diff --git a/paddle/fluid/eager/auto_code_generator/CMakeLists.txt b/paddle/fluid/eager/auto_code_generator/CMakeLists.txt new file mode 100644 index 00000000000000..8609756effe4b7 --- /dev/null +++ b/paddle/fluid/eager/auto_code_generator/CMakeLists.txt @@ -0,0 +1,18 @@ +set(EAGER_GENERETOR_DEPS ${GLOB_OP_LIB} ${GLOB_OPERATOR_DEPS} pybind proto_desc executor layer tracer engine imperative_profiler imperative_flag) + +add_executable(eager_generator eager_generator.cc) +target_link_libraries(eager_generator ${EAGER_GENERETOR_DEPS}) + +get_property (os_dependency_modules GLOBAL PROPERTY OS_DEPENDENCY_MODULES) +target_link_libraries(eager_generator ${os_dependency_modules}) + +# Prepare file structure +message("Generate dygraph file structure at path: ${PADDLE_SOURCE_DIR}/paddle/fluid/eager/generated") +execute_process( + COMMAND "${PYTHON_EXECUTABLE}" "${PADDLE_SOURCE_DIR}/paddle/fluid/eager/auto_code_generator/generate_file_structures.py" "${PADDLE_SOURCE_DIR}/paddle/fluid/eager/" +) + +add_custom_target(eager_codegen + COMMAND "${CMAKE_CURRENT_BINARY_DIR}/eager_generator" "${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/generated/fluid_generated" + DEPENDS eager_generator + VERBATIM) diff --git a/paddle/fluid/eager/auto_code_generator/eager_generator.cc b/paddle/fluid/eager/auto_code_generator/eager_generator.cc new file mode 100644 index 00000000000000..1fc2d480e8ea5b --- /dev/null +++ b/paddle/fluid/eager/auto_code_generator/eager_generator.cc @@ -0,0 +1,745 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include +#include +#include + +#include "paddle/fluid/framework/op_info.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/framework/variable.h" +#include "paddle/fluid/pybind/pybind.h" +#include "paddle/fluid/string/string_helper.h" + +static std::unordered_set operators_to_skip = { + "fused_elemwise_add_activation", // No Default Attr + "fused_elemwise_activation", // No Default Attr + "reverse", // Attr Error + "flip", // Attr Error + "cast", // Attr Error + "sum", + "minus", // Multiple ops_ + "pull_sparse", + "pull_box_extended_sparse", + "pull_sparse_v2", + "pull_box_sparse", + "fused_attention", + "diag_v2", +}; +/* +static std::unordered_set operators_to_codegen = { + "sigmoid", "matmul_v2", "reduce_sum", "elementwise_add", + "share_buffer", "var_conv_2d", "split"}; +*/ + +static std::unordered_set skipped_operators = {}; + +namespace paddle { +namespace framework { + +static std::string AttrTypeToString(const proto::AttrType& type) { + std::string ret; + switch (type) { + case (proto::AttrType::INT): { + ret = "int"; + break; + } + case (proto::AttrType::FLOAT): { + ret = "float"; + break; + } + case (proto::AttrType::STRING): { + ret = "std::string&"; + break; + } + case (proto::AttrType::INTS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::FLOATS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::STRINGS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::BOOLEAN): { + ret = "bool"; + break; + } + case (proto::AttrType::BOOLEANS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::LONG): { + ret = "int64_t"; + break; + } + case (proto::AttrType::LONGS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::BLOCK): { + ret = "paddle::framework::BlockDesc*"; + break; + } + case (proto::AttrType::BLOCKS): { + ret = "std::vector&"; + break; + } + case (proto::AttrType::FLOAT64S): { + ret = "std::vector&"; + break; + } + default: { + PADDLE_THROW( + platform::errors::Fatal("Unable to recognize AttrType: %d", type)); + } + } + return ret; +} + +template +static std::string GetAttrValue(const framework::Attribute& attr, + bool is_vector) { + std::string val = ""; + if (is_vector) { + val += "{"; + for (auto x : BOOST_GET_CONST(std::vector, attr)) { + val += std::to_string(x) + ","; + } + if (val.size() > 1) val.pop_back(); + val += "}"; + } else { + val = std::to_string(BOOST_GET_CONST(T, attr)); + } + return val; +} + +static std::pair GetAttrType( + const framework::Attribute& attr, bool is_arg) { + std::string ret = ""; + std::string val = ""; + size_t variant_pos = attr.which(); + switch (variant_pos) { + case (1): { + ret = "int"; + val = GetAttrValue(attr, false); + break; + } + case (2): { + ret = "float"; + val = GetAttrValue(attr, false); + break; + } + case (3): { + ret = "std::string"; + if (is_arg) ret += "&"; + val = "\"" + BOOST_GET_CONST(std::string, attr) + "\""; + break; + } + case (4): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val = GetAttrValue(attr, true); + break; + } + case (5): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val = GetAttrValue(attr, true); + break; + } + case (6): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val += "{"; + for (auto x : BOOST_GET_CONST(std::vector, attr)) { + val += "\"" + x + "\"" + ","; + } + if (val.size() > 1) val.pop_back(); + val += "};"; + break; + } + case (7): { + ret = "bool"; + val = GetAttrValue(attr, false); + break; + } + case (8): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val = GetAttrValue(attr, true); + break; + } + case (9): { + ret = "BlockDesc*"; + break; + } + case (10): { + ret = "int64_t"; + val = GetAttrValue(attr, false); + break; + } + case (11): { + ret = "std::vector"; + if (is_arg) ret += "&"; + break; + } + case (12): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val = GetAttrValue(attr, true); + break; + } + case (13): { + ret = "std::vector"; + if (is_arg) ret += "&"; + val = GetAttrValue(attr, true); + break; + } + default: { + PADDLE_THROW(platform::errors::Fatal("Unable to recognize AttrType: %d", + variant_pos)); + } + } + return {ret, val}; +} + +static void SlotNameMatching( + const std::map< + std::string, + std::vector>>& + grad_map, + const std::map< + std::string, + std::vector>>& + fwd_ins, + const std::map< + std::string, + std::vector>>& + fwd_outs, + std::map* grad_fwd_slotname_map_ptr, + std::map* grad_grad_slotname_map_ptr) { + std::map& grad_fwd_slotname_map = + *grad_fwd_slotname_map_ptr; + std::map& grad_grad_slotname_map = + *grad_grad_slotname_map_ptr; + for (const auto& iter : grad_map) { + const std::string& grad_slot_name = iter.first; + const std::vector>& + grad_vars = iter.second; + + // Find matching fwd_slot_name + bool found_matching = false; + for (const std::shared_ptr& grad_var : + grad_vars) { + for (const auto& fwd_iter : fwd_ins) { + const std::string& fwd_slot_name = fwd_iter.first; + const std::vector>& + fwd_vars = fwd_iter.second; + for (const std::shared_ptr& + fwd_var : fwd_vars) { + if (grad_var == fwd_var) { + if (grad_fwd_slotname_map.count(grad_slot_name) && + grad_fwd_slotname_map[grad_slot_name] != fwd_slot_name) { + PADDLE_THROW(platform::errors::Fatal( + "grad_slot_name %s matches both %s and %s fwd_slot_name", + grad_slot_name, grad_fwd_slotname_map[grad_slot_name], + fwd_slot_name)); + } + grad_fwd_slotname_map[grad_slot_name] = fwd_slot_name; + found_matching = true; + } + + if (fwd_var->GetGradVar() && grad_var == fwd_var->GetGradVar()) { + if (grad_grad_slotname_map.count(grad_slot_name) && + grad_grad_slotname_map[grad_slot_name] != fwd_slot_name) { + PADDLE_THROW(platform::errors::Fatal( + "grad_slot_name %s matches both %s and %s fwd_slot_name", + grad_slot_name, grad_grad_slotname_map[grad_slot_name], + fwd_slot_name)); + } + grad_grad_slotname_map[grad_slot_name] = fwd_slot_name; + found_matching = true; + } + } + } + for (const auto& fwd_iter : fwd_outs) { + const std::string& fwd_slot_name = fwd_iter.first; + const std::vector>& + fwd_vars = fwd_iter.second; + for (const std::shared_ptr& + fwd_var : fwd_vars) { + if (grad_var == fwd_var) { + if (grad_fwd_slotname_map.count(grad_slot_name) && + grad_fwd_slotname_map[grad_slot_name] != fwd_slot_name) { + PADDLE_THROW(platform::errors::Fatal( + "grad_slot_name %s matches both %s and %s fwd_slot_name", + grad_slot_name, grad_fwd_slotname_map[grad_slot_name], + fwd_slot_name)); + } + grad_fwd_slotname_map[grad_slot_name] = fwd_slot_name; + found_matching = true; + } + + if (fwd_var->GetGradVar() && grad_var == fwd_var->GetGradVar()) { + if (grad_grad_slotname_map.count(grad_slot_name) && + grad_grad_slotname_map[grad_slot_name] != fwd_slot_name) { + PADDLE_THROW(platform::errors::Fatal( + "grad_slot_name %s matches both %s and %s fwd_slot_name", + grad_slot_name, grad_grad_slotname_map[grad_slot_name], + fwd_slot_name)); + } + grad_grad_slotname_map[grad_slot_name] = fwd_slot_name; + found_matching = true; + } + } + } + } + + if (!found_matching) { + PADDLE_THROW(platform::errors::Fatal( + "Found no matching fwd_slot_name for grad_slot_name: %s", + grad_slot_name)); + + } else { + std::string fwd_slot_name = grad_grad_slotname_map.count(grad_slot_name) + ? grad_grad_slotname_map[grad_slot_name] + : grad_fwd_slotname_map[grad_slot_name]; + VLOG(6) << "Found matching fwd_slot_name: " << fwd_slot_name + << " for grad_slot_name: " << grad_slot_name; + } + } +} + +static bool CheckOpProto(proto::OpProto* op_proto) { + if (op_proto == nullptr) { + return false; + } + const std::string& op_type = op_proto->type(); + + // Skip ooerator which is not inherit form OperatorWithKernel, like while, + // since only OperatorWithKernel can run in dygraph mode. + auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels(); + if (!all_kernels.count(op_type)) { + return false; + } + + // Only handle matmul_v2 for now + VLOG(1) << "------ Analyzing Op ------: " << op_type; + + // if (!operators_to_codegen.count(op_type)) return false; + if (operators_to_skip.count(op_type)) return false; + + return true; +} + +/* -------------------------------- */ +/* --------- Collect Info --------- */ +/* -------------------------------- */ +static bool CollectInformationFromOpInfo( + const paddle::framework::OpInfo& op_info, + std::vector* grad_node_default_attr_maps, + std::vector* grad_op_types, + std::unordered_map* fwd_inputs_name_pos_map, + std::unordered_map* fwd_outputs_name_pos_map, + std::map* grad_outs_slotname_map, + std::map* grad_ins_fwd_slotname_map, + std::map* grad_ins_grad_slotname_map, + std::map>>* + grad_ins, + std::map>>* + grad_outs) { + const proto::OpProto& op_proto = *op_info.proto_; + const std::string& op_type = op_proto.type(); + std::vector dims = {1, 1, 1, 1}; + + /* ------ Prepare "ins" ------ */ + std::map>> + ins; + for (const proto::OpProto::Var& input : op_proto.inputs()) { + const std::string& in_name = input.name(); + + // Handle dispensable input: + // 1. At python level, dispensable input will be detected at Python-C + // interface and filled with an empty vector + // 2. At C++ level, customers should always pass an empty vector for any + // dispensable input + // 3. During further lowering, there will always be a placeholder VarBase + // in ins/outs no matter whether it's dispensable or not + // As a result, we always create input VarBase regardless of its + // dispensability. + + // Handle duplicable input: list(VarBase) or VarBase + // We dont know the exact number of inputs expected, + // but we only need to identify the slot name order, + // therefore fill in 1 single input VarBase is enough in this scenario + ins[in_name] = {std::shared_ptr( + new paddle::imperative::VarBase("auto_" + in_name))}; + ins[in_name][0]->SetOverridedStopGradient(false); + ins[in_name][0]->MutableVar()->GetMutable(); + } + VLOG(6) << "Prepared Forward Ins Map, size = " << ins.size(); + + /* ------ Prepare "outs" ------ */ + std::map>> + outs; + for (const proto::OpProto::Var& output : op_proto.outputs()) { + const std::string& out_name = output.name(); + + // We always create output VarBase regardless of its dispensability. + // We dont know the exact number of outputs during code generation, + // however, simply identifying the slot name order would be enough + outs[out_name] = {std::shared_ptr( + new paddle::imperative::VarBase("auto_" + out_name))}; + outs[out_name][0]->SetOverridedStopGradient(false); + outs[out_name][0]->MutableVar()->GetMutable(); + } + VLOG(6) << "Prepared Forward Outs Map, size = " << outs.size(); + + framework::AttributeMap attrs; + paddle::framework::AttributeMap default_attrs; + auto* attr_checker = op_info.Checker(); + if (attr_checker) { + attr_checker->Check(&attrs, true, /*only_check_exist_value=*/true); + default_attrs = attr_checker->GetDefaultAttrMap(); + } else { + VLOG(6) << "Detected Null Attribute Checker, use empty default_attrs"; + } + + VLOG(6) << "Prepared Default Attributes Map, size = " << default_attrs.size(); + + /* ---------------------------- */ + /* --------- Backward --------- */ + /* ---------------------------- */ + /* ------ Fwd paddle::imperative::VariableWrapper Map ------ */ + std::map>> + fwd_ins; + std::map>> + fwd_outs; + for (const auto& iter : ins) { + fwd_ins[iter.first] = {}; + for (const std::shared_ptr& var_base : + iter.second) { + fwd_ins[iter.first].push_back(var_base->SharedVar()); + } + } + for (const auto& iter : outs) { + fwd_outs[iter.first] = {}; + for (const std::shared_ptr& var_base : + iter.second) { + fwd_outs[iter.first].push_back(var_base->SharedVar()); + } + } + VLOG(6) << "Constructed Forward paddle::imperative::VariableWrapper Map"; + + /* ------ Run GradOpMaker ------ */ + if (!op_info.dygraph_grad_op_maker_) { + VLOG(6) << op_type << " has no GradOpMaker, skip it"; + skipped_operators.insert(op_type); + return false; + } + + std::shared_ptr grad_node = + op_info.dygraph_grad_op_maker_(op_type, ins, outs, attrs, default_attrs, + {}); + + if (!grad_node) { + VLOG(6) << "Got nullptr GradOpNode for " << op_type + << " likely registered EmptyGradOpMaker, skip it"; + skipped_operators.insert(op_type); + return false; + } + + if (grad_node->size() > 1) { + // Backward attributes can be super complicated + VLOG(6) << "Skip GradOpNode with multiple OpBases for now: " << op_type; + skipped_operators.insert(op_type); + return false; + } + + VLOG(6) << "Prepared GradOpNode"; + + /* ---- Collect Default Attr Map ---- */ + for (auto iter = grad_node->begin(); iter < grad_node->end(); iter++) { + // Each OpBase + paddle::imperative::OpBase& op_base = *iter; + grad_node_default_attr_maps->push_back(op_base.DefaultAttrsMap()); + grad_op_types->push_back(op_base.Type()); + } + + /* ------ Get Grad ins/outs ---- */ + // In case of multiple OpBase, stitch all the respective ins/outs into one + VLOG(6) << "In function size: " << grad_node->size(); + for (auto iter = grad_node->begin(); iter < grad_node->end(); iter++) { + const paddle::imperative::OpBase& op_base = *iter; + const std::map& + g_ins = op_base.GetInsMap(); + const std::map& + g_outs = op_base.GetOutsMap(); + + for (const auto& it : g_ins) { + if (!grad_ins->count(it.first)) (*grad_ins)[it.first] = {}; + for (auto vw_iter = it.second.begin(); vw_iter != it.second.end(); + vw_iter++) { + std::shared_ptr vw = *vw_iter; + (*grad_ins)[it.first].push_back(vw); + } + } + + for (const auto& it : g_outs) { + if (!grad_outs->count(it.first)) (*grad_outs)[it.first] = {}; + for (auto vw_iter = it.second.begin(); vw_iter != it.second.end(); + vw_iter++) { + std::shared_ptr vw = *vw_iter; + (*grad_outs)[it.first].push_back(vw); + } + } + } + + /* ------ Slot Name Matching ---- */ + // grad_ins -> fwd_ins, fwd_outs + SlotNameMatching(*grad_ins, fwd_ins, fwd_outs, grad_ins_fwd_slotname_map, + grad_ins_grad_slotname_map); + VLOG(6) << "Finished Slotname Matching for Grad_Ins"; + + // grad_outs -> fwd_ins, fwd_outs + SlotNameMatching(*grad_outs, fwd_ins, fwd_outs, grad_outs_slotname_map, + grad_outs_slotname_map); + VLOG(6) << "Finished Slotname Matching for Grad_Outs"; + + /* ------ Maping forward slot name to fwd position ------ */ + size_t in_pos = 0; + for (const auto& iter : ins) { + VLOG(6) << "Mapping input tensor: " << iter.first + << " To position: " << in_pos; + (*fwd_inputs_name_pos_map)[iter.first] = in_pos; + in_pos++; + } + size_t out_pos = 0; + for (const auto& iter : outs) { + VLOG(6) << "Mapping output tensor: " << iter.first + << " To position: " << out_pos; + (*fwd_outputs_name_pos_map)[iter.first] = out_pos; + out_pos++; + } + + return true; +} + +/* --------------------------------------------------- */ +/* --------- CodeGen: Forward GradNode Creation ------ */ +/* --------------------------------------------------- */ +static std::string GenerateGradNodeCreationContent( + const std::vector& + grad_node_default_attr_maps, + const std::unordered_map& fwd_inputs_name_pos_map, + const std::unordered_map& fwd_outputs_name_pos_map, + const std::map& grad_ins_fwd_slotname_map, + const proto::OpProto& op_proto) { + VLOG(6) << "Generating GradNode Creation codes"; + + const std::string& op_type = op_proto.type(); + + // [Generation] Construct GradOpNode + // Run ComputeRequiredGrad + + // If single output slotname and not duplicable, + // then generate: "egr::AutogradMeta* p_autograd_out = + // egr::EagerUtils::autograd_meta("op_proto->outputs()[0].name()")" + + // TODO(zhanlve): in case of multiple slotname but none of which are + // duplicable, + // avoid constructing vector, generate seperate + // AutogradMeta* objects respectively. + std::string get_autograd_meta_str = " // Prepare Autograd Meta \n"; + for (const proto::OpProto::Var& input : op_proto.inputs()) { + const std::string& input_name = input.name(); + const std::string& input_autograd_name = "p_autograd_" + input_name; + + if (input.duplicable()) { + const char* GET_MULTI_AUTOGRAD_META_TEMPLATE = + " std::vector %s = " + "egr::EagerUtils::unsafe_autograd_meta(%s);\n"; + get_autograd_meta_str += paddle::string::Sprintf( + GET_MULTI_AUTOGRAD_META_TEMPLATE, input_autograd_name, input_name); + + } else { + const char* GET_SINGLE_AUTOGRAD_META_TEMPLATE = + " egr::AutogradMeta& %s = " + "*egr::EagerUtils::unsafe_autograd_meta(%s);\n"; + get_autograd_meta_str += paddle::string::Sprintf( + GET_SINGLE_AUTOGRAD_META_TEMPLATE, input_autograd_name, input_name); + } + } + VLOG(6) << "Generated inputs autograd_meta"; + + // If single output slotname and not duplicable, + // then generate: "egr::AutogradMeta* p_autograd_out = + // egr::EagerUtils::autograd_meta("op_proto.outputs()[0].name()")" + + // TODO(zhanlve): in case of multiple slotname but none of which are + // duplicable, + // avoid constructing vector, generate seperate + // AutogradMeta* objects respectively. + for (const proto::OpProto::Var& output : op_proto.outputs()) { + const std::string& output_name = output.name(); + const std::string& output_autograd_name = "p_autograd_" + output_name; + + if (output.duplicable()) { + const char* GET_MULTI_AUTOGRAD_META_TEMPLATE = + " std::vector %s = " + "egr::EagerUtils::multi_autograd_meta(&%s);\n"; + get_autograd_meta_str += paddle::string::Sprintf( + GET_MULTI_AUTOGRAD_META_TEMPLATE, output_autograd_name, output_name); + + } else { + const char* GET_SINGLE_AUTOGRAD_META_TEMPLATE = + " egr::AutogradMeta& %s = " + "*egr::EagerUtils::autograd_meta(&%s);\n"; + get_autograd_meta_str += paddle::string::Sprintf( + GET_SINGLE_AUTOGRAD_META_TEMPLATE, output_autograd_name, output_name); + } + } + VLOG(6) << "Generated outputs autograd_meta"; + + std::string prepare_autograd_meta_str = ""; + prepare_autograd_meta_str += get_autograd_meta_str; + prepare_autograd_meta_str += "\n"; + + // [GradOpNode] GetTraceBackward + std::string trace_backward_str = + " bool trace_backward = egr::Controller::Instance().HasGrad();\n"; + prepare_autograd_meta_str += trace_backward_str; + prepare_autograd_meta_str += "\n"; + + // [GradOpNode] Generation + std::string grad_node_creation_str = ""; + + size_t bwd_in_slot_num = op_proto.outputs().size(); + size_t bwd_out_slot_num = op_proto.inputs().size(); + const char* GRAD_OP_NODE_TEMPLATE = + " auto grad_node = std::make_shared(%d, %d);\n"; + grad_node_creation_str += " // Create GradOpNode\n"; + grad_node_creation_str += paddle::string::Sprintf( + GRAD_OP_NODE_TEMPLATE, op_type, bwd_in_slot_num, bwd_out_slot_num); + grad_node_creation_str += "\n"; + + VLOG(6) << "Generated GradOpNode construction"; + + // [GradOpNode] Set Attrs + grad_node_creation_str += " // Set Attributes\n"; + grad_node_creation_str += " grad_node->SetAttrMap(std::move(attrs));\n"; + grad_node_creation_str += + " grad_node->SetDefaultAttrMap(std::move(default_attrs));\n"; + grad_node_creation_str += "\n"; + + // [GradOpNode] Set TensorWrappers + grad_node_creation_str += " // Set Tensor Wrappers\n"; + for (auto& kv : grad_ins_fwd_slotname_map) { + const std::string& tensor_wrapper_name = kv.second; + const char* SET_TENSOR_WRAPPER_TEMPLATE = + " grad_node->SetTensorWrapper%s(%s);\n"; + grad_node_creation_str += paddle::string::Sprintf( + SET_TENSOR_WRAPPER_TEMPLATE, tensor_wrapper_name, tensor_wrapper_name); + } + grad_node_creation_str += "\n"; + VLOG(6) << "Generated SetTensorWrapper"; + + // [GradOpNode] SetGradOutMeta + // [GradOpNode] Add Edges + std::string compute_require_grad_args = "trace_backward"; + for (const proto::OpProto::Var& input : op_proto.inputs()) { + const std::string& input_name = input.name(); + const std::string& input_autograd_name = "p_autograd_" + input_name; + compute_require_grad_args += ", &" + input_autograd_name; + size_t input_position = fwd_inputs_name_pos_map.at(input_name); + + const char* SET_GRAD_OUT_META_TEMPLATE = + " grad_node->SetGradOutMeta(%s, %d);\n"; + grad_node_creation_str += paddle::string::Sprintf( + SET_GRAD_OUT_META_TEMPLATE, input_autograd_name, input_position); + + const char* ADD_EDGES_TEMPLATE = " grad_node->AddEdges(%s, %d);\n"; + grad_node_creation_str += paddle::string::Sprintf( + ADD_EDGES_TEMPLATE, input_autograd_name, input_position); + } + + // [GradOpNode] SetGradInMeta + // [AutogradMeta] SetOutRank + // [AutogradMeta] SetHistory + std::string pass_stop_gradient_args = "false"; + for (const proto::OpProto::Var& output : op_proto.outputs()) { + const std::string& output_name = output.name(); + const std::string& output_autograd_name = "p_autograd_" + output_name; + pass_stop_gradient_args += ", &" + output_autograd_name; + size_t output_position = fwd_outputs_name_pos_map.at(output_name); + + const char* SET_GRAD_IN_META_TEMPLATE = + " grad_node->SetGradInMeta(%s, %d);\n"; + grad_node_creation_str += paddle::string::Sprintf( + SET_GRAD_IN_META_TEMPLATE, output_autograd_name, output_position); + + const char* SET_OUT_RANK_TEMPLATE = + " egr::EagerUtils::SetOutRankWithSlot(&%s, %d);\n"; + grad_node_creation_str += paddle::string::Sprintf( + SET_OUT_RANK_TEMPLATE, output_autograd_name, output_position); + + const char* SET_HISTORY_TEMPLATE = + " egr::EagerUtils::SetHistory(&%s, grad_node);\n"; + grad_node_creation_str += + paddle::string::Sprintf(SET_HISTORY_TEMPLATE, output_autograd_name); + } + VLOG(6) << "Generated SetGradIn/OutMeta"; + + // [Generation] GradNode Creation + const char* GRAD_NODE_CREATION_TEMPLATE = + " %s" + " bool require_any_grad = egr::ComputeRequireGrad(%s);\n" + " if(require_any_grad) {\n" + " egr::PassStopGradient(%s);\n" + "%s\n }"; + std::string grad_node_creation_body_str = paddle::string::Sprintf( + GRAD_NODE_CREATION_TEMPLATE, prepare_autograd_meta_str, + compute_require_grad_args, pass_stop_gradient_args, + grad_node_creation_str); + + return grad_node_creation_body_str; +} + +static std::string AppendUseOp(const std::string& op_type) { + // [Generation] Append USE_OP + const char* USE_OP_TEMPLATE = "USE_OP(%s);\n"; + std::string return_str = paddle::string::Sprintf(USE_OP_TEMPLATE, op_type); + + // Special Ops + if (op_type == "reduce_sum") + return_str += paddle::string::Sprintf(USE_OP_TEMPLATE, "reduce_sum_grad"); + + return return_str; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/eager/auto_code_generator/generate_file_structures.py b/paddle/fluid/eager/auto_code_generator/generate_file_structures.py new file mode 100644 index 00000000000000..af6cf2cec0246b --- /dev/null +++ b/paddle/fluid/eager/auto_code_generator/generate_file_structures.py @@ -0,0 +1,87 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import os + +if __name__ == "__main__": + assert len(sys.argv) == 2 + eager_dir = sys.argv[1] + + op_list = [] + with open(f"{eager_dir}/auto_code_generator/op_list.txt", "r") as f: + for line in f: + line = str(line.strip()) + op_list.append(line) + """ + paddle/fluid/eager + |- generated + | |- CMakeLists.txt + | | "add_subdirectory(forwards), add_subdirectory(nodes)" + | + | |- forwards + | |- op_name + "_dygraph.cc" + | |- CMakeLists.txt + | | "cc_library(dygraph_function SRCS op_name+"_dygraph.cc" DEPS ${eager_deps} ${fluid_deps} GLOB_OP_LIB)" + | + | |- nodes + | |- op_name + "_node.cc" + | |- op_name + "_node.h" + | |- CMakeLists.txt + | | "cc_library(dygraph_node SRCS op_name+"_node.cc" DEPS ${eager_deps} ${fluid_deps})" + | + | |- dygraph_forward_api.h + """ + # Directory Generation + generated_dir = os.path.join(eager_dir, "api/generated/fluid_generated") + forwards_dir = os.path.join(generated_dir, "forwards") + nodes_dir = os.path.join(generated_dir, "nodes") + dirs = [generated_dir, forwards_dir, nodes_dir] + for directory in dirs: + if not os.path.exists(directory): + os.mkdir(directory) + + # Empty files + dygraph_forward_api_h_path = os.path.join(generated_dir, + "dygraph_forward_api.h") + empty_files = [dygraph_forward_api_h_path] + for op_name in op_list: + empty_files.append(os.path.join(forwards_dir, op_name + "_dygraph.cc")) + empty_files.append(os.path.join(nodes_dir, op_name + "_node.cc")) + empty_files.append(os.path.join(nodes_dir, op_name + "_node.h")) + + for path in empty_files: + if not os.path.exists(path): + open(path, 'a').close() + + # CMakeLists + nodes_level_cmakelist_path = os.path.join(nodes_dir, "CMakeLists.txt") + generated_level_cmakelist_path = os.path.join(generated_dir, + "CMakeLists.txt") + forwards_level_cmakelist_path = os.path.join(forwards_dir, "CMakeLists.txt") + + with open(nodes_level_cmakelist_path, "w") as f: + f.write( + "cc_library(dygraph_node SRCS %s DEPS ${eager_deps} ${fluid_deps})\n" + % " ".join([op_name + '_node.cc' for op_name in op_list])) + f.write("add_dependencies(dygraph_node eager_codegen)") + + with open(forwards_level_cmakelist_path, "w") as f: + f.write( + "cc_library(dygraph_function SRCS %s DEPS ${eager_deps} ${fluid_deps} ${GLOB_OP_LIB})\n" + % " ".join([op_name + '_dygraph.cc' for op_name in op_list])) + f.write("add_dependencies(dygraph_function eager_codegen)") + + with open(generated_level_cmakelist_path, "w") as f: + f.write("add_subdirectory(forwards)\nadd_subdirectory(nodes)") diff --git a/paddle/fluid/eager/auto_code_generator/op_list.txt b/paddle/fluid/eager/auto_code_generator/op_list.txt new file mode 100644 index 00000000000000..00a9abde156fba --- /dev/null +++ b/paddle/fluid/eager/auto_code_generator/op_list.txt @@ -0,0 +1,4 @@ +sigmoid +matmul_v2 +reduce_sum +elementwise_add