diff --git a/src/NumFieldOrd/NfOrd/Clgp/Saturate.jl b/src/NumFieldOrd/NfOrd/Clgp/Saturate.jl index e4b9c33ead..8f6f0a6eac 100644 --- a/src/NumFieldOrd/NfOrd/Clgp/Saturate.jl +++ b/src/NumFieldOrd/NfOrd/Clgp/Saturate.jl @@ -12,10 +12,11 @@ function mod_p(R::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}, Q:: pp, e = Hecke.ppio(oF, p) #We now want the discrete logarithm of the images of the elements of R in F #We don't need the full group, just the quotient by p - #We compute a generator and cache the powers in dl - #Then we will compute the discrete logarithms by checking the values in dl + #We compute a generator and + # - cache the powers in dl if pp is small + # - we will compute the discrete logarithms by checking the values in dl + # or via BSGS dl = Dict{Hecke.Nemo.fpFieldElem, Int}() - dl[F(1)] = 0 exp_to_test = divexact(pp, p) x = rand(F) while true @@ -28,12 +29,21 @@ function mod_p(R::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}, Q:: end x = rand(F) end - y = x - for i = 1:pp-1 - dl[y] = i - y *= x + if nbits(pp) < 19 # seems to be a reasonable cutoff + y = one(F) + for i = 0:pp-1 + dl[y] = i + y *= x + end + end + ma = Vector{Int}(undef, length(R)) + for i in 1:length(R) + imgd = image(mF1, R[i], D[i], cached, pp)^e + ma[i] = get!(dl, imgd) do + ma[i] = Hecke.baby_step_giant_step(x, pp, imgd, dl) % p + end end - return matrix(T, 1, length(R), Int[dl[image(mF1, R[i], D[i], cached, pp)^e] % p for i in 1:length(R)]) + return matrix(T, 1, length(R), ma) end #= idea diff --git a/src/NumFieldOrd/NfOrd/ResidueRingMultGrp.jl b/src/NumFieldOrd/NfOrd/ResidueRingMultGrp.jl index a4e5435ac2..b097317cf8 100644 --- a/src/NumFieldOrd/NfOrd/ResidueRingMultGrp.jl +++ b/src/NumFieldOrd/NfOrd/ResidueRingMultGrp.jl @@ -714,6 +714,8 @@ of the first step. This allows to speed up subsequent calls with the same $g$ and $n$. """ function baby_step_giant_step(g, n, h, cache::Dict) + # if cache is given, it must be empty or contain + # *all* big steps @assert typeof(g) == typeof(h) m = ZZRingElem(isqrt(n) + 1) if isempty(cache) diff --git a/test/NfOrd/Clgp.jl b/test/NfOrd/Clgp.jl index c2fddd16d7..de7e57b614 100644 --- a/test/NfOrd/Clgp.jl +++ b/test/NfOrd/Clgp.jl @@ -285,4 +285,11 @@ end @test order(c) == 892 end end + + # saturation at large primes + + # the cyclotomic units are saturated at any prime l, since the class number h_149^+ is one. + K, = cyclotomic_real_subfield(149, "a") + u = Hecke._cyclotomic_units_totally_real_prime_conductor(K, 149) + @test nrows(Hecke.RelSaturate.compute_candidates_for_saturate(FacElem.(u[2:end]), next_prime(2^25))) == 0 end