Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Any plan to fit in tensorflow_gpu 2 or 2.7? #13

Open
StaminaTang opened this issue Sep 15, 2022 · 0 comments
Open

Any plan to fit in tensorflow_gpu 2 or 2.7? #13

StaminaTang opened this issue Sep 15, 2022 · 0 comments

Comments

@StaminaTang
Copy link

StaminaTang commented Sep 15, 2022

Hello!
Do you have any plan to fit in tensorflow-gpu 2?

Because of the python and cuda version, I have to use mopo with tensorflow-gpu 2.7. So I have done some normal modifications to fit it from 1.14.0 to 2.7. Before adding in tape, it says tape should be added as:

raise ValueError("tape is required when a Tensor loss is passed. "
ValueError: tape is required when a Tensor loss is passed. Received: loss=Tensor("BNN_1/add_9:0", shape=(), dtype=float32), tape=None.

But once I added var_list=self.optvars,tape=tf.GradientTape() in BNN.py, it raised error as below:

File "/code/com//mopo/mopo/models/bnn.py", line 256, in finalize
self.train_op = self.optimizer.minimize(train_loss, var_list=self.optvars, tape=tf.GradientTape())
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 532, in minimize
return self.apply_gradients(grads_and_vars, name=name)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/optimizer_v2.py", line 633, in apply_gradients
grads_and_vars = optimizer_utils.filter_empty_gradients(grads_and_vars)
File "/root/miniconda3/envs/mopo/lib/python3.9/site-packages/keras/optimizer_v2/utils.py", line 73, in filter_empty_gradients
raise ValueError(f"No gradients provided for any variable: {variable}. "

ValueError: No gradients provided for any variable: (['BNN/Layer0_mean/FC_weights:0', 'BNN/Layer0_mean/FC_biases:0', 'BNN/Layer1_mean/FC_weights:0', 'BNN/Layer1_mean/FC_biases:0', 'BNN/Layer2_mean/FC_weights:0', 'BNN/Layer2_mean/FC_biases:0', 'BNN/Layer3_mean/FC_weights:0', 'BNN/Layer3_mean/FC_biases:0', 'BNN/Layer4_mean/FC_weights:0', 'BNN/Layer4_mean/FC_biases:0', 'BNN/Layer0_var/FC_weights:0', 'BNN/Layer0_var/FC_biases:0', 'BNN/max_log_var:0', 'BNN/min_log_var:0'],). Provided grads_and_vars is ((None, <tf.Variable 'BNN/Layer0_mean/FC_weights:0' shape=(7, 14, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer1_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer1_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer2_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer2_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer3_mean/FC_weights:0' shape=(7, 200, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer3_mean/FC_biases:0' shape=(7, 1, 200) dtype=float32>), (None, <tf.Variable 'BNN/Layer4_mean/FC_weights:0' shape=(7, 200, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer4_mean/FC_biases:0' shape=(7, 1, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_var/FC_weights:0' shape=(7, 200, 267) dtype=float32>), (None, <tf.Variable 'BNN/Layer0_var/FC_biases:0' shape=(7, 1, 267) dtype=float32>), (None, <tf.Variable 'BNN/max_log_var:0' shape=(1, 267) dtype=float32>), (None, <tf.Variable 'BNN/min_log_var:0' shape=(1, 267) dtype=float32>)).

Do you have any idea to solve this problem? And do you have any plan to fit in tensorflow-gpu 2?

Thank you very much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant