-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.py
69 lines (47 loc) · 1.81 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import random
from micrograd import Value
from numpy import multiply
class Module:
def zero_grad(self):
for p in self.parameters():
p.grad = 0
def parameters(self):
return []
class Neuron(Module):
__slots__ = ['w', 'b', 'non_linear']
def __init__(self, n_in: int, non_linear: bool = True):
self.w = [Value(random.uniform(-1,1)) for _ in range(n_in)]
self.b = Value(0)
self.non_linear = non_linear
def __call__(self, x):
activation = sum((wi*xi for wi, xi in zip(self.w, x)), self.b)
return activation.relu() if self.non_linear else activation
def parameters(self):
return self.w + [self.b]
def __repr__(self):
return f"{'ReLU' if self.non_linear else 'Linear'}Neuron({len(self.w)})"
class Layer(Module):
__slots__ = ['neurons']
def __init__(self, n_in:int, n_out:int, **kwargs):
self.neurons = [Neuron(n_in, **kwargs) for _ in range(n_out)]
def __call__(self, x):
out = [n(x) for n in self.neurons]
return out[0] if len(out) == 1 else out
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
def __repr__(self):
return f"Layer of [{', '.join(str(n) for n in self.neurons)}]"
class MLP(Module):
__slots__ = ['layers']
def __init__(self, n_in: int, n_out):
sz = [n_in] + n_out
last_node = len(n_out) - 1
self.layers = [Layer(sz[i], sz[i+1], non_linear=(i != last_node)) for i in range(len(n_out))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]
def __repr__(self):
return f"MLP of [{', '.join(str(layer) for layer in self.layers)}]"