-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand_detect.py
81 lines (74 loc) · 2.89 KB
/
hand_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import numpy as np
import copy
import math
import os
def calculateFingers(res, drawing):
# convexity defect
hull = cv2.convexHull(res, returnPoints=False)
if len(hull) > 3:
defects = cv2.convexityDefects(res, hull)
if defects is not None:
cnt = 0
for i in range(defects.shape[0]): # calculate the angle
s, e, f, d = defects[i][0]
start = tuple(res[s][0])
end = tuple(res[e][0])
far = tuple(res[f][0])
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) # cosine theorem
if angle <= math.pi / 2: # angle less than 90 degree, treat as fingers
cnt += 1
cv2.circle(drawing, far, 8, [211, 84, 0], -1)
if cnt > 0:
return True, cnt+1
else:
return True, 0
return False, 0
# Open Camera
camera = cv2.VideoCapture(0)
camera.set(10, 200)
while True:
# while camera.isOpened():
#Main Camera
ret, frame = camera.read()
frame = cv2.bilateralFilter(frame, 5, 50, 100) # Smoothing
frame = cv2.flip(frame, 1) #Horizontal Flip
cv2.imshow('original', frame)
#Background Removal
bgModel = cv2.createBackgroundSubtractorMOG2(0, 50)
fgmask = bgModel.apply(frame)
kernel = np.ones((3, 3), np.uint8)
fgmask = cv2.erode(fgmask, kernel, iterations=1)
img = cv2.bitwise_and(frame, frame, mask=fgmask)
# Skin detect and thresholding
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower = np.array([0, 48, 80], dtype="uint8")
upper = np.array([20, 255, 255], dtype="uint8")
skinMask = cv2.inRange(hsv, lower, upper)
cv2.imshow('Threshold Hands', skinMask)
# Getting the contours and convex hull
# skinMask1 = copy.deepcopy(skinMask)
# contours, hierarchy = cv2.findContours(skinMask1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# length = len(contours)
# maxArea = -1
# if length > 0:
# for i in range(length):
# temp = contours[i]
# area = cv2.contourArea(temp)
# if area > maxArea:
# maxArea = area
# ci = i
# res = contours[ci]
# hull = cv2.convexHull(res)
# drawing = np.zeros(img.shape, np.uint8)
# cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2)
# cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3)
# isFinishCal, cnt = calculateFingers(res, drawing)
# print ("Fingers", cnt)
# cv2.imshow('output', drawing)
k = cv2.waitKey(1)
if k == 27: # press ESC to exit
break