrExdSKVS/ErG\nNk2NRpNFY/CROHnhoBfxHdcmg8oVTlDiI67BtJoxDNgh01rD5ukFuRTeXr2lIAdNLrKQLaWgrSzW\nlZE9wenZlscXJ1yc9HQ6cXU5c3m1J8xQaoBESBFI9X4U1fM7L9/l5Wcf8t2btxSnyEbVHYmmb8Sr\nPsbM7d0tn3z0kk3X8d13l5XWSLW4rZ2vytXLvA7OuppiKV3ZYMujvuzTlhJagRO9LOKo3Xuq/O9c\naY1qLfZqGW8rdVA+Z+nY5QuJcM6Sc0QVKfBLPJ1Ri8Q/85+5kv8khbxxqi4CRNKqKw1e5blym+1a\nVNfLVzKr75cSRBwQG9tGuqEnjx4RhpGrb99wOb8WapeqkUtK3BGdyWzdO6gXJ3TNCY1N6DJTsiIr\nh0KWRIsEeTk8lnHrPhxBBBPzNHJ7e0sqGW0NISzcd4VQZPQKqexOOj789AP+9u//G09fvJBuqFIj\nS71pJNBVKEvUG0FStMFoyxQmvvyPr/j33/6er776Hh8CRsvdGZZczlIoMYsb3YP3XVV65rN3n/DZ\nzz7jL//2b3n31Uu67a6Sc5YuHECyTaf5DlTG2Q7ntrVblMITcoAUAE/KgTmNJBXoNiLp17S1A01Y\nXWg3rahy48job7hKt+QykFXi+u41sx9RSHCz7EMsm90FMUTubi55e/U9t9ZV/xXDbnOGM4akYhVT\nCB0zpZmcAhenp3RB3Cb1WeatcQQfOLs4xVBI84QpGZUynbO8eHoBSjHMO7rthjkG2Q80jvGoULFQ\nQmbvR4YpoCKoqhIMOdblmcHYhuQDKYqSsgSxaUUvBbtin87UhXTCGCjVgjknpEOMhXQMdZGvKVrT\nOmHr5FSwfQ8oQskY40QEEwKEhLEBY3VlP9QuMCTB5TVoZ/AhcjwO6KZlHj3zccYoRWup1FiLnQLa\nR0oWT5W2dWw2HU3TgrbEKBa9hSKK1apZKBSssVirafuWFy/OCTGyvzvSWpHR55C43O+5vTkyjzMx\nwiK6y1WlqSpKMY+eH75/y/8YZ7756g1+jFASZ4/O2J70OAuXb/eM+wltFLfXB4xWvPrgPfbHI8Mw\nMk9eCrXSJKUENy8CsfgilF+tJKyi1DqjSKhKdRMph1pFcbB09/Kcm/rcqwVP/1H/LHBRXv9rgcwV\nuYjfjsoghgkGo2rkIpXuq5di/qdfP0khVwvtZtkWa13xIUH6lJJT7aH/1/KDqx91xQZrpfMx1qDj\nBbdvL5mHI9dvr/EhYhu3evgapel7xXTckMIAZaTkSMoiMBAKWV14LCfpgo1V4u7qt1AyIXjGceRw\nOJByRlsNUbrxJZ2EeiBorbh4dMb7L9/no88/o+vPMVZYMcsIWi/IesMs4oKlIygFxuPE//9v/8FX\nX37D9fWdXE+9hDXIkmlRqS15m+LMpmhay8nZho8++5if/9Uv+fwvf0m7OUFbwWCVXnbzrHxj+bpV\nsJATWUvHFGPkOBxpXKFtCiUHYgqgDV13SjERspWllklC45tlyXkYbvBhEKx4H4k5MXhxv9y0u7rB\nrxNUzkzTxHF/y3AUKGy7OeXi9ILWbnBdX6mOMurP057D8Y5pnti2HW3fC+0vC+Nkmma6zYaSMsFP\nEhfnA04Zdl0niknjSDgub67Fg7uUVZiTUmGaIyEIdFKCyMBDjrJ4pxq+pZkcEjlIQvCyyNKqqjIV\naKOFYlZZWivemupiNGTyJFaoxlnMpordUJKy1TgxlbJGAqK1THbZC7ddx0hOFbNG/FOMNrAEHaeE\nnz1RGcIcmaeI0xqLxhnROLTNzBwK3heatqHf9LRtKz97gqw1c0jIUl6EecIEkU7cOk3TaE53LX5S\nTHtFnD3D/og/aG6v7ri9GQjVJ18ZYa2U+syVlCEU9tdHpqPn2/I90zCRo0BI1mlsa6DaPKcQKVFx\nuDtwdrbjvfef8/33r8kxEmcvUKWWpbXOGqWkmC8OMhZdG+11RmdpsOS5VyxpQvc+LIv3kV5x9KWD\nfig5vGec1D1fpaxK2IVC148pJUz1JYLux9+L+ZM19SfyWgm14zV1ZK8FLcsFBiMpJkt5K0V8Oupo\nJMtk+UGtsRUHNzAP4ntCwfuZlAuN7oS3XWqmX1GEGBinA+N4w+yl6z1xDkOL4j4keOFtL9mSS1Er\nlYky+4lxHBnGSZgp9Uam+oZrpddiqJXi+fNnPH/xgs3mFNtuKh97MZeSa6OX7rywYrHLjRF84Obm\nht/+9t95++ZSEmCs8ItZpOLL264XCb6htQatYXe64d0P3+NXf/s3fPYXf8H27Iksfkqm5AA5Vfc4\n+Xtd2+OsdODSgQhDaI6Z4zByeXlN342c7GZBjzJYthhdCIwUsvDUrWY4HPndH35NRHGsjn6tafAh\n8f3bbygYumbD00cX7I83MvHowg+vv+T26pr95SW7Xc9ut6NrGubxSNoEdCf5hjklpnHm6uo1l1eX\n7A8HGmN4dHFO03XsLy/F+MtAyJpxCoRhZD6M+OOESpppCPiUmaPQVuMc8TlQyAzjwDB7UjHkKinX\nOTGHmTlEQom0TkQfJCghQ2J1uFPWYJyT5bWctvK5pZCjeJ7kKEwgrSUOMc6xFiyNdobOtSgjbo5T\nmHE5kUJEp0pV0xrXNMRcp9cgHuam1DHdGYFzpP0Xn5G6mE0xCzXXioDNGrGm7WNLSIk5eXa7LdvT\nLcZY/DiRi2V3cSoHQ0ECt5Gl54xM14lCiIUYgkwDpXB9ecuVpOExDbN4uiTJiS2LB4pSxBwFlhrg\ncOmlqJtE1zWYGiQyjEeGeU+YZmzpaG1DjDPRTxiz4+mzR1zfXMlErRYjLIQOqa0sd+viUzSiD4s0\ndUkqbWUNoayFdyEy3C9Mf7RDW4r7yjWXBkuwhCrs0UunneSpVbmiEYqCBZWQqZxK/nhok/bj108m\nCFrw5pIDy5JRmYf4j1q73xUfKA/5mwsSzVrUtTGVJ710PEZc3+K9D3jKEELE+xEfDtgiXWuKA9lu\nULq774QXIj/30EohrTzuaRIvjHmWTm3VDnHv1wxgrWZ70vPhx6948d774qaIpVRsXLH8XGr9+Vav\nhvVqaA7Hgdev3/L69VuO4yi4X3V6FIqqqqwSqnG+qFy7TcOrj1/x8Wcf88kvPuP9VxLkjLWYIoKh\nnMoDU3vxgtfKYEwL6/Egf9Y0LdvNCWdnF6TsOc57fDiAMoSYuL69IgbQpmGzG0jTDcf9a97eXmGb\nDdievj/nxeNntM6yH285HGZOunM+eP6S11ffMwU5iH/44VuuX1/ihwm0liQgYxlODvhT2UuUpJim\nieF4h9YWWz1Frq5E7n96Jkv0TbdF246Tky0ueY4hMk2BGArWFsY58Pb6VqCCDGcXJ2i3YwqevtuQ\ntCMohU6ZNM5kL+lISit0ccSQST6BT5QkS7CFOpxKoiSNLSIEiiGSohQulSCMgRjFjso10omqUpk5\n1Wp5nkaaqjbWCsI0E+dAmoNkvSotBa7rqe4dNdgjr1CBtrWY5+r9rSLJhArdGcjiTkgsNI3G9Q07\nrci2RTuFj544BbrO0TpL6zRGKwlsSBmVZepwzmJaTdMY+tYxTbNcn5IZJ884BMIc8ZOErKAhqcyc\nIiFmTDEQIipmTLFkW8CJZiCTiSHh48x0N1CKQFedFZxZ7lLF8TDw5R++4urqhnGeiCWvcIXOGoqp\nCEBZ7/uU4/rELSHTWt0//+uOrhphLTVopRP+CQz7vicvtXYp+Zr1qSp1glmKvMApFVIpok7PeeXn\n/cmS+tNAK3VuV0uxXry1F/y5XqhcL5zSD2g7ebGPrN6/i1x5UXaq5f+vMUrGyKmLWrG7ECPTdGSe\nG1AOpxpCGDF2QpsNqgYLi/3qMtoshV0cynKO3N7d8PbqiuNRkn+yaPGlq1jGpFJom5aLR+e8eP89\nLh4/k8zNFTapb/P9WbV+rZQTD85zpmnm9vaOu7sjMaTVAnWRiK/XsOZvGqPZbDuevXjKL/7qV/z8\nV3/Bex99SLvp0dbVAIKFx6zXgI2UQp122nXCKaXcQ1RakpG2m1Ou96+5PVwyzFfkrJmnyJs33xGT\nxtie7ekJyd/h51vmGHFack9CSVjTst3sMM4R5mvaZsPZ7oKb/Z7JR0KY2d8e2O8HcigMY0SbGW0M\nx2lgDqJSVNoJvBGmGlMnEEQcxAbCGseu33Cy3dHlQtdadNaYtgPTkLJnCpljtftNSZZ4Z6c7lLOE\nuzu0a1FolFWUyUvuo/ckIT6j0OQQaydeKAjenXLF7SgSKrzoFzJ1WUr1nqD+vYyuSlFtLbpjpbTG\nnKBSXBtjmJLg4bITrKIbqMIjecZE4CMTmqhsdfX7SQIRkKuATZaGJQqHPQFJgal+M22JZIPssJzC\ntoaud5xsGlxj8T4xa00MiRglHKLYQoOI3+ZZ7AjQipAyo/dMU5CeLhdUBBrxNprngCkFGws6F1CR\n4kpNIKqeAkWyYVPIol5GEXJiiRb0Pslzcn3L/jDgY6qZ9HViLYsnuODRPCimFLH/UFWgo9YCWqdj\nVc2aHsC/hbKqVNcGtL7Kg/9dlp+LEnT5tdS9pbMvC8RaIRoBIcqaLPTHr5+kkGsrXZ7MOtXsvahK\nwV3IP1WCzkLVklimlMI6XiilSJVWJPBCglLtfSpbJCugWsHKVcmEGDkOe7ajxdkzWfzMA8aOODfL\njV5pf7J8XSCeRQiQCHHm9Zvv+ebbr7m92zOOI94HSkoiqlDCSVVas9n0vHhHklM2J2co5eqeoF4D\nkczVg2mBclLtimUEBFWFJp7oxZrVOScbee5HueVf0iicNpyfnfPZzz/nr/7L3/Hqs8+xrXh4pOQJ\nfqoPsMU1LaVoYpzxfq7FXcQihVTZRXG90YxxuKZlnCd+uPqew/yWcciMB8/+5o1gyLqhOz1j21ta\npzDtlqysBGXvr7jotzRa03UbVLkWV8Pgubu74+54J0yAlEFZsDD6DGNAO88Y5JdPkd6J/akqheBF\nALPd9LLUSolxHLk4u+CileXiHCeKVqi2pTu/4HI/MXnPYZpo+47zizPOTrZszrYMMRAHzYxmVoao\nNGOYGEZJDdJKYrqKkqmm1C4ObcgkYhG+vNaFYhWxZIw2WAOTn2qzAo21slQrBatBVx57SjIllZIx\nCXTMGKNwjSOrWcZ+q/ExoqLCOktKEdtoXCvLO3mPVXXRBFjc9cRcS1uZhkulLyqjUM6SjEI7DTqT\nTUY7Q7O1bM4arDP025bHpz3KWEab8FNiGo8cxgnvZ1wAckujNNkJvKRaC06Lx4tR9NuWNATSGGi0\no7GQk0JnK3a8JUuSkxIlaEJhnKNxDbZowtQQUySpTIrgU0QVxeHoAdlj1Xjxms4jNUgQcbk2YkYF\nFKGuZu5ZcinHKg6qi1y1MIruN3U/Cnl58FrhGfmP+hfqzqIIhKyymJPVzVp93rXALFlVeFfVNem6\nIv0/Xj9JIS8YKbqIoKQU4Y6vSsaleKpFjahWietiDakXXnQp5DQz+YNI++uFWLBuKQRayCdZwmNT\nyqSg6PvH7E6e0LSyMNPairFUTgKhyKALLEpPebtCTByOR354/YbXr9/iZ0+OCQH60vo9a6DrOl68\n+w6//OtfcfHkCcY1Dy7EEgQri81SlqSXUhekD1K6Ney2Gx6dX7DbbTkcDkLRWhWqul4X4Z7aGoZw\nerHl4y8+4uTiRJZrRZPSTIyeHH2N/pKvr5TGVkdDGbXdutAR62DxyCg5Cwd8mhiGA9M4onSDc5bU\nBJw9cnGy5eTklP7klBBHSom0naMozd1x4OruitdX35Gy58n5M6b5KGlPvw+8vnnLHGaUhkBCtaLA\nLEDM4OfC4TgyjAOzH2mc5G+WkwuCHzE54wDdNGLF2++gZJqmAwU/vLlinEfGaWZKCdU0NKqh7Vs5\nADuL7hw/XF9xcxy4GjzHnPFZEX0i+kyKArspa8kZsV2udLSUC2GoniiloFqRwuMkpMEoTdEKj4i/\nSl1C2tahjca5yksHnDL3933WGCTlp5RM4xxkCanICmzjxI42SRduud93GKulc60wRIpBQhuswToD\nrYJUU4icBiPmW0Z09HQ7AzrTdJZ+06BUwbmCswv75n7RY6yhoZEFuM/Ms6Q75eiZ0izF1moJocgC\nL8WUCMeRSIGsqrUt1atIoVO1Xq5TRQHy0o1nhbGOorJI9LWhaRpyivjo6/NlUEoW9uuCUtfszQJp\naQCVTJxaO2keY64+LmXtuu/TOe9fqmLZZS229c8XWIuHJXhBDpbuvZp91RqXUiGpeljU6VrVgOj/\nJCDoJ8LIK/ZTSgX8F0k63ONVlemxQg9FLqJe8Wv5HLKc2NN4Tat34hNhxNksJ8EByyJPr0ChUQ2N\n3bHdPqPfPsG5Vtz5dAuIfHkJRcA67oEs+X5SLBz2E1eXd9xc38mmPOfqnZBXXwetNGfnJ7z78l0+\n/uJn7E7PUdrIYvThhpOH49gybWi5meqtkUvCGEXXNvKwmsqpX5dDAo1oVWO4tPCzz5+c8+Sdp7gq\nVbf1htFIETI1ZGMxyVdVpVgqtBPDsIYyL9OIeHAL19VpQ+tasBty4+hMxOTEs0ePeXTxmGbTcXN7\nyexHuq5DW0sp4g1yc7hl9p7DMDN58Yb54fqaaZ4oyG4h6YTqZAFIFLOj2QcO+z2H/S3TuGfb9TTO\nsem3bNqOyRgCAmMYpcSCVilhAnjP4e6O4zwyTZ7hKN44jbV1V5GIUTH5mbvbPbfHgWPIzHNhDjLN\npXmmJMmQNNaSQpTg5KwosZBCIsxR8HKAViABZczqgKm0oWk6CmIzLO+peOk3jREPFiv7gJRjDTmJ\nYpObCzFGjGkIc8WHU6JpHJtdjzWKrnF0bYPWRvJBc+0qUyT6mXEcKUosFow1ZAu6kYSdrKRwhRjJ\nSqAq7aRRMEaSelKcCSEwjBMui+gpxijRgRXW874QSHgbMTaRVRYbAnK1TtbkUC2AjSaqsvogaV1x\n51KhPxQqQ4wJinibZJ8IQbJKndaVGlvZXnUadk2DD6FaCIBg3mKrsOQWpFRhriKHs1VVy6EtMWvI\nKwbA4pa6+pSXpWgvRs/VpuJHnXNZf7uHRqrUtOh7rjnLXkysPRbYeUkjkq/+Z9SRL14p5Cib2cVc\nOPMALK4/XMX5WLtC1uVNKYqUCsHPTOMetxEDH2dbcZeLSRR2y4KgQNGaxm052z5jt3tO3z9CG4fF\nr57dKc0URNGo6sVeMi5RtZDfzdzdjAz7eY2bEuytMkG1xhnH0+cXvP/qPV68/BDXCO+3lFBTelTt\nCuoOoCw4t3wpbSwlZ3n4ciBFgW60XrC4vGKdSkvXqlUSMyKrePT0gqfvPFLp2EYAACAASURBVGWz\n3dUxPdFYwUIxLVp3FY6p8JaSUU48KgIhzKQU6Lqd+IyXLN97ETpW3zU8Ojsn5ZlY8cS0S5xuOp4/\nfYeL80dVIAWH4x2tbWj7nhTB6Za7Yc/V7ZE/fPeWzXYHKMZ5Qimw1tA4R7EFbUHyPRUlipfHfn/L\n/vaK4XjNo7MLtGskz3V3wnjoOd6JgZXiiNOG7WZD8TPT/o7xcCSkhB89+8srMIZGt+RpJOTINGmG\nyeOPM2VK5BCJQ2CePT4EdEqYksXsqXXkIqupFFN1XqyMhkpZlYmw0uqSdHhKGTYnZzBW2uVui3WW\nxjV0Xcvp6RmbfoN1RpKw5olhnOr9J+k6wUeiT6Qg2ZBt59htex6dn/D47Jzz0xNc49gfj9zu7ySx\nJibCNLPf77m+u+HucEAnRdYF5QxN1zD7QJhnxuDRoXqGdw6tCgUj/t1TJE4TJWaaNhCTYpxDxasF\nRsix+v7YQN+3GKdr6Ii4gkucnCheXd9itWIcJ1GwGqF8phjRprJFsiT/aB1FKBPEtXGZaJpWskFj\nzvjgMVqx3WwIt3e1FhSsM2KyZgxtK6lfs89yAK8E8iRzuDHoqNdnROBQ2Xvd+63ktUNf8Oy1zq0g\nMGuhlmVplrpXlgbOrB392sgVqYE5LbWuKmf+k5b8p4FWYpRjsJTKf3qgROSexrNwNlngJa0AUxNZ\niqAJWuOaDdvtE6zr0MZibKXw5Cw3ghI2i0j8pQux1pJTFEtP7aAYSvZiSJ8nsQYwLRTxjqZEYpxJ\naeZwvOL169fcXe+ZhpkUArn+TArpAjd9y+NHF3z0+StevP9uhW3kTV4WsnIa12tSHgqOFnmzFGij\nLCVl5ilwe3u34vGyVEqgDLrIz6utot+0PH5yzt/+1//KL//mL3n0+B3atq9QiYyQkOtbILCN+E0H\nUvISsVa/T2PkFslZ/myajxgttgfGOLpmx6YduDlek0tEK81us2OaZt5eXdFveg7TwBw8XdMRfGSa\nPLOPHEfPGALg0D7hjKU1La4xGFNASZcnVE5F0xt00ZgIjat+KfPMPA3oqkpNWdH2p5w9KthuwlKw\njdD+ZhUZyNxiGbLBFwhuw6ZxdH2HaTbEGJlDZNwHdBL/m43NJDthS0N0ItWSbrxhd3YuXh/TzDx6\nwhyJU2QegzA1YqTpWzCyr5Gp0lRqqq7vH7R9S9PIYeScZbfZiN9LTszzhLYNCcMcpRBY3WD7IjRF\nHyXO0AgkkotmDpH9OOFCIqQs75fWuNZgdmc8efKU7dUlP7x9y3yYmNRMNAltHUl5rDL0TSNFtDYN\nmULIhuNcGGZFDophCrSdcP5T0WAboe7mhNKelCLTGNF6xvUOZTWdbVFOuPdaWYEOKMwh0HZihGay\nJlZKYs6FFDwxCPtMMWPQEvGm5BmJOUiqk7ICidQYxxgisdKatdY18q3aXlQxV84Ji/gcSTOlZYke\nxSp4eT6pRAShJy7FWa2LUnmU7xGDH/Xkqq7EAPEqv196UtKa+CQaXTn0t9qRSiJkyfG0aJo/J9Os\nsm7u/2iJqE31bH5Io5ff1bpVXig/teUpMspo1aHq2CRvlpxmIQSM0qLaqt4cMQXG6UjwAymeonQL\nJRPDTAg1K9KB0S26SndzyYQ4Mk233Nz8wHfffMnd7Y3YguYsixKky+7bhmfPHvH5Lz7jk5/9jKcv\n3pHFa1nGLrl5hCu/FPP6E9eN9bLw1BWfV0ozzzOH/RFfBR+ppqtrCrpUbwat2Z1u+fjTl3z6xed8\n8OHHdJvdinunPFfL2SIqtqKk01CFnCMpe3KO1TyqqYeoZgntlWXzEjJQaFxP22zJd2+JUeLpzk7P\nmEPC+4BPgeNxxM8jZI3SluPkycqQEcOjrulpTENrHK21NK2jEJmTwDoFYW5Y12ByhUl0wzQELl9f\nYdSGs9NE13ZEr4AeZTOhQIxe6H4M+JzYzzClnikVYnEoW8BoIpbjbPFZM0UjToBexlxlDI11aFUF\n2EqCwtu24+TknMY6yIlxGAleQoFjyIzTxOy9MIuSiKhSWtybFlaUdFwaI6EdCUJOTGoiBE1KIkTy\nXjjhJUlzY7QBMhglvYYRoUjMmWGYiCGxP0wSVLFCYZIEtaToDFMkZUNSFkxBuYx2TgqGMdgKgUCp\nbolgnKHQoO0WKu86FoMpAh1pEDiTIIdPqXuNCHiRs2hlMaqIL4wV+12tCiEHEeQYwaaVlilRnuNE\n8EHcIgWLEcjPVsqxWTrqWDUNpSbvpNVyGL3YxMqzFmP1NCqsyVZLdFypBXuBaRZGy72Ss7ZaC41a\nUWGWhx3zsuxc+/Ef4eW16a7QqCxi0wKhKIPTFl3UGkdnEbHWn3r9NIKgUtZuVFUJV1GSMg7LqfUA\nH1f3nPJSFgoPiLXrRI4zKWQM0hFbYwXJyongPQVdb0Lh0c5+4Ob6NfP0Hps4Y2xHThN+3jNNe0Rg\nIiOPVk6oeiXhw8j+cM3bt9/y7df/weHuZnW807pytzGcnm559ckH/Lf//l949fHPODt/zCIkWkKU\nc0kVq5aOROslYLmQ67ubKyNlsbGdppnjMJBSrsvfeuhVGMoog7WKs/MdP/vlZzx/7x02p6fCPimQ\n80yIR2Y/S4fbdIJposmYVXSAllxSjUMhPHW52czKoMm1MGltaRqBS4JPOKM43Z0z+cDN4Y6r6yuO\nh4FpHrm5HWi6nilGtOuwLuCs4mJzikmKxlj6pqVpHXOaSZFqjFVl29WwX6PIyXJzM3O8+YFhD8+f\nJS7OH1EKTEGxPxZ+uJwgzhglD6e2DWNUpNBDVOiSUNbhS8RPmf2cyUqTlSNrwzQdUEXRbbZot6Gx\nGaq1qFYaVRqy19VdQ1GykULZNXQtuMYxzbNQ8nyAmPHzJDhxNckWtah05euSvkhqjjaqOvTp9VdZ\nnTzEjzyn+ABqLJCyQEJ14BW2hXC85SCWz9cyhoFRNcVGo5yIhVyn0W2zGtct1tFL92uMxbnt/fNY\nl4RKKYKPdbIr6Kaj1GUtpiGhybFg6tJ9CTuR1C0qNVKm0pRK7aDF9ld6PXkuJFJPV1GPFHJjhdVV\ncqFkYTulXP1PsuDySzNFrSEpp6qdkIyDUvc/RSmsFuMxg0alur/jvpQvzokLcq2o6taaoLV+3lr1\n7gv8ohyVYOW66JRFgCSg1R2hHCDyfFtd3/c/J2hF24bV0EDr9ZRdvIGpQpnlNFtGkgUXL0WTk2ee\nD+R8K52h6ZEwrUzrXE3crorOlEjJiPTZSuK2wuBsJxBLnjkcX1fZfqZxHYWAD3c4Z1H6BI2hcRtK\nbhiOics3N8zjxPLEqCIp311j+fTzl/zFX/6cVx//jM3JqdyoVOWakGDrT3b/enhQ3f/cBSpnNWeR\ngi+uegu+ds9LFXy+cR0npzseP3sk6SqU1SsiF0/Mg/weixxM4w25FJpmw257hjFO/u00oZHYtFKp\nkqVAY3tCiIx+BqLITorCB02MjuA1t9cHUlYMd5E33x2Y5oCPwkwoaiCmRJwMZu5F3TcDKTGUyF2Z\nsY2lqEyonHx5WJ38/STXujFZ4sqy5+r6G778+pqmbatzYWKOkeMc6uIKsgHrOpSyzGOQaaZCdDlX\n+K4yooqGrDOqYpc+1Ii0uksoyCgsVgUjwd8yTUfByFdWVX0QTc2SbS2dM6jGELz44Vtr5VCuFswg\nBUYbXd0Q668kXvQrg6k+DCUtRaqgbKmy9vtQlpzkY8ZZmt5KLCL1OcvilqmNqY6jdU7QslHKOa+L\nS10B7XU/n+5v3kIRxWXtAay5D+YuzaYuCu4j5pbJWumI0S0x1jCYEqEqZsmy7FtotI22lPp+owRR\n1hW3LpWVZtoGVSKJVHUVQa4hBWvl6ItJSAxFFcwSv1bZYsrIzxdzksi3rDBZJvjlQFmstR+W6D8u\nq0tk5H33XTt2oDyoasKEM6xRdAscoypYUcDnXPcsBlsdEMOPAJv710+07JTTdBlXFA9ProqZ52o4\nVT9UK1ctKCL+GI7XqHwQulDTUpKc1m3bVopSVWOuHWUNdbWOpmnFe1vrFb8SXNyKX3n0Va0WySqA\nbnC2I0fLeMzs72SMVixMmkzXtTx7es6nX3zMq48/5PT0VEQdy1a6LFmby81t6tQmXfr6O6Vu0KV7\nyEWWW+N0ZPYD2mraTSuuhBSscTjrsFbz6MkJF8+e0fQbQkocDnsomuhnfDjiw77S0KBkxc3+ShZ4\n2nGyGzDKEIIINbQSRzkQ5sAyBY3jxDhNKC1D5nEc+ebba2LwWGN488OAKpZx8rx5e02IYcUjUz1Y\nY0giECmQkVCKnLKwQYwwJCSUQ66TNZGYlw5QDs3qFQZpRquhJjJVC1KtKMpUr3AoWqFNpbtWlS8V\nspLCxmohvYy8xokwLJcs32u1ysuLO15JUGb8PIstslrm5GqOajQqG2wuskwssGj3lmKgrV4hBNlJ\nVDaFr4sypVFaHugl1UmrB99kqaqLas+8/CylduEohW0crm3uJS1FjLzqQ1E1FvfPmEAxemVQCPK3\ndPYLRlzLlAaMkY/lLH7oRgrU8nxTqCKzXL9ElukqQpkTWWeKlvfELmIuhYRvFBHZWSNW1mo5JAsr\ndVcr6mK0moLVeyeVWIvyEghOhS1U9Zx3gAgFbaNRPhHyJAdADoQccLrmFLDYF9d/iB+L5e93e3pt\nfGqxe1D3pNqp+h9aG5xukcyp/OAAqOypOmlLI1gp0H9OgiBV7m94So2rwqy4sHQb6YE6rZb7WsRz\nFix7GG5pSkC5jmwBBBLo+k5wyVyo+VXCrzYSLtA6J0kw1lYMTNM0pzWrsEG614FQPDnLTaiK/Nth\nKgz7wDCJP4Q4lQnJf3uy49WnH/Dq0494+vwZpQTRji2jVGFdrkghXx6tJf1HrDsX8W7JQf40Zabx\nwH5/zWG8RTWwPdvQn/RYrWi6nqbrsI3jyZNzzp49Z/KKm5s9+4NIow+HPdM8EIOXxU/F/u72R4Zx\nIoZA39yQYmKaRnwIKG2xtkUp2ZgrJfjnYRhXBkXOBR8ih8MRH4OEDyCYoyoS1ZVyTWIp8tPmlIV3\nXymmEg59LydXUAVI0voZLcs0sTheuPVIR6m1ZCSywAsZY8VXRDtdu0sEMw1z7XbSWhSNMeIzWdV9\npXbkKFBWujWR1Ityt6TlkK1NRf23dQ3r0NXjBiVUuIWuGitVNOdECkkW7SkJvxzxQLe2UhStwRQr\nbBq1QG7L9yu2pou/PPxv5t60SZLjSBZU8yPyqOoD3TjIGZKPwxmRtyL7Yf//L9mVlbf7hjMAcTSA\nvqoyI/yy/aBmHllNcGT3wwqQlG40qzKrMiPczc3UVNVIyfRUSBWWkTMhglAklHLm9Rn2u7dK50V1\n0R1f3Hs3YRNVv/skLSG+37vBdPx9SZjVawCHKxt91a2hdTBjLwNWfViFvBbUhxX1yn4UFt6XtGSc\njhnjmLCuV3Q0jN6RU0TKCXRNNVimd+QYoGPger3O/kNeMtcZOoY2lNp5n2Mm2yXGudcVvC/3Zw7/\nXreIMhRdG2qv1ouwQD1rX6fj3uTjbr8tIDfe83GvXGZ/D3CueYik7q7Fkphh/TEMqDR6u5uVrfuV\nfzLbZj5+JR65Zcqjo7cNLogZYzUckOPEgjmh8XsK1QrtK1Q7IoDT8TmOS0JezgiHl4AIjjXjeH6H\nGBM4s5MXJPcGUfPrtg58H1y4IQaczs8QrKM9esPplHA0dgfAxVJrxfff/YC/ffMtT387jEQVx0PE\nV199hv/1f/tf8PzVSzQlRe7+7gV5wcEEO8FLOjEssAA60Hul2U8vkJAQ44IxSH1qteLD+3d48/0b\n/PT9z9ChyJFqxyiC0/GA8/097p8/gwTgzZu3uF4LjicaHPWmKG2zocVmzCPMKIoNJUgxYb0+sgYa\nilIGRi8AKicOGR47ANQ+UHtHs9JvdEVjCktqlo2j0/lfa+iFgJQzlhvLBcE+oX140B+D3jiNjSsP\nuKrRTL5uy9Adn510VaOojlrm4dm7VQDwilAM/xWkaPfC5rJ6DNx93U2sZriXJ96q5BtH+1k+aCPG\niJj5WWOkfwkzXXBak2W+NGpSDs/YaDu7HDJOx6MFUkFMaa6ZGAmisvnJirH1hlB9P/EwJLTAw2Y5\nHBCULoz0UhmQ1qC9IZkNhlrRLwLEIFBEi1FGqYRwBGMUDIMb3C4pBJg3t6L3OOmmHuLYaAY0MChV\nNOOyVxIFuukulHBJzgmHwwGlk+2znA/YOkfttdIwesVhOeCwHHE8HJACOCZy24yjDsgQ1FFI2XUf\n/4GJR4uYW2YrXBetAdpQe5kH4NCGJp0HhgbrQ3lAV0swPTtWYMJuHqZ1h7Hm1bgJ7uLXnGUlyRt8\nHv2DqAAOsh+MwH6Afvr4lZSd9seYD6NXjNYxWkNMC30tQpqVGVPBBm0bensgJhYi7s6vEHNETAdI\nPjLDSweEmKa1a2uDeFkl3VCjD5lI7Oh3noaH091s5BGnzAAGSqEpT2sV12vHD9+/wZvvf5yzEolT\nD7z67CX+8M9f4Y9/+QPunt2TgdMZNKgy7eaLrmwkGrTkXHCfetRagUqlOjHeQSCoteHd27d499M7\nfHj3iFIbYUrCiXvzx3+eKH786R0OhyNyoigEgWV8XvIcDE0P82GBiZsgmbAi5QOQMSEql+irAkkH\nYutYzWtE+oAatgrrdQyzZ3XhE28jTbxCuBGAwSQWqlTmDrIsJPhEo09Wjf283o1XHgTiTVrLWlU4\nBOF2eC7soFBbT2LXIMaAAVsvEwowHHo4bgwYDjMPFn9LKSX7TBHNRrXFGBGXxCEaOaM3BtfemTw4\n1EYWE3tCIzEIcvSbCWZimNcrBEtxRBEjEJeIWgeiAj2S9aKdY/Oa0Pl6iOIQQf63XV/tA2JJjaME\nA6aUBh0niUyzSTlSnLCkGhVVRKYPEvsBdt/N9E4NDlSvpg0q7dYLYPbJg2Y0TrmXJkBQ1LXgCoHm\nyMHdpwPqyoNodEXrilA7cuw4HE9QchQRAtdWG2NCefv9dDjHVdf8m+uUFOWyCZp2HuCO38EYLhNO\nucnDZzy1+nm+5hMpvVWhuzOiV06+Pm8qvE9+doC5uajygNXfWiA3W1mFIISEshWU9QqtFcuRzdCY\nMmZH2MrL0SpauSKmI1I+4Xh8iY7GLEdp+O4Yp4jMDT+6otWMXhuGBfKUFzqlNbIvluVEGMbscsUW\nIc3yO0pp+PjxET/9+BPe/vzOLEdZx0ZR/O7Lz/CHP/4Orz5/hWU5ccJ7CoQm5oHRgSBsvkgCwBKO\nOGhCBBs3ZBZULIkBo9WK9+/e4+P7B1wfNpRauFCtkbet9HdGCDRGyhFIiZnL4cCAflhwPB2RF1rn\nOqYXhdeoNnLAJWfElJCOB6SckD2r9EWvA6U1bLUiXS+0e60dZd12q02DXHQMm/No97sTNqGd6OyA\nzA01IQTDBaMt/tEJsxCeEQQ1awPDonV0qAlRQkzohhXfDhTxKsgrBBecxRAsUBIC800kxhDwysmD\nAts7uxovpYSUqY6sxcVSNKhajhk5LyiFkJP2htEMShS1A5x3I8NgiMomb460roWZwnW7fkmUcFqM\nJIUGBRIP39EEVTuaKnpg5XKwamMoWS5qnOTh4+ACv+c0uj4GD6IgYN8GzPxrt1KfzdhhSlEKVdww\nyqmOOu+l2sHUTNzTWuM6Ea9iKMZBC9Aw8FivuFw3HJ+TFZNSohq4G8CNhlo7SqjAidbOpVQmCTlj\ntIbreiHTSnhteevYc1JVuJuAB20ditatOrlhygXZ3UjFm8xQ66Xo/DczdK/eLED72t5R8Zmr+w8l\nPZIMNlaWRjW2/yU4T4kMHufU/9Lj12GthMi3FzjfL6kAkiAHZuQxLzamzdzHhI0Xnp68YSEtJnkm\nNzsaDzOKIgadmUxvhE5sgDcN7GuDdrIh8kKhhIwBbRUIAyI8RCREHI93hBbGBdt1w7YWOg8iIID0\npeMx44uvXuP1568whiClI5Z0AjRCAgUKIQmyHC2DiQwUgQFdNaOPatSjA835h6K2DQDQOhdrrSxL\noYZzjmFNoQFgJR0wCQNAihRWRGZ657s7LMuROH/hgo4xIAZmMxIDlnTA4chhDIe7O6QD2T8xEqVD\nV5RS6EAXiVGOWjEKx1NFzzBssrkOOvmp4a+wYDxUjcFDelxvvjiZ8Y7BLC1FQYrJRBJhWgUIBOF4\nNGEXF39rHb0TC3WsW0KgECywWVV7Y0Dq3ZwfCV3AMn8BONWnDzTwEHDKW4oJrkgOPr8zEHLrtSE0\nfpYpOgEDYBdCGsdTxPGwUChjcBx6w3q5omwFFIHwMy55wbIk5CUjL2kmJNQsNMIjQ7GkCLGh4SEE\n1Fqx6kAKgtbZNUjWCwBAUVIMGJ0B2/3zVQWt07cEqohZTL7OKobzLBWtbMSxc7YKYSefPclC4ZAB\n11dMFODRfZRwy2w6pgQEy85VCOWUAYQNqgN1rahbhTZSPwMip1FtBR8/fkRrHbV1VG1QBI7BG15V\nOJTBTjZHuBEm68Zg8fvb+545iwkHx+go4wIfrOL5uM8L3u24/Wd7Nq8TceCVcUjOAzpf72vOdTGs\n0CKi+/HoAEKERKB0jhUcN83T28evg5Hb6e/84HgICPFg9C8GUIkRu72t8S1Dos1sPEJCZlmNZWJN\n3lBU1dkI21P0CIkZA9z0tVZAeahIpCrSfcTdm4Wqx4SgAb0pfnzzIx4+0kJWFYhKBeeXn7/En/7y\nZ/zTn/6E+/MLG0V2ADSa1SyZATqXFmYNNYOZbSRn1igGal2hqiiVfhz76d13WMpUZjo4y1NyQBwR\noSeMUuBoXRiKngt6HbhcmD0zaLh9LbvoMWWkvCCfT8gLR3XFmCEIZr3acDgfcLw7IeaEUSpGbYgQ\nLDnjuBxwOhzZSKYHMFkfnYIO9/2ooxNnN7ghxWxe8mLNZboAekOPE4zCzAKjNRddsNF7n4HI/0f4\nZM+qpSVIvAnkShhEDWOPAozAja4QG5TL9ZSzSTFGs3XL+5dMBGOVOJtTkT8r6kAYjdc2Rh6wdlgJ\nFGiA1IAwHLYhm2JZ7BBOtKRwTQWNQgPUMHcJe+/FqagMsgHRnUPndaJBVxdBs8PSMz+1RmSpJLfF\nnNlQNe+RoawI2BNRpOABXvdAbp6rhBB5WMck5u8y8MQJEPt1BZwlw2Ejow2gK+eediZdrVRa3Vpy\noIPCp8frFQomaU2doSYIkgF4YL0Ntk5NMhTbGC6Ae8+576pBfzowdJvw0I7Tgdff1sB+lDkuznvs\nyIBn5IxHPpOVr9i90D0aeDUQjOHW0IebdIWbtff08etAK+JIE//EnIAss95hE/GGLyukNMV8AMJC\nHnrI9vUMwMsUgEIDuxiGM1IFlpEyR1SNMdALZyyGkEhXc0N5HYAW6GAmDUToCFgvBd9+8y0+fvhI\nWtcYiAI8v7vDX/71z/jzv/0Fv//DH3E6PTPQMEA1zRJNAhDVbo4HYlhjsK0memCWNEKA9I7WV26w\nss7m1UCfi8o3w4DDGIpgi1k00DrAMoVR6Qdd1ort4Yo+BnKKGInYKAUUtjGV9yQlYrQp5ZmlKBSn\n+zOeffYCz188nwyUkBLOhyNePbvH569e43x/h+VwNMwaaL3huhVstWGrBWvZcCkbfaKH4HA4YjEY\np9VC3rQOW/R24IFDD5rBQC52UVO/9dFNbNOn06WX17Q6YJLgGC0rOdskQtGFaCZmG8l4ceuElJJB\nCJ2/e5D/naN/3TI26xomoWoTHtQkIYbsTQFmaFEwloQQlPccNhgiBk4cNBsFiGPOyurBDaXEsF+D\n/6BOEAiIt0HBDrymBRoNCiFyMhOf1jtKbdAgyIONWVFLMizIqguHEFi5DA4w9lxp6DDNBmGXBUK/\nldp2XHx41msN5ygWiNm4FZscVNbNdBPUTgQlVtyd+w/FWqkehdD/RR2SCBGqdbJ5PIedaZRVWvv3\ndAbxYVm7NzVV24RX1PFu7P/ffvAe3/1fBsuF2WC1pAFjNyy1tcBmPQ8T3hhLTtQPzGbCwTSH1Xz6\n+JVYKzOHgas0/WL6XoCbz1g2Hg9H4rfDZbOGnVuA84yEHNE0s5vDkYH/cFqwJBo/5ZiQwgkIGRI5\nVX5ospNxoPcLVAJhjnBELRWPHx/x/bc/4HJ5hIYOkYEcBS9f3uPf/vu/4LPPP0c6nhFissXAcXGq\nln14ZQa1ICPo5t9St0cEROR0AgRo14ptvdBbuvHfdbsQXx2CVmHSehj91PC9ALjywsdRcXQYzfzp\nL0HsUoRzHofxg5tNIfHEA43+2nUDcl6w5IVBtjU89opaNtRtY+ARgZwWjFOC9iN0rMjxjGf3Rzx/\n+QL5yBFlXRWPj1d8+PCAt+/e4+P1EdeVJknH0wl35zPOd3f0rRk8sEot2GpFqZy32LvO0tyx86ZU\n7vVhOPUIgGbCIJFiDognY8aHtmYd1bjep+K9CQBiSqitGo89zLUhKmavykZzChzerIOMHg12WMDV\ni2aB2p0OB1YJkVPul/uMbFnaTBYJWhucOuYeCbIP4HULCh3eLLeG2txPFhNsvQ2wkgtBkJBYKcFt\noc0NMCcgRB4GCsuCGURTECAHS11NJTp4+Iu95dEN8/Xq0hSerTQjHbAnFjNplSlF9NpwrVeMooij\nzworBRdVAaWtqHY4+IQfgZBKmBJyipAeUTshEqjDFGIDJPa4M0VdEuj0qB19NDJ6vOHovYAgXEvT\nImsX5++RmNfYGTFhmmYZLKzWt1Owr2UZv1jjXMJAkoAuAV32Y0KUynQV6ysF3ZOAX3j8eja2uA3i\n8NSAZW3v6L2yCRWTWd2yPIVfb5eqOlZFxQQvn5fKIWDJGelAQyIx+tYclOp4F2BZMsup1iqz8ZgQ\ng+Lx4QE/fP8Dvv/uezw+PgI6INpxPp3x+ecv8Yc//R73z+4RQtrhHcvSRG5wM8XOFzcMjBlVBX0r\nLEuB2QzMYRq0MGWmaQb3fh1NsOI2nZ5h8XfuZR0pgsbNtkVKqKJZ7sO2cQAAIABJREFUlutYNvOR\nYTRAlpDmDw2FtoZqTSsdO23tMSc8vn+Ptz/+iB+efYf78z2ePXuOz169wunujLvn93j+6jOU1lAu\nj7h+fIdtu1ijuyNDgSVhkTOW89EMjAZq61i3gnXboErM/GAHC1RRW8GHyyM/2+h4+PiA0bplmQ2w\n9aBQ2/6WzVoCEEQsGDLjVbMDTjEANqjX/Upu16xEitqSBCApMFjZWbsX01FSxbykxQ6hbhmzIOds\nymGZ15qY+463evPUeesDdogMZvtUd+6sBwBz/U/KmkEXozNQEr4ja2lApncMHNc2ogDhO/7MAKF1\n7GB/o7WOan0amtFhPl8R7P7ZPjf7XrdgNYY9d14QJFSkZg6RIOuoNhtv1owBpd5IN5aWUsQUfW1G\n+qQgAsclYd0KxgagW0C1XW74FyQIlmWBjoHSMWEW9qcs+N+KCizJ5Dgm2b9mP1dmXJPdP8VRB2Wc\nmrMG7K2oVZHqFZL9/iDy9Hmy888/nT7kj19J2flJfTDxLVuYraJtKwUA/nxxupp9Yu5IiG0fhU+s\nHryh4CbNpuDyppgbUnEsW4d2wg/DDgI13G+K3aB4//ZnfPvN1/jxzU9Yr+ts4j1/focvvniF11+8\nwuFI0y4q4uZlhwiphTSqCuYFMWbTguMAKSmuRuMDOBezKyDTKQ83i1Fnabh/yQQ3g9i5is4ml1pz\ncRhDB7PcFrRKRkJvlsHIHvh9Nmk3ihYH9Vpm1DgYuBtjJBLMRQyC47Igh4DjsuD5s+c4n854+fln\n+Oc//xGIAddtw7t371C0oraOVoDt/g5tvQKVQ37zYTGTIzbkUqCl7ylnPL+/w935DlFk2pV2KLoO\nxG4cdOV0mNYbKySDSsUPP8eVwSa4jxIJ0Q85ICZSOkXExrBh0kYDdshiYvUwLrxVP3sl5pTMgbJV\nqlJNwZlSQohcbGrB1pM6pwwCRhEMfN6QPeirzcocIGwxvMqIMiuJMSGnwYw4ei/JNyR9xjnkRQD1\ngQ3+eayiaM5RVzYYrSJKEXZAiB2OVLUOBWDNzmaDEUjpFIhYQmV9FOlqwi4/eIiP10IRFkwvECQg\nCm0FtHdEFUTl0DaRjrQI7l8twMcVA4Ja/DCzBAWYuHROmWuiCWrZjGHl28lgI4s3Api/Ct/LHk/t\ncJiB3nEW3b81w9weyMUP7b6bdDE23uzz+fN2KGjMjP/p41fKyG8en54whp9F8yeB0vWNwqC9WaQ3\ngcwzLBF6JbTeMedydN2zd3vUWnG9XNDKhrYFtL6Rjx0zYlqQ0wEhZQSJaK3izfff45v//IY0st4h\nYyDKwBefv8SXv/sCeVmmbJiKQXb8mVE11HpFKRdzFMyINkJtGJah2jFahWrFCEIufTygt4HD4Yz7\n+xdY8tEafAw03QI2S26xTMb4rLaZvYviZTg3ZaMtrg60qvMz7QyGHW/lvTH3ObRJHyQN8WZjK1jx\nAGy+jorr6PiIR7x//xEBgvTvCf/7//F/oprnyhgdkmETXyJy4nSb4/GI490Zh9MRy+mI4/Eeh+MZ\nOR/RthVBFTlFHBeye7oOXLYNh/MJx/MJvZj1qA4E7SDIMWiXPDFhMEDa2iNmbM3xyOASIPMeeUUF\nZaMtmECttoahirQsOByz52OI2AOh72YXp10fL0hLRlqSCT5cHKVTzOMUPYdL1HBqinMwkwEOtLDn\ng9nd6IMHhIYpQPSeESQyozePFu3eiLSDQHUOEVfLvr0Hos1EVZ2BvHlPxfBtInoyqZxsQLdZKZba\nUE0AFHNm1V2pXG61Yb1u2K6rrQ21YVtcixLI4nLBlZi5mAgHTIRh+PcYiDni7sUBYTlD0fHwYXsS\na9SashxSUXHIB5yWMxIiaq/m8iioVgHfYAYzUdSbrzFmm7mdZ+oT27KlCEfg/fQkFDMsmDsiP7QZ\nnGKGWk9+kK3d8RsK5M7x9sckw4sQ400ZUShkYBZtHHF4eSJPShfPVKBkoSzHgznJuS+DZanjxqeh\nd5RthYSO3lcc7+4gFnxDIIOz946H94/44bsf8Ob7N7YQmY0dl4TXrz/DF19+gePpbHJ/y+TVsw5r\nDrnDmTVsgpVoqs0y24rR6ZsekeBedzktyLKgnwaOhztEzyBkL7Nul9SsdG6SAd9YHhjYZKU4hXQv\n0g5MYeyrhRmAYZ5QZhDi6kKmTczOOzOXLhQ78fT130f7UTXpdPh4xbZysHNeOGWdLn9xSvVjjDje\nnXG6v8P52TOcTg2HE+1xy/VKzNZxbcN2JSVWIFEse2PWNFxsBV5z30guxpgQy/DrYjXf2I2j1Bg3\nzfByXiOOfNu2ihgT7p4FcHC9lf5OkxRnIpljn9EhR+/YVgaucchTvNZbozBOXeG6B3JXp/qBDKWY\nphnUNWdKGqbO6mD/XA73TWgBmHuQFFA7YJta03vsgdycLh3GcVYK/UyAbPYYXp2o0vtk2zZCQwho\nxWiECuTjyTB1Y7l0pZNhNk/wxmRpaJ8Ny92EwNaiKJJVAdN+RMncevfzOygIR9J7APPVU8k6FK3R\nSyXbfo8SuX9HY5LAV3wSvRyqu1V2AtOoBzucaVvx5qX2u2++o0rYym7ITaA3MgNYbTgT5u/QDHv8\n+hk5YJFJJ0Yn1nDBaEZJNAoaboK+/e3KSYnMklJecLq75yQS8zmGv073xeAZkmwDvRec7u5BKpaa\nKdBAKQU/vfkRb777AW9/eksrUgVSjLg7Lfj889d49flrLIejVQyA07D29xYRA6cW8ZwKs3yEKTr9\nUHIOaxDaEqSUEUJCOyhOp3tOtJ9B3P0+THwDpzHtlEunPQZTZ/qB5q2bPmSWup6B+/PEmCCjDQhI\nWyN32HB8DdZsU2gHunDTiAI9BO+JGaPG/tSK9XGzAzYC0dIpCHTYgFlpZBnlBYfjQMsNsm3otaGs\nG1VuEtBbBZRl++nZnQVbG9Fnm8F7BwAhKwY174n4NaTIyeporgFYYDU1bu8+UozvtTfFtlZs14Lz\n+UyRjeHszsgI4hwJfnYIfcBzyii10GjrcsUYDSHRKthNn2iJuwtrdJC94wF1DF5nbyp685ZbwwM/\nG36j79j+gO8xJgqeeusAamlWnelsXPZZxXXUVq2iYRN8VvwANN5i5OwDrFvBtq4GtUTzlxlQCYg5\nk83TB1rhVCGEgHQ8QFqHSMXoG1QU3UYne5aqZhNri2jCEmKfp6wF1x8+Ii+B+gqZONU+3EEFouyh\njN6piXCDKvexAXsHt3DI7d8eg/xrjoKIBsyT5ROw4e8fnjyYU6tnow6iKL+HiZnfZPufPH71QD5h\nJMvGd+gpGuxgGyE6nQfQmxKGi5ocaGAgLwfcPXuOw/GMGBMFLOBCVjB498GJMelwwHLMqCVieFAT\nSvpVFdfLFd/8x3/ih+/e4OHDo7ElFEtOePn8Hp+9/gzPXrwEh0mz7JGwb2Y31AqZ1COBZ8WAjy7L\nKSMc79BrNWEMKY8hsNkZhMZV93cvcMi0/92tTxUyaHk6oMjGLBHHcR23dBihA72R/sTrZ9RCgyJm\nYHY8Wcwn2oODMjMKISJATaCkU8ruGcVoBmfZ5nCOPFTQWoUA6D0haLKXBLt/FgyU3Gbt3KABCh2N\nsEWIyCmZAKagto5FjZveG8w2m+9F+HOmP4tBDGINZSDQrmD6aWCKjhRA7RxhRqFOgjfzilZoBlJI\nePbsGY7LglaLwXvBvGOM2966WbXG/bAcvAe1cNK7xDBhCyipjjBMvbZGw65hKkvbIME/YhAkSXul\n+mSj63RTjDGijT2zbzZnVgez8fW6YV0LPAEBAAyOS6y1orRqlao1WicPTgxuGRPfrbWhbIX9mKHo\naIByHJuYUK8qvYtqKaxOWkFeMvroKJXTr/rYTb1wk32HYPoMEbobQpEDQ5l2qy5Kswapc9i5Jr0B\nqyJzL3I/cp3WUS0B4thE9tum6gkeaOXmb9ch2P+Dd4h5sO4urH57HErhU1nFzgra2CzwnzWDPbH9\nEH45kv96gfwmC9+v0Y3BjGXeOk8jD/jOv5HZBJ3ZQRCElJAPByzLASllIFRiyxLM3hNWSgMhJhzu\nXmA5m3GS0bF0cITWw4eP+Obfv8a7n9+jdb44CnB/d8Sf//InfP67r3C6f0bxj7MZ1BYd37191Li7\nwUEN57Ls28am9WwbGQESM71gRKAhIgQO1o0SuFBNMq19THvLQ864uz9N7K11jp6bbAj1RrJl3IFD\nKABjlHXPIhg6pwWBJQksIJSTZMz8fy5Er0DsvtIx7iZlE8f4xtwTepO16DAMGx7AxxzCq53NUEI5\nigZiqxDybMloYjXWm9M+d+m9SELQaDCUb0JLAmTMDBi+gVTm+w0hItqhC+duQ7EsgmT6heWQDU6z\newoGC9+wUEBtpOAYIAwy+B45tNsYKjD5tfgByOuibR8KIX5tbS3NDa9q0274+mBJi1dYAwoMWgdv\na8G2beitU9EsgrI1FAt8IqTkqd1bn0IFGJPJ7onzpAGyplwrIQrD7q2xaS6NOvb+TVmpm6DTY0LM\nGdmGPKtm4MihJ3ErpICKUw4Z8VIgPXK0BlkiXSpFgaZAHxiDiQ1hizjXmvfWhseRIEAMVA+3hk0H\n6tgQQE/+gGiHkNX/asF1P8O4ZtUx7R3XpucR4CiA85nmPrH71ody1i7UtKhq8I9xoGzNye1++oXH\nr5uRf4KVA7BgDiuFLPPmk+0ln5xI4TZkOm6akBI9QxDF5nV6XeXllRqefoeQjsDowCjQXjBGx/XD\nI969eYu/ff0tPnz4SI8OVaQkePnsDv/yr3/Gqy++wHK+4yzM/R38HULmJzO8ohCmvKrJsGlBzGOW\nwc6dF+0YEoBQ4Y55o1PS3s27O0RByhGn84IXL++Y6dVBPrUxTAAeMEOYFfEQC5xSP9TKaTdz4mOo\nN+sYxAUMpA6TALfZzH47KVE3hzzz1IkjTMHSzIqjHXbD+NX2mXlguKmSdfXHAGyghi90IVUCIe2Z\n/OiG0ztPV9UqI9sM6u+bWT8ztD2bYlDCTDCCUO4/5mkmEB2U6yexwMrjeTifGkY7dZhuOJuE7osD\nOm0DVM1d0BIYDzBNOPcVkzURLBujza0nDSHuQaOb4nFWHLrDWr031KHY1oL1smK9cmA4GTMRZau2\nvgGE7oXDhMYkBPrbWOat0Bv0QEnx876FV9DKneAUYpU+10BdN04fShEBGUsAYo9QKEJKSAdAEJC3\nQjWwdEIWpjKNQo71tg4G8hxI6Q2EF1MStO5MlfCk6rd0AUOMueTrVsgXb1oRB+fk+mzVsW9iLvX9\nB86vuVgK9nNmPjq923eq7i0ZclgciqL0Z4cZnln2pLa2+f7+AYkcv5pp1j84Vvz7cB8Cl2B7swb7\nJvTH31UavGgh+B9L2uBNH52nqh8TLMczDfLjgjEKHj+8wZv//A4/vPkRHy+PqL0BOnDMR3z2/Dl+\n/8c/4fz8BRCpAJ03aQYwP6eeftbJ8YZ/PmZxZDDwOU9EB7zbhBFqMxHGvmljEiyHgPN9xotXdyzp\nm6KVnVbI6eMrYhLkJZFVI4Qr3P2wYz/ooEDKka59PoRBCUEMo4J5xgbY4SmCGAEm45ZBGYtBNdk1\naTPQxEQ2cffDQdvuiugVhOGtKkL+v2WB0YJZn8HFXfWCUQaHOQ62J81CP6imqdHtvRFnqfjpNJBi\nhKiQYw/A50B6NTjl13aIDIOlAGcWGXvF8jGI4HBi9bZvyzgX8hiuTravGH2UgYtrllC+OVbae5hQ\no/0cP0CH8db7IMa/Xjl2TgGU1lDdQdJxcYOoaJrFBmAQcumfJFDOTFHPHr0Rh3lQT3+XYLzqYIDC\nhOis2g4B6XxEjidU0ybAqua0ZBzMekGGHfKW/dMATE0Bq3boAClFnA53uG4FpXT0hieVsAd2Veoq\nqlRsUhBCg0QmDAMdEdEqMiY+A6asvU0sZyW6y+xZqSbeXXHBle8R7D0rlqVQKGKOkK6TNeZ9AfqR\nhhkXGAp+Q6yV//Jxc2LNJNcZ9v4UcVeyX8CLrCkXU+Sf6MZJpgSFZwx2Sqorppn5jDFQ1orvv/4e\nf/0ff8WHD4+oJtAIAjw7n/D568/w2Zdf4HC6g/gk74mR7Z/h0+phFgW6B0AJcS/dPEPwYC8MOq03\nXC+P2Goht9wxNnBqvConssSYCW1EMgnIS2bwOdbFONU6hUYchwW0PsgzbrsPSUSc+GjrzRgZ3gr0\nYOYZBrNDXmtrFs715s0/W/TmfwI75IaVq6oDGgUx7g1a4/wYlTJYD8JYOHY4z58zOka3VwSHOLAH\nXN3fK6xv4J48DKIK1T6ZIRj00e69Yd02o9QFqGG1nhVzCEO3qUP8rDEmxJQZgO1edvdm95Si67Rl\nUAsI3YRDEjmA2Q+oOQBjHsD7+gAIq2zbZoMVLHApr+mwA3GYIjolmTJ+FwnVWu19R1ZKTiDAzaHi\n11EcoFJbtt4k9PV7ezhacHf+dQDMmpLVkmXXtMMEkoYdzhM+dYyBthKqGY1U3RSYOKUhGLWja0Wz\nvtbxeMTLV2f89PYdel+n2nQXEPL33+4v1Y6QAkIP9u2OIdwDXIHeIPcoZOvr5iszYM24FD75HuDw\n3Sy2rGqqjZYUUMoCMaEVJhQO2qnqDkl+8vjNBXL5L/4f4PfBMxHg04vFbCAixUx1ZAiT+jWDrbqy\n7+b1hmW12vD+x3f4+j++wX/89WtcLxtGHwjgNJQXL+7x+svXePbZS+TDESJx/m79Bahot0Cdz3ry\nYcgmwFy8XMe84cNEJWN0XK8XlFpwa7WpA2hN2ahF3OXVAIIvXMuA+sg3UEuwjLehq0xGRG802dfe\nkUKiGrRVrNtKM6OhN8GTi6sJG3Q5B44tE+H7lhsYxct9EfMYV6gM6JCZwfI/rKA8g/HXzcHUfpjY\nhgjCAcXBLsYYnRCEq3apqNqpq0NmsNnpmAzkzvQgZEWxWL+BdobqlNZ7ow3YM1IYJ5xDIBjICZ+Z\n8hICCDfl6FTTlq3sgVxkNqFljMmW6a3ZdB8CN3Ami3r2Topn2epePXnpfrPuyEmPkGgU2BCs6Sno\ntc8DUoOLhRQYN423GdG5Vidk59mH5726/wH80LFZmNajmZPy1AMpPw+U5AU4V7831K2iXAparXbw\nNeSYsUTy8Ee7GX6eIpblgPPxjPfxESLFaiH3Vdn7axQQ3uxIZ8tJRFNm5eNmEpCnafvf/tmt3mIG\ndnOQ6ZOt7h/YD0H/9tCBra6zfzAm35xWw2w8U/Ut8zf//eM3F8jnYx52diGdU/7JR9GbvwHMjIh+\n4xkYT5sQYphm982iY/JSoQPl+ohv/q//iX//63/gbz//jFZoXE+2SsDLVy/w6qvXyOcTu/jKDMrp\njZi/yd7fk810G+e94ONC88zyaaWxMwjKtqLWCiaLVJ86n1iBWe7mJdFbBJiVhwoQuzEjGss1tQAU\n/eCw6KwmzT+YPaqOjnXb0J0P3p1X3VGLM1c6JBofeQA67Od5xu6BOSSEUKHiWRLvjYCTfzxI3S4A\n8uDNl9v4ygyqHAqRMr02HD6jjbZzoPeLzux/TBaEHwiMwaR7TqaNOVaKKHI4IIaIdVuhGpAzPd2d\nm99NsBJShLc4Vdnwq7XMST4Q6x9Ecqq3yxXXy4oo/JoEZ9cA0gJCSMiBVrYQQLtiK9uTazM8oI99\n3TypQgSTwsilwsk3qsaiEfcjOuy2D55Vq0xYZXLYbX3qTVUwDbDmQegGWUAfDX00tN5Qqlkxbw3o\nMKvexXzKvaKxcXBKN8xajfbZBqAdOipK3YChiBKRlwSpBSlFnF+cUVfu5YePV2xrM9uJ/X0G8bF5\nOis+hZt2CYCEFBa0sRJmmnL8ABEOf54s8BuEhRCJCbhsuPpNmxl+wHXx1ynUCAGekXuFMsRmfkqf\nv0MhgA6EGy+WTx+/uUC+J8m20W6l6PMhn7zi5mwVKitzWqZrnzhQHoA0Eo2tYJmjCk8+dLRa8PHD\nB/zP//uv+O6HN3jcVvNCGFhiwPPTCb/7/e/wxT//MyQeDL+HKbp+4bPo0//K7J7LzXPmGY3ZETeM\n3UsrjE4f9bbziXecnIs0Zy7snCJFMs6UsU3tG6b1DvFArp1cY2tOsQSnH03K0cymElKOzG6HziBJ\nVWncHQe10SCpDZRSZyaroOioxm7+50cGv1l+yjxE+R5kZnGqan459Fef3i4hMHAGh1woBCmqWJaE\nyRYxWIZCM94nMlTYkHUFIlkeMgMiG+ZWPCuFMqSGDvTQgVIA2IGqpA+KT75RHrC1VLRKjjTVuBEx\nAu7rwhtuGVhXoBs3IQSjv+0QCRkpY1abtEbmsh/DIBoRoA9OWfLPrxTVdcN3eU05RtGbbhICQg47\nZ3z2AHw9GnQS7Tp1TFGSWqOcLK+KWlaD5ngfS7liLVeshaZXrHYEOWTc3z1DjplqYdsgQxUhcd1J\nCAgDCHVgCCdnlcbByCktkChIS8TWgVI3bO8fIT0iSUJvAehAlgREWD+GDo+jA7ufDADdmWpykzg5\ndVGwV9wzYZzbl90szhH1kD3mc2dUuqlY3B5Cbn7UbcE+Q4Ob4llyAI8Pn1T8/vh1mp1GvwMwP5+H\nradv/iabte/elkP7K/x51jkO5EenSAN8iJj3jRvSWEx6EjAV6/WKtz/+jG+++RvevnuP0hqAgQDK\nwp+fT/j8iy/w6vMvIbJMnNR/85N345nyLMM8iO9fuwnfN59q/6+CysTRSQ9z17+JI8I2a/CBshEp\nktkgXuJbfyCZYCbZ0GN/B31YBtWHSaK5sGPE5KHHSOomsUxWAQEBOWfLwtucxNQbVYuteanvPHJl\nyTqArXY8XlfU1Qcz83cGpXH+xIDVGGLGOvKsiuwNNz3jwzH+btk2DFef2XXwKoH/9VF/fhGnulMx\nX+tBtG4VrdqkI1TUWifurCIWVGUKkpyb3Tql9iFGpKToI0AM91bVCYO5NP625+BwgHqVBHLcQwzW\ni7DBKRaVaazUdtGL94GCwBoKJqrhATpBAr+uHiOMJuiZLCubzmZ7r3uV0YYZWilGHSjbinW9IAUK\n4GJIuF4f8XD5gIf1kV4rSibQMZ1wzEfocVjuJUCkDoT2BZnXpLmym5VEH5Usmigcrh0J4W21oKwP\nSOGIHDJ6jZARECVxsEd2OXwzLyMelmhOgDCbAp3Ahp2zDiVyLTLHeloxCm6D+E0skn2DOuI6p5j5\n1y2w76RrnYfazlDxe2U/0gVOnzx+lUDea5uln9ff7LLTtF8CfXu9++0l8G0iflvazewd6sYL9JuI\nLHdZxvO5o3U02Ud+7QwSxcP7D/jum2/x5se3nBKvxuUUqvLuzyc8f/4C5/vnCMKuvnVz7Gfc4maY\nvxPiWfgv34Qnj5vX0hK0oZaCdeVwiWSbmYGO1qdsDrIxQ8qUHSpWzicT0IQQUIXDljnMN1rJOiyz\n6+ZLPqCj2WKDqTlBqqBgp/VFenxHzQCyiVoHxt2BWLsO7JQswZCBdDjg8VLw9dc/4Oc371E2CmkA\nV72Gib87MwLKYEi3wIyU0nwNxIZ192ST7ukrzyycQZb/9IAbZrbfTEk5LOCSSm/BvxNK6pVDgkUN\neel9rxj8loGfmzoAg/cCK4PeORovdU6T6tu2VxoH86cZChiPezoMOIURipiIyUd3KLSDyUe1+UHU\ng1sXu3+K0+wZpcWqEtVdSaigXN3ZOrzNys/ZFHXbsK5XXC4PuJYrrusVl/WKUQZn0o5Au+NWUOuG\n58+e49n9CxwOR7S6WhbfcGMWDNhn7o1zRX0ITBRek3xY0EYDLhtaJzyjts4VFOTlJQJCM7rem3kP\nkeE0ZCAJTeyc+dRh3vZCnyMe6n4IAmM0tF5RO/1fxMza5pwhYZXhAXz/AztsvArSfVH8EpIw47v5\nsxi7SyfQsz/Pvw6RmzFzv6GM/PrxYc8ETFrvfhYhJpsuE+aIqBjjXLzqcnMAVj/zc9/sLBHDLGPg\nFO3W4ZOARld04YgybZRWY1Aq/OO3P+Cv/+Pf8eHte9StWLlFWtBhSXjx+jOc7u8R82LvBX9X6txi\n4pPdIE8z8f3J+wk+q5F5EPCgqqXielnx+Mgh0HlJSKWClifJYBVO14GVpLez/1RhNLSBrRRcLo8Y\nY2BZFtzf33MTxWjU9YgEh1n6DOTRvGxmE8uudTTOLMtsozp2ZoGcN2llucEYIQIhJaoxE5WubKAG\ny344oeh4OOL582f4/IvXOByW6eLnEIU7DXozlGPKGnorqLXYAc+5rBrCZD9w9Fvk+vJNpYCLoKJB\nNX0oynWl94kF9NmoNTw8+Alh1sdDaVa1JwbR1I78PSH4XE0TagH792GKUiVUx6w7YapybS3NpEDB\n6qO2Kc83nA0KmWP0PCuklTihIw5G5AFVGzPsthWUjQrLUgoVl7WhV8vEa0EpK9owt8rWIBoQNCJa\nf6PbwRHzgnw64nA+orQD4jWDZrOWcKkdqgr2VlKY66+ZknOYGEYExoKKSHGxA57iuOWQYEQiu5YJ\nIhFDA4YImh1mrthUoYaCy5ru7FBFhQA9IDRFHYXv6SZD9qHoc0IQnDliJzuAOYPYmp3O4gHEDlXg\nlgkUbJ+7Q+aw7NzrS68c1ZMH9YW6Qz+fPn6VQF5WNm084+5jd1aTUFg2psSMxTPPyKZYkB1gmR9w\nHoKOAwKAeYWMwY3TB4IGtK6oSkOfsm3kGteOh3fv8d3X3+Kb//gGl4dHfp0/FFGA43HBF//0Fe5e\nvNjNq/gpngRv/1zz3zd/6y9g6bcvffJvy2A4+LaiWuZK3BuGo5qUOAXjHFvZaKo1b+B5Y7S3xoap\n84d1gGwXLjEbdzmrCn9DMbigCjuop2xTqlUNrVUAdd6X6K5+ygAawx4opx3NPBO8CUXoJOeE4/GA\n8/k0Ky0e9moHhjVLHf/vDa0UtFrQGmlozh5xemNvbB6FGLEMy2Y9ixqmbr3JXqcXuwhFOAB8BmjO\neV5vb+ztmdYeyF0JGkaY1gnJBmzc3Gg+PwaisXawRhvu0GfArnLtAAAgAElEQVRD0deQVT2zAWmZ\nnZhYCmB26g3EGxpjKRW1NBtYvKGUFVvZsG0btnXFulkgL2SItOZ+M8yKYftLVBAlI1lAG2ClRuOr\njJgzQjb4y4UsFryDBXPthMKiC8Nsed1aZIUkWA4ZqkzuUs9QGTiejliOTKbysiClBbUDOS1YYkKO\nAW1T1Er7DqVgmuZTdhHd35xkhw4xvj3Az7eDn4ahw9lFtztb9zcuNyXaf/Ew8BcAYZYBV+H+8nMB\nTFERj8LfUCAHYLhgfxIEU4zMElpF7Ik+00Gg2hFGRBgDYpmKTzDBTdD0qeSwQ6EN/gk6EMaYntVr\nbXh4vOLx4QFl26AS8e3Xf8PX//k1fnjzhiOvbHMKGDDPpxP+8C9/wvPPXiKmxOTpxvPFP8ctR/zm\nw/K8/QeBXG/+PR8CsmKsu+1e4wzIbMQMEYgYqhewZ0UilpWHGQSc45xtnFrO2d57mAGRWa77PQQT\nZuzc7Wh/dhETh2P00VFLQYwbA2rvhLWC2JBba2QiYoyIWgO2baD3CGi6OYC5lUWohCxlm7M4x1Bj\n4/gW29eRQq3J1mfw9XvHw5gHhPPlgzYsS4ZEsQbw4J/RObQ7ciBJOBwMmrOEIGAGWVI/zTK5+/i9\nPTkJBp3kJaONMQ2aWA3ADuWbiT9uKWBVg8NUO3y4V0Q6dhbJHAEn++i70QbadUO9rtQfbBvWbcPH\nDx9xeXzEer2ilJVwSKuoo9KW2ILFGDwQBsIeuIQwnsDbf5adYqcOwqA9CG1gS6toQwFEwnHg2vIR\nbqN3SAvo0faxJSgwy4N8yFjSwsPaGr4xCvLBbIBzxN12z/5IFzy7O+PufMBxSXj30wUXXaEtQWG2\nzEIocARW4UN3Ic8TNpN/aMXMsmeFY99/igAAEx+fCAF/wERa7BBQ2+eulSBLneveF4P3/rypLaLu\n6Yb9hjx9/CqBPC30qfAPy04832Dubar1AGXnfxBfDDZ70y9kt2zPgxVfR9Oex8cHbOu2Z+TSgOhy\na8HaB959eMDzDx+xlIbvvvseb376GR8vVxTLWhVj+nYsS8b5/oyYs5E3OgLkk7ByUwLjk6D+SfXw\nXz0Unu7b+a2CVjtHZtUBZx5QCsySLqaEZaF971Ag2KaeDT0hDzpGw1styw4WOLgOB9yO09/mDDA3\nn8udm7zJB4PI0mIT3ftATtm8M2yGpvOENSKvFSFHy9i4EGJkRaBwqbVjvX4d7NC0dRPC/h7ZpAUx\n23l4GbRhd6f3zszMWC6tNUiX6ac+y1+7LmKfc9g2nqISHbjVdqeUOKzbYSfYJo0+3YlghuP96hOC\n7LVUXqr/uJkUeMB2zYOvJzZSmxmGNbOxLailoF7JuS7XDdt1Q1lXbNuGOqjivGxXZuBts5mbNvRE\nxwxWBF7YmNRPql9PSP053da0V3Huac91daPQ9Z8iM17zc/WBCFJMY44ICUhLIqX0kICD2Ki2HYIM\ndrBCyEbJywGH5YB2aHj54g7P747ISbE9bqhbQFfCtF13zxhCFGIDKmxoSwzAEPTh+9Uz4Y65HeFD\nY2zPC4+7+f9/4bHrXfanUP9k/S3YlCnD6t2uYSaI2Bv/LGx+S4H8k8k/HihUFQmZai5rfNLes9mm\nHOjBA4IHcivXBZOWV7aKy/WKtRQ6z0mHgE2wYV3ipsDj5YrHxwtqV/z883u8//CAy7oRflBmhlEC\nDoeMu2dnnJ/dkQfcGjSw3Aq3mJXsVDbAO//yNAh++rBA9hRi2Uu/1hq2dcPj5Yp1a2jdNtmw18nY\nXQLNrwSeUc/MALaIbqfamNjBoofl408yChHQ4wK3Wcp+dDGmWbbiB4IKQhhWTdgmtLFtE4tOESEa\njGE4S8oJKZsvTnQ4xTy5QUjj5jLzM5owJwobs90muM+D9Oajc1A3M8YYWQU45Q5g9ZBcnWqwlVdl\nCsxD51bBGwRA5EG7B629ZnBoZedBMAFgAk3uOM834jvDlGFqIqve3boX07ell45WyacupaKUglI2\n1K2gXgrFM2vj12tBaY2VqXasdUUZBa3XSav1Nfg0DMkevCY+e9uZYoPZUV3X4AYhdVV7h3Z+NacD\nzmdWy0FYdafAPsjpdEY+LVhOC/IxYyjvEXFzQnA057J3pQCGmoGdmtrVgjEAmPOhThWtV9SsErR3\n00lac33uSUVIAeqq0/llA6v0l/evzHv7S4/b5G7fh46iq11FxY6Nu0+L771beb/HuX9El/h1Annc\ng7er9hQs6WLKkBiRjRpIr41ozUkbO3YrTrhdYJYBbeuGtRSUygxW0CwUBSiSNQwCWueGGBLw8WHF\n5VJQtoraCqC80QPA6e6El5+/xN2LO0hU1HrlIANniwghBlL10sQrn5bb3qSbx/uENHZBh32OQX63\nDsV2WfHh3Ue8ffuAy0qJ/p7jUL2oTdHLQK8DcmBATXl5MrncRToiLntnl8i9U0Kgl4XY++JYK8M3\nvXmmMv0/AKCOsQdy5p2zKdnMxwWw9+tQkYAeOGTywxd8tgZWTMy0IFRAjj4QY0Y2pora+2sKhJyQ\nlgWxFfRNUdeKbauAWjPSsW3A4A6aqS3LgloLRq0YSkZSDJEGZpEc8hTN22MQp/Ysffdr0RvBFaGr\nbrj6gE4mzE7j6+jWSwhCe2OORO5oMLEJBaVoAmjoKHXFhw/vIE2hldas7cHhq4Z1LbR87bSJ1aoY\nlfd6ANAlYkRAm2LUiqqFFD5v4InzM/bBw/NeOVLgScX0B3aIcLeVnRO9AqC9opUVgoGAjPvzC9zf\nCWqrCEGwLBnH44LjmQ3RfCRLhUwk4fxYY/+4cRqgxi7isIkQmU2nGM2HiNfix5/e4/07HsrryvWn\ng/NvxcRNvW07/TkkqAw07TjGIxQB0p1pJfPzk5MghJfgROMxD0K1PeJ7/emxeJvB73GKim7eg6Hk\nq7sPjHu0KAYiElLMUGRAow1P/4WY+otf/f/5EWLes9TgOCYQgnfxmRmpBdMQTsDhMDeO83O9sJt+\nFhbkJZh5vVgzSshaiQl2cIxpQJVSxOl05ARxcThkx+tSivjy97/DP/+3/4aQj6gDNMkXWxR9TLMb\nLz9D0Ml7draDy7f9uB+wjDdgbvgJEU1vjIjH6xWXUnF89gy/++Mf8PKriuvjI8plRd1W1FKwLAvK\nVvDjjz8jHxKW4wF39/fkHVvId3kDJKF5BaBA7IPT0rGf/iGosXIECJY3COdaTrzb3q8vK5/xCd9w\no8MHB4fpfcKsszUKbFo1vF8V2gY0k7kyVXdK2GRdL+j9Aee7E2KM6GPg/eMV9y9f4vzsGUYQaGvw\nysEhOG8wzgw6xDnMOyY2LNO89pYlO1VS2XPoQ422djMsYiJfHtx5PZoPY7iBftw1k/Mn2VRs1cRS\ncUzFYysNIWfIkqE5I8pAuTzgp+9/QB4R0fzStbgDIStGjoxbAAj57o8FvXTi5pHNVVfohhAho7tt\nFGZMkFu5usM4Xo155WxPBTPRYNBEDoE2rEZHvV4uWLfV9h4Tm5QyNAjOd8/w+tVnON0dkQ8L4hIB\nq4AgAPpAUOWsEd0TBHcg9MYvYB44l4sNr+jIB+DFizuEEPDx4wMQO52RYzD+uQVGGwAzhuHiBu+O\nBtILNUyI45P6Cvjkz+zt/MOsfH/8w4ocPBJEO9zTxVkrAFHM1gdErC36D8SHv04gTwnEqTDfMJsh\nN+WzHWAaABHecPsO4kjkvYoH8j0bd5Oh4/FEDHIMjA7EMWzqExkM6+j4+PCIn9++xeG64eHhAaUU\nblqApVuIePb8Hl/9/iu8/uorNA0orZudKshbNnaLZ2g8XQeFpMH70xbMQ5rBvHOnQDHQW2Xgs53V\nmg/wDXj79gMet4Jnrz5Dur9DHwOXhwc8fnxgQL9uSEbhfHh4QFwDDtsBY8AyTfJzW/MJN1yGI0dI\nZBNouqfPg4eKwBDiNKfyLE28KQOXtjNMdhswARXLGnwh+n01P+uBKRBi3FfSP2tFTIKUwoSBeKAn\n47d3g3AETvkDKOyBqgl8EiRwZJ6zVp5CMmFuqOBQSRD0TqZLDBFWvTsr1QK5IogxM+xUcB0Eh3hQ\nfTtM3dmHovRGh8Fa59izsm0Y3Wl9FVtbMZQZaFk74vGEeDpBjguwbdg+fMSHnx4ROwcnHPPBSn8F\ngg3Uhu2hENBjQAvkk5N5aJmlg+9+84H9g3iwmkmMPenWqO6T2OGwqFekQVyNaQriQohz2mWkjJgj\nYnyG892JB/LCA1UDDw816FTAam2ocaZ9LTX2upxmOcyrpnk/SxQhU7E7rG8k0arqZhm9aVOYcesM\n1gJh38PsPOhZ7pj67UXz0G7XTf07t1Xp7Wv+cfB++rBDw6qbaZnh72UoQjAih/6GBEEx5R1PNIx4\nfxgsMdpsEg4rhZzHG2NETFygTsoBMN3cQoi4v7/Hkg8YraEjkuECcldLrdh6w/c//IS1cCrKt9/+\nDQ+PD5SPq0J0YMkRv/v9F/jy91/h2cuX2ErHCA0p8wBxC1Y7SQD7KMTvDeccY96gEBfERM437WjZ\nrNq2jc2qWtBan9jnVge2rWHdKl58/jnOJlg4PzvjcHfC48MJ5bKhF1PcVfqxtNowKt9TFEFOCa2y\n/E6J3f58XKiiTGCzDrLjuS6Zd+wz7pJxd/IMIWCxewLLnB1H78NUiAK03uB8WQqNZAZH95vndPmC\nEIBlyeYoyCC5LLxmKVXkJdvkeeB+cOAz11FAiBkpH9Bqp6eLufndBnI/8J+ut72ZKGKHjMUxf65/\nLk8u5nFo61Erp924PL23jrdv3+K6rdhqwXVdcX24oJWC43JAFKDWgrcf3mM5ktdeNiDFBXEZiB14\n+OkB69sH9E3weFmxxIb0/AAz24QAPABM0CQpoY6OIp3GY4MYa+uwhupwUa67IezuhSKzJ+O2GE+C\nlwc8IazAEOP1D9eIj7ej370dMDrQW0HrBalntLrBIQna0AIS6S3CYdDDvNzZudau5oFvQ74tYPsE\nLFjDlM3fhrVUxMjQ7AdciAERYaqXhwnUJCjQ69ybbKpGQCOGDPg0LM/HYdm33FQKexD//xK0/9FD\n983lmfeEsmCEgT5X36ePX0eiP080XoRWCqefz3Kdrnsh0COhlMKmYeCiT0YBCylBhX7Bjk96ubss\nCyl2s0QZU8jgA2t/ePMeP/74DnUrePvzezxerrbQFUsKePH8Gf713/4VX3z1JZbjCRIzRBW9VX6C\nm8xTYfFBgDHoXdGMVaC+WKJAAhu0pVYbdcXS2qXxVKIBrXMcVgOAKMjHBWEkJD1gORxxOJ/xor6G\ntoH18UKa2XrhIOdW0TY2AIcObMVmSqqirStyTtCyQteMfliQlkyRUwrzOsG8JxAiYtpHvrlJUgjK\nuYqq03vF55H21hAaqV7M9HhEsBkpKJV0Pw7FCGjdePCWjXQ7uFPKSHnB4RBxdyecCwpu7pQStA+U\n6zoP/JAiltNxerHwnuxB2w9ZbU9FNiktEyqZJHeFGYgx8nkzvlmzzT22oYOCmnWd9L+tVrx9+xZb\nqaijYysFdStA6ygKnA4LlpxxXE64f77gcFpwvQzI4Q7IBzTw8x3v7hCfR1w+fkQYinheQFOmAZXB\nYcU2Fo3VqUJyRI4C6UCrA3XbMBqJ1CmmG2gMZtI04GPaeP1dYcug3Y3SqfaiqT8w+CiFNOfjepbr\npLr9db45lDBOMGinq0Fi/mbsT+cfZ+14chEisUhVCqKqed5AAkodeHjcEGLDujZoh1ENgZQWIAQy\nbQbXigRl8B7W9JS+Z7vqKYzs5lhWpfiO95yZyejTHtftepuN2gm/2v//5LncKhbEb6peHxnpB5f+\nlgL59fEBLiNWKMrlSpHQMHWcAKUUBmUvZQ3fjDGhx0hznchA3oeap/JuaE+YpM8rybFVNp17DLSm\neHhYsV1XXD4+YF2vqFuduO/peMTrz1/hX/7yZ7x8/RpiqrwxuKBCirYxiPm6mIKOeDoH1lK2bRCA\ndMCYFs2ycc80wGex+RE42UgQkBY2Lw+HI3FuBTMUM6tqreN6fsThckIvG0avaNuG68OF/uKNilmx\nskwdIx0dvZij2qBhWFwIRZVS7eAPBmvBlJ9i/i3xxqfEkIXhVFCyh0Rt+FWMtlGYi7XasW7UCrD8\ndcwmGCYvVrXY4AklfzzlzGbg6IAMin3GwLauSMEChwBhsdmNYsZH4ykd1A9qHjCYnwFgFWaLZfqh\nuKlSNzZGr+SbI1AoVFtDLxW9cGo7PV0GJ74EzAo72pAKHniCvGScuuJ0SsgHer+HwwINEW29IkRF\nPAlCDrg/3iFJwCll1MuKXqk6DonqSuk7ewshIJjOP7Sbvo0dwkEi4QylPsPHlzm7I7pHEYDWNzZK\n+46hw4JTmNDKbkDGBqpl54bz3sIXngg4P75Xm/UZnK4IzAlU3lgXtYYqVa5j3hN9YnQ1VLDVCukd\ntXeEIZBA+M6VoyEaY9v2AV9r3HltBr34euD77U9z8psALPNvHjT+uv83Dz8QnobzPS0c89+q+++a\nC/sXHr9KIH//849W6rHMWi8XbJcrMBTL4YAQI9ZS0HtDjAF35zOW5Qjffb03oPoNDKi9o5RinGiy\nYD58+IB1XW9OwoFgi8QvTq2Ky2PFxw9XtLpBZCDGiKHA3f09vvjqS/zTH/+A4/09SmvYLhsQBvKS\ncE53ZFIosJWKDx8+4MPHB/pCq9m5ehEW/dBJk5ftFiQhAO5v7e9VBmN+Hh3JmiBJIpz2BXD241YK\nrtcrBhTpkCivHwOtNqzXK1opKOuGdV0R1Ahj2tE2BgOMjijAaGR7pErxSqmVrv7WSW/aOCXmE78T\nZmXM3qph2L681YZRkCnCAR8IAevWOGG91tm1V5moI1SA5XhEXBbU3mm2BECDmA0tN6cEHqytXTEk\nkAkViRX7sGXpgDo7SlzEofM682fRWgA6EFNAyhECRWvFXc0hOtDKhmrKyKGKmBPSktFqhQ7CfbUW\nHJaEw/EEUcVhK7iUykMpDaDx5+Ql43g6QENCyh1Ahwrdr3UodFsRUkPPDUUKPnv9HHeHI2IXvP+h\nojTrxWRz+1OwAgk2NWkrs9wPIfAg9u66MYtSjJBR0YY7/dE19Hx8juNyADBwubzHGA1jEL3mnb2p\nyuTpABBIxIBL3MOemGBADEsX2CSkQcKBQpCEA8cJc2HeXx9AIrDkpTW0UuGj5JxKK+Ce6ibRHcr3\noIPwpwRbBzGx19HorTJdS1XRUOYh5Rm5io1b5JOm4dXkeSt2vO0Xg7iDMO5tYw+Rm+/6W5Anr5M5\nDpLr1K/db0qi/+HhcarS+qCfCG1aG2Lt5CODnWnRga02LEtByosFQafxsTXijBWAZU7vHY+PF5RS\noaDgAi1AQp9qyZSCqcX6VJiGEBFzxOGYsNw9Q48J3799h/DwgM2ojCHS2+R0XiEhoNaKjx8/4v37\nD7g8bujdWQ7MwiXadJeUuJCCN3l3XDanZNOMzJPCykf3TMdQ9mFuOKbD8MQUBIcUofGIQ7bp62Pg\n/v4ebSvY1hXXyxXaOOhXVLGlK68tyJNX7Vh6gxhDpTf6sqhlQqnHKajopaOvzdv+Vp1wco7/iTHv\noqFBwU0coPp0+KIN5E2rQTCq5sDYEHMkiyjYNYnehBQGFcOwJQbEoGDoVbTOQ3BeI+HBxoxLkYIg\nibNRLNPuDRA2p2UIYjggQtFCncIeCRkxMeCt2wqiKgEpAs//H+bebDmOJEnX/NQ2d48ASGZV9elZ\nZGSu5v2f6YjMyExXV2WSQIQvtulcqLkHs0+d68xIgYBEkiAiwl1N9dd/+bogOHpRYgLvbWG7LJEQ\nHakGoFNcQ6Lw7evCl29vxDnx4/E0jYMoaYLvv65sa8Y7JbwnpnmiDFgnV9s1lCC4W2KSCNGRW6Nu\nFsqtxXyFpJ+4tQUsd1U77JhQrUiD5e1GLjv78aTUw+ASEVBH8AknymGBZ9aVysl1OVeSckEmp/T+\nbBxfkMiYgqThXLTCzKDbIrjBFPNpIsZo13uxYBOD9cZ9rt2uX6xrr92MyI5RNxRPSm806ag2oth1\np1opKOrt56yaB2qmgy0XkG5/xzI3bXroA2YypG1g8fzEUtHRTsnrOV5tm9p9ev7ylPufh9tph3H+\nOdXTaM2aBtWT8svre5r9GT+zWf7r4w8p5Ou2Xx1YV6Nm1bEAq73ZqCgyilgbb1rDB/Nh6ePovEQt\n5/gzOu9WK/t+WGL56Da0WREiniM8uOCYlom3L28gMC2JZVlIMfHl6xvh7Y1/fDxxwQ/1n42Tvihb\nUaBTSmZdV57rYZFw6szBTobARCy5R3EGc4ylkvmAW9RXGEXcjRH1Z9ocWDG9uGKjuDKgizl65njD\nu+EBcr7IY/FrAQenQZjR3l6Og3p9DZQQo3XOCDkfJn3ujePI7EPmnXMZUEIZ3WiHbF1X6Y3WAVfH\nOavX8zmnjt46NQ+VZT/FNAJtFGDk5YbnhnhoOPydO1iTkA8K3lhJnTTB3qx4hRDwCmaC1dn3nTl4\nghdbTKp9j9Y7PspZL2jd6GmjuScER5on8gbburGXjHeCU7NRjeGF2frhBiko0Q/tgIf6NpGzFdj3\nKbIsE0TPNBuMIQLbngd2bD44Pjr8MIbSvXLUTEPQIDgCDsVNHm2O0jplMwvdM2DaGuThKaOdETk7\nIAvbCxgtMtOl0Mdrz4BXvDMWjxud9ckWeXXbr4f8VF/OIukwG4Nz+j0VqrVWJEQkjJBuJ4QUcNEO\n/y4YF35EFLbW6Ueh7UYIyMXYV63UK2mp9z5yXI3lcXla6QhzGJxsY7fYNXEu6Y1haQe+zTADCBpP\nyou/oCBLtTophy93yvP5wc8fXHUJ5MqbNQjLDsJzoeouz/NzWuRfgDhjwuJPVMj3nK8Xyvys+6De\nyfANHv4hpyBAFc0NkYyPgToCeS044uQOu9FZWyHPF4vAnPD6wNG7Kj6ZCU/0thB9//pOSIH7+xv3\n9zemNFlIQ4r82I5hzGMeyx2hVci1cMrPuxojJU4QfLTDY5gfpRTxIeBEOLbDOkC1LM1aGiUf17h/\nyuVjOL3Fw9WtW+7hS9ADMqCOxDxNpBR/B9FY13jKpcfb33Xg/GdCD5Ri3VjwnnlZmNJECN4WwqWQ\nj4PH54OPx4PPz0/WdTXa15E51o2ym4hqPwq6j0iuXs3Pwg1s2A1RlgpaO2UrSBecOpp648xjbXZw\nnlMzf/qQn0tbHR1g7w3FvOKhU5otSEtv5H0j+cAiEzHMyHD9e+4bPUWCCPu2vUbisbBzTizcoWQT\ndbkwpjTHPCXaUawjr4XgHUnUnDubpdiUo9jP55x1xKNBDcFxf5tItUNTZglobbReCU6Yp4SK8rmv\nxFtgkolSinVuzuGjY993Siv0cc2Ds8kleIIIwRXr3FXHUq+ZzUGwA0Ga0fXqcEsU543u18Grx6kJ\nsC7/Dz+Ut+KR4Vx4+gqd+PcFsbifdhBgHXYwC4J6DMqcyHX/HTnjJ088XU6Hf/65wtNxjeZc7IDK\nhfK5U5479chUlJhGsAYKOtgcavAiiOXa6pm0w3UNdKNTWZPkg0X6jQNbGmNcHBPzeH5e/GvCEDeC\nkV9CNzgnzP9ayF/fR396bUQgiA4zt/OLZ0PaL7jmZb52Yktn1/4nKuTltN/s9kL3QS8qOY8G+1XQ\nz5vaqIcB3/uQzxtefLryXTxy7WMpcnYQRgfbtoNjb9y+zPzl/a/823/7N97e36/DAOeQ6C9Y53zV\nu6pxgHMh+uFl7E7DKFsUtiEEAeNgJx+MoSLCnExJGEOgJxNunDL/fd/Z9if52Ad7wpa5fkjET2z3\nFBUFH4gxME02iqaUmKbEbZmZp/nF0jkXWAPLNIe5kzo2WCaq/G4khMuHxYr+abZvfjdHzhyHffTW\noHWbMErh2A8e68rnc+PxePLx+bAU82pScHPYy+Rc2daNXqtx4veMSLbkHlPRUFtnH7g+Yq9nG2ZX\ncZ5s6gxqHas3nH792K0vd1iaEZ2jZjQ4ljkw3+78+5cbNWfKfiDaxmJ6YKmtQ1XqsTMphAjiHLVl\nNs0cUsj7QXfw9ZdvvN1uLMtEDIHPjw9ya/ToOdd66PAOP5emvcMoAM8t02pDvOf25Q3EUaiU5OA9\nEZeIrzYtNulsx0EuNlkabReaU5pCcA6anhb8BjN3jPoKl7VxV9ubnEVVRdmPw7rLq8M2HDamyQ7F\nUsjFIAeHv4rO2VmeBfIsxie47L2zJiRGnu1p4jbl8jxXfUnrRSwfoKyH7XJWM7LbnislZzqmrq37\nsF4Inuk+o85Ea3EKxN4o2ji2zHxPuOAoApZhqOB0BIF0HBa4EuJ0KZ9bzbR6DDte0Daw9+H9ZC6Y\nzpwTx+J2ADBWI4btxL+iIJ6/s9ndXmnziAIdvveWKZyMGDDqll2XJ5B1TuCvg/RfPf6QQl6HO6GJ\nPAZZfywsz06ko1e8mMnJFbo5qp1e5fbEudzgTjlxHxhoH8WqlWbslPUgTUqUxvsSeFsCMY4T2tmy\nSOVFf5NzBOpG+Yri8N642DGeUnzjSk9jUnBASJYlmWJkWRbrmMfo6GT8W90yGLftxnFslp04TYQY\n8EP278bUIjJMqYInhkCMyYyFYjRv5miiixitI7mmPOE6BH4CoK73QU8wWX8yyTrL0U/Cgz4mpjOr\nc8x+MA7PUgr7cRhfett5riv7Vtj3gy0ffP/4wcfjwbrtPJ8b93Xn698OtnXjWHeObaXtmV4L4mzZ\num/b2CXwOvSDDuc7B+7F300xXAUqO+jltFw1oZGVGIMRajFY6RhhxdM8A8EsfFMffOSGisOFTlTo\na0GzFYYp2KL3zH88Odo6Euhba7TS8CqmBciF5myEbq3TjkovQ2XpDqRUDtdYW6b2wbJpHqXRxMRC\n2rqxR3qzycHbIq5y4rcg8bQ1MEbN2dz9HKpyWRs782iXIOA8TgN0uQRrrTWjBLfOmepjw8ZLUHVF\n5bmfF9Wj3Dsw1FNHVxuGa6Z7OTfmgzaglu3zyfPHp88iO8IAACAASURBVBXxdeM4DlrrpDjjJVGO\ninqzQQ4C3antH3yA4MF7Wsfu5eBsuerPZeRgbYnpKdKc8MMBFCIlC4d2lGpLUbWdzJmD4Z0we6Fr\nY9ufQ+B2duQD9x6LWr3ur5e65fzaKzTODdfSONg6infTOIwr2gum4nTX377g1POH+hePPyYhqPfx\n8Vo09tOPfGzVX0sE448rDMpdJaaEHy9VG/agl0McerEWLl52tZSdY9/pNeDaQewHegi1mHmRDxHn\nguFndBOY+Dgsa61oBF+JyTFPjmVJ+JhAHLWdOPJOPg5CdMxL4n6/c19uo5CH15shguBN8ZdvlHrY\nAnW5mQDGB5yEyxXy7KqdP0dZd4213sk1hl2UQATpch7ijEbMIKoBF3C+vuq4ljLXNWI9hBVDgxCc\nQtBIPIv4eJwdxF2Hp3y1bNGSG/ue+Xw++M9f/8GvP37wuW5s20E+TLS0Ple254Pt+WD/eBoNdH1a\n0a0maZfrIBNEK06E4KIVyKbQHUsYXh2AlkqV0QnXylErWzM+tR9Tam2d47nRGkS/IMkTh3/29x+f\nrFumqfD2JVmvWiuuewbgSjkOtBsWr32oKFUvq9x8ZKR21ufOlgtxWVBn/PNSFTq42qjlE42OHJSH\n7IONBe4IhOTQoHTX0SZoUUorxJtDgqeJUGpDSzVYJQXEQ9urLZ+L0qu9jgAxBeqglOI86p2Ji4bK\nUWpFxCacVio110snIWIobnDBYArtQ2zlr+toXC1joh7MEcfYcaRXNF1rHMdB35V9hFY8fv3Bxz9/\n4/l8GuYNQ79wI4YIw/AOLE9efcCnwDRF/JSQENDm0Ajdd6IzevLpleO8IygEH7jfFlwwqNX7ZLa6\ntVJP+uzQIHQxrcCyLExzQrVx/Gc2dekwtxoAJvKTV81534yX4fWVK+rRoz7i/GwQChXnjO5p36Ke\nd/DvW/pRN/5UEv19PziLxFnEVXUkAw1IAy5JrfeBNhgaKSVimu3PilyycOdONaAQHUzzTBiF9oQL\nxPTh9JLJ24NWDiuUTsao5wyvGhz1PtKJTnOnokqfJsL9jk/CbYnEFOga2AMcUckJpvnGfLtxWxZS\nNMOnMHjR5yLDiaDeE+OMaiLESEoTKaUhN/dXByQn3nZuleQ13oKd0z+/74xswNdEdq5wGG6NP+F2\ncEFTp+wcTiHEiY0yxnC9DhH0FPgY7JGP4/IN2XeDA47jYF03tueDnneidop2Si3UbWN/fnJsK70f\nhCQs9wnv4dtf/srb2zwWiXpt9DuFum48v3/w48cDxRPjxKfItRiDgXW3ESw9FH3SOssc8cGRS6Vt\nmdLgx9Gpx42YHDVvfD42WlPStFCc4hdPnBx1zyOA2Z47rdO9ZwozcSzpe+2EfnoJQXifeEeIy8Ja\nDh77ClLRbB+lFI6tsWvlCA1xagZoz4PpnvBzQAJoFXoVeoNerMOuvVNqp++FumXmr++o2NcFs0wo\ne6OWhgum5N2Pw5aB4iEK09tkAcaPjZILWhq1HlAHc2TYIZzwgRuOmqhBT27Qat3AiA17jrhhtTDf\nZKjqB8+8Ketjs2s1OINUi1F17X4XxNtkGeLEdLsRXaTWbPqN3kkob8vM/T6bT9Fx4BzE6CAKxGAF\nstg+plZFp0RzHSee2zzjouNolV47p9hLxCHRppKBTYIzp1bn7NC04AkZGgZeHdLZMQ049pxOZFwr\npxe7jOfn5zdCmOit0PdihIOB90Mb+zB9fU/OjvxPJgh6SaLHC+gMXjlTzRE759TLqygBFowwDYfB\n4WPi3BhsDGIRb0yHlMzf4fx+OvDKXo3m1ntF63Czc9DPgi8Oqqc7Rz190rVfysscAmV9UtYnt/ud\nNM0vpWa1JJWyrZRtpi7zwMetOJuHh5VP86CwhPoYo1Hjgpkc+YHVX9mC15sJA5y8qvZZ6M5fj19w\nUhXPlvx3h/tYHJ7Q02uJeGJy8LPbHbxUaYIaG6E3arXlZsmFY995PFcez43Hc+exrTwfT9aPTx6f\nPziOHRBKaRylmnz9OEzc0ipeHN0LOB187kAItrA6U6Ja7uzPg+dzY3sehi97U63WscSdptmWiYOn\nXmo1fDhXbnNimsbUZQjFtfgUB3lbeXyuaBeWWydvwnHz1FukV7sRQ/DU/aDu9nym6XZNiy4I0jHx\nztvNAoq7cv/yxld3Y6s3Hs8nmm3h+/HPH2zPTN4L1TckurGXMY8XFJwzR8jeQVuhlQaNwS2WYV51\nevEbhRZngpdeFZ9GCIN35CEiUzppSrYI9bY0D4tDU6d+bPSeL9jzlI0LXB2DKhYf6JR+mt5hxTjG\nZL4qzrFE5bJcHruI7bnRWsMnj3ojDrRitLsUJ0IITNPM/HZjmmecgKewPy3CL6gSupqwr9qHA6Y5\n4JJx5ls3V87agaIkSTRnu6yyVzy2w+pqhz2YuArnUCfIsAZorbFtn+w75sfTu0Fi479rYynwcorR\nUcSvVebv0BCjrcZr96XOD0sFc8K8GrLRhVtzaW3MmVb0rx5/DLTSzmBlLuhAxIryyT91ImZDqi8f\niPPJt2YMgGtDPJ68npiwmMeGO3M1YbBZhn/DT+iACUfsxTfIQa1rf+EMV5GQ0bWu7pPv7p8jASZc\njnyn5aVzhl9PS2KaZnycEBdeS0ZgShPzMnO737jf30A73jmac5ewhSGWeZXy3yNk1y3WDYXrQ06u\nY6b8XcLMT65+OhbCbXTTFpIMp+zDXX/8dNRwv/s3e23UfHDklXJk68b3nd++f/Lbjwcf68H3xwc/\nvn/w+et31s8ftJpJcULE0YA8FnKnQ5WPhvm2ZmG6XTvqfuLTqrF8jq2wPQuosUpKy9RskJvBG95s\nXo+MeM/RTICU153tOFhSZJpn3t4XfBS242DfdlrvHOvB88dm3i97xSchzZ7tZqyleUrG6mjVuigF\nwmRLKxVmP+GSLbN/+eUbedvI687XWyK9T1Tf+M9/gFbH8SwcnysUKI9K0QJTQCbLls1did0weY+5\n/9WSr2tfxfjXLjq0wV6tkIeRHG+MKpi+zPjoTEMQwnXI+yQgnVraUJVGJHr02KjZQo1PuE0uH7PR\nbXYxTYU2HM2M7WzvyhQm4ggYMVXyaFo77I+d9cdBHsEiPgWDazpEF1luE3OKzMvM/cs7cQmoNpJ0\nvnfIh+0epHc0D+phaUiHaQqENCw9joPSFEqnbc0U2N1IFttjx7eIv0fze1FTc4YQaM4MENw4fFqt\nPD6e1vSpGtnCjSZSBZH+U/1xZt9xfX0UJH5PJBTMcZRmpT8NLn0fjBm6mOukYJDNOUGfFEjav6yp\nf4xEf9tgdBMx+otj6pzhzTo29HHEPNn/G9j6vtrpN7pbwUyCTtm4itLLGN9PmfV1LMoLahHrLGQU\n/1NU9LPM/8Xs4Po9cC34SinD/4FrmjB1GWOjf+Ja0PvrjHbOMU0TyzJzu1kh//rtK99++YUvX74x\n3+6kabEb1ZswRuVyK0bPX50shDExtOHt0kqmZrMMeLkG2sXRB5RVmxW/vB2jCHamFI0xc411Y8c8\nipYTwfvI+njy4/tvfH7+Rt4PynGwPVf2vbAdhWduZIG9FB4/HrSajWOdImcIgx/djIrSGN7u7lqO\ncEr8bDy1G6sW88oQ8UzBX86B9TyYWmd9brRS0FaJ02SLUqwzrbXzfGa2rXF/e2OZF9Zstsj0bqHK\nKVH3zPOxM02evMHnr5/M88Tb2w2+vfPvf/vK3/76lb/+5StvX7+iKuSjsSwTy31hnicA/vn3v/Pb\nP/5BSkIKSqbTto1aHeVotFY4tpXn9w/WfBgsED0ECG+R+S935G3Gp4hH8Yc3lS12zXYqwXmbCmtj\ny5l9L/Rih7oLjjBHajff/bAkpvtsewJGSLUCRSm9IMlz/+s3VoW9dFwd74frwzLBGb6PwQW9NkrP\ntGAsGxmpT3Kyn8Qgj2mxg8gH62TXHzt5LbAVvn6Z+LJE5G3mNs/WJdPNhtYHYpqYQ0QIrM9MWDzz\n28I8R/K2Uzd7vkES0WPWBuJoa6bnCrVx5GoWw90Sv3pr9F3ppVo3n5JB36MhbFoQHN5F9AqyOT3D\nZbgyWmF1IhZYQrRDobrBGhqcfpGXIlQFrY2uu/0+OHzyVDoSElOYKdmuX3N/PBee/SfL3T8Ra+Wk\nFvZrhrAC1Xu/RDwJwbtw+ZLbkxj2rnIW8g7akKb0PkQ1vQPmXXH6fJ+PU5GlF8TRbRw6w03/RRFv\n7fV95IIi7OvGPQZkpKCLUHtDh8cFTsdSd3g+yGsMjTHySJEpJaZp4vs/3/jtyztfvnzlttyZB84e\nl4WYJnwMVxoKP6X7XMyJ2kYq+kiNGVTB0upLS6QGKZUzPSZntudGyRltjWU2do2FKvQLi++j6NdS\nqaWxPVfW55M6TPpbtcVlKZWjNNbScfNMd44yPG/EWWCI9lPscU7qxsjp2i+PFh24tg7M25afyn4U\n9i1z7AXnMiLWoWg3pkjOFe+HUMgJ3cvAhBl2ENbP9KOwbgcujeVdsetKnMNFj2YLQmDEDbZWqFnR\nZtPjbYpWxN/f+fLlfXDvI9M84cNQx7ZOOb5QjoPn4wf582DNmf/8+we5mKfQv/9vf6VXoVbY/t9/\nUvdGO5ot7KTj5sCxZaa7h+DQ6C1UecBprXdqV6RZgf350FMAL/ThLe+nAKdMXhTfRupSxRbjQyzj\n3mdcjIQUCc4ToqCuc+SDU5novRB8MGusNg7bIZ6aUmC+2Q6r10yMwjwHcI7gKlKhbJXe7J2N3pFm\nR4yeeQrUblbRrZsNBa7j1S75ODmjHE6BNAUckZ47+TALieCVOAnLvJA/K8WDTIE9j0PLC34OaBQq\nRmMO3tteqhhB0PgrUBSbfHwa9adZh6wyFpcnFu4IMZHSjBOhbBtHLRZWrTqYcOP9GI6f3Q0bjt7R\nOmqNnH9u7Ok4Kdbt6sbtHT7p0b9//KHhy3bK6U8dcbPuCEHDq2heOK6cDE69Fgp0Y6ac9DhLoekj\nj/D3HfXv/u2RmH3hxxcsM36DXrS33jtnqvrr7/9EUZSzU8YKZxkip5GH2Ac7JDg7zbva+OedYw0e\n74Qfv0b+ORnT5TYZL/z2dme5v1lBn2YTJQ1DKeeNaniq5eqgBpr9beEojVzMQKiN56itUo6dbVvZ\n9p1929jWzdwlW2NKidsyscyz4ZjeDT+Zxr4fPD+ffHz/NCc/YJ4iPni6dvNGL41cO1uF2XtcjK/X\n/4TOGIf4TweFODf8ya0o9BPjdrYX6Qi1dva9sG8H23agrRCCmDgEy97Mu9mYumRCmO6HPemY6iTY\nAVhb53nsyOqMutZ0dLDeut9S0E0ptdo+RRUoY5nnCA7u94Vvf/kFXODbt8ByuxFS5KiZbd/QplQF\nQuTH82DLG5/rzn/+55O9ZN6+3vjf/8//FVXPfjR+/b6ybfnSQkgDilI3E8GJhx7cuPGxgtCaYdXN\nhCviBEkBHUUJp6gzAVyYAqXqUHeaavO0nEUVLRVo1GzwV5xmljkyzZHWTQ4vzqAQH2GKCdRR9kpI\njpjM2mJZErfbTEiR7VltulMheo8k6EsiTZHTzEwC5kToGqqWnuR84CgVLQUVGXbJpsAN0V22tuIc\nt7eZmCr7sV0ZAOaOKsToDLpwndK6GdYtkeIwWEUECZ4wR4IzaEOBHJxNhKWCj6OQF8y0ZtBe3djM\n+YCLM9P9jSiOowudHarHqaJDSd6AXoxeTfIw0ot6MSFZH8spfyr0+9h99UEhBVPZSvyX9fQPKeRH\nOcc6RWJAhwBhXVdkwA4/53jWVs2+afh6lGKwCeepORYT3jt8UJwfIMY50pwz00/4sHXkP3lND85j\nb0q78j2NUnfS9k6XwuuAEBNS9MGNbacHxF5N3i5nsXI4CZaGMqKdrgUiplQ35V0mHxufzhNcIESz\ncY0h2q+H4tPHaD4ug5apw1hKRCi1UlqltE53HlwAHwkuUo7C48cHHx8ffH5+8ng+TSxxMkO08/Z2\n59vXr/jgmaYEzkKMc23spfL53IbNbxjJ8/bePR8buZrfs4Q4dqxWmC+HPG+S9Q4w/t1BgbgOUidC\nPnZ2c5DCh2g/g0ItI5i7ddbHyjQFYrixzBP71sh5RbUSu2NxiTiPsdZ73H3GzdbNhEG/q6qGh6rR\nztI8mSw+Ctor+ZmpY8nSMY+Pozb+8dsne6n8/Z8f/O1vf+P9yxvLbWG6zahjeNpbYSil8fePg3Xf\n2faD4iItwrN3/vvf/87+yBRRbl9uSEi4UtjqyvLtC/OXG1SlfW5IsCzUXkGb0MWEiE4cfvLgHF6F\nED15L6g3FkmcE2mJeC/kAnk/qMcxFmp2TedeKPsGm41JgmNZbvzl6xe0VdZ1xbtECInbsvD16404\nbIT3LbNMkRjMkuLtnggJmhRUC+sz8/hQbvdEigHvxV7fct4rSiowB8cUjW3mY6CXSoiBeZm4p4k0\nVfYtU0rlt79/GP6/TLy9zcMwLlJa5/lb4fn4pO4dr44pRRJCEFvqrlpQujVF6sdS3ZN8xKl15L47\ntFT6Xsw7yAHBIWJNTe0VdYKPiRATGrzpjHvlKHl48xtUGOcbBE9uRhNFIEwBpaKlmrZgoL7eWXNU\na2MrhatocapuA+7PVMhrLWOp5myExkYL43Lbsujncfi0ju0KVTvfH5+UUpij4UoyZN1dbRFHrQNf\nfXV/ei4a+6vw2iF4LhMHC0YElXHa6gsrtp93MGDO5cNgcIAtcE9Hwj03avtJXSqC0DjUBAbhXMSO\n0APtMk5hgxOKVMQVfC542fFuSPaDsxth8F2tKxjfw374IdqplDosc33AhYiq59grHx9PntvKum1s\n2z66i0GHrJUUMuVWUdSMvFoj54Nj28l7HuEQSukNKbZcrbVcP7sK5tfixZaVTnC8Yu7OHEaDuE7G\njO1AcOZ/chxGC3XBk8Rf1FCjZAYraN1Rq1CK4NMo2OKoW4bikCooGzp7uJlgSKIpSLVCEyFXJWCH\nVO+KHAU8hBB5+/aNHA2iKtk83psqRzEjpiM/+Pjc+e3Hzv22MC2JNM/mkQ+oHhcF9vvnZiHITc1n\nRIWilf/49Tt162RtTF/u9JiRGgl+Jn5Z0OSp+UCaLfhqq7Rc7TVNJuKx7RnIZEyRNNv1Vtdii8BB\nWxNnBmMpebwkWiv0qnQP8y8WKl623aiM88IUI9FbARIRbreFFGfmeSbFRPBG9/MpEVCCU7uuMbWz\niuIHHv342KjHwdvbjeW+cLvbkja3xtGKKZw/DpbYeevCtBijiG6QWgt6TcVaO8djH572UHrFj/c1\nLRNpSrQeyRwXXKRqqWCtNHLLlsHqTeXpMaZRKwOCFLseddQTnBt00jCIFtDFpuoQImFKdDFef22V\n3OpFU5Rhse3FMc0LtDwsPWyikhgIKUCt9F6hNdsDNZuOVM0oTNzpHOlPUOB/ePwxrJVaTZrqxhJQ\n7IedlhmHXRCGTdbB8BmcClWOVvixflJyRu5fiGEmehuZFYNUei0waGunzHwo/c3bZaRti+hLPXnx\nWE4UanT1LwifMwZNgdbl5Z2MxbPlYouVUg27PE28zsaz5kL0fsi77Q6UwUxBreg1NadDQUH6UAQ2\nevO0Kla7f8aDGAUSw9jaMMqqudjzGsWvVGU7Gp9b4ajFvGh6R+Lw1hBHL8bq6a3Rvd2EJReO9SDv\neSyHDF+szbxTZNA65ZptzG+b4S9u94IbPjDnRPSacs6Fp9ncQtdGLooPlakpcTyH4B0xzaRZUTxT\ntkg/woR6E4akOZE/do69UXLjoDKlGz5NnHsigTHVdbSaBW3rdqPregx/ksB0uxPihD8OZF0ph8Ez\nRY0loV1Zt8x+dNL8ZJo8wSfEj6xYdt6/3Lm9vfHYsnmfuDFCO/MDWZ+7JTnhCPeJFASngfkWaQ5q\nry9oriv1sDBqSQ4XjF3hBFwQ3DQUw02I7kb1mfI4DEIsQ7hV7AC1aEBHpaJeWP7ybsZgHxvbx5Mk\nnihuxKsZjvz2fif4RHCBVrqFe6TAtEz0Ya3hUjAeey1DvSjj3qispeDHtJ0mj0ue2BU5dzW5Uoth\nxF2EsARTlHah9XFfDCJBb2aa1WrlsRazxcAzLW92ULzBx/cfHOuOlmpwZjHzvTYW9yqKLt5onbVT\njmJwitjT7gOecs5fTNzTvK21OvzdGfRpP/zvZXx/m7ibOk73zSkGWgjUavsyFWtUfHD0vaMZC0oZ\nyvSxzRuMPnstUHgZavz+8cdg5INHfj5xnLMNu484Os5ZEWvd8N0Qk3VrvVnqvZpYwXs7DJw3y1hV\nxXVP945SzIHPeQ/lhZe34dViSzB98boZHSKK6kgt4RTQ2G9lLJJOjL63s7s31V4unWPkFfafFrg6\nQLBt36khEKeINBBRRMwwSJ1HwhAnjQWgc2ZNcIZiKHKlQZ1sm96Gi4P3hBRtZ4DQrRVBugkMWrGl\npGpDaYgXMy6KBuE4H9iOepkW4YWai3mabwfSlMlHdnazWOhtWO/adHCqdbszzksfFgm1Nlx8RfS1\nNv6N8XzsuZh6VJwzPj8OxYOYL0acZhDH9P6GxkRqyu0vfxmcXM80edbnE4dn/ceD9VjpBZbbTGyV\nkD19zbQzYaYI++eBdPjy/saUIhoSZS/2UStVMWx6ifgw4VlouXCsGy1bpxtCpAOlFrpWtOZxoAo+\nNpy3CWPdCmH2uOj4eO5I8gPvTZeLo5ZKnGyJ2Cdnvuet4cf3dwJxijQ1+bgTxSWb0CwP0xtb5ZFh\n77Rnoe+ZkDxSrQlan5uR14bbpo7lSZjgdntHvryz/uOJbmZJUF1hSpF5mlCFXDr5sFhBccKyTBZ4\nIgFJnvC2cDweaOn4FI2K5z1pSZSjsOfKx8dqC2HnaA5ElWWacG/K+nnwY93JTvjr+y+8vd253yam\nmNi2J4JQKKQlgMeWqMGohXU70Gr++vPbRKsz3kHPDS8e5zPu8CRVamuU2i1MfCACEWOXtdopDVRN\nz+FjRKsZjM0xWMpTswzXdmR6h7DczE0yBPIJ44oY/DKm7365jFpN6jIWq7VZZGQT6JGzITXxHTaF\nSkAuF8Y/EY88b/tPUW2GNZkxjw76XicMNklXOKotdGqrHPuTmg9qKfxojSlGpinhxGPBLd38H0Yc\nXPAByPaiePNh2I/Mx+eTGM38Kjg/+OXWQYvn5ermBhtgvNFW7Ieh1LDe7Qq1K6V3k00P1oRRImWc\npDC3aUjtzdXutGgVwI/ACf9TYPKVvH0KMTh9VIZZfrcU+qZYFFiMvKQIYymmFjpbR6q9C+Y54Qd2\nH2I0VoyPtMfOqfLXjiW4DDZJL80Ke6nDCdAOYPE2Cdiy2V6TkgshWdpNa50qJtsf/fAofras8kPA\nJd4jLowR1rx0QkpMy2J+KM7xBce9GaZ+0SHFWBTz50wtjf9Y/j98jza5RHPaLKJId/TeqNrwfXhj\nqFCyLb1672zPHfWYRW2oxjpynR6Myic+4Fqw26z2C2aSbt4dRz4AMcZHiINv3E3oFUwAI1FoWmlZ\nTdhTrVNuR8M7QaKJUow6181grRe6GJKmansZShs8bbt+9Gjo3pBnpT4ymgu+K1MKaLN4PV8caTaf\n87ModhpzB+8Uguft6xvN77jaTGk7przjeSBqRclPcbhNdrZ1gyHmkmI0PxQLRplmJAQkRfZ1h2JT\na3nu+BSIU6J3U1j2EcZtzKxozqRhOIcGx3K/M80z2jrhllgfO3R7//JRqHtme2z44MxDBnMfbQ6L\nTNRusJmcFiBCFTfSvMySoNViMX4Euthho60MBpXSpNFbGZO8WQBQG7rnQUE0KmMdSWE62HnWQI29\nmXac7xdZr7dz0+mwUW+oaM+evCtdqtWvn1h1//Xxxyw7t52YEtGqqy09uwUWay90aXhv9MSmmClT\nrdSSWY+dPIx1sqz88uUbcn+/HP7AGQbpTjvOF/bto83WuZgHSAqeFAPRh8s+1Qq5vAQxY7tvzoBY\nh/xTIe8KXd2pa7mKqBMhhiH7xw4A78z4J6YwZPuWbHPi7875q/if8t7xw1/wkj10cFtfKe9dG/uR\nL0bNORGcf6VpH8XAE7x5pDtxZtGbJryL+BgRNUJtH4Kr1ju9KnnPHOtOOYr5cGiDebbRYLCGeu80\nFbRUXOsgZlFrXUcbUI+Noozlk0+RaYpjogosd4jO83ZfeP/yztuXL6RpQgXCdANeAb/29IZ1gBMe\nn0/8LTJFtYLoO03MYCHNFsRNqRY4EcwKNfeGdqHXyrZvuOCImKuklkqXSqWar4qoOWT2QVsdyk2z\nQwioHpcjoNktRFIKxDmCh4JNJ2XPZgRVMCirdvrRTIgVHEzG0bZ8S4wpIRYOoWDe7a3hJlM199Zp\nh8LecRn60aApwQsBM5SSpiSXWNKN+21BW+NwQm2FUIFWwUGcEyoTXjv3twXpnbJl2p5BzSNenJpv\nzRDZiPdodVAKdMWp7YymeyKlG9P7G+HHJ2XdqWvhOFZcsyu0caqmjSrq1Ja25Eorhdo8MQbSbPbK\n4gS/TCyPjfzMPH77tL1I7+zbPnYzJ+vM2MGHdgojxo1z6tafYNZKPQ6DJHu3muo9Tps1ZkOE1ZvB\nXYopaJUxoWeb9ry3a7PLy1artWq+N10ufJzarC50s2SQPhrF39nXjloz8kBFsVokfyL6Ye99FLpX\n56LDy6DWA7TSC7gU6c6TC6yfH+zrSu0vzrJ3jv3I1FpJaR6+KBblpBgueCojnTfZtwsWTHGMwIWc\nHSkEovO0YnSzlBK5DkxNhXlZmJeJFAdzRtSw7a5WBPS0GBBSimao5K3zjSGM59xowbrtOPzJvXO2\nIBrFVnjhijrwuoGhcK1dR30+Va44JXhPbY1ff/3NOtlgS5zTcU5EkGa+EipDhjcKqowTvvVz6Tx8\nL0bHDI6jVB7rxvr5MKpfMbjGDZVb78YkscAHwY19hHTrLUytZvBXECEpTL3bUm2emKaIuIh24du3\nzhwC9/vC+5c7y20BZ2HW1r3wej2bsZcKBs345mfkEwAAIABJREFU5JGbZ3ILcZk48oG/zYT7Aimi\nR6GtG8dztWVqF2pX0uyRbKqCfd2ZW+fr/e3KOy35SZ8qLpjFsASPhIDDkfcC6ukqzLcF5wWf/GD9\nTLx/WYjTja3sfKwPtDVqruT1ID8t9Ue64KoVbxVBZjXlZTTs3vYYI+Ch6NhldNxbwHWhb4X67HgN\nxDBTJ9DecB4Kp5eJY5pnphAIvaPS6ZOZPemjmIef77ilEN6FlCaWaWbyAdegfH1nexw8toNSDt6/\nfjGo7LnTiyUsBWsbh0d7MXuC243l7YYTOLynBuvat80sj+fbzJwmoovsa6bng/yj8SOv1OOd3r8N\nquNolLRzf7/z/v4FzZ1fp3/yI/zGwzkyynFU2o8V70C8ddU9eLRHXLW84OPI1NrpMRqTDADDq215\nr2itNOmUsl5Oqqebo3PREo9wBnu2yv4c+bctj0bK7uNWLLcgOfORpys9d7w3mFTagGBF6TK8VAaL\nzJo/u59zLmbb8D95/DHLTjWf5VJHbt4A8Q3WbTjptCRMbzfUK/ta+Px48Pj4YNs2CwdGmKaJ5+PJ\nbXnixDyQpatJtGu9otIuep0X1BnzxdVyqTFlcMJNnGJdeoiB1KNJfZ1YeEARei1or8Z9BU7l1rlM\ntS+d7meDoSGnr7iad4SIObT5U2U68PhRyC2qUDi3LKcy7IRVdHTkbiThKAYxLMsyGChuQCdysUPA\nBPi12/PxIwnGDSFTP1k2DFvUwVUX59D9wMVInBdaMaGME3u/2gmpKKgOVs9ptCTnskivxes04JK3\nr99GkIWN0LjA2Bjh6aRk1LOYLAHd9W4F8DgoJdtU4UcAcO9DUCGk20R13Qr7LrBXWltpjjGdKT5A\nSgGnjt4UmYwauXx5o33/oJbK5+eTNBlTIRIJEgz+O+0MxnQRoqcXqL1xXxLzEomTLadOCwdlqG5L\nRUvD1U7E4afJirOCHtVyJZ3DzRPiFVynjcP0PAxr7+A9flqY4oS2yrEf5EfG9wqhI6Vf7CoXPH4Q\nnEQc7WhsudCd0m+ePkXkq7OdTbdFvzYll0JrD3SeuKWJ29eZEBwuCX0DNw9+dDOYygVnFsNzHKym\njoverA3mhZQizInJR5wX0hrZhl+N9o6Wgnfgl2iwXLBrquyV548nvSnzMtnuKNp1j4f3v7zjo2N5\nX/h4Hqzrwb4VeiuE5Ehvi0FVw0JX8YQzum90+KhSMO8Vu4eHKlPBEa1DdwL+NMCyBbk4O7gs2ALT\nLDgLZL8oMCfduY0lqzrjyqsb9WEcEHjDwXvBIp9tInZjF3ZiMX+uZSdiznilom2Y/3gxIqXayVYO\nM2CXGMl7pewHx7rx+PFBLZai7tWxPzee8wOakmJCBjuk5DLGfXsBDMUxzNv43kqKAxIZzBgnxoVN\nyfilKkJtSmndPldh2wrbtlrHM/YaRjO0m1BEjLodPDUWw7wH7s1g5ChizIMXmv0qDvL6fLo0/ASo\nwPUW24fzBl94Z4XcKJv8FLhxejQM7/TecQoeu+hs3hwyf+3XGO+cw8Vgn4M3vFMc6/OB0zFFDC9q\nxBmnVoaPd0rmmZ4mwptdYre3G7fbjTSlwYmPTEPkZJqBoVbVTq8Z5+RynsMJ6gLSDOvfj91UlH6Y\nPo0Nv4oS5kTvI6C3KH0/6BjOHeZk3bRaKEPwwTi/0UEQ5m83g+zWg3U7TPyTPFOczC7C2c1e3RgM\n9CUSEy/c3mbudwucyLkSnDkG5paNolk7gZFOkxykALhLPNS9qUt9CiDmNaN+KJiLeXBECYT7zPLL\nFxyF/PmwZWYxUY84awgQaM1ixGwfZe6JrTSOWqjSEJlwMRFu0Yp4VXxW01J0pbp80WWnJTBLRCKQ\nhF2Eo3XUKU36RaLy00jtUh2e330EcRu04aLjFhYkOeTpOPZCPwoK+OjNonpOKM0aj9zYnruZh4kn\nRk/RQktmqeDnwOJu+CXQ005DWLfDdjkduoeqZgMBRipw0RHE00eWp7ZGxuoNXUeG7GnhEUfkoBly\naa9oM/63w/ZxA9A1YoSPI0ijXnscUbEd3EtifWWB6pDzKwE0cDqtnhGGo3fj9Fz5nz3+kEIefaBs\nB/u6I06Yl5mwWPpLyZYNWZ+ZsO3EaWJaZmbvKCGyj+glUUVqR4/C/vFg/9iILuKHW1iIAbp1vx4M\nL4z2hqgYyyR4DE9TKwbW+1hHHL1FVhk9OaLiyc2R88H3H4113ei503IlX6nlYwGXTFUWoolq0mTW\nnD440hS5LROilZgibtjx2o990iE9OpwPdfBnT9hFHYjaYrirsW1kMFvsTR+fnb+6so7hhoqFZsjo\npruqTQGq0Dq1NTtLhxugjGbQB8c0LGC3/YkEIThn3hkScC7h4zKokw6fkvnFLAsxJmKK3O53fvnr\nLxesBJbk7sRCRC5rhC7Uwdl1TjCczOxRz/2BTSRjg8zpPGN7AXHWXWppaG7U/UClk75OPy0XrVCF\nSQje07yCV8LkCUcyLnwzDN07xxRMdGMCNU9uhVwqZcuUteKnxO2Xha9/uXOLEWqjPAvUgHTjVdOs\niH+939Ep0Usxa9QqpgB1Zq1q9FnM92XoB451px+dpJHw5c7X//a/8G//1//Bx//9//DxLCRJ1GiH\nXOuC89F8ULZMK53bfSbOidoKDVvS7tuBb52kSncTfjYYReqBqknnfTIf7nw0dl+Yp8AyT8S75/v3\n3ax9cyXvOwW7j9oyEVIwFe0Epe58/razPx+UIyPYspQAfvaE1o31EmYStsSuxWwXnBa886Q50pr5\n25fd3mmCEJZo1yjmxJjeIktNfP5Qgp/Ix8Fv//EbcktIihANpvXibBpVw2sqGGe7N5w2pjDTEUqz\nIov1f8NewiyS6QZ/ntF3zinihu2IWAevrZlTK45eQDARXKMi3YE2ei80sa7c4S7nRKNImujLetEJ\nRIetyf/4+EMK+T//8WOcTjZ6xTDjNbA+VrZ1NwOm7ZOv3+6E0f30vdBzp+du/hBekObQjDEAnLIe\nhuGmGInRc+zZeLdj22tczBdM0arS3VBF8pMbo1VAUCugp2y2Y51y62rb961Sd/Mf6YNSV6spx3AD\nRjkxa+fxQQwymCLLbAU+TNFgnBSYp8Q8WfqP90atOxe24ty4WBgnuYHFRS2Mo2Ne1EZbMn636Ih4\nO4VQQ8TUWkdKsdFRzNFPOjD4uq0q0eswI7OfuTlwTvnyfiO4N+63mS/fvpLmBXGBMrpKFSu64m3Z\nHGIw86OhTBU5aZcyLljzsumtXaydIP5iED0fn4jzpOUNVSXFyNvtBjByRS16rhcTrpyhIh3rwhTL\n0NRibA8RE2X54ME7mnbq0Sxj1GPFQR1ta6bEKwXtjlr74MM7S6kS4TbfiK3g53h5nbsgiAtMN7M3\nLtlMrnpRu16aCT16q+TW2PdG3k2sIh5TwqgFL7hs8FJpfUTmNf7t/jeWb2+E2zSWdeNZxiFuaXbd\ntm65tcbW6ZScid68ZUIKzDrZvbB1dLb0m9phxjGlhHeO3uqA5iBvFdftteu1EjpEPNF1sjezu/XY\ncZPH+UhKnv3z03ZMIZkIq1jsWmymlbCFY2O535jSTPBKOQq9dhrQSmdbjxHfZ++3894OOxT3dPRq\nIeC5mrVHPiq1FoKLJkRT9+Lf+zhU4J297tb0KcPjx5hfqNni+nHdtmokjNba2Gc5ungqJuK5yIDd\nDdM+O9Acg7QwTOIsItaKtJV+jJ3izOHRILuKjBRyuQgN59cDZlr2Z2Kt7IfFpaXIGa7bSuV47qwf\nB8/Hxro9uN8C0hK1QN4ydS/QxDzFayNLZXseuJAIS2AvZRQspTWT8sMo0rgRWTXYIDpGyHYyD+BU\nYTIWDdptCeH0zK4e2+6BC5fSKUXpxeh3pRhzpPZyWV+a26IVVOcNuonB4snSFIyqFgPznLjN0whS\n9qTkCCkOVkkkjj/nvRXAlwWw0TgRaL1eqk87nsbBpZhnyGnheypbFZoblMA8XBuHB/wJM8XobVl4\njoNf31mmxP1+4/Z2J91uSEzk0qhdGLeBqRD7GW5rPHLt5j2jTga2b4+X943x0sG62Foy27YaVj+E\nNs7ZbqQMQVM5MuU4aKVYgXbmvocqzXZLSBXa0YnOEabhzhfd8Ky279HpuNnjUjSsUgo9N0pp9FzH\nQW9eK6UXQkz4FOiumX0ESqeaDbEYfp9LHRxzZfvcWT839pzpYhTVBqyrmYBph3lJhrmrJU7RzwnK\nDpzcCpocGoQj7+bpXop5gs+BMJlKUXO1cIhBHaybhXzcbwtxDsbe6pFWOhQlFCzarVbLRU2RMFg6\nJjlW8lYtfUjs3mldLjhFvEO1U3rl6BXfG049x3ZYw+MKHUcpOuwrui2mgwyuNIRgTom9jMW+2lLd\nPFWUqRbCNHz9h9iODnU3G+Xt2O3awrrhPiiIZp3cL8Aihoiq+RJ1Zy2cisEi6sQEisYFsF2ThhGu\nopaR2qGJotLR0y546FKcDuWx+DHfv2rN6avvr73R6evkUc3Dz2dMAKeC8IQMOQV3Hv0zmWZ9+3YH\nGV4meWVfdyP174clZR9DmagdoZH3yv48KHslhcj2tFCCfSt0tfPql2Ux35ZaybUiakIBe1FlsD/c\ntUS8xEFtOBai48+MZnywN0wdyjgdX0Zaqieve8h2uw5hkC1T+7nIUK7Pptztr5NZzgPGRvwYhoIx\nOGI0amCcEmlJLPcby80YHt4J8xSYk3k9vOT7ip+iYXyoHSZdjFkzHBhrV5K3ToGulCNzlEbdbIkZ\nYyJ6SzVKwUbpebbc0XlOLCkxRcO195LRGCAGpHR8NRVe74IWO5xzzoQBH+lIFApjb9DHaxBCuCLJ\nTk+b49g5tudg0zSOfRtxYf5i9pyf9+dGpRO9Y5lnpDmOUnj6lVwqujeSRuYlskwRiY5Cp/RCa528\nF0QgLZN1VNGR3j39acG8+34QxA6ephWfAkJjqyvbYyUmD7GS3gSC7T4+n09azvQ6YgDXwrYVcjUf\nFILY/idbLJ5X8IsjipmQ5dLJuVGPTrrbErt5ZS8Hn58f7HLw+fGDvRxocLjZDhYnDn0cJrjpcGyH\nBRm3iuBYnBJ9sOV2M2vWmUQRm2LOpiMEz+220JpRT5/rk8/naiHYKeFSpAiWtCPG5OkYb79pZy8G\nc5aS+fX5K0u6QYeSGyVXJmammAihsT6ffH7/oBV7LVoZApnWhwhwIxVbfItaBqgThw4eeGlCzp3H\nttJFme8L0iH5yP1+532KqNi1H3C0Yh7115Ie7LwK1rEXp2YX3M3sK4QxofRKzRno4Gx/UxXzGOrn\n9O6uxKTWTQegwuUS6cQRTgYLAMNZlWb7oVFrzD31Z/ID2Kn5r0v2H1LIS16NVeAFY+cppSiNhrpK\nvHn+9te/Mb0vVOT/Z+7NmiO5smy9b5/Jh4gAEkyyil3Vg66k//+L+l51S+pWFZkDgIjw4Yx62McD\n7MFMepCMHWVpVVYEAWSE+/E9rPUt9hipqCXYmMC2Z0QSzumIwlkhRdWBxj3qDTSM1Nhdej3lvvWq\nDw5liekHh/7zClTzb5eJuv9QnXstndnQJUOHLZ7HG63zu3IsDqE7Kfu8q8+++noRU49FiVFOS1JT\niBEdMYxj44QlTI5pOuGDp9BYl53rbUfaDdD5/zh6ni4j4xSUCGila1eFmmGvQha9KOkPj+A0FLc2\nQWxlPJ+YLxPPny6MY+A0T5wvZ374/JnT+cw4DCotrE2ZMt+/K3K0qIyuNqNLoqoXccqZbduUzeG0\nSk4xQVCQPxxyS+mLsf4eVg1NXteNVgvOgXMFrOmLJw3zoEFOaj6qOWIKDF2uqtFuAzJVUolUqViv\nkkCxogyTJkzjjC2a21g3dbyK9Ng2a/Dj0K3W+ruJCWouQR2+4qCJhhWv20oRxcrer3fSulPywd0w\nTNNEqCN4EKfu29EMtLFgmrJtdHkORQf9pK2ALTQLOe28/forqWyE94G3L1+J1w0wXOYf8fOk7A6n\nc1mpasePu6Mmhcq1CiUWDVoomZoT5qrHinZg/vHZrNuuBVbO1NqIMRNjplSDlEaWxprib+6vyjiN\nKja4beqLwDBOs+qrs5rt4p6pS08KsoK3A4MzyNlTC8Q98vbtjRTVOxLZGawhNIPJDU/BGo1kLKKF\nk1irsK1W2Utl8AE76A7KBdMx0xYnhpwy1gn324qgeb3jyVPaqOad0kh7pqSCM4bgVE5KM1RrKdmT\na9axZk7E0rqKTQNG7OHuRMeLtZUH60nhk4rUVZGBfp2gggmdGvQKHro58HBwV2qL/+mZ+vs4O/eE\nc0arF2m9qm2apUjBjcLTD2eqFG7broQ+tN+p0nBB2dbBeXywtJpVY17qw1aexKoWNH+QDvXNPQ7Y\nqi00al7IpWCl4doBoZIup9Ololbm0tnive15LDZad4YWSst9TtuVJ/3f7zaiR9sovS7vk1t1klpN\nARfp1EKn9MNhHJR1Ebw6X8WSYiKlrNVF0nmrceqa9LWniRftAnICE0bCNOLPF7RNFAZnMUAWgy1w\nuUxcnmZOTzNDCJzPZ56fnvnhxx8Y5xljLWlL7Hsk1kasjT2pvsCYfhD/hjFTqjLS1QilbtVjV2F+\nA/wCfQ+P5aVWKbrwOuRgrdV+iHd7eX8iHu7UmCM5RaRUTKmY0nAiDEPANUO15bF0fnwGTWWY3val\nZK4fsYG5MviRcHG4s86AQZfnpc8uSyv4Qee0jaqSPRFIwnJbictOzVXHYiFgnEWqzrONUw2ycaEv\nshXNWnKhiODE45o+0FzR8QXWEa93GhnaibJptV2KMOVCEHmkytvBMpxCb+cN2ZSHSKAVVTGprFl/\nb90Zuq6a07Ikl9JnvDyW4yllYtSHYkFRv1VMd/8mSv5g/rgQ8NPAMAa9Nr3uIWLOpJSpuTGOAT95\nhmnEjyPGWGI3nN0tbMuBvFDImcnqumtGl9yt+zqCt5QWkJJJre9gnMEMagJsorb6SmecOy0iS3e1\nhtHTmiMnR9mPe6ngnWJA+pAbhduowsqIR6yniqWWqg/jPgv/6Oqrjqiky3pbJbeMVU3j4+vaQ67r\nenFYkVp1MSsWau4d03+hhKActUosUkhkGoY9Na0yXWUMHgnC6+vCcl0ZxeFcoNbCtq1Y4wleZV6l\nZsqaaTHqwYtofFTTpeShoTbG4G2jSu160artGbrgSzlhxVJtJ+UdGXGPWpvH9+c3/0S6OajWTC76\np/U5sQ5QKnLIs9rhKvvQjCOK5g3DwDxPDEPAuoAxjnGwnCfL6TxwOjvGeVIbvlhyaeTeft9uV1Lc\nqN6SrF4gtinDO+dGyfB0mXl6+czTTz9CK0gtSCnUnIlmI4vwh59eOF8m3ODwLvB0PvN8uWCtZd02\n1j2y3jfNzNx2YtVl4iFvebhRu3JGH3I8uDjeacC0dZ4DHXu4Zel1iLb2WomE4HmcK60QOsa3tsa+\nb2zbRkwR4xylVNb7QryvmFbxVVi3iHeO+XmmBRjnASP24V+QDKkoJU+VTVrJtqo2/TkEni4XLk9P\nlB7kTG1M04nSKst+Z7lfub9fWZeFUlEWeGzENbIvXQaJoZI63a7gi9NMWVE+jguqiU678rdrrggR\nKWAyDFimccZPz3x5/YqJmbPzmHnCpMbttpOWjX0MOjK8L9iUca7zu7NQSi9M0J1Rk4odbXf6euJ9\nI68bw+wYRq8PPRf6h1gwKvcg5cTyuhCC76lBgp9majPsMbHd7zggOMc4B4IBYwvhNCDe4HNQ1cxt\no+yZJIYQggoBJosfAicZuTwF3r688fZ6ZS+ZJWZiKj2OrY8bStHRh9V0IkPFpoYtBUrWvUsw2lFE\nVfDUnPpY0+KdQXKhxB0Z+ix1L8hWmYzDzyM2CHva2feNmDWNSMNkLG4YOQfPNGtnmONO3TdKUa58\n7js2TO/cinpoSo3YSjfUCYXaixL9LIzTh1NNsUt9rWaJmowx/4UO8m+v73qBt4qpBW+Vt30eRnLN\n5Fvh6/YOCLN/YhoHPbxyxVbHEALOegSVK7bacGhrZbt7UkSUkFaPNuUAtZt/s4DQ+TFkRMFVom10\nezxJoVo1DnSZqTrMDn066JO1SwYRrRor2rrqAlUPpxCCfr+ehDP4wDyOjyrTeYsflL/dmhBjYmkF\nZ4Vt3TDGEGpTlYsI1lYwGdsSuRXMsXZrltKEVDWTM/d09NYSVnQ2agXGweHngFwmqJVhGLDGQbPE\n3Hi7LWy5Yt7076Ndkybx5FIRq6kziHYC0rsecRapuuA0weFH1ZVbzCN0OrjOJ+9zwJih9hYedLyS\nUnzIEKtUSt1UUpgb+7aR0k6tiZwT+7pxf1+5vd5xTgMFJuNVf+wsYjK+QbCOeZq5XHSctS0bNe0Y\nWxkng3Mj1gbEeJ3nG0trmeAUVlVzZQgavPBkZ/btieV54Xa98f12JSUtEk7PT4QhkmJPiunXewiq\nSjIiyvjIgNHiwyAM3nE+D7wmXT5Pl0llsLbijLI8sMpieTqdsFXYt43t9kYjQTzTFlVrVboqa+hw\nrQx0RZUPDhfUTVhX1OnbDKUZ7utOKtrB1IKmbeWMPY0EEWIVgnU6Ay8F59V5m0EplMEzzAPOOmxQ\nMJuqRTQ8egiB8OSgoc5n09jjhllFE4bGQLaN9vmMnzz7nrjdF/YtYnG0qghqa51y37uz+I8//4gN\nlnvcuO+RgkYv5i7FTEtkHAaskQ4MU2phNrCuiVZUXUTp1v1WGMQj1WClByY7FQQYtFK2wOANxXiq\nN7TTyL6trNtG2ROgztxwHhW7HCNpW2jVPPThTdQpLQKlRSQ3MB30h7L4S8sPEN1/9vpdDvLlttL7\naLyx1FoQY7mcT8ScWfeoEVdjYPBjDxdwGAvGBsagF4u1lvW+UHLBiao8rLcY0Wo0xagHKUflTK8a\nP6iCKuqQxwFielV5jFP4jW75wzwEB4lMj/MO2Okadm2XGlhhPp36PLcxX84ainC9UUpmmkdePn3C\nmA50OsIyAESjrqTA5vRQ9z5iUDmkMYKlYlpGWoaaaT2QWOWx0pevapdet5VpXSgpqvbVdNyAUV2t\n6WOmXLQyLlVThpYYaX2EAUZn7k0r8YON3jr75KFC6Tp16ViEEAJDUFCTs4ot8N5z4AfECLaqhLLk\n3J1wymgR0QgxMJS0U1oi5aYJQln/pH0jbpsqm2LGm6DW8nnWBbfVZbJzTq+THtTRmjC5gVo2xCRc\nqMqotgEfTh9BFq0oSqI7K0UKzglhHHSPcDpxOp1ov1jut4UiBfM8Us+KAV7viyIPRPndDTWhHNmi\nJRdqCmpzd1a19kYw3jDOI0jBB8Ufp1Y047HAOAYYK3MYuG4L+zFSquYxCjDe47wWJ3UvlCZgwcyW\n5tWsU9bOvRaBYtjWzLZFvBOVkvbP1/jAeHLUJLgOjCpVRwqg83g/BIbTxPg0Ix3FIa4XTx0+FUJA\nBtV1eO9ISQ1Til+OFK8OWhcsk4z9wFakcU615wWgB3HSUWdOGR8cwzlQ90qRypYqtSeOHaA1ax0W\noZSk54nR86JEnY2ruqxD1fr1KKiBzhsPto9AmumYDVVlmdbAOuzgEKPjxtxHQiaoJh+j+6NqtOTS\ntDBlj+vZZKhVD39qgaYzdoz0Q/w3MKd/9/pdDnJJCdtBONP5rBpigTCP2nIMCRcjxqokaI+RYXSd\nd3LCO8s8DTw/Xbi+39i3nVor1nvom+x9jdh9xzt7RC92y8gBuPpI6BHTpWX9INbgU/mQI/YFX1HY\ng1bm9QOa1bqr01idx+WcVGI3BP7w88+M80iMkU+fP7PdFn7ZE8tWcEPg9HLBNHp48U7d9e+hVYxm\nFaV+oJRcKDZTi1betelWX6WOmVoTtXbdNKr+KB1Ydbte8WHg+eUHTuczxlpizdzXHYrOuJ0PGO8x\nVnXI4lR+pSGznSmO7SEOoCMrJRceIc9HZN/x73jrGMLAOE39gaGLTedcPyQVRkTpEtRl7WS51lnU\nuUPLHHlPXTqph4KUTEuRvN5J20orWR8a48A4j1y86zS7xmlUrXusjRj1ehmGkc+fPyGSyHll299Z\n1g0kA1b5Pcaw75viH1ojR2W5s21ghMvTpcfjeZDGawis91UZGdbSSubrl1+1+zSqR1/uC/u2Qq2k\nrF2hs4H5csIax7bu7HEnl4SYgWHynE4jz89PGOfZ4k6VimTwBD6Nz2y3qAvoIlwuZ6xVSWoYB5zV\n2fxS7zoD9wYmR22JkjTYolExzULS5WHMkRRXnl5eCKeBncxYDBMO/xzYl5WYFureQVBG04ncGPCn\nkXCZICYoOu92ouHo4gxuGKFVWs4dRhceLtB1XYlp/1guqpiD4AM5FV7fvhJGjzWOfVn04ZAzMW68\nvr0RkmfLkVLoW2OYxonBOKKxTMNAjZm662jVeaecl17AOON6kAnQCiluSNVix1urDb1onrDQSYrS\nhRQGvB8YBksullSsmgltV3MVHdkNdtIxbinEvKPif3VLq68i6wFvgvoDXMCUgpSkULv/5PW7HOSX\nzy8P/akZHKZanFWgv3MOXwd8TJ2r0ZGp3YW1rytby8TNUvKqxDMxjOOEWPqCrXC731jud3WTHRxg\n0Ygs6kEw/I3cBIDWl1i1aw+1QrddcXHwWz5s74Ao9ayqW5eHYbypdrvk3El0TiFdXfOcc2FZF759\n/87gHHGLrOtKSaUjPj0tKTGwZPvQzh7UNtN/9qMKpksjW+m40Z6PeSxYRUcftahRpDTVwOaksj9v\nekCudarDNl3gKzqD1AO6UmsEUZ72geRVdot7/B62abahkUYzOhpptVJQ9CnQ1TIf4LFWInnbiPc7\nce8Gj1qZxwnnLTkm3r59oeSEIGxbZF02tm0n58i2F5y3XIYLl/PE+TKpnbsHRnuDLqP6iDOXwrYt\nyiqJGylttJJ0Zhz8g5lurWWeT70jqbjB471X5UuKpLiTRY0ul9OEt5ZlGrm+36AVrBM+//QD46Bc\nb289v/zyK9+/ftXR4J7Z98waC9OnE5cNyseJAAAgAElEQVSXZ/ULOMd2X7UyR7n1SlRUn0KpjbRF\nKIYxTLy8fOaeN2LLGvyRDpBZ5XyaGYZAGR21v7eSjc5xY6a0hA198W667LeBWKejkrN+BvtfvrO8\n3fQzdAJWsE+jzvhFMKmn1O+R+KapXg9tP/1+6gVT2hNp23BidC80joiAUsIrtoOi9j2y3KJKF1Pq\ncYv+UWCVmCl7JO+F919uGqNmIAwD3jqgIXvBGsM8T8zjSAuZTY7kMYOxDjuNj5FpjB177Ywar/p4\n0lB7sac7mkNt5axX/n9u1NgY/Ix/npjPSUcmzsDgyHthfVt4//rGEAZKa7Td6WiFo0g87lcd1Vrn\nCdOkITs1P5jm//71uxzk4/ncZ9DghoA3Bm+Vrfz4i/RWzxqjDGF0E66J6Ts10YXZlTAManJA+kHb\nH+O1dflUdzVK7aqQivo0zUOz2Wp7aGvrIRzv2vxa9H+UUh+ZkQ/cpBbu3d4PXtxDHdNKZbvekFzV\nSBIj27KSUqLkrCxnKoNzysDYFPZlk8FHJdsF78hjD4DlGO9X/WnH7378nl1RY/oFcagPVKf68bse\niTOtNXJVLXe1hmY1+1Gs1YfB0e6Vj2BsjQxDdeGiB7d+7/5E7IIeuqzzqGJrVnlaThFa0wpX30H9\nWWj15k3j/f6u0jcRRq/Y1JwS769v6tpzjuW2cr+tbNuODeomnM8j0+nE6TIxTQPOW7Z1Y71vxHWl\noeCs4LwmOImGQ5Ra+kNK1TXeqla+Vh1PhCHoPF+qmrrch5Y9p6Sz7pSZholpCFArcXcPQ9oYRk6n\nifNpZh4HWksYCiVn4pbY9oQvmT/8+Ud++tMfmYaBL/PE25fvbOuKccJ8VimoWMOwBv17vW862jCW\ny+WEzZ57XGkWZRhVjTArMYPzil5tGl9XctSCJOv1bL1mysaa1RgmgrWB6g3VgvUGPwWIAfYdE5z+\ncU45/7kS16jfLyaNYAsOvMd4ZcocTseas/oXlh1TBPMkag60qLy1XxnKeREETdmSphr4YHsAuVFJ\nKtYqsjipRM97p4VIB4iWlhBr8aMGnRO0WKwlH5KRB9SuGJUSHoq0A7hVRe9na3Xn1ej3kOk8/DFA\nN/x4H3CDx3RjHxYiBYewX2a+Bw/Gs6fCbVkfo6VaE05QMQaVWntZKAaMU+zGfyVnp+tzQvobMAc9\nzFPaWbeNfVcOhTOW0Wtoa+wKC+csTRw1q0loPge8dx0e1S9A0zhNA63jQte8quHEVH1KSwXdffd5\ncKHQyEUo1eiTktbTeCq16kzu0JuXUroBQK8XaoVasRiCGRFJpBZJJXH9+p3VvCvP2ttH25qrLmD2\nZfkQ4Um35Ead1TkMp+nE6TTxuLJ65f2YhXcgv1YT3YxTdQ3QtwMdiSvaAXnVxIqYPhNEx0KuV+F9\nOWsPdWVrbKsSByuN+TzjvAL/q4Ku1d5sdAZ5YABi3Nm3FamVfYtaPeVE3FaMCPM8/yZIw2Kl4G1j\nOg18/cvG8vadVAqDNOZ5oraiHUuphAFiTH3pCsM4MYwT0zTx8uMPDFPQBWFPHLqvO6/XG9ZoatB5\nngjjhB9G3DCw74lt3TVBJ294ZzmfZt6vN3LJDGbSgAMrGPLDwGWtZdt2tmUn7QmP62VIYZw80DT0\nIBdyVfkZpnK6jJTyxP16x9AIg+FluvDf/tc/8/f/7e95OV/453ngXwfh9dt3hnHkdDlzfnnmh5+e\nWfeN1+/v/DX/yi0tlFIZTxMOh9vMo+uhwn6/k7dExHY8cSPdd673O846gvfgGgyWOjjWGPFGcKLd\ncXIJyp0pBZ5//oT74wv725VWtDixYyCXwnrbSGvkyMjVAlN1i9aoacwaJRDu29bZ5JG366ZsdSua\nmuQs1gq5FHU4+wmDZV8TUQxSDcGraCDagplG2uDJMam70lq8D3pPJ+Wy55zBFmpFxz/eYoLDNUVX\n75sy9qvKydTgJR3FsemMXcRSisbKqbZ8oLWC0WcV06RjuLxnjDcM08Dl5cLTZaKS+Pr+lc+fnnAY\n7j//wPuWeLtufH9beft+Z11U7eLdSEPHoWnbaaWS96h7Aet5GBr+/Zn6//kp/f/idTmdHhZuEaUS\nWqsWXu/sMUUhpUTOGWHAD2pXD+OgPOF970hZ2LdILFdS15gaUclRa6oXBU0zzynpsoTuznRacRqE\nGgS60vtY2+kh32fj6KLrOES1Sv/gmEjT7+R7rFPBYs2H9rxVNc4UesV/SBDR8/MwAVjzMZfXBavO\nzI65M/RquM9UDkMNh/69NnJpusk/9O79QtTw4o+FbKmqXW5NK96cCy3o72ClpxuJAsi07W19Ntjz\nSkVn9EKl4851BNQP8m1bqSk9wEElF+K2Yyz40UHW8VNLFak7s7c8zSO2RiYvDC5w+/ad7XbDjU6J\nmXuk3RY1a1jPp6dnfvrzHzV93SrcS/fVCjjSRe/G+/VOSYlpVAnik7EY72gJRSY8DVwuE8vtSowb\n67pwvd4wxhJ86BF1iZw2Bh8Yx5FhmDQT1QYalbf3OyntpJLww9DfNyHGzO26kGJG5EJF8MPAVHv4\ngxVefvzEj88TkwfbEs+XgP+HP/A//08/U0UYppnLDy8s+53b/cblNFCXnbpFrq836qadw3g6gVM9\neEqZt5xVDGu0Gp3DSJsqrnZshDMU0zTbdAxsWOW2507ly/o7ijEYLxjvsXWkLLtSNKUfcmJwtZEF\nCCoHpOoyL6Ud7zUI3AXHQOsRglBjZV03eNflsY5iNAQm7T3ecVdRgeuVfa26ZHVeHc0ijVL0nx0h\n3fu2dyu95vOWmEk1E0YLzUGr+GHADkq13EWvaTGipMSm7JWadOkoIkSnKp1SCsE4RWTXRtoMp8kz\njx43j8RSSHnl618Wbt88xkFqkd2PjJcTf/zjC+eYCOM7MW8ozdfT6kAhq/zQGpa3dwWI5UJwniYj\n9fBr/LvX73KQB2f65KNiOsvhSLZHlLnQ8J0lXsA2rBNsMIizBDNgrBCXboVPmizU6FtoY3G+KXpS\ndKZdUmFfEvs90aQDkoLtaizBnAZKMP0ABTWhtF5hdEF/n1GrIECr4/6l6GFptN1rHCMvhf9UJT1U\nPlyeh13XiFp3Ww9clcfQ/ph+V46nsMAD3KSHeVfidFaE8s3NR9hF+42OXgzKgewHflNdfO1SS5N0\n/i9NNcDGA+jB74JTnkbpo6qUEVMxtaoevcfZlY4BaNAXmfVhpNERDWAMzahuP26RtGn6zHmwPA0X\nLucTf/7Tz1yvd+63lb/866+UFGkyEvfItu6UDgPzs2WaJy7PT3jvaVUfQrnobHXbdl7f3lnuK855\n0p7ZtsS6RsY543OmtoofPMEHJeLJzLoa1lVlrTFH1mXRTrAVSt7V1IO+z7n/na1zpF3t/PdlwY2J\nYQg9XMQSo1r11y3hjDy6oPE0cZoCP31+4ceXJz5dTorN/eOP1M+fGIegubXDxOnlhev1O9f3Vy6j\nBiXMYeSXf/nCEneFoZnK4DxiHTkUWlYWSa0Zg0oG5zAwOo+g18mWd8XrVg3baEU1z8Z0A47RgJW4\nr7qDqkm5PgUFjxVdjiMKm2peIBjqHilZF9S70c8sdChcmIaO4VARwh53CsrzMUAYA9YKiA7vjgAU\n0xol9sVkJ4yKBVuPhHnRDtGJKpAmVYvs606MmeW26G4HgVnDSLCWMB1jDHkAuEQLdH0Q1IZznpZ1\n0a4jVq34231ncapEGYeBUhJpTyxr5E5Xh3mB9MZ+izxdZqppSCmMzjAHi2TIWY1VD7s4guupQCKG\ngqX8V5IfUhI179QU8WFW6H6r7PuuGY7eMc2B1jK5CH4wGN+oUog5KrMYh+xqLNL8hcY4dqmiqI44\nxU3lPE3pZ2nPbNe9A5IgzI4cG6SG1Mo86dshrVfIffHZTdaUowpGulyv9EpaFyBN6C7P2jku7aPG\nb2ocgiNlRMFURpTNoE5S5bF/hED38ZjVXYHtrBFnHWJU1y0d7nOETBijaTXlSATq1b9g1VHJccH3\nby5dilkaKSpmNIegwQ3OKMbWfkiqDljVkQLuum2+IUqK63Pl1tBwCtdB+90Z60IAyaz7yu3tzn5b\nqSny8rc/8/LDD/z85z/z53/4O95eX/k//rd/5u2LYgCsCK1k7YSMttDGKWfbGn0Q5pyQ5kh74na9\n8euvX7heb5TS+PTyA8ZcSXvsYRg687fVgLcIFVphHAeM9VgbeH+/s9wXlvu9y12VfqcW7khKhWXb\nCMPI6XTGWcOyrKzrznZfOJ9nPl0unIIGSOTaiLFovmXTB/w8j5yfz5wvM58/PfPj58+4MCIvL5iq\nQeQVixtnxssTlynw7i2zEX749CN/+vlP/Mvnv/Df/8c/8evX7yz3FesGhtkzjgFjLry/Vd7frhh0\nDBaCY5qmrqLJvL0XasmUtUDKSGnYJrhmsEUwsZFS5N7eHgqlmrQIS7VSKIrIteAGxcVm28i7LpDp\nTBvNl62M54nhNOrBbzdKSbRWSWWjJhUH5DoxjEHDKrylViHTaJJVZSam56jKg1lfu7yxVS1w/OgV\n7DYGbm+G9O3K9fUGDZx48gbhPOBPQVEfHeTWdpUtG1Fd+75u7DGpoqsZWlQJce17oG1N5FhZb4n5\nFBBz+CAaKWrx5oPl9dcviMA0BKZTwA9O8RrGqVwxRmrKZKlU0UX05ALzMJKj5gFry/MfX7+PRX/b\nkKY353a7KSUuKqx9GDXD0TqjywWBVjLeT/hhojblWMRtpWadV1pncUY0livvfZF45369a3tf0Zgx\nP9AkkWrSVOxhosaouvZWOU2B56cTuaKKC4D+lK7tWLbqEvFQhdDasS958EUeNudDw06vLFr7zRLX\nqhqB+pslJugBq4f9Y+3bxyetLzdzKT1OrRudjsPefiwcHyMXPhaRxqjhKOaqCpxUukJC2+6cE9RK\nTZk2dt181neh1koumVgUNgSCqeqEPebjrRsWmkCqOsPel5Wya/r8+/crPhigsK8L1293gnf8/Kcf\n+fGPf+Dnf/h7Xv78J5xzDJcnAKZxYFs2UqmM48wvr1e+326kkhknzzgNrH2R2WqlOk9KhZIbe6rE\nXHtn1Bjmkek08vx8YRgCUtVoITIDhm3bQbRbFGmE4KglYIwl50JMyrkYfWMI4L0oW94ItWw8nZ/x\n4Q/4aeCvv35h3yJf43firNAxZy3b/Yr3CjaLewQDwxgoWZBscChX58i+9E7hV1iP4Bn8iTns5LDz\n+dMzf/z5T/zd3/8dn3/6xP/47//M//4vfyG3hkglDJ5cIAyOeR6Ju3K0jVUZoHWuEzVfWLaVZduU\nUe483qiW2nWjmli9nnNMpG3VUY0fCN52RKxQBtVLV6AuG+leKLuad8zQqK72/MuK9xZ/mXE41vud\nGFe87R6EokWbBMHPDiuOVi0uN5KB6g71Vu0MlaaL+D6erH2Bm0V1/NZa5tOMNOH9bdG81KYy5ZxL\nRxVnvO+4ZWt7R1sfzmRaZb/dsVY7mULBeM0TFas6/JgrbFkDT4wg1jGdB6wzeCcs95VtzVzfC9u2\nY8yuv3suiifJUaXAaKEyhAknBrIuSp1zKkj4T16/y0G+rWtf7DW2fWfddnKuOBdwtpGNKhxMT1ip\nuVFSwRjVSa+3G/vapVnG4KrDiLZAOSedcXYnWOtbcGMs1jk1NxTlq7TeWuZc2deoT89OMtRlIR0J\nK48xSztcoYdahK4YQQ/7VHRxejj8H6S+Pj5BegV9gHL6KOexmGxHbLJWsMdL9wba0rmq3Bk5zDTW\nYGtX/Rzf76iK+4Pg+FpjLS3rBb6vG9Np1Bgzq2x4eyhd+Jjt64K1kHMkl6TxaF01cyzWStEdQIxJ\nrfO5EFNi31aW9xv31yu313cuTzPj6KFVluud5Czr08T9dmPbNhpgvWe+PPHTzz9zOc/sy8ay7pye\nP3P68pXp6xfu+9aNRp6078RSyLV0sl8jZSU5juP0yCOdTyPjMHCeZwTdI7SmjJ+KwqGkv3G1VnWI\nDuoOdb71+T8MXufaHCytVjAVPZzGgHjLnhOv39/Y11W16a2pEqYkpFaqNeRc2G93UkrYrGk+pQp/\nO0xM08wQ9KBMKVOxGBfww8gwKDlw8g4bPPNgqf/L3+BdY5gc395uWr06oVQLjDhj2dfcuzzzUSiI\nmnJcsjhjGLuu2qDOaNN5NM7oYe6N0h1b7WM+mgaX20rqi28pFRMLJjZq0gdplUyWyC5CGLxq9L0h\nh4LZdOSXu0FKEwcb1jmGMUCzUAytY5VrX2Du+/5xXxZl8RhrMf4RyU3JGWc1BNteTpQCm4v69UGw\nThf6OWUdpXRgnTzuX4N/yFF7sn3TRC66Gsx7VTEZq5hjeoeAQDVNcwSsFpzGaLfeoiru2mFYMqhJ\nzlbt/I3RWLymDz59oBw47f/4+l0O8iOrr7TKtu26pOyaSc2806rIOq32Ysqs66YwnSJs94W477r8\naI3qHbaDllJfsuWYOv3NEnv2pVi1z5MMNak2VDfVfS5Y+9wYTc7RYrznzzxkfgePvGj1Wg9zUT/I\nc6GYPlJ5fJ7qYqsdESqPNeejXv+QCupX/uZBIb85xGtfevrH4fwIY2gN29GlXW7zeL+PQxyRB30t\npcT9etPRRGeY+I6nFXskhPfwXwz1MBwVtTK3Zmii4Ch9eO7s+87tdufrr18pSW3OqWZev3zj/vZO\nXiPtTz8S/vCZ5+cLcdXN/PdfvvPP//hPTMPA5enC88sLQ3A8fXrm+emiC8s1cvlhZXo6M51H3u83\nDVwojet9Y91X1hz1HW0Gg2We9TDMJVFK4TSPnE8nnHWa6/q4HvfOJum5jj2E4wjTtsYRhhFjVZXi\nbCWXxBZ3ljViGphBddnDEDhfZn74/IlaK2+1L1zXlZqTVthFqNXSSuO23Pkev/H+yze+/PKVt/cr\nw3nm5z//LdN8QpyjJp3lW2mKoRg6t3y9U7ZKapWni+cf/v4nptnzf/3yhS9v77yvK2ICwVlSGEmj\nylYbjWVZiTFSq7qijYHgHeMwQNVIuFy1Om5FFWbBB7xXB/Z93Ugp03JVm700thKhJk1DKo3Qr/Xa\nKuRKqjulFObzCE07mWYqxhmM9SzbStkSVCGcBENnLOWmmmprCfNIyZV920kxdTJjBiq2jx1xel8c\nHXSTinUO7wMNCKvVBWzogcsCKbae/qMRe0ZEg5lFsCaoI9k7csxK8PSeFJWl473HeoP1eh+BFoO5\nas6sEppVqWecwQXtuluXO9MOvXjAV3WEltoI1qsHRrTbeFSO/8nrdznIK4qbLBlKMQ8taqyFvGd8\nEU6ngB8HrDGkEqFWWsu0LEoE6+2PQ3S7HDPWVLwYmh1oArGpPrj1CvWYNbtmqSWTt9TT4tUy3fpS\nkt+8X7VB7lbkUvKHxpz+vtbfVM4iatWnfIxR6MHL0J2RPa3IHBCjfug2dKTSDpNPP+qPxUdPGtGK\nXTWmoAe8MSqHMz3OzWiZ+PjPcegjPEwiOSX2bWNYvUKH4BG3lltTgqABkarVJ5BFdBa4bqz3nX1N\nXN/fub1fud9uOkpZI+/vV422C4HmjG7djaeRGceJT58/8Td/+0dOz898++U7X//6K//nv/wV5w3D\nYPi7f/hbPn36xBBGTpcXhtliLon5U2V6OnF6PvH121fe325c3xdSqrzvC0vcVddbDbYKpsA8T1zO\nFxCtiJ1BHbOlUKpyQoyx3YZOv7EaYrRDaf0B6ZzK46y36nzdE9ueueeIrRah8PXrdy4pMZ5n5cWP\ngbv3xC2SG3jbNJfSawJ7TVn52M2wbJH89TvVCn7yLNc3/viHzwzB8vr9O7U2TudnLp9eoLf837/+\nyvv7K9d1xfuJXBr3daOUDZGCmIoT5dHn9BtYnLGczjM+OqUrejWglVy64ksPIO8HHS8I5KILcYzg\nB4/1gVYNNRa2mjRYutIPVXCDxUhgqIGGIXcvgogqlXJOiO8gM2MwDuptJhVL2QplTdy/3zrCoOL8\nQAgDDYfm4wrjOJJi6gHQCe9UUZUf0mCtjn03WBlj8MFh7ITI2NVglZJVjXU4jsdpBA5Zcu8oDCq0\ncI5hnnTnFlMvdERVeF2Xf0xIG6Js8oZ2/TFSa+vvjVBLZ9xnofZdxBAswdgHkVXoaUWC0kD/KxmC\njFVgTm2FJvpE9x3+XjsDIQSvN49B53C9ioxbJPdF1RYTDsNgLS0o/aw2DXegGR5JIEUF9o9lI5rm\nkTdVVshRkdNHGF1uIoBI6b+rVusHVxg+DnsdRx/NXFeX9Ar7QLdKXyo+lp3S/8XWQ4fp0kHqx7JV\n+k/oLlPpGu+jM+CQPj5+nrYAYvUgbrX/DJ0RQVOmTOsOtloyh9iyNrXUgy6N0rZhTEVaYU+FddlY\n7gvrsvL2/cbb9yv3+8L9dme539m3HSPKsd63nTA6plNlfj4xTifM+cQ2T5zPk0bdDQPDHwaCdzpu\naIk9R5Z1YVnunE4nTqcn7DAiPgAFCYVzq9SaaHmHpKHcArRUKVENIiUmSPpQv5xHxsGRi6bbGDT3\n8LEktg5rnTLWt11VUv3tyrnqw9UoLVAoSK04D+MgXC6WfdW4riGoWmFd1r7+bgRnCMGxGMgls+/a\n9rmnwDB4dpPUwdfkMd75/nblH//xn1huVz49zXgjvL6+UkphGs/8/Kc/M58mat759stfeX195bZu\nnM/P+M7zCM7ydBoJgyPXxn2JtLxTI30ZrQtCa033SChC2YjBe8dAX+huSYmeuSOTi2bk1m6ea0X/\nGytgLC6g1SrqirTOddmjI+UeZCHo79k0yk0688cPnrmdaG6gpUqm4YfQZ9mVvO3sMROTxTuPs4pA\nKKZoRyzd/1EqMWY1Y4kajTSgQW8kjeNTs1uMXTlnASldGaNoCwXd6cP20JMp5K0HrDcdAdbeJZM1\nUu9Qkx0GQ5FuHjMGjNUIxmPMKYYgVgUXTUc8ZC0mpTSkVeWpe5VL5lp6juh/fP0+4cshqHjfVPaY\nsdZp+ECwxKSSvGEYNFi4VgbvWLfCviXu9ytiLTEXrrcV24TROyhOre+lUZrKnDR+Lf2mKu+z6/4h\n5ZhVBmQtFFVxHLPhQ36ojs1+EOMeow44lpg8AmCFricX023VR/Xd+du9ov6A5HQyYj9sWwNSpTaN\n2SqtO88OXEDPwQQeD5TDdSqgBh+ryhkjVV1qlX8D89IHeo+fE3p7K5QmPTwjd1lVQlqmlcT7t4Vv\n3155/f5Oiplvv77x9csr933VKLOusz9dLkzThBsGjBfCYPnh04nL+YR3nj0WxlGJcXmLnJ/PhPCC\nNZV1uTE/nbHjwJ4yqRRl55g+EjOWUiLGWoJV+qMzutTLUWPZzF4RL8RNuy286ayPTNx3TBiwXuef\nzhkqhxJIg3bXbe0PZdEioOQHP8dVXeqRNfVlGhvj4IlvGREd2cR1IafE7S0yTaMy3weH84aYdpY1\ns7yuDGFmOp0xwSHJwq6HkDOGmCr/+pcvfP3yBSc6/13ud3LMWOP489/+iZeXZ8bB8fambJiYKy+f\nGufLmfk0MM2eeR5Vdlfh7X1FyhXXk3QOKiZNr9GcMrnqiNFZYQgBL5YUIill9mhh2RTAFjNxi9he\nUNRaHwYx6/QhUUoBYzBecQaDc4z1KGDMg9Nd0hGzqAiCcRD8pH6AIhWsjlnNlrjfV9K2knbDNAbG\nMOCdmq7oubupFHIsiniIScNrgnssRnVeax6M9eNeMN4iRTC2gVS2dcO5AWus0iuFbsV3H4UeihSx\nQZCcNT+4tQ7AU9iWpgn1rAFj8RUNz6mV2nSmPniHNfmBSNY9QVesWfOYPuSkXJ69Pyj//ev30ZGH\n/gHZypA8OSfu98xQAzFuGGnkMSjkqjOvt62SYgMC1ji8bYyDQWpDamG5b9yvC/ueyBUuny6IoB8E\nOutq/TAUa3R5gholjDHUmDstsOJQRchh13fW9yxLOEZVglE/MU1b3V49G2P0yfqbQ1wPTdOXnWqg\noHXDRdOHjDGK360dcHQAvg7qoDwOYx3J5J7IosksPeyigASnUj0RXcCCjqUoFClkKWA1gHcYBkQa\ned/Zl539vvbg60UDFmoh7ju//Os3WoNxHBjCgM5ZLZenF8UOF9XmP708cf50UaMGMI+e55cLg9f5\n5OXTpB0Oje9fXlm3DR8c4xSYph8Yp4EYM3/5669s607cEj/9zd/w9OmFYZ4R04hUtrjz169f+csv\nX/jy/crb+424rphSGJzDOk8KSri7vl8pJWGNp9pAc1pxHXbalBJGegSdd4oRKIU9Rkot+B6MrXF1\nsMed5b5gUsH6Bn056J3FThNrg31bKTXjvDCdAtMysr9H7u8rNe2cr+/MzwNPLyf8qNmVa4lkAUHd\nx81rOLRFIEGpidKEr9fIbX9FUKQDonC2b9eVJRamJfDp08yn55mny4nzOHKaZs7jwC/yK29vK2Wr\nGBpDCAwI67rrvgdVM22lkhBK1l2NEWGcBp37xsy2Ljz60a5g9aHvWJxh33dyLg+q57ppuIizagpq\nPVjFNNONcrpnSeumnUzwTJcT1oI4YTiPjF4DJ2pfbqZUqLl1nrtXKmbM1AxIxlmV4krWbkqLuao+\nhj5Ci+tGE4MbAtNpZAwOYxq394WSE7V3x7XvYsKohRyPQq4f6EbzB0DPl1KKLsidCgJqbR9+CiMc\nwTBHoEUYQpcAV/atkquOqaRCTYXUVGxQUner/iev32e0YvQG0mWBCsF1CaDITWf0ybYtO/seac1S\nmz7pRCwl64FLE523lUrLlX2vrGsm5qKtohVq1VnfsUw8Wjmtoo+FoDyetKUrFoB/U0EcN7guGz/m\nVO03fx68EVFts/OeY6F5OB7/7bZCevVHV5/oxZB72/pYgLbWYWBdQ2ukk9K00si5kHaNuXPBq91e\nms7sOp73aC1LSaQ1s91XtmXjfr8RY2JdEst10aSlHHn51JeCuYFYhsEznyecswxzYDiN+HnCGFTv\n3xKnH06cnic12Ihh9o7ppAEgzuOVByEAAAvqSURBVAW8H9i3O9u6sW2ZYd+YTyPn89RZ7YaYCtIq\nb+9XvYFqYVvuTPNEzJnb2zvfvnzh67c3vr/eeb9t5FowRqV6VhS45MSwRW1x056p0kgHHtaaR1dl\njDz2Ft57Vd90o9WxAPY94CLlyp4KiULLCVyhJEGcJiEJYJzFBs99i5p9TcO7PrpZE7Vk9piIMYLT\nhdiBRnDeM4wj3jmG0TEMnjEMiBtZ7pva/XsaDa1hw6jKnWmE1vSGXzOVu1IvU2U4F7z3XE4T+eWs\nxrDrxvt1garYXtc1+UeyjwHoWuwjnNwYjYEL7pjXKiuJfj1K1/JbJwQTdPne0681L7N3OJJ02X+o\nrhCoqkpLMVFTZl8itQjDZcJPAWO6W6NnzebSHuNS47pbuXfCvt9zcY2UmFn3RPQ90V4EO+ieqhaN\n5zPO44yqYawuUNDmWQu0B/BLb0StrlH3dk46Bml9FEpnyRydLn2scjhG1bh4qMc0IWrf44efRNRp\nq+am7iJPVR3QVemgrfz2/Ph4/U4HuVL0ct4R0wjO4YfANI8MweIEWsnE9xu320ZrpkN1VNsakyZx\nt3rQBQs6+HQ61xWIMevsi4oxtYv9VAYktr+ZfRmp0P/jmO2hqYeUSeO0ybkvO2v9kB32r2+9Am99\nfCG98vfeP57+jzBmjsdHP6Q7gOdA4VoMrR0uSy0ba9U4Lp+ssh5c7yr6QyDnwrruXF+vWGM1NGCw\nHxAsUd5K3iK3b2/c3xdu39+5fvvO2/s71/c7y21jW1X+5YMw+sb5SUclLy9aLbvQuek0qrOID3hr\nEClsZSM8DQwXTbyZjGdyauYwVsmKMWfWbeN2u3O/70xl7l5XYey69daEcfCs264jhZx4/f6V4B1b\nTCy3hev7jW/fb9zuOzFW1dxOAz5rJJYxBi9OOeTO4IyhZm25jVU35fFAtT2fkvax7HWtArogCyEo\nObAUlQGWRhVDrkKOjRYzUiKOflBYiwuB1693NZ5Z7V9M1yM7o8Ehe0xc1xtGLCXr9RlcYAyjPixH\nz+k883S54MPMcL1zuy6PCtiIcD7NjNNI8EFHHrs6Zd+uO9saud1Wpnnk6fnM5XzifJqgqVrsen0n\nZ12aGmOUTSNC7vNfNZwVvc9aoTWjHJQQ8E5TllSF4ShFwz3ivlONYIMlBEt5T3rABk+JqpWuuWgg\nQ++E9eDtt4PRpWhNidZWijEM/QBWg5t20MfhSVMZojQ15AmqtfbeU3Mlbcoykn4fG2sJTXdverFV\n3cE5q/Llkimlz/j7oYxYqpjH9dKfXY+irtYuF5Z+/fQOhsf/19VlIhSbFJEtAt6R+8OroSx355ye\nS85gusa99fOm9uBy80Fm+jev3weaZQ2XpxNPLxeMC6ScO662W/WtUI0liaUYi0OVILkkYlJpDsYw\n+sA9FaoY/BiYXeD0pPPiyrGkSaSkzBIMKs0THYUEHx7t5EHyO6ztxwfUjPS2k/+gOKnH4sEoCuDY\ndMohCdRkaYqphygFFRiqg7N0nngTXUKlXDu32eEsneHS6YNdKllp7CkBCiHSn2epCLdFAzlojTBZ\nwmkmTJo+nr5e+fLLO+vyj9zf72zLyr6tGp9VjC5dm2EYZs5nlbc9P0/89NNPnM4XhmnUrFQR/rQm\n3m8bb/eF9b6wLguSaqcQarfTqMpDx7Dc7my7RnVZ0ZtvjQlPY8+F+n7jvmy9AlZglXO6GFr39NjY\nr/e1P3SF630npkbFYIJjmgesFeK+QNOZ5HAaGAetcHOvgkWkp/R4Wn8vD+pla00hXs4iZuyYXtup\ngb3gMI7cMpWBRmONG5ILqe3kWpTq2HMnt31XeZ+B89PIaR7xdsJ4wx4j319vSFOEcLCOFjNbuSFi\ncPYJzrqMnc+zSu+CR/MmLcMQmEddFhsx7HtmWRyLCOuaWVMixsK314UvX6+cTxOfns/UGpG2q9sy\nqX7ZOEfsi81WGsF5nNU/MnYZXyuPpb7xBm+cup5b0fFaVrdnbJmWwGTDft0JJnC+nDnNZ7zbNemq\nmcc9VqrCt8I8IsFrbFzSeXGpwr4V/Qys5pyKER19mo62lr53erTFulYKU8BYIUye3A2HKSfIlSYO\nb62+rz4g1vSDWamMtVSc9Xh7SBjrQ2hgjdH7tlv0Wz+YtbjrZiRUIee88lj0+lJkbjB6yHvnaB5q\naF0Vl8k192xgvc9rLy6l7/Xsb6ib/+FM/f/lpP5/eKWYCKO2rARL2asyHpJWnq0IzTqKtYjzmnWY\nj2pYgyJKqWxt1XGDHChJXZBStXJKSVsyxYl2GdLZPXSyIehBrolCOhqpVT+kJnqAW0GjtZpW6o+x\nC1qFi+nPSKmPubizakCif+Vhnz+MRdKXLLTSP7B+QVfd9h+P+GOxenQA1ujD4bA76AXc9He1DjtM\nmCg9ZcfRcJSmcKp9T9yvG9+/vLEuKzlFKgXEMISJaTxTa2aaA+dPM350PL8883f/8DPToLRAGwbE\nwrpsnG8rT8vE92+OtzcI2ZFNpYhqz/eUlPliAtteWPfEsiZOc+ituOXQteeqsqCW9X0wNnZeeSV2\nLwA01tTVEjSKCBIslp5sVBtiDeP5rAapHkbhvOJbS6kMe0fodrnr4yasH0RLNSVVfLCczmfds6RI\nTqpectYpb70IOWaImdYa2Todf8WkcDFbMfzf7Z1RbuQ2EESL3aSksXdtI0CQ+1/R6xmNSIrcj6Lk\nIEi+AwH1juCRi83uYvWOnAtaCEjRsbxGTDHx8tgSPj4+0HcuR44xnoNjs4BnLkj3J5b5BrfAPr3f\nsD03BDD/3REwuWGZJ0RjTHJtmdlEzllJGCFqn7/W4XwZy4aTcfC50fddRq86NGCrHdV2tqgS94ti\nWIY7eNjtoyLdwXjnWnaUZ8VWN/TITHreNNmmmBJXpXGgR3+3mZ1rGX3UEj4bkDr3lR4FUYpDxMFi\nyQPQRoHTx2viYcc9bsnwALtFTLPDcgXWDDzxfRuPdNNY9LGjgH33vA1LonVU/xbr4/ZgIzMmpcj9\nsWOw2cf/for8O2FYfs+2bC7DFUPLMd10YBgTjmp+dBka3XZ733F0cY+ojf/i/3miv2UmfB2i3A/f\nNV/XZXRgYlUe4tiUU7iJxD2dQ7j7eqfRf45oocFnRwwdLbPibh3wevTGjTnBS0QtDev9yYo54Bwo\nUci/e+TskdCa1dDP1gpfeIXTeWJ2mA4Bc2clZ4dQYBw0DN/vbefhYT4+Pr7c6o2LWeNwgGBYDP9m\nUYc7rVet8dc/TuwOILhjef0BtIg9V8RkSGlBsEjbUm5Y1x2/PjOHRmDgffKI+bbg7f0ntvzA7XXC\ny9sr0ux4/fmGP//6A7NNiNMNPi2AN15NUTEvjjau1VObcK8bHmVjEP+6oZSG3SpKDdjyjudaME0J\n0+ycHwxHCMDKk68NmaRYd8YdWFpgo4L25qj5iVoLfIlIwdG74blm1MI++Mv7O+aJ1VTyOIa+QAyM\nTD4Oi6MiDMB3dbjv+Pr6Qi4blhs3DZkF5EwhN/MxfwhouaE8C62OwPl7bXlDrgU/3ibsCdgeDbUZ\n+7yho4UCi4YlJry//xxFCQ/mx+OBnDMsOrZcYfcVL7cXzLNjGlV4XjMzSwKHYC/JscTIJ/2hoeQV\niGxFLlOCw/FcM9b7is/PL1hIuC3MIjLksSxlP1t/1gLyeG0YU8KLGxdme8CWNwaTuY99owXdnfbA\n8Vq4bBk9dfTI5c0+Bp5uBk8MhWp15SD3aHmM38DG9+7RkRL3ECRzxJnLqel26cPhxQz0snfUypfV\np12341y1aCO07LSFGedxNlpJfWhrb+NAqnTTVHBrWRtvS44WkI1b8DxN/A5aw/qgcPPWxDZcG2Ho\nx/e1l4IQ4/k6s+SMmsd2qJhGZpCj9h2tcebC5fFsNx7f6PG//0/C0bcVQghxTf69cy6EEOIySMiF\nEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLi\nSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLiSMiFEOLi/Aaz\n77ryEsbvRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAGJCAYAAACXcbjTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmsZVmW3vVbe+8z3OFNMWREZkZlZY9VPZW7TQtMW4DB\n0AKaFkhgYSHLNDQSWGIQGBnEIIQtZAFSA0JC/GMb5EZCbbCEQC08CBlD4wHsbrfdXVWdlVmVmTFl\nRLz5DuecPSz+2Ofc4cWLzKwhKzqr7hd6L969Z9pnn32+vfa31l5bVJUddthhhx0+vTAvuwA77LDD\nDjt8c9gR+Q477LDDpxw7It9hhx12+JRjR+Q77LDDDp9y7Ih8hx122OFTjh2R77DDDjt8yrEj8h2+\nIyEiv0dEkohciMhPf53H/iUR+flPqmwfsww/LyKX/T1878ssyw6//bEj8h1eOkTk94vIXxORmYh8\nICJ/VUT+kIi80X93uUFqm59/90ec+oGq7qvqn++v83Mi8qc+RpG0//m2ou9A/gEAVf0Tqrr37S7D\nDp9O7Ih8h5cKEfnDwH8J/KfAHVW9A/wrwO8GHqnqVFX3NkjtC8NnVf2Vl1TsTwovpQPZ4dOPHZHv\n8NIgIgfAfwz8IVX9s6o6B1DVX1PVP6Cq/lt8yRVRikgtIr8oIs9E5FRE/rqI3N7Y900R+b97aebP\nicjNjXL/LhH5f/rjfm2wood7EpE/ISIPReS+iPwxETH9tp8TkV8Rkf9aRM5E5Isi8g99i+9xh+9C\n7Ih8h5eJvxeogP/lGzlYRP5XEfkjH3d/Vf3vVfVf7D/+88A+cA+4AfzLQDOcGvjngJ8DXgFK4N/u\nr/k68L8Bf1RVj/rv/+cNov/vgA74PuAngJ8G/qWNYvzdwFeAm8B/BPxZETnqy/cPqupf/rj3s8MO\nA3ZEvsPLxC3gmaqm4YsNS3chIn/fhx2sqj+rqv/ZN3jtjkymP6AZv6qql8OpgT+pql9R1Qb4JeDH\n+21/APhlVf3f+zL8ReD/A35GRO4A/xjwb6rqUlWfkmWj379x3Seq+l+palTVXwK+DPzMN3gPO+wA\ngHvZBdjhuxrHwC0RMQOZq+pPAYjI+2TL+JPCnwY+A/yPInII/CLw76tq6Lc/3th3CUz7vz8L/D4R\n+dmN7Q74P4A3gAJ4JLIqugHe29j3wZVyvAu89s3dyg7f7dhZ5Du8TPwVoAX+qW/3hVU1qOofVdUf\nAX4K+CeAP/gxDn0P+NOqerTxs9ePDO6T7+fmxrYDVf2xjeNfv3K+z/I8ue+ww9eFHZHv8NKgqmdk\nZ+d/IyL/tIjsiYgRkR8HJp/ktfs48x8TEQtcAh6Im7u84NBfBH5WRH5aRGzvNP09IvK6qj4C/jzw\nCxv38n0i8vdvHP+KiPzrIlKIyO8DPgf88idwizt8F2FH5Du8VKjqfw78W8AfIcsZj4H/tv/8V67u\nvvlBRH5ZRP7db/DSd4E/A5wDvwn8JbLcct21VtEuqnof+CeBfw94QrbQ/zDrd+kPkp2jvwmc9Ne4\nu3Guvwb8APAU+GPAP6Oqp9cVUDb0mR12+DDIbmGJHb4T0TtK/xw5EuWfVdW/8JKLhIj8HPDzqvqh\nTtx+338B+AVyVM8Pq+rXPtnS7fBpxo7Id9jh24Svh8h32OHrwU5a2WGHbx92Mzd3+ESws8h32GGH\nHT7l2FnkO+ywww6fcuyIfIcddtjhU44dke+wwzeJ63Kfi8g/3KfajSLye192GXf4zsaOyHf4jsM1\necsvRWRIenUoIn9SRB71xPtlEfl3ROQz38rc56r6F/vUu++xc3Du8Aljl2tlh+9UfEFV37nm+/8C\nGAGfV9VzEfkc8KOq+j7rfCqISPqQc+yww28r7Ih8h+82/CTwH6jqOYCqfpmcgXCHHT612EkrO3yn\n4kXT2/8q8J/0izz8wMc+2deZ+3yHHb6d2BH5Dt+p+Jt9XvPh5x/pv//XgP8B+FeB3xCRt0TkH/2o\nk32Tuc932OETxY7Id/hOxU9cSTX7FwBUtVHVP66qP0leWOKXgD8zrNKzww6fRuyIfIfvWvQrAv1x\ncsrcN19uaXbY4RvHjsh3+E7FtRq5iPyHIvKTIlKKSA38G8ApO4fnDp9i7Ih8h+9U/K0rceS/0H+f\ngD9Fzgf+APi9wM+o6uLK8d/K3Oc77PCJYpc0a4cdvklcl/u8n835P5EXmfjHVfX/fJll3OE7Gzsi\n32GHHXb4lGMnreywww47fMqxI/Iddthhh085XsoU/bIqVFAQUFWMKCIgIlgxiEIMihSCOCGJgioa\nQTsFMYhYjDFMqorCWZJGlr6jC4GYEilq/hmkIwEjUFhDYSyFtdSjMZPJhFFV0bYtVgLOJoRIPaop\nywnB14zGd7HFlMv5OU13zmJxyunJM4rKEDVyMZvlCwiIEQoLzgrWQkRR7X+SYgDnDGVhqStHXTpi\nDKhGjIlUhSUmJYSEiCDGgBFCgi4kfEhoElJIpJhICRoVAuAMlIUBFdql4kMiKVhncDbhjGIY6tqA\nsRgnhJhofcIVgjEAiqhCVCzCwdgyqgTnhIQh9PVa1pYUE8EnfBCwBhXB+8hoVCMYzs+XdG1Ck1IY\nwdkCMY6IxYdETEpCcYVlOply68YNbt58nb3pPnVZEkPLrcMbvPH6m+zt3+J7f+D7+fyPfI4bN/cp\nS4cxihiQVZCKbPxcj4+zpvHwzL6+47T/ff31P0rF3D593lnQa8/18aBofs1QBEH6e1KQuF6uSEze\n2n+hq8JsXltQlCTSbx++JbuPN8r8grtbl+rqbrr+brPOV/WRtsuxeZL8nJ4/dvgskluGSi7/sI+Y\nbRvW9OeWK8dvFVr6Jyvb97BuF9I/++fLMjwI7etPZHgW0pcTVIfz6Ie2lf2Jea5BvBQiX5VCwSCY\n4TsFTSnfhCpE2ze2vimqYm0my6ETSBqJCTBgrMGKzYSfAiL5GBXJjUIgxUSXlJASURpsYXEFiPFU\nlaMqHMvFnNlshtLi7AF37u7x6mtvkgicz5/x8PG7nF0c952DUDiDYtD+Jozk8nsfwaxf75ggKoSY\niEkQoxgHURU0YVWxmjBGKApBg/YNzJCSkjrFt3HVWNBM8hYwBgorWCugglaQUEiKMWBMXweqWCNY\nZ7FFQQKSRgTFiu3LmSAljPYvk/T3p+SXgYQYpaocKeSONySIAkkUdYKpHNY4XBsIGkghgRhs4ahH\nY0bTfZrG07QtTdcBUFU108khs8uG4A0He3v4LmB0SWlO8b7i6OYlJ8cXjEYlIjXOGSwG+mesCp/U\n2vMDMXw4euJ47thPpkwvhq5Ie+hYNgk4P1PtycOs3sG4aq3516pLGoh7qOCr3Potur81wW1+ub5U\n5sPBCNy++Oaz2XpWMhD0+kTPF3mbxDfPM+zfM/Cw5co+str0Ir/jQGsDd13tJ9Z/f/0V+lKIPKVM\nVtaYTOSSiSwTGqCKkUxIkrLlHYJHiZhCQJQYI94nNEWMETRpJhIgaUL6RmiGNieClXytlc1mhLIq\nmEwqmqXHuoSYbKF6HxExVKWlrIRXX7vB7/i7vsCv/vrf4PTyMUkiTecRwDmLdQVJoetaUkpkOzNh\njEGMZCs6KSkBKiTN5WxDBIkYky3mFBOlg8IIJinqIykqMSY0KBKFiGZiNgJiMarZaIlCjImUEt73\nD9gJrpBM3ihGhaKwiDGElPAxd4TOWUTW924NWAvGgUoeDbRdJKGYAqpKMCZhrBCtRUzK+/QdcZwv\nERHa4FGjuJFlUtdURc3h4Q3u3XuDtomcnp3z8PEjFosF8/mc4+NzfvRHf5IvfOHH+aHPf46zkxOi\nD4zciFdeeY3pwT5gOX52TtM0TKdjxpMRzpmexD8hFv/YyOT4MkMIBgIXyd3uYE2vCiWCiuYHK5v6\nqiIoiYFwrpCbbvzRc40OBCgvosKPUV7WA4DrnqFIP1oY7mRFxldHDS+6QO58xGROYVXeawrCBnmL\nPNc5rHfdKDCDla7rcVTfE66NdbM68kUEvl2WtaWeC/vhLeqlEHnu/RVnDHvTKZoivuto2jZXVl/p\nqbfQRXoLXCAZ0JSH9qqJhKAqxJSP06FydehF+764H9oI+eEYY3HWIJJQPEWpJDoaH4nR9w/F0vkG\nlYQrLa6y+NiyaOdEiSiKUUiqJB/z/ynl4b6AkWwpJhVS7F/wmEeKgqLOoji6ziMohQWrisRsTZsI\nDrOSgUYoCx+4WCyzbJQSSSSPbAfzWROasuRirMG4LPFYybugkA3uTLxBc/1a49BELl/Kp0p9Vfqg\n2VJTEKc4B64UjFU0CUKWgkJIfUeipJBfhJRS3xgVJeBjy7KZc3p2QohKG5rc0ThwRqhqx+HRHq++\n9gpvfu8bNK/epF0siV3k5o0jyrImAW3bgijGGKq6ziO1rSHv5hD96yOY62SVj49vvCPZHq5/o+e4\nrtwD2W0ziGZrAiSB5HtOIWbJzdh+FDYwqNmWHYZyXvn/xWXo9xO59t5Wl5EXk9smbetAbs/tuybh\n68qxJsYr3681qI+8j9VIQIfRzkYJ+058w45fbcvcdOXCOmy7Wof998MI8+pxV/BypJW+Ho0RRnUN\nKK0xdF1HGEpuhRRy4zIpWxBqhCDD8L6XC/qObmNAmAlHWZP4sEkFTP/G960phI62jZRlIoaOrvWZ\nkFVQDbR+Sdc1zJczHjx8n0cfPOTs4pSgEUO2hGOMxJSJ3Jh1D21tJlmNSgiKpl5nURBMr1M7QhJI\ngiQIIojkjsqmfA7nHHvTMVGEomvpfMeyDfigJBKY3KHkhpRAta9fsL2kYvpGn5ISeznKxzwKcs7g\nDLmz6fVOTX3Hmch6fX9PhTGY3lI3VlA1GAMpBAiKKNiUR0iIYDEYq1gU1UAIkcvLROc7VA1R82gD\nSdgCijIRdMGiPWe2PAUNtHHGfD5DjDKZHFJVozziSUpKgw9i3bauvt0fTxJZ7/tR2z/8XB/DQvy2\nYDXO3yLdlb9GI6HtCG2Lpki2FBPEBGLBFtiixDiLsQ7nXJYoV+fdMm5X+Gbrb+voTRVji2Q35Kt+\nhK3XEN2KzK9e7+qufR1lV9xHlH91dTZIfJCoBo18U3aR547fuGw+ZtD7eVFH9tHt6eURuQhJlUXT\nMK5qqrLKVkBPYpqyTKK9pYADrBJ7K9AYobAGsVmyUEm5grXvXbPt3V8HcmVYMBZVJcREahqQFhDG\nmh130UdQQ1IlpohRz/nFMV/92m/x8OnX+NJbX+Lp06eEEJGoWf7QTNTQW+FD7y75PmJUQpcfszWW\nwlnKwuSyhYAzri+vkoKgJncI1uRhbtSEc1kDV7HsT0uSKt0iklIkxdypORUGp5a1vYWVEtaaVdOP\nKcsnSQfxR3qrWlBNua51q3cEGSQhKE2RCTSAnTisLZEkFDYSA1igqHOzGuQrSBgHRWnwIRLCkouL\nhhAhxOyvKJwFiZxdKl/6rV9l3pzx/qO30NhydnrCydMzbuzf5fu/74f44R/6Avfu3WP/YMre/hTn\nsra/JvMrOubXYd4Ox15HNtc5067fV1cv6Udd/nriGI4btulz216EzXvXYeTfD/MHutAUiaHj4vgZ\nZ0+e0lxeEHyHiDAej5g3HRHLwc1bTI+OmB7sYyYTDGal8w63lxXQtcH0IiniReW+uktWfLbJvn+V\nhhvckjOgt896S3urxvpCbrYG7Svlaq2vjPsrz2Pr2fa+AR2u05dlOESvyCYbJbn204tGJkNnO0g7\ngwb/YXg5RG5zhcSUWCyXxBARgZDSSmeKMfdtVsCa7ISJQ8PseSYpOQrDQiEGjYqkTGopsho6WhHE\nWOrRiDfe/B5AOT0/5fT0CSF6Wm/QecgdgGbrMWomUAi07Zzz82eE88h8dpHPiQWNaC9VaMraXVIh\nxPVLFJPmkUXqo2aMYVSXTMYOJbH0Hc5kSUIj2FJwIthsZqCiBIl0qaGwDucSo0pYtobWJ6xmoaoo\nLfvTGu8Dbf+T+jct9c5gTb3VHYcBiqzq2neh1/D7shtZ3ZsUgrPDQEmIUWmahHOR0iZSzJ2TEdvL\nXCk7XwtLXZcYK7hCqSqh6Tzzhedy5vExEYLi40Y0gSba7j3OLs95/+FXqco8avJNx2I+A0mE0HL/\n/le5d+8en33zTV599S51XWdntzVbL4j25xw8I4OW+Y1o6S90pl23L9eM+j/inNfj41v4V2Ul7Ueh\nMUR852nmc9pmQbOccXF2zNmTEy6Pz/FNQ7Oc47sWrCCuYu/wJlUxoR5PSTGP8pJmzc2sGPTKDV8V\nXwan6NbOH+4/GCSJVae8dV9sjQQGGSOTq145xwtwxeTdVFTkmk51S6fOl1xx1NC56MYp109rs0N9\nUdnWrWS9j6z+X+nsz7Wm59vDSyNyTXmY33YtIQaE3lFHf1Mxh9LVhaEqHXPvWaa4uh8VCCiO7Mgr\nnCG1ESs5xDBEJfgsHRgxFIVjOhnz2c++gQ+BkAJn589ICbyH0GULuHBCWRZEEgnFWkPrl5ydHTNv\nGtqmwRlHIS7r030Y19Di0hCKpfTOwxytQj9asMYwLh1H0xrFUzYd3ittSoQEtTOUNkfyJAUsqEt0\nqQONCOBsdojWpUHFIMZQVY7ptGK5FEJK4AUZIk36TkaTojGbHqpC6vWSpOBTBNa6+CCrJO1HP06w\nfWhi8Ir3ChIYVyXOGFxRUBT5mGbpGSQe6wxVaagrYTzKZbYidG12Vg/PM0alI6JR8TPP6cUlT54+\nZrLnqEpDYQusWB48hPPzU4pixA997kewhWM0GjGdRsqyoB5VWbJaaZKstDURg+qg0X58gry2Db9A\ng/1WIRdR+Cgn1wC9wnba67UpJUIXaGYLTp484eTJI06ePeby7JjmssO3imC4PD9lsZxhCsdk/4h6\ndIRGAc1tKITYO+77CCG2BASkd5wOn7duZOsWrtb7NoFdJW7d+G51qg3S3PxbBjpX2TB3r6m/5yzp\nTRJ/vgvO6oyuLPHBst+kWF0dSy9BwdD8XlCKj9DgN/6+RsK6ipfj7DSACGqGoXXsySXfuWiOsNiv\nHIf7FQf7NY+PZ6R5S6NZl1YUNZD66BdrDcYkKiNM64ImJBoTaDRSWMtoVDGdjLFGuGwWnJ2dEnwA\nVUJf42oNpSvY399n2WYduq4ntG3LxeWC84tLqtEIYywGm0MexWKtoN4TYiDF1MsJgmKyRZ6ktx5y\nOKQTmFYF9dhypMrF+ZK5UXybmIwt1hhSjIQYkQpsLSSTI0yklz+cTdQliDW4wmAd+LahbTxd6wk+\nR5jksEyydZ76IWTqo2bIDlGRREypJ/7eedpHAVnNnYC1ltIKnc8yUkz5vKPaUVR1Dq2MHvURcYa2\n8TRtRxNa9iYONId2jooKGVXMy8ByqRhJOT5dcz35IIRkMCpEB8ulJwShLCKFmbOct4TuPtbVHN04\nwvuWZyfHzJcLRnXN7ds3EakwxhCDR4zZiD7YiCLYcp19Y3gxmQ+kpFsv+EdjwzpbRYyYLRZ4XhRY\nlyVvzc9xeJ9SSPjW086WXD475Su/8Zu8+86X2BtV7O/d4XDvFcpqAlrg6glvvPkmk4ObjPcOcNUE\nW5QownLRUNc1RWlXo5rBul6JF0m3bnUwyDNRbm64vr7WNXBdtWxIRStT+Iq1fjXKhqETGMr1vAT2\nfD1mA3P7O1nJSXrlMFV5rgxs3Pfqu7xz5rfNbVflutXX2yO+dUTMdffxkog8pIQRs6ogev110BWz\nc06oy4LpqGJcFxztVURNnCw9XpQ4yAYiqAjGONTmptxFcnx1IZRJsKKodszmp/zmF3+dxbLh/Pyc\nEBIGQ9QcdFUVlrKwxBBJISIxoqEjYUgpYp0SQosxltGo5PDggKIoaVrP6fk5s9mMrmmQ3jJPPiGa\npZIc465UhVA6SHQEHyF13Nq37NfCcpnHAbGf6JNSdh6KKJ1GNCRMUurCMakNpYMQoEvKYhFYLiNt\nl+h6olVyDPkQgZKS4lUJmj/HfpwqvWW+aqwKKWYrJQnZAjcJ1SznJMAVFmsNISQWy44QYn5hjOAq\nQY3DB2h8gCYRCHTRUhYBVTAuMNkTXHC0UfABkhe0E4wtACF1CTWGoKBBmYWWwiSccYyqkq6Zc//9\ndzg7e8p0b4/p3pQPno0ZjcbUdY01llE9ZlSPqeuKoihwzr2QzF+seX9cbOi6MtjFfQdyZc/nv9nY\nMphzWypAT/KD0dGXc6Au7z0xeKL3RB/p2ja3RcmTsDQFnj6+z/ziFJvHdYynR9y4cw9XVHigmF9g\nbE3wiYvzS84uzjm7fMLejQkHR/t0lcNa6R37UJRj9g5uYFyZR0HrWLtch6ob+rZsmNebdyQbOj7r\nexzONFi12wOOVW2sfj9nxffbNmWRF9T4er/h4KviyEb5deNzX9bnuuv+Pjen7ehwfE90a6fx8+1g\n1Tlq3y8M9fcheClEvprA0xdycG6uIXloj8nRFT5Sl5b9ScXSKxr7WWn97CxVAxhsUUJKNDFgnPZk\nDoZE0o6m8Zyen+Jjjkop3QhrsngcY4u14Cx0bUvoAslHvC5Ra1AEV0DbeWKKTEYT6qqgHo1wZUnn\nPSQlWLuSi2LS7PwzhqpwVM4wGRnqQkmpIYZISeBwXKJjx6xOzBYtbZcpwCQDpvcZ0EePJKWuDKPC\nMoownwfaLrFsEvOlJ8Qsh9CPdAXQmGWomBSfsgM19VJL0jxKGIhn1ZlqH7sbs+y0RBGXiCHLT8bm\ns7edp9Uc9WBtPzPUJFxtUG9YBmXpE14TjVeqMmaZxsJ4YimSxXSCafOkoiSGqhpTVBWuMLShpQsd\nXhOmnCAYUlQMlvOzM95660uUVcHRzRscHB0SFUajTObWFBzt3+DG0S2ODo/Y25swGY+o6mKrrX2r\nsdLhc+u8fh+uIfOtj5sOU+0/9/8PuyRDiAHfdZyfndHM5zkKJQSaxYxmMaMsCvb3DxAMZ8cP0bDk\nYG9MUewx3jtgenSEq0o6DSSB2WKB8wHrHDEFFsuW8zO4OBxjbCQlT9d1JCk4OHqFN978HLYY46oR\nZZ0DFowx67jvq9rCYF33N7xJwoNksVEFG7U31NYgb2xu2TjX1ctd8+UQbMHV663O8fyTW8kwq050\nswzrDmWjK3vOmanrR/mhkI1rDCf9qFb6Uoh8NRzRdc+tqQ/cySoEXoXzRUeIgdFMODioGNUF+xMI\ni5YY8xBeQz42BmU0HpNiZDGbkbuBHMMspjf5k1AWw8QAx/7ePtY4fOiYL/PEnKQNodfMg1d856EQ\n1BoiNof7aaLrljx89JCiKBlP93HWcuPwkFHhePzBI84vZ6hGjEJphL264HBaM6oU5zqitlgD01FB\nVTjEWaRSvHrUCjZZXKl4AlHyxCJPIsYsmZS9RdwuwioMz9gciz3091ayL8J7JagSVQkqiDMMxJBi\nRDTLJGvmB+cKnCiGiPdKkxLJCGWfeoCUpaCkAVCMdZRSoCJ0bYcrDVgQByEJMVp8ckSBkREmJRRV\ngU0GnxLBa544ZOBob8LdV1/j9t27vPWVd/jg6TO6GHj97vfTLBoe3r9P7C7wbeDk+BmutLzy6l1u\n3L7Nom2pqpKiKGjmHa/cep3PvPomr7/2Oq/efYXbr9ygKA/7juj5F+RbNaFofZrr3trnddi8Z37L\nhd64GSwyNtI8DKKpCCkmFpcLnj59yltf/iLnx8+Q0DIqLKmb45sZ47pidnCDsqzx88eMy8hofIBz\nR9STGqkSoz3HNI65XDjef/trHB0ecvvWLW7u73N69oAn9+/zpb/9gKY5pW0XNF3E1VNee+MHCV6R\nYp/9w5u88uodRqMRUhR5HkR/N1fDvdeyzMZoKG9Y6eFXIzU2a2zgwvU+0lf4lgm8cS2uHLk5clpT\n77a1rRufN1MdrM97rcylz59ztWEwkp4blVwpImuLfO00+G1okUvsg+TMZq86PFbpo0egawMEwbeC\nWMN4WrK3N6ZFiMuW1kdIWV/1wRNKT1EYJns1bdusLFg1/YxOm8mNflZkVRvqqkJMTb1UrGkx4onR\nEzTLEHloajGFzZE0miM/Ot8hyRAjRF1QFRVV5RiVjrosWDpDbDNJiiZM8lRiqS1YF8EJk4ljb1qT\nUqRtA4tO8b34bC1gpB+p5BwphTGoE5xxGFOsZD8rMCqhrhziHHlKf479jkFpmkjjFQ0JQnZ4Kgox\nS1hGekem5GsaMYzrGlLEt23Wr2PuLHJx8ggl9bHiIrnzCDFlgg8RNYoYg7WOmBI+KJoCKQjJC0SL\naSJJc56WlPIoLJpIR4fXjkTk4OgQUxT4oEz3Dnj91Tf4kc//KM4qk2nWbN+7/z6F26Mqjzi4MWKx\nvKRZzqnrMcFH5vMlhSup65qqqjZYdvs1+lY4Qa9p7S/+/jqDXPO7MDzbFVkNIyRVQoj4tiN5z8XZ\nGadPnjE7PSN1DeMSQndGNzuhvTjhfLnkqXGIGo6PH6EiFOUYZcro6QMmH9xitDel6yInJ+e8f/9r\nnJ7scXryjP39fS5mx5xfPGV2eUHXtXjvaYPHFEpIj7DmNyhHR9y++xqa4M6rd5hMDdaZtZIgV2aW\nDoS6IXusiXfb+t3auPVpsHjXGrVu/+rPcV1HujrD1jPa1rt7A/M5y39dri0Nm/VxCoiu73llr6+s\ncdkg6OvKeYXp+4axVbYreDnOzmGii7UYyc67PsKpH+ZnMk8x4ROkaDDzjmQMo72S8XhMxNKcXjDM\nJw6A7zqcLahqR4iWEAIxgdUckmhMJguxICbP5BRbUVU1tthDU0EMS0JQEoGg6wRTztg8O9LmvCeh\nDRhjQaFtWowKXqCTQO0Me+MKJE+1HxeGSW2xxmdCdootharMk2tmrWe2DMybnAfGWLB9srCkOQ0B\nCk7AFI7COURMHwuem44VsKXBFDlOMPV1GSMYU5CaSFBg0LJ1Pew1mrNt5M5OcqRJbQle6TqG6bS5\niZo+Z0z/vEwe8qAYQh+G2YVEMtkBCzZPQgqJGJXkIQWbHa+kTN4iiHGoEZJLLMOCk8sTpHTEIIzG\nY47qCXv7+3zm3md5895nsFaYTscg0HnHfNmymAv1pCLFBSEoo3EJKqQYqaqSqq4pypKBGLdFzav4\nVksuWyLZ0r+YAAAgAElEQVTsx9hv2Jc+2ijPxg2tx7cdXdMyvzzj9PiYkydPkBgpDUhsWV4+o509\nw89OmZ+eE5qOGCJdt0CNQW1JCBX24gnFyRRXVUS1zJeB09NTfLckz7WILJZLlkvFh5oYLTFVpNTg\npMQ38OTREw5uWOpqwtPHjxGUG7dvcnB0sJrZvO6arspNa7nk6ozIq/x7pctlNVy52hFs1vSmjLFp\nrF8rbchGJ6LX7nt1ss7zxNoT/xDYIP3Io+8QBrlyq3N4QUezjq66rmN7Hi+FyAsRSucoyiLrRtIS\n+3wikAkm23z5hmJSZotAE5eUPnDn7l2KcsT5yaLPHJjprGu7rHMXpifu7MhMSdA+54kh5TwTkpgt\nLglJmSKMRjUGRzCWtk0ko4S+k9GgYIWqqqmrEaiwmC8wqR/etp62XRCbSxah5ebNQ0ZHU6pxwXjk\nmNaOvdKwOD8l4KmcxVWGROBiGTi/7LhcJpZdlkDKSilR2q6foJSUqlCctRRFnrIfe8s3quYQx5jA\nGnzyfaRKbkjiLLWraFOHDYqEHPK3MvRU0dg7mF32KbhCwQSSxt6Df1Uzj6B5RihqEM2hMcPkpy7l\nSUYxGGJQghdiyHJBjHlEYzTPYFVJJFHKkcMU2Xl92c64/GDB46dPKNyYu6+8zq1bdzg6OuL27Vvc\nuXuHuqo4PDrEGMN77z/li196m/sPH/L42TOKMlKVUJiGoi4pij6yx5pVaOL2ULqX3mQQpVZp3D4U\nW/HB17xlm/HHG9+u/9okhQ2LSxiiivpZvikSfMC3LRfHp4RliyTlwf23efb0A2aXS27fvo1vI08f\nv8/Js/ehO6dIHcQO7X8Kp0QiMXWoJpaLhvPmKSEl2iD4aDEypq5usb83Yf9wn2pUUzdTmsbTtQHv\nO9puwY0bE0aTCmOE11+9xWQ64uzZB5yeHfPq7HU+P/phiqrOzvaVjJLvdE3mqbd6DYpdZVHULTrO\nNbJtKW/U2vq0awViIFztrex+u6ye72AcP69vPE/kVy3lzf02y6Fbn1dHbJLx0N6u7HvdJKq1f+S6\ncjyPl0LkVnK62sIVlCOHmJxAynf0qVPBGZczISZQNaQE0Sth2fHs2QloTrgV+/aQE/clQudZEleJ\nf3TDGiflyTEDkSfNOTtU52g0FIUBKSmqA8ZmBEXLYrHIERUa8N0SZyuqssK5EvUdKXlS9Ah5mnnh\nEsZ2lHXBjaljMq0QTcznC2YxYFJCPUxHkh2YUfEmPwnb54IUK3hV2pgt8dI6RuOSuipw1qAx0XrP\nsonMWyUag1iLOkeIkRACGrWfxJNIoSPECJKypR/p24iFGBEkE+vqJYt4n2deqpAnWqG9DJOfYYpK\nnnLUx9dKREXyc4xZ7zaS8E2eEAU50kVsfg5NF3KdmTzUkJijgSgM1kh+x1Ok8wtav0Q1sLc35snT\nx7zz9lscHhxw795nuHPnLq/ceYWohukHjzk+f7JKwnZ2ekwceTTBfLHkzTff4M03P8tnPvM6k8mY\nsixZ5f54Tun4KMt5PbT+RiYYXTdLdFMiWE1HUGiWS2bn58xOT1icnzC/OOXy/JSvvv1FZpdzqnKP\nvVHB/PKch/cfspyfYbWlMkoMhiSWZF2W8HykCT5n/yRPOLOuILaBzitIZD474dRZLudnRLWIKSnK\nKftHhxRFgRDw/pKuu8R3c2azx/h0zmw+Z7J/gO8OaJslxjpMYdb32xOZkUFaMCsjbGtq+9WQvr5S\n1omq8gO7jjtXDuG0LYoM+ybdCFHcemS67gw2T7hRrk3d/jrZ54VcO0g0et0lr7Q6XY8yrks78CK8\nHI1c83ARVcqyyJ533yFJV5kLrRFiyjHNaRiepEQMiYuLeY7fNga1hiT0PT99Aq6EOJuvJdkyd67A\n2YLYNKQUGJIvex8IvsVQUlUFrjBgKlzhqMThQ3Z4+i7iyf87m3K4XfSoBqxJlFYZl8J+VVGPlWKU\noC5wVaJrPbPQ0ErKUTEGWklIymF3XiFJ9gOUzhGS0oWAT4nC5JFLlgUMoinnXNdIEkUKB0OjNVnH\n96kPEettoeQDUVOmXJN1flIf/pny5CMjgjOC7RN+hRDI/cg6cY/0WmdKkCf4r8PfkvYJvKTPPxPy\nZCzfKUY1z+40grUOTYLvsuNWU0JiTsxljZJnQK0tp6iJxXLG8fFTnh4+YrlsefbkKXdeeYWmW3Bx\necbewRGT/ZI79iZuBE1zTrs8Y3ZxQu0KVD0XF2e8+15OuzCejLDW4pzD9A3n+uSzH7M9f52Tg1b7\nrpx+vdGRhvz5CsasaleTErqW+cUJJ0/e5enjd/ng0Xs8vP8uguPWrTdYzM44Pzvj+Nkp0TcUJuEL\n10tgCdVETLAMStMpWJtlPoHK1iTbEb3HJ49vZ8wuldYn6ukNRtObFFaophOmkyllITx6MOfi8pLl\n4hnmfsQWhvl8wf7RLRBlPJ7yyt3X2ds/oCwrlsslmsA616fjyLKLbk3eeZ681hb35izOFz2qfny1\nklR0w88Amoac5HmbDImahkyQV58Pm6Oq9YWH5zWU67pybPP8dqcjm6fbPBfDta475/V+nQEvJ41t\nTPiuQwphT0a4QigLi4nQxZy7OqXUk/h6cQY0k4IPAWegKhzGlqgmUoxYm3OUGDM0CNNPeDHUVc1k\nPMUHiF2Toy1UiEGJIWDNkqSRMpUYW6DGYm3JZLLPghnNosm5zLsANMzmlxQm4oxSVZa9sXC0V3Dr\nYEQ0nmgUb5VZO2ex7JjHDlcLtjJIbWglW6q+E4LX3krOklPXeZZdjtWtK0s9qXBlRUwd3vcRO9ZQ\nTwqKScnpZUPXBESEJCYv/pAUk0wfOdD/W6U1hUFOMEaxYnC2fwYOMCk7G9MQOSG9Nd5P4WdIsC+r\noTPkvOZJtfcjJFLIlruVnDPcSE4lYIzDFcpymbJjNOaMj7FTouZJWlmztzhxXFye8VtvfYkPnjxm\nf38vx+9XysnZY548e5/9o5sc3bzF4c1b/Mi9H+Lhg3f46ttPWS7PGI3ucO/ebY6O7vDw8Qc8evSA\n119/lf29PcbjUe+P6V+Sq5EP3wReZKUP7Xj9d39p8szmmLIPwzlBbK7Z0agijEsuXOT0+D3efefX\nePdrXyb4wOHRHeoRzOcnXFycs1x4YlC8c3hKuhSJ2vtFkqUN0CVLXY9zOKyzjOqaugpURcO8WeDw\ndM0FZxcXvLa/x2Ra5hFWZXDjkrJ0zJolz46Pmc+f8PD4q4TUEkKkrKY8fPiAi8tLfuwLP8kbn/0e\nDg6OePbBY5IK0+ke9vCIoihzvZvcQlFdkbjqNqFvat2qL+o0t63l7aihXkZLwirLo+a5LANJb+7/\n/OnXQ6U1+a5HBs8/440PIhvfbWo4w/bt/dfrXVx/ny+yF15O+CFZr0oaWDaLnPoVkJRyljzypKFB\nJ9TB/lPytGGTF2Noo6dwBaIGTYkQEw5w1hBFsxUSEk2CwgQKGxmPpxRlSds1LOYtGmNP/Imua4jR\nUZZ7WFdiXMF0NMbhsDpjsVjkTij4PIE/5Sn843FNYWPWkY2ybDsWMdDZnJ1RrVCOit5ZKiSE0AZ8\nl+gaesdunk5N8n1q2Zz4v/WJi4XHGIs1OdQPIb+cKGIthctT6EMIECImJGyA0mR/QbKGqFnWcdYQ\nNa0iUYq8CgYhpZy1MPb2RG+pD09MyO02x4nn+6hKh+vtRjGGQJZbosmNXGOf5KzLETPNAkLssEXE\nWovYrJWrClYcxoAzmrXqvsEaYDKuOTy4wXg0ZTIaZycmkRA9TdcgC+Xp+SPC28LdO58h+QVKw8Fh\nRUwzLmePODicUtV5qvnDRw+YjEc5bcN0muWC3jpcW2BfH6F/XGllGNVkKSWt5T8xLJdLFouGEDz7\nB1ME5ezslCcP7nP/a2/x7lt/h/Pjd7k8e5JHpxHm84bHHzzGh2dosuzfOKQwN7JvCZjWhuXylMvL\nPM/B2ZLSOfb297CpRWKLiKVwiboCxWJMJGjAaeDs+CmXi4jXisPLBa/cfY3XX30VHwWVmqI6IiWH\n04bC5RQSyTf45oLUzTh7dp9HD36L3/w7X2IyPeIHfvBHGY9qCmtB7CoqC2Cjj1sRxXoizbB9U+Zg\ne+f++9yJ9qmkGZLBDRZ9Hp1oSn0Ybp90rydlEd1qB1tata4nzbH5fd8ZPEfWrDsVXTnX+xMM/c6G\nUzPvv+E43Trfh8stL4XIAYaprF3bZosuKc5IL6Ok3hJnnZBm6LGT6Wcta04lqwbTp4RNMTv/kqWf\nSJMrI0al63KI32g6znHGrqBdRrARWwhFkWOiQ/SIL/rGXVG6mmJSMK5GdPstIbV0ockpakPO5xK6\niBJwCIsGZkvPIgWCE4piyDzYNxhjECwpJLou0bYRI9I7AUEIqMnkaIwhJGHZBsqioyoSVlJ2EDJ4\nwj2QEM3LD5mUsCkvQFGqwSF0G8NMY0FMTjCmIacLMPSdiaZ1sjEVnBjU5lV/MnJUi5gcdWSN9BEv\n65TCRgxBsu6Zl35TfIx5IlKErsudddGXP7fynBcmh4ZGjJW+eWRruejzlccUaNolKXnaZkGMHh89\nxbzkcrGg6QLz+YKyUExaIGHG+UXCWKUNgS6AqCN4z3hUUY8qRqMRrg/Z7G/xW2WUfyiGSIauy7Ni\njVjOzy+4OL/E+0CzXBBjy5PHj3j8/ns8efAeJ8cnzM4uaRctKUIMwmLREfSYkAzj0QGHB7fQoHSt\np+0847JEJEc1xaRoCNkoigHwqLYEH1b5/a2JeWKXCuOqQIGuaThv5iwidDFRlBVFNeLm7ddJ6RYn\nF49puwssntDOaJczjj94j/femfKoKjg7f8Y777zPzVv32N/bZ29vSkpKUdYYV+QJRHJVF9fnSHyz\n7rb33PyVf1KKqGbpLqfNsFhbcH5+ytnZGfP5gtu3b7G3t09Vjxie/ybxbvXNut3RbBLqZjTL1f5l\nc9vK0dp/sZkO9xq5/ppGwws2vCwi76esG5OHkyQwSShcQTCKkmUFlV4W6Csj80NvLRnAQkgBi6Ww\njuhzY/VdxBT97DLJcdExKU3bMd4bMxqNqOua2awhqqesBFfkWOeuS3TdAmcrjFhIhv3JhOlkRD2q\n+ODZA54ePyKmJW2nzBvPctbiLLRjAbEsInhrELV9THwkhkQKgows46okkCDGPv1tziiosZ9S3y/P\nU1iLT3mdzqbNy6EVTjNpSw6lDNETQr+UWrI51DK7JhmJhSQsOt+vWpSdwqXLblX1iumTW6FDVEm2\n1p0rcM5iJFv6oZ+IJMZkx7IB1ZxCl5TDRaUgr5+pATEWsRaSRV3W1WPKo4HgFehHF6yJPGv3Od2t\nc7l9CBbVjouLU1KwfWeeaJbzvKpSaTCuRE2e2WtdiVFPCjPEzznYm3B8eszf/uKXqKope9Mb3Dq6\nS12V7O1NuXvnLpqK9YyoQSqXb5zRNxemeC6lLmtCUIX5fMFiPseI49nTE87PLum6yNMPOpaLc559\n8JBmNkNE+Mwbb/JeWNAuLonBEiN4H1h054wne31Oncjp2RkX55csm4aDpqYqE04UjTnnStsGhI7x\nSCmcZ9mELOtEEHGUhaOuagpbYSc3WWrF7OkJZ2fHLLuA4Hjz3j3uvZ4T0KWvlpyfPUbSguQb5pdn\nfO3tc06e3idpZNHMUSkRlPvv3WI0ntK2nsn0kOnBAUWRo182nYmD8bomaNn4YpigYwY7fOtRGXIy\nvq5taNslMUaqakQ9mvDVt9/hi1/8MvcfPOR3/s7fwQ9+7gd5/d491gsbrJOqbS65Jhudyvp5bhPz\nh2FoBnLVqz5MiGRje1+Ozeid7WS8z+Mlrdlps0XoE4VzOfZZIbSRoP0Uct3w3G+9BIrtQ+FSb9VE\nFGLCFgZJJi+M2Q+VVYWo/QQFC8tmjrFKWZS4AqKP+JhQA12I5AVShETAh5ayqokojW9ZNBecHT9l\ndn6OTwGNBlWHjz4vemEMyVpsv35ozkeiqBoCWQ+OXWA5X0LKckJZZJnIOiEvKt3naQna58ft85Kr\nImJxVlCNWR4h5VzQkqffL9qASUIlhv2R43Ccl58LrcdHSP0aoWWZJxeZar14ctelfjFkSGoQ4/qU\ntyH3oL2zM7s4+4UrbL9OaN/ovOZYcRHy89U8C1as4gohRUHjhnNPc3RBzgNvkSRgBVNZqsJSVxYr\nlhiErvU0TYsmg7EWZytijDQLzWGlVhhNLKOiICVYtIb5LLJsF1RVwDiHbZZcLs44vXjC0e0Rby5f\nw8eWIpV5SUEZlotbtbZvuq2v06Bun09V6dqODx5+wMP3HzKftUynhxTlKE/E8p7L84bHj4555dYR\n00mJ4FGbQ2RtPeHG0RivLfPmHFfmBTj8WSQS2TssOHQFPjWkPnOmqwrqKSTrmfsIhWVsK0QNxvb5\n/UXwIRG0pagmlOOKzhuWyxnLJuGKEVVZM9nbJ6C8/e5XeXbyjK5bUhc5g6dvOxbzJe1yTlEYjDOU\nVaJdPOLhfRDT8vDhK4wnt/j8D/8YN27cpqrG+Z1d1c+Ge29lxcEq8xubcd/r6o3B0y3n/Mr/9Zd5\n552vsFxecPvOLW7eusV0OuX//et/k3fe+Sonp2c8fvQ2Dx78BH/P7/opPvPG91CPxuSRc/av9Vfp\n/UwwODYHal+V7SOe/+bT7wWcDU5bm9+9QMMwl1+3jvpwvDSLXPu82M4YqroiqWG5vFzlAtm4zW0M\nTy+RZ4Ya6UPIDIUpMD1RlM6BdURxNF1LkohPiWXbZqJOORzPOMmr1GsiYcCY7IgRSJqjUhbNkvnC\n45sZi9klBI8hL+GW19+UvJKKsyRMXgC5X3PT5tvFWUM9yhqcIebkTSrEKH3USR/3HvPkGR9yeoGi\nAFdmwnQmOx3jVpIxkL4DCDFRiVA7w8GoYFwY2i7mOPjYW4fSWxaDjtiHA6oMzlBBxeSwzpin8BvJ\nUSfGZmsirZpY1uhtjs4f8t72s0Ozbj50oDEIJggmJCIpT90POVYdVaKPq3j2WCqpICdBM0ryidAo\n3TKgmlPmunJE4ca5o44QUyQ0ifnlnJRCdqR2FTEakjr29kf42ND6BV3wPHj8Hu+8+xa3br7Kvde/\nh6ODG4h129Ort1rg1Zfpuhf44+rk2cF+cX7J+ek5pyfnzC9aNJbsH1TU9ZilNiTNKyn56Fk0kfn8\nnIvFgjYozpSYqsKmhHaJLrbgDcQsidQjhysT7XlDCh2ub1+mtFgVuqQso6BesGpzRJEYxEDnPRFP\nAcwvjlkEIcQ5gpDSksXilGVzjqJcLk5pfIOmiIrBFBWpscwXLaFtqOuK0XhCqx1Rj2n9IvtjyiPq\n0U2KUvCf/X5u3bybjSYlT8hLiaqsKF2JamS5WNI0i2xclRVVPaKqeklEe2emJkLwLBdzvvr2V/j1\nX/0bnF884/adGxwc7lNUFb/15bc5fnaaO8qzp1SV4+bNG5Rlxc2btyirGufqzd48T7obwhrZJPLt\njjk/W7n2u5X0Als0PqiLKz7fcIBvtbGrztsreEkrBA2LFuQ1F+vRiKSW9mmeoJMXRNispM1ZTtmC\nM9I744xgnaO0FaVxmGgRY9mb7lGN9lBb8+TsKU1zjveLbAUulrRtS0wph6BZaIJHjFCYgrLMVoqQ\niCkwX85ZLuaEdkZlInVREBGWXSCQk0WNakdVWVKSPFEGJbYea4XCgSuEyV7WK70POCs0AqFLvfOR\nTKgRfJu1c+tyEi9nhbqyFFZyyoGw0dNLTuNbFIKzntoK09qyPy7QGOlCpGn7hamNYJLgvZI0Ykh9\n50MvdEuflTJne9Te+kk6pFQw/ees9weFAkGNxRgwvm/mKTtZi6KgKAtImcg7L1gfCZrACWm5zLle\nBGIIxF5iaWyeBBW6iDWO6IW2Ad8pKeWwyGq0x97eIXU9wXeRy8sL5vMLHj14AgjOlEzGNxFjKQvH\n/v4B8+UZTTdDrOH+w8cIfwthRFVO2J/uUzi7mo13NWpgs/2tsU3m63dYnnuhV+Gb/fEheE5PT2k7\nT1FWTPdKfBdYNi037twmcYGroKiFs9kJ89kFHzx6wOzyBI2RqiwwTXb4LttICC2Wgto5XFFhbCSE\nhmY5g5QwrsyRSOIwpf3/mXvPJkmuLD3zucJVyFSlC7LRunsoZgXNaPvfueSSuzO0ESRnuhuNRqNL\np84M6e5X7ofjEZlVKHD3G8YNpSMTmeHXzz33Pa9AZehCoG8TpdYYIlpFjNW0ztEHB92a9vwCnxXa\nWLE3yCtOT79lNMnU4xG6FIO6hHiVl9WIvh3h3DUoScQqq4rVdkXWG8p6TRcU2pxjiyk5d7h+DV/9\nmoPDY1xUtJ2EnBzMDjFjQ06By4szTk/fsV7fcnR8zIOHj3jw8DFaF4IXZkgp4vqO9WpBu1mzWS24\nvbpgsTgl5ojzgb6PWGWpq4roItfnp/zp6z9QmJL2k085efCQ2cExxlayMaH31tFyx++bc31/M/9Q\nJPYxaur3P+ped7/jTt6v4ffWnnwu/b3P8OPY2GYZuKSs6FwkrVpiVPgQ95FiGkmL/9glRU+6TAZu\ndlkW6GQwqqBpxvzv/+7fM54ecXm9pnr1gvX2mpTWLBeXxNgPx3pFzDL0S2oIu8hCjdRYrBZL28OD\nAx6dHNKvb3HtihR6lNG4foONisl4hLXyNcWYSL2k44xHY1R0QlE0SpwQrWZUlkQvPPBKQUyK3otS\nU1ktHXoCawqsBp0TKSS0LbBa4WNAJYVVBl0UVLWhLjK1cVQ5MdJKxDjKEBR47fE54SPQMQxFpbgU\nNRijMarAZy/vp5XGQORJFt+HfdeghuFkTBnnM8kF2hwH6EVgDmVE8ZlipmvFNkErUVbGrseFAHGg\nI1rDjtCYgpKi3WZiiHRtoqpkSFUUJVVh6HuP6x1dGzmYlzx58owvv/iS25srXrz4M6/evsGamocn\nz/jNr/8tt4sVq82C2WHF9eKUxfISH1pSKDDUzKeH1HUjcXFDoPa+yxuu92LH7j+YH2Wq/HBXft/L\nwxYFR8eHNM2E7arn5nLN5eUNLnrabsvF1SkvX/+Zb198jcqJ4BzbzQarLfWooa4qtusFfe8IqcSa\nMbPJCQfTB/TdDev1Gh+XoCVGTxuFd6JN6KNi6wJd54guYrXoF6wVuq5PUdDJAUTLOdH3LcZAjJqu\nS3z3XWI0GWOsxfc9vnf0m0Dst7i2J6cGR6BkTDZztr4lpA4bAj7foNQCxTlde83tzSmvXn7Ls08+\no2pm2HLKbH7EeDQihIr1csHf/t//lb/927/h+uacx08e8+VXX/Lr3/yaL774iqOjhyhlub295evf\n/47/8h//A9/84Xfc3N7Qu57o3ZBTm8lJE4h0bYc2irevX7NadXz9++94+PgJn335Bf/L//q/8fT5\nJ0ym831DqXaRk/t7PBT2D2imdzU73xXe++vno+sif+TfP/yc9z7fR64fp5APeFcGWhfofCvH4yEh\nCHY90fcvxQ4iGHC0LAn1rvOYnCmbhtnBAZPZIePpIZGaZjpltb3i+vo1fb9ms+4HL3IZmIgq9M4R\n0DmHJqOrkmY0YjxqsDpCJxizsgXNuMH1nq3JTKcFmShYcCXfB7uBJFmGglkTApAUQWWC8zgXhX6V\nGZSMDJgxxAguJFQ3wEgRaqMpSjUUYpnPmAhp2MxmI02DokQCIdoIfQaPknzMIN28GjLzlIJEwhYC\ncQEYk7GlGG4J+9sMX5P8UFrtwxp8SHgvwiYzWNMaKxCQWC5EQogYk8QvPmuc83gfQQ8DTQxJRaFb\n7jYJP0A8GJTWjIqGyeSA6XjGernh6vKanEvW656L82sO5kdiz6BKJvUco2qmzTHPn/yURw8Cm26B\nKT0xebq+ZTxqiD6wXne8e3vOzRe3PDh+wHTaDB357sf7nfXHV+P//MrDy/Yc6WHhGmOZTKfUdaau\nA1pXRDLXNzf85cWfeP3mz7w7fUfb9aQYxGs8yU0fFRXT+SHbzYaQDFCjVMN4csjDJ0+4OncsV0ui\njyitJe0qOJwPhKQJWYbOMQciEWtK/E5IpzV5SNfWGIyxoBLebYhZo63B2JKu9Ti/lDkIGqMN1pR0\nfktKJc3omJwCIVtu1p5NL892SYZtjyKhciT6DX275ubqjDdv/0TZzBmNj3n4+DP6rufxg6ckF7k8\nu+DFt3/h3flrTk/fcXb+jrOzt/ybv77hp1/9guPjR5yfvuObP/6Rv/l//oZuu8L1LSHJzCCrjNIG\nraww3bKCJE6p243j8mLJu3cXvHl7Rt8Hvvrpz/jk08949vQJdVXvOed7GuP+Bn/45/vIyI7yeK9L\nV/ekZ/kHVtD9JmIYju45CT8Ayf84giB11+V0LhBjeC/BHQRH+vAZUoDWeuAgK3HYQxFcot9sKW3J\nuJkzmUy5vFqwacFWNb/81S9YrS/53dcbXr8xhBQJPmKVptAGoy0gVKVMwAePIlNVY2bzOSoH2s0K\nt11QqEBTl8xnI7q2pSgio7EYWGEyRa3p2p4cA96DQjjnyWdCsuSAFPCBKhmzImQl+4gRMyqfMi5m\n+q2j1xlnNWpkGRViiUuUAYzJmTwkCWEyk9IysZoShXfgukQbIj4pSfWRNguz67aUBEbEBFGDHSCg\nohy84lEi1CmMCEuG9CM7ZGO2rSN62VTqwghOLjV6YEFknA8ovKjolMG5REoDdVHrYTORQa907YpE\nksFuIbMTUzTMDx/y/MknLG6WpFiRtWGzWXN58Q2vX76lriqaumI6mZGiwDEpWB4/ekxRP2frL3l3\n8RKjDSfHh1xdXHF5cc0//MN/5/HDZxweHNE0TzBG/LR/qIi/35W9/+/vPWP7DYH9A/0eRU1pqrom\nxJ6sMs2k4jgfsNre8ru//2+cX7yhd1tm8we4fkvfb3Gqw3tH1prpfM7N9SVd3xFzQcqWohpxeHJM\n567p0w19KmSQ7XuC63HOo7QMXXShqVBQWpqqott6ui5gTI21DaasQRXitBkiRmlSNpR2xuHxY2KO\nrLq1nQMAACAASURBVDcLLi8umB1MOZgfMJsc0K57VFExmUxQCpabFefXl2QdKazGZAh+56WU8LQs\nvWNxe8l3L78mq5qqOeLR0y9Zrda4n/4VJ/MTSBLSknzk8vycm5sLvv32G65vrrm+vuI3v/7XvHrx\nmpfffceLFy8YNxZjdmpmuafaWBQFFoNFEYKImGL0WJtYLpbcLjasly2vX77jt//qt8xnY4pCWE2S\noJXfK9Tfv/HvF9uPFt79qW7XkN7vyNW9Ai8zLcVdEf8XVcizHgr5LoYrD3Z6d+Nh9g59Sh4oaw3G\niAd33dTiRxIDIURCjiQVcaFntV5yeXXOpu2ZTA+ZTg9ZrM65uHrDdy9+x+3ikr7v5WhvDSEmso+U\ndUnInpiCxJoVFVpn3r55ieu2qNhyVCdMqYkxcH55A6pnMlVUI0UfIj4GOpclZCJn0J6iUqAhRIFQ\nnM+020TwQ99nhF55dyJREgIxdLUpgI7gS4FfCh/RVjOuS6qyIMTMsmsJWQaoZWkotcTQra+33Kwd\nrUukXRcOg4hndxBQIgFPiXpUUteWolbE4PbiIK0EfpFiJPdGA2VhB+takd6DCC282x1HNXXV7MVH\nMcF8OmMynjGfz3l3+o7V6laKtTXY2ojrYoxoayjKUjoYo8kkptMDHj/4jJ9/9VccnRxwdX3Dt99+\nx5+++YbtpkVjef70gBBkTtF1S1Yrg3GKPm7ZbLYslrc4d8t2tSUFTfIFX3/9gunkhKKoODycMxo1\nGPMBHr6jjynx63i/0/rIIHSgXahhPYvoJA+zoSQc5wwvX77l7PQKaytct2WxvKGsLKNmzsnRE375\n659zfv6K09OXnL57SSgUIfW8O3/Nul2w7Tf0vacZzVmsr3nx+s+cnr6ga29IKdB1nuAcMXq0VlRV\nQVGWOB/RhUWnTPIdKkbqouLBw2fUk0NMMSZmw9npG7btmqoqGU9nPH7yKT//5V9xdv6O129e0m1v\nqQqL63vOtxes1q2cPrTjyy+/YJ468ilc3b6lDx3ZZ6JSGEQj0HUOaxzGapLS+OxZto7zmyVlOaGp\nJriTnnfv3nJ1eU7fdZhSmoBM4Pe//ycuLs75/T9/TY6K07dvsSbhXUe2iqIqpUHKwhojiS9RUVi0\nDvK8VA2Pn3yJKSaEZKiqirpqRCw40JdzFiOzPZ4Ne0rgx421dtYWd8PJvF8Lu9ep/d/tP4adQ+Ld\nJrHjov+LK+Tw/uzVWkMxxHsFL7zoPCB0GoWxhtGoEb+Rwu6ZE4aCrutJGQwIruq2XF6fMXY9yijq\npuT0xV+4vH7H7eKaznWQxctFhCAQYsSENFirail2Rib4q9WC4FpK5aEq8CHR+8DatzQjqGpFtuIb\n4rNsLDllkbyXGlPIm++jJkXoPbRuN3AUZoYtho3NDEIgCzplYpLINz9g6AmxqdU5YArBPXVOYkuQ\nBvaOFQm8QeEjdE646mZgzhRaY5NYHWQtYqGI3AzpkLVkeiYt6ek7z3GZc0qHk2XPLa1Fl7LZKDQh\niqDIGiMqUDRaWbmPw3ymKCqaesRkPMOoS3LSKC0PT1GKOMQ54aEXRSXUTGPQRotyFcV4POXZs085\nODhBq5K+dWzWK5qqYn7wgIODAw4Pj3jy/BBtLT4K/c5YSYvqNh3tdkuOBaX2ssmh74KnPzgr363V\nO6vVH3ie3l/he1xFPmeMCeccy+WKrhP2xatXbzg9veTJ4ydE32GU4uHxMf0mUNqaUTVFKxExtd2a\notBklWh7T9uv6NwWHzJ0G65uLvGxY7m8xftWoI2QydlgdImtLLYsMFZTZhFm6ZRxIVJa0LZkMh7T\nTGZkXbFYtXJioKWsC5pxpmo8MS5w/gbnbvB+jekzKVu6bSREhTEFLiTWbYvPHSE4vHd470kKfB6e\n6+Fkbk1CxwBmmOnEjrZ3vHn7ilE1493LU968eUOMgfFkjDJZGrfe0XYXLBcrri5vKYsa17Zok/Fd\nT86GelRjSosLnq4PTCdTRmVDoRTLZS+2HFrRjBums2O0qXC9w/Ut52dnvHtzitYVk+mhrIEdw2QP\nqdxh5XKKu7cC7hX+/Vrac9PvY+Dq/ivgvrHX7n/5L7GQ75VMWVjJZTE4ChrLer0WqGV4E5QW/5HJ\neCRy6qpiuV4RQ6CqSknMSQPPWYsE/GZ1hTKGgzgH5bi6fsdqdYMd0ulRisIYitISo1CWetdjlPh7\nqCxOf4qEDw6tEoWVSuZcoPOBdUjo2mKVuDT6JOHIISSsUpTWMKpLIgOHOxtCyPiQCUnglBBFdVpp\nUYBaq8hZU2TpkGOE5DMxKeG6G42pCvLgXpcH4ykFWKtJShEAqzTKFIgBlZx4rDU0pWFUGlTvhVOl\nBXxzsA+xCF6EUTFmGFKb9K6QI2aFDMyUohDGT0hSwL0bxERFSc6Sq6opJK/UquHrHDbsPolhly4w\nRUEzGlFWovdMSqGUlc/jAmaAYG5vb3BtpJs4nnXPsbbk6PiI3/zmV/jeo5WhGTd88eVnPHv+GGUC\nq9UKv96iTKCuLE3T4LZhSIhX1HXNwcEBBwczisIMR12Bf3bQyocKv/31Ufx892Df/7O8LsbIarXm\nzdt3LBZr5tMjzs4uWC4XfPHFJwRtSb6E+QHn9pqubbk4PeXs3RvOz99yc3POfD5G6xIFeC/qT6Us\n236Dvw1suzUKcA56JypZawu0LimqAm3EfM5oEYMpEkZDVRcSlTjY3PY+cHl9hgsLbNmhC4eyhk2b\n+ebbBde3V1xeXbFeX8sGmyvaDup6SlHWmLLg9OKctl+yXF/QthtS8gT08HxprBFSQMgZFSK6UGCl\nYy5Ly+L2mj/84XeEFta3G4qqYjIf43zHul3RbddkEsFHnAvSguU0UHEdqAKlDdZW8gymnvn0iOl4\nBlFiH3vfo7yn9R1THakrQ9f2LK9XrFcLHj16TFGOaEZT8W0aqI67gGal2J+0IIvL6u7O7wVOd8PR\nYeF8sEburZ4Bg0v7GemuQ//hIg4/VrAEd6k0aRCQlIVlOp0Qg6NrO3E0RDrHFOQmpZRZrVas1mtC\nSlSxoixKAPrlCm0yppTOcdsuubg8JURHu10TfE9MXo46SmhsKQe0MRQUdG2LJ1Naw2wqZkp973B9\nR1NCWWrKShENGC2Rakll3CCJj0gUXEyJygxBFNnQOydBtVrhUyLlBEYk9TsviBREw6SNgB3Zi1hK\nCmlG6YQpFD55ltsodropU2qNNVbELkYyL5dbR28zo8oyGpdMJx7nOuajkvm4YD7SqN6KjDtkVO/Z\n5kw0Gt8Huk7ERQwzCqOhrmXTK7SIPXyf6DpPKiAFKf4hiy2qLSy2qnAhYnTB0fEDRqMJWim6dsOk\nGVOakhSgtDWzCYymNarIuNiz6bc4l7BG4JEUFdt1z2W6Inbw4ATm8zmtW3F1dcnlxSX/x7//dzx+\n9BhrKpYrz8s3r/gP/+k/8+LFH9hsl1RNwZdf/USSgsyIyXxG8pdU5Yjf/OZfg7K8fP0WF7Z8+ukT\njo4Oqcuasqwwxgwoyd2ReXd9+Fyp/d/ne7+7e30IkaurGzbrfmDoRKaTKePxiE8+fcLl6Rlnb17x\nj3/393Rdh1KZb/98xduzb7m6eYv3a65vVtilWEDnlLG2xAVxI+p9T8iZ2eQIWzR0bst6u0EpR1kk\nUvI0paLQomVQSaGyJkWNsSVKw9Xygu3NBVsf6fqOyjoK29N7R7xds1pVGNNIdq3v0DqTQ6QoLUdH\nM4qyZjo/5Oj4iHW75O3bFYvbBWl49oxWGF1IqLbKpOTEzCoZCmUxSoam8/mclBI3t9eEVj6mnjQU\ndUkkYX0pNEs9sK6Mlqzd4ETnYQR+cX2gbdeEnNG6Yts66ioxHk2oxhNCB17B2fUZN4tbdMp415NS\nZjye8ub1tzz79DGPnz+kUjM05t6dVgPLTu3vdE75gzUgRfz73fluidwbhN5fReoOXrnD5X+4kv9I\n0MrgnocwHFKIdF2H0YpMoq6sxLQNvMqUxM/bhUBW4HonXWDKVAdzClsCImgxO+FKSGy2K1zfy4Ao\n7ZgYok5MKoPOFIXBZkXftXgXICVSqrEFknBjRPUpR0KIJDHk0tD7hG9Bew9akbKV0GUltqxdG0AZ\nGcgGhetFRQl5YMpIxy0knCQuhIP5iUeGnimL0tRYCDGw7RLBB5TPmGyoa0tZgUqZkII8VCYwG2vQ\nidHI0HWW2aTkYFoyHwmX23eR9SZQBI3NmWwUXR/wXuAceRAE7nG9dHalNSRtcCnh+0QOYbg/QwSc\nlm4lxkgKkaKumEymnDx4BHmYNzgHVtNUY04ePCRER9aRLmzJoRfNABZNiaZm0kyke8OgsfSd4/Ly\nnJg9222L0ZrZfMrzT54yGc+4uGh5d3HO7WLN1dWCxfKSTGC9WaFQGGVoRg2Hhw8YjWbUowk+RN6+\nO+XV6285O3vMJ8+f8ezpcw4PjxiPR3sI7v+LpXJ/ZHW/E989qyEEFos1m02PVoayrvn00+dYq6jL\ngtXiltvrK0qtsHVJiB3b1SV9e0uOWworg0vvMk4XFKbCmopRJcNJ5xN9n6ibY4yuqBrH1e0p2+0N\n23aNJuLahFWJwgwq26QkMNl0oD0+Q5siLomTZVGIEVwmi1VDyOQkbBijFVVRSMORo1gmFIqYHbfL\na25X1yxWC3mWB653yGIOJ/Cc6DaMqQbLDj14oxiMrolRgluygta1tK6jCzLw7btOQlesRiwwHD44\nUvTyOQCfEtuul2fQWIy1tG3Ljbqlcy0uRuIwI1pvNxCWJNcPXb2h9x3//Pv/gW0qlLX84uf/irqa\n7N0y8w4qGYr0x8rsfWDu/iL58LX53k97qEV934jrh1bgj9SR5yHLEqyWSLaNEwl2VUpxSiESfSIE\nyShcLlcYa6iaihiEQRF8hPkcayzGWBIeVMaWhqqq8V1iuVgMg1KN1kYUnQMdKRuJXBOalcZlYVm0\nXc+4qLG1RneKrBOBRJdEGBDIEjIcRPmYtKjQFBofFB6FzpHkI+NJQ06avhXxRYgihhlMBwleot20\ngcpk6kpjlEz2XRLzKa3UwAQJ4II4MHZKhDYo+hjJKtK7SAqJwkRcgKwMdaM5PCiZzUrGo4K6FGaK\nIdM5hXEKlRge1MH7JSnBtxHPaNdHrIXC7grTMIiNcYjmQyiJQE4Jt+3kaFgmtIa6Kogp0vUb+m1P\nU40ZPZ5wdHyMj46b20uCF9+WqhhRmYrKTpmODjk6OMRqS4qJ6XRM7zouLy65vLxgNB7z9NlT2RzI\njEYN05lmNp1yOD/k2dMvqMqKy8s3/PH3X3NwMOP46Ji6qjk4PmE6PaL3EeMc3WLDyxffcHl5zma9\npaknVFVDWVbCWtirMoYOa/8z7HDwHYi6Zxzcu3Zxd85FfEiUZUkzHnEwf4hRidurS96+fM3NxSUP\njw+JIbDe3NJtL7E5Uhhx2oxR3nsfIuRIURbM5kdM5yd0fWZx2zKZPKKqxmQSqtCcnwVurqWQb6NH\npUBTVeJOGcHaDDpI4IqBbEGZLCZmFEI7VFYGtRG8j+J8qQyVhRAgJUfXr6CA7XLLarNhsbql73uU\nKQacN5ER+E2nDEmjVU1RlJS2wFiGYgwxWApbYUearuu5WV2y2WyoipIcZahOztgoQ3YfWvHaZ7B9\nyFKgfXLU9QirFUolun5N229Qt2qHPKKU5M2m0OPdZlj3hs4Frm5/T+elIXv6+DOKowqjq+E5gO/j\n3bvfvT+s3P/7B7/uRyn7hbLbINgLJ++W1g83Ej9OQtCQwj5QrQfXuwFvGkQlRaFJYXfDZL/LIeLb\nXhwOh8luThljLU09YutW4jNsLI8fPyZ0ibM3F7jeDf+v4VikARvxqcNFhVUFSkWUlodt03WoUlEo\nI/mZhUI3BjsqIEa0TyI11zK46fpEu40DD1yTrTg0Jp2IWeM8bLdBil9mwFHUwA2VQl1WmvFMM2os\npddkk1l3mTD4n4SQKAbMLSe155orl/BtJETx8TZaoSpDxhJJVLXh8GgkNMucaKOjSBFKw+hwQu7X\n+M4RBhtDPWB+DOZZKikZLvmMd4kQ7733w4lJDxDMzmnO+0hRFCTXcvbmBddXZ8QUWSxviD6z0Vv6\nznF4eAQkrq8v2XQrxtMxzz/5jFF1xPHhM54++pwvPv+Eylq6tsNaxZu3b/juL3+hbkpsqRiPa65v\nLrld3nB8ckQzMnzy/DGkf0P/819zcfmWP3/3e/7u7/8TSnty7vBsmRyOmB8c0LUS4hFipqkP+PzT\nn/Gzn/2cp0+fMhqN9tDK/SsP6qj3Cra6e4jvjsh5+E/+xtqSk6MHlGVP1oasLcvlhuX1FX/6wx94\n+d0rLs8uuIo9h7MjhO5kiA5in4kqYUxFqUQTgDKYoqIZTSmKCWXVMB4VGDuWwapveXDyGNdtWNxe\n44MnBlC5pKxnYDKZQNSKuimwBfRug7YZM8Qlxpzoeo93juh37piGupIQcKKADb1vWW2WhNtrMAXa\nFvvhdNZGXEUVQhEeTdDKCttJF5gs4rbDgwnOO7reo1LJwyfPqaqa3/3hd7jB6ZJhbSrEZC8NYTQh\npuGBAOG1Fyj0PtQ7JJmD7byYlbYUpsBaEZuNRw3tRtKYlKlJEWG05cRyteL03Vvevn1FVdbM58ek\nuMO+h7UwFFmt9Z0K9INfd2sjw/7178Ep7PsEed8G7D3nYcORD/xoTf2RCrl4c6QoboVKC5vCFCWo\nRMji7e0zhGFn2lHmdEzDmyH+KNvNljJWkseIxKBFF1ktVqioqcqSg+kBzjlWm7UUdLFhIesojAaV\nKSpNzBqcdLddcHinSToOVq4KF8UqNgPaauF+B0mdCS6Qopw2fDHcuJRpu54YwHnpeCQAWrC1XTK9\nD+B8wgVFrTKm1JSNomoKEoGcEr0T1oVCoVRBIu0TlHxk4KxDUYu/SUJJcj1isYvOQo/sOmxKaCwJ\nQxcTfcyEFPeFaDfAkRmyRMbturEo1iioXRybkg4ohjRM3OXrSErje8cqLVDbNYkkD1LSZK3Ythuq\npsYoJYEUA42x0CWlrShMRVHUPDh5xONHx9S1IefEs08f8+DREd/86U9c315zs7hhtVkSh+/xYH7M\naGL57PPH1NWIy8sjbOH54x//gd6vyCrR9VsuLs9wAapyxvzkIeORKCUzkRij0CGtGWhuH1wfeaC+\nP4jasVXuhp95GJI1dU1RVZRWc3V+zeX5lQiVU5K5TLehrmaUVUlZjamqKV1oCSENDpVyesoqozYd\nSt9QrjOTyQnzgynj8YzeOfyiY7na0Hsoyimu3wqWqzTb1qKIaG2oS0vVjLGlonUd5IQePIR6B20X\n6YbACo2lKkpUPUYpiw+9yN0J5M6z7TsSDlPWsiYyoveQnV40HCGK1EyXHM6PyTkQwhbXd6CE9eS9\np91uCSHQu3YgNUi9sKoYrJ+HY/0g9hGbH4UtKowpiCkTeifePhnxNYK9B3oIDmMCtujxfYdzPT5k\nqlqyRmP2BB9ZLDZ8991L/q//+F9IUfOrX40obMM+Yei9dfB9gOW+VH9XyH/o9Xl4wZ3mIO8HoHf1\n/vvF/MeBVrQebFUzIUm4gbEFZVXjo8d5oWqFJH7WVgkUYBgm7YNLXciZzWZLTJF6VFEoKzevC5xv\nzylMyaiacnx4JA+Ic7jQghoKuUoS3pygtJqiUqThlBySxzvQNhEHKt+mEyxaK5HaJ5Q8WAMPWyT+\nArnEBNEnfN8DUBSC36shmSH5vA+cdlnR9YpNqyjqKPav2lCPLBg1+EV7nB/MwYpCVHk5oYy4y4kv\ne6YoDUVpQItCMviIaRN5VJBCZNn22CxWuCHB1kWcH4ysGAr0biEN5vw7V7oYIYbh2Cf0n30LEYOo\nueTlihiGVJooVMmsByiG4RRmhY+fB2GQHjzSu00HcUtdbOj7DmMN88MZxycTIHF0MmEyq/nmu2+5\nuLzm5vYKpQM+9UQcX37xE2aTQ6bTGQ9ODiiqyOnFIVVTE7KkQLVdy8tXf2F8teDps8959PCEojBk\nHGdnb5hNGx4/fog1lmIYpu+6JAZY7QcZB+w2wnsfM/whpohzPU0zYTKqSdmxWa1Zr7Y04zH1aEw5\nGmMKTTWZilf6pGATN2xDy9Y7gg/03uOGFK2uW7NaR4xZc3QcsWXDeDLFWPHTub1dEZNmfvCIxe31\nfpi4WbaEsMXYRIkma0tG4QIQE3ZgNbVdZruF7UYar8IajK3BTMhK40JkPBpR6oi1HtVtCVHmNRLK\nLQXIWkNKELxYA+icKAtNVTWk1OF9ZLVeUxQlxhT0XeDi7B1ZK9rthpwlFMNiqYsRGkXbr8kqAlLI\nJbvXUpQ1SmuS94Qc8ClitUXpGmsNCkMI0Hdb+rSFfWCLpiwbmmaCNSWuj2zWLTHAxfmCf/zHf+b5\n88/58suvKCbNnlUi9/4OYvmekHFXxP//FvLvsVw+vkHcv36UQu7i8NAbSVnXOWNyHo5tBTlrfAyg\nFMZqLKBjQPjIosbMOYvtavDEYDCqGbwZHF3fksl451i7FbfNgvF4zONHj+nf9rgsXO+shHGRvScZ\nCRDWVsIt0Ap0FkpjEKMuQ5IgBaXo/fDaYVNIQyJLdIkQZEiYs0JZ4VBry50QLEHfZ5wT7wdtEW/1\nnFiuJdDZR4O2FQdHNcYqnN/SbhxtF+kHUy2lQBvLqDRkVaBzwuqELTTNuCZpCKHHR4eLEvTc+kSt\nFCSJrQs+Dj7oQvFTRok1d07cJWHlQQEnEI9sWjuK5vtQg7CR1IBTRshaOjOViSRKaymLgvFkQvSB\nznlc3+J6Twob3uUzptPIyfFjPvn0EQ8ezXCp5dsXl4zHDZvNmtOLC6rRBFvV9CEyPah5ffqK2//z\nnK+/fcpXX/6cr778OarInF6cc3F1gS4KsVj1Hl0YNpsty+WWtnMsb28ojGF9e8tfvou8e/uOvvP8\n9V//Wz77/FPm89mdLQQfQijfv74HxcAwfxDIaTqtqRvD6ekaa4V6eXl5ymgy52e/+g3Hx3MO5kfY\noqDt16z/c8vp1SW90/ho8EMoSdv2YtjWwLZt6fp3LFZrTs9OqeoRxlhOHj5gPB5TFIY3r14yqkaM\nmglvXp1xdv6S1fqCTefoL25IObBtN2gdMVaGoD4WuFAMdFixeU7Zk/KWsihRuSBg5JSqCsqyJvs4\nWEdbCQmxGVREKTV09A2uCywWK77++o/UlaaqoW7UELTR07aJ9UqcEtu+xRrxj5+ODqnLETFGrm8v\n6PwKHzvikBCWcsTGiHc9zjtc9KS+panGTCczHp08pK7GeAevX75gvbkh546sogyOmzkPT55ycvKY\nqhxxcXFF3zvKsuLTTz7n8OiEGNO9+Yhc76uAPzit8f0Cvrt2Te3+z7smYdj/xWzt/pr6+Kr7UQp5\n3BcOkYnHnAkxo0MmJk2OFoPBFAajIpaMSga1G1Tm3fFIdqrgA+22FcvULAM4gS4SKTk2mxV2GJRa\na/Bei2kV4vutElTjCmUjIXs6Jwk8srXKgjRak4NElBmlCEm8L1IeGBsDXCZCAYF5tNFDIk9G6wFf\njgKphCjskH2Lqg0ZzXrthTOeRe5va01ZajGKHdgwKThiTBSlQWlFVglUEuglZ+LgpU6OQrXM0DlR\nk8akUVZhtUbpzNgAEdywee0Gq2L0L19HjOz9xcPwPTN8z3stw34hy6rbL+ws7okpC6soqoh3jq7d\nDhimWDQI1q4pi5L5fMZo3OBDy6u3L+h9x8XlGWUt/OkYM4+fPmTTbfGxA93jworzqxsW6yvenr7j\nm2+/5Sef/wxjSrZ9z+HRCVkl4VmrxGbTY43myZOHRC+sKW3klLRtO05PL1itNngvISdDfsw+7OR7\nQyruOq/3Oqr9U6mwxjCbjSkKS3CRvo1YUzCdTgmh5enTx4xGDWVhKcuGbdtxtVqw3Hhap6maQ9x6\nhVKW0WhCCCuqesTJySNSloFdiIHzy3cUZUHdjBmPJsTsKQpL1/dMJzOmsxlHJ5719oZtdwsKylp8\nZtbbtdzfbFCqQOmCoiio6ineRUBRFjV1M0ZlcO2G9TC/aEYNRVPT+cC27Qk+UpUV49mYlKOEmPcB\nrSwpBZzzkMTKOWaN0oUUyWw4mJ/Qth3b7YbSltTViJOjB/zki1+iVcH19TVXt1eD+V7aM2q0kc3a\nBS8sLuT5MxbK0jCbzyjtmPUq8ODBc6qyYbW+JhMoqpLZ7IAnT55RVRNcHzk+ekhdNxwfH/HlT37C\np588p6kbtOZjjfN7Nfx950MRC70/Gn3/dXvdAh+gd/su/YevH8drJctPWstRPmdFTIqcNCRNqQua\nyZhMR0qtuA1igESKjuAEVgCGblHCGqRwSlJ8jgOGmxLbdou1hqyikISyIvSD414UjnfdlOgy4lKm\ni71g6YDKhrKoKYuC4AJ26EJTVLjoZLHkoSvdd2xSzHfaADU4qKUkxTzGHV1vN5sRg6gQNZutl0GW\njvjkMWVGWT0k9Axw1DDU0feSeiBgtIiZcpauPQ4Se6U1Xui1kOVE02gt738n2HQIsvWr4Z5oI6cM\nUT3KPdtxZLXavVaK/X4zutep7oRXKLVntki3IRS69WpBWdYidkhyPNbaUJYVk+kEVOb0/C2nl29Z\nLK84v3oHGsbjMQ9OHvHLX/yWx49PuL254OrmLc71bPs1l1dbXr58wx/r73j54h3Pn37GdDJjNj8k\nK7Driq5dY7SlqmoeHB+zuL1lE3qUVRR2xGg0xhYl2lhQovhE3THC3w8GlkdzN1fYvQM7RoMaXh+i\n0Ea1znRtj3cJsqZpRownDZNpycmDI5qmYbtpcT6x2LS8ObvgZtmCbnhw8pCYXuODZzwakymp6oaj\n44egFX3fsVwvuLq+YNMlym7Jal1TlCVaa7p1S1EYmqaRwlZbkbDrQFU3WKtR15aMHCGNrYQGaiqq\neoTrPWRFWdU0zRhyprOK6FtIwiWvrUFZTUxi9KUV1FVJTAmjCoyK5ADWRqq6ZjKayAnU9zjHgPts\ntQAAIABJREFUwKIpODh4SGHXYgsdvbB8RmMePnyId4nVeoV3ogKPgw+QNHhS1GMIZNKg4DaD5YIj\nBk8XerbbwGRyiKIgJUPGU48K5vMj5vND2q1nudxweHDI0ydP+fInX/LTn33JbDoVm2t9V5XzbhYy\n2Inc75533fju2rFPPnRNfK+jVx+U7V1l/5+gKz8OjzzdYdHFEAemsTT1mBwVk/GMX/7yF9wsTzm7\nfM35+RZbFGhjyUkRQsTndLdrZXHa8yGgtPh3G2WGYz+ywMl0vpMbHDJx53WSINlBdFQmtEl3g7wk\n3geFKRk1E1SlWa9W9K6nrEuS3w3G1BCoIO6IIcrwTrM7HmXxbE5qSN8BU2VUlA3HWitBui7Qu11S\nvfDGUQkfFEUlg86iVPvoJGMUxmRKYzBGURVCGYwh4J0jZz1sKrJodFKDpW7JvLKMjaZwW4J3rHwC\nJcZXfuDXqsGjHC1ye+nYGRwQd7a/whvPuymnEhxfKFQCtu9OJihQRu6L9z191w2dqnydfd9zdXOF\nLko27Za3pzUXV2csV9d0/RoMjCdjHj56jCITfaLd3vLm9UuWm2tidlhrKIsGhWG1kqI+qpdMpxOM\nGaFVz831GdEb2uj47//tn6jripwim9WKw/kJh4dH/PVf/1ueP3/GeDyG4fu5Gx7snPDgDiO9W973\nMxl3A87FYsXZ21MuL6/RyjIeTzk5OWE+H1E3omLb8dWruma1bklkbm/XGNvw5Onn/PKXP+Xr5p9Y\nrRZUTU0yJd4HlptdfmmP8y22zHSuY7ldQtZDgROaabtdcn72hvFoStdtUVo8SBaLBSBwpdJZzNJi\nZjqfUBQNbedw3pEzmMJiCsXR4REPfvkVZ29fcXb6louL0+Ee6yFURBK5Ni/XZGUYj2fMZwfkkJmM\nZ1RVzdHxMVdXV5yfn6KsFgdNU+O9BkqqcozJDud7zs7P+Lu/+690bcftcsG2XeFTBypSWLs/Je2o\niXK6FAWCdz03XctmuUUxQjFmPjumLGoODh+AgvG0YX4w4ep6KXTYFLm5XfDJJ5mDwxnzmXzNd1mi\n388ZTfed/3aDynt/3l0/5Kr5Q8EU3C21j14/jkQ/Jkn2AbIGowyT8ZSffP4VhR0xnx/wi1//lP/x\nuzWvTltRrA0BqllJzNlOMs6Q0iNx9YJ9J6AoZIiWsniwiMIygpYCIzJhQGW0ygTvUCHvHRVVQrp6\npem2AZ09k9GEupqgsbi+JQXpttKwgJRR2EqhAqSQiCFj0IhjphKPZ6swhcGqhB6M65NP+D7iXJTs\nzqHjSxlcK8PdqiwpKkU20KsISlLsq1Jeq3fJQ1o6db+jBqIotMSY+WEPKEtLPaqZVAVdF6l9okyB\nMPx7ZoifQ4lZVpIirZTcL97rM4bFpu9+2OFjchY4SDI+1UAx3bFc5Ic1gpkXVU3G4IPwypXJ2PKI\n7WbBenlD22/Qhcb5FudakndoDJv1lsXtNc47tDEYM0ZTk0NJt4nYnDA5QupompqD6SOqL8asNyuc\n7wVyaLdsNy2bdce4jhRFycnJMaPxCGPNve/y3hrOH//999Y6kHOi7zrarpNu2BSMxg2z+ZjRuMIW\nmpgSznliEm+Zm5sl11e3pJg5OX44FCpxOex9po+t6Bgy+JjwQbpaHzoyEa0SSkV618kgOmWMsmyi\nx7uWdisWtJLPamRAHWVeklMm5ABREcItSq0Gy2KZW8UY6dot68Utq9sbbq4uWdzesN601HVBoQsA\njDGgLCFm+s6zTluiA6O1eMAPNptFXVKOGmL0TMYzDmYnzKfH3FxfsNosaPutDMZtou1XrDcr2naF\nMYmirClKS1OXgq9HoTyCNFS980Q3MHxIOL+lqizzgyN++9tfUJZjVuuOEAPz+ZjxuOJPf/oj3kvg\nR06K68UVN7c3A5Y91Jv70No9ZlJ6b2Gwf07uEMj3rR92fHH2//6x9XXnQy6/mu+tsx+nkKfdFyyR\nb/W45vjwiIcPHjGbPGB+cMjsaE5UgbZfEZIT3+tsQCdZpDvOcwTUwHpgAM8Hqo4e4qvyoA71Pg2K\nyoQ1GWt2YhbIOZCHIaUk9WSSl8/hUkSnQFMqqnKEUZa+dfuOfTc4VUpJdFwewipSwmqDyloglSwC\nGasVyigKqym0ZeucDBFDFLny7rZniB5CryAKG8UUDGZDWpzbioGGlZIwagZ17O6BLK3moKlQytD5\niPNecEWtyIXBNJais5Qu708RKEXYfU9D960VaJ1JWmhyOcq5crfAtFYoMyhC74VjJJIwF/QeaHhv\nYSolD3zTNCQkeKJ3W9quxPuGGDpR6w25qt51LELLenmDNQVGF6SkaKoxzWjGbHpEUTYUtmJUjTk4\nOGIynpJiomlGjMYjmnHF7fKa9XZJSoHLi3O6jSgmYxwgpaGzkods+Lr3C/jeWn6viO/RzfdeL2yF\nRFFa5rM51paUVcVoUhGiZ7Ps6Pqe1WJLyoqDg4MBnw+MmjGjeirDex/J2RAiuE6aG1sUNOMxaRPp\n/VZCR0gYq6gGs62kRIizmy2FkGhDL12zKTDDSSANQ+yM/Bp9xq96UpZTYwa0MTilWDvHzeUVp29P\niT6QksAuWhcYU4iveRYrgbIqyHEz+PEEkjFo7Wi7LYvVAh89trLE3tNMRhw/fMDJ0UNi6rlZXOA2\njpiC+MRoR1YdSjvKEsqqoa5qmqZg224IfjefKoSC2Qd0kihEcTLMlIVmfjDiN7/9KcZOePnqgpxh\nNC4he25vF/jomM1nKDSd29L2G8Kgdv0Q5rjPRtn34zv1527Upj4wwtoX87uu/WNB3fvP/xFO+v3r\nR6MfDs0wKHj04BFPnzzj+uoKqyaYouLNP7/izcUbfOowxcAc8RFIYGSoYawiDrujcDqj/A+URIdJ\nBJpFKY0LHuf94EwIpVWMaglDUFqhS2kdQ9TCPOkjyWeyilTjMWVR413C6oLC1oxGU/qVJ4UAZn/A\nFp+Se++1tQIdhSBDsxSVBDsgUWoxR/o+SNeUd0VDdv0BmiVFaLceazJFYxiNCrRWQ8p8FKWsymgl\ndrXBRVyf0FrTjEuePzjCGMP1asP1es3taoP3jtZLnFUqDVm7YYNTqMJAPww6Q0Zh9j7lCeG9e6Kw\ncgZMXRmF1iLmEl5v3gGCAsMgUVwqi8OjdPoiIOr7Hm1byqZhMpsQQmDbtvzluz+zXi/3FqwywZYT\nh1IBYw11VTCqZpwcPeXRw094+PAzxpMDmnrEdDzmwfERs9kUkuLqesF6u8UUiulswu3imrPzc549\n/Yy6qLm+uMSYkq51/Pm7FxwcHjKeTjE7GuYHkypJ/Hnv7Lz/3Ycn5+lkMgw7p5IJq6XBePP2HW/e\nvGG5WnN2eklhK379q18zP5jwky8/QZHZbLwwjKLj+PihSNb7DWa9ZDKb8OzZE968fcn5RU/v15Az\nhbXUTYVWmr5zeOeJPmGMoi4kti1n0Rr03XZQSge8D+ySniBT2JLC1mLrOmzsxlhSleh6x2rdMWrG\nFFajsqcoFMUgh/fOoa1lVE2ojODqk+lMhpGuo/cd5xfvUEbLKbWyJBVBR55/8gilA61b4XLHcnlD\n57d0vQbtKCrIUWO0JobIatmSCZB3hp0ZlWWoPx5NUYgNR1aZlAMhbimrjDYJWyTmBw9Zr5a8efMG\nF8LwbGWq2vLw0SHPnj+S2ELYD7vfq8y7Yr6H2/J+RjTwevejpH2R4gPo5b019CEM8wHM8sH1o2V2\n3k9i2WzXnF+csV46xuNDTp4cc1wfMBnNMbohBb/vnHf5viABBjsPc6UlSDgneeMCGRUjKgWMtVhd\nkpQSK82h2FqraBpDWRuwmt5n3DYRXCJ7IEIm4bqewpaMGlH6KQ1VUzPJU6wz+NwTs5MA2jxwVqzC\nKivCAsRQ6s7bO6GtQDoqDh3Q/RuVdzc/Ywooay1Ku1Kjq7tuL+aM6yPGSMJPyJlSG+qqpDiUo+S4\nBnJPjIqcPJXRQ+qLZdPDpnMsN0H4w8PQToy6BGIyWssR0WSC1GhJXU+DuhDZDPWOf+4FZ91N9dPg\nf2OMRmczbOKSzel6L0HTyaP9llxkqhJ0AckH+l5CfUdNw2w+I6tM7zvafksIjpQcIazxLlOWIw4P\njzk4mgw+KQ9oqobCljR1xXw+5vjRERcXl/zlxUtefPeCi8tzcs4czOfMxgd8+vwLTk4eMRnPiFFL\nd57yQMeE/dAFBrj8+13S98ObpXEZT8fUTU1RFlJ8YmTTdrx7d8bbt+ccHMx59v8y915PkiXZmd/P\nxRUhU1ZlVauZ7plZgMDOLhbG5RrNljTy/+YTiYc10gyzMwMMgJkWVV06dagrXPLheERmdQ8onnqj\nra1URmTGjevHj3/nE58+YzGfc3FxjLXgx0DwAz44uqFju1txe/ee7XYtghgf2NyveBUcq/U1Y7+F\n5LFaDt8qRWpj0FWNzZakZFPW2qJ0Q1NPmNsWlTV3d3esxxVV3ZQQhgprG2IQxXBKAVNJqtGzZ8/x\nznF3vyKkKz7/4gtmsynOdfS7LUPfM4yelBDhj6l4+uQZF8+ecny85OtvvuHqckW3W0k6GJmshYY7\njo4UNLP2WEzRbu/oxh0hO3IKbPuOFIIwzapG8nFzZvSB4LNYesRAVTsgoWwk63SoC0ollEqEMPDP\n//w7hhFev7nh+PiCvu+4vnrP+v4aiAS34fknnzCfNhwdzUv4+KF9fuiyC0aisqydx/fBnrZaxOuH\nmrd3gP24LmdpgsiPuQPlbvrxffX48dMU8sPgSPDDzWaFGyNjD+vdioTn6fkZ88kSlRtSKPaz5vA0\n6fAUBfuSv9EaspZCmFLCp0jynkaLn3WlaskFzbEcFyva1tJOLdloQgqk6EguSfJ8UqWQDxitmc0m\n5EZ8XaqmYpImAvEEJda00RGTBC5ba7BoiFnChsvGpVThwu9Nsx5BDForlBK8UmkpqlWTaCaadtZQ\nTw26yXjvS4HVBCedvMqZEDVN2zBrJN/S+R06CU4qySOR2cRSVxPQFS5mVtuB9U5EWMYqEYIkCY5A\nK5QVnmtQQtM0iF95DjJUVVkKlaEENkc5a2SrUFYVjFyhK41S5iD+0UqDyXLUDomkPSFpVFDYypJy\nkHALEm074fTkHKVh2+3ERyNrYvSMzuP9BmsrpvMZd/cfOH9yjq2eMl/MhKdfWRZHU2aLCud33P/2\nlrdv3nF7e8tyuSBOEpN6zheff8XxyTHn509YzJdobQ8ZsgfrZR4X748HU3+2W1IiAmva9uF5ORWf\nE+HxW1Pz/OKCo6MF8/mU6bTlzZuXfP/qBW/evGLXj3RDx+A23Ny8x42O2fQIozS77Ybry7egHJkR\nnSNtU5NyxI0jOYLBYioDxhauNWRVUdUzidCbLvA+s9nsBL6zNVU9oZ0sWa9uGPotKUUqaiAxaRsU\niaoy1LVhvpiyWC4ZfY0PgbAb2PWj0EmRWVXbNkynLU1jCKGnHzYM/RqfPC5GCTGvDMFlVGp4PfnA\n/eqO27s1nevLaS7TDY5U0r1qK1bTiYiPntFrnMt456lzwFqBUl2UIJmUAkonYnT03Zrf/f6/0veB\n+9XAbPaOEDz9bktwXqDWuOPZxSltY5jPJqVhkfWWCyVNPTo97+Ma9424NEalkPNQtCXMPD/8+6OK\nrfT++fu/LN9HS/vzr41jfiI/8n1mp3h5jM6jVWA6XbJa3/Pu3SuefXpCdB43iImOMlIE991rygqV\n9oqpPZ65987WZC/cdD96Qkg0TS3MF62IQQKJ6roV7C+LZD6njMpaoI+YDptvTIGu+KRffPKUo+ZY\nwhNihgCTegJ1hfcDm9WGpq5prERKjcOIjpI0zh4+2VP6UiZ4OV6JA52hqiqMrbCVpbKamB2mihyf\nLLAthCRsj1kzpa0naOWJThweo1eotqVtZyxmNdfXjnEIVDHRNJa2qTitBE9OuWbTRVTe4V1i9Jm6\n+L5YpcQ+OCZCzvLjqlxwck304j0efEG9dUIZGRCD0B2VLhz6SmL5lCknKIRPnrWkLelix2qsJaEY\n3ECdLGEMuGEQh74IGosxhulEprn90IkTYHDknHHR8/b9G+5v/zdevnzFX/3V3/Af/sN/5PTkhFkz\nJeYB7z3b7YZ37z4wmc553sxQZIyuqeuWxWLB+fkxn33yCZ99+iltLcZSKQls9IiAyOMi/lH3tf+K\nR4D64yZ9P+DSWtPUDb/8xVf8/IvIJ8+fisYhONbrFX/3d/8Hf//3v2F1P7De9pjKcP7kGD+OKOS5\nk2kL2XN1+T3TmUWbhNaK46Njdrue+9sd0UNVTZg0c5p2Qjf0jK6n0kasoq3i+OyEm9srbKXQWgKv\nJ7MJ88URm80N/dhhlGLwPYPruCvD5ZQyyhhefv8t0+mMum3YrDdsuy3d0DNpmrJuI9+/fsGbd99h\nLKzXd4xDB8qhCNL0mApbCeNoNl2wXJ4wDF7MutL+pKpxTpw1IxmrR4IX/Hw7DoTQEIMmxoxNiZRF\nnxB8T45a1rQKhDjS9zvevb+knS6ZL09IDMQ0khkFtjOZusooRupKM520VHVG64jCSIdfwrQVghQo\nLc2OIA5wgAseVT7KqXz/xEPBL/eHQKYcqv5HG8JH99XHj5+okJdH2bqeXjzl+cXnVHpKznB7e8vf\n/d3/zosX3wlFjfTR0Amks0mlcJBlUKO1QluDNbYMOCV0IkYZ8gklTkQyMcPd/ch259iHpo8uMQyR\nGChDR3n9nDMxR4ah5/bmjtE5qrpiHKWQJB8wATIRo4VK6JJkco5DwvuCl2WRuLshoRoJsTBaUVWZ\neFjsmaatWCwXLBYzUgqEOKBywo0jLnqCF1VfihprGuq6QluwU8t8IQsqa4jM8UnsBWwWr5KYxHul\nrRvqas7VfEc/RjJeqF9aWC6TqmEMgW4M1JUpnUIqhyKxGFZlkpNR4plTTP1Ldq8MfrVs2DHKxF/8\nMDLaVEUoJDz0qrJlKBxxg1BErWlRxjCOkbdvr4TmWXQCGIWtKpQGHyJVXdO0DcZqumHNuw8vmf6x\n4uLJM05OTri5mbK633L54Y7F4oyjpaGpK5raYrShrmqm0ylPL4745JMnnD85FozZCPc97Qf0h07p\n40zZx0Orx4+DKu/h1i1QoKJuak5Oj8kp0zQNSsFut+Xd+7e8fPmKD++vqOsFT588AwXb9YammTOd\nzDg5Pmc3rIkp4OPI4EYqK4yh7aanHwIpt7TTGZ9/9iVffPYlKSRev33F2w+v0DoSkmPbrXl3+ZpN\nd4/SUsCOj2fMZjN23RY/9uQQqWeTwyB9s7sn5iQzCjthdDtG14lVhQ+kGLFVJitPCD3DqHBuJKZA\nzoEQPd5LcpC2EvBsahFGHS0vuHjyBb/45RfM5g2JDv96Td97gvfkIGcjUUSCzwJnGl1z+vQCrWq2\n6w2JDSl3pOiJQVxBpZCnYieRQRtm0wmffvKcwY9sVitiFKhHEQlp4G51zbcvvub8d79Bm4rJZMrJ\n8TGffPK5zDoo0GPKxQvm8WafSnn6GPdWJSlCshGEtKGU0JK1LjqNPSvvz9XNP/P4yQq5KoMTpRTN\npGG5nGNVS86KzXbFH/7wR1brW7x3ZXD2gA3L8VQ9JNCXC3kYorLfFYtQowRJ7E2HUGK+s9qMh/Ul\nX1NYC6lU9gOeJZcwxig88nGkmTRChSQQcsAkwZONEgwyRWTo6CSEmGKWxV4pmSXiTFmDRXbznIXD\nrkoRtFXZ+Un4sGOMjjEJWyENIzHI4KpSNVY11HVDiIZtJw6TgTm6rlAmEvGkNBJJOD8U696Kymom\nrZXgaKuorKGpJNdxsx0YOynkexxcZ4miSzaLA5xSB+wwF3aWqaSQl3v8QPfMURFjQmuDMpLNmYp3\njqhj5fVyFv6vbWqqqkGrGrAYq0FHsvLl94WX7wO2klOMrQyD2/L+wwuGccW7d+ecn17w5MkF2/VI\ncPDZJ58wmUxom4aqtlhtqWsp5CenU07PFiyW03IsfnCh289pHihiPwwI//FS2z/vhzNRhUQYTmat\neIRoTfCe9WbDixcv2W47bNWyPDrl/Owp/ThyfXPP2ckJ8/kCYwqMER0QitMgQMVu2xFSRV3PmC1O\nOTv/lE8/+0oUlUrTjVu64Z6UIv3YMbiRfuzQBnIKkCM5errthuCcFE4lboghBlwYH6ikSrxfvAu4\n0ZXZk+SthhgYXUJpKcJizJawVjJYQ4q0ppw+m4bl4ognZ+c8v3jKJ8+fEsPI5eWMpmpwY0XSSdaF\nsVitoNBYUYqqajg/e8qknXPf3rFaZ7reE2N8sGU2ImNOyZNSwqjSVOiM0RlbQV1pIhIr6MLA3f01\nf/zjPxOjBmV58uQJv/zFVzx7/gRrrUCEuTC0EugCrwgVMR2w7v29Uuae5aEeIFW9RxPkuj504g8O\niHuI5s89ftJCLrqKzNX1B4LzzKdHfPXzXzCdnfPty38uvM19WAQHtWV+mJPK79O+iEh3GEIoUUwC\nxxgj21tIEqYqP0TGhT0+9aDAygVvBmFoKPLD7JFiBpVGUgxkm6HK6FqgGjJoXTObHUGE9bgiRkdM\nqcANCFZfG0xh02QUtjGYuqgkc8YHx+3dDavVHQhlnOlS4/KIi04CmzPEcWTYJSo1odGRpgr02y0p\nJmazGafnJyxPjpjoxNBdEvNI1Vb0Xcd60+HdPXdrCcU4O22YTiumbUtbtQQvLKF1ApuVxNHVGqMt\nzmS0CpAHcQW14gYZnNywVW3JWrxVQkyC56NwXqx8IRHK5yMbQWb0DrIhJ007mWJ1jaFmNltycnzO\n2dkTTs8WbLpbPly/KtFhMkKufcCHSD/sCMGx291zfZN4806EZucnF/wP/+k/M2tPOD0951dffsbi\n6AilDOt1x5OnZxwdLaibSgbHdm8f8fFgU7xCilCqzDxyLroDVTazwyzs8Ynu45v/cc9mjBicpQT9\nMHB1dcO//NPXTCZLfvHLE+bzY4JPbLYDKRoW81OsNVxeXtONG7x3YvmcowRcA6hAVU+YzpfMFkt2\nw8CrN+/55Ve/4vzsgvXqhnfve1wciumbwBupqtmsN7x+9RpjGhQVKmsqXTN0I+hMUiXlKstgcRhh\nHEQJbbQlOIdLipQDOUVitKTkSkOmqeuGumkOzVTTtNhmQttOWcwWzKZTJm1DU1WM/cB2vUGhmU3n\nKDUV3N3W5BClg84ZpQyVFUjmeHnGtJ3h/Ya+25CiiAObtmXSTghuxLke50eUgtvrKza7NXVbiZ6h\nKsSI5BiGgRQDf/yXP/Lu7R22bvnLv/w3nJ4eobKwyHQpuDlmgaoeETL0I9ogCGx5ABYeFfH970Ub\nUwaean+HHA7zcv/9K5X8pxl2mkJXs/IGxFY0cG/W5JRomoZxHIAHVaCiYOHqz0AryJtsysTdO1ds\nLx9WkNYP/iJi8v+o09r33GWHfnwGPkyLH62+nEX+rsw+3ml/oUX8c7w8pbYNlop7dc049hKyLG8E\npTM++OIHA7nw4K0pLBHEA8a5iFbiEZGjpa4VprGMMcjGkxIpRppJzfHsmOPlCbfXt6zuV9ytd+xG\nx3zacLyYUFVgaslsdEoxpMDgE9Satq1YHsuA1GqJ34opEpMn5UQMjnFQ4gapI01TcXJSM1+KQEss\ndQU3z1lTtzUhCZwV+uIpk4ptQrm0IextBhQKI4u8arC6RUWFURW1aVEoppOGZxdn1K1iOwSGccvo\nOvZVcRhGnJPNO9iK/QaekrhMXobEP/zu9xwvn/LFpz/ns08uOLFHTGdTmrZlcTRjMpPuXJXFuOf+\n5vyw0KB4wT+uxnBgJDxEcz26hfixU2IuGHsuQ1RSMWWzlqPjY7788pd8890LVusNQ+8Zesc4Bppm\nzvHxOU+enPDVL37GH/7lN2y696R9hGDh6hsj/t/D5obOybXSOrPantINHaPzbNYdSQeaiSTG28mc\n0bbc3dySFKhaoZVhOpmiJhoXRibzlkTkdnXNEAZCSJADqmS7Ho7ImdKeHqZ7orRWBo0WvDrXaA3e\na/HhCY4P4ZZhlyFYvvj054zDngUzUtUCpQmMoghknHOkKJqS1A+8f/+ezXpXagXUdYMbR+azObPp\ngrZpWa9W4lOEIiHWEDE43JAOLqhkjcJiTQNK7Hx9SIToub1Zc315y9CPLOYZU8k9nYwqlMdCujio\nOtVD4ebRBv8Rr3x/3NszVh5cR9XhJfbd+p+v5D9RIaeo/eTn994zeg+pL3hhzTgOVNZSVaYMtGKB\nQDgsklyOqBwWTsGhYyoKyXw41kpatz4MS/f3W84Pi7JcOw7/CI8u+KPV+KjrErxLTgQRsSqtbPGQ\nOIoM/YaMR1WSNBRTKmERkegz4helqCuD1RaN4NRKK3TWGKWoK6CIiZQ1jGXhJhXJWokXtE6YyjKZ\nz3BBOt5uGOjHkd6NzJcwM9AoQ9SGaCLRZKpGWDvNRJKJog/4cWToI6MfJR0pZaLfD3eE7jibG2aT\nhoh8duOY0EaMv6rKSEizLha/MRfDsHyY4qdyXszFkthaS9s2NM0Ukyw6GVQUXD/4gb5f0bnIentP\nP3aHDEiyiIT2njDjGEqXLMfkFBXBb3nx3QvmkxVuCDx/fsF8Kd3q8nhBO2kwtREMnkenPh4zBdTD\nPZMeF3L1cLo8FPIf4+X/qnAoy/zAj45ut2UcHPP5EfP5CSEaqqpmHFdM2ilffH7M2dk5509Pmc0N\nL17/Qbj7hw5PmEEhRUY30o/iHxOjo6krrm9PSD4DWgaJlaKZWFS2EpKtAikYqralrqeQDIv5EVXV\n0Luek9MjQvZ0bsBtIj6OZLJ4/ABZqUNkW1VZBGnT5XM3GGUxusjuTSZlcShMMUNIJDeQ/ZrWXvP+\n3Rvu7ySAeuwHcjYoZYGMJxNDIMVAVdcYXRGTotvtGMeRGDymsEsUGltVtJOW2WzJbttjbKSqGrJO\nJBwxe4H8QiZpIx2/SSKmSmBMTVVNSEnjxkS3GwqUJWgBOaMzZF02+cyjIv6xEOjhxnn9o5Z5AAAg\nAElEQVR0YntUVA7Uc/UA4T38WfGv1PGfqJCXAVhO6SAWyTI2oOs2DL1QAc+fnFHVFdfXH4pxUTGl\nYc/Z5PBuc0oM/QBIJFp+VItTSqSoyEaJT3gQB8JcQF1hERx+usNRZv+QDWFvDi8X1GiD1sIFz0WI\nE0NizI5xNzCrZ0zamSSQ1JbJvGJMI/0QCW4v4kF2piRdRlsbFJm6MrR1Q1O1aBIxOXo3yvdQEq3l\niwuhzom79TW7bcd22zGfLVieLjg5P+Xq+pr71S1Xq3s2QXOcK55OWiIWXWUmFnJVY60m5kgMGT8E\n+p1jvfJ0QwQrarX9QWV0Eb0bsTWcLxclSSUweunGlVKo7GSY1xpsZdl1I7HzpJCxRqigWskAef+o\n64q6rbG15dnpBWlM3F/ekWLm6uot769eY6eGpBwhRZq6AhIheJTOtHWNUYbb2/UhEaquDFXVUmnY\njFvurrZstwOz+ZLZ4pij4zPmy2NsZQ95sXswMmGKeEnuiccDq3w4CZYuqkB6B7w0/7Bwl+flfUf1\n0JGDWEh0ux3ffPOC16/ecne3YbE44fzJc9qJ5cW3LyErfv7Fl2LSpgPbfseuE2jFWoumKTMay2a9\nph8GXBDFZGU1q3XNhw8TjpdPWCznGFWXmVLNZt2j84AfR1KqmM2OWCyWDP3AYrlgOp3RDVOOT47w\ncWR2f0u32xGSQxkjjqB6TzU1VJVlOpkwjJ5QcmCNNmhVYe2U8/Pn4ulyt2K4u0FnLWpXO8Hqmq4b\n+P3vf8v93ZpxGPHjiPeRcdDUTYVTQBKPo5OTY9pmIqHK7ZRhHLm5v6Yymr3hxDgOhBTF4dEYbNUy\nnUxpWkPvNqy3dxJskg3GNCwWSzabzHa7IcaE1Q3z2RHBQ1tPsLYqoc+Cq6ssJ7e9udpH3uQ/ALYf\n7o0HyOWj2lhUkvvC/VDi/jV0XB4/jY3tI+60erQjyX/yxm1JxXbO4V1EW1NoOb40R3uQnMOa2vv6\n7g2c9m89RREI7QW0+2SeB+RbqrjWJdtTicNgCBK2UFUi4thj2EqDrTTGShGPSUlyUBDI5d2bt6xu\nVxijWN9vwSTqiRKXtSxgf3SJFOSornIihVTc5WSTqrQhKE8OATeObHqHmVj0pCImEIe6ICpXnYlx\n5G59xWYrroJtO0VXlqOzY9p5S8oDMSd2m0STLVNbUTWWjXP0nWfjIipmgksMY6AfEy5B3A+Ny+zA\nWsE2d7uAuR1x3rMbIi6Ila62CRvVIcVcZK9lEEwusrssMJKxxf9cEYKn63cY77hMGTz0fV+ut0Bx\nY5extRV71llLv9vS7zqx5w0BCCgFR0dL6mqCdwFDw2J6zCfPPsdWUyazBbOjE3yEm7sNzsOTJ2cs\nlxNqK9dVYuzUj3qm/Z8eqGXIKaVsyGl/J++biMwPXuHj6p5QqAz94Lm8umO97mmaOb/+9c/pR8/t\n3R3fv3rF5dUHlvMF02nN1e2WNx9e8vLNP/Htd3/kfr0iJS0CphwBT05BpOjGMGtnTJsWReDq+i3R\nR+aTE3725c8Z/cDoR6KLBCdeLSlFjo+PeXpxwc3NLSdnR0It3HV03Ya71Q3r+zui9xiEAmyVkfWx\nXyuVRStLVWksNVlnoZBqizU1x0cnzBZLnj13fPPtCypd8/zpc/7qL/6aq+srXrz8hrdvXxNDpq4r\nlstj+nFNyg6jrayfFMgq4YLD2BpbNdjKUifJE51MJuQU6bpEVZdmatrwn/7H/0TfOd6/veT27op+\nCChtqStpADebO2IYJU0pB+aLBV999QX/9tf/PRdPPuH87JhPPn3C+fkZdV2hDvdDQZJ+VG8/1hfs\nw5p/tM8fHg84utpXx8zh1/3X/PDxE3mt5EKvOUiDJPgVmfRqZAjkRhkUxlAWc3mOYFDsT7uA/L2x\nRTsV0qEzAvnaVIQ58lx1gKX2xRwUVVXTNA11ren7nr4f0AV7r+sarRTBC8xTVaawQcoALxXPlZgZ\n+kGO9nWF8wFCYhwCuqmK6i4VX/Hys++PURlylNDbpjaoHMVaYPT4MaLrCUbNaGwkKEdSI2gnH2uM\nhNjh3CDeEEPHfLmkaVtm9YRxzKQwsF05skmYxlAZCC7Qd47dNqCTFJaUlaSdKx7YNjEfDLBSzgxj\nJN8PuJhxXjzlMRmdRHAisw1zOOmICCgVZ8eE2gdiWwVa4b1YAitrCG7EJIOKUkwlwELhfJZjcj2l\nti1d7Bm7cvoqqlpFEnl622K1orFzzk8v+MUv/oLj0zOqZoLPisElbm43BKeYzxbMJhOyVgXn/nix\nPSy6fQPy6MxbYJz9QPzwnB/h4nsoUG68/OhrUhKB03S6YLm0fPH5p3z38jW73Y7b21tSijRtzXQ2\nYfd6w5t33/P1t//C6v6GlBOTyZzgHePYMQxbyBGjZA01usFkTXCOYRgxymJVzXIx534T8H7gk2cX\n9H3P7W3m7k6giKqqyGQ2uw2D64vj4B3rzT0hDFgD2ta0TSunI6XwPjCZTalqsSDQVUWlLCZp7u/u\nxSsmRfpuR9M2VJVlsZjz9PQZ/92v/pp/+1e/5h//8I+8fPmC9WpFVdW07Yyj5YK0HhiGkZxTGaIG\nQvDsuh0+ZKxuZPidIrU1HB8t5d9362KTnNA6c3J6RFWNvH93Td+PomGpNEYbvBvpuw4/DiiVMEYM\n5pZHM7744oK//Q9/y/nZCfNZy2zeSvZwAZAeQeHyaT/CxQVvKBIg9XBj/evFXO6tPeliP1P5f3r8\nNDa28WFxyiLYg/3SVUckty8EEfPkjDgmlgJsjFSHuB9mKlA5005rVM70XSKE/IB/l+lxykLmV4VK\ntTdGyhlR3zUtR0dL5ssJd3c3pOwxuqJpWibtVLi16zVuHKjrisgogpWQhUJWLvxsOeP4+Ii2adj1\nO3a7LWqjOJvNqEyF70Phvwq0YKwWR8K2IjjPYj7h7GROt+uITrjZ1mom7ZzZ/IxsFEPeMsYNIXfk\n7FA20TaGOIDvA8OwISbHZCaqO6vAhcx2M+DxDDW0E0NPoO8T3UacGtvG0k4sLonQJpcw2ZwFPtrf\noykl3M6RsiYXBzNZZAkVOKQ+ZfMIb1aKHCMxiQzfKl0gjYz3gRwFYAtpoDENs3ZaXBRDCeIwGG1p\n7ZTsEmFMBEeBNBIQUToy9Dty1Cxm55wcn/Ps+Wc8//QzPvvZ59RNy6s31+y2AyqtmE+OZOicZDh6\nGG4W2AQezVJyOTP+IFVAnnHoDB5BKBz+TDltJh6Wd0oy3KrrmqcXFzw5fyIxgpXm/bv3fP/yDTkm\nnj59wqeffcri6IjV+p7b2ytictjaMKsmHC1EKHR7c8Vusxb1oVIYDATwvSe5EWU1Q79la+5ITWJ9\nfwsq8zd/82t2Xc83337D9fUH+qHn5vaG6+sr1usVw9jJtTXSIU9nE1K0tHXDydEJ1lpG51ltdpye\nPxWvcqVZHh9xNJvTGss//eGfuLy8ou+3/OlPf6BuW9rpnMl0wRc/+5Rf//u/pq1nhJAYBkdMmYqM\ntUqETGPNMCr86MvcJDAMI/3gUWwAS13VtE1F21acnZ0w9gOvXn5HryJDN8WNA9+/fMlm3XNzc81u\n15NIVEYTo8J7yUwNysnrNC0pBvpuzeg2XDxbcHK8LLAqiPpn31E+LrSlUfxhC3CQ92dkoPqj6duj\n13nMeHnYJP6bEgQRpWOzGFKKhT740GKnJNLtvUw9p0RKEiFWV5rJzKAU9H3AF8mxMlBPRFqekiZ1\n8eDJsh945rwXDtmS9GPIWURDOUeGsSPfR/pxTYgjpsrkFIvEvAJVEZMR9gaAtiikIIU8QhIz+95t\nqTzoyazEXCnG0XN/u8ZYeR+TqYGyqfgUoYJciamRVxJRl/DoOlDlRNCZmAaCGzk6P8cEjXKQck2M\nHTkO6BSwJlNPYdJqIomsRvp+hQoRnRPLhYUooqAhR2xjWNiKtoZFa1hMGipT8e2rwKaPYoOglZiJ\nlXQjY2WoFUJAmYwxMr3PhfKhlSqUT0WMQRg5tXiaGyslTdeQlWxmCqiNwtYV9aRmDB6lEsFKcnsM\nkegTxArX96zu71nfryScdwzkGJm0lumspZ7W9L1jHDbkAKAFlqvg+v6S5dExbTNluTjl7HTJ2emS\nprFkEqE4aQrr+OG4J3X40ekxfrxu9xu43jck5MO9B4+gltJZPYxP5XtoDG09gZxIUaC0ZxdPpAuf\nNoCiritxCawqJpM5s+kxxtRMmwkny1MuP3zAj5ngU8FtEzEHghrQWe6zStcEP3J3/4Hb8IGhCNv+\n+Y+/Z3COq6srYnbE5BhdzzDscG4HOJqpFZaZCfi8QylLUgYfR7p+Rz96ujFyc79jScPR4phxzHzY\n3jKsV7x//5btbk1MCdtYfD8y+I4QA2/efM/vmhnb7cD337/GxcDJ6QXbzQ2XH95S1TXbbsfQe8gJ\nheS/ehfISqFUxOhEIDIqT1Y1L19+R46BplKcLhfoHHjx7b+IKdoQ2KwHRheYLuY8vXjGX/31X7FZ\nr/n2m2+4vnxHik5YWMnz6tVrfve73/Dlz3/Gr375Fzx98pTJtC6FeI9jH/CQH7XaD8X3Ma3wR5DC\nA4S3bxrynk0nDLtYHFIX8/ZHJfUnCpaQAYFGciLTYXXAfpgUUsRW9uDyt2eG6ErsW7XOYjta8CNj\nFWh5DVWyNlV61DPtu/IESiUywgihJOWEILmUKUmStqmywAhJEuZBsVgsST5J0LFSzBYtMQcub64k\naLasYxdHeq+wAVSdsY3GjZJgb4x0oQokKLmpqbLgy0lL9+2zo3MBnRLaQqM0MSdiHhnHLdEvxNO5\nmuK8QiyzNTl1ZLwEXFSaISRCdLgxoEKi0oq6KbxlWQ5UtVgDTCaaRa2YWo1KWlgnQZSX4qdehsQJ\noY8ixUzvnQ4PfuSCh4sL4h42yuiswIgBmHi4FLpWkf4rhB5aGUPMkUQmJE/ISeYVPjG1DWRwzh24\ny03V4PNYimIuWD7kFBjHsahvA0ppRufYbDeEODK6AYg8OT9mu02g5iwXc5kHgNwv6nE1Lr+Uwebj\nIq/2VCoF+yn8PjGmvNRHUM2+55emX/5kjRAYowIdI88/ueDJxRnTacuu61mt11xeXx58162pqYzA\nSn0/En1xqdQ1KY1yMoqRISka1dDoCVUlm0E3bCU4IWd8qnjx/Z8IUZK0snJ0/RrnBKbJ2WFMlkAT\nI5F9Pji0yjiv2O7AjYHRRYaQUbsttpkwnc5x24HdasX99Qc2m1tCkA4oKiNeJU7jQ+S7F18zDp6m\nnZJ1ZHmyZLuObDfg/MDoBkYfRB0cRXGTUiRFikWynNokljAzusTVTY8hY0uB7Pue2/U9ZE0IiJ2F\nqaW5y5q6mVE3gbpuODo+Zuh3+NERI9zd3fPdt9/ym9/8Fo2lspamfXpg6zyGZ/9MHefxJ7/XHXzc\nXpcB+aNinpO4j4aYcD6y2XTc3Ky5v9/xv/7P/+5H3+GnKeSZQ4KBtZWEDCSJYVPFGjTljM0i5qkq\nK+G/KWH2iSf54birS5iCcwGShAzvg5PJP45VSilBCIKNGckmjFG8nnM2QpcqSUFZwzh64iTx7Olz\n5u2M1WqF847PPn+ODyMfrq8OC1cpRUyR0TvMoDC1oppagVJUwvvI4GXYp61h2lZMG4sLnr7vyCke\nnAh1VEwaTd0YYoJd7+i7e+5uYX58QlNXuBFq22KMwceAc3KTG0D5Ys6UFdknESxgaGojXjElBMLW\nFq0N0Qe2nSf0ATdGgo+EJF4jReEsRbtcX114rTmLTN4YOW0oo9mLGiqrJREqZGKSwZOtLbY2BepK\nGA1+zMV7JrHPMPTBy8KLEpHXzCc0TYvRlsXySPDznOn7jtH1bLYjXV8sjk1Dig3GTDhanPEXv/pr\n6knLbtjx/vIlb1+/ZzGd0zSJo+MzLp4+Zzb9UoRblGG4WD3ysPQUlGHo4VZ+QPc+wjIfw0nkdOjK\n97CLjNjzR01czhllhOE0mU8P9gxD6Nl0K77+5k+sN3dEPxK9I3jPdr3lQ3/NrG5pm5bZdM56N0oI\nRJLhta1r6qalbmvGrWNwA9ZWpODphx7nu7IuMkp57u8vS1h0oDKGygqDJ4ZMKHRSlR0uO3Zph1GG\nkGD08r3GoaHrKtxux/r+ntu7G/Erl/GuDPW1RinNZrVju+7Zbjr+8//0v7A8Oma1WvObv3+HNjCd\ntZLHqxUYSyYWy+csdMsyO5M6IFfSO0eKEaMyjTHc3d/jU6Qbh+KRYtHUNLbG+cj791f89ne/Z+i3\nbFY3fP7ZM/pdw93NHTFmnAtcXd3y29/+nlk74/joiCdPziXsA2lUHuZxD/fGx1mcmYP/4QF2yQUS\nTKWIKxJ7KFM68K533N1t+NPXr/mHf/yOb759+99OIZc0koQOibqpsMaQTJROqvC/yRJgoLKiqmXw\nEoKk6PSd8DdFyi24Y44ZV+xpM9I16gzBP8KZCmdZdkApDsZarLWEoGjbOcfHpzx5cg7asxvX3N7c\n0m96ohtxw8BifkRdt1zdXrHrO/riDJcO6lLIAYJPjM4Jz7RK6CqzT/FVhQYp72UgZoNpFLOjCj8m\nUoiMLhIHcIOmsoIj77HccVjB2mOqBh8SWStqnal1RdXI8TylJAcUnyXMOWWyVtiYUSFhy4Xqu4D2\nSPD01hP7TOih6yPeZ1GsIkwaU2Av8sOJqlxOrLWiDVCyKe9ZK7aSjLdk5FgYkRQnyViMZdIvQdVG\nW0wRGGgjKU/j4KRz1xKs0MUOlcWfYzadUdcVvRtAG0zdyLVKEKMhhooYKnKusXZC8CJqapopysLN\n6or/8n/9F37xi1+Rc2bSzJjPF7TtFGvEe1oglQdhxsOK3XdhD+VbZ3Xgkz8s7MzeXOmAjudySnm0\nHg4iofKyq/s1l5fv+P71t+y6NV23I9NhdMD7nuurDwxewhzaesLTZxek4NEadsMW5yRgIuTEbuiJ\n93dMwkiI4gHke1EtmoLRp5TwOUKOZCLoRFWBIhFTJg2ZiCqqRSUdcJLZkC1qxhgC/W5DDI7N6gZy\nwg0O5wYyGVsZuU+SzKdyTkwmDUfLBdN5w9v3r7i8fk+327FaXTOOW4xKLI5mNPUMjWXYdazXK3bb\nLTEMRX2rDmtaY4T0oMRraQieMcaiYE0YU0GSDfbi2RO0beiGkffv3uDcjpxGrq4V03bKyekZu634\npqdseHJ+waeffc7FswvJGfh/qXGPH4ct/nCSK92siofPXmY0wmLarHe8fX/Di5eXfPPiPS9eXnJ9\ntWWzHf/s9/tpOnIocV+JlKQDM8aQQjoUcSj876QPDAiVxPBmGDOVlW4apAs0VhOiLyZMuVjClp0w\nq0N6/Z6nedj1UkRFEQqdnB7x859/wbNnz9h093y4jKzu7gtHvefDu3c8e/4Z09mCM6tZr2+4X63w\nXlSFBxZCgOgSvqbACBnbQBj361+6vBgyziVMIyVRq4SpgKwIXgsbxGmC0VRNRinJFI1xENVnGojR\nkEoBsTVURmGsFUMu5VAqkFwiFarPPhO0imDr/ekmEl2iX0dCl8gOBpfY23fYApNk9UCZE0lyYbIo\nCqZcoKucQauidpRNV1JbtAiZYkaXWcHeb2dvrJWSKBQxSjIcdSVeL0oVP5JI9I6qqkVWniXGz8dI\nXQlVrTIN5JqUJyyW5yzmZ4Rg2Gx33G1WjKFjs+nYbO4PnHOrak6XFxId1oin/L67OgTq7mHN/PGi\nPAyi4EBi+Iiy+IOz9n7EtRdH7U8vh/tHZXZ9x7v3b/n9P/xXtrsbvB8xSuNdZBw29N0WnzKLxTHP\nLp6zPFqyWa0JMZWfW1TGWWfGGAhDh2OfR1vMygpdV2dpkrzzxBTEZlWJnsEaC1nhfMJQFdFXxvtO\nfFlQhCCNpUq6BCJ7+l4+35xFum6MLV4nDzmmmYyuFEolnOt4+/YlMUT6vmO9uQM8k7ZmNj/ms0++\nYNrM+fD2ncBmQ49ye9gqH8KQ8/70k4toLqUyYpb7tDJaMkVzhuxFO+F6Nts1MY5Yk1ivE5NmwvHJ\nKW0Tubu/xaiKs7MnPHnyhOOjo0Kt/f9Z8/YslLyvAQ9NgQ8i4Lu63vDu/S2v317x+t01r9/c8Ob9\nHdc3W8TK5s9/358IWpE3kGLEjUH8u7VmLBSyPbUw5b1oR4pBSpqYIt6XD6WuZMpfW9pJy+DE2jSK\n7h1jDbbSkDRhjLjkH2CpsmF67/Fejnonp3N+/tWnzBcL+jdrhlFoV9F7vHd8/c2fMFXDz5ZHfPLJ\nZ9zfX3N3v8K5h9fNGXFa8wodQFcSvFA1mugT+5xEXW7omFQx2fK4MFI3YCpDCsJbj7FCq4paRWzl\n0XiJhMsyiE1Bi8wfUBHs1DCZtCznU6b9QLPzqF0iqRrnEt2uk1i5CiZGUxtxLtyNid02kYaMjppQ\nLAw0itpYtBKedCidTUyJpKVgKyWilrx3c9OqxMIJlKS1iE+s1Yw+HVSddVVTG41KURJwXCSGiLZl\nQGkStqlp24qMoU4VITp8GOlDYBil0xsGEYJZW3N6esHx8oxJe0TbHlG3R7STJdtd4Pp6xfXtNb2/\n5/rqnmHYorLmxYtXtNWCv/zVv0fMzCrS4fQmJ7v9SW9vqSpr8TGu8sAjl0r/Z6v3oyLOA7Ra5gvC\n0JH/vR9ZrW959eprrq6+p+s2kBXHR2eF3hqpjOX89JR/86tfcn93z2qz4ur2Wobne7aRkZlESJHQ\ndxhjscZQydQZlRLJZcbeM4xliq/BVoq6tsxncxSG1apDmwnKSFD0bhfwWbjhfpD3b40mJGGV7HUe\nSkvyT1tPICVCUXKmJF/jg2e7XTMOAzmJdmAcB1GdNpaJsjRNxRdffM7ZyVOS99zf32JKwDPI56Gt\nBi305ehDqR0FutL7RgmaqpAcEtxdv8MncKWBVDofmjYyLOZHnJ3MyVkTc+D46ITFYkHbNv8fStzj\nzz/vq/cBEi5XR1hfSbHd9Xz4cM//+fdf89t//JY/fvM9622PD5CUlVOQNof3/MPHTxQsIR1YzpLh\np2pb8C14vBb2eLcbvRy9jcFm6dxCyIyjZ7GcM5m2VJWlHweZhahcUicQv4j5nNE6vF+Ls2ROZfCp\nDgtJ68y7q9e43/Yoo1jdr1ndrBl3AynEgmgGtIV+2PDyH77l5uaSnDJtOxFpcPSHBZxjJo7CQsEi\nKXQ5F8hHFJDisCPXQJdg6BiUJBNlMJVmsTxhOT8hq57RrxjcmliYHkZDVYPOhhwyu27EaJi0woFt\n6wrvNfWQefL8c3TVcH9/T7fb4lxPziM+RkJOBf+W6xGzwDBKyQZbtw3BB/G22OO6RhLP2TPxEgdX\ntxSyBFGgsY0pSUu52MUqCZ7IEMfIqCIqZcY+4L24VNpk0FGLR7syEgNma05PTmCe2a7W3Nxcy+LP\nJWtUW8LoefP6HcNp5OnTirMnn3Jy+oS6ntJ1A7/+d79iMvu3XN3e8tvf/oarqw+cnx/z6bPnfPmz\nL4uy1KCtKoNOGQlL1ydcb8ExxdVOHeymczmVPCrgen8rlxCBUrSVQk4XSsmppUhmU3EGTGl/Kt0S\nw4rd5oq+u8ONA5Vtca4nRC8NilIM44aXr7/l9evX3Fxf0bsdMcumuqdKSrxZLp4s0hzllDDlfXWD\nZxgjzudi4iUdbkpyAlIyEcTFkYywyYyy1JOGqplQnUyJQTEMA+PQMboB7zxJZybThsVyWbrwiLFW\nGGK9aB1SFiGcks5NILeUsEoTjWIcR65vrvnt737LpJ5ydXnJertBGeG7ayP35+xoRgoe70bGoT+4\nnBprSDFSacWktrRVTWUqtDKMPrLtRtzoUEpslFU2KBTrdc+Hqxs++3TO0fExzg386euv+eqrL/ji\n8084Oj7iIensUW37iHb6sDHLP8pnEnMup5pE1498//qGf/6XN/zD71/y8tUVN/dbdn0i5lruIaUQ\nAxD3kX/U48dPVshBOu4Uk0yj8/7Of5j7ZgQO8T5gsikKv+L/Wwr6Xkyz9wPOmYOIxShDbRtmszla\nDfSd4IKxKDsfGio56u/cCn/TEVJk2HrcLoLMaArDBTKBrl/z6tV3tG3D6dkJKSy4vLwUb/PD+RsZ\nChaj8Ryz8J01JPPwPnN6EAYlpQo0Id9TKTCVpWpaEgpMIqnM4BLeRbnhjcJWAlHEoAkp0Q2O7a7H\nKgm/GDoHSTFtZ9gnE+7tnci73Q7nOkY/4rxQPLNSZC0DQ6s1VmvBVJM4GWb9QM4wWh8KlNaax97j\nOUI2SjzGnfis5JjBCFMp+ogjCRRRDLdiTIJM7N0Fc8aPDrLG6kRVWYHNjHi+5OilTEYx5nJ55D5K\nKHM7mXF18w5TGc7OnnJyOmU2Fw503X7KODqePfuE6azh2dMzzs7O8Mqz7leMyUlYdnSFHZHRqkJr\ni9b2oYsuIcU5R8j74OrSuSs5uUhhlu5TldNKZQy2sJdSCgQ3MPSdKCujnLYu373k+5f/xHZ9yW57\nj/eeUEmAeEwJQawzu92K0Q1cXl/SdR1JhXL9kKCPMkOiBJCTC9NLJeH/IwZRJb9bfkalIGlikKzY\n/ZA3xihNhNLU1lBXLW0zYzI5IidFZTum7YTdbsv9akVOEatr2noiJ98k26AxMlzfF/eco6zFKJi7\nggKFJsbRE/yKsRev/6EfMNrQTBqqpsF5T9XWHJ+eMI49/Vbhg0Nl2ZSquiJGT2UUbVNRa4NRWmY8\nPmO0uF3mLHRgrSyTtkXpml03cHN7c8haPTk5oW2bHyBlj3kqj4r4D/E0ymk9S93bbgfeXd7x3YsP\n/OnbD3z99Xu++/YD6+2Ij/ng3JZVFu1FDmQCe3X6Dx8/TfiyLIEyOxKsPOsfGA0V4DFnys2bMVaj\nK+HEyp6W8MFjnIQ0xCjTX11EKEaLwm86naOVpe97vB/xDjGpT8W3BSXYtBZvcV9YM/vopkJIAQ0u\nDLBL3N1d89VXX3Jx8RRyZtdt2HWbAyy0j3DaqxPF5lOzd3HcDw2lwCli0oSkCquQTpUAACAASURB\nVC+7bByAj4HeDaIya+aYqmK388LxHQJ1BXYpkXVVDWFwbLuR5DzL2ZShh9Xthsn0BqVbjs8vROWJ\nwZia0WfBnYdAjsXjocroRhhDJmr63Yh3sRju7wd7sMd5994zyhRMFF9ogAqSwg0R7yRouW4rMIjA\nJxaRURniZkUJmywbecoFw1YYbfFuJPrIMJbor3KgCiXEOSmBZvphx93qitvVNevNFf9G/SX//m/+\nlpvbK95dvuPTz37GL37xc1L+mdjA1opsM+vhnu7DlpzEfGsYOpzzxJipbENdt1R1KxirAqWiuGwW\nAyf9SLEZSfgoYcYhhENXVlnxIqkqQ2UU49Cx26y4u73EDTuieAFzd/ma68vXbLdX9N1GZikmE+IW\nZRS2Fu/9wXWMPuBCQJkkuPRh8P4wjKb8Kp+PFIOgEmhLW1uMDxBCmXkIqyaEjAsjGkUzmRwappwT\nilo2NyVQjTIWJtDU4iG/68S9tDI1FkvKER8S0Xl0LeZwWon1AjzyKYlJVMRJmi0fIv3o6LYSHZdS\nYrk8YjYVL6OrmxvQimY6Ecm+G0CVQbu1JXFLYzQoa0X4FSTs3HkBw5qmhdySc4UxNcvFkqqEU79+\n/ZrT02M+/fSC//gf/5Yvv/w5bds+6rw/LuKPTfgeF7N9Zx5SZHCe129v+PvffcPf/Zd/5M2bezYb\nJ35Q2oAVx0UypBRIOZCyQ6n4oxPA/vHTYOQFU4RSIHM+4IP7fy+I0uEpqcjfRdRpDpFIwzDK0UwZ\nfPJgE6q8q5QzOSkWiwXT6YSYA94N9N2OvuuEGx1jubGVdCpJCeQizSOqUsKeURBV5PL6vcAsOXB9\nfckwdlRGNon90M9WunSNkEZ5j8rownct/yeZEWQyvhRAF+R4XdUwmVqOjuagE7vxjpzgyBwxnx/z\n+ecL3r97x/3dLQFDCJLkMJ3N6NniuoFuSOToGZ10WtvNjnq6pZ2fonWNrWaECCenFcvFMUPfsbkV\nEyZlM8lId+jKcRxdRDKk4qusiqm/dMhKR4neo7QdCnIoMI0HlVTphCBHSI6SxMQBcsJAtoLD5xjR\nCYiK5DPJJy7Lpuj3aTMpSpcfE6owEVIM9P1Wwi9yxrktu25FxHF7v5LOPWxp/m/m3uzJkuxI7/ud\nLSLulpm19Q5gAAyA2UCREs0k/tcyvtP0IJqJ4gw4gGZAED1YGhh011653Xsj4myuBz8RWYA1nxtp\nVkBVdVVW5r0n/Lh//i3DDmM9sWRiGhGT8L3KoqXRIKdzs2pFGwVrNR3eWL8WCVa088G1VVAkrdQ2\nbS4AeyuS1qivtKWS0sT5eMOb119ha6LmifF0Tzy+Yzxek+cT1CVezOK8XvZiFPaxThlIYi2kSoxJ\n2TO1uYCKfh21jfNrg2Gap4cXJBRsbwnSqS1sK+RSBYNfA1usFTpr6cKAN/pnb29vuL+/pws9Q7dj\nM/RsNj1Xl5ccLi8J3iI141oRnqeZ8+lMKlEvpNC4w6KOmZIyJZUG/7TnvrkKigpQ1N/nfCZlZYal\nOakASAolJaVNet+MrTQqsIhhTJDnSImJmgsYDSEf+j1/81f/K5v+kvEcef76S2qphD4QfODJ48d8\n/PEzvvvdb/P06RP6vlv3JPq+mj8q7MtuZcXDW3c3z4nnr97wi89/x0/+v9/wy1+95Mvn6vdTRSEt\nobYdlLK7VABVsSIPmpqv+fiGWCtaAPRwWLxXpWaq6SGM+E//RuuQSy76MDSHmhSLzmFkhQSMBiGA\nFsppmjidTrjWCaWkr711jr7r1EI3zq2L0SLelPsYq/J5Izoqiyncn+5bp145HY/McSZ4z5zmxrIw\nKk5a4J6CYvDLr1sRV6aXNL/v9g9mq9NJKTiTYSdYLxgS4xgxdwZrPE+efsCzYgl+p34wVgCHsYHQ\nO2oKxHlkToZcKn3nifPM8e6WzeEtuTngb/c7YjpifaHrNnTWMI5nxjiSjHmABgy8v51TD23tPBe1\nek314eCiU0YtlRlZpf3WGUqSxmjxGFOp1LW7tqLMlOCcGjKVSqqidMwcqeVWl1ytczfSLo78gE2L\nVOb5jFj11ziPhjHek2RiipEudFgT2e4usD4Qc+Y03VNNZHsICtOkSomiUFwG6wIiBus8tsUfDcOW\n/f5AP/RYp3JrsxZyDdVY8G5rGlvjvUvONLRdSiRGlYrP8Uwc7/XH+ZZpPDb82DH0W7r+kjmN5Doj\nzTQKaTyGWqi5FaimtajwUMCtQnt6gaA6Bgc+gA8auOKdpURpF42+F84EZQu158sY7eiH7YCzYV04\nS82cpzu1xbWW7X4DpjLOE/N4BqnM80RKEzFH9QL3egUaWfZZFpzXS6QUfQDXe1AvTKlCzomYHGIM\nuSZijuTj3IRlCmFpIpjBJku/2eHDBms7rtMbohSE2mIWA5ePr/jf/v2/48Onn3K8H/npP/0jFc1F\nePHiJSkVbm/vySnp5bnww+WhUD0sN2X9tQhMc+J4Grm+OfLi5Tt+88VX/PwXX/Cr373h1buR8ygY\nq5eOWYRNaEqTxazfk7LCKib/GUErC35krMZCdX3Ampa+0xSe8r7xePuptJHL2AzOUo1tXZ3eesah\nMuLmjlpy5pSOvHz5gu12i/eWlLLGP4lh6AfAMKekDJCqUWbSDo6xYL3ixdUoGyWmBFnfqBgjMSW9\njZ1ggsX1HspSAA3V6P+LaZ1oRQMWGqQAeilY6/DWkUVtbieJnPuJ3aMtoXNUCre3N+RYefT4Kc8+\n/IjLy6e8eP6GUieQSikWHwbYDMTxmiIJYwvbreU8Jc6nW25vDEUcm8MF+6unnK7fUuXMtrM8erql\nO0K+mSlJXRoXq9/2yEHr1AQadfAB8y5Z3x/nDOI0WLo0Opwx2n1JUd9yHzzihCpNsVcFWw0Bz7YP\nih/nApJIFUqupHmmBIsLFhss4gxkg2md+fK1pjxRx7iG2M7xxLu7N/jOc9gfMHVktzvgfCCWzGm6\nw7jCxeONwjxRyOfCeNZx1/lew75dwHUDGM/ucEmpmQt7SQiddmUoplkpajfbEkeUk24aXFBb0QLr\nNEPSdYGLq0vevT6raCo4ZlEmT8wQuoHd7pLLy2e8ev2cMo1YW1nUjFKhzJESC5KqLpNb+pQYfZ9s\nE39pUYDOa8PhvCF4wXiQYKjd4jejgh3ve4oY5mlul2UhpZEn/TMNa8jK4Dg3g6/u7Oi6ARfg5uYN\np9M9cRpZhC8VTQTAagGvTeOAWIxza8A3RhsFqYLkoktb9ExUrxGBldqw/qKZsS2xx3mj1OYolGo4\nXO25uvqAvjswT+pqWsyEC5bNtuPJ0wv+9sff43vf+Uumc2KzM7gQcM7zn//v/4evnn/FV1++5O2b\nd3zy0Qfsd1uwjpWeynL22vMsOg2llHnz7p5//fI1/+PXf+Dzz//Ab3/3kq++ekuWQBKHWLWHAMEZ\nAckYEs4WPF6LuWhghUKRma/7+GY68qbA0kD5QqmaXdn1HZFETvmPdgh/TOWhQTFVu933hRltcSi5\niYQanjeOJ5wzDMOBzz79lJt3t7x88Yq7uxM5J+WSW8EUacqvusI7aYkqs05H97bxt0Zpe1L1z1pv\nFYvzXimQpW1tHIjVjUDoHCYrRicL/o5igc7SOjva5FE5Hs9ULwwXA4eLPffXJ473t3zxxb/wne98\nl6urZ9T6lPPpREwTUhI4hXVcmDBFjcJqzXS9xYZMnO6JxZIkU22hSqSWmbvzGYsmfuwOWzhbSjSk\nOrNw+xebYNuk+N43XBxV+1Gl+awY1tgzefg+s7Rlqa3k1G5b3f7ogs4JpipOKsZivSX0QeGbbOgG\nFR3VFtAhRRAr+CUrtU1opWpPbJ0mMlUDmEKuleN4y/OXkaHrlfVg1SfHeqGWgMNiMtRZkGxAVPE6\nzYlqHb7bEIYdzlpuraWUrNF0ff+w8LX67y9d2/uOinr8zeL/xqIUzQK+69ns9jjpON++A2Pxoedw\nccnhcMV2OxCuLcU7+sG3VPuo4cJVJx9d5BfddGqSL94ZTdhpyltnFOZSJpgayDnUTtgPHbmoHbPa\nVpmWWq9GVSLafL29faVc74pmsBrDdrfheL6j3N9QgZgipWG7i0+3iDSmk84kJTepfYFq28Rg1OZB\nGjSlrCRWbYj3ntB5nDd0vQeny0DlvRucVKZcmg5FdzSmWi52Bw7bC8bjcYVEHVDLxIsX/0qOM1Is\nP/7xD7i4vGIcE+9ev+WDZ0948uSSjz/6iO1m+0dxkUt9qn9SyG9vj3zxxZf87Oe/5vNff8W/vrjh\n9i5yPiVq1QlPL9UWWI46h2KqNqTG4JbfK+r2KCVR859RIe+3PaWWFsaqCwBTLV0X2iZbb5//6Ufb\nKGnHY1ljg5YFZVnGVx1NUopKiSo9+/0HzGNCpCV7Fx1RJYNJAk6LA+inlQq2ue4JGhUnviKlLSHq\nAgVpOos1TkfbWlgSkEzDtpzXnjZbsx5s0KJtjeC91zxDdFpZLGMxhv3FAamWu3rH9e1bhtcDxlr2\nF1dYJ0yzbcKKSJVCv9mS5mb76TK2xczFqTIli8yFeY5s9x5DJs8REYO0Ym5FE12MxOWafDi4jd2w\nyI8Nyk5Z4I3aCrcqLFn/Xmnvm+FBVm0M2M42lzvPsOsUMkVZHz54nYiKvo6FQi5qd2B8uxyLxVuH\nFYuYGduix7zXYiXOUKw0bxhIdSaPM3bSQua80Bm30j7JArni6dRbJFbteLFtShBqikyne1IcefTk\nKYfuEVUsC/tqmbpNe6+hoVPvQTC1/dxYh/Udm+2ezltqPKNBqE651NuB0FlSmhQiaRmfRVRsU1vE\noBg9u9Lwby1+qpDtgtoIB29UFCOGXIWYdDoNTcvRVhZIU+2KNeDUj6cmFdw5McQ8UkzEVIPFaRNg\nLdM8kloUYRUwpuI7i0OX0pKbEdsSKrw8r1XTpBrRBlngKnjYKTiF3S4u9nSbgfM4srB3rHkQquWV\nwqnNR/CBp0+e8qMf/oCSMuNp5Pb6jjwbohNub078w09+oqEs+0s++exDvDeIJDbbwHcvP+Wzb32M\n7yx/eP4HpmlERPjoo494+vQp3ntEIOfMeZx5/vwtX3zxFb/4xRf85ncvef76lpvjTMptL1QUerUG\nnH0v3m3pekzBiE5cJRcka3NbS/6jzv/9j2+kkG8vdsxxQuKkPiui6sqh6whBx/FSY1smLMk8S3vO\nQ7e+tHygXNfm9VuzwixLES0lE+eRcfTknAB9GB4Wjw9/j1QxocEJRtu5PuzYbA5YCVqI08TxeN2U\nY0vnaVGLXKfe22gxN2LWLtV5tVs13jRcV9+3kgvWeJyzDJsdPjiMgyIJ53Ux1fU9+wsVdrx795oX\nr76k1MwPf7il3zpct8F5x831HSkmumFDqbdQK5bF+KqSZpgmRy6Z8/0IZUvXiS6ESiHGREzCpt+u\n+OTywi8FXS9bkFLwluY1btpFIGteqjJ+zHqpmqXCIVjXuhhncMHRDZ5h27PZDuScSDGSS6HrlOEh\nUolRWSCxKJ+/6wJd5zFScTgtKsViq2Ct1TCLxnSqVmGPRt8mTpGUE7bCYLWbD9Zgm4GZ2NICRpRp\nUVNWVrlUklRGkeZDn9huOi4fX7RialgcFBdq7Krg5I8X+OszaR0+9CrOCo4ZAddhfaDzAe8Nucyc\nz1NTL0OaMwnRy8A14NvJiqcuxc9ZzaHsvKWWgjeGzltKEUrMjLMgov/dGyHHhPeuLXUF21nMohZ2\n6pmzQBoLV75kFfbkosymFfbA4K26g3prMFmpjysVegHyl8e4qTILOk17r55AtgnPFIbt2R92+C5w\nd39HjolSMsZZhW2ktrQf/fy1ZELwXF4e+OSTj3j75obXr97y6vkbjBhiNFy/PfH//pd/YLPp+eST\nj/nhj37Aze0dd3dH3t295rPPPuZwOfD81Zf8/ve/5/mL51hj+A//x39gt9+xGTakVLi7P/LVi7f8\n409/yc//+bf8+lcviAlSNWQMUjXfdDH2t0bjFY0IpvkOVcltw5IpKVGynr2SU9sp/hktO4ftQCEz\nJwNO/bxzyUzzjOFh3FMZb8Oh1q3w8uumpynaKVZReEJEyM3pT6QpDoEUE3fXd3w+/VIzNQ87DYmo\nhSqmqQ318xtpCzWr4/2PfvA3/PCH/4bd9jExzrx48Tt++tP/zO31DbVM1NyKVlNp+q5rGHrWNtRZ\nPJb63rnVma5RE1dc3jaDI4UQUrXkOnO8n8j5Fd3QEzaBzcWGEhM3d2/49W9+ybMPP2J/uKQWuLx8\nxKbfcHfzGt87bKf8+zgJ01jVSyUWclKp8v27O0IHzinFczHHivNJl371PR/y5RCZ5esWxcZpvPHF\n3x34U3/mZUG9qD8FhaNwkE2hD54shfvjqXnXZKpUdWI0rQu2ioN6YxpkpUfeIu3Aa7e+OBiqU6Eu\nk4sIxitO751HegemKsshZeKYGU1mPwwMXYftBu7vEsfTzP0xq+eMtdgKcU44Z/FdYDpdc3+7YX+5\npd9favp8w3O1gD9MXgaahcRyrelScnVzMU5VfMbTDXu6zZlaEnfne3JRxsd0SkgR5aGHZalesc3K\ndblM24Ei2IAzVqGLpDBTMdJM0RT66TqPFYU55ilROqFDrX91qlA9g00OmjNlKkktHIrBFqe7BaRB\nZ7D4AJaqy+hcVQjzkMzVXpGF31vrH52V9b5rnfhyUVVTuDveAoZ5PDPPc7NWdphOqZAuOOYxUbO+\nLjfv3vLTn/4Dv/3Nv7DdPGaz2fHd7/4Q7w2n8Zbb2zdMswaOP3/xiv/zP/5HhmFDzoX7+3tCUOW4\n7yxTHDHARx98yI9+9FerJ/of/vUrfvkvX/Czf/4VX311y81NIsaOnFtj2tKrLMr+WeC3mhOUBDVj\nTW0NTiblpAHtOSsUK4XgHNaGr62p30gh19teW2Z1GFQoZU4J36wh3RposIylbdHWDr61huAdqTZ+\n89rxtHG1deeyXM5GF03jOGJ3gU2/XeWu69FqFqi00V+xOs/jx4/57ne/z4cffI8v//B73r59oVOE\nXXxN0Mugpf44G5Cgl1NtJlG50bpqKyjOaD7nEo5Rm3x5ntT7W+XGhVx1w59iZSiFYdfz6Okl0/lE\nHGeub95gHMzzjDUdu+GKEDoOFwfuT+9IxeA6MN6or3iu2BGIlZIqCZAsuKCoQMU0aKs0gZU8QCjW\nrI/gMhaXVjSWwv7+OmNlk644Q9sDeF1I2WDWYoyFIpUcizKFnMfTlIntc9cGxS3vtL6/rTA2KMpJ\nW8C2wIolVlDxan2/XbBY7/HeUKKBrCPsdJrwVaBXLv95ToypEJtxljUqCDIlQS3agEzC6faa61cD\nT70m6ziny0K9y9TPh/VMCkuZWy40ocFOumzB+o5u2BL6DeNZJ8gimZgTtQpd6Lk8bJnLDTFnbFVO\neDW15eG2SahaatI9TzEqmLOiS/t5KhQMNnRstgdKSsx5UgFRU1QHr+Z2tXW2xqps3zunF2cuGqxS\nGp12eZIWagysZKe1TLclpwi6D6l6max+Nu2JFGgZtcouMWZZgFZlyjT2ykKAkKJxiepsq+e8Zt2f\nHFsYzPW7Nzx+fGa7ueRwuefiYsvbd5Wbu5dKtY1V2Sn5d+z3e7qub5YBM7lk3KCZoY8fXdINAy9e\nvua//sN/4/b2yIvnb/nDl2/44st3HE9CSgFHryK6Ks3eGVXyikJIpWR1aswTphacFUIXlMlWMqVm\ncuORI4tF80PO7fsf3xBrhVYYrM5Z1iBVBRSI4Ix25SonVi/wpZAv/FfnFFMvJVKaeQ9GRw/vDc7q\n6GtoI6wDYyzWaEfmQ9e240YfLvNgVbp0+462dEEl8Yf9JXOMvLu5JuW5BQwPOON1zDYWylIkLD4U\nisyN36oWnmqiZXGdo1rF2qUtJXOaqDU9+BIb2pgv5FARowX30ZMrvM8cJTLd6QE9n050fku5EC4O\nV+z3F8S6oUaPCYqBijGkZOhOlZqEkiq2om6NCLYza8GxDl26skw/ugxTrrbuJxYb4faGsv5SHmyD\nl4K1hBS7YLSQNoYR9kHC3oiLyuBxzcZgHdX1squ5GXPRsl9LBacjqrUWCTQmjVbJZdKymHWxqt+L\npwue2gXSeaTGqLF3qFjJusJpLkzFUm2HerA4jPU4KpREmWcMlfl4z7HrePz0CVZ2eKNhEMtCU9py\nf7nMlldm4Rcv7AzdpVh86Ah9j/WBXNUKWC80IXQdh92eD55e8e7mhKkjzgrZKrRYWiGv1VIxpKi5\ns87RrIoVCpkj2ODpuw2Hi0ecj/fMY1K8txpd+mPIOeslUmawQgievgvMU1XnzdZl14Zxm+UZFf1e\njFOfE2mNlTW6E9JFPOt7s3j5LIw2GoxVq0C1bYHepsB1kdkM96zeFOv+wiqNtxYwUpnGMzlHutLx\n7voFiLB7tqXrDdZpzul2N6gzojj1Ru8L201gszGAo04j0zw1TxeH9YHPf/Ub/umffsnLl++YxkpM\njsRArj2C17jEBv86qy6RiyujSKGUSExnchyxUgjOqkeR0SZOLOC1GBmaMdj/xKvrGynk8zRRGuWu\nNoYIS/dSdMPtGxVJZet64N2S2N3MsPzgYU4rnO07Q/BWPbDJaibV/m6t+rmNdYTQaYp23xNnZZg0\n5g+1Jaw45/Rwxcrnv/wX4tlz87bwi8//mS+/+pKuH/C2EGzP4XBF32/JqXJze0NGyJLoLaRsKFkh\nnLLczJ1lGDpqp7LuPGt3tzi2yfJ1t0K2dKvJJc7HM29fZzAJYysXVz2lQo5nxuOZPFVyjHzw4RN2\n2wO2u+JmOmFtJRkhIww7S7CGOgFSKVJIoh2Q8RosTcMqTVWVoi5rdVqqpVCa3fD7/Gl4KOILNrzs\nIowz+N6pItGiXWrWwt73YV2aqsgGvYS1zV+hmprQeLf0UBSXbtwpBVm7/WaX6rxXg6as8JAk/X/n\nMqFfgrY1Zg8j2KJNgFDVMC3CnD1VdAlfpFJLZOMqplZ1/0uGwRqudj3bzhBMxZT04IW/eKm05W2V\nsi62FFJbLGxrI0tZutDjfKBimFImVdMmJMPV5YEnV5fsDz3He0NszKxNUA1DLiosS0XZIFIsoQts\nN6HRRZs9BQXfdRz2B54+ecKrFLlbJp6m8a9V91epROYU2+WuHP+a2tKurre3vv9VD46x6o2kdae2\n8HR9vWMspKRy/yW716JirGWvsP7E6qtXqkBzzVzIEFLbhCeaPZuL7oi7PmDajiqXTC1Ki7GukrPH\nuIh1kV9+/hve3byhkPg3f/1jvvcX36cPW/7Tf/q/mKeZsst89um32e8vGaeJv//Z3/Pu3R03N3f8\n7osv8a7H2Q3B7ei7C7r+ktAPIE6RIolgKtYWrK1q+SC5hbUYxGh8XhH1aLKdo5io3kem4vrQqJwe\nZ5plhvn6Sv6NFPI4zWCWXM6o9DNp3XDr6Ar1QRxkzNpNB9+xO2zphw4TNB0l5aSim6CFwViQrJ/L\nGau0t2bIY22l7weuHj3m9etXqx2lwTasTg3r1eK2IsVwd3vPy/CaZ09fUQpcXj7l4nHHeHdHHGfm\neeKTj7/Nfn/F6TTy/PUr7k43xKILzGRH4jwpLawl7mSSFvSLQJ4sedbx3mJ1ARwXPLEJD1pBynPi\nfEx4VxsPuE0VVqGj0+kGqo7Fh8eW0G2xeUCYIST8oK9v0PEFycJcTAvjUJGdtdo91YVmGB5gsLXD\nFtZknPd3Vw8fZmXrWKfudK4VcRFBlkDtapSXX1tnbRf/DxVmpahcabVfdZgqmKJLUljUu8pIqctv\nO2lGT1U5w7Fgsv6ezZVTHRu8otJtR8VLpUO51rYZgo1TZY5CThFMaA29qnw7J/QhcLHbsu0D5EQe\nz9R+wFsHVbncDx141UKFTjyLH/lKQzSmWas2aXpKlFJwbgk9sfTDlmHb47wQ06lBjGp4UatQMqSi\njpqlth1Ts3UWo7oK62w787o3mGPi/v7INKkhk0GVoLkkYlHhTBVlS6x02ywrjCilifqcwWNItTQo\nRhDPA3zabKtL+1qttZhO9x9LqhPtDlk8lWpTOBYdNtTYrahfv1ojFBUpSdM2iDJoutATJ/VjN+1g\n1looxRDjyM3Na3KK3N7fMMUTxhqmecRay9XlJVeXF7x9+5bj/T0vXzxnvJip1ZBjZR4V6ki9oe87\nNkOg93uM24MZkKoogyHrJW4XbqVO3EUK0tCGSgVXEVfBgxs0r7UPHoLF9gHbeQ0qt+CxD9THP/n4\nRgp5ignfaW7mYhBFVWxLWz7a4dU3B0yDRAJDv+Hy4ophN1BM4fbmjimOYJV/iV3wcMUJjbHQLDOl\nCMWqac92u8P70MaWh+ZXlHqg3YyAQ8fPzbAj+IGPP/oWj59dMeXXvPzyd7yennN7cw0iPH70hE8/\nucT3G7566bm+e7PSi5ZxUA2UqkqUQ6DfdVgn6t8RRbHzuSqXuqK4PXqQ2/RMjqqykwx0WsyttfS9\nZbqfuI8q33bdJWFvMLankDAddPsGYLSRzzioyTALiEP59E5HVeugOtYAife94tvL9bWYePtVK/r6\n9flgYcFcl++tZV+WXDFesKGxJFqDVwukScUf1jkcFiseRxOIWCXJPSwTH5gypUKtrfOLBZP1sFcL\nNWUdW10TxBjorcF4w24wDMGB89o5RrVabnoWnWAAYwObfuDy4tCWa2dOt7dYF9gYB65XHrs1reNc\nPpbGQfFSpftp92lZtBDqNJlLwYWOlGd18dwOhOAoEjme1dytYiliibkyJ0HZhG69dNQFUXnWKUU8\nAW+DxulFoXLi5atKnCblmbQ9TmrB50uoh3GKgZciCOpTRAGq4DrbgkVsa0B0YrOl2Tdg1HCr1HZZ\nWJwL+KD2rFShiVT18vcW550ahZWy7mMMGgaTc+uy26VnxKhBGK27N67Ba41NtYSZ5EqcZ97lt9ze\nXNMNHcYoV/3Vq5c8v/wKJ44uKBpwf3fD9btrNpvX+LBhPsdmS+Ho+h37eJ5AbAAAIABJREFUi8fs\ntk8YukcYBhCvecQawaEFmqyMlFLIeWyxkZ5qFGdyvaWzgS4Yhl2nnkmbgBs8EqyyrWxzzATsHz9k\n68c3Ushrs6p0VmPcapHVY9uydJfvoWXG4Jxn2Gx4/Pgxh4tLwtCRaqLrB9x8oppMNUKWgpWG42aa\ns6J+HmWxVMZp5u50JNXyHq6ryz7T5PMGS3Adu/6Kv/2bf8vf/c3/zl/8xY/Z7D33p1f8989/wssv\nv+B8PjKNZ371q88p2fB3P/73/OhHP2J/seW//v07EDWUGoaBOiVqw9vFCIVMat9ntW0TZSqmXUom\nL/C9Lkf7vqcbPJVEKfqgWwfQOvCrPaSR833i5u01YmeGK0PdJsRXnIfhQg9HrtJMtxy+mhUmsQ2n\nxWpf7IylJBX8lKqeJmtQNl9/qFZ+fAWMijJK1WWUqM+wuiqmSprVb8b1DlsrpczUvFglmPWBlSw4\n1+OwK0HaOL3Z1sg5IJFYcJe05Dyi9gALSdpbuy7/UqqkIiQMprPsN+CMY+g95RCa8CwSR1269SHg\njWO3GTjstgQXyDkzp8itvSYV2GVhf/WYzg3YZvCmxdwqVLiIyhwKvywJQu22WC7aBXtWbyFPCBug\nkHIkx5HjeWaaCqUaYjYU0dfF+RYmnZMeaFPBZFwA60ozo2o0xpKY04xbecyydtGYtoxEqYA69TST\nu1WZLKRoqFJ0Yd6aoSqosK9autZdayOjM5xt0++yH1gAcyNNll+NZrXmolOLbtaVa64xResluUB4\npTYdxb2yfBYKamkLx5L0a3DBYjoV7mlbZbm+ueEX/+Of+dcvvuB0PnM+nRnPEzEJ05ixriPVplIO\nDmP0/ej6HWI6kKBfe4lYW7Qx6ZbdgCC5IlMmlUgtEdupod/+sCP0l/S9YzM4sAVxheoqkQf1KpgW\nqP1nVMilKG3NILpwyhVqJTi1XV2NhurDF911HdvNjqHfsdteEoZAzBP7i0uizIzzffOBkLV4L6wm\nY+26XN1s9/T9RkUYVmmOy5rTGsVWt8OGXDPe9jx7+hl/+f0f89d//e949PhTDleet9eGn/8iMc4n\nTvFEJvPu5hV8AVUyf/vjv2PoLKYm4vlMLrOOqLk0WboWu9xMcZS6qN2uMdoFNZ7S2uZaC0M/sD/s\n8Z3j7rb5io8V3xucVc+Sw2GLN4V3b4+cj0ekg24oVCmAUKxgB4s7QFfATgKzYCuUpLxkt7AqWr32\noYVctItx8XpeOCzt2f9jvj8NKrP6UNfcfMONwh/Oso7mtIe7Lt+occ2DJi85B9gqQAY0LNs1tpMY\nUdGP0KAEA0UxXiu6JMKBw7Y9RLMGRfFX17pmWyFnuLvXAO69FIwdGHrD4MF7QxDLPlg2fc+w2dAN\nHVOTrneuU2uIpNADqIBM2TKVFYR6L27QFO0mVxGOqM9OlUrKhZQLIobd/kDwAedso7RWpDiKBMTq\nUrUaNZoyVEgFSbIudr0z9N7gOw1UiLFCaupNKxALXbAtAFoVlZK1qAqlceP1IqJBWbUxTpaUrSqN\nZteeQdqkRW2KaVku/7aMFVHG0wIzVKU1mhbvaGpep1hYsHJa+HK7bJwuoK0xuGqgTfGL+lFYIuX0\n37eik/1iR1xyojTdwDjeY0piDnekVHUaa7TiVGcomWIsBN05+BBwLmBYlsMVWzK2zng1etewFKPi\nNUvBDcKu7whdT7/pGTYd/bYn9KFRSdUwTsu3ftg2ZdI8h2r+M2Kt0PjHSGXY9yqAQdhtB02bH1uG\nU8PNMNIWnAFnO4Z+S+g9uUY2uy3bvCPVCaQ0P2eURdHwR2ed4p7Bc3F5xf7ikmHYMAwbNbzSFpm+\n79ld7Ll68ojj8R7E8fFH3+azz77Phx99B9/tGHaGcA6UPDOlkbnM4IUpnnj1+g/c3b3l4kJVl3k+\nMZ9PpDQ3/58mVa6t6DTCFm1MtWXBT3XExCmjZqH16WJuw+HiQIkwnzNxPOtCxRWmeeJq8xhvLLc3\nox7UpAvVii5SY4UQwG3VojZlfY2daGTX0hyZxdSMSnBecU5h7aqavAdof9YuT1rr7le8Sl0laQ++\nC3YNyXXO6teW1SulZoW1FshNUtZChMGJjtZryDX68IhV+mGtVZlDWPVfwdB5315DLQ7FtBHdNLmK\ntbjO48RpvmksnKdMISGhsj/0+M4SHHTBs3Oex5uOvh+wfaA4w+1pxPtGZxX16rGigjAavGNramlC\nFlxzzmt02NpYK4raqBlPldo8w3Wxf3Gpfi5pnplPMznqvqAS1jNC66BNASkZEnqxeL0Ig4EhtDSp\nVPHY1f4XQyvWilEvy3aDoS7MoUXz0CCmBdMWFny6QYfOsKRGKZNFz7x9r4grmqo/s0ahg+oeiq6O\nzuahkWsTYNt9t4lB4x/V1kIvbIfVS6Z1cbqgVvZLKzwsKmSpRn3y2zeTamaWDDWQE9TqEaPGXCrB\n17xZZwKuXewGmjKuUlNsXPCIE9WvxByZqIgTQoCuc2z6jt3uwDB0+KAXlO/0bMaSmVMiS6aauk7b\nVL2Y85zIMX1tSf2G6Idq1l+xDGj+Zh8Gnjx5xN3NkRQLNstKR6q1klIkpYhQsB4Kieu7a7JkXPB0\nXU8tSY2qUJwvO4GqBjihCwzbgUdPHnP16BG7/QVPnj5lvL/neHOHMZWrRwc++c4nPPn4KV99+Zx5\nLHzrO59xcXlBRZPir69P3NzcqUAgeKwHE7TjlyiM5yP/7Sd/jzGGm9sbYlQ7WAyYoBxyyW0qtdrd\nBoIqK2OhtvQg71ipZCIq/z0dz/iuY+h7+mFgvz/w9vVEHDMiGTMIqSs413E47En1CKLilUpplqay\nFmkfDLnd/t6pYGmulTgpPGExqsjzyqox9eFBXlDp1meq/atocX+womgeLO9BNt4FrIWcE7utQg/z\nmIipaEJ7zKAeVHSdBlsEY3Q52/jBcyrkqSwCOQwaUkBVWb4WCNhve5wHKSp0wbclKkIslWrBh05V\noUUQtADbDghODbKqYM3Mduh5tj/w6aMD5xg5t4dO1I+YEqOGYOctRgqSmsOfZEqc1GrXOOzGIN6p\nTF0KzW1jBV8welGGrme7u8AHz+HqEcEH4jQiVbHuaTy3ombbM+Ewpa7h5QtldGFrxVQ1Ycvpc1BN\nhdPMOEetyuah+FmrtNvSOm4t9ll3GhXtPtFiqpObFkPNqWjj1nIGiu6HSuuqFkuCYsrKhjKtybJi\nV7U00qAetIiaht/TMkNVx0/7sWDvDWOnNRxabNpZbeSFrOeMaKk16yWj7gy63LWAaR236ZjGiLFO\nE4vK3PxfDLVsoM5QI0Yc0iiFrhNSmphzYsqVERBvETz9ENTX3nmkZMaosFbYbqjWMOfE6XyiSsYH\n6Ded7lFKIo2ROEby/GdVyNuoVeuKhYtUxvNZlWVpaVEefpSSSWUmSeQ43VJd5ZzuyTWTa2pvvMIo\nLlimnHSZ0HnC0HO4PHD56IIweKY4Uo6s5vNLunfoLNjCmO7JJMRY7u7vOU8nhMJ+14ETUn7EZ599\nh4v9pVIoTVFr46rMkrvbGwQNr6jlvUDp2rqk0p4bszAvKhKFGiFVacwby2I2BLpXmMeZ+9sj3geG\nzYbN5sBuH5nLiVJnUs7cne4ILtPtAvFoSclQk0NaNFhFF35F9OGNVVF75zxBZDUNM807vLU16sEk\nCrc+qGBlFU6t3+OCgdqFR6a/uTRaKbUdwcI79qKXYdFPri9JXvHNh9rQllhevVNiovHZDSIaQF3J\nSNYUlVphdEIILQS6inL2a+siUYvhKUWV8mPV8znov1GxHE+JOqsN7W4Y2A+dQkKmkNGuaegcnfEE\nRAv86Q7TB6z3hKEDCnkcsaiTYHWRKoHibVOeNj9C064YsVQx9MMeY9XzfLPbqjx96BinE+VomEqm\n8wqDpJQbbNNwbdpkVUVpq1mI2WAi9IPXKcNYOskU49aiWUUFPiUr11yVyMp4MVXhEmmQn779rcuu\nK/UGaEe27bWq1AahtdvfKEPF2PXLXTy0oJ25FasXZd0oRNaEXjwwHheztfV6XvYKPIjEhHYOm7it\nFp3OFCVq00Y756bqD6vGLnjb0Q8e2l4o14SlYEukpglLZuiULno+T6R5ZsqJnCZiKWQxZLFIEmap\n9GRGGZEUwRT1m5JCECjGMKbINI3KUDEBk7UWBBfoBoMv2oB83cc3FyyhMKbiaFZFH/d3J+axNOtT\nWeMPMbpMUUrUyP2oIQ9zPlFEFV611HVjrQy2jO88Q7ej7zds9jv67YZcC3enO8zpiMkJMRUfHJtt\nj+sssczEu5k5z4h0vHz9ktdvXvLJp7c8e/aUMOxx/gOmb3+fR4+eELqOKY8qufdgAqQcm2WtvPcN\n63RARuPj7Io86EItCZKE1KLhXNcgcsvKh08xIcczYHnyNLDd7ri4eMz9ZJmykGXiOJ0IvrDdXpBR\nvHaetN8TY9ex3bRuKyMUYwjWElBerjd6IdaiQbYWs1oWVKtd9joaW9vGaBpnuq0a2wJKC8EDlr7E\n8zlj2/K02Y96wVkt6s5WlcC3js8b7RCNNXix0Dl6BmrVAm6azW9KE/PpqB1gFk6lYb8LLJSVuSTG\nqJEWkGtpl4b+G9ZbshjGCOc0YzJ04gjeYo0Q48SUZ+aSKVXonGOwDmcMtSTO5yPZaZPQbXqMhTzP\ndK5HBoNNHWIbG8HZtV+xmPY6WUQsw3ZPP2yaj75r8FXTVViD6Tr1PmkRectqou0JWeKPQRvmlNVe\nV3yl94XqDDZAKAbaUrmUQl4KedE9gjS61OJJr7YDdr24De1ML3UaWpMmKqDiYQe1NFu0Z9vS2CZF\ni++qzF+hu/ZdGBQ3f7+GVN2PmGLWC6A2++iCYHxbiFsDpcGAy0S5fB0sDPZGhV1cxtp/tcYyhI6a\nIUsiLLhTLZQ0IyXhrDD0jhhhngvnGDWBSKpa1NYlcwByLEQRJBX9Z5wB76iSKWJWbY33luAC3gU6\nr9CeCQGTMnkav7akfjOZndasaSoxJnxQA5nzOSK5cT+rdmIYu3aPRRJzOlOnSLWFXCbAIqWQ58LQ\nfM1rLVjj2OwOPHn8EdY5Upl5/e4NPjSHxVKxtTDHERsc22bEE1NhipGcldf74u0Lfv37z3n09Bmf\nfusTdt0juu4pfOt7PHv6MbvtBdN9BFuxQR/gdK4rfZGlCKKYn2Qe2pAmKwdAlDddBXJUyMU2Wb20\ncVuKmhqdjyf2mz27YcfFxSNM7zCj4TyrJW+pE/GkocqmVm5vMzuj9qXFyirCAAPBYoJBSsVZR/Ae\n4z0YQ5wTUaouP42DYHE2MyddxFWpK0+crCq7BY50Xjnjte1mjNFiaZyKbvpex8tcCs4Lvle1rgkN\nhmlFo+s8tj2oRXSp5vuejz75NiEcKOIQbyiSOZ/uef6b33K+u1eoI0NpVExy6wCXt8Kpish5peop\nK0fhpzFmjBUchg7lac/zyLEmkhWOkhjbn3Vug7GCd1p6Yp6Zj0XPYFBKXnCezbCjOjXHsoR2HFoQ\nr6BZpvpwqOhts9Ov2wi1avjJ+XTH3emIWMeTZx8ST0dqLjoVomckL8wQozWp80EdOylMsZJNZJa6\nKnTbfNy6eIWucmlfk7V6Pp2B5rporFJdyyoE0uO8XBzLcq5W9JloXvTCg0hMF6Ygpil2cyu+tmkV\nFlXumpLT+PsoA2zZGVWp5Ix6lJhFcKXl37bLQG2W9b0xYhqkJWrL2Ramzlt1iOw15CZPghp4Fbz1\njfZrEOM1OzNXSszEeWaaRoxRz5eYEjEv2a1GYxtR/YKz6jfurdAFCF3A9QHX99B1FOPYLPshFP7s\nh6DNDRrDF9PEze3br62p30xmp13k15CiepbQuMa2Uy7mNGpcEwbGeW6dZKHawpySHhIHec6kOZFj\nptvtCcFpR4zDexVxbDdbiHCeT5iaNZTVWVVPmHZj1kqpBiMdwW8RqeQsTGnm1Zuv+PL5bzmN/5b9\n4cDQdVxePubTT77Dtz79C+pzmMcjOSrhX51gWwe+FMwFrBNZvSkW17rFSGrVJFUgyyqJVzywjZpV\n2RzjeGYcd1zt9gzDjmISlZE5ncklUWqkNkhCOygLolxli1L7UkIDCKzSNs2SIOMMfb9ht9siJTOP\nkTgXUlSr3QUKSCm1cVXW3fRimLQUTe3MLda79n5q8IRzrv2bKtlXrxTlEHun2Yo5F0KLVDMY5hp1\n8gqO/rBht7/C+A1JhFwSJgS67RumU1SOdYN6Vnm+sHaYiu86xdcbYwIE4zzG+HZxVn1APEzzhMuG\naOFEIbZJw4vDiiHmzBQjE4VSk763xYF3dL7D+ICXgnNGi27Nq4hptUduVD9rVBi2mH9N88zt7TVv\n374mxtimkyXYoJmAuUqxSrnLpWKsIXhP3zlKLcxJGTC5gv6PUjqliXuU4bHsblpH6sCGVszNIj7S\n7ta6BaPWIAyLX20USlbWy+JGakDhQlmEXgts8mDloNBHRerSwT/I9Z2z6/uHea/rFyUMVFnQ9IdJ\nkPYZFPRf/u77nkCC+spYZWeiOHhn1JvCCXgMmxAaRAanGDhOlTlPZFuJc+J8HsklqJ+NNFKNEbyH\nfuMYgsN5y+BhawudVXOzLE0L0lhqzvc466FdbvqitZCSFJEcOU9Hjue7r62p3wxGLkr7MsYyiyb2\nWAehd/ShU4ZBHTU1HZhybPQjFTbUlNT3wVnKnClzoqZK73u6zuuBwOF9h3NB8xm9Zc66LFr8GZLo\nrexDIAxbtrtHbHaXEDZMKTHHCSQy5TPXd2+Y5pPaSfYDw3Dg29/5S/7qr/4XTPB8+dVvublOmmLu\nwVZNWjEoBllrVryudSPAWt9xrNAMpS3pNamM1axqoTYAUgvTOHE+n7goj+m7HrEHiowUyWp1in5v\ni+CpFqX7Wat2rzULaRb15GhYpClVu4hWzIehJ/gtUzdzOs5USQiZKuCqJRllBKyQefumFlaKEkz+\nhGHQWDm5LkHZCmeoh5peeoYm4ioa4BFCy8oUCzmr/7at2N4Q+q7ldnpCKnTDDuePGBPbQ9+G5wWk\npzaanrIdmvds60CbgMwou4NYFYLo9NKJAgadEEvDjlMtIBHEMJVEpFKMweVIFYsU5ex3XWaQBlGg\n3PRaC2IcWKcMnNa9GaOLVyN6s0/nI8e7W07392x3ai3ROU9yHmcd3nrEFqorFKfsI2ctXfCamZma\nXgKFUUrWgksRSAu8qerdJZ1nVfl2S/6svAeR0F4nhUi2GzXSqihbI8VCbsHGKvxqxbsJ3GDZb6iv\nkkEVnrXx0ps+Si+OZeJbgkvs4unTzhcPqzTTJj7nbBPc0MzT2h9oBV3qchG0L7CCM17DNRr2LqI0\nsi44hr5TP//OEiUSawFryLVqBKGdlQYZHN6qr1EIlW4DYaMhINvOEPKMyZlSNJ5O4S6H1+RdXBiI\nuYK12C5oDmstqiSNI1McmdOfEbSSYsbagO881i9jodD1nv2+1+4raaBBqQox6IgnzPMZ47UYyGzI\nU6FGtTsNviN4zzRPGGDTb3n86Bn9dsvGbhi2gXdvX5HiTIyF0/1EFcPF5WM+/vTbfPjRt7m4fMac\nLVOcifmMmJE4j+CKsmJqM78i8Jc/+DvEW3ZXF4zTiZubdxRT8V3AWQfGYnHUUkip0ZRQvPvB7c2u\n5lGWQo2smKP6qqsy0kAz49cDHOPE6XhkOp3Y91fstweyTIyzfs3GloYjaJCwnCtBDL11uleIlflc\nIaJUL2OZUkGsJ2A5z2PjaG/ZXR7w/QYbRu5u7jUcYK3eS+stK06LWTjdglh9OGqt5KLYt9RKmrMu\n3pxtbbxi73HOGFFOpDVCTgUZoBs6Or/Bx5kpRubpyPnc0wExKytAbYA3+G6DCRGFIRsOaxpnzghY\nNVlTwU1GjGkpN2oDQRHyWJC50PeecAh47widpQ8dJWWohSSVYvT7qVWU3mh1goo5kzJtlHfKkqnK\nl7ZFYYEYJ1zocV2HNDdN5RJngnhd5JbK+e6GNJ652Gx4/PgJ/bBVDHpOMEfKFMEGxFaKKWQrylDp\n1IO8NLhFHxqLZEOOizRepf1q9+DUkXIpgh71zjdtWbxMDIuthVXu+e7QK1QmulfJqa7wYClCioVp\njHoOc13PMFpDV7OwhSaocJ1tOHdrCqpOGRrioH85Zw2IeRj/2o6nU9rpOvGKxsFVERX9lTZFQouW\n08+rU2Ymptz4/JYr/4hqM4VCt+nYskOCNEMrVMjX6WvX+6CmYr5g7USuJ3yX6YIQPJTpyHw6ch5H\nkqloWyQM2wu6fot1I+c444aBfadECmcNphimnJCacfahZXr/45tRdlYeFFsNs1Ins4JxGtHV7S2h\n2+Bdx74IMY6kVkh730HVcNw8ajYfRbh+d00/BB1XbIc1AXDEOYNVRVuc1ZR50x3YPXuiD6Ux9P2B\nDz/8hE8+/S7v7jRC6zTe8uL1r3WceSX848/+EWc2DP2Gvvc8unzGZ598j7v7W35x9TO+7H7HHFXq\n7IJju93yyQefQhFev3rF7c010zSBmJWqpdOx0ZBlZ9SYvwVAlyzK1vCa6LIU9JwVW43TxPW7t/ih\nZ9vt2A4Hzv0dMZ9JRQuDt46+8+SaVaE5q3FUmoTpWPXSyNrxSFYjHxszm90WsT1zsaRZIZRu23Fh\nrzB3J3K9x+SszVuLl1uW1NYu9NqGZZqiF5VTCMEYizdqgCbAlDIkoaZKmho10hn63mm3jOK3gwtU\nU0h5Jp3u1akwRqw/4MKe3gWuri6Y72+Zz/fAUrvVBpbWbS6dH43hoB4yurTNUamxZW7LZ1M4TxG7\ngUDAN2xbStV81dbFG9cyJ1GjqZgypdHl1FK1arc6TTBLm5xmoGBsoWQ9B0Uy8zTii8WLpbMWUmTX\nBYX1hi3GeuJi4doM5G1jXNRmgVBRiMM06Ks0h0vV8OvS2RnbOmKF2kpVmwItFYuo7mFpujLDGsZh\nRZrljXqz5GVPAmDV+C4YDQwJvWceE/OYyHNu/jgKMy2slYWBog6QHhOUx51yUuirCpJz23G9B8ss\n+E2bKHwX2vO1KCsVJwfbrHEbVr7QZozqOytWFdemqvc9M9fna7bbLf2wwXeObb9h5wbCpsN3B3w4\nYMNW2W/O4KhMpxvO4zWpnPGlI0dHNkI8nojnkSlmxBvEW3CO6TwynmZyrkTJhE1Pjmfybk/vO5wI\nEmeCVDb2wezh/Y9vThBU1FRmsbdEdJSjhRUbD902MAxbwHJ3V8nHTM65HV4hTZkSG72pGo53R2IM\nDNvm5+x7vOvV0L4t1pTdolSww+5pWzBWum6LYMk1g6l0g6fQUWthGs/MxzP//ef/xKcffItPPvyI\nTX/Bbrvj0dUTHj16xrNnH/Ho8RPO072GWdiKDYbtYYszljmeOZ3vMPPDGCht4al/VhkbNRvNjGys\nF1sbPOAtnddROufKHBNVEqfzLdvjHt97fO/pfE9wvXJeW8evMXWNj3/WbjxO+nNqbVi+LuSFghkT\nvoe+9xjbk/KM946+C3SdLrrmOGukl2iB9s5qQarKPjD6pDS2S3tIQ+MLO4MTp7JvamOZVH0vZ90N\nuDZCl7a/kFpxaHFzRSjjyFgKKUY2O0uwPc57tpuOrncYL6tiVt3zcoMDzIqdt6OoX2MTEOaUFTtO\nCo8ZWVwAlRpKVv+WOReiFIo3KwvHGKOwSxG1T/AeZ71OZVVIMWLPZzQsOFMlasFBU4eKVGKOnE5H\nXDEErE5QeabrOg77HWKcdo3zzBx1wZazErxL1lCVUgSphRasQ86ilz803ru+Lta1CWLZyxSlnUoT\nDCyvy2JdsUB7OkDVtROO7SKOMa9waC2CN+CcQmuh961bz5RkHmAOqQojLYwYFpxb07YqbdGIwnga\nnN7eP2sas22BrFi78nX6WhesCreYZumwiIoWVkxFX59qoDTqbLGV43xEPEgAlwqbXc/2sGV7ccD3\ne6zbIATNEDWVMp+4u73hdH5LyhN28ozO0htDPI3EKZOLYILTZef/z9y79UiWXXd+v7Vv50REZl2a\nEiXNyJrBwOPv/yUGGBieebEB681DSZRMkeyuqsy4nLMvyw//faLEcb83E0g2QLKyKyPi7L3W/1oC\nbburaHur9DDIW2bUjdAqLCdyiIx9JwynhEMd8adfvxBG7jNvYlqsTatULlpvWpf2dUy1iruz3Su3\nt03SnoccNXVvkzg03APWB21v7DFweV05nV85nV8ZDLbm7DdXUM8M3nELnF9fKCVj0fjNP/2G//Hb\n37Bezrx++EBKgTUHrHXev7zzz+1/8Pvf/QPX9//EX/zqVR2bKZNT5m//w9/yh7e/4/df/5nH7UHb\nd96u3/jH3/6G83KakkjH48ToIvjsB1XXog52KwbV9X0cRB1yUah9nqobe8DedjxsvL//EbfOh88f\nCSOQyWwj0rdBDbAHo6wLo3cebzuPdx2acyzh0FXj6ju8jwZ247S88PLDB+6PGyklllJotXM67+xt\nU1ZMm9j/VDiErp8V0IHsFrAlEosummUpMh+NIfkcA5pxvz0Y1hnBSSXhydh9EOpOaQn3FeudOAZx\nDOGwrVJbI5cz+HlOgxW3LszY+yTQhghIAuZxWrsP/iA+E+W8asL1LllbSYFzKVyWQoyD2gePttG2\nxt6mlKw7hK6p9t/wBWZGCgpcK3lh4NwfN8ZoWBjToFWxIBlmHZ37due+PUSsDiO6YKkco0qog1P7\nzq1ufL298e32xn270+o+FTOylR/xs0rTlECjd+Vcfz/vJqk4jTr9mf2NDsDZSG+z37N3bb1S9uuz\nouTIyPW+05vglGVhbmQDCTx1KOaUp6TxoCUE4Tzny3Fkzsyfrb63yVFqazhcsDanbzsOcv8uJpA/\n6zA96NuiDuze58biQAhyVs6+0xGNYTIpkqO05hboriKLNjS0fPRPpLVQfCqrIgyXhNW88nh85X5/\n436/yvtS3zGHJWWJMqp4qdCcPBT78Ng2VRvOFFcbjWYO64qbIrixHdfsAAAgAElEQVT6vmvz+nOK\nsdUuddyiLh33y8LLxxdG72zvG/tt583feNw2eotcv91pm5jAKor7ufYd38osHljrbPuDkOBXf/mJ\n88uJH7/+jus//iuPelU9mTfsGnh0kUfraeX99sb77Z28JD5+/MDldKbtD7b7O99+/JH7Tw/+2//+\nX3g5F/7dv/+BEFYe9Rtfr3/gn/7lN/y/v/strUubbllB8u/bV+6PNxH4sZFPkdaB5DPCcka0TsLT\nFgjNFO26+TOkaCSpRCwEPnz6QFid+64grBgrtb3xx98/cOswoFAYrUpSNhU0KSTOKUvd0ndl3Ew2\n/yic7j7wXnkYfPvyhRwTHz59xEJkrwqUiikQ0yAuzlDLl+AV4vNCCGOuzCqNxEoipkhJeU7bXfh4\ngOKFfMrs95163UUaze+SDI9w324kE0VZ1hUzEaEjRLZ6x+4/kscJp1PWyOn1RN0ftK2q5q0yXTKC\neWwm5IE9A6DMDWvfVRXmgxBcOSfZaDRqfVAd2rPl5jCL9EleMsn0KDildiwf+uuD7D4GmERvktFu\n+862yb2s4nHpypPN8ujhksW6JI6132ljp46dvVelYo6Om6IPlNl9mHqkCIr2/ST3mRkeQhAkM+bg\nBJp0J16veAvl0bStaWuzCKYJdtt9hpsZoxkNpsFumTBgZ9sqLWhKb7VPsv9Ix+RAuZ6XiiPPxNMi\njN67Z9StHf+TsyyFYEZtbYZjdfbHPg97cWk5ZW2HRwzyTCC1aXzz41KLSZe663XPQRV4AYNd8R/t\nVmn3ztg1sXvbweFxv9P3O+/ffpLk1RP1UTHLqp+LBRZtiykWat8J0UixQHbWLGhGf19tvycCsTZw\nKCFh64Xy51T1JgXKVBGY3viyZKRd7mx3ZYRsPNgeO3U36tbVwcfhLNSH7kmwwcRnA8uSCclx22l+\nkwfHb2z9yt5vWs/a4PZwOneGnQj5zGP/xvX2Ezw6tZ25nS/kkNge72z3d673d/7+//4/eX1d+V//\nt78jXy784dtP/PPvfsO//O63/PT1R5kUgj0bcEattDqFtUGlErigo45svVMIoIstQ1hsOiiRnd9V\nvbZLWiFFVQzkYsRFJu9eN+7vNxE3OXAqJ+K6yPq+d7x1CJElJJa0QDIx7viTwfe57nZ3qJXr9UrO\nicuHi6SDw9n2B63vxATnc56pe/PpCvGpEshADoJSPCc8aRJOpkZ1vEteGSBbIq+Zuhb2dddBMkne\nHAKBQfPBo1dySMScCXOaGzi1bfjDqX3DRiIV4/K6sm2wR6MFoxPpW5uX14w+ndvI6GNK0LSC64CR\nNEyW8UEgCdO1I+V6RtMepO7MLXHEAYQUlB+/V7awyR3bnbzyJ/zI9hDkt++VWif851PbHUymMHPq\n1ri/XWkMtm2jPu6MtkuFxVHyDSnosG7PpECbb422XqbM0IOUJ0cLk1JVBeF5nGSnaQKMQVzFCJMg\nDEpXxFUXeGSBGwqkymlhXcv8XG1srpKL3pxRdRof5L3NNKynwchs3ndHjPP3Q1t0kj1z7mMMnJai\nz9zusGuDZerjw1SnBXepeFKkIT+Cm2CKEJNUQ/PitKTX5FxOXJaTnpsmx/a+7ywWyR5ZLCt4bHvI\nxzIavT5oj02H7XKhbzMWISVKloGrpMypnLje3wX3BZMzOEdOp4VoYS4TCvmiassLFomhsJSfP7J/\nGUOQaf32IRAvzJS/r1+u3N829nuTFXoozGbfO6Mf+Nn888Ok6Z/60sMWvK6Fv/j1J9K5UPnGP/zz\n31NH476/c73/ROUxrbuyQtt0DY4xSHFjWQd7e3Dfdvb2TrLEVt8ZrjyQf/mXf+S//3dnfSmcf3hl\np/GvP/4rP379A210YpbZI+BYglwijIDXxn7VrVOSVuW9V/r2eGLhPknQsBohRoYN6n0w9k7thtdO\na0768RvkhhUnReVF487wxuNWWZeFHz7/JfGlcL8/+N3vf0/1RqPRw+Byusgu7m/sdUcEBc8ccp+H\nehs7t+3K2/tXPv2QKKfCH3/8I6M/KNk4nS7UpvaY2oZqqZIOvDUmlpzJpdCjyYATpg1+KMZUE+wg\nJUgIdhmXizrEvTF6m4e2wYTb3HVYCdOcNXB90DeVMZhLrvbyupCXwF4SdW34ybl+vbK/74Rmz8mr\njY53QSMxSuIoglZJkbs33vc7a8oyK6WgmNIAR9SqEEDDepiY75wubNBcGRn3mDivK+njB5WipEAd\nncdjZ9uqDl2+R9eaS9sdzOnFqO3B9VGpU7rW2w7bTh6DNDmIblDdGCbSudlxwUqrr/zvOf669NOK\nyNDkmkIkF2Vlqwn3MPdoc4uT0I0hcfSnquxcv28skdP5xOVyYlkWNXJNqNSGsQ8FQoUjJwUpRg6e\nyia+rb5eFVwc/+4DQw/zec05siyFZVnwqfQBYCjTPw4nYZQo1ViJkfV04rEFWm8ovyyTy0pMmet2\n04VtxrJmfv3DZ3716Qe26wNvgqnutwd5HvC/Ol14v995f7/Rtk0kfuisObEsC2M42WReiiFSSuFy\nKlzWlcuy8u0tcHtctYGFwHpa+PDxlWiJ9tjZ7g9G7TP+QK7hNCsQf+7rlznI538euk8zYXBitTt9\nH+TFhFcOn6SZJg0ZJ+xABP4E83O04m7bhp2d29b4evumlo04KGvgY3iZAVDGkgIhNvZ2fTr7Yuws\nIUjDaeBeleExhd2tbvzhj7/j//hv/5XzD2dYjdv+4Nv7V7nTYuS8ZD1cqH/SfDBapdWdvo0pYXRS\nChQSPQpm0Z6igzkWYYOS3srCb13T4+3bDVuceHbiOUAcpDXx+a9euH590PbBl5/e+PT5B86vr/xN\nKvz44x+5X28KehpXcspcPl4Im7H3qhYlm9PMscMGIAxu2zvhHUrJkB60esd3+OGHX3G5vDJG41/+\n8CPbUNCXxTzJz6kCYGaZ+7/VAI95kDthvp+YEZL0zL1CHU3KnQmp5JQZFmTGYTbZDLlZ9cdnZdhU\nTgwGlqToGDhxCcSqyXU5qXmFdqz7Aw+dkHWZjd6xAlYGngdeBnGJLDERzRl7w/vAeiAcC1cy6q6f\nV3vTATrt7cOHAtHioI+dtg3udadWqamYMkZp3J0QZVBRtImBd+pe2epdHbU2CNaUZFmUiT5c2PZE\nPvA6p94IJMejJtNoRqsimMFnHEIi5cT5ZZXGeTb/jNm7GWMUjt2cVqtConoX/lskCWx94K4GHVcT\nNiFBzoL1UjJSMXA1N43uchKbNo+cEiklQjCRom3WI/rk0FKilMS66gAvJdNapTP4nF+flY3RI751\nqH1GBTvLWri8nHm/Xhk+yCURcsZixi2y3jOPeqNRWbOR48B8J6BBJyVj+XAi5ZX1FCmpE3zDfOO0\n2PSJNDwMliwl0+hFCZd9MPp9bk2CqtaTemNbk/EwZ0jWMB/EMEjJqGOQUiTFyPbYdV7kPyOy0w7G\n2aak7nmQN+rEwWWGgEPypBD5uZYecMpz7dL/z2G6Hu9w0fR63xrLaaWcEnkxllORoqJDnI+71Czq\nzdNKqQCh4fqgPkmzqaB4f3vjN7/5f3i5nciviR6gzjaUEBJLSdooepeMCpGLMRl9U/vRGJ1QlOVQ\nTeTXYMbwMjHrZNgyIYBjZexjSiiFwZfqeDRyiZT1BKw83nfutzvp9s7L5QMvL69sj51eO7frlUff\n6KWzpAUrEOcUavZ9NTWHtETiEmi+cX00tm7EtBPSzJLpG5fTSlkS367CUIfNhxUT4da7Mpbnmxcx\nos8MaxUbTgOgIIkYk2R8QZdJrbtw1xAIJSqnZJpmam/UXhkzNA0mxzUlnSqwcUYAj0Y6B0IoxOY6\nyHPEGtQ2VRwhEC0q0KsZSzHWJbKsgXKO5FWKm1HAW4IpEe3DVa3mcL/v3G+zynCJlDVL1ZMiaynk\n85zamwKYcgJ3hVCFDszM7BiLsl8clT54x3sj2sx0T4mYF8xV+rBvO2HbYatYCcTqWBkYiZiMUHQw\nl2Uh5cz22NgeO6O5/l5JE+6Hj2e2ulHrRojCvMfE/M2N0eQBGNXnlK7KszEGt/vG6bJwOi2UpWAh\n0vYT++Ok+rs5ZfuQYag1QQ8hzp+T83TxooKIfpDH86yIktKWtVBKJsbItm0MOumU5yaDVEJbx3eV\nPDMG61q4XM6c3iPDXX+/qKja4cZLLTz2lb0+WMvCZV04LcalnMWfgExtqZCWzHJy1uZ0N3KKT3ez\nRed0UuxzTIKX+nRjr0sgrxDXzilHSl/oPdCb4oqXkiZvMki7sW8ojdPkEFbx9Z8RtKJhTy6tnKIO\n8jpUqdXGTLqzmXznHMW8gkGGiJWJpxwr6GFzr71zvd5o686IsNU+g4QyI0TWXCg5k0qk7btKbRns\nQ3U8x8VQR6fhpBAViXmYcTq4N/q1kT8OghfcROTpmEpqy3ZNeXHqPjs6jCrT+VY6yxIpp0xyQQlt\nGNvUiIPYdY9AmYf41JczYOwDD7DdIYeKRdhi5vS6EnPgdr/xxz/8gcdt49/97d/y8vrC6EPa+7ZT\nH5V7f1DOgbCE2eAdROxMF18pmoDMBnt/sI+djx8Da3TaA758/QOfPxqX84WSO7bVqUZZpjJoqHg6\nKaTKiMp4xmW46LogaYePIJBipJxWokFJgevtofcoRMK0+A+ElVYq+9jEMzDH4qaDjqDXvE/IKoZE\necnk10LGiEvEYyCT6F6e/EoOSdh7b5Rk5Ag5aQCIecraWiKRSJbmIS5liGO8vz/49nZjjM5yWji/\nnFiXQs5JcQMhSWXSImtICidzZ98rPsJMSVSMqoUIY9C2B71P0istKh7PibavHPkjtVbeb3fi9U4+\nF1WiPZzzeiYmk6HNOy+vL5wvF27XO9f3G602Xk5nSsms68LnTy+0ttPaBkEdGW0cKpRZw9dcTsiY\nyDlwPq/03vn27Y2YMjFqss656PBubWLt0zmLhpnW1AkKkgTmnGcWvbPv28zb0VZa+5h5K5K7MpUx\npxEnQRie0bUWIt50oKeQ6K1RUuSyLpQ3FX+HlAgxMYYpbTJ/YoxGr5siFdyJHvj48mEOml3wTQpY\nyoQEvhaWD8LzgydlvkRXgbg7y6WIL5lwUetNf9ccMCvgidEL+CDFQCmFsiy01rnfH7S2UvdK3zvZ\nF0rO2op/5uuXkR8ekZiTJNq3TRrYOm3DrgxlwnR5zakjWISuGiT3ubJ2kwZ2HCOlml7yPOx7dWrY\n1c1YlN6398rWd1pvpKi6uVNOzwQ4H0agEr0TLenBip2NCujfG9AUEaeJwxm4ByXHuezlakEKhKCE\nxsOe3rvzuO94cJbkpEWEUuzQgrLAYwxER3IlDsZ+GmzqVO102N8HIQdG6dT9PpMUURiWdx7txm9/\n+4+8XF4JCU6Xhdu90b0TFscWiEsgpESKSZKz4/I0cGsKFIpGioH1pGLoXp23L51/+scfub2/k7Jx\nWhOtOvf9Rq9BTeuuAmE9kDI94cZolRjjDGqqMm0BnpIOjSSJYPw3pONjf2NEJQeWnPE4CMuEC4J6\nFr3NtLIjXc7CJIryLHwQ3BFKhKRi7jFLkoPJCZrMSLbA6MSgggqFd0kuGT0RSJipJT7NBDR3WH51\n5ofxWeanaISkP/80rzQorgtBzUvTMWmXuVUcwVDzUI8B84uGluCzSEOfdUlv/YmC1dp41F2bixs2\njDUt/8afMcg5kXKmt1fBOt1ZUn66K5cScS+MsUjrPk0AIQT5I8bBU+jAjikSotNbI54v5CQ7+0EH\na/hJs5nnUMMwD9BZMnKIaWxCpMMJe9T7GhXito9BHY3xTGET8a/PiMpHMBG8qnnTQR1iordEnFjs\nmhMDRRXHJMPgmPVyNiLBT+SYn2oVi1MejRIoK43mHUIjRGc5Tdnk6PhoUsMFkZh5hTE6FgYx5ZmE\n6NRQn+T6sQU3GxAru1canS3t1F65tRuP7UGKiTUtLF5+9kz9xXTkTLhAK7aL0T7yFIzn+mw8DXma\nBsZsSk+ICEhSlLWm0Cs5ImdwzyR21ECjHOwxq7SOrGbQ+hJnZqyekUCORrJBskCLbQYGac0MBiEx\n8asAU0rnLlxruzfqo87kPZuZ2P5M9BvDoenBS7uxnFZi1P+n5zwTAhPdBxY6TtMGoudc6pYG3p16\nh3KRuqUN6VR7lyaWAq3tbFc1FC154XReqWMTFndy8mqEbHMVnFGuM+lujC7sLwRiHuSsuNk+t4bH\n5nwdD4I1Pv/6Qo6B2Dr31mjVdOD3wTINQ89asrluHu0u7oE6cWqGExky0oSomrYgEnjEBlE4esgz\nmMu/R9BGU+iZHeRJZBLPkRzLd6huHuQeFZvlisp7boDJVI/mXQd/mhOVAQzlsPTRJ58xAWm+bxQp\nJqmwgviNFNUbKdnrmFhxeHZcHnCK5NGKCRiNqSEPM5cIhsmCP45858E06iizZKFw9pNUJwQikUQk\nmEPo0/F8bLbLUW7zXTbKd0WJ/rTjQ5dUCDYxcJl1QkxTuifNtiWXImlyQ0zCdvROpymMLClvp2ut\nJZhPaEVbeatNG5ofeTODEZo2oRkNKhjukLNI8RZNEkoz0/NeJ8yZ9O3NnrHNKSeRwQaW9PkwlyrF\nDqlhOB40qN6mkAJG7LP/QC50n2F2R6H6GJ3Wdjx8/50EH/IMNVM6I0huMd9bV1NUnwNLs0aLjZYa\nY9GWMYLT8iCk9rNn6i90kOtFGu7QlFJ3GHsOItQPgekcZEafzdl9lgVEifFLCfTu3K7OqDokvTut\ntjkV8MTS48EAoRd6ILfX3is2o0mCKeCppEiKENzZ0sZhXJbBwEhrnLbcBA7LksECe2js7xv11tjv\nTR+wS+J0ilhU1vbx+x0XkGKJtUaG00Iqktht+w5UxoCdLmI4T8XP3Z8ORK8md2uQfK11YxCIxbE4\nGLVze1zBnZfLhb0vNCCeJYfzYN/JzoiUGYbQijaovRG6DvLucnnv1WhdUS37zjMI7Aj3Gl0Y6Pao\nWIrCvReZX+hjWsT1hLgHWtNrMbyxlKjpyjojIbhlSXRrWFGIlQqpwzwA7fnelVhUIRf053sTZLak\n8JwmLYZZHKoDe0wpXZhbSAhD6iG3qWIxOjJQ9eHs9426D/qAVPJ8P52ciyJoY2IEJf6FCNU7tVU5\n97bB6VIUrWz12Rk72lEWrItA2dpgozFmh2ntuw6DoN/BuhNdG8QYqjSMOUl9h6ae2jv40SM44cgQ\nyKWAS/nl49BsH9VsXdG8SXp/b/4UElgMlLzSkW57r5suLYfqu1RQ3bCuv8++qSzhdDqxrGpj2nd1\n2IYYCB7JYSFY4tH2J9nrU43k7oSxHfFDkhr6vHDmoDWC1EMahVyqm9GIXTGyvUlZFObrAyqj0cDY\naGNKRoOeG7xh2NMoNrr4nMhMrpzveB/+LAcPyZTMap0Up2x0cl1jDJnN5lnmMAPhZlSFxSekOWzQ\n6bQwsBJZy5mVs9JSmRLZn/n6hfLIlYLHnMwDKPdACZLzbzyDdExyNe/yH8Z0ZHEETielu22b87iN\n5yRmQeSSZckTT5eV07lQyizjtYDbganNSeRYccYgDJX1BjOSQUnMfr2ZLVwCZdVhYZN0TEGW50ji\nq+sApKNKspwol0KPTozj++TQnV6h16aHMBhlzdIYe5sHfCRmJ9rM1giOVcer4WqqmoUJENfAqGPy\nBlpdUjKCJcatTbPJic8/fILU2LkSFqd6Z+ydvIghV168JGNugd4GW5XU7yUGth3ud+gt8dgHX0aH\ncKVF5+GwDU3ZMQTO60q0oGlqTPMTRwUZE7dXoNIwV+DTnPDCMhMAI4ykhyWtkm6GYLPnUx+YmDIl\nFZJlEWsmgknFt+hnBph4HR0d1nkpTJZFhpkp5SNKF+1dr7M32B4b12933r88qJus7kpuFFmVZuRu\nLpm6V8qaiTnQR9VHzKXeOGCmEeQ6ZGq7LaAH39RIbdj3nK8QSJbpo85DvhNcv3sgkIKOGUZ7yvdG\nb+Ke9o3ulfPLKvxoDLw28ECvzv2+EZMw/DjLLvDOaA5VmfZmxl53vBnEROvTsW+RfY72jsuzMAuo\no0X2KqOTpaT8d3e2vdKmhno5rQxTC/f7+1W8WdZwlEIiT75ga5W9KSdJWnIEu1ikD7jvB08Co3VK\nTIzHzm17Y7ROypn1fKaggeoYAIIdG9/hHlWtIsO/H5wBmfWydhUbuuB73Wm1Ta16lEorBDzqu0/p\npLwH34dSHdguJdyU4QYkaujm03AdJ1wrCWirjZwypfw5QSvzFzI3aFPkz4QDTFBKQNiXBYcwiCVM\nQ+hBDETOpzRNDp28BOoYyuDOk0RNhvmgLDrw41MBAx5kNhGBooKE0Rq9K88lWwSL89aEHGxalo1c\njHVVpnk0phSsT7NS1IE72+FHddqjq+0+pyeWqy1kTryPRo5GOWVy1pveZuN8zjLSFDf2TSSlLYZV\nQUs+rded2bCSND2NmTVOCKRiytpojev9xq9ePkuB4R1ync6+QYxT3vlU7wQiSbBA67NpZhonouAY\nH0ZtztevjZGckQKkOC/TREmr1uXjIB/TOs9guCRw+2PXpRqVBheQ/jjJhyLoI7oqypKiQoNWLBHZ\nrozzEA3v6sGMFklhhidNZ8khYWWaiYxZlmzTYDKnUtDvPlzF0WOMeWk4fR/06vMS1RYVQyBxTFZB\nk/yYLKGZ/nvjTwwq9HkJeHg+4POYeG6S0nl3VZ3NyX2/7TQfSvibctURRCwPNFinUhgd6qPTd6e2\nSmenpghJURDJIZDo3dkflWAdL4N1XRg2GKaLbmyyhi9L0YUWtHG1WhlAWjPVBV3SlKUitQgImAai\nip73qil526Q28uAQEo4UMdu2k5IuOk25+qcPuTD13ExYhPDMSul9yAnaA6O59NemgK3H7Ya7k0un\nd6M2pVjGrIdwjjwTKorHK/90nUsaqs9Ol4TtCWm11pQ3NMPHnhN2TArAM13GodvM/ZlwLzwRiSec\nGNSf0Eb7Lso7oKk+M2ZCwA6O4H/6+mXSD5nNIRPqCkFrTUD5GzHJIhtNU1RIgfNpIYZAvVfOp8Ja\nEjG5Mhs8sJ47tVfoTipGyVGlyD7UzuFDNu15kluAEjSN4WKbuzu0Sq13uieGZzwkka3TzhwSLCVw\nWoLKgSM4kin25tTtcLtN4qY7273zFh58/Pyq1dvsid97M+q94UuixEBK+vD4cOHxObLmREgn3r69\n8147ozh+VntQ3wYkaCYiZURdZoqbnqFbwUgnaPfGt/dvnD+shGUlp4zP6hzLAaxP2SWYHQSVVtLu\nXUqIrlad9WK0ayMlHZqPrUrrvphgphDJqfByfqE9Kq3vjHYEd07s31CCYKsq4ghMEWajiafEwsRg\no4oSkgXBYC581VIS9GPKOqlVmGbKC2s60YhT8eEcbmKzaW5B7kut+PbclGxOWGNouhz7gAapB86x\nEE6ZnnWY5Bk9ELP+mWKQLnvq6IPJtWw4PhqMCqPh9bukD5hboDD7YCIqvQ3aoxKXeWj1zuPLjQGU\nDy9T0aXDda9N8jsz1g59d7b3OhMtB0TY7xuegKxrLBJ0OO9dioq9s4bIsEY3keiPxwa1k2PRheKB\n6IbXNgevhGoYG147fe9Y9XmwGZaiyod9pnbS2bfO3tqMSa6EkKQO63NSHS6xgFfqGNR9U43ixM1x\nQSADnvr1URu+BcbmtE19mL01tq2pvq81ar+S98B6ziynPGXGUh3lPIuQLIqsnWd6m8Fw2KCNeUnU\nTuhJsQBKmmNBwWklZIIptbGn2Q/qjg3Yd/FAh8PW3aXG6YNSJKoYe5/DJU/RR2vqD95Ho1X//x+o\n/ILOTg5b+DCRei7B/8tl4XxeiDlwfVxpo3J5Wfj88UJJke268XK5kHOkdTXBpNyVqhc29jZIJbKu\nC56NSH+SVSkG9rorGbB1ljVp6umNYX3Cphm3SiQIE3WA8Fw98xI4L5lzKZQUCUklFsGURXJ/2+l7\nx/t44lq9D1mxZ2RuWjJ9q1qdpha57o19ayzLQoy69enIgRaFiW5BrfbVnFjs6YpNZZKuBo0628nR\nrT9mIiGGJSeu8H57w63x8roKEw9GSRGLR8vLvBSmjrfkIthp13SQY2BZA9vqnHPhVAr7XtlHZSRY\nX4okfzFSlkjfHrS2sdU7YRHRV86J1jv0Rjip1sqycmGW10K+ZOIpgnciTg56UPJct330J1H2jFp1\n4bI2H5LRITDVFUETEegCmKI3TdQ2MzbGkPnIBKv00Qnz20whS6fXC6+XKVsbg1orbXR6dzUdxTQJ\nPVmsfRjbQ0ayVh8wdpFwOcIWn8Ua8SjeCCoat4fjj07fGqEbmFF7xbqMZDrwE06n1kYM+h1xZ9sq\n9dGoeyNZEQQYw3c6czi3+53R7vSqiN2IVFJ7lWx3RJcSIwUwY6ML908GKdJNrVJhdDpiDi0oPXS0\nRvRp+At6LVJMpJgJJPYw8N6ofacsCroj6jN7PKt9SgnHGCKW25zEZ9uUGapcG9rqggXikqQoc6Pv\n9XmBxRLVPhad1hv7LphONX+mAaVujHYHd9JayEt5XgBjiF8QnNLoe4NeVSYRkyDgIQJ8r43oDjPX\n3d0VgNeg3yq9yVuSl6LzZROs5W4qJo+JpN+cGBI5JoYvtDEkdX220vzp1y9UvjwP8Ul6SoajVfzl\ncuHTxwtLjny7Jfa+cTplaUBjZA2Z8+mk6bypifzkzql1Sq60DiElRh7sVPahgzBFaaV7/06W5Dmd\nKYnNyFFa5TijWI929aVk+hopufLD50/89V9/5i//5oW37Seu+zfGiLgn+qNz/SLX3kGsH4dM74PH\nY+eoopLsSN9aDTv7o+LnI+YVlb0ObQlGZ03GOGXu3oSLm/Azb+BbZFkLKRaCVbXDT8q4t8ktJEgn\no4/KYzfsOshrJS82g32i8LihqE26uhRDLqQQ8ZhmaJJgpnUNXNbIeY3srXPvgWZOWQ+EFwiVkAdx\nFh8Pc5oh8i1IZ3/JC+upYDnQbJDPmbgmEbsjkMwpZiTkQIpgWlkAACAASURBVIwWIeiBDxbJUdHH\nTAVJID4/W5KSCrQ44pGiS8vsmOITCAwzzKPwyQHenNqgVehNm1Vk6syTWqzoQ0FKvTF8EJHixU2a\nYUk5TUUa+8y8GY1QwWrDY5wYe5j1g00XyRj4e2Xcq+CKpRKTcP1gR0tOB1M4VhtD63w4Si7GLD4w\nTXdTGNAR1OOmgK02i04sGSlIVbT1+lz/Q0p4CnQ7HJtqkWqPq4hJQ7G+k+COBBls0EScJqTWxpBm\n+4hlGCJco0VBmt4VdYDqG2MSKK3XVka8cLzfxOnl0ObapmQYtElZMmKSOiQGY10KqcQZyzGb64f8\nJgNdkMMP2EOKmb3uDHOiJ/EMveEC7HRehXgwr2ABs6RGKfe5SXEgdDMuQOon906tG2NXBk/zCUWt\n+sy42fQqTF4kylWrGsomeWP/M4JW3P25UuqFkaSJECll4fV84eVUuJwW9r7h1hXg4+qSLDFL5xyc\nvKqVfOudlwtM2QXv7Y33epulwPMgT8qIiAwsRkpQuL4ltfmkmX6Wox4AyZHl0Io+eD9X/v1f/RX/\n+T//R/7jf/pL/v43/xe//dcb+z6oW2C/Vd6+7MLVptRtuA604ZNUmmaGQ1rJVOz02mm1qUwXOfoW\nM00cW8MGnHNg+bAQg/G4N3bvWHPqO7AnXl9W4hop7IzHN2IUxrb1hkVEfGbxErVX6nXjEgOxSG2R\n0cURpsihjokXuxLkkqmIOKHL6HwKXM6J82rYlI8GM+IyEBEx6H4nFqdYpLZCDx0P0uOmEuXmi1nw\nQzSaDWm8p1TRhlQZS4gioH3i2uGQ7BklLowZS0sUlj0mhj1mrKslyDGLeJ3ZIEq9ivIvGJJ8jgOX\nbNSJT4qU1jJfkmGx6RB1p87Wdg8uWGgetI1ZADwPmzbmoUnUut4HJCd06c3dd0kdUWRN+3LHb5Xg\nsJ4KadHFFpZEyNq88Ki8dpckMZiCtnRIZpG6tTHmAddNEsmZUwWmdqrggWAJ3NjqNHVZYLFEj0YF\ntqka8zrwx03PRU54H2yT+cxIYmhZPaHdBGdV7yQH751eZ95KUidAXGaSYu8i/+zoqo3cW2WvO2aB\nNWTSTP5rXQF6MdpsQGqKY4iSV5IVsZssKvsomNQprakdyIa2qLltHy7AlBPRZmVfr0STgqbPyyLg\nItRLBnP2GUqWYlRiZXeCcE4d5kMmp2J5cihw76jZyx80G6rm604cg2yOuwpO9FmQHX90p+2NWqtU\nSD/z9ctM5IdUzUTXDNeHvd4aX76+cyqZl7Xwcj4zvHDf3hTMIxJ4lvbqFh2tE7NxzoXWdG8SIyMs\neBzYJFNLMHIwzJtWwRQoySfSJsw0BnBTV8ioFQxOy8qaCuGy8PH0gV99/synDyt/8cNHPn+98OW6\nEKNx/Xrn+m2nPcZUR9jzVna3icVp/V5S0kprXWuvGykmTuvCsizkOLHaEcATg8wInbAmSJG0FK7v\nO+9vO7dWqa6SjetPd/7i9CteLy8kT9T24PG4c2+NLiRGhdWo+DdEdV6WVVVmNCenyKUsej8YNDNI\n+VlYvUzC0dvg24/vfP545nyKPP7wO1I2rfAmyCIQReYliCXByHhy5X6kMaenKeNMOmCijSdkFCzM\n7AyZbuIkMeM0fgWbnY4+aPP1FQSkjJaSpJiRs05T1JhRC3urOthyVi4KkFKWqWjikmMIB48m+AqX\nmshxQkwyqWXxATYvfzM5hUMGTLrxfWx4GMTFKCHjLtwrF8UROM5eq9pvhmSHBCcUpUWmk5zIJPBi\nIrSjU+kKGGPw6Js+LxhpEuQxGi00OuJN2mhqgxrQfECIhJQJMdLroFZJ32K02RQkKEKhaH3CTpqM\nS0ya2OeGOXzQ+i7Nep65KWucW+Ms2B5SH8Wuz0kqcRrEOlRtPK1V7ne9FzqNkw5SBrVXtn0TVBiM\nsizUXtVONBqUTImZ5RInQSzorfVBG5EQM2lEQRRNfpVaK9tW1T2wFjXXpwBzGj4UO+6w3SueAiMa\nvXb2KmLd1kBuTpy5Lsr8CWQidps+GQ88vly5vb/zeNy5tY0WHNaIrwGrAdvuSvyMiZIztiBZZ6tc\nbzfqzGf/ua9f5iBHEPkc+BRq36WceLteWXLksiY+fnwhJykAxqyowpLWojG09ozOsi4sayQhu60P\nJ1tgCYmRlCNRYiC52O9GU4BQHM/1t+SoHI0JhRwLQ1mNFAbJnXM5sRantitfvv6eWu/EaVhR1rJ+\nj3BIluC5yhrC90opvLys9Fap+4RwknE6L3z4eOHysmI+ZpD8hAmI7MOfsZ4pJ5YztO5st4YFGWy2\n6w41sIQzn14CdWy8h8x2HfSjiitL5uczCpQZu5uS5I+Kuc0qO2BQDSwtU98cKTlQZvVcCoWPH1bW\nNfKIg59u79xrI6RMjoVoclMy4aMwKqEYcieLTAvToHLYrgnf8W4lCvqsMpMBK8dMmi7DCSVOqdgR\nayvM36IkeSGo5d6e4jIVHliYBKgDdP2oieWGoMt/zA9omrjsIZt0Q9NfdLzrwp/dxc9uUmHSAnNC\nEfaeU2BJwv0P3bqHQzURGC1iI5DM6G54noFhS4ZsjDDoURdgKuHpdO4M9mnhNwsMG89eTbIMUyEE\nYo+zyARltxzF10GE8LBBzGpuinG6Ml0mnIiRLOq1QDLKEARF5Wj0STZHpozSHZLc2TacahuYM8KY\njtcEBck/ujbYKPyH0TrD1AFqQXg4URBM7VUXqUVJS5PgttBV3qANL8FUtViIeJUIojPjeF0qpO7O\nfq/cbzpAJXrQeyI/hBza5hA8sN0f9AC7NfbHThtOiJk4EsEDvg8e1+uTy1lC1lbYFSt8/3rlcbux\n1Z19VHqaHJrPGGIPbC4+K1rkviySA5umcsO+Sxj/p69frOrNj4fQj2wRwOH22Pjp2xtLlivrci7U\nquQ30E1dm/Kb9+3B2hbcBykELMiY0GuHNB8eImsqlGjECUpX16QSkrDyGKAsuoF1kCuu09xJGbzv\nwkBzouO8vW/s//AjXx8/MnoVAhsO999TfYoyrTkUTcQYOZ0XPn56USv27Sidjrx+WPn46YXLa1GZ\nxZjmCIVXMwbKXegNcpL1e03kJRKy0+5Kpav3Bi3w8vqJERopLtR75/3+RvNNl6bNbShIQWTm5BLJ\nISrvW4JmfeBxEXMkHJsWaCfHwOunF9ZzpiyRvzj/mv1fA/u3d5b1TMkL2TIMwTW9N+KIpDUSVoM0\n9HPn4WdTG3ys/d6HFCMoLZI+SCmQY9R03SRf9OGTjOJ5KcSsVo9o6XmRjD6mjExTc56k5iwa04zA\nYF2D8OIenqXFhpFK0qFgSNlzhJzVqtcpCGqgN7pXMFWVWYgspizsMgcKPOATe22uybCUBCMSMXKI\nbGGn74I4ZGCaRpeAysiXRLSE9UBksN+kLw8h4E0yXjOerVI5JMEKzJ/jnR4QFGOzz9OglCIPhkHr\nleBGtkiJusjD5G3ihI3Ap1fBBDMEe1rRVS+sj8Ded3lB3Cip4Enk6eEnsSAu42jEGnVwxCuEGGfq\nqUvPbYoTJshnEUjQi8qPQ5qqMNBhnoiMKdSUuqdXEeGjD/Z743Hb1R8QjFTifGZ1YnoflFlMsd0q\nFQ0Q1/cbFhLLspJHZokL49756Xc/kS1yyiuWV9yi7qq9sr3f2LaNfbSpI59F2HQhAkug7ZW6V0Yb\n3FNmXRbWdSGvBWyW5/zM1y82kR8Y8rG2uOvGcVPF14/XG+V9oaPrrM4MjRB29tbZtp3H9pgsruSB\nKUtPe78/sCUysnTf/VGpyNCyFAUYtdiJBeFr/buTK0TDPRHG1LC601ul90oYgRgzzY2HNx7tPuNL\nIx8+XXjcjZ/+uM+H/Mgr8albF4S7roXPP3ygJFcS4WMXNPR6olwWlUqYYX0SH67D0w1qHeytA42U\nFKDz8fMH6vs7+22jtc63r+8sy5kPHz5TqVzWyPp3Cz99/T3f7l+4+22qN4SlltPCcirkRX/X6pVt\nqFmmjSH1BZ2QCsGCsjx24Y8pZt42Iy9GXDPltPApivgJpgb3/fGAOU1/eDnr98swFPXHcDkkx0Ew\nZ9nZmZp/fXCVuZHNoHdaa7T9II7DdGeK/E1TAcDkJnRCK69Fh7gI7vNpJeSseq95GfTeOJVMifGQ\nd9Bap7ZGzJCWoKq9o6ptdGpXhqYFmyl3Rl/mJZISFuUDzzGRQmDUTSoNGqUEoouoLTkdTn9NjXEw\n0qAshZQTIYdJBvusJIPHtktjHY28ZlpTKYUl7SbugzgncoYa7DW1i8gfRxCUCUv3rkafGEVCgklv\nPonjhKAVgtNrk8zPnHQq4gvuOyFllRDHxGO/S6KY44xunlLjaDiD1pRNbrMbddsa7FJ4mDdiXoml\nTOlmBzfWtMrHYEYYgu+iBeII9LdZaD0LMVLO5DVC1SXTOtzedratK2qASL032r1qIHJR4tfbTdV2\n6CBvacEIbLd9OjDh8X7HUoEeKG2nl4LfnW9fbiwxY8VYT5mYI8GHOJehHBWPRs4LNSjUj2CUtHA5\nn8kx0bIuC0WHxKleWTSs2J/RQW4TbtAUZBxgslSiShbZ6Hy5qtDhZZEszodcYRaiVt09sNdKfMxg\noq1Ra+dxf5BqEaZcEr2KRjYglxVMt3R0w8PAw5iORqYFd3bjTXXGmKYNN5SHgMOoDEwMNsb5JfP6\n0Tm9XNn2XSz8sQbNw8OizchOWM+JGE+czlnZD3Hw7f7OGiIlOeuHMqdOg2GUVqBH8iTN1rKy5BUb\nGVqi7V94+/HO7Xrj7euV7dqxkkk5kJfIr/868KGf+bb/xPW+z1jbQSlF0NS5MIKwU9WPddWBYeQc\nIKjKIeQuF5tLXtWjPycFC4GcA3U0AlOetz0mrJHwHqBJXxyz5uAjwrXPJh4fnTAnveBIJRKEOcY0\np1Pxtfi8LJNFmguPDnOyPKj/IwAsEjnq1twhLpm0ZKkCWqfWiu9ztUaXtwYzyf1CdMFoxaZbVPJC\n61IbGIHWFbLlRwBZTCgcXJrx4NCHIkk9KAhOdNYMypp5IIxZEJy/S0tD0mc+mp6PvXX2WTOWcybk\npC5U1/uA2zQsmTTZuzMe7RlRYCkSkz6/+lcatQ/2UWfRS5yNXDq8+zSuHFCcIzivdl0E7tAfg5Yk\nWQzRGC1Mkl2JoOY2lT/yb3RvE1KdDt2u6FnfBt5V8DCvJBkjXESolCZO6zvLugpO2mG/Tulj1GvS\n02BsO7V3ttF49J3rtwf73gTbDNgfG3WrIjWrIBc84lPWOPYOYSeFRDFF5bZaaXsnuoxTW924PSL9\n3ng8GqRIYXC3hnkkRlR1lzU8pRAYIUoM0bVV1r2yP/ZnIFmwgDf5U3ymLMQkldPPff1CFv0pDcP/\nFLx34ZQdZyTjum9ad/MLzByFWqvW+VjUIF7VJL5tu6anXfrZ3AfJC2lOZIZL2dAGIUTSUFB+yrJR\nh6kHbN6eTd0ehN3GnLEE5pK1qdxXZNxRJJ3XxOniXF4Wxntn1AlhjON3PDDpQR+b5ISnSIwL26jc\n+oMvtzcuMfPp44nLZZXTdCp8zBOLzdyP1jkvJ87LmZJPtAqPe+P2bWPfNq5v73z7cuXl8wdyKozW\n+fTrHwinF17rwtdvV759vXJ9u5GTLOXLqTBywNBkOqpsytkDp0WbUfVKJJKtEJF7MEZTWYJLWRNc\neTLRAn3M3BIMaDJ2uPI1osWpfdYB1WYeyVa7ujnn95LLNPs4scTpFzBqisp1n1td8yiXXZ8uzulQ\nlRhKTlQdOIM2RHYTAyEnbU9dBK1MGo3tdifNHPGY0lwgpxvVj2KHeVnMz5jIVx1eOc1D/PD8u/68\nHK8ZXMYht6nv9hntOxx61+UVZl4/83PUjuFgwJDbT72eNtUqgmbEMdjEZwetAdtgv23Ce9Mswzbp\nlJ0DZpt1czEq+qEP8Qw2SeIhjDuYXjtZik05It3wHemo58XjHghZKYMxhCcOnHvSEOCB3ZuI59pJ\nQ5kzbWt4M5IJ/x/zEjFXtjxog9q3jfRadFDeOvu14V1Rs2mFHhW/XIezjcq1P7i+PaTXdsEYba/a\nyA3apkiDZEkRHi6TW3OFta1loTbltJgbYRg0fV6u/UbbGnVuLlt3rptqC5MFPMEouiBDUG9vO+S4\nTVLTERo5L+RcxJmMI69Ef7cjlO3nvn6Rg/zAJo+H4wCSnw5pl4Sr5ETKkX3fsT4Ic9o4yMgQlCVi\nONuuCbPVQW+Oh8bY9KAsOT5tv/f3B7FIeL9tO6lEymWhrGniswHrhd4abXRCdkqJYuFjFmU2Gnvt\nehgdTecTCjhfCrfHXeUMJtWD8T3nXOUUO7Vtqqo6F5GYpj6/mAe2RLykCfMMHY6AhUSwiCGs2KJW\n8A9//cKvW+f96zvvvxez/9OX33P5fCGllffbg3ofrEvg9eWV0+XEx48X3r68MbaN3naCrazrQokQ\nuy7F4OIYSk7KS/ep4IiFSNYUbg42lRauHIqxRnLImAcur6r8Gl0PY5JMh7rvpDVQUiGnwm4Kjhl0\n1XiVwpIVr1prpe47JefZIOQwDxs55SI5GGVk9rrP4DMZUfTRkn76EBIdTe0Mn5DCdCKWBR9Kzhx9\nkMpCDklTGkzNv1N7x6KTYpjhbDNw6VCGBR1yIegQV7pnZxwE7cTdfW5pWOBZLTIGozWGTyVVTHgb\n7A9ljUgfrkLmlGRs6qPO11jPVIxq7KE3MMUjU2U6wyGMgfVGHoncMikllpiJp8xjF8xIh0SWsQdl\n1RA1HW/7ru1rKSzLSvTEftvZ9od+/wjWI7V1qjX6o7PkhWSCWEbYn+S240/Lu3lUvyaARbzO7HBT\ntsl31ZFs+WNHmHWQAarvet/qo7FvgqzaGDSMh1eu/c629RlGBrfrLogOZZzvj0a9V2LKTwluMG0s\nbTg0FaEzjHVZpVaaBGQPTk+GnTMN40Zjq5UtNcrcKnevDCR/fgznMRpbb9SxkS0QMtgIRJfUdImr\nUllNMFofg9T+jNIPY4hi/dFKdUzlfuDmLqVASWLJez8CgsBwHvtjAn0iEONc//ZdYfW9OSE6vnfG\n2LGU8ajYUu+O7RXYqXujn5ReV1ubXYXTaDBUSFEI1ACYQB9Gx1uj1QrjkKQBQe3XHz9deL/flHc+\n7d7RjRCcDx9OvLxoguhT6tjNWV5WcnZaahA6MUe1ssQ01RgzQMmOgwEag+FqTw8X4+PfrPwv21/y\n5XVnfxuEfIN4J4QTSzpzf7uxtY30qRJPg5QHl3NgG8qMG71jw0lBmu2cpNmO89/3/zH3ZktyZNmV\n5Tp3UjVzB2Igiyz2S0v//2+1tLBLmEME4G6meofTD/uoIasq+jkSIpAURjIRcDPVe8+w99qCmxXZ\n4vXNvdjYZisUP1LtuDmUSElpGYZhc8aLMFlziKqXKjMpoqyL9CxglFkM2CKRpnfGGGy+qTqHVxpM\nDlmiWyZXdXRX0LC4LkGrC9ONZKCS0mVHLr3LAJPSK/z4SgtKpv/NulQ0wa9ZLsv2dZlZqIrcIa3J\nWDJhJSsxO1//QOET9gB0OSwmvZ+6VMbUxR9L394HPgh54NSuBScXyR+vfM7VNVacY7G1W8y5my6m\ngIv1seJ5DK38czL75H7bA+mqDqOPxZzQrEiDHnrw6UuKjmyBj83YEktEaJVFKZWcpEkvHiiAGTFx\n/LjAVvKXYueljglTVrKEWY6DutOKogOT5VdOq5HFuR9F4eoDBomxjHEOUtelNnxitXKacw6xkFLO\nCnwf8xUtV0MF5EOjX4HpnEzRu7bQKDZw95bjgPcZKrWEV8jUECho/HNUZ2SplAaT5YO0YGSFWZON\nNIT/sJVY5+U+FcKZ7JA0zlnn4jz+WLbyp1XkliMdPSKy8Osg54fkKan9ZEhbrG0J9HkCpkVCyuGM\nq/DszLitbQX/+VxYQdrbUvHquA/m7DGal8B6HJNxHeSx8s9Z8KdlM/I8O0zpfZkLRglnIOStsLdC\n+nXj28c3znHy+QhaW1Jk2L/+yzs//7JTimO26UBIzn7f8A1y0kFuCBd7ZU/+2CHIJXgOzTqxJNdk\nzbSvif/+f/3M27b4+MtBP79RthNLnVbf+O3bN/rnJ2UcvP1i1M3ZWqbcm/YDaJZKQMIu+Rauinh5\nmC0sxcZ94BbW5aSvZ9liJY0HUsrkbPo8bbEykE2kxYDtD1tAZ85D1m5W8Fc0L10uS/OIpPYxRMwj\nKWGGIZOYQqvVdUlyFgs1WzHCsxeHW0o2jSOy86q2I+OWFVyFnAXAsn90H8efbZ5fz9kCzIMYH8/v\nCkASgGcZpS7pqHgo+rteh2Ofg+dxMMfA1qKmHNUrnEfHpoUxSQEGlnXBknkta5PBxexmEViCFM/6\nYA5p7TM6r8dSFOKyRUtVxqVkdF+KW+zR1AcSeOSl4qVCKy0uuYRfnJM+yMvZYzewptAVYCQvBOgv\nXjnhYJct7TYQ5Gpl8KXxViIz+8THJLfEdsvUnAN0FdmXRVX6WPI7jGycy+gWpUYYtmqCaRnPlWRC\nbbRaIFkwexLJlI/pMzDRfUnbXqrU+r5eF/UlspvXP0M7JJJyBDCNj3OSS2WGC1UOUp0/VgoEbC2N\npkWyS3E0ToGzlg35TJLTbTJsMO2fyBA0eiBn0fgwR1W7pPWSC/L55L4XrFRaK0p1kaCTEnrtac7I\nQDXKVuBZSF1cBulAtbBzhFW9ADcrrK4tZ+apdPnTOl5lJhouHof74vx40Gah7jkYKHHJWNFydgmq\nU3Oj7o17bhz9V8iJ//x//87x7Ox749//7Sf+27//xNsXoUjfSxNYJzme1ELOgIaZBwFxXVCfFVI4\nae3PfiqEg0RpsiAnYB2Tdtto/75jKO2FOejnA0tyw338/cH9TeOV270iPbNaS7fFEmXrHxZvxItl\nL7v5lSbj14AsbNhy00gNsUJXPaerS5pRj5X8Mt1Mi1FTOBM9hxTOnTU7c9rrAGDB99+/v+a7mDF7\nZx2nOOAs8MxxngrWzQWu79Hg7JOP3z8YY3C/hwKgJLa8MeOF70ttazIZtIyg1k2XszJpLj/moq+F\nhzFN4ShdSpUkeWTO6bWUc5P2PzUFaFzqNo9/l5QcSQTDNclAskIhiSdyKgglgdj5yUm+/9gwmZb9\n9V4xMsmbxjl9hiooMmKDFjhGj1m3qrveh9AM5pw443SsGx3Dk/gvVBdL59S7R9PYYXWnfx70x8E6\nJ15CEw2sfmrHkws11RiJyC17XcifxyczTVLN6pqHZu0NQbbWMbH5ZC8CUR3HwTkFdstxebslVtMC\n3GphuwlzPH2RxlQ8m6FYOHSRy2vQtAhPgW/woEgOFXk5Vcw0tks4TH+lMkXUi0Z8Kav7Rg5ohYqj\nInDpfWpbw1dmzcCEmIV72QRMmwT+N70+o3OuCHVe5D0x82LaP9FoZU5hSuWqvuKueOmIlzvPs/M4\nB7cb3PaNkh2zgbsAQXM4Y3a8ZmZLnGWR9kw5pZfNUU0CtFzU7i2jnyMOX6Vy2EStK5pLeiTZpCQl\nxvN80qfRVqHthS3CA64FXrpszxkmGgHk5rx/3fg3fuLj48m2V3751/srjSenRspNaM+pTbW/PguF\nAfhQiAbosBtTt/RcCl+WIcaoc+GrwnQ+/3rgx8FWNn795UZKcD6fkklyquogs+Ube7tTm/H5/BDq\nN2vEtJbT12CMrh3Aiy8RlprrIDd7zX8XwnC+FBCpaykbioTre1iBIhUpUJFjKUuRAqpW1nAtn2Ln\nkCwJHuao8n61rXJn9vOUCsPL65+vWATONV7GFYsqG9TprGCSCB+qsDabSppZwb5/yRddqVN26a5J\nlFwhFUAHpa0fqUbJ0guDyhJzXIdFUqxhcPBTTnhoqbfaqCmp4l6OH46PxVYqxzjVpabEdL0vo/fQ\nzCsAZSx9H9kqPhN9TaYHYz1nrEnvTXRIOmldiIdgk69gs6x4IM/VcS8CyE1ndLlWM4JDzXHy+P4Q\nBmMpN+B8PEn7znbbOZNSf/oaIjjG8/V8HmKbGAwfeBVad5jGV/oMi2SlWQft7JPnHHx8PjjmwJOx\n7TspFciLEd8N8TmTCFJjChCcRnvqtIgZWHgCXF3FGhNbM4xPktfmhPjjS6V4Tplaa8TDrsAsW3xm\nkpikHLp6UzXueOAJTnBV2WMORlzQzYpUVa7Oy6VOZZ09FuQwfTDTZPwzVeQeHGCSsin1tgRP2ySl\nPeficXYeffKeC1TXMmx2QY/ihaMmZk2stMhbor01LD4UX+JG11wQzU4oAI8+d6xJjvmvE7Q/W5p3\nRUjwmIPZwfPECrR9J22Nax6Uim53L4u+Do5T9MH9ntjuX7l/SgL4/osyJgeTkgvTJ8c4+TyfsSyL\nMU4wncfZFeySorJdA9DPNOdihNM1xwa8Pxd//68P5gFf3u78y7/cIWmxNKwz6WCTWmT8Aeir83F+\nB+CdO5ZFrzv6k96HgFRJigO3OGxjBqaqUlU8seicI2bJdkGrVL0Yal1XzPpl8a5ixmfNZTG5P0ek\n01h0AWXGv9djJFGUtdlXV2scyiJLkkNqYe6sMWVoSaZlaC7YLcJETGOQOac0yOFaTbmQpgxPa3SN\naizjSNvukciTTdK9VBQakTzFXF0qFcdxn5qxoAoQE3t6TTEzdJAHNKtktlYxq/jSCGMclyEsulZT\nxN3MVVyXtagRAC1+T4/s2ni/IuzBLLDQFCrqtNT5STs+Zqf3rkJHrFjJcE0jPN3jYp+v6I4mKqr6\nMfj47YOSMjVwCf3s4a7UfsvsUuuoEPAuqV0/BedKTcRII70u6utzz0mKo5Kk1BpDIRXHkjIle8N8\nAprRk+TOhhiRRkiDQkyEXUjJXyPKGX6PNSN84xwwFlstbGXjSrqR6Sx2dMleNM05h9g8Sweyu9DT\nNUW+q7vAZHNxemf2Jzk521bU1Z0aedWmMY8vWGOxQga5zh6oisw4TroNxsU3+V9+/XnQrJCUzTlV\nkcdLHgUQRuJxdL49nryPN2lT7UdFOvrlG8svV2Cqk8F+uQAAIABJREFUxvbeeH9rzGNq7n1O5VlO\nRTp5Ak8KUh3h0DNCilYML+DFVLWYjBY5YFPiWvgrEDi3a9HqTAZ9DI510Ncil8bb2536Jk1w3p2V\nJs8xmf3BnM7jOPg8H5S9kU+13hYP7Rwz5uuS+F3htZjcrSu4xK00Hr93vv31k29/e4JLTfF5nNSm\niLXb18zvf/3OWCdbqjye3xnfvuPnwWM9dDAd2o4f/eBxPiIU4tILBz/E7QX7X3OGnT0z5uTz88HH\n55O5nC9fvrDvJazfevCSySEoVYLci9XU6krSN/FYTqYaIcmul9KnnMC1FFItCpZGXHS7v4lOyeJc\nWl6xlmBRazJSJ+XMtu9ssbic85RO3FXxX1rpVDJ1h+6J5ylAUsoaCRwzpGS5gEcM27ys/5EWlTJz\nRfe0egzLA/+9xKS+CHsyIE0alVwKLVcx35HaouwbboPfHx/SytdK3irNpK6ykqhVI5wEDCZ9nJzP\nJ3PEQizpciyBYDB4wZcSlT66lqyjU7JHlmhRwbQmx+eTOZ2S52uBnCyJz54ylcrX+9fIwxVtsIRS\ny6cMQLUWctnY9l3BD12d74zLZp7+WpymUvARZMJ5kIaRQymkYONJTplWM1Tp8VfsGeZ0zCd56Zk/\nh+iCK8U45xzMs7NWictFOAYr0REOY3WdQ8sSE4IV3uMC1iDLikExZR2YRrMf379ruZsz+65OG1+v\nQIg5hbBONrEsOOAV/Nwy3Pc3rC+O5yO60ikJ5jlppapzm9olrn8mjK1uZ0KdcNlz0z8c6B4V0+I4\nB98+DpxKrbqp+nEyh0OTNMxi2TOG5q5W5YpKph/6XCfD1QLpt79MHUQCUSpG2jKppeBBSD98K4Vc\nVdVYhlyrjEEXbFxjddHtilNugVkl0e3g9ENtO8pIfM2856K7qvcxThKDvJJm/ejPfc3F46UosYB7\nbc5ieXJ+DB6/D47PRanOeXb+9pcPfvmXuySOt5Ovv+70bsw5+Oi/wcck+SBtqpC7nzwfJ4/jwTlO\nvry/vyR753liMVNOLl2z49hp4W7sPJ8nx9mvIpQ1F9u2AVGRuXYcKciQY56alyfVTxS51nKxFy2Q\n6eSZsCnN7pyi7BlFBhkzHFEjp694yP3FHS+Xnd+JUYS6gjkns2scMF2qkFyd3JqY6z341qW8pHx9\n6uCvscDrUyYiilpfy/pKkiVqiXCBKdxwTorgm31G6HTMVYf0yEKfRm6k6TMZafD0yWd/srXKrVba\nTSEnMw4vpqrFZPq81akNznORc2bbGnWLhOc5owtekgfGGNNNh5MJ1QgsMce3wtoLDHUX7kZO2htM\nH/iSZLPVxkgy1JSsn/l5npx/70q9L1oQP48TW5nlBCo6Klk0mrwUQjJ2SQnkcRiOsUhIsWNZoQ/T\nBJM6+8H0qX3HtpFcS3EPONo0h9hDkHXRvpC1BNWzFLatiWOeddguoK+pnFIHlnP0DiNhTSKLiT4/\nNwseuUf1fzLG4DhOLqGC8kCvql5h7iXCqFPOWkavIfn0OVjHwAYUCitrH2Fzsv54RP5nHeRw6cYl\nx1IlKkmZHk6QPGl2ZTqWrLlLQtFiSnbRgkCLBWeeg1ZgtQWbvTZK69o0J4NrqUd8CfFB162Q9kze\nMit7SJQa27aJJRHbY41nBJ4ioWzHonmwZ1VSKUtj/XwezLxYyUi2QuWgFszN8QyJQnfxhteAsmdy\n0XLWij6PS/OckirZkqTnXiNAUX0xns44BW86++Cvf/lg236hFl1C96+Ncyw+j66ZK50KtLLLZDBg\nuBCjrxmqadkyV6S5zEjSSar49PBJ8nmOMCyU9Jo/eywb17pS04mke5lblhOXqhJ+UtEseQxVtSsO\n8rwS2bOi6ZZj07H049FdXQd3TimaZc3Bay0Bu0LGD++8JHCR4jTm0AE/HPPM8XkwDlmxlyN1S8qK\nqXMnD6ma5gRbK5ZmFkoM7X2IZaknyQPXdM55cvYufXZp+ruGJtmHM5jBVNHLvbILcVqMUhOrJs2S\nl9CtfSoQYpqSbWYc6toRyGZfSlbGo0v5s5YO8RQyo1SUf2pFpEQCdZtK7BVmUwKVXOSxzxA75eqd\nX+Y+Myj67vp5SoFTEra0u/A1yBoGSbFWCz5Fe3TQqDQ60TFnFHuqxL13sklC6tkYrmSdsRaP48Fa\nk9YEUxPCYYbEEb17JcK6szDWHrWQX1CsJBibNaObLqm+5quLKjE2GnE22QIb4ruP2PdJTq4DbY7B\n8Tz4/HySs57DnCsrYhGXD277Rs5Fz5nJMT5scXQF0zCcMkMMMbUfWRP66X94pv45rJU4CDzE9FaC\nfjdcid0rlkRJioHVY3NvmmOaF3x1xiFd7jqEsSzL2e6w3l3SxGqkStjgtYFfxRg+6N5R2y73VN02\nqT9aom160M2S/hxzWCNkeHqRU06klklFenaGNnKpyhWGQ8k7Nd1Yvuhj8Hgcgm9l2XRzzsgOrIOc\nFJFPNR68UjSLjiqi5QAD5cIck/N58vg4qFGdrql5YD8nx+cn+/adZJn3n42RDkbupLfEnndyvbFt\nidoqiSz4Us3c540RFvs5JdO8EnV0oGda3RUwPAdpOXlMch+0qnDYnBVCnGORPUbHfVJRyk/2rOXk\nkq5WXJpYbhJskFrwYsxDvgBwWgKxqzt9nnKZeqHlppFHSZyr09eJmz7LSwU1lmLg3I2tbQIthb4b\nkH57dR7fHpz9DNelVBFv+w3vUn5MS0yXWeet7UpqKsqb7b7oS+anNRX2kFLm8/Gkn9J4Gxo3qbhI\nUmasjnUpN/JWKXujpYLVStu3SM0xVZrhBMVNo5GlzNmcQxaaoDRxeEotkaRktH3jPB4sEilGVdvW\nSPuOzYFY5jKpBGUX2xJbFv53LsHlzMWcuSSRY06GawHn03mOUxmhc7LVXZfYx5PRByU1bnUHEjNJ\nejh8YvPkPMCPk7OHwqk6xXLIjbsUKSsxfXD6eKXME4qrlBLn2Zlj8Pn51GXRCvW2YQGfs4XCwHPS\n3Po4GM/BPAa1harmcppO7X5qKmBCLmxvOytJUntOhbeMMcEz2cJjYTFsM7nFW21xkGcZvubiPJYK\nLFNR1GcUUMl4jolPp6G9y3VOjq6IvOP5T6RaUQJJAKUMydhcrbtfBpspN1fyDCvTnxP6IKURL1VQ\n717LKz2Ac2aOcYLJ3t5dlL1UNA9TpJRRrIb4Gf22DHGQrywUwFrSuiZf+Dg5ns/AmBpWCpWNTCGH\nXFBOtWgHp8JmPeBD7itMPELwllqptbGVxg6QFpYWpcXG3VAcFVquFQs4EJf21Wit4HNyf9+43Tp/\n+a8PzQqzDq/P7w9aK9R9J90SaauCLxUnlyuVpsl7ai48KlnzcK6LNSo9HDexSWprlFpf1VZ8qZJ2\npUSrmxZmS4duLgoK0DmcWEsqiD5HaGrVZhsKprhgWGDM7oEryT8+XxfIaszEnJkxEvfbnb1smq8v\nmN6lfhCnmJSgnx9KYeoEJ0VVoJGwZqSWXr4Eq8IBuMPHxwfncWqo0lz69ar5b3KZliYCQBVXboXP\nS1Bu9GfnfJzMyGa8JmPZCnMM5pikrLYxYXgWZdNDLfRSvyBJ4Rz+D6OUkzE6930jpURrmxRda/Lx\n8Z1Wi3jzNfwWFsbTKQZKLYVqDePaU5hS35dCEtIgXJ76jn2E/DBwq2bCz2qXovFUn+KrZ9egdE5n\nTmBNDjqYcfbO83iCLW6rRsUfgdLuPI4HZWWsL87zSUkadS4Xb6fUgtUkXk6wbuaQtyFXBVzkWkml\nSoV1LTMdas6sOTifB2tO0QbmeHlVci0SJEk2wVo6uNcSM2gZEcDh4Ri3iJJUMLgnXby1yBFeA8KW\nShVDx+Qu7UMESl0NjjVJa9fQc5OChcML4/D/f6b+ecESpqFGshTutkVuVyiXcWlsr3blPCSIL0k8\naTeR+aSA0WlsFbpPPvsBSS3LylCqFqFWkKA+MhNTqXqJI43eSmJl6OPkmGd8uY7NwTxPns+Hbsmk\nG/g4JxbLk1IFdcquv1fvg+fZWSF7q6WStxJsbCe1TN0LpbVQ72hOOdapWZoRB1hs+12qHTctfzDD\ni3IKt7eNej+lSBgyQFlZPM5Pyjdjuxlve6PUDPvA84oDU6qHZMZIQgEoxi2H4cTxpNmuyJARWFCL\nFBcp6e8Xi9jZwwKeQ7kRh0MObgiAMDZaAg4m2Ir/zkmuw1wXmQSAZhpdXLr16+Y1grfRJ8/PCVMz\n3Pym0OjpMMeM9KOCowPoeJ50hkJyl3M+Ti1tPeO7K9KuadyQihJ4+nlEmIku5Nm73qpa4QRPUkLl\nFqqVJT2yJ+0DZtehIcZHpuRCTrqge4yRStMsPrmB9VCLTJiXbl96GFuKW3tNv0KlA2KEUxJnUmt/\nHAdzFmEPqMB6mfE8Rw5trWwl4bNjE3bTCGFKlo91XVzuoUuPxSmm8RLo+55r0UcnWYacFGThKww0\nPySorrQOcXWGLvk+B+W01+HJco5j0BfYdMY48dp0mWcoeyM1/ayX0QuMfp6ShxYFduRaSFtjPh7K\njI3vumdjjc7xOEk4tcipq0IvKd4wRwgzqHCMJXQyFXJE0SGVT3D1k79UP6Vmdq8KgSdyWMPg6El8\nm/kaI8tY50nnElXjqkTGc1LSUo7R4/wnYq1cDjitPFUN6h8sUgOLODLDWTbl+puDnJx6q0xTGvdA\n5ozr4KtmGIO0Tr0oodpYBaYNJiMOiahua6bVjZIKa3gs7g4+jqfmjGZavsyTMQ9mkpzJKthufPYn\nx1Mt89t957ZLUpeyhbRJy79SYNs32r5JJuczKIiJlC9jQTyUyy7ZjmZ7y+jn5PP7B/veuN1u5Brh\nv9OZNbPuDdubqt2xmK4szvP44PunU/5WuP9yo5aKNTn8PHSeAXkMt58WsctdBpux8D7xadLUFlHZ\nFLkWDsxw2nVD+YMOHsaTS6MLag/NjTlGzKOhtnCP2uJKgL9+L4JpEuYNlma/5lJHbPsWUKTOt+cH\nz0OX78/5JzzpcOy9k39Suv3z8eTz8eTx+RCjfNMh8fH7d+77nWyFz49P8mZspUrt4J1pxroZvuTm\nPG3wHE/yVMhyWgmXgyfGVJpF24pq2vR3P4+Tx+eTeU51D23HzRnnqVFWNojvtHd/hQXDpO1N4ybX\njDurNZEbcmV8a+IApYInYzhYGaxufDyfPMZBHZW9VVpWhbi1Rqr6bHJO9KPj0/XP/cIXF+iLeXSF\nKoxF8sTb/c7oi+fZOYLHP8bg8Xjo8HEordBXPA9L36kSprQVnl5YbOQG9MnzeZDSlEPbjRFsEV/q\n2nN2aMIl1zdJgN1iAW4eh3ahzFB8IRNW3cXPGUdnpCFD3VyMQzPsVjOlbnJudmWrfh6D0hrbvitQ\nI2XqJgf0JcJI207vnbmcuim+r/vCXY7mLRduW4U1GWfn6E9JWmuj7HuYpqLLWiuUatq9WQ2TWCpM\nF+UxtUxKlVr+mWbkFiONV+uoX1foa8TZI333oq9TErXl2FjkHawmUnLqFcRbjK1l3u6N97edeoOI\nIdQDjsT5qQQnuhQ8JfrsfD4fPD6eml+XzP3Lu5abiiuRbXjJDUgJd2Ir3EIhMMZib+Iwu0+hY6m0\nW43DWosniVkks9TGWpXNujStixg3aKa3bDGHKkuSKoUztLAxVcKBkUSFS0uusbVkd55M/Hzy21++\n8et//8J96kUuqUqv+hg4Uz9PkdW9D3Git9pUlZu6i35Mzueg7U3GkrQiT1HckNxqcEqghHJgzI4z\nyCtgxcPpzxNzuG1NJV9o+OcMhY4tPEVFvVZotHXoYrCVQtsqK6nyHMOpbxucGtWQVHGuAb9//6A7\n1O3k28cH3z8/6Us/mwd+N1UjbYpPe/ZHBFfo5z5HIFlLJu0ZG9JWK0R48Pl4kEYWQrYVxiFvwON8\nMHFutztt27jf7iQy432QyTIpWVJYhh5zYQOCU2Ke8RkL4pyY58CqVChF5nalsecSvJJJyRsTZWvu\n+0bbGuv9TdI5pIjonw8cFUt521WZJ+OYU2OJtdhCzuJryig0ddCMMDy1rAPO0nipwNRxdnzGSE4R\nS+IVhRsyTWiRPuXm7LeNAZyrcz4PxjHIVjSPn1F1h/685Uar6h5sq7BlvESOQXRtciZfvoIc+ZaD\n9dAS/MuXd+63N85+cBxPVjbafWPfGvvbToodjc6AU/jo6RxjQBNPfwVoJVsUYasw03wp2tyD5xPv\nEGPhYzBHl1M5LdI0fObIGl0xGvYwsfnL22BV71iK7yMlhcdVr394pP7JwRLxO1qjKwGERMzfLLbN\n4BO9pHumvGXKblh1citqg5MO8vum0OZSHUuqLC5i4nIjFYXSLkNqEReMvq9TVX1JvH256bByudfc\nJf+TqkDb+VQy+9QoQ1pbtTxzjkgb0Q+Zi/TZay2uxJ3r50rpqkgJJ2KwMtw0D14eGGZVHApnER1P\nsK4op/MiFVVxcxkrPDokJfN8//7B52+ffPnXxtsvDU/GZDCWIE1yK2p2O4fMRlsmeCBhUDkXiuF1\nVjUwxceJSSNJnUd1TuBT11DoASEtnWMy+xBBMeVoTX98//qMBrlUVT5jRdss6l4yi5f1WiJICra9\n3ejWw2o/MZPl/jkm63mQl/M4T6XgtETalH9pbuw/3WhbExo3HKW+FIjc14KVKSSNpVwKGcsaBw5i\nxBHu4GXOcR48jieeEqUMdTKWue830oY6rgVrTPqaJAgVEqFIKhiZtQQOI0ZEnjy01lWfPVOHy1Ch\nU7OqP+tO3SopFuYghMBxHHz/OKXj9xQHRCAE3KNLNmwaPgTT6n2+/gyLpJ5cKqU2iOQiKxoz1lxJ\nIbBKWbPeSTxP58T6pFpmizEXObFy4jk7z1rorWOuIGwbi1ZyXMril1y7k5WQu9E1n77GV+rYUxRA\nzryWsUPL+ro10lvh+4eyci0SgVqt1K3isfCt5EghC0iZzRib6H0qJql0ciGAFwurLmYUqIq2qQzZ\nPqW+WpJH+rUXXEO8prVIEPp8U5FX1fEqUo9YdAtAZ4Fy+KNff4788CX6s1jw6MV0n6G5NrGsq1H3\nzP3txtFPck389C9f2PZM3Y3cjHZvr+DbbC6jSc5kGyQS1QI8ZZHfZ8Y5RS+cJgnj7a3x5estHprM\nvhW1cpbxVZkxIwRJml6c8mj3mJCyQngdXnwE8FjEytPo0wJHoMVnSgLglwynH5x9KpIrFqTmmrul\nJhlBPEuq+kvDrGi+mhd1X+xfKvNjyL06lBG5svM4nvz+t9/58veNn/7tLWaxHpFpOiRSVSQVU9u6\ntOJ76iuceJIX1m4iDWajtS0Ob120yWNb79pzlFzY9lBP+OJYjwiLSNx2qXmusZj0Yie9H7Qq/bmA\n5wGrqlqeHnMxjjPko+qOtnsO/MLJ9+OBm0BUeWtSv+RE2XduYXap1aS+yJn7r+8kpGLws2schJM8\nS52kVk7KHjONUWIklEthLo3+xnhSU+VcQ0oSh+N5sqILSeH4a0nJ8z6miJMEb8URiA1BnEqVBPXo\nD12GS8qFt32ntQqbDvjjPPAjULprkTqk4aQUQoJIz9kppHKnJnE/jCwHqztbyaxS8WXMc/H57cHn\ns5OytOs5V/KWmafGgCllagsnbBKHXhm5WY7gktnuN1KRg/F4nvTHSfXEnou6tUixf9vvbLdNap8u\nxdWaTtt2Uku4OcdxKs1ozJDnCXuw7zei1WY+J+/3OyUXxlq0nJhJBcBcS7uxZKSauJWdnO+xn5Pj\n85xPbC1aLrzvb8qDzoNzK1G46TtppUpNMy38IjBd4RWKrEykArM2nnYwlwql7Vb1eS80HuTH7qy2\nwvKpbvutcqUQ2ViUXGilxiEeXfwf/PrTLPrEAm+JDyqWwcvOLSrgYkLO3L9mmjdSS9x/rQq6LZpV\njzR+LHBM1uJhyI6LWtOY4rxmdcMlfeqzY8kotZBrhuB0jJEilEA3ssUS5kcTIXp0CZhOHPGxc5Js\nz9GYxrkOKw+HZnvBfn4wW5AVvikAWS2jBw+GkJw5OQ5zn9EGjk4/n+QMX37e8f/zX/nP//sv/P74\nLk530WXYWuLz9we//dd3fvmPL1hZpBQJSUtuv8VTKSUfJ8/Hg7oyrRRwuO93uAVcKMPyISaI6++f\nUmLfbqK8edjwLYxDS9pngmtdiyLP3FfILqUbHtHalyTOOC7dtiIdNUPfgix3DpESUykCZmWxW1a/\nUXLi7Ac2dUnmSIk3W2y5aalsWsCWLMb8GusFA3s56EK7+2LGmOBuWOJxfDJ9UbbKvu+SkI2F+SRl\nKUd6l5uPSFn6EaRRlLuKYgX3tgmpum0cz844Dwad2/1GrQVLmqVbMvJMrHPyvZ98fPvQTP2Y9Odg\nbEuh3KXpEhphxY+4wLIyrd2lerLE8Bzh5YsJ1NLIqSngwSq7aXncUtVznBSwkEUF4Ti0XN9KZZmQ\nzyk7OVVp2LOc0PgkJUUc5okO3TFUqRoR+qHRUtt0aLmHcqRmVbfrCGe2FDpzLfLKeJFBLqGci7Sk\n/ph9qEgIQcWFe0gJbnsNfEFI+0zfTSt3OVSXs2WpidZctKIO3JpUP713jv7A+2Jvm94RVBgZEbRi\n0rvn5JT2Dgbtvim20FVhXw7nknNwnbTXecUcusFc1NJotWm8Gd/XH/3602bk1zh8uWRatowUBDFL\nIWqzheVFu6Ht72bYPkK36rgnVYIoI9GQnmE5jP4EjzTxMGw4iktSCpEM9znYDin5y8SCzfgLLLAA\n42ChpdYz8D+pBrBwv8XM30V3TIk4wAQFWpEWLtdpkNs8bmhL0UapOtSDuzQ2ChKj+eQKRVhTLrB+\nnJRauL01yn/c+Pbtk8d4RgCwk6ux3TNn73z/7ZPf//qd/Q3lReakGepS+G5aRkuFlSoBcVWAwE3u\nt5ITcw1GV9dRQiKYLJJp4iDPeqIlFcMkYfSIDQsz0+UViHc9UKwK10gmE5Fa2AASrQvroMN/+qSG\naiHFd5hDeWPdlbKjmZW8BnNS80YLqmEu4fqMkZ6+G42lZlz9s8+XOW3VSkuFjNQGwye+YEsbmp1p\nQWsp0aqWlomLK9OouURuZ+ZwFRoeo7ytVbZWWX0G3c4jISjJch6qnnVOznlyPA++f/uOzSSZ7hR8\nqpCoVe7U7goKvn2V6cQWlFikS+qmA97Xovt6XYg+lMfqOMULDQVyp5I514kvdYV0fa65SF10Iad9\naubr67JmOTkHhfJUNzXGNcaU/dwibalmjUkdjTFTSUwz/Kbw9F4TZy2spTHTtjW9T66fLWexYnIS\n83wQexM0vsgB1YoXOhzACTMxydcSrK5ZZvZgLpUkB/kmHEA/Ts7jgD4lLkmBPA7FgHwnKeblkAta\nhN82hsuhWctGSZI2JuA8DzLOljbB6pY62uS6YGupoYI7Ofv5h0fqn8MjzzGbA823gsImsDyCJl2h\nBdmxMqlvCa+Lx/qd81RWYStV21zPpKkPM5sxzHg+H4wpqLJ4KYJS1dTiwBmSDGZVmZZidGGJbSsh\nJeKHpXtp2TpcD26KC2iZMiPxJFvx0swzZc23Fjp81lw8z4NzimJWqzToyVPI7mIc4cY5J/15cI5O\nu8t8M4eCgNforOHQLZJspJ9PuXD/qfD288b3o/E5BWay4uxfCo9vzufnk//x//yVf/uPG+VrYwYT\nY5lhS8aX99sd/3rd+gH8DztxydKArwK+RIcLpzjH48Gzn7gZP/3804/0GnepWWKJk4gE9vA3Z1fU\nm4UE896aTDozEnRQR2VmIiMSDGiLh4fFXF1kvj7ZLGtEcpxBp9N3cI6BzTvFb5LPoZm2u8uWP0Sd\nmytmqGb89vcPnp8HvgY/vd94v+3ctp16a+QUqpEYWaawokcwG1urGi21jXu7UXNVrB0aAz77I8Y4\npkX+6JRsCoXOJaLSFud5srUN3DmeB6B9SikajSQzmX8sB2ERzo9Pvh2fnAzu7+8US4y1eH481am1\nQrvvZEvSfI9TPOySXu/kPzpZW4vIvS7DE2PqwgyHLj4ptfC233g+Hjz7wTmeeE6kXGhNpqLjefI8\nP5lzcL+/8fb1CzMO27Em9WLKYz8gaCXzvn8Nminhho0dGilcpPPVLaWcsVLItXCOwbfP71JORTEw\nA5lQSlVgjSWZyQxJAN3xz5NZnLob7AXfM7MkjpjDi3sk/HM22GrRbiiZdnZJ+x5OBYxovDMiaEbj\nF0lijTEXf//4DctayOYoikrISUvO5Fy4v+3cR5c7+A9+/Unhy6/91v+09FRltEgrUasxFrAMW4W9\nbqQ7JH9SC+BOq5u4E+HaS0lXYClFWlgiLabKinzhU8V22fTgxLLnAlJdms+QhEq7iipyTIc9aFGS\niJxHcrRrqshrVk5fclnGlyfJ7VLBlkD/x5yx5zVaUghvcvDSJKmaQ4sVd9Y5Qru8gs3xY4TRSkN4\n0MnkQX03bo/K8ZsWKwL2D9p7Yb8V9numVC2QU3Eehzg0iUXql25fnJTlLvfgs4fRp7C1EmMRuWev\n1PpzjDBSJFpNGpXMFWMFLSl9dMaKnztVWfHH4BxDRp6tMpNe1JJSLD012hhcy0/NtlsYLbLr+zqf\nT87HSd538Elrha+3e7BxjKN3LbYCQ3yOQQ9MwPM4GH1q0Wga/9Rbpf37ptn5VCpUyZmyVaGTAy08\n5nihB1rJrKVEo947eKOkxNMdbxu1KHR4ZSdvUg+lpFHc9+dTQcRuOJnb20228Nnxp56tOSelZUlc\nq7HWk/E8GM8ne27kvFNWmFvWFOlvDLzoYLRiMCUMyA63urG1wvCTNSaP51NExPOMvNge6Voj1F1P\n1oS93TT2NI2HjqPLzTm6WPSmYOkAL6u6L4WyQd60DLUqSbB81U5eRHCy3s/+PKm3JmTs/JFK4dfI\nyiHn+g/QPRl9clERlSyMcVs4Nsdg9DNwG6rO01SntuaktmvkacxiEMlh1hK0xMzQZuetVvj6BZvK\nlhXbPDOmzhstl7Tb0mhMo9wV3RcpkQJKttaNT50nAAAgAElEQVRknidtywpWTkHIXI48QYNxphhf\nqkv6kaf2P//686BZKZQoXPLD+KKWDvSEWsb5dJ7fBvvbxn4rqogSwKKW+uIuCOB70ejEmFhkcpUD\nsrYSRpYUDrdES0W3dLBAlgtGtPqK8YdJhx5jEIhwC/TirjE5ukKFM4laCvu2xYsdxtHp+FSQhdLQ\ni8Kiz4MRZEBrOjRtLJadoqWtRbttAiO51B5m6hgsWahtxNP2uHTIi/vPheE35nyK9byUwFJvle1d\nI5i2F3JL5Ap5SPJlOWsxGyOPFbPr43zKpWfGmhm8YteY5LqcAov7iu+aYm3MtTArylt0uSiTx6FE\nVw5l74w5afedmSYHJ8Uy1QSsmmNhKwiWfQiCVKT+kMEiRgVhFFoXF6YYpWW2vQm09JQKx5JGd2MN\nHqcWzI/PT/DFfbtpznxr3N92BSi7DD0fHx9RzWaoiuBjaDThL35sEqVvnJKVzSEgWoJJISeNIyiS\nz7IsDD3opXaXP8BVJaekMJQVy1MI9n2AxjxNlqnzGg5jJvqwyLkkEnUuKQl48MjdnXl0zHSgllTo\n5iwTYVBHkrqFfi1mk3N6l2P5KRt5zYVMpY/x4r+7L3IVOCwTY8kYkZYK7VZhoUDrLHPNGno2fF3w\nPAUjlyZX99nPF1iPQAFfwcTq7HV2ZB/q9kK+6XPivQdpsjNGF0Uyy1zV5+A8Ox7qoVQakl4ChK+D\n9ArKIEm2nHbIl3Rwymj2mtjkOMsWWFxogoG5vCImXlToGbAErTYpsfyVZIzF+E3rtUuwEYEUf/Dr\nzzvIjSCcqdLVrDWoh8NJw/DT6Ofir//5HTL8XN/4cm9yd9pSa2+ZsaBXLX0seNFf399Jwf5f8SBb\nupYRoFtD/OqclNU45mCMoXmtJxJyh+WtKpqJqdsxDurH8+T3v3/y979958vbzs9f33hru+aHa5Go\nrGfnOJ6c58mXX3+m1oIbPM9DfBW3V4U7z4Pns3P2Ezf4qfwSoB9jnGJm5NDTPh6dx3HSkhK3c020\nW+brXtn2QsH57ffvfD6enN6pDeq98Pb1znZP1BuksnjfvuKuSlJmHWnL5+w8j0NB0mgpxFLaUM2Z\nW2uquCtyQ5bKMZ+cx5Mxu+SPloKhkiMab1JLwVwOy+f3B31M6bQXrLH4PA/2slGbyHp9ScbIIQzp\n6UMzbBvYT+/c2lcxa/ZNS9QZ+xOcR/+EpuXSsx/qvHKm1sLn+eD3x4Pfvj1CKSOn7W3feXu78f52\nFy7VF8fRGUG0s5IEmUqJ0ipzdMbxZJydhDqMNYbadRZjnoEOMDmKk/CnTClESkoUy6Tbrg5lafcz\nfYYb0LRLgNgBCX/77LqorXjsMxSOcgy5pEuJZ/caGWRYRX/WGoP+8R1/Ak07kNwydd9UVsXzW0gM\nGxpDthtG4ZwPvn/7RnLjtt1I28Y59f9vboxxhjqnUovkedMHziAX4/Ym/4BbknHMEvM5OM8hLrxf\nUxB12ufZ+Xh8qtMtWua+iINJ58UKOaeAezO6xMVxHnz//snZT7koM7zXL3LA+uJxPnl8fgamwZhJ\nC/y1ZJon9ly1JnLgO1T9rxBRqHDofbBM83QrFglfMgLlrOVvype4QWMryRhVFCgrVnF/htR15hoP\ns1S8XVmyF3/lf/3156hWrrHKa84Z8/GU5BScYCus88Pobnz7r05uJ/evO7lVco5xSNKSsKXCscTy\nNp/UnGMZFsupNZmHkkC0+FAY89l1KwtmbzLLqGQUBe2pBJ/ctNi5Kpox5TLct8Kvv3zhtgloNY9T\nN3yRE4tpSgM/Bp+/fafsVdrn1gIslWk5U5YisVYbwvECtW2qTvri+dFprchRGd3HrW283d5Cxjfx\neWKpsG3Gz7/eKRvsn5nvnw9++umdX3/5yi+/vpPySS5SNLhnznOJIzM627bx9uWdMSepyS3ny+PA\nMUY/qDmzbxvb3pSNicIgsosvkVLkJY7FeTylbllAnyw0J7bQ65YiMJQCp4UPTqE6evTF83G+2BP3\nfWdP4MmpLSRwbuz3G/ebzFTH+ZRqaC0UW63vPm9VMr7Q4nuDvDL3vDNnVvhDddymZu6nZG6XsiYn\nI7Uqs9IKNlBK3LYdSmVtneS6jEaN0YqFBjppL6TFIAoSsBuwfsyic8KTns/jUJWoIkMvOnGwtbKx\n1cotaaRmof1miHmScxZ6NSkg2UoO23mC0elTIxp1LpBWFl9lXe/jZL9tlLbDXJw2mRlmTlir7Mko\nm/g8icRkULZMzRu3fefbt9/os/P98cG+71LklEzLhWWTcyoQ5LLC//btG+dnx/tiS1VO61rY7MY5\nT+bzKbMN4p3Mqb3BnIt8Frb7jdKKzHZzRvWPGqSYTbspxu98SnJca6UEmbLsFUO6exk6ECa3D/o4\nSRnmSpSl7mN4Z65BNn858swyPbwd27ZLOpozeOHKeSVCNi5Rg81FMckZncnh4HmQctWIeIFPZQMb\nGmuqk/8nWnZe3PFrwQBXDaXBSM2Fn7++8fHb4HkO5gnH98njt8Hxu8YHpYVt91IeGNCyXI5rUbNT\nU1T/UwtKdzHLX8sUFw53nDNwsQQ3RV+0Zc0obS18qBVdfrGMZRXf98pWCzUlsjvz7ALYp4wNmUpm\nl8FiHKc4DNlouYTBopAXpCH6Ia3qALeEl4J7huUUG9gyVoQGtNwoLXHbG2NqPLFwijlWM/WnnbYZ\nt7fK/Wh8eX/j6/vGbdfMmQV5yRhVDFpJkBr71jSO6CeeK1aTsKABzypVc11PMsT4GrF799eOwV2m\novPsPD5PoXIth91aFQcZXSYJbttGrmGMclWcyxfnclXSU5mot7YpfKNAa0XpNmentkpphS1X3IaS\nbJbrgMJeuxLiIJeFPLHnSrlVuXZnsGZYzNE53F743Vdwcw7XYoxsk6Pw3JwBqaY8TUYKpUiSSioZ\nsbIN2qKpoq+tvmS3HkiIhVNXGMdSLMxnmKlmB6vUWgSNKmr7PQxJxDdhSxyclBPLRyh6jFVRJubS\naC6VRGlGqfG5IAplraFt7oNJDoOegl1UFVddfC6DVEmFWirbVvn2MIVGxAI//H0aRaFOWo7QibuM\nV+pyiJ2KglFWyvSlZVrbNCefU5v1HAYaqdAStQnCJr0/geFQx3R73yUVnZ1yZvkSspOy09qm6hfD\nVoYR31nghK3n1/+dq36PoYvQmZHeE+leOJaNFoEfhlNTY8wfHhTN5pM+uxXCjulRQOpQt+DYsJx9\nz9iKyUAunL3Qzn8iHflcK+SF+n2xV9ZyiiXu953/4z/+G/9j/Ub//B4hrMb5Ad//1tnfNrJlatbJ\nK83ooja9bHMuUoQ1l5RZcftREuM4MI/MxSsKi8w4BBpaa/HTz19pX2S8mLNw9jPGBWG2walVtmEz\ntFCawSYZ0D9PfDjPcrD2FryWRXN0KfSp0OTcNIedi3l2Ru+ULAMNpbKSgnRbytisiggbU1VOlczt\n4nFohFEUTGCFvGX2vfBl3Vj2lZKNmhIJpbVfwOaUF3vOvH95U+RW0mHipoABK1UkxedBf3be33aw\nxWMcTJySinIMU8SIzcXzefI8DoVNPDrlrZJaZZphWWMqX/ossumwettv5KKl0e+f3xhrQkV8aEwI\n1ZaFPag6mI6Pg8/PD+Ya7PddbG3EPTcj2l+jRwe1YodSkiR/FVXYQiVPxtGxhWLIiBCIZNRa4yWU\nfCzlkJJOXVoebj9Z5pVyn3bTMxhmNfOJj5N+zaYtVFb14qXLGNSShatxvXYij8+D3gdznaxVkRa5\nvsBxY81wm4YdnqSKbmm/0jxrUV3ANh3Maw3apn1AKVU+sKEFpty4huf0OsAzFjMMGc1qJA6trOzb\nZNqxLANKojQl1Zd4P1aEOVgGLuCdZb58fWfUSc8n69uTYk5Jcl23vbJtG7Um5nkyz4F3qLeGkaTq\n2gq5RBhMybzqQ8vctsLt6x6V+YxEpA7Iibw3ZQf4Mo6HTG9rOFsr3NAFv65Zdk7kVvHDWVmHeKuB\nT15GPvV93psQFmbgNfN4POldUtqcdXFdktbR9XeqrWDVqFtTPN0aLAbbTWO3mooQDAu9F3/w60/S\nkcd/OpeO7PVfCFGZ2e4K5vUp6H/yDN34/pcHP/1a4UsN9sHSLtelRU1mjLX4+HbQWuV+L1zM7zEG\nv//9YL9Baw1Dzqm8F04/teCLlurxCXMI/3lJA31JxC8Z4w+bMxd4KukQqSuLu9EVjnCpam6+oZT5\nYGNft9iYjN41QmDhSTmEj/7kfP7OOKNzGCoF91sj3XdaEcin1D3m2tJCp5RCGugxqxacJ6H/vrZN\ni9yURIlLYUS6qrJXb3Rp3KGVTGoxBkuRW1ikxnEWY145niYcqXXAXvNKRcOp511L8r77252tJFoR\nOXL64tFPnv1ksiilsH+5vZDGn8cHncJGje9Zi76Pjw/6PNn6hhXDIxSgUIQyTRoCXCO8bFGWo0XS\njIVgweS0S5mMTGE5ZzkpMcYcHI8HH58P3JEt3RJbbezbjiMkQQ5bvl90x38I48hRaOhiEVGtJI3a\niOcsm6IG19LnWqe2Ym1r8kFgkrJdfgxTdymGvWLTPBb3WORYhkwsl8xeGo0qI06yQMhqLHMiwcEM\n/HMBlkknvm1io9eQOa416f2MPzvhy9haIS2orSrq0GCOUz9r0DvHcrrDueDoJ8uh7oW37Weyw5gH\nYx5YvUJUnLJV0SaHxp+JzD5XqMKcTJGoIRcC9hzz+Y6VC8JWGf1UnKCJbbNcbKLttkkgEaHnBnIZ\nucJgluui97XYauPtfRNn3FQI9HOAi6QI67UEr6XQciJbw2phsHiOgzHPYNNI4Ub8fVOotZIVipl2\nS8sha3EqJ8P//uvPO8gNsRQu2h/6D1Upie1eyFWORuVXJrwnnt86x7dJ/8kpW8HSjI2uNuAplgMT\nsUjM1B4xB3M4szvekNcebfdTydhWwBtntN9jdqw7JStBp4RDdE7Fio3zlJEgDoUaBpOUkZtuTvoE\nLJNjMZtLxSyJnbG0VPU5NX/OFdujzUtZ0B4njEYzDk+1uCXAThfmV0swmZIInvslD7vUOHKMqu29\nEr6Jw91YL7ONzFEpzD+KaKtJS5lsFkYntf2gJfI1LzW0s2iGtvQmeqN46kW7gKwRimejFBEoc5Zm\nePpiJkhbBZuRS1l0GZ5yf4JYIQZqZbdGPxWnJ0Z20b83KdlH4Q6JlqQbVxubScsoqNKaIfnD1GFc\nanBwoV5bgxgHiv2jl6mUopHLFS6SkSTPeOEa1G2uGE/oezALZvpaQblLL520wYsZ4ia3VG5S3gCv\nKv9iZ+tyui5gtfk55VeRYOYyppjm6XklSRwtgy3sCiOO9zKV/MpIvVj6yex12edIqLL4s9fSbknj\ngMTb252xRnw3lS2nFyTqUpiMJbmhrcWYndwS2155o0JUqdMjT9NUHKWUXu5tjZOiQIow9WJG2xst\nV8XrZZUjwyOF/jX6q1yh1innyFHV904FZgmWUShhyDI4mRawdf0YB9YSjJTYIflaktpi4NJRZQw8\nlC+X6iQHdsPkFrZKQNxc464S77cvyHKbWtI7KvXc//7rzzEEheMR1+bawqZ/tXU1FBglwojXXGpj\nu1JwHr91nj813r5s5JIhTWZkOrppu51vWZFaucJyhjnmaocUphAyo7TCVJFJaaOMLDfYJdtaTmth\nU0aa4/l8chxPtcehPc22y+nortFGTpQMHknppci6jamlmhEM4HNSbzf2207LRYvOuRgOm+nQXvuM\n7iWRiDCA6yGa/x9z79Iky5Vd6X3n6R6ReXFRVewmW2qZBjJr00D//99IE70okaoCkJnh7ue1NVg7\n4jabmKMSBrNilRGIm+F+zn6s9S23ua+uhQvBZ6PScC8fK9Sq6nF5osxzoB1tkZJCczF1KDlUak7M\nrgM5JYVCxPjkyPgSEByDKnASFghmbMVDn29GQmCnuKB6F7NMD6Y9JZQ5MQxmDIS9cLtnQb3mkBGo\n91eCEuUp8VII9b5X5qgvHIMljZdSFJgLv7RikILC3Bpt7gIUiEnL1OgD9OUUOlCH4ZN/Ukzs+852\n218XnsGruresjsV8Xvr8UVQXPot1I1vM/2Z+GvDZ6xID/jnbn0vEzpSrz+plKglBe5roW0pb9tr9\nhOQFDOHfHOQ5ZhUzw+PwopzLY2n5KTVwIBRXXphfDy4XnmvCnCTLzgOxHyz5oOVq3t7ojr/Ifijl\nmhWEMaQMSylqdr6km48pUVMlNf2eYgmUVBmhuznLbdT+ecYcjLY4jiaXp3NvkmXiirTzIG1Vo8Eo\nOeaPaDr89+1/Lpfzqa4UJ4WiSYCZKSowxRdSYw75QFLi5cyUO1U7mbDEogGpg2ZfzG7M1hQUUfRM\nbW/1FW4inZHp319UfOQQWbMJdxAUSK0n6+/oIK+bDonnotzcqRUz/PSnGz//h7eXSiT5CzHHghGo\n253Hb52Pvx789KebqplqEMUNiSlSc1bIq1fIFtBBnXbNO5Mchhaf1mJlMtpaWA5khzZFwivd46mL\nLimxvb9j72+MYeJwmBCfuol9mWvmmm/J3UKq5BIhKg4uuMAfkxZ8zsU5mmav7lATdyIyZ9eLuhLB\nWRdraKQUqjvggo9TTL/VZ/pSRBWoVEGBXIuWl/aDCjltugRLf5a57IURqLn4BfGUWl1Mk6a9lo0Z\nnwHHcnDOpUpafwZVTylnh3DxeolDhNYU0GsjaxWYIpaLL94UtaYFWXLjk2lG7Yd0RKOdLWffERgr\neEX+5DwEH/dEr+RMxMLkVaS6COnFl0ewidEeHB2w3Nwj88iYSpQPRdX8cv30Wsbylt5MuY7PIIwY\nkLY56NkY/vt87oae46gQhW0maFmrgzSKR2SaTw8TxriU+CzIX+O0gFfGPmqZXo2q/TKYk+totKtz\nu1UHygVGG1B0GCqVXkayFOMr1HotabjNntmkrsJIuvyCGWt0Wdr1qTEbTmGIL/xFCOKLYNrDvN2q\ngAiz8XU8aEfDzLh9fxOz3xlFlgIrRAIiQJaifUuOUsTUpFkyY/mlpY6PFOir05YSw+byEVuMntb1\nRHpczoiJtLNplFSKxodJrnB1Hkm7EtA7Zu5dcO5+dLu+OkbB3Gz8iMPTESEOTAyRXBPmYTP+5vJU\n24B+9wO0WXes9O/9/CEH+X/3P/yFj18OPv524tgFQgxst8T7952375VpzfWn+pluqqmh0s+L43PQ\nHoY49ItpIqRFr5SCoq/RQWCkaC/7L4EfCTlJVa+Tml5GkxCijwx+6M6NJflQydRaaNdQxuCaOjim\n/hmv8OG1iH6gR3ecEQPFtaLwdJX6Q2IKAwZxQmrKEBMxynQgGV/0W75r7JGr9MKunlq2vOLFW29v\n9fmBgF3uhgs++5PESdWv47jQZfB0FErOF30GG/1LkatVM08bg95UrWvmnV6/k+jW9WxPr4CSyVPV\n4RZKdmeqMhM12H/9S8SbCUWaaO12WaA4vrF42zcv2PSimhtnclRH97zkDXVYzPUqIp6n/ZqLPp6u\nU1W15lUSeLWW/OBPXqmbX/72TKmSqmlO/4CuQ9bCk1dFuebTRCRdcjBYYcpZiL7DPpe7k5FO2cxH\nC4ucA8l0sAa/CHD57PNXZM+/DMzJfDYXx3XRjsszI4Wi0OPtwyTzSwOvNP2iSEHmmGQ6JIOPHjxi\nXp3EENptseizcZqq0hQ1WmA9v1K9H89D1UzpQm01rnVhQKJSEN53LcX7DSI2FgmwGV0ZI+loSkEe\niLVeXpEQpGqZ4/kx1cWE4N2lw9h6X5zX5XFtkfM4xeNPmhpEU7U9nd+jHQsvI9jyy+4Zwvx870KK\nMEQ6vWaDVVnmjmvMQ5f9ZDETwRrEaQGCTf1u/Ttd9uOp/W9//pCD/H/6L//E//2//5XRJo+pOLRS\nIm/fNt6/V7Z7pA1VfhaUyTnXcPnVzuhGP43rschbYFqnOSI1BaWkWFpeGXrba6pynku+GJ+gJbX7\nIbnMbK1/o8awp8LmWT6p5CbHxExGnuZfjNrbuaZD4oXdDC4zMtO68fldS2kSXjPTlDLEyDwkJYxD\nztWQ9AIJfC/I1mhNM3oC2ybpXXZeyfBUnuWXxLMilSSM1wO0gma2aiGfl53azfWsC9bEppCwmrMn\nue2cSbGmaq8+Fv0U7yREAfujM6RVU3qqEBGbSn4ZNp0lnyEnLaGmrOB45RbdiRn9MI7Z2TBjsSY8\nHqeqp5TIET0j5vcpgVrkDn2OCQj+OExXGbmDeHilfXWpP1JOlOqzcodX1eQohDmd9re8UtZBrHFO\ncpcw6moiqqKeews/FGW+Mv8dLx87DKXzxMSck27LKZ3G4zhYtpRSUzMJBaUsRyDk9OTt+/5jPWs7\nHTZyh+q7vEajj8YYVeMBU8e2nheMaeYcYyDaehVGT0dxRhfkdGv7chOOXHnmF/vg6g3Lg+aQNMHK\n9LuIU8yWNgcWTZmaQ+86Rc9MxwOdXQzQ1qQvWFPB3WFFrBuWB2FNIgokjwS2XJlIUhwsepfpQSe2\ndCFHH0s6PvbqTTuMEGhXAzMtloN56LNxXqcydnPVd+kyy8WUJj9GYpCKKaD3brBoq/MYDRtNoTY6\npVk26A6MezZdISyhQ6LWtYaeU3UT9rwL/93PH3KQf/s5Mecbaw3+j//tF9Yy3n6q/NN/fuft50jM\ng1Iz2y2z3SKfv+gPrSr9kingWHz91qlvhVo0BthKIYcMK3Gtk3415nFSSgVndtRStRWOmfNx0MOg\nlkgpmt2OMTh6Y9929k0t1eid3pvL9jQzXnMwhsYQ+FYfW4zR3JK+mLORl3TAa5gATlMVe60Ky13I\nRGNLEVLnJYlUjFoW0RXgEEJgXhejDWzISGJm/PVf/8r2Vqm3TXAtR3nGLBzAE+DT+9DCJ0VSKT7T\nNsXfLXUnIUYtyZ1smGIklsiWN/Ef3Eiynrjf7vO9FbgendYaMckpuFhaCipkVEBJg95Opks5i21E\nk574GsP/+fO1OFV1O7QUyhHb83Ol6g99IubKXM6HL/r/iUuLb0uREZZL8eDpNNXSiVdxcw256q7W\nqfsm/8HAZatatuJW9uhjhTWlNCIYz9zYkLV/ScGlorbAZ9JaagaComTE2hjL/1mL67xol2z5ACEn\nJqYIsdYgBvYYXzml9kTKBj3X5ynaZ47ptTwNrreOQYvhFQLbLv5LyBozYdopDefmq9tS1zKWD4tS\nJrvSKfkOKobAAPkFzgZjkS1pDJjQPsjWc/LjQQuN0Qe1VimkgkiJ+N8WlWVrIdDQDimZSahgflf0\nSWQRLZEs+sWjBHpLUx1PXk4oXOQR5eC8Ts52UTdl14bRhaVwn8DmrlaNDMt/lRIlpvx0/0gb3mUQ\nWX3SW+fsF3Wvih8s2acBej+vPjnXoMfFPB+klci3+No7BLRnCn4+qehQRxYxgr9rbWpvYn9PFbnF\ng3Kb/PTnwj887oQQ2N8ybz9H8qabeVlgv2fef975+q2rxSnGCpeg79fit789ePv5jbQZMwgos3yr\nPScy46zpy73ImtBRaohZp12XNJ+WWFOz5rEWoy9aGMDFWpPzcXBdl2zLWRdGwF6V15hTjsYgfS1A\ntEQIntNZZf9tQ0TDMZVBCpG14H5/J2ehCaQ77eSSNTpwMl4p4hmL3aJkEVuyIfc1yK2z7UWHdHHl\nQVg+HFK1tvwxGK4vXsNfwgU5VW67UucNc7GeY2FNkrk1ZDrSux5eC1Wlx2jMFaIqjDYG1mTYySH7\nZF/O2zE6YzWSLeIqBCsuk5TiS/IgPyAnkn4NaeVLUm1vBiFmZ2U/7TautPAl1kSfRfyYAGG5qfDZ\npbklPkB65ll6dxMdj5tIL/PYHCLYGbpgxui00TWL9vltKVoqx/U0i/isPLwGdehsmrRDgRPPufl1\nCiNQ60a9K8mp9+bjGY0S5tBzQ3rmompUdV2qKCnGlpR4lGIgJdm7+xA1L9cs2RxihSwfi00/THP0\nnQH678XTgVv5EbAy53xNvvDRYEyRYkqJDxF68BFT1FiK5xJ2Rpe96vueCGkwHLpmyPE5WK9lNMvD\nvM0YQ8Ypcd8VIhOzs3vGJTf2fOrFpXC6+qUD2QuD58i2bBvL5afKjHXUbeDVpaUXZmCBIwG0oC4c\nj4vjOPU+pUQo0/cr5hW3MSNQEoldOxh0Pukyf3bNeoc0AVAnLOmo7xD1D/V5wN/RQX71Lxaw3eE/\n/edvMlBkY6WGRWNaZI1AvWe+/+XO9TWY4zkW6Jgl+jX47a9f/PwfK/kWmGESut7XRHB8ZCDEzBp6\n8efUQq5dF61pq367afZ6XcMt3DJTjKHZ99UuHl8H7bwcTL/rJe960efUYbpmYisb92131jkyDd0r\n5EAPnePzwdV0UCtSDMYwcq5AYg6l8WihJkflGE0vYRBHO6T0csA9U7tb61xj0Mfg/bt0yTpshBF4\nptprlKpIszE6/eqcjxNWZCtGTplS3FlmrqpxDoxkJfaSgYUYhHlPmRgLKVWqB2Fb8PSaq/H52wf7\ndmOvGyk+uwBow23oa5IR/rOkREVIg4WmWTEm+tSBNtPUXvKpECCSs5abwzQ6CEnKpxB0Sc75ZI0D\nPOFGy+fbJhNWKex5l1kJF+OZA4+iDvNogdkn7eyu3NHzeDxOhi0tdB3ClkOCoXi+nLM+r/24AM2d\nmsPZ0moOjHbKPMJ7JG9aUK/Z2apGVdotCOhWcpaj0y/3NZerWVTh5SLlTomR0S/adRKjlv41F2w2\nB5FNRrsEICtJiq+cCEEI4riMGiO3XDjnRXdVFSG+FDe1VElJLbFiJLAY83pxQZSjqVFmiHIzK7tW\n45mX5vqm8ZVCl7vb2tWBsXzUE58mrcRt36hBY8cRGmc/GG2S04XPFIm4aiUGyWiRH2MsjycMT/7/\n9IWxVFazq/u+vaXnE6F3CO13li2O4+Lr66LsfiGYQFzRhQYWIWQ9A3EL9NY1vokRw5VCS54RuVXh\nGbhipqCT50hLIzMP4vmdnz+mIp9FWgNdYMUAACAASURBVM212PZEX4NrXgw7ZT+2Ck3V3+2nzP/4\nP/+Z89H4+O3ib3895fScg9bg49edvFfK7jmca9JHA48iyznRWtNhd3WMxOfnydfj4uc/vYtxweJx\nfFE9pT7HLAlRlAfh/VvGvr2pMpIGj8/zEAc9JlLefO4mC/fZTvqlBPEtDNIuS3oumXu4sbbCVqpX\n9IF9z+QcsJL501/eX9K3OZW+fVwnX8dJikUwopTIWUuntME5lBFIjgqlzUFyuzW1me9y1ikxZYlf\nHo2SA3Gvekli4GoPWv+RH2jRIKhySxYpocitl6KPk3RRhqSH/WqdPjxI2pS/Odd0GH5kK1p2higN\ndhuLeQ3mOrnZTqyVEjYIUYfglt2R1+jjwmYXSTIYi06gqvJuy2VwyVk6ghTVkAlTS9jhI5oVTUG/\nuFJpwgzaERTnhdsyseyjkYL4K+omFu3UUj3XQr3tvJWM+cu5lcLqQuqOczBKpt4quTraYS15AEan\nAvXtLu2/S13Dtzf6WJSyaQGflKyzbZtfWEGLTse1rqm82JUWZkUHTRRMagVd9m1O2lAISQxd7J8y\nyVmjxD47x/Gg1sItbdL9myrTXLTYzjGK6Ig5WyfyzPqMSQhmvBKWJDd4NqdAb7sHcw9brCh1WgDJ\nMi1w2+7ctgTZsdL4eM2MMFUY5JQoubLXm9yOqXDL2o0EjGSVXjdiGKKidqV0xeja+BVeWvYSFbGW\nYyJEpRk9oVRShwVycBhdKJg92T1KDZrduC44jwdm8HZXTKTyAiSXDFGqplIVCRmW0B8xQA5S4ExE\nRRzzOS6bWtg6LqR40lIIwXHLg6tdv3um/iEH+eiB0aSnznURk3m4Q2AG6Nfg+GisU2klP71XMpNt\nwa1V+nUxrkmwQDsH/UqUqpu8t8E8UUtXIrlKZmSmBJzrGrSHGNtzDubSvDhmHd7mMrMYn3IsnLHh\nWJe1GG29HuQQI3nbCCZL9+M4+Dwegj1N4y0OaigyCcUgOy6JvRZC0AEYU/QD06hbZLrsbbrUTZJB\nXLUQaGuqQs5C9G4lETFWSFiUsxVztKtDmaT79soju8kjuPkkph8SK56SPFhR6IMIpBVIKyjIgkzJ\n0ulbcNfc8oPb+muDX0rm/nYnRTnVhGkdxLCoRe3/mKbA3f6M41JKzTLzue0ztPdO74dGPnERUmbM\nQO+TdRk5R0pWNFsc+AJ6Ql/QtZALOUrLGzKz6aV7LpPWDNjIlFj057ekC4BBBNpqrEvjkADEmGXa\ncomkgWbxfTGOxvW4WM64Ljm/nLORRYnhteg1gWGkw06J3iW3THuCDMMyW6luPnJ1IT4uQpXhHE/b\ndng5Fc3c82ZCxu77XeY7vK03qY1Umfr4bfn47GlI8opawLlTC3OivnfUDUbfFwne8+Tk68881vC9\ngNQ2E816mT7wm8ZsRoyZmIqLSuReflanPGW8Fogm1+wakz5OVofsbupFJMQsy77LbQ0dqE9NEWt5\nJxeISHcu6SYvtMc0IyUFTJdciDkxrJGW8hGWSUe+xvqxRwp6Xln2g92CuWhOmv9g0ePFXGyRIisE\n/0zqqNbUmbgcxjXCJDnOwQjCXlx/Rwf5eXba1ZWoniJp09yZaPRlnMfkb//fST+GpGxpl534Fvn2\n543jq9GvpYNX5jdVt30yzkF/qBq2aMRsbDd9MSlmjnZgc8l9y5OWFtjfbuSkvEiNXYryFQlYmJ6b\nqA49pkguRfLFXIUz7Yt2NUbrfF0PrquzJuSRYKIX+omzDMi9lTKESJ/LiXRLh89zARSNXAvk4tI9\n/bMenw/6XKwaqfv9dWtrDRS42mCOTs1PF543736QqsWNXnklvUilkooOMVuqvGYwZpBrLoyFXYN+\nnYQ0ySi5yAh0V+hoHKUmNMVELJ4ATmZNJcQEFikGtrqzURjDOM6LuBJ0Faeza6yz5kVgct839vsO\nq5Ofea0p8RiD82rMFohbJe5aeuvFELT/aYcfq1NulRzFsnn0g3FOHT7L5AkI0itnl33Org4AFtYX\n1pyTkzM2jdG0xFpoMVVKYPZBuzrn4wKLrBvAUyUVlOtZhG8NKWMWCa6SCiFR8iQgQxtZSpzstvuI\nujSB2wxQFXgcF0+jyIoKcXh1iIiiueVN8DYPXNYawlghKFSB8NxxSjJnEhhILz7dSalD9+YFjz5C\neOniU0oKZQlQQnlJNxdgITDMuIa05Rmhi+elgiOmieXAQDF+07c0EWSO8di9XAvtuGjt1OI6+iI5\nVbZ60+EbfJGKV7PTWUTB5ZQu2zLTs6QRnjpz6QEyW9moWXmpKUg62zvMEBgx0MMQm96d3TZ14ZRY\nnOPnC3BDCilD+6gJKwmNvYL2YlgQHGst6Bq9rWX0OQlhCnlBoLfJbH9HrJXfPj500A29SN/ub+w3\nmXBCn3QgzUjvWjpcj8l2T5Qtst8i7dwoRQvK/V7VsjyZxwGBkEC26CyuSiqFMdFDZw7YipNlnbWi\nw3kUsnCd6g5yVvXcpxZa2RcroWywLRlqTG34MP3dl4D4kgQW6i6SXCzJ29nBNRpzdX9586uKmmMq\nSgvpgpUPqvqhFuFkW2scxwltMWvlfo/kTZmDZmhR2xrn8eD7T9/Y74Vc9O/NIVGDFAdhQZyBvVYh\nAZKq4TWd6YKSaEpKpGAsCTDoR5fFeCXaOdn3O7XstCBtcqCg0lTLwfO8GEOVUI6F9/udrRY3HMkk\nletN6Nij0z++XNmhzqj3C6ZRc+Y6O7kKePXx8cHn18l5TFK8EYsYKaUkrrNxHAcfv/z2Muhe4+L9\n+7uyM2thTwqnXnHS42QtfBENJVbqtqmTSLKyY5Nlg/U88HpnMOkpuLkj8G3PXPPi6+ukXYOyS/Ex\nXOYYXUWyHIObnGzIUgdztk7vk/f7rirZY8FYKEjE/QkhRlKujGGcR+OXvz1kSDOnDlomWiZUdSrS\nN9tLQYLr/1OuEgacF7lkSq4QUFjKJSlo3SsxJeaY5JDIC46rO2tFi8+xhtQXQdb3YEvO3GHO50bx\nhT4Kmr2TbJEtss5JaxdjiacSsgqwuSYpa4TX5qD7IWi34IgLLbXHk3q4FikvQenCszCSL0BZuFmz\n6SB1VGsNo5Fq0QVfEsncqDQmrV+MMIVArlHPqRVqLkybfH59ehi5OutjNO0pQmQronlaWLTRNHIJ\nxufjpJ+dTOL2/qbfqwdxp/AMgRa+92gHc2rPspUboM4qU373TP1DDvI2T1G8gsypwn1m9hTABofB\nvPQ3Edpp1N2NLanx/S8C3Pz2y6Hbz+SwLCkTa/AqSmqBFdwgs55Sq8S0zEomS3EWJzq55nyxXhb3\n1i7B7T25e47iiAsHS6WnKFxYzFQjxEwsi4hmeq8Q3SSjxJiTa3RmgBEWKcrS/zQDgPIVx3RGOhr5\nqEpchC3z8/c35mkUMtEUtjuZL616XJlEJVgB01esPEkn1RE1TrgWlo1YUGW1Br11+tlITw5KSViG\nfjYeHwe//vrJnivzDjlXIpNihpmqRsLT6SZ1RYg/tNg5FS3tCIyhKvYptWrtYh0NgZndqmNoPt6j\nWMxnZwxdxp9fD87WmTMw14OWYO6RUnYpK3rneBwEk0s2x+SWaAgdsiWIhZUTCwHTni1uHwNmYFkn\nZbTDiLrE1/KkoqGD4jEl60wlca8bV+8MM2KpWEgcrfOYFyGbQiCSlm9mgX33ZBwHin08Dkkey/YD\nFbt8AeajPHkKE0ZizM5xdT4+D3LK+l9CoD2atMhkRu+aE7vhzKKe3jk1C46mWXa0p4t4iV2Oio8V\nNcc9r06NRolGssmtbMQonfUT0CZJ6A/GCQiZ28ei9elOaF5LWuZitUV3wFxsg7pXyl4oIYthH0yM\n8OlLyWsqVs0krgkhSf0yFeQgVDIv0xtB3YAcmVk8eZTz2ceghkS9OWjMzUftUmSd1DKQmg5yEVUD\nqy9mV3h0DkLVovQ5Rlis9OQZ+QjZcJVRpI3F13nRJi7jhIwbEMPUzm0GqjljaE2uebFt1bkvv3+m\n/jEJQXmRfVKVSniZVkrZ6GeA0ejHYl6mg/yxmDfDtgl58u3nOznDx8eXiIUjkROkXfq3JwVQCTyS\nHD0PyVrV0vQwneucFBgRVFnPMaWxZSnYdU5aH36QS+ol56BGMrlE6b0jwqvmoJmvOdYU0/Y9Ri3u\nPEKNEDxabSHFoqrwmAJrNvrQoiiYCZpTZYzJtXCrG+NhWAdWol2NvgTxKnUjhUpJAVZidHV/xGcI\nrCRS1hb9kLQt70bYM31KjqiQXyPXRN0KuUaO4+S3ry8+Hhe9QkiFzYq6oNGZGrjroDBJpmJMWtyV\np6kpskxa4NWmW+Clomn9wFr37EZ7OejWUmV4tIOrNUIz0hVU6S9jWWT2zpWN6xSnY67hexHJI0vK\n1K1Qs/gWq0nXnkOGhJtv7MWxDhNG75zXl3jd8U26fNxIEnDVC1znRbdFHpmv7VS1mHShrBh5XBfT\nmub6WR2ieDeJsQRQW3OQQuQ4L1hGKgeWFtUvXMnQpGAwZxStpeDeuX6YcmIU/Y8hLO9KcI6TkIxc\npEaJZC9ShsBhKxApGn25TDHkRKxKohrRaP3i6JMZZXCJwyhv5WW4Imqs2a7h+ms8JET7k7EmZ5Oq\nag4jzPiSmM4mP8IcxhidGBIlaVyJaUSmitspgyZonbkMVix4Y47GNaHk4ZWuxhkhSiZrOWsxj2Gm\n3+P0EYbi3Bw1gNRJvQ9seR7ngHaJbBgMN3A9o/SkRln+ma4po14eg4ned4ue7ZkqhMZxPuj9i1oK\ne3GkBNpbkUT2TJYUBDIaV2gSFiAGzO/9/CEH+U/f37WxJribDcUihcA4J+2hheTs2lh/zKZ5dsz8\n/JYpZdEirA7Xo1Ny4rZtwpECoahltSDi38JEGzS3zU4dyLncIEZt9VkuezJSyOJ95+oktfVahLQ2\nBdWK2qhPi67XfimZwdzJ+JyLusrDgjamkuwFAr5Ndy0pRHd7ZooDSa6jcbSTZXdKiS9myHVOVjNm\nMo7rYKzBvkWPQdNh2ftBbYk3y4Q8lcnooQXzGlyPkzYbtW3s3AFJN0vMPI4vzMSJWSYr8ayR25/f\nybEwY+Ew88OneXSXqqS6RcotK+iYpQWm7zBmazpkOpwPYX7jy3u/nCWiMU+Kgc7gWpN1NcacbKlS\n807ZtPTurSvodw0+H5+MqJds2GS/7+xlZ6+7shq9VZ99eRKMuzZjwVJgBKOmDa5A791NU9CvSbtO\nUkCUy5LIqbBSYAsdGzIGjTXlQC2VRaTbJE6kMimFUISnTcnDdM2XvUMKkxkixMXXdWFxsM2k/YR3\nM6lUxjkIYZGrAkre33di+jN7qtSUtRxbvqyek3ZdKkw88BcfeXx9nqSZ2FNhrxuP8+LxePA4T+p9\n5/b+xm6RFiZ9LbCEzUDri/Y4CCOwb51QArlm2tn5+OWTnKpzYyQQWMkYcfF1HrTesQl73ilBS+3z\n0B4DAiVX5jX56g/u910LyDXp5+kqN0HxUimQIq35/mJO+vmg5sReK7f7nfY4NEYNgdv9BluAGrmO\nQW9ixsSYsRVo5wUzu7M5EXPSAMMEyhtjCGE7n1wZFZ0L+DpPfv34RSajqE7zuE6IRhsX5X6j3jah\nbFPSbi0ll98KNxAQniHlQg6RYQrkPk55REJJ6liHOubf+/lDDvJSCml73jBuzlgwrsH52Tg/u/77\nZcJ1rsC4jNUT7/tPzL44vy7Oz05gULLRb57ikaVYGNZlgAkRIV1V9YPrbF1Xnny58WRxa5Hks7E5\ntHhwd96YPzSolpzv7fba6MJRc6me5qFabuIqAMLS7RtVwasETNq4u5p4ToGhtqoFx4iTYTJN6EX3\nBaJ/3tYPQK3cHErHWQbX6J5sD3Nu3L9V8iZt8exdcszWmMdiG4p1y6Uw+uQ8lCofc2KuxXV2jtmY\n0VhZrf6yoUVOfyJmJxah1MR7vEHWClCNxpPMh7fBi+PR+PhVGYU/fX+nboWwBax6hiWiU6aUsLRY\nBViiinfToulW7twI7rS9tO9IbmVOi/pWuW93trzRR+fqF2NM+qVUm+SW//pTpZYk6NMc2DCmv2ij\nTZfVDbaq766N7hrxSkhSVj2jy+YctNkY/SQAJUVu+8YeK7VUpumwN1PM4HV2rut6NmSEAH1dQtcu\nU7qR+VJ0Tc6H3J+Crg1yMu57poTgqe4wriniXpARDp6KCu0LwtJo6fk77k0L2uvQ+GxOSLGybTdS\n0eK3boUwtSvIN40p5jTHIpjLeyeXNUAxd8FDpsOW2MqNHCtrLGqsBJ/7d095Mgvcwu5KlcUVtdBe\na9HOTg54PJsjY0OUvd3E6p9tMsdiWmClwTgV4bjWIiOiZ44y0/VLe6bg3UPv+h0lF08crQnA55iO\n5X+N6bzwJErhk9pfbhWCa/jdNTvX4uqdeWmH4mgcLBhlqxpdEgjJz44geF27DlaMzACh+FI2Gm11\nAouQ/o505Jhp+ZASj3YQSESTjfzx68XxIc3qk0sSQ2R1sBYpduM4Pjg+LtpXJ8ZFqcZxh1ChenTU\naKIblpL8S5F7alyLmBQOa2bYirqZE24bBqanyFsgTpEGx7VofbAiRM8ffMKVZNZBt9FaDoUv5Fhe\nM7rlrZxUA/q/g1fnmAxL5kakHHVzs+RkHPHJ+JCkEkdqWhYXPWa1hu1qrKVcw2tMzn6J/rg6sbzz\nlndSyZ47KJZHG53Yk2a1IblhqrGiPvdED3Zn+thELlqzRVyKZeutc56XdMd500U4TFHVIWDWX6HH\nROFQz+Pk8+NBzoXvP7/LOp0La0oCuIZs64qFS1A8mafDtYai2uom/EKA89D3Q9VYTB1fJG16zo52\n8jgPzvPiuga3qjzJ0Rrf376Tc4E1hRhuCiEZtmizc83OvkkZkVfkqz2IlrlVGEjWmHLmaTOfYdHp\nRBR4EONGTZlbqrTe/XKQMe16CA0QciBXsfP7aGyWyMhkkk3zZBud87jcJBIZeRCiIGU2hYSYC9o5\nmFMKnFBk0JlrEqaW3AwxVqLDEGaXKiWswOo+shsQhuz4JQV3/A4pTErAhtglbWlH0NtizsC4hs+w\ndeiUW2EPN7799EaoUrjEFRit0ZY+v7GcD1ME+JqTnqITCjXKSKVQcmQyRVwMImCOuXB2lUaHfUqC\nPJzJs4w1NK57/m/XcXF8PhRWEY3Ygy9sE2saH48HIUZqrRRPYloOuorPQzzxsvfveaePi2WTmiTl\nZQBNocr0QBrJR2FLQddIRKAoPC3Azzm42oCcpcK6ecG5Fs26iI4p/u6R+sfIDx8n7KiSPge41O18\ndD5/PTkeXQuKaL5FNuaC87fJX//5i9Yb/XQ4VYfrDHx+LVq42Nfi9h4YyJlX75tMKEEBs0f7IqTE\nvt8IRQ9RG4NtK3IoOt0vTjxCsyjhvXfO0dned+q9sqIq0JD0yw1rAhOiCI01bmxxo5lStq/ZOfql\nQNk1FL1VE1sRnGlOT2BfWuQI0OQExSC1Sog3SihAJBepBFJK7kCdPNrJ7MaYi2t02YYX/Pr5pUg4\nW3z70zcFHJdMqom3b5n7dmMvVfxvg23buOhChyaZI4ItMmA+7w4rQofrks09WODb+xvf//RG3hIT\npd2vJSRAWHIeLrdIL6RgCPCqvNMWWStBSLR+8OtxUPaqhWvVBW1RBqdYArYFZtYYpEVjlcAqGlOt\nFfj8PKVfL4tug3NcHP1E6BQ59IYNjvMgr66uq01WXy8A2tU6X+dJ3d4FNcP8eZ0c49RF6LPiklW5\n3t+UE5kMCoFb2ngrG2kFHr8++PXjg8/zYqXAJBBzom47sUSGDVo76Bg5PU39gWh4rNtidbHny1tk\nuxfqlulX5zgOvj4O+rmwoGiy/acqXn1rWqqSCSNyfF7s9c7tdifHTN4iaQXa4+Lb7c77fpd3YASY\nMEfXSCgIQfG4Ote4xE4PQbJF036qX0tL6tXZeiXnytqXGCYh02ejnSfXebLfFOJt7og9Hw9GGwT7\ngQQoRek/KQbm6NojZAVfn1djBZdJgsOtLuYyUhHgqm47y4yPr08eHw/OQ2OXEPX8tAvaGPShMVcb\nF/W2EaqzgsLC4vK4wQgl0ufwUa4RM4zRWAy2fQcUTbjdN4W0O6RvdcdzmGSUJSsFqJ8n17xgDGnL\ng2r9eM/q9mbn67cvJggy9zs/f8hB/nh4buF/RZeLFmF6mMFwXGPwccdahBW4jsFf/58vUjFm0wEg\naLvmogI/iQ89lrf+AYJbjpnGWEMaYyCv5BhQIxxdo4fsxD2DSCLHrMO3T3KIFCIZzYOnokt4xoeZ\nCa3abTAvOI/OjIuVwFJw9UQmOuRJqSPO4fAqO6RAIipVJwdClY5WipTAbINQzDnNzocwaZJDyGqT\n2yB2gaGeJhLz9vdxnPodLFU5+6bcwTY6x6EXIKSk9q+WH2TGNYXk9YxCsU4i+Sb79hiD2/tNCfHJ\nx2JIYhctOSeje2J8oG5JM/8gPf98kuqIdINuMCywxlTqUkrUGJQKVRIWp7g5Nhim/7yYMOSALXsi\nIflkCEbIULYM8UaMxTGlkS0U8pZkkiLANaXtBVLZKXZj63e2Pam63yLbBpZQJb6JWJiS5ulmws2W\nnCghUlcidTE/sumwnFenPR6skrmGMWNis8B2z1BMHWUY9IWWcALYMIfGBeMcmufmnZ6m2/0H16nv\nvl2KEcy22G0jh0yIfqkejXkushVsTK7zVDrOWoptczQTc9G+Dng4JyUGLGuxOJwWuBCyYVyT0VVt\ntt5ovTOXm+pCwgY8fjtoRcv11k5Gb252k4qpt87H54MI3L+9cdtvQj24XV07iMHVpHhLo0g2O30v\nFVS8LYlcWPGZ3WocTVm8bXSu85ThL0VfRiqsZhKwGFgpMpa6WGtGTgmTQ09FU4IS7BUKInNYYEbt\nnjpdstGY2PPO6B5QEoUzTqYRa0yGxUG3xTEO5myKVLzfWTFyrYbN8VLGpT3CeI6u/v3PH2PRN93g\nwxahJIhiq/QBUzsNnmwQQ3ZyIzD65ONvJ+8/FUmn0Is+uzbbJRWlha/2Iv6dZ2Pbs2cdOraya4Ne\n5ka2TCbSHJ8a96KRiflsfi6142djK5W4DFqXX6e419jBTDbkVDOTEmGsSdwy+VYUDBwL2SJz+Qwx\nuBSNQDQ1ujGqAlrDk09iIhbY8kZrndZ188ccsOSJKoipkXOlt87WB2+r+F5fChCiDpnH46EItwBb\nTJRdSo7runi0hgE1w33fyVuFGFiO3MWMnOprV6DRj+R905IUIzZfLlIpkZSBNvrgODp7KYIj7ca+\nX86OUDvNkLN3LmNghJJY0fxCEkOleHrK0Q+6LcIcrgzSsrjPoQumKN8whUA0I2VFgZUtUOtNQKwI\nse6s5CClOQl5EbMKiXrfIFduhlRBGWLN1Ph0+vol52ja0Z9BCki54Qqd/iXjW41ZeZCmxe5aneMc\ntBnoIRDqjW1LlD1DEKM7Lo3NzAJ5errPNAUiDOin3LRiCUli+wylWHMJsJYSMVZIohPOs7Pvu/sO\nBpbk/B3mBwfaEfRhUsnEqH3JFNCpN/FlSIpC630oQnF5ZJy7OQUgq5gFHl+HoxlgjA5ByVATczOb\n8fl48Ha7OclTiUhziShqazBX10x9TWLqzigKQlBXRROuEBxfoNzRMRth6HfTRsdQNxeTsAkr6YCN\nsRBcJTTShCBc8fAzw9b0Cy+5jNKFFQHiCoJjues6BXH7S87EnHxs5Oqx4BkAfrYt63QaM0xWitSb\nTIKzNy3+TXkJ5V5ZrbP6+N0z9Q85yP/0p2+sYIyoOfZiMtrglw8lr9tcmtGiWzW5VtxA0WAhKs8x\nR9pozH7BeCMuVadzQrbAdTWO8+L9p539rgpsurGDZcwe5IpMkdWXqvjxtNFHVh/89vXF5y9f2ID3\nv9yhK207pEC6b4SSXnNiwaxUac8IbRm3moS4vFVWmGKGdFWzP9jUjWj67HSNm/qlLyzlwL4VbrdM\njcYRGl/toONdzIJl0e3i4oLst8T3+zs1yg041uRck8/r4NePD7pXF2nfvZVDc2+xuwg7lHti2yoh\nZnprTk6MRMvMedIfQupGX2YOJrEnUo3SS5fEtm9stTKbNLv9uHivu2LnBmxblAY3iRdtY+mBntL/\n1zctYNNTJgrsScafzmD1xpxyPpZtI4REswtY9HHBZcS0E6OSzSFjJGrVGMmSUfdKs8l1Nj4evxHa\nFLmQohbXAVyzifGeQgJPUMqxsKedNSU7S8G7LB/XPb4ejF8v7KPzi2VuWVLOkAPlVmQ6WYO+AplB\n3hK3950VIrYumIM1IlfT/DfnnZIKYSsy79ikXzKibftOyT5aqi7Ny1mKDNvYaiGFQgli1QSTPDQm\nfR6CZr/i1CS1/ykRY8FC5Frds3OnW8lVqMiSH53/Unn/VvyiH6pAPWv0ah2zQcoQc3CMb6fbcocw\nHhAzaL1JO+9deUryehiRWMTfWdEIm5usTFTF5RdprFk2/tbp58ledzF2mNStKM0+iFCaS6XuOyFV\ndTFzUmYiBAG6iGivMYb2ILgT257hIPYa/6SYaHNQ3Guy4lLnFnR59zE4Do2USn7znN/AtmWaY4Zb\nMGIJGrXNKXTD08y0CaHwez9/yEH+9r7TzTjX4PM8XZWy+DoabYgcqJ/g0Z4qb4TcFHym1Mz3Nvnb\n30QRG+NkdMjNoPjM1WSsiTm6Xlwvyr5vRCKjCVQzurmxCBkwpoxBs0+Ox0kfw9NUXEI3Ozkkgi2e\n6+g5pHBJ2W3Ba3L1i3CiENkCfV6MpbZTo67oqpglUL5FGLC6nGytdfb7xq1Wuf+WTPg/Eu9xBCfa\noCeX1LnBqUSfsRr0aZRVuN/vmpFH1wALNUKKhdsesahKq88OPZLCdLY2BJIuhwWFSClabC7TOKsk\nhTlYMrlao/jwhlFI3LcbOShmr6RIKaqaWrsISTLAUhL5tmMopzAkfW8xRbVrwfGmJnJiNDGzFayR\nX4hewwgJrtkZY1FSddbLYlwydpfyQQAAIABJREFUiwWDdU4sirFOFECLKDdgm43VtOIbJvdiaKfn\nblYBpFz/3Lv41uLOyGX8jDcbvZOTsWLUksxdDSkWtiVnYioTrMNI5Awa4hVirMStUCxTQuSIvkdB\nXd9ES1m7TneULd7f7pJZBgRQi8GVQiJvkiPk6IRJjS371MgxORdl2ZSF3oKjgZ8AVSOaCfxk2t3s\nm+MtUAhGn9of5aCOdbFe44RUAqU6+3+pAyLqmf720645epYa6ykfvL/fqXslWaKtyepanm/33dOX\nDNqgRKVg5VKY16UFZ5jELVJzoVgBB1oll1CZCfa2PJbOzMgJthrl7i2JMoaMXnMyu3I4pWTTvDuW\n8Pqur+tiq4X9trGbjz6DK12iJKNhcw1+UOrQ/X5nwxi2iFvBkmSPOSfXsj15NeGlvPtvf/6Qg3y6\nHpTgbOwJY4rDMOxJ3XsG26pVDTj8aUIqibefNiiBs31wnIPeD/oVqDctnMiJUDWmKJsWeykl9vsm\nAA+Rx+chA0cwct1eIcv6jGIdtN4hBg9f1l9P+35MMvUs14+HZ8J5kMxprSnITTJiWvR1+Uz8+eWo\nMkpqNfRZOsyrM1vnOk7Z+qcx+xBgaSnZfUUp1yVjDK/RQ4x4KIEck08Jmx6MzNvbO6lUPRgTZhOF\nsoRCShlLk5kUezZN89O1TJr+CRYl9QrLqFmgo+dC51Yq21aZYZGSGOSrTdal0dcWixRBc2Br4MpM\nHa5jkHqkPLMXX4QoT1BCi8a1NAYJc5BsklCdHXEHX9SuAtNcfPqYgYCs3m0QOF1xBOcICGWxiLlA\nMR+7ZIYfymMZ0Z19a0objgdWzKHQkdYvIpURNKKIJn9kzAmqsiDjHohbIK1C8flLuG/c1iQkjbTS\nMipagCtMuHArN1IIrHFx2PRL5ZlMpcNnLo20mMZeNoVop4AMCXI+Xr1jGKkWyC559ZQjzZlNyyGk\nSup9QhxQkvZMy8AmyRYhyaK/ZiPGnRSNsTrH+XAVTpTMOLtnIi1y0W6k7o6PNb3jweWz93fprcVo\ndyVLFOI6VZFG92XEofHZdrtBEG56AcvdlLlmonWFOFBIu1RgJRh9iAFfiqrr2Y12eUjyUpi0sjud\nkFg8uctMxp8hXLI5WiGCnlc0BmLp0hx9MEpXcHnSWVFKAMtECjkkmaiaDI6hBPrsrBxF93Sy5DOx\nUpmg5u/7v//5Qw7y/+uf/0VqhL2KfZyDoDhZBgKP8uOZZ6jlk/4zIWB5sf+U+P4f/8THR6P/64Or\nfdF64D184/39DSuTEQrV1JqHJDJgrIr+CoaWho6X/fbtjbptEALndaplnQq5qFtlqxvDJqHoC97v\nGzMafek2z0Xo2FSykk1WpNZMm53znBDVGQQPPRhe5deYqKXS3VLeHrJ/z7lYfTCvTj8veorAUCze\ntmmWjD7/045EVJJODIFrTc6z6Z+xJvV+J9edmgoL7ShsmVa3LhAac2hRV4KgUnNgwYipMK7J+Xlx\nzAdxCHpUiKzZYQ3ue+Gtbmyl0lYHErMbX8eXGN5TL7J17RB6U5xWzYX4THDqk26d2bWM4sk9zwGK\nghWGZ7myBpubpyRRmwwC8+kqDepa8k2H4hpwjAfHcYDP75/y1lRFzdv2SrlXskXySqRYCRPog32v\npAhrddalSLGwVFX20V1rrpEgQckuOWg5u//8LtJkCeQ981Z2tpi4FrpE4lL47wpCBacdWsZ6ZJ1w\n+/ZGjlPfybho1kl5Z9s3IoKN5RSkjz4Pfrk6t9sb79+/UW+7FobXxX7fJcX1kIsclA3Ze+P29kZM\nka/PL8kQ11T8me8BMpuAa2uSwyLHwIwGNsC6g8cGY1xcl5zZybupWhNv3zZyrWy3xH4vpCLt9nme\nnkeriySnQM2ZfSuAvkNSdM585O3nb7wn5cHaWpztwcKoW5Yhi0XKKGSlRtbawDwLVmpwdYtbIZKw\nHNmz0fLClmiG2+5+lIiUOH0xzkY7Lj+41bmmLPnrdhdcC3Q+KcRCY0dFU2mPs2+R27aRU+G3vz74\n+O3gugb3e6DmQGBiczg0MXinogt3KpDh76sij0ltb0pyaZmBbUoJGocSegKqoggik2EO5AmRsifq\nLZK2xZ//6Y5l+PXjerFM5pIOfMbl7k6NICIKRciuQc3xzRcR0c0SE9zEknMm3dWSDTcbPK5TsXI5\ny92JmCsyk+jzxaRE9Fwy2317Ja+EaC8noUIjFDIcTazlWCDcFiVk2iXDToi7HyBqwQgLS1rqWdDh\ndbUm1cuzvHWVzzgvQhswtHHPnkYy5+JsiqnDgtLtJ3KpMkmmasSWmNa2RG7sa3GNgbXJHgulZPpq\nGlEkN0ChQjUu15u3yfHbw1VIwIoMOs+D9Ha7E8tGLpsUM2Mym9u4k0I0hBc10lJVRkisIQPLFgtb\nSXSP24sxktFupDWplvYCNVW9oLXqkXKlkVJ/5msObpa0qCMSS+Fqg8uZHGWFl1N3DF2ux3E4jwR1\naVXGsmVLqqGhsd2t7Gw1U/ZE3CLNlSFbSuSqnMdxBura+JZ/5j/89J/4+ds/kqzy+csncV1c1y/8\nLXU+1yd9LEZUFRmDpG5T2h9ZV6bY4GMMcndUwYK3202GqDZYsxPrpos0BbbbBjFwnqcW/VGz7IGn\n6eTtFYjQ2yX1VYLtJtBVm43Px8Npok8bu8EctKEM3UGnzcxg4/4mSJ2EBcrafd9v5Jg84Lwwlox5\nQhfjo4X46uZDisSV9OdekxCdC78V8ibkRH/SK6e08qkUqo9mw4oq8EJgHBpNlSjTXPClZG+XRk5R\nLJ2Ssn5nT1loFDv/ak2s81IJQeE4KQdfpOo76qhI0bNz6ZwL6gwUtp7AphchyZOt1qvDBHx89u9/\n/pCD/HYTjTCWQihqS8IMfPtWGQ+YrSvaC3OJklCsCQXFlj1CXnQ7+ekvG7Fm4l8PGQtMnIRFh6Iv\nTinewJLzKuekMNisW32ZqtPlzgJbChJIKVFvhZPGZVLCkAIrQJvdt9OqCjuqpM/r8pSVzFYKsT5N\nMAMz5X2mlBhRVWqYJh36pgtmVeM6Lq4rQwyUokNTE5QkDTOO7VKL8sOYFPWQz7U4xyDZkmrDecZr\naRnauyh7GgsHrzrFkEkkVtTvJiRt+/u8ODyFKKzFVguUSGuy0+es9nOMCXaJce0KDevTHa4yQPSh\nQNlSnTBYdmLMHHYxfYEWs6t4xCJ2s5TGJotFvwbjGuRUhDsIUkKtJcRAnEF8Dpzy6Fr/5ZRIkirS\np2pjTu+Azo55h5hj4OqNsyksOnVYlohmSm26utjVWyVvhVyFALCgf39CSp5gUPMb+75T9sRMExsH\nczUtzGMix0KMkX+4/yN/3v6Rn/Jf+C///f/C9+9/4evjg3/+P/9X/vlfOr9dieQ5sguN4lLQAjCk\nQKFoP9PNSYaB0TpjCAJ1e3/XDmcZM8BWC7d9Fz8+KxJO8leFqsSaYE7tTbJ2R5PB1Q8sbYScuL/f\nxMg/xRZJNbGliGXRO3ufXGOSrg5pYXFC9kzZJDuMRlmFUnaerHRxUXxCHLXsxUdnOsX13KcirvFa\nkxp0SZeSSAHiiuLOWBBbH9yCH9VpRjHODWBOZ/hGhn/GFTUmMzPN1EMSQTRl6rYhALHY79dcwuXm\nQkIdRMpROQs4o2ktLwKkWV/P2bfzXkrKklQHjYksPM/t8Bqp/H49/gcd5N/f3iAVLEp+FJMIZPFP\nwJWxfvDx6wlBy8P9Lrt7yYnbrRD3yDUbvZ389P4P3L/9xLc/f+df/t9/VSX+/zP3bj2SZdt13jfX\nbe+IzKo+N0sURR5BkKgbYRj2g/37/TMMw4Ys0hTJ07eqzIjYe92mH8aKbMlsAn6w0CeBc/qlK6sz\ncu+15mWMbzRt8nPKXMuVtEwzbdSl+U5SvvhTY64KWTl9k9GaKuwh9GoMkZeXq9yUjGUtPvV94orz\nWkaEH394Y8uZ7bJzeb1Q0qrCTURFVR9BPXVwLSbRMmQrBhO2y0ZrnbCixszBmubQI8ADLd5yLuzb\nroWS1gFiOU+HqCCCiJGRi3RdU1gOMIUPDQRV5a4upp2dSOf6+Uow6P3k6/s7j6Mzu7IbwxYhCw4W\n4pOQGLkfVSyVOfn0WW7JrWzk7ULKBaPzfp/02Yi5QIjKqjwPbm932inFycunizjqMYiTM6RqqT44\n2sH5eFDapGwwt8i271SGiJHu7KGw71IRPCWcOUV8RKFxx1hvhHCwtd44jjutHlyvF66XC2A86sHR\nKhqwT87qMAdxBobp+8whlnS0vCibRuiRjY2QFZhwyS+KkgPq8UZvp3jyQYEFqeyknvj97/6C3+R/\nxl//73/Hp3/7W/7iz/895VL4X99/5P/6m/+N98edc8ib4CtS7RkCsl+kEIohrp1wwCY83m7c32/0\nVrmUjW0r7C8X4Va3nW3b8GgagZ0PNaRBkse4JcJYh3hyznpS652zPRjZuexXXl5fxL8PzsWEZnWM\nF5dE8v128vXLO3PJz9TpNNJRV/WaFgo2cT8q9VRntl+va7xmhKKuJwQj5bQ8KAYM4S5K/Hi/xnxG\nHK7Ze5BseUztproLX9D65PpcVp+DUU/hJs4qVPMeSBeNSkNUkVDPkzYPZtEOIhZV5q02em3U1lSl\n52fghJgIAu+di/EUmBYIeV2ordN6ZY6NUpL0FqMzRvs4W2JIAu19MJn+4dcvM1oZqzGxSF7289EH\nly3yu9++kIJYy63LNBBD4vXzxvW1cLkWXn61YaFz+3rnqJWcdBBeXxKjG8YkumnT7wk/tW3uvVMu\nQtGCtNq2APBnVcagBbk5azuptTJ8sO075WlvX4uHLW9qofo6/FeOYS6Zy36lbGXd4isUev2Mw7QM\n8aXlTostTZCT836/03r/UIls28aWFAs3p3gPdTbi+v7trNJZx4AVaZotRMq2KYxi5UPmKKv7mKsB\ntyl1TzCSKRr5/n7XktCTkAhDKqEwIteciXsmmkwg7lOytWgMJsfQBVqPyvk4qM15ub4o4zTr5+vT\nyZdtsUOUED861FOJEjlnti2xX4qQsUxSTtJAW6bSBBEKEctC0FYms1faUPjuGNLYp6fGP4jE19bL\n1EcnxI2UxBu3NWa77DvuTYzw6by9H3x5e9C9c7kU8raTo0lrPpw0IxsQt41UNmLKy2k8yHPjn/7q\nz/lXf/7v+Bf//F/x6eVXxBCo4+THtx/42+/+mr/59q/422//b81dx4U//e2f8Rd/9pf8Kv6a4z/d\n+Zv/4z8RPfBv/vLf0cbkPjo/HjfmDiVvWiAOWe1TMGJKaxQV9buJOowbk3utHI+Dy+MBwbjuG9cX\nhTAMn3z5+sbX+ztnPckp05YPorlm/hZltvEcCJdC8SueAgeDet6VupMjr/v2XyypA304+WXj5ZsL\nITgxOSmBofHB43FQykaMkjHWJRAgQPeG+TINTs2Gg7EO8vCRCau/f1KKUouePP3e+wrOeC4KbV0a\n4pmftSkwekR4MuExQtC5wxTOyt2ltIrG9XLhfBycZ+V+v/ESXohR9NGSVPD1LtSy9UDysvg5Rom7\nlu/JCakzrdKnQHC1V44TzKKe1do46klMmX3fiUWL5vlcSv/M1y/DI3/vhASpBOIWYMoJVEImvWaM\nxO2oPO46lPdr4uVT4fWbwnaRa6+1SevwOA56mmpRk2SHwQLDjKAQT2abC5s6CWVJ/IZYDOAMHxzH\noY1+ipStLDRAlykDVhs1n8ZzUlKOYVtI2uFq77dtp2w7JYu9EYKyROeaTz/T2J8PJjGQUlae4ejc\nzjtzCihvJheZLz6JgidWHFXROKjVqvl0yMjK4R8z/mwRxkp7McVPDZ8ayST9TDHHD5NN7YnZZIf1\nJodhsYI8ClGHqonYFswJmxaLjimMoHeBoGpj+h0Iy7Ks/67BJJSCIbMLrvCEFBNW1CqXPX0sAA25\nQMOTrUFiY9PP5xqPVFc1NOeQJBFf6fW2knhg+liZkQKpZZMGPKVCsEhJCdgBxXg97g/OQzya56zY\nkhQoIQdsSGURYlRgc1gKiDEJHnjdPvGvf//v+R//w//Cv/mXf8nL5TNzTh7ng6/vX/jDD3/H3377\nV/zVf/6PfPv9H3B3fv/f/Qv+2W/+Oa9c+N3nT5z3O1+//Z7jcdANejQOhgJKthUnFnyNG8NPEs2F\nmnWXxfExGsccnHNwq4c4HyVB1CKx1cbtcRdB0ycpbcILB19u5ARJCA2Phm2JHC5MkxqqeSeGrPCG\nIsiaPxVUE0qKCtgwBRfDIMey8BNSYWgkqkCIkEUgfJIiFS63dO9uH13tGJ1WT87zXONRVatzTPqT\nEPiU6zmARqI2Fh/9PFeRlSnzp/QuNxWWoAKA5WVJMZH3jVG7vCtzLDMfHOcpwmbKzLsQyrODd9fv\na33vOaV6S5bJw+SiDoixE4Um5pnoNRElNA08CZmM/yRd/X9//SIH+Q/f3pdKoFIuCTfBc2LWPHe/\nJv7Jn/2Ktx8Ds1W++bSxXwK5QNq0ga690YYzjoNo5xLOZ0pWi9mnlhvn7SRYVPs7ZZP27pyjwTrI\n+5R5Y/rUzA052Mwnozbez8rtdqfsG2FbDsZhtONkziHdquuw27d9mSAMfMp8EMTmwJYTdQ62LWuG\nOaf+W+eCKE21VKVkYhGhb8zO/Xgw+zqQk+A+c3Z67WyXskKkVbXPOVco9KIkrmxGnzpMWTpaC8o0\nlcY1sPuFdu+MU/PzLWxyQ1b9nGZKYY9BS143zfnOPjkeN86mEOhQlM951JP7407e5NIctiLNYiQG\niCTiFgl71Cx3dCadvvgLIZm44lPmqJAC1+uFl09XqVTOk/M4oDW2GLmUguUk3XMKhC3TZlsJRXLx\nPYMmHIUeWFDiUIyO+8nxGByuQ+f1ugvTutkH8mEvhZS0oI5Jv/felZtpblzKhX/6mz/hf/rv/2f+\n4vd/ya9f/wm4FBVbzPzqeuF3v/pT/sO//h+4Pd74j3/1f/Ld93/PnjKXtBH74He//sykcP38WRd1\njqSXnXDdCJvmt0zp04MFUgw/HRYG1TuPo1GPxlEfVJvMHLjPSuqJNBKlPrTb6c/ZdnqSlMUunwZn\nEw4hwjmr2N0B8q4sywCa06PF3ON8UIekgLZGYz7luygpqJvDCUlS32AKPx4rrzHHtJ7bSC6Fo56c\nvRKR0ozuPB4PDJN5rLVlFFR6vbsIoO04+fz6iZSzsmRbpQ/JSPvo1HrSzoPuDY8bOV65XjaiJWm5\ne5D6aDH8CdpLRCIpJeaclH3DzThbU2eRNkpWcWDepZCzwLYQyjjc60EbyvXMeQVqB+dl34lh7XVM\nc3xMrnJzeU0+lp3/yNcvcpCfj75y7AbEIe1ulARnLlB+YPL5NZFi4eV6weOAKFXKVjLX6ys57tT6\noJ4H9XjIIJIjL3uiz8SYMBZFr3VJ6Z4hqbMPxjnUCg2lqmOq1G/vd7aY2cuFzEbtqsMlcJPDrK1Z\nqztEFiktJemum9jfKQeCIwTteUgf3rU8qXOuii5SaasbNa6fXhYqU9S+6XLR1Vql346Ry/ZKTGlV\nTMtS3Rrn4yZlSTDmVkgxUGIibxqp1K6HuGxFoxYLjNE5WsMnlLhzeblim7jwrUr50EYjh8iepX+1\nMJc8RW10iMZ42QAZq2IoFNOyN2+FuLT1IUJ3RXZpVjTW+KZjTTRFtyFt+WqRY15JTEGJRHHJBidD\ni7M4FdfmE++TOTVishDx86dxixbCppQiS9L51kkOiZIuSxetscx2LbyGV9ZtAyYkKSHIZuxOTJnL\ntjOB1ge1dkaFz59+xZ/+yZ/z20+/Yw8bs2lx3hcDZ8zJVgp7yVxS4fIvd+5/8nvq/Z1++5Ev3/2B\n++17JoWZnO37jfvtK8d55/180PtD0jdT6pGlvGBaA19UxePUwpkE+ZplWBmTEIxZjB6ch5CAmieX\nSEbGGnentip4VO3ktEsHvQifjit8AjlH87YRXYdQ6kaser5DCFh0dWyeMFuaYhysf/BbsMVECfIQ\nGAHHOc4H1Tsepzwhy8DTpt7V6YNjvbuOkwKUmMkhEZByZg01lVi1VGsRyBaIKVMsEKf2QM2mGEHB\neHnZmEVL8dobvfXFatLFd5wn9+9O8pb0rFql+0mbjoe2zjBbg4a1gB5jJWcN6e+nckRjCIzRwCNx\n/ewxiOw53D9Qu+fRFJjzj3z9Igd5SkKSWkAqkOB0c2w2bE76VEJLskhJmct1p1HpKImDpV6JJTGn\nZlIhQo7GVgLbFgU/ap12VqXJDOFGx9TSoNdBP6pUCwy1m0E2YWw5H0m4DQX+2sCj/h4zuUznatvG\ndC4xUZIY0nPo5c0lStrnExuD9HRlanBLDIkUCs9MRWGt49Kaa48w+/xgh/ezkWJaeuCIJbV7Pju0\nSXQnmzGDrfDdZVIybUPD0rQKLqYDcUwpfYZDMVvSPPFg5pBZqveuQzRquYNJMaPYqUkwuOyJEC6M\nsWm85cogTDEtnOhSAvhCD5iiu+bpzMcgm14Kj6hF9UBtJ7MNRjuY1tjMsRXq6+ul8OAf3Gaxyoci\n3ZaueQy5NhVsXNaBFDjvD9qjky1RopLfJ03dSknskRXPpSrO1gU8fOr7m7jpCgpe8tJgXC9Xfv35\nt+xxw7rTZyWYigepnBQbl1CAwf5p57Vc+LFV/u79jR+/+zve33/gXgf2/j1fzi/8/Xd/zdcvP3Kc\nBzUeWIQtlcVDl7nmw7W6zFkRk828ROJKJXLX51sZhK40dvf58bwlM4WZr+dmmmE5YTGRFtzOQ6Cb\na5FbVIiYm2ihMZBda8icororF8BufkiJ44dF3tHOR5JgHUWORpBnq3LZJmMsCeSY4M3lFp7KDpiL\nAx4WxyUQsVA+Chx7njfr4TqfMZBB7JscA3EEfXYMmc/CTzvFBahmTu3R2mhCXrRKIlKy0skGlTYn\n3VRIQVgjva73ZO3fDGfMpoDqFMk5q2Caq7ta72Vg0T6Rcmz2AZN1of3Mmfr/6wn9//Hrm19fPuy6\n8Vo4TDD++/1BiQWbxuO4Y103/Te/+bz0lsCSAfbe6NWp9cB9crlsvOw7r/tOycbjdnB/v/H1/U6f\njq+UlbbgWO1stEPg+aeOOMWA5cB+uWLDGI/OeRxYRrrTTbNSKUQCIWXmEAdbL0KgtxO6zBBbLJqD\nzeWKvoiUB5F+Qko72/VFtb4rrk2z3sWAmk5vQy3yWRlnZVgllUg2J8ULcZMjM0djT1GOz2j0JLlm\n8CkZnzl5Gj3LeDCGDnALtoJnBQyqZ6PfJFHU5eKSK06jxYJ51Gwx6FCevWPubNuFl9dXLBWmG+dD\nckIs0k+hCVIOmn2bUidba9Rbo345+fz6WdW7Ga/7FTPnOBNf7u8cx8E5tMCafmFjk5tvSCOdclpp\nPjrAebpFW9VCOUYm4oZYFOf9OO/cvt41bgsDZyOVia9RWDIlxfcpWdkcYlvjjsW8Ogmn1YM6G4pl\n3sipsOeNWRv18SDaICZp5bd9J2ZZ2b0PFQJz0m433r7/e378w9/w43d/y9v7F/7zH77l7TiJ2873\n4yvfj2+lyola5G7lwrZfBGYKpmrPjBAzL1uWUuI86K5j0E1FgrtCR8ZUUpGtlr6kzJYKecsLRhU4\neuc05GwdnZKNwGQMHeIzOs0VCvGEgvmEYoHLVjjbwa12au94gJgTJRdyzoJYtcZRq1AR2ApokX2/\nta45vWwy+v9h9DoooSgJ6ckhiVByIMoGQEz5WfuTsCVrlJN51oeKQZ+UELiUnRwKj9ux0rV0YIcZ\nSKGwJ7FmRp886sFgYMUII61O0QgpMKxr1Dk7Je+iQnahLqY5KSVhDOZkHIOtbFy3nS1vfHv/nvvj\nwRiDy1YWiC5gxLXAHaKdpkSOf0Thy7YrJDYG8NYISTbXaWrXggfZbIOE/7f7Dc9h0f4kg/LqtDoI\n2aQqyRpFnGPw+PELj/cHx5rtjiEAUMkZXIuO++2OV7UuMUTmgG0vlH0jJSlbRjLaYiQEU0kRo9Jg\nQpyUvHSurjlzq43zfpKDkLL1XPb+HHl5fYUPQ3JczsIsOWCMeA+a5bocZmauys1kkJiuIIjhEFqj\nHweRibWoTiQFLkWStxmMxliWaj20eY0F6kqox1b6jq3x28KYHm+d+4/LxrxFypa0BIowTJRxKfcM\nuTc1Ux+zsYeNHMNS/8hdOWZfc+rK6IG0yX7/qFVRZLPzGBU772zWNSfNcsWGpJ8jlMTFke/AkJTr\nvypMtNQKIbIXtaK+FtJhzf+nxxU3VznPRj3vzKGEosfxToiNDXHB49PclCJmGd937lFRZdMne8mS\ntY1O2Yqkfr0TKIJ6sS6veC43b9HB7ciYwofvGvNBvd+5v79xe//KcdxlmENJONfrhfKyQzO+++5b\nbE/KUk0RmnC1tmdq1/cNq4vwJ4bRVR0GY82kbbmmJ23o34lmDFcIgi2GimOco3Nvk9oH9M7rJgOW\ndOxOHzJLKdTCJMU8h1AH+ya36KVgdefsGuPUCiEkUsqkbGB3dWtjlcDrPZPOXwKFiZyf5iaM9ERG\no/MhFUtWRqetn721sfZDmjX78BWfWPj8+pl5ueBz4H2hJEIilkTt4uTvLxeZjVIklSLp7nQSWRLd\n0QjnuRa4ioIbJjdy3jKWM8EyYc3XPWjRKvSBPnOb6GcOxpYuUKTjTyHA8sL46HrO3em1crQT/3lm\n1i/EWklDkqIphUSMmRwjLQCacGExUqK2yWeri5IHuazUnlUJ5xDIpZDLjplTz8rjcZfmsw9YzsoQ\nWeGpQnZqIagD+Nnqpagbr4+hgIE+FjFRiSOYrYg3QW3MFpTKbMVNdc61ILK18bYYSEFuUD2Sst+G\nkoAoKH/vHLVynJVopuBk0yJpNlXopWwyxPikBxj1xEYj1sTIAdsKl1jkJltz/GBaSI6x8AZTD564\ncpKITV/VZpt4E+ntPKt0sGmTWqRokTbixGfDpmHT1ueWFi5btn9bxiqFAmtB6lGo0hC13NIxC54U\nAxaumRYmoHi15lVZlSU8+TCCAAAgAElEQVSwsxFnZiyORhtSDcT/YgFlS/IWgpDIfUH/81bExAkB\nnUVrzMIgZ8P2SLK0AsD1kskpGdZMdbk5Y8TKJJu+d8DpQ2lMl7gRYyCTSRQxa6Zx3G9c7CLOh2WN\n4potlYZ/sDMCk3o8OO83PbftJKUgsFsqXF+vtBfncm7EH59zfnV/9AlhMGfk6LpkYkxkk2JiDklY\nS8pakC9TirtYIcM1Zow5qwKMQUTD9fmdY3AsHoi3ThgF3zNlF2NnwVn1is2psOLnDmN0PERdXhbl\nA2jqalJa4Luc2YbRz1PMmtEJYb0zUR4NDwLYSbUi5k6cUsGEkNnShgWjtpOxLsk5JymJp6Quig97\ne8kF0hrJWpcFH6f5oHlnmlPy0m/nTC7qTsaYsMvYZ0N4AvfJHFPuUdcFFJa3302BIcAHYjgu12qO\nUR2FS8eeg/Jf8ZVbPNc7i2BwKQZmd7y3hSH4h1+/jPww9sUScXJMRAoWMuGZt7jCWEvZKDlSZ+f+\nuDNtcPXCHooOCB+0NpbWWAdlc7gv7CQ4oQRS1y82RiesBUNZYv5nuri75tfB4HG7cd4r3pzrvktS\n104lr3smZB1IwSSJwo1EZFaBhmxW8clnJISxJHprHAHK7cty8/mE2+PB47jR2sGWy5oXBx7v94Wt\nND59/kRnUqdkfsf9YJ6Tfc8wxVTvoWtemaPknSFo8+5PDoZQu0QF/+IKix2tM1vHhq6AtHI5MV2y\nZU8EcyZDKeFNHOpseS0gtZgZyJburhmnDyUhqQqPpL0IMjYHqSTIgZgLoZTlsOzUeXI7b8wwhKe9\nZpLJzTqA8dClE5HZhyDHqsDsai+03G6U8g0piC8/xjJRRZMu3J1xUVudFwDtyciOMcpE77K7B0RD\nDGRGCNzrjVar1AQ2KNtGiRvJC5mEt8n97Y1thTokk4NxTJ0okog+dcvQ6kNL+3owZqOUnW8+vzKJ\n5NcLP9iNMZqUVFMGpOAa2dkCND3OkzoHOWYuYWIdZpvim+w7eS88ThmDxkImPAMbYo7qREMSZvU8\nteTzSR+INXJWGI3hGy9Zzw5Bebd6/5xQJzlGEijE4XHn9Mnhk/tZlcpjgVwGeUxSEkWS6vQq9UdI\nkbLvXF538pYhahRkLrdv7GBd7+p+ff1AEv/wtdKalqh72dm3C2bKRXXzVUCwfm5fl44UM2c7ua/A\nCotBRsCykbdNWvs+6S65w2TiwcllkTatY0OhImFRRd01gksh0pdKDZ/KLU2J4JkSEgF5SgJyDPtY\nMEEPMANpy7xcdratUOKDmiq9/hHxyC/XC4Qm3a9HomViLBSH41QY66ydYzywWdhfNsL+ClFcExty\nMCpHUBX26GMpPAa9awkSkm7F7bprPoiYwNMHIbmccXFphIPh9sToNkWKRWhh4CWSrBCKAihGG5Sy\nkbGPG7Y+Gv3sapfRKCalhKEXbnTnnA1LkbxlVaeYdM0503piDAG0cpSe+4dv3xljsl83fvvplbBl\nOjokSynMPrjsGzlnqVOCmA3MqZCLuGR386lh14snh6foddE0yrCYlKpuziVOzrOJ7jg7cwYGkz4r\nty6+SNkLuQ+2oFxD1phmLDOJFCxauvYuQmI9j5U27kzz/9rCTP9A87bZiaMp//JoMnUsAt30SSoJ\nW8aqOTusPiNGuOw7MSV670LXdmmUp8u96i7ZZgzizm9l/xjhDUFhaUMpQRrXGNE1ixo+qF3J5nOZ\nsPS5DCxMShRVL6fA/fZGGkEdSmsLIaDRh4IFXIgBg+PxTj0PHvd33t/fmGOQ4i4TUTuZaeF7V3Xa\nh1Md/BzEkslbYtsvhKlOF+A4D25f7pQtc2kXStvkSG5VsW2L+ZOS0oyU4DQ+DvkYlxUeeQ4ShX3b\niCnItLYqw5QC31yulJhlVl7pSiIManbfvXMNhT6Sur/RuN/eOe93XYZ9Gc886n8WyCkrFB2Jh3w9\nr25j6boVZTct0Ob8GC2Z2fJXiJAoyWRYajNl4qpJD9TeOVultioHaRKG+OwdjhPHKGWZgB3xyJfY\nzs1UWcdIWnuXpVjUwnRZ+dv9pD4O+ujKXt2E2wgrxg83St4wEn1o7zTcIQR1BSkJKZIL0QOe5s+e\nqb/IQR5TxIOMKXNFLdGFSmWIrEfSAMOm2H4lBUia583VlsYkh5cP/dnJEs6bRhkhGrEktq0spYMO\ntJSlHnCf+neSlj4zSLNsSwlhwRjRCSl+UBp7lWIl5Ey2SHYpBJ5jC83qZUgxoNe2kJeJxpKNIXfZ\n6I2ztrWYqtSzccmFaao6xUJX6snnMdktkJPATLbmoFspivKaTn0sSdSSMQ1UdY2p5PYUE/k5s0Nq\nGwe120OI3BCduOlyEknQl5xKcssx51rC2ErymatWdujzozC2IAbF8MmwKXgYyNwBKyoNMVQGhD3i\nQ9v6bpOjVzkMXYu6Zxj0KnY+6KtmUiQ4qgJTjUtiuirJpVoJKS5wksIRfP3sc3TMIm4CTZ3DF30u\nrDGLEafClZ9sfNm2XZyOINs3o1Gs4+gZetzfCJ11sGi5PPpQKv3aM5SyM+fg/f0HbrevvN/eeH9/\nY4zB64uMP45ztDuPeqPNqphAS8wnx310WjRGXChjnqPDjntXUk6PzBHWEli0Ro+RLeVlAVdR4VOm\nNgtKVrKlSErmzDil7AJGFeZYRVSAbZl45jP9COaEkGQUyo4Y5k8HtD54xuzM7nJ6D2F7fSKVU3dh\nVVZOaJsydc1W5VgG6tShPlx/F0iBI4XLlMzYtVgf5vhQCpSUUJ3jODReWhgABbQLld3dOc7G9BWa\nsfC2GJrjL9XMc7w6u3ZSwVTcfSBAhq98gYOaI8FXyEnaNFWYrmjKJhxy96a0qqB3ra3JwhMbwj8i\nQfxllp1D7II5XLOfOpizcp4HMSYueSdtQdxhOr2emlNaYPhKx3YnrfRwH2ojFZITBAyKvqzaQcaa\nIFWGtfFh1Z1T8jpbNLXhCnS2JNXCGOog85aJm9QangLFIeediwfS+kWpQghseRPVELXz99tdRpiX\nTbexL0nhqByPB+/3u3SitdJrZc+JOIG24rdG5zgr77c7xEDeM+CyoK+ZnHenH5XHj2+8fr6yxU2y\nznWIDx8rZScLIhYz06HWpoe+d9qs9HHiYxIJ7NedPiePJl3sMw0m50LeNnUEc36EAcs4ocDry75J\nJu6TOqY03kGLbI0Sn5+5RgwzDOIuDXH0yOyqimZrpBTlIhwae/hEs1+XdKvkjZgij/PQi3lUHUiE\nZUHXKKMggqR3VUZzDKXz1P5B/rvXQ4YW08Ggl1Iv6uV6XcqDjUySEWXAcM0tRz+JHJz1wVkfhMeE\nvi6toazN1qqIf2u8d9mvnMfBl7fv+fLj99ze33i/3zhbJ4TCNQlFcHt/5+v9C+c4yJ7XqMaoo9HO\nA68nYd80d04RUIFyuUjDn3MkJR3krWmZOd0/VB8B2fnxtXMIJgmiDYU1BFXr0u9DiInoLJhUVFJV\nh14nJaT1XHRK2kg5sIGCK0Igh5+W62LoON4N74FIFhL47JynGDchq4AaY3DUk34cFIt41J/NecMI\nbPsFmKtwUfc5l5RRy1uhNMKEej+4fX3jPE/KvvHyjRgxJLFdmIHeBmdTmVJyxtalFMOTwCg54FiZ\noXN0XWR516XmKtYAbGXPtrNJd+6BrUzJbefgOA/uj5PbcaiIM3kAQlMYdwBx0Ks67Z/7+mUyO6sr\neWXxPB7zlBSLCWMyRmMS2KM4y2NhKGUeUEs4RbYleNEH/zQimPFyucIudCZMYg5EUxuj1laVB0Et\n5fQ1fpiLA4wYC0vxTQpCTD6Rm9MRGIsoPOwKQ/DpGuEs3Wd/huXiUDL7JREx+tnZU2LPCd8LBLhe\nhFjdSsKGrNP7NRNngryQnFUskJBgBmP45HY+8EfH700hDkNjgCee04PIamev1NkpPjFv+DTNf4Ne\nxBwK+3UjPg1OeePRKuN+46wyQkVLi2sjHXqwwOh66c52Sk1RMmM0Lb2Cqru2lAcpCZ1rY+CjMRf7\n5XEc4l4HqTG2bYekz2AaEKQV1jgtyB06o/JMlx69d+WZQmT9IfnNkhQSykNVoEKcgi1Me4bnSpUT\nUuD2fuesnZgCL9dd83Oey0/NQXFbz40cwBNJOR/94O3xxpfbD2xn4HG78f72hV//6jdSNB0HMRop\nyU3az1fO4+Tt6w98/fIjrSlO7X5/I6cNK4mya8GetsSLXaULNwUiiKNyUu938rlxuVzJLxcsqZNg\n/TNqB4ylwPX1wn7ZCBa5bIUtJeqjrUo5kOPGNA2ZfM4VaOLruUsQI5kLm8p3ohvRI+0YnLeDc819\n22i8mvjqIWX2skn73Qaz66KxuC6jMehds3qWC7qdXc9nilgKHO2gtarDcrmVq2uBGkIk5RWUEeRY\nFjFThqSjVqEpgOC2Mmt1kW57oeSiy8KWDt8CvlpLD4JcNZ/U20kp6mKYqwJ/igbCohXGQJ2+QmDg\nGJ1jdOqceD2YafJaLtLJB+GFLRlpVybUo3aaSwk0H+OD0BgWNmO2P6LRijdXqCURi4nnAigRsD5l\n1hmQ9kjaTdrL5oyu+ZQUEGEtKcG7wnvnEB8kWSEuFOvEZdc2DdqOUw4px+SC9Of8Te1iH2on4/pw\nZOqZ2NBY5JKK1BIxQ+201pijayMdNdRQFdyo9WRMGTRCCJRcSDl+4Gujw54TllfgBB/qK2wzPn/z\niUfvNGfN/xs9gI2AZzE1jnbC2eHsjKNKcdKUxt7D5Bn0+pMawZUZ6oFoCZ8NUGtcyvaxrFLVrPHV\nZplaB60OJQWFvqzWa0fB0xCD2vfl7HuqSELS71jW+FWJ9a5loisMQL8HSTMdfRDrNWGsVKCJuNAl\nBoGznqOWICllLpnsEXNpcCEIypRl7JpdL9joqxN0jYLcxFHZ0sZrn+RToQBbToSlSJqtyZAafpJs\n+pq/hhR12RBo3rif74wz8PjyoNdBa4dUVueBmcvVue/Mqji/2+0rt9sb53lo6dsnZ9XlGNmYNgk5\ncEkXZtI8edbFpo+CZ4WpdCEb6C7zlYPqELoRhsK5c0qELRJD+ojtY7R1mDdSyqrAfXDUg34e4C6N\nf3F8XcyW4hofGLU5rGcDi4ylujjOxghK9MplqTSGM+v8kIvSmkY1h7JSbWOFTthS+gyx8qvGIjkt\nFdiHW3Iqv3PhjMMyXYE+k+BodOLq2OmuwsWi9lhZWNuzV5o3uqtLdJdjcQJnl1R2PE5KzpSy8lyD\nZKTPHE0LQYqyoZ1MsIjnRLxsZHNyWbLqVcD49A9URogCovrCSbstVdEMGh/GyHk2zqP97Jn6yxzk\n3TDiAssXHX4+CGPQ2kk9GmcfFMsS0ZtLDtU697vy+sqeeXndGU0PxqiaK1uKJB+UyyYeRNTBv7y0\n3I+bNKfBeLudPA+xMQbH2aVBDbAFY0+BbBse5c4yYN8vH4yN23Fw3KWDvVxkzjCUGlTryeM4RE9L\nYoqnrKVFSJPz7Y75pBShPVmz6Of2u1xUJftx0M4Tn5q31zEk29tlyOijyfAzJ496ks8MZyTkKdux\nuYIHXAnsrTX8HHKlJTgf+gxy3thMEXnTXL+H2bDgbHnD1zz/OCqhL7KkSW8vUH8gZh1qNo20aHBu\nRlkMkBAMn+J496EHFrOPOK2wbNh9udjclXk4h1NH09Q/OtPFOXFXwnkMUcnrWyJ2uQQDkTkhF6VQ\nne2kNQVqzLMtqZoOyIR2G/t+4XJ9UVJ9Hxo51bpa+hNvurBZEC8w0q4L3B1SyHiY3NuDUZ1vv/8D\nX398Z05xw4daUC77xuvlhdlVVDyOG/f7jeM46H2QYlno08rmGo0RpPBoaFY8EJCpXDZKLhSToScR\nPqLzzvMgBpBYXB2H5r1KubIpfMQck/NxchydlLPY5LPxfnsX2tYn22UjbY2B8XY72K9Kg9os0nsg\nDVscG/FSlPs66IcTW2L2JYvtOrSjyVbfjkF/ho3PqZ8lFkJJGo+sKEgbrASlKMWHGbUvl6aL8OlB\nhMMY5EZlaeK3oASf7oN+NCw76SLzmNukeeM49LxLVzSIsRBjWeeOmD5+NKIHck5crkWXk01qrR8d\nS/c1SkQ7qXjZuOS8fk+BHCQ5HX1I3RIXBcKU9mVRo5iQwvLaqNvf8k47nbM/fvZM/UUO8j6NvRS2\nXMCkEz+7ZpPNBs06aQt0GxzDSV1a3jiB2ldKu1xbzRvDRcoba+GQSsbPTsyBPW941/Jizs50LTNT\nznx63TXnHM4xKnuBLUVGHcRhBI9YDdKyRseK6cU+K+fZub2901ojb4JAeVKVdozOvTUeZ1uVz8Tm\ngT8m+yhsIRGma9aYZYTCfS1x1DnMNunHwePtndtxqFKKgRkDYSZy0vLlpWyM2eTW2+ARBuadzfJK\nUlka61iAJbvaZKmmgVXD3EgemDbwSyDuiWkRWqW3ypzG7f3B2/fvkAPXvAvwlAQie7bvI0oeeTsO\nShpsa5YubO+QyWMd0sGKmOvR2PbtJxPOlHrETcqJiJbjOWthLXBCWkHGLh11UhdlU7rppe7HrCNt\nurI987ZpTLWd1D7pADmQXjLpmtlKEZPam1J02qQ/+hoZTJlKcqG87uQiql2xhHcdnD4bR7jxle/Z\na+L7t+/59u+/ZbbBZduJZrhXUkq8vnwSO9sn7493bu1Bw/GUICSaD85+UsahS2jK/NOGbO2kQL6s\nnNnuFM9kk21/hI5bY4REyZKyzq62vHsX4bLIks/UZRmCOt/zfsOiMRgfBYQRaOdkTvFmikWyR5JH\nsYX64Dw6o07i58R+VQLPY1bcV7DJkPxydhEio4tzkodhMZGvEd8gvxbKa1FOqEWY0JuSqnqvRIQd\nXo2rRls+8LF+ziaj4PVFPKIwtOhurrFJHTojBE1rUgGFASWSSR9Zs5gUL0erTKZm9b4W33ERP+sT\nGTKXtEbcIOGrZerDNbdninXudKINhol6mpN2HiHK7m/ZqC7xQHCNnn0pwMpL5mrXnz1Tf5GDfMpO\nBhEejwe1V7oPBR9naSjFdXDdbmMxDyYwUDKIhSXbk6ol54C3E1/GgWKR4kEs8rnwOT4/pGYWZBBi\nQeNzuSylidHug/EYYvssVUpAy0MZkQa394PH49ByNK8U8qaqui6QT8yZbdu07Tcly5zemUTKyKS0\nk1PRZdS1HAtR/GWl90S2vPGyzDQJfWy2NuMpJIzJLJqhTaTSsfR8ELU3kH4q8MypTDHifdDOymyq\nzs0m0xphL2xZuE7vwv8SOuPstKNjzehbpO6BMJ3sCUPdBislpZ+dLRQdum70tRgLLrxqJBJLJo31\nwE6Tc8+0JJ6o9Y7BiEMXUVr63ETQPqIkBR0jU8ucK9RhKUxykhvP1iUfljRTob/GopEwTETIMZTO\nTlN722unHsI49NpVVUdhSzNZJaKDDx2GYTo+O2d750ufvL8Z3739wA/vX0X0LDrI5zgxC1yv78wA\nAx3k3/3wHbV2/bvblS2uPUATEz0EY8sbdXamrc4zBrI7ZYCdYN3h7IQCW8zYftG7EgMhx6WxPxgT\nLjtspZDDOkRKwXcYI65FuaLT5lJHjeFr52FihBQtVhOBY3XRszplOwibU4L2KLPLw9C65v9zTIVp\nuBHdpOqYWvCZLT5QRCIFS9rl9LpGEAK3XbdNnW9tzIV9lUFsge/mU2Y66K0x6kkdnaNXOa2Dqt2n\n2WiaAqmDPY06rNzcrlk4c1XMgZLS+sz4MPdJuKFnyB3c1jgkJAFihiTIc3bMBhbXex60tA7YygUI\nbKFgUzLmRFiuKyNt28eo5+e+fpGDnOh4UEDCD28/0seQjX17Ie6ZHBeIbG2h2xiLIPYTlzesXL80\nJjnBJRTmw+nNia5Ed3M471qkPm2ycW31YcmbkHNx2y7kpAOxlsmdg3qrgHShFoScHeZ6KFqVfhiN\nNWZTazhHJ0xnS4n9Re26JZRVaX3FrJ0QLoo6i0rJmX0yji4ZlAdsRnLc+fxauISpy28MRW/hipOz\nNT5ImS2Jgz5WdRCJSrCRvU8Lv6CZc5yBNjv1rIQhzar5kn4aXMrGedwIHcIQ1z0OxfGN1jhvQBpY\ndTZLEAqhZ4Zp5h2GUchslgkDPZArTzSgS6ls2zogxJX2uVRH8SkD0xzTm2BTIQZJsWxiwclZ6NTW\n5Va0OddBLi79tvYnvVdm74SQFCrsq6VFZqw+Ou2AOLpGAlM8j/MUrbD3ieCrKxLQn3LLxhgdr13R\nXibu+dkGfRy0L4MfH1+598rWHpxDZqxWH0x39vsbPSsX9fa4890P39Grk2Phm0+dT+VFrL76YJqk\nf3ELnOMUqyZGbA7KhC1AezTqcdIb5JdM3iLpcqUupUzeMmevSvlpQ7+JYMRNY6rtIpWPHL+iS9Z5\nYfha2p9VjuCgizJlwctoLvNPrTCM+3GHMvB9w1PAbTJ65bhXehP5L8wVijEF//Jltokpyozj4uLE\noEOSMQhzEjH2VHjZL4Bzv92X+mmNJ5+Qs97BfJE9la16tkafk+1lV05wWPGIawkak1LDwgqenqMz\ne1vB5CoCo0VyCmxJyF+LyihoTaPU3pr2A655eclLX76WlQGFKeecmDlja/z3jGz0DzyBohxzKAv4\nlZSoRZRc92e+fhn64Vow+JQsqdZGmJF8KeQtsV83zVV7p50nx/1YOF7JwXxOahd+tc2hg8LCx6zM\ngtLnw3S8dfK2Kx3HnFGb2vY1mrDFRNYMTVtktUV6aR+PgxHTWvYkKWiis10L1+u2HFldhpyUSWVf\nWE8hdOXqZC2RIh3J0I7eSa1SWpfGfSir0xsE0y+ZIPNQzk73RvSMIRqfO8xTlU7er5SiBW/tTfNT\nj+x5l9Jnacg/OM5HU5UASjTKhb0U8KEl5hxc84btsNkGZEY23u3k/ahwVXVYromMxisME541R64+\n1S5WJya0nESkwLgwCJe8q4oh0pJJvrUqZ08rx7UHfAXfJhdffUzNjmdVF9TbSY6RvNQsMSQdu63h\nPqiPg1orgSipYkxEUwAvfdLu52J6PGmaptSiOYkls+dE6gWR19flb1Je+DDaAxii1sXsIvZ1xy0R\nXiL7vBK3wmiTszfeHzd6n+R6cOZBzEpbGnEwIkxvfH3c2H6zscfBMQ+8qBp2H5QUSdGIMYlmeVbq\n40GrnePROQ/nmoycMm4ucNYwuiu8JEQdRCHZovg1tlAoeyFdl6pq6JIqIdOG0pfKLut5iPo9YEY9\nJIsdiww659Dn1iE2I0YFNlsK5LXQnw7nY12Cw6lTsdHYILdI9MglXBdgymFMwpxYl9LBxmC2ToyR\n1/2V2icT++DPu4mcaiaGfB1NLmN3Llv5KGjcn7gK7Y/ojbm6hODGvhWu153aldbTqgoKRmfiSr6K\n2u4XpDiplmldzmsH0SSDjGhhTvaiaMZ93zjGpDfXzmDKM+oGB5U6uparobOnnUtJ5Jy5pqiYxZ87\nU//bH9v/8Mt9zRSHL9OBk4Kx5aitbtJG2ZmEmUSNc1V0thuWIW0ZQiTESVgV8xNDO+bSIMcoolsq\nWMlaEgZjyEYm6Rp8jEySKz9zzgU0YiFgw7p5x3L0BeN6vYhr7CLZ2RQOM3lgz3qJjn5ynk3zzJTp\ns2mJh76nTDlTSF7XMrYeYzFgpJ+NU/qLLa6IOtc6pjWxYFQxy0yhXE61lN61oLKouf6Yg+B8VEM5\nJOyyU4KMISVFWlV1fH9/VyDuNEJXVqF1Z0uFmz8+oD85Zmw4ow211bGQc8FHoz8qHuD6sulC9sqj\nKZjaCrhArpqVWqY7H7ybEcbqvBQHaGPAMZj2k0WaqaSiYpFMJE/NziEolxNV3uetchwPfBqXfVK2\nHVtY00KAvLEVZ3uqc3BSMragUZq7k6YyE2fv+tmqngMfkXqogjd3LtdAjEPckeCEa2TPhS1fGHXS\nI1gvjMdJ9w71+Ng1DBc7NSDoUo+Twyt05WF2G9odTI0HAypoxuiLHy4uyuOc2NmgKMXdFV4pzkgp\nOIGxPtfpTm1d8zoAW9A6005KTK2Ih5VYFTQOCCGJydM7t+PBmFOO2KlcV2uDUFnLPYWjlD0RhtOG\nM2tjJr0DzRW1yLK/l67qtpWi6rhNGJ2ECpISgkZ4U5iIMJYmPur7Dp+0WsFshcsMcpbpads2ZtD7\n3sbQ0pEJq8NRcDfgkxQ0w/Y5IeWlqHNsTNnt5nKSYiQzQtKS1n3lgq4kLl/QuuDOVjZK2Qh5w8dJ\na5V2O5kPVf5pi5yhKZ+UyOxLuWPILMUk8UfEWvEF5fEhx2YKmbJlXi87RFuMh86Yi53wcsUaskFb\nJhTDLuJxx6dIzaRLtYjmvb0TPFH2TTyPnPFlRa6j0mcTh3uZpZyBZRmHlMjxlLQpudwjNH/+0hOX\nbaegWZ8Np90bXgfB59Ksg7VJP04sSV/tUyAjXNXDM+kHtPE3j2K1WGTmVTGY1BXbLkXMnOJ/jCaH\nWiThDWZwQtZ+wIYWQOVFldPR7h+usORqH1OIlMtFD9BTzuVaWjEG1/2Kt8l4VB5vD0YztqzZs/kT\nran0ono0/DHY84USoT86j9uDYM6eM4NO7SdHfeBlI8/A8LhCHnQA28IJl7RRvS7UqBF9LbBapVvX\n57Jpj5BXqHImEoZMKaMvk8n68/0x6Q8F4FpvMBJpD1gUxOjTduFSjBQc65oJ5xhgy4ueOYkpMc/2\nARijzsWiN9wTrXb62VT1FycEXwe5kTxrDHE6I0yKXzhNTJ66nLqUQBuVkBWkEnKhMpjtgKDLfvSJ\nLJK2EKdq6VvXiK/OwWMO7n0Qmjrciy3nZtY+qewb3aH1iXtgjBW47QY+hSX2FVhhy/ELQFhcm7Bk\nFYHWpsZPTfNckTFlXuluIgSOvsYRGt/E4XibxBZ1mbqCTeSyncwoddJxHpSU5PAe8HR2JzOiIYeu\nK/5tVhVuwYMWtEMhLBYV8xcNtm0j5ULKiaP39YysJWTQzmjLm7YmQZ8raLUUMPIKrCCoQGLJZyfC\n7tqCYJW4IFvBaExISEIAACAASURBVN45+rmUaOrm8uLHD0yYhdY5Hye372+EYFy/2ZhFu7WUCqEb\nPgKzyQQnqfUfkSEoLRt3CIH8sq1ly8Z12zjayXEevFe5PHPasJSUqm5T1DmfeOsyFY1OskBeBoO8\nrVR7VK2sJ5HzPHm8V87WOPtJHY2wwgNEfJ8kwOOa0xFJKXJ93eAKc3NakLElWmCzRDYjLhenUoAE\n/Kr90Avnmi+POjjeH5CVM+lMUi4K7HVZ68+HLPqjQx8H82jsL694bXCvXK5JoPq1NBrdxWkITj8n\ndWu8fH6Vln7qsx1tYTCnkSzRWuXLl69sKbOVzLZlpve1jDQtbt0XXGvgXS8eTxwuk20PmHa3SkTy\nyIyT98fBuVVCiNzfDx7vJzEY7bUT9sjL5ZWXz5/IMVIskGcgh7w6IC3ADUkHxWfXQzuOwTj035J2\nQY58ON4GISZSTLyUF/p75fF2UCtrNKYLOduVvF2Zq6KzGZgV3GSDjtloXRzpUQeeMyMZtQ4dUiYW\nRrJETAaWcWsL01sYIWLj5N6dx+2Ambi+FMga07TR6P1dEkpvtNiZxXBL9Fh47xPvSo8PdLJ1Sq2U\n8GzZI+fjZIZJ2hP7ZSeTl85bIKoJPObkMTsng2yN3QrEwJb2xQNZOAs3qSEcBExAuZ9Rh/f77U34\n5MXPnkPuXbVhcodagDGMGAsvL6+M2hi5s++FsgXKFsm7OCEhhg+N/3QIfao7HkLV9jEY89AzP5rC\nX1w6+pB2QeRSgeX0vb29s10u5LJLDQP0OqCdIpwiQ5tiEXXYlCi20XT5IkrUCLc8R6jBFjBPfv85\nteDtbenw0Rg2pcKojXqe9LOtzh2RKBfFdb9KNReiiqVhwhXMLi67IHviw1gQIOyd48ONGoKe6WA6\nK57kxa9f3vDFlvrZM/W/6Yn9j31FdDCYse1lfUgRGLgPzcJWyyPDRZYBAv1ybHWCvuLAxuxAX1b0\nSN4KwcQCnz6ZXbr04zyprXJ2JXLErCpjrm15GLImcTNC17KNCaMOuk8okJauM/8/zL3bkhxJsmy3\nzG8RmQX07EPh//8hj0w3UJkRfjHjg3pVU8jhc0+J9LwAA6AqI9ztorqUTHLxRda9iB7Q0Wzctcyd\nsfCh5ejqg/o48AwLMWZGl26dvhhvRUqVcjCWc12d4b8JBpYXTiVCy9I5ZBQoVinHNj3ZVDjzGDvx\nqO2qYStJupxp16836QgKRtRManqYmWjZF6GKa4qJPNYUQH+3iI+Pip2JdlS0K04cteGPU74AdOgr\nXHpfDogVX5ouv4pRTeG8vlRt+gx8TqYvZtb3uF6L/MpwS7mUsy7c6ZvXrKOfVYP1XszXwKgb+JQk\nIXR5BuqhF8QM+tycEpz80bA8idm534P8DIKM5dipONJnK3knyKY0mC/NciGTnlnh1e/EUTItN83K\nCYYv+hiMsVkheWkZGQVyw00L1Y4W2SvLdt7DNxRMuxvQRzP6Yk7Zz8WnljU8klFOxcflQ+MQOWE3\nh33KzWhA3koL22M+hZgI5/B+vwW8KtojrAhhDgIs6QZfPgi0k/CiubrtqMNaoVTIJYE1ORJdh4+S\ngIxmEJF2spAxV9U4amUFSedKSlVjoOUyBe0szn//9Ys//hf8yLpocs1UL8yxZG5yqY8si0vf5xSH\nJVyh1FWsIWMHbbjrUM5aMvoKXtetpbZ9ga2EgS4p79D2IEwYZWKfGQiA53Nx7Zn3iKk8UtOI9h6d\nsAFlSgVkRipFodUz6GvR0Fg5mTABYy5u5na4auLwn77+GR550gOaQgQxkuzXc4h/YSbK4XbzyEAy\nBt4HOeI7t9G2u06qD8l1SsmkQ+jTr6zIMXVgrrm+U14Su213QXYilK4dsxO/oUVVsMFbSNxVF7YS\n7StN3UPb9qlD/Os/H0EcQtb2NZkzGN25V9eH3zYlcEjh4dcN3VUNOpSzkmZnzMFr9K3QgFSle9VB\nrs0/GQUKb36FkAAdT86Rj720UpJOf0/u1826VInG1F6gVh3Ivlytc2i88O5dgciuKklb+tBM9yzk\nZ5WUKzK5JfKPoB5FM9kU1Cp9+fIlo4irIsxJJV1GHcOaIVb45jqP9000mGMyfg+OflC6RilJGbbM\nJGrdmItYiXfqpGHklXgcBdu/r7/0+ywZf/BEYfcJH4vr9wUszgKp6rK7rkErikYrNW9JW6VQxM0Y\naqXJVX7WZMK3HpmaH9wJWikctXDPF2G+L47ONXYqjxnHo1HKgWMMBx86XGeXlCM/MisL9LQMuViz\nKrk+JIsby1neMTTPBVMIyEOGM0ti6NiWdkJwVCUwfXU0IBOWhbT7KwZzaL7saxFrissCgMl5iHHd\nk9ZOvUOWyNWopXCeJylPchL/n6j4FD5hrQlWtitaqgzJYxaRXH9+koksp32Qh8KNx+eLtOWy//7r\nk3w2FUWIoV6bQhwSweqB90U5xL0fa5MMpzGYZDu2K9UgslRY15swLWLnXLyut5ReuXCUspEb8hFI\nLrjDrvcZRCztlDYDZ/TOvaagb3vyUFrhHnOnHTmJsr9XFRmkzSPKqv6zZa55My6hE8pR5FL1/6KK\n/Aq17qxgxNz2DVA4pqrws5yskHvr8/df9PdNmsFHrZwmm2vmC3eZlKriRpTMTPA4DlrRrTluJdjn\nVMRn9oXHoJbCxBghRGny0PLEdbD27gRFy5KclNl3LyI6I7KgXLnwKE9hQPvkfneyNajGcnFAYmnW\n1cpJbkLRruH74ct7WStrO/EVyqCWuWyX2pS6kbkU4qBoM40xnj8OUjbu3iXRK5uo5mMHaORNsUtQ\nKmdpkvatSURmAGN2pdhMVfYJ+zYjlJKwLB50Oyvt2chnI5ekhWcYfmvvMFxpQQrWMLlbbRLTIBY/\nzhNqxTYcCzKpaEE6lgI2VI1MrnsQF7RZqBTNCrfue/QhMuRMrHVRvVCjkuYFp7qK1683c+2IuWfD\nu+EDdWVvtU/9LJT8ZQmXFTzXRDtkOhpr8fv1m9f/9WJ+TtIKykeh/ajURyVih+0uOXiP4+BojTEu\najKoibl+f1MYV+y5KlrYWXLaM6jPQ5dFGJ4vERZr/pakxdIYcUWogh+TkpycxI3p70WicOzRRk5C\nC7znha+lJv3DsFTFS//rtRklDYoRxYnktFq+W97lk+uWV6K1A4VvJHxN5pAEOOEybiV2fu5NzoKn\nyZLPt8osmaz0Kp1UzN33xTXerHCOdmCRmMvpNsQ1GoP7/aZuflEqYi9do9MdcC1UHz9+YGuxSqOk\nqni7WNSipe0Yg+6dnIOK9mYaUUqBdI3OPeb+b9COxo9no7VTO4NI5FQ3fkDeFYv4vkDO4yBbYt4d\nR1jnZBBJs/rlDtmlIW8FC9vqpiC3RDlO2sfB+VGpuZLWRpC0RLKivWAVcvs/ff0zwRJDtmCWRF1f\njIS0QiaDlDhy4X1P+nvw+hyse1ItEaXKZp2MVJOY1gFhS1vsHWWmmeTcLG6EruyShrn592wwpUy1\nnbqSVb1cWUumZLp5a9JBXkti3eKRjzF0S1ajz1tV++Y5eCgtRTNn2/FlCiKOYLfp+8Pti+pqpUrR\n/6dk4zwbebmCb0tVW59k37eWsZlh7NQbl3NyjgH45oMIV+ruesmWNMD1OIikjT4zKEuyRJbmgl/k\nufM8ZenvnWctIjsmpQ6VnCVXxEhecNtVW06UajRvxK08T3UImxmRYORBj8A84yNYbiwEFpuh2Luv\njKNsmTUXve+IrKp2udZClIOSRKPMXjXWGuLcREy2kh7MyQZ9XFBCC3Jh58SemZ37VmllNRFlL+58\nQMC8nd9/vvj97zfrWhRLfJwnNdJWfmwc65J7dPWLPga2vQ8pGeejkpqcgj6XpJLF9gVZJd3bi2xF\ntMminfYyyR3YxMTkkLOwCYRojmt0TSvDGePmiFMaZcTYERs/74NRo8DxGuSiX6utbs3I0v7ji/vj\nQZkaBZot5ngxVjCGjFbksqvLSk6QhbfZwdy+nY0glVXHImNl89s34sBjyGyzl6sKVHamiWzqY+GW\niawl76Ml0pG13Df92RDbbemkyNTHqYW/T/JSbmZfk7d38iW0bYpEzQ1Zwwo5XN9TbKGCZXJtnM8P\n6jYJBRlboRHYGqw5MBYtF8i2A1UujaNcoxJSZnpw90EqtvlPLvDncGzsUPeasSaUhbpadiCLngnl\nl8L/nyPoH8LYohDftG+sHWKqBOssNQKJV3fme9DfSmPJWfO2e02yBfWh2SvJ8BTk2GaagDVCmNI5\ntFS5g3EvlsnNFwm8pv0AGvnQcoKdCyqCnDb4mUQhkcvBmHAjPGt4sOZULNyILY3bFLQv6VqS5peq\n7M/bJ/fsHPXU/HMMlhtHLrSS5SBMxsdxcA3FZUktEKTUdJhbYby0oRebW7mkC1UsiT3764O5nJLY\n1V+inEUqCF/qPlZQTAYsHHwG43aeZ5GUa+iiaKUpcHc4xZSd6G7CH4zFvZbGEbXQOHaivbjY7pqH\nlvRl0nH93QN6dz77JB1VZqhcNl7VsGKM1LUImp0ym3gbSInhSS9cojI+JyMGSEyCmVOKTCRWTCxv\npPU/rHG0Qt8s+OsWujgfRTCy5Kw5qGbMezE+b673pQ7iEE+F5Kg32PTMpS6vr8lwyFXRdI5xPBuC\nD0NM30qIxLGVS4uNed12bl+yzdsGKq21P7uqitDY5MlbVaa70b66sBgah2zZrOU99qhtB5zIeTvH\nZsjH0tLdtgwwgZUd2eZGc+XZYnu8uTQCdFc1DiIEEpt2qXNQs2GlLAgANaYke74YrnzLlAUa+Vq0\nxtQyzyPEsd+j0Fyr1GIpeGSNGS2L3SPcA6Skw1P4Tsl56zTagB773wxSnIyl4iLtY9wKR5GxyJKe\nwXYetOOgtkP7pOmKMrSvi24nU3mwiM2kX/R1EyFVyn1pnDqW837fHM9D38uUtjzmIsbmtGSdSxZ/\nh4PkM4l3P32HqmxD5H/4+kcO8n+1H1jOGqUUpcikBKxFDaO6wdBBk92wiQ6ZWPTeme4Uq+Q4NdNs\nBaLADdbBln0nnvQhx9m8dEB5SYwUTFNlUQhycurMzFLAjTs6Z206eMeFX5mgqJ1MCuj1veQYQ4yJ\ntDT387RHGVkwprJfqFWMyRJhzSaPqq3FdOe+Bl4UPRff5MCE58IIGEPSsHYo0m4NVc1jKKx4Le0X\nLANLqpLEhk3dg8mSS6xWEoXe7+8ZoGKmUBezsZwlF6We1KC2us0TmaOe34EK6/PeKeHG+x78fr3J\n06inRlGpaDyRSoLzIB1VKgYmTAUtFGsYSg5Satsiu3FYpaVK/jgYq3KvN2Pcct6FMk5TSeSaSaVg\nkUXVW1p/Rkqq7vc81mqShrtmylE5aiP4yX1l5rx1OJoO8pXVsXnvYIXsiUc5eNfOykF7VOmzQ0vH\nhbJKfcVm5W9fwYLeg5HBjkaq+rk8aqMmBQ+Abeypc7/fqnyT6RKYcg0fNRNVs+PWDuaYO8ln4ctI\nXilWaEeGtJjc2hFsN+zzx4O2gyLGdlf2IYZ6ToaV0OiLiaMMywgppFNA3dvLuSZnTVTX4tTHZnCT\nGBEqJmxCFWJh7s5DZZB07Gsrom6XNLgmk8IjqSMPN0lphwxZwHcOAQaRVOWnL5RysI1aTkm2A8KD\n4VNql6PS1oH1DCNhU2qclpWolUKcoZoKRzl4ZmNaiHVSErkWjbN2du6cvvcVWcv+rD3EWotrdCyc\nVBWOYTsl2fdIyFyz++Sba2P6tTEXnuQ0lnrOdtLWxpgcSi5KS7u9/zwh/4cO8oMNxNkGFtsPTbZM\nWl+YU0FuIqQh/VpS3lMVxxpgrxe5HVgq0nyGbNurD7GCk/E4TmIgsuGa+nCY2yCjl8XWYnSZBEDB\nyEc7eabG/X6J7Rxby1u2Zr0U1hxadq6vbEOE+Dyr7PMWe2GL/r4kNkUNw76CcJfcqCOMkRXBJc0g\nylcMLbs+nqdIiQl6OClDqmkDp6aqqTDGcLItygNyqhwtid9RDx3uw8m1kLNxnnUzR5zSpIHN9SC/\nhx6oZORWiSwXJXen7M8qdovdR3Ddk/66iMupPfPjjw9KQMqJVirpcVJOIQlWfzPWi/d1kWcwNyx/\nraWR1XRqTqQm8uXIsMwZvvj1fsvQdMJxNEklN/1xoYM6b3aIuUPVS5APmVJy1aJ5upZQM4L33fEs\nhcL9kpbdQ7NySqJGo1jm2RS0oexO25SHxI8fH1zXza/7L4a8N/r4krOSuPFKW/96BXcVGKJEXrf8\nEpk9EnQFqQjfKh8BCeVifmnnU9affRRmMkYOPE1p12vDs+8JgUYkviWb0xUwPGLSfUox4sGRFHJu\nVKatvYbUxVRMXWmkxLcTLHaEXejQ9X2gTpwcX2oOYVdzTJlp8gbLEdTY+uPQXshSgp1SZDVtnXz6\nPheSx37unDm7DnxTB6/F7+AaN24h/o455spoXUsH/5kPmOKsVCs0y/pWxsTHop7i/teaKDhrdxZz\nTsbr4n5dzD6l8W6N3LdIwxfX+03MSQqnZSi5SVp4nIyx1eZJvglluJa9k9JoxZLGhsmTRrIEZlvJ\ntzR2a6XKvPjftOxMLumg5ISyDaeSEelBwn41rZp9nacws1JgTLk40TzQZ2av9sVdQMuI5CEr+NmY\n5qxy000JNyQlZ9cqZ2YKyRqX5g+cJVNbkxtzKmNSDAfpm9nRYu6qAgn9nWM6fTp1Q3umu7Cg+99b\ny24hWWQXZIfdKn+lFH0lrEtJo4DeWoznuStBxGqXpjlJVpcSxtJsbq2tFNgp41kQrLzn5l8AJknF\nGnsCSi7lG7EbdiuT0ZIq86yH6x5D88V9kCmUd7HuiQ1njcFg4c9za3P1c7R2Us+Tx+PJOxZ3vBXe\ncAex9GKRRNxb2+yhie1imSqWKPAat7wHR5WaIMlFlyLElzlU7Qg8ZtiddLgfBat5zyeXyIdrqRva\nONsYEDElXdzV02iTnETDO2tlbuiTLamGcshIMoZvt2TCMjvGTku5BXJzuAIt5ly0pGVvdI05FsIu\nL1uMFcwemvd35+odshRByYPj+VSma1L4wYiEufOaCoMAV6AIgDvDJR9khzSPKajbxJkRzG1SSxtv\n68HeH6iqLmXvZVICH3rmXQdNhDP61K8vdSXNNPYyM2IowDmSVEDsS61u/bdCkDUucNt7HDRqKVnP\ndTaD6QoDGYu1JMEcyXm2rA4lHK7Amp6J4cIbx9pnwdn0zGcx1EuYVGdzwZzYdMGxIm31yU6R/Qq2\nfl+8f78hgirTN30Y7ax6L+7O9b5I7vx8NqLlbwaMcCRSOTHRyCfS3oXs0WCS0ekrGzaZyd2d0rdx\nqVSNc/6rVCtruQwXMcEWj+fJYSdG4mgHUYN5fXI+EqXyLU+bazGmjCa5JEqz7QwV59tmYpXAWoIh\n/knLDbebnBKtFo6jUh+No55YluWWpSizFbDCWNO416Ds+acWaCIxjj4IxNtm6sNIX9F1odn7WHqh\nxhzUJtToWSvtUVix9IGEFnMZI9XG43HweDau96bdWeZ8aBxSSmGtrpdiG51yEWJg+eRoJzknvF+b\nyhb0WxfecTQ+nh/8/vMv3q/XThlSZb9WBtdyNLLm2COCwSK3HQ4davnElYB1XSTLir9KRoqBLWiH\nMciKqNoPWyqJ83HiVQ5OQ/F5cwYRmZwaNVcRG5/GTJNrXOSSGLPz3slE9aGF7HV1dUvPB+fPn6zk\nxOikSGzqC3MJTYoH5SmuBkVt+Rex0N2UmpkL7XGKQ23rm36ZgJwShbL3LnLwruWs0YlS1TFE1iK0\n34wwcmu7El6koiCJ961g30fIlOWhyLq8Mq+/FDhRWuGZH4wYwpwXWbr7uHldv1lZHomaE6s0jiq8\n7+v95roX7+681023m3kN8tnUjgfiBy11PbM7/drM/e0hCIL3+yK6bJDlKPIPjFvu2lrxpgDg0YP+\nlfAD9Hvy55+fnIcCwFNNpKbxn0dsN6QCk++vEUKSHE/0zoylwnIdztclbG5JlY/HA6syFNWSmVfn\nfl98/tX5/HwTEfzrjw+KLVJ2rtdNiYPIiTknOWx3youSTslOl4NJC373hc0lxEMpzHGzbDA9facC\nLQ/tmYbkhf/61x+C94V04o/jxHKi987r1Vke5CYfSB9v+rX441//i/M4WL74/b//It4TD5nLnu2g\nHB9YdTwvJlog51bF0nHT5bsGzPz37uE/fP0jB/kXJAaD3AqtCWbjXcu1r4VVoMOuXzvZxiRrOs9K\na5nSEmVzFGxzUmwvbdzl+LpM5LXrfXPfkzwLsDGUWbM5s8waoXbPje4395RxoRxl630n855EqBJa\nyzlKI6VgDPEmhF+FPm5wGQ9GLBKLlvSjzma0XCRhUhlIKZoli/5nG/s5MRMKVObTXTnGwmxJ8p2k\nqvlKEZ/zK01cMrfWKsMWv/76ZNxC5c6dpmRsw8vXrLY772vs+ahs6imlfZB/VU++oVcCXy1fHE32\nZZ+uirDC+cdDVbGZZoRJ/BFgqxVkD2fnqz7OB1EX07b1fEqKODfD5jwOPp4/Sb9erBRETjLAtIrV\nLPfplMTs9+uX2uesS67YjvObYkXHzqYEJdG0euA9GNrb6WX3ILkSdQoFv5e0w5aJlDUK6s6q4luP\nIb3119J+7bSpezp96e9liWV9Pg7W7Vzvzq///cIzlGdj3QuSotOqicsTiDleShOQa5t8ApeSYi28\nd8Z7Stq23+bQD1q7lm1yc3fua9H7Vy5tYs7FfXfmTNpV1ayQaofwfXHlr1xWqb8ShVJM4S/XpPdF\n2QoSI8GUA7JUcUoWi2GDWF3d50ZQ57RBwqEYPRuBjdCuwwbTEtUdmvJyrzn4vC7+/H3x3lTSlI1W\ng1xCAd6mGbXtZ0/yyvLdUa4tSUwRmDntK0w6FuTE8M7rNbfrspBLI5N5Pj40zqttB307fWnxSzit\nNX7+8SHufS2Ebeb6sfNmdyH4fJ6UCscSNnobYZh9MGwyTQCx5IucFfwx+2TOyXX/tV2w/0WslWUB\nSeaddqr9TpbpX0nRObZ+FrWEvasqrKIBHmfjPCtlz85jhuRiSHWx5lAbRtDHoF+TfmnRs0Ia6c2n\n1OI+djzTjvGaLG7vNN8xZV9SKUJxUYjPXM9KwfB7YGlIjVAyfY8GLBflAMZSKz7RvFRXq5guHtRj\nL+US1KPgOOPeDz6BsainwF3BDm01RaGlklldC9E5nbtrXh5m4iHHZFxD7fK2Hns4HeWR5lJlZw+j\n9w64sjePDby3L4GXqimKDv/wYIzBUdRxrLFb+5Z4fDxJObHW4vWSjtzz2mG0O3F9R+9ZiDUfW/UQ\nudCvS8YndywSrRwaj1yFOTtzDI45xNBohYWMZPfs/H59ctSKHU3VS5hGGtsCHTvPM38zSA6pmKZp\np+FKLTfEJ8lU5r2+FVVuGabSqKR+AGJjZbe5DYw5kfrhMEa/NDtfBkNZpOvX4vPPF+WhRei4bmIv\nWvXzFTs9HRVrYNk1eonFmFJtxQ6Tjinnn2LcElSB577m25jYIiN3oWXDKXXz2FdsN7V9a8/V3meI\ntccy8/uzyojH/YXl/SJ3+ohN5EQy1NxkeEOLYZf/aO/CNuN/P1JEkrQvN7mUA6z//aykqpHDCiFz\nSTvcwbZLeo+CUPNDzW0/qrrMRkjyuL6W+Ril2GYdff08i2iJ/ebqg1Qax2HkmjnOJrJmsGWOQfQN\n0VtCSv/48RBvfJsNi2UZEoG1x8Hn2Thaps2Ez8HcZMmxBoOxESAiPKY0xZkJ8LX4/PxkTBUM/+nr\nn5EflkKuJg74qYraR3APpWskFIab0fz0SIV6nnroj72QyPrv9X7Tr84aTjElyo/3wKbocELT6qBK\nuXyrHaLKXBJLAbPXuyuVpBVVxRG8RmeMrg11Ekd7TDkljX3w1go/DiIG4cHj+cF7Dbo708BqwlNo\nueE7Xmq5rNa3XpBSC6XJqnuUhlXd5P2ejLVTRY5Dyd0mOZZFwkP8CKvawI+706dkZS0U0Iu7XnoP\nSRA3X8JX8Pq8SLnTjpN2PLnvF33c5AyPY3Pht506Z2npx+j06+Z1dfqr0/4onI8PenRdUFtW9uW8\nFcYgCAYXb+mtU6EdJzGdft+8zSmIaplNdMY1nXtNOSn9TX9Pfv++eI+OV8eexh8NLXEzYIHHlMzt\nK2ygSBn0tSASa1vAL9DzcJ4PIRpGkpKjVtH1+qKejewFT7dWb5t/sTa47Cuz86j1mwmkzU5wHkE7\ntNf49dcvmjVOO5m/J+s1mb8n99Upj0a2RL9u4WATGxObIYktFKBUq2zcseB+c3f9XC00BqIU0qOQ\nf2aW2b6KEoeZMM8P48cxpbJyxaKxiY5zDuVa2nbfloRVBXnMJZFAItGsSp63YWY1FT4exuzB7Iu0\nMp2BzYxfkFtm2KLH4F5dqV6lqnLCvgMhSjaO1EjH32Har19/UVwsI5bT6sHzI/j87DyOB8dxKPjC\nO9M7aw1JmQPlXoaL14Nzu3YCIIPdUQqpVi4mYS4w3Zx/Szt3WlUsx23iKcvgkyQT/Apm3wQ8zf+/\nCryNQihZrlOFWu+OxUK6cAu638wN71MdbqJNegjQ5h1W0Mo+H9faf479xzP1n1l2WlJ7XrLE9XNi\nI5QGs3Wk1tK3FC4fmXI0UqvQVGFokaEg4eQKk7UQlyJCo5XYLIm5w3Y9gs/Xm9y6qqcAvxbj9+C6\nBvmh3DwP53UPPnvQkvEzPXmejdKqKnemyH0liX9QTHFvlvj54+Tk5PbFe07sqPqm19y3azCuKQ22\ny7WVs6R5ltnBEFDPKihUKoJPrZuxBgsnLcesMDcbY63E7M71FiOi5CT0LCEHJa5LbQr4U2qSjnVJ\nQzwG/Pq1mKNjtmSMcqe4UXfXY1tDm76WYTs2b87OnINSCx6SWL53lum8FM11nE+MzHu+ZBaZS8qN\nlHRRIJ3vuhfX3bnum3tObl8cLakqdOms5aQIVTPeaWTEaO+sMXjUxqMcHEmVupjzthVQar++RmAp\nKYnmWR6UoDOAYgAAIABJREFUkbnum1Y13llzYYecieVRFXhN2rCuHUSQJTNNSW17LeLVp7kwa7Rc\nZcR5ODUKZWauNb+1z5RgROfVRbOMxLacu7TIod2NT33fK4IzKTYtpmSgeq1td5VB3AvfFnhHblMp\nJTK5ZI7cCBC6oEDUxedb8W55K0bSHmsmk8lHn1OheCbNYPSb5AjRm6EnJ0XhKNpzrb74/f6NW6ib\nONEYz8WJv6e6TdxoSZdgKY2UssY975s///zFUQvuzkfVMrw+Kv/zf/6Uo9TkjYAMqwKmUJKclYY0\nVGmPftO/qaUJqyI+Xl2GLWNfkqnQUhGobE0dwDv1aUxkcKpN76oZeRhtA96WD83YfW4bPzrH1gLf\nkkkyYw6IRMqNlfcinKJ3wFQAWN1a+qkiLgE1J348H2L1+H/RjDy+4o+WktqZIhna0JY5spNyYfdO\nst5Pba0p9k3nU3js0rIrK1CAtdlVSy+DZW3XHcnp7jHIfVFmkWnoczBek+kBU7TClOFypcTcJvZ5\nOwpHyYwks8rRtOxzk+sqb8ymWWygfCaKwFQei7kcY6fajEXJh15yfKtaNIf22JzjvCOgtkHm7i/G\nnDro58KSM6fx67f03L5VA5pVOndXkeBZzAn4OsiHcjvlMdqabuMejjE5DzhKoWIcKXOkssH8/vdn\nF0K1pmw76OGWxtkXl4vi+PnXL/zqfLQHZzkpBWwJSyw+xVbpbKY2Y0vv3n2r3GTs0kxd30EumVbZ\nQQv798++K/hO+OTMlTM3qklnXEwz069KJsJZNrEiFkzgitkqidyhFHVeVkJZjivwLJIlG+Uaeatk\nssKGR8jZ2WSQBTRWKaii/DhOiucdpLAJdsmwpuSoNecOWJZ2OW12yjflxPQ/yUwS3TB8zD0643tk\nFkPhFPnQLFeacI3gLAREs9DPgC3Ls1LIRUEvpWaNt3zP0VEXYOVL6cEeowhhXEsm58KLgYUkruNa\n9Pvmdb3pc1DOxOmNdIhw6V/4iZ3o5PnADwD9Pf2efH6++Ov3i8epRXidC6/q0s+P9v3vU+iqgRWS\nS9JoW76bctLZYVNjTLZXALm3pVADbFNfdsWdU8VyZg5B7NTlyelrOCkHJSUkeBXgL1wBJx7yGfiS\nbPG+tAPLae8C1pKSJRtetovZTDkC21kqFFFgSdGOJQl1XEr+3p39p69/Jnz5urE1SStznk3EwHux\nXoM+J16N1h5yTb4H718XlEw6C+mjcPeOLznkjlI560FNieMomMOnvxVQa4liSdv0qg96lJtcJG/q\nnxd9ZzLWo2LmhE8ej8bsmfua3N25h1rS46jicljlcZ6YwVyDuSZmzljOn7/+rVlcrdSPD+UyDpdF\n2ZrYKw7tceqBiYn7oHcpWKxKtqb0G+fqY8ud+m7atfDy6cxu9D5ZS4z0jx9PZr+lS+96AHPS3L6U\n9I0LWFN24eNsjPtvOdm8J6lVfhwfPOrBozaOWumvS0dKhAJ5w8m1cm7r8t1v7j64fPKaF7/eb6J3\nikMe8K8f/6KlzCPLxduZ3C4E65riVqfQvLWmyrNtFEAswlR5Cs5UsWbYA8ohd1y/bhLigmiBmyko\naSZ8yztTCJOQNdC+YwclZGPct3YSO9DAsp6h4WJr0xPrhuJJF0xOrPjCMcj6vsZU1N9efrEWNTfJ\nPWfnx48P0spMm1sJpM8xVRnIVux/v2UZtJIq7GyJszTs3M7jbPywBzY7r/dLVvXlWoyvJKbPNH78\nfFBqk1LNYxumjNWDcV/0cTN9SLp6bGVIK5SmUVS/5Y/QQm53KGOx7m2q2TuOWhvH+aD3X6w9I+99\ncL3lhL3vG7theqV9FFINYnse5N4tsLEUYyio+XXd/Hq9uMak1Mrw4BrCICxzkvk3lMuTOibMKK0o\n0GFJZfY4PmjtZD0e/PnrF3MMCiZqqRk5iWM+5tymH2dkpybf74rO+YXwAn4rsm7ORtsgrX7frDW1\n15pfyOPKNQfX++KvP3+Tk5R1q4rLHgW6D51J20nqtpVC9xuWU4tx1sLPxymg3cYI95nIM/3HM/Wf\nWXYO30nYReqOkMX1cw3clC6/kprDrwDVtJSMUs/G+wrG0lJu4Qwf+B2skZnXYL4nuWbKeZDbwfuz\nq0JH8B4G5C7HWSlGOhO1Krg4F2nLK0EzxHzoQqSuLUUjwVw3hMKNv1Qgsg0npYvURjkLXc4RygbP\nr+qsqgexnIV2NPp8MdfNmJpFmol1fd9vcSjKtj5/LWanOpe1ZDRYM/CpreTz+bEPuK4Fr09WXnw8\n2k5NN5Kpkru7DB3LNcM+EnzkwsfO2py3zBLX1VVA1yy9/GarpJLxEPL2fr93kW1y89UHZ878aA+O\n1igpc2YYLt36z+fBX9dNX52E4rzS1vhGTtSzklvjum68L2IuWq0cHwflI9P95ssERWwa3eHEK/j9\n2Yl1Y8lJJcjVaEflOI/tqtPugLFHm66Iu0cu1NLwpHCENfeCOGlX8LXyth1IsNZgDAGtSiSi6xmz\nFUw6XzF765bCYYwtod1y17CMsxQKXvZSgZ1T64uV9mkSttNiEpcP1jX4fXWmJTwZXtEsdwEdrt8v\njibejC/JTO+RmK837oNgz4xDFvjlE+tOrH3R3YrHCwvy3BX70n4Hdg5sbOPK7hhT3o7QQKCsoeKM\nFYyinMoxJeHNRQ7L2DC4fBpZDwfZJcs7/qfw8XzweJ7bDOiESaxgO+mLUJTddQ9iSfH1pcKaqVPb\nQW2NHx9PfE5hc03v6z0W7/fFHHPPYCdmnZwuylG+cROpFFEzl/j3X5RUfOcDZSUmPZqkq8Wlbjqq\nouLM1fHVtHG/sbnnKCEs4utc6lyvtxg8VqGEmOxJC1vM5Ewu/0UHeWy3IpaZK/ZiK7jCSTvfL8x2\nfFva7RKqiJYCdg34At0v000cPeHXIiaUZ6bsw2C9bm4fcriZ8hmTC6afHxVOLVlyqVJbjI7tVrnk\nRHHwe256msmYk5ZcpB7KHP1GojjNTB/THDLGWCLXRkt1S6CM3JKIZsc2T4SWoOGqrksuYEPz481t\niW1AWiP4covVkpT0Pp1ZF+emPiYS8xr04ULW7oVNXhp8Toe+hP2MWFh2fpwnP2qlLpjvzu8upnvv\nc2MU7NsyHfbFqdbBttjO1ZQ5OSlZfI9nE1/CkIpgTo2GsinPc7TNJPlKuY9Q+3om8rMy12CM+fdM\nu2SOduBDgCUzI21uj7S4nc/Xi+vzprZEPYJ2qrZKCS26Y2kVuNVDa4PF6qPhiL43pwoOsaHyfuF0\nARgBaae097Et2Wkz3dVGryGlgmXj/sKo3otr3TIkTWculwsT3wZguS/76EoIYoPb0JgxHN53Z9yD\nK2QgsZRItTDzTqJ3Y/ZOnrF5+kVhJX0y3h1LSyqQDBP/rvbWpnTqcBz0ucT0FncM2JRjU0doYcRM\n2H2LM7Mk0Q2+qIiKH0woji8jxKuW/XvfENJsm8vAFTu+T8vIQzCqKf75ylpKrrWIlrWQTSaC5xLg\nrKQqpUgkQeSWntuv/aBCMiQXvfvg9btLcLDd8GYL0sQ/jfZonB8n7dEE0Coyx8UGYoklLvLqeVSs\n8u32zQS1qkOOjS3NkYktHwznW0IbKctEFv6d1vW3IWntPaFUdvFtevz/fv0zwRI1Qy1Ezrzum9EV\nGTWSlmvsWy6VoJxG+xHK7rPE6C67cspiilRt4CLFd2xaKRUrSbxug3sO3nsk0M4dc5YbuUh+l5IM\nCRaFcOO+PvGxaEBtmr/ZgNfnm1Izx6NSc1MEmE9enzf1LFiCPgZHKZR8Y9l4/PyDo52yQC+jJCSZ\nSzCzwgZu14FZramiTZVIhefHk/t6M/t7x30FcwVj+DZhnMwE7xiMe3Bv91p5PnieT+5yMa6OTxeL\nOasyiCRS25jaAxDB46j8Hz9/8kdJrNebl3dGEhb40arizzCO46QUY4Tz+fs3c4j6d36cYInYkrfW\nTiGG0cJ5+cKHMe/BeN/0PmhnJT8K1+z7kNyI0KTgprNmXsYO/kjf7l5COIeSRLs0U6egA9W4r86f\nvz45jsLHlq2OoXs/e1YqfT4oSVmcIikkHufJv18vPq+b99gBurlQm3Ty8aUv2MAmYy8pXTYihYCL\nlXEtscIj9PzN4Yx78R6Dqzvjkks0NbCqcUvJRkrO3QdUg5RJkSlJaVIW8B5vpk84Kl4ytRWOM7Pi\nhpBSxUi6vD1ouRJT1bEvJyXBrPJRds7mEvt/L+J9adQTOVOOc0PoDLLk927OMEUMWjj3fdPfgzUN\nfIopnovej0emHcbjR4EWRE08DF4bjTttcj6kOvI19LJ+SRLd+f3rN2NMmdOq4VkgvLUy9Sgch9jv\npdg+UE9S0oy698GYNx6D1+eL+92Zt/ZPHtLVj74Y12IN53lWFZABv/66SPfg6YsfFpznwdkaOclh\n7gQlF1opnLXyPBW4Psfk87qkMiuZ+qjCQvfJeE+NQec2rCUpg1JrtKbi6/jXz81qV3EVxsYXiJiI\nqTD4T1//DMbWBjFhmLTfg0mPxUy2xfzS2h4pSxlwHCyb9LE0r7UgFWiPhC+FDuBaQKVj65EN7msy\n14s1fG+hnJYPjtpotdJDL+dyZ65dES8ZH4y0wfGqwnyyU99hJqOnTD0y7obPzLiF7pzLyWjRigfH\n0oy35KwPSE3E1oGL7+KuQ6DkTE5iyo25uO6L93Wx5hTjIxsFPYDX5+DGSSYHX02JNRSXZmbM0Ukk\nkhfer5uPH4Xz8eCPnw8u9b2MtACNi84N23dXMPbCIWVqqTx//BSDZKtLskujbueTOFSh2uaK+Bcr\npuzFYMggsydMsvwfiZwPBlNqk1hq37NmGB6qdOdbKhFf8gpETHIf5Ftxf6Xo+TBMbOm7s+5JNuN5\nNB4flR8/C+dH3nGT+vNTLjqS1+C6b41OAtIYCgKomWpSRaWNdHWXkSSnxBeL2ocCB8J1EZT0lBoq\nG+koTB/M2RmxeA/tEdwS95pcQ6nw0XUJ1FwVkJCNfmvmk5COvg/xhUTnNKztBXZCQdRJQdjZtqQv\nFAJelrAMPgQqI/72GJS8F6Euw8q767JJZtxzMiPofgnWVSvncejvXEiiOTZkbQWxjNmdMS5KdrJl\nnh8nP55P6mFY66wqBspg4VXW9pSMlTqdRLj2A6Dn5b77TniKbYjTuZBzodasTM+8naPovck57+X5\n4u4X4et7P0Qrm68vBQ32Fd82md05z8bZpJyJzec5Pg6FhYfgeM7QYtQU0D6XTGxrb7gXCMeMODU5\nNjvf9fkHTtoJUsOV/rPGizknx3lwtkP+mpxI6SDWVARdyd8c/v8qHfnKCPnZZUUfS1FqK9t36xZr\n4lSaSSUwMhq/IGNJCoi6JWxfCTbJiSo1AclYYwkl6U6thVIaj0O2cGIHJ2yHVUIJ4WZGrEORTCmw\npbmyJUhFo9XefdPvpF2tRZrWSFtts91cvpzZF6ssIhW+sKcrghnGdLnmbIdLpF1PaeN90+9O73M7\nuhJt2/WPhnInl17EkgzPSQlHHvsykia/5KLfPFXFPh8P1hDeNW/1SPJEzdKqTpwVeuBIWReSSlD0\nCDkZSS0Fx0Y/67TzQZMR8QUK2/maW7HzaKcuIsXPiivv+6FPynjMZoxxEWvh9xTYaInnHAXWSyjg\nnBLP80F7VJIjC30Ycy6OnMnPQwiHJsVRJCmXlolrM0K5p5cLWRAkrjk1CiuZjBKc2IaTNfW9pLCt\ngNCzHKGZP2aM2aXv3y9fTgU3h5UJcaQEJ1smKsoS4ye1THue1Ef9O/kqTf1aKOEqQuOQ0ho5BcuG\nLpmiy6m2ppSbFcxrSrvvRppS3LSsUdw0LQNLhBRR+4J2YISCv3uE0pfGEjo3GxYFwrdufUuAPbSv\nGfpvTgcmpRUej5Pn8yQXZ+UpqaNJ61FK3ofS4p4KfDarOwFHy721U+pJikMLSZioRYd4LVoKlx0G\nnZIO17EW9+yMee/CTO9NLQV76FxIOWu39BC51FdwtsZRhHQoZyE1SZ7DYn/OohiWnCUVNmFsx1rq\noGIrVeZAAqe0ERZQCpwPXaoalWQYHR8yt8mQ5dsLoQyDtCWlITceW2Kj5+A/fP0zo5WW6UPWU9ub\nZg8gJcl85k7CiGDE38aelQNOY7wCpsPtHLnSipxaY2nGpo2wYEIRkuo9Hg/++PlDt7vBuDpj3aQc\n1KrwiKM9qblylUwfW7c9HHIWlS2C92vwvp1rLNI1Oc/Kz//5gRWDrSl/v35z3xdjbtNH2lrRWGJ8\nuzM96AGTxFEe2/iyrdTvm9fni9mHuDQzuPrgJ5nzeXDWUyEbK/j8fWGMvfmXuWnekxRSakQLer10\naAxVlOGabadkTAkzyWH096UzOxv1PBh7/v/79aY9GqXJeFRNB+69FuQidGeGSGsbH7JwC33i16TM\noBwP/vW/fnJfg1fcjL7wGcxt/Q4SqTXOo8LnwlyLspoylw+u642XzLxu/N/OWU/4l/GwRibRKOR6\nMOI3H0chrPIelyrQBJSs2bdL7RRL8+FlsmObQV9LjIucye503/FsfGVH+k69caxm2pHwUDhDysZf\nv/9UO9wKzZ7Us1HLSQ3niCAfUnk8f8ii/36/WaGw3p//8y8s6SJSMtEbV87NNoOAkfn4eJDCuHhR\n9ww+slFa2yiJwa/XRbwnh2f+qCdneZIflTsyv6fzHoM0Bo/jQTtOrnGx0Nx2huNLGI0+FtXEHhpv\ndSHNMs98ytEZYvyPO/DJNz+9tszjeTDnzZgdzx1vsIqkulZso19vxhg8clM4tC8YqvpbySwTFfF8\nPhgh804tRXK8PR5Mpks0IhhzcI3O+35rzLoLheRwHA8eP5+KeStZh+m2JXz5WpKJl3/2U4VbFktc\nvCXnvi6OoymIYy4pXaYTLpPcmIOw4PFxUpsKOktBaYX2Pwfv16Ws2VDASdr/lta0XCUWczjLMitN\nZu+kHVz9VQjsNI3/z9c/YwiqmWxslKXJFb0UitCa3HBrY16XhyBa6AfnAVbVqvu+wb6y+1QY6YNN\naSfaZDnFzuPk8WiE7x7fjJwPgrENGklyMYdSinrtSLCWKmZ0iPljYe8p27Yrff335+e3xDGVxJq7\nvTyesgtb0lwuZCWfrq05uXEc57cePqYzR2f0Tgp4Ho16NB4oaODH48HHccoqHBAeHEfD//cv3rcC\nXa9LRqCaMsVUYTyfJ/86nvz4OPD5JUksuMHjODnTwUdqVBc3I1eIo0j10uViLenvh1+668x5nnRX\nElBrX9teI+WDuYLOzet1k8OwfCiRyDJHrqzmvO9rO2sX7/fNXJP5zrSiBfGaYxP7Br079z11aJUE\nxbU8uuWozXuR9jirlsIYuT3ITeqK3gdXnyyM8zw0sitJzJ2k8WzJ0kULkCapYC6Jx6MxgHomPurB\nmvP7Z1Bm3p+tDlxHnY/ttJyUjdaaFqYG9ajECj7GwfWqCitICgx3C3UDJXN3Z7nGbe5BNqGV11ji\n6qzFUZqImgWl0Nw3r883Y/Ovx5p0H+TZsWqUw/jxcdJSls7784LVKEfh8UiUsymgOBUsDz6s/C3T\n9K6FX9IIJEdsxIXL7IZxHNrrHK0oT3Rts8wcQGZM5+2DVWDYYkWi1AclVwUuB2zSl9g44ficXNcF\nXyIDD83sw6RJd2ENljtXl/LLkjroXCstFc52aE9VDzFS5tKCfV/q2FazRSJc+Gg5iBQ+8YXoAO3A\nIoJa6jc3fIyFpUzOfHcC5so6CHdl7d4SHeTQWZUtbS6+f+vq1/RvVUsiUVLFfXFfN6Rt2Npu5f/3\n1z9j0c/579mz7/GGOnlZ92uCPZrw5Vt360q6D8GHYm2jxJ6rK20ktpUatcVJhERCP2Q1dnvjnBLV\nGh5qLb/Sxj2WZt9kVYX+JROS3CjnQqsJXgP6lqLt6DjXH6AN+D4UUv5q5+xvAmUE4eoUEig5ZcrQ\nYYsNTsr7UJRyptbK83hy5Ir3r5RvOI7C+Si0dyZfWired2duuV8xgcWeP06Oo7LW2HFtxkqJ53Hw\nrE8+8kHcNzlpATcTpJUos+zWVBr6ie80GfV8acd0nbnsRZLMPGtNoqs9z0Xjj/v1Fofe1QG0UjhK\n5T0V9jsvp6dJPotUKD7Bgpzzlq9NyNBaolXZqNecIjqaUUwbftFCjNxOKC7+/JdKBPFFSsvb4Zq/\nY/rMHYZGJWZpz2MLx3nIIJULP88ns6sDChyq2uu1pOVOQKrspCkEicoK31WaVUAJaknUJMYMXyA2\nU9CIWTAn+jkB33TuFdzXtQOtxfBIabPUx+L9unl/XlJt7Si6OZz7vlhJISTp1BjNPPB74iRyaYoi\nLFljGzdKadS8kc+xsKkL/AuhUdyIJKlk2rb2to1zpZgYMK7x4706KTVuFtccrGpEsR27VzSOTGkX\nCUgRFINw7a9Wd8pRyRQ5c6eSsaZP5Y2akLNrV89aCkIm00qjlUa2LP73lk0OH1thw7Zd/X1BrDmF\nYQh2en3ejKVt2tuRfBp2yEuS8g7InnyjKYrp89WIJDbaSTsRyQr1fIzRGa6Yxlo0AkskvCTm1Pf5\nPXqN/6KK3Hd6/VpikADfMVFsWkVKGou4O4tQ3l1Vok0PRatljLIfwFKk//mC+PftEMwbzhRTOXsl\nKbAg287QTAhOlCtjqcJP50ZgjsVEMqbYf5bUGHtmV5aYE6Vu/ZIkZFnkEGKrGCxrDlpc/AxnA5g8\nmPdNtkJMHSKPdmqcMG4ZHDTZkRolqSX9/PwNO9tTL0/i+bNxzaGoti81SgvOUilf3PIjMceNbVNF\nNb7Rvi03pRvZwqpSVnItPK3xeDxprWA5GN6ZId7M3S9qlarlSGUT/xYr5jZbiVFytkZJib/+/Ret\nnVhSkv2jnbg53S+6T5lXJtzvriSiqvno+SxEquRxQ3ZqyzxLo2bNRe/eSYjYeO72OGBzu11LQ5Iw\nDltBk0qmnY1ii8+XM+6x48+GDvDWqM1oVXTOlDKPWvg4T8adufrNNcQs8ayRVv2xreLJIDvstCiM\nzX8vMnYtYWqPogCSCI0FfT8/ow98z1A9b0dwKLnmdV1g6irufjGmVhi/353rPZi37PKtVGo9iXvw\n/n0R0/lxPMm14C0ojoyJBF51aEXTz/txZh7VtJRbi+5SPHn47gbTdjfKg1D2TuBoeVM6pdcOtDi/\n+k2txmCPImy7KBWz8h3SvOZC9b7RlxyTwm1ovIXl/fPp26HrlNRgLznF9t5FRtqjnixlkw8lUbXH\nCQHXfW8Wj+93KWu3hrHW3KoXSTBT0fgwZbmBtVxXcEXgTB/KK/1/OEV1+SJDVdKeqaO4OKXg7cU0\nRkQBjFzg/2bu3XakSY4kzU/t5B6RVSR7Zuf9n3B3llV/RrjbQXUvxCLZGHCviwkUmiDArswIdzM9\niHxSj6Zx0RL8r2RYKZGPDyL5P2hG/vp1sZYiklJWtZqTaVkZU+aHgLVM/8zYbftmfRuQBPSxsZ1Y\nhr6T5fQ56EMfdNnJI6yBReLrNIYv+vBtUZaG2mIyzVgpeK23YEGucUUYWNn0wSx79yNVoi6SO0cr\nylTMhaMe+D0Fjk/GzOI09HkjM8Um8pksxO6TnGM78OAslRXqWEZMjZmKbMWvb+Fo79eLc/87f31f\nRM48f6+cv/0P+r24vm9+/fPSB5K0kf90Oq0edJuUVPCiAOrwSafT+wVpUiyIkgUIcpOWYOmATsm4\nxsU9LnDn7+WkpoMSidf74vv7zQjR+3IqPwvHkvPG0i5hZo8mw0s6mfEbyxfj6tzfgkTFzgtxH+R6\n8I/zyTEynpxcCmc+eOSTwyp3K9z3i9k7fTmra+4+TH+fncbjfHKkggMrutKXmJRDhYBZUszYQgjT\n1MjZyVlZlUcGWPTx5p6Daw3uGETaFX/d6UG29zMWks/mRCmPTXw0aqrbNLPAFzWLtdNw3uNWDN+4\nObIRKHrQh9PvyX1pdGPZuP3iPNNPRNpZC9UKXo0Uql6rVR6/PagH2Jxc3EJFLEgz0V9Si32VrbRB\n46KPwi1FYHPBmPgajJjMAItC8kJ2dVXr7orMe3dyFI5aOVIlWXC0BK2Rn6qOH8mw1qSKmXpPhuuw\n9nso8LgdlOeTsav5y2WHD99jNJPPZCgmE48tJXTxalIpsENK7nFptLP2/CyGovx2+pivxRpiBSWJ\nybWr2iE2sQxbMqyVU2HNgbTo0npP3vebuLffJYx1Le6ZOSxR0+4KDiVNpY3SKGnvxG4VMCkSgXF3\nqVssYndcKlZjfnBs/0EHeWztbklp5/Xx83/ZJpvlG/yzjNFFEiTEty5JFm7LQalJzse9FJpjSOGw\n5+CyacttJufVIKZmpmFGbkE5jFwdz4mVETuZ2E47LbNsM0IiBpBo7WAhI0OqaQc1779nQ4tEHYqd\nED9JFmpBTaamzhL7mM9Y5vNZZKh1Bz7DSFIu9C7rc7+HcAKWcJ+U9uA4G7UdzLF4NSkMYgRHzjye\nFbOlVjGrY1FkatbMdd0Mm/RxkYvs+p/f1Vyftfti+s1IQY/BsMVRddgbqjLm1LxwRZCy0lGOo/1o\nwMMXY10kgvP3v3GtTs3G7+epF2LI/GGlMfPijo4T1Go8vx7UVRguJ2QxjVtqbpCDxWCs/vM7zOka\nIZmkfedvB1YPwmB44p73Tl+RgsHQ/DWSKvdSmizqTCWmG9wxFa4wFTbdY7IYeFJEHNk3b0cnYYSU\nGQKfaVQWyUWFXY65OqKcMu97EH1iY5I9FNxRm/Ir12J6Z1yDyJIXRkZqqs3hr7l8WjfW0N5p7VGS\n5fTDZQ+PH47NJ0mqv2VcE/9lR65te3+Mgd9dY44pwuVK0hqYSzGWs5QmGjlsPX8STKykrYc/srhD\nuVDOkz4X6d4oAiBt0F3JstCX1qg1U1YiraGg7WxSzvy3mbVvk+5cG7kL29YuyWpaxrwWJQq1HOrU\nM+L/Lxfueq59Ie6KN6SUEu56g7g2k8bMNBL+gfOp01/7giu5MXzKQBhBy5mzOZRCSY2EyWW6rdo+\nlEJnAehfAAAgAElEQVQ0VzBBOG7TZGGNwXE0yT1RFurnb/w/f/6Sg/ws6UcXGr74TKlKMuZyxtpW\n3lyISNzdN6xpn601aC1xnJmvp3ggytTsjLsz7kV7VNgaT5/S8Vgybcr74v0W77oeidMLFaktIukF\nrKZs6HC9pB+5UcyudBnpqbZsy4FELMkGj8ikSCIuArHde7YNO9UKnQBTbl+ywG3tpZnavPoJzMgB\noVSXWEOyzCWdrYcUAjo0hfetNe9cyYnfi0rmt7MR9+S6OqWyRyhioPdx/0SVzVicpUI5CDQTrU3j\noBWDsW7ea7AytEfl2U6yJWnwt92bPRM2g1ISX88H4/XmvgZpgvdJIijtH/hrAJPzqPQ7WCkzcqGe\nB+9086u/pJsuifpo1HRwXRfv17UPSSfyvnhmJd1FTtC5mH1XNYgTnn/XQo38SSkFfKKIbKkeVjhH\na9TSSFYEZ1p6ee4+uH0npbsom5PFPd6kpvg5Ld4CedESzKFFft0I5VRwJn05PqZi0XIhkbi+38w5\ntKgm86hNMr0SvGMw78C4VElmxfgRkCJRqSSr5FQhF3ULrnDu6M6MRMWYeW63pdy0llV93vfNMvQM\nZ2nMcySMzOo3cXd1tbdGjNTC8kkK7YFK287MkrTHsgU2f8YQvrXRvt/5kvRy2Y+LOWkxeE5iCHKV\ncqKmRCVTvDA/TuK1sIR2C6BDV6NtfqbHOxbOJmBZYdgpc+TMn6+LVDPP4xT/aHfHdQdGyHQWJMvU\n2ihNvHhrkiS6+waWqfqG2LsPNhO+agk/hhy6SUogcua3Z9mo4KGoxq1Su943d9+BFlV7MTPHx6Dl\nrBFyKaxw7QX+zc9fcpD/r//5X4wxGHNg1B+X3BwDWHhyatqc36YPS4uKPfM29nw4cRxyD/a746tT\nzGXvbgX3RF9OO4+t7Z5MFlGCfCbGWzM7e6uFenwlOeFIFHOyOV4DDIn03LmvKWdece730rggw29f\nB4/9u9QiqWJM39mkDmkJWZuMbEYfL677pvviPJowuCmT8vZD7wckWWARHCVhRyF7YKvLxDTVldit\nynX0tK3Eif/rf32RphbDR2Te4fRrcN0DK8ZRxD9JgZCZm5x3dyO9Oi3nveiBkabs0Tm4rq7lbcqk\noxKRuUdwf3/z/X4z1uSoMo9o+Vnw0MNXS6OPSZ+dP77/qcPG5w9L/nEeVDI9Te4tn7SWoECPTkIR\nYrHWhvpLwkYy7kudSvJA6X2iNDqQ6sKnKTEe5ZbO4UQkSjsZY2nhNIZyS1Elyi4AMOi+WEvz7RWm\nAOPo+r08sXBKKiTEv47lNKuc6WAN556OlSqYmwcpFRbG93WLRzJ1QQNipFyS2xrG6mtHwukgifRJ\nqjeyO2k4uPYKuUgdlarRTO/Odd+8p0KVz2W0qOTnkzHhjpt6FOqzYjsbV4eFkVKQt7ElxuLLtjQz\ntpbahW/IBR7loB2J13gRPvb+SyPSmQJbbVe0ievXS4vGlDhKodk2yWVjuNHn5PXHm8fROA+hLXJW\nIM3cubFjLe5xs9bAaqaekh/F0riEJSbRvQb0gVnQydRcKLWRrTCiKwjCgpbVVVMKK0S1tFwg67v1\nNTXmmkvKr61dT5apZZKTq/NBewZSYiXbo5EilzlrP0+K8fMpJ22uymP1S0v5ZOzgC7Y7feEhtVZN\n7d+eqX/JQX6cTXPxbj+4TN9tDiFVyVYRkpLxOJrob0ktpLs+jJRiLzO3EWYvRY/WILUt4VpaxuS8\npUaKALOipSvx4WPowMzbqpxM+Cc+IKAIWFk88bEY98X9UktUKpK9gRaeWS1vDLWaAiMFlC3q95BS\nwrfdO6cfp9paY0vSEi2l/TJmVkkUL+QV+O1MJJvDNrK3dzyMwzKpNs4j8fg6KZ6I92IWvVARCsLN\nWTImM9B0TssiVadGyU2GFoLeL6I4UYQ+jW0jHlPc5vWe/PnnL/roWDbOdKgqJ7j6e5MBgQEzJoTx\n3b9FvmMx1sCyaHjHIXfbM6lDmtkprZLKVhq1ip0n8+p4aCmruSVgiXvK9fkJSjBLO05MJi2lCQ3M\ntAwtudJv7Wt8Y0Rz0gGYLDO2VHQi1csaSr3pSwoMzyFuzJILWGTKTaf0JTRCurF2Q2kYmWpKqVkR\nOJ20CX5sSWk2AbiWBSkl7nfnvoe8ANK8MT9pSzlpx7K2+glTNqa5urkslcwHp5q0MSMfhXRWUmjx\nW2pV1Nuek31UZaUUKOD3RdkqE+UpxA771r7lE/RSXC7EXLOWlftZFrZW2Op+XcqTbQc59n8f/ypg\n9A6JdlmqUoMiBc4SltqlcstlH6ZFqi4iIO1l6qF0rugKh5hj8B7f5PPYvB3fxEcwk9U/s5eMJGX3\n7vDltZVaTEmV2dr0MHXZj/ZgIszGUVU04o7X/OPE7KuTeiKthO9oQG231QmvWERSWlgqSAm32VCK\nUpJl/8eJ9n/8/EWqFS05Sy2Mrgi22Tv3+yZyJrI+gLVfyJITj9Y460ErygKcvgMpQowV04lILjKz\nLK94FzQqlykLdC2Uo7JW5+63IPCuDbMYJ9u0MztGgVSYM+15mPq3lDKW4L6VSC7zmWhutagiyyUp\nVZwP7ArNtsJgq3V8CXgk1U0R/J/Mdb1gxU5SKbRcqMm0fC2OFWdUMR6iJK7ZddOj2WFKJnl+OO0o\ntMhc91C1Vo2KovJyFp/ETE7GilrDXAulVM7zQQqU4NNfWPsctG2Dv4L3+03c0L8Hf/zzD7Flnofa\n4prBnffrTfSAHrxely7fLORqrQ3PgqbNWBACRNV6UI6DxxG81gVFeFBS4UiVSJV3fNPXlKDUlNSU\nDnj9cW3LeqGkTK7ikbAP4hlTS85WqbVpdHQtnLkvix0RljMlabyyxhJrxEW+i0iM4fQRpFO/s7Fx\nDc7GPYTgVuMWIC4XKI2jHOK9J12ky5Jio1Nmxo5P294H92AleH/fvN83w2HYJjxto1OOvNUun3CJ\niYi7YmWnFNSqjMwNT9jSySC1TKWqwDC5VVupGjq7kutzraTICr7OmvOvKVeuDImhDiEEREt71FJa\nUVqVx/57Fsyx5Z5D2Ze14kvFkGnLvFk7xtfvXzzPJ7WIh798MH2PKm2zcZ4npYg3vzK6EBIaxTVY\nzVmXENH9vvi+XrTYl8CReXw9yO2A5BS2gag7uNHH5H0N7iGHN1l46ZyysoH3mLfUwvP3L64lX8v5\nODcYaxFUTR5GZ16dYYviRuqh/Vwu5FLp71u+hQLPr4OUgzFvnS8m2TUpmDEk/Pg3P3+NauW+tUhZ\nS6S1S0Q3cyEmJ85MQU5L/O9cGA42nZn7jzKgpIJZEEmtXh+JiMW1nOu+ue6pqiGcEk7sWWgQlAzP\n39umrvHDy7AkpcOai3tM3u+PllkXT65ZuNNaWW0RSzJAxaltK3WII1FK0sUUk762g9VEpSul6gG7\nbpplugfjDljqLnq/iV+L8zw5Wt1AqSBH4qyN8nxAy9iFDq6WOZ8V96nP4Lr5xS8aRZFepvntGIM0\ndaunJK304xQr/I7YMWFygI7t6hy+RGSTGECLsW2oGNf4wSCcjwfP53N/Lxpa5lK5r8HdJ/2aWHYq\ncNTBWfwnfi9Cqezv18TfTvtb4/l40kxkxTUE2apNo68/ul4QsvI3W2vk2sgp0d83PuX6tZywmqQb\n1v5buvymnYJlhQV8gl36uCkOD07m1CillaYQYK9YaBnYStVC8vBtTpIp55OyOkNdXSmVVk/e9+B6\nv5l5sVqThDUWj31Branqz9fE527BXYqMeTv97VzDhXeuqqrLWQiM4b4xq6rQCdtGk/+m85bgWQXQ\nGvT7LZfjRjffvbPuWxCummlZ/6xdkKRaFUc2Fu93F9HTdNnNuSgYx1EFxGsGJRElMd4KGsmtkEKh\nz2wPwpydy6XfjzW5u6L22nlqPLF9C69+S9Hj86cDlYeiSlu9uxm2tT1vySe+iLyoR4Mh3EYQhAk5\n7ShqMSGly1yLvgZmlfCNUJhBbdpXXfPenPbgqMcPh6dfN2N1fTfp1w4G0Zly907vnT4HaXWqQ1uJ\nvoLjfPD3fxy03w5saGyWS1AKtNrw9sE8aKQp/LHz737+koO8tqI/7h70Lqmgu1OTSZK3JPBPLUma\naVpeTA8oTipN2NjYCo9shAmEdPeug+OW3VXjGVWqIDTkJ87saCK7zaF8zLk0R7SkL3Dei/4WQtWr\nvpx26EAvO/cvuaSTrcqQkk0Ex7T1xJaSEKZjEevCi/Oox36AEpm0IfWTdS2OXKkfeJY75ovkmTQW\n890VdrEk4co1AS5CX8lKvPFgzsH76sy7C6S/kaxzLwcl4TSaieimh5udWKT/PF2xa6/3xTLXzHxt\n5c6SsSGT/pvNOf/Ytu/7Jg2AEHnxw9IpQcpi6nj6Ic9I5bK/h/evgTWIA47ZNg1OGZ5rbCzpclYf\nrKH5qJnhJtNEbkYzXXxHObTERMqcFJ89hAFy8VosIjmlpr3A0rggklIvS6k8Kthh9DkwVwHhvmjz\nZnDRl4JHxvJtvS7CHZtRI1NL0yE8B3fv5JCxI0xzcMV8sXXIumTXJ+B57UoX43E2JrK5SyufWCbM\ngoe01s0SO4/vZxGYklGTvh9hs1wh5FsmOcfgujt9Trl3nw/qmaBIc78CUq0YmekKf6lJWnAS9K5g\nDWfCQyOxnAprM4Dw2EoTOR1rqWCxPSJTvy7/MnKFKc1rhkw+7965hn6/6Yu+3ca/PZ3ylahZCpfP\n1tNMRYiSthKlVewMIX4lXyMsuOeNuXDKOZ3beChn93k2kjWSvTdc6xP4IS5T20hbbOdoLmeNwR2T\nVg991kPB8XOMvUTde5DIDIfcCtOWYi1zVgpaSJ7caiG1Q27Ya/DruuU1+P85U/8a1crXoVYphubE\nW+FQdyzZWoHNoNTCkYs0l3uWls20yU1Fi4KcNYPLYEM0vdc1WVO1USn/TcmRxHu2rEOr7BdCTjoR\n5lIx6nYNSq6+jT7BnqMvcv6ko1RlMVoWhjOcmv/1d5A+LW/Qx+DdF6MM4vQNa9wvgyMrep/UM1Pq\nwdEa932pWnBV6uPqvH5dXCsRpVCTJJdWlMG5xlDqyRi832/ueMsev7Y3MMn+PXxiC1qRq87XTjAq\njZS0oOq904eqADfJuOq2NM/d9luqJIyaKyur+uv3TZ+xRzxSM8yttGjP3fFU29bvxCK41qCE0efi\n+3rTUqH0xPu1U3CSFnh3XHieZIdwcZ5ZSFPszmS3v1Xa3SNVydLGYqxO5djpNjDmwMeNVHZ6TkrV\nOM79IxvM1P2ZraKXqNbgUZtoiD2YV2d25x7O8Klos6rItmqJSpGmu+iQjCGGTDIjdtRXwNadimVu\nlljX/El/8g19O357MMLpLpNOmOEmvf36hKpmGdDY9E5cB082UQwzUhgNW0RJrHBe71tu4KldRvXE\nScGKSSJLiCyaKrY+ZD+xTvCgj8m1Bu/h0pdHpVBl4y954x3KPmd3tmkoocfSRu9mBa2TE26I+TKH\nMjzH1ChrSnn1eved8To5UhGDPx9S1mwn5fe6WUshFlaVHcpCKqIka/3snWCp2zapaAJxx0s7eRyK\n1iO2bDjXnzPMPAmah9Nq5e5vWJN1S8FmVuBapOGkBWmPodiFBTnhSTwfK/uzcZ1PNQrJFHJy3xd/\n/vnmf7/eLOQY/3c/f8lB/n394p4XpEV7GJlGDukrkyVqSfz2zNRiQlZWuTZT1iJTygIZTFLJ+0OB\nX8vxKdzn+VX3TNBpJXFsnOVAgK1WDKZkVbUkjkNVTC5J3JAwvk74x9+kvQVlVJIE5TrPSl2VvArZ\nE/ecxEblzt41e07px9pLIFDQlCHjfJw7fTvwuaitUotMA5aT0r1ZLPRwH48HXysYGHHFz4K25rzb\nXPFTWMFMWxvtsTv0DbAKfubXuSSsIPQpSbPW0BJtLseKUWrlH//jH1ogImVLNmFGfTpXLFo6JJO0\nj27awPX31VLF3Z5GTmKeB0OjqiLZpK+9RPShyjYNSjbe48X1f3+Tz6J2PJkMGa1RUuH5OJg1a3S2\nq1izzYHZGZ199B0AsC8yE/d73F3W/qWor9YatTV9R33gkSh58P16E2akI/GaLxnQPJOfGqPd13sn\nMWl0FBlqk1svhYqOkhMtF/xxCLdcxJJvZ8NaIoYu3jldLfqYhBvzljTVkgKDAyl0pu0EpXYw48Zg\nj5sMT8YCcXaqeB5WF9yTq08i67PMudFsqTqf/y2f86MwWMH9HnTGz5J8umMhjkirRQn36O+Tpd6x\n5KyYStB5D6plsifyMlKqGnmk3V1FQMqUdkgOuVGw050+OhMxvz8Vdk6FarAKJJv0Mfg1L571IFum\n97mzLRVknvbup+QsAqmFvChFl99ccx+eonSO7sRmxse6OaoMbTmr003J6NEVhh1i33wCk0mx/RKL\n5Z3szpEzf//td8ZYvK+bX9cLK21rxB07KtEyt0/K1ojPWNqzpYZ74fWa/POPi//9/775tT+T+E+C\nZo35ZsUgzCVnss2DJu1DqdCq2mIzlHXHlvKktJkambM1bf5Nc9tHbfAMzjg4zwPCmXen8K+xByZu\ncwII3wEVBbO6b144mjbjvgTt+owT5lwbbep4nsK1usYHmbwPya2iCf9hi+dssrhv3kLJmXZUWYQN\nlk2iSBP8advf4xICNSesNjFVDJ6m9CM2bD/SXpYWzTrDYNXFcUzN21fgCfoaW5mxsKXl6VxTEq/W\neNjB91Lq+FxT+uSqQINiglAZWlplpHpZXUaKkpTao9SjRBAcx0mtDQs5alPA49nwmZlLC+5wUfbm\nmJs7Xzh+P7Csh3r1Cd61mDwatiajg6EgXBnxkvTW/mnbsxafYbze780HV7W93AU729+PxYdlgjqe\n2XdwQKYzeF0Xc078FfS4yNl4HA+lTG1VgboCjYbO89jVoZak2cSJfzweJJNcb/qtcJEkU8py0QUD\nExFziFPtY2E4xRI0IGD44F4bArG5LW5a4H6ImphwEC1rIW4lmNwMv7hCqe6BMU2OyjE1ZsQTPzw5\nT6yhMaVXYaeHaxST0QGXfL+vWTCuWAJVeVZs4xyTZZXqmRqZsmIvXBPv90u4V81GyVlQuT6HuDUR\n1LVoRcjpVio5sgJeLLFOfS4FBRpfv96MfnPUxvk4yV/qADx0MThB98WrX4qvs4UndWHZhBtInvHY\n54LrYglfjDHwLHiaFE8a70QoNDslGbSsSAxgc5Jd46R1T2WZdqln2lcjNxVp0TIrQUf/no/qLm/Z\nowfcQ8vWub+ztbHX/+7nr+GRx1ZamNoQj4W5TDe1aHTyPCt9zJ2HqRfGsL0klbTqPBpXlxbUUuLr\nPGhN/JTjbKw1uZMJRhWBuSpZFhrfLFVreS+uIrTIqDnLsbe1yikKTKO/pvgZ+YM8zZK+DXEzjlap\nLdPHGw9Z0adL8/54VI5WBItKmXYcmosRRNEXZ6Gq+vp+cV23lpw1w1GpXw8ai4cFv5UHy4KVnNi8\nCUvKfywsWm1w/kvHPteWKw6FNgRq19ealGI8nwe5VPy6uJYWtgqUVktuKVOzAhX6umRYSkmjBCvU\nUmlHJR2aq06fMlOUin+gZRG0UvRijcm6b1ZajFD4c2mJo1XO86Df3+JcrKS9hSs+L9BIZI3FEXsP\nYdLt2hws13fXSt5t9NoMjqJ55LpZa9Fykem2aESV9uJ2bmAWKbjX5J6d67ro3rHmPB5Nzte0VR9Z\nctijOikFf//9N+qjQoY1QiSRnHkcB4nEuiczrm3q0o4hJxOUabNEpkMfKhZyQpLP/C8n5nC5Ft2D\nVsXA7z7oaxNBQ4VMsqTLPcuJONaU+mOJU6SqVNVlLQVmYn6kti5p5Pv7ZjWIapIUpgRkkit8+AO6\nq4+sgGek7pioABpr7aALLU0ja2c0+tQlGY4nNvIV7tk1hgu9n7iRW+bRHtvNW6hoLLWOpk7nupnX\nzeyGnbFn/Or4mIuraw6ucAflkJZIe7Z9UEulpkqOojV1+qiVgrkG13WRi1EisZJGWn1OBVS7S8q7\nkrJ/k+GqzJh98f71zepOH/rsz6+T0hqRBaX7JAH5FkjY1qbbZ9flC0x+mpZNkX3rP8gQ5LawJCWI\nuZaKo4fm0qUSyRg9GBvNSi060DcBzJaogxZKuI8kWZ1F/Nhz+y3WSC06SGLuh6urpV5zwhx62Gvf\nkk69PL1m3CdzDvpY2MwwjXEPSpWbsmxOqSVpw4+qOKhSDEOaz9Iqf/z5jRk8HielZKrJNQdZuaRm\nO5NU8z2fi1wL7Tx4PJ/kejDNuMKJkjkeD1p77Cps6MEJuU7v0SFBToXWgtwSvrR8jJzJczDHoKbM\nWRvn2X7GO8snOSeO82Asl0N2LcIm9Wxgn6gwoUxrqRxfJzWJLlfOzEyLEeLJi6UjtvXHjtxfl9yU\nLq61b+yt59hBuWLLtzuYq2p2v+Y+XFV941pIP88HhGLU7n7t8YARa2ksoZ0WY0ivnzKU2jhy5shJ\nIcQxcaTp9yXehR26VL/vi9wyR2qwFuVItGZgkz4vLNQJ/I//+ofwCXPw9bffsZalstmhBy1XVVwf\nREHvezk5IC9aPWlHw7PxnW9VkWhPU5op2b6kLcKYWBQcqXxyUSCB6I3780kaRdheRE+XHJEjE5bp\nlzghayoUWFJQQdBwJ5fK6JP3cN7vz4WTaWfZSzupolIXk/14QGlGrQe5nFyhIOvqkpxyGz4SsTLu\nkp2KIFow389I71JUuZRdqPcTw8YmlOB5PMhZ4Km2naVHqVz8yf1+ayFf5MolRBR83xev7xfVkqSx\nvz10EBr4Vmxly7B2fuh0fGnPcPfO+/1S6IMVLDLDB8MX1+j88f0t9ZIX7Eo8HoWcnc5UYMtK9O68\nf0nQ4bZ4jEF2Abj0Pem8KjlrB+e+ndFGaYVrXNQz87SGzUlIf/pvz9S/BmM7A9Q1EzNYd7C6trXW\nQn9Q1q23pu9tbpAS9CRnpqVEdt9OubTjnyppTa5+0edNKSb7PkLaZodr9r1YXCSHfi8Wb9Y+9Fs1\nbpPslz1Dsy0lexxNkrodiFusqhqubBcmGs/EJhte0qUaQW1ZxpG8LcphrG3RrbmAbTRvgXZULPmW\nSOlwrCQZgKrBDno1V1u3Y9/136FbPRcpIxaLVWURTtkYSSTFlsXMXizudbPc+L4H70v5n3LQ2h4d\nSP1TyIpB2wvdkoqklNlIRUtNn0MGI0ccij4VOrDElsY3o8IgnwepKJRWsW1I03sUKpWcJYu7u+bn\nvQ8ym8fR9L+z5VQS7TipueKxgf99kT1zlIqdhfx1YsX2vmBwXVru5WxadK/APEv66Yv3dXGaNPzP\nR6O0+HnGzLRDMRLP89TuoydyYifMrz0iVCU975v7+83717f47JrrkVum5SBVtebtrJzzUCt/uNLl\nq8Zz5k5ZWiBHyloSfrgfE0rVmLC1RjpMi7Q1WKszp8Y1fY8twhQovTN9ASm7osgwJIfp3mMUfpCr\nbP/Ax9zjWy5s+4AOD3yPPWtVnq15oqaD//rb/+Q4GjMGv/o3ITkZ2eo2zM0tVxUTsZE4s1yds+8A\nEJO8+GiNiELMHWS89F1Y6IK7fdBjCL+b5dvA9DmXWtU5GCzkRzEPdYaDHbyty32ORUrihQ9fvOP+\niekbSyINRvD+flPSCYdGMu4CbvVYCtEucDwOylEF0lvSzMtsKOZ5sg9+e7JChrHz0WSUa5k6F8cs\njLX+7Zn61yQEdYMBcYP3HRU1RTuMhR6kajpkx2IlVXWWjeUDf2ghmJdLimRSE9RasD0HHTGwRyY/\nDtz3LItEuvlJ/8ipsfri7l3Lj0OCwOWLdiQxq7dqppgOhbk/yLJdga0eYlNsZYXviC2fwpHalCIn\nxf6CkyzWFqhLmAvajp4jfmhnWNb/vy2JWiYkq8eib5iUbxY4Lg5NcgNLW0ub9KCHmOQp2xZGOK0I\niWvmjJD88+6TP3/dvN+TOYO//f4lLoQ7MbaBa48tcvnsKyDjmE3hD8abOYZyLS1r7vy+BWpawPSf\nqsNLUg5kq6zeldy0IVMpbVVQOyBlFkG/hJm1lEmtQE1gizThSI2v83fOdmr+uoRG9jBqe3D8/iD/\n7dDcu795vzv//H5z30OLbReetZrRx+Cag3e/oBbKo3EeD2qVJKyWypLFbvM46lb6yJ23hrTaOSkp\nfm1r//X94v3rxehTapElI5TvGS7JOL4OokC+Mt4WVp1UDO+Kbsumai0VBUobYJ41gppyPdajUorC\nevuazKl9xBiLPtRVYVro275USfJlkIFb2IfENgcVZ4tJiJLlfg02K0lxiUxJhpcHyyAfiVaaCJqW\nOfzkH7//nXY0rnWR/izYzBQyR1Ueb2wWUsuFRqFM+KonR33QNwTNYzJ9cDwayTLXdevvcZMfZG1F\n1RQELlKQqvg7vpRFUKp4Su4uE467LvA+iZVYCwHMXKo3inYP4cG1Lt5z0qdMWbYzT8fVGS2TrMhs\ntfk8Ky84oOXGb78/aY+GEDwdC8XdzdVJsWBLlpcLspeTENWCsUHx4OGN/6jMTu8QIxFDNnbZtRZ9\nqpWeS4u/NYLZlyBDAc7A7eb3fzT6mryum9dL6SPvSxxpd6FGvU1yazpgZt/hrJXSEl/lIUwphTmd\n6x68rzfJoGXDYlKKZHLJtvkjFyyM4uJdp7wjo1rl+TxY483sN2toph4LUmR+//obUSa3vVF+9pYf\nLaW8iNbXsVQ2hD5w3+HH5hopZOltIynwtb8v0eVyJiJJq/rpaAKZVjwxRmeNyUfxU1NSynkVebJu\nIt513fzx54v3a9G7LqJ5DHLRkiXlDFMSyYTm8barz4k6lhkiPIYt5pwkksh6/ZJDrxb8+6Ydx5bz\nGe144DVRfOG9E7akxjHbpqixR2rG0RToIdhXgmy00jhrJa3MWavGGLVplpoXMS+OdvA4HtSj8ccY\nGpmZc8fiNTu366J71MbX8+B+SZ0S4eqeSqLmtCFWRcu2fVC3qi2kbQ1+MmPd6kLCMmMfcvjSzLd3\nLHkAACAASURBVDw3ns+isWLZyNMIRmh52r4qx++Nx3hwcdG5WS41lIX+HbUVrGRdhottjKvUlIkM\nqQjBwBJZL+UsNcaQ+Q6XUomdoYkZVqWvt598gG2TR07JvJO7Wm3EWKxLQKwjZ45aCbN9ucH1fuPL\nOBu0o2HT8Nfkf//f/w/H4yQ/5MjMD40m01Dc4cdw9mwHD6usPy++SuNxPFlnYfpkeN8YA1Xax1EY\nrRHTSFPyvTEGqzlR2Tb3xX3fzD6FibaDVNN2qKq7wMVlyUkE0ft9id00J6lMaipYTRJWLOnzj9ZU\nIGGYazndfTFjbP9Ipn01zmehpL2DM3UxHkZ/31ru+qQ3o7a0U7skG00rMWPRpzwKpTbMtNT/dz9/\nyUE+u6sK78bqemHImchKmJnhzFCb5qaEEkBb7hx4cu41eN03960othW+mQ5yrmV2ZbEfyJwgx1KI\nxOaa5KzlY34Uai+SK4YT4yJYkgltLK1lU0W4wT8rgs6Uyefq+BqqgJdrnDCCmEARMD52/mDYrlx2\nNYaBE7sa3fZpg9gZhnMqZCCPWwGyiFiIqSKclggZ1MQ3yRA4vavlW3OpsspOKqhr2TK9lPIOalb2\n4uybFLlJj2xkrLtCYxOJZc6yxpEUATZnx13Jn651hP73u8PIp14C99hSq81nfjShFJKx5lBQgG+L\neSge6yNVrEXYYMnRdHHUkvUC7vCRGYtsi1QSLWdKrvgSOdF8kWIRc7D6xRwXpQbnU4kzPy7NZuQp\nXk3xJv5NSpuQp1ESJNaYLFskluh4+7lZSwu5sxr39XEsK0h8rsDdaMcJtggTP9tmZ2Upi8bUZ7rC\niRoktNtJ2Ta7S6M522lXORdqqhxxspI4MssX49X32E3fcf0sxhOkJBXYcahSna5nOteKkThSY15D\nHo1SfuikZmk7n9OP7r5ZppK5Lum1n88nxQqRlQAlCqAL+uXqWM987BScRmD0fmGBPv+cONJBI+Pm\nMrO50nzG7AzvuM091pJBJ21cwXXfPI6HviNTh5QiqClxlsbyhDn87etvlFpY7liZ5OHU4URee8mv\nd1mftf0YtGz7JaiGZzjrSUKspliTmhMkx9baEurKcZzEtB2mLKPZYo+x4OcfD8k7wyeWK5MgbUmo\nKJuh8wX7F/Xx//j5iw7ywJexFvQp12CuWYfZ1ph+JDeeJWezJBlfrtI/Txb3HJvP6zvjTzl/EU4d\ncp2FB0dViMJck9j2XS2cpirrKtt72guHZVMtWgQrxEmx0MY67SSjsWSqSePGXgJzZRIpEte706+F\nT4gGZ2lw6uGMzV3uc8ESTnZtYJA47L4TRYzbg6vf9D42nOekFfEb5ECVqiSj9BLR/TSCuN+T719v\nYgBnwvKitEQqwp+6y0bu0+VAuzUjjNALG8ROJZ/46uLJ5ILFFIwoHXAUXTZrsGlTWNG8cm2jTk7K\nNpx9MlgyruzA608gSLaE5UJC3YgvLSGD2Mvlon9KEu96CX861g4IcbA1CE8/30OxxPls+B79xDJB\nj9bE1uR5Fh6nRmWtHtRUiHBK20lUVqlbKy31zzZ4GT9L+BhwFClSYqrFTqVwloOxxyz3Je21R0AS\n/2URCIIbmGvR6gBzarQYrks5wQcilxIyxaUgmYqAEoUaleqFZoURg3s613eXi7U2XWzWJEmkbhey\neCjv642PG8uFXCs1V46zcP+6WGPSjsbqkzE7M7QMTxmIzBGV6om8EnGLk/OsD3LKLJs4i9474+qs\na23HpLEGpKYA5gh4uyrlGpW85YrJ9R4xxK/v7vSl38EKhKsTJT45q4bHxExIaNDY0tBSvRwJ0kF2\n47++/k4uReTV4pAG4TdeFn0M1i5M0gb0BZ8OUfuJM1dyzZztIcWaI6SvSevvaOd1tMbjfOhZGTJO\nrZ0VmmqSW9S2+zYLCjYRc8a2HDVbZkdqcPVbxdF/0kHOEo6xHJkxL6xmUjVwbdN9GnfayhQzyqPt\ndlRtYyAURW6qQNdSIIHvzX3aEH93qRYIKBsDaUnBzqtrAy96XEUBw0mVPNvGGyZFQ2iZiRlz3Iwp\nl5kJXo7PyaM1jqLlzJ/XxfU9mAPSI8Ej8SinnJf70L4+VY+ZLNBZKpZ7TPFBUuLXdfO+OmMqk7L3\nRU1Fy8aSKabZZdmypciLMd68rotff3SuP7XlXndQatCehShC23oser9Zw7m+N+NkqWuwbUX2+MDJ\ntGgOtMP4SNnGb6de7GTK10yGxV6qLuUeynK92/Nn1feXNW9sI+MYo1+kUPf0qI3v186lTFrGZiV1\n8/365x5/nTI6LWPMDTtzXWCnVWn6Q5fReUq7O3xSzXjWJnt6rbgZ735zVLkC7/dFSk5J4oZYB7+c\n6/WW8mFKnvf+80Wfi14bvz9+Awv6q/PnH79oZ+P5mwKIR82MbOQmfO2YwbvfQiTkxfN3Va9ue05d\nPtZ0VWCMtaWzQptikLMOcnzhfYjPMwePxxclJfoE29MRXBJU5b0+oMkhWmsWDjZNWcS3qazmzFd7\ncFph7DlxNJm5XmNiJjJjKsLz1pnFHvGM38H161bFXBXTt+7BvDf3plWMyRy3xAqh8VBKRnKjYtRI\n5AXMRXTndf/CA8rXQ9mwaLSxxtxdkPFsJ+ffq75XG8zRmeabJqii5NGaIvu88LBjCwWcmg88F6YZ\nnpQYpZzetY2Bcj6PpPHrq188H43HV+VRDmo5AOOeXZCrFRvH/MV5nuSUNTbb4xDbJr41h/YtObOs\nMnyo043gz+8Xb0t8HQfn8ylX+Jp8v27uW7Cyf/fzlxzkeZtYIjJB1kjhg4fYsJr7WuQNjSM+uYCK\nCHNUkdgyBlNLCWOD6tNekokhfI/FXEFdUJoOdMufwNaORcJRGkgsjQeqfhUlZC9ZiXMoT29OdQL3\nWBu4pZt2zaAX5yiL4SFpXYVrDvJ14U1feGw0aSQtglISW9mnAF9ziQ8Ryfi1rdNrLo5adxcwaTVx\ntsJ5VBkMisYpy/teFkKtmZ7WJhUuSlY24vXqas3NN6VN/07tgrZszVRdk7YRKhZMdmqTwF2UrFGI\nid3hprm4gYxQCaIISLaSlkVhwTVlcEgr4yXr4FoDdkpLKVL8rKkR01mKKsHP7DycuSZrXtxXcN2T\nnEJc7hm8O9RUqblRciG5ESsxvFOS8dt5UmrBTSwPC30fFkY+T+baYdzxSdPZssRIMlf5EisEsUuu\n10X40hhrTGY2Rr9xW6QSPL42YG0bdtwq9wQ34/ElRohl+zG1TRPSuZgqwIUiyWzr1hOfpWch5SY2\n93uQ5gu3YEaHoXHZde1xxnnwPNW51g8K2BJH0qigPp9awGMkd0G7+mCNSd47gkahHpoL0xdf9Umd\nWZXt14EjNvev6yKWSy0UG9NQJLVzV4wjy7CtsKo570NZ7+8ak9UXbQOwIpzVO8sWI6QWISbGwZEP\nytbgz3Izhhjl9z3pG3l7NsRNCaA7dO2m3u8XcxubbOkAstCCM6XYiWXaj9VmZGuEBY9WedSTRz04\njicpZcq4eV06qNP52M5zqdCSZXJWd5uI/Y4vzqZOdcwpk2H6UBpUcc8QJpp9gT8eh+SX4z9IR65H\nBvWpWwPt7nJT/QDhF6VKhjPRbDvXDKbDImV+qutALwG+ZVWtMOdgTGnRkxm1QQvbaE4lmcw5JGlC\n2Z6xL5RPNNmYroPVXAewsysrpRiZK05qjmAy6TkY1YklN2Eqxu2LuG5m1qyPJCgPG0WQknHfWnzM\npbBllxKd1/tm3FN/F8a4F+ue1GzMx1IcVWTCd9yWfQ5y6VrHO5j4z5IsDJEK016ibrWCpVBVliqp\nFql1jiL37ZD7MhzSkrusRSVX4+5BpInbwNKSO9d2uroJt4xpzmeuB3NMGWVKK3jNUIzuHe9DC71c\ntmU/trZfc2lJtuwHJbvGRe+mNCmfpBAMbf6a1FR5tJPn4wljYw1skWtWlmQSZ5wV1D3nVI7oyd21\ng9BuwjE35WqS90hKnPJWy47KG4wh5Q8mk4cqrAEFWs3UkjDp+IiS6SOLqbHxE5ZMjkYDi8WMxJEz\nybXsctJWZonfkkk7fqwxbTH7EDM+qUX/wMwks7yJbU4C51EL+SEz2swCYZ3lVEW4Fn531nXh75s5\nOnnL5h6tUU8FAweJs51iCr2CcmpJ5xb8c2ivckbV53YadqCQk91JioCoz7Ka4HIlSdM9Q2MsQyop\ngLEkJZxLcC9L2/hzVkket7lNMksZubpPBS+fBuWBoXAM75PeO68/vpWnmYs8DWvvrLZiJJtkwo/z\nwI5C3cCUs1Ue54NHOymfEJrklFTBTCE2O/IOjy0XFTDMXX4K3+5MFYETD3lhLKedMayJw3L/QX08\nHydjDO67/9sz9a+ZkU8ZH3aGzB5PaEbrU3LE0Z3lYmnEdIYnSaXdSNkpVTFktQm+5C66WQTct0D8\n/Rr0W9K886GWfo0LS04yJ6bUB2UF5Tw1N17bHu4ykuDCYq4F339ejB0ltnamXziMLsH5TIu5rfwl\nVx6Pk+G3eMS33JJyBHZqa0RrYFlzeIe54Lo795j0sTMQF9uMYPQ39GtxY8plXJM13py1U0siNyli\nLCWO8+T5m7Gq07IkclIE6ZAU8sDVPpZC+8o8zt9oRyMfieNp/Hr9YvxajBVbTw/323+i877f36Qy\nyc05zqI57jJkedHOwsS1wm/n/drLJTOOqYPcWtL8s9/EkLQtklraXCtO5roX87op2XfiejD6AnTp\nyMas1PU1ZFdfU9Izz66xQdNIzpfm1kqHl8Km1kpthefjwegXMT5La7kAazt26EZAGK9f39R28Lf/\n+voJPwmLTaVUbqZ7154sOSM6Zzs5zgY1c0bdRUtQ91gvM8QX2eEaR074GHz3obzHWnmcJyz9brFc\nVV8E2fX8qaMpyjwd8F6D93yBK+cW1s5qTZTWGPeiXxf+HlDBfNG/L/zdoQ/S1unnZBzPUx1WsOWI\nGXOJFTw6KRfqUTcBU0qQr8eTeiRKSdy/Bi0ffH39Bgf0uHlfF3N1aj54Pp6U42S2wUgX/n0puKFI\nCpk3eXP2zrwbs8LMk+kvZp9c79e/LrGZtJ9i0v2Cp+iWHwOij8m8RdksPwKEHS6y1gbzGY9W+K+/\n/41ugc83rRa+ng9+//qippPvX29e73t3pdrbsNj4CSmw1tISteTCnH2715WpgKnzWnsE5ksFT6Dn\nSfhhseS/zoNuwPwPOshr3cyE2Hpn3+ny07ER2NyZhx7MqXHLXDJyjNs5H8YRaStL2G23KvX1Cd8d\nqv7mVP0/Z3Dfg9sHJcOjGmfRjR/Lfxxly13p3X0yhlCmrUiuFy4naZ+ycicXra6mTIRmy6RMpMVK\nUgqs2Bb5tws2tWfktS76oZHJmkPuvKWLoN9wX6pGM9p699u5L2d26cFzEjMiu5K4S4bcBFQqNWNH\ncDwP8pdcmEbwvjq2Ftd3Z8ypmfSUbj0fRZKtZuQjca+bsYZGTAvGkKGnv2SZTzjLBqkuyj6UcCgt\nGFsrj0k5QSiY+e6BvwcFLfS8S8434qZUqXDosbM/Ja27hvYZ17jAF9skzlppyyATY90EU2aspcu1\n41x3ZzBJ07CusmGF9ht9TGaI9fF7O0i5EAE1NVZaMDqxJtkqLT8gVGmS4DwrpQp1ND+XiIk1H7ZZ\nJkljIlJi9sG9ncS16nfefjOOrZxKPvdITpb4tJ/H/Pz6Aa8lh0zZy3CwqFgZzJwZ99DnbSJqelI1\n+DgefD0ePB8HEXJMjvtN5CKXrTnThxyNyTh/e2K14len95vUDGPQ70HJB6U0Kgd+w3x17tdbbuJa\niBQ8H5WV816Mal6wEqQqmt9RDyILQ5wWP5VtysaKyUfO2efAfYhUWgu1NRVtBvU8qSUrrm8Jbxyx\nx28LfHRYutQe5aSYqv2c00YxTMYcpJwYNsTOcT0LJRemB6UUjqbvmM18Os4DS7YLB7gvhaG/x5QO\nvKgLT6ExTSC1XdpeDyN2ha1zz0Oy0mZlPzdst7M6rmc7SSZH7/39zZpLO4R/8/OXHOSP88Cj0KcY\nBWszyGNKsidWlPjE7sH0PRtNmh+mXLbzMshFH0pKmklJFbJbpJygKX0ll314BHrgc6LlxFxOH05n\n/Mju5ujcdzCGpEFeoWW1S/1e9ClcgHmiGLRDwJ3YbadaXKFFF4r+uscmEW62SJ1irvcyJfEKpQlZ\nJCyKDi3TEspcO4P51sWUM/x/zL3bkhxHkmy7zNw9IrMKJOdsmf//wSOyZ5oEKiP8YnYe1LN4Hvq9\nCRH0FQQKWRHudlFdOkpSPGhFnc20hG6kS5EQ2fn8fCqMoejb3Anyp/TN17W2a9N5fDrt01kliBpQ\nC/26mbG+JWdrJfe9tOzsgTMIm9QIjckicJCKxXNjTzd/MpJ+B9e1GF+Lir5v83Wrwq6T0g6NuYZm\n0yL3JvMe9NV53Z15Dxxoxb/TarRaWco2xSir7uX3xO6biu9YvzfwSGOfuw8COM4HYcZCWZHulaM+\nyO4EN9UOjvJgrEvdoxvP51vTO7nvixlrQ6gGOSVDSw+yKDpv7tg/fOHH1mdH0lJxeKzA7imA18bZ\nxuZsPNqhMVUEsy+MrVTyCrWQNanujA13K9h+jlQ1fzyfPJ8PzrNu7owW4nMUjatcirA0ZA9vh3C7\nxaHIXbwsGOOmZP0GpHEls0/6fYMnJRutOu3YEKzNWF/f80qhi4/jZDLEVlrw4/khIuUSgpklSWmf\nSgXSErZyHo3TpOTxQxLDfk918m+QVKoYOGrbprLK5/lJdblxfbsq41tWK19GmubX/qZ4LgXamMvq\nP/YFXY/GyuB1XTA685rMMelX11isFo5zS1YRhE2HNjvUfbOedt4AEXgKOgfqZBYmifR2TZslM5L7\n69JI2fzfnqn/kYP8t88PHWwE7YDsyZxauGnkIt5Bqarmsgs5aY5kbu7SLcduxb912PqG1mpadFml\nFKWnv11Up1dahUcxsi/6lXzdE9+ZeLmXXO6CyV+XDiapv7QYjKU/s4QceU75HslkiL2NFYK35Xdu\nTKf01RGJl026G1MHkMmocdSGndBs6e3aAa22dMmtoe3HGJJjZmopuTLoL70AXrUU8moiCU5RFdcM\nwcJM6pP7lcpsPIJieqGVWq/WrhTn8TiZXaCjbov6KMQMXq8L850mXh2rTu+LnJO1KzRlfqhiun9N\nXr9SB3lxzpH8/POLMo3PP5qkePvlWoHYEmbMZNvzk3El5GJU4/lRZEhaQxK0VigUxQaORVoybHK4\nLjIzzfpXLimEij5Ha5WZWsIacOzg3bNtBowfHPWEjX0108/vKLfr5p6DTjBMAdZ00xJxa/g9EGo5\njFimEIa5CHPGvGFM5q34uXK0vYt5Hzayyuf38zfVdlenmsZZ6X9nvxYvXH2QWXkcTVLGasLMaszP\nyGCOrtiwUvl4Hrg7I4LXfXEEkoJuDK+ohbpEbC81a3NW7TI09Smio507/CD3onyjn8u2pXvh+fnJ\ndX9hoQXzj48f/Hz94tdffxKl4ijTUu5cgaRy71q8wHGKk75CLH7NyJcYKgleK//n//zGDMWynafi\nIQUdU6DK35Z4Vdr6F40yzAteHQz66JrNF2M2LTznnMxrkLege5bGWRt//nwRtvh4PKT/nqGc1RiU\nAo+jaWa/jYSkFrzVpJbL3bnHFgWAni9DGIQ1pxzm9R/EI99AVIoHwkAbKx2GPvx9ouJNC4d6Vont\nq8YH5ZDyxDcGVlU2Qklu62w135mNjpWUFHHVndChWdick9e1eP3aZDftS1kr+PxUtqXnJGIwppKC\nbLMnSPCZYEtLQQ8S0dysyjm3TEvLuWB0PTReoJ5GO7VEjRD4X45Mw9biMCkdXrfa9pWLbEnUTW2s\nUM/C+SGYkVsyO/QxyRSut3phjsl9BekVPFnXIq5OdgVEtFo2yxq+vm6Oj8Q74F37gd3mmiePp5KR\nMpz+azK/JNOrrgVWWuhiWkoQrU1SOUjGNeU83fCisOTVdena1DjsFTdlaaF61HM/sMnrS2MgUKRe\npD7TETIOrUxaMc25vRKvm2Iyj0WTX4DQ5VF3hFk7Cs84WemkVR1u70qNQpnAFIQsXa3tmtLAZ3Hu\n6yaGlvOvr8XXXNy2yBbfsYG8AW3eqRRWbawhKfubHz8dfJM4X/fgQCnsxNKYYcs2dzQsay0FBKds\n3hmCm80Y8igsg2uwcOmpLRj9tTNDmzJBLaQyWsEaCtzOn4VyHOq+zBgx9/hh8fvzQSku1MJL9veV\nSb2MMW7wwuu6NYJ4fpFFNMqjHSS57fOqIs0Vy3emuDi2bI9GFqMv7lisZUoD205iuwUES+BxHngr\n9KUFczI5jobbyYzGjAlluyTR+La6dkmqfI37ulldgd2xdDk8ahFR9d1Jp8xTsPAIpqER77W+wyFa\nk5ksZ2Bz8bCqwu3nxb1ucW5YeNGFyJiUTGXjmlRm706c1KxeOafByGSt4K8/f+3EoKQae/z0D3J2\npgyNlAKnS0+a7pvgVrftfHKesmWbqepIT1mLdyVsRcseg+9IK9vzqSaFHKUlXoPA8GnMjuA4Mxkj\nJWH7KbWF+TsdPqjI0t5KZaTmqbadZL7n8YzNeHClr1e3bZZhz7zmtjr7d1tUq3G8D7kNplcXa5T1\nduNJfuggm3GJDejZDrOH8/zR+PxROU5txNOMestxdz6UCp6huDuNr/bDuj97LcZ0SM9YatsPo6yE\naXoxN+PmPNUyJsacxhdJz+DzbJyfTnlIZTRXcPetWFkK/sWQ1jlQHJ67UAQYZ6sczfDUwZJLjsBS\n1RZrCdi/HYoUaaxHbib0lp221jjPg+aVccr5F54M0+5lafRKK+Jp13QBtqjMEM4g9SWKwDeSHGq7\ndc1JJjZykiV5fQ0B0VZy3cEVyfWOV9tKJvxvE1nzQi9BKZPiN+d58DgPBVqbsXDuKcdyFQvhmwf0\nxhUkAseZafRALGafSvaJQfj7gLAd9KHnYq3BPSbrXtyrb836e3G4IAbhxuMxxcgvlT4H145iPJ8f\nVOAaiedgDF2k5SUF1cj4DuO+1wCgLIWnuBdK1F19h4qnMfA0+SG8EkOjx1iLuy+NMzeJckxhIMy7\noGpNXbK6XMlsH6eMTDNSwRs5SSa+kQkGShbzwuGVX1+3zFzpgDr3x9EE6EN/lylXFssQ6mDBrALQ\ngSnzyU0jVNO45KzOmIv764uvcSlftEI7K1Yk2rDdRax397tv/ViK6RPQS/mla4mUuVLF7XG07Ub/\nB1XkMUUvbK1I6H/C8UyOU9yUSOe+Br//+OD5EL1wLr1Ii8V1dTnlrMA271Qr37jQtSarNH0TS1Ls\n1AzMFpqGIh7KMMYFr68lKNGGQY3u/HlN5lfy238XrImDgMff7VEp24avhWg7ZU4aEVy9q+3LEB1w\nU+5qq1hJ0vQ1alwkTXArRVRCDtaCey7N2o5CzeSai2Mp9eT3307++P3g81kw5BYrR+N8njyPk+LG\nmLcULLYPhNTX154HdVva11h8XRPC8A9FT4VNFlv9sPQi/PHxIWUQcuLWBvHp/Pcff0AJXuvi9Vdn\n7sqplM1TXrGRnEK6nm1D/HHWdH7/rwf1mUwuYDtLF+BFKoja+P33oqivtZh5b2mXwoUN8Uc+Hief\nj1PBy58bOxDB3Scsowzp1cOk354mw0c5DtrxFMDMoVYlvMw5WWMJB3yeHOeD/uf/8qu/SA9ePxf9\naylVxmHuyLr385DbXbhtwRSALZM1g4+Pk99++6D+Iams7xnpGomhz7dVHaob3aTAYFN1qdluknfQ\nx2DkwmulHSePxwekpLRzLkqV1HHc946Hk0+heJF/YGN+R781hjhP7i1bvHvXu9Ua15xKBypGPQ7u\nORn3i6tfogqeAtmNHFyvm79eP/nj9z941kJBI8b+evHXv/5X3BqMj/OxEbqDzEXmJFGR0UrF2t5X\nXYv+COYjdwsjdUqrYpW32rjfMtCpef7xeCrHswix+1FPnt74+TUAgdxaPTjOk3ae3PeleTiT+120\nsXM2i5NnIU0SwwAsp4rR5hzNub86cw6ueUkdlovoKV4TZTPwtyFoid+iCjRkWqz5nUZU0nBLzrNg\n3r4vm8dxCLfxb378Z0YrO87MK6o4t1j+PCrmDRBwv7YdeBpbqbGLHgulwczM7zlXhHHs5O31pg+u\nzpgmhUbVYikivqvxteQWfZyqiFbXnZsB4cFYMKbxOCvteVAO+OY9u0wNhA6741By/JyTx9l0887F\n6hC7e2Af3F4qiVrdiEk5G5WqdPvQEqQgXXOUybJBi+D5aZDbRGGLORftEE8cM9pRqa3osJz7qNtG\nk7sPemgJVw6jhDHeQPsqprS3UMfj2sDXtr+ut6QsJ7Ulv/1eKZ+Fx6HoqZyNR5yMQCiAqvT4us08\nguEvWjEete1ZduJVpXLdTIt0J6xosuZGPRsPL9iYMIYSj7bM1LZ54miNj/PUeCcXI7vs8aiVzyFf\nwjUGazmTQnPjOBw7nTi27r0E2bQQFfvj0NJ0wa+vi0gnwrnumzGEP+6vQXkcGr/sq6W4AFTjtePD\nZm7ezg46XovXNXC/eT42pyXAKZz1pFUjuTnKoep4zR3LV/BamHPsOLohWqHvfdLR8KOSRUz7ubR/\nEbNIJMgZCWUzc4bGBKVUPj4eqvQjt7RWneTj+cDcNy5DHfNYk2t0Zr9YofDrQI9turTPcvJW8XSO\nKnXOITzAmh1q3QiT4Lpe3ENFR6SSoo528Fv7YFydu0sNU6szh8ZpOugbBQS3Gm+PwVaY4BodFXGc\nNH9e9CXfCZY7nUgqtVe/uTYBdMT8G/mdIrFmMRVmMhxIacXSuAYnSqX7JFrooB0oJWhr0QvIGWwp\n/v2a0sJX5zgak9iGqUFpByX55k8VV3j3ozXOpkP93/34zzg72wEFpYHH+g4hMJOxBVP6uKzXaslU\nOUiHbaFKZ0XiJOlyj7W9/FlhzJTQPqYUBZWdUwlqZ2Ltttz4+OG0koyezCEWiu18zkAB4VTFxgAA\nIABJREFUEc/Pk/qwrXzZ45yNtxQOUX83N/g4GhmVaZNrLrAi3e4c22at7EIPpy+TWWSzlNdmn8RK\nqQPOQlSn5QYXmQb5a3RAHULargJLYfkO7ThcXPQ9R75jMTLIktSzcHgQVSB/P5z6cF1U2zI+WRSr\n32klbwaKFzlkG4bFwKxQW+E8D/oIrEjf/zhPzdRT1WOkDuzjkLnG78nKv19M23K1UnYIbgmNAdpG\n+xYnZ8GiySCD5opnbfr/UrLRsYYclNtnalpWsH4N1pCpq3ohmjFbkm0SdRF1km1BXciDJK7FPRf5\n68UKyBQmYd4whySrZUPVvArQdbbC4YX7XhQLpoVCJdzwJnhSIr/CdXeN7yiQLgWGoWXbPnTmGLRy\nbjd0473IiaklZj3lFjweJ+5VB9Fckur2pfmymXT92xFaaxVsbLuiq9dvNVWEFoxHs+8/b6Xi3jSW\nE79dh5FxfBxyH1tSi77PFKc+mlC7G8/aWtWhx/rOo5256JvdY83wlLT0UQvPWjnMOFsh6yaf5g6u\ndl0ECjW/mOY7c3XHMgZE2SPcrWxaqXDsPsff5juCa3auIdJmH4sZofSeLXpQlKNpV0VAU6Tjnexn\nyZmtKSynvdOWoIWMRRZ7l2Qa/0bq3GJKR3i08m3dz1hbWiwXc93quroR1FoG/oMs+sfjoYSb1bl7\n5+o3K0JC+W1UcQNYmk/1zuvXS0abc2Nkt8wq96azWdthD0BzolVmDFmW62Y4e8WKDrNVFlGC83TO\nE87/Prnv4OvX4PW1iFAUWClK5fn48cQfSR9K9iaTft/K9JtzE2d1Q/94PmhexYX2QSmNjx8/+Pn1\n9b1N9y2hs6bh5uyB9cAH9NcSCvSphaSdiHFd7O9Qii27Uqr2FH86B2PctOJ8Ph7EECtlrGRYEtsN\nq5QiaMsU9lscf9bdcezMxfuSwcknJZ3sovgdpyRgsYJxDcrxxJrIhO1oUI2PzwfH0YTIfV3aIRTH\nm2EPad0SmXoiYy+n4SjOUXRQZQ5eYyp6zAxruuSLptxqjUvjLFXVZx9SGcTapEDNwo8iF+NrQL2N\nNistZW1fNrAWRJvEMclzcvzWyJr8HC+anRQqd07a4XvhmJuTk9sBa+LpHAat8NEOnt6YC+KhHMr/\n+69/aWfQnPbY5M3q9DlYS2HSseCvX7+oxfiv//Pk9XUx16SvwYcrDs6KXK6SqOj7ZaVgrXE8noy+\neP384r47/Z6saXg79y4GJdofB4/zgT2Mr3/9pH99cb1uSml4qXjKbSpckcYCkvUruzJDDkl3o52N\nH88f9P/5XybaBcytdqpHY2RQLWmnmO62guiTWYS5uHLAUZTctDbXJStHFmJ2jqPxfH6wClz9F2Pp\n3cndVROar7/PAkxnQe9TlbFJk12q1DAzF7+um5+vi2sM6rNxr8nsA1buiDuTk3nLJj0UXdcjudbE\nHlUX7Q5cKQZ9J22dZ8Gbc0bB0YQgx8JWUvYIlC3sWD1YQ4ldtWyRxv7sIsWRia1hz5DkOWyy/B80\nI/+6v+Smegvmd07dcRzydSeakYVMKKuLq72muHFhWqS0dnCcYjVEn9w9WO7Uyj48jFYPwnRYWMQm\nkUH1yj0nGQLC91+68AoKZHADy+R+df73X38x7Ob5RxUJbkwIZ/Shdm87RNte3PY+yJI0b1pS1IOj\n7izJoU03aHFarLDG2hyIYP6cxJDC468//+LEaWFEDjpiQNSyE+8j5XQzLYLLbt/SnBaKq1srWbnj\n5EyW4LUTf0pzsKoDvuWGVEkGlVNt8sxBo3Ba47BDgbJzYkvSz9ipQDSjnVWLmcexwxaCeiqRJS1I\nV+gtlmRD0rJIBkt2fjfcunYbAKiS1CirSu+8xLYZ9yJKQoMMucYWQIjnbKYDr5lkqK91ERNWX1z3\nhZsgZSMX7TftMeohmepKuUJLOcgpp3CEswglL23WtXky6SRSUdXmGIscybO2zUwvYB9kS8rp1Iek\nhIYWZJjRp4qZr18XZokfSS3OjMWvr4trwXENjuepFKK1GFfnMKmw+uj41pinufYJc7HCKLnTl1rF\ncn2nCmnCkBQr34xtM6fVB2kDCB4P8Uze1vl7KLZs2cBro242/OcfT+51I75lSDZqi+qLkQvWwFcR\nv4bJeA36GEIzmEimUVDQMpWTxrEKH+cPSm381V84Fbp8AG57PWb2beT6ml2jEqCeD9r5oB2SVd79\n5to8o0HHDrGIompWOwuM2eWkRl1RKTJ0VURlXVsllT22RlpQv+XA7DQrhBV1ORE0L1Slpeg9d3FS\nrnvw6yWuei3G43Dt4LzS6omlFE3il/PtkVmxpUv/JB55n7d0pvrY9HLsmKqYkiwdtcLUy2qtkUfQ\nt1nCdt5eq43PxwMieM1f2FJM1ZhJ+MIPSfFyg2jkhpNRAjPmHYwBZLJumSM03pD7aosuGP3m6zWw\nh6LExOpWKMObnVD2b57byOKWcl9Wbdp9S/XCRWX0UMuHoa19D/JO1pQdHoLX68XywpGmJY8JcZtn\n2TwWVQ/LVEEs20qRVSiza+MeGjXhm4MeohKWspUboe/BWtrIC18r+ZPNZIVhpXG4ZvFzJCypbGqp\nrEjhSk3wLq9aML05OrZlhLYPZfYxncXFUQmZXaIYi6CHiJBaDGkEAa5ZsmkwoUXmYJCMEYCWqirA\nyj7IC6RSnEpUaqswhFedY1Frk9EpphKTzkJ5GNNDIz/TwT0zeM2b6S7mTjHxtt05zyIXa02sFlo1\n6tIu57At16yN9nSiJXY65SyMqaLE8b0UVkt/zSko18s5muBh9wjGq9NXUPvQHimT2cd3Wkzg9FvB\nKgoOZruI0YLfNyY6NLN1NDo4aqWeG0aGfRtqVs7d1cDRKmc5mLkzPhHQ6b28i0ie3mAFrynOT2mF\n8hAMbKKw51KcaipIRu/7otl0TQsoKLyiHjysUYdzPBqlHjjbjGSNcXfNqrHtKdkmvlTgdyva6Vjx\nbf5RsZPbfcuR27AD1BT4rQRjp2+ZGbkP8VaqutE1sWlyHbOxwrb3T6QO2SWlWsTe5RWpwarJgYwX\nxqtz3ZPeJTmMfcZ4GkcVOTRmaLRcDy1+fav2SAhJR//dj/+M/BBFOwVCpdbj2MEBDSrYUmXsh1OO\nhj0/eDw2WCqD6nXTxZKP45TkcEvrxj14fb2YJmv2mVWHelXSTa0Vi8I9jH4Nfv65mLf03OabjJhy\nM7KcHx+FaBL2954KCD4q8h0HywpXiEgnww9qgUthpG5mc9l13eGoShqKBWsquiojWSOYd/CoB2ma\n984VxGsxAtohTXFpSLFQhDwtpWEp3fHbLEIk1tWmCjIlsmKmtKtme2FrxorFPfVweZUJy1yfbYY6\nmVJkvrpGZwVU01L1PBqveTPmxdc9IAvVTzxcUKOty9c62CnZ8KiKCcvc0C4tLq1onn+PzlHrXujK\nxhwZsCbFq4wdEfRb4dhKSoLz0TjOire3YFCi/1Irhzeef5z0rX6abUot0pxqjeOPk/J7ZT2mwFaZ\ncuyNRb8nV+/UUEBIMQWffJwHv/0/n3zNL2ZREPFRBOU6slCWCZ/646TFi1mCbBoR5RWsKW+C79g4\nq1oa9hV83VPMeXuXnlKg9Dlxe9JcNMbRF60dfP548NfrJUuLC8gG7zzIJrWVvXNWlYlpxfBnhYcu\nw7GZ2W+XZERyXRcf7QE1mWPIHn8UHC3eDBhDhqwjxbm36bRH48dvP4gp9+cYnaNuI18M7nGpGErj\n6xK1sZ5SXR2Pg4cfmqUX8YvSk/Y8sGp6xvdC1cwI3/wXq3z89hu1nfQZ/PnzJ/evi1hTo4vq1MM5\nf1QsNgIgVUSNMnXRtu0QN6c1hY0wQniT9/uwZ9ffOO09VZih7NQwhVkUC8actPOD4o1YcHfF7cmZ\nJVljv2W+Opt4UysG5WjUc8e6vSWUrA0W/AfRD8ccO4vOvpeEGUrR9oCSe160xxWtHdSmDf6I4CwH\nMYJff/4UaMkFeu+vmwwtDzMWsfRCRmEvSTSHzbUYXR9SLOhXUGtVEtBWFljZc11L2gk8ZSwiJxla\nrJaN0LRYW7crjfRYqjbcnBGLPjqtK9HmbZAYXeOGs1aoyddL0r53u6cmQtr25sajFdqpOfPIwEoj\n3OlDsVvH0ZSEkpI9ru0gxUxz1FiAQpkfxyE994Jih7Co2TW7XkDkd0tX0GdCCfCirMEF136oOotZ\nt3aenYKy6k6ESWVJYnI3jsXTCo/HQZ4Hf379pK8lw8ke2eSYxOFMU8TZdSmAwZtz1pTT9dqUyFCw\n7hqLO4NHhua7LoaLlcIrO3d04qFxmLuY6CIRyjY+PhZX6bzytT+DZPaQsmkI0/vutIolfhj1scMu\nvGIFynHy+8dv8LXoXxfXvzrjNTnGzWU3syarQZT8tuGPOQU0q66YtrNiHgyTUaftrpMiYlkhaZsd\nrhmuRACvr67AAePvODevOpQiqbXw+fHUOGBBya3Tf+9a1mQxWZF8/booLWinKJ1f94s+B7UpPzJy\n8TW/WHZQ3FmW3EvjPasyotlOt9KuUDyUnBNvktf1lJ56Ru5M3iSL74v8guzYlF/AaiOb6UKIDlVG\noSSpx8Gyv/dkrxxwJ69r8uvXi3Hd5BK8rJ7Sf1tB3dPRuGfKNZpOq4cuuirNd7E36kAjy7M0/mhS\nVL3HOmlOUFUlu8I/ikmAEZlcfXC2pOfi9XXxGovrTr5eQ5W4SY4770H0YN4quM7nyfNzK2x2ZxRD\n0mriH1SRR243o/lO8t6z0t61uU4jMLI1IS9NXG25JGTD3Svpb2h7wYm5K+si1vfWdQESlsTW+L5H\nF8dp1LYPqt2pFWEcOB/G+TC1ZPJ3vPkBYEKmttI276KC6VCPUBJRZOKmeLgZyfStjQ0XuXAoGONs\nYk8Um6iKtK1OUYJOO+B4OOezUA+pczICOw7CnRlJK3BUoxxFdMalS0wuT6edjTXUtoNY0Y7T+6SW\ngwMxUt5wJssdrlyKuCYmSReptHRJNKXTzrKIJnu4CDdB5vxOM3HXHoD98pZ0qiICZP7R5ESMjSUE\nwpF/G1buW5sUXwlVbfp8Sfu+FowV0lFHMBI+lr6npaiCHmuQa1FKYI/9En/oELOirm8ci7sMLps6\nuEey+h4j7UcoU//ixrfMUwok4YFZxrwXcQ1676wxCBbdOnluSTlaltdDzJLaCq0WLRQXPOOgTIMW\nUvZsXr3tsRYh40xsM1BGSBbZxR8JkhlzA71gbpVUtd26U9SiTyQKQC7b3GqVN4TqMCUzrZTDs6zG\nZ2us0Xn1F7/6S/sCL6wV3HMQpuc9N3f8urU8zKH4szWGAjUymL0rmGMurluGpMOdtSZjX5oiOi79\nbI0eU4okhPvFjGl8c9zdjV+vm35/8etLNvoYMiZELmyhovBwziYmO3S9J0Vdft0KETLxPTatxWAZ\nUY0S9e9x6P4pvrjMiO4y2bEjH/uc3HNQPLYHRnsc4QVMh35JRiaXiZKYFiwzstTNoddLmZvMmP+k\ng9ysIDVrwV0/FSbxkr8npNF+Pp/0BpG3dJ/b0EEWHay1sNAS09bfJDpakdm5SjNt5DcfmNCirzX4\n/HT6y+iXAXu00OSc/PzRpC8fF+sr8EjKc2+XPUiGmNClsGqV1RlXpZgy4hy18LrkmpyR2EMXVn8F\nHko8f54Pvu6hCK+mKDvdws7xabQHHI/tENNAjUc5sHoQJq3qSVJNLaYMM4rKI/U1/Pb8ZPmg3zd3\nv6ihzmGNHZBbXTwYfXckCDYorWhOaTrQYsHqmivOmbxeX7SHklRKNSXXoNEZ6CI4jydOIXsqQcWB\n0FikIPcsOWnuRJFrz0vdAoQQ4TDEqZ+RjDvpL3DXHF8HeUAIejWP4GyL8zw4H8aYyj21WBxH5Xxo\nbu6JCoEqadnMwKxxf93cLx3olpLOVZctx1IRcketFNf83q3ACu775vU/X9hUwEU9nB6DvDrP8ynK\np8nJN2bHWuW33z85rGzmudNOo2clWmjmOpX/etQDw1hjaW8y9Ey1WqhFy7hay3cYwcfHJ3PzxJtX\nqgUWg1abDp9Y+l6nLPJzdEZfjCmzkBbpixwds8qxx2Q/v37x19df3GvsR8S1CDZIT6kzqsPce4/Q\n/Lel081kIrruHdiikd7XFViVEmSNm5Ey3BTTQj9mfjsd5wrmkLDA3JlLUkftdow///yTv/714vU1\ncTZwzo2ul5LqcCZwGq0UwpLQJgR2LsH7sBQfXI5Kdgh8ee93TJPVBbBj/N788mOze9aUdv3Vb9FH\nm+Sn9TDOVYhbNoB27GjEhGtqEsaaxH1rV7TRITMkv45/0kE+l3IQbSSPp6qH2NpXVu6g28ZYi5E3\nfQwxTmqh1ModQ/PTU6k7vasSuuYl880h6hyuiqNUZfzl1AGzhrgg99Bm6vxANm4T1IgwalYereA2\nueZg/NJMz4+kns75PGSYMNPiZuMlW6nEGhTgrJWOchRHn3hp21SyNOpoRr01XmqPwjl1ic1byonz\nKByfTnvYtw2aTApaOjniRDxdcsLXPfTZZdLvqVkzBRtJdm3c4w54qJI8q1OrEKLZHuyik1x7EZtJ\n7zJQSKOr//3uauf7mKxSsGmc57GXjUHd0rVitqFZa1MrjZGTfmmPoSDnZFpQH43Dq2aONoVgfTae\nj5O1jBXGWU/6NfnllyLD0EFRUweNYeSEmfO7dX3vRe5r0g7Dz7K56dvg0QrRhcA9XEENwj4t7SRM\nn3VFDV72xI5gMbimdi8rlaqzpgxO4vtALo1ExuwwNois6jfzkjvRqXJY4/k8lKka8DKZXBLF+NVa\n8HeX8lKHUauW6/Vwfvvx0MGyQk7Cyo4LlE19zcn9Faw6WD2JLuqgb5xqrUVsnMP57Y/fsNoJu1ls\njHFMXtcXY3TW2r4AnForNWGEWDilSCQQIVBavxV+UjHWMWVR3+a8AdyZApMdSTmUZhQpJc/KUEeQ\nwVqmGfXShX2NiZnx+HiS6awZ3NcQIXTIhDWmxm0BDAKmFr9nJKvcgqa5vubzaN9uUxkG4lvPLRCf\nRmqZwZwqHKLKYLW2DNHMSBPOWpIwSRFt59i6Q3voYnk8VNgIVeD6XPflUR8n3lwX5cY0p0Hs78bi\nHzQjzyz0IVcjKau+2lZXeo3sm8wlve69+QwFwZl+3eubycyWN8XoYiSYbyazbukZO6AhVZWvHTow\n1v4GVaiHMzc+1VIGiH4H4zTqUSgZzICYRrbNsbDNhkkhVzO3tdgKsa0PJST1ighmBH3Jcfc1JzkS\nWtI61IcgWE8K8TKiq6IpmzzH94ZcC0pvjeqqKteKbfsN7qvjbR/xAcWkCx6XAmDlgbK92BUfBg2x\nZKpBla+YT+8IOx1sWleqG4qlxerMwMMYK/Cx8CqHLjtUmV399aE/31MP8BrB1y99v9LBmqqf9D1P\ntYmVKg29FVEDw3meD44q3fDdndqVYfgmpYLIl+whjyV8PB/UWvm102lkTJGjD0KpdjuSzi15HgUP\nuQYT/W/NEV8jbCsMJKmUKUZjDzM5ZFW07Ysv2Nrkha/Nri+aqZtp7hmaz4jgyJJ8lPhbmls0hgrZ\nM9lTwI0MVoZlrPzGsqboa1rcm1RI3yqWMRl3EF0a/FbrTsRKvCY4lEMjoLHWBsWJW1PQojG2u3Fl\n4NslWVy6JI3g9ns2J3Osb1nj3Qdutt/L2DLFpJxGfZrUM2XPnU1V9kx5GtJ8m4FCObmgoitFVbzv\nyX3d3GtJmZXBmMacGmm94e956Vyp9+K4B61pLuCu57/Ioiu5buginu/natNUQdkBCer2xqLsfR4p\nhVjkVpWlhAoeiukr7/eiFeyAwyuPenDdUjLNCNpDFvwIKdRsK3PcK6Xo/fx3P/4zB7kpvbxfgzVv\nVZ5H5TwfxBzkmgRiO6wt7yNcFu0MegbLkFMu2YGpY/MolM5ylhNSI4M1h5YuGe9hpSrGo9LC5Oic\nA5cIizWDnz9vMOO//rtRj6rloadm4qXQI4lLC8K1JJBzCiULLXybWmJbe+UWnEx6BNcaOlRHcnR4\nno12HDxrZcyQPhqBg2Jobu6nuhGvhVYrBxUfS3AjxOz+6+vm8fkQ0B/J+yKM+0upIol40yuD3KER\nMWXKyarPJ79DIhJiKnUnQyNaZKrSBehbcqVD/767WutmeBF1LlFO5T0nYyw81PKuYVyX8br1PTs/\nKuY36UHvnfZsWqwCsaYOiVopDdybQF6zMbe3wFK7iIjkeDb66My1OFrlv377jR8/nvw8hSDNlWif\nLF1wwXi0Ss/FmoOPj8JZnQZc1w1IandutYfjPJ+nckOviRXxpq35HgvsfM2ddfcO3PA3jbNUWfpT\nnoZluccdb2nolPEj1r6MXeKADnnL02rmRIgN33PwM8DPojAT0PdSDjXmWrtjKfSV3GOxeuB+beOP\nb/nfIn3xGn8xlsxV9+hCGTdlfQYikFYX734MTXDLhntFbuXLpkXaloG6F+YMKUeqM1YnkDPVH87x\nLNSHS7q6owsVwSgccWtOX5NlcyN0K+aFEZPXPbiuztW7Kvii3IKRCqURukMqnrmlzUzEvQe88J3Z\narkVayiAQq5jLYtbOzjaCWUQ/QaCNRf9DvkBmr72OTWaWivpQ8ohQ3p7My2zAVp1nufBb89Pnr1y\nd33eRmH0KTmyghlUIFbF8pX8J7FWvHKeT6lRXLMr33FLcymuixS/Qu2+DssVSeZkSSIsk0Zf2B3U\nmZtDrg89UxVJOx7kGqwYmqmZDqFaKo9amKfhRYut1U0PUTGs7sXEgsfnwdmM1xrKCQ2NQESa0zLx\nLAfrXvzP//1J3p1qxuNDMc7lMC1qd+t5pJNTLj87pD5Z6OC/Z9fyaAVrNiXeLAAREZdpm3+Y04ph\nj8q9pPvFdajmniX+mi9syQRTS6UelfZoknCtPc/O5F1+2i5mHVUQbW9+A7kwx9DFpM/VCW+cp1LZ\n+xrftLnRlc7uXigb7ym0+j50p3MP474dr8GHObYXftEdWiVrYZkqk5UyAmX+opaDsuWJrRYsjcMr\n47rpvWO18Dw/1Zm509zJqZxNy9DWP5McW//fYssQEysLW4pDe3w43iprLYzk8TyEo90BvyskiwtL\nvGl8s9aUBn+bRepWQfiC8zwpR+EefRvbtKAvRSqPiaSoMwbpi1K0YC57IBup1KuKPis5W3Wo51Lg\nSRSgOhGTOafyLas8ElcMrr4gtHz+1Tv3kkPzPSdOg06XxX9OdZqWjIBrj4Z8Y4gVoWLy2RYpPGJp\nz+LmPM6T16XLdeTWyd+LMoz2MFXiBerplAZmgbszr6C/BisW7WicZ8MsJfmtcsX2WwlPY8kUl5qD\naIO7DDsMOuROFyu1cDwdf0A7nedZOL0i8ZDMOs/jA08RDh1n7nm0cLNaxA/im+kvQYHEFWtu70Fx\nMsoeJTrNTwGwVqFEUYe7hKWmFPqCazoQ+vuTjLvTr8Xou4CaThbJVinqWv7dj/+MIWgoF6/VRrXU\nMskkUWK/axG5t7ib/rb2IZU7DqsgBcO9sB4cU61sK2ph51B7WY6CbcmX+9yjAv3z5ZC7MhOet3H/\nkuxMypfccqvEqtgRa23ymUvaNkPjB4pxOBoDvTpxDZpks3rRqw7h93a9meNWeZ4nx8cDXA96jsU9\nxN+WdHpRliBRkYXci5YMfQZmju9xRCBt7YqlqLN74qnwYBZibZvMLDO65qtFM1TQ7/ken/jWefte\n+IBm0eQiTE5aAx2AG2zm+ebYbHSA/suW+wDm33b8wDaFT4ksawWjb8PSMO6XiIHt6byzMtdKrhgc\nzTjaToUy/bmHCyhlS92SN8WdrRWM+xZvZyzmPcmpsdy81Ym0E9jjjFxTl7SBH855VFYoHak+K57O\nzGD2+A53kFMJ2M+R9s3JRMqsatsTUVTprT43xlQY1Dd7w2IxY30zgKSgaDQ7d9q6KbbOHC+bN79T\nhNxt58zqPXldWtjetxbK02RYue/AKDQzpgVu6iisBObaF80dOq6sa7lfw3UJl1r230OX+XtuLwej\n4WVDs5K9+Ff+7MrQIbsLYj98+xXWXpKnJMHrpr+S+9cSv/5zo4dLwQtkEUyPkTtFaDFT83S2WMBx\nRa01/TqN6tD/7+xOU7+OfRDbktNYyiTtj95uyt67ziHEwO9dcK17X9pyyr6lGwXj0CVs6qbmfWND\nLmpB8fbgzIK5jB4XHu/w+bVHd5VilXt1OU49qVGwVrD1DzrIv75uHkejtN2mb9lPrJ3qjgt8s2fb\nkdpBxNoywr0kWyZJoU/9gjLFeqhVQQ5UtYTsB7CkWsLM7ZAyLeDqmZwfbwCWsjG9SPS/XFPk4k4t\nh2aE2xrc56WLYS5B8od6CFVcmpmuc1cM3z8l53ucjefz5DwfXP0lqt2YmpUt4VfHnPgSm2TteTuB\nZFplMdAYSZWcLigZE2Iz1XM/XEV663twRxBM5XTWv9NQ1gaJuUvbuvaiTq28DBXpENYYW4pZNlqV\nlFtO89jcMz3fI4AEK1KZ2LYHFcOa9glkyvx0SS65pnGFgFPPs1CamC1zz+XNFl72jiSlQtKzobb+\nfZmsJVb3uG9V+yEtcq4gW6HfUwqfpy65yZSaxHRRl1apZ6MYCnp+FGLA8CQLWnzvw3ghkuDagLJA\nz66zqKY5Z+xc2HFPKFrcrxCczG1Cqay1SaAFjc/KwaM8mRYwjF7GNvYIfPXz9UXmUkW7AKRWGteL\n8RX0rWyB2HNjxQYuWxR/z9JTmOFDXTGMffC5SH/NtwRYck0rYMhgREhZg2n3cJSDsbsNMOYywoyY\ng3b4HrVAexhm61v7nqmD/OuarMuYl/DS1QarwVFPGX+2Plv0riBy7pl07jm/vr4Iaf196EJaLAks\nRhLTOdzhbDsSUFLiajJLOSI3eqmUmHKSprwEK4J+D2X/Ll2irRRlCXjV3qEclC3v9YCfXwFrSA2X\nTmRh2oD3JiR29z3EwT/rB8/zART+3//9H8ZQQIX49tKr/7sf/5mD/OcL/wgOcluDsmtMAAAgAElE\nQVTDK9aEVj2KHHd3piK0bjFUtIxkL0u0mMk9P/IAlvTlOZ3ra3FP2al7JtakZOg7DkqBE0rbyCXH\nnFU4f0j+N0nKw6gfRvuArJMRsFRUgOmhjFjM2bVwK52WlY8fjWu3wdfS1j4sWc7elOuQ0PxycHcl\nbWtcUbEHxC1caB+Lda+9QOqUEOcj95JtmqqP19SDtUyUwFobxQqNQo7k/lL1st6VcpFga+XEpuRT\nfcng06rYy4Yx9p/vRZ3IQoaW8LJVEmunEWlhPcci1zseTLPRxDCT7C2nWtS0hdelEIBY2/kqV+xY\nbMNOYaw9jqmV8/EpDsnudPqYCi8IGP1ivcS9mde2be8L9WhNMXdD0VsZwTic0btW0iPJqgVwv2Vi\n8QZHYTsIxYK5Vod0hvP93Gjb/bejb24TVO5Z8VyyoEdTUPbK1LijGeWILfVTUfGsYjUqFEKLfzPb\nCpqto9ljtVqc47NxeFPe7JpvEZ1kp0sdhhd1OxHvyyW/y84MOavl3oVHcc5m3wWMeQUKtem5/Gin\n8lhzAjKiZV/Qkzmd4zxop/JSa6scj5O2hF4ocUjPv7uHOwbEwjaXxRGyom5kwOkGJ2CSX/YviKKL\npdaDWhpH046l7Ig7DGrThZkZjK7Ra6nCxbaz8Hg2msPhhbiUg3sPzestnN9+e3I+Do0Td0pSvovJ\nlf+/hXpRt2viHj1q4/N48KgHzZ2jVHLB9bqg6zlZX5OP3x6ctVGWcZxFpFc0fpK3xTmPE8O5LiVA\nGXrmDdteln9/pv5HDnJ2wonnopnYBB6b2etbxmxTLXvZbpHUPya2xh7otsTqtnjb1nD3YI3ORAen\nJ4oTQ61rJtDUgscqug1Fy9o2e6inlCzlUHCvKi5Jmd7W9hkTYuKorUsm4QL/+ENKg7vroAu0dMoU\nD0SGqFQK4q5KgF3pbw7MCvrWJFNEKanuWtTF4naNdIoZwxQx5w2sgVT6somL4ighBbAlcEV5qO/b\nfdvEEy1qRkirO1OmBm2W976Z3QaauNdHLZLIsamIvHGkZS9GxYRc7HSiTMwWVqaegZK0Q+CjGZJ8\nHZ9NLOvz0Ax/XwrKKJWa6R6SJJQA7kF2dUYjl/AFBjFlqAgXGvgdXzctoOjlGT349Zq81qRPtdDe\nYOWkrdhIW5lOyP37ui6k2CoojYm0TN5Ngh7xsVOP1ty4Aeney06ZqlutNdfk7je5WTouQc3GE+sQ\nT32oZCr56DVvOpPp8gukSfNe0iRR25fe+73P3JdoCnvrllKOoELH1z5MfbNIytvRq/eRLW+cO8qv\n37vIGCpI+kyOJTe0NdujxH3BZdBjSRVjMs1lIBw1mkdZpoxIbqI6bsUPxubt8N0FaDuln60phKRs\nM997rFfM6Y9g3UILHEfl+Tw5XAWjDWiu7mTGO6xa1vw5x3cU5Huca8bezYjFVFOKnlYK53EoHLpU\ndP3puYil8Ilv4+KWNZ92UE2z8bWkoostlxVZNYiYHGeBDXJ7L5SNf1BFfjbxv6slz9YopjaklAqx\nGWo5KdU4tjGgFmPcyX1pfpwGzCDciaIqcGQSY9IzyL1ctARbqRfXpEipVshViKh7Fi9t5jvktRTE\nl3b/VhjE0j9fyh51bFhTddTSSYDNModm5HKNRly88Lk2vWyJjudn7KGH5u3vWx900I8lR5xPFOac\nqX/fMq+xkRrFjSib+Mc+m7f2daWWxaUadcerRZHRp7Y9pwxVRJWK+8R2pqMZLDMm9v0wJ8IoL9uC\nxFA0W261j8YrtiFiWnSKs65qmyWpGkW/h++x2vPjYM7QMwA8PhvPx8HZmhZJWgwAunjfc0oy9VKu\n7cQz+w6lMDMlwO8orbVUoXo1XXZRsFm4e/DzV+dr9F0xgo+dnDON9ihCz+5LadhmwEcyM+nb1VeL\n7xCUjYzNbczaumPpJpKlHgUrxvk89p8z6b3jhX1Yx/7Ve2yDLtLSwFJa/PurM03EytK0F6oUPAuX\nIfkj4qVr+qWvbb2ZIbvCZ8svx9TfW2OV+M6IlIzOGCGJ3JhKeu93sO6k5o5eW5MZyfk88FjYHPSY\nXLPzupTwZFVZum66FN8t7jfOoSweNTmL4SGjDKniwrckUCqr3EHKSasypCn1fhGpruI8GvMO+iUn\ndC2V86g8SqNMKapa0T93z5vjqLSmxf2YWmZHbLdlaqdxnieeyfJBy7r3TL6NWVJqeQZr3owZUqxs\nS0u4eDmeGsPY0J5rpRy1Fpo7vV4X7/Hj46PSUCh2bunwP+ogfz4LZ1GSTfWyudnJ46PuZZkke1o8\nOR8fB2Rl3IHZtV9ubYl53/omLkL4fmFWwJIA398cBNf2+2yNapVYhbW2CSElE5sTrgvSgnJOzqyC\n4/tWIziqwm1qgx2a7cKWNHoIZ1nBTvE8IqVNJd8YWlVPoAqr37c22iPgq/Dqi77Qqdn1a7zpoc8p\nWy8PmV1884nfFcpaIZndXLTUiGTFTiLnTTdcRCh0Ya2154hscp1Tm2098r58CLlZLeS0239XL6bR\nQsx9UG+AkYuMWEvl7tIoFi/8+PzED5gMrC98KouznRWRUxeWE6/BjItfX5cyR8vJcT6/9etru+lU\n5ch6TbEt81SnkWwtNbwx1ZrvFg0qns8nPgs//5QM061sxQXfuZ6nF4oZNhOb0gp/HCe3yVnotWA+\nvy//DIm820arTiaxddDvbifi7QtIRtzqAIq06XNNVhehkVAyVtSUA7pCOQtrTqkljF01bxJf6M/w\n5cyezFvKmeNs1CrDWGzlxZvgZ4px53g0Viy+vhYnQhlXjMbeWbmY3NuXIzftVOHhGI/HU45k1wL5\num5e90vM8Xtw9ynFWMBMAdV8V8BWDslUt6PSU93geTQIFUyzL2yozUnT8xcmNzNrMbvcpV6E4Fj7\nMvWqw/Cort9rLtzeaGnhBUotlCHapO+iLXOrVVByT275bdlERXfj88dTBrDUqHDMm4iORVCs6vvt\nS920JZMgx8TnDsaORbj4MdrXyHg2LrGJyuE0b1qIx6JfgadTzP/tmfofOcg9cy/6y0bKavRfTDpd\n1ZZF/elua1pTtfEqQ5vm1NilnKILEmO3R5qZ1SlzgVXHqlpf8X8ftL3UeEOlSqnElLlk3kncyYig\nA7YW9VGwupcyx5IzzxGwZ1eqa+v/VGgEoyD3l+nh8qaDu5hSP2yXSoGqmTEWsycxgzsX0/Q5KaFE\n/9lSS2BsH8YL1txJJHspGfuFMXxXAvoaZqhCN3tPtrZsauozaLWgld82OJEMgyi2l5UFf1fre+Rl\n5LYtw5yhgY4p37SYwxJuFavKOT0KfkBhUXPPstP32EM6XpEtixyaY0pCZqrIxtIhpq6k7CMJLVdb\ngWqsMsEFPfL0vxk5GGY757OI3GjVKV+dx4dwpWMh2aAbR3O5Z0MXXI4FxWlW8EPgrRGTtsdomcG4\nBxZaqrsZ9zS6oNIYsvcXc9ph1GqUUmRtT9tO0M2b2SRC0LOskN/Y74kUIbDZKIkyVn0fkF74OCr3\nXEoR8rdiBtohSY7445qb49LBq9iAMdU1+IJWpfWeoWd7Df2Z45a8lQXhG4lci5QzO44vTCye0bXE\nizBiokumxFt2DblZRGv/uds0VOpWeERgoVQwI7RvythKFTnEicBb3VMa+0bwlupUEzBursnswToq\n1EZtFS8ai1qFlV0JXkMh0u9wb9tOasdYU7JIkUydVaSKiQxGaBdRM4DJWvudUJ4lc2opX8tmocfY\nXYw+z5xCjfSXFptlFSSrD1Yu1gRbJtPSv/nxn4FmjQW2HW7hOG96nua0+i9FBrntWrM9V3R7Z05J\nHng+xCAZfWG2o7eqY4dO2yzG8nfrX/g4n3gq1DVSLwdWiJzMkYwryA6rG30k1hfxlPlosrBP+P+Y\ne7clSXIcS/AAIKlmnhF9mYvIvMz/f9rKzu70pSrcTZUkgH04UPPqntznKBdJqazMyHAPMzUSOFd9\nCu23b1kT36iEMJHQ2Se6hT+7qqA92D2loHY1Ubb7iMoDCexNsmqDbT61VFesKudpFEvPD5RjDU4T\nzDxne5IEw7KYPgesBKZzTWxi74lml9qi9YYxDK+12CK/swhDfnBaWYVVgGNsbjcmKCAX4UxkNFAn\n3wp6WHthnguwZPtQ4+EbRcQ1KPYG5tzIYNpiN0bdYgdyAXgbNZKYZdx50PqGwhKUQpoKrrzeDfQt\nFep8hhJMSkQW19B4mfZnJdAhcVauRwPwaEq1QCo0KRtUA63svb2t+/QA0J6fyYm4RzW4PxhPa8Lp\ntomi9QEZ5DNa12/HcR1OeyfmSdxbGwWhkc5/F15hZADiztN3IBKPYdBDcAyFfQx0OKMglBySSsJa\nYe4eDClLbp5AQBs/f8Ehl2TtDtgANoDQC7kFOQN+bpTyER4OlXxDe5T38vnZV2AvIF0Ru5Iqoybn\nA5CD8QHcrng2TKI96ArITmAFOrgpiQLZlYajIOekwXTC0RpVbMnPjIAwzmEN69qIi+7iLQuuA9n+\nRp1kgfn6wjUXXAyf80J6QD2hXoFxEFznhS2B0IBvyh4TwI5KGk1Qhrwn9vKKGX4C0rCdRSTShDi8\nU2EUzoTNfVEueZ3kbwwCbQthdPmqK7fW/XcErWgGfC6cWxjRGVU+qsy8nnO9Xxjqmq3E98AYg4UA\n1fWXviuDJNAap25tgmYdYg2pgrPaPxCBmCQy5r5oUtmcTDMS+0zMKxFOYGtPABKYi+67ywM/XfAh\nyuwN7RjVAuK5KlqVRNA1eQOPLjgOxbBOw8R2TN+1lrINhJkUjLeF3zkPNyHE1XktStsYT53IBeRM\nZlsPwFpC1NFaQpUmDuGignnS+chkxfuhS0rojF2hu8oOHIwVhSmpsHQWc1Cug6b8wbJahmiIKOJw\nL74v7kBQy/+6NqAbNiZGNpjzg6wVN0D1ETcGFeqG75Akr3jgtRf8osLpLW3b/n4+8m+IXKASLjNr\nKuLU5M5i7KxclIaOxzjw+Dj4fkRgNMVozyrMTcxFos190aHZuFYLnPim8ICFUWmjH4Y8HXlFZYEM\nfIxO8nAlZPPDHBoVOtWoLMHG9Trx+gpcX459sRVJG9fzFNrCr5OtTLcRx4S80DkXrmtjzY38OPDR\nFMfHABrzze++zixiVCFv9jtqG4YmFSqPAYAyyAyHtiSXYoRn0Li9nUl4ZZdiZlgy72cu7GDYWVGU\nSE/MTw5KAgUGAG3lUXDGOoDhdrI4/KwSQnQwShl5Y/vMhmHUhGBIx+gHxnji3IswpArdqw40CKG5\nR8MxAusMrHNjVWYJRRC7ojsCCxu/viYQ5QA+GQkhzaCdHJPX4EiBBC9yFoILrFkpXKhS8sW2pazh\nImpT27nqdb+duol1beLlYN68iMKTn2Urk8Kd9vqfv37LQf6wQYlUtWFkVnuMB+Mty7WloArk+Xzi\nPGlJ/ng+MfeF6VRXZDo0E6Oj2tv5YpJkVDgSraY3TWHe9d5lzADmAtZV6XoT2KcArhUelRUQFIDR\nJu8b2LMiUBvXQBGDFZa1L5oZ9sVwIdlUEnSwhSeCSoabqQcEuhkPGwHk4hrZjdO0OHjg3tbiSPSC\nNRTC1LUkJBWVI5Oab8zft3Bdru8Z4dTsByGdx3MwenfxweYWVGRb6WcDXk3fdOMRTmKzEyGaCh0L\n8NBYE2vV6+mANkJGcTqONPSB6j7Ish/LHSdDfDLyLcvLZE6NLAZScfWmdEuhle66sRallC4baDcZ\nDmTBR9ulLhi+Lq/XhUwqEcRQz02rXlRuC/xTk3fQ4gTU6GPgz8bicE2FWMNhBnl0QBMxAxgKHcL0\nxk3sWwU0ZqVAnPr3tQKfnxtfvzb8BLo+kDGwJocQbXQTXi9itXSEk1xt3WDO3PfpC9cW9DHY0N4P\ntEx4sgwjFqClVY9dh4gKO1JMoEMxHvo2hEXYW0ljYugqzPvoG9YNMymxzMbX/W2S2vx+t0EqQSgv\nd/FYgVLMKI7HQCtT0K6HSB2IkzklEMUod2caf2aThKjRMIWBpgNmDaMOPIEBjdvno3Ws9cJMgGS5\nI4MduZ6OGRcuP7GDcr/wwDlpTGwpyKuuo5UwV6AVcQlnTIUlJbQwhH4PXLw4SapCuIVrU6Q4zr0g\nWvLLrM9MQbRZw1Fubk3RqARzz3e89J99/R7VinTcjdhiJXtDvsOstnO9T1EMUxxjsPVnB8bD0EBp\nkxTbrQr0wXLe1hhO41E4cuZ7qrcQqPNQgVN5sScwXwmfPPRyU4bFWJZkJGcCOoA/fhqQ/HVWh71r\nlFqBJRXrYudm7uQb4XShrcS7nadbK1WB0KkV32+e7IKHVMvhyr9MlFhg8kPciry1Rv0tVLDKRBVF\nujEsiRkTWX+m5Q4MgwlIxN2usmLYBffregck3LGnhDiiNgKIVFsP/4wR90zF33d6Ypc2VoVTM6NX\ngfCa6kvBcUuruFnR5p2SQCunIJd+wlJqhcky+QQBXKu6U3NjK1t3UgW+eHgw55x8wm3EfF1siDme\nWcmaAh0kTFMAmEF2QoNklxlJQ1FOsAFipQivzPrv90LUcOUqC78zP8UXMpyQV0kyYUzpe70Wvn45\nzs+ARMPz+YH0hvnaOP1Cr8LxdSmzbzSBkegPQmKiDKUSSbgGllB739Tw6J11fHsjJrX/jH9whAq8\nkQ+B0kNhg9kk3Ahr/Q+WUQwYse0OjEMxFLgKM151ybaDjVzr2tzktJyjdyZNCPPeEXAN9KPhYYpm\ngaugOgSQyxGLyikZA9q8yk24cZmV5jqMF2kKmjQcveHZH8xBr6107xN5VbDhYt3iEsfKhcsvXPvF\nzSdZm7iCg51XUFk4AHEelg4OSpU+KUkLf6jQKOc3GStlqdd3eBkaN9y1Z8WSvBfdKrzgtuT1mdPi\nMVJAb4sWt/YnX7/lIPdzIp3yo695QpoiWuJc1AEHWAwAp1Z5XhN7Tpyn47oWoBvtkfj4qVw36lBg\nCJBViNOFSFrMiUuziquZwm8VCyoXZDnWK4tkUcoaKziqP5QGoiEsJxDKD1FBTWs75noVZiyITUne\nwxSpRtjIE3Gx6u356Pj4eGKekzbxzX/PMuPAuN8Rodxwv9UuUrgfMFQwjME7fTSksGDCa2pmwUW+\np+XbMXvb5VOpVx9VV+UebES618NKm7sJVCIWJFr3DrSuaIM4eAYn4zbadwJfJsZBUu8+4AEmGIYD\nvgILdLepVll2lhJGeUGikfiUrONeiId20yqyZlF37IAcHTMCc1Gyls4LeZWOO+pD6eteS5WpdrkR\nEugHcXIqP1gEnaWQuFVPgoTvhb0XVunQUSUEdB9v7ExELoZZTUf2BtFWwWnEotd27CS89PN4Yq2N\n83TsDQgMQzse7Ym//vrC63rBjSR46w2mA9cMQFmKIsID9flHww66pEUpt1sVEtCN8I0J8NCG5UC4\nQG3gisBMknrWSk0lHIZaafa1GqHi5bCy96cmdgO8VSriRdVSr1AwSwUWiyzMWE8YIYgjIEuwzg0t\nwv71OpGuOHoJFYRVgDDCS80aZckmCCU0Zo3wKnmiBQQzlR79gf/yD/+E//k//if+n//rf+F//6//\nF//2L/+KROJ1Ov7yuYp0d0okWzLd9PHAtS9s7LJMRBWMEDIjwYp6tghPtfYdUSD1GboJ5Bvqk9G5\n8Qo3wMlEJdggWQ2pDtWnQMGBoR3kzvY7yAz8b0ot9+fz+O8yBG06qTIKnys8nHILTk0ilZsgwpQ7\nd/bVReD4EDyG4ej6JgMjA0cfxFQ9YLqQhS/f7sP77xXK688dvQnGIFTRKtchV2KfbNkZD2Lu0kik\n5HY2aZtje2LddniTdxktnHpf1kWRzBUXdOHK3hIgNkBZUmuUKd4Ci0J64UnVhIMrtGbVfbV89xsj\ngb0clwdO30wINEZ8rosZJnsJemcZroBwFqzkcwVpSJJXYOZIwm6XokgRqVqcwubB7jzEb+273E/Y\nDRfxji0JIC8/ETCcrLLJrfEXrQpJs8YgrCgDlLbqDq3n4fvPTEeJlcNWUDGh2aiC2VRPhNPpF86e\nUyl55IqAalJz3LlC10RQpcV0SaqXWiKp1wdYPJzJ/A5VEMG9f67ghQV8OzwlS+53G3o8KvbYMTfb\n5G+8X8CL7uvzwtevk+0yD+q9owLvCWUQ0ngoM0isA1Z+hUzm1URFJs9t7/9uby8ct9XGxQGodR7c\nzSrng5GWPJgcRcY5tiQ0lMouIym/b/cSpJJKyWP01uBQkv6xIc/EGIoWivFgSTqSMbVrM8qgHQcr\nF9VgMAwbVEA1wcakp0H8TVzvuTBPRmFHGmQrrn5hvS5cnyfOzxPn64Io27DOcxKqAfA4GmEjCYjR\nas8Nc1MhJoywsC3I6fDFCy/fWBHI7ySf+e18nmCNGTjgXf/aixJpy4ptoBhAbrn0ZuaQjYR5VKMW\nDVs5wPdXawr/21viP339JmcnOKkmi3MhfKTuycyz3IklR7zJSCGwjMfR8PFs6J225gxmJgzrAAQZ\njqbv7ERmPctbuQ0xQYNiZWAchh8/2Taiyu+JrbjahK/A8QDr1UDlx02miQLLBTvwxgID8Xb1lbSA\nh6TqO5xNy8xglV6IJjh6px6bqBmyPmJ7JzS4po2DtmCEs7ArEp6CdMe1AucKXNvRU9E6IYjYAZ9J\nTH4QDiFIQW17BP/MND1wIkQK1P0d5AMUkXerRJSHaG6SpbnuoKSSMSBRrQ5UbkirKj/BWuxQhQSz\nN6zcbZsP/h3gJbdWOKN6C3kxROBmgAl/iRUsxQ5HiFKNsaqTFcpJ0BO5uRlI4aMwFh70Q79VE35b\n2qtiK/Ldcm5igChlhu8qPRRmyZ877p5TFZjSuZvJZ1bKGUoZJJ/DtWfVAlYIFQh9fJ6fOK+JKJlm\nOPkjukgJLyyX9wUhEpBGXMwLfsukguS8LnAbYsly6w1t8MK4X3MTEpmWgqEGASGpKDhsnoH1cjwa\nBWPXmQilU3oqNedN5NuoA0YtCwSRG+kOGYEuDU9tyM3hbBUWfUN11u3tjejW8RgPHIOFJa8NrB2A\nMMxqrY3za2EtRs2KbsSVMP8LHvi/8a//+1/x+flFKDEpJ47kRoRteIhUGudGK74nM6FOyaq2ho4O\nWeWELRiSg4MUJHmfZ3x+3s9XcUWy+HmVRinkroOcUtQSCnigWZHfnR4RRusCboQy856Sos7OP/n6\nTQd5cnIF8DEOhDi2BlcOJwlkQkwWDgZjlbSNjizDYww8n50T8SSr/w73KSu+O/+3qSHLCLKSes0s\nKeCPjwM/fhijY4OEn2GgD0oRe+eHYxbWana75aQGQ6ksBL6ZuTnFsDEm0FQxhmHU9ItIxFp0kRV8\n8OPHE9sXvq6vUnLQochAOipmeifUlAU3uQOxwdS4xem99VaKF8XjGMgpEFvwDDRL5lUvr4CsQG7n\nViOEp/Z+wVSI3d0Tt4DmkppYpXRgAsC0MRPmXJByJmoDLdbKaNfn8SQ2f21ca5LwUoG4IhaK7OZK\nnwHstYgRZvElm0RjU0PMLCxUsGRSfZHcyLYDawPnF+N2aXvONxaJOqgkGM62NuV+NhytE1aIioy9\nM08sCZOZCEwH1/t0oKKWGXELvt+Z+ONjQB8NrXc8HoqZTpdxOgASiwgaS6TC09RoJmIMKm3sq4Kz\nBHTFwin3bKNj+wRKr03uwlg/eBOwsYmlNsJJezminsl3KJcOfPz4AyMD11pYc7ILtGrF2iBh63PC\nr4352pivRPxogA5EblznxjUdFzan2yaARkUw3Bb/inluDa6JroKjGRoawhvWpiTQPNBEYAftyp6B\nMyY0DCaGx/MD8TUxS466duKaFbIVXG5bOK6viflrYv06cf5ig9Wq+sFQoD865lzYwsJoz4VmQRlp\n+hsWZKFJJYCmoA2Fp8Ev/pyqzEJi5EYpgKqyb598DwPAuhbao84yvVMuKYJooNhBnGdhFDQK4e95\nH/7IO1KhyPb36vsfv37LQW5GLa+qoTdgJVcJMcqFIooFCE6TbPrm6Pt9IwLzXMxOXqUBV2pLr3VH\ngnKKuSBY1QjfmyGdzTejdUZwNhCPrhdV0iEtygWYb1khz1grOIPStkjahE3zTQ5mTXLWCGn0IYyb\nBd5JjpjrPQl+vV6kz4I60ygScW1Ot8xn2XxoUNnsUiFWhb6qCvpgW42JYbSDRFZLrFxQTd76Rtcm\nvx9wnpU+2SiDlHpoKtYCAboB7/BGkjkkKdOIJfpKYLMCr3Wt95bSSmrneRA/j448+HBGbv57oRRR\nK8hrrYB1au6jCCtCHhtrgtyEUq/bKmUxwYN8zvpQ+B2pUPnvxk1EamoKM56+wljdDMG62CHpNWaZ\nJJ7N+P51FnTM7Tj9YpjYprbfvfTjprjUoaBLr5fTc+1Nq7Y2lv92llSjoJnjoTDtiJ5AF7glrlzM\nB6olQ0D/hKmRd2mJdkTVuTFP35OkK/2dNLCg8nIEjBB4jKN4Eg5JXTu0swrwroXLGbius3Trif1y\nrJfjfAV+YaH98cR//e//A//2+hes8y/vFElU32wr89Hem/pzy9pGmQF+KLN5QgAVxURWAxCwJCvR\nkC5G+Fny2cRfzwufZ0n5gnJSscHY31LBtMNgrjjnic85sSLprjZOz1kGO5eN0yciJoljJYy2g/4P\nry2nxM+wJnhoQzZyWRlODb0w0iDqbJWCISN57qzKV6F+nhByq/NPlKgDJbwBKGBHDXFKrM6MHBG1\n7IluDb39HRVLmFF50ZuxScZrFUFW0mv9s1JzsOqr1COVEb6WY+/7L8qzUFbxay5MKfFYBnxPiHDl\nTemcSqejK0OZJKtlXag95qpP2VBBvpUBzThXKEOt7uxoM5Kz5BPr1FdhtOfRaN/G/hscmQ4+d+Lr\nO7xyobm6egBz81DTnhXlTIhItKJBhaQlGXVOeY+jwcPRjGRgDAAcEKhdloA1VIkFH641Kf8zNexJ\n56QKK+5YBsEHzcoBmOlvzDrvDBovS/zgh9OMmDoSWHNCK3fl548PSDWvv69SDxAAACAASURBVM6z\n0t/o1GuNBQe+GdWqIG5/bwexkmRkcvqlIKYSAosjiSKFTaksEAXGUDwbP8wSLPTwVSL9VmYqMeQO\nnF+rskhAq/jHA0NImO+9ca6Jr3XxonUwO/2iRb8NhVQTengAg1ipOw0v1hKpnFDLagWIwxreE7Q0\nxVZmk8sClnOK0yKBVQW9K/Rgo47dKhoJ6pWTLl9FAuX03NWA01vHMQZx8yBM0BshDD1quqgBZy9m\no6QIYibr+SZwykZ+GP7Lf/3v2P+yaZzZLzqHwUONzT6oxnsw2M3KeRoK3Xh/zhsUaRW9nJxIp1N+\nrGBz0ZZAi42va+FcGxEcAAhZtpL/Uh7ce4NuOjBnOFZQ6cEGt9LvG/VGsRJizg1R+Jp5Mj/HrTZP\nrfz23mDagE7/y14V75w0S2USemV+PxM1abAW7CTUuiLqzKNrtZuiCxViXk1ob1OkEHZUNWhU/HMk\nrPJ0/uzr90ArEeij4+PozACuPPFrMwtZlAoHLzw371JeUDWy1oZaVl6CYC92bG7jh2aujTPZ2mEt\n6uBhpKbMgG8gF7Abm3XEg4XKrSOb4PTETAYR9W4Y+h2uL1bBUJPkJXOQSdSZCo4HiweQxbg3FiNk\nBKzwRMsGEba+zz1pxxdi6bkDywVzAmsKmvPBR+cbrIW3494AnJKu1gwfx4NNPaqczv3BnOSj4fQX\ntwcIUBjv8mCVXNBI5V4wAXEIShe99OJGiMdq/a71pFQn3Ga4L5TFvw60dTH578fHH/hv//yPyEys\nxbhctqlvxF6w3qESPIDBafVxGLexIK/xGL0UQ8RFzago2VES1DtITMpi3wQfz4ZHU8rRkg7D84sc\ngx2Cnz9ZjbcWncERtHLnSgzZ9CAk8Dknzr0wkzht3pbzhcJs+eFdIbjWxnV2SEe1xnjZ7jeLTJT5\nG7EZUawQKj4GoEFIL0SRm8YW69Rvqzn6R9WiHSxlCATmpEFF36aTfKtPHio42sBzHIgArlUyV6M7\nefSBx3FgfX1hnyejM1QwSnro7I3GEDASeHRY6+h2YOhgZMHt9JUsIxf7LF0E2Bw8rDW4JCY24I7W\nG/ox+NwJLfGigrU2Pj8vXtAYDD4LEsXaBc6UsuJcNnprOI6Ox4N9ADscrsAuGR8iEXpf9Jy4yYE4\nc8mziNPNw5SxGxUoJwqVwGM0PMaB6+vEqhkvQM4jQ8AUCpZwTDhWORCimpPuofTxMfDHMDw0caii\ni6KV7HZtx7kW0ojPmxk8KjItgdiBuSbW6++ofFm10gsSUCSeR4emYZ5fuLP0lifmDOwpxUrXI5+0\nssvMUiYk1gxcV6A1KgRWMAI2NNGKRGWO9b2yAHqQ6GqVZeyTmB8AiGspV4hppQHREmgBbQlRRVOm\n9UHALJfBv18ewIGaigI6Cv/dWuUTiXU5NAyxhThgZZekAddyXFdiTUEsZf2Ughmv3TlVBKEM9URL\nYrqt1uneGJf6189PSDRYa/jj+QPNFUdQlPY6J85kkh2K6GTCm1WY173Tc0+yRpxl72BRMs9+zFlu\nUTU8hgJKFyzgVJyAbVBNvwkg3wvum4RmOB1wYFYFlJEAADeQFKGN3cgNtJrUM5VOPHCljkz0Q/F4\nKI1d1d95DMXjMCoSnKThXoGuG00VNgzHs6SaARxPK5KWxSU7gXMxFnd5Vc5VZ6TvRCxnrs8wbjC6\ny2Yf8Ni05QNcJa3WeoqyIS1gBTt0rcrHyTz0n/98YLnVVraJpxvNbinO//6eIHe5b8OZPqmEKFQq\nx14JJWwUKa0JGYJswWQdJ6Ge4tAO9N7qsnXERT6oNwGOhqM1IAK//vILfm1oCCyNnxEvzbcwS+j5\nHBUpUJ95GGGGEMYv7EDMieNh3IYrLqKDWLoHSmFVkr3ecNyZNcq01AZgFPylTSgFDsdczg7WRJn7\n7vYpbvcAL8zYUYc93kFkafVwb6IALsB8TWAFfC/ciYYqjMMN8H0JKaGCJtx4aZBnKhVXArmcQV7d\n8GwDhzZ2BmTiFUxcJB6O2lZRcRMApJ45/ztSrUTKO7TJEjDtDBTKTukNSOLNuTGvBJK6UyoXslLk\nqO+I0guvlcQlDKXvpSIiggeCVIv13eWpVhNlsevn6w6ST7TW4TOxr6RCo4NKlR4l3Kf5w+IbeoEy\n9GdGwASAclrPznxx9lkKYgb22sRAS1r3zUSXOccDvhWSPFg1shxpjmwlpxRQ9dEJF5gIfDmkBxKO\nr/OCYeAYDxx9YNiAgU5X3N8zau3XUiS2+9K8D/eacO3G/QBAqtkduCabhvrR0HqyQHYyfsBa8oJk\nZhbWDnyd17tcW4tgzVIseKXOBb6/N79/1eSBKhZmgd24403AAr0rRle4C7QT9nkMq5ILPlt7BVK5\nDaDkj2IkuKDxbnER0GnIqNqAJddxFDRijVI/2YkuwulyNKxg6zqzRqi+0YKCGHNcjsr6sEoRscoe\nDbg5pJMcrwYLHpRy8y2K67pzRvhZoCQuKuFTvoudUyhvcyqJpJxtaXShpjlWBq5FIVJHojdhx6mT\nm5LkNKgqGAUHSCReX59IdzRRBtCVP6MbjWbWDNYbZtAZCyRjgyv3RtEQyxGTef6tsmdSAqMDH9mw\nnNyTVtY/w78aBK3in1n+YUU+3mLKjcDl7Ix1CGKxuCTKGAfUMgkgVtB81Ep5ZHy+aQYiP5WZyL2w\ndJU65ubp+LoY2KvqzosV+q0sUuStqGb5irDm8Wgdh3UMGCzI8RhX/rebWpUD551uqWiEmuB/eqb+\nnoag1wIGuOoakNeEq6DpwVc5afm9PN+5K6EBa0GFiDDC1UwxfdXaxKmiDUV/dFgaoYs16bJS5n5f\nL+JNWwWZjj+yY7SGOYHri7f06Il9EWZYG7DBglj0SlLsZTzZ1Bln9fv5ZpKZa6IZgEadOewbDkEL\noGet48TIlwDmwmRACzQDovEhfTwaRgeu00uXnOhD8ey8zWMBeyrmTny+XmTDDQCi2uS5VlrjPw9N\njKPRDHEkYqIeNuKOEVQNnVe1zDfK4lCXnzXD4+NRNXEnjseBPjrWOvF5TZwXHYOq5VDlXIV5Lvzr\nv/77W6/c6hRrrVFrrVSqeBByyZIn70W9/t5JJ2un9ntXypKp4FlqHR7ICnv0kkJS0ulJ1QAdeYo2\nDnh6ydF2OT+ps04YL/nGGANyF2SfVdkBG2A5xOOjwydDowT+fZg1HnxU4jg3l6Sjci+HpBEyDDZf\n7QbszkMzM3DNC6+TZKM2xfFo0NFgg0RhLmrEbwOV2X1hkdSJzQFmh2JdgbCEjvvCJvabKliTLVQN\nPCSHfsOAGcUpONf68AUVckmqCRmKIxses+Pj55MNQdp4GQcLhhkvTNGAlt09I9DVqIZajvPcGGoY\nR4eOwHEoWgDblbyTBNa6sDcJ5d4HpcnJQcm3E4/PIJyhiWwC6YxkeL02tAGcKjiAqQrx/+JpLSmx\nzXrtPAnFpiYk6B2ocq+KcuBnxTrPoFzVCZsc4iRAdYvxxmhqeBwNfzwf+HEMPDq1+uta+HpNmBnO\na+K6dhGniZDKdlc+16yh+zuLsf180draxJEblKCJIjsnQkmB7AWtBLIs5YKUBZ/SwvvWUoxRZOAj\noQMQY2FF28Y3JLn6LU+8/spy4t4A/Wj4jI1fvvH5lwWfzvD6SSNNBDBMMQ5FeyrwANw2W8SFDwVc\nMCtDZUeZP5KWeE4BG3tznWzJIoTvklgAwUMrnf8rBuK7ZBahxqyLfpBAtMbp04QZHnfxgjZgdP7Z\nyQ0AaznmFZjXrsuILjtpeBOfjAdWSAiuF23ktEBzxW1NKcEsx6iY1PFYP1P9XmG1lrbvrPW7kUYz\ncOXG8sBx8KFujzt7fmMH7dw7WABBmSYKCnHsxfdiK18/C/kPTlAv046DKgkmEZIkbsKH3BGF/wuk\nEWOl/v/mUEgYqwDaDO1j8LlJ5vlYghN5oypq7ap48yheXHA87Fu1k+UhkMoaX99RxRpUooQD6FVm\nEaWjF0Ga8M+BBCwQSrdpCN87STBAShsza4LPIwBuWi4VySBUd7SGNhogjl01hAjW8LGAK9m6FIRj\nhg18PA80O9D6xnk51qo2qCZ4PgdUO46noT0ay66ZXcA0w3CstYprCUhPHG1UNg+wT688Hzol10xE\nW9B0msFEoG3w/fF4Q3/cSrOwBgDh7HsNhxu3EHb5crsaUKRGZaHz8m0N77C3SrLA7dQmQVerYL2W\njMeotP8U7PuZLpI5bu8E+B405eZ/+1a6NYzW0M2gSMTcWM4dyefGddKwtJ38X5RJaMOxsfhsCA1Y\ndl8Of/L1eybyM9EsMTo1fRkVmpWMgd2RiLUhwTZ1miqo9R2jl4MN70jT3o149EFbe6RXE41gl5X3\nbkfxFzW1OeiQ3LLh0/H1tYHFySGE5F1qogvoGuxCiSIAz1vbTFt0bq+CiXwrXSIJIXnhtbGThFGV\n5wqUnZPbygBQxgYheUoShEoZrpUsMFaCxADKULBYXKDNYEOQpUoBQLiniBTNQEuh/Kkka2qlgoBB\nAlhFfGYmM7ONmPv9uclSVySIfVpXhubHYiSvUt2jau+DOLZTCUB7JaIOuK50l0RWFkmC7/tmvjUd\niiwV8A0At1W+fkYAUIGr4NpVLFI3wC54qotwQlMqCzyAEIFsUHoIFIyCd756OqGBx4PStr1ZB2dN\ni/wq+WRp3KPwYYXiAatFgBp1AkI8IHwJ1iuxJsvCNShzu0tJImu4UB7k6Dzd06g4cuFkKKWMEJWS\nJuIbh/J69hYAYW+qYAO3EkJ5yc3Nzkwz9pnu7VWnRnVSt4ONOgqIdqhtvF6z2JONyAVTRsf+aM8q\nDK9+Wl/8KxhLIFpySPnmqKYHS1S8oJ+kFc5iv+sbm9TBGtSl8zNVSrFWoVTbsXwzejnvRB4wN8eE\nUl4Dg69qSr4HQUKzJWUu41jrht4H1prf6asi9b3vAYBDW2ug9v7mBVo5gAU4mlGJlMDRG2XOqljn\nxcyb3CyFv2smg0Trjdk46IPY2KywK1dou5+/P/n6LQf5XIHLHSuJXy4PzOWQdcGLGLtty62ch2qK\nYzR8fDx4AwczoFnSwFUWtXKv5dDrZD3SdMh23CNNS6ocfNL1xtWel8leyZAsvUkp/l6dmaVY14Rr\nIC25NkrhZYTj+WAoIRnCpEJXaunfA0k1gjC4J43peGM0qG1AF7IVDmyC3gZrocCgLiYWlr66lQIF\n+TbiqAlkGEwSUx12AX0I5OjEaTUAiXdwv9baCwmkC/QQaDA6s3VgNE6XHgFphQc20tEBfzPrlLTV\n4WWCMQSGDl/A57qwPFgmYoq1HV+vwL5mSTOpa2eMLi9ZtTJIzA3shIFqnac0tFBg0focSov4a1PB\n0Q+abCKJ8QbHKW5ORixybToKWQ9GDuLWUHtw69OSeXpBFGqKpnQNIwBN+869SMr7WkEqGYGriiGo\nW0al7SXmJZhXQrpDJ0mxvRVrE4p6fnSMR201Bbd5Op9HEJ5p0kl8jk6MPO6DUAkZzsC8Ev1oGOPA\nUooCztfEeDSEC/YGD3IZ5Duc8BUAeJPK5Rb+mevSOl8vqHa4b8z1hY+PJ3N+FPj19Ym11vsSgyQN\nbAq0o6EdvXB3koDuwHUG1msBCWR3qAcOub0BhFS1mqVabyxVcT4nUtpzBIPZtieW36Sw4fHRgQRT\nSCPQwUaiLjyYvVQksvMNJYoAz+cTP//pD3z++oWvzwtzbsKGk47QNqyeCcYieA17NhQHeeDiKyrS\nYQdTLzOBZvC5sc+Nc5GYHr3hGAMAOcFcLDqXZITBTZQCgGRSyvrnEPnvOcj7h6AdChlk2TP4kKLa\n2hlX4uhHZ+3Ya0E7N6rIjdsK/rbum1QVWk3uXYAgbCMZGNqQuONImbusvXTbSpjAGnOGQyh0pLKA\nksNrAbkM9mHVoM5fl5al0W1I8JAESHqr3JN0ESwJaFD9sfamoegCqpQcTTghZxYxanT6aWfbzqoc\nc19RihVgh2K+BC4bOhwDQFMeuimEPsToZMyakDw2hgzmnnjAETSbgMx/eyhJn6RtGA3caMAP5j0V\nqiozlYVEsBdma/e2AXnDT30clMppTegeyMVfHwa6JYUZ263UTAiqcmprpbN3M6jIg9G00biB7Go5\nalHplTBk3BMPM7mlSUUkO1Y4EAo9Go5jVGAWihzkMzXPyQPNb2v2TToRBhlqaIdh+4Y1w+id+vA7\npGvl++9ZWSZY07BmFjQktGBHYG/B8VTsKGVTOLNwOjcl1h4SYli+CmO5ISW2IUWRZb4ATb5OiCC9\n7Y7tgpENIoYmbK2hVd4RG7UNsyBEs/iFvajyEBZ2772w5gXd1GP3bAgErnUiCvsWKxFCcRhrGzzZ\njwn5Hnb2Srx+Ee5IrrlQeu1gTvZXe4OKVbUfJ6XWuB56VcN5OnYELqcPpBmJ0wjKZdswWKvnKWra\nirLR1XYbEKQnPj9Pku+ZGI19niSuGcsx9yRR2pQf6DIx9sEBKEr8kMH3y+q5RVKSrGC5dBi5iCjd\nOmWR/i6svnsKtnNYMDFuOPfF/Sdfv8cQ1AEYDwVEIKyoXZWyhfOH1UYs2YNgpzT+gXErHrJytmvt\nxk0oCriC4TYjWE3JG62kyFoSLJWAquJ4KlUKcGhlMJPh4HTuDmYvVMymiLwzh9WMQUNCaV6WYaGV\nSSiDUiQpnM09MVclE9ZBnkpjzr1qA/wAGxM7GIdatVgMmCZEMC/BCud00ZQ51Vllx0rDiO9NAwr4\nsIuCr5FXOFWJfLQx20ZRGePF0ofyoLyJF7rZ6sNV6yzbUghWhHP6FwXGw3A8O6yz73DmLRsNtF0R\noOHcjIQXwH1406hR+ORtECtIwzPL5m5FrFa/5K5oXDTcZcixs4xNArKqxsoxSWAowqVUJXz+fNOY\ntGv1zahHAYx1ANhJyhAySuPG0d9TqbXGEpFFQjs2g6yY287XKAVIl7dOvo3Cs70iTEfBAypvC7ck\nJ27Jhta5yQoACOW6uerfo5Qnm07dyJLeOQUGEg0JkAjddwSvAqqlpQYEDLvK4PACqyCu2JBMXH5V\nmN3GjhvK5FObwYGBGfnfpiYE1UlREs15BpqVWcuBPQiB7QXWwD0VMoSwnAhlv2ZUduHbBJb3e1tP\noyvehyrk7u3FW10CLwhTqwMAfH1fX2z2eT4GjoOGxeWbu5cp3DdLlpuCbWSEgazeJ5rPuZURgJd3\nqFt6PTvkXIGCytIdIfcWXmFaYBLk7UxWlfr94psL+U9fv0d+GMA1AxGL2ueB94PETGpAx/33icfP\nBgc11PtvktnU+MZEVaupUIvtSY13U0MfLAGOALIBaYVnS8DaHQ8J9D6gsnDq3XgOmhAGsUXehuwP\n1FBoWGH7xLWoLS9pY7ubR+kM83DM9+rJbJG8ZZRgCJOGQCsqNu7YQwCeJ5UKmtCuUE9+AFcCm1bl\ntUuCdvFykqCeXesCe10bqPKE3rTMGyRciOUnIhzHIF6fdYhHltFHpdyrjDnw+2fPfGeeJ1AuT05K\n6IZ+GD4+GtogVJEbVRBRD3wdnLF5kYUSj6S2XQCt8uhdU7c6i7qXQ7rg6Ib+7NTTF8G0ToZsWW/4\n+eMH1l5YixKkYR3dBmwyjnbnxh6B8E03pygDt66NeU6ItcJnld/TGUjVHr26YgWxOUD44KXeWkfT\ngdUWvvLCnBfmiupjpSQxvHgfK/xeGe3Lij2+dyyhlioBqUksEjEpP4VaNSbxYnVPljFcXnERbFcy\nqcIRZ7FEpCCWYK/A9VpY09G64vnjgI5Go1LBgDsISe6g0YZmFR6MLgn3heWreBH5m4am6nYVrQKR\nwN4Lscg3UK3FjtycJb9MQZzKVidNbCzsBTw+lJh8M7Re5KzcuTVSMt/qP63zYq+AConVeS2oMmCv\nDUPOXfBZDQm7nttU/mxXwEDYozeDdkOXBo/A1xeTSlsDYlM9Zr0GDRAZQFKJpQlg3WXtgDSBX7zA\nzstZVn2neA5Faw2tN+xgobOKoIMQkWQNllJZ+X/y9VsO8vMS6Axa9btgg6Wi2hILyYCbQQts3gl+\nxRx7qTsULNFlaD9v/db5qmUGmX8VWp5rtRJQiaG3ThS3i5A33fFhsDaAoFU/AejBw1+EU8PQTmz2\nKgdnCfalWU3fTumZVl4xwF8j4Poawr6/ilb1qJjSmVgArOdbWyzKqWrDGfxVv1eK0Nr/BcQlWEmT\nR1sALkoiN2gKAVBVXbfJgITRbdtewUsAyRRCj7uouS6ziMpMEeLcqgXR+PsS8J2Yk2s9nA023JgY\npzvXfDefqMY7nzqjFAo3mRWMNRVBPf3kCrjG1lb2ELYlicAbCTaVyhjxhDnwOB74+eMn/vEf/xl/\n/fyFXzsRuSBJAnA8nm+IrsFwbV604bwgvQ7ex4dhjAeaDfz6t1+0wYvg/Nqw7egPLeMHceVIqgtC\nFtZacGIWJToGmF98K2SkNPJ8DvcFnLqgWyqLm1nfNwGLBGv/YMz7qVQVtYZj8DLznNR3K4O0THnB\nQRRzJnHfK3GeJXucZcI5EpHMkGlDsXsNRRuYrwtrVrmHOqWElVdPxwIflO23UxVAXS7UovOfuW/E\nJj5/TV4sEG4QzB4R7C9gl6EpLKG6KSdtBbtE4vW6+PtXPIQg6/Kvv4Qbj2lD7GD9nTAPpyuffzOB\nHsoGoFQAymf4ouP548eBx0dHPwArbTo8qdKSwsAHs43MmGp4q1kyq2EJPGMCjlRygSG3HwKYJ8+o\nNkDvghS0lyzDqTmeF/RywAMaUa1i/+fXbznIr6seVAMnw9IWa7IoOEHdZL7XnoD1CpfP/cafWylc\nKGPjhHiTjql0RIaQERfJmmp5qGnwUBUUnm00H1gDcrO7072y0ZUrT67bNCOI6YQrDJw+lbBAUFX1\n/opNY9FmaB3//y5LcLHV5RVhKYUkddbBVTABflAygdoAGHEbmDPgJ3NXTAQ+hW0sKDhEb6weZWe/\nuYU7l7ozRjXqZw2W/64d/+Hmv3HwLIDmXvHuRETch02gTn/+3H6rjwy4TVGmgHVBpELuKFiR4kWY\nrWG3ger+X1NyJCxKrYOBSpgIx1Fr8wDbl34eH/iHx088bWCKYYrRHVqgi4LhUwnHmpsT4uXU8S6+\n/xmUYIoEVRJxr/Bsa0nlxU5nD94X0fLNRqiT0244MWwd9wbEaAHq6UmYeykVYifSmG0vdxoTHUbM\nnQE45QodXKadGSzWmPHTKO18tsFc8VaTMxj0dM2N12fg9cXpPOM722idgcyFgGFXXCwSeL0W9gzm\n9wxe0ghmhwSiMsip2BBnCJkUWS+1XWdEaUMVsQRrRoXQlav2/Tnha7szkR1YljANllgrMejztflh\nueHXinmNe/AQSnf3AtZM1jgKYAg4Q4uIc9frb9Zg1rF34Do3tmfp4o1yzXkxkCyDsdOQbyivyG9+\nDPItt3XRN9TK7JS6tJFUsmXirOesizCMy/L9XPPwBxJaHopqDou8u2H+j6/fdJDXwyo8TDOZXwIh\njhoO9HK2aXXXHc/G5vrFsB+jbxVbFEsUsSbjP0F8NlXhNRUArE2SiHdVGHMqiL1qGHrvfMOEGnDE\nrjB5xbPTiHFdC1jlxpzl3lJj5gQ6MxGSP2NWMtrrc+F6BdZVEELy59le+J7mW8Xy7rEMfnjtzsGG\n4JolIwsqGfyGJfyWYglyMxpWxCvAihibgJMFNS6oLJjEEEXMmtCNh/XdIWkNsHbLCblOZ63Tptyk\nIgCtrBfT2zzDjIoUkpLpbBQaXXHc5FEdzvcExIajKN0x3jZv05L83Vg/aJdPUfhrIeZd56UYUHy0\nhm4P/MPHD3z0J+bXCZkXDklY64g0Rt2+FsSAnRufry9AAnsFXp+OfQEIQknLL8gX87wfna9luDAt\nsxuyGUSY99F6x3meWJOdrXFyY+P5KuhHg3aQzzCgdcVjMKrCI3FOlomLAqMJUkh0isdbvmdyQ3l8\njUfle2wHZAe6AM9nxz8dHziMOPhfzhfOzSFiLW5O6+KmSxiwArnAiylX4ir/YCZwTUcuwjpHYxVy\nOvOMdsVXCKTIfKkS4lJRNZK+6xXvYpd0hV9RmxuDse5hLbxy7iMhTtv7hmCgyNkErn/nwKGaaIcg\nSha8auhpBnRVfH4uXC/HKugmWnEQAGq9waN3PB4Dx3EgIpma6onHzyezkM4Tf/nrC8hAb4JjSA04\nAhUroxSt/Z5Vi7fJfXRrlEW/G0gMIXQI70isTSksuWtnN8MhmCv4nLcEzLCTSrxxI8p/TxZ9EWo2\nxzAAnAK3OHLR4XdbxZHBQzUDe26+uZElJRPGyJaqnzZytqGr0DwAK2MNbrKO04aV/C4CnHKDJpcE\n3hkia0VZzXlQIHlIhnL1F7mLL+xvciQcc86S9nH5RfJNb6awdnyH/QdJRyu7uGo5KG8OwHljwziN\nxcpi1Hn5yHtKIxaYG6yOQ7JJqNZI1EHczahHzcCeQKyAi8OS7SiMV+Vr6RXIpaD2FoI3TFSR7/y9\ni8Tqna9PBg8YM33jpUgWJZvxIOytI5Nlz+PBD6go88GpCS44InnZZP1MevMnRagaKn7XFG0DDQZL\nxfy68Ln/Cn8EUh3zfOFar+JfBvYWnOck2a3UsfeuUG3Yy9llWhuKNg4bmclclt7QROHGxxNWMjgw\nh0NKJ51ZEkZByVi5hRwfDc9xAOZ1YLN31DcgpswmUS96t74yiwS+95zvVam3Ufj4xpz13w1Da4bR\nGm/tUCp0tGOMQH4ETNiAlUhoq9ISu1VXjmYNKuReuH2xVlChyJm4JltvpIht5mwDlsrugLwnZaaS\nxuaPAThVSysZYpKC8TCIEafvw97TLTqLFQSKmIJUGsj8C3DnGdGUBqzIZMdngJCMJVrc4W3knqS2\nYRqCattLwNfC6QzDY2Y78Hq9AAj2WvyMq6CroBuly9sJRWpl1avQ/wJNDmT5/Qi/tQlIFqs4IHIn\nolIBt2agaaC3eBcsM4a+nv2KIjAURPsnX78n/RDAW/xOyQMAqlW0861b9gAAIABJREFUM0mB5FOr\nNYmr+xtfKgmeu4M9KrfkqRxu9Ye9I1Xv9SduLC8SAa0sI31/P894E3m3DOlOp2tqOMaBwELAIWJk\nmVtNVbUCrUmbtwTeEkiEQlJxHANunHpdhcqPcmJqEYpIBmB1KNQpi9peeHx9Rb0eJobxeOC6FsOo\nLm4CMIF5XU6RUE2MTtMLm34I0+Sqii1hDjxJYAGa1YFaIqCUglE4oaMUQ1TmKEStynpp2JH300bM\nwe6pvi7TIJ6C1lgcLCrA5kXuE7hxZcKdUe9jydSKWNXarhsEhxoO7RhoCJ+4vk7s6ZAOXPt8E3Jr\nB9YSrLUYpFWbRes1qWUDkoTbXJX/XtxGeyh6p5nLUXZwMDaWS1NWRRhhJ+tEuM1YEtGPhuPZoQ+m\n8kWWWiEJQ/SDkQ/Ef/2d5xFRJiC+KsUROeMoGt+bvJ9pAQLKnBJNWBlI1AxNClbSRNPAlfS06tDS\n3/M9i4x3OUmooxe5+ejMU48V8CugnYcYVSClyLkNdTcxK3EjbRwOgnwKdmm3nbJOMYENwccfB6GJ\ncG6qFGTTYOaK2IHcCoQBAsTiIQ8DzPm9uyR6JNroWEi8ktVwCm7kJmXAkzIduWPvBVHDdGAuZjfd\nXbWmiiZl0UddCgVzIktoa3d7FgnvLCep7ztphrDZ3I7tvFwSeQv1+CuCVZZaqrI7phrgQN/Vaqv+\nPgf+9uv3TORK/excUdMt+MFtJKO4tgDtGOgm8DNAMFoAOF5ftOVCmR3s5fTMCta6DwxmUDDwKZzR\npL6rj3ETFmnW0WxQ+eIL2x3WhQcKh3pOna3h48cHrv3C9BMeQBsHIIa1/P3XZiQfcpPI6XVb+QLs\no1EeCMBjYuXCmYsMvwLdBBKKoxke1hDhuC7mUew7FCL5QYol6DrwTz9/4i///gufX5sGGtXS1PND\nl0J33e4MOBqNOSuxKVdrHbBIyNrQSAzhREcXJictFXkz7IAWqZMwM/TWGZIkZaWORPguuzvhld47\nxIyNNXVRit1uVX4ImkRhnVrysNsJiLJWKxPpSrqotYUAicdj4NkO9GgIA65r4+u6gC7Y2IAGtLOR\n5ppB6MmAPgyj08APJB7HQGsDayf++vVVFzoHglFbliiVOYg6sJvWhSTw84TAYcaL0z4GkIq1J/pH\nQ392hG6ScKXasMrPsFYu4aCyxGoTCM97CSEGP3mFtDQ0Iddxcx5QxUrBr2uxb7Y16DCM0u+nMg97\nqiPWBjTfyY3EvhXXXLAsdY0E2rPBpOOpBguhjn3jHdClLkA0xAxcf1l4jFbmOfoQtFPquzdTS++J\nXaqMBKnoBkANzx8PmpfOCY9gx+dhgHTsyWA8VauhgEqfzIT1wCjoq5vgyMQfP/+Ab+Df8cLazGpS\njeImasq+FUFO8ndegddFfLr1gaN3xmWgtPUB3NJWgXz3uYoxz0kEaQxU87VxrfM9naPeSyrBeOkx\ncoR0hKoj8yreMN84fghx/SG0+P//ff2Wg/zHT3sTZq3MK6Tya/JzOuomFuNrS3ucQYUGKpPby4wu\nSECyoBItVp/Su+m0+qfXIZN8CKWyiDPotKSEji7KtdhGExPMvW6ONmgsGuMJCcPyhQTdf2uRKPOS\n/K11y734hhgYdem+kEIzwOjtTW7stStSM9FVUfYcxHYm19+EyqZuW1XRjw7dhs/XF64132qeVBJm\nUTnpwpuI1nAQ9zelU04y4YX139GcN8DUYMyNEaqDJEvGtoP4XgDjADHOyEqzvIk5LX08L2piiYmr\n0h5F2Eh07bJC12F8jE4Nu8c7MY4QFhDuBT3xr1Yj+5CGZzuQS/B6XXTfVrzxazmDyAbgOzhBaeHC\nltBGJQLbdeI91WoXfPywytDhZmadtWMiwNFHaZh3lTsIEsRR8TDEIBl/jIbeBzwHpAlEWQAR8f37\nogjk3Gy3YvM8w6ckgdY6uZOCVQizUNKz5uKWuTeLlY+OPx4DEMUC4MuxfWN7Zc/0zoTDJmhyMFbh\nHqIKtmLFYrIg3Sk3bMVVdFO0AfjzKFs+Ic12DAgC66t0904Cs+lgvINGGd4C0cCyiihcXYE2+H68\nzhffb+OWkgDmRecw1TqCx2FFPDOz/RgCGwnIQm+KYxiex8CPjycdn2vjWoEVG5EVf9u0eDZyOU0E\n2RW9AUcn1p3JgxqV3W6qNdSQrxFRSDi1Dm0gYjH6F/GOqPDF6fkm7d8wYQ0mokCzQBtaxDqNV2pE\nJ+7UVhHl4ClMa/2zr99zkP8DH9TbDZlZATYqgPBN2jtwrQuOO8aViW1oVlZzHuCS/r0WotaWIFZ3\n52m0clJ5GQikLN+xqCLw5IPHPO774HGqTJwPk+iCtMk8k9IWe9D1uGcAQSxcRTHn9T6MslZnu91c\nwbLdVtVdXRumF76ZIOThqBaTgg+M+nIA/Nk7owwjEq/XiVU24LxfhJ3ImUy1K8mTe2AtYrvS6J6k\nSYFyxXgLFZhZoYX5pdMRGgnmP3i+D3IBFQlmhVPWNgKvy9IEzBinLt0ziqvImr4pY3QPHKNBGyNc\n9y1MgFSDOKWKmlRzSOVOiCq6MssCq7JPtv9NmuFmKJg2kqq1XYzeCrcn6YhU7O10pxZ81FsRc0GF\nRYXn1xbS3gofbQQ9EgwgE6W0VFR4oZq/D3sqq+7IhlJKJf+ckJKritb2wrAu1GR+czJ9NBKh2phD\n43cUAFf9zCKDge84Wyiagl2UpmhJI9xyxwoOInc9oYq+lRHdGj8TyiC7bg0qDflMvE5AokqfmyBh\neP5DJ8+1A7ITz8cBbcItBI673MGFzwRMcfSO1rLq6rhFmNHJOFe5gFUqEkLw6Epo0kkwSm1JkAp4\naw2tMvkT3Dg2AsjiCbqht7uSrqbo0rtaHepzUVHG+GF+pm43syqr+rJgmibVBRBSKiySlJIKk9K2\ng4f5fZCbgQmNRu6hD0JyERx8imqBZxafZwgn3PY3grj/8PVbDvKPPxgz6um4rgsRDMeSOsQ92N4d\nAXiyPSUSkEaTiQsASXYYehSkQlcaQCXH3pw0W+P0GsKY0ki8ZVyJktphQztAkXbZu0NLUyaYp2Ot\nE9cOPP7oaAejVmnFDuwr0HpnO0sKci+k0/ZPuRibweU22ezNKFAjZDOcPY8mgnSaNaRC5EUVoxNy\nkWLLFQ0LgXWy0NiD6pcSo3J698K2U8oQUhnYmdgSkGBw0ajVjjZ3PmgpdVkFybp1sVXpJgG33zpw\n/oyt1+EPYp/rTBKIyQgGEVADLkqETHnIsLuCxLSvjaaNWeFZkjkH3oTHDQ0mLx1V8idNGxVMNTWh\nnJm7rPYkRA3XcnK/qhijQRobabScsJQKezmvq4DZlDht0ByjorB+YIxOMj3pL6A0EzisQ5YjY70t\n3eeeeDwPtF4RsQBwq3Jq+pUU/H/MveuaHTmOJGgAST8Ryv52pt//Jbe7U4rjJAHsDzN6aGtyfqui\nOyuzKqXQCXdeAINdzAbnNzC4d3lgcXMDoOCsd9pBeEei4f76QkZhjA5r5EdHJLYdtg99hJpSfHpr\nqnQNlTzgMvLxNelmwtU5XLbemREKQpEsPBz2wYzdlhu3GW6j3fHn5wfivbFvXjB//fiAuyFyYe31\nFFLbN6IXLBw/PugymRXw1jFeL/TeGQj9pjX0x1+DnHwDXj8+uOc2k+0ThCr6ZbDWHnXq//z8yZGx\nN5rfNcePz4uf3ziH+A7vJnmC8wQn5m88sFNK1irmFMAb98S++TxM7Lo6ylFCmc0MH69L7DQNdMz4\n7wYvf2+G62oMxFExW2A3gNOFWmPoDA5H/5+nnX9GEPR+4/TJZfzBDOKXBpBhvwH8xJi3UsPftTlo\nGbKXdd5Rbo6ozepaD/N4YzCDk652IafFey9UNpTyCW2Sj02HxINDq4IyKvDuuLEz8doNfdBAJ9ZG\nzESuBW+JNgarArFGCsUcwkmBAwe2gXsv9N3QP+lNQjEM8PFiyAbq+JewQry6PXmiX3Mx9NiA669G\n3PicspqSUWquCniIXaChDXMpacJzaIWsAkT1a12TfcBsPKk27jxQPPEY6UfxIDS5HroZagnrzUIf\nDdbJJoBR8IDgZQH5XnuxY4gdygYlxr+icN/cSLx8O5WJxW4sikk2P39N9MXBOVEo0vRIoSNlcH2J\nCngBZiEnxcJ9v1EmC2FnitDUc7/PwdopyYcV9p7YoonCjp2ppN78D5iBIitdjPd+Y4eUhMmhHGfH\nHEg2J5e5NWAFcE9CHm58dpb06Bh9MDpO07CP1wWDcQaBwGjMIK1NBaA5h/ArAongMM4CUQswibp0\nWORKrJDkfBC+IVxGpSwKuPMGGivegcGhcJHbSK/wjtfHQMUQT5zPhEPNUPdMM7Z6UZexa3KIWewg\nv9Ybtgy1N8Zl/H6eSE92d/6GD+AapZ+HRVzvnT4/D0yq9XhduNy4IsS/P1AH8gzt6zvN56h3+4XW\nOiIXmsgIc3NAXc7oOvLVeBmTKgwJsYDDkqO3F8vs3r5DOzjEl4VIb+ygrDgstTN8F3Sbmz7kfA3/\n+PWHDnJmF3pnRwi1EzISJVNEwg+remS4pWp2tE5maRnN8I0DOFre8j9YWbE63Wvz12hCHhK9IMSE\nWABgj0rRb1ewhJRrOsixSzxpcsKteHIM9wfOWTFVodkDV2QkYsXDhzav52BFdyYSldG7IpMBDg66\n4HUeJBkhAYasXzknQvtoNO0vl9S4HhhG7Hzdmfx3tAgTK6TL99oLaQZ/Pk/7bv9RVCSG5gtNiltV\n8aXFR08kcfDNHp/u4Up5UTwZfcW+6XUOqnEP1BPb9OxI44tNLrolGHlX0Gflv18ZeM+JsR3IxCFB\nffteyKdlsbsquQGK/IsdC9VYKadmEdSaUOodAGcWEkTtoogIlZx51PHXIRe6jsmHc77CbFVo1iOI\nLEyDM8BHQ3dBFmwiMdwx40ZCVFnZI3hz6oP0bl4Xi4CurqI1yp1mMKR4F7M851pgOj35NoElbxfo\nHTWE8zN5kYVVxWi/FfQJ2llIW9i94UMdrjXO31/WNLw+fHEywZZ8cWwlh8PqwtrVUcG0rFLnbFUo\n39hau6MDH9eF0Rx3ENpLUT6taa2hlLIkDDMTJrgydZPweKGv/N5JWFEQSetd04bjRUNb5EYONLw1\nXKDxXVXi/f4CrXKkYznzmtHREfSU18VgxsXkh2ff2I1WFjn87Afo1wLVX+13qIc/UhUhFqgu+LcS\nBO274BdvsDTyRplJ0DiAAxd+bhIxuzc08UX3DhxzpYpCfzUYONRowoMf74Mijsc5lyYrzkpt7hQf\n2+gwJ55pbaCmOOOpp8auGMhCzMIypgCNxlZ99IYMBg78fN/MqxQmTPor/9mKqsUuc7AIMls+Pj7I\n8NiMt8NV8IthAK3zJr7nIm5qkrgXOa8mX3HAsO6Qgo6Hd+8Q0wIcJLtGZseIBwBaQGerDMCMQbLH\nwsB4mBQARJIuCG4eq1L6O/n2CJkZmZOJw8mmYJ+k6ZQolqjS5cxDqgsVis3KkOZhpIjmJu8dxcSc\ncTXiphqsTQtujp2PxcAO2YTpvUK4ezj9PtKIu2/b6hD4a9nFHWUlH1EuXrreeA3eewEVbLs3tQCt\n0a0upQA9A3g/N6kEXLXPLMEepok5IwhjFVANn69PrK+FWEml7kWcGuBlX8bg8d7FWU623RbOzmYF\n1gysm1S6vReyFnY0pG2EbbyyCaZr6O7IwWdqxT8nUzL+FazK18YE49fmVjDI4IH4YwwUCrEnAEcb\ng6rSWbAMVAsmY9XRTrDrhuwyLI10xeIQuLnh4zXw43Ia3s3ADmF0vXG+loRPHbzYai9cbuhXx/U5\nkMbCZ++NWJMDZgcMA9Y73Bx9EDNv7tjvjQxDVcNOwxK7aowBMxZokYlt6qiMhRMzOy94HJl9knbM\nCTIN6QRumx3VK3UdFYWqzVkIvmHNVOktc2IWLDtFV/w3glYuBQdUgPFj2jBsYUiy2StYBSYtK22Q\nphZWuGMjpuhDcVgNKYoRF8ipPAnaQMOvxHg1niMuvwvTobpLJAImdVsRFmgfRiWfES/OKOw3K4/q\nxOvnnuSfRtLjJINw+zEgMnLFW2uS6gL9Ytv7/lqo+oXRG642kLkx2sB1veBeWHti3pMHajcAjTc1\nikNNw8PXbfIT9+Jh24d/mwX1QHHXEPtNkA6mw6s7xUWmqtGbPxvGZMdbpgGyBjYfl8kHnVdnbt7M\n7oRzGiOQWFFb4dXlEGf8/mvSobKPwcofVJkeEU7mJqui6b0oczFV8c8ZyKmM1SClLnfivekJHgDq\n7xvDHXnXI6CyqYFvhwZpiRMkYCA2amfwqDWBYoc2c7GldmLZkclEKVM3BME7dhi/hE9YiRVsO3px\nQX3dC3HfeLcF846Ew9sFbwETTBM78I7CboXeT4eYWFj0yZHPt0MHTBpiL8w78f4q3O+AD8PnXx2v\nzxd2TNTmIN27QkYkJ1czBYCd0ut6wbAxY2LmRgTX+KyJj1a4+kDrg520Oj4EE43gjrUmFaCRGnQf\nxphmAw14fVywSDo1wp8B9+tqzAiFYaBjL6Md7yS+XRlAli5dwHYBvjE3MH8GPv/6gA/K7B2cX41h\nnCcYL925GRJhAGoluWKiNgInCpBEhJ2EYFOKsTknKcdZiFp470XVrnHfADTPi2SwSiXPqe6kAe8S\nd7z4GaKSlwdC+5Hsu1OwzhnP3Oufvv7IQf7xcprlO82dAOg2UpuhTXMMPzIpW69u6B+NmGarx7/8\ncMjPb67fkSQNDp4+CFxMfRi6ZPSErCT9H8wBPbSo/kmbTQpMG2IVhSsLuG8Am5Fqu4hZY/B7igHJ\n0lmSLFNlewSKZvw5718LdRU+BisFpJgzHooti0eckqVOoemKqkNZEpsDLtOkpo3DqhzNUOJsH24K\ny3qNUETJdFDgk0nqWuSmCtbqOZhYWeig1qwjo6hwdfqOQ91MbXpPWy9cH4IhHBruJFW1GWJvCEdH\n6bdrQNRUmYDdxelwUp7p2XgRr+IsZUZiFY3PIhITDGloZsxDFZ/XwM9fdWxNIQiK78uNFaqbKHgg\nvMKNbqL+pf43XgTHIoWJV1x6IciuJnBNA1NmOO9YkHJTckhmSt5AJppotyuAbYZ+uYqDROSUI+LB\n0MEAc+twH8rW3IA482042mhINGA5RWVlwCDUZ02YdgUMhHt6v/DqgdU77t4x74md+0ksWii00nyh\n8oEBUrz2nUzv2b8N2x2GMlbS3iipBwiDPZx6cypog5d57GKnuYH33ACCyl4QaricQdoVLHzuubHC\nMD4uXD+oHudFnEplIvFhzk0CASgwu1rHGCwA6IMENL+IrWsgWvo+MxNYm95Qu7CSJA0D2VgomoHt\nCAQK1jtpjWCxsLa87ovZrEtssGqFqwOj0ULDyhHFC4AumP98pv6Rg/z1MmRzbKd4JCGF0+nxE4/c\nG8DjCGZuuP5q8qJm3JIfaCR5PHETBZ6QQ1XdxyrTXHLXxjSZME6Mhxs+WsPIBi8Gto6Xob2IzaUV\n1V8/E+tnIb+CvNm3nBIbGCh9NN4O1RfCpGl/eP5fBzmr11jEXgOU8tcqLExE3bBWsp11UhJLsVAK\n281IfHwOjNGQc1FK3BmYQK7v1kFZD9Sx9ybckAZs0+AOav8af8574t4LAeZ9Hj0WxQti2KRwSivY\nppy/NcdcIazeEOVYy2BWGEUlYTYeRplMgtpbXhNmGLIRwG+YoelZkmUgtowA5TZ40YbzYLk1NN4a\nFO2gFHuAlELnAnn8vQWiwgwYLlvkAmBkvDgamg20xkqQ/OiDIcdjJevnphF3LDKf97+TeDsW0Kcj\nJzUH0Q5rkBhyOTFngINxi2K1vyDvmkI5h19zTSBlA2aGqznQqZB8vT7RW6Hq5rrtLCYUvsYXnaz0\nyrlWrXGPRPBiaY18bIMgqL3x998/8TXfCN9AJ8VxB2PLzucOnuYcDBehNl5k8r5PagC8sRuo3M+F\n182fYGVsYO3AEp2U9rtJ50l93m6JBsM1HJ+vjq/3xAwK8369gdcC/vPjP/jeciOWnFKrMPfi0FEX\nSDfg89oodKTLvM8cPj7g5tilYWmGqLb0CTIjfJsly49N9hMU9h3BwAjuC1be4YG5NkpD9bWBdRfm\nBOxFG4wGw0vw3i7aMgc4oP6nrz+j7KTeVe2cKmbjQXdCWV9XQ2wNpryeqrmrWmsgdWxc8ihJYJ5U\nluQLMjD411wJ4+DB1zqrG/fEFsbc0dHL4KtwvTh9MxOs04zMmlZoS4ORVbABDQHzwcBg/LX0GHa0\noRcKTsUNPAj6aMiezyFyNcd1sQXvrQmL3BQJuBg1eQYohtfrhdE65n3jdXVco8FGZzVU5G1kbuKj\nkeQ716FmSjGYrJZbGQUrBcS9gW14z8AMIMrRgj+7dcA8cYGVdWQ+MWzQ5H8HKWMICVfSYZI8Y9JT\nJRttSkmPJG+Znh35wERlh7dIN8cOQ0fjnEKVOF87DZxiFbb8Owy03N20FaS4TFmL1Rt6tcdbngWA\n4LmjnXtqAEaNjT6QuZSwzl8lIAjtpK8nGUpujX7U0OAl8mnBeNZJeKQ/qF8N5dzkcy4ACxkdho1K\nOjPuJU6/UQS3k/RKQkU8BVcEch97Wrblp3uLOwnRzcQYtCV49SYyACvCguiwnwOVrKa/1hujcQb0\n+fFC2UKbhY3BfA5oDqQ1rMwXCOJl0VLszgjhsJg6h3UudlUuWwpvHEzvpFWusQ6T1QQ4I2kHngEA\nXjjuTkOwZYhNzrzBMAy6DDd2LCQW5trkkqmQYrYmrZnrtLBn2AjgXhuVhXtuvO+JAi/41zVIPojA\nnuzKYxawaMnQBrvWDhqbVRCCywKyUzDXnHRSBLUlroAY38wdsCJK3s3oNhksHP7p648c5D9/FgMg\nGgeb3vQAD85WSb6sBlZjdB5MRbMfdEm8nSnurkOygfLYipLommwTE4d2tM4H4TKVMrY/LlJ/P63R\ni0MjzjTa98IED2+/DLYg+hCwZXJmnfS2Pvj3MXQBOKSSlAgBwPhoqKL0O0fh8oHLO95fNOq5xkDE\nDYjbfGKnGEZRpFd24IWGqxsupddvSH05JyDlWVQxp1Hzg3U46gcnhyCASFhjKz4jH1/yhMmki9bD\n2egpgSCvvZkj9uIhvWjbizBKvR2oBV7a4zvlPDo/j8EfhlGV3OM0uS9Vgw5+wNHPEDJEfYTazUD9\nlsBDrwu26CWYozYPf8vAe1LVaX7UdGQTra0B7MF8UXz+Hk9nU0ndAYo8bxqq8RkRrmHFew6qWIKf\npC5eS+whkzFScci3iwIdEGGBZyijsh66Zco61lC0czAxJ5T0lEl72Zg3UIfSKnZJPzbNhj6Y9I5k\n8Em/BqEzOwIbLvhIQg/IQO4NuPxdYLRVBl8MIZkDvellHSz3VNudVXuTP4mDa5GKW8KeO7ZYGUc8\nVUpo4sTLHRjDlfoFePLySTszLgrymm4Ti0R8rccjJRJ0KBSkSqotbaNdIqp7B78f6KX/XuTqrx0c\nnAYLrc/xAqC0r70x70TchbbpHIrtcHVZdDwMrJ0IGKxTR9KGUx8SLFJbFloBIw09qDMA6AG1FeL+\nf/v6Iwf5f/93QW+VQcYX/UEKDitVlMLLj5rNIjBzY30FxieTOSi2Ea6aZDR0s4emx6Em4YvemZCd\nSU5tIh4BEZsBUpe8cSPtYJvZeufmjQTApI7+In5nF1uhPY7jnRGOGTzMx4uYbJNYpY2Lg9zcfIlW\nqCH2DQYsO94/p6hp9ltFg8eDvVUBCA18KP0fzdCd0Ek6hVZzLioNm2GHYUrZ2K+GCHpfuHjgVcCq\noveNF3yU2jgelpA16YlRY9IMQLVcg8MxJ/23913ICdhKGpI5D2dzYHfCVGG00rWr6TAXVGPEJeuU\nxQBpaoXHn5zhRkYvm01cslCADvJ9Q7g/ud+7EhWk4pkZNgpfcx0CExzMywTIbvEzAC9QnGZbF8bm\ngK0KCAZMmJgvR+eeRQWkJ+DbEF9kyLTBAereiVpab4JVdmx5q/PgQvFCqFPQhz0JPMfIyYUJN+9k\nbyxBT2QDYL4X9iTk1z6Aj1fD52dDv/xhMpWpE22Ov/7jE7sScy/s2LrgAIQuzCjUHY/BU8legNAg\ncfsqSts5jBNvTHMINyoYOyh7NwDNG1p3TExY8LnuWGSoNeZ0Ero60A/nB1fyEmpmDFVvnLfQorYR\nqoyAlwMb2F8T44NZpRuOqoCa/m/c/gLcm/bNVuHmiDK87y1aqUJgdtLz5yL8W5shEfPWu011gbsY\nCNF46b1XSF9oSE+8Pkjt3RVkJ0VhgLDTKObPdv3ekDcPiijEP339kYPca+D+uTHvDTjwehXyozBG\nw+eroXnh630DcEmsmxKpSVfDoSvt9ag8I5KOdsLVTaHHcH8qLFTiGhSVrChkdQUhB1rxEPHV8PX3\nxl5sg+wGcCUwEjbYHfhoGH+BXNUIvF60cHU39MbFwQ3Doc+rD/zHxyeqARuJKcvbQ1wm1kyu9F6J\n/9lfbONqMZHegPk1gS6Tp9bENad9QQNbyHnfSu5JDc0knlHDk0XTpRC9L3HsdgmZdFEVXbzxSieG\n6OJfJiQcIQTSnJtpeeC+WX3mBmoasIDaFFfU5gWBSvgHyKflf4V1A7zh+qBfR9gbb0nPDZA9UcG2\nosfO0HeX0tANaYRwchfmrwkDNzuHyflYyXp3WOO7x9ImFqW1dzxdGoT2VTHRKOp7wEnVvAQlgku2\nhDMmq93ciTYd629g3UbfbBkgMSWJj5NdhewhlD0K4Gi6yFHPUyGTEniGtK30/pvj6sc+thFLnW9a\nQUShV3uolP58X9b1+hF4Ye2tVKMELGG+4ZonUUIXnAUlB8pHNene2E3swLyXPHZoE60zXRasJ/6w\n5CR6oV8DZ1COYg5BNc2kFnHxcmegsh8hFIsrN87O2O1wUB+rMN+J+5348eNCbwbsRY+UDozeMWVz\n7aMhS6pJ8yfDY2fSImEX7hmY8zdqoIoXoDDfNy/Nmbh/UYD56gNpAAAgAElEQVTVu6EbQyoiaFUA\nZ5DEXLz4EoQQz3ptvsm+qUI3R8/CKEo3LKFuIJ9B/0Mb/pevP4ORo8EyUYuV1Xwn6gvAR+HH/xpo\nLwCxKO7geB9T7meRgDu9GSiBh25XbsTjYZFiNlQBfchlr76xtscwK51yaw2/bBXWLFrnSiRjwQOn\nknxO7gbixt4NvZdabIPLbzdR0igkLDouEOeqYoBtRDzuaUijfcCcmDcHhbEC3vPBCleRjtmS6e3u\nHLIgCpF6VhH0LhH2e6zYM4/o4FwaEvcYHjZMGZk8rosPAbIHnEskxbQ41fs2MiW2k57I10TfdCxW\npBZkfJy+vxbbTGY/GvLmoVfNULQm1xAWD+WPwyR2A4mgcMXweKdwtsZBIqEVHbqi/0XK00diEs35\nGHw86TPTAqhhwHCKnEqHrdXjLW/s18nsMXv+Tsgs9YwM904OfheAZfBs8CIvPzP1eYzFB/KxPwX0\ns7LBBJJhD96NQ8ogpBJFDDYbrQ2anPz64J+DpKCrdeLPtAIQfKVBX1ao2zTkAMwm5iJ+DOPP2roB\nJs8X+QYR3qH2YSeYkpTqAjfjzkJ2si7TK0DcfAPnG9qnB0Mn+4AS9NTA2i1hglBalYypBn/topTf\noPVfvAhWlKATHsBjBLvaI8zx080AcEcfjMprmtelH34EP2vo/0Sr54wnRNkEL1XC//mwuQJGk2vn\nvHfnOf0B9Ea/9KjvkGwzWleU9ucRByXXpTXX3iTkZ3aokf/n1x85yEsPtjfeonEnahY8Evvi9Nqr\nYUdgJR/o3sqvS2jYSNpPaMAYSYpcaxQtpHxASpiWu9OuUv7ELKZN/E5VUrKfjcWNzsqRUn+2/qSR\nJRIw2m86C2RY2CMq0iQMOwHfBHIwElEbi7GyNMFJLgrLgT0L98+FJcP/DEMvYBon4mGF2hu2Ex8m\n/zuXICYlYdcFtiN125Mzn8ISDYbHr11SYEhElSDv3F0pOOJcN2PIL3Y9P9sJuQ0/tD226XtBsArQ\nUi6Oz9CSi3rfPLj5+TWM24k9EmZqUQGxKoyHME9kelEYsVXBqkI6AibBD6AK82SC8krVR+B7AyBJ\nPSR8AhrI01zvjQy+0yMVzsHv+8Abh9+rz+DuoppxeBzvjbGBHgVm6sh863jUgI8jQOjvsLVMe75k\n0WvFQzn2YvenCp4wHmlyjmPHzJMo89tat5KzFcfZK2QLrQjcM9C7Y19g/qw41d4c/WXPc1pL1gli\ndkSAKUNHt4EC+sG0tcFNw09ovWjX812LdrwTZeSYo1H5WMnuxpB4jcELQBdQ7+y2V9V31+0dtYMc\nbDqVPUK8ey+kschK4/7ggY7HfRC/L01dLuV4hu60P1ZHD64V9++LsUB42LqKNitsj/9fhW8azro1\n+s2XDnAJxzjU52WDA11pPx69S3kx++B7WPd/fP0ZiX7dQHe0H53e328lh0Tgv/7rF77ejvHJF+dI\n+h10+kf35ugfifZi0klMKCjYMTPxuhyvD5lawRDC8dwIa+xQaHDS5QzaCKnWMRercQNEDSz0yzHc\nYL1k7seKzPxAI8TlqAyVEjINewIt2K5NTLxzY12AfQ5KzndgL+DVOiWHO5CT1LXoxH9XGNomjocG\n2E68f91AcFBq6jCqOfpg10B1pWFXqiUHHebONP9yBWoQd8+sR7jAgFdgNEfMxPq6EVM2wlIURqrS\nFSXRQTbBnoVaQC+ju2N1xB2IueFu+HwNOMitzfcb46+O5oZ3JH92o7IWRmXtenPQ2QD0I9RRlJxb\ngZa3/D20CnasvnXhx1P20RaB8FoIFqoqzU9cg1yKYFz0Ru4gcoBvxJO8zgoXj2HYUckyhQlAD2Ak\n9ppcm0FecQ0eDFESJpXD0SmWEdPKrZ4qPyY7jjixgf7dTZVUolF8Bs0T95rf7pnqKHpjduR+B+av\nwLjUWTqQG7h3Yr0nbsFXzYHXxYMfO/FOxidGFCw06I7C+4vWrv5yOAnsFCWxKYXbMYAqQBcer1Md\nsmtRCo/EfW+8PoDXGIhc4K9kFUr/nRTttEBPIlbZGcC+NweKGwiQCdatcFVg7Y1Iw8sc70y0IC3Z\nkBK4sZNzcfdnbuwK7AoqibM0dJeY8Bj54KABziQuK4xKwBq8NVomh+G+dWi7qZhKXBfnAt4L09a3\nMPE3qK13Q3VDGPC1Fxa4z0q3fP47VeSrbTE4mjIpAdtq5wC2Sf/DVitboc7EvQHXh+F60X8k0oBw\nZDC3sDrphr2F3OkoiY+9sIWFSm+DLZjk3NAQ1/zIzd3oH+IojM4q34em9aedTw5Az8ZnlabWW+0/\nSjJqBfpWo4/IXsCeQLwB9MT+SmLz9xENmARSvDy622MoZUbcOVIVS5MSMjT8M1dLng/+fqoKqLu4\nOtWja00u+k2eciaIj9+Jmg5shy1WjYUDDQAoE5+fFbKF0Tt9ld7hpt/KpHjDBxNwxtXRzDCT0Wxm\nFIUcnxkO6Qp7kv1iBdBpVkM0mUhlO/vqdA7HP4OCsdR7Ou/iaQxwUpNkDdCZmuMFirA2i4OspCNm\nMvi66Z9jqQoVrNMaIRmDBmGV6APAp4aS2zB6IU5leIRSlahsOjS4LwoKEa5veigqYVqPaCY4jMPN\nTB12YRiuX2MFf9HJcB8FpRgipUuDkhpVoEbIxEieZ2TcomJ37kQ4HSAd7FhRHJh7d9jFqrZ0kbdX\nxzEISUEKGYWVhhccfbB7SSkYM3QxqXz1ZBIXX1PR/EsD9q3OdIU9JmextvxNDNb9gXO8N8xNAz3j\nYsTVqF+pcM64hiMWxXZZHDrvCmWICn6zA/J/l8FFEAjpVF+ObihnKIo5mVC0nSBrzZve6SIT76N1\nXB+O/5mFaIl2NbmSckaGbkg3CcW4pULwCrNb/40w8nC2T4KruOEaudcNhpyF939vpBUwAP8UVtTZ\nfTRhiRFQ6LCxig5mf67OjchvDMx7ceKciXFxR6cwSwBIUc68FaXlIuX3Rl+Wa9DEp42GSprvVInJ\ncibzhy9qqRaca/oZMKUk1EGvmfkuxNuA6bhnYf7c+Pp7oaaqTknHzYTr5rfgZnSIEkYckFjaSd/h\nH2gSCx272MOIOP+uj4aP14XYU/JqtvPHYCq/Ci0MIw/PlpBPrHhUoBRESHD1DM+M+YiTlXjOxOdL\n8FcwYIBDWsN5Ra2ZEpZIX5x3Yt3k659DyLrwaM0Vaqj1VLycG9Ol+uhIJ87SqCPU4Vewxk7FgMfe\nlp7bDF7Y5yAXTt8E3ZRRvJKir7nwe5jBLtLiCom9trxEeGj1D8cIHqYbgoFwKJP2yPYzSavLEBwo\n2bgJzvPGIuL4bh/MNqUazEj5h5CeaWJ1NAD7TUfJPjpWBN5rkwbnrvfIPwPB/ZQVsNBBHoUaDh/g\nBSr8/NWoEi03bAR28tAZo5OEEMkUJc2JGCHosG4YI/nnn8EtGx92F80eKI7OoqUwFQIjkYn3KpRp\nDrUTLSUkGt9xa96ZPpUospUqcVmjfXH4IxLkfSzb7KCzYaqDQ1LHC9eZw9NWFx73kHeXl0rxcuFA\n6hH6XYMfPQXBjQ68uuHyjtsbloFiOySQpOvyMqKojaibPZdi/d+RlT/FWlG1IpHAEVMkCte40N0x\nf7HizSjEO7+d6ZI3uXe2PocmCEhoEXiSOapYQefB65weLpTc2lGXs7KXiMgNaC9R0xrtQ+l+RsqU\nlzDhkqdC1nOIsVVKmDXFTjlaAghgBnMBaxbm18SehVYNAx3rLuT74KIUyTx+6M4qlIPHJiN6o1Vs\nfVO8YOefeWMf+10ubA7+OEOki15k4O//+YWvvyfmZESdg+ybXEbr0aL/DVoK4ib10F2VaEh12Qq9\nFeO2LgduhWNnMTpLh7EP4D3fhL0sYUsVfXMJn9h5bV1gFJkQAuGqFmtJroYJVqQehdclv+7PTXZg\nAq+ufEXNOUyUv1MCVzJUwZyntsGUlch1youDn0ERpuTyqhovMOmpEhpkl0SyxFY/Ph0vo63sPIZs\nxflHmiOTmC93egOZG4nahPPa4Jzm+tFhDUy5efYB/ywOyotD504jrNg0T/NqsM1gi25M0rh3SX4u\nTJ7grypbwNIwiXBgk0cEVKAX8PnZ0C7KofqlWcNM1GK6UXZ6aYewbnf+Ad6ob+DnjWcvulhAEYW1\nDR+fLxg6YZMZeP9iaMslFWgE8L6pAzFdyLlJ4fMAllMv8vHjgrdN7ndsvK6Oj9fA1S60lrgj8Ovn\nxJQ4kCwkhsowGpE2EylhErF6Dp49ae53XYNdd6WsZ1mRuhHTJ8WTMysH8NEdjsCqpDy/8edIp+FR\na6UgZ/76E7fNAakYaIKd/unrz4QvL966Zcdvg5tgB7EjS0e1kMf1UcSRvktnPMZ3maTrBy89FQkS\nj291FqsoGAU0JwRYMxqYN5gZliKcYRT99MYMTdcLQiXWpHFOFE38eQCxIozk4O+6WAWaqjhLQgVf\ns76r5iBOWmWYuzB/bewpMUjnc6kkDNTdcA0m1RsoTCi3w5JTRSVGjexGKU5S1SFYIlKCDSODI6OQ\nd2B+yYjI8FQftIhlx7J94/XR0Do7grFcUFLSu/rFmcTny8l/XQ58dfzcCzMWMenyxzyMroTcQIcR\n4A58fg4YnC12C+Dnxp2kp/bLGCgSrMp2FKEisZQI73Cw1N3xcdGJ4/KOXIHaW1ooDSjDefEZSNeU\nk2MVPUnIUCqYqGqjaU1pHeJ5PqzkuoOHi/P99eFAY3fYnA6YboUOMXuMWO/aVBG3VOssEyt0MF1+\nOALJKDMHKbi6RCBY7TCoyIkuoAFf9wZmwVdDvRN2qfBpJaYV90VrQNcB0gB4Ejs/kAurGoqE0AH/\nYAi1aS5Cd9JE3iIBODnax0endf1e50AaMLQueq4xa+AJECkDqnGPy1J2TuB+U2uBYIc2w9SdUH/B\n4AxCGLHp63JloDdaza7ggDI3sL6YTkTDKmfA9k4RGHSBa55ybITsKalNXuMK3zjzFTSENdTB38Ng\nTrYLkTGdBzQTElVz688yFRl4OttzUif4THdKJKlO7FTn//r1Zw7y2WTCxI2S58OCklgGFSSg9q+k\nEqsqxAZK/iY+gDb4EI7Ju4OVG4daAhT1va3AtBSIeeImVWlDHH8QCIPspCi5+cPfPTguHGi9E89L\n/p5arDR6Z4iD6fsUoIAEWo2GloeZ80XNzfxPqycwo3S59eF4vYxc8u5YoHhggxuvgS8/ivjznDRY\nglq2cbk+w7PjNSHXswwp4gKP98WZ4OdxE/NE/3D4JSXidsRRmbnh+nS8Pjs+LsdIoK0G9wvv/zcR\nMeWLQjHFFEXNnAIRyMzLDHh9DjItdiGNfutbXhR98MLIFajHhkEUwGailHEg2BoIRbhh2ABWQ05D\nxeb6SMMFoJxV7FuxY8dbrXVu1AJpp80Y2LujpGxlO42gzXIhkEYvcHOTORWhqF1kJg1zcYDxzGTI\nRAq8LnYvc6YuGw5TXx8XrDveuWGdHvSWOhAKOLeuiEe8WIqf8b436i6M0M+QpQ4t0XrSZAr2mFaN\n5tQiJFk3qTXd5N9ig8yM9tHQXhyG5qRYp6IAsZWiCFMQAy+MF6XqrRtq8iCjRwqNrro1rA2EBXHp\nXWTErIJ5QyzDmoS44i7kNvj1EluT8vimC6dgCNEqkYbxofnHIIx6iw0WlohmqO6EZlWwNCnESGeW\naKnEBCoARc8jV+HGPX5ID/p9rANZJAiyOWcwBVQ8iGcKnlR3eb4nh9X8NVWFuQk5qXZ4TPf+6euP\nHOQZDhQHcEKWngr9UgRWM8esxC4A4uw62No8UU9haEtZfePigwjSrGak0rA7U2os0Rq5z/QtZ3ah\nNR5cS3goikq5VHCxN6dnuaR23YFqDWMMXK3Dq7Bi03IgKe89FCV3KdQKFBZYcGNcHVsUrqhA+6v0\nUh3XS0rSDHx+XuijgB5IJ3S0UcAizjycNM1cxAvvL8MKdh9tGa4xMBqw91TbxovNSq6Rgm3MIOm2\nbv2kzW43hhxcL+akshpIcawlRvkgHrzmxF6GHoUraWwGc3mz0wBp/k1cYLw0oHRaKuwkq8U7N7V/\nJEYAIxXE0IHogfmWGreBu7sXrIuj7InyjX5BAhvg8+r4+OuCZeLv//pvXGa4ihDPcsPbEm4Ldwaz\nYZ08cnigD+C6XF7s1BmUKj9zXsK2Cn4VXTJHEy2Qh3bGoZfRzoBVFWmgNCEzrLcMoABGtTnwGo6P\n68KPv34A3vDzvvHr/sK9EqMlOthhladmMMZhaIPshNXZOfF/bzxQ+yc7hKvLRtpp8WpeeI3GuYMo\npofr3vpAvwa8G3Zt9H72x8Z6b8QErRjE7iCdFxrAEpY4FNSHKw0QwxmEH4ZYLXsHVk6s27BWw+vV\n4Nlgmzh8bKC1gf/9n/8J+EbEjd2XuEyMy3CXyMs5hHUJif7+eSNm4KYuHz5Y8jVx2FtnsHQVB/Sl\ngT31AoBevxTNBWRgo9B6KpMUCrsQvVT2CFNVlRmR0iXCQwSUlVAPrx16hlWcVTCrtKsIol2Gu8Fb\n+8cz9c/wyOMAfaVhDlvSdjkxad1i7QyxxjncODCsqdizKWJ+M9gLXCAtgZbPMGxnfkvknXgnBFmY\nvDsjE6/OqiuDsvfW+GBXHCslMR2KOGpGYhdb9kLBRfjfez+t996bdEBLepqDbbN1U9oQee+vvzio\nooiHmHv3jteLLVtUUZygS89PGIE5opzG++/E/aYowsR3rm20eF1aaOoQTgXRuqFdiV50kHualzN4\ncvlVi9ZYB/s7v84lLkp6gtjxWlnELTmJ4twgyhTjp8/YAx/u9KUAfT0qzpYsoCeuH/ZUI0DCX8Ss\n0UxpMeRTM7aNKj8yTYiDZCymLDnY5hcpfbwQgSU8XkUU38kZ3DXDkAYlwar6sYIVYemqjojF4fQQ\nZx7FQXgRP91SZ7qZ2h5Cdz4MQ7Q/Plce5L07Xp8N48VQDXsHYZnG4Tu5j+AcRV4yh5vMmYJpAKyh\nuRWtMAT9kMtJEVMZ1yBDH+RIeDXY0mU+uBfMWZWyAldWrfjwDMeWhD0U09cIObholgOdPjlWqKWC\nJhMYEuJp7mAGQFj9qw/si1muBcAu4Lo6Xh+6/FdDxKK98Jl7mLzMx6AZVjNdrILecNwyOUC8ri7m\nhNYXjMUXOD9guM1Zs4eVBMJaCFyj0MtJw02gKhlaohbP4E849i5SFgmD8R269mo5rWrrkC+Se6Rd\nvPpKEJ450H5j0Pz+9WcO8lOdaCH1iyKE8aGThnlWxJi7o1+OPdlSu4HmWJMUtbjlSz1Tdp2J6oH+\nHwoOOHxQJ8Nh7QQapGI0fSC2egjjtFip5wXmHTbYoxo18LPFkv2uC49uFCHHb0qVOhBLL4wfQBUX\nUTlbXG4iw/UXoYBKTtiHO65O9SY9p1Xh1LfrIxcEuKm+CvursCcrAqOFCdbNxzkXvV+s86OdRPbW\nCtdHweF4jf6oYUkGZitclggdUJniTT9Xmzj8m5sbQbVhTjJ2Mc6wEhrGOtV/yS7DLscYBjiN+g2l\nQ59Vd//UwAd8Dk3gLYdRgkNkgEYONnF7j3OQLsSGSl5i4RsAWmEaMI3KVBQv6FHO6moU2iCWfCaC\np2Ppgz9DM77z+y1aaYGH5IEWNHgucE01KU8CxLIZwouHuXMw1MNI2UHoYrPsfczdTKZTzRqsd+aW\n7v3g5uxGdJEbRJflwUR2k/Jd5aboEJ9acJ+7IbdCMYyFEkRhXZtzJM6NlIjjLtodJA6zpyou/iod\n5g1unG2gaC0BDdQZ4sF11d3Qe8fn6+PxGDmX+Xg1tCFiRPFQOwk/pvBwsrr8nLfCNnghH2jnCIGu\n0QmxaUbH+Vl7qJGE9/K5uPdOkRGgEp3Hh1+Okmp3ThqRoSQEk2Nhnc8BQE3z874C35vpRDXmuZid\nAr0laKr1f6OD3LSQrfHWuT6JtfYXzeHjLsQ03aj09P2dhTE+SOivTORXYt/0Bu+fBpeR1Si2Tpw+\nJ+bNDRsz8DEAfxGXuq5OL+8KmJSgbYjuFPRMYJFq6MYpUSUVciW8vIPWpZBUHS4RgwPeOSy7PjvM\n6PXwnosdgYOUysFLralyu5oMcxb9yMcwxARezTHMUeX0gXgn4jbYBLB4EUEMi3ck2hXomxj9kBSd\nQpHOSgVJ+pwpekojm110atv5XUkbp1hoRre81hu9xIN0TCSeRZ7g5eaXIWc8HhHfSlJW8F9fC8tA\nERIAS4NffMfNhRXa4efjkfvbbxvT3dCNgq2uyxfFQV4zYMdUknnQOrcD9qmA3iRDyNPw4R3/a3wC\n3bAs8MYbyZx5dlQl2lykePoNDazq5tyY90SPpk4gpUnohI8UepGhRJlVaDBUJZp3cqA3XS53AL/e\nE/nrLZHW/k0dyEGzGU3gvDuQgZlJqwkQCx9XIyU3GIE43GDpuKzTaXFziEzlMi+boxrMCFo0F8vj\nigWAhnSrePhfoymCsJAraQltSjASY6wNDjLd+HPPd+HH58CPHxdgxOthIW8gvt+GhjYaun/gP378\nwNwbfd2yhOacCD65V/vG9Vn463MwTedLNsjFHFcevrRwPp7x5LTfGNfA6+OSKVUgY6F1ybTLGfSQ\nfN/HBbNAMkYvdjt7EmJBAR+i/x45ZhX36LGfRUAXpERRUVqrMufbG63owFoPJMeBMpriC6c+g57v\nv379mWCJH/7YsHrn3+niRqOZnII4qHJgJdiFkT9TqdIQxghwa2ini4/BuaZqsJWKZPKEZ2kdO4+u\nAoegw4nRxtJAUzibFausNU8WnwvTBpBF7jMmncokAoIJr+ukOZJySUMcNEMn5YL+DCVRkbN9HN2l\nWuS0JMNgyYWw47zYxH4n9huwbXB5b1dws1UU5t9Ut9mwR+iTWRjBlrgBCnhI3FEa/BJacBfLJXih\ntWRldXRQpQEuec9Gat0q1OKAbQejqyCIKgG29CwQNZxid+NJMYhnocKkQFXncOCBqm+/EwgiErXr\n8+rowoV26CIwCjY4MyH8hg5UN9Rw5E5YAB9w9Gq4imKW93tj+4Z/aiHpfWewggwEVtBOYIwkHhu0\nJLAQoycN1gcygHul5Nz6yyWzD9PCKuHHsks2PJ48ZSlNAS8uoSioZBU+HM9Bc0JHsg4tk743exe9\nbRZZJeWFLFduqIoptfgoumJaku7qpssh6H++K5R1GoQ0pBp2B/qL7Ko9lVtqJDI0LwznmiiwGzu2\nwWXsfq9OHj22o5IiwSp2IdfLYb1on9voxR5BwV/Jb997x+gNJRgkk3BpJvTgCHcdv5pqhYrEr/+Z\ntACpRLvOsJ8H+FwMqMjCo4hG1sMJdxgvaNAtsh41q0JrvJGk8RoYjf7u9F+yZ2iKkD3FJGWTlgtc\nu02e5bnJdMkQsfifC/I/lNn5w/G4A2kxUowBHsjyOjnCiyh5JBjFFXSMK/kcCHMO6IVxscdM8o4b\nh1t4JM58aHOxNcsi/em6SDK249Ghtgeu9heU63sj9YCWJTxYItie7crHte8YIQEH49WC5ynJIY8O\n37kKzMKk06HrjRXw7ShYzuDnKVvLyc6lZsn8C7CNc8IBVVhvKtDGb1mZBvDQPZhpHc8QMTV05DTZ\nGsDIODC13tyMbBXvucGG2GkhOylwsTKsIDf9JIKbseAhnmmP/LmgCl6YpAnfhQaqR5FpwPc/a+lY\n0B3xY3QyTeK7gqKimdhwGZlPdjlwGdVeTi+UbjT/b+GondhzIxB4dcVHqDyqMuHDiTn5vfMofg3K\ny9RBC6DSOcxe8QzNzPFQLksQilBGAOfCkzGWePTWJNjRv4d+T4ZUnSoeQnBDiO7KgRkRAEvR2OL7\nOUeo1W8sLP34kB9rSkBcdL6MBC/vncxVRZdpWPkD5Y1++N70V++NB9Ll7BAIVW6E8ZmZLnnvDb31\nx8yMGaAbZglvpbmXyUdlcc8KumS6lBZS2UNj3sFn1ps/fj65oKCKwsrAr5sWBNWAEQ5vG+bGvbz4\n19FAmOGZr/ApOSqDlEjbOPShEpWT6tsiYQJ0b30Yby7kIfkzVFLtfWyKcRgtUaJy4nHB9H8uyP/M\nQT4+OlZQYYZ1JO76wE9lCdjmIGsrXKHcMMz5oNVGmabOKPCmBYdthMLUgycXrTc8XM0VrDgjCqsC\n616kIgkPBSSBrvqmNWrlk360H/aGQZWwqqW0b4hhB4dYozd4p2tb1uaLnEFD+p1owuz3PYFgSPNe\nwP1F6lVvjpqGvJkCEzdQSxcYzuFR+qQGyDMCu+ChIRgcHcXnK5pfFaPhrteFyIWoBVTCrWF0HpCr\npg7oYl5jyemuSqZMjp38XqfKXtpMFVTe9SbYa7i8afA9hLPz7rlYDTpA2tkfPATS+SzJXmLlMqph\nWEM3R7WGhNGOdcuYzJuGowYfZCyc9QIw7ahp8pRupAM2hw/nQbgYF9dUAMQdhLBQxEU3S1IeYPtp\niydoRLUXlZV0UTRUB15XQ79YlHg5ZzN23EjYObaDc1dpEMju0o2D7gYO7PbOpxBIPVdCQLx80iio\nqgYNanmozVudV+NheLyMXq8LWRu5N+6YuJrh6h3t9YH98411T6wp/raTr+9eSGHufbA4O0Hn4xpM\nWNopD/nCei/0V8PoDXMvXA5czlBkfiVgiaiFnZPBJVzgjNDTz08XDsfahTkXfd+LDLF1uk53rFlY\n74JtA8AB8bTEe4oFJqU051aEmzj4FpwlmmJJNPjwb47TluYwZcBGwGKjZCh2WHkOFq+uGcC91uP0\n2Zxitt4a8r0FrygbwDkXO5v8FI//+vVHDvJf82Z1fBQ7B1tKVgfY4EBxqw2CbtoslAVmUMHpZ3rg\nQDWQhqV09EgS/d3ocXGwVSfNRDQpcYNhTJkv1sFeYlM0/pk7AQTNeXDnc/Mf+bx1BhY8g6biZjuv\nPHfhXoU1l+rdwDANKzcPWd62/HnI5U3Md2HfQNymCC/6s2QID9czJM0KxILEuecBBnGMoQAGLoQ5\n8zff6SbqGH2P2XxwRpDCpZtdqMYwCxO2m2J38AKWCRFxH1UAACAASURBVEexy9gzkcuFm2vwmLpP\nVV4XQW9RE2k96/ZdxRx++d7Fn0MUvnNQ9t4xytHTGFANBmTccykPsdANgPDS3YGaCY8gr3snPNTI\nDUd5Yhbpo5nkRScCMENvQ/x1hUOkP54X1EAk6aviDadp7QJAuoKptf7UoleU/EvkuqmDgNqGTnsF\npQN5I+PKiv5CZ56e2zQ40/+mf26m9TsoPjpD24L0GnqvBjyDO2N2G9Z70mI6kzCLTMI+2sD/8x8d\n41r49eutror03h2T2LoBQ7hXqwa3LoZVcUgsW4v+QU//NIqi3AujnepUMAWCLoWj8VAT9oygr0kk\naXo/34s6CFOn7iBY2lzKbwnI0mBoTMrScHpOAxqFY6M6PAIZGyjOq1AsEkOsLHrRc99T08K/G/zp\nto6rK1OzNoCUOJD7oYImgA6K12CF3tlRr/dGvoPQykWCQZNGYanbfCwy/+Xrjxzk99ySvRqUqyT6\nTj1+H5X0dab8tZ4LMF0eK2cBA6zs1BUealdMgRPCsM+tifHb4bZ18Dqn+yeuys9FIc5nBvm1hHxA\n+tH5XF5ss3BaVdKOSp8t1NLGLjyhhs4F99C4kodzbOJ7qfZw3kXu6gLiVyHeYC6gLjBTv3cuKGuG\nx8q10/MDXQZfLPWIyf92kHCgtblYc+MkxzBcmRRHK+J9xzArzvMoMEkoiqZbm6598S7UdsFU7Fbo\nWc2uiEQKKj7tYIMJHEOSeqoeCO7hBVQJpKqUAh52xo7ghZFcW0t2uy5MfWdhqpVlR+RoAcrRIzE+\nEhjAxpbTnOA8Ay/lYhjFE8ycZ3B7KjWtEV3wAVIPzciGQfH9jIudiVnCpRo96evlfu5gMkniW5wz\nLlCGDFOARCHhpHOCRlM7SM3lxleB0ShihZU6HSlSpYg0zRIAPotaVD6207WuAqLQz1CzN7xaxw2X\nQArw4Zg7sTIE/XD24tZg0VDrUIAbjhrXGyvnmPTX6U7mWW75F5nBg4knrZHu6ap+S59tZ2Ltwloc\ntF/N6c/iFN3RZkFhJChdhh1r0qU0I7FvQqpXXejLnkOSqJzr/Tl9Y7bOEAnPGCDCPZBOWA3OecS2\nYwqWevZn5sR9l5Vo3kQ95OAzorAWowShGcJDKdXehY6wf/r6Q/RDti8lxsB5sM/GKP49IgknqEqz\nTiN4xpzxBoaYH9zYBXS20FRKCbKZ9WBb9fpuc4/DIdNMCNVEQXhjPXTXnaxoc7M9c2ObGjiLl5vo\nPOSjZixh5m3TgMpTrZE7ftYRC3DBRBbeNw9W2gsYN5LgkVyOvBM1ha9eJhtZKcsaOb8kiCXgTKap\nDsWcsWtJANnEvU/H/BWIWgx2UEfTe0Mb9L2wpIaU4bZ4fMepvuOBHJuWvXkD+S7kl1SncA2+JOGu\nb/rUFuf8fHZ+QA6QoOqFtDg8Q54TGZetcNtijIqzYqNZky7eFMQOHgaORMoNj9Q3w0pHLGC+A+O9\ncH0a+gfpn8QxDdisoFIh4JkpXL/EHqHEHZrfVJIqxjlNyruEgeEfL8ePNhiw7Zt8eXUrG2eIpqp5\nEc/lxV7CxQ3hXMtWYAW7DK0Toiilq/fuyCFOoyeW8fBzc7h3IDdyU5k7nDJ2d8rbYyf6OAWBYa+A\nu2FZ4evvn/DRsYLQSIUD3VE9EYu4+faCFx3YTRz3OQthgT5S86WGFaQVrsV0nOwNmQt7bVbtbqjF\n4W+3BmtNsAIFUzsDlZNJT7IXhhvdGgPIzjmXG0cirfNCGBhYb8KytXVJpeNVHflrojykt3DRbOkt\nBFHfbalZdc4xTsj7YQxF0FTuq6jiJkOMtNWrhRi9LEhc6lFeGnx33sRIknFf1beFbjyCIP/HM/UP\nCYLs+7BWJFiVsGnjLaXOnwtblZclkJNsAxx4AYBIZ9q9bD+si8WijYCC/KPrsZ5pqkhcQ4pC8vDX\nYAOp21R/ShNDgfhtahjFv5oGFFmajJcujyN2EIYOVf0pSMiMCUYFbgblBzx46am0t+VD1yxzVC8O\ne9UZpBXEfuNB32iTCZdfdie/HOBBF5pLuIRR2cXwAcUfS2kxWYXcm3mOO2CNrerWoVrJYWwukLVy\n+ORF7wlewvUNp4C/z05lvtUq6r0biPsO54KmOKKAVZTkWz3e4bVZ/dC1Q5d25MNLTsnoty5mzjNo\nMoVIXkhKNofJRlkc9jOF5aVsD9p5DnIAj0KPixqcw3SupzQ8AqNzCDX5mT/iKIP8dEhnPP7bR5Di\noOXAeDokO4uDcAI6ml0YPoARNGzLRH81ZCWoVxXsZYXIDTh1G7F1QejZh9aFJ+EfMpOAuRK1FzuT\nxXc/v2SdgMSeISdRDldtc+a1C+jbYS8DemHVVndtWOvkAiS6GQqkIEIspCo6O54ZQSbV3AbD69UI\nOwV/r7cjCOLlunch9nr44tuYMkRoy2WxQBqoa54UmxbS3oHxMTBjP8ItNF4EfTTsxrnI6cLoD2A8\nU5bYSLKUhn4OVpoQA42vwlWwEO6RCnxQ14EUdGPqTMDBcKzgXox/I/qh7YNTk3WB0ITej2+GkfPr\nAMgg46ZahDJQvCFr11PNHbya9gj1qA/p+X7YKMHDHaz68fxeHpbMV05dKNx9DyXvWGwmeNgnD9b8\n7YJ8MEc2kc+NWxD+ifOC8W12Zfb8GrIOzoHHXd4aMX/z5NsyzgIOnY4dSpJi+ZJgyUzukGT1jHG+\nh+AKqSsrSz4gugyIb3HR4UBQ9AivzN9sBzYigwsyCIeZ4C6IB2ulP7+p4pYK1KUwtUOh0c9dZ9it\nyqYlPbW9nBdcFJkLyUOQT5Pe0EO2DnlmDnp8K6k9CFWlhBdc8ApfhJ+PkayezxwLhge/zjhMKV2S\nDsq2k7JrIQqa0Zguf/uGvPI7Mu451d11KODxnnFANr31WCub0SbBjdTApi7O4XAfGO2F0S5ULURt\nwOT/kmcuokvUDszAjtCc19EKzkXoRV/wzUsrNxlT9tA5Cz70rgR/BESVMr7P5/eclCwU5fligqQ6\nj7nzMZnr7hqeB1prD1MKUY93SukvN0e2lM+/CAQqTnbG96tLCoMa6Fpoz4hQhVmjrURrzOw8iUkt\nHHB6nlsPNC/Zf6iLhwnuYufK2Z2YR3ag3vreZ7/t69qaAdE9Tn42BU2FnrPmyRpWZeBOqjLplPVc\nEv/69UcO8qZQu9pUZDqUzxffFag105CG9DyGIZP3aqVqe3Fog47n0C+H1JX2DJC6NzTRuc70HFp4\nFmCKducgBQDGq8NGUro8HFb8s3snewGpoOGL+O6eJ5VeCj5V9c1IYXQJOkxDV5ewCcYA5B1bL7WE\n1XNhXL2jk4wF6NIwK7SLBlt2NbIrwCl5fzUcQ2BrrGS9OV6fA4V4hi7zTdVgRtFZDqrSK3/D+h1h\nBWRDrcQ1Gj4+X2ivC//18433/EXPnJ2wzTDgpXZCs1Likpc6LB3aTRfKDlYyUEfz0POKF0qmoaKh\ny6lv5SbUoO9jEhE5gO2EF2CES9jyJmonQxCGP6pCd9oLLxn5jx+DM4GeMOMzOpf7DjKgIoAtGLTA\nQ8JAOGxNdgJ9EDY6+YrNHWM4hpkGfAY00uesN7TmGjqTkeVH3diMGC86sfgMXNakswj01tFap7IT\nF65+4RofeM8Nhmk3zDVxz8nLdkBWHiYRFOc3sMbqPwJl8TzL2IF5ixWVpGdWA+ZNmMIcGIeitxei\nHO3D4CAjhpAFmUq1A7kSPvrDaNpyrwTw6AViB2YBf/116RBkF3S/N96T3cAlP/Y1J7IKbg2vq7Gr\nTw7hW2u4ZPsxxvFnD+RUFyMZbb8cH68Ot47cifneDIsIoG6qgwl7Jl4fRdtoA6IRDXBz/PgxUJoV\nvN8bPhjNGIdWe8gUKRIEIGGWAUvsLuPlHhns0qsUIINH/XsooZFBC5F/J/ph3nkYRrCk8ODh4QYE\nP3BAYia7TnGkXZUMSyogkyrKdpm4pnSze5hMDlKBmoj4ixzO1EVChozDXG4mbsDm5cDhK21XT9mW\nWhAlViPcKDM3yMNb97AmV+PFeIOuLkLTMvSLE/S3vNZpnWEUPhUrut4o87VMXJ8NcSwHRPdyV2Xe\nQJuA6xS5fABdF6T1kpaerZsfQwu1EBE0GfPOysPasRmlmdBf//khywDDTLrWjaYWNIi199ZQzmFp\nOrFA74b+crGG8uEun+pjXA6/nGrKlPzbOzIKdyRiLfz47OhuGMYM10z2OxDfnGhQKoTCxbFmFV0B\nWbDKjlgQG9vc/Hb/u+iimJqIc77Cw7i6Ll2Qq+3C2A/VlM6RNAdrsou1ZvgYgzq0EG6Lw2oCKsmz\njuSA9rQIbEbZYkeRLmreYJGwLHw0esLacX4Uv1kfBpU0VysPdmCHJvlbx8NkpAZL0gYtAqFg74rC\n+13AYnU5Oq0iujq2E6I8BsPTo1jdx7GCvRPXBloSWmptoKKw3hvb5aZtRqjoSPkPaw2gyZcbIgPz\nvgmRIFl5O/f63jcPSg0YnRxgmDlD0NVZXJ2ZALXBHE2Rsa2HoFgylWAFz/+vvS/alSw3joxMkqfq\n9sxYhgQDfpEf/f+fsy+GF9i1gV3JljUz3bfqkMzchwiyescaLBYw0LrAISBoBj23b9U5ZDIzMiJy\non7ParpWBm53Oll+upeNCtzvhe9m8jDPSQX0stYO7RFCKnxHub7zUWGr1/IkGwiu/ojO44KDvPLZ\nr6HmY0764JjtwRa/XN8mkI/gzZTY3XM2ARhoEsyqhpNHniM1jUclOfiFDVCgpi9Lym3LDVgk/khm\npyyhGfRCtpuLlI9TgdopHqLwh78mfGVZ0PgtwSoKCuorSs2FbSqUEKVQ/PASyYMlvK6tgb7r0lFU\nMqIQrzg7k5ljJew0U/4ZBmTJbcK1mpWrpAVs27kKlSfcI1YDsUj+/lxBv6q0U/UiLiK++3RHNWD0\nDoypWYUS4ExexgsO5Fgy/pxV07QWld7yPXeef1nQSni18KdFM5ziopeQOtaAoSANyMmRP7ZEMcCE\n1SrYThh2JAyB5UVO2qsCualvwK6kCimKM+heuOA1kLutvkeC8B0zebKD6sFZjKk5rqtvEwrYfRp8\nTlSxiPpSHq7Cf/VzwKpp6nmUUoHZ1fpxJQ/8/sUNyIl+PjDHiRC0EpiAx8bvV26BgFgfCxLIzVNP\nsbvGc41cM1EUhaPngrT4vV2srDAJk9Yow9Bgc7B3kUlmShY2MWGyJRYctllX8JfQSxCnG5u3x+Ev\nyG+NYhP7xrPAnNL+AqCERFgZHCVYHH6DJPuB2oKwLRJmiik1YTdSd6snbk29My+4NVa5UKXMZBKA\nh6iSVN8mcmMpC/1YlZAXnoOYVIaveJJGmvRKylx4fGuO20HaI8QuO9wlDvorCuQ51w77CksyvhwX\nsjxnIt45liVTjAXdSF58N8YmuwdIvWCsjEM3OEAF51KG0seDroDdA+jchBbGqSxwzOfYKsgQEyYd\n4qOS6F+rPo+UP60VVCtIm6/ssjqsASZfFh4AbLl+kXnXHGo0Fn5mCzVEesfsjjKo+IRM+iOE1RbI\nKAyApTDIr8pWBa8YnRNObNHTlgdNbsvgwwrgbFLO6OQRK8t1P5Cz43x2DNkhlOQmy6DHxROiWjXs\nS9T1edutooCOiKtZWAqASIyTQ59D0Biwqhq+6/6c8HC0smiaiYBtAdW6nOaMDQXAgTTHxIDLLMtQ\nyZSZk1xg6PlY4uwd0PuAVI9nH3vknjlwNH7AGIkzBtkSh6O5y0WSrBLOWkjUPIl1L6y6T0QJvLVK\n325xmznUgUZVpJYm7FYxNE2omiReaVh0fQerhdoccw48vjwwemcAT0JrSD6XZcq1DlqM3HtsaIIO\nDIgueu1Q4mEGhKOHEgA3Tr6pQL0X5jOZrAJES10BHsl9HEhJz5eKGBAczOpDlaNL/TgmJ/1kEg9v\njclAuzXMk/BjK0XqUk13ikA7gOPeeFmPSYec3hFmOO4Hbm8NMwPnc/CcLA0E0y0QhmWJbZl4k6uh\nJamdAZ77U/74i+VWMugd32wz21K9u2QbAfWoqOpjrcZ/e3P1LKTnKACqb0+Z281xOwoez460wNFs\nm5D9Shz/Rs3OYjJYYoa6JpAgoawau4mQq2GT2PaspRnQDNOpQbZiaPeiKThqqq1Mylg+u9gbUwyP\nNFqD4nTkO9A/J2IEvCfsUECcyakqjZ85LLGM5uMJmDILNwVjyHLUKyYoR8Yp/JflBFWJKgeZcXCj\nL5PaYip/YfCZKDNgJ/CcCdwB3A215bYPsBISKHAD1Sr8dgZaPQAkHu/c1GTL8OJZzJVSJmlPvrKE\n0PbWv8fA58+fkWOiPzpu94Pj8vpAs0Q3Klmnr4uKDWFCHmywzVO0PT33BLDUn5FEtyBIZ/taCP4K\nANPiKwxZGLjerxtFH1PUPYoMgDUiL4z00dEnewdOpk5rrjI+duDLBDA1MjBNqlIySOagv0jzAmuF\nFdAWqDAT90rWR3YTTs8DnevZ60OzGp2bYhQJuuT1xdMfeA46Dw4LHBaognVKqTCnPWqcJwDiqmFA\nn8B48mPxaJEvvqCmUEVomZiDcIOt6kMTmW+toTr/u8ejo4jWuuCViSSvWlVkZqI2Q1aDS03pRkhy\npGblCg/m5QtaBIwEMLYMHUZ7VxIRJrnmzHhoretqoprBJmmBRRnqyInHeOIojlqA+x1onw4pgqkk\nB4DWEr03PhdPKmLT4aZgPYMVsNFrpnkF4Ohnx7NPzEi8fXfDcas4xwM+J0oGAi5KJavuMRdEbEDh\nRC/3JPxbhTBAinErSE9l40oQ5f3vRUHewEpeiehfWt/I/dD2h0MquBiDuBWWfkvJZ8gXhdCARCC9\nsIRvZDGY85uYqIGb2y2IoGjEFZDCcBNZuckJ5pE+mMHMxHQILRI4gF3D2xK4kLJUD0IncAYTB133\nvDHo042NWFgxYl/pwj4VLN1CmeCLFeEKhM3p24DJoJ4Lg5BXOMRpVadks0Rc1LspA6PxVMmqr7sk\nx4HEdEFPJV6B1BfSRGbB58/vmM9AzolP9wNvzYB7QauJz8+J9zO3kCYBaLbBettYE0/0BrbxUBCa\nFTau6kwoV67sRoH7lbHzvwsIo120Uc3c5F6RF7XlHhzyf1EfxYxaVaAkDGQhZWyxsX+V/YSqyFpN\nhkj8LkszEAYqKYdt3Rdgm9LJJjypj0xQ2ASNSECCsXVxjZnouVgrgUWMqsALK1YALIVBNsZLoJKr\nkrAXqygnUKxuKl/M1zMOsUyKOSptJ9UIDeG8YjWl4JNkBepOVe6mNqu6MEE1Q176IXICinxU9D1N\nPRuI4dQHN0XmQLnRhTBArrdZAPXF2li9ChPMOm0inEnQUQ23RrXk4yTl0sxRQc1BQomFtA2J3HvU\ntfcmQH+UmXh2GmmFgdYVrWLCUT10EfNMovIS92AiSjtbVvDugMm2OOiCQUZK4/xc2GJ0LWyJ/0wI\nkXsDblRs/4X1bUa9iUKYRFHYMU4FZgM9DqpvSCI7A/bClDIk5mkOVyYW4O1lyZfrUBB30HjHgmKf\n1UUuCihOsdHxqWGegTnkUaKOsVVnQJ9gBiynv/lIvrAgmyQGS6dszAqnSeGVIGSi5mWkI7AoNoJc\ndNhN5eoq+VoxHIUzJOGGs9AbInUpMPCAApKpoDWSVLs0PH5+YnRdACEowenQRziLmwR7liNhgrpw\nPCNH98uXE/09OFTjh8Cnu+O7+4H36cBPJ7oN9aJfQXpl0KW68NPYDehXpa9wZxC2BuLuukjMinob\nOmjrMjfizFTGYtPEzAzjKTqpeibeWDktJ8n1GaYodJFAF2znLXcQX+wYT/Vc1JS0TI6kA3nZaS/o\nAZWQQ5ZAgSv7BSCzsUjg8RzqmycwJgPqBC8AbTPOvxTvvJpc/XgRpE0EJs5O6mCtBZ+OynmUsSAM\niue8GCmHM2HpuN0OnO8D59nJ1e5kmUQkWi2oov+dfaKfvI1MSdEKyCosUY/KxOTsu2nratTlpFUv\n4QR+1TmIKdYquixzt5eHTSaeGMg5kNlRreCZFEZZC9TKxIze4UqOGid4pQEdSkSKqQJf6s8OdDJ9\nLArmPMmKMiMbblBWvvz+q6JHPyfmST/7VcFnsU19fGUq60J1oLi8mdiorF7l0qg9UhyZHDGYkxDN\n7VZw9mV5ka9KZ7M12DzllWa/lpB/m0Bev+OhZZZoi0zAl64DVwo0zip3M4Z0LMEY8ivXHcoLwEwN\nl4lyyHNiNc8SQDBjaKI3nmMiCmA34PZJMwI7Dz8VuWSIrCZMEdXRLQE46kGZ7ZBSzg3wLC84aOFx\nbkB1zNMx5CFyamJ6RDDgVHqQ50zgmSgncKTh77//DX772x/wUw78r8eP+EP/LCc7ZzKuhmMqeNKf\nQ/ayg+XoygCgzNH0P68O+q3ownMaA5ZiiE7skoZJQJwT/X3izz+eQBx4eytAFBoYFXs1uxK7QTYR\n8h/hri+lbm+PfZiNWe6CN+i7UfA3b5/w2x9+wOgDX84Hfn6+q4nHQRIrQPCeNA0SJq4+5sQMsmYS\n4DMV9XM14/ZLhSE1wuuU142p6WS2DL9If1vyAsypIdCEAORAS9/25L6LWH0Z0C1QD30uxlUAPlyX\nF2+nedLfJMKABkSjsOZmhJAMtG0YEzjVeMQYeD8Jy5hxn0VwrxZ9Ca9iVYyUm2YqiPMh8n7k5zv7\nJGOsxkKPYW44WuHgccRmUpjJAwSabmQOm5OK22qwyklc1Qr6cwInE55SSA5oxVGroweHkD97J2yj\nSV+lOdpRtr1sAPDSJPpiM7R5QSkFb9BlpGcykRo3Z8AQHz3VGA9jJbgyhqRjI+AIFHx5D4z3wHwG\nK7DCS9rcMYbheU7BebETL5SJWh1vTg60wWFGOvFIXoSWHK3X7kBNpw9NVV8nDZaJBiYLMVPIhbLd\nQniuLw+OX8bU//ow/f9e7Y59qxWNasqgbHvtz+NmiEKxACfCMJCXNWV+BsZ7qnmislmY3RosjGoa\n+caHkSnfa/koYJU0zWAtYDU0gxFAympSJa9NwBfnvBj8TsYCy2se/g1dqFQ0E70qFxwgbukaswU2\njxiU9PeEbZP5mzX87rsf8Pc//A718QX/3t8RD24MS14c0WObW9VtzJPbDhiyAw5lTcSXxYXWRnFx\nn92dNgKDh3xOYBRmi6RKAO+PidsRqLXiHEBORzM2l6lqg+TsqpQy1HiV7aloganY5ipOZBgKh+Go\njr/7zQ/4x9//HhUF//Hzz/iXP/0R//vPf8KX+aRUXbiwOcU2pQiHbISXIg0o5LbToVDZZODlu4OV\nIACLuriC8mZFaZkv5oSasclAR4EM91iI+vY1PMSyXrCR9mYI6vBhhKGE+faTfwaI6ifILXOhkAvv\n5v70SiVyiLsdK1gLSsolE1aSw0uCP2PB4G1usEa2Vjo52V7oGV4MtH5ojvu9wgf7DajJvkoxtLc1\n/xI4YEBf/R6XR5JtJ9A1qBnFkCURlT44NITTM01egFE1SDs4BSzJydXULABpaGJbHVbRnDRfGrqt\nispQBD0ucdHIYK/CCg4pXHsnqWLO3DM7+5kcKB1k6XCINYdBewn0yQsvQKJCqUI61dQ1M9RS8ExV\nJrn2Knt2nHbJz+KVCYBHYiMrCbRSFLwnz0gujcx/Xt8mI78t/FuzM4WbrbrB4DjeKuLgNPVZwcxZ\nnN0JZkT9OSSzBVY3fJ2+0Ulds2r7cLqR5gRnqTensKuSmOhqrgQbN+aoQalzPjnsYligpaG8keGy\nBiL7cl3MfIlqnKUTOjaUERmYLoqa0ye8Nufg2WWQBEcZxPNupeHteMP9eMP46Z12nGdgFMBIqKZX\nuIkCVxqhqskGI07e9EVVAL2ulTlD4iqo/E91xvM1+KBnYmBgdnXwayF1Tm6Oj0cA6bj5gVsxlFYR\nSPz05cGxYKKTlkONxc6GMifQJEqz3WAlA4Vc2aMW/O5vfsA//sPv8Xff/y3+9PlH/Lf/+d8x/umJ\n/Nxx+kQcTvqlA4fgL9LLErCKBCl8/fGVUjVMgZwlaiZoISyOPDOhV3W4EDCAfilprIAWC6oWw1N+\nShGkTC5agRdXA43vJpCbRbUsDeYAYZOeGM8QVi3rUkE6Bl5+QwwW9ks5fabUAtPFgZSl7Qigyejp\nHBueMeeYQxo28ZLIYhoK4dJFTKT+/NBAYhTa2759V+En3UDREpA53XFrTEgSqBMIl/+6vItiYs+6\ntK+TBAcmncvYpJ2iPEKMrQGg8/OOZ/D8F6D6gkwZKOukAvjNbxrgDMysUtgS4ooxEWOy2nA+v1Ir\nWruRiXVSEDVGYJ6BIjptGDhg2qQ5mAXtYCLEwcqLqCEChpS7JkThaI3sHVWBXg21keAQZ2pGcOJW\n61YYUxzGi+DWKgY0fEJw0Fbb/TKm/pdE5v/PFYunDGYyuTr3sbKNwPPsAPgCYcbOdVAWTK61MeBV\niQt06Ijp2VZWzdA8STWPVBsLV1+ZTm4YJ000LONNSupfRZbknM6n4M0WFOCoq5+yLfUik6oC+KHS\nPvj3LWXWTVgaBsvkRV0aSqAgv5CHJf75D3/E//jXP+GPP7/jz/Guw2eir4GZWc9XYEiNIxOumsjt\n+71d8FQhzDHRXC6Fmj5kogx6ZYa6NpsbDxlFQg23dsMcibdWUe5tZ0vnnHgOmf9DD9iDhwEAFm6t\nJuVrMj0v2qLq4fE88eOPn/Gp3PD58xd8+fyFsEtzBhwpXdOxg+cCdSOIF1MAkzgOkMEyExhAUQ8C\nypJuN5pHzZ549C74Y3mj8K999iFdEPdNgYRsbvDgKLkcDNSFxYDUsoChSBjEZCWGlMHnlJsmsFg4\nJpiInviy8RXIEcAewRcJXkhp8ClxTXG0khygsZrPqv5ilfcF8Dt1B8tGIJ0Znxtwa5C2IYEaePvU\n8PbpwO3WgC+TjBxnT2pkwgahOQugn4ANoD8Dzy+TEF0QzrHkJTon99GS3Vtlj6J3MsRqIeQwJJzx\nAMpN9FsYz4ay/FSWfY5EPBPPPlmBYeKuz3y0gIU52wAAETtJREFUAz1PlOjUYhyVlXEy+8b2HNco\nNlkvrAbvlI2CB1B9YD4S56Q1AwzsRdwcVl7QYnHCwuP5hZe5UDwqzNf+nEQNUtUTVoLFd23q30Sm\nBIP0Vi9/TaZZ28pUWFtOloxTnXhLclwXbcDgOxiFPE62eKAsP27hm2IlLI/nUCnNMn8FDJrRNITM\niZiph4IgYUw2VaG5jqkuf5y5X6LfGKxLFWQAZSu2qGvinMZX2TDIOSWNOnd5TsGCml1p6Ej8NDo+\nv3fke+IRgdkIRa2BuhEsyaIDGIFeybVdXXnbnOp4PcuE2DqQ0Eoc5TSWlZLN1xs2g4JVDt/LGnn3\nKB3n+0SDo8ptj+XrRCmEpzwYpI+DPiIDbAKHcPOZfFdeVYbngseAP//4Gf/0z/+C//jjj/j8/Iw/\n/Onf0Htn1u5skFHsZMJMXz/LoMhDWQuAQrx2DF6oVVk2s0SKoMiG0thBSMglRkgtjkxqA8yIrwJk\nEKRKZDKQiG96GsenCQLwEJQRJmhF1YkaZ25gdQLuzSqdxGouLitnOkvw7xjzq/05Tdax9vKy0fSd\ngIZLIIVZM5ufGulGGEkJjoMQm2HTd/0GWKVaFIVMrnUBR7DCMlelMxMWTFKmYB62uDhXNcDgWWzB\nQDx3Y+QebOyCWTHVv0k1ztfkKLyyVlJ5AQQwjLrcHqT9emfHMwTZRpBx4hwjgoyJcwyOhJxJKDUJ\npc4FVYWEU+rgV9C1w0didNP3wU4IR+VnzJIwY3VDBacJq2eTftkUbEfWEIEBUhUbq2MrhpcxIPds\n/jVh5DyIxNLG5C2/xA5KqLEncgRQJPZJMBswZWHr4E4p4laXne82yd80KqKWShFVpZUVWE5lmXyA\no4M2sSqT56R5kAkPJVMBHDLQgfJgIK+HsGdP+B2wQ5suIP6taXI8g28sk7BcmYW9doOyzAnDz/2U\neCpxvNXNzDhHx5LtRRrL1Wcieoe+kHzZOYZrQEIdA9YgWOtGrxthq1AZnOtgSNEaIKWSNFBCSY9n\nxxyB55eOW6cZv7WJgYFuE144/xTuaIfjfmuwTJz5xCjykZ7KjIvUtKKKpA75v/35J3z+9we+axXh\nAw88kAeAQte69d+7AedYtqGsgEplVsT9IO6n6KeUjvPZkSJGKCpivpzuqrjLpsBXC/oJ8owNMnxy\npLsGg/Pvq5VY6ro3bWW8IWqqASPsNU0qsRWu9CnnZdCq0aJAnuYhy1ME4FXu9/LKiWUel4laDE0g\nLYlQOhAsPgijtILDHaN3fp+Eho+zablEUIuGGmuQCzgvU9ZXgHoKvWtuKbR/gzepNUd0To3ihUcv\nzKEYECs7d5eYCy9qrAOIQjqkheh8ABwawsDfUZZuwQzTDFb5zuZMPActcdlc52dspRD7BpOl5/Pk\nCLih2JCkEecZQLhcNHmhuAE3r7iJwjTSN/Y9ExgdckEFwoP2B8ZE0yrJFQOBaVNDzZXROxMRF8Rs\nek+lqFIVFdtNw9CXmPIX69soO4UHj33rYWO59HOgHy9tWFNDdMnBJZ93AVg89Sl6lFdjyVsLzGIl\nkgxCutNmkEXgYGZQoBgfLyyvKSvhu2UAI2ziL7Vc0a39nnj+pAHOh6FkldCS3sTtrVBi7kA18WCD\n38mCnN6zs8lT7MUeMdEi7aDU+N4qRgfmOcXyWFltyBcGPIjVOFLtANMHE+OhMPWzJP4OSwwOSNcA\nZdKfTEIaYMKcgWGp8hgTDfe3G+71wPn+E9k8wHahg4lB4oUH0wJwsgva9wfOZ0cbgYGVuZFYha4K\nqhje58QzJk509MnpOLgl7BCQmHQLpOI20aeofmbbHTGDDAlvRVnf4DNz9jpLIT0vzUTPA1jSkubm\nG2pbvOPBJt8a/WVMQk52fOkOCArEanXcakXvE49zEnuN3FOaigNohmGGWom1I4HZuaWrRo5ZvJrH\n6Tof0jzUKMoGlbkHDzwjeLAqLCuRgVg0zMynWBC1UjF7aw3Pc3A4RVMVB+H+gwO8I1yU78X+CA3Q\nWFWzKMIrYRTsYMGJ8v05mNiUwun14DNJsCeAZjiKAvFIYM59mZynqiE3HDdnE9SB5xlwo+BmWMUJ\nUg4nHP0cpLIOahRutWAegXeNgWPux4oHCsR9EEZBdVll87u6GVotuL81VJOFMwqfLbAFb5A+xTU0\nfky6c6arV1ehvg5hWKEo6B2wyr0AJarmgRmDMLTscw0piOk/r2+DkT/Wg+Qttr7QvpWMpWGR/akI\nBwzwhY6Bkdidev34Mi+EGIma7INN+ge4EW39PrBMZnOPh98DL5/tWPxRBgljL1EsB8BPJ879nDtb\nH66St6lUj6kXy+9ki2pkar8n6XSUi+smXsHcDEAhzTApQffGhuvyRHbBBCmLUW8JPwx+s1fT1UjF\nMwOzWLEnTMZgC6eDoIUiJSsbRnTL41gr/sJEbF8PKwYvCffJRpQbA2VzhLLlGR3TCu5HQSnUAnRw\nbuoYwSEVjc8FeifEYYHTBq0T7qRqpWAllzVBKoNdyQAbbIz2c3mmO/Y0eeg5uzD2VRmuPKc4LzMv\nfN7Mv2I3ZFcDm74XA5GTLBBnMKte0JZHtnN/u7ByGA9iApL+uxSmQIwpPDy3QI52vyvJ1WCBSs58\nrQX9kehG/3IIZvCqLFDl/FjN7Ui6WU4Ozq5rP5YV/BXs43UeIcVwrGe0qgwNaF6mYeVGm9Ix54Yl\n3LBl5TFI0ysu6q8a3RDzCAlY0iKZYiJmn7UtLjzzNkMCM1B1dpmkBDINww2cw5Lqtwm6SF2+234i\n0GdgBHaDEfESatk+dzpXM2V7y4RmjMTZaZRleneenFS0Kv+q+JVTcKqQKz4M/hm0B9xJkSY0pedb\n+BmWsRohva8+719Y3yYjfwoCkTRfCdWGTJhtYiszcwQQchEsxvJ0NUZDjRQHG31bYk6MbvR4lZfO\nTErKW0AXQiz+s8RESLwcEsWMQAEnESnlsMZsAz1h0LzPkegPcpg5vSYRfZC1ISzd1i1SQlBFvJq1\n9qoEADAjB79rH530pUPNIg0ZsDRE0+eFS/FKRsHeRLoUuWlJpZwzYU27yxls4IBVoBwQpY+TXmYY\nYnFxLdFHR8YAyoQdDm9BhoDG6M0As38HMBNjDrgFrGmgM5JwlZqDcyYOAtfb9xu5sslANMDuBiyB\nWPAzL9S0HYTmZrDRvDLy1WnOubB+YuWmcjgnD+DKlGGcOblwZiA29S+MFZk3ltTQLEhTorEMpmjD\nzGbd1LNdcN8KzplsUpbqqI1Z6ECiBIPBYsysPTEHYcU1l7bJCe80/n832/0QCtxWIgDBOHwYtHzl\nmTpK3bbBQyrOVcUsQZXybCyTrQVP+uKLz4RPQyN7G33Ga4CCmtjs5VBctKl3nYrUcuO0IGhuret7\nmGkkSRhmUECXPpEl1zhfOG9umb4xOZhum6IX4L5v1XG0wgYkxDADAM2nXVTG0GcuVTFAF24UWhTX\nxmx/dHqX90iKlAobsb0rcfRFMdYZBvs4+ri7bwIkjdjkLllXowzGShOmhmhuGMbdsVCsX65vEsjf\n3OlFksxi+d2kzoTi2ITwUG766Bql5EGDmzROQzGHC+A1mb3HZMANUZ12dpQsfXiJ2C7HSY1js6W4\noTXyGgKT8/gKyJLIeA1LBula5gn75DDpvGk4H4J0jN9jpOZH5jZM6munKNtiUE4pEgG4odwCt6Ph\nKAXhJnk4ObGOxA14eY2E2APVsKYgWSm74Zt4bQbNFKbJ1EGaShqHxTIb/apygOHwirDEGVTW9SD2\njgOwI4CDQQk6LMjEeZ7EQ6W69FKYHQ6aWKF8VSVFojVeUL0Hpe7rsUSSeuZggy3l8R58QwtPtIKd\nVc+gN8v9xsED0ya9wlfWbI5xhppsgrCcv9CEYS9myOofwPm7x6TMnBA8cWmDwzTJZMjb5Ozy0Z/U\nC+wGlu0UFHBRVcHmanPflaqvRCCx/YfWgJGlXbjXgtubozcjXADaT7BaEHRY1MB1V3/A0VrBrVWO\nvzsHL+bJy6gYdMvx4iJNmJAcYLoUA2en5fBvPn2PMTr7NhqywXJ1edBQpe225qIEWXq6eAYoWjNB\nGLejqqJpOGfHGAN+B2Z1TFvTk75qChbbl4iXqh4LezmtOI6boE55/MRMWGV10Md6+qlqmUKqt7c3\njMfE48uJozK5ClMmP4Fzctbr7IMU4oMMOhh9kLipgVpZuUyIPkrNJxByXSVliINLpB4darB6GHrS\nm35RhlmJ/RWxVsrEK0NOBuJFj4MtvBcbB0aAQ30Hs+LdPc9E8dydbgZXddKRgkAUkNYBUcblRRnG\nDqbYkEyukgDYP8fuNTMcyKsESPJpK7bvg1fXdcTvQu8Woz9Koe1AYJI/r2kYzIaIExWlUsmaHv0R\nKmunaGGGhOhiahSaJUpdwYJf0leloUNPDM92QLdCg/2qbKsHN3Pxgloc80lsF5PPOCb5wctsKwDU\ng/YBywxrv99agT6RkxdDbQ2tNMwn4ZmFFy9e1tESRzWUBKrgjJHEZb/GDJl5mWTQr1KTgwbAHom0\n9QVG9alzwPE5GOgWo2QNFWkKy2ya63eoOtxsoqT4C9pb95JwdxzrEhXrIjI1Pzrw6Jy1mJDK0sRM\nMO1RqSHXVss0LGZRDJbn6tqrx6KqqmiDJv12ijHr7JPVCIdrL/99cjQCiTSH18Z3j1CzU+6EY3mh\nq8R3sCJK7eUUVVDK4fMxkXB4q7SqjUDRhJ6i4L/k+YShbUM1vMdyfSraZxR+53EOXgCt4naXza05\n7HAMG+t+0bNwqljFgJtL7KSq0icrytYaog/BpGoWaw+MfHmclGLAMJpmeaA0w3Gv8OyoRoFegQyx\nBquyVAe73h13EAEoJVcYY3IwUoPN2YOCM7mbiiHTA60mohB2G8+AnQk/Cr+freRPs1Hr65x9vb6N\n18oggO9um0LE0pa0JgN2aQIwK5s9MftKrYHFX6Q16+LrMnjHjI1ZrkC+MmQzHqDitjmexKz5u5Zw\nY4lZ2EHnH2bqnydU3qsxaDLwWaWZqEz83AwYuDFIuhkiJ46D0mKgcGKP3s+tFY6dc8M0oD8mxpMY\n7cJs1xSleuiiEV5s0HdRryDmlPscAGcWHWZqnJDyVlJNmVj+2o5aKsZjYpwT8yTGaMZyfY2iSxhK\nK/o7Wc4y8yyopcEnFvaFVhtqPfB4nCw1k9mqq7HYDpbcNYGaJtiDpX2awz1gJnx+vWtj4GFezwOy\naHxuQDXD7WYyRxKbBCsRplNfFQsk3eRpzvdvAczC4Dpz/T7ZP+REO0z4LW/+KVMlsisCYxoeXd4Y\ni0aW/LvL0gAYM0MXlDinifrIi3LRCQkHsPwuS3Ci88EGOYVlpTpGAmcELKbgNEeaLs40HO2goKs/\nMM4TZqwk4oU+YgvEoEpDZyQmp/DMkTifk14rcFkau7JN18hEYeVYZ0pnc1W/gshiPx9W5Oezo8Mw\nxkBpd5IHWkG0AsQUO02QTXN4rZxoP0NiLV4m7UZoopSCWiue5+DPOivmks4Yobm7xRKHG+LJxvKM\nDisVx42/l2arRAb6WBi3EzGoFAdWF5VXFc2ypohQH2iyskkHLDQybiYjzsF3mE67jyzscbVPhVXL\n1CxSC8xfgVbs12bAXeta17rWtT7G+pX4fq1rXeta1/oo6wrk17rWta71wdcVyK91rWtd64OvK5Bf\n61rXutYHX1cgv9a1rnWtD76uQH6ta13rWh98XYH8Wte61rU++LoC+bWuda1rffB1BfJrXeta1/rg\n6wrk17rWta71wdcVyK91rWtd64OvK5Bf61rXutYHX1cgv9a1rnWtD76uQH6ta13rWh98XYH8Wte6\n1rU++LoC+bWuda1rffB1BfJrXeta1/rg6wrk17rWta71wdcVyK91rWtd64OvK5Bf61rXutYHX/8H\nROkMnut9BfMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAGJCAYAAACXcbjTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvV2obduW3/VrvY8x51prr332Oeeec++t8papGEMiaKlQ\nGDR+YeIHCYGAiCIBRRCNKIKR6IPBD5CggvokeTLkQTEaRAkEtEJEgvl4MRHJQylYpsqbqrpV997z\nsfdaa845em8+tNZ672POudbe555z7z7n1mybuddaY46PPvrHv/176621LqrKRS5ykYtc5Ksr6W0X\n4CIXuchFLvL55ALkF7nIRS7yFZcLkF/kIhe5yFdcLkB+kYtc5CJfcbkA+UUucpGLfMXlAuQXuchF\nLvIVlwuQX+QiF7nIV1wuQH6R37AiIv+wiFQR+URE/rEf8bP/nIjci8if/1E+9yI/nnIB8ot8JURE\n/hkR+csi8lJEflVE/pKI/EER+Zv92Kf+qUd//87X3PrbqvqOqv7P/px/XkT++A+h/D8tIr8Qf6vq\nPwL8y1/0cy7yG1MuQH6RL72IyB8C/nPgPwK+oarfwEDwdwK/rKq3qvpcVZ/7JT8Tf6vq//aWit1E\nRKbHvvqRFuQiP7ZyAfKLfKlFRF4A/z7wB1X1v1fVVwCq+ldV9Q+o6uELfqT6J57/94vIXxCR74vI\nL4rIP+fHf6+I/BUR+diP/7vDNT/tM4N/QUT+OvBnj+97kYt8kfIYU7jIRb4s8vcCW+B//EEuFpE/\nDfx5Vf2P3+R8Vf0TwJ/wa38T8GeAfxH4U8AL4Kf81JfAH1DVvyYifwfwcyLyV1V1LOc/CPx2oKrq\nDvhbfpB3uMhFXicXIL/Il10+AH5dVWscEJG/APxtGMD/46r66IKhqv6+z/Hsfxb4OVX9k/739/yD\nqv6vwzP+TxH5b4B/iLXC+fdU9f5zPP8iF3kjuZhWLvJll+8CH4hI66uq+vep6nv+3Q/Tzvwt4P85\n94WI/A4R+V9E5Dsi8hHwLwFfOzrtl36IZbvIRZpcgPwiX3b5i8AO+P1v4dm/BPyWR777r4H/AfiW\nqr4L/DFOx9PFJn6RH4lcgPwiX2pR1Y+wxc7/QkT+SRF5LiJJRP4u4NkP+fH/FfC7ReSfEpFJRL4m\nIn+nf3cLfF9V9yLy92BmmM8K3Begv8gXIhcgv8iXXlT1PwH+DeAPA7/inz/mf//F49PHP0Tkz4jI\nv/0DPveXgN8D/CHMjPNXgJ/xr/8V4D8QkU+APwL8yePL3+ARF/fDi3whIpcdgi7yG1VE5B8A/ifg\nAfinVfXnfoTP/jngdwB/WVX/0R/Vcy/y4ykXIL/IRS5yka+4XEwrF7nIRS7yFZcLkF/kIhe5yFdc\nLkB+kYtc5CJfcbkA+UUu8jnlXDpcEfndnn2xiMjvettlvMiPt1yA/CI/dnImle2nIvJv+nfvish/\nKSK/7MD78yLyb4nIT32R6XBV9c96NsZf5OIvfpEfslxyrVzkx1V+RlXPhdf/Z8A18NtV9WMR+W3A\n3+4+47dxkojUJ+5xkYt8qeQC5Bf5jSY/C/w7qvoxgKr+PPDzb7dIF7nI55OLaeUiP67yWNTkXwL+\nQ98J6Le+8c1E/rSI/OEvpmgXucgXKxcgv8iPq/zvvhlEfCJ68l/Dcqj8q8BfE5H/W0T+idfdTFV/\n35vmNL/IRX7UcgHyi/y4yt+tqu8Nn58DUNUHVf2jqvqzWNrZ/xb470Tkvbda2otc5HPIBcgv8htW\nVPVT4I9iWRR/+u2W5iIX+cHlAuQX+XGVszZyEfkjIvKzIrIRkSvgXwe+z2XB8yJfYbkA+UV+XOX/\nOPIj/0/9eAX+OPBrwLeB3wX8XlW9O7r+C0uHe5GL/LDlkv3wIhf5nHIuHa5Hc/4pYAP8nnGPz4tc\n5IuWC5Bf5CIXuchXXC6mlYtc5CIX+YrLBcgvcpGLXOQrLm8lRP+d5+8rgIq4KkkIAgiIfVQ+64aG\n/R4i0K9W/79i61zq3x3fXXoZ2pXq10AzQSnDMlhtB4Th+7heFRFBpN8zfj9n0XpTM5dKOlP+x2V8\nfnvCuctV7Azxd2r1KKv72E+h13k6eY6Q2vFWO+Jtfvbx0Xb50fKP7XquplbvOdTlZ90Yc7wP2Fv2\nG7cHgHr7CwjK+PZ4f1P/Hnm6FI/1k6jJ4+8EsdoXRamoHvzcTBIhCwgV1Wrn54nMhkRFZEFZfKgJ\nWhZElJwg54xQQRfQAylZPxBAtXqftt9RUMlUSYhAlorWCgiqM0WhVqXWSlFQzUCCBFWh1Aq1UMrC\nUhZ21e6vqlBhsZKQi9jxodVzEuaUSEla3SmCSkZlsuZRe3bVBa3FMaCPPZEJSdmu1eJ9RkiSuJ6F\nq4313FLt2dsNvH81MWnmF76r3C0LhRjj+WhsWxuprnFoJdF/Tr84+itAx45/5zu/ctKZ3l6uFXHA\nlTODZDz+xjb8fp61hzrIxOMCcPTsbY9BPIqh8b9YZ1rrB/9D9Mn8dgHox7//YPL59usVHK8fvfUa\ntM+DuB3vdSZDM47XRf0MD2zteq4QZ+B9VVdPv3vU7RcJ4ifXu65rfwiIaP8i3kvG0z5LKc687xkQ\nj8MGIgnVCVQd+tTrwkDeQMZvkDJIIvkx6w8J0YpIJSdIoqbLvV1FhCRCrUJ1QBQ1pSwkRBIiQk4J\nRFFNKBNSlSqKJkVKpVSlqo8VrYiWNsaEbAozleB2UOFQQUUbmImaAsskUs7knEGglmL3poJUB3Ft\nCqePf1r9pCRI8nFZ/V1SJichZUWkgo7qwxWoJHJWcs1UXRO9lAbiM4wB+/oYdOQRfFt1MlMI7a/z\nQPNWgHwEA20v7WxNZN2VPzPoWUeJimvk0TlM6DcbfOvLzpT0dAzGmB0OqPb2eKy0x2D+etB6Wj7L\nEvX4bInR+4QIaagz+xk/+t8DK5ex88aJzkgGYNcYRwMYvb7ww/PHa47bz6XW+pn7zKmSOleG8QL7\nb9B7yJkiPq4x18/tv69nhb2OtJ3TPnF2clau4uBYUd1T9UCplZyy3U8LSIU0IykhkkkoiYo1dyWx\nkOVATrUpBHGYlRQkyNtUQTVBSqYIkhh7VwFNVM0glSRRDQWhsNSCqiBabHbgd7X5m7KdM9s5kch8\n/HBg2R06S0dJKmw2W+Z5Q8qJqkqthWqD2nVEpdYO5r3+UuvDSowJqztj5pkkyWYytZjSUkWdkXd2\n7fPQlMjqz3QAqLX628S9jzvF430g2voctp8SpbW8FSA3Zts76RFcwMnfp3Ju0EVlhg5t9aHCmknq\nKRDKuae2OdiaSTsOv4kp5Itl40/LU3US37fO++Q9RlAZvmv/D3W5Or+fKa0zr5HOTGZyqg9X94vC\nw/is/vPpev8s9XwOxI/LcP5WgylFxBWLBI+w32Vd968tC0/UfWPffpYrw/jXtYoBV60FrcWB3Ftc\nKkkqSawFEgWRQsLYZ3IwT1SSFJ/6+/tLJjmpVR1+irFuu1+UwV49YWxaREnJWbAqxZmWaiVJIkll\nTpXNVeb2esN2zuweCq/2S6uFlIzxT2lmzjNJAsSrmz7wulczpaizf9RnDPZpddEGsT3BZij9+3aG\nE5+GVmqznKpqyCW9zkPh9Bnauv3O9/hRhpnd8E0frY/3/beYxjZsymfs4dZT/fvTgj89KLoGjssl\njjvoHME8x0xoVRCxc8+bVt5MfpRgfizHpoZ2nONXGNcW0lF9dHt5/FQd2+EYeBqPo9fhD/DOrZDH\nbfP6Rnijen4diMcpj8zW4kcM3GYPj67tZ6bPbFo51xePCyUrDSPtuClQsxlraABrVQfrrICDtlDI\nCQfyQtJiPxsjj7v3vh9NEiYPkdqK0mmSmWqgUrX6kHZAr0JtGGq2+e0sXD/bcHO1YUoJPRQ38wgk\nmJIwTZkpz0BGVSi1mg0+zDUOwVVrm5Frqy6vkxPzrTTTSzDrQIhOMPuMCD9H/Znq7xszhkGNr655\nM7F6PjUPRp0+3t/fEiNvv3Xdc2Qz72wnPdWlx7sePWMN1HFGx5Sn7roeIK3tw6bVC2fTrTcB92EW\nspqQjOV6g/Kc//s1coKDYx2P7zowwoFpc9SR+y3GG4+DPRTmCDbSnhD3O1mnePS14j7jCfXonG7i\nOi1bPHNQPGOxoiZkVGZx2SMDKIDrTL1aVfTnr1dr1mU+N9BluHf/PsrvHNwXGAVtC5oBvCIZyTNZ\nwqYrpCwkUQdrM8FIWkhSfGHU7Os5aTO5SIBK0ra8JNW4t0px2CxucoixHOXz79VmBmGWSLZya4uS\nmG372Tbz/Gbm5tmE1sJhtydnmBJMWZim2ezW4guaxDKy+OJ5n2Orm1rGdrZF2gBcb+ckJBJIQv2c\nWnHb+TATr8XNdW6C8eGeXAmpmqIKXJCUWh10m7w0xbLuQnKCA5w5z95rddaJvFUbudK1X58+eLf3\n+du4uGMXt/8GiWtjlX48Km0sdk0LyGOelwFkfgMdlxqCeY0qKNgnrZFDiRjwD8VeIfZ4r6fAfM28\n7MgjZ54zrfTSOYtimP5zVL+dRY/H2v19MKqc6U4jwxk/g+231UFr31PRo3czu+ZxeRSz46+nnDZo\n+7Fx2svqvaQXtb133OZM35LHvAvCG2etEgU1uzGCmSeOVGbTjQF94xfx3qFYhoL6j4og6nMeUYQC\nWhDUzSYCDpQOV6To/z5TSdm8LJIksphNXBAmEZIcDIZ0QSXAsiBS0YQtZnpd1yPPiyRKczRQhVoh\nVexCofpiZRLaoqHZxTOpmhbWKVN3B+aUudmYp4uxYAEmeycRVBRqoVKayUOjz7R6lNamnaVb/2le\nadq7o9W7gXJj6KIkgZx8MVmFWhe0diXraspH27FX2ZoMjMp57O+PrZ31GTGPfP9WvVbshVRqQ7kA\nnea2Z4fXrImhY6+kI6aGbY8RGBy9xBTEqiDt+s7MAvio3rD0MrYnSiz8jPc4ec3TYg5T8c4qOANu\nRwO5HX7jpUKrz4YwoUDHb+P+aajh89bx01cZwFqGejv6nGuz8zB+5jlnzAgjZNop5+o/2I6uFGu4\nRcZgfSPpKP9GZZZ2rh5ddjwTWN+jM/F0BsjtRjpoYW1uohXK3h6UkrFCNTAXbAEyurCoseuUTdEk\nMZZsNm3z5DATzOJgl62dRbtpUQRV99iodfAFc4+X5H0jJk3qXb6a26GItUIWYU7CnIWchFoKKkJR\nOJRKSgbwS4GlOjroPJADtcXeCkhx0mWLkJ0Br5Vjrb7AWoEsfo0MdY29a3sfm/2kpDabUB0WU6Pv\nx5ixVYbeXq+TJ3Ds5LzHMQbeIiNfG/DHzyh9Cj5i3cn0d3Wf8Gl2H962AGr/i4ppbo3Ge21h2627\nd4quvm6lOV/HXwp5zEe5gfhKYciKmJ6qDXXLQdR3r3caAxo+Z5TR48aGs6U/uf70+/g5UKs4mkJF\nhf04oOf4aY81YNz3NZ1luLw/PrW+fs4ffjwev5+6XD4y4N1jwmyq4Qu9gJovefJ3FRyok/X3RLHv\nY4FTqgEwFU0FpXizZSAboJfaa1lSI12SkjNaf0ej2ihCVdwc0hlq8Cjx54kDvwgsFe4f9tztFw4l\nUzVTmShAbT6JsxF9rdRy8HImRCbQBRWblYQ7os3Qrb1jxhYsW1BSyu6xYmU0E4ux7iSJaZ7aYrDN\naBKq5lVjs8WEJEg1kfR1/fRN5RwunWUATd4OIxf3zm7McmClg3Qy3tk6R4Pg6Mb+/+DWGFQkFifM\nARa8M649Wk7vrePzVuDWB9LjbO2Lkc+1OCpnQDzMG42dxuKYdcQ1r3V2NRShr9angR0FYDMAfNxh\nfb1X3SPvenwkTBRnLpDe4ic3iHaTwZzmgKIiEfO0LtRj7fgaN8IzFzCu4J/3jLFSPfbzWNbHYyzE\nuyUkTb4A5wDlQJ6StzHinh/GLMUXOsXDbpIY+aksSKrN9GH02sA6vECCaqc2I3Dbdfiua3XLkfp5\nZlLJApJ9rAfwoxyWA6/uFw6l8rAo+0VYStjRJyQnkuJ27sneu9LHniRSmu18reCBSxoBRlKasmtT\nk6ZbwrXQGL06+KuDcpbsSg7CJz9JJouSyZASi5MaDZvjGdfYNx/DYS47Ol8fIx8mb8m0YrQ6wDyA\n4LSIAeAQANMd185VTExqu3Egpp990cqPNx/WAYhO7unAJkPpvPH7uB80pXDGPPJ55fOB+OrPEWh1\nDeKspoSD+egcuDTQSe06M5PFCWlg5YFp/XpdP+LR8vpTeKy9Ow0YTGjHxOUsu40CHN/zzdvu0XWK\n1b0CwPuzx+JI1IvI8PtRiXR8hXEWO7L8RE6zHQ/AFJx192uTVLeLmweLsAAHzMcbVwCFLEL2IJ9m\npiE332wbPeGx0otcHcSqob7ds9nsTSeIGlOPGV0CSimUAvuiHKpwKImler8Mn3dJVBWoZo61iZ96\nS0Q/xhh1OWB+8N7/Ggun1ZkRmmpldtu0AXEoKrtvEjMBoSks8FaHCXLt/W6Ml1i31SmIP+W2HP3g\nHO4/BS1vybQylsgWCM7PXI9NK9q06jlP5FWg0TFanFIwv28soqTzldfY6lik6Ah6wjS/SHHz22fq\nCI/fa2CFYdujg7hIcqZEZ1djIcZ7EQVLtIUdD7bo/LeDb5sEjO9wXL7VFa//5qyZYjxtsHe254Vy\nUfv9cRX5ZlrmxFVxoBFjOoj2JFk/s/0V5Vp12VBSceAMyws1J8a8J8kk2RqIuZnFjJiLcxlBmMgp\nkd1oLSyIHtoTUxImSUzJFkkRt0OniOy0stTqYD4omqSYW6GqsdiczddbK+Jh+VpA3U6dJblJKKNi\nLolFoRipRhNItTFmdvVE9SjqZpqVqPFMLC6byaYY+BPRmQHmUeceeq/do8bMrVZ2ah4UEV6P1kBK\nQXSxBWQVi15V86oxr5XT/vLGY1gb6p2299jXj+TtuB+uWPXjQ/ioZ79G4lxdHYqqH59+/MO8DGzw\nCae5PlY3g4Ftjlp40MDju4xK68yrPA4m56Wzi9Mrzx5f2VwDMJxFByAHK/RXk9Hz45hpCHSTSure\nGRLn0+732d/uPFwd3ytquynYsexjO8XBcYYxTqzOPD1YZtdK4sRj6EUrd7v4m1YHrPq3/y5wqjqO\nB/fwjazPcajpVeLvv9KzksnZF3LrweN5lqYM3Hzdr1HF2HhtzHOSxJzEfLgBSQpSHbCquSJiYFuq\n+OKlPd5s0h5i7wE2pUZOFodDsXv3i8wfvKiaySJbsUq8tNjzw5XV4y5B3fSTzIaPZl+Mrc4xfJGy\nJkMF9y1v0Z5S3f882ik5iMeMps/SbcxZ9Rd3pLjaKHlRUik8VIDslbuOzDxu81MAb6DCcXDR2ruP\n9vs5eUtAPg7K1w14OfP749es60lPdMFJNag6AMQqtNJZlV0RvKo/s4crny2HxKOPgo+OMXa4y5tG\niY6/vxbMGx4HGAwLk2KLUOtT9cS8NwJ5Y9thUonB2d7muH16Ha7K2M45PnZ6fK2E+rl9ltRBvCvb\n8R6hsUdmG+sBfWLc20iG9h7KJBXxaL5+jq56ylN94in+fxqEJCe/i5fN/rByJxkW7EUxn+hMTqF4\nrMxmZql+jeceGQJ+khh9mZOY77Yok7vciS9MGnZW+ygN8Cp9EbGqIsVAODWCkFCpluitCpqi71h9\nGSjb/UUyWYCsnUWHCVSapzvhIxKpBoRsVntdzNYttdVR5AhQt39b/pUxctNHhIO3/bSZZkV8XaBV\nO0u1dYDnV4IWuN/D3UOliM8IKCtXxrYuc3Z8Hyn7MyAdpqzuL/clAvLKucUxOC7k+QWCxwbEUXRV\nTKk1wnetc6wHVAC9dxjBrSXSHzNMzUXDXtifE1o+2Fv832yew1utGnNs7PNUrGvkI9A+Tg4Vv587\nDtaRmwmFtGJHY92LL5SZ2WG0mXfvCFskTgOtW1dnqwPpL3mWhZxh7Ge7qPQynB4/U2fjeeME7Ywu\nHcE8lEFj9S0xTBS395XmlyzuBeXvKq2vrJWaaA9eegy0H4subW64GMDggDwCuTcx1YG1uqlFNNty\ntigpFb+X51FR940mk1SZE2wSZClMUsmSyDmRJezslUoxb5EKOWXzJGk+9kpVYS9CqZ770Wm1ZUgU\njwZKwOT9dbEozJgxuGqsavb8SILVMwsmH8tBJjLmrWIeO6XuUd07KStEtsbwNqv+iTGbwpvJixZg\nLmJqrlRlqe7hgzKhLGqZF999lrgicbcTPjlUdvjycfEsigHiMVt8hKe1IKPW5OOJnZ3Xlp3xSwTk\nx0EO4Yz4Jiu7bVifMC+TPnUOAHJ0bkP8DPjI+kBUWA8mGIEtLurleT2Xfr08dZ+nGNvT5zxSnzr8\nMr6/4iAdJRoVk6AjiJ9lnsfHZPXjB5PPdvGx0njd1R65MMwSvb1F2hKI4bOn44M26sw9b1TXb94T\nnnY5XB/voB3f1PX3IwhohSoOTpMRdU+pa6YVdW9ndVPKRKpKTsqU1ELhs5k/JvdwSa7cKmbDrkLL\n+icJ94wRqiY2WdgviX2BBagiSE0En7Zw/sVBtqB1AcxMonhQkxMxceVgpD28XXwmIUrG3AVLrZSy\nNyCvB5rXin/qmB436jamG+DIXpGUSVmYkrCZhWnCshwKZJSstc1EMoWrDHkjvH9d+Wi349WSWLQS\nQUHdNHK+3WONLkiPuoJliBS1vkhTvGOw0yhvyWsl0ut048PotfLmrjrtivYzWPXIJkfzwCkUD3fT\nYFV9OoMOV4UNa9Uy/WafC68ekR/E9XAFEo+epX12oaNnytFHgrmn89+vn/wGv/9o5TGb4gjA2nqf\nM/EG1PZ9m2k0//NOodY1PUTADEeP3/8x9n18Tnxn3ifmKXEcAS0y3MNt1BbxEyBvrFwkkVMlizFM\nUSVLNTCfYM6FnApzFiYPj8/ZgV/62yWMaatWcLZuwUWZWjOLmOKrWqkeVSoKSc0s05SNWhR2myWL\nENGp4uROxrFHtWhKjZEpqCZKWTyfubFxUw69jiL6tNm5h7qVZOWfEKacyZOlxd1mmCdhzpDFlRk9\nOjaU0iSwmYUPby02paiyL/KoPj8lW/FbGE6UcJ/EE4oFvuRYRH1kKL0dRj6WZjWl6J339QB2Zroe\nw0ZAtedi68aR42nL+KdpQANz77K6cmQEwltmZH6yGkhvW875Kp/IieKx96wtl7Iw+oG3YAk5+u7E\nv/oR8D7Tt+Xk2i9GTsw4cvKy45fta/X/wmZqg13bFy2CV9ykQpw39INVjOOqUE+W+RwjH8eBeaW4\niSMy9MWGEe0coFS0LNQpk9yElnImp5kpCTntDciplm+FA1kKV9NETjumXNlMI5Br86EWoEolq1IT\nDpZuf0/ZVaHY4qVUJqmUVFmCJGhFdIFazNS0YsjZ1h98vCX3RW9jS8QZvOU1KWpMXTWxLKUBORKM\ndjRFagPxYwU6pcR2SlxNiXnO5DwxpcyVVA8CKl3Bi7gvu9mN7G0L25z45vMNChwUXt6HVR9KqauN\nL863fXSxugLxqFsbwha41AH/VN6SaSVAQodPX3h7CsR7foRj0Ei9MxHkOfKgSD8tRuzxfWNxpFVW\nWPKL/56sslfl0LPj9ouU4wXO+Pk688pTphXrIOvvu7/veDxAu/9swTRnGTnrdpF1Lpl2+PyrfiFy\n4ublD9TjEjRPE+lAGwwcZ3D4uoECZA9QcbCW6n2jxzm8aV942o94PfBbu3i/teYRku+kJMNrxEK9\nFuunmifwXOFIIfbcySLugjgzpYntbPlWplTZTBgTTUrO1RNqWTnMKFPNBj5ElQoJ1YwyM2Vxa/pC\nKb4zUIWFxRJ1DeQovFuqR0uKWI4aVShFKRqzYvP3jt1+alWWGmYXN7OkYSFzsCWPZlIRafnqRYTt\nlHm2ydxszJRkCXZLq09xU2Ik05qTmRdbcyRLRnYlylaU2etVawRH9W51HtM6E+9t6Ne09apIjdBd\nKM/JWzKtDG8YGs8PvJEpwT1NztyRsHjaH8GigjHHuH1sIA2w465M/e5RzoHHttt03n/ubo8/S1Z/\nnT1rUDyPlfvJlK3Sf+ngLv0r6TW3tn2PIB5sPMC8E91HHkaPDXhT2H6qTY7r9xSsH3vKacusCYAB\nfVCA2sFQi22BFgpdrppN3HqZb+XWfLAtnP20JBqs4vzbDe07MuyTewQxjH/DzKC/VWr3APPqMEZY\nPRHW3kwJkj23d2J2M4L5jgvzlJizGpjnZIxcMLDGFzGr+tZt1i+0JvtItpmD2sRBam1ppAKQxvKK\nJDO+aKIMhEvV/cmdAStYfhP3ja9V0dISH3jdRX1GZGb/O/rhyk6uppLnJGxzQrDF0QoG6iosVVmq\nsBQ3AW09A2PMjBzskyizwCSCMNmMQoZx+eQY6CCubfZi79X7hjJYi87KWwrRH1lb+sFY7WNT6JNh\n6wAk3iHUk3QdL4o1lunTptjmybW31ekaCMennBTvTGlOoWhdhr4w6wzoM9RLZwC9jA24ZQRxY5Tx\nugPO9zKMIB72cUnDd4wR6EMZ4us1qz9+jade61x873kluVZIevQNQMvGMLTt6QMDmBXh4NzCTBTl\ncIdqIaeJaZoQ5nWRdKGWO6uttCXJVX+DE0331GA+6ldmB+hHxktHLwcnQmFLTimRsAXOlCdydmCV\nA0l2JA7Gxj1J1ZRhzsZmc6qeMjaxmZR5ginXNgOI0lQV34dTHWxtb6GKs+okUIubIBaPi4rEW8nq\npa7NJiCWHtdNINU9zcy+DbUuvmBZqBJ2dW/f4LTagXqcuao29tYUZPNmKYIWgWr25yyKpEpOiYel\ncLevPBxgvxSSwDxfscnS2kScAGhVEpkcKQWkezCNyqk14VnilWjzV6GZlnAT3+uw4K0Cebj5Nd16\nxhwwvu+aAa/OijMGcApGGNd6hVjVn8K9DmXCyySrM3q4P8Iq0CQ06BnIGlnDeCQ6Vut0w/XHLoSr\n846uO62ncQEstcEibhZopoH2fs646blWuhJwAB8DiOJdzlHypofWwLRaEzmuh+HitvB9BvPGNYn1\n7dbtHKi+AvNH7gl47h21hbTy0tpFbSebutwZWOcJzZu+j6Vm0ILWHfXwytooK0wzSJj4hr7S+vt6\nQJ8o3qFqYOnxAAAgAElEQVR27HsZ7KT9JVpODz8k4o6lYqH1CbEFSEnAgtYdyj2SFr9RIcnkC5mW\ng3zKC/OkbOfEdoJ5UqYsiN/H3iQZCFZlKYWlVA7F3B1rSrbGslgSrjDfpJSQOmFEysyUY2PY4qya\nCUO9ncNH0Hul7UxkppSkqdWtxmkxoo/c85pLbuDM0IfUUwVkgWepcpOtHjQJh6rcLYWX9wsPxQjV\nZs6+6A8S/vmK40YEHQk2K6utLOGa2ss0AvnRyGi2mNS7uSuFtrCdlHPy1kwrvROPLOwciMtw1Skw\n2nkjuMj6eDuUnOi4ff1oZK+rNNB/uN1qFLZ5bju20rjnX5phZeNxZHmNvM70NIJD/N4A2BMgaUtx\nQAPpHiYeHXPIiBigfrIucR7Mm6yY8Gd930E5v2bKNlZpW0TVkzPO3D0i9hStC8vhDrR61sAMejAW\nWCtaHygsVC2ktLE6LQu17IwNi4F7N6/0ntrAmHWzt8EcVTx0y/F8IaIyfX7ZTIZd/YZbXJJMJtlG\nDMk2OKYeUHZAccP0gSQTObktPClzVraz+Ac2kzDPQpomJCXCw4RqmQUPRTgsprIW9ZB9UbSGH7r7\nsnt2wVQtarJIfyfBQLuBsUprj7HNZNTMKh7jE4vRulZq0bIj4TkzZhTzCdda2YjyzlTYZgPeT/eQ\nqrKokZ+UsJQF/sxW/ma2aRolWvxs3zvPqo/KFtkqW5kt3YAd60z/WN6a18rac0W65jw6LySSrq9f\n8s2e5o+gg/ka8PuzPsN9o/GaxtWzeDMG9bS/dVRew/scUcfXmtfeUEamHb2w7bAYHil0UO/BF6PL\nYStVL+tJJzwCXdH1NeOpZ15s/SSJGbGff/xOHJ/t9SpH5+jqrzg35mUWAW6JlpblAXRhkgTTdcPj\nqkopO+pyz1J2zPM1WWZQQauZ6sw1zvbAVLWF8eZx8kgbju3bZlEBEiKr68MFUcTT0wbo4YxNxN3p\njJVnMfdCrZYXRHUBiQVH8zSZkoXjzwm2k7CdE5sNXG0c0DcT8zwh2cwpWoVaKmUR5iLsk4BWKJWC\nKY0qiy+cCqkmtyEnJrHZz+g+aWO++ozIvFBUY/efox2gOv1ufSPqLUazJfjqvuO1VlMmEgx8Dar7\nohzKglblOhduZ+sPi8IsG+ZpwyQTWZTtVLEtLsznPSJk8Zwwx33sKXkKv2SY/fazbCZTtUApZ697\ni14rvTECXE9fMAbzaN96s8oa7kCL4BPLTfx0uOybyBk73BGLOLn7aA4ZyOzqnVcgflqez14HwXtG\nVu7sGvoCZmOGA+DTv2ug2dYzHqunsQ5OleWblXddJ32Goevzml/78dVvWjc+K5HO8LI/JoCz+LQ5\nMYFms+2WguTiod+YiQUMKPWAaALJrRgWYdiDQ5qZRXo5fCrhL3CsyKMHa7RIY/lp1WeNpYubdhKF\nzILqAfM3mS24XRebdaiSqUzJvFQ2k5lUtjNcbRI3V5mbrbi1yMN0KiwL7PeVZXEFpYIcbCOIpVaq\nLJ4OwMqd3FRFXZC6uH3c3juFMm19Zfx5vh3HISSu6Y/rFv8upeR5VUbyMd6r8PEe/vorQaaZn8zK\nu7lys03clsxtlbYWNCWIbSMiz7tSPdPjMduWgSwOs3fWY/ccoPerHLV8gbeUxUxTUk+ugbdqWjk3\nWI/OepKOHg3s1c/1cYdxYqGv+wcPd1sBZ+cNvZP1565SAbSynGfkx++jA8U8B0Nx3hvf5wnRseiN\n/g2RmWIDtLkdRju0EGj6uStFIGfftbmGDkc+G5jHvWW47JRR93OPr/SFThkt8OtBLEMb4wvEBoqY\nWUb9ZwynaOta/LOYr3bzfjCGpHqg1AcUSMk2CG5vEA1xZv9ZZexjYRMfler4Fuq4H6pZGqpHG1rR\nK0kKiQPIgUQlp3A5NLaegElgm4SrGa43wvVW2GwTN1cTt9eZ2+vMNGcP+EmUKhyWwm4H+z1N8SGC\nLEApLIcFqIgaC8+iJK0k9dlAvIPXa19C197nQreNHAdZkSVTnsP3Ip606yiCM/TtmfGiWrlfhPJg\nawIJQa8nS+qbE/PUk+H6hnOkIWtmtIGZeaLMo/k3lEjHhhi7r3Ox7it5BVXzlUeUlM9f9/a2emNc\nhLAjT0W59WmkcHraU2DRwbyP6eMBNWhMhg5yDiy1/9I7x9Ogerx4+VlMK1aMc7lWzhfvXGF7znef\nZroHSuQTX/neN0BJjXwf5w5h9Xd/lh1JnLhtngn+6a+zBivRcTALj3kjnRmW4LvdqA+g1eLtyXP8\nmtbgNq3WGmkdQGtESnoObbXc3XU5IKl6342twxaW5Y6UK5ktOW2J5VsbkB5g1gJ6RtY21mw3qTRQ\nb5RPBnww90fx3CXN91zAfMYPJPYk2ZPSYl4pIg7oNvuYxELqrzeJmyvh+jqx2Uw8u5l5fpN5fp2Y\nNxPTlEkpU6qwWwr3D5mHuz0Zc70k2R6eRSuO6EBmEmEWOGAe2kYbaAEz9s6hTPvcublhJqzvKC2d\nrY07aF4qdI+OMRx/9MUfZ8+970kz49wvyi9/Uih1wwMbZqncV/AIoFbWrnT8X+M1FrAlnlpSXjMw\nnyRqLdNmmJ0KqJl/Uk4tfuBY3gqQ7/cvzXaWrIOIZMZNCvq4D7PFAMdq4bArIPGGiY7P2LgrwOjA\nYtPdY4DXFrAQmCrR7ZpJobNviYQ/jSjoKQl1QBFvAAOZ2AM8nksHLuhMK/5K6w4ZSv64P4hGB4t3\nNTu3vat5oNg+jsMCpwx1LnEs2uC4wx0rmXU50WDE3WtDVj/b23aA9nptxgPpTwovgfN6MoxFguXe\nPgB74MHNdBOablAsqVILsMAy7hlQJOtJkfdD3asCqNUWOrUWkELR5OxbbRedWLMJwFVFlz2lKJoL\naRYkT5aHZLV2MLjedUjoADbaxVFEC7EdWtjIFWWpC8tyT0qJ7ebGF+OAanVQeaDwgLBHUrHw/KRM\nqTInWjKsFG6Ic2K7SVxthWdXidubmdvnme31NfN2S54mlprY7wrblw+85A7KA6XuWbSyL5XEwXqc\nKFkKhdTzuyTLjVIFUtHGnqOtmw6K69Xnz/Flg/lEiYmfxglDf5DU+1pgh9+rLVa4AiCUh1qQ03fv\nFl4dYJNhs5mZNkYkxJPIWdkaD7dxLG7OkkzCImpLG+OCRWpGnz03K1grnQ4mo8+9tXkphS9VZOd+\nf2cvnjI5ZSRNpDSR0sZCUdsC3Oi+0weuKenxhYJvjazxeHo9sshw6RkOraYz4xUdSeKu0qGgXfs4\n4OAAGSkDamuiFeaLuNONtEt6144yD77lxyBOB/JW+k4ZBi7RrHwrxupDqM0YHpc+k+KoDXolrAvX\n4zvjmhiJUTfNotpbrWH6eTC3p4UyrlAfSPUVW7lHqVSZWTRR5RqkJ21qCDAAKbIQW55pRHXqvp27\nNqVFLzDvp8YeiR7rJpggAKGYBm+DPmg7jKfWh12l+UK69QknObG5pbvw1boYWNUMwdB1B9yj7FAO\nkCqiFpgziWc5zMLGc6rkrOScmKfEdp643kxcX83cPNvy7L1rtu+8y/zsHWRzTV2U7f2OzUefkvgI\nrRY0sy8HplTIop4KwDcrtq0/V/lKshpfH/tEEjte8bmyYHb5SnNJjCRfmgKf1QjzmN5GrHfXIBTe\n22E9KdTh//hRER4WZVcK20m4zXAbgB2gv1rbiz2Sep82s1Ebrf4z5iDnB9XahBQkcRgD7YRYxP0S\nAfmymMuWSGLxPfBSnpkmZZq3lglNgi2ywgZjarC2xbbRYqfrOODie//o2DjDtT7IT1hufK8RRKON\nQsci6trOsfa+adXebrzOx9FxuYNvgPhYlNjF5DH3o2Y8kADFAbzbtHsNiqE4tKVMWLPiozcYHzbo\nMD066xEtoPHA8XN8U6/VUD5HbTGeGQMegaQLk96x0U+4zTuqVh7qhru6QfOE5snzcoc3RBnv4jvk\nHAgTi3qqVo0MfzJWWuKkkxAs2mdfiT7VHpTeSbsOSkwQZ46uPIRBsY9Ro0IodcuZsqDLHVoFSxuw\nB90hYuYf31en+YtvcjIPlUnYTJD9M02JzTxxs91wc73h+vk1Nx98wPy1nyC98wFsniPLwvzqU+bt\nr4PaFm27/YGHXTGWnyz51JyFQ64s1fKm5CQG1GqZEyPysYfrW0KwVOx4kkRSqwmKUrQ2dj5F7SXz\nGFIZgtyjiby9ooWDNiTpDLjN2MG8jAIVVCl0wJY6jOfGnKOfBJRHuxQ8wzqrQTSaTsd+P3ar8Oip\nHV/W7r/hK89ZeTteKx61ZFGWlpeh+iKS1oV5c02erkA8IizRWFEVaIEuZ8TAdmCx9sQ2he+Md9SR\n0RiPJD1qoO1lb6aLwLHHwGl86RjCY8OPX3ewDfub3T/KG0V5/FlhDlGk5xoX3A0DEPWgJj/ZbeVW\nNRFAMiihwbYYdsxelqjhYBHBGliXdwAfc09ycGyLgfF9d3WMNlupsuNfmwIpSHnJi3zHh1d7PryG\nfU18f1/5Gw+vuGdD1QlJ2S8JbwsLr9d6QMs99XBPZSEUca1jqtiTqu7ftZJafaeUSGki5+7xswoA\nkX7t8Xwm5krGMSQSZDfw0GpBNaIG1pMeSHogl50x1lSN/UphTsqcE5spsZlgM2kD7+0EV1u42voC\n5yTmtbLJ3N5OvPPeNbcffo3tN/5W9N2fptx8g5JvyOWevP0em3nDjRYOhx13n77kfoJtFvZT5pCF\nlI2B5wxTtfzk5msOxfOimKQWlWoZE4VaLDS/mfeSEpkTkhO0ybtcNT3YdikKCE0+uw3FmQayMebt\nZ/i79cRQJCJ9dkAMJW2/I739bRQsxFqIxNJocMWRZY+inW6Z3d/t+42CYflcwkHhCdv7W8y1ov5+\nPtGSyPpllbtRRaYrJM1I8kQ1Gpr2MRDvdqVjxjiOxm6LDjgagOa4mMMEanzOCoyfwO+4zfB0Ikve\n+rLUQHyFHMM03H5EOR97qDPsk0+2zxB6r+1cL+FR3H1fKzh61ur56sCjR2z+GIjjmqCax7XTlZi9\n9tjGujrb3xL0QNYdN7zk/fmBb14vvL9VDmoBHK8OD2i940EnRK6pEl46CdUDtewph1doeUDrviv9\nVvVy8vx1uf3/YVBLu04euTJsql1pxTUiodBD2aopHDlgMFUQPSAsJBaymEkjPtlTzibB8or7lm3Z\n2XKE5U+T5dveboTtJpn/+Jy42iSunyWu37tl+7WfIL34bZSb34xuPiCxQdIdyC2ShPlhx9WrV9x8\n/yPu7x942AkPh8ic6FvFSU+DOwnUpOQ6ALCAVkuOVXwXn0o3p6ha+HubtYqQfA0no5QAew9hD+Ad\nDR6tBXQkInLi3TJ2tcZTdOyd3cPJPoEcAfZuIdAyjFld/VgNruGBLR8M3aQWD0o+Ptd29FN5S4zc\n7Eax4iyuklQLS32g1gJamVTJG0iywQBqYKjnbqy9Efts+BicA0zW94kMY2cK229OcHwllswUWeH/\n41W9BifVI3U0pIoVcE8T/P5rVtjti+Ocwn0CmkkqwvNjgdOm5xqzHB16ZbMkyml1tbINz9KYrB6f\n6/dqnS6AWdeflYvWqKhO2e+54C2r8ELSB7b6Ke/mV3yw3fO1q8o1B2oSdJP4eFPZ7+851BllA8yu\nnDxqsyyU/R1ad5jLXi/PCOKn4z1Al5Xy6cXs025l3e6yGpRhY+/HQjGg7uqoBY1FS4qBuHT/7zlV\nB/HI5W1RpmbagfBPj8VuEWPKOTsLn42JX20S26vE1XVi8+IF03t/E3rzW9Hpp0i8Syahcg/TFk2K\nvPMp84vvc/PODfcvX3F/v+Nur74ZgymN5JGnaVAwOVkEZ5h6l1pZqifJYljJqH2PTa+4Vn/Js5pm\nsWjSqN7UWLajiw5mF07d/s5lFg3fdBo7Zo0L0hXtyMzjHlorZF9v01iRHcew9GesxrB2njP2keHv\ndb9cy1sLCDIgM9PKqPUUi7I7qFpe41TZZECmlkb0FG+114kcAeRYUSswGjU0REOf3jk6UoD9KpQL\nxZhFi+d47buPZw2dKu7T5hWu4cKzZLjMJibRSUJ8SjewcG2gamCuZCzdaDx6zYYDise356jjNxDX\nvpgXQGSMfPCKaQAXC4xHbdHSAqzr4o2mOFRyfeBaX/LhdeHdrW1VJphr3TXw/nXiZV14uXvgoDcg\nE8hE0gRSQBKFOnjodIV1POhPB9KohNaiGNO0NIBr0B5fYhWp6QChFLTuqWUHdU9iQeSAUEiibLIB\n+JT6Tj+hbKzXWFuqxjeWSnapQipCyQ6ianU15cTVduLmeubZzZar6+dMV1+Dq2+i0zfI6R2Qa7e0\nT3Zh2iHzrzI9e8H1i+fcfPKSu7sHNvuF/BBeKm73TgHgkKv2hU4V222IRAGKiCfgkkZIIQiKj0Nn\nrn2orxczA8irKnXxRevkboaqbcyfA8VVbEYMee/+nSCviUZDFLWAy2WpHA6FJImcrY+uLSKpPd+u\nq20d5rj/xOui6ptEPz0m3s7my9qahhgMOn4nlaoHLEOoTTem+ZqUtn56mCEGxeYWstHzg3b/oWXi\nqMRTO6M+DrQ55v7RANrichsnd7YUL0G0/HB9637EoO729VNIkJEdN8Qcz0qr843BT5gJZQD1GNjH\nO/zocN/2GB1yrzj7q4WIXhTB2WzMTGh4HMxy9YyjmlzXqbb6Cdt1bxNg6OARPBIzA9EFKfdc6x3v\nTw98MBeeJd/0wGtmTsq7s/LJtPDysOOjeg9pRphMVTYmFf3odJbTnv+ohh7Y4sjGsbWIsQskf4/k\n54//aEw0fIf3JL0nsSdHbkG3LU8STHd41gBQtpOQgWir6+bC69eppaK1GCdrizwlNpsNm+tb8vX7\nsPkA8guQK+tLCIkNKs+Ar8H26+SbX+HqnS1X15bTfE4w58o8VeZcOWSYslKqZTHMWZgsONZrOuzg\nRljCwhA5wRzHfCOJwQShpy0lKLYsIRbunxPUyC5+BNDgPt/QsybSKNRaVwv9m3XPtqRZncGZaaii\nnvM8rrf+FSoqOWadhIMOdx6KGyyftRI6lrcE5Gs2OfK0cUpb6wHdV6gVqZBmi5rTbJFzMUWJBldq\nA6ewXQVoNLt2GwTn5aSiwm48tqC7e4W7UWp+7R15GyttuNlZ6LjwtTbLKAEscWSoGf/RwdkL7Aw7\nGcg2W7ibUyT82OM+SuSWXr+nup+t2D6LWpG6R+oDuuzdWpNIskXZoExtwEFngkH3u3rWKCahwFbv\ntHrPqMboH7GBiEUH2k2sXLm85J3pjq9vDrw3KVe2WhZZU8kCt1Pl/Vl5dYBP9y+hbtE0ucof+p8z\nnj4R72y8edCsFn5HciC+gBwrCl6X0t85VGhYOmImMuJ/89BRJWlhkgOZgy2bSTBbQXwG2wZ5K4ct\n0OUcQC6dDYu4a6Apg+SRoeGdA8UWJzcT0801sn0Xmd4DuUZkaq0pmhC2qLyDzu+Rrp4zXWem2ezx\nCXF/9cKU1X3V/XnJJig5NEyY14YKCKXkmd6bcitazT//DDFtplnvY7YVp2D4oGixTSlEw1+7562x\nsaFtI4hag2D09hMH+zgczNEdHf3B7n0jmBeNFkqFKefWV1qMqPr9HnFJXM34QmE1s88ZfHJ5S4ud\nT08TgM5ItVD2O/ZV0XJg3l4jYougtdrCVeSYaPceAaZ5SfQdiN68SD6CnDnYYLPRkYKVJtwLRxuJ\njKErzS96PWhXvw2zgPMclsZ6g732thaQibWPcWpAHsd70iZ3wTvJ/hgdxQN5qpJkQcsr9ruPkLKz\nXpwzeXqG5OdIeoakyfNQR2df24v7hOTc8vR4JGL9fLFHS/8IhAmuUkAPzNzxjrzkg83Ch88y27xr\n+VKSCuGLI1J4d5vY14WPDi95pTP7ChKD3Mshw16cbaFMtbXNMRNa7/7ird1IQ3xS6wm5hnnLFbpa\nuHXVCaG6l0XMMtNwh0igoN4HXOHoGAEw2NcdoHIsNg4LnPOkbGb/bGC7NZv49iqxmYV5hrwB2eIJ\nw24RspmhnADFuKoAWtByQJcDtdqWbotmKhnF9sk01q+UoixFKSXZrj+eHKvt4dnYbqSDNbKnVdvH\nOVObxXYGHX1XmwJN4mZKscVCM0tJS6AVIG4grRR3KU5idxw52xHt9/7YwVabMWhYPC3FEoxpYsqW\nPdI872obKxLK4mRc9P5n62Xxt1/75cq18oaiMawKZdmB+wBnKnm6IqWNg+cIYqM3yNGimoN9m6qv\nH3a+CEgLcR/5NhLfep5lGZlaa3G6Q//4+SzSr4t3UYIxxKKm5cE2htNBZP3ckfofeZSMx9WBsx5I\ndUfmgXlTKXWx3NOqiGZknt3/Q6gtKpdOmUYz1uoRx2sRTnXU6jJphCX7tlsKwdGqFHLdsamv+HB7\n4GvbwrNc3J0t7I5jrSk3ufLeBj7YwrK/Z18nJN34kx1ItA2fVTmfkqZQT/WhKbTmH+7l15gR+kWx\n1uA+1YnTRc/Rg6elT/WuFx6l2cEqDe7tYUJJDIw8CTkr06QG6lu4ukrcXE/c3m54drvh+vaKfPsO\nsn0P0ju9Tb0sFi5VqLqH5RVl94rl7oH7h4X7XeFhrzwcYLcI+yIsCywlUdwzZalwWGCpbm6pfXu2\nqmHHTo0BR5/oniEGvrXS2PvQ8gNpStiuSK7Msp1rGxh3EEfMxNQnkl0pj66FZ8dsU9we6eRtHAxa\n1FJqFRH3Is2Ee2FoxO6H7jU8kIGw//fyWp95rFt+uYEcfy0BdKEslglsdle2NEdHD0aqbTD3aXLs\ntJGIREYqanmaT+QUzHtVj9GRMZ0OzwS3iSUPRTt9A0Y/6bPv+SRuDAw/KqSZTLoppT+vl3dkD+sy\nxU/tPz1YKklFlh2ZHZup8mybORwKr8rC/vBAZWNuoaIgG1LY5vFZipwfAk+Doy+g6tKAXDxDB1HH\npTDrPc/TPd+4rry/rWxSscGt3Y/GgMBmHxtRbif48Drxad3zan+HyrbZKW06jE/t7Vmvc/WC3l7B\nnNoLD3Xelul0MXbtfTAm572/paF3OYiESS8qMUHko45d7Q2oDaR7nuxxGq7NZh5uiFPyHeLdBfFq\na+H4z243XN1ek2/ehc0LtCm7YL3hE7+gegfLJ9Tdp+xf7bm/O/BqV7jfO5jvld1e2S/CUmyhdanK\noailjq220BkeX+GdYiYOXLe76WIImArwjKR3ESCjOAtXM9+MVZtSspGhETUa2q4TotamUferkS7t\nu7OdYPWFtn5UfXZZtIAK2TdPtrLHe0cQYmrdR0IRhWoXNwURzhDn5UsN5EliyhK2b/No2T+8opYK\nFeaNTfFtZp+tDYfoyxU7bZGiFgzcpS8CrcFcIbZcQkFzKNOB+U5e4Q5AEvkQRtZ8ysZPgeLcjKBr\n57CNi7iZJ0wozTsl01bDhQbizdWw+blGMY57hb1YAICWezZy4Pk28WwzcUiQCnxSld3hjlIW6nxF\nzltS3pLyxsqYJlQ2mKvjAEZwxMTji85MVyYVigN7mMQUWe55MT3wravKh1eVZ5N5bYS3Q1WhVFsQ\ntP0gC0Jlm5SvXyU+3i+8PDzw6XIHaTJ7s7MvFWl9Io6NG/WeSnuptgiXRBCP6BSpbXsy1Qduc+E2\nCZNM7HXLTrfUNFG9rmIhV90kEV4awTpxPpz80aJq+beJBdJercHcu23dAd0ZakowZfH0tZhpZZOZ\n5pk0XZn7piyo51YXIGkGURIHhE9g+Yhl9ymHO4vs3O0r+6Wy29nnYV95WIR9FfYqHIraZhQFlvBO\nkQ5sEmshAWwCpXaXxGDgq34kyXJ0R53UyqKKluL+6GaZzilm4rVfO6ytjd1xnO2IMEwspdVrjJu4\nPtb8pJUxwL+a3V08staw3Hzni80IVSspxY19PIRyk4qkbj56Sr7UQA4M01UAaUyqsGPv07BpA7K5\n7qAGzf5lIo1ZNy46Dk49+aX9nRonCZs3HZM1eerTTLOsKWh0rsYgxMt+jh23wp59fYmIS7eBN5bd\nXApHRZFahxgmbP78vjizDtw5KpFW0AXRA/NUuNkom7QwTYpcJXZlYTnsWJYd6D2aZiRtSHlG8haZ\nrkjpBtIGmGDIZjgavU4DfgzMwzu/UTUxc1rSPTdyzwebPT9xXbjJZmc+qLmtFTVGVmpCk62b2Ka4\nlmPk3brwzY2wK4XD3Uv2eu1zNfcw0T5K29T6EVY+LlaLagdwwsShiFSKb1ghuuO9q4Vv3cLNJHx8\n2PG9wxWf1Gfs2VKZvV/VbvYLdi824MeeE0BjSbVoyjl+NaAPwqhNsWvFN3AQC+lHXH8Wlv2ew+4V\ncvfrsP02Mr2PTFdeJxsP2DtAfUVavsfy8F2W+0/YPSwsSwTkgPi9LZqzsq/CoSYWTe4rHoo3urwX\n3s0dkxgAFsS8VdrbdyAYg6+SM92Uou9GZ7YaC5dZU4BDFCXaXBJHMF9TjYGRSztlRckiF1RKmSkL\nWQpZhKs5cb3J7EphKQdKUSI5oCaoxRU12pa3mn5y3LGms/Zryboe6ZNfaiA/ZnA6HK9lodZ7wrgx\n5eTpKGbWewz2ThA20VMNF+p4BFSv5JYkP2HOTN0bJbxYYwpEMm0r47MGO3XztW5Aqr3nSO9FYzDN\naNPTIUNk81IZd25vC75RW/GcaPxhpf3o7Vud14LUHVkWNrmyzTDpAllI28T9AvtS2C+WcVB5AMmU\nPFkkbr1hypWUr5F8BTJhcXhtSej4ibQAJ9UzLePuePUVLzY7Ptha9GaSyq7AfUkcigN5tX0d55TY\nVJtWb7NynSq3FD7cZnZa+Gj3wMc1s2hCIrdJa4YRNM6LtCbsoB8+4fa37RRks4o9GxY+vFr4LS8q\nt9vK9x72bO8Kh7uZqpZwtqUuCJCWDsYBFiOYC/SMjprWVUpvepGoQ2n251oStSZqEUqB3W5hd79n\n8/Il6fpXyZv/lzQ/R9ILS1LlJkvRT+HwHbj/NuXld9i//JjdvYGUgU0P/BGJWFTbUq1oNgB3hVs1\n3NmHLy8AACAASURBVAr72o+lGXDy1N14BhrcE86JK6FR6Zr5OcwlNpZHH+xEALtjSLg1xvgk2jCt\nTCwdxaOkJz2CnIU5CxMLmwzP5sTz62wzk0Nhdzjgk49WV2E5iPoa7AfIUZ9MPts2xXUqbwXIU0qP\nfreKtmq/yXDMvQlQtB447CtaF2o9MG9vyfM1ksw9ziA4AML3L1xx1dDOGFj6Ua3V/EGlNs1oi2/V\nbNIpgTqAynh99t4imH03vA7szn3flHVXUAIUAmTDVyHcBINVBQgaiKtHaraFMj2CoOjQvpsJPkD6\n0Dmqe6mgOyiv2KQDG/F0ojFgknCzzdwflPtD94NXCroopRY47KnpgXl+xjw/I0/PQMztT1PYRkHV\nF4Gi3Ir38gQUt7+7OaHs2JZXfONKef9Kybmy08z39vBrd8KrxWywYF4rs+9BKQLX28x720zemlJ6\nX5X3r+DhYeFhEbIWii5e1xbwIrDKa23Ne4YJuStrMGTrKsWZYTbbuCy82Fa+eQvfegGbTeHZFqZU\n+Gi347AsFCzntPjGyZMI2WcU1RfOwkolA22MBE22fVuYdOynLfLh+3iaSYVk/aZqZimZ3QKvdjDf\nVeZNYbM5sN2+ZLr5VdL1O+j8HJU9Vd4BLaTl28jDL6Af/1/Uj/4/Dh9/n/u7Ow6HA6UuqCxIqqRc\nbVG1CvsKFF/YdIatmmz7PLSZTqzeC7ELjxTbKi57/y0B4qKIW+IkgDumIi3FROtQBuYVN52Jr0lq\nX0chADIhKbX1hJSlAXfXJYOJyhepa/vSSIFtgm2Eqy7KlQjbOVMzvCrKTgsluZuoCLVIH1+CmwXt\njyVyu3nLW5t+iYD8TeV48BzvIB87bi+L8/JamcvCtLGpvQxsVdp8s91sBeCWr6HNbWiA2QJTbACF\nC1jfsqpfot7pYuGx7y8SQzBmCr2TjEYQXZ3noNZX1VontWsqpDMulSsk95V0BdtsoNKCe6K87QPi\n7n2p3nO9VbbZp+/SV9GvNxPPrmy/w1e7Qg2KgUK14aalWvj78kDOL0nTlX3yliwbVLJTkK5cwkMi\nxUwnBlrdc5MOfLhVvnGtvLOxwI9UhEmUq6SQ1fQqgtZMpKutCPuD8korL4F3tvDOBr51U7hfDtzv\nE/f0+MgWaRcErLHscxyMPsX3fSlrNZ9nA609QuX5VPipF8I3n8PzK0WybbG2Oyy8Nx94We+5LzEM\nZ1C7VzCznLTbu70NTHHY3pzhN51iB6DUFeTYq1Dbd7PUylKVpRQOS2K/ZB72Ynbuhx3lYaK8/HWY\nbU9S2X6fPL0ACvrwbconv0j9/i9y+PS7LPf3LPvCciiURdA6UbX47Mjtw93I7wq8mzuMn3hfV9pM\nugYFasw4Fn9tRmleIWbn7zMxizNIY7uokKQ6pvsuoOoM1z1YYlPpWIcJDxpbd+ojo40UiSHpKiC6\nvu8RKmLlOZTKw963iLNk8tSlm5wmJtvcI4VG6qRARFo+GmPq4skClZO9TF2+dEB+zICO97g7DqM3\nMC+Uw84AxPO05OnKIoikM+cB0vsULYIjGmMFiKmqT3Y61sZ/HIfWapRZEyLjood/YjGtYcKZ653l\nq3QWH0it/SSMkriiSDZfa181hdR/2qykOJhHrFsojUikBaIF0R2T7rh2s0rY14P0zEl4tk0cSuJh\nKRTfUSfVWHSqVN1Ti298kDNT3pDnK6bplpRvSPkKyVOUrLGlJLl7a9SK6IFJD7zYLPzkrfDBVeHZ\nZI0xpcrtBPkqwr6t3YL5FYXFB9UGO5ZEuJ2Un7gpfH934OP9zP0h2+xLLW9381F6wkY+Npq5p4Z9\nvlJqMaZZF66myvO58tPvwNefKVdzpYrFlr7YFj642vPd5Z5PSqboBnMldSXt0ZzRb1cgPh7znCrh\nI93GzdiXo8dVmzXZT1jqxGER9ofE7mApaQ8Pe9KnH6Oi5LpHrr9Hmp8BSrn7DvXj73D4+Nc4vLxj\n2e0opVCWQlkqy5I4LOYzflgsgrMWWfmCR9nw3tdoxNDPbO6bUEk2y6gYiIcvdbW9QFPKaDU3v6o+\nW4739aGTRVpm2FAi+H3tOydog6lFwE0+2oieNBSP3+MNfBnan5FcGR0We+cpW8KylMTnGkYEk8As\nlg++SJ9UxAyhejSspW+IMRJnncpbDNE/ladzWxyZXcZ7uE9uLXsOu0pdDsyba6bNNTJtiU2Dm0FB\nBPPyGGA9GkYyKjNRtS0GckjepG1eN5RdRw5k7CJcH7tdXNb3aiybEamjArxRtd3fppGd5Zs51xeD\nwk7qiK5tZ5KBwWtBZKHvT5o72IuAHsh1x5YdWw8mMaDyAI5aEQpXSXlxJdwdMmVvnggiQ7pQUWCx\n35cDh2XHsr9jn18yzzdmdtk8M0+XNFNT9sAiYfEBnbQwKdzkhQ+uKj95C8/TgVmgpkxKyvXcF7F6\n8EzxaAMrgdZY4YDtbLl73psq39grHy/KR3vhUGyqn8ONdOhf58hDq2fMs0VLpVBscdNNAJKUm1z4\n+nbhp57D+1eFTTa/YhHldlP4+s2Bv/Hwil97gEVuSdmCmGp9icieJJZwIOzm0vppJyXQUUA9stVY\noTE6cth8oerS2LCilLKwPwj7w8R+gf2h8urVQpV7trUi5YF093103hhkPbxEX75k+fSO/f0D+/0O\nZY/WHcth4f5BeNgLu4OwlMQSgUCLBQXVQlMuLTDHTWLmZWIx0rXabKovhmp7v1It0juFC7JASsbQ\nY9G5QlurmnKmiu0ApIh5tfiOFcmjYO1PD2JStQRhPmNQ71/KsAgeo3wY1jZrSkyTsJTqvvIWKGW7\nIykpz1zPVo5cC5PPqg6illuqeqRMVU8kpuDukxkz2eQvk438dfKkXZL1IBuusu9qoVCRgzW0VeBE\n7C5uZgYBsW28lmq50CUJKV+R07XvKjuyo3HhwfXwsLDopWo4bCxXgew9N1p7ZOQ6fOido33Xn2oT\nTY/4E+twGmaAqrabSlt3CGDuV/eZQW4KwsTdFgOZ1NKiXiergqqWMPWwqG2qWwpXs7ms3UyJF1dC\nrYWXZTA/dY3Z390aBtUdS13Q5YFyuHOTy5Y0X5HyjEaUKkrWPVd6z9evF75xvfDuZmFL9ag9sXBz\nMQCPqbCIkCl9gKHN/lhRJIcXiPDBtfLpofC9B+W7e+V+CdA/39fOSQtmIQC/giRSTkwsfHhV+U0v\n4GvXlau5ksVZY1Y2G+XF9YEXc+I2T1S55tnz58wT7F/dkQ5WZz3Sc7STD7NLz6rXzI52mU3CRRvj\nBCHJBM5el6WwZCizKb1DhYe92cthMSeiWtDtQpps/Oh+T3l1YH+nPNwV9oeFlMwenrMph6UkczGs\n4ptzsOrVjRV7PwkyJU5G3FpqO+E48osqUgVxJj5lLNd6tvfPEZAT7x+sXTwIyMfd4jEeVZVaals4\njJ13jFfJkbly6MPI8H3vK005xuJqmCIlMc2+3Z0WN6WYHz+L5Rk3k1xl7372VHONttU8G0+iNNCf\nvmpAfi4z2fgTjgG9H9NaWZa9XwyiG1LyzljDz0Upy4Gl7Kn1gKSJaZOQzZXxNxk8GpqPV2hmTw2w\nGvZ1YGrjyxwDeafg4Su8PjeiAGs7qysIb+i6NyBHUNkgszM1mVbTrwCtAHGJeXoruSss1AJx6oFJ\nCtucKLVyqJUHhf1SqUsh1cqUhO2UmJPwYpNYlsqyKLvF64bB5/f/J+/NuiRJkiu9T0TVzHyJJSO3\nyqru6g0YYMj//yP4zgcezuEQHAC91ZZbRLi7maoKH0TU3DMrsxtoguxq0M7JLTLC3VxNVZYrV65c\nNnN4SEVrlVYXajmhaUTzhlQ2pDwiacR0QDE29shdeuCr7cLLTWWfK7lzjYMd0bf0sQqHqpxqRD/q\nmtiTGPsBpgQmLXBHFxR7ujGOpfL9wZjNDdliCbl4Jp814hfGqXcGxpHzBpSk7HThy73x6yfC7QRj\n8ixO8eEoaTBuNsbd1LgdKydr3FxfsdlsecAoDxWbo+jLpfFeQ4p16zSzYGT0RLEbFmIvR8aGdXVc\nqhglO2ZbW2NelMeTD6Xo9SZrjTxWUo6ZuktlPlSOD5WHx8Lx5DBNrz018wESPZrs8MRa4he/N294\n6hos4nCPrdyl2DuuRZIdOKHDnUlgTMqQfLCzod6Hp6wU1HMk7++btEfYXRIgaI0x0NkaYRdkxajX\no/w5P35+IPTgvO8ZW6PnbstwtlAwaIZeHbd+5v3/a7MLKRC5qMHYmg187vpJQSvw6Wj80nB//GFW\nI74aeXB7Vylldk87VsgTOWdojVoWluVEjQG7RNpD3sVm64kskVZVx1DFOEvwXkbkPWbqCx5fM2Ed\n9Svy0RCHaM9eX+Gyg67j9R2q8M1ZW8HqiVYfaN2Y60SSEm3q+/Xef2SwVyEtvYgvOkxTQ+NkQaWi\nKjyeFg5L41j9tYaU2eTBo1qc+Hg9KHVKlGIstZ7Zzm3djRAZBN2wS5j6NlPqAssBjkpOAymPpDwy\nJuFmXPjZ5sDPd42nU2XQenYKBj7o1otdh5L457eNP9xXLGeGBNsMd6Py85vE8z0kmVceU1JhnHxN\n3xfhfWncL8KpqtcJ4rmfTeen9uulab2kHrqM7pMJfn4t/PKJsBl8AvrKnIrC5H6XeLrLPD0q75bG\n1e6O6+tX7HjCu9o4Vqd3nlvWV/fvpq13ODqYusYSTbvKok8r0mg2KsVz92TemOS8cjjNC6oNNweF\nLndcW0NzWllmUhvLqfLwUHn/MHOaCyowz46JL00cTmlGac2HRfTtF780xdbHsf2chdNizKdwIKsl\nEwYVsipCcS56cy6Y67CDthZMGHwk2zqWrQdZ5nTaMAotzlyHQby+dqZDAlwIE4Vn1IvMoR/f81nt\nZ80jcFaGUT+/Zanx6NT5+hmnShfxjEf6tNiAMDvFWMQbvtSftkNPlbpmvx9efyU98k97lsuo++PI\n+1NYuXxkvNfvuPg5s8IyG60ulJJo1QtSrfbRTLZWsNe3EFnbttdUtntJAxd5miOVW79j/fe50Hn+\n0wwvYl7yY6PAtu6S+MazM7H1IHgwUVFmplRp0lhq49RO2HLEdIMOmwtFwp45RApostpWNzydGwzS\nGmozaifEinfjVf/5q0l9FFhKEQl504ZG08t+EOZN4rBUDotRzL/eP2J/HJdgUXd4tMDetSDFG5Fg\nZkzK09H4+Q3cTJUp+/SbOEMgoCGE1JoyN/j2KPwf75WaHHLZZ/hqL9ztGl9II/fIVkKCIMHVJPz8\n2nh9NB4W4dh81FhrLYyCMypa32CcE2p3SHqezxHPKYtxNcDf3wlfP2lc79y9eTdjQrUhqgySSMDN\ntvJ0Z7w+DfzDf/k1z7/4O3773/+J5eFfOd7nMKpB2+vJdryZEayingH1gqEs0ekaw0RMqNYorSE0\nj5YblALzLGd4w4xEQpszj0px+MHZJK7xvcyV46Hy/qFwPBVKNQ7HxrtH11ipzSGmhkFwwpNBa0oK\n3mDKYchNsCKk6oFBdZWGyBKUnIxBK9vsHZun4gOSa2RfGShrNhWGG6cxegH7DE90vZdOX04agsbG\n6jySCENSBm2OrsrlWbVYaS9E+3GPgM8c8hsUtoMyGyEaVtxAh2NJ6rWTGvAQ4vCToAwCJGNee5qC\nvRR1sa4dkz5D3f6rQiufYqZ8Kur++Ps/vj4o2H3w/fimar6otcqKa57hh4scySyYC57KuVFMnDG8\n80HuwxLOrGyldzH2SN5f/xxz9+5BN6ydCtjZ5Wdjd5GLnAuTKm5wpbLJYM0f8um0YOWI6SOmroGC\nOL981WxoPbtgFaM4+xMvENJODCyB4wopZUY1pqxshxjfFdDAWeujMmbhahQeRgnWhv9/w1ZnCB2b\njnUXx2VTfNKGR2/SKoNV7sbEFzvliz3sOrbMBRXSP8HK6S0G90X47qRU9aOzT7AbhKX5z+uFIe+t\n+ZtBeSHGl3t4czRez8ahudHtGGvPhi4eyeoYP8wa/d6mZDydGn//TPjy1gus74/C48k7HIcRn8Yz\nCEM2bjeNZ7vGdwgvn+949sWWH/5gaIrBCKYRj9mF1oavp9rFXvvgfHeutrpsQQQk1UCtUxBhWfD6\nSmxHmnfB0pRalWVpeGOTB0y1+uCE+di4f6wcTtGWPxuHWai1R+Bxf5GA6oWjUQxNTqtUM2zObAbY\nSuP9QTjMcDQ/t0kag1Z22fdHZ5k8Lm68C0Ixf/6V8744u70zTNPngIIXRV12N/oq2nk/DeoNZSpy\ncQ4vr+Zn/xI5aP6aQxK2A0hxWNLdWadLOAc8Ja9fSZxpzIOtPqavhtNxx9ojfA98krpGzqeuv2pE\n/kl+7p/AgS6vD7jkn3iNDw8ZgH2QlvyYjeARobUF2oIk7xD1XNCjongZoGHSS/Bdlzw89fo9H0Zw\nbkSrP7ie1vUk2fRs5KJYEneEWQKyV+bFD8A4pMggjPtTwdqBugiIocOWlCZMJ7zYqjQbaFSQdo6W\nwz0lxRug2omkTjncZkGHMYSWQv+iVaxWv48YLNyab9MpC092ibk25mrUS4cWG/LDZxfuyrrWCVQc\n99znyi9u4OsbuJlsNZyrMw1HcOEfIxqW0DmJN47Q/YwzXuyPcJaD+CjBl3vh9RH+cD+zkJi7Tsw5\nQ1+zi4tPQQ8eekSeUK5S44ut8esXiedXboxfPza+fa08HJTtDu6ewLObxt0Et5vKs2XhqiyU+Xe8\nu6+8ff/fOJXvacwrwtO3lCcHtoJiHdbxD2Yhc+rc+GpCgWgdYy0k1iaU4uvYaNQmtOqysUqjVvWi\n5ZgxK47t4pK0pRjL3Hg8OU96LkarHc6zVZirtUzrVFj1yH6uRqkwSWJMC0NeGHcDmyuwqfL7Pypv\nH4z3R+NwaowCY/L6Qi9E1jFxqMZSGiaZ6HSPhWn0JinPPQIyCaaXaGDXSdDkBtwieBPzAMabbpyP\nL5wf/5pyXYZZfW+KN1zlrExZoc1kAxsSx1opJqCTZ7PhxFrQdSWkBVYWTvP6RevMGumv77WXnH9C\nxc7PFTP/vdfnZu59DpY5t/Kev1ejm0uCMmc2I+3k+7IzKSQHEiJxqBpoiai6rXrk9MzgHA+cI1Iz\nByT79B6/O7+PC6Peq/yinWHiokoqCyJOkRvUvbOYssnKsSyU5Z5ajqATkjZo3pLGvXO2dUS7QmLr\nQlsWgpHOHdd2YBoam2Rs1PvtaoNTgVPxzzkqXE8am8YjBcWYVLiZhLkkj45PRu1NPbT1c17sAP8/\nibqDOSTxZFJ+9WTkl1eN5+NCbs1vN3D1bszXwyMdYLA1ClytldqKW/rz/fDtIUalSeHZpPz8Svjh\nEcp7WCqcxKe99P6vH4cXthacFS/CbbXx1bXwjy+VF7uF/eBO+ulWaUeQBR4Pxh+LcP+olOewUWM/\nNK6454//5//G/Lvf8u0fv+d4vKdR+AC+i2W8FEa0KDTautKV1ECkcHY0zp6yoLiVWEMPPWR1Bikp\npQrz4pHvca7rZ0WCJ1+M+WQclua6O3UhpyHotzUKruIVDIsGKXPV0iSQB3gyDVxtJ7bbxDAYmipL\nNR7HRi3+ftvBHeMA4VzMWSzNz5IZlLog4oO2s3rzXrXGEjS+LgPQQ3PpDB/8KGZRUrJQkPTakQUf\n3RvgerbdQa2+d2S1JeE/HKq0wnyao7fCg5kU329WyGbkYlBDtK9P/oiCeW+Hap1FE/u8269mvv6f\nun4Shvzjjs2Pv/7vuT73Wh+//+XAAOmu1RrSFqizfy1SH7qmiYSJFuiNRp6g9SNxEZWvW6Abalgn\nT1jcA71ZpxvyHkX6ezqnPSa0NB/5laWtE9JJym5IlFpYyky1BWQGOSJ6ZKhH0rBBhhHVGMjBxiM3\nDbzPXNQp2ZFJK5vUGKKhaWlwWODdsSDAfhB2k5IxxCpd+QUxNAvXk3KqcFzK2ih0tjofPo8zg8YP\n2H40vtjBb54kXm4L+xwF2JV2eY7CBdZD1Fka69d6gc16/NSLkP7Fy/qFp7iN6xFe7pSvb5Q3s3G/\nOOxwfoqf20hnx5IwrnLjq5vEb54JTzYlIknh6c7IBptsfH8w3p+Uw0l4f4RpD7uxcZsO/P7b3/J9\ne837h8I8L3xQZA0sLICx+HsPF7oIVdDzxBikMaXKIIPzta37OAmGv9ekm+BFtSrkKpTiq7aU3n4e\nqb1CrWHIZzhVmAuU6jhvrTHCLWCBrI519+ESqsZmUrZjZivCdhCm7JliNiFZQl1VCxXYjgQNpfPL\nz8OQkwpJHL5ISRgUxqw0g7lK4MyX0Ipd1KYIp+Yn1o24Q4d9nNyH635JPb6gHwpYhMuCJ+5JGrSF\nrvfUzMiqDGIoha02cjyIE9mLwR23j8CInt1bwJMXndNOePgJFTs/d33KaH/OmP8lBv5Pa2d0CKQh\n7eRKqt3WMAKdddIXG1YcXVIYHWclrAURvCtjPW6xqYzerWEgLQoe3Th1I55XnNu99EKmkLWRRN3T\nJ2E3jRxm47g6sIa1E22ZaeWelDNpHMn5hpyvSakhOtJio0mbSXZilJlR3QAkGtWUUuFxMd4eijuP\nlHFGe3UNFpU1m0g0rgZl2STuT422gFWnbn7sVIXATWMLJxGeb+AXV/Cba+M6N08/RdB2/qkVQSA6\nGmGNsATWIQrNzkZeepFUzqjVSoWL15uSrSyTPz403p5cjKun7T8y5nJ+Xr4LXCPjdtP46kb4+k7Z\nDmcs/mZXuNnBi2fw8qR889Z4+9Boc0N2ynYUnm4Xvnt/pByE+STU0hkcdr7RNTPoDCmLA78iSYCR\nc2U/VK42RtIJM3XcPz5LCb68Px/Q5r+W5lKzLRpkSkyEd0wbn/RTjGUW5qLMZaDWxKl64XQpiWoF\nFSNlYykOgdQKu2ni2e3E3fXAu+8PHI+V40l4e195fpO43g48vFt4f2ycxLjaKMsyU5fGNO4xVSwZ\nSmLMwqZWljIzqBfhxywUy95DUquXsKLdUqKeoRJd124Q3FFZOJ6cEHOuufPKm5MTNDbKh9jcag9a\n/P+Qhc0ojCOIuICyLZUpCVMWNqmyjXNTmvCmGI/NociuUKFKCKFFcHlRy+uG/NMMqp+AIf9zLfif\nuv69RvxzP9MfGAiaHOcTHG6gLawaW70tvpPxxb/zkjzoEbpFSuVG3Dp+zlmjvB/E830REpzBtl11\nR5Tz6KsK9USSyqDqU2Hih6c8MSSX8Sy9SNJ7G6vQrEBdaFoo+khKb0nDDh02nue2Eyla8segrYkB\n6oXW1qqvUURB2Yo3WfVoWDoP3fmx+0G43fqBqmbUFuyb4AX38rAYNFGGLFyPia+fKF/fGE/SQlL/\nP5Ngx/S1WyMiWdeuRzG2Wuuzhf4g/YULR8DK7lFxAzcm424rvLqCN4vwriYO0W6O2JpVha1ci8Uq\nSlbYT8Yvnme+ujNuNovXElz4gyaJ0wynRcjJ+OKJ8eLaEFN2k1GpPL0StvcnbDbm2alqEfatjqOD\ndr2E1pX7nAHSoS7YZeP5lfD0KnMqiccFSo2S6YWcQ2enaGnr2mp1GVYXhAJTQ9QC93Yd7bIIxbxO\nlLTGDldaS1j1Iu5uaxxOytIUqXA6wvF+ZpGZ42PlWISTKfcHZdqM5CnxUBcONXOShB1mkiQ0JZaI\nsBeDU2RKOWeGwbHuJnBaHJ4pDZI5c6klIuqNvpAwjr1/ozoO5NTd6Ia25o7HUg+q4oHHn767oiag\nThds5oY0J9gNPlrQTNAJBiqDGlkb18nhmrkJBzOWmJlqKBlhEOfGFywKpZE5rFH7h7bj8vqrG/I/\nd/1bovFLmOTPFUE/HeGH515DcC98nuuCBlqRlsPq9kn1rB79HOKd6QPOdKnnUy9nv9BTMj+lF0wV\n46ztZcTPz9COpKEypHMrvOC45jgkhlmZew90/4UFVzicipyoek9atuiwQYYNWQopnxyTlKAlmrBW\nWeTcb+qf8Ey4/HBxHYCaEtxMyrEYp+IHnNbo+jNn/q2RJHE1KF9dJX52Dc+3jVFLyKZewh9nF7iu\nrHvcDzb3mj2v9vzMZFhD9/481+X2vydtXI2NV3t4NwvfHwnGB4FhXryTnJ2ESmKTjWe7xt89h69u\nK9uheHt93EczeP2gfPcO2gB3u8bdDnaDa8bM1XiyS1wPC5NBLck7UnuwEMbXDbHfQ4sP3KNN8IEa\nk8L11LjbGk+2ifdHFzizjr32DKNZzCrySHsRh0Xa0qKmIAEdeOOO9yk4jbCW4HNn43pvLtFwNE4L\nbLfGkzvhxbOBf/29cayQizOUtgPsR3gLPJyMt0vjMAvpXjg04d2SeQgDfyKxG8RlGFKMYjZjKYJp\nir3vnapm0SAWzA9XLvTmJJ9GdAlGEWsZsEY8o2pnTnrfE3KB53kPT3RKWN+R3dg71i3quH625hTY\n4ZyxVnNWTxOhIuQkbIEhuRZMh8s3KYS1qmcEF6bj4vT9+PqrG/LPaalc/t+fMuafK2Z+itr48Wv+\naGLNRcjmXZQ12q8NKKhmrGVMB0wG704znzNpYqFJYmfjE0Z5xWXXkU6y0ps6p7vjeP69FgVU3KHY\nCezIII0hXTgr8Zx4HIVNEQ5LTEBp+OH/YG0rZpVaZ8p8QOaM5hHNQt4ru8GZMcFvcEOhniY6lzmi\nOemgSF+u+FdEO1ngdhQOs3BY4LSk8AAhStXXQIUxK083yt/fws/2jauxUq1FPvIhptHpn91hGuJr\nFGtr66Hzw9nW59tZRdC16bsTAE9lLfbDlApf7ISHGf7wqBxMOZlrX6zZgLGm3KqKWuJ6aHx11fiH\nF4VX14WsBa+ABcgmwh/eCv/rvwhvG/zDS/ifvzT2zyopNSaFJ1t4NjVucmUdKG5geNNIw+mE9P0h\nTjH0tnZFkrFL+GvtKjcbY6PCSUOqyVyZsppDz71bWcRZLJSIbM1IodQsGrKsaq7ShzjPuypNjP0O\nvnw5cJiN798oD4/Ks+eFX/0m8ctfbXj3v8y8OVTGBtdj4tXzkS+fZF6/e8/8vvD6YCwNHl8XiR+z\niwAAIABJREFU5LXxWEbul8KpVJSBZpUhFW52wUaJZ1iqUqM+UYvDcPtdXoMgNaVJZW7wOBtzszP+\nLWc6oMU+aOINhGbdebmoFsn3hytN4lBZKPoQ+zSLujZTEqoWlqrQPMO7SX6/xyY8LIlDCUbN4IZ8\nHx3SS7VVX+VqUKo1DrWtKqESxsR376evv7oh/4+6PtUJ+qe+92PGS7MaDzOHQ7AASjxxxPAaRMd8\nzXD2h1BF42C0CMidIy5yVlumT/mJxhy/w3Z+Mqux7/8wfw0WYEGkeJeXZrqes1e2C6MY2yTcq3fV\n9cJXd96X/mql45lBK4x5ZModrunQzCXVMqLiDlNcvMZFiLv+4apuvfDZmOvCHCwCF8XwdTARnmyE\nL6+En98K+8GjmD7y6+LhrA727JwdDmsqFE0UyRGhulSvmNO4LAS0Gr0P95yt9bxgXZf4nLvReLaH\nXxyNQ0ssVbgvPQfxg34e32dMOvPFlfKPLzNf3lSuNp7ZXK65iTGr8K5l/vhQef6QOZwM0eJCWWps\nc+PuqvFs29i+rxxlYEEQG5wtYp2B4XujCx33T5VMGHPjdtfYbTzNrzHkGCyEpc6Oz+Euzzg0pgZp\nf+UWin2xH02Elj0qdpGwwm4jbLOQcmU3jOSN8vSZ8exF5vnLxG6THJufGzY3njw1bq4NHVxgbEjG\nzSbxeHKuuqQGE8wPxnExjkAqwq4NDKNxOsy0UtlfwbtD5TQbiyUwByFLi+zEGqUVqglzc80SUYdb\nVl0ikWC0hGM3l501xBugYm27ys356Z9zUQnCQVahhK0oNA6tsjRhBtKxsskOLz0uilmi0ihLZWqQ\npYazFhYzTrVRUY7V1v1z8Y4fvP/H19+sIf8cdPLx//1boRmsUWvxdFlTyIKmwDnOrbJdDlYwx8wv\nx61JRN1mgWsfsFri8CTQIYYWh7Rux3Pt43s0j8QgIJ6FLH6wanMPXmrM+xOnTo3Ziz6tuoxquPGI\nRD/6zOJGK9HYZmGTvbnozELpwe1FVCyd3fNxXNCpm90YOq69H4WlCofZuG/G7OaGrjFtCHcb4eXO\neLFpbFLzOULSD8zqRdZn9qEDNkoTTlVopozisrbVHLPciLM3vFNQkHTGRnuazfpedBSJKcPdZPzi\n2ngbjS7LoiwtimN9dipOmbzbVH71DP6nr5TnV8Z28iismdPhOkSCJhZJPFbjWDSGBniXp0Zz2ZO9\n8eLKuP6+cqyJU/UCXI3iYxXWYtiq9hN7TmjuDPY+nk+1+RSg5ntkVN/jnULbYgmsgdRO5XQ8uYlH\n58ni6xoQXdQgpHnvwIDy+B4swWar3N0p0pTHN8LxwXj72jg8glriyfXIOCr3Bx/QnASuJ4d3tltj\nt4NDqVDh4VE4mnFqwv0svH4QlqNL7sroGcVSu5hAyMZWF0hr5uJT1nyfDYk1422AuO2nNiP17K6t\nBJkV1hQ5G9EPLI30PS9Yil9iJFGGlEgpczI4WePYCkmERYTH1jyzDZGsTUo0M05Lo2DMrXEKHajS\nzvGLn0MH2da3/8T1N2nIV2H6z1wfc8U/dalqFDojIm8V716rwS3PpJTj78kNeLSqCQlpDRgQzaBB\nEUQxBkc2W6PMD0g5uHE1IY170rAj5w3eIEzgn9L3Bx3B67vHakFaZcoDajAvxuNcWEoBMzZjYjMq\nKSubMbGUxlIsIBHXiLELR9GNqOAtxftR2WRBL2a1rKwOOG+fTwQDcmnU5RwzGI1NUq4n4bB4d2VZ\nDEnJnWS80N1WeLap3OjCSnNbvciHxvxjymoD5gqHuUFr3GR4tREWS1iBAWOn/n9z9WSgV/0vMw5v\ntu3xlrd934yCXis/PML9ER6XzPt5Zra+Ik69nAS+uoF/eNX4rz9fuJ0cX/bCHz4fs0Gu6kXqFM0o\nfTkjUJDIZJ7shZfXcDc2vj01DgtIc0jB5WtaDJ04t327Jrk6a2isvLiqbGIo9dLc2Q/qei9iFWvq\nvRGKT62PT3SOOn0sn2P7tmqi1wZo8g5GMaZBoArf/E7QVLl7Cs+2E//yzzP3x0rRwm//1Xj/KFzv\nMldXe5ot/OG7B44HJVG5ngpTUr56pbx6obx5XWgnePNOOC4+9endyTj9QUlpIOfMyMxS1T+HgWSX\n6C3F60OLCYfqTmabYJ8aKTWnJoqCemer103OA8tNHFPHeuE3MtEP0tmzkTeBmgTJTmvYpMRuyOyH\nSmnOMmsKlqG0xoECjPgEKNglH/N3z8zDUjhVv3eNduI+POPyzX3Pftru/U0Z8ku5yI8N9b+Xg/7x\n/0tE1KtMbC20FgJKEa55MObGKOno8rg6+JAEGUBGJBmEbkniSMqNIoXDXH2sUzo3C/SdsZZiehQs\nEG1nYAvSZhRjnhdKLZRmpKQMQ2YzZsfNm7GbRk6zMZfl3PH20XO3cPWq3oW2yTD2tLsjJJf31Lya\nT6Sxn9pIZ4N+NgkiXsjZT5n7gkfkmqPxwrwdPyWGpKw6QXTmToCd/WYunv168BCWYpxOhbHCq1G5\nyUoRXzoFhgSTGGVp1KQXzknW3y9WxnFIUYakXE/GVzfwbjF+OLmutDQiUlWyNK7Hxj9+NfD3X1Tu\nrheHVIgpqs1V+fyjKOMAI0a26jzoLGh2TWzMndt+J9zdwPOd8T/uK1aNqhqCZr4m7mRdAvWc8Dd2\nWnkyGs/3yqR9pJ6AQZYWrCQ4BQyhOH00mdBqNMugIUtwjv7V4xMsjKePOCscTwN1gfcPjV//cuDp\nTeZ43/j+deObt4VDWXhzgGM12rHy3/7lEZaFNz8cudlPZBndiW4bX75SvvpC+fJFZndt3F43/un3\nCz88Vh5n3zdDNnK20CR3R57COUmDlARrzQvuOZNoJPX6lVY3zmPy8m5SieEVoV+SYDdm5mrM9dw1\nq2uC3Weycg4q8EJ3kkwShzuX2jjMJ2o1hlTZDo1tKqgo11PmYfHC84Jxv3imfqrRPKfiYiDWoRs+\nyJJFez/FfzJo5VPXX9IdCqzGoTcGSXhmPz/xWFckxB+gaQkIJrtBTyOa+pScE9pOjKmSkzDPytEW\nWjlRAit38aRQI7zQNreAQ/yXY+SKq8wZ3so7jZ07q4zZ84CmMA2JYVDSot6C7Z/ux58XP8Tj4NS5\ntE5vl4v7kICIgr/a/+z3eF48zgb8IoKP33PyrrvOCxchCkfEHEmnGq7NEKsL6ffqX2v9lS9goqTC\nZoBJjStzHfomnO9bYJsbK+WswynrYeivGU7dnPcu0hgSPNsJL4/wu/eVo+HTbhAGUTYKz3aNX79Q\nXj1tbCY/kGbO5ZcmZwKRuOHOChrGUhPkwdBkocHk0fr1Hp5fKfsfHHaonNN8Vujp8rn6164n425r\nXE/ezLQU4VidJphVSGpsEjxICFtBwCQ90nOj3/VROhyhSrC3nAapycjJXDArJCxyct776zeN795W\nvntbeJgL9zVTzPn4/+P3J6cF1szXryZ2k2BamZ4bm03jUBpjVu6uhf/ypfLsSvnmbeO7e+Ph0Bg2\nvgN+eBO9EmIMqkjIFmr8loCcHTJKgtOK1w3VN7A7RJ9n6lTFKWdXW5TG3KK4yXr0V5ijr70gZElk\nyZTQNipmHKsXuTfZuJmU/WAMpbFLicMc8r7Afelianhg12GrbougL/zFvz88G5fXfypD/vH15+CV\nD64ejSJrOok5dW9lSlhghVRMYliu+tSOPG7WJ93qgSxHNoM30bhmgrDUQmlHWoOUCykPJM1oGjjP\n8zQ8BDJoC2rFZWpF0FEQHRiGgSyQaSQqYk5pqlkZciKl6NCAcxS6BriB7ypMg4Yg1WWzTb+8m67F\nFw1W3rLf6OXfJd4gLLQoFlMFYuWCHWLrrhTV8+sGxqs9+kZWqqLbl15ghq7o6N1/yjgKycCat4E3\nqTE4GQqOnScPkc8fTqDXJT4w6eI0vf76Vxvl+c54vqm8qYkZF/efJHEzCl9cG18/Ne6uiMG9GntE\nPIGJqLgiaI5aL9mNR2rkwULrhjXi227h+Y1yu4HNPZzOcQTnnCWiihATywh3e+HJDqZUeTzAwwwP\ni8/mTCkxJac7vpvdIfWEpydZ/ay4vPhqsXyYg7gDStoYtHGzgflYaJq4uhqYT5Xjg/HHb5Xv31fe\nHh0WOgaMU5vw++9nrkbliyc79vuJm+sF3VS2P2t8913hX/61sp2EPQPPrzO/+cXA63vlj99Xvv2+\nkjbwMAuP7xOiSxRkh5XlZQKjuCOy3FiWEFXL7lxbc9383uxkZuTAt80qaolJDM24xEDy/XCuqfT1\n70ZVSZIYJDOjNBKLGLPAKMJ2UJ5shK0WHwgeGR3NVTIemkUxOTKrNePUizJU7xvoCdkZ8vz4+knJ\n2H7u+hyF8C/9+U9/j7vcJMaUlJQcKzwe66pVfOZqGJ0h0RkkzvfuU2D6NJDEqIZlZTuNlMPM0haW\nU2VZjo7DayalkZwySb0YsmLx9USmsRkcB9foIisNFnOpzkl70cuLb1P2wQ+nxSVeHW9vsQG8RJYE\npqRsxxQblv7busmLJaoppp4BTClkOFf9lEZXlWrt/PNO9StrFIM4S8A0GAFxElwy1VBzMS6RzpPu\nzjde0aK42KGiCzghqzdbePTkBcNupG2tPaQ12l9fuwUrSaCtjJxuJuNPkaAFCl/fZf5QEkcTRlGu\nB+XlNfz6ufLitrKZKk29EUtEIGn4CcMCBskDaLbImaO1fMgMua1OysTY7uCrF40vvhH+9T28e+wi\nUH5f5/qz49dZYZuMV0/g7sqZTMdZeH8Pb45OF02i7AYX6HozN+xUAT0P9L2IWC8zKp8Xaauey5Od\n8uJGeXk78s13C48H4/iw8IdZOM6Fb99W3hwbhwJzS86qEkNQ5ibcLxV7+0j97wtPnylXT5XyA/zu\nd8Yf/2Bst42/+5ny6y8HOC4IyvMr5S4NzMA37xtXU2H36KMBBxmZKVSruAZYRZuLeJXiHcOLFkwb\nc208zqDi6i1G41TckKYI5ydp0XQXY+i6B+1BxMUu9z+8Icgkul4XoxRhSD7WriyNQ4aHBqcYaTeq\nsMkG7SwvLNbO54V6Ab1GQ1OzNWv8nOX7Tx2Rf+76HKtFcQGezeSFldpgWRYf6twjz4gqPxj2w0cN\nLNY3hKd3QxI2Y+LxpCy1+OzEVmiyUCWhMlNTckOuOZgMkCmkwaVkh+RV+NLgNDtVchBjmHLsNzdo\nm0HZTMkLouAshf5ZYzfm5LDKZkz4lPHoEIzotzXhVBulugbF1ZSZkrAZhC6H3AuH3biuVfZ4JyAk\nRkM0P7rmWtDakrihaCYsxfUuuqFyg+idkWtCxNmAgfOCk/mRFOHM4KDDJH4bPjHGdcbX5911ZuL+\nRXuRtR9Wf5oJN5K3G2OjMCKMYmx04XaCF9dwtWmMQ4OQZV0zErE1k1PJHumlXthUNAl5aIxjrGMT\nTI2dwqsXmVd3jbsfjN8/9r0l6/peRoVTNp5tF756YjzZA7UxDrDbJArKw2zU4hopu01jd4LhUWhV\nqcIKWfXfLbKes7GygCyMbTa2WaA1KslNToPjQ+HhVHlYjLm6tGw1iQAohmHjfOrlpDz+YHx3amzf\n+fN9/Vp5/y6zX4ybm8wwCe3YmMS4GoWnG2NKRts1fvWssBky3z4kXj8GQcEENcGVRUOyNlLquTrf\n3jVYmg91EHf0tUKjec0CVy8cckZbJWkiJYXVGa2UhPO571XqSEhjnCiLwKHA21mhKI9VmAM2GdU1\nxRteBK19Y4YFsn641j88i9D+hZ9SRP7/5fW5aPzHo+O8YjwMic1mJOdMKY3DUam1hZSnRHofKf4l\nm0L6BnG9lUQNbrYEjJHJaUZKf0Bh2Kg0W6jFi01oQlR9eEOGNCaGYfBmHRNqNQ6nSq2uBb7bOIjp\nbTtuyHc18T756Kgiwod+vDHkzDQkpiEj5lKpPb52SMU4zYVmypQTY8INeRKy1hUu6Bjwiul3Y4wX\n2+ZOD2yhItgWsIzEvMWeXTyWFjMJeyGpRnOS49XS2/QjgvScIMyt6cobk56e9rhSJUSb8Ck68fpq\n0JSAJsyxyVBLTD0yD7hBgTFVNiQmM7IZAwu7rNxsM2NAJqas+L3R9wVu1Mlrg02ioZLQJKRhIbuM\nj8N4auiojHnky7uZ5/vK+NrZDCbBUMEdjeK0vt1Q+PJm5stb5XYH94/GzZUxbRL7Y+L3rz1DWkrj\n+qZxdTJ2WbgvgzNR5KPzETRFpQ/U6Cm9Cz5ZMV6/qzycRhYbGAbldFo4lUZDowktFMHj57u4bCMz\nW+b9Cb57rMi3lWmI5qeckCHz+jHx8FvjzR8qV2Pjqztj/JkP6Lgdjb9/2Xh6m/m/foAf/ml2mqcD\njL4fm1Alip8E28YyxYwmjRbntFljMWcWNRNOArvRjbeGUuOQEmZO5+0Rs8Qe7F+QtQOaNXM6NXhX\nBD3501qasDQvqkbCFjBlZaHQR4cTL933OPF4VmT8TyARP2lD/pcWL/+SS6QFG6Uf5iiIaOc9e0ME\nAl3cSgKS+ECQrBUfDBydfxYOIGvg10ul1NI/4EVKBZ12aLXQxAs1WdTF/qOZwyLSOcuPBgfcvGCZ\nJUX0rOHxP/TuIj7z0JuAbKUCrjMFBUyUnI0tigS+6kVRW4s1rqF+Zk44lu3t0NWcp7tUV8ebRBmy\nkaxh6iJMOWnQy0CLhh5F8SaJaAnPQdXTWG9Vzwg04KRkfghdOzqocpQw+p4ZmUlvdA0qJj79Ryzm\ne1pE7nEgQz/Dh3GcBytvRNklJQ0elU7qUmopHImRLpx6GMCAwpbZyJa5SolrOTFQAHE65iAxk9vh\np9QU08zT68qLPdwMyvtiLJw/d+98HbTybFf5zUvj2VVAPMDx5Ls1Z2WcIKux3whXm8rtybiZ4PHQ\nKP0ZXmSWvqM9i1r3Op5Z1mY8HCvvDwtvjr5+22GDaWahcX8szCbxurK+YkMoncDdKlq8+tLUvBib\nvOB//1i4Pxg0oc5QpHFj0IaRtw+V+bFRl+zKjCfXohFNiKk77OZ5VMMbgyz2dT8zntHWqGN4Rjep\nD4QwimdtDTbqmbXVmEkKaxDR16ifJRGNkWwa3b6+/48VXh/tLO7WC8eCs6o0Go4sOSrbc8DQJNLV\nwUbXgHTE9dPG/CdtyP/fvs50NodLXFMCiIKXKOSUEa1QwlpL/+3cvScrjlacN5whZa/Wt3rGZsck\njElZlv7gzlDNukEixFX1SeFZFcVnSbbQv45knB7/OvIdDSjSaX+JuVRKdaGjDvmpCuOYGLO68Y8P\n5W7L1sr8JruyhEjzZiTpkTBYGIB+SCxuu0dePRFVhe0gPNsM7PPAVY5Oy2DuXA2w18YknUzXYr5n\ncN+bnDd2HJJuJ9U4j1eMZ6LBsxZxQ95xTl/Si2YicyPkz1uC1eGvr7EPeqR6qp6CZ4FRQRJsx4H9\n5BOIEv21Zb0P6WuJO4jDIwzS+PIWxqa8fGJsNu6oNamPPhM3nmpeKH16l3j1FJ7/zlgOjsH2WohD\nT42rAV7dNH7zSrjdV4/0WmJehIej8O1rn7l6uxP2G2OXjdvReDIZ32qlFWgXeGxn7qzQTUBXnfZ4\nKrBU4e1ROC7GmCtLWXzkYBUOzeGWtjKdWDuhDY9FpHVjGBlZ7Ro8RKt6WyEZZvjuQfnu/cjxYeHx\noZJl5GGZeffohrtDYT1g6meiF5rX+4gsyUKPSHFn7Nr+PpUo9NHYDA47zbXPBzgPePCFOmd83Yiv\nG7NDjQiLGIM5b3xQQ9TPb21et8kq7LJQ1AXvSi2gsg6Q7tt1fUJ2rmJ8fP3/2pCvVyyQqJCSGw/w\nmXkpp5VN4ZdEZPzRS7SKVXFFuDH7RJRSqNVhBVULuqByiAHOZ4lX34S+F/3AJhXGnBk0kzo4sj7d\n3rzjwJyGUlsMBfdGnylzmAtzcUOEuDEcsjINzj2XGEbrtKbeMeNfm4aYp9k8sXR5Aj/4Pn3GaV3W\ngs1jZygkpUQSN5Bjhi+uBr7YJ15sHaLqww2SOa4sll3TOn614k31WROtzv55e7OQuQofxmo0ltb1\nXrzxZuVbpwuWwccPvAU8oRoSvTENSas7lDDEc/VhC4N616clYztkribYTy2cT4/8WLPu/sbWhHkW\n9kPlVy8bX995y/l+i7vg5NRECZpfM7Bs3D1VvnxuvNgW3szGsXrhMegLqDaebo2f3cEvvkjsRydX\nNxPePChv74XfftPIG+V26/reWzWuB+PJpjGmykMRqvWc7BPdg5G5+D5tPBYfHXc/p2iUg1pnjjGk\ne5YMa8Dhi3HJiFljlpC2MHPDWpcI1sVXvolH0/dL4tu3yj9/o7x7EB5OymZS5hPcHxu1ZTojytfl\nXC+6bHY6A34eBEk48EldW9+ApokSGWfW7gD6LugwmbGObuzQSlI+sPIWbBl1RVUltOHFYdTSlNZy\nGHJjkz04KtWYpWI6sDThtOBBTcdsuo/4DErxk2GtfKqh53PXp2iFH+uN/3vvobe655QuOu/wxo1e\nIEHOTYedRxDP0LFub76geTo9zwtQyUmZNDHkxDgYOS0sNdCSj+55dSg5MU6ZnIPBsnKtvUjXDVTE\n9P1DRBrshcxpXMhL5VBDHS4JY04M2WGKZmf83NZ0zn+5YqLjpIYbCMcTI42N7sYsMe08CqhDVnLO\nUZxpWCsM0fySUiO3cB4IucMl9PmojUqhFc+MhiGBZSQKTwl1IbNa8clJSjVjrnXNBJKlUPmzi3Vq\nTk3ERaNasyAZCYhSaD78oDaUidZgrvW8piI82TrDZzFhsuLONQmHUtC5kZJiIbvqw518entO8PQp\nTFvh6l55//bI0iq1CqfTju1e0ehOJHB2U+XqFu6ewvPrxu8fjftZKE0xq4jCVpVXz4yvvoC7Z5At\nU+bCYpXNJpEHpZIYcDbTKM3574Ow23g7/7tFODVds7A1qMUDj4azuBBvTHo3V9cXL40nO+Vqm9hN\niW8eHjgsRrMxWE1Kx8m7SSeyIp8WT0yut3V2Sx8JJ4CaUC1RG7w/wf/++wOHpTE3Y5oatEotvjc9\ni2osS4lRbv7vIg6xxGmPrKmRNTOKxfCUSsGLpU1GjqXxus0+TzYn+tBWD5jg47CgKyf2oqdEHcPE\n6z3e4OOwmOAQ7GI+fSohTLi9SOp7qQ2ZQ4GH1jhdnOtVAVH+BqCVf6sW+aeu/wgsXcRx25TcYPbu\nraS9o5MLi7m+M+cH6/QzxVY6kWPurrk9ZG8aGLMx5ES1GrTFy5s4G/KchZw65fDcjNPTNv/bRSFz\n5edJsG9wQfvs016GnHyQ8pjYJMe7uYg4TJxZ4LrqvqZrpImumsiIY9yjKlPSGFbrHas5WxR0nDLV\naqO2xsOpOs3wWBjw7jvRXtz0Sr1HeIZKxZor7i0W0VZSxxU7hmNG1rrKlubkDBdVH2Jrcd/OB4+W\ndks+QxJnFlgA557JFIzqXYA6AMnTbHGsFIWbK+VUPHLaDMbLO2E3Bh7dZnIuDENjGBrZIGdBzffS\nNHkRfbcTbq5cEVKyMG0GDxRCLrYXWRFlu4XbW3jxtHLz1vjh4A5LJaSCR+PrVwNfvYLdVUNLYklC\nFeHqqEyTR/sqriOf4vVzhs0GthOkk1HrZVDQoz+LDMz1bwrGwcT1YUwY00hOijXh4dQ4Lg65fCAF\nEcdjjYpXiCOeQfwtSKOcewziNYLvfSzGUqprkosLVIX+IN3WtlAt7EGVdAGwswdZ7ymJw5vb5F2W\nx2oxGq6xiPHYFIqxVVeS9Ij/zBhaj/0aAAUCeOG4PHhv4bjiDIlTYavBbI0NvblLVkWOajCXxlKD\ndkiPKIHL9//E9ZMx5P9PjfFfMqDi/P0xPkr77D7HwwWPYrs+89q7CyvdbpWUDQ5xLwpm9cg0xXSV\nrG4QHdpw2MWLcp1yRziPwG2zkrvgz/lOI3INKdmomov0Y3GudiuubXw1JrQZ4ziwGZVtFrbZBbNW\n7JJwQ9ZZB5HhNOg8bmiINnL2sVqbrOyyNyZpT7+j3lBro9ZKDQpjOfjk9RMzkxqDEnCQBNRi5JTJ\n6joegjsGTd7GXMVVDq16pKdqDLkwJi+kJpxS6c7PVgEolwoecFkFPTd6ZU95k3hBukMBgpGyusZO\nGkjaGTA+kNh5+T4F5nqv3OyFVgfmcmCpByreXTpYc3cl+FCGBNNG2Y/K7VNlKS7ulcdEHqDPF+3G\nT4BxUm6uhZfPM3ffFL55V3molUET+9F4cdX45VeZV18o07bADBKF2qudsJ0s5lFGJ2kMT0gZpknY\nT54t1GNv+Y+9Jg6jdZ59wZ3eKdL8MSWmYQCMw9w4zIXDrIFX945RW89Ih0z8o9mKm9Nx9AuD2LtL\n/QstggkfKNG7HmtAkll8WINI8iKnpHDk0SAWkE41o0+hR7x4nlQYkg+nphK4/ExTX0NpRm7CGEac\ngGU+jMclQreLz2q9cuVrZU0wSa5BbsYk0dPQfFJQckyHhjFXlzN4LMaxCcWcf79SHjkvzaeuv4oh\n/49mo/w5hcM/937dU/eCV5cCB4cpcgxoru1cuBG7THmEVBspK9txYDv6azWEajWiLdfMGAW2Y+Zw\nmqlR4DqDh17Jzikx5RRSooCFZrL5r4obznPqupYX4xB5ZrBNwrgduJ0Gx+tiUolK8/RWHfOMebBY\nx73Nf77LdG5yZhiUYTTS4AUw34iNVitLDaGg1jfzOc7y9fGp5ENOjKkxxCQiM29Bb9J5tb6+DnM3\nKD5I97Eo93NjKU5XbBiWZTX8ahHdRM0pi0M+WWHQmZyMlLwYmFS80xFlo87u8UyggRQ0V3JeyCkz\nDR7NevNXz64S203m7unEyxdbrO1ZlspxPjKfDpzmwvFYybmy2SxMm8IwztjQEMloEsZB3HgnN0TE\nMG7BIu1oZFGu9sqXX2Re/MvCN68bp4BHnu/gVy/h61fCs7vEkH1vJiuMlthsE+NYvQNSG5KMPHbt\nfNegudmObJJL1hYSqh59Kxaa3Z5V0Vydr7XGZvTaxzLPLG3gVIX7R1ja2ZB32uFKv7QkJZr8AAAg\nAElEQVTL7mjOxc9u5X8Ej354hlWCgWLddEZ1yIBaWRAKXnDcpFC9VOMxpHAboVnS4YvWmFtFqqsk\nNrfePgvTPAAYQyOHaBLsARRE5uAf6kOIN345vBOweWd44dlvTsoggpixl8ZoIA2W3jBVhRNeJK00\nXMBDo7ZqfzIk/09hyD91dUPePuAGfvabHVaJbpeewfcH0pkNC70Lby3lrJQzqxUxF4FKURxaauFU\nimuNDEMYR2eEjElZigVOzfqQkqpHPTmTLpqO+iEpq9fnYgza+XsswM5mhjp5mSaJGhG2SrBp8Pd2\nPNk3YcaxaRUJQSuPXMYEKeALasOssoRGtgV80qJwmaStYkMS0Eeia09UrkfX/Ej0dmmhIMFW6d2R\n0JPwufrnPsydjunTXMApgkpjnZIasHaSzhSIXtbIGkR7IQpGaUzJ2OTGGKPymjmzQKSisjAm/zyd\nxeSGXNndZx7nhcPcuNoPbDaZzXbLZreltkYphVpOVI4c5iOnslDMD+c4KXlwiusaufZMT891EFGY\nNsLTp8rTfePlvrG5SkgTvnyq/N3XiRd3wnZjwXQRjEQChjGT8pmZkwdh3CSGqC8MpXG9UXZDI5NY\nLJ9hEYvsKiC6FM1potWFq1KFZjyUhUMRjhGxegzh4/3WvQgr9a+bQC6MuAdEZx7G5dcj3b3Y2+es\nReJ7ZguqoRiTGFt1KeN9SryRhi7GMbILTUpKBPGz0aySU/NipSXqMX0wo/Wc0f3YVq1Z7CU0arYG\nhEPy5+uCc7E8YgwSPaXi8tFjfMbupGozStR9OnngfNrtstnjR9dPBlr5j77OHO4/fznedmanrCQ/\nCxEe9ZFqErM3fzRpG+iAR/ITSm2V41I4nApDymyyy9uqCGP26TjHxRkXDhj4dTbkqQuK0iOCPqpL\n12jzstXnnNp6J6UgkqhNOJRGqS6ehKSLkVayOqysErCHO7WcXAwpqzNRzLwFuRY/BEIhi6wNCx4B\nR8t81BVUCGzWByfcbJxpsR9gMFYnYiKUHuGID0rtTJlj9QpgCVEliUaq/nyaubLigvl0+OZQi7+3\n/9szDfEZpkAFLHlDhsrsz64RxURvvGoNUjQmdXir74UhJV6/m/n2+5nnzzPPnm54erfj6mbPZhBM\nGmUeWeaJskwsywGO7uyWpTFOjTx0ZkML+M6d7KqhIjCOjpM/vTJ+dgtf7hJ1hlfPlV//fOD2Whya\nWUByiLkhaE5oqmuWOQzCuIHcoM3GtBi328LNKGyTp/Ot0yc7AwSjiaEhimUGY27BJ4djqRxidJnG\nz9VYW4i+otWY9w5S+7D/yAKOW6GYMFpr9PvR16SLQvjXilc/XN1RGyOVSYXrKVGbZ1lji7OpkJJS\nwmFDIWejSgWrnJbRRw1EBN6zgfV0fSYa9v3SLYa/x2XPRTVfhYxn4+DZZk4DUxKvHTU4NIeLtLmu\n+lkB1Na1+JvAyP+jrh4hj+MYOG39N/2MRx6OBXvDW++16qOeOgUpfugjO64aVEV1/Lp1IZ1miCpN\nNAYneCv9OCTyYsFP71GMO5QhJ7IqHqv6G/ZRUGbCZsgxFchnIRJGEeujxRJNE5hwbJWHeaY1c156\nNNnkoN0ldd75kDUwYb+aNY7FtTuKseLeAJNWdkNjSsIoXc3QLorC7ZyamgY2mRhyY0qFTapB8Yp4\nJ1TePqjKm1Kb8v5oPCrsxLjdNDaDb/hCC9YP0RLum19bb5wi1qVrlbjRqKYsVRhGZb9Rnm4HsjqF\nqFSjtuIQliiuUeM0Rqve7TgoDjcsM9/+sfDdt43NNnFzO/Ls5Y7nLzY8fbbh5nbP/skeMWU+nDgd\nHjgd7nn/9h6VwjAK0zYxbSrTRpimRNer7lFXSnC1g5d3A1phewuHx8bd08QXLwbGydeupdg/oZ0v\n2eGjnDKjJnIy8mCMvlHZG1CNZ9dw+67x5n1jibCB1bC2vmoeMZpFmi8c58pSNfTWfXxfM2VpEtOv\nzhBJx47bxR7vQWWvkfj3nbPbvt+t+U+tPG0CAo3goBoMNAZpZDVOTWGBIVWGwXg++kzUfj6aNWdj\niasnzij3BY4ziM1e1GwOdUnUFloHp6XXsM5U4A4Rdd68l18UpSIxtLwHXoMqo2jMBo3pRGKMyX+2\nCBQRdPY5p9XOJrxDNyrSp0X+6PrJGvI/NXfz8nv6dcmCzSkxjZlaYJk7wT4iAjjz9vF/dMYKAqXC\n0rFBM6YoyuWgiMkFDnL5/im5fgZ0ARxnRPQ+vMAlAH+w45AZMqjOntaaG8Ih+1STpI77dvU/zHHf\nTfJUcohUzSQodcFjbvSIw/HA1ho5mUsPpMQuO40upYA/iEYT88ahGlH/3HxsnHeGphijJcG1Dpgh\nwRCFJwvaFbHK/tf47BGWqWkUj3rnYMRscm6P74XKakqtmXlutOLdqNejcr01xmxr+tlz4ZV9c7E3\nzg7VRZIMN+IPJ8CEXVae7GCb3UD4YffJTC0KyCLRUUcKB+hsibk0Ho+V+0cfE/bubeVwLHz/3YHd\n1cD++j23T/bc3OzYTjCOE7vNyLTcUOZCWRbu72fuH44Mw8L1vrHdwTAl0hi6LVbJqbLdNu5uhSfP\nM601bu4ST54Jw2C+f0P4TFqHJWAzwJONSzokcW3uIYf2e0SIL2/gxVv442ONZ6/0ZiYDUhOW6hSf\nAYeAirmq4hJUQhV1/r9BbQpKL8UDbnQ7W8gu4AeJbeH1mXOG2/dw7bCEeJAkVDLGlNKae04Kk7kR\nM0nM8VqnuZKzMI3wZBJG8SDkELx5TSDaeDcbsyWyKVNqHhFrZZONQTOQkT4nVTq80w0rEbA4f9+M\nlYpYqnuA0sDU6M2zCz50pJjyGHNqkJCyNcgYt5NyZcJiwrHC0lw/no69/y0Y8n/LcIg/OcbNAkfN\nmc2QKBhH9dFo/cyLtDDeMb1aQBNodiNQaotRUS0wwoRElTvJ/83cmzVJkiRnYp+qmXtE5FFZ1dfM\nYLAAZBeAkMuFgG8UPvHnU4R8oVAowyWECwwW6Onu6e668ogIdzNVPqiqmXlk1gBYoUiNt2RXZhx+\n2KH66adXpMbH9e1fdgdaYnM2RlgRtWSLxnI1IT9NGfMkyMmy2wQWdjhNlhnKLAChbQmQUSmZLZsw\nIlzWQKQW5zTcm91nYsLtbsIuZ+xSsizKpACbmJMo1F+0Iduq1rA2hPrEiokIE1lUSPLU80glNuQS\nQjyeN2Lf2bjC8d1Ime5id/AF2HchVjf7vJpzaz8nXM2C6xmYZys+Fp4KVrSQxuokalhPFkljlgEB\nWAowH4Hjk0UNTGTJMvsJrbokoGj7l4KmYS8toLi6ts4+x7Pg3XvGhwfg4ag4ns5493DGj98TkBi3\nbx7x5qtrfPFmwhdfXOHu7oD5cI08K3BeUY4nrOdHlHK0ElQCzEWQVkKeqt2KCFKq4GSjc3eX8PrL\nZPHnDgyICWqBzmAliFTsJ8XXrxjvHtAASM4WDQQGZlJ8cUv4+pZweCs4VudmwaiOIFjJsg3V5ngt\nttaOxdqXRUxeRB5VBUg6NZKC3qIuoAGPFnKQUqtu1nicK/aZIXinJli9y7wp7zkJDlBMrqwTmdLa\n+XkIBoquE6GyRVMVtrrvma2+ihVCS0AGOFVMk2BO4rShWymNJOr7l7zxizmEPQhBzSls9+euWQ+g\nEBCOYi3qzspANbS/+hZYXRlcTwYqKyV8XICHxRG/X/wTcvyPS5C/dPzrE308TpbICz0RSCxRpQxh\ngy4dEeF7IEPITIBKQSnVTEZ4bQunXJJEkf0RzvtGZzaPdOPZwy4y/gxqJiigbqJZuv5+sponUq3r\nOpOh3OylWeGosjU+CO6CCKJWyL7UTqsQpIXUJU/vn5ixY3bBrSjqJWNrwVpWz6ZkVDGIHj4Ai5ww\n5+c+WUJJdjRSq+BcBAusPGtOvivRqMyYPGgr0WnRMiFgWy/zIWY/5ke8UJFAMWXFgQgpC/azgBNQ\nhHB/tmJE5lBVj1SJbE2YY5MJicXrtpsAmRlAsh6ip4Xw7qEgZUGatFWrZJArADiC9IxVMkV792rG\nbm98+hd3wOOT4OkkOB0rHh4UH+6Bd4+KD79/wo8/HAGdcH2b8ebLCb/802t8/csrfPnVFX75J19D\nyy9Qjivq0z2W5RHH90eoLtjvFfNsc3k6EX58W/DPPy74q7+ccP2GgcoA1RZW16LBibCWFYcd41ff\nXGOpBZxWAy2pgkOcCuPmZsLdq4xdVuTVU8dbyFa0Hs5QESxVUaoVp1prciNTW5kE8z0YBy4CF6o9\nxT9F8lnjnq3v7FLEECkRkucrmLXGsCIRAqordklxxYyZCWdRFCkoq0JzsoS7zCAsuEqCNzvFxwVY\noXhcgZQmKBSLVpxrQRLFzlH3PhEOvGDHBbevCG9eWZTI8ah4eCpYdQBgXvOkr3E1+k0BqRVlXbGs\nq/mdmJEmS+hjtr6xD2vB2ROblmrPcSSLUIrCfajVMsDnZEETUrH4XtOxzMTF8UcvyIEhLRa28cfE\ng35EVqMh18QMzQnzNGEpS7Qy9jMqImHXHIf2AxjyppysaS3UMz4tdT+nhFVc/fo12ePP58xe/AdN\nUdj9os98CHexmICJrRaJVovfnidzck7JNlHQJWaWBiZQq/Am6hyceeQttMnQRopwGxXfuNaftKqg\naPVu9SZYwcmuA3VcY68nj/eeGNgl8Qgaq2+xKpkDkbjxhQQA9NwF3OcQ200QA4XtXAZFw2So8e7G\na2AwcJgUAOPjmfGbHxXvz8YrJg5BDmRYfWn2+P/MigmKpBV3B8LrPeNmx7gpimW1TkAczlmuZkoj\nchMJPdFKXQ8zUrYoEE5A3gHXr4BSBGUteHwA3r0jpB8EH0+CUwGWpWI9Cn76ruD+Y8F3/3zE3RcP\n+PKbB7x+vcftzYyrmwkHugVkj7osKOcz7h9WLKcV9w+MDw+Mn+8Fv/gVoxTjdBFRVI7mCOYXmeaM\neSeY8oJaKk7HgqdTxasrc9rnJKCJcNgJbvcrXu8Eywo8FfPDiHq8NgCIkW+rKIokVI+qyCpgVU/S\nspkUGP0SK7VAvDMttYgTOFAoYjXC12oFJ9gbc0T0UghJhmDHwCEx9syQUsxZ6HtWfQ++PhjYOmTB\n64NlZj6siqda8f6ptoACZndgw8JOD7N1aUpZcXuwvqcqDJwJRzAK2d7YAEH/XUUcoDlY8fBUVXh2\nNjfKtoJxrhUnb+0WVRpXZWSYn8pa0VnuRFLFniquWHBK6o1Twmp8fvyRC/JhAP9gBIqjQTI0lhO1\nYvHznMHn1ehp2uzJxtdZcSoK0hhECaWo10jx1H22anJcbMmSh3swR4ieO8LgghfUbrljVW0alUgs\nFHFiQDPQBHkGg1tonlEd2yCoGBImC7OzZBiLUY2QRYWgaoGqogq7Z916GEZGJHGPMlBRJKqeaKGY\nXYhPLuSULJbd4txNUSQiNEclomb7xfw1DeY/o1Lu2m0Yo0BtijkBcwqBaj6C08p4XBP+/r3id4/A\nSanFQCcCEpJHgFgkSGLvpKSEf3cH/OWXjC9uE+6ooFSjjPbZWnxFo91OgfXniHUTt0mJwDvCbiLs\nyISoKuHqgZFnwtN5wVXNUDLn4MOD4OGx4uGnio8/nfH7bx/x3Rcf8dUv9/jml1f46qsDbm8mHHYz\n8rSDYIasJyz1hGmXMO1XlPuTdf+5rzg9FWSvAxSJPCArNrbfE65vgevHgpSq1TOp5nRPyYumKuEw\nC14fBH/6WjET4f0R+LgS6ppRhDxPwaytooKzWvniFCtcx7lDowAMhMDBU6+RyQjnoPmilmrWlRJF\n2XOnL43WM0pHMSdrbcgATmtx+tT+FphlcLtTsDAyW1VFo3WM0nhabS/PLrATGdAitj6m06TYTcBV\nVuxEraepwDM6GVG1pZet9lWhRsEGsEtM2M2TVxHtNVcA7xEqQK2AMqEg9ndCUTF/A1vlyFUIqQjU\new5cZQDFcj/oEyT5H7UgNzTrTj/dJgvgEpWTFZW3psQeKZHMqZg8fTfQrZOn5sT0cL/EoTnJQuxE\n3UPuyT3MmFJG8noQYc4SMXaTUSLJA1wF1DrthNc+mh530WWhbIc5I08z4IlHmS3SYimWMl+UW3fv\nsB7mRNil5E5R28gKBUQhtRid4RlkIIUkE/h7uPVBAMiKEy3STcY5qYVGJke1MC77rLaBigquJ6uc\nODM51WJTEZXznk/iIMQRfG3YQ/G3CW9yGsuCPMUbdNhGijo3oowiE05V8VgYT0JQWNSJ+Z3IFXXA\nVAaRFR5TFnxzI7jKBa92q/fntNhrVgCFoO4ENuzfhaRWT8hyJ5zFLyfAs28pAcQZEAYdCbubFa+v\nJ9y9mbGezvj4vuL9O8GHD4KHJ8XjSfH+d4q33z3g7/cfcXtH+OaXO/ziV7f45a++xN3tLb549Qqv\ny4JXv1zw6vsHTP9FsDyt+O6fKqZccXuzx9VhwrzLzqFXqC7YHRhf7xL2hxm/+9Ecpjc3gt1sdJPR\n2IqrHfDNHeFv/2LCD28V379b8Y8fJpzvLSSxkEA8dLOSwAivIL2kZxk3Xa2+rwCwo3o1AU4wipE0\nimMZSjX/hYDEyzCr+24cwzEnpDRBACxScSrmnGZm1Koti2CXFJpnnOqEnx6OWM4rlDLy/srK5a4r\njusZN1MGsfnChKxuTSJz7OqSsBYLeT0vCUW80QtZr9wx2IFg+1qkekVFa9Y4T1Z+Q936ZgcBrOa/\nYGUvt0ue2h/JTQpoQZ5srZ9FIKWAmXEzZ1xP7p/7BMX8Ry3I4Zs8BHlHRi89jLrnEgDDnGHO9Qbd\noN5uyccYgPPbORv3C4sGPJ6tzM1+Cu7KJnCeMnbVtKcUW2yZCbspDzXM2eObIynHzMZA4+InC4XC\nrBbfrMYZWnlsQyPqymViQiJDJUEbhfBefCEFWWRJOYZeOSWLWEjqZnAvhRqbMCIOwJbdp2QNIWqx\nTMuliqUNF0/YuVUz2zm4Y58O6tPwbF7aXAbS7ebpiMUBV3oRYxUImWzDdmRkbeImVuyIAZqstgsp\n1pZu76EcKlBRFCWswhZrTsUjBhRKBVGznBz5d07UXmuqSNstmd+iVlMUzXfCWB8Fjx9WaCUc9gmv\nv5jABLz5quCbp4qHe8H9x4r37wVvPxR8fFCcV6A8En7+5xOO71a8/d0TXr8+4PbVjOurjGnHuDkw\n/uTrA1IBDntz3H14r7j/qEh5Rc7qtV4Uu72l4mdXyLuZcDhEdyfL5BVReElv3F3beCYmvFsI/GCC\nTlNFSxNXqzRoSW22LmVISCMXVi3qx6tiEqynaLgNgainH+MpTodGbRND0tXRfQVZp3lPa16IcHBN\ney7AfiZMk3X1+u6D4O3RHLeluAVZqqN7IGlGORt1yQxoKUYjesz36vz9UyEcK1BJYETIEHboNJFZ\n99IsXak2JyKlrVFz+PvaIXNuVop6LD2m3mSE+R0qKR5FsRYBCeMqM26SIsGs8/WPiyO/vBka/t2a\n3hZV4iVV9VMx4S7GfICrCtSLATGsrveaGEUq2sj6dRJ5so8LbFFgWatz7D487rWfp4SDTgARzihe\nI4QxZ0tdjqiRhsChliGZ2TU4Gr3jGMXMTG8W7Dkr3WHJFimR2KwD6/JNTptoq2GsboJOzhcHt21d\ndxhM0efMJZGbnOKbSmGcHtg6mZyL4rgC5yKW+FGsSURmq22t8AxOhPD7tCSn4cdeoEavbOgLsu/2\n6BdP/rFZQROv3hPV0vPhFfASNNk4etsbRAcniMXAS1FHjzygmm4pjXdJw709B0CxM9VYJTehSU2Y\nswgyKq6vGfsrRpqBPDEONxl3XxDWM/B0X/DxY8H794off1R8+EA4L4y6rDiezji+e8TH64yrmxk3\ntwfc3s1ImTGpYn+VcLiakOeMdS22ppcKeVo90aTicEUu7JPx6XtFzkaFiFr1wmUFTitZTH1WvLoB\nFgH2P9keXKpbRRz17i15xebcXNXVlWYVeGlh3wPqpRcUHvvsNYSgnXfRPrbRQ3afLCs4i2IRC72r\nasWtlrYG2PpzCnCuwOzRIWdh/PS44vePAmFzylZVyOItERMhc8bp5KGzk3HTDO+zKxWZCIkTVmGs\nAMDiVtlQ84QCCvqzeiJbFXfergWUjO7kgQmAl5Zwsd8UQ7LNBzBDiLCgYi1WLCyqgqZiUTsF1KJc\nLo/Pk6IfhDUAleCcPNVdt3xUSow8ZQ+TCzelnyciWkBu/iSoKs7LCgawy+Y8PE8J5+KxPwPRyeAu\nMAmOhu29oERMiHsw/kRgzmBW1GLJOpkJMxtfZ0Vy1BJnxLIcdzm7E9TNqQFpVLWY9XMxjjd7Jbzd\nlLDPGTvOzk0LxFPjlyIo1Rs0IDrkmOP0JlVMXFuaPEdKk/Zntg44gd+N77bwNfvM0yJ496S4X4Bz\nragqqG4KHibycUMX4mEaDgt9nGkafhDZg6HV/LNE6M3ESbzGuZnejWuEAMK+KyqEpsatpmg+Q3AF\nTk0IK/MgNGxXdQHtzrp2UK90F6Y0Rue6F0pSS2ayFnFdKRBXvHpN2F9PqFAsqHg6L5ATcL0HrncJ\nV7uM6z3wxZfAskz4/XeC339f8O7dCq1AXRnHI+F8rnj/9IgfvzuCMyPPjPlA+OqbA74+3OLu9gZ3\nVztwnlBrwttv3+Ld79/i4f0Jux1a78uno2LeeUZuWoFaQKtgPWecF8ZpBZgqMgumySi26s5I46iq\nj3+CV2i2olculIkISxXU6lnFiiFvw5R2BbwjDhBNO4iA6N06ZcI+A3uuYLb6+rMktwpDjXskGRTH\nau3UziAcVvM9/CNW/HAU3Fcg0wTRigLBAsFXRDj4ev/pbHsuc8Wr2cKGKxhLMYvkMDOup+xZluKW\nQSwSd4GHLvd+nkJGgy4VuF8EuxneztDkC4mFGMOppqgxoL6HK2DZympZypEwRCDcr1ahkQOVYrPB\n2vEZqZUwYC8PQwRWPMm62Vv/TKumVwXPvhfCPbFx4vt58lR3D0ecgdMqYFotFdlPYZEo7HHRjhIp\nNnIPl+oEe5hMMAHP5JoXhnJ9E5Cf0+hVE6bFk4zGaomA1eS+3s1WZnYy9Jxd3pVSUMQiTTSUG2C7\nwvkMk6ERhjeE8WlXWYFAKT4LbigSTMhwB1P1ZKDBERXIPUBrJGPQMAdBSQxX2cxmD+Sj4HTa90bU\nG705pXHog7B3K6YjYrfY2BKfOCVz/q1dCXe0b+dqc9fWH3rY1/BE5K+zgwlDmeSvjd/B5mwKgLOF\nlqpm/Pgj8HffVvz2hzOur4FffpHwzd2EN3eK2ys2R9tecbgBHh4n3N0w5lxxfCw4nhmnk/84zVUf\nBW+/PeHhreC7356xv9vj+s0B12+uMB0Ir//kBtevJ6yPK07nFT+/XfHTWxNSV1eCLw5WXkCUcX9i\n/PgeeHxSvHnNuJ4ElCsqikWmgMCagZpQiby7TUgfF8ZuzdTw9zHBqmVKA2SCoaSsZw5Hy72IBmFO\nSJNFXHGyBB1eudU62tBtENSq1jhaAUoThGDAQwiLAqVaFyB1D2rKCZzsmYSsCBgUWMRKHBe1wmGo\nguVk9OIuGZ252UjN0amIGHKBZ3B6JFmpABdgzvFZwbA5LMKIg44iCDmlGmtxcLgDsHrp1SEEfzoM\n+zM1lsBmfIZ3sKFWyNBm/JiD4zm9Eo+Wk4X/zDk3tMAETDljyqsviq3gz6n3fBxP1rfqOHA9LReA\nN6IwjlQdLFZY6VByQW5dUCLk0FBImFzWlsybLXu1Q7hjs4ot2LVW58W0xbRHg18Zo1m0C5OgbUbB\n5B9pIosiYcFpDiGFetWg4DBbg+Ph+V+atX4NunjfBeggJOMMTakQ0CNZTNhyfDIstefhMHYOH4sq\nArD4Zr+8B7+P8RrPzra947jfptQRFAHa33GV8V+hUC4AScLDI/AP3yr+1/8syJPgF18Ifv2l4Jdf\nJvziDeHrm4KZAZ4YlICbO8bru4T1zFjOgtMT8PhAuH8oOJ7NIj2fVzy9XfHhxyP4MGF/d8D1Vwe8\nuptwtU+YaAdNCQXAqQpOK4GOwM/vFesjY5cLlAWPC+HHd4rHJ2C+Isw7o/XEn8P6Xobd1QMNjNsO\nIW6LrrqTmdt6tNGNaTPWJRSnn0el8eDqYKESOdUIzyj2mPOm2O3/VaRhAoGFw1pTDXOUF3Ffk8uA\nqtbFflXvreUoehGzWoUYwpZIVbTgqQIgxi4BUdJ6c/M+HtY8nZogj76htWprYYdmgbgH3ZVArGFL\njjMKkUeAQCanYtzNaTzcwsXxeTsEXYTVjbQH0CkNRhfoheqLsoTJ65R4duV5WVGZwFP2IlAeEUFh\nqFmWXmZLu46r+hJs5pS6qQP4InehnIgxTQnTlKwWh0+5Dp+rVZogJ1XkbHVUdnP2mtx2T2UtqHVF\nLdbJppPpDGFLSY6YcYmQJ/ImwcwQsTrYRQO1GyUR7MWzuR90Vqu2N6BsQ/9eiW9E9hfjPtbGeEmA\nhjC0P54L40vR3CiYZrYDlpFpwl26sdEEAMCo1SJqeiGKjrLHzRBvjVZAo8jHN8fPMXlj+R529ikt\nEOXP2OdINOFcZ7x9qvj4VPDbHyqucsHrK8GfvCb8x18r/vrPD7i7ThCcwbuMw92M1zsAVXB+qvj4\ndsH1R8GyVDATjkfB45Pi8aHi/ljx/tszvv3tR4AZ+8Med3cHfPGLhFdvMl7fZhzerWBRlKJ4/1ih\npaDqioUyfn7HOJ4Jt3fAPDGWAgCzxfIz3PfiSUfceeIejeUCORpVR3niNptbdGmzBZdl7vRUa3xy\nPCtQDa0vVXA8A6AJnJJTrn2ORAlQgTJwLhVaFSoFC5LVfWmzQSABHpeKI6ohb7WSwQLBuXpkWkrg\nbL1xVTMWKchicoG1qxC6mHuJuj4uE9TLMJciKMV2VfLwXDhg6QX3+vnCTzPukMvEH/oXFt9nEeTJ\nSU2rXy3DJA1bdHD4QU1wJk5gKvaJ4TnjszkQqyjWtUKTFZiKWPE5J5SlVyDcTYBG3ioAACAASURB\nVAk5d88y3CQXba0bTHgSHBVaGn2eM644FIR1jYF/tjqqNWuArfXXZCZcpAYn1/5SV5swr+Y3uVCN\ndLmiXjJAQhsbV8bZY+TYuPckFQnhfJSGPnsSxvboQT+OTgNJ9gH1z1AHxuN4YxTgHbnGu8OVsHmV\nuvCP62L8XlMwHde1TRRp941VYkdvdRMBYfK8+1u26wSdLmk0FDn9Ndx3bC64hTRQPM/+3YyK0wpQ\ngCumWXF7AL66MUW5iqKS4OMqyA+EL98Bf/GnFa9eJ7x6nXB9Q0g7MgmSzDm4r4S1ZFwdJtze7XBe\nVxyfKh7vK54egeMZOK6E06IosqBWwQ/fKr7/jlE14ccfCV+8mbG/2uPua0XGAWWt+PgAVFlx/7jg\n8eEEqoK1MtazWAMPUVhcejVMrtlWi1trASyjxIO65cTuUB/7dJpfKKzQ4JhblR+sRfEk4YsxRK6I\nyCzpy2j0sfjcLGJInjShRvVIXw9WXUc9xDaKtIUVyJYcy4JE1bl7f1+47X1WtJZuYY3Fmm/OTnHn\ngYTi6qHJxA7KN4u9q7agJTc03uXSiq+8QOnF8VkEec7mvDS+qyM5qz9vv7MPmqqiFqNTElsURonN\n5Yf1RnQKhgwTiIhVsIOdc0qW9noqFrmymzMO+9lbsGlbmBoalkOldGeXOdttIeYcNaWtXkQ404Lr\nIpgHnDk1KqVhRBForRaFo1HTxQtlOYwWslKqcBONE3mNClMS6tI1wawKi1jxeNe2lDqK2h6DYGro\nQJtA1oae9QWcjU8i0pdQ+ebdGAMaS4RewGX1fxswpsZt0yCEVaMuB5piD2uIfePooPHH/R8md+QS\nbK5P3QRp/tigZZoiivV3YWHE9/waUxJcz4IvDgKpFp+sDNRVsRbFw9nqy+8PwM1NskYTXL0xg4AS\nwBOZs5MZt69nXCtjWQpub43PXRZgXQnHY8XTifF4Bn7/fsHjA3BcEuSUsRwTPt4bMjzMjEwZ+z3h\nqy8Srq8YD0+KUirOi0WP7LxMRHdiaxMwipBXpiitHo/HF7kgp8GMCyd3jBZ15IBApQovAlrgZW3D\nnQ5AZRhlV8Ad9pvvgAhEBg7VQQncoa+Ad9uBtYBTAByZyepjrV5KgNraMzpJX5hlOAgYaNa2znyt\nMXnvVtv7ql42olmwA5Bpf/0rjhdvxo7PhsitrjRgta4BNBPYBYqn65ZSoFWQcjaEywxqAfd2MFn6\nfHLzz8y3NkpgeLz3PCGdKzgx9vsdDocJU7JrRinKjUSHb3gKpB7cdYVW8VTyBKbkZUMZeUoe8mfa\ntcJqk9daABUIA+JZalZsy2LQMwSJihfad08/vD45mQc8yBtx5SZOnB0my06M+uQmlHuM7yUlos7b\nhSlCiqGrSzz3J8TyCFz/BWrl8ouB5DkQfGwCdDRkf/dsOozWQuPUe5y+1V7HBjyrc60NxVwOQDyG\nvxVKuNsC3gZPxBX6sKGbIrg8o4K0Nl0kYCRVHAh4NQF1Z1Xv8qQ4HsVQCxe7FyGwMJhXWFfoamhU\n1Cp4lgrNAqEVaQYOu4T5kCHVKkPqSlhPwLoknE4Jrw6CD/cF90+KnCs+PJ7wm98sWNeC25uEb76e\n8We/2uPLLxg5H/D+/gof71fQw4pvVPHmoeD7R8VpdWcfhrXkfxmYIBfiIcvCFxROuVGgU1uTRlnZ\n560khDdiUBu3Dry7Aolid3DrG+pJWmTZpgS2DkgwQRrOUYLXBFcLx4WiJ47BnFvW19WCLG2NFU9V\n8tWgvRTBdu0MHHbbE0CeEubd5DLL8hgi27hBigHejw0qXqJwQiQBHSxcHp9HkBMB3mzXTOaRz6XW\nFMAsIEJKE1KytPWcrS2TmXcEQFrXebIcbaNsKDqz27ZK7NXfuKN9G6v4zfG3xVc1oRGB+xopu2re\n7Kj3nFzzBnKzhVNahbaRnjGe35vGwszMKCxEqIiEIWt2zKgON83rb2GK52IFjM7VzPW72cqxctAV\n6OV2RxEbv7RFCEekGJABjQavecnNsRUCmBGFTnv9GxNxFiWi7Rp926P1PWxlZ2PUhxuzcZauSOIt\njXBNwASs1fwzEUCQRiWR12mJy3ZkqLA1AW3R+whro4WCtTY9oeTQ3FzhHg1qi9rac6QZyh7mSLNS\n0z00zQqnmTDKbnkZMIxt66JQCKQW3UwkIPG15w7oWrXRbhKhuMn+LqcKycD+VcKvryZ8+cj48EFB\nCbjeK5a14v7Jaq6/+6ni8eMT9ruEaceQZGnwE09482qHq52NrvhkckxW063UlDBFMaythneLyMcz\nIhkFEDZ6kgRo7QS9rn5dveE3oSFZGzeO2YKIInt1QmFFUSdQtKeuh1EVYIDjnvu0bZSyerBCNxQM\nSJDviQ4Kw3FvDxNNvLu/QKEkIE5mTWXj2AFsun3FxdqfbalrvznyfeNoP777AiYB8BmdnUzRRsod\nUoF51CiBSNSJYjrGg1s3+LV45fUB5VmHHwCwzTOqNYIphtljO0FBi1hBqWDEJciwtgTCvLLXEjEo\nGUpJMCeJOQVDYdj1DTVL07QhOqJUQBfeAEGGq7nQoEi7sHR6S7pQHJeCh3PFuRrfmphwSLZhmiAn\n8m8OAnFQ44E+KYQQ+h4dY6cbb9zWFTWBhQshjs2zoy/ScdHp+HeP9W735aPe7pti7vq4kHZ0LMMp\ng3MNKd5nrEdZ9Hr0svk2tSvEybbXbzSC380nahYhFEl8um9S72OJWK9deGxN6uqaw5UC9WSTQH6i\nisjtEjc5iExgUIZl9eaKSoT9dQYx4cNTxc2VgJPi/hF4eCI8HoHjacH90cqk1ay4u9nh+pAhXLGs\n1lEqiLVn7EHHPdv5vRiPAOUUoYrjl0IJtDwBU8LkPDNHBJc4kvVcBxHbe7O7iRZVkFjp6cbGQFuI\n5CAXR/Q20HxosqUJcu8/uo3Bwebe4f4sdWGrEnvegIV1fzIrATBB3spVRG9cDOGVsPtoeTJtqBpy\ncLDw8vHZ4sjZI9yZ2bPCRgOWWuo8J7ZkGNiD5hycc48ssXhuQ4sxQDEFhARS807vmHDI7ELVtGpU\n7RSR5gxR51ctjMgGMhEh59yzQFU93KiilNoWRDja7Lki0gQ9LTkgDo2VzYGmdCieP2Ga7HmqWAW9\n47ng4bhaijVZ6U54BiOFNG5jGP//1NTHQh5FznbxxjOphkD/pBT7xAVo2MBxL4GE/9DXnr8ZAjv+\nMsHiFsPIdQwb1wQIBgnkAn6Dji6u7dcfqYHRT4JQaH79QE1bVBqCoJ2wXV1VMI5IdxT3SBD7TtA7\nIw/bH8Uilzy6iAn7Q0KpimVd8cPbCk4Trq922N8suJoFr2/FuPSnjMcHxtv3gncfgHcfCD9/YJyE\nUdeKnx9P+P27iqczrJabGI8sRB0xtpEalhw6Bg4XSzybxd6L164nSFFINcXrvn5DvpxAYqV2p0Sw\nEiZWbgBOl6mol6pm7LJ1nuc1kgUtl4MHy6/PzKU/xKlLWAhy9po5XnUa44xul0jw+gPQCGUr2hJ7\nyGUYe80f4u5bUThdM5y7FdNzhaVi5ckwrkVgeK7t8VkEeSkF1ByRHZmRCwujU7gJJxEBmFuoUCD1\ncDImjwTpnTt6wwOoaXomq6T36mpveaWJkVgc6Vg5zaUI1ur9IEVQSsVpreZMTIwEMcerSt+I8OL5\nbIu41tonFmjKASCvBwJ0U20cFXc0htBUsd7qZCZ6N7vc7GvUjx26EZjPz9v+ajxdH3O/TEcpCMFI\n41n6hrjYFD3EcBT+F8t/yOiznxHtdKj3/F4DyW5x0Rj9Mrzax2ArV/szBJ1BRpPBlXazVAanVKvv\nMw6WX6IZfYquLJp3NO7IiSr/nlW/s9IKdrSI+Ua/dNglXqDL1078CMGKSmn7HOAUSyUcnwj/5R+A\nh9MZu/0ZVBK+vAOmCXhzl3G1A673BW/eTDg+FXx4qPj+QwFPE451wj/fC06Vsaogqaeoax+Fjh7t\nzlursxjbYQJ730mxRtAxtmoIHERen0SbIx/sHpKgMsnAhWi1WkkaPidFTcCc7b5KqShe0YU3gvji\nfjZT6cEJ8UAOxADuuQuNBKe2vuPfEMSRuGTRcckj09SyVAEgEVh6qd5EXRWMeSl2Y2rVSWEJRkES\nmL8s6jY9Pz5Pir4GN26Zm1UEVH2jw0wpHuufiLQoB0IIc8v0jMGJyJBALZOH+sW34MJvnpJ1wgG8\nCpn9XkW95rI0YSKiWJYVkghAwqxmKpFqWwiBwpWoOUKBAdV5uzcCQBqFn8K0vzz8bh3W2ELpuj8W\nmsnELqn+YJNpeuGlzWu+oGh4c5MBOXy+S/rhvVHYX7zePDTD16mfb+vQjL+fn3c8/8aGaYI8hNpW\nmfVNfIGtQgGGUHYF2qyqURgh1utL9xMUkptcpoE9RNJzCxqYjr9rUxwmFLRZdzygWjSE5zu5zXXc\nk92D5caoOw8JpTA+fEj4/XsB5YJ9AqQC+x3w+lXC7qDYzQrihOUsuL2t2N1am7efHjIUq9VQCcqA\nNljb7+HiPsM7eXFY+Qynutqa8oQ5IkCsHgoQPiTxcbXwYQNoCRF7bR+1RjFLNZppR9bycE+CMyz5\np895n3JXQ4M1Ncwvom2d9+rU6q/Y2IcSaxh9WM9Mjq7J/Hf7ecJ+zthNyXhxVxIhozgiZqBexC/O\nRW1N7OcZ1znh/rhgEc8BJ2vsnnN6PtD4TII8hC/AyNkb+3JEsfTUaEKUg21GMVTVnIaJoShOY5jg\nj02nIphS8vK0TsNQxLOG0BavAWFFlIpWb9agoBQa2TS9qnFoVSfjxpms5+Uwo9V3l4i4orGMTQk2\nXNQiU9gF+afoAwxIb6A5NBAD0dYki39HqzeOFzbX5fHCbWzeG6mVf/MR3wkZBwR8vUDiFwL4BeXQ\nnZiftC47BTEIalO2emlgfOJ+/3UPGVX9WhSc2coIpRTI3uR79IwNVeWOTPLrqaFxS0O3MTG07c60\npqNcoEdSyQD+Q+ia58XI47UA6xk4EYFRsZ8rvvmSsHvN2B0YxMnCXVlB+4p1zVhqxpQi6guIsEEh\nxSg+1IHGi2BEQ2SioXUmU3TK9jAcfiXV1jxFqFcFtHLMFfvdDjkniBanMe0ZiwCnCpTVkP1Egn1S\naFXvi5maXtduPlzMv4cnkvuwqpXLyCkbULvoBNbXyAVg8XMxWQPzq6sJV9cTDvtsOTBO1QQFZoL8\nItKqnYxAxLg9XOGbVzeoP/yMuiwN1DEDKf8RIfKUxmXRCcvuUBs5ykFkEVqESqqW8ZW8rGuk8lox\n94ykPfVe3BQVEaxFcC6GvkkBzhkgxvG8ojgtYtmeGZktpFBh/J5WBbx5MUfGlrryqJYYwD4ZVYC6\nFqsi5xbI3SFZxAoNKHs83LSOZ6dQYC6EzIkjg7yhloQwct3jQQhhHHSMn3tDjQDhGd+g4ud32JVs\ng7RxjpevvxHUG2pluMjmfjdwfwvqx0tYaJK/3okfb4XQ7j7MZ7OKjCqwYPN+391C7Pe2tXI6uguu\nXMdnbv4d/6wjdJGIlnGhJWg0WVATQBfMvVSz/dRq6d7iRcTUhWGn7pzmcmkkKlA6I8+CeVboaog3\nzYzrK8YuW3SUiNUVL2oOOoZgN1Vc7+1nl41OtHrrPja+NhUwHnhjKUQYnjxDFERGqaTEpjgg0Cot\nrb2pdTXQ1rwLzFirQBcviqZRATWmn1ALWxvCxLieGVkEp0o4CnnKfEfioD5fsWY42WSvonh4eARz\nxmG3w+1sTWIaCyD+bINVFzRuj5l3YT4l7ObkBcgIxKlTd82aCuuir0FyuZE54eb6Bl9/+RV+eneP\nx3X1RhWx1F5GMZ8taiX6TFpI3uhmw7Ch3EFA2+8SGYc+5ahRwhtc1+KUYQg7zF3rrem5d1Vbur3A\nhOOUGZmCc89WHhUEqMWVti7vzud1Pts5LAIoEVYVnFfFaalYizml5kyggysdexJsoxvQeGq0jR6m\nu2EtBMIZxBb8LyuCFf0xn0/2i9RAjNNm7w0jqQC3mFvaJtY9O/TFN9rMEg31skbpvLmh8d3tZ9SF\nAiUkSq21m5WmVaCtIGrniq3HTmjywH22b2x8C9I3e2iOdqvx5LwR5v3xB80ksIqVwl5QStzaswUU\nY0Lh6RNYTLSfVVS8i45aw+NiV1rWYg0kyHhl8nBQDYXm85ayIGegqCkCygDPQJRtsKhWQVXfC6pI\nLJiyYJ7s+1Y/KNaf+wyAjrgVW8Hqo23ZnR6NphHCN+xnNLJlqwzj9ofPiiqWWjAhWgqifQ8KsIoh\negdxmYEZVpO+kjkKo0tRrIseFWUIlxNDKeG8KEQXqALX0+yWr81X9NsNoBOUioXBal93ZD1uUw4f\nHzf5YMEZ0flL+xbb6j2IKo7LgrcPjzhVzxUBHI50RXJ5fB6OnEyrQ73ymafi12q8VIQCWaGiCFHs\nAxAe4d2cMXkiUJSQlYjcpyjk4wlDZO2hMANTFUxFsBbFuhqS3k0ZU4K3bDMTuAjhVHrh+5m9mQLi\nBwiLIpMVtRJSHE8Vj+eC+ydrejslyzgljYiNEOYAYln7c0E7I2dve2uuSAYCzFnki6nVigY6hQBg\nmznQV0rne7fOKdt0svmu07e+iUOo9dC+QBdAbEjdXCM+18MW2yOhcf9BtcR7NDpKIyYbTRkQGBkT\nrifgZrKCSVVDOAAFVvxJ/d/saGaFtQFLIEsWGWLbG0L2pJPI+gzBDQmOlwDvrC6IZwjkj2ZBGHKu\nkEKo1dqkFamWgq4mlhIpWBSQavHVdTumRRRlBZZVcV7EG54AeYI3iNDuF4qRb/H+ACcBe99ZJEEl\nQRFGEctlgHj0DJkviF1OZLZmJ5rE0zR8DDI3Id5ghPPjVa3bFMiiQPp8GoiKPBFjh7g5R5m9Lspw\nXrKmn9b2TAy5x3lDWQVdxiQAJeshW4tVIiUgU7Ud4wIeztVDua9t3y+JGUgTgIxSFpzXBYqphUQC\n1uzBlLwaLQbAWvv1Okz2oq0MJoA42bhRRK3YYKs33AjrLspwKwASa47+w9u3+PnDB6zr2vZSp1bx\n4vH5ytgOGz84bhRxHsm1Gdoct0N9kWRmUHYeCtZVm7zZwZSAacqYpwlzmmDISiC1oorVCie1tP0I\nP5zmCYBglYrzKljrirVY7ZSbfcYhZ+SELt0usCmHsEJHuk2YDQLz3zhIbYz+/zpGp4odbnbCs88Y\n5rxlq0UBJY+esDRzVe+8Q/T81l4A5Z9C7xGjHzYm88tjFGKSyAR2qUCWiv/+TcJf3FhDaYFVnaxK\nKLASDlXtNa3WUPhIwJ9fV7w+FFjbAHl2pfE/E8ouPLzMsf0n7b6ePVXz59i41aqoq1ipUxaIJKxV\nUTXASY0v+nctDllgzR9Kgf+Y5bicjZ5hF1gpV1sh1FFhS+YKgacODhSevOK2CJFnFqtTDH0UmBIs\n97qJZQNZvo5z5qaM4S3ayDl8bksjlLo5J08FTluqKzR6PnZojFfjxDdUFrZ7STThVGycWa0hBcHa\nDrTeBUGBGPy3Z2z5Er4X2FU2e/PylAAISi2uaAWc+ucbAIj7GrcCEThlpJz6vbtyin3TdrU35ghh\nbs8EK57n/jofHQ+9lGfyMI4/ilZv7M7L8OoSj8tRW0IQwVG5G3ORpZkcMCROyJkxZ8KUrRZ5t2Gk\nhfQRkwfik6VHO+JbSsV5WXEuhp7EN0HUWqYGUYHtVnZh2EKUXBkx27lbaGRHqXbE/fmCCjN+PLUR\ntsCgKP5bjk4ZdCXTz6ddLxEsK9H7EBLU27pZr8Qc/P5LQvzylJ+8X+ofQgiXl504hEhmJFRxgaIF\nX+4VdRcO7MiItYgAK8zvOWNiRfpXVnw5A68zkNSaijSh/Mkb1b5L2y1vH7whJoQED7QK35UwJKhm\n5YXzs6kDRfPfEDw3Qa1yZqmKWghlVQgD50VQK0yokDUN1knB8FThJiBDyFBslc18qCiiowYRWqhv\nzF8CIcFS130LOGqPeGgbB1Z7LSoEggzth+g1VtOuU8SiyIzL93mTLgzjXpoj0IfPLJS+r/rMmKJd\nqz02UUKOCJ54f1xtPo8hwAEvQBf8tN+J0UIMC/+UPt9tfEYvzrgW+tXYa600B7cSiLypTZyvWd7D\nc7lssYxR3ezRZo/8sQry2AhWYMo6ZDMnQLlp9eSCHGS1ewFxPlgbVz5n60A/TQlTIqhW1FqxrKtT\nE0ACMHk2psKQWlAaRQqW84LH04JjqeA0W0ISqGXsWW2IGNRRGPVd0mQuRVJQRxGB9EKgdwmh7VdD\nHdsxGmkLi8P9b8PpcR9hRj+bC/8/Q5HU6oDkRNh7F/OrGZhZPyFyYyzjWmj6QS+v1TZl+/SFlTB+\nVBEF372yCjIJ8lxbxmSjXxTIw+ZRJZAmkDKQBAdWvGJGlgnEpQkz9Q3UQtxiPFwokmvZ0YppkSMX\nVBBCJLgQYyUkyUjqyYZMDXkDIdDgQq0LciuDbHWtSzEBuiywin0+0GUVyGyLYc5s5WQdxfou8VT+\nviYDDHGEGMKqckbH9+B8s5vz0SzFfE3b+QpLOnnpBE7Jo7K0JfmJqkna0D6udqNukaAj7OCUTXFI\n44cFQdlsV0Z0arI8kQRR67SVqO/ZAcsP+6jFwDWKMkT/uP9UPTKprdVYaBg2YF8w7bchKi9CUCmC\nI3yvB73ykrXedUf3kdlvXkvgheOzxZF3G9SFXoroE6/mEaYbEHaIaTEy4ZI5Y8oZOWXj9WBOieVc\ncW6IxKDInAmTc99MxRezNYSdvRPIcVX3UjNyJq81nkGwnos2ohxLAsONIWowAD7Hqg1lmQHRHWR/\n8Gi8dgiQ7aS2FUablfQvnLNz4f0HHVnBeM7IQJ04424PXM3UkqhmBiZWTAm4mSqmVpryX/FMf/DW\nhg38SXPDBoEgmJPg7ppxs0/Gu9rdu0PLP61myooYrVK9/CqRZQvyTFh3hAwTsqMJEU7yUUj3CJ2m\ng0N9tM+gnwLqaduULCFk4orrVHBOwElNIJVG63htbDUHJ3zNhCCPOPIqAESNZmlKxOqUlNnC8OoO\nUGUsK3kJB2BV9GJoA5/exnUAHL3+fAWrkSqiEf6rvRWfAuKJeEpmSUMLoGi+reY5ILNiM1kD8YbI\n/SdATxu+gWJoA/7CmhnpwXAak6fyK6z8c9fIYS0P8iT2lSuj5Fnh5HKpgS42n4zHPTYxFHsqpH4j\nS9o5GTxlkDIU1R3TpvClird268DsWfKc/9++h7ZG/tC+/2yIfHPvbuKkRE07BkoCfLH5oLEX2cnJ\nJ8AkZ48McM5UHTUkgpdUiYJH4lEmbnqx/Y+9jRIzY85sSiK7HmxVBdH+PzzJH3xADe27MSKff582\nMLuHB45RO5vrU/92T9q4OMYXRkHekhPsDKIeWkmCOTNe7U3rZ1bMSZBJPZJHMSMcvhF18PLjB+q5\nvI3L537p2K7X2HwWg59ZQDlUnaPYWCtEVjUnzHZxnhwAU0UiK3swVrZ7PlhdmBuXSoOCBXr8tKNv\n7XMFoFMDYlE1t3vGr7/KuD0qHhdr7P2weKQIkW12oZaKb9ywtEYF1cPoBMC6uqJw/riQ8allLVgX\nW/WPp4zHk+LxDCyVwGKlXrtliPY8JqwAlnCSGjUyZWDOPvIUY9ynw/jhXovH5ky9ngi13Cj28F/2\niBJGi5Ztczeu6uZ6css1BGQb3WGcya/Z9qUOc9KWjba1ZNRXSHS34lyeJOamqMgFMXl6Vkfw1GS1\n3Qo1BD8eqvCOX9msBGFIBVKyqJ4ATI2i1c1i32xkHS9onudP7prPh8iblmx70CkUhF0KANY/AR6Z\nwQRy8y2FAG+NBdwhB5968s5CsA46Ddk2D3kzuBATTm4q5nkyQUf2fqdT4gHwaQC5fdD2cb14rdlM\n8KX3BwA2+X3HOMU6UPXwsfjQKG8GVIQRPbDVcUmJLZQNavU0oMi5YAejqRiCzJY1R6Tg5FEydUgY\niU2swyXGex6Gq92Xn68rK2qvj58OtNXmBl7ejNRotaCyEMubPATUNy+zm91ecA3cNm5ulQ4xXDse\noq+HuB/yD433FAraEFXMC7fvRILJ3QHY7xKeCvBwEjw8Kd4/CpYCXM9e3kHQHcoeqSFVW6haVRPm\npdhci0e5VAJqUaxrwflstMjTAtwfFfcnwiq2wU8rsJaO6shNPfL1Xd0aSUyYJsZ+NotMAFCxeS+1\nZ0B3QWnCRuDlMEgRXZrIY3JJnTMGuuBzi+5yT9htDVx0CHVswUzzJTUl6sK5fYD7UmqyhNqpWhis\nAzejc+1r5DHv7PTUpYwNp0EUqRvXiqqVYFA1YDrPE0olSDXrDNRWT7+RC4DXq40GAIw3CEPP+mfH\n50kIYjbTgmzxQiNjk5rDM1uJQBA56vY6x+wxnRpSjYL3ZdRiYXxM5PHlyTRsaGsFQFZEa2OpRFgR\nRY0WQ0dVYA1YRS2guqEFXx+xQEYBekljqD2DcosjGAT3ZShjF+1GJ/jGg8cc+0qNqbfGCgMHenEP\ncapwto5CPOWENBuvyKpIYvHDUrz2BXwhiSEM8vRpl/4tUmLr/GnDAx4W6Kis2eviAF14R4QS/DlH\nFqm9jp4f0J1TdkFu44q+y5twkW6C+zw3A54AbnNJ2PDgDERNnYhe0UAfcQVFX0cgX6vGGdTKSCiY\nZYUW6yF5mAlvJsIvXs0QWCbgzcGyGOFWhFSxHIdKqNUEcPGm2LXYPZRqjRiYPBZaCLxaL8vHc8Wx\nZBwr47QCWQsez4SnM+HpuBrNOLOXifZ5cBU0MeMqAzeT4tVs1sCUGOdKOBW2uGYSj6gz2rCqRyiS\ncens4yIue9mzoOEKL7Krg5xuvj+EYPYQZPdjxT7QSOIidvAd50HLiG3rA4rIr6Awj7hjncDYYugR\nOQ+lnxNb27fa8yZinuHZntw02RBbDkIpgofTCbt3D8gT44s3E4gSOAE5extqBSyIwO4mAGjsWzuz\n7YMW3tr2Qy/yd3l8noSgoR5JK7/qIShh9gfyDM0V9RYAQQrJFecb0BlgvdRpdQAAIABJREFUgku8\nBCiRtXVL4SSyTwxCL744CCam/hptrxXm4CcU4/Nn/ST30AXC8090uBvvtagMRyqBPntHlhCOo/No\n2KwD+kgpIc87TPsrgJJZNeUETkDlBbUUzxY0iJKouHfA8cTlDQ/yTTV8DZ8ajxiTLQoZ3/uUIG8U\nWxsZ7UlU6OupX2vc2AOv2gRvt/rG++vCRRtQH7KZnitrv6Zo7TNFjOtr4OuvCUsxRLsWYCnA2f9d\ni0AWxbpYc+agB7VGVie1IluGyK0URKkWYtdq61NHzU9nxWlVnArhWBlUFQ8L8HhSHM+Kw+TPlAmc\nOvXgog0TBDMJJkcGSSPD0SWzQ+IoOxuUhclSQiv+5dy6RgSaxu6NYeQByXaFHwK6RYiN89I/1UHV\n8IER4Y/upp430R61nbOVmwW1n8RkiJwI0ZsgkAj5ODTg5eyCZeIqzqeK02nBskSTeJdbDWn1tR9C\nWi/plVh7m0cckefz4/MIchE3t6x9WdQgGAe98YUa2r8LESL2DewCPExcX2hKlgWnYg6h62ly/t0R\nJmxMQrk14ULkqJwbZWHFj8YwKdvp/+a48A1P/ukJ8SXn9xUKqvnTvQKkMXhzAnbJXWbNVEb/ro/H\nKHCYGSlPmHe32F19hWl/jVoXnI9vsZ4ZoCconVFXBXkW5UTABHOCFZYWhR37Oh6luR+pKzodoh3a\ns1HH8WNCjpnTzwV5zJcFNTiWcUK1KVbqWbdtpnw+N/TZC4rkuUx4zn3HEwIe4UHczkXkSFNLXysK\nXN0odgdCLRZxcjoDx6Pi4UmBJ8VaBNXjoKuYII/4aamKWuEhl0a9rFWbEF+LheUGKieYID8uwHlV\nnIviXBhSJ2s+fC44n4FzVsuj2DGm2TIbCZGkIl4ULqzk1BpaVHf4hSK1IBRCAlArXJgzLLvJLJDq\nc2sRR/CYIwvBVHikSeSzbs2bi00Re5PCKHWAFfNH/TVFkxWEAWmH8u672EOXXXBTULFjsl3MOPU1\nOMj1UFaxCUQFaynNgiL28aBYFX0dtX3gykRfEAfj+ms69BNy57MI8t08O4XCbfQjMH6QCt1pNTyk\nqPhA87DZ7Hs5WdZYqRVPpzMgisOUAE1olEaIEDITyRaUa2afJdOuAqmeug9C9WzPf6P4RjzMGLXy\nB8/RhJ4tXIs5tgHYTQwlxi6ZhbFLlt24y1tlNF5nFOxNkE+vsL/6NV59+R/w+qtfQPWMjx/+GW9/\n+i3o9BGpFDx8fEI5reAquD4kXGfFBMW5nPFUCs619nuNORxQkJnKGyC72ZB9w7Uhapv0Yig2G7aF\nZAEbYWuCfut82nYxGm4O/fXuTNY2hqrm8Lpcj+2emrKhJvTj5jWck54GD1rBSbDbW1bmbq+4uiUs\nxTo+TaSYklud1bKbOy9OHhNvv5sQV6wrcC7qyqsLnlUYS0km+KsltFRJltFZCOez4siW2BW1U6bZ\nrGATkoQVhFUZixJWylgEWMUsv4kZSa13UM8qtcYZ4oEGzEYjVlGgWrJQq/VPHs4ow74elsA4twBa\nyVbLlrS1G6h9AyQo7uVlcNTO35aSSYPEPXR5ToRCCtLa6NWAcAS05+33eAnM+lWIE1KekPIMoIIr\nQFT6HiRuX4v1Fs+/zZTurw8fevHZPk/1wxxx4Wg3OHLKjRsLa44iLlQB9Jjy8TANa9+vcBqBCFPO\naCFKbvLa57XV+X3J+xzlJnm8Fm0F8r/tCEE3SqftwnspnjRC0RITrmbGYQJ2LBbSlQj7bMlQ5om/\npHwu/iLjyKf5Fl988xf4D3/zP+GbX/8JiAs+vv8Wv/3ta3x8/xZlrahrwXo6QpcjXu8FeyqQ5Qk/\n//A9+OEBJHV7jUDZFNwibe9guJWe0XkhzC/G69nGpC2u2aBv1hfWeFAH47m6f6R/fnRYBcIfhbR2\nYdGAR/98+5GekRjx4LbC2C0mRUoVO7KSpHPOiAbcDYFXUwLBg8drNV4rZBTNSghLJNZvEcV5UWRm\nXM22uE+rtEieUoC1ErgApyXiuSumyWYrikxFuzqolZKdPImqO9Y7Qo3uPaJWiM6e3fa2cuSCeBgl\nAWsUzFITka2TFgJUDdVP23qOXerNnr15A5isUumztTNCmGE5wR2J6AowJcJhn/HN169xPJ/AWbHf\nTcBpRUGs447ibQ3os9OHcgh2gVPCNM9uLWfUXVdMnTXpyrCJmIvzdqCypfEuj88TfsiOwTUQtkUV\ncJCVwW8jHoA9jKw77UaRFU6NyDRmAHOyZs3zlMEU3GVMsU1ObIBGkfqmbQsU7sCK+0WgvH+9MA+d\nvpFXvjY2Z2lIHJtnC1Q4pYQpMxIpdrBntWxW+EaNb/dJj/W8QeOJMc1X+OKbX+Gv/9Pf4Bd/9ivk\nHfD48ddIrxi//+EHnI8Vb+5eYT3e4+H99+B6DyqPWB7eQz/8DH2KuPrgRv1P5mGR6+ZJ7N/euuwl\nW7IjnRGAaIP3gY76yKk/XwzfpeD3BJcN3xpeMz8PbRVCu268HeeIcUUsk74OmsLViDzxOHA1xU9u\nPVpzBENX7FSEwCiIqtWRtAntOgj2UqkL8komkFermN2AECx56FQEmROuZ8aUCVDBxCbAajVUzwxg\nEahUj+e29oUmyF3heH0ReFPx6mGMqgTOyRG97aGUzNZdFVgW+9elpWXXAl48zMpHqxcno6Zo7T0y\nU+jZogj/TBWjeKqXBWAkKF8KbY8Dv7D2xjXmugdEtn/2+4xffPMa53WB6IrDfsKyRs5I6ICt5dYy\n0IbTN1rQI1+meQYogTGh7izzvEuEEXG/uB0uhPZz8Doen0WQi3u8VcxB1OI4ddhg8ahi1cyKVxXa\nzVPTZL3hsAfhk4VCQbXxXR1+cRcKuIi2ULRkALizplM9hLGWNICGguyPMeqE0JvRwmPaudUtM8Ey\nXCueskm7C+UE4/DAwd0pMhRZPSY+nF2DRh8X9Qu4BCAz8ecdY3+VkHeE3XUG717h9ftv8Fgr6GHF\nf/e3/yMe3/2Iv/s/n/AP//n/wfL0DlxPeDouqJE+HEhlFOqgjfC1wQy4G8bqJQUyzkVAE/+Uajt/\njLqq9Nnb0CvcSziE06zNdjy+OfXIwxjMQotwwr4gpDltbU0o2DMw4esk1kX7ivt1Imuzj41SafcU\nn4VWqC4DmpeBlqGG7KsnBJlQVxf0hFqtLndEh4AIpRKWFZBFMakh82MCstfGP1VgLgXg2oGUWG0X\nhaDUatQCzOJLEOyzQimhVMKpKIp4vDkxpCrOy4I0MXJiS7hSc8KvIpDKWKt6qntX0ymnFlMuomaN\nON1CPudValv/lCwrdAQBAVQstDSqkYbBNAQAGPrqSoNC+dtuzkyYJwaqIFm/N8xEqBGL2JzXdt5Q\n4pET1zaV/yF+XylZExvQBChjnqvFpytsEW1qSXWL0W7Zdn+GQIhQiCzWtAiUC146Po8gFzExS935\nYE6DrVlro2MOhLVWcCLs/NUxR0OH74f5q1Ktg7moK4itkOzDpcPrJsAlWrmptgWv3jCVePhOC2iN\n/418l02mtX8yHi5SkLsQ/5exPRGQzaj0SBV0E79Jp0t13pHi9m317Nd7vP3pn/D3/+//BToI3kxv\nkHLBm9sr8PUN1qdH3D2ccTXf4PSnf4nv/8tv8PjwHc73b7Gez5aF6DKuPTpCSfb7bpLUX1A0o2d4\nuW/w7VgETPEN+2yk9OLTrvwJXmxou4kHbNWvN54iikvR+Dijkvbn8+JQ7Wvaf9rptd+RhZINPHoM\nggtPK4ZkAlo8k9PZlkGYe0nbqiiVLcPTnZ5Vx3BU++yUTJArmVCuRXE+Cu6nionF63vD4+gUWhRc\nrOGySEKpjKWaIJw4ITMjeRSuCU7L1hQQJPc6SJYJ7CUeBDhL34+tFDI66OagV2DN0G2b2iAWr20e\nSV3RhSsqpRKiiXkLS+9yoU2IoIOEUPCxddyKZ1jtcGTkyoBWsKizA04N+YIQMYUjZEEUMZca6wdo\nFljKyQrxUYYqYZomC4f22PpYQU05+ZFAuOKEm5TAVfAExSNCAZJlmb9wfB5qRQGwe/5de3IT3HYw\nefjPYE6NcWKjlRFx2V2oODpyMxcYBHnbz6Ok6doQiMJc8BoO43UC+fVzNC/4hYDOTNhPFu43p4SD\n1013SNeC/vu5t8clSGe1yo7BDXaQOyqiT6uFljAlFefjB/z8+3/E3//d/4Hbr29A8xnTVLF/esDV\n4yPS27eYzgX7b77Gn919hX/66k/x+MPvcP/wLURqE24trGq46XEWw2RsH7m4vWc+gRjCS7TTAnrb\nTF2MD3XF5sJmpD62JwxUHFRZlINoGLp9bry7TVjn80fZ3usgxNtaU5/7oeJdAJBmCIbwrhHJgh6C\n6DVX1qJYPHxxqYSiXnME3Xk4ZSCRKYlMChaCesnmqOgJAbxkN3RVpGRNV0plnFbLDBUl7IQwT4TJ\nY8ETW0hi8kzprMlVko0pw+rxJIrek3DfDaMn+wTdZcqAGb2eCVl/gEjlh1sr0WQ8Jau6YntBN1Z5\nzE6j2WI99thYF+z+H5kvbJqsvpNWsabQawVtZtkUg3H7vqYDd27AgI0ZUUJKGdM0QZEsOSxNnolu\nzEFYC+PXmQjXKeHf3d3iz1+9wvn9I75/OuJ35YwzE6Zdwv7qZZH9WQT5nKdWBY7ITLJEBAhvnEvj\nprYJsQ0b6bShiZns+wyJOkhNE4+ywrKm+gaLwjqdT6a2oEIT99AkX4DNFOpIr2t8ACLIJLiaGLtp\nj4ktmmZO3ApOKWgj3JqjA9hkSQ5n/fTRoOWIEgdLQU04EIfJXlHXI9bzexwfv8e7d/8Vi77Fev8O\n33z7e3z5j9/j+tufkGiC/tlfAH/91/jLv/qPuH98i5+/+0fw+QneKNIUbTzG5vetsLMN7OMUfD29\njCxeROawaBC0XIAIDOvXs+sM33K+Ui/WQ1ykJ3tsEVFfa9vzANwccX+IqxwF/sYR+uwHz37EkXmt\nYsK7WHW/Ej8FWFf1WHTFWRhLJVRhRM/PiQX7nWI3mVLZnRivrghfv0642SkmVpRVgWQd3osV2QWn\nivOScF4Fj2fF+yfgXAVgq1V0s7Oqortk9coRfDkbxVNUoWvFzOq0DCGpIIs3QkkZouz8tk9WVGoM\npO8JgEoEdvRrb1p0Wwjwth9jn2jMG7lc8F1GcPqxoR5bR34mJmvJmL0ctmaFVkbRxae4U2QKtOib\n7fz331t9JTCIZqS0MyuiEFJae/PlWIPalRlgpbl/eb3H//w//BX+l7/9T/jhf/8N/re//y0+/nRC\nJcJuP+H21eHFdfd54sjVBqWKWAlNRLbfdqEHT6w0JB/EOUKIY4O3O7JyE+YC3rXPjCBx5Msj9NCE\nvQBkPTjVza9N84Z+gvZrYsKcPDOVktcpcQQDfXa9URn01OPt6f9QoEzolSjeb2ND/c1ByFlFvQrG\ngrIccTre4+/+798AnMD3D9h/POL1uw+Q9x+R4Bl0orj7m3+PV9d7zHdXOL47Q1cZFNqFEG9Wy2gl\n9YiPEJKjsNscAa4J46wgNnw7d2xU6utmGJH2zPZK3NMw77S9j+2IPxthRJhicKSjAui/b5/lpc+0\nHwzC3OWFaqdHghuXIZyxqpWDXSvhXIFjIZwrY62WKT0TwDkKbvn+0OSVPysoetqoxaYnAJUI5Gi/\nVlvvxASyes+oqljUQhvnkGFeOdFKBgtOq2IRH7sMiyaBCaZd8hBEUiwQVHiMdTOfYl7EDXV28GTI\ntSq84Xh3rCfyxLBIth7mn+CO0/iwDn4EwChSXxxRkoOT51eH3Gmbse/17TIZkVe3qoKKTclqrZBX\nfCQeOk/hYs1dgIgrML4Q4Ou14L4uyFpApBAWUCakPyZqhRTGC6ppbyavOZGASARqNNelENZB8KEL\n8oFes89RT+R5GdbaecbtR2oLRqvREOrFQK3WTo/XRdzWwPHHa4kIlL0fuiMTph450ZBDWyS0ucFL\nHfEpRL4VcugL8JOHIpxxFQXL+YiHj+/xX396D60Zb7DDenUL2t1BX8/WhGOpqD/8BP73v7BmHTc7\nPD4wpBJS3SLXdscNsAQiHhzBpANi7UrguTA3VceOioZgv2Hjx7likcQmfHnEus/FzhMbagwzVB2U\n9IVltBlJVVzesr3eFdP4TJdCHJ9A5CbIveqgaO876dZrFW2CfCmWNn8sjKWy9ZVMliRWpcLAtAlb\nFUGV6lQjLM5bFZW88gSF0jCwkZPRDSKERToAsVaHtm8Jnc45rxXHCuu8BEASkN162SdrOl6oQip5\nZdI0WD7jOra8DWuHGE5omwgmc6Sq0zeMIZrIlehG7fv88WB9xSSF8A9qhZnQeqs2iTAK8kHpNCE+\nrqe4oPnF9lcz9lc7q0lOBGZTjiOojPGLG250WxUsbz/g/rf/hPfv3+FpOaOSJVmr16956fg8ceT/\nH3Pv9iPJkpz5/cw8IjKrqqtvZ85wLjszXBJLQIRWu4IgvQoQBAF61D+qV0Er6EEP+yItIOwuRC5J\nzYjD4Zlz7WtdMiPC3U0PZu4R2d3kw0JCTwxquk5WZmREuLv5Z2affSbimXRJjIM3JE7qxq4NQq0V\nK82d9c/1pRGLuRnvvaCUhgHpD6d/7nKRXg4CWOsyglIiYSHiyGQY3AXbhHL88xdoOk6p7CYKFZHU\n3TQPzcjOAG33wvafFz8f2Ys9ivwHLP1HRQWyna1WqFI4nR54/O73fPV64emTP+KXf/zHPPsX/5Kb\nJ7dM55ny/h3l1RvWx0ceFyMvzr9pMfmLe9h9V4s99gUmTVagofF2/5fXbmabfg6hShcP1TnH0Wqr\nFWZweb6OiMVLRdoCtL1XQCS4bTPs/bN9bD+4sLjWFlvt19oC65+w9P94SMV6gjOk9T826HWTeq1F\n++85ioKWwmbIV2UuymDu+RWpZJrKoD+7ApSY16VWtNReTVgDvNSI0Q8Io8BBJBqjFE9iqjGYd9Yq\nJhH79hxQscJ5rSzVpQWuBuGQfHM5ClwnWCisBo8CNao7W5+AVhfohrVVqrrMBtX7crYc2kViswEp\n2+Zam+pNhbKaV7+6NhD04LZai9jQDeyeOnvh4e0AyD8AlgwQFY5XI89f3vL85S3jNFLMvSTVtDPm\nOwNuHW5SzHizzvzNV18x/vAdv1/OfDtnSlUsCUiDrB8fnweRq3l7RATVwqCJKY2M4zUmlVJXcn4E\nEXLxIp7Qr/OBt+1ZiFxWt7XxqIHc6860NojvxUC2G7+KinEcBST1tLqIm2PXUvbr7kiy3cuu/Fbj\nvy9Q+i4jYvsJEydp39FCER/ahiZC1M8XZ+r/yHb27lmIbAa3fZ1BV1srRj4vzMs9d3cLh+klOo3o\nL36C/JNfgI6wLMj9Pen+DuEd9vB3SDGmUIWTZnj7RTVKmG1qoXu4LnU3cHv3oZEDN0OaK+SiKImU\nSoQ1YmO0lmewCwMrPfz2IUMpjP5+YXYjDi3x1p5hocZbdNOXMS6ebTuPh98amq+7V1vLC8FImLls\n3TZL4r67CqNF15yIs7Iz6u1vNboFFf9Zi7AU4Vw9vDJJZare+s69XR+EGpRcP0ecJyZO1WbwNJJ4\nPjabCFnTHzFfAxjJildoIjSG9zAkpuqKgSJR+ON3jogxxSROOGVztV1orrE41MGT4TRL7cbYn3eT\nKm5Azde9bXa3tvDFNrb7bkk+dhsAaHIOTlNugM/nWANL7lG2TcNDRSoOyJC0zT2L7xBvg3c8Thyv\nppDSUOpgwVrRWO9ttu1AF4SsQeXduvD3tfCqZu7MWEIYzCUF+OTxmZovO7Ly6kRj1IHrw3O++OJX\npKOylDte//Bb5DSz5HV7sObu1cVSjV2y8aql+Apo/e6a3kNvF8X+w23ienHNYVSGgV5wZEjoOPuk\n+TBNfbk5b4ZC9ufvXOoPPtCQA20pb0iwv3Ufutnbvk9+7/6VMI4dMV+iTDPIS2YuMM+ZZV7Jy0o+\njOQXT0jX1yzzTJ2vKacn8HqF5HHYoQblrRk/2byh7Zd2Dzuj155fqxrc/gT9Yz5A5wXWLFATw4D3\nlRQQqYh6013tuQftXHrbPee2KfglucFtl9eMgRJSpWHQk0innjb03p5n9+LCcmzGW3doe2PAtHnQ\nSt93JMaPQjPttc2YxwIPZoOX7IO2YqEKa4UlfuZAyMVagtDHOAKDO6RvXdtcddssqNLXh2MY6fME\nNqA0iHmrP/Win9IMv0hwyJu2SYTDxLrxGStbki8arnRjHc8JiY3GfIz7vbDJVIi291unHgY22aZ6\nOz4AR/t1tV8LlG1+9BV4aShoebwkDZzR7U4/V9zHNA4cpsHzfqLUITEOQzTwiGcgDYxIv1TFPaKK\n8GDwUIUTsKZtHMb9F+6Oz2TInZ43psTxAAe54dntL/lP/5P/lpc/veVh+Zp/82/+J7779hsezist\n2h3BiT4g3YX3s9KHq1Zqzb440kCt2ifqNkDWZ6qIM0tEYkLEszKzQPS75MnOLeoTwj68lv0R0lzb\nW7k09p+YaPGM2u97M2zEJUhDG1uc2Lb5tX1C9mf212qgplIqVmB+nHn33RsevnnF+fkT7Fq4+93v\nWB9mqgmZGTs/euFIWzE7KmX/Urn4mg++1egsAIGtYXC7sZjUKjzOxsNDYl2VYSykVL03pMomxasW\nPH2NmKqHtVLIoDoLQtz702gsHS3NnMkQ5V0GRmVQb6ZQM9TqwQijxDRxBNaRlHmVpnQ6fUi6FoFI\nLjY+YQeG1T/jrIaG/VpLNpeVuIyZRuLTmqEnYuXxQ1R7xk9RiypRnJlR2RB3zPWL8+zCN31qS/Tv\nTH73Sy1YbJgS3OnjkLBBeVhd2KtVtNba4EhhEOMgbuA1CaYh9ibmgnn4OHbBvKivcGkCZ+z0auqY\nFx1CtRxDmz3esMCfc18kO8DVEHB7tA6JO0gr2aInaljL1l3Kao+hNxnjlIQhKUl3tAuRy8Q/MAwD\n4zAyJI0uSnUz4hHv90iQdKVVbwsIT2TkqQzcmPAmOgw1y5dwjftPHZ8ptOIUnEEqU1IGHbm6ecLP\nfvEz/uhXL3hYBv7umy+5e3wL799D7PAm5trHbaEKHfU0q+ec9Mr1OCAqHEZl7DspPgl2RrQhtySA\nRoKIZnZkCw9sYAy2YfyPPuwT5+nFUchGk2zv321g8YLf9x4B/iPf1TTY/YtaabVX763rypvHE6eS\nef/tN5QfvqL8/hW2VMow8P4w8/D999h5js/Hou1jYdvLPRbJppVDe6EPAht03S048ZjmUoylisu3\n5opGY+L+7h0q6pW0sTi3Yr7mQru2ukoz5vSKWNf08Njxk+vEL388AI8u6bBjAXVs3iZGXLu73hY5\nHTidvWG1JiXJEGjRsOh/iiXMho6OrZbezg2TXb4nzmlEhyC7+J7GXinmJfBepBLa4C0xGvtm70a/\nO6eFsW9diLbdVkCqN6u2qOLUbU155yD3xs5YsM+UZa3MGVQT16PHxJ+oc9xVKhnjmJQxedepqq3Z\nR9uwHFAYrfCpolE9rNpnT58vVr3i0eeLj061Ruzd1vm2rugTsVP+6sbeeTwVXr2/AzGOk5JqjgYR\n+80vGDUJmub89gWy8wKd8DAEbVmSUJMypBTjZ1GoSG+j1+LkFW9T9xgJ5vdWOdtuM64QBvCj4/MY\ncmnoKXjaWsn1zNu7b9HXjzzk73hczsyluHsl0cG7U4Jki40D2wrzhzcl77mZ1DnqrdqsoacPcbOH\ndpvGsuFSm9CNTzNIzVWzj07xH3F8ejPwmFxsNtYKf+Sjz7S5epE0/NQ1fYCO25co3ofzmIxcFr6/\ne8urt6+4Or2m/vY33I7PkPHAzMoP3/+e96++o5zOsaG288Ui26HxbsR339cToLKxRDq9a3MxKOZx\n37VAoZLGlcNYSOp4tYs6mSN6ayC/MzuEjO5mQ7is1uYNzoHuc0gRFR7PwrwqP/1yYmRGZO1ob8uv\nbH5Ox162Pfxa4eGhsmQ/r4d93B2PkrcwphI/bkS97N4cPoeGSI/GtbnW0fienhhIvIYxZ8d4CYOB\nbhonPWQTXkDPvfRK1XZ/3hC5WgrUXBnV+6WOCcZAygcVim5x/VzdSCcxjmpcJ5gLVDFKhNS6PKw0\nG9BCn21NNS/FEWvaMBQer7+c5tWEXZoBX/8fF3I1VHGxigxc0iFxnuGrr9+Sa+bpk4kvbsZOQW7G\nfIMjuuXFYmxawTYBwDZs0kJLodxoUEqhSO2aO9abTBvZhLuaUSu8NeMHMe7NN0QzY5kzj48Lnzo+\niyEfKL5IeszokVevfsO/+l//R+qhci53vH79NflcWBcfgLFNAnwTaHG7hmLMDIkGzleH0TPuEvG5\nQGWOxtuwNBpcG9gWJnBjXkPQqCWcNtPwDyPf/68Oo38xe1egG+/dFTT0ufvkp8622+sErRGPE+N2\nEl7PJ37/5vf8+m/+Apkmnt2f+Nl//98gP33B6f3v+fZ//ve8efs9+XSixCpsWQTaJe74n82A+qX7\nhN0STRtrZUNPfnc5Cw9nl3jVlLk+Vl4+hasxujbV7bGYNpTcDJ8Xe5SyhZjAGRbZ9rmS0EKxwTds\nEe7OcFo9Qeel19Gei8FpcLKFhPz+Yt64qwMItSp3d4U37wqnuSDJVQWnSRnHgWGopKGgQw5jo0hN\n3g0oWrv59W1l4QKNfkL75hY+ydaMuOCF+DUotxIGm47A+w87Si4bw6NvSrZ9j4pyHEdGVq5S4Wp0\n/RWNTfB6SugwIOvgoYPiiFVj5SSrJNHY/5yj7ptKpRQ8pCBtLrVZsxXM+DqvndmyN+bdqIvs8gnW\nPaQ+DztoaKO2zU/vXJQQHViL8PX373h4fODZ04njz78guci6nzfO5Utoh5raHh/rqm0atVRKLtjk\nKMNpt04DzbmwWt62JXPBtHbO79eZHwKfz+oBlWSu0XL3cGLN8yfW+Ocy5FLIBnMWptUYOVPzyv37\nBxaFxTLLnKmhCjSlEU3uskxDMEiwbgz2R+vx2TBQCvS5sUs+htORSWsQAAAgAElEQVQCkeDcoxYL\n1ONtuLyBbPqHgPT/L8eHX9Vc/I2ZHRtPpNY/5Shs6GP7e3NLVYzbUVlL4c3ywF/+5V9Qnj3jz549\n5Yfv/pb17v/h99//mh++/Tvuzw+YbgyTHey4QN97F1P698Zi3TOFmjHfuTe5GA+PmWVxnehDgsmM\nZFvyuX3exLbQGhuK7eziQDnFrDcQ6QhUBKpSDM4U3k4jpcAPrxa+uBEPy0nxgHkwMzwOHCGJjiJt\nd95AYHjrvHUunB69XZrzN/z+VROavP1ZGiwULNXj/anpIfoM9MYrbQOkP/cIgfdGDYQOibW50W1y\n8wCsb4CtqUNPrsd91Fp7b9DGqdZambRypRaUQhjVaYmCYgWWuqsFUTfmIhaKBOIAqbJdnzqdssXJ\nm3ntYW0DsQhNAJtKyxZObSDOAvE2MONiapdGvKlXfnzsXpeE6IjpiDEgMiBk6OO7uUh7kNAxUszh\n5nXWWik5U0tG1OPwpWT3ksK7ggjtqVNCLebp0ua6SZ8zlYKIkquxfloz6zOV6GshZ+fDzkskM4rw\ncDpxqsraXJTq4ZfjNDCIs1yGXaLqsvajLfJY8jGojWYEbJZRLtGu4cmmtRhLNdZSWKvrW5TibIbD\noEzDliX387UdPs63y2a377vEU7vDLv5ht7Q+OmKa9ElacfYOO6T+wZPoS3//zZsJDkQp3pzidoAl\nL3z/7d9znO+50ZnzX/1b5vrA969/x3fffc/5NLvXE2XKKvBkaoZmQykNYV9wzDHQneHV+Olj4A9K\n1Q3b9QEOo3A9CaO6ZOvdrNyvnuDz2Hbxzd1zXdH2LtTydui/3a1ooEUxRBKDJAaFoxSOk3E+F+7e\nFW5VOapX5jqVNDreGj3G2WUkzMtSSsEbRSyOvm6ujLUq81KY58JSzKVoC1jVbmyJir8W4pkOcHUQ\nbq8KQkvgstuw2EbW3HgXhLUKZ4RRXAZijA1TJTj45jFkqxVLAWdkc9KoW8KyurX181NJwCSuCJgi\ngSmqJJMoEIpetx0tR+RbInxlGz3PdmPiFdCOSkuN0I/Q3QjRrWhI29puHlH83hKhfd3Ydk8dcOwA\ndPvsfmW1xLNruWhvstFNRk+U9EW/e3C71Woba6nWSime2JYw4LXk3XdJBxR7xtV27UF/Dq32FkWo\nJpSuEHt5fBZDfhRjrpm6ZlbU5R5RVqvekcQUqZVEZRyE45QYTEkYSXe98CyMdHP1O280dlKhu5su\n3GMQPOFWIQaOUOcq3uX8XDgvlbVWcvUuQU+mEbmauJrw8mPZXC5oEyosa0yCDjAudvAdoa0b8s3a\n14Y24xPt3nyoa5/Y1bQXOHh4M6KwDYWwN2SbEYi39tnc4pDXE2gy3p8fefOQ+Ytv7qnf/JaSV0qe\nOZfKuVTm4u3JzOBqVP7kiwPX6lrvPVS1XyltYUaOoxd76O5tQluVHA/w45c+yZPi0qhSeP1O+A/f\nKv/hdeVxUQaEIcGQPGE7Jk9oTwmmFKqTKiSUQaq/d0wcKIxqaBp4MglPpszNceEwLs7RPlXKEw93\noCBJNoOx2/StmQpzyl1ejbvHyg/vC1cj/PiLxHAckLpSloVTqcwLLLNxPgvns3I+CaczPJ6Fhxnu\nFyMdlJcvhX/2y0ISDfbLjmYXm5ZaW+rKasLDWjmZcE7J+4MeCkuFcRCy5UDaA1Em6sm2huqrIVL7\nhPUkqIIpJeXAOuqZByOa/0pP2JYwRGriEagYVIFgZ2jwHdvzgsHgoML16HN0yZXFKlWNnAu5Ohe+\nhWW2him2uXkNQIh2A1q21RVPZ7eYYt6bNqqydUxeI1bdwqu1V59YoOPa0fF2GduJG3nCalx/NM9o\nDaqdppr98xG6a9MeVaTKhSJiAx7OKKoNigCKSOJTx2cx5LcjTJp4dvCmDYNCLoVrNfKKt6JCGKVG\nZVih1+Ls0G5tg0qY7/2uCYEqgoNq9Cz5h0etsCyVh3Ph/jGzVk+2eYI4UUMmThHESp9AF5lrtt37\ng1dj0GRD7hcZ9UvXr99is77W7sDaXEStkMzTQhY0wAsqX9tJPvkabKzmlggzsMJxSAzJWKzyzfvM\n3ePCvMzkUrw60IRsxqTCi+tG1dyEpLbE0v7efePzUmi6bvyHcTFBkOg/Wq1EYlJAhQXhXVa+m+Fu\nTgwkhEhIWeXqMIJVSsnkSKwl8a7wg7oRKmYc1asWixV+8Qz+7Evjn/905I+eC3YLoyVujjAMRkqJ\nC72NnfHYezuORgsDmS9vE1ejcD0I395XahVGmVBVjpNxNVaeXlXyaqwLnFfnzD8ulfvFuDt7EUkx\nQyxjErS13VJuj01pnqDzrddo2Nx0WN6tzjBZsnI8G+8eMqPtwhLmFlWT9Hh1RcnmWuAekjKyCFmh\nqGu1VDOkFoxEcWGVbZ6J+OKtpedI2sZXcTXTDlJiHdTIYKcmKNXK2dsNs/f3uAAK0jYUa5vt7n22\nswe7h6YReh3YoW7pfk5PbrqNjSdv+xHfzVe7/G9wO/bu3TvevnnD9XHELFGyI/K2Tvchorbhobq7\n/hp2ZjucBlpJqfKp47MY8qdTaPuGMa5UFjWeHTXikL7wrpLwZDRuhuy6xFXC/bq0h9any6UrZYEg\n6mUFEewMGX0ALPooBttZdzzVbqhaXd6nDPbuWvr+skuwWJuS8snP7Udtv1819L8Jh8V7zL2NWuOK\npPYsfz+Btclv+x3CCyzbWwUQby6Qa/uCxNvTwquHynmhs0Vaq8FjgicRQvRQybbwAlxvN9VcbLHg\ngBOx0V1PzIjHiIAkD9/4vXvC2lGXUiyxmrKap8GWQD/XOmJWWDOsUd0oOOqboj5gXitXyUMw59X7\nJ3556w07rg7FWSbsWRUfxFbbLfYNaxstlcohFV48TSRNzCb85deZ+7My4n0xD6lyGPB+qzR5V4OD\ncD3BFUL+wVgLzAug4YgLlz+0ROCOsWVeCJQNliosFe6za4NXPKd0VGXOwtOsPDkatwdjAA7aDGKw\nfqp2hFqKsYiyVCMTFbCxqAwX1Gp0Rh8vn5g9N2IEcYAAAtvK69WqpV5Uibbk57aMd+a5baTN6+1W\nvM3nD9Zoy7/EDtgKdhIhvAWXMCoWWPM6eqJ0vyAvRt56bLvlX2o1zucz5/MZ51SKM1Nq3ua4NYCz\n/VwwcuyyzqR7OGxyJR8en8WQP5s8iVlLZZXKKsYyCmkYu6tzWio3h4FnV3CdMisrGSXLsO3CNRaD\nXaLhPRultow27ErGZQuF0L3KeF0dCQZ3vTa/KRITDUnsjfFF2fYebe+QqUVncunv3xDApXbKHq1v\nJzJR9mzqGiGjpSaEzCROJ+x3dDH5Ptg6bDNKFkHrapW3j4WjKLc3V8z1zFKVLBM1KiqThlRw8iz8\ntnwuEXZTYpRY/B8qRvYwTDyv7pVIK4/f7j8hHE24JvFsGKjFcxlzNEjAFBmNEeFgiVq9a71VmBSu\nJmcyzatyHLSPnXjGHK0LAxXVEjYh0Tj7faNq3sxFjCrGwipJKseDI/nHKnzzLvG//brwu2+diZOm\nzNVYuR6N22PiyTHx5CDcHoynU+XFEX58O6Als55XHh8LehUlxbSYfxOL2jYblRBpEzZkbi4pey6+\naaFKtoHHojw/F56fjB89gV88rUxp5Wila754S7kBcE0Vy8ZqxpxgrRJeSqDWXpjUJpTPI78+X0ed\nuqe+wWbTKHwKVcXc+gVIg+hR9Rn/aiv2aXkB+jPZQZoOkFq82Y38J4rVdgYxbSswms/EfwWQvPTu\nP2XJ/T2l1iBGaCS225o2pjGh6sV3LazVf9ocV0Eigb73aDt3PA4ncLQr//j4LIb8eoiKuQEyxtmE\nWhK5FNCBYVImdVQ8V2OKarBBwcsLtIXdOkp1OukFlqWR7KVPuIao/H0xtgTo8+RZ1BH3R5g8gWbi\nnFxpDzQ+/JFyXz8ay2IXD7Md0ugoRrpb2BBJfx33FOZcObV2WOGOWhSGzNWTgs+PLlYk8c1t5+5z\nYwMm8e/mlTTUezJBZOLZOLn+TF3RgFxqEQcNNkWPh+/c2v3G1e53T1FsroB/tLnk+wXjD6ZV+glQ\nxFjVWBVOVjiZUJNAhVQjXrxE/D1akIk6glytMoaODiqsFtW+CirFk3dD6JFYE2ZqBkU64tKokPwI\nJ0r1MnUVxtELgJZFkDVhNZEFzqpkhPeLoWcY7ryqeUiQUuXHh8qfvKhcjZWrozFNcHs1Mgwr6+qe\nUhsjlQgNSDPofcuJa3WX3EyoES5RvOvPWpXTWhkojJZ5gnEtlVFgGCuJwjkL6wrHlHhxBQtg3rqI\n+WykyesyfLQSlUTTmkd8A6lJKQoZYSmZYh42KTgNNBvkqGpy0kJsT4Fc/V71ArF2xM8lA8df31C4\niD+Ttvb6mu8/G9AxPNtezRtQt4CK4Y08agdlxkUMZbe+vWCpyRL423zzV9c5T8I4JKQq81Sjs1Gs\np2gOvz+2CMP+atuLwpoLdv4DCq0chpaJNQYTKIlTTjycjdNirFHkcC5Gys6sOCbnPZeo6morvQYa\n2OdyLx/Ilg1uzLOYEvFunwhDEqZBOU6xO+zeO46eyc7mCcXU0KhYn1x9V4hztolmSOz4vuOm+Omj\nTkPon94Q1goPq/FuLuRWEl2CrhQcYiFxO0mfyD051i6pTbQeJdqjmdjn5XLyN9fUEUwHTDtEFOas\nn3+XELTddyMdkTf2RZ/5n7hl+XCMJJ6h0ZX8Nt9ru1QJFkUKv95TsM3Paq27aKSIuMiCadNW2Wir\n29zx31qnGh+mtkP6+ypEBhc0xKCkOGWyxVhNvPmCZe+92Y2DKLYkXh68sfHNjXO1D5MDkLVdibTO\n8tvzcWPeCt3afQJWqbhnoiIkM0qK0IsoaxXmFe4eC+9Hb0BxwBgpLFnItTIN8OzKC1FKbHAez5U+\nxrUzNDbmSLXCWitzcfrgXPosIZuv61yNXD2YMii0zj9Cmw+xNmSbZQ0RbwZ8W9O9Q1CbX/GJ2ke+\niYBtxtyAKi5TbRbdx2C7vx326JdzaXP7vOuTp12TRR5IpReFjSqMw8AQFZ41ZAn24SG//jbO0o18\nDfooZoyjMIyfupDPxSMfzGlQCVIV6jKg55H7h8LdUjmbk+TX5IvrehKOGtKmtssmB+2ptlhB7Oz9\niImxK1xrs337jxioITk7xh/i0GlIHp92itVarXcM6iZPtm3Bqx612cAopQ79iJwZNHEYE8chEliy\nIfpuFHehFkNYK5wyvDtXcruR0AJXAR2GLubjiG2n/7cLBXTe9j5BbI1rL4wIkxipFurqVEPTiCLW\nDduYpEAx8Yq0ZNnOXdxtTD0GqGx6KX1XsH4dZg1V7RkKYZxx9D0aDOax4CLmlYU1kqKR4JwCZS3m\nbAwB1Ly0R8Q9QO8e7yoWWVwbZEAYTTDxkMbWlLmFxSxYUR2P9/HuxkUNxDVYJoxJhFU95GUm2CAs\napuSnw5MQ2JMhSGtPL2qTMl1w5diW1HV3ngHzVL37dTaJl2dJVKrh8xqAIZSXJ+8DAnTAVN4mFfe\nn+F4iPdirCVjtTAl4+bgmja+SSWs+H0kcRBWahjyEtemRrHMUtxrMksejhEv7GkG3EMQlSRCia5P\nKcCUV9IWeqtFtk3dp8oWk97m9F75dAMebW03O9unZ4RjK7tEf2msFEFaQ9F44Foba+bSgDbPuIaq\nntM3w9MX6fO8jd2gjs6ncfTNJD7bqjqTiNdOKBwGFyETTeRSmddCxri6Gbi6nvjU8Xl45KM1HpVP\nfgq318LPXii3i3DKwkNOHJNxMxrXozKpx7xUtCPmQR25m9FDKIAbX21IocXXNhfJB9ZRlCdivMWW\nxsPsyDJc51oNsZCvEQuktzuXfym5Co9FKHNmXY3ZIvkW1KbDCM9MPFZLTC6TzhNtfNluELG+q2tS\n916AilfNaRCyHVl4teBmIPebmr/m69oNUucvC0ioCQrCIMKUhkDWFp1m2rO0UFlq3OwQs9oFtS9T\nufEdzXtWDxU01TzCgGMb39/EtjL1/SHeN3KKPaKgm9dbcYlhCakrCd10M/q2L07bLPGaJ70kGn8Q\nc8FRsk8X67ulWIK6c6FjXjWedjMyEnEPS5vhTfH8Tcy78UjIobolR2UFso/BUElDhSL+DDraDM8k\nfiTYF0nM9YoUznS1Ar+WoIRWM87Z5+ySK2LKQRS1xDkb50UY1Cl8XvJfvWK0QK05QgQwpNKrKp1d\nb8HfF26PyjhWKoVUY04jrJmoVZCeDFRzvosPv6d9TaJIzVrzjOqde6yitXUP2xD1HpQIbWOVoO82\nKu6G2WokOzYa4+aZFWufyCDZ15O4UBW2raY9PgS67G7LpTW6ququkUzMe1Xv0OTdwoyqnlyWIlAr\nKnAclGeHgZ88GXj+ZOL6+oDoxDdvHvj7H96zCDx/OvLy5R9Qq7dxigWhEjGlwlODn78YeFjgfhbe\nzsaTybga3ECZVXLZh/rbjhuuUrxqxlbsYNswu4ZK4293zMdePtR5mk2rw5FdaQUw/b2tiMAuwH2A\naZZsiKlTt2rlNBcX84/u39WkTzZfpDuPcufQt9BLF3tq6Bqw2tywTUag1QNemNI+mR2Z7cuXPUao\nG6qMhgz+MGsUkkSCtt+oxLc05FH7d/RFst8sRaL4RzxB2pXLdog9vKkW+umn6N4D/afFhbXKtmlZ\nX2p9TBtn2WMinlzroRnrrPcIc+0Q9rYf4Y0s2M2fMCb9PWE+dgksC352bBVhyH0zNoQMwf7wDcSr\naysiHjDS4NtH2P0ilCK6oTvCkLkhh6E19G0I9GIMnDGyFEfT3ZPSRKmFeYVkrvdSIAx4PLpYWQrI\nYB05m0RYRyqjJI7JQylVBI2k3yl7WNBUepjjkOD2AMVaBy3pyooxszdDWysFQlxvYJv+LdSzN+Tt\n0zGGLWez8xr7HGN7ph4aqkgtvpFqRcVj5tXqZYhlm4YBiNoFbSf10Gk0w2nRVxyYpJqZ1DgObujN\nnPeeSaDeqP32WvnJ85HnNyPDqKzVOA4wJqFK4uo48uz2DwmRT/RdleoVY4MWriZ4mIV3J08GPTv6\njcyz9wUEIVva4ri7hddaP8V+3GN4BqG+I4EUGp6O5drpUR5XzYRCWRhyq15l93Gpr11s017BBtTK\nzdXRMfGyMmcvyEity5C6bkIvONgF3/qktC2J1ZgKEvCgGdVm/Nt8MxOs+mKS3aR1AygbupDtm9p2\nUrFgrziHeFlmr0xru+LFfX94tL/t3+cX6glkTyimEdKAS8nGBo5ujpIjnNrvq3tXHY1KR0n9DoII\nsFXqtiRWhHtqf3LhxkYJemzwG9UwnmX7vX3v3ky0/0QC6dv2tzhqeDCNiePSr85nR7093mLFw1nh\n2UmE7XbD4l+/N9q9EYv1SkmfO0Qsdtc5Z9vvu/fgC8TZO4M6LfGYfCNal8ope4LPtAlxhehWGHIR\nIRXZumSJG/EEjKJUcWOPKDo4hdcMVqtYVRZLIJXrUbg9QJYxKqjp88vMKObnTIQufJuDwTH3BjPW\n75eWeN9WRKB6ukfTEvPtWTRRLW3ryApYZhoVqyFR2/V4IvzZn6Ns86MtqNghhNBjt4TqQOs5KlZ8\no6grRzVuBhhwLz+bskRx32E0rg5wezMwDZXT+ZGHs3E+ZcDDLMMwMk2fNtmfxZBfHQMBmWER0mgD\nsqoyNuGcnNFaIcfiEZDB6TqYbGAMwow390wio25kcwGfMYEOQYmSC5Pj7yvG41KZs5FzdVSnQCkM\nOnj1qUpsGpEYCzTXgKNrwST++Bc/QYfE7779nkri/rR6ia5rV6Kx7cCWkGsXY0TmPRar7ryBnsQ1\nMAmVuv4Ighpo9IntetrbBGybRFs4TYzaaWyB3krmfF4oue5EqnbFFrKxCD46uiHc4uIpgQ6uK9I8\ni6bBjElwxpshi1BYR/c7tGWNwxwvNJqa2e6NzuMt1YWZiLCYBTJuHy3NEAu7KlPbbX7BjLCWzPZz\nWfCEvfflnlVhfXxqxenDO2cixbktUHRD61B7bmP3COk5hmacae76tkk7It7x3onXd8Dgcmgk9Nud\n2ZIkFCVNKDWxZjcoORdK8fyOatM9F9a4BpOmXaQMQwJN2Gre9AI3oFZd47uYVyUuVdFaGLRwIATs\naJn3mPdxXhsTkgafc+YbhKbN++koXNgBngBRbKE614PZDG/4ZR0UNULAqMLxMPCzP3rJvJy92E7x\nPJRudmoPZvoTbki/fb/3UQx05Vo9VjN5zszzglWLzQ9MFTXDbKWSnEZqEhW05udoHZPMN9Nxqlxd\nf3rxfZ4S/SmogVGs0+JdpoWhCrpsK9jMua3ZnHhYGqZuCzgOCUhVqjGvOUIgAE3HUKNPqHRk2gbZ\n8NBKLoXzXFjWErEtIRnI5Emk7aI+NuIt6ZeS8OzpE4ZB+fbVDxwPoxd5zI1v0Z1yGj2yGcYOyGxL\n2PhOT7jw0q/XQXaNpI3L7uYYf3fb2vNphsORzDiOoWJHJDtDtD7QRzVXbmsNsPfHBef9HwPpzUD2\nak56X8a9Ml1D7pcJ34jFyw6V9gvYjfXueVl4FCY+kNHTYTOk4uX8Up0PvT9lM9w+hhttsjkijVpp\nNI/s0nBvz6a9f7/w4zr7/V0enUK4+4Ptb/SDedHi7tqulZ1B70/lcmC6vECcqAGXfVejgrq3aniy\ntN0P29ooVcgl6IHBjbbYrAeNJxTccgudovadnpzcONbtmfhUCL680Y3roK31cjy/qN+Qjww3/Z4t\nBqE9p578R9jJi9GEiZsHnVQ4HhIvnl2zLImyLrAunqfoY/6PT/c2O1TEK1OtgBWsrJQCOWfyuiK1\nMGC0yuY1Pp3xCuQxCdMoTArruoErCc9tHBy1f+r4PIh8sjCcwtKMCuZ6xqUgCR948aTWXEfOtTKH\nMaeyW0RtYH2651I5zQtmyYWSEohVkrogUNqvmg9gX63uYi5LxnDNjlGVadwblEtDdrHI8LDBkGIi\nloVWYOSl1q4TIyJYVWdexOpvCTkB1KLKMCyK9O/bUOU2waIRQHF2CzTVRtkU5wK2T6NyrRPHQRml\nohRUMkIOkTFxFBub5L6walP6+ziksB3GVsm5oeTNqPnfESLMtXuQHzxU6W7rB4+8PSPZxahlfx7p\nBrUZvkHhEIs7WwunbChLIGLQ1sMZe1tqrX5gdy0Xd71HbLZdZ89HhCfRRKncIbGIz7fHtKOsNpzS\nz7rFgvcbTv+dtuDbxW3PdC/65Bt8k8Dd+NgF0Ij5dgUise36W+OKQOSCOvDEA3OqniQXhDUHyi9G\nKFv4ZqIeEl3j3pr8rPV7khj3iClrbFMxn/okbg9n9+zcVO/CTXgzd/f028O8NOQac0fFBdo4Doyp\nsiZjKW5i96yy7ZEGdNgPlPmGPCTvMjWox91ryQ7Mi/8+kDlqQTQqbsVzPbMlZ6xMwpOrkUkKec2c\nl+bNeZnaqMZx+vSW8nkKgsbEUj1TncvWb2/CGEmM5iJZlcJDrnz9bmZmoIjHmA/Js79hd2KxtXJh\nN2DjOHA4TEzTSMkrKZgdtYJuZV2B/GLnlzbECcJNk2CHaPjgDZ8hO2QXk9Jdbrh7eEQx1iVzeiws\na5tUzRVvLb6ka1o4CN2FUaieEGuXapsRd70LX8S1GKsY94vy7WM0HChuyD2TpCG9WlA1DufMVYIn\nyXgyVp5ewWFwmplL/UpH/i2cYFyixk8f2xbTPCy/VqCEBEdl9/zYYOzF8RFeBnYa2w212+UGuo2M\ndQRn1ToiH9W/R2Nh9NPH+KtE/F7aeMqFQW3zw+9th3936Hz72RkA/2CMuUTqMDyuRiWUbbNuiN72\nv8d9NdZIj/0Gc0Jb39Kmm95t97bp1tBjWasjQI/UezK4Fs8V7Ts9NT5z3x77OT3Uks1BhCtKhsVG\nQozLUb03mnAgZShZEqXuJGgjCdwqGlW93ZnHltmKctr40DbxAE2y28h2HomKOeMFozXQ9s061lij\nbGIQBjdJoUqlBLccbEt4Bohq823b0dscqKRBOF4lbg8T18eBMYGVQiIxqXEzVF4eKuXohvy8Vu6X\nxDl7GGkY4PaZ8vLLA2ktzKeFu5oRKwzq3s+YXIX1U8dnMeSqiYdH+Pqd8P29U8qeHuBHN5VJXa4W\nfOHPBd4tQkmKppGhKofkdC1HPm54rK0EwY395PzzwygxgQhotTMUbbcH2CXaEIky3aA3Nh8/Fsan\n9kQj0EQtvH334Ea2FhecKkbatb9uUeEm9u/0RL+OjZLtjIoKWFxbNyxm0OQszYWPiirv5rrrBBPG\nQgXMGyeLQRG4GhLXR+XLG3h+ZagW7pdMEo8t5x1a29S8tw2P9pz2z3G/Mza+tRG8XYmiKP97R5O6\n3xh3p+1j0pbmlshuUKypQfY5hTDEOGQ8gZ4x79dandaYayWbeZisG3DpPOwmqNQu6eMqwmYYtw3I\n+qTxkfWYcxsz35r3n7BuHHf3GLflOR7ZZF2Nrj3UUGx7vmbQFPPcmG1MqG1+Rs4hwLVVIYcWixfn\nhLZRbEZhijtyTVjzIePOI9hQG2UgmDctbGZ+P1V882leUBtFv/8YL4Fk9PMgkFCKWhh+Y+8FWmws\nLcacZIuXE+ukeSXJ2pzYh8yke2j+WvXvsUK1YA01mu+g1NyuuHl+0jeSbTxbrgmmw8jN1QRM3N5M\nXB8GjhqFjCbYrXL/o8StJYoV7s7Cq3uj3BdSNW6SA9yUlHwuPJyNdzM8ZiHHWpdBGKY/IENuqrx+\nEH79tfC3r+DFtfDHX1T+6JkxjkZKPrzeQko524DoyJgSgqJaUPFJ2XwpidUmUXQyjXAYKodwZcSk\n057cvsRE7NVCtZ1ku07bmsvu/9fWoMk2pI1NkKrx5r0b8tbGyZNArslQ8XxIa79V8PvwkvAtCSYI\nQwgnOaukUcIaOgoUI8Ywjeg48Hjy7iHNODWDpyLeUUdAUK4PIy9vR376VHl6LOSyUKgM4tz30m23\nf39DZ/vnYi1h2H76gu1Wqb8m+xXc3huLDmmM5zjas21IbfklwOQAACAASURBVLdBt7FSAbVdGIQt\nHAUOBNYIj1Rz7ySrstTKUq0bxEYDVN0t9LgWi33bqmHqyoL9+rtxN6RzJh0nNOqeSUVIwdlvy749\nIWG/8fktWvcEnFkTOaQIx/h1BNo18bLy6ol/tT2dNTa95nSE99LOXWr0AdAw6EV6o2PYmrGkCHHQ\nzixbvoYaz17BZRGiEjHWoOGhmIN4/Nxbx9U+j1u4MIkXd1XzHFZneiiBitv02nb5FEBvkG3e7fdS\nP28857bBdU8q0D7hfYRYXA3kLppIg2ukLAtkKhqqLNqfxOadNkMuljjcTByurjikA8+eHrk9jtwM\nyu0IV6NXdtpPJ15OI0s23j4mro/GpJn7VTmOcG0D6+PK3f3K67vCDyfh3aLMxdAES4Y5fwpGfiZD\nXlOlaiKTOFXhRpQ6QjqeSbVAMmqKQg5VNKXoiuLUoC7qKvFwG0JhvxgVEyFTyXhsrpiQJDlH1TyD\n7OL8CgxuDMxVJNpOTyyKLtDVUdkHR8Aes8rD4yOIN5cupTEoHPVlM/+plbW6VkrOHrPEguUh7h6W\nWEy51NBLbnHU6PkXeg3jMDKOA/a4OjqxpmdR2ZTVmttceXVn1HXhzXvhi2vlZnIjU4ov/JTSZmg+\nyDhedMdpcPXDJyIfvvDBn8QTZv4oXcq4WZ72/w1tpc7sKIgM7i6b5wGcvbTJf1ZCm8Wcr9066RSg\nkLoH1jw5bQHV3Te3C1Ri41R64nR75+WG3+8tnpVZ22zjhMHhr7WECW+aG+wM+PZcPwzTUL34qVav\n7s2E9nYz0DWsqvgGUtsFSHSXAd9wdsVOucJswgiMZi4cFrrbxZzZo7V5sOJp9dCx2frfGkSQRvG1\nozX1sF9SZZToVi+N0uvx+BZSUjSYQBYa4UE/bJmzmM8NACEQ2f9tTMwHywIcNPTeUqMXRrhPzW1T\nRaIS02ELNUgRnwz9tU0VvyCxhGjieBw5Pjsixxt+dHvg2TFxOyaejMbRjGSZZzeVIfszePks8fMf\nDZx+Lry9W1lyBU7M383c3VcezpWHk3CefbNNZeSrv114fPPqo3kHn8mQp6SMo3I8KjdPrqhUTucV\nEWVMlUOqjER8TZybkYsbsCQ+8BeNMnossLXH8kEqsTBcQtPI2auqihiphVJ009WW8L1MjBqTRfFi\npGp1+7r4ysau2JwtYjH5BFqLbboekdEv5mX3azXmAufiGeoakyPVaJoQhRQaG9D2zfv79sW0LCu1\nVtacuzEo1fuiShQo7IO9loWHM3w/CK8flB9dC8+vfMGouuDPptAYFmWHyt0R2VC50df7HltvaDqW\nz87uB5L58J6kI574hC9uD2CDDqjCqB7PrEF6Pg4Dk0ZDNfGQ1BhocBRPhC+lgiQGVbB1993hUTXD\nunMNLvICPcEo7G+xs1da4s6iW45oaOhbcz/otQFScWGo3SNqXe27J+D/1hZmqQEUXPsZEGrre6vC\nNA3YIIzVOM2rb/7hzyGGSWVQLyDy0AQuiFa84jSrIJIoVqmq3owi1oiHnoyIkzk7QzbqrLXNTzwX\n0jy6Jq+gBqq+sZqpF7S1cW85AIvcj22Mrc4c6tu7G/QcnXNUNgpy7LmI+D0S4Z1S27h53LxzxsTl\nhJMUBgpDjJEiyDiQh0SOSS1m+yHfHdo34avjyMsXN9w8fcbL24HbAY5kJjNGMoNWbq8Sh3rAaQ8j\n1RK1CPfP4XSu3tBmrhzU5ZChgFVenR0gvn+fOT98utfb5zHkw8A4uM7D09sj57uF+4eVWgcGrRwH\n4xCTR8XRaLZKEWd/5MF1N5pcajMfQrAUUqS/LJBLBGtdbErxtmMuBbshC+txAGt6GGwqaHuk1CCX\nEfHHMGyEIZE0eJyzNLfPp4HhMfe1wlJhLl48sZbW7spISZg65glD3ji3YWyaO2841e58nhER8pop\nJTQtrCKa3KBwmX1fknGnjrxPZ4OiHFLybbBbUdl/5RYIkN0Tsy2O2UahGbs2Hn0/ABqBv8ubNgNo\nW1KqJZGb++tGXEHdS/A4JoxaKdWlZw9DYqSipWAyehwVR/1jhBaWXDiMI5MqwhwGtG5j3yHwFirZ\nQvWbe442nNfuu40tfcNWa9WW0qdVb6xRC0qKpGpLurn1tooXqO1CKxbzooSRsww1R8IRparHTV/c\nXJGmK9DE7795zf3DzFLMtX+kIFoZknFI4noe4ro1VCMjrClBFQoZG4/I4YCqUtcZkZWrY0XmgkW+\np4VvasTbq1PNOOfKmjdqZMLReNIaneRbkrVVQDTM3PTpm7+y2wBdyDxK6umGu0c22+yTRods0rK7\njbZtAy2UKu36apTP495hEmwYGNLAEt17Glhp89h2E8TzGpXDlHh+e+Dly2tuhspVqqS6ILlCcPeP\n08jBjkwazWoiKf7siXJeKqezcXo0rk9wmOBxWbhbVt4tlYXinZTWDVDuj89iyIsKa6nMp8J8Xjgt\nmZPCYkcmhWFYmAZBtTIVGBKci5P3FjOyNRpXa3+mYMIwqMe5NLkxD1U6sxUn1A9oSs6pjvBJR1E1\no5bxgI+7p86n3YzVB2a/7+wduQWcOM8za/FYnbd8IhQbo8tOjQo6c/qhT7H4PSpdayvnF4GIQ5ag\nUNYoPfcMvDQrEhVxTg8RcE41dbtT201CFEVJozJoYkgjUMi5gHnxQkPkFoqTqpsb1BC7dEjJ7m9s\nnkqn4PlGtjeQ3WjvkHztse94PTqnaFlJeYHVk3QZodhAqzNYLGOlRvNuX/CjNA5+8TioeUJ0kK0g\nRHbaGBpIrz2fDZG3Tb4h8u2e+r+2PRfVFLoajV0Sc0xbWGHjEndlw7YhtI2ubr+3sMha4bEeuCvK\nu6XymI2a4OnNyJ/+6c/5xa9+xZPnL/lX/8u/5q9/8zWv38/BVVYGEQ6qHJOriaokMpEEFyVFHKog\nXD3/EU9e/ISrm1vevvoWLe/55U+U11+94uHto6+42FhKVR5PXhFtJF7PlXMxBlFSxKSqiLPMwiSq\ntpVUSBKyABYiXXgopqlx9UrkKPwIn7sNUV+VYkASbxcni68vcF2T8MIFL9jxBLBASSxVWeLc2sMx\njV64rX/Hbj7227Tw9SWCF//kM3V5pIrrvmSEPAhSM3k+U9bCIAPTYcSS0zFrNcpqCIWSM6+WE3/7\nuvDr74y/fSv8cEo8mgCjR8bkcq2147MY8n/3m8p3r4zv3xtvzxXRa/Io/N2bB26nxGITORkHLWhy\n9FuR0Cag7+cOamL39/pvH2SUUo2yFMwchagZa6nkEgUwhNiT+kMfVbkaB8QUlcS8upJbDaMozUWm\nAa+9f91+8UmQSyEX91+r+eIehqG/p5psdLzmWrb/mUWBj7NmPFG0md8t0UJHtIIypcThIDyehcdl\ndTTWLjY+sQPPJDGuRnh6nbg6pCjHrwgaxUNEJ3MNY7cZ8mkgNtqN9ncZloirlQ9e3rmoIp+ek5sR\ndyOXs3Npnx/gp7fwsLaQcSV7oSyjZlKUU65qIb8KWmsXGpsRDuL00HKTeHo0xhT9EGUrce/c5g8u\nbr83tQ1u+7cPBl2orWS0eNm2tRwJ0XEej/O7QWyf9sT7ZXw8zl4hZ+HeEl89wDcPxrsF1pqQJEyl\nMH77jun6FdOovLhOPLsaePf+RI1k3YAxif8MUllNOEWJ/PUUypdqmCR+8k//hJ//+X/Fj3/yS373\n27/m/u1v+PLpa+b7M6f3Z8xcU6QiUJS7ufCweBOK05pR4GZIPXEpIuiYuH36gidPv2Q5PzKkFdGF\nb75+Tz1DteR1I8Urc5eSnRKrG7++Vq+6dgop7h11lVJBiwUd0ptsGIJJcrfWQv45OA1JlGuplCuD\naxib5o1VZDbWNTyF7obLzi3drcE+/ytWM7Uu1KJkgdVCnwZjCDBg5iDuccm8ejR+/8548z5z91i4\nPxe+v1v55l3h23fw5hEec2XF7zkN6Q9LxvZf/1+V8wwPZ+P9Wnjy7MgDE3/x9XueXRmDKm9n43qA\nx7V6N/vq1LlhT1mjrSsBSX0BV5TTsrDkTC3Gy5sJqnCeV05riVi7x+o1fkQ9EXoYEljyJgrm4vrb\n+G1xgo2zYfEXBRx9u4Kb0cycamIcR2rxTcGZCMLW79UnS4vbWqtO1C3Rg0bS0gh32a9D8Uq462ng\n6fVI0pbszH0D6M8qbiQpXI3w8hqe3wiHg7FW7wozJpfRPA7eed0Tf8GDj5Ll4wA3o+cimgv9gRX3\nb429r3s0u+KV/Y60/3TLrTbEf54LVPMY/gvhXELl7oLVkNEWM1WjBKqzXLzwCmEWQUqhVnhO4ssb\n1/HJpTAlHO3sd7oP72nvJfQXPn6/BXi/Go3byZhwJO6xXbiqLQ7s2uXHwQs9epigG/HNsNcKSxbe\nZ+F398ZX93CfDUh+PQ8rrx6/4+3dibevfmA+nxmS9M0w8AqjGJNWBqk8lsRjcTN0EEjJmAYHRP/k\nFz/nn//n/5Jf/erPefnFLd/8PjHWv+ab66PraReiXF/QklhK5m6unLInV29G5dD0UNRIAxyur/jZ\nr/4pf/pn/xnv3/1A0jtKfsf9+7/hvC5kU0/m1so5F9bsyotpSBEa9HVVWkOKVi3cnjtQs2sjmYJX\nXyskwSrktTLPheoEeAZRnshAmQplnBmoHMbKNFbSAmQnFHS5ausBlm1jsQ2511rJuZJLJpdW7Oey\nvVXx4ih173bJxpuHyl99Xfjff5P56tXM+8fKkuGhVB7XyrJCWbNTZnGK8IERGf6AOgT9H7/RaOlU\nMTnzYPe8PR8431cSq7u+VTkOnmR8e4ZVxTUXpIKlDY2Kq62d18q785nVFB0mTnNmXr0b95RGzIx3\n58y7UyWXJpFloQfiGinaXLgwTaqJMUrNN9DdKia3RJ/Z5q7VUqkle2I1PpJCUL6E8SmR9KwWxr9G\ngY81173FA30RmkTc34nhMAajB08oXY/Ck4NycxDWPHBaDM1uATYjupmfq1H58ibxy+eJacjUajys\nkNLINCqHwXh2JVxPQQkjeL/i8WlXsTMGC+U43SZ4+65et1mh8d96WXlksXriUHdsAnGaiIdMlLuH\nlfNcmFLmy5soAY9FKtCEHfsGobI1qqa2uGur+/NvzQhjFGmcT8ZBbWtysJun7dmpujHt+6c02ur+\nfQbVPa2U4M9+eeBnOZPJkMGqU//mxfuMlgrFBiYqL44WwCEG27YaAxMlA2crvF/gLo+cTDHJCGtw\nuuHhXPj11+/5+vUdVwpzBqaJUlqTbkOTMQ3C1eDrZ1DXSnkyGcfRm6roOHElj8jpax6/P8L9Nxzm\nNwzrA9dkniSP2Wdc16ckeDIl5iqUZaDUhVHxghhxg39QePH8C/78X/yX/Nf/3f/Aw/33vH/7a776\nu3/Hr//9V7x9P6MlowiPtXLOlZLDezAhpS13Y2JcXw1cX00cjkeWyJ8JwnyaPck/DAyaQv4ZzDKn\nx9UL5byzB6aJXJT7dyfm04lBjH/ys1t+/OMnLO8fOK8r85yD6ABRI+o5s1oppp3dk6pxniv3p8J4\nrhzEw2kpeUW5IBEO9Xi5GSx54NvXmX/7f9/x7amwmjKOI4bL/85roeSmd058lgg/fXx8FkP+mGEI\nneNaK/ePDzzMM7a4uFWS6Ahu7hbO64qF8homwUzxJgJFEuc6cLfAXD3upBXWXLs2RG8mG1rHa9mS\nLWqBLGvs61Y3mpgKpFBdCwPeVBX3K97YSeGKMKTESKsqdP0VsUJqnG7bDKxbnKbpEMbPvEhICh1R\nDYM38tVI3u0DyUm988rdaeX+vHJec9AZ6y4uTijICUkTST2hg7jCXBVIgxdQ3UyQc3RyEY9KKi45\nqiqMybgacAGmjlM+LFSQ/s++YrCj7QuwK/05SL9eQ6QyjsL10RiHfbxSYhOXi2/z/4qGt+zizT18\nFcgNQa1y1Lo1ekY7bW/b8rZDGw//QyC+Owyfz5ZXjgiaKqgbUUdwwpKiyYOFGJK599OMe+t1iVlP\n7pUwIqNUhpohe45Je+EMIIVclHVVhuuRAeGohlQ3JldjgmTMVnisBRFnr2jErhdTtCjDYPz+t7+m\nWOFHP/pLhvNbjo+vKPN7dK3IOLJEIwZRmEy4GV229lTcM5YorGpdckaF43Tk9vYlz7/8GVfXB1Tv\nefP9M9I0oFpIpaA2McT6JmSfm2aKYOjgSfkXz28Yh5F3dzNzXklJuL058PLFDQXj/bJiqhyPE89v\nr8jzmbf6wOnB+wRUE99tDUpeMSsUhPv3J15/D7rO1NW73vv//DoM57yLhTBb9QYbRZW7xwJvV2So\npLnClFmHM/lq4GoQJjM0LySrSCR9c4XTUnlcff3p0EKzLl5Wa+szwEeA7MPj81R2JmM6JKZBOZ1n\n5vWELcLtOHAzOdp6e4KiToOrdY2EkfQkXBI4KpxIrJZ4yIam0QsZYwFLPDSnCe5obW3Vm0T8VxEd\nMKp3UynFv4NNaKt9qJ+7303E4mzLpE9jom2c0mu+SxQumfdBbIbbA2x+pl0owl3J2mPTY0re61Hi\nvsTj53P1Mv91dX2G+3nlvLroVbvN/eCreq4+18Q5p55UPjgNiOvRuBkrdmieyyYvsLWvcsQ1BBSu\nAVXjCdEC4BvKDmPeKmk3G7/7fTPmEGEYMa6vYByd494qHC3YIds5pE/2rpAY4YlqwV5gs79mbsgP\ngzEONVr3xdnsgwuLMb5Iav+Dh6PfBEzVKxcFd7EdaAvDEJs+juisuqErOE02bREnulY+7hXcJONW\nC1cm3K9GFQ8T+r6uiAwIA6MmEv53xPWsrwalWOGxuL8yAUN4g3M2MvAQOs5v/ua3fP/9d/zpL5/x\nyyvlxox3d8bDg/F6Sbw7e2giIZ5YN3UUrl5aM0TRzZiUIVUGEUZNaBoQHSBNSLsCbyFEqwcRGuCA\npCH7HDFxUWMcHCiVYrx+c8+aM8dJuUnw5PoWGYRsmbMYx+uBL798xnqfqPPK6/TIo2xrNdeCrRUp\n3rHoh9cn5tPKkwmukjEFBbjpzNMYMC0ZXVu7xcTjDPXeGA/GcF5hOLOme+pNwo6KDcJka3DltYfx\nLJIzTcu81NK7B22Vre3tES76xPF5CoKsIJJCl7pQayGpcn0QXtw6arxfFmSYfIIOrmUt6jGopUA1\nZUoDp+qc12xwMw5A5TwvMcFb8iM42kqPrxFsDw2ute+SYHgZd0NealupdEPcm+0NtYqwwKIwJuVG\nNUqbN364/44XCNVWWuwjJApRvodFYUfDmCredHpMEosFhrA3c64s88pavMCjlMpSPMHjTX7qllCM\nDSGlxGLC/SK8O8EX18qTSbiZPDEzaWaQgozGmnwCOe852napN9NNSUiDQOKi6cIF2N6cBloUpW+o\n7SFabDSt44Ftn1U1ro7GlVl4MWxx7D4WwQqBnRF3a2y+yzjrjN1nxTcOVdfmVs0haxAXFkqX23X2\nnf8DnL4/DCgcJ3h+6xvfulrQSn2zLdVDErk6GlurL9ykBR0MhupFZ41MXn1eiFUmIE3Gz54OnC1x\nV3Mwn2L+4eGhwyRYXbwIDji7yhDJVvJ5IU3KYCOn7HUGmpSxZGzOzNV4uyrXI/yzOvFf/Inx4qho\ngW9q4a++zfyfX83cLZmbceKgQqqZ4zQh6nHxwSoHywylcBycwogYkgyRQrWVtczM+ZE5P7LWQrGR\nyshZlTkKmlQS2uizVhB1NHz3OPPd+zOn1ZhXz+ucFljOK/Pjws3t9P8y926/kiRHmt/P3CMi89yq\n+sImm6Q0O5zZwWoBPa0gQM/Sg/5evelN0AWCIEG7WGAlLGZ3uMOZYd+ruk6dS2ZGuLvpwczc41Q3\nocdiktXdVZUnM8LD3S6fffYZcm33TDZjvtSJ45xMAaY1yzZrZY0ahHoBWpQ5NW6vJ379ycSvXk0k\nvSBUzxSnF8FRBEhFYZ6uIN9wuiQurVDaGZ1O1HMzmuhxQSajpGpTWqmuMmpBXT83u2xvL9pl5zAz\nTX9GgyW0maC91o2yaW9PrzVxuhhH9bKKcV8nJWfryms0NCfOxcTwuTlSnit1K0wIizj/tgzSfGCk\nKQWXNyhhyVP0KCg1NzpGYQQ6FtocC6vNCpGkgDfwIsh4uMukTJHKCyZIFM5AjJIkmFFPDZcPCGMX\nebsd5ICQzHgb4yEnYcqTzUzEYKKiNlBCJZGScWUFrCvWYaFajcHTWnPcPSLnTE6JwwxXS2YSo1Gd\nayFmoUbLf+/GS3bdGosgo9uvR9S8xCAGrMLOQDJ+wnexEuGHPzcxiEW8VZ7+907Z2zkO+3dgM45j\nZxmGsaen9o/IEgbXOCLy4U3UHfYO8PmT+1qAeYK7a+tI3Yo7b22dCx6sjFaFUlpvWJkPloFoGxme\n9tt1PniaDS9O0Vge12yfcXM88NtffMbvvrhhvVz45od73j5WkjSukreuq/KwNU5bshqQJhbfD5vv\n77/+1RX/9e/u+KtPD9zmzP1D5f7xzPsTPK2J52IXt2bLAp5W0zfPAjcTXEtiwYctq7CpIveP/If/\n8LfM/8v/xLc/fMPb737P93/8W77/7ontqVE34aFtPBcT9xKHjNoEk4iZUFFEK3VrbJfCWkysuSC0\n0jgcbFL78Wpyf+66NWJ7dTRvGbezNqtTVU3WOYyRJQ66ekfsRIr2pD2MF4GLam8W+vSzz7n+5FOe\n3z/0oRyzCIdJOEz4+th5VE0eGFnWL9g+2GqhtkJrdWfAPcsUYds2zufzz+69jxORN2HdqonPV0+B\nEc5bIoYlFJ24bHaDIJ2ql1PmXBuXJjAdSfnEcVJeCdwsJud6zkYwNN5u4zCZAdoOmUsxw2eQjdGd\nWn8gZmEmGSJB4DagmRffxA7ElJ061qEBJbSlzRjZZ9Tk38PgklsjkXOXCeEh6VoqvVsS19KWyCai\ne80w06JGqYyGoW5qwmDhw6RTopTiRlyQ5Bo2JfN+tSKqiqDJ5qRmMmjtOiF7bLsr9cko9kY0Ey8V\n+VnD/fOGfFf09E/80FRayh1NQ/SOvz1F8IUxd7sdnbcqOF/aqaT+jz3cEhOJdgHRC7aNqmUjL4gt\nL95rPztlQQ5iFLhKDwJibGBTo0i3qi5vmmia0GwGbI3UvTdPmVbMuWXOMvFYlHO1MWiWkaQOTRyX\nmc8/ecW/+Jv/nHJ55mrJ5K/vWdeNWWBJmUtrTmlbmLA5sLZ/Essi/OJO+K9+d8d/89d3/OZ2Zr3A\n91vj3VPlXILHHcwo0Em4aCO3xtIaNzm7BG3mYVVO6s1vbx+R//ff892Pz3z1/Xfc//gdp3dvKPdn\njqtyXeD7Vrg063wWtYao2owafEA4zJm7q4kpQ5KV8/sHFyizPotNjQI5NXWhNtg2GyhddTShJYSc\nzcBXJxmYNo5lmvPUmFMjayXpNLLwvssi83NjjnJ9fc317S0P7x9601ImM6fEJCBtN+CZZPCkGLc/\no2ytsZaCEgOZP9xgdi/Pz39OhjyJa4dE8c+ilefSWMlIzkw3C3U7UzYbdWQBs9CKkg4CeWY6Hvls\nnrlrjc3TsfNayVk4F6WUjawbn14b1n1TEtdLMpEqFbZSWLdqhdE2BLLCEIAizQyjqrBVpZaVsgnT\nrRWUsrgSm0Y3G0OBUAVRi4hNOWLQwWxcljkD9S7TFAL9sVB7wxcxrlokdynaGRAlZmzup+YEZLEf\nJoynaylxX1dO50JOmSUbNv7ZEb68TfzyLiOugSJa8ByGQMG7bjeBgxussLfQ+yyF3f3YIkWoGffm\nkTHDEJvTyF3HY5BOG0ODfHzsh6/4bitph2DrB23xANHNShj/nbH24ueLb/ngjL3obg3cPsNy9Giw\nWeBSqpBqss5bvx7FmlXsrppHcnQj0RA2STzUzPenzJtN+PZ94e0ZNE0mEqbW6CKAJmGTxvXnn/Dq\n6nOONwfW9h/5/od3rGtjysIkiWNK3MlszXfSTJJWlE9eLfyrf37Hv/rLW3776oCuiXXdeN4a7+vE\nRY21YW33xvxSbRyujmhNnB/PPF6AnDiK8O1l46lZy/+pPvN4/gN//0/f8lwKp9OZej7zWVW+IHGX\nEt+VxJOfQ1pDvBciKMB3x5m/+OUntHzFd/dn7h/PBsuKMM+GxycqWiopJ6gb63oi+ci4pnYeljlx\nfSW0WqxY2aD4dx1y5vV8xU2yGoIxuL0DWCOxk37WYkO8f3zilGcuWmyMXUlsaWJbGxljLwkLsiRm\nsTrCMcGNwEEba7OgL4aVW9Aw9p4Fnur28Kevj6NHvsy2KK2xbZt32M0s8w2/+vKXXF0f+PbN1zyV\nlbVBj9rA6YQT14fMzZXhRq0lam1QoOTMp8sVq2NvSuVudonMNvHJTTZKXINaTJBmqzacQZulVsWl\nXEtVpwk6dpmEWqIDzMCE5gyUHFh8pOjs4Npw4F68iseTsOheJRltzg2YOCKQY1ZhCgcwDGhKMqRx\ndfehu++zK1EGoySuz7D42pTqkUgh+fAA412H8UxuZCV2l6fhxigcwkTD5kk30AGOd2eUrNAdnX0R\n0dCXLAyqdrggdEKGzKrfXwDvfk+Rj+wjc+vWpHuV3j+5s9YvhmB4x2x80Qs77p9q6IRh9nGtAVk1\n2qCm7jIOxT27jA8MB2jDfgnP3yGVUCoszWoZ3zwoX18a78/Kc7Fo03p2hwN8fL7wj3/8nv/5f/+3\n3B4m6nbh/cOJpraXppw4HGxQsiSDAZck5JL48vaKv/jFNX/15ZFfHCyNrxelbI2syt2ceT0nXmU4\neXYDdmZodhbqdOBJQZsJT6X5wJFGo1JL5lIUnSt5yizLFaoTn6cLX+bGTVXm+8l1xKsXeA3Dr6Vy\n++rIb377Cf/8L7/k2x9Xvnt89kw2+ehA5Xo58PnNDbd3R+7PZ/RceHx7Qlrl9FyHplKSHijg/910\nsZwvedeoF+tVwuX6PkKGMWdkA/O8cHV7x3w1cbUJbVt5f1pBCq0JV8vMWqDpxqltPFyO5OMrfvOb\nW3785g3npxMX7wJXd+gvJTDsv2t9sSH766MY8l99ERTlEQAAIABJREFU8pqUJ1Th8enE0+lsuJhk\nrg5Hbq8OvMG63ySKhSmiNzguE7dXEzdX4iJI2KzBi2FfKXtzEAZpTLo6T9ca80NuVsioj0kLiVQL\nBoStNNZqOOelFrbaaJJYNwyaydrToB5dgesZ+X/7msfYudYPqUeYYkpveHMFLqcaeHQOTF9CRD8a\nFNQP5hiEYCiCDAOiPSZ+GXH6f8fnkSBlYZoyy2KjpnIWVIu3+MeMxojwfZMBA7cYhlXCcDovOjjl\nwUPPXmyWwEfcYvZo3I1zCogoeTwtbbwjntWLe91DSjIgFPAuyvj9LmPojtOvJb0M88V/qANtsmOu\nKAw8Py5bDItl+NZ+7MKIRwYSV6JeI+mg+HCMPqWBdRMeL/D22YTWSgWjxtXhuMQa3r5/85537x44\nzomrJXG1zMxJmcXYRSkJx8Wmti8TzCgThX82C/9iTvyyNWQtnFFqaZRqtacvbxN/89nEgZnH1XjP\nW0usFWpKrArPi+mbF8lseeGLT17T2sbD8z2PF4PzjO2SyEnIM7w+Ng6yUtdKkQmTo1BoFckWyBRp\nSE5ITpxK5f75mfdPJzO2YYiruqxvYkFgrZxPK9vJ8JmH5wtrcYilCduWev3LpIMzilBEKbV49L7f\nX/4s9/0D7kbNEdjv87KQ0wItcykbp7UwTzNXhyu2WtjKRtka376feHeeSctMniar2dXqUf9LYx3w\n6J+iHsJHMuT/4i/+GcerK9I08+7pxN/9wx/56ptvOZ2f+Ic//C2HGVqtpK0yufJgbdBSYp4nrpeJ\n2+PC9SGz5ImmiVOBlk6obiSpTI55Z01Iw/WqFWhMmCjX9ZxZJtNmMdW6MCDViiDVMPet4e39wloS\nz6vy49OZx7VyqsJZZ8OtI/tWL7o6j9vJBz06t84+7RsBbH9Ew0nC2SG7IqLQpYXMmIt0hb8Vx/l/\n5kEHRKSq3WjtDZpIdP1ZR+dhEQ4LbGsFqWbwew3BIkjiGj7UI1G8AUh2zmVEn3s1vI7p9wKULYIN\nDzaoILlXsFqlG1xlp3uku2vxhVV1gxoNNn5txD3rDluR3ZrFurixlYj0B0wTgl3xhyGJa9eaMXqM\n9nrOSwx/0DMjINlfGS9+79PigYNaA88xC+IqbJGZ1ToitpwzKpmSch/kUTelUDlk5Zgak1YrsJM4\nHG9oOnG6VJ7frdy8e+Dm7Ynl7ZGb371GfnnF6k1r14vyN79s/PruyNMl87xd83jOvD/D/XPlzdOF\nt88XfuTCc0usAnnJ/Jd/+Tu28yP//j+957k1a3I5b3ApaKlciZKuZ74typtT4V01ynGWTG0lFh4h\n8cPbM+/efc3/9W/+YDN8m8tQY233m8D3Pz5xOV+4v594XqvRKusz21ZZW7FRkc0y1MuadmcyOrNd\n12mCrUyom8fO1f/gXFmnaaVl4e3bt/y4NdIizLeFmyTMsyBZIE/Icku5vKNsha3A77965N/98Z6/\n+2HjzVq5FKOCZgm4bZxlEWFZjK3SopD2weujGPL/9r//7/j97/8jf/f731v3JRtpsgM5L8JhSQgz\ncswmiFRNn7dUgJnWZpBrluNn/OLTT7m+fYUsNzw8vOHp8UcuT+99Mk+hlNXSkdpILhWaRJEpsRwz\n1Mp62ZiYyD437/p6Yc529GrFWQZKqSHu3ni8CA/nwruz8vYkvDvbNI8W0Tgvy3Y2TCLs24gc42VU\nTNwS2msfSasGT33AD5bppWGAfvIa793/WzzaiCtMWJv4zWHis7uFL24Tb95trKsQ8Ij9vPFbJTWP\nIpvdWDgwv54+tMMj9qTdbPpVjfh7xDr2OeGQxGmYAogvnOzXbOdApEcxAU91G9CdS+/N7T8ejiwo\nXsrOpvvve1XAM6TBfPqQVy72ENHWuqGNprzkdxj/jmzA7i+iOjqTQbN1G0/JRtRdZeGYQwBsd9+7\np26FbEPfbfiKN7ppfZEaqO+DqoVtLWxPhbIq96Xx/alw97xyns4sJNJtNt2gYjWs7bxSLhutCXcH\n4fYgfHEDv319xfN64HmtPNXG+yI8lkR++IaynvnsSnlcN1ppbGfIVF7dHfjk5kBt8HZt/PF04blu\nVK3kFBltyDEray1Oty0dekOqB022p89WJaUAa1GKU/uq+mDy6JTWkNq1bM+eh4GJAS82D44642k8\nOT8L40xWbZwfn7lcFM3wSU28utmYAdWJx7Py/vwjqWzMDWZJXE/wxZ3wvAqXd80kr5NJLhiPfDBX\nAO9t+dOvj2LI/+pf/jXfvvmK0/mBtTTmuXF7O7GuFxuW7NHOlBNZBS2JtFaLrNPEeVOe1sRF77j+\n5Ld8+eWvuX79C969+5b7t9/y/u33pGmilgvn53sent7x+PDI4+lsMqaTGqQwSWcQkK3AJxlTBJyS\n07XoqVWrMdi48VnL3D+tHB9ss9yfCqdLM26qp9CKUacIyKZHazaVPDZhtGObIROiAT/KWPXFAQYQ\n586rh/G6M2w/ff3/dYUJ6lNXjCEw54mmmUutNIamioh1f2ZJtnEcJ8zQKZQiRJe5IxVhsC3l6NHz\nLiYNSMhodo7Hg1HuGIdIPvjJfaRtfxdTTsOQx33bH7yQ3H3hoF6+74Xl2927yMsOz5+s509S4l32\nED8v5vtifmtcu/2dZS2abBq7CZepyTrnwRiSF4Ylon8nEEhDdCKTjbbn8gPZm7mmTK+ttFLQrXCV\nM8fDNSlPXEpB32/Mb09c50PvZhbN1FVZz5VzS1xfNw6zcMzKzZzYjpm1TKy18lSU95twfv+GpI3f\nvDIxmx+elftLpUhlyopMmR8fK28uwo8lsbWCajGIJInLTu+acNR0dLrjVZ/epaCYOqRWNTZcsfrB\nnCPDEmh2780NeXf0tL6p1DPrxksK6NhUOpQp4ymocjqdeP9Y2FrlF2nmdWscp8ZFjSn34+MDi2Su\nUuY6W6Z+e4DPbye+eyw8ro3i0Fdr+pPIu9a6gwF/+voohvzHp/cUNg4HoW4XPrtbOF695pvvfuBy\n3jg/b0hKzNm2+VptOjcIKSv35zPfvDvzq3fK76bXHD/5klef/4p0dWC+uuH67jM+/cWv0Lbx8OZr\n/v6Pf8/3D3/PH3544BevD3yaKldsmPRtZro6cDxc24g5KTytlaeLNQFMM0xZSamZ8E3OJM0cmFku\njTlZwWhdV949rjxs2p0RAofFdB9wQx4Rom0AGbALTplSHF5InWMRVfKGRRtgeiFrEzTZ8FbUWSMv\nXrZTo0D34d/YSzut8XxZuX9QJp15+yw8rJPpkgTOnZQFa/w4iAyoxH9llKwMbog3WlVpNlQgZVQq\ndGNuV9LtvfjfSAe5UCngmpeCdGExHJgK9o/BKInUkn9+7aew+4NdimyHYsfoEWDnOFT3ncC2jpE9\nvMgoxgf2d/T76oZbiU5VK6JFsa2PVzDjLkp2znOKwrBUDlPlMFmRMrVkVDYtO18zspSoZyQPhOYM\nyywcsjFUDnPm+jAxp9nw6mnii9uJ3/3Fb/nykzvyN9/yVO85n57QZ+Xq5sD1YeE6HWgXC1bKWjk9\nr6xWnqI2G9xxWSuTNK6midfHhfeqaEpM8zW/eT3x7f3KP75Z+epx492Phe9/fCY1o9G2ZBIctVWa\nGPbfau2PMbuccfDsbX/58AXPnhom/laqIq2xiEW/FStOi8Ls52XV4lrju5mq4fAZoN0eEx857A4q\n9T9fLxceTyuP58q3ItwVuHlte/bhpHzzZuVwPHKYCosWzio81wmR2ZufEpNYR3ir9SfBV611N/Dl\np6+Pw1pJJ24yvL6645evv6CmxLvnZx6fzrxbny19EuWyGb3EJm8bj/R4nKhFeTyd+E9//Iov//Ca\nuj0yT4ltfeZyeuZyOnH1x6+Yp2zFlifl3ZPy1Ztn1rWy3sJ2rZzOJoXTSgM2U06jIVNm26wDLGEH\nwoSTon1fmSajMZ5W4d0JnmpC8sTByR2RtokGriV92ktE57ERWkTr6loOGLNjS51n0dX+JAqn2CT0\n1rnerousg4s9GmYiTXQj4kYPMeF8USv8nNfG87lxyPD1feHN08apvIwm50WYJ+syjZkP4v89efv+\nlMWFwjwKnOD2mPjhR+X11DjmRupHpRHFzqpWkwgIx5ppFBtG4I6t0U+QGfEYjwc5KZNYFLZMcJht\n6vhhFpZsAscWoVpXqpNwEHWNcHX3KdLVFJv/Iu5PbZ1zj6alWwHV1KPFAJjcLdgaepE31jM7ENJh\nF0lUj9g1JcNKszBNwpKbGXnTTezR+UsHHdCeZ3Oa2Jpai2fDGBrYHjvWwnVKvPr0wK9/fceXf/0Z\nn9zdcp+f0cdKq89c6srt1Ssu85Hff/PIm/szl0vhkD2LLWM0XHPt+6qZUoC6+V8ItMpdVvLdzHGe\nubov/OP9ha+fNkqaLAbRqHPYfVjE49RkrK06iuVdw1/ZMTuqzerNyu1cuRFl1gQqnKeZZ2nUuvo6\n2x5tau0+U87YyY/qhLLP0kY9O561B2RYBg3YEJdsbdcGgVqhOUmmlsIiG7UoT0V40sRzSZyrcKpK\nbZapNlW0VO98H3vHWQoeG/05GfJ54tXtJ/zyl/8Zr16/4u37d7x7fnaP401Bzo1uXmSb5sQ0wZLh\n0pS1XPjh/ke+/vZrUn1g0gtNre11Wyv88IY8TUzzxMMmPJ42Tqvy/tki8csGyxOgVjQqpRoWjiB5\nYi2NbVOyGgc9Z9PtaNWiw2kCSRNFM8+rDb5I02SRqhtydJcaIr2L0+A56fu2azaoumHuz62DcXVn\n+OnwjbLkTJoTNVvpJwpgg6FihyI4yiKWZocFnhyXFTHK5aUYbvf+XHn7VHm6REelbWSjD7oSYgSC\nEt2fOlr4Q5clwzQJV0vin46NY1JmGdzwiH8aFtmVFvxrbwhRnOoVjBgZayfWxm9du9q/c8nCYU4c\nl8pxFo5L5mpOpsedTE99mswwB5yRxfS4k0+PmsSV7cOJZVhmuDrA7VVimcEoeGacafSBJwZFQJjU\nEPmyZiBrgqu96xOnuJpQXKmwVmVryZhXKSE5kydhygXZfG/tLcyLl+z+beJr/fe6b+ZqLIsgiyBH\n2DjxsDbe1AuNZo0xYjNl3z01/s9/eOD904VjVv7yk9nICN54U5uPUxRrGKrNHJ7rDKKtcSXJuq8n\n4fXNgfu1cX8uPEvybJPuOBVx2YrRWdvvyvWK9hFx/zuBmyz8Zha+PGSkCj9cbCjKRZx26Vlcdgpm\nEhs7meeZtVTWzUS0XsBr7L5gB+0E9KIKN9e3tOsr8qVymE5kVQ5y5Oq4kCk83DSeNyvAGsJgvQWq\nBn2lBFoik2w9AAsIx/O/n16Tvz6KIV+On/OLXyVa/ozj7cQ//t//B3/44x9YzyfQQhInDroxSzjO\nJwYhWNIt1Lby/vGeV1eNT26cE+op2vPTme35iabK4waXy4XrmyNK4/1Fub80VFdaswHJFvvHRlKX\nrlSWVK3TSyfmeSbnGaFxaZVtU9bSuFzMAeSc3CiYImESLMr3KLlpcnqiRcDdzEZbdmzJzhfHKICN\nLpQfwGtEeTklWrOUtBLC/PHoXXqzjWaT5PgrYsyOOFwpK+RMkWTNCf73kVloQEKufIcmxgR5ddaO\ndpjHIAm7jJSMJrpkG3NtfsFgjH1TReDoEBs3ONkWg4lHWPsiseHgDSTRNNN0MaMslSyrHVaXEZ6l\nMUvjkMWFnMyYT45FmyFv5Ix35AmmAlJYZuH6mLi7TnxylzkcKnnaXNTJDLc6S9Jmdpq655yExZ0C\nfpe1KVWbC2XpiGiboNUKfKUlLsUofltaTHRpgbSa9dceBeyjcluXcKoxRaGpU2bVqgiTCjPCRZX7\ny5k/fv3Ew5vvyQrv3lfujpnPX8/c3Cy8uV/522+f+N/+nx85lcKvXk28XuBKTWK2Of23iXUum+6N\nZXm9vqANivLmeeOrx4Ieb5gdfmkXN64pcUlWD1LU6IZJfMyb0W2TJNMmae7EPDuKvZwlcZcm/mqZ\n+S9e33BZC//22x95t1qANCXXYNHGJIpOZsSvrhY+/fRz3j888/2btx8Yzd1eI2ox0XQXBl344osv\n+OWrL3l/Lszf/xPT+sC0Lrz65DNurqHUiXcPTzw8X3g6V8gGy24IDwd4KMr92rwpcBRl97Courzz\nz70+iiH/6m9/4Ntvf+C7H76nTU+8/eqP6OXCJMLN1cxhyYSat8YGzBblSTbpmhh79M0Pb3h8fMch\ntWE5WjItX9/IpwrP541Sq+0BoKrBEtp8/iBhTsK8OiQhHmnVxtpWOxzNJERjmLLh1qk/ewsY1VJj\nP2MvogcLtX2T04suEDCG0Kl0loPbdYuTEXfYnEhFs+mVN4SW91SpTlbsbb9JbOyWeIE0I8yikJRN\nhKfaaOvKNGfubhPHo1CorjwYK+WRCbvUVq1BRT2riLW0uajmgJp4qhz+6IN9Edo34QSsCOpxbf9u\n/+aAKgJPb2BcobMpPCZhU++pr5XkbJIkkErAIntKp9M3UxraMhpGcXL5XmGZ4GYxuh/ODhF/VkE4\nigPfdWl8H0YGor5JRPOL3oIOsUk4YJuQpLrxtMHJcCcf6pDwqSS7IphFPgFzLZM1zMwpcRBhTiaZ\nezVn45nPcJiVZTZp4gX49CYzpwZto7QD37555pvvVpZl5qkJD5vw3aPyeW4cklcjaqWqDUCIYMT2\ndSInw/1PeeK7h8of3lXafEJyRqaZtKrVkVCe6tk4/4IrfE6kKZOa143ceJvyoO8PgiXme7Ip5/PG\nY3qiVO1PF886rw6zZ9P2cXnKHA4zV8uE3lyzrRu0B3LKzNPsBIc+fNf/bzlk82sREb766huevrqH\ntPDl5YGtnvin+0fePhTkeuZpu7AWIM1cXx24cg68SuLcTrxbL+SzQSpWaBWHbxxiIm7/zygi/zf/\n+l9zf//Au4d3bDzww7s3lK2ijlVOEz3yDA0McbZA06gwG4fz3cMTDw/NkcOgrXnkJookZfMUNgxa\nsETUuWpxiHvji44/64Fxc4/YpQXszxW6+l43xgGg6eBAh6MwMzgs90tN7TiUw9CFQdtjn3tcVLFN\n3mmJez2Q8GsMjWu8SBnvzxKS+ZWKGlOlWYHwarF25uKGUhULOXE/E/fpF6IacFhgtOOABcauTttJ\ncZ8YRGS+wDoF9/UcdePfusVzNsyOJtNUTBipmYOasmUBpWZUjaJWO8MnDkXQPXXHCHL+eTz3eJ7J\nrk187Y7ZsPSmO6frWQv+2S+ebTQ/SXSE7moYcR3N5mU2zEjbABWcW2wZjjE2YgLrz0RmHiWYE6FL\nOkfTmrE1TGoiFRsMkVU5ZiU1tRF6IhSUU6noU+H7dyun58qXdxMkg4B+fFZurk0rxOaLDidv2yz2\nt3VEa1LOpfG0CWudODdlPmB1rbbZtYkFJYfZZ93WRpAps2RERu1nbLpgdo3734B3rfH1eaU1eFTL\nPKpa45vBb2YbNBnNUwROpxNbUQuINKStpXf1vTCf4VN0xOzv37/n7fmBaTnyWaqsWvh+XSHfw81C\nyzaMHXxYS2ocko1onFyfJrZ1Dwj1xUEw29a7tF++Pooh/x//1/8B9S7LmmykkjbrJmzafDM3N6iW\nwifX7Q2qFShU01iJdtuYlwjiUpg2lT6cKSkKjz5812lYZsTFtVPEhg24oSokejkbUI9mo+ig8b+O\ni0asihlyUodrIh3ujUASjSv+3i5vy0s+NNKNjYK1RRM3ZdeSkw0PjnTPb2xct8Zhw7sIpTuv/llq\nEr4N7RCBwSbZsgEVSI2k1Yp+qLVRh8piLwIlE953pynJI1MxjFgazK4AF3Q+cziu3R336RmPzTdV\nxB2oPWUvtOGNGQqteaHS8f9NTWXQOMGg4vNc+zPaeSE3tIRzCsco/i0Sh8iYDgEb9DyhP+NwtpFy\nJJJaodYckhWzVBqawvjH3rYCnDpv3gIH+/yUkhXvQ/fDn+lPXm4NVG3c4Nn5xzmJC7AJSxKWpByB\n60l4PAmvD4mbSZhS4zDDVKCenvnxsbGI8C8/nbg9CG9OjadzpV5no+iqonmyyFwUfCC2ZWZjPz5e\nGpJmPr2beb8WigiXBg/r2XBpqWhKvF4mbqbE6VR4XxpnNVXCJPYsXjRcMgypBUGNc0p8lTPPTh5/\n15THamyvGWFbDZtGGzLBrJbxvHlzT9NMnmYOruvQWldZ8e2gw/GiI+DyZ1Vbo63KehDOGdbDzOO6\ncmkFcqJqRluCZkPebxfh1dXC89bYrJ7rjDW/I427c1kLSYj8GU0IqhKFPRumWqu19oqOhUNyN15m\nt3eCUGlEynbLQ4+EMIAe8SUn/ochUZdxTSJG87G/tmGyknpnYYRX9vdhgH3DKGS14mVElmGkw/im\nfm3xKTJMlBebIv3u9wkENW+YBMNgA64YUa7fY6LHJMJwMBER2V/s47fhgOzfrTsPCKdoOXMNASNv\nj5f4rMHTsnsUNRPs7emJSsrW/t29qLgt9AB21ngO9FFxYIc1RuEVhUmVUPdLXiQ1Mofpxxe1Qls4\n0oRHsFJtrRo9QzBnYYqaDQfvNLIB71xlTw2MKMhlqfx+5+SslIh08eYVDRaKa4+oYjTBwW5RaSMr\nFJOR6GJtvv7DUMsY9wcUDaaSUTj3WhzR2KRqzrWJsFbl8VKpze4rtH0yRqnNkpgyLM+Nm1m4nhNL\nNjLCIRt/Y7sk7paJ19cTF8/G3nkX4lZMEx0NjNyj8Dg3WO2ktcRpU6bU+OWVjUK735R3TvGdYxpQ\nEr44Lnx6zDylTDvZCDV1RoyNT0sGk3mGFSqiS4Iv7o7cTBP1srHWzNaUszZksuBsK9UYSNWZQhUu\nW0EorJtBJbk2lisdTrf13JmgqYZ9CdshXhFXrKHofTORrrUKK4mECZWVZmMpW4NZMmVTnsrGD08b\nT6tJgOBZ7UsfHYb9TzhvPtaEoDRhT19Njzd5pVrEsWuIoheevraY7OCRjkGiYdI0uix6pNTb0dFu\nMPaKYmFwX/4+GnGCFPYykcP/JAldJEuc+bCzV924WwznY+NkGM/gE4f5ILIMN3Iv6IP+M15TcoNm\nxsWyCiJ8JXDAfiGMzCLWpN+E/1lAVdH+HtK6ktzQqJslqSQSHetV/wTfzWbKpV9jH7Tsa9zXwD8v\nx5q7IbczYvdqwZSQI/IJI97X1ahoYQB7Buq+y8bTecFYx96KIlXdBwzdGTkXXuJZ+J1o36p2H2rT\nkaQ/P7rDqL49vZpr2WXT3fras+7qmIizVhjFdsWL1QZnlerQl0cH22yzTIOW25QgOVhmNgm3S2JK\nFiWuqbF6ZBdBZcNkJ1aAJqSt8bTCkhuzd5EespKpXM8zd5OxgF61xro21lyh+VxQLzwq0FzXOfRm\n8Ge/NZtodH1ovF4UrcLjWrmsxTFma7475MTdnPj8mLiWmftWuS/YzvLgS9JErsUzPghtoizKMpnk\nxnqpNJloqSFauJ5d3rqGyqmtf45CeXfm9l2tJVetDPsQRjuMKUg0n/m+jO0nktBZqMlE91qyfbcV\nVziMZ5ab55WJ583mlAaVsdukD+yOZe0vG4Xi9VEM+THPaGrOPR1mUrIpEZZmuC4ERm74UsuWstp5\naDboeAcZdHoVdMw1/kST0JpZjigqpd3fN209S4io3cDRHTfYFaqGtOrOGEXUGQ7EYYPkmGYotIkY\nu6UbGtlBPTJ4zNYFad8nWBeqvd8NtkfFHXtW57T6IImIntVnkMaaEN/jji1FxOEOIGkja0EkUZOA\nGsc1ozvtF7d6RArt8dfwjn5d/oVRwIx0GwyKceNkcyqjS8qLhNCZQ4nR+BPRnsEs2lvng2m0ifQo\nahLThgnBrogSu8yvr/uck43RS2LYtAMYZlgtogyDLmo9BMZDD+NMVyM0PZadmBlGc5NknOWBKY+9\naEiXOU1T3RQvxgm1JDeU4nvUMFzjdfmsz83YDOITf47ZjH9pjdsMFzUtEvVNEDh2dWNlbCCDvS4N\ntlI5sTFJ4fogHA8zKTeuJuVurpznFTRxqUJwve2+8IK8x+V+P6cGD7VxIHM9C5eLQIPnYswd20ri\nPHC4mWwm7Kst8WZVNgl4JZGz6axsTWnVKaduSLdS2Tz3SNOEauMoG9fHic20NnhqlulV13AKOFCS\nQ2caBtxsg/SAZX+vAmTfk82553YPsyRurjN3B2xQRIFtg/NlM2qtnzVNjWmeuT4e0PcXio8yjKy2\nw7O+Z+kBwc/b1I8TkbOCG5IwhFHhL0nY/LqjiJQkDKzQfMArQGuTVY7Dm/biUqScPSaM/9vDC8Pr\ngbEd7GZqi/6H5iBMfbkXNnQYgSQpbF9YFsISDUNKN97htQ0vNu5yV4ZNbtjjO1rDuKwjIpRsHaMp\nmDBq95ClJ/52kEN5S3UkNT7j0y7JudIpeOCxZsFgcb0HTZyL8rwpazODOWczekmikYeBSe9ewmgJ\nN/bHqB+oG3CLMBqpqRni3hBi5jUTHsovzvHWWNtec8CuOxzpJEBWMiHwFa5wHMI+fsyhmpwCUjOj\n3SK9lcC7h9OOtaJhE+HcYOH3o1VM4/pFgGJr3rMldVNXx89Ksnk0U7LINidb2zaPKK1pRVK2/RJO\np4nXBpIV8yZlkrVnQk2SNzp5QOBYa9s5kZzyC8djyZ05t1dX8Ol15ZO7haoLt+fE7aewroVaY5Sg\n9J/bnP5aa+2O6kaFNFc+vUrc3DRaUj7XlQdWiju2pGqsIGakLVwvE58tjYdZufjnWLbdmKfMQUz3\nqNYCak1el9PKxmp9JC6RJ6lydTX5vNsGrdq69wzSDmL2AMoSU+eRSgOpHcax0xNOXomuUiXRqrKt\npu/0w6PytEZ+b6J9IjY9avF+hS8+e8Wr22umeeHNIzxvj2xPZw90BM2zM1QCrox+i72BH6+PYsin\nNJoU9rKt1kwiTJ5uqhtVo3d5ChtFRhXrftPhu0Kwioj0w5uCnzfTSqkSgwZ2hca+PvFdlro19cKV\nvc0absJn/ox3HPzSneH3qCxeIs2i8uQDjfM5qed4AAAgAElEQVQw9FqbccFrRE5mwySpRYE5+Ne4\nQ+nHyAyshAPQUUhEvVBCj5YDk+xa3GrFoMWdqWriaW28vzTOxQpJUzamQRa67GrKqV9/bPWcxBqB\nmhVhJ6RnMJ3R4ZHYJLEmZoyD7UL/vTmVeI5GCdTuRIbHdLZGcuPskXzrbi6+h86AcgYrhjcHVON+\nMhw8AyoLjZNRnJYhP6u7bCWkkePSvBhLZG19n41ajKh45iEkbCC0iHiWEwX14cynZC338fytpZ8u\nltX3iIwpU3bGLGAKPaCUHC/3upP2uog1ch2mYoO5MyTJHJLyOlW2zRxRvxd/BmtRavHGNn9+FeV2\nTRwXuDpsyFT5da7M1/68W+t0wrvcuFsKx0X4UpQ8eQNNiy5fz7xaYl1t/mnXmlFzIusivTFORLia\nbe3LIdFSY44Zt3FUfV0QLwhnHIqTHthJOGyHxyL46yxh35vaGudVRsen/y+pdEVTgHVTHk+Fempc\nSiNkOmy/wYRH556N2QCesSc/fH0kQ+432WEIj8pxvEvHsNqOnYpHdeJzJ8O47iqi0SdAHlhWP/CY\nUU9Ne5tukuTFLQbjJKhwjqUWf3hGH/dUNh5kfK5vGEvLRqppfVo7g9wNu0M7Hlm14CMzpr4XN+S1\nRoQEuZmMaqTZGmtI5+rQO0kjy4m17dG5HT5T1wydY0CtYHRJeJQvPBXh4dI4F5sEk8SaZayr0z7Q\nDIg1/GTxFvgpMak32lRseIE3ipRmz5YGU8qmla02Hd1snnUjKoKk3FkbkVdmaUxR7AI6BKXBBTfT\nHeqTVoAKvLx/TC8yS8gBBLSTBuAWTrjDXZ4KhSPRLvJv32RZgK2nFWzxgGEYINV4ZmOvAabwKK4q\nSTNWC8bmIkUB1OAEqgUjOVlymrMYF6cmaBmRCdSKdVWhZiiTf69Cana9Ux6DvGNdumaPgGYoYrN1\nL+VCKG1Kalxf5U5djbNgIwX9DBDBiYCKYdaqNL0wTYXDdeJXMvV1bY4fSy0k3ZhzZblJfP6pZTiX\nYjizqWNa9+j5Yo1gSKJ6NlCaUHRiu2AyG7VxXGxfLWnmusK5NNatsLoIHv4sbDsJ11M28kOD1NxG\nqUGzCYdb29a7dxuWTVzNCRXry5DGjvXisgrqYyIrfP3midoeff5w5lwUlezwZUVaNQZXw0KelI1m\n++fEI2/e52Z0u55nd/eofeMPTBzf1LVCQC7jZZ8xiFn2MkP+QdjsRlE8shM8g/KDEulMUOOyI+km\nPg9tGla/Izn49+zxQnUmQwt2BB2uiQJY72osxTs+w+A3N0oCWXujibbqHZ7+mftoVMQ5sYHPW+Te\nMX+/r+aGPIkiVV0+19b+nIUoUk7zYiPkpJIonvLZtbQ0uUqceJWudWW9GdeUwWY6JlVqNr0aETit\nFmFVld6tO4m1hAuWiWwtnFF1/DTEpUwH5mqyLs2mjaKF5FCbqJJTY0mQUmZrQlXrCp3yLmhAmTBl\nzeDnhqiVDfNIzmqyha+SBxyCQTnBM7Zs0hxICwgrnKuqa7aY08v+GTjE0zTvcgm7fsFlcCPWVasP\nKSDhZNyn1Oa6Hv5sJVVECvMexvF1t6YaRgOaPU1/TpWWvOzhMIJml8lINp92SrNritkZNfkgi1Zb\n80zCpQSkhXrfCIpUFcnJMg0SqQpzsxK5JTHCVoXAG5s2lmyaKGVTlqaUbM45YzZhnZMbyWQ6NVM0\nAW7Ug1ALlKKIrJQG69woaiqJRSc2Z5A0rze1ZjIVCEylcH6055FzouXE47Z1RdRarViZk1Lrxqtj\n5mpZvN5iz3irMX/TBmAfl8ycBPFgcK1wKrA55l+8xqWazem17mUc8vkzK3ZeotLdGyfADLXDKAQu\nGam1dGOqPQXZGWjf2J262//aDtULH+YQAJ4BvKT+xVv80KdkzImItqX1N3+oRx284dgUcX9VI1WP\ngmzyaF07bOLmvFf7tQkt0rueWainvX5A/L3R2CQirhAXD93XTJoVef3Cu+GIw+xfruocbz9LikV8\ny4xHI2lkIcEj1JdLHb/CmCme0VTYmgGFpw0uNYrNeL1APDp1fNWj8IDddoQ8rn2CUc7WFVk8P3Zz\nbFG/AComzVCE0jz72NVQsvoYOLwwGzBXwn8lV8eDGN9m+qZh7O36sjicI2J8cbGGk6hTxFzanGJC\nEt1QR8Qal9XTcHGjHeuoEVz4sBHZQWqx7rHtPaDJjOcQzibFu/y+1ZuQpPmtxT1mHZlsUmiCd9yP\n/U8EBCPLyNE843ra+P5tNfD9hiTPKpq/T6vXGBPbFhxtg8Oi8FyKG7VwQq1BM+XNpgM4S34ukGpZ\nzCyWpKhQmjIlOz8hNtcIQ25LWKt2Vov2wzmou2Vr3oMw1jqLtdJdTYlblDmbhIgV3j0jc1z8ODev\n/VjmsCQ4Zgvu+mL6A1WU1gZpQpzbHk/xw9dHMeTnEtbDft8LWLozqDqKoapO8RGQLI6Z7l47o6Rx\nMOKXY1rxxuRSpfZx8UjCGNmCRXHSNo1djIr29uH4PtkZeeO97SAXP8hBZAx8xFJJlwXoUbz0Zodu\n9EMvJZzUfrAyYEWX4CAPZxfSqLVUq8RLovVnH44zoj26cRtFXIdKvONN88Q5iR2m7qhisUcEO03S\nMdickjdiWeq61oCalLVmEwtqzTIPscas5txbc4Y400PIHeG2PVNdTzpNlitpsijKCr/iQlj2nadN\nebgIlxq6MHbNTftmQYNp4thySMmakmKyTM/nqdoKGpzQRcJ4SY/MDpdF+1AWKw4vWZgzHKZEJkS6\nCBSjWwbxfoYceyUnoCLqpTmJ7xr7NEWKiUffVoUlupztHNl6m60242QYv9ByGrh/6MYm73pUQWrw\neLw+lGI/QjTsDcpm9SCmmaa4O1sjTimSGqoJaQZRNOeHqyjbKtFGQUvWldu0dviDkKgohs93yJK2\nYzTtmHCKPYXomvTMO9PIySicYR6SJFpyhyE+u9czw9TpprUXd41CbM9SgKyVSSu5VWPcaWLC0hyj\nhQZHHNBMw6DIJVdvXIRpSiPD8zNpLKjUVUZfRJy710cx5DkaWLqBGakksaEsFPKIKDmmbSYw7dM1\ncC+WelvM+KeCY422+G4V+2J0tn+PhAau7M7GuemG8+FY+dgsRn+LWGe836LpF3H+KFS4E+lpp39a\nbyBV6Q1Odn9WWMMdlZ3+bNGHV7njl9HKbJqROPwR+KwtVeq0vYim4gk037gqrkvimydJomSlKGyK\nHUSE+NCAKxS8EGWRuKpSS/RRGsbYnE6q1I5LqwTlK56ZrVuk+gH3xICLqsplqzYkweTw+hpXjDN8\nKSZoVpoNMO6BTCxZ3LdT74xZoL4SkKUyxeFJkQOmbsCjJtI7ONU2Q2jYGAvJ+OxTwBOOZ0vcF9Lp\nczG4O4pbOYXBbkxZmSUxi3DMjTmrC5/Ze2bXM4nn33F4CQKBTzciAj/pzzbkj6O+EOfS/t7rNE36\nCD8VEI1h2OJZ4agBxCkEq0c1tfXXEuwy817alLYb56ZA8WEQScSygAa1+mB1h75UoLlyJAwoq/i6\njWJ67GqjLk5ixVuN+HHHaFKNeM/F7FR3kEscLUUz3Yk6LxE0WcdwbH6NBjGH2jx16no+HpFPGkBw\n/BqQpG0P9b3frA4lO3vwM6+PYsg7/hvmW+J5inNs7c9UjQIm7gFNJtULj4pDMePB7ZOOESEMjDm+\nJ8KgfQU4MpuRtvrP9pDJjfmOAzHebw82NrbE1Qiwe//u63Y4pRk2B0wIpxY1f9/naHajs79gwYov\n/ooORhtEIZ0pIxHJix/cWAKHDHqM78yA4Oab4xRKSpQMW3NqaIv7Fy862mc2z1yyGzMlvtPuvfmf\nNWlU/2V6Oo4bQ7+WRBT+7HumnDjkzDJZNBubPp6VMYxM02NrwqUIJ52ct2sX3TOj3QPoZUR9kbjZ\nnxo5nJ7mesaSM04nHA05TbEb9H2XMAeYUSqJDSt2iUemkY0lcZ1zN2bm7Ixy20fLORyY1SYFLZMw\nO3spi8kCz9k+c2s2/caKxQHpxOek3q8wOQ3W7schIvGCdRamyZ1O6w+uSy1M2UgCAfPEPmpeEBcv\nQGaxzKgWWz8NfrZzHVV3DgLxCUdhXHVH6nGz7JG+Pb5oXLODEASEMNR9jxOEiXHm9s+8HyRt7IDH\nERX3t3jgtmeC7c6R0VWtrpdi32r0iuB7WfpnpX7afdf34DH161V56SglbuxnXh/JkNsmjpXoRSiN\nqHQ8DX/Eo2HGnLU1jETKxP7+nGscVoBYiJ2X9oPRYY8es8eD2dGN/FrDTA/GgTM28PdLbJTEKLBK\nv34x4Ll/HxJRk31zePBuyGXQ4ywhcHVDFaIYaul7ArFoxwqg5uxypGmYUqMZcIuyfaaKR/f4RVn0\nFAYx6GCiiYJQmg3S2Jp1rYGlg1FnULVW+Qaj5V6DEurOpTpGmVpvRjEHE1SroZDIbl1zThymias5\ns0zKJNWMZ8zAS1YE2ppyKXAqwqVlNmZCG4Zm2nyBfHWYKwIrv17dPdseAappiEcUrYRUsT9uMOhA\n7SBG1DVOtHhsiDu+UfvI/h/N39M8Ak5u+BPJm4SUViy6nyfrghQ1mmUY8qpwabDWYP2MLDO/cDAY\ny4jIKOlj5ZakLJOwzOYwxPsr8DVZpsRxEZbUmKSZFLAkYih3lG8V0+BptXEuhVYT6k0v02ROQ/Aa\nh/c+lBbnW0a2hqBpECCkSzs4ESGlDq/0sW8jSnK9skGCGJKwA5K0x5YIazNgJjtPakYEQRy3BjQm\neHlGiX3WC1JJwMF+nl8M43Y71xiOqVv8gFuJorWTJGKf/szr47BW1P2RelSXHIvDsbidZQ6jqs7F\njQp+RI2DfhfdloPpEpNz7KR62iUNqpiuQf+a4WW16Y7oEjGxf8SuOCtpLHI3zzq+P/5njsOq3/TU\nSPt3x/VJwpsSdk6lR6XieiLNU93u8ZyfKv07ElYEihFsZrwbczINZkmusueRt0TTje7ig9hIzj6o\nCFUS1fUiAh7JqbmzsJ+psaEl7j1gqFh/3+ySUKaOiYsG1i+UYP741VjUnZgTLKlyEDMgMfIu1ipl\nN0bR2VowTr73Wvd3yqhZ9EPtzsyMgDEr0pTIUzA+DOJoVb2Q16CoQ0xOw3R4T/o3Bexna9AxdJGu\nlqlamZJR11IySGirgGRSym7fBMXuo4gZarnYvpEKodW/5JDuFbZaUaLzNLIWQXeYUg4cX3CDNBz9\nnGHJ5hzSvoM2m4G/OSTmbCJzghn+OWVj8+TEVk0jJSVlbfBcjUbqZSSWyfoRUsqsa+lRdKlRYxFQ\nZwWl1J+X1Sawa8JpsMkCLXvMTjqVXSH2heWJwMW8eXRkhu6+7TjpBjiyjWEA/Ol6FqbQM77IZNE2\nPk/xOkYEc7JDCiAGyoxUUIlGwB5hyc7+/Ekz/rFEs3qhyQpJElzNEdYSUes+Yo4AZ3hS7c8mHlrn\nqAS2mqK4FX8ckeyI2P3tfZkM6xtGOzZSf8UJ1d01BhTRfz+uu6d7u++Lj5Q2CqR9P0n8rPbvFTTY\nXkSzQkThPcoK+IlR25YP/m1Rt/bopQ/0jdpAv1ChJaitkf39VU34yLBESFI7foemHpGDev1jsAIC\n84vN2CTcrj1X1DVWmh2scAj4uzLKIo0lmYEp4p8r4ax8XbKxAWZRZmnW/DW58BhDnsHG+u0PkPbW\nfhFjtVCjGKadM6z+szYFyNkEEs08Vq+wy+7SZv1cJo9qU2SMqixZmbJF7yY3LojYsOIIWGzohLMq\n6k4SoTmeD/4ZhgjXGlh3snPg+7n1vkALaMJQdS442mtRNo917CfAYZXG1ex0TuxaluzF3GQzQGtV\nLquJ8m6qXFp0IAe805hng3DWC84Usf2YHZ+PdQw2kxlum9w0OWyT09i/A6oKWusOJnXDKS8OoHYn\nPH4fhy+eXJAiIqqWF2Ygms3iHJqbTN2QxKcMNH5nonfB5f4zLcCIex+f9adjcXt9nIg8cHDoUTUy\nmlO6E4yD71GpGayRlsaUnUEQgvFA7CUaeGT8gTg7ZF9gHeh0h1Di+/wze7RtH8I+Td9TwfZ6IPbR\nkX2Mq9T+iO2NXigfEJNziZXBivAtwiS2WQ2bNXeTkzJni1TTzvj3tmLHMIuasuDWBs5t6bVFsZNH\n9KJYJBQ0OV9w0WoGwbVChNYPEy3gKneuzhLpaSfqzVtuyIlokO5AVP1Qixlx3RV8U1OyNosUJ6GI\ndsEp0D4tPomyCCwCV6lRo27g0FRp5pzUKbDihlrdYPYOO1cpjA7APsszKbSA+8TlAfB79s+LB5uk\nP9coVkXBPlT7sjSjsHmzh7XbZ88QTC+lFpsK34rx7OOew6Db+sSGGnQ660oZBsSCDuk7ihSGXHqG\nUuNkeNFvv5sVW98paa+/1GYY/5yEZcpMk7rBm5BWqFpZ1cfpJbu31jZnaTTK6m39anz7DmkFD8Gl\nfIPlM6XEnGzCU0rRvBbMIR82nYYRN4MeBjmCRVun3gzoZy5Ci7AqBlPubMEu+7c9PNZyzBxQX8HA\n0EdEL+wDJXgBPYTDj0/cwa7DYvyZReQ93cbTIbVbT8n0IqLxIATxAydOriUy5KR6+OoGxH4vvmtF\nLAIx7Hh050WJL/VoKXWMS+3DPLL2dFQ/WED1i/LoGJGOC4vLqwI9VVd4OdljXPbuj8bhQQTRarok\nocvim9Le6QMukm0xSVFkGvrWKk67Unox0W7NcVhvI9+iQAfMEYWhpGyYd2mKtLGNRMLQ0TVbLPkf\nnFt7DB6dRjoaX+OOuGkbkZ+YQ1GFgrqEwoiPEuL1CDPWE8G0sF/RYZg8qpxTQqbEkmSsF8WiVccx\nE9WKdWk3si72lViDybo1njflsUBtowhlU8+1H+w4vuJBQmM064R4VJiIHVEKIRNQTyOKqRZ01Gra\n8FtplKqUAqU486c/jRE1xtf443cjKOaMu0EeOLyi1hBGFzK2H9KKTyu1ndA1cNRX0qiovRINrGrG\nMgtM08YyJ47LzNXBPkM8Qt82A8uaYt+9NYxgasOPURyyUhu/2LA5BSj0WbGeIURwFwZSjFLYzwp0\ndk5kqGbQU3esEASKMYM2EQYD8DmwAS1FA1tE+Rnj60cGG3vcMjjfH80zRVJEn+Yg3GlFbUHdYAij\nwG1dyxFijmf+c6+PYsjVvbmqFS4j9bbhAfTco+qg49gB8g7CHQwx0iZAYlM7ZqzDeETEPHa5dMzb\n2Cix+e27B3tZ+vqNVn/14scuflc7vIhX4hkV9Hh+4wvCZHhk3o3v8BFxwIdvD5zNmz2SfXhEuvaV\nYzZ9WJTAQBupf++SFE12MItHeC+yGpFOWxyx54g4rcDbjPngBTRSffkZY/UYWYG9DN7wKMjT5fjJ\nlMyYF6AyCsTBYu6GMJgzRLTl73LII2OwWvT+xY9UwpA79ptah/W6WRZb04URSbrOkrNJRnNOj8Nk\nGErFecga8zl95UV6xmPX7tRDrFt08eJ51TBiA1YRZQit7WoIuwCzr3msfDf1MnZdRHjx1sh6O1zX\n/36s+vhY/9YIl2V8pQJNlKKN4qJjaGaaso1Ni3GF7AKmOFe9mU77BxoMY/BeFBFrVTYsndSmdAVQ\n35sWzIyTFRkQyu7PlGiywdcv+h860NKNjvao3wrCw4gnLPCZeoDCCKr9mgLeeWF74u/FWD9Tjnfb\nm5JnL51P7h8emcEebdi/Pg5GPu7YDrgbc7zAFlCHReQOw7gXzUmpKR6QduMaMqdh4cPgRIq15xFL\nrwqPV++89M+F6Moax8SWcYQ+oV2B+GdibcHx0MIzaxwY3R08T2vj2IyriaMjfQM3t+49DXTjjLic\nqTo/e8eM6bAP5visU85VDMU2JSgXjOfb1DZlTnTuK7s1CtjIGDDmUEJfJUnzpgnbdC9Sfhn3UlGn\n6pmhE6rDC+54ADKddhYNSBGzJDWmUlUnheDskgHe+M07WulOL7TPG0JW7dPdpUernrlY2bavccYG\nAqTZoyz8XqXaweanbITY0w3n8zfT4w5HFMUye2Mj5MQmHPtPLm2AG/zkmise/JguTCetdbMNsS09\ncvY998KJqvQ1igDFsi132BE5xj6MjkP/oqHB7hTWnUGOv9Fq11iLyUwfF1jmRJZMzrbmIWfRmv0q\naK+h4IXKOLQBtxnE5bo4Hxjybgfjv3eBV6c0786wdW27UeyGdpzzTlcG+tzRjBdhte+RSQyPDwcR\n30AYYl524vaDZE/FqKN5ZAl+x16bGMVWyyzGdKyfe30UQ76u1r4bXY6xG1RxnNBS9j44AHv46thw\nac5Q2S2+NWqkF4cq4Ii9AQQ7gHlnxs3w6dgE/hDs9/5UNUKQCKfSMP4NtohnejHLv9PvLbDjfm34\nD4obIv+B3tHpLBB1gSTpV4pvQhlRVPctMi61r4sVBhOxISA6UBNmECd3CnPnR9t9TWJFw/09WQHQ\nrjvn5hPrrXAVUq0x7aYza9xAqnVTRYc18U+Do4JaiU2Jr8kpipnICvZRXKydreVomRdRY6qEg905\nEmEUVpuaPHFFdzINQlArVKTTI2fXUAlddBHt2GvsIPH7kIDZJGCMTK0j6+yiZv5ZfTK6ikNK2h1B\nabDVXUMbJihmt+e5huKt7l4zwAtw7gz3WaEperoOuUfB4bxKS2wa6p70H47nnqFL31oTTGR/L/c1\nRBbROPvnrVtlmmamnJlScmgKpsnXvypqF9VrUREItdZopfbP1Dakc9uLL44sPSKfnSHvNsSeiwDJ\nJ4BHkBUbJmA23UVDHW9Pu4AsNpcHL2FbzCHadwdzLMmHazSCHMuytO++wOKTx2WR8U4yCsY/9/o4\nLfqX4ouc+gLEKyKOpB7FhCEVCGMP0Xsh/a8q+wUzgxsLIxIP0DelSJdPjVf32d0LDq8abx2F2f7G\nbszD0BrOSTcaAW3sdT4iAhjRXJRIhvRAREwRSY2Ls6gnYt444j3KIiIs4jhQPILIAkmF6gU2Y2GM\nVLSpINXzDhlrGJsuedZBszBE49LE6hf4/cQZwL9fxeliSTskNK7OK/777CPt4YAowI0IvBcM+zuG\nGFjPtnzNqjvRHnnjzS/Qm3m075HRWRB02Ch8SsBL8RwcdoqHFBIOISMsDgMipvdh9iXYIcMfNW84\nsgiPvoag1gQ2Bbzo0XW/3gEHqmdUDfUh036VvWEu4J5m6oBNqLXvagBW74YtVTot1LTbw7AYx39r\nsLrsqj2zcNJ7XnYiStylmgPZWiGnNqCkJKQcwzQaW63eEh/7I9l6VXcMPaij771+Jvr55Cd/2o04\nCrsgr/V/0J/JWA8Zz8mVOFVG30N3xOHEembt+1mGUZYPgrCX3zKK4Xtb1rOGsEV4ELFzGB++Pk5E\nvlly++IG3Ll1vQ2RiGM7HNHXW7yIluymVdyQ9b+nR/m7x+yfYzzVmvYrEt7aFzK64JJFq7Gg2gbN\nDUm7lC0OtRvBXXDf7+0DT/qn8K5uyDXubfyEbbAwfMO4xWCFEaHsDqlbVRGoScjqolJ+gQHThBEU\nL8rEc0kRgTq1S1vAELgksMEBTYXU8Mk2EbX4zzrOOHlxNppULFOJmx7rl7Ld06SjWGi0OB3RCngE\nN6Jc2yOCqWkkuvYH8bN0bYxgMgR0Y29qwzHaao8odOd0gjYWHO9Y6uz7N2lzbv9oyGnsRKsc6ojm\nkojuwsF03rHvxVgi1TYgudzzPH/Mvg40rw1Eap/6s7TiNWzVlAb397qWxqUYjz0yI8WLwdmuo4kp\nB54vjc0HaERkH13BVbMxhTSwdO3/3aJRSZUi1szTgNJsBFsN2EhtpZu3vI8j4J8l4wTZ3790jv0s\n9X3803NGN8gjIOwP8sO34iwvj+DjBwOaC+s6KiYRiOxqKObtP/gW6QEmH1ym7P48IN0/YcOBj9YQ\nNDb//vVy0cPS6Iu/t182xSZI1BJGzx+ydEMyNrj9PG6Ag7bG7joiUlaj0sUBFHmhFZ7UK+Vpdw/y\nonTZN29zQ0Y3XPZKqjQHHPDIhoCZ9vdK7JldlMXA0vDr7QUeHTxhscvoEVvCos8mWKecuvi/jANh\nh8w/v0/ysXkoPQ3cLVtnuAisTSxdjUVRCNU3w5XHRhRcN0Xsvdr2xWV1sSVzlil31/bSiBNRVTxf\nhzJawiiftjHs8bQoHzitMd4NIdSu4gVgtQOXXE9GgZoStaWBO3tUmTSehB1Y0zMxCmj2aL+33keg\nEevt9xQZXkA3+2KovTcRel+j89e+1YYw64ADpIHumsIEsrh3FcvNCjYPtbj7DydbJ8Oht36tvt+S\n+MRDg/+qCtsxsRU8eheCqWUDhzNFccgoYIqQoLDPLCU6e70oLIkits5dnKuxm0dAj8iNmhpG0tMT\nN66jWJr6mf+JvlE/U/SAZR+RvwjOd6+AS3x3252EXemfr+7Q42GPbEDiQ168pO+JXSzpN+w8I98/\n1W3AnxW00otSO09lhscXyhc4MK++cGHrtPWIK7XgnvsTjTd3bxv/GK8WYe2LKxpRUAj0JLGOxk6/\na21Q7tIOuUwyMOg9i8Y/e/xzPAbBDTiOA/t1dqw+vHnsvICG0BefHXxk+07H7vw9cXBaSv3nJBZS\nndqkTr1sti7i2DkS4+HcbIi10adYT7HipWANQ6Xi6nKxOW0T5jauScNZiBUScwoqWcAegFQ3usar\nrr3gKpHa+Bq/CF+6ewvdj6ht2B2kflCqaG8kqi2xaXZcuXUKldFAcy+eR6NSjQBAIhMaihkiyqQj\nop4UJo/S+9bssFo8Q+s4FUleRHZjEEOMkd1McfX6xi7tjj0lceCTOW0JeG8XFIl9jw9A68/WpgeZ\nhntTjC3k16owVPfilCjU2TTmIyON49ZaM967Fyb37BSNzedDIWrdrWkz52LDq7M52+bCVU2R/4+9\nd1tw5NaVRANUe+/z/397ZnUS8wAEEGRmSqrqbld5jWlXS8oL7wwEQRDMtYDYNzDFrLPVVdwDwOda\n992Eht97PHY5S6VTQNPBgdznMOsK+xfvKiMAACAASURBVGQpH0VlZioY6jn+kLiDSVymtb6vyHEd\nvgTIC9xaNCaI79eRddQdZkxOM1JzuJsTAQWIbs1gGRcHtApeLoS0Piumf2F/foBTG3fHmBO1Mw+p\nP0yH+fRitwwuo1oA1YZJ+istlzyxrUuo8CbaAiTGYAA9LX7sQoAQtGNGkXFaT9TMaalgpUfuXLDm\n2FGl5cxisSuBPyZGVlYEBHIY8giRENLHzAGNOJPzMbxZPXIr84BY+iQ7DH2CWCE52vVCugS2VBAl\ns40TdsTdsTczngB+gtvZDT9hONKmG9zs5CM3sEQbHskQf3IhrcRq13Vs1hphjTBiHeZhZNkzd1ii\nXSoMOsSi6ZvXmkNzdoDqGxtZz6WO7DHDmZUPWjs4gJ6hRY7D86ViR217N7p2CGub1GrE8XHWrNgR\nSySMg300DBNmgerPOTF9FFkJDB+go8DjCFv5I0+MKr/9NXtAuaoNfXm208wjGNG7QXmqFk09+cmZ\nGgGesyKCKo9Sm5OnkWW/C7+6PR69iQHxI1u9yBIfa2lgIFvc8aYrTkABIfFtf5DCMJt646QVvshp\nFhfGVtBuFYgUrmozB7aRbTayhPcxdurU5VYH92KHLYZ1CTNTSjOVAF0xBuQUqdQl66vD4qSZWMhp\nxhtMPQeKWn2Aap8pzWhrpJZ1REauTxlN7np4knWWzSpQi39Rf7SOCVCgjjtAqlfZx2MA6aj/r6GM\njjmI2c9ETLGDkWVbRg5gAA5P3+KGsruayIGTMTFb5QUlAW/MtS4CUKLtwmQr61L2ANTgISjmBqnl\n4ICR6wvp+Ov/eJwu//8fB/4zR6gDYHLsW+r2HwN/PUJYTA8Wf6QqqNxE5EAP2+BYg/lrPMLOvsom\n1gcjrYM8NrH8ZYb/xYydtXmgsgmrLnB3rZsUv8K8B/XsZeY3S6droioK9xS1cwLccGE28JcHo6dB\np2W+H6mamkjGO6PuLdeKLMcCEDM3IByteQKpAVU3hlngfVTzcU0hzEbnnMhTXYAxK92fCdqEy5hR\nhr6+yJAhLXPS0iaF00GghgEeZo/F4ucs9wfTR/abVAm5p1dWojivWwkTzgAqfiQBSUEzGUcNJq6T\nTDbugvZBLilxQyjseKnhixj5r4WrwqgefNbvXPwpENVBMPL5ZjgF+FQwX6RHoVvXRqo3cjEkSFIy\noYPs0WKAJoPyYnWoPKyfGRdWMA02HvrXkdmkOqX10bbWh1ilwFD258IjalQE24vtQ3EOJG9vNMBZ\nB0UUMt8hBB65buFCL1rwpAUN2uoku3LpQRebXu+2AXravy4cBTPKpVo8Ut0WC5UsXy9hzhnHav2c\noef9z+F5/FcezeexOBe+vB0/xhGCAL2oN3PG58esvQ85dNPxE08+yrwZEsjzcOoR55z+78Pw/+Vi\nopuHv5xBdRQJxtoHKJSX2k+/9I4UsHm6jvsoE9hmjNKIiBnIRGh0HFTfOahiNKpXvPXzsWFspMqB\nQA6U+suD3cPFesu8ZoFBSJqBctgRuiouAOElEJU2NxYZED7TAczc4sk+cBxso/Sxk31n0ryXpTcK\n8N7fEIuuzeBnWuKUlVD+FcN3tUjyZQYQQsLTBr4FAN8/Jm3123gBjsX6yrOPwy7GYoYvBfI76fI7\n4ilrBnZKWH0CAFUzpZYptuOnOK7SoB6ftq6Wi2ZWK/b5bqph6oQaqIkVMi+oGQrzxEWwodcTECZZ\naT1LCwyvjQe0dSXExcnp5O4AkZjMyz0XZK3TL932sp7AV6VLeTKI0v0mk0RXJ5kdkp3S/NOB1IN7\nX4hKkMphmSI/By/me1xIs2KTI9VXI9Y1QKHDwcC4KPRik0noalG7OOGOcRz4Odh+tlgMwdI0Lo8u\nI5jZdBwDNRvkAdGqGvphhr+GwX+EKuh/LDaI1OJ82cWzc2T7o7BybRAyvFIDkJ4Ke906HevcAUC2\n/lfVmKju3HIG1SoI1AETEWH1WYTPdiRwkypb1rUXiSoNs6gLo13Z/tUdkCanDu5KKAKDrLc4Yzf+\n5siNQ8AC5vMgiUoW3PQi1TXU73PWBYS31gDVaYaZggU5KwHI+6hvnzl7sFpX+elHg/sMoXDMOC+1\n380ypYQJ89gUDJDd5xfhaxY7b8DxD6SEmssYYuBrpWVnOdI1gNpu7nkF1uv7M1S7GJB2rzx4ta0/\nMkc1RXPppZZAyLhtNFDTaiY2CaQlTTLbGOdx7zCqXazKzYEyEKaHPmiTKlO+pNZlO29etqtIHWLF\nJWqnZkDBiWsjEHWcvtVfCRWvRWHubSQHrZNQsn7LprniHVVfscBlecZnxP4wC4+aGHGgtcfGDG4i\ny8lQHE/nj/RkcOSAd8Ct9ZRsp3mAretZ39zME+uSUXEPG6FOeazrGLS2GVUHbJPRfS43YtXJTIY8\nqacFGp3kls4aaoUhLJNd34OgWKXa8jF+pmWPp07Yww+4mYOnInnG85+fj81f0CwgHpmh0JGHRBuP\nkczca8YSdthWu1SjHmb2raz77PultqryqG8kIWQkD2PmTCdUjKUOmUetAzmA+QMFvpjNqLn7lSlS\nKIYPnFmMeVqqCQEMn3g4CRbbPPJ6OPAfD9cYoVa0BuQZqqBjGn4eP4pwRrqj9lCEKjAXhNFluApf\noyO/0Nh/FNTvAJb3Sl9VjLCZZ5kR8aYjF02xgAif0edP78p37iyl3qx4E4Go31g6DO/z1Db6iYkY\n6N8hvUPOER74gJqOAvR1Hfbe3JRTfR7c3p4bpzLNcjGbkTVjjHrrlYTooWbBzKaUQBmjw8HzFWYB\nw6IxjPUHz8VVxuEXNuIUalinow6krlgcZ+XAB1IfG5gvEEEXtcl5huGHx4KpOYAfoe74H2+3pLRQ\niDr4kSXQwRRCmkyTO/moNmG7DaROXNqqZ0txBNz/PCb+9zHxI+uIJ/Hkul/N4BYGzcy5xMvrRBQD\nkGaT8F78BoK0t1WSKrlSpGb7HQ4cR6ihkGPnMVI14p59zVJwoFh1LFx7tdtRquBYGwDJRgp7Curu\n0xyHXS7KTEiOQUJjXfc1wx4GeB9i3YeGR9rTZ1lrTZcYCdregp9AMquP9+yAfbBNhgMDfswkH2JT\nGqzf2vxyPorY5QCrzwDyWBOYCfB34UuAfDxGNSBwz9BP0H4hAPjeFdiuz1znRS1n6iNBqS6VWV9/\n9+X9zH8Cbi+KtDniqSjIKaw3mHMwuNVw40QiBMQMxs31kdD7ejJyT+s5nmOYcWS8j0EW0ddLDxjS\no1j4KOHQINVadcuMolVVeYkDMNxUWcftOfDM6zlLJsMyhiFEOgSDzFayrs1Q/sIdoUumAKOz38qT\nd36YwiwgQ7JbB3BkXc1QBWCk/5C0XDGUcGFrlEDJdg/QotUHNz95MfBwuJTCjEwxGzqbMA96PnL3\nqQrPKsrSgXM5poS9V92j3jF9P/tjm2Z2vK1iYJ/1aIVUJxxHuJn9P0eANnerjnzPmLXMwGDeeA+A\njxSwOwgbTXCpqvG2hqEAAwVwizGrX52GeQN01y3XfHJWO8J7Kmfm0f+9XEY0FGyWLlnJXPCm/3bP\nfQTFyFkoM5h7bb/n5jDiyvSJOZLsTJaTaxMGG1zYRFvUwOEXuMbwJUD+48cjpz5otUSe7qF42kGA\nKUtYPhSeMnlbPp/UgwDVLlg4IDjITDoViim5c5Gq3ydbsertmZZRyVAJ8kZFqgKC1WIWCybNMLzq\nxCymfQcZCRqAgADBYtwZaQGt1BHH088UGtH/El4mKk/BooEaPzloIpLVlS+RxmGpysg44KBPaEWl\n1peHbprOPCHtYVzFl75BwRjgGgX1bJ8J1GBzXkmh1qflTAxvCKSZ6Si77mRbtJ9OgRDCz2v36o/R\nFiTGRJiupwti9hFQXZKqm5rJdPPDtX+2kCsYkzETTLFRntYWBXiZj0lGnmDjzl3U7K8Gn6PHJ44k\nuKkasQQyzaPF8W69+StvDsvNU8xfC9jqVlIbGrjwXOdWdkvAgdq/MS0cyGFSX44SikNVZoNEJo0U\nMIVslaTBIJAneZgW6pHhDpAhI7Z/pYSWMrQJ5QNqosi1FfZ9h43ZQG6rehOIBfDDYtfrM6T7EiD/\nn7/CYRHddM7pmCO9oVEtofox9lcZqAyv1DRqyhiXpeeBHbdGmlQWu70tAwXYvtc7jnmsq4JWACcd\ntGhKP6TsiZgvmN4DNC/YnpkcOFNsk2G6GBqfY45y11mKCpbfvZge0AcMcABiaxMCEAGdvljIgguo\nitGQjaSukvpjcJYQswHu8BxkJwQ6T8dNmccCC+OATBWMyQEBTmVBDkLWf0nGFm7IPNOnBSs4Fth0\nfUPuJuuixzo9Yo8+0ntWIKTFAbVTdlDHJWQiTTPD1LJnF9VTpP2typAwR14wWKa05rHUiQPp2Cvr\nklg0tZnD78zDDPaINQXq7FP9jWEz676Nyh/ONmf/AsxnCWw13y21oYeaoQu0iIFIS8YLkg2TYBDe\n54HSqFgJ5NyfMONowho/1l46l/Sc5CP7jVdJTmM2fODTlyZn1jKek4gURymKEpjCft8CuUsUwG7V\nRpvMPoUvAfK//nrkQgQayH2E1MlFQud0wptVadNeMfGzrrzubE8+k23X77SVCk7X+ekX8e6nHi0D\nMChl5duWdBJpjHHv70tErJ/Urc9qeRSIx1+ccD4MBTK1Fb+mhqGiAcg2VaIQyBudWq/e+u2yUClQ\n7IFgkI6ZH/T1wpPZLQGMhwNoffXUvRVcNSXlgClhIvUMVmerqyBCqIYZT3SKRoVK3WCSnJt5CwKE\nw6zerJSCpISNCDS2cxEEISzalkC5VOBCfKt4Om8K4rUpiGokz7rMZxrIZ9eHebO/kYDKzBrKuugv\nAZWYefIAcJIXKyG39JNquxb/9I0kpQmrKleuLYHtyPeld2lnmpk21TjVdWa0yzGrQ4ioRpWLWVer\nMgpgKUgJrodRaqnqpwVLLcFL3FUjLmSo+hSWf6vUkr8dyRi+BsgfueU79b1UrTxor5mnBtGqIlxY\nelWySydwV6A6F/Ne/aKAeRYCd3FcWbQ8U+/MOW/z9izfvH+v879Pszcx1RVwYSsAIZkeLA9WyEOG\niwHHwuiDC24y+aV8yY/ehFIA1gyxY5MyTdZZ5ieuJth4LQw+DDisFwphEF8avZEoSxeflr4/kIu6\n3sNCPcjlw60WwQRtlY+Mu9tc9dZZBjJNznoWxhUQ4dbTaCQD59uUg8hbOlCLuU8K58g9sApAFaIA\nvWsmtbYSBagdvwnpIcRGqitm9Y0QAEA4v4gMtnoi1UsUhKlTpxAwzNQ5O9x7E5AiZQl/AbkmP3nN\n1I96v78qFVIQlLCU8ZiUtVUweT3JYVkAZScugSdjcMcLgm8rQ5t0sH6inXrzTu1SdVT9w1b1Epx1\nCYHxPUj/pT7qJnzRzk4O+qhc9zbPgccodu+NF/OY6aqzFxxoX0mdWE23bll5XbnM0ztWM58xl7x7\nR4XIcRxLR3onXIL/QjMqAwv7I+NJZ6sxiIcX46OlQJxQnkAxVjhmJwUSyEebRpKZP5ZuvzIRLiZq\nxjnN/uHIo66onsAyKPndaKrGYeYAlTXkfjNnKEOokGUeijcZLS+8Zn4945aZDNZxZFnequ9E7VKd\nyIY9pXeE1QZzL/VXq/6inehZkM/Ggq2ADNthhK0yZwx8PjGqyvtz9qzymB4zl5zi1HpnxAA9nJxj\ntYDT2gqHByUDHkeE5l93P8JglKd8o+wES+yxlyoVfu4w1FGIRvDvPqX9iXExD+fZdCowst1aGHdP\ns8oWb269kG1Da5i8N4R0LLvUTeO1nDEJiGt9lyky6/8JiuOrrFa4sJKSGRYSbm4leiQbnxZMnSqG\nw3MH3mzfDgBOG1d0sXK7U/efMfE1nv5+Z2f+zvt3966AXNn6OzOHVjYUXCSIazffmDoMmN7AlOBz\nWINzsZZ8S1fyrVhz2E8T2HkGorEcmaOexZgM1PhWLNxTiACi62zwoF7WeI0gQMaXHZ8bkLQXFGc2\n/kI5YGoVnlVdh+qkcl+CzqzNNFH1HuWah9cisOVaQNk+E6wXUFjbREPp5M2BGjfxeoFe6ra5P6A2\niVXs0X+GByFyD5M2pMCka2I4Si3B7NmWpV5bSXBx6ZOji5kah+ov3EhFxj3lfheWYqyrhgJa71fN\nDV7zZVzqXodSSzrkzS6UVZtIkP7aAldJgF7rNDV+y77YGNSf9WRd9oqtK1zq2GSN4CZ8DSN3ToxL\n9peU1zBzJ5VLKRxp20qVi3weR/o89gb5TPGUh1XnfQ/o+1RL1R2qWnn2/jthV9Nc2cbzc4yB62Db\nJzvUOf6K9zR64nvpzuVwZgIyBySSIXJbOg/PfowhYN7+x8k6Pd8liHLqPMzyJBTLhSDvE5MoMDis\nOaDMQC8iwRC9dO5AeayBZzrxjteAmfAoo7eAcu0PRmHS1KM2wjjAGUAUKd2nJtMi46VDN2R51lkK\nQah1qX3X5FfUVt3zPFGJ7zv6iLCRh2CkOsEtFq+NpzPldvSw+BjpMM0SFCMN7oYdoO450TnL8Ric\nsVnlvSxeSkRbtXf7LUnVlcg07a81YlWtWEIWUX9Zrw8nUG/s3hpdHCjhsdAZdwy0OgQ6lqmhIpBK\nFqPr0F9RXCzzwiVk63bnaMDmTG8rcyWAVtLB2Mef48jXAPnoTqqLYSyvgucC7in1HpabUqY0osf2\n2+NIJ/XHrNOGyFg6/oqwKrQbeZWse1hmg5zX4bwIKpmWZ2+e4Px3See+4V4Jh33GsD9PtiAx5rN6\nn4OnK4xTa90RakgtwkxQP9Jp1aA3yJkgz8W6dI2gGzC4WcKBn4Z0l7u2CgwYdM4k2U6jxprmxwEY\nSLZOa410/ATVk/sKIlufIBS5d/7qarblQWFTz3JKGL1tIsAUCbQBXCZw3Gy9zw5NbXZma+bir7Fh\nCDAFcGTFmfdhvStY6SToXgDlPIomee0l0qvhjxRs3FVsCXb87zgAO/RsyVyYTtvoozaybAeeWM8b\nsyMU2BG+WP81KmhK6fk8hXCdTtRtQgusUBdRAqjqrJvoYJ5YH5Ul75kFGYN0EQq9svunGq2rup6m\nWtMZDWdKsqa0/Du73UwA/xUf/KKdnS0JT8xzdqOtFcOKADBCf4r0H8LF4/lwHMfAf+bEzyOsYGY6\nNWoDf1rE8MTtXS76mui13FyEwX7vosSnKztovhcP371+7tmu06vnNH8xRjh8NDFweDVkLQMkRVn+\nEycFhd491DMJ4o88qLZAutPVdMpcsDDFa2AUQ0Fa0zSlCyBxa+sRtCXNI9n8D1B37zW4ugasBqMK\ni9p7BQqRFDD57qi8ufRT1WV3HVHfoj2taIMlQBQEe3rPZLvkQ6P7jFGKoi19avCzf7GOLNO3bmNu\nallVbVy0ZJ4I1AlIoBBjmi51RkFPp1Um5oat146mq1qpvHDyFTisbKJBOLKR55zui/AIFj8q/iZw\nnA1Ul6nyYOkL0Y9Qw9HhpbpbfJ3E+ngUbWgbsX1ciCMFUzdKqQkFgar1eb2eWarqMnyN0ywBEnqV\nMyB13D0w7ZR574Ialm2xoUJ0zOF4TMPPBwrIF3/F1K0fnY+yhBFdVTEgGUR+aqz69emq6E77Hog/\nj+t1HLsur65LDnRhhQNY07gtreeAzLab5mm3nuqSYXIYdgNWvEpmRXbV16/oyIN1JhhnnudmZr65\ns/LHAB4evldqk45MyTloBrfWw4MgkKu6gDjVTADIDgvoTfrnkDTQjDHqkHl2+ZBazWRiw5U3GlW9\nRSLDPfyuU3gNlqETSnIaKpIUrGFmeFS+IfUN9zxBq2dDEffc+oFVHiknRiwKwD0OBOmTr6zAiE6u\ntFAcfz5R/rIMJAxpokxoLpUmlQ9W71pW/rIq4un1EKtFTOSH4z8ebH7R479nCyWuiVANwNq29VQS\nE5arnonycwbTopugTlcWvuBCqUBvwrdwY8vsxgK6ePmyLfNkP7LxpKVYDiRuIR7A9Af8R9gI0Yzx\nOCZ+Hobj54itsmnWqCZDywLJAt6fB+xnocygfkM8zwLZ2itG/+z7O4uufI7C2ckGEXr0xyN06Plg\neB48hL1o/St4CROOo/a2tXwPnx4Gz81ABw4z/Bzhn4ZnYu4qEoCLtCh/520bH0fVcaANUDDF3r6I\nqTeaBOBj6TfTT10pUnVZHSygIti12WUPZjQrToQJNUCaseWpPGLZnf5AvOoxTcmX2dty8o1Zuf/l\nrkYz4MGpSbV9CPiZbczZRqmEFhnbP8qu2gCa7HHM1fmsIgAIxL7UQ9d6MV8gaj5B26RtuaZTliRZ\nkJHkzWqjEAU2V1kalE8g6pynrnbx0Ubx7kTY5c/ZtuXJdmpXtJqHcv3H0ea1pd6EfT9fK1fBRJfy\nwAbm/ZRMPbSPUw9MkEl9qKF3Vlp0luOwUL88HHMeuSEpThcvc8fZevfXHPf3BDKn8/X3LGuex/1x\n6xyGZxY67yzw9vQ9eq4h/F1w+/+czWiKwSwgYAXoTlMNtHUFn8rUcpxYscRg6khAu3gn0XMkWD3I\nbM3SZ4oh/HUQ2OPZHwD+yuyYDrrS75KJ08lSasR9Y2EEExnq1be3Dlj1iHO/DBVU+L1m+ageogDg\nAp2ZC5Cjgdw6bieDBWKNqczhUkViLUR7JhVH1mn9sl6U9Vttk2+hxDgiDS91hHvb9cM0VhXEtfKS\n+TbsqLc6siPjlro2YdIlW424Cy6WTj7FfRA6Y5X4szfngnTN8yrtWnj3EkHlRsLhS9u5d/Xdgfn3\nAPKSlNnBDGkfTp6DvN8dyWDVCXvV2uXJbrJeXTf4MBwP4Efq031OHB6ng/xnzjjO62cz9VX98vvY\n+UfiehdAP5LmR+7vFjp3ebjNl7OtGqL0Ua/74sSrn2wmWiMsF+IyogIlGGqfeb3D0Z9qnEp3HRXl\nZgDAmMjzRCEql4jhkbby/5OWDeUOABM8tq1JRi4MOgSYRoM103MCeSkL0rOgKYmLO2qjnfVDnWzO\n4StHsHCt2/Uc8MKFNqo05vSKg+tXFE5l8ZFjIXy+JzGyXuwub5f0jEM1kxPMs65Nr1317fhcLFyi\nhZr1ekVV/SNKrZuRFglYFdaWNSZ9gQamJAmGPKFbgDzLyVZyLgCjTp9inob0xwJxkx3DJcH5FPNv\nvfAf06aab9Cy624Ifw8gz2D1TwyeyREMKv65kGPp4zieremk6vpM6isZhRk3hxjwMPwYD8zcSToe\nDpuOn4djjNStT3bQNmf8zKagV+F3qVZep3GvVtHnPnvtOj7UiTVzGo6DuxBbL3ocYXG0OPGSqTaA\nk64eyY5GwZ8Lw+u298pEUlJQax1vsjvQypJbO8YU749hZ5gsfYQnycfA4eIYSwCO7meRBKNmGMwG\nWr8cdurZt+HQzUcB9g6x09nqnaXvI98oQCwZZe0wzdlMkEwlPauFmM0jF4RzWy+4kSeftgQxnzCb\nwCDTzX0epjMUr7ppqMq2yyzIrvnFUmnmmZ/LUqpRIESe2z16PwMA5kcTDukvbVtvNStg2/TGJYNz\nQ4sJI4f1rl+grIvMAHrMZL/j7IjxTmidLxr8dr+QecnIuy0rH1HuO5j40sOXATa2FIz/OEpyFhPH\nruN1YWqATuoE0jFn66RKUCTbGWmrjuHpWMdjkB6zXEiGu8k4+JXe5NQqVbPzbngFqn9KH/8sfNza\n5fz+qorJzxy4xzHxMzvlMVEnpZNIekpfhy/1jAQHlfQN36WEz/QEMC7UY14LbbOFA038CNwCivwd\nQBCmjI8Rexl+lgMygEADoHbKZuEbNrOMZO0PBfMSJAO6mYelReVDbSesZgFhF+2Ljhr5OMuWlcJs\ngTNZanup46b6ZQwvs51g5gGUh6WFihu4BkpnaDTupCpLh0bbPQlAejdrbejyPM+z5Lha4nQ6PuVl\npouOl0lpPep/HMOcTRSDVniRNPuUnpD8arHDfEdP8CornW6127XsS7kOwA1v01udEpXVM813kOCL\nzA9VJ0b/2QRsdjSXjiB6xRwVZMctUWW4SskZGw8MaIHRU9eBEQffPixOCHfgeEwc88BP9wScYJNz\nJsDnLrt1lxpRo5uXmz00U8tmB+bzDeC829Rz9/yr68/Cu6qf95h5WjJMB35OHHPAfqLaj/2bagyf\nDeRH2XlpxzZw6j6z75znnALuFBIy/+XieBQiY5WBY32jWm4kuD2iGHmARN9vtYXOsGS9J9OhaeQP\nyzhT715eE02FCvutQz0+EjINqOPNYA1z8D7kwxKcx8Cpz1KAhjAYffrU8NR3W4EZNyFxm6HZAzFz\nSmC1Xqge+TtmRf1f9QcRxYaYKVNzNuF1VNok8+0KFD11S+kSwOayq5Tt0x4gS6Kl4JkpMKaPOoVH\nJX+obgXkQeac6jRH7TBlL6j9X6BuPhqh+DT7slvUlPP0qlX6aH/v88euw9ds0R9xAK4ypu6gyW9S\nP1RsKN+1ZGwoNoGFlattOFmcsrkkYBv4R15iu7nMAGxgwGs33GMkoE/HmFZMsx17YQFyDiKGYqg8\n3VzKBKxl4O8r2/C/M2iengmf16qbbHOEY/2E2bNu0b1t/d3DsVNJcLZLDDaCnVSsQIVV/KU6Rscx\nBhawrV7oBEsCv5d/jzGSgT4sWOnRr9bU2ZpdV91grRNDLq6OkaqZAPSHCZBnHlqIZLzJ2AsAaQI5\nsG5MoR9yBw5zjEfs1g0Ni4f6gKcYA/AxQr0wgWkFaYtKszaCpQsCOuxit4/WijinoXy7hwVRPMtZ\n8aICA5CO6ute6KNpvZHj2ZsRR3NyhaLryhhP1joXeMulMC3ejHkOYXEwTWeMiU1uel5FfjLvYdJq\ntW4RMY4U6LDQdTOvRDFHyMLa3ZlZHjVtYtrsMP70UAngC496G9mP2P/RHy2JTK+imS1LzwJfpVHP\nYf2k4Kix75J2DvQxolJH+/Pw4aHHHYYx46y+Y6I69zTnnm3oinv7eBahUeXRHAuoLeD/61YrvyMo\nUN8B9l1e9Vl6g9Tr/M1Tz3u26xastwAAIABJREFUJXpyW4UJB++yiq9ALrO+YuWVXj7TjsghjKDy\n5P1i/MYIdxHez59mSdYMuIkECUkvTNbGmXx+JBN+ABjLHLvZZu+ipJoxnJtxgcxrAxGAApsWmHTC\n5Z6Lplxnsu6rbeOM8iXDLfWTsk2YIYcvAZZWGpbv0V+OqsmcJI1tVfFYVW3sCm0gN+eGvgZyXZht\nHMmYZXGVJqft6UPUMJJ/ddGAfhRtweNQP/IC+csvV9+cJQSsnuPMIyaadRQ1lIZ06wvGPYGBr2Hk\nOQDNqMvj9LGnHzSGX8HcUn+Yn0aGvXOeDncYGG3eetV1T0SDBV16Ugc5feaMYuSxax6bJ2q1AuAB\nMO6Ow5De4DjgUeXi4Nbr/Z35fw6Mz577bPisdcvdvd3q5dZsMR5oQPYYFLWQZL1GQp1p16HM0ND9\nR7B4yye2w4RRDy6zDjLb0YO29J6+LYBnXyaLBZo1j7R2qRRzbaaZdkz/fwLLLsGqQ4Tu9TGaJQ8Y\nfozse5mvdh/cG048wX74QBy0jJwVJu91EbDGbfej9e2Q9acSSNlvbTUA4FItdeWJWVVmd6DXEr0A\nzREqDqBVHmqdTwHCA5GpDipGjgbhXtDtutDFQ+ql41Qmr/QaxBuElShSPka/ZL4UgMn0R9cA69BW\n4hnFWVPkGlHKC0mHwunULSp8DZCXhE9bbw4MZDk8dWJmp62v6lNhhL/IkPznbaAoFiZsjq2xeko0\n8KirZcS7kH8AGI5HLh6NgTzQOHbYVXpAHpgRA8tmmzLSlrV2LhaDIOtSjiLZ8HWw/Mlwp4d/V7Xy\nKs5nG40a5IqLNPnde3Fep6D3pS4THQrgrwTMeWCwDeIwkGSRqbMvT6UJEu5eu4b7fQKcSZoNFLVb\nr1j5rDFAw704EcjqvYg3QckdP138yVsuwFnsxBzuZcoYQEyXwo7HdDyM25kMbhN4HOtmFu+xF4dG\nB2FyII93m6FGKFbaQrfGb7J2Mt4saaYpBgJsUY51jg0ydgHQUmt7nmGQLy8aDSiIt8CkVUjN4qSt\nQ/UTT9JF9moMGIk7JM6GkC4fiYUxLcWseGpQj2463h30NTPBekBNJrquZAH2JnwJkNciF39DxpQM\nyNBXrgO/BBsb2kyarXF4MelzHRYVG3pyhfpOU0M1d+Mat8HhFtNft+jsE2iH8SybxaKpe+jSw0lR\nn38YaeQgYAeSSvgMZj+z7/5oHM/UJu+aMb5K57SQe5HuAu7bu9NzyF3K7xyIRnC6F05rDgAOT11o\nqnUXW9uZCO1osFAnb2zbCYOJCWwBS7GugEGHYebmo7XPZodPf+JxqEHOTpDnVebiW5APK117q2y8\nBQDzWwsFJDm6ZmF4TORaQgCOASHQuJMTht0eI971KkNln/WWpfKNeBGsJkYTnWwO98hDCAJpg8t2\nZ615xas5y4ap9zlzWt6jIC3wb9T2qp1CjNTD952egVAENOFg2iWcGKdgGs04uzHsVNY9fAmQHzNM\nxnxpDSdUVkX2PbEOSAc1+qrJAIvyc+Dm1aVfZLq2xl0RsDnzoVotr6208c8wTu+AsBXthdc4pDWu\nh7tNL+ZGQaELenTqRQFn3d+0giq41FkFy7JhFX5/InwUxO+EjAqF+1nHhQCuTs9BsgqWd4TZZVrC\nsrrTJIDLbCnaDOVDw8Bdn+n6l2VDCyO2q1luMDJSCa8GbdNIma6T1ecOZEtOPZKZT4S1RamYkvy0\n0zBRsxhPRGprmTgdiuMOqEOpnT5WcnPUoDOyVlZEkuo50Zouu0CotQpiAdnqsxxDqeIgicomsDRD\nWcDfehwsoIfm1PytH6xT1zgMyzvepcvfXvbz1U/I5r3T5B8dG7sQ0YLitKqpLFkUgKKEuvjdnYD2\nzKvwRUBuxRz2LafFoLRWG7Jlm3UU1mj7I41h1nGswqLlLiADnrrETQUQbUd9eQ8WjhkOOHduzYgO\nSVMqd+TxdUBvrY4FU9736ZhH6Ft/yqAvVUHqYWmGtjpfcoT5ZuSbfqW96qP4xFMw3cMrc8NejP4k\nYGKt62fvtswtUQ41JaSa48q65y6N/Xq1NU3SZgBas9MRg20ajgQVunFw1oONxVwlQOuQ9ZFAcqpW\nYsMN5Hmrspro/WxYqOmA5YBiLpSZz7Llhs/e8m3c0cwzWrucAeycHdD2nP17UEqGQMhZ5QNxMv2D\nMw9fsg9wJoHMAwVFttvhaQuQbJPYu8w6DAAegFka1GT7uFqc0HVtq2IMJivE1/2JQrPIUc6cARmv\nsLK6CbBGP+cdT2W14m4gbxPR7q3xsQFygTn7rXHSlaSwx/BCzG6Gy5cA+ZwliNi/UTDcAr0HYI8o\n+ERsVEB3hCs4qYVQMApV56xgXtYJN/GgBp90XsbvHLQ5GFmM5U+le9vaVrIDOHzgEcZ2pVMPnG79\n/Zzd2MHw5hJ3Z5pp+cnv2GfDR8B7f++X9PuuwrmF9M7ArwD87SRqitbWujYV6DttoHXuJRCoR6Xw\nzTYuS4eIBcpS11oU8N9Agmvo7r1tvR6yENxWvoG8dgIZCNzyV9dioS8+OUNonfrybBKTgRAYbfPO\nhdy1T9BHd1h6NRP12h3a8LbUTZ8AIuOph/7wFkIkUIWqW03yrwVBRQ0mTsuWPlLNoMfSFdnOvDcw\nS2uVJQrnFaYJSHrXrb4SPOtH+G52fFsuXocv05FzdNSGh8yrPnNiTnmv9aN5H93AQLMErhr3wF51\n84xb9WQLYLFHQgdGppL5FzipZxp4vCStNHG3a7IePKJMD9DEysvyJajJCHOsIffgeY6pRrbp0qpD\nbJ39E2DMz79r0XUP0mW26/cmjx8p53k2JsJXBAifUTbf6x6z+lKriyqWJgXkhwJsCmsad9toI98R\nIZbMt/KUG6m0kqKvDnDWiQJyWtMgTnYyz5OdkKf/GGVFcEJvC5tyY5DfSYZbXxzM/SBQOtWmUTe1\nqlU4znrZiA7LBfIdtZZBCkbG2fFtcAls6dECpNbBCjCGtAtaqOQz9EVP98XeKYO7YtvKhOldgzib\nb0E2Y76qWWtGc+r4W/g2vlZYqIZmXu+p82LmZYCpQ6BJIA4pdz+IG/bXBbxzRemShl4jI9f8Qa7t\ni4I1gPiIkbfltdxx97CRFi+yWzQ/j8P7rNIEiHKRKR2iFgi14V/3g8r3nwi/wuaf/d4XYD8bnrH7\nZ89fqXTuVDv7wqono7uOe2U2FWXhHdtcBYZXX5EOEe9b+tqTPhiWLcgDs3PH6pgYNvEYo051Atq9\nahzQEUf5DVqgDMCp7pgxQ4w9Ink8GdeDpBy1tsF/a2BIOUDzwx6vE4Yx1UnKLGKlZG/uzVdYa8s1\n1WDH7IMbjER1k2TMDPTUm0KDM68AX+e+hSlOs1zb66KtpU442yswhzShdx3cdfMvtFq5GXwLi7mL\nAIBI+Hwtg60s/xSuwKArvUGn86OvVMfSAXSVioC42/ImyMRrQKU8is0daPMr78Y+huNnbUQKdcuc\nI4CcR96h67ZP2HlRl2+GOzD+O8F/T+t3ODK7AuCrxdM71c09WOMyb8HcA6bcOMsTVl5s3NMFs/Rv\n4TEF4hv7r+eqs1kjgjt9Z2W/TNWb9e7kkbO+4YBNFFAGkMc5mXEKUy5+OlLFhwJhM+Axk9XnZqAC\n5VzDKabPmQLIlIWNs08jz2G1SIvgz30EBGP+WxyY9VqCUPrS0io93vRx1p9V28Qnd6lOb/Y+sh65\nxGCgoNjyoH2hEiHrh9RFCwzeeDbUvly1AiDzuTLfYpaXYWmuAn8COIAFnK/f1/y05Ix3+74D6jmg\nARwBpsuDW9RmYTu7oql0u+wYYbZmPeboFtOblVDIHB5TWfeRTr1QJnAOMvk4r5RCQDckfSbcqVb+\nNIjvaesfgfM4DvwKkAN4+f7dYundc6/iCwGEBcj3tZqFUFizbTLuENZcDAcIBmSIkRHt16tkj2gs\nBQZgPmtbfex/CCscdSj2SOAOXXkukuZ9zhCosmhf7ijw7oU9iAqG+evsVV+uXNPSJscjTSFB8hXv\n1jW0cFTViwkgGJk32h69MccTk5LkTZc6NjltCNVmDpTKlJuyAII5a3wNvrQRK4Zl6bHm0OMRr8OX\nqlZ8+b7w674hEnuhBwjdHiW4FvPMmLJ5O6ILUFptfHtBkjblsmkIbLr8RrRfmBDjFb2eDnBdACEL\n8y5cWPSkO3qR9jZDbT7T/Kwc9tAnhPNwjBjgrYZZZxD7Ai8F4Z8Il+V/8736G2neR/vpnHLolv8/\nkWfgOXBrPzqt6VzMKuacdW0azQJpNQNom3Tfab+exRqnn3eWXsw28y1gA5Los7J+k+Ns0ncvtP4B\ns1FqlYeYT2reOP2MmegswIUjPcyynN6bjiz93hDuTMwQkRZboHqH4kDyyHFtUSiD9VmneT1cBZcD\n2ixTg6PxnGCk5VctgGbR0i1D+VzPtSn1e16bnejvJtkf63ar/co70ALccnpkpyc7rHc7fA0jJ/Vc\nSXmBuK5a103ec/E3UXa33D7fzyhjrxmW4ugTUFGQtpS6PNFjod7KJrzfPse3pruvcU9vQSPQWhK7\nfDaDG06MYwYm8bW1hJdfjLKeGJzSi+4P67S84vElB6c6Y+fU8Ey3/FEA1wXoFaLaLBQC8nu4A/ar\nPN6pip7leV8Duc77em2Ps9VuDZZRQilvomBZftTLqDaLPnJfXr4nCoKKqPIQP8SnP9+PTJgBNg7M\nMXAYgbyZLuS5EAhW7JJAvggpD+ES3h5nWaTErViYnVK+JP5SljVvTKfUlce6CWfIO8XmB93Qtl03\nizJGmxwTmRxsb4Ivuv6lfvNu7/auCi7ajVVf7kJW+TZT7E842rT4InwRkAPdrgQiZbjacc+dNN6f\nKOvt2qwjx7TB0IuhO7u60M9rb0E30DIV3R5nr2qrl+0hrGNMp0q1cp+x0ZEecqDVs5PggNIrAlar\n5tFBkxt51OYA4I9RjLwGxQAWh14F4tRx8l5uSKiOozm1ZXvy7w4rQLJncErLQTcqn8AK0M9AfH92\nv/eR8Exvfleu0zWw22WZL59o0NKxEXHy+ntBhfSaggobuSiCxAbgY2KM0fbsJvCTAmnQlv5EbLYZ\nMIIpH8MbyEnqQeucynXmK2fflsZkBHD5Tr09VT6dvxhDA8jdqQRr9Db+zBNyRysXiAtdXMlSjqFk\n4tzlTanlTNNTgJC8CnudyHx6p2MaP/pkIPiKGHv4GjtyYSgLCKKvR+C9C4bDgfTCUPqjY1QZS7Ph\nbeCjAZrJ16LNbv1SKppVDOwMDATP+uklPZydjn9yv+cd4RYVxWSi7qaHX2efOacoeUP1kWPOkfHF\ndHGm397uRM3aagPGXf29ANSPBOe835HHkZEJ58k1m7ronxq0f1yVZR0jn6vjcx+Ue8tUdXuJopy7\nsaenAyhmrvNYQE5KsgG3juNwnBcM1weB2aAungnkK9lgWsi0UGQqZqyWencsQB9H6gE+rPTz8Fb9\n8JnCWgRIE3dJbg6PQ1EOmgAXVOUsZSF2dvqv8SwG95wySxDW154e17Lcha9b7Lz43tfInoDb7CeY\nh76s1SkmHUsee5oHAKjj4PQZkYH74yZfQt93k01wKDxPn2oOfucrdB5Wd1aZV9NjmNWuPp1SA8AP\nQ1nC5MM1LYyB1BYPM+3VbYYrBZ5qTxDvYu/51xQ/HxamW/jlBeTx1y4e/o7F1z8Z3hFC7y6i/mr6\n19EnR7Yhqpx1nHBR3yoOF0IhDJVwXqBLM0dsAkDylxe0rfnkPFzUOdE/phmOmikI67bcxMSNRdab\nm2oyXor/8PcyzVB+V3JuSOODMiyont+HXcPD/JIsPKLVOhOiyry69F9v74+FNKU7v+7jX7bYuU6L\n7556f2DWFOuNd24HxEb+ubSiujD90syUZTmnvhCcmoGc80M9fPyWONlBikwHcz6VgOxVgiGdHoF6\neKp0UmHBTsrdZdMwh8cJPsNhc4TFi6/Mt/PRHblj/43BVcCpysy0QiL9fyCIA+e++Kx//Gq4092v\n38/p1ywwHqzxULhDsmSAH84nUz0nazD5EBcCh6GOixuj0y45bj2+ZEgEicixapJ2uzXuohAXCKSW\nnizjYA/xJAmSrhhbEwZMa0wh8YEHKRpIaxZl0YEX5cnQOr9m2+gorOirdTdJFfNS6wE37QN8ow1B\nETqT+3Ty/ChZZy+4mChv2fnvBvh5YHBFfZWbU763/+puJW2woZ0182h5fIjm5QT2pX5R5h1PxeYK\nX6rCMguLkADglVt9sNkIv3NK6FVX/XwxFo+TaHj4R4OJV4flwm2XA6DVwu9ijws7c9r8O+Bj0Xv/\nE8Np8fNCf3/1HPC5Mj8jEq8DxyPB1gVwGQ+wbKxzvrdajPG9w0OHHKfskNEv0vkyv704nIy7BDw4\nEJZ8gSAOT6d7ITgmRlq00O0v4mBtQ8bpyfa1QFbFsrSHLFWQNQnbeZXJ+CM2VJyiMrUGsEzHNm3t\ndVt92QlB+2+vRq+mX5ifEjCVnqViiIiqVqtyLwpeuqy+ku9IL2B8mY4neBX9cLUcyVV2U7MnNdGC\nNByWwijLdb1f7FzNK4UZXYTdNWiVTDpV2cuUrl0GIllSFsyKeaCntjlz0LUDFT60uSWTr7zd5PlZ\nqDUQlr0YTi/K/lNBXMNHBN87ZpFP3n7jup+eU3Dqzz0/JoJon2Wgxrcyf52Nx2tCmxKgadWzq9CK\n6NHMj77eEUYOcbdHS9l1xZlqeSyjwy3PM0AeGLNZAHEMNwAnHqSpIFWPDmDnUV1Son0aLRT4NLiX\nvT7aiiaqrLcVPevpX87I1XC/p19xBQCgnUcAh24vWUiJUdhCA41yYVdw4PVEtJ391NnWhSktLBgj\nOypNhVQvp0scBclkwwulFkXNxnThXGTMslwOJIX/PZC5yjvn8bbo1o3nO07ITlMy8nbEL5lMF6Th\nydHMy+8H65/g+zKsVXwqB7/uTOnvDHfleCVYnr13VzXvC6vrCNZ4ZTR8oMoWwL19RqnWnqfrmUCD\nPNUvktBCzPz0bgWqLSx0+XX4tXfPs3yO4zh2UOehzBbjfGb6a45TSKAtZQrVnQQnx3ZhTo+jqoMC\ncmKDF5+j1RLzudSek9g+HzffZLEzC6G+U9yrCaqigGLD03MKZC2tYvNMMwbucqypS0o+opilk5xa\nrQ4EE4YkbGOXok35S9qTZTwM6UJUBUis9le0U80AVcxcdXnTXlFMlH813fZdqLHKtilqJkyG3c+Q\nHchi6EDULNP39PlSEXXoQ6gN0+Ic09b/UzA+B/SanlYnvwAAAFYHMPqKSCdGdc1gPwvESz5kRnBn\n087nrhYsr1VDZ/b5fri2a5dfBZq1zvDBsNvZ7yqhc35XerHeX/OqOvG9DE9VQsoUbOKsLF9jVJWL\nGzdmATaVfrewo5VLzwgZfxOVyA9T2vJVee0xO+S+iNY1xxX365nn1zDyS9erHxhAVQNbg/PTG0DO\nqhUKBG1/7Qn7k3cDvgUGgYdSO3TSFC7RE8q+W4FqY0qq5lCdIsvE5xZTROMz9xL7mV51YfR2PdC6\nrPH58BSaW1xxGjlq6/kwmlQ2i59iRqb9PWPvWYmU6gQNH2KSz5nMrz7/0Xfv9OB599NpfzT86hrG\nr6l43o/77vvvUKsd7rDaaTtrPFGdUwQQff7pGhJscww2a85vBOKceQRIWJleavZjfe9C6C4zj/uy\nfJFq5SJHFyOWlVDTK/n3KixPeUu0bbvRqrvWhGUqB6ofLtJcV6C9HjdLkya01KV6xQ1tl823WvAv\n08pmanpPAXkhDUu2PxtUOKzBYUYH8vcCIdhz3Jviw2OkxAoQB45aDOUhwFg6vQ6F0nFqX75hbf+k\n8BzM/77wJ9YY/tS6xfW62h2jv8+HyaBy93SZQLac94cAOcJM8gwFbYx44tPSRwtOAMC48cvK1URB\nz4JDimEXTP8ifJFq5a6ht4xmLaz6WMux3aBCJtyHN6/AX4uUkPfqiXMHqbQN2HmnJTgNTq1E32im\n5yQ2Ozf0JMTze2p8grrPgiyJT1fmz+xd87vqGu/DVcff1TRXQE6IDeETcwvaAmuOagrqPFgg2yqZ\n+JGF9/QHSlZOdVibRUY9xEDD1eTr7fBMTXEFpn8ChP6udD4T3jF/fPX+Xse/Wl4F4XcFwxWIvyob\nZ+zxGcfowQ0DI30YeexkVUB1KbMlkG9jocF5ne3yIAuzfJXgbLh8v4H8SrOwhm/CyG8ymei0NMCt\nHlIZqjLaFZwCMJWhSwT5ezET3JIzNDjvOk5OwYY47aHACJCjcBCgTlmwi5SFndP8cJ4FC8H1WTur\namUfGG+Z8C1+BsBKPGnIbAAPZsesjBDccyOGA8NT356fqxqMXTtnUw7MQSsYYSnK1j8QTgvZv5kV\n3+r9N136q+e/MvyqKuqj759Vedft8gzQ7wT0sz7NGXHGkGN9Y8ljxAHV5cyO6z0J4KLurDxvM3lb\nrnmN+55Re2GSIHjURLqnVhXNXfhyq5VnoSthQWksA/iibATwAfELcp6ll9qlf28AZ2l/fQXmUHXE\ndh0riGtGXdor9HFS1qsK2D36LBOT3mL8zvB5tcB33fHP185r6/KkyVbn/OIWZzzOfNcd8NlAPtN9\nQE8ee9E6Hc8loLuA/3FR5lfMTdc1vh+I/pPC71h7uCIW5/ZZZ5wrp9v0zDcztysh0KQhiVLty2yU\n7Rmq5M96PLtEVMJjT1sLBSxxmgX5ESO6qoQA8tkE50V9f5HTrG3Kw+sXUyECJoXi0ujyb7/TDezA\n4uCJJkKhs163zF51knpgm/UsYC15qiZvAVxStxkkwajNzUz+Wapgb+CLEAS1hcSrBc13w7njnHe/\nnZd/LiDeWN8Gk85Pk8bwNdEgXsOkXAPUnEbOMp1yUpIMeADt6AtL1yCz+Uj5n1mhVPGe1u2FEPxG\n8uOpJciL8HnLmjWOVQXC9tSOf/2d46qui176ChlOxcoxWA8+KUNhuacZIrsS++aNylIt6Na8NwFU\nq6w9C1P2b3xvIBd2WoIR546hU5GyMxXgWwvZUxfXtOoVS3Ap3tj36ocXKofVyT2WssvQDh5IR1vG\nbbq9MOoQRzhbWX395yl79gWTOkK/rb/XgHT3+9JsLqWerQ/3h/upjBR1LehyMjniNBqOC1+iMxkw\nhpkbOdzjyDH32b6r2eHBuqD+U+uo4+asbS/b/v2VXv3eNG5jcpfNed0uH9UnPwvPFlY/wqp/VzzP\nQ6+PXOch6rW1F9nwBhH4F0Lb1ay504r/GZn0554WZF/WMdBkTAGsdfp81eqZtXrUXl5MfqWMigH6\n9yx8va8VAcqT7paNBDrgF+nIeEAe6NXIzdzP/g34sUyZHPAhlZcVyR1id3rN4tkELJ6uonO88m5G\nu3FVIUi+FqB5BuIr2/xdg6hX8M/xXk6LsQ63wsuLZ2tBVX/nW5ZTG4+pUnnE685sxZ7qOK3cDMZN\nYeUpbq626zUA3OvQjXWaS1C3Fj4fCO8B7ta4vzG82/bfxUrmKnxsBmCb+qQJg5kLDmxkqfqSXFxC\n9jHemw4MOQSkeusOrJ2ZRW4IE98/K9/O/qdEwAXUz2D+LHwTHTmlmlyRgU/2tEsvyH1K8kUjcqVm\n4J8ySstpTP50yQynQVcVehogxQoFbOvkoVd10PpfLZeqeHQqSjXRO1PcS5VVMYhr1v3qfX4+Y7P6\n/DP2v1jLUI1WzzXT6VV8eqJP9Qz/hhyj5p6ue/NdcXkbnhRJEnLUXzDvZ0B9beHzb/iTYR1rvrik\nkAnWjprIfflvp2F5PCNnv4YNA5jEmp3n+b24/ryPvR6XGr4JkH883LLkEtFoiSzAAxDM191tixDZ\n0torVAFVVSNldyHEjws16t2tnjwJgb1xPwYUCi6fYWFXQuFO5/7UIuCDU3YF8T2EBaPUW02ievfp\nnOgNR6BvdcBt1KCbo8F9Dgd4TJo1i0PNsc55ZLmu1Fbfle3+N4a1rvm9mM7NO1RlvJVCt7MhZ9jJ\n+IU4kUjdjdE7vfl+7cqCDDj3s38II49pSqlbpNAC1z0NfhpPM7ercNZH7d97Ue8qpUudMfNbUzpO\n73pH1/Q1PY2np2l97w5AKRjqNPKb516FZx3jvoOd7z9j5XrtTm9/KTAkCgpd1eV0+VGuGoKZxyI2\nm98nBWzr0ecMPfssM0hh6iIcntX/3fV/Qf3vCSs2NJFSgXvx1unKuY1XqybOpPfHduK448gr1eir\nMVtq4Q/M+L4FkHuqIERx1PewTooI5isQov5q6MbZAzVFWq1dCLCjGqHAwbCk/0wtsOajQYPM3N3D\nUaYw/+eVsJbPshcxjw0WUV+lu3sBHu+Ayyvwvnv2DsCasZzr8FlaVvPWLU1YbNLI6hxT2LbHrll3\nhI6dusxRLSGHUNP6JQ4P4MkzcXI8fcKsad/pKHVQ3oP51wP7f5NwWdtinxk+myUC77bFVfvf5eUq\nXab1zmx2B/arYRfH683zDQlf5jSrmCsIonUX+s0QA7WgcK5SktMdnleJ0xii9UhMj8zQ1hEualJv\nVg3gsk+srJGwjVMZaABXEh2rWwDiul9MzVqw2KlRS2d301/ZSTSf9B3OzNXKwPoR9QNb4lor4wKo\n9bvpk+dF5pOpYhZkF3ExgREBuZYwfL4D62akPBsRQIA9rOp2IsCZPCF2nI46EZ3tThcCZQFDdqZE\nIfQ1LPSSr+YfvNGCWQf1TkIqhg+wr1fhTwD3R/S1fzrcqf3eydtH8v/5hdjrunpnDetufIeDv/v8\nfM2ZncAq9ojYQLmYRD5DGIo/mUzJeCGkTgXGwqC0F/GMx1HWSH1E28rWi03eDDoNlpGa5s7IHGQX\nlzxfxbM2VdSZABdX1pxJer4X8Zrd8j53A4cppW0VqImwQ1rfKHv71WNNT2lboJ3gvsD9ugProRyM\n9rKWLe3Wq1myjpke5cgiO5j33BimLN1TDePN8Iqxe+vbd9VLg3uWvPpb9k6b26CclZv/hvAdQJzh\n71pofrYg2UI6Pss0UmYnQZnPAAAgAElEQVTsV3G9nkGvYN6/78v85W5sVzVGD8z1Xox4d+RuQd/H\nf91vSMk4BYAMwcpHsnfPT7JPZV5G8NjzC2HGaJZfZ+4J3Z7VoJFLsuwCPGeZV6hbOsAH+usl66va\n62cWN5xLLdpFepphbM+jWEi1nZSL7y8+WViXVbk439NUFsGU6xcJoL7lf8m6ZT1Y3/VMw2f4oZ4J\n1NMdI9Muc8bpuSHDqx/GV7GEKbbeYN6mk7v/m26FTXv4R8Mr65t/WviKsrwHvI0hV+89199fhR3h\nnhsYfD2QSzidzgGO9R4A96oi5YZ7WmlSVKoQK7viiYmx7a4yJwPcoEIbZvA0nf4sJu2e29JbhBjV\nC5TemZM9wy/11CloCCRXzxaDzD8D82ly8jiF48rM7arDUOqIPwEShGcLmXz4NLfY3nml/1NBtLZH\n1iRVdMWQetDEQQMm7zr8EWqUQUad78/6hJzJ2PVN1uWegD/RZo0wzGmoQ4pd32n21oNyBfRaxN7q\n6jMLqIuxwH8RiH/H8A7L/mgb3j3/LI5vsdgJdIc+M212eE5fZUr9XsxQSXmDjetUwPp6AcgFKzdD\nnfnXnKwT0Z2KBLQq08X3VyC+sNmtBm5VP/k5LP8yf1krWxyALqKe7tUP4OQ++TLtmgescW2/9Pfe\n/s7ZGFjGniEIWa6YOIOq+pN5qsk/D00nO1Uc+5XAOwEfnLX1oimogoHjMJR6LNZxCPJiAglP50eQ\nmUrrU3eB/JEp2DOA+NeC5s+Hj+jQPyJQn7XpXfgWQF6AuRHUUG94DQCdUl8V9RKkHSemYybeznTa\nf5e/vWK5qFgAnj7It3z4klfq0Zs9mgzoW9WKpF/g4I67PqQMocvoPWswyBrEVQRngI94t4eAYuSa\n593ESpczF/1xz0nWjOxlr3+t//WsW62X7fWqh8z83jVY9xI9HPTzFZ2Gh4CQODj6N81J4+Dg+PNH\nmoRKvkIvf64npus+U8VDUD/PrJ6FZwL/XzD/e8LvVl99ps2+hWrllrmRgfGpGlh2iUH3UCyLjglo\n5TyeTEpOTlW9+rp4FaPXNuAYDoxaFNx8qwCSW4HIBUR6jr2z8n3qdifE9rw2sEYdhg/1ZdLeM48L\nQOw4O7N131JEneTbWcXSJpLrszxkYwVyO7Us0zd9UoSNo+MOor6pVjRtyR4FMJc0GFfEEf2jgZsC\nuXfVHqkLj65kseEI3N1NtVbE6lujay3FourMHam2HnRddfCxgb2rVv4F8z8XrlQrT2fTH4j3I3F8\nGSO37btyY6kS8OBTXbX99W6ZYEsmdlFBCuZ1TabohlZVlICQ8izc0ztVJqt6VF2M3dO6++31z/Jl\nLwTal40g1um1pp5XNYHKr7zqWuYVCeuaX7dXg/GajQV0L0KVmQtLrZS6fyfz6VUDgvpLyv2vZYer\nQ3rzeq1NoGdjceYjr9OmXV06xJOlUgFnSiyvhwXNtNqsBI9jyOacONLNwLlitD0vWu1fML8Mzzbl\nfDa+Pbwb/0dNIb+daqVUG2gQR336Mr7ImpYFK79npddFFVbkQM2Zre2y3SFreQIQp9kD/3zNGw+C\nwD5orIo0qeCvgZ4Me1Pg3zVXM81VhVAQtL1YIJ7I0bhtXceNjqwcYeE6zZdPfZzp1k7TNSN8/PS+\nVNGVTp55X9ROKswJxN4xRFusTDYG7rYBKWsjtl1LT1zqX4S2SZGd37MCLBa2l4VSV3t0wFPxFnEF\nv+fpUcXy58A8KDANh0/85wD88PjbZkA6hnxbrF/L/pwp7uEOXJ7ZRP/ThMTfsQD8Ef35O+GVMP5S\nHXl1xhqsZBA7QMlndtA7wK5vlxJsoZHgxhVie2dM8rTH4d4DMkE8nMMTZDfaCjI1Aqmw10S4ZbBl\nmnv+uyGNhDRYoxyM3PV2EQqvyJQ1n9ev8MVWvaBUCzm/WNYGIqpVEFdRlzSeC6x+astn9ZLVqLTq\nyc5MlNS31zSizuJAbE8VT+8dHtVOW/1Xul3OOEzbYMPT0snKV7UnsNOipQQN5AhA5s8RevTRztt+\nusEeBvsJ/DTDMZE7UtMp2JyI3U+rEF/b/75h/2Xp/13h64B8ASlsSNqmWP3ZYH51gjugrM9Pg7mZ\n2sYkdqyoPN371Vi+C4goWtVABk3WNvNIsnFs723pnFUs9a0+RcV+kjvX4dkAbtbP51SHTiAvc7ls\nu0HzTnmvZj1bvL8CICLelaCXcL9kW8YZFBlxx3WOf3N9oJULaTMtlS05Yobquchz6tM5i4PVLlQQ\n/GWz0vBwQ2D2A48x8fMwHMcM9YtP+GxDgM7OVX9lM6z18i+I/7PCt1StMHDgbV0s/vV7UHpWoH2R\niJYa8d718zs4P4uf2NVnamKZc6+MnGyUJmtPynMSPvchwKMhje+QsT+bBkPys1/jRif+1nv9XgJ5\n89ZwVFX0+wwQC0f8jQCi7Uqbln3KTxZsFgyagNpzii1fnK0YNx+1UGrM1BpgHmw5sqvzYQBmEpDM\nR/m5r6gj1gT0A47hhjENNgzHiIM0jnGkr5gRG5Y8zzIV0nApnU5E6d/wO8LfPav5tqoVmKGZVHbF\nYpbMdG/o4O6pdQhWZKGDztAgvk49S1+8AfhiMvcGkMZGEzQTyjPlhjX7FtU5iOoOzwNvLJlslsbO\ns4w7y4XOn9pLn8Gc8MqDi+u+X+LtokJ5pfhYQa13wQYT3fMdFaWC6l197T0TyXgNXcmLfwdh6fCy\nKhoIjcREACvSSqQZdFEJUMV11Q4TvvQx1mulLvUbTJy2/HE49wOxQQvu5VfbPVQ9Dwd++ijS8NPj\n2WOMXBCNOu8dqBM8/u4Qv+uollh9cb9LGP5fDa+I0Kt7XzHb+RZWK3EhBnsO+fPzm75ypR4bkNyA\neIceOK8a6WwqyU9KhgYU0+vIWUUJnZspP081gpVJ3jWDXsH4lO8SKvWlBMcp+PV0m3k+ZXOrB6dO\ngwLJmLQVmBY7NBTIaXmuynkXrsqr6wJLuS4K20Lcpf2aDhDyWn5l2bCpw+R779KVYPqcSzr9p/qg\ncAswO48DcDMcDuBYI7Q5giTYDH06DBOxyDpnmC+OOTF4lmkCepg32mW7/hv+WeHbMvJWUwDNsFbb\n3+uhfmNJbmHMGx1e4FPI24b/n8646qqTA2+MDj1ofR3UkiXA+vTQsb2/Trmb2VLxeQZChY2MSQEU\nuUxY2oK1Dvs347mY9xhBbANRaUzPGYrbmv4engnSd1gNJ0NWVNjW8rqC+IrR8W7OAMX1ANl4LYIz\nbhZFGvFy/WLLNn/Sg+f0VtmElY/DRi6AJpBHtXX/5Yaz6bMPy0iKEJqVMF085sDPSU+OAeaTf7YS\ngqtc/ov11+F3miv+qfA15odDpsK6SJXqhpjpcprMv8Kvnj2Xft0KoGLA5nKo6DcjjNhwYTGdNZly\n3plTXTUgByLM2nuhz2Wm4Jns9GBOqlethUTrT+MA57M1GK0GrsHrQOex6fWrPgn8mMm8KUQarKqc\nUt5Wyeid9TuTaY+RVpoNnakYTRHLjtyXdPc63uv5mQlczw7EhsTozpJxkF133UW/SQKQpiVh3539\nq+Rftp94LlyWPUTW2Qf1zt2uUR0H9faeYoNuKGB4mMfB1Aid+vHIQzEyD+XzpdZfHpjm+PGYBeSh\nekn1y+GYPnEcAezVG52qNy68X5fpbl+Dgty9oHh/9vVV4RVx+FPqko/Uy/db7HShR/LBTsR/a8xc\n5F/4qVyJOC5NsOSF5qxxsZjUls6daiUOH0g2RXYsaWn+J58Xxt5xiTWN6Hc7jf6s0hjQRPfcuQhy\nYJouEbCgNyqVs8pDmUhXUk9G1C3Bqmoga+931zy+sqJ49bvqWhZotaLEOLE29ShWV/1x5RPbFjD5\nct5vyjhWge/XVZv3I4163ajnDrCeQNF2AqwBeJiVjp2eGXVqWcA+gcNDnz7dCsSPdP41h+PwgWN4\nbDJybz1/nXOK6oPv4tY71l3/hj8fvki1ko2cndIT2E+KAts7VIPUGhqlV7i8YtZX4HceaK+m/LW4\nJdYjRYyrMKH3drQDAMmRfF5IES1D1o9nZpfBw9uGmpU0sHX5SnZ6Ze06raqPq7q4YmU7+CvA5Rxj\na8e7wX+3uHv1nlnndc3Xyv61KiblGQQAIST0F0hXmyqewXwXck7Pk9nuk8KX6ii+h1jk5Jx0iEDi\nBJaqyDkdxzT8xwPQ57Q8jJqHUjsO9wTyOHEmWPsUtUszfWXX16B+7rPKzJ9d+zf8/vAtnGYBKIZz\nbTc9a3TY+o+87zIQVya4xJng07v9LAXJlSXMTQfUKaSQXeZQ45nJlqZE4wh/HCG99Ok7OufLMz6x\n4L+BxScgoAA9gCotK5heuT1YNxl9ZLCZxYHSTfb98nsD/fI2wt1rC8U7EL9b5PVNBeAX7dAfXmTB\nk54XYGq/kSnep0zLiphs16XvOpZkUO6ESURcy4wCcd3aX93GwhpnWAijnwYMHzgcOCzB3IBjThyZ\nFI0A5jAcM9RfwwZqo5HnLlWnNUyvMyiwt9/1ewH8Lyv/+8IXOc3Kz+z00iUA7MDbagvP39tQ6Ltm\nF1B4x7J70DSxXDvkLZvYO3LP1ZOUaTzNdmpAaO6SUd53+TWuuiSE6JrdAq0blrzZmlqzasMY48Sc\nr+K3cjADyOuLMDgpI7TuhUW/Zt5Pamaj0rWGUiczcW0iBafTiVmqYxbQXQVGfV9vb+mvoBVdaGXf\nFLJAeEqMhe3Ml3Hjvvc7ki93wARIm+0HmodqL8AcFhuMBoBjAoeFOe504LCBnwMYMw7QGJb+2A04\n5sgDq61kGnXsY8b3UiM512+Q1+x2FvMviP+94esYeVOSpe8vA7j0x/2hapDzgtkWtfy4svBYBvFE\nmY3ULPmSjTeOuvwu+C5GtS4eLeobjt2BZtfr+N+1ynWlB5Fzrfhy0LjkM2I4s8JKK9GYhyJQyD0L\nqlJSEK96WyZBtr8Mn/uls1+Qpf4XAWSMBmzHVX0TedNrM7tTQqA8p5+MV8Bc7j4LtRC7xC/vMh9L\n+YBp4YmlpSHATUnOeCUdLooH2nOMzFLBEOwHUqXiiA1IHh46x4xF+YMEwnLxM8s7zWAez82Rh6Nw\nxuS5Z8DFpJF5JTnbZlf/hr8nfAMduWUHiQtnUNoH2XZXgL901MVUt/QIlpfT8hmbQ+ycxqr/TdYC\nr3x7rkARvl06v6VFRdu2e5XbUmM0ynhmQ/NthlBqgYvp7mUgmKvwQ9r07IKD6pcc4LN0QfXyAk8R\np1/mYWe1dzbgvM84W9W1MuyuGgVanVVo3FNmEp3pxZa9rqvrBiyo/RnVSkfvpxuGMJaJGZulP3Ov\nCSYtgTgkkIAafSoKMRNMY6NT7P707LAOS0EVfH9UnQwmWgWvqhjMGy2dcoOeW51wRTULpE+zT9HK\nxouxo2zaWefa1v+GPxe+1PthAGIM0OyKWBt9BfH9+7ogt7/TQMNoeym07czZwcl0aDxi8rfmHesU\nN0F8tzLhH7xcJqEGKnoB1Cx26tXRcQK+QAxm+FozOwg34Kxc27M80BxY22DEmoS8YQ1gDXAru64W\nODHuFdRZP9cz7PbTogKB0XLsFwYslJsRKqVXhi1wmg3JOqhH5A0jq7Uu17J1H7LoFy+0gKw+Wy92\nA0oqi35b4p7Z79lvKMzKHFFmFbOita6zLO5PWLJ6SN5sya9ZLJzOJA6PrNdFBZcsP5yBcXxa9lVP\nFYy3WoqzgqonCu5Y/5hzQp26dbvs7baGdwTo71bdvDJ//VM7OJ/F8ZEyfhGQ93cdwssmac4Tbxq7\n47oaxPpA+9aAdMJ18KN7bqZL1htnXO7+WABbOqMM7o25tCzSWQiKxRwz/XBsAAPHCkAgsfLLYvYz\ncpMsC9j+Gni7KlxAHKv1hCD9876lbbAL2StViQhEecuzgpw7RFVXvaR19ZsCpYWuW/o5qfKapC8g\nXjlgumtxDAAXxiHxax587n0yPysvJAsmT0S9jWLV8UdW7VhrtlJzD9vydDnQ/XCPGwWeZgjS4Kgj\n6OJIu56NFZFIoe+cNYfSvhm9jlia/drAGKGuif40S9XYIM6B9hw89/BVevd/gr7/W5wQBJxZHhv7\nSgf8mU0HjaMtHJZ4eNmX7rk8u7sJ8P2XUPHARn3Ci73APc+HjAEyxsipSWz0uVZH+Msy8r7q93c1\nBHIw7oC+ZXeLT90d3KscWoVzn7dncTBPZcpnCC5IITnPebQS+GsalSd4qCgsFxarPCJIRFCd0NJs\n6ZarLr7L3WqEi75ick6U56LnJqQBzk6TwVdfzLKL8IfnZqsCZCuywlkgSQXL5fXHeumyFcgDQPoQ\nIhkZJURXleHa97vrh8C2BPMG+Ab0PGy7ns0RKRVrw2774lrvr8H//5XwbcwPq+MJmem21YFxxU14\n/bXkrK3XnC6X6sMXtrzrf3fzt4ovJZC5FzBwa0lzYX4IC+a/pc/1nMruLo5Qz70D5ir4ov4SGsio\nLuLVulOwvUrrqg5ehSuA19/atCtPC+ZaQI4GzXMZOn/7dzJKWBODYuObMKsMbwx/T4d15vm8muat\nbZVgpuXytmDBKcYIPDu0gBwKilzYTBUhUR7JxsknMkPcy1Bb+tHWJzHkstY3NsVyeJVDAbueqrrm\naUj8PlLF0vfi5ZgBdPooAZVqnBx/LRifE4h/cvhdKptvAeRrJyc92O2G1bfHxwr6agMKWXphrbIu\nZdU7iAM1jSXDo36xdK+a44X53DOMYihvlkPv8zUuXHIBcYm/q3hjYxrPyp5fA/iqdtnzeX6/ga7S\nwhlWzeIoNTh6eyN2MLkPBLM2JXxm6rmm3WsqF21fU7x+5oqR+yYrCP+nPDiqv7DOaeVZi50C7RRq\ntsXBMnJxl7p1loU6b+aTzHgnQUv7820Kpcu6jzTp+6WBOkvrGYc326+F03LF63kQNdc3XCrwXmD/\nt4XPCK1voVqx0xeguvzCiHldPy9f7qsbs7ytoCAEGRO7/sqeL2JvRo44XEFms+A0EzL4KrEbxqvA\n0Gm8x8ZZZ6paWWI6CUcWPMpeJ8jfxX5SGVzn5V710m1Ht8Vdw1R3bFBqXfsypgscrwD2vUGwWt4U\nChZjfTeQ5T8pt34m+FqhMCVpg7Shd3G2lSd7ZcdVVbiInH5ofT4X5PN7gbiwXuA8c0InXzOrmtHw\nJvush1ljAbg309axvKuh4kCN+Dt8hipMGHuPoWvi82/4JoycYQVBILrcPjDVomJ5+8QUbkHPt05w\niu4s+V8pE0JDsbLSuNTIU51zycueaU13Z9ivOm4zbpMrjEPthd17ZyYtICZn2AowSA5bQq7zcxdO\ngkKK2TMrLoblMyZcucCh6+tcTZKnC6bvlWjbXWeuJE02xl6vLgl2fCeesXw5LwQ3m1bW3rtqS6+g\nYGhWE7lReWFK/E6G3hXD8i7FUfVEsvlZbN6rCrT8d4DOfAME8lYlrkImLGNYhfJWjTstx8LO3TEw\ncHjo1Gn66LMXYrs/WZo5nsf9Pyn8Lr3/twFyGQ4otgSkxzqToQCczpzEGWip+pUuetvgFffizCtN\n/7b8nd7UvMjCGDs5GVBFMr2/38RN5rN/39PulOS3Pq9TeoIGCKY9Ra7BOxLb0ktgMa/dueBTqbYK\nHILmIjeFWg+CgkPop1cTnwQfuoladZSfy8ES0mNsq8MSVArWYl9N4bE0Uq56GAulDNFv2ghLzyXD\nrDpYGpmFsipbrZeYgngDt2LwCcil/jKH9U7pvR3YXR2sPmzWknCRvE8KZbatP72bcY2D6wnaP6ir\n97Sgie8PANPFH4xJPr0FEfuwOy763K+EFV8+sy70bvhds4ovV60Ue8vv3C5sZCp5V9laYFIDEceA\nDq1a1NThKFO6neFyoZWLNMh3h3NzA00RT6WJjmjEEKvTaNi5O+P1igAOFhrUWWo9tU5JNd0leqB2\nekIALspUQ7gYlCZbtZbnQFq5F7b8HDmlLgp3Ysn7ekYD+Frn/DTG7y30AquyEKwuETZz8zxW03wu\nUIBgHu3PjSkVfzUFYS0tub0XwKu/MC+QmUIiZC8Oah9awfw042N3ln47xTtkrFmyzrGqlC7ypPWg\nwBhjqB9hvZIN9/VOS4MKfMYJC9twQ3hqbLVQjBe1bDL3PDBj6x9CZiQXWe9W6hUC9ZyOwwxHAXnn\nr2e2Y/3tjitg3IXVs+vVz2W2cGtl9Qs6+1fPf1RwfBtGfhdqQqy0JtmTEumRiyMlEHhbO458P1Uk\nca/Ymn7evJPPKGuswW/aGKf5wsJYPmohsizCyecajyzq2d7pOt9Lrmy7X7JHh17/uhKGOpiUgZ7K\nL3XCduos+llSLKW9CMkCCwg9zDqnqB7OrdD5YF7pcnintrsqR+tAy/8sc3t9XK3/1EwEkpeKg9na\n+uVSsKuSapk1tt8b7oAU2AjHyufb6MYT8N3LVYCl98ZevJ0gq5+kagXkMw/S2PN1Xe/bU/Ws/v4n\n2JAD3x7Id2DbG6QZR/nSYKdQdpT/uP7Y4iap4wYRAKlaWZ8V8rz8rsWjZERtfLh1hOygXlSpy7Ey\nuusaIb450K420KzztEdWGPq7i4Asj05bq7xvxPC5wMXHrc2xtbvWtwZDWgrlT1nY9W4ksShCdpY2\nxQsLDy/wZ4KjmL61JLsY3/uitDLlU6Hkcgls79sT3rNS6eeuD13l4XxJM3jfsT4V3ge5a1KRgtRX\nAdYTyKjv4aHWcncMj4WdMKVUfb9jesyGDyEEDuT+g/vZOLBXy5/r5X8qfHMgB5oxKbDcPyqzvrro\nBU6oNloYAvW0xAFDR3QrybszVt4sU3NbnjF5x5AMasko/bBovmOk1mLSwnzbFYBoUOI4sNLT0253\nZervgHkAizdLqkFgcV3ycbJAEvXKS0uhm7QB69nAVf1fpBuJr3lY3/E8Ro2LivxHVHAePrvJfasL\npIAcCuKSubsy35Z/61edWeYzISjN7wrkXV5zVTeadqVT367vRSA+AsHXQdOO7Nzrkde+LaatjCWJ\nD5LRz34U5lxWIpij6mF6qlYy/eFxgIZJ/wirGNRmstVy5k4V889h4gzfHsgJIGwEr84sHZRT3WoT\nGcj5O0Btpby29vgFyBnfGfza/4XmsTZiAOBxdUWayEI60uyWS7RNr8GOFF19JYjsuCgWw/d5hBjh\niYBkW4dVPfkarO6XaqgGauZ9uuw/uV5A/qi+sKGlIFSo2S68N8ZOBiwlvs2HdwrFbl1trcXwVNqQ\n7hMORL2W18kn5b02GZW+04xB1jNo+5+CpeKvqskuJCOgJgvi4sJJDLL/9JuiWvkNQLVPNG7avetB\nXiV5uogwFni92ysrrVYwciiZc32jSd5wW84ndUdYvRiw7jKF/LmM6ftd1d85fEMglwF9Akv5vTx/\nQXJysLj8bsy7Gng4dUzYmgfNi+LylmTlVTA2Bhwguwz1JaV6yXZszQ7Tcol/kU3OLd5eTMcJ4ufS\notn+RT0AMBsY48xMFmEqdVoySn9f0s7rsMwiths1gZH22EHSndZNW7qrFKyUZhViNws9x+Ganses\nhJ4Gl6w+YXF22cEiP7tgPfXz7Ey+PeBYY9xdLsQzmQZnU85nNyIgZXw32KkG7sMVmC9kLP8x6O5m\naYuNrAU752IpQXqKv/n23BjPWD3jZPIboHc7nGdSvx/M76ZlnwvfEMiBbuCuUB1kPdCULV687nxq\noTPrM/q1ohR48pvOug8sUZozj7TAWKLUKJasyGYdI2NBxtJsn9url/QrGyVKirmx/CsrvAOctmoZ\no7ezL/bMTUN7tsQUN6G2f2P6bL+2/2g+fS10GsSfdf8Ac+DkHnIpoRfzZd3sJGEHqLOOvTft3IUG\nburpzzO5Z4K00jZp+3o3IqKAa5JwU+yyB5RuilRBsL88wRQlB5V+tcum9sP1d9vFTpEZiTXJ0UAc\nWs5d0jXO+VCGSbfOFm6X3UYKghxLM4Adw2TH6RBrJh6q4Usbs3/Ez7Npac1OPz2rUeL2e8D8i4D8\nPLh1sY/TwnbdKYsaWzzKxIYJK6pRU9BXg5YdqIGzUWIlcJZ+x88Ndp7Gd8mmmOg9EB1roAVSM0DG\nIXkGTbmw5NvKt6jnwC1kR3MxXuhBJkNum9petQNarTIarGjLzLx6Dh4HN6XEIFEdwAqMGbH3TMMK\nENP2mJ1aHJDsVj/s9nf6WMalv8HcVFTS0YSxUSlf1SJTnXmqJtb2OphXvXgzvB74nYW7AVzdN0HW\nPH3f580FRGSa4hDLmk03H9e9y7YQAa84O88aov9bHbeokLw+7BxDjHk5PnFjuZLvikfy1m+F464r\nD0QDNFeO/upw+p6L78NgPGPADeWrSw90AQG+v6s6cV64hFDMX3BE62EJdvpuRgH6HpC/eu57MPIF\nYHTwNihcTXPaBt1PHasEuegTHdcs6FWmPiwzBfuZ1zKB9o0BaFLeZapp3vKcy3T4PEgq+RPQrSyc\nmz70Eb6zClQUm9PFqv4kq2Ohr9Q4IlpsA1dsX81wrm3bAFFktDBJ3Y/Qid4MKMfaBuo/JGVR5TJ/\nq8jVRyvb+jyk/fay3s8nZBFwKaT05S5HW68QzDvdvYsXyFfh96yc+0On1NCttzcKsr6Ted05fNxr\nkOzb3tf0cha86mPLWfbA5DIpFJyAnuRpoFQwlodQGyyuY5GFki89DGYdr6s+/VwDu6VUl/dt4PlU\n+B5A/keDXQLW67ewk55PhcCbsxB6mfbT6RctStb7y/FrHwzrxppMA10PCkxRH9Y6eUefZnNRvpM/\nFARDAkh+ezB+LP8i7ItO+nY/PkX+QcFMJhGlK634cK55jXvtGyooO76473Lv/fJxG//1G6uQaMuQ\n66fXdrk2Gvh4OKtkAvgvpIk+o2B+kUfHWk93+yxigAKaHD/z8KP8E+ODEQdNp5+u9K7ZYilkYqc3\nfeaiql+CtLuW50lvOQl76Xi/IXzZCUFX3/9MWqjK/0xa3VjvgLDX9LLAgZkQia6fms5FdES6ZDjB\nEK543mfDeZB4ASjk9CcAACAASURBVHcPjq3uHOBRBobUFY8hx8Nd19W1+aae9XNDCa9zDo5iyjPn\nVJ155yyDAx58JsWU56ClUPG43kJyy/emD77MlQj9ZwTgVV9UsOiyiAme0FadjTwTpDuY04b+ZV4y\n/TXOc9moLgCQtvfojG5JrGaAndKWSs0IbMv/aX/G8rwOHctZrC5qjzrGbvKamAxTnLi3N1O4FaCz\nrFz30DLdmzSeBWnX2evw6rkvZeTLVPLPpLDo3XeJ+uLVjgPvMelleq5xpCR4bZ6VplSqUrkQ3L1p\nyeTv/RDZ0amivs8VBwNPV+ods50XDq6wXace3ZYD2HZ1WNd9RKR49PFS8C2WAwAc05JBZf0M78Zo\n8ND3oQT9VNdLk16QgZDbLfV2dr7n8+2SKfODAqf4GNmY71397e3wWQuM6zWALd+IiZXtK8EiTK4F\nuocKhF4gWdYcf2MTOMre9W+ZZ8iMZtnaQX/u2Sxlw145ifQJ+jVT852IpZjZyNmc83RNalE+fx/y\nfRmQ/30G99eqlUupCalaYhnIWu7ZVcS7x8Q47stZU6xFSYfwz1znfNmSMUsC2VYRzUGejs+t36yg\nIEwne3gz8rVDFuvilN/adjeOEDvXbXX6jNOdbFjTRAkGDcsglPxoYXwZhKAoBCwsG6j+OQGIULcT\ntEi9LFyK/QcoQBDokDjInOO0nKpN6X8nlVNmemV9V6qVRtGuQ1bifSdgvf9K6HzfsEpBeAocVrBD\nGevad+Mpgnm9AoOnmmQTht7tvnMd2z4ZD6PgksIwAeKlagzcSVpsncOz+pFDD23Z66fYeY4V1oPW\n2bXQ73g0fGtG/iw81zfZ+fupUpSJLW8DW28WnFnjcGBt3pu8Yn2u4kR0zgYFMSV0mhFGZzBDWHFw\n8JPpRSGXlAxjw+Wt0XlvH7feX7iIA5M63KtPacuSfuepsOHUXOf7ngdVFwQl1aSXSeMLVIdI8j2A\nrtPpwkZDcvA5UAdra1841c/SBxhVClhbiyewjC6RLiiypQl4hna9rAJocwpy6mHRZ2j/rV3dUFm7\nH+QyJk5tdDO8ljIsALV2Bxld+UX6yca6XROn4Fw78Apqzprte562+/0MQVZ6pUKBlGhPm+UkwIdg\nFpZeBc6RxPx6Hu7hlgdgMG893neCoNWzgvg1XlQs9vz3Hr4dkJ+YypvTwLWcrEHDOnD4KSxgB3k7\nx0UWaVuf2NO/gvyGbzVxAlx+g6zRTA4LsNoUwX9X87oy8upUmXfrZwQ2T3WpebblKraI1i3g+uRi\n+Oj9xyeKZSmiax1Le5c7E9Y1wnxM24o6bM96WywKYLg2FT0DmWvBn3Uxsrirxwo4ClqjjeR6W/Ws\naV8PzBVpZZLWGbAQTA47D3aoiSGqLnx5gtcT/p6yE5GiLGUy5nY7DJk1rON2GQ/e8eo4iHKejHnP\npKnay1uQKLDz92V5ml2vV7d/ddyM1rdTaLrHek7o1hvg3WV3cI3tcN5VAJ55XRdLFdzvZtRWzz4L\nX77YCZzr/5XFwNPF0iUyncZBPjktkpesO5vwNyw9cIliEza2p9EdtQGtch0dAaK3BweigpEtjMuQ\nY2ebykU97HUh5V4El192mmI1dUG5WTgqL8j2dRAw3h3IezedV+dmYiZOqLq0XoKKZEgBIwZO230v\nC2bMj40VsE/iTkrsKwO9AgLVQ1ctZnufwecM9xHlat3APJ+6bvWXm55vyDrjAu7Fc6UmyMgnLYKu\n4rt6/5pEldmdgp0IQ2XsfZiKy01b8lVCGd2H+caSRUvu7D37KXIgVGIp/qleW9AqK9Yyrma/wMiD\n0Iek4AjviwHmCB/qHmN5OhYnXtO5kzYJW34uql13MVNm2syjLfl6Fb4MyBe7zLx+Zjz7YEG9s8dz\nYgQfDO4hPncGRX3gOh263h1Zm4s0Xjoj9b6yTCOrPPnnnivtA1TLnJ/b86dAfq4xyqgG8QY31vDh\nzbBHsaTsyAm4V2M8Speo69SBomY9ZM/74k+t+Dtq40jlSgB8YUoK0CUsNqDep6wg0G/1hh5BT7fW\n818B8wBSdJmVIl7EdacXv59s7my764wZuV603MopxOHd0Pppl9cctYehwFmSyLaMrfUpzpTYJKWt\nfuDt9G0H8tugPMkZ7Uqe2BPeM0zYe4QUdRiGGR7DMBDO0pisw9raZaDMGA/n93C8Zu7hqAtZ9vou\naXO8VB04dkuYbw3kV+GCDN0y8r8rH2c91a5vl+tXL2SERbQgoLeAez/XHYZLdu/Wwnmqveejp3K9\noaSZlKcumVNoLAcIDN1xqdFyMD7L6c3AqsslPF0GqtdPZe1LgSRN/bWy7LucdUtfLTxePV7qHkh+\ndEHvjbAy8XfbVxbG6DLirk7lW9fGqr9/mr+s9FP0ZfZqFfdVrNwwqcSqZ0Uu3wni5xpY+5cvF/Zl\n7VMObqrzlbWO9oGBEEgDhscYBeRNfRw+PcE7dv7SS6O7tWmjkdwgrXHQQJ6f06eAOarDf9QY5NsA\n+WVYVBZXtz9nG/5OaKabjScqDKxDeVGPXMTUIH5BlroM2ltXpQ7w3GyyN4PwN/O4BplQNCBAcDOZ\nsAHAbEudGjKZTc0tdf0nxmu7+urMvNb6WCFZKHbr/pUZy+YhrSvb8nLDu1q61qLtWdVRZanP3mVY\ndcAZ1PWrnZz01WZd9/RFmZkKiv56nqYsEOd69V0Yl9isWSJAcbDUdOWTzcJNONvoODHlVjOyn18M\nDKaSddvtU9O483mje1y8vqmIGO/pt/e+g/4vrFtoRMZmc0vf5x5sHDMh3oDhI2ccdMqlzDsimDPu\n27Ri6w668LXql9+aka/mbnZ5PW9egvmVedbV4s/HgnCIVJFYTgk1rat8A92B78B8WWDd7vYgHzUC\nvIB2g3RfAXLXi7Oz97F08amnprTeV4db5hNeB2pQzcS/AHIXhtICRztspNWzDg5E1KfObLw3EjU6\nLs2+L+KuWRd1gq/CoV7GqQvlw6/JQGWJbI19o6hkqxKuVDhLiguYA/Ddf0izz+j6ZGa5h7a6gp2Y\nKsOUOmcYqJ0Bb4ee/md6hOmFDcRfNJnlFrGccy7Cp/twgVrdX2cYMuQWXXLxodapwWbVfmfc8KQF\nLsp3EUz+8un4rV4vSWhSHWsIvfjM8jwcoJfFSf04KMRiDLnHgTg+PA9GF9Wudd94B8y/CMjP17oL\nbA/q0i6wDASNx8gghMXsfj00We/eInmw+mz2FR04snJmgJqJq/jJVvUpKc3lwi1BU0mVvgNrJuTw\nPMBY60JZB/PefIUD7yx6vCSS1u1EsIY4nLnt6lmyAnL5bNGW1zfdsKp2rnTvO07pwCJQ1P2lss7h\nTrieElgrWtqm2Vr8Yt+RVqniXpOOAq298+tPW4Gy+jTW9gj1h8xhlns0a10TWfB3LfSSz30Bsv6N\nRqz0dCfw0i5LXazlZL66j+xEYqlS+X6mSFxDuW3b/WslcMaENr9NJiwb7gwnVGpyAHEFMJCsPNsg\nsxxqFxkj3kf4OQwYo2Y+0ydGAT6zb+e6vAjfRrVy1fZxw6/o1OldPufdBkucO8g2oLVqI0BllcfN\njFx0WDl4XoL4wkW2Z+LavR+J01gs7HE0W2cZOBvr7Hu/JDW72P2exzv0Yg22oJyg2bMlkOz5XJkW\n723Atv9tY1SrterbAdXzGoCRbu6Weruy9bsLku5u5aA/WZxWhdykVflcy6xgLDWFa+q4XrhSpa2U\nIPrmDUrnlXfUPh0fLS+u0qc6ZMlqJZ9stdR80ni+xrVnN15v0gHgQlVpC8g76A9xL91GaijYChQ6\ncdXX01CBs79g22fsWUiHFGMUsVr/RoF6HiI9s0qMbZnlHIDPUTF3T38JfwC+EZADT8bgi+lvv9tq\nltp1t7A9AdgEfo5nk4j6HRUDO0N6FzHi/RXGr8tyApDtToO4ot9dvI4dRFVHKzC9vLFn4P+2d11b\njoQ4VNT/f/JuaR9QRqSyPW3vQXOm2+0iCBBXgVCcyuFzAXGdoyLw/aKLYmyNWtDIWtCQSV9ssxMN\nXczktNSVnOwBK/muvAUwjwVGRYYIbQsN6vdqSb3QoCBd3zBoBgUhYNmCEksVH0yqrCu4+bFsFbL/\nUOvgkIGtjneqqIIIY9nU1VKjILlNDSHVbfqsmExpI8zzyJhLan5SOxFr2FIv4WoVeWEr68a6Q+ui\nPFAPcN88ElcBvP1ZhFpGzpOlrwLyEdktXByPtcSxYRZGPUYdJ1UoF9Qyl0E0pmBqnQyELrPG7X3H\nszZ2ntBvHVDGCzY0LFss9BGLdOU+swY3+MIqkLGQOoFzCxzALHZhv/otBek0sAW0QOI6j8qiworR\nEZjvDe+RRHhYySF227OzSN8aD0VMA198n9fe2Yso15naiV7WiP90jqXfrVmapsbF77RO185J6Qgg\nC+W8eM3/+Y1FTTNQZVkXM1WAqneiCuW6AO6bQbu+QvBGXjivZsgVlk2+erHzKWXxQn1Wf/fana1c\nd+sBHRj9RvNOhaKxZOZA0F90S/iWdQP0SUrohz5awhjVfP15d2VA3ioIAXHTBmRmu+xRihDPDIkA\neLF7JOwrIM7pMDtRaPpqocvsThO1xtuMu0AW5beW3BYwuxSuB+I9ud5yPMGP3Z7XOi83AnPafcHK\nly3DPVyoCeXzDUW3UCLIbq54mYLWYUEc3FuaumdNgN6CBLr7iWPtvfQzHPkZIB+5eSZVI3hRoKJ1\nEw9qVM2MoolLAqQyPU18OxVadinRTAhxtVaEXK26bEAL8cQ3/fHBDGYSQznvJLx7FlJmEYcQziIv\noy2BTTrQscgTLVXZlGs5X9QFwvN1mf3fafrgvXT6xVr2KBXwWOfyvVJfVrbb570053KaKljDk9/N\n0+ffhZuADIc8ZQitlD7yGwV2A9Q94AVqzIOB/Kbth0loBsEczy8+UdYHFmcantGhTeNFjfrzZ4Cc\nSSf3mmDNhHwocGbw/Sr+Wr0+hMAFQZf1jD/n5gczG7ErmzVvJ7SSWXJ7VDpj0IZVVK/YnsiFeRSK\nyGgFLIqrcVia9Mvc5xrU58DcKt+csx2SvtlxqGAOAq5seKTzbG1Up9Ydy+/V+2qd0XudH/JqQ6fy\nBjja2ngDhg0ENn/NV4G8gCZEMbIglC8GZMPLWO5mTfk5IF+j3PIYp+UOrgNRLe7ctbSD764bcJG1\nZdaGFEKYIWSCYhFYW8B5CE19fYsgrb/ztA+NzvaWrwoUp4xYCfVrzY8qV3zUfdG2nb6OlqNR10t5\nphxXhsncArWvyd5WWEox7/w0G2JTP9p/3+V3IkPZdQD2Wa3fyuw+jYAygjj9BTLHUs8AwErDLPRk\nHNxBmv6JVjVo0M9jM14FEf5z14M/aPa7WuOKvW0U+dQZ03g1qP6O73XFjJI8pazD/viiA0HtIIsB\nsmypWfc6XxT19dopTmvH5iagm8IVIJOWhRHhvu8wYWT5ycE5AsBddDeFBa8+kLXtQpUP4OPSzDV/\nvgDrXRfGVLd7elnYRJhi6EL2CRt32/5ncMr4brWM4T5IYDE7gBCFF3oEdhyzRbpSCsB9y0TxMuTT\n84gU035ZwKyaQMMJ3oWq9QNPzjxMYnkqVF79wk5Zunqp6Eu4ofgJiyyvpdpzLIZXbE/Hco7rCjO3\nHO0/BiNEeXF4bB+Dlp2n0ZDR9MX0V/yeasfx/FxzO2wgiOqRH/YLBpJoGWtfSQQGkeYryRbURcmr\nh0+kEOpWxZsMCgvo0gEqb8YztrPsAnp5tFj3XA9qfR36MyC3AsKDnGnyONA6AH2AXgF9r+EQ2LWR\nkp0ZVzQTcLcrKCCBqxzEELnp7Jxhq4+eTeODDl/QlG/abT0JMPLrusrbMTEGrG3zn/m0oC2id7I1\nZT+2C7EZvdnJ2VheSdMN8lC9pbQHmiL1LPrQBAMARb5jsHAnCPhNSyIzVK6cvkXgd6CmpiZm/cFK\nOa4jJGPacSvzrZpl0I05yLd8ZRZ3M+JNebsU+fe9u5K/pvdAyZML4b9scAjAAtju0SYhjRE9LwTk\nJkMxdXgDdW1H24y+JLTiteM0deP2eiBcWTjx5YEY3g7zxJytCURwZCDsqPrW6GAZYESf37vrOa/e\nM+P2JVMA65vDC2kodSwyoLKNACf7brGraYvRfgPXekS93RGVr4VdKC+StSKzalZAfFB4tejYy2BL\nnstheSp0YtAaLPTTgrk87WGeGnkmQc5xYxB564CyllRefoW4D6MHGI1GG6fO19DUIGJ5VfVkDDHT\n7+yNcTgNuCtLXMQECd2o4vfz/Al9CZADRDBfXb3mv6P7uGaVJ5PJzgdkd6s+8PEu+wzAg6EHwE7t\nzfOc5zUoQain8ipGo1pWBnt9alN8sNjZ5c54sCGXC9YU7w71Fuaa70zn7/JQx723rXIlbwYMetcK\nytiyixlYJ/4vE+phyC+AcDuroMOkOXXojkF1kreyZQSXFHvdR+21RroA3wl5oYTJEnbfrpzbcKu1\nqTLjrtkh03lZeG9h0jrwXKbUXfS3WuZscQWcUX0hYO6+f0B/HiOv5E9N5mn2ylzJLwMLCrwyIKqS\nO2UGvR/nnrxQwc+tHQX1JA2LHtsAKkwpqy6GLsZ2iYqojWfuOsb5og/XuwDcvrBq1dqJxKG5CVPW\n6urV2bPK4wS3+STuLWCov51VLtxWFi4ROD5yDno3B6C8wd3VZa3AhtMGdqYyI7uIipGBDoBnv70n\nvOYRrPA1olnWxkgzY9es/3SscjCfEnsHnFdqPhcAusPfBGALmqyo5aDZ3cYnrpMunPXVn1nk0bL5\nBJgv56uZAUBdoELhlHbLEQ1r8cBv7QE05ayAuHeNB3x2gESp+I/I3PRBsfjk1VIFFXLmb1T31ta2\nQWhluTxIZH3B4PN81JJ6+3yzYjNP0Ye7tNf0KgVw17LwAqotuxQVpgv5KlM0eaQCyYdSALr+UEDY\nI2m3eXPTaD5Fi/wVUN7hzwJxJJ27IGmbBeII5M6+SECcywBQoOV8ZOhFv4o3G0gkrdco1STjxi/Q\nn4ZWWjB/XSh68fNp/dzdaH8Ndlyj8+5tjfJddFNzPlVb++fMf5f9jCVooBktJIBLIVJGQHMxiLvJ\n4q0aGyffhYtVL0kjEmtW5dPQin7ez2/rZkOET//VxTE7Djc0ytShLyqYS5lkTBSAUuquF3bTgYIp\naC8uS8Zrl3hUx/uZiwutxHnbG6dXQivPxtfzZ5/xb+zIV45BpZmMGCYpjxkbhqy0W2PKYI3TJNDU\nkfGX0Z+GVtrFrXwFF8X8aJycrbos9YQjX11vUpnf1hYy2tqU1xfuXh1jr8R/ZSdwTDuz3P3zmzek\no1dsiDbuacMFZIOwUuNr8e1EYGs0yGuvzWhAzwGKYbkUmwNceIy3gtbvs7bXArz1TPYUejUY7pjU\nfiHlyFAgIObSoDCABQAvoDs8UADaLaCz7JfKCyvV0HWOrGXOfBWKsKPMJd9W1w9AN3zY63hBeajZ\nw86r0vfvBOSlH7RepyToWcFWDlETL4RjWk5UJvInIpY0WFaG2rpYnlo+TUTFe2XSTargW4MPm88Y\nH3UUUI++wiIfWUWtO/xaXbM02ec8H1rZHoRNciC3e1db8qA8jqsrPy2I5Uos8ue/aMv3II7qVnJ6\n95knqjLXP0ptiXlHBVT94ZNBXxZCz+Vp4sQybfBjQg+cYtYn/N9ubqqATH1gxoAnPMe9awQDgd/U\n5Ow1WjEz75z2PAK4cA1DsvQfsKKxCrHfF/FRcQ99n+YmgPJduL+KtU6td8WWQvHlxAoM7XpNLYa3\nEuGGvwFN+9czT8J7Bfk8b+oFO+B79EX7yPN02efd8p/wN/qbiYHTauV3U6YIsrhf24evt3v0vA2F\nMcoUg31lnw1UW5it3TTZZrEur3gY9r6S+kyBjbUJ1oNEPMeMx8JtlOQCtGrLC8YzkBd/Etc2T85T\nQKnhFH4ZSFAkrN8Q6Eg5al2xd/rBwfn8eARhAtomoOAsfuoT0Tvc8eDl6I30mZlZaVW/vIoPX2uR\nZyGPlZXtHbDhv1eUxtP6ZmlnccNe6MfmHcXvZgug+2sOeVp1SSOAx88oFri1ygNX3XqYB/ZYuPxV\nPmfk+gJjKd5M16AE6lMxmvxJx1q2r8f+fQPIBmJ+BySDsnUArCfP7b6qeQuMgEgW7c2WbQHZshjX\nekBCPm0fxm4dyUoqn2lK7mNzR4lRmJqG2p8YQZ8E3m+jHWN19Pwr9pH3wOwVEJ9brGv5lxdLB6GV\n1fyrPO54G1m5/brGIJ6V4fsJxY0csza3vLR8oPKHyZeoCdOxdauxgJqGcdP4xNZ4ZBAPOO4ajfYn\nGh+DL7cGqhIrsKvRWuuUQEQp9FyYrXUXAI3R1MJu0kyMnwgJj4Fd2azyjg5OqS7mU7QI1BMAwNuE\nf0z7foXevTHjlbRfE1p5RRuN0u/WE+saup6mvE+FVnr0RFH18jPNiuh5O7MY/tbOm1CUrj+8b5aL\ntUwASN9SfYUsdQJ0rLtDBLg5P5DN3pEVy61wjwhwFdnhB0CHqpgPjuAQqF2FgJysW33xAfUTg7mp\n5e697i51jGq7rvg2g49RkFN6I455/HPU86RXvnu1Hkt/GFqpv3miZoDw1EqY71TeKGsyAI21u1h3\nbtGOy854en9oJS1lyINfoW93Hunf/KEfWkECtfFKf185zCBfQ1UUi3cWP1vfhPJY4+MVuP3uDWeh\nh9/SxmJK4/5BczES8m6bAneplzOJQqGfbF1fBZzKQeqjgqBvPSA+GaB1jKitrm8+g5p+U59y2xNB\nf1DmY2x9Na0YjnbLZ0Z/BOStOFmrUgU2uqrzYp3sxmfmUZzwvaWiEb0a27NgPlwrMLjn4rW2xi6w\npaZYL7GmMElmIa59j2AKt02IprXs/TW3CgS8mJbHdBHycaocobBGsAscho5ghOi/a5QXlacgXuPY\nhV43wzbwXRhiQbGfK6U6SgGyyiXgItftQrTQ/ekjp0S57bZnYghplZrUJhykcaF4n42/ZMz5Ek26\nscy9Qv/Ce3662eKp4fU3oRUIM7CYJ8WcinzS4WRZSV4nIAp/NZmi+92ra6AhHY8abIwFLCF8t63c\nHrIQmX+EpH3dubjYj9GinPFms6KftBZ0NI1Pn1Gr0Gy64tJlRSD0lKNRClJIBAsNrbi6XBps2lL5\n0We6XuBRHqG+oxEQAO8KzhXXCyE7yv01SCa/ADvVYecHX5Fdrz9FJ2qFgL5gNdjR8FOtO+0LCfuA\nKpgVKgCJwuR5oDdMVqV7ybNSLlFSdbys2mvF+Mn60yzksbtuthpC6aWdlR/z74ZnvmKx0w4q0yuL\nL7tx8L+gnXCS3bnyjO/nffmt1J9E8VnW9r3+8OCdA/mI2p1GtRw5/VlAFkHVQgZA2mNu774RIwcY\nnEHj/fTfq78eILQv5/4kWaP/EzHkT1MG6J9bIN4v+zuA3EigtagelbSRb7pYt8VDdFrN1wmJeznZ\nURKt2O0wRq8JHVbF3d0Ol7yXepN9tsvHTrjcmjJxqk69vTDXO8DGKgWJyxNwA7J1TNZ24auJQdY1\n+fBRte5r1hv5vZHoQN0C+t8DJYfLjCvQ8W6+mf56XvToS24/5DDBWhjiWR0trew6WR0ycZ6jyz2o\n2/52ZTlelD9rma+5embSxK+xfRAvd/qLyT8Czt7e9VBCyJOFQfavSc4+70xortMq44YDA+78Bnc2\n1gEo7GH00H0bEGfL3Mmgl+2R7HyW1ERQILQ82c9/D5KzkM03gvmXWOSVeot/T8p5Z7p3U1yB3gGW\nZ/2SxO3/z8nL0GcAYnWXVWMwxPEmbVOQ3heJIAeGbjHTqR0m2w0K5DdwLBw48uys3sA5V7zZ4uf0\n66GVSJ8G89mZmkhfA+R8mJkH3A78myrwtFL2B2Urhgn66erv2QnYTm5IrzRFaBb6GCN+O7SSW9Lf\nZj2BsTxriKQKeyEwr+ESOuBeQLYsxm06yOEUqG8lcn1GdaQw/u655Ut3n+JCsZPj8D/P9X20u8j6\nL+jLQiv8vMYHd5W07jhI6krK6u18sIlHd3k/pRibX92qNBOSPLSShKskhpKFVuyOhvFd5p+iLJSR\nAfgstPLkZGhvF8GTtJmnpeED+5sBvci4FN5DTtZ23QrpY/2ISLFxAP9Takv5zpuj92qv0NLU5Ni/\n5OAXcBQRS7ub5m8WYddAJsrcO8D8nXbinwA5v4Geye4rlTCfWA07W3mkRP7GfGdvK6TrO6N3C8yA\nccmL5rEULeTeqw4x1mOfBOHoAhTaTWEdK7v7fZaU0wX3DagfCnNekzwB81WlZOP+o3SrZceF4nYX\ny2vU8wh6ax7x7+u6DD838C1cNwP1fZF8AhQadoRCh4X47/qzxsUR7ltPniJdOsaTiN82VAFSeeRU\nRWpgGcxarQeX6v8LAO7aDlFMOoHqLzQLuDyJQHfl8G9svYmRIh/1rc0zXftqdhKNZaQXRluVz55H\nbV/rp7NyfFAwo68IraiFGp+8qprNytB0t0I//0vuUhvB2AtfpH2SMTtu3yP6bg/3IxQn+ErcezSp\n52RvSKx3g983gS2/up1WPfG2udSalf9kNNj/knjQnuKCG+NwVS8fum+CF6wC38j/iCLQ7uz7/hf0\nZLxdm7r+k3rCq+3+ile9ZX9/uu5IuYCvU9c6kB99Xkbb3frXkL6f7OLgrjcEsO9uznegjC2qVZ52\n5Wp3N8pO2hhW84TiFuGNcJORi1f9XIrDROCj+LxAilgtewFxAfMdHmt6t0OKflhv0nqrUcirZzAy\nmrw36tOaEEyS75cp9QDeNL3/9NKsUfzzabmv8uToQxjKpzRju1ddvd1wwxaVUP6mod9Tkjuhlp2y\nszTRQp6Fb2zapyC+mi/uyoohACwF7vuucRUCzxtJsdKBoYr31WpjWZLQys3lmVDLO+SYyrnKLYEW\nDp8ojnsbc6S0+rLuBe7JgvVOyCSjTxiUGU+ZwiMplJ6021ZH9BUW+Xw3wr/nieOIqyjW7ehB3HrU\nB7v0Sl5XXeSVaAAAAaZJREFUjvmUvUv0Cb0ypk+U1pP6Xlm8WqlrRZkBAGCNq5B1DVDRHCuIh+x8\nN4xEUMgq18iGgvrqCuIorFQIwi9A4Pf7icIAtqVB1tJ3Foln6Z6EVr7Rgm+9j/CcftrQygp9xave\n+DNAa7F8sm5Llo/ruuhvzPp6qTz5vpY+zJeBcP2cW1Ofssjz0Mp6uasLS/HZSAnt7qe1VuAqeI7o\nnSA+40fGHOiCLQDQNexwlw2YRUQH5l5m63W8O9Ys1xVu2yPrm4G8vusT6HZIALxrtXdfbE0b288A\n/QXBJ2P5bSAe+alh0+jDhFW9He/w2xp86NChQ4f26F/dKH/o0KFDhz5EB8gPHTp06MfpAPmhQ4cO\n/TgdID906NChH6cD5IcOHTr043SA/NChQ4d+nA6QHzp06NCP0wHyQ4cOHfpxOkB+6NChQz9OB8gP\nHTp06MfpAPmhQ4cO/TgdID906NChH6cD5IcOHTr043SA/NChQ4d+nA6QHzp06NCP0wHyQ4cOHfpx\nOkB+6NChQz9OB8gPHTp06MfpAPmhQ4cO/TgdID906NChH6f/AZAmUN89aAB4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "test_net = solver.test_nets[0]\n", + "for image_index in range(5):\n", + " plt.figure()\n", + " plt.imshow(transformer.deprocess(copy(test_net.blobs['data'].data[image_index, ...])))\n", + " gtlist = test_net.blobs['label'].data[image_index, ...].astype(np.int)\n", + " estlist = test_net.blobs['score'].data[image_index, ...] > 0\n", + " plt.title('GT: {} \\n EST: {}'.format(classes[np.where(gtlist)], classes[np.where(estlist)]))\n", + " plt.axis('off')" + ] + } + ], + "metadata": { + "description": "Multilabel classification on PASCAL VOC using a Python data layer.", + "example_name": "Multilabel Classification with Python Data Layer", + "include_in_docs": true, + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + }, + "priority": 5 + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/examples/pycaffe/layers/pascal_multilabel_datalayers.py b/examples/pycaffe/layers/pascal_multilabel_datalayers.py new file mode 100644 index 000000000..9420cb328 --- /dev/null +++ b/examples/pycaffe/layers/pascal_multilabel_datalayers.py @@ -0,0 +1,216 @@ +# imports +import json +import time +import pickle +import scipy.misc +import skimage.io +import caffe + +import numpy as np +import os.path as osp + +from xml.dom import minidom +from random import shuffle +from threading import Thread +from PIL import Image + +from tools import SimpleTransformer + + +class PascalMultilabelDataLayerSync(caffe.Layer): + + """ + This is a simple synchronous datalayer for training a multilabel model on + PASCAL. + """ + + def setup(self, bottom, top): + + self.top_names = ['data', 'label'] + + # === Read input parameters === + + # params is a python dictionary with layer parameters. + params = eval(self.param_str) + + # Check the parameters for validity. + check_params(params) + + # store input as class variables + self.batch_size = params['batch_size'] + + # Create a batch loader to load the images. + self.batch_loader = BatchLoader(params, None) + + # === reshape tops === + # since we use a fixed input image size, we can shape the data layer + # once. Else, we'd have to do it in the reshape call. + top[0].reshape( + self.batch_size, 3, params['im_shape'][0], params['im_shape'][1]) + # Note the 20 channels (because PASCAL has 20 classes.) + top[1].reshape(self.batch_size, 20) + + print_info("PascalMultilabelDataLayerSync", params) + + def forward(self, bottom, top): + """ + Load data. + """ + for itt in range(self.batch_size): + # Use the batch loader to load the next image. + im, multilabel = self.batch_loader.load_next_image() + + # Add directly to the caffe data layer + top[0].data[itt, ...] = im + top[1].data[itt, ...] = multilabel + + def reshape(self, bottom, top): + """ + There is no need to reshape the data, since the input is of fixed size + (rows and columns) + """ + pass + + def backward(self, top, propagate_down, bottom): + """ + These layers does not back propagate + """ + pass + + +class BatchLoader(object): + + """ + This class abstracts away the loading of images. + Images can either be loaded singly, or in a batch. The latter is used for + the asyncronous data layer to preload batches while other processing is + performed. + """ + + def __init__(self, params, result): + self.result = result + self.batch_size = params['batch_size'] + self.pascal_root = params['pascal_root'] + self.im_shape = params['im_shape'] + # get list of image indexes. + list_file = params['split'] + '.txt' + self.indexlist = [line.rstrip('\n') for line in open( + osp.join(self.pascal_root, 'ImageSets/Main', list_file))] + self._cur = 0 # current image + # this class does some simple data-manipulations + self.transformer = SimpleTransformer() + + print "BatchLoader initialized with {} images".format( + len(self.indexlist)) + + def load_next_image(self): + """ + Load the next image in a batch. + """ + # Did we finish an epoch? + if self._cur == len(self.indexlist): + self._cur = 0 + shuffle(self.indexlist) + + # Load an image + index = self.indexlist[self._cur] # Get the image index + image_file_name = index + '.jpg' + im = np.asarray(Image.open( + osp.join(self.pascal_root, 'JPEGImages', image_file_name))) + im = scipy.misc.imresize(im, self.im_shape) # resize + + # do a simple horizontal flip as data augmentation + flip = np.random.choice(2)*2-1 + im = im[:, ::flip, :] + + # Load and prepare ground truth + multilabel = np.zeros(20).astype(np.float32) + anns = load_pascal_annotation(index, self.pascal_root) + for label in anns['gt_classes']: + # in the multilabel problem we don't care how MANY instances + # there are of each class. Only if they are present. + # The "-1" is b/c we are not interested in the background + # class. + multilabel[label - 1] = 1 + + self._cur += 1 + return self.transformer.preprocess(im), multilabel + + +def load_pascal_annotation(index, pascal_root): + """ + This code is borrowed from Ross Girshick's FAST-RCNN code + (https://github.com/rbgirshick/fast-rcnn). + It parses the PASCAL .xml metadata files. + See publication for further details: (http://arxiv.org/abs/1504.08083). + + Thanks Ross! + + """ + classes = ('__background__', # always index 0 + 'aeroplane', 'bicycle', 'bird', 'boat', + 'bottle', 'bus', 'car', 'cat', 'chair', + 'cow', 'diningtable', 'dog', 'horse', + 'motorbike', 'person', 'pottedplant', + 'sheep', 'sofa', 'train', 'tvmonitor') + class_to_ind = dict(zip(classes, xrange(21))) + + filename = osp.join(pascal_root, 'Annotations', index + '.xml') + # print 'Loading: {}'.format(filename) + + def get_data_from_tag(node, tag): + return node.getElementsByTagName(tag)[0].childNodes[0].data + + with open(filename) as f: + data = minidom.parseString(f.read()) + + objs = data.getElementsByTagName('object') + num_objs = len(objs) + + boxes = np.zeros((num_objs, 4), dtype=np.uint16) + gt_classes = np.zeros((num_objs), dtype=np.int32) + overlaps = np.zeros((num_objs, 21), dtype=np.float32) + + # Load object bounding boxes into a data frame. + for ix, obj in enumerate(objs): + # Make pixel indexes 0-based + x1 = float(get_data_from_tag(obj, 'xmin')) - 1 + y1 = float(get_data_from_tag(obj, 'ymin')) - 1 + x2 = float(get_data_from_tag(obj, 'xmax')) - 1 + y2 = float(get_data_from_tag(obj, 'ymax')) - 1 + cls = class_to_ind[ + str(get_data_from_tag(obj, "name")).lower().strip()] + boxes[ix, :] = [x1, y1, x2, y2] + gt_classes[ix] = cls + overlaps[ix, cls] = 1.0 + + overlaps = scipy.sparse.csr_matrix(overlaps) + + return {'boxes': boxes, + 'gt_classes': gt_classes, + 'gt_overlaps': overlaps, + 'flipped': False, + 'index': index} + + +def check_params(params): + """ + A utility function to check the parameters for the data layers. + """ + assert 'split' in params.keys( + ), 'Params must include split (train, val, or test).' + + required = ['batch_size', 'pascal_root', 'im_shape'] + for r in required: + assert r in params.keys(), 'Params must include {}'.format(r) + + +def print_info(name, params): + """ + Output some info regarding the class + """ + print "{} initialized for split: {}, with bs: {}, im_shape: {}.".format( + name, + params['split'], + params['batch_size'], + params['im_shape']) diff --git a/examples/pycaffe/tools.py b/examples/pycaffe/tools.py new file mode 100644 index 000000000..7f6c2d835 --- /dev/null +++ b/examples/pycaffe/tools.py @@ -0,0 +1,121 @@ +import numpy as np + + +class SimpleTransformer: + + """ + SimpleTransformer is a simple class for preprocessing and deprocessing + images for caffe. + """ + + def __init__(self, mean=[128, 128, 128]): + self.mean = np.array(mean, dtype=np.float32) + self.scale = 1.0 + + def set_mean(self, mean): + """ + Set the mean to subtract for centering the data. + """ + self.mean = mean + + def set_scale(self, scale): + """ + Set the data scaling. + """ + self.scale = scale + + def preprocess(self, im): + """ + preprocess() emulate the pre-processing occurring in the vgg16 caffe + prototxt. + """ + + im = np.float32(im) + im = im[:, :, ::-1] # change to BGR + im -= self.mean + im *= self.scale + im = im.transpose((2, 0, 1)) + + return im + + def deprocess(self, im): + """ + inverse of preprocess() + """ + im = im.transpose(1, 2, 0) + im /= self.scale + im += self.mean + im = im[:, :, ::-1] # change to RGB + + return np.uint8(im) + + +class CaffeSolver: + + """ + Caffesolver is a class for creating a solver.prototxt file. It sets default + values and can export a solver parameter file. + Note that all parameters are stored as strings. Strings variables are + stored as strings in strings. + """ + + def __init__(self, testnet_prototxt_path="testnet.prototxt", + trainnet_prototxt_path="trainnet.prototxt", debug=False): + + self.sp = {} + + # critical: + self.sp['base_lr'] = '0.001' + self.sp['momentum'] = '0.9' + + # speed: + self.sp['test_iter'] = '100' + self.sp['test_interval'] = '250' + + # looks: + self.sp['display'] = '25' + self.sp['snapshot'] = '2500' + self.sp['snapshot_prefix'] = '"snapshot"' # string within a string! + + # learning rate policy + self.sp['lr_policy'] = '"fixed"' + + # important, but rare: + self.sp['gamma'] = '0.1' + self.sp['weight_decay'] = '0.0005' + self.sp['train_net'] = '"' + trainnet_prototxt_path + '"' + self.sp['test_net'] = '"' + testnet_prototxt_path + '"' + + # pretty much never change these. + self.sp['max_iter'] = '100000' + self.sp['test_initialization'] = 'false' + self.sp['average_loss'] = '25' # this has to do with the display. + self.sp['iter_size'] = '1' # this is for accumulating gradients + + if (debug): + self.sp['max_iter'] = '12' + self.sp['test_iter'] = '1' + self.sp['test_interval'] = '4' + self.sp['display'] = '1' + + def add_from_file(self, filepath): + """ + Reads a caffe solver prototxt file and updates the Caffesolver + instance parameters. + """ + with open(filepath, 'r') as f: + for line in f: + if line[0] == '#': + continue + splitLine = line.split(':') + self.sp[splitLine[0].strip()] = splitLine[1].strip() + + def write(self, filepath): + """ + Export solver parameters to INPUT "filepath". Sorted alphabetically. + """ + f = open(filepath, 'w') + for key, value in sorted(self.sp.items()): + if not(type(value) is str): + raise TypeError('All solver parameters must be strings') + f.write('%s: %s\n' % (key, value)) diff --git a/examples/siamese/convert_mnist_siamese_data.cpp b/examples/siamese/convert_mnist_siamese_data.cpp index 8008b4439..928b3fbf4 100644 --- a/examples/siamese/convert_mnist_siamese_data.cpp +++ b/examples/siamese/convert_mnist_siamese_data.cpp @@ -10,12 +10,15 @@ #include "glog/logging.h" #include "google/protobuf/text_format.h" -#include "leveldb/db.h" #include "stdint.h" #include "caffe/proto/caffe.pb.h" +#include "caffe/util/format.hpp" #include "caffe/util/math_functions.hpp" +#ifdef USE_LEVELDB +#include "leveldb/db.h" + uint32_t swap_endian(uint32_t val) { val = ((val << 8) & 0xFF00FF00) | ((val >> 8) & 0xFF00FF); return (val << 16) | (val >> 16); @@ -73,8 +76,6 @@ void convert_dataset(const char* image_filename, const char* label_filename, char label_i; char label_j; char* pixels = new char[2 * rows * cols]; - const int kMaxKeyLength = 10; - char key[kMaxKeyLength]; std::string value; caffe::Datum datum; @@ -97,8 +98,8 @@ void convert_dataset(const char* image_filename, const char* label_filename, datum.set_label(0); } datum.SerializeToString(&value); - snprintf(key, kMaxKeyLength, "%08d", itemid); - db->Put(leveldb::WriteOptions(), std::string(key), value); + std::string key_str = caffe::format_int(itemid, 8); + db->Put(leveldb::WriteOptions(), key_str, value); } delete db; @@ -121,3 +122,8 @@ int main(int argc, char** argv) { } return 0; } +#else +int main(int argc, char** argv) { + LOG(FATAL) << "This example requires LevelDB; compile with USE_LEVELDB."; +} +#endif // USE_LEVELDB diff --git a/examples/siamese/create_mnist_siamese.sh b/examples/siamese/create_mnist_siamese.sh index 43ad6b184..03adce54d 100755 --- a/examples/siamese/create_mnist_siamese.sh +++ b/examples/siamese/create_mnist_siamese.sh @@ -1,5 +1,6 @@ #!/usr/bin/env sh # This script converts the mnist data into leveldb format. +set -e EXAMPLES=./build/examples/siamese DATA=./data/mnist diff --git a/examples/siamese/mnist_siamese.prototxt b/examples/siamese/mnist_siamese.prototxt index 332731bd7..5d783ba02 100644 --- a/examples/siamese/mnist_siamese.prototxt +++ b/examples/siamese/mnist_siamese.prototxt @@ -1,10 +1,11 @@ name: "mnist_siamese" -input: "data" -input_shape { - dim: 10000 - dim: 1 - dim: 28 - dim: 28 +layer { + name: "data" + type: "Input" + top: "data" + input_param { + shape: { dim: 10000 dim: 1 dim: 28 dim: 28 } + } } layer { name: "conv1" diff --git a/examples/siamese/train_mnist_siamese.sh b/examples/siamese/train_mnist_siamese.sh index 84a30a8ac..e01ac2cee 100755 --- a/examples/siamese/train_mnist_siamese.sh +++ b/examples/siamese/train_mnist_siamese.sh @@ -1,5 +1,6 @@ #!/usr/bin/env sh +set -e TOOLS=./build/tools -$TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt +$TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@ diff --git a/examples/web_demo/requirements.txt b/examples/web_demo/requirements.txt index 8fb1d2ccb..43e1b98cc 100644 --- a/examples/web_demo/requirements.txt +++ b/examples/web_demo/requirements.txt @@ -4,3 +4,4 @@ tornado numpy pandas pillow +pyyaml diff --git a/include/caffe/blob.hpp b/include/caffe/blob.hpp index dda7b1f83..2f59471c2 100644 --- a/include/caffe/blob.hpp +++ b/include/caffe/blob.hpp @@ -8,7 +8,6 @@ #include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/syncedmem.hpp" -#include "caffe/util/math_functions.hpp" const int kMaxBlobAxes = 32; @@ -219,7 +218,9 @@ class Blob { const Dtype* cpu_data() const; void set_cpu_data(Dtype* data); + const int* gpu_shape() const; const Dtype* gpu_data() const; + void set_gpu_data(Dtype* data); const Dtype* cpu_diff() const; const Dtype* gpu_diff() const; Dtype* mutable_cpu_data(); @@ -268,6 +269,7 @@ class Blob { protected: shared_ptr data_; shared_ptr diff_; + shared_ptr shape_data_; vector shape_; int count_; int capacity_; diff --git a/include/caffe/caffe.hpp b/include/caffe/caffe.hpp index 68a5e1d1d..06882096c 100644 --- a/include/caffe/caffe.hpp +++ b/include/caffe/caffe.hpp @@ -13,8 +13,9 @@ #include "caffe/parallel.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/solver.hpp" +#include "caffe/solver_factory.hpp" #include "caffe/util/benchmark.hpp" #include "caffe/util/io.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/util/upgrade_proto.hpp" #endif // CAFFE_CAFFE_HPP_ diff --git a/include/caffe/common.hpp b/include/caffe/common.hpp index 1df6b9a14..4904d1d86 100644 --- a/include/caffe/common.hpp +++ b/include/caffe/common.hpp @@ -18,6 +18,10 @@ #include "caffe/util/device_alternate.hpp" +// Convert macro to string +#define STRINGIFY(m) #m +#define AS_STRING(m) STRINGIFY(m) + // gflags 2.1 issue: namespace google was changed to gflags without warning. // Luckily we will be able to use GFLAGS_GFLAGS_H_ to detect if it is version // 2.1. If yes, we will add a temporary solution to redirect the namespace. @@ -149,11 +153,19 @@ class Caffe { static void SetDevice(const int device_id); // Prints the current GPU status. static void DeviceQuery(); - // Parallel training info + // Check if specified device is available + static bool CheckDevice(const int device_id); + // Search from start_id to the highest possible device ordinal, + // return the ordinal of the first available device. + static int FindDevice(const int start_id = 0); + // Parallel training inline static int solver_count() { return Get().solver_count_; } inline static void set_solver_count(int val) { Get().solver_count_ = val; } - inline static bool root_solver() { return Get().root_solver_; } - inline static void set_root_solver(bool val) { Get().root_solver_ = val; } + inline static int solver_rank() { return Get().solver_rank_; } + inline static void set_solver_rank(int val) { Get().solver_rank_ = val; } + inline static bool multiprocess() { return Get().multiprocess_; } + inline static void set_multiprocess(bool val) { Get().multiprocess_ = val; } + inline static bool root_solver() { return Get().solver_rank_ == 0; } protected: #ifndef CPU_ONLY @@ -163,8 +175,11 @@ class Caffe { shared_ptr random_generator_; Brew mode_; + + // Parallel training int solver_count_; - bool root_solver_; + int solver_rank_; + bool multiprocess_; private: // The private constructor to avoid duplicate instantiation. diff --git a/include/caffe/common_layers.hpp b/include/caffe/common_layers.hpp deleted file mode 100644 index 89bab8d6f..000000000 --- a/include/caffe/common_layers.hpp +++ /dev/null @@ -1,678 +0,0 @@ -#ifndef CAFFE_COMMON_LAYERS_HPP_ -#define CAFFE_COMMON_LAYERS_HPP_ - -#include -#include -#include - -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/loss_layers.hpp" -#include "caffe/neuron_layers.hpp" -#include "caffe/proto/caffe.pb.h" - -namespace caffe { - -/** - * @brief Compute the index of the @f$ K @f$ max values for each datum across - * all dimensions @f$ (C \times H \times W) @f$. - * - * Intended for use after a classification layer to produce a prediction. - * If parameter out_max_val is set to true, output is a vector of pairs - * (max_ind, max_val) for each image. - * - * NOTE: does not implement Backwards operation. - */ -template -class ArgMaxLayer : public Layer { - public: - /** - * @param param provides ArgMaxParameter argmax_param, - * with ArgMaxLayer options: - * - top_k (\b optional uint, default 1). - * the number @f$ K @f$ of maximal items to output. - * - out_max_val (\b optional bool, default false). - * if set, output a vector of pairs (max_ind, max_val) for each image. - */ - explicit ArgMaxLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "ArgMax"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times 1 \times K \times 1) @f$ or, if out_max_val - * @f$ (N \times 2 \times K \times 1) @f$ - * the computed outputs @f$ - * y_n = \arg\max\limits_i x_{ni} - * @f$ (for @f$ K = 1 @f$). - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - /// @brief Not implemented (non-differentiable function) - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) { - NOT_IMPLEMENTED; - } - bool out_max_val_; - size_t top_k_; -}; - -/** - * @brief Takes at least two Blob%s and concatenates them along either the num - * or channel dimension, outputting the result. - */ -template -class ConcatLayer : public Layer { - public: - explicit ConcatLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Concat"; } - virtual inline int MinBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - /** - * @param bottom input Blob vector (length 2+) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x_1 @f$ - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x_2 @f$ - * -# ... - * - K @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x_K @f$ - * @param top output Blob vector (length 1) - * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or - * @f$ (N \times KC \times H \times W) @f$ if axis == 1: - * the concatenated output @f$ - * y = [\begin{array}{cccc} x_1 & x_2 & ... & x_K \end{array}] - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the concatenate inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or - * @f$ (N \times KC \times H \times W) @f$ if axis == 1: - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to concatenated outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length K), into which the top gradient - * @f$ \frac{\partial E}{\partial y} @f$ is deconcatenated back to the - * inputs @f$ - * \left[ \begin{array}{cccc} - * \frac{\partial E}{\partial x_1} & - * \frac{\partial E}{\partial x_2} & - * ... & - * \frac{\partial E}{\partial x_K} - * \end{array} \right] = - * \frac{\partial E}{\partial y} - * @f$ - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int count_; - int num_concats_; - int concat_input_size_; - int concat_axis_; -}; - -/** - * @brief Compute elementwise operations, such as product and sum, - * along multiple input Blobs. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class EltwiseLayer : public Layer { - public: - explicit EltwiseLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Eltwise"; } - virtual inline int MinBottomBlobs() const { return 2; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - EltwiseParameter_EltwiseOp op_; - vector coeffs_; - Blob max_idx_; - - bool stable_prod_grad_; -}; - -/** - * @brief A layer for learning "embeddings" of one-hot vector input. - * Equivalent to an InnerProductLayer with one-hot vectors as input, but - * for efficiency the input is the "hot" index of each column itself. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class EmbedLayer : public Layer { - public: - explicit EmbedLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Embed"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int M_; - int K_; - int N_; - bool bias_term_; - Blob bias_multiplier_; -}; - -/** - * @brief Takes two+ Blobs, interprets last Blob as a selector and - * filter remaining Blobs accordingly with selector data (0 means that - * the corresponding item has to be filtered, non-zero means that corresponding - * item needs to stay). - */ -template -class FilterLayer : public Layer { - public: - explicit FilterLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Filter"; } - virtual inline int MinBottomBlobs() const { return 2; } - virtual inline int MinTopBlobs() const { return 1; } - - protected: - /** - * @param bottom input Blob vector (length 2+) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs to be filtered @f$ x_1 @f$ - * -# ... - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs to be filtered @f$ x_K @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the selector blob - * @param top output Blob vector (length 1+) - * -# @f$ (S \times C \times H \times W) @f$ () - * the filtered output @f$ x_1 @f$ - * where S is the number of items - * that haven't been filtered - * @f$ (S \times C \times H \times W) @f$ - * the filtered output @f$ x_K @f$ - * where S is the number of items - * that haven't been filtered - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the forwarded inputs. - * - * @param top output Blob vector (length 1+), providing the error gradient with - * respect to the outputs - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 2+), into which the top error - * gradient is copied - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool first_reshape_; - vector indices_to_forward_; -}; - -/** - * @brief Reshapes the input Blob into flat vectors. - * - * Note: because this layer does not change the input values -- merely the - * dimensions -- it can simply copy the input. The copy happens "virtually" - * (thus taking effectively 0 real time) by setting, in Forward, the data - * pointer of the top Blob to that of the bottom Blob (see Blob::ShareData), - * and in Backward, the diff pointer of the bottom Blob to that of the top Blob - * (see Blob::ShareDiff). - */ -template -class FlattenLayer : public Layer { - public: - explicit FlattenLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Flatten"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - /** - * @param bottom input Blob vector (length 2+) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs - * @param top output Blob vector (length 1) - * -# @f$ (N \times CHW \times 1 \times 1) @f$ - * the outputs -- i.e., the (virtually) copied, flattened inputs - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the concatenate inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length K), into which the top error - * gradient is (virtually) copied - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief Also known as a "fully-connected" layer, computes an inner product - * with a set of learned weights, and (optionally) adds biases. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class InnerProductLayer : public Layer { - public: - explicit InnerProductLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "InnerProduct"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int M_; - int K_; - int N_; - bool bias_term_; - Blob bias_multiplier_; -}; - -/** - * @brief Normalizes the input to have 0-mean and/or unit (1) variance. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class MVNLayer : public Layer { - public: - explicit MVNLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "MVN"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Blob mean_, variance_, temp_; - - /// sum_multiplier is used to carry out sum using BLAS - Blob sum_multiplier_; - Dtype eps_; -}; - -/* - * @brief Reshapes the input Blob into an arbitrary-sized output Blob. - * - * Note: similarly to FlattenLayer, this layer does not change the input values - * (see FlattenLayer, Blob::ShareData and Blob::ShareDiff). - */ -template -class ReshapeLayer : public Layer { - public: - explicit ReshapeLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Reshape"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top) {} - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top) {} - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - - /// @brief vector of axes indices whose dimensions we'll copy from the bottom - vector copy_axes_; - /// @brief the index of the axis whose dimension we infer, or -1 if none - int inferred_axis_; - /// @brief the product of the "constant" output dimensions - int constant_count_; -}; - -/** - * @brief Compute "reductions" -- operations that return a scalar output Blob - * for an input Blob of arbitrary size, such as the sum, absolute sum, - * and sum of squares. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class ReductionLayer : public Layer { - public: - explicit ReductionLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Reduction"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - /// @brief the reduction operation performed by the layer - ReductionParameter_ReductionOp op_; - /// @brief a scalar coefficient applied to all outputs - Dtype coeff_; - /// @brief the index of the first input axis to reduce - int axis_; - /// @brief the number of reductions performed - int num_; - /// @brief the input size of each reduction - int dim_; - /// @brief a helper Blob used for summation (op_ == SUM) - Blob sum_multiplier_; -}; - -/** - * @brief Ignores bottom blobs while producing no top blobs. (This is useful - * to suppress outputs during testing.) - */ -template -class SilenceLayer : public Layer { - public: - explicit SilenceLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top) {} - - virtual inline const char* type() const { return "Silence"; } - virtual inline int MinBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 0; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top) {} - // We can't define Forward_gpu here, since STUB_GPU will provide - // its own definition for CPU_ONLY mode. - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief Computes the softmax function. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class SoftmaxLayer : public Layer { - public: - explicit SoftmaxLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Softmax"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int outer_num_; - int inner_num_; - int softmax_axis_; - /// sum_multiplier is used to carry out sum using BLAS - Blob sum_multiplier_; - /// scale is an intermediate Blob to hold temporary results. - Blob scale_; -}; - -#ifdef USE_CUDNN -/** - * @brief cuDNN implementation of SoftmaxLayer. - * Fallback to SoftmaxLayer for CPU mode. - */ -template -class CuDNNSoftmaxLayer : public SoftmaxLayer { - public: - explicit CuDNNSoftmaxLayer(const LayerParameter& param) - : SoftmaxLayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNSoftmaxLayer(); - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t handle_; - cudnnTensorDescriptor_t bottom_desc_; - cudnnTensorDescriptor_t top_desc_; -}; -#endif - -/** - * @brief Creates a "split" path in the network by copying the bottom Blob - * into multiple top Blob%s to be used by multiple consuming layers. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class SplitLayer : public Layer { - public: - explicit SplitLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Split"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int MinTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int count_; -}; - -/** - * @brief Takes a Blob and slices it along either the num or channel dimension, - * outputting multiple sliced Blob results. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class SliceLayer : public Layer { - public: - explicit SliceLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Slice"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int MinTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int count_; - int num_slices_; - int slice_size_; - int slice_axis_; - vector slice_point_; -}; - -/** - * @brief Copy a Blob along specified dimensions. - */ -template -class TileLayer : public Layer { - public: - explicit TileLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Tile"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - unsigned int axis_, tiles_, outer_dim_, inner_dim_; -}; - -} // namespace caffe - -#endif // CAFFE_COMMON_LAYERS_HPP_ diff --git a/include/caffe/data_layers.hpp b/include/caffe/data_layers.hpp deleted file mode 100644 index 552d81413..000000000 --- a/include/caffe/data_layers.hpp +++ /dev/null @@ -1,343 +0,0 @@ -#ifndef CAFFE_DATA_LAYERS_HPP_ -#define CAFFE_DATA_LAYERS_HPP_ - -#include -#include -#include - -#include "hdf5.h" - -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/data_reader.hpp" -#include "caffe/data_transformer.hpp" -#include "caffe/filler.hpp" -#include "caffe/internal_thread.hpp" -#include "caffe/layer.hpp" -#include "caffe/proto/caffe.pb.h" -#include "caffe/util/blocking_queue.hpp" -#include "caffe/util/db.hpp" - -namespace caffe { - -/** - * @brief Provides base for data layers that feed blobs to the Net. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class BaseDataLayer : public Layer { - public: - explicit BaseDataLayer(const LayerParameter& param); - // LayerSetUp: implements common data layer setup functionality, and calls - // DataLayerSetUp to do special data layer setup for individual layer types. - // This method may not be overridden except by the BasePrefetchingDataLayer. - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - // Data layers should be shared by multiple solvers in parallel - virtual inline bool ShareInParallel() const { return true; } - virtual void DataLayerSetUp(const vector*>& bottom, - const vector*>& top) {} - // Data layers have no bottoms, so reshaping is trivial. - virtual void Reshape(const vector*>& bottom, - const vector*>& top) {} - - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - - protected: - TransformationParameter transform_param_; - shared_ptr > data_transformer_; - bool output_labels_; -}; - -template -class Batch { - public: - Blob data_, label_; -}; - -template -class BasePrefetchingDataLayer : - public BaseDataLayer, public InternalThread { - public: - explicit BasePrefetchingDataLayer(const LayerParameter& param); - // LayerSetUp: implements common data layer setup functionality, and calls - // DataLayerSetUp to do special data layer setup for individual layer types. - // This method may not be overridden. - void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - // Prefetches batches (asynchronously if to GPU memory) - static const int PREFETCH_COUNT = 3; - - protected: - virtual void InternalThreadEntry(); - virtual void load_batch(Batch* batch) = 0; - - Batch prefetch_[PREFETCH_COUNT]; - BlockingQueue*> prefetch_free_; - BlockingQueue*> prefetch_full_; - - Blob transformed_data_; -}; - -template -class DataLayer : public BasePrefetchingDataLayer { - public: - explicit DataLayer(const LayerParameter& param); - virtual ~DataLayer(); - virtual void DataLayerSetUp(const vector*>& bottom, - const vector*>& top); - // DataLayer uses DataReader instead for sharing for parallelism - virtual inline bool ShareInParallel() const { return false; } - virtual inline const char* type() const { return "Data"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int MinTopBlobs() const { return 1; } - virtual inline int MaxTopBlobs() const { return 2; } - - protected: - virtual void load_batch(Batch* batch); - - DataReader reader_; -}; - -/** - * @brief Provides data to the Net generated by a Filler. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class DummyDataLayer : public Layer { - public: - explicit DummyDataLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - // Data layers should be shared by multiple solvers in parallel - virtual inline bool ShareInParallel() const { return true; } - // Data layers have no bottoms, so reshaping is trivial. - virtual void Reshape(const vector*>& bottom, - const vector*>& top) {} - - virtual inline const char* type() const { return "DummyData"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int MinTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - - vector > > fillers_; - vector refill_; -}; - -/** - * @brief Provides data to the Net from HDF5 files. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class HDF5DataLayer : public Layer { - public: - explicit HDF5DataLayer(const LayerParameter& param) - : Layer(param) {} - virtual ~HDF5DataLayer(); - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - // Data layers should be shared by multiple solvers in parallel - virtual inline bool ShareInParallel() const { return true; } - // Data layers have no bottoms, so reshaping is trivial. - virtual void Reshape(const vector*>& bottom, - const vector*>& top) {} - - virtual inline const char* type() const { return "HDF5Data"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int MinTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) {} - virtual void LoadHDF5FileData(const char* filename); - - std::vector hdf_filenames_; - unsigned int num_files_; - unsigned int current_file_; - hsize_t current_row_; - std::vector > > hdf_blobs_; - std::vector data_permutation_; - std::vector file_permutation_; -}; - -/** - * @brief Write blobs to disk as HDF5 files. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class HDF5OutputLayer : public Layer { - public: - explicit HDF5OutputLayer(const LayerParameter& param) - : Layer(param), file_opened_(false) {} - virtual ~HDF5OutputLayer(); - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - // Data layers should be shared by multiple solvers in parallel - virtual inline bool ShareInParallel() const { return true; } - // Data layers have no bottoms, so reshaping is trivial. - virtual void Reshape(const vector*>& bottom, - const vector*>& top) {} - - virtual inline const char* type() const { return "HDF5Output"; } - // TODO: no limit on the number of blobs - virtual inline int ExactNumBottomBlobs() const { return 2; } - virtual inline int ExactNumTopBlobs() const { return 0; } - - inline std::string file_name() const { return file_name_; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void SaveBlobs(); - - bool file_opened_; - std::string file_name_; - hid_t file_id_; - Blob data_blob_; - Blob label_blob_; -}; - -/** - * @brief Provides data to the Net from image files. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class ImageDataLayer : public BasePrefetchingDataLayer { - public: - explicit ImageDataLayer(const LayerParameter& param) - : BasePrefetchingDataLayer(param) {} - virtual ~ImageDataLayer(); - virtual void DataLayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "ImageData"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int ExactNumTopBlobs() const { return 2; } - - protected: - shared_ptr prefetch_rng_; - virtual void ShuffleImages(); - virtual void load_batch(Batch* batch); - - vector > lines_; - int lines_id_; -}; - -/** - * @brief Provides data to the Net from memory. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class MemoryDataLayer : public BaseDataLayer { - public: - explicit MemoryDataLayer(const LayerParameter& param) - : BaseDataLayer(param), has_new_data_(false) {} - virtual void DataLayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "MemoryData"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int ExactNumTopBlobs() const { return 2; } - - virtual void AddDatumVector(const vector& datum_vector); - virtual void AddMatVector(const vector& mat_vector, - const vector& labels); - - // Reset should accept const pointers, but can't, because the memory - // will be given to Blob, which is mutable - void Reset(Dtype* data, Dtype* label, int n); - void set_batch_size(int new_size); - - int batch_size() { return batch_size_; } - int channels() { return channels_; } - int height() { return height_; } - int width() { return width_; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - int batch_size_, channels_, height_, width_, size_; - Dtype* data_; - Dtype* labels_; - int n_; - size_t pos_; - Blob added_data_; - Blob added_label_; - bool has_new_data_; -}; - -/** - * @brief Provides data to the Net from windows of images files, specified - * by a window data file. - * - * TODO(dox): thorough documentation for Forward and proto params. - */ -template -class WindowDataLayer : public BasePrefetchingDataLayer { - public: - explicit WindowDataLayer(const LayerParameter& param) - : BasePrefetchingDataLayer(param) {} - virtual ~WindowDataLayer(); - virtual void DataLayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "WindowData"; } - virtual inline int ExactNumBottomBlobs() const { return 0; } - virtual inline int ExactNumTopBlobs() const { return 2; } - - protected: - virtual unsigned int PrefetchRand(); - virtual void load_batch(Batch* batch); - - shared_ptr prefetch_rng_; - vector > > image_database_; - enum WindowField { IMAGE_INDEX, LABEL, OVERLAP, X1, Y1, X2, Y2, NUM }; - vector > fg_windows_; - vector > bg_windows_; - Blob data_mean_; - vector mean_values_; - bool has_mean_file_; - bool has_mean_values_; - bool cache_images_; - vector > image_database_cache_; -}; - -} // namespace caffe - -#endif // CAFFE_DATA_LAYERS_HPP_ diff --git a/include/caffe/data_reader.hpp b/include/caffe/data_reader.hpp deleted file mode 100644 index 8ed5542cb..000000000 --- a/include/caffe/data_reader.hpp +++ /dev/null @@ -1,82 +0,0 @@ -#ifndef CAFFE_DATA_READER_HPP_ -#define CAFFE_DATA_READER_HPP_ - -#include -#include -#include - -#include "caffe/common.hpp" -#include "caffe/internal_thread.hpp" -#include "caffe/util/blocking_queue.hpp" -#include "caffe/util/db.hpp" - -namespace caffe { - -/** - * @brief Reads data from a source to queues available to data layers. - * A single reading thread is created per source, even if multiple solvers - * are running in parallel, e.g. for multi-GPU training. This makes sure - * databases are read sequentially, and that each solver accesses a different - * subset of the database. Data is distributed to solvers in a round-robin - * way to keep parallel training deterministic. - */ -class DataReader { - public: - explicit DataReader(const LayerParameter& param); - ~DataReader(); - - inline BlockingQueue& free() const { - return queue_pair_->free_; - } - inline BlockingQueue& full() const { - return queue_pair_->full_; - } - - protected: - // Queue pairs are shared between a body and its readers - class QueuePair { - public: - explicit QueuePair(int size); - ~QueuePair(); - - BlockingQueue free_; - BlockingQueue full_; - - DISABLE_COPY_AND_ASSIGN(QueuePair); - }; - - // A single body is created per source - class Body : public InternalThread { - public: - explicit Body(const LayerParameter& param); - virtual ~Body(); - - protected: - void InternalThreadEntry(); - void read_one(db::Cursor* cursor, QueuePair* qp); - - const LayerParameter param_; - BlockingQueue > new_queue_pairs_; - - friend class DataReader; - - DISABLE_COPY_AND_ASSIGN(Body); - }; - - // A source is uniquely identified by its layer name + path, in case - // the same database is read from two different locations in the net. - static inline string source_key(const LayerParameter& param) { - return param.name() + ":" + param.data_param().source(); - } - - const shared_ptr queue_pair_; - shared_ptr body_; - - static map > bodies_; - -DISABLE_COPY_AND_ASSIGN(DataReader); -}; - -} // namespace caffe - -#endif // CAFFE_DATA_READER_HPP_ diff --git a/include/caffe/data_transformer.hpp b/include/caffe/data_transformer.hpp index 0ad68c802..97b4ee6a8 100644 --- a/include/caffe/data_transformer.hpp +++ b/include/caffe/data_transformer.hpp @@ -50,6 +50,7 @@ class DataTransformer { void Transform(const vector & datum_vector, Blob* transformed_blob); +#ifdef USE_OPENCV /** * @brief Applies the transformation defined in the data layer's * transform_param block to a vector of Mat. @@ -74,6 +75,7 @@ class DataTransformer { * set_cpu_data() is used. See image_data_layer.cpp for an example. */ void Transform(const cv::Mat& cv_img, Blob* transformed_blob); +#endif // USE_OPENCV /** * @brief Applies the same transformation defined in the data layer's @@ -113,6 +115,7 @@ class DataTransformer { * @param mat_vector * A vector of Mat containing the data to be transformed. */ +#ifdef USE_OPENCV vector InferBlobShape(const vector & mat_vector); /** * @brief Infers the shape of transformed_blob will have when @@ -122,6 +125,7 @@ class DataTransformer { * cv::Mat containing the data to be transformed. */ vector InferBlobShape(const cv::Mat& cv_img); +#endif // USE_OPENCV protected: /** @@ -148,4 +152,3 @@ class DataTransformer { } // namespace caffe #endif // CAFFE_DATA_TRANSFORMER_HPP_ - diff --git a/include/caffe/filler.hpp b/include/caffe/filler.hpp index 888f4a4ba..dad9ad46b 100644 --- a/include/caffe/filler.hpp +++ b/include/caffe/filler.hpp @@ -8,7 +8,6 @@ #include #include "caffe/blob.hpp" -#include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/syncedmem.hpp" #include "caffe/util/math_functions.hpp" diff --git a/include/caffe/internal_thread.hpp b/include/caffe/internal_thread.hpp index 6a8c5a028..0ba676650 100644 --- a/include/caffe/internal_thread.hpp +++ b/include/caffe/internal_thread.hpp @@ -42,8 +42,8 @@ class InternalThread { bool must_stop(); private: - void entry(int device, Caffe::Brew mode, int rand_seed, int solver_count, - bool root_solver); + void entry(int device, Caffe::Brew mode, int rand_seed, + int solver_count, int solver_rank, bool multiprocess); shared_ptr thread_; }; diff --git a/include/caffe/layer.hpp b/include/caffe/layer.hpp index a0d1d4ecc..30dbfd537 100644 --- a/include/caffe/layer.hpp +++ b/include/caffe/layer.hpp @@ -9,7 +9,7 @@ #include "caffe/common.hpp" #include "caffe/layer_factory.hpp" #include "caffe/proto/caffe.pb.h" -#include "caffe/util/device_alternate.hpp" +#include "caffe/util/math_functions.hpp" /** Forward declare boost::thread instead of including boost/thread.hpp @@ -38,7 +38,7 @@ class Layer { * layer. */ explicit Layer(const LayerParameter& param) - : layer_param_(param), is_shared_(false) { + : layer_param_(param) { // Set phase and copy blobs (if there are any). phase_ = param.phase(); if (layer_param_.blobs_size() > 0) { @@ -66,7 +66,6 @@ class Layer { */ void SetUp(const vector*>& bottom, const vector*>& top) { - InitMutex(); CheckBlobCounts(bottom, top); LayerSetUp(bottom, top); Reshape(bottom, top); @@ -92,30 +91,6 @@ class Layer { virtual void LayerSetUp(const vector*>& bottom, const vector*>& top) {} - /** - * @brief Whether a layer should be shared by multiple nets during data - * parallelism. By default, all layers except for data layers should - * not be shared. data layers should be shared to ensure each worker - * solver access data sequentially during data parallelism. - */ - virtual inline bool ShareInParallel() const { return false; } - - /** @brief Return whether this layer is actually shared by other nets. - * If ShareInParallel() is true and using more than one GPU and the - * net has TRAIN phase, then this function is expected return true. - */ - inline bool IsShared() const { return is_shared_; } - - /** @brief Set whether this layer is actually shared by other nets - * If ShareInParallel() is true and using more than one GPU and the - * net has TRAIN phase, then is_shared should be set true. - */ - inline void SetShared(bool is_shared) { - CHECK(ShareInParallel() || !is_shared) - << type() << "Layer does not support sharing."; - is_shared_ = is_shared; - } - /** * @brief Adjust the shapes of top blobs and internal buffers to accommodate * the shapes of the bottom blobs. @@ -428,19 +403,6 @@ class Layer { } private: - /** Whether this layer is actually shared by other nets*/ - bool is_shared_; - - /** The mutex for sequential forward if this layer is shared */ - shared_ptr forward_mutex_; - - /** Initialize forward_mutex_ */ - void InitMutex(); - /** Lock forward_mutex_ if this layer is shared */ - void Lock(); - /** Unlock forward_mutex_ if this layer is shared */ - void Unlock(); - DISABLE_COPY_AND_ASSIGN(Layer); }; // class Layer @@ -450,8 +412,6 @@ class Layer { template inline Dtype Layer::Forward(const vector*>& bottom, const vector*>& top) { - // Lock during forward to ensure sequential forward - Lock(); Dtype loss = 0; Reshape(bottom, top); switch (Caffe::mode()) { @@ -482,7 +442,6 @@ inline Dtype Layer::Forward(const vector*>& bottom, default: LOG(FATAL) << "Unknown caffe mode."; } - Unlock(); return loss; } diff --git a/include/caffe/layer_factory.hpp b/include/caffe/layer_factory.hpp index 2c2fde4d9..2369c1329 100644 --- a/include/caffe/layer_factory.hpp +++ b/include/caffe/layer_factory.hpp @@ -1,6 +1,6 @@ /** * @brief A layer factory that allows one to register layers. - * During runtime, registered layers could be called by passing a LayerParameter + * During runtime, registered layers can be called by passing a LayerParameter * protobuffer to the CreateLayer function: * * LayerRegistry::CreateLayer(param); @@ -44,6 +44,7 @@ #include #include "caffe/common.hpp" +#include "caffe/layer.hpp" #include "caffe/proto/caffe.pb.h" namespace caffe { diff --git a/include/caffe/layers/absval_layer.hpp b/include/caffe/layers/absval_layer.hpp new file mode 100644 index 000000000..9b5305dce --- /dev/null +++ b/include/caffe/layers/absval_layer.hpp @@ -0,0 +1,68 @@ +#ifndef CAFFE_ABSVAL_LAYER_HPP_ +#define CAFFE_ABSVAL_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Computes @f$ y = |x| @f$ + * + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ y = |x| @f$ + */ +template +class AbsValLayer : public NeuronLayer { + public: + explicit AbsValLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "AbsVal"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /// @copydoc AbsValLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the absolute value inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = + * \mathrm{sign}(x) \frac{\partial E}{\partial y} + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_ABSVAL_LAYER_HPP_ diff --git a/include/caffe/layers/accuracy_layer.hpp b/include/caffe/layers/accuracy_layer.hpp new file mode 100644 index 000000000..a9ad32251 --- /dev/null +++ b/include/caffe/layers/accuracy_layer.hpp @@ -0,0 +1,95 @@ +#ifndef CAFFE_ACCURACY_LAYER_HPP_ +#define CAFFE_ACCURACY_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the classification accuracy for a one-of-many + * classification task. + */ +template +class AccuracyLayer : public Layer { + public: + /** + * @param param provides AccuracyParameter accuracy_param, + * with AccuracyLayer options: + * - top_k (\b optional, default 1). + * Sets the maximum rank @f$ k @f$ at which a prediction is considered + * correct. For example, if @f$ k = 5 @f$, a prediction is counted + * correct if the correct label is among the top 5 predicted labels. + */ + explicit AccuracyLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Accuracy"; } + virtual inline int ExactNumBottomBlobs() const { return 2; } + + // If there are two top blobs, then the second blob will contain + // accuracies per class. + virtual inline int MinTopBlobs() const { return 1; } + virtual inline int MaxTopBlobs() const { return 2; } + + protected: + /** + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ x @f$, a Blob with values in + * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of + * the @f$ K = CHW @f$ classes. Each @f$ x_n @f$ is mapped to a predicted + * label @f$ \hat{l}_n @f$ given by its maximal index: + * @f$ \hat{l}_n = \arg\max\limits_k x_{nk} @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels @f$ l @f$, an integer-valued Blob with values + * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ + * indicating the correct class label among the @f$ K @f$ classes + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed accuracy: @f$ + * \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} + * @f$, where @f$ + * \delta\{\mathrm{condition}\} = \left\{ + * \begin{array}{lr} + * 1 & \mbox{if condition} \\ + * 0 & \mbox{otherwise} + * \end{array} \right. + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + + /// @brief Not implemented -- AccuracyLayer cannot be used as a loss. + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + for (int i = 0; i < propagate_down.size(); ++i) { + if (propagate_down[i]) { NOT_IMPLEMENTED; } + } + } + + int label_axis_, outer_num_, inner_num_; + + int top_k_; + + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; + /// Keeps counts of the number of samples per class. + Blob nums_buffer_; +}; + +} // namespace caffe + +#endif // CAFFE_ACCURACY_LAYER_HPP_ diff --git a/include/caffe/layers/argmax_layer.hpp b/include/caffe/layers/argmax_layer.hpp new file mode 100644 index 000000000..4fef363e8 --- /dev/null +++ b/include/caffe/layers/argmax_layer.hpp @@ -0,0 +1,77 @@ +#ifndef CAFFE_ARGMAX_LAYER_HPP_ +#define CAFFE_ARGMAX_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Compute the index of the @f$ K @f$ max values for each datum across + * all dimensions @f$ (C \times H \times W) @f$. + * + * Intended for use after a classification layer to produce a prediction. + * If parameter out_max_val is set to true, output is a vector of pairs + * (max_ind, max_val) for each image. The axis parameter specifies an axis + * along which to maximise. + * + * NOTE: does not implement Backwards operation. + */ +template +class ArgMaxLayer : public Layer { + public: + /** + * @param param provides ArgMaxParameter argmax_param, + * with ArgMaxLayer options: + * - top_k (\b optional uint, default 1). + * the number @f$ K @f$ of maximal items to output. + * - out_max_val (\b optional bool, default false). + * if set, output a vector of pairs (max_ind, max_val) unless axis is set then + * output max_val along the specified axis. + * - axis (\b optional int). + * if set, maximise along the specified axis else maximise the flattened + * trailing dimensions for each index of the first / num dimension. + */ + explicit ArgMaxLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "ArgMax"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times 1 \times K) @f$ or, if out_max_val + * @f$ (N \times 2 \times K) @f$ unless axis set than e.g. + * @f$ (N \times K \times H \times W) @f$ if axis == 1 + * the computed outputs @f$ + * y_n = \arg\max\limits_i x_{ni} + * @f$ (for @f$ K = 1 @f$). + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + /// @brief Not implemented (non-differentiable function) + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + NOT_IMPLEMENTED; + } + bool out_max_val_; + size_t top_k_; + bool has_axis_; + int axis_; +}; + +} // namespace caffe + +#endif // CAFFE_ARGMAX_LAYER_HPP_ diff --git a/include/caffe/layers/base_conv_layer.hpp b/include/caffe/layers/base_conv_layer.hpp new file mode 100644 index 000000000..0160a833d --- /dev/null +++ b/include/caffe/layers/base_conv_layer.hpp @@ -0,0 +1,174 @@ +#ifndef CAFFE_BASE_CONVOLUTION_LAYER_HPP_ +#define CAFFE_BASE_CONVOLUTION_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" +#include "caffe/util/im2col.hpp" + +namespace caffe { + +/** + * @brief Abstract base class that factors out the BLAS code common to + * ConvolutionLayer and DeconvolutionLayer. + */ +template +class BaseConvolutionLayer : public Layer { + public: + explicit BaseConvolutionLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline int MinBottomBlobs() const { return 1; } + virtual inline int MinTopBlobs() const { return 1; } + virtual inline bool EqualNumBottomTopBlobs() const { return true; } + + protected: + // Helper functions that abstract away the column buffer and gemm arguments. + // The last argument in forward_cpu_gemm is so that we can skip the im2col if + // we just called weight_cpu_gemm with the same input. + void forward_cpu_gemm(const Dtype* input, const Dtype* weights, + Dtype* output, bool skip_im2col = false); + void forward_cpu_bias(Dtype* output, const Dtype* bias); + void backward_cpu_gemm(const Dtype* input, const Dtype* weights, + Dtype* output); + void weight_cpu_gemm(const Dtype* input, const Dtype* output, Dtype* + weights); + void backward_cpu_bias(Dtype* bias, const Dtype* input); + +#ifndef CPU_ONLY + void forward_gpu_gemm(const Dtype* col_input, const Dtype* weights, + Dtype* output, bool skip_im2col = false); + void forward_gpu_bias(Dtype* output, const Dtype* bias); + void backward_gpu_gemm(const Dtype* input, const Dtype* weights, + Dtype* col_output); + void weight_gpu_gemm(const Dtype* col_input, const Dtype* output, Dtype* + weights); + void backward_gpu_bias(Dtype* bias, const Dtype* input); +#endif + + /// @brief The spatial dimensions of the input. + inline int input_shape(int i) { + return (*bottom_shape_)[channel_axis_ + i]; + } + // reverse_dimensions should return true iff we are implementing deconv, so + // that conv helpers know which dimensions are which. + virtual bool reverse_dimensions() = 0; + // Compute height_out_ and width_out_ from other parameters. + virtual void compute_output_shape() = 0; + + /// @brief The spatial dimensions of a filter kernel. + Blob kernel_shape_; + /// @brief The spatial dimensions of the stride. + Blob stride_; + /// @brief The spatial dimensions of the padding. + Blob pad_; + /// @brief The spatial dimensions of the dilation. + Blob dilation_; + /// @brief The spatial dimensions of the convolution input. + Blob conv_input_shape_; + /// @brief The spatial dimensions of the col_buffer. + vector col_buffer_shape_; + /// @brief The spatial dimensions of the output. + vector output_shape_; + const vector* bottom_shape_; + + int num_spatial_axes_; + int bottom_dim_; + int top_dim_; + + int channel_axis_; + int num_; + int channels_; + int group_; + int out_spatial_dim_; + int weight_offset_; + int num_output_; + bool bias_term_; + bool is_1x1_; + bool force_nd_im2col_; + + private: + // wrap im2col/col2im so we don't have to remember the (long) argument lists + inline void conv_im2col_cpu(const Dtype* data, Dtype* col_buff) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + im2col_cpu(data, conv_in_channels_, + conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2], + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], col_buff); + } else { + im2col_nd_cpu(data, num_spatial_axes_, conv_input_shape_.cpu_data(), + col_buffer_shape_.data(), kernel_shape_.cpu_data(), + pad_.cpu_data(), stride_.cpu_data(), dilation_.cpu_data(), col_buff); + } + } + inline void conv_col2im_cpu(const Dtype* col_buff, Dtype* data) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + col2im_cpu(col_buff, conv_in_channels_, + conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2], + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], data); + } else { + col2im_nd_cpu(col_buff, num_spatial_axes_, conv_input_shape_.cpu_data(), + col_buffer_shape_.data(), kernel_shape_.cpu_data(), + pad_.cpu_data(), stride_.cpu_data(), dilation_.cpu_data(), data); + } + } +#ifndef CPU_ONLY + inline void conv_im2col_gpu(const Dtype* data, Dtype* col_buff) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + im2col_gpu(data, conv_in_channels_, + conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2], + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], col_buff); + } else { + im2col_nd_gpu(data, num_spatial_axes_, num_kernels_im2col_, + conv_input_shape_.gpu_data(), col_buffer_.gpu_shape(), + kernel_shape_.gpu_data(), pad_.gpu_data(), + stride_.gpu_data(), dilation_.gpu_data(), col_buff); + } + } + inline void conv_col2im_gpu(const Dtype* col_buff, Dtype* data) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + col2im_gpu(col_buff, conv_in_channels_, + conv_input_shape_.cpu_data()[1], conv_input_shape_.cpu_data()[2], + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], data); + } else { + col2im_nd_gpu(col_buff, num_spatial_axes_, num_kernels_col2im_, + conv_input_shape_.gpu_data(), col_buffer_.gpu_shape(), + kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(), + dilation_.gpu_data(), data); + } + } +#endif + + int num_kernels_im2col_; + int num_kernels_col2im_; + int conv_out_channels_; + int conv_in_channels_; + int conv_out_spatial_dim_; + int kernel_dim_; + int col_offset_; + int output_offset_; + + Blob col_buffer_; + Blob bias_multiplier_; +}; + +} // namespace caffe + +#endif // CAFFE_BASE_CONVOLUTION_LAYER_HPP_ diff --git a/include/caffe/layers/base_data_layer.hpp b/include/caffe/layers/base_data_layer.hpp new file mode 100644 index 000000000..c8b6998c8 --- /dev/null +++ b/include/caffe/layers/base_data_layer.hpp @@ -0,0 +1,82 @@ +#ifndef CAFFE_DATA_LAYERS_HPP_ +#define CAFFE_DATA_LAYERS_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" +#include "caffe/util/blocking_queue.hpp" + +namespace caffe { + +/** + * @brief Provides base for data layers that feed blobs to the Net. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class BaseDataLayer : public Layer { + public: + explicit BaseDataLayer(const LayerParameter& param); + // LayerSetUp: implements common data layer setup functionality, and calls + // DataLayerSetUp to do special data layer setup for individual layer types. + // This method may not be overridden except by the BasePrefetchingDataLayer. + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void DataLayerSetUp(const vector*>& bottom, + const vector*>& top) {} + // Data layers have no bottoms, so reshaping is trivial. + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + + protected: + TransformationParameter transform_param_; + shared_ptr > data_transformer_; + bool output_labels_; +}; + +template +class Batch { + public: + Blob data_, label_; +}; + +template +class BasePrefetchingDataLayer : + public BaseDataLayer, public InternalThread { + public: + explicit BasePrefetchingDataLayer(const LayerParameter& param); + // LayerSetUp: implements common data layer setup functionality, and calls + // DataLayerSetUp to do special data layer setup for individual layer types. + // This method may not be overridden. + void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + protected: + virtual void InternalThreadEntry(); + virtual void load_batch(Batch* batch) = 0; + + vector > > prefetch_; + BlockingQueue*> prefetch_free_; + BlockingQueue*> prefetch_full_; + Batch* prefetch_current_; + + Blob transformed_data_; +}; + +} // namespace caffe + +#endif // CAFFE_DATA_LAYERS_HPP_ diff --git a/include/caffe/layers/batch_norm_layer.hpp b/include/caffe/layers/batch_norm_layer.hpp new file mode 100644 index 000000000..43f7b28be --- /dev/null +++ b/include/caffe/layers/batch_norm_layer.hpp @@ -0,0 +1,78 @@ +#ifndef CAFFE_BATCHNORM_LAYER_HPP_ +#define CAFFE_BATCHNORM_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Normalizes the input to have 0-mean and/or unit (1) variance across + * the batch. + * + * This layer computes Batch Normalization as described in [1]. For each channel + * in the data (i.e. axis 1), it subtracts the mean and divides by the variance, + * where both statistics are computed across both spatial dimensions and across + * the different examples in the batch. + * + * By default, during training time, the network is computing global + * mean/variance statistics via a running average, which is then used at test + * time to allow deterministic outputs for each input. You can manually toggle + * whether the network is accumulating or using the statistics via the + * use_global_stats option. For reference, these statistics are kept in the + * layer's three blobs: (0) mean, (1) variance, and (2) moving average factor. + * + * Note that the original paper also included a per-channel learned bias and + * scaling factor. To implement this in Caffe, define a `ScaleLayer` configured + * with `bias_term: true` after each `BatchNormLayer` to handle both the bias + * and scaling factor. + * + * [1] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network + * Training by Reducing Internal Covariate Shift." arXiv preprint + * arXiv:1502.03167 (2015). + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class BatchNormLayer : public Layer { + public: + explicit BatchNormLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "BatchNorm"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Blob mean_, variance_, temp_, x_norm_; + bool use_global_stats_; + Dtype moving_average_fraction_; + int channels_; + Dtype eps_; + + // extra temporarary variables is used to carry out sums/broadcasting + // using BLAS + Blob batch_sum_multiplier_; + Blob num_by_chans_; + Blob spatial_sum_multiplier_; +}; + +} // namespace caffe + +#endif // CAFFE_BATCHNORM_LAYER_HPP_ diff --git a/include/caffe/layers/batch_reindex_layer.hpp b/include/caffe/layers/batch_reindex_layer.hpp new file mode 100644 index 000000000..ebb3a567b --- /dev/null +++ b/include/caffe/layers/batch_reindex_layer.hpp @@ -0,0 +1,83 @@ +#ifndef CAFFE_BATCHREINDEX_LAYER_HPP_ +#define CAFFE_BATCHREINDEX_LAYER_HPP_ + +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Index into the input blob along its first axis. + * + * This layer can be used to select, reorder, and even replicate examples in a + * batch. The second blob is cast to int and treated as an index into the + * first axis of the first blob. + */ +template +class BatchReindexLayer : public Layer { + public: + explicit BatchReindexLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "BatchReindex"; } + virtual inline int ExactNumBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /** + * @param bottom input Blob vector (length 2+) + * -# @f$ (N \times ...) @f$ + * the inputs @f$ x_1 @f$ + * -# @f$ (M) @f$ + * the inputs @f$ x_2 @f$ + * @param top output Blob vector (length 1) + * -# @f$ (M \times ...) @f$: + * the reindexed array @f$ + * y = x_1[x_2] + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the reordered input. + * + * @param top output Blob vector (length 1), providing the error gradient + * with respect to the outputs + * -# @f$ (M \times ...) @f$: + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to concatenated outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2): + * - @f$ \frac{\partial E}{\partial y} @f$ is de-indexed (summing where + * required) back to the input x_1 + * - This layer cannot backprop to x_2, i.e. propagate_down[1] must be + * false. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + private: + struct pair_sort_first { + bool operator()(const std::pair &left, + const std::pair &right) { + return left.first < right.first; + } + }; + void check_batch_reindex(int initial_num, int final_num, + const Dtype* ridx_data); +}; + +} // namespace caffe + +#endif // CAFFE_BATCHREINDEX_LAYER_HPP_ diff --git a/include/caffe/layers/bias_layer.hpp b/include/caffe/layers/bias_layer.hpp new file mode 100644 index 000000000..9639c9cdc --- /dev/null +++ b/include/caffe/layers/bias_layer.hpp @@ -0,0 +1,54 @@ +#ifndef CAFFE_BIAS_LAYER_HPP_ +#define CAFFE_BIAS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Computes a sum of two input Blobs, with the shape of the latter Blob + * "broadcast" to match the shape of the former. Equivalent to tiling + * the latter Blob, then computing the elementwise sum. + * + * The second input may be omitted, in which case it's learned as a parameter + * of the layer. Note: in case bias and scaling are desired, both operations can + * be handled by `ScaleLayer` configured with `bias_term: true`. + */ +template +class BiasLayer : public Layer { + public: + explicit BiasLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Bias"; } + virtual inline int MinBottomBlobs() const { return 1; } + virtual inline int MaxBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + private: + Blob bias_multiplier_; + int outer_dim_, bias_dim_, inner_dim_, dim_; +}; + + + +} // namespace caffe + +#endif // CAFFE_BIAS_LAYER_HPP_ diff --git a/include/caffe/layers/bnll_layer.hpp b/include/caffe/layers/bnll_layer.hpp new file mode 100644 index 000000000..be07c7483 --- /dev/null +++ b/include/caffe/layers/bnll_layer.hpp @@ -0,0 +1,70 @@ +#ifndef CAFFE_BNLL_LAYER_HPP_ +#define CAFFE_BNLL_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Computes @f$ y = x + \log(1 + \exp(-x)) @f$ if @f$ x > 0 @f$; + * @f$ y = \log(1 + \exp(x)) @f$ otherwise. + * + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \left\{ + * \begin{array}{ll} + * x + \log(1 + \exp(-x)) & \mbox{if } x > 0 \\ + * \log(1 + \exp(x)) & \mbox{otherwise} + * \end{array} \right. + * @f$ + */ +template +class BNLLLayer : public NeuronLayer { + public: + explicit BNLLLayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual inline const char* type() const { return "BNLL"; } + + protected: + /// @copydoc BNLLLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the BNLL inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_BNLL_LAYER_HPP_ diff --git a/include/caffe/layers/concat_layer.hpp b/include/caffe/layers/concat_layer.hpp new file mode 100644 index 000000000..a15702491 --- /dev/null +++ b/include/caffe/layers/concat_layer.hpp @@ -0,0 +1,87 @@ +#ifndef CAFFE_CONCAT_LAYER_HPP_ +#define CAFFE_CONCAT_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Takes at least two Blob%s and concatenates them along either the num + * or channel dimension, outputting the result. + */ +template +class ConcatLayer : public Layer { + public: + explicit ConcatLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Concat"; } + virtual inline int MinBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /** + * @param bottom input Blob vector (length 2+) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x_1 @f$ + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x_2 @f$ + * -# ... + * - K @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x_K @f$ + * @param top output Blob vector (length 1) + * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or + * @f$ (N \times KC \times H \times W) @f$ if axis == 1: + * the concatenated output @f$ + * y = [\begin{array}{cccc} x_1 & x_2 & ... & x_K \end{array}] + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the concatenate inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (KN \times C \times H \times W) @f$ if axis == 0, or + * @f$ (N \times KC \times H \times W) @f$ if axis == 1: + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to concatenated outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length K), into which the top gradient + * @f$ \frac{\partial E}{\partial y} @f$ is deconcatenated back to the + * inputs @f$ + * \left[ \begin{array}{cccc} + * \frac{\partial E}{\partial x_1} & + * \frac{\partial E}{\partial x_2} & + * ... & + * \frac{\partial E}{\partial x_K} + * \end{array} \right] = + * \frac{\partial E}{\partial y} + * @f$ + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int count_; + int num_concats_; + int concat_input_size_; + int concat_axis_; +}; + +} // namespace caffe + +#endif // CAFFE_CONCAT_LAYER_HPP_ diff --git a/include/caffe/layers/contrastive_loss_layer.hpp b/include/caffe/layers/contrastive_loss_layer.hpp new file mode 100644 index 000000000..e890afb82 --- /dev/null +++ b/include/caffe/layers/contrastive_loss_layer.hpp @@ -0,0 +1,101 @@ +#ifndef CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_ +#define CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the contrastive loss @f$ + * E = \frac{1}{2N} \sum\limits_{n=1}^N \left(y\right) d^2 + + * \left(1-y\right) \max \left(margin-d, 0\right)^2 + * @f$ where @f$ + * d = \left| \left| a_n - b_n \right| \right|_2 @f$. This can be + * used to train siamese networks. + * + * @param bottom input Blob vector (length 3) + * -# @f$ (N \times C \times 1 \times 1) @f$ + * the features @f$ a \in [-\infty, +\infty]@f$ + * -# @f$ (N \times C \times 1 \times 1) @f$ + * the features @f$ b \in [-\infty, +\infty]@f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the binary similarity @f$ s \in [0, 1]@f$ + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed contrastive loss: @f$ E = + * \frac{1}{2N} \sum\limits_{n=1}^N \left(y\right) d^2 + + * \left(1-y\right) \max \left(margin-d, 0\right)^2 + * @f$ where @f$ + * d = \left| \left| a_n - b_n \right| \right|_2 @f$. + * This can be used to train siamese networks. + */ +template +class ContrastiveLossLayer : public LossLayer { + public: + explicit ContrastiveLossLayer(const LayerParameter& param) + : LossLayer(param), diff_() {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline int ExactNumBottomBlobs() const { return 3; } + virtual inline const char* type() const { return "ContrastiveLoss"; } + /** + * Unlike most loss layers, in the ContrastiveLossLayer we can backpropagate + * to the first two inputs. + */ + virtual inline bool AllowForceBackward(const int bottom_index) const { + return bottom_index != 2; + } + + protected: + /// @copydoc ContrastiveLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the Contrastive error gradient w.r.t. the inputs. + * + * Computes the gradients with respect to the two input vectors (bottom[0] and + * bottom[1]), but not the similarity label (bottom[2]). + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times 1 \times 1) @f$ + * the features @f$a@f$; Backward fills their diff with + * gradients if propagate_down[0] + * -# @f$ (N \times C \times 1 \times 1) @f$ + * the features @f$b@f$; Backward fills their diff with gradients if + * propagate_down[1] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Blob diff_; // cached for backward pass + Blob dist_sq_; // cached for backward pass + Blob diff_sq_; // tmp storage for gpu forward pass + Blob summer_vec_; // tmp storage for gpu forward pass +}; + +} // namespace caffe + +#endif // CAFFE_CONTRASTIVE_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/conv_layer.hpp b/include/caffe/layers/conv_layer.hpp new file mode 100644 index 000000000..93a618ddd --- /dev/null +++ b/include/caffe/layers/conv_layer.hpp @@ -0,0 +1,84 @@ +#ifndef CAFFE_CONV_LAYER_HPP_ +#define CAFFE_CONV_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/base_conv_layer.hpp" + +namespace caffe { + +/** + * @brief Convolves the input image with a bank of learned filters, + * and (optionally) adds biases. + * + * Caffe convolves by reduction to matrix multiplication. This achieves + * high-throughput and generality of input and filter dimensions but comes at + * the cost of memory for matrices. This makes use of efficiency in BLAS. + * + * The input is "im2col" transformed to a channel K' x H x W data matrix + * for multiplication with the N x K' x H x W filter matrix to yield a + * N' x H x W output matrix that is then "col2im" restored. K' is the + * input channel * kernel height * kernel width dimension of the unrolled + * inputs so that the im2col matrix has a column for each input region to + * be filtered. col2im restores the output spatial structure by rolling up + * the output channel N' columns of the output matrix. + */ +template +class ConvolutionLayer : public BaseConvolutionLayer { + public: + /** + * @param param provides ConvolutionParameter convolution_param, + * with ConvolutionLayer options: + * - num_output. The number of filters. + * - kernel_size / kernel_h / kernel_w. The filter dimensions, given by + * kernel_size for square filters or kernel_h and kernel_w for rectangular + * filters. + * - stride / stride_h / stride_w (\b optional, default 1). The filter + * stride, given by stride_size for equal dimensions or stride_h and stride_w + * for different strides. By default the convolution is dense with stride 1. + * - pad / pad_h / pad_w (\b optional, default 0). The zero-padding for + * convolution, given by pad for equal dimensions or pad_h and pad_w for + * different padding. Input padding is computed implicitly instead of + * actually padding. + * - dilation (\b optional, default 1). The filter + * dilation, given by dilation_size for equal dimensions for different + * dilation. By default the convolution has dilation 1. + * - group (\b optional, default 1). The number of filter groups. Group + * convolution is a method for reducing parameterization by selectively + * connecting input and output channels. The input and output channel dimensions must be divisible + * by the number of groups. For group @f$ \geq 1 @f$, the + * convolutional filters' input and output channels are separated s.t. each + * group takes 1 / group of the input channels and makes 1 / group of the + * output channels. Concretely 4 input channels, 8 output channels, and + * 2 groups separate input channels 1-2 and output channels 1-4 into the + * first group and input channels 3-4 and output channels 5-8 into the second + * group. + * - bias_term (\b optional, default true). Whether to have a bias. + * - engine: convolution has CAFFE (matrix multiplication) and CUDNN (library + * kernels + stream parallelism) engines. + */ + explicit ConvolutionLayer(const LayerParameter& param) + : BaseConvolutionLayer(param) {} + + virtual inline const char* type() const { return "Convolution"; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual inline bool reverse_dimensions() { return false; } + virtual void compute_output_shape(); +}; + +} // namespace caffe + +#endif // CAFFE_CONV_LAYER_HPP_ diff --git a/include/caffe/layers/crop_layer.hpp b/include/caffe/layers/crop_layer.hpp new file mode 100644 index 000000000..5219fa5cb --- /dev/null +++ b/include/caffe/layers/crop_layer.hpp @@ -0,0 +1,78 @@ +#ifndef CAFFE_CROP_LAYER_HPP_ +#define CAFFE_CROP_LAYER_HPP_ + +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Takes a Blob and crop it, to the shape specified by the second input + * Blob, across all dimensions after the specified axis. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ + +template +class CropLayer : public Layer { + public: + explicit CropLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Crop"; } + virtual inline int ExactNumBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Blob offsets; + Blob src_strides_; + Blob dest_strides_; + + private: + // Recursive copy function. + void crop_copy(const vector*>& bottom, + const vector*>& top, + const int* offsets, + vector indices, + int cur_dim, + const Dtype* src_data, + Dtype* dest_data, + bool is_forward); + + // Recursive copy function: this is similar to crop_copy() but loops over all + // but the last two dimensions to allow for ND cropping while still relying on + // a CUDA kernel for the innermost two dimensions for performance reasons. An + // alterantive implementation could rely on the kernel more by passing + // offsets, but this is problematic because of its variable length. + // Since in the standard (N,C,W,H) case N,C are usually not cropped a speedup + // could be achieved by not looping the application of the copy_kernel around + // these dimensions. + void crop_copy_gpu(const vector*>& bottom, + const vector*>& top, + const vector& offsets, + vector indices, + int cur_dim, + const Dtype* src_data, + Dtype* dest_data, + bool is_forward); +}; +} // namespace caffe + +#endif // CAFFE_CROP_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_conv_layer.hpp b/include/caffe/layers/cudnn_conv_layer.hpp new file mode 100644 index 000000000..31fe49a71 --- /dev/null +++ b/include/caffe/layers/cudnn_conv_layer.hpp @@ -0,0 +1,72 @@ +#ifndef CAFFE_CUDNN_CONV_LAYER_HPP_ +#define CAFFE_CUDNN_CONV_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/conv_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/* + * @brief cuDNN implementation of ConvolutionLayer. + * Fallback to ConvolutionLayer for CPU mode. + * + * cuDNN accelerates convolution through forward kernels for filtering and bias + * plus backward kernels for the gradient w.r.t. the filters, biases, and + * inputs. Caffe + cuDNN further speeds up the computation through forward + * parallelism across groups and backward parallelism across gradients. + * + * The CUDNN engine does not have memory overhead for matrix buffers. For many + * input and filter regimes the CUDNN engine is faster than the CAFFE engine, + * but for fully-convolutional models and large inputs the CAFFE engine can be + * faster as long as it fits in memory. +*/ +template +class CuDNNConvolutionLayer : public ConvolutionLayer { + public: + explicit CuDNNConvolutionLayer(const LayerParameter& param) + : ConvolutionLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNConvolutionLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t* handle_; + cudaStream_t* stream_; + + // algorithms for forward and backwards convolutions + cudnnConvolutionFwdAlgo_t *fwd_algo_; + cudnnConvolutionBwdFilterAlgo_t *bwd_filter_algo_; + cudnnConvolutionBwdDataAlgo_t *bwd_data_algo_; + + vector bottom_descs_, top_descs_; + cudnnTensorDescriptor_t bias_desc_; + cudnnFilterDescriptor_t filter_desc_; + vector conv_descs_; + int bottom_offset_, top_offset_, bias_offset_; + + size_t *workspace_fwd_sizes_; + size_t *workspace_bwd_data_sizes_; + size_t *workspace_bwd_filter_sizes_; + size_t workspaceSizeInBytes; // size of underlying storage + void *workspaceData; // underlying storage + void **workspace; // aliases into workspaceData +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_CONV_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_lcn_layer.hpp b/include/caffe/layers/cudnn_lcn_layer.hpp new file mode 100644 index 000000000..74cf4775e --- /dev/null +++ b/include/caffe/layers/cudnn_lcn_layer.hpp @@ -0,0 +1,49 @@ +#ifndef CAFFE_CUDNN_LCN_LAYER_HPP_ +#define CAFFE_CUDNN_LCN_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/lrn_layer.hpp" +#include "caffe/layers/power_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +template +class CuDNNLCNLayer : public LRNLayer { + public: + explicit CuDNNLCNLayer(const LayerParameter& param) + : LRNLayer(param), handles_setup_(false), tempDataSize(0), + tempData1(NULL), tempData2(NULL) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNLCNLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnLRNDescriptor_t norm_desc_; + cudnnTensorDescriptor_t bottom_desc_, top_desc_; + + int size_, pre_pad_; + Dtype alpha_, beta_, k_; + + size_t tempDataSize; + void *tempData1, *tempData2; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_LCN_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_lrn_layer.hpp b/include/caffe/layers/cudnn_lrn_layer.hpp new file mode 100644 index 000000000..000ccc365 --- /dev/null +++ b/include/caffe/layers/cudnn_lrn_layer.hpp @@ -0,0 +1,44 @@ +#ifndef CAFFE_CUDNN_LRN_LAYER_HPP_ +#define CAFFE_CUDNN_LRN_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/lrn_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +template +class CuDNNLRNLayer : public LRNLayer { + public: + explicit CuDNNLRNLayer(const LayerParameter& param) + : LRNLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNLRNLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnLRNDescriptor_t norm_desc_; + cudnnTensorDescriptor_t bottom_desc_, top_desc_; + + int size_; + Dtype alpha_, beta_, k_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_LRN_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_pooling_layer.hpp b/include/caffe/layers/cudnn_pooling_layer.hpp new file mode 100644 index 000000000..6d0db47d6 --- /dev/null +++ b/include/caffe/layers/cudnn_pooling_layer.hpp @@ -0,0 +1,49 @@ +#ifndef CAFFE_CUDNN_POOLING_LAYER_HPP_ +#define CAFFE_CUDNN_POOLING_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/pooling_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/* + * @brief cuDNN implementation of PoolingLayer. + * Fallback to PoolingLayer for CPU mode. +*/ +template +class CuDNNPoolingLayer : public PoolingLayer { + public: + explicit CuDNNPoolingLayer(const LayerParameter& param) + : PoolingLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNPoolingLayer(); + // Currently, cuDNN does not support the extra top blob. + virtual inline int MinTopBlobs() const { return -1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnTensorDescriptor_t bottom_desc_, top_desc_; + cudnnPoolingDescriptor_t pooling_desc_; + cudnnPoolingMode_t mode_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_POOLING_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_relu_layer.hpp b/include/caffe/layers/cudnn_relu_layer.hpp new file mode 100644 index 000000000..a1cb29e7c --- /dev/null +++ b/include/caffe/layers/cudnn_relu_layer.hpp @@ -0,0 +1,46 @@ +#ifndef CAFFE_CUDNN_RELU_LAYER_HPP_ +#define CAFFE_CUDNN_RELU_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" +#include "caffe/layers/relu_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/** + * @brief CuDNN acceleration of ReLULayer. + */ +template +class CuDNNReLULayer : public ReLULayer { + public: + explicit CuDNNReLULayer(const LayerParameter& param) + : ReLULayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNReLULayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnTensorDescriptor_t bottom_desc_; + cudnnTensorDescriptor_t top_desc_; + cudnnActivationDescriptor_t activ_desc_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_RELU_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_sigmoid_layer.hpp b/include/caffe/layers/cudnn_sigmoid_layer.hpp new file mode 100644 index 000000000..7b3486f8a --- /dev/null +++ b/include/caffe/layers/cudnn_sigmoid_layer.hpp @@ -0,0 +1,46 @@ +#ifndef CAFFE_CUDNN_SIGMOID_LAYER_HPP_ +#define CAFFE_CUDNN_SIGMOID_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" +#include "caffe/layers/sigmoid_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/** + * @brief CuDNN acceleration of SigmoidLayer. + */ +template +class CuDNNSigmoidLayer : public SigmoidLayer { + public: + explicit CuDNNSigmoidLayer(const LayerParameter& param) + : SigmoidLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNSigmoidLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnTensorDescriptor_t bottom_desc_; + cudnnTensorDescriptor_t top_desc_; + cudnnActivationDescriptor_t activ_desc_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_SIGMOID_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_softmax_layer.hpp b/include/caffe/layers/cudnn_softmax_layer.hpp new file mode 100644 index 000000000..174368e41 --- /dev/null +++ b/include/caffe/layers/cudnn_softmax_layer.hpp @@ -0,0 +1,45 @@ +#ifndef CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ +#define CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/softmax_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/** + * @brief cuDNN implementation of SoftmaxLayer. + * Fallback to SoftmaxLayer for CPU mode. + */ +template +class CuDNNSoftmaxLayer : public SoftmaxLayer { + public: + explicit CuDNNSoftmaxLayer(const LayerParameter& param) + : SoftmaxLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNSoftmaxLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnTensorDescriptor_t bottom_desc_; + cudnnTensorDescriptor_t top_desc_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ diff --git a/include/caffe/layers/cudnn_tanh_layer.hpp b/include/caffe/layers/cudnn_tanh_layer.hpp new file mode 100644 index 000000000..59e758d70 --- /dev/null +++ b/include/caffe/layers/cudnn_tanh_layer.hpp @@ -0,0 +1,46 @@ +#ifndef CAFFE_CUDNN_TANH_LAYER_HPP_ +#define CAFFE_CUDNN_TANH_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" +#include "caffe/layers/tanh_layer.hpp" + +namespace caffe { + +#ifdef USE_CUDNN +/** + * @brief CuDNN acceleration of TanHLayer. + */ +template +class CuDNNTanHLayer : public TanHLayer { + public: + explicit CuDNNTanHLayer(const LayerParameter& param) + : TanHLayer(param), handles_setup_(false) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual ~CuDNNTanHLayer(); + + protected: + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool handles_setup_; + cudnnHandle_t handle_; + cudnnTensorDescriptor_t bottom_desc_; + cudnnTensorDescriptor_t top_desc_; + cudnnActivationDescriptor_t activ_desc_; +}; +#endif + +} // namespace caffe + +#endif // CAFFE_CUDNN_TANH_LAYER_HPP_ diff --git a/include/caffe/layers/data_layer.hpp b/include/caffe/layers/data_layer.hpp new file mode 100644 index 000000000..667a4ae43 --- /dev/null +++ b/include/caffe/layers/data_layer.hpp @@ -0,0 +1,40 @@ +#ifndef CAFFE_DATA_LAYER_HPP_ +#define CAFFE_DATA_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/proto/caffe.pb.h" +#include "caffe/util/db.hpp" + +namespace caffe { + +template +class DataLayer : public BasePrefetchingDataLayer { + public: + explicit DataLayer(const LayerParameter& param); + virtual ~DataLayer(); + virtual void DataLayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual inline const char* type() const { return "Data"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int MinTopBlobs() const { return 1; } + virtual inline int MaxTopBlobs() const { return 2; } + + protected: + void Next(); + bool Skip(); + virtual void load_batch(Batch* batch); + + shared_ptr db_; + shared_ptr cursor_; + uint64_t offset_; +}; + +} // namespace caffe + +#endif // CAFFE_DATA_LAYER_HPP_ diff --git a/include/caffe/layers/deconv_layer.hpp b/include/caffe/layers/deconv_layer.hpp new file mode 100644 index 000000000..23ae887e6 --- /dev/null +++ b/include/caffe/layers/deconv_layer.hpp @@ -0,0 +1,51 @@ +#ifndef CAFFE_DECONV_LAYER_HPP_ +#define CAFFE_DECONV_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/base_conv_layer.hpp" + +namespace caffe { + +/** + * @brief Convolve the input with a bank of learned filters, and (optionally) + * add biases, treating filters and convolution parameters in the + * opposite sense as ConvolutionLayer. + * + * ConvolutionLayer computes each output value by dotting an input window with + * a filter; DeconvolutionLayer multiplies each input value by a filter + * elementwise, and sums over the resulting output windows. In other words, + * DeconvolutionLayer is ConvolutionLayer with the forward and backward passes + * reversed. DeconvolutionLayer reuses ConvolutionParameter for its + * parameters, but they take the opposite sense as in ConvolutionLayer (so + * padding is removed from the output rather than added to the input, and + * stride results in upsampling rather than downsampling). + */ +template +class DeconvolutionLayer : public BaseConvolutionLayer { + public: + explicit DeconvolutionLayer(const LayerParameter& param) + : BaseConvolutionLayer(param) {} + + virtual inline const char* type() const { return "Deconvolution"; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual inline bool reverse_dimensions() { return true; } + virtual void compute_output_shape(); +}; + +} // namespace caffe + +#endif // CAFFE_DECONV_LAYER_HPP_ diff --git a/include/caffe/layers/dropout_layer.hpp b/include/caffe/layers/dropout_layer.hpp new file mode 100644 index 000000000..e83143bc3 --- /dev/null +++ b/include/caffe/layers/dropout_layer.hpp @@ -0,0 +1,80 @@ +#ifndef CAFFE_DROPOUT_LAYER_HPP_ +#define CAFFE_DROPOUT_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief During training only, sets a random portion of @f$x@f$ to 0, adjusting + * the rest of the vector magnitude accordingly. + * + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ y = |x| @f$ + */ +template +class DropoutLayer : public NeuronLayer { + public: + /** + * @param param provides DropoutParameter dropout_param, + * with DropoutLayer options: + * - dropout_ratio (\b optional, default 0.5). + * Sets the probability @f$ p @f$ that any given unit is dropped. + */ + explicit DropoutLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Dropout"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs. At training time, we have @f$ + * y_{\mbox{train}} = \left\{ + * \begin{array}{ll} + * \frac{x}{1 - p} & \mbox{if } u > p \\ + * 0 & \mbox{otherwise} + * \end{array} \right. + * @f$, where @f$ u \sim U(0, 1)@f$ is generated independently for each + * input at each iteration. At test time, we simply have + * @f$ y_{\mbox{test}} = \mathbb{E}[y_{\mbox{train}}] = x @f$. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// when divided by UINT_MAX, the randomly generated values @f$u\sim U(0,1)@f$ + Blob rand_vec_; + /// the probability @f$ p @f$ of dropping any input + Dtype threshold_; + /// the scale for undropped inputs at train time @f$ 1 / (1 - p) @f$ + Dtype scale_; + unsigned int uint_thres_; +}; + +} // namespace caffe + +#endif // CAFFE_DROPOUT_LAYER_HPP_ diff --git a/include/caffe/layers/dummy_data_layer.hpp b/include/caffe/layers/dummy_data_layer.hpp new file mode 100644 index 000000000..13a63d47e --- /dev/null +++ b/include/caffe/layers/dummy_data_layer.hpp @@ -0,0 +1,47 @@ +#ifndef CAFFE_DUMMY_DATA_LAYER_HPP_ +#define CAFFE_DUMMY_DATA_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/filler.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Provides data to the Net generated by a Filler. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class DummyDataLayer : public Layer { + public: + explicit DummyDataLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + // Data layers have no bottoms, so reshaping is trivial. + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual inline const char* type() const { return "DummyData"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + + vector > > fillers_; + vector refill_; +}; + +} // namespace caffe + +#endif // CAFFE_DUMMY_DATA_LAYER_HPP_ diff --git a/include/caffe/layers/eltwise_layer.hpp b/include/caffe/layers/eltwise_layer.hpp new file mode 100644 index 000000000..091de8343 --- /dev/null +++ b/include/caffe/layers/eltwise_layer.hpp @@ -0,0 +1,51 @@ +#ifndef CAFFE_ELTWISE_LAYER_HPP_ +#define CAFFE_ELTWISE_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Compute elementwise operations, such as product and sum, + * along multiple input Blobs. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class EltwiseLayer : public Layer { + public: + explicit EltwiseLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Eltwise"; } + virtual inline int MinBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + EltwiseParameter_EltwiseOp op_; + vector coeffs_; + Blob max_idx_; + + bool stable_prod_grad_; +}; + +} // namespace caffe + +#endif // CAFFE_ELTWISE_LAYER_HPP_ diff --git a/include/caffe/layers/elu_layer.hpp b/include/caffe/layers/elu_layer.hpp new file mode 100644 index 000000000..0796e8980 --- /dev/null +++ b/include/caffe/layers/elu_layer.hpp @@ -0,0 +1,86 @@ +#ifndef CAFFE_ELU_LAYER_HPP_ +#define CAFFE_ELU_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Exponential Linear Unit non-linearity @f$ + * y = \left\{ + * \begin{array}{lr} + * x & \mathrm{if} \; x > 0 \\ + * \alpha (\exp(x)-1) & \mathrm{if} \; x \le 0 + * \end{array} \right. + * @f$. + */ +template +class ELULayer : public NeuronLayer { + public: + /** + * @param param provides ELUParameter elu_param, + * with ELULayer options: + * - alpha (\b optional, default 1). + * the value @f$ \alpha @f$ by which controls saturation for negative inputs. + */ + explicit ELULayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual inline const char* type() const { return "ELU"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \left\{ + * \begin{array}{lr} + * x & \mathrm{if} \; x > 0 \\ + * \alpha (\exp(x)-1) & \mathrm{if} \; x \le 0 + * \end{array} \right. + * @f$. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the ELU inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = \left\{ + * \begin{array}{lr} + * 1 & \mathrm{if} \; x > 0 \\ + * y + \alpha & \mathrm{if} \; x \le 0 + * \end{array} \right. + * @f$ if propagate_down[0]. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + + +} // namespace caffe + +#endif // CAFFE_ELU_LAYER_HPP_ diff --git a/include/caffe/layers/embed_layer.hpp b/include/caffe/layers/embed_layer.hpp new file mode 100644 index 000000000..36137a625 --- /dev/null +++ b/include/caffe/layers/embed_layer.hpp @@ -0,0 +1,52 @@ +#ifndef CAFFE_EMBED_LAYER_HPP_ +#define CAFFE_EMBED_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief A layer for learning "embeddings" of one-hot vector input. + * Equivalent to an InnerProductLayer with one-hot vectors as input, but + * for efficiency the input is the "hot" index of each column itself. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class EmbedLayer : public Layer { + public: + explicit EmbedLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Embed"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int M_; + int K_; + int N_; + bool bias_term_; + Blob bias_multiplier_; +}; + +} // namespace caffe + +#endif // CAFFE_EMBED_LAYER_HPP_ diff --git a/include/caffe/layers/euclidean_loss_layer.hpp b/include/caffe/layers/euclidean_loss_layer.hpp new file mode 100644 index 000000000..f564569e2 --- /dev/null +++ b/include/caffe/layers/euclidean_loss_layer.hpp @@ -0,0 +1,107 @@ +#ifndef CAFFE_EUCLIDEAN_LOSS_LAYER_HPP_ +#define CAFFE_EUCLIDEAN_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the Euclidean (L2) loss @f$ + * E = \frac{1}{2N} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n + * \right| \right|_2^2 @f$ for real-valued regression tasks. + * + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ \hat{y} \in [-\infty, +\infty]@f$ + * -# @f$ (N \times C \times H \times W) @f$ + * the targets @f$ y \in [-\infty, +\infty]@f$ + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed Euclidean loss: @f$ E = + * \frac{1}{2n} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n + * \right| \right|_2^2 @f$ + * + * This can be used for least-squares regression tasks. An InnerProductLayer + * input to a EuclideanLossLayer exactly formulates a linear least squares + * regression problem. With non-zero weight decay the problem becomes one of + * ridge regression -- see src/caffe/test/test_sgd_solver.cpp for a concrete + * example wherein we check that the gradients computed for a Net with exactly + * this structure match hand-computed gradient formulas for ridge regression. + * + * (Note: Caffe, and SGD in general, is certainly \b not the best way to solve + * linear least squares problems! We use it only as an instructive example.) + */ +template +class EuclideanLossLayer : public LossLayer { + public: + explicit EuclideanLossLayer(const LayerParameter& param) + : LossLayer(param), diff_() {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "EuclideanLoss"; } + /** + * Unlike most loss layers, in the EuclideanLossLayer we can backpropagate + * to both inputs -- override to return true and always allow force_backward. + */ + virtual inline bool AllowForceBackward(const int bottom_index) const { + return true; + } + + protected: + /// @copydoc EuclideanLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the Euclidean error gradient w.r.t. the inputs. + * + * Unlike other children of LossLayer, EuclideanLossLayer \b can compute + * gradients with respect to the label inputs bottom[1] (but still only will + * if propagate_down[1] is set, due to being produced by learnable parameters + * or if force_backward is set). In fact, this layer is "commutative" -- the + * result is the same regardless of the order of the two bottoms. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$\hat{y}@f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial \hat{y}} = + * \frac{1}{n} \sum\limits_{n=1}^N (\hat{y}_n - y_n) + * @f$ if propagate_down[0] + * -# @f$ (N \times C \times H \times W) @f$ + * the targets @f$y@f$; Backward fills their diff with gradients + * @f$ \frac{\partial E}{\partial y} = + * \frac{1}{n} \sum\limits_{n=1}^N (y_n - \hat{y}_n) + * @f$ if propagate_down[1] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Blob diff_; +}; + +} // namespace caffe + +#endif // CAFFE_EUCLIDEAN_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/exp_layer.hpp b/include/caffe/layers/exp_layer.hpp new file mode 100644 index 000000000..9fc8c396a --- /dev/null +++ b/include/caffe/layers/exp_layer.hpp @@ -0,0 +1,80 @@ +#ifndef CAFFE_EXP_LAYER_HPP_ +#define CAFFE_EXP_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Computes @f$ y = \gamma ^ {\alpha x + \beta} @f$, + * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, + * and base @f$ \gamma @f$. + */ +template +class ExpLayer : public NeuronLayer { + public: + /** + * @param param provides ExpParameter exp_param, + * with ExpLayer options: + * - scale (\b optional, default 1) the scale @f$ \alpha @f$ + * - shift (\b optional, default 0) the shift @f$ \beta @f$ + * - base (\b optional, default -1 for a value of @f$ e \approx 2.718 @f$) + * the base @f$ \gamma @f$ + */ + explicit ExpLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Exp"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \gamma ^ {\alpha x + \beta} + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the exp inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = + * \frac{\partial E}{\partial y} y \alpha \log_e(gamma) + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Dtype inner_scale_, outer_scale_; +}; + +} // namespace caffe + +#endif // CAFFE_EXP_LAYER_HPP_ diff --git a/include/caffe/layers/filter_layer.hpp b/include/caffe/layers/filter_layer.hpp new file mode 100644 index 000000000..e040e6661 --- /dev/null +++ b/include/caffe/layers/filter_layer.hpp @@ -0,0 +1,77 @@ +#ifndef CAFFE_FILTER_LAYER_HPP_ +#define CAFFE_FILTER_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Takes two+ Blobs, interprets last Blob as a selector and + * filter remaining Blobs accordingly with selector data (0 means that + * the corresponding item has to be filtered, non-zero means that corresponding + * item needs to stay). + */ +template +class FilterLayer : public Layer { + public: + explicit FilterLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Filter"; } + virtual inline int MinBottomBlobs() const { return 2; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + /** + * @param bottom input Blob vector (length 2+) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs to be filtered @f$ x_1 @f$ + * -# ... + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs to be filtered @f$ x_K @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the selector blob + * @param top output Blob vector (length 1+) + * -# @f$ (S \times C \times H \times W) @f$ () + * the filtered output @f$ x_1 @f$ + * where S is the number of items + * that haven't been filtered + * @f$ (S \times C \times H \times W) @f$ + * the filtered output @f$ x_K @f$ + * where S is the number of items + * that haven't been filtered + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the forwarded inputs. + * + * @param top output Blob vector (length 1+), providing the error gradient with + * respect to the outputs + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 2+), into which the top error + * gradient is copied + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool first_reshape_; + vector indices_to_forward_; +}; + +} // namespace caffe + +#endif // CAFFE_FILTER_LAYER_HPP_ diff --git a/include/caffe/layers/flatten_layer.hpp b/include/caffe/layers/flatten_layer.hpp new file mode 100644 index 000000000..e494bbb58 --- /dev/null +++ b/include/caffe/layers/flatten_layer.hpp @@ -0,0 +1,61 @@ +#ifndef CAFFE_FLATTEN_LAYER_HPP_ +#define CAFFE_FLATTEN_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Reshapes the input Blob into flat vectors. + * + * Note: because this layer does not change the input values -- merely the + * dimensions -- it can simply copy the input. The copy happens "virtually" + * (thus taking effectively 0 real time) by setting, in Forward, the data + * pointer of the top Blob to that of the bottom Blob (see Blob::ShareData), + * and in Backward, the diff pointer of the bottom Blob to that of the top Blob + * (see Blob::ShareDiff). + */ +template +class FlattenLayer : public Layer { + public: + explicit FlattenLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Flatten"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /** + * @param bottom input Blob vector (length 2+) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs + * @param top output Blob vector (length 1) + * -# @f$ (N \times CHW \times 1 \times 1) @f$ + * the outputs -- i.e., the (virtually) copied, flattened inputs + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the concatenate inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length K), into which the top error + * gradient is (virtually) copied + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_FLATTEN_LAYER_HPP_ diff --git a/include/caffe/layers/hdf5_data_layer.hpp b/include/caffe/layers/hdf5_data_layer.hpp new file mode 100644 index 000000000..601b36c6b --- /dev/null +++ b/include/caffe/layers/hdf5_data_layer.hpp @@ -0,0 +1,64 @@ +#ifndef CAFFE_HDF5_DATA_LAYER_HPP_ +#define CAFFE_HDF5_DATA_LAYER_HPP_ + +#include "hdf5.h" + +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/base_data_layer.hpp" + +namespace caffe { + +/** + * @brief Provides data to the Net from HDF5 files. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class HDF5DataLayer : public Layer { + public: + explicit HDF5DataLayer(const LayerParameter& param) + : Layer(param), offset_() {} + virtual ~HDF5DataLayer(); + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + // Data layers have no bottoms, so reshaping is trivial. + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual inline const char* type() const { return "HDF5Data"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + void Next(); + bool Skip(); + + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + virtual void LoadHDF5FileData(const char* filename); + + std::vector hdf_filenames_; + unsigned int num_files_; + unsigned int current_file_; + hsize_t current_row_; + std::vector > > hdf_blobs_; + std::vector data_permutation_; + std::vector file_permutation_; + uint64_t offset_; +}; + +} // namespace caffe + +#endif // CAFFE_HDF5_DATA_LAYER_HPP_ diff --git a/include/caffe/layers/hdf5_output_layer.hpp b/include/caffe/layers/hdf5_output_layer.hpp new file mode 100644 index 000000000..061e279d7 --- /dev/null +++ b/include/caffe/layers/hdf5_output_layer.hpp @@ -0,0 +1,62 @@ +#ifndef CAFFE_HDF5_OUTPUT_LAYER_HPP_ +#define CAFFE_HDF5_OUTPUT_LAYER_HPP_ + +#include "hdf5.h" + +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +#define HDF5_DATA_DATASET_NAME "data" +#define HDF5_DATA_LABEL_NAME "label" + +/** + * @brief Write blobs to disk as HDF5 files. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class HDF5OutputLayer : public Layer { + public: + explicit HDF5OutputLayer(const LayerParameter& param) + : Layer(param), file_opened_(false) {} + virtual ~HDF5OutputLayer(); + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + // Data layers have no bottoms, so reshaping is trivial. + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual inline const char* type() const { return "HDF5Output"; } + // TODO: no limit on the number of blobs + virtual inline int ExactNumBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 0; } + + inline std::string file_name() const { return file_name_; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void SaveBlobs(); + + bool file_opened_; + std::string file_name_; + hid_t file_id_; + Blob data_blob_; + Blob label_blob_; +}; + +} // namespace caffe + +#endif // CAFFE_HDF5_OUTPUT_LAYER_HPP_ diff --git a/include/caffe/layers/hinge_loss_layer.hpp b/include/caffe/layers/hinge_loss_layer.hpp new file mode 100644 index 000000000..54e42bd44 --- /dev/null +++ b/include/caffe/layers/hinge_loss_layer.hpp @@ -0,0 +1,104 @@ +#ifndef CAFFE_HINGE_LOSS_LAYER_HPP_ +#define CAFFE_HINGE_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the hinge loss for a one-of-many classification task. + * + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ t @f$, a Blob with values in + * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of + * the @f$ K = CHW @f$ classes. In an SVM, @f$ t @f$ is the result of + * taking the inner product @f$ X^T W @f$ of the D-dimensional features + * @f$ X \in \mathcal{R}^{D \times N} @f$ and the learned hyperplane + * parameters @f$ W \in \mathcal{R}^{D \times K} @f$, so a Net with just + * an InnerProductLayer (with num_output = D) providing predictions to a + * HingeLossLayer and no other learnable parameters or losses is + * equivalent to an SVM. + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels @f$ l @f$, an integer-valued Blob with values + * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ + * indicating the correct class label among the @f$ K @f$ classes + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed hinge loss: @f$ E = + * \frac{1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^K + * [\max(0, 1 - \delta\{l_n = k\} t_{nk})] ^ p + * @f$, for the @f$ L^p @f$ norm + * (defaults to @f$ p = 1 @f$, the L1 norm; L2 norm, as in L2-SVM, + * is also available), and @f$ + * \delta\{\mathrm{condition}\} = \left\{ + * \begin{array}{lr} + * 1 & \mbox{if condition} \\ + * -1 & \mbox{otherwise} + * \end{array} \right. + * @f$ + * + * In an SVM, @f$ t \in \mathcal{R}^{N \times K} @f$ is the result of taking + * the inner product @f$ X^T W @f$ of the features + * @f$ X \in \mathcal{R}^{D \times N} @f$ + * and the learned hyperplane parameters + * @f$ W \in \mathcal{R}^{D \times K} @f$. So, a Net with just an + * InnerProductLayer (with num_output = @f$k@f$) providing predictions to a + * HingeLossLayer is equivalent to an SVM (assuming it has no other learned + * outside the InnerProductLayer and no other losses outside the + * HingeLossLayer). + */ +template +class HingeLossLayer : public LossLayer { + public: + explicit HingeLossLayer(const LayerParameter& param) + : LossLayer(param) {} + + virtual inline const char* type() const { return "HingeLoss"; } + + protected: + /// @copydoc HingeLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the hinge loss error gradient w.r.t. the predictions. + * + * Gradients cannot be computed with respect to the label inputs (bottom[1]), + * so this method ignores bottom[1] and requires !propagate_down[1], crashing + * if propagate_down[1] is set. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * propagate_down[1] must be false as we can't compute gradients with + * respect to the labels. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$t@f$; Backward computes diff + * @f$ \frac{\partial E}{\partial t} @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels -- ignored as we can't compute their error gradients + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + + +} // namespace caffe + +#endif // CAFFE_HINGE_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/im2col_layer.hpp b/include/caffe/layers/im2col_layer.hpp new file mode 100644 index 000000000..71e32f742 --- /dev/null +++ b/include/caffe/layers/im2col_layer.hpp @@ -0,0 +1,65 @@ +#ifndef CAFFE_IM2COL_LAYER_HPP_ +#define CAFFE_IM2COL_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief A helper for image operations that rearranges image regions into + * column vectors. Used by ConvolutionLayer to perform convolution + * by matrix multiplication. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class Im2colLayer : public Layer { + public: + explicit Im2colLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Im2col"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// @brief The spatial dimensions of a filter kernel. + Blob kernel_shape_; + /// @brief The spatial dimensions of the stride. + Blob stride_; + /// @brief The spatial dimensions of the padding. + Blob pad_; + /// @brief The spatial dimensions of the dilation. + Blob dilation_; + + int num_spatial_axes_; + int bottom_dim_; + int top_dim_; + + int channel_axis_; + int num_; + int channels_; + + bool force_nd_im2col_; +}; + +} // namespace caffe + +#endif // CAFFE_IM2COL_LAYER_HPP_ diff --git a/include/caffe/layers/image_data_layer.hpp b/include/caffe/layers/image_data_layer.hpp new file mode 100644 index 000000000..a0d3384e4 --- /dev/null +++ b/include/caffe/layers/image_data_layer.hpp @@ -0,0 +1,47 @@ +#ifndef CAFFE_IMAGE_DATA_LAYER_HPP_ +#define CAFFE_IMAGE_DATA_LAYER_HPP_ + +#include +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Provides data to the Net from image files. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class ImageDataLayer : public BasePrefetchingDataLayer { + public: + explicit ImageDataLayer(const LayerParameter& param) + : BasePrefetchingDataLayer(param) {} + virtual ~ImageDataLayer(); + virtual void DataLayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "ImageData"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int ExactNumTopBlobs() const { return 2; } + + protected: + shared_ptr prefetch_rng_; + virtual void ShuffleImages(); + virtual void load_batch(Batch* batch); + + vector > lines_; + int lines_id_; +}; + + +} // namespace caffe + +#endif // CAFFE_IMAGE_DATA_LAYER_HPP_ diff --git a/include/caffe/layers/infogain_loss_layer.hpp b/include/caffe/layers/infogain_loss_layer.hpp new file mode 100644 index 000000000..edecde829 --- /dev/null +++ b/include/caffe/layers/infogain_loss_layer.hpp @@ -0,0 +1,145 @@ +#ifndef CAFFE_INFOGAIN_LOSS_LAYER_HPP_ +#define CAFFE_INFOGAIN_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" +#include "caffe/layers/softmax_layer.hpp" + +namespace caffe { + +/** + * @brief A generalization of MultinomialLogisticLossLayer that takes an + * "information gain" (infogain) matrix specifying the "value" of all label + * pairs. + * + * Equivalent to the MultinomialLogisticLossLayer if the infogain matrix is the + * identity. + * + * @param bottom input Blob vector (length 2-3) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ \hat{p} @f$, a Blob with values in + * @f$ [0, 1] @f$ indicating the predicted probability of each of the + * @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$ + * should sum to 1 as in a probability distribution: @f$ + * \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$. + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels @f$ l @f$, an integer-valued Blob with values + * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ + * indicating the correct class label among the @f$ K @f$ classes + * -# @f$ (1 \times 1 \times K \times K) @f$ + * (\b optional) the infogain matrix @f$ H @f$. This must be provided as + * the third bottom blob input if not provided as the infogain_mat in the + * InfogainLossParameter. If @f$ H = I @f$, this layer is equivalent to the + * MultinomialLogisticLossLayer. + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed infogain multinomial logistic loss: @f$ E = + * \frac{-1}{N} \sum\limits_{n=1}^N H_{l_n} \log(\hat{p}_n) = + * \frac{-1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^{K} H_{l_n,k} + * \log(\hat{p}_{n,k}) + * @f$, where @f$ H_{l_n} @f$ denotes row @f$l_n@f$ of @f$H@f$. + */ +template +class InfogainLossLayer : public LossLayer { + public: + explicit InfogainLossLayer(const LayerParameter& param) + : LossLayer(param), infogain_() {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + // InfogainLossLayer takes 2-3 bottom Blobs; if there are 3 the third should + // be the infogain matrix. (Otherwise the infogain matrix is loaded from a + // file specified by LayerParameter.) + virtual inline int ExactNumBottomBlobs() const { return -1; } + virtual inline int MinBottomBlobs() const { return 2; } + virtual inline int MaxBottomBlobs() const { return 3; } + + // InfogainLossLayer computes softmax prob internally. + // optional second "top" outputs the softmax prob + virtual inline int ExactNumTopBlobs() const { return -1; } + virtual inline int MinTopBlobs() const { return 1; } + virtual inline int MaxTopBlobs() const { return 2; } + + virtual inline const char* type() const { return "InfogainLoss"; } + + protected: + /// @copydoc InfogainLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the infogain loss error gradient w.r.t. the predictions. + * + * Gradients cannot be computed with respect to the label inputs (bottom[1]), + * so this method ignores bottom[1] and requires !propagate_down[1], crashing + * if propagate_down[1] is set. (The same applies to the infogain matrix, if + * provided as bottom[2] rather than in the layer_param.) + * + * @param top output Blob vector (length 1), providing the error gradient + * with respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * propagate_down[1] must be false as we can't compute gradients with + * respect to the labels (similarly for propagate_down[2] and the + * infogain matrix, if provided as bottom[2]) + * @param bottom input Blob vector (length 2-3) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ \hat{p} @f$; Backward computes diff + * @f$ \frac{\partial E}{\partial \hat{p}} @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels -- ignored as we can't compute their error gradients + * -# @f$ (1 \times 1 \times K \times K) @f$ + * (\b optional) the information gain matrix -- ignored as its error + * gradient computation is not implemented. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// Read the normalization mode parameter and compute the normalizer based + /// on the blob size. If normalization_mode is VALID, the count of valid + /// outputs will be read from valid_count, unless it is -1 in which case + /// all outputs are assumed to be valid. + virtual Dtype get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count); + /// fill sum_rows_H_ according to matrix H + virtual void sum_rows_of_H(const Blob* H); + + /// The internal SoftmaxLayer used to map predictions to a distribution. + shared_ptr > softmax_layer_; + /// prob stores the output probability predictions from the SoftmaxLayer. + Blob prob_; + /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward + vector*> softmax_bottom_vec_; + /// top vector holder used in call to the underlying SoftmaxLayer::Forward + vector*> softmax_top_vec_; + + Blob infogain_; + Blob sum_rows_H_; // cache the row sums of H. + + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; + /// How to normalize the output loss. + LossParameter_NormalizationMode normalization_; + + int infogain_axis_, outer_num_, inner_num_, num_labels_; +}; + +} // namespace caffe + +#endif // CAFFE_INFOGAIN_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/inner_product_layer.hpp b/include/caffe/layers/inner_product_layer.hpp new file mode 100644 index 000000000..18d0d6192 --- /dev/null +++ b/include/caffe/layers/inner_product_layer.hpp @@ -0,0 +1,52 @@ +#ifndef CAFFE_INNER_PRODUCT_LAYER_HPP_ +#define CAFFE_INNER_PRODUCT_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Also known as a "fully-connected" layer, computes an inner product + * with a set of learned weights, and (optionally) adds biases. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class InnerProductLayer : public Layer { + public: + explicit InnerProductLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "InnerProduct"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int M_; + int K_; + int N_; + bool bias_term_; + Blob bias_multiplier_; + bool transpose_; ///< if true, assume transposed weights +}; + +} // namespace caffe + +#endif // CAFFE_INNER_PRODUCT_LAYER_HPP_ diff --git a/include/caffe/layers/input_layer.hpp b/include/caffe/layers/input_layer.hpp new file mode 100644 index 000000000..0ffdc7248 --- /dev/null +++ b/include/caffe/layers/input_layer.hpp @@ -0,0 +1,42 @@ +#ifndef CAFFE_INPUT_LAYER_HPP_ +#define CAFFE_INPUT_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Provides data to the Net by assigning tops directly. + * + * This data layer is a container that merely holds the data assigned to it; + * forward, backward, and reshape are all no-ops. + */ +template +class InputLayer : public Layer { + public: + explicit InputLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + // Data layers have no bottoms, so reshaping is trivial. + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual inline const char* type() const { return "Input"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top) {} + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} +}; + +} // namespace caffe + +#endif // CAFFE_INPUT_LAYER_HPP_ diff --git a/include/caffe/layers/log_layer.hpp b/include/caffe/layers/log_layer.hpp new file mode 100644 index 000000000..7d037d2bd --- /dev/null +++ b/include/caffe/layers/log_layer.hpp @@ -0,0 +1,82 @@ +#ifndef CAFFE_LOG_LAYER_HPP_ +#define CAFFE_LOG_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Computes @f$ y = log_{\gamma}(\alpha x + \beta) @f$, + * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, + * and base @f$ \gamma @f$. + */ +template +class LogLayer : public NeuronLayer { + public: + /** + * @param param provides LogParameter log_param, + * with LogLayer options: + * - scale (\b optional, default 1) the scale @f$ \alpha @f$ + * - shift (\b optional, default 0) the shift @f$ \beta @f$ + * - base (\b optional, default -1 for a value of @f$ e \approx 2.718 @f$) + * the base @f$ \gamma @f$ + */ + explicit LogLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Log"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = log_{\gamma}(\alpha x + \beta) + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the exp inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = + * \frac{\partial E}{\partial y} y \alpha \log_e(gamma) + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Dtype base_scale_; + Dtype input_scale_, input_shift_; + Dtype backward_num_scale_; +}; + +} // namespace caffe + +#endif // CAFFE_LOG_LAYER_HPP_ diff --git a/include/caffe/layers/loss_layer.hpp b/include/caffe/layers/loss_layer.hpp new file mode 100644 index 000000000..dbdf612c0 --- /dev/null +++ b/include/caffe/layers/loss_layer.hpp @@ -0,0 +1,53 @@ +#ifndef CAFFE_LOSS_LAYER_HPP_ +#define CAFFE_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +const float kLOG_THRESHOLD = 1e-20; + +/** + * @brief An interface for Layer%s that take two Blob%s as input -- usually + * (1) predictions and (2) ground-truth labels -- and output a + * singleton Blob representing the loss. + * + * LossLayers are typically only capable of backpropagating to their first input + * -- the predictions. + */ +template +class LossLayer : public Layer { + public: + explicit LossLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp( + const vector*>& bottom, const vector*>& top); + virtual void Reshape( + const vector*>& bottom, const vector*>& top); + + virtual inline int ExactNumBottomBlobs() const { return 2; } + + /** + * @brief For convenience and backwards compatibility, instruct the Net to + * automatically allocate a single top Blob for LossLayers, into which + * they output their singleton loss, (even if the user didn't specify + * one in the prototxt, etc.). + */ + virtual inline bool AutoTopBlobs() const { return true; } + virtual inline int ExactNumTopBlobs() const { return 1; } + /** + * We usually cannot backpropagate to the labels; ignore force_backward for + * these inputs. + */ + virtual inline bool AllowForceBackward(const int bottom_index) const { + return bottom_index != 1; + } +}; + +} // namespace caffe + +#endif // CAFFE_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/lrn_layer.hpp b/include/caffe/layers/lrn_layer.hpp new file mode 100644 index 000000000..06cf71a94 --- /dev/null +++ b/include/caffe/layers/lrn_layer.hpp @@ -0,0 +1,94 @@ +#ifndef CAFFE_LRN_LAYER_HPP_ +#define CAFFE_LRN_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/eltwise_layer.hpp" +#include "caffe/layers/pooling_layer.hpp" +#include "caffe/layers/power_layer.hpp" +#include "caffe/layers/split_layer.hpp" + +namespace caffe { + +/** + * @brief Normalize the input in a local region across or within feature maps. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class LRNLayer : public Layer { + public: + explicit LRNLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "LRN"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + virtual void CrossChannelForward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void CrossChannelForward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void WithinChannelForward(const vector*>& bottom, + const vector*>& top); + virtual void CrossChannelBackward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void CrossChannelBackward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void WithinChannelBackward(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int size_; + int pre_pad_; + Dtype alpha_; + Dtype beta_; + Dtype k_; + int num_; + int channels_; + int height_; + int width_; + + // Fields used for normalization ACROSS_CHANNELS + // scale_ stores the intermediate summing results + Blob scale_; + + // Fields used for normalization WITHIN_CHANNEL + shared_ptr > split_layer_; + vector*> split_top_vec_; + shared_ptr > square_layer_; + Blob square_input_; + Blob square_output_; + vector*> square_bottom_vec_; + vector*> square_top_vec_; + shared_ptr > pool_layer_; + Blob pool_output_; + vector*> pool_top_vec_; + shared_ptr > power_layer_; + Blob power_output_; + vector*> power_top_vec_; + shared_ptr > product_layer_; + Blob product_input_; + vector*> product_bottom_vec_; +}; + +} // namespace caffe + +#endif // CAFFE_LRN_LAYER_HPP_ diff --git a/include/caffe/layers/lstm_layer.hpp b/include/caffe/layers/lstm_layer.hpp new file mode 100644 index 000000000..a0e67c9d4 --- /dev/null +++ b/include/caffe/layers/lstm_layer.hpp @@ -0,0 +1,154 @@ +#ifndef CAFFE_LSTM_LAYER_HPP_ +#define CAFFE_LSTM_LAYER_HPP_ + +#include +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/recurrent_layer.hpp" +#include "caffe/net.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +template class RecurrentLayer; + +/** + * @brief Processes sequential inputs using a "Long Short-Term Memory" (LSTM) + * [1] style recurrent neural network (RNN). Implemented by unrolling + * the LSTM computation through time. + * + * The specific architecture used in this implementation is as described in + * "Learning to Execute" [2], reproduced below: + * i_t := \sigmoid[ W_{hi} * h_{t-1} + W_{xi} * x_t + b_i ] + * f_t := \sigmoid[ W_{hf} * h_{t-1} + W_{xf} * x_t + b_f ] + * o_t := \sigmoid[ W_{ho} * h_{t-1} + W_{xo} * x_t + b_o ] + * g_t := \tanh[ W_{hg} * h_{t-1} + W_{xg} * x_t + b_g ] + * c_t := (f_t .* c_{t-1}) + (i_t .* g_t) + * h_t := o_t .* \tanh[c_t] + * In the implementation, the i, f, o, and g computations are performed as a + * single inner product. + * + * Notably, this implementation lacks the "diagonal" gates, as used in the + * LSTM architectures described by Alex Graves [3] and others. + * + * [1] Hochreiter, Sepp, and Schmidhuber, Jürgen. "Long short-term memory." + * Neural Computation 9, no. 8 (1997): 1735-1780. + * + * [2] Zaremba, Wojciech, and Sutskever, Ilya. "Learning to execute." + * arXiv preprint arXiv:1410.4615 (2014). + * + * [3] Graves, Alex. "Generating sequences with recurrent neural networks." + * arXiv preprint arXiv:1308.0850 (2013). + */ +template +class LSTMLayer : public RecurrentLayer { + public: + explicit LSTMLayer(const LayerParameter& param) + : RecurrentLayer(param) {} + + virtual inline const char* type() const { return "LSTM"; } + + protected: + virtual void FillUnrolledNet(NetParameter* net_param) const; + virtual void RecurrentInputBlobNames(vector* names) const; + virtual void RecurrentOutputBlobNames(vector* names) const; + virtual void RecurrentInputShapes(vector* shapes) const; + virtual void OutputBlobNames(vector* names) const; +}; + +/** + * @brief A helper for LSTMLayer: computes a single timestep of the + * non-linearity of the LSTM, producing the updated cell and hidden + * states. + */ +template +class LSTMUnitLayer : public Layer { + public: + explicit LSTMUnitLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "LSTMUnit"; } + virtual inline int ExactNumBottomBlobs() const { return 3; } + virtual inline int ExactNumTopBlobs() const { return 2; } + + virtual inline bool AllowForceBackward(const int bottom_index) const { + // Can't propagate to sequence continuation indicators. + return bottom_index != 2; + } + + protected: + /** + * @param bottom input Blob vector (length 3) + * -# @f$ (1 \times N \times D) @f$ + * the previous timestep cell state @f$ c_{t-1} @f$ + * -# @f$ (1 \times N \times 4D) @f$ + * the "gate inputs" @f$ [i_t', f_t', o_t', g_t'] @f$ + * -# @f$ (1 \times N) @f$ + * the sequence continuation indicators @f$ \delta_t @f$ + * @param top output Blob vector (length 2) + * -# @f$ (1 \times N \times D) @f$ + * the updated cell state @f$ c_t @f$, computed as: + * i_t := \sigmoid[i_t'] + * f_t := \sigmoid[f_t'] + * o_t := \sigmoid[o_t'] + * g_t := \tanh[g_t'] + * c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t) + * -# @f$ (1 \times N \times D) @f$ + * the updated hidden state @f$ h_t @f$, computed as: + * h_t := o_t .* \tanh[c_t] + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the LSTMUnit inputs. + * + * @param top output Blob vector (length 2), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times N \times D) @f$: + * containing error gradients @f$ \frac{\partial E}{\partial c_t} @f$ + * with respect to the updated cell state @f$ c_t @f$ + * -# @f$ (1 \times N \times D) @f$: + * containing error gradients @f$ \frac{\partial E}{\partial h_t} @f$ + * with respect to the updated cell state @f$ h_t @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 3), into which the error gradients + * with respect to the LSTMUnit inputs @f$ c_{t-1} @f$ and the gate + * inputs are computed. Computatation of the error gradients w.r.t. + * the sequence indicators is not implemented. + * -# @f$ (1 \times N \times D) @f$ + * the error gradient w.r.t. the previous timestep cell state + * @f$ c_{t-1} @f$ + * -# @f$ (1 \times N \times 4D) @f$ + * the error gradient w.r.t. the "gate inputs" + * @f$ [ + * \frac{\partial E}{\partial i_t} + * \frac{\partial E}{\partial f_t} + * \frac{\partial E}{\partial o_t} + * \frac{\partial E}{\partial g_t} + * ] @f$ + * -# @f$ (1 \times 1 \times N) @f$ + * the gradient w.r.t. the sequence continuation indicators + * @f$ \delta_t @f$ is currently not computed. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// @brief The hidden and output dimension. + int hidden_dim_; + Blob X_acts_; +}; + +} // namespace caffe + +#endif // CAFFE_LSTM_LAYER_HPP_ diff --git a/include/caffe/layers/memory_data_layer.hpp b/include/caffe/layers/memory_data_layer.hpp new file mode 100644 index 000000000..8abcc8c1b --- /dev/null +++ b/include/caffe/layers/memory_data_layer.hpp @@ -0,0 +1,63 @@ +#ifndef CAFFE_MEMORY_DATA_LAYER_HPP_ +#define CAFFE_MEMORY_DATA_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/base_data_layer.hpp" + +namespace caffe { + +/** + * @brief Provides data to the Net from memory. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class MemoryDataLayer : public BaseDataLayer { + public: + explicit MemoryDataLayer(const LayerParameter& param) + : BaseDataLayer(param), has_new_data_(false) {} + virtual void DataLayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "MemoryData"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int ExactNumTopBlobs() const { return 2; } + + virtual void AddDatumVector(const vector& datum_vector); +#ifdef USE_OPENCV + virtual void AddMatVector(const vector& mat_vector, + const vector& labels); +#endif // USE_OPENCV + + // Reset should accept const pointers, but can't, because the memory + // will be given to Blob, which is mutable + void Reset(Dtype* data, Dtype* label, int n); + void set_batch_size(int new_size); + + int batch_size() { return batch_size_; } + int channels() { return channels_; } + int height() { return height_; } + int width() { return width_; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + int batch_size_, channels_, height_, width_, size_; + Dtype* data_; + Dtype* labels_; + int n_; + size_t pos_; + Blob added_data_; + Blob added_label_; + bool has_new_data_; +}; + +} // namespace caffe + +#endif // CAFFE_MEMORY_DATA_LAYER_HPP_ diff --git a/include/caffe/layers/multinomial_logistic_loss_layer.hpp b/include/caffe/layers/multinomial_logistic_loss_layer.hpp new file mode 100644 index 000000000..3977cf9ea --- /dev/null +++ b/include/caffe/layers/multinomial_logistic_loss_layer.hpp @@ -0,0 +1,92 @@ +#ifndef CAFFE_MULTINOMIAL_LOGISTIC_LOSS_LAYER_HPP_ +#define CAFFE_MULTINOMIAL_LOGISTIC_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the multinomial logistic loss for a one-of-many + * classification task, directly taking a predicted probability + * distribution as input. + * + * When predictions are not already a probability distribution, you should + * instead use the SoftmaxWithLossLayer, which maps predictions to a + * distribution using the SoftmaxLayer, before computing the multinomial + * logistic loss. The SoftmaxWithLossLayer should be preferred over separate + * SoftmaxLayer + MultinomialLogisticLossLayer + * as its gradient computation is more numerically stable. + * + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ \hat{p} @f$, a Blob with values in + * @f$ [0, 1] @f$ indicating the predicted probability of each of the + * @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$ + * should sum to 1 as in a probability distribution: @f$ + * \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$. + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels @f$ l @f$, an integer-valued Blob with values + * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ + * indicating the correct class label among the @f$ K @f$ classes + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed multinomial logistic loss: @f$ E = + * \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n}) + * @f$ + */ +template +class MultinomialLogisticLossLayer : public LossLayer { + public: + explicit MultinomialLogisticLossLayer(const LayerParameter& param) + : LossLayer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "MultinomialLogisticLoss"; } + + protected: + /// @copydoc MultinomialLogisticLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the multinomial logistic loss error gradient w.r.t. the + * predictions. + * + * Gradients cannot be computed with respect to the label inputs (bottom[1]), + * so this method ignores bottom[1] and requires !propagate_down[1], crashing + * if propagate_down[1] is set. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * propagate_down[1] must be false as we can't compute gradients with + * respect to the labels. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ \hat{p} @f$; Backward computes diff + * @f$ \frac{\partial E}{\partial \hat{p}} @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels -- ignored as we can't compute their error gradients + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_MULTINOMIAL_LOGISTIC_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/mvn_layer.hpp b/include/caffe/layers/mvn_layer.hpp new file mode 100644 index 000000000..3a235ceca --- /dev/null +++ b/include/caffe/layers/mvn_layer.hpp @@ -0,0 +1,48 @@ +#ifndef CAFFE_MVN_LAYER_HPP_ +#define CAFFE_MVN_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Normalizes the input to have 0-mean and/or unit (1) variance. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class MVNLayer : public Layer { + public: + explicit MVNLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "MVN"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + Blob mean_, variance_, temp_; + + /// sum_multiplier is used to carry out sum using BLAS + Blob sum_multiplier_; + Dtype eps_; +}; + +} // namespace caffe + +#endif // CAFFE_MVN_LAYER_HPP_ diff --git a/include/caffe/layers/neuron_layer.hpp b/include/caffe/layers/neuron_layer.hpp new file mode 100644 index 000000000..10c108ce6 --- /dev/null +++ b/include/caffe/layers/neuron_layer.hpp @@ -0,0 +1,32 @@ +#ifndef CAFFE_NEURON_LAYER_HPP_ +#define CAFFE_NEURON_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief An interface for layers that take one blob as input (@f$ x @f$) + * and produce one equally-sized blob as output (@f$ y @f$), where + * each element of the output depends only on the corresponding input + * element. + */ +template +class NeuronLayer : public Layer { + public: + explicit NeuronLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } +}; + +} // namespace caffe + +#endif // CAFFE_NEURON_LAYER_HPP_ diff --git a/include/caffe/layers/parameter_layer.hpp b/include/caffe/layers/parameter_layer.hpp new file mode 100644 index 000000000..188b92acb --- /dev/null +++ b/include/caffe/layers/parameter_layer.hpp @@ -0,0 +1,45 @@ +#ifndef CAFFE_PARAMETER_LAYER_HPP_ +#define CAFFE_PARAMETER_LAYER_HPP_ + +#include + +#include "caffe/layer.hpp" + +namespace caffe { + +template +class ParameterLayer : public Layer { + public: + explicit ParameterLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top) { + if (this->blobs_.size() > 0) { + LOG(INFO) << "Skipping parameter initialization"; + } else { + this->blobs_.resize(1); + this->blobs_[0].reset(new Blob()); + this->blobs_[0]->Reshape(this->layer_param_.parameter_param().shape()); + } + top[0]->Reshape(this->layer_param_.parameter_param().shape()); + } + virtual void Reshape(const vector*>& bottom, + const vector*>& top) { } + virtual inline const char* type() const { return "Parameter"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top) { + top[0]->ShareData(*(this->blobs_[0])); + top[0]->ShareDiff(*(this->blobs_[0])); + } + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) + { } +}; + +} // namespace caffe + +#endif diff --git a/include/caffe/layers/pooling_layer.hpp b/include/caffe/layers/pooling_layer.hpp new file mode 100644 index 000000000..f4d6803ba --- /dev/null +++ b/include/caffe/layers/pooling_layer.hpp @@ -0,0 +1,60 @@ +#ifndef CAFFE_POOLING_LAYER_HPP_ +#define CAFFE_POOLING_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Pools the input image by taking the max, average, etc. within regions. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class PoolingLayer : public Layer { + public: + explicit PoolingLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Pooling"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int MinTopBlobs() const { return 1; } + // MAX POOL layers can output an extra top blob for the mask; + // others can only output the pooled inputs. + virtual inline int MaxTopBlobs() const { + return (this->layer_param_.pooling_param().pool() == + PoolingParameter_PoolMethod_MAX) ? 2 : 1; + } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int kernel_h_, kernel_w_; + int stride_h_, stride_w_; + int pad_h_, pad_w_; + int channels_; + int height_, width_; + int pooled_height_, pooled_width_; + bool global_pooling_; + Blob rand_idx_; + Blob max_idx_; +}; + +} // namespace caffe + +#endif // CAFFE_POOLING_LAYER_HPP_ diff --git a/include/caffe/layers/power_layer.hpp b/include/caffe/layers/power_layer.hpp new file mode 100644 index 000000000..6ecbafcac --- /dev/null +++ b/include/caffe/layers/power_layer.hpp @@ -0,0 +1,89 @@ +#ifndef CAFFE_POWER_LAYER_HPP_ +#define CAFFE_POWER_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Computes @f$ y = (\alpha x + \beta) ^ \gamma @f$, + * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, + * and power @f$ \gamma @f$. + */ +template +class PowerLayer : public NeuronLayer { + public: + /** + * @param param provides PowerParameter power_param, + * with PowerLayer options: + * - scale (\b optional, default 1) the scale @f$ \alpha @f$ + * - shift (\b optional, default 0) the shift @f$ \beta @f$ + * - power (\b optional, default 1) the power @f$ \gamma @f$ + */ + explicit PowerLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Power"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = (\alpha x + \beta) ^ \gamma + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the power inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = + * \frac{\partial E}{\partial y} + * \alpha \gamma (\alpha x + \beta) ^ {\gamma - 1} = + * \frac{\partial E}{\partial y} + * \frac{\alpha \gamma y}{\alpha x + \beta} + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// @brief @f$ \gamma @f$ from layer_param_.power_param() + Dtype power_; + /// @brief @f$ \alpha @f$ from layer_param_.power_param() + Dtype scale_; + /// @brief @f$ \beta @f$ from layer_param_.power_param() + Dtype shift_; + /// @brief Result of @f$ \alpha \gamma @f$ + Dtype diff_scale_; +}; + +} // namespace caffe + +#endif // CAFFE_POWER_LAYER_HPP_ diff --git a/include/caffe/layers/prelu_layer.hpp b/include/caffe/layers/prelu_layer.hpp new file mode 100644 index 000000000..3ddfb484b --- /dev/null +++ b/include/caffe/layers/prelu_layer.hpp @@ -0,0 +1,101 @@ +#ifndef CAFFE_PRELU_LAYER_HPP_ +#define CAFFE_PRELU_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Parameterized Rectified Linear Unit non-linearity @f$ + * y_i = \max(0, x_i) + a_i \min(0, x_i) + * @f$. The differences from ReLULayer are 1) negative slopes are + * learnable though backprop and 2) negative slopes can vary across + * channels. The number of axes of input blob should be greater than or + * equal to 2. The 1st axis (0-based) is seen as channels. + */ +template +class PReLULayer : public NeuronLayer { + public: + /** + * @param param provides PReLUParameter prelu_param, + * with PReLULayer options: + * - filler (\b optional, FillerParameter, + * default {'type': constant 'value':0.25}). + * - channel_shared (\b optional, default false). + * negative slopes are shared across channels. + */ + explicit PReLULayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "PReLU"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times ...) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times ...) @f$ + * the computed outputs for each channel @f$i@f$ @f$ + * y_i = \max(0, x_i) + a_i \min(0, x_i) + * @f$. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the PReLU inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times ...) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times ...) @f$ + * the inputs @f$ x @f$; For each channel @f$i@f$, backward fills their + * diff with gradients @f$ + * \frac{\partial E}{\partial x_i} = \left\{ + * \begin{array}{lr} + * a_i \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i \le 0 \\ + * \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i > 0 + * \end{array} \right. + * @f$. + * If param_propagate_down_[0] is true, it fills the diff with gradients + * @f$ + * \frac{\partial E}{\partial a_i} = \left\{ + * \begin{array}{lr} + * \sum_{x_i} x_i \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i \le 0 \\ + * 0 & \mathrm{if} \; x_i > 0 + * \end{array} \right. + * @f$. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + bool channel_shared_; + Blob multiplier_; // dot multiplier for backward computation of params + Blob backward_buff_; // temporary buffer for backward computation + Blob bottom_memory_; // memory for in-place computation +}; + +} // namespace caffe + +#endif // CAFFE_PRELU_LAYER_HPP_ diff --git a/include/caffe/python_layer.hpp b/include/caffe/layers/python_layer.hpp similarity index 77% rename from include/caffe/python_layer.hpp rename to include/caffe/layers/python_layer.hpp index c43c1e8a9..1407d9217 100644 --- a/include/caffe/python_layer.hpp +++ b/include/caffe/layers/python_layer.hpp @@ -18,8 +18,15 @@ class PythonLayer : public Layer { virtual void LayerSetUp(const vector*>& bottom, const vector*>& top) { + // Disallow PythonLayer in MultiGPU training stage, due to GIL issues + // Details: https://github.com/BVLC/caffe/issues/2936 + if (this->phase_ == TRAIN && Caffe::solver_count() > 1 + && !Caffe::multiprocess()) { + LOG(FATAL) << "PythonLayer does not support CLI Multi-GPU, use train.py"; + } self_.attr("param_str") = bp::str( this->layer_param_.python_param().param_str()); + self_.attr("phase") = static_cast(this->phase_); self_.attr("setup")(bottom, top); } virtual void Reshape(const vector*>& bottom, @@ -27,10 +34,6 @@ class PythonLayer : public Layer { self_.attr("reshape")(bottom, top); } - virtual inline bool ShareInParallel() const { - return this->layer_param_.python_param().share_in_parallel(); - } - virtual inline const char* type() const { return "Python"; } protected: diff --git a/include/caffe/layers/recurrent_layer.hpp b/include/caffe/layers/recurrent_layer.hpp new file mode 100644 index 000000000..ca17371b9 --- /dev/null +++ b/include/caffe/layers/recurrent_layer.hpp @@ -0,0 +1,187 @@ +#ifndef CAFFE_RECURRENT_LAYER_HPP_ +#define CAFFE_RECURRENT_LAYER_HPP_ + +#include +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/layer.hpp" +#include "caffe/net.hpp" +#include "caffe/proto/caffe.pb.h" +#include "caffe/util/format.hpp" + +namespace caffe { + +template class RecurrentLayer; + +/** + * @brief An abstract class for implementing recurrent behavior inside of an + * unrolled network. This Layer type cannot be instantiated -- instead, + * you should use one of its implementations which defines the recurrent + * architecture, such as RNNLayer or LSTMLayer. + */ +template +class RecurrentLayer : public Layer { + public: + explicit RecurrentLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + virtual void Reset(); + + virtual inline const char* type() const { return "Recurrent"; } + virtual inline int MinBottomBlobs() const { + int min_bottoms = 2; + if (this->layer_param_.recurrent_param().expose_hidden()) { + vector inputs; + this->RecurrentInputBlobNames(&inputs); + min_bottoms += inputs.size(); + } + return min_bottoms; + } + virtual inline int MaxBottomBlobs() const { return MinBottomBlobs() + 1; } + virtual inline int ExactNumTopBlobs() const { + int num_tops = 1; + if (this->layer_param_.recurrent_param().expose_hidden()) { + vector outputs; + this->RecurrentOutputBlobNames(&outputs); + num_tops += outputs.size(); + } + return num_tops; + } + + virtual inline bool AllowForceBackward(const int bottom_index) const { + // Can't propagate to sequence continuation indicators. + return bottom_index != 1; + } + + protected: + /** + * @brief Fills net_param with the recurrent network architecture. Subclasses + * should define this -- see RNNLayer and LSTMLayer for examples. + */ + virtual void FillUnrolledNet(NetParameter* net_param) const = 0; + + /** + * @brief Fills names with the names of the 0th timestep recurrent input + * Blob&s. Subclasses should define this -- see RNNLayer and LSTMLayer + * for examples. + */ + virtual void RecurrentInputBlobNames(vector* names) const = 0; + + /** + * @brief Fills shapes with the shapes of the recurrent input Blob&s. + * Subclasses should define this -- see RNNLayer and LSTMLayer + * for examples. + */ + virtual void RecurrentInputShapes(vector* shapes) const = 0; + + /** + * @brief Fills names with the names of the Tth timestep recurrent output + * Blob&s. Subclasses should define this -- see RNNLayer and LSTMLayer + * for examples. + */ + virtual void RecurrentOutputBlobNames(vector* names) const = 0; + + /** + * @brief Fills names with the names of the output blobs, concatenated across + * all timesteps. Should return a name for each top Blob. + * Subclasses should define this -- see RNNLayer and LSTMLayer for + * examples. + */ + virtual void OutputBlobNames(vector* names) const = 0; + + /** + * @param bottom input Blob vector (length 2-3) + * + * -# @f$ (T \times N \times ...) @f$ + * the time-varying input @f$ x @f$. After the first two axes, whose + * dimensions must correspond to the number of timesteps @f$ T @f$ and + * the number of independent streams @f$ N @f$, respectively, its + * dimensions may be arbitrary. Note that the ordering of dimensions -- + * @f$ (T \times N \times ...) @f$, rather than + * @f$ (N \times T \times ...) @f$ -- means that the @f$ N @f$ + * independent input streams must be "interleaved". + * + * -# @f$ (T \times N) @f$ + * the sequence continuation indicators @f$ \delta @f$. + * These inputs should be binary (0 or 1) indicators, where + * @f$ \delta_{t,n} = 0 @f$ means that timestep @f$ t @f$ of stream + * @f$ n @f$ is the beginning of a new sequence, and hence the previous + * hidden state @f$ h_{t-1} @f$ is multiplied by @f$ \delta_t = 0 @f$ + * and has no effect on the cell's output at timestep @f$ t @f$, and + * a value of @f$ \delta_{t,n} = 1 @f$ means that timestep @f$ t @f$ of + * stream @f$ n @f$ is a continuation from the previous timestep + * @f$ t-1 @f$, and the previous hidden state @f$ h_{t-1} @f$ affects the + * updated hidden state and output. + * + * -# @f$ (N \times ...) @f$ (optional) + * the static (non-time-varying) input @f$ x_{static} @f$. + * After the first axis, whose dimension must be the number of + * independent streams, its dimensions may be arbitrary. + * This is mathematically equivalent to using a time-varying input of + * @f$ x'_t = [x_t; x_{static}] @f$ -- i.e., tiling the static input + * across the @f$ T @f$ timesteps and concatenating with the time-varying + * input. Note that if this input is used, all timesteps in a single + * batch within a particular one of the @f$ N @f$ streams must share the + * same static input, even if the sequence continuation indicators + * suggest that difference sequences are ending and beginning within a + * single batch. This may require padding and/or truncation for uniform + * length. + * + * @param top output Blob vector (length 1) + * -# @f$ (T \times N \times D) @f$ + * the time-varying output @f$ y @f$, where @f$ D @f$ is + * recurrent_param.num_output(). + * Refer to documentation for particular RecurrentLayer implementations + * (such as RNNLayer and LSTMLayer) for the definition of @f$ y @f$. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// @brief A Net to implement the Recurrent functionality. + shared_ptr > unrolled_net_; + + /// @brief The number of independent streams to process simultaneously. + int N_; + + /** + * @brief The number of timesteps in the layer's input, and the number of + * timesteps over which to backpropagate through time. + */ + int T_; + + /// @brief Whether the layer has a "static" input copied across all timesteps. + bool static_input_; + + /** + * @brief The last layer to run in the network. (Any later layers are losses + * added to force the recurrent net to do backprop.) + */ + int last_layer_index_; + + /** + * @brief Whether the layer's hidden state at the first and last timesteps + * are layer inputs and outputs, respectively. + */ + bool expose_hidden_; + + vector* > recur_input_blobs_; + vector* > recur_output_blobs_; + vector* > output_blobs_; + Blob* x_input_blob_; + Blob* x_static_input_blob_; + Blob* cont_input_blob_; +}; + +} // namespace caffe + +#endif // CAFFE_RECURRENT_LAYER_HPP_ diff --git a/include/caffe/layers/reduction_layer.hpp b/include/caffe/layers/reduction_layer.hpp new file mode 100644 index 000000000..804a495b1 --- /dev/null +++ b/include/caffe/layers/reduction_layer.hpp @@ -0,0 +1,59 @@ +#ifndef CAFFE_REDUCTION_LAYER_HPP_ +#define CAFFE_REDUCTION_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Compute "reductions" -- operations that return a scalar output Blob + * for an input Blob of arbitrary size, such as the sum, absolute sum, + * and sum of squares. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class ReductionLayer : public Layer { + public: + explicit ReductionLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Reduction"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// @brief the reduction operation performed by the layer + ReductionParameter_ReductionOp op_; + /// @brief a scalar coefficient applied to all outputs + Dtype coeff_; + /// @brief the index of the first input axis to reduce + int axis_; + /// @brief the number of reductions performed + int num_; + /// @brief the input size of each reduction + int dim_; + /// @brief a helper Blob used for summation (op_ == SUM) + Blob sum_multiplier_; +}; + +} // namespace caffe + +#endif // CAFFE_REDUCTION_LAYER_HPP_ diff --git a/include/caffe/layers/relu_layer.hpp b/include/caffe/layers/relu_layer.hpp new file mode 100644 index 000000000..d7a73f7a8 --- /dev/null +++ b/include/caffe/layers/relu_layer.hpp @@ -0,0 +1,85 @@ +#ifndef CAFFE_RELU_LAYER_HPP_ +#define CAFFE_RELU_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Rectified Linear Unit non-linearity @f$ y = \max(0, x) @f$. + * The simple max is fast to compute, and the function does not saturate. + */ +template +class ReLULayer : public NeuronLayer { + public: + /** + * @param param provides ReLUParameter relu_param, + * with ReLULayer options: + * - negative_slope (\b optional, default 0). + * the value @f$ \nu @f$ by which negative values are multiplied. + */ + explicit ReLULayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual inline const char* type() const { return "ReLU"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \max(0, x) + * @f$ by default. If a non-zero negative_slope @f$ \nu @f$ is provided, + * the computed outputs are @f$ y = \max(0, x) + \nu \min(0, x) @f$. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the ReLU inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} = \left\{ + * \begin{array}{lr} + * 0 & \mathrm{if} \; x \le 0 \\ + * \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0 + * \end{array} \right. + * @f$ if propagate_down[0], by default. + * If a non-zero negative_slope @f$ \nu @f$ is provided, + * the computed gradients are @f$ + * \frac{\partial E}{\partial x} = \left\{ + * \begin{array}{lr} + * \nu \frac{\partial E}{\partial y} & \mathrm{if} \; x \le 0 \\ + * \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0 + * \end{array} \right. + * @f$. + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_RELU_LAYER_HPP_ diff --git a/include/caffe/layers/reshape_layer.hpp b/include/caffe/layers/reshape_layer.hpp new file mode 100644 index 000000000..d11e06384 --- /dev/null +++ b/include/caffe/layers/reshape_layer.hpp @@ -0,0 +1,52 @@ +#ifndef CAFFE_XXX_LAYER_HPP_ +#define CAFFE_XXX_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/* + * @brief Reshapes the input Blob into an arbitrary-sized output Blob. + * + * Note: similarly to FlattenLayer, this layer does not change the input values + * (see FlattenLayer, Blob::ShareData and Blob::ShareDiff). + */ +template +class ReshapeLayer : public Layer { + public: + explicit ReshapeLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Reshape"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top) {} + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top) {} + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) {} + + /// @brief vector of axes indices whose dimensions we'll copy from the bottom + vector copy_axes_; + /// @brief the index of the axis whose dimension we infer, or -1 if none + int inferred_axis_; + /// @brief the product of the "constant" output dimensions + int constant_count_; +}; + +} // namespace caffe + +#endif // CAFFE_XXX_LAYER_HPP_ diff --git a/include/caffe/layers/rnn_layer.hpp b/include/caffe/layers/rnn_layer.hpp new file mode 100644 index 000000000..6dce238ae --- /dev/null +++ b/include/caffe/layers/rnn_layer.hpp @@ -0,0 +1,47 @@ +#ifndef CAFFE_RNN_LAYER_HPP_ +#define CAFFE_RNN_LAYER_HPP_ + +#include +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/recurrent_layer.hpp" +#include "caffe/net.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +template class RecurrentLayer; + +/** + * @brief Processes time-varying inputs using a simple recurrent neural network + * (RNN). Implemented as a network unrolling the RNN computation in time. + * + * Given time-varying inputs @f$ x_t @f$, computes hidden state @f$ + * h_t := \tanh[ W_{hh} h_{t_1} + W_{xh} x_t + b_h ] + * @f$, and outputs @f$ + * o_t := \tanh[ W_{ho} h_t + b_o ] + * @f$. + */ +template +class RNNLayer : public RecurrentLayer { + public: + explicit RNNLayer(const LayerParameter& param) + : RecurrentLayer(param) {} + + virtual inline const char* type() const { return "RNN"; } + + protected: + virtual void FillUnrolledNet(NetParameter* net_param) const; + virtual void RecurrentInputBlobNames(vector* names) const; + virtual void RecurrentOutputBlobNames(vector* names) const; + virtual void RecurrentInputShapes(vector* shapes) const; + virtual void OutputBlobNames(vector* names) const; +}; + +} // namespace caffe + +#endif // CAFFE_RNN_LAYER_HPP_ diff --git a/include/caffe/layers/scale_layer.hpp b/include/caffe/layers/scale_layer.hpp new file mode 100644 index 000000000..45b714d40 --- /dev/null +++ b/include/caffe/layers/scale_layer.hpp @@ -0,0 +1,85 @@ +#ifndef CAFFE_SCALE_LAYER_HPP_ +#define CAFFE_SCALE_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/bias_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the elementwise product of two input Blobs, with the shape of + * the latter Blob "broadcast" to match the shape of the former. + * Equivalent to tiling the latter Blob, then computing the elementwise + * product. Note: for efficiency and convenience, this layer can + * additionally perform a "broadcast" sum too when `bias_term: true` + * is set. + * + * The latter, scale input may be omitted, in which case it's learned as + * parameter of the layer (as is the bias, if it is included). + */ +template +class ScaleLayer: public Layer { + public: + explicit ScaleLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Scale"; } + // Scale + virtual inline int MinBottomBlobs() const { return 1; } + virtual inline int MaxBottomBlobs() const { return 2; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + /** + * In the below shape specifications, @f$ i @f$ denotes the value of the + * `axis` field given by `this->layer_param_.scale_param().axis()`, after + * canonicalization (i.e., conversion from negative to positive index, + * if applicable). + * + * @param bottom input Blob vector (length 2) + * -# @f$ (d_0 \times ... \times + * d_i \times ... \times d_j \times ... \times d_n) @f$ + * the first factor @f$ x @f$ + * -# @f$ (d_i \times ... \times d_j) @f$ + * the second factor @f$ y @f$ + * @param top output Blob vector (length 1) + * -# @f$ (d_0 \times ... \times + * d_i \times ... \times d_j \times ... \times d_n) @f$ + * the product @f$ z = x y @f$ computed after "broadcasting" y. + * Equivalent to tiling @f$ y @f$ to have the same shape as @f$ x @f$, + * then computing the elementwise product. + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + shared_ptr > bias_layer_; + vector*> bias_bottom_vec_; + vector bias_propagate_down_; + int bias_param_id_; + + Blob sum_multiplier_; + Blob sum_result_; + Blob temp_; + int axis_; + int outer_dim_, scale_dim_, inner_dim_; +}; + + +} // namespace caffe + +#endif // CAFFE_SCALE_LAYER_HPP_ diff --git a/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp b/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp new file mode 100644 index 000000000..3d9252442 --- /dev/null +++ b/include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp @@ -0,0 +1,128 @@ +#ifndef CAFFE_SIGMOID_CROSS_ENTROPY_LOSS_LAYER_HPP_ +#define CAFFE_SIGMOID_CROSS_ENTROPY_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" +#include "caffe/layers/sigmoid_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the cross-entropy (logistic) loss @f$ + * E = \frac{-1}{n} \sum\limits_{n=1}^N \left[ + * p_n \log \hat{p}_n + + * (1 - p_n) \log(1 - \hat{p}_n) + * \right] + * @f$, often used for predicting targets interpreted as probabilities. + * + * This layer is implemented rather than separate + * SigmoidLayer + CrossEntropyLayer + * as its gradient computation is more numerically stable. + * At test time, this layer can be replaced simply by a SigmoidLayer. + * + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the scores @f$ x \in [-\infty, +\infty]@f$, + * which this layer maps to probability predictions + * @f$ \hat{p}_n = \sigma(x_n) \in [0, 1] @f$ + * using the sigmoid function @f$ \sigma(.) @f$ (see SigmoidLayer). + * -# @f$ (N \times C \times H \times W) @f$ + * the targets @f$ y \in [0, 1] @f$ + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed cross-entropy loss: @f$ + * E = \frac{-1}{n} \sum\limits_{n=1}^N \left[ + * p_n \log \hat{p}_n + (1 - p_n) \log(1 - \hat{p}_n) + * \right] + * @f$ + */ +template +class SigmoidCrossEntropyLossLayer : public LossLayer { + public: + explicit SigmoidCrossEntropyLossLayer(const LayerParameter& param) + : LossLayer(param), + sigmoid_layer_(new SigmoidLayer(param)), + sigmoid_output_(new Blob()) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "SigmoidCrossEntropyLoss"; } + + protected: + /// @copydoc SigmoidCrossEntropyLossLayer + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the sigmoid cross-entropy loss error gradient w.r.t. the + * predictions. + * + * Gradients cannot be computed with respect to the target inputs (bottom[1]), + * so this method ignores bottom[1] and requires !propagate_down[1], crashing + * if propagate_down[1] is set. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * propagate_down[1] must be false as gradient computation with respect + * to the targets is not implemented. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$x@f$; Backward computes diff + * @f$ \frac{\partial E}{\partial x} = + * \frac{1}{n} \sum\limits_{n=1}^N (\hat{p}_n - p_n) + * @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels -- ignored as we can't compute their error gradients + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// Read the normalization mode parameter and compute the normalizer based + /// on the blob size. If normalization_mode is VALID, the count of valid + /// outputs will be read from valid_count, unless it is -1 in which case + /// all outputs are assumed to be valid. + virtual Dtype get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count); + + /// The internal SigmoidLayer used to map predictions to probabilities. + shared_ptr > sigmoid_layer_; + /// sigmoid_output stores the output of the SigmoidLayer. + shared_ptr > sigmoid_output_; + /// bottom vector holder to call the underlying SigmoidLayer::Forward + vector*> sigmoid_bottom_vec_; + /// top vector holder to call the underlying SigmoidLayer::Forward + vector*> sigmoid_top_vec_; + + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; + /// How to normalize the loss. + LossParameter_NormalizationMode normalization_; + Dtype normalizer_; + int outer_num_, inner_num_; +}; + +} // namespace caffe + +#endif // CAFFE_SIGMOID_CROSS_ENTROPY_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/sigmoid_layer.hpp b/include/caffe/layers/sigmoid_layer.hpp new file mode 100644 index 000000000..ac0f6927f --- /dev/null +++ b/include/caffe/layers/sigmoid_layer.hpp @@ -0,0 +1,71 @@ +#ifndef CAFFE_SIGMOID_LAYER_HPP_ +#define CAFFE_SIGMOID_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Sigmoid function non-linearity @f$ + * y = (1 + \exp(-x))^{-1} + * @f$, a classic choice in neural networks. + * + * Note that the gradient vanishes as the values move away from 0. + * The ReLULayer is often a better choice for this reason. + */ +template +class SigmoidLayer : public NeuronLayer { + public: + explicit SigmoidLayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual inline const char* type() const { return "Sigmoid"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = (1 + \exp(-x))^{-1} + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the sigmoid inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} + * = \frac{\partial E}{\partial y} y (1 - y) + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_SIGMOID_LAYER_HPP_ diff --git a/include/caffe/layers/silence_layer.hpp b/include/caffe/layers/silence_layer.hpp new file mode 100644 index 000000000..fba087fce --- /dev/null +++ b/include/caffe/layers/silence_layer.hpp @@ -0,0 +1,43 @@ +#ifndef CAFFE_SILENCE_LAYER_HPP_ +#define CAFFE_SILENCE_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Ignores bottom blobs while producing no top blobs. (This is useful + * to suppress outputs during testing.) + */ +template +class SilenceLayer : public Layer { + public: + explicit SilenceLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top) {} + + virtual inline const char* type() const { return "Silence"; } + virtual inline int MinBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 0; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top) {} + // We can't define Forward_gpu here, since STUB_GPU will provide + // its own definition for CPU_ONLY mode. + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_SILENCE_LAYER_HPP_ diff --git a/include/caffe/layers/slice_layer.hpp b/include/caffe/layers/slice_layer.hpp new file mode 100644 index 000000000..10a0abb6e --- /dev/null +++ b/include/caffe/layers/slice_layer.hpp @@ -0,0 +1,51 @@ +#ifndef CAFFE_SLICE_LAYER_HPP_ +#define CAFFE_SLICE_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Takes a Blob and slices it along either the num or channel dimension, + * outputting multiple sliced Blob results. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class SliceLayer : public Layer { + public: + explicit SliceLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Slice"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int count_; + int num_slices_; + int slice_size_; + int slice_axis_; + vector slice_point_; +}; + +} // namespace caffe + +#endif // CAFFE_SLICE_LAYER_HPP_ diff --git a/include/caffe/layers/softmax_layer.hpp b/include/caffe/layers/softmax_layer.hpp new file mode 100644 index 000000000..c65b8703e --- /dev/null +++ b/include/caffe/layers/softmax_layer.hpp @@ -0,0 +1,50 @@ +#ifndef CAFFE_SOFTMAX_LAYER_HPP_ +#define CAFFE_SOFTMAX_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Computes the softmax function. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class SoftmaxLayer : public Layer { + public: + explicit SoftmaxLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Softmax"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int outer_num_; + int inner_num_; + int softmax_axis_; + /// sum_multiplier is used to carry out sum using BLAS + Blob sum_multiplier_; + /// scale is an intermediate Blob to hold temporary results. + Blob scale_; +}; + +} // namespace caffe + +#endif // CAFFE_SOFTMAX_LAYER_HPP_ diff --git a/include/caffe/layers/softmax_loss_layer.hpp b/include/caffe/layers/softmax_loss_layer.hpp new file mode 100644 index 000000000..f07e8a02c --- /dev/null +++ b/include/caffe/layers/softmax_loss_layer.hpp @@ -0,0 +1,130 @@ +#ifndef CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_ +#define CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/loss_layer.hpp" +#include "caffe/layers/softmax_layer.hpp" + +namespace caffe { + +/** + * @brief Computes the multinomial logistic loss for a one-of-many + * classification task, passing real-valued predictions through a + * softmax to get a probability distribution over classes. + * + * This layer should be preferred over separate + * SoftmaxLayer + MultinomialLogisticLossLayer + * as its gradient computation is more numerically stable. + * At test time, this layer can be replaced simply by a SoftmaxLayer. + * + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ x @f$, a Blob with values in + * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of + * the @f$ K = CHW @f$ classes. This layer maps these scores to a + * probability distribution over classes using the softmax function + * @f$ \hat{p}_{nk} = \exp(x_{nk}) / + * \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer). + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels @f$ l @f$, an integer-valued Blob with values + * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ + * indicating the correct class label among the @f$ K @f$ classes + * @param top output Blob vector (length 1) + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * the computed cross-entropy classification loss: @f$ E = + * \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n}) + * @f$, for softmax output class probabilites @f$ \hat{p} @f$ + */ +template +class SoftmaxWithLossLayer : public LossLayer { + public: + /** + * @param param provides LossParameter loss_param, with options: + * - ignore_label (optional) + * Specify a label value that should be ignored when computing the loss. + * - normalize (optional, default true) + * If true, the loss is normalized by the number of (nonignored) labels + * present; otherwise the loss is simply summed over spatial locations. + */ + explicit SoftmaxWithLossLayer(const LayerParameter& param) + : LossLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "SoftmaxWithLoss"; } + virtual inline int ExactNumTopBlobs() const { return -1; } + virtual inline int MinTopBlobs() const { return 1; } + virtual inline int MaxTopBlobs() const { return 2; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + /** + * @brief Computes the softmax loss error gradient w.r.t. the predictions. + * + * Gradients cannot be computed with respect to the label inputs (bottom[1]), + * so this method ignores bottom[1] and requires !propagate_down[1], crashing + * if propagate_down[1] is set. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (1 \times 1 \times 1 \times 1) @f$ + * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, + * as @f$ \lambda @f$ is the coefficient of this layer's output + * @f$\ell_i@f$ in the overall Net loss + * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence + * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. + * (*Assuming that this top Blob is not used as a bottom (input) by any + * other layer of the Net.) + * @param propagate_down see Layer::Backward. + * propagate_down[1] must be false as we can't compute gradients with + * respect to the labels. + * @param bottom input Blob vector (length 2) + * -# @f$ (N \times C \times H \times W) @f$ + * the predictions @f$ x @f$; Backward computes diff + * @f$ \frac{\partial E}{\partial x} @f$ + * -# @f$ (N \times 1 \times 1 \times 1) @f$ + * the labels -- ignored as we can't compute their error gradients + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + /// Read the normalization mode parameter and compute the normalizer based + /// on the blob size. If normalization_mode is VALID, the count of valid + /// outputs will be read from valid_count, unless it is -1 in which case + /// all outputs are assumed to be valid. + virtual Dtype get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count); + + /// The internal SoftmaxLayer used to map predictions to a distribution. + shared_ptr > softmax_layer_; + /// prob stores the output probability predictions from the SoftmaxLayer. + Blob prob_; + /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward + vector*> softmax_bottom_vec_; + /// top vector holder used in call to the underlying SoftmaxLayer::Forward + vector*> softmax_top_vec_; + /// Whether to ignore instances with a certain label. + bool has_ignore_label_; + /// The label indicating that an instance should be ignored. + int ignore_label_; + /// How to normalize the output loss. + LossParameter_NormalizationMode normalization_; + + int softmax_axis_, outer_num_, inner_num_; +}; + +} // namespace caffe + +#endif // CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_ diff --git a/include/caffe/layers/split_layer.hpp b/include/caffe/layers/split_layer.hpp new file mode 100644 index 000000000..8140dfc7c --- /dev/null +++ b/include/caffe/layers/split_layer.hpp @@ -0,0 +1,45 @@ +#ifndef CAFFE_SPLIT_LAYER_HPP_ +#define CAFFE_SPLIT_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Creates a "split" path in the network by copying the bottom Blob + * into multiple top Blob%s to be used by multiple consuming layers. + * + * TODO(dox): thorough documentation for Forward, Backward, and proto params. + */ +template +class SplitLayer : public Layer { + public: + explicit SplitLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Split"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int MinTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + int count_; +}; + +} // namespace caffe + +#endif // CAFFE_SPLIT_LAYER_HPP_ diff --git a/include/caffe/layers/spp_layer.hpp b/include/caffe/layers/spp_layer.hpp new file mode 100644 index 000000000..9f145cc77 --- /dev/null +++ b/include/caffe/layers/spp_layer.hpp @@ -0,0 +1,76 @@ +#ifndef CAFFE_SPP_LAYER_HPP_ +#define CAFFE_SPP_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Does spatial pyramid pooling on the input image + * by taking the max, average, etc. within regions + * so that the result vector of different sized + * images are of the same size. + */ +template +class SPPLayer : public Layer { + public: + explicit SPPLayer(const LayerParameter& param) + : Layer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "SPP"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + // calculates the kernel and stride dimensions for the pooling layer, + // returns a correctly configured LayerParameter for a PoolingLayer + virtual LayerParameter GetPoolingParam(const int pyramid_level, + const int bottom_h, const int bottom_w, const SPPParameter spp_param); + + int pyramid_height_; + int bottom_h_, bottom_w_; + int num_; + int channels_; + int kernel_h_, kernel_w_; + int pad_h_, pad_w_; + bool reshaped_first_time_; + + /// the internal Split layer that feeds the pooling layers + shared_ptr > split_layer_; + /// top vector holder used in call to the underlying SplitLayer::Forward + vector*> split_top_vec_; + /// bottom vector holder used in call to the underlying PoolingLayer::Forward + vector*>*> pooling_bottom_vecs_; + /// the internal Pooling layers of different kernel sizes + vector > > pooling_layers_; + /// top vector holders used in call to the underlying PoolingLayer::Forward + vector*>*> pooling_top_vecs_; + /// pooling_outputs stores the outputs of the PoolingLayers + vector*> pooling_outputs_; + /// the internal Flatten layers that the Pooling layers feed into + vector*> flatten_layers_; + /// top vector holders used in call to the underlying FlattenLayer::Forward + vector*>*> flatten_top_vecs_; + /// flatten_outputs stores the outputs of the FlattenLayers + vector*> flatten_outputs_; + /// bottom vector holder used in call to the underlying ConcatLayer::Forward + vector*> concat_bottom_vec_; + /// the internal Concat layers that the Flatten layers feed into + shared_ptr > concat_layer_; +}; + +} // namespace caffe + +#endif // CAFFE_SPP_LAYER_HPP_ diff --git a/include/caffe/layers/tanh_layer.hpp b/include/caffe/layers/tanh_layer.hpp new file mode 100644 index 000000000..8f95e9322 --- /dev/null +++ b/include/caffe/layers/tanh_layer.hpp @@ -0,0 +1,73 @@ +#ifndef CAFFE_TANH_LAYER_HPP_ +#define CAFFE_TANH_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief TanH hyperbolic tangent non-linearity @f$ + * y = \frac{\exp(2x) - 1}{\exp(2x) + 1} + * @f$, popular in auto-encoders. + * + * Note that the gradient vanishes as the values move away from 0. + * The ReLULayer is often a better choice for this reason. + */ +template +class TanHLayer : public NeuronLayer { + public: + explicit TanHLayer(const LayerParameter& param) + : NeuronLayer(param) {} + + virtual inline const char* type() const { return "TanH"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \frac{\exp(2x) - 1}{\exp(2x) + 1} + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + /** + * @brief Computes the error gradient w.r.t. the sigmoid inputs. + * + * @param top output Blob vector (length 1), providing the error gradient with + * respect to the outputs + * -# @f$ (N \times C \times H \times W) @f$ + * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ + * with respect to computed outputs @f$ y @f$ + * @param propagate_down see Layer::Backward. + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$; Backward fills their diff with + * gradients @f$ + * \frac{\partial E}{\partial x} + * = \frac{\partial E}{\partial y} + * \left(1 - \left[\frac{\exp(2x) - 1}{exp(2x) + 1} \right]^2 \right) + * = \frac{\partial E}{\partial y} (1 - y^2) + * @f$ if propagate_down[0] + */ + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); +}; + +} // namespace caffe + +#endif // CAFFE_TANH_LAYER_HPP_ diff --git a/include/caffe/layers/threshold_layer.hpp b/include/caffe/layers/threshold_layer.hpp new file mode 100644 index 000000000..3bf4db63e --- /dev/null +++ b/include/caffe/layers/threshold_layer.hpp @@ -0,0 +1,64 @@ +#ifndef CAFFE_THRESHOLD_LAYER_HPP_ +#define CAFFE_THRESHOLD_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +#include "caffe/layers/neuron_layer.hpp" + +namespace caffe { + +/** + * @brief Tests whether the input exceeds a threshold: outputs 1 for inputs + * above threshold; 0 otherwise. + */ +template +class ThresholdLayer : public NeuronLayer { + public: + /** + * @param param provides ThresholdParameter threshold_param, + * with ThresholdLayer options: + * - threshold (\b optional, default 0). + * the threshold value @f$ t @f$ to which the input values are compared. + */ + explicit ThresholdLayer(const LayerParameter& param) + : NeuronLayer(param) {} + virtual void LayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Threshold"; } + + protected: + /** + * @param bottom input Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the inputs @f$ x @f$ + * @param top output Blob vector (length 1) + * -# @f$ (N \times C \times H \times W) @f$ + * the computed outputs @f$ + * y = \left\{ + * \begin{array}{lr} + * 0 & \mathrm{if} \; x \le t \\ + * 1 & \mathrm{if} \; x > t + * \end{array} \right. + * @f$ + */ + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + /// @brief Not implemented (non-differentiable function) + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + NOT_IMPLEMENTED; + } + + Dtype threshold_; +}; + +} // namespace caffe + +#endif // CAFFE_THRESHOLD_LAYER_HPP_ diff --git a/include/caffe/layers/tile_layer.hpp b/include/caffe/layers/tile_layer.hpp new file mode 100644 index 000000000..fbdbe2f0c --- /dev/null +++ b/include/caffe/layers/tile_layer.hpp @@ -0,0 +1,43 @@ +#ifndef CAFFE_TILE_LAYER_HPP_ +#define CAFFE_TILE_LAYER_HPP_ + +#include + +#include "caffe/blob.hpp" +#include "caffe/layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Copy a Blob along specified dimensions. + */ +template +class TileLayer : public Layer { + public: + explicit TileLayer(const LayerParameter& param) + : Layer(param) {} + virtual void Reshape(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "Tile"; } + virtual inline int ExactNumBottomBlobs() const { return 1; } + virtual inline int ExactNumTopBlobs() const { return 1; } + + protected: + virtual void Forward_cpu(const vector*>& bottom, + const vector*>& top); + virtual void Forward_gpu(const vector*>& bottom, + const vector*>& top); + + virtual void Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + virtual void Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom); + + unsigned int axis_, tiles_, outer_dim_, inner_dim_; +}; + +} // namespace caffe + +#endif // CAFFE_TILE_LAYER_HPP_ diff --git a/include/caffe/layers/window_data_layer.hpp b/include/caffe/layers/window_data_layer.hpp new file mode 100644 index 000000000..b9b66b7cf --- /dev/null +++ b/include/caffe/layers/window_data_layer.hpp @@ -0,0 +1,56 @@ +#ifndef CAFFE_WINDOW_DATA_LAYER_HPP_ +#define CAFFE_WINDOW_DATA_LAYER_HPP_ + +#include +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +/** + * @brief Provides data to the Net from windows of images files, specified + * by a window data file. This layer is *DEPRECATED* and only kept for + * archival purposes for use by the original R-CNN. + * + * TODO(dox): thorough documentation for Forward and proto params. + */ +template +class WindowDataLayer : public BasePrefetchingDataLayer { + public: + explicit WindowDataLayer(const LayerParameter& param) + : BasePrefetchingDataLayer(param) {} + virtual ~WindowDataLayer(); + virtual void DataLayerSetUp(const vector*>& bottom, + const vector*>& top); + + virtual inline const char* type() const { return "WindowData"; } + virtual inline int ExactNumBottomBlobs() const { return 0; } + virtual inline int ExactNumTopBlobs() const { return 2; } + + protected: + virtual unsigned int PrefetchRand(); + virtual void load_batch(Batch* batch); + + shared_ptr prefetch_rng_; + vector > > image_database_; + enum WindowField { IMAGE_INDEX, LABEL, OVERLAP, X1, Y1, X2, Y2, NUM }; + vector > fg_windows_; + vector > bg_windows_; + Blob data_mean_; + vector mean_values_; + bool has_mean_file_; + bool has_mean_values_; + bool cache_images_; + vector > image_database_cache_; +}; + +} // namespace caffe + +#endif // CAFFE_WINDOW_DATA_LAYER_HPP_ diff --git a/include/caffe/loss_layers.hpp b/include/caffe/loss_layers.hpp deleted file mode 100644 index 8d41af34e..000000000 --- a/include/caffe/loss_layers.hpp +++ /dev/null @@ -1,773 +0,0 @@ -#ifndef CAFFE_LOSS_LAYERS_HPP_ -#define CAFFE_LOSS_LAYERS_HPP_ - -#include -#include -#include - -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/neuron_layers.hpp" -#include "caffe/proto/caffe.pb.h" - -namespace caffe { - -const float kLOG_THRESHOLD = 1e-20; - -/** - * @brief Computes the classification accuracy for a one-of-many - * classification task. - */ -template -class AccuracyLayer : public Layer { - public: - /** - * @param param provides AccuracyParameter accuracy_param, - * with AccuracyLayer options: - * - top_k (\b optional, default 1). - * Sets the maximum rank @f$ k @f$ at which a prediction is considered - * correct. For example, if @f$ k = 5 @f$, a prediction is counted - * correct if the correct label is among the top 5 predicted labels. - */ - explicit AccuracyLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Accuracy"; } - virtual inline int ExactNumBottomBlobs() const { return 2; } - - // If there are two top blobs, then the second blob will contain - // accuracies per class. - virtual inline int MinTopBlobs() const { return 1; } - virtual inline int MaxTopBlos() const { return 2; } - - protected: - /** - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ x @f$, a Blob with values in - * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of - * the @f$ K = CHW @f$ classes. Each @f$ x_n @f$ is mapped to a predicted - * label @f$ \hat{l}_n @f$ given by its maximal index: - * @f$ \hat{l}_n = \arg\max\limits_k x_{nk} @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels @f$ l @f$, an integer-valued Blob with values - * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ - * indicating the correct class label among the @f$ K @f$ classes - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed accuracy: @f$ - * \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} - * @f$, where @f$ - * \delta\{\mathrm{condition}\} = \left\{ - * \begin{array}{lr} - * 1 & \mbox{if condition} \\ - * 0 & \mbox{otherwise} - * \end{array} \right. - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - - /// @brief Not implemented -- AccuracyLayer cannot be used as a loss. - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) { - for (int i = 0; i < propagate_down.size(); ++i) { - if (propagate_down[i]) { NOT_IMPLEMENTED; } - } - } - - int label_axis_, outer_num_, inner_num_; - - int top_k_; - - /// Whether to ignore instances with a certain label. - bool has_ignore_label_; - /// The label indicating that an instance should be ignored. - int ignore_label_; - /// Keeps counts of the number of samples per class. - Blob nums_buffer_; -}; - -/** - * @brief An interface for Layer%s that take two Blob%s as input -- usually - * (1) predictions and (2) ground-truth labels -- and output a - * singleton Blob representing the loss. - * - * LossLayers are typically only capable of backpropagating to their first input - * -- the predictions. - */ -template -class LossLayer : public Layer { - public: - explicit LossLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp( - const vector*>& bottom, const vector*>& top); - virtual void Reshape( - const vector*>& bottom, const vector*>& top); - - virtual inline int ExactNumBottomBlobs() const { return 2; } - - /** - * @brief For convenience and backwards compatibility, instruct the Net to - * automatically allocate a single top Blob for LossLayers, into which - * they output their singleton loss, (even if the user didn't specify - * one in the prototxt, etc.). - */ - virtual inline bool AutoTopBlobs() const { return true; } - virtual inline int ExactNumTopBlobs() const { return 1; } - /** - * We usually cannot backpropagate to the labels; ignore force_backward for - * these inputs. - */ - virtual inline bool AllowForceBackward(const int bottom_index) const { - return bottom_index != 1; - } -}; - -/** - * @brief Computes the contrastive loss @f$ - * E = \frac{1}{2N} \sum\limits_{n=1}^N \left(y\right) d + - * \left(1-y\right) \max \left(margin-d, 0\right)^2 - * @f$ where @f$ - * d = \left| \left| a_n - b_n \right| \right|_2 @f$. This can be - * used to train siamese networks. - * - * @param bottom input Blob vector (length 3) - * -# @f$ (N \times C \times 1 \times 1) @f$ - * the features @f$ a \in [-\infty, +\infty]@f$ - * -# @f$ (N \times C \times 1 \times 1) @f$ - * the features @f$ b \in [-\infty, +\infty]@f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the binary similarity @f$ s \in [0, 1]@f$ - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed contrastive loss: @f$ E = - * \frac{1}{2N} \sum\limits_{n=1}^N \left(y\right) d + - * \left(1-y\right) \max \left(margin-d, 0\right)^2 - * @f$ where @f$ - * d = \left| \left| a_n - b_n \right| \right|_2 @f$. - * This can be used to train siamese networks. - */ -template -class ContrastiveLossLayer : public LossLayer { - public: - explicit ContrastiveLossLayer(const LayerParameter& param) - : LossLayer(param), diff_() {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline int ExactNumBottomBlobs() const { return 3; } - virtual inline const char* type() const { return "ContrastiveLoss"; } - /** - * Unlike most loss layers, in the ContrastiveLossLayer we can backpropagate - * to the first two inputs. - */ - virtual inline bool AllowForceBackward(const int bottom_index) const { - return bottom_index != 2; - } - - protected: - /// @copydoc ContrastiveLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the Contrastive error gradient w.r.t. the inputs. - * - * Computes the gradients with respect to the two input vectors (bottom[0] and - * bottom[1]), but not the similarity label (bottom[2]). - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times 1 \times 1) @f$ - * the features @f$a@f$; Backward fills their diff with - * gradients if propagate_down[0] - * -# @f$ (N \times C \times 1 \times 1) @f$ - * the features @f$b@f$; Backward fills their diff with gradients if - * propagate_down[1] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Blob diff_; // cached for backward pass - Blob dist_sq_; // cached for backward pass - Blob diff_sq_; // tmp storage for gpu forward pass - Blob summer_vec_; // tmp storage for gpu forward pass -}; - -/** - * @brief Computes the Euclidean (L2) loss @f$ - * E = \frac{1}{2N} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n - * \right| \right|_2^2 @f$ for real-valued regression tasks. - * - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ \hat{y} \in [-\infty, +\infty]@f$ - * -# @f$ (N \times C \times H \times W) @f$ - * the targets @f$ y \in [-\infty, +\infty]@f$ - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed Euclidean loss: @f$ E = - * \frac{1}{2n} \sum\limits_{n=1}^N \left| \left| \hat{y}_n - y_n - * \right| \right|_2^2 @f$ - * - * This can be used for least-squares regression tasks. An InnerProductLayer - * input to a EuclideanLossLayer exactly formulates a linear least squares - * regression problem. With non-zero weight decay the problem becomes one of - * ridge regression -- see src/caffe/test/test_sgd_solver.cpp for a concrete - * example wherein we check that the gradients computed for a Net with exactly - * this structure match hand-computed gradient formulas for ridge regression. - * - * (Note: Caffe, and SGD in general, is certainly \b not the best way to solve - * linear least squares problems! We use it only as an instructive example.) - */ -template -class EuclideanLossLayer : public LossLayer { - public: - explicit EuclideanLossLayer(const LayerParameter& param) - : LossLayer(param), diff_() {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "EuclideanLoss"; } - /** - * Unlike most loss layers, in the EuclideanLossLayer we can backpropagate - * to both inputs -- override to return true and always allow force_backward. - */ - virtual inline bool AllowForceBackward(const int bottom_index) const { - return true; - } - - protected: - /// @copydoc EuclideanLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the Euclidean error gradient w.r.t. the inputs. - * - * Unlike other children of LossLayer, EuclideanLossLayer \b can compute - * gradients with respect to the label inputs bottom[1] (but still only will - * if propagate_down[1] is set, due to being produced by learnable parameters - * or if force_backward is set). In fact, this layer is "commutative" -- the - * result is the same regardless of the order of the two bottoms. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$\hat{y}@f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial \hat{y}} = - * \frac{1}{n} \sum\limits_{n=1}^N (\hat{y}_n - y_n) - * @f$ if propagate_down[0] - * -# @f$ (N \times C \times H \times W) @f$ - * the targets @f$y@f$; Backward fills their diff with gradients - * @f$ \frac{\partial E}{\partial y} = - * \frac{1}{n} \sum\limits_{n=1}^N (y_n - \hat{y}_n) - * @f$ if propagate_down[1] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Blob diff_; -}; - -/** - * @brief Computes the hinge loss for a one-of-many classification task. - * - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ t @f$, a Blob with values in - * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of - * the @f$ K = CHW @f$ classes. In an SVM, @f$ t @f$ is the result of - * taking the inner product @f$ X^T W @f$ of the D-dimensional features - * @f$ X \in \mathcal{R}^{D \times N} @f$ and the learned hyperplane - * parameters @f$ W \in \mathcal{R}^{D \times K} @f$, so a Net with just - * an InnerProductLayer (with num_output = D) providing predictions to a - * HingeLossLayer and no other learnable parameters or losses is - * equivalent to an SVM. - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels @f$ l @f$, an integer-valued Blob with values - * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ - * indicating the correct class label among the @f$ K @f$ classes - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed hinge loss: @f$ E = - * \frac{1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^K - * [\max(0, 1 - \delta\{l_n = k\} t_{nk})] ^ p - * @f$, for the @f$ L^p @f$ norm - * (defaults to @f$ p = 1 @f$, the L1 norm; L2 norm, as in L2-SVM, - * is also available), and @f$ - * \delta\{\mathrm{condition}\} = \left\{ - * \begin{array}{lr} - * 1 & \mbox{if condition} \\ - * -1 & \mbox{otherwise} - * \end{array} \right. - * @f$ - * - * In an SVM, @f$ t \in \mathcal{R}^{N \times K} @f$ is the result of taking - * the inner product @f$ X^T W @f$ of the features - * @f$ X \in \mathcal{R}^{D \times N} @f$ - * and the learned hyperplane parameters - * @f$ W \in \mathcal{R}^{D \times K} @f$. So, a Net with just an - * InnerProductLayer (with num_output = @f$k@f$) providing predictions to a - * HingeLossLayer is equivalent to an SVM (assuming it has no other learned - * outside the InnerProductLayer and no other losses outside the - * HingeLossLayer). - */ -template -class HingeLossLayer : public LossLayer { - public: - explicit HingeLossLayer(const LayerParameter& param) - : LossLayer(param) {} - - virtual inline const char* type() const { return "HingeLoss"; } - - protected: - /// @copydoc HingeLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the hinge loss error gradient w.r.t. the predictions. - * - * Gradients cannot be computed with respect to the label inputs (bottom[1]), - * so this method ignores bottom[1] and requires !propagate_down[1], crashing - * if propagate_down[1] is set. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * propagate_down[1] must be false as we can't compute gradients with - * respect to the labels. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$t@f$; Backward computes diff - * @f$ \frac{\partial E}{\partial t} @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels -- ignored as we can't compute their error gradients - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief A generalization of MultinomialLogisticLossLayer that takes an - * "information gain" (infogain) matrix specifying the "value" of all label - * pairs. - * - * Equivalent to the MultinomialLogisticLossLayer if the infogain matrix is the - * identity. - * - * @param bottom input Blob vector (length 2-3) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ \hat{p} @f$, a Blob with values in - * @f$ [0, 1] @f$ indicating the predicted probability of each of the - * @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$ - * should sum to 1 as in a probability distribution: @f$ - * \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$. - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels @f$ l @f$, an integer-valued Blob with values - * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ - * indicating the correct class label among the @f$ K @f$ classes - * -# @f$ (1 \times 1 \times K \times K) @f$ - * (\b optional) the infogain matrix @f$ H @f$. This must be provided as - * the third bottom blob input if not provided as the infogain_mat in the - * InfogainLossParameter. If @f$ H = I @f$, this layer is equivalent to the - * MultinomialLogisticLossLayer. - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed infogain multinomial logistic loss: @f$ E = - * \frac{-1}{N} \sum\limits_{n=1}^N H_{l_n} \log(\hat{p}_n) = - * \frac{-1}{N} \sum\limits_{n=1}^N \sum\limits_{k=1}^{K} H_{l_n,k} - * \log(\hat{p}_{n,k}) - * @f$, where @f$ H_{l_n} @f$ denotes row @f$l_n@f$ of @f$H@f$. - */ -template -class InfogainLossLayer : public LossLayer { - public: - explicit InfogainLossLayer(const LayerParameter& param) - : LossLayer(param), infogain_() {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - // InfogainLossLayer takes 2-3 bottom Blobs; if there are 3 the third should - // be the infogain matrix. (Otherwise the infogain matrix is loaded from a - // file specified by LayerParameter.) - virtual inline int ExactNumBottomBlobs() const { return -1; } - virtual inline int MinBottomBlobs() const { return 2; } - virtual inline int MaxBottomBlobs() const { return 3; } - - virtual inline const char* type() const { return "InfogainLoss"; } - - protected: - /// @copydoc InfogainLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the infogain loss error gradient w.r.t. the predictions. - * - * Gradients cannot be computed with respect to the label inputs (bottom[1]), - * so this method ignores bottom[1] and requires !propagate_down[1], crashing - * if propagate_down[1] is set. (The same applies to the infogain matrix, if - * provided as bottom[2] rather than in the layer_param.) - * - * @param top output Blob vector (length 1), providing the error gradient - * with respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * propagate_down[1] must be false as we can't compute gradients with - * respect to the labels (similarly for propagate_down[2] and the - * infogain matrix, if provided as bottom[2]) - * @param bottom input Blob vector (length 2-3) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ \hat{p} @f$; Backward computes diff - * @f$ \frac{\partial E}{\partial \hat{p}} @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels -- ignored as we can't compute their error gradients - * -# @f$ (1 \times 1 \times K \times K) @f$ - * (\b optional) the information gain matrix -- ignored as its error - * gradient computation is not implemented. - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Blob infogain_; -}; - -/** - * @brief Computes the multinomial logistic loss for a one-of-many - * classification task, directly taking a predicted probability - * distribution as input. - * - * When predictions are not already a probability distribution, you should - * instead use the SoftmaxWithLossLayer, which maps predictions to a - * distribution using the SoftmaxLayer, before computing the multinomial - * logistic loss. The SoftmaxWithLossLayer should be preferred over separate - * SoftmaxLayer + MultinomialLogisticLossLayer - * as its gradient computation is more numerically stable. - * - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ \hat{p} @f$, a Blob with values in - * @f$ [0, 1] @f$ indicating the predicted probability of each of the - * @f$ K = CHW @f$ classes. Each prediction vector @f$ \hat{p}_n @f$ - * should sum to 1 as in a probability distribution: @f$ - * \forall n \sum\limits_{k=1}^K \hat{p}_{nk} = 1 @f$. - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels @f$ l @f$, an integer-valued Blob with values - * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ - * indicating the correct class label among the @f$ K @f$ classes - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed multinomial logistic loss: @f$ E = - * \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n}) - * @f$ - */ -template -class MultinomialLogisticLossLayer : public LossLayer { - public: - explicit MultinomialLogisticLossLayer(const LayerParameter& param) - : LossLayer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "MultinomialLogisticLoss"; } - - protected: - /// @copydoc MultinomialLogisticLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the multinomial logistic loss error gradient w.r.t. the - * predictions. - * - * Gradients cannot be computed with respect to the label inputs (bottom[1]), - * so this method ignores bottom[1] and requires !propagate_down[1], crashing - * if propagate_down[1] is set. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * propagate_down[1] must be false as we can't compute gradients with - * respect to the labels. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ \hat{p} @f$; Backward computes diff - * @f$ \frac{\partial E}{\partial \hat{p}} @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels -- ignored as we can't compute their error gradients - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief Computes the cross-entropy (logistic) loss @f$ - * E = \frac{-1}{n} \sum\limits_{n=1}^N \left[ - * p_n \log \hat{p}_n + - * (1 - p_n) \log(1 - \hat{p}_n) - * \right] - * @f$, often used for predicting targets interpreted as probabilities. - * - * This layer is implemented rather than separate - * SigmoidLayer + CrossEntropyLayer - * as its gradient computation is more numerically stable. - * At test time, this layer can be replaced simply by a SigmoidLayer. - * - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the scores @f$ x \in [-\infty, +\infty]@f$, - * which this layer maps to probability predictions - * @f$ \hat{p}_n = \sigma(x_n) \in [0, 1] @f$ - * using the sigmoid function @f$ \sigma(.) @f$ (see SigmoidLayer). - * -# @f$ (N \times C \times H \times W) @f$ - * the targets @f$ y \in [0, 1] @f$ - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed cross-entropy loss: @f$ - * E = \frac{-1}{n} \sum\limits_{n=1}^N \left[ - * p_n \log \hat{p}_n + (1 - p_n) \log(1 - \hat{p}_n) - * \right] - * @f$ - */ -template -class SigmoidCrossEntropyLossLayer : public LossLayer { - public: - explicit SigmoidCrossEntropyLossLayer(const LayerParameter& param) - : LossLayer(param), - sigmoid_layer_(new SigmoidLayer(param)), - sigmoid_output_(new Blob()) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "SigmoidCrossEntropyLoss"; } - - protected: - /// @copydoc SigmoidCrossEntropyLossLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the sigmoid cross-entropy loss error gradient w.r.t. the - * predictions. - * - * Gradients cannot be computed with respect to the target inputs (bottom[1]), - * so this method ignores bottom[1] and requires !propagate_down[1], crashing - * if propagate_down[1] is set. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * propagate_down[1] must be false as gradient computation with respect - * to the targets is not implemented. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$x@f$; Backward computes diff - * @f$ \frac{\partial E}{\partial x} = - * \frac{1}{n} \sum\limits_{n=1}^N (\hat{p}_n - p_n) - * @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels -- ignored as we can't compute their error gradients - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - /// The internal SigmoidLayer used to map predictions to probabilities. - shared_ptr > sigmoid_layer_; - /// sigmoid_output stores the output of the SigmoidLayer. - shared_ptr > sigmoid_output_; - /// bottom vector holder to call the underlying SigmoidLayer::Forward - vector*> sigmoid_bottom_vec_; - /// top vector holder to call the underlying SigmoidLayer::Forward - vector*> sigmoid_top_vec_; -}; - -// Forward declare SoftmaxLayer for use in SoftmaxWithLossLayer. -template class SoftmaxLayer; - -/** - * @brief Computes the multinomial logistic loss for a one-of-many - * classification task, passing real-valued predictions through a - * softmax to get a probability distribution over classes. - * - * This layer should be preferred over separate - * SoftmaxLayer + MultinomialLogisticLossLayer - * as its gradient computation is more numerically stable. - * At test time, this layer can be replaced simply by a SoftmaxLayer. - * - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ x @f$, a Blob with values in - * @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of - * the @f$ K = CHW @f$ classes. This layer maps these scores to a - * probability distribution over classes using the softmax function - * @f$ \hat{p}_{nk} = \exp(x_{nk}) / - * \left[\sum_{k'} \exp(x_{nk'})\right] @f$ (see SoftmaxLayer). - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels @f$ l @f$, an integer-valued Blob with values - * @f$ l_n \in [0, 1, 2, ..., K - 1] @f$ - * indicating the correct class label among the @f$ K @f$ classes - * @param top output Blob vector (length 1) - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * the computed cross-entropy classification loss: @f$ E = - * \frac{-1}{N} \sum\limits_{n=1}^N \log(\hat{p}_{n,l_n}) - * @f$, for softmax output class probabilites @f$ \hat{p} @f$ - */ -template -class SoftmaxWithLossLayer : public LossLayer { - public: - /** - * @param param provides LossParameter loss_param, with options: - * - ignore_label (optional) - * Specify a label value that should be ignored when computing the loss. - * - normalize (optional, default true) - * If true, the loss is normalized by the number of (nonignored) labels - * present; otherwise the loss is simply summed over spatial locations. - */ - explicit SoftmaxWithLossLayer(const LayerParameter& param) - : LossLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "SoftmaxWithLoss"; } - virtual inline int ExactNumTopBlobs() const { return -1; } - virtual inline int MinTopBlobs() const { return 1; } - virtual inline int MaxTopBlobs() const { return 2; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - /** - * @brief Computes the softmax loss error gradient w.r.t. the predictions. - * - * Gradients cannot be computed with respect to the label inputs (bottom[1]), - * so this method ignores bottom[1] and requires !propagate_down[1], crashing - * if propagate_down[1] is set. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (1 \times 1 \times 1 \times 1) @f$ - * This Blob's diff will simply contain the loss_weight* @f$ \lambda @f$, - * as @f$ \lambda @f$ is the coefficient of this layer's output - * @f$\ell_i@f$ in the overall Net loss - * @f$ E = \lambda_i \ell_i + \mbox{other loss terms}@f$; hence - * @f$ \frac{\partial E}{\partial \ell_i} = \lambda_i @f$. - * (*Assuming that this top Blob is not used as a bottom (input) by any - * other layer of the Net.) - * @param propagate_down see Layer::Backward. - * propagate_down[1] must be false as we can't compute gradients with - * respect to the labels. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the predictions @f$ x @f$; Backward computes diff - * @f$ \frac{\partial E}{\partial x} @f$ - * -# @f$ (N \times 1 \times 1 \times 1) @f$ - * the labels -- ignored as we can't compute their error gradients - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - - /// The internal SoftmaxLayer used to map predictions to a distribution. - shared_ptr > softmax_layer_; - /// prob stores the output probability predictions from the SoftmaxLayer. - Blob prob_; - /// bottom vector holder used in call to the underlying SoftmaxLayer::Forward - vector*> softmax_bottom_vec_; - /// top vector holder used in call to the underlying SoftmaxLayer::Forward - vector*> softmax_top_vec_; - /// Whether to ignore instances with a certain label. - bool has_ignore_label_; - /// The label indicating that an instance should be ignored. - int ignore_label_; - /// Whether to normalize the loss by the total number of values present - /// (otherwise just by the batch size). - bool normalize_; - - int softmax_axis_, outer_num_, inner_num_; -}; - -} // namespace caffe - -#endif // CAFFE_LOSS_LAYERS_HPP_ diff --git a/include/caffe/net.hpp b/include/caffe/net.hpp index 1bf07d28d..d3c9306e9 100644 --- a/include/caffe/net.hpp +++ b/include/caffe/net.hpp @@ -23,20 +23,25 @@ namespace caffe { template class Net { public: - explicit Net(const NetParameter& param, const Net* root_net = NULL); + explicit Net(const NetParameter& param); explicit Net(const string& param_file, Phase phase, - const Net* root_net = NULL); + const int level = 0, const vector* stages = NULL); virtual ~Net() {} /// @brief Initialize a network with a NetParameter. void Init(const NetParameter& param); /** - * @brief Run Forward with the input Blob%s already fed separately. + * @brief Run Forward and return the result. * - * You can get the input blobs using input_blobs(). */ - const vector*>& ForwardPrefilled(Dtype* loss = NULL); + const vector*>& Forward(Dtype* loss = NULL); + /// @brief DEPRECATED; use Forward() instead. + const vector*>& ForwardPrefilled(Dtype* loss = NULL) { + LOG_EVERY_N(WARNING, 1000) << "DEPRECATED: ForwardPrefilled() " + << "will be removed in a future version. Use Forward()."; + return Forward(loss); + } /** * The From and To variants of Forward and Backward operate on the @@ -49,14 +54,9 @@ class Net { Dtype ForwardFromTo(int start, int end); Dtype ForwardFrom(int start); Dtype ForwardTo(int end); - /// @brief Run forward using a set of bottom blobs, and return the result. + /// @brief DEPRECATED; set input blobs then use Forward() instead. const vector*>& Forward(const vector* > & bottom, Dtype* loss = NULL); - /** - * @brief Run forward using a serialized BlobProtoVector and return the - * result as a serialized BlobProtoVector - */ - string Forward(const string& input_blob_protos, Dtype* loss = NULL); /** * @brief Zeroes out the diffs of all net parameters. @@ -82,9 +82,9 @@ class Net { */ void Reshape(); - Dtype ForwardBackward(const vector* > & bottom) { + Dtype ForwardBackward() { Dtype loss; - Forward(bottom, &loss); + Forward(&loss); Backward(); return loss; } @@ -149,6 +149,18 @@ class Net { inline const vector*> >& top_vecs() const { return top_vecs_; } + /// @brief returns the ids of the top blobs of layer i + inline const vector & top_ids(int i) const { + CHECK_GE(i, 0) << "Invalid layer id"; + CHECK_LT(i, top_id_vecs_.size()) << "Invalid layer id"; + return top_id_vecs_[i]; + } + /// @brief returns the ids of the bottom blobs of layer i + inline const vector & bottom_ids(int i) const { + CHECK_GE(i, 0) << "Invalid layer id"; + CHECK_LT(i, bottom_id_vecs_.size()) << "Invalid layer id"; + return bottom_id_vecs_[i]; + } inline const vector >& bottom_need_backward() const { return bottom_need_backward_; } @@ -179,6 +191,9 @@ class Net { return param_names_index_; } inline const vector& param_owners() const { return param_owners_; } + inline const vector& param_display_names() const { + return param_display_names_; + } /// @brief Input and output blob numbers inline int num_inputs() const { return net_input_blobs_.size(); } inline int num_outputs() const { return net_output_blobs_.size(); } @@ -212,9 +227,34 @@ class Net { static bool StateMeetsRule(const NetState& state, const NetStateRule& rule, const string& layer_name); + // Invoked at specific points during an iteration + class Callback { + protected: + virtual void run(int layer) = 0; + + template + friend class Net; + }; + const vector& before_forward() const { return before_forward_; } + void add_before_forward(Callback* value) { + before_forward_.push_back(value); + } + const vector& after_forward() const { return after_forward_; } + void add_after_forward(Callback* value) { + after_forward_.push_back(value); + } + const vector& before_backward() const { return before_backward_; } + void add_before_backward(Callback* value) { + before_backward_.push_back(value); + } + const vector& after_backward() const { return after_backward_; } + void add_after_backward(Callback* value) { + after_backward_.push_back(value); + } + protected: // Helpers for Init. - /// @brief Append a new input or top blob to the net. + /// @brief Append a new top blob to the net. void AppendTop(const NetParameter& param, const int layer_id, const int top_id, set* available_blobs, map* blob_name_to_idx); @@ -226,8 +266,6 @@ class Net { void AppendParam(const NetParameter& param, const int layer_id, const int param_id); - /// @brief Helper for displaying debug info in Forward about input Blobs. - void InputDebugInfo(const int layer_id); /// @brief Helper for displaying debug info in Forward. void ForwardDebugInfo(const int layer_id); /// @brief Helper for displaying debug info in Backward. @@ -292,9 +330,13 @@ class Net { size_t memory_used_; /// Whether to compute and display debug info for the net. bool debug_info_; - /// The root net that actually holds the shared layers in data parallelism - const Net* const root_net_; - DISABLE_COPY_AND_ASSIGN(Net); + // Callbacks + vector before_forward_; + vector after_forward_; + vector before_backward_; + vector after_backward_; + +DISABLE_COPY_AND_ASSIGN(Net); }; diff --git a/include/caffe/neuron_layers.hpp b/include/caffe/neuron_layers.hpp deleted file mode 100644 index c2e0774aa..000000000 --- a/include/caffe/neuron_layers.hpp +++ /dev/null @@ -1,809 +0,0 @@ -#ifndef CAFFE_NEURON_LAYERS_HPP_ -#define CAFFE_NEURON_LAYERS_HPP_ - -#include -#include -#include - -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/proto/caffe.pb.h" - -#define HDF5_DATA_DATASET_NAME "data" -#define HDF5_DATA_LABEL_NAME "label" - -namespace caffe { - -/** - * @brief An interface for layers that take one blob as input (@f$ x @f$) - * and produce one equally-sized blob as output (@f$ y @f$), where - * each element of the output depends only on the corresponding input - * element. - */ -template -class NeuronLayer : public Layer { - public: - explicit NeuronLayer(const LayerParameter& param) - : Layer(param) {} - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } -}; - -/** - * @brief Computes @f$ y = |x| @f$ - * - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ y = |x| @f$ - */ -template -class AbsValLayer : public NeuronLayer { - public: - explicit AbsValLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "AbsVal"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - /// @copydoc AbsValLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the absolute value inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} = - * \mathrm{sign}(x) \frac{\partial E}{\partial y} - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief Computes @f$ y = x + \log(1 + \exp(-x)) @f$ if @f$ x > 0 @f$; - * @f$ y = \log(1 + \exp(x)) @f$ otherwise. - * - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = \left\{ - * \begin{array}{ll} - * x + \log(1 + \exp(-x)) & \mbox{if } x > 0 \\ - * \log(1 + \exp(x)) & \mbox{otherwise} - * \end{array} \right. - * @f$ - */ -template -class BNLLLayer : public NeuronLayer { - public: - explicit BNLLLayer(const LayerParameter& param) - : NeuronLayer(param) {} - - virtual inline const char* type() const { return "BNLL"; } - - protected: - /// @copydoc BNLLLayer - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the BNLL inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 2) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -/** - * @brief During training only, sets a random portion of @f$x@f$ to 0, adjusting - * the rest of the vector magnitude accordingly. - * - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ y = |x| @f$ - */ -template -class DropoutLayer : public NeuronLayer { - public: - /** - * @param param provides DropoutParameter dropout_param, - * with DropoutLayer options: - * - dropout_ratio (\b optional, default 0.5). - * Sets the probability @f$ p @f$ that any given unit is dropped. - */ - explicit DropoutLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Dropout"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs. At training time, we have @f$ - * y_{\mbox{train}} = \left\{ - * \begin{array}{ll} - * \frac{x}{1 - p} & \mbox{if } u > p \\ - * 0 & \mbox{otherwise} - * \end{array} \right. - * @f$, where @f$ u \sim U(0, 1)@f$ is generated independently for each - * input at each iteration. At test time, we simply have - * @f$ y_{\mbox{test}} = \mathbb{E}[y_{\mbox{train}}] = x @f$. - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - /// when divided by UINT_MAX, the randomly generated values @f$u\sim U(0,1)@f$ - Blob rand_vec_; - /// the probability @f$ p @f$ of dropping any input - Dtype threshold_; - /// the scale for undropped inputs at train time @f$ 1 / (1 - p) @f$ - Dtype scale_; - unsigned int uint_thres_; -}; - -/** - * @brief Computes @f$ y = \gamma ^ {\alpha x + \beta} @f$, - * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, - * and base @f$ \gamma @f$. - */ -template -class ExpLayer : public NeuronLayer { - public: - /** - * @param param provides ExpParameter exp_param, - * with ExpLayer options: - * - scale (\b optional, default 1) the scale @f$ \alpha @f$ - * - shift (\b optional, default 0) the shift @f$ \beta @f$ - * - base (\b optional, default -1 for a value of @f$ e \approx 2.718 @f$) - * the base @f$ \gamma @f$ - */ - explicit ExpLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Exp"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = \gamma ^ {\alpha x + \beta} - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the exp inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} = - * \frac{\partial E}{\partial y} y \alpha \log_e(gamma) - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Dtype inner_scale_, outer_scale_; -}; - -/** - * @brief Computes @f$ y = log_{\gamma}(\alpha x + \beta) @f$, - * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, - * and base @f$ \gamma @f$. - */ -template -class LogLayer : public NeuronLayer { - public: - /** - * @param param provides LogParameter log_param, - * with LogLayer options: - * - scale (\b optional, default 1) the scale @f$ \alpha @f$ - * - shift (\b optional, default 0) the shift @f$ \beta @f$ - * - base (\b optional, default -1 for a value of @f$ e \approx 2.718 @f$) - * the base @f$ \gamma @f$ - */ - explicit LogLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Log"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = log_{\gamma}(\alpha x + \beta) - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the exp inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} = - * \frac{\partial E}{\partial y} y \alpha \log_e(gamma) - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - Dtype base_scale_; - Dtype input_scale_, input_shift_; - Dtype backward_num_scale_; -}; - -/** - * @brief Computes @f$ y = (\alpha x + \beta) ^ \gamma @f$, - * as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$, - * and power @f$ \gamma @f$. - */ -template -class PowerLayer : public NeuronLayer { - public: - /** - * @param param provides PowerParameter power_param, - * with PowerLayer options: - * - scale (\b optional, default 1) the scale @f$ \alpha @f$ - * - shift (\b optional, default 0) the shift @f$ \beta @f$ - * - power (\b optional, default 1) the power @f$ \gamma @f$ - */ - explicit PowerLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Power"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = (\alpha x + \beta) ^ \gamma - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the power inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} = - * \frac{\partial E}{\partial y} - * \alpha \gamma (\alpha x + \beta) ^ {\gamma - 1} = - * \frac{\partial E}{\partial y} - * \frac{\alpha \gamma y}{\alpha x + \beta} - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - /// @brief @f$ \gamma @f$ from layer_param_.power_param() - Dtype power_; - /// @brief @f$ \alpha @f$ from layer_param_.power_param() - Dtype scale_; - /// @brief @f$ \beta @f$ from layer_param_.power_param() - Dtype shift_; - /// @brief Result of @f$ \alpha \gamma @f$ - Dtype diff_scale_; -}; - -/** - * @brief Rectified Linear Unit non-linearity @f$ y = \max(0, x) @f$. - * The simple max is fast to compute, and the function does not saturate. - */ -template -class ReLULayer : public NeuronLayer { - public: - /** - * @param param provides ReLUParameter relu_param, - * with ReLULayer options: - * - negative_slope (\b optional, default 0). - * the value @f$ \nu @f$ by which negative values are multiplied. - */ - explicit ReLULayer(const LayerParameter& param) - : NeuronLayer(param) {} - - virtual inline const char* type() const { return "ReLU"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = \max(0, x) - * @f$ by default. If a non-zero negative_slope @f$ \nu @f$ is provided, - * the computed outputs are @f$ y = \max(0, x) + \nu \min(0, x) @f$. - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the ReLU inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} = \left\{ - * \begin{array}{lr} - * 0 & \mathrm{if} \; x \le 0 \\ - * \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0 - * \end{array} \right. - * @f$ if propagate_down[0], by default. - * If a non-zero negative_slope @f$ \nu @f$ is provided, - * the computed gradients are @f$ - * \frac{\partial E}{\partial x} = \left\{ - * \begin{array}{lr} - * \nu \frac{\partial E}{\partial y} & \mathrm{if} \; x \le 0 \\ - * \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0 - * \end{array} \right. - * @f$. - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -#ifdef USE_CUDNN -/** - * @brief CuDNN acceleration of ReLULayer. - */ -template -class CuDNNReLULayer : public ReLULayer { - public: - explicit CuDNNReLULayer(const LayerParameter& param) - : ReLULayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNReLULayer(); - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t handle_; - cudnnTensorDescriptor_t bottom_desc_; - cudnnTensorDescriptor_t top_desc_; -}; -#endif - -/** - * @brief Sigmoid function non-linearity @f$ - * y = (1 + \exp(-x))^{-1} - * @f$, a classic choice in neural networks. - * - * Note that the gradient vanishes as the values move away from 0. - * The ReLULayer is often a better choice for this reason. - */ -template -class SigmoidLayer : public NeuronLayer { - public: - explicit SigmoidLayer(const LayerParameter& param) - : NeuronLayer(param) {} - - virtual inline const char* type() const { return "Sigmoid"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = (1 + \exp(-x))^{-1} - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the sigmoid inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} - * = \frac{\partial E}{\partial y} y (1 - y) - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -#ifdef USE_CUDNN -/** - * @brief CuDNN acceleration of SigmoidLayer. - */ -template -class CuDNNSigmoidLayer : public SigmoidLayer { - public: - explicit CuDNNSigmoidLayer(const LayerParameter& param) - : SigmoidLayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNSigmoidLayer(); - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t handle_; - cudnnTensorDescriptor_t bottom_desc_; - cudnnTensorDescriptor_t top_desc_; -}; -#endif - -/** - * @brief TanH hyperbolic tangent non-linearity @f$ - * y = \frac{\exp(2x) - 1}{\exp(2x) + 1} - * @f$, popular in auto-encoders. - * - * Note that the gradient vanishes as the values move away from 0. - * The ReLULayer is often a better choice for this reason. - */ -template -class TanHLayer : public NeuronLayer { - public: - explicit TanHLayer(const LayerParameter& param) - : NeuronLayer(param) {} - - virtual inline const char* type() const { return "TanH"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = \frac{\exp(2x) - 1}{\exp(2x) + 1} - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the sigmoid inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times H \times W) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$; Backward fills their diff with - * gradients @f$ - * \frac{\partial E}{\partial x} - * = \frac{\partial E}{\partial y} - * \left(1 - \left[\frac{\exp(2x) - 1}{exp(2x) + 1} \right]^2 \right) - * = \frac{\partial E}{\partial y} (1 - y^2) - * @f$ if propagate_down[0] - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); -}; - -#ifdef USE_CUDNN -/** - * @brief CuDNN acceleration of TanHLayer. - */ -template -class CuDNNTanHLayer : public TanHLayer { - public: - explicit CuDNNTanHLayer(const LayerParameter& param) - : TanHLayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNTanHLayer(); - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t handle_; - cudnnTensorDescriptor_t bottom_desc_; - cudnnTensorDescriptor_t top_desc_; -}; -#endif - -/** - * @brief Tests whether the input exceeds a threshold: outputs 1 for inputs - * above threshold; 0 otherwise. - */ -template -class ThresholdLayer : public NeuronLayer { - public: - /** - * @param param provides ThresholdParameter threshold_param, - * with ThresholdLayer options: - * - threshold (\b optional, default 0). - * the threshold value @f$ t @f$ to which the input values are compared. - */ - explicit ThresholdLayer(const LayerParameter& param) - : NeuronLayer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Threshold"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times H \times W) @f$ - * the computed outputs @f$ - * y = \left\{ - * \begin{array}{lr} - * 0 & \mathrm{if} \; x \le t \\ - * 1 & \mathrm{if} \; x > t - * \end{array} \right. - * @f$ - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - /// @brief Not implemented (non-differentiable function) - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom) { - NOT_IMPLEMENTED; - } - - Dtype threshold_; -}; - -/** - * @brief Parameterized Rectified Linear Unit non-linearity @f$ - * y_i = \max(0, x_i) + a_i \min(0, x_i) - * @f$. The differences from ReLULayer are 1) negative slopes are - * learnable though backprop and 2) negative slopes can vary across - * channels. The number of axes of input blob should be greater than or - * equal to 2. The 1st axis (0-based) is seen as channels. - */ -template -class PReLULayer : public NeuronLayer { - public: - /** - * @param param provides PReLUParameter prelu_param, - * with PReLULayer options: - * - filler (\b optional, FillerParameter, - * default {'type': constant 'value':0.25}). - * - channel_shared (\b optional, default false). - * negative slopes are shared across channels. - */ - explicit PReLULayer(const LayerParameter& param) - : NeuronLayer(param) {} - - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "PReLU"; } - - protected: - /** - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times ...) @f$ - * the inputs @f$ x @f$ - * @param top output Blob vector (length 1) - * -# @f$ (N \times C \times ...) @f$ - * the computed outputs for each channel @f$i@f$ @f$ - * y_i = \max(0, x_i) + a_i \min(0, x_i) - * @f$. - */ - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - - /** - * @brief Computes the error gradient w.r.t. the PReLU inputs. - * - * @param top output Blob vector (length 1), providing the error gradient with - * respect to the outputs - * -# @f$ (N \times C \times ...) @f$ - * containing error gradients @f$ \frac{\partial E}{\partial y} @f$ - * with respect to computed outputs @f$ y @f$ - * @param propagate_down see Layer::Backward. - * @param bottom input Blob vector (length 1) - * -# @f$ (N \times C \times ...) @f$ - * the inputs @f$ x @f$; For each channel @f$i@f$, backward fills their - * diff with gradients @f$ - * \frac{\partial E}{\partial x_i} = \left\{ - * \begin{array}{lr} - * a_i \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i \le 0 \\ - * \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i > 0 - * \end{array} \right. - * @f$. - * If param_propagate_down_[0] is true, it fills the diff with gradients - * @f$ - * \frac{\partial E}{\partial a_i} = \left\{ - * \begin{array}{lr} - * \sum_{x_i} x_i \frac{\partial E}{\partial y_i} & \mathrm{if} \; x_i \le 0 \\ - * 0 & \mathrm{if} \; x_i > 0 - * \end{array} \right. - * @f$. - */ - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool channel_shared_; - Blob multiplier_; // dot multiplier for backward computation of params - Blob backward_buff_; // temporary buffer for backward computation - Blob bottom_memory_; // memory for in-place computation -}; - -} // namespace caffe - -#endif // CAFFE_NEURON_LAYERS_HPP_ diff --git a/include/caffe/parallel.hpp b/include/caffe/parallel.hpp index 85fc2b559..64bb48e6b 100644 --- a/include/caffe/parallel.hpp +++ b/include/caffe/parallel.hpp @@ -1,8 +1,11 @@ #ifndef CAFFE_PARALLEL_HPP_ #define CAFFE_PARALLEL_HPP_ -#include +#ifdef USE_NCCL +#include + +#include #include #include "caffe/blob.hpp" @@ -13,6 +16,7 @@ #include "caffe/solver.hpp" #include "caffe/syncedmem.hpp" #include "caffe/util/blocking_queue.hpp" +#include "caffe/util/nccl.hpp" namespace caffe { @@ -51,7 +55,7 @@ class GPUParams : public Params { GPUParams(shared_ptr > root_solver, int device); virtual ~GPUParams(); - void configure(Solver* solver) const; + void Configure(Solver* solver) const; protected: using Params::size_; @@ -59,55 +63,55 @@ class GPUParams : public Params { using Params::diff_; }; -class DevicePair { - public: - DevicePair(int parent, int device) - : parent_(parent), - device_(device) { - } - inline int parent() { - return parent_; - } - inline int device() { - return device_; - } - - // Group GPUs in pairs, by proximity depending on machine's topology - static void compute(const vector devices, vector* pairs); - - protected: - int parent_; - int device_; -}; - -// Synchronous data parallelism using map-reduce between local GPUs. template -class P2PSync : public GPUParams, public Solver::Callback, - public InternalThread { +class NCCL : public GPUParams, + public Solver::Callback, + public Net::Callback { public: - explicit P2PSync(shared_ptr > root_solver, - P2PSync* parent, const SolverParameter& param); - virtual ~P2PSync(); - - inline const shared_ptr >& solver() const { - return solver_; - } - - void run(const vector& gpus); + /** + * Single process version. + */ + explicit NCCL(shared_ptr > solver); + /** + * In multi-process settings, first create a NCCL id (new_uid), then + * pass it to each process to create connected instances. + */ + NCCL(shared_ptr > solver, const string& uid); + ~NCCL(); + + boost::barrier* barrier(); + void set_barrier(boost::barrier* value); + + /** + * In single process settings, create instances without uids and + * call this to connect them. + */ + static void InitSingleProcess(vector*>* nccls); + + static string new_uid(); + + /** + * Broadcast weights from rank 0 other solvers. + */ + void Broadcast(); + + /** + * Single process multi-GPU. + */ + void Run(const vector& gpus, const char* restore); protected: - void on_start(); + void Init(); + void on_start() {} + void run(int layer); // Net callback void on_gradients_ready(); - void InternalThreadEntry(); + ncclComm_t comm_; + cudaStream_t stream_; - P2PSync* parent_; - vector*> children_; - BlockingQueue*> queue_; - const int initial_iter_; - Dtype* parent_grads_; shared_ptr > solver_; - + // Should not be necessary, https://github.com/NVIDIA/nccl/issues/37 + boost::barrier* barrier_; using Params::size_; using Params::data_; using Params::diff_; @@ -115,4 +119,5 @@ class P2PSync : public GPUParams, public Solver::Callback, } // namespace caffe -#endif +#endif // USE_NCCL +#endif // header diff --git a/include/caffe/sgd_solvers.hpp b/include/caffe/sgd_solvers.hpp new file mode 100644 index 000000000..1fc52d871 --- /dev/null +++ b/include/caffe/sgd_solvers.hpp @@ -0,0 +1,148 @@ +#ifndef CAFFE_SGD_SOLVERS_HPP_ +#define CAFFE_SGD_SOLVERS_HPP_ + +#include +#include + +#include "caffe/solver.hpp" + +namespace caffe { + +/** + * @brief Optimizes the parameters of a Net using + * stochastic gradient descent (SGD) with momentum. + */ +template +class SGDSolver : public Solver { + public: + explicit SGDSolver(const SolverParameter& param) + : Solver(param) { PreSolve(); } + explicit SGDSolver(const string& param_file) + : Solver(param_file) { PreSolve(); } + virtual inline const char* type() const { return "SGD"; } + + const vector > >& history() { return history_; } + + protected: + void PreSolve(); + Dtype GetLearningRate(); + virtual void ApplyUpdate(); + virtual void Normalize(int param_id); + virtual void Regularize(int param_id); + virtual void ComputeUpdateValue(int param_id, Dtype rate); + virtual void ClipGradients(); + virtual void SnapshotSolverState(const string& model_filename); + virtual void SnapshotSolverStateToBinaryProto(const string& model_filename); + virtual void SnapshotSolverStateToHDF5(const string& model_filename); + virtual void RestoreSolverStateFromHDF5(const string& state_file); + virtual void RestoreSolverStateFromBinaryProto(const string& state_file); + // history maintains the historical momentum data. + // update maintains update related data and is not needed in snapshots. + // temp maintains other information that might be needed in computation + // of gradients/updates and is not needed in snapshots + vector > > history_, update_, temp_; + + DISABLE_COPY_AND_ASSIGN(SGDSolver); +}; + +template +class NesterovSolver : public SGDSolver { + public: + explicit NesterovSolver(const SolverParameter& param) + : SGDSolver(param) {} + explicit NesterovSolver(const string& param_file) + : SGDSolver(param_file) {} + virtual inline const char* type() const { return "Nesterov"; } + + protected: + virtual void ComputeUpdateValue(int param_id, Dtype rate); + + DISABLE_COPY_AND_ASSIGN(NesterovSolver); +}; + +template +class AdaGradSolver : public SGDSolver { + public: + explicit AdaGradSolver(const SolverParameter& param) + : SGDSolver(param) { constructor_sanity_check(); } + explicit AdaGradSolver(const string& param_file) + : SGDSolver(param_file) { constructor_sanity_check(); } + virtual inline const char* type() const { return "AdaGrad"; } + + protected: + virtual void ComputeUpdateValue(int param_id, Dtype rate); + void constructor_sanity_check() { + CHECK_EQ(0, this->param_.momentum()) + << "Momentum cannot be used with AdaGrad."; + } + + DISABLE_COPY_AND_ASSIGN(AdaGradSolver); +}; + + +template +class RMSPropSolver : public SGDSolver { + public: + explicit RMSPropSolver(const SolverParameter& param) + : SGDSolver(param) { constructor_sanity_check(); } + explicit RMSPropSolver(const string& param_file) + : SGDSolver(param_file) { constructor_sanity_check(); } + virtual inline const char* type() const { return "RMSProp"; } + + protected: + virtual void ComputeUpdateValue(int param_id, Dtype rate); + void constructor_sanity_check() { + CHECK_EQ(0, this->param_.momentum()) + << "Momentum cannot be used with RMSProp."; + CHECK_GE(this->param_.rms_decay(), 0) + << "rms_decay should lie between 0 and 1."; + CHECK_LT(this->param_.rms_decay(), 1) + << "rms_decay should lie between 0 and 1."; + } + + DISABLE_COPY_AND_ASSIGN(RMSPropSolver); +}; + +template +class AdaDeltaSolver : public SGDSolver { + public: + explicit AdaDeltaSolver(const SolverParameter& param) + : SGDSolver(param) { AdaDeltaPreSolve(); } + explicit AdaDeltaSolver(const string& param_file) + : SGDSolver(param_file) { AdaDeltaPreSolve(); } + virtual inline const char* type() const { return "AdaDelta"; } + + protected: + void AdaDeltaPreSolve(); + virtual void ComputeUpdateValue(int param_id, Dtype rate); + + DISABLE_COPY_AND_ASSIGN(AdaDeltaSolver); +}; + +/** + * @brief AdamSolver, an algorithm for first-order gradient-based optimization + * of stochastic objective functions, based on adaptive estimates of + * lower-order moments. Described in [1]. + * + * [1] D. P. Kingma and J. L. Ba, "ADAM: A Method for Stochastic Optimization." + * arXiv preprint arXiv:1412.6980v8 (2014). + */ +template +class AdamSolver : public SGDSolver { + public: + explicit AdamSolver(const SolverParameter& param) + : SGDSolver(param) { AdamPreSolve();} + explicit AdamSolver(const string& param_file) + : SGDSolver(param_file) { AdamPreSolve(); } + virtual inline const char* type() const { return "Adam"; } + + protected: + void AdamPreSolve(); + virtual void ComputeUpdateValue(int param_id, Dtype rate); + + DISABLE_COPY_AND_ASSIGN(AdamSolver); +}; + +} // namespace caffe + +#endif // CAFFE_SGD_SOLVERS_HPP_ diff --git a/include/caffe/solver.hpp b/include/caffe/solver.hpp index aba3e0360..a28d8cb89 100644 --- a/include/caffe/solver.hpp +++ b/include/caffe/solver.hpp @@ -1,17 +1,19 @@ -#ifndef CAFFE_OPTIMIZATION_SOLVER_HPP_ -#define CAFFE_OPTIMIZATION_SOLVER_HPP_ +#ifndef CAFFE_SOLVER_HPP_ +#define CAFFE_SOLVER_HPP_ #include #include #include #include "caffe/net.hpp" +#include "caffe/solver_factory.hpp" +#include "caffe/util/benchmark.hpp" namespace caffe { /** * @brief Enumeration of actions that a client of the Solver may request by * implementing the Solver's action request function, which a - * a client may optionally provide in order to request early termination + * client may optionally provide in order to request early termination * or saving a snapshot without exiting. In the executable caffe, this * mechanism is used to allow the snapshot to be saved when stopping * execution with a SIGINT (Ctrl-C). @@ -39,9 +41,8 @@ typedef boost::function ActionCallback; template class Solver { public: - explicit Solver(const SolverParameter& param, - const Solver* root_solver = NULL); - explicit Solver(const string& param_file, const Solver* root_solver = NULL); + explicit Solver(const SolverParameter& param); + explicit Solver(const string& param_file); void Init(const SolverParameter& param); void InitTrainNet(); void InitTestNets(); @@ -60,13 +61,18 @@ class Solver { // RestoreSolverStateFrom___ protected methods. You should implement these // methods to restore the state from the appropriate snapshot type. void Restore(const char* resume_file); + // The Solver::Snapshot function implements the basic snapshotting utility + // that stores the learned net. You should implement the SnapshotSolverState() + // function that produces a SolverState protocol buffer that needs to be + // written to disk together with the learned net. + void Snapshot(); virtual ~Solver() {} inline const SolverParameter& param() const { return param_; } inline shared_ptr > net() { return net_; } inline const vector > >& test_nets() { return test_nets_; } - int iter() { return iter_; } + int iter() const { return iter_; } // Invoked at specific points during an iteration class Callback { @@ -82,14 +88,15 @@ class Solver { callbacks_.push_back(value); } + void CheckSnapshotWritePermissions(); + /** + * @brief Returns the solver type. + */ + virtual inline const char* type() const { return ""; } + protected: // Make and apply the update value for the current iteration. virtual void ApplyUpdate() = 0; - // The Solver::Snapshot function implements the basic snapshotting utility - // that stores the learned net. You should implement the SnapshotSolverState() - // function that produces a SolverState protocol buffer that needs to be - // written to disk together with the learned net. - void Snapshot(); string SnapshotFilename(const string extension); string SnapshotToBinaryProto(); string SnapshotToHDF5(); @@ -100,6 +107,7 @@ class Solver { virtual void RestoreSolverStateFromHDF5(const string& state_file) = 0; virtual void RestoreSolverStateFromBinaryProto(const string& state_file) = 0; void DisplayOutputBlobs(const int net_id); + void UpdateSmoothedLoss(Dtype loss, int start_iter, int average_loss); SolverParameter param_; int iter_; @@ -107,10 +115,8 @@ class Solver { shared_ptr > net_; vector > > test_nets_; vector callbacks_; - - // The root solver that holds root nets (actually containing shared layers) - // in data parallelism - const Solver* const root_solver_; + vector losses_; + Dtype smoothed_loss_; // A function that can be set by a client of the Solver to provide indication // that it wants a snapshot saved and/or to exit early. @@ -119,185 +125,13 @@ class Solver { // True iff a request to stop early was received. bool requested_early_exit_; - DISABLE_COPY_AND_ASSIGN(Solver); -}; - -/** - * @brief Solver that only computes gradients, used as worker - * for multi-GPU training. - */ -template -class WorkerSolver : public Solver { - public: - explicit WorkerSolver(const SolverParameter& param, - const Solver* root_solver = NULL) - : Solver(param, root_solver) {} - - protected: - void ApplyUpdate() {} - void SnapshotSolverState(const string& model_filename) { - LOG(FATAL) << "Should not be called on worker solver."; - } - void RestoreSolverStateFromBinaryProto(const string& state_file) { - LOG(FATAL) << "Should not be called on worker solver."; - } - void RestoreSolverStateFromHDF5(const string& state_file) { - LOG(FATAL) << "Should not be called on worker solver."; - } -}; - -/** - * @brief Optimizes the parameters of a Net using - * stochastic gradient descent (SGD) with momentum. - */ -template -class SGDSolver : public Solver { - public: - explicit SGDSolver(const SolverParameter& param) - : Solver(param) { PreSolve(); } - explicit SGDSolver(const string& param_file) - : Solver(param_file) { PreSolve(); } - - const vector > >& history() { return history_; } - - protected: - void PreSolve(); - Dtype GetLearningRate(); - virtual void ApplyUpdate(); - virtual void Normalize(int param_id); - virtual void Regularize(int param_id); - virtual void ComputeUpdateValue(int param_id, Dtype rate); - virtual void ClipGradients(); - virtual void SnapshotSolverState(const string& model_filename); - virtual void SnapshotSolverStateToBinaryProto(const string& model_filename); - virtual void SnapshotSolverStateToHDF5(const string& model_filename); - virtual void RestoreSolverStateFromHDF5(const string& state_file); - virtual void RestoreSolverStateFromBinaryProto(const string& state_file); - // history maintains the historical momentum data. - // update maintains update related data and is not needed in snapshots. - // temp maintains other information that might be needed in computation - // of gradients/updates and is not needed in snapshots - vector > > history_, update_, temp_; - - DISABLE_COPY_AND_ASSIGN(SGDSolver); -}; - -template -class NesterovSolver : public SGDSolver { - public: - explicit NesterovSolver(const SolverParameter& param) - : SGDSolver(param) {} - explicit NesterovSolver(const string& param_file) - : SGDSolver(param_file) {} - - protected: - virtual void ComputeUpdateValue(int param_id, Dtype rate); + // Timing information, handy to tune e.g. nbr of GPUs + Timer iteration_timer_; + float iterations_last_; - DISABLE_COPY_AND_ASSIGN(NesterovSolver); -}; - -template -class AdaGradSolver : public SGDSolver { - public: - explicit AdaGradSolver(const SolverParameter& param) - : SGDSolver(param) { constructor_sanity_check(); } - explicit AdaGradSolver(const string& param_file) - : SGDSolver(param_file) { constructor_sanity_check(); } - - protected: - virtual void ComputeUpdateValue(int param_id, Dtype rate); - void constructor_sanity_check() { - CHECK_EQ(0, this->param_.momentum()) - << "Momentum cannot be used with AdaGrad."; - } - - DISABLE_COPY_AND_ASSIGN(AdaGradSolver); -}; - - -template -class RMSPropSolver : public SGDSolver { - public: - explicit RMSPropSolver(const SolverParameter& param) - : SGDSolver(param) { constructor_sanity_check(); } - explicit RMSPropSolver(const string& param_file) - : SGDSolver(param_file) { constructor_sanity_check(); } - - protected: - virtual void ComputeUpdateValue(int param_id, Dtype rate); - void constructor_sanity_check() { - CHECK_EQ(0, this->param_.momentum()) - << "Momentum cannot be used with RMSProp."; - CHECK_GE(this->param_.rms_decay(), 0) - << "rms_decay should lie between 0 and 1."; - CHECK_LT(this->param_.rms_decay(), 1) - << "rms_decay should lie between 0 and 1."; - } - - DISABLE_COPY_AND_ASSIGN(RMSPropSolver); -}; - -template -class AdaDeltaSolver : public SGDSolver { - public: - explicit AdaDeltaSolver(const SolverParameter& param) - : SGDSolver(param) { AdaDeltaPreSolve(); } - explicit AdaDeltaSolver(const string& param_file) - : SGDSolver(param_file) { AdaDeltaPreSolve(); } - - protected: - void AdaDeltaPreSolve(); - virtual void ComputeUpdateValue(int param_id, Dtype rate); - - DISABLE_COPY_AND_ASSIGN(AdaDeltaSolver); -}; - -/** - * @brief AdamSolver, an algorithm for first-order gradient-based optimization - * of stochastic objective functions, based on adaptive estimates of - * lower-order moments. Described in [1]. - * - * [1] D. P. Kingma and J. L. Ba, "ADAM: A Method for Stochastic Optimization." - * arXiv preprint arXiv:1412.6980v8 (2014). - */ -template -class AdamSolver : public SGDSolver { - public: - explicit AdamSolver(const SolverParameter& param) - : SGDSolver(param) { AdamPreSolve();} - explicit AdamSolver(const string& param_file) - : SGDSolver(param_file) { AdamPreSolve(); } - - protected: - void AdamPreSolve(); - virtual void ComputeUpdateValue(int param_id, Dtype rate); - - DISABLE_COPY_AND_ASSIGN(AdamSolver); + DISABLE_COPY_AND_ASSIGN(Solver); }; -template -Solver* GetSolver(const SolverParameter& param) { - SolverParameter_SolverType type = param.solver_type(); - - switch (type) { - case SolverParameter_SolverType_SGD: - return new SGDSolver(param); - case SolverParameter_SolverType_NESTEROV: - return new NesterovSolver(param); - case SolverParameter_SolverType_ADAGRAD: - return new AdaGradSolver(param); - case SolverParameter_SolverType_RMSPROP: - return new RMSPropSolver(param); - case SolverParameter_SolverType_ADADELTA: - return new AdaDeltaSolver(param); - case SolverParameter_SolverType_ADAM: - return new AdamSolver(param); - default: - LOG(FATAL) << "Unknown SolverType: " << type; - } - return (Solver*) NULL; -} - } // namespace caffe -#endif // CAFFE_OPTIMIZATION_SOLVER_HPP_ +#endif // CAFFE_SOLVER_HPP_ diff --git a/include/caffe/solver_factory.hpp b/include/caffe/solver_factory.hpp new file mode 100644 index 000000000..a5b160739 --- /dev/null +++ b/include/caffe/solver_factory.hpp @@ -0,0 +1,137 @@ +/** + * @brief A solver factory that allows one to register solvers, similar to + * layer factory. During runtime, registered solvers could be called by passing + * a SolverParameter protobuffer to the CreateSolver function: + * + * SolverRegistry::CreateSolver(param); + * + * There are two ways to register a solver. Assuming that we have a solver like: + * + * template + * class MyAwesomeSolver : public Solver { + * // your implementations + * }; + * + * and its type is its C++ class name, but without the "Solver" at the end + * ("MyAwesomeSolver" -> "MyAwesome"). + * + * If the solver is going to be created simply by its constructor, in your C++ + * file, add the following line: + * + * REGISTER_SOLVER_CLASS(MyAwesome); + * + * Or, if the solver is going to be created by another creator function, in the + * format of: + * + * template + * Solver GetMyAwesomeSolver(const SolverParameter& param) { + * // your implementation + * } + * + * then you can register the creator function instead, like + * + * REGISTER_SOLVER_CREATOR(MyAwesome, GetMyAwesomeSolver) + * + * Note that each solver type should only be registered once. + */ + +#ifndef CAFFE_SOLVER_FACTORY_H_ +#define CAFFE_SOLVER_FACTORY_H_ + +#include +#include +#include + +#include "caffe/common.hpp" +#include "caffe/proto/caffe.pb.h" + +namespace caffe { + +template +class Solver; + +template +class SolverRegistry { + public: + typedef Solver* (*Creator)(const SolverParameter&); + typedef std::map CreatorRegistry; + + static CreatorRegistry& Registry() { + static CreatorRegistry* g_registry_ = new CreatorRegistry(); + return *g_registry_; + } + + // Adds a creator. + static void AddCreator(const string& type, Creator creator) { + CreatorRegistry& registry = Registry(); + CHECK_EQ(registry.count(type), 0) + << "Solver type " << type << " already registered."; + registry[type] = creator; + } + + // Get a solver using a SolverParameter. + static Solver* CreateSolver(const SolverParameter& param) { + const string& type = param.type(); + CreatorRegistry& registry = Registry(); + CHECK_EQ(registry.count(type), 1) << "Unknown solver type: " << type + << " (known types: " << SolverTypeListString() << ")"; + return registry[type](param); + } + + static vector SolverTypeList() { + CreatorRegistry& registry = Registry(); + vector solver_types; + for (typename CreatorRegistry::iterator iter = registry.begin(); + iter != registry.end(); ++iter) { + solver_types.push_back(iter->first); + } + return solver_types; + } + + private: + // Solver registry should never be instantiated - everything is done with its + // static variables. + SolverRegistry() {} + + static string SolverTypeListString() { + vector solver_types = SolverTypeList(); + string solver_types_str; + for (vector::iterator iter = solver_types.begin(); + iter != solver_types.end(); ++iter) { + if (iter != solver_types.begin()) { + solver_types_str += ", "; + } + solver_types_str += *iter; + } + return solver_types_str; + } +}; + + +template +class SolverRegisterer { + public: + SolverRegisterer(const string& type, + Solver* (*creator)(const SolverParameter&)) { + // LOG(INFO) << "Registering solver type: " << type; + SolverRegistry::AddCreator(type, creator); + } +}; + + +#define REGISTER_SOLVER_CREATOR(type, creator) \ + static SolverRegisterer g_creator_f_##type(#type, creator); \ + static SolverRegisterer g_creator_d_##type(#type, creator) \ + +#define REGISTER_SOLVER_CLASS(type) \ + template \ + Solver* Creator_##type##Solver( \ + const SolverParameter& param) \ + { \ + return new type##Solver(param); \ + } \ + REGISTER_SOLVER_CREATOR(type, Creator_##type##Solver) + +} // namespace caffe + +#endif // CAFFE_SOLVER_FACTORY_H_ diff --git a/include/caffe/syncedmem.hpp b/include/caffe/syncedmem.hpp index 62aadef49..317ce29a2 100644 --- a/include/caffe/syncedmem.hpp +++ b/include/caffe/syncedmem.hpp @@ -3,8 +3,11 @@ #include +#ifdef USE_MKL + #include "mkl.h" +#endif + #include "caffe/common.hpp" -#include "caffe/util/math_functions.hpp" namespace caffe { @@ -13,25 +16,35 @@ namespace caffe { // The improvement in performance seems negligible in the single GPU case, // but might be more significant for parallel training. Most importantly, // it improved stability for large models on many GPUs. -inline void CaffeMallocHost(void** ptr, size_t size) { +inline void CaffeMallocHost(void** ptr, size_t size, bool* use_cuda) { #ifndef CPU_ONLY if (Caffe::mode() == Caffe::GPU) { CUDA_CHECK(cudaMallocHost(ptr, size)); + *use_cuda = true; return; } #endif +#ifdef USE_MKL + *ptr = mkl_malloc(size ? size:1, 64); +#else *ptr = malloc(size); +#endif + *use_cuda = false; CHECK(*ptr) << "host allocation of size " << size << " failed"; } -inline void CaffeFreeHost(void* ptr) { +inline void CaffeFreeHost(void* ptr, bool use_cuda) { #ifndef CPU_ONLY - if (Caffe::mode() == Caffe::GPU) { + if (use_cuda) { CUDA_CHECK(cudaFreeHost(ptr)); return; } #endif +#ifdef USE_MKL + mkl_free(ptr); +#else free(ptr); +#endif } @@ -43,12 +56,8 @@ inline void CaffeFreeHost(void* ptr) { */ class SyncedMemory { public: - SyncedMemory() - : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(0), head_(UNINITIALIZED), - own_cpu_data_(false), own_gpu_data_(false), gpu_device_(-1) {} - explicit SyncedMemory(size_t size) - : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(size), head_(UNINITIALIZED), - own_cpu_data_(false), own_gpu_data_(false), gpu_device_(-1) {} + SyncedMemory(); + explicit SyncedMemory(size_t size); ~SyncedMemory(); const void* cpu_data(); void set_cpu_data(void* data); @@ -65,6 +74,8 @@ class SyncedMemory { #endif private: + void check_device(); + void to_cpu(); void to_gpu(); void* cpu_ptr_; @@ -72,8 +83,9 @@ class SyncedMemory { size_t size_; SyncedHead head_; bool own_cpu_data_; + bool cpu_malloc_use_cuda_; bool own_gpu_data_; - int gpu_device_; + int device_; DISABLE_COPY_AND_ASSIGN(SyncedMemory); }; // class SyncedMemory diff --git a/include/caffe/test/test_caffe_main.hpp b/include/caffe/test/test_caffe_main.hpp index fc1560914..294f7e501 100644 --- a/include/caffe/test/test_caffe_main.hpp +++ b/include/caffe/test/test_caffe_main.hpp @@ -18,9 +18,8 @@ using std::endl; #include "caffe_config.h" #else #define CUDA_TEST_DEVICE -1 - #define CMAKE_SOURCE_DIR "src/" #define EXAMPLES_SOURCE_DIR "examples/" - #define CMAKE_EXT "" + #define ABS_TEST_DATA_DIR "src/caffe/test/test_data" #endif int main(int argc, char** argv); diff --git a/include/caffe/test/test_gradient_check_util.hpp b/include/caffe/test/test_gradient_check_util.hpp index 25f35d158..b25a84875 100644 --- a/include/caffe/test/test_gradient_check_util.hpp +++ b/include/caffe/test/test_gradient_check_util.hpp @@ -169,8 +169,9 @@ void GradientChecker::CheckGradientSingle(Layer* layer, || fabs(feature) > kink_ + kink_range_) { // We check relative accuracy, but for too small values, we threshold // the scale factor by 1. - Dtype scale = std::max( - std::max(fabs(computed_gradient), fabs(estimated_gradient)), 1.); + Dtype scale = std::max( + std::max(fabs(computed_gradient), fabs(estimated_gradient)), + Dtype(1.)); EXPECT_NEAR(computed_gradient, estimated_gradient, threshold_ * scale) << "debug: (top_id, top_data_id, blob_id, feat_id)=" << top_id << "," << top_data_id << "," << blob_id << "," << feat_id diff --git a/include/caffe/util/blocking_queue.hpp b/include/caffe/util/blocking_queue.hpp index 955e12cc5..d3de2e59b 100644 --- a/include/caffe/util/blocking_queue.hpp +++ b/include/caffe/util/blocking_queue.hpp @@ -4,8 +4,6 @@ #include #include -#include "caffe/common.hpp" - namespace caffe { template diff --git a/include/caffe/util/cudnn.hpp b/include/caffe/util/cudnn.hpp index b531dd5fa..498cfe385 100644 --- a/include/caffe/util/cudnn.hpp +++ b/include/caffe/util/cudnn.hpp @@ -7,6 +7,9 @@ #include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" +#define CUDNN_VERSION_MIN(major, minor, patch) \ + (CUDNN_VERSION >= (major * 1000 + minor * 100 + patch)) + #define CUDNN_CHECK(condition) \ do { \ cudnnStatus_t status = condition; \ @@ -38,6 +41,10 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) { return "CUDNN_STATUS_NOT_SUPPORTED"; case CUDNN_STATUS_LICENSE_ERROR: return "CUDNN_STATUS_LICENSE_ERROR"; +#if CUDNN_VERSION_MIN(6, 0, 0) + case CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING: + return "CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING"; +#endif } return "Unknown cudnn status"; } @@ -88,8 +95,13 @@ template inline void createFilterDesc(cudnnFilterDescriptor_t* desc, int n, int c, int h, int w) { CUDNN_CHECK(cudnnCreateFilterDescriptor(desc)); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnSetFilter4dDescriptor(*desc, dataType::type, - n, c, h, w)); + CUDNN_TENSOR_NCHW, n, c, h, w)); +#else + CUDNN_CHECK(cudnnSetFilter4dDescriptor_v4(*desc, dataType::type, + CUDNN_TENSOR_NCHW, n, c, h, w)); +#endif } template @@ -101,8 +113,14 @@ template inline void setConvolutionDesc(cudnnConvolutionDescriptor_t* conv, cudnnTensorDescriptor_t bottom, cudnnFilterDescriptor_t filter, int pad_h, int pad_w, int stride_h, int stride_w) { +#if CUDNN_VERSION_MIN(6, 0, 0) CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv, + pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION, + dataType::type)); +#else + CUDNN_CHECK(cudnnSetConvolution2dDescriptor(*conv, pad_h, pad_w, stride_h, stride_w, 1, 1, CUDNN_CROSS_CORRELATION)); +#endif } template @@ -120,8 +138,21 @@ inline void createPoolingDesc(cudnnPoolingDescriptor_t* pool_desc, LOG(FATAL) << "Unknown pooling method."; } CUDNN_CHECK(cudnnCreatePoolingDescriptor(pool_desc)); - CUDNN_CHECK(cudnnSetPooling2dDescriptor(*pool_desc, *mode, h, w, - pad_h, pad_w, stride_h, stride_w)); +#if CUDNN_VERSION_MIN(5, 0, 0) + CUDNN_CHECK(cudnnSetPooling2dDescriptor(*pool_desc, *mode, + CUDNN_PROPAGATE_NAN, h, w, pad_h, pad_w, stride_h, stride_w)); +#else + CUDNN_CHECK(cudnnSetPooling2dDescriptor_v4(*pool_desc, *mode, + CUDNN_PROPAGATE_NAN, h, w, pad_h, pad_w, stride_h, stride_w)); +#endif +} + +template +inline void createActivationDescriptor(cudnnActivationDescriptor_t* activ_desc, + cudnnActivationMode_t mode) { + CUDNN_CHECK(cudnnCreateActivationDescriptor(activ_desc)); + CUDNN_CHECK(cudnnSetActivationDescriptor(*activ_desc, mode, + CUDNN_PROPAGATE_NAN, Dtype(0))); } } // namespace cudnn diff --git a/include/caffe/util/db_leveldb.hpp b/include/caffe/util/db_leveldb.hpp index 10623554b..4cdb6db95 100644 --- a/include/caffe/util/db_leveldb.hpp +++ b/include/caffe/util/db_leveldb.hpp @@ -1,3 +1,4 @@ +#ifdef USE_LEVELDB #ifndef CAFFE_UTIL_DB_LEVELDB_HPP #define CAFFE_UTIL_DB_LEVELDB_HPP @@ -13,7 +14,10 @@ namespace caffe { namespace db { class LevelDBCursor : public Cursor { public: explicit LevelDBCursor(leveldb::Iterator* iter) - : iter_(iter) { SeekToFirst(); } + : iter_(iter) { + SeekToFirst(); + CHECK(iter_->status().ok()) << iter_->status().ToString(); + } ~LevelDBCursor() { delete iter_; } virtual void SeekToFirst() { iter_->SeekToFirst(); } virtual void Next() { iter_->Next(); } @@ -71,3 +75,4 @@ class LevelDB : public DB { } // namespace caffe #endif // CAFFE_UTIL_DB_LEVELDB_HPP +#endif // USE_LEVELDB diff --git a/include/caffe/util/db_lmdb.hpp b/include/caffe/util/db_lmdb.hpp index cc7c90afc..ee3703223 100644 --- a/include/caffe/util/db_lmdb.hpp +++ b/include/caffe/util/db_lmdb.hpp @@ -1,7 +1,9 @@ +#ifdef USE_LMDB #ifndef CAFFE_UTIL_DB_LMDB_HPP #define CAFFE_UTIL_DB_LMDB_HPP #include +#include #include "lmdb.h" @@ -53,14 +55,16 @@ class LMDBCursor : public Cursor { class LMDBTransaction : public Transaction { public: - explicit LMDBTransaction(MDB_dbi* mdb_dbi, MDB_txn* mdb_txn) - : mdb_dbi_(mdb_dbi), mdb_txn_(mdb_txn) { } + explicit LMDBTransaction(MDB_env* mdb_env) + : mdb_env_(mdb_env) { } virtual void Put(const string& key, const string& value); - virtual void Commit() { MDB_CHECK(mdb_txn_commit(mdb_txn_)); } + virtual void Commit(); private: - MDB_dbi* mdb_dbi_; - MDB_txn* mdb_txn_; + MDB_env* mdb_env_; + vector keys, values; + + void DoubleMapSize(); DISABLE_COPY_AND_ASSIGN(LMDBTransaction); }; @@ -89,3 +93,4 @@ class LMDB : public DB { } // namespace caffe #endif // CAFFE_UTIL_DB_LMDB_HPP +#endif // USE_LMDB diff --git a/include/caffe/util/device_alternate.hpp b/include/caffe/util/device_alternate.hpp index 6ea595dba..e3fe4fe29 100644 --- a/include/caffe/util/device_alternate.hpp +++ b/include/caffe/util/device_alternate.hpp @@ -81,14 +81,8 @@ namespace caffe { const char* cublasGetErrorString(cublasStatus_t error); const char* curandGetErrorString(curandStatus_t error); -// CUDA: thread number configuration. -// Use 1024 threads per block, which requires cuda sm_2x or above, -// or fall back to attempt compatibility (best of luck to you). -#if __CUDA_ARCH__ >= 200 - const int CAFFE_CUDA_NUM_THREADS = 1024; -#else - const int CAFFE_CUDA_NUM_THREADS = 512; -#endif +// CUDA: use 512 threads per block +const int CAFFE_CUDA_NUM_THREADS = 512; // CUDA: number of blocks for threads. inline int CAFFE_GET_BLOCKS(const int N) { diff --git a/include/caffe/util/format.hpp b/include/caffe/util/format.hpp new file mode 100644 index 000000000..925ad2e04 --- /dev/null +++ b/include/caffe/util/format.hpp @@ -0,0 +1,18 @@ +#ifndef CAFFE_UTIL_FORMAT_H_ +#define CAFFE_UTIL_FORMAT_H_ + +#include // NOLINT(readability/streams) +#include // NOLINT(readability/streams) +#include + +namespace caffe { + +inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) { + std::ostringstream s; + s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n; + return s.str(); +} + +} + +#endif // CAFFE_UTIL_FORMAT_H_ diff --git a/include/caffe/util/hdf5.hpp b/include/caffe/util/hdf5.hpp index ce568c5eb..71549c1cc 100644 --- a/include/caffe/util/hdf5.hpp +++ b/include/caffe/util/hdf5.hpp @@ -13,12 +13,12 @@ namespace caffe { template void hdf5_load_nd_dataset_helper( hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, - Blob* blob); + Blob* blob, bool reshape); template void hdf5_load_nd_dataset( hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, - Blob* blob); + Blob* blob, bool reshape = false); template void hdf5_save_nd_dataset( diff --git a/include/caffe/util/im2col.hpp b/include/caffe/util/im2col.hpp index 0051e2fa0..a35bc6e0b 100644 --- a/include/caffe/util/im2col.hpp +++ b/include/caffe/util/im2col.hpp @@ -3,29 +3,57 @@ namespace caffe { +template +void im2col_nd_cpu(const Dtype* data_im, const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col); + template void im2col_cpu(const Dtype* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, Dtype* data_col); + const int stride_w, const int dilation_h, const int dilation_w, + Dtype* data_col); + +template +void col2im_nd_cpu(const Dtype* data_col, const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_im); template void col2im_cpu(const Dtype* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, Dtype* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + Dtype* data_im); + +template +void im2col_nd_gpu(const Dtype* data_im, const int num_spatial_axes, + const int col_size, const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col); template void im2col_gpu(const Dtype* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, Dtype* data_col); + const int stride_w, const int dilation_h, const int dilation_w, + Dtype* data_col); + +template +void col2im_nd_gpu(const Dtype* data_col, const int num_spatial_axes, + const int im_size, const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_im); template void col2im_gpu(const Dtype* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, Dtype* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + Dtype* data_im); } // namespace caffe diff --git a/include/caffe/util/io.hpp b/include/caffe/util/io.hpp index c0938ad06..1a599883c 100644 --- a/include/caffe/util/io.hpp +++ b/include/caffe/util/io.hpp @@ -1,43 +1,52 @@ #ifndef CAFFE_UTIL_IO_H_ #define CAFFE_UTIL_IO_H_ -#include +#include +#include +#include // NOLINT(readability/streams) #include #include "google/protobuf/message.h" -#include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" +#include "caffe/util/format.hpp" + +#ifndef CAFFE_TMP_DIR_RETRIES +#define CAFFE_TMP_DIR_RETRIES 100 +#endif namespace caffe { using ::google::protobuf::Message; - -inline void MakeTempFilename(string* temp_filename) { - temp_filename->clear(); - *temp_filename = "/tmp/caffe_test.XXXXXX"; - char* temp_filename_cstr = new char[temp_filename->size() + 1]; - // NOLINT_NEXT_LINE(runtime/printf) - strcpy(temp_filename_cstr, temp_filename->c_str()); - int fd = mkstemp(temp_filename_cstr); - CHECK_GE(fd, 0) << "Failed to open a temporary file at: " << *temp_filename; - close(fd); - *temp_filename = temp_filename_cstr; - delete[] temp_filename_cstr; -} +using ::boost::filesystem::path; inline void MakeTempDir(string* temp_dirname) { temp_dirname->clear(); - *temp_dirname = "/tmp/caffe_test.XXXXXX"; - char* temp_dirname_cstr = new char[temp_dirname->size() + 1]; - // NOLINT_NEXT_LINE(runtime/printf) - strcpy(temp_dirname_cstr, temp_dirname->c_str()); - char* mkdtemp_result = mkdtemp(temp_dirname_cstr); - CHECK(mkdtemp_result != NULL) - << "Failed to create a temporary directory at: " << *temp_dirname; - *temp_dirname = temp_dirname_cstr; - delete[] temp_dirname_cstr; + const path& model = + boost::filesystem::temp_directory_path()/"caffe_test.%%%%-%%%%"; + for ( int i = 0; i < CAFFE_TMP_DIR_RETRIES; i++ ) { + const path& dir = boost::filesystem::unique_path(model).string(); + bool done = boost::filesystem::create_directory(dir); + if ( done ) { + *temp_dirname = dir.string(); + return; + } + } + LOG(FATAL) << "Failed to create a temporary directory."; +} + +inline void MakeTempFilename(string* temp_filename) { + static path temp_files_subpath; + static uint64_t next_temp_file = 0; + temp_filename->clear(); + if ( temp_files_subpath.empty() ) { + string path_string=""; + MakeTempDir(&path_string); + temp_files_subpath = path_string; + } + *temp_filename = + (temp_files_subpath/caffe::format_int(next_temp_file++, 9)).string(); } bool ReadProtoFromTextFile(const char* filename, Message* proto); @@ -120,6 +129,7 @@ inline bool ReadImageToDatum(const string& filename, const int label, bool DecodeDatumNative(Datum* datum); bool DecodeDatum(Datum* datum, bool is_color); +#ifdef USE_OPENCV cv::Mat ReadImageToCVMat(const string& filename, const int height, const int width, const bool is_color); @@ -135,6 +145,7 @@ cv::Mat DecodeDatumToCVMatNative(const Datum& datum); cv::Mat DecodeDatumToCVMat(const Datum& datum, bool is_color); void CVMatToDatum(const cv::Mat& cv_img, Datum* datum); +#endif // USE_OPENCV } // namespace caffe diff --git a/include/caffe/util/math_functions.hpp b/include/caffe/util/math_functions.hpp index 2cacd8e72..e549120a9 100644 --- a/include/caffe/util/math_functions.hpp +++ b/include/caffe/util/math_functions.hpp @@ -52,6 +52,9 @@ void caffe_scal(const int N, const Dtype alpha, Dtype *X); template void caffe_sqr(const int N, const Dtype* a, Dtype* y); +template +void caffe_sqrt(const int N, const Dtype* a, Dtype* y); + template void caffe_add(const int N, const Dtype* a, const Dtype* b, Dtype* y); @@ -101,9 +104,6 @@ template Dtype caffe_cpu_strided_dot(const int n, const Dtype* x, const int incx, const Dtype* y, const int incy); -template -int caffe_cpu_hamming_distance(const int n, const Dtype* x, const Dtype* y); - // Returns the sum of the absolute values of the elements of vector x template Dtype caffe_cpu_asum(const int n, const Dtype* x); @@ -131,16 +131,16 @@ inline int8_t caffe_sign(Dtype val) { } // output is 1 for the positives, 0 for zero, and -1 for the negatives -DEFINE_CAFFE_CPU_UNARY_FUNC(sign, y[i] = caffe_sign(x[i])); +DEFINE_CAFFE_CPU_UNARY_FUNC(sign, y[i] = caffe_sign(x[i])) // This returns a nonzero value if the input has its sign bit set. // The name sngbit is meant to avoid conflicts with std::signbit in the macro. // The extra parens are needed because CUDA < 6.5 defines signbit as a macro, // and we don't want that to expand here when CUDA headers are also included. DEFINE_CAFFE_CPU_UNARY_FUNC(sgnbit, \ - y[i] = static_cast((std::signbit)(x[i]))); + y[i] = static_cast((std::signbit)(x[i]))) -DEFINE_CAFFE_CPU_UNARY_FUNC(fabs, y[i] = std::fabs(x[i])); +DEFINE_CAFFE_CPU_UNARY_FUNC(fabs, y[i] = std::fabs(x[i])) template void caffe_cpu_scale(const int n, const Dtype alpha, const Dtype *x, Dtype* y); @@ -188,6 +188,11 @@ void caffe_gpu_add_scalar(const int N, const Dtype alpha, Dtype *X); template void caffe_gpu_scal(const int N, const Dtype alpha, Dtype *X); +#ifndef CPU_ONLY +template +void caffe_gpu_scal(const int N, const Dtype alpha, Dtype* X, cudaStream_t str); +#endif + template void caffe_gpu_add(const int N, const Dtype* a, const Dtype* b, Dtype* y); @@ -212,6 +217,9 @@ void caffe_gpu_log(const int n, const Dtype* a, Dtype* y); template void caffe_gpu_powx(const int n, const Dtype* a, const Dtype b, Dtype* y); +template +void caffe_gpu_sqrt(const int n, const Dtype* a, Dtype* y); + // caffe_gpu_rng_uniform with two arguments generates integers in the range // [0, UINT_MAX]. void caffe_gpu_rng_uniform(const int n, unsigned int* r); @@ -234,10 +242,6 @@ void caffe_gpu_rng_bernoulli(const int n, const Dtype p, int* r); template void caffe_gpu_dot(const int n, const Dtype* x, const Dtype* y, Dtype* out); -template -uint32_t caffe_gpu_hamming_distance(const int n, const Dtype* x, - const Dtype* y); - template void caffe_gpu_asum(const int n, const Dtype* x, Dtype* y); diff --git a/include/caffe/util/mkl_alternate.hpp b/include/caffe/util/mkl_alternate.hpp index 3355b6658..8c2294c7c 100644 --- a/include/caffe/util/mkl_alternate.hpp +++ b/include/caffe/util/mkl_alternate.hpp @@ -7,9 +7,14 @@ #else // If use MKL, simply include the MKL header +#ifdef USE_ACCELERATE +#include +#else extern "C" { #include } +#endif // USE_ACCELERATE + #include // Functions that caffe uses but are not present if MKL is not linked. @@ -31,10 +36,11 @@ extern "C" { v##name(n, a, y); \ } -DEFINE_VSL_UNARY_FUNC(Sqr, y[i] = a[i] * a[i]); -DEFINE_VSL_UNARY_FUNC(Exp, y[i] = exp(a[i])); -DEFINE_VSL_UNARY_FUNC(Ln, y[i] = log(a[i])); -DEFINE_VSL_UNARY_FUNC(Abs, y[i] = fabs(a[i])); +DEFINE_VSL_UNARY_FUNC(Sqr, y[i] = a[i] * a[i]) +DEFINE_VSL_UNARY_FUNC(Sqrt, y[i] = sqrt(a[i])) +DEFINE_VSL_UNARY_FUNC(Exp, y[i] = exp(a[i])) +DEFINE_VSL_UNARY_FUNC(Ln, y[i] = log(a[i])) +DEFINE_VSL_UNARY_FUNC(Abs, y[i] = fabs(a[i])) // A simple way to define the vsl unary functions with singular parameter b. // The operation should be in the form e.g. y[i] = pow(a[i], b) @@ -53,7 +59,7 @@ DEFINE_VSL_UNARY_FUNC(Abs, y[i] = fabs(a[i])); v##name(n, a, b, y); \ } -DEFINE_VSL_UNARY_FUNC_WITH_PARAM(Powx, y[i] = pow(a[i], b)); +DEFINE_VSL_UNARY_FUNC_WITH_PARAM(Powx, y[i] = pow(a[i], b)) // A simple way to define the vsl binary functions. The operation should // be in the form e.g. y[i] = a[i] + b[i] @@ -72,10 +78,10 @@ DEFINE_VSL_UNARY_FUNC_WITH_PARAM(Powx, y[i] = pow(a[i], b)); v##name(n, a, b, y); \ } -DEFINE_VSL_BINARY_FUNC(Add, y[i] = a[i] + b[i]); -DEFINE_VSL_BINARY_FUNC(Sub, y[i] = a[i] - b[i]); -DEFINE_VSL_BINARY_FUNC(Mul, y[i] = a[i] * b[i]); -DEFINE_VSL_BINARY_FUNC(Div, y[i] = a[i] / b[i]); +DEFINE_VSL_BINARY_FUNC(Add, y[i] = a[i] + b[i]) +DEFINE_VSL_BINARY_FUNC(Sub, y[i] = a[i] - b[i]) +DEFINE_VSL_BINARY_FUNC(Mul, y[i] = a[i] * b[i]) +DEFINE_VSL_BINARY_FUNC(Div, y[i] = a[i] / b[i]) // In addition, MKL comes with an additional function axpby that is not present // in standard blas. We will simply use a two-step (inefficient, of course) way diff --git a/include/caffe/util/nccl.hpp b/include/caffe/util/nccl.hpp new file mode 100644 index 000000000..e01fb7451 --- /dev/null +++ b/include/caffe/util/nccl.hpp @@ -0,0 +1,37 @@ +#ifndef CAFFE_UTIL_NCCL_H_ +#define CAFFE_UTIL_NCCL_H_ +#ifdef USE_NCCL + +#include + +#include "caffe/common.hpp" + +#define NCCL_CHECK(condition) \ +{ \ + ncclResult_t result = condition; \ + CHECK_EQ(result, ncclSuccess) << " " \ + << ncclGetErrorString(result); \ +} + +namespace caffe { + +namespace nccl { + +template class dataType; + +template<> class dataType { + public: + static const ncclDataType_t type = ncclFloat; +}; +template<> class dataType { + public: + static const ncclDataType_t type = ncclDouble; +}; + +} // namespace nccl + +} // namespace caffe + +#endif // end USE_NCCL + +#endif // CAFFE_UTIL_NCCL_H_ diff --git a/include/caffe/util/upgrade_proto.hpp b/include/caffe/util/upgrade_proto.hpp index c1f21a0d4..b145822af 100644 --- a/include/caffe/util/upgrade_proto.hpp +++ b/include/caffe/util/upgrade_proto.hpp @@ -10,6 +10,15 @@ namespace caffe { // Return true iff the net is not the current version. bool NetNeedsUpgrade(const NetParameter& net_param); +// Check for deprecations and upgrade the NetParameter as needed. +bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param); + +// Read parameters from a file into a NetParameter proto message. +void ReadNetParamsFromTextFileOrDie(const string& param_file, + NetParameter* param); +void ReadNetParamsFromBinaryFileOrDie(const string& param_file, + NetParameter* param); + // Return true iff any layer contains parameters specified using // deprecated V0LayerParameter. bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param); @@ -50,14 +59,29 @@ bool UpgradeV1LayerParameter(const V1LayerParameter& v1_layer_param, const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type); -// Check for deprecations and upgrade the NetParameter as needed. -bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param); +// Return true iff the Net contains input fields. +bool NetNeedsInputUpgrade(const NetParameter& net_param); -// Read parameters from a file into a NetParameter proto message. -void ReadNetParamsFromTextFileOrDie(const string& param_file, - NetParameter* param); -void ReadNetParamsFromBinaryFileOrDie(const string& param_file, - NetParameter* param); +// Perform all necessary transformations to upgrade input fields into layers. +void UpgradeNetInput(NetParameter* net_param); + +// Return true iff the Net contains batch norm layers with manual local LRs. +bool NetNeedsBatchNormUpgrade(const NetParameter& net_param); + +// Perform all necessary transformations to upgrade batch norm layers. +void UpgradeNetBatchNorm(NetParameter* net_param); + +// Return true iff the solver contains any old solver_type specified as enums +bool SolverNeedsTypeUpgrade(const SolverParameter& solver_param); + +bool UpgradeSolverType(SolverParameter* solver_param); + +// Check for deprecations and upgrade the SolverParameter as needed. +bool UpgradeSolverAsNeeded(const string& param_file, SolverParameter* param); + +// Read parameters from a file into a SolverParameter proto message. +void ReadSolverParamsFromTextFileOrDie(const string& param_file, + SolverParameter* param); } // namespace caffe diff --git a/include/caffe/vision_layers.hpp b/include/caffe/vision_layers.hpp deleted file mode 100644 index 211e3d904..000000000 --- a/include/caffe/vision_layers.hpp +++ /dev/null @@ -1,520 +0,0 @@ -#ifndef CAFFE_VISION_LAYERS_HPP_ -#define CAFFE_VISION_LAYERS_HPP_ - -#include -#include -#include - -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/common_layers.hpp" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/loss_layers.hpp" -#include "caffe/neuron_layers.hpp" -#include "caffe/proto/caffe.pb.h" - -namespace caffe { - -/** - * @brief Abstract base class that factors out the BLAS code common to - * ConvolutionLayer and DeconvolutionLayer. - */ -template -class BaseConvolutionLayer : public Layer { - public: - explicit BaseConvolutionLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline int MinBottomBlobs() const { return 1; } - virtual inline int MinTopBlobs() const { return 1; } - virtual inline bool EqualNumBottomTopBlobs() const { return true; } - - protected: - // Helper functions that abstract away the column buffer and gemm arguments. - // The last argument in forward_cpu_gemm is so that we can skip the im2col if - // we just called weight_cpu_gemm with the same input. - void forward_cpu_gemm(const Dtype* input, const Dtype* weights, - Dtype* output, bool skip_im2col = false); - void forward_cpu_bias(Dtype* output, const Dtype* bias); - void backward_cpu_gemm(const Dtype* input, const Dtype* weights, - Dtype* output); - void weight_cpu_gemm(const Dtype* input, const Dtype* output, Dtype* - weights); - void backward_cpu_bias(Dtype* bias, const Dtype* input); - -#ifndef CPU_ONLY - void forward_gpu_gemm(const Dtype* col_input, const Dtype* weights, - Dtype* output, bool skip_im2col = false); - void forward_gpu_bias(Dtype* output, const Dtype* bias); - void backward_gpu_gemm(const Dtype* input, const Dtype* weights, - Dtype* col_output); - void weight_gpu_gemm(const Dtype* col_input, const Dtype* output, Dtype* - weights); - void backward_gpu_bias(Dtype* bias, const Dtype* input); -#endif - - // reverse_dimensions should return true iff we are implementing deconv, so - // that conv helpers know which dimensions are which. - virtual bool reverse_dimensions() = 0; - // Compute height_out_ and width_out_ from other parameters. - virtual void compute_output_shape() = 0; - - int kernel_h_, kernel_w_; - int stride_h_, stride_w_; - int num_; - int channels_; - int pad_h_, pad_w_; - int height_, width_; - int group_; - int num_output_; - int height_out_, width_out_; - bool bias_term_; - bool is_1x1_; - - private: - // wrap im2col/col2im so we don't have to remember the (long) argument lists - inline void conv_im2col_cpu(const Dtype* data, Dtype* col_buff) { - im2col_cpu(data, conv_in_channels_, conv_in_height_, conv_in_width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff); - } - inline void conv_col2im_cpu(const Dtype* col_buff, Dtype* data) { - col2im_cpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data); - } -#ifndef CPU_ONLY - inline void conv_im2col_gpu(const Dtype* data, Dtype* col_buff) { - im2col_gpu(data, conv_in_channels_, conv_in_height_, conv_in_width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, col_buff); - } - inline void conv_col2im_gpu(const Dtype* col_buff, Dtype* data) { - col2im_gpu(col_buff, conv_in_channels_, conv_in_height_, conv_in_width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_, data); - } -#endif - - int conv_out_channels_; - int conv_in_channels_; - int conv_out_spatial_dim_; - int conv_in_height_; - int conv_in_width_; - int kernel_dim_; - int weight_offset_; - int col_offset_; - int output_offset_; - - Blob col_buffer_; - Blob bias_multiplier_; -}; - -/** - * @brief Convolves the input image with a bank of learned filters, - * and (optionally) adds biases. - * - * Caffe convolves by reduction to matrix multiplication. This achieves - * high-throughput and generality of input and filter dimensions but comes at - * the cost of memory for matrices. This makes use of efficiency in BLAS. - * - * The input is "im2col" transformed to a channel K' x H x W data matrix - * for multiplication with the N x K' x H x W filter matrix to yield a - * N' x H x W output matrix that is then "col2im" restored. K' is the - * input channel * kernel height * kernel width dimension of the unrolled - * inputs so that the im2col matrix has a column for each input region to - * be filtered. col2im restores the output spatial structure by rolling up - * the output channel N' columns of the output matrix. - */ -template -class ConvolutionLayer : public BaseConvolutionLayer { - public: - /** - * @param param provides ConvolutionParameter convolution_param, - * with ConvolutionLayer options: - * - num_output. The number of filters. - * - kernel_size / kernel_h / kernel_w. The filter dimensions, given by - * kernel_size for square filters or kernel_h and kernel_w for rectangular - * filters. - * - stride / stride_h / stride_w (\b optional, default 1). The filter - * stride, given by stride_size for equal dimensions or stride_h and stride_w - * for different strides. By default the convolution is dense with stride 1. - * - pad / pad_h / pad_w (\b optional, default 0). The zero-padding for - * convolution, given by pad for equal dimensions or pad_h and pad_w for - * different padding. Input padding is computed implicitly instead of - * actually padding. - * - group (\b optional, default 1). The number of filter groups. Group - * convolution is a method for reducing parameterization by selectively - * connecting input and output channels. The input and output channel dimensions must be divisible - * by the number of groups. For group @f$ \geq 1 @f$, the - * convolutional filters' input and output channels are separated s.t. each - * group takes 1 / group of the input channels and makes 1 / group of the - * output channels. Concretely 4 input channels, 8 output channels, and - * 2 groups separate input channels 1-2 and output channels 1-4 into the - * first group and input channels 3-4 and output channels 5-8 into the second - * group. - * - bias_term (\b optional, default true). Whether to have a bias. - * - engine: convolution has CAFFE (matrix multiplication) and CUDNN (library - * kernels + stream parallelism) engines. - */ - explicit ConvolutionLayer(const LayerParameter& param) - : BaseConvolutionLayer(param) {} - - virtual inline const char* type() const { return "Convolution"; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual inline bool reverse_dimensions() { return false; } - virtual void compute_output_shape(); -}; - -/** - * @brief Convolve the input with a bank of learned filters, and (optionally) - * add biases, treating filters and convolution parameters in the - * opposite sense as ConvolutionLayer. - * - * ConvolutionLayer computes each output value by dotting an input window with - * a filter; DeconvolutionLayer multiplies each input value by a filter - * elementwise, and sums over the resulting output windows. In other words, - * DeconvolutionLayer is ConvolutionLayer with the forward and backward passes - * reversed. DeconvolutionLayer reuses ConvolutionParameter for its - * parameters, but they take the opposite sense as in ConvolutionLayer (so - * padding is removed from the output rather than added to the input, and - * stride results in upsampling rather than downsampling). - */ -template -class DeconvolutionLayer : public BaseConvolutionLayer { - public: - explicit DeconvolutionLayer(const LayerParameter& param) - : BaseConvolutionLayer(param) {} - - virtual inline const char* type() const { return "Deconvolution"; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual inline bool reverse_dimensions() { return true; } - virtual void compute_output_shape(); -}; - -#ifdef USE_CUDNN -/* - * @brief cuDNN implementation of ConvolutionLayer. - * Fallback to ConvolutionLayer for CPU mode. - * - * cuDNN accelerates convolution through forward kernels for filtering and bias - * plus backward kernels for the gradient w.r.t. the filters, biases, and - * inputs. Caffe + cuDNN further speeds up the computation through forward - * parallelism across groups and backward parallelism across gradients. - * - * The CUDNN engine does not have memory overhead for matrix buffers. For many - * input and filter regimes the CUDNN engine is faster than the CAFFE engine, - * but for fully-convolutional models and large inputs the CAFFE engine can be - * faster as long as it fits in memory. -*/ -template -class CuDNNConvolutionLayer : public ConvolutionLayer { - public: - explicit CuDNNConvolutionLayer(const LayerParameter& param) - : ConvolutionLayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNConvolutionLayer(); - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t* handle_; - cudaStream_t* stream_; - vector bottom_descs_, top_descs_; - cudnnTensorDescriptor_t bias_desc_; - cudnnFilterDescriptor_t filter_desc_; - vector conv_descs_; - int bottom_offset_, top_offset_, weight_offset_, bias_offset_; - size_t workspaceSizeInBytes; - void *workspace; -}; -#endif - -/** - * @brief A helper for image operations that rearranges image regions into - * column vectors. Used by ConvolutionLayer to perform convolution - * by matrix multiplication. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class Im2colLayer : public Layer { - public: - explicit Im2colLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Im2col"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int kernel_h_, kernel_w_; - int stride_h_, stride_w_; - int channels_; - int height_, width_; - int pad_h_, pad_w_; -}; - -// Forward declare PoolingLayer and SplitLayer for use in LRNLayer. -template class PoolingLayer; -template class SplitLayer; - -/** - * @brief Normalize the input in a local region across or within feature maps. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class LRNLayer : public Layer { - public: - explicit LRNLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "LRN"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - virtual void CrossChannelForward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void CrossChannelForward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void WithinChannelForward(const vector*>& bottom, - const vector*>& top); - virtual void CrossChannelBackward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void CrossChannelBackward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void WithinChannelBackward(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int size_; - int pre_pad_; - Dtype alpha_; - Dtype beta_; - Dtype k_; - int num_; - int channels_; - int height_; - int width_; - - // Fields used for normalization ACROSS_CHANNELS - // scale_ stores the intermediate summing results - Blob scale_; - - // Fields used for normalization WITHIN_CHANNEL - shared_ptr > split_layer_; - vector*> split_top_vec_; - shared_ptr > square_layer_; - Blob square_input_; - Blob square_output_; - vector*> square_bottom_vec_; - vector*> square_top_vec_; - shared_ptr > pool_layer_; - Blob pool_output_; - vector*> pool_top_vec_; - shared_ptr > power_layer_; - Blob power_output_; - vector*> power_top_vec_; - shared_ptr > product_layer_; - Blob product_input_; - vector*> product_bottom_vec_; -}; - - -/** - * @brief Pools the input image by taking the max, average, etc. within regions. - * - * TODO(dox): thorough documentation for Forward, Backward, and proto params. - */ -template -class PoolingLayer : public Layer { - public: - explicit PoolingLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "Pooling"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int MinTopBlobs() const { return 1; } - // MAX POOL layers can output an extra top blob for the mask; - // others can only output the pooled inputs. - virtual inline int MaxTopBlobs() const { - return (this->layer_param_.pooling_param().pool() == - PoolingParameter_PoolMethod_MAX) ? 2 : 1; - } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - int kernel_h_, kernel_w_; - int stride_h_, stride_w_; - int pad_h_, pad_w_; - int channels_; - int height_, width_; - int pooled_height_, pooled_width_; - bool global_pooling_; - Blob rand_idx_; - Blob max_idx_; -}; - -#ifdef USE_CUDNN -/* - * @brief cuDNN implementation of PoolingLayer. - * Fallback to PoolingLayer for CPU mode. -*/ -template -class CuDNNPoolingLayer : public PoolingLayer { - public: - explicit CuDNNPoolingLayer(const LayerParameter& param) - : PoolingLayer(param), handles_setup_(false) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - virtual ~CuDNNPoolingLayer(); - // Currently, cuDNN does not support the extra top blob. - virtual inline int MinTopBlobs() const { return -1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_gpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_gpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - - bool handles_setup_; - cudnnHandle_t handle_; - cudnnTensorDescriptor_t bottom_desc_, top_desc_; - cudnnPoolingDescriptor_t pooling_desc_; - cudnnPoolingMode_t mode_; -}; -#endif - -/** - * @brief Does spatial pyramid pooling on the input image - * by taking the max, average, etc. within regions - * so that the result vector of different sized - * images are of the same size. - */ -template -class SPPLayer : public Layer { - public: - explicit SPPLayer(const LayerParameter& param) - : Layer(param) {} - virtual void LayerSetUp(const vector*>& bottom, - const vector*>& top); - virtual void Reshape(const vector*>& bottom, - const vector*>& top); - - virtual inline const char* type() const { return "SPP"; } - virtual inline int ExactNumBottomBlobs() const { return 1; } - virtual inline int ExactNumTopBlobs() const { return 1; } - - protected: - virtual void Forward_cpu(const vector*>& bottom, - const vector*>& top); - virtual void Backward_cpu(const vector*>& top, - const vector& propagate_down, const vector*>& bottom); - // calculates the kernel and stride dimensions for the pooling layer, - // returns a correctly configured LayerParameter for a PoolingLayer - virtual LayerParameter GetPoolingParam(const int pyramid_level, - const int bottom_h, const int bottom_w, const SPPParameter spp_param); - - int pyramid_height_; - int bottom_h_, bottom_w_; - int num_; - int channels_; - int kernel_h_, kernel_w_; - int pad_h_, pad_w_; - bool reshaped_first_time_; - - /// the internal Split layer that feeds the pooling layers - shared_ptr > split_layer_; - /// top vector holder used in call to the underlying SplitLayer::Forward - vector*> split_top_vec_; - /// bottom vector holder used in call to the underlying PoolingLayer::Forward - vector*>*> pooling_bottom_vecs_; - /// the internal Pooling layers of different kernel sizes - vector > > pooling_layers_; - /// top vector holders used in call to the underlying PoolingLayer::Forward - vector*>*> pooling_top_vecs_; - /// pooling_outputs stores the outputs of the PoolingLayers - vector*> pooling_outputs_; - /// the internal Flatten layers that the Pooling layers feed into - vector*> flatten_layers_; - /// top vector holders used in call to the underlying FlattenLayer::Forward - vector*>*> flatten_top_vecs_; - /// flatten_outputs stores the outputs of the FlattenLayers - vector*> flatten_outputs_; - /// bottom vector holder used in call to the underlying ConcatLayer::Forward - vector*> concat_bottom_vec_; - /// the internal Concat layers that the Flatten layers feed into - shared_ptr > concat_layer_; -}; - -} // namespace caffe - -#endif // CAFFE_VISION_LAYERS_HPP_ diff --git a/matlab/+caffe/+test/test_io.m b/matlab/+caffe/+test/test_io.m new file mode 100644 index 000000000..2c34bd1e9 --- /dev/null +++ b/matlab/+caffe/+test/test_io.m @@ -0,0 +1,18 @@ +classdef test_io < matlab.unittest.TestCase + methods (Test) + function test_read_write_mean(self) + % randomly generate mean data + width = 200; + height = 300; + channels = 3; + mean_data_write = 255 * rand(width, height, channels, 'single'); + % write mean data to binary proto + mean_proto_file = tempname(); + caffe.io.write_mean(mean_data_write, mean_proto_file); + % read mean data from saved binary proto and test whether they are equal + mean_data_read = caffe.io.read_mean(mean_proto_file); + self.verifyEqual(mean_data_write, mean_data_read) + delete(mean_proto_file); + end + end +end diff --git a/matlab/+caffe/Net.m b/matlab/+caffe/Net.m index e6295bba1..bb99ec890 100644 --- a/matlab/+caffe/Net.m +++ b/matlab/+caffe/Net.m @@ -68,6 +68,11 @@ self.layer_names = self.attributes.layer_names; self.blob_names = self.attributes.blob_names; end + function delete (self) + if ~isempty(self.hNet_self) + caffe_('delete_net', self.hNet_self); + end + end function layer = layers(self, layer_name) CHECK(ischar(layer_name), 'layer_name must be a string'); layer = self.layer_vec(self.name2layer_index(layer_name)); diff --git a/matlab/+caffe/Solver.m b/matlab/+caffe/Solver.m index f8bdc4e22..2d3c98b2a 100644 --- a/matlab/+caffe/Solver.m +++ b/matlab/+caffe/Solver.m @@ -36,6 +36,9 @@ self.test_nets(n) = caffe.Net(self.attributes.hNet_test_nets(n)); end end + function delete (self) + caffe_('delete_solver', self.hSolver_self); + end function iter = iter(self) iter = caffe_('solver_get_iter', self.hSolver_self); end diff --git a/matlab/+caffe/io.m b/matlab/+caffe/io.m index af8369ddf..4b072fecd 100644 --- a/matlab/+caffe/io.m +++ b/matlab/+caffe/io.m @@ -29,5 +29,13 @@ CHECK_FILE_EXIST(mean_proto_file); mean_data = caffe_('read_mean', mean_proto_file); end + function write_mean(mean_data, mean_proto_file) + % write_mean(mean_data, mean_proto_file) + % write image mean data to binaryproto file + % mean_data should be W x H x C with BGR channels + CHECK(ischar(mean_proto_file), 'mean_proto_file must be a string'); + CHECK(isa(mean_data, 'single'), 'mean_data must be a SINGLE matrix'); + caffe_('write_mean', mean_data, mean_proto_file); + end end end diff --git a/matlab/+caffe/private/caffe_.cpp b/matlab/+caffe/private/caffe_.cpp index 4e0ebc1c0..a32bd5e53 100644 --- a/matlab/+caffe/private/caffe_.cpp +++ b/matlab/+caffe/private/caffe_.cpp @@ -44,7 +44,7 @@ void mxCHECK_FILE_EXIST(const char* file) { // The pointers to caffe::Solver and caffe::Net instances static vector > > solvers_; static vector > > nets_; -// init_key is generated at the beginning and everytime you call reset +// init_key is generated at the beginning and every time you call reset static double init_key = static_cast(caffe_rng_rand()); /** ----------------------------------------------------------------- @@ -188,12 +188,26 @@ static void get_solver(MEX_ARGS) { "Usage: caffe_('get_solver', solver_file)"); char* solver_file = mxArrayToString(prhs[0]); mxCHECK_FILE_EXIST(solver_file); - shared_ptr > solver(new caffe::SGDSolver(solver_file)); + SolverParameter solver_param; + ReadSolverParamsFromTextFileOrDie(solver_file, &solver_param); + shared_ptr > solver( + SolverRegistry::CreateSolver(solver_param)); solvers_.push_back(solver); plhs[0] = ptr_to_handle >(solver.get()); mxFree(solver_file); } +// Usage: caffe_('delete_solver', hSolver) +static void delete_solver(MEX_ARGS) { + mxCHECK(nrhs == 1 && mxIsStruct(prhs[0]), + "Usage: caffe_('delete_solver', hSolver)"); + Solver* solver = handle_to_ptr >(prhs[0]); + solvers_.erase(std::remove_if(solvers_.begin(), solvers_.end(), + [solver] (const shared_ptr< Solver > &solverPtr) { + return solverPtr.get() == solver; + }), solvers_.end()); +} + // Usage: caffe_('solver_get_attr', hSolver) static void solver_get_attr(MEX_ARGS) { mxCHECK(nrhs == 1 && mxIsStruct(prhs[0]), @@ -268,6 +282,17 @@ static void get_net(MEX_ARGS) { mxFree(phase_name); } +// Usage: caffe_('delete_solver', hSolver) +static void delete_net(MEX_ARGS) { + mxCHECK(nrhs == 1 && mxIsStruct(prhs[0]), + "Usage: caffe_('delete_solver', hNet)"); + Net* net = handle_to_ptr >(prhs[0]); + nets_.erase(std::remove_if(nets_.begin(), nets_.end(), + [net] (const shared_ptr< Net > &netPtr) { + return netPtr.get() == net; + }), nets_.end()); +} + // Usage: caffe_('net_get_attr', hNet) static void net_get_attr(MEX_ARGS) { mxCHECK(nrhs == 1 && mxIsStruct(prhs[0]), @@ -478,6 +503,36 @@ static void read_mean(MEX_ARGS) { mxFree(mean_proto_file); } +// Usage: caffe_('write_mean', mean_data, mean_proto_file) +static void write_mean(MEX_ARGS) { + mxCHECK(nrhs == 2 && mxIsSingle(prhs[0]) && mxIsChar(prhs[1]), + "Usage: caffe_('write_mean', mean_data, mean_proto_file)"); + char* mean_proto_file = mxArrayToString(prhs[1]); + int ndims = mxGetNumberOfDimensions(prhs[0]); + mxCHECK(ndims >= 2 && ndims <= 3, "mean_data must have at 2 or 3 dimensions"); + const mwSize *dims = mxGetDimensions(prhs[0]); + int width = dims[0]; + int height = dims[1]; + int channels; + if (ndims == 3) + channels = dims[2]; + else + channels = 1; + Blob data_mean(1, channels, height, width); + mx_mat_to_blob(prhs[0], &data_mean, DATA); + BlobProto blob_proto; + data_mean.ToProto(&blob_proto, false); + WriteProtoToBinaryFile(blob_proto, mean_proto_file); + mxFree(mean_proto_file); +} + +// Usage: caffe_('version') +static void version(MEX_ARGS) { + mxCHECK(nrhs == 0, "Usage: caffe_('version')"); + // Return version string + plhs[0] = mxCreateString(AS_STRING(CAFFE_VERSION)); +} + /** ----------------------------------------------------------------- ** Available commands. **/ @@ -489,12 +544,14 @@ struct handler_registry { static handler_registry handlers[] = { // Public API functions { "get_solver", get_solver }, + { "delete_solver", delete_solver }, { "solver_get_attr", solver_get_attr }, { "solver_get_iter", solver_get_iter }, { "solver_restore", solver_restore }, { "solver_solve", solver_solve }, { "solver_step", solver_step }, { "get_net", get_net }, + { "delete_net", delete_net }, { "net_get_attr", net_get_attr }, { "net_forward", net_forward }, { "net_backward", net_backward }, @@ -515,6 +572,8 @@ static handler_registry handlers[] = { { "get_init_key", get_init_key }, { "reset", reset }, { "read_mean", read_mean }, + { "write_mean", write_mean }, + { "version", version }, // The end. { "END", NULL }, }; diff --git a/matlab/+caffe/run_tests.m b/matlab/+caffe/run_tests.m index 93896855a..6dbf6b231 100644 --- a/matlab/+caffe/run_tests.m +++ b/matlab/+caffe/run_tests.m @@ -11,7 +11,8 @@ % put all test cases here results = [... run(caffe.test.test_net) ... - run(caffe.test.test_solver) ]; + run(caffe.test.test_solver) ... + run(caffe.test.test_io) ]; % reset caffe after testing caffe.reset_all(); diff --git a/matlab/+caffe/version.m b/matlab/+caffe/version.m new file mode 100644 index 000000000..61cae4f76 --- /dev/null +++ b/matlab/+caffe/version.m @@ -0,0 +1,7 @@ +function version_str = version() +% version() +% show Caffe's version. + +version_str = caffe_('version'); + +end diff --git a/matlab/CMakeLists.txt b/matlab/CMakeLists.txt index f420df8d4..987730d9b 100644 --- a/matlab/CMakeLists.txt +++ b/matlab/CMakeLists.txt @@ -20,7 +20,7 @@ if(NOT BUILD_SHARED_LIBS AND build_using MATCHES Matlab) message(FATAL_ERROR "Matlab MEX interface (with default mex options file) can only be built if caffe is compiled as shared library. Please enable 'BUILD_SHARED_LIBS' in CMake. Aternativelly you can switch to Octave compiler.") endif() -# helper function to set proper mex file extention +# helper function to set proper mex file extension function(caffe_fetch_and_set_proper_mexext mexfile_variable) execute_process(COMMAND ${Matlab_mexext} OUTPUT_STRIP_TRAILING_WHITESPACE RESULT_VARIABLE res OUTPUT_VARIABLE ext) if(res MATCHES 0) diff --git a/matlab/demo/classification_demo.m b/matlab/demo/classification_demo.m index 2b6033297..435c07784 100644 --- a/matlab/demo/classification_demo.m +++ b/matlab/demo/classification_demo.m @@ -8,7 +8,7 @@ % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please -% refer to Caffe Interface Tutorial at +% refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % @@ -24,6 +24,7 @@ % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system +% and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); @@ -39,7 +40,7 @@ % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. -% Here is the rough matlab for putting image data into the correct +% Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); @@ -54,7 +55,7 @@ % If you have multiple images, cat them with cat(4, ...) -% Add caffe/matlab to you Matlab search PATH to use matcaffe +% Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else diff --git a/matlab/hdf5creation/store2hdf5.m b/matlab/hdf5creation/store2hdf5.m index 0a0016dca..4e8c81d9d 100644 --- a/matlab/hdf5creation/store2hdf5.m +++ b/matlab/hdf5creation/store2hdf5.m @@ -39,8 +39,8 @@ info=h5info(filename); prev_dat_sz=info.Datasets(1).Dataspace.Size; prev_lab_sz=info.Datasets(2).Dataspace.Size; - assert(prev_dat_sz(1:end-1)==dat_dims(1:end-1), 'Data dimensions must match existing dimensions in dataset'); - assert(prev_lab_sz(1:end-1)==lab_dims(1:end-1), 'Label dimensions must match existing dimensions in dataset'); + assert(all(prev_dat_sz(1:end-1)==dat_dims(1:end-1)), 'Data dimensions must match existing dimensions in dataset'); + assert(all(prev_lab_sz(1:end-1)==lab_dims(1:end-1)), 'Label dimensions must match existing dimensions in dataset'); startloc.dat=[ones(1,length(dat_dims)-1), prev_dat_sz(end)+1]; startloc.lab=[ones(1,length(lab_dims)-1), prev_lab_sz(end)+1]; end diff --git a/models/bvlc_alexnet/deploy.prototxt b/models/bvlc_alexnet/deploy.prototxt index ff10daa93..45b2b0e36 100644 --- a/models/bvlc_alexnet/deploy.prototxt +++ b/models/bvlc_alexnet/deploy.prototxt @@ -1,10 +1,9 @@ name: "AlexNet" -input: "data" -input_shape { - dim: 10 - dim: 3 - dim: 227 - dim: 227 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } } } layer { name: "conv1" diff --git a/models/bvlc_alexnet/readme.md b/models/bvlc_alexnet/readme.md index 008d690f7..a83e3d4e2 100644 --- a/models/bvlc_alexnet/readme.md +++ b/models/bvlc_alexnet/readme.md @@ -1,5 +1,5 @@ --- -name: BVLC AlexNet Model +name: BAIR/BVLC AlexNet Model caffemodel: bvlc_alexnet.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel license: unrestricted diff --git a/models/bvlc_googlenet/deploy.prototxt b/models/bvlc_googlenet/deploy.prototxt index 1f90ee216..50b54a9f3 100644 --- a/models/bvlc_googlenet/deploy.prototxt +++ b/models/bvlc_googlenet/deploy.prototxt @@ -1,10 +1,9 @@ name: "GoogleNet" -input: "data" -input_shape { - dim: 10 - dim: 3 - dim: 224 - dim: 224 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 10 dim: 3 dim: 224 dim: 224 } } } layer { name: "conv1/7x7_s2" diff --git a/models/bvlc_googlenet/readme.md b/models/bvlc_googlenet/readme.md index 061b6d745..ef04db62a 100644 --- a/models/bvlc_googlenet/readme.md +++ b/models/bvlc_googlenet/readme.md @@ -1,5 +1,5 @@ --- -name: BVLC GoogleNet Model +name: BAIR/BVLC GoogleNet Model caffemodel: bvlc_googlenet.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel license: unrestricted diff --git a/models/bvlc_googlenet/train_val.prototxt b/models/bvlc_googlenet/train_val.prototxt old mode 100644 new mode 100755 index 5dee3abe2..5fe367f22 --- a/models/bvlc_googlenet/train_val.prototxt +++ b/models/bvlc_googlenet/train_val.prototxt @@ -1692,7 +1692,7 @@ layer { type: "SoftmaxWithLoss" bottom: "loss2/classifier" bottom: "label" - top: "loss2/loss1" + top: "loss2/loss2" loss_weight: 0.3 } layer { diff --git a/models/bvlc_reference_caffenet/deploy.prototxt b/models/bvlc_reference_caffenet/deploy.prototxt index 127f1e265..907116ef9 100644 --- a/models/bvlc_reference_caffenet/deploy.prototxt +++ b/models/bvlc_reference_caffenet/deploy.prototxt @@ -1,10 +1,9 @@ name: "CaffeNet" -input: "data" -input_shape { - dim: 10 - dim: 3 - dim: 227 - dim: 227 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } } } layer { name: "conv1" diff --git a/models/bvlc_reference_caffenet/readme.md b/models/bvlc_reference_caffenet/readme.md index 671e47a50..5352e536a 100644 --- a/models/bvlc_reference_caffenet/readme.md +++ b/models/bvlc_reference_caffenet/readme.md @@ -1,5 +1,5 @@ --- -name: BVLC CaffeNet Model +name: BAIR/BVLC CaffeNet Model caffemodel: bvlc_reference_caffenet.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel license: unrestricted diff --git a/models/bvlc_reference_caffenet/train_val.prototxt b/models/bvlc_reference_caffenet/train_val.prototxt index c79472e09..e3e427968 100644 --- a/models/bvlc_reference_caffenet/train_val.prototxt +++ b/models/bvlc_reference_caffenet/train_val.prototxt @@ -45,7 +45,7 @@ layer { # mean_value: 104 # mean_value: 117 # mean_value: 123 -# mirror: true +# mirror: false # } data_param { source: "examples/imagenet/ilsvrc12_val_lmdb" diff --git a/models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt b/models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt index ae1df9677..e330a7706 100644 --- a/models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt +++ b/models/bvlc_reference_rcnn_ilsvrc13/deploy.prototxt @@ -1,10 +1,9 @@ name: "R-CNN-ilsvrc13" -input: "data" -input_shape { - dim: 10 - dim: 3 - dim: 227 - dim: 227 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } } } layer { name: "conv1" diff --git a/models/bvlc_reference_rcnn_ilsvrc13/readme.md b/models/bvlc_reference_rcnn_ilsvrc13/readme.md index 9a11a24d8..12543b2bd 100644 --- a/models/bvlc_reference_rcnn_ilsvrc13/readme.md +++ b/models/bvlc_reference_rcnn_ilsvrc13/readme.md @@ -1,5 +1,5 @@ --- -name: BVLC Reference RCNN ILSVRC13 Model +name: BAIR/BVLC Reference RCNN ILSVRC13 Model caffemodel: bvlc_reference_rcnn_ilsvrc13.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_rcnn_ilsvrc13.caffemodel license: unrestricted diff --git a/models/finetune_flickr_style/deploy.prototxt b/models/finetune_flickr_style/deploy.prototxt index 0f07e47ac..b8f99c744 100644 --- a/models/finetune_flickr_style/deploy.prototxt +++ b/models/finetune_flickr_style/deploy.prototxt @@ -1,10 +1,9 @@ name: "FlickrStyleCaffeNet" -input: "data" -input_shape { - dim: 10 - dim: 3 - dim: 227 - dim: 227 +layer { + name: "data" + type: "Input" + top: "data" + input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } } } layer { name: "conv1" diff --git a/models/finetune_flickr_style/train_val.prototxt b/models/finetune_flickr_style/train_val.prototxt index 848a426c9..985353be3 100644 --- a/models/finetune_flickr_style/train_val.prototxt +++ b/models/finetune_flickr_style/train_val.prototxt @@ -369,13 +369,6 @@ layer { } } } -layer { - name: "loss" - type: "SoftmaxWithLoss" - bottom: "fc8_flickr" - bottom: "label" - top: "loss" -} layer { name: "accuracy" type: "Accuracy" @@ -386,3 +379,10 @@ layer { phase: TEST } } +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "fc8_flickr" + bottom: "label" + top: "loss" +} diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index 0e2bc7e66..c53299d26 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -1,15 +1,15 @@ if(NOT HAVE_PYTHON) - message(STATUS "Python interface is disabled or not all required dependecies found. Building without it...") + message(STATUS "Python interface is disabled or not all required dependencies found. Building without it...") return() endif() -include_directories(${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} ${Boost_INCLUDE_DIRS}) file(GLOB_RECURSE python_srcs ${PROJECT_SOURCE_DIR}/python/*.cpp) add_library(pycaffe SHARED ${python_srcs}) -target_link_libraries(pycaffe ${Caffe_LINK} ${PYTHON_LIBRARIES} ${Boost_LIBRARIES}) -set_target_properties(pycaffe PROPERTIES PREFIX "" OUTPUT_NAME "_caffe") caffe_default_properties(pycaffe) +set_target_properties(pycaffe PROPERTIES PREFIX "" OUTPUT_NAME "_caffe") +target_include_directories(pycaffe PUBLIC ${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR}) +target_link_libraries(pycaffe PUBLIC ${Caffe_LINK} ${PYTHON_LIBRARIES}) if(UNIX OR APPLE) set(__linkname "${PROJECT_SOURCE_DIR}/python/caffe/_caffe.so") @@ -22,13 +22,19 @@ if(UNIX OR APPLE) endif() # ---[ Install -file(GLOB files1 *.py requirements.txt) -install(FILES ${files1} DESTINATION python) - -file(GLOB files2 caffe/*.py) -install(FILES ${files2} DESTINATION python/caffe) +# scripts +file(GLOB python_files *.py requirements.txt) +install(FILES ${python_files} DESTINATION python) + +# module +install(DIRECTORY caffe + DESTINATION python + FILES_MATCHING + PATTERN "*.py" + PATTERN "ilsvrc_2012_mean.npy" + PATTERN "test" EXCLUDE + ) + +# _caffe.so install(TARGETS pycaffe DESTINATION python/caffe) -install(DIRECTORY caffe/imagenet caffe/proto caffe/test DESTINATION python/caffe) - - diff --git a/python/caffe/__init__.py b/python/caffe/__init__.py index ccda1bcae..776945eec 100644 --- a/python/caffe/__init__.py +++ b/python/caffe/__init__.py @@ -1,5 +1,6 @@ -from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver -from ._caffe import set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list +from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer +from ._caffe import init_log, log, set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed, solver_count, set_solver_count, solver_rank, set_solver_rank, set_multiprocess, has_nccl +from ._caffe import __version__ from .proto.caffe_pb2 import TRAIN, TEST from .classifier import Classifier from .detector import Detector diff --git a/python/caffe/_caffe.cpp b/python/caffe/_caffe.cpp index ccd5776ac..d7f43fff6 100644 --- a/python/caffe/_caffe.cpp +++ b/python/caffe/_caffe.cpp @@ -15,7 +15,9 @@ #include // NOLINT #include "caffe/caffe.hpp" -#include "caffe/python_layer.hpp" +#include "caffe/layers/memory_data_layer.hpp" +#include "caffe/layers/python_layer.hpp" +#include "caffe/sgd_solvers.hpp" // Temporary solution for numpy < 1.7 versions: old macro, no promises. // You're strongly advised to upgrade to >= 1.7. @@ -24,6 +26,19 @@ #define PyArray_SetBaseObject(arr, x) (PyArray_BASE(arr) = (x)) #endif +/* Fix to avoid registration warnings in pycaffe (#3960) */ +#define BP_REGISTER_SHARED_PTR_TO_PYTHON(PTR) do { \ + const boost::python::type_info info = \ + boost::python::type_id >(); \ + const boost::python::converter::registration* reg = \ + boost::python::converter::registry::query(info); \ + if (reg == NULL) { \ + bp::register_ptr_to_python >(); \ + } else if ((*reg).m_to_python == NULL) { \ + bp::register_ptr_to_python >(); \ + } \ +} while (0) + namespace bp = boost::python; namespace caffe { @@ -36,6 +51,25 @@ const int NPY_DTYPE = NPY_FLOAT32; void set_mode_cpu() { Caffe::set_mode(Caffe::CPU); } void set_mode_gpu() { Caffe::set_mode(Caffe::GPU); } +void InitLog() { + ::google::InitGoogleLogging(""); + ::google::InstallFailureSignalHandler(); +} +void InitLogLevel(int level) { + FLAGS_minloglevel = level; + InitLog(); +} +void InitLogLevelPipe(int level, bool stderr) { + FLAGS_minloglevel = level; + FLAGS_logtostderr = stderr; + InitLog(); +} +void Log(const string& s) { + LOG(INFO) << s; +} + +void set_random_seed(unsigned int seed) { Caffe::set_random_seed(seed); } + // For convenience, check that input files can be opened, and raise an // exception that boost will send to Python if not (caffe could still crash // later if the input files are disturbed before they are actually used, but @@ -71,19 +105,42 @@ void CheckContiguousArray(PyArrayObject* arr, string name, } } -// Net constructor for passing phase as int -shared_ptr > Net_Init( - string param_file, int phase) { - CheckFile(param_file); +// Net constructor +shared_ptr > Net_Init(string network_file, int phase, + const int level, const bp::object& stages, + const bp::object& weights) { + CheckFile(network_file); + + // Convert stages from list to vector + vector stages_vector; + if (!stages.is_none()) { + for (int i = 0; i < len(stages); i++) { + stages_vector.push_back(bp::extract(stages[i])); + } + } + + // Initialize net + shared_ptr > net(new Net(network_file, + static_cast(phase), level, &stages_vector)); + + // Load weights + if (!weights.is_none()) { + std::string weights_file_str = bp::extract(weights); + CheckFile(weights_file_str); + net->CopyTrainedLayersFrom(weights_file_str); + } - shared_ptr > net(new Net(param_file, - static_cast(phase))); return net; } -// Net construct-and-load convenience constructor +// Legacy Net construct-and-load convenience constructor shared_ptr > Net_Init_Load( string param_file, string pretrained_param_file, int phase) { + LOG(WARNING) << "DEPRECATION WARNING - deprecated use of Python interface"; + LOG(WARNING) << "Use this instead (with the named \"weights\"" + << " parameter):"; + LOG(WARNING) << "Net('" << param_file << "', " << phase + << ", weights='" << pretrained_param_file << "')"; CheckFile(param_file); CheckFile(pretrained_param_file); @@ -99,6 +156,14 @@ void Net_Save(const Net& net, string filename) { WriteProtoToBinaryFile(net_param, filename.c_str()); } +void Net_SaveHDF5(const Net& net, string filename) { + net.ToHDF5(filename); +} + +void Net_LoadHDF5(Net* net, string filename) { + net->CopyTrainedLayersFromHDF5(filename.c_str()); +} + void Net_SetInputArrays(Net* net, bp::object data_obj, bp::object labels_obj) { // check that this network has an input MemoryDataLayer @@ -133,8 +198,8 @@ void Net_SetInputArrays(Net* net, bp::object data_obj, Solver* GetSolverFromFile(const string& filename) { SolverParameter param; - ReadProtoFromTextFileOrDie(filename, ¶m); - return GetSolver(param); + ReadSolverParamsFromTextFileOrDie(filename, ¶m); + return SolverRegistry::CreateSolver(param); } struct NdarrayConverterGenerator { @@ -205,31 +270,161 @@ bp::object BlobVec_add_blob(bp::tuple args, bp::dict kwargs) { return bp::object(); } +template +class SolverCallback: public Solver::Callback { + protected: + bp::object on_start_, on_gradients_ready_; + + public: + SolverCallback(bp::object on_start, bp::object on_gradients_ready) + : on_start_(on_start), on_gradients_ready_(on_gradients_ready) { } + virtual void on_gradients_ready() { + on_gradients_ready_(); + } + virtual void on_start() { + on_start_(); + } +}; +template +void Solver_add_callback(Solver * solver, bp::object on_start, + bp::object on_gradients_ready) { + solver->add_callback(new SolverCallback(on_start, on_gradients_ready)); +} + +// Seems boost cannot call the base method directly +void Solver_add_nccl(Solver* solver +#ifdef USE_NCCL + , NCCL* nccl +#endif +) { +#ifdef USE_NCCL + solver->add_callback(nccl); +#endif +} + +void share_weights(Solver* solver, Net* net) { + net->ShareTrainedLayersWith(solver->net().get()); +} + +template +class NetCallback: public Net::Callback { + public: + explicit NetCallback(bp::object run) : run_(run) {} + + protected: + virtual void run(int layer) { + run_(layer); + } + bp::object run_; +}; +void Net_before_forward(Net* net, bp::object run) { + net->add_before_forward(new NetCallback(run)); +} +void Net_after_forward(Net* net, bp::object run) { + net->add_after_forward(new NetCallback(run)); +} +void Net_before_backward(Net* net, bp::object run) { + net->add_before_backward(new NetCallback(run)); +} +void Net_after_backward(Net* net, bp::object run) { + net->add_after_backward(new NetCallback(run)); +} + +void Net_add_nccl(Net* net +#ifdef USE_NCCL + , NCCL* nccl +#endif +) { +#ifdef USE_NCCL + net->add_after_backward(nccl); +#endif +} +#ifndef USE_NCCL +template +class NCCL { + public: + NCCL(shared_ptr > solver, const string& uid) {} +}; +#endif + +bool HasNCCL() { +#ifdef USE_NCCL + return true; +#else + return false; +#endif +} + +#ifdef USE_NCCL +bp::object NCCL_New_Uid() { + std::string uid = NCCL::new_uid(); +#if PY_MAJOR_VERSION >= 3 + // Convert std::string to bytes so that Python does not + // try to decode the string using the current locale. + + // Since boost 1.53 boost.python will convert str and bytes + // to std::string but will convert std::string to str. Here we + // force a bytes object to be returned. When this object + // is passed back to the NCCL constructor boost.python will + // correctly convert the bytes to std::string automatically + PyObject* py_uid = PyBytes_FromString(uid.c_str()); + return bp::object(bp::handle<>(py_uid)); +#else + // automatic conversion is correct for python 2. + return bp::object(uid); +#endif +} +#endif + BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(SolveOverloads, Solve, 0, 1); BOOST_PYTHON_MODULE(_caffe) { // below, we prepend an underscore to methods that will be replaced // in Python + + bp::scope().attr("__version__") = AS_STRING(CAFFE_VERSION); + // Caffe utility functions + bp::def("init_log", &InitLog); + bp::def("init_log", &InitLogLevel); + bp::def("init_log", &InitLogLevelPipe); + bp::def("log", &Log); + bp::def("has_nccl", &HasNCCL); bp::def("set_mode_cpu", &set_mode_cpu); bp::def("set_mode_gpu", &set_mode_gpu); + bp::def("set_random_seed", &set_random_seed); bp::def("set_device", &Caffe::SetDevice); + bp::def("solver_count", &Caffe::solver_count); + bp::def("set_solver_count", &Caffe::set_solver_count); + bp::def("solver_rank", &Caffe::solver_rank); + bp::def("set_solver_rank", &Caffe::set_solver_rank); + bp::def("set_multiprocess", &Caffe::set_multiprocess); bp::def("layer_type_list", &LayerRegistry::LayerTypeList); bp::class_, shared_ptr >, boost::noncopyable >("Net", bp::no_init) - .def("__init__", bp::make_constructor(&Net_Init)) + // Constructor + .def("__init__", bp::make_constructor(&Net_Init, + bp::default_call_policies(), (bp::arg("network_file"), "phase", + bp::arg("level")=0, bp::arg("stages")=bp::object(), + bp::arg("weights")=bp::object()))) + // Legacy constructor .def("__init__", bp::make_constructor(&Net_Init_Load)) .def("_forward", &Net::ForwardFromTo) .def("_backward", &Net::BackwardFromTo) .def("reshape", &Net::Reshape) + .def("clear_param_diffs", &Net::ClearParamDiffs) // The cast is to select a particular overload. .def("copy_from", static_cast::*)(const string)>( &Net::CopyTrainedLayersFrom)) .def("share_with", &Net::ShareTrainedLayersWith) .add_property("_blob_loss_weights", bp::make_function( &Net::blob_loss_weights, bp::return_internal_reference<>())) + .def("_bottom_ids", bp::make_function(&Net::bottom_ids, + bp::return_value_policy())) + .def("_top_ids", bp::make_function(&Net::top_ids, + bp::return_value_policy())) .add_property("_blobs", bp::make_function(&Net::blobs, bp::return_internal_reference<>())) .add_property("layers", bp::make_function(&Net::layers, @@ -245,7 +440,15 @@ BOOST_PYTHON_MODULE(_caffe) { bp::return_value_policy())) .def("_set_input_arrays", &Net_SetInputArrays, bp::with_custodian_and_ward<1, 2, bp::with_custodian_and_ward<1, 3> >()) - .def("save", &Net_Save); + .def("save", &Net_Save) + .def("save_hdf5", &Net_SaveHDF5) + .def("load_hdf5", &Net_LoadHDF5) + .def("before_forward", &Net_before_forward) + .def("after_forward", &Net_after_forward) + .def("before_backward", &Net_before_backward) + .def("after_backward", &Net_after_backward) + .def("after_backward", &Net_add_nccl); + BP_REGISTER_SHARED_PTR_TO_PYTHON(Net); bp::class_, shared_ptr >, boost::noncopyable>( "Blob", bp::no_init) @@ -265,6 +468,7 @@ BOOST_PYTHON_MODULE(_caffe) { NdarrayCallPolicies())) .add_property("diff", bp::make_function(&Blob::mutable_cpu_diff, NdarrayCallPolicies())); + BP_REGISTER_SHARED_PTR_TO_PYTHON(Blob); bp::class_, shared_ptr >, boost::noncopyable>("Layer", bp::init()) @@ -273,8 +477,12 @@ BOOST_PYTHON_MODULE(_caffe) { .def("setup", &Layer::LayerSetUp) .def("reshape", &Layer::Reshape) .add_property("type", bp::make_function(&Layer::type)); - bp::register_ptr_to_python > >(); + BP_REGISTER_SHARED_PTR_TO_PYTHON(Layer); + bp::class_("SolverParameter", bp::no_init) + .add_property("max_iter", &SolverParameter::max_iter) + .add_property("display", &SolverParameter::display) + .add_property("layer_wise_reduce", &SolverParameter::layer_wise_reduce); bp::class_("LayerParameter", bp::no_init); bp::class_, shared_ptr >, boost::noncopyable>( @@ -283,10 +491,17 @@ BOOST_PYTHON_MODULE(_caffe) { .add_property("test_nets", bp::make_function(&Solver::test_nets, bp::return_internal_reference<>())) .add_property("iter", &Solver::iter) + .def("add_callback", &Solver_add_callback) + .def("add_callback", &Solver_add_nccl) .def("solve", static_cast::*)(const char*)>( &Solver::Solve), SolveOverloads()) .def("step", &Solver::Step) - .def("restore", &Solver::Restore); + .def("restore", &Solver::Restore) + .def("snapshot", &Solver::Snapshot) + .def("share_weights", &share_weights) + .add_property("param", bp::make_function(&Solver::param, + bp::return_value_policy())); + BP_REGISTER_SHARED_PTR_TO_PYTHON(Solver); bp::class_, bp::bases >, shared_ptr >, boost::noncopyable>( @@ -329,6 +544,24 @@ BOOST_PYTHON_MODULE(_caffe) { bp::class_ >("BoolVec") .def(bp::vector_indexing_suite >()); + bp::class_, shared_ptr >, + boost::noncopyable>("NCCL", + bp::init >, const string&>()) +#ifdef USE_NCCL + .def("new_uid", NCCL_New_Uid).staticmethod("new_uid") + .def("bcast", &NCCL::Broadcast) +#endif + /* NOLINT_NEXT_LINE(whitespace/semicolon) */ + ; + BP_REGISTER_SHARED_PTR_TO_PYTHON(NCCL); + + bp::class_, boost::noncopyable>( + "Timer", bp::init<>()) + .def("start", &Timer::Start) + .def("stop", &Timer::Stop) + .add_property("ms", &Timer::MilliSeconds); + BP_REGISTER_SHARED_PTR_TO_PYTHON(Timer); + // boost python expects a void (missing) return value, while import_array // returns NULL for python3. import_array1() forces a void return value. import_array1(); diff --git a/python/caffe/classifier.py b/python/caffe/classifier.py index 537193db8..ea29fed86 100644 --- a/python/caffe/classifier.py +++ b/python/caffe/classifier.py @@ -79,6 +79,7 @@ def predict(self, inputs, oversample=True): -self.crop_dims / 2.0, self.crop_dims / 2.0 ]) + crop = crop.astype(int) input_ = input_[:, crop[0]:crop[2], crop[1]:crop[3], :] # Classify diff --git a/python/caffe/coord_map.py b/python/caffe/coord_map.py new file mode 100644 index 000000000..a3413cfa8 --- /dev/null +++ b/python/caffe/coord_map.py @@ -0,0 +1,185 @@ +""" +Determine spatial relationships between layers to relate their coordinates. +Coordinates are mapped from input-to-output (forward), but can +be mapped output-to-input (backward) by the inverse mapping too. +This helps crop and align feature maps among other uses. +""" + +from __future__ import division +import numpy as np +from caffe import layers as L + +PASS_THROUGH_LAYERS = ['AbsVal', 'BatchNorm', 'Bias', 'BNLL', 'Dropout', + 'Eltwise', 'ELU', 'Log', 'LRN', 'Exp', 'MVN', 'Power', + 'ReLU', 'PReLU', 'Scale', 'Sigmoid', 'Split', 'TanH', + 'Threshold'] + + +def conv_params(fn): + """ + Extract the spatial parameters that determine the coordinate mapping: + kernel size, stride, padding, and dilation. + + Implementation detail: Convolution, Deconvolution, and Im2col layers + define these in the convolution_param message, while Pooling has its + own fields in pooling_param. This method deals with these details to + extract canonical parameters. + """ + params = fn.params.get('convolution_param', fn.params) + axis = params.get('axis', 1) + ks = np.array(params['kernel_size'], ndmin=1) + dilation = np.array(params.get('dilation', 1), ndmin=1) + assert len({'pad_h', 'pad_w', 'kernel_h', 'kernel_w', 'stride_h', + 'stride_w'} & set(fn.params)) == 0, \ + 'cropping does not support legacy _h/_w params' + return (axis, np.array(params.get('stride', 1), ndmin=1), + (ks - 1) * dilation + 1, + np.array(params.get('pad', 0), ndmin=1)) + + +def crop_params(fn): + """ + Extract the crop layer parameters with defaults. + """ + params = fn.params.get('crop_param', fn.params) + axis = params.get('axis', 2) # default to spatial crop for N, C, H, W + offset = np.array(params.get('offset', 0), ndmin=1) + return (axis, offset) + + +class UndefinedMapException(Exception): + """ + Exception raised for layers that do not have a defined coordinate mapping. + """ + pass + + +def coord_map(fn): + """ + Define the coordinate mapping by its + - axis + - scale: output coord[i * scale] <- input_coord[i] + - shift: output coord[i] <- output_coord[i + shift] + s.t. the identity mapping, as for pointwise layers like ReLu, is defined by + (None, 1, 0) since it is independent of axis and does not transform coords. + """ + if fn.type_name in ['Convolution', 'Pooling', 'Im2col']: + axis, stride, ks, pad = conv_params(fn) + return axis, 1 / stride, (pad - (ks - 1) / 2) / stride + elif fn.type_name == 'Deconvolution': + axis, stride, ks, pad = conv_params(fn) + return axis, stride, (ks - 1) / 2 - pad + elif fn.type_name in PASS_THROUGH_LAYERS: + return None, 1, 0 + elif fn.type_name == 'Crop': + axis, offset = crop_params(fn) + axis -= 1 # -1 for last non-coordinate dim. + return axis, 1, - offset + else: + raise UndefinedMapException + + +class AxisMismatchException(Exception): + """ + Exception raised for mappings with incompatible axes. + """ + pass + + +def compose(base_map, next_map): + """ + Compose a base coord map with scale a1, shift b1 with a further coord map + with scale a2, shift b2. The scales multiply and the further shift, b2, + is scaled by base coord scale a1. + """ + ax1, a1, b1 = base_map + ax2, a2, b2 = next_map + if ax1 is None: + ax = ax2 + elif ax2 is None or ax1 == ax2: + ax = ax1 + else: + raise AxisMismatchException + return ax, a1 * a2, a1 * b2 + b1 + + +def inverse(coord_map): + """ + Invert a coord map by de-scaling and un-shifting; + this gives the backward mapping for the gradient. + """ + ax, a, b = coord_map + return ax, 1 / a, -b / a + + +def coord_map_from_to(top_from, top_to): + """ + Determine the coordinate mapping betweeen a top (from) and a top (to). + Walk the graph to find a common ancestor while composing the coord maps for + from and to until they meet. As a last step the from map is inverted. + """ + # We need to find a common ancestor of top_from and top_to. + # We'll assume that all ancestors are equivalent here (otherwise the graph + # is an inconsistent state (which we could improve this to check for)). + # For now use a brute-force algorithm. + + def collect_bottoms(top): + """ + Collect the bottoms to walk for the coordinate mapping. + The general rule is that all the bottoms of a layer can be mapped, as + most layers have the same coordinate mapping for each bottom. + Crop layer is a notable exception. Only the first/cropped bottom is + mappable; the second/dimensions bottom is excluded from the walk. + """ + bottoms = top.fn.inputs + if top.fn.type_name == 'Crop': + bottoms = bottoms[:1] + return bottoms + + # walk back from top_from, keeping the coord map as we go + from_maps = {top_from: (None, 1, 0)} + frontier = {top_from} + while frontier: + top = frontier.pop() + try: + bottoms = collect_bottoms(top) + for bottom in bottoms: + from_maps[bottom] = compose(from_maps[top], coord_map(top.fn)) + frontier.add(bottom) + except UndefinedMapException: + pass + + # now walk back from top_to until we hit a common blob + to_maps = {top_to: (None, 1, 0)} + frontier = {top_to} + while frontier: + top = frontier.pop() + if top in from_maps: + return compose(to_maps[top], inverse(from_maps[top])) + try: + bottoms = collect_bottoms(top) + for bottom in bottoms: + to_maps[bottom] = compose(to_maps[top], coord_map(top.fn)) + frontier.add(bottom) + except UndefinedMapException: + continue + + # if we got here, we did not find a blob in common + raise RuntimeError('Could not compute map between tops; are they ' + 'connected by spatial layers?') + + +def crop(top_from, top_to): + """ + Define a Crop layer to crop a top (from) to another top (to) by + determining the coordinate mapping between the two and net spec'ing + the axis and shift parameters of the crop. + """ + ax, a, b = coord_map_from_to(top_from, top_to) + assert (a == 1).all(), 'scale mismatch on crop (a = {})'.format(a) + assert (b <= 0).all(), 'cannot crop negative offset (b = {})'.format(b) + assert (np.round(b) == b).all(), 'cannot crop noninteger offset ' \ + '(b = {})'.format(b) + return L.Crop(top_from, top_to, + crop_param=dict(axis=ax + 1, # +1 for first cropping dim. + offset=list(-np.round(b).astype(int)))) diff --git a/python/caffe/detector.py b/python/caffe/detector.py index 75cd3b120..ef1f91730 100644 --- a/python/caffe/detector.py +++ b/python/caffe/detector.py @@ -83,7 +83,7 @@ def detect_windows(self, images_windows): for ix, window_in in enumerate(window_inputs): caffe_in[ix] = self.transformer.preprocess(in_, window_in) out = self.forward_all(**{in_: caffe_in}) - predictions = out[self.outputs[0]].squeeze(axis=(2, 3)) + predictions = out[self.outputs[0]] # Package predictions with images and windows. detections = [] diff --git a/python/caffe/draw.py b/python/caffe/draw.py index a002b60b5..8411a41d1 100644 --- a/python/caffe/draw.py +++ b/python/caffe/draw.py @@ -10,7 +10,16 @@ """ from caffe.proto import caffe_pb2 -import pydot + +""" +pydot is not supported under python 3 and pydot2 doesn't work properly. +pydotplus works nicely (pip install pydotplus) +""" +try: + # Try to load pydotplus + import pydotplus as pydot +except ImportError: + import pydot # Internal layer and blob styles. LAYER_STYLE_DEFAULT = {'shape': 'record', @@ -82,11 +91,11 @@ def get_layer_label(layer, rankdir): separator, layer.type, separator, - layer.convolution_param.kernel_size, + layer.convolution_param.kernel_size[0] if len(layer.convolution_param.kernel_size) else 1, separator, - layer.convolution_param.stride, + layer.convolution_param.stride[0] if len(layer.convolution_param.stride) else 1, separator, - layer.convolution_param.pad) + layer.convolution_param.pad[0] if len(layer.convolution_param.pad) else 0) elif layer.type == 'Pooling': pooling_types_dict = get_pooling_types_dict() node_label = '"%s%s(%s %s)%skernel size: %d%sstride: %d%spad: %d"' %\ @@ -118,7 +127,7 @@ def choose_color_by_layertype(layertype): return color -def get_pydot_graph(caffe_net, rankdir, label_edges=True): +def get_pydot_graph(caffe_net, rankdir, label_edges=True, phase=None): """Create a data structure which represents the `caffe_net`. Parameters @@ -128,17 +137,33 @@ def get_pydot_graph(caffe_net, rankdir, label_edges=True): Direction of graph layout. label_edges : boolean, optional Label the edges (default is True). + phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional + Include layers from this network phase. If None, include all layers. + (the default is None) Returns ------- pydot graph object """ - pydot_graph = pydot.Dot(caffe_net.name, + pydot_graph = pydot.Dot(caffe_net.name if caffe_net.name else 'Net', graph_type='digraph', rankdir=rankdir) pydot_nodes = {} pydot_edges = [] for layer in caffe_net.layer: + if phase is not None: + included = False + if len(layer.include) == 0: + included = True + if len(layer.include) > 0 and len(layer.exclude) > 0: + raise ValueError('layer ' + layer.name + ' has both include ' + 'and exclude specified.') + for layer_phase in layer.include: + included = included or layer_phase.phase == phase + for layer_phase in layer.exclude: + included = included and not layer_phase.phase == phase + if not included: + continue node_label = get_layer_label(layer, rankdir) node_name = "%s_%s" % (layer.name, layer.type) if (len(layer.bottom) == 1 and len(layer.top) == 1 and @@ -177,7 +202,7 @@ def get_pydot_graph(caffe_net, rankdir, label_edges=True): return pydot_graph -def draw_net(caffe_net, rankdir, ext='png'): +def draw_net(caffe_net, rankdir, ext='png', phase=None): """Draws a caffe net and returns the image string encoded using the given extension. @@ -186,16 +211,19 @@ def draw_net(caffe_net, rankdir, ext='png'): caffe_net : a caffe.proto.caffe_pb2.NetParameter protocol buffer. ext : string, optional The image extension (the default is 'png'). + phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional + Include layers from this network phase. If None, include all layers. + (the default is None) Returns ------- string : Postscript representation of the graph. """ - return get_pydot_graph(caffe_net, rankdir).create(format=ext) + return get_pydot_graph(caffe_net, rankdir, phase=phase).create(format=ext) -def draw_net_to_file(caffe_net, filename, rankdir='LR'): +def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None): """Draws a caffe net, and saves it to file using the format given as the file extension. Use '.raw' to output raw text that you can manually feed to graphviz to draw graphs. @@ -207,7 +235,10 @@ def draw_net_to_file(caffe_net, filename, rankdir='LR'): The path to a file where the networks visualization will be stored. rankdir : {'LR', 'TB', 'BT'} Direction of graph layout. + phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional + Include layers from this network phase. If None, include all layers. + (the default is None) """ ext = filename[filename.rfind('.')+1:] with open(filename, 'wb') as fid: - fid.write(draw_net(caffe_net, rankdir, ext)) + fid.write(draw_net(caffe_net, rankdir, ext, phase)) diff --git a/python/caffe/io.py b/python/caffe/io.py index fc9626608..966c164cf 100644 --- a/python/caffe/io.py +++ b/python/caffe/io.py @@ -20,30 +20,33 @@ def blobproto_to_array(blob, return_diff=False): Convert a blob proto to an array. In default, we will just return the data, unless return_diff is True, in which case we will return the diff. """ + # Read the data into an array if return_diff: - return np.array(blob.diff).reshape( - blob.num, blob.channels, blob.height, blob.width) + data = np.array(blob.diff) else: - return np.array(blob.data).reshape( - blob.num, blob.channels, blob.height, blob.width) + data = np.array(blob.data) + # Reshape the array + if blob.HasField('num') or blob.HasField('channels') or blob.HasField('height') or blob.HasField('width'): + # Use legacy 4D shape + return data.reshape(blob.num, blob.channels, blob.height, blob.width) + else: + return data.reshape(blob.shape.dim) def array_to_blobproto(arr, diff=None): - """Converts a 4-dimensional array to blob proto. If diff is given, also + """Converts a N-dimensional array to blob proto. If diff is given, also convert the diff. You need to make sure that arr and diff have the same shape, and this function does not do sanity check. """ - if arr.ndim != 4: - raise ValueError('Incorrect array shape.') blob = caffe_pb2.BlobProto() - blob.num, blob.channels, blob.height, blob.width = arr.shape + blob.shape.dim.extend(arr.shape) blob.data.extend(arr.astype(float).flat) if diff is not None: blob.diff.extend(diff.astype(float).flat) return blob -def arraylist_to_blobprotovecor_str(arraylist): +def arraylist_to_blobprotovector_str(arraylist): """Converts a list of arrays to a serialized blobprotovec, which could be then passed to a network for processing. """ @@ -60,7 +63,7 @@ def blobprotovector_str_to_arraylist(str): return [blobproto_to_array(blob) for blob in vec.blobs] -def array_to_datum(arr, label=0): +def array_to_datum(arr, label=None): """Converts a 3-dimensional array to datum. If the array has dtype uint8, the output data will be encoded as a string. Otherwise, the output data will be stored in float format. @@ -72,8 +75,9 @@ def array_to_datum(arr, label=0): if arr.dtype == np.uint8: datum.data = arr.tostring() else: - datum.float_data.extend(arr.flat) - datum.label = label + datum.float_data.extend(arr.astype(float).flat) + if label is not None: + datum.label = label return datum @@ -175,9 +179,9 @@ def deprocess(self, in_, data): if raw_scale is not None: decaf_in /= raw_scale if channel_swap is not None: - decaf_in = decaf_in[channel_swap, :, :] + decaf_in = decaf_in[np.argsort(channel_swap), :, :] if transpose is not None: - decaf_in = decaf_in.transpose([transpose[t] for t in transpose]) + decaf_in = decaf_in.transpose(np.argsort(transpose)) return decaf_in def set_transpose(self, in_, order): @@ -289,7 +293,7 @@ def load_image(filename, color=True): of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. """ - img = skimage.img_as_float(skimage.io.imread(filename)).astype(np.float32) + img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: @@ -329,7 +333,7 @@ def resize_image(im, new_dims, interp_order=1): return ret else: # ndimage interpolates anything but more slowly. - scale = tuple(np.array(new_dims) / np.array(im.shape[:2])) + scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2])) resized_im = zoom(im, scale + (1,), order=interp_order) return resized_im.astype(np.float32) diff --git a/python/caffe/net_spec.py b/python/caffe/net_spec.py index 93fc01927..20918f9b6 100644 --- a/python/caffe/net_spec.py +++ b/python/caffe/net_spec.py @@ -32,7 +32,7 @@ def param_name_dict(): # get all parameter names (typically underscore case) and corresponding # type names (typically camel case), which contain the layer names # (note that not all parameters correspond to layers, but we'll ignore that) - param_names = [s for s in dir(layer) if s.endswith('_param')] + param_names = [f.name for f in layer.DESCRIPTOR.fields if f.name.endswith('_param')] param_type_names = [type(getattr(layer, s)).__name__ for s in param_names] # strip the final '_param' or 'Parameter' param_names = [s[:-len('_param')] for s in param_names] @@ -103,6 +103,10 @@ class Function(object): def __init__(self, type_name, inputs, params): self.type_name = type_name + for index, input in enumerate(inputs): + if not isinstance(input, Top): + raise TypeError('%s input %d is not a Top (type is %s)' % + (type_name, index, type(input))) self.inputs = inputs self.params = params self.ntop = self.params.get('ntop', 1) @@ -175,6 +179,12 @@ def __setattr__(self, name, value): def __getattr__(self, name): return self.tops[name] + def __setitem__(self, key, value): + self.__setattr__(key, value) + + def __getitem__(self, item): + return self.__getattr__(item) + def to_proto(self): names = {v: k for k, v in six.iteritems(self.tops)} autonames = Counter() diff --git a/python/caffe/pycaffe.py b/python/caffe/pycaffe.py index 8ea24da4f..4a7b5a24c 100644 --- a/python/caffe/pycaffe.py +++ b/python/caffe/pycaffe.py @@ -11,9 +11,11 @@ import numpy as np from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \ - RMSPropSolver, AdaDeltaSolver, AdamSolver + RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer import caffe.io +import six + # We directly update methods from Net here (rather than using composition or # inheritance) so that nets created by caffe (e.g., by SGDSolver) will # automatically have the improved interface. @@ -25,7 +27,9 @@ def _Net_blobs(self): An OrderedDict (bottom to top, i.e., input to output) of network blobs indexed by name """ - return OrderedDict(zip(self._blob_names, self._blobs)) + if not hasattr(self, '_blobs_dict'): + self._blobs_dict = OrderedDict(zip(self._blob_names, self._blobs)) + return self._blobs_dict @property @@ -34,7 +38,20 @@ def _Net_blob_loss_weights(self): An OrderedDict (bottom to top, i.e., input to output) of network blob loss weights indexed by name """ - return OrderedDict(zip(self._blob_names, self._blob_loss_weights)) + if not hasattr(self, '_blobs_loss_weights_dict'): + self._blob_loss_weights_dict = OrderedDict(zip(self._blob_names, + self._blob_loss_weights)) + return self._blob_loss_weights_dict + +@property +def _Net_layer_dict(self): + """ + An OrderedDict (bottom to top, i.e., input to output) of network + layers indexed by name + """ + if not hasattr(self, '_layer_dict'): + self._layer_dict = OrderedDict(zip(self._layer_names, self.layers)) + return self._layer_dict @property @@ -44,19 +61,28 @@ def _Net_params(self): parameters indexed by name; each is a list of multiple blobs (e.g., weights and biases) """ - return OrderedDict([(name, lr.blobs) - for name, lr in zip(self._layer_names, self.layers) - if len(lr.blobs) > 0]) + if not hasattr(self, '_params_dict'): + self._params_dict = OrderedDict([(name, lr.blobs) + for name, lr in zip( + self._layer_names, self.layers) + if len(lr.blobs) > 0]) + return self._params_dict @property def _Net_inputs(self): - return [list(self.blobs.keys())[i] for i in self._inputs] + if not hasattr(self, '_input_list'): + keys = list(self.blobs.keys()) + self._input_list = [keys[i] for i in self._inputs] + return self._input_list @property def _Net_outputs(self): - return [list(self.blobs.keys())[i] for i in self._outputs] + if not hasattr(self, '_output_list'): + keys = list(self.blobs.keys()) + self._output_list = [keys[i] for i in self._outputs] + return self._output_list def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): @@ -87,7 +113,7 @@ def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): if end is not None: end_ind = list(self._layer_names).index(end) - outputs = set([end] + blobs) + outputs = set(self.top_names[end] + blobs) else: end_ind = len(self.layers) - 1 outputs = set(self.outputs + blobs) @@ -97,8 +123,8 @@ def _Net_forward(self, blobs=None, start=None, end=None, **kwargs): raise Exception('Input blob arguments do not match net inputs.') # Set input according to defined shapes and make arrays single and # C-contiguous as Caffe expects. - for in_, blob in kwargs.iteritems(): - if blob.shape[0] != self.blobs[in_].num: + for in_, blob in six.iteritems(kwargs): + if blob.shape[0] != self.blobs[in_].shape[0]: raise Exception('Input is not batch sized') self.blobs[in_].data[...] = blob @@ -135,7 +161,7 @@ def _Net_backward(self, diffs=None, start=None, end=None, **kwargs): if end is not None: end_ind = list(self._layer_names).index(end) - outputs = set([end] + diffs) + outputs = set(self.bottom_names[end] + diffs) else: end_ind = 0 outputs = set(self.inputs + diffs) @@ -145,10 +171,8 @@ def _Net_backward(self, diffs=None, start=None, end=None, **kwargs): raise Exception('Top diff arguments do not match net outputs.') # Set top diffs according to defined shapes and make arrays single and # C-contiguous as Caffe expects. - for top, diff in kwargs.iteritems(): - if diff.ndim != 4: - raise Exception('{} diff is not 4-d'.format(top)) - if diff.shape[0] != self.blobs[top].num: + for top, diff in six.iteritems(kwargs): + if diff.shape[0] != self.blobs[top].shape[0]: raise Exception('Diff is not batch sized') self.blobs[top].diff[...] = diff @@ -176,13 +200,13 @@ def _Net_forward_all(self, blobs=None, **kwargs): all_outs = {out: [] for out in set(self.outputs + (blobs or []))} for batch in self._batch(kwargs): outs = self.forward(blobs=blobs, **batch) - for out, out_blob in outs.iteritems(): + for out, out_blob in six.iteritems(outs): all_outs[out].extend(out_blob.copy()) # Package in ndarray. for out in all_outs: all_outs[out] = np.asarray(all_outs[out]) # Discard padding. - pad = len(all_outs.itervalues().next()) - len(kwargs.itervalues().next()) + pad = len(six.next(six.itervalues(all_outs))) - len(six.next(six.itervalues(kwargs))) if pad: for out in all_outs: all_outs[out] = all_outs[out][:-pad] @@ -217,16 +241,16 @@ def _Net_forward_backward_all(self, blobs=None, diffs=None, **kwargs): for fb, bb in izip_longest(forward_batches, backward_batches, fillvalue={}): batch_blobs = self.forward(blobs=blobs, **fb) batch_diffs = self.backward(diffs=diffs, **bb) - for out, out_blobs in batch_blobs.iteritems(): - all_outs[out].extend(out_blobs) - for diff, out_diffs in batch_diffs.iteritems(): - all_diffs[diff].extend(out_diffs) + for out, out_blobs in six.iteritems(batch_blobs): + all_outs[out].extend(out_blobs.copy()) + for diff, out_diffs in six.iteritems(batch_diffs): + all_diffs[diff].extend(out_diffs.copy()) # Package in ndarray. for out, diff in zip(all_outs, all_diffs): all_outs[out] = np.asarray(all_outs[out]) all_diffs[diff] = np.asarray(all_diffs[diff]) # Discard padding at the end and package in ndarray. - pad = len(all_outs.itervalues().next()) - len(kwargs.itervalues().next()) + pad = len(six.next(six.itervalues(all_outs))) - len(six.next(six.itervalues(kwargs))) if pad: for out, diff in zip(all_outs, all_diffs): all_outs[out] = all_outs[out][:-pad] @@ -258,10 +282,10 @@ def _Net_batch(self, blobs): ------ batch: {blob name: list of blobs} dict for a single batch. """ - num = len(blobs.itervalues().next()) - batch_size = self.blobs.itervalues().next().num + num = len(six.next(six.itervalues(blobs))) + batch_size = six.next(six.itervalues(self.blobs)).shape[0] remainder = num % batch_size - num_batches = num / batch_size + num_batches = num // batch_size # Yield full batches. for b in range(num_batches): @@ -278,9 +302,36 @@ def _Net_batch(self, blobs): padding]) yield padded_batch +def _Net_get_id_name(func, field): + """ + Generic property that maps func to the layer names into an OrderedDict. + + Used for top_names and bottom_names. + + Parameters + ---------- + func: function id -> [id] + field: implementation field name (cache) + + Returns + ------ + A one-parameter function that can be set as a property. + """ + @property + def get_id_name(self): + if not hasattr(self, field): + id_to_name = list(self.blobs) + res = OrderedDict([(self._layer_names[i], + [id_to_name[j] for j in func(self, i)]) + for i in range(len(self.layers))]) + setattr(self, field, res) + return getattr(self, field) + return get_id_name + # Attach methods to Net. Net.blobs = _Net_blobs Net.blob_loss_weights = _Net_blob_loss_weights +Net.layer_dict = _Net_layer_dict Net.params = _Net_params Net.forward = _Net_forward Net.backward = _Net_backward @@ -290,3 +341,5 @@ def _Net_batch(self, blobs): Net._batch = _Net_batch Net.inputs = _Net_inputs Net.outputs = _Net_outputs +Net.top_names = _Net_get_id_name(Net._top_ids, "_top_names") +Net.bottom_names = _Net_get_id_name(Net._bottom_ids, "_bottom_names") diff --git a/python/caffe/test/test_coord_map.py b/python/caffe/test/test_coord_map.py new file mode 100644 index 000000000..613260e25 --- /dev/null +++ b/python/caffe/test/test_coord_map.py @@ -0,0 +1,192 @@ +import unittest + +import numpy as np +import random + +import caffe +from caffe import layers as L +from caffe import params as P +from caffe.coord_map import coord_map_from_to, crop + + +def coord_net_spec(ks=3, stride=1, pad=0, pool=2, dstride=2, dpad=0): + """ + Define net spec for simple conv-pool-deconv pattern common to all + coordinate mapping tests. + """ + n = caffe.NetSpec() + n.data = L.Input(shape=dict(dim=[2, 1, 100, 100])) + n.aux = L.Input(shape=dict(dim=[2, 1, 20, 20])) + n.conv = L.Convolution( + n.data, num_output=10, kernel_size=ks, stride=stride, pad=pad) + n.pool = L.Pooling( + n.conv, pool=P.Pooling.MAX, kernel_size=pool, stride=pool, pad=0) + # for upsampling kernel size is 2x stride + try: + deconv_ks = [s*2 for s in dstride] + except: + deconv_ks = dstride*2 + n.deconv = L.Deconvolution( + n.pool, num_output=10, kernel_size=deconv_ks, stride=dstride, pad=dpad) + return n + + +class TestCoordMap(unittest.TestCase): + def setUp(self): + pass + + def test_conv_pool_deconv(self): + """ + Map through conv, pool, and deconv. + """ + n = coord_net_spec() + # identity for 2x pool, 2x deconv + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertEquals(a, 1) + self.assertEquals(b, 0) + # shift-by-one for 4x pool, 4x deconv + n = coord_net_spec(pool=4, dstride=4) + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertEquals(a, 1) + self.assertEquals(b, -1) + + def test_pass(self): + """ + A pass-through layer (ReLU) and conv (1x1, stride 1, pad 0) + both do identity mapping. + """ + n = coord_net_spec() + ax, a, b = coord_map_from_to(n.deconv, n.data) + n.relu = L.ReLU(n.deconv) + n.conv1x1 = L.Convolution( + n.relu, num_output=10, kernel_size=1, stride=1, pad=0) + for top in [n.relu, n.conv1x1]: + ax_pass, a_pass, b_pass = coord_map_from_to(top, n.data) + self.assertEquals(ax, ax_pass) + self.assertEquals(a, a_pass) + self.assertEquals(b, b_pass) + + def test_padding(self): + """ + Padding conv adds offset while padding deconv subtracts offset. + """ + n = coord_net_spec() + ax, a, b = coord_map_from_to(n.deconv, n.data) + pad = random.randint(0, 10) + # conv padding + n = coord_net_spec(pad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b - pad, b_pad) + # deconv padding + n = coord_net_spec(dpad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b + pad, b_pad) + # pad both to cancel out + n = coord_net_spec(pad=pad, dpad=pad) + _, a_pad, b_pad = coord_map_from_to(n.deconv, n.data) + self.assertEquals(a, a_pad) + self.assertEquals(b, b_pad) + + def test_multi_conv(self): + """ + Multiple bottoms/tops of a layer are identically mapped. + """ + n = coord_net_spec() + # multi bottom/top + n.conv_data, n.conv_aux = L.Convolution( + n.data, n.aux, ntop=2, num_output=10, kernel_size=5, stride=2, + pad=0) + ax1, a1, b1 = coord_map_from_to(n.conv_data, n.data) + ax2, a2, b2 = coord_map_from_to(n.conv_aux, n.aux) + self.assertEquals(ax1, ax2) + self.assertEquals(a1, a2) + self.assertEquals(b1, b2) + + def test_rect(self): + """ + Anisotropic mapping is equivalent to its isotropic parts. + """ + n3x3 = coord_net_spec(ks=3, stride=1, pad=0) + n5x5 = coord_net_spec(ks=5, stride=2, pad=10) + n3x5 = coord_net_spec(ks=[3, 5], stride=[1, 2], pad=[0, 10]) + ax_3x3, a_3x3, b_3x3 = coord_map_from_to(n3x3.deconv, n3x3.data) + ax_5x5, a_5x5, b_5x5 = coord_map_from_to(n5x5.deconv, n5x5.data) + ax_3x5, a_3x5, b_3x5 = coord_map_from_to(n3x5.deconv, n3x5.data) + self.assertTrue(ax_3x3 == ax_5x5 == ax_3x5) + self.assertEquals(a_3x3, a_3x5[0]) + self.assertEquals(b_3x3, b_3x5[0]) + self.assertEquals(a_5x5, a_3x5[1]) + self.assertEquals(b_5x5, b_3x5[1]) + + def test_nd_conv(self): + """ + ND conv maps the same way in more dimensions. + """ + n = caffe.NetSpec() + # define data with 3 spatial dimensions, otherwise the same net + n.data = L.Input(shape=dict(dim=[2, 3, 100, 100, 100])) + n.conv = L.Convolution( + n.data, num_output=10, kernel_size=[3, 3, 3], stride=[1, 1, 1], + pad=[0, 1, 2]) + n.pool = L.Pooling( + n.conv, pool=P.Pooling.MAX, kernel_size=2, stride=2, pad=0) + n.deconv = L.Deconvolution( + n.pool, num_output=10, kernel_size=4, stride=2, pad=0) + ax, a, b = coord_map_from_to(n.deconv, n.data) + self.assertEquals(ax, 1) + self.assertTrue(len(a) == len(b)) + self.assertTrue(np.all(a == 1)) + self.assertEquals(b[0] - 1, b[1]) + self.assertEquals(b[1] - 1, b[2]) + + def test_crop_of_crop(self): + """ + Map coordinates through Crop layer: + crop an already-cropped output to the input and check change in offset. + """ + n = coord_net_spec() + offset = random.randint(0, 10) + ax, a, b = coord_map_from_to(n.deconv, n.data) + n.crop = L.Crop(n.deconv, n.data, axis=2, offset=offset) + ax_crop, a_crop, b_crop = coord_map_from_to(n.crop, n.data) + self.assertEquals(ax, ax_crop) + self.assertEquals(a, a_crop) + self.assertEquals(b + offset, b_crop) + + def test_crop_helper(self): + """ + Define Crop layer by crop(). + """ + n = coord_net_spec() + crop(n.deconv, n.data) + + def test_catch_unconnected(self): + """ + Catch mapping spatially unconnected tops. + """ + n = coord_net_spec() + n.ip = L.InnerProduct(n.deconv, num_output=10) + with self.assertRaises(RuntimeError): + coord_map_from_to(n.ip, n.data) + + def test_catch_scale_mismatch(self): + """ + Catch incompatible scales, such as when the top to be cropped + is mapped to a differently strided reference top. + """ + n = coord_net_spec(pool=3, dstride=2) # pool 3x but deconv 2x + with self.assertRaises(AssertionError): + crop(n.deconv, n.data) + + def test_catch_negative_crop(self): + """ + Catch impossible offsets, such as when the top to be cropped + is mapped to a larger reference top. + """ + n = coord_net_spec(dpad=10) # make output smaller than input + with self.assertRaises(AssertionError): + crop(n.deconv, n.data) diff --git a/python/caffe/test/test_draw.py b/python/caffe/test/test_draw.py new file mode 100644 index 000000000..835bb5df0 --- /dev/null +++ b/python/caffe/test/test_draw.py @@ -0,0 +1,37 @@ +import os +import unittest + +from google.protobuf import text_format + +import caffe.draw +from caffe.proto import caffe_pb2 + +def getFilenames(): + """Yields files in the source tree which are Net prototxts.""" + result = [] + + root_dir = os.path.abspath(os.path.join( + os.path.dirname(__file__), '..', '..', '..')) + assert os.path.exists(root_dir) + + for dirname in ('models', 'examples'): + dirname = os.path.join(root_dir, dirname) + assert os.path.exists(dirname) + for cwd, _, filenames in os.walk(dirname): + for filename in filenames: + filename = os.path.join(cwd, filename) + if filename.endswith('.prototxt') and 'solver' not in filename: + yield os.path.join(dirname, filename) + + +class TestDraw(unittest.TestCase): + def test_draw_net(self): + for filename in getFilenames(): + net = caffe_pb2.NetParameter() + with open(filename) as infile: + text_format.Merge(infile.read(), net) + caffe.draw.draw_net(net, 'LR') + + +if __name__ == "__main__": + unittest.main() diff --git a/python/caffe/test/test_io.py b/python/caffe/test/test_io.py new file mode 100644 index 000000000..4a16b5b91 --- /dev/null +++ b/python/caffe/test/test_io.py @@ -0,0 +1,56 @@ +import numpy as np +import unittest + +import caffe + +class TestBlobProtoToArray(unittest.TestCase): + + def test_old_format(self): + data = np.zeros((10,10)) + blob = caffe.proto.caffe_pb2.BlobProto() + blob.data.extend(list(data.flatten())) + shape = (1,1,10,10) + blob.num, blob.channels, blob.height, blob.width = shape + + arr = caffe.io.blobproto_to_array(blob) + self.assertEqual(arr.shape, shape) + + def test_new_format(self): + data = np.zeros((10,10)) + blob = caffe.proto.caffe_pb2.BlobProto() + blob.data.extend(list(data.flatten())) + blob.shape.dim.extend(list(data.shape)) + + arr = caffe.io.blobproto_to_array(blob) + self.assertEqual(arr.shape, data.shape) + + def test_no_shape(self): + data = np.zeros((10,10)) + blob = caffe.proto.caffe_pb2.BlobProto() + blob.data.extend(list(data.flatten())) + + with self.assertRaises(ValueError): + caffe.io.blobproto_to_array(blob) + + def test_scalar(self): + data = np.ones((1)) * 123 + blob = caffe.proto.caffe_pb2.BlobProto() + blob.data.extend(list(data.flatten())) + + arr = caffe.io.blobproto_to_array(blob) + self.assertEqual(arr, 123) + + +class TestArrayToDatum(unittest.TestCase): + + def test_label_none_size(self): + # Set label + d1 = caffe.io.array_to_datum( + np.ones((10,10,3)), label=1) + # Don't set label + d2 = caffe.io.array_to_datum( + np.ones((10,10,3))) + # Not setting the label should result in a smaller object + self.assertGreater( + len(d1.SerializeToString()), + len(d2.SerializeToString())) diff --git a/python/caffe/test/test_layer_type_list.py b/python/caffe/test/test_layer_type_list.py index 7edc80df0..47f4cf6d0 100644 --- a/python/caffe/test/test_layer_type_list.py +++ b/python/caffe/test/test_layer_type_list.py @@ -5,6 +5,7 @@ class TestLayerTypeList(unittest.TestCase): def test_standard_types(self): + #removing 'Data' from list for type_name in ['Data', 'Convolution', 'InnerProduct']: self.assertIn(type_name, caffe.layer_type_list(), '%s not in layer_type_list()' % type_name) diff --git a/python/caffe/test/test_nccl.py b/python/caffe/test/test_nccl.py new file mode 100644 index 000000000..127a93370 --- /dev/null +++ b/python/caffe/test/test_nccl.py @@ -0,0 +1,19 @@ +import sys +import unittest + +import caffe + + +class TestNCCL(unittest.TestCase): + + def test_newuid(self): + """ + Test that NCCL uids are of the proper type + according to python version + """ + if caffe.has_nccl(): + uid = caffe.NCCL.new_uid() + if sys.version_info.major >= 3: + self.assertTrue(isinstance(uid, bytes)) + else: + self.assertTrue(isinstance(uid, str)) diff --git a/python/caffe/test/test_net.py b/python/caffe/test/test_net.py index aad828aa8..afd276909 100644 --- a/python/caffe/test/test_net.py +++ b/python/caffe/test/test_net.py @@ -3,6 +3,7 @@ import os import numpy as np import six +from collections import OrderedDict import caffe @@ -24,11 +25,11 @@ def simple_net_file(num_output): bias_filler { type: 'constant' value: 2 } } param { decay_mult: 1 } param { decay_mult: 0 } } - layer { type: 'InnerProduct' name: 'ip' bottom: 'conv' top: 'ip' + layer { type: 'InnerProduct' name: 'ip' bottom: 'conv' top: 'ip_blob' inner_product_param { num_output: """ + str(num_output) + """ weight_filler { type: 'gaussian' std: 2.5 } bias_filler { type: 'constant' value: -3 } } } - layer { type: 'SoftmaxWithLoss' name: 'loss' bottom: 'ip' bottom: 'label' + layer { type: 'SoftmaxWithLoss' name: 'loss' bottom: 'ip_blob' bottom: 'label' top: 'loss' }""") f.close() return f.name @@ -59,23 +60,330 @@ def test_memory(self): for bl in blobs: total += bl.data.sum() + bl.diff.sum() + def test_layer_dict(self): + layer_dict = self.net.layer_dict + self.assertEqual(list(layer_dict.keys()), list(self.net._layer_names)) + for i, name in enumerate(self.net._layer_names): + self.assertEqual(layer_dict[name].type, + self.net.layers[i].type) + def test_forward_backward(self): self.net.forward() self.net.backward() + def test_forward_start_end(self): + conv_blob=self.net.blobs['conv']; + ip_blob=self.net.blobs['ip_blob']; + sample_data=np.random.uniform(size=conv_blob.data.shape); + sample_data=sample_data.astype(np.float32); + conv_blob.data[:]=sample_data; + forward_blob=self.net.forward(start='ip',end='ip'); + self.assertIn('ip_blob',forward_blob); + + manual_forward=[]; + for i in range(0,conv_blob.data.shape[0]): + dot=np.dot(self.net.params['ip'][0].data, + conv_blob.data[i].reshape(-1)); + manual_forward.append(dot+self.net.params['ip'][1].data); + manual_forward=np.array(manual_forward); + + np.testing.assert_allclose(ip_blob.data,manual_forward,rtol=1e-3); + + def test_backward_start_end(self): + conv_blob=self.net.blobs['conv']; + ip_blob=self.net.blobs['ip_blob']; + sample_data=np.random.uniform(size=ip_blob.data.shape) + sample_data=sample_data.astype(np.float32); + ip_blob.diff[:]=sample_data; + backward_blob=self.net.backward(start='ip',end='ip'); + self.assertIn('conv',backward_blob); + + manual_backward=[]; + for i in range(0,conv_blob.data.shape[0]): + dot=np.dot(self.net.params['ip'][0].data.transpose(), + sample_data[i].reshape(-1)); + manual_backward.append(dot); + manual_backward=np.array(manual_backward); + manual_backward=manual_backward.reshape(conv_blob.data.shape); + + np.testing.assert_allclose(conv_blob.diff,manual_backward,rtol=1e-3); + + def test_clear_param_diffs(self): + # Run a forward/backward step to have non-zero diffs + self.net.forward() + self.net.backward() + diff = self.net.params["conv"][0].diff + # Check that we have non-zero diffs + self.assertTrue(diff.max() > 0) + self.net.clear_param_diffs() + # Check that the diffs are now 0 + self.assertTrue((diff == 0).all()) + def test_inputs_outputs(self): self.assertEqual(self.net.inputs, []) self.assertEqual(self.net.outputs, ['loss']) + def test_top_bottom_names(self): + self.assertEqual(self.net.top_names, + OrderedDict([('data', ['data', 'label']), + ('conv', ['conv']), + ('ip', ['ip_blob']), + ('loss', ['loss'])])) + self.assertEqual(self.net.bottom_names, + OrderedDict([('data', []), + ('conv', ['data']), + ('ip', ['conv']), + ('loss', ['ip_blob', 'label'])])) + def test_save_and_read(self): f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.close() self.net.save(f.name) net_file = simple_net_file(self.num_output) - net2 = caffe.Net(net_file, f.name, caffe.TRAIN) + # Test legacy constructor + # should print deprecation warning + caffe.Net(net_file, f.name, caffe.TRAIN) + # Test named constructor + net2 = caffe.Net(net_file, caffe.TRAIN, weights=f.name) os.remove(net_file) os.remove(f.name) for name in self.net.params: for i in range(len(self.net.params[name])): self.assertEqual(abs(self.net.params[name][i].data - net2.params[name][i].data).sum(), 0) + + def test_save_hdf5(self): + f = tempfile.NamedTemporaryFile(mode='w+', delete=False) + f.close() + self.net.save_hdf5(f.name) + net_file = simple_net_file(self.num_output) + net2 = caffe.Net(net_file, caffe.TRAIN) + net2.load_hdf5(f.name) + os.remove(net_file) + os.remove(f.name) + for name in self.net.params: + for i in range(len(self.net.params[name])): + self.assertEqual(abs(self.net.params[name][i].data + - net2.params[name][i].data).sum(), 0) + +class TestLevels(unittest.TestCase): + + TEST_NET = """ +layer { + name: "data" + type: "DummyData" + top: "data" + dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } +} +layer { + name: "NoLevel" + type: "InnerProduct" + bottom: "data" + top: "NoLevel" + inner_product_param { num_output: 1 } +} +layer { + name: "Level0Only" + type: "InnerProduct" + bottom: "data" + top: "Level0Only" + include { min_level: 0 max_level: 0 } + inner_product_param { num_output: 1 } +} +layer { + name: "Level1Only" + type: "InnerProduct" + bottom: "data" + top: "Level1Only" + include { min_level: 1 max_level: 1 } + inner_product_param { num_output: 1 } +} +layer { + name: "Level>=0" + type: "InnerProduct" + bottom: "data" + top: "Level>=0" + include { min_level: 0 } + inner_product_param { num_output: 1 } +} +layer { + name: "Level>=1" + type: "InnerProduct" + bottom: "data" + top: "Level>=1" + include { min_level: 1 } + inner_product_param { num_output: 1 } +} +""" + + def setUp(self): + self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) + self.f.write(self.TEST_NET) + self.f.close() + + def tearDown(self): + os.remove(self.f.name) + + def check_net(self, net, blobs): + net_blobs = [b for b in net.blobs.keys() if 'data' not in b] + self.assertEqual(net_blobs, blobs) + + def test_0(self): + net = caffe.Net(self.f.name, caffe.TEST) + self.check_net(net, ['NoLevel', 'Level0Only', 'Level>=0']) + + def test_1(self): + net = caffe.Net(self.f.name, caffe.TEST, level=1) + self.check_net(net, ['NoLevel', 'Level1Only', 'Level>=0', 'Level>=1']) + + +class TestStages(unittest.TestCase): + + TEST_NET = """ +layer { + name: "data" + type: "DummyData" + top: "data" + dummy_data_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } +} +layer { + name: "A" + type: "InnerProduct" + bottom: "data" + top: "A" + include { stage: "A" } + inner_product_param { num_output: 1 } +} +layer { + name: "B" + type: "InnerProduct" + bottom: "data" + top: "B" + include { stage: "B" } + inner_product_param { num_output: 1 } +} +layer { + name: "AorB" + type: "InnerProduct" + bottom: "data" + top: "AorB" + include { stage: "A" } + include { stage: "B" } + inner_product_param { num_output: 1 } +} +layer { + name: "AandB" + type: "InnerProduct" + bottom: "data" + top: "AandB" + include { stage: "A" stage: "B" } + inner_product_param { num_output: 1 } +} +""" + + def setUp(self): + self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) + self.f.write(self.TEST_NET) + self.f.close() + + def tearDown(self): + os.remove(self.f.name) + + def check_net(self, net, blobs): + net_blobs = [b for b in net.blobs.keys() if 'data' not in b] + self.assertEqual(net_blobs, blobs) + + def test_A(self): + net = caffe.Net(self.f.name, caffe.TEST, stages=['A']) + self.check_net(net, ['A', 'AorB']) + + def test_B(self): + net = caffe.Net(self.f.name, caffe.TEST, stages=['B']) + self.check_net(net, ['B', 'AorB']) + + def test_AandB(self): + net = caffe.Net(self.f.name, caffe.TEST, stages=['A', 'B']) + self.check_net(net, ['A', 'B', 'AorB', 'AandB']) + + +class TestAllInOne(unittest.TestCase): + + TEST_NET = """ +layer { + name: "train_data" + type: "DummyData" + top: "data" + top: "label" + dummy_data_param { + shape { dim: 1 dim: 1 dim: 10 dim: 10 } + shape { dim: 1 dim: 1 dim: 1 dim: 1 } + } + include { phase: TRAIN stage: "train" } +} +layer { + name: "val_data" + type: "DummyData" + top: "data" + top: "label" + dummy_data_param { + shape { dim: 1 dim: 1 dim: 10 dim: 10 } + shape { dim: 1 dim: 1 dim: 1 dim: 1 } + } + include { phase: TEST stage: "val" } +} +layer { + name: "deploy_data" + type: "Input" + top: "data" + input_param { shape { dim: 1 dim: 1 dim: 10 dim: 10 } } + include { phase: TEST stage: "deploy" } +} +layer { + name: "ip" + type: "InnerProduct" + bottom: "data" + top: "ip" + inner_product_param { num_output: 2 } +} +layer { + name: "loss" + type: "SoftmaxWithLoss" + bottom: "ip" + bottom: "label" + top: "loss" + include: { phase: TRAIN stage: "train" } + include: { phase: TEST stage: "val" } +} +layer { + name: "pred" + type: "Softmax" + bottom: "ip" + top: "pred" + include: { phase: TEST stage: "deploy" } +} +""" + + def setUp(self): + self.f = tempfile.NamedTemporaryFile(mode='w+', delete=False) + self.f.write(self.TEST_NET) + self.f.close() + + def tearDown(self): + os.remove(self.f.name) + + def check_net(self, net, outputs): + self.assertEqual(list(net.blobs['data'].shape), [1,1,10,10]) + self.assertEqual(net.outputs, outputs) + + def test_train(self): + net = caffe.Net(self.f.name, caffe.TRAIN, stages=['train']) + self.check_net(net, ['loss']) + + def test_val(self): + net = caffe.Net(self.f.name, caffe.TEST, stages=['val']) + self.check_net(net, ['loss']) + + def test_deploy(self): + net = caffe.Net(self.f.name, caffe.TEST, stages=['deploy']) + self.check_net(net, ['pred']) + diff --git a/python/caffe/test/test_net_spec.py b/python/caffe/test/test_net_spec.py index fee3c0aae..ffe71bacb 100644 --- a/python/caffe/test/test_net_spec.py +++ b/python/caffe/test/test_net_spec.py @@ -79,3 +79,11 @@ def test_zero_tops(self): net_proto = silent_net() net = self.load_net(net_proto) self.assertEqual(len(net.forward()), 0) + + def test_type_error(self): + """Test that a TypeError is raised when a Function input isn't a Top.""" + data = L.DummyData(ntop=2) # data is a 2-tuple of Tops + r = r"^Silence input 0 is not a Top \(type is <(type|class) 'tuple'>\)$" + with self.assertRaisesRegexp(TypeError, r): + L.Silence(data, ntop=0) # should raise: data is a tuple, not a Top + L.Silence(*data, ntop=0) # shouldn't raise: each elt of data is a Top diff --git a/python/caffe/test/test_python_layer.py b/python/caffe/test/test_python_layer.py index 8ed86655e..899514e90 100644 --- a/python/caffe/test/test_python_layer.py +++ b/python/caffe/test/test_python_layer.py @@ -44,6 +44,18 @@ def forward(self, bottom, top): def backward(self, top, propagate_down, bottom): self.blobs[0].diff[0] = 1 +class PhaseLayer(caffe.Layer): + """A layer for checking attribute `phase`""" + + def setup(self, bottom, top): + pass + + def reshape(self, bootom, top): + top[0].reshape() + + def forward(self, bottom, top): + top[0].data[()] = self.phase + def python_net_file(): with tempfile.NamedTemporaryFile(mode='w+', delete=False) as f: f.write("""name: 'pythonnet' force_backward: true @@ -76,7 +88,17 @@ def parameter_net_file(): """) return f.name +def phase_net_file(): + with tempfile.NamedTemporaryFile(mode='w+', delete=False) as f: + f.write("""name: 'pythonnet' force_backward: true + layer { type: 'Python' name: 'layer' top: 'phase' + python_param { module: 'test_python_layer' layer: 'PhaseLayer' } } + """) + return f.name + +@unittest.skipIf('Python' not in caffe.layer_type_list(), + 'Caffe built without Python layer support') class TestPythonLayer(unittest.TestCase): def setUp(self): net_file = python_net_file() @@ -138,3 +160,9 @@ def test_parameter(self): self.assertEqual(layer.blobs[0].data[0], 1) os.remove(net_file) + + def test_phase(self): + net_file = phase_net_file() + for phase in caffe.TRAIN, caffe.TEST: + net = caffe.Net(net_file, phase) + self.assertEqual(net.forward()['phase'], phase) diff --git a/python/caffe/test/test_python_layer_with_param_str.py b/python/caffe/test/test_python_layer_with_param_str.py index 3d0f107b3..c36048ae9 100644 --- a/python/caffe/test/test_python_layer_with_param_str.py +++ b/python/caffe/test/test_python_layer_with_param_str.py @@ -38,6 +38,8 @@ def python_param_net_file(): return f.name +@unittest.skipIf('Python' not in caffe.layer_type_list(), + 'Caffe built without Python layer support') class TestLayerWithParam(unittest.TestCase): def setUp(self): net_file = python_param_net_file() diff --git a/python/caffe/test/test_solver.py b/python/caffe/test/test_solver.py index 9cfc10d29..f618fded8 100644 --- a/python/caffe/test/test_solver.py +++ b/python/caffe/test/test_solver.py @@ -16,7 +16,8 @@ def setUp(self): f.write("""net: '""" + net_f + """' test_iter: 10 test_interval: 10 base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 lr_policy: 'inv' gamma: 0.0001 power: 0.75 - display: 100 max_iter: 100 snapshot_after_train: false""") + display: 100 max_iter: 100 snapshot_after_train: false + snapshot_prefix: "model" """) f.close() self.solver = caffe.SGDSolver(f.name) # also make sure get_solver runs @@ -51,3 +52,11 @@ def test_net_memory(self): total += p.data.sum() + p.diff.sum() for bl in six.itervalues(net.blobs): total += bl.data.sum() + bl.diff.sum() + + def test_snapshot(self): + self.solver.snapshot() + # Check that these files exist and then remove them + files = ['model_iter_0.caffemodel', 'model_iter_0.solverstate'] + for fn in files: + assert os.path.isfile(fn) + os.remove(fn) diff --git a/python/detect.py b/python/detect.py index 691098f5c..1aba964a9 100755 --- a/python/detect.py +++ b/python/detect.py @@ -46,7 +46,7 @@ def main(argv): parser.add_argument( "--model_def", default=os.path.join(pycaffe_dir, - "../models/bvlc_reference_caffenet/deploy.prototxt.prototxt"), + "../models/bvlc_reference_caffenet/deploy.prototxt"), help="Model definition file." ) parser.add_argument( diff --git a/python/draw_net.py b/python/draw_net.py index ec76a744d..dfe70d26a 100755 --- a/python/draw_net.py +++ b/python/draw_net.py @@ -28,6 +28,11 @@ def parse_args(): 'http://www.graphviz.org/doc/info/' 'attrs.html#k:rankdir'), default='LR') + parser.add_argument('--phase', + help=('Which network phase to draw: can be TRAIN, ' + 'TEST, or ALL. If ALL, then all layers are drawn ' + 'regardless of phase.'), + default="ALL") args = parser.parse_args() return args @@ -38,7 +43,15 @@ def main(): net = caffe_pb2.NetParameter() text_format.Merge(open(args.input_net_proto_file).read(), net) print('Drawing net to %s' % args.output_image_file) - caffe.draw.draw_net_to_file(net, args.output_image_file, args.rankdir) + phase=None; + if args.phase == "TRAIN": + phase = caffe.TRAIN + elif args.phase == "TEST": + phase = caffe.TEST + elif args.phase != "ALL": + raise ValueError("Unknown phase: " + args.phase) + caffe.draw.draw_net_to_file(net, args.output_image_file, args.rankdir, + phase) if __name__ == '__main__': diff --git a/python/train.py b/python/train.py new file mode 100644 index 000000000..5897f5dcb --- /dev/null +++ b/python/train.py @@ -0,0 +1,100 @@ +#!/usr/bin/env python +""" +Trains a model using one or more GPUs. +""" +from multiprocessing import Process + +import caffe + + +def train( + solver, # solver proto definition + snapshot, # solver snapshot to restore + gpus, # list of device ids + timing=False, # show timing info for compute and communications +): + # NCCL uses a uid to identify a session + uid = caffe.NCCL.new_uid() + + caffe.init_log() + caffe.log('Using devices %s' % str(gpus)) + + procs = [] + for rank in range(len(gpus)): + p = Process(target=solve, + args=(solver, snapshot, gpus, timing, uid, rank)) + p.daemon = True + p.start() + procs.append(p) + for p in procs: + p.join() + + +def time(solver, nccl): + fprop = [] + bprop = [] + total = caffe.Timer() + allrd = caffe.Timer() + for _ in range(len(solver.net.layers)): + fprop.append(caffe.Timer()) + bprop.append(caffe.Timer()) + display = solver.param.display + + def show_time(): + if solver.iter % display == 0: + s = '\n' + for i in range(len(solver.net.layers)): + s += 'forw %3d %8s ' % (i, solver.net._layer_names[i]) + s += ': %.2f\n' % fprop[i].ms + for i in range(len(solver.net.layers) - 1, -1, -1): + s += 'back %3d %8s ' % (i, solver.net._layer_names[i]) + s += ': %.2f\n' % bprop[i].ms + s += 'solver total: %.2f\n' % total.ms + s += 'allreduce: %.2f\n' % allrd.ms + caffe.log(s) + + solver.net.before_forward(lambda layer: fprop[layer].start()) + solver.net.after_forward(lambda layer: fprop[layer].stop()) + solver.net.before_backward(lambda layer: bprop[layer].start()) + solver.net.after_backward(lambda layer: bprop[layer].stop()) + solver.add_callback(lambda: total.start(), lambda: (total.stop(), allrd.start())) + solver.add_callback(nccl) + solver.add_callback(lambda: '', lambda: (allrd.stop(), show_time())) + + +def solve(proto, snapshot, gpus, timing, uid, rank): + caffe.set_mode_gpu() + caffe.set_device(gpus[rank]) + caffe.set_solver_count(len(gpus)) + caffe.set_solver_rank(rank) + caffe.set_multiprocess(True) + + solver = caffe.SGDSolver(proto) + if snapshot and len(snapshot) != 0: + solver.restore(snapshot) + + nccl = caffe.NCCL(solver, uid) + nccl.bcast() + + if timing and rank == 0: + time(solver, nccl) + else: + solver.add_callback(nccl) + + if solver.param.layer_wise_reduce: + solver.net.after_backward(nccl) + solver.step(solver.param.max_iter) + + +if __name__ == '__main__': + import argparse + parser = argparse.ArgumentParser() + + parser.add_argument("--solver", required=True, help="Solver proto definition.") + parser.add_argument("--snapshot", help="Solver snapshot to restore.") + parser.add_argument("--gpus", type=int, nargs='+', default=[0], + help="List of device ids.") + parser.add_argument("--timing", action='store_true', help="Show timing info.") + args = parser.parse_args() + + train(args.solver, args.snapshot, args.gpus, args.timing) diff --git a/scripts/build_docs.sh b/scripts/build_docs.sh index 0e28bd716..4837587ad 100755 --- a/scripts/build_docs.sh +++ b/scripts/build_docs.sh @@ -12,6 +12,9 @@ cd $ROOT_DIR # Gather docs. scripts/gather_examples.sh +# Split caffe.proto for inclusion by layer catalogue. +scripts/split_caffe_proto.py + # Generate developer docs. make docs diff --git a/scripts/caffe b/scripts/caffe new file mode 100644 index 000000000..8a0b22af6 --- /dev/null +++ b/scripts/caffe @@ -0,0 +1,73 @@ +# bash completion for Caffe's command line utility -*- shell-script -*- +# COPYRIGHT (C) 2015,2016 Zhou Mo +# License: BSD-2-Clause +# Originally appeard at https://github.com/BVLC/caffe/issues/3149 + +# Updated for caffe (1.0.0~rc3+20160715-g42cd785) +_caffe() +{ + local cur prev words cword + _init_completion -s || return + + local prototxts='@(prototxt)' + local caffemodels='@(caffemodel,binaryproto)' + local solverstates='@(solverstate)' + local caffefiles='@(prototxt|caffemodel|solverstate)' + + local flags='-gpu -iterations -model -snapshot -solver -weights -sighup_effect -sigint_effect -level -stage -phase' + + if [[ $cword -eq 1 ]]; then + COMPREPLY=( $( compgen -W 'train test time device_query' -- "$cur" ) ) + return 0 + fi + + if [[ $cword -eq 2 ]]; then + case ${words[1]} in + train|test|device_query|time) + COMPREPLY=( $( compgen -W "$flags" -- "$cur") ) + return 0 + ;; + *) + return 0 + ;; + esac + fi + + case $prev in + -gpu|-iterations|-version|-level|-stage) + return 0 + ;; + -solver|-model) + _filedir $prototxts + return 0 + ;; + -weights) + _filedir $caffemodels + return 0 + ;; + -snapshot) + _filedir $solverstates + return 0 + ;; + -sighup_effect|-sigint_effect) + COMPREPLY=( $( compgen -W 'snapshot stop none' -- "$cur") ) + return 0 + ;; + -phase) + COMPREPLY=( $( compgen -W 'TRAIN TEST' -- "$cur") ) + return 0 + ;; + *) + COMPREPLY=( $( compgen -W "$flags" -- "$cur") ) + return 0 + ;; + esac + + # file completion on relevant files + _filedir "$caffefiles" + + return 0 +} +complete -F _caffe caffe + +# vim diff --git a/scripts/cpp_lint.py b/scripts/cpp_lint.py index f750489f4..b2016d4b6 100755 --- a/scripts/cpp_lint.py +++ b/scripts/cpp_lint.py @@ -1,4 +1,4 @@ -#!/usr/bin/python2 +#!/usr/bin/env python # # Copyright (c) 2009 Google Inc. All rights reserved. # @@ -52,6 +52,10 @@ import sys import unicodedata +import six + +from six import iteritems, itervalues +from six.moves import xrange _USAGE = """ Syntax: cpp_lint.py [--verbose=#] [--output=vs7] [--filter=-x,+y,...] @@ -756,7 +760,7 @@ def IncrementErrorCount(self, category): def PrintErrorCounts(self): """Print a summary of errors by category, and the total.""" - for category, count in self.errors_by_category.iteritems(): + for category, count in iteritems(self.errors_by_category): sys.stderr.write('Category \'%s\' errors found: %d\n' % (category, count)) sys.stderr.write('Total errors found: %d\n' % self.error_count) @@ -1564,7 +1568,7 @@ def CheckForMultilineCommentsAndStrings(filename, clean_lines, linenum, error): caffe_alt_function_list = ( ('memset', ['caffe_set', 'caffe_memset']), ('cudaMemset', ['caffe_gpu_set', 'caffe_gpu_memset']), - ('memcpy', ['caffe_copy', 'caffe_memcpy']), + ('memcpy', ['caffe_copy']), ('cudaMemcpy', ['caffe_copy', 'caffe_gpu_memcpy']), ) @@ -3444,16 +3448,16 @@ def GetLineWidth(line): The width of the line in column positions, accounting for Unicode combining characters and wide characters. """ - if isinstance(line, unicode): - width = 0 - for uc in unicodedata.normalize('NFC', line): - if unicodedata.east_asian_width(uc) in ('W', 'F'): - width += 2 - elif not unicodedata.combining(uc): - width += 1 - return width - else: - return len(line) + if six.PY2: + if isinstance(line, unicode): + width = 0 + for uc in unicodedata.normalize('NFC', line): + if unicodedata.east_asian_width(uc) in ('W', 'F'): + width += 2 + elif not unicodedata.combining(uc): + width += 1 + return width + return len(line) def CheckStyle(filename, clean_lines, linenum, file_extension, nesting_state, @@ -3774,7 +3778,7 @@ def _GetTextInside(text, start_pattern): # Give opening punctuations to get the matching close-punctuations. matching_punctuation = {'(': ')', '{': '}', '[': ']'} - closing_punctuation = set(matching_punctuation.itervalues()) + closing_punctuation = set(itervalues(matching_punctuation)) # Find the position to start extracting text. match = re.search(start_pattern, text, re.M) @@ -4460,7 +4464,7 @@ def UpdateIncludeState(filename, include_state, io=codecs): io: The io factory to use to read the file. Provided for testability. Returns: - True if a header was succesfully added. False otherwise. + True if a header was successfully added. False otherwise. """ headerfile = None try: @@ -4532,7 +4536,7 @@ def CheckForIncludeWhatYouUse(filename, clean_lines, include_state, error, # Let's copy the include_state so it is only messed up within this function. include_state = include_state.copy() - # Did we find the header for this file (if any) and succesfully load it? + # Did we find the header for this file (if any) and successfully load it? header_found = False # Use the absolute path so that matching works properly. @@ -4833,7 +4837,7 @@ def ParseArguments(args): try: _valid_extensions = set(val.split(',')) except ValueError: - PrintUsage('Extensions must be comma seperated list.') + PrintUsage('Extensions must be comma separated list.') if not filenames: PrintUsage('No files were specified.') @@ -4851,10 +4855,11 @@ def main(): # Change stderr to write with replacement characters so we don't die # if we try to print something containing non-ASCII characters. - sys.stderr = codecs.StreamReaderWriter(sys.stderr, - codecs.getreader('utf8'), - codecs.getwriter('utf8'), - 'replace') + if six.PY2: + sys.stderr = codecs.StreamReaderWriter(sys.stderr, + codecs.getreader('utf8'), + codecs.getwriter('utf8'), + 'replace') _cpplint_state.ResetErrorCounts() for filename in filenames: diff --git a/scripts/download_model_binary.py b/scripts/download_model_binary.py index 03a50f677..a72fd5d76 100755 --- a/scripts/download_model_binary.py +++ b/scripts/download_model_binary.py @@ -3,10 +3,11 @@ import sys import time import yaml -import urllib import hashlib import argparse +from six.moves import urllib + required_keys = ['caffemodel', 'caffemodel_url', 'sha1'] @@ -18,7 +19,7 @@ def reporthook(count, block_size, total_size): if count == 0: start_time = time.time() return - duration = time.time() - start_time + duration = (time.time() - start_time) or 0.01 progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) percent = int(count * block_size * 100 / total_size) @@ -60,7 +61,7 @@ def valid_dirname(dirname): # Closure-d function for checking SHA1. def model_checks_out(filename=model_filename, sha1=frontmatter['sha1']): - with open(filename, 'r') as f: + with open(filename, 'rb') as f: return hashlib.sha1(f.read()).hexdigest() == sha1 # Check if model exists. @@ -69,7 +70,7 @@ def model_checks_out(filename=model_filename, sha1=frontmatter['sha1']): sys.exit(0) # Download and verify model. - urllib.urlretrieve( + urllib.request.urlretrieve( frontmatter['caffemodel_url'], model_filename, reporthook) if not model_checks_out(): print('ERROR: model did not download correctly! Run this again.') diff --git a/scripts/split_caffe_proto.py b/scripts/split_caffe_proto.py new file mode 100755 index 000000000..7e9dc3e7b --- /dev/null +++ b/scripts/split_caffe_proto.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python +import mmap +import re +import os +import errno + +script_path = os.path.dirname(os.path.realpath(__file__)) + +# a regex to match the parameter definitions in caffe.proto +r = re.compile(r'(?://.*\n)*message ([^ ]*) \{\n(?: .*\n|\n)*\}') + +# create directory to put caffe.proto fragments +try: + os.mkdir( + os.path.join(script_path, + '../docs/_includes/')) + os.mkdir( + os.path.join(script_path, + '../docs/_includes/proto/')) +except OSError as exception: + if exception.errno != errno.EEXIST: + raise + +caffe_proto_fn = os.path.join( + script_path, + '../src/caffe/proto/caffe.proto') + +with open(caffe_proto_fn, 'r') as fin: + + for m in r.finditer(fin.read(), re.MULTILINE): + fn = os.path.join( + script_path, + '../docs/_includes/proto/%s.txt' % m.group(1)) + with open(fn, 'w') as fout: + fout.write(m.group(0)) diff --git a/scripts/travis/build.sh b/scripts/travis/build.sh new file mode 100755 index 000000000..bb9406f04 --- /dev/null +++ b/scripts/travis/build.sh @@ -0,0 +1,13 @@ +#!/bin/bash +# build the project + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +if ! $WITH_CMAKE ; then + make --jobs $NUM_THREADS all test pycaffe warn +else + cd build + make --jobs $NUM_THREADS all test.testbin +fi +make lint diff --git a/scripts/travis/configure-cmake.sh b/scripts/travis/configure-cmake.sh new file mode 100644 index 000000000..772f1e2ce --- /dev/null +++ b/scripts/travis/configure-cmake.sh @@ -0,0 +1,32 @@ +# CMake configuration + +mkdir -p build +cd build + +ARGS="-DCMAKE_BUILD_TYPE=Release -DBLAS=Open" + +if $WITH_PYTHON3 ; then + ARGS="$ARGS -Dpython_version=3" +fi + +if $WITH_IO ; then + ARGS="$ARGS -DUSE_OPENCV=On -DUSE_LMDB=On -DUSE_LEVELDB=On" +else + ARGS="$ARGS -DUSE_OPENCV=Off -DUSE_LMDB=Off -DUSE_LEVELDB=Off" +fi + +if $WITH_CUDA ; then + # Only build SM50 + ARGS="$ARGS -DCPU_ONLY=Off -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN=\"50\" -DCUDA_ARCH_PTX=\"\"" +else + ARGS="$ARGS -DCPU_ONLY=On" +fi + +if $WITH_CUDNN ; then + ARGS="$ARGS -DUSE_CUDNN=On" +else + ARGS="$ARGS -DUSE_CUDNN=Off" +fi + +cmake .. $ARGS + diff --git a/scripts/travis/configure-make.sh b/scripts/travis/configure-make.sh new file mode 100644 index 000000000..ddc40fffa --- /dev/null +++ b/scripts/travis/configure-make.sh @@ -0,0 +1,36 @@ +# raw Makefile configuration + +LINE () { + echo "$@" >> Makefile.config +} + +cp Makefile.config.example Makefile.config + +LINE "BLAS := open" +LINE "WITH_PYTHON_LAYER := 1" + +if $WITH_PYTHON3 ; then + # TODO(lukeyeager) this path is currently disabled because of test errors like: + # ImportError: dynamic module does not define init function (PyInit__caffe) + LINE "PYTHON_LIBRARIES := python3.4m boost_python-py34" + LINE "PYTHON_INCLUDE := /usr/include/python3.4 /usr/lib/python3/dist-packages/numpy/core/include" + LINE "INCLUDE_DIRS := \$(INCLUDE_DIRS) \$(PYTHON_INCLUDE)" +fi + +if ! $WITH_IO ; then + LINE "USE_OPENCV := 0" + LINE "USE_LEVELDB := 0" + LINE "USE_LMDB := 0" +fi + +if $WITH_CUDA ; then + # Only build SM50 + LINE "CUDA_ARCH := -gencode arch=compute_50,code=sm_50" +else + LINE "CPU_ONLY := 1" +fi + +if $WITH_CUDNN ; then + LINE "USE_CUDNN := 1" +fi + diff --git a/scripts/travis/configure.sh b/scripts/travis/configure.sh new file mode 100755 index 000000000..ef740c898 --- /dev/null +++ b/scripts/travis/configure.sh @@ -0,0 +1,11 @@ +#!/bin/bash +# configure the project + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +if ! $WITH_CMAKE ; then + source $BASEDIR/configure-make.sh +else + source $BASEDIR/configure-cmake.sh +fi diff --git a/scripts/travis/defaults.sh b/scripts/travis/defaults.sh new file mode 100755 index 000000000..d69c0a7d9 --- /dev/null +++ b/scripts/travis/defaults.sh @@ -0,0 +1,10 @@ +#!/bin/bash +# set default environment variables + +set -e + +WITH_CMAKE=${WITH_CMAKE:-false} +WITH_PYTHON3=${WITH_PYTHON3:-false} +WITH_IO=${WITH_IO:-true} +WITH_CUDA=${WITH_CUDA:-false} +WITH_CUDNN=${WITH_CUDNN:-false} diff --git a/scripts/travis/install-deps.sh b/scripts/travis/install-deps.sh new file mode 100755 index 000000000..2fa2a74a4 --- /dev/null +++ b/scripts/travis/install-deps.sh @@ -0,0 +1,112 @@ +#!/bin/bash +# install dependencies +# (this script must be run as root) + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +apt-get -y update +apt-get install -y --no-install-recommends \ + build-essential \ + graphviz \ + libboost-filesystem-dev \ + libboost-python-dev \ + libboost-system-dev \ + libboost-thread-dev \ + libgflags-dev \ + libgoogle-glog-dev \ + libhdf5-serial-dev \ + libopenblas-dev \ + python-virtualenv \ + wget + +if $WITH_CMAKE ; then + apt-get install -y --no-install-recommends cmake +fi + +if ! $WITH_PYTHON3 ; then + # Python2 + apt-get install -y --no-install-recommends \ + libprotobuf-dev \ + protobuf-compiler \ + python-dev \ + python-numpy \ + python-protobuf \ + python-pydot \ + python-skimage +else + # Python3 + apt-get install -y --no-install-recommends \ + python3-dev \ + python3-numpy \ + python3-skimage + + # build Protobuf3 since it's needed for Python3 + PROTOBUF3_DIR=~/protobuf3 + pushd . + if [ -d "$PROTOBUF3_DIR" ] && [ -e "$PROTOBUF3_DIR/src/protoc" ]; then + echo "Using cached protobuf3 build ..." + cd $PROTOBUF3_DIR + else + echo "Building protobuf3 from source ..." + rm -rf $PROTOBUF3_DIR + mkdir $PROTOBUF3_DIR + + # install some more dependencies required to build protobuf3 + apt-get install -y --no-install-recommends \ + curl \ + dh-autoreconf \ + unzip + + wget https://github.com/google/protobuf/archive/3.0.x.tar.gz -O protobuf3.tar.gz + tar -xzf protobuf3.tar.gz -C $PROTOBUF3_DIR --strip 1 + rm protobuf3.tar.gz + cd $PROTOBUF3_DIR + ./autogen.sh + ./configure --prefix=/usr + make --jobs=$NUM_THREADS + fi + make install + popd +fi + +if $WITH_IO ; then + apt-get install -y --no-install-recommends \ + libleveldb-dev \ + liblmdb-dev \ + libopencv-dev \ + libsnappy-dev +fi + +if $WITH_CUDA ; then + # install repo packages + CUDA_REPO_PKG=cuda-repo-ubuntu1404_7.5-18_amd64.deb + wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/$CUDA_REPO_PKG + dpkg -i $CUDA_REPO_PKG + rm $CUDA_REPO_PKG + + if $WITH_CUDNN ; then + ML_REPO_PKG=nvidia-machine-learning-repo-ubuntu1404_4.0-2_amd64.deb + wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1404/x86_64/$ML_REPO_PKG + dpkg -i $ML_REPO_PKG + fi + + # update package lists + apt-get -y update + + # install packages + CUDA_PKG_VERSION="7-5" + CUDA_VERSION="7.5" + apt-get install -y --no-install-recommends \ + cuda-core-$CUDA_PKG_VERSION \ + cuda-cudart-dev-$CUDA_PKG_VERSION \ + cuda-cublas-dev-$CUDA_PKG_VERSION \ + cuda-curand-dev-$CUDA_PKG_VERSION + # manually create CUDA symlink + ln -s /usr/local/cuda-$CUDA_VERSION /usr/local/cuda + + if $WITH_CUDNN ; then + apt-get install -y --no-install-recommends libcudnn6-dev + fi +fi + diff --git a/scripts/travis/install-python-deps.sh b/scripts/travis/install-python-deps.sh new file mode 100755 index 000000000..910d35a93 --- /dev/null +++ b/scripts/travis/install-python-deps.sh @@ -0,0 +1,15 @@ +#!/bin/bash +# install extra Python dependencies +# (must come after setup-venv) + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +if ! $WITH_PYTHON3 ; then + # Python2 + : +else + # Python3 + pip install --pre protobuf==3.0.0b3 + pip install pydot +fi diff --git a/scripts/travis/setup-venv.sh b/scripts/travis/setup-venv.sh new file mode 100755 index 000000000..81245f146 --- /dev/null +++ b/scripts/travis/setup-venv.sh @@ -0,0 +1,18 @@ +#!/bin/bash +# setup a Python virtualenv +# (must come after install-deps) + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +VENV_DIR=${1:-~/venv} + +# setup our own virtualenv +if $WITH_PYTHON3; then + PYTHON_EXE='/usr/bin/python3' +else + PYTHON_EXE='/usr/bin/python2' +fi + +# use --system-site-packages so that Python will use deb packages +virtualenv $VENV_DIR -p $PYTHON_EXE --system-site-packages diff --git a/scripts/travis/test.sh b/scripts/travis/test.sh new file mode 100755 index 000000000..fedd7e6b5 --- /dev/null +++ b/scripts/travis/test.sh @@ -0,0 +1,19 @@ +#!/bin/bash +# test the project + +BASEDIR=$(dirname $0) +source $BASEDIR/defaults.sh + +if $WITH_CUDA ; then + echo "Skipping tests for CUDA build" + exit 0 +fi + +if ! $WITH_CMAKE ; then + make runtest + make pytest +else + cd build + make runtest + make pytest +fi diff --git a/scripts/travis/travis_build_and_test.sh b/scripts/travis/travis_build_and_test.sh deleted file mode 100755 index 9ba737e28..000000000 --- a/scripts/travis/travis_build_and_test.sh +++ /dev/null @@ -1,43 +0,0 @@ -#!/bin/bash -# Script called by Travis to do a CPU-only build of and test Caffe. - -set -e -MAKE="make --jobs=$NUM_THREADS --keep-going" - -if $WITH_CMAKE; then - mkdir build - cd build - CPU_ONLY=" -DCPU_ONLY=ON" - if ! $WITH_CUDA; then - CPU_ONLY=" -DCPU_ONLY=OFF" - fi - PYTHON_ARGS="" - if [ "$PYTHON_VERSION" = "3" ]; then - PYTHON_ARGS="$PYTHON_ARGS -Dpython_version=3 -DBOOST_LIBRARYDIR=$CONDA_DIR/lib/" - fi - cmake -DBUILD_python=ON -DCMAKE_BUILD_TYPE=Release $CPU_ONLY $PYTHON_ARGS -DCMAKE_INCLUDE_PATH="$CONDA_DIR/include/" -DCMAKE_LIBRARY_PATH="$CONDA_DIR/lib/" .. - $MAKE - $MAKE pytest - if ! $WITH_CUDA; then - $MAKE runtest - $MAKE lint - fi - $MAKE clean - cd - -else - if ! $WITH_CUDA; then - export CPU_ONLY=1 - fi - $MAKE all test pycaffe warn lint || true - if ! $WITH_CUDA; then - $MAKE runtest - fi - $MAKE all - $MAKE test - $MAKE pycaffe - $MAKE pytest - $MAKE warn - if ! $WITH_CUDA; then - $MAKE lint - fi -fi diff --git a/scripts/travis/travis_install.sh b/scripts/travis/travis_install.sh deleted file mode 100755 index d6c6e228b..000000000 --- a/scripts/travis/travis_install.sh +++ /dev/null @@ -1,95 +0,0 @@ -#!/bin/bash -# This script must be run with sudo. - -set -e - -MAKE="make --jobs=$NUM_THREADS" -# Install apt packages where the Ubuntu 12.04 default and ppa works for Caffe - -# This ppa is for gflags and glog -add-apt-repository -y ppa:tuleu/precise-backports -apt-get -y update -apt-get install \ - wget git curl \ - python-dev python-numpy python3-dev\ - libleveldb-dev libsnappy-dev libopencv-dev \ - libprotobuf-dev protobuf-compiler \ - libatlas-dev libatlas-base-dev \ - libhdf5-serial-dev libgflags-dev libgoogle-glog-dev \ - bc - -# Add a special apt-repository to install CMake 2.8.9 for CMake Caffe build, -# if needed. By default, Aptitude in Ubuntu 12.04 installs CMake 2.8.7, but -# Caffe requires a minimum CMake version of 2.8.8. -if $WITH_CMAKE; then - # cmake 3 will make sure that the python interpreter and libraries match - wget http://www.cmake.org/files/v3.2/cmake-3.2.3-Linux-x86_64.sh -O cmake3.sh - chmod +x cmake3.sh - ./cmake3.sh --prefix=/usr/ --skip-license --exclude-subdir -fi - -# Install CUDA, if needed -if $WITH_CUDA; then - CUDA_URL=http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1204/x86_64/cuda-repo-ubuntu1204_6.5-14_amd64.deb - CUDA_FILE=/tmp/cuda_install.deb - curl $CUDA_URL -o $CUDA_FILE - dpkg -i $CUDA_FILE - rm -f $CUDA_FILE - apt-get -y update - # Install the minimal CUDA subpackages required to test Caffe build. - # For a full CUDA installation, add 'cuda' to the list of packages. - apt-get -y install cuda-core-6-5 cuda-cublas-6-5 cuda-cublas-dev-6-5 cuda-cudart-6-5 cuda-cudart-dev-6-5 cuda-curand-6-5 cuda-curand-dev-6-5 - # Create CUDA symlink at /usr/local/cuda - # (This would normally be created by the CUDA installer, but we create it - # manually since we did a partial installation.) - ln -s /usr/local/cuda-6.5 /usr/local/cuda -fi - -# Install LMDB -LMDB_URL=https://github.com/LMDB/lmdb/archive/LMDB_0.9.14.tar.gz -LMDB_FILE=/tmp/lmdb.tar.gz -pushd . -wget $LMDB_URL -O $LMDB_FILE -tar -C /tmp -xzvf $LMDB_FILE -cd /tmp/lmdb*/libraries/liblmdb/ -$MAKE -$MAKE install -popd -rm -f $LMDB_FILE - -# Install the Python runtime dependencies via miniconda (this is much faster -# than using pip for everything). -export PATH=$CONDA_DIR/bin:$PATH -if [ ! -d $CONDA_DIR ]; then - if [ "$PYTHON_VERSION" -eq "3" ]; then - wget http://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh - else - wget http://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh - fi - chmod +x miniconda.sh - ./miniconda.sh -b -p $CONDA_DIR - - conda update --yes conda - conda install --yes numpy scipy matplotlib scikit-image pip - # Let conda install boost (so that boost_python matches) - conda install --yes -c https://conda.binstar.org/menpo boost=1.56.0 -fi - -# install protobuf 3 (just use the miniconda3 directory to avoid having to setup the path again) -if [ "$PYTHON_VERSION" -eq "3" ] && [ ! -e "$CONDA_DIR/bin/protoc" ]; then - pushd . - wget https://github.com/google/protobuf/archive/v3.0.0-alpha-3.1.tar.gz -O protobuf-3.tar.gz - tar -C /tmp -xzvf protobuf-3.tar.gz - cd /tmp/protobuf-3*/ - ./autogen.sh - ./configure --prefix=$CONDA_DIR - $MAKE - $MAKE install - popd -fi - -if [ "$PYTHON_VERSION" -eq "3" ]; then - pip install --pre protobuf -else - pip install protobuf -fi diff --git a/scripts/travis/travis_setup_makefile_config.sh b/scripts/travis/travis_setup_makefile_config.sh deleted file mode 100755 index 1440be2af..000000000 --- a/scripts/travis/travis_setup_makefile_config.sh +++ /dev/null @@ -1,25 +0,0 @@ -#!/bin/bash - -set -e - -mv Makefile.config.example Makefile.config - -if $WITH_CUDA; then - # Only generate compute_50. - GENCODE="-gencode arch=compute_50,code=sm_50" - GENCODE="$GENCODE -gencode arch=compute_50,code=compute_50" - echo "CUDA_ARCH := $GENCODE" >> Makefile.config -fi - -cat << 'EOF' >> Makefile.config -# Travis' nvcc doesn't like newer boost versions -NVCCFLAGS := -Xcudafe --diag_suppress=cc_clobber_ignored -Xcudafe --diag_suppress=useless_using_declaration -Xcudafe --diag_suppress=set_but_not_used -ANACONDA_HOME := $(CONDA_DIR) -PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ - $(ANACONDA_HOME)/include/python2.7 \ - $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include -PYTHON_LIB := $(ANACONDA_HOME)/lib -INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include -LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib -WITH_PYTHON_LAYER := 1 -EOF diff --git a/src/caffe/CMakeLists.txt b/src/caffe/CMakeLists.txt index 40e6c11f5..4a8055685 100644 --- a/src/caffe/CMakeLists.txt +++ b/src/caffe/CMakeLists.txt @@ -3,9 +3,12 @@ file(GLOB proto_files proto/*.proto) caffe_protobuf_generate_cpp_py(${proto_gen_folder} proto_srcs proto_hdrs proto_python ${proto_files}) # include python files either to force generation -add_library(proto STATIC ${proto_hdrs} ${proto_srcs} ${proto_python}) -set(Caffe_LINKER_LIBS proto ${Caffe_LINKER_LIBS}) # note, crucial to prepend! -caffe_default_properties(proto) +add_library(caffeproto STATIC ${proto_hdrs} ${proto_srcs} ${proto_python}) +caffe_default_properties(caffeproto) +target_link_libraries(caffeproto PUBLIC ${PROTOBUF_LIBRARIES}) +target_include_directories(caffeproto PUBLIC ${PROTOBUF_INCLUDE_DIR}) + +list(INSERT Caffe_LINKER_LIBS 0 PUBLIC caffeproto) # note, crucial to prepend! # --[ Caffe library @@ -18,19 +21,30 @@ if(HAVE_CUDA) endif() add_library(caffe ${srcs}) -target_link_libraries(caffe proto ${Caffe_LINKER_LIBS}) caffe_default_properties(caffe) +target_link_libraries(caffe ${Caffe_LINKER_LIBS}) +target_include_directories(caffe ${Caffe_INCLUDE_DIRS} + PUBLIC + $ + $) +target_compile_definitions(caffe ${Caffe_DEFINITIONS}) +if(Caffe_COMPILE_OPTIONS) + target_compile_options(caffe ${Caffe_COMPILE_OPTIONS}) +endif() +set_target_properties(caffe PROPERTIES + VERSION ${CAFFE_TARGET_VERSION} + SOVERSION ${CAFFE_TARGET_SOVERSION} + ) # ---[ Tests add_subdirectory(test) # ---[ Install -install(DIRECTORY ${Caffe_INCLUDE_DIR}/caffe DESTINATION include) -install(FILES ${proto_hdrs} DESTINATION include/caffe/proto) -install(TARGETS caffe proto EXPORT CaffeTargets DESTINATION lib) +install(DIRECTORY ${Caffe_INCLUDE_DIR}/caffe DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) +install(FILES ${proto_hdrs} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/caffe/proto) +install(TARGETS caffe caffeproto EXPORT CaffeTargets DESTINATION ${CMAKE_INSTALL_LIBDIR}) file(WRITE ${PROJECT_BINARY_DIR}/__init__.py) list(APPEND proto_python ${PROJECT_BINARY_DIR}/__init__.py) install(PROGRAMS ${proto_python} DESTINATION python/caffe/proto) - diff --git a/src/caffe/blob.cpp b/src/caffe/blob.cpp index 8450aa140..603e52f70 100644 --- a/src/caffe/blob.cpp +++ b/src/caffe/blob.cpp @@ -24,11 +24,18 @@ void Blob::Reshape(const vector& shape) { CHECK_LE(shape.size(), kMaxBlobAxes); count_ = 1; shape_.resize(shape.size()); + if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) { + shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int))); + } + int* shape_data = static_cast(shape_data_->mutable_cpu_data()); for (int i = 0; i < shape.size(); ++i) { CHECK_GE(shape[i], 0); - CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX"; + if (count_ != 0) { + CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX"; + } count_ *= shape[i]; shape_[i] = shape[i]; + shape_data[i] = shape[i]; } if (count_ > capacity_) { capacity_ = count_; @@ -67,6 +74,12 @@ Blob::Blob(const vector& shape) Reshape(shape); } +template +const int* Blob::gpu_shape() const { + CHECK(shape_data_); + return (const int*)shape_data_->gpu_data(); +} + template const Dtype* Blob::cpu_data() const { CHECK(data_); @@ -76,6 +89,12 @@ const Dtype* Blob::cpu_data() const { template void Blob::set_cpu_data(Dtype* data) { CHECK(data); + // Make sure CPU and GPU sizes remain equal + size_t size = count_ * sizeof(Dtype); + if (data_->size() != size) { + data_.reset(new SyncedMemory(size)); + diff_.reset(new SyncedMemory(size)); + } data_->set_cpu_data(data); } @@ -85,6 +104,18 @@ const Dtype* Blob::gpu_data() const { return (const Dtype*)data_->gpu_data(); } +template +void Blob::set_gpu_data(Dtype* data) { + CHECK(data); + // Make sure CPU and GPU sizes remain equal + size_t size = count_ * sizeof(Dtype); + if (data_->size() != size) { + data_.reset(new SyncedMemory(size)); + diff_.reset(new SyncedMemory(size)); + } + data_->set_gpu_data(data); +} + template const Dtype* Blob::cpu_diff() const { CHECK(diff_); diff --git a/src/caffe/common.cpp b/src/caffe/common.cpp index 299d67d4b..4f6f9bccc 100644 --- a/src/caffe/common.cpp +++ b/src/caffe/common.cpp @@ -53,7 +53,7 @@ void GlobalInit(int* pargc, char*** pargv) { Caffe::Caffe() : random_generator_(), mode_(Caffe::CPU), - solver_count_(1), root_solver_(true) { } + solver_count_(1), solver_rank_(0), multiprocess_(false) { } Caffe::~Caffe() { } @@ -70,6 +70,15 @@ void Caffe::DeviceQuery() { NO_GPU; } +bool Caffe::CheckDevice(const int device_id) { + NO_GPU; + return false; +} + +int Caffe::FindDevice(const int start_id) { + NO_GPU; + return -1; +} class Caffe::RNG::Generator { public: @@ -97,7 +106,8 @@ void* Caffe::RNG::generator() { Caffe::Caffe() : cublas_handle_(NULL), curand_generator_(NULL), random_generator_(), - mode_(Caffe::CPU), solver_count_(1), root_solver_(true) { + mode_(Caffe::CPU), + solver_count_(1), solver_rank_(0), multiprocess_(false) { // Try to create a cublas handler, and report an error if failed (but we will // keep the program running as one might just want to run CPU code). if (cublasCreate(&cublas_handle_) != CUBLAS_STATUS_SUCCESS) { @@ -192,6 +202,39 @@ void Caffe::DeviceQuery() { return; } +bool Caffe::CheckDevice(const int device_id) { + // This function checks the availability of GPU #device_id. + // It attempts to create a context on the device by calling cudaFree(0). + // cudaSetDevice() alone is not sufficient to check the availability. + // It lazily records device_id, however, does not initialize a + // context. So it does not know if the host thread has the permission to use + // the device or not. + // + // In a shared environment where the devices are set to EXCLUSIVE_PROCESS + // or EXCLUSIVE_THREAD mode, cudaSetDevice() returns cudaSuccess + // even if the device is exclusively occupied by another process or thread. + // Cuda operations that initialize the context are needed to check + // the permission. cudaFree(0) is one of those with no side effect, + // except the context initialization. + bool r = ((cudaSuccess == cudaSetDevice(device_id)) && + (cudaSuccess == cudaFree(0))); + // reset any error that may have occurred. + cudaGetLastError(); + return r; +} + +int Caffe::FindDevice(const int start_id) { + // This function finds the first available device by checking devices with + // ordinal from start_id to the highest available value. In the + // EXCLUSIVE_PROCESS or EXCLUSIVE_THREAD mode, if it succeeds, it also + // claims the device due to the initialization of the context. + int count = 0; + CUDA_CHECK(cudaGetDeviceCount(&count)); + for (int i = start_id; i < count; i++) { + if (CheckDevice(i)) return i; + } + return -1; +} class Caffe::RNG::Generator { public: diff --git a/src/caffe/data_reader.cpp b/src/caffe/data_reader.cpp deleted file mode 100644 index 16378203a..000000000 --- a/src/caffe/data_reader.cpp +++ /dev/null @@ -1,119 +0,0 @@ -#include -#include -#include -#include - -#include "caffe/common.hpp" -#include "caffe/data_layers.hpp" -#include "caffe/data_reader.hpp" -#include "caffe/proto/caffe.pb.h" - -namespace caffe { - -using boost::weak_ptr; - -map > DataReader::bodies_; -static boost::mutex bodies_mutex_; - -DataReader::DataReader(const LayerParameter& param) - : queue_pair_(new QueuePair( // - param.data_param().prefetch() * param.data_param().batch_size())) { - // Get or create a body - boost::mutex::scoped_lock lock(bodies_mutex_); - string key = source_key(param); - weak_ptr& weak = bodies_[key]; - body_ = weak.lock(); - if (!body_) { - body_.reset(new Body(param)); - bodies_[key] = weak_ptr(body_); - } - body_->new_queue_pairs_.push(queue_pair_); -} - -DataReader::~DataReader() { - string key = source_key(body_->param_); - body_.reset(); - boost::mutex::scoped_lock lock(bodies_mutex_); - if (bodies_[key].expired()) { - bodies_.erase(key); - } -} - -// - -DataReader::QueuePair::QueuePair(int size) { - // Initialize the free queue with requested number of datums - for (int i = 0; i < size; ++i) { - free_.push(new Datum()); - } -} - -DataReader::QueuePair::~QueuePair() { - Datum* datum; - while (free_.try_pop(&datum)) { - delete datum; - } - while (full_.try_pop(&datum)) { - delete datum; - } -} - -// - -DataReader::Body::Body(const LayerParameter& param) - : param_(param), - new_queue_pairs_() { - StartInternalThread(); -} - -DataReader::Body::~Body() { - StopInternalThread(); -} - -void DataReader::Body::InternalThreadEntry() { - shared_ptr db(db::GetDB(param_.data_param().backend())); - db->Open(param_.data_param().source(), db::READ); - shared_ptr cursor(db->NewCursor()); - vector > qps; - try { - int solver_count = param_.phase() == TRAIN ? Caffe::solver_count() : 1; - - // To ensure deterministic runs, only start running once all solvers - // are ready. But solvers need to peek on one item during initialization, - // so read one item, then wait for the next solver. - for (int i = 0; i < solver_count; ++i) { - shared_ptr qp(new_queue_pairs_.pop()); - read_one(cursor.get(), qp.get()); - qps.push_back(qp); - } - // Main loop - while (!must_stop()) { - for (int i = 0; i < solver_count; ++i) { - read_one(cursor.get(), qps[i].get()); - } - // Check no additional readers have been created. This can happen if - // more than one net is trained at a time per process, whether single - // or multi solver. It might also happen if two data layers have same - // name and same source. - CHECK_EQ(new_queue_pairs_.size(), 0); - } - } catch (boost::thread_interrupted&) { - // Interrupted exception is expected on shutdown - } -} - -void DataReader::Body::read_one(db::Cursor* cursor, QueuePair* qp) { - Datum* datum = qp->free_.pop(); - // TODO deserialize in-place instead of copy? - datum->ParseFromString(cursor->value()); - qp->full_.push(datum); - - // go to the next iter - cursor->Next(); - if (!cursor->valid()) { - DLOG(INFO) << "Restarting data prefetching from start."; - cursor->SeekToFirst(); - } -} - -} // namespace caffe diff --git a/src/caffe/data_transformer.cpp b/src/caffe/data_transformer.cpp index 4666d9bd8..3012251e0 100644 --- a/src/caffe/data_transformer.cpp +++ b/src/caffe/data_transformer.cpp @@ -1,4 +1,6 @@ +#ifdef USE_OPENCV #include +#endif // USE_OPENCV #include #include @@ -124,11 +126,13 @@ void DataTransformer::Transform(const Datum& datum, } } + template void DataTransformer::Transform(const Datum& datum, Blob* transformed_blob) { - // If datum is encoded, decoded and transform the cv::image. + // If datum is encoded, decode and transform the cv::image. if (datum.encoded()) { +#ifdef USE_OPENCV CHECK(!(param_.force_color() && param_.force_gray())) << "cannot set both force_color and force_gray"; cv::Mat cv_img; @@ -140,6 +144,9 @@ void DataTransformer::Transform(const Datum& datum, } // Transform the cv::image into blob. return Transform(cv_img, transformed_blob); +#else + LOG(FATAL) << "Encoded datum requires OpenCV; compile with USE_OPENCV."; +#endif // USE_OPENCV } else { if (param_.force_color() || param_.force_gray()) { LOG(ERROR) << "force_color and force_gray only for encoded datum"; @@ -194,6 +201,7 @@ void DataTransformer::Transform(const vector & datum_vector, } } +#ifdef USE_OPENCV template void DataTransformer::Transform(const vector & mat_vector, Blob* transformed_blob) { @@ -315,6 +323,7 @@ void DataTransformer::Transform(const cv::Mat& cv_img, } } } +#endif // USE_OPENCV template void DataTransformer::Transform(Blob* input_blob, @@ -432,6 +441,7 @@ void DataTransformer::Transform(Blob* input_blob, template vector DataTransformer::InferBlobShape(const Datum& datum) { if (datum.encoded()) { +#ifdef USE_OPENCV CHECK(!(param_.force_color() && param_.force_gray())) << "cannot set both force_color and force_gray"; cv::Mat cv_img; @@ -443,8 +453,10 @@ vector DataTransformer::InferBlobShape(const Datum& datum) { } // InferBlobShape using the cv::image. return InferBlobShape(cv_img); +#else + LOG(FATAL) << "Encoded datum requires OpenCV; compile with USE_OPENCV."; +#endif // USE_OPENCV } - const int crop_size = param_.crop_size(); const int datum_channels = datum.channels(); const int datum_height = datum.height(); @@ -474,6 +486,7 @@ vector DataTransformer::InferBlobShape( return shape; } +#ifdef USE_OPENCV template vector DataTransformer::InferBlobShape(const cv::Mat& cv_img) { const int crop_size = param_.crop_size(); @@ -504,6 +517,7 @@ vector DataTransformer::InferBlobShape( shape[0] = num; return shape; } +#endif // USE_OPENCV template void DataTransformer::InitRand() { diff --git a/src/caffe/internal_thread.cpp b/src/caffe/internal_thread.cpp index 104884e02..11de49799 100644 --- a/src/caffe/internal_thread.cpp +++ b/src/caffe/internal_thread.cpp @@ -28,25 +28,27 @@ void InternalThread::StartInternalThread() { Caffe::Brew mode = Caffe::mode(); int rand_seed = caffe_rng_rand(); int solver_count = Caffe::solver_count(); - bool root_solver = Caffe::root_solver(); + int solver_rank = Caffe::solver_rank(); + bool multiprocess = Caffe::multiprocess(); try { thread_.reset(new boost::thread(&InternalThread::entry, this, device, mode, - rand_seed, solver_count, root_solver)); + rand_seed, solver_count, solver_rank, multiprocess)); } catch (std::exception& e) { LOG(FATAL) << "Thread exception: " << e.what(); } } void InternalThread::entry(int device, Caffe::Brew mode, int rand_seed, - int solver_count, bool root_solver) { + int solver_count, int solver_rank, bool multiprocess) { #ifndef CPU_ONLY CUDA_CHECK(cudaSetDevice(device)); #endif Caffe::set_mode(mode); Caffe::set_random_seed(rand_seed); Caffe::set_solver_count(solver_count); - Caffe::set_root_solver(root_solver); + Caffe::set_solver_rank(solver_rank); + Caffe::set_multiprocess(multiprocess); InternalThreadEntry(); } diff --git a/src/caffe/layer.cpp b/src/caffe/layer.cpp index 3b9128986..684ae88bb 100644 --- a/src/caffe/layer.cpp +++ b/src/caffe/layer.cpp @@ -1,27 +1,7 @@ -#include #include "caffe/layer.hpp" namespace caffe { -template -void Layer::InitMutex() { - forward_mutex_.reset(new boost::mutex()); -} - -template -void Layer::Lock() { - if (IsShared()) { - forward_mutex_->lock(); - } -} - -template -void Layer::Unlock() { - if (IsShared()) { - forward_mutex_->unlock(); - } -} - INSTANTIATE_CLASS(Layer); } // namespace caffe diff --git a/src/caffe/layer_factory.cpp b/src/caffe/layer_factory.cpp index 926c7d8ff..f14253a51 100644 --- a/src/caffe/layer_factory.cpp +++ b/src/caffe/layer_factory.cpp @@ -7,11 +7,28 @@ #include "caffe/layer.hpp" #include "caffe/layer_factory.hpp" +#include "caffe/layers/conv_layer.hpp" +#include "caffe/layers/lrn_layer.hpp" +#include "caffe/layers/pooling_layer.hpp" +#include "caffe/layers/relu_layer.hpp" +#include "caffe/layers/sigmoid_layer.hpp" +#include "caffe/layers/softmax_layer.hpp" +#include "caffe/layers/tanh_layer.hpp" #include "caffe/proto/caffe.pb.h" -#include "caffe/vision_layers.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_conv_layer.hpp" +#include "caffe/layers/cudnn_lcn_layer.hpp" +#include "caffe/layers/cudnn_lrn_layer.hpp" +#include "caffe/layers/cudnn_pooling_layer.hpp" +#include "caffe/layers/cudnn_relu_layer.hpp" +#include "caffe/layers/cudnn_sigmoid_layer.hpp" +#include "caffe/layers/cudnn_softmax_layer.hpp" +#include "caffe/layers/cudnn_tanh_layer.hpp" +#endif #ifdef WITH_PYTHON_LAYER -#include "caffe/python_layer.hpp" +#include "caffe/layers/python_layer.hpp" #endif namespace caffe { @@ -20,21 +37,37 @@ namespace caffe { template shared_ptr > GetConvolutionLayer( const LayerParameter& param) { - ConvolutionParameter_Engine engine = param.convolution_param().engine(); + ConvolutionParameter conv_param = param.convolution_param(); + ConvolutionParameter_Engine engine = conv_param.engine(); +#ifdef USE_CUDNN + bool use_dilation = false; + for (int i = 0; i < conv_param.dilation_size(); ++i) { + if (conv_param.dilation(i) > 1) { + use_dilation = true; + } + } +#endif if (engine == ConvolutionParameter_Engine_DEFAULT) { engine = ConvolutionParameter_Engine_CAFFE; #ifdef USE_CUDNN - engine = ConvolutionParameter_Engine_CUDNN; + if (!use_dilation) { + engine = ConvolutionParameter_Engine_CUDNN; + } #endif } if (engine == ConvolutionParameter_Engine_CAFFE) { return shared_ptr >(new ConvolutionLayer(param)); #ifdef USE_CUDNN } else if (engine == ConvolutionParameter_Engine_CUDNN) { + if (use_dilation) { + LOG(FATAL) << "CuDNN doesn't support the dilated convolution at Layer " + << param.name(); + } return shared_ptr >(new CuDNNConvolutionLayer(param)); #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } @@ -54,22 +87,68 @@ shared_ptr > GetPoolingLayer(const LayerParameter& param) { return shared_ptr >(new PoolingLayer(param)); #ifdef USE_CUDNN } else if (engine == PoolingParameter_Engine_CUDNN) { - PoolingParameter p_param = param.pooling_param(); - if (p_param.pad() || p_param.pad_h() || p_param.pad_w() || - param.top_size() > 1) { - LOG(INFO) << "CUDNN does not support padding or multiple tops. " + if (param.top_size() > 1) { + LOG(INFO) << "cuDNN does not support multiple tops. " << "Using Caffe's own pooling layer."; return shared_ptr >(new PoolingLayer(param)); } - return shared_ptr >(new CuDNNPoolingLayer(param)); + // CuDNN assumes layers are not being modified in place, thus + // breaking our index tracking for updates in some cases in Caffe. + // Until there is a workaround in Caffe (index management) or + // cuDNN, use Caffe layer to max pooling, or don't use in place + // layers after max pooling layers + if (param.pooling_param().pool() == PoolingParameter_PoolMethod_MAX) { + return shared_ptr >(new PoolingLayer(param)); + } else { + return shared_ptr >(new CuDNNPoolingLayer(param)); + } #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } REGISTER_LAYER_CREATOR(Pooling, GetPoolingLayer); +// Get LRN layer according to engine +template +shared_ptr > GetLRNLayer(const LayerParameter& param) { + LRNParameter_Engine engine = param.lrn_param().engine(); + + if (engine == LRNParameter_Engine_DEFAULT) { +#ifdef USE_CUDNN + engine = LRNParameter_Engine_CUDNN; +#else + engine = LRNParameter_Engine_CAFFE; +#endif + } + + if (engine == LRNParameter_Engine_CAFFE) { + return shared_ptr >(new LRNLayer(param)); +#ifdef USE_CUDNN + } else if (engine == LRNParameter_Engine_CUDNN) { + LRNParameter lrn_param = param.lrn_param(); + + if (lrn_param.norm_region() ==LRNParameter_NormRegion_WITHIN_CHANNEL) { + return shared_ptr >(new CuDNNLCNLayer(param)); + } else { + // local size is too big to be handled through cuDNN + if (param.lrn_param().local_size() > CUDNN_LRN_MAX_N) { + return shared_ptr >(new LRNLayer(param)); + } else { + return shared_ptr >(new CuDNNLRNLayer(param)); + } + } +#endif + } else { + LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning + } +} + +REGISTER_LAYER_CREATOR(LRN, GetLRNLayer); + // Get relu layer according to engine. template shared_ptr > GetReLULayer(const LayerParameter& param) { @@ -88,6 +167,7 @@ shared_ptr > GetReLULayer(const LayerParameter& param) { #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } @@ -111,6 +191,7 @@ shared_ptr > GetSigmoidLayer(const LayerParameter& param) { #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } @@ -134,6 +215,7 @@ shared_ptr > GetSoftmaxLayer(const LayerParameter& param) { #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } @@ -157,6 +239,7 @@ shared_ptr > GetTanHLayer(const LayerParameter& param) { #endif } else { LOG(FATAL) << "Layer " << param.name() << " has unknown engine."; + throw; // Avoids missing return warning } } diff --git a/src/caffe/layers/absval_layer.cpp b/src/caffe/layers/absval_layer.cpp index 5ce28c9e2..855bf0bfa 100644 --- a/src/caffe/layers/absval_layer.cpp +++ b/src/caffe/layers/absval_layer.cpp @@ -1,7 +1,6 @@ #include -#include "caffe/layer.hpp" -#include "caffe/neuron_layers.hpp" +#include "caffe/layers/absval_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/absval_layer.cu b/src/caffe/layers/absval_layer.cu index bb310e1af..6c927e6fa 100644 --- a/src/caffe/layers/absval_layer.cu +++ b/src/caffe/layers/absval_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/absval_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/accuracy_layer.cpp b/src/caffe/layers/accuracy_layer.cpp index e2d8d9f8a..4eddbb5c8 100644 --- a/src/caffe/layers/accuracy_layer.cpp +++ b/src/caffe/layers/accuracy_layer.cpp @@ -1,12 +1,9 @@ -#include #include #include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/accuracy_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/argmax_layer.cpp b/src/caffe/layers/argmax_layer.cpp index c4040cdca..2d3d6f2d3 100644 --- a/src/caffe/layers/argmax_layer.cpp +++ b/src/caffe/layers/argmax_layer.cpp @@ -3,31 +3,52 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/argmax_layer.hpp" namespace caffe { template void ArgMaxLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { - out_max_val_ = this->layer_param_.argmax_param().out_max_val(); - top_k_ = this->layer_param_.argmax_param().top_k(); - CHECK_GE(top_k_, 1) << " top k must not be less than 1."; - CHECK_LE(top_k_, bottom[0]->count() / bottom[0]->num()) - << "top_k must be less than or equal to the number of classes."; + const ArgMaxParameter& argmax_param = this->layer_param_.argmax_param(); + out_max_val_ = argmax_param.out_max_val(); + top_k_ = argmax_param.top_k(); + has_axis_ = argmax_param.has_axis(); + CHECK_GE(top_k_, 1) << "top k must not be less than 1."; + if (has_axis_) { + axis_ = bottom[0]->CanonicalAxisIndex(argmax_param.axis()); + CHECK_GE(axis_, 0) << "axis must not be less than 0."; + CHECK_LE(axis_, bottom[0]->num_axes()) << + "axis must be less than or equal to the number of axis."; + CHECK_LE(top_k_, bottom[0]->shape(axis_)) + << "top_k must be less than or equal to the dimension of the axis."; + } else { + CHECK_LE(top_k_, bottom[0]->count(1)) + << "top_k must be less than or equal to" + " the dimension of the flattened bottom blob per instance."; + } } template void ArgMaxLayer::Reshape(const vector*>& bottom, const vector*>& top) { - if (out_max_val_) { - // Produces max_ind and max_val - top[0]->Reshape(bottom[0]->num(), 2, top_k_, 1); + int num_top_axes = bottom[0]->num_axes(); + if ( num_top_axes < 3 ) num_top_axes = 3; + std::vector shape(num_top_axes, 1); + if (has_axis_) { + // Produces max_ind or max_val per axis + shape = bottom[0]->shape(); + shape[axis_] = top_k_; } else { - // Produces only max_ind - top[0]->Reshape(bottom[0]->num(), 1, top_k_, 1); + shape[0] = bottom[0]->shape(0); + // Produces max_ind + shape[2] = top_k_; + if (out_max_val_) { + // Produces max_ind and max_val + shape[1] = 2; + } } + top[0]->Reshape(shape); } template @@ -35,23 +56,40 @@ void ArgMaxLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); - int num = bottom[0]->num(); - int dim = bottom[0]->count() / bottom[0]->num(); + int dim, axis_dist; + if (has_axis_) { + dim = bottom[0]->shape(axis_); + // Distance between values of axis in blob + axis_dist = bottom[0]->count(axis_) / dim; + } else { + dim = bottom[0]->count(1); + axis_dist = 1; + } + int num = bottom[0]->count() / dim; + std::vector > bottom_data_vector(dim); for (int i = 0; i < num; ++i) { - std::vector > bottom_data_vector; for (int j = 0; j < dim; ++j) { - bottom_data_vector.push_back( - std::make_pair(bottom_data[i * dim + j], j)); + bottom_data_vector[j] = std::make_pair( + bottom_data[(i / axis_dist * dim + j) * axis_dist + i % axis_dist], j); } std::partial_sort( bottom_data_vector.begin(), bottom_data_vector.begin() + top_k_, bottom_data_vector.end(), std::greater >()); for (int j = 0; j < top_k_; ++j) { - top_data[top[0]->offset(i, 0, j)] = bottom_data_vector[j].second; - } - if (out_max_val_) { - for (int j = 0; j < top_k_; ++j) { - top_data[top[0]->offset(i, 1, j)] = bottom_data_vector[j].first; + if (out_max_val_) { + if (has_axis_) { + // Produces max_val per axis + top_data[(i / axis_dist * top_k_ + j) * axis_dist + i % axis_dist] + = bottom_data_vector[j].first; + } else { + // Produces max_ind and max_val + top_data[2 * i * top_k_ + j] = bottom_data_vector[j].second; + top_data[2 * i * top_k_ + top_k_ + j] = bottom_data_vector[j].first; + } + } else { + // Produces max_ind per axis + top_data[(i / axis_dist * top_k_ + j) * axis_dist + i % axis_dist] + = bottom_data_vector[j].second; } } } diff --git a/src/caffe/layers/base_conv_layer.cpp b/src/caffe/layers/base_conv_layer.cpp index ccb3adc7e..35c90145e 100644 --- a/src/caffe/layers/base_conv_layer.cpp +++ b/src/caffe/layers/base_conv_layer.cpp @@ -1,60 +1,120 @@ +#include #include #include "caffe/filler.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/base_conv_layer.hpp" #include "caffe/util/im2col.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { template void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { - CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " - << "corresponding to (num, channels, height, width)"; // Configure the kernel size, padding, stride, and inputs. ConvolutionParameter conv_param = this->layer_param_.convolution_param(); - CHECK(!conv_param.has_kernel_size() != - !(conv_param.has_kernel_h() && conv_param.has_kernel_w())) - << "Filter size is kernel_size OR kernel_h and kernel_w; not both"; - CHECK(conv_param.has_kernel_size() || - (conv_param.has_kernel_h() && conv_param.has_kernel_w())) - << "For non-square filters both kernel_h and kernel_w are required."; - CHECK((!conv_param.has_pad() && conv_param.has_pad_h() - && conv_param.has_pad_w()) - || (!conv_param.has_pad_h() && !conv_param.has_pad_w())) - << "pad is pad OR pad_h and pad_w are required."; - CHECK((!conv_param.has_stride() && conv_param.has_stride_h() - && conv_param.has_stride_w()) - || (!conv_param.has_stride_h() && !conv_param.has_stride_w())) - << "Stride is stride OR stride_h and stride_w are required."; - if (conv_param.has_kernel_size()) { - kernel_h_ = kernel_w_ = conv_param.kernel_size(); + force_nd_im2col_ = conv_param.force_nd_im2col(); + channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis()); + const int first_spatial_axis = channel_axis_ + 1; + const int num_axes = bottom[0]->num_axes(); + num_spatial_axes_ = num_axes - first_spatial_axis; + CHECK_GE(num_spatial_axes_, 0); + vector spatial_dim_blob_shape(1, std::max(num_spatial_axes_, 1)); + // Setup filter kernel dimensions (kernel_shape_). + kernel_shape_.Reshape(spatial_dim_blob_shape); + int* kernel_shape_data = kernel_shape_.mutable_cpu_data(); + if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "kernel_h & kernel_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.kernel_size_size()) + << "Either kernel_size or kernel_h/w should be specified; not both."; + kernel_shape_data[0] = conv_param.kernel_h(); + kernel_shape_data[1] = conv_param.kernel_w(); } else { - kernel_h_ = conv_param.kernel_h(); - kernel_w_ = conv_param.kernel_w(); + const int num_kernel_dims = conv_param.kernel_size_size(); + CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_) + << "kernel_size must be specified once, or once per spatial dimension " + << "(kernel_size specified " << num_kernel_dims << " times; " + << num_spatial_axes_ << " spatial dims)."; + for (int i = 0; i < num_spatial_axes_; ++i) { + kernel_shape_data[i] = + conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i); + } } - CHECK_GT(kernel_h_, 0) << "Filter dimensions cannot be zero."; - CHECK_GT(kernel_w_, 0) << "Filter dimensions cannot be zero."; - if (!conv_param.has_pad_h()) { - pad_h_ = pad_w_ = conv_param.pad(); + for (int i = 0; i < num_spatial_axes_; ++i) { + CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero."; + } + // Setup stride dimensions (stride_). + stride_.Reshape(spatial_dim_blob_shape); + int* stride_data = stride_.mutable_cpu_data(); + if (conv_param.has_stride_h() || conv_param.has_stride_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "stride_h & stride_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.stride_size()) + << "Either stride or stride_h/w should be specified; not both."; + stride_data[0] = conv_param.stride_h(); + stride_data[1] = conv_param.stride_w(); } else { - pad_h_ = conv_param.pad_h(); - pad_w_ = conv_param.pad_w(); + const int num_stride_dims = conv_param.stride_size(); + CHECK(num_stride_dims == 0 || num_stride_dims == 1 || + num_stride_dims == num_spatial_axes_) + << "stride must be specified once, or once per spatial dimension " + << "(stride specified " << num_stride_dims << " times; " + << num_spatial_axes_ << " spatial dims)."; + const int kDefaultStride = 1; + for (int i = 0; i < num_spatial_axes_; ++i) { + stride_data[i] = (num_stride_dims == 0) ? kDefaultStride : + conv_param.stride((num_stride_dims == 1) ? 0 : i); + CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero."; + } } - if (!conv_param.has_stride_h()) { - stride_h_ = stride_w_ = conv_param.stride(); + // Setup pad dimensions (pad_). + pad_.Reshape(spatial_dim_blob_shape); + int* pad_data = pad_.mutable_cpu_data(); + if (conv_param.has_pad_h() || conv_param.has_pad_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "pad_h & pad_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.pad_size()) + << "Either pad or pad_h/w should be specified; not both."; + pad_data[0] = conv_param.pad_h(); + pad_data[1] = conv_param.pad_w(); } else { - stride_h_ = conv_param.stride_h(); - stride_w_ = conv_param.stride_w(); + const int num_pad_dims = conv_param.pad_size(); + CHECK(num_pad_dims == 0 || num_pad_dims == 1 || + num_pad_dims == num_spatial_axes_) + << "pad must be specified once, or once per spatial dimension " + << "(pad specified " << num_pad_dims << " times; " + << num_spatial_axes_ << " spatial dims)."; + const int kDefaultPad = 0; + for (int i = 0; i < num_spatial_axes_; ++i) { + pad_data[i] = (num_pad_dims == 0) ? kDefaultPad : + conv_param.pad((num_pad_dims == 1) ? 0 : i); + } + } + // Setup dilation dimensions (dilation_). + dilation_.Reshape(spatial_dim_blob_shape); + int* dilation_data = dilation_.mutable_cpu_data(); + const int num_dilation_dims = conv_param.dilation_size(); + CHECK(num_dilation_dims == 0 || num_dilation_dims == 1 || + num_dilation_dims == num_spatial_axes_) + << "dilation must be specified once, or once per spatial dimension " + << "(dilation specified " << num_dilation_dims << " times; " + << num_spatial_axes_ << " spatial dims)."; + const int kDefaultDilation = 1; + for (int i = 0; i < num_spatial_axes_; ++i) { + dilation_data[i] = (num_dilation_dims == 0) ? kDefaultDilation : + conv_param.dilation((num_dilation_dims == 1) ? 0 : i); } // Special case: im2col is the identity for 1x1 convolution with stride 1 // and no padding, so flag for skipping the buffer and transformation. - is_1x1_ = kernel_w_ == 1 && kernel_h_ == 1 - && stride_h_ == 1 && stride_w_ == 1 && pad_h_ == 0 && pad_w_ == 0; + is_1x1_ = true; + for (int i = 0; i < num_spatial_axes_; ++i) { + is_1x1_ &= + kernel_shape_data[i] == 1 && stride_data[i] == 1 && pad_data[i] == 0; + if (!is_1x1_) { break; } + } // Configure output channels and groups. - channels_ = bottom[0]->channels(); + channels_ = bottom[0]->shape(channel_axis_); num_output_ = this->layer_param_.convolution_param().num_output(); CHECK_GT(num_output_, 0); group_ = this->layer_param_.convolution_param().group(); @@ -71,8 +131,29 @@ void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, // Handle the parameters: weights and biases. // - blobs_[0] holds the filter weights // - blobs_[1] holds the biases (optional) + vector weight_shape(2); + weight_shape[0] = conv_out_channels_; + weight_shape[1] = conv_in_channels_ / group_; + for (int i = 0; i < num_spatial_axes_; ++i) { + weight_shape.push_back(kernel_shape_data[i]); + } bias_term_ = this->layer_param_.convolution_param().bias_term(); + vector bias_shape(bias_term_, num_output_); if (this->blobs_.size() > 0) { + CHECK_EQ(1 + bias_term_, this->blobs_.size()) + << "Incorrect number of weight blobs."; + if (weight_shape != this->blobs_[0]->shape()) { + Blob weight_shaped_blob(weight_shape); + LOG(FATAL) << "Incorrect weight shape: expected shape " + << weight_shaped_blob.shape_string() << "; instead, shape was " + << this->blobs_[0]->shape_string(); + } + if (bias_term_ && bias_shape != this->blobs_[1]->shape()) { + Blob bias_shaped_blob(bias_shape); + LOG(FATAL) << "Incorrect bias shape: expected shape " + << bias_shaped_blob.shape_string() << "; instead, shape was " + << this->blobs_[1]->shape_string(); + } LOG(INFO) << "Skipping parameter initialization"; } else { if (bias_term_) { @@ -82,20 +163,20 @@ void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, } // Initialize and fill the weights: // output channels x input channels per-group x kernel height x kernel width - this->blobs_[0].reset(new Blob( - conv_out_channels_, conv_in_channels_ / group_, kernel_h_, kernel_w_)); + this->blobs_[0].reset(new Blob(weight_shape)); shared_ptr > weight_filler(GetFiller( this->layer_param_.convolution_param().weight_filler())); weight_filler->Fill(this->blobs_[0].get()); // If necessary, initialize and fill the biases. if (bias_term_) { - vector bias_shape(1, num_output_); this->blobs_[1].reset(new Blob(bias_shape)); shared_ptr > bias_filler(GetFiller( this->layer_param_.convolution_param().bias_filler())); bias_filler->Fill(this->blobs_[1].get()); } } + kernel_dim_ = this->blobs_[0]->count(1); + weight_offset_ = conv_out_channels_ * kernel_dim_ / group_; // Propagate gradients to the parameters (as directed by backward pass). this->param_propagate_down_.resize(this->blobs_.size(), true); } @@ -103,52 +184,68 @@ void BaseConvolutionLayer::LayerSetUp(const vector*>& bottom, template void BaseConvolutionLayer::Reshape(const vector*>& bottom, const vector*>& top) { - CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " - << "corresponding to (num, channels, height, width)"; - num_ = bottom[0]->num(); - height_ = bottom[0]->height(); - width_ = bottom[0]->width(); - CHECK_EQ(bottom[0]->channels(), channels_) << "Input size incompatible with" - " convolution kernel."; + const int first_spatial_axis = channel_axis_ + 1; + CHECK_EQ(bottom[0]->num_axes(), first_spatial_axis + num_spatial_axes_) + << "bottom num_axes may not change."; + num_ = bottom[0]->count(0, channel_axis_); + CHECK_EQ(bottom[0]->shape(channel_axis_), channels_) + << "Input size incompatible with convolution kernel."; // TODO: generalize to handle inputs of different shapes. for (int bottom_id = 1; bottom_id < bottom.size(); ++bottom_id) { - CHECK_EQ(num_, bottom[bottom_id]->num()) << "Inputs must have same num."; - CHECK_EQ(channels_, bottom[bottom_id]->channels()) - << "Inputs must have same channels."; - CHECK_EQ(height_, bottom[bottom_id]->height()) - << "Inputs must have same height."; - CHECK_EQ(width_, bottom[bottom_id]->width()) - << "Inputs must have same width."; + CHECK(bottom[0]->shape() == bottom[bottom_id]->shape()) + << "All inputs must have the same shape."; } // Shape the tops. + bottom_shape_ = &bottom[0]->shape(); compute_output_shape(); + vector top_shape(bottom[0]->shape().begin(), + bottom[0]->shape().begin() + channel_axis_); + top_shape.push_back(num_output_); + for (int i = 0; i < num_spatial_axes_; ++i) { + top_shape.push_back(output_shape_[i]); + } for (int top_id = 0; top_id < top.size(); ++top_id) { - top[top_id]->Reshape(num_, num_output_, height_out_, width_out_); + top[top_id]->Reshape(top_shape); } if (reverse_dimensions()) { - conv_in_height_ = height_out_; - conv_in_width_ = width_out_; - conv_out_spatial_dim_ = height_ * width_; + conv_out_spatial_dim_ = bottom[0]->count(first_spatial_axis); } else { - conv_in_height_ = height_; - conv_in_width_ = width_; - conv_out_spatial_dim_ = height_out_ * width_out_; + conv_out_spatial_dim_ = top[0]->count(first_spatial_axis); } - kernel_dim_ = conv_in_channels_ * kernel_h_ * kernel_w_; - weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ / group_; - col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_; + col_offset_ = kernel_dim_ * conv_out_spatial_dim_; output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_; + // Setup input dimensions (conv_input_shape_). + vector bottom_dim_blob_shape(1, num_spatial_axes_ + 1); + conv_input_shape_.Reshape(bottom_dim_blob_shape); + int* conv_input_shape_data = conv_input_shape_.mutable_cpu_data(); + for (int i = 0; i < num_spatial_axes_ + 1; ++i) { + if (reverse_dimensions()) { + conv_input_shape_data[i] = top[0]->shape(channel_axis_ + i); + } else { + conv_input_shape_data[i] = bottom[0]->shape(channel_axis_ + i); + } + } // The im2col result buffer will only hold one image at a time to avoid // overly large memory usage. In the special case of 1x1 convolution // it goes lazily unused to save memory. - if (reverse_dimensions()) { - col_buffer_.Reshape(1, kernel_dim_, height_, width_); - } else { - col_buffer_.Reshape(1, kernel_dim_, height_out_, width_out_); + col_buffer_shape_.clear(); + col_buffer_shape_.push_back(kernel_dim_ * group_); + for (int i = 0; i < num_spatial_axes_; ++i) { + if (reverse_dimensions()) { + col_buffer_shape_.push_back(input_shape(i + 1)); + } else { + col_buffer_shape_.push_back(output_shape_[i]); + } } + col_buffer_.Reshape(col_buffer_shape_); + bottom_dim_ = bottom[0]->count(channel_axis_); + top_dim_ = top[0]->count(channel_axis_); + num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_; + num_kernels_col2im_ = reverse_dimensions() ? top_dim_ : bottom_dim_; // Set up the all ones "bias multiplier" for adding biases by BLAS + out_spatial_dim_ = top[0]->count(first_spatial_axis); if (bias_term_) { - vector bias_multiplier_shape(1, height_out_ * width_out_); + vector bias_multiplier_shape(1, out_spatial_dim_); bias_multiplier_.Reshape(bias_multiplier_shape); caffe_set(bias_multiplier_.count(), Dtype(1), bias_multiplier_.mutable_cpu_data()); @@ -167,7 +264,7 @@ void BaseConvolutionLayer::forward_cpu_gemm(const Dtype* input, } for (int g = 0; g < group_; ++g) { caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, conv_out_channels_ / - group_, conv_out_spatial_dim_, kernel_dim_ / group_, + group_, conv_out_spatial_dim_, kernel_dim_, (Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g, (Dtype)0., output + output_offset_ * g); } @@ -177,7 +274,7 @@ template void BaseConvolutionLayer::forward_cpu_bias(Dtype* output, const Dtype* bias) { caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num_output_, - height_out_ * width_out_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(), + out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.cpu_data(), (Dtype)1., output); } @@ -189,7 +286,7 @@ void BaseConvolutionLayer::backward_cpu_gemm(const Dtype* output, col_buff = input; } for (int g = 0; g < group_; ++g) { - caffe_cpu_gemm(CblasTrans, CblasNoTrans, kernel_dim_ / group_, + caffe_cpu_gemm(CblasTrans, CblasNoTrans, kernel_dim_, conv_out_spatial_dim_, conv_out_channels_ / group_, (Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g, (Dtype)0., col_buff + col_offset_ * g); @@ -209,7 +306,7 @@ void BaseConvolutionLayer::weight_cpu_gemm(const Dtype* input, } for (int g = 0; g < group_; ++g) { caffe_cpu_gemm(CblasNoTrans, CblasTrans, conv_out_channels_ / group_, - kernel_dim_ / group_, conv_out_spatial_dim_, + kernel_dim_, conv_out_spatial_dim_, (Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g, (Dtype)1., weights + weight_offset_ * g); } @@ -218,7 +315,7 @@ void BaseConvolutionLayer::weight_cpu_gemm(const Dtype* input, template void BaseConvolutionLayer::backward_cpu_bias(Dtype* bias, const Dtype* input) { - caffe_cpu_gemv(CblasNoTrans, num_output_, height_out_ * width_out_, 1., + caffe_cpu_gemv(CblasNoTrans, num_output_, out_spatial_dim_, 1., input, bias_multiplier_.cpu_data(), 1., bias); } @@ -236,7 +333,7 @@ void BaseConvolutionLayer::forward_gpu_gemm(const Dtype* input, } for (int g = 0; g < group_; ++g) { caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, conv_out_channels_ / - group_, conv_out_spatial_dim_, kernel_dim_ / group_, + group_, conv_out_spatial_dim_, kernel_dim_, (Dtype)1., weights + weight_offset_ * g, col_buff + col_offset_ * g, (Dtype)0., output + output_offset_ * g); } @@ -246,7 +343,7 @@ template void BaseConvolutionLayer::forward_gpu_bias(Dtype* output, const Dtype* bias) { caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num_output_, - height_out_ * width_out_, 1, (Dtype)1., bias, bias_multiplier_.gpu_data(), + out_spatial_dim_, 1, (Dtype)1., bias, bias_multiplier_.gpu_data(), (Dtype)1., output); } @@ -258,7 +355,7 @@ void BaseConvolutionLayer::backward_gpu_gemm(const Dtype* output, col_buff = input; } for (int g = 0; g < group_; ++g) { - caffe_gpu_gemm(CblasTrans, CblasNoTrans, kernel_dim_ / group_, + caffe_gpu_gemm(CblasTrans, CblasNoTrans, kernel_dim_, conv_out_spatial_dim_, conv_out_channels_ / group_, (Dtype)1., weights + weight_offset_ * g, output + output_offset_ * g, (Dtype)0., col_buff + col_offset_ * g); @@ -278,7 +375,7 @@ void BaseConvolutionLayer::weight_gpu_gemm(const Dtype* input, } for (int g = 0; g < group_; ++g) { caffe_gpu_gemm(CblasNoTrans, CblasTrans, conv_out_channels_ / group_, - kernel_dim_ / group_, conv_out_spatial_dim_, + kernel_dim_, conv_out_spatial_dim_, (Dtype)1., output + output_offset_ * g, col_buff + col_offset_ * g, (Dtype)1., weights + weight_offset_ * g); } @@ -287,7 +384,7 @@ void BaseConvolutionLayer::weight_gpu_gemm(const Dtype* input, template void BaseConvolutionLayer::backward_gpu_bias(Dtype* bias, const Dtype* input) { - caffe_gpu_gemv(CblasNoTrans, num_output_, height_out_ * width_out_, 1., + caffe_gpu_gemv(CblasNoTrans, num_output_, out_spatial_dim_, 1., input, bias_multiplier_.gpu_data(), 1., bias); } diff --git a/src/caffe/layers/base_data_layer.cpp b/src/caffe/layers/base_data_layer.cpp index b90bd4e0c..93a798f35 100644 --- a/src/caffe/layers/base_data_layer.cpp +++ b/src/caffe/layers/base_data_layer.cpp @@ -1,10 +1,13 @@ #include -#include #include -#include "caffe/data_layers.hpp" -#include "caffe/net.hpp" -#include "caffe/util/io.hpp" +#include "caffe/blob.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/proto/caffe.pb.h" +#include "caffe/util/blocking_queue.hpp" namespace caffe { @@ -33,9 +36,11 @@ template BasePrefetchingDataLayer::BasePrefetchingDataLayer( const LayerParameter& param) : BaseDataLayer(param), - prefetch_free_(), prefetch_full_() { - for (int i = 0; i < PREFETCH_COUNT; ++i) { - prefetch_free_.push(&prefetch_[i]); + prefetch_(param.data_param().prefetch()), + prefetch_free_(), prefetch_full_(), prefetch_current_() { + for (int i = 0; i < prefetch_.size(); ++i) { + prefetch_[i].reset(new Batch()); + prefetch_free_.push(prefetch_[i].get()); } } @@ -43,22 +48,23 @@ template void BasePrefetchingDataLayer::LayerSetUp( const vector*>& bottom, const vector*>& top) { BaseDataLayer::LayerSetUp(bottom, top); + // Before starting the prefetch thread, we make cpu_data and gpu_data // calls so that the prefetch thread does not accidentally make simultaneous // cudaMalloc calls when the main thread is running. In some GPUs this // seems to cause failures if we do not so. - for (int i = 0; i < PREFETCH_COUNT; ++i) { - prefetch_[i].data_.mutable_cpu_data(); + for (int i = 0; i < prefetch_.size(); ++i) { + prefetch_[i]->data_.mutable_cpu_data(); if (this->output_labels_) { - prefetch_[i].label_.mutable_cpu_data(); + prefetch_[i]->label_.mutable_cpu_data(); } } #ifndef CPU_ONLY if (Caffe::mode() == Caffe::GPU) { - for (int i = 0; i < PREFETCH_COUNT; ++i) { - prefetch_[i].data_.mutable_gpu_data(); + for (int i = 0; i < prefetch_.size(); ++i) { + prefetch_[i]->data_.mutable_gpu_data(); if (this->output_labels_) { - prefetch_[i].label_.mutable_gpu_data(); + prefetch_[i]->label_.mutable_gpu_data(); } } } @@ -85,6 +91,9 @@ void BasePrefetchingDataLayer::InternalThreadEntry() { #ifndef CPU_ONLY if (Caffe::mode() == Caffe::GPU) { batch->data_.data().get()->async_gpu_push(stream); + if (this->output_labels_) { + batch->label_.data().get()->async_gpu_push(stream); + } CUDA_CHECK(cudaStreamSynchronize(stream)); } #endif @@ -103,22 +112,18 @@ void BasePrefetchingDataLayer::InternalThreadEntry() { template void BasePrefetchingDataLayer::Forward_cpu( const vector*>& bottom, const vector*>& top) { - Batch* batch = prefetch_full_.pop("Data layer prefetch queue empty"); + if (prefetch_current_) { + prefetch_free_.push(prefetch_current_); + } + prefetch_current_ = prefetch_full_.pop("Waiting for data"); // Reshape to loaded data. - top[0]->ReshapeLike(batch->data_); - // Copy the data - caffe_copy(batch->data_.count(), batch->data_.cpu_data(), - top[0]->mutable_cpu_data()); - DLOG(INFO) << "Prefetch copied"; + top[0]->ReshapeLike(prefetch_current_->data_); + top[0]->set_cpu_data(prefetch_current_->data_.mutable_cpu_data()); if (this->output_labels_) { // Reshape to loaded labels. - top[1]->ReshapeLike(batch->label_); - // Copy the labels. - caffe_copy(batch->label_.count(), batch->label_.cpu_data(), - top[1]->mutable_cpu_data()); + top[1]->ReshapeLike(prefetch_current_->label_); + top[1]->set_cpu_data(prefetch_current_->label_.mutable_cpu_data()); } - - prefetch_free_.push(batch); } #ifdef CPU_ONLY diff --git a/src/caffe/layers/base_data_layer.cu b/src/caffe/layers/base_data_layer.cu index ff6e412ab..64c621a74 100644 --- a/src/caffe/layers/base_data_layer.cu +++ b/src/caffe/layers/base_data_layer.cu @@ -1,29 +1,24 @@ #include -#include "caffe/data_layers.hpp" +#include "caffe/layers/base_data_layer.hpp" namespace caffe { template void BasePrefetchingDataLayer::Forward_gpu( const vector*>& bottom, const vector*>& top) { - Batch* batch = prefetch_full_.pop("Data layer prefetch queue empty"); + if (prefetch_current_) { + prefetch_free_.push(prefetch_current_); + } + prefetch_current_ = prefetch_full_.pop("Waiting for data"); // Reshape to loaded data. - top[0]->ReshapeLike(batch->data_); - // Copy the data - caffe_copy(batch->data_.count(), batch->data_.gpu_data(), - top[0]->mutable_gpu_data()); + top[0]->ReshapeLike(prefetch_current_->data_); + top[0]->set_gpu_data(prefetch_current_->data_.mutable_gpu_data()); if (this->output_labels_) { // Reshape to loaded labels. - top[1]->ReshapeLike(batch->label_); - // Copy the labels. - caffe_copy(batch->label_.count(), batch->label_.gpu_data(), - top[1]->mutable_gpu_data()); + top[1]->ReshapeLike(prefetch_current_->label_); + top[1]->set_gpu_data(prefetch_current_->label_.mutable_gpu_data()); } - // Ensure the copy is synchronous wrt the host, so that the next batch isn't - // copied in meanwhile. - CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); - prefetch_free_.push(batch); } INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer); diff --git a/src/caffe/layers/batch_norm_layer.cpp b/src/caffe/layers/batch_norm_layer.cpp new file mode 100644 index 000000000..c6a1d5b1b --- /dev/null +++ b/src/caffe/layers/batch_norm_layer.cpp @@ -0,0 +1,251 @@ +#include +#include + +#include "caffe/layers/batch_norm_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void BatchNormLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + BatchNormParameter param = this->layer_param_.batch_norm_param(); + moving_average_fraction_ = param.moving_average_fraction(); + use_global_stats_ = this->phase_ == TEST; + if (param.has_use_global_stats()) + use_global_stats_ = param.use_global_stats(); + if (bottom[0]->num_axes() == 1) + channels_ = 1; + else + channels_ = bottom[0]->shape(1); + eps_ = param.eps(); + if (this->blobs_.size() > 0) { + LOG(INFO) << "Skipping parameter initialization"; + } else { + this->blobs_.resize(3); + vector sz; + sz.push_back(channels_); + this->blobs_[0].reset(new Blob(sz)); + this->blobs_[1].reset(new Blob(sz)); + sz[0] = 1; + this->blobs_[2].reset(new Blob(sz)); + for (int i = 0; i < 3; ++i) { + caffe_set(this->blobs_[i]->count(), Dtype(0), + this->blobs_[i]->mutable_cpu_data()); + } + } + // Mask statistics from optimization by setting local learning rates + // for mean, variance, and the bias correction to zero. + for (int i = 0; i < this->blobs_.size(); ++i) { + if (this->layer_param_.param_size() == i) { + ParamSpec* fixed_param_spec = this->layer_param_.add_param(); + fixed_param_spec->set_lr_mult(0.f); + } else { + CHECK_EQ(this->layer_param_.param(i).lr_mult(), 0.f) + << "Cannot configure batch normalization statistics as layer " + << "parameters."; + } + } +} + +template +void BatchNormLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + if (bottom[0]->num_axes() >= 1) + CHECK_EQ(bottom[0]->shape(1), channels_); + top[0]->ReshapeLike(*bottom[0]); + + vector sz; + sz.push_back(channels_); + mean_.Reshape(sz); + variance_.Reshape(sz); + temp_.ReshapeLike(*bottom[0]); + x_norm_.ReshapeLike(*bottom[0]); + sz[0] = bottom[0]->shape(0); + batch_sum_multiplier_.Reshape(sz); + + int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0)); + if (spatial_sum_multiplier_.num_axes() == 0 || + spatial_sum_multiplier_.shape(0) != spatial_dim) { + sz[0] = spatial_dim; + spatial_sum_multiplier_.Reshape(sz); + Dtype* multiplier_data = spatial_sum_multiplier_.mutable_cpu_data(); + caffe_set(spatial_sum_multiplier_.count(), Dtype(1), multiplier_data); + } + + int numbychans = channels_*bottom[0]->shape(0); + if (num_by_chans_.num_axes() == 0 || + num_by_chans_.shape(0) != numbychans) { + sz[0] = numbychans; + num_by_chans_.Reshape(sz); + caffe_set(batch_sum_multiplier_.count(), Dtype(1), + batch_sum_multiplier_.mutable_cpu_data()); + } +} + +template +void BatchNormLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->cpu_data(); + Dtype* top_data = top[0]->mutable_cpu_data(); + int num = bottom[0]->shape(0); + int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_); + + if (bottom[0] != top[0]) { + caffe_copy(bottom[0]->count(), bottom_data, top_data); + } + + if (use_global_stats_) { + // use the stored mean/variance estimates. + const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ? + 0 : 1 / this->blobs_[2]->cpu_data()[0]; + caffe_cpu_scale(variance_.count(), scale_factor, + this->blobs_[0]->cpu_data(), mean_.mutable_cpu_data()); + caffe_cpu_scale(variance_.count(), scale_factor, + this->blobs_[1]->cpu_data(), variance_.mutable_cpu_data()); + } else { + // compute mean + caffe_cpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, + 1. / (num * spatial_dim), bottom_data, + spatial_sum_multiplier_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., + mean_.mutable_cpu_data()); + } + + // subtract mean + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, -1, num_by_chans_.cpu_data(), + spatial_sum_multiplier_.cpu_data(), 1., top_data); + + if (!use_global_stats_) { + // compute variance using var(X) = E((X-EX)^2) + caffe_sqr(top[0]->count(), top_data, + temp_.mutable_cpu_data()); // (X-EX)^2 + caffe_cpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, + 1. / (num * spatial_dim), temp_.cpu_data(), + spatial_sum_multiplier_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., + variance_.mutable_cpu_data()); // E((X_EX)^2) + + // compute and save moving average + this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_; + this->blobs_[2]->mutable_cpu_data()[0] += 1; + caffe_cpu_axpby(mean_.count(), Dtype(1), mean_.cpu_data(), + moving_average_fraction_, this->blobs_[0]->mutable_cpu_data()); + int m = bottom[0]->count()/channels_; + Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1; + caffe_cpu_axpby(variance_.count(), bias_correction_factor, + variance_.cpu_data(), moving_average_fraction_, + this->blobs_[1]->mutable_cpu_data()); + } + + // normalize variance + caffe_add_scalar(variance_.count(), eps_, variance_.mutable_cpu_data()); + caffe_sqrt(variance_.count(), variance_.cpu_data(), + variance_.mutable_cpu_data()); + + // replicate variance to input size + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.cpu_data(), variance_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, 1., num_by_chans_.cpu_data(), + spatial_sum_multiplier_.cpu_data(), 0., temp_.mutable_cpu_data()); + caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data); + // TODO(cdoersch): The caching is only needed because later in-place layers + // might clobber the data. Can we skip this if they won't? + caffe_copy(x_norm_.count(), top_data, + x_norm_.mutable_cpu_data()); +} + +template +void BatchNormLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, + const vector*>& bottom) { + const Dtype* top_diff; + if (bottom[0] != top[0]) { + top_diff = top[0]->cpu_diff(); + } else { + caffe_copy(x_norm_.count(), top[0]->cpu_diff(), x_norm_.mutable_cpu_diff()); + top_diff = x_norm_.cpu_diff(); + } + Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); + if (use_global_stats_) { + caffe_div(temp_.count(), top_diff, temp_.cpu_data(), bottom_diff); + return; + } + const Dtype* top_data = x_norm_.cpu_data(); + int num = bottom[0]->shape()[0]; + int spatial_dim = bottom[0]->count()/(bottom[0]->shape(0)*channels_); + // if Y = (X-mean(X))/(sqrt(var(X)+eps)), then + // + // dE(Y)/dX = + // (dE/dY - mean(dE/dY) - mean(dE/dY \cdot Y) \cdot Y) + // ./ sqrt(var(X) + eps) + // + // where \cdot and ./ are hadamard product and elementwise division, + // respectively, dE/dY is the top diff, and mean/var/sum are all computed + // along all dimensions except the channels dimension. In the above + // equation, the operations allow for expansion (i.e. broadcast) along all + // dimensions except the channels dimension where required. + + // sum(dE/dY \cdot Y) + caffe_mul(temp_.count(), top_data, top_diff, bottom_diff); + caffe_cpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, 1., + bottom_diff, spatial_sum_multiplier_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., + mean_.mutable_cpu_data()); + + // reshape (broadcast) the above + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, 1., num_by_chans_.cpu_data(), + spatial_sum_multiplier_.cpu_data(), 0., bottom_diff); + + // sum(dE/dY \cdot Y) \cdot Y + caffe_mul(temp_.count(), top_data, bottom_diff, bottom_diff); + + // sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y + caffe_cpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, 1., + top_diff, spatial_sum_multiplier_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.cpu_data(), batch_sum_multiplier_.cpu_data(), 0., + mean_.mutable_cpu_data()); + // reshape (broadcast) the above to make + // sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.cpu_data(), mean_.cpu_data(), 0., + num_by_chans_.mutable_cpu_data()); + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num * channels_, + spatial_dim, 1, 1., num_by_chans_.cpu_data(), + spatial_sum_multiplier_.cpu_data(), 1., bottom_diff); + + // dE/dY - mean(dE/dY)-mean(dE/dY \cdot Y) \cdot Y + caffe_cpu_axpby(temp_.count(), Dtype(1), top_diff, + Dtype(-1. / (num * spatial_dim)), bottom_diff); + + // note: temp_ still contains sqrt(var(X)+eps), computed during the forward + // pass. + caffe_div(temp_.count(), bottom_diff, temp_.cpu_data(), bottom_diff); +} + + +#ifdef CPU_ONLY +STUB_GPU(BatchNormLayer); +#endif + +INSTANTIATE_CLASS(BatchNormLayer); +REGISTER_LAYER_CLASS(BatchNorm); +} // namespace caffe diff --git a/src/caffe/layers/batch_norm_layer.cu b/src/caffe/layers/batch_norm_layer.cu new file mode 100644 index 000000000..a35e778e2 --- /dev/null +++ b/src/caffe/layers/batch_norm_layer.cu @@ -0,0 +1,171 @@ +#include +#include + +#include "caffe/layers/batch_norm_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void BatchNormLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + int num = bottom[0]->shape(0); + int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0)); + + if (bottom[0] != top[0]) { + caffe_copy(bottom[0]->count(), bottom_data, top_data); + } + + + if (use_global_stats_) { + // use the stored mean/variance estimates. + const Dtype scale_factor = this->blobs_[2]->cpu_data()[0] == 0 ? + 0 : 1 / this->blobs_[2]->cpu_data()[0]; + caffe_gpu_scale(variance_.count(), scale_factor, + this->blobs_[0]->gpu_data(), mean_.mutable_gpu_data()); + caffe_gpu_scale(variance_.count(), scale_factor, + this->blobs_[1]->gpu_data(), variance_.mutable_gpu_data()); + } else { + // compute mean + caffe_gpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, + 1. / (num * spatial_dim), bottom_data, + spatial_sum_multiplier_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.gpu_data(), batch_sum_multiplier_.gpu_data(), 0., + mean_.mutable_gpu_data()); + } + + // subtract mean + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.gpu_data(), mean_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, -1, num_by_chans_.gpu_data(), + spatial_sum_multiplier_.gpu_data(), 1., top_data); + + if (!use_global_stats_) { + // compute variance using var(X) = E((X-EX)^2) + caffe_gpu_mul(top[0]->count(), top[0]->gpu_data(), top[0]->gpu_data(), + temp_.mutable_gpu_data()); // (X-EX)^2 + caffe_gpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, + 1. / (num * spatial_dim), temp_.gpu_data(), + spatial_sum_multiplier_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemv(CblasTrans, num, channels_, Dtype(1.), + num_by_chans_.gpu_data(), batch_sum_multiplier_.gpu_data(), Dtype(0.), + variance_.mutable_gpu_data()); // E((X_EX)^2) + + // compute and save moving average + this->blobs_[2]->mutable_cpu_data()[0] *= moving_average_fraction_; + this->blobs_[2]->mutable_cpu_data()[0] += 1; + caffe_gpu_axpby(mean_.count(), Dtype(1), mean_.gpu_data(), + moving_average_fraction_, this->blobs_[0]->mutable_gpu_data()); + int m = bottom[0]->count()/channels_; + Dtype bias_correction_factor = m > 1 ? Dtype(m)/(m-1) : 1; + caffe_gpu_axpby(variance_.count(), bias_correction_factor, + variance_.gpu_data(), moving_average_fraction_, + this->blobs_[1]->mutable_gpu_data()); + } + + // normalize variance + caffe_gpu_add_scalar(variance_.count(), eps_, variance_.mutable_gpu_data()); + caffe_gpu_sqrt(variance_.count(), variance_.gpu_data(), + variance_.mutable_gpu_data()); + + // replicate variance to input size + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.gpu_data(), variance_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, 1., num_by_chans_.gpu_data(), + spatial_sum_multiplier_.gpu_data(), 0., temp_.mutable_gpu_data()); + caffe_gpu_div(temp_.count(), top_data, temp_.gpu_data(), top_data); + // TODO(cdoersch): The caching is only needed because later in-place layers + // might clobber the data. Can we skip this if they won't? + caffe_copy(x_norm_.count(), top_data, + x_norm_.mutable_gpu_data()); +} + +template +void BatchNormLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, + const vector*>& bottom) { + const Dtype* top_diff; + if (bottom[0] != top[0]) { + top_diff = top[0]->gpu_diff(); + } else { + caffe_copy(x_norm_.count(), top[0]->gpu_diff(), x_norm_.mutable_gpu_diff()); + top_diff = x_norm_.gpu_diff(); + } + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + if (use_global_stats_) { + caffe_gpu_div(temp_.count(), top_diff, temp_.gpu_data(), bottom_diff); + return; + } + const Dtype* top_data = x_norm_.gpu_data(); + int num = bottom[0]->shape()[0]; + int spatial_dim = bottom[0]->count()/(channels_*bottom[0]->shape(0)); + // if Y = (X-mean(X))/(sqrt(var(X)+eps)), then + // + // dE(Y)/dX = + // (dE/dY - mean(dE/dY) - mean(dE/dY \cdot Y) \cdot Y) + // ./ sqrt(var(X) + eps) + // + // where \cdot and ./ are hadamard product and elementwise division, + // respectively, dE/dY is the top diff, and mean/var/sum are all computed + // along all dimensions except the channels dimension. In the above + // equation, the operations allow for expansion (i.e. broadcast) along all + // dimensions except the channels dimension where required. + + // sum(dE/dY \cdot Y) + caffe_gpu_mul(temp_.count(), top_data, top_diff, bottom_diff); + caffe_gpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, 1., + bottom_diff, spatial_sum_multiplier_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.gpu_data(), batch_sum_multiplier_.gpu_data(), 0., + mean_.mutable_gpu_data()); + + // reshape (broadcast) the above + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.gpu_data(), mean_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, channels_ * num, + spatial_dim, 1, 1., num_by_chans_.gpu_data(), + spatial_sum_multiplier_.gpu_data(), 0., bottom_diff); + + // sum(dE/dY \cdot Y) \cdot Y + caffe_gpu_mul(temp_.count(), top_data, bottom_diff, bottom_diff); + + // sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y + caffe_gpu_gemv(CblasNoTrans, channels_ * num, spatial_dim, 1., + top_diff, spatial_sum_multiplier_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemv(CblasTrans, num, channels_, 1., + num_by_chans_.gpu_data(), batch_sum_multiplier_.gpu_data(), 0., + mean_.mutable_gpu_data()); + // reshape (broadcast) the above to make + // sum(dE/dY)-sum(dE/dY \cdot Y) \cdot Y + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, channels_, 1, 1, + batch_sum_multiplier_.gpu_data(), mean_.gpu_data(), 0., + num_by_chans_.mutable_gpu_data()); + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num * channels_, + spatial_dim, 1, 1., num_by_chans_.gpu_data(), + spatial_sum_multiplier_.gpu_data(), 1., bottom_diff); + + // dE/dY - mean(dE/dY)-mean(dE/dY \cdot Y) \cdot Y + caffe_gpu_axpby(temp_.count(), Dtype(1), top_diff, + Dtype(-1. / (num * spatial_dim)), bottom_diff); + + // note: temp_ still contains sqrt(var(X)+eps), computed during the forward + // pass. + caffe_gpu_div(temp_.count(), bottom_diff, temp_.gpu_data(), bottom_diff); +} + +INSTANTIATE_LAYER_GPU_FUNCS(BatchNormLayer); + + +} // namespace caffe diff --git a/src/caffe/layers/batch_reindex_layer.cpp b/src/caffe/layers/batch_reindex_layer.cpp new file mode 100644 index 000000000..b14e56f7c --- /dev/null +++ b/src/caffe/layers/batch_reindex_layer.cpp @@ -0,0 +1,78 @@ +#include + +#include "caffe/layers/batch_reindex_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void BatchReindexLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + CHECK_EQ(1, bottom[1]->num_axes()); + vector newshape; + newshape.push_back(bottom[1]->shape(0)); + for (int i = 1; i < bottom[0]->shape().size(); ++i) { + newshape.push_back(bottom[0]->shape()[i]); + } + top[0]->Reshape(newshape); +} + +template +void BatchReindexLayer::check_batch_reindex(int initial_num, + int final_num, + const Dtype* ridx_data) { + for (int i = 0; i < final_num; ++i) { + CHECK_GE(ridx_data[i], 0) + << "Index specified for reindex layer was negative."; + CHECK_LT(ridx_data[i], initial_num) + << "Index specified for reindex layer was greater than batch size."; + } +} + +template +void BatchReindexLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + check_batch_reindex(bottom[0]->shape(0), bottom[1]->count(), + bottom[1]->cpu_data()); + if (top[0]->count() == 0) { + return; + } + int inner_dim = bottom[0]->count() / bottom[0]->shape(0); + const Dtype* in = bottom[0]->cpu_data(); + const Dtype* permut = bottom[1]->cpu_data(); + Dtype* out = top[0]->mutable_cpu_data(); + for (int index = 0; index < top[0]->count(); ++index) { + int n = index / (inner_dim); + int in_n = static_cast(permut[n]); + out[index] = in[in_n * (inner_dim) + index % (inner_dim)]; + } +} + +template +void BatchReindexLayer::Backward_cpu( + const vector*>& top, const vector& propagate_down, + const vector*>& bottom) { + CHECK(!propagate_down[1]) << "Cannot backprop to index."; + if (!propagate_down[0]) { + return; + } + int inner_dim = bottom[0]->count() / bottom[0]->shape(0); + Dtype* bot_diff = bottom[0]->mutable_cpu_diff(); + const Dtype* permut = bottom[1]->cpu_data(); + const Dtype* top_diff = top[0]->cpu_diff(); + caffe_set(bottom[0]->count(), Dtype(0), bot_diff); + for (int index = 0; index < top[0]->count(); ++index) { + int n = index / (inner_dim); + int in_n = static_cast(permut[n]); + bot_diff[in_n * (inner_dim) + index % (inner_dim)] += top_diff[index]; + } +} + +#ifdef CPU_ONLY +STUB_GPU(BatchReindexLayer); +#endif + +INSTANTIATE_CLASS(BatchReindexLayer); +REGISTER_LAYER_CLASS(BatchReindex); + +} // namespace caffe diff --git a/src/caffe/layers/batch_reindex_layer.cu b/src/caffe/layers/batch_reindex_layer.cu new file mode 100644 index 000000000..83054d36d --- /dev/null +++ b/src/caffe/layers/batch_reindex_layer.cu @@ -0,0 +1,106 @@ +#include +#include +#include + +#include "caffe/layers/batch_reindex_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +__global__ void BRForward(const int count, const int inner_dim, const Dtype* in, + const Dtype* permut, Dtype* out) { + CUDA_KERNEL_LOOP(index, count) { + int n = index / (inner_dim); + int in_n = static_cast(permut[n]); + out[index] = in[in_n * (inner_dim) + index % (inner_dim)]; + } +} + +template +void BatchReindexLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + check_batch_reindex(bottom[0]->shape(0), bottom[1]->count(), + bottom[1]->cpu_data()); + if (top[0]->count() == 0) { + return; + } + int threads = top[0]->count(); + // NOLINT_NEXT_LINE(whitespace/operators) + BRForward <<>>( + top[0]->count(), bottom[0]->count() / bottom[0]->shape(0), + bottom[0]->gpu_data(), bottom[1]->gpu_data(), top[0]->mutable_gpu_data()); + CUDA_POST_KERNEL_CHECK; +} + +template +__global__ void BRBackward(const int count, const int inner_dim, + const Dtype* in, const Dtype* top_indexes, + const Dtype* begins, const Dtype* counts, + Dtype* out) { + CUDA_KERNEL_LOOP(index, count) { + int n = index / (inner_dim); + out[index] = 0; + int lower = static_cast(begins[n]); + int upper = lower + static_cast(counts[n]); + for (int i = lower; i < upper; ++i) { + int in_n = static_cast(top_indexes[i]); + out[index] += in[in_n * (inner_dim) + index % (inner_dim)]; + } + } +} + +template +void BatchReindexLayer::Backward_gpu( + const vector*>& top, const vector& propagate_down, + const vector*>& bottom) { + CHECK(!propagate_down[1]) << "Cannot backprop to index."; + if (!propagate_down[0]) { + return; + } + + vector > mapping; + const Dtype* perm = bottom[1]->cpu_data(); + for (int i = 0; i < bottom[1]->count(); ++i) { + mapping.push_back(pair(static_cast(perm[i]), i)); + } + std::sort(mapping.begin(), mapping.end(), pair_sort_first()); + + // Each element of the bottom diff is potentially the sum of many top diffs. + // However, we'd like each CUDA thread to handle exactly one output. Hence, + // we first pre-compute a list of lists of indices that need to be summed for + // each output. `top_indexes` holds the data of this list of lists. The + // k'th element of `begins` points to the location in `top_indexes` where the + // list for the k'th example begin, and the k'th element of `counts` is the + // length of that list. + vector shape; + shape.push_back(bottom[1]->count()); + Blob top_indexes(shape); + shape[0] = bottom[0]->shape(0); + Blob counts(shape); + Blob begins(shape); + Dtype* t_i_data = top_indexes.mutable_cpu_data(); + Dtype* c_data = counts.mutable_cpu_data(); + Dtype* b_data = begins.mutable_cpu_data(); + caffe_set(begins.count(), Dtype(-1), b_data); + caffe_set(counts.count(), Dtype(0), c_data); + for (int i = 0; i < mapping.size(); ++i) { + t_i_data[i] = mapping[i].second; + if (b_data[mapping[i].first] == -1) { + b_data[mapping[i].first] = i; + } + c_data[mapping[i].first] += 1; + } + + int threads = bottom[0]->count(); + // NOLINT_NEXT_LINE(whitespace/operators) + BRBackward <<>>( + bottom[0]->count(), bottom[0]->count() / bottom[0]->shape(0), + top[0]->gpu_diff(), top_indexes.gpu_data(), begins.gpu_data(), + counts.gpu_data(), bottom[0]->mutable_gpu_diff()); + CUDA_POST_KERNEL_CHECK; +} + +INSTANTIATE_LAYER_GPU_FUNCS(BatchReindexLayer); + +} // namespace caffe diff --git a/src/caffe/layers/bias_layer.cpp b/src/caffe/layers/bias_layer.cpp new file mode 100644 index 000000000..4726a7298 --- /dev/null +++ b/src/caffe/layers/bias_layer.cpp @@ -0,0 +1,121 @@ +#include + +#include "caffe/filler.hpp" +#include "caffe/layers/bias_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void BiasLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + if (bottom.size() == 1 && this->blobs_.size() > 0) { + LOG(INFO) << "Skipping parameter initialization"; + } else if (bottom.size() == 1) { + // bias is a learned parameter; initialize it + const BiasParameter& param = this->layer_param_.bias_param(); + const int axis = bottom[0]->CanonicalAxisIndex(param.axis()); + const int num_axes = param.num_axes(); + CHECK_GE(num_axes, -1) << "num_axes must be non-negative, " + << "or -1 to extend to the end of bottom[0]"; + if (num_axes >= 0) { + CHECK_GE(bottom[0]->num_axes(), axis + num_axes) + << "bias blob's shape extends past bottom[0]'s shape when applied " + << "starting with bottom[0] axis = " << axis; + } + this->blobs_.resize(1); + const vector::const_iterator& shape_start = + bottom[0]->shape().begin() + axis; + const vector::const_iterator& shape_end = + (num_axes == -1) ? bottom[0]->shape().end() : (shape_start + num_axes); + vector bias_shape(shape_start, shape_end); + this->blobs_[0].reset(new Blob(bias_shape)); + shared_ptr > filler(GetFiller(param.filler())); + filler->Fill(this->blobs_[0].get()); + } + this->param_propagate_down_.resize(this->blobs_.size(), true); +} + +template +void BiasLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + const BiasParameter& param = this->layer_param_.bias_param(); + Blob* bias = (bottom.size() > 1) ? bottom[1] : this->blobs_[0].get(); + // Always set axis == 0 in special case where bias is a scalar + // (num_axes == 0). Mathematically equivalent for any choice of axis, so the + // actual setting can be safely ignored; and computation is most efficient + // with axis == 0 and (therefore) outer_dim_ == 1. + const int axis = (bias->num_axes() == 0) ? + 0 : bottom[0]->CanonicalAxisIndex(param.axis()); + CHECK_GE(bottom[0]->num_axes(), axis + bias->num_axes()) + << "bias blob's shape extends past bottom[0]'s shape when applied " + << "starting with bottom[0] axis = " << axis; + for (int i = 0; i < bias->num_axes(); ++i) { + CHECK_EQ(bottom[0]->shape(axis + i), bias->shape(i)) + << "dimension mismatch between bottom[0]->shape(" << axis + i + << ") and bias->shape(" << i << ")"; + } + outer_dim_ = bottom[0]->count(0, axis); + bias_dim_ = bias->count(); + inner_dim_ = bottom[0]->count(axis + bias->num_axes()); + dim_ = bias_dim_ * inner_dim_; + if (bottom[0] != top[0]) { + top[0]->ReshapeLike(*bottom[0]); + } + bias_multiplier_.Reshape(vector(1, inner_dim_)); + if (bias_multiplier_.cpu_data()[inner_dim_ - 1] != Dtype(1)) { + caffe_set(inner_dim_, Dtype(1), bias_multiplier_.mutable_cpu_data()); + } +} + +template +void BiasLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bias_data = + ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->cpu_data(); + Dtype* top_data = top[0]->mutable_cpu_data(); + if (bottom[0] != top[0]) { + const Dtype* bottom_data = bottom[0]->cpu_data(); + caffe_copy(bottom[0]->count(), bottom_data, top_data); + } + for (int n = 0; n < outer_dim_; ++n) { + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, bias_dim_, + inner_dim_, 1, Dtype(1), bias_data, + bias_multiplier_.cpu_data(), Dtype(1), top_data); + top_data += dim_; + } +} + +template +void BiasLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + if (propagate_down[0] && bottom[0] != top[0]) { + const Dtype* top_diff = top[0]->cpu_diff(); + Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); + caffe_copy(bottom[0]->count(), top_diff, bottom_diff); + } + // in-place, we don't need to do anything with the data diff + const bool bias_param = (bottom.size() == 1); + if ((!bias_param && propagate_down[1]) || + (bias_param && this->param_propagate_down_[0])) { + const Dtype* top_diff = top[0]->cpu_diff(); + Dtype* bias_diff = (bias_param ? this->blobs_[0].get() : bottom[1]) + ->mutable_cpu_diff(); + bool accum = bias_param; + for (int n = 0; n < outer_dim_; ++n) { + caffe_cpu_gemv(CblasNoTrans, bias_dim_, inner_dim_, Dtype(1), + top_diff, bias_multiplier_.cpu_data(), Dtype(accum), bias_diff); + top_diff += dim_; + accum = true; + } + } +} + +#ifdef CPU_ONLY +STUB_GPU(BiasLayer); +#endif + +INSTANTIATE_CLASS(BiasLayer); +REGISTER_LAYER_CLASS(Bias); + +} // namespace caffe diff --git a/src/caffe/layers/bias_layer.cu b/src/caffe/layers/bias_layer.cu new file mode 100644 index 000000000..8ac913a5d --- /dev/null +++ b/src/caffe/layers/bias_layer.cu @@ -0,0 +1,59 @@ +#include + +#include "caffe/filler.hpp" +#include "caffe/layers/bias_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +__global__ void BiasForward(const int n, const Dtype* in, + const Dtype* bias, const int bias_dim, const int inner_dim, + Dtype* out) { + CUDA_KERNEL_LOOP(index, n) { + const int bias_index = (index / inner_dim) % bias_dim; + out[index] = in[index] + bias[bias_index]; + } +} + +template +void BiasLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const int count = top[0]->count(); + const Dtype* bottom_data = bottom[0]->gpu_data(); + const Dtype* bias_data = + ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + BiasForward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + count, bottom_data, bias_data, bias_dim_, inner_dim_, top_data); +} + +template +void BiasLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + if (propagate_down[0] && bottom[0] != top[0]) { + const Dtype* top_diff = top[0]->gpu_diff(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + caffe_copy(bottom[0]->count(), top_diff, bottom_diff); + } + // in-place, we don't need to do anything with the data diff + const bool bias_param = (bottom.size() == 1); + if ((!bias_param && propagate_down[1]) || + (bias_param && this->param_propagate_down_[0])) { + const Dtype* top_diff = top[0]->gpu_diff(); + Dtype* bias_diff = (bias_param ? this->blobs_[0].get() : bottom[1]) + ->mutable_gpu_diff(); + bool accum = bias_param; + for (int n = 0; n < outer_dim_; ++n) { + caffe_gpu_gemv(CblasNoTrans, bias_dim_, inner_dim_, Dtype(1), + top_diff, bias_multiplier_.gpu_data(), Dtype(accum), bias_diff); + top_diff += dim_; + accum = true; + } + } +} + +INSTANTIATE_LAYER_GPU_FUNCS(BiasLayer); + +} // namespace caffe diff --git a/src/caffe/layers/bnll_layer.cpp b/src/caffe/layers/bnll_layer.cpp index 9ba0ea9a7..448d86d75 100644 --- a/src/caffe/layers/bnll_layer.cpp +++ b/src/caffe/layers/bnll_layer.cpp @@ -1,8 +1,7 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/bnll_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/bnll_layer.cu b/src/caffe/layers/bnll_layer.cu index d963d0687..8df8ef09a 100644 --- a/src/caffe/layers/bnll_layer.cu +++ b/src/caffe/layers/bnll_layer.cu @@ -1,8 +1,7 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/bnll_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/concat_layer.cpp b/src/caffe/layers/concat_layer.cpp index 86b500de8..580bd4797 100644 --- a/src/caffe/layers/concat_layer.cpp +++ b/src/caffe/layers/concat_layer.cpp @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/concat_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/concat_layer.cu b/src/caffe/layers/concat_layer.cu index 617701e26..a3a0bf6f6 100644 --- a/src/caffe/layers/concat_layer.cu +++ b/src/caffe/layers/concat_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/concat_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/contrastive_loss_layer.cpp b/src/caffe/layers/contrastive_loss_layer.cpp index 25e167819..599e178e9 100644 --- a/src/caffe/layers/contrastive_loss_layer.cpp +++ b/src/caffe/layers/contrastive_loss_layer.cpp @@ -1,9 +1,7 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/loss_layers.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/contrastive_loss_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { @@ -53,7 +51,8 @@ void ContrastiveLossLayer::Forward_cpu( if (legacy_version) { loss += std::max(margin - dist_sq_.cpu_data()[i], Dtype(0.0)); } else { - Dtype dist = std::max(margin - sqrt(dist_sq_.cpu_data()[i]), 0.0); + Dtype dist = std::max(margin - sqrt(dist_sq_.cpu_data()[i]), + Dtype(0.0)); loss += dist*dist; } } diff --git a/src/caffe/layers/contrastive_loss_layer.cu b/src/caffe/layers/contrastive_loss_layer.cu index 931239316..fd7d67cca 100644 --- a/src/caffe/layers/contrastive_loss_layer.cu +++ b/src/caffe/layers/contrastive_loss_layer.cu @@ -1,10 +1,8 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/contrastive_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/conv_layer.cpp b/src/caffe/layers/conv_layer.cpp index 928ef5ee4..5d522ab31 100644 --- a/src/caffe/layers/conv_layer.cpp +++ b/src/caffe/layers/conv_layer.cpp @@ -1,19 +1,24 @@ #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/conv_layer.hpp" namespace caffe { template void ConvolutionLayer::compute_output_shape() { - this->height_out_ = (this->height_ + 2 * this->pad_h_ - this->kernel_h_) - / this->stride_h_ + 1; - this->width_out_ = (this->width_ + 2 * this->pad_w_ - this->kernel_w_) - / this->stride_w_ + 1; + const int* kernel_shape_data = this->kernel_shape_.cpu_data(); + const int* stride_data = this->stride_.cpu_data(); + const int* pad_data = this->pad_.cpu_data(); + const int* dilation_data = this->dilation_.cpu_data(); + this->output_shape_.clear(); + for (int i = 0; i < this->num_spatial_axes_; ++i) { + // i + 1 to skip channel axis + const int input_dim = this->input_shape(i + 1); + const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1; + const int output_dim = (input_dim + 2 * pad_data[i] - kernel_extent) + / stride_data[i] + 1; + this->output_shape_.push_back(output_dim); + } } template @@ -24,11 +29,11 @@ void ConvolutionLayer::Forward_cpu(const vector*>& bottom, const Dtype* bottom_data = bottom[i]->cpu_data(); Dtype* top_data = top[i]->mutable_cpu_data(); for (int n = 0; n < this->num_; ++n) { - this->forward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight, - top_data + top[i]->offset(n)); + this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight, + top_data + n * this->top_dim_); if (this->bias_term_) { const Dtype* bias = this->blobs_[1]->cpu_data(); - this->forward_cpu_bias(top_data + top[i]->offset(n), bias); + this->forward_cpu_bias(top_data + n * this->top_dim_, bias); } } } @@ -47,20 +52,20 @@ void ConvolutionLayer::Backward_cpu(const vector*>& top, if (this->bias_term_ && this->param_propagate_down_[1]) { Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff(); for (int n = 0; n < this->num_; ++n) { - this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n)); + this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_); } } if (this->param_propagate_down_[0] || propagate_down[i]) { for (int n = 0; n < this->num_; ++n) { // gradient w.r.t. weight. Note that we will accumulate diffs. if (this->param_propagate_down_[0]) { - this->weight_cpu_gemm(bottom_data + bottom[i]->offset(n), - top_diff + top[i]->offset(n), weight_diff); + this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_, + top_diff + n * this->top_dim_, weight_diff); } // gradient w.r.t. bottom data, if necessary. if (propagate_down[i]) { - this->backward_cpu_gemm(top_diff + top[i]->offset(n), weight, - bottom_diff + bottom[i]->offset(n)); + this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight, + bottom_diff + n * this->bottom_dim_); } } } diff --git a/src/caffe/layers/conv_layer.cu b/src/caffe/layers/conv_layer.cu index b8a98ff7c..d06e4b624 100644 --- a/src/caffe/layers/conv_layer.cu +++ b/src/caffe/layers/conv_layer.cu @@ -1,10 +1,6 @@ #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/conv_layer.hpp" namespace caffe { @@ -16,11 +12,11 @@ void ConvolutionLayer::Forward_gpu(const vector*>& bottom, const Dtype* bottom_data = bottom[i]->gpu_data(); Dtype* top_data = top[i]->mutable_gpu_data(); for (int n = 0; n < this->num_; ++n) { - this->forward_gpu_gemm(bottom_data + bottom[i]->offset(n), weight, - top_data + top[i]->offset(n)); + this->forward_gpu_gemm(bottom_data + n * this->bottom_dim_, weight, + top_data + n * this->top_dim_); if (this->bias_term_) { const Dtype* bias = this->blobs_[1]->gpu_data(); - this->forward_gpu_bias(top_data + top[i]->offset(n), bias); + this->forward_gpu_bias(top_data + n * this->top_dim_, bias); } } } @@ -37,7 +33,7 @@ void ConvolutionLayer::Backward_gpu(const vector*>& top, if (this->bias_term_ && this->param_propagate_down_[1]) { Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff(); for (int n = 0; n < this->num_; ++n) { - this->backward_gpu_bias(bias_diff, top_diff + top[i]->offset(n)); + this->backward_gpu_bias(bias_diff, top_diff + n * this->top_dim_); } } if (this->param_propagate_down_[0] || propagate_down[i]) { @@ -46,13 +42,13 @@ void ConvolutionLayer::Backward_gpu(const vector*>& top, for (int n = 0; n < this->num_; ++n) { // gradient w.r.t. weight. Note that we will accumulate diffs. if (this->param_propagate_down_[0]) { - this->weight_gpu_gemm(bottom_data + bottom[i]->offset(n), - top_diff + top[i]->offset(n), weight_diff); + this->weight_gpu_gemm(bottom_data + n * this->bottom_dim_, + top_diff + n * this->top_dim_, weight_diff); } // gradient w.r.t. bottom data, if necessary. if (propagate_down[i]) { - this->backward_gpu_gemm(top_diff + top[i]->offset(n), weight, - bottom_diff + bottom[i]->offset(n)); + this->backward_gpu_gemm(top_diff + n * this->top_dim_, weight, + bottom_diff + n * this->bottom_dim_); } } } diff --git a/src/caffe/layers/crop_layer.cpp b/src/caffe/layers/crop_layer.cpp new file mode 100644 index 000000000..65ea8f8b7 --- /dev/null +++ b/src/caffe/layers/crop_layer.cpp @@ -0,0 +1,152 @@ +#include +#include +#include +#include +#include + + +#include "caffe/layer.hpp" +#include "caffe/layers/crop_layer.hpp" +#include "caffe/net.hpp" + + +namespace caffe { + +template +void CropLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + // LayerSetup() handles the number of dimensions; Reshape() handles the sizes. + // bottom[0] supplies the data + // bottom[1] supplies the size + const CropParameter& param = this->layer_param_.crop_param(); + CHECK_EQ(bottom.size(), 2) << "Wrong number of bottom blobs."; + int input_dim = bottom[0]->num_axes(); + const int start_axis = bottom[0]->CanonicalAxisIndex(param.axis()); + CHECK_LT(start_axis, input_dim) << "crop axis bigger than input dim"; + if (param.offset_size() > 1) { + // the number of crop values specified must be equal to the number + // of dimensions following axis + CHECK_EQ(start_axis + param.offset_size(), input_dim) + << "number of offset values specified must be equal to the number of " + << "dimensions following axis."; + } +} + +template +void CropLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + const CropParameter& param = this->layer_param_.crop_param(); + int input_dim = bottom[0]->num_axes(); + const int start_axis = bottom[0]->CanonicalAxisIndex(param.axis()); + + // Initialize offsets to 0 and the new shape to the current shape of the data. + vector new_shape(bottom[0]->shape()); + vector offsets_shape(1, input_dim); + offsets.Reshape(offsets_shape); + int* offset_data = offsets.mutable_cpu_data(); + + // Determine crop offsets and the new shape post-crop. + for (int i = 0; i < input_dim; ++i) { + int crop_offset = 0; + int new_size = bottom[0]->shape(i); + if (i >= start_axis) { + new_size = bottom[1]->shape(i); + if (param.offset_size() == 1) { + // If only one offset is given, all crops have the same offset. + crop_offset = param.offset(0); + } else if (param.offset_size() > 1) { + // For several offsets, the number of offsets must be equal to the + // number of dimensions to crop, that is dimensions after the axis. + crop_offset = param.offset(i - start_axis); + } + // Check that the crop and offset are within the dimension's bounds. + CHECK_GE(bottom[0]->shape(i) - crop_offset, bottom[1]->shape(i)) + << "the crop for dimension " << i << " is out-of-bounds with " + << "size " << bottom[1]->shape(i) << " and offset " << crop_offset; + } + new_shape[i] = new_size; + offset_data[i] = crop_offset; + } + top[0]->Reshape(new_shape); + // Compute strides + src_strides_.Reshape(offsets_shape); + dest_strides_.Reshape(offsets_shape); + for (int i = 0; i < input_dim; ++i) { + src_strides_.mutable_cpu_data()[i] = bottom[0]->count(i + 1, input_dim); + dest_strides_.mutable_cpu_data()[i] = top[0]->count(i + 1, input_dim); + } +} + +template +void CropLayer::crop_copy(const vector*>& bottom, + const vector*>& top, + const int* offsets, + vector indices, + int cur_dim, + const Dtype* src_data, + Dtype* dest_data, + bool is_forward) { + if (cur_dim + 1 < top[0]->num_axes()) { + // We are not yet at the final dimension, call copy recursively + for (int i = 0; i < top[0]->shape(cur_dim); ++i) { + indices[cur_dim] = i; + crop_copy(bottom, top, offsets, indices, cur_dim+1, + src_data, dest_data, is_forward); + } + } else { + // We are at the last dimensions, which is stored continuously in memory + // prepare index vector reduced(red) and with offsets(off) + std::vector ind_red(cur_dim, 0); + std::vector ind_off(cur_dim+1, 0); + for (int j = 0; j < cur_dim; ++j) { + ind_red[j] = indices[j]; + ind_off[j] = indices[j] + offsets[j]; + } + ind_off[cur_dim] = offsets[cur_dim]; + // do the copy + if (is_forward) { + caffe_copy(top[0]->shape(cur_dim), + src_data + bottom[0]->offset(ind_off), + dest_data + top[0]->offset(ind_red)); + } else { + // in the backwards pass the src_data is top_diff + // and the dest_data is bottom_diff + caffe_copy(top[0]->shape(cur_dim), + src_data + top[0]->offset(ind_red), + dest_data + bottom[0]->offset(ind_off)); + } + } +} + +template +void CropLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + std::vector indices(top[0]->num_axes(), 0); + const Dtype* bottom_data = bottom[0]->cpu_data(); + Dtype* top_data = top[0]->mutable_cpu_data(); + crop_copy(bottom, top, offsets.cpu_data(), indices, 0, bottom_data, top_data, + true); +} + +template +void CropLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + const Dtype* top_diff = top[0]->cpu_diff(); + Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); + + if (propagate_down[0]) { + caffe_set(bottom[0]->count(), static_cast(0), bottom_diff); + std::vector indices(top[0]->num_axes(), 0); + crop_copy(bottom, top, offsets.cpu_data(), indices, 0, top_diff, + bottom_diff, false); + } +} + +#ifdef CPU_ONLY +STUB_GPU(CropLayer); +#endif + +INSTANTIATE_CLASS(CropLayer); +REGISTER_LAYER_CLASS(Crop); + +} // namespace caffe diff --git a/src/caffe/layers/crop_layer.cu b/src/caffe/layers/crop_layer.cu new file mode 100644 index 000000000..4ece9cd17 --- /dev/null +++ b/src/caffe/layers/crop_layer.cu @@ -0,0 +1,87 @@ +#include + +#include "caffe/layers/crop_layer.hpp" + +namespace caffe { + +__device__ int compute_uncropped_index( + int index, + const int ndims, + const int* src_strides, + const int* dest_strides, + const int* offsets) { + int dest_index = index; + int src_index = 0; + for (int i = 0; i < ndims; ++i) { + int coord = dest_index / dest_strides[i]; + dest_index -= coord * dest_strides[i]; + src_index += src_strides[i] * (coord + offsets[i]); + } + return src_index; +} + +template +__global__ void crop_kernel_forward(const int nthreads, + const int ndims, + const int* src_strides, + const int* dest_strides, + const int* offsets, + const Dtype* src, Dtype* dest) { + CUDA_KERNEL_LOOP(index, nthreads) { + int src_index = compute_uncropped_index( + index, ndims, src_strides, dest_strides, offsets); + dest[index] = src[src_index]; + } +} + +template +__global__ void crop_kernel_backward(const int nthreads, + const int ndims, + const int* src_strides, + const int* dest_strides, + const int* offsets, + Dtype* src, const Dtype* dest) { + CUDA_KERNEL_LOOP(index, nthreads) { + int src_index = compute_uncropped_index( + index, ndims, src_strides, dest_strides, offsets); + src[src_index] = dest[index]; + } +} + +template +void CropLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + int n = top[0]->count(); + // NOLINT_NEXT_LINE(whitespace/operators) + crop_kernel_forward<<>>(n, + bottom[0]->num_axes(), + src_strides_.gpu_data(), + dest_strides_.gpu_data(), + offsets.gpu_data(), + bottom_data, top_data); +} + +template +void CropLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + const Dtype* top_diff = top[0]->gpu_diff(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + int n = top[0]->count(); + + if (propagate_down[0]) { + caffe_gpu_set(bottom[0]->count(), static_cast(0), bottom_diff); + // NOLINT_NEXT_LINE(whitespace/operators) + crop_kernel_backward<<>>(n, + bottom[0]->num_axes(), + src_strides_.gpu_data(), + dest_strides_.gpu_data(), + offsets.gpu_data(), + bottom_diff, top_diff); + } +} + +INSTANTIATE_LAYER_GPU_FUNCS(CropLayer); + +} // namespace caffe diff --git a/src/caffe/layers/cudnn_conv_layer.cpp b/src/caffe/layers/cudnn_conv_layer.cpp index 104d2b9d6..efc9e04e8 100644 --- a/src/caffe/layers/cudnn_conv_layer.cpp +++ b/src/caffe/layers/cudnn_conv_layer.cpp @@ -1,11 +1,8 @@ #ifdef USE_CUDNN +#include #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_conv_layer.hpp" namespace caffe { @@ -24,24 +21,50 @@ void CuDNNConvolutionLayer::LayerSetUp( // Initialize CUDA streams and cuDNN. stream_ = new cudaStream_t[this->group_ * CUDNN_STREAMS_PER_GROUP]; handle_ = new cudnnHandle_t[this->group_ * CUDNN_STREAMS_PER_GROUP]; + + // Initialize algorithm arrays + fwd_algo_ = new cudnnConvolutionFwdAlgo_t[bottom.size()]; + bwd_filter_algo_= new cudnnConvolutionBwdFilterAlgo_t[bottom.size()]; + bwd_data_algo_ = new cudnnConvolutionBwdDataAlgo_t[bottom.size()]; + + // initialize size arrays + workspace_fwd_sizes_ = new size_t[bottom.size()]; + workspace_bwd_filter_sizes_ = new size_t[bottom.size()]; + workspace_bwd_data_sizes_ = new size_t[bottom.size()]; + + // workspace data workspaceSizeInBytes = 0; - workspace = NULL; + workspaceData = NULL; + workspace = new void*[this->group_ * CUDNN_STREAMS_PER_GROUP]; + + for (size_t i = 0; i < bottom.size(); ++i) { + // initialize all to default algorithms + fwd_algo_[i] = (cudnnConvolutionFwdAlgo_t)0; + bwd_filter_algo_[i] = (cudnnConvolutionBwdFilterAlgo_t)0; + bwd_data_algo_[i] = (cudnnConvolutionBwdDataAlgo_t)0; + // default algorithms don't require workspace + workspace_fwd_sizes_[i] = 0; + workspace_bwd_data_sizes_[i] = 0; + workspace_bwd_filter_sizes_[i] = 0; + } for (int g = 0; g < this->group_ * CUDNN_STREAMS_PER_GROUP; g++) { CUDA_CHECK(cudaStreamCreate(&stream_[g])); CUDNN_CHECK(cudnnCreate(&handle_[g])); CUDNN_CHECK(cudnnSetStream(handle_[g], stream_[g])); + workspace[g] = NULL; } // Set the indexing parameters. - weight_offset_ = (this->num_output_ / this->group_) - * (this->channels_ / this->group_) * this->kernel_h_ * this->kernel_w_; bias_offset_ = (this->num_output_ / this->group_); // Create filter descriptor. + const int* kernel_shape_data = this->kernel_shape_.cpu_data(); + const int kernel_h = kernel_shape_data[0]; + const int kernel_w = kernel_shape_data[1]; cudnn::createFilterDesc(&filter_desc_, this->num_output_ / this->group_, this->channels_ / this->group_, - this->kernel_h_, this->kernel_w_); + kernel_h, kernel_w); // Create tensor descriptor(s) for data and corresponding convolution(s). for (int i = 0; i < bottom.size(); i++) { @@ -68,29 +91,137 @@ template void CuDNNConvolutionLayer::Reshape( const vector*>& bottom, const vector*>& top) { ConvolutionLayer::Reshape(bottom, top); - bottom_offset_ = (this->channels_ / this->group_) - * this->height_ * this->width_; - top_offset_ = (this->num_output_ / this->group_) - * this->height_out_ * this->width_out_; + CHECK_EQ(2, this->num_spatial_axes_) + << "CuDNNConvolution input must have 2 spatial axes " + << "(e.g., height and width). " + << "Use 'engine: CAFFE' for general ND convolution."; + bottom_offset_ = this->bottom_dim_ / this->group_; + top_offset_ = this->top_dim_ / this->group_; + const int height = bottom[0]->shape(this->channel_axis_ + 1); + const int width = bottom[0]->shape(this->channel_axis_ + 2); + const int height_out = top[0]->shape(this->channel_axis_ + 1); + const int width_out = top[0]->shape(this->channel_axis_ + 2); + const int* pad_data = this->pad_.cpu_data(); + const int pad_h = pad_data[0]; + const int pad_w = pad_data[1]; + const int* stride_data = this->stride_.cpu_data(); + const int stride_h = stride_data[0]; + const int stride_w = stride_data[1]; + + // Specify workspace limit for kernels directly until we have a + // planning strategy and a rewrite of Caffe's GPU memory mangagement + size_t workspace_limit_bytes = 8*1024*1024; for (int i = 0; i < bottom.size(); i++) { cudnn::setTensor4dDesc(&bottom_descs_[i], this->num_, - this->channels_ / this->group_, - this->height_, this->width_, - this->channels_ * this->height_ * this->width_, - this->height_ * this->width_, - this->width_, 1); + this->channels_ / this->group_, height, width, + this->channels_ * height * width, + height * width, width, 1); cudnn::setTensor4dDesc(&top_descs_[i], this->num_, - this->num_output_ / this->group_, - this->height_out_, this->width_out_, - this->num_output_ * this->height_out_ * this->width_out_, - this->height_out_ * this->width_out_, - this->width_out_, 1); + this->num_output_ / this->group_, height_out, width_out, + this->num_output_ * this->out_spatial_dim_, + this->out_spatial_dim_, width_out, 1); cudnn::setConvolutionDesc(&conv_descs_[i], bottom_descs_[i], - filter_desc_, this->pad_h_, this->pad_w_, - this->stride_h_, this->stride_w_); + filter_desc_, pad_h, pad_w, + stride_h, stride_w); + + // choose forward and backward algorithms + workspace(s) + CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm(handle_[0], + bottom_descs_[i], + filter_desc_, + conv_descs_[i], + top_descs_[i], + CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, + workspace_limit_bytes, + &fwd_algo_[i])); + + CUDNN_CHECK(cudnnGetConvolutionForwardWorkspaceSize(handle_[0], + bottom_descs_[i], + filter_desc_, + conv_descs_[i], + top_descs_[i], + fwd_algo_[i], + &(workspace_fwd_sizes_[i]))); + + // choose backward algorithm for filter + CUDNN_CHECK(cudnnGetConvolutionBackwardFilterAlgorithm(handle_[0], + bottom_descs_[i], top_descs_[i], conv_descs_[i], filter_desc_, + CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, + workspace_limit_bytes, &bwd_filter_algo_[i]) ); + + // get workspace for backwards filter algorithm + CUDNN_CHECK(cudnnGetConvolutionBackwardFilterWorkspaceSize(handle_[0], + bottom_descs_[i], top_descs_[i], conv_descs_[i], filter_desc_, + bwd_filter_algo_[i], &workspace_bwd_filter_sizes_[i])); + + // choose backward algo for data + CUDNN_CHECK(cudnnGetConvolutionBackwardDataAlgorithm(handle_[0], + filter_desc_, top_descs_[i], conv_descs_[i], bottom_descs_[i], + CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, + workspace_limit_bytes, &bwd_data_algo_[i])); + + // get workspace size + CUDNN_CHECK(cudnnGetConvolutionBackwardDataWorkspaceSize(handle_[0], + filter_desc_, top_descs_[i], conv_descs_[i], bottom_descs_[i], + bwd_data_algo_[i], &workspace_bwd_data_sizes_[i]) ); + } + + // reduce over all workspace sizes to get a maximum to allocate / reallocate + size_t total_workspace_fwd = 0; + size_t total_workspace_bwd_data = 0; + size_t total_workspace_bwd_filter = 0; + + for (size_t i = 0; i < bottom.size(); i++) { + total_workspace_fwd = std::max(total_workspace_fwd, + workspace_fwd_sizes_[i]); + total_workspace_bwd_data = std::max(total_workspace_bwd_data, + workspace_bwd_data_sizes_[i]); + total_workspace_bwd_filter = std::max(total_workspace_bwd_filter, + workspace_bwd_filter_sizes_[i]); + } + // get max over all operations + size_t max_workspace = std::max(total_workspace_fwd, + total_workspace_bwd_data); + max_workspace = std::max(max_workspace, total_workspace_bwd_filter); + // ensure all groups have enough workspace + size_t total_max_workspace = max_workspace * + (this->group_ * CUDNN_STREAMS_PER_GROUP); + + // this is the total amount of storage needed over all groups + streams + if (total_max_workspace > workspaceSizeInBytes) { + DLOG(INFO) << "Reallocating workspace storage: " << total_max_workspace; + workspaceSizeInBytes = total_max_workspace; + + // free the existing workspace and allocate a new (larger) one + cudaFree(this->workspaceData); + + cudaError_t err = cudaMalloc(&(this->workspaceData), workspaceSizeInBytes); + if (err != cudaSuccess) { + // force zero memory path + for (int i = 0; i < bottom.size(); i++) { + workspace_fwd_sizes_[i] = 0; + workspace_bwd_filter_sizes_[i] = 0; + workspace_bwd_data_sizes_[i] = 0; + fwd_algo_[i] = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; + bwd_filter_algo_[i] = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0; + bwd_data_algo_[i] = CUDNN_CONVOLUTION_BWD_DATA_ALGO_0; + } + + // NULL out all workspace pointers + for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++) { + workspace[g] = NULL; + } + // NULL out underlying data + workspaceData = NULL; + workspaceSizeInBytes = 0; + } + + // if we succeed in the allocation, set pointer aliases for workspaces + for (int g = 0; g < (this->group_ * CUDNN_STREAMS_PER_GROUP); g++) { + workspace[g] = reinterpret_cast(workspaceData) + g*max_workspace; + } } // Tensor descriptor for bias. @@ -120,8 +251,16 @@ CuDNNConvolutionLayer::~CuDNNConvolutionLayer() { cudnnDestroy(handle_[g]); } + cudaFree(workspaceData); + delete [] workspace; delete [] stream_; delete [] handle_; + delete [] fwd_algo_; + delete [] bwd_filter_algo_; + delete [] bwd_data_algo_; + delete [] workspace_fwd_sizes_; + delete [] workspace_bwd_data_sizes_; + delete [] workspace_bwd_filter_sizes_; } INSTANTIATE_CLASS(CuDNNConvolutionLayer); diff --git a/src/caffe/layers/cudnn_conv_layer.cu b/src/caffe/layers/cudnn_conv_layer.cu index b4e802e13..8bc534624 100644 --- a/src/caffe/layers/cudnn_conv_layer.cu +++ b/src/caffe/layers/cudnn_conv_layer.cu @@ -1,11 +1,7 @@ #ifdef USE_CUDNN #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_conv_layer.hpp" namespace caffe { @@ -14,71 +10,27 @@ __global__ void sync_conv_groups() { } template void CuDNNConvolutionLayer::Forward_gpu( const vector*>& bottom, const vector*>& top) { + const Dtype* weight = this->blobs_[0]->gpu_data(); for (int i = 0; i < bottom.size(); ++i) { const Dtype* bottom_data = bottom[i]->gpu_data(); Dtype* top_data = top[i]->mutable_gpu_data(); - const Dtype* weight = this->blobs_[0]->gpu_data(); - - size_t workspace_limit_bytes = this->kernel_h_ * - this->kernel_w_ * - this->channels_ * - sizeof(int) + 1; // Forward through cuDNN in parallel over groups. for (int g = 0; g < this->group_; g++) { - cudnnConvolutionFwdAlgo_t algo; - - // pick the convolution algorithm - // TODO(shelhamer) this should be done during reshape - // TODO(shelhamer) the choice of automatic or manual algorithm picking - // should be exposed in proto - CUDNN_CHECK(cudnnGetConvolutionForwardAlgorithm(handle_[g], - bottom_descs_[i], - filter_desc_, - conv_descs_[i], - top_descs_[i], - CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, - workspace_limit_bytes, // memoryLimitInBytes, - &algo)); - - // get minimum size of the workspace needed for the desired algorithm - size_t workspaceSizeInBytes_temp = 0; - - CUDNN_CHECK(cudnnGetConvolutionForwardWorkspaceSize(handle_[g], - bottom_descs_[i], - filter_desc_, - conv_descs_[i], - top_descs_[i], - algo, - &workspaceSizeInBytes_temp)); - - if (workspaceSizeInBytes_temp > workspaceSizeInBytes) { - workspaceSizeInBytes = workspaceSizeInBytes_temp; - // free the existing workspace and allocate a new (larger) one - cudaFree(this->workspace); - cudaError_t err = cudaMalloc(&(this->workspace), workspaceSizeInBytes); - if (err != cudaSuccess) { - // force zero memory path - algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM; - workspace = NULL; - workspaceSizeInBytes = 0; - } - } - // Filters. CUDNN_CHECK(cudnnConvolutionForward(handle_[g], cudnn::dataType::one, bottom_descs_[i], bottom_data + bottom_offset_ * g, - filter_desc_, weight + weight_offset_ * g, + filter_desc_, weight + this->weight_offset_ * g, conv_descs_[i], - algo, workspace, workspaceSizeInBytes, + fwd_algo_[i], workspace[g], workspace_fwd_sizes_[i], cudnn::dataType::zero, top_descs_[i], top_data + top_offset_ * g)); // Bias. if (this->bias_term_) { const Dtype* bias_data = this->blobs_[1]->gpu_data(); - CUDNN_CHECK(cudnnAddTensor(handle_[g], CUDNN_ADD_SAME_C, + CUDNN_CHECK(cudnnAddTensor(handle_[g], cudnn::dataType::one, bias_desc_, bias_data + bias_offset_ * g, cudnn::dataType::one, @@ -122,13 +74,16 @@ void CuDNNConvolutionLayer::Backward_gpu(const vector*>& top, // Gradient w.r.t. weights. if (this->param_propagate_down_[0]) { const Dtype* bottom_data = bottom[i]->gpu_data(); - CUDNN_CHECK(cudnnConvolutionBackwardFilter(handle_[1*this->group_ + g], + CUDNN_CHECK(cudnnConvolutionBackwardFilter( + handle_[1*this->group_ + g], cudnn::dataType::one, bottom_descs_[i], bottom_data + bottom_offset_ * g, top_descs_[i], top_diff + top_offset_ * g, conv_descs_[i], + bwd_filter_algo_[i], workspace[1*this->group_ + g], + workspace_bwd_filter_sizes_[i], cudnn::dataType::one, - filter_desc_, weight_diff + weight_offset_ * g)); + filter_desc_, weight_diff + this->weight_offset_ * g)); } // Gradient w.r.t. bottom data. @@ -137,11 +92,14 @@ void CuDNNConvolutionLayer::Backward_gpu(const vector*>& top, weight = this->blobs_[0]->gpu_data(); } Dtype* bottom_diff = bottom[i]->mutable_gpu_diff(); - CUDNN_CHECK(cudnnConvolutionBackwardData(handle_[2*this->group_ + g], + CUDNN_CHECK(cudnnConvolutionBackwardData( + handle_[2*this->group_ + g], cudnn::dataType::one, - filter_desc_, weight + weight_offset_ * g, + filter_desc_, weight + this->weight_offset_ * g, top_descs_[i], top_diff + top_offset_ * g, conv_descs_[i], + bwd_data_algo_[i], workspace[2*this->group_ + g], + workspace_bwd_data_sizes_[i], cudnn::dataType::zero, bottom_descs_[i], bottom_diff + bottom_offset_ * g)); } diff --git a/src/caffe/layers/cudnn_lcn_layer.cpp b/src/caffe/layers/cudnn_lcn_layer.cpp new file mode 100644 index 000000000..9c09bf26b --- /dev/null +++ b/src/caffe/layers/cudnn_lcn_layer.cpp @@ -0,0 +1,73 @@ +#ifdef USE_CUDNN +#include + +#include "caffe/layers/cudnn_lcn_layer.hpp" + +namespace caffe { + +template +void CuDNNLCNLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + LRNLayer::LayerSetUp(bottom, top); + + CUDNN_CHECK(cudnnCreate(&handle_)); + CUDNN_CHECK(cudnnCreateLRNDescriptor(&norm_desc_)); + cudnn::createTensor4dDesc(&bottom_desc_); + cudnn::createTensor4dDesc(&top_desc_); + + // create a LRN handle + handles_setup_ = true; + + size_ = this->layer_param().lrn_param().local_size(); + pre_pad_ = (size_ - 1) / 2; + alpha_ = this->layer_param().lrn_param().alpha(); + beta_ = this->layer_param().lrn_param().beta(); + k_ = this->layer_param().lrn_param().k(); +} + +template +void CuDNNLCNLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + LRNLayer::Reshape(bottom, top); + cudnn::setTensor4dDesc(&bottom_desc_, bottom[0]->num(), + this->channels_, this->height_, this->width_); + cudnn::setTensor4dDesc(&top_desc_, bottom[0]->num(), + this->channels_, this->height_, this->width_); + CUDNN_CHECK(cudnnSetLRNDescriptor(norm_desc_, size_, alpha_, beta_, k_)); + + // allocate / reallocate tempData buffers + size_t totalSizeInBytes = sizeof(Dtype)*bottom[0]->num()* \ + this->channels_*this->height_*this->width_; + + if (totalSizeInBytes > tempDataSize) { + tempDataSize = totalSizeInBytes; + + cudaFree(tempData1); + cudaFree(tempData2); + + // allocate new buffers + CUDA_CHECK(cudaMalloc(&tempData1, totalSizeInBytes)); + CUDA_CHECK(cudaMalloc(&tempData2, totalSizeInBytes)); + } +} + +template +CuDNNLCNLayer::~CuDNNLCNLayer() { + // Check that handles have been setup before destroying. + if (!handles_setup_) { return; } + + cudnnDestroyTensorDescriptor(bottom_desc_); + cudnnDestroyTensorDescriptor(top_desc_); + + // destroy LRN handle + cudnnDestroy(handle_); + + // free temp buffers + cudaFree(tempData1); + cudaFree(tempData2); +} + +INSTANTIATE_CLASS(CuDNNLCNLayer); + +} // namespace caffe +#endif diff --git a/src/caffe/layers/cudnn_lcn_layer.cu b/src/caffe/layers/cudnn_lcn_layer.cu new file mode 100644 index 000000000..b44ef4730 --- /dev/null +++ b/src/caffe/layers/cudnn_lcn_layer.cu @@ -0,0 +1,46 @@ +#ifdef USE_CUDNN +#include + +#include "caffe/layers/cudnn_lcn_layer.hpp" + +namespace caffe { + +template +void CuDNNLCNLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + + CUDNN_CHECK(cudnnDivisiveNormalizationForward( + handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, + cudnn::dataType::one, + bottom_desc_, bottom_data, + NULL, // srcMeansData + this->tempData1, this->tempData2, + cudnn::dataType::zero, + top_desc_, top_data) ); +} + +template +void CuDNNLCNLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + const Dtype* top_diff = top[0]->gpu_diff(); + const Dtype* top_data = top[0]->gpu_data(); + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + + CUDNN_CHECK(cudnnDivisiveNormalizationBackward( + handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, + cudnn::dataType::one, + bottom_desc_, bottom_data, + NULL, top_diff, // NULL - srcMeansData + this->tempData1, this->tempData2, + cudnn::dataType::zero, + bottom_desc_, bottom_diff, + NULL) ); +} + +INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLCNLayer); + +} // namespace caffe +#endif diff --git a/src/caffe/layers/cudnn_lrn_layer.cpp b/src/caffe/layers/cudnn_lrn_layer.cpp new file mode 100644 index 000000000..0495b802b --- /dev/null +++ b/src/caffe/layers/cudnn_lrn_layer.cpp @@ -0,0 +1,53 @@ +#ifdef USE_CUDNN +#include + +#include "caffe/layers/cudnn_lrn_layer.hpp" + +namespace caffe { + +template +void CuDNNLRNLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + LRNLayer::LayerSetUp(bottom, top); + + CUDNN_CHECK(cudnnCreate(&handle_)); + CUDNN_CHECK(cudnnCreateLRNDescriptor(&norm_desc_)); + cudnn::createTensor4dDesc(&bottom_desc_); + cudnn::createTensor4dDesc(&top_desc_); + + // create a LRN handle + handles_setup_ = true; + + size_ = this->layer_param().lrn_param().local_size(); + alpha_ = this->layer_param().lrn_param().alpha(); + beta_ = this->layer_param().lrn_param().beta(); + k_ = this->layer_param().lrn_param().k(); +} + +template +void CuDNNLRNLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + LRNLayer::Reshape(bottom, top); + cudnn::setTensor4dDesc(&bottom_desc_, bottom[0]->num(), + this->channels_, this->height_, this->width_); + cudnn::setTensor4dDesc(&top_desc_, bottom[0]->num(), + this->channels_, this->height_, this->width_); + CUDNN_CHECK(cudnnSetLRNDescriptor(norm_desc_, size_, alpha_, beta_, k_)); +} + +template +CuDNNLRNLayer::~CuDNNLRNLayer() { + // Check that handles have been setup before destroying. + if (!handles_setup_) { return; } + + cudnnDestroyTensorDescriptor(bottom_desc_); + cudnnDestroyTensorDescriptor(top_desc_); + + // destroy LRN handle + cudnnDestroy(handle_); +} + +INSTANTIATE_CLASS(CuDNNLRNLayer); + +} // namespace caffe +#endif diff --git a/src/caffe/layers/cudnn_lrn_layer.cu b/src/caffe/layers/cudnn_lrn_layer.cu new file mode 100644 index 000000000..ca647f3c6 --- /dev/null +++ b/src/caffe/layers/cudnn_lrn_layer.cu @@ -0,0 +1,44 @@ +#ifdef USE_CUDNN +#include + +#include "caffe/layers/cudnn_lrn_layer.hpp" + +namespace caffe { + +template +void CuDNNLRNLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + + CUDNN_CHECK(cudnnLRNCrossChannelForward( + handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, + cudnn::dataType::one, + bottom_desc_, bottom_data, + cudnn::dataType::zero, + top_desc_, top_data) ); +} + +template +void CuDNNLRNLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + const Dtype* top_diff = top[0]->gpu_diff(); + const Dtype* top_data = top[0]->gpu_data(); + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + + CUDNN_CHECK(cudnnLRNCrossChannelBackward( + handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, + cudnn::dataType::one, + top_desc_, top_data, + top_desc_, top_diff, + bottom_desc_, bottom_data, + cudnn::dataType::zero, + bottom_desc_, bottom_diff) ); +} + +INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLRNLayer); + +}; // namespace caffe + +#endif diff --git a/src/caffe/layers/cudnn_pooling_layer.cpp b/src/caffe/layers/cudnn_pooling_layer.cpp index c92c4e477..24f14780b 100644 --- a/src/caffe/layers/cudnn_pooling_layer.cpp +++ b/src/caffe/layers/cudnn_pooling_layer.cpp @@ -1,11 +1,7 @@ #ifdef USE_CUDNN #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_pooling_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/cudnn_pooling_layer.cu b/src/caffe/layers/cudnn_pooling_layer.cu index a952b855a..6f00195fa 100644 --- a/src/caffe/layers/cudnn_pooling_layer.cu +++ b/src/caffe/layers/cudnn_pooling_layer.cu @@ -1,11 +1,7 @@ #ifdef USE_CUDNN #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_pooling_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/cudnn_relu_layer.cpp b/src/caffe/layers/cudnn_relu_layer.cpp index 759d83984..687c90576 100644 --- a/src/caffe/layers/cudnn_relu_layer.cpp +++ b/src/caffe/layers/cudnn_relu_layer.cpp @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_relu_layer.hpp" namespace caffe { @@ -15,6 +13,7 @@ void CuDNNReLULayer::LayerSetUp(const vector*>& bottom, CUDNN_CHECK(cudnnCreate(&handle_)); cudnn::createTensor4dDesc(&bottom_desc_); cudnn::createTensor4dDesc(&top_desc_); + cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_RELU); handles_setup_ = true; } @@ -37,6 +36,7 @@ CuDNNReLULayer::~CuDNNReLULayer() { cudnnDestroyTensorDescriptor(this->bottom_desc_); cudnnDestroyTensorDescriptor(this->top_desc_); + cudnnDestroyActivationDescriptor(this->activ_desc_); cudnnDestroy(this->handle_); } diff --git a/src/caffe/layers/cudnn_relu_layer.cu b/src/caffe/layers/cudnn_relu_layer.cu index 21d14857d..e7928bbd6 100644 --- a/src/caffe/layers/cudnn_relu_layer.cu +++ b/src/caffe/layers/cudnn_relu_layer.cu @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_relu_layer.hpp" namespace caffe { @@ -17,12 +15,21 @@ void CuDNNReLULayer::Forward_gpu(const vector*>& bottom, const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationForward(this->handle_, - CUDNN_ACTIVATION_RELU, + activ_desc_, cudnn::dataType::one, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->top_desc_, top_data)); +#else + CUDNN_CHECK(cudnnActivationForward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->top_desc_, top_data)); +#endif } template @@ -42,13 +49,23 @@ void CuDNNReLULayer::Backward_gpu(const vector*>& top, const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationBackward(this->handle_, - CUDNN_ACTIVATION_RELU, + activ_desc_, cudnn::dataType::one, this->top_desc_, top_data, this->top_desc_, top_diff, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->bottom_desc_, bottom_diff)); +#else + CUDNN_CHECK(cudnnActivationBackward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->top_desc_, top_data, this->top_desc_, top_diff, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->bottom_desc_, bottom_diff)); +#endif } INSTANTIATE_LAYER_GPU_FUNCS(CuDNNReLULayer); diff --git a/src/caffe/layers/cudnn_sigmoid_layer.cpp b/src/caffe/layers/cudnn_sigmoid_layer.cpp index 32637873d..3ce6aef17 100644 --- a/src/caffe/layers/cudnn_sigmoid_layer.cpp +++ b/src/caffe/layers/cudnn_sigmoid_layer.cpp @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_sigmoid_layer.hpp" namespace caffe { @@ -15,6 +13,8 @@ void CuDNNSigmoidLayer::LayerSetUp(const vector*>& bottom, CUDNN_CHECK(cudnnCreate(&handle_)); cudnn::createTensor4dDesc(&bottom_desc_); cudnn::createTensor4dDesc(&top_desc_); + cudnn::createActivationDescriptor(&activ_desc_, + CUDNN_ACTIVATION_SIGMOID); handles_setup_ = true; } diff --git a/src/caffe/layers/cudnn_sigmoid_layer.cu b/src/caffe/layers/cudnn_sigmoid_layer.cu index 7a06cf721..48d6cbab6 100644 --- a/src/caffe/layers/cudnn_sigmoid_layer.cu +++ b/src/caffe/layers/cudnn_sigmoid_layer.cu @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_sigmoid_layer.hpp" namespace caffe { @@ -12,12 +10,21 @@ void CuDNNSigmoidLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationForward(this->handle_, - CUDNN_ACTIVATION_SIGMOID, + activ_desc_, cudnn::dataType::one, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->top_desc_, top_data)); +#else + CUDNN_CHECK(cudnnActivationForward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->top_desc_, top_data)); +#endif } template @@ -32,13 +39,23 @@ void CuDNNSigmoidLayer::Backward_gpu(const vector*>& top, const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationBackward(this->handle_, - CUDNN_ACTIVATION_SIGMOID, + activ_desc_, cudnn::dataType::one, this->top_desc_, top_data, this->top_desc_, top_diff, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->bottom_desc_, bottom_diff)); +#else + CUDNN_CHECK(cudnnActivationBackward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->top_desc_, top_data, this->top_desc_, top_diff, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->bottom_desc_, bottom_diff)); +#endif } INSTANTIATE_LAYER_GPU_FUNCS(CuDNNSigmoidLayer); diff --git a/src/caffe/layers/cudnn_softmax_layer.cpp b/src/caffe/layers/cudnn_softmax_layer.cpp index 77a3225ad..6440df980 100644 --- a/src/caffe/layers/cudnn_softmax_layer.cpp +++ b/src/caffe/layers/cudnn_softmax_layer.cpp @@ -1,13 +1,9 @@ #ifdef USE_CUDNN -#include -#include #include #include "thrust/device_vector.h" -#include "caffe/layer.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_softmax_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/cudnn_softmax_layer.cu b/src/caffe/layers/cudnn_softmax_layer.cu index a9e2fcefa..7283eb715 100644 --- a/src/caffe/layers/cudnn_softmax_layer.cu +++ b/src/caffe/layers/cudnn_softmax_layer.cu @@ -1,13 +1,9 @@ #ifdef USE_CUDNN -#include -#include #include #include "thrust/device_vector.h" -#include "caffe/layer.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_softmax_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/cudnn_tanh_layer.cpp b/src/caffe/layers/cudnn_tanh_layer.cpp index 376faad32..e87dd9de0 100644 --- a/src/caffe/layers/cudnn_tanh_layer.cpp +++ b/src/caffe/layers/cudnn_tanh_layer.cpp @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_tanh_layer.hpp" namespace caffe { @@ -15,6 +13,7 @@ void CuDNNTanHLayer::LayerSetUp(const vector*>& bottom, CUDNN_CHECK(cudnnCreate(&handle_)); cudnn::createTensor4dDesc(&bottom_desc_); cudnn::createTensor4dDesc(&top_desc_); + cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_TANH); handles_setup_ = true; } diff --git a/src/caffe/layers/cudnn_tanh_layer.cu b/src/caffe/layers/cudnn_tanh_layer.cu index d287f6fee..6b5d7ae7e 100644 --- a/src/caffe/layers/cudnn_tanh_layer.cu +++ b/src/caffe/layers/cudnn_tanh_layer.cu @@ -1,9 +1,7 @@ #ifdef USE_CUDNN -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/cudnn_tanh_layer.hpp" namespace caffe { @@ -12,12 +10,21 @@ void CuDNNTanHLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationForward(this->handle_, - CUDNN_ACTIVATION_TANH, + activ_desc_, cudnn::dataType::one, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->top_desc_, top_data)); +#else + CUDNN_CHECK(cudnnActivationForward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->top_desc_, top_data)); +#endif } template @@ -33,13 +40,23 @@ void CuDNNTanHLayer::Backward_gpu(const vector*>& top, const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); +#if CUDNN_VERSION_MIN(5, 0, 0) CUDNN_CHECK(cudnnActivationBackward(this->handle_, - CUDNN_ACTIVATION_TANH, + activ_desc_, cudnn::dataType::one, this->top_desc_, top_data, this->top_desc_, top_diff, this->bottom_desc_, bottom_data, cudnn::dataType::zero, this->bottom_desc_, bottom_diff)); +#else + CUDNN_CHECK(cudnnActivationBackward_v4(this->handle_, + activ_desc_, + cudnn::dataType::one, + this->top_desc_, top_data, this->top_desc_, top_diff, + this->bottom_desc_, bottom_data, + cudnn::dataType::zero, + this->bottom_desc_, bottom_diff)); +#endif } INSTANTIATE_LAYER_GPU_FUNCS(CuDNNTanHLayer); diff --git a/src/caffe/layers/data_heatmap.cpp b/src/caffe/layers/data_heatmap.cpp index ce249985c..504cd831f 100644 --- a/src/caffe/layers/data_heatmap.cpp +++ b/src/caffe/layers/data_heatmap.cpp @@ -6,8 +6,9 @@ #include #include -#include "caffe/data_layers.hpp" + #include "caffe/layer.hpp" +#include "caffe/layers/base_data_layer.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" #include "caffe/util/rng.hpp" @@ -244,8 +245,8 @@ void DataHeatmapLayer::DataLayerSetUp(const vector*>& bottom, // init data this->transformed_data_.Reshape(batchsize, this->datum_channels_, outsize, outsize); top[0]->Reshape(batchsize, this->datum_channels_, outsize, outsize); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) - this->prefetch_[i].data_.Reshape(batchsize, this->datum_channels_, outsize, outsize); + for (int i = 0; i < this->prefetch_.size(); ++i) + this->prefetch_[i]->data_.Reshape(batchsize, this->datum_channels_, outsize, outsize); this->datum_size_ = this->datum_channels_ * outsize * outsize; // init label @@ -256,8 +257,8 @@ void DataHeatmapLayer::DataLayerSetUp(const vector*>& bottom, label_num_channels = img_list_[0][0].second.first.size(); label_num_channels /= 2; top[1]->Reshape(label_batchsize, label_num_channels, label_height, label_width); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) - this->prefetch_[i].label_.Reshape(label_batchsize, label_num_channels, label_height, label_width); + for (int i = 0; i < this->prefetch_.size(); ++i) + this->prefetch_[i]->label_.Reshape(label_batchsize, label_num_channels, label_height, label_width); LOG(INFO) << "output data size: " << top[0]->num() << "," << top[0]->channels() << "," << top[0]->height() << "," << top[0]->width(); LOG(INFO) << "output label size: " << top[1]->num() << "," << top[1]->channels() << "," << top[1]->height() << "," << top[1]->width(); diff --git a/src/caffe/layers/data_layer.cpp b/src/caffe/layers/data_layer.cpp index 0932d9fef..0f1296bbc 100644 --- a/src/caffe/layers/data_layer.cpp +++ b/src/caffe/layers/data_layer.cpp @@ -1,23 +1,23 @@ +#ifdef USE_OPENCV #include - +#endif // USE_OPENCV #include -#include #include -#include "caffe/common.hpp" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/proto/caffe.pb.h" +#include "caffe/data_transformer.hpp" +#include "caffe/layers/data_layer.hpp" #include "caffe/util/benchmark.hpp" -#include "caffe/util/io.hpp" namespace caffe { template DataLayer::DataLayer(const LayerParameter& param) : BasePrefetchingDataLayer(param), - reader_(param) { + offset_() { + db_.reset(db::GetDB(param.data_param().backend())); + db_->Open(param.data_param().source(), db::READ); + cursor_.reset(db_->NewCursor()); } template @@ -30,7 +30,8 @@ void DataLayer::DataLayerSetUp(const vector*>& bottom, const vector*>& top) { const int batch_size = this->layer_param_.data_param().batch_size(); // Read a data point, and use it to initialize the top blob. - Datum& datum = *(reader_.full().peek()); + Datum datum; + datum.ParseFromString(cursor_->value()); // Use data_transformer to infer the expected blob shape from datum. vector top_shape = this->data_transformer_->InferBlobShape(datum); @@ -38,22 +39,44 @@ void DataLayer::DataLayerSetUp(const vector*>& bottom, // Reshape top[0] and prefetch_data according to the batch_size. top_shape[0] = batch_size; top[0]->Reshape(top_shape); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) { - this->prefetch_[i].data_.Reshape(top_shape); + for (int i = 0; i < this->prefetch_.size(); ++i) { + this->prefetch_[i]->data_.Reshape(top_shape); } - LOG(INFO) << "output data size: " << top[0]->num() << "," + LOG_IF(INFO, Caffe::root_solver()) + << "output data size: " << top[0]->num() << "," << top[0]->channels() << "," << top[0]->height() << "," << top[0]->width(); // label if (this->output_labels_) { vector label_shape(1, batch_size); top[1]->Reshape(label_shape); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) { - this->prefetch_[i].label_.Reshape(label_shape); + for (int i = 0; i < this->prefetch_.size(); ++i) { + this->prefetch_[i]->label_.Reshape(label_shape); } } } +template +bool DataLayer::Skip() { + int size = Caffe::solver_count(); + int rank = Caffe::solver_rank(); + bool keep = (offset_ % size) == rank || + // In test mode, only rank 0 runs, so avoid skipping + this->layer_param_.phase() == TEST; + return !keep; +} + +template +void DataLayer::Next() { + cursor_->Next(); + if (!cursor_->valid()) { + LOG_IF(INFO, Caffe::root_solver()) + << "Restarting data prefetching from start."; + cursor_->SeekToFirst(); + } + offset_++; +} + // This function is called on prefetch thread template void DataLayer::load_batch(Batch* batch) { @@ -64,41 +87,41 @@ void DataLayer::load_batch(Batch* batch) { CPUTimer timer; CHECK(batch->data_.count()); CHECK(this->transformed_data_.count()); - - // Reshape according to the first datum of each batch - // on single input batches allows for inputs of varying dimension. const int batch_size = this->layer_param_.data_param().batch_size(); - Datum& datum = *(reader_.full().peek()); - // Use data_transformer to infer the expected blob shape from datum. - vector top_shape = this->data_transformer_->InferBlobShape(datum); - this->transformed_data_.Reshape(top_shape); - // Reshape batch according to the batch_size. - top_shape[0] = batch_size; - batch->data_.Reshape(top_shape); - - Dtype* top_data = batch->data_.mutable_cpu_data(); - Dtype* top_label = NULL; // suppress warnings about uninitialized variables - if (this->output_labels_) { - top_label = batch->label_.mutable_cpu_data(); - } + Datum datum; for (int item_id = 0; item_id < batch_size; ++item_id) { timer.Start(); - // get a datum - Datum& datum = *(reader_.full().pop("Waiting for data")); + while (Skip()) { + Next(); + } + datum.ParseFromString(cursor_->value()); read_time += timer.MicroSeconds(); - timer.Start(); + + if (item_id == 0) { + // Reshape according to the first datum of each batch + // on single input batches allows for inputs of varying dimension. + // Use data_transformer to infer the expected blob shape from datum. + vector top_shape = this->data_transformer_->InferBlobShape(datum); + this->transformed_data_.Reshape(top_shape); + // Reshape batch according to the batch_size. + top_shape[0] = batch_size; + batch->data_.Reshape(top_shape); + } + // Apply data transformations (mirror, scale, crop...) + timer.Start(); int offset = batch->data_.offset(item_id); + Dtype* top_data = batch->data_.mutable_cpu_data(); this->transformed_data_.set_cpu_data(top_data + offset); this->data_transformer_->Transform(datum, &(this->transformed_data_)); // Copy label. if (this->output_labels_) { + Dtype* top_label = batch->label_.mutable_cpu_data(); top_label[item_id] = datum.label(); } trans_time += timer.MicroSeconds(); - - reader_.free().push(const_cast(&datum)); + Next(); } timer.Stop(); batch_timer.Stop(); diff --git a/src/caffe/layers/deconv_layer.cpp b/src/caffe/layers/deconv_layer.cpp index a4612963b..20a460fbd 100644 --- a/src/caffe/layers/deconv_layer.cpp +++ b/src/caffe/layers/deconv_layer.cpp @@ -1,19 +1,24 @@ #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/deconv_layer.hpp" namespace caffe { template void DeconvolutionLayer::compute_output_shape() { - this->height_out_ = this->stride_h_ * (this->height_ - 1) + this->kernel_h_ - - 2 * this->pad_h_; - this->width_out_ = this->stride_w_ * (this->width_ - 1) + this->kernel_w_ - - 2 * this->pad_w_; + const int* kernel_shape_data = this->kernel_shape_.cpu_data(); + const int* stride_data = this->stride_.cpu_data(); + const int* pad_data = this->pad_.cpu_data(); + const int* dilation_data = this->dilation_.cpu_data(); + this->output_shape_.clear(); + for (int i = 0; i < this->num_spatial_axes_; ++i) { + // i + 1 to skip channel axis + const int input_dim = this->input_shape(i + 1); + const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1; + const int output_dim = stride_data[i] * (input_dim - 1) + + kernel_extent - 2 * pad_data[i]; + this->output_shape_.push_back(output_dim); + } } template @@ -24,11 +29,11 @@ void DeconvolutionLayer::Forward_cpu(const vector*>& bottom, const Dtype* bottom_data = bottom[i]->cpu_data(); Dtype* top_data = top[i]->mutable_cpu_data(); for (int n = 0; n < this->num_; ++n) { - this->backward_cpu_gemm(bottom_data + bottom[i]->offset(n), weight, - top_data + top[i]->offset(n)); + this->backward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight, + top_data + n * this->top_dim_); if (this->bias_term_) { const Dtype* bias = this->blobs_[1]->cpu_data(); - this->forward_cpu_bias(top_data + top[i]->offset(n), bias); + this->forward_cpu_bias(top_data + n * this->top_dim_, bias); } } } @@ -47,21 +52,21 @@ void DeconvolutionLayer::Backward_cpu(const vector*>& top, if (this->bias_term_ && this->param_propagate_down_[1]) { Dtype* bias_diff = this->blobs_[1]->mutable_cpu_diff(); for (int n = 0; n < this->num_; ++n) { - this->backward_cpu_bias(bias_diff, top_diff + top[i]->offset(n)); + this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_); } } if (this->param_propagate_down_[0] || propagate_down[i]) { for (int n = 0; n < this->num_; ++n) { // Gradient w.r.t. weight. Note that we will accumulate diffs. if (this->param_propagate_down_[0]) { - this->weight_cpu_gemm(top_diff + top[i]->offset(n), - bottom_data + bottom[i]->offset(n), weight_diff); + this->weight_cpu_gemm(top_diff + n * this->top_dim_, + bottom_data + n * this->bottom_dim_, weight_diff); } // Gradient w.r.t. bottom data, if necessary, reusing the column buffer // we might have just computed above. if (propagate_down[i]) { - this->forward_cpu_gemm(top_diff + top[i]->offset(n), weight, - bottom_diff + bottom[i]->offset(n), + this->forward_cpu_gemm(top_diff + n * this->top_dim_, weight, + bottom_diff + n * this->bottom_dim_, this->param_propagate_down_[0]); } } diff --git a/src/caffe/layers/deconv_layer.cu b/src/caffe/layers/deconv_layer.cu index 8a1eed8aa..226763223 100644 --- a/src/caffe/layers/deconv_layer.cu +++ b/src/caffe/layers/deconv_layer.cu @@ -1,10 +1,6 @@ #include -#include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/im2col.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/deconv_layer.hpp" namespace caffe { @@ -16,11 +12,11 @@ void DeconvolutionLayer::Forward_gpu(const vector*>& bottom, const Dtype* bottom_data = bottom[i]->gpu_data(); Dtype* top_data = top[i]->mutable_gpu_data(); for (int n = 0; n < this->num_; ++n) { - this->backward_gpu_gemm(bottom_data + bottom[i]->offset(n), weight, - top_data + top[i]->offset(n)); + this->backward_gpu_gemm(bottom_data + n * this->bottom_dim_, weight, + top_data + n * this->top_dim_); if (this->bias_term_) { const Dtype* bias = this->blobs_[1]->gpu_data(); - this->forward_gpu_bias(top_data + top[i]->offset(n), bias); + this->forward_gpu_bias(top_data + n * this->top_dim_, bias); } } } @@ -39,20 +35,20 @@ void DeconvolutionLayer::Backward_gpu(const vector*>& top, if (this->bias_term_ && this->param_propagate_down_[1]) { Dtype* bias_diff = this->blobs_[1]->mutable_gpu_diff(); for (int n = 0; n < this->num_; ++n) { - this->backward_gpu_bias(bias_diff, top_diff + top[i]->offset(n)); + this->backward_gpu_bias(bias_diff, top_diff + n * this->top_dim_); } } if (this->param_propagate_down_[0] || propagate_down[i]) { for (int n = 0; n < this->num_; ++n) { // gradient w.r.t. weight. Note that we will accumulate diffs. if (this->param_propagate_down_[0]) { - this->weight_gpu_gemm(top_diff + top[i]->offset(n), - bottom_data + bottom[i]->offset(n), weight_diff); + this->weight_gpu_gemm(top_diff + n * this->top_dim_, + bottom_data + n * this->bottom_dim_, weight_diff); } // gradient w.r.t. bottom data, if necessary. if (propagate_down[i]) { - this->forward_gpu_gemm(top_diff + top[i]->offset(n), weight, - bottom_diff + bottom[i]->offset(n), + this->forward_gpu_gemm(top_diff + n * this->top_dim_, weight, + bottom_diff + n * this->bottom_dim_, this->param_propagate_down_[0]); } } diff --git a/src/caffe/layers/dropout_layer.cpp b/src/caffe/layers/dropout_layer.cpp index ec1256fd2..533ab26c0 100644 --- a/src/caffe/layers/dropout_layer.cpp +++ b/src/caffe/layers/dropout_layer.cpp @@ -2,11 +2,8 @@ #include -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/syncedmem.hpp" +#include "caffe/layers/dropout_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -26,8 +23,8 @@ void DropoutLayer::Reshape(const vector*>& bottom, const vector*>& top) { NeuronLayer::Reshape(bottom, top); // Set up the cache for random number generation - rand_vec_.Reshape(bottom[0]->num(), bottom[0]->channels(), - bottom[0]->height(), bottom[0]->width()); + // ReshapeLike does not work because rand_vec_ is of Dtype uint + rand_vec_.Reshape(bottom[0]->shape()); } template diff --git a/src/caffe/layers/dropout_layer.cu b/src/caffe/layers/dropout_layer.cu index f9ea04f4a..186c10ca4 100644 --- a/src/caffe/layers/dropout_layer.cu +++ b/src/caffe/layers/dropout_layer.cu @@ -1,16 +1,10 @@ -#include -#include #include -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/syncedmem.hpp" +#include "caffe/layers/dropout_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { - template __global__ void DropoutForward(const int n, const Dtype* in, const unsigned int* mask, const unsigned int threshold, const float scale, @@ -73,5 +67,4 @@ void DropoutLayer::Backward_gpu(const vector*>& top, INSTANTIATE_LAYER_GPU_FUNCS(DropoutLayer); - } // namespace caffe diff --git a/src/caffe/layers/dummy_data_layer.cpp b/src/caffe/layers/dummy_data_layer.cpp index 6b0d61746..e382bfea8 100644 --- a/src/caffe/layers/dummy_data_layer.cpp +++ b/src/caffe/layers/dummy_data_layer.cpp @@ -1,8 +1,7 @@ #include #include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/dummy_data_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/eltwise_layer.cpp b/src/caffe/layers/eltwise_layer.cpp index a80700736..3d82b0e1c 100644 --- a/src/caffe/layers/eltwise_layer.cpp +++ b/src/caffe/layers/eltwise_layer.cpp @@ -1,9 +1,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/eltwise_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -32,7 +31,9 @@ template void EltwiseLayer::Reshape(const vector*>& bottom, const vector*>& top) { for (int i = 1; i < bottom.size(); ++i) { - CHECK(bottom[i]->shape() == bottom[0]->shape()); + CHECK(bottom[0]->shape() == bottom[i]->shape()) + << "bottom[0]: " << bottom[0]->shape_string() + << ", bottom[" << i << "]: " << bottom[i]->shape_string(); } top[0]->ReshapeLike(*bottom[0]); // If max operation, we will initialize the vector index part. diff --git a/src/caffe/layers/eltwise_layer.cu b/src/caffe/layers/eltwise_layer.cu index 2247870d9..c142852e0 100644 --- a/src/caffe/layers/eltwise_layer.cu +++ b/src/caffe/layers/eltwise_layer.cu @@ -1,9 +1,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/eltwise_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/elu_layer.cpp b/src/caffe/layers/elu_layer.cpp new file mode 100644 index 000000000..a0f87635a --- /dev/null +++ b/src/caffe/layers/elu_layer.cpp @@ -0,0 +1,47 @@ +#include +#include + +#include "caffe/layers/elu_layer.hpp" + +namespace caffe { + +template +void ELULayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->cpu_data(); + Dtype* top_data = top[0]->mutable_cpu_data(); + const int count = bottom[0]->count(); + Dtype alpha = this->layer_param_.elu_param().alpha(); + for (int i = 0; i < count; ++i) { + top_data[i] = std::max(bottom_data[i], Dtype(0)) + + alpha * (exp(std::min(bottom_data[i], Dtype(0))) - Dtype(1)); + } +} + +template +void ELULayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, + const vector*>& bottom) { + if (propagate_down[0]) { + const Dtype* bottom_data = bottom[0]->cpu_data(); + const Dtype* top_data = top[0]->cpu_data(); + const Dtype* top_diff = top[0]->cpu_diff(); + Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); + const int count = bottom[0]->count(); + Dtype alpha = this->layer_param_.elu_param().alpha(); + for (int i = 0; i < count; ++i) { + bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) + + (alpha + top_data[i]) * (bottom_data[i] <= 0)); + } + } +} + + +#ifdef CPU_ONLY +STUB_GPU(ELULayer); +#endif + +INSTANTIATE_CLASS(ELULayer); +REGISTER_LAYER_CLASS(ELU); + +} // namespace caffe diff --git a/src/caffe/layers/elu_layer.cu b/src/caffe/layers/elu_layer.cu new file mode 100644 index 000000000..12545aa82 --- /dev/null +++ b/src/caffe/layers/elu_layer.cu @@ -0,0 +1,62 @@ +#include +#include + +#include "caffe/layers/elu_layer.hpp" + +namespace caffe { + +template +__global__ void ELUForward(const int n, const Dtype* in, Dtype* out, + Dtype alpha) { + CUDA_KERNEL_LOOP(index, n) { + out[index] = in[index] > 0 ? in[index] : + alpha * (exp(in[index]) - 1); + } +} + +template +void ELULayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + const int count = bottom[0]->count(); + Dtype alpha = this->layer_param_.elu_param().alpha(); + // NOLINT_NEXT_LINE(whitespace/operators) + ELUForward<<>>( + count, bottom_data, top_data, alpha); + CUDA_POST_KERNEL_CHECK; +} + +template +__global__ void ELUBackward(const int n, const Dtype* in_diff, + const Dtype* out_data, const Dtype* in_data, + Dtype* out_diff, Dtype alpha) { + CUDA_KERNEL_LOOP(index, n) { + out_diff[index] = in_data[index] > 0 ? in_diff[index] : + in_diff[index] * (out_data[index] + alpha); + } +} + +template +void ELULayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, + const vector*>& bottom) { + if (propagate_down[0]) { + const Dtype* bottom_data = bottom[0]->gpu_data(); + const Dtype* top_diff = top[0]->gpu_diff(); + const Dtype* top_data = top[0]->gpu_data(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + const int count = bottom[0]->count(); + Dtype alpha = this->layer_param_.elu_param().alpha(); + // NOLINT_NEXT_LINE(whitespace/operators) + ELUBackward<<>>( + count, top_diff, top_data, bottom_data, bottom_diff, alpha); + CUDA_POST_KERNEL_CHECK; + } +} + + +INSTANTIATE_LAYER_GPU_FUNCS(ELULayer); + + +} // namespace caffe diff --git a/src/caffe/layers/embed_layer.cpp b/src/caffe/layers/embed_layer.cpp index be6b2cd27..36b40d700 100644 --- a/src/caffe/layers/embed_layer.cpp +++ b/src/caffe/layers/embed_layer.cpp @@ -1,10 +1,7 @@ #include -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/common_layers.hpp" #include "caffe/filler.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/embed_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/embed_layer.cu b/src/caffe/layers/embed_layer.cu index 62a4db813..6324a3a89 100644 --- a/src/caffe/layers/embed_layer.cu +++ b/src/caffe/layers/embed_layer.cu @@ -1,10 +1,7 @@ #include -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/common_layers.hpp" #include "caffe/filler.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/embed_layer.hpp" #include "caffe/util/gpu_util.cuh" #include "caffe/util/math_functions.hpp" diff --git a/src/caffe/layers/euclidean_loss_heatmap_layer.cpp b/src/caffe/layers/euclidean_loss_heatmap_layer.cpp index 8f8c5ed1d..863dd763d 100644 --- a/src/caffe/layers/euclidean_loss_heatmap_layer.cpp +++ b/src/caffe/layers/euclidean_loss_heatmap_layer.cpp @@ -3,7 +3,8 @@ #include "caffe/layer.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/loss_layer.hpp" +//#include "caffe/vision_layers.hpp" #include #include diff --git a/src/caffe/layers/euclidean_loss_layer.cpp b/src/caffe/layers/euclidean_loss_layer.cpp index 80efa31b2..300d991e7 100644 --- a/src/caffe/layers/euclidean_loss_layer.cpp +++ b/src/caffe/layers/euclidean_loss_layer.cpp @@ -1,9 +1,7 @@ #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/euclidean_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/euclidean_loss_layer.cu b/src/caffe/layers/euclidean_loss_layer.cu index 5b1de3ad2..4c221b64f 100644 --- a/src/caffe/layers/euclidean_loss_layer.cu +++ b/src/caffe/layers/euclidean_loss_layer.cu @@ -1,9 +1,7 @@ #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/euclidean_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/exp_layer.cpp b/src/caffe/layers/exp_layer.cpp index c7e7c60cf..0c1b463ae 100644 --- a/src/caffe/layers/exp_layer.cpp +++ b/src/caffe/layers/exp_layer.cpp @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/exp_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -25,7 +23,8 @@ void ExpLayer::LayerSetUp(const vector*>& bottom, const Dtype input_scale = this->layer_param_.exp_param().scale(); const Dtype input_shift = this->layer_param_.exp_param().shift(); inner_scale_ = log_base * input_scale; - outer_scale_ = (input_shift == Dtype(0)) ? Dtype(1) : pow(base, input_shift); + outer_scale_ = (input_shift == Dtype(0)) ? Dtype(1) : + ( (base != Dtype(-1)) ? pow(base, input_shift) : exp(input_shift) ); } template diff --git a/src/caffe/layers/exp_layer.cu b/src/caffe/layers/exp_layer.cu index 2d75d8dd6..61f7f11dd 100644 --- a/src/caffe/layers/exp_layer.cu +++ b/src/caffe/layers/exp_layer.cu @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/exp_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/filter_layer.cpp b/src/caffe/layers/filter_layer.cpp index be1db32db..e226c0b6c 100644 --- a/src/caffe/layers/filter_layer.cpp +++ b/src/caffe/layers/filter_layer.cpp @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/filter_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/filter_layer.cu b/src/caffe/layers/filter_layer.cu index cf929eeea..b01b16f84 100644 --- a/src/caffe/layers/filter_layer.cu +++ b/src/caffe/layers/filter_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/filter_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/flatten_layer.cpp b/src/caffe/layers/flatten_layer.cpp index f7e5c9c21..d4ab39357 100644 --- a/src/caffe/layers/flatten_layer.cpp +++ b/src/caffe/layers/flatten_layer.cpp @@ -1,14 +1,14 @@ #include -#include "caffe/layer.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/flatten_layer.hpp" namespace caffe { template void FlattenLayer::Reshape(const vector*>& bottom, const vector*>& top) { + CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " + "allow in-place computation."; const int start_axis = bottom[0]->CanonicalAxisIndex( this->layer_param_.flatten_param().axis()); const int end_axis = bottom[0]->CanonicalAxisIndex( diff --git a/src/caffe/layers/hdf5_data_layer.cpp b/src/caffe/layers/hdf5_data_layer.cpp index 8ced51039..00716a92b 100644 --- a/src/caffe/layers/hdf5_data_layer.cpp +++ b/src/caffe/layers/hdf5_data_layer.cpp @@ -14,8 +14,7 @@ #include "hdf5_hl.h" #include "stdint.h" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/hdf5_data_layer.hpp" #include "caffe/util/hdf5.hpp" namespace caffe { @@ -40,8 +39,9 @@ void HDF5DataLayer::LoadHDF5FileData(const char* filename) { for (int i = 0; i < top_size; ++i) { hdf_blobs_[i] = shared_ptr >(new Blob()); + // Allow reshape here, as we are loading data not params hdf5_load_nd_dataset(file_id, this->layer_param_.top(i).c_str(), - MIN_DATA_DIM, MAX_DATA_DIM, hdf_blobs_[i].get()); + MIN_DATA_DIM, MAX_DATA_DIM, hdf_blobs_[i].get(), true); } herr_t status = H5Fclose(file_id); @@ -62,10 +62,10 @@ void HDF5DataLayer::LoadHDF5FileData(const char* filename) { // Shuffle if needed. if (this->layer_param_.hdf5_data_param().shuffle()) { std::random_shuffle(data_permutation_.begin(), data_permutation_.end()); - DLOG(INFO) << "Successully loaded " << hdf_blobs_[0]->shape(0) + DLOG(INFO) << "Successfully loaded " << hdf_blobs_[0]->shape(0) << " rows (shuffled)"; } else { - DLOG(INFO) << "Successully loaded " << hdf_blobs_[0]->shape(0) << " rows"; + DLOG(INFO) << "Successfully loaded " << hdf_blobs_[0]->shape(0) << " rows"; } } @@ -125,28 +125,46 @@ void HDF5DataLayer::LayerSetUp(const vector*>& bottom, } } +template +bool HDF5DataLayer::Skip() { + int size = Caffe::solver_count(); + int rank = Caffe::solver_rank(); + bool keep = (offset_ % size) == rank || + // In test mode, only rank 0 runs, so avoid skipping + this->layer_param_.phase() == TEST; + return !keep; +} + +template +void HDF5DataLayer::Next() { + if (++current_row_ == hdf_blobs_[0]->shape(0)) { + if (num_files_ > 1) { + ++current_file_; + if (current_file_ == num_files_) { + current_file_ = 0; + if (this->layer_param_.hdf5_data_param().shuffle()) { + std::random_shuffle(file_permutation_.begin(), + file_permutation_.end()); + } + DLOG(INFO) << "Looping around to first file."; + } + LoadHDF5FileData( + hdf_filenames_[file_permutation_[current_file_]].c_str()); + } + current_row_ = 0; + if (this->layer_param_.hdf5_data_param().shuffle()) + std::random_shuffle(data_permutation_.begin(), data_permutation_.end()); + } + offset_++; +} + template void HDF5DataLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { const int batch_size = this->layer_param_.hdf5_data_param().batch_size(); - for (int i = 0; i < batch_size; ++i, ++current_row_) { - if (current_row_ == hdf_blobs_[0]->shape(0)) { - if (num_files_ > 1) { - ++current_file_; - if (current_file_ == num_files_) { - current_file_ = 0; - if (this->layer_param_.hdf5_data_param().shuffle()) { - std::random_shuffle(file_permutation_.begin(), - file_permutation_.end()); - } - DLOG(INFO) << "Looping around to first file."; - } - LoadHDF5FileData( - hdf_filenames_[file_permutation_[current_file_]].c_str()); - } - current_row_ = 0; - if (this->layer_param_.hdf5_data_param().shuffle()) - std::random_shuffle(data_permutation_.begin(), data_permutation_.end()); + for (int i = 0; i < batch_size; ++i) { + while (Skip()) { + Next(); } for (int j = 0; j < this->layer_param_.top_size(); ++j) { int data_dim = top[j]->count() / top[j]->shape(0); @@ -154,6 +172,7 @@ void HDF5DataLayer::Forward_cpu(const vector*>& bottom, &hdf_blobs_[j]->cpu_data()[data_permutation_[current_row_] * data_dim], &top[j]->mutable_cpu_data()[i * data_dim]); } + Next(); } } diff --git a/src/caffe/layers/hdf5_data_layer.cu b/src/caffe/layers/hdf5_data_layer.cu index 5e3e4ced1..33eebd41d 100644 --- a/src/caffe/layers/hdf5_data_layer.cu +++ b/src/caffe/layers/hdf5_data_layer.cu @@ -4,15 +4,12 @@ TODO: */ #include -#include #include #include "hdf5.h" #include "hdf5_hl.h" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/hdf5_data_layer.hpp" namespace caffe { @@ -20,24 +17,9 @@ template void HDF5DataLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { const int batch_size = this->layer_param_.hdf5_data_param().batch_size(); - for (int i = 0; i < batch_size; ++i, ++current_row_) { - if (current_row_ == hdf_blobs_[0]->shape(0)) { - if (num_files_ > 1) { - current_file_ += 1; - if (current_file_ == num_files_) { - current_file_ = 0; - if (this->layer_param_.hdf5_data_param().shuffle()) { - std::random_shuffle(file_permutation_.begin(), - file_permutation_.end()); - } - DLOG(INFO) << "Looping around to first file."; - } - LoadHDF5FileData( - hdf_filenames_[file_permutation_[current_file_]].c_str()); - } - current_row_ = 0; - if (this->layer_param_.hdf5_data_param().shuffle()) - std::random_shuffle(data_permutation_.begin(), data_permutation_.end()); + for (int i = 0; i < batch_size; ++i) { + while (Skip()) { + Next(); } for (int j = 0; j < this->layer_param_.top_size(); ++j) { int data_dim = top[j]->count() / top[j]->shape(0); @@ -45,6 +27,7 @@ void HDF5DataLayer::Forward_gpu(const vector*>& bottom, &hdf_blobs_[j]->cpu_data()[data_permutation_[current_row_] * data_dim], &top[j]->mutable_gpu_data()[i * data_dim]); } + Next(); } } diff --git a/src/caffe/layers/hdf5_output_layer.cpp b/src/caffe/layers/hdf5_output_layer.cpp index 56788c21e..f8f1edcd1 100644 --- a/src/caffe/layers/hdf5_output_layer.cpp +++ b/src/caffe/layers/hdf5_output_layer.cpp @@ -3,11 +3,8 @@ #include "hdf5.h" #include "hdf5_hl.h" -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/hdf5_output_layer.hpp" #include "caffe/util/hdf5.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/hdf5_output_layer.cu b/src/caffe/layers/hdf5_output_layer.cu index eb6d0e470..c1685cd34 100644 --- a/src/caffe/layers/hdf5_output_layer.cu +++ b/src/caffe/layers/hdf5_output_layer.cu @@ -3,10 +3,7 @@ #include "hdf5.h" #include "hdf5_hl.h" -#include "caffe/blob.hpp" -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/hdf5_output_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/hinge_loss_layer.cpp b/src/caffe/layers/hinge_loss_layer.cpp index a2fb2a183..374aed3c9 100644 --- a/src/caffe/layers/hinge_loss_layer.cpp +++ b/src/caffe/layers/hinge_loss_layer.cpp @@ -1,12 +1,8 @@ #include -#include -#include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/hinge_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/im2col_layer.cpp b/src/caffe/layers/im2col_layer.cpp index 1c802714e..2fb9b3c10 100644 --- a/src/caffe/layers/im2col_layer.cpp +++ b/src/caffe/layers/im2col_layer.cpp @@ -1,9 +1,7 @@ #include -#include "caffe/common.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/im2col_layer.hpp" #include "caffe/util/im2col.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -11,54 +9,122 @@ template void Im2colLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { ConvolutionParameter conv_param = this->layer_param_.convolution_param(); - CHECK(!conv_param.has_kernel_size() != - !(conv_param.has_kernel_h() && conv_param.has_kernel_w())) - << "Filter size is kernel_size OR kernel_h and kernel_w; not both"; - CHECK(conv_param.has_kernel_size() || - (conv_param.has_kernel_h() && conv_param.has_kernel_w())) - << "For non-square filters both kernel_h and kernel_w are required."; - CHECK((!conv_param.has_pad() && conv_param.has_pad_h() - && conv_param.has_pad_w()) - || (!conv_param.has_pad_h() && !conv_param.has_pad_w())) - << "pad is pad OR pad_h and pad_w are required."; - CHECK((!conv_param.has_stride() && conv_param.has_stride_h() - && conv_param.has_stride_w()) - || (!conv_param.has_stride_h() && !conv_param.has_stride_w())) - << "Stride is stride OR stride_h and stride_w are required."; - if (conv_param.has_kernel_size()) { - kernel_h_ = kernel_w_ = conv_param.kernel_size(); + force_nd_im2col_ = conv_param.force_nd_im2col(); + const int input_num_dims = bottom[0]->shape().size(); + channel_axis_ = bottom[0]->CanonicalAxisIndex(conv_param.axis()); + const int first_spatial_dim = channel_axis_ + 1; + num_spatial_axes_ = input_num_dims - first_spatial_dim; + CHECK_GE(num_spatial_axes_, 1); + vector dim_blob_shape(1, num_spatial_axes_); + // Setup filter kernel dimensions (kernel_shape_). + kernel_shape_.Reshape(dim_blob_shape); + int* kernel_shape_data = kernel_shape_.mutable_cpu_data(); + if (conv_param.has_kernel_h() || conv_param.has_kernel_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "kernel_h & kernel_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.kernel_size_size()) + << "Either kernel_size or kernel_h/w should be specified; not both."; + kernel_shape_data[0] = conv_param.kernel_h(); + kernel_shape_data[1] = conv_param.kernel_w(); } else { - kernel_h_ = conv_param.kernel_h(); - kernel_w_ = conv_param.kernel_w(); + const int num_kernel_dims = conv_param.kernel_size_size(); + CHECK(num_kernel_dims == 1 || num_kernel_dims == num_spatial_axes_) + << "kernel_size must be specified once, or once per spatial dimension " + << "(kernel_size specified " << num_kernel_dims << " times; " + << num_spatial_axes_ << " spatial dims);"; + for (int i = 0; i < num_spatial_axes_; ++i) { + kernel_shape_data[i] = + conv_param.kernel_size((num_kernel_dims == 1) ? 0 : i); + } } - CHECK_GT(kernel_h_, 0) << "Filter dimensions cannot be zero."; - CHECK_GT(kernel_w_, 0) << "Filter dimensions cannot be zero."; - if (!conv_param.has_pad_h()) { - pad_h_ = pad_w_ = conv_param.pad(); + for (int i = 0; i < num_spatial_axes_; ++i) { + CHECK_GT(kernel_shape_data[i], 0) << "Filter dimensions must be nonzero."; + } + // Setup stride dimensions (stride_). + stride_.Reshape(dim_blob_shape); + int* stride_data = stride_.mutable_cpu_data(); + if (conv_param.has_stride_h() || conv_param.has_stride_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "stride_h & stride_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.stride_size()) + << "Either stride or stride_h/w should be specified; not both."; + stride_data[0] = conv_param.stride_h(); + stride_data[1] = conv_param.stride_w(); } else { - pad_h_ = conv_param.pad_h(); - pad_w_ = conv_param.pad_w(); + const int num_stride_dims = conv_param.stride_size(); + CHECK(num_stride_dims == 0 || num_stride_dims == 1 || + num_stride_dims == num_spatial_axes_) + << "stride must be specified once, or once per spatial dimension " + << "(stride specified " << num_stride_dims << " times; " + << num_spatial_axes_ << " spatial dims);"; + const int kDefaultStride = 1; + for (int i = 0; i < num_spatial_axes_; ++i) { + stride_data[i] = (num_stride_dims == 0) ? kDefaultStride : + conv_param.stride((num_stride_dims == 1) ? 0 : i); + CHECK_GT(stride_data[i], 0) << "Stride dimensions must be nonzero."; + } } - if (!conv_param.has_stride_h()) { - stride_h_ = stride_w_ = conv_param.stride(); + // Setup pad dimensions (pad_). + pad_.Reshape(dim_blob_shape); + int* pad_data = pad_.mutable_cpu_data(); + if (conv_param.has_pad_h() || conv_param.has_pad_w()) { + CHECK_EQ(num_spatial_axes_, 2) + << "pad_h & pad_w can only be used for 2D convolution."; + CHECK_EQ(0, conv_param.pad_size()) + << "Either pad or pad_h/w should be specified; not both."; + pad_data[0] = conv_param.pad_h(); + pad_data[1] = conv_param.pad_w(); } else { - stride_h_ = conv_param.stride_h(); - stride_w_ = conv_param.stride_w(); + const int num_pad_dims = conv_param.pad_size(); + CHECK(num_pad_dims == 0 || num_pad_dims == 1 || + num_pad_dims == num_spatial_axes_) + << "pad must be specified once, or once per spatial dimension " + << "(pad specified " << num_pad_dims << " times; " + << num_spatial_axes_ << " spatial dims);"; + const int kDefaultPad = 0; + for (int i = 0; i < num_spatial_axes_; ++i) { + pad_data[i] = (num_pad_dims == 0) ? kDefaultPad : + conv_param.pad((num_pad_dims == 1) ? 0 : i); + } + } + // Setup dilation dimensions (dilation_). + dilation_.Reshape(dim_blob_shape); + int* dilation_data = dilation_.mutable_cpu_data(); + const int num_dilation_dims = conv_param.dilation_size(); + CHECK(num_dilation_dims == 0 || num_dilation_dims == 1 || + num_dilation_dims == num_spatial_axes_) + << "dilation must be specified once, or once per spatial dimension " + << "(dilation specified " << num_dilation_dims << " times; " + << num_spatial_axes_ << " spatial dims)."; + const int kDefaultDilation = 1; + for (int i = 0; i < num_spatial_axes_; ++i) { + dilation_data[i] = (num_dilation_dims == 0) ? kDefaultDilation : + conv_param.dilation((num_dilation_dims == 1) ? 0 : i); } } template void Im2colLayer::Reshape(const vector*>& bottom, const vector*>& top) { - CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, " - << "corresponding to (num, channels, height, width)"; - channels_ = bottom[0]->channels(); - height_ = bottom[0]->height(); - width_ = bottom[0]->width(); - top[0]->Reshape( - bottom[0]->num(), channels_ * kernel_h_ * kernel_w_, - (height_ + 2 * pad_h_ - kernel_h_) / stride_h_ + 1, - (width_ + 2 * pad_w_ - kernel_w_) / stride_w_ + 1); + vector top_shape = bottom[0]->shape(); + const int* kernel_shape_data = kernel_shape_.cpu_data(); + const int* stride_data = stride_.cpu_data(); + const int* pad_data = pad_.cpu_data(); + const int* dilation_data = dilation_.cpu_data(); + for (int i = 0; i < num_spatial_axes_; ++i) { + top_shape[channel_axis_] *= kernel_shape_data[i]; + const int input_dim = bottom[0]->shape(channel_axis_ + i + 1); + const int kernel_extent = dilation_data[i] * (kernel_shape_data[i] - 1) + 1; + const int output_dim = (input_dim + 2 * pad_data[i] - kernel_extent) + / stride_data[i] + 1; + top_shape[channel_axis_ + i + 1] = output_dim; + } + top[0]->Reshape(top_shape); + num_ = bottom[0]->count(0, channel_axis_); + bottom_dim_ = bottom[0]->count(channel_axis_); + top_dim_ = top[0]->count(channel_axis_); + + channels_ = bottom[0]->shape(channel_axis_); } template @@ -66,10 +132,29 @@ void Im2colLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); - for (int n = 0; n < bottom[0]->num(); ++n) { - im2col_cpu(bottom_data + bottom[0]->offset(n), channels_, height_, - width_, kernel_h_, kernel_w_, pad_h_, pad_w_, - stride_h_, stride_w_, top_data + top[0]->offset(n)); + for (int n = 0; n < num_; ++n) { + DCHECK_EQ(bottom[0]->shape().size() - channel_axis_, num_spatial_axes_ + 1); + DCHECK_EQ(top[0]->shape().size() - channel_axis_, num_spatial_axes_ + 1); + DCHECK_EQ(kernel_shape_.count(), num_spatial_axes_); + DCHECK_EQ(pad_.count(), num_spatial_axes_); + DCHECK_EQ(stride_.count(), num_spatial_axes_); + DCHECK_EQ(dilation_.count(), num_spatial_axes_); + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + im2col_cpu(bottom_data + n * bottom_dim_, channels_, + bottom[0]->shape(channel_axis_ + 1), + bottom[0]->shape(channel_axis_ + 2), + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], + top_data + n * top_dim_); + } else { + im2col_nd_cpu(bottom_data + n * bottom_dim_, num_spatial_axes_, + bottom[0]->shape().data() + channel_axis_, + top[0]->shape().data() + channel_axis_, + kernel_shape_.cpu_data(), pad_.cpu_data(), stride_.cpu_data(), + dilation_.cpu_data(), top_data + n * top_dim_); + } } } @@ -78,10 +163,23 @@ void Im2colLayer::Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { const Dtype* top_diff = top[0]->cpu_diff(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); - for (int n = 0; n < top[0]->num(); ++n) { - col2im_cpu(top_diff + top[0]->offset(n), channels_, height_, width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, - stride_h_, stride_w_, bottom_diff + bottom[0]->offset(n)); + for (int n = 0; n < num_; ++n) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + col2im_cpu(top_diff + n * top_dim_, channels_, + bottom[0]->shape(channel_axis_ + 1), + bottom[0]->shape(channel_axis_ + 2), + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], + bottom_diff + n * bottom_dim_); + } else { + col2im_nd_cpu(top_diff + n * top_dim_, num_spatial_axes_, + bottom[0]->shape().data() + channel_axis_, + top[0]->shape().data() + channel_axis_, + kernel_shape_.cpu_data(), pad_.cpu_data(), stride_.cpu_data(), + dilation_.cpu_data(), bottom_diff + n * bottom_dim_); + } } } diff --git a/src/caffe/layers/im2col_layer.cu b/src/caffe/layers/im2col_layer.cu index 9c338b14c..792c97f70 100644 --- a/src/caffe/layers/im2col_layer.cu +++ b/src/caffe/layers/im2col_layer.cu @@ -1,9 +1,7 @@ #include -#include "caffe/common.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/im2col_layer.hpp" #include "caffe/util/im2col.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -12,10 +10,24 @@ void Im2colLayer::Forward_gpu(const vector*>& bottom, const vector*>& top) { const Dtype* bottom_data = bottom[0]->gpu_data(); Dtype* top_data = top[0]->mutable_gpu_data(); - for (int n = 0; n < bottom[0]->num(); ++n) { - im2col_gpu(bottom_data + bottom[0]->offset(n), channels_, height_, - width_, kernel_h_, kernel_w_, pad_h_, pad_w_, - stride_h_, stride_w_, top_data + top[0]->offset(n)); + const int num_kernels = channels_ * top[0]->count(channel_axis_ + 1); + for (int n = 0; n < num_; ++n) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + im2col_gpu(bottom_data + n * bottom_dim_, channels_, + bottom[0]->shape(channel_axis_ + 1), + bottom[0]->shape(channel_axis_ + 2), + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], + top_data + n * top_dim_); + } else { + im2col_nd_gpu(bottom_data + n * bottom_dim_, num_spatial_axes_, + num_kernels, bottom[0]->gpu_shape() + channel_axis_, + top[0]->gpu_shape() + channel_axis_, + kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(), + dilation_.gpu_data(), top_data + n * top_dim_); + } } } @@ -24,10 +36,23 @@ void Im2colLayer::Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { const Dtype* top_diff = top[0]->gpu_diff(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); - for (int n = 0; n < top[0]->num(); ++n) { - col2im_gpu(top_diff + top[0]->offset(n), channels_, height_, width_, - kernel_h_, kernel_w_, pad_h_, pad_w_, - stride_h_, stride_w_, bottom_diff + bottom[0]->offset(n)); + for (int n = 0; n < num_; ++n) { + if (!force_nd_im2col_ && num_spatial_axes_ == 2) { + col2im_gpu(top_diff + n * top_dim_, channels_, + bottom[0]->shape(channel_axis_ + 1), + bottom[0]->shape(channel_axis_ + 2), + kernel_shape_.cpu_data()[0], kernel_shape_.cpu_data()[1], + pad_.cpu_data()[0], pad_.cpu_data()[1], + stride_.cpu_data()[0], stride_.cpu_data()[1], + dilation_.cpu_data()[0], dilation_.cpu_data()[1], + bottom_diff + n * bottom_dim_); + } else { + col2im_nd_gpu(top_diff + n * top_dim_, num_spatial_axes_, bottom_dim_, + bottom[0]->gpu_shape() + channel_axis_, + top[0]->gpu_shape() + channel_axis_, + kernel_shape_.gpu_data(), pad_.gpu_data(), stride_.gpu_data(), + dilation_.gpu_data(), bottom_diff + n * bottom_dim_); + } } } diff --git a/src/caffe/layers/image_data_layer.cpp b/src/caffe/layers/image_data_layer.cpp index 223ba3a75..ec0fc5b03 100644 --- a/src/caffe/layers/image_data_layer.cpp +++ b/src/caffe/layers/image_data_layer.cpp @@ -1,3 +1,4 @@ +#ifdef USE_OPENCV #include #include // NOLINT(readability/streams) @@ -6,8 +7,9 @@ #include #include -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/layers/image_data_layer.hpp" #include "caffe/util/benchmark.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" @@ -35,18 +37,28 @@ void ImageDataLayer::DataLayerSetUp(const vector*>& bottom, const string& source = this->layer_param_.image_data_param().source(); LOG(INFO) << "Opening file " << source; std::ifstream infile(source.c_str()); - string filename; + string line; + size_t pos; int label; - while (infile >> filename >> label) { - lines_.push_back(std::make_pair(filename, label)); + while (std::getline(infile, line)) { + pos = line.find_last_of(' '); + label = atoi(line.substr(pos + 1).c_str()); + lines_.push_back(std::make_pair(line.substr(0, pos), label)); } + CHECK(!lines_.empty()) << "File is empty"; + if (this->layer_param_.image_data_param().shuffle()) { // randomly shuffle data LOG(INFO) << "Shuffling data"; const unsigned int prefetch_rng_seed = caffe_rng_rand(); prefetch_rng_.reset(new Caffe::RNG(prefetch_rng_seed)); ShuffleImages(); + } else { + if (this->phase_ == TRAIN && Caffe::solver_rank() > 0 && + this->layer_param_.image_data_param().rand_skip() == 0) { + LOG(WARNING) << "Shuffling or skipping recommended for multi-GPU"; + } } LOG(INFO) << "A total of " << lines_.size() << " images."; @@ -70,8 +82,8 @@ void ImageDataLayer::DataLayerSetUp(const vector*>& bottom, const int batch_size = this->layer_param_.image_data_param().batch_size(); CHECK_GT(batch_size, 0) << "Positive batch size required"; top_shape[0] = batch_size; - for (int i = 0; i < this->PREFETCH_COUNT; ++i) { - this->prefetch_[i].data_.Reshape(top_shape); + for (int i = 0; i < this->prefetch_.size(); ++i) { + this->prefetch_[i]->data_.Reshape(top_shape); } top[0]->Reshape(top_shape); @@ -81,8 +93,8 @@ void ImageDataLayer::DataLayerSetUp(const vector*>& bottom, // label vector label_shape(1, batch_size); top[1]->Reshape(label_shape); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) { - this->prefetch_[i].label_.Reshape(label_shape); + for (int i = 0; i < this->prefetch_.size(); ++i) { + this->prefetch_[i]->label_.Reshape(label_shape); } } @@ -164,3 +176,4 @@ INSTANTIATE_CLASS(ImageDataLayer); REGISTER_LAYER_CLASS(ImageData); } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/layers/infogain_loss_layer.cpp b/src/caffe/layers/infogain_loss_layer.cpp index a1e0b40de..3c3f460ec 100644 --- a/src/caffe/layers/infogain_loss_layer.cpp +++ b/src/caffe/layers/infogain_loss_layer.cpp @@ -1,12 +1,10 @@ #include -#include #include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/infogain_loss_layer.hpp" +#include "caffe/util/io.hpp" // for bolb reading of matrix H #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -14,6 +12,31 @@ template void InfogainLossLayer::LayerSetUp( const vector*>& bottom, const vector*>& top) { LossLayer::LayerSetUp(bottom, top); + // internal softmax layer + LayerParameter softmax_layer_param(this->layer_param_); + SoftmaxParameter* softmax_param = softmax_layer_param.mutable_softmax_param(); + softmax_param->set_axis(this->layer_param_.infogain_loss_param().axis()); + softmax_layer_param.set_type("Softmax"); + softmax_layer_param.clear_loss_weight(); + softmax_layer_param.add_loss_weight(1); + softmax_layer_ = LayerRegistry::CreateLayer(softmax_layer_param); + softmax_bottom_vec_.clear(); + softmax_bottom_vec_.push_back(bottom[0]); + softmax_top_vec_.clear(); + softmax_top_vec_.push_back(&prob_); + softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_); + + // ignore label + has_ignore_label_ = + this->layer_param_.loss_param().has_ignore_label(); + if (has_ignore_label_) { + ignore_label_ = this->layer_param_.loss_param().ignore_label(); + } + // normalization + CHECK(!this->layer_param_.loss_param().has_normalize()) + << "normalize is deprecated. use \"normalization\""; + normalization_ = this->layer_param_.loss_param().normalization(); + // matrix H if (bottom.size() < 3) { CHECK(this->layer_param_.infogain_loss_param().has_source()) << "Infogain matrix source must be specified."; @@ -28,28 +51,86 @@ template void InfogainLossLayer::Reshape( const vector*>& bottom, const vector*>& top) { LossLayer::Reshape(bottom, top); + softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_); + infogain_axis_ = + bottom[0]->CanonicalAxisIndex( + this->layer_param_.infogain_loss_param().axis()); + outer_num_ = bottom[0]->count(0, infogain_axis_); + inner_num_ = bottom[0]->count(infogain_axis_ + 1); + CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count()) + << "Number of labels must match number of predictions; " + << "e.g., if infogain axis == 1 and prediction shape is (N, C, H, W), " + << "label count (number of labels) must be N*H*W, " + << "with integer values in {0, 1, ..., C-1}."; + num_labels_ = bottom[0]->shape(infogain_axis_); Blob* infogain = NULL; if (bottom.size() < 3) { infogain = &infogain_; } else { infogain = bottom[2]; } - CHECK_EQ(bottom[1]->channels(), 1); - CHECK_EQ(bottom[1]->height(), 1); - CHECK_EQ(bottom[1]->width(), 1); - const int num = bottom[0]->num(); - const int dim = bottom[0]->count() / num; - CHECK_EQ(infogain->num(), 1); - CHECK_EQ(infogain->channels(), 1); - CHECK_EQ(infogain->height(), dim); - CHECK_EQ(infogain->width(), dim); + CHECK_EQ(infogain->count(), num_labels_*num_labels_); + sum_rows_H_.Reshape(vector(1, num_labels_)); + if (bottom.size() == 2) { + // H is provided as a parameter and will not change. sum rows once + sum_rows_of_H(infogain); + } + if (top.size() >= 2) { + // softmax output + top[1]->ReshapeLike(*bottom[0]); + } +} + +template +Dtype InfogainLossLayer::get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count) { + Dtype normalizer; + switch (normalization_mode) { + case LossParameter_NormalizationMode_FULL: + normalizer = Dtype(outer_num_ * inner_num_); + break; + case LossParameter_NormalizationMode_VALID: + if (valid_count == -1) { + normalizer = Dtype(outer_num_ * inner_num_); + } else { + normalizer = Dtype(valid_count); + } + break; + case LossParameter_NormalizationMode_BATCH_SIZE: + normalizer = Dtype(outer_num_); + break; + case LossParameter_NormalizationMode_NONE: + normalizer = Dtype(1); + break; + default: + LOG(FATAL) << "Unknown normalization mode: " + << LossParameter_NormalizationMode_Name(normalization_mode); + } + // Some users will have no labels for some examples in order to 'turn off' a + // particular loss in a multi-task setup. The max prevents NaNs in that case. + return std::max(Dtype(1.0), normalizer); } +template +void InfogainLossLayer::sum_rows_of_H(const Blob* H) { + CHECK_EQ(H->count(), num_labels_*num_labels_) + << "H must be " << num_labels_ << "x" << num_labels_; + const Dtype* infogain_mat = H->cpu_data(); + Dtype* sum = sum_rows_H_.mutable_cpu_data(); + for ( int row = 0; row < num_labels_ ; row++ ) { + sum[row] = 0; + for ( int col = 0; col < num_labels_ ; col++ ) { + sum[row] += infogain_mat[row*num_labels_+col]; + } + } +} template void InfogainLossLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { - const Dtype* bottom_data = bottom[0]->cpu_data(); + // The forward pass computes the softmax prob values. + softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_); + const Dtype* prob_data = prob_.cpu_data(); const Dtype* bottom_label = bottom[1]->cpu_data(); const Dtype* infogain_mat = NULL; if (bottom.size() < 3) { @@ -57,17 +138,30 @@ void InfogainLossLayer::Forward_cpu(const vector*>& bottom, } else { infogain_mat = bottom[2]->cpu_data(); } - int num = bottom[0]->num(); - int dim = bottom[0]->count() / bottom[0]->num(); + int count = 0; Dtype loss = 0; - for (int i = 0; i < num; ++i) { - int label = static_cast(bottom_label[i]); - for (int j = 0; j < dim; ++j) { - Dtype prob = std::max(bottom_data[i * dim + j], Dtype(kLOG_THRESHOLD)); - loss -= infogain_mat[label * dim + j] * log(prob); + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; j++) { + const int label_value = + static_cast(bottom_label[i * inner_num_ + j]); + if (has_ignore_label_ && label_value == ignore_label_) { + continue; + } + DCHECK_GE(label_value, 0); + DCHECK_LT(label_value, num_labels_); + for (int l = 0; l < num_labels_; l++) { + loss -= infogain_mat[label_value * num_labels_ + l] * + log(std::max( + prob_data[i * inner_num_*num_labels_ + l * inner_num_ + j], + Dtype(kLOG_THRESHOLD))); + } + ++count; } } - top[0]->mutable_cpu_data()[0] = loss / num; + top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count); + if (top.size() == 2) { + top[1]->ShareData(prob_); + } } template @@ -83,25 +177,44 @@ void InfogainLossLayer::Backward_cpu(const vector*>& top, << " Layer cannot backpropagate to infogain inputs."; } if (propagate_down[0]) { - const Dtype* bottom_data = bottom[0]->cpu_data(); + const Dtype* prob_data = prob_.cpu_data(); const Dtype* bottom_label = bottom[1]->cpu_data(); const Dtype* infogain_mat = NULL; if (bottom.size() < 3) { infogain_mat = infogain_.cpu_data(); } else { infogain_mat = bottom[2]->cpu_data(); + // H is provided as a "bottom" and might change. sum rows every time. + sum_rows_of_H(bottom[2]); } + const Dtype* sum_rows_H = sum_rows_H_.cpu_data(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); - int num = bottom[0]->num(); - int dim = bottom[0]->count() / bottom[0]->num(); - const Dtype scale = - top[0]->cpu_diff()[0] / num; - for (int i = 0; i < num; ++i) { - const int label = static_cast(bottom_label[i]); - for (int j = 0; j < dim; ++j) { - Dtype prob = std::max(bottom_data[i * dim + j], Dtype(kLOG_THRESHOLD)); - bottom_diff[i * dim + j] = scale * infogain_mat[label * dim + j] / prob; + const int dim = bottom[0]->count() / outer_num_; + int count = 0; + for (int i = 0; i < outer_num_; ++i) { + for (int j = 0; j < inner_num_; ++j) { + const int label_value = + static_cast(bottom_label[i * inner_num_ + j]); + DCHECK_GE(label_value, 0); + DCHECK_LT(label_value, num_labels_); + if (has_ignore_label_ && label_value == ignore_label_) { + for (int l = 0; l < num_labels_; ++l) { + bottom_diff[i * dim + l * inner_num_ + j] = 0; + } + } else { + for (int l = 0; l < num_labels_; ++l) { + bottom_diff[i * dim + l * inner_num_ + j] = + prob_data[i*dim + l*inner_num_ + j]*sum_rows_H[label_value] + - infogain_mat[label_value * num_labels_ + l]; + } + ++count; + } } } + // Scale gradient + Dtype loss_weight = top[0]->cpu_diff()[0] / + get_normalizer(normalization_, count); + caffe_scal(bottom[0]->count(), loss_weight, bottom_diff); } } diff --git a/src/caffe/layers/inner_product_layer.cpp b/src/caffe/layers/inner_product_layer.cpp index 83c3235eb..e65349f00 100644 --- a/src/caffe/layers/inner_product_layer.cpp +++ b/src/caffe/layers/inner_product_layer.cpp @@ -1,11 +1,8 @@ #include -#include "caffe/blob.hpp" -#include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/inner_product_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -14,6 +11,7 @@ void InnerProductLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { const int num_output = this->layer_param_.inner_product_param().num_output(); bias_term_ = this->layer_param_.inner_product_param().bias_term(); + transpose_ = this->layer_param_.inner_product_param().transpose(); N_ = num_output; const int axis = bottom[0]->CanonicalAxisIndex( this->layer_param_.inner_product_param().axis()); @@ -30,10 +28,15 @@ void InnerProductLayer::LayerSetUp(const vector*>& bottom, } else { this->blobs_.resize(1); } - // Intialize the weight + // Initialize the weights vector weight_shape(2); - weight_shape[0] = N_; - weight_shape[1] = K_; + if (transpose_) { + weight_shape[0] = K_; + weight_shape[1] = N_; + } else { + weight_shape[0] = N_; + weight_shape[1] = K_; + } this->blobs_[0].reset(new Blob(weight_shape)); // fill the weights shared_ptr > weight_filler(GetFiller( @@ -83,7 +86,8 @@ void InnerProductLayer::Forward_cpu(const vector*>& bottom, const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); const Dtype* weight = this->blobs_[0]->cpu_data(); - caffe_cpu_gemm(CblasNoTrans, CblasTrans, M_, N_, K_, (Dtype)1., + caffe_cpu_gemm(CblasNoTrans, transpose_ ? CblasNoTrans : CblasTrans, + M_, N_, K_, (Dtype)1., bottom_data, weight, (Dtype)0., top_data); if (bias_term_) { caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, M_, N_, 1, (Dtype)1., @@ -100,8 +104,17 @@ void InnerProductLayer::Backward_cpu(const vector*>& top, const Dtype* top_diff = top[0]->cpu_diff(); const Dtype* bottom_data = bottom[0]->cpu_data(); // Gradient with respect to weight - caffe_cpu_gemm(CblasTrans, CblasNoTrans, N_, K_, M_, (Dtype)1., - top_diff, bottom_data, (Dtype)1., this->blobs_[0]->mutable_cpu_diff()); + if (transpose_) { + caffe_cpu_gemm(CblasTrans, CblasNoTrans, + K_, N_, M_, + (Dtype)1., bottom_data, top_diff, + (Dtype)1., this->blobs_[0]->mutable_cpu_diff()); + } else { + caffe_cpu_gemm(CblasTrans, CblasNoTrans, + N_, K_, M_, + (Dtype)1., top_diff, bottom_data, + (Dtype)1., this->blobs_[0]->mutable_cpu_diff()); + } } if (bias_term_ && this->param_propagate_down_[1]) { const Dtype* top_diff = top[0]->cpu_diff(); @@ -113,9 +126,17 @@ void InnerProductLayer::Backward_cpu(const vector*>& top, if (propagate_down[0]) { const Dtype* top_diff = top[0]->cpu_diff(); // Gradient with respect to bottom data - caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, M_, K_, N_, (Dtype)1., - top_diff, this->blobs_[0]->cpu_data(), (Dtype)0., - bottom[0]->mutable_cpu_diff()); + if (transpose_) { + caffe_cpu_gemm(CblasNoTrans, CblasTrans, + M_, K_, N_, + (Dtype)1., top_diff, this->blobs_[0]->cpu_data(), + (Dtype)0., bottom[0]->mutable_cpu_diff()); + } else { + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, + M_, K_, N_, + (Dtype)1., top_diff, this->blobs_[0]->cpu_data(), + (Dtype)0., bottom[0]->mutable_cpu_diff()); + } } } diff --git a/src/caffe/layers/inner_product_layer.cu b/src/caffe/layers/inner_product_layer.cu index c0ebd2c47..a58b56e32 100644 --- a/src/caffe/layers/inner_product_layer.cu +++ b/src/caffe/layers/inner_product_layer.cu @@ -1,11 +1,8 @@ #include -#include "caffe/blob.hpp" -#include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/inner_product_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -22,7 +19,9 @@ void InnerProductLayer::Forward_gpu(const vector*>& bottom, caffe_gpu_axpy(N_, bias_multiplier_.cpu_data()[0], this->blobs_[1]->gpu_data(), top_data); } else { - caffe_gpu_gemm(CblasNoTrans, CblasTrans, M_, N_, K_, (Dtype)1., + caffe_gpu_gemm(CblasNoTrans, + transpose_ ? CblasNoTrans : CblasTrans, + M_, N_, K_, (Dtype)1., bottom_data, weight, (Dtype)0., top_data); if (bias_term_) caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, M_, N_, 1, (Dtype)1., @@ -39,8 +38,17 @@ void InnerProductLayer::Backward_gpu(const vector*>& top, const Dtype* top_diff = top[0]->gpu_diff(); const Dtype* bottom_data = bottom[0]->gpu_data(); // Gradient with respect to weight - caffe_gpu_gemm(CblasTrans, CblasNoTrans, N_, K_, M_, (Dtype)1., - top_diff, bottom_data, (Dtype)1., this->blobs_[0]->mutable_gpu_diff()); + if (transpose_) { + caffe_gpu_gemm(CblasTrans, CblasNoTrans, + K_, N_, M_, + (Dtype)1., bottom_data, top_diff, + (Dtype)1., this->blobs_[0]->mutable_gpu_diff()); + } else { + caffe_gpu_gemm(CblasTrans, CblasNoTrans, + N_, K_, M_, + (Dtype)1., top_diff, bottom_data, + (Dtype)1., this->blobs_[0]->mutable_gpu_diff()); + } } if (bias_term_ && this->param_propagate_down_[1]) { const Dtype* top_diff = top[0]->gpu_diff(); @@ -52,9 +60,17 @@ void InnerProductLayer::Backward_gpu(const vector*>& top, if (propagate_down[0]) { const Dtype* top_diff = top[0]->gpu_diff(); // Gradient with respect to bottom data - caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, M_, K_, N_, (Dtype)1., - top_diff, this->blobs_[0]->gpu_data(), (Dtype)0., - bottom[0]->mutable_gpu_diff()); + if (transpose_) { + caffe_gpu_gemm(CblasNoTrans, CblasTrans, + M_, K_, N_, + (Dtype)1., top_diff, this->blobs_[0]->gpu_data(), + (Dtype)0., bottom[0]->mutable_gpu_diff()); + } else { + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, + M_, K_, N_, + (Dtype)1., top_diff, this->blobs_[0]->gpu_data(), + (Dtype)0., bottom[0]->mutable_gpu_diff()); + } } } diff --git a/src/caffe/layers/input_layer.cpp b/src/caffe/layers/input_layer.cpp new file mode 100644 index 000000000..667d8ad67 --- /dev/null +++ b/src/caffe/layers/input_layer.cpp @@ -0,0 +1,27 @@ +#include + +#include "caffe/layers/input_layer.hpp" + +namespace caffe { + +template +void InputLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + const int num_top = top.size(); + const InputParameter& param = this->layer_param_.input_param(); + const int num_shape = param.shape_size(); + CHECK(num_shape == 0 || num_shape == 1 || num_shape == num_top) + << "Must specify 'shape' once, once per top blob, or not at all: " + << num_top << " tops vs. " << num_shape << " shapes."; + if (num_shape > 0) { + for (int i = 0; i < num_top; ++i) { + const int shape_index = (param.shape_size() == 1) ? 0 : i; + top[i]->Reshape(param.shape(shape_index)); + } + } +} + +INSTANTIATE_CLASS(InputLayer); +REGISTER_LAYER_CLASS(Input); + +} // namespace caffe diff --git a/src/caffe/layers/log_layer.cpp b/src/caffe/layers/log_layer.cpp index 55a227f62..c70a795cf 100644 --- a/src/caffe/layers/log_layer.cpp +++ b/src/caffe/layers/log_layer.cpp @@ -1,8 +1,6 @@ -#include #include -#include "caffe/layer.hpp" -#include "caffe/neuron_layers.hpp" +#include "caffe/layers/log_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/log_layer.cu b/src/caffe/layers/log_layer.cu index 847c86cd1..db466dbac 100644 --- a/src/caffe/layers/log_layer.cu +++ b/src/caffe/layers/log_layer.cu @@ -1,8 +1,6 @@ -#include #include -#include "caffe/layer.hpp" -#include "caffe/neuron_layers.hpp" +#include "caffe/layers/log_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/loss_layer.cpp b/src/caffe/layers/loss_layer.cpp index 3496a5c2a..afb1ce948 100644 --- a/src/caffe/layers/loss_layer.cpp +++ b/src/caffe/layers/loss_layer.cpp @@ -1,12 +1,6 @@ -#include -#include -#include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/loss_layer.hpp" namespace caffe { @@ -22,8 +16,8 @@ void LossLayer::LayerSetUp( template void LossLayer::Reshape( const vector*>& bottom, const vector*>& top) { - CHECK_EQ(bottom[0]->num(), bottom[1]->num()) - << "The data and label should have the same number."; + CHECK_EQ(bottom[0]->shape(0), bottom[1]->shape(0)) + << "The data and label should have the same first dimension."; vector loss_shape(0); // Loss layers output a scalar; 0 axes. top[0]->Reshape(loss_shape); } diff --git a/src/caffe/layers/lrn_layer.cpp b/src/caffe/layers/lrn_layer.cpp index 36c1ace4c..210525e20 100644 --- a/src/caffe/layers/lrn_layer.cpp +++ b/src/caffe/layers/lrn_layer.cpp @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/lrn_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -254,6 +253,5 @@ STUB_GPU_BACKWARD(LRNLayer, CrossChannelBackward); #endif INSTANTIATE_CLASS(LRNLayer); -REGISTER_LAYER_CLASS(LRN); } // namespace caffe diff --git a/src/caffe/layers/lrn_layer.cu b/src/caffe/layers/lrn_layer.cu index 001b3c34a..26e619c75 100644 --- a/src/caffe/layers/lrn_layer.cu +++ b/src/caffe/layers/lrn_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/lrn_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/lstm_layer.cpp b/src/caffe/layers/lstm_layer.cpp new file mode 100644 index 000000000..da48dba4c --- /dev/null +++ b/src/caffe/layers/lstm_layer.cpp @@ -0,0 +1,244 @@ +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/lstm_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void LSTMLayer::RecurrentInputBlobNames(vector* names) const { + names->resize(2); + (*names)[0] = "h_0"; + (*names)[1] = "c_0"; +} + +template +void LSTMLayer::RecurrentOutputBlobNames(vector* names) const { + names->resize(2); + (*names)[0] = "h_" + format_int(this->T_); + (*names)[1] = "c_T"; +} + +template +void LSTMLayer::RecurrentInputShapes(vector* shapes) const { + const int num_output = this->layer_param_.recurrent_param().num_output(); + const int num_blobs = 2; + shapes->resize(num_blobs); + for (int i = 0; i < num_blobs; ++i) { + (*shapes)[i].Clear(); + (*shapes)[i].add_dim(1); // a single timestep + (*shapes)[i].add_dim(this->N_); + (*shapes)[i].add_dim(num_output); + } +} + +template +void LSTMLayer::OutputBlobNames(vector* names) const { + names->resize(1); + (*names)[0] = "h"; +} + +template +void LSTMLayer::FillUnrolledNet(NetParameter* net_param) const { + const int num_output = this->layer_param_.recurrent_param().num_output(); + CHECK_GT(num_output, 0) << "num_output must be positive"; + const FillerParameter& weight_filler = + this->layer_param_.recurrent_param().weight_filler(); + const FillerParameter& bias_filler = + this->layer_param_.recurrent_param().bias_filler(); + + // Add generic LayerParameter's (without bottoms/tops) of layer types we'll + // use to save redundant code. + LayerParameter hidden_param; + hidden_param.set_type("InnerProduct"); + hidden_param.mutable_inner_product_param()->set_num_output(num_output * 4); + hidden_param.mutable_inner_product_param()->set_bias_term(false); + hidden_param.mutable_inner_product_param()->set_axis(2); + hidden_param.mutable_inner_product_param()-> + mutable_weight_filler()->CopyFrom(weight_filler); + + LayerParameter biased_hidden_param(hidden_param); + biased_hidden_param.mutable_inner_product_param()->set_bias_term(true); + biased_hidden_param.mutable_inner_product_param()-> + mutable_bias_filler()->CopyFrom(bias_filler); + + LayerParameter sum_param; + sum_param.set_type("Eltwise"); + sum_param.mutable_eltwise_param()->set_operation( + EltwiseParameter_EltwiseOp_SUM); + + LayerParameter scale_param; + scale_param.set_type("Scale"); + scale_param.mutable_scale_param()->set_axis(0); + + LayerParameter slice_param; + slice_param.set_type("Slice"); + slice_param.mutable_slice_param()->set_axis(0); + + LayerParameter split_param; + split_param.set_type("Split"); + + vector input_shapes; + RecurrentInputShapes(&input_shapes); + CHECK_EQ(2, input_shapes.size()); + + LayerParameter* input_layer_param = net_param->add_layer(); + input_layer_param->set_type("Input"); + InputParameter* input_param = input_layer_param->mutable_input_param(); + + input_layer_param->add_top("c_0"); + input_param->add_shape()->CopyFrom(input_shapes[0]); + + input_layer_param->add_top("h_0"); + input_param->add_shape()->CopyFrom(input_shapes[1]); + + LayerParameter* cont_slice_param = net_param->add_layer(); + cont_slice_param->CopyFrom(slice_param); + cont_slice_param->set_name("cont_slice"); + cont_slice_param->add_bottom("cont"); + cont_slice_param->mutable_slice_param()->set_axis(0); + + // Add layer to transform all timesteps of x to the hidden state dimension. + // W_xc_x = W_xc * x + b_c + { + LayerParameter* x_transform_param = net_param->add_layer(); + x_transform_param->CopyFrom(biased_hidden_param); + x_transform_param->set_name("x_transform"); + x_transform_param->add_param()->set_name("W_xc"); + x_transform_param->add_param()->set_name("b_c"); + x_transform_param->add_bottom("x"); + x_transform_param->add_top("W_xc_x"); + x_transform_param->add_propagate_down(true); + } + + if (this->static_input_) { + // Add layer to transform x_static to the gate dimension. + // W_xc_x_static = W_xc_static * x_static + LayerParameter* x_static_transform_param = net_param->add_layer(); + x_static_transform_param->CopyFrom(hidden_param); + x_static_transform_param->mutable_inner_product_param()->set_axis(1); + x_static_transform_param->set_name("W_xc_x_static"); + x_static_transform_param->add_param()->set_name("W_xc_static"); + x_static_transform_param->add_bottom("x_static"); + x_static_transform_param->add_top("W_xc_x_static_preshape"); + x_static_transform_param->add_propagate_down(true); + + LayerParameter* reshape_param = net_param->add_layer(); + reshape_param->set_type("Reshape"); + BlobShape* new_shape = + reshape_param->mutable_reshape_param()->mutable_shape(); + new_shape->add_dim(1); // One timestep. + // Should infer this->N as the dimension so we can reshape on batch size. + new_shape->add_dim(-1); + new_shape->add_dim( + x_static_transform_param->inner_product_param().num_output()); + reshape_param->set_name("W_xc_x_static_reshape"); + reshape_param->add_bottom("W_xc_x_static_preshape"); + reshape_param->add_top("W_xc_x_static"); + } + + LayerParameter* x_slice_param = net_param->add_layer(); + x_slice_param->CopyFrom(slice_param); + x_slice_param->add_bottom("W_xc_x"); + x_slice_param->set_name("W_xc_x_slice"); + + LayerParameter output_concat_layer; + output_concat_layer.set_name("h_concat"); + output_concat_layer.set_type("Concat"); + output_concat_layer.add_top("h"); + output_concat_layer.mutable_concat_param()->set_axis(0); + + for (int t = 1; t <= this->T_; ++t) { + string tm1s = format_int(t - 1); + string ts = format_int(t); + + cont_slice_param->add_top("cont_" + ts); + x_slice_param->add_top("W_xc_x_" + ts); + + // Add layers to flush the hidden state when beginning a new + // sequence, as indicated by cont_t. + // h_conted_{t-1} := cont_t * h_{t-1} + // + // Normally, cont_t is binary (i.e., 0 or 1), so: + // h_conted_{t-1} := h_{t-1} if cont_t == 1 + // 0 otherwise + { + LayerParameter* cont_h_param = net_param->add_layer(); + cont_h_param->CopyFrom(scale_param); + cont_h_param->set_name("h_conted_" + tm1s); + cont_h_param->add_bottom("h_" + tm1s); + cont_h_param->add_bottom("cont_" + ts); + cont_h_param->add_top("h_conted_" + tm1s); + } + + // Add layer to compute + // W_hc_h_{t-1} := W_hc * h_conted_{t-1} + { + LayerParameter* w_param = net_param->add_layer(); + w_param->CopyFrom(hidden_param); + w_param->set_name("transform_" + ts); + w_param->add_param()->set_name("W_hc"); + w_param->add_bottom("h_conted_" + tm1s); + w_param->add_top("W_hc_h_" + tm1s); + w_param->mutable_inner_product_param()->set_axis(2); + } + + // Add the outputs of the linear transformations to compute the gate input. + // gate_input_t := W_hc * h_conted_{t-1} + W_xc * x_t + b_c + // = W_hc_h_{t-1} + W_xc_x_t + b_c + { + LayerParameter* input_sum_layer = net_param->add_layer(); + input_sum_layer->CopyFrom(sum_param); + input_sum_layer->set_name("gate_input_" + ts); + input_sum_layer->add_bottom("W_hc_h_" + tm1s); + input_sum_layer->add_bottom("W_xc_x_" + ts); + if (this->static_input_) { + input_sum_layer->add_bottom("W_xc_x_static"); + } + input_sum_layer->add_top("gate_input_" + ts); + } + + // Add LSTMUnit layer to compute the cell & hidden vectors c_t and h_t. + // Inputs: c_{t-1}, gate_input_t = (i_t, f_t, o_t, g_t), cont_t + // Outputs: c_t, h_t + // [ i_t' ] + // [ f_t' ] := gate_input_t + // [ o_t' ] + // [ g_t' ] + // i_t := \sigmoid[i_t'] + // f_t := \sigmoid[f_t'] + // o_t := \sigmoid[o_t'] + // g_t := \tanh[g_t'] + // c_t := cont_t * (f_t .* c_{t-1}) + (i_t .* g_t) + // h_t := o_t .* \tanh[c_t] + { + LayerParameter* lstm_unit_param = net_param->add_layer(); + lstm_unit_param->set_type("LSTMUnit"); + lstm_unit_param->add_bottom("c_" + tm1s); + lstm_unit_param->add_bottom("gate_input_" + ts); + lstm_unit_param->add_bottom("cont_" + ts); + lstm_unit_param->add_top("c_" + ts); + lstm_unit_param->add_top("h_" + ts); + lstm_unit_param->set_name("unit_" + ts); + } + output_concat_layer.add_bottom("h_" + ts); + } // for (int t = 1; t <= this->T_; ++t) + + { + LayerParameter* c_T_copy_param = net_param->add_layer(); + c_T_copy_param->CopyFrom(split_param); + c_T_copy_param->add_bottom("c_" + format_int(this->T_)); + c_T_copy_param->add_top("c_T"); + } + net_param->add_layer()->CopyFrom(output_concat_layer); +} + +INSTANTIATE_CLASS(LSTMLayer); +REGISTER_LAYER_CLASS(LSTM); + +} // namespace caffe diff --git a/src/caffe/layers/lstm_unit_layer.cpp b/src/caffe/layers/lstm_unit_layer.cpp new file mode 100644 index 000000000..d1ab59c4b --- /dev/null +++ b/src/caffe/layers/lstm_unit_layer.cpp @@ -0,0 +1,130 @@ +#include +#include +#include + +#include "caffe/layer.hpp" +#include "caffe/layers/lstm_layer.hpp" + +namespace caffe { + +template +inline Dtype sigmoid(Dtype x) { + return 1. / (1. + exp(-x)); +} + +template +inline Dtype tanh(Dtype x) { + return 2. * sigmoid(2. * x) - 1.; +} + +template +void LSTMUnitLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + const int num_instances = bottom[0]->shape(1); + for (int i = 0; i < bottom.size(); ++i) { + if (i == 2) { + CHECK_EQ(2, bottom[i]->num_axes()); + } else { + CHECK_EQ(3, bottom[i]->num_axes()); + } + CHECK_EQ(1, bottom[i]->shape(0)); + CHECK_EQ(num_instances, bottom[i]->shape(1)); + } + hidden_dim_ = bottom[0]->shape(2); + CHECK_EQ(4 * hidden_dim_, bottom[1]->shape(2)); + top[0]->ReshapeLike(*bottom[0]); + top[1]->ReshapeLike(*bottom[0]); + X_acts_.ReshapeLike(*bottom[1]); +} + +template +void LSTMUnitLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + const int num = bottom[0]->shape(1); + const int x_dim = hidden_dim_ * 4; + const Dtype* C_prev = bottom[0]->cpu_data(); + const Dtype* X = bottom[1]->cpu_data(); + const Dtype* cont = bottom[2]->cpu_data(); + Dtype* C = top[0]->mutable_cpu_data(); + Dtype* H = top[1]->mutable_cpu_data(); + for (int n = 0; n < num; ++n) { + for (int d = 0; d < hidden_dim_; ++d) { + const Dtype i = sigmoid(X[d]); + const Dtype f = (*cont == 0) ? 0 : + (*cont * sigmoid(X[1 * hidden_dim_ + d])); + const Dtype o = sigmoid(X[2 * hidden_dim_ + d]); + const Dtype g = tanh(X[3 * hidden_dim_ + d]); + const Dtype c_prev = C_prev[d]; + const Dtype c = f * c_prev + i * g; + C[d] = c; + const Dtype tanh_c = tanh(c); + H[d] = o * tanh_c; + } + C_prev += hidden_dim_; + X += x_dim; + C += hidden_dim_; + H += hidden_dim_; + ++cont; + } +} + +template +void LSTMUnitLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + CHECK(!propagate_down[2]) << "Cannot backpropagate to sequence indicators."; + if (!propagate_down[0] && !propagate_down[1]) { return; } + + const int num = bottom[0]->shape(1); + const int x_dim = hidden_dim_ * 4; + const Dtype* C_prev = bottom[0]->cpu_data(); + const Dtype* X = bottom[1]->cpu_data(); + const Dtype* cont = bottom[2]->cpu_data(); + const Dtype* C = top[0]->cpu_data(); + const Dtype* H = top[1]->cpu_data(); + const Dtype* C_diff = top[0]->cpu_diff(); + const Dtype* H_diff = top[1]->cpu_diff(); + Dtype* C_prev_diff = bottom[0]->mutable_cpu_diff(); + Dtype* X_diff = bottom[1]->mutable_cpu_diff(); + for (int n = 0; n < num; ++n) { + for (int d = 0; d < hidden_dim_; ++d) { + const Dtype i = sigmoid(X[d]); + const Dtype f = (*cont == 0) ? 0 : + (*cont * sigmoid(X[1 * hidden_dim_ + d])); + const Dtype o = sigmoid(X[2 * hidden_dim_ + d]); + const Dtype g = tanh(X[3 * hidden_dim_ + d]); + const Dtype c_prev = C_prev[d]; + const Dtype c = C[d]; + const Dtype tanh_c = tanh(c); + Dtype* c_prev_diff = C_prev_diff + d; + Dtype* i_diff = X_diff + d; + Dtype* f_diff = X_diff + 1 * hidden_dim_ + d; + Dtype* o_diff = X_diff + 2 * hidden_dim_ + d; + Dtype* g_diff = X_diff + 3 * hidden_dim_ + d; + const Dtype c_term_diff = + C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c); + *c_prev_diff = c_term_diff * f; + *i_diff = c_term_diff * g * i * (1 - i); + *f_diff = c_term_diff * c_prev * f * (1 - f); + *o_diff = H_diff[d] * tanh_c * o * (1 - o); + *g_diff = c_term_diff * i * (1 - g * g); + } + C_prev += hidden_dim_; + X += x_dim; + C += hidden_dim_; + H += hidden_dim_; + C_diff += hidden_dim_; + H_diff += hidden_dim_; + X_diff += x_dim; + C_prev_diff += hidden_dim_; + ++cont; + } +} + +#ifdef CPU_ONLY +STUB_GPU(LSTMUnitLayer); +#endif + +INSTANTIATE_CLASS(LSTMUnitLayer); +REGISTER_LAYER_CLASS(LSTMUnit); + +} // namespace caffe diff --git a/src/caffe/layers/lstm_unit_layer.cu b/src/caffe/layers/lstm_unit_layer.cu new file mode 100644 index 000000000..15bb451d9 --- /dev/null +++ b/src/caffe/layers/lstm_unit_layer.cu @@ -0,0 +1,154 @@ +#include +#include +#include + +#include "caffe/layer.hpp" +#include "caffe/layers/lstm_layer.hpp" + +namespace caffe { + +template +__device__ Dtype sigmoid(const Dtype x) { + return Dtype(1) / (Dtype(1) + exp(-x)); +} + +template +__device__ Dtype tanh(const Dtype x) { + return Dtype(2) * sigmoid(Dtype(2) * x) - Dtype(1); +} + +template +__global__ void LSTMActsForward(const int nthreads, const int dim, + const Dtype* X, Dtype* X_acts) { + CUDA_KERNEL_LOOP(index, nthreads) { + const int x_dim = 4 * dim; + const int d = index % x_dim; + if (d < 3 * dim) { + X_acts[index] = sigmoid(X[index]); + } else { + X_acts[index] = tanh(X[index]); + } + } +} + +template +__global__ void LSTMUnitForward(const int nthreads, const int dim, + const Dtype* C_prev, const Dtype* X, const Dtype* cont, + Dtype* C, Dtype* H) { + CUDA_KERNEL_LOOP(index, nthreads) { + const int n = index / dim; + const int d = index % dim; + const Dtype* X_offset = X + 4 * dim * n; + const Dtype i = X_offset[d]; + const Dtype f = X_offset[1 * dim + d]; + const Dtype o = X_offset[2 * dim + d]; + const Dtype g = X_offset[3 * dim + d]; + const Dtype c_prev = C_prev[index]; + const Dtype c = cont[n] * f * c_prev + i * g; + C[index] = c; + const Dtype tanh_c = tanh(c); + H[index] = o * tanh_c; + } +} + +template +void LSTMUnitLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + const int count = top[1]->count(); + const Dtype* C_prev = bottom[0]->gpu_data(); + const Dtype* X = bottom[1]->gpu_data(); + const Dtype* cont = bottom[2]->gpu_data(); + Dtype* X_acts = X_acts_.mutable_gpu_data(); + Dtype* C = top[0]->mutable_gpu_data(); + Dtype* H = top[1]->mutable_gpu_data(); + const int X_count = bottom[1]->count(); + // NOLINT_NEXT_LINE(whitespace/operators) + LSTMActsForward<<>>( + X_count, hidden_dim_, X, X_acts); + CUDA_POST_KERNEL_CHECK; + // NOLINT_NEXT_LINE(whitespace/operators) + LSTMUnitForward<<>>( + count, hidden_dim_, C_prev, X_acts, cont, C, H); + CUDA_POST_KERNEL_CHECK; +} + +template +__global__ void LSTMUnitBackward(const int nthreads, const int dim, + const Dtype* C_prev, const Dtype* X, const Dtype* C, const Dtype* H, + const Dtype* cont, const Dtype* C_diff, const Dtype* H_diff, + Dtype* C_prev_diff, Dtype* X_diff) { + CUDA_KERNEL_LOOP(index, nthreads) { + const int n = index / dim; + const int d = index % dim; + const Dtype* X_offset = X + 4 * dim * n; + const Dtype i = X_offset[d]; + const Dtype f = X_offset[1 * dim + d]; + const Dtype o = X_offset[2 * dim + d]; + const Dtype g = X_offset[3 * dim + d]; + const Dtype c_prev = C_prev[index]; + const Dtype c = C[index]; + const Dtype tanh_c = tanh(c); + Dtype* c_prev_diff = C_prev_diff + index; + Dtype* X_diff_offset = X_diff + 4 * dim * n; + Dtype* i_diff = X_diff_offset + d; + Dtype* f_diff = X_diff_offset + 1 * dim + d; + Dtype* o_diff = X_diff_offset + 2 * dim + d; + Dtype* g_diff = X_diff_offset + 3 * dim + d; + const Dtype c_term_diff = + C_diff[index] + H_diff[index] * o * (1 - tanh_c * tanh_c); + const Dtype cont_n = cont[n]; + *c_prev_diff = cont_n * c_term_diff * f; + *i_diff = c_term_diff * g; + *f_diff = cont_n * c_term_diff * c_prev; + *o_diff = H_diff[index] * tanh_c; + *g_diff = c_term_diff * i; + } +} + +template +__global__ void LSTMActsBackward(const int nthreads, const int dim, + const Dtype* X_acts, const Dtype* X_acts_diff, Dtype* X_diff) { + CUDA_KERNEL_LOOP(index, nthreads) { + const int x_dim = 4 * dim; + const int d = index % x_dim; + const Dtype X_act = X_acts[index]; + if (d < 3 * dim) { + X_diff[index] = X_acts_diff[index] * X_act * (Dtype(1) - X_act); + } else { + X_diff[index] = X_acts_diff[index] * (Dtype(1) - X_act * X_act); + } + } +} + +template +void LSTMUnitLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, + const vector*>& bottom) { + CHECK(!propagate_down[2]) << "Cannot backpropagate to sequence indicators."; + if (!propagate_down[0] && !propagate_down[1]) { return; } + + const int count = top[1]->count(); + const Dtype* C_prev = bottom[0]->gpu_data(); + const Dtype* X_acts = X_acts_.gpu_data(); + const Dtype* cont = bottom[2]->gpu_data(); + const Dtype* C = top[0]->gpu_data(); + const Dtype* H = top[1]->gpu_data(); + const Dtype* C_diff = top[0]->gpu_diff(); + const Dtype* H_diff = top[1]->gpu_diff(); + Dtype* C_prev_diff = bottom[0]->mutable_gpu_diff(); + Dtype* X_acts_diff = X_acts_.mutable_gpu_diff(); + LSTMUnitBackward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>(count, hidden_dim_, + C_prev, X_acts, C, H, cont, C_diff, H_diff, C_prev_diff, X_acts_diff); + CUDA_POST_KERNEL_CHECK; + const int X_count = bottom[1]->count(); + Dtype* X_diff = bottom[1]->mutable_gpu_diff(); + LSTMActsBackward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + X_count, hidden_dim_, X_acts, X_acts_diff, X_diff); + CUDA_POST_KERNEL_CHECK; +} + +INSTANTIATE_LAYER_GPU_FUNCS(LSTMUnitLayer); + +} // namespace caffe diff --git a/src/caffe/layers/memory_data_layer.cpp b/src/caffe/layers/memory_data_layer.cpp index 42de4198b..975f48417 100644 --- a/src/caffe/layers/memory_data_layer.cpp +++ b/src/caffe/layers/memory_data_layer.cpp @@ -1,10 +1,10 @@ +#ifdef USE_OPENCV #include +#endif // USE_OPENCV #include -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/memory_data_layer.hpp" namespace caffe { @@ -53,6 +53,7 @@ void MemoryDataLayer::AddDatumVector(const vector& datum_vector) { has_new_data_ = true; } +#ifdef USE_OPENCV template void MemoryDataLayer::AddMatVector(const vector& mat_vector, const vector& labels) { @@ -76,6 +77,7 @@ void MemoryDataLayer::AddMatVector(const vector& mat_vector, Reset(top_data, top_label, num); has_new_data_ = true; } +#endif // USE_OPENCV template void MemoryDataLayer::Reset(Dtype* data, Dtype* labels, int n) { @@ -105,7 +107,7 @@ void MemoryDataLayer::set_batch_size(int new_size) { template void MemoryDataLayer::Forward_cpu(const vector*>& bottom, const vector*>& top) { - CHECK(data_) << "MemoryDataLayer needs to be initalized by calling Reset"; + CHECK(data_) << "MemoryDataLayer needs to be initialized by calling Reset"; top[0]->Reshape(batch_size_, channels_, height_, width_); top[1]->Reshape(batch_size_, 1, 1, 1); top[0]->set_cpu_data(data_ + pos_ * size_); diff --git a/src/caffe/layers/multinomial_logistic_loss_layer.cpp b/src/caffe/layers/multinomial_logistic_loss_layer.cpp index 4267a594a..65664998d 100644 --- a/src/caffe/layers/multinomial_logistic_loss_layer.cpp +++ b/src/caffe/layers/multinomial_logistic_loss_layer.cpp @@ -1,12 +1,9 @@ #include -#include #include #include -#include "caffe/layer.hpp" -#include "caffe/util/io.hpp" +#include "caffe/layers/multinomial_logistic_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/mvn_layer.cpp b/src/caffe/layers/mvn_layer.cpp index 325691b18..8fe4ef8c0 100644 --- a/src/caffe/layers/mvn_layer.cpp +++ b/src/caffe/layers/mvn_layer.cpp @@ -1,8 +1,6 @@ -#include #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/mvn_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { @@ -42,29 +40,21 @@ void MVNLayer::Forward_cpu(const vector*>& bottom, int dim = bottom[0]->count() / num; - if (this->layer_param_.mvn_param().normalize_variance()) { - // put the squares of bottom into temp_ - caffe_powx(bottom[0]->count(), bottom_data, Dtype(2), - temp_.mutable_cpu_data()); + // subtract mean + caffe_cpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, + sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); // EX + caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., + mean_.cpu_data(), sum_multiplier_.cpu_data(), 0., + temp_.mutable_cpu_data()); + caffe_add(temp_.count(), bottom_data, temp_.cpu_data(), top_data); // X-EX - // computes variance using var(X) = E(X^2) - (EX)^2 - caffe_cpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, - sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); // EX + if (this->layer_param_.mvn_param().normalize_variance()) { + // compute variance using var(X) = E((X-EX)^2) + caffe_powx(bottom[0]->count(), top_data, Dtype(2), + temp_.mutable_cpu_data()); // (X-EX)^2 caffe_cpu_gemv(CblasNoTrans, num, dim, 1. / dim, temp_.cpu_data(), sum_multiplier_.cpu_data(), 0., - variance_.mutable_cpu_data()); // E(X^2) - caffe_powx(mean_.count(), mean_.cpu_data(), Dtype(2), - temp_.mutable_cpu_data()); // (EX)^2 - caffe_sub(mean_.count(), variance_.cpu_data(), temp_.cpu_data(), - variance_.mutable_cpu_data()); // variance - - // do mean and variance normalization - // subtract mean - caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., - mean_.cpu_data(), sum_multiplier_.cpu_data(), 0., - temp_.mutable_cpu_data()); - - caffe_add(temp_.count(), bottom_data, temp_.cpu_data(), top_data); + variance_.mutable_cpu_data()); // E((X-EX)^2) // normalize variance caffe_powx(variance_.count(), variance_.cpu_data(), Dtype(0.5), @@ -77,16 +67,6 @@ void MVNLayer::Forward_cpu(const vector*>& bottom, temp_.mutable_cpu_data()); caffe_div(temp_.count(), top_data, temp_.cpu_data(), top_data); - } else { - caffe_cpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, - sum_multiplier_.cpu_data(), 0., mean_.mutable_cpu_data()); // EX - - // subtract mean - caffe_cpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., - mean_.cpu_data(), sum_multiplier_.cpu_data(), 0., - temp_.mutable_cpu_data()); - - caffe_add(temp_.count(), bottom_data, temp_.cpu_data(), top_data); } } diff --git a/src/caffe/layers/mvn_layer.cu b/src/caffe/layers/mvn_layer.cu index d86a2e73f..739293be0 100644 --- a/src/caffe/layers/mvn_layer.cu +++ b/src/caffe/layers/mvn_layer.cu @@ -1,8 +1,6 @@ -#include #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/mvn_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { @@ -20,29 +18,22 @@ void MVNLayer::Forward_gpu(const vector*>& bottom, int dim = bottom[0]->count() / num; - if (this->layer_param_.mvn_param().normalize_variance()) { - // put the squares of bottom into temp_ - caffe_gpu_powx(bottom[0]->count(), bottom_data, Dtype(2), - temp_.mutable_gpu_data()); + // subtract mean + caffe_gpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, + sum_multiplier_.gpu_data(), 0., mean_.mutable_gpu_data()); // EX + caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., + mean_.gpu_data(), sum_multiplier_.gpu_data(), 0., + temp_.mutable_gpu_data()); + caffe_gpu_add(temp_.count(), bottom_data, temp_.gpu_data(), + top_data); // X-EX - // computes variance using var(X) = E(X^2) - (EX)^2 - caffe_gpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, - sum_multiplier_.gpu_data(), 0., mean_.mutable_gpu_data()); // EX + if (this->layer_param_.mvn_param().normalize_variance()) { + // compute variance using var(X) = E((X-EX)^2) + caffe_gpu_powx(bottom[0]->count(), top_data, Dtype(2), + temp_.mutable_gpu_data()); // (X-EX)^2 caffe_gpu_gemv(CblasNoTrans, num, dim, 1. / dim, temp_.gpu_data(), sum_multiplier_.gpu_data(), 0., - variance_.mutable_gpu_data()); // E(X^2) - caffe_gpu_powx(mean_.count(), mean_.gpu_data(), Dtype(2), - temp_.mutable_gpu_data()); // (EX)^2 - caffe_gpu_sub(mean_.count(), variance_.gpu_data(), temp_.gpu_data(), - variance_.mutable_gpu_data()); // variance - - // do mean and variance normalization - // subtract mean - caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., - mean_.gpu_data(), sum_multiplier_.gpu_data(), 0., - temp_.mutable_gpu_data()); - - caffe_gpu_add(temp_.count(), bottom_data, temp_.gpu_data(), top_data); + variance_.mutable_gpu_data()); // E((X-EX)^2) // normalize variance caffe_gpu_powx(variance_.count(), variance_.gpu_data(), Dtype(0.5), @@ -55,16 +46,6 @@ void MVNLayer::Forward_gpu(const vector*>& bottom, temp_.mutable_gpu_data()); caffe_gpu_div(temp_.count(), top_data, temp_.gpu_data(), top_data); - } else { - caffe_gpu_gemv(CblasNoTrans, num, dim, 1. / dim, bottom_data, - sum_multiplier_.gpu_data(), 0., mean_.mutable_gpu_data()); // EX - - // subtract mean - caffe_gpu_gemm(CblasNoTrans, CblasNoTrans, num, dim, 1, -1., - mean_.gpu_data(), sum_multiplier_.gpu_data(), 0., - temp_.mutable_gpu_data()); - - caffe_gpu_add(temp_.count(), bottom_data, temp_.gpu_data(), top_data); } } diff --git a/src/caffe/layers/neuron_layer.cpp b/src/caffe/layers/neuron_layer.cpp index ba67b4387..d7b5f3893 100644 --- a/src/caffe/layers/neuron_layer.cpp +++ b/src/caffe/layers/neuron_layer.cpp @@ -1,7 +1,6 @@ #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/neuron_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/parameter_layer.cpp b/src/caffe/layers/parameter_layer.cpp new file mode 100644 index 000000000..fbd326f84 --- /dev/null +++ b/src/caffe/layers/parameter_layer.cpp @@ -0,0 +1,8 @@ +#include "caffe/layers/parameter_layer.hpp" + +namespace caffe { + +INSTANTIATE_CLASS(ParameterLayer); +REGISTER_LAYER_CLASS(Parameter); + +} // namespace caffe diff --git a/src/caffe/layers/pooling_layer.cpp b/src/caffe/layers/pooling_layer.cpp index c8d414994..90897db0f 100644 --- a/src/caffe/layers/pooling_layer.cpp +++ b/src/caffe/layers/pooling_layer.cpp @@ -2,11 +2,8 @@ #include #include -#include "caffe/common.hpp" -#include "caffe/layer.hpp" -#include "caffe/syncedmem.hpp" +#include "caffe/layers/pooling_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/pooling_layer.cu b/src/caffe/layers/pooling_layer.cu index ca4b13f7c..46eddb949 100644 --- a/src/caffe/layers/pooling_layer.cu +++ b/src/caffe/layers/pooling_layer.cu @@ -2,9 +2,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/pooling_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -139,7 +138,7 @@ __global__ void StoPoolForwardTest(const int nthreads, const int wstart = pw * stride_w; const int wend = min(wstart + kernel_w, width); // We set cumsum to be 0 to avoid divide-by-zero problems - Dtype cumsum = FLT_MIN; + Dtype cumsum = 0.; Dtype cumvalues = 0.; const Dtype* const bottom_slice = bottom_data + (n * channels + c) * height * width; @@ -150,7 +149,7 @@ __global__ void StoPoolForwardTest(const int nthreads, cumvalues += bottom_slice[h * width + w] * bottom_slice[h * width + w]; } } - top_data[index] = cumvalues / cumsum; + top_data[index] = (cumsum > 0.) ? cumvalues / cumsum : 0.; } } diff --git a/src/caffe/layers/power_layer.cpp b/src/caffe/layers/power_layer.cpp index 4fe34c49f..d99b77ca8 100644 --- a/src/caffe/layers/power_layer.cpp +++ b/src/caffe/layers/power_layer.cpp @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/power_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/power_layer.cu b/src/caffe/layers/power_layer.cu index 90d944059..07711c421 100644 --- a/src/caffe/layers/power_layer.cu +++ b/src/caffe/layers/power_layer.cu @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/power_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/prelu_layer.cpp b/src/caffe/layers/prelu_layer.cpp index 818317555..853181bd5 100644 --- a/src/caffe/layers/prelu_layer.cpp +++ b/src/caffe/layers/prelu_layer.cpp @@ -2,8 +2,9 @@ #include #include "caffe/filler.hpp" -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" + +#include "caffe/layers/neuron_layer.hpp" +#include "caffe/layers/prelu_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/prelu_layer.cu b/src/caffe/layers/prelu_layer.cu index e1f20048f..aeb80eacd 100644 --- a/src/caffe/layers/prelu_layer.cu +++ b/src/caffe/layers/prelu_layer.cu @@ -1,8 +1,8 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/neuron_layer.hpp" +#include "caffe/layers/prelu_layer.hpp" namespace caffe { @@ -31,10 +31,15 @@ __global__ void PReLUBackward(const int n, const int channels, const int dim, // CUDA kernel for element-wise parameter backward template -__global__ void PReLUParamBackward(const int n, const Dtype* in_diff, +__global__ void PReLUParamBackward(const int n, + const int rows, const int rowPitch, const Dtype* in_diff, const Dtype* in_data, Dtype* out_diff) { CUDA_KERNEL_LOOP(index, n) { out_diff[index] = in_diff[index] * in_data[index] * (in_data[index] <= 0); + for ( int k = 1; k < rows; k++ ) { + out_diff[index] += in_diff[index + k*rowPitch] + * in_data[index + k*rowPitch] * (in_data[index + k*rowPitch] <= 0); + } } } @@ -82,29 +87,24 @@ void PReLULayer::Backward_gpu(const vector*>& top, if (this->param_propagate_down_[0]) { Dtype* slope_diff = this->blobs_[0]->mutable_gpu_diff(); int cdim = channels * dim; - Dtype dsum = 0.; - for (int n = 0; n < bottom[0]->num(); ++n) { - // compute element-wise diff - // NOLINT_NEXT_LINE(whitespace/operators) - PReLUParamBackward<<>>( - cdim, top_diff + top[0]->offset(n), - bottom_data + bottom[0]->offset(n), - backward_buff_.mutable_gpu_diff()); - CUDA_POST_KERNEL_CHECK; - if (channel_shared_) { - Dtype d; - caffe_gpu_dot(channels * dim, backward_buff_.gpu_diff(), - multiplier_.gpu_data(), &d); - dsum += d; - } else { - caffe_gpu_gemv(CblasNoTrans, channels, dim, 1., - backward_buff_.gpu_diff(), multiplier_.gpu_data(), 1., - slope_diff); - } - } + + // compute element-wise diff + // NOLINT_NEXT_LINE(whitespace/operators) + PReLUParamBackward<<>>( + cdim, bottom[0]->num(), top[0]->offset(1), top_diff , + bottom_data , + backward_buff_.mutable_gpu_diff()); + CUDA_POST_KERNEL_CHECK; if (channel_shared_) { + Dtype dsum; + caffe_gpu_dot(channels * dim, backward_buff_.gpu_diff(), + multiplier_.gpu_data(), &dsum); caffe_gpu_add_scalar(this->blobs_[0]->count(), Dtype(dsum), slope_diff); + } else { + caffe_gpu_gemv(CblasNoTrans, channels, dim, 1., + backward_buff_.gpu_diff(), multiplier_.gpu_data(), 1., + slope_diff); } } // Propagate to bottom diff --git a/src/caffe/layers/recurrent_layer.cpp b/src/caffe/layers/recurrent_layer.cpp new file mode 100644 index 000000000..e0c827733 --- /dev/null +++ b/src/caffe/layers/recurrent_layer.cpp @@ -0,0 +1,295 @@ +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/recurrent_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void RecurrentLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + CHECK_GE(bottom[0]->num_axes(), 2) + << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)"; + T_ = bottom[0]->shape(0); + N_ = bottom[0]->shape(1); + LOG(INFO) << "Initializing recurrent layer: assuming input batch contains " + << T_ << " timesteps of " << N_ << " independent streams."; + + CHECK_EQ(bottom[1]->num_axes(), 2) + << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)"; + CHECK_EQ(T_, bottom[1]->shape(0)); + CHECK_EQ(N_, bottom[1]->shape(1)); + + // If expose_hidden is set, we take as input and produce as output + // the hidden state blobs at the first and last timesteps. + expose_hidden_ = this->layer_param_.recurrent_param().expose_hidden(); + + // Get (recurrent) input/output names. + vector output_names; + OutputBlobNames(&output_names); + vector recur_input_names; + RecurrentInputBlobNames(&recur_input_names); + vector recur_output_names; + RecurrentOutputBlobNames(&recur_output_names); + const int num_recur_blobs = recur_input_names.size(); + CHECK_EQ(num_recur_blobs, recur_output_names.size()); + + // If provided, bottom[2] is a static input to the recurrent net. + const int num_hidden_exposed = expose_hidden_ * num_recur_blobs; + static_input_ = (bottom.size() > 2 + num_hidden_exposed); + if (static_input_) { + CHECK_GE(bottom[2]->num_axes(), 1); + CHECK_EQ(N_, bottom[2]->shape(0)); + } + + // Create a NetParameter; setup the inputs that aren't unique to particular + // recurrent architectures. + NetParameter net_param; + + LayerParameter* input_layer_param = net_param.add_layer(); + input_layer_param->set_type("Input"); + InputParameter* input_param = input_layer_param->mutable_input_param(); + input_layer_param->add_top("x"); + BlobShape input_shape; + for (int i = 0; i < bottom[0]->num_axes(); ++i) { + input_shape.add_dim(bottom[0]->shape(i)); + } + input_param->add_shape()->CopyFrom(input_shape); + + input_shape.Clear(); + for (int i = 0; i < bottom[1]->num_axes(); ++i) { + input_shape.add_dim(bottom[1]->shape(i)); + } + input_layer_param->add_top("cont"); + input_param->add_shape()->CopyFrom(input_shape); + + if (static_input_) { + input_shape.Clear(); + for (int i = 0; i < bottom[2]->num_axes(); ++i) { + input_shape.add_dim(bottom[2]->shape(i)); + } + input_layer_param->add_top("x_static"); + input_param->add_shape()->CopyFrom(input_shape); + } + + // Call the child's FillUnrolledNet implementation to specify the unrolled + // recurrent architecture. + this->FillUnrolledNet(&net_param); + + // Prepend this layer's name to the names of each layer in the unrolled net. + const string& layer_name = this->layer_param_.name(); + if (layer_name.size()) { + for (int i = 0; i < net_param.layer_size(); ++i) { + LayerParameter* layer = net_param.mutable_layer(i); + layer->set_name(layer_name + "_" + layer->name()); + } + } + + // Add "pseudo-losses" to all outputs to force backpropagation. + // (Setting force_backward is too aggressive as we may not need to backprop to + // all inputs, e.g., the sequence continuation indicators.) + vector pseudo_losses(output_names.size()); + for (int i = 0; i < output_names.size(); ++i) { + LayerParameter* layer = net_param.add_layer(); + pseudo_losses[i] = output_names[i] + "_pseudoloss"; + layer->set_name(pseudo_losses[i]); + layer->set_type("Reduction"); + layer->add_bottom(output_names[i]); + layer->add_top(pseudo_losses[i]); + layer->add_loss_weight(1); + } + + // Create the unrolled net. + unrolled_net_.reset(new Net(net_param)); + unrolled_net_->set_debug_info( + this->layer_param_.recurrent_param().debug_info()); + + // Setup pointers to the inputs. + x_input_blob_ = CHECK_NOTNULL(unrolled_net_->blob_by_name("x").get()); + cont_input_blob_ = CHECK_NOTNULL(unrolled_net_->blob_by_name("cont").get()); + if (static_input_) { + x_static_input_blob_ = + CHECK_NOTNULL(unrolled_net_->blob_by_name("x_static").get()); + } + + // Setup pointers to paired recurrent inputs/outputs. + recur_input_blobs_.resize(num_recur_blobs); + recur_output_blobs_.resize(num_recur_blobs); + for (int i = 0; i < recur_input_names.size(); ++i) { + recur_input_blobs_[i] = + CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_input_names[i]).get()); + recur_output_blobs_[i] = + CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_output_names[i]).get()); + } + + // Setup pointers to outputs. + CHECK_EQ(top.size() - num_hidden_exposed, output_names.size()) + << "OutputBlobNames must provide an output blob name for each top."; + output_blobs_.resize(output_names.size()); + for (int i = 0; i < output_names.size(); ++i) { + output_blobs_[i] = + CHECK_NOTNULL(unrolled_net_->blob_by_name(output_names[i]).get()); + } + + // We should have 2 inputs (x and cont), plus a number of recurrent inputs, + // plus maybe a static input. + CHECK_EQ(2 + num_recur_blobs + static_input_, + unrolled_net_->input_blobs().size()); + + // This layer's parameters are any parameters in the layers of the unrolled + // net. We only want one copy of each parameter, so check that the parameter + // is "owned" by the layer, rather than shared with another. + this->blobs_.clear(); + for (int i = 0; i < unrolled_net_->params().size(); ++i) { + if (unrolled_net_->param_owners()[i] == -1) { + LOG(INFO) << "Adding parameter " << i << ": " + << unrolled_net_->param_display_names()[i]; + this->blobs_.push_back(unrolled_net_->params()[i]); + } + } + // Check that param_propagate_down is set for all of the parameters in the + // unrolled net; set param_propagate_down to true in this layer. + for (int i = 0; i < unrolled_net_->layers().size(); ++i) { + for (int j = 0; j < unrolled_net_->layers()[i]->blobs().size(); ++j) { + CHECK(unrolled_net_->layers()[i]->param_propagate_down(j)) + << "param_propagate_down not set for layer " << i << ", param " << j; + } + } + this->param_propagate_down_.clear(); + this->param_propagate_down_.resize(this->blobs_.size(), true); + + // Set the diffs of recurrent outputs to 0 -- we can't backpropagate across + // batches. + for (int i = 0; i < recur_output_blobs_.size(); ++i) { + caffe_set(recur_output_blobs_[i]->count(), Dtype(0), + recur_output_blobs_[i]->mutable_cpu_diff()); + } + + // Check that the last output_names.size() layers are the pseudo-losses; + // set last_layer_index so that we don't actually run these layers. + const vector& layer_names = unrolled_net_->layer_names(); + last_layer_index_ = layer_names.size() - 1 - pseudo_losses.size(); + for (int i = last_layer_index_ + 1, j = 0; i < layer_names.size(); ++i, ++j) { + CHECK_EQ(layer_names[i], pseudo_losses[j]); + } +} + +template +void RecurrentLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + CHECK_GE(bottom[0]->num_axes(), 2) + << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)"; + CHECK_EQ(T_, bottom[0]->shape(0)) << "input number of timesteps changed"; + N_ = bottom[0]->shape(1); + CHECK_EQ(bottom[1]->num_axes(), 2) + << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)"; + CHECK_EQ(T_, bottom[1]->shape(0)); + CHECK_EQ(N_, bottom[1]->shape(1)); + x_input_blob_->ReshapeLike(*bottom[0]); + vector cont_shape = bottom[1]->shape(); + cont_input_blob_->Reshape(cont_shape); + if (static_input_) { + x_static_input_blob_->ReshapeLike(*bottom[2]); + } + vector recur_input_shapes; + RecurrentInputShapes(&recur_input_shapes); + CHECK_EQ(recur_input_shapes.size(), recur_input_blobs_.size()); + for (int i = 0; i < recur_input_shapes.size(); ++i) { + recur_input_blobs_[i]->Reshape(recur_input_shapes[i]); + } + unrolled_net_->Reshape(); + x_input_blob_->ShareData(*bottom[0]); + x_input_blob_->ShareDiff(*bottom[0]); + cont_input_blob_->ShareData(*bottom[1]); + if (static_input_) { + x_static_input_blob_->ShareData(*bottom[2]); + x_static_input_blob_->ShareDiff(*bottom[2]); + } + if (expose_hidden_) { + const int bottom_offset = 2 + static_input_; + for (int i = bottom_offset, j = 0; i < bottom.size(); ++i, ++j) { + CHECK(recur_input_blobs_[j]->shape() == bottom[i]->shape()) + << "bottom[" << i << "] shape must match hidden state input shape: " + << recur_input_blobs_[j]->shape_string(); + recur_input_blobs_[j]->ShareData(*bottom[i]); + } + } + for (int i = 0; i < output_blobs_.size(); ++i) { + top[i]->ReshapeLike(*output_blobs_[i]); + top[i]->ShareData(*output_blobs_[i]); + top[i]->ShareDiff(*output_blobs_[i]); + } + if (expose_hidden_) { + const int top_offset = output_blobs_.size(); + for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { + top[i]->ReshapeLike(*recur_output_blobs_[j]); + } + } +} + +template +void RecurrentLayer::Reset() { + // "Reset" the hidden state of the net by zeroing out all recurrent outputs. + for (int i = 0; i < recur_output_blobs_.size(); ++i) { + caffe_set(recur_output_blobs_[i]->count(), Dtype(0), + recur_output_blobs_[i]->mutable_cpu_data()); + } +} + +template +void RecurrentLayer::Forward_cpu(const vector*>& bottom, + const vector*>& top) { + // Hacky fix for test time: reshare all the internal shared blobs, which may + // currently point to a stale owner blob that was dropped when Solver::Test + // called test_net->ShareTrainedLayersWith(net_.get()). + // TODO: somehow make this work non-hackily. + if (this->phase_ == TEST) { + unrolled_net_->ShareWeights(); + } + + DCHECK_EQ(recur_input_blobs_.size(), recur_output_blobs_.size()); + if (!expose_hidden_) { + for (int i = 0; i < recur_input_blobs_.size(); ++i) { + const int count = recur_input_blobs_[i]->count(); + DCHECK_EQ(count, recur_output_blobs_[i]->count()); + const Dtype* timestep_T_data = recur_output_blobs_[i]->cpu_data(); + Dtype* timestep_0_data = recur_input_blobs_[i]->mutable_cpu_data(); + caffe_copy(count, timestep_T_data, timestep_0_data); + } + } + + unrolled_net_->ForwardTo(last_layer_index_); + + if (expose_hidden_) { + const int top_offset = output_blobs_.size(); + for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { + top[i]->ShareData(*recur_output_blobs_[j]); + } + } +} + +template +void RecurrentLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + CHECK(!propagate_down[1]) << "Cannot backpropagate to sequence indicators."; + + // TODO: skip backpropagation to inputs and parameters inside the unrolled + // net according to propagate_down[0] and propagate_down[2]. For now just + // backprop to inputs and parameters unconditionally, as either the inputs or + // the parameters do need backward (or Net would have set + // layer_needs_backward_[i] == false for this layer). + unrolled_net_->BackwardFrom(last_layer_index_); +} + +#ifdef CPU_ONLY +STUB_GPU_FORWARD(RecurrentLayer, Forward); +#endif + +INSTANTIATE_CLASS(RecurrentLayer); + +} // namespace caffe diff --git a/src/caffe/layers/recurrent_layer.cu b/src/caffe/layers/recurrent_layer.cu new file mode 100644 index 000000000..4dd2b0e21 --- /dev/null +++ b/src/caffe/layers/recurrent_layer.cu @@ -0,0 +1,44 @@ +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/recurrent_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void RecurrentLayer::Forward_gpu(const vector*>& bottom, + const vector*>& top) { + // Hacky fix for test time... reshare all the shared blobs. + // TODO: somehow make this work non-hackily. + if (this->phase_ == TEST) { + unrolled_net_->ShareWeights(); + } + + DCHECK_EQ(recur_input_blobs_.size(), recur_output_blobs_.size()); + if (!expose_hidden_) { + for (int i = 0; i < recur_input_blobs_.size(); ++i) { + const int count = recur_input_blobs_[i]->count(); + DCHECK_EQ(count, recur_output_blobs_[i]->count()); + const Dtype* timestep_T_data = recur_output_blobs_[i]->gpu_data(); + Dtype* timestep_0_data = recur_input_blobs_[i]->mutable_gpu_data(); + caffe_copy(count, timestep_T_data, timestep_0_data); + } + } + + unrolled_net_->ForwardTo(last_layer_index_); + + if (expose_hidden_) { + const int top_offset = output_blobs_.size(); + for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { + top[i]->ShareData(*recur_output_blobs_[j]); + } + } +} + +INSTANTIATE_LAYER_GPU_FORWARD(RecurrentLayer); + +} // namespace caffe diff --git a/src/caffe/layers/reduction_layer.cpp b/src/caffe/layers/reduction_layer.cpp index 8ae6329eb..fa46487e6 100644 --- a/src/caffe/layers/reduction_layer.cpp +++ b/src/caffe/layers/reduction_layer.cpp @@ -1,10 +1,7 @@ -#include -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/reduction_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/reduction_layer.cu b/src/caffe/layers/reduction_layer.cu index 2dbd3bc9f..4a6b2b73f 100644 --- a/src/caffe/layers/reduction_layer.cu +++ b/src/caffe/layers/reduction_layer.cu @@ -1,9 +1,7 @@ -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/reduction_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/relu_layer.cpp b/src/caffe/layers/relu_layer.cpp index cc00319a5..92a729c81 100644 --- a/src/caffe/layers/relu_layer.cpp +++ b/src/caffe/layers/relu_layer.cpp @@ -1,8 +1,7 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/relu_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/relu_layer.cu b/src/caffe/layers/relu_layer.cu index b8924c855..4bf15b3aa 100644 --- a/src/caffe/layers/relu_layer.cu +++ b/src/caffe/layers/relu_layer.cu @@ -1,8 +1,7 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/relu_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/reshape_layer.cpp b/src/caffe/layers/reshape_layer.cpp index ffe970f26..45dd0902d 100644 --- a/src/caffe/layers/reshape_layer.cpp +++ b/src/caffe/layers/reshape_layer.cpp @@ -1,13 +1,14 @@ #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/reshape_layer.hpp" namespace caffe { template void ReshapeLayer::LayerSetUp(const vector*>& bottom, const vector*>& top) { + CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " + "allow in-place computation."; inferred_axis_ = -1; copy_axes_.clear(); const BlobShape& top_blob_shape = this->layer_param_.reshape_param().shape(); diff --git a/src/caffe/layers/rnn_layer.cpp b/src/caffe/layers/rnn_layer.cpp new file mode 100644 index 000000000..8c2fa22e5 --- /dev/null +++ b/src/caffe/layers/rnn_layer.cpp @@ -0,0 +1,236 @@ +#include +#include + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layer.hpp" +#include "caffe/layers/rnn_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void RNNLayer::RecurrentInputBlobNames(vector* names) const { + names->resize(1); + (*names)[0] = "h_0"; +} + +template +void RNNLayer::RecurrentOutputBlobNames(vector* names) const { + names->resize(1); + (*names)[0] = "h_" + format_int(this->T_); +} + +template +void RNNLayer::RecurrentInputShapes(vector* shapes) const { + const int num_output = this->layer_param_.recurrent_param().num_output(); + shapes->resize(1); + (*shapes)[0].Clear(); + (*shapes)[0].add_dim(1); // a single timestep + (*shapes)[0].add_dim(this->N_); + (*shapes)[0].add_dim(num_output); +} + +template +void RNNLayer::OutputBlobNames(vector* names) const { + names->resize(1); + (*names)[0] = "o"; +} + +template +void RNNLayer::FillUnrolledNet(NetParameter* net_param) const { + const int num_output = this->layer_param_.recurrent_param().num_output(); + CHECK_GT(num_output, 0) << "num_output must be positive"; + const FillerParameter& weight_filler = + this->layer_param_.recurrent_param().weight_filler(); + const FillerParameter& bias_filler = + this->layer_param_.recurrent_param().bias_filler(); + + // Add generic LayerParameter's (without bottoms/tops) of layer types we'll + // use to save redundant code. + LayerParameter hidden_param; + hidden_param.set_type("InnerProduct"); + hidden_param.mutable_inner_product_param()->set_num_output(num_output); + hidden_param.mutable_inner_product_param()->set_bias_term(false); + hidden_param.mutable_inner_product_param()->set_axis(2); + hidden_param.mutable_inner_product_param()-> + mutable_weight_filler()->CopyFrom(weight_filler); + + LayerParameter biased_hidden_param(hidden_param); + biased_hidden_param.mutable_inner_product_param()->set_bias_term(true); + biased_hidden_param.mutable_inner_product_param()-> + mutable_bias_filler()->CopyFrom(bias_filler); + + LayerParameter sum_param; + sum_param.set_type("Eltwise"); + sum_param.mutable_eltwise_param()->set_operation( + EltwiseParameter_EltwiseOp_SUM); + + LayerParameter tanh_param; + tanh_param.set_type("TanH"); + + LayerParameter scale_param; + scale_param.set_type("Scale"); + scale_param.mutable_scale_param()->set_axis(0); + + LayerParameter slice_param; + slice_param.set_type("Slice"); + slice_param.mutable_slice_param()->set_axis(0); + + vector input_shapes; + RecurrentInputShapes(&input_shapes); + CHECK_EQ(1, input_shapes.size()); + + LayerParameter* input_layer_param = net_param->add_layer(); + input_layer_param->set_type("Input"); + InputParameter* input_param = input_layer_param->mutable_input_param(); + input_layer_param->add_top("h_0"); + input_param->add_shape()->CopyFrom(input_shapes[0]); + + LayerParameter* cont_slice_param = net_param->add_layer(); + cont_slice_param->CopyFrom(slice_param); + cont_slice_param->set_name("cont_slice"); + cont_slice_param->add_bottom("cont"); + cont_slice_param->mutable_slice_param()->set_axis(0); + + // Add layer to transform all timesteps of x to the hidden state dimension. + // W_xh_x = W_xh * x + b_h + { + LayerParameter* x_transform_param = net_param->add_layer(); + x_transform_param->CopyFrom(biased_hidden_param); + x_transform_param->set_name("x_transform"); + x_transform_param->add_param()->set_name("W_xh"); + x_transform_param->add_param()->set_name("b_h"); + x_transform_param->add_bottom("x"); + x_transform_param->add_top("W_xh_x"); + x_transform_param->add_propagate_down(true); + } + + if (this->static_input_) { + // Add layer to transform x_static to the hidden state dimension. + // W_xh_x_static = W_xh_static * x_static + LayerParameter* x_static_transform_param = net_param->add_layer(); + x_static_transform_param->CopyFrom(hidden_param); + x_static_transform_param->mutable_inner_product_param()->set_axis(1); + x_static_transform_param->set_name("W_xh_x_static"); + x_static_transform_param->add_param()->set_name("W_xh_static"); + x_static_transform_param->add_bottom("x_static"); + x_static_transform_param->add_top("W_xh_x_static_preshape"); + x_static_transform_param->add_propagate_down(true); + + LayerParameter* reshape_param = net_param->add_layer(); + reshape_param->set_type("Reshape"); + BlobShape* new_shape = + reshape_param->mutable_reshape_param()->mutable_shape(); + new_shape->add_dim(1); // One timestep. + // Should infer this->N as the dimension so we can reshape on batch size. + new_shape->add_dim(-1); + new_shape->add_dim( + x_static_transform_param->inner_product_param().num_output()); + reshape_param->set_name("W_xh_x_static_reshape"); + reshape_param->add_bottom("W_xh_x_static_preshape"); + reshape_param->add_top("W_xh_x_static"); + } + + LayerParameter* x_slice_param = net_param->add_layer(); + x_slice_param->CopyFrom(slice_param); + x_slice_param->set_name("W_xh_x_slice"); + x_slice_param->add_bottom("W_xh_x"); + + LayerParameter output_concat_layer; + output_concat_layer.set_name("o_concat"); + output_concat_layer.set_type("Concat"); + output_concat_layer.add_top("o"); + output_concat_layer.mutable_concat_param()->set_axis(0); + + for (int t = 1; t <= this->T_; ++t) { + string tm1s = format_int(t - 1); + string ts = format_int(t); + + cont_slice_param->add_top("cont_" + ts); + x_slice_param->add_top("W_xh_x_" + ts); + + // Add layer to flush the hidden state when beginning a new sequence, + // as indicated by cont_t. + // h_conted_{t-1} := cont_t * h_{t-1} + // + // Normally, cont_t is binary (i.e., 0 or 1), so: + // h_conted_{t-1} := h_{t-1} if cont_t == 1 + // 0 otherwise + { + LayerParameter* cont_h_param = net_param->add_layer(); + cont_h_param->CopyFrom(scale_param); + cont_h_param->set_name("h_conted_" + tm1s); + cont_h_param->add_bottom("h_" + tm1s); + cont_h_param->add_bottom("cont_" + ts); + cont_h_param->add_top("h_conted_" + tm1s); + } + + // Add layer to compute + // W_hh_h_{t-1} := W_hh * h_conted_{t-1} + { + LayerParameter* w_param = net_param->add_layer(); + w_param->CopyFrom(hidden_param); + w_param->set_name("W_hh_h_" + tm1s); + w_param->add_param()->set_name("W_hh"); + w_param->add_bottom("h_conted_" + tm1s); + w_param->add_top("W_hh_h_" + tm1s); + w_param->mutable_inner_product_param()->set_axis(2); + } + + // Add layers to compute + // h_t := \tanh( W_hh * h_conted_{t-1} + W_xh * x_t + b_h ) + // = \tanh( W_hh_h_{t-1} + W_xh_t ) + { + LayerParameter* h_input_sum_param = net_param->add_layer(); + h_input_sum_param->CopyFrom(sum_param); + h_input_sum_param->set_name("h_input_sum_" + ts); + h_input_sum_param->add_bottom("W_hh_h_" + tm1s); + h_input_sum_param->add_bottom("W_xh_x_" + ts); + if (this->static_input_) { + h_input_sum_param->add_bottom("W_xh_x_static"); + } + h_input_sum_param->add_top("h_neuron_input_" + ts); + } + { + LayerParameter* h_neuron_param = net_param->add_layer(); + h_neuron_param->CopyFrom(tanh_param); + h_neuron_param->set_name("h_neuron_" + ts); + h_neuron_param->add_bottom("h_neuron_input_" + ts); + h_neuron_param->add_top("h_" + ts); + } + + // Add layer to compute + // W_ho_h_t := W_ho * h_t + b_o + { + LayerParameter* w_param = net_param->add_layer(); + w_param->CopyFrom(biased_hidden_param); + w_param->set_name("W_ho_h_" + ts); + w_param->add_param()->set_name("W_ho"); + w_param->add_param()->set_name("b_o"); + w_param->add_bottom("h_" + ts); + w_param->add_top("W_ho_h_" + ts); + w_param->mutable_inner_product_param()->set_axis(2); + } + + // Add layers to compute + // o_t := \tanh( W_ho * h_t + b_o) + // = \tanh( W_ho_h_t ) + { + LayerParameter* o_neuron_param = net_param->add_layer(); + o_neuron_param->CopyFrom(tanh_param); + o_neuron_param->set_name("o_neuron_" + ts); + o_neuron_param->add_bottom("W_ho_h_" + ts); + o_neuron_param->add_top("o_" + ts); + } + output_concat_layer.add_bottom("o_" + ts); + } // for (int t = 1; t <= this->T_; ++t) + + net_param->add_layer()->CopyFrom(output_concat_layer); +} + +INSTANTIATE_CLASS(RNNLayer); +REGISTER_LAYER_CLASS(RNN); + +} // namespace caffe diff --git a/src/caffe/layers/scale_layer.cpp b/src/caffe/layers/scale_layer.cpp new file mode 100644 index 000000000..e652dad6e --- /dev/null +++ b/src/caffe/layers/scale_layer.cpp @@ -0,0 +1,227 @@ +#include +#include + +#include "caffe/filler.hpp" +#include "caffe/layer_factory.hpp" +#include "caffe/layers/scale_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +void ScaleLayer::LayerSetUp(const vector*>& bottom, + const vector*>& top) { + const ScaleParameter& param = this->layer_param_.scale_param(); + if (bottom.size() == 1 && this->blobs_.size() > 0) { + LOG(INFO) << "Skipping parameter initialization"; + } else if (bottom.size() == 1) { + // scale is a learned parameter; initialize it + axis_ = bottom[0]->CanonicalAxisIndex(param.axis()); + const int num_axes = param.num_axes(); + CHECK_GE(num_axes, -1) << "num_axes must be non-negative, " + << "or -1 to extend to the end of bottom[0]"; + if (num_axes >= 0) { + CHECK_GE(bottom[0]->num_axes(), axis_ + num_axes) + << "scale blob's shape extends past bottom[0]'s shape when applied " + << "starting with bottom[0] axis = " << axis_; + } + this->blobs_.resize(1); + const vector::const_iterator& shape_start = + bottom[0]->shape().begin() + axis_; + const vector::const_iterator& shape_end = + (num_axes == -1) ? bottom[0]->shape().end() : (shape_start + num_axes); + vector scale_shape(shape_start, shape_end); + this->blobs_[0].reset(new Blob(scale_shape)); + FillerParameter filler_param(param.filler()); + if (!param.has_filler()) { + // Default to unit (1) filler for identity operation. + filler_param.set_type("constant"); + filler_param.set_value(1); + } + shared_ptr > filler(GetFiller(filler_param)); + filler->Fill(this->blobs_[0].get()); + } + if (param.bias_term()) { + LayerParameter layer_param(this->layer_param_); + layer_param.set_type("Bias"); + BiasParameter* bias_param = layer_param.mutable_bias_param(); + bias_param->set_axis(param.axis()); + if (bottom.size() > 1) { + bias_param->set_num_axes(bottom[1]->num_axes()); + } else { + bias_param->set_num_axes(param.num_axes()); + } + bias_param->mutable_filler()->CopyFrom(param.bias_filler()); + bias_layer_ = LayerRegistry::CreateLayer(layer_param); + bias_bottom_vec_.resize(1); + bias_bottom_vec_[0] = bottom[0]; + bias_layer_->SetUp(bias_bottom_vec_, top); + if (this->blobs_.size() + bottom.size() < 3) { + // case: blobs.size == 1 && bottom.size == 1 + // or blobs.size == 0 && bottom.size == 2 + bias_param_id_ = this->blobs_.size(); + this->blobs_.resize(bias_param_id_ + 1); + this->blobs_[bias_param_id_] = bias_layer_->blobs()[0]; + } else { + // bias param already initialized + bias_param_id_ = this->blobs_.size() - 1; + bias_layer_->blobs()[0] = this->blobs_[bias_param_id_]; + } + bias_propagate_down_.resize(1, false); + } + this->param_propagate_down_.resize(this->blobs_.size(), true); +} + +template +void ScaleLayer::Reshape(const vector*>& bottom, + const vector*>& top) { + const ScaleParameter& param = this->layer_param_.scale_param(); + Blob* scale = (bottom.size() > 1) ? bottom[1] : this->blobs_[0].get(); + // Always set axis_ == 0 in special case where scale is a scalar + // (num_axes == 0). Mathematically equivalent for any choice of axis_, so the + // actual setting can be safely ignored; and computation is most efficient + // with axis_ == 0 and (therefore) outer_dim_ == 1. (Setting axis_ to + // bottom[0]->num_axes() - 1, giving inner_dim_ == 1, would be equally + // performant.) + axis_ = (scale->num_axes() == 0) ? + 0 : bottom[0]->CanonicalAxisIndex(param.axis()); + CHECK_GE(bottom[0]->num_axes(), axis_ + scale->num_axes()) + << "scale blob's shape extends past bottom[0]'s shape when applied " + << "starting with bottom[0] axis = " << axis_; + for (int i = 0; i < scale->num_axes(); ++i) { + CHECK_EQ(bottom[0]->shape(axis_ + i), scale->shape(i)) + << "dimension mismatch between bottom[0]->shape(" << axis_ + i + << ") and scale->shape(" << i << ")"; + } + outer_dim_ = bottom[0]->count(0, axis_); + scale_dim_ = scale->count(); + inner_dim_ = bottom[0]->count(axis_ + scale->num_axes()); + if (bottom[0] == top[0]) { // in-place computation + temp_.ReshapeLike(*bottom[0]); + } else { + top[0]->ReshapeLike(*bottom[0]); + } + sum_result_.Reshape(vector(1, outer_dim_ * scale_dim_)); + const int sum_mult_size = std::max(outer_dim_, inner_dim_); + sum_multiplier_.Reshape(vector(1, sum_mult_size)); + if (sum_multiplier_.cpu_data()[sum_mult_size - 1] != Dtype(1)) { + caffe_set(sum_mult_size, Dtype(1), sum_multiplier_.mutable_cpu_data()); + } + if (bias_layer_) { + bias_bottom_vec_[0] = top[0]; + bias_layer_->Reshape(bias_bottom_vec_, top); + } +} + +template +void ScaleLayer::Forward_cpu( + const vector*>& bottom, const vector*>& top) { + const Dtype* bottom_data = bottom[0]->cpu_data(); + if (bottom[0] == top[0]) { + // In-place computation; need to store bottom data before overwriting it. + // Note that this is only necessary for Backward; we could skip this if not + // doing Backward, but Caffe currently provides no way of knowing whether + // we'll need to do Backward at the time of the Forward call. + caffe_copy(bottom[0]->count(), bottom[0]->cpu_data(), + temp_.mutable_cpu_data()); + } + const Dtype* scale_data = + ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->cpu_data(); + Dtype* top_data = top[0]->mutable_cpu_data(); + for (int n = 0; n < outer_dim_; ++n) { + for (int d = 0; d < scale_dim_; ++d) { + const Dtype factor = scale_data[d]; + caffe_cpu_scale(inner_dim_, factor, bottom_data, top_data); + bottom_data += inner_dim_; + top_data += inner_dim_; + } + } + if (bias_layer_) { + bias_layer_->Forward(bias_bottom_vec_, top); + } +} + +template +void ScaleLayer::Backward_cpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + if (bias_layer_ && + this->param_propagate_down_[this->param_propagate_down_.size() - 1]) { + bias_layer_->Backward(top, bias_propagate_down_, bias_bottom_vec_); + } + const bool scale_param = (bottom.size() == 1); + Blob* scale = scale_param ? this->blobs_[0].get() : bottom[1]; + if ((!scale_param && propagate_down[1]) || + (scale_param && this->param_propagate_down_[0])) { + const Dtype* top_diff = top[0]->cpu_diff(); + const bool in_place = (bottom[0] == top[0]); + const Dtype* bottom_data = (in_place ? &temp_ : bottom[0])->cpu_data(); + // Hack: store big eltwise product in bottom[0] diff, except in the special + // case where this layer itself does the eltwise product, in which case we + // can store it directly in the scale diff, and we're done. + // If we're computing in-place (and not doing eltwise computation), this + // hack doesn't work and we store the product in temp_. + const bool is_eltwise = (bottom[0]->count() == scale->count()); + Dtype* product = (is_eltwise ? scale->mutable_cpu_diff() : + (in_place ? temp_.mutable_cpu_data() : bottom[0]->mutable_cpu_diff())); + caffe_mul(top[0]->count(), top_diff, bottom_data, product); + if (!is_eltwise) { + Dtype* sum_result = NULL; + if (inner_dim_ == 1) { + sum_result = product; + } else if (sum_result_.count() == 1) { + const Dtype* sum_mult = sum_multiplier_.cpu_data(); + Dtype* scale_diff = scale->mutable_cpu_diff(); + if (scale_param) { + Dtype result = caffe_cpu_dot(inner_dim_, product, sum_mult); + *scale_diff += result; + } else { + *scale_diff = caffe_cpu_dot(inner_dim_, product, sum_mult); + } + } else { + const Dtype* sum_mult = sum_multiplier_.cpu_data(); + sum_result = (outer_dim_ == 1) ? + scale->mutable_cpu_diff() : sum_result_.mutable_cpu_data(); + caffe_cpu_gemv(CblasNoTrans, sum_result_.count(), inner_dim_, + Dtype(1), product, sum_mult, Dtype(0), sum_result); + } + if (outer_dim_ != 1) { + const Dtype* sum_mult = sum_multiplier_.cpu_data(); + Dtype* scale_diff = scale->mutable_cpu_diff(); + if (scale_dim_ == 1) { + if (scale_param) { + Dtype result = caffe_cpu_dot(outer_dim_, sum_mult, sum_result); + *scale_diff += result; + } else { + *scale_diff = caffe_cpu_dot(outer_dim_, sum_mult, sum_result); + } + } else { + caffe_cpu_gemv(CblasTrans, outer_dim_, scale_dim_, + Dtype(1), sum_result, sum_mult, Dtype(scale_param), + scale_diff); + } + } + } + } + if (propagate_down[0]) { + const Dtype* top_diff = top[0]->cpu_diff(); + const Dtype* scale_data = scale->cpu_data(); + Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); + for (int n = 0; n < outer_dim_; ++n) { + for (int d = 0; d < scale_dim_; ++d) { + const Dtype factor = scale_data[d]; + caffe_cpu_scale(inner_dim_, factor, top_diff, bottom_diff); + bottom_diff += inner_dim_; + top_diff += inner_dim_; + } + } + } +} + +#ifdef CPU_ONLY +STUB_GPU(ScaleLayer); +#endif + +INSTANTIATE_CLASS(ScaleLayer); +REGISTER_LAYER_CLASS(Scale); + +} // namespace caffe diff --git a/src/caffe/layers/scale_layer.cu b/src/caffe/layers/scale_layer.cu new file mode 100644 index 000000000..fc9a8064d --- /dev/null +++ b/src/caffe/layers/scale_layer.cu @@ -0,0 +1,135 @@ +#include +#include + +#include "caffe/layers/scale_layer.hpp" +#include "caffe/util/math_functions.hpp" + +namespace caffe { + +template +__global__ void ScaleForward(const int n, const Dtype* in, + const Dtype* scale, const int scale_dim, const int inner_dim, + Dtype* out) { + CUDA_KERNEL_LOOP(index, n) { + const int scale_index = (index / inner_dim) % scale_dim; + out[index] = in[index] * scale[scale_index]; + } +} + +template +__global__ void ScaleBiasForward(const int n, const Dtype* in, + const Dtype* scale, const Dtype* bias, + const int scale_dim, const int inner_dim, Dtype* out) { + CUDA_KERNEL_LOOP(index, n) { + const int scale_index = (index / inner_dim) % scale_dim; + out[index] = in[index] * scale[scale_index] + bias[scale_index]; + } +} + +template +void ScaleLayer::Forward_gpu( + const vector*>& bottom, const vector*>& top) { + const int count = top[0]->count(); + const Dtype* bottom_data = bottom[0]->gpu_data(); + if (bottom[0] == top[0]) { + // in-place computation; need to store bottom data before overwriting it. + // Note that this is only necessary for Backward; we could skip this if not + // doing Backward, but Caffe currently provides no way of knowing whether + // we'll need to do Backward at the time of the Forward call. + caffe_copy(bottom[0]->count(), bottom[0]->gpu_data(), + temp_.mutable_gpu_data()); + } + const Dtype* scale_data = + ((bottom.size() > 1) ? bottom[1] : this->blobs_[0].get())->gpu_data(); + Dtype* top_data = top[0]->mutable_gpu_data(); + if (bias_layer_) { + const Dtype* bias_data = this->blobs_[bias_param_id_]->gpu_data(); + ScaleBiasForward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + count, bottom_data, scale_data, bias_data, scale_dim_, inner_dim_, + top_data); + } else { + ScaleForward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + count, bottom_data, scale_data, scale_dim_, inner_dim_, top_data); + } +} + +template +void ScaleLayer::Backward_gpu(const vector*>& top, + const vector& propagate_down, const vector*>& bottom) { + if (bias_layer_ && + this->param_propagate_down_[this->param_propagate_down_.size() - 1]) { + bias_layer_->Backward(top, bias_propagate_down_, bias_bottom_vec_); + } + const bool scale_param = (bottom.size() == 1); + Blob* scale = scale_param ? this->blobs_[0].get() : bottom[1]; + if ((!scale_param && propagate_down[1]) || + (scale_param && this->param_propagate_down_[0])) { + const Dtype* top_diff = top[0]->gpu_diff(); + const bool in_place = (bottom[0] == top[0]); + const Dtype* bottom_data = (in_place ? &temp_ : bottom[0])->gpu_data(); + // Hack: store big eltwise product in bottom[0] diff, except in the special + // case where this layer itself does the eltwise product, in which case we + // can store it directly in the scale diff, and we're done. + // If we're computing in-place (and not doing eltwise computation), this + // hack doesn't work and we store the product in temp_. + const bool is_eltwise = (bottom[0]->count() == scale->count()); + Dtype* product = (is_eltwise ? scale->mutable_gpu_diff() : + (in_place ? temp_.mutable_gpu_data() : bottom[0]->mutable_gpu_diff())); + caffe_gpu_mul(top[0]->count(), top_diff, bottom_data, product); + if (!is_eltwise) { + Dtype* sum_result = NULL; + if (inner_dim_ == 1) { + sum_result = product; + } else if (sum_result_.count() == 1) { + const Dtype* sum_mult = sum_multiplier_.gpu_data(); + Dtype* scale_diff = scale->mutable_cpu_diff(); + if (scale_param) { + Dtype result; + caffe_gpu_dot(inner_dim_, product, sum_mult, &result); + *scale_diff += result; + } else { + caffe_gpu_dot(inner_dim_, product, sum_mult, scale_diff); + } + } else { + const Dtype* sum_mult = sum_multiplier_.gpu_data(); + sum_result = (outer_dim_ == 1) ? + scale->mutable_gpu_diff() : sum_result_.mutable_gpu_data(); + caffe_gpu_gemv(CblasNoTrans, sum_result_.count(), inner_dim_, + Dtype(1), product, sum_mult, Dtype(0), sum_result); + } + if (outer_dim_ != 1) { + const Dtype* sum_mult = sum_multiplier_.gpu_data(); + if (scale_dim_ == 1) { + Dtype* scale_diff = scale->mutable_cpu_diff(); + if (scale_param) { + Dtype result; + caffe_gpu_dot(outer_dim_, sum_mult, sum_result, &result); + *scale_diff += result; + } else { + caffe_gpu_dot(outer_dim_, sum_mult, sum_result, scale_diff); + } + } else { + Dtype* scale_diff = scale->mutable_gpu_diff(); + caffe_gpu_gemv(CblasTrans, outer_dim_, scale_dim_, + Dtype(1), sum_result, sum_mult, Dtype(scale_param), + scale_diff); + } + } + } + } + if (propagate_down[0]) { + const int count = top[0]->count(); + const Dtype* top_diff = top[0]->gpu_diff(); + const Dtype* scale_data = scale->gpu_data(); + Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); + ScaleForward // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + count, top_diff, scale_data, scale_dim_, inner_dim_, bottom_diff); + } +} + +INSTANTIATE_LAYER_GPU_FUNCS(ScaleLayer); + +} // namespace caffe diff --git a/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp b/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp index cc236fe1e..99fa3eb64 100644 --- a/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp +++ b/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp @@ -1,10 +1,8 @@ #include -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/sigmoid_cross_entropy_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -17,17 +15,66 @@ void SigmoidCrossEntropyLossLayer::LayerSetUp( sigmoid_top_vec_.clear(); sigmoid_top_vec_.push_back(sigmoid_output_.get()); sigmoid_layer_->SetUp(sigmoid_bottom_vec_, sigmoid_top_vec_); + + has_ignore_label_ = + this->layer_param_.loss_param().has_ignore_label(); + if (has_ignore_label_) { + ignore_label_ = this->layer_param_.loss_param().ignore_label(); + } + if (this->layer_param_.loss_param().has_normalization()) { + normalization_ = this->layer_param_.loss_param().normalization(); + } else if (this->layer_param_.loss_param().has_normalize()) { + normalization_ = this->layer_param_.loss_param().normalize() ? + LossParameter_NormalizationMode_VALID : + LossParameter_NormalizationMode_BATCH_SIZE; + } else { + normalization_ = LossParameter_NormalizationMode_BATCH_SIZE; + } } template void SigmoidCrossEntropyLossLayer::Reshape( const vector*>& bottom, const vector*>& top) { LossLayer::Reshape(bottom, top); + outer_num_ = bottom[0]->shape(0); // batch size + inner_num_ = bottom[0]->count(1); // instance size: |output| == |target| CHECK_EQ(bottom[0]->count(), bottom[1]->count()) << "SIGMOID_CROSS_ENTROPY_LOSS layer inputs must have the same count."; sigmoid_layer_->Reshape(sigmoid_bottom_vec_, sigmoid_top_vec_); } +// TODO(shelhamer) loss normalization should be pulled up into LossLayer, +// instead of duplicated here and in SoftMaxWithLossLayer +template +Dtype SigmoidCrossEntropyLossLayer::get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count) { + Dtype normalizer; + switch (normalization_mode) { + case LossParameter_NormalizationMode_FULL: + normalizer = Dtype(outer_num_ * inner_num_); + break; + case LossParameter_NormalizationMode_VALID: + if (valid_count == -1) { + normalizer = Dtype(outer_num_ * inner_num_); + } else { + normalizer = Dtype(valid_count); + } + break; + case LossParameter_NormalizationMode_BATCH_SIZE: + normalizer = Dtype(outer_num_); + break; + case LossParameter_NormalizationMode_NONE: + normalizer = Dtype(1); + break; + default: + LOG(FATAL) << "Unknown normalization mode: " + << LossParameter_NormalizationMode_Name(normalization_mode); + } + // Some users will have no labels for some examples in order to 'turn off' a + // particular loss in a multi-task setup. The max prevents NaNs in that case. + return std::max(Dtype(1.0), normalizer); +} + template void SigmoidCrossEntropyLossLayer::Forward_cpu( const vector*>& bottom, const vector*>& top) { @@ -35,17 +82,22 @@ void SigmoidCrossEntropyLossLayer::Forward_cpu( sigmoid_bottom_vec_[0] = bottom[0]; sigmoid_layer_->Forward(sigmoid_bottom_vec_, sigmoid_top_vec_); // Compute the loss (negative log likelihood) - const int count = bottom[0]->count(); - const int num = bottom[0]->num(); // Stable version of loss computation from input data const Dtype* input_data = bottom[0]->cpu_data(); const Dtype* target = bottom[1]->cpu_data(); + int valid_count = 0; Dtype loss = 0; - for (int i = 0; i < count; ++i) { + for (int i = 0; i < bottom[0]->count(); ++i) { + const int target_value = static_cast(target[i]); + if (has_ignore_label_ && target_value == ignore_label_) { + continue; + } loss -= input_data[i] * (target[i] - (input_data[i] >= 0)) - log(1 + exp(input_data[i] - 2 * input_data[i] * (input_data[i] >= 0))); + ++valid_count; } - top[0]->mutable_cpu_data()[0] = loss / num; + normalizer_ = get_normalizer(normalization_, valid_count); + top[0]->mutable_cpu_data()[0] = loss / normalizer_; } template @@ -59,19 +111,27 @@ void SigmoidCrossEntropyLossLayer::Backward_cpu( if (propagate_down[0]) { // First, compute the diff const int count = bottom[0]->count(); - const int num = bottom[0]->num(); const Dtype* sigmoid_output_data = sigmoid_output_->cpu_data(); const Dtype* target = bottom[1]->cpu_data(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); caffe_sub(count, sigmoid_output_data, target, bottom_diff); + // Zero out gradient of ignored targets. + if (has_ignore_label_) { + for (int i = 0; i < count; ++i) { + const int target_value = static_cast(target[i]); + if (target_value == ignore_label_) { + bottom_diff[i] = 0; + } + } + } // Scale down gradient - const Dtype loss_weight = top[0]->cpu_diff()[0]; - caffe_scal(count, loss_weight / num, bottom_diff); + Dtype loss_weight = top[0]->cpu_diff()[0] / normalizer_; + caffe_scal(count, loss_weight, bottom_diff); } } #ifdef CPU_ONLY -STUB_GPU_BACKWARD(SigmoidCrossEntropyLossLayer, Backward); +STUB_GPU(SigmoidCrossEntropyLossLayer); #endif INSTANTIATE_CLASS(SigmoidCrossEntropyLossLayer); diff --git a/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu b/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu index 547fa80c7..b9877e6a3 100644 --- a/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu +++ b/src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu @@ -1,13 +1,76 @@ -#include -#include #include -#include "caffe/layer.hpp" +#include "caffe/layers/sigmoid_cross_entropy_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { + +template +__global__ void SigmoidCrossEntropyLossForwardGPU(const int nthreads, + const Dtype* input_data, const Dtype* target, Dtype* loss, + const bool has_ignore_label_, const int ignore_label_, + Dtype* counts) { + CUDA_KERNEL_LOOP(i, nthreads) { + const int target_value = static_cast(target[i]); + if (has_ignore_label_ && target_value == ignore_label_) { + loss[i] = 0; + counts[i] = 0; + } else { + loss[i] = input_data[i] * (target[i] - (input_data[i] >= 0)) - + log(1 + exp(input_data[i] - 2 * input_data[i] * + (input_data[i] >= 0))); + counts[i] = 1; + } + } +} + +template +__global__ void SigmoidCrossEntropyLossIgnoreDiffGPU(const int count, + const int ignore_label, const Dtype* target, Dtype* diff) { + CUDA_KERNEL_LOOP(i, count) { + const int target_value = static_cast(target[i]); + if (target_value == ignore_label) { + diff[i] = 0; + } + } +} + + +template +void SigmoidCrossEntropyLossLayer::Forward_gpu( + const vector*>& bottom, const vector*>& top) { + // The forward pass computes the sigmoid outputs. + sigmoid_bottom_vec_[0] = bottom[0]; + sigmoid_layer_->Forward(sigmoid_bottom_vec_, sigmoid_top_vec_); + // Compute the loss (negative log likelihood) + const int count = bottom[0]->count(); + // Stable version of loss computation from input data + const Dtype* input_data = bottom[0]->gpu_data(); + const Dtype* target = bottom[1]->gpu_data(); + // Since this memory is not used for anything until it is overwritten + // on the backward pass, we use it here to avoid having to allocate new GPU + // memory to accumulate intermediate results in the kernel. + Dtype* loss_data = bottom[0]->mutable_gpu_diff(); + Dtype* count_data = bottom[1]->mutable_gpu_diff(); + Dtype valid_count; + // NOLINT_NEXT_LINE(whitespace/operators) + SigmoidCrossEntropyLossForwardGPU<<>>(count, input_data, target, loss_data, + has_ignore_label_, ignore_label_, count_data); + // Only launch another CUDA kernel if we actually need the valid count. + if (normalization_ == LossParameter_NormalizationMode_VALID && + has_ignore_label_) { + caffe_gpu_asum(count, count_data, &valid_count); + } else { + valid_count = count; + } + Dtype loss; + caffe_gpu_asum(count, loss_data, &loss); + normalizer_ = get_normalizer(normalization_, valid_count); + top[0]->mutable_cpu_data()[0] = loss / normalizer_; +} + template void SigmoidCrossEntropyLossLayer::Backward_gpu( const vector*>& top, const vector& propagate_down, @@ -19,19 +82,23 @@ void SigmoidCrossEntropyLossLayer::Backward_gpu( if (propagate_down[0]) { // First, compute the diff const int count = bottom[0]->count(); - const int num = bottom[0]->num(); const Dtype* sigmoid_output_data = sigmoid_output_->gpu_data(); const Dtype* target = bottom[1]->gpu_data(); Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); caffe_copy(count, sigmoid_output_data, bottom_diff); caffe_gpu_axpy(count, Dtype(-1), target, bottom_diff); + // Zero out gradient of ignored targets. + if (has_ignore_label_) { + // NOLINT_NEXT_LINE(whitespace/operators) + SigmoidCrossEntropyLossIgnoreDiffGPU<<>>(count, ignore_label_, target, bottom_diff); + } // Scale down gradient - const Dtype loss_weight = top[0]->cpu_diff()[0]; - caffe_gpu_scal(count, loss_weight / num, bottom_diff); + Dtype loss_weight = top[0]->cpu_diff()[0] / normalizer_; + caffe_gpu_scal(count, loss_weight, bottom_diff); } } -INSTANTIATE_LAYER_GPU_BACKWARD(SigmoidCrossEntropyLossLayer); - +INSTANTIATE_LAYER_GPU_FUNCS(SigmoidCrossEntropyLossLayer); } // namespace caffe diff --git a/src/caffe/layers/sigmoid_layer.cpp b/src/caffe/layers/sigmoid_layer.cpp index 48c384905..f8aa769a1 100644 --- a/src/caffe/layers/sigmoid_layer.cpp +++ b/src/caffe/layers/sigmoid_layer.cpp @@ -1,15 +1,13 @@ -#include #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/sigmoid_layer.hpp" namespace caffe { template inline Dtype sigmoid(Dtype x) { - return 1. / (1. + exp(-x)); + return 0.5 * tanh(0.5 * x) + 0.5; } template diff --git a/src/caffe/layers/sigmoid_layer.cu b/src/caffe/layers/sigmoid_layer.cu index e1af0657e..8a4ea6616 100644 --- a/src/caffe/layers/sigmoid_layer.cu +++ b/src/caffe/layers/sigmoid_layer.cu @@ -1,16 +1,14 @@ -#include #include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/sigmoid_layer.hpp" namespace caffe { template __global__ void SigmoidForward(const int n, const Dtype* in, Dtype* out) { CUDA_KERNEL_LOOP(index, n) { - out[index] = 1. / (1. + exp(-in[index])); + out[index] = 0.5 * tanh(0.5 * in[index]) + 0.5; } } diff --git a/src/caffe/layers/silence_layer.cpp b/src/caffe/layers/silence_layer.cpp index 4abf9eff4..b2f85c52a 100644 --- a/src/caffe/layers/silence_layer.cpp +++ b/src/caffe/layers/silence_layer.cpp @@ -1,7 +1,6 @@ #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/silence_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { @@ -12,7 +11,7 @@ void SilenceLayer::Backward_cpu(const vector*>& top, for (int i = 0; i < bottom.size(); ++i) { if (propagate_down[i]) { caffe_set(bottom[i]->count(), Dtype(0), - bottom[i]->mutable_cpu_data()); + bottom[i]->mutable_cpu_diff()); } } } diff --git a/src/caffe/layers/silence_layer.cu b/src/caffe/layers/silence_layer.cu index 8d044ee73..3494f6f67 100644 --- a/src/caffe/layers/silence_layer.cu +++ b/src/caffe/layers/silence_layer.cu @@ -1,7 +1,6 @@ #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/silence_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { @@ -18,7 +17,7 @@ void SilenceLayer::Backward_gpu(const vector*>& top, for (int i = 0; i < bottom.size(); ++i) { if (propagate_down[i]) { caffe_gpu_set(bottom[i]->count(), Dtype(0), - bottom[i]->mutable_gpu_data()); + bottom[i]->mutable_gpu_diff()); } } } diff --git a/src/caffe/layers/slice_layer.cpp b/src/caffe/layers/slice_layer.cpp index 0a059ae88..759beafe0 100644 --- a/src/caffe/layers/slice_layer.cpp +++ b/src/caffe/layers/slice_layer.cpp @@ -1,9 +1,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/slice_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/slice_layer.cu b/src/caffe/layers/slice_layer.cu index e8dc6cd98..1be3a797d 100644 --- a/src/caffe/layers/slice_layer.cu +++ b/src/caffe/layers/slice_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/slice_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/softmax_layer.cpp b/src/caffe/layers/softmax_layer.cpp index 04712c9e6..f60e9b03e 100644 --- a/src/caffe/layers/softmax_layer.cpp +++ b/src/caffe/layers/softmax_layer.cpp @@ -1,9 +1,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/softmax_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/softmax_layer.cu b/src/caffe/layers/softmax_layer.cu index 1f9c3a412..7a9e6833b 100644 --- a/src/caffe/layers/softmax_layer.cu +++ b/src/caffe/layers/softmax_layer.cu @@ -4,9 +4,8 @@ #include "thrust/device_vector.h" -#include "caffe/layer.hpp" +#include "caffe/layers/softmax_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/softmax_loss_layer.cpp b/src/caffe/layers/softmax_loss_layer.cpp index ba312f67f..dddb76065 100644 --- a/src/caffe/layers/softmax_loss_layer.cpp +++ b/src/caffe/layers/softmax_loss_layer.cpp @@ -2,10 +2,8 @@ #include #include -#include "caffe/layer.hpp" -#include "caffe/layer_factory.hpp" +#include "caffe/layers/softmax_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -27,7 +25,14 @@ void SoftmaxWithLossLayer::LayerSetUp( if (has_ignore_label_) { ignore_label_ = this->layer_param_.loss_param().ignore_label(); } - normalize_ = this->layer_param_.loss_param().normalize(); + if (!this->layer_param_.loss_param().has_normalization() && + this->layer_param_.loss_param().has_normalize()) { + normalization_ = this->layer_param_.loss_param().normalize() ? + LossParameter_NormalizationMode_VALID : + LossParameter_NormalizationMode_BATCH_SIZE; + } else { + normalization_ = this->layer_param_.loss_param().normalization(); + } } template @@ -50,6 +55,36 @@ void SoftmaxWithLossLayer::Reshape( } } +template +Dtype SoftmaxWithLossLayer::get_normalizer( + LossParameter_NormalizationMode normalization_mode, int valid_count) { + Dtype normalizer; + switch (normalization_mode) { + case LossParameter_NormalizationMode_FULL: + normalizer = Dtype(outer_num_ * inner_num_); + break; + case LossParameter_NormalizationMode_VALID: + if (valid_count == -1) { + normalizer = Dtype(outer_num_ * inner_num_); + } else { + normalizer = Dtype(valid_count); + } + break; + case LossParameter_NormalizationMode_BATCH_SIZE: + normalizer = Dtype(outer_num_); + break; + case LossParameter_NormalizationMode_NONE: + normalizer = Dtype(1); + break; + default: + LOG(FATAL) << "Unknown normalization mode: " + << LossParameter_NormalizationMode_Name(normalization_mode); + } + // Some users will have no labels for some examples in order to 'turn off' a + // particular loss in a multi-task setup. The max prevents NaNs in that case. + return std::max(Dtype(1.0), normalizer); +} + template void SoftmaxWithLossLayer::Forward_cpu( const vector*>& bottom, const vector*>& top) { @@ -73,11 +108,7 @@ void SoftmaxWithLossLayer::Forward_cpu( ++count; } } - if (normalize_) { - top[0]->mutable_cpu_data()[0] = loss / count; - } else { - top[0]->mutable_cpu_data()[0] = loss / outer_num_; - } + top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count); if (top.size() == 2) { top[1]->ShareData(prob_); } @@ -111,12 +142,9 @@ void SoftmaxWithLossLayer::Backward_cpu(const vector*>& top, } } // Scale gradient - const Dtype loss_weight = top[0]->cpu_diff()[0]; - if (normalize_) { - caffe_scal(prob_.count(), loss_weight / count, bottom_diff); - } else { - caffe_scal(prob_.count(), loss_weight / outer_num_, bottom_diff); - } + Dtype loss_weight = top[0]->cpu_diff()[0] / + get_normalizer(normalization_, count); + caffe_scal(prob_.count(), loss_weight, bottom_diff); } } diff --git a/src/caffe/layers/softmax_loss_layer.cu b/src/caffe/layers/softmax_loss_layer.cu index 7e0f3da45..660e1b39f 100644 --- a/src/caffe/layers/softmax_loss_layer.cu +++ b/src/caffe/layers/softmax_loss_layer.cu @@ -2,9 +2,8 @@ #include #include -#include "caffe/layer.hpp" +#include "caffe/layers/softmax_loss_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { @@ -50,14 +49,15 @@ void SoftmaxWithLossLayer::Forward_gpu( outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts); Dtype loss; caffe_gpu_asum(nthreads, loss_data, &loss); - if (normalize_) { - Dtype count; - caffe_gpu_asum(nthreads, counts, &count); - loss /= count; - } else { - loss /= outer_num_; + Dtype valid_count = -1; + // Only launch another CUDA kernel if we actually need the count of valid + // outputs. + if (normalization_ == LossParameter_NormalizationMode_VALID && + has_ignore_label_) { + caffe_gpu_asum(nthreads, counts, &valid_count); } - top[0]->mutable_cpu_data()[0] = loss; + top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, + valid_count); if (top.size() == 2) { top[1]->ShareData(prob_); } @@ -109,14 +109,17 @@ void SoftmaxWithLossLayer::Backward_gpu(const vector*>& top, SoftmaxLossBackwardGPU<<>>(nthreads, top_data, label, bottom_diff, outer_num_, dim, inner_num_, has_ignore_label_, ignore_label_, counts); - const Dtype loss_weight = top[0]->cpu_diff()[0]; - if (normalize_) { - Dtype count; - caffe_gpu_asum(nthreads, counts, &count); - caffe_gpu_scal(prob_.count(), loss_weight / count, bottom_diff); - } else { - caffe_gpu_scal(prob_.count(), loss_weight / outer_num_, bottom_diff); + + Dtype valid_count = -1; + // Only launch another CUDA kernel if we actually need the count of valid + // outputs. + if (normalization_ == LossParameter_NormalizationMode_VALID && + has_ignore_label_) { + caffe_gpu_asum(nthreads, counts, &valid_count); } + const Dtype loss_weight = top[0]->cpu_diff()[0] / + get_normalizer(normalization_, valid_count); + caffe_gpu_scal(prob_.count(), loss_weight , bottom_diff); } } diff --git a/src/caffe/layers/split_layer.cpp b/src/caffe/layers/split_layer.cpp index 272cb59cd..1a27a9af0 100644 --- a/src/caffe/layers/split_layer.cpp +++ b/src/caffe/layers/split_layer.cpp @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/split_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/split_layer.cu b/src/caffe/layers/split_layer.cu index a4f5df264..bec9987c7 100644 --- a/src/caffe/layers/split_layer.cu +++ b/src/caffe/layers/split_layer.cu @@ -1,8 +1,7 @@ #include -#include "caffe/layer.hpp" +#include "caffe/layers/split_layer.hpp" #include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" namespace caffe { diff --git a/src/caffe/layers/spp_layer.cpp b/src/caffe/layers/spp_layer.cpp index d76229104..b9af8e8af 100644 --- a/src/caffe/layers/spp_layer.cpp +++ b/src/caffe/layers/spp_layer.cpp @@ -1,12 +1,12 @@ #include -#include #include -#include "caffe/common.hpp" #include "caffe/layer.hpp" -#include "caffe/syncedmem.hpp" -#include "caffe/util/math_functions.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/concat_layer.hpp" +#include "caffe/layers/flatten_layer.hpp" +#include "caffe/layers/pooling_layer.hpp" +#include "caffe/layers/split_layer.hpp" +#include "caffe/layers/spp_layer.hpp" namespace caffe { @@ -222,7 +222,6 @@ void SPPLayer::Backward_cpu(const vector*>& top, split_layer_->Backward(split_top_vec_, propagate_down, bottom); } - INSTANTIATE_CLASS(SPPLayer); REGISTER_LAYER_CLASS(SPP); diff --git a/src/caffe/layers/tanh_layer.cpp b/src/caffe/layers/tanh_layer.cpp index ee5ed773c..184e926d2 100644 --- a/src/caffe/layers/tanh_layer.cpp +++ b/src/caffe/layers/tanh_layer.cpp @@ -1,11 +1,9 @@ // TanH neuron activation function layer. // Adapted from ReLU layer code written by Yangqing Jia -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/tanh_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/tanh_layer.cu b/src/caffe/layers/tanh_layer.cu index ccd6e63ee..cbfc178e6 100644 --- a/src/caffe/layers/tanh_layer.cu +++ b/src/caffe/layers/tanh_layer.cu @@ -1,11 +1,9 @@ // TanH neuron activation function layer. // Adapted from ReLU layer code written by Yangqing Jia -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/tanh_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/threshold_layer.cpp b/src/caffe/layers/threshold_layer.cpp index 2365e7b9c..63822ee55 100644 --- a/src/caffe/layers/threshold_layer.cpp +++ b/src/caffe/layers/threshold_layer.cpp @@ -1,8 +1,6 @@ #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" - +#include "caffe/layers/threshold_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/threshold_layer.cu b/src/caffe/layers/threshold_layer.cu index bfa7f1594..b0b066558 100644 --- a/src/caffe/layers/threshold_layer.cu +++ b/src/caffe/layers/threshold_layer.cu @@ -1,8 +1,6 @@ -#include #include -#include "caffe/layer.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/threshold_layer.hpp" namespace caffe { diff --git a/src/caffe/layers/tile_layer.cpp b/src/caffe/layers/tile_layer.cpp index f55008cc5..cf0c18700 100644 --- a/src/caffe/layers/tile_layer.cpp +++ b/src/caffe/layers/tile_layer.cpp @@ -1,7 +1,6 @@ #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/tile_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/tile_layer.cu b/src/caffe/layers/tile_layer.cu index 7fd3bc47d..282049ebd 100644 --- a/src/caffe/layers/tile_layer.cu +++ b/src/caffe/layers/tile_layer.cu @@ -1,7 +1,6 @@ #include -#include "caffe/common_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/layers/tile_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { diff --git a/src/caffe/layers/window_data_layer.cpp b/src/caffe/layers/window_data_layer.cpp index f637f2ec6..1bf3760e9 100644 --- a/src/caffe/layers/window_data_layer.cpp +++ b/src/caffe/layers/window_data_layer.cpp @@ -1,3 +1,4 @@ +#ifdef USE_OPENCV #include #include @@ -11,9 +12,10 @@ #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" -#include "caffe/common.hpp" -#include "caffe/data_layers.hpp" -#include "caffe/layer.hpp" +#include "caffe/data_transformer.hpp" +#include "caffe/internal_thread.hpp" +#include "caffe/layers/base_data_layer.hpp" +#include "caffe/layers/window_data_layer.hpp" #include "caffe/util/benchmark.hpp" #include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" @@ -171,8 +173,8 @@ void WindowDataLayer::DataLayerSetUp(const vector*>& bottom, CHECK_GT(crop_size, 0); const int batch_size = this->layer_param_.window_data_param().batch_size(); top[0]->Reshape(batch_size, channels, crop_size, crop_size); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) - this->prefetch_[i].data_.Reshape( + for (int i = 0; i < this->prefetch_.size(); ++i) + this->prefetch_[i]->data_.Reshape( batch_size, channels, crop_size, crop_size); LOG(INFO) << "output data size: " << top[0]->num() << "," @@ -181,8 +183,8 @@ void WindowDataLayer::DataLayerSetUp(const vector*>& bottom, // label vector label_shape(1, batch_size); top[1]->Reshape(label_shape); - for (int i = 0; i < this->PREFETCH_COUNT; ++i) { - this->prefetch_[i].label_.Reshape(label_shape); + for (int i = 0; i < this->prefetch_.size(); ++i) { + this->prefetch_[i]->label_.Reshape(label_shape); } // data mean @@ -263,6 +265,9 @@ void WindowDataLayer::load_batch(Batch* batch) { const int num_samples[2] = { batch_size - num_fg, num_fg }; int item_id = 0; + CHECK_GT(fg_windows_.size(), 0); + CHECK_GT(bg_windows_.size(), 0); + // sample from bg set then fg set for (int is_fg = 0; is_fg < 2; ++is_fg) { for (int dummy = 0; dummy < num_samples[is_fg]; ++dummy) { @@ -468,3 +473,4 @@ INSTANTIATE_CLASS(WindowDataLayer); REGISTER_LAYER_CLASS(WindowData); } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/net.cpp b/src/caffe/net.cpp index ebb8b5d28..353c2f95b 100644 --- a/src/caffe/net.cpp +++ b/src/caffe/net.cpp @@ -17,39 +17,40 @@ #include "caffe/util/math_functions.hpp" #include "caffe/util/upgrade_proto.hpp" -#include "caffe/test/test_caffe_main.hpp" - namespace caffe { template -Net::Net(const NetParameter& param, const Net* root_net) - : root_net_(root_net) { +Net::Net(const NetParameter& param) { Init(param); } template -Net::Net(const string& param_file, Phase phase, const Net* root_net) - : root_net_(root_net) { +Net::Net(const string& param_file, Phase phase, + const int level, const vector* stages) { NetParameter param; ReadNetParamsFromTextFileOrDie(param_file, ¶m); + // Set phase, stages and level param.mutable_state()->set_phase(phase); + if (stages != NULL) { + for (int i = 0; i < stages->size(); i++) { + param.mutable_state()->add_stage((*stages)[i]); + } + } + param.mutable_state()->set_level(level); Init(param); } template void Net::Init(const NetParameter& in_param) { - CHECK(Caffe::root_solver() || root_net_) - << "root_net_ needs to be set for all non-root solvers"; // Set phase from the state. phase_ = in_param.state().phase(); // Filter layers based on their include/exclude rules and // the current NetState. NetParameter filtered_param; FilterNet(in_param, &filtered_param); - if (Caffe::root_solver()) { - LOG(INFO) << "Initializing net from parameters: " << std::endl - << filtered_param.DebugString(); - } + LOG_IF(INFO, Caffe::root_solver()) + << "Initializing net from parameters: " << std::endl + << filtered_param.DebugString(); // Create a copy of filtered_param with splits added where necessary. NetParameter param; InsertSplits(filtered_param, ¶m); @@ -57,24 +58,7 @@ void Net::Init(const NetParameter& in_param) { name_ = param.name(); map blob_name_to_idx; set available_blobs; - CHECK(param.input_dim_size() == 0 || param.input_shape_size() == 0) - << "Must specify either input_shape OR deprecated input_dim, not both."; - if (param.input_dim_size() > 0) { - // Deprecated 4D dimensions. - CHECK_EQ(param.input_size() * 4, param.input_dim_size()) - << "Incorrect input blob dimension specifications."; - } else { - CHECK_EQ(param.input_size(), param.input_shape_size()) - << "Exactly one input_shape must be specified per input."; - } memory_used_ = 0; - // set the input blobs - for (int input_id = 0; input_id < param.input_size(); ++input_id) { - const int layer_id = -1; // inputs have fake layer ID -1 - AppendTop(param, layer_id, input_id, &available_blobs, &blob_name_to_idx); - } - DLOG_IF(INFO, Caffe::root_solver()) - << "Memory required for data: " << memory_used_ * sizeof(Dtype); // For each layer, set up its input and output bottom_vecs_.resize(param.layer_size()); top_vecs_.resize(param.layer_size()); @@ -83,9 +67,6 @@ void Net::Init(const NetParameter& in_param) { top_id_vecs_.resize(param.layer_size()); bottom_need_backward_.resize(param.layer_size()); for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) { - // For non-root solvers, whether this layer is shared from root_net_. - bool share_from_root = !Caffe::root_solver() - && root_net_->layers_[layer_id]->ShareInParallel(); // Inherit phase from net if unset. if (!param.layer(layer_id).has_phase()) { param.mutable_layer(layer_id)->set_phase(phase_); @@ -98,17 +79,10 @@ void Net::Init(const NetParameter& in_param) { << "propagate_down param must be specified " << "either 0 or bottom_size times "; } - if (share_from_root) { - LOG(INFO) << "Sharing layer " << layer_param.name() << " from root net"; - layers_.push_back(root_net_->layers_[layer_id]); - layers_[layer_id]->SetShared(true); - } else { - layers_.push_back(LayerRegistry::CreateLayer(layer_param)); - } + layers_.push_back(LayerRegistry::CreateLayer(layer_param)); layer_names_.push_back(layer_param.name()); - if (Caffe::root_solver()) { - LOG(INFO) << "Creating Layer " << layer_param.name(); - } + LOG_IF(INFO, Caffe::root_solver()) + << "Creating Layer " << layer_param.name(); bool need_backward = false; // Figure out this layer's input and output @@ -122,6 +96,12 @@ void Net::Init(const NetParameter& in_param) { int num_top = layer_param.top_size(); for (int top_id = 0; top_id < num_top; ++top_id) { AppendTop(param, layer_id, top_id, &available_blobs, &blob_name_to_idx); + // Collect Input layer tops as Net inputs. + if (layer_param.type() == "Input") { + const int blob_id = blobs_.size() - 1; + net_input_blob_indices_.push_back(blob_id); + net_input_blobs_.push_back(blobs_[blob_id].get()); + } } // If the layer specifies that AutoTopBlobs() -> true and the LayerParameter // specified fewer than the required number (as specified by @@ -138,42 +118,24 @@ void Net::Init(const NetParameter& in_param) { } } // After this layer is connected, set it up. - if (share_from_root) { - // Set up size of top blobs using root_net_ - const vector*>& base_top = root_net_->top_vecs_[layer_id]; - const vector*>& this_top = this->top_vecs_[layer_id]; - for (int top_id = 0; top_id < base_top.size(); ++top_id) { - this_top[top_id]->ReshapeLike(*base_top[top_id]); - LOG(INFO) << "Created top blob " << top_id << " (shape: " - << this_top[top_id]->shape_string() << ") for shared layer " - << layer_param.name(); - } - } else { - layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]); - } - if (Caffe::root_solver()) { - LOG(INFO) << "Setting up " << layer_names_[layer_id]; - } + layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]); + LOG_IF(INFO, Caffe::root_solver()) + << "Setting up " << layer_names_[layer_id]; for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) { if (blob_loss_weights_.size() <= top_id_vecs_[layer_id][top_id]) { blob_loss_weights_.resize(top_id_vecs_[layer_id][top_id] + 1, Dtype(0)); } blob_loss_weights_[top_id_vecs_[layer_id][top_id]] = layer->loss(top_id); - if (Caffe::root_solver()) { - LOG(INFO) << "Top shape: " - << top_vecs_[layer_id][top_id]->shape_string(); - } + LOG_IF(INFO, Caffe::root_solver()) + << "Top shape: " << top_vecs_[layer_id][top_id]->shape_string(); if (layer->loss(top_id)) { - if (Caffe::root_solver()) { - LOG(INFO) << " with loss weight " << layer->loss(top_id); - } + LOG_IF(INFO, Caffe::root_solver()) + << " with loss weight " << layer->loss(top_id); } memory_used_ += top_vecs_[layer_id][top_id]->count(); } - if (Caffe::root_solver()) { - DLOG(INFO) << "Memory required for data: " - << memory_used_ * sizeof(Dtype); - } + LOG_IF(INFO, Caffe::root_solver()) + << "Memory required for data: " << memory_used_ * sizeof(Dtype); const int param_size = layer_param.param_size(); const int num_param_blobs = layers_[layer_id]->blobs().size(); CHECK_LE(param_size, num_param_blobs) @@ -231,14 +193,12 @@ void Net::Init(const NetParameter& in_param) { } } if (!layer_contributes_loss) { layer_need_backward_[layer_id] = false; } - if (layer_need_backward_[layer_id]) { - if (Caffe::root_solver()) { + if (Caffe::root_solver()) { + if (layer_need_backward_[layer_id]) { LOG(INFO) << layer_names_[layer_id] << " needs backward computation."; - } - } else { - if (Caffe::root_solver()) { + } else { LOG(INFO) << layer_names_[layer_id] - << " does not need backward computation."; + << " does not need backward computation."; } } for (int bottom_id = 0; bottom_id < bottom_vecs_[layer_id].size(); @@ -279,9 +239,8 @@ void Net::Init(const NetParameter& in_param) { // In the end, all remaining blobs are considered output blobs. for (set::iterator it = available_blobs.begin(); it != available_blobs.end(); ++it) { - if (Caffe::root_solver()) { - LOG(INFO) << "This network produces output " << *it; - } + LOG_IF(INFO, Caffe::root_solver()) + << "This network produces output " << *it; net_output_blobs_.push_back(blobs_[blob_name_to_idx[*it]].get()); net_output_blob_indices_.push_back(blob_name_to_idx[*it]); } @@ -293,10 +252,7 @@ void Net::Init(const NetParameter& in_param) { } ShareWeights(); debug_info_ = param.debug_info(); - if (Caffe::root_solver()) { - LOG(INFO) << "Network initialization done."; - LOG(INFO) << "Memory required for data: " << memory_used_ * sizeof(Dtype); - } + LOG_IF(INFO, Caffe::root_solver()) << "Network initialization done."; } template @@ -335,33 +291,30 @@ bool Net::StateMeetsRule(const NetState& state, // Check whether the rule is broken due to phase. if (rule.has_phase()) { if (rule.phase() != state.phase()) { - if (Caffe::root_solver()) { - LOG(INFO) << "The NetState phase (" << state.phase() - << ") differed from the phase (" << rule.phase() - << ") specified by a rule in layer " << layer_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << "The NetState phase (" << state.phase() + << ") differed from the phase (" << rule.phase() + << ") specified by a rule in layer " << layer_name; return false; } } // Check whether the rule is broken due to min level. if (rule.has_min_level()) { if (state.level() < rule.min_level()) { - if (Caffe::root_solver()) { - LOG(INFO) << "The NetState level (" << state.level() - << ") is above the min_level (" << rule.min_level() - << ") specified by a rule in layer " << layer_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << "The NetState level (" << state.level() + << ") is above the min_level (" << rule.min_level() + << ") specified by a rule in layer " << layer_name; return false; } } // Check whether the rule is broken due to max level. if (rule.has_max_level()) { if (state.level() > rule.max_level()) { - if (Caffe::root_solver()) { - LOG(INFO) << "The NetState level (" << state.level() - << ") is above the max_level (" << rule.max_level() - << ") specified by a rule in layer " << layer_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << "The NetState level (" << state.level() + << ") is above the max_level (" << rule.max_level() + << ") specified by a rule in layer " << layer_name; return false; } } @@ -374,10 +327,9 @@ bool Net::StateMeetsRule(const NetState& state, if (rule.stage(i) == state.stage(j)) { has_stage = true; } } if (!has_stage) { - if (Caffe::root_solver()) { - LOG(INFO) << "The NetState did not contain stage '" << rule.stage(i) - << "' specified by a rule in layer " << layer_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << "The NetState did not contain stage '" << rule.stage(i) + << "' specified by a rule in layer " << layer_name; return false; } } @@ -390,34 +342,30 @@ bool Net::StateMeetsRule(const NetState& state, if (rule.not_stage(i) == state.stage(j)) { has_stage = true; } } if (has_stage) { - if (Caffe::root_solver()) { - LOG(INFO) << "The NetState contained a not_stage '" << rule.not_stage(i) - << "' specified by a rule in layer " << layer_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << "The NetState contained a not_stage '" << rule.not_stage(i) + << "' specified by a rule in layer " << layer_name; return false; } } return true; } -// Helper for Net::Init: add a new input or top blob to the net. (Inputs have -// layer_id == -1, tops have layer_id >= 0.) +// Helper for Net::Init: add a new top blob to the net. template void Net::AppendTop(const NetParameter& param, const int layer_id, const int top_id, set* available_blobs, map* blob_name_to_idx) { - shared_ptr layer_param((layer_id >= 0) ? - (new LayerParameter(param.layer(layer_id))) : NULL); - const string& blob_name = layer_param ? - (layer_param->top_size() > top_id ? - layer_param->top(top_id) : "(automatic)") : param.input(top_id); + shared_ptr layer_param( + new LayerParameter(param.layer(layer_id))); + const string& blob_name = (layer_param->top_size() > top_id) ? + layer_param->top(top_id) : "(automatic)"; // Check if we are doing in-place computation - if (blob_name_to_idx && layer_param && layer_param->bottom_size() > top_id && + if (blob_name_to_idx && layer_param->bottom_size() > top_id && blob_name == layer_param->bottom(top_id)) { // In-place computation - if (Caffe::root_solver()) { - LOG(INFO) << layer_param->name() << " -> " << blob_name << " (in-place)"; - } + LOG_IF(INFO, Caffe::root_solver()) + << layer_param->name() << " -> " << blob_name << " (in-place)"; top_vecs_[layer_id].push_back(blobs_[(*blob_name_to_idx)[blob_name]].get()); top_id_vecs_[layer_id].push_back((*blob_name_to_idx)[blob_name]); } else if (blob_name_to_idx && @@ -429,11 +377,7 @@ void Net::AppendTop(const NetParameter& param, const int layer_id, } else { // Normal output. if (Caffe::root_solver()) { - if (layer_param) { - LOG(INFO) << layer_param->name() << " -> " << blob_name; - } else { - LOG(INFO) << "Input " << top_id << " -> " << blob_name; - } + LOG(INFO) << layer_param->name() << " -> " << blob_name; } shared_ptr > blob_pointer(new Blob()); const int blob_id = blobs_.size(); @@ -441,22 +385,8 @@ void Net::AppendTop(const NetParameter& param, const int layer_id, blob_names_.push_back(blob_name); blob_need_backward_.push_back(false); if (blob_name_to_idx) { (*blob_name_to_idx)[blob_name] = blob_id; } - if (layer_id == -1) { - // Set the (explicitly specified) dimensions of the input blob. - if (param.input_dim_size() > 0) { - blob_pointer->Reshape(param.input_dim(top_id * 4), - param.input_dim(top_id * 4 + 1), - param.input_dim(top_id * 4 + 2), - param.input_dim(top_id * 4 + 3)); - } else { - blob_pointer->Reshape(param.input_shape(top_id)); - } - net_input_blob_indices_.push_back(blob_id); - net_input_blobs_.push_back(blob_pointer.get()); - } else { - top_id_vecs_[layer_id].push_back(blob_id); - top_vecs_[layer_id].push_back(blob_pointer.get()); - } + top_id_vecs_[layer_id].push_back(blob_id); + top_vecs_[layer_id].push_back(blob_pointer.get()); } if (available_blobs) { available_blobs->insert(blob_name); } } @@ -473,18 +403,16 @@ int Net::AppendBottom(const NetParameter& param, const int layer_id, << layer_param.name() << "', bottom index " << bottom_id << ")"; } const int blob_id = (*blob_name_to_idx)[blob_name]; - if (Caffe::root_solver()) { - LOG(INFO) << layer_names_[layer_id] << " <- " << blob_name; - } + LOG_IF(INFO, Caffe::root_solver()) + << layer_names_[layer_id] << " <- " << blob_name; bottom_vecs_[layer_id].push_back(blobs_[blob_id].get()); bottom_id_vecs_[layer_id].push_back(blob_id); available_blobs->erase(blob_name); - bool propagate_down = true; + bool need_backward = blob_need_backward_[blob_id]; // Check if the backpropagation on bottom_id should be skipped - if (layer_param.propagate_down_size() > 0) - propagate_down = layer_param.propagate_down(bottom_id); - const bool need_backward = blob_need_backward_[blob_id] && - propagate_down; + if (layer_param.propagate_down_size() > 0) { + need_backward = layer_param.propagate_down(bottom_id); + } bottom_need_backward_[layer_id].push_back(need_backward); return blob_id; } @@ -589,16 +517,16 @@ Dtype Net::ForwardFromTo(int start, int end) { CHECK_GE(start, 0); CHECK_LT(end, layers_.size()); Dtype loss = 0; - if (debug_info_) { - for (int i = 0; i < net_input_blobs_.size(); ++i) { - InputDebugInfo(i); - } - } for (int i = start; i <= end; ++i) { - // LOG(ERROR) << "Forwarding " << layer_names_[i]; + for (int c = 0; c < before_forward_.size(); ++c) { + before_forward_[c]->run(i); + } Dtype layer_loss = layers_[i]->Forward(bottom_vecs_[i], top_vecs_[i]); loss += layer_loss; if (debug_info_) { ForwardDebugInfo(i); } + for (int c = 0; c < after_forward_.size(); ++c) { + after_forward_[c]->run(i); + } } return loss; } @@ -614,7 +542,7 @@ Dtype Net::ForwardTo(int end) { } template -const vector*>& Net::ForwardPrefilled(Dtype* loss) { +const vector*>& Net::Forward(Dtype* loss) { if (loss != NULL) { *loss = ForwardFromTo(0, layers_.size() - 1); } else { @@ -626,32 +554,13 @@ const vector*>& Net::ForwardPrefilled(Dtype* loss) { template const vector*>& Net::Forward( const vector*> & bottom, Dtype* loss) { - // Copy bottom to internal bottom + LOG_EVERY_N(WARNING, 1000) << "DEPRECATED: Forward(bottom, loss) " + << "will be removed in a future version. Use Forward(loss)."; + // Copy bottom to net bottoms for (int i = 0; i < bottom.size(); ++i) { net_input_blobs_[i]->CopyFrom(*bottom[i]); } - return ForwardPrefilled(loss); -} - -template -string Net::Forward(const string& input_blob_protos, Dtype* loss) { - BlobProtoVector blob_proto_vec; - if (net_input_blobs_.size()) { - blob_proto_vec.ParseFromString(input_blob_protos); - CHECK_EQ(blob_proto_vec.blobs_size(), net_input_blobs_.size()) - << "Incorrect input size."; - for (int i = 0; i < blob_proto_vec.blobs_size(); ++i) { - net_input_blobs_[i]->FromProto(blob_proto_vec.blobs(i)); - } - } - ForwardPrefilled(loss); - blob_proto_vec.Clear(); - for (int i = 0; i < net_output_blobs_.size(); ++i) { - net_output_blobs_[i]->ToProto(blob_proto_vec.add_blobs()); - } - string output; - blob_proto_vec.SerializeToString(&output); - return output; + return Forward(loss); } template @@ -659,22 +568,17 @@ void Net::BackwardFromTo(int start, int end) { CHECK_GE(end, 0); CHECK_LT(start, layers_.size()); for (int i = start; i >= end; --i) { + for (int c = 0; c < before_backward_.size(); ++c) { + before_backward_[c]->run(i); + } if (layer_need_backward_[i]) { layers_[i]->Backward( top_vecs_[i], bottom_need_backward_[i], bottom_vecs_[i]); if (debug_info_) { BackwardDebugInfo(i); } } - } -} - -template -void Net::InputDebugInfo(const int input_id) { - const Blob& blob = *net_input_blobs_[input_id]; - const string& blob_name = blob_names_[net_input_blob_indices_[input_id]]; - const Dtype data_abs_val_mean = blob.asum_data() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Forward] " - << "Input " << blob_name << " data: " << data_abs_val_mean; + for (int c = 0; c < after_backward_.size(); ++c) { + after_backward_[c]->run(i); + } } } @@ -684,12 +588,11 @@ void Net::ForwardDebugInfo(const int layer_id) { const Blob& blob = *top_vecs_[layer_id][top_id]; const string& blob_name = blob_names_[top_id_vecs_[layer_id][top_id]]; const Dtype data_abs_val_mean = blob.asum_data() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Forward] " - << "Layer " << layer_names_[layer_id] - << ", top blob " << blob_name - << " data: " << data_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Forward] " + << "Layer " << layer_names_[layer_id] + << ", top blob " << blob_name + << " data: " << data_abs_val_mean; } for (int param_id = 0; param_id < layers_[layer_id]->blobs().size(); ++param_id) { @@ -697,12 +600,11 @@ void Net::ForwardDebugInfo(const int layer_id) { const int net_param_id = param_id_vecs_[layer_id][param_id]; const string& blob_name = param_display_names_[net_param_id]; const Dtype data_abs_val_mean = blob.asum_data() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Forward] " - << "Layer " << layer_names_[layer_id] - << ", param blob " << blob_name - << " data: " << data_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Forward] " + << "Layer " << layer_names_[layer_id] + << ", param blob " << blob_name + << " data: " << data_abs_val_mean; } } @@ -714,24 +616,22 @@ void Net::BackwardDebugInfo(const int layer_id) { const Blob& blob = *bottom_vec[bottom_id]; const string& blob_name = blob_names_[bottom_id_vecs_[layer_id][bottom_id]]; const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Backward] " - << "Layer " << layer_names_[layer_id] - << ", bottom blob " << blob_name - << " diff: " << diff_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Backward] " + << "Layer " << layer_names_[layer_id] + << ", bottom blob " << blob_name + << " diff: " << diff_abs_val_mean; } for (int param_id = 0; param_id < layers_[layer_id]->blobs().size(); ++param_id) { if (!layers_[layer_id]->param_propagate_down(param_id)) { continue; } const Blob& blob = *layers_[layer_id]->blobs()[param_id]; const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Backward] " - << "Layer " << layer_names_[layer_id] - << ", param blob " << param_id - << " diff: " << diff_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Backward] " + << "Layer " << layer_names_[layer_id] + << ", param blob " << param_id + << " diff: " << diff_abs_val_mean; } } @@ -744,22 +644,20 @@ void Net::UpdateDebugInfo(const int param_id) { const Dtype diff_abs_val_mean = blob.asum_diff() / blob.count(); if (param_owner < 0) { const Dtype data_abs_val_mean = blob.asum_data() / blob.count(); - if (Caffe::root_solver()) { - LOG(INFO) << " [Update] Layer " << layer_name - << ", param " << param_display_name - << " data: " << data_abs_val_mean - << "; diff: " << diff_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Update] Layer " << layer_name + << ", param " << param_display_name + << " data: " << data_abs_val_mean + << "; diff: " << diff_abs_val_mean; } else { const string& owner_layer_name = layer_names_[param_layer_indices_[param_owner].first]; - if (Caffe::root_solver()) { - LOG(INFO) << " [Update] Layer " << layer_name - << ", param blob " << param_display_name - << " (owned by layer " << owner_layer_name << ", " << "param " - << param_display_names_[param_owners_[param_id]] << ")" - << " diff: " << diff_abs_val_mean; - } + LOG_IF(INFO, Caffe::root_solver()) + << " [Update] Layer " << layer_name + << ", param blob " << param_display_name + << " (owned by layer " << owner_layer_name << ", " << "param " + << param_display_names_[param_owners_[param_id]] << ")" + << " diff: " << diff_abs_val_mean; } } @@ -775,7 +673,7 @@ void Net::ShareTrainedLayersWith(const Net* other) { ++target_layer_id; } if (target_layer_id == layer_names_.size()) { - DLOG(INFO) << "Ignoring source layer " << source_layer_name; + LOG(INFO) << "Ignoring source layer " << source_layer_name; continue; } DLOG(INFO) << "Copying source layer " << source_layer_name; @@ -843,7 +741,7 @@ void Net::CopyTrainedLayersFrom(const NetParameter& param) { ++target_layer_id; } if (target_layer_id == layer_names_.size()) { - DLOG(INFO) << "Ignoring source layer " << source_layer_name; + LOG(INFO) << "Ignoring source layer " << source_layer_name; continue; } DLOG(INFO) << "Copying source layer " << source_layer_name; @@ -871,8 +769,7 @@ void Net::CopyTrainedLayersFrom(const NetParameter& param) { template void Net::CopyTrainedLayersFrom(const string trained_filename) { - if (trained_filename.size() >= 3 && - trained_filename.compare(trained_filename.size() - 3, 3, ".h5") == 0) { + if (H5Fis_hdf5(trained_filename.c_str())) { CopyTrainedLayersFromHDF5(trained_filename); } else { CopyTrainedLayersFromBinaryProto(trained_filename); @@ -898,7 +795,7 @@ void Net::CopyTrainedLayersFromHDF5(const string trained_filename) { for (int i = 0; i < num_layers; ++i) { string source_layer_name = hdf5_get_name_by_idx(data_hid, i); if (!layer_names_index_.count(source_layer_name)) { - DLOG(INFO) << "Ignoring source layer " << source_layer_name; + LOG(INFO) << "Ignoring source layer " << source_layer_name; continue; } int target_layer_id = layer_names_index_[source_layer_name]; @@ -942,9 +839,6 @@ void Net::ToProto(NetParameter* param, bool write_diff) const { param->Clear(); param->set_name(name_); // Add bottom and top - for (int i = 0; i < net_input_blob_indices_.size(); ++i) { - param->add_input(blob_names_[net_input_blob_indices_[i]]); - } DLOG(INFO) << "Serializing " << layers_.size() << " layers"; for (int i = 0; i < layers_.size(); ++i) { LayerParameter* layer_param = param->add_layer(); diff --git a/src/caffe/parallel.cpp b/src/caffe/parallel.cpp index a6d154e16..d9433917d 100644 --- a/src/caffe/parallel.cpp +++ b/src/caffe/parallel.cpp @@ -1,20 +1,15 @@ -#ifndef CPU_ONLY +#ifdef USE_NCCL + #include -#endif #include #include -#include -#include -#include - -#include #include #include #include -#include "boost/thread.hpp" #include "caffe/caffe.hpp" #include "caffe/parallel.hpp" +#include "caffe/sgd_solvers.hpp" namespace caffe { @@ -72,15 +67,14 @@ static size_t total_size(const vector*>& params) { template Params::Params(shared_ptr > root_solver) - : size_(total_size(root_solver->net()->learnable_params())), - data_(), - diff_() { + : size_(total_size(root_solver->net()->learnable_params())), + data_(), + diff_() { } template GPUParams::GPUParams(shared_ptr > root_solver, int device) - : Params(root_solver) { -#ifndef CPU_ONLY + : Params(root_solver) { int initial_device; CUDA_CHECK(cudaGetDevice(&initial_device)); @@ -90,352 +84,288 @@ GPUParams::GPUParams(shared_ptr > root_solver, int device) // Copy blob values const vector*>& net = - root_solver->net()->learnable_params(); + root_solver->net()->learnable_params(); apply_buffers(net, data_, size_, copy); CUDA_CHECK(cudaMalloc(&diff_, size_ * sizeof(Dtype))); caffe_gpu_set(size_, Dtype(0), diff_); CUDA_CHECK(cudaSetDevice(initial_device)); -#else - NO_GPU; -#endif } template GPUParams::~GPUParams() { -#ifndef CPU_ONLY CUDA_CHECK(cudaFree(data_)); CUDA_CHECK(cudaFree(diff_)); -#endif } template -void GPUParams::configure(Solver* solver) const { +void GPUParams::Configure(Solver* solver) const { const vector*>& net = - solver->net()->learnable_params(); + solver->net()->learnable_params(); apply_buffers(net, data_, size_, replace_gpu); apply_buffers(net, diff_, size_, replace_gpu_diff); } -void DevicePair::compute(const vector devices, vector* pairs) { -#ifndef CPU_ONLY - vector remaining(devices); - - // Depth for reduction tree - int remaining_depth = static_cast(ceil(log2(remaining.size()))); - - // Group GPUs by board - for (int d = 0; d < remaining_depth; ++d) { - for (int i = 0; i < remaining.size(); ++i) { - for (int j = i + 1; j < remaining.size(); ++j) { - cudaDeviceProp a, b; - CUDA_CHECK(cudaGetDeviceProperties(&a, remaining[i])); - CUDA_CHECK(cudaGetDeviceProperties(&b, remaining[j])); - if (a.isMultiGpuBoard && b.isMultiGpuBoard) { - if (a.multiGpuBoardGroupID == b.multiGpuBoardGroupID) { - pairs->push_back(DevicePair(remaining[i], remaining[j])); - DLOG(INFO) << "GPU board: " << remaining[i] << ":" << remaining[j]; - remaining.erase(remaining.begin() + j); - break; - } - } - } - } - } - ostringstream s; - for (int i = 0; i < remaining.size(); ++i) { - s << (i ? ", " : "") << remaining[i]; - } - DLOG(INFO) << "GPUs paired by boards, remaining: " << s.str(); - - // Group by P2P accessibility - remaining_depth = ceil(log2(remaining.size())); - for (int d = 0; d < remaining_depth; ++d) { - for (int i = 0; i < remaining.size(); ++i) { - for (int j = i + 1; j < remaining.size(); ++j) { - int access; - CUDA_CHECK( - cudaDeviceCanAccessPeer(&access, remaining[i], remaining[j])); - if (access) { - pairs->push_back(DevicePair(remaining[i], remaining[j])); - DLOG(INFO) << "P2P pair: " << remaining[i] << ":" << remaining[j]; - remaining.erase(remaining.begin() + j); - break; - } - } - } - } - s.str(""); - for (int i = 0; i < remaining.size(); ++i) { - s << (i ? ", " : "") << remaining[i]; - } - DLOG(INFO) << "GPUs paired by P2P access, remaining: " << s.str(); - - // Group remaining - remaining_depth = ceil(log2(remaining.size())); - for (int d = 0; d < remaining_depth; ++d) { - for (int i = 0; i < remaining.size(); ++i) { - pairs->push_back(DevicePair(remaining[i], remaining[i + 1])); - DLOG(INFO) << "Remaining pair: " << remaining[i] << ":" - << remaining[i + 1]; - remaining.erase(remaining.begin() + i + 1); - } - } +static int getDevice() { + int device = 0; + CUDA_CHECK(cudaGetDevice(&device)); + return device; +} - // Should only be the parent node remaining - CHECK_EQ(remaining.size(), 1); +template +NCCL::NCCL(shared_ptr > solver) + : GPUParams(solver, getDevice()), + comm_(), solver_(solver), barrier_() { + this->Configure(solver.get()); + Init(); +} - pairs->insert(pairs->begin(), DevicePair(-1, remaining[0])); +template +NCCL::NCCL(shared_ptr > solver, const string& uid) + : GPUParams(solver, getDevice()), + solver_(solver), barrier_() { + this->Configure(solver.get()); + Caffe::set_multiprocess(true); + ncclUniqueId nccl_uid; + memcpy(&nccl_uid, &uid[0], NCCL_UNIQUE_ID_BYTES); // NOLINT(caffe/alt_fn) + NCCL_CHECK(ncclCommInitRank(&comm_, + Caffe::solver_count(), + nccl_uid, + Caffe::solver_rank())); + Init(); +} - CHECK(pairs->size() == devices.size()); - for (int i = 0; i < pairs->size(); ++i) { - CHECK((*pairs)[i].parent() != (*pairs)[i].device()); - for (int j = i + 1; j < pairs->size(); ++j) { - CHECK((*pairs)[i].device() != (*pairs)[j].device()); - } +template +void NCCL::Init() { + if (solver_->param().layer_wise_reduce()) { + CUDA_CHECK(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking)); } -#else - NO_GPU; -#endif } -// - template -P2PSync::P2PSync(shared_ptr > root_solver, - P2PSync* parent, const SolverParameter& param) - : GPUParams(root_solver, param.device_id()), - parent_(parent), - children_(), - queue_(), - initial_iter_(root_solver->iter()), - solver_() { -#ifndef CPU_ONLY - int initial_device; - CUDA_CHECK(cudaGetDevice(&initial_device)); - const int self = param.device_id(); - CUDA_CHECK(cudaSetDevice(self)); - - if (parent == NULL) { - solver_ = root_solver; - } else { - Caffe::set_root_solver(false); - solver_.reset(new WorkerSolver(param, root_solver.get())); - Caffe::set_root_solver(true); +NCCL::~NCCL() { + if (solver_->param().layer_wise_reduce()) { + CUDA_CHECK(cudaStreamDestroy(stream_)); } - this->configure(solver_.get()); - solver_->add_callback(this); - - if (parent) { - // Enable p2p access between devices - const int peer = parent->solver_->param().device_id(); - int access; - CUDA_CHECK(cudaDeviceCanAccessPeer(&access, self, peer)); - if (access) { - CUDA_CHECK(cudaDeviceEnablePeerAccess(peer, 0)); - } else { - LOG(INFO)<< "GPU " << self << " does not have p2p access to GPU " << peer; - } - // Allocate receiving buffer on parent - CUDA_CHECK(cudaSetDevice(peer)); - CUDA_CHECK(cudaMalloc(&parent_grads_, size_ * sizeof(Dtype))); - CUDA_CHECK(cudaSetDevice(self)); + if (comm_) { + ncclCommDestroy(comm_); } - - CUDA_CHECK(cudaSetDevice(initial_device)); -#else - NO_GPU; -#endif } template -P2PSync::~P2PSync() { -#ifndef CPU_ONLY - int initial_device; - CUDA_CHECK(cudaGetDevice(&initial_device)); - const int self = solver_->param().device_id(); - CUDA_CHECK(cudaSetDevice(self)); - - if (parent_) { - CUDA_CHECK(cudaFree(parent_grads_)); - const int peer = parent_->solver_->param().device_id(); - int access; - CUDA_CHECK(cudaDeviceCanAccessPeer(&access, self, peer)); - if (access) { - CUDA_CHECK(cudaDeviceDisablePeerAccess(peer)); - } - } - - CUDA_CHECK(cudaSetDevice(initial_device)); -#endif +boost::barrier* NCCL::barrier() { + return barrier_; +} +template +void NCCL::set_barrier(boost::barrier* value) { + barrier_ = value; } template -void P2PSync::InternalThreadEntry() { - Caffe::SetDevice(solver_->param().device_id()); - CHECK(Caffe::root_solver()); - Caffe::set_root_solver(false); - // See if there is a defined seed and reset random state if so - if (solver_->param().random_seed() >= 0) { - // Fetch random seed and modulate by device ID to make sure - // everyone doesn't have the same seed. We seem to have some - // solver instability if we have everyone with the same seed - Caffe::set_random_seed( - solver_->param().random_seed() + solver_->param().device_id()); +void NCCL::InitSingleProcess(vector*>* nccls) { + ncclComm_t* comms = new ncclComm_t[nccls->size()]; + int* gpu_list = new int[nccls->size()]; + for (int i = 0; i < nccls->size(); ++i) { + gpu_list[i] = (*nccls)[i]->solver_->param().device_id(); + } + NCCL_CHECK(ncclCommInitAll(comms, static_cast(nccls->size()), gpu_list)); + for (int i = 0; i < nccls->size(); ++i) { + (*nccls)[i]->comm_ = comms[i]; } - solver_->Step(solver_->param().max_iter() - initial_iter_); } template -void P2PSync::on_start() { -#ifndef CPU_ONLY -#ifdef DEBUG - int device; - CUDA_CHECK(cudaGetDevice(&device)); - CHECK(device == solver_->param().device_id()); -#else -// CHECK(false); -#endif +string NCCL::new_uid() { + string uid; + uid.resize(NCCL_UNIQUE_ID_BYTES); + ncclUniqueId nccl_uid; + NCCL_CHECK(ncclGetUniqueId(&nccl_uid)); + memcpy(&uid[0], &nccl_uid, NCCL_UNIQUE_ID_BYTES); // NOLINT(caffe/alt_fn) + return uid; +} - // Wait for update from parent - if (parent_) { - P2PSync *parent = queue_.pop(); - CHECK(parent == parent_); +template +void NCCL::Broadcast() { + if (barrier_) { // NULL in multi process case + barrier_->wait(); } - - // Update children - for (int i = children_.size() - 1; i >= 0; i--) { - Dtype* src = data_; - Dtype* dst = children_[i]->data_; - -#ifdef DEBUG - cudaPointerAttributes attributes; - CUDA_CHECK(cudaPointerGetAttributes(&attributes, src)); - CHECK(attributes.device == device); - CUDA_CHECK(cudaPointerGetAttributes(&attributes, dst)); - CHECK(attributes.device == children_[i]->solver_->param().device_id()); -#endif - - CUDA_CHECK(cudaMemcpyAsync(dst, src, size_ * sizeof(Dtype), - cudaMemcpyDeviceToDevice, cudaStreamDefault)); - CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); - children_[i]->queue_.push(this); + NCCL_CHECK(ncclBcast(data_, static_cast(size_), + nccl::dataType::type, 0, + comm_, cudaStreamDefault)); + if (barrier_) { + barrier_->wait(); } -#endif } template -void P2PSync::on_gradients_ready() { -#ifndef CPU_ONLY +void NCCL::run(int layer) { + CHECK(solver_->param().layer_wise_reduce()); + vector > >& blobs = + solver_->net()->layers()[layer]->blobs(); #ifdef DEBUG - int device; - CUDA_CHECK(cudaGetDevice(&device)); - CHECK(device == solver_->param().device_id()); + // Assert blobs are contiguous to reduce in one step (e.g. bias often small) + for (int i = 1; i < blobs.size(); ++i) { + CHECK_EQ(blobs[i - 1]->gpu_diff() + blobs[i - 1]->count(), + blobs[i + 0]->gpu_diff()); + } #endif + if (blobs.size() > 0) { + // Make sure default stream is done computing gradients. Could be + // replaced by cudaEventRecord+cudaStreamWaitEvent to avoid + // blocking the default stream, but it's actually slower. + CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); - // Sum children gradients as they appear in the queue - for (int i = 0; i < children_.size(); ++i) { - P2PSync *child = queue_.pop(); - Dtype* src = child->parent_grads_; - Dtype* dst = diff_; - -#ifdef DEBUG - bool ok = false; - for (int j = 0; j < children_.size(); ++j) { - if (child == children_[j]) { - ok = true; - } + // Reduce asynchronously + int size = 0; + for (int i = 0; i < blobs.size(); ++i) { + size += blobs[i]->count(); } - CHECK(ok); - cudaPointerAttributes attributes; - CUDA_CHECK(cudaPointerGetAttributes(&attributes, src)); - CHECK(attributes.device == device); - CUDA_CHECK(cudaPointerGetAttributes(&attributes, dst)); - CHECK(attributes.device == device); -#endif - - caffe_gpu_add(size_, src, dst, dst); + if (barrier_) { // NULL in multi process case + barrier_->wait(); + } + NCCL_CHECK(ncclAllReduce(blobs[0]->mutable_gpu_diff(), + blobs[0]->mutable_gpu_diff(), + size, + nccl::dataType::type, + ncclSum, comm_, stream_)); + caffe_gpu_scal(size, (Dtype) 1.0 / Caffe::solver_count(), + blobs[0]->mutable_gpu_diff(), stream_); } +} - // Send gradients to parent - if (parent_) { - Dtype* src = diff_; - Dtype* dst = parent_grads_; - -#ifdef DEBUG - cudaPointerAttributes attributes; - CUDA_CHECK(cudaPointerGetAttributes(&attributes, src)); - CHECK(attributes.device == device); - CUDA_CHECK(cudaPointerGetAttributes(&attributes, dst)); - CHECK(attributes.device == parent_->solver_->param().device_id()); -#endif - - CUDA_CHECK(cudaMemcpyAsync(dst, src, size_ * sizeof(Dtype), // - cudaMemcpyDeviceToDevice, cudaStreamDefault)); - CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); - parent_->queue_.push(this); +template +void NCCL::on_gradients_ready() { + if (solver_->param().layer_wise_reduce()) { + CHECK_EQ(solver_->net()->params().size(), + solver_->net()->learnable_params().size()) + << "Layer-wise reduce is not supported for nets with shared weights."; + + // Make sure reduction is done before applying gradients + CUDA_CHECK(cudaStreamSynchronize(stream_)); } else { - // Loss functions divide gradients by the batch size, so to compensate - // for split batch, the root solver divides by number of solvers. - caffe_gpu_scal(size_, Dtype(1.0 / Caffe::solver_count()), diff_); + if (barrier_) { // NULL in multi process case + barrier_->wait(); + } + NCCL_CHECK(ncclAllReduce(diff_, diff_, static_cast(size_), + nccl::dataType::type, ncclSum, comm_, + cudaStreamDefault)); + caffe_gpu_scal(static_cast(size_), + (Dtype) 1.0 / Caffe::solver_count(), diff_); } -#endif } template -void P2PSync::run(const vector& gpus) { - // Pair devices for map-reduce synchronization - vector pairs; - DevicePair::compute(gpus, &pairs); - ostringstream s; - for (int i = 1; i < pairs.size(); ++i) { - s << (i == 1 ? "" : ", ") << pairs[i].parent() << ":" << pairs[i].device(); +class Worker : public InternalThread { + public: + explicit Worker(shared_ptr > rank0, int device, + boost::barrier* barrier, vector*>* nccls, + const char* restore) + : rank0_(rank0), device_(device), barrier_(barrier), + nccls_(nccls), restore_(restore) { } - LOG(INFO)<< "GPUs pairs " << s.str(); - - SolverParameter param(solver_->param()); - vector > > syncs(gpus.size()); - - // Build the GPU tree by finding the parent for each solver - for (int attempts = 0; attempts < pairs.size(); ++attempts) { - for (int i = 1; i < pairs.size(); ++i) { - if (!syncs[i].get()) { - P2PSync* parent = NULL; - for (int j = 0; j < syncs.size(); ++j) { - P2PSync* sync = j == 0 ? this : syncs[j].get(); - if (sync) { - const SolverParameter& p = sync->solver()->param(); - if (p.device_id() == pairs[i].parent()) { - parent = sync; - } - } - } - if (parent) { - param.set_device_id(pairs[i].device()); - syncs[i].reset(new P2PSync(solver_, parent, param)); - parent->children_.push_back((P2PSync*) syncs[i].get()); - } + virtual ~Worker() {} + + protected: + void InternalThreadEntry() { + // Create solver and install callbacks + SolverParameter param(rank0_->param()); + param.set_device_id(device_); +#ifdef DEBUG + int device; + CUDA_CHECK(cudaGetDevice(&device)); + CHECK_EQ(device, device_); +#endif + param.set_type(rank0_->type()); + shared_ptr > s(SolverRegistry::CreateSolver(param)); + CHECK_EQ(s->type(), rank0_->type()); + if (restore_) { + // Could not make NCCL broadcast solver state, it seems to crash + // if called in a tight loop, regardless of barriers etc. so + // restore all solvers from file. + s->Restore(restore_); + } + NCCL nccl(s); + nccl.set_barrier(barrier_); + s->add_callback(&nccl); + if (s->param().layer_wise_reduce()) { + s->net()->add_after_backward(&nccl); + } + (*nccls_)[Caffe::solver_rank()] = &nccl; + // Wait for other threads + barrier_->wait(); + // Wait for NCCL init + barrier_->wait(); + // Broadcast rank 0 state + nccl.Broadcast(); + // Solve + s->Step(param.max_iter() - s->iter()); + barrier_->wait(); +#ifdef DEBUG + // Check all solvers have same state + SGDSolver* sa = static_cast*>(rank0_.get()); + SGDSolver* sb = static_cast*>(s.get()); + for (int h = 0; h < sa->history().size(); ++h) { + CUDA_CHECK(cudaSetDevice(sa->param().device_id())); + const Dtype* a = sa->history()[h]->cpu_data(); + CUDA_CHECK(cudaSetDevice(sb->param().device_id())); + const Dtype* b = sb->history()[h]->cpu_data(); + for (int v = 0; v < sa->history()[h]->count(); ++v) { + CHECK_DOUBLE_EQ(a[v], b[v]); } } +#endif } - LOG(INFO)<< "Starting Optimization"; + shared_ptr > rank0_; + int device_; + boost::barrier* barrier_; + vector*>* nccls_; + const char* restore_; +}; - for (int i = 1; i < syncs.size(); ++i) { - syncs[i]->StartInternalThread(); +template +void NCCL::Run(const vector& gpus, const char* restore) { + boost::barrier barrier(static_cast(gpus.size())); + vector*> nccls(gpus.size()); + // Create workers + vector > > workers(gpus.size()); + for (int i = 1; i < gpus.size(); ++i) { + CUDA_CHECK(cudaSetDevice(gpus[i])); + Caffe::set_solver_rank(i); + Worker* w = new Worker(solver_, gpus[i], &barrier, + &nccls, restore); + w->StartInternalThread(); + workers[i].reset(w); } - - // Run root solver on current thread + CUDA_CHECK(cudaSetDevice(gpus[0])); + Caffe::set_solver_rank(0); + barrier_ = &barrier; + solver_->add_callback(this); + if (solver_->param().layer_wise_reduce()) { + solver_->net()->add_after_backward(this); + } + nccls[0] = this; + // Wait for workers + barrier.wait(); + // Init NCCL + InitSingleProcess(&nccls); + barrier.wait(); + // Run first solver on current thread + Broadcast(); solver_->Solve(); - - for (int i = 1; i < syncs.size(); ++i) { - syncs[i]->StopInternalThread(); + barrier.wait(); // Hangs without it when running tests + // Wait for shutdown + for (int i = 1; i < gpus.size(); ++i) { + workers[i]->StopInternalThread(); } } INSTANTIATE_CLASS(Params); INSTANTIATE_CLASS(GPUParams); -INSTANTIATE_CLASS(P2PSync); +INSTANTIATE_CLASS(Worker); +INSTANTIATE_CLASS(NCCL); } // namespace caffe + +#endif // USE_NCCL diff --git a/src/caffe/proto/caffe.proto b/src/caffe/proto/caffe.proto index 283de56c8..a6905b1f2 100644 --- a/src/caffe/proto/caffe.proto +++ b/src/caffe/proto/caffe.proto @@ -63,12 +63,12 @@ message FillerParameter { message NetParameter { optional string name = 1; // consider giving the network a name - // The input blobs to the network. + // DEPRECATED. See InputParameter. The input blobs to the network. repeated string input = 3; - // The shape of the input blobs. + // DEPRECATED. See InputParameter. The shape of the input blobs. repeated BlobShape input_shape = 8; - // 4D input dimensions -- deprecated. Use "shape" instead. + // 4D input dimensions -- deprecated. Use "input_shape" instead. // If specified, for each input blob there should be four // values specifying the num, channels, height and width of the input blob. // Thus, there should be a total of (4 * #input) numbers. @@ -98,7 +98,7 @@ message NetParameter { // NOTE // Update the next available ID when you add a new SolverParameter field. // -// SolverParameter next available ID: 40 (last added: momentum2) +// SolverParameter next available ID: 42 (last added: layer_wise_reduce) message SolverParameter { ////////////////////////////////////////////////////////////////////////////// // Specifying the train and test networks @@ -128,8 +128,7 @@ message SolverParameter { // The states for the train/test nets. Must be unspecified or // specified once per net. // - // By default, all states will have solver = true; - // train_state will have phase = TRAIN, + // By default, train_state will have phase = TRAIN, // and all test_state's will have phase = TEST. // Other defaults are set according to the NetState defaults. optional NetState train_state = 26; @@ -209,16 +208,9 @@ message SolverParameter { // (and by default) initialize using a seed derived from the system clock. optional int64 random_seed = 20 [default = -1]; - // Solver type - enum SolverType { - SGD = 0; - NESTEROV = 1; - ADAGRAD = 2; - RMSPROP = 3; - ADADELTA = 4; - ADAM = 5; - } - optional SolverType solver_type = 30 [default = SGD]; + // type of the solver + optional string type = 40 [default = "SGD"]; + // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam optional float delta = 31 [default = 1e-8]; // parameters for the Adam solver @@ -226,7 +218,7 @@ message SolverParameter { // RMSProp decay value // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t) - optional float rms_decay = 38; + optional float rms_decay = 38 [default = 0.99]; // If true, print information about the state of the net that may help with // debugging learning problems. @@ -234,6 +226,21 @@ message SolverParameter { // If false, don't save a snapshot after training finishes. optional bool snapshot_after_train = 28 [default = true]; + + // DEPRECATED: old solver enum types, use string instead + enum SolverType { + SGD = 0; + NESTEROV = 1; + ADAGRAD = 2; + RMSPROP = 3; + ADADELTA = 4; + ADAM = 5; + } + // DEPRECATED: use type instead of solver_type + optional SolverType solver_type = 30 [default = SGD]; + + // Overlap compute and communication for data parallel training + optional bool layer_wise_reduce = 41 [default = true]; } // A message that stores the solver snapshots @@ -301,7 +308,7 @@ message ParamSpec { // NOTE // Update the next available ID when you add a new LayerParameter field. // -// LayerParameter next available layer-specific ID: 139 (last added: tile_param) +// LayerParameter next available layer-specific ID: 148 (last added: dataheatmap_param) message LayerParameter { optional string name = 1; // the layer name optional string type = 2; // the layer type @@ -323,7 +330,12 @@ message LayerParameter { // The blobs containing the numeric parameters of the layer. repeated BlobProto blobs = 7; - // Specifies on which bottoms the backpropagation should be skipped. + // Specifies whether to backpropagate to each bottom. If unspecified, + // Caffe will automatically infer whether each input needs backpropagation + // to compute parameter gradients. If set to true for some inputs, + // backpropagation to those inputs is forced; if set false for some inputs, + // backpropagation to those inputs is skipped. + // // The size must be either 0 or equal to the number of bottoms. repeated bool propagate_down = 11; @@ -355,34 +367,42 @@ message LayerParameter { // The default for the engine is set by the ENGINE switch at compile-time. optional AccuracyParameter accuracy_param = 102; optional ArgMaxParameter argmax_param = 103; + optional BatchNormParameter batch_norm_param = 139; + optional BiasParameter bias_param = 141; optional ConcatParameter concat_param = 104; optional ContrastiveLossParameter contrastive_loss_param = 105; optional ConvolutionParameter convolution_param = 106; + optional CropParameter crop_param = 144; optional DataParameter data_param = 107; optional DropoutParameter dropout_param = 108; optional DummyDataParameter dummy_data_param = 109; optional EltwiseParameter eltwise_param = 110; + optional ELUParameter elu_param = 140; optional EmbedParameter embed_param = 137; optional ExpParameter exp_param = 111; optional FlattenParameter flatten_param = 135; - optional HeatmapDataParameter heatmap_data_param = 140; + optional HeatmapDataParameter heatmap_data_param = 147; optional HDF5DataParameter hdf5_data_param = 112; optional HDF5OutputParameter hdf5_output_param = 113; optional HingeLossParameter hinge_loss_param = 114; optional ImageDataParameter image_data_param = 115; optional InfogainLossParameter infogain_loss_param = 116; optional InnerProductParameter inner_product_param = 117; + optional InputParameter input_param = 143; optional LogParameter log_param = 134; optional LRNParameter lrn_param = 118; optional MemoryDataParameter memory_data_param = 119; optional MVNParameter mvn_param = 120; + optional ParameterParameter parameter_param = 145; optional PoolingParameter pooling_param = 121; optional PowerParameter power_param = 122; optional PReLUParameter prelu_param = 131; optional PythonParameter python_param = 130; + optional RecurrentParameter recurrent_param = 146; optional ReductionParameter reduction_param = 136; optional ReLUParameter relu_param = 123; optional ReshapeParameter reshape_param = 133; + optional ScaleParameter scale_param = 142; optional SigmoidParameter sigmoid_param = 124; optional SoftmaxParameter softmax_param = 125; optional SPPParameter spp_param = 132; @@ -406,7 +426,7 @@ message TransformationParameter { optional uint32 crop_size = 3 [default = 0]; // mean_file and mean_value cannot be specified at the same time optional string mean_file = 4; - // if specified can be repeated once (would substract it from all the channels) + // if specified can be repeated once (would subtract it from all the channels) // or can be repeated the same number of times as channels // (would subtract them from the corresponding channel) repeated float mean_value = 5; @@ -420,9 +440,29 @@ message TransformationParameter { message LossParameter { // If specified, ignore instances with the given label. optional int32 ignore_label = 1; - // If true, normalize each batch across all instances (including spatial - // dimesions, but not ignored instances); else, divide by batch size only. - optional bool normalize = 2 [default = true]; + // How to normalize the loss for loss layers that aggregate across batches, + // spatial dimensions, or other dimensions. Currently only implemented in + // SoftmaxWithLoss and SigmoidCrossEntropyLoss layers. + enum NormalizationMode { + // Divide by the number of examples in the batch times spatial dimensions. + // Outputs that receive the ignore label will NOT be ignored in computing + // the normalization factor. + FULL = 0; + // Divide by the total number of output locations that do not take the + // ignore_label. If ignore_label is not set, this behaves like FULL. + VALID = 1; + // Divide by the batch size. + BATCH_SIZE = 2; + // Do not normalize the loss. + NONE = 3; + } + // For historical reasons, the default normalization for + // SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID. + optional NormalizationMode normalization = 3 [default = VALID]; + // Deprecated. Ignored if normalization is specified. If normalization + // is not specified, then setting this to false will be equivalent to + // normalization = BATCH_SIZE to be consistent with previous behavior. + optional bool normalize = 2; } // Messages that store parameters used by individual layer types follow, in @@ -449,6 +489,11 @@ message ArgMaxParameter { // If true produce pairs (argmax, maxval) optional bool out_max_val = 1 [default = false]; optional uint32 top_k = 2 [default = 1]; + // The axis along which to maximise -- may be negative to index from the + // end (e.g., -1 for the last axis). + // By default ArgMaxLayer maximizes over the flattened trailing dimensions + // for each index of the first / num dimension. + optional int32 axis = 3; } message ConcatParameter { @@ -462,6 +507,60 @@ message ConcatParameter { optional uint32 concat_dim = 1 [default = 1]; } +message BatchNormParameter { + // If false, normalization is performed over the current mini-batch + // and global statistics are accumulated (but not yet used) by a moving + // average. + // If true, those accumulated mean and variance values are used for the + // normalization. + // By default, it is set to false when the network is in the training + // phase and true when the network is in the testing phase. + optional bool use_global_stats = 1; + // What fraction of the moving average remains each iteration? + // Smaller values make the moving average decay faster, giving more + // weight to the recent values. + // Each iteration updates the moving average @f$S_{t-1}@f$ with the + // current mean @f$ Y_t @f$ by + // @f$ S_t = (1-\beta)Y_t + \beta \cdot S_{t-1} @f$, where @f$ \beta @f$ + // is the moving_average_fraction parameter. + optional float moving_average_fraction = 2 [default = .999]; + // Small value to add to the variance estimate so that we don't divide by + // zero. + optional float eps = 3 [default = 1e-5]; +} + +message BiasParameter { + // The first axis of bottom[0] (the first input Blob) along which to apply + // bottom[1] (the second input Blob). May be negative to index from the end + // (e.g., -1 for the last axis). + // + // For example, if bottom[0] is 4D with shape 100x3x40x60, the output + // top[0] will have the same shape, and bottom[1] may have any of the + // following shapes (for the given value of axis): + // (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 + // (axis == 1 == -3) 3; 3x40; 3x40x60 + // (axis == 2 == -2) 40; 40x60 + // (axis == 3 == -1) 60 + // Furthermore, bottom[1] may have the empty shape (regardless of the value of + // "axis") -- a scalar bias. + optional int32 axis = 1 [default = 1]; + + // (num_axes is ignored unless just one bottom is given and the bias is + // a learned parameter of the layer. Otherwise, num_axes is determined by the + // number of axes by the second bottom.) + // The number of axes of the input (bottom[0]) covered by the bias + // parameter, or -1 to cover all axes of bottom[0] starting from `axis`. + // Set num_axes := 0, to add a zero-axis Blob: a scalar. + optional int32 num_axes = 2 [default = 1]; + + // (filler is ignored unless just one bottom is given and the bias is + // a learned parameter of the layer.) + // The initialization for the learned bias parameter. + // Default is the zero (0) initialization, resulting in the BiasLayer + // initially performing the identity operation. + optional FillerParameter filler = 3; +} + message ContrastiveLossParameter { // margin for dissimilar pair optional float margin = 1 [default = 1.0]; @@ -477,18 +576,28 @@ message ContrastiveLossParameter { message ConvolutionParameter { optional uint32 num_output = 1; // The number of outputs for the layer optional bool bias_term = 2 [default = true]; // whether to have bias terms + // Pad, kernel size, and stride are all given as a single value for equal - // dimensions in height and width or as Y, X pairs. - optional uint32 pad = 3 [default = 0]; // The padding size (equal in Y, X) - optional uint32 pad_h = 9 [default = 0]; // The padding height - optional uint32 pad_w = 10 [default = 0]; // The padding width - optional uint32 kernel_size = 4; // The kernel size (square) - optional uint32 kernel_h = 11; // The kernel height - optional uint32 kernel_w = 12; // The kernel width + // dimensions in all spatial dimensions, or once per spatial dimension. + repeated uint32 pad = 3; // The padding size; defaults to 0 + repeated uint32 kernel_size = 4; // The kernel size + repeated uint32 stride = 6; // The stride; defaults to 1 + // Factor used to dilate the kernel, (implicitly) zero-filling the resulting + // holes. (Kernel dilation is sometimes referred to by its use in the + // algorithme à trous from Holschneider et al. 1987.) + repeated uint32 dilation = 18; // The dilation; defaults to 1 + + // For 2D convolution only, the *_h and *_w versions may also be used to + // specify both spatial dimensions. + optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only) + optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only) + optional uint32 kernel_h = 11; // The kernel height (2D only) + optional uint32 kernel_w = 12; // The kernel width (2D only) + optional uint32 stride_h = 13; // The stride height (2D only) + optional uint32 stride_w = 14; // The stride width (2D only) + optional uint32 group = 5 [default = 1]; // The group size for group conv - optional uint32 stride = 6 [default = 1]; // The stride (equal in Y, X) - optional uint32 stride_h = 13; // The stride height - optional uint32 stride_w = 14; // The stride width + optional FillerParameter weight_filler = 7; // The filler for the weight optional FillerParameter bias_filler = 8; // The filler for the bias enum Engine { @@ -497,6 +606,42 @@ message ConvolutionParameter { CUDNN = 2; } optional Engine engine = 15 [default = DEFAULT]; + + // The axis to interpret as "channels" when performing convolution. + // Preceding dimensions are treated as independent inputs; + // succeeding dimensions are treated as "spatial". + // With (N, C, H, W) inputs, and axis == 1 (the default), we perform + // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for + // groups g>1) filters across the spatial axes (H, W) of the input. + // With (N, C, D, H, W) inputs, and axis == 1, we perform + // N independent 3D convolutions, sliding (C/g)-channels + // filters across the spatial axes (D, H, W) of the input. + optional int32 axis = 16 [default = 1]; + + // Whether to force use of the general ND convolution, even if a specific + // implementation for blobs of the appropriate number of spatial dimensions + // is available. (Currently, there is only a 2D-specific convolution + // implementation; for input blobs with num_axes != 2, this option is + // ignored and the ND implementation will be used.) + optional bool force_nd_im2col = 17 [default = false]; +} + +message CropParameter { + // To crop, elements of the first bottom are selected to fit the dimensions + // of the second, reference bottom. The crop is configured by + // - the crop `axis` to pick the dimensions for cropping + // - the crop `offset` to set the shift for all/each dimension + // to align the cropped bottom with the reference bottom. + // All dimensions up to but excluding `axis` are preserved, while + // the dimensions including and trailing `axis` are cropped. + // If only one `offset` is set, then all dimensions are offset by this amount. + // Otherwise, the number of offsets must equal the number of cropped axes to + // shift the crop in each dimension accordingly. + // Note: standard dimensions are N,C,H,W so the default is a spatial crop, + // and `axis` may be negative to index from the end (e.g., -1 for the last + // axis). + optional int32 axis = 1 [default = 2]; + repeated uint32 offset = 2; } message DataParameter { @@ -528,8 +673,8 @@ message DataParameter { optional bool mirror = 6 [default = false]; // Force the encoded image to have 3 color channels optional bool force_encoded_color = 9 [default = false]; - // Prefetch queue (Number of batches to prefetch to host memory, increase if - // data access bandwidth varies). + // Prefetch queue (Increase if data feeding bandwidth varies, within the + // limit of device memory for GPU training) optional uint32 prefetch = 10 [default = 4]; } @@ -570,6 +715,14 @@ message EltwiseParameter { optional bool stable_prod_grad = 3 [default = true]; } +// Message that stores parameters used by ELULayer +message ELUParameter { + // Described in: + // Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate + // Deep Network Learning by Exponential Linear Units (ELUs). arXiv + optional float alpha = 1 [default = 1]; +} + // Message that stores parameters used by EmbedLayer message EmbedParameter { optional uint32 num_output = 1; // The number of outputs for the layer @@ -691,6 +844,7 @@ message ImageDataParameter { message InfogainLossParameter { // Specify the infogain matrix source. optional string source = 1; + optional int32 axis = 2 [default = 1]; // axis of prob } message InnerProductParameter { @@ -703,6 +857,19 @@ message InnerProductParameter { // all preceding axes are retained in the output. // May be negative to index from the end (e.g., -1 for the last axis). optional int32 axis = 5 [default = 1]; + // Specify whether to transpose the weight matrix or not. + // If transpose == true, any operations will be performed on the transpose + // of the weight matrix. The weight matrix itself is not going to be transposed + // but rather the transfer flag of operations will be toggled accordingly. + optional bool transpose = 6 [default = false]; +} + +message InputParameter { + // This layer produces N >= 1 top blob(s) to be assigned manually. + // Define N shapes to set a shape for each top. + // Define 1 shape to set the same shape for every top. + // Define no shape to defer to reshaping manually. + repeated BlobShape shape = 1; } // Message that stores parameters used by LogLayer @@ -726,6 +893,12 @@ message LRNParameter { } optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS]; optional float k = 5 [default = 1.]; + enum Engine { + DEFAULT = 0; + CAFFE = 1; + CUDNN = 2; + } + optional Engine engine = 6 [default = DEFAULT]; } message MemoryDataParameter { @@ -746,6 +919,10 @@ message MVNParameter { optional float eps = 3 [default = 1e-9]; } +message ParameterParameter { + optional BlobShape shape = 1; +} + message PoolingParameter { enum PoolMethod { MAX = 0; @@ -790,12 +967,29 @@ message PythonParameter { // string, dictionary in Python dict format, JSON, etc. You may parse this // string in `setup` method and use it in `forward` and `backward`. optional string param_str = 3 [default = '']; - // Whether this PythonLayer is shared among worker solvers during data parallelism. - // If true, each worker solver sequentially run forward from this layer. - // This value should be set true if you are using it as a data layer. + // DEPRECATED optional bool share_in_parallel = 4 [default = false]; } +// Message that stores parameters used by RecurrentLayer +message RecurrentParameter { + // The dimension of the output (and usually hidden state) representation -- + // must be explicitly set to non-zero. + optional uint32 num_output = 1 [default = 0]; + + optional FillerParameter weight_filler = 2; // The filler for the weight + optional FillerParameter bias_filler = 3; // The filler for the bias + + // Whether to enable displaying debug_info in the unrolled recurrent net. + optional bool debug_info = 4 [default = false]; + + // Whether to add as additional inputs (bottoms) the initial hidden state + // blobs, and add as additional outputs (tops) the final timestep hidden state + // blobs. The number of additional bottom/top blobs required depends on the + // recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs. + optional bool expose_hidden = 5 [default = false]; +} + // Message that stores parameters used by ReductionLayer message ReductionParameter { enum ReductionOp { @@ -860,7 +1054,7 @@ message ReshapeParameter { // reshape_param { shape { dim: 2 dim: 2 dim: 4 } } // reshape_param { shape { dim: 0 dim: 2 dim: 4 } } // reshape_param { shape { dim: 0 dim: 2 dim: -1 } } - // reshape_param { shape { dim: -1 dim: 0 dim: 2 } } + // reshape_param { shape { dim: 0 dim:-1 dim: 4 } } // optional BlobShape shape = 1; @@ -905,6 +1099,43 @@ message ReshapeParameter { optional int32 num_axes = 3 [default = -1]; } +message ScaleParameter { + // The first axis of bottom[0] (the first input Blob) along which to apply + // bottom[1] (the second input Blob). May be negative to index from the end + // (e.g., -1 for the last axis). + // + // For example, if bottom[0] is 4D with shape 100x3x40x60, the output + // top[0] will have the same shape, and bottom[1] may have any of the + // following shapes (for the given value of axis): + // (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 + // (axis == 1 == -3) 3; 3x40; 3x40x60 + // (axis == 2 == -2) 40; 40x60 + // (axis == 3 == -1) 60 + // Furthermore, bottom[1] may have the empty shape (regardless of the value of + // "axis") -- a scalar multiplier. + optional int32 axis = 1 [default = 1]; + + // (num_axes is ignored unless just one bottom is given and the scale is + // a learned parameter of the layer. Otherwise, num_axes is determined by the + // number of axes by the second bottom.) + // The number of axes of the input (bottom[0]) covered by the scale + // parameter, or -1 to cover all axes of bottom[0] starting from `axis`. + // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar. + optional int32 num_axes = 2 [default = 1]; + + // (filler is ignored unless just one bottom is given and the scale is + // a learned parameter of the layer.) + // The initialization for the learned scale parameter. + // Default is the unit (1) initialization, resulting in the ScaleLayer + // initially performing the identity operation. + optional FillerParameter filler = 3; + + // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but + // may be more efficient). Initialized with bias_filler (defaults to 0). + optional bool bias_term = 4 [default = false]; + optional FillerParameter bias_filler = 5; +} + message SigmoidParameter { enum Engine { DEFAULT = 0; @@ -1208,6 +1439,6 @@ message PReLUParameter { // Initial value of a_i. Default is a_i=0.25 for all i. optional FillerParameter filler = 1; - // Whether or not slope paramters are shared across channels. + // Whether or not slope parameters are shared across channels. optional bool channel_shared = 2 [default = false]; } diff --git a/src/caffe/solver.cpp b/src/caffe/solver.cpp index 2e59a881d..044269371 100644 --- a/src/caffe/solver.cpp +++ b/src/caffe/solver.cpp @@ -1,18 +1,12 @@ #include -#include #include #include -#include "hdf5.h" -#include "hdf5_hl.h" - -#include "caffe/net.hpp" -#include "caffe/proto/caffe.pb.h" #include "caffe/solver.hpp" +#include "caffe/util/format.hpp" #include "caffe/util/hdf5.hpp" #include "caffe/util/io.hpp" -#include "caffe/util/math_functions.hpp" #include "caffe/util/upgrade_proto.hpp" namespace caffe { @@ -32,36 +26,33 @@ SolverAction::Enum Solver::GetRequestedAction() { } template -Solver::Solver(const SolverParameter& param, const Solver* root_solver) - : net_(), callbacks_(), root_solver_(root_solver), - requested_early_exit_(false) { +Solver::Solver(const SolverParameter& param) + : net_(), callbacks_(), requested_early_exit_(false) { Init(param); } template -Solver::Solver(const string& param_file, const Solver* root_solver) - : net_(), callbacks_(), root_solver_(root_solver), - requested_early_exit_(false) { +Solver::Solver(const string& param_file) + : net_(), callbacks_(), requested_early_exit_(false) { SolverParameter param; - ReadProtoFromTextFileOrDie(param_file, ¶m); + ReadSolverParamsFromTextFileOrDie(param_file, ¶m); Init(param); } template void Solver::Init(const SolverParameter& param) { - CHECK(Caffe::root_solver() || root_solver_) - << "root_solver_ needs to be set for all non-root solvers"; LOG_IF(INFO, Caffe::root_solver()) << "Initializing solver from parameters: " << std::endl << param.DebugString(); param_ = param; CHECK_GE(param_.average_loss(), 1) << "average_loss should be non-negative."; - if (Caffe::root_solver() && param_.random_seed() >= 0) { - Caffe::set_random_seed(param_.random_seed()); + CheckSnapshotWritePermissions(); + if (param_.random_seed() >= 0) { + Caffe::set_random_seed(param_.random_seed() + Caffe::solver_rank()); } // Scaffolding code InitTrainNet(); + InitTestNets(); if (Caffe::root_solver()) { - InitTestNets(); LOG(INFO) << "Solver scaffolding done."; } iter_ = 0; @@ -106,16 +97,11 @@ void Solver::InitTrainNet() { net_state.MergeFrom(net_param.state()); net_state.MergeFrom(param_.train_state()); net_param.mutable_state()->CopyFrom(net_state); - if (Caffe::root_solver()) { - net_.reset(new Net(net_param)); - } else { - net_.reset(new Net(net_param, root_solver_->net_.get())); - } + net_.reset(new Net(net_param)); } template void Solver::InitTestNets() { - CHECK(Caffe::root_solver()); const bool has_net_param = param_.has_net_param(); const bool has_net_file = param_.has_net(); const int num_generic_nets = has_net_param + has_net_file; @@ -185,32 +171,28 @@ void Solver::InitTestNets() { net_params[i].mutable_state()->CopyFrom(net_state); LOG(INFO) << "Creating test net (#" << i << ") specified by " << sources[i]; - if (Caffe::root_solver()) { - test_nets_[i].reset(new Net(net_params[i])); - } else { - test_nets_[i].reset(new Net(net_params[i], - root_solver_->test_nets_[i].get())); - } + test_nets_[i].reset(new Net(net_params[i])); test_nets_[i]->set_debug_info(param_.debug_info()); } } template void Solver::Step(int iters) { - vector*> bottom_vec; const int start_iter = iter_; const int stop_iter = iter_ + iters; int average_loss = this->param_.average_loss(); - vector losses; - Dtype smoothed_loss = 0; + losses_.clear(); + smoothed_loss_ = 0; + iteration_timer_.Start(); while (iter_ < stop_iter) { // zero-init the params net_->ClearParamDiffs(); if (param_.test_interval() && iter_ % param_.test_interval() == 0 - && (iter_ > 0 || param_.test_initialization()) - && Caffe::root_solver()) { - TestAll(); + && (iter_ > 0 || param_.test_initialization())) { + if (Caffe::root_solver()) { + TestAll(); + } if (requested_early_exit_) { // Break out of the while loop because stop was requested while testing. break; @@ -225,22 +207,19 @@ void Solver::Step(int iters) { // accumulate the loss and gradient Dtype loss = 0; for (int i = 0; i < param_.iter_size(); ++i) { - loss += net_->ForwardBackward(bottom_vec); + loss += net_->ForwardBackward(); } loss /= param_.iter_size(); // average the loss across iterations for smoothed reporting - if (losses.size() < average_loss) { - losses.push_back(loss); - int size = losses.size(); - smoothed_loss = (smoothed_loss * (size - 1) + loss) / size; - } else { - int idx = (iter_ - start_iter) % average_loss; - smoothed_loss += (loss - losses[idx]) / average_loss; - losses[idx] = loss; - } + UpdateSmoothedLoss(loss, start_iter, average_loss); if (display) { + float lapse = iteration_timer_.Seconds(); + float per_s = (iter_ - iterations_last_) / (lapse ? lapse : 1); LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_ - << ", loss = " << smoothed_loss; + << " (" << per_s << " iter/s, " << lapse << "s/" + << param_.display() << " iters), loss = " << smoothed_loss_; + iteration_timer_.Start(); + iterations_last_ = iter_; const vector*>& result = net_->output_blobs(); int score_index = 0; for (int j = 0; j < result.size(); ++j) { @@ -303,6 +282,7 @@ void Solver::Solve(const char* resume_file) { // For a network that is trained by the solver, no bottom or top vecs // should be given, and we will just provide dummy vecs. + int start_iter = iter_; Step(param_.max_iter() - iter_); // If we haven't already, save a snapshot after optimization, unless // overridden by setting snapshot_after_train := false @@ -321,9 +301,13 @@ void Solver::Solve(const char* resume_file) { // updated the parameters "max_iter" times -- this final pass is only done to // display the loss, which is computed in the forward pass. if (param_.display() && iter_ % param_.display() == 0) { + int average_loss = this->param_.average_loss(); Dtype loss; - net_->ForwardPrefilled(&loss); - LOG(INFO) << "Iteration " << iter_ << ", loss = " << loss; + net_->Forward(&loss); + + UpdateSmoothedLoss(loss, start_iter, average_loss); + + LOG(INFO) << "Iteration " << iter_ << ", loss = " << smoothed_loss_; } if (param_.test_interval() && iter_ % param_.test_interval() == 0) { TestAll(); @@ -349,7 +333,6 @@ void Solver::Test(const int test_net_id) { ShareTrainedLayersWith(net_.get()); vector test_score; vector test_score_output_id; - vector*> bottom_vec; const shared_ptr >& test_net = test_nets_[test_net_id]; Dtype loss = 0; for (int i = 0; i < param_.test_iter(test_net_id); ++i) { @@ -370,7 +353,7 @@ void Solver::Test(const int test_net_id) { Dtype iter_loss; const vector*>& result = - test_net->Forward(bottom_vec, &iter_loss); + test_net->Forward(&iter_loss); if (param_.test_compute_loss()) { loss += iter_loss; } @@ -421,26 +404,41 @@ void Solver::Snapshot() { CHECK(Caffe::root_solver()); string model_filename; switch (param_.snapshot_format()) { - case caffe::SolverParameter_SnapshotFormat_BINARYPROTO: - model_filename = SnapshotToBinaryProto(); - break; - case caffe::SolverParameter_SnapshotFormat_HDF5: - model_filename = SnapshotToHDF5(); - break; - default: - LOG(FATAL) << "Unsupported snapshot format."; + case caffe::SolverParameter_SnapshotFormat_BINARYPROTO: + model_filename = SnapshotToBinaryProto(); + break; + case caffe::SolverParameter_SnapshotFormat_HDF5: + model_filename = SnapshotToHDF5(); + break; + default: + LOG(FATAL) << "Unsupported snapshot format."; } SnapshotSolverState(model_filename); } +template +void Solver::CheckSnapshotWritePermissions() { + if (Caffe::root_solver() && param_.snapshot()) { + CHECK(param_.has_snapshot_prefix()) + << "In solver params, snapshot is specified but snapshot_prefix is not"; + string probe_filename = SnapshotFilename(".tempfile"); + std::ofstream probe_ofs(probe_filename.c_str()); + if (probe_ofs.good()) { + probe_ofs.close(); + std::remove(probe_filename.c_str()); + } else { + LOG(FATAL) << "Cannot write to snapshot prefix '" + << param_.snapshot_prefix() << "'. Make sure " + << "that the directory exists and is writeable."; + } + } +} + template string Solver::SnapshotFilename(const string extension) { - string filename(param_.snapshot_prefix()); - const int kBufferSize = 20; - char iter_str_buffer[kBufferSize]; - snprintf(iter_str_buffer, kBufferSize, "_iter_%d", iter_); - return filename + iter_str_buffer + extension; + return param_.snapshot_prefix() + "_iter_" + caffe::format_int(iter_) + + extension; } template @@ -463,7 +461,6 @@ string Solver::SnapshotToHDF5() { template void Solver::Restore(const char* state_file) { - CHECK(Caffe::root_solver()); string state_filename(state_file); if (state_filename.size() >= 3 && state_filename.compare(state_filename.size() - 3, 3, ".h5") == 0) { @@ -473,810 +470,20 @@ void Solver::Restore(const char* state_file) { } } -// Return the current learning rate. The currently implemented learning rate -// policies are as follows: -// - fixed: always return base_lr. -// - step: return base_lr * gamma ^ (floor(iter / step)) -// - exp: return base_lr * gamma ^ iter -// - inv: return base_lr * (1 + gamma * iter) ^ (- power) -// - multistep: similar to step but it allows non uniform steps defined by -// stepvalue -// - poly: the effective learning rate follows a polynomial decay, to be -// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power) -// - sigmoid: the effective learning rate follows a sigmod decay -// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) -// -// where base_lr, max_iter, gamma, step, stepvalue and power are defined -// in the solver parameter protocol buffer, and iter is the current iteration. template -Dtype SGDSolver::GetLearningRate() { - Dtype rate; - const string& lr_policy = this->param_.lr_policy(); - if (lr_policy == "fixed") { - rate = this->param_.base_lr(); - } else if (lr_policy == "step") { - this->current_step_ = this->iter_ / this->param_.stepsize(); - rate = this->param_.base_lr() * - pow(this->param_.gamma(), this->current_step_); - } else if (lr_policy == "exp") { - rate = this->param_.base_lr() * pow(this->param_.gamma(), this->iter_); - } else if (lr_policy == "inv") { - rate = this->param_.base_lr() * - pow(Dtype(1) + this->param_.gamma() * this->iter_, - - this->param_.power()); - } else if (lr_policy == "multistep") { - if (this->current_step_ < this->param_.stepvalue_size() && - this->iter_ >= this->param_.stepvalue(this->current_step_)) { - this->current_step_++; - LOG(INFO) << "MultiStep Status: Iteration " << - this->iter_ << ", step = " << this->current_step_; - } - rate = this->param_.base_lr() * - pow(this->param_.gamma(), this->current_step_); - } else if (lr_policy == "poly") { - rate = this->param_.base_lr() * pow(Dtype(1.) - - (Dtype(this->iter_) / Dtype(this->param_.max_iter())), - this->param_.power()); - } else if (lr_policy == "sigmoid") { - rate = this->param_.base_lr() * (Dtype(1.) / - (Dtype(1.) + exp(-this->param_.gamma() * (Dtype(this->iter_) - - Dtype(this->param_.stepsize()))))); +void Solver::UpdateSmoothedLoss(Dtype loss, int start_iter, + int average_loss) { + if (losses_.size() < average_loss) { + losses_.push_back(loss); + int size = losses_.size(); + smoothed_loss_ = (smoothed_loss_ * (size - 1) + loss) / size; } else { - LOG(FATAL) << "Unknown learning rate policy: " << lr_policy; - } - return rate; -} - -template -void SGDSolver::PreSolve() { - // Initialize the history - const vector*>& net_params = this->net_->learnable_params(); - history_.clear(); - update_.clear(); - temp_.clear(); - for (int i = 0; i < net_params.size(); ++i) { - const vector& shape = net_params[i]->shape(); - history_.push_back(shared_ptr >(new Blob(shape))); - update_.push_back(shared_ptr >(new Blob(shape))); - temp_.push_back(shared_ptr >(new Blob(shape))); - } -} - -template -void SGDSolver::ClipGradients() { - const Dtype clip_gradients = this->param_.clip_gradients(); - if (clip_gradients < 0) { return; } - const vector*>& net_params = this->net_->learnable_params(); - Dtype sumsq_diff = 0; - for (int i = 0; i < net_params.size(); ++i) { - sumsq_diff += net_params[i]->sumsq_diff(); - } - const Dtype l2norm_diff = std::sqrt(sumsq_diff); - if (l2norm_diff > clip_gradients) { - Dtype scale_factor = clip_gradients / l2norm_diff; - LOG(INFO) << "Gradient clipping: scaling down gradients (L2 norm " - << l2norm_diff << " > " << clip_gradients << ") " - << "by scale factor " << scale_factor; - for (int i = 0; i < net_params.size(); ++i) { - net_params[i]->scale_diff(scale_factor); - } - } -} - -template -void SGDSolver::ApplyUpdate() { - CHECK(Caffe::root_solver()); - Dtype rate = GetLearningRate(); - if (this->param_.display() && this->iter_ % this->param_.display() == 0) { - LOG(INFO) << "Iteration " << this->iter_ << ", lr = " << rate; - } - ClipGradients(); - for (int param_id = 0; param_id < this->net_->learnable_params().size(); - ++param_id) { - Normalize(param_id); - Regularize(param_id); - ComputeUpdateValue(param_id, rate); - } - this->net_->Update(); -} - -template -void SGDSolver::Normalize(int param_id) { - if (this->param_.iter_size() == 1) { return; } - // Scale gradient to counterbalance accumulation. - const vector*>& net_params = this->net_->learnable_params(); - const Dtype accum_normalization = Dtype(1.) / this->param_.iter_size(); - switch (Caffe::mode()) { - case Caffe::CPU: { - caffe_scal(net_params[param_id]->count(), accum_normalization, - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - caffe_gpu_scal(net_params[param_id]->count(), accum_normalization, - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void SGDSolver::Regularize(int param_id) { - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_weight_decay = - this->net_->params_weight_decay(); - Dtype weight_decay = this->param_.weight_decay(); - string regularization_type = this->param_.regularization_type(); - Dtype local_decay = weight_decay * net_params_weight_decay[param_id]; - switch (Caffe::mode()) { - case Caffe::CPU: { - if (local_decay) { - if (regularization_type == "L2") { - // add weight decay - caffe_axpy(net_params[param_id]->count(), - local_decay, - net_params[param_id]->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - } else if (regularization_type == "L1") { - caffe_cpu_sign(net_params[param_id]->count(), - net_params[param_id]->cpu_data(), - temp_[param_id]->mutable_cpu_data()); - caffe_axpy(net_params[param_id]->count(), - local_decay, - temp_[param_id]->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - } else { - LOG(FATAL) << "Unknown regularization type: " << regularization_type; - } - } - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - if (local_decay) { - if (regularization_type == "L2") { - // add weight decay - caffe_gpu_axpy(net_params[param_id]->count(), - local_decay, - net_params[param_id]->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); - } else if (regularization_type == "L1") { - caffe_gpu_sign(net_params[param_id]->count(), - net_params[param_id]->gpu_data(), - temp_[param_id]->mutable_gpu_data()); - caffe_gpu_axpy(net_params[param_id]->count(), - local_decay, - temp_[param_id]->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); - } else { - LOG(FATAL) << "Unknown regularization type: " << regularization_type; - } - } -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void SGDSolver::ComputeUpdateValue(int param_id, Dtype rate) { - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - Dtype momentum = this->param_.momentum(); - Dtype local_rate = rate * net_params_lr[param_id]; - // Compute the update to history, then copy it to the parameter diff. - switch (Caffe::mode()) { - case Caffe::CPU: { - caffe_cpu_axpby(net_params[param_id]->count(), local_rate, - net_params[param_id]->cpu_diff(), momentum, - history_[param_id]->mutable_cpu_data()); - caffe_copy(net_params[param_id]->count(), - history_[param_id]->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - caffe_gpu_axpby(net_params[param_id]->count(), local_rate, - net_params[param_id]->gpu_diff(), momentum, - history_[param_id]->mutable_gpu_data()); - caffe_copy(net_params[param_id]->count(), - history_[param_id]->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void SGDSolver::SnapshotSolverState(const string& model_filename) { - switch (this->param_.snapshot_format()) { - case caffe::SolverParameter_SnapshotFormat_BINARYPROTO: - SnapshotSolverStateToBinaryProto(model_filename); - break; - case caffe::SolverParameter_SnapshotFormat_HDF5: - SnapshotSolverStateToHDF5(model_filename); - break; - default: - LOG(FATAL) << "Unsupported snapshot format."; - } -} - -template -void SGDSolver::SnapshotSolverStateToBinaryProto( - const string& model_filename) { - SolverState state; - state.set_iter(this->iter_); - state.set_learned_net(model_filename); - state.set_current_step(this->current_step_); - state.clear_history(); - for (int i = 0; i < history_.size(); ++i) { - // Add history - BlobProto* history_blob = state.add_history(); - history_[i]->ToProto(history_blob); - } - string snapshot_filename = Solver::SnapshotFilename(".solverstate"); - LOG(INFO) - << "Snapshotting solver state to binary proto file " << snapshot_filename; - WriteProtoToBinaryFile(state, snapshot_filename.c_str()); -} - -template -void SGDSolver::SnapshotSolverStateToHDF5( - const string& model_filename) { - string snapshot_filename = - Solver::SnapshotFilename(".solverstate.h5"); - LOG(INFO) << "Snapshotting solver state to HDF5 file " << snapshot_filename; - hid_t file_hid = H5Fcreate(snapshot_filename.c_str(), H5F_ACC_TRUNC, - H5P_DEFAULT, H5P_DEFAULT); - CHECK_GE(file_hid, 0) - << "Couldn't open " << snapshot_filename << " to save solver state."; - hdf5_save_int(file_hid, "iter", this->iter_); - hdf5_save_string(file_hid, "learned_net", model_filename); - hdf5_save_int(file_hid, "current_step", this->current_step_); - hid_t history_hid = H5Gcreate2(file_hid, "history", H5P_DEFAULT, H5P_DEFAULT, - H5P_DEFAULT); - CHECK_GE(history_hid, 0) - << "Error saving solver state to " << snapshot_filename << "."; - for (int i = 0; i < history_.size(); ++i) { - ostringstream oss; - oss << i; - hdf5_save_nd_dataset(history_hid, oss.str(), *history_[i]); - } - H5Gclose(history_hid); - H5Fclose(file_hid); -} - -template -void SGDSolver::RestoreSolverStateFromBinaryProto( - const string& state_file) { - SolverState state; - ReadProtoFromBinaryFile(state_file, &state); - this->iter_ = state.iter(); - if (state.has_learned_net()) { - NetParameter net_param; - ReadNetParamsFromBinaryFileOrDie(state.learned_net().c_str(), &net_param); - this->net_->CopyTrainedLayersFrom(net_param); - } - this->current_step_ = state.current_step(); - CHECK_EQ(state.history_size(), history_.size()) - << "Incorrect length of history blobs."; - LOG(INFO) << "SGDSolver: restoring history"; - for (int i = 0; i < history_.size(); ++i) { - history_[i]->FromProto(state.history(i)); - } -} - -template -void SGDSolver::RestoreSolverStateFromHDF5(const string& state_file) { - hid_t file_hid = H5Fopen(state_file.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT); - CHECK_GE(file_hid, 0) << "Couldn't open solver state file " << state_file; - this->iter_ = hdf5_load_int(file_hid, "iter"); - if (H5LTfind_dataset(file_hid, "learned_net")) { - string learned_net = hdf5_load_string(file_hid, "learned_net"); - this->net_->CopyTrainedLayersFrom(learned_net); - } - this->current_step_ = hdf5_load_int(file_hid, "current_step"); - hid_t history_hid = H5Gopen2(file_hid, "history", H5P_DEFAULT); - CHECK_GE(history_hid, 0) << "Error reading history from " << state_file; - int state_history_size = hdf5_get_num_links(history_hid); - CHECK_EQ(state_history_size, history_.size()) - << "Incorrect length of history blobs."; - for (int i = 0; i < history_.size(); ++i) { - ostringstream oss; - oss << i; - hdf5_load_nd_dataset(history_hid, oss.str().c_str(), 0, - kMaxBlobAxes, history_[i].get()); - } - H5Gclose(history_hid); - H5Fclose(file_hid); -} - -template -void NesterovSolver::ComputeUpdateValue(int param_id, Dtype rate) { - CHECK(Caffe::root_solver()); - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - Dtype momentum = this->param_.momentum(); - Dtype local_rate = rate * net_params_lr[param_id]; - switch (Caffe::mode()) { - case Caffe::CPU: { - // save history momentum for stepping back - caffe_copy(net_params[param_id]->count(), - this->history_[param_id]->cpu_data(), - this->update_[param_id]->mutable_cpu_data()); - - // update history - caffe_cpu_axpby(net_params[param_id]->count(), local_rate, - net_params[param_id]->cpu_diff(), momentum, - this->history_[param_id]->mutable_cpu_data()); - - // compute update: step back then over step - caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) + momentum, - this->history_[param_id]->cpu_data(), -momentum, - this->update_[param_id]->mutable_cpu_data()); - - // copy - caffe_copy(net_params[param_id]->count(), - this->update_[param_id]->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - // save history momentum for stepping back - caffe_copy(net_params[param_id]->count(), - this->history_[param_id]->gpu_data(), - this->update_[param_id]->mutable_gpu_data()); - - // update history - caffe_gpu_axpby(net_params[param_id]->count(), local_rate, - net_params[param_id]->gpu_diff(), momentum, - this->history_[param_id]->mutable_gpu_data()); - - // compute update: step back then over step - caffe_gpu_axpby(net_params[param_id]->count(), Dtype(1) + momentum, - this->history_[param_id]->gpu_data(), -momentum, - this->update_[param_id]->mutable_gpu_data()); - - // copy - caffe_copy(net_params[param_id]->count(), - this->update_[param_id]->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void AdaGradSolver::ComputeUpdateValue(int param_id, Dtype rate) { - CHECK(Caffe::root_solver()); - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - Dtype delta = this->param_.delta(); - Dtype local_rate = rate * net_params_lr[param_id]; - switch (Caffe::mode()) { - case Caffe::CPU: { - // compute square of gradient in update - caffe_powx(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), Dtype(2), - this->update_[param_id]->mutable_cpu_data()); - - // update history - caffe_add(net_params[param_id]->count(), - this->update_[param_id]->cpu_data(), - this->history_[param_id]->cpu_data(), - this->history_[param_id]->mutable_cpu_data()); - - // prepare update - caffe_powx(net_params[param_id]->count(), - this->history_[param_id]->cpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_cpu_data()); - - caffe_add_scalar(net_params[param_id]->count(), - delta, this->update_[param_id]->mutable_cpu_data()); - - caffe_div(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), - this->update_[param_id]->cpu_data(), - this->update_[param_id]->mutable_cpu_data()); - - // scale and copy - caffe_cpu_axpby(net_params[param_id]->count(), local_rate, - this->update_[param_id]->cpu_data(), Dtype(0), - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - // compute square of gradient in update - caffe_gpu_powx(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), Dtype(2), - this->update_[param_id]->mutable_gpu_data()); - - // update history - caffe_gpu_add(net_params[param_id]->count(), - this->update_[param_id]->gpu_data(), - this->history_[param_id]->gpu_data(), - this->history_[param_id]->mutable_gpu_data()); - - // prepare update - caffe_gpu_powx(net_params[param_id]->count(), - this->history_[param_id]->gpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_add_scalar(net_params[param_id]->count(), - delta, this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_div(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), - this->update_[param_id]->gpu_data(), - this->update_[param_id]->mutable_gpu_data()); - - // scale and copy - caffe_gpu_axpby(net_params[param_id]->count(), local_rate, - this->update_[param_id]->gpu_data(), Dtype(0), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void RMSPropSolver::ComputeUpdateValue(int param_id, Dtype rate) { - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - - // get the learning rate - Dtype delta = this->param_.delta(); - Dtype rms_decay = this->param_.rms_decay(); - Dtype local_rate = rate * net_params_lr[param_id]; - - switch (Caffe::mode()) { - case Caffe::CPU: - // compute square of gradient in update - caffe_powx(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), Dtype(2), - this->update_[param_id]->mutable_cpu_data()); - - // update history - caffe_cpu_axpby(net_params[param_id] -> count(), - Dtype(1-rms_decay), this->update_[param_id]->cpu_data(), - rms_decay, this->history_[param_id]-> mutable_cpu_data()); - - // prepare update - caffe_powx(net_params[param_id]->count(), - this->history_[param_id]->cpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_cpu_data()); - - caffe_add_scalar(net_params[param_id]->count(), - delta, this->update_[param_id]->mutable_cpu_data()); - - caffe_div(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), this->update_[param_id]->cpu_data(), - this->update_[param_id]->mutable_cpu_data()); - - // scale and copy - caffe_cpu_axpby(net_params[param_id]->count(), local_rate, - this->update_[param_id]->cpu_data(), Dtype(0), - net_params[param_id]->mutable_cpu_diff()); - break; - case Caffe::GPU: -#ifndef CPU_ONLY - // compute square of gradient in update - caffe_gpu_powx(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), Dtype(2), - this->update_[param_id]->mutable_gpu_data()); - - // update history - caffe_gpu_axpby(net_params[param_id] -> count(), - Dtype(1-rms_decay), this->update_[param_id]->gpu_data(), - rms_decay, this->history_[param_id]-> mutable_gpu_data()); - - // prepare update - caffe_gpu_powx(net_params[param_id]->count(), - this->history_[param_id]->gpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_add_scalar(net_params[param_id]->count(), - delta, this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_div(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), this->update_[param_id]->gpu_data(), - this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_axpby(net_params[param_id]->count(), local_rate, - this->update_[param_id]->gpu_data(), Dtype(0), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void AdaDeltaSolver::AdaDeltaPreSolve() { - // Add the extra history entries for AdaDelta after those from - // SGDSolver::PreSolve - const vector*>& net_params = this->net_->learnable_params(); - for (int i = 0; i < net_params.size(); ++i) { - const vector& shape = net_params[i]->shape(); - this->history_.push_back( - shared_ptr >(new Blob(shape))); - } -} - -template -void AdaDeltaSolver::ComputeUpdateValue(int param_id, Dtype rate) { - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - Dtype delta = this->param_.delta(); - Dtype momentum = this->param_.momentum(); - Dtype local_rate = rate * net_params_lr[param_id]; - size_t update_history_offset = net_params.size(); - switch (Caffe::mode()) { - case Caffe::CPU: { - // compute square of gradient in update - caffe_powx(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), Dtype(2), - this->update_[param_id]->mutable_cpu_data()); - - // update history of gradients - caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, - this->update_[param_id]->cpu_data(), momentum, - this->history_[param_id]->mutable_cpu_data()); - - // add delta to history to guard against dividing by zero later - caffe_set(net_params[param_id]->count(), delta, - this->temp_[param_id]->mutable_cpu_data()); - - caffe_add(net_params[param_id]->count(), - this->temp_[param_id]->cpu_data(), - this->history_[update_history_offset + param_id]->cpu_data(), - this->update_[param_id]->mutable_cpu_data()); - - caffe_add(net_params[param_id]->count(), - this->temp_[param_id]->cpu_data(), - this->history_[param_id]->cpu_data(), - this->temp_[param_id]->mutable_cpu_data()); - - // divide history of updates by history of gradients - caffe_div(net_params[param_id]->count(), - this->update_[param_id]->cpu_data(), - this->temp_[param_id]->cpu_data(), - this->update_[param_id]->mutable_cpu_data()); - - // jointly compute the RMS of both for update and gradient history - caffe_powx(net_params[param_id]->count(), - this->update_[param_id]->cpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_cpu_data()); - - // compute the update - caffe_mul(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), - this->update_[param_id]->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - - // compute square of update - caffe_powx(net_params[param_id]->count(), - net_params[param_id]->cpu_diff(), Dtype(2), - this->update_[param_id]->mutable_cpu_data()); - - // update history of updates - caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, - this->update_[param_id]->cpu_data(), momentum, - this->history_[update_history_offset + param_id]->mutable_cpu_data()); - - // apply learning rate - caffe_cpu_scale(net_params[param_id]->count(), local_rate, - net_params[param_id]->cpu_diff(), - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - // compute square of gradient in update - caffe_gpu_powx(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), Dtype(2), - this->update_[param_id]->mutable_gpu_data()); - - // update history of gradients - caffe_gpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, - this->update_[param_id]->gpu_data(), momentum, - this->history_[param_id]->mutable_gpu_data()); - - // add delta to history to guard against dividing by zero later - caffe_gpu_set(net_params[param_id]->count(), delta, - this->temp_[param_id]->mutable_gpu_data()); - - caffe_gpu_add(net_params[param_id]->count(), - this->temp_[param_id]->gpu_data(), - this->history_[update_history_offset + param_id]->gpu_data(), - this->update_[param_id]->mutable_gpu_data()); - - caffe_gpu_add(net_params[param_id]->count(), - this->temp_[param_id]->gpu_data(), - this->history_[param_id]->gpu_data(), - this->temp_[param_id]->mutable_gpu_data()); - - // divide history of updates by history of gradients - caffe_gpu_div(net_params[param_id]->count(), - this->update_[param_id]->gpu_data(), - this->temp_[param_id]->gpu_data(), - this->update_[param_id]->mutable_gpu_data()); - - // jointly compute the RMS of both for update and gradient history - caffe_gpu_powx(net_params[param_id]->count(), - this->update_[param_id]->gpu_data(), Dtype(0.5), - this->update_[param_id]->mutable_gpu_data()); - - // compute the update and copy to net_diff - caffe_gpu_mul(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), - this->update_[param_id]->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); - - // compute square of update - caffe_gpu_powx(net_params[param_id]->count(), - net_params[param_id]->gpu_diff(), Dtype(2), - this->update_[param_id]->mutable_gpu_data()); - - // update history of updates - caffe_gpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, - this->update_[param_id]->gpu_data(), momentum, - this->history_[update_history_offset + param_id]->mutable_gpu_data()); - - // apply learning rate - caffe_gpu_scale(net_params[param_id]->count(), local_rate, - net_params[param_id]->gpu_diff(), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); - } -} - -template -void AdamSolver::AdamPreSolve() { - // Add the extra history entries for Adam after those from - // SGDSolver::PreSolve - const vector*>& net_params = this->net_->learnable_params(); - for (int i = 0; i < net_params.size(); ++i) { - const vector& shape = net_params[i]->shape(); - this->history_.push_back( - shared_ptr >(new Blob(shape))); - } -} - -template -void AdamSolver::ComputeUpdateValue(int param_id, Dtype rate) { - const vector*>& net_params = this->net_->learnable_params(); - const vector& net_params_lr = this->net_->params_lr(); - Dtype local_rate = rate * net_params_lr[param_id]; - const Dtype beta1 = this->param_.momentum(); - const Dtype beta2 = this->param_.momentum2(); - - // we create aliases for convenience - size_t update_history_offset = net_params.size(); - Blob* val_m = this->history_[param_id].get(); - Blob* val_v = this->history_[param_id + update_history_offset].get(); - Blob* val_t = this->temp_[param_id].get(); - - const int t = this->iter_ + 1; - const Dtype correction = std::sqrt(Dtype(1) - pow(beta2, t)) / - (Dtype(1.) - pow(beta1, t)); - const int N = net_params[param_id]->count(); - const Dtype eps_hat = this->param_.delta(); - - switch (Caffe::mode()) { - case Caffe::CPU: { - // update m <- \beta_1 m_{t-1} + (1-\beta_1)g_t - caffe_cpu_axpby(N, Dtype(1)-beta1, - net_params[param_id]->cpu_diff(), beta1, - val_m->mutable_cpu_data()); - - // update v <- \beta_2 m_{t-1} + (1-\beta_2)g_t^2 - caffe_mul(N, - net_params[param_id]->cpu_diff(), - net_params[param_id]->cpu_diff(), - val_t->mutable_cpu_data()); - caffe_cpu_axpby(N, Dtype(1)-beta2, - val_t->cpu_data(), beta2, - val_v->mutable_cpu_data()); - - // set update - caffe_powx(N, - val_v->cpu_data(), Dtype(0.5), - val_t->mutable_cpu_data()); - caffe_add_scalar(N, eps_hat, val_t->mutable_cpu_data()); - caffe_div(N, - val_m->cpu_data(), - val_t->cpu_data(), - val_t->mutable_cpu_data()); - - caffe_cpu_scale(N, local_rate*correction, - val_t->cpu_data(), - net_params[param_id]->mutable_cpu_diff()); - break; - } - case Caffe::GPU: { -#ifndef CPU_ONLY - // update m <- \beta_1 m_{t-1} + (1-\beta_1)g_t - caffe_gpu_axpby(N, Dtype(1)-beta1, - net_params[param_id]->gpu_diff(), beta1, - val_m->mutable_gpu_data()); - - // update v <- \beta_2 m_{t-1} + (1-\beta_2)g_t^2 - caffe_gpu_mul(N, - net_params[param_id]->gpu_diff(), - net_params[param_id]->gpu_diff(), - val_t->mutable_gpu_data()); - caffe_gpu_axpby(N, Dtype(1)-beta2, - val_t->gpu_data(), beta2, - val_v->mutable_gpu_data()); - - // set update - caffe_gpu_powx(N, - val_v->gpu_data(), Dtype(0.5), - val_t->mutable_gpu_data()); - caffe_gpu_add_scalar(N, eps_hat, - val_t->mutable_gpu_data()); - caffe_gpu_div(N, - val_m->gpu_data(), - val_t->gpu_data(), - val_t->mutable_gpu_data()); - - caffe_gpu_scale(N, local_rate*correction, - val_t->gpu_data(), - net_params[param_id]->mutable_gpu_diff()); -#else - NO_GPU; -#endif - break; - } - default: - LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + int idx = (iter_ - start_iter) % average_loss; + smoothed_loss_ += (loss - losses_[idx]) / average_loss; + losses_[idx] = loss; } } INSTANTIATE_CLASS(Solver); -INSTANTIATE_CLASS(SGDSolver); -INSTANTIATE_CLASS(NesterovSolver); -INSTANTIATE_CLASS(AdaGradSolver); -INSTANTIATE_CLASS(RMSPropSolver); -INSTANTIATE_CLASS(AdaDeltaSolver); -INSTANTIATE_CLASS(AdamSolver); } // namespace caffe diff --git a/src/caffe/solvers/adadelta_solver.cpp b/src/caffe/solvers/adadelta_solver.cpp new file mode 100644 index 000000000..fd30f19ac --- /dev/null +++ b/src/caffe/solvers/adadelta_solver.cpp @@ -0,0 +1,112 @@ +#include + +#include "caffe/sgd_solvers.hpp" + +namespace caffe { + +template +void AdaDeltaSolver::AdaDeltaPreSolve() { + // Add the extra history entries for AdaDelta after those from + // SGDSolver::PreSolve + const vector*>& net_params = this->net_->learnable_params(); + for (int i = 0; i < net_params.size(); ++i) { + const vector& shape = net_params[i]->shape(); + this->history_.push_back( + shared_ptr >(new Blob(shape))); + } +} + +#ifndef CPU_ONLY +template +void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, + Dtype delta, Dtype local_rate); +#endif + +template +void AdaDeltaSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + Dtype delta = this->param_.delta(); + Dtype momentum = this->param_.momentum(); + Dtype local_rate = rate * net_params_lr[param_id]; + size_t update_history_offset = net_params.size(); + switch (Caffe::mode()) { + case Caffe::CPU: { + // compute square of gradient in update + caffe_powx(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), Dtype(2), + this->update_[param_id]->mutable_cpu_data()); + + // update history of gradients + caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, + this->update_[param_id]->cpu_data(), momentum, + this->history_[param_id]->mutable_cpu_data()); + + // add delta to history to guard against dividing by zero later + caffe_set(net_params[param_id]->count(), delta, + this->temp_[param_id]->mutable_cpu_data()); + + caffe_add(net_params[param_id]->count(), + this->temp_[param_id]->cpu_data(), + this->history_[update_history_offset + param_id]->cpu_data(), + this->update_[param_id]->mutable_cpu_data()); + + caffe_add(net_params[param_id]->count(), + this->temp_[param_id]->cpu_data(), + this->history_[param_id]->cpu_data(), + this->temp_[param_id]->mutable_cpu_data()); + + // divide history of updates by history of gradients + caffe_div(net_params[param_id]->count(), + this->update_[param_id]->cpu_data(), + this->temp_[param_id]->cpu_data(), + this->update_[param_id]->mutable_cpu_data()); + + // jointly compute the RMS of both for update and gradient history + caffe_powx(net_params[param_id]->count(), + this->update_[param_id]->cpu_data(), Dtype(0.5), + this->update_[param_id]->mutable_cpu_data()); + + // compute the update + caffe_mul(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), + this->update_[param_id]->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + + // compute square of update + caffe_powx(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), Dtype(2), + this->update_[param_id]->mutable_cpu_data()); + + // update history of updates + caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) - momentum, + this->update_[param_id]->cpu_data(), momentum, + this->history_[update_history_offset + param_id]->mutable_cpu_data()); + + // apply learning rate + caffe_cpu_scale(net_params[param_id]->count(), local_rate, + net_params[param_id]->cpu_diff(), + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + adadelta_update_gpu(net_params[param_id]->count(), + net_params[param_id]->mutable_gpu_diff(), + this->history_[param_id]->mutable_gpu_data(), + this->history_[update_history_offset + param_id]->mutable_gpu_data(), + momentum, delta, local_rate); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +INSTANTIATE_CLASS(AdaDeltaSolver); +REGISTER_SOLVER_CLASS(AdaDelta); + +} // namespace caffe diff --git a/src/caffe/solvers/adadelta_solver.cu b/src/caffe/solvers/adadelta_solver.cu new file mode 100644 index 000000000..6c94585b8 --- /dev/null +++ b/src/caffe/solvers/adadelta_solver.cu @@ -0,0 +1,30 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void AdaDeltaUpdate(int N, Dtype* g, Dtype* h, Dtype* h2, + Dtype momentum, Dtype delta, Dtype local_rate) { + CUDA_KERNEL_LOOP(i, N) { + float gi = g[i]; + float hi = h[i] = momentum * h[i] + (1-momentum) * gi * gi; + gi = gi * sqrt((h2[i] + delta) / (hi + delta)); + h2[i] = momentum * h2[i] + (1-momentum) * gi * gi; + g[i] = local_rate * gi; + } +} +template +void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, + Dtype delta, Dtype local_rate) { + AdaDeltaUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, h, h2, momentum, delta, local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void adadelta_update_gpu(int , float*, float*, float*, + float, float, float); +template void adadelta_update_gpu(int, double*, double*, double*, + double, double, double); + +} // namespace caffe diff --git a/src/caffe/solvers/adagrad_solver.cpp b/src/caffe/solvers/adagrad_solver.cpp new file mode 100644 index 000000000..d8107e1e6 --- /dev/null +++ b/src/caffe/solvers/adagrad_solver.cpp @@ -0,0 +1,69 @@ +#include + +#include "caffe/sgd_solvers.hpp" + +namespace caffe { + +#ifndef CPU_ONLY +template +void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, + Dtype local_rate); +#endif + +template +void AdaGradSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + Dtype delta = this->param_.delta(); + Dtype local_rate = rate * net_params_lr[param_id]; + switch (Caffe::mode()) { + case Caffe::CPU: { + // compute square of gradient in update + caffe_powx(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), Dtype(2), + this->update_[param_id]->mutable_cpu_data()); + + // update history + caffe_add(net_params[param_id]->count(), + this->update_[param_id]->cpu_data(), + this->history_[param_id]->cpu_data(), + this->history_[param_id]->mutable_cpu_data()); + + // prepare update + caffe_powx(net_params[param_id]->count(), + this->history_[param_id]->cpu_data(), Dtype(0.5), + this->update_[param_id]->mutable_cpu_data()); + + caffe_add_scalar(net_params[param_id]->count(), + delta, this->update_[param_id]->mutable_cpu_data()); + + caffe_div(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), + this->update_[param_id]->cpu_data(), + this->update_[param_id]->mutable_cpu_data()); + + // scale and copy + caffe_cpu_axpby(net_params[param_id]->count(), local_rate, + this->update_[param_id]->cpu_data(), Dtype(0), + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + adagrad_update_gpu(net_params[param_id]->count(), + net_params[param_id]->mutable_gpu_diff(), + this->history_[param_id]->mutable_gpu_data(), delta, local_rate); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +INSTANTIATE_CLASS(AdaGradSolver); +REGISTER_SOLVER_CLASS(AdaGrad); + +} // namespace caffe diff --git a/src/caffe/solvers/adagrad_solver.cu b/src/caffe/solvers/adagrad_solver.cu new file mode 100644 index 000000000..adefd554b --- /dev/null +++ b/src/caffe/solvers/adagrad_solver.cu @@ -0,0 +1,26 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta, + Dtype local_rate) { + CUDA_KERNEL_LOOP(i, N) { + float gi = g[i]; + float hi = h[i] = h[i] + gi*gi; + g[i] = local_rate * gi / (sqrt(hi) + delta); + } +} +template +void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, + Dtype local_rate) { + AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, h, delta, local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void adagrad_update_gpu(int, float*, float*, float, float); +template void adagrad_update_gpu(int, double*, double*, double, double); + +} // namespace caffe diff --git a/src/caffe/solvers/adam_solver.cpp b/src/caffe/solvers/adam_solver.cpp new file mode 100644 index 000000000..4a91f00bd --- /dev/null +++ b/src/caffe/solvers/adam_solver.cpp @@ -0,0 +1,94 @@ +#include + +#include "caffe/sgd_solvers.hpp" + +namespace caffe { + +template +void AdamSolver::AdamPreSolve() { + // Add the extra history entries for Adam after those from + // SGDSolver::PreSolve + const vector*>& net_params = this->net_->learnable_params(); + for (int i = 0; i < net_params.size(); ++i) { + const vector& shape = net_params[i]->shape(); + this->history_.push_back( + shared_ptr >(new Blob(shape))); + } +} + +#ifndef CPU_ONLY +template +void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, + Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate); +#endif + +template +void AdamSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + Dtype local_rate = rate * net_params_lr[param_id]; + const Dtype beta1 = this->param_.momentum(); + const Dtype beta2 = this->param_.momentum2(); + + // we create aliases for convenience + size_t update_history_offset = net_params.size(); + Blob* val_m = this->history_[param_id].get(); + Blob* val_v = this->history_[param_id + update_history_offset].get(); + Blob* val_t = this->temp_[param_id].get(); + + const int t = this->iter_ + 1; + const Dtype correction = std::sqrt(Dtype(1) - pow(beta2, t)) / + (Dtype(1.) - pow(beta1, t)); + const int N = net_params[param_id]->count(); + const Dtype eps_hat = this->param_.delta(); + + switch (Caffe::mode()) { + case Caffe::CPU: { + // update m <- \beta_1 m_{t-1} + (1-\beta_1)g_t + caffe_cpu_axpby(N, Dtype(1)-beta1, + net_params[param_id]->cpu_diff(), beta1, + val_m->mutable_cpu_data()); + + // update v <- \beta_2 m_{t-1} + (1-\beta_2)g_t^2 + caffe_mul(N, + net_params[param_id]->cpu_diff(), + net_params[param_id]->cpu_diff(), + val_t->mutable_cpu_data()); + caffe_cpu_axpby(N, Dtype(1)-beta2, + val_t->cpu_data(), beta2, + val_v->mutable_cpu_data()); + + // set update + caffe_powx(N, + val_v->cpu_data(), Dtype(0.5), + val_t->mutable_cpu_data()); + caffe_add_scalar(N, eps_hat, val_t->mutable_cpu_data()); + caffe_div(N, + val_m->cpu_data(), + val_t->cpu_data(), + val_t->mutable_cpu_data()); + + caffe_cpu_scale(N, local_rate*correction, + val_t->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + adam_update_gpu(N, net_params[param_id]->mutable_gpu_diff(), + val_m->mutable_gpu_data(), val_v->mutable_gpu_data(), beta1, beta2, + eps_hat, local_rate*correction); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +INSTANTIATE_CLASS(AdamSolver); +REGISTER_SOLVER_CLASS(Adam); + +} // namespace caffe diff --git a/src/caffe/solvers/adam_solver.cu b/src/caffe/solvers/adam_solver.cu new file mode 100644 index 000000000..917ae1002 --- /dev/null +++ b/src/caffe/solvers/adam_solver.cu @@ -0,0 +1,29 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void AdamUpdate(int N, Dtype* g, Dtype* m, Dtype* v, + Dtype beta1, Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { + CUDA_KERNEL_LOOP(i, N) { + float gi = g[i]; + float mi = m[i] = m[i]*beta1 + gi*(1-beta1); + float vi = v[i] = v[i]*beta2 + gi*gi*(1-beta2); + g[i] = corrected_local_rate * mi / (sqrt(vi) + eps_hat); + } +} +template +void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, + Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { + AdamUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, m, v, beta1, beta2, eps_hat, corrected_local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void adam_update_gpu(int, float*, float*, float*, + float, float, float, float); +template void adam_update_gpu(int, double*, double*, double*, + double, double, double, double); + +} // namespace caffe diff --git a/src/caffe/solvers/nesterov_solver.cpp b/src/caffe/solvers/nesterov_solver.cpp new file mode 100644 index 000000000..7c1fac1f8 --- /dev/null +++ b/src/caffe/solvers/nesterov_solver.cpp @@ -0,0 +1,61 @@ +#include + +#include "caffe/sgd_solvers.hpp" + +namespace caffe { + +#ifndef CPU_ONLY +template +void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, + Dtype local_rate); +#endif + +template +void NesterovSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + Dtype momentum = this->param_.momentum(); + Dtype local_rate = rate * net_params_lr[param_id]; + switch (Caffe::mode()) { + case Caffe::CPU: { + // save history momentum for stepping back + caffe_copy(net_params[param_id]->count(), + this->history_[param_id]->cpu_data(), + this->update_[param_id]->mutable_cpu_data()); + + // update history + caffe_cpu_axpby(net_params[param_id]->count(), local_rate, + net_params[param_id]->cpu_diff(), momentum, + this->history_[param_id]->mutable_cpu_data()); + + // compute update: step back then over step + caffe_cpu_axpby(net_params[param_id]->count(), Dtype(1) + momentum, + this->history_[param_id]->cpu_data(), -momentum, + this->update_[param_id]->mutable_cpu_data()); + + // copy + caffe_copy(net_params[param_id]->count(), + this->update_[param_id]->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + nesterov_update_gpu(net_params[param_id]->count(), + net_params[param_id]->mutable_gpu_diff(), + this->history_[param_id]->mutable_gpu_data(), + momentum, local_rate); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +INSTANTIATE_CLASS(NesterovSolver); +REGISTER_SOLVER_CLASS(Nesterov); + +} // namespace caffe diff --git a/src/caffe/solvers/nesterov_solver.cu b/src/caffe/solvers/nesterov_solver.cu new file mode 100644 index 000000000..57a456b82 --- /dev/null +++ b/src/caffe/solvers/nesterov_solver.cu @@ -0,0 +1,27 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void NesterovUpdate(int N, Dtype* g, Dtype* h, + Dtype momentum, Dtype local_rate) { + CUDA_KERNEL_LOOP(i, N) { + float hi = h[i]; + float hi_new = h[i] = momentum * hi + local_rate * g[i]; + g[i] = (1+momentum) * hi_new - momentum * hi; + } +} +template +void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, + Dtype local_rate) { + NesterovUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, h, momentum, local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void nesterov_update_gpu(int, float*, float*, float, float); +template void nesterov_update_gpu(int, double*, double*, double, + double); + +} // namespace caffe diff --git a/src/caffe/solvers/rmsprop_solver.cpp b/src/caffe/solvers/rmsprop_solver.cpp new file mode 100644 index 000000000..3251ee423 --- /dev/null +++ b/src/caffe/solvers/rmsprop_solver.cpp @@ -0,0 +1,70 @@ +#include + +#include "caffe/sgd_solvers.hpp" + +namespace caffe { + +#ifndef CPU_ONLY +template +void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, + Dtype delta, Dtype local_rate); +#endif + +template +void RMSPropSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + + // get the learning rate + Dtype delta = this->param_.delta(); + Dtype rms_decay = this->param_.rms_decay(); + Dtype local_rate = rate * net_params_lr[param_id]; + + switch (Caffe::mode()) { + case Caffe::CPU: + // compute square of gradient in update + caffe_powx(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), Dtype(2), + this->update_[param_id]->mutable_cpu_data()); + + // update history + caffe_cpu_axpby(net_params[param_id] -> count(), + Dtype(1-rms_decay), this->update_[param_id]->cpu_data(), + rms_decay, this->history_[param_id]-> mutable_cpu_data()); + + // prepare update + caffe_powx(net_params[param_id]->count(), + this->history_[param_id]->cpu_data(), Dtype(0.5), + this->update_[param_id]->mutable_cpu_data()); + + caffe_add_scalar(net_params[param_id]->count(), + delta, this->update_[param_id]->mutable_cpu_data()); + + caffe_div(net_params[param_id]->count(), + net_params[param_id]->cpu_diff(), this->update_[param_id]->cpu_data(), + this->update_[param_id]->mutable_cpu_data()); + + // scale and copy + caffe_cpu_axpby(net_params[param_id]->count(), local_rate, + this->update_[param_id]->cpu_data(), Dtype(0), + net_params[param_id]->mutable_cpu_diff()); + break; + case Caffe::GPU: +#ifndef CPU_ONLY + rmsprop_update_gpu(net_params[param_id]->count(), + net_params[param_id]->mutable_gpu_diff(), + this->history_[param_id]->mutable_gpu_data(), + rms_decay, delta, local_rate); +#else + NO_GPU; +#endif + break; + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +INSTANTIATE_CLASS(RMSPropSolver); +REGISTER_SOLVER_CLASS(RMSProp); + +} // namespace caffe diff --git a/src/caffe/solvers/rmsprop_solver.cu b/src/caffe/solvers/rmsprop_solver.cu new file mode 100644 index 000000000..c5ffd329d --- /dev/null +++ b/src/caffe/solvers/rmsprop_solver.cu @@ -0,0 +1,28 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void RMSPropUpdate(int N, Dtype* g, Dtype* h, + Dtype rms_decay, Dtype delta, Dtype local_rate) { + CUDA_KERNEL_LOOP(i, N) { + float gi = g[i]; + float hi = h[i] = rms_decay*h[i] + (1-rms_decay)*gi*gi; + g[i] = local_rate * g[i] / (sqrt(hi) + delta); + } +} +template +void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, + Dtype delta, Dtype local_rate) { + RMSPropUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, h, rms_decay, delta, local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void rmsprop_update_gpu(int, float*, float*, float, float, + float); +template void rmsprop_update_gpu(int, double*, double*, double, double, + double); + +} // namespace caffe diff --git a/src/caffe/solvers/sgd_solver.cpp b/src/caffe/solvers/sgd_solver.cpp new file mode 100644 index 000000000..ad6abe54a --- /dev/null +++ b/src/caffe/solvers/sgd_solver.cpp @@ -0,0 +1,352 @@ +#include +#include + +#include "caffe/sgd_solvers.hpp" +#include "caffe/util/hdf5.hpp" +#include "caffe/util/io.hpp" +#include "caffe/util/upgrade_proto.hpp" + +namespace caffe { + +// Return the current learning rate. The currently implemented learning rate +// policies are as follows: +// - fixed: always return base_lr. +// - step: return base_lr * gamma ^ (floor(iter / step)) +// - exp: return base_lr * gamma ^ iter +// - inv: return base_lr * (1 + gamma * iter) ^ (- power) +// - multistep: similar to step but it allows non uniform steps defined by +// stepvalue +// - poly: the effective learning rate follows a polynomial decay, to be +// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power) +// - sigmoid: the effective learning rate follows a sigmod decay +// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) +// +// where base_lr, max_iter, gamma, step, stepvalue and power are defined +// in the solver parameter protocol buffer, and iter is the current iteration. +template +Dtype SGDSolver::GetLearningRate() { + Dtype rate; + const string& lr_policy = this->param_.lr_policy(); + if (lr_policy == "fixed") { + rate = this->param_.base_lr(); + } else if (lr_policy == "step") { + this->current_step_ = this->iter_ / this->param_.stepsize(); + rate = this->param_.base_lr() * + pow(this->param_.gamma(), this->current_step_); + } else if (lr_policy == "exp") { + rate = this->param_.base_lr() * pow(this->param_.gamma(), this->iter_); + } else if (lr_policy == "inv") { + rate = this->param_.base_lr() * + pow(Dtype(1) + this->param_.gamma() * this->iter_, + - this->param_.power()); + } else if (lr_policy == "multistep") { + if (this->current_step_ < this->param_.stepvalue_size() && + this->iter_ >= this->param_.stepvalue(this->current_step_)) { + this->current_step_++; + LOG(INFO) << "MultiStep Status: Iteration " << + this->iter_ << ", step = " << this->current_step_; + } + rate = this->param_.base_lr() * + pow(this->param_.gamma(), this->current_step_); + } else if (lr_policy == "poly") { + rate = this->param_.base_lr() * pow(Dtype(1.) - + (Dtype(this->iter_) / Dtype(this->param_.max_iter())), + this->param_.power()); + } else if (lr_policy == "sigmoid") { + rate = this->param_.base_lr() * (Dtype(1.) / + (Dtype(1.) + exp(-this->param_.gamma() * (Dtype(this->iter_) - + Dtype(this->param_.stepsize()))))); + } else { + LOG(FATAL) << "Unknown learning rate policy: " << lr_policy; + } + return rate; +} + +template +void SGDSolver::PreSolve() { + // Initialize the history + const vector*>& net_params = this->net_->learnable_params(); + history_.clear(); + update_.clear(); + temp_.clear(); + for (int i = 0; i < net_params.size(); ++i) { + const vector& shape = net_params[i]->shape(); + history_.push_back(shared_ptr >(new Blob(shape))); + update_.push_back(shared_ptr >(new Blob(shape))); + temp_.push_back(shared_ptr >(new Blob(shape))); + } +} + +template +void SGDSolver::ClipGradients() { + const Dtype clip_gradients = this->param_.clip_gradients(); + if (clip_gradients < 0) { return; } + const vector*>& net_params = this->net_->learnable_params(); + Dtype sumsq_diff = 0; + for (int i = 0; i < net_params.size(); ++i) { + sumsq_diff += net_params[i]->sumsq_diff(); + } + const Dtype l2norm_diff = std::sqrt(sumsq_diff); + if (l2norm_diff > clip_gradients) { + Dtype scale_factor = clip_gradients / l2norm_diff; + LOG(INFO) << "Gradient clipping: scaling down gradients (L2 norm " + << l2norm_diff << " > " << clip_gradients << ") " + << "by scale factor " << scale_factor; + for (int i = 0; i < net_params.size(); ++i) { + net_params[i]->scale_diff(scale_factor); + } + } +} + +template +void SGDSolver::ApplyUpdate() { + Dtype rate = GetLearningRate(); + if (this->param_.display() && this->iter_ % this->param_.display() == 0) { + LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << this->iter_ + << ", lr = " << rate; + } + ClipGradients(); + for (int param_id = 0; param_id < this->net_->learnable_params().size(); + ++param_id) { + Normalize(param_id); + Regularize(param_id); + ComputeUpdateValue(param_id, rate); + } + this->net_->Update(); +} + +template +void SGDSolver::Normalize(int param_id) { + if (this->param_.iter_size() == 1) { return; } + // Scale gradient to counterbalance accumulation. + const vector*>& net_params = this->net_->learnable_params(); + const Dtype accum_normalization = Dtype(1.) / this->param_.iter_size(); + switch (Caffe::mode()) { + case Caffe::CPU: { + caffe_scal(net_params[param_id]->count(), accum_normalization, + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + caffe_gpu_scal(net_params[param_id]->count(), accum_normalization, + net_params[param_id]->mutable_gpu_diff()); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +template +void SGDSolver::Regularize(int param_id) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_weight_decay = + this->net_->params_weight_decay(); + Dtype weight_decay = this->param_.weight_decay(); + string regularization_type = this->param_.regularization_type(); + Dtype local_decay = weight_decay * net_params_weight_decay[param_id]; + switch (Caffe::mode()) { + case Caffe::CPU: { + if (local_decay) { + if (regularization_type == "L2") { + // add weight decay + caffe_axpy(net_params[param_id]->count(), + local_decay, + net_params[param_id]->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + } else if (regularization_type == "L1") { + caffe_cpu_sign(net_params[param_id]->count(), + net_params[param_id]->cpu_data(), + temp_[param_id]->mutable_cpu_data()); + caffe_axpy(net_params[param_id]->count(), + local_decay, + temp_[param_id]->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + } else { + LOG(FATAL) << "Unknown regularization type: " << regularization_type; + } + } + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + if (local_decay) { + if (regularization_type == "L2") { + // add weight decay + caffe_gpu_axpy(net_params[param_id]->count(), + local_decay, + net_params[param_id]->gpu_data(), + net_params[param_id]->mutable_gpu_diff()); + } else if (regularization_type == "L1") { + caffe_gpu_sign(net_params[param_id]->count(), + net_params[param_id]->gpu_data(), + temp_[param_id]->mutable_gpu_data()); + caffe_gpu_axpy(net_params[param_id]->count(), + local_decay, + temp_[param_id]->gpu_data(), + net_params[param_id]->mutable_gpu_diff()); + } else { + LOG(FATAL) << "Unknown regularization type: " << regularization_type; + } + } +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +#ifndef CPU_ONLY +template +void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, + Dtype local_rate); +#endif + +template +void SGDSolver::ComputeUpdateValue(int param_id, Dtype rate) { + const vector*>& net_params = this->net_->learnable_params(); + const vector& net_params_lr = this->net_->params_lr(); + Dtype momentum = this->param_.momentum(); + Dtype local_rate = rate * net_params_lr[param_id]; + // Compute the update to history, then copy it to the parameter diff. + switch (Caffe::mode()) { + case Caffe::CPU: { + caffe_cpu_axpby(net_params[param_id]->count(), local_rate, + net_params[param_id]->cpu_diff(), momentum, + history_[param_id]->mutable_cpu_data()); + caffe_copy(net_params[param_id]->count(), + history_[param_id]->cpu_data(), + net_params[param_id]->mutable_cpu_diff()); + break; + } + case Caffe::GPU: { +#ifndef CPU_ONLY + sgd_update_gpu(net_params[param_id]->count(), + net_params[param_id]->mutable_gpu_diff(), + history_[param_id]->mutable_gpu_data(), + momentum, local_rate); +#else + NO_GPU; +#endif + break; + } + default: + LOG(FATAL) << "Unknown caffe mode: " << Caffe::mode(); + } +} + +template +void SGDSolver::SnapshotSolverState(const string& model_filename) { + switch (this->param_.snapshot_format()) { + case caffe::SolverParameter_SnapshotFormat_BINARYPROTO: + SnapshotSolverStateToBinaryProto(model_filename); + break; + case caffe::SolverParameter_SnapshotFormat_HDF5: + SnapshotSolverStateToHDF5(model_filename); + break; + default: + LOG(FATAL) << "Unsupported snapshot format."; + } +} + +template +void SGDSolver::SnapshotSolverStateToBinaryProto( + const string& model_filename) { + SolverState state; + state.set_iter(this->iter_); + state.set_learned_net(model_filename); + state.set_current_step(this->current_step_); + state.clear_history(); + for (int i = 0; i < history_.size(); ++i) { + // Add history + BlobProto* history_blob = state.add_history(); + history_[i]->ToProto(history_blob); + } + string snapshot_filename = Solver::SnapshotFilename(".solverstate"); + LOG(INFO) + << "Snapshotting solver state to binary proto file " << snapshot_filename; + WriteProtoToBinaryFile(state, snapshot_filename.c_str()); +} + +template +void SGDSolver::SnapshotSolverStateToHDF5( + const string& model_filename) { + string snapshot_filename = + Solver::SnapshotFilename(".solverstate.h5"); + LOG(INFO) << "Snapshotting solver state to HDF5 file " << snapshot_filename; + hid_t file_hid = H5Fcreate(snapshot_filename.c_str(), H5F_ACC_TRUNC, + H5P_DEFAULT, H5P_DEFAULT); + CHECK_GE(file_hid, 0) + << "Couldn't open " << snapshot_filename << " to save solver state."; + hdf5_save_int(file_hid, "iter", this->iter_); + hdf5_save_string(file_hid, "learned_net", model_filename); + hdf5_save_int(file_hid, "current_step", this->current_step_); + hid_t history_hid = H5Gcreate2(file_hid, "history", H5P_DEFAULT, H5P_DEFAULT, + H5P_DEFAULT); + CHECK_GE(history_hid, 0) + << "Error saving solver state to " << snapshot_filename << "."; + for (int i = 0; i < history_.size(); ++i) { + ostringstream oss; + oss << i; + hdf5_save_nd_dataset(history_hid, oss.str(), *history_[i]); + } + H5Gclose(history_hid); + H5Fclose(file_hid); +} + +template +void SGDSolver::RestoreSolverStateFromBinaryProto( + const string& state_file) { + SolverState state; + ReadProtoFromBinaryFile(state_file, &state); + this->iter_ = state.iter(); + if (state.has_learned_net()) { + NetParameter net_param; + ReadNetParamsFromBinaryFileOrDie(state.learned_net().c_str(), &net_param); + this->net_->CopyTrainedLayersFrom(net_param); + } + this->current_step_ = state.current_step(); + CHECK_EQ(state.history_size(), history_.size()) + << "Incorrect length of history blobs."; + LOG(INFO) << "SGDSolver: restoring history"; + for (int i = 0; i < history_.size(); ++i) { + history_[i]->FromProto(state.history(i)); + } +} + +template +void SGDSolver::RestoreSolverStateFromHDF5(const string& state_file) { + hid_t file_hid = H5Fopen(state_file.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT); + CHECK_GE(file_hid, 0) << "Couldn't open solver state file " << state_file; + this->iter_ = hdf5_load_int(file_hid, "iter"); + if (H5LTfind_dataset(file_hid, "learned_net")) { + string learned_net = hdf5_load_string(file_hid, "learned_net"); + this->net_->CopyTrainedLayersFrom(learned_net); + } + this->current_step_ = hdf5_load_int(file_hid, "current_step"); + hid_t history_hid = H5Gopen2(file_hid, "history", H5P_DEFAULT); + CHECK_GE(history_hid, 0) << "Error reading history from " << state_file; + int state_history_size = hdf5_get_num_links(history_hid); + CHECK_EQ(state_history_size, history_.size()) + << "Incorrect length of history blobs."; + for (int i = 0; i < history_.size(); ++i) { + ostringstream oss; + oss << i; + hdf5_load_nd_dataset(history_hid, oss.str().c_str(), 0, + kMaxBlobAxes, history_[i].get()); + } + H5Gclose(history_hid); + H5Fclose(file_hid); +} + +INSTANTIATE_CLASS(SGDSolver); +REGISTER_SOLVER_CLASS(SGD); + +} // namespace caffe diff --git a/src/caffe/solvers/sgd_solver.cu b/src/caffe/solvers/sgd_solver.cu new file mode 100644 index 000000000..e54103521 --- /dev/null +++ b/src/caffe/solvers/sgd_solver.cu @@ -0,0 +1,24 @@ +#include "caffe/util/math_functions.hpp" + + +namespace caffe { + +template +__global__ void SGDUpdate(int N, Dtype* g, Dtype* h, + Dtype momentum, Dtype local_rate) { + CUDA_KERNEL_LOOP(i, N) { + g[i] = h[i] = momentum*h[i] + local_rate*g[i]; + } +} +template +void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, + Dtype local_rate) { + SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + N, g, h, momentum, local_rate); + CUDA_POST_KERNEL_CHECK; +} +template void sgd_update_gpu(int, float*, float*, float, float); +template void sgd_update_gpu(int, double*, double*, double, double); + +} // namespace caffe diff --git a/src/caffe/syncedmem.cpp b/src/caffe/syncedmem.cpp index a667a867a..88d9b7851 100644 --- a/src/caffe/syncedmem.cpp +++ b/src/caffe/syncedmem.cpp @@ -1,33 +1,46 @@ -#include - #include "caffe/common.hpp" #include "caffe/syncedmem.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { +SyncedMemory::SyncedMemory() + : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(0), head_(UNINITIALIZED), + own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false) { +#ifndef CPU_ONLY +#ifdef DEBUG + CUDA_CHECK(cudaGetDevice(&device_)); +#endif +#endif +} + +SyncedMemory::SyncedMemory(size_t size) + : cpu_ptr_(NULL), gpu_ptr_(NULL), size_(size), head_(UNINITIALIZED), + own_cpu_data_(false), cpu_malloc_use_cuda_(false), own_gpu_data_(false) { +#ifndef CPU_ONLY +#ifdef DEBUG + CUDA_CHECK(cudaGetDevice(&device_)); +#endif +#endif +} SyncedMemory::~SyncedMemory() { + check_device(); if (cpu_ptr_ && own_cpu_data_) { - CaffeFreeHost(cpu_ptr_); + CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_); } #ifndef CPU_ONLY if (gpu_ptr_ && own_gpu_data_) { - int initial_device; - cudaGetDevice(&initial_device); - if (gpu_device_ != -1) { - CUDA_CHECK(cudaSetDevice(gpu_device_)); - } CUDA_CHECK(cudaFree(gpu_ptr_)); - cudaSetDevice(initial_device); } #endif // CPU_ONLY } inline void SyncedMemory::to_cpu() { + check_device(); switch (head_) { case UNINITIALIZED: - CaffeMallocHost(&cpu_ptr_, size_); + CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_); caffe_memset(size_, 0, cpu_ptr_); head_ = HEAD_AT_CPU; own_cpu_data_ = true; @@ -35,7 +48,7 @@ inline void SyncedMemory::to_cpu() { case HEAD_AT_GPU: #ifndef CPU_ONLY if (cpu_ptr_ == NULL) { - CaffeMallocHost(&cpu_ptr_, size_); + CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_); own_cpu_data_ = true; } caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_); @@ -51,10 +64,10 @@ inline void SyncedMemory::to_cpu() { } inline void SyncedMemory::to_gpu() { + check_device(); #ifndef CPU_ONLY switch (head_) { case UNINITIALIZED: - CUDA_CHECK(cudaGetDevice(&gpu_device_)); CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_)); caffe_gpu_memset(size_, 0, gpu_ptr_); head_ = HEAD_AT_GPU; @@ -62,7 +75,6 @@ inline void SyncedMemory::to_gpu() { break; case HEAD_AT_CPU: if (gpu_ptr_ == NULL) { - CUDA_CHECK(cudaGetDevice(&gpu_device_)); CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_)); own_gpu_data_ = true; } @@ -79,14 +91,16 @@ inline void SyncedMemory::to_gpu() { } const void* SyncedMemory::cpu_data() { + check_device(); to_cpu(); return (const void*)cpu_ptr_; } void SyncedMemory::set_cpu_data(void* data) { + check_device(); CHECK(data); if (own_cpu_data_) { - CaffeFreeHost(cpu_ptr_); + CaffeFreeHost(cpu_ptr_, cpu_malloc_use_cuda_); } cpu_ptr_ = data; head_ = HEAD_AT_CPU; @@ -94,25 +108,22 @@ void SyncedMemory::set_cpu_data(void* data) { } const void* SyncedMemory::gpu_data() { + check_device(); #ifndef CPU_ONLY to_gpu(); return (const void*)gpu_ptr_; #else NO_GPU; + return NULL; #endif } void SyncedMemory::set_gpu_data(void* data) { + check_device(); #ifndef CPU_ONLY CHECK(data); if (own_gpu_data_) { - int initial_device; - cudaGetDevice(&initial_device); - if (gpu_device_ != -1) { - CUDA_CHECK(cudaSetDevice(gpu_device_)); - } CUDA_CHECK(cudaFree(gpu_ptr_)); - cudaSetDevice(initial_device); } gpu_ptr_ = data; head_ = HEAD_AT_GPU; @@ -123,26 +134,29 @@ void SyncedMemory::set_gpu_data(void* data) { } void* SyncedMemory::mutable_cpu_data() { + check_device(); to_cpu(); head_ = HEAD_AT_CPU; return cpu_ptr_; } void* SyncedMemory::mutable_gpu_data() { + check_device(); #ifndef CPU_ONLY to_gpu(); head_ = HEAD_AT_GPU; return gpu_ptr_; #else NO_GPU; + return NULL; #endif } #ifndef CPU_ONLY void SyncedMemory::async_gpu_push(const cudaStream_t& stream) { + check_device(); CHECK(head_ == HEAD_AT_CPU); if (gpu_ptr_ == NULL) { - CUDA_CHECK(cudaGetDevice(&gpu_device_)); CUDA_CHECK(cudaMalloc(&gpu_ptr_, size_)); own_gpu_data_ = true; } @@ -153,5 +167,20 @@ void SyncedMemory::async_gpu_push(const cudaStream_t& stream) { } #endif +void SyncedMemory::check_device() { +#ifndef CPU_ONLY +#ifdef DEBUG + int device; + cudaGetDevice(&device); + CHECK(device == device_); + if (gpu_ptr_ && own_gpu_data_) { + cudaPointerAttributes attributes; + CUDA_CHECK(cudaPointerGetAttributes(&attributes, gpu_ptr_)); + CHECK(attributes.device == device_); + } +#endif +#endif +} + } // namespace caffe diff --git a/src/caffe/test/CMakeLists.txt b/src/caffe/test/CMakeLists.txt index 35a803f2f..d8afc30b7 100644 --- a/src/caffe/test/CMakeLists.txt +++ b/src/caffe/test/CMakeLists.txt @@ -1,7 +1,7 @@ # The option allows to include in build only selected test files and exclude all others # Usage example: # cmake -DBUILD_only_tests="common,net,blob,im2col_kernel" -set(BUILD_only_tests "" CACHE STRING "Blank or comma-separated list of test files to build without 'test_' prefix and extention") +set(BUILD_only_tests "" CACHE STRING "Blank or comma-separated list of test files to build without 'test_' prefix and extension") caffe_leave_only_selected_tests(test_srcs ${BUILD_only_tests}) caffe_leave_only_selected_tests(test_cuda ${BUILD_only_tests}) diff --git a/src/caffe/test/test_accuracy_layer.cpp b/src/caffe/test/test_accuracy_layer.cpp index ef0e57a37..6fe808bd5 100644 --- a/src/caffe/test/test_accuracy_layer.cpp +++ b/src/caffe/test/test_accuracy_layer.cpp @@ -1,6 +1,4 @@ #include -#include -#include #include #include "gtest/gtest.h" @@ -8,8 +6,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/accuracy_layer.hpp" #include "caffe/util/rng.hpp" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" diff --git a/src/caffe/test/test_argmax_layer.cpp b/src/caffe/test/test_argmax_layer.cpp index 895c3d372..472e66522 100644 --- a/src/caffe/test/test_argmax_layer.cpp +++ b/src/caffe/test/test_argmax_layer.cpp @@ -6,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/argmax_layer.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -16,7 +16,7 @@ template class ArgMaxLayerTest : public CPUDeviceTest { protected: ArgMaxLayerTest() - : blob_bottom_(new Blob(10, 20, 1, 1)), + : blob_bottom_(new Blob(10, 10, 20, 20)), blob_top_(new Blob()), top_k_(5) { Caffe::set_random_seed(1701); @@ -55,6 +55,43 @@ TYPED_TEST(ArgMaxLayerTest, TestSetupMaxVal) { EXPECT_EQ(this->blob_top_->channels(), 2); } +TYPED_TEST(ArgMaxLayerTest, TestSetupAxis) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(0); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_->shape(0), argmax_param->top_k()); + EXPECT_EQ(this->blob_top_->shape(1), this->blob_bottom_->shape(0)); + EXPECT_EQ(this->blob_top_->shape(2), this->blob_bottom_->shape(2)); + EXPECT_EQ(this->blob_top_->shape(3), this->blob_bottom_->shape(3)); +} + +TYPED_TEST(ArgMaxLayerTest, TestSetupAxisNegativeIndexing) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(-2); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_->shape(0), this->blob_bottom_->shape(0)); + EXPECT_EQ(this->blob_top_->shape(1), this->blob_bottom_->shape(1)); + EXPECT_EQ(this->blob_top_->shape(2), argmax_param->top_k()); + EXPECT_EQ(this->blob_top_->shape(3), this->blob_bottom_->shape(3)); +} + +TYPED_TEST(ArgMaxLayerTest, TestSetupAxisMaxVal) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(2); + argmax_param->set_out_max_val(true); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_->shape(0), this->blob_bottom_->shape(0)); + EXPECT_EQ(this->blob_top_->shape(1), this->blob_bottom_->shape(1)); + EXPECT_EQ(this->blob_top_->shape(2), argmax_param->top_k()); + EXPECT_EQ(this->blob_top_->shape(3), this->blob_bottom_->shape(3)); +} + TYPED_TEST(ArgMaxLayerTest, TestCPU) { LayerParameter layer_param; ArgMaxLayer layer(layer_param); @@ -112,6 +149,7 @@ TYPED_TEST(ArgMaxLayerTest, TestCPUTopK) { layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); // Now, check values + const TypeParam* bottom_data = this->blob_bottom_->cpu_data(); int max_ind; TypeParam max_val; int num = this->blob_bottom_->num(); @@ -121,10 +159,10 @@ TYPED_TEST(ArgMaxLayerTest, TestCPUTopK) { EXPECT_LE(this->blob_top_->data_at(i, 0, 0, 0), dim); for (int j = 0; j < this->top_k_; ++j) { max_ind = this->blob_top_->data_at(i, 0, j, 0); - max_val = this->blob_bottom_->data_at(i, max_ind, 0, 0); + max_val = bottom_data[i * dim + max_ind]; int count = 0; for (int k = 0; k < dim; ++k) { - if (this->blob_bottom_->data_at(i, k, 0, 0) > max_val) { + if (bottom_data[i * dim + k] > max_val) { ++count; } } @@ -142,6 +180,7 @@ TYPED_TEST(ArgMaxLayerTest, TestCPUMaxValTopK) { layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); // Now, check values + const TypeParam* bottom_data = this->blob_bottom_->cpu_data(); int max_ind; TypeParam max_val; int num = this->blob_bottom_->num(); @@ -152,10 +191,10 @@ TYPED_TEST(ArgMaxLayerTest, TestCPUMaxValTopK) { for (int j = 0; j < this->top_k_; ++j) { max_ind = this->blob_top_->data_at(i, 0, j, 0); max_val = this->blob_top_->data_at(i, 1, j, 0); - EXPECT_EQ(this->blob_bottom_->data_at(i, max_ind, 0, 0), max_val); + EXPECT_EQ(bottom_data[i * dim + max_ind], max_val); int count = 0; for (int k = 0; k < dim; ++k) { - if (this->blob_bottom_->data_at(i, k, 0, 0) > max_val) { + if (bottom_data[i * dim + k] > max_val) { ++count; } } @@ -164,5 +203,93 @@ TYPED_TEST(ArgMaxLayerTest, TestCPUMaxValTopK) { } } +TYPED_TEST(ArgMaxLayerTest, TestCPUAxis) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(0); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Now, check values + int max_ind; + TypeParam max_val; + std::vector shape = this->blob_bottom_->shape(); + for (int i = 0; i < shape[1]; ++i) { + for (int j = 0; j < shape[2]; ++j) { + for (int k = 0; k < shape[3]; ++k) { + max_ind = this->blob_top_->data_at(0, i, j, k); + max_val = this->blob_bottom_->data_at(max_ind, i, j, k); + EXPECT_GE(max_ind, 0); + EXPECT_LE(max_ind, shape[0]); + for (int l = 0; l < shape[0]; ++l) { + EXPECT_LE(this->blob_bottom_->data_at(l, i, j, k), max_val); + } + } + } + } +} + +TYPED_TEST(ArgMaxLayerTest, TestCPUAxisTopK) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(2); + argmax_param->set_top_k(this->top_k_); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Now, check values + int max_ind; + TypeParam max_val; + std::vector shape = this->blob_bottom_->shape(); + for (int i = 0; i < shape[0]; ++i) { + for (int j = 0; j < shape[1]; ++j) { + for (int k = 0; k < shape[3]; ++k) { + for (int m = 0; m < this->top_k_; ++m) { + max_ind = this->blob_top_->data_at(i, j, m, k); + max_val = this->blob_bottom_->data_at(i, j, max_ind, k); + EXPECT_GE(max_ind, 0); + EXPECT_LE(max_ind, shape[2]); + int count = 0; + for (int l = 0; l < shape[2]; ++l) { + if (this->blob_bottom_->data_at(i, j, l, k) > max_val) { + ++count; + } + } + EXPECT_EQ(m, count); + } + } + } + } +} + +TYPED_TEST(ArgMaxLayerTest, TestCPUAxisMaxValTopK) { + LayerParameter layer_param; + ArgMaxParameter* argmax_param = layer_param.mutable_argmax_param(); + argmax_param->set_axis(-1); + argmax_param->set_top_k(this->top_k_); + argmax_param->set_out_max_val(true); + ArgMaxLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Now, check values + TypeParam max_val; + std::vector shape = this->blob_bottom_->shape(); + for (int i = 0; i < shape[0]; ++i) { + for (int j = 0; j < shape[1]; ++j) { + for (int k = 0; k < shape[2]; ++k) { + for (int m = 0; m < this->top_k_; ++m) { + max_val = this->blob_top_->data_at(i, j, k, m); + int count = 0; + for (int l = 0; l < shape[3]; ++l) { + if (this->blob_bottom_->data_at(i, j, k, l) > max_val) { + ++count; + } + } + EXPECT_EQ(m, count); + } + } + } + } +} } // namespace caffe diff --git a/src/caffe/test/test_batch_norm_layer.cpp b/src/caffe/test/test_batch_norm_layer.cpp new file mode 100644 index 000000000..936b93a17 --- /dev/null +++ b/src/caffe/test/test_batch_norm_layer.cpp @@ -0,0 +1,133 @@ +#include +#include +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/batch_norm_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +#define BATCH_SIZE 2 +#define INPUT_DATA_SIZE 3 + +namespace caffe { + + template + class BatchNormLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + protected: + BatchNormLayerTest() + : blob_bottom_(new Blob(5, 2, 3, 4)), + blob_top_(new Blob()) { + // fill the values + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(this->blob_bottom_); + blob_bottom_vec_.push_back(blob_bottom_); + blob_top_vec_.push_back(blob_top_); + } + virtual ~BatchNormLayerTest() { delete blob_bottom_; delete blob_top_; } + Blob* const blob_bottom_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; + }; + + TYPED_TEST_CASE(BatchNormLayerTest, TestDtypesAndDevices); + + TYPED_TEST(BatchNormLayerTest, TestForward) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + + BatchNormLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + // Test mean + int num = this->blob_bottom_->num(); + int channels = this->blob_bottom_->channels(); + int height = this->blob_bottom_->height(); + int width = this->blob_bottom_->width(); + + for (int j = 0; j < channels; ++j) { + Dtype sum = 0, var = 0; + for (int i = 0; i < num; ++i) { + for ( int k = 0; k < height; ++k ) { + for ( int l = 0; l < width; ++l ) { + Dtype data = this->blob_top_->data_at(i, j, k, l); + sum += data; + var += data * data; + } + } + } + sum /= height * width * num; + var /= height * width * num; + + const Dtype kErrorBound = 0.001; + // expect zero mean + EXPECT_NEAR(0, sum, kErrorBound); + // expect unit variance + EXPECT_NEAR(1, var, kErrorBound); + } + } + + TYPED_TEST(BatchNormLayerTest, TestForwardInplace) { + typedef typename TypeParam::Dtype Dtype; + Blob blob_inplace(5, 2, 3, 4); + vector*> blob_bottom_vec; + vector*> blob_top_vec; + LayerParameter layer_param; + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(&blob_inplace); + blob_bottom_vec.push_back(&blob_inplace); + blob_top_vec.push_back(&blob_inplace); + + BatchNormLayer layer(layer_param); + layer.SetUp(blob_bottom_vec, blob_top_vec); + layer.Forward(blob_bottom_vec, blob_top_vec); + + // Test mean + int num = blob_inplace.num(); + int channels = blob_inplace.channels(); + int height = blob_inplace.height(); + int width = blob_inplace.width(); + + for (int j = 0; j < channels; ++j) { + Dtype sum = 0, var = 0; + for (int i = 0; i < num; ++i) { + for ( int k = 0; k < height; ++k ) { + for ( int l = 0; l < width; ++l ) { + Dtype data = blob_inplace.data_at(i, j, k, l); + sum += data; + var += data * data; + } + } + } + sum /= height * width * num; + var /= height * width * num; + + const Dtype kErrorBound = 0.001; + // expect zero mean + EXPECT_NEAR(0, sum, kErrorBound); + // expect unit variance + EXPECT_NEAR(1, var, kErrorBound); + } + } + + TYPED_TEST(BatchNormLayerTest, TestGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + + BatchNormLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-4); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); + } + +} // namespace caffe diff --git a/src/caffe/test/test_batch_reindex_layer.cpp b/src/caffe/test/test_batch_reindex_layer.cpp new file mode 100644 index 000000000..9ea1a2f6f --- /dev/null +++ b/src/caffe/test/test_batch_reindex_layer.cpp @@ -0,0 +1,118 @@ +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/batch_reindex_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class BatchReindexLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + BatchReindexLayerTest() + : blob_bottom_(new Blob()), + blob_bottom_permute_(new Blob()), + blob_top_(new Blob()) { + } + virtual void SetUp() { + Caffe::set_random_seed(1701); + vector sz; + sz.push_back(5); + sz.push_back(4); + sz.push_back(3); + sz.push_back(2); + blob_bottom_->Reshape(sz); + vector permsz; + permsz.push_back(6); + blob_bottom_permute_->Reshape(permsz); + + // fill the values + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(this->blob_bottom_); + int perm[] = { 4, 0, 4, 0, 1, 2 }; + for (int i = 0; i < blob_bottom_permute_->count(); ++i) { + blob_bottom_permute_->mutable_cpu_data()[i] = perm[i]; + } + + blob_bottom_vec_.push_back(blob_bottom_); + blob_bottom_vec_.push_back(blob_bottom_permute_); + blob_top_vec_.push_back(blob_top_); + } + virtual ~BatchReindexLayerTest() { + delete blob_bottom_permute_; + delete blob_bottom_; + delete blob_top_; + } + Blob* const blob_bottom_; + Blob* const blob_bottom_permute_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; + + void TestForward() { + LayerParameter layer_param; + + vector sz; + sz.push_back(5); + sz.push_back(4); + sz.push_back(3); + sz.push_back(2); + blob_bottom_->Reshape(sz); + for (int i = 0; i < blob_bottom_->count(); ++i) { + blob_bottom_->mutable_cpu_data()[i] = i; + } + + vector permsz; + permsz.push_back(6); + blob_bottom_permute_->Reshape(permsz); + int perm[] = { 4, 0, 4, 0, 1, 2 }; + for (int i = 0; i < blob_bottom_permute_->count(); ++i) { + blob_bottom_permute_->mutable_cpu_data()[i] = perm[i]; + } + BatchReindexLayer layer(layer_param); + layer.SetUp(blob_bottom_vec_, blob_top_vec_); + EXPECT_EQ(blob_top_->num(), blob_bottom_permute_->num()); + EXPECT_EQ(blob_top_->channels(), blob_bottom_->channels()); + EXPECT_EQ(blob_top_->height(), blob_bottom_->height()); + EXPECT_EQ(blob_top_->width(), blob_bottom_->width()); + + layer.Forward(blob_bottom_vec_, blob_top_vec_); + int channels = blob_top_->channels(); + int height = blob_top_->height(); + int width = blob_top_->width(); + for (int i = 0; i < blob_top_->count(); ++i) { + int n = i / (channels * width * height); + int inner_idx = (i % (channels * width * height)); + EXPECT_EQ( + blob_top_->cpu_data()[i], + blob_bottom_->cpu_data()[perm[n] * channels * width * height + + inner_idx]); + } + } +}; + +TYPED_TEST_CASE(BatchReindexLayerTest, TestDtypesAndDevices); + +TYPED_TEST(BatchReindexLayerTest, TestForward) { + this->TestForward(); +} + +TYPED_TEST(BatchReindexLayerTest, TestGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + BatchReindexLayer layer(layer_param); + GradientChecker checker(1e-4, 1e-2); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); + } + +} // namespace caffe diff --git a/src/caffe/test/test_benchmark.cpp b/src/caffe/test/test_benchmark.cpp index 43aaa639b..b03fdf69a 100644 --- a/src/caffe/test/test_benchmark.cpp +++ b/src/caffe/test/test_benchmark.cpp @@ -1,4 +1,4 @@ -#include // for usleep +#include #include "gtest/gtest.h" @@ -64,7 +64,7 @@ TYPED_TEST(BenchmarkTest, TestTimerMilliSeconds) { EXPECT_FALSE(timer.running()); EXPECT_FALSE(timer.has_run_at_least_once()); timer.Start(); - usleep(300 * 1000); + boost::this_thread::sleep(boost::posix_time::milliseconds(300)); EXPECT_GE(timer.MilliSeconds(), 300 - kMillisecondsThreshold); EXPECT_LE(timer.MilliSeconds(), 300 + kMillisecondsThreshold); EXPECT_TRUE(timer.initted()); @@ -79,7 +79,7 @@ TYPED_TEST(BenchmarkTest, TestTimerSeconds) { EXPECT_FALSE(timer.running()); EXPECT_FALSE(timer.has_run_at_least_once()); timer.Start(); - usleep(300 * 1000); + boost::this_thread::sleep(boost::posix_time::milliseconds(300)); EXPECT_GE(timer.Seconds(), 0.3 - kMillisecondsThreshold / 1000.); EXPECT_LE(timer.Seconds(), 0.3 + kMillisecondsThreshold / 1000.); EXPECT_TRUE(timer.initted()); diff --git a/src/caffe/test/test_bias_layer.cpp b/src/caffe/test/test_bias_layer.cpp new file mode 100644 index 000000000..3862e763e --- /dev/null +++ b/src/caffe/test/test_bias_layer.cpp @@ -0,0 +1,467 @@ +#include +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/bias_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class BiasLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + BiasLayerTest() + : blob_bottom_(new Blob(2, 3, 4, 5)), + blob_bottom_eltwise_(new Blob(2, 3, 4, 5)), + blob_bottom_broadcast_0_(new Blob()), + blob_bottom_broadcast_1_(new Blob()), + blob_bottom_broadcast_2_(new Blob()), + blob_bottom_bias_(new Blob(vector())), + blob_top_(new Blob()) { + Caffe::set_random_seed(1701); + vector broadcast_shape(2); + broadcast_shape[0] = 2; broadcast_shape[1] = 3; + this->blob_bottom_broadcast_0_->Reshape(broadcast_shape); + broadcast_shape[0] = 3; broadcast_shape[1] = 4; + this->blob_bottom_broadcast_1_->Reshape(broadcast_shape); + broadcast_shape[0] = 4; broadcast_shape[1] = 5; + this->blob_bottom_broadcast_2_->Reshape(broadcast_shape); + FillerParameter filler_param; + filler_param.set_min(1); + filler_param.set_max(10); + UniformFiller filler(filler_param); + filler.Fill(this->blob_bottom_); + filler.Fill(this->blob_bottom_eltwise_); + filler.Fill(this->blob_bottom_broadcast_0_); + filler.Fill(this->blob_bottom_broadcast_1_); + filler.Fill(this->blob_bottom_broadcast_2_); + filler.Fill(this->blob_bottom_bias_); + blob_bottom_vec_.push_back(blob_bottom_); + blob_top_vec_.push_back(blob_top_); + } + virtual ~BiasLayerTest() { + delete blob_bottom_; + delete blob_bottom_eltwise_; + delete blob_bottom_broadcast_0_; + delete blob_bottom_broadcast_1_; + delete blob_bottom_broadcast_2_; + delete blob_bottom_bias_; + delete blob_top_; + } + Blob* const blob_bottom_; + Blob* const blob_bottom_eltwise_; + Blob* const blob_bottom_broadcast_0_; + Blob* const blob_bottom_broadcast_1_; + Blob* const blob_bottom_broadcast_2_; + Blob* const blob_bottom_bias_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; +}; + +TYPED_TEST_CASE(BiasLayerTest, TestDtypesAndDevices); + +TYPED_TEST(BiasLayerTest, TestForwardEltwise) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data_a = this->blob_bottom_->cpu_data(); + const Dtype* in_data_b = this->blob_bottom_eltwise_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] + in_data_b[i], 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestForwardEltwiseInPlace) { + typedef typename TypeParam::Dtype Dtype; + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_bottom_->cpu_data(); + const int count = this->blob_bottom_->count(); + const Dtype* in_data_a = orig_bottom.cpu_data(); + const Dtype* in_data_b = this->blob_bottom_eltwise_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] + in_data_b[i], 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestBackwardEltwiseInPlace) { + typedef typename TypeParam::Dtype Dtype; + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + shared_ptr > layer(new BiasLayer(layer_param)); + Blob top_diff(this->blob_bottom_->shape()); + FillerParameter filler_param; + filler_param.set_type("gaussian"); + filler_param.set_std(1); + GaussianFiller filler(filler_param); + filler.Fill(&top_diff); + vector propagate_down(2, true); + // Run forward + backward without in-place computation; + // save resulting bottom diffs. + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const bool kReshape = true; + const bool kCopyDiff = true; + Blob orig_bottom_diff; + orig_bottom_diff.CopyFrom(*this->blob_bottom_, kCopyDiff, kReshape); + Blob orig_bias_diff; + orig_bias_diff.CopyFrom(*this->blob_bottom_eltwise_, + kCopyDiff, kReshape); + // Rerun forward + backward with in-place computation; + // check that resulting bottom diffs are the same. + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_bottom_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(orig_bottom_diff.cpu_diff()[i], + this->blob_bottom_->cpu_diff()[i], 1e-5); + } + for (int i = 0; i < this->blob_bottom_eltwise_->count(); ++i) { + EXPECT_NEAR(orig_bias_diff.cpu_diff()[i], + this->blob_bottom_eltwise_->cpu_diff()[i], 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestForwardEltwiseWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + BiasParameter* bias_param = layer_param.mutable_bias_param(); + bias_param->set_axis(0); + bias_param->set_num_axes(-1); + bias_param->mutable_filler()->set_type("gaussian"); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data_a = this->blob_bottom_->cpu_data(); + const Dtype* in_data_b = layer->blobs()[0]->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] + in_data_b[i], 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBroadcastBegin) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_0_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) + + this->blob_bottom_broadcast_0_->data_at(n, c, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBroadcastMiddle) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(1); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) + + this->blob_bottom_broadcast_1_->data_at(c, h, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBroadcastMiddleInPlace) { + typedef typename TypeParam::Dtype Dtype; + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(1); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_bottom_->data_at(n, c, h, w), + orig_bottom.data_at(n, c, h, w) + + this->blob_bottom_broadcast_1_->data_at(c, h, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(BiasLayerTest, TestBackwardBroadcastMiddleInPlace) { + typedef typename TypeParam::Dtype Dtype; + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(1); + shared_ptr > layer(new BiasLayer(layer_param)); + Blob top_diff(this->blob_bottom_->shape()); + FillerParameter filler_param; + filler_param.set_type("gaussian"); + filler_param.set_std(1); + GaussianFiller filler(filler_param); + filler.Fill(&top_diff); + vector propagate_down(2, true); + // Run forward + backward without in-place computation; + // save resulting bottom diffs. + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const bool kReshape = true; + const bool kCopyDiff = true; + Blob orig_bottom_diff; + orig_bottom_diff.CopyFrom(*this->blob_bottom_, kCopyDiff, kReshape); + Blob orig_bias_diff; + orig_bias_diff.CopyFrom(*this->blob_bottom_broadcast_1_, + kCopyDiff, kReshape); + // Rerun forward + backward with in-place computation; + // check that resulting bottom diffs are the same. + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_bottom_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(orig_bottom_diff.cpu_diff()[i], + this->blob_bottom_->cpu_diff()[i], 1e-5); + } + for (int i = 0; i < this->blob_bottom_broadcast_1_->count(); ++i) { + EXPECT_NEAR(orig_bias_diff.cpu_diff()[i], + this->blob_bottom_broadcast_1_->cpu_diff()[i], 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBroadcastMiddleWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + BiasParameter* bias_param = layer_param.mutable_bias_param(); + bias_param->set_axis(1); + bias_param->set_num_axes(2); + bias_param->mutable_filler()->set_type("gaussian"); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) + + layer->blobs()[0]->data_at(c, h, 0, 0), 1e-5); + } + } + } + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBroadcastEnd) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_2_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(2); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) + + this->blob_bottom_broadcast_2_->data_at(h, w, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBias) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_bias_); + LayerParameter layer_param; + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data = this->blob_bottom_->cpu_data(); + const Dtype bias = *this->blob_bottom_bias_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data[i] + bias, 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestForwardBiasAxis2) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_bias_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(2); + shared_ptr > layer(new BiasLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data = this->blob_bottom_->cpu_data(); + const Dtype bias = *this->blob_bottom_bias_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data[i] + bias, 1e-5); + } +} + +TYPED_TEST(BiasLayerTest, TestGradientEltwise) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientEltwise(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientEltwiseWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + BiasParameter* bias_param = layer_param.mutable_bias_param(); + bias_param->set_axis(0); + bias_param->set_num_axes(-1); + bias_param->mutable_filler()->set_type("gaussian"); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBroadcastBegin) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_0_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(0); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBroadcastMiddle) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(1); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBroadcastMiddleWithParam) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + BiasParameter* bias_param = layer_param.mutable_bias_param(); + bias_param->set_axis(1); + bias_param->set_num_axes(2); + bias_param->mutable_filler()->set_type("gaussian"); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBroadcastEnd) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_2_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(2); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBias) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_bias_); + LayerParameter layer_param; + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(BiasLayerTest, TestGradientBiasAxis2) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_bias_); + LayerParameter layer_param; + layer_param.mutable_bias_param()->set_axis(2); + BiasLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +} // namespace caffe diff --git a/src/caffe/test/test_blob.cpp b/src/caffe/test/test_blob.cpp index 7da6423b6..b88562223 100644 --- a/src/caffe/test/test_blob.cpp +++ b/src/caffe/test/test_blob.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -52,6 +51,14 @@ TYPED_TEST(BlobSimpleTest, TestReshape) { EXPECT_EQ(this->blob_->count(), 120); } +TYPED_TEST(BlobSimpleTest, TestReshapeZero) { + vector shape(2); + shape[0] = 0; + shape[1] = 5; + this->blob_->Reshape(shape); + EXPECT_EQ(this->blob_->count(), 0); +} + TYPED_TEST(BlobSimpleTest, TestLegacyBlobProtoShapeEquals) { BlobProto blob_proto; diff --git a/src/caffe/test/test_caffe_main.cpp b/src/caffe/test/test_caffe_main.cpp index c8caf5ac5..8f333bd71 100644 --- a/src/caffe/test/test_caffe_main.cpp +++ b/src/caffe/test/test_caffe_main.cpp @@ -1,6 +1,3 @@ -// The main caffe test code. Your test cpp code should include this hpp -// to allow a main function to be compiled into the binary. - #include "caffe/caffe.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -18,7 +15,7 @@ int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); caffe::GlobalInit(&argc, &argv); #ifndef CPU_ONLY - // Before starting testing, let's first print out a few cuda defice info. + // Before starting testing, let's first print out a few cuda device info. int device; cudaGetDeviceCount(&device); cout << "Cuda number of devices: " << device << endl; @@ -34,6 +31,7 @@ int main(int argc, char** argv) { cudaGetDevice(&device); cout << "Current device id: " << device << endl; cudaGetDeviceProperties(&CAFFE_TEST_CUDA_PROP, device); + cout << "Current device name: " << CAFFE_TEST_CUDA_PROP.name << endl; #endif // invoke the test. return RUN_ALL_TESTS(); diff --git a/src/caffe/test/test_common.cpp b/src/caffe/test/test_common.cpp index b3a61b0fd..58ae5c60a 100644 --- a/src/caffe/test/test_common.cpp +++ b/src/caffe/test/test_common.cpp @@ -1,5 +1,3 @@ -#include - #include "gtest/gtest.h" #include "caffe/common.hpp" diff --git a/src/caffe/test/test_concat_layer.cpp b/src/caffe/test/test_concat_layer.cpp index ccd97eb1d..23c1e8c1d 100644 --- a/src/caffe/test/test_concat_layer.cpp +++ b/src/caffe/test/test_concat_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/concat_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_contrastive_loss_layer.cpp b/src/caffe/test/test_contrastive_loss_layer.cpp index 1e9447cbc..2fa055ee0 100644 --- a/src/caffe/test/test_contrastive_loss_layer.cpp +++ b/src/caffe/test/test_contrastive_loss_layer.cpp @@ -1,7 +1,5 @@ #include #include -#include -#include #include #include "gtest/gtest.h" @@ -9,7 +7,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/contrastive_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -79,7 +77,7 @@ TYPED_TEST(ContrastiveLossLayerTest, TestForward) { if (this->blob_bottom_y_->cpu_data()[i]) { // similar pairs loss += dist_sq; } else { - Dtype dist = std::max(margin - sqrt(dist_sq), 0.0); + Dtype dist = std::max(margin - sqrt(dist_sq), 0.0); loss += dist*dist; } } diff --git a/src/caffe/test/test_convolution_layer.cpp b/src/caffe/test/test_convolution_layer.cpp index 67d41fff8..85c10a294 100644 --- a/src/caffe/test/test_convolution_layer.cpp +++ b/src/caffe/test/test_convolution_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,11 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/conv_layer.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_conv_layer.hpp" +#endif #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -19,54 +22,91 @@ template void caffe_conv(const Blob* in, ConvolutionParameter* conv_param, const vector > >& weights, Blob* out) { + const bool has_depth = (out->num_axes() == 5); + if (!has_depth) { CHECK_EQ(4, out->num_axes()); } // Kernel size, stride, and pad int kernel_h, kernel_w; - if (conv_param->has_kernel_size()) { - kernel_h = kernel_w = conv_param->kernel_size(); - } else { + if (conv_param->has_kernel_h() || conv_param->has_kernel_w()) { kernel_h = conv_param->kernel_h(); kernel_w = conv_param->kernel_w(); + } else { + kernel_h = kernel_w = conv_param->kernel_size(0); } int pad_h, pad_w; - if (!conv_param->has_pad_h()) { - pad_h = pad_w = conv_param->pad(); - } else { + if (conv_param->has_pad_h() || conv_param->has_pad_w()) { pad_h = conv_param->pad_h(); pad_w = conv_param->pad_w(); + } else { + pad_h = pad_w = conv_param->pad_size() ? conv_param->pad(0) : 0; } int stride_h, stride_w; - if (!conv_param->has_stride_h()) { - stride_h = stride_w = conv_param->stride(); - } else { + if (conv_param->has_stride_h() || conv_param->has_stride_w()) { stride_h = conv_param->stride_h(); stride_w = conv_param->stride_w(); + } else { + stride_h = stride_w = conv_param->stride_size() ? conv_param->stride(0) : 1; + } + int dilation_h, dilation_w; + dilation_h = dilation_w = conv_param->dilation_size() ? + conv_param->dilation(0) : 1; + int kernel_d, pad_d, stride_d, dilation_d; + if (has_depth) { + kernel_d = kernel_h; + stride_d = stride_h; + pad_d = pad_h; + dilation_d = dilation_h; + } else { + kernel_d = stride_d = dilation_d = 1; + pad_d = 0; } // Groups int groups = conv_param->group(); - int o_g = out->channels() / groups; - int k_g = in->channels() / groups; + int o_g = out->shape(1) / groups; + int k_g = in->shape(1) / groups; int o_head, k_head; // Convolution - const Dtype* in_data = in->cpu_data(); - const Dtype* weight_data = weights[0]->cpu_data(); + vector weight_offset(4 + has_depth); + vector in_offset(4 + has_depth); + vector out_offset(4 + has_depth); Dtype* out_data = out->mutable_cpu_data(); - for (int n = 0; n < out->num(); n++) { + for (int n = 0; n < out->shape(0); n++) { for (int g = 0; g < groups; g++) { o_head = o_g * g; k_head = k_g * g; for (int o = 0; o < o_g; o++) { for (int k = 0; k < k_g; k++) { - for (int y = 0; y < out->height(); y++) { - for (int x = 0; x < out->width(); x++) { - for (int p = 0; p < kernel_h; p++) { - for (int q = 0; q < kernel_w; q++) { - int in_y = y * stride_h - pad_h + p; - int in_x = x * stride_w - pad_w + q; - if (in_y >= 0 && in_y < in->height() - && in_x >= 0 && in_x < in->width()) { - out_data[out->offset(n, o + o_head, y, x)] += - in_data[in->offset(n, k + k_head, in_y, in_x)] - * weight_data[weights[0]->offset(o + o_head, k, p, q)]; + for (int z = 0; z < (has_depth ? out->shape(2) : 1); z++) { + for (int y = 0; y < out->shape(2 + has_depth); y++) { + for (int x = 0; x < out->shape(3 + has_depth); x++) { + for (int r = 0; r < kernel_d; r++) { + for (int p = 0; p < kernel_h; p++) { + for (int q = 0; q < kernel_w; q++) { + int in_z = z * stride_d - pad_d + r * dilation_d; + int in_y = y * stride_h - pad_h + p * dilation_h; + int in_x = x * stride_w - pad_w + q * dilation_w; + if (in_z >= 0 && in_z < (has_depth ? in->shape(2) : 1) + && in_y >= 0 && in_y < in->shape(2 + has_depth) + && in_x >= 0 && in_x < in->shape(3 + has_depth)) { + weight_offset[0] = o + o_head; + weight_offset[1] = k; + if (has_depth) { weight_offset[2] = r; } + weight_offset[2 + has_depth] = p; + weight_offset[3 + has_depth] = q; + in_offset[0] = n; + in_offset[1] = k + k_head; + if (has_depth) { in_offset[2] = in_z; } + in_offset[2 + has_depth] = in_y; + in_offset[3 + has_depth] = in_x; + out_offset[0] = n; + out_offset[1] = o + o_head; + if (has_depth) { out_offset[2] = z; } + out_offset[2 + has_depth] = y; + out_offset[3 + has_depth] = x; + out_data[out->offset(out_offset)] += + in->data_at(in_offset) + * weights[0]->data_at(weight_offset); + } + } } } } @@ -79,11 +119,18 @@ void caffe_conv(const Blob* in, ConvolutionParameter* conv_param, // Bias if (conv_param->bias_term()) { const Dtype* bias_data = weights[1]->cpu_data(); - for (int n = 0; n < out->num(); n++) { - for (int o = 0; o < out->channels(); o++) { - for (int y = 0; y < out->height(); y++) { - for (int x = 0; x < out->width(); x++) { - out_data[out->offset(n, o, y, x)] += bias_data[o]; + for (int n = 0; n < out->shape(0); n++) { + for (int o = 0; o < out->shape(1); o++) { + for (int z = 0; z < (has_depth ? out->shape(2) : 1); z++) { + for (int y = 0; y < out->shape(2 + has_depth); y++) { + for (int x = 0; x < out->shape(3 + has_depth); x++) { + out_offset[0] = n; + out_offset[1] = o; + if (has_depth) { out_offset[2] = z; } + out_offset[2 + has_depth] = y; + out_offset[3 + has_depth] = x; + out_data[out->offset(out_offset)] += bias_data[o]; + } } } } @@ -150,8 +197,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSetup) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); @@ -188,8 +235,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolution) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("constant"); @@ -217,13 +264,189 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolution) { } } +TYPED_TEST(ConvolutionLayerTest, TestDilatedConvolution) { + typedef typename TypeParam::Dtype Dtype; + vector bottom_shape; + bottom_shape.push_back(2); + bottom_shape.push_back(3); + bottom_shape.push_back(8); + bottom_shape.push_back(7); + this->blob_bottom_vec_.push_back(this->blob_bottom_2_); + this->blob_top_vec_.push_back(this->blob_top_2_); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->add_kernel_size(3); + convolution_param->add_dilation(2); + convolution_param->set_num_output(4); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("constant"); + convolution_param->mutable_bias_filler()->set_value(0.1); + shared_ptr > layer( + new ConvolutionLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Check against reference convolution. + const Dtype* top_data; + const Dtype* ref_top_data; + caffe_conv(this->blob_bottom_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_)); + top_data = this->blob_top_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } + caffe_conv(this->blob_bottom_2_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_2_)); + top_data = this->blob_top_2_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } +} + +TYPED_TEST(ConvolutionLayerTest, Test0DConvolution) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + const int kNumOutput = 3; + convolution_param->set_num_output(kNumOutput); + convolution_param->set_axis(3); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + shared_ptr > layer( + new ConvolutionLayer(layer_param)); + vector top_shape = this->blob_bottom_->shape(); + top_shape[3] = kNumOutput; + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(top_shape, this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Check against reference convolution. + vector weight_offset(2); + const Blob* weight = layer->blobs()[0].get(); + const Blob* bias = layer->blobs()[1].get(); + const int num = this->blob_top_->count(3); + const int dim = this->blob_top_->shape(3); + const int bottom_dim = this->blob_bottom_->shape(3); + for (int n = 0; n < num; ++n) { + for (int d = 0; d < dim; ++d) { + weight_offset[0] = d; + Dtype value = bias->cpu_data()[d]; + for (int bottom_d = 0; bottom_d < bottom_dim; ++bottom_d) { + weight_offset[1] = bottom_d; + value += weight->data_at(weight_offset) * + this->blob_bottom_->cpu_data()[n * bottom_dim + bottom_d]; + } + EXPECT_NEAR(value, this->blob_top_->cpu_data()[n * dim + d], 1e-4); + } + } +} + +TYPED_TEST(ConvolutionLayerTest, TestSimple3DConvolution) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_2_); + this->blob_top_vec_.push_back(this->blob_top_2_); + vector bottom_shape(5); + bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0); + bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1); + bottom_shape[2] = 5; + bottom_shape[3] = this->blob_bottom_vec_[0]->shape(2); + bottom_shape[4] = this->blob_bottom_vec_[0]->shape(3); + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->set_num_output(4); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + shared_ptr > layer( + new ConvolutionLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Check against reference convolution. + const Dtype* top_data; + const Dtype* ref_top_data; + caffe_conv(this->blob_bottom_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_)); + top_data = this->blob_top_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } + caffe_conv(this->blob_bottom_2_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_2_)); + top_data = this->blob_top_2_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } +} + +TYPED_TEST(ConvolutionLayerTest, TestDilated3DConvolution) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_2_); + this->blob_top_vec_.push_back(this->blob_top_2_); + vector bottom_shape(5); + bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0); + bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1); + bottom_shape[2] = 6; + bottom_shape[3] = 7; + bottom_shape[4] = 8; + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->add_kernel_size(3); + convolution_param->add_dilation(2); + convolution_param->set_num_output(4); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + shared_ptr > layer( + new ConvolutionLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Check against reference convolution. + const Dtype* top_data; + const Dtype* ref_top_data; + caffe_conv(this->blob_bottom_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_)); + top_data = this->blob_top_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } + caffe_conv(this->blob_bottom_2_, convolution_param, layer->blobs(), + this->MakeReferenceTop(this->blob_top_2_)); + top_data = this->blob_top_2_->cpu_data(); + ref_top_data = this->ref_blob_top_->cpu_data(); + for (int i = 0; i < this->blob_top_->count(); ++i) { + EXPECT_NEAR(top_data[i], ref_top_data[i], 1e-4); + } +} + TYPED_TEST(ConvolutionLayerTest, Test1x1Convolution) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(1); - convolution_param->set_stride(1); + convolution_param->add_kernel_size(1); + convolution_param->add_stride(1); convolution_param->set_num_output(4); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("constant"); @@ -249,8 +472,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSimpleConvolutionGroup) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(3); convolution_param->set_group(3); convolution_param->mutable_weight_filler()->set_type("gaussian"); @@ -288,8 +511,8 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(1); convolution_param->set_bias_term(false); shared_ptr > layer( @@ -350,14 +573,11 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) { convolution_param->set_bias_term(false); layer.reset(new ConvolutionLayer(layer_param)); layer->blobs().resize(1); - layer->blobs()[0].reset(new Blob(1, 3, 1, 3)); + layer->blobs()[0].reset(new Blob(1, 1, 1, 3)); Dtype* weights_2 = layer->blobs()[0]->mutable_cpu_data(); - for (int c = 0; c < 3; ++c) { - int i = c * 3; // 1 x 3 filter - weights_2[i + 0] = -1; - weights_2[i + 1] = 0; - weights_2[i + 2] = 1; - } + weights_2[0] = -1; + weights_2[1] = 0; + weights_2[2] = 1; layer->SetUp(sep_blob_bottom_vec, sep_blob_top_vec); layer->Forward(sep_blob_bottom_vec, sep_blob_top_vec); // Test equivalence of full and separable filters. @@ -368,6 +588,124 @@ TYPED_TEST(ConvolutionLayerTest, TestSobelConvolution) { } } +TYPED_TEST(ConvolutionLayerTest, TestNDAgainst2D) { + typedef typename TypeParam::Dtype Dtype; + const int kernel_h = 11; + const int kernel_w = 13; + vector bottom_shape(4); + bottom_shape[0] = 15; + bottom_shape[1] = 18; + bottom_shape[2] = kernel_h * 2; + bottom_shape[3] = kernel_w * 2; + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->set_num_output(12); + convolution_param->set_bias_term(false); + convolution_param->set_group(6); + convolution_param->set_kernel_h(kernel_h); + convolution_param->set_kernel_w(kernel_w); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + Blob weights; + Blob top_diff; + // Shape and fill weights and top_diff. + bool copy_diff; + bool reshape; + { + ConvolutionLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + top_diff.ReshapeLike(*this->blob_top_); + filler.Fill(&top_diff); + ASSERT_EQ(1, layer.blobs().size()); + copy_diff = false; reshape = true; + weights.CopyFrom(*layer.blobs()[0], copy_diff, reshape); + } + vector propagate_down(1, true); + Blob result_2d; + Blob backward_result_2d; + Blob backward_weight_result_2d; + // Test with 2D im2col + { + caffe_set(this->blob_top_->count(), Dtype(0), + this->blob_top_->mutable_cpu_data()); + caffe_set(this->blob_bottom_->count(), Dtype(0), + this->blob_bottom_->mutable_cpu_diff()); + caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff()); + // Do SetUp and Forward; save Forward result in result_2d. + convolution_param->set_force_nd_im2col(false); + ConvolutionLayer layer_2d(layer_param); + layer_2d.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(1, layer_2d.blobs().size()); + copy_diff = false; reshape = false; + layer_2d.blobs()[0]->CopyFrom(weights, copy_diff, reshape); + layer_2d.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + copy_diff = false; reshape = true; + result_2d.CopyFrom(*this->blob_top_, copy_diff, reshape); + // Copy pre-generated top diff into actual top diff; + // do Backward and save result in backward_result_2d. + ASSERT_EQ(this->blob_top_->shape(), top_diff.shape()); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer_2d.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + copy_diff = true; reshape = true; + backward_result_2d.CopyFrom(*this->blob_bottom_, copy_diff, reshape); + backward_weight_result_2d.CopyFrom(weights, copy_diff, reshape); + } + Blob result_nd; + Blob backward_result_nd; + Blob backward_weight_result_nd; + // Test with ND im2col + { + caffe_set(this->blob_top_->count(), Dtype(0), + this->blob_top_->mutable_cpu_data()); + caffe_set(this->blob_bottom_->count(), Dtype(0), + this->blob_bottom_->mutable_cpu_diff()); + caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff()); + // Do SetUp and Forward; save Forward result in result_nd. + convolution_param->set_force_nd_im2col(true); + ConvolutionLayer layer_nd(layer_param); + layer_nd.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(1, layer_nd.blobs().size()); + copy_diff = false; reshape = false; + layer_nd.blobs()[0]->CopyFrom(weights, copy_diff, reshape); + layer_nd.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + copy_diff = false; reshape = true; + result_nd.CopyFrom(*this->blob_top_, copy_diff, reshape); + // Copy pre-generated top diff into actual top diff; + // do Backward and save result in backward_result_nd. + ASSERT_EQ(this->blob_top_->shape(), top_diff.shape()); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer_nd.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + copy_diff = true; reshape = true; + backward_result_nd.CopyFrom(*this->blob_bottom_, copy_diff, reshape); + backward_weight_result_nd.CopyFrom(weights, copy_diff, reshape); + } + ASSERT_EQ(result_nd.count(), result_2d.count()); + for (int i = 0; i < result_2d.count(); ++i) { + EXPECT_EQ(result_2d.cpu_data()[i], result_nd.cpu_data()[i]); + } + ASSERT_EQ(backward_result_nd.count(), backward_result_2d.count()); + for (int i = 0; i < backward_result_2d.count(); ++i) { + EXPECT_FLOAT_EQ(backward_result_2d.cpu_diff()[i], + backward_result_nd.cpu_diff()[i]); + } + ASSERT_EQ(backward_weight_result_nd.count(), + backward_weight_result_2d.count()); + for (int i = 0; i < backward_weight_result_2d.count(); ++i) { + EXPECT_EQ(backward_weight_result_2d.cpu_diff()[i], + backward_weight_result_nd.cpu_diff()[i]); + } +} + TYPED_TEST(ConvolutionLayerTest, TestGradient) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; @@ -375,8 +713,60 @@ TYPED_TEST(ConvolutionLayerTest, TestGradient) { layer_param.mutable_convolution_param(); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->set_num_output(2); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + ConvolutionLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ConvolutionLayerTest, TestDilatedGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + vector bottom_shape; + bottom_shape.push_back(2); + bottom_shape.push_back(3); + bottom_shape.push_back(5); + bottom_shape.push_back(6); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + } + convolution_param->add_kernel_size(3); + convolution_param->add_dilation(2); + convolution_param->set_num_output(2); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + ConvolutionLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ConvolutionLayerTest, TestGradient3D) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + vector bottom_shape(5); + bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0); + bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1); + bottom_shape[2] = 5; + bottom_shape[3] = this->blob_bottom_vec_[0]->shape(2); + bottom_shape[4] = this->blob_bottom_vec_[0]->shape(3); + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(2); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("gaussian"); @@ -393,8 +783,8 @@ TYPED_TEST(ConvolutionLayerTest, Test1x1Gradient) { layer_param.mutable_convolution_param(); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); - convolution_param->set_kernel_size(1); - convolution_param->set_stride(1); + convolution_param->add_kernel_size(1); + convolution_param->add_stride(1); convolution_param->set_num_output(2); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("gaussian"); @@ -409,8 +799,8 @@ TYPED_TEST(ConvolutionLayerTest, TestGradientGroup) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(3); convolution_param->set_group(3); convolution_param->mutable_weight_filler()->set_type("gaussian"); @@ -472,8 +862,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSetupCuDNN) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); @@ -509,8 +899,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSimpleConvolutionCuDNN) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("constant"); @@ -542,8 +932,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSimpleConvolutionGroupCuDNN) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(3); convolution_param->set_group(3); convolution_param->mutable_weight_filler()->set_type("gaussian"); @@ -581,8 +971,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSobelConvolutionCuDNN) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(1); convolution_param->set_bias_term(false); shared_ptr > layer( @@ -643,14 +1033,11 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestSobelConvolutionCuDNN) { convolution_param->set_bias_term(false); layer.reset(new CuDNNConvolutionLayer(layer_param)); layer->blobs().resize(1); - layer->blobs()[0].reset(new Blob(1, 3, 1, 3)); + layer->blobs()[0].reset(new Blob(1, 1, 1, 3)); TypeParam* weights_2 = layer->blobs()[0]->mutable_cpu_data(); - for (int c = 0; c < 3; ++c) { - int i = c * 3; // 1 x 3 filter - weights_2[i + 0] = -1; - weights_2[i + 1] = 0; - weights_2[i + 2] = 1; - } + weights_2[0] = -1; + weights_2[1] = 0; + weights_2[2] = 1; layer->SetUp(sep_blob_bottom_vec, sep_blob_top_vec); layer->Forward(sep_blob_bottom_vec, sep_blob_top_vec); // Test equivalence of full and separable filters. @@ -667,8 +1054,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestGradientCuDNN) { layer_param.mutable_convolution_param(); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(2); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("gaussian"); @@ -682,8 +1069,8 @@ TYPED_TEST(CuDNNConvolutionLayerTest, TestGradientGroupCuDNN) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(3); convolution_param->set_group(3); convolution_param->mutable_weight_filler()->set_type("gaussian"); diff --git a/src/caffe/test/test_crop_layer.cpp b/src/caffe/test/test_crop_layer.cpp new file mode 100644 index 000000000..ce2c736f6 --- /dev/null +++ b/src/caffe/test/test_crop_layer.cpp @@ -0,0 +1,283 @@ +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/crop_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class CropLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + CropLayerTest() + : blob_bottom_0_(new Blob(2, 4, 5, 4)), + blob_bottom_1_(new Blob(2, 3, 4, 2)), + blob_top_(new Blob()) {} + virtual void SetUp() { + // fill the values + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(this->blob_bottom_0_); + filler.Fill(this->blob_bottom_1_); + + blob_bottom_vec_.push_back(blob_bottom_0_); + blob_bottom_vec_.push_back(blob_bottom_1_); + blob_top_vec_.push_back(blob_top_); + } + + virtual ~CropLayerTest() { + delete blob_bottom_0_; delete blob_bottom_1_; + delete blob_top_; + } + + Blob* const blob_bottom_0_; + Blob* const blob_bottom_1_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; +}; + + +TYPED_TEST_CASE(CropLayerTest, TestDtypesAndDevices); + +TYPED_TEST(CropLayerTest, TestSetupShapeAll) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + // Crop all dimensions + layer_param.mutable_crop_param()->set_axis(0); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->num_axes(); ++i) { + EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i)); + } +} + +TYPED_TEST(CropLayerTest, TestSetupShapeDefault) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + // Crop last two dimensions, axis is 2 by default + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->num_axes(); ++i) { + if (i < 2) { + EXPECT_EQ(this->blob_bottom_0_->shape(i), this->blob_top_->shape(i)); + } else { + EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i)); + } + } +} + +TYPED_TEST(CropLayerTest, TestSetupShapeNegativeIndexing) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + // Crop last dimension by negative indexing + layer_param.mutable_crop_param()->set_axis(-1); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->num_axes(); ++i) { + if (i < 3) { + EXPECT_EQ(this->blob_bottom_0_->shape(i), this->blob_top_->shape(i)); + } else { + EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i)); + } + } +} + +TYPED_TEST(CropLayerTest, TestDimensionsCheck) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + // Reshape size blob to have incompatible sizes for uncropped dimensions: + // the size blob has more channels than the data blob, but this is fine + // since the channels dimension is not cropped in this configuration. + this->blob_bottom_1_->Reshape(2, 5, 4, 2); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->num_axes(); ++i) { + if (i < 2) { + EXPECT_EQ(this->blob_bottom_0_->shape(i), this->blob_top_->shape(i)); + } else { + EXPECT_EQ(this->blob_bottom_1_->shape(i), this->blob_top_->shape(i)); + } + } +} + +TYPED_TEST(CropLayerTest, TestCropAll) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(0); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_0_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_0_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_0_->width(); ++w) { + if ( n < this->blob_top_->shape(0) && + c < this->blob_top_->shape(1) && + h < this->blob_top_->shape(2) && + w < this->blob_top_->shape(3) ) { + EXPECT_EQ(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_0_->data_at(n, c, h, w)); + } + } + } + } + } +} + +TYPED_TEST(CropLayerTest, TestCropAllOffset) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(0); + layer_param.mutable_crop_param()->add_offset(0); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(2); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_0_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_0_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_0_->width(); ++w) { + if ( n < this->blob_top_->shape(0) && + c < this->blob_top_->shape(1) && + h < this->blob_top_->shape(2) && + w < this->blob_top_->shape(3) ) { + EXPECT_EQ(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_0_->data_at(n, c+1, h+1, w+2)); + } + } + } + } + } +} + +TYPED_TEST(CropLayerTest, TestCropHW) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(2); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(2); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_0_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_0_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_0_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_0_->width(); ++w) { + if (n < this->blob_top_->shape(0) && + c < this->blob_top_->shape(1) && + h < this->blob_top_->shape(2) && + w < this->blob_top_->shape(3)) { + EXPECT_EQ(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_0_->data_at(n, c, h+1, w+2)); + } + } + } + } + } +} + +TYPED_TEST(CropLayerTest, TestCrop5D) { + typedef typename TypeParam::Dtype Dtype; + // Add dimension to each bottom for >4D check + vector bottom_0_shape = this->blob_bottom_0_->shape(); + vector bottom_1_shape = this->blob_bottom_1_->shape(); + bottom_0_shape.push_back(2); + bottom_1_shape.push_back(1); + this->blob_bottom_0_->Reshape(bottom_0_shape); + this->blob_bottom_1_->Reshape(bottom_1_shape); + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(this->blob_bottom_0_); + filler.Fill(this->blob_bottom_1_); + // Make layer + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(2); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(2); + layer_param.mutable_crop_param()->add_offset(0); + CropLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + vector bottom_idx = vector(5, 0); + vector top_idx = vector(5, 0); + for (int n = 0; n < this->blob_bottom_0_->shape(0); ++n) { + for (int c = 0; c < this->blob_bottom_0_->shape(1); ++c) { + for (int z = 0; z < this->blob_bottom_0_->shape(2); ++z) { + for (int h = 0; h < this->blob_bottom_0_->shape(3); ++h) { + for (int w = 0; w < this->blob_bottom_0_->shape(4); ++w) { + if (n < this->blob_top_->shape(0) && + c < this->blob_top_->shape(1) && + z < this->blob_top_->shape(2) && + h < this->blob_top_->shape(3) && + w < this->blob_top_->shape(4)) { + bottom_idx[0] = top_idx[0] = n; + bottom_idx[1] = top_idx[1] = c; + bottom_idx[2] = z; + bottom_idx[3] = h; + bottom_idx[4] = top_idx[4] = w; + top_idx[2] = z+1; + top_idx[3] = h+2; + EXPECT_EQ(this->blob_top_->data_at(bottom_idx), + this->blob_bottom_0_->data_at(top_idx)); + } + } + } + } + } + } +} + +TYPED_TEST(CropLayerTest, TestCropAllGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(0); + CropLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(CropLayerTest, TestCropHWGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(2); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(2); + CropLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(CropLayerTest, TestCrop5DGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_crop_param()->set_axis(2); + layer_param.mutable_crop_param()->add_offset(1); + layer_param.mutable_crop_param()->add_offset(2); + layer_param.mutable_crop_param()->add_offset(0); + CropLayer layer(layer_param); + // Add dimension to each bottom for >4D check + vector bottom_0_shape = this->blob_bottom_0_->shape(); + vector bottom_1_shape = this->blob_bottom_1_->shape(); + bottom_0_shape.push_back(2); + bottom_1_shape.push_back(1); + this->blob_bottom_0_->Reshape(bottom_0_shape); + this->blob_bottom_1_->Reshape(bottom_1_shape); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +} // namespace caffe diff --git a/src/caffe/test/test_data/generate_sample_data.py b/src/caffe/test/test_data/generate_sample_data.py index 3703b4182..264507357 100644 --- a/src/caffe/test/test_data/generate_sample_data.py +++ b/src/caffe/test/test_data/generate_sample_data.py @@ -43,16 +43,18 @@ ) f.create_dataset( 'label', data=label, - compression='gzip', compression_opts=1 + compression='gzip', compression_opts=1, + dtype='uint8', ) f.create_dataset( 'label2', data=label2, - compression='gzip', compression_opts=1 + compression='gzip', compression_opts=1, + dtype='uint8', ) with open(script_dir + '/sample_data_list.txt', 'w') as f: - f.write(script_dir + '/sample_data.h5\n') - f.write(script_dir + '/sample_data_2_gzip.h5\n') + f.write('src/caffe/test/test_data/sample_data.h5\n') + f.write('src/caffe/test/test_data/sample_data_2_gzip.h5\n') # Generate GradientBasedSolver solver_data.h5 @@ -76,4 +78,4 @@ f['targets'] = targets with open(script_dir + '/solver_data_list.txt', 'w') as f: - f.write(script_dir + '/solver_data.h5\n') + f.write('src/caffe/test/test_data/solver_data.h5\n') diff --git a/src/caffe/test/test_data/sample_data_2_gzip.h5 b/src/caffe/test/test_data/sample_data_2_gzip.h5 index a138e0367..0cb9ef922 100644 Binary files a/src/caffe/test/test_data/sample_data_2_gzip.h5 and b/src/caffe/test/test_data/sample_data_2_gzip.h5 differ diff --git a/src/caffe/test/test_data_layer.cpp b/src/caffe/test/test_data_layer.cpp index afe2a40d2..3835af1f1 100644 --- a/src/caffe/test/test_data_layer.cpp +++ b/src/caffe/test/test_data_layer.cpp @@ -1,3 +1,4 @@ +#ifdef USE_OPENCV #include #include @@ -6,8 +7,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" -#include "caffe/data_layers.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/data_layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" #include "caffe/util/io.hpp" @@ -104,6 +105,32 @@ class DataLayerTest : public MultiDeviceTest { } } + void TestSkip() { + LayerParameter param; + param.set_phase(TRAIN); + DataParameter* data_param = param.mutable_data_param(); + int batch_size = 5; + data_param->set_batch_size(batch_size); + data_param->set_source(filename_->c_str()); + data_param->set_backend(backend_); + Caffe::set_solver_count(8); + for (int dev = 0; dev < Caffe::solver_count(); ++dev) { + Caffe::set_solver_rank(dev); + DataLayer layer(param); + layer.SetUp(blob_bottom_vec_, blob_top_vec_); + int label = dev; + for (int iter = 0; iter < 10; ++iter) { + layer.Forward(blob_bottom_vec_, blob_top_vec_); + for (int i = 0; i < batch_size; ++i) { + EXPECT_EQ(label % batch_size, blob_top_label_->cpu_data()[i]); + label += Caffe::solver_count(); + } + } + } + Caffe::set_solver_count(1); + Caffe::set_solver_rank(0); + } + void TestReshape(DataParameter_DB backend) { const int num_inputs = 5; // Save data of varying shapes. @@ -348,12 +375,18 @@ class DataLayerTest : public MultiDeviceTest { TYPED_TEST_CASE(DataLayerTest, TestDtypesAndDevices); +#ifdef USE_LEVELDB TYPED_TEST(DataLayerTest, TestReadLevelDB) { const bool unique_pixels = false; // all pixels the same; images different this->Fill(unique_pixels, DataParameter_DB_LEVELDB); this->TestRead(); } +TYPED_TEST(DataLayerTest, TestSkipLevelDB) { + this->Fill(false, DataParameter_DB_LEVELDB); + this->TestSkip(); +} + TYPED_TEST(DataLayerTest, TestReshapeLevelDB) { this->TestReshape(DataParameter_DB_LEVELDB); } @@ -385,13 +418,20 @@ TYPED_TEST(DataLayerTest, TestReadCropTestLevelDB) { this->Fill(unique_pixels, DataParameter_DB_LEVELDB); this->TestReadCrop(TEST); } +#endif // USE_LEVELDB +#ifdef USE_LMDB TYPED_TEST(DataLayerTest, TestReadLMDB) { const bool unique_pixels = false; // all pixels the same; images different this->Fill(unique_pixels, DataParameter_DB_LMDB); this->TestRead(); } +TYPED_TEST(DataLayerTest, TestSkipLMDB) { + this->Fill(false, DataParameter_DB_LMDB); + this->TestSkip(); +} + TYPED_TEST(DataLayerTest, TestReshapeLMDB) { this->TestReshape(DataParameter_DB_LMDB); } @@ -424,4 +464,6 @@ TYPED_TEST(DataLayerTest, TestReadCropTestLMDB) { this->TestReadCrop(TEST); } +#endif // USE_LMDB } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/test/test_data_transformer.cpp b/src/caffe/test/test_data_transformer.cpp index 16570e203..31bf1c1fb 100644 --- a/src/caffe/test/test_data_transformer.cpp +++ b/src/caffe/test/test_data_transformer.cpp @@ -1,8 +1,8 @@ +#ifdef USE_OPENCV #include #include #include "gtest/gtest.h" -#include "leveldb/db.h" #include "caffe/blob.hpp" #include "caffe/common.hpp" @@ -39,23 +39,21 @@ class DataTransformTest : public ::testing::Test { int NumSequenceMatches(const TransformationParameter transform_param, const Datum& datum, Phase phase) { // Get crop sequence with Caffe seed 1701. - DataTransformer* transformer = - new DataTransformer(transform_param, phase); + DataTransformer transformer(transform_param, phase); const int crop_size = transform_param.crop_size(); Caffe::set_random_seed(seed_); - transformer->InitRand(); - Blob* blob = - new Blob(1, datum.channels(), datum.height(), datum.width()); + transformer.InitRand(); + Blob blob(1, datum.channels(), datum.height(), datum.width()); if (transform_param.crop_size() > 0) { - blob->Reshape(1, datum.channels(), crop_size, crop_size); + blob.Reshape(1, datum.channels(), crop_size, crop_size); } vector > crop_sequence; for (int iter = 0; iter < this->num_iter_; ++iter) { vector iter_crop_sequence; - transformer->Transform(datum, blob); - for (int j = 0; j < blob->count(); ++j) { - iter_crop_sequence.push_back(blob->cpu_data()[j]); + transformer.Transform(datum, &blob); + for (int j = 0; j < blob.count(); ++j) { + iter_crop_sequence.push_back(blob.cpu_data()[j]); } crop_sequence.push_back(iter_crop_sequence); } @@ -63,17 +61,14 @@ class DataTransformTest : public ::testing::Test { int num_sequence_matches = 0; for (int iter = 0; iter < this->num_iter_; ++iter) { vector iter_crop_sequence = crop_sequence[iter]; - transformer->Transform(datum, blob); - for (int j = 0; j < blob->count(); ++j) { - num_sequence_matches += - (crop_sequence[iter][j] == blob->cpu_data()[j]); + transformer.Transform(datum, &blob); + for (int j = 0; j < blob.count(); ++j) { + num_sequence_matches += (crop_sequence[iter][j] == blob.cpu_data()[j]); } } return num_sequence_matches; } - virtual ~DataTransformTest() { } - int seed_; int num_iter_; }; @@ -90,17 +85,16 @@ TYPED_TEST(DataTransformTest, TestEmptyTransform) { Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - Blob* blob = new Blob(1, channels, height, width); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - transformer->Transform(datum, blob); - EXPECT_EQ(blob->num(), 1); - EXPECT_EQ(blob->channels(), datum.channels()); - EXPECT_EQ(blob->height(), datum.height()); - EXPECT_EQ(blob->width(), datum.width()); - for (int j = 0; j < blob->count(); ++j) { - EXPECT_EQ(blob->cpu_data()[j], label); + Blob blob(1, channels, height, width); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + transformer.Transform(datum, &blob); + EXPECT_EQ(blob.num(), 1); + EXPECT_EQ(blob.channels(), datum.channels()); + EXPECT_EQ(blob.height(), datum.height()); + EXPECT_EQ(blob.width(), datum.width()); + for (int j = 0; j < blob.count(); ++j) { + EXPECT_EQ(blob.cpu_data()[j], label); } } @@ -114,17 +108,16 @@ TYPED_TEST(DataTransformTest, TestEmptyTransformUniquePixels) { Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - Blob* blob = new Blob(1, 3, 4, 5); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - transformer->Transform(datum, blob); - EXPECT_EQ(blob->num(), 1); - EXPECT_EQ(blob->channels(), datum.channels()); - EXPECT_EQ(blob->height(), datum.height()); - EXPECT_EQ(blob->width(), datum.width()); - for (int j = 0; j < blob->count(); ++j) { - EXPECT_EQ(blob->cpu_data()[j], j); + Blob blob(1, 3, 4, 5); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + transformer.Transform(datum, &blob); + EXPECT_EQ(blob.num(), 1); + EXPECT_EQ(blob.channels(), datum.channels()); + EXPECT_EQ(blob.height(), datum.height()); + EXPECT_EQ(blob.width(), datum.width()); + for (int j = 0; j < blob.count(); ++j) { + EXPECT_EQ(blob.cpu_data()[j], j); } } @@ -140,19 +133,17 @@ TYPED_TEST(DataTransformTest, TestCropSize) { transform_param.set_crop_size(crop_size); Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - Blob* blob = - new Blob(1, channels, crop_size, crop_size); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + Blob blob(1, channels, crop_size, crop_size); for (int iter = 0; iter < this->num_iter_; ++iter) { - transformer->Transform(datum, blob); - EXPECT_EQ(blob->num(), 1); - EXPECT_EQ(blob->channels(), datum.channels()); - EXPECT_EQ(blob->height(), crop_size); - EXPECT_EQ(blob->width(), crop_size); - for (int j = 0; j < blob->count(); ++j) { - EXPECT_EQ(blob->cpu_data()[j], label); + transformer.Transform(datum, &blob); + EXPECT_EQ(blob.num(), 1); + EXPECT_EQ(blob.channels(), datum.channels()); + EXPECT_EQ(blob.height(), crop_size); + EXPECT_EQ(blob.width(), crop_size); + for (int j = 0; j < blob.count(); ++j) { + EXPECT_EQ(blob.cpu_data()[j], label); } } } @@ -279,13 +270,12 @@ TYPED_TEST(DataTransformTest, TestMeanValue) { transform_param.add_mean_value(mean_value); Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - Blob* blob = new Blob(1, channels, height, width); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - transformer->Transform(datum, blob); - for (int j = 0; j < blob->count(); ++j) { - EXPECT_EQ(blob->cpu_data()[j], label - mean_value); + Blob blob(1, channels, height, width); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + transformer.Transform(datum, &blob); + for (int j = 0; j < blob.count(); ++j) { + EXPECT_EQ(blob.cpu_data()[j], label - mean_value); } } @@ -302,14 +292,13 @@ TYPED_TEST(DataTransformTest, TestMeanValues) { transform_param.add_mean_value(2); Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - Blob* blob = new Blob(1, channels, height, width); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - transformer->Transform(datum, blob); + Blob blob(1, channels, height, width); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + transformer.Transform(datum, &blob); for (int c = 0; c < channels; ++c) { for (int j = 0; j < height * width; ++j) { - EXPECT_EQ(blob->cpu_data()[blob->offset(0, c) + j], label - c); + EXPECT_EQ(blob.cpu_data()[blob.offset(0, c) + j], label - c); } } } @@ -324,8 +313,8 @@ TYPED_TEST(DataTransformTest, TestMeanFile) { const int size = channels * height * width; // Create a mean file - string* mean_file = new string(); - MakeTempFilename(mean_file); + string mean_file; + MakeTempFilename(&mean_file); BlobProto blob_mean; blob_mean.set_num(1); blob_mean.set_channels(channels); @@ -336,20 +325,20 @@ TYPED_TEST(DataTransformTest, TestMeanFile) { blob_mean.add_data(j); } - LOG(INFO) << "Using temporary mean_file " << *mean_file; - WriteProtoToBinaryFile(blob_mean, *mean_file); + LOG(INFO) << "Using temporary mean_file " << mean_file; + WriteProtoToBinaryFile(blob_mean, mean_file); - transform_param.set_mean_file(*mean_file); + transform_param.set_mean_file(mean_file); Datum datum; FillDatum(label, channels, height, width, unique_pixels, &datum); - Blob* blob = new Blob(1, channels, height, width); - DataTransformer* transformer = - new DataTransformer(transform_param, TEST); - transformer->InitRand(); - transformer->Transform(datum, blob); - for (int j = 0; j < blob->count(); ++j) { - EXPECT_EQ(blob->cpu_data()[j], 0); + Blob blob(1, channels, height, width); + DataTransformer transformer(transform_param, TEST); + transformer.InitRand(); + transformer.Transform(datum, &blob); + for (int j = 0; j < blob.count(); ++j) { + EXPECT_EQ(blob.cpu_data()[j], 0); } } } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/test/test_db.cpp b/src/caffe/test/test_db.cpp index 5b2ac230a..1b487b14c 100644 --- a/src/caffe/test/test_db.cpp +++ b/src/caffe/test/test_db.cpp @@ -1,3 +1,4 @@ +#if defined(USE_LEVELDB) && defined(USE_LMDB) && defined(USE_OPENCV) #include #include "boost/scoped_ptr.hpp" @@ -132,3 +133,4 @@ TYPED_TEST(DBTest, TestWrite) { } } // namespace caffe +#endif // USE_LEVELDB, USE_LMDB and USE_OPENCV diff --git a/src/caffe/test/test_deconvolution_layer.cpp b/src/caffe/test/test_deconvolution_layer.cpp index fc63d5efb..c4b09ad55 100644 --- a/src/caffe/test/test_deconvolution_layer.cpp +++ b/src/caffe/test/test_deconvolution_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/deconv_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -58,8 +57,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestSetup) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); @@ -96,8 +95,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestSimpleDeconvolution) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); convolution_param->set_num_output(4); convolution_param->mutable_weight_filler()->set_type("constant"); convolution_param->mutable_weight_filler()->set_value(1); @@ -144,8 +143,8 @@ TYPED_TEST(DeconvolutionLayerTest, TestGradient) { layer_param.mutable_convolution_param(); this->blob_bottom_vec_.push_back(this->blob_bottom_2_); this->blob_top_vec_.push_back(this->blob_top_2_); - convolution_param->set_kernel_size(2); - convolution_param->set_stride(1); + convolution_param->add_kernel_size(2); + convolution_param->add_stride(1); convolution_param->set_num_output(1); convolution_param->mutable_weight_filler()->set_type("gaussian"); convolution_param->mutable_bias_filler()->set_type("gaussian"); @@ -155,4 +154,151 @@ TYPED_TEST(DeconvolutionLayerTest, TestGradient) { this->blob_top_vec_); } +TYPED_TEST(DeconvolutionLayerTest, TestNDAgainst2D) { + typedef typename TypeParam::Dtype Dtype; + const int kernel_h = 11; + const int kernel_w = 13; + vector bottom_shape(4); + bottom_shape[0] = 15; + bottom_shape[1] = 12; + bottom_shape[2] = kernel_h * 2; + bottom_shape[3] = kernel_w * 2; + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->set_num_output(18); + convolution_param->set_bias_term(false); + convolution_param->set_group(6); + convolution_param->set_kernel_h(kernel_h); + convolution_param->set_kernel_w(kernel_w); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + Blob weights; + Blob top_diff; + // Shape and fill weights and top_diff. + bool copy_diff; + bool reshape; + { + DeconvolutionLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + top_diff.ReshapeLike(*this->blob_top_); + filler.Fill(&top_diff); + ASSERT_EQ(1, layer.blobs().size()); + copy_diff = false; reshape = true; + weights.CopyFrom(*layer.blobs()[0], copy_diff, reshape); + } + vector propagate_down(1, true); + Blob result_2d; + Blob backward_result_2d; + Blob backward_weight_result_2d; + // Test with 2D im2col + { + caffe_set(this->blob_top_->count(), Dtype(0), + this->blob_top_->mutable_cpu_data()); + caffe_set(this->blob_bottom_->count(), Dtype(0), + this->blob_bottom_->mutable_cpu_diff()); + caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff()); + // Do SetUp and Forward; save Forward result in result_2d. + convolution_param->set_force_nd_im2col(false); + DeconvolutionLayer layer_2d(layer_param); + layer_2d.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(1, layer_2d.blobs().size()); + copy_diff = false; reshape = false; + layer_2d.blobs()[0]->CopyFrom(weights, copy_diff, reshape); + layer_2d.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + copy_diff = false; reshape = true; + result_2d.CopyFrom(*this->blob_top_, copy_diff, reshape); + // Copy pre-generated top diff into actual top diff; + // do Backward and save result in backward_result_2d. + ASSERT_EQ(this->blob_top_->shape(), top_diff.shape()); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer_2d.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + copy_diff = true; reshape = true; + backward_result_2d.CopyFrom(*this->blob_bottom_, copy_diff, reshape); + backward_weight_result_2d.CopyFrom(weights, copy_diff, reshape); + } + Blob result_nd; + Blob backward_result_nd; + Blob backward_weight_result_nd; + // Test with ND im2col + { + caffe_set(this->blob_top_->count(), Dtype(0), + this->blob_top_->mutable_cpu_data()); + caffe_set(this->blob_bottom_->count(), Dtype(0), + this->blob_bottom_->mutable_cpu_diff()); + caffe_set(weights.count(), Dtype(0), weights.mutable_cpu_diff()); + // Do SetUp and Forward; save Forward result in result_nd. + convolution_param->set_force_nd_im2col(true); + DeconvolutionLayer layer_nd(layer_param); + layer_nd.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(1, layer_nd.blobs().size()); + copy_diff = false; reshape = false; + layer_nd.blobs()[0]->CopyFrom(weights, copy_diff, reshape); + layer_nd.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + copy_diff = false; reshape = true; + result_nd.CopyFrom(*this->blob_top_, copy_diff, reshape); + // Copy pre-generated top diff into actual top diff; + // do Backward and save result in backward_result_nd. + ASSERT_EQ(this->blob_top_->shape(), top_diff.shape()); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer_nd.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + copy_diff = true; reshape = true; + backward_result_nd.CopyFrom(*this->blob_bottom_, copy_diff, reshape); + backward_weight_result_nd.CopyFrom(weights, copy_diff, reshape); + } + ASSERT_EQ(result_nd.count(), result_2d.count()); + for (int i = 0; i < result_2d.count(); ++i) { + EXPECT_EQ(result_2d.cpu_data()[i], result_nd.cpu_data()[i]); + } + ASSERT_EQ(backward_result_nd.count(), backward_result_2d.count()); + for (int i = 0; i < backward_result_2d.count(); ++i) { + EXPECT_EQ(backward_result_2d.cpu_diff()[i], + backward_result_nd.cpu_diff()[i]); + } + ASSERT_EQ(backward_weight_result_nd.count(), + backward_weight_result_2d.count()); + for (int i = 0; i < backward_weight_result_2d.count(); ++i) { + EXPECT_EQ(backward_weight_result_2d.cpu_diff()[i], + backward_weight_result_nd.cpu_diff()[i]); + } +} + +TYPED_TEST(DeconvolutionLayerTest, TestGradient3D) { + typedef typename TypeParam::Dtype Dtype; + vector bottom_shape(5); + bottom_shape[0] = this->blob_bottom_vec_[0]->shape(0); + bottom_shape[1] = this->blob_bottom_vec_[0]->shape(1); + bottom_shape[2] = 2; + bottom_shape[3] = 3; + bottom_shape[4] = 2; + FillerParameter filler_param; + GaussianFiller filler(filler_param); + for (int i = 0; i < this->blob_bottom_vec_.size(); ++i) { + this->blob_bottom_vec_[i]->Reshape(bottom_shape); + filler.Fill(this->blob_bottom_vec_[i]); + } + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->add_kernel_size(2); + convolution_param->add_stride(2); + convolution_param->add_pad(1); + convolution_param->set_num_output(2); + convolution_param->mutable_weight_filler()->set_type("gaussian"); + convolution_param->mutable_bias_filler()->set_type("gaussian"); + DeconvolutionLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + } // namespace caffe diff --git a/src/caffe/test/test_dummy_data_layer.cpp b/src/caffe/test/test_dummy_data_layer.cpp index c9ed38db3..1a01ca85f 100644 --- a/src/caffe/test/test_dummy_data_layer.cpp +++ b/src/caffe/test/test_dummy_data_layer.cpp @@ -5,8 +5,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" +#include "caffe/layers/dummy_data_layer.hpp" #include "caffe/proto/caffe.pb.h" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" diff --git a/src/caffe/test/test_eltwise_layer.cpp b/src/caffe/test/test_eltwise_layer.cpp index be0c13477..c06e3baab 100644 --- a/src/caffe/test/test_eltwise_layer.cpp +++ b/src/caffe/test/test_eltwise_layer.cpp @@ -6,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/eltwise_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -80,7 +80,7 @@ TYPED_TEST(EltwiseLayerTest, TestProd) { const Dtype* in_data_b = this->blob_bottom_b_->cpu_data(); const Dtype* in_data_c = this->blob_bottom_c_->cpu_data(); for (int i = 0; i < count; ++i) { - EXPECT_EQ(data[i], in_data_a[i] * in_data_b[i] * in_data_c[i]); + EXPECT_NEAR(data[i], in_data_a[i] * in_data_b[i] * in_data_c[i], 1e-4); } } @@ -99,7 +99,7 @@ TYPED_TEST(EltwiseLayerTest, TestSum) { const Dtype* in_data_b = this->blob_bottom_b_->cpu_data(); const Dtype* in_data_c = this->blob_bottom_c_->cpu_data(); for (int i = 0; i < count; ++i) { - EXPECT_EQ(data[i], in_data_a[i] + in_data_b[i] + in_data_c[i]); + EXPECT_NEAR(data[i], in_data_a[i] + in_data_b[i] + in_data_c[i], 1e-4); } } diff --git a/src/caffe/test/test_embed_layer.cpp b/src/caffe/test/test_embed_layer.cpp index 7a4fb9800..13f13a878 100644 --- a/src/caffe/test/test_embed_layer.cpp +++ b/src/caffe/test/test_embed_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,17 +5,13 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/embed_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" namespace caffe { -#ifndef CPU_ONLY -extern cudaDeviceProp CAFFE_TEST_CUDA_PROP; -#endif - template class EmbedLayerTest : public MultiDeviceTest { typedef typename TypeParam::Dtype Dtype; @@ -129,7 +124,7 @@ TYPED_TEST(EmbedLayerTest, TestForwardWithBias) { top_offset[4] = 0; bias_offset[0] = 0; for (int j = 0; j < kNumOutput; ++j) { - EXPECT_EQ(layer->blobs()[0]->data_at(weight_offset) + + EXPECT_FLOAT_EQ(layer->blobs()[0]->data_at(weight_offset) + layer->blobs()[1]->data_at(bias_offset), this->blob_top_->data_at(top_offset)); ++top_offset[4]; diff --git a/src/caffe/test/test_euclidean_loss_layer.cpp b/src/caffe/test/test_euclidean_loss_layer.cpp index 1949742bb..b026f5b20 100644 --- a/src/caffe/test/test_euclidean_loss_layer.cpp +++ b/src/caffe/test/test_euclidean_loss_layer.cpp @@ -1,6 +1,4 @@ #include -#include -#include #include #include "gtest/gtest.h" @@ -8,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/euclidean_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -41,7 +39,7 @@ class EuclideanLossLayerTest : public MultiDeviceTest { void TestForward() { // Get the loss without a specified objective weight -- should be - // equivalent to explicitly specifiying a weight of 1. + // equivalent to explicitly specifying a weight of 1. LayerParameter layer_param; EuclideanLossLayer layer_weight_1(layer_param); layer_weight_1.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); diff --git a/src/caffe/test/test_filler.cpp b/src/caffe/test/test_filler.cpp index 728b8dc5f..26e9b217e 100644 --- a/src/caffe/test/test_filler.cpp +++ b/src/caffe/test/test_filler.cpp @@ -1,5 +1,3 @@ -#include - #include "gtest/gtest.h" #include "caffe/filler.hpp" diff --git a/src/caffe/test/test_filter_layer.cpp b/src/caffe/test/test_filter_layer.cpp index c641b6ef6..9ea2b8b21 100644 --- a/src/caffe/test/test_filter_layer.cpp +++ b/src/caffe/test/test_filter_layer.cpp @@ -1,5 +1,3 @@ -#include -#include #include #include "gtest/gtest.h" @@ -7,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/filter_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_flatten_layer.cpp b/src/caffe/test/test_flatten_layer.cpp index 7b6757cba..d929ac7a7 100644 --- a/src/caffe/test/test_flatten_layer.cpp +++ b/src/caffe/test/test_flatten_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/flatten_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_gradient_based_solver.cpp b/src/caffe/test/test_gradient_based_solver.cpp index 7ad7467f8..f4395f531 100644 --- a/src/caffe/test/test_gradient_based_solver.cpp +++ b/src/caffe/test/test_gradient_based_solver.cpp @@ -10,7 +10,7 @@ #include "caffe/common.hpp" #include "caffe/parallel.hpp" #include "caffe/proto/caffe.pb.h" -#include "caffe/solver.hpp" +#include "caffe/sgd_solvers.hpp" #include "caffe/util/io.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -28,7 +28,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { seed_(1701), num_(4), channels_(3), height_(10), width_(10), share_(false) { input_file_ = new string( - CMAKE_SOURCE_DIR "caffe/test/test_data/solver_data_list.txt" CMAKE_EXT); + ABS_TEST_DATA_DIR "/solver_data_list.txt"); } ~GradientBasedSolverTest() { delete input_file_; @@ -36,7 +36,9 @@ class GradientBasedSolverTest : public MultiDeviceTest { string snapshot_prefix_; shared_ptr > solver_; - shared_ptr > sync_; +#ifdef USE_NCCL + shared_ptr > nccl_; +#endif int seed_; // Dimensions are determined by generate_sample_data.py // TODO this is brittle and the hdf5 file should be checked instead. @@ -47,7 +49,6 @@ class GradientBasedSolverTest : public MultiDeviceTest { // Test data: check out generate_sample_data.py in the same directory. string* input_file_; - virtual SolverParameter_SolverType solver_type() = 0; virtual void InitSolver(const SolverParameter& param) = 0; virtual void InitSolverFromProtoString(const string& proto) { @@ -86,6 +87,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { "lr_policy: 'fixed' " "iter_size: " << iter_size << " " "device_id: " << device_id << " " + "layer_wise_reduce: " << (!share_) << " " "net_param { " " name: 'TestNetwork' " " layer { " @@ -184,11 +186,10 @@ class GradientBasedSolverTest : public MultiDeviceTest { } Caffe::set_random_seed(this->seed_); this->InitSolverFromProtoString(proto.str()); - if (from_snapshot != NULL) { + if (from_snapshot) { this->solver_->Restore(from_snapshot); - vector*> empty_bottom_vec; for (int i = 0; i < this->solver_->iter(); ++i) { - this->solver_->net()->Forward(empty_bottom_vec); + this->solver_->net()->Forward(); } } if (devices == 1) { @@ -204,9 +205,10 @@ class GradientBasedSolverTest : public MultiDeviceTest { gpus.push_back(i); } Caffe::set_solver_count(gpus.size()); - this->sync_.reset(new P2PSync( - this->solver_, NULL, this->solver_->param())); - this->sync_->run(gpus); +#ifdef USE_NCCL + this->nccl_.reset(new NCCL(this->solver_)); + this->nccl_->Run(gpus, from_snapshot); +#endif Caffe::set_solver_count(1); } if (snapshot) { @@ -232,8 +234,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { // Run a forward pass, and manually compute the update values from the // result. Net& net = *this->solver_->net(); - vector*> empty_bottom_vec; - net.Forward(empty_bottom_vec); + net.Forward(); ASSERT_TRUE(net.has_blob("data")); const Blob& data = *net.blob_by_name("data"); ASSERT_TRUE(net.has_blob("targets")); @@ -290,8 +291,8 @@ class GradientBasedSolverTest : public MultiDeviceTest { ((i == D) ? bias.cpu_data()[0] : weights.cpu_data()[i]); // Finally, compute update. const vector > >& history = solver_->history(); - if (solver_type() != SolverParameter_SolverType_ADADELTA - && solver_type() != SolverParameter_SolverType_ADAM) { + if (solver_->type() != string("AdaDelta") + && solver_->type() != string("Adam")) { ASSERT_EQ(2, history.size()); // 1 blob for weights, 1 for bias } else { ASSERT_EQ(4, history.size()); // additional blobs for update history @@ -300,26 +301,19 @@ class GradientBasedSolverTest : public MultiDeviceTest { const Dtype history_value = (i == D) ? history[1]->cpu_data()[0] : history[0]->cpu_data()[i]; const Dtype temp = momentum * history_value; - switch (solver_type()) { - case SolverParameter_SolverType_SGD: + if (solver_->type() == string("SGD")) { update_value += temp; - break; - case SolverParameter_SolverType_NESTEROV: + } else if (solver_->type() == string("Nesterov")) { update_value += temp; // step back then over-step update_value = (1 + momentum) * update_value - temp; - break; - case SolverParameter_SolverType_ADAGRAD: + } else if (solver_->type() == string("AdaGrad")) { update_value /= std::sqrt(history_value + grad * grad) + delta_; - break; - case SolverParameter_SolverType_RMSPROP: { + } else if (solver_->type() == string("RMSProp")) { const Dtype rms_decay = 0.95; update_value /= std::sqrt(rms_decay*history_value + grad * grad * (1 - rms_decay)) + delta_; - } - break; - case SolverParameter_SolverType_ADADELTA: - { + } else if (solver_->type() == string("AdaDelta")) { const Dtype update_history_value = (i == D) ? history[1 + num_param_blobs]->cpu_data()[0] : history[0 + num_param_blobs]->cpu_data()[i]; @@ -330,9 +324,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { // not actually needed, just here for illustrative purposes // const Dtype weighted_update_average = // momentum * update_history_value + (1 - momentum) * (update_value); - break; - } - case SolverParameter_SolverType_ADAM: { + } else if (solver_->type() == string("Adam")) { const Dtype momentum2 = 0.999; const Dtype m = history_value; const Dtype v = (i == D) ? @@ -344,10 +336,8 @@ class GradientBasedSolverTest : public MultiDeviceTest { std::sqrt(Dtype(1) - pow(momentum2, num_iters)) / (Dtype(1.) - pow(momentum, num_iters)); update_value = alpha_t * val_m / (std::sqrt(val_v) + delta_); - break; - } - default: - LOG(FATAL) << "Unknown solver type: " << solver_type(); + } else { + LOG(FATAL) << "Unknown solver type: " << solver_->type(); } if (i == D) { updated_bias.mutable_cpu_diff()[0] = update_value; @@ -392,7 +382,7 @@ class GradientBasedSolverTest : public MultiDeviceTest { EXPECT_NEAR(expected_updated_bias, solver_updated_bias, error_margin); // Check the solver's history -- should contain the previous update value. - if (solver_type() == SolverParameter_SolverType_SGD) { + if (solver_->type() == string("SGD")) { const vector > >& history = solver_->history(); ASSERT_EQ(2, history.size()); for (int i = 0; i < D; ++i) { @@ -471,12 +461,28 @@ class GradientBasedSolverTest : public MultiDeviceTest { const int kIterSize = 1; // Test over all numbers of devices. int available_devices = 1; -#ifndef CPU_ONLY +#ifdef USE_NCCL if (Caffe::mode() == Caffe::GPU) { CUDA_CHECK(cudaGetDeviceCount(&available_devices)); } #endif - for (int devices = 1; devices <= available_devices; ++devices) { + // Takes a while to test all sizes for each test so sparse + vector sizes; + sizes.push_back(1); + if (available_devices >= 2) { + sizes.push_back(2); + } + if (available_devices >= 3) { + sizes.push_back(3); + } + if (available_devices >= 8) { + sizes.push_back(8); + } + if (available_devices >= 16) { + sizes.push_back(16); + } + for (int i = 0; i < sizes.size(); ++i) { + int devices = sizes[i]; // Configure batch size for single / multi device equivalence. // Constant data is needed for multi device as for accumulation. num_ = kNum * devices; @@ -552,9 +558,11 @@ class GradientBasedSolverTest : public MultiDeviceTest { const vector*>& params = solver_->net()->learnable_params(); for (int i = 0; i < params.size(); ++i) { for (int j = 0; j < params[i]->count(); ++j) { - EXPECT_EQ(param_copies[i]->cpu_data()[j], params[i]->cpu_data()[j]) + EXPECT_FLOAT_EQ(param_copies[i]->cpu_data()[j], + params[i]->cpu_data()[j]) << "param " << i << " data differed at dim " << j; - EXPECT_EQ(param_copies[i]->cpu_diff()[j], params[i]->cpu_diff()[j]) + EXPECT_FLOAT_EQ(param_copies[i]->cpu_diff()[j], + params[i]->cpu_diff()[j]) << "param " << i << " diff differed at dim " << j; } } @@ -563,9 +571,11 @@ class GradientBasedSolverTest : public MultiDeviceTest { const vector > >& history = solver_->history(); for (int i = 0; i < history.size(); ++i) { for (int j = 0; j < history[i]->count(); ++j) { - EXPECT_EQ(history_copies[i]->cpu_data()[j], history[i]->cpu_data()[j]) + EXPECT_FLOAT_EQ(history_copies[i]->cpu_data()[j], + history[i]->cpu_data()[j]) << "history blob " << i << " data differed at dim " << j; - EXPECT_EQ(history_copies[i]->cpu_diff()[j], history[i]->cpu_diff()[j]) + EXPECT_FLOAT_EQ(history_copies[i]->cpu_diff()[j], + history[i]->cpu_diff()[j]) << "history blob " << i << " diff differed at dim " << j; } } @@ -581,10 +591,6 @@ class SGDSolverTest : public GradientBasedSolverTest { virtual void InitSolver(const SolverParameter& param) { this->solver_.reset(new SGDSolver(param)); } - - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_SGD; - } }; TYPED_TEST_CASE(SGDSolverTest, TestDtypesAndDevices); @@ -721,9 +727,6 @@ class AdaGradSolverTest : public GradientBasedSolverTest { virtual void InitSolver(const SolverParameter& param) { this->solver_.reset(new AdaGradSolver(param)); } - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_ADAGRAD; - } }; TYPED_TEST_CASE(AdaGradSolverTest, TestDtypesAndDevices); @@ -824,9 +827,6 @@ class NesterovSolverTest : public GradientBasedSolverTest { virtual void InitSolver(const SolverParameter& param) { this->solver_.reset(new NesterovSolver(param)); } - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_NESTEROV; - } }; TYPED_TEST_CASE(NesterovSolverTest, TestDtypesAndDevices); @@ -960,10 +960,6 @@ class AdaDeltaSolverTest : public GradientBasedSolverTest { virtual void InitSolver(const SolverParameter& param) { this->solver_.reset(new AdaDeltaSolver(param)); } - - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_ADADELTA; - } }; TYPED_TEST_CASE(AdaDeltaSolverTest, TestDtypesAndDevices); @@ -1098,9 +1094,6 @@ class AdamSolverTest : public GradientBasedSolverTest { new_param.set_momentum2(momentum2); this->solver_.reset(new AdamSolver(new_param)); } - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_ADAM; - } }; TYPED_TEST_CASE(AdamSolverTest, TestDtypesAndDevices); @@ -1201,9 +1194,6 @@ class RMSPropSolverTest : public GradientBasedSolverTest { new_param.set_rms_decay(rms_decay); this->solver_.reset(new RMSPropSolver(new_param)); } - virtual SolverParameter_SolverType solver_type() { - return SolverParameter_SolverType_RMSPROP; - } }; TYPED_TEST_CASE(RMSPropSolverTest, TestDtypesAndDevices); diff --git a/src/caffe/test/test_hdf5_output_layer.cpp b/src/caffe/test/test_hdf5_output_layer.cpp index b56277b53..f94dd57e7 100644 --- a/src/caffe/test/test_hdf5_output_layer.cpp +++ b/src/caffe/test/test_hdf5_output_layer.cpp @@ -5,10 +5,10 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" +#include "caffe/layers/hdf5_output_layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/hdf5.hpp" #include "caffe/util/io.hpp" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -20,8 +20,7 @@ class HDF5OutputLayerTest : public MultiDeviceTest { protected: HDF5OutputLayerTest() - : input_file_name_( - CMAKE_SOURCE_DIR "caffe/test/test_data/sample_data.h5"), + : input_file_name_(ABS_TEST_DATA_DIR "/sample_data.h5"), blob_data_(new Blob()), blob_label_(new Blob()), num_(5), @@ -77,10 +76,12 @@ TYPED_TEST(HDF5OutputLayerTest, TestForward) { H5P_DEFAULT); ASSERT_GE(file_id, 0)<< "Failed to open HDF5 file" << this->input_file_name_; + // Allow reshape here as we are loading data not params + bool reshape = true; hdf5_load_nd_dataset(file_id, HDF5_DATA_DATASET_NAME, 0, 4, - this->blob_data_); + this->blob_data_, reshape); hdf5_load_nd_dataset(file_id, HDF5_DATA_LABEL_NAME, 0, 4, - this->blob_label_); + this->blob_label_, reshape); herr_t status = H5Fclose(file_id); EXPECT_GE(status, 0)<< "Failed to close HDF5 file " << this->input_file_name_; @@ -105,12 +106,12 @@ TYPED_TEST(HDF5OutputLayerTest, TestForward) { Blob* blob_data = new Blob(); hdf5_load_nd_dataset(file_id, HDF5_DATA_DATASET_NAME, 0, 4, - blob_data); + blob_data, reshape); this->CheckBlobEqual(*(this->blob_data_), *blob_data); Blob* blob_label = new Blob(); hdf5_load_nd_dataset(file_id, HDF5_DATA_LABEL_NAME, 0, 4, - blob_label); + blob_label, reshape); this->CheckBlobEqual(*(this->blob_label_), *blob_label); status = H5Fclose(file_id); diff --git a/src/caffe/test/test_hdf5data_layer.cpp b/src/caffe/test/test_hdf5data_layer.cpp index c9b027f88..3977c4866 100644 --- a/src/caffe/test/test_hdf5data_layer.cpp +++ b/src/caffe/test/test_hdf5data_layer.cpp @@ -1,13 +1,14 @@ #include #include +#include "hdf5.h" + #include "gtest/gtest.h" #include "caffe/blob.hpp" #include "caffe/common.hpp" -#include "caffe/filler.hpp" +#include "caffe/layers/hdf5_data_layer.hpp" #include "caffe/proto/caffe.pb.h" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -29,8 +30,7 @@ class HDF5DataLayerTest : public MultiDeviceTest { blob_top_vec_.push_back(blob_top_label2_); // Check out generate_sample_data.py in the same directory. - filename = new string( - CMAKE_SOURCE_DIR "caffe/test/test_data/sample_data_list.txt" CMAKE_EXT); + filename = new string(ABS_TEST_DATA_DIR "/sample_data_list.txt"); LOG(INFO)<< "Using sample HDF5 data file " << filename; } @@ -69,7 +69,7 @@ TYPED_TEST(HDF5DataLayerTest, TestRead) { int height = 6; int width = 5; - // Test that the layer setup got the correct parameters. + // Test that the layer setup gives correct parameters. HDF5DataLayer layer(param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); EXPECT_EQ(this->blob_top_data_->num(), batch_size); @@ -132,4 +132,34 @@ TYPED_TEST(HDF5DataLayerTest, TestRead) { } } +TYPED_TEST(HDF5DataLayerTest, TestSkip) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter param; + param.add_top("data"); + param.add_top("label"); + + HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param(); + int batch_size = 5; + hdf5_data_param->set_batch_size(batch_size); + hdf5_data_param->set_source(*(this->filename)); + + Caffe::set_solver_count(8); + for (int dev = 0; dev < Caffe::solver_count(); ++dev) { + Caffe::set_solver_rank(dev); + + HDF5DataLayer layer(param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + int label = dev; + for (int iter = 0; iter < 1; ++iter) { + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < batch_size; ++i) { + EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]); + label = (label + Caffe::solver_count()) % (batch_size * 2); + } + } + } + Caffe::set_solver_count(1); + Caffe::set_solver_rank(0); +} + } // namespace caffe diff --git a/src/caffe/test/test_hinge_loss_layer.cpp b/src/caffe/test/test_hinge_loss_layer.cpp index b6a990229..8bf89fa63 100644 --- a/src/caffe/test/test_hinge_loss_layer.cpp +++ b/src/caffe/test/test_hinge_loss_layer.cpp @@ -1,6 +1,4 @@ #include -#include -#include #include #include "gtest/gtest.h" @@ -8,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/hinge_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_im2col_kernel.cu b/src/caffe/test/test_im2col_kernel.cu index 0017ac23e..e3a9791bc 100644 --- a/src/caffe/test/test_im2col_kernel.cu +++ b/src/caffe/test/test_im2col_kernel.cu @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,8 +5,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/im2col_layer.hpp" #include "caffe/util/im2col.hpp" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -19,39 +18,71 @@ __global__ void im2col_gpu_kernel(const int n, const Dtype* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, const int height_col, const int width_col, Dtype* data_col); -extern cudaDeviceProp CAFFE_TEST_CUDA_PROP; +template +__global__ void im2col_nd_gpu_kernel(const int n, const Dtype* data_im, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col); template class Im2colKernelTest : public GPUDeviceTest { protected: Im2colKernelTest() // big so launches > 1024 threads - : blob_bottom_(new Blob(5, 500, 10, 10)), + : blob_bottom_(new Blob(5, 500, 15, 15)), + blob_kernel_shape_(new Blob()), + blob_stride_(new Blob()), + blob_pad_(new Blob()), + blob_dilation_(new Blob()), blob_top_(new Blob()), blob_top_cpu_(new Blob()) { FillerParameter filler_param; GaussianFiller filler(filler_param); filler.Fill(this->blob_bottom_); + vector dim_blob_shape(1, 2); + blob_kernel_shape_->Reshape(dim_blob_shape); + blob_stride_->Reshape(dim_blob_shape); + blob_pad_->Reshape(dim_blob_shape); + blob_dilation_->Reshape(dim_blob_shape); height_ = blob_bottom_->height(); width_ = blob_bottom_->width(); channels_ = blob_bottom_->channels(); pad_ = 0; stride_ = 2; + dilation_ = 3; kernel_size_ = 3; - height_col_ = (height_ + 2 * pad_ - kernel_size_) / stride_ + 1; - width_col_ = (width_ + 2 * pad_ - kernel_size_) / stride_ + 1; + height_col_ = (height_ + 2 * pad_ - + (dilation_ * (kernel_size_ - 1) + 1)) / stride_ + 1; + width_col_ = (width_ + 2 * pad_ - + (dilation_ * (kernel_size_ - 1) + 1)) / stride_ + 1; + + for (int i = 0; i < 2; ++i) { + blob_kernel_shape_->mutable_cpu_data()[i] = kernel_size_; + blob_stride_->mutable_cpu_data()[i] = stride_; + blob_pad_->mutable_cpu_data()[i] = pad_; + blob_dilation_->mutable_cpu_data()[i] = dilation_; + } } virtual ~Im2colKernelTest() { - delete blob_bottom_; - delete blob_top_; - delete blob_top_cpu_; + delete blob_bottom_; + delete blob_top_; + delete blob_top_cpu_; + delete blob_kernel_shape_; + delete blob_stride_; + delete blob_pad_; + delete blob_dilation_; } + Blob* const blob_kernel_shape_; + Blob* const blob_stride_; + Blob* const blob_pad_; + Blob* const blob_dilation_; Blob* const blob_bottom_; Blob* const blob_top_; Blob* const blob_top_cpu_; @@ -60,6 +91,7 @@ class Im2colKernelTest : public GPUDeviceTest { int channels_; int pad_; int stride_; + int dilation_; int kernel_size_; int height_col_; int width_col_; @@ -67,7 +99,7 @@ class Im2colKernelTest : public GPUDeviceTest { TYPED_TEST_CASE(Im2colKernelTest, TestDtypes); -TYPED_TEST(Im2colKernelTest, TestGPU) { +TYPED_TEST(Im2colKernelTest, Test2D) { // Reshape the blobs to correct size for im2col output this->blob_top_->Reshape(this->blob_bottom_->num(), this->channels_ * this->kernel_size_ * this->kernel_size_, @@ -88,7 +120,7 @@ TYPED_TEST(Im2colKernelTest, TestGPU) { im2col_cpu(this->blob_bottom_->cpu_data() + this->blob_bottom_->offset(n), this->channels_, this->height_, this->width_, this->kernel_size_, this->kernel_size_, this->pad_, this->pad_, - this->stride_, this->stride_, + this->stride_, this->stride_, this->dilation_, this->dilation_, cpu_data + this->blob_top_cpu_->offset(n)); } @@ -105,6 +137,7 @@ TYPED_TEST(Im2colKernelTest, TestGPU) { num_kernels, bottom_data + this->blob_bottom_->offset(n), this->height_, this->width_, this->kernel_size_, this->kernel_size_, this->pad_, this->pad_, this->stride_, this->stride_, + this->dilation_, this->dilation_, this->height_col_, this->width_col_, top_data + this->blob_top_->offset(n)); CUDA_POST_KERNEL_CHECK; @@ -122,4 +155,59 @@ TYPED_TEST(Im2colKernelTest, TestGPU) { } } +TYPED_TEST(Im2colKernelTest, TestND) { + // Reshape the blobs to correct size for im2col output + this->blob_top_->Reshape(this->blob_bottom_->num(), + this->channels_ * this->kernel_size_ * this->kernel_size_, + this->height_col_, + this->width_col_); + + this->blob_top_cpu_->ReshapeLike(*this->blob_top_); + + const TypeParam* bottom_data_cpu = this->blob_bottom_->cpu_data(); + TypeParam* top_data_cpu = this->blob_top_cpu_->mutable_cpu_data(); + + // CPU Version + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + im2col_nd_cpu(bottom_data_cpu + this->blob_bottom_->offset(n), 2, + this->blob_bottom_->shape().data() + 1, + this->blob_top_cpu_->shape().data() + 1, + this->blob_kernel_shape_->cpu_data(), + this->blob_pad_->cpu_data(), this->blob_stride_->cpu_data(), + this->blob_dilation_->cpu_data(), + top_data_cpu + this->blob_top_cpu_->offset(n)); + } + + // GPU version + int num_kernels = this->channels_ * this->height_col_ * this->width_col_; + int default_grid_dim = CAFFE_GET_BLOCKS(num_kernels); + const TypeParam* bottom_data_gpu = this->blob_bottom_->gpu_data(); + + // Launch with different grid sizes + for (int grid_div = 2; grid_div <= 8; grid_div++) { + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + const int grid_dim = default_grid_dim / grid_div; + TypeParam* top_data_gpu = this->blob_top_->mutable_gpu_data(); + // NOLINT_NEXT_LINE(whitespace/operators) + im2col_nd_gpu_kernel<<>>( + num_kernels, bottom_data_gpu + this->blob_bottom_->offset(n), + this->blob_bottom_->gpu_shape() + 1, this->blob_top_->gpu_shape() + 1, + this->blob_kernel_shape_->gpu_data(), this->blob_pad_->gpu_data(), + this->blob_stride_->gpu_data(), this->blob_dilation_->gpu_data(), + top_data_gpu + this->blob_top_->offset(n)); + CUDA_POST_KERNEL_CHECK; + } + + // Compare results against CPU version + for (int i = 0; i < this->blob_top_->count(); ++i) { + TypeParam cpuval = top_data_cpu[i]; + TypeParam gpuval = this->blob_top_->cpu_data()[i]; + EXPECT_EQ(cpuval, gpuval); + if (cpuval != gpuval) { + break; + } + } + } +} + } // namespace caffe diff --git a/src/caffe/test/test_im2col_layer.cpp b/src/caffe/test/test_im2col_layer.cpp index f50abe103..a7faf18f9 100644 --- a/src/caffe/test/test_im2col_layer.cpp +++ b/src/caffe/test/test_im2col_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/im2col_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -21,6 +20,7 @@ class Im2colLayerTest : public MultiDeviceTest { : blob_bottom_(new Blob(2, 3, 6, 5)), blob_top_(new Blob()) { // fill the values + Caffe::set_random_seed(1701); FillerParameter filler_param; GaussianFiller filler(filler_param); filler.Fill(this->blob_bottom_); @@ -41,14 +41,21 @@ TYPED_TEST(Im2colLayerTest, TestSetup) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + vector bottom_shape; + bottom_shape.push_back(2); + bottom_shape.push_back(3); + bottom_shape.push_back(10); + bottom_shape.push_back(11); + this->blob_bottom_->Reshape(bottom_shape); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->add_dilation(3); Im2colLayer layer(layer_param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); EXPECT_EQ(this->blob_top_->num(), 2); EXPECT_EQ(this->blob_top_->channels(), 27); EXPECT_EQ(this->blob_top_->height(), 2); - EXPECT_EQ(this->blob_top_->width(), 2); + EXPECT_EQ(this->blob_top_->width(), 3); } TYPED_TEST(Im2colLayerTest, TestForward) { @@ -56,8 +63,8 @@ TYPED_TEST(Im2colLayerTest, TestForward) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); Im2colLayer layer(layer_param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); @@ -73,14 +80,68 @@ TYPED_TEST(Im2colLayerTest, TestGradient) { LayerParameter layer_param; ConvolutionParameter* convolution_param = layer_param.mutable_convolution_param(); - convolution_param->set_kernel_size(3); - convolution_param->set_stride(2); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); Im2colLayer layer(layer_param); GradientChecker checker(1e-2, 1e-2); checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, this->blob_top_vec_); } +TYPED_TEST(Im2colLayerTest, TestDilatedGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + vector bottom_shape; + bottom_shape.push_back(2); + bottom_shape.push_back(3); + bottom_shape.push_back(10); + bottom_shape.push_back(9); + this->blob_bottom_->Reshape(bottom_shape); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->add_dilation(3); + Im2colLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(Im2colLayerTest, TestGradientForceND) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->set_force_nd_im2col(true); + Im2colLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(Im2colLayerTest, TestDilatedGradientForceND) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ConvolutionParameter* convolution_param = + layer_param.mutable_convolution_param(); + vector bottom_shape; + bottom_shape.push_back(2); + bottom_shape.push_back(3); + bottom_shape.push_back(10); + bottom_shape.push_back(9); + this->blob_bottom_->Reshape(bottom_shape); + convolution_param->add_kernel_size(3); + convolution_param->add_stride(2); + convolution_param->add_dilation(3); + convolution_param->set_force_nd_im2col(true); + Im2colLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} TYPED_TEST(Im2colLayerTest, TestRect) { typedef typename TypeParam::Dtype Dtype; @@ -89,7 +150,7 @@ TYPED_TEST(Im2colLayerTest, TestRect) { layer_param.mutable_convolution_param(); convolution_param->set_kernel_h(5); convolution_param->set_kernel_w(3); - convolution_param->set_stride(2); + convolution_param->add_stride(2); Im2colLayer layer(layer_param); layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); @@ -100,7 +161,6 @@ TYPED_TEST(Im2colLayerTest, TestRect) { } } - TYPED_TEST(Im2colLayerTest, TestRectGradient) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; @@ -108,7 +168,7 @@ TYPED_TEST(Im2colLayerTest, TestRectGradient) { layer_param.mutable_convolution_param(); convolution_param->set_kernel_h(5); convolution_param->set_kernel_w(3); - convolution_param->set_stride(2); + convolution_param->add_stride(2); Im2colLayer layer(layer_param); GradientChecker checker(1e-2, 1e-2); checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, diff --git a/src/caffe/test/test_image_data_layer.cpp b/src/caffe/test/test_image_data_layer.cpp index 931a5ebf1..ce5e0bc62 100644 --- a/src/caffe/test/test_image_data_layer.cpp +++ b/src/caffe/test/test_image_data_layer.cpp @@ -1,3 +1,4 @@ +#ifdef USE_OPENCV #include #include #include @@ -7,9 +8,9 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/image_data_layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/io.hpp" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -33,16 +34,24 @@ class ImageDataLayerTest : public MultiDeviceTest { std::ofstream outfile(filename_.c_str(), std::ofstream::out); LOG(INFO) << "Using temporary file " << filename_; for (int i = 0; i < 5; ++i) { - outfile << EXAMPLES_SOURCE_DIR "images/cat.jpg " << i; + outfile << EXAMPLES_SOURCE_DIR "images/cat.jpg " << i << std::endl; } outfile.close(); // Create test input file for images of distinct sizes. MakeTempFilename(&filename_reshape_); std::ofstream reshapefile(filename_reshape_.c_str(), std::ofstream::out); LOG(INFO) << "Using temporary file " << filename_reshape_; - reshapefile << EXAMPLES_SOURCE_DIR "images/cat.jpg " << 0; - reshapefile << EXAMPLES_SOURCE_DIR "images/fish-bike.jpg " << 1; + reshapefile << EXAMPLES_SOURCE_DIR "images/cat.jpg " << 0 << std::endl; + reshapefile << EXAMPLES_SOURCE_DIR "images/fish-bike.jpg " << 1 + << std::endl; reshapefile.close(); + // Create test input file for images with space in names + MakeTempFilename(&filename_space_); + std::ofstream spacefile(filename_space_.c_str(), std::ofstream::out); + LOG(INFO) << "Using temporary file " << filename_space_; + spacefile << EXAMPLES_SOURCE_DIR "images/cat.jpg " << 0 << std::endl; + spacefile << EXAMPLES_SOURCE_DIR "images/cat gray.jpg " << 1 << std::endl; + spacefile.close(); } virtual ~ImageDataLayerTest() { @@ -53,6 +62,7 @@ class ImageDataLayerTest : public MultiDeviceTest { int seed_; string filename_; string filename_reshape_; + string filename_space_; Blob* const blob_top_data_; Blob* const blob_top_label_; vector*> blob_bottom_vec_; @@ -176,4 +186,34 @@ TYPED_TEST(ImageDataLayerTest, TestShuffle) { } } +TYPED_TEST(ImageDataLayerTest, TestSpace) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter param; + ImageDataParameter* image_data_param = param.mutable_image_data_param(); + image_data_param->set_batch_size(1); + image_data_param->set_source(this->filename_space_.c_str()); + image_data_param->set_shuffle(false); + ImageDataLayer layer(param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_label_->num(), 1); + EXPECT_EQ(this->blob_top_label_->channels(), 1); + EXPECT_EQ(this->blob_top_label_->height(), 1); + EXPECT_EQ(this->blob_top_label_->width(), 1); + // cat.jpg + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_data_->num(), 1); + EXPECT_EQ(this->blob_top_data_->channels(), 3); + EXPECT_EQ(this->blob_top_data_->height(), 360); + EXPECT_EQ(this->blob_top_data_->width(), 480); + EXPECT_EQ(this->blob_top_label_->cpu_data()[0], 0); + // cat gray.jpg + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(this->blob_top_data_->num(), 1); + EXPECT_EQ(this->blob_top_data_->channels(), 3); + EXPECT_EQ(this->blob_top_data_->height(), 360); + EXPECT_EQ(this->blob_top_data_->width(), 480); + EXPECT_EQ(this->blob_top_label_->cpu_data()[0], 1); +} + } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/test/test_infogain_loss_layer.cpp b/src/caffe/test/test_infogain_loss_layer.cpp index 7ec2f8073..34f21271a 100644 --- a/src/caffe/test/test_infogain_loss_layer.cpp +++ b/src/caffe/test/test_infogain_loss_layer.cpp @@ -1,6 +1,4 @@ -#include -#include -#include +#include #include #include "gtest/gtest.h" @@ -8,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/loss_layers.hpp" +#include "caffe/layers/infogain_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -21,17 +19,22 @@ class InfogainLossLayerTest : public MultiDeviceTest { protected: InfogainLossLayerTest() - : blob_bottom_data_(new Blob(10, 5, 1, 1)), - blob_bottom_label_(new Blob(10, 1, 1, 1)), + : blob_bottom_data_(new Blob(4, 2, 5, 2)), + blob_bottom_label_(new Blob(4, 2, 1, 2)), blob_bottom_infogain_(new Blob(1, 1, 5, 5)), - blob_top_loss_(new Blob()) { + blob_top_loss_(new Blob()), + blob_top_prob_(new Blob()), + inner_(2), outer_(4*2), num_labels_(5) { Caffe::set_random_seed(1701); FillerParameter filler_param; - PositiveUnitballFiller filler(filler_param); + filler_param.set_min(-0.5); + filler_param.set_max(2.0); + UniformFiller filler(filler_param); filler.Fill(this->blob_bottom_data_); blob_bottom_vec_.push_back(blob_bottom_data_); for (int i = 0; i < blob_bottom_label_->count(); ++i) { - blob_bottom_label_->mutable_cpu_data()[i] = caffe_rng_rand() % 5; + blob_bottom_label_->mutable_cpu_data()[i] = + caffe_rng_rand() % num_labels_; } blob_bottom_vec_.push_back(blob_bottom_label_); filler_param.set_min(0.1); @@ -40,29 +43,94 @@ class InfogainLossLayerTest : public MultiDeviceTest { infogain_filler.Fill(this->blob_bottom_infogain_); blob_bottom_vec_.push_back(blob_bottom_infogain_); blob_top_vec_.push_back(blob_top_loss_); + blob_top_vec_.push_back(blob_top_prob_); } virtual ~InfogainLossLayerTest() { delete blob_bottom_data_; delete blob_bottom_label_; delete blob_bottom_infogain_; delete blob_top_loss_; + delete blob_top_prob_; } Blob* const blob_bottom_data_; Blob* const blob_bottom_label_; Blob* const blob_bottom_infogain_; Blob* const blob_top_loss_; + Blob* const blob_top_prob_; vector*> blob_bottom_vec_; vector*> blob_top_vec_; + int inner_, outer_, num_labels_; }; TYPED_TEST_CASE(InfogainLossLayerTest, TestDtypesAndDevices); +TYPED_TEST(InfogainLossLayerTest, TestInfogainLoss) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + layer_param.mutable_infogain_loss_param()->set_axis(2); + layer_param.clear_loss_weight(); + layer_param.add_loss_weight(1); + layer_param.add_loss_weight(0); + /*vector* lw = layer_param.mutable_loss_weight(); + lw->clear(); + lw->push_back(1); + lw->push_back(1);*/ + InfogainLossLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Now, check values + const Dtype* data = this->blob_bottom_vec_[0]->cpu_data(); + const Dtype* prob = this->blob_top_vec_[1]->cpu_data(); + const Dtype* labels = this->blob_bottom_vec_[1]->cpu_data(); + const Dtype* H = this->blob_bottom_vec_[2]->cpu_data(); + // first. test the prob top + CHECK_EQ(this->blob_bottom_vec_[0]->num_axes(), + this->blob_top_vec_[1]->num_axes()) + << "prob top shape not match bottom data"; + for (int ai = 0 ; ai < this->blob_bottom_vec_[0]->num_axes(); ai++) { + CHECK_EQ(this->blob_bottom_vec_[0]->shape(ai), + this->blob_top_vec_[1]->shape(ai)) + << "prob top shape not match bottom data"; + } + vector est_prob(this->num_labels_, 0); + for ( int i = 0 ; i < this->outer_; i++ ) { + for ( int j = 0; j < this->inner_; j++ ) { + Dtype den = 0; + for ( int l = 0; l < this->num_labels_; l++ ) { + est_prob[l] = std::exp( + data[i*this->num_labels_*this->inner_ + l*this->inner_ + j]); + den += est_prob[l]; + } + for ( int l = 0; l < this->num_labels_; l++ ) { + EXPECT_NEAR(prob[i*this->num_labels_*this->inner_ + l*this->inner_ + j], + est_prob[l]/den, 1e-6); + } + } + } + Dtype loss = 0; // loss from prob top + for ( int i = 0 ; i < this->outer_; i++ ) { + for ( int j = 0; j < this->inner_; j++ ) { + int gt = static_cast(labels[i*this->inner_+j]); + for ( int l = 0; l < this->num_labels_; l++ ) { + loss -= H[gt*this->num_labels_ + l] * + log(std::max( + prob[i*this->num_labels_*this->inner_ + l*this->inner_ + j], + Dtype(kLOG_THRESHOLD))); + } + } + } + EXPECT_NEAR(this->blob_top_loss_->cpu_data()[0], + loss/(this->outer_*this->inner_), 1e-6); +} TYPED_TEST(InfogainLossLayerTest, TestGradient) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; + layer_param.mutable_infogain_loss_param()->set_axis(2); InfogainLossLayer layer(layer_param); - GradientChecker checker(1e-4, 2e-2, 1701, 1, 0.01); + this->blob_top_vec_.clear(); // ignore prob top. + this->blob_top_vec_.push_back(this->blob_top_loss_); + GradientChecker checker(1e-4, 2e-2, 1701); // no "kink" checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, this->blob_top_vec_, 0); } diff --git a/src/caffe/test/test_inner_product_layer.cpp b/src/caffe/test/test_inner_product_layer.cpp index fbf0c8512..6d84d292b 100644 --- a/src/caffe/test/test_inner_product_layer.cpp +++ b/src/caffe/test/test_inner_product_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/inner_product_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -61,6 +60,50 @@ TYPED_TEST(InnerProductLayerTest, TestSetUp) { EXPECT_EQ(this->blob_top_->channels(), 10); } +/** @brief TestSetUp while toggling transpose flag + */ +TYPED_TEST(InnerProductLayerTest, TestSetUpTransposeFalse) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_); + LayerParameter layer_param; + InnerProductParameter* inner_product_param = + layer_param.mutable_inner_product_param(); + inner_product_param->set_num_output(10); + inner_product_param->set_transpose(false); + shared_ptr > layer( + new InnerProductLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(2, this->blob_top_->num()); + EXPECT_EQ(1, this->blob_top_->height()); + EXPECT_EQ(1, this->blob_top_->width()); + EXPECT_EQ(10, this->blob_top_->channels()); + EXPECT_EQ(2, layer->blobs()[0]->num_axes()); + EXPECT_EQ(10, layer->blobs()[0]->shape(0)); + EXPECT_EQ(60, layer->blobs()[0]->shape(1)); +} + +/** @brief TestSetUp while toggling transpose flag + */ +TYPED_TEST(InnerProductLayerTest, TestSetUpTransposeTrue) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_); + LayerParameter layer_param; + InnerProductParameter* inner_product_param = + layer_param.mutable_inner_product_param(); + inner_product_param->set_num_output(10); + inner_product_param->set_transpose(true); + shared_ptr > layer( + new InnerProductLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(2, this->blob_top_->num()); + EXPECT_EQ(1, this->blob_top_->height()); + EXPECT_EQ(1, this->blob_top_->width()); + EXPECT_EQ(10, this->blob_top_->channels()); + EXPECT_EQ(2, layer->blobs()[0]->num_axes()); + EXPECT_EQ(60, layer->blobs()[0]->shape(0)); + EXPECT_EQ(10, layer->blobs()[0]->shape(1)); +} + TYPED_TEST(InnerProductLayerTest, TestForward) { typedef typename TypeParam::Dtype Dtype; this->blob_bottom_vec_.push_back(this->blob_bottom_); @@ -92,6 +135,79 @@ TYPED_TEST(InnerProductLayerTest, TestForward) { } } +/** + * @brief Init. an IP layer without transpose + random weights, + * run Forward, save the result. + * Init. another IP layer with transpose. + * manually copy and transpose the weights from the first IP layer, + * then run Forward on the same input and check that the result is the same + */ +TYPED_TEST(InnerProductLayerTest, TestForwardTranspose) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_); + bool IS_VALID_CUDA = false; +#ifndef CPU_ONLY + IS_VALID_CUDA = CAFFE_TEST_CUDA_PROP.major >= 2; +#endif + if (Caffe::mode() == Caffe::CPU || + sizeof(Dtype) == 4 || IS_VALID_CUDA) { + LayerParameter layer_param; + InnerProductParameter* inner_product_param = + layer_param.mutable_inner_product_param(); + inner_product_param->set_num_output(10); + inner_product_param->mutable_weight_filler()->set_type("uniform"); + inner_product_param->mutable_bias_filler()->set_type("uniform"); + inner_product_param->mutable_bias_filler()->set_min(1); + inner_product_param->mutable_bias_filler()->set_max(2); + inner_product_param->set_transpose(false); + shared_ptr > layer( + new InnerProductLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const int count = this->blob_top_->count(); + Blob* const top = new Blob(); + top->ReshapeLike(*this->blob_top_); + caffe_copy(count, this->blob_top_->cpu_data(), top->mutable_cpu_data()); + this->blob_top_vec_.clear(); + this->blob_top_vec_.push_back(new Blob()); + inner_product_param->set_transpose(true); + shared_ptr > ip_t( + new InnerProductLayer(layer_param)); + ip_t->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + const int count_w = layer->blobs()[0]->count(); + EXPECT_EQ(count_w, ip_t->blobs()[0]->count()); + // manually copy and transpose the weights from 1st IP layer into 2nd + const Dtype* w = layer->blobs()[0]->cpu_data(); + Dtype* w_t = ip_t->blobs()[0]->mutable_cpu_data(); + const int width = layer->blobs()[0]->shape(1); + const int width_t = ip_t->blobs()[0]->shape(1); + for (int i = 0; i < count_w; ++i) { + int r = i / width; + int c = i % width; + w_t[c*width_t+r] = w[r*width+c]; // copy while transposing + } + // copy bias from 1st IP layer to 2nd IP layer + ASSERT_EQ(layer->blobs()[1]->count(), ip_t->blobs()[1]->count()); + caffe_copy(layer->blobs()[1]->count(), layer->blobs()[1]->cpu_data(), + ip_t->blobs()[1]->mutable_cpu_data()); + ip_t->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + EXPECT_EQ(count, this->blob_top_->count()) + << "Invalid count for top blob for IP with transpose."; + Blob* const top_t = new Blob();\ + top_t->ReshapeLike(*this->blob_top_vec_[0]); + caffe_copy(count, + this->blob_top_vec_[0]->cpu_data(), + top_t->mutable_cpu_data()); + const Dtype* data = top->cpu_data(); + const Dtype* data_t = top_t->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_FLOAT_EQ(data[i], data_t[i]); + } + } else { + LOG(ERROR) << "Skipping test due to old architecture."; + } +} + TYPED_TEST(InnerProductLayerTest, TestForwardNoBatch) { typedef typename TypeParam::Dtype Dtype; this->blob_bottom_vec_.push_back(this->blob_bottom_nobatch_); @@ -149,4 +265,127 @@ TYPED_TEST(InnerProductLayerTest, TestGradient) { } } +TYPED_TEST(InnerProductLayerTest, TestGradientTranspose) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_); + bool IS_VALID_CUDA = false; +#ifndef CPU_ONLY + IS_VALID_CUDA = CAFFE_TEST_CUDA_PROP.major >= 2; +#endif + if (Caffe::mode() == Caffe::CPU || + sizeof(Dtype) == 4 || IS_VALID_CUDA) { + LayerParameter layer_param; + InnerProductParameter* inner_product_param = + layer_param.mutable_inner_product_param(); + inner_product_param->set_num_output(11); + inner_product_param->mutable_weight_filler()->set_type("gaussian"); + inner_product_param->mutable_bias_filler()->set_type("gaussian"); + inner_product_param->mutable_bias_filler()->set_min(1); + inner_product_param->mutable_bias_filler()->set_max(2); + inner_product_param->set_transpose(true); + InnerProductLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); + } else { + LOG(ERROR) << "Skipping test due to old architecture."; + } +} + +TYPED_TEST(InnerProductLayerTest, TestBackwardTranspose) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_); + bool IS_VALID_CUDA = false; +#ifndef CPU_ONLY + IS_VALID_CUDA = CAFFE_TEST_CUDA_PROP.major >= 2; +#endif + if (Caffe::mode() == Caffe::CPU || + sizeof(Dtype) == 4 || IS_VALID_CUDA) { + LayerParameter layer_param; + InnerProductParameter* inner_product_param = + layer_param.mutable_inner_product_param(); + inner_product_param->set_num_output(10); + inner_product_param->mutable_weight_filler()->set_type("uniform"); + inner_product_param->mutable_bias_filler()->set_type("uniform"); + inner_product_param->mutable_bias_filler()->set_min(1); + inner_product_param->mutable_bias_filler()->set_max(2); + inner_product_param->set_transpose(false); + shared_ptr > layer( + new InnerProductLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // copy top blob + Blob* const top = new Blob(); + top->CopyFrom(*this->blob_top_, false, true); + // fake top diff + Blob* const diff = new Blob(); + diff->ReshapeLike(*this->blob_top_); + { + FillerParameter filler_param; + UniformFiller filler(filler_param); + filler.Fill(diff); + } + caffe_copy(this->blob_top_vec_[0]->count(), + diff->cpu_data(), + this->blob_top_vec_[0]->mutable_cpu_diff()); + vector propagate_down(1, true); + layer->Backward(this->blob_top_vec_, + propagate_down, + this->blob_bottom_vec_); + // copy first ip's weights and their diffs + Blob* const w = new Blob(); + w->CopyFrom(*layer->blobs()[0], false, true); + w->CopyFrom(*layer->blobs()[0], true, true); + // copy bottom diffs + Blob* const bottom_diff = new Blob(); + bottom_diff->CopyFrom(*this->blob_bottom_vec_[0], true, true); + // repeat original top with transposed ip + this->blob_top_vec_.clear(); + this->blob_top_vec_.push_back(new Blob()); + inner_product_param->set_transpose(true); + shared_ptr > ip_t( + new InnerProductLayer(layer_param)); + ip_t->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + // manually copy and transpose the weights from 1st IP layer into 2nd + { + const Dtype* w_src = w->cpu_data(); + Dtype* w_t = ip_t->blobs()[0]->mutable_cpu_data(); + const int width = layer->blobs()[0]->shape(1); + const int width_t = ip_t->blobs()[0]->shape(1); + for (int i = 0; i < layer->blobs()[0]->count(); ++i) { + int r = i / width; + int c = i % width; + w_t[c*width_t+r] = w_src[r*width+c]; // copy while transposing + } + // copy bias from 1st IP layer to 2nd IP layer + ASSERT_EQ(layer->blobs()[1]->count(), ip_t->blobs()[1]->count()); + caffe_copy(layer->blobs()[1]->count(), layer->blobs()[1]->cpu_data(), + ip_t->blobs()[1]->mutable_cpu_data()); + } + ip_t->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(this->blob_top_vec_[0]->count(), + diff->cpu_data(), + this->blob_top_vec_[0]->mutable_cpu_diff()); + ip_t->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const Dtype* data = w->cpu_diff(); + const Dtype* data_t = ip_t->blobs()[0]->cpu_diff(); + const int WIDTH = layer->blobs()[0]->shape(1); + const int WIDTH_T = ip_t->blobs()[0]->shape(1); + for (int i = 0; i < layer->blobs()[0]->count(); ++i) { + int r = i / WIDTH; + int c = i % WIDTH; + EXPECT_NE(Dtype(0.), data[r*WIDTH+c]); + EXPECT_FLOAT_EQ(data[r*WIDTH+c], data_t[c*WIDTH_T+r]); + } + data = bottom_diff->cpu_diff(); + data_t = this->blob_bottom_vec_[0]->cpu_diff(); + for (int i = 0; i < this->blob_bottom_vec_[0]->count(); ++i) { + EXPECT_NE(Dtype(0.), data[i]); + EXPECT_FLOAT_EQ(data[i], data_t[i]); + } + } else { + LOG(ERROR) << "Skipping test due to old architecture."; + } +} + } // namespace caffe diff --git a/src/caffe/test/test_io.cpp b/src/caffe/test/test_io.cpp index 4ab96311b..c2c919e90 100644 --- a/src/caffe/test/test_io.cpp +++ b/src/caffe/test/test_io.cpp @@ -1,3 +1,4 @@ +#ifdef USE_OPENCV #include #include #include @@ -420,3 +421,4 @@ TEST_F(IOTest, TestDecodeDatumToCVMatContentNative) { } } // namespace caffe +#endif // USE_OPENCV diff --git a/src/caffe/test/test_layer_factory.cpp b/src/caffe/test/test_layer_factory.cpp index c86fafd00..7d5d39d8b 100644 --- a/src/caffe/test/test_layer_factory.cpp +++ b/src/caffe/test/test_layer_factory.cpp @@ -31,12 +31,16 @@ TYPED_TEST(LayerFactoryTest, TestCreateLayer) { LayerParameter layer_param; // Data layers expect a DB if (iter->first == "Data") { +#ifdef USE_LEVELDB string tmp; MakeTempDir(&tmp); boost::scoped_ptr db(db::GetDB(DataParameter_DB_LEVELDB)); db->Open(tmp, db::NEW); db->Close(); layer_param.mutable_data_param()->set_source(tmp); +#else + continue; +#endif // USE_LEVELDB } layer_param.set_type(iter->first); layer = LayerRegistry::CreateLayer(layer_param); diff --git a/src/caffe/test/test_lrn_layer.cpp b/src/caffe/test/test_lrn_layer.cpp index c4e2f8ea7..4c97b1ae0 100644 --- a/src/caffe/test/test_lrn_layer.cpp +++ b/src/caffe/test/test_lrn_layer.cpp @@ -1,5 +1,4 @@ #include -#include #include #include "gtest/gtest.h" @@ -7,7 +6,12 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/lrn_layer.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_lcn_layer.hpp" +#include "caffe/layers/cudnn_lrn_layer.hpp" +#endif #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -246,5 +250,201 @@ TYPED_TEST(LRNLayerTest, TestGradientWithinChannel) { this->blob_top_vec_); } +#ifdef USE_CUDNN +template +class CuDNNLRNLayerTest : public GPUDeviceTest { + protected: + CuDNNLRNLayerTest() + : epsilon_(Dtype(1e-5)), + blob_bottom_(new Blob()), + blob_top_(new Blob()) {} + virtual void SetUp() { + Caffe::set_random_seed(1701); + blob_bottom_->Reshape(2, 7, 3, 3); + // fill the values + FillerParameter filler_param; + GaussianFiller filler(filler_param); + filler.Fill(this->blob_bottom_); + blob_bottom_vec_.push_back(blob_bottom_); + blob_top_vec_.push_back(blob_top_); + } + virtual ~CuDNNLRNLayerTest() { delete blob_bottom_; delete blob_top_; } + void ReferenceLRNForward(const Blob& blob_bottom, + const LayerParameter& layer_param, Blob* blob_top); + + Dtype epsilon_; + Blob* const blob_bottom_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; +}; + +template +void CuDNNLRNLayerTest::ReferenceLRNForward( + const Blob& blob_bottom, const LayerParameter& layer_param, + Blob* blob_top) { + typedef TypeParam Dtype; + blob_top->Reshape(blob_bottom.num(), blob_bottom.channels(), + blob_bottom.height(), blob_bottom.width()); + Dtype* top_data = blob_top->mutable_cpu_data(); + LRNParameter lrn_param = layer_param.lrn_param(); + Dtype alpha = lrn_param.alpha(); + Dtype beta = lrn_param.beta(); + int size = lrn_param.local_size(); + switch (lrn_param.norm_region()) { + case LRNParameter_NormRegion_ACROSS_CHANNELS: + for (int n = 0; n < blob_bottom.num(); ++n) { + for (int c = 0; c < blob_bottom.channels(); ++c) { + for (int h = 0; h < blob_bottom.height(); ++h) { + for (int w = 0; w < blob_bottom.width(); ++w) { + int c_start = c - (size - 1) / 2; + int c_end = min(c_start + size, blob_bottom.channels()); + c_start = max(c_start, 0); + Dtype scale = 1.; + for (int i = c_start; i < c_end; ++i) { + Dtype value = blob_bottom.data_at(n, i, h, w); + scale += value * value * alpha / size; + } + *(top_data + blob_top->offset(n, c, h, w)) = + blob_bottom.data_at(n, c, h, w) / pow(scale, beta); + } + } + } + } + break; + case LRNParameter_NormRegion_WITHIN_CHANNEL: + for (int n = 0; n < blob_bottom.num(); ++n) { + for (int c = 0; c < blob_bottom.channels(); ++c) { + for (int h = 0; h < blob_bottom.height(); ++h) { + int h_start = h - (size - 1) / 2; + int h_end = min(h_start + size, blob_bottom.height()); + h_start = max(h_start, 0); + for (int w = 0; w < blob_bottom.width(); ++w) { + Dtype scale = 1.; + int w_start = w - (size - 1) / 2; + int w_end = min(w_start + size, blob_bottom.width()); + w_start = max(w_start, 0); + for (int nh = h_start; nh < h_end; ++nh) { + for (int nw = w_start; nw < w_end; ++nw) { + Dtype value = blob_bottom.data_at(n, c, nh, nw); + scale += value * value * alpha / (size * size); + } + } + *(top_data + blob_top->offset(n, c, h, w)) = + blob_bottom.data_at(n, c, h, w) / pow(scale, beta); + } + } + } + } + break; + default: + LOG(FATAL) << "Unknown normalization region."; + } +} + +TYPED_TEST_CASE(CuDNNLRNLayerTest, TestDtypes); + +TYPED_TEST(CuDNNLRNLayerTest, TestForwardAcrossChannelsCuDNN) { + // typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + CuDNNLRNLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + Blob top_reference; + this->ReferenceLRNForward(*(this->blob_bottom_), layer_param, + &top_reference); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(this->blob_top_->cpu_data()[i], top_reference.cpu_data()[i], + this->epsilon_); + } +} + +TYPED_TEST(CuDNNLRNLayerTest, TestForwardAcrossChannelsLargeRegionCuDNN) { + typedef TypeParam Dtype; + LayerParameter layer_param; + layer_param.mutable_lrn_param()->set_local_size(15); + CuDNNLRNLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + Blob top_reference; + this->ReferenceLRNForward(*(this->blob_bottom_), layer_param, + &top_reference); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(this->blob_top_->cpu_data()[i], top_reference.cpu_data()[i], + this->epsilon_); + } +} + +TYPED_TEST(CuDNNLRNLayerTest, TestGradientAcrossChannelsCuDNN) { + typedef TypeParam Dtype; + LayerParameter layer_param; + CuDNNLRNLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->count(); ++i) { + this->blob_top_->mutable_cpu_diff()[i] = 1.; + } + vector propagate_down(this->blob_bottom_vec_.size(), true); + layer.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(CuDNNLRNLayerTest, TestForwardWithinChannel) { + typedef TypeParam Dtype; + LayerParameter layer_param; + layer_param.mutable_lrn_param()->set_norm_region( + LRNParameter_NormRegion_WITHIN_CHANNEL); + layer_param.mutable_lrn_param()->set_local_size(3); + CuDNNLCNLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + Blob top_reference; + this->ReferenceLRNForward(*(this->blob_bottom_), layer_param, + &top_reference); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(this->blob_top_->cpu_data()[i], top_reference.cpu_data()[i], + this->epsilon_); + } +} + +TYPED_TEST(CuDNNLRNLayerTest, TestGradientWithinChannel) { + typedef TypeParam Dtype; + LayerParameter layer_param; + layer_param.mutable_lrn_param()->set_norm_region( + LRNParameter_NormRegion_WITHIN_CHANNEL); + layer_param.mutable_lrn_param()->set_local_size(3); + CuDNNLCNLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->count(); ++i) { + this->blob_top_->mutable_cpu_diff()[i] = 1.; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(CuDNNLRNLayerTest, TestGradientAcrossChannelsLargeRegionCuDNN) { + typedef TypeParam Dtype; + LayerParameter layer_param; + layer_param.mutable_lrn_param()->set_local_size(15); + CuDNNLRNLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-2); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < this->blob_top_->count(); ++i) { + this->blob_top_->mutable_cpu_diff()[i] = 1.; + } + vector propagate_down(this->blob_bottom_vec_.size(), true); + layer.Backward(this->blob_top_vec_, propagate_down, + this->blob_bottom_vec_); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +#endif } // namespace caffe diff --git a/src/caffe/test/test_lstm_layer.cpp b/src/caffe/test/test_lstm_layer.cpp new file mode 100644 index 000000000..51905baaf --- /dev/null +++ b/src/caffe/test/test_lstm_layer.cpp @@ -0,0 +1,288 @@ +#include +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/lstm_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class LSTMLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + LSTMLayerTest() : num_output_(7) { + blob_bottom_vec_.push_back(&blob_bottom_); + blob_bottom_vec_.push_back(&blob_bottom_cont_); + blob_top_vec_.push_back(&blob_top_); + unit_blob_bottom_vec_.push_back(&unit_blob_bottom_c_prev_); + unit_blob_bottom_vec_.push_back(&unit_blob_bottom_x_); + unit_blob_bottom_vec_.push_back(&unit_blob_bottom_cont_); + unit_blob_top_vec_.push_back(&unit_blob_top_c_); + unit_blob_top_vec_.push_back(&unit_blob_top_h_); + + ReshapeBlobs(1, 3); + + layer_param_.mutable_recurrent_param()->set_num_output(num_output_); + FillerParameter* weight_filler = + layer_param_.mutable_recurrent_param()->mutable_weight_filler(); + weight_filler->set_type("gaussian"); + weight_filler->set_std(0.2); + FillerParameter* bias_filler = + layer_param_.mutable_recurrent_param()->mutable_bias_filler(); + bias_filler->set_type("gaussian"); + bias_filler->set_std(0.1); + + layer_param_.set_phase(TEST); + } + + void ReshapeBlobs(int num_timesteps, int num_instances) { + blob_bottom_.Reshape(num_timesteps, num_instances, 3, 2); + blob_bottom_static_.Reshape(num_instances, 2, 3, 4); + vector shape(2); + shape[0] = num_timesteps; + shape[1] = num_instances; + blob_bottom_cont_.Reshape(shape); + shape.push_back(num_output_); + + shape[0] = 1; shape[1] = num_instances; shape[2] = 4 * num_output_; + unit_blob_bottom_x_.Reshape(shape); + shape[0] = 1; shape[1] = num_instances; shape[2] = num_output_; + unit_blob_bottom_c_prev_.Reshape(shape); + shape.resize(2); + shape[0] = 1; shape[1] = num_instances; + unit_blob_bottom_cont_.Reshape(shape); + + FillerParameter filler_param; + filler_param.set_min(-1); + filler_param.set_max(1); + UniformFiller filler(filler_param); + filler.Fill(&blob_bottom_); + filler.Fill(&unit_blob_bottom_c_prev_); + filler.Fill(&unit_blob_bottom_x_); + } + + int num_output_; + LayerParameter layer_param_; + Blob blob_bottom_; + Blob blob_bottom_cont_; + Blob blob_bottom_static_; + Blob blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; + + Blob unit_blob_bottom_cont_; + Blob unit_blob_bottom_c_prev_; + Blob unit_blob_bottom_x_; + Blob unit_blob_top_c_; + Blob unit_blob_top_h_; + vector*> unit_blob_bottom_vec_; + vector*> unit_blob_top_vec_; +}; + +TYPED_TEST_CASE(LSTMLayerTest, TestDtypesAndDevices); + +TYPED_TEST(LSTMLayerTest, TestSetUp) { + typedef typename TypeParam::Dtype Dtype; + LSTMLayer layer(this->layer_param_); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + vector expected_top_shape = this->blob_bottom_.shape(); + expected_top_shape.resize(3); + expected_top_shape[2] = this->num_output_; + EXPECT_TRUE(this->blob_top_.shape() == expected_top_shape); +} + +TYPED_TEST(LSTMLayerTest, TestForward) { + typedef typename TypeParam::Dtype Dtype; + const int kNumTimesteps = 3; + const int num = this->blob_bottom_.shape(1); + this->ReshapeBlobs(kNumTimesteps, num); + + // Fill the cont blob with <0, 1, 1, ..., 1>, + // indicating a sequence that begins at the first timestep + // then continues for the rest of the sequence. + for (int t = 0; t < kNumTimesteps; ++t) { + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[t * num + n] = t > 0; + } + } + + // Process the full sequence in a single batch. + FillerParameter filler_param; + filler_param.set_mean(0); + filler_param.set_std(1); + GaussianFiller sequence_filler(filler_param); + Caffe::set_random_seed(1); + sequence_filler.Fill(&this->blob_bottom_); + shared_ptr > layer(new LSTMLayer(this->layer_param_)); + Caffe::set_random_seed(1701); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + LOG(INFO) << "Calling forward for full sequence LSTM"; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + // Copy the inputs and outputs to reuse/check them later. + Blob bottom_copy(this->blob_bottom_.shape()); + bottom_copy.CopyFrom(this->blob_bottom_); + Blob top_copy(this->blob_top_.shape()); + top_copy.CopyFrom(this->blob_top_); + + // Process the batch one timestep at a time; + // check that we get the same result. + this->ReshapeBlobs(1, num); + layer.reset(new LSTMLayer(this->layer_param_)); + Caffe::set_random_seed(1701); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + const int bottom_count = this->blob_bottom_.count(); + const int top_count = this->blob_top_.count(); + const Dtype kEpsilon = 1e-5; + for (int t = 0; t < kNumTimesteps; ++t) { + caffe_copy(bottom_count, bottom_copy.cpu_data() + t * bottom_count, + this->blob_bottom_.mutable_cpu_data()); + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[n] = t > 0; + } + LOG(INFO) << "Calling forward for LSTM timestep " << t; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < top_count; ++i) { + ASSERT_LT(t * top_count + i, top_copy.count()); + EXPECT_NEAR(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i], kEpsilon) + << "t = " << t << "; i = " << i; + } + } + + // Process the batch one timestep at a time with all cont blobs set to 0. + // Check that we get a different result, except in the first timestep. + Caffe::set_random_seed(1701); + layer.reset(new LSTMLayer(this->layer_param_)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int t = 0; t < kNumTimesteps; ++t) { + caffe_copy(bottom_count, bottom_copy.cpu_data() + t * bottom_count, + this->blob_bottom_.mutable_cpu_data()); + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[n] = 0; + } + LOG(INFO) << "Calling forward for LSTM timestep " << t; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < top_count; ++i) { + if (t == 0) { + EXPECT_NEAR(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i], kEpsilon) + << "t = " << t << "; i = " << i; + } else { + EXPECT_NE(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i]) + << "t = " << t << "; i = " << i; + } + } + } +} + +TYPED_TEST(LSTMLayerTest, TestLSTMUnitSetUp) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + LSTMUnitLayer layer(layer_param); + layer.SetUp(this->unit_blob_bottom_vec_, this->unit_blob_top_vec_); + const int num_axes = this->unit_blob_bottom_c_prev_.num_axes(); + ASSERT_EQ(num_axes, this->unit_blob_top_c_.num_axes()); + ASSERT_EQ(num_axes, this->unit_blob_top_h_.num_axes()); + for (int i = 0; i < num_axes; ++i) { + EXPECT_EQ(this->unit_blob_bottom_c_prev_.shape(i), + this->unit_blob_top_c_.shape(i)); + EXPECT_EQ(this->unit_blob_bottom_c_prev_.shape(i), + this->unit_blob_top_h_.shape(i)); + } +} + +TYPED_TEST(LSTMLayerTest, TestLSTMUnitGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + LSTMUnitLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + Dtype* cont_data = this->blob_bottom_cont_.mutable_cpu_data(); + cont_data[0] = 0; + cont_data[1] = 0; + cont_data[2] = 0; + checker.CheckGradientExhaustive(&layer, this->unit_blob_bottom_vec_, + this->unit_blob_top_vec_, 0); + checker.CheckGradientExhaustive(&layer, this->unit_blob_bottom_vec_, + this->unit_blob_top_vec_, 1); +} + +TYPED_TEST(LSTMLayerTest, TestLSTMUnitGradientNonZeroCont) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + LSTMUnitLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + Dtype* cont_data = this->blob_bottom_cont_.mutable_cpu_data(); + cont_data[0] = 1; + cont_data[1] = 0; + cont_data[2] = 1; + checker.CheckGradientExhaustive(&layer, this->unit_blob_bottom_vec_, + this->unit_blob_top_vec_, 0); + checker.CheckGradientExhaustive(&layer, this->unit_blob_bottom_vec_, + this->unit_blob_top_vec_, 1); +} + +TYPED_TEST(LSTMLayerTest, TestGradient) { + typedef typename TypeParam::Dtype Dtype; + LSTMLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(LSTMLayerTest, TestGradientNonZeroCont) { + typedef typename TypeParam::Dtype Dtype; + LSTMLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(LSTMLayerTest, TestGradientNonZeroContBufferSize2) { + typedef typename TypeParam::Dtype Dtype; + this->ReshapeBlobs(2, 2); + FillerParameter filler_param; + UniformFiller filler(filler_param); + filler.Fill(&this->blob_bottom_); + LSTMLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(LSTMLayerTest, TestGradientNonZeroContBufferSize2WithStaticInput) { + typedef typename TypeParam::Dtype Dtype; + this->ReshapeBlobs(2, 2); + FillerParameter filler_param; + UniformFiller filler(filler_param); + filler.Fill(&this->blob_bottom_); + filler.Fill(&this->blob_bottom_static_); + this->blob_bottom_vec_.push_back(&this->blob_bottom_static_); + LSTMLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 2); +} + + +} // namespace caffe diff --git a/src/caffe/test/test_math_functions.cpp b/src/caffe/test/test_math_functions.cpp index a095b544e..efc5a2784 100644 --- a/src/caffe/test/test_math_functions.cpp +++ b/src/caffe/test/test_math_functions.cpp @@ -1,8 +1,6 @@ #include // for uint32_t & uint64_t #include -#include #include // for std::fabs -#include // for rand_r #include "gtest/gtest.h" @@ -41,27 +39,6 @@ class MathFunctionsTest : public MultiDeviceTest { delete blob_top_; } - // http://en.wikipedia.org/wiki/Hamming_distance - int ReferenceHammingDistance(const int n, const Dtype* x, const Dtype* y) { - int dist = 0; - uint64_t val; - for (int i = 0; i < n; ++i) { - if (sizeof(Dtype) == 8) { - val = static_cast(x[i]) ^ static_cast(y[i]); - } else if (sizeof(Dtype) == 4) { - val = static_cast(x[i]) ^ static_cast(y[i]); - } else { - LOG(FATAL) << "Unrecognized Dtype size: " << sizeof(Dtype); - } - // Count the number of set bits - while (val) { - ++dist; - val &= val - 1; - } - } - return dist; - } - Blob* const blob_bottom_; Blob* const blob_top_; }; @@ -78,14 +55,6 @@ TYPED_TEST(CPUMathFunctionsTest, TestNothing) { // due to the set up overhead. } -TYPED_TEST(CPUMathFunctionsTest, TestHammingDistance) { - int n = this->blob_bottom_->count(); - const TypeParam* x = this->blob_bottom_->cpu_data(); - const TypeParam* y = this->blob_top_->cpu_data(); - EXPECT_EQ(this->ReferenceHammingDistance(n, x, y), - caffe_cpu_hamming_distance(n, x, y)); -} - TYPED_TEST(CPUMathFunctionsTest, TestAsum) { int n = this->blob_bottom_->count(); const TypeParam* x = this->blob_bottom_->cpu_data(); @@ -158,18 +127,6 @@ class GPUMathFunctionsTest : public MathFunctionsTest > { TYPED_TEST_CASE(GPUMathFunctionsTest, TestDtypes); -// TODO: Fix caffe_gpu_hamming_distance and re-enable this test. -TYPED_TEST(GPUMathFunctionsTest, DISABLED_TestHammingDistance) { - int n = this->blob_bottom_->count(); - const TypeParam* x = this->blob_bottom_->cpu_data(); - const TypeParam* y = this->blob_top_->cpu_data(); - int reference_distance = this->ReferenceHammingDistance(n, x, y); - x = this->blob_bottom_->gpu_data(); - y = this->blob_top_->gpu_data(); - int computed_distance = caffe_gpu_hamming_distance(n, x, y); - EXPECT_EQ(reference_distance, computed_distance); -} - TYPED_TEST(GPUMathFunctionsTest, TestAsum) { int n = this->blob_bottom_->count(); const TypeParam* x = this->blob_bottom_->cpu_data(); diff --git a/src/caffe/test/test_maxpool_dropout_layers.cpp b/src/caffe/test/test_maxpool_dropout_layers.cpp index 611d97908..4f0e20ac3 100644 --- a/src/caffe/test/test_maxpool_dropout_layers.cpp +++ b/src/caffe/test/test_maxpool_dropout_layers.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/dropout_layer.hpp" +#include "caffe/layers/pooling_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_memory_data_layer.cpp b/src/caffe/test/test_memory_data_layer.cpp index a79033f59..7998bc182 100644 --- a/src/caffe/test/test_memory_data_layer.cpp +++ b/src/caffe/test/test_memory_data_layer.cpp @@ -1,10 +1,12 @@ +#ifdef USE_OPENCV #include +#endif // USE_OPENCV #include #include -#include "caffe/data_layers.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/memory_data_layer.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -113,6 +115,7 @@ TYPED_TEST(MemoryDataLayerTest, TestForward) { } } +#ifdef USE_OPENCV TYPED_TEST(MemoryDataLayerTest, AddDatumVectorDefaultTransform) { typedef typename TypeParam::Dtype Dtype; @@ -292,5 +295,5 @@ TYPED_TEST(MemoryDataLayerTest, TestSetBatchSize) { } } } - +#endif // USE_OPENCV } // namespace caffe diff --git a/src/caffe/test/test_multinomial_logistic_loss_layer.cpp b/src/caffe/test/test_multinomial_logistic_loss_layer.cpp index b2db984fe..8cc210223 100644 --- a/src/caffe/test/test_multinomial_logistic_loss_layer.cpp +++ b/src/caffe/test/test_multinomial_logistic_loss_layer.cpp @@ -1,6 +1,3 @@ -#include -#include -#include #include #include "gtest/gtest.h" @@ -8,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/multinomial_logistic_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_mvn_layer.cpp b/src/caffe/test/test_mvn_layer.cpp index be23d86e9..28a762d27 100644 --- a/src/caffe/test/test_mvn_layer.cpp +++ b/src/caffe/test/test_mvn_layer.cpp @@ -1,11 +1,9 @@ -#include -#include #include #include "caffe/blob.hpp" #include "caffe/common.hpp" -#include "caffe/common_layers.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/mvn_layer.hpp" #include "google/protobuf/text_format.h" #include "gtest/gtest.h" diff --git a/src/caffe/test/test_net.cpp b/src/caffe/test/test_net.cpp index 12998d891..24b957f2a 100644 --- a/src/caffe/test/test_net.cpp +++ b/src/caffe/test/test_net.cpp @@ -9,6 +9,7 @@ #include "caffe/common.hpp" #include "caffe/filler.hpp" #include "caffe/net.hpp" +#include "caffe/util/io.hpp" #include "caffe/util/math_functions.hpp" #include "caffe/test/test_caffe_main.hpp" @@ -29,6 +30,17 @@ class NetTest : public MultiDeviceTest { net_.reset(new Net(param)); } + virtual void InitNetFromProtoFileWithState(const string& proto, + Phase phase = caffe::TRAIN, const int level = 0, + const vector* stages = NULL) { + NetParameter param; + CHECK(google::protobuf::TextFormat::ParseFromString(proto, ¶m)); + string param_file; + MakeTempFilename(¶m_file); + WriteProtoToTextFile(param, param_file); + net_.reset(new Net(param_file, phase, level, stages)); + } + virtual void CopyNetBlobs(const bool copy_diff, vector > >* blobs_copy) { CHECK(net_); @@ -555,11 +567,14 @@ class NetTest : public MultiDeviceTest { virtual void InitReshapableNet() { const string& proto = "name: 'ReshapableNetwork' " - "input: 'data' " - "input_dim: 1 " - "input_dim: 3 " - "input_dim: 100 " - "input_dim: 100 " + "layer { " + " name: 'data' " + " type: 'Input' " + " top: 'data' " + " input_param { " + " shape: { dim: 1 dim: 3 dim: 100 dim: 100 } " + " } " + "} " "layer { " " name: 'conv1' " " type: 'Convolution' " @@ -713,6 +728,117 @@ class NetTest : public MultiDeviceTest { InitNetFromProtoString(proto); } + virtual void InitForcePropNet(bool test_force_true) { + string proto = + "name: 'ForcePropTestNetwork' " + "layer { " + " name: 'data' " + " type: 'DummyData' " + " dummy_data_param { " + " shape { " + " dim: 5 " + " dim: 2 " + " dim: 3 " + " dim: 4 " + " } " + " data_filler { " + " type: 'gaussian' " + " std: 0.01 " + " } " + " shape { " + " dim: 5 " + " } " + " data_filler { " + " type: 'constant' " + " value: 0 " + " } " + " } " + " top: 'data' " + " top: 'label' " + "} " + "layer { " + " name: 'innerproduct' " + " type: 'InnerProduct' " + " inner_product_param { " + " num_output: 1 " + " weight_filler { " + " type: 'gaussian' " + " std: 0.01 " + " } " + " } " + " bottom: 'data' " + " top: 'innerproduct' "; + if (test_force_true) { + proto += " propagate_down: true "; + } + proto += + "} " + "layer { " + " name: 'loss' " + " bottom: 'innerproduct' " + " bottom: 'label' " + " top: 'cross_entropy_loss' " + " type: 'SigmoidCrossEntropyLoss' " + "} "; + InitNetFromProtoString(proto); + } + + virtual void InitAllInOneNet(Phase phase = caffe::TRAIN, + const int level = 0, const vector* stages = NULL) { + string proto = + "name: 'All-in-one Network'" + "layer { " + " name: 'train-data' " + " type: 'DummyData' " + " top: 'data' " + " top: 'label' " + " dummy_data_param { " + " shape { dim: 1 dim: 10 } " + " shape { dim: 1 dim: 1 } " + " } " + " include { phase: TRAIN stage: 'train' } " + "} " + "layer { " + " name: 'val-data' " + " type: 'DummyData' " + " top: 'data' " + " top: 'label' " + " dummy_data_param { " + " shape { dim: 1 dim: 10 } " + " shape { dim: 1 dim: 1 } " + " } " + " include { phase: TEST stage: 'val' } " + "} " + "layer { " + " name: 'deploy-data' " + " type: 'Input' " + " top: 'data' " + " input_param { " + " shape { dim: 1 dim: 10 } " + " } " + " include { phase: TEST stage: 'deploy' } " + "} " + "layer { " + " name: 'ip' " + " type: 'InnerProduct' " + " bottom: 'data' " + " top: 'ip' " + " inner_product_param { " + " num_output: 2 " + " } " + "} " + "layer { " + " name: 'loss' " + " type: 'SoftmaxWithLoss' " + " bottom: 'ip' " + " bottom: 'label' " + " top: 'loss' " + " include { phase: TRAIN stage: 'train' } " + " include { phase: TEST stage: 'val' } " + "} "; + InitNetFromProtoFileWithState(proto, phase, level, stages); + } + int seed_; shared_ptr > net_; }; @@ -821,7 +947,7 @@ TYPED_TEST(NetTest, TestLossWeight) { Caffe::set_random_seed(this->seed_); const bool kForceBackward = true; this->InitUnsharedWeightsNet(NULL, NULL, kForceBackward); - const Dtype loss = this->net_->ForwardBackward(bottom); + const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; vector > > blob_grads; this->CopyNetBlobs(kCopyDiff, &blob_grads); @@ -836,7 +962,7 @@ TYPED_TEST(NetTest, TestLossWeight) { for (int i = 0; i < kNumLossWeights; ++i) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&kLossWeights[i], NULL, kForceBackward); - const Dtype weighted_loss = this->net_->ForwardBackward(bottom); + const Dtype weighted_loss = this->net_->ForwardBackward(); const Dtype error_margin = kErrorMargin * fabs(kLossWeights[i]); EXPECT_NEAR(loss * kLossWeights[i], weighted_loss, error_margin) << "loss weight = " << kLossWeights[i]; @@ -865,14 +991,13 @@ TYPED_TEST(NetTest, TestLossWeight) { TYPED_TEST(NetTest, TestLossWeightMidNet) { typedef typename TypeParam::Dtype Dtype; - vector*> bottom; Caffe::set_random_seed(this->seed_); const bool kForceBackward = true; Dtype loss_weight = 0; Dtype midnet_loss_weight = 1; this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss = this->net_->ForwardBackward(bottom); + const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; const bool kReshape = true; Blob data_grad; @@ -887,7 +1012,7 @@ TYPED_TEST(NetTest, TestLossWeightMidNet) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &kLossWeights[i], kForceBackward); - const Dtype weighted_loss = this->net_->ForwardBackward(bottom); + const Dtype weighted_loss = this->net_->ForwardBackward(); const Dtype error_margin = kErrorMargin * fabs(kLossWeights[i]); EXPECT_NEAR(loss * kLossWeights[i], weighted_loss, error_margin) << "loss weight = " << kLossWeights[i]; @@ -903,7 +1028,6 @@ TYPED_TEST(NetTest, TestLossWeightMidNet) { TYPED_TEST(NetTest, TestComboLossWeight) { typedef typename TypeParam::Dtype Dtype; - vector*> bottom; Dtype loss_weight; Dtype midnet_loss_weight; const bool kForceBackward = true; @@ -916,7 +1040,7 @@ TYPED_TEST(NetTest, TestComboLossWeight) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss = this->net_->ForwardBackward(bottom); + const Dtype loss = this->net_->ForwardBackward(); const bool kCopyDiff = true; vector > > blob_grads; this->CopyNetBlobs(kCopyDiff, &blob_grads); @@ -928,7 +1052,7 @@ TYPED_TEST(NetTest, TestComboLossWeight) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss_main_2 = this->net_->ForwardBackward(bottom); + const Dtype loss_main_2 = this->net_->ForwardBackward(); vector > > blob_grads_loss_2; this->CopyNetBlobs(kCopyDiff, &blob_grads_loss_2); vector > > param_grads_loss_2; @@ -939,7 +1063,7 @@ TYPED_TEST(NetTest, TestComboLossWeight) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss_main_3 = this->net_->ForwardBackward(bottom); + const Dtype loss_main_3 = this->net_->ForwardBackward(); const vector > >& blob_grads_loss_3 = this->net_->blobs(); ASSERT_EQ(blob_grads.size(), blob_grads_loss_3.size()); @@ -974,7 +1098,7 @@ TYPED_TEST(NetTest, TestComboLossWeight) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss_midnet_2 = this->net_->ForwardBackward(bottom); + const Dtype loss_midnet_2 = this->net_->ForwardBackward(); this->CopyNetBlobs(kCopyDiff, &blob_grads_loss_2); this->CopyNetParams(kCopyDiff, ¶m_grads_loss_2); @@ -983,7 +1107,7 @@ TYPED_TEST(NetTest, TestComboLossWeight) { Caffe::set_random_seed(this->seed_); this->InitUnsharedWeightsNet(&loss_weight, &midnet_loss_weight, kForceBackward); - const Dtype loss_midnet_3 = this->net_->ForwardBackward(bottom); + const Dtype loss_midnet_3 = this->net_->ForwardBackward(); const vector > >& blob_grads_midnet_loss_3 = this->net_->blobs(); ASSERT_EQ(blob_grads.size(), blob_grads_midnet_loss_3.size()); @@ -1032,40 +1156,35 @@ TYPED_TEST(NetTest, TestComboLossWeight) { } TYPED_TEST(NetTest, TestBackwardWithAccuracyLayer) { - typedef typename TypeParam::Dtype Dtype; const bool kForceBackward = false; const bool kAccuracyLayer = true; this->InitTinyNet(kForceBackward, kAccuracyLayer); EXPECT_TRUE(this->net_->has_blob("accuracy")); - vector*> bottom; // Test that we can do Backward even though we have an 'Accuracy' layer. - this->net_->ForwardBackward(bottom); + this->net_->ForwardBackward(); } TYPED_TEST(NetTest, TestUnsharedWeightsDataNet) { typedef typename TypeParam::Dtype Dtype; this->InitUnsharedWeightsNet(); - vector*> bottom; Dtype loss; - this->net_->Forward(bottom, &loss); + this->net_->Forward(&loss); EXPECT_GT(loss, 0); } TYPED_TEST(NetTest, TestSharedWeightsDataNet) { typedef typename TypeParam::Dtype Dtype; this->InitSharedWeightsNet(); - vector*> bottom; Dtype loss; - this->net_->Forward(bottom, &loss); + this->net_->Forward(&loss); EXPECT_FLOAT_EQ(loss, 0); } TYPED_TEST(NetTest, TestUnsharedWeightsDiffNet) { typedef typename TypeParam::Dtype Dtype; this->InitUnsharedWeightsNet(); - vector*> bottom; Net* net = this->net_.get(); - net->Forward(bottom); + net->Forward(); net->Backward(); Layer* ip1_layer = net->layer_by_name("innerproduct1").get(); Layer* ip2_layer = net->layer_by_name("innerproduct2").get(); @@ -1081,10 +1200,9 @@ TYPED_TEST(NetTest, TestUnsharedWeightsDiffNet) { TYPED_TEST(NetTest, TestSharedWeightsDiffNet) { typedef typename TypeParam::Dtype Dtype; this->InitSharedWeightsNet(); - vector*> bottom; Net* net = this->net_.get(); Dtype loss; - net->Forward(bottom, &loss); + net->Forward(&loss); net->Backward(); EXPECT_FLOAT_EQ(loss, 0); Layer* ip1_layer = net->layer_by_name("innerproduct1").get(); @@ -1102,7 +1220,6 @@ TYPED_TEST(NetTest, TestSharedWeightsUpdate) { typedef typename TypeParam::Dtype Dtype; Caffe::set_random_seed(this->seed_); this->InitDiffDataSharedWeightsNet(); - vector*> bottom; EXPECT_EQ(this->net_->layer_names()[1], "innerproduct1"); EXPECT_EQ(this->net_->layer_names()[2], "innerproduct2"); Blob* ip1_weights = this->net_->layers()[1]->blobs()[0].get(); @@ -1111,7 +1228,7 @@ TYPED_TEST(NetTest, TestSharedWeightsUpdate) { // locations. EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_EQ(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); // Compute the expected update as the data minus the two diffs. Blob shared_params; @@ -1146,7 +1263,7 @@ TYPED_TEST(NetTest, TestSharedWeightsUpdate) { // locations in memory. EXPECT_NE(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_NE(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); // Compute the expected update. Blob unshared_params1; @@ -1186,7 +1303,6 @@ TYPED_TEST(NetTest, TestSharedWeightsResume) { // Create a net with weight sharing; Update it once. Caffe::set_random_seed(this->seed_); this->InitDiffDataSharedWeightsNet(); - vector*> bottom; EXPECT_EQ(this->net_->layer_names()[1], "innerproduct1"); EXPECT_EQ(this->net_->layer_names()[2], "innerproduct2"); Blob* ip1_weights = this->net_->layers()[1]->blobs()[0].get(); @@ -1195,7 +1311,7 @@ TYPED_TEST(NetTest, TestSharedWeightsResume) { // locations. EXPECT_EQ(ip1_weights->cpu_data(), ip2_weights->cpu_data()); EXPECT_EQ(ip1_weights->cpu_diff(), ip2_weights->cpu_diff()); - this->net_->ForwardBackward(bottom); + this->net_->ForwardBackward(); this->net_->Update(); Blob shared_params; const bool kReshape = true; @@ -1228,7 +1344,6 @@ TYPED_TEST(NetTest, TestSharedWeightsResume) { TYPED_TEST(NetTest, TestParamPropagateDown) { typedef typename TypeParam::Dtype Dtype; - vector*> bottom; const bool kBiasTerm = true, kForceBackward = false; const Dtype* kLossWeight1 = NULL; const Dtype* kLossWeight2 = NULL; @@ -1238,7 +1353,7 @@ TYPED_TEST(NetTest, TestParamPropagateDown) { Dtype blobs_lr_w1 = 1, blobs_lr_w2 = 1, blobs_lr_b1 = 2, blobs_lr_b2 = 2; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); const vector > >& params = this->net_->params(); const int num_params = params.size(); @@ -1258,7 +1373,7 @@ TYPED_TEST(NetTest, TestParamPropagateDown) { blobs_lr_w1 *= 2, blobs_lr_w2 *= 2, blobs_lr_b1 *= 2, blobs_lr_b2 *= 2; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); const vector > >& params2 = this->net_->params(); ASSERT_EQ(num_params, params2.size()); @@ -1274,7 +1389,7 @@ TYPED_TEST(NetTest, TestParamPropagateDown) { blobs_lr_w1 = 1, blobs_lr_w2 = 0, blobs_lr_b1 = 0, blobs_lr_b2 = 1; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); const vector > >& params3 = this->net_->params(); ASSERT_EQ(num_params, params3.size()); @@ -1293,7 +1408,7 @@ TYPED_TEST(NetTest, TestParamPropagateDown) { blobs_lr_w1 = 0, blobs_lr_w2 = 1, blobs_lr_b1 = 1, blobs_lr_b2 = 0; this->InitUnsharedWeightsNet(kLossWeight1, kLossWeight2, kForceBackward, kBiasTerm, blobs_lr_w1, blobs_lr_w2, blobs_lr_b1, blobs_lr_b2); - this->net_->Forward(bottom); + this->net_->Forward(); this->net_->Backward(); const vector > >& params4 = this->net_->params(); ASSERT_EQ(num_params, params4.size()); @@ -1315,7 +1430,7 @@ TYPED_TEST(NetTest, TestFromTo) { // Run Forward and Backward, recording the data diff and loss. Blob data; data.ReshapeLike(*this->net_->blob_by_name("data")); - this->net_->ForwardPrefilled(); + this->net_->Forward(); this->net_->Backward(); data.CopyFrom(*this->net_->blob_by_name("data"), true, true); const Dtype *loss_ptr = this->net_->output_blobs()[0]->cpu_data(); @@ -2262,25 +2377,27 @@ TEST_F(FilterNetTest, TestFilterInOutByExcludeMultiRule) { TYPED_TEST(NetTest, TestReshape) { typedef typename TypeParam::Dtype Dtype; // We set up bottom blobs of two different sizes, switch between - // them, and check that forward and backward both run and the results - // are the same. + // them, check that forward and backward both run and the results + // are the same, and check that the output shapes change. Caffe::set_random_seed(this->seed_); Caffe::set_mode(Caffe::CPU); FillerParameter filler_param; filler_param.set_std(1); GaussianFiller filler(filler_param); - Blob blob1(4, 3, 9, 11); - Blob blob2(2, 3, 12, 10); + // Check smaller shape first as larger first could hide realloc failures. + Blob blob1(2, 3, 12, 10); + Blob blob2(4, 3, 9, 11); + ASSERT_LT(blob1.count(), blob2.count()); filler.Fill(&blob1); filler.Fill(&blob2); this->InitReshapableNet(); - Blob* input_blob = this->net_->input_blobs()[0]; + shared_ptr > input_blob = this->net_->blob_by_name("data"); Blob* output_blob = this->net_->output_blobs()[0]; input_blob->Reshape(blob1.num(), blob1.channels(), blob1.height(), blob1.width()); caffe_copy(blob1.count(), blob1.cpu_data(), input_blob->mutable_cpu_data()); - this->net_->ForwardPrefilled(); + this->net_->Forward(); // call backward just to make sure it runs this->net_->Backward(); Blob output1(output_blob->num(), output_blob->channels(), @@ -2291,7 +2408,7 @@ TYPED_TEST(NetTest, TestReshape) { input_blob->Reshape(blob2.num(), blob2.channels(), blob2.height(), blob2.width()); caffe_copy(blob2.count(), blob2.cpu_data(), input_blob->mutable_cpu_data()); - this->net_->ForwardPrefilled(); + this->net_->Forward(); this->net_->Backward(); Blob output2(output_blob->num(), output_blob->channels(), output_blob->height(), output_blob->width()); @@ -2301,20 +2418,32 @@ TYPED_TEST(NetTest, TestReshape) { input_blob->Reshape(blob1.num(), blob1.channels(), blob1.height(), blob1.width()); caffe_copy(blob1.count(), blob1.cpu_data(), input_blob->mutable_cpu_data()); - this->net_->ForwardPrefilled(); + this->net_->Forward(); this->net_->Backward(); for (int i = 0; i < output1.count(); ++i) { - CHECK_EQ(*(output1.cpu_data() + i), *(output_blob->cpu_data() + i)); + EXPECT_FLOAT_EQ(*(output1.cpu_data() + i), *(output_blob->cpu_data() + i)); } input_blob->Reshape(blob2.num(), blob2.channels(), blob2.height(), blob2.width()); caffe_copy(blob2.count(), blob2.cpu_data(), input_blob->mutable_cpu_data()); - this->net_->ForwardPrefilled(); + this->net_->Forward(); this->net_->Backward(); for (int i = 0; i < output2.count(); ++i) { - CHECK_EQ(*(output2.cpu_data() + i), *(output_blob->cpu_data() + i)); + EXPECT_FLOAT_EQ(*(output2.cpu_data() + i), *(output_blob->cpu_data() + i)); } + + EXPECT_EQ(output1.num(), blob1.num()); + EXPECT_EQ(output2.num(), blob2.num()); + bool same_spatial_shape = true; + const int kFirstSpatialAxis = 2; + for (int i = kFirstSpatialAxis; i < output1.num_axes(); ++i) { + if (output1.shape(i) != output2.shape(i)) { + same_spatial_shape = false; + break; + } + } + EXPECT_FALSE(same_spatial_shape); } TYPED_TEST(NetTest, TestSkipPropagateDown) { @@ -2365,4 +2494,111 @@ TYPED_TEST(NetTest, TestSkipPropagateDown) { } } +TYPED_TEST(NetTest, TestForcePropagateDown) { + this->InitForcePropNet(false); + vector layer_need_backward = this->net_->layer_need_backward(); + for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { + const string& layer_name = this->net_->layer_names()[layer_id]; + const vector need_backward = + this->net_->bottom_need_backward()[layer_id]; + if (layer_name == "data") { + ASSERT_EQ(need_backward.size(), 0); + EXPECT_FALSE(layer_need_backward[layer_id]); + } else if (layer_name == "innerproduct") { + ASSERT_EQ(need_backward.size(), 1); + EXPECT_FALSE(need_backward[0]); // data + EXPECT_TRUE(layer_need_backward[layer_id]); + } else if (layer_name == "loss") { + ASSERT_EQ(need_backward.size(), 2); + EXPECT_TRUE(need_backward[0]); // innerproduct + EXPECT_FALSE(need_backward[1]); // label + EXPECT_TRUE(layer_need_backward[layer_id]); + } else { + LOG(FATAL) << "Unknown layer: " << layer_name; + } + } + this->InitForcePropNet(true); + layer_need_backward = this->net_->layer_need_backward(); + for (int layer_id = 0; layer_id < this->net_->layers().size(); ++layer_id) { + const string& layer_name = this->net_->layer_names()[layer_id]; + const vector need_backward = + this->net_->bottom_need_backward()[layer_id]; + if (layer_name == "data") { + ASSERT_EQ(need_backward.size(), 0); + EXPECT_FALSE(layer_need_backward[layer_id]); + } else if (layer_name == "innerproduct") { + ASSERT_EQ(need_backward.size(), 1); + EXPECT_TRUE(need_backward[0]); // data + EXPECT_TRUE(layer_need_backward[layer_id]); + } else if (layer_name == "loss") { + ASSERT_EQ(need_backward.size(), 2); + EXPECT_TRUE(need_backward[0]); // innerproduct + EXPECT_FALSE(need_backward[1]); // label + EXPECT_TRUE(layer_need_backward[layer_id]); + } else { + LOG(FATAL) << "Unknown layer: " << layer_name; + } + } +} + +TYPED_TEST(NetTest, TestAllInOneNetTrain) { + vector stages; + stages.push_back("train"); + this->InitAllInOneNet(caffe::TRAIN, 0, &stages); + bool found_data = false; + bool found_loss = false; + for (int i = 0; i < this->net_->layers().size(); ++i) { + const string& layer_name = this->net_->layer_names()[i]; + if (layer_name == "train-data") { + found_data = true; + } else if (layer_name == "loss") { + found_loss = true; + } else { + ASSERT_NE(layer_name, "val-data"); + ASSERT_NE(layer_name, "deploy-data"); + } + } + ASSERT_TRUE(found_data); + ASSERT_TRUE(found_loss); +} + +TYPED_TEST(NetTest, TestAllInOneNetVal) { + vector stages; + stages.push_back("val"); + this->InitAllInOneNet(caffe::TEST, 0, &stages); + bool found_data = false; + bool found_loss = false; + for (int i = 0; i < this->net_->layers().size(); ++i) { + const string& layer_name = this->net_->layer_names()[i]; + if (layer_name == "val-data") { + found_data = true; + } else if (layer_name == "loss") { + found_loss = true; + } else { + ASSERT_NE(layer_name, "train-data"); + ASSERT_NE(layer_name, "deploy-data"); + } + } + ASSERT_TRUE(found_data); + ASSERT_TRUE(found_loss); +} + +TYPED_TEST(NetTest, TestAllInOneNetDeploy) { + vector stages; + stages.push_back("deploy"); + this->InitAllInOneNet(caffe::TEST, 0, &stages); + bool found_data = false; + for (int i = 0; i < this->net_->layers().size(); ++i) { + const string& layer_name = this->net_->layer_names()[i]; + if (layer_name == "deploy-data") { + found_data = true; + } else { + ASSERT_NE(layer_name, "train-data"); + ASSERT_NE(layer_name, "val-data"); + ASSERT_NE(layer_name, "loss"); + } + } + ASSERT_TRUE(found_data); +} + } // namespace caffe diff --git a/src/caffe/test/test_neuron_layer.cpp b/src/caffe/test/test_neuron_layer.cpp index c6e4d27b9..180871a29 100644 --- a/src/caffe/test/test_neuron_layer.cpp +++ b/src/caffe/test/test_neuron_layer.cpp @@ -1,5 +1,4 @@ #include -#include #include #include "google/protobuf/text_format.h" @@ -8,7 +7,26 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" + +#include "caffe/layers/absval_layer.hpp" +#include "caffe/layers/bnll_layer.hpp" +#include "caffe/layers/dropout_layer.hpp" +#include "caffe/layers/elu_layer.hpp" +#include "caffe/layers/exp_layer.hpp" +#include "caffe/layers/inner_product_layer.hpp" +#include "caffe/layers/log_layer.hpp" +#include "caffe/layers/power_layer.hpp" +#include "caffe/layers/prelu_layer.hpp" +#include "caffe/layers/relu_layer.hpp" +#include "caffe/layers/sigmoid_layer.hpp" +#include "caffe/layers/tanh_layer.hpp" +#include "caffe/layers/threshold_layer.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_relu_layer.hpp" +#include "caffe/layers/cudnn_sigmoid_layer.hpp" +#include "caffe/layers/cudnn_tanh_layer.hpp" +#endif #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -242,6 +260,64 @@ TYPED_TEST(NeuronLayerTest, TestReLUGradientWithNegativeSlope) { this->blob_top_vec_); } +TYPED_TEST(NeuronLayerTest, TestELU) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + "elu_param { alpha: 0.5 }", &layer_param)); + ELULayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype kDelta = 2e-4; + // Now, check values + const Dtype* bottom_data = this->blob_bottom_->cpu_data(); + const Dtype* top_data = this->blob_top_->cpu_data(); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + if (bottom_data[i] > 0) { + EXPECT_FLOAT_EQ(top_data[i], bottom_data[i]); + } else { + EXPECT_NEAR(top_data[i], 0.5 * (exp(bottom_data[i]) - 1), kDelta); + } + } +} + +TYPED_TEST(NeuronLayerTest, TestELUasReLU) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + "elu_param { alpha: 0 }", &layer_param)); + ELULayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + // Now, check values + const Dtype* bottom_data = this->blob_bottom_->cpu_data(); + const Dtype* top_data = this->blob_top_->cpu_data(); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_GE(top_data[i], 0.); + EXPECT_TRUE(top_data[i] == 0 || top_data[i] == bottom_data[i]); + } +} + +TYPED_TEST(NeuronLayerTest, TestELUGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ELULayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3, 1701, 0., 0.01); + checker.CheckGradientEltwise(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(NeuronLayerTest, TestELUasReLUGradient) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + "elu_param { alpha: 0 }", &layer_param)); + ELULayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3, 1701, 0., 0.01); + checker.CheckGradientEltwise(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + TYPED_TEST(NeuronLayerTest, TestSigmoid) { typedef typename TypeParam::Dtype Dtype; LayerParameter layer_param; @@ -318,6 +394,26 @@ TYPED_TEST(NeuronLayerTest, TestExpGradient) { this->TestExpGradient(kBase, kScale, kShift); } +TYPED_TEST(NeuronLayerTest, TestExpLayerWithShift) { + typedef typename TypeParam::Dtype Dtype; + // Test default base of "-1" -- should actually set base := e, + // with a non-zero shift + const Dtype kBase = -1; + const Dtype kScale = 1; + const Dtype kShift = 1; + this->TestExpForward(kBase, kScale, kShift); +} + +TYPED_TEST(NeuronLayerTest, TestExpGradientWithShift) { + typedef typename TypeParam::Dtype Dtype; + // Test default base of "-1" -- should actually set base := e, + // with a non-zero shift + const Dtype kBase = -1; + const Dtype kScale = 1; + const Dtype kShift = 1; + this->TestExpGradient(kBase, kScale, kShift); +} + TYPED_TEST(NeuronLayerTest, TestExpLayerBase2) { typedef typename TypeParam::Dtype Dtype; const Dtype kBase = 2; @@ -695,16 +791,19 @@ TYPED_TEST(NeuronLayerTest, TestPReLUInPlace) { ip2.Backward(blob_middle_vec_2, propagate_down, blob_bottom_vec_2); // Check numbers for (int s = 0; s < blob_bottom_2->count(); ++s) { - EXPECT_EQ(this->blob_bottom_->cpu_diff()[s], blob_bottom_2->cpu_diff()[s]); + EXPECT_FLOAT_EQ(this->blob_bottom_->cpu_diff()[s], + blob_bottom_2->cpu_diff()[s]); } for (int s = 0; s < ip.blobs()[0]->count(); ++s) { - EXPECT_EQ(ip.blobs()[0]->cpu_diff()[s], ip2.blobs()[0]->cpu_diff()[s]); + EXPECT_FLOAT_EQ(ip.blobs()[0]->cpu_diff()[s], + ip2.blobs()[0]->cpu_diff()[s]); } for (int s = 0; s < ip.blobs()[1]->count(); ++s) { - EXPECT_EQ(ip.blobs()[1]->cpu_diff()[s], ip2.blobs()[1]->cpu_diff()[s]); + EXPECT_FLOAT_EQ(ip.blobs()[1]->cpu_diff()[s], + ip2.blobs()[1]->cpu_diff()[s]); } for (int s = 0; s < prelu.blobs()[0]->count(); ++s) { - EXPECT_EQ(prelu.blobs()[0]->cpu_diff()[s], + EXPECT_FLOAT_EQ(prelu.blobs()[0]->cpu_diff()[s], prelu2.blobs()[0]->cpu_diff()[s]); } } diff --git a/src/caffe/test/test_pooling_layer.cpp b/src/caffe/test/test_pooling_layer.cpp index 69f2d5c11..bb95cae03 100644 --- a/src/caffe/test/test_pooling_layer.cpp +++ b/src/caffe/test/test_pooling_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,11 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/pooling_layer.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_pooling_layer.hpp" +#endif #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_power_layer.cpp b/src/caffe/test/test_power_layer.cpp index 76c9e857f..1aa587ac9 100644 --- a/src/caffe/test/test_power_layer.cpp +++ b/src/caffe/test/test_power_layer.cpp @@ -6,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/power_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_random_number_generator.cpp b/src/caffe/test/test_random_number_generator.cpp index 98424c06b..833b0047b 100644 --- a/src/caffe/test/test_random_number_generator.cpp +++ b/src/caffe/test/test_random_number_generator.cpp @@ -1,5 +1,4 @@ #include -#include #include "gtest/gtest.h" diff --git a/src/caffe/test/test_reduction_layer.cpp b/src/caffe/test/test_reduction_layer.cpp index f568a1808..6ed7cda6a 100644 --- a/src/caffe/test/test_reduction_layer.cpp +++ b/src/caffe/test/test_reduction_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/reduction_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_reshape_layer.cpp b/src/caffe/test/test_reshape_layer.cpp index 9d08ec60d..4f2613868 100644 --- a/src/caffe/test/test_reshape_layer.cpp +++ b/src/caffe/test/test_reshape_layer.cpp @@ -1,12 +1,11 @@ -#include #include #include "gtest/gtest.h" #include "caffe/blob.hpp" #include "caffe/common.hpp" -#include "caffe/common_layers.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/reshape_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_rnn_layer.cpp b/src/caffe/test/test_rnn_layer.cpp new file mode 100644 index 000000000..dd8952d62 --- /dev/null +++ b/src/caffe/test/test_rnn_layer.cpp @@ -0,0 +1,217 @@ +#include +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/rnn_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class RNNLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + RNNLayerTest() : num_output_(7) { + blob_bottom_vec_.push_back(&blob_bottom_); + blob_bottom_vec_.push_back(&blob_bottom_cont_); + blob_top_vec_.push_back(&blob_top_); + + ReshapeBlobs(1, 3); + + layer_param_.mutable_recurrent_param()->set_num_output(num_output_); + FillerParameter* weight_filler = + layer_param_.mutable_recurrent_param()->mutable_weight_filler(); + weight_filler->set_type("gaussian"); + weight_filler->set_std(0.2); + FillerParameter* bias_filler = + layer_param_.mutable_recurrent_param()->mutable_bias_filler(); + bias_filler->set_type("gaussian"); + bias_filler->set_std(0.1); + + layer_param_.set_phase(TEST); + } + + void ReshapeBlobs(int num_timesteps, int num_instances) { + blob_bottom_.Reshape(num_timesteps, num_instances, 3, 2); + blob_bottom_static_.Reshape(num_instances, 2, 3, 4); + vector shape(2); + shape[0] = num_timesteps; + shape[1] = num_instances; + blob_bottom_cont_.Reshape(shape); + + FillerParameter filler_param; + filler_param.set_min(-1); + filler_param.set_max(1); + UniformFiller filler(filler_param); + filler.Fill(&blob_bottom_); + } + + int num_output_; + LayerParameter layer_param_; + Blob blob_bottom_; + Blob blob_bottom_cont_; + Blob blob_bottom_static_; + Blob blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; +}; + +TYPED_TEST_CASE(RNNLayerTest, TestDtypesAndDevices); + +TYPED_TEST(RNNLayerTest, TestSetUp) { + typedef typename TypeParam::Dtype Dtype; + RNNLayer layer(this->layer_param_); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + vector expected_top_shape = this->blob_bottom_.shape(); + expected_top_shape.resize(3); + expected_top_shape[2] = this->num_output_; + EXPECT_TRUE(this->blob_top_.shape() == expected_top_shape); +} + +TYPED_TEST(RNNLayerTest, TestForward) { + typedef typename TypeParam::Dtype Dtype; + const int kNumTimesteps = 3; + const int num = this->blob_bottom_.shape(1); + this->ReshapeBlobs(kNumTimesteps, num); + + // Fill the cont blob with <0, 1, 1, ..., 1>, + // indicating a sequence that begins at the first timestep + // then continues for the rest of the sequence. + for (int t = 0; t < kNumTimesteps; ++t) { + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[t * num + n] = t > 0; + } + } + + // Process the full sequence in a single batch. + FillerParameter filler_param; + filler_param.set_mean(0); + filler_param.set_std(1); + GaussianFiller sequence_filler(filler_param); + sequence_filler.Fill(&this->blob_bottom_); + shared_ptr > layer(new RNNLayer(this->layer_param_)); + Caffe::set_random_seed(1701); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + LOG(INFO) << "Calling forward for full sequence RNN"; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + + // Copy the inputs and outputs to reuse/check them later. + Blob bottom_copy(this->blob_bottom_.shape()); + bottom_copy.CopyFrom(this->blob_bottom_); + Blob top_copy(this->blob_top_.shape()); + top_copy.CopyFrom(this->blob_top_); + + // Process the batch one timestep at a time; + // check that we get the same result. + this->ReshapeBlobs(1, num); + layer.reset(new RNNLayer(this->layer_param_)); + Caffe::set_random_seed(1701); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + const int bottom_count = this->blob_bottom_.count(); + const int top_count = this->blob_top_.count(); + const Dtype kEpsilon = 1e-5; + for (int t = 0; t < kNumTimesteps; ++t) { + caffe_copy(bottom_count, bottom_copy.cpu_data() + t * bottom_count, + this->blob_bottom_.mutable_cpu_data()); + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[n] = t > 0; + } + LOG(INFO) << "Calling forward for RNN timestep " << t; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < top_count; ++i) { + ASSERT_LT(t * top_count + i, top_copy.count()); + EXPECT_NEAR(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i], kEpsilon) + << "t = " << t << "; i = " << i; + } + } + + // Process the batch one timestep at a time with all cont blobs set to 0. + // Check that we get a different result, except in the first timestep. + Caffe::set_random_seed(1701); + layer.reset(new RNNLayer(this->layer_param_)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + for (int t = 0; t < kNumTimesteps; ++t) { + caffe_copy(bottom_count, bottom_copy.cpu_data() + t * bottom_count, + this->blob_bottom_.mutable_cpu_data()); + for (int n = 0; n < num; ++n) { + this->blob_bottom_cont_.mutable_cpu_data()[n] = 0; + } + LOG(INFO) << "Calling forward for RNN timestep " << t; + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int i = 0; i < top_count; ++i) { + if (t == 0) { + EXPECT_NEAR(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i], kEpsilon) + << "t = " << t << "; i = " << i; + } else { + EXPECT_NE(this->blob_top_.cpu_data()[i], + top_copy.cpu_data()[t * top_count + i]) + << "t = " << t << "; i = " << i; + } + } + } +} + +TYPED_TEST(RNNLayerTest, TestGradient) { + typedef typename TypeParam::Dtype Dtype; + RNNLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(RNNLayerTest, TestGradientNonZeroCont) { + typedef typename TypeParam::Dtype Dtype; + RNNLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(RNNLayerTest, TestGradientNonZeroContBufferSize2) { + typedef typename TypeParam::Dtype Dtype; + this->ReshapeBlobs(2, 2); + // fill the values + FillerParameter filler_param; + UniformFiller filler(filler_param); + filler.Fill(&this->blob_bottom_); + RNNLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); +} + +TYPED_TEST(RNNLayerTest, TestGradientNonZeroContBufferSize2WithStaticInput) { + typedef typename TypeParam::Dtype Dtype; + this->ReshapeBlobs(2, 2); + FillerParameter filler_param; + UniformFiller filler(filler_param); + filler.Fill(&this->blob_bottom_); + filler.Fill(&this->blob_bottom_static_); + this->blob_bottom_vec_.push_back(&this->blob_bottom_static_); + RNNLayer layer(this->layer_param_); + GradientChecker checker(1e-2, 1e-3); + for (int i = 0; i < this->blob_bottom_cont_.count(); ++i) { + this->blob_bottom_cont_.mutable_cpu_data()[i] = i > 2; + } + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 0); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_, 2); +} + +} // namespace caffe diff --git a/src/caffe/test/test_scale_layer.cpp b/src/caffe/test/test_scale_layer.cpp new file mode 100644 index 000000000..ad116795f --- /dev/null +++ b/src/caffe/test/test_scale_layer.cpp @@ -0,0 +1,507 @@ +#include +#include + +#include "gtest/gtest.h" + +#include "caffe/blob.hpp" +#include "caffe/common.hpp" +#include "caffe/filler.hpp" +#include "caffe/layers/scale_layer.hpp" + +#include "caffe/test/test_caffe_main.hpp" +#include "caffe/test/test_gradient_check_util.hpp" + +namespace caffe { + +template +class ScaleLayerTest : public MultiDeviceTest { + typedef typename TypeParam::Dtype Dtype; + + protected: + ScaleLayerTest() + : blob_bottom_(new Blob(2, 3, 4, 5)), + blob_bottom_eltwise_(new Blob(2, 3, 4, 5)), + blob_bottom_broadcast_0_(new Blob()), + blob_bottom_broadcast_1_(new Blob()), + blob_bottom_broadcast_2_(new Blob()), + blob_bottom_scale_(new Blob(vector())), + blob_top_(new Blob()) { + Caffe::set_random_seed(1701); + vector broadcast_shape(2); + broadcast_shape[0] = 2; broadcast_shape[1] = 3; + this->blob_bottom_broadcast_0_->Reshape(broadcast_shape); + broadcast_shape[0] = 3; broadcast_shape[1] = 4; + this->blob_bottom_broadcast_1_->Reshape(broadcast_shape); + broadcast_shape[0] = 4; broadcast_shape[1] = 5; + this->blob_bottom_broadcast_2_->Reshape(broadcast_shape); + FillerParameter filler_param; + filler_param.set_min(1); + filler_param.set_max(10); + UniformFiller filler(filler_param); + filler.Fill(this->blob_bottom_); + filler.Fill(this->blob_bottom_eltwise_); + filler.Fill(this->blob_bottom_broadcast_0_); + filler.Fill(this->blob_bottom_broadcast_1_); + filler.Fill(this->blob_bottom_broadcast_2_); + filler.Fill(this->blob_bottom_scale_); + blob_bottom_vec_.push_back(blob_bottom_); + blob_top_vec_.push_back(blob_top_); + } + virtual ~ScaleLayerTest() { + delete blob_bottom_; + delete blob_bottom_eltwise_; + delete blob_bottom_broadcast_0_; + delete blob_bottom_broadcast_1_; + delete blob_bottom_broadcast_2_; + delete blob_bottom_scale_; + delete blob_top_; + } + Blob* const blob_bottom_; + Blob* const blob_bottom_eltwise_; + Blob* const blob_bottom_broadcast_0_; + Blob* const blob_bottom_broadcast_1_; + Blob* const blob_bottom_broadcast_2_; + Blob* const blob_bottom_scale_; + Blob* const blob_top_; + vector*> blob_bottom_vec_; + vector*> blob_top_vec_; +}; + +TYPED_TEST_CASE(ScaleLayerTest, TestDtypesAndDevices); + +TYPED_TEST(ScaleLayerTest, TestForwardEltwise) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data_a = this->blob_bottom_->cpu_data(); + const Dtype* in_data_b = this->blob_bottom_eltwise_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] * in_data_b[i], 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardEltwiseInPlace) { + typedef typename TypeParam::Dtype Dtype; + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_bottom_->cpu_data(); + const int count = this->blob_bottom_->count(); + const Dtype* in_data_a = orig_bottom.cpu_data(); + const Dtype* in_data_b = this->blob_bottom_eltwise_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] * in_data_b[i], 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestBackwardEltwiseInPlace) { + typedef typename TypeParam::Dtype Dtype; + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + shared_ptr > layer(new ScaleLayer(layer_param)); + Blob top_diff(this->blob_bottom_->shape()); + FillerParameter filler_param; + filler_param.set_type("gaussian"); + filler_param.set_std(1); + GaussianFiller filler(filler_param); + filler.Fill(&top_diff); + vector propagate_down(2, true); + // Run forward + backward without in-place computation; + // save resulting bottom diffs. + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const bool kReshape = true; + const bool kCopyDiff = true; + Blob orig_bottom_diff; + orig_bottom_diff.CopyFrom(*this->blob_bottom_, kCopyDiff, kReshape); + Blob orig_scale_diff; + orig_scale_diff.CopyFrom(*this->blob_bottom_eltwise_, + kCopyDiff, kReshape); + // Rerun forward + backward with in-place computation; + // check that resulting bottom diffs are the same. + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_bottom_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(orig_bottom_diff.cpu_diff()[i], + this->blob_bottom_->cpu_diff()[i], 1e-5); + } + for (int i = 0; i < this->blob_bottom_eltwise_->count(); ++i) { + EXPECT_NEAR(orig_scale_diff.cpu_diff()[i], + this->blob_bottom_eltwise_->cpu_diff()[i], 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardEltwiseWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_axis(0); + scale_param->set_num_axes(-1); + scale_param->mutable_filler()->set_type("gaussian"); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data_a = this->blob_bottom_->cpu_data(); + const Dtype* in_data_b = layer->blobs()[0]->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data_a[i] * in_data_b[i], 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastBegin) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_0_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) * + this->blob_bottom_broadcast_0_->data_at(n, c, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastMiddle) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(1); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) * + this->blob_bottom_broadcast_1_->data_at(c, h, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastMiddleInPlace) { + typedef typename TypeParam::Dtype Dtype; + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(1); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_bottom_->data_at(n, c, h, w), + orig_bottom.data_at(n, c, h, w) * + this->blob_bottom_broadcast_1_->data_at(c, h, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestBackwardBroadcastMiddleInPlace) { + typedef typename TypeParam::Dtype Dtype; + Blob orig_bottom(this->blob_bottom_->shape()); + orig_bottom.CopyFrom(*this->blob_bottom_); + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(1); + shared_ptr > layer(new ScaleLayer(layer_param)); + Blob top_diff(this->blob_bottom_->shape()); + FillerParameter filler_param; + filler_param.set_type("gaussian"); + filler_param.set_std(1); + GaussianFiller filler(filler_param); + filler.Fill(&top_diff); + vector propagate_down(2, true); + // Run forward + backward without in-place computation; + // save resulting bottom diffs. + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_top_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const bool kReshape = true; + const bool kCopyDiff = true; + Blob orig_bottom_diff; + orig_bottom_diff.CopyFrom(*this->blob_bottom_, kCopyDiff, kReshape); + Blob orig_scale_diff; + orig_scale_diff.CopyFrom(*this->blob_bottom_broadcast_1_, + kCopyDiff, kReshape); + // Rerun forward + backward with in-place computation; + // check that resulting bottom diffs are the same. + this->blob_top_vec_[0] = this->blob_bottom_; // in-place computation + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + caffe_copy(top_diff.count(), top_diff.cpu_data(), + this->blob_bottom_->mutable_cpu_diff()); + layer->Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + for (int i = 0; i < this->blob_bottom_->count(); ++i) { + EXPECT_NEAR(orig_bottom_diff.cpu_diff()[i], + this->blob_bottom_->cpu_diff()[i], 1e-5); + } + for (int i = 0; i < this->blob_bottom_broadcast_1_->count(); ++i) { + EXPECT_NEAR(orig_scale_diff.cpu_diff()[i], + this->blob_bottom_broadcast_1_->cpu_diff()[i], 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastMiddleWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_axis(1); + scale_param->set_num_axes(2); + scale_param->mutable_filler()->set_type("gaussian"); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) * + layer->blobs()[0]->data_at(c, h, 0, 0), 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastMiddleWithParamAndBias) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_axis(1); + scale_param->set_num_axes(2); + scale_param->mutable_filler()->set_type("gaussian"); + scale_param->set_bias_term(true); + scale_param->mutable_bias_filler()->set_type("gaussian"); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) * + layer->blobs()[0]->data_at(c, h, 0, 0) + + layer->blobs()[1]->data_at(c, h, 0, 0), 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardBroadcastEnd) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_2_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(2); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + for (int n = 0; n < this->blob_bottom_->num(); ++n) { + for (int c = 0; c < this->blob_bottom_->channels(); ++c) { + for (int h = 0; h < this->blob_bottom_->height(); ++h) { + for (int w = 0; w < this->blob_bottom_->width(); ++w) { + EXPECT_NEAR(this->blob_top_->data_at(n, c, h, w), + this->blob_bottom_->data_at(n, c, h, w) * + this->blob_bottom_broadcast_2_->data_at(h, w, 0, 0), + 1e-5); + } + } + } + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardScale) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_scale_); + LayerParameter layer_param; + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data = this->blob_bottom_->cpu_data(); + const Dtype scale = *this->blob_bottom_scale_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data[i] * scale, 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestForwardScaleAxis2) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_scale_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(2); + shared_ptr > layer(new ScaleLayer(layer_param)); + layer->SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + ASSERT_EQ(this->blob_bottom_->shape(), this->blob_top_->shape()); + layer->Forward(this->blob_bottom_vec_, this->blob_top_vec_); + const Dtype* data = this->blob_top_->cpu_data(); + const int count = this->blob_top_->count(); + const Dtype* in_data = this->blob_bottom_->cpu_data(); + const Dtype scale = *this->blob_bottom_scale_->cpu_data(); + for (int i = 0; i < count; ++i) { + EXPECT_NEAR(data[i], in_data[i] * scale, 1e-5); + } +} + +TYPED_TEST(ScaleLayerTest, TestGradientEltwise) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_eltwise_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientEltwise(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientEltwiseWithParam) { + typedef typename TypeParam::Dtype Dtype; + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_axis(0); + scale_param->set_num_axes(-1); + scale_param->mutable_filler()->set_type("gaussian"); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientBroadcastBegin) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_0_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(0); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientBroadcastMiddle) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(1); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientBroadcastMiddleWithParam) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_1_); + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_axis(1); + scale_param->set_num_axes(2); + scale_param->mutable_filler()->set_type("gaussian"); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientBroadcastEnd) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_broadcast_2_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(2); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientScale) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_scale_); + LayerParameter layer_param; + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientScaleAndBias) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_scale_); + LayerParameter layer_param; + ScaleParameter* scale_param = layer_param.mutable_scale_param(); + scale_param->set_bias_term(true); + scale_param->mutable_bias_filler()->set_type("gaussian"); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +TYPED_TEST(ScaleLayerTest, TestGradientScaleAxis2) { + typedef typename TypeParam::Dtype Dtype; + this->blob_bottom_vec_.push_back(this->blob_bottom_scale_); + LayerParameter layer_param; + layer_param.mutable_scale_param()->set_axis(2); + ScaleLayer layer(layer_param); + GradientChecker checker(1e-2, 1e-3); + checker.CheckGradientExhaustive(&layer, this->blob_bottom_vec_, + this->blob_top_vec_); +} + +} // namespace caffe diff --git a/src/caffe/test/test_sigmoid_cross_entropy_loss_layer.cpp b/src/caffe/test/test_sigmoid_cross_entropy_loss_layer.cpp index e5737e43f..1bd5f9379 100644 --- a/src/caffe/test/test_sigmoid_cross_entropy_loss_layer.cpp +++ b/src/caffe/test/test_sigmoid_cross_entropy_loss_layer.cpp @@ -1,6 +1,4 @@ #include -#include -#include #include #include "gtest/gtest.h" @@ -8,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/sigmoid_cross_entropy_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -118,5 +116,33 @@ TYPED_TEST(SigmoidCrossEntropyLossLayerTest, TestGradient) { this->blob_top_vec_, 0); } +TYPED_TEST(SigmoidCrossEntropyLossLayerTest, TestIgnoreGradient) { + typedef typename TypeParam::Dtype Dtype; + FillerParameter data_filler_param; + data_filler_param.set_std(1); + GaussianFiller data_filler(data_filler_param); + data_filler.Fill(this->blob_bottom_data_); + LayerParameter layer_param; + LossParameter* loss_param = layer_param.mutable_loss_param(); + loss_param->set_ignore_label(-1); + Dtype* target = this->blob_bottom_targets_->mutable_cpu_data(); + const int count = this->blob_bottom_targets_->count(); + // Ignore half of targets, then check that diff of this half is zero, + // while the other half is nonzero. + caffe_set(count / 2, Dtype(-1), target); + SigmoidCrossEntropyLossLayer layer(layer_param); + layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_); + layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_); + vector propagate_down(2); + propagate_down[0] = true; + propagate_down[1] = false; + layer.Backward(this->blob_top_vec_, propagate_down, this->blob_bottom_vec_); + const Dtype* diff = this->blob_bottom_data_->cpu_diff(); + for (int i = 0; i < count / 2; ++i) { + EXPECT_FLOAT_EQ(diff[i], 0.); + EXPECT_NE(diff[i + count / 2], 0.); + } +} + } // namespace caffe diff --git a/src/caffe/test/test_slice_layer.cpp b/src/caffe/test/test_slice_layer.cpp index 2d2d0fdc0..c2b231e1e 100644 --- a/src/caffe/test/test_slice_layer.cpp +++ b/src/caffe/test/test_slice_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/slice_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_softmax_layer.cpp b/src/caffe/test/test_softmax_layer.cpp index 996da4b8f..944435767 100644 --- a/src/caffe/test/test_softmax_layer.cpp +++ b/src/caffe/test/test_softmax_layer.cpp @@ -1,5 +1,4 @@ #include -#include #include #include "gtest/gtest.h" @@ -7,7 +6,11 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/softmax_layer.hpp" + +#ifdef USE_CUDNN +#include "caffe/layers/cudnn_softmax_layer.hpp" +#endif #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_softmax_with_loss_layer.cpp b/src/caffe/test/test_softmax_with_loss_layer.cpp index 1498d5c5c..c67f3e0d9 100644 --- a/src/caffe/test/test_softmax_with_loss_layer.cpp +++ b/src/caffe/test/test_softmax_with_loss_layer.cpp @@ -1,6 +1,4 @@ #include -#include -#include #include #include "boost/scoped_ptr.hpp" @@ -9,7 +7,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/softmax_loss_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_solver.cpp b/src/caffe/test/test_solver.cpp index ceabc9cdd..b18164268 100644 --- a/src/caffe/test/test_solver.cpp +++ b/src/caffe/test/test_solver.cpp @@ -7,6 +7,7 @@ #include "caffe/common.hpp" #include "caffe/proto/caffe.pb.h" +#include "caffe/sgd_solvers.hpp" #include "caffe/solver.hpp" #include "caffe/test/test_caffe_main.hpp" diff --git a/src/caffe/test/test_solver_factory.cpp b/src/caffe/test/test_solver_factory.cpp new file mode 100644 index 000000000..eef5290fe --- /dev/null +++ b/src/caffe/test/test_solver_factory.cpp @@ -0,0 +1,50 @@ +#include +#include + +#include "boost/scoped_ptr.hpp" +#include "google/protobuf/text_format.h" +#include "gtest/gtest.h" + +#include "caffe/common.hpp" +#include "caffe/solver.hpp" +#include "caffe/solver_factory.hpp" + +#include "caffe/test/test_caffe_main.hpp" + +namespace caffe { + +template +class SolverFactoryTest : public MultiDeviceTest { + protected: + SolverParameter simple_solver_param() { + const string solver_proto = + "train_net_param { " + " layer { " + " name: 'data' type: 'DummyData' top: 'data' " + " dummy_data_param { shape { dim: 1 } } " + " } " + "} "; + SolverParameter solver_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + solver_proto, &solver_param)); + return solver_param; + } +}; + +TYPED_TEST_CASE(SolverFactoryTest, TestDtypesAndDevices); + +TYPED_TEST(SolverFactoryTest, TestCreateSolver) { + typedef typename TypeParam::Dtype Dtype; + typename SolverRegistry::CreatorRegistry& registry = + SolverRegistry::Registry(); + shared_ptr > solver; + SolverParameter solver_param = this->simple_solver_param(); + for (typename SolverRegistry::CreatorRegistry::iterator iter = + registry.begin(); iter != registry.end(); ++iter) { + solver_param.set_type(iter->first); + solver.reset(SolverRegistry::CreateSolver(solver_param)); + EXPECT_EQ(iter->first, solver->type()); + } +} + +} // namespace caffe diff --git a/src/caffe/test/test_split_layer.cpp b/src/caffe/test/test_split_layer.cpp index be5204bfc..007142126 100644 --- a/src/caffe/test/test_split_layer.cpp +++ b/src/caffe/test/test_split_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include @@ -8,9 +7,9 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/split_layer.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/insert_splits.hpp" -#include "caffe/vision_layers.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" @@ -887,67 +886,6 @@ TEST_F(SplitLayerInsertionTest, TestInsertionTwoTop) { this->RunInsertionTest(input_proto, expected_output_proto); } -TEST_F(SplitLayerInsertionTest, TestInputInsertion) { - const string& input_proto = - "name: 'TestNetwork' " - "input: 'data' " - "input_dim: 10 " - "input_dim: 3 " - "input_dim: 227 " - "input_dim: 227 " - "layer { " - " name: 'innerprod1' " - " type: 'InnerProduct' " - " bottom: 'data' " - " top: 'innerprod1' " - "} " - "layer { " - " name: 'innerprod2' " - " type: 'InnerProduct' " - " bottom: 'data' " - " top: 'innerprod2' " - "} " - "layer { " - " name: 'loss' " - " type: 'EuclideanLoss' " - " bottom: 'innerprod1' " - " bottom: 'innerprod2' " - "} "; - const string& expected_output_proto = - "name: 'TestNetwork' " - "input: 'data' " - "input_dim: 10 " - "input_dim: 3 " - "input_dim: 227 " - "input_dim: 227 " - "layer { " - " name: 'data_input_0_split' " - " type: 'Split' " - " bottom: 'data' " - " top: 'data_input_0_split_0' " - " top: 'data_input_0_split_1' " - "} " - "layer { " - " name: 'innerprod1' " - " type: 'InnerProduct' " - " bottom: 'data_input_0_split_0' " - " top: 'innerprod1' " - "} " - "layer { " - " name: 'innerprod2' " - " type: 'InnerProduct' " - " bottom: 'data_input_0_split_1' " - " top: 'innerprod2' " - "} " - "layer { " - " name: 'loss' " - " type: 'EuclideanLoss' " - " bottom: 'innerprod1' " - " bottom: 'innerprod2' " - "} "; - this->RunInsertionTest(input_proto, expected_output_proto); -} - TEST_F(SplitLayerInsertionTest, TestWithInPlace) { const string& input_proto = "name: 'TestNetwork' " diff --git a/src/caffe/test/test_spp_layer.cpp b/src/caffe/test/test_spp_layer.cpp index b2585f1a5..59a3af2ae 100644 --- a/src/caffe/test/test_spp_layer.cpp +++ b/src/caffe/test/test_spp_layer.cpp @@ -1,5 +1,3 @@ -#include -#include #include #include "gtest/gtest.h" @@ -7,7 +5,12 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/concat_layer.hpp" +#include "caffe/layers/flatten_layer.hpp" +#include "caffe/layers/pooling_layer.hpp" +#include "caffe/layers/split_layer.hpp" +#include "caffe/layers/spp_layer.hpp" + #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_stochastic_pooling.cpp b/src/caffe/test/test_stochastic_pooling.cpp index f84464c32..cd5db8383 100644 --- a/src/caffe/test/test_stochastic_pooling.cpp +++ b/src/caffe/test/test_stochastic_pooling.cpp @@ -1,5 +1,4 @@ #include -#include #include #include "gtest/gtest.h" @@ -7,7 +6,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/pooling_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_syncedmem.cpp b/src/caffe/test/test_syncedmem.cpp index b946233d0..16dfb5823 100644 --- a/src/caffe/test/test_syncedmem.cpp +++ b/src/caffe/test/test_syncedmem.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" diff --git a/src/caffe/test/test_tanh_layer.cpp b/src/caffe/test/test_tanh_layer.cpp index 5dc92832f..bb8699a8e 100644 --- a/src/caffe/test/test_tanh_layer.cpp +++ b/src/caffe/test/test_tanh_layer.cpp @@ -5,8 +5,8 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" -#include "caffe/common_layers.hpp" #include "caffe/filler.hpp" +#include "caffe/layers/tanh_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_threshold_layer.cpp b/src/caffe/test/test_threshold_layer.cpp index 05ce82120..1e84cc5ab 100644 --- a/src/caffe/test/test_threshold_layer.cpp +++ b/src/caffe/test/test_threshold_layer.cpp @@ -5,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/threshold_layer.hpp" #include "caffe/test/test_caffe_main.hpp" diff --git a/src/caffe/test/test_tile_layer.cpp b/src/caffe/test/test_tile_layer.cpp index 540aac3c2..7ff75520e 100644 --- a/src/caffe/test/test_tile_layer.cpp +++ b/src/caffe/test/test_tile_layer.cpp @@ -1,4 +1,3 @@ -#include #include #include "gtest/gtest.h" @@ -6,7 +5,7 @@ #include "caffe/blob.hpp" #include "caffe/common.hpp" #include "caffe/filler.hpp" -#include "caffe/vision_layers.hpp" +#include "caffe/layers/tile_layer.hpp" #include "caffe/test/test_caffe_main.hpp" #include "caffe/test/test_gradient_check_util.hpp" diff --git a/src/caffe/test/test_upgrade_proto.cpp b/src/caffe/test/test_upgrade_proto.cpp index 006720231..9dcc2aa55 100644 --- a/src/caffe/test/test_upgrade_proto.cpp +++ b/src/caffe/test/test_upgrade_proto.cpp @@ -1,4 +1,3 @@ -#include #include #include @@ -2906,16 +2905,85 @@ TEST_F(NetUpgradeTest, TestUpgradeV1LayerType) { layer_param.set_type(v2_layer_type); // Data layers expect a DB if (v2_layer_type == "Data") { + #ifdef USE_LEVELDB string tmp; MakeTempDir(&tmp); boost::scoped_ptr db(db::GetDB(DataParameter_DB_LEVELDB)); db->Open(tmp, db::NEW); db->Close(); layer_param.mutable_data_param()->set_source(tmp); + #else + continue; + #endif // USE_LEVELDB } + #ifndef USE_OPENCV + if (v2_layer_type == "ImageData" || v2_layer_type == "WindowData") { + continue; + } + #endif // !USE_OPENCV layer = LayerRegistry::CreateLayer(layer_param); EXPECT_EQ(v2_layer_type, layer->type()); } } +class SolverTypeUpgradeTest : public ::testing::Test { + protected: + void RunSolverTypeUpgradeTest( + const string& input_param_string, const string& output_param_string) { + // Test upgrading old solver_type field (enum) to new type field (string) + SolverParameter input_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + input_param_string, &input_param)); + SolverParameter expected_output_param; + CHECK(google::protobuf::TextFormat::ParseFromString( + output_param_string, &expected_output_param)); + SolverParameter actual_output_param = input_param; + UpgradeSolverType(&actual_output_param); + EXPECT_EQ(expected_output_param.DebugString(), + actual_output_param.DebugString()); + } +}; + +TEST_F(SolverTypeUpgradeTest, TestSimple) { + const char* old_type_vec[6] = { "SGD", "ADAGRAD", "NESTEROV", "RMSPROP", + "ADADELTA", "ADAM" }; + const char* new_type_vec[6] = { "SGD", "AdaGrad", "Nesterov", "RMSProp", + "AdaDelta", "Adam" }; + for (int i = 0; i < 6; ++i) { + const string& input_proto = + "net: 'examples/mnist/lenet_train_test.prototxt' " + "test_iter: 100 " + "test_interval: 500 " + "base_lr: 0.01 " + "momentum: 0.0 " + "weight_decay: 0.0005 " + "lr_policy: 'inv' " + "gamma: 0.0001 " + "power: 0.75 " + "display: 100 " + "max_iter: 10000 " + "snapshot: 5000 " + "snapshot_prefix: 'examples/mnist/lenet_rmsprop' " + "solver_mode: GPU " + "solver_type: " + std::string(old_type_vec[i]) + " "; + const string& expected_output_proto = + "net: 'examples/mnist/lenet_train_test.prototxt' " + "test_iter: 100 " + "test_interval: 500 " + "base_lr: 0.01 " + "momentum: 0.0 " + "weight_decay: 0.0005 " + "lr_policy: 'inv' " + "gamma: 0.0001 " + "power: 0.75 " + "display: 100 " + "max_iter: 10000 " + "snapshot: 5000 " + "snapshot_prefix: 'examples/mnist/lenet_rmsprop' " + "solver_mode: GPU " + "type: '" + std::string(new_type_vec[i]) + "' "; + this->RunSolverTypeUpgradeTest(input_proto, expected_output_proto); + } +} + } // NOLINT(readability/fn_size) // namespace caffe diff --git a/src/caffe/test/test_util_blas.cpp b/src/caffe/test/test_util_blas.cpp index 8770f3099..9ee8818ff 100644 --- a/src/caffe/test/test_util_blas.cpp +++ b/src/caffe/test/test_util_blas.cpp @@ -1,7 +1,5 @@ #ifndef CPU_ONLY // CPU-GPU test -#include - #include "gtest/gtest.h" #include "caffe/blob.hpp" diff --git a/src/caffe/util/benchmark.cpp b/src/caffe/util/benchmark.cpp index 1d269c351..d994225f9 100644 --- a/src/caffe/util/benchmark.cpp +++ b/src/caffe/util/benchmark.cpp @@ -44,7 +44,6 @@ void Timer::Stop() { if (Caffe::mode() == Caffe::GPU) { #ifndef CPU_ONLY CUDA_CHECK(cudaEventRecord(stop_gpu_, 0)); - CUDA_CHECK(cudaEventSynchronize(stop_gpu_)); #else NO_GPU; #endif @@ -66,6 +65,7 @@ float Timer::MicroSeconds() { } if (Caffe::mode() == Caffe::GPU) { #ifndef CPU_ONLY + CUDA_CHECK(cudaEventSynchronize(stop_gpu_)); CUDA_CHECK(cudaEventElapsedTime(&elapsed_milliseconds_, start_gpu_, stop_gpu_)); // Cuda only measure milliseconds @@ -89,6 +89,7 @@ float Timer::MilliSeconds() { } if (Caffe::mode() == Caffe::GPU) { #ifndef CPU_ONLY + CUDA_CHECK(cudaEventSynchronize(stop_gpu_)); CUDA_CHECK(cudaEventElapsedTime(&elapsed_milliseconds_, start_gpu_, stop_gpu_)); #else diff --git a/src/caffe/util/blocking_queue.cpp b/src/caffe/util/blocking_queue.cpp index d1d1fa864..f69d21045 100644 --- a/src/caffe/util/blocking_queue.cpp +++ b/src/caffe/util/blocking_queue.cpp @@ -1,8 +1,7 @@ #include #include -#include "caffe/data_layers.hpp" -#include "caffe/data_reader.hpp" +#include "caffe/layers/base_data_layer.hpp" #include "caffe/parallel.hpp" #include "caffe/util/blocking_queue.hpp" @@ -88,9 +87,5 @@ size_t BlockingQueue::size() const { template class BlockingQueue*>; template class BlockingQueue*>; -template class BlockingQueue; -template class BlockingQueue >; -template class BlockingQueue*>; -template class BlockingQueue*>; } // namespace caffe diff --git a/src/caffe/util/db.cpp b/src/caffe/util/db.cpp index f55420e98..7f22509b5 100644 --- a/src/caffe/util/db.cpp +++ b/src/caffe/util/db.cpp @@ -8,23 +8,33 @@ namespace caffe { namespace db { DB* GetDB(DataParameter::DB backend) { switch (backend) { +#ifdef USE_LEVELDB case DataParameter_DB_LEVELDB: return new LevelDB(); +#endif // USE_LEVELDB +#ifdef USE_LMDB case DataParameter_DB_LMDB: return new LMDB(); +#endif // USE_LMDB default: LOG(FATAL) << "Unknown database backend"; + return NULL; } } DB* GetDB(const string& backend) { +#ifdef USE_LEVELDB if (backend == "leveldb") { return new LevelDB(); - } else if (backend == "lmdb") { + } +#endif // USE_LEVELDB +#ifdef USE_LMDB + if (backend == "lmdb") { return new LMDB(); - } else { - LOG(FATAL) << "Unknown database backend"; } +#endif // USE_LMDB + LOG(FATAL) << "Unknown database backend"; + return NULL; } } // namespace db diff --git a/src/caffe/util/db_leveldb.cpp b/src/caffe/util/db_leveldb.cpp index 06c46627d..f5c4d8a66 100644 --- a/src/caffe/util/db_leveldb.cpp +++ b/src/caffe/util/db_leveldb.cpp @@ -1,3 +1,4 @@ +#ifdef USE_LEVELDB #include "caffe/util/db_leveldb.hpp" #include @@ -19,3 +20,4 @@ void LevelDB::Open(const string& source, Mode mode) { } // namespace db } // namespace caffe +#endif // USE_LEVELDB diff --git a/src/caffe/util/db_lmdb.cpp b/src/caffe/util/db_lmdb.cpp index a054b7968..491a9bd03 100644 --- a/src/caffe/util/db_lmdb.cpp +++ b/src/caffe/util/db_lmdb.cpp @@ -1,3 +1,4 @@ +#ifdef USE_LMDB #include "caffe/util/db_lmdb.hpp" #include @@ -6,20 +7,32 @@ namespace caffe { namespace db { -const size_t LMDB_MAP_SIZE = 1099511627776; // 1 TB - void LMDB::Open(const string& source, Mode mode) { MDB_CHECK(mdb_env_create(&mdb_env_)); - MDB_CHECK(mdb_env_set_mapsize(mdb_env_, LMDB_MAP_SIZE)); if (mode == NEW) { - CHECK_EQ(mkdir(source.c_str(), 0744), 0) << "mkdir " << source << "failed"; + CHECK_EQ(mkdir(source.c_str(), 0744), 0) << "mkdir " << source << " failed"; } int flags = 0; if (mode == READ) { flags = MDB_RDONLY | MDB_NOTLS; } - MDB_CHECK(mdb_env_open(mdb_env_, source.c_str(), flags, 0664)); - LOG(INFO) << "Opened lmdb " << source; + int rc = mdb_env_open(mdb_env_, source.c_str(), flags, 0664); +#ifndef ALLOW_LMDB_NOLOCK + MDB_CHECK(rc); +#else + if (rc == EACCES) { + LOG(WARNING) << "Permission denied. Trying with MDB_NOLOCK ..."; + // Close and re-open environment handle + mdb_env_close(mdb_env_); + MDB_CHECK(mdb_env_create(&mdb_env_)); + // Try again with MDB_NOLOCK + flags |= MDB_NOLOCK; + MDB_CHECK(mdb_env_open(mdb_env_, source.c_str(), flags, 0664)); + } else { + MDB_CHECK(rc); + } +#endif + LOG_IF(INFO, Caffe::root_solver()) << "Opened lmdb " << source; } LMDBCursor* LMDB::NewCursor() { @@ -32,20 +45,69 @@ LMDBCursor* LMDB::NewCursor() { } LMDBTransaction* LMDB::NewTransaction() { - MDB_txn* mdb_txn; - MDB_CHECK(mdb_txn_begin(mdb_env_, NULL, 0, &mdb_txn)); - MDB_CHECK(mdb_dbi_open(mdb_txn, NULL, 0, &mdb_dbi_)); - return new LMDBTransaction(&mdb_dbi_, mdb_txn); + return new LMDBTransaction(mdb_env_); } void LMDBTransaction::Put(const string& key, const string& value) { - MDB_val mdb_key, mdb_value; - mdb_key.mv_data = const_cast(key.data()); - mdb_key.mv_size = key.size(); - mdb_value.mv_data = const_cast(value.data()); - mdb_value.mv_size = value.size(); - MDB_CHECK(mdb_put(mdb_txn_, *mdb_dbi_, &mdb_key, &mdb_value, 0)); + keys.push_back(key); + values.push_back(value); +} + +void LMDBTransaction::Commit() { + MDB_dbi mdb_dbi; + MDB_val mdb_key, mdb_data; + MDB_txn *mdb_txn; + + // Initialize MDB variables + MDB_CHECK(mdb_txn_begin(mdb_env_, NULL, 0, &mdb_txn)); + MDB_CHECK(mdb_dbi_open(mdb_txn, NULL, 0, &mdb_dbi)); + + for (int i = 0; i < keys.size(); i++) { + mdb_key.mv_size = keys[i].size(); + mdb_key.mv_data = const_cast(keys[i].data()); + mdb_data.mv_size = values[i].size(); + mdb_data.mv_data = const_cast(values[i].data()); + + // Add data to the transaction + int put_rc = mdb_put(mdb_txn, mdb_dbi, &mdb_key, &mdb_data, 0); + if (put_rc == MDB_MAP_FULL) { + // Out of memory - double the map size and retry + mdb_txn_abort(mdb_txn); + mdb_dbi_close(mdb_env_, mdb_dbi); + DoubleMapSize(); + Commit(); + return; + } + // May have failed for some other reason + MDB_CHECK(put_rc); + } + + // Commit the transaction + int commit_rc = mdb_txn_commit(mdb_txn); + if (commit_rc == MDB_MAP_FULL) { + // Out of memory - double the map size and retry + mdb_dbi_close(mdb_env_, mdb_dbi); + DoubleMapSize(); + Commit(); + return; + } + // May have failed for some other reason + MDB_CHECK(commit_rc); + + // Cleanup after successful commit + mdb_dbi_close(mdb_env_, mdb_dbi); + keys.clear(); + values.clear(); +} + +void LMDBTransaction::DoubleMapSize() { + struct MDB_envinfo current_info; + MDB_CHECK(mdb_env_info(mdb_env_, ¤t_info)); + size_t new_size = current_info.me_mapsize * 2; + DLOG(INFO) << "Doubling LMDB map size to " << (new_size>>20) << "MB ..."; + MDB_CHECK(mdb_env_set_mapsize(mdb_env_, new_size)); } } // namespace db } // namespace caffe +#endif // USE_LMDB diff --git a/src/caffe/util/hdf5.cpp b/src/caffe/util/hdf5.cpp index d0d05f70f..ed7374293 100644 --- a/src/caffe/util/hdf5.cpp +++ b/src/caffe/util/hdf5.cpp @@ -9,7 +9,7 @@ namespace caffe { template void hdf5_load_nd_dataset_helper( hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, - Blob* blob) { + Blob* blob, bool reshape) { // Verify that the dataset exists. CHECK(H5LTfind_dataset(file_id, dataset_name_)) << "Failed to find HDF5 dataset " << dataset_name_; @@ -27,19 +27,67 @@ void hdf5_load_nd_dataset_helper( status = H5LTget_dataset_info( file_id, dataset_name_, dims.data(), &class_, NULL); CHECK_GE(status, 0) << "Failed to get dataset info for " << dataset_name_; - CHECK_EQ(class_, H5T_FLOAT) << "Expected float or double data"; + switch (class_) { + case H5T_FLOAT: + { LOG_FIRST_N(INFO, 1) << "Datatype class: H5T_FLOAT"; } + break; + case H5T_INTEGER: + { LOG_FIRST_N(INFO, 1) << "Datatype class: H5T_INTEGER"; } + break; + case H5T_TIME: + LOG(FATAL) << "Unsupported datatype class: H5T_TIME"; + case H5T_STRING: + LOG(FATAL) << "Unsupported datatype class: H5T_STRING"; + case H5T_BITFIELD: + LOG(FATAL) << "Unsupported datatype class: H5T_BITFIELD"; + case H5T_OPAQUE: + LOG(FATAL) << "Unsupported datatype class: H5T_OPAQUE"; + case H5T_COMPOUND: + LOG(FATAL) << "Unsupported datatype class: H5T_COMPOUND"; + case H5T_REFERENCE: + LOG(FATAL) << "Unsupported datatype class: H5T_REFERENCE"; + case H5T_ENUM: + LOG(FATAL) << "Unsupported datatype class: H5T_ENUM"; + case H5T_VLEN: + LOG(FATAL) << "Unsupported datatype class: H5T_VLEN"; + case H5T_ARRAY: + LOG(FATAL) << "Unsupported datatype class: H5T_ARRAY"; + default: + LOG(FATAL) << "Datatype class unknown"; + } + vector blob_dims(dims.size()); for (int i = 0; i < dims.size(); ++i) { blob_dims[i] = dims[i]; } - blob->Reshape(blob_dims); + + if (reshape) { + blob->Reshape(blob_dims); + } else { + if (blob_dims != blob->shape()) { + // create shape string for error message + ostringstream stream; + int count = 1; + for (int i = 0; i < blob_dims.size(); ++i) { + stream << blob_dims[i] << " "; + count = count * blob_dims[i]; + } + stream << "(" << count << ")"; + string source_shape_string = stream.str(); + + CHECK(blob_dims == blob->shape()) << "Cannot load blob from hdf5; shape " + << "mismatch. Source shape is " << source_shape_string + << " target shape is " << blob->shape_string(); + } + } } template <> void hdf5_load_nd_dataset(hid_t file_id, const char* dataset_name_, - int min_dim, int max_dim, Blob* blob) { - hdf5_load_nd_dataset_helper(file_id, dataset_name_, min_dim, max_dim, blob); + int min_dim, int max_dim, Blob* blob, bool reshape) { + hdf5_load_nd_dataset_helper(file_id, dataset_name_, min_dim, max_dim, blob, + reshape); herr_t status = H5LTread_dataset_float( file_id, dataset_name_, blob->mutable_cpu_data()); CHECK_GE(status, 0) << "Failed to read float dataset " << dataset_name_; @@ -47,8 +95,9 @@ void hdf5_load_nd_dataset(hid_t file_id, const char* dataset_name_, template <> void hdf5_load_nd_dataset(hid_t file_id, const char* dataset_name_, - int min_dim, int max_dim, Blob* blob) { - hdf5_load_nd_dataset_helper(file_id, dataset_name_, min_dim, max_dim, blob); + int min_dim, int max_dim, Blob* blob, bool reshape) { + hdf5_load_nd_dataset_helper(file_id, dataset_name_, min_dim, max_dim, blob, + reshape); herr_t status = H5LTread_dataset_double( file_id, dataset_name_, blob->mutable_cpu_data()); CHECK_GE(status, 0) << "Failed to read double dataset " << dataset_name_; diff --git a/src/caffe/util/im2col.cpp b/src/caffe/util/im2col.cpp index c48f31f35..114a86cb8 100644 --- a/src/caffe/util/im2col.cpp +++ b/src/caffe/util/im2col.cpp @@ -1,34 +1,54 @@ -#include -#include -#include +#include #include "caffe/util/im2col.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { +// Function uses casting from int to unsigned to compare if value of +// parameter a is greater or equal to zero and lower than value of +// parameter b. The b parameter is of type signed and is always positive, +// therefore its value is always lower than 0x800... where casting +// negative value of a parameter converts it to value higher than 0x800... +// The casting allows to use one condition instead of two. +inline bool is_a_ge_zero_and_a_lt_b(int a, int b) { + return static_cast(a) < static_cast(b); +} + template void im2col_cpu(const Dtype* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, Dtype* data_col) { - int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; - int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; - int channels_col = channels * kernel_h * kernel_w; - for (int c = 0; c < channels_col; ++c) { - int w_offset = c % kernel_w; - int h_offset = (c / kernel_w) % kernel_h; - int c_im = c / kernel_h / kernel_w; - for (int h = 0; h < height_col; ++h) { - for (int w = 0; w < width_col; ++w) { - int h_pad = h * stride_h - pad_h + h_offset; - int w_pad = w * stride_w - pad_w + w_offset; - if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width) - data_col[(c * height_col + h) * width_col + w] = - data_im[(c_im * height + h_pad) * width + w_pad]; - else - data_col[(c * height_col + h) * width_col + w] = 0; + const int output_h = (height + 2 * pad_h - + (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; + const int output_w = (width + 2 * pad_w - + (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; + const int channel_size = height * width; + for (int channel = channels; channel--; data_im += channel_size) { + for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) { + for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) { + int input_row = -pad_h + kernel_row * dilation_h; + for (int output_rows = output_h; output_rows; output_rows--) { + if (!is_a_ge_zero_and_a_lt_b(input_row, height)) { + for (int output_cols = output_w; output_cols; output_cols--) { + *(data_col++) = 0; + } + } else { + int input_col = -pad_w + kernel_col * dilation_w; + for (int output_col = output_w; output_col; output_col--) { + if (is_a_ge_zero_and_a_lt_b(input_col, width)) { + *(data_col++) = data_im[input_row * width + input_col]; + } else { + *(data_col++) = 0; + } + input_col += stride_w; + } + } + input_row += stride_h; + } } } } @@ -38,33 +58,139 @@ void im2col_cpu(const Dtype* data_im, const int channels, template void im2col_cpu(const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, float* data_col); + const int stride_w, const int dilation_h, const int dilation_w, + float* data_col); template void im2col_cpu(const double* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, double* data_col); + const int stride_w, const int dilation_h, const int dilation_w, + double* data_col); + +template +inline void im2col_nd_core_cpu(const Dtype* data_input, const bool im2col, + const int num_spatial_axes, const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_output) { + if (!im2col) { + int im_size = im_shape[0]; + for (int i = 0; i < num_spatial_axes; ++i) { + im_size *= im_shape[1 + i]; + } + caffe_set(im_size, Dtype(0), data_output); + } + int kernel_size = 1; + for (int i = 0; i < num_spatial_axes; ++i) { + kernel_size *= kernel_shape[i]; + } + const int channels_col = col_shape[0]; + vector d_offset(num_spatial_axes, 0); + vector d_iter(num_spatial_axes, 0); + for (int c_col = 0; c_col < channels_col; ++c_col) { + // Loop over spatial axes in reverse order to compute a per-axis offset. + int offset = c_col; + for (int d_i = num_spatial_axes - 1; d_i >= 0; --d_i) { + if (d_i < num_spatial_axes - 1) { + offset /= kernel_shape[d_i + 1]; + } + d_offset[d_i] = offset % kernel_shape[d_i]; + } + for (bool incremented = true; incremented; ) { + // Loop over spatial axes in forward order to compute the indices in the + // image and column, and whether the index lies in the padding. + int index_col = c_col; + int index_im = c_col / kernel_size; + bool is_padding = false; + for (int d_i = 0; d_i < num_spatial_axes; ++d_i) { + const int d = d_iter[d_i]; + const int d_im = d * stride[d_i] - pad[d_i] + + d_offset[d_i] * dilation[d_i]; + is_padding |= d_im < 0 || d_im >= im_shape[d_i + 1]; + index_col *= col_shape[d_i + 1]; + index_col += d; + index_im *= im_shape[d_i + 1]; + index_im += d_im; + } + if (im2col) { + if (is_padding) { + data_output[index_col] = 0; + } else { + data_output[index_col] = data_input[index_im]; + } + } else if (!is_padding) { // col2im + data_output[index_im] += data_input[index_col]; + } + // Loop over spatial axes in reverse order to choose an index, + // like counting. + incremented = false; + for (int d_i = num_spatial_axes - 1; d_i >= 0; --d_i) { + const int d_max = col_shape[d_i + 1]; + DCHECK_LT(d_iter[d_i], d_max); + if (d_iter[d_i] == d_max - 1) { + d_iter[d_i] = 0; + } else { // d_iter[d_i] < d_max - 1 + ++d_iter[d_i]; + incremented = true; + break; + } + } + } // while(incremented) { + } // for (int c = 0; c < channels_col; ++c) { +} + +template +void im2col_nd_cpu(const Dtype* data_im, const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col) { + const bool kIm2Col = true; + im2col_nd_core_cpu(data_im, kIm2Col, num_spatial_axes, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); +} + +// Explicit instantiation +template void im2col_nd_cpu(const float* data_im, + const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, float* data_col); +template void im2col_nd_cpu(const double* data_im, + const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, double* data_col); template void col2im_cpu(const Dtype* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, Dtype* data_im) { caffe_set(height * width * channels, Dtype(0), data_im); - int height_col = (height + 2 * pad_h - patch_h) / stride_h + 1; - int width_col = (width + 2 * pad_w - patch_w) / stride_w + 1; - int channels_col = channels * patch_h * patch_w; - for (int c = 0; c < channels_col; ++c) { - int w_offset = c % patch_w; - int h_offset = (c / patch_w) % patch_h; - int c_im = c / patch_h / patch_w; - for (int h = 0; h < height_col; ++h) { - for (int w = 0; w < width_col; ++w) { - int h_pad = h * stride_h - pad_h + h_offset; - int w_pad = w * stride_w - pad_w + w_offset; - if (h_pad >= 0 && h_pad < height && w_pad >= 0 && w_pad < width) - data_im[(c_im * height + h_pad) * width + w_pad] += - data_col[(c * height_col + h) * width_col + w]; + const int output_h = (height + 2 * pad_h - + (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; + const int output_w = (width + 2 * pad_w - + (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; + const int channel_size = height * width; + for (int channel = channels; channel--; data_im += channel_size) { + for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) { + for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) { + int input_row = -pad_h + kernel_row * dilation_h; + for (int output_rows = output_h; output_rows; output_rows--) { + if (!is_a_ge_zero_and_a_lt_b(input_row, height)) { + data_col += output_w; + } else { + int input_col = -pad_w + kernel_col * dilation_w; + for (int output_col = output_w; output_col; output_col--) { + if (is_a_ge_zero_and_a_lt_b(input_col, width)) { + data_im[input_row * width + input_col] += *data_col; + } + data_col++; + input_col += stride_w; + } + } + input_row += stride_h; + } } } } @@ -72,12 +198,37 @@ void col2im_cpu(const Dtype* data_col, const int channels, // Explicit instantiation template void col2im_cpu(const float* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, float* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + float* data_im); template void col2im_cpu(const double* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, double* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + double* data_im); + +template +void col2im_nd_cpu(const Dtype* data_col, const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_im) { + const bool kIm2Col = false; + im2col_nd_core_cpu(data_col, kIm2Col, num_spatial_axes, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); +} + +// Explicit instantiation +template void col2im_nd_cpu(const float* data_col, + const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, float* data_im); +template void col2im_nd_cpu(const double* data_col, + const int num_spatial_axes, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, double* data_im); + } // namespace caffe diff --git a/src/caffe/util/im2col.cu b/src/caffe/util/im2col.cu index c90f93eb6..a8f30a024 100644 --- a/src/caffe/util/im2col.cu +++ b/src/caffe/util/im2col.cu @@ -1,7 +1,4 @@ #include -#include -#include -#include #include "caffe/common.hpp" #include "caffe/util/im2col.hpp" @@ -13,26 +10,28 @@ __global__ void im2col_gpu_kernel(const int n, const Dtype* data_im, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, const int height_col, const int width_col, Dtype* data_col) { CUDA_KERNEL_LOOP(index, n) { - int w_out = index % width_col; - int h_index = index / width_col; - int h_out = h_index % height_col; - int channel_in = h_index / height_col; - int channel_out = channel_in * kernel_h * kernel_w; - int h_in = h_out * stride_h - pad_h; - int w_in = w_out * stride_w - pad_w; + const int h_index = index / width_col; + const int h_col = h_index % height_col; + const int w_col = index % width_col; + const int c_im = h_index / height_col; + const int c_col = c_im * kernel_h * kernel_w; + const int h_offset = h_col * stride_h - pad_h; + const int w_offset = w_col * stride_w - pad_w; Dtype* data_col_ptr = data_col; - data_col_ptr += (channel_out * height_col + h_out) * width_col + w_out; + data_col_ptr += (c_col * height_col + h_col) * width_col + w_col; const Dtype* data_im_ptr = data_im; - data_im_ptr += (channel_in * height + h_in) * width + w_in; + data_im_ptr += (c_im * height + h_offset) * width + w_offset; for (int i = 0; i < kernel_h; ++i) { for (int j = 0; j < kernel_w; ++j) { - int h = h_in + i; - int w = w_in + j; - *data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ? - data_im_ptr[i * width + j] : 0; + int h_im = h_offset + i * dilation_h; + int w_im = w_offset + j * dilation_w; + *data_col_ptr = + (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) ? + data_im_ptr[i * dilation_h * width + j * dilation_w] : 0; data_col_ptr += height_col * width_col; } } @@ -44,68 +43,241 @@ void im2col_gpu(const Dtype* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, Dtype* data_col) { // We are going to launch channels * height_col * width_col kernels, each // kernel responsible for copying a single-channel grid. - int height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; - int width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; + int height_col = (height + 2 * pad_h - + (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; + int width_col = (width + 2 * pad_w - + (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; int num_kernels = channels * height_col * width_col; // NOLINT_NEXT_LINE(whitespace/operators) im2col_gpu_kernel<<>>( num_kernels, data_im, height, width, kernel_h, kernel_w, pad_h, - pad_w, stride_h, stride_w, height_col, + pad_w, stride_h, stride_w, dilation_h, dilation_w, height_col, width_col, data_col); CUDA_POST_KERNEL_CHECK; } - // Explicit instantiation template void im2col_gpu(const float* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, - float* data_col); + const int dilation_h, const int dilation_w, float* data_col); template void im2col_gpu(const double* data_im, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, - double* data_col); + const int dilation_h, const int dilation_w, double* data_col); + +template +__global__ void im2col_nd_gpu_kernel(const int n, const Dtype* data_im, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col) { + int d_temp[num_axes]; // NOLINT(runtime/arrays) + int d_iter[num_axes]; // NOLINT(runtime/arrays) + + __shared__ int shared_dilation[num_axes]; + __shared__ int shared_kernel_shape[num_axes]; + __shared__ int shared_pad[num_axes]; + __shared__ int shared_stride[num_axes]; + __shared__ int shared_col_shape[num_axes + 1]; + __shared__ int shared_im_shape[num_axes + 1]; + + if (threadIdx.x < num_axes) { + shared_dilation[threadIdx.x] = dilation[threadIdx.x]; + shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x]; + shared_pad[threadIdx.x] = pad[threadIdx.x]; + shared_stride[threadIdx.x] = stride[threadIdx.x]; + } + if (threadIdx.x < num_axes + 1) { + shared_col_shape[threadIdx.x] = col_shape[threadIdx.x]; + shared_im_shape[threadIdx.x] = im_shape[threadIdx.x]; + } + __syncthreads(); + + int i; + CUDA_KERNEL_LOOP(index, n) { + // Initialize channel_in, computed in the loop below, with intermediate + // computations used to compute the spatial indices. + int channel_in = index; + int channel_out = 1; + for (i = num_axes - 1; i >= 0; --i) { + d_temp[i] = channel_in % shared_col_shape[i + 1]; + channel_in /= shared_col_shape[i + 1]; + channel_out *= shared_kernel_shape[i]; + } + channel_out *= channel_in; + int data_col_inc = 1; + for (i = 0; i < num_axes; ++i) { + channel_out *= shared_col_shape[i + 1]; + channel_out += d_temp[i]; + d_temp[i] = d_temp[i] * shared_stride[i] - shared_pad[i]; + channel_in *= shared_im_shape[i + 1]; + channel_in += d_temp[i]; + data_col_inc *= shared_col_shape[i + 1]; + d_iter[i] = 0; + } + Dtype* data_col_ptr = data_col + channel_out; + const Dtype* data_im_ptr = data_im + channel_in; + bool incremented; + do { + bool in_range = true; + for (i = 0; i < num_axes; ++i) { + const int d_iter_im = d_iter[i] * shared_dilation[i] + d_temp[i]; + in_range &= d_iter_im >= 0 && d_iter_im < shared_im_shape[i + 1]; + if (!in_range) { break; } + } + if (in_range) { + int data_im_offset = d_iter[0] * shared_dilation[0]; + for (i = 1; i < num_axes; ++i) { + data_im_offset *= shared_im_shape[i + 1]; + data_im_offset += d_iter[i] * shared_dilation[i]; + } + *data_col_ptr = data_im_ptr[data_im_offset]; + } else { + *data_col_ptr = 0; + } + data_col_ptr += data_col_inc; + incremented = false; + for (i = num_axes - 1; i >= 0; --i) { + const int d_max = shared_kernel_shape[i]; + if (d_iter[i] == d_max - 1) { + d_iter[i] = 0; + } else { // d_iter[i] < d_max - 1 + ++d_iter[i]; + incremented = true; + break; + } + } // for (int i = num_axes - 1; i >= 0; --i) + } while (incremented); // do + } // CUDA_KERNEL_LOOP(index, n) +} + +template +void im2col_nd_gpu(const Dtype* data_im, const int num_spatial_axes, + const int num_kernels, const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_col) { + // num_axes should be smaller than block size + DCHECK_LT(num_spatial_axes, CAFFE_CUDA_NUM_THREADS); + switch (num_spatial_axes) { + case 1: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 2: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 3: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 4: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 5: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 6: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 7: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 8: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 9: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + case 10: + im2col_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + num_kernels, data_im, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_col); + break; + default: + LOG(FATAL) << "im2col_nd_gpu does not support computation with " + << num_spatial_axes << " spatial axes"; + } + CUDA_POST_KERNEL_CHECK; +} + +// Explicit instantiation +template void im2col_nd_gpu(const float* data_im, + const int num_spatial_axes, const int col_size, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, float* data_col); +template void im2col_nd_gpu(const double* data_im, + const int num_spatial_axes, const int col_size, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, double* data_col); template __global__ void col2im_gpu_kernel(const int n, const Dtype* data_col, const int height, const int width, const int channels, - const int patch_h, const int patch_w, + const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, + const int dilation_h, const int dilation_w, const int height_col, const int width_col, Dtype* data_im) { CUDA_KERNEL_LOOP(index, n) { Dtype val = 0; - int w = index % width + pad_w; - int h = (index / width) % height + pad_h; - int c = index / (width * height); + const int w_im = index % width + pad_w; + const int h_im = (index / width) % height + pad_h; + const int c_im = index / (width * height); + int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; + int kernel_extent_h = (kernel_h - 1) * dilation_h + 1; // compute the start and end of the output - int w_col_start = (w < patch_w) ? 0 : (w - patch_w) / stride_w + 1; - int w_col_end = min(w / stride_w + 1, width_col); - int h_col_start = (h < patch_h) ? 0 : (h - patch_h) / stride_h + 1; - int h_col_end = min(h / stride_h + 1, height_col); - /* - for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { - for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { - // the col location: [c * width * height + h_out, w_out] - int c_col = c * patch_h * patch_w + (h - h_col * stride_h) * ksize - + (w - w_col * stride_w); - val += data_col[(c_col * height_col + h_col) * width_col + w_col]; - } - } - */ - // equivalent implementation - int offset = - (c * patch_h * patch_w + h * patch_w + w) * height_col * width_col; - int coeff_h_col = (1 - stride_h * patch_w * height_col) * width_col; - int coeff_w_col = (1 - stride_w * height_col * width_col); - for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { - for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { - val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; + const int w_col_start = + (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; + const int w_col_end = min(w_im / stride_w + 1, width_col); + const int h_col_start = + (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; + const int h_col_end = min(h_im / stride_h + 1, height_col); + // TODO: use LCM of stride and dilation to avoid unnecessary loops + for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) { + for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { + int h_k = (h_im - h_col * stride_h); + int w_k = (w_im - w_col * stride_w); + if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { + h_k /= dilation_h; + w_k /= dilation_w; + int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * + height_col + h_col) * width_col + w_col; + val += data_col[data_col_index]; + } } } data_im[index] = val; @@ -114,31 +286,227 @@ __global__ void col2im_gpu_kernel(const int n, const Dtype* data_col, template void col2im_gpu(const Dtype* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, Dtype* data_im) { - int height_col = (height + 2 * pad_h - patch_h) / stride_h + 1; - int width_col = (width + 2 * pad_w - patch_w) / stride_w + 1; + const int stride_w, const int dilation_h, const int dilation_w, + Dtype* data_im) { + int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / + stride_h + 1; + int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / + stride_w + 1; int num_kernels = channels * height * width; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. // NOLINT_NEXT_LINE(whitespace/operators) col2im_gpu_kernel<<>>( - num_kernels, data_col, height, width, channels, patch_h, patch_w, - pad_h, pad_w, stride_h, stride_w, + num_kernels, data_col, height, width, channels, kernel_h, kernel_w, + pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, height_col, width_col, data_im); CUDA_POST_KERNEL_CHECK; } // Explicit instantiation template void col2im_gpu(const float* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, float* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + float* data_im); template void col2im_gpu(const double* data_col, const int channels, - const int height, const int width, const int patch_h, const int patch_w, + const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, - const int stride_w, double* data_im); + const int stride_w, const int dilation_h, const int dilation_w, + double* data_im); + +template +__global__ void col2im_nd_gpu_kernel(const int n, const Dtype* data_col, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_im) { + int d_im[num_axes]; // NOLINT(runtime/arrays) + int d_col_iter[num_axes]; // NOLINT(runtime/arrays) + int d_col_start[num_axes]; // NOLINT(runtime/arrays) + int d_col_end[num_axes]; // NOLINT(runtime/arrays) + + __shared__ int shared_dilation[num_axes]; + __shared__ int shared_kernel_shape[num_axes]; + __shared__ int shared_pad[num_axes]; + __shared__ int shared_stride[num_axes]; + __shared__ int shared_col_shape[num_axes + 1]; + __shared__ int shared_im_shape[num_axes + 1]; + + if (threadIdx.x < num_axes) { + shared_dilation[threadIdx.x] = dilation[threadIdx.x]; + shared_kernel_shape[threadIdx.x] = kernel_shape[threadIdx.x]; + shared_pad[threadIdx.x] = pad[threadIdx.x]; + shared_stride[threadIdx.x] = stride[threadIdx.x]; + } + if (threadIdx.x < num_axes + 1) { + shared_col_shape[threadIdx.x] = col_shape[threadIdx.x]; + shared_im_shape[threadIdx.x] = im_shape[threadIdx.x]; + } + __syncthreads(); + + CUDA_KERNEL_LOOP(index, n) { + // Initialize channel_in, computed in the loop below, with intermediate + // computations used to compute the spatial indices. + int c_im = index; + // Calculate d_im (image dimensions). + for (int i = num_axes - 1; i >= 0; --i) { + d_im[i] = c_im % shared_im_shape[i + 1] + shared_pad[i]; + c_im /= shared_im_shape[i + 1]; + } + // Calculate col start/end indices. + bool done = false; + for (int i = 0; i < num_axes; ++i) { + const int kernel_extent = + shared_dilation[i] * (shared_kernel_shape[i] - 1) + 1; + d_col_start[i] = d_col_iter[i] = + (d_im[i] < kernel_extent) ? 0 : + (d_im[i] - kernel_extent) / shared_stride[i] + 1; + d_col_end[i] = + min(d_im[i] / shared_stride[i] + 1, shared_col_shape[i + 1]); + if (d_col_start[i] >= d_col_end[i]) { + // Skip computation if the dimension is 0 at any spatial axis -- + // final val will be 0. + data_im[index] = 0; + done = true; + break; // for (int i = 0; i < num_axes; ++i) + } + } + if (done) { + continue; // CUDA_KERNEL_LOOP(index, n) + } + // Loop over the col to compute the output val. + Dtype val = 0; + bool incremented = true; + bool skip = false; + do { + // Compute the final offset. + int final_offset = 0; + int kernel_shape_prod = 1; + int kernel_index; + for (int i = num_axes - 1; i >= 0; --i) { + kernel_index = d_im[i] - d_col_iter[i] * shared_stride[i]; + if (kernel_index % shared_dilation[i]) { + skip = true; + break; + } else { + kernel_index /= shared_dilation[i]; + final_offset += kernel_index * kernel_shape_prod; + kernel_shape_prod *= shared_kernel_shape[i]; + } + } + if (!skip) { + final_offset += kernel_shape_prod * c_im; + for (int i = 0; i < num_axes; ++i) { + final_offset *= shared_col_shape[i + 1]; + final_offset += d_col_iter[i]; + } + val += data_col[final_offset]; + } + skip = false; + incremented = false; + for (int i = num_axes - 1; i >= 0; --i) { + const int d_max = d_col_end[i]; + if (d_col_iter[i] == d_max - 1) { + d_col_iter[i] = d_col_start[i]; + } else { // d_col_iter[i] < d_max - 1 + ++d_col_iter[i]; + incremented = true; + break; // for (int i = num_axes - 1; i >= 0; --i) + } + } // for (int i = num_axes - 1; i >= 0; --i) + } while (incremented); + data_im[index] = val; + } // CUDA_KERNEL_LOOP(index, n) +} + +template +void col2im_nd_gpu(const Dtype* data_col, const int num_spatial_axes, + const int im_size, const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, Dtype* data_im) { + // num_axes should be smaller than block size + DCHECK_LT(num_spatial_axes, CAFFE_CUDA_NUM_THREADS); + switch (num_spatial_axes) { + case 1: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 2: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 3: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 4: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 5: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 6: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 7: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 8: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 9: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + case 10: + col2im_nd_gpu_kernel // NOLINT_NEXT_LINE(whitespace/operators) + <<>>( + im_size, data_col, im_shape, col_shape, + kernel_shape, pad, stride, dilation, data_im); + break; + default: + LOG(FATAL) << "col2im_nd_gpu does not support computation with " + << num_spatial_axes << " spatial axes"; + } + CUDA_POST_KERNEL_CHECK; +} + +// Explicit instantiation +template void col2im_nd_gpu(const float* data_col, + const int num_spatial_axes, const int im_size, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, float* data_im); +template void col2im_nd_gpu(const double* data_col, + const int num_spatial_axes, const int im_size, + const int* im_shape, const int* col_shape, + const int* kernel_shape, const int* pad, const int* stride, + const int* dilation, double* data_im); } // namespace caffe diff --git a/src/caffe/util/insert_splits.cpp b/src/caffe/util/insert_splits.cpp index 475a2a9f6..7a899c697 100644 --- a/src/caffe/util/insert_splits.cpp +++ b/src/caffe/util/insert_splits.cpp @@ -19,12 +19,6 @@ void InsertSplits(const NetParameter& param, NetParameter* param_split) { map, float> top_idx_to_loss_weight; map, int> top_idx_to_bottom_split_idx; map layer_idx_to_layer_name; - layer_idx_to_layer_name[-1] = "input"; - // Determine the number of times each blob is used as an input (bottom) blob. - for (int i = 0; i < param.input_size(); ++i) { - const string& blob_name = param.input(i); - blob_name_to_last_top_idx[blob_name] = make_pair(-1, i); - } for (int i = 0; i < param.layer_size(); ++i) { const LayerParameter& layer_param = param.layer(i); layer_idx_to_layer_name[i] = layer_param.name(); @@ -45,7 +39,7 @@ void InsertSplits(const NetParameter& param, NetParameter* param_split) { blob_name_to_last_top_idx[blob_name] = make_pair(i, j); } // A use of a top blob as a loss should be handled similarly to the use of - // a top blob as an input (bottom) blob to another layer. + // a top blob as a bottom blob to another layer. const int last_loss = std::min(layer_param.loss_weight_size(), layer_param.top_size()); for (int j = 0; j < last_loss; ++j) { @@ -57,19 +51,6 @@ void InsertSplits(const NetParameter& param, NetParameter* param_split) { } } } - // Create split layer for any input blobs used by other layer as bottom - // blobs more than once. - for (int i = 0; i < param.input_size(); ++i) { - const int split_count = top_idx_to_bottom_count[make_pair(-1, i)]; - if (split_count > 1) { - const string& layer_name = layer_idx_to_layer_name[-1]; - const string& blob_name = param.input(i); - LayerParameter* split_layer_param = param_split->add_layer(); - const float kZeroLossWeight = 0; - ConfigureSplitLayer(layer_name, blob_name, i, split_count, - kZeroLossWeight, split_layer_param); - } - } for (int i = 0; i < param.layer_size(); ++i) { LayerParameter* layer_param = param_split->add_layer(); layer_param->CopyFrom(param.layer(i)); diff --git a/src/caffe/util/io.cpp b/src/caffe/util/io.cpp index 6f0331420..835d2d4e4 100644 --- a/src/caffe/util/io.cpp +++ b/src/caffe/util/io.cpp @@ -2,10 +2,12 @@ #include #include #include +#ifdef USE_OPENCV #include #include #include #include +#endif // USE_OPENCV #include #include @@ -67,6 +69,7 @@ void WriteProtoToBinaryFile(const Message& proto, const char* filename) { CHECK(proto.SerializeToOstream(&output)); } +#ifdef USE_OPENCV cv::Mat ReadImageToCVMat(const string& filename, const int height, const int width, const bool is_color) { cv::Mat cv_img; @@ -98,6 +101,7 @@ cv::Mat ReadImageToCVMat(const string& filename, cv::Mat ReadImageToCVMat(const string& filename) { return ReadImageToCVMat(filename, 0, 0, true); } + // Do the file extension and encoding match? static bool matchExt(const std::string & fn, std::string en) { @@ -111,6 +115,7 @@ static bool matchExt(const std::string & fn, return true; return false; } + bool ReadImageToDatum(const string& filename, const int label, const int height, const int width, const bool is_color, const std::string & encoding, Datum* datum) { @@ -135,6 +140,7 @@ bool ReadImageToDatum(const string& filename, const int label, return false; } } +#endif // USE_OPENCV bool ReadFileToDatum(const string& filename, const int label, Datum* datum) { @@ -156,6 +162,7 @@ bool ReadFileToDatum(const string& filename, const int label, } } +#ifdef USE_OPENCV cv::Mat DecodeDatumToCVMatNative(const Datum& datum) { cv::Mat cv_img; CHECK(datum.encoded()) << "Datum not encoded"; @@ -227,6 +234,5 @@ void CVMatToDatum(const cv::Mat& cv_img, Datum* datum) { } datum->set_data(buffer); } - - +#endif // USE_OPENCV } // namespace caffe diff --git a/src/caffe/util/math_functions.cpp b/src/caffe/util/math_functions.cpp index 0aab6b17b..59625bc05 100644 --- a/src/caffe/util/math_functions.cpp +++ b/src/caffe/util/math_functions.cpp @@ -196,6 +196,16 @@ void caffe_sqr(const int n, const double* a, double* y) { vdSqr(n, a, y); } +template <> +void caffe_sqrt(const int n, const float* a, float* y) { + vsSqrt(n, a, y); +} + +template <> +void caffe_sqrt(const int n, const double* a, double* y) { + vdSqrt(n, a, y); +} + template <> void caffe_exp(const int n, const float* a, float* y) { vsExp(n, a, y); @@ -348,28 +358,6 @@ float caffe_cpu_dot(const int n, const float* x, const float* y); template double caffe_cpu_dot(const int n, const double* x, const double* y); -template <> -int caffe_cpu_hamming_distance(const int n, const float* x, - const float* y) { - int dist = 0; - for (int i = 0; i < n; ++i) { - dist += __builtin_popcount(static_cast(x[i]) ^ - static_cast(y[i])); - } - return dist; -} - -template <> -int caffe_cpu_hamming_distance(const int n, const double* x, - const double* y) { - int dist = 0; - for (int i = 0; i < n; ++i) { - dist += __builtin_popcountl(static_cast(x[i]) ^ - static_cast(y[i])); - } - return dist; -} - template <> float caffe_cpu_asum(const int n, const float* x) { return cblas_sasum(n, x, 1); diff --git a/src/caffe/util/math_functions.cu b/src/caffe/util/math_functions.cu index 2631a0740..314e6ba0f 100644 --- a/src/caffe/util/math_functions.cu +++ b/src/caffe/util/math_functions.cu @@ -4,8 +4,6 @@ #include #include -#include -#include #include "caffe/common.hpp" #include "caffe/util/math_functions.hpp" @@ -92,6 +90,26 @@ void caffe_gpu_scal(const int N, const double alpha, double *X) { CUBLAS_CHECK(cublasDscal(Caffe::cublas_handle(), N, &alpha, X, 1)); } +template <> +void caffe_gpu_scal(const int N, const float alpha, float* X, + cudaStream_t str) { + cudaStream_t initial_stream; + CUBLAS_CHECK(cublasGetStream(Caffe::cublas_handle(), &initial_stream)); + CUBLAS_CHECK(cublasSetStream(Caffe::cublas_handle(), str)); + CUBLAS_CHECK(cublasSscal(Caffe::cublas_handle(), N, &alpha, X, 1)); + CUBLAS_CHECK(cublasSetStream(Caffe::cublas_handle(), initial_stream)); +} + +template <> +void caffe_gpu_scal(const int N, const double alpha, double* X, + cudaStream_t str) { + cudaStream_t initial_stream; + CUBLAS_CHECK(cublasGetStream(Caffe::cublas_handle(), &initial_stream)); + CUBLAS_CHECK(cublasSetStream(Caffe::cublas_handle(), str)); + CUBLAS_CHECK(cublasDscal(Caffe::cublas_handle(), N, &alpha, X, 1)); + CUBLAS_CHECK(cublasSetStream(Caffe::cublas_handle(), initial_stream)); +} + template <> void caffe_gpu_axpby(const int N, const float alpha, const float* X, const float beta, float* Y) { @@ -369,55 +387,31 @@ void caffe_gpu_powx(const int N, const double* a, N, a, alpha, y); } -DEFINE_AND_INSTANTIATE_GPU_UNARY_FUNC(sign, y[index] = (Dtype(0) < x[index]) - - (x[index] < Dtype(0))); -DEFINE_AND_INSTANTIATE_GPU_UNARY_FUNC(sgnbit, y[index] = signbit(x[index])); - -__global__ void popc_kernel(const int n, const float* a, - const float* b, uint8_t* y) { - CUDA_KERNEL_LOOP(index, n) { - y[index] = __popc(static_cast(a[index]) ^ - static_cast(b[index])); - } -} - -__global__ void popcll_kernel(const int n, const double* a, - const double* b, uint8_t* y) { +template +__global__ void sqrt_kernel(const int n, const Dtype* a, Dtype* y) { CUDA_KERNEL_LOOP(index, n) { - y[index] = __popcll(static_cast(a[index]) ^ - static_cast(b[index])); + y[index] = sqrt(a[index]); } } template <> -uint32_t caffe_gpu_hamming_distance(const int n, const float* x, - const float* y) { - // TODO: Fix caffe_gpu_hamming_distance (see failing unit test - // TestHammingDistanceGPU in test_math_functions.cpp). - NOT_IMPLEMENTED; - thrust::device_vector popcounts(n); +void caffe_gpu_sqrt(const int N, const float* a, float* y) { // NOLINT_NEXT_LINE(whitespace/operators) - popc_kernel<<>>( - n, x, y, thrust::raw_pointer_cast(popcounts.data())); - return thrust::reduce(popcounts.begin(), popcounts.end(), - (uint32_t) 0, thrust::plus()); + sqrt_kernel<<>>( + N, a, y); } template <> -uint32_t caffe_gpu_hamming_distance(const int n, const double* x, - const double* y) { - // TODO: Fix caffe_gpu_hamming_distance (see failing unit test - // TestHammingDistanceGPU in test_math_functions.cpp). - NOT_IMPLEMENTED; - thrust::device_vector popcounts(n); +void caffe_gpu_sqrt(const int N, const double* a, double* y) { // NOLINT_NEXT_LINE(whitespace/operators) - popcll_kernel<<>>( - n, x, y, thrust::raw_pointer_cast(popcounts.data())); - return thrust::reduce(popcounts.begin(), popcounts.end(), - /* NOLINT_NEXT_LINE(build/include_what_you_use) */ - (uint32_t) 0, thrust::plus()); + sqrt_kernel<<>>( + N, a, y); } +DEFINE_AND_INSTANTIATE_GPU_UNARY_FUNC(sign, y[index] = (Dtype(0) < x[index]) + - (x[index] < Dtype(0))); +DEFINE_AND_INSTANTIATE_GPU_UNARY_FUNC(sgnbit, y[index] = signbit(x[index])); + void caffe_gpu_rng_uniform(const int n, unsigned int* r) { CURAND_CHECK(curandGenerate(Caffe::curand_generator(), r, n)); } diff --git a/src/caffe/util/upgrade_proto.cpp b/src/caffe/util/upgrade_proto.cpp index 4df291f98..bee16984b 100644 --- a/src/caffe/util/upgrade_proto.cpp +++ b/src/caffe/util/upgrade_proto.cpp @@ -13,7 +13,88 @@ namespace caffe { bool NetNeedsUpgrade(const NetParameter& net_param) { - return NetNeedsV0ToV1Upgrade(net_param) || NetNeedsV1ToV2Upgrade(net_param); + return NetNeedsV0ToV1Upgrade(net_param) || NetNeedsV1ToV2Upgrade(net_param) + || NetNeedsDataUpgrade(net_param) || NetNeedsInputUpgrade(net_param) + || NetNeedsBatchNormUpgrade(net_param); +} + +bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) { + bool success = true; + if (NetNeedsV0ToV1Upgrade(*param)) { + // NetParameter was specified using the old style (V0LayerParameter); try to + // upgrade it. + LOG(INFO) << "Attempting to upgrade input file specified using deprecated " + << "V0LayerParameter: " << param_file; + NetParameter original_param(*param); + if (!UpgradeV0Net(original_param, param)) { + success = false; + LOG(ERROR) << "Warning: had one or more problems upgrading " + << "V0NetParameter to NetParameter (see above); continuing anyway."; + } else { + LOG(INFO) << "Successfully upgraded file specified using deprecated " + << "V0LayerParameter"; + } + LOG(WARNING) << "Note that future Caffe releases will not support " + << "V0NetParameter; use ./build/tools/upgrade_net_proto_text for " + << "prototxt and ./build/tools/upgrade_net_proto_binary for model " + << "weights upgrade this and any other net protos to the new format."; + } + // NetParameter uses old style data transformation fields; try to upgrade it. + if (NetNeedsDataUpgrade(*param)) { + LOG(INFO) << "Attempting to upgrade input file specified using deprecated " + << "transformation parameters: " << param_file; + UpgradeNetDataTransformation(param); + LOG(INFO) << "Successfully upgraded file specified using deprecated " + << "data transformation parameters."; + LOG(WARNING) << "Note that future Caffe releases will only support " + << "transform_param messages for transformation fields."; + } + if (NetNeedsV1ToV2Upgrade(*param)) { + LOG(INFO) << "Attempting to upgrade input file specified using deprecated " + << "V1LayerParameter: " << param_file; + NetParameter original_param(*param); + if (!UpgradeV1Net(original_param, param)) { + success = false; + LOG(ERROR) << "Warning: had one or more problems upgrading " + << "V1LayerParameter (see above); continuing anyway."; + } else { + LOG(INFO) << "Successfully upgraded file specified using deprecated " + << "V1LayerParameter"; + } + } + // NetParameter uses old style input fields; try to upgrade it. + if (NetNeedsInputUpgrade(*param)) { + LOG(INFO) << "Attempting to upgrade input file specified using deprecated " + << "input fields: " << param_file; + UpgradeNetInput(param); + LOG(INFO) << "Successfully upgraded file specified using deprecated " + << "input fields."; + LOG(WARNING) << "Note that future Caffe releases will only support " + << "input layers and not input fields."; + } + // NetParameter uses old style batch norm layers; try to upgrade it. + if (NetNeedsBatchNormUpgrade(*param)) { + LOG(INFO) << "Attempting to upgrade batch norm layers using deprecated " + << "params: " << param_file; + UpgradeNetBatchNorm(param); + LOG(INFO) << "Successfully upgraded batch norm layers using deprecated " + << "params."; + } + return success; +} + +void ReadNetParamsFromTextFileOrDie(const string& param_file, + NetParameter* param) { + CHECK(ReadProtoFromTextFile(param_file, param)) + << "Failed to parse NetParameter file: " << param_file; + UpgradeNetAsNeeded(param_file, param); +} + +void ReadNetParamsFromBinaryFileOrDie(const string& param_file, + NetParameter* param) { + CHECK(ReadProtoFromBinaryFile(param_file, param)) + << "Failed to parse NetParameter file: " << param_file; + UpgradeNetAsNeeded(param_file, param); } bool NetNeedsV0ToV1Upgrade(const NetParameter& net_param) { @@ -193,7 +274,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection, } if (v0_layer_param.has_pad()) { if (type == "conv") { - layer_param->mutable_convolution_param()->set_pad(v0_layer_param.pad()); + layer_param->mutable_convolution_param()->add_pad(v0_layer_param.pad()); } else if (type == "pool") { layer_param->mutable_pooling_param()->set_pad(v0_layer_param.pad()); } else { @@ -203,7 +284,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection, } if (v0_layer_param.has_kernelsize()) { if (type == "conv") { - layer_param->mutable_convolution_param()->set_kernel_size( + layer_param->mutable_convolution_param()->add_kernel_size( v0_layer_param.kernelsize()); } else if (type == "pool") { layer_param->mutable_pooling_param()->set_kernel_size( @@ -224,7 +305,7 @@ bool UpgradeV0LayerParameter(const V1LayerParameter& v0_layer_connection, } if (v0_layer_param.has_stride()) { if (type == "conv") { - layer_param->mutable_convolution_param()->set_stride( + layer_param->mutable_convolution_param()->add_stride( v0_layer_param.stride()); } else if (type == "pool") { layer_param->mutable_pooling_param()->set_stride( @@ -583,60 +664,15 @@ void UpgradeNetDataTransformation(NetParameter* net_param) { } } -bool UpgradeNetAsNeeded(const string& param_file, NetParameter* param) { - bool success = true; - if (NetNeedsV0ToV1Upgrade(*param)) { - // NetParameter was specified using the old style (V0LayerParameter); try to - // upgrade it. - LOG(INFO) << "Attempting to upgrade input file specified using deprecated " - << "V0LayerParameter: " << param_file; - NetParameter original_param(*param); - if (!UpgradeV0Net(original_param, param)) { - success = false; - LOG(ERROR) << "Warning: had one or more problems upgrading " - << "V0NetParameter to NetParameter (see above); continuing anyway."; - } else { - LOG(INFO) << "Successfully upgraded file specified using deprecated " - << "V0LayerParameter"; - } - LOG(WARNING) << "Note that future Caffe releases will not support " - << "V0NetParameter; use ./build/tools/upgrade_net_proto_text for " - << "prototxt and ./build/tools/upgrade_net_proto_binary for model " - << "weights upgrade this and any other net protos to the new format."; - } - // NetParameter uses old style data transformation fields; try to upgrade it. - if (NetNeedsDataUpgrade(*param)) { - LOG(INFO) << "Attempting to upgrade input file specified using deprecated " - << "transformation parameters: " << param_file; - UpgradeNetDataTransformation(param); - LOG(INFO) << "Successfully upgraded file specified using deprecated " - << "data transformation parameters."; - LOG(WARNING) << "Note that future Caffe releases will only support " - << "transform_param messages for transformation fields."; - } - if (NetNeedsV1ToV2Upgrade(*param)) { - LOG(INFO) << "Attempting to upgrade input file specified using deprecated " - << "V1LayerParameter: " << param_file; - NetParameter original_param(*param); - if (!UpgradeV1Net(original_param, param)) { - success = false; - LOG(ERROR) << "Warning: had one or more problems upgrading " - << "V1LayerParameter (see above); continuing anyway."; - } else { - LOG(INFO) << "Successfully upgraded file specified using deprecated " - << "V1LayerParameter"; - } - } - return success; -} - bool UpgradeV1Net(const NetParameter& v1_net_param, NetParameter* net_param) { - bool is_fully_compatible = true; if (v1_net_param.layer_size() > 0) { - LOG(ERROR) << "Input NetParameter to be upgraded already specifies 'layer' " - << "fields; these will be ignored for the upgrade."; - is_fully_compatible = false; + LOG(FATAL) << "Refusing to upgrade inconsistent NetParameter input; " + << "the definition includes both 'layer' and 'layers' fields. " + << "The current format defines 'layer' fields with string type like " + << "layer { type: 'Layer' ... } and not layers { type: LAYER ... }. " + << "Manually switch the definition to 'layer' format to continue."; } + bool is_fully_compatible = true; net_param->CopyFrom(v1_net_param); net_param->clear_layers(); net_param->clear_layer(); @@ -927,18 +963,148 @@ const char* UpgradeV1LayerType(const V1LayerParameter_LayerType type) { } } -void ReadNetParamsFromTextFileOrDie(const string& param_file, - NetParameter* param) { - CHECK(ReadProtoFromTextFile(param_file, param)) - << "Failed to parse NetParameter file: " << param_file; - UpgradeNetAsNeeded(param_file, param); +bool NetNeedsInputUpgrade(const NetParameter& net_param) { + return net_param.input_size() > 0; } -void ReadNetParamsFromBinaryFileOrDie(const string& param_file, - NetParameter* param) { - CHECK(ReadProtoFromBinaryFile(param_file, param)) - << "Failed to parse NetParameter file: " << param_file; - UpgradeNetAsNeeded(param_file, param); +void UpgradeNetInput(NetParameter* net_param) { + // Collect inputs and convert to Input layer definitions. + // If the NetParameter holds an input alone, without shape/dim, then + // it's a legacy caffemodel and simply stripping the input field is enough. + bool has_shape = net_param->input_shape_size() > 0; + bool has_dim = net_param->input_dim_size() > 0; + if (has_shape || has_dim) { + LayerParameter* layer_param = net_param->add_layer(); + layer_param->set_name("input"); + layer_param->set_type("Input"); + InputParameter* input_param = layer_param->mutable_input_param(); + // Convert input fields into a layer. + for (int i = 0; i < net_param->input_size(); ++i) { + layer_param->add_top(net_param->input(i)); + if (has_shape) { + input_param->add_shape()->CopyFrom(net_param->input_shape(i)); + } else { + // Turn legacy input dimensions into shape. + BlobShape* shape = input_param->add_shape(); + int first_dim = i*4; + int last_dim = first_dim + 4; + for (int j = first_dim; j < last_dim; j++) { + shape->add_dim(net_param->input_dim(j)); + } + } + } + // Swap input layer to beginning of net to satisfy layer dependencies. + for (int i = net_param->layer_size() - 1; i > 0; --i) { + net_param->mutable_layer(i-1)->Swap(net_param->mutable_layer(i)); + } + } + // Clear inputs. + net_param->clear_input(); + net_param->clear_input_shape(); + net_param->clear_input_dim(); +} + +bool NetNeedsBatchNormUpgrade(const NetParameter& net_param) { + for (int i = 0; i < net_param.layer_size(); ++i) { + // Check if BatchNorm layers declare three parameters, as required by + // the previous BatchNorm layer definition. + if (net_param.layer(i).type() == "BatchNorm" + && net_param.layer(i).param_size() == 3) { + return true; + } + } + return false; +} + +void UpgradeNetBatchNorm(NetParameter* net_param) { + for (int i = 0; i < net_param->layer_size(); ++i) { + // Check if BatchNorm layers declare three parameters, as required by + // the previous BatchNorm layer definition. + if (net_param->layer(i).type() == "BatchNorm" + && net_param->layer(i).param_size() == 3) { + // set lr_mult and decay_mult to zero. leave all other param intact. + for (int ip = 0; ip < net_param->layer(i).param_size(); ip++) { + ParamSpec* fixed_param_spec = + net_param->mutable_layer(i)->mutable_param(ip); + fixed_param_spec->set_lr_mult(0.f); + fixed_param_spec->set_decay_mult(0.f); + } + } + } +} + +// Return true iff the solver contains any old solver_type specified as enums +bool SolverNeedsTypeUpgrade(const SolverParameter& solver_param) { + if (solver_param.has_solver_type()) { + return true; + } + return false; +} + +bool UpgradeSolverType(SolverParameter* solver_param) { + CHECK(!solver_param->has_solver_type() || !solver_param->has_type()) + << "Failed to upgrade solver: old solver_type field (enum) and new type " + << "field (string) cannot be both specified in solver proto text."; + if (solver_param->has_solver_type()) { + string type; + switch (solver_param->solver_type()) { + case SolverParameter_SolverType_SGD: + type = "SGD"; + break; + case SolverParameter_SolverType_NESTEROV: + type = "Nesterov"; + break; + case SolverParameter_SolverType_ADAGRAD: + type = "AdaGrad"; + break; + case SolverParameter_SolverType_RMSPROP: + type = "RMSProp"; + break; + case SolverParameter_SolverType_ADADELTA: + type = "AdaDelta"; + break; + case SolverParameter_SolverType_ADAM: + type = "Adam"; + break; + default: + LOG(FATAL) << "Unknown SolverParameter solver_type: " << type; + } + solver_param->set_type(type); + solver_param->clear_solver_type(); + } else { + LOG(ERROR) << "Warning: solver type already up to date. "; + return false; + } + return true; +} + +// Check for deprecations and upgrade the SolverParameter as needed. +bool UpgradeSolverAsNeeded(const string& param_file, SolverParameter* param) { + bool success = true; + // Try to upgrade old style solver_type enum fields into new string type + if (SolverNeedsTypeUpgrade(*param)) { + LOG(INFO) << "Attempting to upgrade input file specified using deprecated " + << "'solver_type' field (enum)': " << param_file; + if (!UpgradeSolverType(param)) { + success = false; + LOG(ERROR) << "Warning: had one or more problems upgrading " + << "SolverType (see above)."; + } else { + LOG(INFO) << "Successfully upgraded file specified using deprecated " + << "'solver_type' field (enum) to 'type' field (string)."; + LOG(WARNING) << "Note that future Caffe releases will only support " + << "'type' field (string) for a solver's type."; + } + } + return success; +} + +// Read parameters from a file into a SolverParameter proto message. +void ReadSolverParamsFromTextFileOrDie(const string& param_file, + SolverParameter* param) { + CHECK(ReadProtoFromTextFile(param_file, param)) + << "Failed to parse SolverParameter file: " << param_file; + UpgradeSolverAsNeeded(param_file, param); } } // namespace caffe diff --git a/src/gtest/CMakeLists.txt b/src/gtest/CMakeLists.txt index ef7ff7ed1..e98254af1 100644 --- a/src/gtest/CMakeLists.txt +++ b/src/gtest/CMakeLists.txt @@ -1,5 +1,8 @@ add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp) caffe_default_properties(gtest) +target_include_directories(gtest PUBLIC ${Caffe_SRC_DIR}) +target_compile_definitions(gtest PUBLIC -DGTEST_USE_OWN_TR1_TUPLE) + #add_library(gtest_main gtest_main.cc) #target_link_libraries(gtest_main gtest) diff --git a/src/gtest/gtest-all.cpp b/src/gtest/gtest-all.cpp index 926197419..81cdb578c 100644 --- a/src/gtest/gtest-all.cpp +++ b/src/gtest/gtest-all.cpp @@ -2697,7 +2697,7 @@ AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT // Utility functions for encoding Unicode text (wide strings) in // UTF-8. -// A Unicode code-point can have upto 21 bits, and is encoded in UTF-8 +// A Unicode code-point can have up to 21 bits, and is encoded in UTF-8 // like this: // // Code-point length Encoding @@ -7550,7 +7550,7 @@ FilePath FilePath::RemoveExtension(const char* extension) const { return *this; } -// Returns a pointer to the last occurence of a valid path separator in +// Returns a pointer to the last occurrence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FilePath::FindLastPathSeparator() const { diff --git a/src/gtest/gtest.h b/src/gtest/gtest.h index 3143bd679..124fb2321 100644 --- a/src/gtest/gtest.h +++ b/src/gtest/gtest.h @@ -3395,7 +3395,7 @@ class GTEST_API_ FilePath { void Normalize(); - // Returns a pointer to the last occurence of a valid path separator in + // Returns a pointer to the last occurrence of a valid path separator in // the FilePath. On Windows, for example, both '/' and '\' are valid path // separators. Returns NULL if no path separator was found. const char* FindLastPathSeparator() const; diff --git a/tools/CMakeLists.txt b/tools/CMakeLists.txt index 02fbd5cad..378945055 100644 --- a/tools/CMakeLists.txt +++ b/tools/CMakeLists.txt @@ -25,5 +25,6 @@ foreach(source ${srcs}) endif() # Install - install(TARGETS ${name} DESTINATION bin) + install(TARGETS ${name} DESTINATION ${CMAKE_INSTALL_BINDIR}) + endforeach(source) diff --git a/tools/caffe.cpp b/tools/caffe.cpp index ff63860a3..3587d8aa1 100644 --- a/tools/caffe.cpp +++ b/tools/caffe.cpp @@ -3,6 +3,7 @@ namespace bp = boost::python; #endif +#include #include #include @@ -32,7 +33,14 @@ DEFINE_string(gpu, "", DEFINE_string(solver, "", "The solver definition protocol buffer text file."); DEFINE_string(model, "", - "The model definition protocol buffer text file.."); + "The model definition protocol buffer text file."); +DEFINE_string(phase, "", + "Optional; network phase (TRAIN or TEST). Only used for 'time'."); +DEFINE_int32(level, 0, + "Optional; network level."); +DEFINE_string(stage, "", + "Optional; network stages (not to be confused with phase), " + "separated by ','."); DEFINE_string(snapshot, "", "Optional; the snapshot solver state to resume training."); DEFINE_string(weights, "", @@ -100,6 +108,25 @@ static void get_gpus(vector* gpus) { } } +// Parse phase from flags +caffe::Phase get_phase_from_flags(caffe::Phase default_value) { + if (FLAGS_phase == "") + return default_value; + if (FLAGS_phase == "TRAIN") + return caffe::TRAIN; + if (FLAGS_phase == "TEST") + return caffe::TEST; + LOG(FATAL) << "phase must be \"TRAIN\" or \"TEST\""; + return caffe::TRAIN; // Avoid warning +} + +// Parse stages from flags +vector get_stages_from_flags() { + vector stages; + boost::split(stages, FLAGS_stage, boost::is_any_of(",")); + return stages; +} + // caffe commands to call by // caffe // @@ -155,16 +182,23 @@ int train() { CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size()) << "Give a snapshot to resume training or weights to finetune " "but not both."; + vector stages = get_stages_from_flags(); caffe::SolverParameter solver_param; - caffe::ReadProtoFromTextFileOrDie(FLAGS_solver, &solver_param); + caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param); + + solver_param.mutable_train_state()->set_level(FLAGS_level); + for (int i = 0; i < stages.size(); i++) { + solver_param.mutable_train_state()->add_stage(stages[i]); + } // If the gpus flag is not provided, allow the mode and device to be set // in the solver prototxt. if (FLAGS_gpu.size() == 0 + && solver_param.has_solver_mode() && solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) { if (solver_param.has_device_id()) { - FLAGS_gpu = "" + + FLAGS_gpu = "" + boost::lexical_cast(solver_param.device_id()); } else { // Set default GPU if unspecified FLAGS_gpu = "" + boost::lexical_cast(0); @@ -174,6 +208,7 @@ int train() { vector gpus; get_gpus(&gpus); if (gpus.size() == 0) { + LOG(INFO) << "Use CPU."; Caffe::set_mode(Caffe::CPU); } else { ostringstream s; @@ -181,7 +216,13 @@ int train() { s << (i ? ", " : "") << gpus[i]; } LOG(INFO) << "Using GPUs " << s.str(); - +#ifndef CPU_ONLY + cudaDeviceProp device_prop; + for (int i = 0; i < gpus.size(); ++i) { + cudaGetDeviceProperties(&device_prop, gpus[i]); + LOG(INFO) << "GPU " << gpus[i] << ": " << device_prop.name; + } +#endif solver_param.set_device_id(gpus[0]); Caffe::SetDevice(gpus[0]); Caffe::set_mode(Caffe::GPU); @@ -193,7 +234,7 @@ int train() { GetRequestedAction(FLAGS_sighup_effect)); shared_ptr > - solver(caffe::GetSolver(solver_param)); + solver(caffe::SolverRegistry::CreateSolver(solver_param)); solver->SetActionFunction(signal_handler.GetActionFunction()); @@ -204,11 +245,15 @@ int train() { CopyLayers(solver.get(), FLAGS_weights); } + LOG(INFO) << "Starting Optimization"; if (gpus.size() > 1) { - caffe::P2PSync sync(solver, NULL, solver->param()); - sync.run(gpus); +#ifdef USE_NCCL + caffe::NCCL nccl(solver); + nccl.Run(gpus, FLAGS_snapshot.size() > 0 ? FLAGS_snapshot.c_str() : NULL); +#else + LOG(FATAL) << "Multi-GPU execution not available - rebuild with USE_NCCL"; +#endif } else { - LOG(INFO) << "Starting Optimization"; solver->Solve(); } LOG(INFO) << "Optimization Done."; @@ -221,12 +266,18 @@ RegisterBrewFunction(train); int test() { CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score."; CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score."; + vector stages = get_stages_from_flags(); // Set device id and mode vector gpus; get_gpus(&gpus); if (gpus.size() != 0) { LOG(INFO) << "Use GPU with device ID " << gpus[0]; +#ifndef CPU_ONLY + cudaDeviceProp device_prop; + cudaGetDeviceProperties(&device_prop, gpus[0]); + LOG(INFO) << "GPU device name: " << device_prop.name; +#endif Caffe::SetDevice(gpus[0]); Caffe::set_mode(Caffe::GPU); } else { @@ -234,18 +285,17 @@ int test() { Caffe::set_mode(Caffe::CPU); } // Instantiate the caffe net. - Net caffe_net(FLAGS_model, caffe::TEST); + Net caffe_net(FLAGS_model, caffe::TEST, FLAGS_level, &stages); caffe_net.CopyTrainedLayersFrom(FLAGS_weights); LOG(INFO) << "Running for " << FLAGS_iterations << " iterations."; - vector* > bottom_vec; vector test_score_output_id; vector test_score; float loss = 0; for (int i = 0; i < FLAGS_iterations; ++i) { float iter_loss; const vector*>& result = - caffe_net.Forward(bottom_vec, &iter_loss); + caffe_net.Forward(&iter_loss); loss += iter_loss; int idx = 0; for (int j = 0; j < result.size(); ++j) { @@ -288,6 +338,8 @@ RegisterBrewFunction(test); // Time: benchmark the execution time of a model. int time() { CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time."; + caffe::Phase phase = get_phase_from_flags(caffe::TRAIN); + vector stages = get_stages_from_flags(); // Set device id and mode vector gpus; @@ -301,7 +353,7 @@ int time() { Caffe::set_mode(Caffe::CPU); } // Instantiate the caffe net. - Net caffe_net(FLAGS_model, caffe::TRAIN); + Net caffe_net(FLAGS_model, phase, FLAGS_level, &stages); // Do a clean forward and backward pass, so that memory allocation are done // and future iterations will be more stable. @@ -309,7 +361,7 @@ int time() { // Note that for the speed benchmark, we will assume that the network does // not take any input blobs. float initial_loss; - caffe_net.Forward(vector*>(), &initial_loss); + caffe_net.Forward(&initial_loss); LOG(INFO) << "Initial loss: " << initial_loss; LOG(INFO) << "Performing Backward"; caffe_net.Backward(); @@ -377,6 +429,8 @@ RegisterBrewFunction(time); int main(int argc, char** argv) { // Print output to stderr (while still logging). FLAGS_alsologtostderr = 1; + // Set version + gflags::SetVersionString(AS_STRING(CAFFE_VERSION)); // Usage message. gflags::SetUsageMessage("command line brew\n" "usage: caffe \n\n" diff --git a/tools/compute_image_mean.cpp b/tools/compute_image_mean.cpp index b1fc7cae3..417f5e4c6 100644 --- a/tools/compute_image_mean.cpp +++ b/tools/compute_image_mean.cpp @@ -22,7 +22,10 @@ DEFINE_string(backend, "lmdb", "The backend {leveldb, lmdb} containing the images"); int main(int argc, char** argv) { +#ifdef USE_OPENCV ::google::InitGoogleLogging(argv[0]); + // Print output to stderr (while still logging) + FLAGS_alsologtostderr = 1; #ifndef GFLAGS_GFLAGS_H_ namespace gflags = google; @@ -64,7 +67,7 @@ int main(int argc, char** argv) { for (int i = 0; i < size_in_datum; ++i) { sum_blob.add_data(0.); } - LOG(INFO) << "Starting Iteration"; + LOG(INFO) << "Starting iteration"; while (cursor->valid()) { Datum datum; datum.ParseFromString(cursor->value()); @@ -113,7 +116,10 @@ int main(int argc, char** argv) { for (int i = 0; i < dim; ++i) { mean_values[c] += sum_blob.data(dim * c + i); } - LOG(INFO) << "mean_value channel [" << c << "]:" << mean_values[c] / dim; + LOG(INFO) << "mean_value channel [" << c << "]: " << mean_values[c] / dim; } +#else + LOG(FATAL) << "This tool requires OpenCV; compile with USE_OPENCV."; +#endif // USE_OPENCV return 0; } diff --git a/tools/convert_imageset.cpp b/tools/convert_imageset.cpp index aad1f1fe2..90cdb15d4 100644 --- a/tools/convert_imageset.cpp +++ b/tools/convert_imageset.cpp @@ -20,6 +20,7 @@ #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" +#include "caffe/util/format.hpp" #include "caffe/util/io.hpp" #include "caffe/util/rng.hpp" @@ -43,6 +44,7 @@ DEFINE_string(encode_type, "", "Optional: What type should we encode the image as ('png','jpg',...)."); int main(int argc, char** argv) { +#ifdef USE_OPENCV ::google::InitGoogleLogging(argv[0]); // Print output to stderr (while still logging) FLAGS_alsologtostderr = 1; @@ -71,10 +73,13 @@ int main(int argc, char** argv) { std::ifstream infile(argv[2]); std::vector > lines; - std::string filename; + std::string line; + size_t pos; int label; - while (infile >> filename >> label) { - lines.push_back(std::make_pair(filename, label)); + while (std::getline(infile, line)) { + pos = line.find_last_of(' '); + label = atoi(line.substr(pos + 1).c_str()); + lines.push_back(std::make_pair(line.substr(0, pos), label)); } if (FLAGS_shuffle) { // randomly shuffle data @@ -98,8 +103,6 @@ int main(int argc, char** argv) { std::string root_folder(argv[1]); Datum datum; int count = 0; - const int kMaxKeyLength = 256; - char key_cstr[kMaxKeyLength]; int data_size = 0; bool data_size_initialized = false; @@ -130,13 +133,12 @@ int main(int argc, char** argv) { } } // sequential - int length = snprintf(key_cstr, kMaxKeyLength, "%08d_%s", line_id, - lines[line_id].first.c_str()); + string key_str = caffe::format_int(line_id, 8) + "_" + lines[line_id].first; // Put in db string out; CHECK(datum.SerializeToString(&out)); - txn->Put(string(key_cstr, length), out); + txn->Put(key_str, out); if (++count % 1000 == 0) { // Commit db @@ -150,5 +152,8 @@ int main(int argc, char** argv) { txn->Commit(); LOG(INFO) << "Processed " << count << " files."; } +#else + LOG(FATAL) << "This tool requires OpenCV; compile with USE_OPENCV."; +#endif // USE_OPENCV return 0; } diff --git a/tools/extra/extract_seconds.py b/tools/extra/extract_seconds.py index 591a51f96..68af69a27 100755 --- a/tools/extra/extract_seconds.py +++ b/tools/extra/extract_seconds.py @@ -48,11 +48,19 @@ def extract_seconds(input_file, output_file): start_datetime = get_start_time(lines, log_created_year) assert start_datetime, 'Start time not found' + last_dt = start_datetime out = open(output_file, 'w') for line in lines: line = line.strip() if line.find('Iteration') != -1: dt = extract_datetime_from_line(line, log_created_year) + + # if it's another year + if dt.month < last_dt.month: + log_created_year += 1 + dt = extract_datetime_from_line(line, log_created_year) + last_dt = dt + elapsed_seconds = (dt - start_datetime).total_seconds() out.write('%f\n' % elapsed_seconds) out.close() diff --git a/tools/extra/parse_log.py b/tools/extra/parse_log.py index 48f9bee0b..4248e2b87 100755 --- a/tools/extra/parse_log.py +++ b/tools/extra/parse_log.py @@ -16,13 +16,10 @@ def parse_log(path_to_log): """Parse log file - Returns (train_dict_list, train_dict_names, test_dict_list, test_dict_names) + Returns (train_dict_list, test_dict_list) train_dict_list and test_dict_list are lists of dicts that define the table rows - - train_dict_names and test_dict_names are ordered tuples of the column names - for the two dict_lists """ regex_iteration = re.compile('Iteration (\d+)') @@ -41,6 +38,7 @@ def parse_log(path_to_log): logfile_year = extract_seconds.get_log_created_year(path_to_log) with open(path_to_log) as f: start_time = extract_seconds.get_start_time(f, logfile_year) + last_time = start_time for line in f: iteration_match = regex_iteration.search(line) @@ -51,8 +49,19 @@ def parse_log(path_to_log): # iteration continue - time = extract_seconds.extract_datetime_from_line(line, - logfile_year) + try: + time = extract_seconds.extract_datetime_from_line(line, + logfile_year) + except ValueError: + # Skip lines with bad formatting, for example when resuming solver + continue + + # if it's another year + if time.month < last_time.month: + logfile_year += 1 + time = extract_seconds.extract_datetime_from_line(line, logfile_year) + last_time = time + seconds = (time - start_time).total_seconds() learning_rate_match = regex_learning_rate.search(line) @@ -149,6 +158,11 @@ def write_csv(output_filename, dict_list, delimiter, verbose=False): """Write a CSV file """ + if not dict_list: + if verbose: + print('Not writing %s; no lines to write' % output_filename) + return + dialect = csv.excel dialect.delimiter = delimiter @@ -189,7 +203,7 @@ def main(): args = parse_args() train_dict_list, test_dict_list = parse_log(args.logfile_path) save_csv_files(args.logfile_path, args.output_dir, train_dict_list, - test_dict_list, delimiter=args.delimiter) + test_dict_list, delimiter=args.delimiter, verbose=args.verbose) if __name__ == '__main__': diff --git a/tools/extra/parse_log.sh b/tools/extra/parse_log.sh index 98ef0a050..122eb9e6e 100755 --- a/tools/extra/parse_log.sh +++ b/tools/extra/parse_log.sh @@ -14,7 +14,12 @@ echo "Usage parse_log.sh /path/to/your.log" exit fi LOG=`basename $1` -grep -B 1 'Test ' $1 > aux.txt +sed -n '/Iteration .* Testing net/,/Iteration *. loss/p' $1 > aux.txt +sed -i '/Waiting for data/d' aux.txt +sed -i '/prefetch queue empty/d' aux.txt +sed -i '/Iteration .* loss/d' aux.txt +sed -i '/Iteration .* lr/d' aux.txt +sed -i '/Train net/d' aux.txt grep 'Iteration ' aux.txt | sed 's/.*Iteration \([[:digit:]]*\).*/\1/g' > aux0.txt grep 'Test net output #0' aux.txt | awk '{print $11}' > aux1.txt grep 'Test net output #1' aux.txt | awk '{print $11}' > aux2.txt @@ -34,7 +39,7 @@ rm aux.txt aux0.txt aux1.txt aux2.txt aux3.txt aux4.txt grep '] Solving ' $1 > aux.txt grep ', loss = ' $1 >> aux.txt grep 'Iteration ' aux.txt | sed 's/.*Iteration \([[:digit:]]*\).*/\1/g' > aux0.txt -grep ', loss = ' $1 | awk '{print $9}' > aux1.txt +grep ', loss = ' $1 | awk -F = '{print $2}' > aux1.txt grep ', lr = ' $1 | awk '{print $9}' > aux2.txt # Extracting elapsed seconds diff --git a/tools/extra/plot_log.gnuplot.example b/tools/extra/plot_log.gnuplot.example index 748b96e69..02c68e1d2 100644 --- a/tools/extra/plot_log.gnuplot.example +++ b/tools/extra/plot_log.gnuplot.example @@ -4,7 +4,7 @@ # Be warned that the fields in the training log may change in the future. # You had better check the data files before designing your own plots. -# Please generate the neccessary data files with +# Please generate the necessary data files with # /path/to/caffe/tools/extra/parse_log.sh before plotting. # Example usage: # ./parse_log.sh mnist.log diff --git a/tools/extra/plot_training_log.py.example b/tools/extra/plot_training_log.py.example index b6fda54e0..8caca6b8a 100755 --- a/tools/extra/plot_training_log.py.example +++ b/tools/extra/plot_training_log.py.example @@ -10,7 +10,8 @@ import matplotlib.legend as lgd import matplotlib.markers as mks def get_log_parsing_script(): - dirname = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) + dirname = os.path.dirname(os.path.abspath(inspect.getfile( + inspect.currentframe()))) return dirname + '/parse_log.sh' def get_log_file_suffix(): @@ -61,16 +62,17 @@ def get_data_file_type(chart_type): return data_file_type def get_data_file(chart_type, path_to_log): - return os.path.basename(path_to_log) + '.' + get_data_file_type(chart_type).lower() + return (os.path.basename(path_to_log) + '.' + + get_data_file_type(chart_type).lower()) def get_field_descriptions(chart_type): description = get_chart_type_description(chart_type).split( get_chart_type_description_separator()) y_axis_field = description[0] x_axis_field = description[1] - return x_axis_field, y_axis_field + return x_axis_field, y_axis_field -def get_field_indecies(x_axis_field, y_axis_field): +def get_field_indices(x_axis_field, y_axis_field): data_file_type = get_data_file_type(chart_type) fields = create_field_index()[0][data_file_type] return fields[x_axis_field], fields[y_axis_field] @@ -88,9 +90,9 @@ def load_data(data_file, field_idx0, field_idx1): def random_marker(): markers = mks.MarkerStyle.markers - num = len(markers.values()) + num = len(markers.keys()) idx = random.randint(0, num - 1) - return markers.values()[idx] + return markers.keys()[idx] def get_data_label(path_to_log): label = path_to_log[path_to_log.rfind('/')+1 : path_to_log.rfind( @@ -111,7 +113,7 @@ def plot_chart(chart_type, path_to_png, path_to_log_list): os.system('%s %s' % (get_log_parsing_script(), path_to_log)) data_file = get_data_file(chart_type, path_to_log) x_axis_field, y_axis_field = get_field_descriptions(chart_type) - x, y = get_field_indecies(x_axis_field, y_axis_field) + x, y = get_field_indices(x_axis_field, y_axis_field) data = load_data(data_file, x, y) ## TODO: more systematic color cycle for lines color = [random.random(), random.random(), random.random()] @@ -124,22 +126,15 @@ def plot_chart(chart_type, path_to_png, path_to_log_list): plt.plot(data[0], data[1], label = label, color = color, linewidth = linewidth) else: - ok = False - ## Some markers throw ValueError: Unrecognized marker style - while not ok: - try: - marker = random_marker() - plt.plot(data[0], data[1], label = label, color = color, - marker = marker, linewidth = linewidth) - ok = True - except: - pass + marker = random_marker() + plt.plot(data[0], data[1], label = label, color = color, + marker = marker, linewidth = linewidth) legend_loc = get_legend_loc(chart_type) plt.legend(loc = legend_loc, ncol = 1) # ajust ncol to fit the space plt.title(get_chart_type_description(chart_type)) plt.xlabel(x_axis_field) - plt.ylabel(y_axis_field) - plt.savefig(path_to_png) + plt.ylabel(y_axis_field) + plt.savefig(path_to_png) plt.show() def print_help(): @@ -150,7 +145,7 @@ Be warned that the fields in the training log may change in the future. You had better check the data files and change the mapping from field name to field index in create_field_index before designing your own plots. Usage: - ./plot_log.sh chart_type[0-%s] /where/to/save.png /path/to/first.log ... + ./plot_training_log.py chart_type[0-%s] /where/to/save.png /path/to/first.log ... Notes: 1. Supporting multiple logs. 2. Log file name must end with the lower-cased "%s". @@ -160,28 +155,30 @@ Supported chart types:""" % (len(get_supported_chart_types()) - 1, num = len(supported_chart_types) for i in xrange(num): print ' %d: %s' % (i, supported_chart_types[i]) - exit + sys.exit() def is_valid_chart_type(chart_type): return chart_type >= 0 and chart_type < len(get_supported_chart_types()) - + if __name__ == '__main__': if len(sys.argv) < 4: print_help() else: chart_type = int(sys.argv[1]) if not is_valid_chart_type(chart_type): + print '%s is not a valid chart type.' % chart_type print_help() path_to_png = sys.argv[2] if not path_to_png.endswith('.png'): print 'Path must ends with png' % path_to_png - exit + sys.exit() path_to_logs = sys.argv[3:] for path_to_log in path_to_logs: if not os.path.exists(path_to_log): print 'Path does not exist: %s' % path_to_log - exit + sys.exit() if not path_to_log.endswith(get_log_file_suffix()): + print 'Log file must end in %s.' % get_log_file_suffix() print_help() ## plot_chart accpets multiple path_to_logs plot_chart(chart_type, path_to_png, path_to_logs) diff --git a/tools/extra/resize_and_crop_images.py b/tools/extra/resize_and_crop_images.py index c844f590c..fd2c3134e 100755 --- a/tools/extra/resize_and_crop_images.py +++ b/tools/extra/resize_and_crop_images.py @@ -101,7 +101,7 @@ def map(self, key, value): yield value, FLAGS.output_folder mapreducer.REGISTER_DEFAULT_MAPPER(ResizeCropImagesMapper) - +mapreducer.REGISTER_DEFAULT_REDUCER(mapreducer.NoPassReducer) mapreducer.REGISTER_DEFAULT_READER(mapreducer.FileReader) mapreducer.REGISTER_DEFAULT_WRITER(mapreducer.FileWriter) diff --git a/tools/extra/summarize.py b/tools/extra/summarize.py new file mode 100755 index 000000000..7e2d22fd3 --- /dev/null +++ b/tools/extra/summarize.py @@ -0,0 +1,140 @@ +#!/usr/bin/env python + +"""Net summarization tool. + +This tool summarizes the structure of a net in a concise but comprehensive +tabular listing, taking a prototxt file as input. + +Use this tool to check at a glance that the computation you've specified is the +computation you expect. +""" + +from caffe.proto import caffe_pb2 +from google import protobuf +import re +import argparse + +# ANSI codes for coloring blobs (used cyclically) +COLORS = ['92', '93', '94', '95', '97', '96', '42', '43;30', '100', + '444', '103;30', '107;30'] +DISCONNECTED_COLOR = '41' + +def read_net(filename): + net = caffe_pb2.NetParameter() + with open(filename) as f: + protobuf.text_format.Parse(f.read(), net) + return net + +def format_param(param): + out = [] + if len(param.name) > 0: + out.append(param.name) + if param.lr_mult != 1: + out.append('x{}'.format(param.lr_mult)) + if param.decay_mult != 1: + out.append('Dx{}'.format(param.decay_mult)) + return ' '.join(out) + +def printed_len(s): + return len(re.sub(r'\033\[[\d;]+m', '', s)) + +def print_table(table, max_width): + """Print a simple nicely-aligned table. + + table must be a list of (equal-length) lists. Columns are space-separated, + and as narrow as possible, but no wider than max_width. Text may overflow + columns; note that unlike string.format, this will not affect subsequent + columns, if possible.""" + + max_widths = [max_width] * len(table[0]) + column_widths = [max(printed_len(row[j]) + 1 for row in table) + for j in range(len(table[0]))] + column_widths = [min(w, max_w) for w, max_w in zip(column_widths, max_widths)] + + for row in table: + row_str = '' + right_col = 0 + for cell, width in zip(row, column_widths): + right_col += width + row_str += cell + ' ' + row_str += ' ' * max(right_col - printed_len(row_str), 0) + print row_str + +def summarize_net(net): + disconnected_tops = set() + for lr in net.layer: + disconnected_tops |= set(lr.top) + disconnected_tops -= set(lr.bottom) + + table = [] + colors = {} + for lr in net.layer: + tops = [] + for ind, top in enumerate(lr.top): + color = colors.setdefault(top, COLORS[len(colors) % len(COLORS)]) + if top in disconnected_tops: + top = '\033[1;4m' + top + if len(lr.loss_weight) > 0: + top = '{} * {}'.format(lr.loss_weight[ind], top) + tops.append('\033[{}m{}\033[0m'.format(color, top)) + top_str = ', '.join(tops) + + bottoms = [] + for bottom in lr.bottom: + color = colors.get(bottom, DISCONNECTED_COLOR) + bottoms.append('\033[{}m{}\033[0m'.format(color, bottom)) + bottom_str = ', '.join(bottoms) + + if lr.type == 'Python': + type_str = lr.python_param.module + '.' + lr.python_param.layer + else: + type_str = lr.type + + # Summarize conv/pool parameters. + # TODO support rectangular/ND parameters + conv_param = lr.convolution_param + if (lr.type in ['Convolution', 'Deconvolution'] + and len(conv_param.kernel_size) == 1): + arg_str = str(conv_param.kernel_size[0]) + if len(conv_param.stride) > 0 and conv_param.stride[0] != 1: + arg_str += '/' + str(conv_param.stride[0]) + if len(conv_param.pad) > 0 and conv_param.pad[0] != 0: + arg_str += '+' + str(conv_param.pad[0]) + arg_str += ' ' + str(conv_param.num_output) + if conv_param.group != 1: + arg_str += '/' + str(conv_param.group) + elif lr.type == 'Pooling': + arg_str = str(lr.pooling_param.kernel_size) + if lr.pooling_param.stride != 1: + arg_str += '/' + str(lr.pooling_param.stride) + if lr.pooling_param.pad != 0: + arg_str += '+' + str(lr.pooling_param.pad) + else: + arg_str = '' + + if len(lr.param) > 0: + param_strs = map(format_param, lr.param) + if max(map(len, param_strs)) > 0: + param_str = '({})'.format(', '.join(param_strs)) + else: + param_str = '' + else: + param_str = '' + + table.append([lr.name, type_str, param_str, bottom_str, '->', top_str, + arg_str]) + return table + +def main(): + parser = argparse.ArgumentParser(description="Print a concise summary of net computation.") + parser.add_argument('filename', help='net prototxt file to summarize') + parser.add_argument('-w', '--max-width', help='maximum field width', + type=int, default=30) + args = parser.parse_args() + + net = read_net(args.filename) + table = summarize_net(net) + print_table(table, max_width=args.max_width) + +if __name__ == '__main__': + main() diff --git a/tools/extract_features.cpp b/tools/extract_features.cpp index 084c9bf88..51c791e40 100644 --- a/tools/extract_features.cpp +++ b/tools/extract_features.cpp @@ -1,4 +1,3 @@ -#include // for snprintf #include #include @@ -10,14 +9,13 @@ #include "caffe/net.hpp" #include "caffe/proto/caffe.pb.h" #include "caffe/util/db.hpp" +#include "caffe/util/format.hpp" #include "caffe/util/io.hpp" -#include "caffe/vision_layers.hpp" using caffe::Blob; using caffe::Caffe; using caffe::Datum; using caffe::Net; -using boost::shared_ptr; using std::string; namespace db = caffe::db; @@ -52,7 +50,7 @@ int feature_extraction_pipeline(int argc, char** argv) { arg_pos = num_required_args; if (argc > arg_pos && strcmp(argv[arg_pos], "GPU") == 0) { LOG(ERROR)<< "Using GPU"; - uint device_id = 0; + int device_id = 0; if (argc > arg_pos + 1) { device_id = atoi(argv[arg_pos + 1]); CHECK_GE(device_id, 0); @@ -96,7 +94,7 @@ int feature_extraction_pipeline(int argc, char** argv) { } */ std::string feature_extraction_proto(argv[++arg_pos]); - shared_ptr > feature_extraction_net( + boost::shared_ptr > feature_extraction_net( new Net(feature_extraction_proto, caffe::TEST)); feature_extraction_net->CopyTrainedLayersFrom(pretrained_binary_proto); @@ -120,30 +118,27 @@ int feature_extraction_pipeline(int argc, char** argv) { int num_mini_batches = atoi(argv[++arg_pos]); - std::vector > feature_dbs; - std::vector > txns; + std::vector > feature_dbs; + std::vector > txns; const char* db_type = argv[++arg_pos]; for (size_t i = 0; i < num_features; ++i) { LOG(INFO)<< "Opening dataset " << dataset_names[i]; - shared_ptr db(db::GetDB(db_type)); + boost::shared_ptr db(db::GetDB(db_type)); db->Open(dataset_names.at(i), db::NEW); feature_dbs.push_back(db); - shared_ptr txn(db->NewTransaction()); + boost::shared_ptr txn(db->NewTransaction()); txns.push_back(txn); } - LOG(ERROR)<< "Extacting Features"; + LOG(ERROR)<< "Extracting Features"; Datum datum; - const int kMaxKeyStrLength = 100; - char key_str[kMaxKeyStrLength]; - std::vector*> input_vec; std::vector image_indices(num_features, 0); for (int batch_index = 0; batch_index < num_mini_batches; ++batch_index) { - feature_extraction_net->Forward(input_vec); + feature_extraction_net->Forward(); for (int i = 0; i < num_features; ++i) { - const shared_ptr > feature_blob = feature_extraction_net - ->blob_by_name(blob_names[i]); + const boost::shared_ptr > feature_blob = + feature_extraction_net->blob_by_name(blob_names[i]); int batch_size = feature_blob->num(); int dim_features = feature_blob->count() / batch_size; const Dtype* feature_blob_data; @@ -158,11 +153,11 @@ int feature_extraction_pipeline(int argc, char** argv) { for (int d = 0; d < dim_features; ++d) { datum.add_float_data(feature_blob_data[d]); } - int length = snprintf(key_str, kMaxKeyStrLength, "%010d", - image_indices[i]); + string key_str = caffe::format_int(image_indices[i], 10); + string out; CHECK(datum.SerializeToString(&out)); - txns.at(i)->Put(std::string(key_str, length), out); + txns.at(i)->Put(key_str, out); ++image_indices[i]; if (image_indices[i] % 1000 == 0) { txns.at(i)->Commit(); @@ -186,4 +181,3 @@ int feature_extraction_pipeline(int argc, char** argv) { LOG(ERROR)<< "Successfully extracted the features!"; return 0; } - diff --git a/tools/upgrade_net_proto_binary.cpp b/tools/upgrade_net_proto_binary.cpp index 8a0dd7af7..ede07ecc2 100644 --- a/tools/upgrade_net_proto_binary.cpp +++ b/tools/upgrade_net_proto_binary.cpp @@ -16,6 +16,7 @@ using std::ofstream; using namespace caffe; // NOLINT(build/namespaces) int main(int argc, char** argv) { + FLAGS_alsologtostderr = 1; // Print output to stderr (while still logging) ::google::InitGoogleLogging(argv[0]); if (argc != 3) { LOG(ERROR) << "Usage: " @@ -39,11 +40,11 @@ int main(int argc, char** argv) { << "see details above."; } } else { - LOG(ERROR) << "File already in V1 proto format: " << argv[1]; + LOG(ERROR) << "File already in latest proto format: " << input_filename; } WriteProtoToBinaryFile(net_param, argv[2]); - LOG(ERROR) << "Wrote upgraded NetParameter binary proto to " << argv[2]; + LOG(INFO) << "Wrote upgraded NetParameter binary proto to " << argv[2]; return !success; } diff --git a/tools/upgrade_net_proto_text.cpp b/tools/upgrade_net_proto_text.cpp index 9200431bc..617b48dc9 100644 --- a/tools/upgrade_net_proto_text.cpp +++ b/tools/upgrade_net_proto_text.cpp @@ -16,6 +16,7 @@ using std::ofstream; using namespace caffe; // NOLINT(build/namespaces) int main(int argc, char** argv) { + FLAGS_alsologtostderr = 1; // Print output to stderr (while still logging) ::google::InitGoogleLogging(argv[0]); if (argc != 3) { LOG(ERROR) << "Usage: " @@ -31,7 +32,6 @@ int main(int argc, char** argv) { return 2; } bool need_upgrade = NetNeedsUpgrade(net_param); - bool need_data_upgrade = NetNeedsDataUpgrade(net_param); bool success = true; if (need_upgrade) { success = UpgradeNetAsNeeded(input_filename, &net_param); @@ -43,13 +43,9 @@ int main(int argc, char** argv) { LOG(ERROR) << "File already in latest proto format: " << input_filename; } - if (need_data_upgrade) { - UpgradeNetDataTransformation(&net_param); - } - // Save new format prototxt. WriteProtoToTextFile(net_param, argv[2]); - LOG(ERROR) << "Wrote upgraded NetParameter text proto to " << argv[2]; + LOG(INFO) << "Wrote upgraded NetParameter text proto to " << argv[2]; return !success; } diff --git a/tools/upgrade_solver_proto_text.cpp b/tools/upgrade_solver_proto_text.cpp new file mode 100644 index 000000000..ddff1ce6b --- /dev/null +++ b/tools/upgrade_solver_proto_text.cpp @@ -0,0 +1,51 @@ +// This is a script to upgrade old solver prototxts to the new format. +// Usage: +// upgrade_solver_proto_text old_solver_proto_file_in solver_proto_file_out + +#include +#include // NOLINT(readability/streams) +#include // NOLINT(readability/streams) +#include + +#include "caffe/caffe.hpp" +#include "caffe/util/io.hpp" +#include "caffe/util/upgrade_proto.hpp" + +using std::ofstream; + +using namespace caffe; // NOLINT(build/namespaces) + +int main(int argc, char** argv) { + FLAGS_alsologtostderr = 1; // Print output to stderr (while still logging) + ::google::InitGoogleLogging(argv[0]); + if (argc != 3) { + LOG(ERROR) << "Usage: upgrade_solver_proto_text " + << "old_solver_proto_file_in solver_proto_file_out"; + return 1; + } + + SolverParameter solver_param; + string input_filename(argv[1]); + if (!ReadProtoFromTextFile(input_filename, &solver_param)) { + LOG(ERROR) << "Failed to parse input text file as SolverParameter: " + << input_filename; + return 2; + } + bool need_upgrade = SolverNeedsTypeUpgrade(solver_param); + bool success = true; + if (need_upgrade) { + success = UpgradeSolverAsNeeded(input_filename, &solver_param); + if (!success) { + LOG(ERROR) << "Encountered error(s) while upgrading prototxt; " + << "see details above."; + } + } else { + LOG(ERROR) << "File already in latest proto format: " << input_filename; + } + + // Save new format prototxt. + WriteProtoToTextFile(solver_param, argv[2]); + + LOG(INFO) << "Wrote upgraded SolverParameter text proto to " << argv[2]; + return !success; +}