diff --git a/src/NumFieldOrd/NfOrd/Ideal/Prime.jl b/src/NumFieldOrd/NfOrd/Ideal/Prime.jl index 3c8e0d98cc..660b34e0cf 100644 --- a/src/NumFieldOrd/NfOrd/Ideal/Prime.jl +++ b/src/NumFieldOrd/NfOrd/Ideal/Prime.jl @@ -227,7 +227,7 @@ $\mathfrak p$ with $l \leq \deg(\mathfrak p)$ will be returned. Note that in this case it may happen that $p\mathcal O$ is not the product of the $\mathfrak p_i^{e_i}$. """ -function prime_decomposition(O::NfAbsOrd{NfAbsNS, NfAbsNSElem}, p::IntegerUnion, degree_limit::Int = degree(O), lower_limit::Int = 0; cached::Bool = true) +function prime_decomposition(O::NfAbsOrd{<:NumField{QQFieldElem}, <:Any}, p::IntegerUnion, degree_limit::Int = degree(O), lower_limit::Int = 0; cached::Bool = true) if typeof(p) != Int && fits(Int, p) return prime_decomposition(O, Int(p), degree_limit, lower_limit, cached = cached) end @@ -235,7 +235,7 @@ function prime_decomposition(O::NfAbsOrd{NfAbsNS, NfAbsNSElem}, p::IntegerUnion, return prime_decomposition(O, ZZRingElem(p), degree_limit, lower_limit, cached = cached) end - if !divisible(numerator(discriminant(nf(O))), p) + if (nf(O) isa NfAbsNS || nf(O) isa AnticNumberField) && !divisible(numerator(discriminant(nf(O))), p) return prime_dec_nonindex(O, p, degree_limit, lower_limit) else return prime_dec_gen(O, p, degree_limit, lower_limit)