-
Notifications
You must be signed in to change notification settings - Fork 0
/
to_implement.txt
68 lines (41 loc) · 1.73 KB
/
to_implement.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
NER
----------------
Multi-Task Cross-Lingual Sequence Tagging from Scratch http://arxiv.org/abs/1603.06270
Neural Architectures for Named Entity Recognition http://arxiv.org/abs/1603.01360
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF https://arxiv.org/abs/1603.01354
POS
----------------
Multi-Task Cross-Lingual Sequence Tagging from Scratch http://arxiv.org/abs/1603.06270
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF https://arxiv.org/abs/1603.01354
Dependency parsing
----------------
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches https://arxiv.org/abs/1409.1259
constituency parsing
-----------------
https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/grammar-as-a-foreign-language.md Grammar as a Foreign Langauage
Language model
----------------
sentiment
----------------
https://github.com/miyyer/dan
Convolutional Neural Network for Modelling Sentences https://arxiv.org/abs/1404.2188 https://github.com/FredericGodin/DynamicCNN
QA
----------------
https://github.com/miyyer/dan
translation langauge pair
----------------
https://github.com/dennybritz/deeplearning-papernotes/blob/master/notes/learning-phrase-representations.md
from Minh-Thang Luong
---
Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models http://arxiv.org/abs/1604.00788
Effective Approaches to Attention-based Neural Machine Translation http://arxiv.org/abs/1508.04025
language model
----------------
textual entailment
----------------
http://nlp.stanford.edu/projects/snli/
----------------
Machine Comprehension
----------------
CNN, CBT (children's book test) - machine comprehension benchmarks
Natural Language Comprehension with the EpiReader