-
Notifications
You must be signed in to change notification settings - Fork 0
/
esrgan.py
195 lines (154 loc) · 7.63 KB
/
esrgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Super-resolution of CelebA using Generative Adversarial Networks.
The dataset can be downloaded from: https://www.dropbox.com/sh/8oqt9vytwxb3s4r/AADIKlz8PR9zr6Y20qbkunrba/Img/img_align_celeba.zip?dl=0
(if not available there see if options are listed at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
Instrustion on running the script:
1. Download the dataset from the provided link
2. Save the folder 'img_align_celeba' to '../../data/'
4. Run the sript using command 'python3 esrgan.py'
"""
import argparse
import os
import numpy as np
import math
import itertools
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from torch.autograd import Variable
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images/training", exist_ok=True)
os.makedirs("saved_models", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="img_align_celeba", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=4, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.9, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--hr_height", type=int, default=256, help="high res. image height")
parser.add_argument("--hr_width", type=int, default=256, help="high res. image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving image samples")
parser.add_argument("--checkpoint_interval", type=int, default=5000, help="batch interval between model checkpoints")
parser.add_argument("--residual_blocks", type=int, default=23, help="number of residual blocks in the generator")
parser.add_argument("--warmup_batches", type=int, default=500, help="number of batches with pixel-wise loss only")
parser.add_argument("--lambda_adv", type=float, default=5e-3, help="adversarial loss weight")
parser.add_argument("--lambda_pixel", type=float, default=1e-2, help="pixel-wise loss weight")
opt = parser.parse_args()
print(opt)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hr_shape = (opt.hr_height, opt.hr_width)
# Initialize generator and discriminator
generator = GeneratorRRDB(opt.channels, filters=64, num_res_blocks=opt.residual_blocks).to(device)
discriminator = Discriminator(input_shape=(opt.channels, *hr_shape)).to(device)
feature_extractor = FeatureExtractor().to(device)
# Set feature extractor to inference mode
feature_extractor.eval()
# Losses
criterion_GAN = torch.nn.BCEWithLogitsLoss().to(device)
criterion_content = torch.nn.L1Loss().to(device)
criterion_pixel = torch.nn.L1Loss().to(device)
if opt.epoch != 0:
# Load pretrained models
generator.load_state_dict(torch.load("saved_models/generator_%d.pth" % opt.epoch))
discriminator.load_state_dict(torch.load("saved_models/discriminator_%d.pth" % opt.epoch))
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.Tensor
dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, hr_shape=hr_shape),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
# ----------
# Training
# ----------
for epoch in range(opt.epoch, opt.n_epochs):
for i, imgs in enumerate(dataloader):
batches_done = epoch * len(dataloader) + i
# Configure model input
imgs_lr = Variable(imgs["lr"].type(Tensor))
imgs_hr = Variable(imgs["hr"].type(Tensor))
# Adversarial ground truths
valid = Variable(Tensor(np.ones((imgs_lr.size(0), *discriminator.output_shape))), requires_grad=False)
fake = Variable(Tensor(np.zeros((imgs_lr.size(0), *discriminator.output_shape))), requires_grad=False)
# ------------------
# Train Generators
# ------------------
optimizer_G.zero_grad()
# Generate a high resolution image from low resolution input
gen_hr = generator(imgs_lr)
# Measure pixel-wise loss against ground truth
loss_pixel = criterion_pixel(gen_hr, imgs_hr)
if batches_done < opt.warmup_batches:
# Warm-up (pixel-wise loss only)
loss_pixel.backward()
optimizer_G.step()
print(
"[Epoch %d/%d] [Batch %d/%d] [G pixel: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), loss_pixel.item())
)
continue
# Extract validity predictions from discriminator
pred_real = discriminator(imgs_hr).detach()
pred_fake = discriminator(gen_hr)
# Adversarial loss (relativistic average GAN)
loss_GAN = criterion_GAN(pred_fake - pred_real.mean(0, keepdim=True), valid)
# Content loss
gen_features = feature_extractor(gen_hr)
real_features = feature_extractor(imgs_hr).detach()
loss_content = criterion_content(gen_features, real_features)
# Total generator loss
loss_G = loss_content + opt.lambda_adv * loss_GAN + opt.lambda_pixel * loss_pixel
loss_G.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
pred_real = discriminator(imgs_hr)
pred_fake = discriminator(gen_hr.detach())
# Adversarial loss for real and fake images (relativistic average GAN)
loss_real = criterion_GAN(pred_real - pred_fake.mean(0, keepdim=True), valid)
loss_fake = criterion_GAN(pred_fake - pred_real.mean(0, keepdim=True), fake)
# Total loss
loss_D = (loss_real + loss_fake) / 2
loss_D.backward()
optimizer_D.step()
# --------------
# Log Progress
# --------------
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, content: %f, adv: %f, pixel: %f]"
% (
epoch,
opt.n_epochs,
i,
len(dataloader),
loss_D.item(),
loss_G.item(),
loss_content.item(),
loss_GAN.item(),
loss_pixel.item(),
)
)
if batches_done % opt.sample_interval == 0:
# Save image grid with upsampled inputs and ESRGAN outputs
imgs_lr = nn.functional.interpolate(imgs_lr, scale_factor=4)
img_grid = denormalize(torch.cat((imgs_lr, gen_hr), -1))
save_image(img_grid, "images/training/%d.png" % batches_done, nrow=1, normalize=False)
if batches_done % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(generator.state_dict(), "saved_models/generator_%d.pth" % epoch)
torch.save(discriminator.state_dict(), "saved_models/discriminator_%d.pth" %epoch)