diff --git a/docs/src/abelian/introduction.md b/docs/src/abelian/introduction.md index ef4a93455a..96ff80d970 100644 --- a/docs/src/abelian/introduction.md +++ b/docs/src/abelian/introduction.md @@ -58,7 +58,7 @@ nrels(G::FinGenAbGroup) rels(A::FinGenAbGroup) is_finite(A::FinGenAbGroup) is_infinite(A::FinGenAbGroup) -rank(A::FinGenAbGroup) +torsion_free_rank(A::FinGenAbGroup) order(A::FinGenAbGroup) exponent(A::FinGenAbGroup) is_trivial(A::FinGenAbGroup) diff --git a/src/GrpAb/GrpAbFinGen.jl b/src/GrpAb/GrpAbFinGen.jl index 52b0f0cc91..c75cde4f86 100644 --- a/src/GrpAb/GrpAbFinGen.jl +++ b/src/GrpAb/GrpAbFinGen.jl @@ -533,20 +533,27 @@ is_finite_gen(A::FinGenAbGroup) = isfinite(snf(A)[1]) ################################################################################ @doc raw""" - rank(A::FinGenAbGroup) -> Int + torsion_free_rank(A::FinGenAbGroup) -> Int -Return the rank of $A$, that is, the dimension of the +Return the torsion free rank of $A$, that is, the dimension of the $\mathbf{Q}$-vectorspace $A \otimes_{\mathbf Z} \mathbf Q$. -""" -rank(A::FinGenAbGroup) = is_snf(A) ? rank_snf(A) : rank_gen(A) - -rank_snf(A::FinGenAbGroup) = length(findall(x -> iszero(x), A.snf)) - -rank_gen(A::FinGenAbGroup) = rank(snf(A)[1]) -rank(A::FinGenAbGroup, p::Union{Int, ZZRingElem}) = is_snf(A) ? rank_snf(A, p) : rank_snf(snf(A)[1], p) +See also [`rank`](@ref). +""" +function torsion_free_rank(A::FinGenAbGroup) + if !is_snf(A) + A = snf(A)[1] + end + return length(findall(iszero, A.snf)) +end -function rank_snf(A::FinGenAbGroup, p::Union{Int, ZZRingElem}) +# return the p-rank of A, which is the dimension of the elementary abelian +# group A/pA, or in other words, the rank (=size of minimal generating set) of +# the maximal p-quotient of A +function rank(A::FinGenAbGroup, p::Union{Int, ZZRingElem}) + if !is_snf(A) + A = snf(A)[1] + end if isempty(A.snf) return 0 end @@ -558,6 +565,17 @@ function rank_snf(A::FinGenAbGroup, p::Union{Int, ZZRingElem}) end +@doc raw""" + rank(A::FinGenAbGroup) -> Int + +Return the rank of $A$, that is, the size of a minimal generating set for $A$. + +See also [`torsion_free_rank`](@ref). +""" +rank(A::FinGenAbGroup) = error("rank(::FinGenAbGroup) has been renamed to torsion_free_rank") +#rank(A::FinGenAbGroup) = is_snf(A) ? length(A.snf) : return rank(snf(A)[1]) + + ################################################################################ # # Order diff --git a/src/exports.jl b/src/exports.jl index b3a2a300f1..6098be1817 100644 --- a/src/exports.jl +++ b/src/exports.jl @@ -876,6 +876,7 @@ export tensor_product export theta export tidy_model export torsion_bound +export torsion_free_rank export torsion_points export torsion_points_division_poly export torsion_points_lutz_nagell diff --git a/test/GrpAb/GrpAbFinGen.jl b/test/GrpAb/GrpAbFinGen.jl index bcfc54c0d6..935c2aeb3c 100644 --- a/test/GrpAb/GrpAbFinGen.jl +++ b/test/GrpAb/GrpAbFinGen.jl @@ -130,16 +130,20 @@ @testset "Rank" begin G = abelian_group([3, 15]) - @test @inferred rank(G) == 0 + @test @inferred torsion_free_rank(G) == 0 + #@test @inferred rank(G) == 2 G = abelian_group([3, 5]) - @test @inferred rank(G) == 0 + @test @inferred torsion_free_rank(G) == 0 + #@test @inferred rank(G) == 1 G = abelian_group([3, 15, 0]) - @test @inferred rank(G) == 1 + @test @inferred torsion_free_rank(G) == 1 + #@test @inferred rank(G) == 3 G = abelian_group([3, 5, 0]) - @test @inferred rank(G) == 1 + @test @inferred torsion_free_rank(G) == 1 + #@test @inferred rank(G) == 2 end @testset "Order" begin