-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Informer.py
147 lines (130 loc) · 6.25 KB
/
Informer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Transformer_EncDec import Decoder, DecoderLayer, Encoder, EncoderLayer, ConvLayer
from layers.SelfAttention_Family import ProbAttention, AttentionLayer
from layers.Embed import DataEmbedding
class Model(nn.Module):
"""
Informer with Propspare attention in O(LlogL) complexity
Paper link: https://ojs.aaai.org/index.php/AAAI/article/view/17325/17132
"""
def __init__(self, configs):
super(Model, self).__init__()
self.task_name = configs.task_name
self.pred_len = configs.pred_len
self.label_len = configs.label_len
# Embedding
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
self.dec_embedding = DataEmbedding(configs.dec_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
ProbAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
[
ConvLayer(
configs.d_model
) for l in range(configs.e_layers - 1)
] if configs.distil and ('forecast' in configs.task_name) else None,
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
# Decoder
self.decoder = Decoder(
[
DecoderLayer(
AttentionLayer(
ProbAttention(True, configs.factor, attention_dropout=configs.dropout, output_attention=False),
configs.d_model, configs.n_heads),
AttentionLayer(
ProbAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=False),
configs.d_model, configs.n_heads),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation,
)
for l in range(configs.d_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model),
projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
)
if self.task_name == 'imputation':
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
if self.task_name == 'anomaly_detection':
self.projection = nn.Linear(configs.d_model, configs.c_out, bias=True)
if self.task_name == 'classification':
self.act = F.gelu
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(configs.d_model * configs.seq_len, configs.num_class)
def long_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
enc_out = self.enc_embedding(x_enc, x_mark_enc)
dec_out = self.dec_embedding(x_dec, x_mark_dec)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
dec_out = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None)
return dec_out # [B, L, D]
def short_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization
mean_enc = x_enc.mean(1, keepdim=True).detach() # B x 1 x E
x_enc = x_enc - mean_enc
std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
x_enc = x_enc / std_enc
enc_out = self.enc_embedding(x_enc, x_mark_enc)
dec_out = self.dec_embedding(x_dec, x_mark_dec)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
dec_out = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None)
dec_out = dec_out * std_enc + mean_enc
return dec_out # [B, L, D]
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
# enc
enc_out = self.enc_embedding(x_enc, x_mark_enc)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
# final
dec_out = self.projection(enc_out)
return dec_out
def anomaly_detection(self, x_enc):
# enc
enc_out = self.enc_embedding(x_enc, None)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
# final
dec_out = self.projection(enc_out)
return dec_out
def classification(self, x_enc, x_mark_enc):
# enc
enc_out = self.enc_embedding(x_enc, None)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
# Output
output = self.act(enc_out) # the output transformer encoder/decoder embeddings don't include non-linearity
output = self.dropout(output)
output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings
output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model)
output = self.projection(output) # (batch_size, num_classes)
return output
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast':
dec_out = self.long_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'short_term_forecast':
dec_out = self.short_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'imputation':
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
return None