-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathmain.py
executable file
·267 lines (206 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from data import *
from net import *
from lib import *
import datetime
from tqdm import tqdm
if is_in_notebook():
from tqdm import tqdm_notebook as tqdm
from torch import optim
from tensorboardX import SummaryWriter
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = True
seed_everything()
if args.misc.gpus < 1:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
gpu_ids = []
output_device = torch.device('cpu')
else:
gpu_ids = select_GPUs(args.misc.gpus)
output_device = gpu_ids[0]
now = datetime.datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = f'{args.log.root_dir}/{now}'
logger = SummaryWriter(log_dir)
with open(join(log_dir, 'config.yaml'), 'w') as f:
f.write(yaml.dump(save_config))
model_dict = {
'resnet50': ResNet50Fc,
'vgg16': VGG16Fc
}
class TotalNet(nn.Module):
def __init__(self):
super(TotalNet, self).__init__()
self.feature_extractor = model_dict[args.model.base_model](args.model.pretrained_model)
classifier_output_dim = len(source_classes)
self.classifier = CLS(self.feature_extractor.output_num(), classifier_output_dim, bottle_neck_dim=256)
self.discriminator = AdversarialNetwork(256)
self.discriminator_separate = AdversarialNetwork(256)
def forward(self, x):
f = self.feature_extractor(x)
f, _, __, y = self.classifier(f)
d = self.discriminator(_)
d_0 = self.discriminator_separate(_)
return y, d, d_0
totalNet = TotalNet()
feature_extractor = nn.DataParallel(totalNet.feature_extractor, device_ids=gpu_ids, output_device=output_device).train(True)
classifier = nn.DataParallel(totalNet.classifier, device_ids=gpu_ids, output_device=output_device).train(True)
discriminator = nn.DataParallel(totalNet.discriminator, device_ids=gpu_ids, output_device=output_device).train(True)
discriminator_separate = nn.DataParallel(totalNet.discriminator_separate, device_ids=gpu_ids, output_device=output_device).train(True)
if args.test.test_only:
assert os.path.exists(args.test.resume_file)
data = torch.load(open(args.test.resume_file, 'rb'))
feature_extractor.load_state_dict(data['feature_extractor'])
classifier.load_state_dict(data['classifier'])
discriminator.load_state_dict(data['discriminator'])
discriminator_separate.load_state_dict(data['discriminator_separate'])
counters = [AccuracyCounter() for x in range(len(source_classes) + 1)]
with TrainingModeManager([feature_extractor, classifier, discriminator_separate], train=False) as mgr, \
Accumulator(['feature', 'predict_prob', 'label', 'domain_prob', 'before_softmax',
'target_share_weight']) as target_accumulator, \
torch.no_grad():
for i, (im, label) in enumerate(tqdm(target_test_dl, desc='testing ')):
im = im.to(output_device)
label = label.to(output_device)
feature = feature_extractor.forward(im)
feature, __, before_softmax, predict_prob = classifier.forward(feature)
domain_prob = discriminator_separate.forward(__)
target_share_weight = get_target_share_weight(domain_prob, before_softmax, domain_temperature=1.0,
class_temperature=1.0)
for name in target_accumulator.names:
globals()[name] = variable_to_numpy(globals()[name])
target_accumulator.updateData(globals())
for x in target_accumulator:
globals()[x] = target_accumulator[x]
def outlier(each_target_share_weight):
return each_target_share_weight < args.test.w_0
counters = [AccuracyCounter() for x in range(len(source_classes) + 1)]
for (each_predict_prob, each_label, each_target_share_weight) in zip(predict_prob, label, target_share_weight):
if each_label in source_classes:
counters[each_label].Ntotal += 1.0
each_pred_id = np.argmax(each_predict_prob)
if not outlier(each_target_share_weight[0]) and each_pred_id == each_label:
counters[each_label].Ncorrect += 1.0
else:
counters[-1].Ntotal += 1.0
if outlier(each_target_share_weight[0]):
counters[-1].Ncorrect += 1.0
acc_tests = [x.reportAccuracy() for x in counters if not np.isnan(x.reportAccuracy())]
acc_test = torch.ones(1, 1) * np.mean(acc_tests)
print(f'test accuracy is {acc_test.item()}')
exit(0)
# ===================optimizer
scheduler = lambda step, initial_lr: inverseDecaySheduler(step, initial_lr, gamma=10, power=0.75, max_iter=10000)
optimizer_finetune = OptimWithSheduler(
optim.SGD(feature_extractor.parameters(), lr=args.train.lr / 10.0, weight_decay=args.train.weight_decay, momentum=args.train.momentum, nesterov=True),
scheduler)
optimizer_cls = OptimWithSheduler(
optim.SGD(classifier.parameters(), lr=args.train.lr, weight_decay=args.train.weight_decay, momentum=args.train.momentum, nesterov=True),
scheduler)
optimizer_discriminator = OptimWithSheduler(
optim.SGD(discriminator.parameters(), lr=args.train.lr, weight_decay=args.train.weight_decay, momentum=args.train.momentum, nesterov=True),
scheduler)
optimizer_discriminator_separate = OptimWithSheduler(
optim.SGD(discriminator_separate.parameters(), lr=args.train.lr, weight_decay=args.train.weight_decay, momentum=args.train.momentum, nesterov=True),
scheduler)
global_step = 0
best_acc = 0
total_steps = tqdm(range(args.train.min_step),desc='global step')
epoch_id = 0
while global_step < args.train.min_step:
iters = tqdm(zip(source_train_dl, target_train_dl), desc=f'epoch {epoch_id} ', total=min(len(source_train_dl), len(target_train_dl)))
epoch_id += 1
for i, ((im_source, label_source), (im_target, label_target)) in enumerate(iters):
save_label_target = label_target # for debug usage
label_source = label_source.to(output_device)
label_target = label_target.to(output_device)
label_target = torch.zeros_like(label_target)
# =========================forward pass
im_source = im_source.to(output_device)
im_target = im_target.to(output_device)
fc1_s = feature_extractor.forward(im_source)
fc1_t = feature_extractor.forward(im_target)
fc1_s, feature_source, fc2_s, predict_prob_source = classifier.forward(fc1_s)
fc1_t, feature_target, fc2_t, predict_prob_target = classifier.forward(fc1_t)
domain_prob_discriminator_source = discriminator.forward(feature_source)
domain_prob_discriminator_target = discriminator.forward(feature_target)
domain_prob_discriminator_source_separate = discriminator_separate.forward(feature_source.detach())
domain_prob_discriminator_target_separate = discriminator_separate.forward(feature_target.detach())
source_share_weight = get_source_share_weight(domain_prob_discriminator_source_separate, fc2_s, domain_temperature=1.0, class_temperature=10.0)
source_share_weight = normalize_weight(source_share_weight)
target_share_weight = get_target_share_weight(domain_prob_discriminator_target_separate, fc2_t, domain_temperature=1.0, class_temperature=1.0)
target_share_weight = normalize_weight(target_share_weight)
# ==============================compute loss
adv_loss = torch.zeros(1, 1).to(output_device)
adv_loss_separate = torch.zeros(1, 1).to(output_device)
tmp = source_share_weight * nn.BCELoss(reduction='none')(domain_prob_discriminator_source, torch.ones_like(domain_prob_discriminator_source))
adv_loss += torch.mean(tmp, dim=0, keepdim=True)
tmp = target_share_weight * nn.BCELoss(reduction='none')(domain_prob_discriminator_target, torch.zeros_like(domain_prob_discriminator_target))
adv_loss += torch.mean(tmp, dim=0, keepdim=True)
adv_loss_separate += nn.BCELoss()(domain_prob_discriminator_source_separate, torch.ones_like(domain_prob_discriminator_source_separate))
adv_loss_separate += nn.BCELoss()(domain_prob_discriminator_target_separate, torch.zeros_like(domain_prob_discriminator_target_separate))
# ============================== cross entropy loss
ce = nn.CrossEntropyLoss(reduction='none')(predict_prob_source, label_source)
ce = torch.mean(ce, dim=0, keepdim=True)
with OptimizerManager(
[optimizer_finetune, optimizer_cls, optimizer_discriminator, optimizer_discriminator_separate]):
loss = ce + adv_loss + adv_loss_separate
loss.backward()
global_step += 1
total_steps.update()
if global_step % args.log.log_interval == 0:
counter = AccuracyCounter()
counter.addOneBatch(variable_to_numpy(one_hot(label_source, len(source_classes))), variable_to_numpy(predict_prob_source))
acc_train = torch.tensor([counter.reportAccuracy()]).to(output_device)
logger.add_scalar('adv_loss', adv_loss, global_step)
logger.add_scalar('ce', ce, global_step)
logger.add_scalar('adv_loss_separate', adv_loss_separate, global_step)
logger.add_scalar('acc_train', acc_train, global_step)
if global_step % args.test.test_interval == 0:
counters = [AccuracyCounter() for x in range(len(source_classes) + 1)]
with TrainingModeManager([feature_extractor, classifier, discriminator_separate], train=False) as mgr, \
Accumulator(['feature', 'predict_prob', 'label', 'domain_prob', 'before_softmax', 'target_share_weight']) as target_accumulator, \
torch.no_grad():
for i, (im, label) in enumerate(tqdm(target_test_dl, desc='testing ')):
im = im.to(output_device)
label = label.to(output_device)
feature = feature_extractor.forward(im)
feature, __, before_softmax, predict_prob = classifier.forward(feature)
domain_prob = discriminator_separate.forward(__)
target_share_weight = get_target_share_weight(domain_prob, before_softmax, domain_temperature=1.0,
class_temperature=1.0)
for name in target_accumulator.names:
globals()[name] = variable_to_numpy(globals()[name])
target_accumulator.updateData(globals())
for x in target_accumulator:
globals()[x] = target_accumulator[x]
def outlier(each_target_share_weight):
return each_target_share_weight < args.test.w_0
counters = [AccuracyCounter() for x in range(len(source_classes) + 1)]
for (each_predict_prob, each_label, each_target_share_weight) in zip(predict_prob, label,
target_share_weight):
if each_label in source_classes:
counters[each_label].Ntotal += 1.0
each_pred_id = np.argmax(each_predict_prob)
if not outlier(each_target_share_weight[0]) and each_pred_id == each_label:
counters[each_label].Ncorrect += 1.0
else:
counters[-1].Ntotal += 1.0
if outlier(each_target_share_weight[0]):
counters[-1].Ncorrect += 1.0
acc_tests = [x.reportAccuracy() for x in counters if not np.isnan(x.reportAccuracy())]
acc_test = torch.ones(1, 1) * np.mean(acc_tests)
logger.add_scalar('acc_test', acc_test, global_step)
clear_output()
data = {
"feature_extractor": feature_extractor.state_dict(),
'classifier': classifier.state_dict(),
'discriminator': discriminator.state_dict() if not isinstance(discriminator, Nonsense) else 1.0,
'discriminator_separate': discriminator_separate.state_dict(),
}
if acc_test > best_acc:
best_acc = acc_test
with open(join(log_dir, 'best.pkl'), 'wb') as f:
torch.save(data, f)
with open(join(log_dir, 'current.pkl'), 'wb') as f:
torch.save(data, f)