-
Notifications
You must be signed in to change notification settings - Fork 9
/
model.py
516 lines (467 loc) · 24.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import os, random, argparse, time, logging, json, tqdm
import numpy as np
import torch
from torch.optim import Adam
import utils
from config import global_config as cfg
from reader import MultiWozReader
from damd_net import DAMD, cuda_, get_one_hot_input
from eval import MultiWozEvaluator
class Model(object):
def __init__(self):
self.reader = MultiWozReader()
if len(cfg.cuda_device)==1:
self.m =DAMD(self.reader)
else:
m = DAMD(self.reader)
self.m=torch.nn.DataParallel(m, device_ids=cfg.cuda_device)
# print(self.m.module)
self.evaluator = MultiWozEvaluator(self.reader) # evaluator class
if cfg.cuda: self.m = self.m.cuda() #cfg.cuda_device[0]
self.optim = Adam(lr=cfg.lr, params=filter(lambda x: x.requires_grad, self.m.parameters()),weight_decay=5e-5)
self.base_epoch = -1
if cfg.limit_bspn_vocab:
self.reader.bspn_masks_tensor = {}
for key, values in self.reader.bspn_masks.items():
v_ = cuda_(torch.Tensor(values).long())
self.reader.bspn_masks_tensor[key] = v_
if cfg.limit_aspn_vocab:
self.reader.aspn_masks_tensor = {}
for key, values in self.reader.aspn_masks.items():
v_ = cuda_(torch.Tensor(values).long())
self.reader.aspn_masks_tensor[key] = v_
def add_torch_input(self, inputs, mode='train', first_turn=False):
need_onehot = ['user', 'usdx', 'bspn', 'aspn', 'pv_resp', 'pv_bspn', 'pv_aspn',
'dspn', 'pv_dspn', 'bsdx', 'pv_bsdx']
inputs['db'] = cuda_(torch.from_numpy(inputs['db_np']).float())
for item in ['user', 'usdx', 'resp', 'bspn', 'aspn', 'bsdx', 'dspn']:
if not cfg.enable_aspn and item == 'aspn':
continue
if not cfg.enable_bspn and item == 'bspn':
continue
if not cfg.enable_dspn and item == 'dspn':
continue
inputs[item] = cuda_(torch.from_numpy(inputs[item+'_unk_np']).long())
if item in ['user', 'usdx', 'resp', 'bspn']:
inputs[item+'_nounk'] = cuda_(torch.from_numpy(inputs[item+'_np']).long())
else:
inputs[item+'_nounk'] = inputs[item]
# print(item, inputs[item].size())
if item in ['resp', 'bspn', 'aspn', 'bsdx', 'dspn']:
if 'pv_'+item+'_unk_np' not in inputs:
continue
inputs['pv_'+item] = cuda_(torch.from_numpy(inputs['pv_'+item+'_unk_np']).long())
if item in ['user', 'usdx', 'bspn']:
inputs['pv_'+item+'_nounk'] = cuda_(torch.from_numpy(inputs['pv_'+item+'_np']).long())
inputs[item+'_4loss'] = self.index_for_loss(item, inputs)
else:
inputs['pv_'+item+'_nounk'] = inputs['pv_'+item]
inputs[item+'_4loss'] = inputs[item]
if 'pv_' + item in need_onehot:
inputs['pv_' + item + '_onehot'] = get_one_hot_input(inputs['pv_'+item+'_unk_np'])
if item in need_onehot:
inputs[item+'_onehot'] = get_one_hot_input(inputs[item+'_unk_np'])
if cfg.multi_acts_training and 'aspn_aug_unk_np' in inputs:
inputs['aspn_aug'] = cuda_(torch.from_numpy(inputs['aspn_aug_unk_np']).long())
inputs['aspn_aug_4loss'] = inputs['aspn_aug']
return inputs
def index_for_loss(self, item, inputs):
raw_labels = inputs[item+'_np']
if item == 'bspn':
copy_sources = [inputs['user_np'], inputs['pv_resp_np'], inputs['pv_bspn_np']]
elif item == 'bsdx':
copy_sources = [inputs['usdx_np'], inputs['pv_resp_np'], inputs['pv_bsdx_np']]
elif item == 'aspn':
copy_sources = []
if cfg.use_pvaspn:
copy_sources.append(inputs['pv_aspn_np'])
if cfg.enable_bspn:
copy_sources.append(inputs[cfg.bspn_mode+'_np'])
elif item == 'dspn':
copy_sources = [inputs['pv_dspn_np']]
elif item == 'resp':
copy_sources = [inputs['usdx_np']]
if cfg.enable_bspn:
copy_sources.append(inputs[cfg.bspn_mode+'_np'])
if cfg.enable_aspn:
copy_sources.append(inputs['aspn_np'])
else:
return
new_labels = np.copy(raw_labels)
if copy_sources:
bidx, tidx = np.where(raw_labels>=self.reader.vocab_size)
copy_sources = np.concatenate(copy_sources, axis=1)
for b in bidx:
for t in tidx:
oov_idx = raw_labels[b, t]
if len(np.where(copy_sources[b, :] == oov_idx)[0])==0:
new_labels[b, t] = 2
return cuda_(torch.from_numpy(new_labels).long())
def train(self):
lr = cfg.lr
prev_min_loss, early_stop_count = 1 << 30, cfg.early_stop_count
weight_decay_count = cfg.weight_decay_count
train_time = 0
sw = time.time()
for epoch in range(cfg.epoch_num):
if epoch <= self.base_epoch:
continue
self.training_adjust(epoch)
sup_loss = 0
sup_cnt = 0
optim = self.optim
# data_iterator generatation size: (batch num, turn num, batch size)
btm = time.time()
data_iterator = self.reader.get_batches('train')
for iter_num, dial_batch in enumerate(data_iterator):
hidden_states = {}
py_prev = {'pv_resp': None, 'pv_bspn': None, 'pv_aspn':None, 'pv_dspn': None, 'pv_bsdx': None}
bgt = time.time()
for turn_num, turn_batch in enumerate(dial_batch):
# print('turn %d'%turn_num)
# print(len(turn_batch['dial_id']))
optim.zero_grad()
first_turn = (turn_num==0)
inputs = self.reader.convert_batch(turn_batch, py_prev, first_turn=first_turn)
inputs = self.add_torch_input(inputs, first_turn=first_turn)
# total_loss, losses, hidden_states = self.m(inputs, hidden_states, first_turn, mode='train')
total_loss, losses = self.m(inputs, hidden_states, first_turn, mode='train')
# print('forward completed')
py_prev['pv_resp'] = turn_batch['resp']
if cfg.enable_bspn:
py_prev['pv_bspn'] = turn_batch['bspn']
py_prev['pv_bsdx'] = turn_batch['bsdx']
if cfg.enable_aspn:
py_prev['pv_aspn'] = turn_batch['aspn']
if cfg.enable_dspn:
py_prev['pv_dspn'] = turn_batch['dspn']
total_loss = total_loss.mean()
# print('forward time:%f'%(time.time()-test_begin))
# test_begin = time.time()
total_loss.backward(retain_graph=False)
# total_loss.backward(retain_graph=turn_num != len(dial_batch) - 1)
# print('backward time:%f'%(time.time()-test_begin))
grad = torch.nn.utils.clip_grad_norm_(self.m.parameters(), 5.0)
optim.step()
sup_loss += float(total_loss)
sup_cnt += 1
torch.cuda.empty_cache()
if (iter_num+1)%cfg.report_interval==0:
logging.info(
'iter:{} [total|bspn|aspn|resp] loss: {:.2f} {:.2f} {:.2f} {:.2f} grad:{:.2f} time: {:.1f} turn:{} '.format(iter_num+1,
float(total_loss),
float(losses[cfg.bspn_mode]),float(losses['aspn']),float(losses['resp']),
grad,
time.time()-btm,
turn_num+1))
if cfg.enable_dst and cfg.bspn_mode == 'bsdx':
logging.info('bspn-dst:{:.3f}'.format(float(losses['bspn'])))
if cfg.multi_acts_training:
logging.info('aspn-aug:{:.3f}'.format(float(losses['aspn_aug'])))
# btm = time.time()
# if (iter_num+1)%40==0:
# print('validation checking ... ')
# valid_sup_loss, valid_unsup_loss = self.validate(do_test=False)
# logging.info('validation loss in epoch %d sup:%f unsup:%f' % (epoch, valid_sup_loss, valid_unsup_loss))
epoch_sup_loss = sup_loss / (sup_cnt + 1e-8)
# do_test = True if (epoch+1)%5==0 else False
do_test = False
valid_loss = self.validate(do_test=do_test)
logging.info('epoch: %d, train loss: %.3f, valid loss: %.3f, total time: %.1fmin' % (epoch+1, epoch_sup_loss,
valid_loss, (time.time()-sw)/60))
# self.save_model(epoch)
if valid_loss <= prev_min_loss:
early_stop_count = cfg.early_stop_count
weight_decay_count = cfg.weight_decay_count
prev_min_loss = valid_loss
self.save_model(epoch)
else:
early_stop_count -= 1
weight_decay_count -= 1
logging.info('epoch: %d early stop countdown %d' % (epoch+1, early_stop_count))
if not early_stop_count:
self.load_model()
print('result preview...')
file_handler = logging.FileHandler(os.path.join(cfg.exp_path, 'eval_log%s.json'%cfg.seed))
logging.getLogger('').addHandler(file_handler)
logging.info(str(cfg))
self.eval()
return
if not weight_decay_count:
lr *= cfg.lr_decay
self.optim = Adam(lr=lr, params=filter(lambda x: x.requires_grad, self.m.parameters()),
weight_decay=5e-5)
weight_decay_count = cfg.weight_decay_count
logging.info('learning rate decay, learning rate: %f' % (lr))
self.load_model()
print('result preview...')
file_handler = logging.FileHandler(os.path.join(cfg.exp_path, 'eval_log%s.json'%cfg.seed))
logging.getLogger('').addHandler(file_handler)
logging.info(str(cfg))
self.eval()
def validate(self, data='dev', do_test=False):
self.m.eval()
valid_loss, count = 0, 0
data_iterator = self.reader.get_batches(data)
result_collection = {}
for batch_num, dial_batch in enumerate(data_iterator):
hidden_states = {}
py_prev = {'pv_resp': None, 'pv_bspn': None, 'pv_aspn':None, 'pv_dspn': None, 'pv_bsdx': None}
for turn_num, turn_batch in enumerate(dial_batch):
first_turn = (turn_num==0)
inputs = self.reader.convert_batch(turn_batch, py_prev, first_turn=first_turn)
inputs = self.add_torch_input(inputs, first_turn=first_turn)
# total_loss, losses, hidden_states = self.m(inputs, hidden_states, first_turn, mode='train')
if cfg.valid_loss not in ['score', 'match', 'success', 'bleu']:
total_loss, losses = self.m(inputs, hidden_states, first_turn, mode='train')
py_prev['pv_resp'] = turn_batch['resp']
if cfg.enable_bspn:
py_prev['pv_bspn'] = turn_batch['bspn']
py_prev['pv_bsdx'] = turn_batch['bsdx']
if cfg.enable_aspn:
py_prev['pv_aspn'] = turn_batch['aspn']
if cfg.enable_dspn:
py_prev['pv_dspn'] = turn_batch['dspn']
if cfg.valid_loss == 'total_loss':
valid_loss += float(total_loss)
elif cfg.valid_loss == 'bspn_loss':
valid_loss += float(losses[cfg.bspn_mode])
elif cfg.valid_loss == 'aspn_loss':
valid_loss += float(losses['aspn'])
elif cfg.valid_loss == 'resp_loss':
valid_loss += float(losses['reps'])
else:
raise ValueError('Invalid validation loss type!')
else:
decoded = self.m(inputs, hidden_states, first_turn, mode='test')
turn_batch['resp_gen'] = decoded['resp']
if cfg.bspn_mode == 'bspn' or cfg.enable_dst:
turn_batch['bspn_gen'] = decoded['bspn']
py_prev['pv_resp'] = turn_batch['resp'] if cfg.use_true_pv_resp else decoded['resp']
if cfg.enable_bspn:
py_prev['pv_'+cfg.bspn_mode] = turn_batch[cfg.bspn_mode] if cfg.use_true_prev_bspn else decoded[cfg.bspn_mode]
py_prev['pv_bspn'] = turn_batch['bspn'] if cfg.use_true_prev_bspn or 'bspn' not in decoded else decoded['bspn']
if cfg.enable_aspn:
py_prev['pv_aspn'] = turn_batch['aspn'] if cfg.use_true_prev_aspn else decoded['aspn']
if cfg.enable_dspn:
py_prev['pv_dspn'] = turn_batch['dspn'] if cfg.use_true_prev_dspn else decoded['dspn']
count += 1
torch.cuda.empty_cache()
if cfg.valid_loss in ['score', 'match', 'success', 'bleu']:
result_collection.update(self.reader.inverse_transpose_batch(dial_batch))
if cfg.valid_loss not in ['score', 'match', 'success', 'bleu']:
valid_loss /= (count + 1e-8)
else:
results, _ = self.reader.wrap_result(result_collection)
bleu, success, match = self.evaluator.validation_metric(results)
score = 0.5 * (success + match) + bleu
valid_loss = 130 - score
logging.info('validation [CTR] match: %2.1f success: %2.1f bleu: %2.1f'%(match, success, bleu))
self.m.train()
if do_test:
print('result preview...')
self.eval()
return valid_loss
def eval(self, data='test'):
self.m.eval()
self.reader.result_file = None
result_collection = {}
data_iterator = self.reader.get_batches(data)
for batch_num, dial_batch in tqdm.tqdm(enumerate(data_iterator)):
# quit()
# if batch_num > 0:
# continue
hidden_states = {}
py_prev = {'pv_resp': None, 'pv_bspn': None, 'pv_aspn':None, 'pv_dspn': None, 'pv_bsdx':None}
print('batch_size:', len(dial_batch[0]['resp']))
for turn_num, turn_batch in enumerate(dial_batch):
# print('turn %d'%turn_num)
# if turn_num!=0 and turn_num<4:
# continue
first_turn = (turn_num==0)
inputs = self.reader.convert_batch(turn_batch, py_prev, first_turn=first_turn)
inputs = self.add_torch_input(inputs, first_turn=first_turn)
decoded = self.m(inputs, hidden_states, first_turn, mode='test')
turn_batch['resp_gen'] = decoded['resp']
if cfg.bspn_mode == 'bsdx':
turn_batch['bsdx_gen'] = decoded['bsdx'] if cfg.enable_bspn else [[0]] * len(decoded['resp'])
if cfg.bspn_mode == 'bspn' or cfg.enable_dst:
turn_batch['bspn_gen'] = decoded['bspn'] if cfg.enable_bspn else [[0]] * len(decoded['resp'])
turn_batch['aspn_gen'] = decoded['aspn'] if cfg.enable_aspn else [[0]] * len(decoded['resp'])
turn_batch['dspn_gen'] = decoded['dspn'] if cfg.enable_dspn else [[0]] * len(decoded['resp'])
if self.reader.multi_acts_record is not None:
turn_batch['multi_act_gen'] = self.reader.multi_acts_record
if cfg.record_mode:
turn_batch['multi_act'] = self.reader.aspn_collect
turn_batch['multi_resp'] = self.reader.resp_collect
# print(turn_batch['user'])
# print('user:', self.reader.vocab.sentence_decode(turn_batch['user'][0] , eos='<eos_u>', indicate_oov=True))
# print('resp:', self.reader.vocab.sentence_decode(decoded['resp'][0] , eos='<eos_r>', indicate_oov=True))
# print('bspn:', self.reader.vocab.sentence_decode(decoded['bspn'][0] , eos='<eos_b>', indicate_oov=True))
# for b in range(len(decoded['resp'])):
# for i in range(5):
# print('aspn:', self.reader.vocab.sentence_decode(decoded['aspn'][i][b] , eos='<eos_a>', indicate_oov=True))
py_prev['pv_resp'] = turn_batch['resp'] if cfg.use_true_pv_resp else decoded['resp']
if cfg.enable_bspn:
py_prev['pv_'+cfg.bspn_mode] = turn_batch[cfg.bspn_mode] if cfg.use_true_prev_bspn else decoded[cfg.bspn_mode]
py_prev['pv_bspn'] = turn_batch['bspn'] if cfg.use_true_prev_bspn or 'bspn' not in decoded else decoded['bspn']
if cfg.enable_aspn:
py_prev['pv_aspn'] = turn_batch['aspn'] if cfg.use_true_prev_aspn else decoded['aspn']
if cfg.enable_dspn:
py_prev['pv_dspn'] = turn_batch['dspn'] if cfg.use_true_prev_dspn else decoded['dspn']
torch.cuda.empty_cache()
# prev_z = turn_batch['bspan']
# print('test iter %d'%(batch_num+1))
result_collection.update(self.reader.inverse_transpose_batch(dial_batch))
# self.reader.result_file.close()
if cfg.record_mode:
self.reader.record_utterance(result_collection)
quit()
results, field = self.reader.wrap_result(result_collection)
self.reader.save_result('w', results, field)
metric_results = self.evaluator.run_metrics(results)
metric_field = list(metric_results[0].keys())
req_slots_acc = metric_results[0]['req_slots_acc']
info_slots_acc = metric_results[0]['info_slots_acc']
self.reader.save_result('w', metric_results, metric_field,
write_title='EVALUATION RESULTS:')
self.reader.save_result('a', [info_slots_acc], list(info_slots_acc.keys()),
write_title='INFORM ACCURACY OF EACH SLOTS:')
self.reader.save_result('a', [req_slots_acc], list(req_slots_acc.keys()),
write_title='REQUEST SUCCESS RESULTS:')
self.reader.save_result('a', results, field+['wrong_domain', 'wrong_act', 'wrong_inform'],
write_title='DECODED RESULTS:')
self.reader.save_result_report(metric_results)
# self.reader.metric_record(metric_results)
self.m.train()
return None
def save_model(self, epoch, path=None, critical=False):
if not cfg.save_log:
return
if not path:
path = cfg.model_path
if critical:
path += '.final'
all_state = {'lstd': self.m.state_dict(),
'config': cfg.__dict__,
'epoch': epoch}
torch.save(all_state, path)
logging.info('Model saved')
def load_model(self, path=None):
if not path:
path = cfg.model_path
all_state = torch.load(path, map_location='cpu')
self.m.load_state_dict(all_state['lstd'])
self.base_epoch = all_state.get('epoch', 0)
logging.info('Model loaded')
def training_adjust(self, epoch):
return
def freeze_module(self, module):
for param in module.parameters():
param.requires_grad = False
def unfreeze_module(self, module):
for param in module.parameters():
param.requires_grad = True
def load_glove_embedding(self, freeze=False):
if not cfg.multi_gpu:
initial_arr = self.m.embedding.weight.data.cpu().numpy()
emb = torch.from_numpy(utils.get_glove_matrix(
cfg.glove_path, self.reader.vocab, initial_arr))
self.m.embedding.weight.data.copy_(emb)
else:
initial_arr = self.m.module.embedding.weight.data.cpu().numpy()
emb = torch.from_numpy(utils.get_glove_matrix(
cfg.glove_path, self.reader.vocab, initial_arr))
self.m.module.embedding.weight.data.copy_(emb)
def count_params(self):
module_parameters = filter(lambda p: p.requires_grad, self.m.parameters())
param_cnt = int(sum([np.prod(p.size()) for p in module_parameters]))
print('total trainable params: %d' % param_cnt)
return param_cnt
def parse_arg_cfg(args):
if args.cfg:
for pair in args.cfg:
k, v = tuple(pair.split('='))
dtype = type(getattr(cfg, k))
if dtype == type(None):
raise ValueError()
if dtype is bool:
v = False if v == 'False' else True
elif dtype is list:
v = v.split(',')
if k=='cuda_device':
v = [int(no) for no in v]
else:
v = dtype(v)
setattr(cfg, k, v)
return
def main():
if not os.path.exists('./experiments'):
os.mkdir('./experiments')
parser = argparse.ArgumentParser()
parser.add_argument('-mode')
parser.add_argument('-cfg', nargs='*')
args = parser.parse_args()
cfg.mode = args.mode
if args.mode == 'test' or args.mode=='adjust':
parse_arg_cfg(args)
cfg_load = json.loads(open(os.path.join(cfg.eval_load_path, 'config.json'), 'r').read())
for k, v in cfg_load.items():
if k in ['mode', 'cuda', 'cuda_device', 'eval_load_path', 'eval_per_domain', 'use_true_pv_resp',
'use_true_prev_bspn','use_true_prev_aspn','use_true_curr_bspn','use_true_curr_aspn',
'name_slot_unable', 'book_slot_unable','count_req_dials_only','log_time', 'model_path',
'result_path', 'model_parameters', 'multi_gpu', 'use_true_bspn_for_ctr_eval', 'nbest',
'limit_bspn_vocab', 'limit_aspn_vocab', 'same_eval_as_cambridge', 'beam_width',
'use_true_domain_for_ctr_eval', 'use_true_prev_dspn', 'aspn_decode_mode',
'beam_diverse_param', 'same_eval_act_f1_as_hdsa', 'topk_num', 'nucleur_p',
'act_selection_scheme', 'beam_penalty_type', 'record_mode']:
continue
setattr(cfg, k, v)
cfg.model_path = os.path.join(cfg.eval_load_path, 'model.pkl')
cfg.result_path = os.path.join(cfg.eval_load_path, 'result.csv')
else:
parse_arg_cfg(args)
if cfg.exp_path in ['' , 'to be generated']:
cfg.exp_path = 'experiments/{}_{}_sd{}_lr{}_bs{}_sp{}_dc{}/'.format('-'.join(cfg.exp_domains),
cfg.exp_no, cfg.seed, cfg.lr, cfg.batch_size,
cfg.early_stop_count, cfg.weight_decay_count)
if cfg.save_log:
os.mkdir(cfg.exp_path)
cfg.model_path = os.path.join(cfg.exp_path, 'model.pkl')
cfg.result_path = os.path.join(cfg.exp_path, 'result.csv')
cfg.vocab_path_eval = os.path.join(cfg.exp_path, 'vocab')
cfg.eval_load_path = cfg.exp_path
cfg._init_logging_handler(args.mode)
if cfg.cuda:
if len(cfg.cuda_device)==1:
cfg.multi_gpu = False
torch.cuda.set_device(cfg.cuda_device[0])
else:
# cfg.batch_size *= len(cfg.cuda_device)
cfg.multi_gpu = True
torch.cuda.set_device(cfg.cuda_device[0])
logging.info('Device: {}'.format(torch.cuda.current_device()))
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
random.seed(cfg.seed)
np.random.seed(cfg.seed)
m = Model()
cfg.model_parameters = m.count_params()
logging.info(str(cfg))
if args.mode == 'train':
if cfg.save_log:
# open(cfg.exp_path + 'config.json', 'w').write(str(cfg))
m.reader.vocab.save_vocab(cfg.vocab_path_eval)
with open(os.path.join(cfg.exp_path, 'config.json'), 'w') as f:
json.dump(cfg.__dict__, f, indent=2)
# m.load_glove_embedding()
m.train()
elif args.mode == 'adjust':
m.load_model(cfg.model_path)
m.train()
elif args.mode == 'test':
m.load_model(cfg.model_path)
# m.train()
m.eval(data='test')
if __name__ == '__main__':
main()