From 6323b0584c869de48708269ff9ca4d994908b8f1 Mon Sep 17 00:00:00 2001 From: Tommy Hofmann Date: Mon, 16 Sep 2024 06:09:39 +0200 Subject: [PATCH] feat: clean up for algebras --- src/AlgAss/AbsAlgAss.jl | 4 +- src/AlgAss/AlgGrp.jl | 2 +- src/AlgAss/AlgMat.jl | 8 +- src/AlgAss/Elem.jl | 5 + src/AlgAss/Ideal.jl | 352 ++++++++++++++++++------------------ src/AlgAss/Map.jl | 3 +- src/AlgAss/Types.jl | 17 +- src/AlgAss/radical.jl | 2 +- src/AlgAssAbsOrd/Ideal.jl | 4 +- src/AlgAssRelOrd/Eichler.jl | 8 +- src/AlgAssRelOrd/Ideal.jl | 4 +- src/exports.jl | 2 + test/AlgAss/AbsAlgAss.jl | 6 +- test/AlgAss/Ideal.jl | 52 +++++- test/AlgAss/radical.jl | 8 +- 15 files changed, 270 insertions(+), 207 deletions(-) diff --git a/src/AlgAss/AbsAlgAss.jl b/src/AlgAss/AbsAlgAss.jl index 00d854684b..979ab75f20 100644 --- a/src/AlgAss/AbsAlgAss.jl +++ b/src/AlgAss/AbsAlgAss.jl @@ -727,7 +727,7 @@ of the basis elements of $A$ and a map from $B$ to $A$. function regular_matrix_algebra(A::Union{ StructureConstantAlgebra, GroupAlgebra }) K = base_ring(A) B = matrix_algebra(K, [ representation_matrix(A[i], :right) for i = 1:dim(A) ], isbasis = true) - return B, hom(B, A, identity_matrix(K, dim(A)), identity_matrix(K, dim(A))) + return B, hom(B, A, identity_matrix(K, dim(A)), identity_matrix(K, dim(A)); check = false) end ############################################################################### @@ -1117,7 +1117,7 @@ function product_of_components_with_projection(A::AbstractAssociativeAlgebra, a: for b in basis(A) push!(imgs, sum(injstoB[i](injs[i]\b) for i in eachindex(a); init = zero(B))) end - p = hom(A, B, basis_matrix(imgs)) + p = hom(A, B, basis_matrix(imgs); check = false) _transport_refined_wedderburn_decomposition_forward(p) return B, p end diff --git a/src/AlgAss/AlgGrp.jl b/src/AlgAss/AlgGrp.jl index 1c044879f4..4c5f497058 100644 --- a/src/AlgAss/AlgGrp.jl +++ b/src/AlgAss/AlgGrp.jl @@ -10,7 +10,7 @@ denominator_of_multiplication_table(A::GroupAlgebra{QQFieldElem}) = one(ZZ) base_ring(A::GroupAlgebra{T}) where {T} = A.base_ring::parent_type(T) -base_ring_type(::Type{GroupAlgebra{T}}) where {T} = parent_type(T) +base_ring_type(::Type{GroupAlgebra{T, S, R}}) where {T, S, R} = parent_type(T) Generic.dim(A::GroupAlgebra) = size(multiplication_table(A, copy = false), 1) diff --git a/src/AlgAss/AlgMat.jl b/src/AlgAss/AlgMat.jl index a9bc5532ca..162c072e65 100644 --- a/src/AlgAss/AlgMat.jl +++ b/src/AlgAss/AlgMat.jl @@ -14,7 +14,13 @@ base_ring_type(::Type{MatAlgebra{T, S}}) where {T, S} = parent_type(T) coefficient_ring(A::MatAlgebra{T, S}) where {T, S} = A.coefficient_ring::base_ring_type(S) -basis(A::MatAlgebra) = A.basis::Vector{elem_type(A)} +function basis(A::MatAlgebra; copy::Bool = true) + if copy + return Base.copy(A.basis::Vector{elem_type(A)}) + else + return A.basis::Vector{elem_type(A)} + end +end has_one(A::MatAlgebra) = true diff --git a/src/AlgAss/Elem.jl b/src/AlgAss/Elem.jl index 8347287191..2234edeb8e 100644 --- a/src/AlgAss/Elem.jl +++ b/src/AlgAss/Elem.jl @@ -644,6 +644,11 @@ function (A::GroupAlgebra)(a::GroupAlgebraElem) return a end +function (A::MatAlgebra)(a::MatAlgebraElem) + @assert parent(a) == A "Wrong parent" + return a +end + # For polynomial substitution for T in subtypes(AbstractAssociativeAlgebra) @eval begin diff --git a/src/AlgAss/Ideal.jl b/src/AlgAss/Ideal.jl index 8103443586..2e5d8d97cf 100644 --- a/src/AlgAss/Ideal.jl +++ b/src/AlgAss/Ideal.jl @@ -7,17 +7,34 @@ algebra(a::AbsAlgAssIdl) = a.algebra iszero(a::AbsAlgAssIdl) = (a.iszero == 1) +dim(a::AbsAlgAssIdl) = nrows(basis_matrix(a, copy = false)) + ############################################################################### # # String I/O # ############################################################################### -function show(io::IO, a::AbsAlgAssIdl) - print(io, "Ideal of ") - print(io, algebra(a)) - println(io, " with basis matrix") - print(io, basis_matrix(a, copy = false)) +function show(io::IO, A::AbsAlgAssIdl) + if is_terse(io) + print(io, "Ideal") + else + io = pretty(io) + print(io, "Ideal of dimension ", dim(A), " in ") + print(terse(io), Lowercase(), algebra(A)) + end +end + +function show(io::IO, mime::MIME"text/plain", a::AbsAlgAssIdl) + println(io, "Ideal") + io = pretty(io) + println(io, Indent(), "of dimension ", dim(a)) + println(io, "in ", Lowercase(), algebra(a)) + println(io, "with basis matrix") + print(io, Indent()) + show(io, MIME"text/plain"(), basis_matrix(a, copy = false)) + print(io, Dedent()) + print(io, Dedent()) end ################################################################################ @@ -66,9 +83,9 @@ Returns the basis of $a$. function basis(a::AbsAlgAssIdl; copy::Bool = true) assure_has_basis(a) if copy - return deepcopy(a.basis) + return Base.copy(a.basis)::Vector{elem_type(algebra(a))} else - return a.basis + return a.basis::Vector{elem_type(algebra(a))} end end @@ -79,9 +96,19 @@ Returns the basis matrix of $a$ with respect to the basis of the algebra. """ function basis_matrix(a::AbsAlgAssIdl; copy::Bool = true) if copy - return deepcopy(a.basis_matrix) + return deepcopy(a.basis_matrix)::dense_matrix_type(base_ring_type(algebra(a))) else - return a.basis_matrix + return a.basis_matrix::dense_matrix_type(base_ring_type(algebra(a))) + end +end + +function basis_matrix_solve_context(a::AbsAlgAssIdl) + if isdefined(a, :basis_matrix_solve_ctx) + return a.basis_matrix_solve_ctx::Solve.solve_context_type(base_ring(algebra(a))) + else + c = Solve.solve_init(basis_matrix(a, copy = false)) + a.basis_matrix_solve_ctx = c + return c end end @@ -91,15 +118,13 @@ end # ################################################################################ -@doc raw""" - in(x::AbstractAssociativeAlgebraElem, a::AbsAlgAssIdl) -> Bool +function in(x, a::AbsAlgAssIdl) + c = basis_matrix_solve_context(a) + return can_solve(c, coefficients(x, copy = false); side = :left) +end -Returns `true` if $x$ is an element of $a$ and `false` otherwise. -""" -function in(x::T, a::AbsAlgAssIdl{S, T, U}) where {S, T, U} - A = algebra(a) - M = matrix(base_ring(A), 1, dim(A), coefficients(x, copy = false)) - return rank(vcat(basis_matrix(a, copy = false), M)) == nrows(basis_matrix(a, copy = false)) # so far we assume nrows(basis_matrix) == rank(basis_matrix) +function is_subset(a::AbsAlgAssIdl, b::AbsAlgAssIdl) + return all(in(b), basis(a, copy = false)) end ################################################################################ @@ -112,18 +137,21 @@ function _test_ideal_sidedness(a::AbsAlgAssIdl, side::Symbol) A = algebra(a) ba = basis(a, copy = false) t = A() - for i = 1:dim(A) - for j = 1:length(ba) - if side == :left + for i in 1:dim(A) + for j in 1:length(ba) + if side === :left || side === :twosided t = mul!(t, A[i], ba[j]) - elseif side == :right + if !(t in a) + return false + end + elseif side === :right || side === :twosided t = mul!(t, ba[j], A[i]) + if !(t in a) + return false + end else error("side must be either :left or :right") end - if !(t in a) - return false - end end end return true @@ -181,16 +209,13 @@ end # ################################################################################ -@doc raw""" - +(a::AbsAlgAssIdl, b::AbsAlgAssIdl) -> AbsAlgAssIdl +function +(a::AbsAlgAssIdl{S}, b::AbsAlgAssIdl{S}) where {S} + @req algebra(a) === algebra(b) "Ideals must have same algebra" -Returns $a + b$. -""" -function +(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where {S, T, U} - if iszero(a) - return deepcopy(b) - elseif iszero(b) - return deepcopy(a) + if is_zero(a) + return b + elseif is_zero(b) + return a end M = vcat(basis_matrix(a), basis_matrix(b)) @@ -198,19 +223,15 @@ function +(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where {S, T, U} if r != nrows(M) M = sub(M, 1:r, 1:ncols(M)) end - return ideal(algebra(a), M; M_in_rref=true) + return _ideal_from_matrix(algebra(a), M; M_in_rref=true) end -@doc raw""" - *(a::AbsAlgAssIdl, b::AbsAlgAssIdl) -> AbsAlgAssIdl - -Returns $a \cdot b$. -""" -function *(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where {S, T, U} +function *(a::AbsAlgAssIdl{S}, b::AbsAlgAssIdl{S}) where {S} + @req algebra(a) === algebra(b) "Ideals must have same algebra" if iszero(a) - return deepcopy(a) + return a elseif iszero(b) - return deepcopy(b) + return b end A = algebra(a) @@ -223,20 +244,15 @@ function *(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where {S, T, U} elem_to_mat_row!(M, ii + j, ba[i]*bb[j]) end end - return ideal(algebra(a), M) + return _ideal_from_matrix(algebra(a), M) end -@doc raw""" - ^(a::AbsAlgAssIdl, e::Union{ Int, ZZRingElem }) -> AbsAlgAssIdl - -Returns $a^e$. -""" ^(A::AbsAlgAssIdl, e::Int) = Base.power_by_squaring(A, e) ^(A::AbsAlgAssIdl, e::ZZRingElem) = Base.power_by_squaring(A, BigInt(e)) function one(a::AbsAlgAssIdl) A = algebra(a) - return ideal(A, identity_matrix(base_ring(A), dim(A)); side=:twosided, M_in_rref=true) + return _ideal_from_matrix(A, identity_matrix(base_ring(A), dim(A)); side=:twosided, M_in_rref=true) end function Base.copy(a::AbsAlgAssIdl) @@ -246,11 +262,11 @@ end function *(x::AbstractAssociativeAlgebraElem, a::AbsAlgAssIdl) @assert is_left_ideal(a) "Not a left ideal" if iszero(a) - return deepcopy(a) + return a end basis_a = basis(a, copy = false) - return ideal_from_gens(algebra(a), [ x*basis_a[i] for i = 1:length(basis_a) ]) + return _ideal_from_kgens(algebra(a), [ x*basis_a[i] for i = 1:length(basis_a) ]) end function *(a::AbsAlgAssIdl, x::AbstractAssociativeAlgebraElem) @@ -260,21 +276,18 @@ function *(a::AbsAlgAssIdl, x::AbstractAssociativeAlgebraElem) end basis_a = basis(a, copy = false) - return ideal_from_gens(algebra(a), [ basis_a[i]*x for i = 1:length(basis_a) ]) + return _ideal_from_kgens(algebra(a), [ basis_a[i]*x for i = 1:length(basis_a) ]) end + ################################################################################ # +# # Equality # ################################################################################ -@doc raw""" - ==(a::AbsAlgAssIdl, b::AbsAlgAssIdl) -> Bool - -Returns `true` if $a$ and $b$ are equal and `false` otherwise. -""" function ==(a::AbsAlgAssIdl, b::AbsAlgAssIdl) - algebra(a) != algebra(b) && return false + algebra(a) !== algebra(b) && return false return basis_matrix(a, copy = false) == basis_matrix(b, copy = false) end @@ -284,17 +297,41 @@ end # ################################################################################ -@doc raw""" - ideal_from_gens(A::AbstractAssociativeAlgebra, b::Vector{ <: AbstractAssociativeAlgebraElem}, - side::Symbol = :nothing) - -> AbsAlgAssIdl +# side is necessary +function ideal(A::AbstractAssociativeAlgebra, b::Vector; side::Symbol) + @req side in (:left, :right, :twosided) "Side must be :left, :right or :twosided" + if length(b) == 0 + M = zero_matrix(base_ring(A), 0, dim(A)) + return _ideal_from_matrix(A, M; side, M_in_rref=true) + end + B = basis(A) + + kgens = elem_type(A)[] + for i in 1:length(b) + for j in 1:dim(A) + el = b[i] + if side == :left || side == :twosided + Bel = B[j] * el + if side == :twosided + for k in 1:dim(A) + push!(kgens, Bel * B[k]) + end + else + push!(kgens, Bel) + end + end + if side == :right + push!(kgens, el * B[j]) + end + end + end + return _ideal_from_kgens(A, kgens; side = side) +end -Returns the ideal of $A$ generated by the elements of `b` as a subspace of $A$. -""" -function ideal_from_gens(A::AbstractAssociativeAlgebra, b::Vector{T}, side::Symbol = :nothing) where { T <: AbstractAssociativeAlgebraElem } +function _ideal_from_kgens(A::AbstractAssociativeAlgebra, b::Vector{<:AbstractAssociativeAlgebraElem}; side = nothing) if length(b) == 0 M = zero_matrix(base_ring(A), 0, dim(A)) - return ideal(A, M; side, M_in_rref=true) + return _ideal_from_matrix(A, M; side, M_in_rref=true) end @assert parent(b[1]) == A @@ -303,60 +340,19 @@ function ideal_from_gens(A::AbstractAssociativeAlgebra, b::Vector{T}, side::Symb for i = 1:length(b) elem_to_mat_row!(M, i, b[i]) end - return ideal(A, M; side) -end - -@doc raw""" - ideal(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem) -> AbsAlgAssIdl - -Returns the twosided principal ideal of $A$ generated by $x$. -""" -function ideal(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem) - t1 = A() - t2 = A() - M = zero_matrix(base_ring(A), dim(A)^2, dim(A)) - for i = 1:dim(A) - t1 = mul!(t1, A[i], x) - ii = (i - 1)*dim(A) - for j = 1:dim(A) - t2 = mul!(t2, t1, A[j]) - elem_to_mat_row!(M, ii + j, t2) - end - end - - return ideal(A, M; side=:twosided) + return _ideal_from_matrix(A, M; side) end -@doc raw""" - ideal(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem, action::Symbol) -> AbsAlgAssIdl - -Returns the ideal $x \cdot A$ if `action == :left`, and $A \cdot x$ if -`action == :right`. -""" -function ideal(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem, action::Symbol) - M = representation_matrix(x, action) - a = ideal(A, M) - - if action == :left - a.isright = 1 - elseif action == :right - a.isleft = 1 - end +left_ideal(A::AbstractAssociativeAlgebra, x...; kw...) = ideal(A, x...; side = :left, kw...) - return a -end +right_ideal(A::AbstractAssociativeAlgebra, x...; kw...) = ideal(A, x...; side = :right, kw...) -@doc raw""" - *(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem) -> AbsAlgAssIdl - *(x::AbstractAssociativeAlgebraElem, A::AbstractAssociativeAlgebra) -> AbsAlgAssIdl +*(A::AbstractAssociativeAlgebra, x::NCRingElement) = left_ideal(A, x) -Returns the ideal $A \cdot x$ or $x \cdot A$ respectively. -""" -*(A::AbstractAssociativeAlgebra, x::AbstractAssociativeAlgebraElem) = ideal(A, x, :right) -*(x::AbstractAssociativeAlgebraElem, A::AbstractAssociativeAlgebra) = ideal(A, x, :left) +*(x::NCRingElement, A::AbstractAssociativeAlgebra) = right_ideal(A, x) @doc raw""" - ideal(A::AbstractAssociativeAlgebra, M::MatElem; side::Symbol = :nothing, M_in_rref::Bool = false) + _ideal_from_matrix(A::AbstractAssociativeAlgebra, M::MatElem; side::Symbol = :nothing, M_in_rref::Bool = false) -> AbsAlgAssIdl Returns the ideal of $A$ with basis matrix $M$. @@ -365,13 +361,13 @@ set to `:right`/`:left`/`:twosided` respectively. If `M_in_rref == true`, it is assumed that $M$ is already in row reduced echelon form. """ -function ideal(A::AbstractAssociativeAlgebra, M::MatElem; side::Symbol = :nothing, M_in_rref::Bool = false) +function _ideal_from_matrix(A::AbstractAssociativeAlgebra, M::MatElem; side = nothing, M_in_rref::Bool = false) @assert base_ring(M) == base_ring(A) @assert ncols(M) == dim(A) if !M_in_rref r, N = rref(M) if r == 0 - a = AbsAlgAssIdl{typeof(A), typeof(M)}(A, zero_matrix(base_ring(A), 0, dim(A))) + a = AbsAlgAssIdl{typeof(A)}(A, zero_matrix(base_ring(A), 0, dim(A))) a.iszero = 1 return a end @@ -382,12 +378,12 @@ function ideal(A::AbstractAssociativeAlgebra, M::MatElem; side::Symbol = :nothin end end if M_in_rref && nrows(M) == 0 - a = AbsAlgAssIdl{typeof(A), typeof(M)}(A, M) + a = AbsAlgAssIdl{typeof(A)}(A, M) a.iszero = 1 return a end - a = AbsAlgAssIdl{typeof(A), typeof(M)}(A, M) + a = AbsAlgAssIdl{typeof(A)}(A, M) _set_sidedness(a, side) a.iszero = 2 return a @@ -395,7 +391,7 @@ end # Helper function to set the side-flags # side can be :right, :left or :twosided -function _set_sidedness(a::Union{ AbsAlgAssIdl, AlgAssAbsOrdIdl, AlgAssRelOrdIdl }, side::Symbol) +function _set_sidedness(a::Union{ AbsAlgAssIdl, AlgAssAbsOrdIdl, AlgAssRelOrdIdl }, side) if side == :right a.isleft = 0 a.isright = 1 @@ -405,9 +401,11 @@ function _set_sidedness(a::Union{ AbsAlgAssIdl, AlgAssAbsOrdIdl, AlgAssRelOrdIdl elseif side == :twosided a.isleft = 1 a.isright = 1 - else + elseif side === nothing || side === :nothing a.isleft = 0 a.isright = 0 + else + error("Not a valid side") end return nothing end @@ -419,17 +417,19 @@ end ################################################################################ @doc raw""" - quo(A::AbstractAssociativeAlgebra, a::AbsAlgAssIdl) -> AbstractAssociativeAlgebra, AbsAlgAssMor + quo(A::AbstractAssociativeAlgebra, a::AbsAlgAssIdl) + -> AbstractAssociativeAlgebra, AbsAlgAssMor Returns the quotient algebra $A/a$ and the projection map $A \to A/a$. """ -function quo(A::S, a::AbsAlgAssIdl{S, T, U}) where { S, T, U } - @assert A == algebra(a) +function quo(A::S, a::AbsAlgAssIdl{S}) where {S} + @req A === algebra(a) "Ideal not in the algebra" K = base_ring(A) + d = dim(A) # First compute the vector space quotient Ma = basis_matrix(a, copy = false) - M = hcat(deepcopy(transpose(Ma)), identity_matrix(K, dim(A))) + M = hcat(transpose(Ma), identity_matrix(K, d)) r = rref!(M) pivot_cols = Vector{Int}() j = 1 @@ -446,38 +446,37 @@ function quo(A::S, a::AbsAlgAssIdl{S, T, U}) where { S, T, U } end # We now have the basis (basis of the quotient, basis of the ideal) - n = dim(A) - nrows(Ma) - M = vcat(zero_matrix(K, n, dim(A)), Ma) - oneK = K(1) - zeroK = K() + n = d - nrows(Ma) + M = vcat(zero_matrix(K, n, d), Ma) + oneK = one(K) + zeroK = zero(K) for i = 1:n M[i, pivot_cols[i]] = oneK end iM = inv(M) - N = sub(M, 1:n, 1:dim(A)) - NN = sub(iM, 1:dim(A), 1:n) + N = sub(M, 1:n, 1:d) + NN = sub(iM, 1:d, 1:n) # Lift a basis of the quotient to A quotient_basis = Vector{elem_type(A)}(undef, n) - b = zero_matrix(K, 1, n) + b = elem_type(K)[zero(K) for i in 1:n] for i = 1:n - b[1, i] = oneK + b[i] = oneK bN = b*N - quotient_basis[i] = A([ bN[1, i] for i = 1:dim(A) ]) - b[1, i] = zeroK + quotient_basis[i] = A(bN; copy = true) + b[i] = zeroK end # Build the multiplication table t = A() - s = zero_matrix(K, 1, dim(A)) + s = elem_type(K)[zero(K) for i in d] mult_table = Array{elem_type(K), 3}(undef, n, n, n) - for i = 1:n - for j = 1:n + for i in 1:n + for j in 1:n t = mul!(t, quotient_basis[i], quotient_basis[j]) - elem_to_mat_row!(s, 1, t) - sNN = s*NN - mult_table[i, j, :] = [ sNN[1, k] for k = 1:n ] + sNN = coefficients(t, copy = false) * NN + mult_table[i, j, :] = sNN end end @@ -493,15 +492,19 @@ end Given ideals $b \subseteq a$, this function returns the quotient algebra $a/b$ and the projection map $a \to a/b$. """ -function quo(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where { S, T, U } - @assert algebra(a) == algebra(b) +function quo(a::AbsAlgAssIdl{S}, b::AbsAlgAssIdl{S}) where {S} + @req algebra(a) === algebra(b) "Ideals must have same algebra" + @req is_subset(b, a) "Second ideal must be a subsets of the first ideal" + @req _test_ideal_sidedness(b, :twosided) "Second ideal must be two-sided" + A = algebra(a) + d = dim(A) K = base_ring(A) # First compute the vector space quotient Ma = basis_matrix(a, copy = false) Mb = basis_matrix(b, copy = false) - M = hcat(deepcopy(transpose(Mb)), deepcopy(transpose(Ma))) + M = hcat(transpose(Mb), transpose(Ma)) r = rref!(M) pivot_cols = Vector{Int}() j = 1 @@ -519,21 +522,21 @@ function quo(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where { S, T, U # Build the basis matrix for the quotient n = nrows(Ma) - nrows(Mb) - M = zero_matrix(K, n, dim(A)) + M = zero_matrix(K, n, d) for i = 1:n - for j = 1:dim(A) + for j = 1:d M[i, j] = deepcopy(Ma[pivot_cols[i], j]) end end # Lift a basis of the quotient to A quotient_basis = Vector{elem_type(A)}(undef, n) - b = zero_matrix(K, 1, n) + b = [zero(K) for i in 1:n] for i = 1:n - b[1, i] = one(K) + b[i] = one(K) bM = b*M - quotient_basis[i] = A([ bM[1, j] for j in 1:dim(A) ]) - b[1, i] = zero(K) + quotient_basis[i] = A(bM; copy = true) + b[i] = zero(K) end # Another basis matrix for a: basis of the quotient + basis of b @@ -541,14 +544,13 @@ function quo(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where { S, T, U # Build the multiplication table t = A() - s = zero_matrix(K, 1, dim(A)) mult_table = Array{elem_type(K), 3}(undef, n, n, n) + Nctx = solve_init(N) for i = 1:n for j = 1:n t = mul!(t, quotient_basis[i], quotient_basis[j]) - elem_to_mat_row!(s, 1, t) - y = solve(N, s, side = :left) - mult_table[i, j, :] = [ y[1, k] for k = 1:n ] + y = solve(Nctx, coefficients(t, copy = false), side = :left) + mult_table[i, j, :] = view(y, 1:n) end end @@ -557,21 +559,17 @@ function quo(a::AbsAlgAssIdl{S, T, U}, b::AbsAlgAssIdl{S, T, U}) where { S, T, U AtoB = AbsAlgAssMor{typeof(A), typeof(B), typeof(M)}(A, B) function _image(x::AbstractAssociativeAlgebraElem) - t, y = can_solve_with_solution(N, matrix(K, 1, dim(A), coefficients(x, copy = false)), side = :left) + t, y = can_solve_with_solution(Nctx, coefficients(x, copy = false), side = :left) if t - return B([ y[1, i] for i in 1:dim(B) ]) + return B(y[1:dim(B)]; copy = false) else error("Element is not in the domain") end end function _preimage(x::AbstractAssociativeAlgebraElem) - t = zero_matrix(K, 1, dim(B)) - for i = 1:dim(B) - t[1, i] = x.coeffs[i] - end - tt = t*M - return A([ tt[1, i] for i in 1:dim(A) ]) + tt = coefficients(x, copy = false) * M + return A(tt; copy = false) end AtoB.header.image = _image @@ -586,27 +584,35 @@ end ################################################################################ # TODO: implement for ::Type{AbsAlgAssIdl} -Random.gentype(a::AbsAlgAssIdl) = elem_type(algebra(a)) +#Random.gentype(a::AbsAlgAssIdl) = elem_type(algebra(a)) -function rand(rng::AbstractRNG, a_sp::Random.SamplerTrivial{<:AbsAlgAssIdl}) - a = a_sp[] - A = algebra(a) - x = A() - for b in basis(a, copy = false) - x += rand(rng, base_ring(A))*b +function RandomExtensions.maketype(I::AbsAlgAssIdl, _) + return elem_type(algebra(I)) +end + +function RandomExtensions.make(I::AbsAlgAssIdl, vs...) + R = base_ring(algebra(I)) + if length(vs) == 1 && elem_type(R) == Random.gentype(vs[1]) + RandomExtensions.Make(I, vs[1]) # forward to default Make constructor + else + RandomExtensions.Make(I, make(R, vs...)) end - return x end -function rand(a::AbsAlgAssIdl, rng::AbstractUnitRange{Int}) +function rand(rng::AbstractRNG, a_sp::Random.SamplerTrivial{<:Make2{<:NCRingElem, <:AbsAlgAssIdl}}) + a, v = a_sp[][1:end] A = algebra(a) x = A() for b in basis(a, copy = false) - x += rand(base_ring(A), rng)*b + x = add!(x, rand(rng, v)*b) end return x end +rand(rng::AbstractRNG, a::AbsAlgAssIdl, v...) = rand(rng, make(a, v...)) + +rand(a::AbsAlgAssIdl, v...) = rand(Random.GLOBAL_RNG, a, v...) + ################################################################################ # # Reduction of element modulo ideal @@ -643,8 +649,8 @@ end # ################################################################################ -function left_principal_generator(a::AbsAlgAssIdl{S, T, U}) where { S <: MatAlgebra, T, U } - @assert is_left_ideal(a) "Not a left ideal" +function left_principal_generator(a::AbsAlgAssIdl{S}) where {S <: MatAlgebra} + @req is_left_ideal(a) "Not a left ideal" A = algebra(a) if dim(A) != degree(A)^2*dim_of_coefficient_ring(A) error("Only implemented for full matrix algebras") @@ -674,7 +680,7 @@ function left_principal_generator(a::AbsAlgAssIdl{S, T, U}) where { S <: MatAlge return x end -function right_principal_generator(a::AbsAlgAssIdl{S, T, U}) where { S <: MatAlgebra, T, U } +function right_principal_generator(a::AbsAlgAssIdl{S}) where {S <: MatAlgebra} @assert is_right_ideal(a) "Not a right ideal" A = algebra(a) if dim(A) != degree(A)^2*dim_of_coefficient_ring(A) diff --git a/src/AlgAss/Map.jl b/src/AlgAss/Map.jl index 79fb4a2f30..8e767964f5 100644 --- a/src/AlgAss/Map.jl +++ b/src/AlgAss/Map.jl @@ -220,7 +220,8 @@ function hom(A::R, B::S, M::T; check = true) where {R <: AbstractAssociativeAlge return h end -function hom(A::R, B::S, M::T, N::T) where {R <: AbstractAssociativeAlgebra, S <: AbstractAssociativeAlgebra, T <: MatElem} +function hom(A::R, B::S, M::T, N::T; check = true) where {R <: AbstractAssociativeAlgebra, S <: AbstractAssociativeAlgebra, T <: MatElem} + # TODO: add check return AbsAlgAssMor{R, S, T}(A, B, M, N) end diff --git a/src/AlgAss/Types.jl b/src/AlgAss/Types.jl index 693b937e61..d69398e353 100644 --- a/src/AlgAss/Types.jl +++ b/src/AlgAss/Types.jl @@ -236,20 +236,21 @@ end # S is the type of the algebra, T = elem_type(S) and U is the type of matrices # over the base ring of the algebra -mutable struct AbsAlgAssIdl{S, T, U} +mutable struct AbsAlgAssIdl{S} algebra::S - basis::Vector{T} - basis_matrix::U + basis#::Vector{elem_type(algebra)} + basis_matrix#::dense_matrix_type(base_ring_Type(A)) + basis_matrix_solve_ctx#solve_context_type(...) isleft::Int # 0 Not known # 1 Known to be a left ideal # 2 Known not to be a left ideal isright::Int # as for isleft - iszero::Int + iszero::Int # as for isleft - function AbsAlgAssIdl{S, T, U}(A::S) where {S, T, U} - I = new{S, T, U}() + function AbsAlgAssIdl{S}(A::S) where {S} + I = new{S}() I.algebra = A I.isleft = 0 I.isright = 0 @@ -257,8 +258,8 @@ mutable struct AbsAlgAssIdl{S, T, U} return I end - function AbsAlgAssIdl{S, U}(A::S, M::U) where {S, U} - I = new{S, elem_type(S), U}() + function AbsAlgAssIdl{S}(A::S, M::MatElem) where {S} + I = new{S}() I.algebra = A I.basis_matrix = M I.isleft = 0 diff --git a/src/AlgAss/radical.jl b/src/AlgAss/radical.jl index 42704a8de0..b6cc2ec2be 100644 --- a/src/AlgAss/radical.jl +++ b/src/AlgAss/radical.jl @@ -32,7 +32,7 @@ Returns the Jacobson radical of $A$. """ function radical(A::AbstractAssociativeAlgebra) - return ideal_from_gens(A, _radical(A), :twosided) + return _ideal_from_kgens(A, _radical(A); side = :twosided) end function _radical(A::AbstractAssociativeAlgebra) diff --git a/src/AlgAssAbsOrd/Ideal.jl b/src/AlgAssAbsOrd/Ideal.jl index 065dc110eb..71489f799d 100644 --- a/src/AlgAssAbsOrd/Ideal.jl +++ b/src/AlgAssAbsOrd/Ideal.jl @@ -1090,7 +1090,7 @@ function _islocally_free_left(O::AlgAssAbsOrd, I::AlgAssAbsOrdIdl, p::Union{Int, push!(gensJ, toIpI(bb*c)) end end - JinIpI = ideal_from_gens(IpI, gensJ) + JinIpI = _ideal_from_kgens(IpI, gensJ) IJ, toIJ = quo(IpI, JinIpI) a = O() @@ -2049,7 +2049,7 @@ function maximal_integral_ideal_containing(I::AlgAssAbsOrdIdl, p::Union{ ZZRingE B, BtoOP = _as_algebra_over_center(OP) C, toC = _as_matrix_algebra(B) - JinC = ideal_from_gens(C, [ toC(OPtoB(toOP(O(b)))) for b in absolute_basis(J) ]) + JinC = _ideal_from_kgens(C, [ toC(OPtoB(toOP(O(b)))) for b in absolute_basis(J) ]) y = left_principal_generator(JinC) m = matrix(y) r = rref!(m) diff --git a/src/AlgAssRelOrd/Eichler.jl b/src/AlgAssRelOrd/Eichler.jl index 631760d54f..c9d5615e5a 100644 --- a/src/AlgAssRelOrd/Eichler.jl +++ b/src/AlgAssRelOrd/Eichler.jl @@ -65,8 +65,8 @@ function _eichler_find_transforming_unit_maximal(M::T, N::T) where { T <: Union{ OpO, toOpO = quo(O, p*O, p) B, toB = _as_matrix_algebra(OpO) - I = ideal_from_gens(B, [ toB(toOpO(O(b))) for b in absolute_basis(M) ]) - J = ideal_from_gens(B, [ toB(toOpO(O(b))) for b in absolute_basis(N) ]) + I = _ideal_from_kgens(B, [ toB(toOpO(O(b))) for b in absolute_basis(M) ]) + J = _ideal_from_kgens(B, [ toB(toOpO(O(b))) for b in absolute_basis(N) ]) # Compute the image of 1 under the canonical projections O -> O/M respectively O -> O/N Fq = base_ring(B) @@ -83,7 +83,7 @@ function _eichler_find_transforming_unit_maximal(M::T, N::T) where { T <: Union{ break end end - v = matrix(Fq, degree(B), 1, [ vv[i, nonZeroCol] for i = 1:degree(B) ]) + v = matrix(Fq, degree(B), 1, elem_type(Fq)[ vv[i, nonZeroCol] for i = 1:degree(B) ]) ww = mod(one(B), J) nonZeroCol = 0 for i = 1:degree(B) @@ -97,7 +97,7 @@ function _eichler_find_transforming_unit_maximal(M::T, N::T) where { T <: Union{ break end end - w = matrix(Fq, degree(B), 1, [ ww[i, nonZeroCol] for i = 1:degree(B) ]) + w = matrix(Fq, degree(B), 1, elem_type(Fq)[ ww[i, nonZeroCol] for i = 1:degree(B) ]) b = ceil(Int, degree(base_ring(B))*dim(B)*log2(BigInt(characteristic(base_ring(B))))) # A minimal set of generators of around b elements should generate B^\times diff --git a/src/AlgAssRelOrd/Ideal.jl b/src/AlgAssRelOrd/Ideal.jl index 78eaa52f12..9cc4b5ce24 100644 --- a/src/AlgAssRelOrd/Ideal.jl +++ b/src/AlgAssRelOrd/Ideal.jl @@ -1096,7 +1096,7 @@ function is_locally_free(O::AlgAssRelOrd, I::AlgAssRelOrdIdl, p::Union{ AbsNumFi push!(gensJ, toIpI(bb*c)) end end - JinIpI = ideal_from_gens(IpI, gensJ) + JinIpI = _ideal_from_kgens(IpI, gensJ) IJ, toIJ = quo(IpI, JinIpI) a = O() @@ -1352,7 +1352,7 @@ function maximal_integral_ideal_containing(I::AlgAssRelOrdIdl, p::Union{ AbsNumF B, BtoOP = _as_algebra_over_center(OP) C, toC = _as_matrix_algebra(B) - JinC = ideal_from_gens(C, elem_type(C)[ toC(BtoOP\(toOP(O(b)))) for b in absolute_basis(J) ]) + JinC = _ideal_from_kgens(C, elem_type(C)[ toC(BtoOP\(toOP(O(b)))) for b in absolute_basis(J) ]) y = left_principal_generator(JinC) m = matrix(y) r = rref!(m) diff --git a/src/exports.jl b/src/exports.jl index da71484562..21fcb50ddc 100644 --- a/src/exports.jl +++ b/src/exports.jl @@ -613,6 +613,7 @@ export lattice_with_local_conditions export lcm export leading_coefficient export leech_lattice +export left_ideal export left_order export level export lll @@ -801,6 +802,7 @@ export restrict_scalars export restrict_scalars_with_map export resultant export riemann_roch_space +export right_ideal export right_order export ring_of_integers export ring_of_multipliers diff --git a/test/AlgAss/AbsAlgAss.jl b/test/AlgAss/AbsAlgAss.jl index abbd7fa066..1051cffd86 100644 --- a/test/AlgAss/AbsAlgAss.jl +++ b/test/AlgAss/AbsAlgAss.jl @@ -112,7 +112,7 @@ A = StructureConstantAlgebra(f2g3) fg = A(QQFieldElem[-5, 5, -2, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0]) # = f*g J = radical(A) - I = ideal(A, fg) + I = left_ideal(A, fg) @test I == J f = x^2 + 1 @@ -124,7 +124,7 @@ A = StructureConstantAlgebra(g2h3) gh = A(map(K, [10, -5, -28, -13, 2, 1, 0, 0, 0, 0, 0, 0])) # = g*h J = radical(A) - I = ideal(A, gh) + I = left_ideal(A, gh) @test I == J G = small_group(8, 4) @@ -138,7 +138,7 @@ 0 0 0 0 1 0 0 1; 0 0 0 0 0 1 0 1; 0 0 0 0 0 0 1 1] - @test I == ideal(A, bI) + @test I == Hecke._ideal_from_matrix(A, bI) ge = [A(g) - A(one(G)) for g in G] @test all(in(I), ge) AS, AStoA = StructureConstantAlgebra(A) diff --git a/test/AlgAss/Ideal.jl b/test/AlgAss/Ideal.jl index c2bef42730..af5690bcd8 100644 --- a/test/AlgAss/Ideal.jl +++ b/test/AlgAss/Ideal.jl @@ -1,11 +1,44 @@ @testset "Ideals in algebras" begin + let + A = matrix_algebra(GF(3), 2) + I = A[2]*A + @test algebra(I) === A + @test ideal(A, [A[2]], side = :right) == I + I = A*A[2] + @test algebra(I) === A + @test ideal(A, [A[2]], side = :left) == I + I = A[2]*A + A[3]*A + @test algebra(I) === A + @test ideal(A, [A[2], A[3]], side = :right) == I + I = A*A[2] + A*A[3] + @test algebra(I) === A + @test ideal(A, [A[2], A[3]], side = :left) == I + + sprint(show, "text/plain", I) isa String + sprint(show, I) isa String + @test !is_zero(I) + @test is_one(I) + + @test basis(I) !== basis(I; copy = false) + + I = A*zero(A) + @test algebra(I) === A + @test ideal(A, elem_type(A)[], side = :left) == I + @test is_zero(I) + @test !is_one(I) + end + + @testset "Left / Right" begin A = matrix_algebra(GF(3), 2) I = A[2]*A - @test is_left_ideal(I) == false - @test is_right_ideal(I) == true + @test !is_left_ideal(I) + @test is_right_ideal(I) + + J = ideal(A, [A[1]]; side = :twosided) + @test J == one(A) * A end @testset "Quotients" begin @@ -70,8 +103,8 @@ # see https://github.com/thofma/Hecke.jl/issues/1399 . G = small_group(8, 4) A, _ = StructureConstantAlgebra(group_algebra(FlintQQ, G)) - I = ideal(A, one(A)) - J = ideal(A, sum(A[i] for i in 1:8)) + I = left_ideal(A, one(A)) + J = left_ideal(A, sum(A[i] for i in 1:8)) Q, AtoQ = quo(I, J) @test dim(Q) == 7 @@ -108,11 +141,20 @@ E = elem_type(A) @test rand(I) isa E @test rand(rng, I) isa E - @test rand(rng, I, 2, 3) isa Matrix{E} + @test rand(rng, Hecke.RandomExtensions.make(I), 2, 3) isa Matrix{E} Random.seed!(rng, rand_seed) a = rand(rng, I) Random.seed!(rng, rand_seed) @test a == rand(rng, I) end + + let + A = matrix_algebra(GF(3), 2) + J = Hecke.ideal(A, [A[1]]; side = :twosided) + a = @inferred Hecke.left_principal_generator(J) + @test A * a == J + a = @inferred Hecke.right_principal_generator(J) + @test a * A == J + end end diff --git a/test/AlgAss/radical.jl b/test/AlgAss/radical.jl index 6961a7f647..748e820d8b 100644 --- a/test/AlgAss/radical.jl +++ b/test/AlgAss/radical.jl @@ -6,7 +6,7 @@ A = StructureConstantAlgebra(f2g3) fg = A(QQFieldElem[-5, 5, -2, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0]) # = f*g J = radical(A) - I = ideal(A, fg) + I = left_ideal(A, fg) @test I == J f = x^2 + 1 @@ -18,7 +18,7 @@ A = StructureConstantAlgebra(g2h3) gh = A(map(K, [10, -5, -28, -13, 2, 1, 0, 0, 0, 0, 0, 0])) # = g*h J = radical(A) - I = ideal(A, gh) + I = left_ideal(A, gh) @test I == J G = small_group(8, 4) @@ -32,7 +32,7 @@ 0 0 0 0 1 0 0 1; 0 0 0 0 0 1 0 1; 0 0 0 0 0 0 1 1] - @test I == ideal(A, bI) + @test I == Hecke._ideal_from_matrix(A, bI) ge = [A(g) - A(one(G)) for g in G] @test all(in(I), ge) AS, AStoA = StructureConstantAlgebra(A) @@ -65,6 +65,6 @@ for K in [ GF(2), GF(4), Native.GF(2), Native.GF(2, 2), QQ, rationals_as_number_field()[1]] A = matrix_algebra(K, [ matrix(K, 2, 2, [ 1, 0, 0, 0 ]), matrix(K, 2, 2, [ 0, 1, 0, 0 ]), matrix(K, 2, 2, [ 0, 0, 0, 1]) ]) # i. e. upper triangular matrices I = radical(A) - @test nrows(basis_matrix(I, copy = false)) == 1 + @test dim(I) == 1 end end