Recent studies show that the LAION dataset contains CSAM content,
leading to its temporary removal from public access. See Safety Review for LAION. We also observed that retrieved images may contain NSFW content. Please exercise caution when using this data.
We provide step-by-step instructions on how to retrieve relevant data from the OpenCLIP's pretraining dataset LAION-400M
. In summary, we first use string matching to retrieve pretraining images whose captions contain any of the concept synonyms. We then sample from the retrievd images using prompt-to-caption (T2T) ranking to obtain 500 images for each class. The final result is a T2T500.txt
file for each dataset, stored at SWAT/data/{dataset}/
folder, which stores the retrieved image paths and labels.
Since LAION is currently unaccessible to the public, for easy reproduction of our SWAT results, we provide our matched caption files (including image URLs) for each dataset, with which users can skip to Step 2 and use laion_downloader.py
to directly download the images and continue from there. Note that some images may no longer be available on the Internet so the downloaded images maybe slightly less than the ones we had. But we expect to see the similar results as we reported in the paper.
The example directory structure should look like:
$RETRIEVED/
|–– semi-aves/
| |–– semi-aves_retrieved_LAION400M-all_synonyms-all/
| |–– semi-aves_vitb32_openclip_laion400m_mined.pth
| |–– semi-aves_class_frequency-LAION400M.json
| |–– semi-aves_downloaded_ct-LAION400M-all_synonyms-all.json
| |–– semi-aves_metadata-all-0.0-LAION400M.map
| |–– semi-aves_metadata-all-0.0-LAION400M.meta
| |-- semi-aves_mined_captions-LAION400M.pkl
| |–– semi-aves-urls-all-0.0-LAION400M.parquet
From my experiences, GPT-4 usually gives more diverse synonyms than GPT-3.5,
including names that are in other languages e.g. Chinese, Japaneses, etc.
and some unformatted text. To avoid this issue and get English synonyms only,
I appended the following instruction in the prompt:
Don't give any other text. Give me English names only.
See query_synonyms.py
for more details.
# I experimented following code with Semi-Aves using GPT4
cd SWAT/retrieval/query_synonyms/
# paste your openai key in the openai_key.txt file
# set the target dataset and GPT model to use in this script,
# query aves with most common name, modified the prompt
# select the target datasets in `targets` list
python query_synonyms.py
# run text classification with OpenCLIP
python clip_text_filtering.py
# Since OpenCLIP may not understand some classnames or scientific names very well,
# here we add back the original classnames (and scientific names and common names
# for Semi-Aves) if removed, format the output to the desired format
python format_synonyms.py
# you might want to manually check the `output/{dataset}_synonyms_filtered_final.json`
# file and add some synonyms back if needed.
As an alternative, I used the synonyms in the metric files from REAL, and renamed for each dataset, e.g. dtd_metrics-LAION400M.json
. Note that I have done this step for you using the commands below, and you can find the formatted metric files in the SWAT/data/{dataset}/
folder.
# download the metric files into data/xxx folder for each dataset xxx
# format the indentation
cd SWAT/retrieval/
python format_metrics.py ../data/dtd/dtd_metrics-LAION400M.json
Once obtained the metric files which contains the concept synonyms, we retrieve relevant pretraining images whose captions contain any of the concept synonyms. This is referred to as string matching retrieval. For our experiments, we retrieve from LAION-400M dataset.
- Create the
laion400.db
file from LAION's parquet files using thecreate_table()
andcreate_fts_table()
functions inlaion_parser.py
. Only execute this step once. - Place the
laion400m.db
file in theSWAT/retrieval/database
folder. - Run string matching to obtain the matched captions.
cd SWAT/retrieval/
# string matching, ran twice for inital synonyms and manually-checked synonym list
python laion_parser.py --dataset semi-aves
python laion_parser.py --dataset flowers102
python laion_parser.py --dataset dtd
# adding a `texture`` prefix for retriveal gives no better performance
# python laion_parser.py --dataset dtd --prefix texture
# add `satellite` prefix to only match captions containing "satellite" and "classname",
# this is essential to ensure retrieving satellite images
python laion_parser.py --dataset eurosat --prefix satellite
python laion_parser.py --dataset fgvc-aircraft
python laion_parser.py --dataset oxford_pets
python laion_parser.py --dataset food101
python laion_parser.py --dataset stanford_cars
python laion_parser.py --dataset imagenet
# or use the slurm script to run the string matching
sbatch run_stringmatching.slurm
- Obtain the meta data, urls, and then download the images. For small string-matched pools e.g. Semi-Aves, EuroSAT, and Aircraft, we use
--sampling all
to download all string-matched images if available. For datasets like DTD and Flowers, since their string-matched pool contains large amount of images, we set--sampling random
to download a random subset to ease storage requirements.
# retrieve from laion400m
python laion_downloader.py --dataset semi-aves --sampling all
python laion_downloader.py --dataset eurosat --sampling all
python laion_downloader.py --dataset fgvc-aircraft --sampling all
python laion_downloader.py --dataset flowers102 --sampling random
python laion_downloader.py --dataset dtd --sampling random
python laion_downloader.py --dataset oxford_pets --sampling random
python laion_downloader.py --dataset food101 --sampling random
python laion_downloader.py --dataset stanford_cars --sampling random
python laion_downloader.py --dataset imagenet --sampling random
# or use the slurm script to run the retrieval
sbatch run_retrieval.slurm
- [Optional] delete the retrieved folder
00000/
which contains the nonessential json files.
cd $RETRIEVED/
rm -rf semi-aves/semi-aves_retrieved_LAION400M-all_synonyms-all/00000
rm -rf fgvc-aircraft/fgvc-aircraft_retrieved_LAION400M-all_synonyms-all/00000
rm -rf eurosat/eurosat_retrieved_LAION400M-all_synonyms-all/00000
rm -rf flowers102/flowers102_retrieved_LAION400M-all_synonyms-random/00000
rm -rf dtd/dtd_retrieved_LAION400M-all_synonyms-random/00000
rm -rf oxford_pets/oxford_pets_retrieved_LAION400M-all_synonyms-random/00000
rm -rf food101/food101_retrieved_LAION400M-all_synonyms-random/00000
rm -rf stanford_cars/stanford_cars_retrieved_LAION400M-all_synonyms-random/00000
rm -rf imagenet/imagenet_retrieved_LAION400M-all_synonyms-random/00000
- After obtaining the downloaded images, we format the captions for each downloaded image.
# process the meta data to the map file to get the captions for each image,
python process_meta_map.py semi-aves
python process_meta_map.py fgvc-aircraft
python process_meta_map.py flowers102
python process_meta_map.py eurosat
python process_meta_map.py dtd
python process_meta_map.py oxford_pets
python process_meta_map.py food101
python process_meta_map.py stanford_cars
python process_meta_map.py imagenet
- Extract the image and text features for different sampling methods in the next step.
# extract mined images features, comment out the dataset selection in the script
python extract_mined_feature.py --dataset fgvc-aircraft --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset eurosat --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset dtd --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset flowers102 --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset semi-aves --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset oxford_pets --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset food101 --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset stanford_cars --model_cfg vitb32_openclip_laion400m
python extract_mined_feature.py --dataset imagenet --model_cfg vitb32_openclip_laion400m
- We follow REAL to select top 500 images for each class using T2T ranking, i.e. ranking the cosine similarity of the prompt embedding (average of all synonyms using OpenAI templates) and the caption embedding, using the OpenCLIP ViT-B/32 model.
- The result will be a
T2T500.txt
file for each dataset, stored atSWAT/data/{dataset}/
folder. - Retrieval statistics are stored in
SWAT/retrieval/output/
folder.
# run for all datasets
bash run_sampling.sh
# use T2T ranking only, this will crate a `T2T500.txt` file
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset semi-aves
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset fgvc-aircraft
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset eurosat
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset dtd
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset flowers102
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset oxford_pets
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset food101
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset stanford_cars
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset imagenet
- You can play with different sampling methods, e.g. random, T2T ranking, T2I ranking, I2I ranking, T2T ranking with T2I filtering, etc.
# T2T500+T2I0.25, e.g. `T2T500+T2I0.25.txt`
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset semi-aves
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset fgvc-aircraft
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset eurosat
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset dtd
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset flowers102
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset oxford_pets
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset food101
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset stanford_cars
python sample_retrieval.py --prefix T2T500+T2I0.25 --num_samples 500 --sampling_method T2T-rank-T2I-tshd --dataset imagenet
# random500
python sample_retrieval.py --prefix Random500 --num_samples 500 --sampling_method Random --dataset semi-aves
# t2t500
python sample_retrieval.py --prefix T2T500 --num_samples 500 --sampling_method T2T-rank --dataset semi-aves
# T2I ranking
python sample_retrieval.py --prefix T2I500 --num_samples 500 --sampling_method T2I-rank --dataset semi-aves
# I2I ranking
# need to run probing first to get the preextracted downstream images features
bash scripts/run_dataset_seed_probing.sh stanford_cars 1
python sample_retrieval.py --prefix I2I500 --num_samples 500 --sampling_method I2I-rank --dataset fgvc-aircraft
# I2T-ranking
python sample_retrieval.py --prefix I2T-rank500 --num_samples 500 --sampling_method I2T-rank --dataset semi-aves
# T2T ranking + I2T filtering
python sample_retrieval.py --prefix T2T500+I2T0.25 --num_samples 500 --sampling_method T2T-rank-I2T-tshd --dataset semi-aves
# T2T ranking + I2I filtering
python sample_retrieval.py --prefix T2T500+I2I0.5 --num_samples 500 --sampling_method T2T-rank-I2I-tshd --dataset semi-aves
# update the threshold in add_t2t_ranked_t2i_tshd_to_split() in sample_retrieval.py
python sample_retrieval.py --prefix T2T500+I2I0.65 --num_samples 500 --sampling_method T2T-rank-I2I-tshd --dataset eurosat
# I2T-filtering
# python sample_retrieval.py --prefix I2T-tshd500 --num_samples 500 --sampling_method I2T-tshd --dataset semi-aves