-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample.tex
344 lines (272 loc) · 9.05 KB
/
example.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
% Created 2019-10-18 Fri 06:42
% Intended LaTeX compiler: pdflatex
\documentclass[portrait,footrule,17pt]{foils}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\MyLogo{PSYC 5301}
\setlength{\parindent}{0cm}
\usepackage{amsmath}
\author{Thomas J. Faulkenberry, Ph.D.}
\date{April 23, 2019}
\title{PSYC 5301 - Lecture 9}
\hypersetup{
pdfauthor={Thomas J. Faulkenberry, Ph.D.},
pdftitle={PSYC 5301 - Lecture 9},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
pdflang={English}}
\begin{document}
\maketitle
\foilhead[-1cm]{Review from last time}
\label{sec:org31b3b66}
Recall that by Bayes Theorem, we have
\[
\underbrace{\frac{p(\mathcal{H}_1\mid \text{data})}{p(\mathcal{H}_0\mid \text{data})}}_{\substack{\text{posterior odds}}} = \underbrace{\frac{p(\mathcal{H}_1)}{p(\mathcal{H}_0)}}_{\substack{\text{prior odds}}} \times \underbrace{\frac{p(\text{data}\mid \mathcal{H}_1)}{p(\text{data}\mid \mathcal{H}_0)}}_{\text{predictive updating factor}}
\]
The predictive updating factor
\[
B_{10} = \frac{p(\text{data}\mid \mathcal{H}_1)}{p(\text{data}\mid \mathcal{H}_0)}
\]
tells us how much better \(\mathcal{H}_1\) predicts our observed data than \(\mathcal{H}_0\).
This ratio is called the \textbf{Bayes factor}
\foilhead[-1cm]{}
\label{sec:orgaedbdda}
We can compute Bayes factors for ANOVA models using the BIC:
\[
BIC = N\ln (SS_{\text{residual}}) + k\ln(N)
\]
where
\begin{itemize}
\item \(N\)=total number of independent observations
\item \(k\)=number of parameters in the model
\item \(SS_{\text{residual}}\) = variance NOT explained by the model
\item Note: smaller BIC = better model fit
\end{itemize}
Steps:
\begin{itemize}
\item set up two models: \(\mathcal{H}_0\) and \(\mathcal{H}_1\)
\item compute BIC (Bayesian information criterion) for each model
\item compute Bayes factor as \(\displaystyle{e^{\frac{\Delta BIC}{2}}}\)
\end{itemize}
\foilhead[-1cm]{Example}
\label{sec:org2cc5feb}
(this is from HW 8, \#4)
\begin{center}
\begin{tabular}{rrr}
Treatment 1 & Treatment 2 & Treatment 3\\
\hline
1 & 5 & 7\\
2 & 2 & 3\\
0 & 1 & 6\\
1 & 2 & 4\\
\end{tabular}
\end{center}
first, we model as ANOVA:
\begin{center}
\begin{tabular}{lrrrr}
source & SS & df & MS & F\\
\hline
bet tmts & 32.67 & 2 & 16.37 & 7.01\\
within tmts & 21 & 9 & 2.33 & \\
total & 53.67 & 11 & & \\
\end{tabular}
\end{center}
\foilhead[-1cm]{}
\label{sec:orgb120880}
We'll set up our two models:
Null model: \(\mathcal{H}_0:\mu_1=\mu_2=\mu_3\)
\begin{itemize}
\item this model has \(k=1\) parameter (the data is explained by a SINGLE mean)
\item \(SS_{\text{residual}} = 53.67\) (the model has only one mean, so all variance is left unexplained)
\end{itemize}
\begin{align*}
BIC &= N\ln (SS_{\text{residual}})+k\ln(N)\\
&= 12\ln(53.67) + 1\cdot \ln(12)\\
&= 50.28\\
\end{align*}
\foilhead[-1cm]{}
\label{sec:org908627b}
Alternative model: \(\mathcal{H}_1:\mu_1 \neq\mu_2 \neq \mu_3\)
\begin{itemize}
\item this model has \(k=3\) parameters (the data is explained by THREE means)
\item \(SS_{\text{residual}} = 21\) (the model accounts for variance between treatments with the three means -- SS\(_{\text{within}}\) is left unexplained)
\end{itemize}
\begin{align*}
BIC &= N\ln (SS_{\text{residual}})+k\ln(N)\\
&= 12\ln(21) + 3\cdot \ln(12)\\
&= 43.99\\
\end{align*}
Thus,
\[
B_{10} = e^\frac{\Delta BIC}{2} = e^{\frac{50.28-43.99}{2}} = 23.22
\]
meaning that the data are approximately 23 times more likely under \(\mathcal{H}_1\) than \(\mathcal{H}_0\)
\foilhead[-1cm]{Repeated measures designs}
\label{sec:org660769e}
The same ideas will extend to work with repeated measures designs. The only difference is that we need to think carefully about:
\begin{itemize}
\item the number of \emph{independent} observations
\item residual \(SS\)
\end{itemize}
\foilhead[-1cm]{Example}
\label{sec:org6b5c9b4}
Consider the following example from Exam 1, which asks about task performance as a function of computer desk layout:
\begin{center}
\begin{tabular}{lrrr}
Subject & Layout 1 & Layout 2 & Layout 3\\
\hline
\#1 & 6 & 2 & 4\\
\#2 & 8 & 6 & 7\\
\#3 & 3 & 6 & 9\\
\#4 & 3 & 2 & 4\\
\end{tabular}
\end{center}
Let's work through the ANOVA model, since it has been a while:
Step 1 - compute condition means AND subject means:
\begin{center}
\begin{tabular}{lrrrr}
Subject & Layout 1 & Layout 2 & Layout 3 & \(M\)\\
\hline
\#1 & 6 & 2 & 4 & 4\\
\#2 & 8 & 6 & 7 & 7\\
\#3 & 3 & 6 & 9 & 6\\
\#4 & 3 & 2 & 4 & 3\\
\hline
\(M\) & 5 & 4 & 6 & 5\\
\end{tabular}
\end{center}
\foilhead[-1cm]{}
\label{sec:org6b6f38a}
Remember that once we find \(SS_{\total}\), we remove subject variability and partition what's left:
\begin{align*}
SS_{\text{total}} &= \sum X^2-\frac{(\sum X)^2}{N}\\
&= 360 - \frac{60^2}{12}\\
&= 60
\end{align*}
\begin{align*}
SS_{\text{bet subj}} &= n\sum_{i=1}^4 (\overline{X}_{\text{subj }i}-\overline{X})^2\\
&=3\Bigl[(4-5)^2+(7-5)^2+(6-5)^2+(3-5)^2\Bigr]\\
&=30\\
\end{align*}
\foilhead[-1cm]{}
\label{sec:orga1de225}
\begin{align*}
SS_{\text{bet tmts}} &= n\sum_{j=1}^3 (\overline{X}_{\text{tmt }j}-\overline{X})^2\\
&= 4\Bigl[(5-5)^2 + (4-5)^2 + (6-5)^2\Bigr]\\
&= 8
\end{align*}
Thus, our ANOVA table is as follows:
\begin{center}
\begin{tabular}{lrrrr}
Source & SS & df & MS & F\\
\hline
bet tmts & 8 & 2 & 4 & 1.09\\
residual & 22 & 6 & 3.67 & \\
subject & 30 & 3 & 10 & \\
total & 60 & 11 & & \\
\end{tabular}
\end{center}
\foilhead[-1cm]{BIC computations}
\label{sec:org4bfd114}
We'll set up our two models:
Null model: \(\mathcal{H}_0:\alpha_1 = \alpha_2 = \alpha_3\)
\begin{itemize}
\item this model has \(k=1\) parameter (the data is explained by a SINGLE treatment effect)
\item \(SS_{\text{residual}} = 30\) (what is left after removing subject variance)
\item \(N=8\) independent observations (for each of 4 subjects, there are \(3-1=2\) independent observations)
\item Note: general formula: \(N=s(c-1)\), where \(s=\) number of subjects and \(c=\) number of conditions
\end{itemize}
\begin{align*}
BIC &= N\ln (SS_{\text{residual}})+k\ln(N)\\
&= 8\ln(30) + 1\cdot \ln(8)\\
&= 29.29\\
\end{align*}
\foilhead[-1cm]{}
\label{sec:orgc09e306}
Alternative model: \(\mathcal{H}_1:\alpha_1 \neq\alpha_2 \neq \alpha_3\)
\begin{itemize}
\item this model has \(k=3\) parameters (the data is explained by THREE treatment effects)
\item \(SS_{\text{residual}} = 22\)
\end{itemize}
\begin{align*}
BIC &= N\ln (SS_{\text{residual}})+k\ln(N)\\
&= 8\ln(22) + 3\cdot \ln(8)\\
&= 30.97\\
\end{align*}
Thus,
\[
B_{01} = e^\frac{\Delta BIC}{2} = e^{\frac{30.97-29.81}{2}} = 1.79
\]
meaning that the data are approximately 2 times more likely under \(\mathcal{H}_0\) than \(\mathcal{H}_1\)
\foilhead[-1cm]{Some lessons}
\label{sec:org3197931}
The previous homework questions give us some lessons about \(p\)-values:
\begin{enumerate}
\item \(p\)-values are uniformly distributed under the null. The implication is that a single \(p\)-value gives us no information about the likelihood of any model
\item optional stopping inflates Type I error rate.
\item \(p=p(\text{data}\mid \mathcal{H}_0)\). This is NOT equal to \(p(\mathcal{H}_0\mid \text{data})\)
\end{enumerate}
However, with some cleverness, we can actually calculate \(p(\mathcal{H}_0\mid \text{data})\). All we need is Bayes theorem:
\foilhead[-1cm]{Posterior model probabilities}
\label{sec:orgc84d8f8}
Recall from Bayes theorem:
\[
\frac{p(\mathcal{H}_0\mid \text{data})}{p(\mathcal{H}_1\mid \text{data})} = B_{01}\cdot \frac{p(\mathcal{H}_0)}{p(\mathcal{H}_1)}
\]
Let's assume \(p(\mathcal{H}_0)=p(\mathcal{H}_1)\) (that is, \(\mathcal{H}_0\) and \(\mathcal{H}_1\) are equally likely, \emph{a priori}).
Then the previous equation reduces to
\[
\frac{p(\mathcal{H}_0\mid \text{data})}{p(\mathcal{H}_1\mid \text{data})} = B_{01}
\]
Then we have:
\begin{align*}
p(\mathcal{H}_0\mid \text{data}) &= B_{01}\cdot p(\mathcal{H}_1\mid \text{data})\\
&= B_{01}\Bigl[1-p(\mathcal{H}_0\mid \text{data})\Bigr]\\
&= B_{01} - B_{01}\cdot p(\mathcal{H}_0\mid \text{data})\\
\end{align*}
Let's solve this equation for \(p(\mathcal{H}_0\mid \text{data})\):
\[
p(\mathcal{H}_0\mid \text{data}) + B_{01}\cdot p(\mathcal{H}_0\mid \text{data}) = B_{01}
\]
which implies by factoring:
\[
p(\mathcal{H}_0\mid \text{data})\Bigl[1+B_{01}\Bigr] = B_{01}
\]
or equivalently
\[
p(\mathcal{H}_0\mid \text{data}) = \frac{B_{01}}{1+B_{01}}
\]
Note: by the same reasoning, we can prove
\[
p(\mathcal{H}_1\mid \text{data}) = \frac{B_{10}}{1+B_{10}}
\]
\foilhead[-1cm]{}
\label{sec:org0cbf361}
Let's compute these for the examples we've done tonight:
Example 1: \(B_{10}=23.22\)
This example that \(\mathcal{H}_1\) was a better fit. Thus,
\begin{align*}
p(\mathcal{H}_1\mid \text{data}) &= \frac{B_{10}}{1+B_{10}}\\
&= \frac{23.22}{1+23.22}\\
&= 0.959\\
\end{align*}
Example 2: \(B_{01}=1.79\)
This example that \(\mathcal{H}_0\) was a better fit. Thus,
\begin{align*}
p(\mathcal{H}_0\mid \text{data}) &= \frac{B_{01}}{1+B_{01}}\\
&= \frac{1.79}{1+1.79}\\
&= 0.642
\end{align*}
\end{document}