-
Notifications
You must be signed in to change notification settings - Fork 32
/
coreml_matmul.py
85 lines (58 loc) · 1.82 KB
/
coreml_matmul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import time
import numpy as np
import coremltools as ct
from coremltools.models.neural_network import quantization_utils
import tensorflow as tf
num_matmul = 20
D = 1024*2
class MatMul(tf.keras.layers.Layer):
def __init__(self, units):
super(MatMul, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
print("w.shape", self.w.shape)
def call(self, inputs):
return tf.matmul(inputs, self.w)
model = tf.keras.Sequential(
layers=[
tf.keras.Input(shape=(D,)),
],
name="model",
)
for i in range(num_matmul):
model.add(MatMul(D))
batch_size = 1
model.build([batch_size, D])
tf_out = model.predict(np.random.rand(batch_size,D,D,))
print("tf_out", tf_out.shape)
model.summary()
print(model.inputs)
print("Converting model")
mlmodel = ct.convert(model,
convert_to="mlprogram",
inputs=[ct.TensorType(shape=(batch_size,D,D))],
compute_precision=ct.precision.FLOAT16,
compute_units=ct.ComputeUnit.ALL)
#mlmodel = quantization_utils.quantize_weights(mlmodel, 16)
print("Testing model")
random_input = {"input_1": np.random.rand(batch_size,D,D,)}
ane_out = mlmodel.predict(random_input)
print("ane_out", ane_out["Identity"].shape)
print("Benchmarking model")
# warmup
ane_out = mlmodel.predict(random_input)
iterations = 30
st = time.time()
for i in range(iterations):
ane_out = mlmodel.predict(random_input)
et = time.time()
print("ane_out", ane_out["Identity"].shape)
duration = et-st
fps = batch_size*num_matmul*iterations/duration
tops = (fps * 2 * D**3) / 1e12
print("tops", tops)