forked from RoyalVane/CLAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCLAN_evaluate_bulk.py
132 lines (105 loc) · 5.07 KB
/
CLAN_evaluate_bulk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import numpy as np
import torch
from torch.autograd import Variable
from model.CLAN_G import Res_Deeplab
from dataset.cityscapes_dataset import cityscapesDataSet
from torch.utils import data
import os
from PIL import Image
import torch.nn as nn
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
DATA_DIRECTORY = './data/Cityscapes'
DATA_LIST_PATH = './dataset/cityscapes_list/val.txt'
SAVE_PATH = './result/cityscapes'
RESTORE_FROM = 'http://vllab.ucmerced.edu/ytsai/CVPR18/GTA2Cityscapes_multi-ed35151c.pth'
IGNORE_LABEL = 255
NUM_CLASSES = 19
NUM_STEPS = 500 # Number of images in the validation set.
SET = 'val'
#128, 64, 128
palette = [128, 64, 128, 244, 35, 232, 70, 70, 70, 102, 102, 156, 190, 153, 153, 153, 153, 153, 250, 170, 30,
220, 220, 0, 107, 142, 35, 152, 251, 152, 70, 130, 180, 220, 20, 60, 255, 0, 0, 0, 0, 142, 0, 0, 70,
0, 60, 100, 0, 80, 100, 0, 0, 230, 119, 11, 32]
zero_pad = 256 * 3 - len(palette)
for i in range(zero_pad):
palette.append(0)
def colorize_mask(mask):
# mask: numpy array of the mask
new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
new_mask.putpalette(palette)
return new_mask
def create_map(input_size, mode):
if mode == 'h':
T_base = torch.arange(0, float(input_size[1]))
T_base = T_base.view(input_size[1], 1)
T = T_base
for i in range(input_size[0] - 1):
T = torch.cat((T, T_base), 1)
T = torch.div(T, float(input_size[1]))
if mode == 'w':
T_base = torch.arange(0, float(input_size[0]))
T_base = T_base.view(1, input_size[0])
T = T_base
for i in range(input_size[1] - 1):
T = torch.cat((T, T_base), 0)
T = torch.div(T, float(input_size[0]))
T = T.view(1, 1, T.size(0), T.size(1))
return T
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the Cityscapes dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--set", type=str, default=SET,
help="choose evaluation set.")
parser.add_argument("--save", type=str, default=SAVE_PATH,
help="Path to save result.")
return parser.parse_args()
def main():
"""Create the model and start the evaluation process."""
for i in range(1, 50):
model_path = './snapshots/GTA2Cityscapes/GTA5_{0:d}.pth'.format(i*2000)
save_path = './result/GTA2Cityscapes_{0:d}'.format(i*2000)
args = get_arguments()
gpu0 = args.gpu
if not os.path.exists(save_path):
os.makedirs(save_path)
model = Res_Deeplab(num_classes=args.num_classes)
saved_state_dict = torch.load(model_path)
model.load_state_dict(saved_state_dict)
model.eval()
model.cuda(gpu0)
testloader = data.DataLoader(cityscapesDataSet(args.data_dir, args.data_list, crop_size=(1024,512), mean=IMG_MEAN, scale=False, mirror=False, set=args.set),
batch_size=1, shuffle=False, pin_memory=True)
interp = nn.Upsample(size=(1024, 2048), mode='bilinear', align_corners=True)
with torch.no_grad():
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd' % index)
image, _, _, name = batch
output1, output2 = model(Variable(image).cuda(gpu0))
output = interp(output1 + output2).cpu().data[0].numpy()
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8)
output_col = colorize_mask(output)
output = Image.fromarray(output)
name = name[0].split('/')[-1]
output.save('%s/%s' % (save_path, name))
output_col.save('%s/%s_color.png' % (save_path, name.split('.')[0]))
print(save_path)
if __name__ == '__main__':
main()