You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello!
Do you have any plan to fit in tensorflow-gpu 2?
Because of the python and cuda version, I have to use mopo with tensorflow-gpu 2.7. So I have done some normal modifications to fit it from 1.14.0 to 2.7. Before adding in tape, it says tape should be added as:
raise ValueError("tape is required when a Tensor loss is passed. "
ValueError: tape is required when a Tensor loss is passed. Received: loss=Tensor("BNN_1/add_9:0", shape=(), dtype=float32), tape=None.
But once I added var_list=self.optvars,tape=tf.GradientTape() in BNN.py, it raised error as below:
File "/code/com//mopo/mopo/models/bnn.py", line 256, in finalize
self.train_op = self.optimizer.minimize(train_loss, var_list=self.optvars, tape=tf.GradientTape())
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 532, in minimize
return self.apply_gradients(grads_and_vars, name=name)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 633, in apply_gradients
grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/utils.py", line 73, in filter_empty_gradients
raise ValueError(f"No gradients provided for any variable: {variable}. "
Hello!
Do you have any plan to fit in tensorflow-gpu 2?
Because of the python and cuda version, I have to use mopo with tensorflow-gpu 2.7. So I have done some normal modifications to fit it from 1.14.0 to 2.7. Before adding in tape, it says tape should be added as:
raise ValueError("
tape
is required when aTensor
loss is passed. "ValueError:
tape
is required when aTensor
loss is passed. Received: loss=Tensor("BNN_1/add_9:0", shape=(), dtype=float32), tape=None.But once I added var_list=self.optvars,tape=tf.GradientTape() in BNN.py, it raised error as below:
File "/code/com//mopo/mopo/models/bnn.py", line 256, in finalize
self.train_op = self.optimizer.minimize(train_loss, var_list=self.optvars, tape=tf.GradientTape())
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 532, in minimize
return self.apply_gradients(grads_and_vars, name=name)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 633, in apply_gradients
grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/utils.py", line 73, in filter_empty_gradients
raise ValueError(f"No gradients provided for any variable: {variable}. "
ValueError: No gradients provided for any variable: (['BNN/Layer0_mean/FC_weights:0', 'BNN/Layer0_mean/FC_biases:0', 'BNN/Layer1_mean/FC_weights:0', 'BNN/Layer1_mean/FC_biases:0', 'BNN/Layer2_mean/FC_weights:0', 'BNN/Layer2_mean/FC_biases:0', 'BNN/Layer3_mean/FC_weights:0', 'BNN/Layer3_mean/FC_biases:0', 'BNN/Layer4_mean/FC_weights:0', 'BNN/Layer4_mean/FC_biases:0', 'BNN/Layer0_var/FC_weights:0', 'BNN/Layer0_var/FC_biases:0', 'BNN/max_log_var:0', 'BNN/min_log_var:0'],). Provided
grads_and_vars
is ((None, <tf.Variable 'BNN/Layer0_mean/FC_weights:0' shape=(7, 14, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer1_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer1_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer2_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer2_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer3_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer3_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer4_mean/FC_weights:0' shape=(7, 200, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer4_mean/FC_biases:0' shape=(7, 1, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_var/FC_weights:0' shape=(7, 200, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_var/FC_biases:0' shape=(7, 1, 267) dtype=float32>), (None, <tf.Variable 'BNN/max_log_var:0' shape=(1, 267) dtype=float32>), (None, <tf.Variable 'BNN/min_log_var:0' shape=(1, 267) dtype=float32>)).Do you have any idea to solve this problem? And do you have any plan to fit in tensorflow-gpu 2?
Thank you very much!
The text was updated successfully, but these errors were encountered: