Fix some mathmode in docu #4254
Annotations
1 warning
../../../.julia/packages/Documenter/bYYzK/src/Utilities/Utilities.jl#L34
2350 docstrings not included in the manual:
local_genera_hermitian
abelian_group_homomorphism :: Tuple{TorQuadModuleMor}
acos :: Tuple{ca}
NmodMPolyRing
abelian_normal_extensions :: Tuple{AnticNumberField, Vector{Int64}, ZZRingElem}
isquadratic
coprime_base :: Tuple{Any}
HyperellipticCurve :: Union{Tuple{T}, Tuple{PolyRingElem{T}, PolyRingElem{T}}} where T<:FieldElem
HyperellipticCurve :: Union{Tuple{PolyRingElem{T}}, Tuple{T}} where T<:FieldElem
hasroot
right_order :: Tuple{Hecke.AlgAssRelOrdIdl}
right_order :: Tuple{Hecke.AlgAssAbsOrdIdl}
moebius_mu :: Tuple{ZZRingElem}
moebius_mu :: Tuple{Int64}
simplest_between :: Tuple{QQFieldElem, QQFieldElem}
real_period :: Union{Tuple{EllCrv{QQFieldElem}}, Tuple{EllCrv{QQFieldElem}, Int64}}
multiplicative_jordan_decomposition :: Union{Tuple{MatElem{T}}, Tuple{T}} where T<:FieldElem
GFPFmpzPolyRing
quartic_local_solubility :: NTuple{5, Any}
action :: Tuple{Hecke.ModAlgAss{<:Any, <:MatElem}, Hecke.AbsAlgAssElem}
action :: Tuple{Hecke.ModAlgAss}
action :: Tuple{Hecke.ModAlgAssLat, Any}
isprincipal_non_maximal
iterated_neighbours :: Tuple{HermLat, Any}
sqrt1pm1 :: Union{Tuple{RealFieldElem}, Tuple{RealFieldElem, Int64}}
sqrt1pm1 :: Tuple{arb}
set_verbose_level
FqPolyRepPolyRing
is_split :: Tuple{Hecke.AbsAlgAss{QQFieldElem}}
is_split :: Tuple{Hecke.AbsAlgAss, Any}
improper_spinor_generators :: Tuple{ZZGenus}
fq_default
det_nondegenerate_part :: Tuple{Hecke.QuadSpaceCls}
det_nondegenerate_part :: Tuple{Hecke.LocalQuadSpaceCls}
_gram_from_jordan_block :: Union{Tuple{ZZRingElem, Any}, Tuple{ZZRingElem, Any, Any}}
reduce_mod! :: Union{Tuple{T}, Tuple{MatElem{T}, MatElem{T}}} where T<:FieldElem
global_minimality_class :: Tuple{EllCrv{nf_elem}}
formal_inverse :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
scale :: Tuple{ZZLaurentSeriesRingElem}
log_integral :: Union{Tuple{ComplexFieldElem}, Tuple{ComplexFieldElem, Int64}}
log_integral :: Tuple{acb}
isprimitive_root
islocal_square
nmod_poly
_standard_mass :: Tuple{ZZLocalGenus}
fpPolyRingElem
elementary_divisors :: Tuple{TorQuadModule}
elementary_divisors :: Union{Tuple{MatElem{T}}, Tuple{T}} where T
roots :: Union{Tuple{QQMPolyRingElem}, Tuple{QQMPolyRingElem, Int64}}
QQFieldElem :: Tuple{qqbar}
QQFieldElem
genus_generators :: Tuple{HermLat}
isprime_power
primary_part :: Union{Tuple{GrpAbFinGen, Union{Integer, ZZRingElem}}, Tuple{GrpAbFinGen, Union{Integer, ZZRingElem}, Bool}}
primary_part :: Tuple{TorQuadModule, ZZRingElem}
simultaneous_diagonalization :: Union{Tuple{Vector{S}}, Tuple{S}, Tuple{T}} where {T<:FieldElem, S<:MatElem{T}}
simultaneous_diagonalization :: Union{Tuple{S}, Tuple{T}, Tuple{W}, Tuple{Vector{S}, W}} where {W<:Field, T<:FieldElem, S<:MatElem{T}}
NmodAbsSeriesRing
ZZRing :: Tuple{Any}
ZZRing
is_power :: Tuple{nf_elem, Int64}
has_matrix_action :: Union{Tuple{Hecke.ModAlgAss{S, T, U}}, Tuple{U}, Tuple{T}, Tuple{S}} where {S, T, U}
FqDefaultFiniteField
basis :: Tuple{Hecke.AbsAlgAss}
basis :: Tuple{Hecke.AlgAssAbsOrdIdl}
basis :: Tuple{Hecke.AlgAssAbsOrd}
basis :: Union{Tuple{Hecke.NfAbsOrdFracIdl{S, T}}, Tuple{T}, Tuple{S}} where {S, T}
basis :: Tuple{NfAbsOrdIdl}
basis :: Tuple{NfAbsOrd}
basis :: Tuple{GenOrdFracIdl}
basis :: Tuple{Hecke.AbsAlgAssIdl}
basis :: Tuple{Hecke.GenOrdIdl}
is_less_root_order :: Tuple{qqbar, qqbar}
formal_log :: Union{Tuple{EllCrv}, Tuple{EllCrv, Int64}}
intersect :: Tuple{Hecke.GenOrdIdl, Hecke.GenOrdIdl}
intersect :: Union{Tuple{GrpAbFinGenMap, GrpAbFinGenMap}, Tuple{GrpAbFinGenMap, GrpAbFinGenMap, Bool}, Tuple{GrpAbFinGenMap, GrpAbFinGenMap, Bool, Hecke.RelLattice{GrpAbFinGen, ZZMatrix}}}
intersect :: Union{Tuple{U}, Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssRelOrdIdl{S, T, U}, Hecke.AlgAssRelOrdIdl{S, T, U}}} where {S, T, U}
intersect :: Union{Tuple{T}, Tuple{S}, Tuple{Hecke.AlgAssAbsOrdI
|
The logs for this run have expired and are no longer available.
Loading