diff --git a/docs/src/function_fields/degree_localization.md b/docs/src/function_fields/degree_localization.md index b100a09dcd..7e01d9d8a3 100644 --- a/docs/src/function_fields/degree_localization.md +++ b/docs/src/function_fields/degree_localization.md @@ -13,7 +13,7 @@ Given $k(x)$ a (univariate) rational function field, there are two rings of inte both of which are Euclidean: * $k[x]$ -* $k_\infty(x) = \{a/b | a, b \in k[x] \;\;\mbox{where}\;\; \deg(a) \leq \deg(b)\} +* $k_\infty(x) = \{a/b | a, b \in k[x] \;\;\mbox{where}\;\; \deg(a) \leq \deg(b)\}$ The second of these rings is the localization of $k[1/x]$ at $(1/x)$ inside the rational function field $k(x)$, i.e. the localization of the function field at the point at diff --git a/src/FunField/DegreeLocalization.jl b/src/FunField/DegreeLocalization.jl index 1ced56ee26..b5943c83c7 100644 --- a/src/FunField/DegreeLocalization.jl +++ b/src/FunField/DegreeLocalization.jl @@ -89,7 +89,7 @@ end in(a::Generic.RationalFunctionFieldElem{T}, R::KInftyRing{T}) where T <: FieldElement Return `true` if the given element of the rational function field is an -element of `k_\infty(x)`, i.e. if `degree(numerator) <= degree(denominator)`. +element of $k_\infty(x)$, i.e. if `degree(numerator) <= degree(denominator)`. """ function in(a::Generic.RationalFunctionFieldElem{T}, R::KInftyRing{T}) where T <: FieldElement if parent(a) != function_field(R)