-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathutils.py
98 lines (85 loc) · 3.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import xarray as xr
import numpy as np
import cv2
from scipy.misc import imresize
import scipy.interpolate
def fillmiss(x):
if x.ndim != 2:
raise ValueError("X have only 2 dimensions.")
mask = ~np.isnan(x)
xx, yy = np.meshgrid(np.arange(x.shape[1]), np.arange(x.shape[0]))
xym = np.vstack( (np.ravel(xx[mask]), np.ravel(yy[mask])) ).T
data0 = np.ravel(x[mask])
interp0 = scipy.interpolate.NearestNDInterpolator(xym, data0)
result0 = interp0(np.ravel(xx), np.ravel(yy)).reshape(xx.shape)
return result0
def interp_dim(x, scale):
x0, xlast = x[0], x[-1]
y = np.linspace(x0, xlast, num=int(len(x)*scale))
return y
def interp_tensor(X, scale, fill=True):
nlt = int(X.shape[1]*scale)
nln = int(X.shape[2]*scale)
newshape = (X.shape[0], nlt, nln)
scaled_tensor = np.empty(newshape)
for j, im in enumerate(X):
# fill im with nearest neighbor
if fill:
#im = fillmiss(im)
im[np.isnan(im)] = 0
scaled_tensor[j] = cv2.resize(im, (newshape[2], newshape[1]),
interpolation=cv2.INTER_CUBIC)
return scaled_tensor
def interp_da(da, scale):
'''
Assume da is of dimensions ('time','lat', 'lon')
'''
tensor = da.values
# lets store our interpolated data
scaled_tensor = interp_tensor(tensor, scale, fill=True)
# interpolate lat and lons
latnew = interp_dim(da[da.dims[1]].values, scale)
lonnew = interp_dim(da[da.dims[2]].values, scale)
if latnew.shape[0] != scaled_tensor.shape[1]:
raise ValueError("New shape of scaled tensor does not match dimension shape")
# intialize a new dataarray
return xr.DataArray(scaled_tensor, coords=[da[da.dims[0]].values, latnew, lonnew],
dims=da.dims)
def interp_da2d(da, scale, fillna=False):
'''
Assume da is of dimensions ('time','lat', 'lon')
'''
# lets store our interpolated data
newshape = (int(da.shape[0]*scale),int(da.shape[1]*scale))
im = da.values
scaled_tensor = np.empty(newshape)
# fill im with nearest neighbor
if fillna:
filled = fillmiss(im)
else:
filled = im
scaled_tensor = cv2.resize(filled, dsize=(0,0), fx=scale, fy=scale,
interpolation=cv2.INTER_CUBIC)
# interpolate lat and lons
latnew = interp_dim(da[da.dims[0]].values, scale)
lonnew = interp_dim(da[da.dims[1]].values, scale)
# intialize a new dataarray
return xr.DataArray(scaled_tensor, coords=[latnew, lonnew],
dims=da.dims)
if __name__=="__main__":
import matplotlib.pyplot as plt
fhigh = '/raid/prism/ppt_0.125x0.125/prism_ppt_interp_1981.nc'
var='ppt'
dshigh = xr.open_dataset(fhigh)
dshigh = dshigh.isel(time=[0,1])
#dshigh['ppt'] = dshigh.ppt.fillna(0)
dalow = interp_da(dshigh.ppt, 1./8)
danew = interp_da(dalow, 8.)
plt.figure(figsize=(8,20))
plt.subplot(3,1,1)
danew.isel(time=0).plot()
plt.subplot(3,1,2)
dshigh.isel(time=0).ppt.plot()
plt.subplot(3,1,3)
dalow.isel(time=0).plot()
plt.show()