forked from ryoppippi/Gasyori100knock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
answer_98.py
210 lines (165 loc) · 5.72 KB
/
answer_98.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import cv2
import numpy as np
np.random.seed(0)
# read image
img = cv2.imread("imori_1.jpg")
H, W, C = img.shape
# Grayscale
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
gt = np.array((47, 41, 129, 103), dtype=np.float32)
cv2.rectangle(img, (gt[0], gt[1]), (gt[2], gt[3]), (0,255,255), 1)
def iou(a, b):
area_a = (a[2] - a[0]) * (a[3] - a[1])
area_b = (b[2] - b[0]) * (b[3] - b[1])
iou_x1 = np.maximum(a[0], b[0])
iou_y1 = np.maximum(a[1], b[1])
iou_x2 = np.minimum(a[2], b[2])
iou_y2 = np.minimum(a[3], b[3])
iou_w = max(iou_x2 - iou_x1, 0)
iou_h = max(iou_y2 - iou_y1, 0)
area_iou = iou_w * iou_h
iou = area_iou / (area_a + area_b - area_iou)
return iou
def hog(gray):
h, w = gray.shape
# Magnitude and gradient
gray = np.pad(gray, (1, 1), 'edge')
gx = gray[1:h+1, 2:] - gray[1:h+1, :w]
gy = gray[2:, 1:w+1] - gray[:h, 1:w+1]
gx[gx == 0] = 0.000001
mag = np.sqrt(gx ** 2 + gy ** 2)
gra = np.arctan(gy / gx)
gra[gra<0] = np.pi / 2 + gra[gra < 0] + np.pi / 2
# Gradient histogram
gra_n = np.zeros_like(gra, dtype=np.int)
d = np.pi / 9
for i in range(9):
gra_n[np.where((gra >= d * i) & (gra <= d * (i+1)))] = i
N = 8
HH = h // N
HW = w // N
Hist = np.zeros((HH, HW, 9), dtype=np.float32)
for y in range(HH):
for x in range(HW):
for j in range(N):
for i in range(N):
Hist[y, x, gra_n[y*4+j, x*4+i]] += mag[y*4+j, x*4+i]
## Normalization
C = 3
eps = 1
for y in range(HH):
for x in range(HW):
#for i in range(9):
Hist[y, x] /= np.sqrt(np.sum(Hist[max(y-1,0):min(y+2, HH), max(x-1,0):min(x+2, HW)] ** 2) + eps)
return Hist
def resize(img, h, w):
_h, _w = img.shape
ah = 1. * h / _h
aw = 1. * w / _w
y = np.arange(h).repeat(w).reshape(w, -1)
x = np.tile(np.arange(w), (h, 1))
y = (y / ah)
x = (x / aw)
ix = np.floor(x).astype(np.int32)
iy = np.floor(y).astype(np.int32)
ix = np.minimum(ix, _w-2)
iy = np.minimum(iy, _h-2)
dx = x - ix
dy = y - iy
out = (1-dx) * (1-dy) * img[iy, ix] + dx * (1 - dy) * img[iy, ix+1] + (1 - dx) * dy * img[iy+1, ix] + dx * dy * img[iy+1, ix+1]
out[out>255] = 255
return out
class NN:
def __init__(self, ind=2, w=64, w2=64, outd=1, lr=0.1):
self.w1 = np.random.normal(0, 1, [ind, w])
self.b1 = np.random.normal(0, 1, [w])
self.w2 = np.random.normal(0, 1, [w, w2])
self.b2 = np.random.normal(0, 1, [w2])
self.wout = np.random.normal(0, 1, [w2, outd])
self.bout = np.random.normal(0, 1, [outd])
self.lr = lr
def forward(self, x):
self.z1 = x
self.z2 = sigmoid(np.dot(self.z1, self.w1) + self.b1)
self.z3 = sigmoid(np.dot(self.z2, self.w2) + self.b2)
self.out = sigmoid(np.dot(self.z3, self.wout) + self.bout)
return self.out
def train(self, x, t):
# backpropagation output layer
#En = t * np.log(self.out) + (1-t) * np.log(1-self.out)
En = (self.out - t) * self.out * (1 - self.out)
grad_wout = np.dot(self.z3.T, En)
grad_bout = np.dot(np.ones([En.shape[0]]), En)
self.wout -= self.lr * grad_wout
self.bout -= self.lr * grad_bout
# backpropagation inter layer
grad_u2 = np.dot(En, self.wout.T) * self.z3 * (1 - self.z3)
grad_w2 = np.dot(self.z2.T, grad_u2)
grad_b2 = np.dot(np.ones([grad_u2.shape[0]]), grad_u2)
self.w2 -= self.lr * grad_w2
self.b2 -= self.lr * grad_b2
grad_u1 = np.dot(grad_u2, self.w2.T) * self.z2 * (1 - self.z2)
grad_w1 = np.dot(self.z1.T, grad_u1)
grad_b1 = np.dot(np.ones([grad_u1.shape[0]]), grad_u1)
self.w1 -= self.lr * grad_w1
self.b1 -= self.lr * grad_b1
def sigmoid(x):
return 1. / (1. + np.exp(-x))
# crop and create database
Crop_num = 200
L = 60
H_size = 32
F_n = ((H_size // 8) ** 2) * 9
db = np.zeros((Crop_num, F_n+1))
for i in range(Crop_num):
x1 = np.random.randint(W-L)
y1 = np.random.randint(H-L)
x2 = x1 + L
y2 = y1 + L
crop = np.array((x1, y1, x2, y2))
_iou = iou(gt, crop)
if _iou >= 0.5:
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 1)
label = 1
else:
cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 1)
label = 0
crop_area = gray[y1:y2, x1:x2]
crop_area = resize(crop_area, H_size, H_size)
_hog = hog(crop_area)
db[i, :F_n] = _hog.ravel()
db[i, -1] = label
## train neural network
nn = NN(ind=F_n, lr=0.01)
for i in range(10000):
nn.forward(db[:, :F_n])
nn.train(db[:, :F_n], db[:, -1][..., None])
# read detect target image
img2 = cv2.imread("imori_many.jpg")
H2, W2, C2 = img2.shape
# Grayscale
gray2 = 0.2126 * img2[..., 2] + 0.7152 * img2[..., 1] + 0.0722 * img2[..., 0]
# [h, w]
recs = np.array(((42, 42), (56, 56), (70, 70)), dtype=np.float32)
detects = np.ndarray((0, 5), dtype=np.float32)
# sliding window
for y in range(0, H2, 4):
for x in range(0, W2, 4):
for rec in recs:
dh = int(rec[0] // 2)
dw = int(rec[1] // 2)
x1 = max(x-dw, 0)
x2 = min(x+dw, W2)
y1 = max(y-dh, 0)
y2 = min(y+dh, H2)
region = gray2[max(y-dh,0):min(y+dh,H2), max(x-dw,0):min(x+dw,W2)]
region = resize(region, H_size, H_size)
region_hog = hog(region).ravel()
score = nn.forward(region_hog)
if score >= 0.7:
cv2.rectangle(img2, (x1, y1), (x2, y2), (0,0,255), 1)
detects = np.vstack((detects, np.array((x1, y1, x2, y2, score))))
print(detects)
cv2.imwrite("out.jpg", img2)
cv2.imshow("result", img2)
cv2.waitKey(0)