-
Notifications
You must be signed in to change notification settings - Fork 1
/
example_lenet_pruning.py
162 lines (137 loc) · 6.86 KB
/
example_lenet_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import print_function
import numpy as np
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import time
from torchvision import datasets, transforms
from admm import ADMM_pruning
from tensorboardX import SummaryWriter
Net = nn.Sequential(
nn.Conv2d(1, 20, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(20, 50, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(7*7*50, 300),
nn.ReLU(),
nn.Linear(300, 10)
)
def train(args, model, device, train_loader, optimizer, epoch, writer, admm):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = F.cross_entropy(output, target)
optimizer.zero_grad()
loss.backward()
if epoch >= args.admm_update_start and epoch < args.admm_finetune_start:
admm.loss_update(loss)
if epoch >= args.admm_finetune_start:
admm.grad_mask()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if epoch >= args.admm_update_start and epoch < args.admm_finetune_start:
admm.update(epoch)
def test(args, model, device, test_loader, epoch, writer, admm):
if epoch >= args.admm_update_start and epoch < args.admm_finetune_start:
admm.apply_projW()
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
if epoch >= args.admm_update_start and epoch < args.admm_finetune_start:
admm.restoreW()
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=20, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=1e-2, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=True,
help='For Saving the current Model')
parser.add_argument('--admm-update-interval', type=int, default=3, metavar='N',
help='update interval of admm iteration')
parser.add_argument('--admm-update-start', type=int, default=0, metavar='N',
help='starting epoch number of admm iteration')
parser.add_argument('--admm-finetune-start', type=int, default=15, metavar='N',
help='starting epoch number of finetune after admm iteration')
parser.add_argument('--admm-pruning-type', type=int, default=0, metavar='N',
help='pruning type: 0/1/2 for normal/channel/filter pruning')
parser.add_argument('--admm-l1', action='store_true', default=False,
help='using l1 norm with admm')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda:2" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net.to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
logdir = './summaries/mnist_pruning_' + time.strftime("%d-%m-%Y_%H-%M-%S")
writer = SummaryWriter(logdir)
admm = ADMM_pruning(model, update_interval=args.admm_update_interval, l1=args.admm_l1)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch, writer, admm)
test(args, model, device, test_loader, epoch, writer, admm)
if epoch == args.admm_finetune_start:
admm.apply_projW()
total_zero_count = 0
total_nonzero_count = 0
for index, m in enumerate(model.modules()):
if isinstance(m, (nn.Conv2d, nn.Linear)):
print(m)
zero_count = np.sum( m.weight.cpu().detach().numpy() != 0 )
nonzero_count = np.sum( m.weight.cpu().detach().numpy() == 0 )
total_zero_count += zero_count
total_nonzero_count += nonzero_count
print(f"Zero count:{zero_count} Non-zero count:{nonzero_count}")
print(f"Prune ratio: {zero_count / (nonzero_count+zero_count)}")
print(f"Total zero count: {total_zero_count} Total non-zero count:{total_nonzero_count}")
print(f"Total prune ratio: {total_zero_count / (total_zero_count + total_nonzero_count)}")
if (args.save_model):
torch.save(model.state_dict(), "./tmp/mnist/mnist_prune.pt")
if __name__ == '__main__':
main()