-
Notifications
You must be signed in to change notification settings - Fork 9
/
config.py
127 lines (116 loc) · 4.68 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging, time, os
class _Config:
def __init__(self):
self._multiwoz_damd_init()
def _multiwoz_damd_init(self):
self.vocab_path_train = './data/multi-woz-processed/vocab'
self.vocab_path_eval = None
self.data_path = './data/multi-woz-processed/'
self.data_file = 'data_for_damd.json'
self.dev_list = 'data/multi-woz/valListFile.json'
self.test_list = 'data/multi-woz/testListFile.json'
self.dbs = {
'attraction': 'db/attraction_db_processed.json',
'hospital': 'db/hospital_db_processed.json',
'hotel': 'db/hotel_db_processed.json',
'police': 'db/police_db_processed.json',
'restaurant': 'db/restaurant_db_processed.json',
'taxi': 'db/taxi_db_processed.json',
'train': 'db/train_db_processed.json',
}
self.glove_path = './data/glove/glove.6B.50d.txt'
self.domain_file_path = 'data/multi-woz-processed/domain_files.json'
self.slot_value_set_path = 'db/value_set_processed.json'
self.multi_acts_path = 'data/multi-woz-processed/multi_act_mapping_train.json'
self.exp_path = 'to be generated'
self.log_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
# experiment settings
self.mode = 'unknown'
self.cuda = True
self.cuda_device = [1]
self.exp_no = ''
self.seed = 11
self.exp_domains = ['all']
self.save_log = True
self.report_interval = 5
self.max_nl_length = 60
self.max_span_length = 30
self.truncated = False
# model settings
self.vocab_size = 3000
self.embed_size = 50
self.hidden_size = 100
self.pointer_dim = 6 # fixed
self.enc_layer_num = 1
self.dec_layer_num = 1
self.dropout = 0
self.layer_norm = False
self.skip_connect = False
self.encoder_share = False
self.attn_param_share = False
self.copy_param_share = False
self.enable_aspn = True
self.use_pvaspn = False
self.enable_bspn = True
self.bspn_mode = 'bsdx' # 'bspn' or 'bsdx'
self.enable_dspn = False # removed
self.enable_dst = False
# training settings
self.lr = 0.005
self.label_smoothing = .0
self.lr_decay = 0.5
self.batch_size = 128
self.epoch_num = 100
self.early_stop_count = 5
self.weight_decay_count = 3
self.teacher_force = 100
self.multi_acts_training = False
self.multi_act_sampling_num = 1
self.valid_loss = 'score'
# evaluation settings
self.eval_load_path ='experiments/all_multi_acts_sample3_sd777_lr0.005_bs80_sp5_dc3'
self.eval_per_domain = False
self.use_true_pv_resp = True
self.use_true_prev_bspn = False
self.use_true_prev_aspn = False
self.use_true_prev_dspn = False
self.use_true_curr_bspn = False
self.use_true_curr_aspn = False
self.use_true_bspn_for_ctr_eval = False
self.use_true_domain_for_ctr_eval = False
self.use_true_db_pointer = False
self.limit_bspn_vocab = False
self.limit_aspn_vocab = False
self.same_eval_as_cambridge = True
self.same_eval_act_f1_as_hdsa = False
self.aspn_decode_mode = 'greedy' #beam, greedy, nucleur_sampling, topk_sampling
self.beam_width = 5
self.nbest = 5
self.beam_diverse_param=0.2
self.act_selection_scheme = 'high_test_act_f1'
self.topk_num = 1
self.nucleur_p = 0.
self.record_mode = False
def __str__(self):
s = ''
for k,v in self.__dict__.items():
s += '{} : {}\n'.format(k,v)
return s
def _init_logging_handler(self, mode):
stderr_handler = logging.StreamHandler()
if not os.path.exists('./log'):
os.mkdir('./log')
if self.save_log and self.mode == 'train':
file_handler = logging.FileHandler('./log/log_{}_{}_{}_{}_sd{}.txt'.format(self.log_time, mode, '-'.join(self.exp_domains), self.exp_no, self.seed))
logging.basicConfig(handlers=[stderr_handler, file_handler])
elif self.mode == 'test':
eval_log_path = os.path.join(self.eval_load_path, 'eval_log.json')
# if os.path.exists(eval_log_path):
# os.remove(eval_log_path)
file_handler = logging.FileHandler(eval_log_path)
logging.basicConfig(handlers=[stderr_handler, file_handler])
else:
logging.basicConfig(handlers=[stderr_handler])
logger = logging.getLogger()
logger.setLevel(logging.INFO)
global_config = _Config()