We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好!谢谢您的开源代码,非常棒的工作,但我对代码实现有一些疑问。
1、在您的代码第46行,计算梯度向量内积似乎有点问题,当然也有可能是我没有完全理解您的算法,请您见谅! inner_product = tf.reduce_sum(grad_task*grads_task[k])
inner_product = tf.reduce_sum(grad_task*grads_task[k])
这行代码是为了计算梯度向量的内积,比如说有2个task loss,那么grad_task是二维张量(里面是两个loss的梯度向量),而grads_task[k]是一维张量(里面是其中一个loss的梯度向量),这样内积再求和,得到的也不是两个向量的内积。请问您是怎么理解这一行代码的呢?谢谢!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
您好!谢谢您的开源代码,非常棒的工作,但我对代码实现有一些疑问。
1、在您的代码第46行,计算梯度向量内积似乎有点问题,当然也有可能是我没有完全理解您的算法,请您见谅!
inner_product = tf.reduce_sum(grad_task*grads_task[k])
这行代码是为了计算梯度向量的内积,比如说有2个task loss,那么grad_task是二维张量(里面是两个loss的梯度向量),而grads_task[k]是一维张量(里面是其中一个loss的梯度向量),这样内积再求和,得到的也不是两个向量的内积。请问您是怎么理解这一行代码的呢?谢谢!
The text was updated successfully, but these errors were encountered: