diff --git a/.github/workflows/draft-pdf.yml b/.github/workflows/draft-pdf.yml new file mode 100644 index 0000000..db558c2 --- /dev/null +++ b/.github/workflows/draft-pdf.yml @@ -0,0 +1,23 @@ +on: [push] + +jobs: + paper: + runs-on: ubuntu-latest + name: Paper Draft + steps: + - name: Checkout + uses: actions/checkout@v2 + - name: Build draft PDF + uses: openjournals/openjournals-draft-action@master + with: + journal: joss + # This should be the path to the paper within your repo. + paper-path: paper/paper.md + - name: Upload + uses: actions/upload-artifact@v1 + with: + name: paper + # This is the output path where Pandoc will write the compiled + # PDF. Note, this should be the same directory as the input + # paper.md + path: paper/paper.pdf \ No newline at end of file diff --git a/README.md b/README.md index 246dccb..71011a8 100644 --- a/README.md +++ b/README.md @@ -3,7 +3,10 @@ Linux, OSX, Windows [![Build Status](https://dev.azure.com/mirondanro/thermohub/_apis/build/status/thermohub.thermofun?branchName=master)](https://dev.azure.com/mirondanro/thermohub/_build/latest?definitionId=9&branchName=master) -A code for calculating the standard state thermodynamic properties of substances and reactions at a given temperature and pressure. +A code for calculating the standard state thermodynamic properties of substances and reactions at a given temperature and pressure. + +If you use it in your work please cite the JOSS publication +[![DOI](https://joss.theoj.org/papers/10.21105/joss.04624/status.svg)](https://doi.org/10.21105/joss.04624) - [Code documentation](https://docs.hdoc.io/dmiron/thermofun/?target=_blank) - [Simple C++ API example](#simple-c-api-example) diff --git a/paper/aq17-thermofun.json b/paper/aq17-thermofun.json new file mode 100644 index 0000000..11ad57c --- /dev/null +++ b/paper/aq17-thermofun.json @@ -0,0 +1,21638 @@ +{ + "datasources": [ + "db.thermohub.org" + ], + "date": "01.06.2022 13:47:02", + "elements": [ + { + "atomic_mass": { + "name": "M0i", + "values": [ + 0 + ] + }, + "class_": { + "4": "CHARGE" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + -65.3399963378906 + ] + }, + "symbol": "Zz" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 1.00794994831085 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 65.3399963378906 + ] + }, + "symbol": "H" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 12.0108003616333 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 5.73999977111816 + ] + }, + "symbol": "C" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 15.999400138855 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 102.569000244141 + ] + }, + "symbol": "O" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 22.9897994995117 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 51.2999992370605 + ] + }, + "symbol": "Na" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 24.3050003051758 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 32.6699981689453 + ] + }, + "symbol": "Mg" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 26.9815006256104 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 28.2999992370605 + ] + }, + "symbol": "Al" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 28.0855007171631 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 18.8099994659424 + ] + }, + "symbol": "Si" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 35.4529991149902 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 111.540000915527 + ] + }, + "symbol": "Cl" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 39.0983009338379 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 64.6800003051758 + ] + }, + "symbol": "K" + }, + { + "atomic_mass": { + "name": "M0i", + "values": [ + 40.0779991149902 + ] + }, + "class_": { + "0": "ELEMENT" + }, + "datasources": [ + "AQ17" + ], + "entropy": { + "name": "S0i", + "values": [ + 41.5900001525879 + ] + }, + "symbol": "Ca" + } + ], + "reactions": [], + "substances": [ + { + "Pst": 100000, + "TPMethods": [ + { + "method": { + "32": "water_eos_iapws95_reaktoro" + } + }, + { + "method": { + "25": "water_diel_jnort91_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "3": "SC_AQSOLVENT" + }, + "datasources": [ + "Johnson et al. (1992)" + ], + "formula": "H2O@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 18.015300750732 + ] + }, + "name": "Water HGK", + "sm_enthalpy": { + "errors": [ + 200 + ], + "units": [ + "J/mol" + ], + "values": [ + -285881 + ] + }, + "sm_entropy_abs": { + "errors": [ + 0.10000000149012 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 69.922996520996 + ] + }, + "sm_gibbs_energy": { + "errors": [ + 100 + ], + "units": [ + "J/mol" + ], + "values": [ + -237183 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 75.360527038574 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.8068397045136 + ] + }, + "symbol": "H2O@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.24940000474453, + -169.08999633789, + 6.4145998954773, + -27091, + 16.743900299072, + -10465, + 53240, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Al(OH)2+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 60.996200561523 + ] + }, + "name": "Al(OH)2+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -995581 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -27.530000686646 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -898292 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 40.865230560303 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.38507527112961 + ] + }, + "symbol": "Al(OH)2+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.61976999044418, + 828.15997314453, + 2.4949998855591, + -31214, + 71.100303649902, + -10644, + 104610, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Al(OH)3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 78.003547668457 + ] + }, + "name": "Al(OH)3 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1262898 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 5.1609997749329 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1105813 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 248.5594329834 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.0679812431335 + ] + }, + "symbol": "Al(OH)3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.8493999838829, + 1295.7600097656, + 0.65700000524521, + -33147, + 55.726501464844, + -114047, + 104030, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Al(OH)4-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 95.010902404785 + ] + }, + "name": "Al(OH)4-", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1502391 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 103.55000305176 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1305097 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 96.54020690918 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.6286010742188 + ] + }, + "symbol": "Al(OH)4-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.33980000019073, + -1607.8900146484, + 12.069899559021, + -21143, + 14.42949962616, + -88523, + 274030, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Al+3", + "formula_charge": 3, + "mass_per_mole": { + "values": [ + 26.98150062561 + ] + }, + "name": "Al+3 ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -537882 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -339.73999023438 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -486594 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -119.34440612793 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -4.5337700843811 + ] + }, + "symbol": "Al+3" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.016000000759959, + -723, + 8.6099996566772, + -24800, + 37.069999694824, + -496600, + 88000, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "AlH3SiO4+2", + "formula_charge": 2, + "mass_per_mole": { + "values": [ + 122.08845520019 + ] + }, + "name": "AlH3SiO4+2", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1921343 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 56.779998779297 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1782421 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -300.66638183594 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -1.39550614357 + ] + }, + "symbol": "AlH3SiO4+2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.045299999415875, + -888.78002929688, + 9.2433996200562, + -24116, + 15.413100242615, + -48618, + 158970, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "AlOH+2", + "formula_charge": 2, + "mass_per_mole": { + "values": [ + 43.988849639893 + ] + }, + "name": "AlOH+2", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -769082 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -181.13000488281 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -695541 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -37.442962646484 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -2.0621919631958 + ] + }, + "symbol": "AlOH+2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.019470000639558, + -725.20001220703, + 5.2965998649597, + -24791.998046875, + 9, + -25220, + 123660.0078125, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Ca+2", + "formula_charge": 2, + "mass_per_mole": { + "values": [ + 40.07799911499 + ] + }, + "name": "Ca+2 ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -543100 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -56.484001159668 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -552821 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -30.922517776489 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -1.8438742160797 + ] + }, + "symbol": "Ca+2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.27406001091003, + -108.9700012207, + 6.1782999038696, + -27340, + 21.587999343872, + 5240, + 56260, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaCl+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 75.53099822998 + ] + }, + "name": "CaCl+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -716339 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -2.9700000286102 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -689279 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 73.334663391113 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.55677634477615 + ] + }, + "symbol": "CaCl+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.62186002731323, + 740.23999023438, + 2.8406000137329, + -30850, + 23.960899353027, + 32720, + -3800, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaCl2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 110.98399353027 + ] + }, + "name": "CaCl2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -854708 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 67.730003356934 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -795990 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 129.5203704834 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.2651734352112 + ] + }, + "symbol": "CaCl2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.039070002734661, + -873.25, + 9.1752996444702, + -24179, + -11.530900001526, + -90641, + -3799.9997558594, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaCO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 100.08699798584 + ] + }, + "name": "CaCO3 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1198943 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 20.110000610352 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1099084 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -123.86251068115 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -1.5648444890976 + ] + }, + "symbol": "CaCO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.37000000476837003, + 125.79000091553, + 5.2519998550415, + -28310, + 43.111999511719, + 77338, + 31130, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaHCO3+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 101.09494781494 + ] + }, + "name": "CaHCO3+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1231310 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 66.269996643066 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1145214 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 234.26979064941 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.3280909061432 + ] + }, + "symbol": "CaHCO3+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.1064700037241, + -517.86999511719, + 7.7785000801086, + -25649, + 30.804800033569, + 36619, + 58310.00390625, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaHSiO3+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 117.1696472168 + ] + }, + "name": "CaHSiO3+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1687209 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -8.3260002136231 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1574975 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 137.79571533203 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.67365503311157 + ] + }, + "symbol": "CaHSiO3+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.31272000074387, + -1058.5899658203, + 42.325698852539, + -23414, + 61.910999298096, + -511046, + 9350, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CaSiO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 116.16169738769 + ] + }, + "name": "CaSiO3@", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1631029 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -20.540000915527 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1515154 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -179.0348815918 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.5671590566635 + ] + }, + "symbol": "CaSiO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.28523999452591, + -398.44000244141, + 6.4141998291016, + -26143, + -7.9871997833252, + -188139, + 339140, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "CO3-2", + "formula_charge": -2, + "mass_per_mole": { + "values": [ + 60.009002685547 + ] + }, + "name": "CO3-2 carbonate ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -675235 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -49.999000549316 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -527983 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -322.65048217773 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.60577243566513 + ] + }, + "symbol": "CO3-2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.29936000704765, + 497.86999511719, + 23.59049987793, + -29848, + 12.994000434876, + -47579, + 127920, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "HCO3-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 61.016952514648 + ] + }, + "name": "HCO3- bicarbonate ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -690463 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 96.625 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -586855 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -34.845699310303 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.420910358429 + ] + }, + "symbol": "HCO3-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.30899998545647, + -52.009998321533, + 5.9467000961304, + -27575, + 15, + -49202, + 155830, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "HSiO3-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 77.091651916504 + ] + }, + "name": "HSiO3-", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1145615 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 19.700000762939 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1015175 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -38.471027374268 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.49901011586189 + ] + }, + "symbol": "HSiO3-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.35589998960495, + -147.30000305176, + 5.4349999427795, + -27119.998046875, + 7.4000000953674, + -17910, + 19270, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "K+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 39.098300933838 + ] + }, + "name": "K+ ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -246548 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 101.04000091553 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -276870 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 8.388801574707 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.90092301368713 + ] + }, + "symbol": "K+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.6007000207901, + 688.58001708984, + 3.0436000823975, + -30637, + 1.3940000534058, + 12129, + -5000, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "KAlO2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 98.078598022461 + ] + }, + "name": "KAlO2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1144483 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 149.36999511719 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1100134 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 18.050792694092 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.1138617992401 + ] + }, + "symbol": "KAlO2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.58341002464294, + 705.5, + 2.9770998954773, + -30707, + -5.708399772644, + 76228, + 19960, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "KCl@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 74.551300048828 + ] + }, + "name": "KCl (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -400750 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 182.16000366211 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -402521 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 33.319179534912 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.9938843250275 + ] + }, + "symbol": "KCl@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.37562000751495, + 139, + 5.2037000656128, + -28365, + 13.498999595642, + -10192, + 16650, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "KOH@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 56.105651855469 + ] + }, + "name": "KOH (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -473961 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 90.620399475098 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -431633 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 41.467758178711 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.4089053869247 + ] + }, + "symbol": "KOH@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.082169994711876, + -859.90002441406, + 8.3900003433228, + -23900.001953125, + 20.799999237061, + -58920.00390625, + 153720, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Mg+2", + "formula_charge": 2, + "mass_per_mole": { + "values": [ + 24.305000305176 + ] + }, + "name": "Mg+2 ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -467949 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -138.07000732422 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -456005 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -21.662094116211 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -2.2013738155365 + ] + }, + "symbol": "Mg+2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.22809000313282, + -235.85000610352, + 6.6770000457764, + -26815, + 28.547100067139, + 20579, + 83890, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgCl+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 59.757999420166 + ] + }, + "name": "MgCl+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -639421 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -79.496002197266 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -592204 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 104.96143341065 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.12542639672756 + ] + }, + "symbol": "MgCl+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.56164997816086, + 593.22998046875, + 3.4184000492096, + -30242, + 29.739500045776, + 52804, + -3800, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgCl2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 95.210998535156 + ] + }, + "name": "MgCl2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -776267 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -11.569999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -696566 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 170.77406311035 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.8251762390137 + ] + }, + "symbol": "MgCl2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + -0.073550000786781, + -957.45001220703, + 9.506199836731, + -23831, + -9.8914003372192, + -86160, + 0, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgCO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 84.314002990723 + ] + }, + "name": "MgCO3 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1134768.0285632 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -102.56999969482 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1000992 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -114.64141845703 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -1.8273859024048 + ] + }, + "symbol": "MgCO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.33000001311302, + 16.079999923706, + 5.6868000030518, + -27875, + 47.520401000977, + 93524, + 62040, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgHCO3+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 85.321952819824 + ] + }, + "name": "MgHCO3+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1157751 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -19.114999771118 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1048857 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 254.69435119629 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.93435996770859 + ] + }, + "symbol": "MgHCO3+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.062890000641346, + -624.28002929688, + 8.1967000961304, + -25209, + 36.788200378418, + 46702, + 91770, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgHSiO3+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 101.39665222168 + ] + }, + "name": "MgHSiO3+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1614184 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -99.496002197266 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1477428 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 158.64910888672 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -1.085009932518 + ] + }, + "symbol": "MgHSiO3+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.22936999797821, + -218.08999633789, + 6.6072001457214, + -26888, + 31.541500091553, + 32394, + 79500, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgOH+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 41.312351226807 + ] + }, + "name": "MgOH+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -686908 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -67.359001159668 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -626503 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 129.20881652832 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.16569927334786 + ] + }, + "symbol": "MgOH+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.084260001778603, + -1106.9000244141, + 52.960399627685, + -23216, + 68.719398498535, + -539981, + -4450, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "MgSiO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 100.38870239258 + ] + }, + "name": "MgSiO3@", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1555838 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -102 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1418335 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -169.88975524902 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.2107073068619 + ] + }, + "symbol": "MgSiO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.18389999866486, + -228.50001525879, + 3.2560000419617, + -27260, + 18.180000305176, + -29810, + 33060, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "Na+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 22.989799499512 + ] + }, + "name": "Na+ ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -234541 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 58.408641815185 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -256142 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 38.118228912354 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.12079636752605 + ] + }, + "symbol": "Na+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.91269999742508, + 1434.1099853516, + 0.11209999769926, + -33719, + 60.715698242188, + -140523, + 0, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaAl(OH)4@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 118.0007019043 + ] + }, + "name": "NaAl(OH)4 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1725188 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 204.17999267578 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1562083 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 134.55763244629 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.3591432571411 + ] + }, + "symbol": "NaAl(OH)4@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.50827997922897, + 462.89999389648, + 3.9305999279022, + -29704, + 13.633899688721, + -7212, + 8890, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaCl@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 58.442798614502 + ] + }, + "name": "NaCl (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -398571 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 110.83000183106 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -383064 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 47.523761749268 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.3998878002167 + ] + }, + "symbol": "NaCl@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.20000000298023, + -233.5, + 6.6714000701904, + -26825, + 7.7692999839783, + -71095, + 142650, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaCO3-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 82.9988 + ] + }, + "name": "NaCO3-", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -901340 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 56.090000152588 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -789833 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -82.314514160156 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.15198731422424 + ] + }, + "symbol": "NaCO3-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.61191999912262, + 715.96997070312, + 2.9358999729156, + -30750, + 34.438098907471, + 67919, + 0, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaHCO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 84.00675201416 + ] + }, + "name": "NaHCO3@", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -922991 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 158.66000366211 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -842065 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 201.83576965332 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.1819727420807 + ] + }, + "symbol": "NaHCO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.34927999973297, + 75, + 5.4482998847961, + -28100, + 20.239500045776, + 19785, + -3799.9997558594, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaHSiO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 100.08145141602 + ] + }, + "name": "NaHSiO3 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1402640 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 41.840000152588 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1282987 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 102.95231628418 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.2731766700745 + ] + }, + "symbol": "NaHSiO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.17791999876499, + -343.7200012207, + 7.1009998321533, + -26369, + 22.822200775146, + 26543, + 11890, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "NaOH@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 39.997150421143 + ] + }, + "name": "NaOH (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -464283 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 42.39879989624 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -411567 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 113.52360534668 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.022637413814664 + ] + }, + "symbol": "NaOH@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.18999999761581, + 170, + 20, + -27000, + 29.10000038147, + -512000, + 12910, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "" + ], + "formula": "SiO2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "SiO2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -878357 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 75.311996459961 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -834041 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -318.48419189453 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.6063253879547 + ] + }, + "symbol": "SiO2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 1773.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 41.621299743652, + 0.06691700220108, + 1184870, + -651.51800537109, + -1.6371999663534e-05, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_akinfiev_diamond_coeffs": { + "values": [ + -0.11309999972582, + -11.846199989319, + 14.861499786377, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "4": "solute_aknifiev_diamond03" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Akinfiev and Diamond (2003)" + ], + "formula": "C|-4|H4@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 16.042600631714 + ] + }, + "name": "CH4 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -86797 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 90.462997436523 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -34132 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 248.45945739746 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.7164902687073 + ] + }, + "symbol": "CH4@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 1773.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 65.68229675293, + 0.011197299696505, + 280403, + -599.12902832031, + -3.9157198443718e-06, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_akinfiev_diamond_coeffs": { + "values": [ + -0.08500000089407, + -8.8320999145508, + 11.268400192261, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "4": "solute_aknifiev_diamond03" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Akinfiev and Diamond (2003)" + ], + "formula": "CO2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 44.009601593018 + ] + }, + "name": "CO2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -413337 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 119.29000091553 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -386030 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 209.74876403809 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.2702753543854 + ] + }, + "symbol": "CO2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 1773.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 6.535059928894, + 0.012237300164998, + -530498, + 427.18701171875, + -1.5123899856917e-06, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_akinfiev_diamond_coeffs": { + "values": [ + 0.30899998545647, + -8.4596004486084, + 10.830100059509, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "4": "solute_aknifiev_diamond03" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Akinfiev and Diamond (2003)" + ], + "formula": "H|0|2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 2.0158998966217 + ] + }, + "name": "H2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4477 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 56.342998504639 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 17711 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 180.28700256348 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.5544650554657 + ] + }, + "symbol": "H2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 1773.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 49.987899780273, + -0.00086760002886876, + 572421, + -462.03500366211, + -2.2271200350588e-07, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_akinfiev_diamond_coeffs": { + "values": [ + 0.026000000536442, + -9.753999710083, + 12.941100120544, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "4": "solute_aknifiev_diamond03" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Akinfiev and Diamond (2003)" + ], + "formula": "O|0|2@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 31.99880027771 + ] + }, + "name": "O2 (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -11033 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 112.67600250244 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 16550 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 219.49722290039 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.3215048313141 + ] + }, + "symbol": "O2@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.34128001332283, + 55.400001525879, + 5.5265998840332, + -28018, + 2.739000082016, + -85569, + 135256, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "estimated" + ], + "formula": "KCO3-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 99.107299804688 + ] + }, + "name": "KCO3- ", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -920210 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 76.324600219727 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -810746 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -112.84912872315 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.82874417304993 + ] + }, + "symbol": "KCO3-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.76622998714447, + 1092.9799804688, + 1.4496999979019, + -32307, + 24.719299316406, + 35355, + -3800, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "estimated" + ], + "formula": "KHCO3@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 100.11524963379 + ] + }, + "name": "KHCO3@ ", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -932269 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 208.73484802246 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -862284 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 134.93388366699 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.3202714920044 + ] + }, + "symbol": "KHCO3@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.39384999871254, + -110.19000244141, + 6.1831002235413, + -27334, + -9.5888004302978, + -26253, + 41900, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "GF2 global R01" + ], + "formula": "CaOH+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 57.085350036621 + ] + }, + "name": "CaOH+", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -748858 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 36.470001220703 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -716750 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -78.411727905273 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.0962990522385 + ] + }, + "symbol": "CaOH+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.40320000052452, + 480.10000610352, + 5.563000202179, + -28469.998046875, + -4.4000000953674, + -57140.00390625, + 145600, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Shock and Helgeson (1988)" + ], + "formula": "Cl-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 35.45299911499 + ] + }, + "name": "Cl- ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -167080 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 56.735042572021 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -131290 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -122.49036407471 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.734099984169 + ] + }, + "symbol": "Cl-" + }, + { + "Pst": 100000, + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Shock and Helgeson (1988)" + ], + "formula": "H+", + "formula_charge": 1, + "mass_per_mole": { + "values": [ + 1.0079499483109 + ] + }, + "name": "H+", + "sm_enthalpy": { + "values": [ + 0 + ] + }, + "sm_entropy_abs": { + "values": [ + 0 + ] + }, + "sm_gibbs_energy": { + "values": [ + 0 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "values": [ + 0 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "values": [ + 0 + ] + }, + "symbol": "H+" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.12526999413967, + 7.3799996376038, + 1.8423000574112, + -27821, + 4.1500000953674, + -103460, + 172460, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Shock and Helgeson (1988)" + ], + "formula": "OH-", + "formula_charge": -1, + "mass_per_mole": { + "values": [ + 17.007350921631 + ] + }, + "name": "OH- hydroxyl ion", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -230024 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + -10.711039543152 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -157297 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + -136.33999633789 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + -0.47077998518944 + ] + }, + "symbol": "OH-" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 0.62373000383377, + 744.97998046875, + 2.8183999061584, + -30869, + 40.252201080322, + 100022, + -37150, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Shock and McKinnon (1993)" + ], + "formula": "C|2|O@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 28.010200500488 + ] + }, + "name": "CO (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -120959 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 102.62999725342 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -120005 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 267.61999511719 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.3714001178741 + ] + }, + "symbol": "CO@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "eos_hkf_coeffs": { + "names": [ + "a1", + "a2", + "a3", + "a4", + "c1", + "c2", + "wref" + ], + "units": [ + "cal/(mol*bar)", + "cal/mol", + "(cal*K)/mol", + "cal/(mol*K)", + "(cal*K)/mol", + "cal/mol" + ], + "values": [ + 1.6157300472259, + -1143.1099853516, + -46.186599731445, + -23036, + 46.471599578857, + -52811, + 0, + 0 + ] + }, + "method": { + "3": "solute_hkf88_reaktoro" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "4": "AS_AQUEOUS" + }, + "class_": { + "2": "SC_AQSOLUTE" + }, + "datasources": [ + "Tagirov et al. (1997)" + ], + "formula": "HCl@", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 36.460948944092 + ] + }, + "name": "HCl (aq)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -179452 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 1.7599999904633 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -127240 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 149.53569030762 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.6384202241898 + ] + }, + "symbol": "HCl@" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 139.5, + 0.0058900001458824, + -2460600, + -589.20001220703, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2O3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 2520 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.1899998905137e-05 + ] + }, + "mass_per_mole": { + "values": [ + 101.96120452881 + ] + }, + "name": "Corundum (cor)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1675250 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 50.900001525879 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1581808 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 79.452911376953 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.558000087738 + ] + }, + "symbol": "Corundum" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 436.70001220703, + -0.034295000135899, + -4055900, + -2699.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2Si2O5(OH)4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 645 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.099999907543e-05 + ] + }, + "mass_per_mole": { + "values": [ + 258.16040039062 + ] + }, + "name": "Kaolinite (kao)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4122180 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 203.69999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3801669 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 224.53308105469 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.9340000152588 + ] + }, + "symbol": "Kaolinite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 784.5, + -0.042948000133038, + 1251000, + -8495.900390625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2Si4O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 525 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.5000003562309e-05 + ] + }, + "mass_per_mole": { + "values": [ + 360.31372070312 + ] + }, + "name": "Pyrophyllite (prl)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5640640 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 239.39999389648 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5266775 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 293.73760986328 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 12.810000419617 + ] + }, + "symbol": "Pyrophyllite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 387.70001220703, + -0.0071200001984835, + -857200, + -3744.1999511719, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2SiO4(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1315 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.0399998397334e-05 + ] + }, + "mass_per_mole": { + "values": [ + 180.06080627441 + ] + }, + "name": "Topaz-OH (tpz)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2904980 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 100.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2690013 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 159.09306335449 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.3390002250671 + ] + }, + "symbol": "Topaz-OH" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 280.20001220703, + -0.0068999999202788, + -1375700, + -2399.3999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 1926.8499755859, + 4, + 0.035000000149012 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2SiO5", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1320 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.2099999114289e-05 + ] + }, + "mass_per_mole": { + "values": [ + 162.04550170898 + ] + }, + "name": "Sillimanite (sill)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2585680 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 95.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2438765 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 123.99992370606 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.9860000610352 + ] + }, + "symbol": "Sillimanite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 277.29998779297, + -0.0065879998728633, + -1914100, + -2265.6000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2SiO5", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1334 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.11000000895e-05 + ] + }, + "mass_per_mole": { + "values": [ + 162.04550170898 + ] + }, + "name": "Andalusite (and)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2588800 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 92.699996948242 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2441050 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 122.59357452393 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.1529998779297 + ] + }, + "symbol": "Andalusite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 279.39999389648, + -0.0071240002289414, + -2055600, + -2289.3999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Al2SiO5", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1590 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.0399998397334e-05 + ] + }, + "mass_per_mole": { + "values": [ + 162.04550170898 + ] + }, + "name": "Kyanite (ky)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2593110 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 83.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2442617 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 121.56364440918 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.4140000343323 + ] + }, + "symbol": "Kyanite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 145.10000610352, + 0.0087090004235506, + 584400, + -1741.0999755859, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "AlO(OH)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 2300 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.970000297064e-05 + ] + }, + "mass_per_mole": { + "values": [ + 59.988250732422 + ] + }, + "name": "Diaspore (dsp)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -999470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 35 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -920825 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 53.436920166016 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.7760000228882 + ] + }, + "symbol": "Diaspore" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 51, + -0.004428000189364, + 488600, + -805.5, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "C|0|", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 390 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.840000110562e-05 + ] + }, + "mass_per_mole": { + "values": [ + 12.010800361633 + ] + }, + "name": "Graphite (gph)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 5.8499999046326 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 8.5266380310059 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.52979999780655 + ] + }, + "symbol": "Graphite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 24.299999237061, + 0.0062719997949898, + -377400, + -273.39999389648, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "C|0|", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 5800 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 1.6500000128872e-05 + ] + }, + "mass_per_mole": { + "values": [ + 12.010800361633 + ] + }, + "name": "Diamond (diam)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + 2070 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 2.2999999523163 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 3096 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 6.0908107757568 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 0.34169998764992 + ] + }, + "symbol": "Diamond" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 163.64999389648, + 0.00062850001268089, + -475350, + -1372.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 966.84997558594, + 5, + 0.019999999552965 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca0.5Mg0.5(CO3)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1110 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.4399999498855e-05 + ] + }, + "mass_per_mole": { + "values": [ + 92.200500488281 + ] + }, + "name": "Dolomite-od (odo)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1166165 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 78.800003051758 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1085135 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 79.704475402832 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.2460000514984 + ] + }, + "symbol": "Dolomite-od" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 307.79998779297, + 0.0050920001231134, + -2492600, + -2037.5999755859, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca0.5Na0.5Mg0.5Al0.5Si2O6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1253.5 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.1800001529045e-05 + ] + }, + "mass_per_mole": { + "values": [ + 209.34455871582 + ] + }, + "name": "Omphacite-Mg (om)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3118805 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 138.10000610352 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2942341 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 163.27255249023 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.3295001983643 + ] + }, + "symbol": "Omphacite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 4488, + -0.057952001690865, + -22269000, + -33478, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca19Mg2Al11Si18O69(OH)9", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1670 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 2869.4521484375 + ] + }, + "name": "Vesuvianite (vsv)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -42352670 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 1890 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -39906686 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 2281.3676757812 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 85.199996948242 + ] + }, + "symbol": "Vesuvianite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 724.90002441406, + -0.013864999637008, + -2059000, + -6323.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Al2Si3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 835 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.099999907543e-05 + ] + }, + "mass_per_mole": { + "values": [ + 412.38421630859 + ] + }, + "name": "Prehnite (pre)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6203180 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 292.79998779297 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5826045 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 331.36209106445 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.026000022888 + ] + }, + "symbol": "Prehnite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 405.70001220703, + -0.0070989998057485, + -1188300, + -3174.3999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 426.85000610352, + 11, + 0.097000002861023 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Al2SiO7", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1080 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.1700001020217e-05 + ] + }, + "mass_per_mole": { + "values": [ + 274.20028686523 + ] + }, + "name": "Gehlenite (geh)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3986880 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 202 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3785756 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 209.46574401856 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.0240001678467 + ] + }, + "symbol": "Gehlenite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 567, + 0.018062999472022, + -7034000, + -2603, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Al3Si3O12(OH)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1120 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.600000102073e-05 + ] + }, + "mass_per_mole": { + "values": [ + 454.3571472168 + ] + }, + "name": "Clinozoisite (cz)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6898150 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 301 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6503922 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 342.50720214844 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.630000114441 + ] + }, + "symbol": "Clinozoisite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 595.70001220703, + 0.062297001481056, + -5921300, + -3394.6999511719, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Al3Si3O12(OH)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1120 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.7000000854023e-05 + ] + }, + "mass_per_mole": { + "values": [ + 454.3571472168 + ] + }, + "name": "Zoisite (zo)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6898610 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 297 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6503190 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 351.06240844727 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.574999809265 + ] + }, + "symbol": "Zoisite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1244.8000488281, + 0.024348000064492, + -11965000, + -8112.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Mg3Al4Si6O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 760 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.339999916032e-05 + ] + }, + "mass_per_mole": { + "values": [ + 815.51153564453 + ] + }, + "name": "Tschermakite-Mg (ts)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12541200 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 545 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11809365 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 647.65692138672 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 26.799999237061 + ] + }, + "symbol": "Tschermakite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1260.1999511719, + 0.0038300000596792, + -11455000, + -8237.599609375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2Mg5Si8O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 762 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.339999916032e-05 + ] + }, + "mass_per_mole": { + "values": [ + 812.36651611328 + ] + }, + "name": "Tremolite-Mg (tr)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12310380 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 550 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11583089 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 655.40838623047 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 27.270000457764 + ] + }, + "symbol": "Tremolite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 385.39999389648, + 0.0032089999876916, + -247500, + -2889.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2MgSi2O7", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1420 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.080000119051e-05 + ] + }, + "mass_per_mole": { + "values": [ + 272.62780761719 + ] + }, + "name": "Akermanite (ak)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3866360 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 212.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3669893 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 216.20722961426 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.253999710083 + ] + }, + "symbol": "Akermanite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 247.5, + -0.0032059999648482, + 0, + -2051.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 1436.8499755859, + 10.029999732971, + 0.050000000745058 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca2SiO4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1200 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.0499998906162e-05 + ] + }, + "mass_per_mole": { + "values": [ + 172.23910522461 + ] + }, + "name": "Larnite (lrn)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2307200 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 127.59999847412 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2192512 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 128.67297363281 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.1599998474121 + ] + }, + "symbol": "Larnite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 626, + 0, + -5779200, + -4002.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca3Al2Si3O12", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1680 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.9300000935327e-05 + ] + }, + "mass_per_mole": { + "values": [ + 450.4462890625 + ] + }, + "name": "Grossular (gr)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6644150 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 255 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6282307 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 329.16387939453 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 12.534999847412 + ] + }, + "symbol": "Grossular" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 417.5, + 0.0081169996410608, + -2923000, + -2320.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca3MgSi2O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1200 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.1500002630055e-05 + ] + }, + "mass_per_mole": { + "values": [ + 328.70520019531 + ] + }, + "name": "Merwinite (merw)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4546420 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 253.10000610352 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -4319077 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 252.66044616699 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.8470001220703 + ] + }, + "symbol": "Merwinite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 372.29998779297, + -0.0028929999098182, + -2462400, + -2181.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca3Si2O7", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 950 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.5000000176951e-05 + ] + }, + "mass_per_mole": { + "values": [ + 288.40078735352 + ] + }, + "name": "Rankinite (rnk)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3944430 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 210 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3744558 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 217.4093170166 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.6510000228882 + ] + }, + "symbol": "Rankinite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1359, + 0.036442000418901, + -8594700, + -9598.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca4Al6Si6O24(CO3)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 870 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.1600000511389e-05 + ] + }, + "mass_per_mole": { + "values": [ + 934.70861816406 + ] + }, + "name": "Meionite-Ca (me)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -13843570 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 752 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -13106507 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 717.31079101562 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 33.985000610352 + ] + }, + "symbol": "Meionite-Ca" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1720.8000488281, + -0.024927999824286, + -5998700, + -14620, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca4MgAl5Si6O21(OH)7", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1615 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 943.07635498047 + ] + }, + "name": "Pumpellyite-Mg (pump)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -14389500 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 629 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -13449224 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 799.18505859375 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 29.549999237061 + ] + }, + "symbol": "Pumpellyite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 741.70001220703, + -0.0053449999541044, + -1434600, + -5878.5, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca5Si2O7(CO3)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 950 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.5000000176951e-05 + ] + }, + "mass_per_mole": { + "values": [ + 488.57479858398 + ] + }, + "name": "Tilleyite (ty)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6368160 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 390 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6010247 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 383.52127075195 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 17.038999557495 + ] + }, + "symbol": "Tilleyite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 614.09997558594, + -0.0035079999361187, + -2493100, + -4168, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Ca5Si2O8(CO3)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 950 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.5000000176951e-05 + ] + }, + "mass_per_mole": { + "values": [ + 444.56518554688 + ] + }, + "name": "Spurrite (spu)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5849520 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 330 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5536591 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 343.62310791016 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.696999549866 + ] + }, + "symbol": "Spurrite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 687.79998779297, + 0.0015660000499338, + 375900, + -7179.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si2O7(OH)2(H2O)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1014 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.81999993301e-05 + ] + }, + "mass_per_mole": { + "values": [ + 314.23779296875 + ] + }, + "name": "Lawsonite (law)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4869140 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 230 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -4513489 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 276.72027587891 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.131999969482 + ] + }, + "symbol": "Lawsonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 371.60000610352, + 0.012614999897778, + -4110200, + -2038.4000244141, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 2026.8499755859, + 11, + 0.050000000745058 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si2O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 919 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.3799999326002e-05 + ] + }, + "mass_per_mole": { + "values": [ + 278.20721435547 + ] + }, + "name": "Anorthite (an)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4233480 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 200 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -4007971 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 211.83636474609 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.079000473023 + ] + }, + "symbol": "Anorthite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 838.29998779297, + -0.021460000425577, + -2272000, + -7292.2998046875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si4O12(H2O)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1000 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.3799999326002e-05 + ] + }, + "mass_per_mole": { + "values": [ + 434.40640258789 + ] + }, + "name": "Wairakite (wrk)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6666420 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 375 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6220460 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 384.01766967773 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 19.040000915527 + ] + }, + "symbol": "Wairakite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1013.4000244141, + -0.021413000300527, + -2235800, + -8806.7001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si4O12(H2O)4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1000 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.3799999326002e-05 + ] + }, + "mass_per_mole": { + "values": [ + 470.43701171875 + ] + }, + "name": "Laumontite (lmt)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -7268470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 457 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -6707872 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 471.83416748047 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 20.370000839233 + ] + }, + "symbol": "Laumontite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1504.8000488281, + -0.033224001526833, + -2959300, + -13297, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si7O18(H2O)6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1000 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.3799999326002e-05 + ] + }, + "mass_per_mole": { + "values": [ + 686.72052001953 + ] + }, + "name": "Heulandite (heu)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -10599140 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 669 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -9762353 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 691.52313232422 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 31.799999237061 + ] + }, + "symbol": "Heulandite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1588.4000244141, + -0.032042998820543, + -3071600, + -13967, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2Si7O18(H2O)7", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1000 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.3799999326002e-05 + ] + }, + "mass_per_mole": { + "values": [ + 704.73577880859 + ] + }, + "name": "Stilbite (stlb)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -10898830 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 710 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -10004724 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 735.40960693359 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 32.869998931885 + ] + }, + "symbol": "Stilbite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 347.60000610352, + -0.00697400001809, + -1781600, + -2757.5, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl2SiO6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1140 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.4299998990027e-05 + ] + }, + "mass_per_mole": { + "values": [ + 218.12289428711 + ] + }, + "name": "Tschermak-Ca (cats)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3307030 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 138 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3129806 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 165.78123474121 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.3559999465942 + ] + }, + "symbol": "Tschermak-Ca" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 744.40002441406, + -0.016799999400973, + -2074400, + -6783.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaAl4Si2O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1300 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.8699999751989e-05 + ] + }, + "mass_per_mole": { + "values": [ + 398.18371582031 + ] + }, + "name": "Margarite (ma)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6241230 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 267 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5857535 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 323.21392822266 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 12.96399974823 + ] + }, + "symbol": "Margarite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 192.30000305176, + -0.0030519999563694, + 1149700, + -2118.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 966.84997558594, + 9, + 0.03999999910593 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaCO3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 650 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0.00011500000255182 + ] + }, + "mass_per_mole": { + "values": [ + 100.08699798584 + ] + }, + "name": "Aragonite (arag)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1207580 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 89.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1128410 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 82.886047363281 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.414999961853 + ] + }, + "symbol": "Aragonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 140.89999389648, + 0.005028999876231, + -950700, + -858.40002441406, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 966.84997558594, + 10, + 0.03999999910593 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaCO3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 760 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.4000000343658e-05 + ] + }, + "mass_per_mole": { + "values": [ + 100.08699798584 + ] + }, + "name": "Calcite (cc)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1207470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 92.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1129195 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 83.370727539062 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.6889998912811 + ] + }, + "symbol": "Calcite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 358.89999389648, + -0.0049049998633564, + 0, + -3456.1999511719, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 1099.8499755859, + 13, + 0.014999999664724 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaMg(CO3)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 900 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.3500003307127e-05 + ] + }, + "mass_per_mole": { + "values": [ + 184.40100097656 + ] + }, + "name": "Dolomite (dol)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2324430 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 156 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2161892 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 158.87094116211 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.4340000152588 + ] + }, + "symbol": "Dolomite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 729.20001220703, + -0.01570799946785, + -2273200, + -6420.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaMgAl2Si3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1510 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.8699999751989e-05 + ] + }, + "mass_per_mole": { + "values": [ + 396.61120605469 + ] + }, + "name": "Cceladonite-Mg (ccel)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6099470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 265 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5716706 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 327.08529663086 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 12.838000297546 + ] + }, + "symbol": "Cceladonite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 314.5, + 4.0999999328051e-05, + -2745900, + -2020.0999755859, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaMgSi2O6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1223 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.7000001106644e-05 + ] + }, + "mass_per_mole": { + "values": [ + 216.55039978027 + ] + }, + "name": "Diopside (di)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3202760 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 142.69999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3028463 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 166.63061523438 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.6189999580383 + ] + }, + "symbol": "Diopside" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 250.69999694824, + -0.010432999581099, + -797200, + -1996.0999755859, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaMgSiO4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1120 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.6299999414477e-05 + ] + }, + "mass_per_mole": { + "values": [ + 156.4660949707 + ] + }, + "name": "Monticellite (mont)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2253050 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 108.09999847412 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2135207 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 123.01947784424 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.1479997634888 + ] + }, + "symbol": "Monticellite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 52.400001525879, + 0.0036730000283569, + -750700, + -51, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaO", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1160 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.6499997046776e-05 + ] + }, + "mass_per_mole": { + "values": [ + 56.07740020752 + ] + }, + "name": "Lime (lime)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -634950 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 38.099998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -603329 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 42.09655380249 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.6763999462128 + ] + }, + "symbol": "Lime" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 159.30000305176, + 0, + -967300, + -1075.4000244141, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaSiO3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 795 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.600000102073e-05 + ] + }, + "mass_per_mole": { + "values": [ + 116.16169738769 + ] + }, + "name": "Wollastonite (wo)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1634060 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 82.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1548906 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 86.137855529785 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.9930000305176 + ] + }, + "symbol": "Wollastonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 157.80000305176, + 0, + -967300, + -1075.4000244141, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "CaSiO3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1050 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.3899999329587e-05 + ] + }, + "mass_per_mole": { + "values": [ + 116.16169738769 + ] + }, + "name": "Pseudowollastonite (pswo)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1627690 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 88.199996948242 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1544236 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 84.637855529785 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.0079998970032 + ] + }, + "symbol": "Pseudowoll" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 756.40002441406, + -0.019840000197291, + -2170000, + -6979.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KAl3Si3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 490 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.9599999076454e-05 + ] + }, + "mass_per_mole": { + "values": [ + 398.30801391602 + ] + }, + "name": "Muscovite (mu)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5984180 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 292 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5603884 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 321.88098144531 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.083000183106 + ] + }, + "symbol": "Muscovite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 369.79998779297, + -0.016332000494003, + 684700, + -3683.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 664.84997558594, + 18, + 0.48199999332428 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KAlSi2O6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 630 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.6699999327539e-05 + ] + }, + "mass_per_mole": { + "values": [ + 218.2472076416 + ] + }, + "name": "Leucite (lc)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3029160 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 200 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2866366 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 162.79405212402 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 8.8280000686646 + ] + }, + "symbol": "Leucite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 448.79998779297, + -0.010075000114739, + -1007300, + -3973.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KAlSi3O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 574 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.3500000427011e-05 + ] + }, + "mass_per_mole": { + "values": [ + 278.33151245117 + ] + }, + "name": "Microcline (mic)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3975110 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 216 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3750316 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 204.36697387695 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.892000198364 + ] + }, + "symbol": "Microcline" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 448.79998779297, + -0.010075000114739, + -1007300, + -3973.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KAlSi3O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 574 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.3500000427011e-05 + ] + }, + "mass_per_mole": { + "values": [ + 278.33151245117 + ] + }, + "name": "Sanidine (san)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3964960 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 230 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3744340 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 204.36697387695 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.89999961853 + ] + }, + "symbol": "Sanidine" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 242, + -0.0044820001348853, + -895800, + -1935.8000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KAlSiO4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 590 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.7599998399382e-05 + ] + }, + "mass_per_mole": { + "values": [ + 158.16290283203 + ] + }, + "name": "Kalsilite (kals)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2121920 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 134 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2006218 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 118.47678375244 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.039999961853 + ] + }, + "symbol": "Kalsilite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 46.20000076294, + 0.017969999462366, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KCl", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 170 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0.00024699998903088 + ] + }, + "mass_per_mole": { + "values": [ + 74.551300048828 + ] + }, + "name": "Sylvite (syv)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -436500 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 82.599998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -408587 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 51.557754516602 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.7520000934601 + ] + }, + "symbol": "Sylvite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 785.5, + -0.038031000643969, + -2130300, + -6893.7001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KMg2Al3Si2O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 513 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.7900000683731e-05 + ] + }, + "mass_per_mole": { + "values": [ + 418.83251953125 + ] + }, + "name": "Eastonite (east)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6338170 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 318 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5951753 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 350.95553588867 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.737999916077 + ] + }, + "symbol": "Eastonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1625.8000488281, + -0.035548001527786, + -8063500, + -13490.900390625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KMg2Al5Si10O30", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 810 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.600000117236e-06 + ] + }, + "mass_per_mole": { + "values": [ + 983.45281982422 + ] + }, + "name": "Osumilite1-Mg (osm1)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -14968190 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 701 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -14122729 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 743.18139648438 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 37.893001556396 + ] + }, + "symbol": "Osumilite1-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1610.5999755859, + -0.034457001835108, + -8262100, + -13128.799804688, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KMg3Al3Si11O30", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 810 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.600000117236e-06 + ] + }, + "mass_per_mole": { + "values": [ + 981.88031005859 + ] + }, + "name": "Osumilite2-Mg (osm2)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -14810340 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 724 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -13973263 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 747.04309082031 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 38.439998626709 + ] + }, + "symbol": "Osumilite2-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 770.29998779297, + -0.0369389988482, + -2328900, + -6531.6000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KMg3AlSi3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 513 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.7900000683731e-05 + ] + }, + "mass_per_mole": { + "values": [ + 417.26000976562 + ] + }, + "name": "Phlogopite (phl)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6219160 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 328 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5837251 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 354.81759643555 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.96399974823 + ] + }, + "symbol": "Phlogopite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 741.20001220703, + -0.018748000264168, + -2368800, + -6616.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "KMgAlSi4O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 700 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.9599999076454e-05 + ] + }, + "mass_per_mole": { + "values": [ + 396.73550415039 + ] + }, + "name": "Celadonite-Mg (cel)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5842420 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 290 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5463055 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 325.75238037109 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.956999778748 + ] + }, + "symbol": "Celadonite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 158.39999389648, + -0.0040759998373687, + -1052300, + -1171.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 485 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0.0001300000003539 + ] + }, + "mass_per_mole": { + "values": [ + 58.319702148438 + ] + }, + "name": "Brucite (br)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -924920 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 64.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -834286 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 77.51244354248 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.4630000591278 + ] + }, + "symbol": "Brucite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 549.5, + 0.036324001848698, + -8606600, + -2515.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2Al2Si3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 480 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.7000001611886e-05 + ] + }, + "mass_per_mole": { + "values": [ + 380.83819580078 + ] + }, + "name": "Ttalc-Mg (tats)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5987990 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 259 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5606096 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 317.83993530273 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.510000228882 + ] + }, + "symbol": "Ttalc-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1436.0999755859, + -0.048748999834061, + -2748500, + -13764, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2Al4Si3O10(OH)8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 870 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.9800001104595e-05 + ] + }, + "mass_per_mole": { + "values": [ + 536.84533691406 + ] + }, + "name": "Sudoite-Mg (sud)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -8626160 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 404 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -7970250 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 593.51989746094 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 20.299999237061 + ] + }, + "symbol": "Sudoite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 821.29998779297, + 0.043338999152183, + -8211100, + -5000, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 1526.8499755859, + 20, + 0.20000000298023 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2Al4Si5O18", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 810 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.600000117236e-06 + ] + }, + "mass_per_mole": { + "values": [ + 584.95269775391 + ] + }, + "name": "Cordierite-Mg (crd)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -9163370 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 407.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -8653136 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 454.09533691406 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 23.32200050354 + ] + }, + "symbol": "Cordierite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 869.70001220703, + 0.051995001733303, + -7723700, + -5251.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 1526.8499755859, + 20, + 0.20000000298023 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2Al4Si5O18(H2O)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 810 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.600000117236e-06 + ] + }, + "mass_per_mole": { + "values": [ + 602.96801757812 + ] + }, + "name": "Hcordierite-Mg (hcrd)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -9446980 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 487.29998779297 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -8890996 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 496.01113891602 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 23.32200050354 + ] + }, + "symbol": "Hcordierite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 356.20001220703, + -0.0029899999499321, + -596900, + -3185.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2Si2O6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1070 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.0499998906162e-05 + ] + }, + "mass_per_mole": { + "values": [ + 200.77740478516 + ] + }, + "name": "Enstatite (en)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3090470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 132.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2915792 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 164.12071228027 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.2620000839233 + ] + }, + "symbol": "Enstatite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 233.30000305176, + 0.0014939999673516, + -603800, + -1869.6999511719, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg2SiO4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1250 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.1300001107156e-05 + ] + }, + "mass_per_mole": { + "values": [ + 140.69309997559 + ] + }, + "name": "Forsterite (fo)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2172200 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 95.099998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2053140.953605 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 118.67147064209 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 4.3660001754761 + ] + }, + "symbol": "Forsterite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 633.5, + 0, + -5196100, + -4315.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg3Al2Si3O12", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1737 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.360000093584e-05 + ] + }, + "mass_per_mole": { + "values": [ + 403.12731933594 + ] + }, + "name": "Pyrope (py)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6284720 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 266.29998779297 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5934224 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 325.13690185547 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 11.317999839783 + ] + }, + "symbol": "Pyrope" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 624.70001220703, + -0.020770000293851, + -1721800, + -5619.3999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg3Si2O5(OH)4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 525 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.7000001359265e-05 + ] + }, + "mass_per_mole": { + "values": [ + 277.11239624023 + ] + }, + "name": "Chrysotile (chr)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4359030 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 221.30000305176 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -4031420 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 273.69696044922 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.746000289917 + ] + }, + "symbol": "Chrysotile" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 622.20001220703, + 0, + -6385500, + -3916.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg3Si4O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 480 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.7000001611886e-05 + ] + }, + "mass_per_mole": { + "values": [ + 379.26571655273 + ] + }, + "name": "Talc-Mg (ta)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5897100 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 260 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5517031 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 323.55871582031 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.625 + ] + }, + "symbol": "Talc-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 9621, + -0.091182999312878, + -35941600, + -83034.203125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg48Si34O85(OH)62", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 525 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.7000001359265e-05 + ] + }, + "mass_per_mole": { + "values": [ + 4535.9516601562 + ] + }, + "name": "Antigorite (atg)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -71424310 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 3591 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -66133512 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 4380.6591796875 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 175.47999572754 + ] + }, + "symbol": "Antigorite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 2820.5, + -0.059365998953581, + -13774000, + -24126, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg4Al18Si7.5O48H4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1200 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 1.200000042445e-05 + ] + }, + "mass_per_mole": { + "values": [ + 1565.53125 + ] + }, + "name": "Staurolite-Mg (mst)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -25101490 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 910 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -23594095 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 1250.6203613281 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 44.259998321533 + ] + }, + "symbol": "Staurolite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1177, + 0.0090410001575947, + -7458700, + -10053, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg4Al4Si2O10(OH)8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 870 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.9800001104595e-05 + ] + }, + "mass_per_mole": { + "values": [ + 557.36981201172 + ] + }, + "name": "Amesite-Mg (ames)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -9034440 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 410 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -8366446 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 513.58135986328 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 20.520000457764 + ] + }, + "symbol": "Amesite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1161.8000488281, + 0.010133000090718, + -7657300, + -9690.900390625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg5Al2Si3O10(OH)8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 870 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.9800001104595e-05 + ] + }, + "mass_per_mole": { + "values": [ + 555.79730224609 + ] + }, + "name": "Clinochlore (clin)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -8912410 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 430.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -8252055 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 517.44342041016 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 21.090000152588 + ] + }, + "symbol": "Clinochlore" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1307.6999511719, + 0.023641999810934, + -9307400, + -9799, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg5Al4Si6O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 770 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.8000001697801e-05 + ] + }, + "mass_per_mole": { + "values": [ + 783.96551513672 + ] + }, + "name": "Gedrite-Mg (ged)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12319430 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 515 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11583970 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 642.54791259766 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 25.799999237061 + ] + }, + "symbol": "Gedrite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1146.5999755859, + 0.011225000023842, + -7855900, + -9328.7998046875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg6Si4O10(OH)8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 870 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.9800001104595e-05 + ] + }, + "mass_per_mole": { + "values": [ + 554.22479248047 + ] + }, + "name": "Chlorite-Mg (afchl)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -8727380 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 428 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -8067806 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 521.30541992188 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 21.659999847412 + ] + }, + "symbol": "Chlorite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1277.3000488281, + 0.025824999436736, + -9704600, + -9074.7001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg7Si8O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 700 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 780.82049560547 + ] + }, + "name": "Anthophyllite-Mg (anth)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12069200 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 536 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11343054 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 650.27758789062 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 26.540000915527 + ] + }, + "symbol": "Anthophyll-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1277.3000488281, + 0.025824999436736, + -9704600, + -9074.7001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg7Si8O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 700 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 780.82049560547 + ] + }, + "name": "Cummingtonite (cumm)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12057480 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 540 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11332527 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 650.27758789062 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 26.329999923706 + ] + }, + "symbol": "Cummingtonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1070, + -0.016533000394702, + -7899600, + -7373.8999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Mg9Si4O16(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1290 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.0999998822808e-05 + ] + }, + "mass_per_mole": { + "values": [ + 621.09210205078 + ] + }, + "name": "Clinohumite (chum)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -9607320 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 445 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -9040480 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 549.15362548828 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 19.784999847412 + ] + }, + "symbol": "Clinohumite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 242.69999694824, + -0.0060370001010597, + -2315100, + -1678.0999755859, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgAl2O4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1945 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.3100000766572e-05 + ] + }, + "mass_per_mole": { + "values": [ + 142.26559448242 + ] + }, + "name": "Spinel (sp)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2300720 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 81.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2176080 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 117.67125701904 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.9779999256134 + ] + }, + "symbol": "Spinel" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 667.79998779297, + -0.012559000402689, + -1167100, + -6440, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgAl2Si2O6(OH)4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 525 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 298.46481323242 + ] + }, + "name": "Carpholite-Mg (mcar)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -4781240 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 210 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -4422285 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 277.96099853516 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.590000152588 + ] + }, + "symbol": "Carpholite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 464.39999389648, + -0.012653999961913, + -1147200, + -4341, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgAl2SiO5(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1465 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.4200001613936e-05 + ] + }, + "mass_per_mole": { + "values": [ + 220.36520385742 + ] + }, + "name": "Chloritoid-Mg (mctd)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3551420 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 140 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3307908 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 196.31774902344 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.875 + ] + }, + "symbol": "Chloritoid-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 371.39999389648, + -0.0040819998830557, + -398400, + -3547.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgAl2SiO6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1144 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.080000119051e-05 + ] + }, + "mass_per_mole": { + "values": [ + 202.34989929199 + ] + }, + "name": "Tschermak-Mg (mgts)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3189320 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 131 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3012668 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 160.27487182617 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.9000000953674 + ] + }, + "symbol": "Tschermak-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 186.39999389648, + -0.0037720000836998, + 0, + -1886.1999511719, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgCO3", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1460 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.4799998654053e-05 + ] + }, + "mass_per_mole": { + "values": [ + 84.314002990723 + ] + }, + "name": "Magnesite (mag)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -1111360 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 65.099998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1027575 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 76.038230895996 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.8029999732971 + ] + }, + "symbol": "Magnesite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 60.5, + 0.00036199999158271, + -535800, + -299.20001220703, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "MgO", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1650 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.1999999161344e-05 + ] + }, + "mass_per_mole": { + "values": [ + 40.304401397705 + ] + }, + "name": "Periclase (per)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -601600 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 26.89999961853 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -569299 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 37.252655029297 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.125 + ] + }, + "symbol": "Periclase" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1717.5, + -0.12106999754906, + 7075000, + -19272, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Na2Mg3Al2Si8O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 883 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.2999999752501e-05 + ] + }, + "mass_per_mole": { + "values": [ + 783.54309082031 + ] + }, + "name": "Glaucophane-Mg (gl)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -11969470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 535 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11234523 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 644.87652587891 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 26.049999237061 + ] + }, + "symbol": "Glaucophane-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1496.9000244141, + -0.035062998533249, + -4778400, + -12719.200195312, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "Na3CaAl3Si9O24(CO3)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 614 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.5000000682194e-05 + ] + }, + "mass_per_mole": { + "values": [ + 886.75598144531 + ] + }, + "name": "Meionite-Na (coma)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12948950 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 771.28002929688 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -12217438.09014 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 696.07360839844 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 34.04999923706 + ] + }, + "symbol": "Meionite-Na" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 803, + -0.031580001115799, + 217000, + -8151, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAl3Si3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 550 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.740000000922e-05 + ] + }, + "mass_per_mole": { + "values": [ + 382.1994934082 + ] + }, + "name": "Paragonite (pa)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5946340 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 276 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5565263 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 323.96957397461 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.211000442505 + ] + }, + "symbol": "Paragonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 301.10000610352, + 0.010142999701202, + -2239300, + -2055.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAlSi2O6", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1284 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.6599998313468e-05 + ] + }, + "mass_per_mole": { + "values": [ + 202.13870239258 + ] + }, + "name": "Jadeite (jd)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3027850 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 133.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -2849218 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 159.91450500488 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 6.039999961853 + ] + }, + "symbol": "Jadeite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 643.5, + -0.016067000105977, + 9302300, + -9179.599609375, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAlSi2O6(H2O)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 400 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-05 + ] + }, + "mass_per_mole": { + "values": [ + 220.15400695801 + ] + }, + "name": "Analcite (anl)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3309900 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 232 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3091093 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 211.72901916504 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 9.7399997711182 + ] + }, + "symbol": "Analcite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 452, + -0.013364000245929, + -1275900, + -3953.6000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 676.84997558594, + 16, + 0.12399999797344 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAlSi3O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 593 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.5600001612911e-05 + ] + }, + "mass_per_mole": { + "values": [ + 262.22299194336 + ] + }, + "name": "Albite (ab)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3934560 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 210.10000610352 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3711996 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 207.72508239746 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.005999565124 + ] + }, + "symbol": "Albite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 452, + -0.013364000245929, + -1275900, + -3953.6000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAlSi3O8", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 593 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.5600001612911e-05 + ] + }, + "mass_per_mole": { + "values": [ + 262.22299194336 + ] + }, + "name": "Albite high (abh)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -3924800 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 223.39999389648 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -3706202 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 204.69409179688 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 10.109000205994 + ] + }, + "symbol": "Albite high" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 272.70001220703, + -0.012397999875247, + 0, + -2763.1000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 193.85000610352, + 10, + 0.079999998211861 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaAlSiO4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 600 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 8.0999998317566e-05 + ] + }, + "mass_per_mole": { + "values": [ + 142.05439758301 + ] + }, + "name": "Nepheline (ne)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -2095080 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 124.40000152588 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -1980505 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 114.29035186768 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 5.4190001487732 + ] + }, + "symbol": "Nepheline" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1280.1999511719, + 0.022996999323368, + -12359500, + -8065.7998046875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaCa2Mg4Al3Si6O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 912 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.339999916032e-05 + ] + }, + "mass_per_mole": { + "values": [ + 835.82482910156 + ] + }, + "name": "Pargasite-Mg (parg)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12720650 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 601 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11988914 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 680.89752197266 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 27.190000534058 + ] + }, + "symbol": "Pargasite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1287.9000244141, + 0.012737999670208, + -12104500, + -8128.5498046875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaCa2Mg5AlSi7O22(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 913 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.339999916032e-05 + ] + }, + "mass_per_mole": { + "values": [ + 834.25231933594 + ] + }, + "name": "Edenite-Mg (ed)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -12605240 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 603.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -11875776 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 684.77337646484 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 27.424999237061 + ] + }, + "symbol": "Edenite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1405, + 0.012606999836862, + -7322600, + -10638.5, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaCa3Al5Si7O24(CO3)", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 764 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 3.6099998396821e-05 + ] + }, + "mass_per_mole": { + "values": [ + 918.72442626953 + ] + }, + "name": "Mizzonite (mizz)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -13575720 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 758.42999267578 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -12840508.037312 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 710.26702880859 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 34.006999969482 + ] + }, + "symbol": "Mizzonite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 45.20000076294, + 0.017969999462366, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaCl", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 240 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0.00026900001103059 + ] + }, + "mass_per_mole": { + "values": [ + 58.442798614502 + ] + }, + "name": "Halite (hlt)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -411300 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 72.099998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -384246 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 50.557754516602 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.7019999027252 + ] + }, + "symbol": "Halite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 773.5, + -0.040229000151157, + -2597900, + -6512.6000976562, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaMg3AlSi3O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 513 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.7900000683731e-05 + ] + }, + "mass_per_mole": { + "values": [ + 401.15151977539 + ] + }, + "name": "Phlogopite-Na (naph)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -6172820 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 318 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5791919 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 355.11096191406 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 14.449999809265 + ] + }, + "symbol": "Phlogopite-Na" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 787.79998779297, + -0.03048799932003, + 18200, + -7788.7001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "NaMgAlSi4O10(OH)2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 760 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 7.740000000922e-05 + ] + }, + "mass_per_mole": { + "values": [ + 380.62701416016 + ] + }, + "name": "Nceladonite-Mg (ncel)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -5804580 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 274 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -5424433 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 327.84094238281 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 13.085000038147 + ] + }, + "symbol": "Nceladonite-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 97.900001525879, + -0.003349999897182, + -636200, + -774, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "SiO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 600 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 8.0999998317566e-06 + ] + }, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "Cristobalite (crst)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -905990 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 46.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -853084 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 44.918979644775 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.6099998950958 + ] + }, + "symbol": "Cristobalite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 97.900001525879, + -0.003349999897182, + -636200, + -774, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "SiO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 750 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.9999998736894e-06 + ] + }, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "Tridymite (trd)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -906690 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 46.099998474121 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -853665 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 44.918979644775 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.7000000476837 + ] + }, + "symbol": "Tridymite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 110.69999694824, + -0.0051890001632273, + 0, + -1128.3000488281, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "m_landau_phase_trans_props": { + "values": [ + 573.84997558594, + 4.9499998092651, + 0.11879999935627 + ] + }, + "method": { + "5": "landau_holland_powell98" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "SiO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 750 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 6.4999999267457e-06 + ] + }, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "Quartz (q)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -910830 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 41.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -856433 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 44.89091873169 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.2688000202179 + ] + }, + "symbol": "Quartz" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 96.5, + -0.00057700002798811, + -444800, + -798.20001220703, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "SiO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1000 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 1.8000000636675e-05 + ] + }, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "Coesite (coe)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -905470 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 40.79999923706 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -850864 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 45.097370147705 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2.0639998912811 + ] + }, + "symbol": "Coesite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 68.099998474121, + 0.006010000128299, + -1978200, + -82.099998474121, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Holland and Powell (2002)" + ], + "formula": "SiO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 3160 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 2.4999999368447e-05 + ] + }, + "mass_per_mole": { + "values": [ + 60.084300994873 + ] + }, + "name": "Stishovite (stv)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -875630 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 24.5 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -816165 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 42.88353729248 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.4010000228882 + ] + }, + "symbol": "Stishovite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1175.5, + -0.025415999814868, + -7508000, + -9336.400390625, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Kelsey et al. (2004)" + ], + "formula": "Mg3Al10SiO20", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1200 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.8999998398358e-05 + ] + }, + "mass_per_mole": { + "values": [ + 690.80352783203 + ] + }, + "name": "Sapphirine5-Mg (spr5)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -11138460 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 420 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -10532858 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 542.75445556641 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 19.750999450684 + ] + }, + "symbol": "Sapphirine5-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 1160.3000488281, + -0.024323999881744, + -7706600, + -8974.2001953125, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Kelsey et al. (2004)" + ], + "formula": "Mg4Al8Si2O20", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 1200 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 4.8999998398358e-05 + ] + }, + "mass_per_mole": { + "values": [ + 689.23101806641 + ] + }, + "name": "Sapphirine4-Mg (spr4)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -11003380 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 450 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -10408249 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 546.62237548828 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 19.905000686646 + ] + }, + "symbol": "Sapphirine4-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 16530.005859375, + -0.33598545193672, + -44696568, + -146493.296875, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Massonne and Willner (2008)" + ], + "formula": "K5Al5Mg48Si67O168(OH)48(H2O)36", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 490 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 5.9599999076454e-05 + ] + }, + "mass_per_mole": { + "values": [ + 7531.5708007812 + ] + }, + "name": "Stilpnomelane-Mg (msti)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -116864000 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 5911 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -107600000 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 7443.02734375 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 296.5 + ] + }, + "symbol": "Stilpnomelane-Mg" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 583.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 54.697429656982, + 0.17027199268341, + -1221728, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Robie and Hemingway (1995)" + ], + "formula": "Al(OH)3", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 78.003547668457 + ] + }, + "name": "Gibbsite (gbs) Cp coeff from Pokrovskii and Helgeson (1995)", + "sm_enthalpy": { + "errors": [ + 1200 + ], + "units": [ + "J/mol" + ], + "values": [ + -1293100 + ] + }, + "sm_entropy_abs": { + "errors": [ + 0.10000000149012 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 68.400001525879 + ] + }, + "sm_gibbs_energy": { + "errors": [ + 1200 + ], + "units": [ + "J/mol" + ], + "values": [ + -1154900 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 91.720283508301 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.1960000991821 + ] + }, + "symbol": "Gibbsite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 583.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 205.72099304199, + -0.034921001642942, + 1026660, + -2635.2700195312, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "38": "mv_eos_murnaghan_hp98" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Robie and Hemingway (1995)" + ], + "formula": "AlO(OH)", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 59.988250732422 + ] + }, + "name": "Boehmite (bhm)", + "sm_enthalpy": { + "errors": [ + 2100 + ], + "units": [ + "J/mol" + ], + "values": [ + -996389 + ] + }, + "sm_entropy_abs": { + "errors": [ + 0.10000000149012 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 37.189998626709 + ] + }, + "sm_gibbs_energy": { + "errors": [ + 2200 + ], + "units": [ + "J/mol" + ], + "values": [ + -918400 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 54.239944458008 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 1.9535000324249 + ] + }, + "symbol": "Boehmite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 700.00000610352 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 186.69999694824, + -0.02191000059247, + 0, + -1600, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "method": { + "34": "mv_constant" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "3": "AS_CRYSTAL" + }, + "class_": { + "0": "SC_COMPONENT" + }, + "datasources": [ + "Robie_Hem:1995:pap: ", + "AUG20_GEMS:2001:dat: " + ], + "formula": "Ca(OH)2", + "formula_charge": 0, + "mass_per_mole": { + "values": [ + 74.092697143555 + ] + }, + "name": "Portlandite", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -984675 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 83.39998626709 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -897013 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 87.505340576172 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 3.305999994278 + ] + }, + "symbol": "Portlandite" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 150.10000610352, + 0.0020620001014322, + 3427700, + -2650.3999023438, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 190.60000610352, + 46, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "C|-4|H4", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 16.042600631714 + ] + }, + "name": "Methane (CH4)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -74810 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 186.25999450684 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -50708 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 35.77953338623 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "CH4" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 45.70000076294, + -9.699999645818e-05, + 662700, + -414.70001220703, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 132.89999389648, + 35, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "C|+2|O", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 28.010200500488 + ] + }, + "name": "Carbon monoxide (CO)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -110530 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 197.66999816894 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -137173 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 29.109191894531 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "CO" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 87.800003051758, + -0.0026440001092851, + 706400, + -998.90002441406, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 304.20001220703, + 73.800003051758, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "CO2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 44.009601593018 + ] + }, + "name": "Carbon dioxide (CO2)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -393510 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 213.69999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -394351 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 37.108123779297 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "CO2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 23.299999237061, + 0.0046270000748336, + 0, + 76.300003051758, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 41.20000076294, + 21.10000038147, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "H|0|2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 2.0158998966217 + ] + }, + "name": "Hydrogen (H2)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 130.69999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 29.09836769104 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "H2" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 40.099998474121, + 0.0086559997871518, + 487500, + -251.19999694824, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 647.29998779297, + 220.89999389648, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "H2O", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 18.015300750732 + ] + }, + "name": "Water (H2O)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + -241810 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 188.80000305176 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + -228558 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 33.616916656494 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "H2O" + }, + { + "Pst": 100000, + "TPMethods": [ + { + "limitsTP": { + "lowerT": 273.15, + "range": true, + "upperT": 2273.15 + }, + "m_heat_capacity_ft_coeffs": { + "names": [ + "a0", + "a1", + "a2", + "a3", + "a4", + "a5", + "a6", + "a7", + "a8", + "a9", + "a10" + ], + "units": [ + "J/(mol*K)", + "J/(mol*K^2)", + "(J*K)/mol", + "J/(mol*K^0.5)", + "J/(mol*K^3)", + "J/(mol*K^4)", + "J/(mol*K^5)", + "(J*K^2)/mol", + "J/mol", + "J/(mol*K^1.5)", + "J/(mol*K)" + ], + "values": [ + 48.29999923706, + -0.00069100002292544, + 499200, + -420.70001220703, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "0": "cp_ft_equation" + } + }, + { + "eos_gas_crit_props": { + "values": [ + 154.60000610352, + 50.400001525879, + 0, + 0, + 0, + 0, + 0 + ] + }, + "method": { + "14": "fluid_comp_redlich_kwong_hp91" + } + } + ], + "Tst": 298.15, + "aggregate_state": { + "0": "AS_GAS" + }, + "class_": { + "1": "SC_GASFLUID" + }, + "datasources": [ + "Holland and Powell (2002)", + "Holland and Powell (1991)" + ], + "formula": "O|0|2", + "formula_charge": 0, + "m_compressibility": { + "units": [ + "1e-05/K" + ], + "values": [ + 0 + ] + }, + "m_expansivity": { + "units": [ + "kbar" + ], + "values": [ + 0 + ] + }, + "mass_per_mole": { + "values": [ + 31.99880027771 + ] + }, + "name": "Oxygen (O2)", + "sm_enthalpy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_entropy_abs": { + "units": [ + "J/(mol*K)" + ], + "values": [ + 205.19999694824 + ] + }, + "sm_gibbs_energy": { + "units": [ + "J/mol" + ], + "values": [ + 0 + ] + }, + "sm_heat_capacity_p": { + "errors": [ + 0 + ], + "units": [ + "J/(mol*K)" + ], + "values": [ + 29.345325469971 + ] + }, + "sm_volume": { + "errors": [ + 0 + ], + "units": [ + "J/bar" + ], + "values": [ + 2478.9699707031 + ] + }, + "symbol": "O2" + } + ], + "thermodataset": [ + "aq17" + ] +} diff --git a/paper/compile_paper.sh b/paper/compile_paper.sh new file mode 100755 index 0000000..0b90f44 --- /dev/null +++ b/paper/compile_paper.sh @@ -0,0 +1,5 @@ +docker run --rm \ + --volume $PWD:/data \ + --user $(id -u):$(id -g) \ + --env JOURNAL=joss \ + openjournals/inara diff --git a/paper/examples.ipynb b/paper/examples.ipynb new file mode 100644 index 0000000..9d55ad3 --- /dev/null +++ b/paper/examples.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "e3da8efc", + "metadata": {}, + "outputs": [], + "source": [ + "import thermofun as fun" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "13b94f94", + "metadata": {}, + "outputs": [], + "source": [ + "database = fun.Database('aq17-thermofun.json')\n", + "engine = fun.ThermoEngine(database)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f0c85f6e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G0 -545301.2878298083 J/mol\n" + ] + } + ], + "source": [ + "# T(K) P(Pa) symbol\n", + "Ca_ion = engine.thermoPropertiesSubstance(473, 2000e5, 'Ca+2')\n", + "print(f'G0 {Ca_ion.gibbs_energy.val} J/mol')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a36c08e6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "drS of (Cal = Ca+2 + CO3-2) is -259.12288450418015\n", + "drG of (Cal = Ca+2 + CO3-2) is 59914.092580924975\n", + "logK of (Cal = Ca+2 + CO3-2) is -8.988976334909019\n" + ] + } + ], + "source": [ + "# T(K) P(Pa) reaction equation\n", + "R = engine.thermoPropertiesReaction(348.15, 1e5, 'Calcite = Ca+2 + CO3-2')\n", + "print(f'drS of (Cal = Ca+2 + CO3-2) is {R.reaction_entropy.val}')\n", + "print(f'drG of (Cal = Ca+2 + CO3-2) is {R.reaction_gibbs_energy.val}')\n", + "print(f'logK of (Cal = Ca+2 + CO3-2) is {R.log_equilibrium_constant.val}')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "717d85a2", + "metadata": {}, + "outputs": [], + "source": [ + "batch = fun.ThermoBatch(database)\n", + "batch.setPropertiesUnits(['temperature', 'pressure'],['degC','bar'])\n", + "batch.setPressureIncrement(0,0,0)\n", + "batch.setTemperatureIncrement(0,300, 5)\n", + "substances = ['Na+', 'Mg+2', 'Ca+2', 'SiO2@']\n", + "properties = ['heat_capacity_cp','entropy', 'volume']\n", + "batch.thermoPropertiesSubstance(substances, properties).toCSV('results.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7721f824", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": false, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": false, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/paper/figure1.png b/paper/figure1.png new file mode 100644 index 0000000..76cef88 Binary files /dev/null and b/paper/figure1.png differ diff --git a/paper/functions.py b/paper/functions.py new file mode 100644 index 0000000..9211a52 --- /dev/null +++ b/paper/functions.py @@ -0,0 +1,87 @@ +import pandas as pd +import matplotlib as mpl +import matplotlib.pyplot as plt +from matplotlib.lines import Line2D +from itertools import cycle +from collections import OrderedDict + + +def plot_substances_properties_vs_temperature(results_csv_file, substances, lables, pressure=0, property=''): + + # plot settings + mpl.rcParams['lines.linewidth']=2 + mpl.rcParams['axes.labelsize']=20 + mpl.rcParams['axes.linewidth']=2 + mpl.rcParams['font.size']=18 + mpl.rcParams['figure.figsize']=[9,9] + mpl.rcParams['figure.subplot.left'] = 0.2 + + +# fig = plt.figure() + + plt.rc('grid', linestyle="--", color='gray') + plt.grid(True) + markers = [m for m in Line2D.markers] + data = pd.read_csv(results_csv_file) + if pressure != 0.0: + data = data.loc[data.iloc[:, 2] == pressure] + c_cycle = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color']) + for s, substance in enumerate(substances): + data_select = data.loc[data['Symbol']==substance] + c = next(c_cycle) + m_cycle = cycle(markers) + next(m_cycle) + next(m_cycle) + for column in data_select.columns[3:]: # loop over properties + plt.plot(data_select.iloc[:, 1], data_select[column], color=c, + marker=next(m_cycle), label=lables[s], markersize=12, markeredgecolor="w") + handles, labels = plt.gca().get_legend_handles_labels() + by_label = OrderedDict(zip(labels, handles)) + #legend1 = plt.legend(by_label.values(), by_label.keys(), loc=9, bbox_to_anchor=(1.15, 1)) #, loc=legend_loc) + plt.legend() #, loc=legend_loc) + + #plt.gca().add_artist(legend1) + plt.xlabel("Temperature [$^\circ$C]") + plt.ylabel(property) + + return plt + +def plot_properties_vs_temperature(results_csv_file, substances, pressure=0): + +# plot settings + mpl.rcParams['lines.linewidth']=2 + mpl.rcParams['axes.labelsize']=20 + mpl.rcParams['axes.linewidth']=2 + mpl.rcParams['font.size']=18 + mpl.rcParams['figure.figsize']=[9,9] + +# fig = plt.figure() + + plt.rc('grid', linestyle="--", color='gray') + plt.grid(True) + markers = [m for m in Line2D.markers] + data = pd.read_csv(results_csv_file) + if pressure != 0.0: + data = data.loc[data.iloc[:, 2] == pressure] + c_cycle = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color']) + for s, substance in enumerate(substances): + data_select = data.loc[data['Symbol']==substance] + c = next(c_cycle) + m_cycle = cycle(markers) + next(m_cycle) + next(m_cycle) + for column in data_select.columns[3:]: # loop over properties + plt.plot(data_select.iloc[:, 1], data_select[column], color=c, + marker=next(m_cycle), label=column + ' '+ substance, markersize=12, markeredgecolor="w") + handles, labels = plt.gca().get_legend_handles_labels() + by_label = OrderedDict(zip(labels, handles)) + legend1 = plt.legend(by_label.values(), by_label.keys(), loc=9, bbox_to_anchor=(1.15, 1)) #, loc=legend_loc) + lines = plt.gca().get_lines() + + plt.gca().add_artist(legend1) + plt.xlabel("Temperature ($^\circ$C)") + plt.ylabel("ThermoProp") + + return plt + + diff --git a/paper/paper.bib b/paper/paper.bib new file mode 100644 index 0000000..7452ace --- /dev/null +++ b/paper/paper.bib @@ -0,0 +1,259 @@ +@misc{Leal:2015, + author = {Leal, Allan M.M.}, + howpublished = {\texttt{https://reaktoro.org}}, + title = {{Reaktoro: An open-source unified framework for modeling chemically reactive systems}}, + url = {https://reaktoro.org}, + year = {2015} +} +@misc{Leal:2018, + author = {Leal, Allan M.M.}, + howpublished = {\texttt{https://autodiff.github.io}}, + title = {{{autodiff, a modern, fast and expressive {C++} library for automatic differentiatio}}n}, + url = {https://autodiff.github.io}, + year = {2018} +} +@article{Bell:Deiters:Leal:2022, + abstract = {This work uses advanced numerical techniques (complex differentiation and automatic differentiation) to efficiently and accurately compute all the required thermodynamic properties of an equation of state without any analytical derivatives─particularly without any handwritten derivatives. It avoids the tedious and error-prone process of symbolic differentiation, thus allowing for more rapid development of new thermodynamic models. The technique presented here was tested with several equations of state (van der Waals, Peng-Robinson, Soave-Redlich-Kwong, PC-SAFT, and cubic-plus-association) and high-accuracy multifluid models. A minimal set of algorithms (critical locus tracing and vapor-liquid equilibrium tracing) were implemented in an extensible and concise open-source C++ library: teqp (for Templated EQuation of state Package). This work demonstrates that highly complicated equations of state can be implemented faster yet with minimal computational overhead and negligible loss in numerical precision compared with the traditional approach that relies on analytical derivatives. We believe that the approach outlined in this work has the potential to establish a new computational standard when implementing computer codes for thermodynamic models.}, + author = {Bell, Ian H. and Deiters, Ulrich K. and Leal, Allan M.M.}, + doi = {10.1021/acs.iecr.2c00237}, + file = {:C:/Users/Allan/Documents/Mendeley Desktop/Bell, Deiters, Leal - 2022 - Implementing an Equation of State without Derivatives teqp.pdf:BINARY}, + issn = {15205045}, + journal = {Industrial and Engineering Chemistry Research}, + number = {17}, + pages = {6010--6027}, + title = {{Implementing an Equation of State without Derivatives: teqp}}, + volume = {61}, + year = {2022} +} +@article{Kulik2013, + abstract = {Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase-multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid-rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov's convex programming approach are described, as implemented in the GEMS3K C/C++ code, which is also the numerical kernel of GEM-Selektor v.3 package (http://gems.web.psi.ch). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing. © 2012 Springer Science+Business Media B.V.}, + author = {Dmitrii A. Kulik and Thomas Wagner and Svitlana V. Dmytrieva and Georg Kosakowski and Ferdinand F. Hingerl and Konstantin V. Chudnenko and Urs R. Berner}, + doi = {10.1007/s10596-012-9310-6}, + issn = {14200597}, + issue = {1}, + journal = {Computational Geosciences}, + keywords = {Fluid-rock interaction,Geochemical modeling,Gibbs energy minimization,Nonideal systems,Reactive mass transport}, + month = {8}, + pages = {1-24}, + publisher = {Springer Netherlands}, + title = {GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes}, + volume = {17}, + url = {http://link.springer.com/10.1007/s10596-012-9310-6}, + year = {2013}, +} +@article{Miron2019, + abstract = {

Thermodynamic properties of aqueous species are essential for modeling of fluid-rock interaction processes. The Helgeson-Kirkham-Flowers (HKF) model is widely used for calculating standard state thermodynamic properties of ions and complexes over a wide range of temperatures and pressures. To do this, the HKF model requires thermodynamic and electrostatic models of water solvent. In this study, we investigate and quantify the impact of choosing different models for calculating water solvent volumetric and dielectric properties, on the properties of aqueous species calculated using the HKF model. We identify temperature and pressure conditions at which the choice of different models can have a considerable effect on the properties of aqueous species and on fluid mineral equilibrium calculations. The investigated temperature and pressure intervals are 25–1000°C and 1–5 kbar, representative of upper to middle crustal levels, and of interest for modeling ore-forming processes. The thermodynamic and electrostatic models for water solvent considered are: Haar, Gallagher and Kell (1984), Wagner and Pruß (2002), and Zhang and Duan (2005), to calculate water volumetric properties, and Johnson and Norton (1991), Fernandez and others (1997), and Sverjensky and others (2014), to calculate water dielectric properties. We observe only small discrepancies in the calculated standard partial molal properties of aqueous species resulting from using different water thermodynamic models. However, large differences in the properties of charged species can be observed at higher temperatures (above 500°C) as a result of using different electrostatic models. Depending on the aqueous speciation and the reactions that control the chemical composition, the observed differences can vary. The discrepancy between various electrostatic models is attributed to the scarcity of experimental data at high temperatures. These discrepancies restrict the reliability of the geochemical modeling of hydrothermal and ore formation processes, and the retrieval of thermodynamic parameters from experimental data at elevated temperatures and pressures.

}, + author = {G. D. Miron and Allan M. M. Leal and Alina Yapparova}, + doi = {10.1155/2019/5750390}, + issn = {1468-8115}, + journal = {Geofluids}, + month = {2}, + pages = {1-24}, + publisher = {Hindawi}, + title = {Thermodynamic Properties of Aqueous Species Calculated Using the HKF Model: How Do Different Thermodynamic and Electrostatic Models for Solvent Water Affect Calculated Aqueous Properties?}, + volume = {2019}, + url = {https://www.hindawi.com/journals/geofluids/2019/5750390/}, + year = {2019}, +} +@article{Miron2020, + abstract = {Most of the available thermodynamic data concerning radioactive waste disposal are restricted to values of reaction equilibrium constants (logK298°) at 25 °C and 1 bar. Simple estimation methods such as isocoulombic reactions can be used for extrapolating the properties of reactions involving aqueous species and minerals to elevated temperatures. The aim of this study was to validate the applicability of various alternative isocoulombic reactions to estimate logKT° values of aqueous complexation reactions for lanthanides and actinides to elevated temperatures while taking advantage of new additional literature data, and to identify criteria for choosing the “best” reactions. For each chemical species of interest, a systematic approach using dedicated software and database allowed us to identify the isocoulombic reactions and types of extrapolation that yield the best estimates of standard thermodynamic properties at elevated temperatures, when very limited or no experimental data are available. We have tested aqueous complexation reactions for selected lanthanides and actinides of different valences with chloride, fluoride, sulfate, carbonate, nitrate, phosphate and silicate ligands. “Model” complexation reactions, having known temperature trends, were systematically combined with complex formation reactions of interest whose temperature trends are unknown, into many alternative isocoulombic reactions. For each ion, we investigated which of the generated isocoulombic reactions provide the best estimates for logeKT° of the reaction of interest at elevated temperatures in order to compile the guidelines for choosing the optimal ones, then applying these guidelines to “prediction” subsets. In most cases, knowing only logeKT° at 25 °C (for the reaction of interest), it was possible to obtain rather accurate estimates of logeKT° values at elevated temperatures using isocoulombic reactions that exchange ions with similar charge and hydration properties (hydrated ionic radius and structure of the hydration shell) and known logmKT° of model reactions. These ions and their complexes interact with the solvent in comparable ways, so that their similar heat capacity and entropy effects largely cancel out on both sides of an “optimal” isocoulombic reaction.}, + author = {G. D. Miron and Dmitrii A. Kulik and Tres Thoenen}, + doi = {10.1016/j.gca.2020.07.020}, + issn = {00167037}, + journal = {Geochimica et Cosmochimica Acta}, + keywords = {Actinides,Aqueous complexation,Isocoulombic reactions,Lanthanides,Temperature extrapolations}, + month = {10}, + pages = {119-142}, + publisher = {Elsevier Ltd}, + title = {Generating isocoulombic reactions as a tool for systematic evaluation of temperature trends of thermodynamic properties: Application to aquocomplexes of lanthanides and actinides}, + volume = {286}, + year = {2020}, +} +@article{Leal2017, + abstract = {

We present an overview of novel numerical methods for chemical equilibrium and kinetic calculations for complex non-ideal multiphase systems. The methods we present for equilibrium calculations are based either on Gibbs energy minimization (GEM) calculations or on solving the system of extended law of mass-action (xLMA) equations. In both methods, no

}, + author = {Allan M. M. Leal and Dmitrii A. Kulik and William R. Smith and Martin O. Saar}, + doi = {10.1515/pac-2016-1107}, + issn = {1365-3075}, + issue = {5}, + journal = {Pure and Applied Chemistry}, + keywords = {17,ISSP,chemical equilibrium,chemical kinetics,geochemical modeling,numerical methods,reactive transport}, + month = {1}, + pages = {597-643}, + publisher = {De Gruyter}, + title = {An overview of computational methods for chemical equilibrium and kinetic calculations for geochemical and reactive transport modeling}, + volume = {89}, + url = {http://www.degruyter.com/view/j/pac.2017.89.issue-5/pac-2016-1107/pac-2016-1107.xml}, + year = {2017}, +} +@article{Leal2016, + abstract = {We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1–3 iterations in most cases. The proposed xLMA method is implemented in + , a unified open-source framework for modeling chemically reactive systems.}, + author = {Allan M.M. Leal and Dmitrii A. Kulik and Georg Kosakowski and Martin O. Saar}, + doi = {10.1016/j.advwatres.2016.08.008}, + issn = {03091708}, + journal = {Advances in Water Resources}, + keywords = {Equilibrium,Gibbs energy minimization,LMA,Multiphase,Reactive transport,Speciation}, + month = {10}, + pages = {405-422}, + publisher = {Elsevier Ltd}, + title = {Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations}, + volume = {96}, + year = {2016}, +} +@article{Miron2016, + abstract = {? 2016 Elsevier Ltd.A large amount of critically evaluated experimental data on mineral solubility, covering the entire Na-K-Al-Si-O-H-Cl system over wide ranges in temperature and pressure, was used to simultaneously refine the standard state Gibbs energies of aqueous ions and complexes in the framework of the revised Helgeson-Kirkham-Flowers equation of state. The thermodynamic properties of the solubility-controlling minerals were adopted from the internally consistent dataset of Holland and Powell (2002; Thermocalc dataset ds55). The global optimization of Gibbs energies of aqueous species, performed with the GEMSFITS code (Miron et al., 2015), was set up in such a way that the association equilibria for ion pairs and complexes, independently derived from conductance and potentiometric data, are always maintained. This was achieved by introducing reaction constraints into the parameter optimization that adjust Gibbs energies of complexes by their respective Gibbs energy effects of reaction, whenever the Gibbs energies of reactant species (ions) are changed. The optimized thermodynamic dataset is reported with confidence intervals for all parameters evaluated by Monte Carlo trial calculations. The new thermodynamic dataset is shown to reproduce all available fluid-mineral phase equilibria and mineral solubility data with good accuracy and precision over wide ranges in temperature (25-800 ?C), pressure (1 bar to 5 kbar) and composition (salt concentrations up to 5 molal). The global data optimization process adopted in this study can be readily repeated any time when extensions to new chemical elements and species are needed, when new experimental data become available, or when a different aqueous activity model or equation of state should be used. This work serves as a proof of concept that our optimization strategy is feasible and successful in generating a thermodynamic dataset reproducing all fluid-mineral and aqueous speciation equilibria in the Na-K-Al-Si-O-H-Cl system within their experimental uncertainties. The new dataset resolves the long-standing discrepancies between thermodynamic data of minerals and those of aqueous ions and complexes, by achieving an astonishing degree of consistency between a large number of fluid-mineral equilibrium data. All of this at the expense of changing the standard state properties of aqueous species, mainly the Gibbs energy of formation. Using the same strategy, the core dataset for the system Na-K-Al-Si-O-H-Cl can be extended with additional rock-forming elements such as Ca, Mg, Fe, Mn, Ti, S, C, B. In future, the standard-state properties of minerals and aqueous species should be simultaneously optimized, to create the next-generation of fully internally consistent data for fluid-mineral equilibria. Although we employ the widely used HKF equations for this study, the same computational approach can be readily applied to any other speciation-based equation of state for multicomponent aqueous solutions.}, + author = {G.D. Miron and T. Wagner and D.A. Kulik and C.A. Heinrich}, + doi = {10.1016/j.gca.2016.04.026}, + issn = {00167037}, + journal = {Geochimica et Cosmochimica Acta}, + keywords = {[Aqueous species, Fluid-rock interaction, Hydrothe}, + title = {Internally consistent thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl}, + volume = {187}, + year = {2016}, +} +@article{Miron2017, + abstract = {This study presents an internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl, obtained by adding species of calcium, magnesium and carbon to the core system Na-K-Al-Si-O-H-Cl (Miron and others, 2016). Critically evaluated experimental data on mineral solubility (Ca and Mg hydroxides, Ca and Mg silicates, anorthite, Ca and Mg carbonates) in water and aqueous electrolyte solutions over wide ranges in temperature and pressure were added to the database of experimental data. The complete experimental dataset was then used to simultaneously refine the standard state Gibbs energies of all aqueous ions and complexes in the framework of the revised Helgeson-Kirkham-Flowers (HKF) equation of state. The thermodynamic properties of the solubility-controlling minerals were accepted from the internally consistent dataset of Holland and Powell (1998; updated Thermocalc dataset ds55). The association equilibria of important hydroxide, chloride, carbonate and silicate complexes were critically reviewed, and their standard state properties and HKF parameters were independently derived from conductance, potentiometric and, in a few cases, solubility measurements. In a global optimization of standard Gibbs energies of aqueous species, performed with the GEMSFITS code (Miron and others, 2015), the association equilibria for aqueous complexes were always maintained. The new thermodynamic dataset reproduces all available fluidmineral phase equilibria and mineral solubility data in the system Ca-Mg-Na-K-Al-Si-OH-C-Cl with good accuracy over wide ranges in temperature (25-800 °C), pressure (1 bar - 5 kbar) and composition (salt concentrations up to 5 molal). This makes it possible to perform geochemical and reactive transport modeling of processes in natural and engineered georeservoirs over wide ranges of conditions with an unprecedented level of accuracy and reliability and to address processes of fluid flow and fluid-rock interaction in the Earth's crust from a new perspective. Using the same strategy as applied in the present study, the internally consistent thermodynamic dataset can be further extended with additional major and trace elements, and the data refinement process can be repeated when new experimental data or next-generation equation of state or activity models for aqueous solutions become available.}, + author = {G.D. Miron and T. Wagner and D.A. Kulik and B. Lothenbach}, + doi = {10.2475/07.2017.01}, + issn = {00029599}, + issue = {7}, + journal = {American Journal of Science}, + keywords = {Aqueous species,Experimental data evaluation,Fluid-rock interaction,Hydrothermal geochemical modeling,Optimization,Thermodynamic database}, + pages = {755-806}, + title = {An internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl to 800 °c and 5 kbar}, + volume = {317}, + year = {2017}, +} +@article{JOHNSON1992, +title = {SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C}, +journal = {Computers & Geosciences}, +volume = {18}, +number = {7}, +pages = {899-947}, +year = {1992}, +issn = {0098-3004}, +doi = {10.1016/0098-3004(92)90029-Q}, +url = {https://www.sciencedirect.com/science/article/pii/009830049290029Q}, +author = {James W. Johnson and Eric H. Oelkers and Harold C. Helgeson}, +keywords = {SUPCRT92, Equations of state, Standard molal thermodynamic properties, Chemical equilibrium, Minerals, Gases, Aqueous species, HO, Thermodynamics, Geochemistry}, +abstract = {Recent advances in theoretical geochemistry permit calculation of the standard molal thermodynamic properties of a wide variety of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. The SUPCRT92 software package facilitates practical application of these recent theories, equations, and data to define equilibrium constraints on geochemical processes in a wide variety of geologic systems. The SUPCRT92 package is composed of three interactive FORTRAN 77 programs, SUPCRT92, MPRONS92, and CPRONS92, and a sequential-access thermodynamic database, SPRONS92.DAT. The SUPCRT92 program reads or permits user-generation of its two input files, CON and RXN, retrieves data from the direct-access equivalent of SPRONS92.DAT, calculates the standard molal Gibbs free energy, enthalpy, entropy, heat capacity, and volume of each reaction specified on the RXN file through a range of conditions specified on the CON file, and writes the calculated reaction properties to the output TAB file and, optionally, to PLT files that facilitate their graphical depiction. Calculations can be performed along the liquid side of the H2O vaporization boundary by specifying either temperature (T) or pressure (P), and in the single-phase regions of fluid H2O by specifying either T and P, T and H2O density, T and log K, or P and log K. SPRONS92.DAT, which contains standard molal thermodynamic properties at 25°C and 1 bar, equation-of-state parameters, heat capacity coefficients, and phase transition data for approximately 500 minerals, gases, and aqueous species, can be augmented or otherwise modified using MPRONS92, and converted to its direct-access equivalent using CPRONS92.} +} +@article{ZIMMER2016, +title = {SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92}, +journal = {Computers & Geosciences}, +volume = {90}, +pages = {97-111}, +year = {2016}, +issn = {0098-3004}, +doi = {10.1016/j.cageo.2016.02.013}, +url = {https://www.sciencedirect.com/science/article/pii/S0098300416300371}, +author = {Kurt Zimmer and Yilun Zhang and Peng Lu and Yanyan Chen and Guanru Zhang and Mehmet Dalkilic and Chen Zhu}, +keywords = {SUPCRT92, Arsenic, Geological carbon sequestration, Thermodynamic properties, Geochemical modeling, Chemical equilibrium}, +abstract = {The computer-enabled thermodynamic database associated with SUPCRT92 (Johnson et al., 1992) enables the calculation of the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions for a wide range of temperatures and pressures. However, new data on the thermodynamic properties of both aqueous species and minerals have become available since the database’s initial release in 1992 and its subsequent updates. In light of these developments, we have expanded SUPCRT92’s thermodynamic dataset and have modified the accompanying computer code for thermodynamic calculations by using newly available properties. The modifications in our new version include: (1) updating the standard state thermodynamic properties for mineral end-members with properties from Holland and Powell (2011) to improve the study of metamorphic petrology and economic geology; (2) adding As-acid, As-metal aqueous species, and As-bearing minerals to improve the study of environmental geology; (3) updating properties for Al-bearing species, SiO2°(aq) and HSiO3-, boehmite, gibbsite, and dawsonite for modeling geological carbon sequestration. The new thermodynamic dataset and the modified SUPCRT92 program were implemented in a software package called SUPCRTBL, which is available online at www.indiana.edu/~hydrogeo/supcrtbl.html.} +} +@article{AWOLAYO2022, +title = {PyGeochemCalc: A Python package for geochemical thermodynamic calculations from ambient to deep Earth conditions}, +journal = {Chemical Geology}, +volume = {606}, +pages = {120984}, +year = {2022}, +issn = {0009-2541}, +doi = {10.1016/j.chemgeo.2022.120984}, +url = {https://www.sciencedirect.com/science/article/pii/S0009254122002789}, +author = {Adedapo N. Awolayo and Benjamin M. Tutolo}, +keywords = {Helgeson-Kirkham-Flowers equation of state, LogK-density extrapolation, Solid-solutions, IAPWS95 equation of state, DEW model, Thermodynamic properties, Variable-chemistry clays, Geochemical modeling, Thermodynamic database}, +abstract = {Over the past half century, techniques for evaluating the thermodynamics of water-rock interactions from ambient to deep Earth conditions have advanced incredibly and in myriad directions. As these tools for analyzing the thermodynamic states of geochemical species as a function of temperature, pressure, and composition have multiplied, so too have the possibilities for tracing water-rock interaction from ambient to deep conditions on Earth and beyond. Yet, the aqueous geochemical community still lacks a centralized platform for incorporating this constantly updating thermodynamic data into aqueous geochemical models. Here, we introduce PyGeochemCalc (PyGCC), a community-driven, open-source Python package that meets this need by providing a consolidated set of functions for calculating the thermodynamic properties of gas, aqueous, and mineral (including solid solutions and variable-formula clays) species, as well as reactions amongst these species, over a broad range of temperature and pressure conditions. The PyGCC package utilizes the revised Helgeson-Kirkham-Flowers (HKF) equation of state, and newly proposed density-based extrapolations based upon it, to calculate the thermodynamic properties of aqueous species; a choice of equations of state and electrostatic models (including the Deep Earth Water (DEW) model) to calculate thermodynamic and dielectric properties of water; and heat capacity functions to calculate thermodynamic properties of minerals and gases. Additionally, PyGCC integrates these functions to generate thermodynamic databases for various geochemical programs, including the Geochemist's Workbench (GWB), EQ3/6, TOUGHREACT, and PFLOTRAN, with straightforward possibilities for extension to other simulators. The various functions in the package can also be modularly utilized, and introduced into other modeling tools, as desired. In this paper, we detail the capabilities of PyGCC and the equations it relies on for calculating thermodynamic properties of water, aqueous species, and gases. Although the fundamental thermodynamic data necessary for state-of-the-science PyGCC calculations will necessarily evolve as our collective geochemical knowledge base expands, PyGCC's open source, community-driven design will allow for users to keep pace via rapid implementation of these advancements in this modern geochemical tool.} +} +@ARTICLE{Dick2019, +AUTHOR={Dick, Jeffrey M.}, +TITLE={CHNOSZ: Thermodynamic Calculations and Diagrams for Geochemistry}, +JOURNAL={Frontiers in Earth Science}, +VOLUME={7}, +YEAR={2019}, +URL={https://www.frontiersin.org/articles/10.3389/feart.2019.00180}, +DOI={10.3389/feart.2019.00180}, +ISSN={2296-6463}, +ABSTRACT={Thermodynamic calculations are an essential tool for many areas of geochemistry. Thermodynamics provides a framework for the quantitative description and prediction of the solubilities and relative stabilities of different minerals, metal transport in hydrothermal fluids, and geobiochemical reactions that drive microbial metabolism and contribute to the compositional variation of proteins. Accessible and up-to-date software and databases are important for the development and reproducible application of thermodynamic models. CHNOSZ is a free package for R that has been frequently updated since its first release in 2008. The package provides an integrated set of functions to calculate the standard molal thermodynamic properties and chemical affinities of reactions. It uses the graphical capabilities of R to produce high-quality chemical activity diagrams for aqueous species and predominance diagrams including Eh-pH (Pourbaix) and logfO2 -T diagrams. The extensive database utilizes the well-known revised Helgeson-Kirkham-Flowers (HKF) equations for aqueous species. Recent additions to the database include the Berman equations for minerals, the Deep Earth Water model, which extends the applicability of the HKF equations to higher pressures, and the Akinfiev-Diamond model for aqueous nonelectrolytes. The package comes with many types of documentation, including technical help pages with short code examples, longer code demos, and in-depth vignettes combining code, text and graphics, giving users a wide array of starting points for their own research. This paper provides a concise overview of the package and illustrates the new features using examples selected from the literature. Although the package does not provide a complete chemical speciation model, numerous examples from the package demonstrate the ease of reproducing selected published calculations and sometimes identifying issues with existing datasets and models.} +} +@inproceedings{Bastrakov2019, +author = {Bastrakov, Evgeniy and Dick, Jeffrey}, +year = {2019}, +month = {08}, +pages = {}, +title = {GeoTPD — an interactive online tool for geochemical modelling for the broad geological community. Goldschmidt Abstracts, 2019} +} +@misc{Chan2021, + doi = {10.48550/ARXIV.2105.14096}, + url = {https://arxiv.org/abs/2105.14096}, + author = {Chan, Andrew and Daswani, Mohit Melwani and Vance, Steven}, + keywords = {Geophysics (physics.geo-ph), FOS: Physical sciences, FOS: Physical sciences}, + title = {DEWPython: A Python Implementation of the Deep Earth Water Model and Application to Ocean Worlds}, + publisher = {arXiv}, + year = {2021}, + copyright = {Creative Commons Attribution Non Commercial No Derivatives 4.0 International} +} +@software{megawatsoft, title={Thermodynamic properties of fluids}, year={2022}, url={https://www.megawatsoft.com/}, author = {megawatsoft}, journal={Thermodynamic Properties of Fluids}} +@Article{Huber2022, +author={Huber, Marcia L. +and Lemmon, Eric W. +and Bell, Ian H. +and McLinden, Mark O.}, +title={The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids}, +journal={Industrial {\&} Engineering Chemistry Research}, +year={2022}, +month={Oct}, +day={26}, +publisher={American Chemical Society}, +volume={61}, +number={42}, +pages={15449-15472}, +issn={0888-5885}, +doi={10.1021/acs.iecr.2c01427}, +url={https://doi.org/10.1021/acs.iecr.2c01427} +} +@article{Bell2014, + author = {Bell, Ian H. and Wronski, Jorrit and Quoilin, Sylvain and Lemort, Vincent}, + title = {Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and + the Open-Source Thermophysical Property Library CoolProp}, + journal = {Industrial \& Engineering Chemistry Research}, + volume = {53}, + number = {6}, + pages = {2498--2508}, + year = {2014}, + doi = {10.1021/ie4033999}, + URL = {http://pubs.acs.org/doi/abs/10.1021/ie4033999}, + eprint = {http://pubs.acs.org/doi/pdf/10.1021/ie4033999} + } +@article{Martin2022, doi = {10.21105/joss.04757}, url = {https://doi.org/10.21105/joss.04757}, year = {2022}, publisher = {The Open Journal}, volume = {7}, number = {79}, pages = {4757}, author = {Christopher Martin and Joseph Ranalli and Jacob Moore}, title = {PYroMat: A Python package for thermodynamic properties}, journal = {Journal of Open Source Software} } +@software{bell, +author={Caleb Bell and Contributors}, +year = {2021}, +title={Thermo: Chemical properties component of Chemical Engineering Design Library (ChEDL)}, +url = {https://github.com/CalebBell/thermo} +} +@software{cantera, + author = "David G. Goodwin and Harry K. Moffat and Ingmar Schoegl and Raymond L. + Speth and Bryan W. Weber", + title = "Cantera: An Object-oriented Software Toolkit for Chemical + Kinetics, Thermodynamics, and Transport Processes", + year = 2022, + note = "Version 2.6.0", + howpublished = "\url{https://www.cantera.org}", + doi = {10.5281/zenodo.6387882} +} +@software{thermoengine, + author = {Thermoengine, Code Contributors To}, + title = {{ThermoEngine: Software for Model Building and + Computational Thermodynamics Supporting + Applications in the Earth Sciences}}, + month = may, + year = 2022, + publisher = {Zenodo}, + version = {1.0.0}, + doi = {10.5281/zenodo.6527840}, + url = {https://doi.org/10.5281/zenodo.6527840} +} + + + + diff --git a/paper/paper.ipynb b/paper/paper.ipynb new file mode 100644 index 0000000..b848523 --- /dev/null +++ b/paper/paper.ipynb @@ -0,0 +1,330 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "18f66811-a4c2-4a8a-8817-6b6a57ab1c8b", + "metadata": {}, + "outputs": [], + "source": [ + "import thermofun as fun\n", + "import thermohubclient as client\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "8ce44077-ed07-45fa-8db8-80ba23725e43", + "metadata": {}, + "outputs": [], + "source": [ + "#dbc = client.DatabaseClient()\n", + "#dbc.saveDatabase('aq17')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c6e0d78d-57f8-4c87-9471-35d340237c45", + "metadata": {}, + "outputs": [], + "source": [ + "batch = fun.ThermoBatch('aq17-thermofun.json')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "7be922d2-689a-488a-9477-4a220ad4961c", + "metadata": {}, + "outputs": [], + "source": [ + "batch.setPropertiesUnits([\"temperature\", \"pressure\"],[\"degC\",\"bar\"])\n", + "batch.setPropertiesDigits([\"heat_capacity_cp\",\"entropy\", \"volume\", \"temperature\", \"pressure\", \"logKr\"], [4, 4, 4, 0, 2, 3])\n", + "substances = [\"Na+\", \"Ca+2\", \"SiO2@\", \"CO3-2\", 'OH-']\n", + "lables = [\"Na$^{+}$\", \"Ca$^{2+}$\", \"SiO$_{2(aq)}$\", \"CO$_{3}^{2-}$\", 'OH$^-$']\n", + "properties = [\"heat_capacity_cp\"]\n", + "batch.setPressureIncrement(0,0,0)\n", + "batch.setTemperatureIncrement(0,250, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "1c87fe09-31b0-4396-a070-533628fb85cd", + "metadata": {}, + "outputs": [], + "source": [ + "batch.thermoPropertiesSubstance(substances, properties).toCSV(\"results.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "537f8e81-0b21-43d8-8c3d-c2cdbe65d2a0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAIrCAYAAADmwjP+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADpAUlEQVR4nOydd3hUVfrHP2daMmlAQkJvAQHpRUFQmlIFxLaKgoiKBbu76xb7qlvc3d+uHUV0kbKIa0OKVAVUFLEABgSkdwgJpE4y7fz+mExMYJLcO3NnJpOcz/PME7hz7rlnvnNm7jvnvEVIKVEoFAqFQqGoi5iiPQCFQqFQKBSKcKEMHYVCoVAoFHUWZegoFAqFQqGosyhDR6FQKBQKRZ1FGToKhUKhUCjqLJZoD0ChHyGECpVTKBQKheIspJTi7GNqRUehUCgUCkWdRRk6MYyU0tDH3LlzDe+zPj6UjkrH2vZQWioda9vDaC2rQ9TUQFH78G9dqfdOoVAoFAoQwrdjJdXWlaI63nvvvWgPoU6gdDQGpaNxKC2NQeloHJHUUhk6inJyc3OjPYQ6gdLRGJSOxqG0NAalo3FEUktl6CgUCoVCoaizKB+dGCRcPjp5eXk0aNDA0D7rI0pHY1A6GofS0hiUjsZhtJbKR0ehiaysrGgPoU6gdDQGpaNxKC2NQeloHJHUUhk6inK2bdsW7SHUCZSOxqB0NA6lpTEoHY0jkloqQ0ehUCgUCkWdRRk6inKGDBkS7SHUCZSOxqB0NA6lpTEoHY0jkloqQ0dRjsWiSp8ZgdLRGJSOxqG0NAalo3FEUktl6CjKWbNmTbSHUCdQOhqD0tE4lJbGoHQ0jkhqqQwdhUKhUCgUdRZl6CjK6dixY7SHUCdQOhqD0tE4lJbGoHQ0jkhqqRIGxiDhShhYVFREYmKioX3WR5SOxqB0NA6lpTEoHY3DaC1VwkCFJubPnx/tIdQJlI7GoHQ0jljW0uF2UOopxSu9lHpKcbgdEe/Df77dbo/aGOoakZyTyoVcoVAoFGHD4XZgEiasJisurwuv9GK32Gs8r8RdQpGriDnb57B4z2JyS3JJjU9lfPvx3NzlZhKsCcRb4sPaR20Yg59gdVQoQ0dRgZSUlGgPoU6gdDQGpaNxBKtlKDfXUG7wJe4StuVsY/rq6ZVWPrId2byV9RYLdixgxvAZdE3rGrY+asMYQtXxbGqTsRTJz7fy0YlBwuWjo1AoFGDMSkigG7wfu8Ve7Q0+15HL6A9GV7u9Y7fYWX71clLtqQGfD7WP2jCGUHWs2I9RxlJtRfnoKDTxzjvvRHsIdQKlozEoHUOn3C/Eq90vxH9zHfPBGN7KeotsRzYe6SlfhRj9wWi25WyjxF1SZR/FruIqb87+cU1fPZ1iV3HA597e/naNY3W4HczZPifgOPT2kePI4UD+Afbl7WPvmb1kF2frOv9MyRlOOU6RV5pHobMQh9tBsas45NcRio5+jHg/K17PKD+jSH6+1daVopz8/PxoD6FOEIqODqcHkwmsZhMujxevF+w2c8ycb+QYrrvuOkrdnqiMIdYJ5Re81pvr8quXB+xDr5Ex6fxJHC86TrG7mCJXERc1u4jFexZrep2L9y7m1m63cv2S63F6nDi9TlweF4uvWqyrj6ldpzLuw3Hlx76Y+IXu84e9O6zScb193Nb9Nv7y5V+wW+zYLXaGtxnOygMrNet4V8+7Ar4fob6fEJ4VoUjeb5Sho1AYhP/mOm3aNN036BKXh8JSN7M+38sH3x8hp8hJWqKNq/u0YNqgTJLiLMRbq+4r2ufXlTH4qRUGXwhOvMH6heg1UqZ0mcKx4mPkl+aT58wjvzSfsZljdRsJNy67sfzY5ps2k1uSq+n8XEcuCdYE9ubtrXQ8yZqkq48kWxKtk1tjEiaEEEGdnxqfikd6cHvdeLwe3X3YLXY+3P1h+bFbut3Ckj1LNJ3vN/h+vfbXNIxrSIO4BjSMa8iwVsNYsm9JSMaSEX5G0Ub56MQgKo9OeAj2xmTEDX7r4TPc/NYmHC7POc/brWbevrUfPVo2CNhPtM+vK2Pw9xFtYyvUX8/B+IV4pZe80jzsFjuXf3A52Y7sal8jQEZCBu+Pf59BCwdVOr75ps30ndcXjzz3PTgbi7CwafImJi+bTII1gURLIn8d9Feu+OgKzWNYctUSjhQcwWa2YTPbsJqsJFmTGPPBGM19LLt6GXHmuPJjpZ5Sxrwf/PnB9LH4ysV8su8THG4HDreD27rfRp+5fXTp2Htu70rHv5j4BVctukq7llcu4aTjJE0Tm5a/HiN8lSoSLofo6nx01IqOopxNmzYxdOjQaA8jKEL59RzKjamqm+vJglJeW7eXtzccqPHmWljqrvLmDOBwebj5rW/4/PfDAvYR7fPryhiMeC/9ffzfyl1c168pK389kOS4eApKS1j903Hunvc9vx3VqWqDz11C1qks7l5zd1C/nvWsyLy97W16ZPTgL1//hdySXNzSrXs1JcmWROfUzjSwNSAlLoUUWwolnhJS41M13VxT7b5VkHfG/eKv4XA7GN9+PG9lvVXj+eMzxyMQdGjU4ZzXp6ePs380eqU3pPOD6cMkTFzT8ZryY6WeUl06urwuXrr0Jc6UniGvNI8zpWdItiXrej+tZmv5Fl5qfCpPDniSzSc3h7x9BtF1iFbOyIpydu3aFe0h6KbE5eFUYSkvrNnFoOc+47xHP2HQc5/xwppdnCospaSKm17F87cePsOg5z7jtXV7OVlQiscry29ug577jK2H86rsR+vNtbDUHfh5p4dZn++t8vyK/bz5+T4cTjcujxeH00N+iYu8Yqeu8w+fLmbDnlN8ufsUn/+czcHcImat13b+rM/3si+7iBXbjrNy23FWbT/Bqu0n2H9Kex9vfr6Po2ccbDl0hqwjeWw/ms/J/BLdGpzzXBA6nk2o76W/j0Nn8vm/ie3Z7/6QqxePo++8Ply9eBwHPB/xrxvac+hMXpV9FLmKzjFyKo2hzJ+iyFWEx+vhRNEJNp/czPJ9y5mdNRuP16N522jJviX0zejLScdJ3NJNsi2ZIlcRqfE1/yqHX4yU/43/H7NGzeJfQ//FUwOfwiRMjG8/XlMfgYwEu8XOzV1urvFXvt1iZ0rXKQFvjqH2URvG4DeUtOA3+Ia2GsqVHa7k5q4380CfB3B5Xbrez2JXMS2SWmARFnJLcunbpC9L9mrfPoPAOw1GOkQHg1rRUcQs0V5N0XNznfX5XsZ2b8aq7ScocfsMFYfLw5Pju/DB90c0vd4PfjjMHYMz6f3EivJjm58Yofv8G9/YWPn8H7Sd/+EPR7hzcHvunPtdpeN6+vCPYcIrX1Y+X+dr6PmnT7CYBRaTwGo28elvhurqY/qw9jz9wY/YzAKbxcTY7s34JOu4ZkNp6sVtKXZ6iLOYiLOYyufGodN5NGmczdVLrj9nRWb29v+wcNc7/HvIyxw6nUiiLRW77ZevYP+vYq2rMe0btuexLx+r9NxNXW7S9Qs+JS6FldesJM2ehs1sC3klBH65wS/YsaDG7Y6qjIQEawIzhs+oMaw6wZJQZf+h9hHtMRiho95VJZvZxvJrluOVXnIcObpXhCwmCwMXDCSzYSYdGnagfYP29ErvRfPk5iE7RIeCMnQU5Vx22WVRu3YwW0+hblXoNVSGdMzgP1/uI7/ERb7DzYI7LtJ8c/UbCS9+urvS8eeu6UFOkVNTHzmFTpLjLZhNAqtZYDWZSI636jvfbuGizFRMQmASQvf5KXYrw89vAvhucFIS1Bi6t2iAxyvxSqn//HgLTo8XZ4W3LSneoquPBKuZBd8cLD92z7AOfFhmrPVq1ZCbBjbnss5NKm07zd1wlC2H88qNrf7/XFOp3x+fGklGA8FVi++t9gv9oXX38uH4pXglPLnoRzzmXEo4zp9GjtO8GrN031LeH/8+qfGpNEtsRrPEZjRNbKp728jlcdEsqVn5MbvFzpQuUzTdXG/qEvjmChBvsfPKpTO459Oqb/CvXDqDeHPg1Y54Szznp3bhk6s/Yc62uSzZt5hcRy6p9lTGtRvPlK5TsFvs1d4U4y3xdE3ryvKrl/u2S/b+0sf4TF8fCZaqt0tCPd+IPkI1toI1lkzCRHpCuu7tsyJXEYWuQrZmb2Vr9lYAnr34WVYdXGXI9lewKENHUY7bXfWSfLgI1j9G71bFzRe35adjvm2Sk/mlnCgo4fejO+s2VFZuP1F+LClO3801xW7lweHnEW81Yy97lLo9pCXaOFlQWmMfaUk23F7Jnr9cXn5M7/kej+SdOwYEfb7b42XWzRdUOh7MGBbfd0nwY/BKdjwzGrdX4vZ4cXkkLo9XVx+lbi9/vqobTrcXl8dLSryVPIeLv//qfAZ2SGLhrnlcvXhJuR/B2HbjeOWmyWzYXcgTH+4k2W6hbVoCpW6v7+HyYDa7eWfnXE1f6O/smkv3xt14//TvEMI3h5+zXKt7NSZn+yMU28wcs/nm0/SegrHtxjF7+39q7GNsu3G4vB62HzxNYpwFu9VMSryFgzke/j3kZR5aF9hgs1vs/HvIyxw85SahibvSqpSf4lITB4+n8sG4JSz8eT7L9i0pv8Ff3m4cEztO5us9hbRLNpFgPXdsJS4PWYeL+eeKXVzX7wreG3cHyXFxFJSWsvqn49z19g4eHtWZHi1t1TuHSysmmcSQjBuY2uUOkuLiKCwtZd+pQkzeJJDV/5iKt8QTb4nnzp53Mr3XdKzCiku6kFJqvhmf00eZE66WPowwtkIxlvSuCMWZ41h73Vr2nNnD7jO72XNmD5e2vpQXvn+hxvPBt/01vdd0TW31oAwdRTnr1q2jU6dOEbteKFtPJhO6tztu+c+mSsf/dEU33YbKa5P7kBJvJcVu1X1zdXu8PDi8Y6XjDqeHq/u04LV1e6s48xeu7t3yXKdJL7rO9xp8fjTGIKU85+aqV0eTgEn925QfK3V7+MevupCaeoKrl0ysdtvp79d1weORrH24ct6UUncpS/dp82dYtm8pt3W7FSE8JJrTSDY3xeF26F6NKSx1V/L3SbTaub7jZBbueqfGX/DXd5xMvDmeq179rPz45idGcPe8H3loZLtqjZQvfy7g+VU/svLBIbyxfi+JcRYS48wkxVno1DSZeV8f4LV1e+nZsgE3DZzAe+PurGSoTJ+zk62H85g+pJT7L+twzvtZcbX2m/25wE/nvIaanNONiMIrx2vzebQKQFqQ3uqbB6Kir87ZEVrVEYqh5D8/WGMpmBWheEs8afY0+jXrB/iMJV0O0aYAlm+IKENHETX0bD0JAXtOFrE7u5DdJwt54LLzdG+XDDqvMenJcTRJiadJclxQqxmju/2yzK/35hrISLDbzEwblMnbGw5UuzqVYDMzbVC7c24I0T6/roxBSujXPpErFtW87fTxhGU4PU725O9j1+ld5Y/Xh7+ue0Vm440bSbD6fkkXOYt1rca4vR62PDmSEpeHYqeHYqcbp9vL9/sdmlZkvttfzJDzGtKjZQPf+aVukuOtnCwo5Xf/+6lGI8ViEsRbTfx5WWUjpKLP1ZbDeWx5N49Ahgr4foTcPaw9r3y2m5R4Cyl2K71aNWTBNwc1r9YGMpTAmEg+o/IyGUGwhhKEZiyFun3md4jWEz2m9/XVhDJ0FOV07do1YtfSs/X0xvq9dMhI4uH3tpYfv/Xitrq3S+be1v+cMYRiqBhxgwbfFtjbt/bj5re+CdhPgs3M7Fv6kRhXO8+vbWP4v5U7ua5f03N8bP636QS/GdkpYB9SOFmgcdvpvzvmBHQELnQV6v5C9xs5AGYRx6Tzp2hajZl0/k2YhY1Eu4UG9l9+ATucHnYcK6atu3GNKzIHsh2M6Cz4+N7A24g1GSlpSTZKXF5uu6QdRaVuCkrdFJUZS3p+hNitZv6xYmf5Mb3O6fde2oFPfjxGaqKNtCQbqYlxxFtNura2AxlLRgQ7VLpWLcjWHYyxFOr2mRGh+qGiEgbGIOFKGJiXl0eDBg10nxfMB7jU7WHQc59pMlSapMSx/MHBXPPqBtpnJNEhI4mre7fg/e8PazJSpg9pX+WvvlOFpQx67rMaDZXPfzeMtKRzvxh8X4Z5Nd6ga/oy9P9yfPPzfXzww2FyCp2kJdm4undLpg1qR6LGrMLROr+2jKHY5aDYXcycbXNYsveXXB3jMsdzc9cp2C0JJFjPdYDVm9zt/fHvc/Pym+nYqGP5o0d6D2Zvm63pC/22brcFdLrMKykm69Q2Hlp3TzWrMa/QvXFXUuID/4L2z+mOTZJ8TtXnN620IjN3w1F2nywMOKcdTg8vrNkV0udK72d7zW+G8spnu8l3uMhzuHhhYm86PvYJHm/N328Wk2DHM6Pp8OgnlY5vfmIEI/+9XvMY1j88jLiz5paW7wa71cznvx9G4wDfDX5q06pQqJyd7E/r9pnmpIPXLNccDn821SUMVIZODBIuQ2fmzJnccccdmtsH8wHOc7j4ak8OI7o00fVltuvZMZhMledvqEaK/zWEaqgYcYP243B6MIkKRmMAf5TafL6RY7CYBW6P1Hy+3krPXull75m9bMnewlXnXaUrC+13N32HSZybhizUL/QSl4fc4iK8ooSFuwKvxggZR2pCYg2+KcHP6VA/V6EaS3oNpdW/HsKv391CbpGT3CInOYWl/PDESH3G0rOjmfTGRpo2iKdpSjwTejVn0eajvL4+tB9ShvoJxTBGVWGvDmXo1DFqg6Gj9QPcrXkKWw7n+RLU7T7Fj4fP4JXG/OKqLaspfoK9QSsCo9fw1mpkLL5yMW/++CaL9y6m0FUI6E+VHyjlPxjzhV7i8lDi8rAv5wztGidVihRql9aQeKs5rKtrRnyuQjGWDFlVcnkY9HcdK8YPDKb3M6vKj+n9flr3cGA/H6NWhaB2bH2FQom7hGJXcdDRYzWhDJ06RrgMnffee49rr71WU1utH+CVDw3m3v9+z5bDeYDv11Of1o14dOz5fJJ1LOStp9q0muJHj46KcylfHi8L5dVSC8fhdvDaltc0bRvd0vUWMhtm8viXj9M0sSk903syrfs0Ptn3SUjbTn6M+kI3cnVN9+qYAduQsbSqdOslbdl5vJDj+SWcyC/hriHtdW+fXfavdbROTSh/jOzShIXfHjLsO64ubH3BL59vi7Dglm5dofrVoQydOka4DB2t6PkSuXNwJr1bN+SbfacZdF5j+rVLLXcGNWLrqeKYjDBSFNEjlFo4wRRQLHAW0CSxSflxo/0IgvVnqE2E8rmK5VUl3T6EZ60IgZGr1mrrSwvVGTqq1pWinHnz5mlqpyeHzUebjzCsUwZPjO/CsM4ZlSJe/FEy9io+oFoibfzYbWbirGZMJkGc1RxVI0erjopfCKYWjtvrZvPJzbyy+RUsJouu0O54S3wlIwd+CaOtavVIS8r/s9vHmeMwCRNx5rioGjnBzslQPlfxVjONk+K4/7LzWP/wMHY9O4b1Dw/j/ss6kJYUV+2NOd5qpkfLBnz++2FMH9KeJilxWEyCJilxTB/Sns9/N6zGm3so3y/+3E5auLp3S6wWwepfD+atqRfw5Pgu3HJxW93RZxaziWU/HmP3yQJcHl+iHiPqr9VWIvk9qX7yKsopLi7W1M5qNun6AFvNge3pil9mRmw91Ra06qj4hWJXsaZaOMuuXsYXR75g6d6lbDy2kQJXAQCTz58ccq4OI7LQ1laiOScr+pHEmbR/lv2+SPdfdh4PDj9P96pSKN8velNHJMVZ6ZBhpUNGcvlzevN05Ttc3D3/ewCsZsHLN/Th+4OnQ84nVKltLfLzieScVIaOonzyT5s2jVK3p8rJn+dwMe/rA0zu31rXB9jl8Vb5BRfql5ki9nG4Hby9/W1ttXC2zSGzYSarD64GoG1KWwY0H0BeaZ4huTpCzUKrMJ5gDSUI7fsl1NxOejJ+X9W7BftOFXJp5wx2nSjg8GkH/TNTeXxRlqbX+cEPh3lw+HlVPl/X/Hz0onx0YhCjfHS0Tv5ThaW89cU+5n51gIJSN//8VQ92nShkZoihl3UVp9OJzWaL9jBiBr3+NR9N+Ijl+5czsPlAWiT9sr0QiVwdsYqak8ERqlN2sH5CRaVu7DYz5z2q3SF657Nj+PCHI/Ro2YD26UmYy9Jx1FY/H6PnpHJGroUIIUzAA8CdQFsgG3gXeEJKWVTDuSEbOlom/+xbL8SEYPKbGyl1+/aMB7ZP4/ejO9Oikd0wR+K6xurVqxk+fHi0hxE1znbCrSlqyiu9huSwiUSujlilvs/JUAklei1Yp+pQHKITbWa6tmjAmG5Nubx7M4b+Y60hIe5GYvScVM7ItZN/A/8CtgP3Af8D7gcWlxlBYUWLk9vUtzbRtEE8nZsmM/z8Jnxw90D+e/tF9GzV0FBH4rrG3r01r3TVRUrcJeQ4cnhty2uMeX8Mfeb2Ycz7Y3hty2vkOnIrORIDFDoLWbxnMUWuIs0rLH7/mkBU9LG5rdttZCRkYBEWMhIyuK3bbSy/Znm9NHKg/s5Jo/A7Zb85a5Yup+xQnKr1OkQfPu1gTLemtGhop8jp4Zt9uSTHW3jzi32a/Xwczuqdmh1Oj8+9QUpK3R4czpp/nFRFJOdk/bsL1QKEEF3xGTcfSCmvqXB8H/AiMBH4b7iur6fO1PyvDzBzygU0Sal8c6irjsSK4KhqNcUfNbVgxwJmDJ9B59TOfHnkS5bvX876w+sp9ZTy7MXPMjZzLLO3za7xOjXVwlE+NoraRrB+QnodotOS4pgxuS/g2zLbevgM/dql8fflazWNszo/n1j38VFbV1FACPEs8CgwWEr5eYXj8UAOsE5KeXk154e0daV3STRQfoeKqBw2lTlw4ABt2rSJ9jAiilb/mA+v+JDfrv8tWaeyEAj6NOnDpM6T6NOkD2M+GKP8a8JEfZyT4SDSOoaaT8grpS4/nx3Pjua5T3ZwUWYaF7ZLJSXeGjYfH6O1rG7rqv7ejaLLhYAX+KbiQSlliRBic9nzYcOo8HA/oURF1EUKCgqiPYSIoidqauHOhdzR/Q4OFRxiZNuRNE1sCvhWhGYMn1Gjf43WHDaKytS3ORkuIq1jqCvnLo9XV4RsgcPNG5/v443P92ESvmiw347qpCmXz+e/D1wGoyoiqaUydKJDc+CUlDLQ7DsCDBRC2KSUlawRIcQdQHnxn5kzZwLQr18/0tPTWbp0KQCtW7dm5MiRzJo1CwCbzcbUqVP56KOPOHnyJJNuulnX5C8udfLR+/9j8uTJvPfee+Tm+hKzXX/99WRlZbFt2zYAhgwZgsViYc2aNQB07NiRCy+8kPnz5wOQkpLCxIkTeeedd8jPzwdg0qRJbNq0iV27dgFw2WWX4Xa7WbduHQBdu3alW7duLFy4EIDU1FSuvfZa5s2bV56HYerUqaxfv758z3fUqFEUFBSwYcMGAHr27EmHDh14//33AcjIyODKK69k9uzZOJ0+iadNm8bKlSs5ePAgAGPHjiU7O5tvvvHZon379qVly5YsWrTI9wY2b864ceOYNWsWXq8Xk8nEtGnTWLJkCVu3bmXDhg1MmDCBw4cP89133wX1PgFcc8017N69my1btgAwcOBAkpOTWbFiBQCZmZkMHjyY2bNnA5CQkBDx92nSlEks3rO4xrkEsHTfUu7sdic/L/+Z0qRSsvZlsWHDBoQQXH7F5Xxy9Se+yuMVilmOazeOSZ0mkX00G1u6jeXLlxvyPh09ehSgXrxPH3/8MRs2bIjJz1Ntep9OnTpFq1atIv691759e+6/bCj3Dm1HfJwVR6kLIUxs2/oDmzdvrvJ96ty1O1f1bs7r6/dRE1f1akFOfhG/6pLMV3tOcbTUxoD2afzny/2a3Bxmrd/LuHZm0lMbaHqf/HPSqPepOtTWVRQQQuwBrFLK1gGemwPcBDSSUp6p4vyQtq6MKJqnqBq9xShjHaOipvyEqxZOfaa+zclwEYs6BhviXlzmmDz0H2sNc3OACkkLTQKXVxqWtFBFXdU+ioGq4vjiK7QJC34nt6oipvz4ndyUkaOPnj17RnsIQeNwOyj1lOKVXko9pdVuR3m8Hj47+JlhUVN+/KUTvt30bdRLJ9QVYnlO1iZiUcdgI2QTbL4tMb1lLL7Zl4u7rIRFRUpcHk4VlvLCml0Meu4zzntsOYOe+4wX1uziVGEpJTWsGoWCuoNFh6NAFyFEXIDtqxb4trW0za4gCTXrp6JqOnToEO0h6EZPQc1CZyEf7f6I+T/N53DhYUOjpioSizrWVpSWxhCLOobi56PXxyff4eK617+igd3K0E7pXNo5gyEd04m3mgM6NJ8sKOW1dXt5e8OBsCYtVFtXUUBD1NV6KeWYas43NDOyCg8vw1nsq1hqtoHH6UtkYdPh/Fp2vjTZEN4gzjdiDEGgNdFeu5R2zPxxJh/t/ogily+nZYukFtzX+z4uanaR4VFTsbhNUFtRWhpDrOuoN0JWr5vDZV0y+N3/trL31C85b3u3bsjLN/Rh+L/WhTVpoYq6qn0sBB4BHgQ+r3D8diABmB+JQZyd30Fv1s9aRSgGgssBpYXw1cuw9R0oyobEdOgxEQbeC7YksFad2ffs84Xe840YQwg6aC2o+cEVH7AlewtFriIuaHIBk8+fzNBWQzGbzCpqSqGIAfRGyAaTy+fT3w5lb3Yhn+44yac7TnJNnxa8/ZU2h2atxUn1olZ0ooQQ4iXgXuBDYBlwPr7MyF8Cl0opz93k/OVcQ1Z0zuajjz7iyiuvNLTPsGOEkXL0e5h3LbgCuEVZE2Dy+9C8d+B+Qj3fyD6C0MHhdvDaltc0FcO8pestDGo5iGRbMp1TO5/zfIm7hGJXsWGVv2NyPtZSlJbGUB91DDWXT4nLw+C/G5e3rSpUrataiBDCjG9F5w58ta5O4VvpeUJKWVjDuWExdKJKMCsyRhgIRdnwfI/A51fs58GtPsPB6PON6CMEHfQW1Fx29TLizNUvLZ9d60pFTSkUsU0obg56kxbuenYMJtM5tkqNqKirWoiU0iOl/D8pZScpZZyUsoWU8tc1GTnhxJ+TIKK4HFCYDeuegxd6wjONfX/XPeczAFzVJKFzFlZ9cwff8XnX+NoFPL8YNrxcvYHh7+erV85tF+r5hvURvA5Wk5Xcktzqr11GriMXq8laYzu7VxInJSYgTkrivVUuTlZLVOZjHUVpaQz1Vcd4q5nGSXHcf9l5rH94GLueHcP6h4dx/2UdSEuKq9aX0+/QrIW0JBuuABFboRJjjhiKcOJP9hUxqlqJKDgOXz4P38ysekVGj4Gw4WXofh3sWQ3OIt8Wj7MARv7Zt82jhS3vwMD74blMkF7f4+Gf9Z1/8QPw6gDfqpXJCmYr3Pyxvj4G/xZ2Lgdbom/Fq0FL+OpV7YbSkN/5Vnj8h70uUuNTNa3o+EPDq1zRMdjP6OYpU8BdEhGH7LpOxD/bdZT6rmMwWfD9xUm1ODRf3bsl3jDsVChDRxE9tK5EPLjVZxgUHoe8I5B3CDqO1m4gbF3oMzJWPVH5+LjnfTdjLRRlQ3wKVHS0jUvRd35cMpzeX/m4LUlfH5Z4WHD9L8d+v1+foTToN/DNGxDfkEPCzeHUVtpDw9uNQ3pcEMjQCcVordhHqE7dCoWiVqHXoTkcgTDK0FGUM23atOBODMa/RteKzEvQuBMsuvuX40/k6jRSGsCAsptlXJJvRcRd4ruRFhyvuY/EdPC44ZFjIEy+h9el83wX3P+D76/HWfYo1deHswjOG+nTz1lY2dhq0RdHv9sxdRyNNS4FV2k+3l2fYP/mDTjyva+d1U7e8t/xWsMU3klJ5vz0Hvxj8N9ZuHNhjaHhUzpdR7www4GvILGx7xHfEITQZ7TqcerWYyhVJAph+rWZoD/bikooHYMj2nnblKGjKGflypWMHj1a+wmhbFUIk44VmXdh+gZIagIpLXzbNa5ifQaC1wWj/lz5uLPYN9Yvn6+5j54TgbNulrrPl5CaGdoYzFaY9L9fjrlLILkZJUP/SFH7IczZ+S6LF1/zS8K/dmO5+fo5JOxZh2nt31jw41u83rYtBdKNADIbtCNx73pmDPkX09f9uurQ8CH/ImHPOuhxHfynwhwxWeCqmXBsc9DbZz4dQjSUytsZtH1Wx9D92VYEROkYHKEWJw0VFXUVg4Qr6kpXMiw9kT5mG5z8CQ5/A4e+gUMb4d5v4dl08GpI+22ywOPZPuPIj7PY57CsxUC45KHAN1fQFvFkS4QHtvpWMIw+P9Q+nMWUnNzGNlnC9PW/qdJQeWXIv8gpOc3DXz4CQP9m/fntBb+lc0pbeKkvJUP/SHH7IczZ9S6L9y37JTS83eVM6Xg9CXvWEr/2bzD9S997XpQNxTlQmu/bPnv1Im1GZ3IzuPtr+Phe37+Tm0KnsbBlQejvpRFReH7q2IpQrCe6qy0oHUPHn7TQ6LxtKmGgwni0/gK/5xv4cDoc+Lzy86X5Ord9nD7/FD+2BN8v9G9m1mwgDLg38I0RfL/wJ7/vG2ugfmyJMOk9399wnB9qH7YEitMymV5NVmKH28E9637NB1d8wKg2o7iiwxUMajHI98XgLIZu1xK/6B7iW/Thzn63M33ce1jjknGVFiB3LiP+nZt8BsQlD/lWlKat+qVzVwlYbDp9lZLgpwrVzi+4VZ+f0ZDfB37OiFUhtSKkUIQVv0NzJI1GtaITg4RrRefIkSO0aNGi5oZ6VlMufgAad4S1z0GrftCqv+9v4/Ng3d9D+xXvcsDRH2o2EGr6Be9y+G6SX73iu5H6b249J5b59SSG9/wQ+tCT8O/WbrdyZ487SThbx1BXpdwlvpQAWld07vsedi33tS84BsOf0re699gJX/Rbg5a+R8NW0Psm2PahAfPJoBWhWobmz7aiWpSOxmG0liphYB0jXIbO5s2b6dWrV80N9d7Y7v8h8I3BiG0fI4wMP2dvV0hv1StB1ZwvTVaE16X//CDGYEjCv1ANxlC3EfXOp+kb4O/tKh/Xu332wObKK4RgTPLHitSi7S/Nn21FtSgdjcNoLVXCQIUmvvnmG20NzTq3KixV5F3xb9lUua2kYdvHavfddAb/znfzejzb93fI73zGkZ5f3rYE381PmHx/9RopZee/MevN4M4PYgyGJPyz2n1GzINbfYZIcjPfyklyM9//H9ha/SqGfxuxptdb1Tai1+vbGtJCz4k+XR7eC3esg+vnw+jn9If6myww4xJ4ZxKseBROZIWeuLG8TQhJMMOE5s+2olqUjsYRSS2Vj46i/Jfn7dOmVZ+g7dAmn+/C+OdD86/xU/EGG+qKTMXx1qNyA4Yl/LPafY/Bv4Ohf9C/qhWin5Eufytbgu+RmAbNe/me05sqoCQfTvzoe4AvEaMeP6Ghfwj8nJFh8rVoRUihiGWUoVOf0ZKgzWSFHYt9hsjhTb7zOo7yZRre8GLN1+g50XezrIpQb7C1kL59+0bsWk6Pk3GZ4/jPtv/U2HZ85viatzuDNRhDNVpDder2rwppDdMXJrj9U18Cx9P7g1sRWvYwpLaHtA6Q1h4atq61DtGRnJN1GaWjcURSS+WjE4MY4qOjxfHyxoVQdAreu8V3LL4hXHALDLjH9/9Q/WvqKCdOnKBJkyZhv07WqSze/PFNfnPBb7j646trTPi3/JrlpManhn1cQfs6hepvFYrPlxF+Qle+Bie3a/sBEGGH6EjNybqO0tE4jNZS+egozkXLL8//Xg8t+sL5V8Dl/4Rfb/dFyCSmG+NfU0dZtGhRWPv3Si//yfoPNy27idUHV7MzdyevXvYqdkvgG5/dYmfG8BkkWCK0Qhasr9NZ/lbysZP6/K1CmZO6/ISuB8dpX620vrdA20GQ3Bw6jYYf39XWx5Z3AOHLtl2RUAvVno2zGNwlZKSn+4w5Zw0+SIpqCfdnuz4RSS3V1lV9RE/5hW/fgqteP9c3wEj/GoVmTjlO8egXj7Lh6AYAJp8/mUEtB+GVXpZfvZw52+eweO/iXxL+ZY5nStcpJFgSiI8V36WyufaG3jwbocxJXX5C9/kMr4H3Vn5OevVtf5mt8Odmvu2v9I4w8AH46ePQMkyXt1F1wxQKP8rQqY+Y9JRfWAjD/hj4uTroX2MEzZs3D/pch9uBSZiwmqy4vC680lu+UvPlkS955ItHyC3JpVFcI565+BmGtBpSfm68JZ47e97J9F7Ty8+XUsaOgXMWQekYypwM1U/I49TnEF1a4Dsn+yffY/wLtc8hWlGJUD7bispEUkvloxODhOyjI72+kNdgyy8oDKfEXUKRq8i3IrNn8S+1qtqPZ0qXKRwqOMQty2/BLd30b9qfvwz6CxkJGdEedt0jFD+hYPIJeb1wahec+hm6X6szceJJ+H4OpHeG9E6QUOZ/ZWQ+IBX5pYgRVMLAOkbIho5ex8tAydUUVTJr1ixdVY5L3CVsy9nG9NXTq6xV9e+h/ya7OJtTJae4pestmE3hKX5Xm9Cro6EE61AdTYfopCZwxctw4Av48oWa+6ipbpgqhXEOUZ2TdQyjtVTOyIrK6E3QVl14uOIcvF59ehW7iqs0csC3nfXQ2oe4uOXFTOs+rV4YOaBfR0MJ1qE6Ug7RPa6HMweh5w3QrJfveoUnoNWFvu1mLWx5J/BKrX/r64UevtWpguO+VSb/1tfzPXyZtKOQ+DDaRHVO1jEiqaUydOojoWayVVSLyaT9Y+VwO3h7+9vVhob7283fPp8Sd0mow4sZ9OhYawgly7Sez+XA+3zJEq96De5cB3884us7vkFw+YA2vQkHNkBJXtgiv5DemI/8isk5WUuJpJZq6yoGMS6PjgEFMRUhYUitKkXtJJjtr1A/l6Fuf135KpzcEVouoIqvRW1/KSKE2rpSnEuo9Y0UVbJkyRLNbQ2pVVVH0aNjrSSY7a9QP5d6t6VL8mDE09DzRl+/nS7XmQuoiltIHd3+ivk5WYuIpJYqvLw+c1YobkhVtxXlHD16VHNbw2pV1UH06FinCClEXmfdsMTGcPEDvxzXnQvIAjOHQdNu0KS772/THuB2hF4KoxZSb+dkGIiklmpFR2FM1W1FUHill/HtxwPQvXF3/jbg73x13ddsuWkLX133NX8d8BzdGncDtNWqcjk9uF1epJS4XV5cTg2hygaerzCQaDhE+3MBacFfHPXo974w908ehv+MgZ8WwZcvGlMJHuqUj48iOigfnRjEEB+dAKg6LsagR8ftOdtpYGvA5mNbuajxQH5ae4KfN57EUeDCnmzlvP4ZnD+0CV+f2sCA1v2rrFXldnpwlnjYsvogOzYeLz+/c/+m9BzRGlucGYut6mitUM+viMvpQQiB2SLwuCVSSqwaz62Imo8hEGw+IL25gC5+EI7/CCey4HiW7++Uj+DVi0JPX1ELfXzUnDSOSNa6UoZODBIuQ+e7775T1XlDoPwGbxZ4PDXf4L86+hX3f3o/717+HpZTSSx7+UfcznNDLi02E2Pv7UF6myTi4mznPO92ejh5oIDFL22u8vzx9/Uio01yQGMl1PMr9mOUsQRqPhpCmUO0rm3pUHIBgf6EpI+dgM0LoFU/SDvP58AdpuKmoaLmpHEYraVyRlZo4rvvvov2EGISt9NDcb6Tb5fsY+5jG5hx71rmPraBb5fso7jAiTvA9s/nhz/n3jX3cl6j80g1pVVp5Pj697L05a14nIGv7yz1VGmk+M9f/NJmnKWBbzyhnu9r4zOW5j62ge9XHqQ4z4n0SorznHy/8iBzH93AyQMFAbU4G//2We/efdT2WagEsy0dasHeYLa/Pr4XXunniwD75I++oqlGhrgbhPqONI5IaqkMHYUiBIK5wX928DMe+OwBnF4nv+/zR7Z/erxKI+OX63jZsvrQOTd9l9PDllUHNZ/vLHVXWgnUe35VRodRxlJFg/E1DQajIgxEMvKrx/WQdwjOv8LXf8kZaNYNvp5hnI8PKD+feo6KulKU069fv2gPIaoE41ui9QZ/058HYrGZWbl/Jb9f/3vc0s3kzpPp2rgLczd+pWl8Ozceo/eo1vzvL5twu7y4XV5ufLI/OzZq8IXwnz+iNa8+8BlCgMlsYupzF+s6v+/oNvyw6iBxdgs2uwWb3Uyjpon8uPawZmPpgrFtz9G1qu0zv8G4de1hTdtnfozyE6or6P5sRyrya2BZJfjr54KUkHfYV7NrTR9t46yuuCkY7udT378jjSSSWipDR1FOerrG5eY6RrC+JXpWQzavOkj6+XZWzMtirPMemtICy7d2TBeacBS4NI3Tke/CFmfm9PFfbh42u0Xf+Xbf65ASPG6v7vMtNhMb3t9d6fht/zeInTqMpQsub0vOkUISG8QRl2hBCKHbYKwKo/2E6gpBf7YrFvDUU+8umErwQkDDVvpD3E0W+O5t6DAcGrT45bkwVHGvr9+R4SCSWipDR1HO0qVLueOOO6I9jIgSykqCEELzasiub47TZ2R/MnN6lR/z4MXpcGNPtlKcV4UDTgXsKVY8bsnEJ/phsZqx2Ex4PV5d53u9krtnDEN6JV6v1H2+2+mlx6UtcTrcOB0eSh1u3caS2SJ455lvADCZBcNv6UL2gYKQVoR8zxu7KlSXiPhnu+L2l97IL7+Pj5aoLb+Pz+L7ff/P6ArnDYeuV0NKC8Nz+dTH78hwEUktlaGjqNfoWUkoKXZxcl8B2YcLOHWokDF3ddd1g7fazZiGH+OKHpeT2CCOhAY2hEnQuX9Tvl95sMY+OvVvBgLSmieVH3M5PbrOl9JnoAmzwGTWf74wCwZd17HScbdLn7HkKvXQqGkCRXlOnA43rc5P5Yv//VzjufDL9tm2z4+Q0thOSuN4klLjMZtNhq0Kgdr6MoRgt7/8Pj5aQtx7ToT8Y76MznvXwcltvkd6J8h6X7ufT3WlLBQxjzJ0FOW0bt062kOIKHq3nho1TeTTOT+VH9e7GuNyu5h+7aRznus5ojVba/BxscaZ6TW81Tk3W6vNHNXzwZfmQI+xZLKYuPGpiwDfe2Cx6tu+s9hMrJ2/s/yYEDByWldO7jdmVagubn1F9bOtd/srmOzONywAdykc/Ap+XgWdxsKap7WNryY/nwrUt+/IcBJJLVXUlaKckSNHRnsIEUXv1lO7no1p1SWV3iNbM/K2rnjcXjr1b6rp/I79m2IWgX9X2OLMjL+vFxZb4I+jNc7MuHt7Yo0LfION9vl+Y6mq8yv2c7axZLWZ8bgl9mRtNbzsKVbcLi+dL2pK8/MaktQoDgm07JzKzm+0+wkJzs1DZWSIfG0j5j7bwYS4W+IgcyiM+jPEp+gsZXFufqpKlEVtjRo1UkVtGUQk56RKGBiDhCth4MyZM2N2/1nvVoOUEiTMuHct0luzjiaT4K6XhyJMlXNRFeeXMvexr2pcDZn87EUkJFddo8rt9OAs9bBl9SF2bjyGI9+FPcVKp/7NfMaBlszGUT6/uqSDfmMpkH+My+nh2yX7NK0I9RnV5pzVGI/Li8ksdL2Xd740hLce/oLUZok0apZIi44NadGpEfMer/69tNhM3PTngSQk13BjpHZtf8XkZzvY7M6gv4r7fd/5nJotZ31Ga2F25rqC0XOyuoSBautKEdPo2WqQXsmJ/fns+f4ke37I5rpHLtTnCOzxYjH9cqNyuB3sdexjxN2dWPXqzipv8MOnd2Rf8R7a2zOJr2Lp3mLzjfOCsW25cFxbzGYTHo8XKdF0c6wN52e0SeamPw/UbSyFun1mtpp0+wk5SzyUFrs5tiePY3vyaNq+AVtWHwp568vXpm5uf0WcUELc9fj59LgOtn0IKx7xOTH3vMGXpdldYnjUliI6KENHUY7NVvOv1NqE1iib5NQ4flh1iL2bsyk6U1re7uD2XDr1b8oPOhx5K2ISJh5a/wD39XiAa58axE9rT7D7m5PlN/gO/TLoMqwJX5z8nJc/f5HFVy2u8ToVb54VjSqtRPP8UIwl//ZZTStCVW2f6fUTMlsEU5+7mNxjRZw+VkT7XunM/2iPptfpD5EvzneSkFL5M1NbI79i7bNdiWBC3PX4+Vw0HVY9CSV58N1/fI/O4+Hyv9fJCuy1hUjOSbV1FYOEa+sq1igucDL30Q01bjXc8ER/VszK4uT+ApIaxdG+dwaZfdJpltkAR5Grxj6scWZuenYA9rO2K7zSS5+5ffBID90ad2PSeTcxpNVgEuLsFJc6WHdwHfN+nsu2nG1YhIXvbvoOk1BucVUR6vaZlvlQ1XsppWTGPfq2vmbcs5bEBjbSWyfTuHUyrTo3omGThBq3MvVsfylCwOWAoz/UnMvHvyJzYrtve2rru3DZ43ByB2x4sebrXPKQitqqBaiinnWMcBk6H330EVdeeaWhfYYLPX4dvUe2JrNXOkIIMtoml38gIDTfklJPKWPeH0O2o2anx4yEDJZdvYw4c9V+OgofPt8WX44dr0dq3j4L5b10u7zMfWyDpq2vxIY2bniiP28/sgFXyS+OyZfefD6njxbxw6rgfI3Oxkgfn1j6bBtKMH4+Xo8vguul3qFXYFdUidFzUvnoKDRx8uTJaA9BM3ojpvqNb4fFeu5NIhTfEq/0Mr79eN7KeqvGMYzPHF/vV+C04r+Z63VWDOW9DCZE/vZ/DSYv20H2oQKyDxaQ2TOd/+rY/rpwXNuAz4XDxyeWPtuGEoyfj8kM1nhjo7YU5xDJOakMHUVMYrYIfdl4zVVvGQXrW2K32Lm5y80s2LEAh9tRbbspXadU6YisMI5g38tgHaIbNkmgYZMEzrugCVJKXXPSZDLx1Yd7aNq+AU0zU7An2Wqtj0/Mo9fPR292ZrfTZxwpaiXKYUBRzjXXXBPtIWiipNCFq9SjK/eKx1N9NA34bnYWqxlhElisZk3bBPnOfP499N/YLYGdEe0WOzOGzyDBovbv9RLKfAzmvQw1n5DefEBOh5vvVxxg2atbeeu3X7B8ZhaOQlfIVeADESuf7VqDrgrs18GOpfDlC75yFFWhKqhXIpJzUhk6inJ2795dc6Mo4nZ6+G75fuY+/hV7fsimUz9tyfoCRUwZwaGCQ9y07CZOFp9kyZVLuK3bbWQkZGARFjISMrit220sv2Y5XdO6qtWcIIj0fKy49dVnVBsSG9owmQSJDW30GdWGm54dUO1Kin/7Swsd+zejpNhFn9FtaH5eQyxWE226p/HjZ9qrwLs0JC50OT24XV5SG6Xidnk1naPgl6itGiu1J8KFt8PXL8OqJ+Df3WD1U5VXglwOKMyGdc/5cvs809j3d91zvm0vV9WrwXWZSH6+lTNyDFIXEwZW53jp9Up2fHWMbxbvKw8P7z6sJX1Ht6kxwVtVUTYhj9fjYsonU8jKyeLSVpfy/LDnKfGUYBImLMKCW7qRUioDJwSiPx/RnU8o2Mgvj8eL1yOZ9/hXmh2iJz8zIKDfGahcPoagJ2pr/xfwxfNw4Avfc2abLx/PpY9Dzq6qw9StCfU2F49KGKioN9T0hex0uPnk9SxyjxQC0LhVEgOv7kCr81NxOz0h5V4JhX999y+ycrJonticpy9+GiFE+fZVTGahVVQi2HxCweYDMptNmEz6fXyWzdhKy86NaNGpEanNEhFCKD8fo9BTgf28Eb7H4W99yQR/WgInsspy7ahcPNFGrejEIOFa0cnKyqJbt26G9lkdNYUDW2wmxtzZnaIzpWxatp+LJmRy3gVNKpVhCDX3SjB8evBTHvjsASzCwttj3qZHeo9Kz0dax7pKrOoY7JzUG+I+8bH+vPnbz8uP2VNsdL24GV2HtGT+EyqXj6E4i8FkQpqsCK+r5uzMp36GwpOwa7nKxVMFRn++VR6dOka4DJ0DBw7Qpk0bQ/usDq0J/yY9PQB7khWzpWqXsmC3GvRypPAIv1r8KwqcBfz2gt9yc9ebz2kTaR3rKrGuo945qbfmV8/hrdi/9RRHdp7m8M7TFOc5Dc/lo6iMrjmpt95WPcvFY/TnuzpDRzkjK8pZsWJFxK7lcnrYsuqgJsfLHz87jLeGjLXBRNnoxeVx8bt1v6PAWcDQlkOZ0mVKwHaR1LEuE+s66p2TeqvAJyTb6HJxc0bc2pWpf7uYG5/qT4fe6fqquJ9zS6iM35lZSqmcmdE5J802lYunGiL5+VY+OoqooCfhX3XJ1SLJC9+/wNZTW2ma2JRnL3m2UoZlhcIIgvXxEULQqGmi/lw+ZhOOAuc5zvrKmdkA9Obi8Tjr1YpOJFGGjqKczMzMiF3LyIR/kWDdoXW8vf1tzMLMPwb/gwZxDapsG0kd6zL1UcdQsjvDL7l8NFdxL3bz1u++oEnbFNp0S6NNtzQaNUskWzkzB0TXnNRbQf30AWjckRqX2eoIkfx8Kx+dGCRcPjpOpzNiFWX1Ol5WF0obbo4XHefaxdeSV5rHQ30f4tZut1bbPpI61mXqu47B+J3prQHXomMjlr22Fa/b913SpG0KI6d1ZcHTG5UzcwB0z8mibHi+R80V1O/+Cv43FYQFxvwNWvQNeay1HaM/38pHR6GJ2bNnR+xajgJn1BP+acHldfHwuofJK83jkhaXMLXr1BrPiaSOdZn6rmMwfmd6/Hx6j2hNm25p3PbPQVw+vTtdBzWn5/BWZK07YmjSwrqE7jlpS/Llyakqmsqfi8dZDGcOw+Fv4I1L4cPpkH+scts6llk5kp9vZegoIs7BbTms/s82ug1podnxMlqRIS//8DKbszeTkZDBXy75CyahPjKK2o3eUha2eAvteqYzdFJn2vU01pkZ6rlDc8VcPJc85IuuMll8fy95CB7Y6ns+43y47zu4+EGfU/KW/8JLfeGLf0NpocqsHCLKR0dRTkJC+HM4/PztCVb/ZztejyQ/xxG1hH+BcLgdmIQJq8mKy+viRNEJvjn+TblfTqP4Rpr6iYSO9QGlY3CE4uej13fOZDaRf8pBSuNzk93VRYfmoOak1grq8Skw4k/Q92ZY+TjsWAKJjeHQRlg4ufL2V8Fxn+/PNzNjNrNyJD/fykcnBgmXj064yVp3mHXv7AIJPYe34uKrO+BxeyOe8O9sStwlFLmKmLN9Dov3LCa3JJfU+FTGZo7l+k7Xk1eaR9fGXcM6BoUiHOj18wk2aWFG2xQ69M2gQ98MklPjNSUDra8OzZo58p0vGuuV/tX7+FgTfCtGiemRG1stRPnoKDTx3nvvhaVfKSXfLtvPugU+I+eiKzO5+JoOPt8Dm5mEZBsXjG3L5GcGcNfLQ5n8zAAuGNsWe7ItIkbOtpxtjPlgDG9lvUW2IxuP9JDtyGb2ttlc/fHVlHhKKHGXaO4zXDrWN5SOoeP383n/g/c1+fnoK0zalFOHCrDEmTm5P58N7+9mziMb+HTuT5QUu8NShT3aRHROpp8Pm96s3sgB3/NfvVJzu1pGJLVUho6inNzcXMP7lF7Jl+/tZuPHe0HAkBs70Xd023Ny0EQi4V8gil3FTF89HYc78D63w+1g+urpFOv4EgmHjvURpaNxaNVSlzPz8Na0PD+VW/9xCaPv6EaHvhlYbCaadWjI1jWH6qRDc0TnpMkEW9/R1nbLOxBj/oOR1DK2lFHEFF6Pl0/n/MSWNYcwmQUjb+tKt8Etoj2schxuB29vf7tKI6diuznb5+ha1VEoYhW9zsxWm5n2fTIYdXs3bv3HIDr0yTDcobleojIrG4by0YlBwuWjk5eXR4MGVSfCqwqfH4DAbBF43BIpJULAije2sX/rqfLinK27phk63lAp9ZQy5v0xZDtq/jLJSMhg2dXLiDPH1dg2WB0VlVE6GodeLUMpliulZMY9a5E1lG0BMJkEd708tFKh3tpMROdkHa+VZbSW1fnoqKgrRTlZWVlcfPHFmttXFVXRqX9Tug9tSWbPxhzfm8fYu3vQNLP23bCsJiu5JdqWT3MduVhNVk1t9eqoCIzS0Tj0ammx+QyZC8a25cJxbXUlLdSbndnt8mKxmqo0dgL9kIpWuomIzkm9mZVP7oCm3cEUG87dkdRSbV0pytm2bZvmtv6oirmPbeD7lQcpznMivZLiPCc/rDzIf5/6msRGcUx8vF+tNHLAlwwwNT5VU9tUeyour7awWz06KqpG6WgcwWoZjO+cLofmfk3Z/d1J5j/5NT+sOkhJ4S+fMbfTQ3G+k2+X7GPuYxuYcc9a5j62gW+X7KO4wIk7Cr49EZ2TtgQYeG/VyQbL2yXChbfB0odg9jhfKYkYIJJaKkNHERTOUk+NURWfvPZjrV6S9kov49uP19R2fOb4mAvnVyiigR6H5h6XtmLv5pPkZTvY8P5uZv/hS1bP3k5BbkmVP6S+X3mQuY9u4OSBgqgYOxFFa2ZlrxfyjsDBDTDjYtj8X6KWTr4WogydAAghWggh/iiEWCeEOCaEKBJCbBNC/EMIEdDRRAjRXAgxRwiRLYRwCCG+FUL8qpprTBFC/FDW9oQQYpYQIqqJEIYMGaKpncvpYcuqgzEfVWG32Lm5y83YLdUn2rJb7EzpOoV4jfvfWnVUVI/S0TgiraVWh+b4BAtj7urB5Xf3oHXXVDweL2eOFyO9slaGp0d8TmrNrJzaDqZ/BZ3HgbMAPpoO706BopzK/dWiMhKR1FL56ARmPPAUsBT4B1AA9AMeBK4XQvSTUpZ7iAkhUoEvgAzgX8Bh4EbgXSHErVLK/1TsXAjxUFm7dcADQEvg18CAsr6LwvrqqsBi0TYdhBDs2Kg9quLCcW1DGFV4SbAm8MKwF3jgswcCRl/ZLXZmDJ9BgkV7Fk+tOiqqR+loHJHWUm925nY9GtOuR2Pysotx5Lt01du6YGzbiPnsRGVOas2snJgG18/zreZ88nv46WNfVuUJM6DtQF8pia9e9oWsF2X7Egz2mOjbHrMlRTyzciS1VN8kgfkcaFPRmAHeEEJsBN4Aflv28PMHoB1whZRyMYAQ4k3gK+CfQoj/SSkLy443Bp4FNgGXSSk9Zcc3AR/jM3z+Es4XVxVr1qyhffv2NbbTmybebK69C4fbTm3jeNFxPrziQ/63638s3ruYXEcuqfZUxmeOZ0rXKSRYEjSv5oB2HRXVo3Q0jmhoGYxDc4P0BBIbevlk5o+arhHpH1JRnZO2CkZNVd9HQkDvSdD2YvjgTjj0NRQe9Rk8C26oVWUkIqmlMnQCIKWsyktqIT5Dp9tZx28E9viNnLI+PEKIl4A5wOXAu2VPXQkkAC/5jZyy9ouFEHuByUTJ0NGK3qgKj8eLpRZGAkgpefGHF/n+5Pc8NeAp7ux5J9N7TS+vdSWl1GXgKBSKc6lo1Gj5HqhLP6SiRqO2cMsy2LoQ2lwMr15UdeZkVzHMu8a3PRZj9bK0omaIPlqW/T3hPyCEaAa0AL4O0N5/7MIKx/z//qqK9p2FEEkhjjMoOnbsqKmdnqiKTv2b1VqfuC+OfMH3J7+nUVwjRrcbjd1iJ84ch0mYiDPHBW3kaNVRUT1KR+OIJS39P6S0YE+x4nFXv8VlJLGkIyYzdLkSvn2rVpaRiKSWakVHH38q+/t2hWPNy/4eCdDef6xiOuCa2ouyNrvOflIIcQdwh///M2fOBKBfv36kp6ezdOlSAFq3bs3IkSOZNWsWADabjalTp/LRRx9x8uRJAK655hp2797Nli1bABg4cCBNmzYt7zMzM5PBgwcze/ZswFdpdvLkybz33nuYzWYuGzqSrWsPV7uPbo0z0/OyVixZ+jHZ2dmkpKQwceJE3nnnHfLz8wGYNGkSmzZtYtcu38u97LLLcLvdrFu3DoCuXbvSrVs3Fi5cCEBqairXXnst8+bNo7jY96GcOnUq69evZ+/evQCMGjWKgoICNmzYAEDPnj3p0KED77//PgAZGRlcMeEKnlr9FAjoWtQVu9nO8uXLOXjwIABjx44lOzubb775BoC+ffvSsmVLFi1a5HsTmzdn3LhxzJo1C6/Xi8lkYtq0aSxZsoTDhw+za9cuJkyYwOHDh/nuu+8MfZ+Sk5NZsWJFje+TP8X69ddfT1ZWVnk455AhQ7BYLKxZswbwfeFceOGFzJ8/H6DWvE+pqb7Q/9mzZ+N0+lYPp02bxsqVKw15n44ePQpQL96nHTt2sGvXrrB9nq688krD3qdBFw+mU/8m/LDyEDXRsV9Tfv72BJ8t3UirvnbGXnnu+7Ru3TqaNmlOmzatiYu34XK62bd3H9t3bOO8887T9T55vV569+4dM5+nfn16InSUkfAO/j1bN2+OyOfJPyeN+jxVR53OjCyEaIjPgVgrL0opA2aQE0L8BvgnMFNKeWeF44OA9cAzUsonzjrHBHiARVLKK8uOrQEuBcxSSu9Z7Z8GHgd6Syk3V/O6wpIZeebMmdxxxx01NwScDjfH9+XxyWs/BjR2/FEVtbU68Yr9K/jtut+SkZDB0quWGrpFpUdHRdUoHY0j1rQsLnAy99ENNf6QuvGp/ix//UdO7C/AZBF0vaQFfce0IbGBL4N5VUlNO/dvSs8RrbFVk+E5ELGmI9ILzzQGr4boNJMFHs+OWM0so7Wsz5mRGwJP6mg/DzjH0BFCTMMXfbUUuPesp/1rfYFqA8Sf1ebs9meH+QRqXyv57pP9NGySwI1PXkTW+iO608RHE7fXzcs/vAzAnT3uVH44CkUtwx+eXlWIeXl4eqKVy6Z2YdOSffz83Ul+XHuY7V8epfvQllwwpg05R4rO6cOfi2fr2sOMv69Xrf0xZggepy+6SksZicR0X/s6+H1Ypw0dKeV+fFtBQSOEuBWYCawErpFSnu0ld7Tsb6Bqlf5jFbepKrbfHaC9rNAmoqSkpGhql3usiM2rD+GVkomP9wsqTXw0WbxnMfvz99MyqSVXnXeV4f1r1VFRPUpH44g1LfWEpzdqmsjIad3oO6aQbxbvY+/mbI79fIbSIS005eK56c8DNRs6saajrjISPSf6VoAiRCS1rNNbV6EihLgFmAWswRc6HrB8tRDiMFAipexw1vGb8EVdTZRSLiw7Ng1f5NYUKeXcs9rvBlxSyvNrGFdYtq60IKXk4xc2c3jHabpc0pxhkztHfAyh4PQ4Gf/heI4WHeWvg/7KuMxx0R6SQqGoBl+tKzT/kDp5IJ+SQheHd5zmh1UHa+y/z6g2Ec3FE3GKsuH5HtU7GtsS4Z5NYG9UOYw9hqhu60pFXVWBEGIqPiPnM2BCVUZOGQuA9kKI8noCQggzcB9wBlhWoe0ifFtW95a18bcfD7QH5hv0EnTzzjs1O63t+T6bwztOE5do4aIrMyMwKmN5b9d7HC06SoeGHRjTdkxYrqFFR0XNKB2NI5a11FtvK6NNCs07NmLnN9qTmgqN6/4xqaOWMhLXzYW9n8KbIyJWKyuSWtbpratgEUJcAbwJ5OPLnXONqPxJKJRSflTh/38DfgX8VwjxL3xbVTfgCyWfJqUs8DeUUmYLIR7H59i8WgixAN+W1W+AHcDzYXpZNeKPCKgKV6mHL9/7GYCLJrTHnmSLxLAMo9hVzMytvqiy+3rfhzlMuX1q0lGhDaWjcdQ3LcOViycmdaxYRuKrV2BLhczIPSfCgHt9W1YrHoHsHfDGMF+G5TYDwzqsSGqpDJ3A9MG32tUQn3/O2RwAPvL/R0qZI4S4GJ/Bcw+QBGynwpZVRaSU/yeEyAEeAl7EZ1C9C/zBn0G5NvLtJ/spPF1KeutkulzSvOYTahn/3fFfckpy6N64O8NaDYv2cBQKRZioK0lNDUNLGYlbl8N7t8KeT+HtK2DsP6Hv1KgO2yiUj04MEi4fnaKiIhITEwM+d+ZEMQue3ojXI7nmd31pmtnA0GuHm3xnPqPfH02Bs4CZI2YyoPmAsF2rOh0V2lE6Gkd909Ll9PDtkn18v7JmH53eo1pz4dh2mnx06ryOHjesftJXEwug3x0w6q9gNn5NxGgtlY+OQhObNm0KeFxKyecLd+H1SDoPbBZzRg7A7KzZFDgL6Ne0Hxc1uyis16pKR4U+lI7GUd+0tNrM9BzRusrq6eXt4sx0G9yCrZ8dxulw19hvndfRbIFRf4YJr/hWfb6ZCfOuhuKyrCsGVj+PpJbK0FGU48/SeTb7tpzi4PZc4hIsDLgy9oos5jhymPfTPMDnmyO0eh4GSVU6KvShdDSO+qilPxdPVcaONc7M5dO7c2Tnab7+cA8Lnt7I/q2nqu2z3ujYezLcvAQSM+DAl7B3HRSegHXPwQs9fUkIX+jp+39RNrjOTglXM5HUUvnoKKrF5fTwxbs+B+R+4zNJSIktB2SAWT/OwuF2MLTlUHpl9Ir2cBQKRQTQmovHnmwjo20KJ/fns/TVrZx3QQaXXNex0nedL8RdMG3a7bhdXqSUdTcc3U/r/nDHZ3B0M1jj4YVetar6uR6Uj04MEi4fnT179tC+feUVm40f7+XbZftJa5HEdY9cgCnGKgUfKzzG2A/H4vK6eG/8e3RK7RT2awbSUaEfpaNx1Hcta8rF4/VKtn56iI0f78Xt9BKXaGHQdeeR2TsDl4ElJGKSwmx4oYY8PNYEX1RXYrrmbo2ek8pHR6EJt7vyHnVedjE/lDnzDb6hY8wZOQCvb30dl9fFmHZjImLkwLk6KoJD6Wgc9V3LmnLxmEyCXsNbc8MT/WnZuRGlRW68bsnxPXnMfWwD3688SHGeE+mV5SUk5j66gZMHCnA7NdSRilWcxT7H5DBUP4/knIy9O5cibPgr5/r54t2f8bi9dOrflOYdGkZnUCGwP28/H+3+CLMwc0+veyJ23bN1VASH0tE4lJbaSGls54oHenH53T1o0akRy2ZsrbGEhLO0Dhs6JhPoqH6upyBoJOekMnQUAdm/9RT7f8zBGm9mwNWxueT96uZX8UgPV3a4kjYpbaI9nIjgdTjwlpYivV68paV4HfqdBBWK+owQgpadG5G1/ki11dPBZ+xsWX0IV11d1THbfM7GWijK9rWvhShDR1FO165dAXC7PHz+rs8jvt+4diQ2CFSYvXazM3cnn+z/BKvJyl0974rotf06BkOwhoq3pAR3Tg7Zr77KnhEj2NG9B3tGjCD71Vdx5+TgLamugkno1w8HoeioqIzSUh9CCHZuNL6ERMzhr36uBX/1c41Eck6qqCtFOd26dQPgh5UHyT9VQmrzRLoPaxnlUQXHyz/4El5d3+l6miY2jei1/TrqwVtSgreoiJzZs8lftAh3Ti6WtFRSJkwgbepUTImJmOLjqzzXkZXFodvvQFYwTNwns8l9Yxan582n9Rszie/Wrdo+gr1+uAhGR0VglJb6CFcJiZgjjNXPIzkn6+i7o9CDy+nB7fKSnJyC2+khOS2ejLbJDJ7YMWY+wA63g1JPKV7pxeF2MLzNcPo26cu07tMiPpaFC8+p+lEtfkNl9/AR5L4xC/fJbPB4yg2V3cNHUJKVVeWqjLeo6BwjpyLS4eDg7XfgLSoKy/XP6c+gVSG9OiqqRmmpD38JCS34S0jUSWwJMPDeqguClrdLhAtuhXxtq2AQ2TmpVnTqMW6nB2eA0MlO/Zoy+o7u2JO0fdCjSYm7hCJXEXO2z2HxnsXkluSSGp/K2MyxPDfoORKtkUvX7nU4wGTi9mnT8JaWgteLyV5zXgmthkqH1avOWVXxOhzkzJ5d5bkV+8iZ/Tbpd08/Z0yhXL9SP7VwVUihCAYpJZ37N9VUQqJj/6bU6Swt/urn864JHFVlS4Tr58O+dbDiMZj0HrS6MPLjrIbY+LmuMBy308PJAwUBQyd/WHWQ/z71da0PnSxxl7AtZxtjPhjDW1lvke3IxiM9ZDuymb1tNuM/Gs+2nG2UuLWtRARLKP4xugyV/8ym5OefyZ0zl1Ovvc7Jfz+P9HjIX7RI0zjzFy1Cejzk/Gc2pxe+S96SpTgPHCDnP9oNpapWZ4xeFQJITU3V3FZRPUpLfegtIXF4R26ERhYFKlY/v+QhSG4GJovv7yUPwQNboeWFsGsVlJyBORNgz2c1dhvJOakSBsYgRiQMLC5wMvfRDdVGFVhsJm7680ASkmunJ32uI5fRH4zG4a76Jm232Fl+9XJS7eH5UFXlH+NH2O1V+se4c3Mx2e3sGTXKZxjUgCUjg3YfL+Lni34pSNp5WxY7evQEjwaD1GKh8+Yf2NGte/mhjl9/xd4rrtB8/fYrluPJz8eSno4w/XITcOfksHv4iGoNJmG302H1KixpadVex78yJqxWpMuleWVMoTAS/4/BxS9tDvg96S8hUZBTwqdzd9BjWEsGXtshZrb7g8JZ7As5D1T93OOGj++FLQt8z1/7Fpw/PmJDqy5hoNq6qoe4nB62rDqoOXTygrFta126c4fbwdvb367WyPG3m7N9Dnf1vIt4i/HbJpq3fVauoGDdOhwbN1K6ew+lu3fjyc2l87Ys3Dnafg26c3MxJyfTaPJkTHY7psQEZEkJlrRUbYZKairekhJSb56Cp6gIWVyMKTlZ1/WF1cruIUMRNhvW5s2xtmxJ2l13Urh2bUjbZ6C2vsLJvHnzmDx5crSHEVNoLSGRn1OCySzY+tlhco4WMur2btiTauePw5CxVfDVOfv71GyBCa9CfAPY+Bq8OwWueBl6TwrYVSTnpDJ06iFCCHboCJ28cFzb8A4oCEzCxOI9izW1Xbx3MdN7TTd8DHr9Y+LaZ3L6vwvKj5sSE/EWFekyVKTbTdPHHq00hpQJE8h9Y1aN56dMmIAwm2nyxz/+cn5pqT5DqagYc2oqntxcnPv349y/nxb//AdHf/3rGs8H3/ZZ+r3nJm80InJMUTXFxcFXma7PWGy+Eg8XjG3LhePaYjILvB5ZqYREl4ub06hpIstf/5EjO8/wv798y5jp3UlvlRzl0UcBkwlG/w3iG8K6v8Giu6E0Hy469/s3knOyDq+xKaqiLoROWk1Wcku0rUTkOnKxmmp2rNYdLWQyafePWbyY5BEjyPjd72j1xkw6fLqGjt9uQlitpEyYoKmPlAkTfOGeFYdgt5M2dSqihq0dkZBA2i1Tz11J8Xp1XV/YrHTc8CWdvvuWdh8vouWrr2JKSdG3KmSxcPrdd3Fs24Z0+vJuhBo5plCEE38JiVmzZgUsIdGsfQN+9ccLyWibQkFuCR/8/Tt+/vZEpTb+6FYpJW6Xt+4mGRQChv3RZ/AALP8DfPYXyj22ncXgLuH2adPAXeL7f7iHpHx0Yo9QfXTcLi9zH9tAcV7NyZ0SG9qY/MwALNbatXVV6illzPtjyHbUvBKRkZDBsquXEWcOnPhQ75aJlJKSrG3Ed+3Cju49tPvHbN1Sya/Fjyb/loQEn39LAAc+b0kJJVlZHKzKTyghgdYzX69yNSTk65eWsmfEiKD8jITVSovnn6f4++/JffPNGs9Pvf32Kre+FFXjdDqx2erodkoEqUlHt8vDuv/uZMdXvhXzvqPb0PfytvW3MOgP831+O8IENy+BtA6+2llb3/FlUk5M9+XpGXivL7orhOrnqqinohL+0EktdOrfrFaGTnqll/HttTm6jc8cX6VRqCdayPFjFif/+U/2jBjJ/l/9Cm9+PpY0bU7OltRUn2NtAEyJibR+Y2aVqzJ+Q8WUEDiXhSk+nvhu3eiwehWpt9+OJSMDLBYsGRmk3n47HVavqnbLJ9Tr61sVugLX0aOkjB2LrW1bpMtFQt8+5C/+WNP5+YsW+ZbHa6A2ZXiuDaxfvz7aQ6gT1KSjxWrm0innc8l15yFMggbp9vpdGLT3JLhuDox/EVxFviroXz4PBcfB6/H9/fJ5eL4HHP0BXOH5nKoVnRgkUlFX1jgzNz07AHusR11ds5zU+MAGidZoocwlizny4EOU/PgjAOb0xrR8/nkKPltL7qya/WNqWon4ZVXpbd+qUm4ultSyVaVbpmJKSNDkmxJsxFKo1w92VchTWIgpIcGQlbHKr0M5NFdk5syZ3HHHHdEeRsyjR8eT+/OIT7Kx4OmNMR3daggFx+HF3tVXN7cm+ELYtZacOAsVdaU4B1ucmfH39ao2dHLcvT2xxtXeJdUEawIzhs9g+urpAY0du8XOjOEzSLAEXonQ40x8+r8LSJ16M47vvidlzGjsffogzGZsbdtyev78Gm/wAf1jKmCKj8cUH0/63dNJv/eeoEOrK7YVcdprlIV6ff+qUE3bZ2evCpmTknQ7RHvy8zly/wMkDhxA4oABxHftirBYlEOzolbRqHkSm5bsi+noVkNwFsPXM6o3csD3/FevwJDf1ZyJWSdqRScGMWJFB8oyI5d6qg2drO17xw6Xg9zSXBbuWMjSfUvJdeSSak9lfOZ4pnSdQoIlocqwcr2+Je1XrcR0lvEQqn9MXSLYVSGvw0H2q69qihxLve024tpncuyRXyLPTMnJNLzuV6ROmcKe0WMMyeVT1zhw4ABt2rSJ9jBiHj061gVfSENwl8ALPX2rOjWR3Awe2Hxu6LoG1IqOIiDnhk6a8Hq8lUInazsbj2/k9a2vM637NO7pfQ9WkxWX14WUssa8OcJq1Z1D5mwq+seEuu0U6wS7KuSPHDs9T8PK2G23IqxWTElJFG3YQNFXX+E6cJC4Dh3IfXtOyLl86ioFBQXRHkKdQI+OdSG61RDMNp/jsRaKsn3tDaaOKqvQwy+hk28EDJ2szSzbt4ysU1nsy9tHnDkOkzARZ47TlBxQOp3GOBPHx2NJSyP97um0X7WSTls2037VStLvno4lNbVeGDkVMdntmOLiECYTprg4XVtfWhyizcnJpIwcSbOnnqLDihW0X72alFGjyF+iLa+SFofmuubMvGHDhmgPoU6gR0dVGLQMj1O7301iuq+9wShDRxGzFLuKWXtoLQCj247WfJ63tJRTr71O/sqVpIzTFrkVKIfN2fhv8LPefFPzDV7hI5TIMVvLFoj4+JBX5yC0umUKRUXqQnSrIXi9vhByLfSc6CsrYTDK0FGU07Nnz2gPQRdrD63F4XbQM70nLZNb1theSknB6tXsHTee7Oef5/S8+aTeNDn4ZHtVEGs61hbOXhnrrGNlTLpculbnPPn57L9xErlvv43r2DEgPIVJawtqThqDHh31FAbtNbxVTK2k68KW4MuTU5ODsS0RBmhoFwTK0FGU06FDh2gPQRef7PsEgJvOv6nGrYbSn3/m0G23cfje+3AdOkTceR3IeOhBzI0ahZZDJgCxpmNtw78ylnvmjPaVMT25fK4YT+HatTi+/54Tf/0bu4ddytFHH8OTl1dnszOrOWkMenX0R7dWZexY48yMvqMbBadjz3jWhS0JJr9ftRFjS4RJ7/n+hgFl6CjKef/996M9BM3klebx9bGv+Vu/p7k0pW+VWw2eggKO/+Wv7L3yKoo2fIWpQQOaPPYY7T78kMQBA0JOtheIWNKxNqNHR12lMG69leSRo2jxr/8jeeRIRHw8CRf01eXMHGs+O2pOGoNeHSsWBu0zqg2JDW2YTILEhjb6jGrDpKcvouhMKe//7Tt+WHkwTKOuBVjt0Ly3L0/OJQ/5oqtMFt/fSx6CB7b6ng8hM3J1qKgrRUyy6sAqnuz7CAPzM9hz48gq86a0fOkl4jt1BClpeMNE0u+/H0ujRpX6MiqHjSK66MnlY4qPJ+Xyy0m5/HK8ZcUF9/z735quU1VhUoUiEGdHt5rNJjwVo1sFeKVkwwe7ESboNbx1tIccHqx232Pw72DoH5AmK8Lr8vnkhGG7qiJqRUdRTkZGRrSHoJkduTsYknohJ+66r9qthsP33UfigAFkLltKsyefPMfIqUgw0UKBiCUdazN6dQx2dc6UkGCYM3NtRc1JYwhFR390qzCJStGt5w9szrDJnQH48r3dbFlzyJCx1lpsCWCJZ9HHi335csJs5IBKGBiTGJUwMFY5UXSC7w9+Ta+luzgz660a26tCkPUPvaUw9CaPzFy2FOlwYEmvOmw22HIcivrJts+PsHb+TgAuue48el7aKsojii1UUU+FJmbPnh3tIWhixf4VDGk9lMKPjcubYiSxomNtJxQdda/O6XFmHj+egpUr+XnYpRy+7z4K161DVqjTVRtD1NWcNIZw6th1UAuG3NgJgC/e/Zmtnx0O27VqA5Gck8rQUZTjdBqfqCkcfLLvE+LtSbV2qyFWdKztRFJHXc7MU2+mdPcekJKCVas5dOdd7L5sONkvvoT79OlaGaKu5qQxhFvHboNbMOSGjgB8vnAXP66tu8ZORD/fEbuSQmEAB/IPkJWTRYmj0JCsxgqFH83ZmZOTafK7h+nw2aek//rXWFu3xn38OIVffIG3qKjOhqgrIkO3IS0ZPNFn7Kx/ZxdZ648A4HJ6cLu8SClxu7y4nJ7qulFUQPnoxCDh8tHxer2YIrjFEwyvbXmNVza/wrxL36Tpws/JnaWhEGSEfXRiQcdYIBo6BlOYVHq9FH+zCZAUrv+c3Ldqn9+YmpPGEEkdt352iC//t5uhkzrRqmsaP356iB0bj+MocGFPttK5f1N6jmiNLQaKLwfCaC2r89FRhk4MEi5DZ/ny5Ywerb2UQqSRUjJh0QT25e1jQYc/07FNH/aOv6LGQpAdVq/Ckqpt9ccIaruOsUI0dQzGkVivQ3P7VSsxxcUZNeRqUXPSGCKtY/ahAorznSx//UfcznNLI1hsJsbf14uMNskxZ+wYraVyRlZo4uDB2p2waufpnezL28eAw4lY7nmS4o0bafXqK4ZmNTaC2q5jrBBNHYNJNSCs1lrrN6bmpDFEWsfEhnFVGjkAbqeXxS9txlkae9tYkdRSGTqKmGHZvmX03OPl/gUFyJISHFu3Yu/Vy9CsxgpFsOitt+V1OMqTFQairlVQV+jD5fSwZdXBKo0cP26nly2rDymfnWpQW1cxSLi2ro4cOUKLFi0M7dMovNLLr/88mFsX5GD1QMMbJtL08ccRZXu8tSlnSW3WMZaINR29DgfZr75K7hsa/MZuu4249pmcfO7vNJp0I41uvBFL48a+fsr9hGb7/IRycrGklfkJTZ2KKTFRt/Eea1rWViKpo9vlZe5jGyjOqzk6KbGhjcnPDMBijZ3tK6O1VFtXCk1kZ9fsWxAttr4/i9v+W2bk3DSZpk88UW7kgHFZjY2gNusYS8SajnpD1Is2fYsnL49Tr85g96WXcezxJ3CfOhWW8PRY07K2EkkdzRaBo0BbtKgj34XZHFu380hqGVvKKMLKN998E+0hBCR/+QqsTz6PxQt7L+9O00ceKbfeayO1VcdYIxZ11BOi3vwvf6bN/HkkXXop0umkZOdOvCUlYQlPj0UtayOR1NHjltiTtflx2VOseDzVb3HVNiKppTJ0FLWavKVLOfKb32DySD4cIMh89E+12shR1G/01NsSQpDQty+tXn2FzGXLyPjdw5z+74I6W0FdoQ8pJZ37N9XUtlP/ZigvlKpR1csV5fTt2zdq1w7kY1O8aRNHH/4deL28d7Hg23Ed+GNq56iNUSvR1LEuEas6muLjMcXHk373dNLvvUeT31hcZjusLZpz9Ne/1nQNvRXUY1XL2kYkdbTazPQc0Zqtaw9X65BsjTPTa3ir8iKhsUIktVQrOopyWrZsGfFrVlkX6JVXsGVm0uyZp9l6VTfeHWxmTOblMbGaEw0d6yKxrqNev7FwhqfHupa1hUjraIszM/6+XlhsgW/V1jgzo+/oRkmxO6LjMoJIaqkMHUU5ixYtiuj1vCUlVTteznqTveOvwNqiBQ2m3gTA5e0uj+j4giXSOtZV6puOesPT9ZQ1qW9ahotI62ixmclok8xNfx5In1FtSGxow2QSJDa00WdUGyb96SKKzpTy3t++JfdobJUViaSWautKETW01AU6NP1uLl7+MRPaT6B1SusIj1ChiCBlFdS1hKenjB9P4frPERYzSUOHxsRKpyI4LDZfiYcLxrblwnFtMZtNeDxepASL1cShHadxOtwse20rv/rDBcQlRC4RZaygVnQU5TRv3jxi1/I6HOTMnq3J8bJw7jvcet6kCI0sdCKpY12mvumoJzw99cYbyZk5k8PT72b/xIkUbdgQMK+WP+ng7dOmqaSDBhDNOWm1mbFYzQiTwGI1Y7WZEUIw7KbOpLVMIu+kg1X/2Y70xoZXciS1VAkDY5BwJQyMJHrrAmWuXIFZZThW1HG8JSWUZGVxsIqVTn94elyXLuT973+cen0mnlyfX0/ChReS/sD9JFxwQViSDipqL/mnHLz7102UFrm5YGxb+o/PjPaQIo5KGKjQxCwNlcCNQq/jpclmC/OIjCOSOtZl6qOOWsPTzQkJpN58Mx1WrST917/G1KABxZs2cWDyTRSuX49j61bDkw4qau+cTGlsZ9Rt3RACvl26n72ba3+CyEhqqQwdRTleb+QSToXT8TLaRFLHukx91dEUH48lLY30u6fTftVKOm/dQvtVK0m/ezqW1NRKKzGmxEQa3+EzgBrfcw8J/fthy8zk0J13GZ50UFG752SrLqlcdFV7AFbP3k7usdr9/kZSS2XoKMoxmSI4HcocL7WQMuEKqMVfMGcTUR3rMPVdRz3h6ebkZNLvu5eWL77I6QXvqKSDYaK2z8neI1rT4YIMXCUePnntR0odtTfsPJJaKh+dGKQu+OgAuHNy2D18RLVfyiIhgQ6rV2FJ1bb6o1DUZ/T6vrVftRJTXFwERqaIFK5SD+///VtyjhTRtkdjLr+rO8JU96PylI+OQhNLliyJ6PU8eXm0fOnFausCtXh9BqaEhIiOK1QirWNdRemon3AmHVTExpy0xpkZc1cP4hIs7N96ik3L9kd7SAGJpJbK0FGUc/To0Yhdy1NYxMHbpuE+cYL2K5af43jZcNpttFz+MfFdu8ZcdEgkdazLKB31U5d932oDsTInG6TbGTmtK0LApiX72Lel9jknR1JLZegoosKpGa/iPnaM0wvfxdK4cSXHyzYrlvHD2Pa8dfh9rAmJ0R6qQhE76PF9Gz+e4m+/xXnwYJgHpYgGrbukcdGVZc7J/9lOfo4Dl9OD2+VFSonb5cXl9ER5lJFB+ejEIOHy0Tlx4gRNmjQxtM9AlO7dy94rJoDHQ9t338XevVul56/++Gp+Pv0zL136EkNbDQ37eIwmUjrWdZSOwaHV9y1z8cccefAhSnfsIHXqVNLuvBNzUuUfFoGK7dZUs6suE2tzUkrJylnbaN0llRadG5G17gg7Nx7HUeDCnmylc/+m9BzRGlucL/tyJDFaS+Wjo9DE4cOHw34NKSUnnn0W3G4a/upX5xg5P5/+mZ9P/0yKLYWLm18c9vGEg0joWB9QOgaHKTGR1m/MrNb3rfXM1zElJhGXmYl0uch54w32jBnNmQ8+RHq9VRfbffVV3Dk59TYHT6zNSSEEwyZ3JrFRHAv+tJEfVh6kOM+J9EqK85x8v/Igcx/dwMkDBbgjvLoTSS2VoaMo57vvvgv7NQpWrqJow1eYGzQg/aEHy4873A5KPaW0b9ieLyZ+wQvDXsBqjk1HyUjoWB9QOgaH1qSDloYNaP7c32j77kLie/bAk32KY488QuGnn+HYohIOBiIW56Tb7eWT137E7QycosPt9LL4pc04SyNr6ERSS1XUUxExvA4HJ/72NwDSH3oQS6NGlLhLKHIVMWf7HBbvWUxuSS6p8amMbz+ezAaZJFgTiLfEljOyQhFtTPHxmOLjSb97Oun33gMWC7jdAbee7D160HbBAvKXLCFv6TLiOndi7/grakw42GH1qpgLFKhvuJwetqw6WKWR48ft9LJl9SEuGNsWa4S3sCKBWtFRlNOvX7+w9n/q9ddxHztGXJfzafirX1HiLmFbzjbGfDCGt7LeItuRjUd6yHZk81bWW4z+YDTbcrZR4o6tX47h1rG+oHQMHX/Swa0//lht0kFhMtHgiito8X//5PQ7KuFgVcTanBRCsGPjcU1td248hohgup1IaqkMHUU56enpYevbeeAAuW++BUDTxx9HmM0Uu4qZvno6DnfgL0uH28H01dMpdhWHbVzhIJw61ieUjsahVUthtZL/8cea2uYvWgS1PFOw0cTanDRbBI4CbSkEHPkuzObIvZ+R1LJ+zVJFtSxdujRsfZ/4y1+RLhcNrrqKhN69cbgdvL397SqNHD8Ot4M52+fE1KpOOHWsTygdjUOrlirhYPXE2pz0uCX2ZG3vkT3FiscTuVI7kdRSGTqKsFPw6WcUrluHKSmJjN/8GgCTMLF4z2JN5y/eu7g8dFChUIQPlXCwbiGlpHP/ppradurfjLqabUYZOhoQQpiEEF8JIaQQImDeaiFEcyHEHCFEthDCIYT4Vgjxq2r6nCKE+KGs7QkhxCwhRFTXRVu3bm14n97SUk785S8ApN9/H5bGjQGwmqzklmj75ZjryMVqip1fjuHQsT6idDQOzVrqSTh4xXik0xnCqGKPWJuTVpuZniNaY7FVf6u3xpnpNbxVRB2RI6mlMnS0cTfQvaonhRCpwBfA1cAM4AGgEHhXCHFLgPYPAW8DeWVtXwcmAmuFEFFLBTxy5EjD+8x5801chw8Td955NLrxxvLjLq+L1HhtvxxT7am4vLHzyzEcOtZHlI7GoVVLk91O2tSpVebg8SMSEmh0ww0c+f3vKdqwwYghxgSxOCdtcWbG39erSmPHGmdm7D09sMZFNtoqkloqQ6cGhBAtgb8AT1TT7A9AO+AGKeUTUsqZwGXAJuCfQoikCv01Bp4te+4yKeVMKeUTwA1AF3yGT1SYNWuWof05Dx8h5/WZADR94nGE5ZdsBl7pZXz78Zr6GZ85PqYqtRutY31F6WgcerTUknCw1euvUfrTDoo+/YyDt97GsaeewlNYZNRway2xOCctNjMZbZK56c8D6TOqDYkNbZhMgsSGNnqPbM3EJ/rhKIj8ylwktVSGTs28DOwFXqimzY3AHilludOJlNIDvASkApdXaHslkAC8VNbG335x2XUmGzbyKHPyub8hS0tJGTeOhAsvrPSc3WLn5i43Y7dU/8vRbrEzpesUlUtHoYgQWhIO2rt3J2noENIffBCsVs68s5B9EyZQ9PXGc/rzOhx4S0t9GZdLS+tdSHptwGIzk5Bs44KxbZn8zADuenkok58ZwAWXt+WrD/ew4o1tfLNkX7SHGTaUoVMNQohrgSuAuyoaJWe1aQa0AL4O8LT/WMW7vP/fX1XRvnPFFaBIYrPZDOur8PMvKFi1GlNCAhkPPxywTYI1gRnDZ1Rp7NgtdmYMn0GCJcGwcUUCI3WszygdjUOvlqb4eCxpaZWK7bZftZL0u6djSU3FFB+PsFhofNedtHvvPeK6nI/ryBEOTp3K8WeexVtcXCfLSMT6nLTazFisZoRJYLGascVb6HlZKxCwefUhsg8WRGwskdRSZUauAiFEA+BF4HUpZSAjxk/zsr9HAjznP9ZCR3tR1mZXgDHdAdzh///Mmb5toX79+pGenl4erte6dWtGjhxZvjRos9mYOnUqH330ESdPngTgmmuuYffu3WzZsgWAgQMHMmzYsPI+MzMzGTx4MLNnzwYgISGByZMn895775Gb63Mivv7668nKymLbtm0ADBkyBIvFwqcrVtBnzlwSgJTbp/GfRR8BkJKSwsSJE3nnnXfIz89HCMENN93AogmLWLBjAUv3LSXXkUuqPZVx7cYxqdMknIVOSotKmbNwDgCpqalce+21zJs3j+JiX36dqVOnsn79evbu3QvAqFGjKCgoYEOZ70DPnj3p0KED77//PgAZGRlceeWVzJ49G2eZM+W0adNYuXIlB8sqOY8dO5bs7Gy++eYbAPr27UvLli1ZtGiR701s3pxx48Yxa9YsvF4vJpOJadOmsWTJEpxOJzNnzmTChAkcPny4PNW5Ue9TcnIyK1asCPl9WrNmDQAdO3bkwgsvZP78+QHfJ4BJkyaxadMmdu3yTcvLLrsMt9vNunXrAOjatSvdunVj4cKFhr5PQNjep6NHjwLUi/fJPyfD9T5NWLiQ1dPvpvmGDZyePx/7BX0xNWzIkbvvqZR80F9G4vS8+bSaOZMjCXbWfvllTL1PeXl5Mft5CvS9t3nnV5jSi/GebMiKN7fS5YoEvv1uExDez5N/Thr1PlVHna5eLoRoCDyo45QXpZS5Zee+DkwAOkspz5Qdk8BSKeW4CtcYBKwHninztal4fRPgARZJKa8sO7YGuBQwSym9Z7V/Gngc6C2l3FzN6wpL9fKPPvqIK6+8MuR+Tr3xBtn/9y9smZlkfvQhogbL/cHPHmRYq2GMbDuSOHMcLq8LKWXMblcZpWN9R+loHJHSsuSnn8h56z+kP3B/tWUkAITdTofVq7CkpYV9XEZRV+ekq9TDgqc3UpBTwkVXZtJ3dNuwX9NoLaurXl7XV3QaAk/qaD8PyBVCXALcDtzkN3KqwZ+2Ny7Ac/FntTm7/dnfAoHaRwy/Na0Xr8MBJhPCakU6nViaNCG+e3fSH3ygRiMntySXNQfXsOHoBsZmjsUkTMSZA0kZOwSro6IySkfjiJSW8eefT9OnnuTUjBmay0ik3z29ytIUtY26OietcWaGTurE4he3sGnJfjJ7pdOoaXgDgCOpZZ320ZFS7pdSCh2P3WWnvgJsATYKITr4H2XPJZT9v3HZ/4+W/a24PcVZxypuU9XUXlZoU6sJuAc/ciSlO3bS8sUXSOjbt8Y+tmZvBaBrWlcsprpudysUdR9hsagyEjFI6y5pdB7QFI/by2fzdiC9dWe3R/MME0J4DHhUF6Jdm2gD9AJ+PusBMKzs308BSCmP4TNkLgrQj//YtxWObSr7OyBA+/7ATillYfBDD55rrrlGc1tvSQmOrCx2Dx9B7huzcJ/MBo/Htwf/1lvsuXwsJVlZNToc+g2dHuk9Qhp7bUKPjoqqUToaRyS1rMtlJOr6nLz42vOwp9g4tjuPbV+E9/d2JLXUY0oL4CA+fxS9j8/Lzo8VpgC/CvAA+K7s3xWTACwA2gshyhPDCCHMwH3AGWBZhbaL8G1Z3VvWxt9+PNAemG/wa9HM7t27a25UhreoiEO331Hl8rR0ODh4+x14i6rPreE3dHqm99Q+0FqOHh0VVaN0NI5IalmXy0jU9TkZn2hl8PUdAdjwwW4KT4cvMi6SWupdM/yPlHJYEI+h4Rh8uJBSfiylfO/sR9nTx8v+v7nCKX8DDgD/FUL8qSw6ajW+UPLfSikLKvSdjc/huB+wWghxhxDiT/iMpR3A82F/gVXg93CvCa/DQc7s2Zr34KvKm+Hxevjx1I9A3VrR0aqjonqUjsYRUS31lJGYMAG8kSskGSr1YU6275NOu56NcZV4WPffnWFL1hpJLdXmqAFIKXOAi4GPgHvwhaU3ACZKKd8M0P7/gFvwJRN8EZgOvAsMida2lS5MJt/eugaq24Pfk7eHYncxLZJa0NjeOGAbhUIRW+gpI5E6eRIiPjajK+sqQggGT+yELd7M/h9z2P1t7Dtg6zF00oF/hHCtUM+POmUOy+OqeO6IlPImKWVjKWW8lLKPlHJhNX3NllL2LGubIaW8VUoZ1Rk1cOBATe2M2oMv989pXHdWc0C7jorqUToaR6S11FJGouWLL1D0xRccffh3MZM8sL7MyaRGcQy8xhd/8/m7uygpNH57MZJaajZ0pJQ5Usqgc3eHer4i/CQnJ2tqZ9QefF10RAbtOiqqR+loHJHWUksZCWvLlhx/7u/kL1nCgck34TpxIqJjDIb6NCe7XNycFh0b4ihw8cX/fq75BJ1EUku1daUox591skYM2oOvq4aOZh0V1aJ0NI5oaFlTGYm4tm1pO3cu1hYtKMnKYt+11+Ko5T4w9WlOCpNg6OTOmK0mdm48zoFtOYb2H0ktQzZ0hBCthBBvGTEYRWygZw8+7ZapAZOB5Tvz2ZO3B6vJSufUzuEaqkKhiDImux1TXBzCZMIUF1fp+yC+U0favvc/Ei68EE/2KQ7cNIUzH30UvcEqKtEwI4F+49oBkLXuMKUOF26XFyklbpcXlzNgCchahxEZ2lKBm4FbDehLEUUyMzM1t/XvwR+sIsRcJCTQeubrmKqoQZJ1KguA89POx2aO7UJ5Z6NHR0XVKB2NozZraWnUiNZvvcmJv/6V0/9dwLE//JHSnbvI+O1vEGZz5czrLhd4vVHLpFybdQwXvYa3omETO41bJvPdJwfYufE4jgIX9mQrnfs3peeI1tjizFhs5po7q0Aktayx1pUQYkoNfbQG/iSl1PcqFUETrlpXTqdTV0VZr8OBOyeX0wsWkL94Me7cXCypqaRMmOBbyUlIwFRFRMVrW17jlc2vMPn8yfy+3++Negm1Ar06KgKjdDSOWNHy9DvvcPzZPwPQ6tVXiO/ShZy33yZ/0SLcOblY0sq+X6ZOxZSYWOX3S7iIFR2NxO30cGJ/Pkte3oLbea4bgsVmYvx9vchok6zL2DFay+pqXWnZupoNvIqvLEKgxx8NGqciyvgrwWrFsXkzRx56CHuPHgH34Kv7EqqLiQL96NVRERilo3HEipaNJk6k9Vtv0vyvfwEh2D1i5LmZ19+Yxe7hIzRlXjeaWNHRSJylniqNHAC308vilzbjLNW3jRVJLbUYOkeBKVLK5EAPfPljFPWQ/JUrKfnxR0q2b69yDz4QUkq2nqqbjsgKhSI0Evv1I3HAAA7f/0DImdcVoeFyetiy6mCVRo4ft9PLltWHaq3PjhZD5zugTzXPS2KrvIOiChKq8KcJhPR4KFi1GoCUUSN1XedA/gHySvNIt6fTLLGZrnNjAT06KqpG6WgcsaSl1+Eg5+23Q868Hg5iSUcjEEKwY+NxTW13bjyG0GEJRFJLLT46g4AkKeUnVTyfCFwgpVwXhvEpAhAuHx09FG/axIGbpmBt1Yr2K1eU749q4eM9H/PoF49yWevLeH7Y8+EbpEKhiDm8paXsGTHCt11VA5aMDNqvWokpLi4CI6t/SCmZcc9aTZXMTSbBXS8PRZiis+4Rko+OlPLzqoycsueLlJFTN3jvvfdqblRG/oqVgG81R4+RA3U3f44fPToqqkbpaByxpGVtrn4eSzoagcctsSdr09eeYsXj0V63LJJaqoSBinJyc7V9uUivl4KVPkMneaS+bSuou6Uf/GjVUVE9SkfjiCUta3P181jS0QiklHTu31RT2079m6FnkyGSWgZl6AghBgshVCW2eopjyxbcJ09iadaM+O7ddZ1b7Cpm1+ldmIWZLmldwjRChUIRs9Th6uexhtVmpueI1lhs1ZsK1jgzvYa3wqozl06kCHZF5zN8+XMUdYjrr79eU7sC/7bVSP3bVttztuORHjo26kiCtW469mnVUVE9SkfjiCUt9VY/j2TywFjS0ShscWbG39erSmPHGmdm3L09scbpM3IiqWWwho6KsqqDZGVl1dhGSkn+Sl+NkuRRo3Rfoz6ElWvRUVEzSkfjiDUt9VQ/z3kzchWIYk1HI7DYzGS0SeamPw+kz6g2JDa0YTIJEhva6D2yNROf6EdCA5vuzMiR1FL56CjK2bZtW41tSrKycB89hiUjA3sv/cn+6rojMmjTUVEzSkfjiDUttVQ/tzRpyrEnn+LkP/5B7pw5ERlXrOloFBabmYRkGxeMbcvkZwZw18tDmfzMAM67sAkrZmbxyWs/aorMqkgktTSi1pWiHlFQVnE2ecQIhEmfnSylZEu2rzpxXXVEVigUxmCKj8cUH0/63dNJv/eec2pdWVJTafr44xx/8klO/OWvYLGQeuON0R52naaiD47FZCa1aSLF+U4KT5fy87cn6NhPm+NypFErOopyhgwZUu3zvm2rVQAk60wSCHC86DinHKdIsaXQJqVNUGOMBWrSUaENpaNxxLKW1VU/b3T9dTR5/DEATjz9DKcXvhvWscSyjuHAbDVxYVl1842L9+kKL4+klsrQUZRjsVS/wFe6Yweugwcxp6WR0Lev7v63nCpbzUnvoduJOZaoSUeFNpSOxlGXtUydNIkmj/hKLh5/8knOvP9B2K5Vl3UMls4XNaVhkwTysx3s2HBM83mR1FIZOopy1qxZU+3z+eXbVsMRZv1hhPXBPwdq1lGhDaWjcdR1LVOnTCHj4YcBOPbYY+QtWhSW69R1HYPBZDbRb7xvVWfT0v24XdrqXUVSS2XoKDQhpaRguc/QSQkiSSDU7YrlCoUiuqTddivpDz0EUnL0j4+Qt3RptIdUb+jQJ4O0lkkUnSkla92RaA/nHII1dP4MnDJyIIro07FjxyqfK/35Z5z792Nu2JCECy/U3bfT42R7znYEgu6N9SUZjDWq01GhHaWjcdQXLRvfeQeN77sXvF6O/u735Jf9OPM6HHhLS5FeL97S0qALgdYXHfUiTIKLJmQC8N3yAzhL3DWeE0ktgzJ0pJSPSyk15W8WQpwfzDUUkefCagyYgjIn5KThlwVVW2ZH7g5cXheZDTJJtiUHPcZYoDodFdpROhpHfdIy/Z57SJt+FwiBt7gY18mTZL/6KntGjGBH9x7sGTGC7FdfxZ2Tg7ekRFff9UlHvbTplkbTzAaUFLrYsuZQje0jqaUuQ0cI8azO9h2A1bpGpIga8+fPr/I5f1h5ShBJAqH++OdA9ToqtKN0NI76pmX6/ffTZt5cLOmN2TNqNLlvzPJVQ/d4cJ/MJveNWewePoKSrCxdxk5901EPQvyyqrN51UFKiqqvQRZJLfWu6DwihJiupaEQojXwKVA7A+sVmindu5fSn3/GlJJCYv/+QfVRnwwdhUIRXYQQ2Fq14vD9DyCr2KaSDgcHb78Db1FRhEdXd2nRqRGtzm+Es8TDDysPRHs45eg1dPYBLwohrq6ukRCiBb56WC2BvwQ5NkWESUlJCXi8vFL5sGEImy2ovutD6Qc/Vemo0IfS0Tjqm5Zeh4Oc2bOrNHL8SIeDnNlva/bZqW86BkP/Ce0B2PrpYYrySqtsF0kthdRRV71sK+pLIAUYJaVcH6BNE2Ad0BH4t5TyNwaNVVGGEEKCLxIqEuy9+mpKt/9Ey1dfJfnSYbrPP+U4xbB3h5FgSWDDDRswm2pnhVuFQlE38JaWsmfECN92VQ1YMjJov2olpri4CIysfvDJaz+yd3M23Ye0YPANnSJyTX9uNinlOUnadK3oSCl3A5cDbuAjIUSl8BkhRBo+n5yOwGvKyIkt3nnnnXOOOQ8epHT7T5gSE0m8eGBQ/fq3rbo37l4vjJxAOir0o3Q0jvqmpbBacedoipfBnZurOcCivukYLP2uaAcCtn1xlPxTgVfLIqml7qgrKeV3wFVAAvBJmS8OQogGwEqgKzBbSnm3kQNVhJ/8/Pxzjvm3rZKGDQv6F099888JpKNCP0pH46hvWkqXC0taqqa2ltRUXw0tDdQ3HYMlrXkSHfs1weuRbFq6L2CbSGoZbHj5amAq0AxYIYRoCywHegMLgdsMGp8iyuSvKPPPGTki6D7qk3+OQqGoBXi9pEyYoKlpyoQJ4NVeo0mhjX7j2mEyCXZ+fZzcY9F1+Nblo3POyUI8APwbcAI24GPgGimlthzQiqAIl49OUVERiYmJ5f93HTnC7suGI+x2Om74slIxPa24vW4GLhiIw+1g7XVrSbOnGTnkWsnZOiqCQ+loHPVRS3dODruHj6jWIVkkJNBh9SosqdpWf+qjjqGw9r872bb+CO37pDP6jsqJYo3W0jAfnbORUr4A/A2fkbMc+JUycmKXTZs2Vfp//qqyJIFDhgRl5ADsObMHh9tBq+RW9cLIgXN1VASH0tE46qOWpsREWr8xE1HFd5dISKDliy+CSfttsD7qGAoXjGmL2Wpiz/fZZB8sqPRcJLXUmzDQc/YD+D0ggVFASYA2NeeCVtQKdu3aVen/BWXbVimjgqttBbAl+5eK5fWFs3VUBIfS0Tjqo5am+Hjiu3Wjw+pVpN5+O5aMDLBYsGRkkHr77bRfugT3ieMcvudepNOpqc/6qGMoJDWKo/uQFgB8vWhvpeciqaXeOunnLAmF6RxFlHGdOIHjhx8QcXEkDR4cdD/ljsiN64+ho1Aoagem+HhM8fGk3z2d9HvvQVitPsdjrxev00n2y6/gPnaME8/9naaPPxbt4dZJ+oxuw7bPj3JwWw5Hfz5D8/MaRnwMesPLTcE8wjV4hbFcdtll5f/217ZKHHQJphD2Uf0rOvWpYnlFHRXBo3Q0jvqupcluxxQXhzCZMMXFYbLbsTRoQMsXnkdYrZyeP5+8jz+usZ/6rmMw2JNs9BreCoCvF+0p9y2NpJbKCFGU43b/sssYam0rgLzSPPbn7yfOHEfHRvWn6m9FHRXBo3Q0DqVlYOw9etDkMd9KzrEnnqRkx45q2ysdg6PX8NbEJVrwuiX5p0pwu7xktsvE7fLicobfrVcZOopy1q1bB4D71CmKv/sOYbWSNHRo0P39eOpHALqkdcFq1l/xPFbx66gIDaWjcSgtq6bhdb+iwdVXI0tKOHzf/Xjy8qpsq3QMDpvdwhUP9GLktK5sW3+EuY9tYMa9a5n72Aa+XbKP4gIn7jAaPMrQUZxDwerVICWJF1+MOTk56H6Uf45CoajtCCFo+sTjxHU5H9ehQxz9/R+QKq+OobidHlylXhY8vZEfVh2kOM+J9EqK85x8v/Igcx/dwMkDBWEzdkI2dIQQcUKIHmWPJCMGpYgOXbt2BSC/bNsqOYRtK6h/GZH9+HVUhIbS0TiUltVjio+n5YsvYmrQgMK1a8l5/fWA7ZSOweEs9bDkpc24nYENSLfTy+KXNuMsraWGDtAZ2Ax8DwQfnqOIOt26dcOdm0vxN5vAYgmqgKcfr/TW24zI3bp1i/YQ6gRKR+NQWtaMrWVLWvzj7yAE2S++ROHnX5zTRumoH5fTw5ZVB6s0cvy4nV62rD4UFp8dIwwdJ3AQOAQUG9CfIkosXLiQgjVrwOMh8aKLMDdoEHRf+/P3U+AsICMhg6aJTQ0cZe1n4cKF0R5CnUDpaBxKS20kDR5M43vvASk5+tvf4jx8pNLzSkf9CCHYsfG4prY7Nx5DhCEhTciGjpTyJyllWyllOynlWgPGpIgi/rDy5BCSBMIv21b1KaxcoVDEPo2nTydxyGA8eXkcuf9+vKWl0R5STGO2CBwF2oqmOvJdmM3Guw4rZ2RFOY3tdoq++grMZpKHDw+pr/rsiJyqsW6OonqUjsahtNSOMJlo8fe/Y23VipLt28l56y08Dgfe0lJunzYNb2kp3mrqZykq43FL7Mnaom7tKVY8HuMdwfVmRlbUYS5NSuaY203CRRdhadQopL7KV3Qy6t+KzrXXXhvtIdQJlI7GobTUh7lBA1q++AIlO3aScOEFnHrlFfI//hh3Ti6WtFRSJkwgbepUTImJmOLjoz3cWo2Uks79m/L9yoM1tu3UvxkG16oG1IqOAvCW/VppcMV4On79FU3++IeQ+it2FfPzmZ+xCAvnp55v0Chjh3nz5kV7CHUCpaNxKC31Y2vXDmuzZuwdfwW5s97EfTIbPB7cJ7PJfWMWu4ePoCQrC29JSbSHWqux2sz0HNEai616c8MaZ6bX8FZYbWbDxxByUU8NjxIhxEEhxDtCiH6GvwJF0HhLSnDn5JD96qvsGTGCHT16sveKK8hbvAR3Tk7QH+BtOdvwSi+dUjsRb6l/v3aKi5VPvhEoHY1Daakfb1ERh6ZPR1axTSUdDg7efgfeoqIIjyz2sMWZGX9fryqNHWucmXH39sQaZ7yRA/pXdEQQDxvQErgO+FwIoULQawHekhIcWVnsHj6C3DdmVf61Miu0Xyv1sWK5QqGoO3gdDnJmz67SyPEjHQ5yZr+tfHZqwGIzk9EmmZv+PJA+o9qQ2NCGySRIbGijz6g23PTsADLaJGMJw2oOgJDh2BCreAEhTEAGcDXwIvCZlHJEWC9axxFCSIBQ3jt3Tg67h4+o9oMs7HY6rF6FJS1NV9/3fXofaw+t5a+D/sq4zHFBjzFWcTqd2Gy2aA8j5lE6GofSUh/e0lL2jBjh+wFYA5aMDNqvWokpLi4CI4t9XE4PQoDZbMLj8SIlhmxXibK4dCnlOQHqYffRkVJ6pZTHpZSvAv8DLgz3NRXVE85fK1LKXxyRG9c/R2SA9evXR3sIdQKlo3EoLfUhrFbcObma2rpzcxHW+lPLL1SsNjMWq5k1n67BYjWHxSfnbCLtjPwzkBLhayrOxmQif9EiTU3zFy0Ck/ZpcqTwCLkluTSKa0TL5JbBjjCm2bt3b7SHUCdQOhqH0lIf0uXCkqYtJN+Smop0acsTo/iFSM7JiBo6UsonpJQq0ivKhPPXSsX6ViIcKS4VCoUi3Hi9pEyYoKlpyoQJoIqA1mo0Gx1CiO1CiLuDvVDZ+dODPV9hHOH8tVJf61tVZFSIxVAVPpSOxqG01IfJbidt6lSE3V5tO5GQQNotUzHV0E5xLpGck3pWVzoDjUO4VmcgPYTzFUYRxl8r9bVieUUKCgqiPYQ6gdLROJSW+jElJtL6jZlVGjsiIYFWr7yMKSEhwiOrG0RyTurNjDw0hO2I8IZ3KTTj/7Vyet786qOudP5aKfWU8lPuTwgE3dLqb5XfDRs2qCrHBqB0NA6lpX5M8fHEd+tGh9WryJn9NvmLFuHOzcWSmkrKhCtoNHEixV9/jYiPJ6F372gPN+aI5JzUbeiUPRQxjv/XysHb7who7IiEBFrPfF3Xr5Wfcn7C7XXToWEHkmxJRg5XoVAoIo4pPh5TfDzpd08n/d57wGIBtxu8Xs588CEnnnmGuI4daff+eyryqhajx9AZZsD19hvQh8IAqv+1MsG3kpOQoKuOi6pY7qNnz/r9+o1C6WgcSsvQ8K9qb9y4kf79+wPQ8OqryJ09m9Jdu8idM4e0226L5hBjjkjOybAnDFQYjxEJAyvidTjAZEJYrT7HY683KOe63677LSv2r+DpgU9z1XlXGTK2WCQnJ4c0nUkWFeeidDQOpaUxnK1j4edfcOj22xHx8WQuWYKtZYsoji62MHpORjVhoKL2Y7LbMcXF8casWZji4nQbOQ63g1JPKc8Neo4vJn7BoBaDwjTS2OD999+P9hDqBEpH41BaGsPZOiYNuoSUyy9HlpRw/JmnDfvxWR+I5JxUho4iaErcJeQ4cnhty2uMeX8Mfef15apFVzH3p7nkOnIpcauqvgqFom7T5I9/wJScTNG69RSsWBHt4SgCoAwdRTkZGRma25a4S9iWs40xH4zhray3yHZk45Eesh3ZvJX1FqM/GM22nG310tjRo6OiapSOxqG0NIZAOlrS08n4zW8AOP7nP+NRofyaiOScVD46MYjRPjrBkOvIZfQHo3G4qw5Pt1vsLL96Oal2bckJFQqFIhaRXi8HbpyEY/NmGt14A02feCLaQ6p3KB8dhSZmz56tqZ3D7eDt7W9Xa+T4283ZPqferepo1VFRPUpH41BaGkNVOgqTiaZ/+hNYLJxe8A6OLVsiO7AYJJJzUhk61SCESBBCPCGE2CaEcAghcoUQXwkhzgkpEkI0F0LMEUJkl7X9Vgjxq2r6niKE+KGs7QkhxCwhRFQzRzudTk3tTMLE4j2LNbVdvHdxvat5pVVHRfUoHY1DaWkM1ekY36kjabdMBSk59sSTqtBnDURyTobd0BFCxAkhepY9tCdliTJCiEbAF8DDwBrgXuApYDPQ5qy2qWVtrwZmAA8AhcC7QohbAvT9EPA2kFfW9nVgIrBWCJEYlhdkIFaTldwSbUVBcx25WE0qkZZCoaj7NL77bqwtWlC6cye5c+ZGeziKMsLqoyOEGAHMB9IAATiABcAjUsqTYbuwAQgh5gITgIuklNtraPt3fAbRFVLKxWXHzMBXQHugjZSysOx4Y+AAsA0YIKX0lB0fD3wMPCql/EsN1wuLj47X68Vkqtn2LfWUMub9MWQ7smtsm5GQwbKrlxFnjjNiiDGBVh0V1aN0NA6lpTFo0bFw/XoO3XEnwm4nc/FilVunCoyek4b66AghbhBCvCiEmKKh+cvAOuA8oDVwU9m/vxdCNNN77UghhGgL3Ai8IaXcLoQwCyGqq2lwI7DHb+QAlBkwLwGpwOUV2l4JJAAv+Y2csvaLgb3AZKNeh15WrlypqZ1XehnffrymtuMzx9e73BJadVRUj9LROJSWxqBFx6TBg0m5fAzS4eDEM8/Uu+8/rURyTuoydIQQT+Nb5VgOjBBCPFPDKa2BP0op90opD0spP5BSDgE+w2cE1VZG49Nme9nKTjFQIIQ4XLbtVE6ZwdYC+DpAP/5jF1Y45v/3V1W071yDURU2Dh48qKmd3WLn5i43Y7dUn1jQbrEzpesU4i0xs2NpCFp1VFSP0tE4lJbGoFXHjD/8AVNSEoXr1lGwclWYRxWbRHJO6i3qeRW+7ZZCIcR64Evg8Wra/wi0BHafdfxZ4Dud144kncr+/hU4BdwFOMv+/ksI0VBK+WRZm+Zlf48E6Md/rOLaZU3tRVmbXWc/KYS4A7jD//+ZM2cC0K9fP9LT01m6dCkArVu3ZuTIkcyaNQsAm83G1KlT+eijjzh50rdjeM0117B79262lEUHDBw4kNLS0vI+MzMzGTx4cLlnfEJCApMnT+a9994jNzeXi4dczIzLZjB9zfSA0Vd2i51Xhr2CDVt5nykpKUycOJF33nmH/Px8ACZNmsSmTZvYtcv3ci+77DLcbjfr1q0DoGvXrnTr1o2FCxcCkJqayrXXXsu8efMoLi4GYOrUqaxfv569e/cCMGrUKAoKCtiwYQPgq6nSoUOH8kycGRkZXHnllcyePbvcIW7atGmsXLmy/MM3duxYsrOz+eabbwDo27cvLVu2ZNGiRb43sXlzxo0bx6xZs8qXYKdNm8aSJUs4deoUM2fOZMKECRw+fJjvvvvO0PcpOTmZFWWJyWp6nwCuv/56srKy2LZtGwBDhgzBYrGwZs0aADp27MiFF17I/Pnza9X7dObMGYCwvU9Hjx4FqBfvk39OxuLnqTa9T6dOnSIvL0/T+7Srfz86rPmU/Y8+SteBA/jf0qV1+ntP7/vkn5NGvU/VoctHRwjxOpADzMG3xdJESnl7Ne0fBO4Bxkgpd1c4fgmwQErZSvPFg0AI0RB4UMcpL0opc4UQs4Db8DkLt5dS5pT1ZwW24zPemkspTwshBgHrgWeklJWSJwghTIAHWCSlvLLs2BrgUsAspfSe1f5pfIZjbynl5mpeV1h8dI4cOUKLFtr3k0vcJRS7inl729ss2beEXEcuqfZUxmeOZ0rXKSRYEurdag7o11ERGKWjcSgtjUGPjtLrZf8NN1CyZSsZDz9MoxtvMKSmYF3B6DlZnY+O3hWdB4HfA/8EfqBmI+JfZX+3CyEWl51jAm4AfqPz2sHQEHiypkYVmAfk4nOaBljiN3IApJQuIcR/gSeAi4BP8G1rAQTytvXf5YsrHKvY/uylkEDtI0Z2drauiRdviSfeEk+3xt24pdstpMSl4PK6kFLWSwPHj14dFYFROhqH0tIY9OgoTCaaPf00Jdu2kdCvH9mvvEr+x4tw5+RiSUslZcIE0qZOxZSYiCm+/n1fRnJO6vLRkVI6pJRPSSnHSSkfl1IW1XBKOjASeATfTX0ivhWLDsCTQoh3hBCPCCHGBTN4DePdL6UUOh7+VafDZX+PB+j2WNnfRmV/j5b9DfSO+Y9V3Kaqqb2s0Cai+Jcr9eCVXv7w+R8YtHAQJe4S4sxx9drIgeB0VJyL0tE4lJbGoFdHW5s2WJs1Y+/4K8idNQv3yWzweHCfzCb3jVnsHj6CkqwsvCX1K6kqRHZOhjXeUEqZI6VcLaX8p5RyspSyG5AEDAD+jc//5XJ8Kym1Cf870DLAc/5jJwGklMfwGTIXBWjrP/ZthWObyv4OCNC+P7DTH4oeC5xynMLpdZIan0qCtfp9UoVCoahPeIuKOHT3PUhH4Czy0uHg4O134C2qac1AEQoRT6wgpSyVUn4rpZwlpbxXSnmJlLJhpMdRA+vx5boZL4QoX3kpS+Y3BThD5aipBUD7slw4/rZm4L6ytssqtF2Eb3Xr3rI2/vbj8eXcmW/wa9FM3759dZ9ztNC3+NQ8sXkNLesPweioOBelo3EoLY1Bj45eh4Oc2bOrNHL8SIeDnNlv462hXV0jknNSb3h5nBDiGyHEmjLH3Kra2crafF1du9pKWX6b6fj8aL4SQvxBCPFrfOHfrYDfnLVt9zd8htF/hRB/KouOWo0vlPy3UsqCCn1n49u+6wesFkLcIYT4Ez5jaQfwfNhfYBW0bBloAat6jhT6duWaJylDx08wOirOReloHEpLY9Clo8lEflm0Uk3kL1oE9SyhYyTnpF5lJwF9gf+TUlZZyENK6QT+ge9mPin44UUPKeUnwGX4QuMfxRcSn48v+/FbZ7XNAS4GPsIXZfYi0ACYKKV8M0Df/wfcgi+Z4Iv4jKp3gSHR3LZapPFDWRG/odMiWTk6+glGR8W5KB2NQ2lpDHp0FFYr7hxtpXLcubkIa8ytCYREJOek3qirq4G9UsplNTWUUi4XQvwM/AqYHcTYoo6Uch2+UHAtbY/gy/yste/ZxKguFfFvXbVIVIaOQqFQ+JEuF5a0VJ8Dcg1YUlORLhcirv6Uyokkeld0egNrdbRfD/TSeQ1FlGjeXP/2k9q6OpdgdFSci9LROJSWxqBLR6+XlAkTNDVNmTABvN6aG9YhIjkn9SYMLAX+IaV8TGP7Z/H5qNTveGODCVfCwGAY+8FYDhYcZNGVi8hskBnt4SgUCkWtwZ2Tw+7hI6p1SBYJCXRYvQpLamoER1b3MLKopwNfeLhWkoD6lyAgRvGnTteKx+vhaJGKujobvToqAqN0NA6lpTHo1dGUmEjrN2YiqsiALBISaD3zdUw1lDCoi0RyTuo1dA5RuUBlTVwAqGpyMYJX59JptiMbt9dNWnxavU8SWBG9OioCo3Q0DqWlMejV0RQfT3y3bnRYvYrU22/HkpEBFguWjAxSb7uN9kuXEN+tW73MjBzJOanX0FkLXCSEuKCmhkKIvsBAfJXKFTGASWd4Y7kjcpJyRK6IXh0VgVE6GofS0hiC0dEUH48lLY30u6fTftVKOm/dQvuVK4jr2JHD991PyU8/hWGktZ9Izkm9PjqdgG34VnYul1IGfIeEEJ3xJclrBXSTUu40YKyKMmqLj87iPYt55ItHGNN2DH8f8v/t3Xl4U1X6wPHvSZMu6QYtBQVEhAqKCCiLiqKMIKiAOOCIu1WB+bmhjuM4zLjNuIyiozgqo1i1IO7ggOCg7CIggsgyCIKIiIBCF0r3Jc35/ZE0lpK0SXtz0yTv53n6BG5Obt6+vbd5e+6550wJaSxCCBFODj03lfxXXiHxvPPolP1qqMMJe4aN0XEXLH8HTgQ2KqVmKaVuVkoNU0pdpJS6SSk1C9finZ2Bv0mREz4WLFgQUHu548q7QPMovJM8GkdyaQwj85iWdSMWu53SVaso27jRsP2GCzOPyYD7jrTWfwceABRwDfAqrlW8PwGy3dsswF+11o8ZF6oItgMHAltL1LP8gxQ6Rwk0j8I7yaNxJJfGMDKP1tataX29a+q1vJemGbbfcGHmMdmki2Ra6yeAbsCjuMbgfAvscP/770A3rfU/jApStEy1hU7HJJleXgghApWWdSOWxMSo7dUxS0BjdETLEKwxOgcPHqRdu3Z+t794zsXsL9nP/Mvn0zm1s6GxhLNA8yi8kzwaR3JpjGDk8dDUqeS/HH1jdYzOpZHz6IgItm/fPr/bOpwODpYeBOD4pOODFVJYCiSPwjfJo3Ekl8YIRh7TbozOXh0zj0kpdITHhg0b/G6bW5aLQzvISMggLkbWZ6krkDwK3ySPxpFcGiMYeXSN1bkOgLwXXzJ8/y2VmcekFDqiSfaVuKpxmUNHCCGax9Ors3o1ZV9HT6+OWaTQER4DBgzwu63cceVbIHkUvkkejSO5NEaw8nhUr85L0dGrY+YxKYWO8MjIyPC7rcyK7FsgeRS+SR6NI7k0RjDzGG29OmYek1LoCI+PP/7Y77a1kwVKoXOsQPIofJM8GkdyaYxg5jHaenXMPCal0BFNIrMiCyGEsaKtV8csUugIj06dOvndVi5d+RZIHoVvkkfjSC6NEew8RlOvjpnHpEwYGIaCNWGg0+n0a0VZh9NBv1n9cGonX133FbExsYbGEe78zaNomOTROJJLY5iRx5rCQnYNGYqztJQT334b+5lnBPX9QsXoXMqEgcIv2dnZfrX7pfQXanQNbe1tpcjxwt88ioZJHo0juTSGGXmMadWK1jfUroEVub06Zh6TUuiIgMllKyGECJ50GatjKCl0hEdsrH+9MzIQuWH+5lE0TPJoHMmlMczKYzT06ph5TMoYnTAUrDE6/npp00u8vPllft/r99xxxh0hiUEIISJZtIzVMYqM0RF+mTt3rl/t9hfLHDoN8TePomGSR+NILo1hZh4jvVfHzFxKoSM8Dh065Fc7uXTVMH/zKBomeTSO5NIYZucxksfqmJlLKXREwA6UyjpXQggRbLW9OvG9euEsLcFZWYl2OnFWVuIsLw91eGFDxuiEoWCN0cnPzyc9Pb3BNtU11fSd1RelFF9d9xU2i83QGCKBP3kUjZM8GkdyaYxQ5LGmuJiaI0c4/PY7FC2YjyO/AGt6GimjR5OelYUlMRFLfLypMRnB6FzKGB3hl127djXa5pfSX9Bo2tnbSZHjgz95FI2TPBpHcmkMs/PorKigYscOdo+6jILXX8dxKBdqanAcyqXg1Wx2Db2Iiq1bcVZUmBqXEczMpRQ6wmPz5s2NttlfKuNzGuNPHkXjJI/GkVwaw+w8OktL+WnCRLSPy1S6vJy9EybiLC01NS4jmJlLKXREQGSyQCGECD5neTn5OTk+i5xauryc/JwZMmanAVLoCI+BAwc22mZf8T5ACp2G+JNH0TjJo3Ekl8YwNY8WC0Xz5vnVtGjePAiztczMzGV4ZUYEVXJycqNt5I6rxvmTR9E4yaNxJJfGMDOPymbDkV/gV1tHQQHKFl5jJs3MpRQ6wuPTTz9ttI1cumqcP3kUjZM8GkdyaQwz86irq7Gmp/nV1pqWhq6uDnJExjIzl1LoiIDIrMhCCGECp5OU0aP9apoyejQ4nUEOKHxJoSM8unTp0uDzVTVVHCo/RIyKoa29rUlRhZ/G8ij8I3k0juTSGGbm0ZKQQHpWFiohocF2ym4n/aYsLI20a2nMzKVMGBiGgjVhYFVVVYMryv5Y9CMj/zOSDkkd+GTsJ4a+dyRpLI/CP5JH40gujWF2Hp0VFVRs3cpeH7eYK7udTtNfIb5nz7CbNNDoXMqEgcIvOTk5DT4vl63801gehX8kj8aRXBrD7Dxa4uOJ79mTzCWLSZswAWvbtmC1Ym3blrRbbqHrfz8OyyIHzM2lFDrCbzJZoBBCmMsSH481PZ2M226l6+JFnLJlM10XfUpcZlf23X03zuLiUIfY4kmhIzzsdnuDz9fecSWFTsMay6Pwj+TROJJLY4Qyj5aEBCxxcSiLBUt8PMVLllKxaTOFH/4nZDE1h5m5lDE6YShYY3Qa86eVf2LhDwt5/LzHuazrZaa+txBCiF+VrFzJTxN/j61jR7ou+hQVZhMGGk3G6Ai/zJ49u8Hn95fIGB1/NJZH4R/Jo3Ekl8ZoSXlMPPdcbO3bU71vH6Wr14Q6nICZmUspdIRHQUHDs3DKZIH+aSyPwj+SR+NILo3RkvKoYmJodeXvACh8/70QRxM4M3NpNe2dRFircFSQV56H1WIlIyEj1OGIFqSoqIhDhw5RbfDMrH369GH79u2G7jNaBSOXVquV+Ph4MjIyiA/Du34iQeqYMeS++BLFy5ZTffAQtnYyv5k3MkYnDAVrjM6RI0dITU31+tzuI7sZPXc0JySfwH/H/NfQ9400DeUx0hQVFXHw4EE6dOhAQkKC5zq5ERwOB1ar/C1mBKNzqbXG4XBQUlJCbm4u7dq1i4pjviWe2/vunETx4sVk3DWJNrfeGupw/GZ0LmWMjvDL1q1bfT4nd1z5r6E8RppDhw7RoUMH7Ha7oUUOQEVFhaH7i2ZG51Iphc1mo3Xr1nTs2JH8/HxD999StcRzu9W4cQAc/uADdE1NiKPxn5m5lEJHeHzzzTc+n5PxOf5rKI+Rprq6moQgTT1f7mUmWNE0wcxlQkIClZWVQdt/S9ISz+3EgedgO+EEHAd+pnTVqlCH4zczcymFjvBL7R1X7ROlR0cczeieHBFe5OcfWspi8QxKPvze+yGOpmWSQkd4XHDBBT6f89xaniw9Oo1pKI/Cf8nJyaEOIWJILo3RUs/tVmPGgM1GyYoVVP/8c6jD8YuZuZRCR3g0NFhRLl35TwbQChGZWuq5bU1PJ3noEHA6KZw9J9Th+MXMXEqhIzyWLl3q8zm5dOW/hvIo/FccxWv47Nmzh86dOxu2v2jOpZFa8rnd2j0ouXD2bLTDEeJoGmdmLqXQEY0qqy6joKIAm8VGhl3m0BFCiJbGftZZxJ54Io6DBylZuTLU4bQoUugIj27dunnd/nOp65pv+6T2WJQcMo3xlUcRmJY2Cd2KFStQSqGUIjs722sbpRQjR440ObLGtbRchquWfG4rpWh15ZUAHH6v5c+UbGYu5VNLePTv39/rdrlsFRhfeRSBiYmNp9JRg1NrKh01lFe1nDlCHn744bC6/V1WLzdGSz+3U8f8FmWzUbryc6r37w91OA0yM5dS6AiPt956y+t2mSwwML7yKPxTUV1DXkkl/1q2i0FPLefkvy5k0FPLeX7pTvJKKqmoDm3B069fPw4cOMDUqVMN3e9tt91Gq1ataNWqFb169WLv3r2e/7dq1YpVzZgjpSWt0RTOWvq5bW3dmuRhw0BrDregBUi9MTOXUuiIRtX26HRM7hjiSESkq6iuYcu+QgY9tZyXP9vNoeJKapyaQ8WVvPzZbgY9tZwt+46EtNi58sor6du3L0899VSjMwIXFxfzwAMPcNZZZ9GmTRvi4uLIzMzkz3/+M2VlZUe1nTZtGoWFhRQWFrJlyxY6derk+X9hYSHnnXdeML8tESFajXNdvjoyew7a4PXnwpUUOsIjJSXF63a5dBUYX3kUjSupdHDj6+sp91HIlFfXcOPr6yipDN1dJUopnnrqKY4cOcLjjz/eYNv9+/eTnZ1Nv379ePDBB3n22Wc588wzmTJlCr/97W9NihhiYmJMe69IFg7ntr1/f2K7dMGRm0vxihWhDscnM3MphY7wuOqqq7xul0tXgfGVR9Gw8qoasj/f7bPI8bSrruG1z3+gvCp0xc6QIUO46KKLmDZtGj/++KPPdl26dOGnn37ipZde4q677uL222/n/fff569//SuLFi1i3bp1psSblpZmyvtEunA4t12Dkl0zJRe24JmSzcxly5z9SITEu+++6/Xgk0tXgfGVx2jS+c8fB/yaTQ9dxIdf+zeA8sON+5h4fhdOfSiw99nz5IiA4/Llqaeeom/fvjz44IPMnDnTa5vY2FjPvx0OB8XFxdTU1DB06FAee+wxvvzySwYMGHDM6zp37syePXsMi7WgoECKHQOEy7nd6vLLyX32OUpXraLqp5+IPeGEUId0DDNzKT06wqOoqOiYbaXVpRRWFhIXE0d6fHoIogo/3vIoGpccbyO/tMqvtvklVSTHh/bvtDPOOIOrr76at956iy1btvhsN23aNHr16kVcXBxpaWlkZGQwePBgAA4fPmxKrDVhtKp1SxYu53ZMq1akXHIxAIXvfxDiaLwzM5fSoyMaVHvZ6vjE42XxPuG3pvScVDpqSE+M5VBx4ythpyfFUuPUhvbQNMVjjz3G7Nmzuf/++1m4cOExzz/77LPce++9DBs2jEmTJtG+fXtiY2PZv38/WVlZOJ3OEEQtokGrceM4Mu8jCj/8kIw770DV6V2MNlLoCI9rr732mG2yxlXgvOVRNM7phDFnduDlz3Y32nbMGR1xam1CVA076aSTuPXWW3n++edZvnz5Mc+/+eabdO7cmYULF2Kx/NqB/sknn5gZply2Mkg4ndsJZ5xB3MmZVH63i+Jly0i5+OJQh3QUM3Mpl658UErZlFK3KaU2KKUK3V9fK6XuUkodUxorpdorpWYqpXKVUuVKqa+UUr9rYP83KKU2utseVEplK6VCur7C+vXrj9m2r2QfIIVOILzlUTQuITaG8YO6kGBr+A4he2wM4wedREJsy/g77YEHHiAlJYX777//mOdiYmJQSqHrFGUOh4Mnn3zSzBCPuZVdNE04nduuQcmu9a9a4kzJZuZSCh3fcoCXgB+AycADQC4wFXizbkOlVBqwChgD/Bu4CygB3ldK3VR/x0qpe4AZwBF321eAq4AVSqnEoHw3fti5c+cx2+SOq8B5y6PwT1KclRk3D/BZ7NhjY8i5aQCJcS2jyAFo06YN9913n9df3FdccQU//PADl1xyCS+//DJTpkyhX79+lJaWmhpjRUWFqe8XqcLt3E4dfRkqPp6yL9ZS1cDdgaFgZi6l0PFCKdUeuAaYq7W+Qmv9b631i8DFuAqa3ymlWtd5yZ+Bk4CrtdYPaa2nA0OA9cAzSqmkOvtuAzzmfm6I1nq61voh4GqgB67Cp8WQS1fCTPG2GHp1TOXz+3/DrRd0pV1KHFaLol1KHLde0JXP//QbenVMJb6RXh+z/eEPf+D4448/Zvt9993HE088we7du7nrrrt46aWXGDZsmM+7tIQwUkxKCimXXALA4fdb7q3mwaZ0C7jO3dIopboD3wLTtNa313vufVw9N8la63L3tn1AhdY6s17b64GZwDit9fvubeOBV4EbtNb1e4a+Byq11j0aiU8DGP2z+/777+natetR266cfyXbC7bz1qVv0Sujl6HvF6m85TFSbd++nVNPPTUo+y4pr8JmjcEWY6G6xolT6xZzuSrcVFRUBHVhz2AeBy1JOJ7b5Zs2seeqq4lp3ZrMz1ZgaSGDko3OZe3NMlrrY+6akR4d7753f92slBqvlOqslOqqlPoDriLnH3WKnOOBDsBaL/up3VZ39bLaf3/ho/0pdXuAzORwHDsBW+0cOtKj4z9veRSBsyoncbYYLBZFnC1GihwRcuF4bsf37k1c9+7UHD5M8eLFoQ7Hw8xcSqHjhdbaAVwGbMXV+/IDsAt4ErhTa/1gnea1g1e8zXRWu61uldBYe1Wnjak+++yzo/5fXFVMUVUR8THxpMXLXRv+qp9H0TTFxcWhDiFiSC6NEY7ntlKKVuOuJL5XLyxJyTgrK9FOJ87KSpzl5SGLy8xcRvSfSEqpVsDdAbzkX1rr2mV+y4HvcI2lWQbYgRuBF5VSpVrr2ovsdvejt8k/Kuq1aUp7D6XURGBi7f+nT58OwIABA8jIyODjj12zxHbq1Ilhw4aRnZ0NuGZnzcrKYu7cuRw6dAiAsWPHsmvXLjZv3gzAwIEDqays9OyzS5cuHH+6a8xBQnUCb731Ftdddx2zZ8/2rIQ8btw4tm7dyjfffAPABRdcgNVqZenSpQB069aN/v37e1apTUlJ4aqrruLdd9/1TBZ17bXXsn79es/AtCFDhuBwODwnwWmnnUbPnj15z33XQFpaGldccQWzZs3y3EmSlZXFypUr2b3bdVvy8OHDKS4uZs2aNQD07t2bzMxM5syZA0Dbtm25/PLLycnJoarKNUHd+PHjWbRoEXv37gVgxIgR5Obmeqbo79u3Lx07dmTevHkAtG/fnpEjR5KdnY3T6cRisTB+/HgWLFhAXl4e06dPZ/To0ezbt48NGzYY+nNKTk7m008/9fyczj//fHJyclwHjt1u6s+puLiY3NxcEhISiI+P90yAFxMTQ1paGvn5+Z65YtLT0ykpKaGystLzPk6nk5KSEtdxVm8ftZPc5eXleS7TtmnThqKiIs/PLTU1FYfD4Rnca7fbiY2NpbCwEACbzUarVq3Izc2lVkZGBoWFhVS7Fzxs1aoVVVVVnuMpMTERq9XKkSNHPD+XlJQU8vLyANcHR5s2bTh8+LDnr9LWrVtTUVFBufuDIykpCYvF4slfXFwcSUlJnkVALRYL6enpFBQUeL7P+vtITk4Gfi1S4uPjsdvtnp9rbY7r7iMtLY2ysjLP4OPafTgcjqD9nKxW18dIsM6nAwdc4wRbwvmUl5fHkSNHwur33ocffshvzjqLTuefz+G33+GXBx/AkV+ANT2NlNGjaXX99fyYm8tna9Zw6aWXmvZzqv09adTPqSERPUZHKdUZV2+Mv07WWu9SSh2HqzcnW2v95zr7s+AajNwTOFFrfVgp1Rf4CpiitT7q/lKllB0oBd7RWl/j3jYfGAnYay9/1Wk/BbgP6K619jkkPVhjdFavXs25557r+f+yvcu4a/ldDOowiGlDpxn6XpGsfh4jWVDH6JSUkJQUkqu4ESfYuYyWMTrheG47Kyoo37qVnyZMRHvpwVEJCXR6dTrxPXtiCeI4rvqMzmXUjtHRWu/RWqsAvna5XzoRSAc+qLc/JzAHSAbOdG8+4H70Noildlvdy1SNtdd12piqZ8+eR/1fbi1vmvp5FE0TzMGz0UZyaYxwPLedpaU+ixwAXV7O3gkTcZo85YGZuYzoQqcZaosQb/ewWus+aq1/xlXInO2lbe22r+psq51s4xwv7c8CdmitSwKK1iDv1ZtUSgYiN039PIqmMWsdqGgguTRGuJ3bzvJy8nNyfBY5tXR5Ofk5M0wds2NmLqXQ8W6b+zGr7kallA3X/DoOYGOdp94BuiqlRtVpGwPcCRQC/63Tdh6u8T93uNvUth8FdAXeMuqbaK7aQkd6dIQQIgxZLBS5x9c0pmjePLBEZkkQ0YORm+ENXBP33aqU6gh8imuA8HVAL+BprfWhOu2fBH4HvK2UehZXD8/VuG4lH6+19tzyoLXOVUo9CDwDLFFKvYOrB+leXHP3TA3y9+ZT/fVwai9ddUzqGIpwwpasK2SMmJiWNSlgOJNcGiPczm1ls+HIL2i8IeAoKEDZbEGO6Fdm5jKiByM3h1KqLfAQMAJXIVINfIPrdvNsXS9xSqkOuAqeS4AkXL1CT2mtvfbPKaWygHuA7kARsAD4c70CyldsQRmMXN/AtwdSXF3MynEraR3fuvEXiKgTLYNQRcPkOGiZnJWVfH/RRTgO5Tba1tq2LV0XL8ISF2dCZMaL2sHIzaG1PqS1vkNrfZLWOlZrnai1HqC1frV+keNuv19rfb3Wuo3WOl5rfaavIsfdPkdr3dvdtq3W+mZ/ipxgmjVrluffRyqPUFxdTII1gVZxrUIXVBiqm0fRdLW3Yovmk1waI+zObaeTlNGj/WqaMno0uKcYMIOZuZRCR3jUXeG47hpXtZWy8I+sFG0Mp4m/dCOd5NIY4XZuWxISSM/KQiUkNNhO2e2k35SFpZF2RjIzl1LoCK9kMU8hhAh/lsREOr063Wexo+x2Ok1/BUsjk+6FMyl0hEdWVpbn33LHVdPVzaNouvT09FCHYIrKykomTJhAly5dSEpK4uSTT2bq1KmGvke05DLYwvHctsTHE9+zJ5lLFpM2YQLWtm3BasXati1p428hc8li0ycLBHNzKYWO8Fi5cqXn3zKHTtPVzaNoutolByKdw+HguOOOY9GiRRQVFfHBBx/wj3/8w695Rvbs2UPnzp0bbRctuQy2cD23LfHxWNPTybjtVrouXsQpWzZz0kfziOvaFaxW04scMDeXUugIj9o1U0AuXTVH3TyKpqtdaynSJSYm8uijj5KZmYnFYqFPnz6MGDGC1atXG/Ye0ZLLYAv3c9uSkIAlLg5lsXDgD/fy8+S/UBKiFc3NzKUUOsKr/aVy6UoIb8rKypg6dSqDBg0iLS0Nm81Gu3btuPTSS8nJyfEs9NlUDoeDVatW0atXL4MiFuJYycOGAVC0aFGIIwk+KXSEx/DhwwHX/Dz7i+XSVVPV5lE0T1pyAjgqQDtdj1Whv+Nl165dnHHGGdxzzz3Ex8czefJkpk+fzh/+8Aeqq6u56aab+Mtf/tKs95g0aRKpqanccMMNBkXtWkFbNF8kndvJQ4eAxULpmi+oKS5u/AUGMzOXMjOy8Ch2H+xHKo9Q5igjyZZESqz8ggxUcQh+aUSU6nKoLMHyxYuw5V0ozYXEDOh1FQy8A2KTwGbebbC1ysvLGTlyJLt372bOnDmMGTPmqOfvv/9+1q9fz/r1633soXH33nsvq1atYtmyZcTGxnptc9ttt/H2228DrtvGS0pKaNWqlef5BQsWcN555x31Grm93BiRdG5b27TB3rcvZevXU7JiBamjRjX+IgOZmUvp0REea9asAY6+bCVz6ASuNo+iCarL4cDX8Hwv1OqpUPwLOGtcj6unwtRecGCjq53JsrOz2bFjB/fee+8xRU6t/v37c9tttwGuX+QPPPAAZ511Fm3atCEuLo7MzEz+/Oc/e51D5O6772bRokUsXbqUNm3a+Ixj2rRpFBYWUlhYyJYtW+jUqZPn/4WFhccUOSCDkY0Saee25/LVp5+a/t5m5lIKHXGM2oHIMj5HmK6qBGZdAdU+LlNVl8Gssa52Jps9ezYAEydO9Kv9/v37yc7Opl+/fjz44IM8++yznHnmmUyZMoXf/va3R7WdNGkSS5YsYdmyZWRkZBgeuxDeJA+7CIDSz1fhLC0NcTTBI5euhEfv3r0BZHxOM9XmUQSoqgzWvOi7yKlVXQZfvAQX/Als5k1ytnXrVpKTk+nSpYtf7bt06cJPP/2Erc5CibfffjsPPvggjz32GOvWrWPAgAH8+OOPvPDCC8TFxXHSSSd52g4aNIiFCxcaEnuCiTPeRrJIO7dt7dqR0KcP5Zs2UfL556RcfLFp721mLqXQER6ZmZmAzKHTXLV5jGqPpAb+mvv3uMbk+GPzuzBwEjx+fGDv8ciRgMOqVVRURLt27fxuX3eMjcPhoLi4mJqaGoYOHcpjjz3Gl19+yYABAzjxxBObvEBv586d2bNnT6Pt4kMwT0okisRzO3nYMMo3baJ40SJTCx0zcymXroTHnDlzADhQKpeumqM2jyJAcSmugcf+KM2FeHMHyqekpAQ8gHLatGn06tWLuLg40tLSyMjIYPDgwQAcPnw4CFF6Z+Z7RbJIPLdrL1+VrPgMZ0WFae9rZi6lR0ccQy5diWZrSs+Jo8J1d1XxL423TcwAp6NZPTSB6tmzJytXrmT37t1+Xb569tlnuffeexk2bBiTJk2iffv2xMbGsn//frKysuROKNEixHbsSHyPHlRs20bp6tUkDxkS6pAMJz06wqNt27ZoraVHp5natm0b6hDCk9PpuoXcH72vcs2vY6KxY8cCrruv/PHmm2/SuXNnFi5cyPjx47n00ksZOnRoQJe/jGK1yt+0RojUczvZPadNsYmTB5qZSyl0hMfll1/O4crDlDvKSY5Nljl0mujyyy8PdQjhKdbumiensQHGsYlwjh/tDDZ+/Hi6d+/OM888w7x587y22bBhA9OmTQMgJiYGpdRR428cDgdPPvmkKfHW1bp1a9PfMxJF6rlde/mqeNlydFWVKe9pZi6l0BEeOTk5ssaVAXJyckIdQviKTYLr5vguYmIT4drZrkeT2e12FixYwEknncTll1/O8OHDeeaZZ3jjjTeYMmUKl1xyCf3792fv3r0AXHHFFfzwww9ccsklvPzyy0yZMoV+/fpRGoLbePPy8kx/z0gUqed23EknEXfyyTiLiyn98ktT3tPMXEp/pvCoqqpiX8k+ANonymWrpqoy6S+iiGRLgPZnwN1b0F+8hNpcZ2bk3le5enJiE0MyMzK47hTZuHEjr7zyCnPmzOHxxx+npKSEtLQ0+vXrx4wZM7jmmmsAuO+++9Ba89prr3HXXXdx3HHHMW7cOG666SZ69OhhatxNvatLHC2Sz+3kYcOo/O47ij79lKRBg4L+fmbmUgodcRRPj06y9OiIELElgC2ByrPvIn7wnyEmFmqqXGNyTL5c5Y3dbueee+7hnnvuabBdTEwMkydPZvLkycc8J4WHaGmShw8j76WXKFmyFP3II6gIGtcll66Ex/jx4+XSlQHGjx8f6hAiQlxiK7DGg7K4HltAkROuGlpSQvgvks/tuJNPJrZzZ2oKCyn76qugv5+ZuZRCR3gsWrRILl0ZYJGJdy5EsqKiolCHEDEkl8aI5HNbKeVZ+8qMu6/MzKUUOsJj7969cunKALWDUUXzRPJ4CLNJLo0R6ee2Z5HPxYvRQZ7nycxcSqEjPDT61wU9pUdHCCGiSvxpPbB16EBNbh7lGzeGOhzDSKEjPM4dei6VNZWkxqWSFJsU6nDC1ogRI0IdQkRITW3CelnCK8mlMSL93Dbz8pWZuZRCR3h8+/O3gPTmNFdurp/rNYkGORyOUIcQMSSXxoiGc7t28sCixYuDenegmbmUQkd4rN2+FoCOyR1DHEl4W7duXahDiAihmFgvUkkujREN53ZC795Y27bFceBnKrZuDdr7mJlLKXSER5Fy3ZkhPTpCCBGdlMVC8kXuJSE+/TTE0RhDCh3hEZcRB8hins3Vt2/fUIcQEex2mTfHKJJLY0TLuZ083H331aLgXb4yM5dS6AiPYksxIJeumqtjR8mfEWJjY0MdQsSQXBojWs5te9++xKSnU713L5U7dgTlPczMpRQ6wuP73O8BuXTVXL5WthaBKSwsDHUIEUNyaYxoObdVTAzJQ4YAwbv7ysxcSqEjAHBqJ8XK1aMjl66EECK6eSYP/DT8Z4OWQkcAkFeeR42qoXVca+yyplCztG8vhaIRbDZbqEOIGJJLY0TTuZ141gAsqalUff89ld9/b/j+zcylFDoCQBbzNNDIkSNDHUJEaNWqVahDiBiSS2NE07mtbDaSL7wQCM7lKzNzKYWOAGB/yX5ALlsZITs7O9QhRIRwnpxtxYoVKKXIyckJdShAeOeyJYm2c9szeeCixYbv28xcSqEjgF8LHenRaT5nkBfDE6Gze/duJk6cyCmnnILdbqd169b06NGDG2+8keXLl/u1j6KiIh599FHOPPNMkpOTsdvt9OjRg/vuu4+DBw8G+TsQzRFt53biuediSUykcvt2qgxehNPMXFpNeyfRosmlK+NYLPL3gxFsdhuVNZXYLDaqndU4tZMEa0LI4vnqq6+44IILsNls3HDDDZx22mmUl5ezc+dO5s+fT3JyMr/5zW8AOP/88ykvLz9mbMzOnTsZPnw4P/74I2PGjOGWW27BZrOxdu1ann/+ed544w3mz5/POeecE4pvUTQi2s5tS2wsSb/5DUULFlC8aBHp48cbt28Tc6mCuZaFCA6llAYMm8ip3FGOw+nAbrVT5awCCOkHiggf27dv59RTTzV0nxWOCkqrS5m5bSbzv59PQUUBafFpjOo6iht73IjdZifeGm/oe/pj1KhRLFiwgI0bN9KnT5+jnnM6nfzyyy8NDrAsKyvjjDPO4IcffuA///nPMYsafvXVVwwdOpTY2Fj+97//0a5du2B8G0ERjONAtAxFixaxf9JdxPfqxUnvvxfqcHxSSgGgtVb1n4uu8lQcpcJRQX55Pi9vfpnRc0fTd1ZfRnw4gpc3v0xBeQEVjopQhxiWFixYEOoQwlaFo4Jv8r/hkg8v4fWtr5NbnkuNriG3PJfXt77OxR9ezDf534Tk2Pzuu+9IT08/psgB11+ndYscb2N0XnvtNXbu3Mk999zjdeXmfv368cQTT5Cbm8vTTz9taOwyj44xovHcTho0CJWQQMWWLVQfOGDYfs3MpRQ6Uaolf6CEuwMG/jKINmXVZdy65FbKHeVeny93lHPrklspqy4zOTLo2rUr+fn5fPjhh016/ezZswGYMGGCzzZZWVnYbDbmzJnTpPfwpbq62tD9RatoPLctCQkkDRoEQPFi4wYlm5lLKXSiVEv+QBHRqdxRzoxtM3wek3Xbzdw20/Qi/IEHHsBmszF27Fi6devGzTffzL///W+2b9/u1+u3bt1KcnIymZmZPtvY7Xa6d+/Onj17KCkpMSp0IZql7tpX4UgGI0ehQD9Q/q/3/4VkTES4Gj16dKhDCLnTZ5we8GtWXbWK+d/P96vt/N3zyToti/5v9Q/oPf534/8CjqvWOeecw4YNG/jnP//JwoULeeONN3jjjTcAOO+885gxYwZdunTx+fqioiKOO+64Rt8nNTUVgCNHjpCUlORXbB988AHvvvuuz56gQOfRufDCC/nLX/7C0KFDA3pdpIvWczvpgsGo2FjKv/4aR24u1oyMZu/TzFxKj04UsihLQB8otYO8hH/27dsX6hDCUpItiYKKAr/aFpQXkBTrXxFgpNNPP52cnBwOHjzInj17mDFjBoMGDWLVqlWMHj2aqqoqn69NSUmhqKio0feobZOamkplZSUTJkygS5cuJCUlcfLJJzN16tSj2judTiZPnswDDzzgc58NxeXNgw8+yJ/+9KeAXhMNovXcjklKJPHcc0FripcsMWSfZuZSenSikM1iC+gDxWaR6eMDsWHDBvr27RvqMEKqKT0nlTWVpMWnkVve+OR2aQlp1OiaZvXQNNeJJ57IDTfcwPXXX8+gQYNYvXo169at47zzzvPavmfPnqxcuZJdu3b5vHxVVlbGjh076Ny5M0lJSZSWlnLcccexaNEiunTpwpYtWxg+fDjHH38848aNA2DhwoUkJSVxxhln+Iy1rKyMxMREv7+3wYMHc/jwYVavXs25557r9+siXTSf263GjSN5+DCShwxBO53o6mpwOrEkNO0OXTNzKT06UajaWU1afJpfbdMS0qh2ykBGEXxO7WRU11F+tR3VZZRh0ys0l1KKs846C4D9+/f7bDdmzBig4RlhZ86cSVVVladtYmIijz76KJmZmVgsFvr06cOIESNYvXq15zXz5s075hJTWVkZV111FR06dCApKYkhQ4bw5ZdfHtUmOzub7t27k5yczM0338yoUaN48cUXPd/ThRdeyEcffRRAJkSkclZUkNDzNCp3fsfuESP49vRefH/RReROm4YjPx9nRcu+aUUKnSgUrh8o4WLAgAGhDiEsJVgTuLHHjY3O4ZRgTeCG024wfdzY4sWLcTgcx2wvLy9nkXstoB49evh8/fjx48nMzOS5557jk08+Oeb5r7/+msmTJ5ORkcF9993ndR8Oh4NVq1bRq1cvz7ZNmzYd875Hjhxh3Lhx7Nixg4KCAs477zzuuusuz/Mvvvgi//znP5k9ezaHDx8mLi6OhQsX0rt3b0+bHj16sGnTJp/fTzSKxnPbWVFB+dat7LpoGAWvv47jUC7U1OA4lEvBq9nsGnoRFVu3BlzsmJlLuXQVhWo/UN759p0GBySH6gMl3GUYMFAvWtltdv499N8+7whMsCbw76H/xm61mx7bPffcQ35+Ppdddhmnn346drudn376ibfffpudO3dyww03cPrpvgdhJyYm8tFHH3HxxRczYsQIxo4dy+DBg7Faraxbt44333yTpKQk5s6d63PQ8qRJk0hNTeWGG27wbDt8+DApKSlHtTv++OP57W9/6/n/FVdcwdKlSwHXGKC//vWvLF682BPv9ddfz8svv3xUAZWSksLhw4cDT1QEi8Zz21layk8TJqLLvX9W6PJy9k6YSOaSxVji/f+sMDOX0qMTpWo/UHz99RzKD5Rw9/HHH4c6hLAVb43ntPTT+GTMJ9zS8xba2ttiVVba2ttyS89b+GTsJ5yWflpIiu9nn32WMWPGsHbtWh555BEmTpzIv/71L9q3b89rr73muQOrIaeeeipbtmzh4YcfZufOnfzpT3/irrvuYtWqVdx555188803DBw40Otr7733XlatWsXChQuJjY31bG/duvUxg5wXLFjAkCFDaN++PampqYwcOdLT67N8+XLS0tKO+os6Ly+Pzp07e+74AldB1Lp164ByFOmi7dx2lpeTn5Pjs8ippcvLyc+ZgbORdnWZmUvp0YlSdT9QZm6byfzd8ykoLyAtIY1RXUZxw2k3YLeGZqp9Ed3irfHEW+PJOiWLW/vc6lnrSmsd0uNx2LBhDBs2zK+2gwcP9nnJNzU1lYceeoiHHnrI7/e+++67Wbp0KcuWLaNNmzZHPdenTx+2bdvm+f/q1asZP34877zzDgMHDiQuLo4xY8Z4Bivn5ubStm3bo/bx/vvvH3XZCmDbtm1eZ4EWUcRioWjePL+aFs2bR8Ydtwc5oKaRQieK1X6g/L7377m1z61YlRWHdoT8AyXcderUKdQhRATlUMTFxAF4HqPRpEmTWLZsGcuXL/fa3X/ZZZcddWv5xo0bycjIoFevXjgcDp577jnmzZvHLbfcArjG3mzevJlNmzbRrVs3Xn75ZT744APuv/9+zz601ixbtoyZM2cG/xsMI9F2biubDUe+f3foOgoKUDb/79A1M5dy6UqQYE0gLiYOheuDRYqc5vH3r37RsPrjTqLRjz/+yAsvvMCuXbs46aSTSEpKIikpiUsuucTT5tJLL6WkpISNGzcCcM0115CRkcEJJ5xAv379SE9PR2vNmWeeCcDAgQOZNGkSgwcPplu3blRVVdGhQ4ejenRWrFhBamoqg9xT/wuXaDu3dXU11nT/7tC1pqW5bjn3k5m5lEJHeDR026vwn+TRGHl5eaEOIeROPPFEtNZUVFRQUlLi+Vq4cKGnjcVi4R//+AePPvooAGlpaSxbtoyysjK2b9/OhAkTOHjwIMcff7znNVOmTKGwsJB9+/YxadIk9uzZc1Sh8+ijjxq+sGgkiLpz2+kkxc8ZjFNGjwan0+9dm5lLKXSEECLM/e53v2vyYqPbtm0jMTGRrl27erYtW7aMiy66yKjwRJiyJCSQnpWFamRSQGW3k35TVpMnDww2KXSER907OUTTSR6NIUuPGKehXH7zzTf07NlT8u2HaDy3LYmJdHp1us9iR9ntdJr+ChZ7YHfomplLJZPBhR+llAZkIj8Rctu3b+fUU08NdRgixOQ4iGzOigqcpaXk58ygaN48HAUFWNPSSBk1ivRbbsZitwc0h04w1BbqWutjKnbp0REec+fODXUIEUHyaAyZrM44kktjROu5bYmPx5qeTsZtt9J18SJO2bKZLvM/Iq5rFxwFh5tU5JiZSyl0hMehQ4dCHUJEkDwaw9tyC6JpJJfGiPZz25KQgCUuDmWxcOiZf/LzX/5KyfJlTdqXmbmUQkcIIYQQAUk852wAyr74IsSRNE4KHeExduzYUIcQESSPxpDlB4wjuTSGnNu/sp/tLnQ2fI2zsjLg15uZSyl0hMeuXbtCHUJEkDwaoyLA1ZCFb5JLY8i5/StrWhpx3bujKysp37gp4NebmUspdITH5s2bQx1CRJA8GqM8gAUCRcMkl8aQc/toieecA0BpEy5fmZlLKXSEEEIIEbDacTqla1v2OB0pdITHwIEDQx1CRJA8GiMpKSnUIUQMyaUx5Nw+mr1fP7BaqfjfVmqKiwN6rZm5jKpCRyn1e6XUW0qpb5VSNbUT7zXQvr1SaqZSKlcpVa6U+kop9bsG2t+glNrobntQKZWtlDp2ueEm7NsMycnJoXz7iCF5NIbFElW/noJKcmkMObePZklMJKF3b3A6KVu/PqDXmpnLaDv6JwOXAYeAAw01VEqlAauAMcC/gbuAEuB9pdRNXtrfA8wAjrjbvgJcBaxQSiU2Z99m+fTTT0P11hFF8miMoqKiUIcQMSSXxpBz+1iJ7ruvStcEdvnKzFxGW6EzGEjVWp8PNDYS6s/AScDVWuuHtNbTgSHAeuAZpZSnL1gp1QZ4zP3cEK31dK31Q8DVQA9chUyT9i2EEEK0VOEwTieqCh2t9R6ttb/ryF8DfK+1nl/n9TXAC0AacGmdtpcDduAFd5va9vOB3cB1zdi3abp06RKKt404kkdjxMXFhTqEiCG5NIac28dK6NULZbdTtet7qgOY7djMXEZVoeMvpdTxQAdgrZena7f1r7Ot9t/eStq1wCm1vTRN2Ldpzj///FC8bcSRPBojGgfQVlZWMmHCBLp06UJSUhInn3wyU6dObfZ+ozGXwSDn9rFUbCz2fn0BKFvr7WPNOzNzaTXtncJLe/fjfi/P1W7rEEB75W6zswn79lBKTQQm1v5/+vTpAAwYMICMjAw+/vhjADp16sSwYcPIzs4GIDY2lqysLObOnetZX2Ts2LHs2rXLM5fBwIEDWb58uecvvy5dunD++eeTk5MDgN1u57rrrmP27NkUFBQAMG7cOLZu3co333wDwAUXXIDVamXp0qUAdOvWjf79+/PWW28BkJKSwlVXXcW7777rGTNw7bXXsn79enbu3AnAkCFDcDgcfPbZZwCcdtpp9OzZk/feew+AtLQ0rrjiCmbNmkVZWRkAWVlZrFy5kt27dwMwfPhwiouLWbNmDQC9e/cmMzOTOXPmANC2bVsuv/xycnJyqKqqAmD8+PEsWrSIvXv3AjBixAhyc3NZt24dAH379qVjx47MmzcPgPbt2zNy5Eiys7NxOp1YLBbGjx/PggUL2LJlC23atGH06NHs27ePDRs2GPpzSk5O9lzfDvXPqbi4mNzcXBISEoiPj/csHhkTE0NaWhr5+fk4na5O1PT0dEpKSqh0z6KakpKC0+mkpKQE4Jh91NTUcNxxx5GXl4fWrvsG2rRpQ1FRkefnlpqaisPhoLS01PP9x8bGUlhYCIDNZqNVq1bk5uZSKyMjg8LCQqqrqwFo1aoVVVVVnuMpMTERq9XKkSNHPD+XlJQU8vLyANcqyW3atOHw4cOeNaRat25NRUWFZ76apKQkLBaLJ39xcXEkJSWRn58PuAYHp6enU1BQQE1NjWcfhYWFpKSk8M4773D66afzv//9j5EjR5KYmMhVV12F3W73/Fxrc1x3H2lpaZSVlXkmCKwd8Hn48GGsVmtQfk5Wq+tjJFjn04EDruGULeF8ysvL4/bbb5ffe/V+Tj+mpNIG+HrGDHqcdZZfP6dnnnmGNm3aGPZzaoiq/QUSLpRSrYC7A3jJv7TWBV72swAY4W1Jd6XUIGAl8Kh7rE3d5yxADTBPa325e9tS4EIgpv6lMaXU34EHgTO01psC3bc3tXeLGf2zmz59OhMnTmy8oWhQNOVx+/btnHrqqUHZd25uLhkZXm9ajCo333wzSUlJ/Otf/2ryPoKdy2AeBy1JNJ3bgajYvp0ffjsG6/HHk7lsKUod87F6DKNzWfue3j7Tw7FHpxXwcADtZwHHFDqNKHM/eruwHV+vTf329acgrd8+0H2bprGqWPhH8miMlnpLdFlZGdOnT2fOnDl88803FBcXk5aWRt++fbnyyiu57rrrPL0c4Lrj6fnnn+c///kP3333HTU1NXTu3JkRI0bwxz/+kXbt2vl8L4fDwapVq/jTn/7UrJhbai7DjZzb3sV1705M69Y4fv6Zqj17iDvppEZfY2Yuw67Q0VrvwXUpKJhqbz33dgmpdlvdS09129dfwKMDoOu0CXTfprnuuvpjpkVTSB6N0dpux1lZibLZ0NXV4HRiSUgIaUy7du1ixIgR7Ny5k6FDhzJ58mTatGnDoUOHWLJkCTfddBPbtm1jypQpAOzcuZPhw4fz448/MmbMGG655RZsNhtr167l+eef54033mD+/Pmc455Kv75JkyaRmprKDTfc4PX5yspKzyU4bxISEoiJiSE9Pb3537yQc9sHZbFgP/ssihd+QtnatX4VOqbmUmsdlV/AAte37/P5fcAuL9uvx1W4jKuzbbx72/Ve2u8Ctjd13z5i0+7YDfXBBx8Yvs9oFE153LZtm+H7rCkv19V5efqXp5/ROwcN0tt6nKZ3Dhqkf3nmGV2dl6dryssNf09/lJWV6e7du2ur1arnzJnjtc26dev0Sy+9pLXWurS0VHfr1k3bbDa9YMGCY9quX79ep6am6oyMDP3LL78c8/wf/vAHffrpp+vc3FyfMV177bW69veBt6/ly5drrbXOz89vwnfsv2AcBy1RNJ3bgSp49z29rfsp+qc7J/nV3uhc1vlcPOYzU/ozfXsH6KqUGlW7QSkVA9wJFAL/rdN2Hq5LVne429S2HwV0Bd5qxr5NUzvIUTSP5LHpnBUVlG/dyq6hF1GQnY3jUC7U1OA4lEvBq9nsGnoRFVu34gzBatzZ2dns2LGDe++9lzFjxnht079/f2677TYAXnvtNXbu3Mk999zDiBEjjmnbr18/nnjiCXJzc3n66aePeu7uu+9m0aJFLF26lDZt2viMadasWQ3+QTd48GAAz2Bl0TxybvuWONDVK1n25ZdoP443M3MZVYWOUmqUUuoBpdQDQKZ72wPurzvqNX8S+BF4Wyn1N/cdT0tw3fr9R621Z2EPrXUurgHHA4AlSqmJSqm/4SpovgWmNnXfQkQTZ2kpP02YiPax2rYuL2fvhIk43XdZmWn27NkAfg+grG0/YcIEn22ysrKw2WyeO2PAdblqyZIlLFu2TAZji7ARe8IJ2Dp0oObIESq2fxvqcI4SdnddNYdSKge40cfTP2qtO9dr3wFXUXIJkARsA57SWr/nY/9ZwD1Ad6AI1+WxP2utj5lFKdB913ttUO66OnLkCKmpqYbuMxpFUx6NvNvGWV5O7rRpFLya3WjbtAkTyLjtVlPH7KSnp1NdXe33cgr+tj/99NPZunUrxcXF5Ofn07lzZ+Li4o4a0Dxo0CAWLlzY5NgdDsdR+zNatNx1FU3ndlMceOABjsyeQ9s/3kv6+PENtjU6l5F211WTaa2zgKwA2u/HNW7G3/Y5QE4w9m2GrVu3cu6554Y6jLAneYTtpwT+oddt7RcUuefraEzRvHmk33IzO844M6D3OPXb7QHH5XnPoqIG75Dy1v64445rtF3tL/sjR45w4oknGv4HDEBFRYVMGmgAObcblnjOORyZPYfSL9Y2WuiYmcuounQlGlY7AZZoHslj01iSk3Hk+3fd3lFQQIzJH9wpKSkUF/t/VTklJcWv3p/aNsHsKSj3cSlQBEbO7YbVLvBZtmEDTvekhL6Ymcuo6tERQpijKT0nzspKrOlprgHIjbCmpaFraprVQxOonj17emai9Wedntr2u3btIjMz02ubsrIyduzYQefOnaXHRYQ9a3o6cd26UblzJ+UbN5F41oBQhwRIj46o44ILLgh1CBFB8thETicpo0f71TRl9Ghw+rs+rzHGjh0L4FlioDG1d2Y11H7mzJlUVVUddRfXbbfdxgknnEBKSgodOnTg7rvv9kzZ31S1S0GI5pFzu3H+rmZuZi6l0BEewRysGE0kj01jSUggPSsL1cgAY2W3k35TlumTB44fP57u3bvzzDPPeNb+qW/Dhg1MmzbN0z4zM5PnnnuOTz755Ji2X3/9NZMnTyYjI4P77rvPs/2OO+7g22+/paioiE2bNrF582aeeuqp4HxTIiBybjfO7p78smxNw4WOmbmUQkd41C5KJ5pH8th0lsREOr063Wexo+x2Ok1/BUsIpuK32+0sWLCAk046icsvv5zhw4fzzDPP8MYbbzBlyhQuueQS+vfv71kgMTExkY8++ojjjjuOESNGcOWVVzJt2jSmT5/O+PHjOeecc7BYLMydO/eoQcs9evQgMTHx1+9ZKXbtqj/hemACGVskfJNzu3H2fv3BaqV861Zq3AvBemNmLqU8FUK0GJb4eOJ79iRzyWLyc3IomvcRjoICrGlppIwe7erJsduxxMc3vrMgyMzMZOPGjbzyyivMmTOHxx9/nJKSEtLS0ujXrx8zZszgmmuu8bQ/9dRT2bJlC88//zwffvgh//3vf6mpqeHEE0/kzjvv5I9//KPXO7OefPJJz77T09M9S0oI0dLFJCWScPrplG/cSNm69SRf+JtQhxRd8+hEimDNo7NixQrPTKqi6aIpj8GcP6WquBhrbGyLWuvKbNu3b+fNN9/ktttuo2PHjk3eT3FxcVDH6UTLPDrRdG43R+6/XiBv2jRa33A9x/3lL17bGJ3LhubRkUtXwqN///6hDiEiSB6NEWO3Y4mLQ1ksWOLioq7IAVePUJ8+fcjKymrWfmTVbWPIue2f2gHJZV/4HqdjZi6l0BEeb71Vf0ku0RSSR2PIukIuNTU1fPfdd83ah+TSGHJu+yehd29UQgKV3+3Cket9uggzcymFjhBCtBAlJSW88cYbFBYWorXmf//7H48++ijDhw8PdWhC+E3FxmLv2xeA0rVfhjgaKXREHSkpKaEOISJIHo0RExMT6hBMp5Ti7bffpkuXLiQnJzN69GhGjBjB1KlTm7XfaMxlMMi57b9E923mpT4uX5mZSxmMHIaCNRhZiEBFyyBU0TA5DkR9Fdu28cOYsVjbH0/m0qWewcLBIoORhV/efffdUIcQESSPxpBxJcaRXBpDzm3/xZ1yCjGtWuE48DPV7rml6jIzl1LoCA9/FiAUjZM8GqOmpibUIUQMyaUx5Nz2n7JYsLsX+fR2+crMXEqhI4QQQgjDJXoKnbUhjUPG6IShYI3RKS0tPWrqedE00ZTHYI7NqKmpkUG0Bgl2LqNljE40ndtGqPrxR74ffjExrVpx8prVKMuvfStG51LG6Ai/rF+/PtQhRATJozHKyspCHULEkFwaQ87twNg6dcLWvj01hYVUfvvtUc+ZmUspdITHzp07Qx1CRJA8GqOioiLUIUQMyaUx5NwOjFIK+znex+mYmUspdIQQQggRFIln186nE7pxOlLoCI8hQ4aEOoSIIHk0RjAXoYw2kktjyLkduMSzzwKgbMMGnFVVnu1m5lIKHeHhcDhCHUJEkDwKEZnk3A6cNSODuJNPRpeXU75pk2e7mbmUQkd4fPbZZ6EOISJIHo1RXFwc6hAihuTSGHJuN03tOJ2ytb9evjIzl1LoCCGEECJoQj1ORwod4XHaaaeFOoSIIHk0RkJCQqhDiBiSS2PIud009gH9ISaG8i1bqCkpAczNpRQ6wqNnz56hDiEiSB6NEWuNw1HtRGuNo9pJdVXLWMagqKiIRx99lDPPPJPk5GTsdjs9evTgvvvu4+DBg8e0X7FiBUopnnnmGZ/7VEoxcuTIoMUcHx8ftH1HEzm3myYmKYmE00+HmhrK3PPnmJlLKXSEx3vvvRfqECKC5LF5HFU1lBVV8dV/f+TNB9bw79tX8OYDa/hqwQ+UFVfhCGHBs3PnTnr37s3DDz9Mly5dePLJJ5k6dSpnn302zz//PKeddhpfeFnXpzkqKyspKSnx+eXPOlaHDx82NKZoJed209Ufp2NmLqXQEUK0GI6qGg79WMybD6xh46K9lB2pQjs1ZUeq+HrRXt786xoO/VgckmKnrKyMUaNGsX//fubPn8/s2bO5/fbbmThxIq+//jpr1qzB4XAwevRorz07TXXLLbeQnJzs8+vzzz837L2ECJbEc0I3TkcKHeGRlpYW6hAiguSx6aoqa5j/wiYcVU6vzzuqnMx/YRNVleYXOq+99ho7d+7knnvuYcSIEcc8369fP5544glyc3N5+umnDXvfWbNmobX2+TV48OBG9yFrhhlDzu2mS+jTBxUfT+XOnTjy8kzNpRQ6wuOKK64IdQgRQfLYNNVVNWxevNdnkVPLUeVk85KfTB+zM3v2bAAmTJjgs01WVhY2m405c+Yc81xZWRl5eXlev4JNPqCNIed201liY7H37QtA6dovTc2l1bR3Ei3erFmzuO6660IdRtiTPMJL/7cs4Nfc8s9BfPvlL3613fHlz5xxUSemTwpsLo7bX74w4Lhqbd26leTkZDIzM322sdvtdO/ena1bt1JSUkJSUpLnuYcffpiHH364ye/fHPn5+aSnp4fkvSOJnNvNk3rZKFJGjSRp8AVopxNdXQ1OJ5Yg3xUohY7wkBWOjSF5bJrYBCvlxdV+tS0vqiY2wdzLMUVFRRx33HGNtktNTQXgyJEjRxU6EydO5He/+53X11x00UXGBOmD09lwL5nwj5zbTeesqCBx4EDy38gh99lnceQXYE1PI2X0aNKzsrAkJmIJ0t2BUugIIQzXlJ4TR7WThGQbZUeqGm2bkGLD6dTN6qEJVEpKCkVFRY22q21TW/DUOvnkkxk6dGhQYhOiJXNWVFC+dSs/TZiILi/3bHccyqXg1WwOz3qLTq9OJ75nz6AUOzJGR3hkZWWFOoSIIHlsGq01p5zVeI8JQPezjkfrIAdUT8+ePSkqKmLXrl0+25SVlbFjxw46d+58VG9OqMllK2PIud00ztLSY4qcunR5OXsnTMRZWhqU95dCR3isXLky1CFEBMlj09hiY+h9USessQ3/WrLFxdBn6AnYYs29dDVmzBgAsrOzfbaZOXMmVVVVnrYtRYl7NlrRPHJuB85ZXk5+To7PIqeWLi8nP2cGzkbaNYUUOsJj9+7doQ4hIkgemy42LoZRd/bxWezY4mIYeUdvbHHm3y49fvx4MjMzee655/jkk0+Oef7rr79m8uTJZGRkcN9995keX0MqKytDHUJEkHO7CSwWiubN86tp0bx5YDG+LJExOkKIFsMaG0PbE5O5/vGBbFqyl51f/kJ5UTUJKTa6n3W8qycnLgaryb05AImJiXz00UdcfPHFjBgxgrFjxzJ48GCsVivr1q3jzTffJCkpiblz5/o1aFmIaKBsNhz5BX61dRQUoGw2w2OQQkd4DB8+PNQhRATJY/NYY12FTN+LOzFg5EnExFioqXGiNaZfrqrv1FNPZcuWLTz//PN8+OGH/Pe//6WmpoYTTzyRO++8kz/+8Y8tsshJSUkJdQgRQc7twOnqaqzpaTgO5Tba1pqWhq6uRsXFGRqDFDrCo7i4ONQhRATJozGc1BBniwXAamk5M/umpqby0EMP8dBDD/nVfvDgwehGRk439nxzye3lxpBzuwmcTlJGj6bgVd9j22qljB4NQThWZYyO8FizZk2oQ4gIkkdjyABa40gujSHnduAsCQmkZ2WhGpkUUNntpN+UFZTJA6XQEUIIIUTQWBIT6fTqdJ/FjrLb6TT9FSx2e3DePyh7FWGpd+/eoQ4hIkgejZEQ5Gnho4nk0hhybjeNJT6e+J49yVyymLQJE7C2bQtWK9a2bUmbMIHMJYuDNlkgyBgdUUdDa/gI/0kejREfpF960UhyaQw5t5vOEh+PJT6ejNtuJeOO21E2m2lrXUmPjvDwtuKyCJzk0RiHDx8OdQgRQ3JpDDm3m8+SkIAlLo5Xs7OxxMUFvcgBKXSEEEIIEcGk0BEebdu2DXUIESHa8hisW6OtVrmybpRg5jLYt8a3JNF2bgeTmblU0XSQRgqllIbo+gUjWqbvvvuOzp07YwvCbKYiPFRVVbFnzx66desW6lBEFFNKAaC1VvWfkx4d4ZGTkxPqECJCNOUxPj4+aHO05OXlBWW/0SiYuSwqKiI5OTlo+29JouncDjYzcymFjvCoqqoKdQgRIZrymJGRQW5uLmVlZYb3MEqPpXGC8bOpqqoiLy+Pw4cPk5aWZuj+W6poOreDzcxcykVwIUSTxcfH065dO3755RfDV8guLi6WXh2DBCOXMTExJCcn06lTJ+IMXptICCPJGJ0wFKwxOk6nE4tFOvmaS/JoDMmjcSSXxpA8GsfoXMoYHeGXRYsWhTqEiCB5NIbk0TiSS2NIHo1jZi6l0BEee/fuDXUIEUHyaAzJo3Ekl8aQPBrHzFxKoSOEEEKIiCVjdMJQsMbo7N+/nw4dOhi6z2gkeTSG5NE4kktjSB6NY3QuZYyO8Etubm6oQ4gIkkdjSB6NI7k0huTROGbmUgod4bFu3bpQhxARJI/GkDwaR3JpDMmjcczMpVy6CkO1l66EEEII8Su5dCWEEEKIqCI9OsJDKfWV1rpfqOMId5JHY0gejSO5NIbk0Thm5lJ6dIQQQggRsaTQEUIIIUTEkkJH1DU91AFECMmjMSSPxpFcGkPyaBzTciljdIQQQggRsaRHRwghhBARSwodIYQQQkQsKXSimFLKopS6Ryn1rVKqQin1k1Lqn0qpxFDH1lIppbSPrxIvbbsrpeYqpQ4rpUqVUp8rpS4MRdyhopSarJT6QCm1252nPY209ztn0Xb8BpJLpdQjDRyrf/TSPmpyqZTqppT6u1JqrVIqVylVrJTapJT6q7fvV45J7wLJY6iPR2tTv0kREZ4DJgH/Af4JnOr+/xlKqaFaa2cog2vBPufYgXTVdf+jlOoKrAEcwBTgCDAB+FQpdYnWeokZgbYATwAFwNdAq4YaNiFn0Xb8+p3LOu4B8upt2+ClXTTl8mbgduAj4C1c5+5vgMeAK5VSZ2uty0GOyUb4ncc6QnM8aq3lKwq/gNMAJzCn3vY7AQ1cE+oYW+KXOzc5frR7H6gB+tTZlgT8COzAfSNApH8BXer8eyuwx4icRePxG2AuH3HnobMf+42qXAL9gFQv2x9zf7931Nkmx6QxeQzp8SiXrqLX1YACptbb/ipQBlxndkDhRCkVq5RK8vFcInAZsEJrval2u9a6BMgGugH9zYgz1LTWu/1p14ScRd3x628u61NKpSilGuq9j6pcaq2/0lof8fLUe+7HniDHZGP8zWN9oTgepdCJXv1xVc1HLSGrta4ANhElH8RNdAWuE65YKXVIKfWCUiq1zvO9gDjgCy+vXet+lPweLdCcyfHrny24LrdUKKXWKKUu8dJGcunS0f140P0ox2TT1M9jXSE5HqXQiV7tgTytdaWX5/YDbZRSsSbHFA7W4eqGvQK4EVgG3AF8XqeHp737cb+X19du6xDEGMNRoDmT47dhhbjGkd0JjAYmAycCHyulsuq1jfpcKqVigIdwjcV5271ZjskA+cgjhPh4lMHI0csOeDuQACrqtKkyJ5zwoLU+q96mmUqpLcDjwF3uR7v7OW/5rZtb8atAcybHbwO01lPrb1NKvY5rbM9zSqnZ7kswILkE12WSs4G/aK13uLfJMRm4qRybx5Afj9KjE73KcHXLehNfp41o3NO4TroR7v/X5s1bfiW33gWaMzl+A6S1zgdexnXH1sA6T0V1LpVSj+LqlZ2utf5HnafkmAxAA3n0yszjUQqd6HUAVxegtwOqA66uw0j+y8MwWutq3Pl0bzrgfvR2eap2m7fu8GgWaM7k+G2aPe7HNnW2RW0ulVKPAA8AbwD/V+9pOSb91EgeG7LH/RjU41EKnei1HtfPf0DdjUqpeKAP8FUIYgpL7px15NfBd//D1fV6jpfmZ7sfJb9HCzRncvw2zcnux7oDRaMyl0qph4GHgZnAeO2+h7kOOSb94EceG2LO8Rjqe/HlKzRfwOk0PFfBdaGOsaV9Aek+tj/tztmf6mz7ANf8G73rbKudf2MnUTKPTr08NTb3i985i/bjt6Fc4hp7mepl+wlAPq4J2xKiOZe4BsxqXB/OlgbayTHZzDy2hONRVi+PYkqpF3BdU/0P8F9+nX1yNXChjqxZPJtNKfUcrr/klgN7cf3CuxTXbKBfAr/Rv86omonrDq1qXLN8FuGaUfV0YITW+lPTv4EQUEpdj+vuCnD9oorFNdMpwI9a6zfrtA0oZ9F2/PqbS6VUK+AHYC6wHTgMdAfG4zpmr9Zaf1Bv31GTS6XU7cCLuM7hB3F9qNZ1UGu92N1Wjkkf/M1jizgeQ10RylfovoAY4F5cM3xW4rre/CyQFOrYWuIXrtsiP3XnqQIoxTWvw1+AeC/tTwXm4bq1sgxYBQwN9fdhcs5W4PorzNvXiubkLNqOX39ziWsgZzauSy+HcX1I/wzMBgZEey6BnAbyeMxxKcdk8/LYEo5H6dERQgghRMSSwchCCCGEiFhS6AghhBAiYkmhI4QQQoiIJYWOEEIIISKWFDpCCCGEiFhS6AghhBAiYkmhI4QQQoiIJYWOEEIIISKWFDpCCCGEiFhS6AghRJRSSg1WSuk6X9820t6ulJqulPpGKfWYUkoFIaY29WKS6ftFs0ihI0SEqv9h4cdXVqhjDkdKqc7u/OWEOpZm+Az4G65FGhtyP1AAnAOcDFzjz86VUqcopV5QSm1VSh1RSlUppQ4opT5WSt2ilIqv07zMHcvfcK0SLkSzWEMdgBAiaP7mZdvdQCrwPK5FCuvaFNxwRAu2Qmv9iB/t+gH3aa2LlFIzgUuAtxp6gVLqIeBhXH9YrwVmACVAO2AwrgUfb3XvG611GfCI+7WD+XXFdiGaRAodISKUtw8ud69NKjBVa73H5JBE+NsEXKeU+gdwNbCkocZKqb/gKrh/An6ntf7SS5uRuFaqFiIo5NKVEOIYSqmzlFKzlVK/uC8z/KSUekUp1b5eO89lG6VUV/dr8pVSxUqpRUqpnu52Ge6xHT8rpSqUUuuVUr/x8r5193eKUmquUqpAKVWqlFqllBrWnHi9vEc3pdR7SqlDSimnuwcBpVSWUmqOUmq3UqpcKVWklFqtlLqu3r4eAX5w//dGb5cC64yDecRH7HuUUnsCjTHQ79sg/wDaAmtwXVaa6auhUqozrp6ZauBSb0UOgNZ6AXCx0YEKUUt6dIQQR1FK3QS8ClQCH+H6a/xkYDwwSil1ttZ6b72XdQa+BLYDOe7//xZYoZQ6B/gEKALeA9KAq4CFSqluXvYFcBLwBbAVeAU4Hhjnfs01Wuv3mhkvQFd3zDtxXX5JcMcI8G9gG7AS+BlIBy4F3lRKdddaP+hutwJoBdwFbAbm1tn/Ji/vGSifMTbj+24yrXWJe//+uAmwAe9qrbc2st/K5sYmhE9aa/mSL/mKki9gD6CBzj6e7wZUAbuADvWeuxCoAf5TZ1tn9/408Nd67R90by8AXgYsdZ673v3cc/VeU3d/T9d7rh+u3oHDQEpT4vXyHk/4yENXL9tigaXuGDp42V+Oj30Ndj//SAM/kz2BxNiU77spsTXzWFvq3vf4ZuxjhetjKvTnjnyF75dcuhJC1HUrrr/C79Ja76/7hNZ6Ga6eg1FKqeR6r9sDPFlv2wz3YxyuAazOOs+9DTiAPj7iOAL8vd77f4WrV6MVrt6i5sQLcBDvA7bRWn/vZVsV8BKunvAhPuI2mq8Ym/N9m+V49+O+EMYghFy6EkIc5Rz34wVKqf5enm8LxODqUdhQZ/smrXVNvbYH3I87tdbFdZ/QWtcopQ4CHX3E8XX917itAG4EzsBVSDU1XoDN2sclE6VUJ1y3Ug8BOuG6ZFRXBx9xG81XjM35vs1SO8eOzIMjQkoKHSFEXenux/saaZdU7/9H6jfQWjuUaz65Y55zc+DqlfDmoI/tv7gfU92PTY237r6OopTqAqwDWgOfA4twfQ81uC4p3Yirl8oMXmOked+3WQ4Ap+C7mBXCFFLoCCHqqi1KUrXWRQ22DK52PrYf5348Uu+xKfH66mn4A65C4iatdU7dJ5RSV+MqdAJRe8nO1+/bVHwXg75ibCk/p4aswjVeaAjwWohjEVFMxugIIepa634cFNIo4Ewf40sGux83uh+DEW+m+3GOl+cu8LKt9pJdjI/9HXY/nlD/CaVUJq4xR4FqKT+nhryBa+D2WKVUj4YaKqXM6iETUUgKHSFEXS/i+nB6TinVrf6TSqlYpZQZH66pwEP13rsfcC2u3oz/uDcHI9497sfB9fY1HO+3Vh/G1fPSycf+vsV1S/hopVTbOvtLAP4VYGy1WsrPySftmpDyEVx3q33s/vkdQyl1MbDQvMhEtJFLV0IID631t0qpm4HXgW+UUp/gmsPFhuuDfBCQi2vsRTCtBMYrpc4CVvPrPDoW4Pe1l2uCFO80XHPAfKCUmgPsB3rimtTufXccHlrrEqXUl8AgpdRb7vevAT7SWm/RWlcrpZ7Hdbv9RqXUf3D97r0I1ziWAwSoBf2cGqS1fkIpZcW1BMR6pdQa4Ct+XQLifFxz/3wVuihFpJNCRwhxFK31LKXUZlzT8v8GGAaU4vpAno1r0r9g+wH4P1y3rP8frsG/XwN/11p/Gsx4tdZb3LM2P4ZrkkArrskAx+BaH2ycl5ddDzyHqxi6GtcdR/uALe7nH8a1WOUEYCKuQcbv4urx2BZIfHXibAk/p0Zprf+ulPoAuA1XnDcB8UA+rkkVnwJmhSxAEfGU1nLnnxCiZXAvG/ADMENrnRXaaCKfezmJ5cDftH+LeppKKbUCuEBrrRprK4QvMkZHCCHEw+61tb4NdSBKqTa164XhffC3EAGRS1dCCBG99nD0zMt5IYqjrjJ8zFgtRFPIpSshRIshl66EEEaTQkcIIYQQEUvG6AghhBAiYkmhI4QQQoiIJYWOEEIIISKWFDpCCCGEiFhS6AghhBAiYkmhI4QQQoiIJYWOEEIIISKWFDpCCCGEiFj/DxDzmhqZ6bS3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from functions import plot_substances_properties_vs_temperature\n", + "ax1 = plot_substances_properties_vs_temperature('results.csv', substances, lables, 0, 'C$_{p}^{\\circ}$ [J$\\cdot$K$^{-1}] $')\n", + "plt.savefig(fname='figure_Cp.png', format='png')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "33fd844e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAIrCAYAAADBbLIWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADS/0lEQVR4nOydeXhURdaH3+ot3QkJkI1VQEBEiYAiIMywKCAqIIw6n6igqIAC7jrqzKiziDPqOO6iA6iooOCAI4IbiwoqKogKggICsi8JCZCtk97q+6PTAUKWvunqNfU+T57A7ep7K7++nT6pc+p3hJQSjUaj0Wg0mljEFO0JaDQajUaj0dSEDlQ0Go1Go9HELDpQ0Wg0Go1GE7PoQEWj0Wg0Gk3MogMVjUaj0Wg0MYsl2hNoiAgh9FYrjUaj0WiOQ0opqjuuV1Q0Go1Go9HELDpQiSJSSmVfb7zxhtLzNeQvraXWMda+tJZax1j7UqllXYhgBmnUEkj9aO01Go1G09ARwp/xkTr1k9jMnz8/2lNIGLSWatA6qkNrqQatozoiqaUOVBKEgoKCaE8hYdBaqkHrqA6tpRq0juqIpJY6UNFoNBqNRhOz6BqVKBCOGpWjR4/SuHFjZedryGgt1aB1VIfWUg1aR3Wo1FLXqDQQNmzYEO0pJAxaSzVoHdWhtVSD1lEdkdRSByoJwsaNG6M9hYRBa6kGraM6tJZq0DqqI5Ja6kBFo9FoNBpNzKIDlQRhwIAB0Z5CwqC1VIPWUR1aSzVoHdURSS11oJIgWCy6bZMqtJZq0DqqQ2upBq2jOiKppQ5UEoTly5dHewoJg9ZSDVpHdWgt1aB1VEcktdSBikaj0Wg0mphFByoJQqdOnaI9hYRBa6kGraM6tJZq0DqqI5JaasO3KBAOw7eSkhJSUlKUna8ho7VUg9ZRHVpLNWgd1aFSS234luA4PU7KveU4HA7KveU4Pc5oTynumTNnTrSnkBBoHdWhtVSD1lEdkdRSl0DHKWWeMkrcJbz+0+ss2raIgrIC0u3pjOgwguvOvI5kazJ2iz3a09RoNBqNJiT0ikocUuYpY2P+Ri5+52Je2fAKec48vNJLnjOPVza8wkXvXMTG/I2UecqiPdW4JC0tLdpTSAi0jurQWqpB66iOSGqpa1SiQKg1KgXOAi5656Ja0zwOi4OPLvuIdEd6/Sap0Wg0Gk0E0DUqCYbT4+S1n16rsxbF6XHy+k+v61WVejB37txoTyEh0DqqQ2upBq2jOiKppQ5U4gyTMLFo26Kgxi7avqgyUtUET2FhYbSnkBBoHdWhtVSD1lEdkdRSBypxhtVkpaCsIKixBc4CrCZrmGek0Wg0Gk340DUqUSCUGpVybzkXL7iYPGdenWOzk7P54LIPSDInGZ9kA0Z7LahB66gOraUatI7q0D4qmhrxSR8jOowIauyI9iOUmso1FNasWRPtKSQEWkd1aC3VoHVURyS11IFKnOGwOLjuzOtwWBx1jru2y7XaS6UebNmyJdpTSAi0jurQWqpB66iOSGqpA5U4JNmazIuDX6wxWHFYHLw4+EWSLckRnplGo9FoNGrRNSpRQEWvnzJPGaXuUr8z7fZFFDgLSHekM/zU4fxf5/9jX9E+erboqWzODYlt27bRoUOHaE8j7tE6qkNrqQatozpUallXjYq20I9T7BY7doudm7rdxKTuk7AKK27ppthVzG2f3MaG/A38d8R/6dRUdws1isfjifYUEgKtozq0lmrQOqojklrq1E+c47A4SDInMXPmTJLMSWQ4MuiS2QWf9PHU2qeiPb24ZMWKFdGeQkKgdVSH1lINWkd1RFJLHagkIDd3u5kUawpf7P2Cr/d/He3paDQajUZTb3SgkiB06dKl8t/p9nRuzLkRgCe/fRKf9EVrWnHJ8Vpq6o/WUR1aSzVoHdURSS11oJIg5OTknPD/MWeOITs5m58LfuaDXz+I0qzik6paauqH1lEdWks1aB3VEUktdaCSIMybN++E/zssDm49+1YAnv3uWcq95dGYVlxSVUtN/dA6qkNrqQatozoiqaUOVBKYEe1HcFrT09hfsp83f34z2tPRaDQajcYwOlBJENLT0086ZjaZubvH3QDMWD+DI2VHIjyr+KQ6LTXG0TqqQ2upBq2jOiKppTZ8iwIqDN+CRUrJxKUT+Xr/14w9cyz39rw37NfUaDQajSZYdFPCBsLs2bOrPS6E4K4edyEQvLXpLfYU7YnwzOKPmrTUGEPrqA6tpRq0juqIpJY6UEkQSktLa3zsjIwzGN5+OB6fh2e/ezaCs4pPatNSEzxaR3VoLdWgdVRHJLXUgUoD4dazb8VmsvHhjg/ZcGhDtKej0Wg0Gk1Q6BqVKBCOGhWXy4XNZqt1zJNrn+TVDa9ybrNzeWXoK5V5Qc2JBKOlpm60jurQWqpB66gOlVrqGpUGwsqVK+scM/6s8TROasy3B79l5Z66xzdUgtFSUzdaR3VoLdWgdVRHJLXUgUqCsH379jrHpNnSuKnrTYB/dcXj051EqyMYLTV1o3VUh9ZSDVpHdURSSx2oNDBGnz6a1o1as/3odt7d+m60p6PRaDQaTa0kbKAihPijEOK/QojtQggphNhRx/jThRDvCiEOCyFKhBCfCyEuqGGsSQhxpxBikxCiTAixWwjxbyFESlh+mCAYOnRoUOOsZiu397gdgBd+eIFSt66Cr0qwWmpqR+uoDq2lGrSO6oiklgkbqAD/AC4AtgGHaxsohOgArAL6AI8DfwAaAR8LIQZX85SngCeBn4Bbgf8CtwGLhBBR0bSoqCjosUPbDuWszLM45DzEaz+9FsZZxSdGtNTUjNZRHVpLNWgd1RFJLRM5UOkgpcyQUg4B9tUx9p9AE2ColPKfUsppQL+K570gjtseI4Togj84eUdKeZmUcoaU8i7gLuB8YHQYfpY6WbVqVdBjAyZwAKv3r+Zo+VHKveX4pI9ybzlOjzNc04wLjGipqRmtozq0lmrQOqojklpaInalCCOlDKrSpyJdcynwmZTyh+OeXyyEmAn8HegJrK546CpAAE9XOdUM4FFgDBDzHQDPbX4uLw1+ibZpbXn5x5dZvH0xBWUFpNvTGdFhBNedeR3J1mTsFnu0p6rRaDSaBkwir6gES1cgCfiqmse+rvje87hjPQEfxwIXAKSUZcAPVcZGjG7duhkaX+Ypw2a2cdl7l/HqxlfJc+bhlV7ynHm8suEVLnrnIjbmb6TMUxamGccuRrXUVI/WUR1aSzVoHdURSS0TdkXFAC0rvu+t5rHAsVZVxh+SUpbXML6vEMImpXRVfVAIMRGYGPj/9OnTAejVqxdZWVm8//77ALRp04YLL7yQmTNnAmCz2Rg3bhzvvvsuubm5AFx++eVs3bqVdevWAdC1a1d27tzJxx9/DED79u3p378/s2bNAiA5OZkxY8Ywf/58zGYzfQf3ZcryKTWmeZweJ5OWTeLDyz7kw0UfkpeXR1paGqNHj2bu3LkUFhYCcM0117BmzRq2bNkCwKBBg/B4PKxYsQKALl26kJOTw7x58wB/x80rrriC2bNnV1owjxs3jpUrV1Zudxs6dChFRUWVS4vdunWjY8eOLFiwAIDs7GxGjRrFrFmzcLn8Mo8fP54lS5awa9cuAIYNG0ZeXh6rV/vjyR49etC6dWsWLlzofxFbtmT48OHMnDkTn8+HyWRi/PjxLF68mF27drFu3TpGjhzJnj17WLt2rbLXqW/fvqSmpgb1OhUUFABw5ZVXsmHDBjZu3AjAgAEDsFgsLF++HIBOnTrRs2dP5syZAxAzr1Pjxo3p3bt32F6nffv8Gd2G8DqtXbuWdevWxeX7KZZeJ4/HQ+fOnePy/RRrr1PgnlTxOtVFg3CmFUJsABpJKdtV89hY4HXgRinlK1Uea4+/GPcZKeUdFce2AVYpZZtqzvU6MBZoKqU8Ust8lDvTTp8+nYkTJ9Y9EH8Q8tK6l3hlwyt1jr0x50Zu7nZzg0oBGdFSUzNaR3VoLdWgdVSHSi21M23dBPbnJlXzmL3KmMC/qxtb0/iYwyRMLNq2KKixi7Yv0lb7Go1Go4kaOlA5tiOoVTWPBY4dnxbaB2QKIaoLVlrhTwudlPYJN9nZ2UGPtZqsFJQVBDW2wFmA1WSt77TiEiNaampG66gOraUatI7qiKSWOvUjRCPgEPCllHJQlccexL/r5zwp5TcVx6YCfwb6Syk/P26sHcgHVkopL65jPspTP0Yo95Zz8YKLyXPm1Tk2OzmbDy77gCRzTYtIGo1Go9HUH536qQMpZTGwCBgohKgsY64IYMYDv3DiDp95gATuqHKqCUAyMCec862JYIuSAHzSx4gOI4IaO6L9iKgFVNHCiJaamtE6qkNrqQatozoiqWXC7vqpKJJtW/HfLMAmhHig4v87pZRvHDf8j8AgYIkQ4imgEH/g0QoYJo/7pJZS/iiEeAG4RQjxDvABcAZ+Z9oVRMlDJVAFHgwOi4PrzryOtza9Vau5m8Pi4Nou1zaoQlowpqWmZrSO6tBaqkHrqI5IapmwgQpwIzCgyrGHK76vACoDFSnlViHEb/Abtt0P2IDvgIuklMuqOfcdwA78W42H4U8dPQc8JKX0qfsRwkeyNZkXB7/IpGWTqg1WHBYHTw18imJXMen29CjMUKPRaDSaBlKjEmuEo0YlsCfeCGWeMkrdpbz+0+ss2r6IAmcB6Y50RrQfwdVnXM2Xe7/k8TWPM+PCGeRk5iiba6xTHy01J6N1VIfWUg1aR3Wo1FLXqDQQlixZYvg5douddEc6N3W7iQ8u+4C1Y9fywWUfcHO3m8lyZLH24FqK3cVMWT6F3YW7wzDr2KQ+WmpORuuoDq2lGrSO6oikljpQSRACzoT1wWFxkGROwiRMJJmTsFvsCCH4S9+/0LdlXwrKCpi0fBKHy2ptQp0whKKl5hhaR3VoLdWgdVRHJLXUgYqmRqwmK08OfJLO6Z3ZWbiTWz65pcF3VtZoNBpNZNE1KlEgHDUqe/fupVWr6jzrQievNI9rPriG/SX7ueCUC3hy4JOYTeawXCsWCKeWDQmtozq0lmrQOqpDpZa6RqWBkJdXt3lbfclKzuLFwS+Sakvlk92f8OjqRxPaWyWcWjYktI7q0FqqQeuojkhqqQOVBCHQLTNcdGjSgWfPfxarycrczXOZtXFWWK8XTcKtZUNB66gOraUatI7qiKSWOlDRBM25zc/lH/3+AcCTa5/kg+0fRHlGGo1Go0l0dKCSIPTo0SMi17mo3UXcc+49APz5yz+z8dBGnB4n5d5yfNJHubc87gtuI6VloqN1VIfWUg3R1NHp8lLu8eKTknKPF6fLG/FzqJzD+PET6n0OoySyM22DonXr1hG71rVnXktuaS4dm3SkSVITXlr3Eou2LaKgrIB0ezojOozgujOvI9maHJf2+5HUMpHROqpDa6mGUHR0uryYTGA1m3B7ffh84LDVvamgzO2luNzDzM+38853e8kvcZGRYuOyc1oxvl97GiVZsFtrP0+o54iFOYSC3vUTBcKx62f69OlMnDhR2fnqwul28kPeD9z+6e01WvC/OPhFumR0ibtgJdJaJipaR3U0dC3rGySc9HyTwO2Thp4fygd0mdvL+j1HuO6VNTjdJ688OKxmXruhF11bNw7bOWJhDnWhd/1owoLT46wxSAk8PmnZJErdpRGemUajiSVCSTeUub0cKi7nmeVb6PfYp5z25w/p99inPLN8C4eKyymr5kOz1uc/8JHh56/fc4R+j33KSyu2k1tUjtcnyS0q56UV2+n32Kes33O0xvMUl3tq/HAHcLq9XPfKaorLPTXOIdRzxMIcQkUHKglCy5YtI3Ytp8fJaz+9VmctitPj5PWfXqfMUxahmakhklomMlpHdURTy/oGGiqCjFCChFCfD6F9QDtdXmZ+vr3G5x5/jpc//xWnS905pJR4fZKSipWgYJ9fXOamzO1/vV0eH26vz/A5qvs5QkWnfqJAOFI/kaTcW87FCy4mz1n3Pvrs5Gw+uOwDksxJEZiZRqM5nlBSJtFOeRwqLqffY5/W+gHpsJr5/L7zyWx08u+XUJ/vdHl5ZvkWXlqxvcbnB5g0oAO/P7c16/YcweXxUe7xcfk5rTn/ic/ILSqv8/nN0pJYcucAJrz2LW6fD49X4vb6mHdTH4Y8uSLoc3x0e3/Ofnhp5bEfHhrChU+trPfz63OOlX84nySD6Z+6Uj+6mDZBmDlzJuPHj4/ItawmKwVlBUGNLXAWYDVZwzwjtURSy0RG6xg69a2tUFF8WV2gEViNeG3VzloDjWBXIj6/7/xqn290JWHy+R1wur2UlnspcXlo4rDxxlc7gnr+zJXb6dU+g+c/+QWn20eZ279q9NEd/Xjnu721Pj/AO9/vYWL/9tw5b13lsWt6tyW/xBXU8/OLXaTYzKzeceLv1UZJFkPnSLUf+0g3CUi1Ww0/32YxgQSflEiMn8NqVp+o0YFKguDz+SJ2LbfPTbo9PagVlXRHOm6fO65WVCKpZSLT0HWMtdWMYIMMCC3QMBpkXNe3HTvySygu81Di8lBU5uF3Z7cyHCT0emR55bEfHhrCO98H9/z//bCXmwZ04LtdR044bvQDOs1hZWT3liRZTNgsJpwuLxkptqBWIjIa2XB5fcydeB5Ws8BiMmE2CVxen6FzeHyS7f+4BJPJvzBR7jE2B69PsmXqxSccN3oOt9dHkuIWKzpQSRBMpsiVG/mkjxEdRvDKhlfqHDvs1GEcLjtM85TmEZiZGiKpZSLTUHVsaKsZo3udwg+7j1BY5qGozM21fdoZDjJGT//6hONX9WpjeCUgs5ENh81Mis1SryBj/s19sFvNOGxmHFYzbqNBgtfHM6PPrjzmdHm57JxWQaWOLju7NQI4r33GCceNnkNKWRmkAPh8GHq+r5pyBBXnCJWG+ZskAYnkErvD4uC6M6/DYXHUOe7Kzldyz2f3MGvDLHwyPv7C1ukKNcS7jvUpIo23As49h0tZsvEA89fu4ZUvfuWppVvw+qShQCPNbuX2uT/w4LsbePyjzTisZmNBhsNCr3bpnH96FiO6teSqXqdUrkYEQ2Al4NsHhvD5vRfw0R398fh8hp7v8fo4t106Oa0a0yGrES2bOJDS/wEdDNV9QDtsZsb3a4+jjnqNZJuZ8f1OxWE7ed0g1HPEwhxUoAOVBGHx4sURvV6yNZkXB79YY7AS8FHJLcll3aF1/Hvtv5m8fDL5zvyIzrM+RFrLRCWaOkZrS2yo2ziNBhoHC8v4als+H204wLw1u/BJY0FGis3CxDfWcs9/1/H3xT/xzPJfcNiMBRppDgvDu7bgql5tuKl/e8rcBoMMr+Ttm/vw6vW9eO6qs/nnZV0xm0RIQUJgFaC+zwc1H9CNkiy8dkOvGs+RbDMz6/pepCTV/OEe6jliYQ6holM/CcK+ffsiej27xU6XjC58dNlHvP7T6yzavogCZwHpjnRGtB/BtV2uJdnid6Z99vxneXDVg3y590uuWHQF//jtP+jTsk9E52uESGuZqERDx2imXYwGGbcN6ogEDpe6OVzi4qjTzdltmhhOm1w141ja5IoepxhezRjUOZvGDitpDitpdktloBF8ykPy/NXnHPv5DKYragsSXlu1s1Y961pJqO/zAwQ+oK97ZXW156nrA9puNdO1dWM+v+98Xv78V975fg/5xS4yGtm47OzWjO93Kil13JOhniMW5hAqentyFEgEZ9rjcXqcmIQJq8mK2+dGSnmSG+2BkgPc//n9rD24FoFg/FnjmdR9UuWOoKrn8ElfnamlcNHQXUBVEYqO9SlEjeaWWJ9P4vL66P/4p8FvBb2jP2f//cStoNv+cQmdHvgQr6/u3w0Wk2DT1Iu4evo3pDmsNEm28tcRXbjg38Fvia1uK6nRbbm3Dep40gd9MDom28x8fu/5ZFSzNRgCr+fROoOE2h1Z6//8489TXO4J+QPa6fJiEsfd01IaTpOEeg4Vcyh2lWI1mbGarbi9btw+L41syYbOUZW6tifrQCUKhCNQOXjwIM2aNVN2vnDg9XmZvn46L61/CZ/0cU72OTx9/tP4pM+/KhMj/YLiQctYJlq7XSLpm3Fz//b0PDWdf364icMlLg6XuvjlEYNBxsMX0eUvH9M02UaTZH+gMePacxn07+B9M6oGGiqCDAg90IiVIEFVkAFqPuSjTSh/EJZ5yihxl4Tld7UOVGKQcAQqa9eujZsOq98e+Jb7Pr+PW7rfQnZyNnd+dmdM9QuKJy1jiXClXQLUtiJiKMgY0J7fnd2KZT/nkl/soqCknPwSFy9cfQ6DI2iuteIP1W/tTYTVjMA5YiVICDzfYjbhidMgA+ofaIQaZJR5ytiYv5FJyyaF5Xe1DlRikERL/dSHovIiit3FjFw4slYrfofFwUeXfUS6Iz1ic4s3LVUTD2mXRkkW8or8AUZ+cTnntc8w5AJanQOn0bTL5qkXszW3mKYpVpo4/DtP9GrGycTSSkS8vrdDCTRUBBkFzgIueueisP2u1s60mpjEYrYwd8PcoPsF3dzt5rjrwhwNopV2Cd27I/h+IjNWbqdjdiP+MH995fFt/7jEsG/GTQPak5FiIz0liYwUGy6Pcd+M05unnnA8UQo4A+exW83cNug07hh8Wr0DjePvP9VGYPFEKKsh1QUaec48XtnwCm9teqvWQKPUXVpjkBKY16Rlk/joso+qfb7R3m7h+F2tA5UEoVevXtGegiFMwsSibYuCGrto+yImdZ8U5hkdI960hPjZ7TLz8+1ceGZz3ly9i0PF5RwqLievqJyP7+gf9G6Xd3/Yy0d39KdlYzsZjZLIaGSj1OUxHGT88eIzTvo5Qt2tEmqQAep2aagIMiCxAo1Q3tvRSruEEmgYDTJGdRzFtwe/pdBVyNHyoxwtP8o9594T9d/VOvUTBcKR+tm7dy+tWgXnGxAL+KSPc944B6+s29/CIiysHbsWk4iM7U80tYyHtEuKzczBwnLyKoKMAZ2yIp522TL14hMcOGOliBRiqzZDcyL1eW9HM+3i9Dh5ad1LQbmA35hzI2PPHMvuot0cKT/CkfIjDGk7hBH/GxF0A9kFIxbQb16/E47/MPYHeszuEdbf1Tr100B4//334yr3arRfUJmnDIfFUXlDh5NoaBndtEvwKyKq0i6PXnYWmY2SyExNIis1CY9Bu/Kq/URixTcDwrOaEa+1FbFCYDWkRYsWlHvLYz7t4va6OVx+mDRbmqHVjHFdxjH2w7GVx0a0H2GogWyqLZXfdfwdjZMak2ZLo3FSY8q95VHv7aYDFU1UMNovaMnOJczbNI8JXScw8JSBJ0XsseDDUt/6kEimXUZ2b8X76/eTW1RGblE5uYXlvDXhPMNpl1PSHWQ18gcZznqkXUb3anPSz5EoaZcAiZQyiTaJnnZ5beNrnN3sbJ749gkKygoochUB/tUMI4FGI1sjzso8iyZJTWiS1IQyb5mhIMMjPfz9N38/aX7B/q4e0X6E0kxBAB2oJAht2rSpe1AMEegX9Namt+qsJB9z5hge/PJBNuRv4PZPb+e0pqcx4awJXNj2Qtw+t7K9/YFAY/z4CX77dQOBRij1IfVZEXG6vOQWlZGdag86yPjf93u5qX8Hnv906wnHG9mNtZJvbLfy+b0XHJtfDDiRQuwVkaok3t7fqghH2iXY1RBDgcZPrzGi/Qg+2/MZ+c588svyefC8B4NeDVn862Kuz7menYU7AX8NX5OkJpS4SwwFGl7p5c1hb54wt1CDDCO/q6/tcm1YNj3oGpUoEI4aFZ/PF3fdao3kbyWSBVsW8OrGV8ktzQXg3wP+TeOkxtz6ya0h7e0PJdAItT7EqMlYt1OacO+C9RSV+XvF1GdL7XOf/EJ2qp2s1CSyU5M4vXmqIUfV6txMY8W7I0Ci1XbE4/s7gOrdLgHqen/XZ0ttubecfGc+h5yHOK3paQx7Z1i96zuM1nZ8O/Zbdh7dSbo9nbSkNEzCZLhGpbodN0HrcPlHpNur31qsfVQaINpH5RhlnjJK3aV19gsK4PK6WLhtIV/s+YI/9PwDl713WUh7+0MNNIwUoXp9kj2HneQWlnGwsIyDReVMHtjBkBNpoBDVahZkp9r58PZ+hkzKwmWZHmveHYlGLLXIiFTaJRTvDiMf8Nd3uZ6czBz+uuqvFLmLKo8bDjTGfMsz3z1DhiODdHs6g9sONhTofHDZB9XWdoQaaKgKMoz+rjaCLqbVxDR2ix27xc74syYyqdukyv4RHp+XlGr6R9jMNn7f6fcMO3UYL61/KeS9/aEUooZahApwz4WnGy5E/f7BITRJtiKE0GkXTdiIp7TLpR0u5fM9n3PIeYhDZYf4c+8/B512ef/X97kh5waK3EVYTBYy7BlkODIo9ZQaru+469y7TpibitqOQKf6ugKNZEv1/XaMNJCtjcDv6pu63cSk7pOwCAse6am2t5tq9IpKFAjHisqsWbMYN26csvNFivqmXcq95Vy84OKQ/lo5fiWh+ylNGNu3JYM6NyM1yU5ReRnLfj7AG6v2sW7PUW4e0J6Lc1owd81u/4pIURlzbjyPIU8Fv5rx8R39ue6V1WSn2WmWlkSzVDs3/PZUQ1t74yntYjELPF6pgwwF1Pf9HU9pF/AXr+Y788lMzoxo2mXt2LUUuYpIs6VV/nUfK2kXULeaEUwD2WBR+ZmjUz8xSDgClWiierdLgNrSLkZ9WL4d8y2bCjZxRvoZHHF6OFhYRtuMZAb9ewV3XngqfTs2Yt6W2bz/6+LKvxyHnTqcKzuNYdXWYp5e+ivv39rvBP+PUL0/QKddNLWT6GmXG7rcwDnNzuHxNY9zyHmIUk8pUL+0y7/X/ptMRyaZjkyGtB2SUGmXACoDjVhCByoxSDgClXfffZdRo0bV67mhBBqh7HYJpdttuaeci98JfkUl8BeXdDfGXdQFT1EXfvrTJN5bt4cW2XnctfKWGn+RPDXgefYdzOKys9vx5jc7K1ZE7HRWUIQarA7xaDIWyj3Z0Iknk7Hfd/o96/LW+dMuzkNM7DqRS9+9tF6rIUnmJDIdmfx3xH8Z+e7IegcaKlZDQE2gEc7ajmii8v2tA5UYRGWgUhlkmARun4xYb5dI7naZNKAD1/Zpy497j5Jb5HdDHd+/NdPXv8Ssn16t8/nXd7mBfq36Me792zFZCyuP92nRl7/0+Su/e6/uxoj/G/E+Wcnp2CzHfhYjqaPa3FATdbdLvBZ4qyLe0i7gT72YhIlL3rkkortddhXuItORSSNrI3/tlU67xDwq39+6mDZBiWZvFwitCLXc40UIgvb/eOf7PUzs356Jb6ytPHbboNO4stMY5m2pvbGhw+Lgyk5jaN4ok8WjPuKQaxtf7P+UT3Z9wrD2lzB385tBFey9vWUOE7tOxMaxgrVAEeppze30bp/CvC2zuWzRiamjF8aOYfX2Egac1rLGgEGbjMUmDcFkrHfL3rz4w4scch4ivywfp8dp2GQs1ZbK0HZDK9MuRp1MPT4PpzY+9YTjKrw7Qi1CDVC1iLS+gcbx945q59ZER6+oRIFQV1Qi3dulatrFkPfHgPb8pkMmzyz/hfwSF4eKyykq8xiu79g09SImvr6W7ArL9ZsHdGD5pr1kZBzkzhW1p23yC5ox9IzWJ6RdpJSUe8sN/eVYXR671O1kw6GN3PLJ5Brn8MIFL9Il80ySrXV/yBW7SrGazJW7n9w+L42q2f0UD+Tn55ORkRGVa4fiVBxPaZf/O/3/2HBoA/ll+eQ78xnXZVy90y7g/wD95PefMGrhKJ120dSKyve3Tv3EIKEGKqEEGWA80Bh2VgsWrd/PkVIXR51u/nVFN0PeHVWb0FlMgrUPDDG0Y6ZqfYfT5eW5T7bQLivJXwj7yxw++HVx5S+iS04dzuhOY/jylyJ25rm45YKT0y5GC3LXjFnDHz//I10yutAlswtdMrpQ5imr9zL78YT6V3ilLrHQSkDBHKK1mhGttIvT4+Rw2WHS7ekRT7v8kPsDGfYMMh2ZpFhTKPOWJWzaJZJbahOdb775ht69eys5l079JBiGerus3E7fjpnM+Hw75R6f/8vtZd5NfQzbrk9feSyomXaNMcv1NIeVeRPPI6NREpmNbKTZrZR7fCH5fzhsZm74bXv6PfYpnZo1YmzfkcwffhOpSUkUlZez7OcDTHp9M1tzi/n83vOrTbsYbYxY7Crmox0f8dGOjwCY+pupbD2yNWQvl1A9JwLnUNZKIEpBQqjnUKFjJNMu3bK78djqxzhcfrjyOfVJuwxqM4h0ezoZjox6pV16NOtxwvFETrs09Loplaxbt05ZoFIXOlCJM0ym4Gs7/vfDXm4a0IHPfzl0wvFGScYDjfsu6kyTZCuNHVZcHq/hJnS925+4RKjCZOz4JnT3vP0z8PNJz62tCZ2Rxogj2o/A5XPx975/Z2P+RjYe2sjAUwbyzHfP1Plc8Hc2vbnbzUgpT+oAHcqHI6j5gA6cJ5pBQrQ61R7/uJFA44I2F/C/rf/jcNlhjpQf4bkLnjPc22VfyT4ArCYr6fZ0SjzGert4pIenz3/6hLklksnY8dcLoOs7Gh469RMFQkn9+KTktD8b6+3yxdZDJFlMFV9m2melhLStVoX3B6jZ7RLqttxQlqjrkzo6783zaJHSgpaNWtKyUUuuOO0KPt75Ma9uqHv3UsjL7LW1EojiThMV5zDk3ZFzAyM7jGT1gdUUugopchVR6CrknnPvMbQlVoXJ2N6ivTS1NyXFmqJ3u0SADRs2kJOTE5VrJxoqtdSpnyAJBA/VUCKlbFRl7OnAY8AAwAZ8B/xFSvlJeGcJbq/P8GrGgE5ZJxwP1XZdxWoIqNntEqrleih/ORpOHbmLKfeWs6NwBzsKdwBwxzl3sHjb4jqfD/5VmYldJ7J853LSktJItaXSLLlZ0KsAtaWfIpXyqGkORi3TL253MZ/t+YxSdykl7hLu7HFn8KsZ2xdzfZfreeSbR044/tB5DxlOuzx43oM0SWpCk6Qmhu8Ht8/NKWmnnHA8kdMuEP3VkNTU1KheP5GIpJY6UDmRz4HpVY65j/+PEKIDsArwAI8DR4EJwMdCiIullMvCOUGfj5jo7XJ82qW21ZCa0i4BVPV2qe+23FCWqI2mjuxmO19f/TX7ivf5v0r2kWpLNfThaDPbuOOzOyqPfTH6i6A/oBdtX8SNZ93IE18/gdVkxWq2YhEWLmhzAUt2LDEUJHxz4Bt80odP+hjdebShOdxw1g2M/2A85d5y/5ennLdHvG040Hjhhxcqj/2p958MBxm/7/R70mz+gC8tKc14fYf08H+n/1/lMZ12iX0+/vhjXaOiiEhqqQOVE9kupZxdx5h/Ak2AHlLKHwCEEK8DG4EXhBCdZRjzaapWM0INNFR6fwR+rgCR9v+ob7Ot+v71e1rT0zit6WkAhj8cnR4nA08ZWJmuaGRtZOgD2mFxMG/zvBOOX9flOhZvD25VJxAkPPHtE5XHxnUZZ2gOyZZk1uWtO+G40Z8j1ZbKhLMmkGxNJsWaUq8g46E+D51wPNRAQ8VqCKgJNFSthmg0sYAOVKoghLABNillcTWPpQCXAp8FghQAKWWxEGIm8HegJ7A6nHNUsZoRC2mXWCPwl+OyZcsYPHhwUM8J9a9fo6syVpOV5y54rvKY0Q/ocm85f+z1R9w+Nx6fB7fPbXhVJ9WWytgzx2LChMlkosxbZizl4XXz+sWvk2ROqvwymjbxSA+3nXNb5TEVqxmxnHap77baRFoNUUH79u2jPYWEIZJa6mLaCipqVEoAO2AG8oB5wANSyqMVY/rgT/s8IqV8oMrzhwBLgFuklC9QCyos9GOxt0ui4HK5sNlsQY8PtegwlOJHFcWXoXaiVjGHWCkijVWTMaP3pKZ6tI7qUKmlNnwLEiHEN8B/ga1AGnAJcCXwI9C3YtXkcmA+MFlK+WKV55+JP/3zTynln+q4ltpePwIsZoHHKxt8kKGC+not1Hd3Q8R23NTwAR0rQUKsdKqNxd0u2v9DDVpHdUSy148OVGpBCPEn4BH8qyqPCCHGAq8DN0opX6kytj2wDXhGSnlHDeebCEwEegD85z//AaBXr15kZWXx/vvvA9CmTRsuvPBCZs6cCYDNZmPcuHG8++675ObmAnD55ZezdetW1q3z5/qdTiejRo3i448/BvzLcv3792fWrFkAJCcnM2bMGObPn09BgX+Z/8orr2TDhg1s3LgRgAEDBmCxWFi+fDkAnTp1omfPnsyZMweAtLQ0Ro8ezdy5cyks9Df3u+aaa1izZg1btmwBYNCgQXg8HlasWAFAly5dyMnJYd48f11Eeno6V1xxBbNnz6a01N/Sfdy4caxcuZLt2/0FwkOHDqWoqIhVq1YB0K1bNzp27MiCBQsAyM7OZtSoUcyaNQuXy+8HM378eJYsWcKuXbsAGDZsGHl5eaxe7c/C9ejRg9atW7Nw4UIAWrZsyfDhw5k5cyY+nw+TycT48eNZvHgx69evJzMzk5EjR7Jnzx7Wrl2r7HXq27cvqampJ71Ov/z6C5ktM3lz85ssPs5hd/ipw7m2y7U4jzj5cPGHSClPep0uGn4Reea8Oj+gs7xZfLT4o5Nep6ysLH574W8Z9u6wOoOE90e9zxdLviAvL++E1+k3A35DaVopUz6ZUuMcnhv4HF2zu7Ji+YpqX6ffDPgNzjQnk2tpR/DcwOfo1qwbyz5axr59fg+SwOv03Xff0bd/X7JbZzNn05yTgoyrO11N3r48vv36W6677rpaX6dBgwbRJLMJ9iQ7dpudck85EsmS95eQl5cX8ffTggULyMzMjMv3U9XXKRLvp5p+7x06dIgpU6bo33sKXqdHH32UzMxMJa/TTTfdBOhApV4IIaxAMbBWStk3FldUAsyePZsxY8YoO19DJppahrIqE8oqQKykPGJxNSMW0O9vNWgd1aFSS72iEiJCiF8Bt5SyUyzVqGg01RHKB3QsBQmJFmhoNJqaqStQMUV0NnGGEMIOtAYOVhz6ESgH+lQz/LyK799GYGonMX/+/GhcNiGJZy0dFgdJ5iRMwkSSOcnQh7vdYifdkc5N3W7ig8s+YO3YtXxw2Qfc3O1m0u3phnw3ksxJvLPgHcNzUPFzJCLxfE/GElpHdURSSx2oAEKImnpVP4x/C/ci8G9Drvj3QCFEt+Oe3wgYD/xCmLcm10QgT64JnYaupaogoaHrqBKtpRq0juqIpJZ6e4ifB4QQ5wGfAruARvh3/ZwPfAM8d9zYPwKDgCVCiKeAQvzOtK2AYeE0e9NoNBqNpqGha1QAIcRIYDKQA2QAXvyrI28DT0opy6qMPwN4lBN7/fw1WPv8cNSoHD16lMaNGys7X0NGa6kGraM6tJZq0DqqQ6WWukYlCKSUC6WUQ6WUraSUdillipSyu5TyH1WDlIrxP0spR0opm0gpk6WUvw13j5+62LBhQzQvn1BoLdWgdVSH1lINWkd1RFJLHagkCAFPAE3oaC3VoHVUh9ZSDVpHdURSSx2oaDQajUajiVl0oJIgDBgwINpTSBi0lmrQOqpDa6kGraM6IqmlDlQSBItFb+BShdZSDVpHdWgt1aB1VEcktdSBSoIQ6FOhCR2tpRq0jurQWqpB66iOSGqpAxWNRqPRaDQxiw5UEoROnTpFewoJg9ZSDVpHdWgt1aB1VEcktdSGb1EgHIZvJSUlpKSkKDtfQ0ZrqQatozq0lmrQOqpDpZba8K2BMGfOnGhPIWHQWqpB66gOraUatI7qiKSWOlDRaDQajUYTs+hAJUFIS0uL9hQSBq2lGrSO6tBaqkHrqI5IaqlrVKJAOGpUNBqNRqOJR3SNSgNh7ty50Z5CwqC1VIPWUR1aSzVoHdURSS11oJIgFBYWRnsKCYPWUg1aR3VoLdWgdVRHJLXUgYpGo9FoNJqYRdeoRAHtoxLbaC3VoHVUh9ZSDVpHdWgfFY1h1qxZE+0pJAxaSzVoHdWhtVSD1lEdkdRSByoJwpYtW6I9hYRBa6kGraM6tJZq0DqqI5Ja6kBFo9FoNBpNzKIDlQRh0KBB0Z5CwqC1VIPWUR1aSzVoHdURSS11oJIgeDyeaE8hYdBaqkHrqA6tpRq0juqIpJY6UEkQVqxYEe0pJAxaSzVoHdWhtVSD1lEdkdRSByoajUaj0WhiFh2oJAhdunSJ9hQSBq2lGrSO6tBaqkHrqI5IaqkN36JAOAzfjh49SuPGjZWdryGjtVSD1lEdWks1aB3VoVJLbfjWQJg3b160p5AwaC3VoHVUh9ZSDVpHdURSSx2oaDQajUajiVl0oJIgpKenR3sKCYPWUg1aR3VoLdWgdVRHJLXUNSpRIBw1KhqNRqPRxCO6RqWBMHv27GhPIWHQWqpB66gOraUatI7qiKSWOlBJEEpLS6M9hYRBa6kGraM6tJZq0DqqI5Ja6kBFo9FoNBpNzKJrVKJAOGpUXC4XNptN2fkaMlpLNWgd1aG1VIPWUR0qtdQ1Kg2ElStXRnsKCYPWUg1aR3VoLdWgdVRHJLXUgUqCsH379mhPIWHQWqpB66gOraUatI7qiKSWlohdSRMW3C4vQgjGj5+Ax+1DSonVZo72tDQajUajUYKuUYkCKmpUPC4vrjIv65btYtM3B3AWuXGkWuncuzndhrTBlmTGogOWerFz507atm0b7WnEPVpHdWgt1aB1VIdKLeuqUdErKnGIx+Uld2cRi577AY/LV3m89KiL75bsYv1nexhxa3ey26bqYKUeFBUVRXsKCYHWUR1aSzVoHdURSS11jUoc4ir3nhSkHI/H5WPRcz/gKvdGeGaJwapVq6I9hYRA66gOraUatI7qiKSWOlCJM9wuL+uW7qoxSAngcflYt2w3bpcOVjQajUYTv+hAJc4QQrDpmwNBjd38zX5EtRk/TW1069Yt2lNICLSO6tBaqkHrqI5IaqkDlTjDbBE4i9xBjXUWujGb9UtslI4dO0Z7CgmB1lEdWks1aB3VEUkt9adYPRBCmIQQdwohNgkhyoQQu4UQ/xZCpIT72l6PxJFqDWqsI82K11t7ikhzMgsWLIj2FBICraM6tJZq0DqqI5Ja6kClfjwFPAn8BNwK/Be4DVgkhAirplJKOvduHtTYTr2aU3y4XKlVv0aj0Wg0kURvTzaIEKIL/uDkHSnl5ccd/xV4FhgNvBmu61ttZroNacP6z/bUWlBrTTKTM6AVH8/YgMVqpu9lHWl2alq1YwOmcWaLwOuRDd40Ljs7O9pTSAi0jurQWqpB66iOSGqpDd8MIoSYCvwZ6C+l/Py443YgH1ghpbykjnOEZPhWk49KAGuSmeG3dMNqN7Pw6e8pL/EA0LFHNueNak/jrOTK82jTOI1Go9FEE92UUD09AR+w+viDUsoy4IeKx8OKxWYmu20qYx/pyzlD25LSxIbJJEhpYuOcoW0ZO7UP2W1TyTollbEP9+GcoW0xW01sXZvLm3/9hs/nbaG81E3uziLeeGAV3y3ZRelRF9InK03j3vjzKnJ3FuFpgNubZ82aFe0pJARaR3VoLdWgdVRHJLXUqR/jtAQOSSnLq3lsL9BXCGGTUrrCOQmLzb/ace6wdvQc3g6TWeDzSqTkhLRNUrKVPr/rQM6AVqxetJ1NXx/g4K+FlJd6gjKNG/tI3wa3quJyhfWlazBoHdWhtVSD1lEdkdRSByrGSQaqC1IAyo4bc9KrKISYCEwM/H/69OkA9OrVi6ysLN5//30A2rRpw4UXXsjMmTMBsNlsjBs3jnfffZfc3FwALr/8crZu3cq6desAcDqdjBo1io8//hiA9u3b079//8qoNzk5mTHXjSHXt5kuOaexYcXeoEzjfli2m4zOXlZ8/hlpaWmMHj2auXPnUlhYCMA111zDmjVr2LJlCwCDBg3C4/GwYsUKALp06UJOTg7z5s0DID09nSuuuILZs2dTWloKwLhx41i5cmVlN86hQ4dSVFRU6XzYrVs3OnbsWFllnp2dzahRo5g1a1blm2X8+PEsWbKEXbt2ATBs2DDy8vJYvdq/8NWjRw9at27NwoULAWjZsiXDhw9n5syZ+Hw+TCYT48ePZ/HixRw6dIjp06czcuRI9uzZw9q1a5W9Tn379iU1NbX212nMGObPn09BQQEAV155JRs2bGDjxo0ADBgwAIvFwvLlywHo1KkTPXv2ZM6cOQAx8zodOXIEIGyv0759+wAaxOsUuCfj8f0US6/ToUOHOHr0aFy+n2LtdQrckypep7rQNSoGEUL8CGRLKZtV89jbwO+BpNpWVFQ0JaxK4KYLBo/bxxsPrKL0aN0RcUoTG2Me7oPF2nBWVYxoqakZraM6tJZq0DqqQ6WWukZFPfuATCFEUjWPtcKfFor4+uKSJUuCHqtN42rHiJaamtE6qkNrqQatozoiqWXD+gRSwxr8uvU6/mDFrp/uwLdRmFPl0l8wqDaNc7u8eNw+pJR43L647y9kREtNzWgd1aG1VIPWUR2R1FLXqBhnHvAn4A7g8+OOT8BfmzInCnMyRMA07rsldd9onXo1Z/v3eRzaXcyZv21Jk2bJlY/p7c0ajUajCTe6RqUeCCGeA24B/gd8AJyB35n2S+ACKWWtSxDhqFHZu3cvrVq1Cnp8aZGLN/68qk7TuKv+0puPpv9I7o4iAFqd3oQuv21Fu64Z5O0qrnHnkMVmYsSt3clumxp3wYpRLTXVo3VUh9ZSDVpHdajUUteohIc7gHuALsAL+N1onwOG1xWkhIu8vDxD421JZkbc2h2LrfpbIGAaZ29kpd//daJz3xZYrCb2bj7CuuW7cRa5g9re7CqPvzSQUS011aN1VIfWUg1aR3VEUksdqNQDKaVXSvlvKeXpUsokKWUrKeVdUsriaM0psB0tWII1jbPazDRv35hB157BuMd/y4CrOnHORW2D3t68btnuuKtZMaqlpnq0jurQWqpB66iOSGqpa1QaMFVN48xmE16v7yTTuABJDgs5A1rjcftY8dbmoK6x+Zv99Bzers5xut+QRqPRaKpDBypxjs/pBJOJCePH4ysvB58Pk8Nh6BzHBwQWU93BgcrtzbFYkNujR4+IXi9R0TqqQ2upBq2jOiKppQ5U4hRfWRm+khLyZ82icOFCPPkFWDLSSRs5koxx4zClpGCy28Ny7cD25mAM4xxpVspLPXz4nx85tVsm7btnkZbpD6Rqaq4Y6De0/rM9USnIbd26dcSulchoHdWhtVSD1lEdkdRS16jEIb6yMpwbNrB18BAKZszEk5sHXi+e3DwKZsxk6+AhlG3YgK+srO6T1YPA9uZg6NSrOb/+eIh9vxzhy/lbeeOBr5g7dTUbP99LuTO4fkORLsgN2E1rQkPrqA6tpRq0juqIpJY6UIlDfCUl7J4wEel0Vvu4dDrZNWEivpKSsFzfajPTbUibGncMVY5LMnP2kDZ0ODuLC2/sQsdzs7HazeTvKcZkMbFu2e6ELcjVaDQajRp0oBJn+JxO8mfNqjFICSCdTvJnveavYQkDwW5vtiaZsdktnNazGUPH53Djv/ox/NZudOiexebVB4K61uZv9iOq3V1/DJXuuC1btqz3czXH0DqqQ2upBq2jOiKppTZ8iwKhGL75ysvZNmSIP91TB5bsbDosXYIpqbq2RKHjcXlxlXtZt2w3m7/Zj7PQjSPNyum9W9B98ClYaymElVLy4pTPkL66NTCZBDc/PxBhOjlaicViXI1Go9EEjzZ8SzCE1YonvyCosZ6CAoQ1uJ4+9cFiM5OcauPcYe0Y83Afbn5+IGMe7sO5w9rhSLXVGiAY7TdUXuph7tTVfDH/F3b8eAhXmaeyGPeNB1bx3ZJdlB51IX2yshj3jT+vIndnER6DqyuBNvOa0NA6qkNrqQatozoiqaUOVOIM6XZjyUgPaqwlPR3pDm4bcShYbWYsVjPCJLBYzUH5nxgtyN2x4RD5e4pZt2w377+wnkXPrlPujhtIH91ww40J0Vwx2vh8UTFpTki0lmrQOqojklrq7cnxhs9H2siRFMyoO5pNGzkSYvSNGSjIXf/Znjr7DZ09pA1Wh5lGTZLYs+kwezYf5sx+LfmxjufCsWLcc4e1qzGA0umj8GAy6b+DVKG1VIPWUR2R1FLXqESBUJsSevLz2Tp4SK0FtSI5mY7LlmJJD271JRrU5KMSIFCQW52Pisft5Y0HvgrKyyWliY0xf+9TbbBR1xziubmiRqPRxAO6RiUBMaWk0GbGdEQNDrQiOZnWzz4Tth0/qgi231B1AYLZYjLkjmsyC+b85WuWv/4zP325j8MHSpBS4ir3xqSXSyKwePHiaE8hYdBaqkHrqI5IaqlTP3GIyW7HnpNDx2VLyZ/1mt+ZtqAAS7rfmTZ9zDWUfPEFe/9wL+3mzCGp/anRnnKNGO03FMCoO67L6eXIwVKOHCxl06r9AAy54UwO7S5Wkj4C3a+oKvv27Yv2FBIGraUatI7qiKSWOlCJU0x2Oya7nazJk8i6ZQpYLODxgM+HsNko+uRTfIcPs/vmm2k3by6Wpk2jPeVaMdpvKFCM+92SXXWOPb13C0xWwRX3n8uBbUfZv+0I+7cdpU2XDL5csDWo+dXWXFHXuGg0Gk340DUqUSDUGpXqOHjwIM2aNav8v6+0lB1jxlD+0884zu1Bm1dewWSzKbteLFBa5OKNP6+qsxh37NQ+OFJP/NkD2hvxcrnp+YGUFbtJTjt2Ll3jUjNV70lN/dFaqkHrqA6VWuoalQbCnj17Tvi/KTmZU158EUt2Ns5v13LgwQeVBkaxgBF33KoIIQx7ubhKPbx67xe89qcv+Wj6j2z6Zr/yfkUqHXajTdV7UlN/tJZq0DqqI5Ja6kAlQVi7du1Jx6zNmnHKSy8iHA6OLnyP/P/8JwozCx+hFOOCcS+XA78exZpkprignG3f5SF9KOtX5HF5KS108e3iX3njgVW8OOUz3nhgFd8u/pXSIpdh07pYoLp7UlM/tJZq0DqqI5Ja6hqVBMd+5pm0+vcT7JlyC3lPP4OtbVvSLr442tNSRn2LccG4l4sj1cb4p/pz+EAJuTsK6dA9iznvbgtqnnXVuFSXPgo47K7/bE+DTR9pNBqNXlFJEHr16lXjY6kXXED2vfcCsO+++3H+8EOEZhU56uOOC8bTRyaTIKNlI87o2xKr3Wxsi7RJMHfqapa//jM/fraHA9uP4nF7lW6RjqXUUW33pMYYWks1aB3VEUkt9YpKgpCVlVXr4+njrsP1668cefttdk+5hXbz5mFr3SpCs4tdjk8fGW2uWJ8t0vl7isnfU1y5RfqC687g8L6SkLdIx+LOo7ruSU3waC3VoHVURyS11CsqCcL7779f6+NCCJo/+AApffvgzc9nz6Sb8RYVRWh2sU3V5oo3PT8gqOaKRmpcTu/dApNZcNkfetDvytPofF5zMlqlcGrXTDavPhDUOTZ/sx9RTU18uJozhkpd96QmeLSWatA6qiOSWupApQEhrFZaPf00tg4dKP9lK3vvvAvp8eBzOvGVlyN9Pnzl5THvaBsuAumjmTNnBpU+CtS41JQ2qhyXZKb74FOwOSy06NCYruefwqBxZzL6wd4kJVsMOuyaWL34V35dl0dRQVlY3HVjKX2k0Wg0OvWTILRp0yaocea0NE556UV2XHU1aRdfhOfQIQrmzPG72+YXYMnwu9tmjBuHKSUFk90e5pnHHsFqCcdqXOrqV1TdFmmoR/qo1MOaxb9WHlPprqs6fWRER03taC3VoHVURyS1DNrwTQih4s+qv0kp/67gPHFNOAzffD6foW6W7v37Kd+6lT233V5tc0PhcNBmxnTsOTkNLlgxqqXH5S+INVrjAv7Vi28X/xqUw+7ZQ9vS+bzm/LxqP4d2F5G3u4gxf+/DW3//JvjmjA/3wWKNTHNGozpqakZrqQatozpUalmX4ZuRQMUH7AR21GceQH/grzpQCU+gMn36dCZOnBj0+KA6MDsc/g7MGRkqphg3GNUygL/XD4a2SEP9HXbr6667bvlusk5pROYpqdhTrEHPwWIzMfaRviSn1u5wHOh5ZDILfF7d80gF9b0nNSeidVSHSi3rClSMpn5erW+gURHoaGIAn9NJ/qxZtQYpANLpJH/Wa2RNnoSphk7NmmMY7VcUoL7pIyEEHrfPcOpo1XH9jRqlJ3H+mM7s2XQ4IXceaTSa+EevgSUINiN9fEwmChcuDGpo4cKF0MCWSg1pqYBQHHYNuev2bkHJ0XK69G9Fs1PTsNhMFBeUk902jc3fJObOo0Qh0vdkoqJ1VEcktTSS+skASqWU9doSEurzE4lwpH6MIH0+Np3VFbxBfGhYLHRevw7RwIKVaFGf9FF9U0c+n+RobilNspN58RZj6aPcHYVktGpUucqjMnWk0WgaFsqaEkop80MJMkJ9vqZ23n333aDHSrcbS0Z6UGMt6elId3DbZxMFI1qqpj4Ou/VtzmgyCZo2T8HrNd6cccHja5l+xwrm/OVr9mwq4Ielu5T0PAqgt0ifSDTvyURC66iOSGqptycnCLm5ucEP9vlIGzmSghkz6xyaNnIk+BpWeZEhLWOAUNx14Vj6KJidR516NSd/bxEZrRpxeH8JRw6WknlKKktf/SmoudbW8wh0nUtNxNs9GatoHdURSS11oNIAMTkcZIwbx+HZc2rf9ZOcTPqYaxBJSRGcnaY+RLo54+gHe+F1+yjYX0KSw7hp3eEDJTTJTkaYjq306uaMGo2mOoKuUanxBEKcgt8f5QY1U0p8wlGjkp+fT4aBbcS+sjLKNmxg14SJ1fuoJCfT+tln8Bw8SMmXq2jx6D8xNZBCNKNaJgJ1+agE0kfVBQket483HlgVtJfL6Ad68/I9n2NNMpN5SiOyTkml9RnpZLdNZfaDXyndIm22CLye+N8i3RDvyXCgdVSHSi1Vb0+ujnTgOkAHKlFk69athm4ak92OPSeHjsuWkj/rNb8zbUEBlvQKZ9rrx+FzOtl79934jhbiKSig9fPPYW7UKIw/RWxgVMtEIJT0kdHUUe6uQlKaJFFypJz9W4+yf+tRMtuksm7Zbr1FugYa4j0ZDrSO6oiklnUGKkKIa+sYoj2JY4B169bRu3dvQ88x2e2Y7HayJk8i65YpCKvVXzjr81X6prR99VV2TbyJ0q+/ZufYaznlPy9hzc4Ox48QM9RHy0Sgvumj+qSOxj36G0oLXZUOu+27Z/Hmu9uCmmdNdS6JnDpqqPekarSO6oiklsGsqMwCSoGa8hR632qcc7yZW9V6FPuZZ9Ju7lvsvnE85T//zM6rruaUmTNIOvXUSE9TEyHqY1xXH9O65DQbbbpk0KZLBlJKY3UuJsG8R1aT3TaNrDaptDytCfYUa1DNGcc+0jeoQCXR0kcaTbwSTKCyD7hNSvlOdQ8KIboDa1VOSmOcvn37hu3cttatafvWm+y+6WbKfvyRnVdfwyn/eQlH165hu2Y0CaeWiUqoO48MN2d0ejm0u5hDu4sBuOC6Mzi8ryQmmzOqQN+TatA6qiOSWgYTqKwFzgGqDVTwr7RUWwCjiRypqalhPb8lPZ22s15lz513UrLyc3ZeN47WzzxNo/798TmdYDJVmzqKR8KtZaJSNXVkMpvwBbnzyEidy+m9WyDM8Lu7zyF3ZyF5u4po3y0z5NQRxG76SN+TatA6qiOSWgaTtnkC+LKWx7cC56uZjqa+fPzxx2G/hiklhVNeeIHGo0Yh3W48hw7hzs0lb9o0tg0ZwqazurJtyBDypk3Dk5+Pr6ws7HMKB5HQMpEJmNbNnDkjaNO6QJ1LTaZ1leOSzHQffApJDistT2tC98FtGHJDF2xGt0ibTKxasJWta3MpzHdW7sBzlXuDSh+5yiNrQKfvSTVoHdURSS3rXFGRUn5ex+MlwAplM9LENMJqpcU//0GTq0bjKyxk29CLTtje7MnNo2DGTA7PnkObGdOx5+RgstujOGNNvFDf5oxQn9SRh++XHlu9caRaGXz9mUqaMwbQNS4ajRq04VuC0L59+4hdSwiBrXVrtg4eUqNhnHQ62TVhIh2XLY27QCWSWiYyRnWM2Bbp3i0oK3Vz7rB25O4oIndHIc4iN9lt01j+2s9BzbWu9JHqGhd9T6pB66iOiH7m1Md0TAjRH1gtpYzPtf0oEw7DN5fLFbFulj6nk7xp04Ky4E+fMIGsyZPiqmYlklomMqHoGMnmjFJKivLLSE23G2rOePPzA0EcM6uCuo3zLDZTvWpc9D2pBq2jOlRqqawpYRU+RfunxBSzZs2K3MVMJgoXLgxqaOHChRBnnZcjqmUCE4qOkWzOKIQgLdNhuDljeamHV/7wBe+/sI5vP9jBwR1HcZWFp8ZF35Nq0DqqI5Ja1vcTRO/yacAIqxVPfkFQYz0FBQhrcL/8NZpQOD51dM7QtqQ0sWEyCVKa2DhnaFvGTu1T60pGIH0UDJ16NWfXT/mUFbvZ8WM+37y3nYL9pWHrIj1+/ATdRVrTYNE1KoAQYgfQtoaHs6SUh6qMbwk8ClwMNAI2Ao9JKf8bznnWRnJycsSuJd1uLBnpeHLz6hxrSU9Hut1x1dgwklomMtHQMZLNGe2NrDRv35gDvx7l4PZCZVukITa9XBIB/d5WRyS1rG+Nig/oLKXcon5KkaciUHECj1Tz8H+llOXHjU0HvgWygSeBPcDVwADgBinlq0FcT3mNSiQxVKNy442kXzsWa7NmEZiZRhMaoTRnlFLy4pTga1xuen4g277LpUWHxjRqeqzgPFx1LhpNrBKuGpVE5KCUcnY1X+VVxt0PnApcJaV8SEo5HRgErAGeEEJEtmufqxQ8ZUifDzxl/v+HGZPDQca4cYg6CmRFcjJNr76KvXfeRcGcOXETmM2fPz/aU0gI4lHHUNJHgS3SweBIs+Iq9bBk5kZe++MqXvvTlyx5eSNb1+ZS7vTEpJdLIhCP92SsEkktdernOIQQFiBZSllYy7CrgW1SykWBA1JKrxDiOeB14BLg7fDOFHA7obwYvnoe1s9FlORBShZ0HQ19bwFbI7CGb6eNKSWFNjOms2vCxGq3KIvkZNpM/w/u/ftxfvcdzu++o/Trr2kxdSrmxo3DNi8VFBQEV3+jqZ141bG+6SNjW6Sbc/SQkzZnpnNg+1GKC8r5peAgp5yZrqSLdADt5XIi8XpPxiKR1FIHKsfojb/5olUIcRRYCPxRSrkvMEAI0QJoBcyp5vlfV3zvSbgDFbcT9n0Hs68A93ErKEUH4MunYfV0GLMAWp4dXLDiKvXvzDHbwOsCnw9stecfTXY79pwcOi5bSv6s1yhcuBBPQQGW9HTSRo4k4/pxmJKTMdnttHr6KfY/8CBFS5dRtvEnWj35bxzdu4ckgUYTbow2ZzRU4zLY30V6xG3d8fkkBftKOLD9KB26ZzFHUSsAXeOiSRR0oOJnIzAT2IRfk4HAeGCQEKLXccFKy4rve6s5R+BYq5ouIoSYCEwM/H/69OkA9OrVi6ysLN5//30A2rRpw4UXXsjMmf4aEJvNxrhx43j33XeRUjL8/POwVg1SjsddCrMvR96+nncXf0ReXh7JycmMGTOG+fPnU1BQgBCC6665ErOnFPH1NEw/zoOKVRnfWVfi7TWJghIXjZpkMmeOPy5LS0tj9OjRzJ07l8JC/6LT2LFjkb+/grY3TcTicCBdLoqKili0YgV5eXl06dKFnD59+Ob/fk/n9z8gdd8+dowZy57+/fm1W1cQguuvv55De/eRkZWJ1eHA53JReOQIn331FXl5eXTr1o2OHTuyYMECALKzsxk1ahSzZs3C5fI7kY4fP54lS5awa5f/r9lhw4aRl5fH6tWrAejRowetW7dmYcW26pYtWzJ8+HBmzpyJz+fDZDIxfvx4Fi9ejNfrZfr06YwcOZI9e/awdu1aw69Tbm4uAJdffjlbt25l3bp1gL+RV2pqaqX9dPv27enfv3/lVr+qrxPAlVdeyYYNG9i4cSMAAwYMwGKxsHz5cgA6depEz549a32drrnmGtasWcOWLf6yskGDBuHxeFixwm8q3aVLF3Jycpg3bx4A6enpXHHFFcyePZvSUv99Nm7cOFauXMn27dsBGDp0KEVFRaxatQrgpNepSZMmAGF7nfbt878tY+l1Ki0p4+JJOXz44oYaa1wuurkLO/fs4Id13zF69Gjefnte5evUpd8Ew12kt32Xy5frllHm9jdoHHft9RzcUcgH036ssV/R8Fu7UeTJY+Xnn4X9/RRLr5PX6+Xo0aNx+X6Ktdcp8HtSxetUF/Utpn0YeEpKGTPraEKIJsAdBp7ybG3zF0JcjX/lZKaUckLFsX7ASuBhKeVDVcabAC+wUEo5qo651r+Y1lUKKx7zr5zUxW/vhAH3grWa1ZGaVmUCWJODX5UJckVGulzkPvU0Ba/6641TBg6k5eOPgdtN/qxZ/lWZ/AIsGRWrMuPGYUpJibiz7ZdffslvfvObiF4zEWmoOnpcXlzl3np1kfa4fbzxwKqgWgGkNLEx+oHevHyPv8tJ0+bJnH5eczqf14LZD31V66qOxWZi7CN9SU5tWOZnDfWeDAcqtayrmLZeKypSygcNTOAMKWVwvtSh0QT4i4Hxs4EaAxUp5ZtCiEeAYccdDnyiV7fX1l5lTHgwmWD93ODGrpsL/f8AB3+CJm0g6bg6X1dxzUEKVK7KcMf6mgOVKnUy1FEnI2w2mt13L8m9e7H//j+SNmQwZevXs+fW22KqX9DGjRv1LzMFNFQdQ9kiXZ86l9adm3Jg21EOHygluXES65arq3GBxKpzaaj3ZDiIpJaGAhUhxFQp5QMGxncEllFLOkQVUsodqDei2wEc/0oEUkDV/TyBY9WlhdRhtvkDgmAoyQNLErzYx///5Axo0hYG/wW2fVJzkBLAXQpfvVD9qkwIdTKpAwfieH8xsrycbcOGq+kXVI86G40mnBitcQk8x2idy8g7zsbr8ZG3q4j0lilKalxA17loYgej25P/JISYFMxAIUQb4BMgOKvH2KQjcDDwHynlfvyByHnVjA0c+zasM/K6/KsWwZCSBa4SyDgNzElQmu8PLlp0g/XzgjvHurkgfbB1ORz4EYoOgs8b/IqMq7jah03JyRS89VaNQUoA6XSSP+s1fDWNczuhOM+fDnumGzyc6f++4jF/oOau/fwnULHVe8KE8RHb6p3IDBgwINpTiEvq0wrAbDHRvH1jrElmYzUuZhPbvs+lrPjE5wS8XN54YBXfLdlF6VEX0icr61ze+PMqcncW4Ykzp1x9T6ojkloaTf38CjwrhDgopXynpkFCiFb4+wG1pnoTtZhBCJFeXa2KEGIK/vm/WOWht4B7hBAjAluUhRBm4FbgCPBBWCfs8/lTK8HUqHQbDWYr3Pqt/3nFB+HITkhqbHBVxg6zLzt2bNSLkPtz8Csy/e45Me0EhvsFZd0ypZrzK9r9pGqrt17VOQGLRdfq14dQukgHvFyCqXEJeLl89J8NICCzdSNan96UU7tn0SQ7OSgvl7GP9I2rVRV9T6ojkloavdJQ4EtgjhBiqJRyZdUBQohmwHL8pmhPGalniRLXCiFuBD7Cn+oJ7PoZBWzj5LqXR4HfA28KIZ7Ev8JyFf5tyeOllEVhna0t2f/huXp67YGCLQX63HIsZWMyQVoL/5enzP9BXHSg7usFVmVOHQDFuVCSC6dfDMv/Ftx8182FvrfB1OaQnA6OpuBoirj2vdD7Bamqswk12DFYq1MrCRTsLF++nA4dOkR7GnFJ1ToXk1ng80rlXi6F+U5and6EA9sKObS7mEO7i0lv1Ygd6w4prXOJFfQ9qY5IamkoUJFSbhVCXAJ8BrwrhBggpfwx8LgQIgN/TUon4CUp5d0qJxsm1gAXAFcCWfjrXH4FHgMelVIeOX6wlDJfCPEb/AHLFPy9fn4CRkspg8ynhIitkf/Dc/bl1X9I21Lgmvn+79VRn1WZ6947dkz6jK3I2NPA44TCvf4vQLpdxvoFuVyIV84He2NISvMHAFuXhlZnA6EHO2Fa1al3sJNAgY7mWFAyffp0Jk6cWMfo+tW4jLrzHDwuLwe2H2XP5sNKexZBYhXjaqKD4bUbKeVaIcTvgMXAh0KIvlLKXUKIxsASoAswS0o5WfFcw4KU8kvgUoPP2QuMDc+MgsDq8H/w3bHe/yG87rgPtm6j/SsptpSaP9jquyoTIFAnE+yKjM8Df9wLzsPHvnyStBHDKXi5ztZIpI0YjvfIYUy5Px07eNl/4J0JdV8fjq3qPN/LH+QkpfqDpz63wNZlwQc7/e89+UNfr+rUSKdOnQw/R1M9RrQM1LjU1a/o+BoXi81M687ptO6cjpTSUJ2L2Vx9LU0sFuPqe1IdkdSyXj4qAEKI0fh9Rrbg7yL8Fn5313nA1TJeGrtEAaVNCSs+VKTJhvC5/Ksd1a0cVMXthH3f170qU92HowovF085nkN5bL340loLakVyMu0Xvcfeu+4muXMbsq66CBNl0OkimJrpL+ytC5MFHjgIf8848fh9O2DaecEFXKktYNIqeP5cf6CTlAoXPAg7voBVz9b9/N/eCb+5w6+ruUoaqyQPnu5ae8BkTfYHO9UVUqvyxFG8qiPNNoRe1VFCSUkJKSk1rJBWQ6S9XN579gfanJlOmy7pNGvfGOmVMdlY0aiOmppRqWVdPir1DlQqTn478BTgAmzAe8DlUsr4KgWPMOHonhzs0vAJuJ3+FYH6rMoE8+FqS4Hb10NK5smPuUrx7dtI2f4ydk2+veZ+QS88DV4nOyfeCT4f1lNOocXf/0ZKz7P9u3uKDkCrHvjOmQCnX4RITkOWFsKmDzF9PwP2fucPMm773l9MXFYI5UVQXginDQ0t2KlPoPP4qWBx+Fd0klJhyMOw66vgg52+t/t1tRxn1BVqoANqgp0YXNVJFOr1/iaQdsGQl4vb5eXbxb8GVedy9oVtSG+RwvLXjllltezUhMHjzuTNv34dc6Zz9dVRczIqtQyL4VsAKeUzFcWz9+MvRv29DlLiCKvD/9X/Xhh4/7EPhWBWZUKtk7ElY8pqhz1/OR0/WEj+nLkUvrf4WL+gS4eTMeYqTHu/wNR5MO3mvsX+Bx6kfMsWdl1/A41HXUqzPpcjWp2Jr9UA8me/ReGdI485244YTsaY1zHtXYHp6HZAQtN2J87BaFGx1wP3bPUHOeVF/noZo7U6wuSv1yl2+gOntn3g/TuDO0dlYXKWfyeWvTFc8gTsWRNk+ur54wKdKp6FulYnIQm7l8uQNljtZhxpNnZvLGDXzwV07tOCHz+t/bkQn8W4muhg1PCtpiBE4t8RVBaIjI5/TEqp94SFmbS0tPo/+fhf4JYgHWBDrZMBsDXClNkG00cTyRo4lqyb/ndsRWTzh5g+nOBPr9hScHTtyqkL5pP/8iscmjaNo+++R8pv/4WlvDG7Lxl5srPty69y+M25tJn2DPbeIzBVF3gZLSrGB42y/F9gPNDxeeChAv8HeVmhP+CpT7BjsvivXVwGp/aDD/8Q3PPXzfMHKlOzKwKdJuBoAoP/Bju/DK0wORFrdWKIkN7f9cBInYvFaqZtlwzadvGvNnpcXt5496ugrhNMMS6oK8iNtI6JTCS1NJT6EULUHiLXgJTSqLFcQhOO1E9UqfrXa7B1MlCv9FP59l/Jf20WmRMmsH1EHTUuDgcdly3FkpFR/YBQUlhKanXKjqWw6iK1Bdz+g9+8LxDspDbzm9wZSV9NbQ6+44ol65PCeqlfxVbzJn6fnG3Lg09f1bQDK1ZqdQI08FWZ+ta5SCl5ccpnSF/dv99MJsFNzw8kd0ch2e3SMJlO/EM3FgtyNeoJa42Kpn6EI1CZO3cuo0ePVna+iGMw2PE6nRx64QUKZr5c56nTJ0wga/IkTI6aUhb1LCoGJbU6IQU7IQU6R8F5BLI7Gw92QqnVmfw1LBjvb+mQnOH31zn9Ylj/dmhBn4paHYjJVZlovr+N1rnUt7GiI9VK25wM2p2VySlnpmMyCeUFuXH/ezKGUKllXYGKXulIEALtx+MWW7I/HSFM/u91rMgIk4nC996rdUyAwoUL/UFQdRyfwvrtnf4PUpPF//23d/oDjNr+Ag/U6tQ03yBqdehbzRbw6s5T3VbxQPoqGLqN9geAQvjPl9YSmp1pvC2D1wN3/Ag3rYRrFxpPXyU18nvgrJ8LX78Anzzsn4uRZps+H2xYAL+u9DfddB6GVc8Hn76qMUVVsSrzTFd/0FR0wB/ABdJPT3f1B7bBtGaoaMmA9IXckiGa72+rzZ/eESaBxWoOurFiMHTq3ZyCAyWkZthxFrnZ9NUBPpq+gUXPrcNZ7A7KHddVHnxZZNz/nowhIqmlrh3RxCXCag3d2TZAlaJiabIifO7gUliKanXqXZgcqicO1K9Wp0kb/xcYr9XxuOCqef7eU6X54Czw+9sYCXasdph/w7Fj9+0wFugMuL/6x6LQVbxWKlYaJ4yv6D8VB+mn+pjOjZ3ah4L9JexYf4idP+Zzxm9b6oJcTSUhp36EEEnA6RX/3S6lrL4LnaaScKR+Gpo/gK+8nG1DhgTnbJudTYelSzAlJdU5FkLQMsK1Oic8N5T0FcRfrc6U1fDeLVByyP81+Sv/bigj6at/dYRGzaBRtv97rwmw6X348pn6/xyx5mkTJQJNDesqxq0pbeNxe3njga+CTh+NebgPFmvNgYp2x1VP3PioVFygG/A94AMulVKGtylfAhCOQOWzzz5j4MCBys4X6/icTvKmTaNgxsw6x6bfeCNNR1+J7ZRTgjp3VLWsb7ATSqATeH5DqtUJeNocj9Fam1u+hd1f+/+d2sJfXFx6KDY8bQJEsSA4FNO5+hTkIiWmKi65uhg3fKj8PRlWH5UKXMAu/FuU65+E1YTEli1bGlSgYnI4yBg3jsOz59TpbNv06qvYe8edWLKyaHbfvdjatq313FHVsj5bxSE0T5zA80NqyxC6r05IKSyj6StLkt8Tp/ig/6skr37pp9mXHzs26j+QuzH6/acgJlZkqjZWNGI6V58u0HP++jXtu2fR4ZwsWp3etEZ33NKjLr5bsov1n+2JijtuohDJ35N6108UiBln2jjHV1ZG2YYN7JowsWZn2+n/QTgc7Bp7Lb7SUoTVSvq468i46WbMjU780PQ5nWAyIaxWpNsNPl/1O4USnYa6qmM4/fQNzBvrH190AO5YZ2xFZso3sPzv/kLitFb+r6zO/uAilDSa6m3aUcCoO2522zQ+nrGh8ljrzk254NozYtIdN1GIpDOtDlSiQDgClW3btjXI9uW+sjJ8JSXkz3qNwoULjznbjhxJxvXjMCUnY7LbcefmkvfU0xz93/8AMGdlkn3nXTQeNRLpclWcY5b/HAF325EjyRg3DlNKCia7gdWNhk5l/ykDRckBolmrE2r6SfpC2+YNxtNPt/9w8sqbqm3aAaKUPiotcvHGn1fVWZA7dmof7I2sFOwrYet3uWz/Po/uQ9pweF8J3y+tO9A5Z2hbXYxbD1R+5uhAJQYJR6CyefNmTj/99LoHJijBroY416/nwCOPULZuPQCtX3geU2oqu2+6ufpVGYeDNjOmY8/J0cGKQUK6J6O1qhPKqozRFZlb18J3b0DhHijc5/8a977xouB3J0PjU6Bxa2g/ENbOCm1FJkCU00ehFOR6XF7eeFBdMa7mZFR+5kSiRkUTA6xYsaJBByrHByWilt09jq5daffWWxQuWsTRDz4g6fTTa3W3lU4nuyZMpOOypTpQMUhI92S0anVCqbUxWicjBJx384nHjW71LiuE9fOOHTO6TXtgDdu0VfVugnqvyFhsZrLbpjL2kb6GC3LNVhPOInc1Zz0ZZ6Ebc5Ui3OrQO4dOJJKfOap6/dSGG8gFVgFPSilX1+McGo0yhMlE45EjaTRoEIdeeqnWYlzwByv5s16r2d1WE3uEEujUt6g4Gp425UUw8gU4shuO7jFeEGyywNvX+T1xmraFJu0gq5O/w3cMFPTWtyDXaDFuudPDT1/uo1PP5jRqeuIfOnrnUPSJSK+f43ADQ6SUK0M8T1wTjtTPl19+yW9+8xtl52sIhNOLRZMA92R90k/R9rRRsU171DTI3RRa76Yo910yWozbtHkKn7z+MwhofXpTTu/dnPZnZ4XFxj9RUPn+VmqhL6U0Gf3Cv2rTErgFMAMPhvYjaaojJycn2lOIO5S622pOIu7vSYNtHYDQWzJAaG0ZjLZUcJfCZTPhggfg7LFwan84fRj8+HZw51g3199SYfUM2LoM8rf5/x/sFmtXHf6gbicU5/mLnJ/p5i9Wfqab//8leTW2Mgi441pstX/EWZPMnD2kDWmZdjqcnYXJLNiz6TDLX/uZ958Pj41/ohDJ93dEi2mFEG8BF0spm0TsojGI3p4cG+gVlfDS4O/JaDkVh7pNO9TdS6NehNyfQ++mHeKqTH2KcctL3Wxdm8vmbw5wxm9a6p1DtRDJ7cmRbkr4C5AW4WtqNNXj85E2cmRQQ9NGjKB07VpcO3aEd06axKE+KzIBrA5/YNL/Xrj9B+QDuf6tyAPu9QcX4VqRAeNNKt1OOOdaaNcP0lr7O2EbWZGREo7s8q8GHU+IqzLHF+OeM7QtKU1smEyClCY2zhnalrFT+5yUsklKttKlXysuu6cHp/XIZvPqIFJowOZv9iOq/YjVqCCiu36klA8BD0Xymg2F9PT0aE8h7qiPu23Zzz/T5PdXkDV5MpasE3+Za8O4E9H3pAIq6jAWzJ/PFVdcEdxzQnUZNlrQazLDpc8dOyZ9xgp6LUnw9Fn+YC69A2R0gN/cDj+/F7LLr0W4sJjLOLdHMT2Hdsec5MBb7kQe2obVUgLCDlSvQzh2DiUSkXx/B536EUL8BDwvpZxWrwv5n/+clPLF+jw/kQhH6kdTP4J1t7V17EjuE09w9J3/gc+HcDjIuH4c6TfcgLBYtGGcJjapb/opkgW9k7+GF3r5WxkEUGF8F2rqyO3jjQdWBe3FcvVfzwPAZq/+73+9vblmVKZ+OgPVJDQNPT/I9USNUWbPnh3tKcQlJrsde04OHZctJX3CBCzZ2WCxYMnOJn3CBDouW4o9JwdLkya0nDqV9u8tpNGgQUink0PTXqT4089w/vADWwcPoWDGTH+9i9eLJzePghkz2Tp4CGUbNuArK4v2jxpx9D2pjnprWd/0UyQLei02uGcL3L8LJnwKl82o3zbrVc/DL8v827SlDDl1JKWkc+/mQU2hU6/mbPsuj1n3f8mKNzdzaE9R5WMel5fSQhffLv6VNx5YxYtTPuONB1bx7eJfKS1y4XHFZyFuJN/fRlM/A0X9E3F6+SCMlJbqfpD1xWS3Y7LbyZo8iaxbpoDFAh5PtambpI4dOeWF5yldu5Yj/3sXx9ndtWFcDeh7Uh0R1zIafjL2xtDqHP9XfYzvlvz52LHfTYeDG0JKHQV2Dq3/bE+dNv7dBp3C6kXbcZd52bByLxtW7qXZqWlcMLYzzhIPixOwMWIk70nDgUrFl0aTcASCkmCq2ZN79CDpzDM59MIL2jBOk5iE4vIbajdtI3UyXa/0tx/oOd7v/5K3CTpdCMuCLIesxaHXZoMRt3Rl0fPra945NOUskuyC88ecQdfzT2Hj5/vY/PV+kP6C3sWPflvn9uaxj/SNu0AlkhipURmg4Ho7pJQ7FZwnrglHjYrL5cJm0x1AVRCslnp7c+3oe1IdcallNPsu1WeL9TsToflZ/q9mZ0FqMyjJw7NlJa42F7BuRR6bV+ces/HvlU33gdlYdy7H0qn/CTul3OVeCvOdbP7qQMJub1Z5Tyrr9SOlXKFkRpqwsHLlSgYPHhztaSQEwWqpDeNqR9+T6ohLLaPZdymwxdpI6mjDAv9XgMtfhv3rsKx6Fkurczi3xxR6Dh2K2Z6Mt6wUufkjrPOn+Qt2q/jBWJPMNM5KNrS9uefwdkGNjRUieU/qpoQJwvbt26M9hYQhWC2l240lIz24FZX0dGR5OaIBpX70PamOuNYyGn2XjG6x9pTBpc/DgR/9tS0HfoSOg47Vvez9DuveG4/9GFXPUU36yGwRCb29OZL3pA5UNJr6UmEYVzBjZp1D00aMoPDDDyn+/HOybrmFpA4dqj+l9mLRaI5R31UZowW9KZlwzthjx6UEpMGdR1b4eTG06gFpLQw3RnSVeyk+XEZGy0Y1jmuoW5wjaqGv8ROOGpWdO3fStm1bZedryBjR0pOfz9bBQ+o0jOvwwQfsvfNOnN9/DyYTjUcMJ3PKFGxt2gB+P5dE82LR96Q6tJb1INQGkaE0eExtgfv38/j22xTDjRHb5mTQfUgbWnVqUlm7EYsdnFXek7Fmoa8JE0VFRXUP0gSFES1NKSm0mTG9xpROwDDO3KQxrZ56kiajrwSTiaML32PbxZew/8GH8Bw+jHPDhoTzYtH3pDq0lvUg1AaRRvxgul4JBdug/UBIagxF+7GW7afb+c2DaozY/YIWOAudWKwmdm7IZ+FT3/Pff37LL98exF3uIXdnIW88sIrvluyi9KgL6ZOVW5zf+PMqcncWRtyPJZL3pA5UEoRVq1ZFewoJgxEtgzWMM9ntWJs3p8Vf/0qHjz6k8e9+B1JStnkzvpISdtfgjAvHvFh8JSWqfsSIoO9JdWgt60lIPZMq0kd1bsVOgb63QuuecO1Cv6vuLd9Cu37Ydn/CiJs71RisWJPMDL/pNGy7lnPOoJZc+8++9Bx+KvZGVvJ2FbFu2e6KDs7r6tjivA5XmSc4TRQRyXtSByoaTYiY7HYsGRlkTZ5Eh6VL6Lx+HR2WLiFr8iQs6eknpWxsrVvT8p//oP3ixWTfdSeH33wraC8WXx3jNBpNNVQ49M6Y+XL4HXpNJsg8DawOLO+NJ9v5OWP/0o1zLmx9YmPEC1sz9i/dyHZ+juW9CWC24Jg3gl7217j2eicDrjiF7kPasOGzvbUazoE/WFm3fDfuOHW5rQtdTJsgdOvWLdpTSBjqq+XxRa8iCL+UpPanYm3Vkn333hvU+QsXLvQ758YJ+p5Uh9ZSDYZ1DGXnkdcFjqZYFk2se3tzagv/FundX8Pur7HyFDkIPH/M5fO3twQ11c3fHKDn8FON/XwhEMl7MiyBihDiv8BSKeX0iv+fDnQFPpNSBllGrTFCx44doz2FhCGSWiayF4u+J9WhtVRDvXSs786j47dI17W9OdCF+uq3Yecq2PUV7P0Os82qdotz1SaVPt+J28cNEMl7Mlypn/7ADwBCiAzgG2AmsFEIcVaYrtmgWbBgQd2DNEERSS0DXizBYElP929ZjhP0PakOraUaQtLRaINHIzUufW7x9zrqNBSG/A1uXAJ/3I3X48ORGtwfJ440K15vDSkitxOK82DFY/6dTA9n+r+veMy/QuQ2nlKO5D0ZrkAlFdhf8e/LgR1ABjADeCRM19Ro4o8KL5ZgSBsxgrJNm/AcPlzz6ZxOfOXlSJ8PX3m5rmnRaKJJKF2orQ6k10vnXtlBXapTr2YU7CnEteQx2PkVeCv+qHE7/emlZ7r6V3eKDvhbCxQd8P//6a7+bdz1CFYiRbgClV1AwNHqCuB1KaUHmAWcF6ZrNmiys4O7mTV1E0ktTQ4HGePG1elYK5KTaXr1VRyc+gjbBg0m96mnTwhYfGVlePLzyZs2jW1DhrDprK5sGzKEvGnT8OTnR2Vrs74n1aG1VEPEdQxxi7TV7KPboJZBbXHOGdCaFfO2MvvdTvzw/At4Hj0NPv4zOA/D7Csg+wzcI1/Bc+9e5EOH8dy7F/elL0N2Z7/XjKvY0I8WSS3DYvgmhLgXuA74ALgDOF1KuV0IcQawRkpZs/VeAyAchm+a+MVXVkbZhg3sqmGLcsCLxdqqFfsf+gsln38OgCk5maZjx5J+4w2Ub9lS4xZn4XDQZsb0ym3SGo0mClStDwmy55GntJTcnUdZ9OLmmjs439yJRukpLPnPWg7u83+upJgOce5vrJyRuQ6ZeQaudhey7rM8Nq3OPWYY1yubbgOzsO1YguXIZuh/T/A7ohQSFcM3KeXjwGvAOcA9UspAU4BeQIPvnhwOZs2aFe0pJAyR1jJYLxZrixa0mTGddnPfIqVfP3ylpZR89RW+wsKY9GHR96Q6tJZqiKqORmtcKrBYBdnNTYz9S/eatzg3N5GWbuXyBwcybHJXMlo3osSXyYrPG7M97ToO2Afyxt/W8d3SPScaxi3dwxt/W0euox+erO7+udWFqxQ8ZUifz+/e66qlRYEiwrY9uSJYebzK4WbA3HBdsyHjctXdT0ITHNHQ0mS3Y7LbyZo8iaxbptTa68fRvTttZkzH+cMPeIuKDPmwZE2eFLHeQfqeVIfWUg1xqaPVgaURWDxlnNuzjJ4Xdcec5MBb7kQe2ubPGlnSwOpAAO26ZtI2J4Nt3+ex7btcmp3WnLf+/k3thnEvbWHsX/pjMVn9tSrVpaLcTigvhq+eh/VzEYFt2l1H+4uGbY1qN9ALgbAFKkIIE/46FTOwVUrpqQheNBpNDRjxYnF0746vvJz9f/5zUOeONx8WjUZTQcUWaWuzJH/6yCSw2CzQ4rRqV2aESdCxRzZtuzRhzfs7gzOMW5HLuRclYX3yVH8rgE5DodNFkNbiWEHu7CtO7JsUKMhdPd1fNFxbS4IQCFeNSk/gbaANIIAi4A3gISllcKYRoc/hJvzbpHsApwGmmvJfFeNbAo8CFwONgI3AY1LK/9Yw/lrgTqAzUAgsAv4YjE9MOGpUfD4fJpM2GlZBPGkpfT42ndUVvEE4UlosdF6/DhGhny2edIx1tJZqaGg6etxe3njgq6A6OKc0sTHmb72w/DPrxAe6XQWDHoLnetTeidqa7C8aTsmqeUwNRKsp4XRgA5ADnArcCHQDvhNCNAvTNavyR+BSIBfYV9tAIUQ68AVwGfAicDtQDLwthLi+mvF34q/BOVox9j/AaOAzIUQ1+8zCz5IlS6Jx2YQknrSMZR+WeNIx1tFaqqGh6Wi2mIwZxlmtcNcmGPEMdLoYLA44tR98/WLtQQr4H//qhbrH1YNwBSqnAXdJKX+WUu6UUs6XUvbDHww8F6ZrVmUg0FhK2R9YV8fY+/EHVFdJKR+qcNQdBKwBnhBCVO5SEkJkAlMrHhskpZwupXwIuAo4E3/gEnF27aq7lbgmOOJKS6M+LBs34j6YG+ZJ+YkrHWMcraUaGpqOXo80bhiX1gJ6jIOr58J9v8KZv4Mf3w7uguvmBleQa5BwBSpf4y+crcpfgUvCdM0TkFLukFLWnpg7xtXANinlouOe78UfVKVz4pxHAcnAcxVjAuMXAduBMSFOXaMJGsM+LP98lG1DhnDg4am4Dxyodqw2jdNoEgMpJZ17Nw9qbKdezdn9UwF5u4qOHbQ6wGr3u9cGQ0mef/u1YpQFKkKI5UKIfwshxgCvAE8LIU6pMiwDyFd1TRUIIVoArfAHV1UJHOt53LHAv7+qYXzn41dgIsWwYcMifcmEJd60NKWk0GbG9BqDlYAPi7BasbZsiXS5ODxnDtuGXMj+v/4V9z5/ZlS1aVy86RjLaC3V0NB0tNrMdBvSJijDuLMGtOLbD3fw9j/X8NmbmykrrkgZeV3H6k5a9ajeNK7VOf7HU7L84xWjctfPV0B34EqgZcWxX4QQ7wDf4d/9cy1RSo3UQmCue6t5LHCslYHxomLMSS0vhRATgYmB/0+fPh2AXr16kZWVxfvvvw9AmzZtuPDCC5k5cyYANpuNcePG8e6775Kb61+2v/zyy9m6dSvr1vmzWq1atcLj8fDxxx8D0L59e/r371/pG5CcnMyYMWOYP38+BQX+euYrr7ySDRs2sHHjRgAGDBiAxWJh+fLlAHTq1ImePXsyZ84cANLS0hg9ejRz586lsLAQgGuuuYY1a9awZYv/xx00aBAej4cVK1YA0KVLF3Jycpg3bx4A6enpXHHFFcyePZvSUn8uc9y4caxcuZLt2/12O0OHDqWoqIhVq1YB/i6dHTt2rOwtkZ2dzahRo5g1a1bldsPx48ezZMmSyqXdYcOGkZeXx+rVqwHo0aMHrVu3ZuHChf4XsWVLhg8fzsyZMysL7MaPH8/ixYvZunUrycnJjBw5kj179rB27Vplr1Pfvn1JTU1V+jqdfvrp9OnRg3YffciRN2ZT9N57eAoKsKSnk3rppTQZOwZTSgqr1q5lc5czSW6WTc8dO/B9/gVH5s6j4O3/0vyll7Dbk9h9080nbHX25OZRMGMmh2fPoc2M6RzJymJxxdzrep0sFgs33HBD2F6nfRUBVry8TqG8nz788EOSk5Pj8v0US69TaWkp119/fYP6vXf6aZ25eFIOH764oUbDuIsn5bD3wG4Ole5GiCZsXLmXjV/uwtQyn/+7sR/p3a7G27TzMdO4uT8cZxrXlW6XvYNtxxJMhzexfetWmma1MPQ61UW4dv1kAmfjD1wC308DJP6tymcGeZ4m+J1tg+XZ6nYVCSEWA8OqqygWQvQDVgIPV9SaHP+YCfACC6WUoyqOLQcuAMxVU0tCiL8DDwJnSyl/qOXnUr7rZ/r06UycOLHugZo6iWctfU4nmEy1+rAEKN+2jUMvvoRrz25aPfEE20dcWqsfi3A46LhsKZaMjKDmEs86xhpaSzU0VB09Li+uci/rlu1m8zf7cRa6caRZOb13C7oPPgVrkhmLzQxAwb4SPn97C3s2+Vt0ZJ7SiEsmdKboUDGLXtpSbbBjsZkYMel0sts2xpJs3Nm2rl0/YfFRkVIeApZWfAUm4gC64g9agqUJ8BcD42cDRrc/B0qUqzOtsFcZU3V81d/q1Y3XaCKGER+WpA4daPXEv3AfOkTBq7Ni0jROo9GEjsXmD0TOHdaOnsPbYTab8Hp9SOlPDx1PessULr29O9u/z+OL+b9gNpuQJmuNQQpUmMa9uJmxU/uEJagIm+FbVaSUTuCbiq9gn7MDfyolnAS2Lreq5rHAsePTPMeP31rNeEkd26HDQY8ePSJ9yYSloWlpTk2lcNF7QY01YhrX0HQMJ1pLNTR0HY8PSiwmc43jhBB0OCebNjkZFOwrZsOKvcGZxi3fw7nD2p0U/IRKWHb9CCGShBD3CSFeFUI8LIS4XAjRoe5nRh4p5X78gUh1XZ0Dx7497tiaiu99qhnfG9gspTTWhlIBrVu3jvQlE5aGpqWwWvHkB7cQ6SkoQFiD2+7Y0HQMJ1pLNWgdjWG1mclolcrm1dXvEKzK5m/2I8KwtBCu7ckvAbcCLuA+4FVgixDiiBBiZZiuGQpvAR2EECMCB4QQZvw/wxH8XaADLMSf8rmlYkxg/Aj8LQPmRGLCVQkUtWlCp6Fpadg0rrw8qLENTcdworVUg9bROGaLMGYaZ44fH5VhwLVSypuAcvxbem/AX7tR3TZg5QghRgghHhBCPAB0rDj2QMXXLVWGP4q/q/ObQoi/VezOWVYx73uklJUbyyss8h/E3wl6mRBiohDib/iDnU3A0+H+2TQapRg0jSv88EN233ILZT/9VP3pKnxYJowfr31YNJo4p16mcYoJV42KA/il4t8u/H12XhNCpFIRNESAy4Hrqhx7uOL7TuD5wEEpZb4Q4jf4A5Yp+Hv9/ASMllLOq3piKeW/hRD5+Hv9PIu/18/bwP3RSPuAf3ugRg0NTcuAadzh2XNq3/WTnEz62LHsvftunGvXUrxsOY3OP5/MyZNwnHUWvrIyfCUl5M+aReHChXjyC7BkpJM2ciQZ48ZhSknBZLfXeH5NzTS0ezJcaB2NEzCN+25J3a6+p/duQRg2Eodte/I64CYp5ddCiPXA3VLKpRV1Kl9KKYOzyktQwrE9WaMJBV9ZGWUbNrBrwsRqg5WAaZw9JwdfURH5L7/C4blzkRUmcKdM/w/Cbj/Jh6Xy+Q4HbWZMx56To4MVjSbOKC1y8cafV9VaUGtNMjN2ah8cqcadaaPVlPBt4MKKf3+GvykhwFkc28KrUUjAJEkTOg1RS5Pdjj0nh47LlpI+YQKW7GywWLBkZ5M+YQIdly2tDDIsWVk0u/8+Oi5fRsb4G3H06oWtffsagxTwb23eNWEivpKSCP9kiUFDvCfDgdaxftiSzIy4tXuNDrfWJDPDb+mGNUntbp8A4fJReeS4/z4OrBFCFOBPqfwnHNds6Ph86vOCDZWGqqXJbsdkt5M1eRJZt0yp0zTOkpFB9j334D16lEMzZmgfljDSUO9J1Wgd64fFZia7bSpjH+kblGmc8uuH5azHIaXcI4Togr/ANl9K+UFdz9EYx2QK1+JYw6Oha2nENA5A2O0Uvqfeh0VzjIZ+T6pC61h/qprGmcwCn1dWaxqnGqU1KkKIS/HbywtgpZRygbKTJxC6RkWTSEifj01ndQWvt+7BFgud169D6A8MjUZTgdIalYotvyuFEAOqeexV4H/Abfj9R94WQuhAJUIsXrw42lNIGLSWxjDsw1JWpoN0g+h7Ug1aR3VEUkujf9ZcCpxDFRt8IcRw/FuBS4Gp+E3etgOjhBBXKZinpg4CHUo1oaO1NIhRH5aPPmLn2LGUfPVVjQFLwItF+nzaiwV9T6pC66iOSGppNFDpBXwlpSyrcvwG/D1urpdSPiSl/BfQDygDrgl9mhqNJlYJ+LCIOgpkRXIy6deO5eiixTi/Xcuu629g55gTAxZfWRme/Hzypk1j25AhbDqrK9uGDCFv2jQ8+fn4yqr+6tFoNImOoRoVIcRB4H9SypurHD+Evy4lUx53QiHE28BvpJTVNfxrsISjRuXgwYM0a9ZM2fkaMlpL4xjxYZEeD4dnz6Hg1VfxHj0KgOOcc2j5+GO49x9g98QaztGAvVj0PakGraM6VGqp2kelKXBC9zIhRBsgHfhCnvzJ+yuQYfAamnqwZ8+eaE8hYdBaGseID4u5USMyb76JDsuXkXXHHZgbN0Z6PAA1BinQsL1Y9D2pBq2jOiKppdFApQio2n4y0Df7+xqeo9dqI8DatWujPYWEQWtZP0x2O5aMDLImT6LD0iWcvu4HOixdQtbkSVjS009aBTkWsCyn+UMPcfjNt4L2YmloNSv6nlSD1lEdkdTSaKDyIzBMCNHouGO/w1+f8kU1408F9tdzbhqNJg4xORyYkpKY+fLLmJKS6jR3MzdKIem0jhQuXhTU+QsXLgS9vVmjaTAYfbfPwZ/+WSGEuE0I8Tz+YtkDwKfHDxT+pNNv8Tf304SZXr16RXsKCYPWUg1GdBRWK578groHAp6CAoQ1uG6uiYK+J9WgdVRHJLU06kz7MnAZMBTojr+A1g3cLqWs6vY0CGgOLAtxjpogyMrKivYUEgatpRqM6BjwYvHk5tU51pKejnS7g3LNTRT0PakGraM6IqmloRUVKaUPvxX+WOAl/J4pvaWU86sZngk8AwTnra0Jiffffz/aU0gYtJZqMKSjQS+Wkm++wfnDDzWfLsF8WPQ9qQatozoiqaXhXj8Vwcqciq/axs0F5tZzXhqNpgER8GI5PHtOrQW1IjmZpldfxd477qTsxx9JGdCfrFtuxXFWDuDfJu0rKSF/1iwKFy7Ek1+AJSOdtJEjyRg3DlNKSoPb2qzRxDu6Ii1BaNOmTbSnkDBoLdVgVEdTSgptZkyv0Tgu4MViTksjpW9fRHIyJStWsuP3v2f35Cm4D+bi3LCBrYOHUDBjpj+N5PXiyc2jYMZMtg4eQtmGDXFpGqfvSTVoHdURSS2VNiXUBEc4DN98Pp/uDKoIraUa6qPjsRWR1/wrIgUFWNIrVkSuH4cpOblyRcRz+DAFL79MwZw3STrtNFo9+W+2j7i09hUZh4OOy5ZiyYgveyd9T6pB66gOlVqqNnzTxCgzZ86M9hQSBq2lGuqjY1Uvls7r19XoxWJp2pTse+6h49IlNPvj/Qntw6LvSTVoHdURSS11oKLRaGKOgBeLMJnq9GKxZGZiP/NM7cOi0SQo+t2aINhstmhPIWHQWqohkjomug+LvifVoHVUR0Tf37pGJfKEo0ZFo2nI+MrL2TZkSHA+LNnZdFi6BFMD8mHRaGIZXaPSQHj33XejPYWEQWuphojqaNCHpWzTJryFhWGelDr0PakGraM6IqmlDlQShNzc3GhPIWHQWqohkjoGfFhq2tocIODDcnDqI2wdPIRD/5mOr7S02rGxZBqn70k1aB3VEdH3d8SupNFoNGEkWB8WYTJhSk7GV1hI3lNPsXXIhRS8/gY+lwvwb5H25OeTN20a24YMYdNZXdk2ZAh506bhyc+PSx8WjSae0TUqUSAcNSr5+flkxJk3RKyitVRDNHQ04sNS8tVX5D71NGXr1wNgadGCU6b/B++Ro+yeOLHarc7C4aDNjOnYc3Ii6nCr70k1aB3VoVLLumpUDFvoa2KTrVu36jegIrSWaoiGjia7HZPdTtbkSWTdMgVhtSLdbvD5TtrinNKnD+3OO4/iTz4h7+lnEA4HJoeDHf93ZY1+LNLpZNeEiXRctjSigYq+J9WgdVRHJLXUqZ8EYd26ddGeQsKgtVRDNHUM1odFCEHqoEGc+u7/aPnPf8SsaZy+J9WgdVRHJLXUgYpGo2nwCLMZa+vW2jROo4lB9DstQejbt2+0p5AwaC3VEG86xrJpXLxpGatoHdURSS11oJIgpKamRnsKCYPWUg3xpqN0u7FkpAc11pKe7q99iRDxpmWsonVURyS11IFKgvDxxx9HewoJg9ZSDXGno1HTuJ9/xnv0aJgn5SfutIxRtI7qiKSWOlDRaDQa6mEa98g/2DrkQvJffhlfeflJ42LJME6jiWd0oJIgtG/fPtpTSBi0lmqIRx2DNo2zWCpN43L/9QTbLrqYI+/8D+n1hsUwLh61jEW0juqIpJba8C0KhMPwzeVy6c6gitBaqiFedQzWNE5KSckXX5D7xL8p37wZgFbPPoO5cWN23zxJqWFcvGoZa2gd1aFSS92UsIEwa9asaE8hYdBaqiFedTTZ7VgyMsiaPIkOS5fQef06OixdQtbkSVjS0ysDDCEEjfr149T/vUPLxx+j0QUXYD/zzBqDFDhmGOcrKTE0p3jVMtbQOqojklrqQEWj0WiqIWjTOJOJxpdeSst/Pc7huXNj0jBOo4lndKCSICQnJ0d7CgmD1lINDU1HYbFQ+N57QY01ahjX0LQMF1pHdURSS12jEgXCUaOi0Wiii/T52HRWV/B66x5ssdB5/TqEdrfVaHSNSkNh/vz50Z5CwqC1VEND0zGchnENTctwoXVURyS11IFKglBQEJz1t6ZutJZqaHA6GjSMK/nyS0q/+z6o8Q1OyzChdVRHJLW0ROxKmnpRWFhIbm4u7jr++urevTs///xzhGaV2MSClhaLBbvdTlZWFnYD21g10SNgGHd49pxaC2pFcjLpV1/FnjvupOzHH0m96CKy774L2ymnnDTW53SCycSE8eP9pnI+X41FvRpNoqJrVKJAsDUqhYWFHDx4kFatWuFwOCrzeNXh8XiwWHTcqYJoaymlxOPxUFxcTF5eHs2aNaNx48ZRm099OXr0aFzOOxR8ZWWUbdjArgkTq/dRqTCMS+rcmfyXX6bglVeR5eUIq5WmY8eSefNNmNPSjvNymeX3cskvwJJR4eUybhymlBRDPiwaPw3xngwXKrVssDUqQoibhBBzhBCbhBDeQHBQw9hxQghZw9fzNTznWiHE90IIpxDioBBiphAiS+XPkJubS6tWrUhOTq41SAEoq4fbpaZ6oq2lEAKr1UrTpk1p3bo1+fn5UZ1PfdmwYUO0pxBxTHY79pwcOi5bSvqECViys8FiwZKdTfqECXRcthR7Tg7mRo3Ivv12Onz0IY1HXop0uyl45RW2XTiUsk2bcf64ga2Dh1AwYyae3DzwevHk5lEwYyZbBw+hbMOGejncNnQa4j0ZLiKpZSL/Cf5HIAP4HkgBWgfxnH8AVdf8N1cdJIS4E3gSWAHcXnHuu4A+QoheUkpjbk414Ha7cQS5zOt0OmnUqJGKyzZ4YklLh8NBeTV9ZOKBjRs38pvf/Cba04g4Jrsdk91O1uRJZN0yBWG1+gtnq0nbWFu0oOVjj9F0zFhyH3sMn8uFqVEKO666qk7TuI7LlupVFYM01HsyHERSy0QOVAYCu6SUPiHEYoILVJZKKT+rbYAQIhOYCqwBBkkpvRXH1wDv4Q9c/hHCvKteT9WpNHGIfv3jl+ODEpGUVOtYx1k5tHnjddw7d3L4zbeCNo3LmjxJ16xoEp6ETf1IKXdIKX1GnyeESBVC1NbAYBSQDDwXCFIqrrcI2A6MMXpNFaSmpkbjsgmJ1lINAwYMiPYU4gohBJYWLShcvCio8UZN4zT6nlRJJLXUd/mJvAcUAmVCiHVCiOqCjp4V37+q5rGvgc5CiNjIG2g0UUQXdxtHWK148oPb9ukpKEBYrWGeUWKh70l1RFJL/ar5KQXeBD4BcoFTgSnAG0KIDlLKvx03tmXF973VnGcvICrGbKn6oBBiIjAx8P/p06cD0KtXL7Kysnj//fcBaNOmDRdeeCFFRUXk5eUhhCAzM5PDhw/j8XgAaNq0KWVlZTgrloh9Ph9CCAoLCwFISkqiUaNGlYWYJpOJjIwMCgoK8FY4Z1Y9R2AloaioCAC73U5ycnLlfnmz2Ux6evoJ50hPT6e0tLSyALXqORwOB3a7ncOHD59wjvz8fHw+/4JXRkYGxcXFlbUYaWlp+Hw+iouLqz2HxWKhadOmHDp0qHLnVGZmJoWFhbhcLgAaN26Mx+OhpKL5W3JyMjabjSNHjrBr1y5+97vfsWvXLvLy8ipfn6ysLI4cOYLT6cRisdCkSRNcLhelpaUApKSkYLFYOHr0KAA2m420tDQOHToUeH3rfJ0aNWqEyWQy9Dr5fD6+/PJLNm7cCPj/krFYLCxfvhyATp060bNnT+bMmVOp3+jRo5k7d27lda655hrWrFnDli3+23LQoEF4PB5WrFgBQJcuXcjJyWHevHmVr+sVV1zB7NmzK3/+cePGsXLlSrZv3w7A0KFDKSoqYtWqVQB069aNjh07smDBAgCOHDnCvffey6xZsypfl/Hjx7NkyRJ27doFwLBhw8jLy2P16tUA9OjRg9atW7Nw4UIAWrZsyfDhw5k5cyY+nw+TycT48eNZvHgx+/btA2DkyJHs2bOHtWvXAjW/n2bOnFn5uo0bN453332X3NxcAC6//HK2bt3KunXrAOjbty+pqal8/PHHgL+lff/+/SsbsSUnJzNmzBjmz59f+f648sor2bBhQ0iv0/jrrsOSke4voK0DS3o6HqcTa0pKSK9TdnY2o0aNahCv06FDh5gyZUrIr1M03k+x9jrNmzePzMxMJa9TXcT09mQhRBPgDgNPeVZKedKfIxU1KsNq2vpUw7WTgG+BzsBpUsodFceXAxcA5qqpJSHE34EHgbOllD/Ucu6gtif//PPPnHHGGUHNNy8vj6wspZuOEpYdO3YwcOBAduzYUe3jsaalkfsglpg+fToTJ06se6CmEp/TSd60aRTMmFnn2PTxN5Jx/fVYMjIiMLPEQN+T6lCpZbxvT24C/MXAV3D+1UEgpSwHnsC/6nThcQ+VVnyvrjrOXmVMxIh3U7DPPvsMIQRCiMq/qKoihGD48OFhn0u8axkrdOrUKdpTiDsCpnGijgJZkZxM06uuYs8tt5L75FP4SpRsNEx49D2pjkhqGdOBSkVBrDDwtVXxFHZUfM887ti+iu+tqhnfCpDHjYkYRjtZOl1eyj1efFJS7vHidAXRSC1C/OUvf6lMlUQD3WFVDT179qx7kOYkTCkptJkxvcZgRSQn0+Y//8G9Zw/O778nf/p0tl18CUcXLTppldbndOIrL0f6fPjKy/1Otw0YfU+qI5JaxnSgEgOcVvH94HHH1lR871PN+N7AZillcVhnVQ3B9l0oc3s5VFzOM8u30O+xTzntzx/S77FPeWb5Fg4Vl1Pmjm7Acu6557Jv3z6efvpppeedPHkyTZo0oUmTJnTt2pVdu3ZV/r9JkyZ88cUXlWN1PxA1BHL8GmMEZRp3Vg4pvXvTbu5b2M86C09uLvv+cC87rxmDc+NGfGVlePLzyZs2jW1DhrDprK5sGzKEvGnT8OTnN1izOH1PqiOSWupABRBCnJTkFUI0Bu4DXMDHxz20EHACtwghzMeNHwF0AGL2nVDm9rJ+zxH6PfYpL63YTm5ROV6fJLeonJdWbKffY5+yfs/RqAYr//d//0ePHj147LHH6nRkLSoq4oEHHqB3795kZmaSlJREx44duf/++ysL1gJMmzaNI0eOcOTIEdavX0+bNm0q/3/kyBF++9vfhvPH0mgMYbLbsWRkkDV5Eh2WLuH0dT/QYekSsiZPwpKeXmn05ujenXbz5tLikUcwZ2Tg/O47yjdtwvnd99rZVpMwJGygIoQYIYR4QAjxANCx4tgDFV+3VBn+oxDiLSHEn4QQ44UQU/E71HYE/iil3BMYKKXMw18w2wtYJoSYKIT4G/AWsAl4Ovw/3cmYzeY6xxSXe7julTU4awhEnG4v172ymuJyj+rpBY0Qgscee4yjR4/yyCOP1Dp27969zJw5k3PPPZcHH3yQJ598knPOOYfHH3+c3/3ud/WeQzBaauomLS0t2lOIe0wOB6akJN7+738xJSVVa+4mTCaaXH4ZHT76kOw//Ynk3r3ZPWVKnc62DbGuRd+T6oiklom8Pfly4Loqxx6u+L4TOL6Hz1v4nWwvBNKAo8Bq4Hop5fGrKQBIKf8thMgH7gSexe+98jZwfzTSPuDf/lYbTpeXmZ9vrzFIqRzn9vLy579y26COOGzRuT0GDRrEkCFDmDZtGrfffjtt27atdlz79u3ZvXs31uO8JKZMmcKDDz7I1KlTWb16Nb169TJ8/bq01ATH6NGjoz2FhCEYLc2pqTT9/RXkvTBNO9vWgL4n1RFJLRM2UJFSjgPGBTn27nqcfxYwy+jzVNDu/vcNP+eHh4bwznfVWb+czDvf72Fi//ac8ZCx6+x4dJjhedXEY489Ro8ePXjwwQd5/fXXqx1jsx0zEPZ4PBQVFeH1ehk8eDBTp07lm2++qTZQadeuXY1bk8Ffo6KDldCZO3eu/mBQRNBamkwUvrcwqHMWLlxI1i1TQpxZfKHvSXVEUsuETf1oTiTVbiW/xBXU2PxiF6n26MawZ599NldddRVz5sxh/fr1NY6bNm0aXbt2JSkpifT0dLKyshg4cCBApUGcUQJGa5rQCJhjaUInWC21s23t6HtSHZHUMmFXVBKZ6lYu6jIpK/d4yUixkVtUdyfejEY2vD6pdIWkPkydOpX58+dz33338eGHH570+JNPPsndd9/NhRdeyG233UbLli2x2Wzs3buXcePGVTrfajQNBel2G3K2lW53nQ0TNZpoo1dUEoS6UhU+H1x2TnXWLydz2dmt8cWAY/Gpp57KpEmT+Oijj/j0009PevyNN96gXbt2fPjhh4wfP55LLrmEwYMH06xZs5Cuq9M+arjmmmuiPYWEIWgtfT7SRo4MamjaiBE416/HU8+Vx3hE35PqiKSWOlBJEKpux62Kw2ZmfL/2OKy172hJtpkZ3+/UqBXSVuWBBx4gLS2N++6776THzGYzQogTTK48Hg+PPvpoSNesS0tNcKxZs6buQZqgCFZLQ862V19F7uP/Yvslwziy4B1kA1iB1PekOiKppQ5UEoSyIDwRGiVZeO2GXjUGK8k2M7Ou70VKUmwEKeBvNviHP/yh2jfFFVdcwa+//srFF1/MSy+9xOOPP865555b2YiwvgSjpaZuAg3bNKFjRMugnG2n/8e/3Tk5Ge/hw+z/85/ZOWYsZZtPvk4iudvqe1IdkdRSByoNCLvVTNfWjfn8vvOZNKADzdKSsJgEzdKSmDSgA5/fez5dWzfGXseqS6S56667aNGixUnH//CHP/CPf/yD7du3c/vtt/PCCy9w4YUX1rhLSKNpCATlbJuTgyUzkzazXqXlvx7HnJmJ87vv+PWyyzj4+L/wlZRod1tNzBDT3ZMTlXB0Ty4rKzPUTM/p8mISYDWbcHt9+KSMmXRPtDGqZbiJ1+7J27Zto0OHDtGeRkJQXy19TieYTAirFel2g89XrW+Kt7CQvKef4fBbb4GUtPz3E1gyM9l986RqPVmEw0GbGdOx5+RUuuTGA/qeVIdKLeO9e7ImTDhsZpKsZkwmQZLVrIMUjXI8nug5HCca9dUy4GwrTKYanW0BzGlpNH/oQdq9/TaNfzcKR7duNQYpEL/utvqeVEcktdSBSoJQVFQU7SkkDFpLNaxYsSLaU0gYIqWl46wcmj34IIfnzg3a3Taealb0PamOSGqpAxWNRqPRVCLMZgrfey+osYULF4JJf4xowou+wxIERwPq1xFutJZq6NKlS7SnkDBEUstEdrfV96Q6IqmlDlQShFgq/ox3tJZqyMnJifYUEoZIahlwtw2GgLttvKDvSXVEUksdqCQI9e1rozkZraUa5s2bF+0pJAwR1dKIu+2lI+Jqm7K+J9URSS11oKLRaDSaSgy52151FfvuuoujixbVabeg0dQXHagkCGZzbJm0xTNaSzXonknqiLSWQbnb/uclyn/5hZIvV7HvD/ey++abce/bd9LYWHK21fekOiKppTZ8iwLhMHzTJC76PtBEA19ZGb6SEvJnvUbhwoV4CgqwpKeTNnIkGdePw5ScjEhK4uiCBRx87HF8RUWYkpPJuvsuml51FdLlqnj+LP/z8wuwZFQ8f9w4TCkpcWUWpwkf2vCtgZCfnx/tKSQMWks1zJ49O9pTSBiioaXJbseSkUHW5El0WLqEzuvX0WHpErImT8KSno7JbkcIQZMrrqD9+4tJHTIEX2kpBx+eSvFnK3CuX8/WwUMomDETT24eeL14cvMomDGTrYOHULZhQ8TrW/Q9qY5IaqkDlQTB1wA6n0YKraUadBdqdURTy2Dcba3Z2bR+7llaPfMMKQP6k9TpNHbfdHPMOdvqe1IdkdRSByoajUajUULa0Atp9a9/cfitxHS21UQHXaMSBcJRo+Lz+TBph8iTKC8v55ZbbmH58uXk5ubSokULpkyZwh133FHjc2JNy3itUXG5XNhstmhPIyGIJy195eVsGzLEn+6pA0t2Nh2WLsGUlBSBmcWXjrGOSi11jUoDobi4ONpTiEk8Hg/NmzdnyZIlFBYW8t///pd//vOftXoABLTcsWMH7dq1i9BME4+VK1dGewoJQzxpGcvOtvGkY6wTSS11oJIglJeXR3sKMUlKSgoPP/wwHTt2xGQy0b17d4YNG8aXX35Z43O0lmrYvn17tKeQMMSTlrHsbBtPOsY6kdRSByqamKK0tJSnn36afv36kZ6ejtVqpVmzZlxyySXMmjUr5NbiHo+HL774gq5duyqasUajOQEjzrYjLwVdvK6pAx2oJAhpaWnGnuAqBU8ZSJ//uyv61fBbt27l7LPP5s4778Rut/PHP/6R6dOnc9ddd+F2u7n++uv505/+FNI1brvtNho3bsy1115b4xjDWmqqZejQodGeQsIQT1oacrYdPZqiTz5FRihYiScdY51IammJ2JU0YSXoLbVuJ5QXw1fPw/q5UJIHKVnQdTT0vQVsjcAa+e7BTqeT4cOHs337dhYsWMBll112wuP33Xcfa9asYc2aNfW+xt13380XX3zBJ598UmMR2OTJk3nzzTcBv6bFxcU0adKk8vHFixfz29/+tt5zaEgUFRVFewoJQ7xpGXC23TVhYrW7f0RyMqe88DylX3/N/j8/wJH//peW/3gEa8uWYZ1XvOkYy0RSS72ikiAEVUzrdsK+7+CZrvDl01B0AHxe//cvn4anu8K+7/3jIszMmTPZvHkzd99990lBSoCePXsyefJkwP8meeCBB+jduzeZmZkkJSXRsWNH7r///mr3999xxx0sWbKE5cuXk5mZWeM8pk2bxi+//MKRI0dYv349bdq04ciRI5VfOkgJnlWrVkV7CglDvGlpstux5+TQcdlS0idMwJKdDRYLluxs0idMoOOypTjOPhtzkyaY09Mp/fprtl86kiPvvhvWnkHxpmMsE0kt9YpKQ8JVDLOvAHcNaR53Kcy+HO5YH/FVlfnz5wMwceLEoMbv3buXmTNncvnll3P11VdjsVhYsWIFjz/+ON9//z0ff/xx5djbbruNTz75hE8//ZSsrKywzF+j0ZyIyW7HZLeTNXkSWbdMQVit/sJZn6/SNC510CAc3buz/6G/ULx8Ofvv/yPFy5fT/G9/w3JcLxmf0wkmU7Xn0CQ+OlBJEBx1vWldpbDq+ZqDlADuUvjqBRhwL1iT1U2wDjZs2EBqairt27cPanz79u3ZvXs31uO2Nk6ZMoUHH3yQqVOnsnr1anr16sXOnTt57rnnSEpK4tRTT60c269fPz788MNqz12nlpqg6NatW7SnkDDEs5bHBxSiGr8US0YGrZ9/jqP/e5eDjzxC0dJllH73PS2mPkxKnz5K+wXFs46xRiS11IZvUSBkw7e/NjZ+0ft2wLTz/GmeukhtAZNWweOn1j32hHkdNT6vCgK7e/bs2WP4uR6Ph6KiIrxeLxs3bmTgwIE8++yz3HrrrfWai8fjwWKJnRg+Xg3f8vPzycjIiPY0EoKGoqV77172/fFPlK5eTYtHpmJt0YLdU26pvs7F4aDNjOnYc3KCDlYaio6RQKWW2vBN4ycpzV84GwwleWCP7M6XtLQ0w8VZ06ZNo2vXriQlJZGenk5WVhYDBw4E4PDhw/WeSyjP1RxjwYIF0Z5CwtBQtLS2akWbWa/S8t9PkNy7d41BCtSvX1BD0TESRFLL2PmzURM81axc5OXl1V5/4Snz7+4JZkUlJQt8npBWSIySk5PDypUr2b59e1DpnyeffJK7776bCy+8kNtuu42WLVtis9nYu3cv48aN040FNZo4RZhMpF5wAXkvTAu6X1DW5Em6ZiWB0SsqCUKdqQqfz78FORi6jfb7q0SQyy+/HPDv/gmGN954g3bt2vHhhx8yfvx4LrnkEgYPHkyzZs1CnksspX3imezs7GhPIWFocFqaTBS+tzCooYULF0KQvbkanI5hJJJa6kAlQWjatGntA2zJfp+UugpkbSnQJ4hxihk/fjynn346TzzxBAsXVv8Lau3atUybNg0As9mMEOKEOh+Px8Ojjz4a8lzq1FITFKNGjYr2FBKGhqZluPoFNTQdw0kktdSBSoJw6NChugfZGsGYBTUHIbYUuGb+/7d35+FRVfcfx9/fyWSbbJCQiICIGFEhbhS00qKoLCpgLGjdUKICrSgoWuyPuqC1WquouBSVRYLiji0KboCWKlDFhUVAiaiIoEJIAiFkncz5/TGTmISZZCa5mZlMvq/nmefCvWfunPnMneTk3nPPcS+DzOFwsHTpUo466iguvPBChg0bxowZM5g/fz4PPPAA5513Hv3792fHjh0AXHTRRXz33Xecd955PPXUUzzwwAP069ePgwFcr/bFryxVk3Jzc0NdhYjR3rJsrfmC2luOrSmYWeo57gjh191b0fHQ5RT3OCn/+ydsqDMy7UmXus+kxCSEZGRagMzMTNatW8fTTz/Na6+9xr333ktJSQmpqan069ePBQsWcPnllwMwdepUjDHMmzePG2+8kc6dO3PJJZdw9dVX07t37xbVQ++Es0ZlZWWoqxAx2l2WnvmCCuc0fSk4kPmC2l2OrSiYWWpDpb2Jjnc/zrgVBv0fRMVAdaW7T0qQL/d443A4mDJlClOmTGm0XFRUFNOmTWPatGmHbNOGhlJtW818QUULn2+0Q23NfEElH64iacjg2ttcVWTRcVRCoMXjqHhhjNEvqUXCLcu2Oo6Ky+XC5mcnR9W49pilq7yc8k2bmpwvqOrHH/nptttJOu9cDv/rX4lKSvK9z3aYY2uxMksdR6WdKC4uDnUVIoZmaY1ly5aFugoRoz1m6e98QRIbh83h4MDb7/DdqNGUffGFz322xxxbSzCz1Es/EUKvvVpHs7RGTcdn1XLtNUt/5gtKGTGc+Kw+7Lz5Ziq2fMn2y6/gsD/dQserrqr9S71mrqBhQ4fiqqjQuYIsEMxjUs+oKKWUCmu2+HhssbGIzYYtNvaQRkZMjx70eOklOo4ZA1VV7P77/eycNBlncTHOggLyZ83imyFD+OqEE/lmyBDyZ83CWVCAq7w8RO9IBUL7qIRAa/RRqaysJCYmpuWVU2GXZVvto7Jr1y66du0a6mpEBM3Sf8XLl/PTbbdz2J9vxX7YYeycNNmyuYLUL6w8JrWPSjvhdDpDXYWIoVlaIz/fz7mlVJM0S/8lDxlCz6VLcJx+us9GCjRvriD1i2AekxHZUBGRriIyTUT+KyI/ichBEdksIg+KiNfpHkWki4g8KyL5IlImIp+KyMWNvMZVIrLOU3a3iMwVkUYm22ldVgx0ptw0S2usXbs21FWIGJplYKKSkih68UW/5wpyNVFOHSqYx2RENlSAkcBdQAHwIHATsMazXCcinesWFpFUYBUwCngSuBEoAV4Rkasb7lxEpgALgP2esk8DlwIrRST4w7oqpZT6hc3mngPID4HMFaRCI1Lv+vkQONIYU3eq4Dki8jEwB/iT51Hj/4CjgAuMMUsARGQe8D9ghoi8aowp8azvBPwN+AQ4xxhT7Vn/CfAG7obLfa355rxxOEI/WFuk0Cyt8atf/SrUVYgYmmVgWmuuIPWLYB6TEdmMNMZsbtBIqfGyZ5nVYP3lwDc1jRTPPqqBx4FU4Pw6ZS8EHMDjNY0UT/klwLfAmBa/gWYIp86fbZ1maY1u3bqFugoRQ7MMTGvNFaR+EcxjMiIbKo2oSXZ3zQoRORzoCnzkpXzNuv511tX8+38+yh8nIoktrGfA9u3bF+yXjFiapTV8zYKtAqdZBsgzV5A/ApkrSP0imMdkpF768eVuz3JBnXVdPMtdXsrXrKt7D1ZT5cVTJq/hRhGZAEyo+f/s2bMBOPXUU0lPT+fNN98EoHv37gwdOpQDBw6Qn5+PiNCpUyeKiopq70jp2LEj5eXllHk6gblcLioqKmpHVY2NjSUxMZGCggIAbDYbaWlpFBYWUl1d7XUfSZ6hpw8cOABAXFwcDoeDwkL3KdSoqChSU1Pr7SM1NZXS0lLKPeMRNNxHfHw8cXFxFBUV1dtHQUEBLs8Ph7S0NEpKSqioqAAgOTkZl8tFSUmJ133Y7XY6duzI3r17a2/x7tSpE8XFxbWDtaWkpOB0Oms7xjocDmJiYmobIdHR0XTo0KFez/X09HT27duH0+kkPz+fDh06UFlZSWlpKQAJCQnY7Xb2798PuM+8JCcn18627M/nlJiYiM1mC+hzcrlcrF69ms2bNwNw5plnYrfbee+99wDo1asX/fv35/nnn6/N79JLL+Wll16qfZ0rrriCTz75hLw892F5zjnn4HQ6+e9//wtAnz59yMrK4uWXX679XC+66CIWLlxY+/5zcnL44IMP+PbbbwEYNmwYBw4cYM2aNQCcdNJJZGZm8tprrwG/NPhyc3NrP5dx48axbNmy2sGihg8fTn5+fm3HvF/96ld069at9odgly5dGDFiBHPnzq0dsnvcuHEsXbqUH3/8EYDs7Gx27tzJZ599Bvj+Ps2dO7f2c8vJyWHx4sXs2bMHgNGjR7Nt2zY2bNgAwIABA0hKSuLdd98FoGfPnpxxxhm1M8Y6HA7GjBnDokWLar8fl1xyCZs2bWqVz2nv3r3Mnj27VT6njIwMLrzwwoj6nN585x3OGzPG77mCdm7YwDsbN7b4c2rN71O4fU41x6QV36emhPU4KiLSAXcHWH89ZozxemFSRG4BZgCzjTF/qLN+IPABcI8x5s4Gz7EB1cDrxpgLPeveA84Goowxrgbl/wrcAZxijFnfyPuyfByVffv20aFDB7/KqsaFW5ZtdRyVpUuXMmLEiFBXIyJoloHzZ66gbo8/jvPnn/j5r/dw+L33kjJieAhq2jZZeUw2NY5KuJ9R6QBMD6D8QuCQhoqIjMN998+bwA0NNpd6lrFe9hfXoEzD8g2Pfm/lgyKcfrG2dZqlNfQXq3U0y8DVnSuoIHcBxa+/jrOwEHtqKsnZ2aRdnYPExbH7/ncwFRX8+Kc/Uf7lFjJuvhmJigp19cNeMI/JsO6jYozZboyRAB7bGu5DRK4BZgPLgNHGmIa9pn70LL0NsVezru5lnqbKmzplgqY9DQi1cuVKRMTv04aBak9ZtqaaU/iq5TTL5rHFxWFPSyN94nUcvXwZx25Yz9HLl5E+8TrsqalEORwcfvfdHHbH7WC3UzjvGX74wx+p9lzeVb4F85gM64ZKS3nGQJkDrAAuNMZUNCxjjPkJd0Pk1152UbPu0zrrPvEsT/dS/jRga82tzCow3377LRMmTOC4447D4XDQsWNHevfuzdixY/nPf/7j1z6Ki4u555576Nu3L0lJSTgcDnr37s3UqVPZvXt30ztQlnFpB0XLaJYtUzNX0Nx58w6ZK0hESL3iCro/M4+ojh05uGoV3/3+91Rsq/93r6usDFdFBcblwlVR0e4HiQvmMRnul36aTURygLnAf4BsY0xjs0+9CPxJREbWGUclCpgE7APeqlP2deAx4AYReaHOOCojgaNx91EJe2XOMmxiI9oWTZWrCpdxEW8P3Wyin376KWeeeSbR0dFcddVV9OnTh7KyMvLy8liyZAlJSUmcddZZAJxxxhmUlZUR3WDsg7y8PIYNG8b333/PqFGjuPbaa4mOjuajjz7i0UcfZf78+SxZsoTTT/fWxlRWs+kgWpbRLK3RWI4Jp57KUYte5YcbJlHx5Zds//0ldJnxIAkDBuA6eJCC3Fz35aOCQuxpnstHOTnYEhLa5VxBwTwmw7ozbXOJyAXAv4Fi4FYO7UtSYoxZXKd8GvAZkAY8jPsMy2XAIGCcMWZeg/3XdMxdibuR0xW4BfgB6N/UGZXW6Ezrr3JnOQerDvLslmdZ8s0SCssLSY1LZeTRIxnbeyyOaAdx9uB/6UaOHMnSpUtZt24dJ598cr1tLpeLn3/+mS5dunh/MlBaWsopp5zCd999x7///W+GD6/fKe7TTz9l8ODBxMTE8MUXX3DYYYe1xttoFW21M61SbZGrrIyfbrud4rfe4vB7/0Z0ly78MPF6ndiwFbXXSQn74n5vHXD3T3muwWNm3cLGmALgN8Bi4HrcZ0xSgEsbNlI85R8CrsY9GNxjwHXAK8CZobrs48/YH+XOcjYXbOa8f53HM5ueIb8sn2pTTX5ZPs9seoZz/3Uumws2U+4M/tTnX3/9NWlpaYc0UsDdcq/bSPHWR2XevHnk5eUxZcqUQxopAP369eO+++4jPz+fBx98sNG66Dgq1li6dGmoqxAxNEtr+JOjLT6eLg/NoMs/7sdx2mk+GynQvic2DOYxGZENFWPMXU10uu3h5Tm7jDFXGmM6GWPijDF9jTEve9l9TflcY8xJnrIZxphrjDF7WvWNNaLKj5EVS6tKuW7FdZQ5vX/pypxlXLfiOkqrgn7TEkcffTQFBQX861//atbzFy1aBMD48eN9lsnJySE6Orp2XAJf/MlSNa1mXAbVcpqlNfzNUURIGjqUopde0okNfQjmMRmRDRV1qDJnGQu2LPDZSKlb7tktzwb9rMrtt99OdHQ0o0ePplevXlxzzTU8+eSTfPnll349f9OmTSQlJZGZmemzjMPh4Nhjj2X79u21g8kppZRXNhvFb7zhV1Gd2LB1RWxn2kh2woITAn7OqktXseSbJU0XBJZ8u4ScPjn0f75/04Xr+GLsFwHXq8bpp5/OZ599xkMPPcTbb7/N/PnzmT9/PgC//e1vWbBgAT179vT5/OLiYjp37uxze42UlBQA9u/fT2Ki95kOGo6j8uqrr/LSSy81eSbGX2effTZ/+ctfGDx4sCX7C1fZfg5hrpqmWVojkBx1YsPGBfOY1CZgO5EYnUhhuX9fusKyQhJjgj5dESeccAK5ubns3r2b7du3s2DBAgYOHMiqVavIzs6uHTbam+Tk5NrhrRtTUyYlJYWKigrGjx9Pz549SUxM5JhjjmHmzJn1XsflcjFt2jRuv/32lr9BjzvuuINbb73Vsv2Fq507d4a6ChFDs7RGIDnqxIaNC+YxqWdU2iBvZy7y8/NJT0/3+ZyK6gpS41LJL2t6MLPU+FSqTXWLzpC01JFHHslVV13FlVdeycCBA1m9ejVr167lt7/9rdfyWVlZfPDBB2zbts3n5Z/S0lK2bt1Kjx49SExM5ODBg3Tu3Jlly5bRs2dPNm7cyLBhw0hISKjt6/L222+TmJjIKaecYtl7GzRoEEVFRaxevZrf/OY3lu033Hz22WdBnQo+kmmW1ggoR8/EhoVzmh7YLDk7u91NbBjMY1LPqLQTLuNi5NEj/So7sufIJm+dDhYR4bTTTgNg1y5v80C6jRo1Cmh8tMRnn32WysrK2rIJCQncc889ZGZmYrPZOPnkkxk+fHjthF7gniG04SWa0tJSLr30Urp27UpiYiJ9+/bl448/rldm7ty5HHvssSQlJXHNNdcwcuRInnjiidr3dPbZZ/OGn9e/lVLBZ4uPJy0nB4lvfHwpcThIyxlbbxA5ZS1tqESIhISERrfH2+MZ23tsk4O6xdvjuarPVUEfS2X58uW1Mw7XVVZWxrJlywDo3bu3z+ePGzeOzMxMHnnkEd55551Dtn/++edMmzaN9PR0pk6d6nUfTqeTVatW1Tt7sn79+kNed//+/VxyySVs3bqVwsJCBg4cyI033li7/YknnuChhx5i0aJFFBUVERsby9tvv81JJ51UW6Z3796sX7/e5/uJBKeeemqoqxAxNEtrBJqjLSGB7nNm+2ysiMNBt8cepWzjxnY37H4wj0m99BMh7PamP0pHtIMnBz/p8xbleHs8Tw5+Eofd0RpVbNSUKVMoKCjgggsu4IQTTsDhcPDDDz/wwgsvkJeXx1VXXcUJJ/juRJyQkMAbb7zBueeey/Dhwxk9ejSDBg3Cbrezdu1annvuORITE1m8eLHPTreTJ08mJSWFq666qnZdUVERycnJ9codfvjh/O53v6v9/0UXXVTbOCouLua2225j+fLltfW98soreeqppzjxxBNrn5OcnExRUVHgQbUhjV2KVIHRLK0RaI5NTmw49ioOfvwxP/75/4jpcSTd58wh+vDDW6n24SWYx6SeUYkQ+/1ozcfZ4+iT1od3Rr3DtVnXkuHIwC52MhwZXJt1Le+Mfoc+aX1CMjLtww8/zKhRo/joo4+46667mDBhAo899hhdunRh3rx5tXcANeb4449n48aNTJ8+nby8PG699VZuvPFGVq1axaRJk9i8eTMDBgzw+txbbrmFVatW8fbbb1NWZzyEjh07HtJJd+nSpZxzzjl06dKFlJQUhg0bVnvW5T//+Q+pqan1/trYu3cvPXr0qL3jCNwNmo4dOwaUUVvz5ptvhroKEUOztEZzcmw4seFxGzf8MrFhp044+vYl9qgeVG77hu2XXkb51rxWqHn4CeYxqWdU2pk4exxx9jj+cNIfuO7k62rn+jHGhKSBUmPo0KEMHTrUr7KDBg3y2YcmJSWFO++8kzvvvNPv177pppt47733eP/99+nUqVO92ZNPPvlktmzZUvv/1atXM27cOF588UUGDBhAbGwsl112WW1DJT8/n4yMjHr7f+WVV+pd9gHYsmWL11F4lVLhqd5EhrGxtf+OPvxwjly4kJ3X30Dpp5/y/RVX0O2f/yThNL1cZxU9oxIhYmJiAiofb48nNioWm9iIjYoNaSMllCZPnsyKFSt4//33a09l1s3yggsuYMWKFbX/X7duHenp6Zx44ok4nU7uv/9+XnnlFfr27Qu4+55s2LCB9evXU1paysMPP8yrr75a77KPMYb333+fESNGBOldhkb37t1DXYWIoVlao7VyjEpJ4Yh5c0kaNgxXSQk/jBtH8VtvNf3ENiyYx6Q2VCJEw34Uqmnff/89jz/+ONu2beOoo44iMTGRxMRELr300toy559/PiUlJaxbtw6Ayy+/nPT0dI444gj69etHWloaxpjahsqAAQOYPHkygwYNolevXlRWVtK1a9d6Z1RWrlxJSkoKAwcODO4bDjJ/z5CppmmW1mjNHG2xsXR9+CE6jhmDqapi1823ULhgQe12V1kZrooKjMuFq6KizQ+5H9Rj0hijjyA/AOOOvnFbtmxpskyNPXv2+F1WNa5hlq+88or53e9+16x9HTx40IiI+frrr2vXnXXWWWbZsmV+7yOQ4yCcPP3006GuQsTQLK0RjBxdLpfZO3eu2XLscWZLnyxz8PPPTdXevebnGTNM3sCBZkvvPiZv4EDz84wZpmrvXlNdVtbqdWoNVmZZ53ei19+Z2kdFqSZcfPHFXHzxxc167pYtW0hISODoo4+uXff+++9bVTWlVJgREdKuvRZ7ejrGWY2rpIRtg4fUm9zQuSefwjlzKVr4PN3nzCYuKwtbXPu8/O4PvfQTIUQk1FWIGFZmuXnzZrKystrl5xNovynlm2ZpjWDmmHLBBSQM/C07J9/ocwZmU1bGjvETcB08GLR6WSWYWYoJkxFI2xMRcV//aSL7L7/8kuOPPz4odVLhS48DpdoeV1kZ+bNm+TUEf+r48aRPvK7djm5b84ecMcbrX3R6RiVCRPrgYcGkWVpj8eLFoa5CxNAsrRHUHG02il9/3a+ixa+/Dra29es4mFm2rWSUT96Gn1fNo1laY8+ePaGuQsTQLK0RzBwlOhpngX8z1jsLC5Ho6FaukbWCmaU2VJRSSimLmaoq7GmpfpW1p6ZiqqpauUZtlzZUIkSkD8ceTJqlNUaPHh3qKkQMzdIaQc3R5SI5O9uvosnZ2eBytXKFrBXMLLWhEiHKy8tDXYWIoVlaY9u2baGuQsTQLK0RzBxt8fGk5eT4nHm5hjgcpI29qs11pA1qlkF7JdWqytr4KIfhRLO0xoYNG0JdhYihWVoj2DnaEhLoPme2z8aKOBx0e+xRDn70ERXffBPUurVUMLPUhopSSinVCmxxccRlZZG5Yjmp48djz8gAux17Rgap48eTuXwZxlnNj/83je/H5lChZ8680pFpI0RiYmKoqxAxNEtrDBgwINRViBiapTVCkaMtLg5bXBzpE68j/Ybrkehod8dZlwtbfDwJp51Kwqn9Objmf3w/Nocjc+cTe8wxQa9noIKZpZ5RiRC2NnYPfjjTLK2RlJQU6ipEDM3SGqHM0RYfjy02FrHZsMXG1vZJscXH023WLBIGDKC6oIDvx+ZQnpcXsnr6K5hZ6k/kCFFcXBzqKkQMzdIa7777bqirEDE0S2uEa462uDi6zfonCb/9LdWFhewYm0P51vBurAQzS22oKKWUUiFmi4uj2z+fIGHgQKqLitgxdizlX30V6mqFBW2oRIjY2NhQVyFiaJbW6NmzZ6irEDE0S2uEe4622Fi6PfE4CWeeQfW+fezIubpeY8VVVoarogLjcuGqqMAVwjsUg5mlNlQihHYAtU5iYiIVFRWMHz+enj17kpiYyDHHHMPMmTNDXbU25Ywzzgh1FSKGZmmNtpCjLTaWbo8/TuKZZ7obK9dcS9WePTgLCsifNYtvhgzhqxNO5JshQ8ifNQtnQQGuEIz9FMwstaESIQoKCkJdhYhRUFCA0+mkc+fOLFu2jOLiYl599VX+/ve/8/LLL4e6em1Gbm5uqKsQMTRLa7SVHG0xMXR9/DESzzqLjFtupmJrHtsGD6Fwzlyce/KhuhrnnnwK58xl2+AhlG/aFPTGSjCz1IaKUl4kJCRwzz33kJmZic1m4+STT2b48OGsXr061FVTSrUDtpgYuj32KAkDBrBz8mSMj8s8pqyMHeMn4Dp4MMg1DB5tqESISLmltrS0lJkzZzJw4EBSU1OJjo7msMMO4/zzzyc3N/eQmY2Li4u555576Nu3L0lJSTgcDnr37s3UqVPZvXt3s+rgLUun08mqVas48cQTm7XP9sjhcIS6ChFDs7RGW8vROJ0UvvCCz0ZKbbmyMgpyFwS1z0owsxRjTNBeTLmJiAFoKvsvv/yS448/vlXq4CorA5vtkMGHQmnbtm0MHz6cvLw8Bg8ezNChQ+nUqRN79uxhxYoVrFixgqlTp/LAAw8AkJeXx7Bhw/j+++8ZNWoUZ511FtHR0Xz00UcsXLiQ5ORklixZwumnn177GhUVFVQ1MktpfHw8UVFRh6yfOHEin3zyCatXryYmJsb6N9+I1jwOlFLhy1VRwTdDhrgv9zTBnpHB0cuXYWuDNwOICADGGPG2PTL+DFcUFhb6Vc5VXh52nbLAPb/OiBEj+Pbbb3nttddYvnw5U6dO5eqrr+bPf/4zy5cvZ+3atfTo0QNwn3kZOXIku3btYsmSJSxatIjrr7+eCRMm8Mwzz7BmzRqcTifZ2dn1zqxce+21JCUl+Xx8+OGHh2R5yy23sGrVKt5+++2gN1LaskWLFoW6ChFDs7RGW8tRoqNxFvj3s91ZWIhER7dyjX4RzCy1oRIhqqurmyzjKi+nbNOmsOuUBTB37ly2bt3KLbfcwqhRo7yW6d+/PxMnTgRg3rx55OXlMWXKFIYPH35I2X79+nHfffeRn5/Pgw8+WLt+4cKFGGN8PgYNGlQvy5tuuolly5bx3nvv0alTJ4vfdWTzt/GsmqZZWqOt5WiqqrCnpfpV1p6a6j47HiTBzFIbKu2I6+BBfhg/ISw7ZdW0zidMmBBQ+fHjx/ssk5OTQ3R0NK+99lqz6jR58mRWrFjB+++/T3p6erP2oZRSzeZykZyd7VfR5OxscLlauUKhoX1UQqA1+qg4nU7sdt9zTLrKysifNYvCOXOb3Ffq+PGkT7wuqH1W0tLSqKqq8nv4en/Ln3DCCWzatIkDBw74PdaM0+lk165d9OjRg9jY2Hq5Dhw4kLffftuv/VilrfZR2b9/PykpKaGuRkTQLK3RFnN0FhSwbfCQRjvUisNB5orl2FP9O/tiBSuzbKqPis6e3AZ9eVzgv7R6ffQ/il9/3a+yxa+/Ttq117D1lL4BvcbxX30ZcL1qX7O4mMMOOyyg8p07d26yXM0Xaf/+/X43VMrLyznyyCObbEiqxm3atInf/OY3oa5GRNAsrdEWc7QlJNB9zmx2+DgbLg4H3f75RNBvhghmlnrpp52wJSUF1CkrKsgj3SYnJ3PgwIGAyvtz9qWmTCAt/7IQDksdSTZv3hzqKkQMzdIabTFHW1wccVlZZK5YTur48dgzMsBux56RQer4cfRc8gbOH39kz8xHg/rHVTCz1DMqbZC3Mxf5+fmN9qNwVVRgT0v17za31FRMdXWLzpAEKisriw8++IBvv/3Wrzkkaspv27aNzMxMr2VKS0vZunUrPXr00CkGlFJtli0uDltcHOkTryP9huvrDStRse0bfr7rbkxVFdHpnUgbNy7U1bWcnlGJEElJSY0XCPNOWaNHjwbcd//4o+bOoMbKP/vss1RWVta7i2jixIkcccQRJCcn07VrV2666SYqKyvrPa/JLJVfzjzzzFBXIWJoltZo6zna4uOxxcYiNhu22Fhs8fHEn5BFlwf+ASLsmfEQ+xYvDkpdgpmlNlTaCVt8PGk5OUgT1zHF4SDt6pygX+8cN24cxx57LDNmzOB1H31pPvvsM2bNmlVbPjMzk0ceeYR33nnnkLKff/4506ZNIz09nalTp9auv+GGG/jqq68oLi5m/fr1bNiwgX/84x+t86baucY6d6vAaJbWiNQck887j8OmTQPgp9vvoOTDD1v9NYOZpTZUIoQ//TtqOmX5aqyIw0H32U9jC8Ew0w6Hg6VLl3LUUUdx4YUXMmzYMGbMmMH8+fN54IEHOO+88+jfvz87duwA3HPxvPHGG3Tu3Jnhw4fz+9//nlmzZjF79mzGjRvH6aefjs1mY/HixfU63fbu3ZuEhIRf3rMI27Ztq1eXQPrKKN/ee++9UFchYmiW1ojkHFOvupK08ePA6WTnjTdR9sUXrfp6wcwyIhsqItJVRKaJyH9F5CcROSgim0XkQRFJ81I+R0SMj8cTPl7jKhFZJyJlIrJbROaKSFgPttF4p6zxZK5YTlxWFra4uJDULzMzk3Xr1vHwww9z8OBB7r33XiZMmMBDDz2EzWZjwYIF3HvvvbXljz/+eDZu3Mj06dPJy8vj1ltv5cYbb2TVqlVMmjSJzZs3M2DAgENe5/777ycpKYmMjAw2btzIpEmTgvk2lVKqVaTffDMp2dmY0lJ++MMfqdy+PdRVskREjqMiIn8EHgXeBFYBB4BTgRzgJ+BUY8zPdcrnAPOB+4CGPUi3GmM+abD/KcDDwH+BF4BuwM3A9559NzpiWmuMo3LgwIGA+laE41w/wfbll1/y3HPPMXHiRLp161a7PtAsW1tbHUdl5cqVDBo0KNTViAiapTXaQ46mqoofrpvIwVWriO7WjR4vvoC9FQastDLLpsZRidSGSh+goG5jxLN+HDAHeMgY86c663NwN1TOMsasbGLfnXA3SDYDpxtjqj3rRwJvALcZY+5rYh+WN1Sqq6u9TqanGvfKK68we/ZsVqxYUbsu3LJsqw2VgwcP1rvMpppPs7RGe8nRdfAg34/NoXzTJmJ7H8+Rzz5r+ZATVmbZLiclNMZsbthI8XjZs8zy9VwRSRKRxmaeuxBwAI/XNFI8r7kE+BYYE3iNW66tzWERLqqrq/n666/rrdMsrfH888+HugoRQ7O0RnvJ0ZaQwBFPP0X0kd2p2PIlOydNwlRV4Sorw1VRgXG5cFVUuM+sN1Mws4zIhkojas7v7/ax/Q2gGCgXkQ0i4q3R0d+z/J+XbR8Bx4mIDtoRhkpKSpg/fz779u3DGMMXX3zBPffcw7Bhw0JdNaWUspQ9LY3uc+cSlZFByogROPfuJX/WLL4ZMoSvTjiRb4YMIX/WLJwFBSGZiDYQkXmvlm93e5YLGqwvxd3X5H1gD3AUcD3wnIgcbYy5u07ZLp7lLi/73wWIp0xew40iMgGonXVv9uzZAJx66qmkp6fz5ptvAtC9e3eGDh3KgQMHyM/PR0To1KkTRUVFOJ1OADp27Eh5eXm9UVQrKipqR2KNjY0lMTGRgoICAGw2G2lpaRQWFtbODtxwHzX9MmrueomLi8PhcNSeYYiKiiI1NbXePlJTUyktLaXcc6A33Ed8fDxxcXEUFRXV20dBQQEuz1gtaWlplJSUUFFRAbhHnXW5XJSUlHjdh91up2PHjuzdu7f28lmnTp0oLi6uHRMlJSUFp9PJQc8Eiw6HA6fTSW5uLjfffDNVVVVkZGRw3nnnceutt9YOmLdv3z6cTif5+fl06NCByspKSktLAfedRna7nf379wMQExNDcnIye/furfl8m/ycEhMTsdlsAX1OLpeL1atX144EeeaZZ2K322t73ffq1Yv+/fvX/oWTnJzMpZdeyksvvVT7OldccQWffPIJeXnuw/Kcc87B6XTy3//+F4A+ffqQlZXFyy+/XPu5XnTRRSxcuLD2/efk5NQOygcwbNgwDhw4wJo1awA46aSTyMzMrJ0Esib73Nzc2s9l3LhxLFu2rPbureHDh5Ofn8/atWsB+NWvfkW3bt1qb1Hv0qULI0aMYO7cubhcLmw2G+PGjWPp0qX8+OOPAGRnZ7Nz504+++wzwPf3qWbMnZiYGHJycli8eDF79uwB3OP4bNu2jQ0bNgAwYMAAkpKSePfddwHo2bMnZ5xxBrm5ubXH05gxY1i0aFHt9+OSSy5h06ZNrfI5FRYWMnv27Fb5nDIyMrjwwgvbxedUWFjI/v37W+1zas3vU3M/p2OfXwjbt/PN+cPrDcHv3JNP4Zy5FC18nq5PPcVPiQmsXL3a78+p5pi04nNqSlj3URGRDsBNATzlMWOM1/P2InILMAOYbYz5gx+vHQt8ChwHHGOM2e5Z/x5wNhBljHE1eM5fgTuAU4wx6xvZt+V9VFTk0uNAKdVcfk1qGB/vntQw7ZCbYoOirfdR6QBMD+DhdepITyfaB3HfBXSDPy9sjKnA3bCxA0PrbCr1LGO9PC2uQZmg0X4V1tEsrfHSSy+FugoRQ7O0RnvL0VVWRkFubqONFABTVkZB7oKA+qwEM8uwbqgYY7YbYySAx7aG+xCRa4DZwDJgtDGmKoAqbPcsO9VZ96Nn2dVL+a6AqVMmaGouE6iW0yyt4c+kkco/mqU12l2ONhvFPkb6bqj49dfB5n+TIJhZhnVDpaVE5GrctyOvAC70nCUJxDGeZd3OtzVjqpzupfxpuMddKQnwdZRSSilLSXQ0zgL/zhA7CwuR6OhWrlHzRGxDxTM2ylzgP0C2McZnt2Yfo9WmAH8GKoF362x6HSgDbhCRqDrlRwJHAyG5/y011etVL9UMmqU1rrjiilBXIWJoltZobzmaqirsaf79PLOnproH//RTMLOMyIaKiFwAzMN9q/HLwGgRGVPncWGDp3whIi+KyF9EZJyI/A33CLWZwDRjzM6agsaYfNwdZk8FVojIBBG5G3gR+AqY2drvz5uanuSq5TRLa3zyySdNF1J+0Syt0e5ydLlIzs72q2hydja4XE0X9AhmlhHZUAH64n5vHXD3T3muwWNmg/IvAr2AW4AngT8C64FzjTEPN9y5MeYh4GrcnXcfA64DXgHODNVln/Iwvw++LdEsrVFz66ZqOc3SGu0tR1t8PGk5OT4noq0hDgdpV+cENI1KMLOMyHFUjDF3AXcFUP6WZrxGLpAb6POUUkqpYLElJNB9zmx2jJ/g9e4fcTjo9tijmIpAu3AGT6SeUWl3wmkSvbZOs7TGOeecE+oqRAzN0hrtMUdbXBxxWVlkrlhO6vjx2DMywG7HnpFB6vjxHP3WWzh372b7ZZdT5RmwzR/BzDIiz6gopUKvZnRe1XKapTXaa462uDhscXGkT7yO9BuuR6Kj3R1nXS4kOpr9/16M8+ef2XXjTRy5IBeJaWy6O7dgZqlnVCJEzZD1quU0S2vUDCeuWk6ztEZ7z9EWH48tNhax2bDFxmKLj0fsdrrOfAR7586UrVvH7vvv92tfwcxSGypKKaVUO2bv1Ilujz2KREdT9MKL7PPMLxQutKESIeID6K2tGqdZWqNPnz6hrkLE0CytoTn6Fn/iiXS+azoAP991N2UbNzZaPphZakMlQsTFxTVdqI6qymqcVS6MMTirXFRVhsew8cXFxdxzzz307duXpKQkHA4HvXv3ZurUqezevfuQ8itXrkREmDFjhs99iggjRozwuw6BZqm8y8rKCnUVIoZmaQ3NsXEdRo+mw2WXYqqq2DlpMk7PzPDeBDNLbahEiKKiIr/KOSurKS2u5NOl3/Hc7Wt48vqVPHf7Gj5d+h2lBypxhrDBkpeXx0knncT06dPp2bMn999/PzNnzuTXv/41jz76KH369OF///ufpa9ZUVFBSUlJvccPP/xQ+2+d96f5aqa4Vy2nWVpDc2xa52nTiD/lFJy7d7Prpik+R6sNZpbaUGlHnJXV7Pn+AM/dvobPl+2gdH8lxmUo3V/J58t28Nxta9jz/YGQNFZKS0sZOXIku3btYsmSJSxatIjrr7+eCRMm8Mwzz7BmzRqcTifZ2dlez6w017XXXktSUlK9R8+ePWv//eGHH1r2WkopFe4kJoauj87Enp5O6aefsvuBB0NdJW2oRIqoqKgmy1RWVLPk8fU4K70Pk+ysdLHk8fVUVgS/oTJv3jzy8vKYMmUKw4cPP2R7v379uO+++8jPz+fBB6374ixcuBBjTL1HQUFB7b8HDRpk2Wu1NzpnknU0S2tojv6Jzsig62OPQnQ0Rc89x34vMzAHM0ttqESIpg6aqspqNizf4bORUsNZ6WLDih+C3mdl0aJFAIwfP95nmZycHKKjo3nNS4/00tJS9u7d6/URKP1hZo2LLroo1FWIGJqlNTRH/zlOOYXOt90GwE93Tqds8+Z624OZpQ741gb984/vB/ycax8ayFcf/+xX2a0f/8QpQ7oze3Jg98lf/9TZAderxqZNm0hKSiIzM9NnGYfDwbHHHsumTZsoKSkhMTGxdtv06dOZPn16s1+/roKCAtLSDplQWwVo4cKFjBkzJtTViAiapTU0x8B0uOT3lG/exL5XF7Fz0iSOWrwYW3Q02Gz1Bo0LZI6g5tCGSjsRE2+n7IB/U3iXFVcRE9/0pSQrFRcX07lz5ybLpaSkALB///56DZUJEyZw8cUXe33OkCFDAqqLK4AZRJVvOgu1dTRLa2iOgRERDrvjDsq/+YaOo0djSkrIf/FFil9/HWdBIfa0VJKzs0nLycGWkICtle6Y1IZKG+TtzEV+fj7p6ek+n+OschGfFE3p/som9x+fHI3LZVp0hiRQycnJFBcXN1mupkxNg6XGMcccw+DBg1ulbkop1V7ZYmI4YtYsyr/YxDfDR9Sb2NC5J5/COXMpWvg83efMJi4rq1UaK9pHJUI0danCGMNxpzV9xgLg2NMOxxgrauW/rKwsiouL2bZtm88ypaWlbN26lR49etQ7m2I1vexjjZycnFBXIWJoltbQHJupupqdkyd7nX0ZwJSVsWP8BFwHD7bKy2tDJUKUlJQ0uj06JoqThnTHHtP4Rx4dG8XJg48gOia4l35GjRoFwNy5c32WefbZZ6msrKwt21qaylL554MPPgh1FSKGZmkNzTFwrrIyCnJzfTZSapiyMgpyF+BqolxzaEMlQlRUVDRZJiY2ipGTTvbZWImOjWLEDScRHRvcRgrAuHHjyMzM5JFHHuGdd945ZPvnn3/OtGnTSE9PZ+rUqa1aF3+yVE379ttvQ12FiKFZWkNzbAabjWIvtyd7U/z662CzvlmhfVTaEXtMFBlHJnHlvQPYsOIHtn78E2XFVcQnR3PsaYe7z6TERmEP8tkUgISEBN544w3OPfdchg8fzujRoxk0aBB2u521a9fy3HPPkZiYyOLFi/3qdKuUUqrlJDoaZ0GhX2WdhYVIdLTlddCGSoRITk72q5w9xt0Q6Te8B/1H9CAqykZ1tQtjCPrlnoaOP/54Nm7cyKOPPsq//vUv3nrrLaqrqznyyCOZNGkSf/rTn4LSSPE3S9W4YcOGhboKEUOztIbmGDhTVYU9LRXnnvwmy9pTUzFVVUhsrKV10IZKhAj0ltq6jRK7LbQNlLpSUlK48847ufPOO/0qP2jQIEwTPX+b2t6Q3p5sjQMHDoS6ChFDs7SG5tgMLhfJ2dkUzvHdf7BGcnY2tMLPT+2jEiG0A6h1NEtrrFmzJtRViBiapTU0x8DZ4uNJy8lBmhjUTRwO0q7OaZXB37ShopRSSimfbAkJdJ8z22djRRwOus9+GpvD0Tqv3yp7VUEX38pDGLcnmqU1TjrppFBXIWJoltbQHJvHFhdHXFYWmSuWkzp+PPaMDLDbsWdkkDp+PJkrlrfaYG+gfVQiRlwrHSDtkWZpjcbmbVKB0SytoTk2ny0uDltcHOkTryP9huuDOtePnlGJEEVFRaGuQsTQLK3hbZZr1TyapTU0x5azxcdji41lzty52GJjW72RAtpQUUoppVQY04ZKmPP31lq7Xa/iWSWcsgz01upwkpGREeoqRAzN0hqao3WCmaW05R+EbZWIGGj6l9DXX39Njx49iG6Fkf5U21BZWcn27dvp1atXqKuilFKtQkQAMMaIt+16RiWMxcXF+T2mx969e1u5Nu1HOGVZXFxMUlJSqKvRLLm5uaGuQsTQLK2hOVonmFlqQyWMpaenk5+fT2lpqeWjryrfQp2lMYbKykr27t1LUVERqampIa1Pc1VWVoa6ChFDs7SG5midYGYZPhfj1SHi4uI47LDD+Pnnn5uc0ffAgQNhdSagLQuHLKOiokhKSqJ79+7EWjxvhlJKtSXaRyUE/O2jEgiXy4WtFabXbo80S2tojtbRLK2hOVrHyiy1j0o7sWzZslBXIWJoltbQHK2jWVpDc7ROMLPUhkqE2LFjR6irEDE0S2tojtbRLK2hOVonmFlqQ0UppZRSYUv7qIRAa/RR2bVrF127drVsf+2ZZmkNzdE6mqU1NEfrWJml9lFpJ/Lz80NdhYihWVpDc7SOZmkNzdE6wcxSGyoRYu3ataGuQsTQLK2hOVpHs7SG5midYGapl35CoObSj1JKKaXc9NKPUkoppdocPaMSIUTkU2NMv1DXIxJoltbQHK2jWVpDc7ROMLPUMypKKaWUClvaUFFKKaVU2NKGSuSYHeoKRBDN0hqao3U0S2tojtYJWpbaR0UppZRSYUvPqCillFIqbGlDRSmllFJhSxsqbZiI2ERkioh8JSLlIvKDiDwkIgmhrlu4EhHj41HipeyxIrJYRIpE5KCIfCgiZ4ei3qEiItNE5FUR+daT0/YmyvudWXs7fgPJUkTuauRY/ZOX8u0iSxHpJSJ/FZGPRCRfRA6IyHoRuc3be9Xj0bdAsgz18Whv7ptUYeERYDLwb+Ah4HjP/08RkcHGGFcoKxfGPuTQjmBVdf8jIkcDawAn8ACwHxgPvCsi5xljVgSjomHgPqAQ+Bzo0FjBZmTW3o5fv7OsYwqwt8G6z7yUay9ZXgNcD7wBPI/7e3sW8Dfg9yLya2NMGejx6Ae/s6wjNMejMUYfbfAB9AFcwGsN1k8CDHB5qOsYjg9PNrl+lHsFqAZOrrMuEfge2IqnI3qkP4Cedf69CdhuRWbt8fgNMMu7PDn08GO/7SZLoB+Q4mX93zzv9YY66/R4tC7LkB6Peumn7boMEGBmg/VzgFJgTLAr1JaISIyIJPrYlgBcAKw0xqyvWW+MKQHmAr2A/sGoZ6gZY771p1wzMmt3x6+/WTYkIski0tjZ73aTpTHmU2PMfi+bXvYss0CPR3/4m2VDoTgetaHSdvXH3WqtN4WlMaYcWE87+UXaTBfh/sIcEJE9IvK4iKTU2X4iEAv8z8tzP/IsNd/6As1Mj1//bMR9yaJcRNaIyHleymiW0M2z3O1Z6vHYfA2zrCskx6M2VNquLsBeY0yFl227gE4iEhPkOrUFa3GfxrwIGAu8D9wAfFjnDEsXz3KXl+fXrOvainVsiwLNTI/fxu3D3Y9qEpANTAOOBN4UkZwGZdt1liISBdyJuy/KC57Vejw2g48sIcTHo3ambbscgLcDAaC8TpnK4FSnbTDGnNZg1bMishG4F7jRs3R4tnnLt2626heBZqbHbyOMMTMbrhORZ3D3bXlERBZ5LmOAZjkT+DXwF2PMVs86PR6bZyaHZhny41HPqLRdpbhPbXoTV6eMatqDuL80wz3/r8nNW76arXeBZqbHb4CMMQXAU7jvGBpQZ1O7zVJE7sF9RnS2MebvdTbp8RigRrL0KpjHozZU2q4fcZ9C83ZAdMV96i3SW/+WMMZU4cnTs+pHz9Lb5Z2add5OKbdngWamx2/zbPcsO9VZ1y6zFJG7gNuB+cAfG2zW4zEATWTZmO2eZasej9pQabs+wf35nVp3pYjEAScDn4agTm2SJ7Nu/NJ57Avcpy5P91L8156l5ltfoJnp8ds8x3iWdTs6trssRWQ6MB14FhhnPPe/1qHHo5/8yLIxwTkeQ30vtz6a9wBOoPF71ceEuo7h9gDSfKx/0JPZrXXWvYp7DIaT6qyrGYMhj3YyjkqDnJoa+8PvzNr78dtYlrj7DqZ4WX8EUIB7wK349pol7s6eBvcvVlsj5fR4tCDLcDgedfbkNkxEHsd9TfHfwFv8MvrfauBsE3kjKbaIiDyC+6+p/wA7cP/QOh/3aIwfA2eZX0a1zMR9h1AV7lEWi3GPankCMNwY827Q30AIiMiVuHv3g/sHTQzukSYBvjfGPFenbECZtbfj198sRaQD8B2wGPgSKAKOBcbhPmYvM8a82mDf7SJLEbkeeAL39/cO3L8Q69ptjFnuKavHYyP8zTIsjsdQt+j00fwHEAXcgnuUxQrc11wfBhJDXbdwfOC+re5dT07lwEHc9/X/BYjzUv544HXct+aVAquAwaF+H0HObCXuv4K8PVa2JLP2dvz6myXujohzcV++KML9i/YnYBFwanvOEshtJMNDjkk9HlueZTgcj3pGRSmllFJhSzvTKqWUUipsaUNFKaWUUmFLGypKKaWUClvaUFFKKaVU2NKGilJKKaXCljZUlFJKKRW2tKGilFJKqbClDRWllFJKhS1tqCillFIqbGlDRSml2igRGSQips7jqybKO0RktohsFpG/iYi0Qp06NaiTDn+uWkQbKkqFqYY/7P145IS6zm2RiPTw5Jcb6rq0wH+Bu3FPMteYPwOFwOnAMcDl/uxcRI4TkcdFZJOI7BeRShH5UUTeFJFrRSSuTvFST13uxj1TsVItYg91BZRSPt3tZd1NQArwKO6J1upa37rVUWFspTHmLj/K9QOmGmOKReRZ4Dzg+caeICJ3AtNx/2H7EbAAKAEOAwbhnrDuOs++McaUAnd5njuIX2aMVqpZtKGiVJjy9ovHc9YkBZhpjNke5Cqptm89MEZE/g5cBqxorLCI/AV3g/kH4GJjzMdeyozAPVOuUq1CL/0oFYFE5DQRWSQiP3tO0/8gIk+LSJcG5Wove4jI0Z7nFIjIARFZJiJZnnLpnr4NP4lIuYh8IiJneXnduvs7TkQWi0ihiBwUkVUiMrQl9fXyGr1E5GUR2SMiLs9f8IhIjoi8JiLfikiZiBSLyGoRGdNgX3cB33n+O9bbpbQ6/UDu8lH37SKyPdA6Bvq+LfJ3IANYg/uyzLO+CopID9xnRqqA8701UgCMMUuBc62uqFI19IyKUhFGRK4G5gAVwBu4/xo+BhgHjBSRXxtjdjR4Wg/gY+BLINfz/98BK0XkdOAdoBh4GUgFLgXeFpFeXvYFcBTwP2AT8DRwOHCJ5zmXG2NebmF9AY721DkP9+WLeE8dAZ4EtgAfAD8BacD5wHMicqwx5g5PuZVAB+BGYAOwuM7+13t5zUD5rGML3nezGWNKPPv3x9VANPCSMWZTE/utaGndlPLJGKMPfeijjTyA7YABevjY3guoBLYBXRtsOxuoBv5dZ10Pz/4McFuD8nd41hcCTwG2Otuu9Gx7pMFz6u7vwQbb+uH+67wISG5Ofb28xn0+cjjay7oY4D1PHbp62V+uj30N8my/q5HPZHsgdWzO+25O3Vp4rL3n2fe4FuxjpfvXTOi/O/pouw+99KNUZLkO91/BNxpjdtXdYIx5H/df7iNFJKnB87YD9zdYt8CzjMXdAdNVZ9sLgBM42Uc99gN/bfD6n+I+q9AB99maltQXYDfeOxxjjPnGy7pK4J+4zySf46PeVvNVx5a872A53LPcGcI6KKWXfpSKMKd7lmeKSH8v2zOAKNx/0X9WZ/16Y0x1g7I/epZ5xpgDdTcYY6pFZDfQzUc9Pm/4HI+VwFjgFNwNoebWF2CD8XHJQUS6474V9xygO+5LLnV19VFvq/mqY0ved7DUjLGi46CokNKGilKRJc2znNpEucQG/9/fsIAxxinu8cAO2ebhxH1WwJvdPtb/7FmmeJbNrW/dfdUjIj2BtUBH4ENgGe73UI37ksxY3GeJgsFrHWnZ+w6WH4Hj8N0YVSootKGiVGSpaVSkGGOKGy3Zug7zsb6zZ7m/wbI59fX1l/7NuBsCVxtjcutuEJHLcDdUAlFzycvXz8sUfDfmfNUxXD6nxqzC3V/mHGBeiOui2jHto6JUZPnIsxwY0lpAXx/9KwZ5lus8y9aob6Zn+ZqXbWd6WVdzySvKx/6KPMsjGm4QkUzcfW4CFS6fU2Pm4+54PFpEejdWUESCdYZKtUPaUFEqsjyB+5fLIyLSq+FGEYkRkWD8ckwB7mzw2v2AK3CfTfi3Z3Vr1He7Zzmowb6G4f3W3CLcZz66+9jfV7hvKc4WkYw6+4sHHguwbjXC5XPyybgHFLwL991Sb3o+v0OIyLnA28GrmWpv9NKPUhHEGPOViFwDPANsFpF3cI/hEY37F/FAIB9334PW9AEwTkROA1bzyzgqNuAPNZc7Wqm+s3CPAfKqiLwG7AKycA9K9oqnHrWMMSUi8jEwUESe97x+NfCGMWajMaZKRB7Ffbv2OhH5N+6fnUNw9+P4kQCF0efUKGPMfSJixz2E/icisgb4lF+G0D8D99gvn4aulirSaUNFqQhjjFkoIhtwD2t+FjAUOIj7F+oi3IO2tbbvgD/ivuX5j7g7r34O/NUY825r1tcYs9Ezau7fcA/yZsc9mNso3PMjXeLlaVcCj+BuzFyG+46XncBGz/bpuCfbGw9MwN1J9iXcZxy2BFK/OvUMh8+pScaYv4rIq8BE3PW8GogDCnAPivcPYGHIKqginhijd54ppazhGXb9O2CBMSYntLWJfJ7h+P8D3G38m5QwqERkJXCmMUaaKquUL9pHRSml2r7pnrmFvgp1RUSkU818SXjvvKxUQPTSj1JKtV3bqT/y7d4Q1aOuUnyMGKxUc+ilH6WUZfTSj1LKatpQUUoppVTY0j4qSimllApb2lBRSimlVNjShopSSimlwpY2VJRSSikVtrShopRSSqmwpQ0VpZRSSoUtbagopZRSKmxpQ0UppZRSYev/ARxFAXjMUvT2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "batch.thermoPropertiesSubstance(substances, [\"entropy\"]).toCSV(\"results_S.csv\")\n", + "from functions import plot_substances_properties_vs_temperature\n", + "plt = plot_substances_properties_vs_temperature('results_S.csv', substances, lables, 0, 'S$_{abs}$ [J$\\cdot$K$^{-1}] $')\n", + "plt.savefig(fname='figure_s.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "20c670f6", + "metadata": {}, + "outputs": [], + "source": [ + "reactions = [\"Calcite = Ca+2 + CO3-2\", \"H2O@ = H+ + OH-\", \"NaCl@ = Na+ + Cl-\", \"Al+3 + H2O@ = AlOH+2 + H+\"]\n", + "lables = [\"Calcite $\\leftrightharpoons$ Ca$^{2+}$ + CO$_{3}^{2-}$\", \"H$_2$O$_{(l)}$ $\\leftrightharpoons$ H$^+$ + OH$^-$\", \"NaCl$_{(aq)}$ $\\leftrightharpoons$ Na$^+$ + Cl$^-$\", \"Al$^{3+}$ + H$_2$O$_{(l)}$ $\\leftrightharpoons$ AlOH$^{2+}$ + H$^+$\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c0913bce", + "metadata": {}, + "outputs": [], + "source": [ + "batch.thermoPropertiesReaction(reactions, [\"logKr\"]).toCSV(\"results_r.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4755b86c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAIrCAYAAACkgUBpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADA9klEQVR4nOydeXyTVdbHv0+apOleurGKUDZll80RZVE2kVXQ0RGXqgXFUcSFcRln1BccxfF1dGZkFCuCgoKCLwiI7IKAI4gCAgoiIAICpaUbTdMmue8faUpLl2w3S9P7/XzyKTy5z31Ofs9NcnLvuedoQggUCoVCoVAo/Iku2AYoFAqFQqEIf5TDoVAoFAqFwu8oh0OhUCgUCoXfUQ6HQqFQKBQKv6McDoVCoVAoFH5HH2wD6iuapqntPQqFQqFQXIQQQqvpuJrhUCgUCoVC4XeUw+EjQgipj/fff196nw3xoXRUWobaQ+motAy1h2wdXaG500hRHeeSitJPoVAoFArQNMdKilBLKvWDxYsXB9uEsEDpKA+lpRyUjvJQWsoh0DoqhyPEyM3NDbYJYYHSUR5KSzkoHeWhtJRDoHVUDodCoVAoFAq/o2I4vMRfMRz5+fkkJCRI7bMhonSUh9JSDkpHeSgt5SBbRxXDUc/Yu3dvsE0IC5SO8lBaykHpKA+lpRwCraNyOEKMffv2BduEsEDpKA+lpRyUjvJQWsoh0Doqh0OhUCgUCoXfUQ5HiDFgwIBgmxAWKB3lobSUg9JRHkpLOQRaR+VwhBh6vSpvIwOlozyUlnJQOspDaSmHQOuoHI4QY/369cE2ISxQOspDaSkHpaM8lJZyCLSOyuFQKBQKhULhd5TDEWK0b98+2CaEBUpHeSgt5aB0lIfSUg6B1lEl/vISfyX+On/+PDExMVL7bIgoHeWhtJSD0lEeSks5yNZRJf6qJ5itZiw2C1FRUVhsFsxWs1fn24Xdq/Nl9REqLFiwINgmhA1KSzkoHeWhtJRDoHVUob5BpsRawvmy87y3/z2W/7yc3JJckkxJjGozirs63kW0IRqT3uS382X1AQ6HRafpMOgMlNnLsAs7Ufooj/SQ0YdCoVAoQg/lcASREmsJ+3L2MXnd5CqzCdnmbObsncOHP37Ifwb/h07JnWr8wvf1fJl9hJrTk5mZWTFboxwW34iPjw+2CWGB0lEeSks5BFpHFcPhJTJiOHLNuVz/yfV1Ll1E6aP4fNznJEUlST9fRh+1OSyVz/XW6fG0DxkOC6hZFoVCofAGFcMRopitZubtn+cyTsJsNfPe/vc4U3yGH3J+4IecH9ifs5/T5097dH6+JZ+8kjyKSososZZgtVsxl3lmQ4m1pNpzxWXFtToKznMnr5tMcVlxrf372ofTYRn+yXDm7J1Dtjkbm7BVzNJc/8n17MvZV6P9F/eTY87hzd1vMnzJcHq834PhS4bz5u43yTXnujy/sr3hEgsDsHDhwmCbEBYoHeWhtJRDoHVUSypBQqfpWP7zcrfaLj+8nIxOGfx+xe8rjm25dYvH5/db1K/KcU/7uLfLvTyz6RkiIyIxRhgZlT6KL379wm2H5Y6Od2C1WzHpTUTpozDoDJTYSjxyeu7vdn+1mQp3HZbPx30e8ktLlW0OlVmWgoKCoFw33FA6ykNpKYdA66gcjiBh0BnILcl1q22uOZc4YxwdGnWomLKKNcR6dH6sMZZ4YzxWu9XxEFaP+4jSR7H66OqKY1N7TOXxTY+7db7T6Rm4eGDFMZ2mY/Mtmz1yeiZ2ncjyn5cTY4gh2hBNq/hWfPjjhz45LOC70yLDYXH2EyoBvAqFQiET5XAEiTJ7GUmmJLLN2S7bJkUlYRVWFo9eXHHMYrN4dL5N2Nj6h61VjnvaR6mtlL/3/zsWmwWLzUKcMc5jpyc1KpUSawlmmxmr3XOnJzIikqe3PF1xzNNZmswumbz6zavEGGIqHlekXcEnhz5Rsyw12KzTdGROVAG4MpgwYUKwTQgblJZyCLSOyuEIEnZhZ1SbUczZO8dl21Hpo6oFp/p6vjd96DQd17e+vuKYN07Pht9vqDhWZi/Dard61EeJtYThrYdjLjNz3nreY4fFpDfx7r53qxzfcusWVvy8wq0+nEtLr/z3FeKMccQaYunXoh8rDq9QsyyKOtmxYwcDBw4MthlhgdJSDoHWUQWNBokofRR3dbzL5S/GKH0Ud3a6s9oHvK/ny+jD6bC4Q01Oj0FnwI5nfeh1el7u/zL/GvQv5gybg1U4HBZ3SIpKwmKzMLXHVCZ2mchtl93G6DajiTV6vrS06MAisr7P4rVvX6NxdGOPHJYyexnPf/U8r+58lazvs1j04yKO5B9h7v65QQ/glRWA67xeOAXP+srBgweDbULYoLSUQ6B1VDMcQSTaEM1/Bv/H5XbQaH20X873tQ+nw+IqhsIdp8fbPjydpYnQIri3y71VjnuztPRUn6coKiuisLTQ46WlKH0Uiw8urnLc01mWzC6ZzN4zm3hjPAmRCXRO6czig4uDPssC4Rs8q1AofEPl4fASWbVUSqwlFJcVOz6cDy8n15xLUlQSo9JHcWenO4nWu8406sv5vvYRCnk43M4lMv7zGmdDzFYzb+5+0y2n5d7O91b7srbYLAxfMtwthyUtOo3lY5ez4vAKCkoLKCwtpKC0gGd+9ww93++JTdhc9qHX9Oy4fQdXvH9FxbEtt27hxmU3um3Dp2M/ZcOxDSREJpAYmUhCZAKNTI145/t3vNYB5IwHZz/hFjz7888/06ZNm6BcO9xQWspBto6u8nAoh8NLZBdvq/hg1AyUiTKEEB6tk1/8werp+b70EQ5Ojy9Oi68OC3jutHw69lPe3vM2BaUF5FvyeXnAyz45LOC507LixhXkW/JJjEyseD0yktGFWiI4WRw4cIAOHToE9JrhitJSDrJ1VA6Hn/BXtdjZs2czadIkqX0Givrs9DS0WZZlY5bxP//9HwosBeRZ8si35LPixhX0nO+d0xKlj+J/+v4P+3L2MXffXK9eg5NQyH5bGVmzJPX5vR1qKC3lIFtHVw6HiuFQSKPyh3BkRGRA+zDpTZj0Ju7rdh+Tu09Gr+mxCqvbDotJb6JTcic+H/e5V06Lr/E0gY5lcQbfVsbTWJbzZedJjUolz5KH2WrmqmZX8fKOl12eC+V5WTpnMGbpGBJNiTSKbESiKZFb2t/Cxl83Bn2LMqj6PgqFbNQMh5f4a4Zj69atXH311VL7bIj4oqOaZfFslkUIQbG1mCh9FD3e7xHQZZ2lY5YyZ+8cEiMTSTIl0T21O4t/WuzT8haE77JOuKA+J+UgW0e1pOIn/OVw5Ofnk5CQILXPhkgwdfRlaak+x7J4uqyz8saVnDWfJc+Sx7mSc+RZ8hiRPsInp8VTh2X52OUcKThCsimZRqZGFbNq4bqsEy6oz0k5yNZRLanUMxYtWqTWJiUQTB19WVq6eGnIE6fF12Uh8G1pyNNlHYAWcS1oEdei4rinyzoWm4UHuz9IniWP3JJcj3OqGCOM3Lri1opjsYZYnu/7PN+f/T4sl3XCxWFRn5NyCLSOyuFQKEIQWbEsns6y+OK0yMjL4k1elfu63VdxzFOHpdhazGVJl5FrziW3JJeisiKubHolL21/yeX54IhFuafzPUz9YirJpmSSTckMbz2cVUdX+ZwTJdRS3SsUvqIcjhAjKcm9rJmKumnoOsqcZfEkALe+Bc8adUY+HvUx4FgeLSgt8DiRW7Qhmq0nLtQpurfLvR4lcZvUdRJfnfyKlKgUUqJSSIhMQKfpQibVfeXrhcosSUN/f8si0DqqGA4v8VcMh0JR36nvwbOexqKsuHEFO07tIMecQ05JDvd0vsenOBS9pufFfi/6vMVYRk4UULMkCvdxFcOhaqmEGPPnzw+2CWGB0lEenmpp0ptIikrivm738dm4z9h5x04+G/cZ93e7nyRTkkexKPd2vpe06DT0mp606DTu7Xwvn4//vM5f5c5Zltp+fbuaZfG0RpCGRv8W/bmx3Y1kdsmsqATtDklRSZitZno36U3rhNbEGeOwCitXNbuKlYdXutXH8sPLKbWV8tgXj/HS9pfI+j6LQ+cO+VybB0K3to56f8sh0DqqJZUQo7i49sJaCvdROsrDWy3ra/BsoJd1DDoDc4ZdaFtqK0Wv03u8rLPmlzUVx25uf7NHyzr3dbuPM8VnSDIloddd+FoI1do6t912m8ppIoFAf042aIdD0zQd8DBwH9AKyAY+Av4qhDgfRNMUCgXBC54NZlFDY4TR4+DXMnsZM/vN5Kz5LGfNZz3erWPQGRj08SB0mo4kUxKpUak83ONhvv7ta5+CX2XFkahlnfCgQcdwaJr2OjAF+D9gFXA58BDwJTBYCGGv41y/xHCUlpZiNBql9tkQUTrKo6FqGcycKIFOdf9/o/+P0UtHk1uSi8DxmeZpTpNlY5ex5ugaUqNSSYtOo2lMU6x2a0jU1nESSoGvoYDs97ZK/FULmqZ1Ar4H/k8IMb7S8YeAfwIThBAf1HG+XxyOdevWMXjwYKl9NkSUjvJo6FoGK/NsMAoKltnLyDXnkm3OpmNyR5+CX2dcPYNDeYeCXlsH1AxJbch+b6vEX7XzB0ADXrvo+NvAS8DtQK0Oh784fPhwoC8Zligd5dHQtQxWfZ9gLOsYdAYaxzSmcUxjj5d1SqwljG4zmuzibLLN2Qy8ZCCvf/u6y3PhQj6TaZun0Ti6MU1imtA4ujE90nrw0cGPQmJZp/K1wmWWJNDv7YbscPQG7MD2ygeFECWapu0qf16hUCh8wvll5GllzmAXFPSmIOAL17xQ5XxPA1+/+PWLKse33LqF5T8vd6uP5YeXM7n75GrHQy3ra0OmITsczYCzQghLDc+dAPpqmmYUQpRWfkLTtElAxafG7NmzAejTpw+pqamsXOnYytayZUuGDh1KVlYWAEajkYyMDJYuXcqZM2cAGD9+PIcOHWL37t0A9O3bl27dulX0mZ6eTv/+/Zk7dy4A0dHR3H777SxevJjcXMcb+ZZbbmHv3r3s27cPgAEDBqDX61m/fj0A7du3p3fv3ixYsACA+Ph4br31VhYuXEhBQQEAEyZMYMeOHRw8eBCAQYMGYbVa2bRpEwCdOnWic+fOLFq0CHAki7npppuYP39+RZRzRkYGmzdvrvCYhw0bRmFhIdu2bQOgW7dutG3bliVLlgCQlpbG2LFjmTt3LqWlDokzMzNZs2YNx44dA2DEiBFkZ2ezfbvDJ+zZsyctWrRg2bJljhvYrBkjR44kKysLu92OTueoyLlixQpKS0uZPXs2Y8aM4fjx4+zcuVPqfYqLi2P16tUN4j4NGzbMb/fp5MmTAA3iPjnHpKf3KTU1lTuuu4P7ut6HMcJISWkJefl56Ep0vPfRexX3qab3U1JpEstHL+eDAx+w4siKCodlZOuR3HH5HeiFnvfffR8hRLX71LhxY+4a6t4syW3tb2PV8lVERUVV3KcJd07wbIaktIThZcMxpZiIaxrHV/u+ItbgWfBrhBbBde9eR5OYJnRo1oFBaYPYnr/d7RmS21rfxtLFS4Gq76erB1xNUWwRD33xUK2zJP8a+C/axbbj5K8na30/dejQgT5X98FusxNliMJcakYXoWPXN7v4/vvvgcC+n5xjUtb7yRUNOYbjZ8AghGhZw3PvAXcAjYQQebWc75cYjr1799K5c2epfTZElI7yUFrKIZg6+hKH4m3Apq+Br+B58OuSUUvot6hfxTFPA19X3riSyIjIilgEJ+EaRyJ7TKrEX7VTDNS2IGuq1CagOD1jhW8oHeWhtJRDMHWM0kcRGRGJTtMRGRHp9hebL0nYnHEkruIb3Kmt4w7OgoALbljA/w74X6b1muZxmnq9Ts+VH1zJmKVjuH/d/Tz/1fPsO7vP5yRqMhOoOa8lI4laoMdkQ15SOQl01DQtsoZlleY4lltKazhPoVAoGgy+5DQJdG2dRFMiiaZEuqZ2BTwv5ldUVoTZauZw/mEO5zuWHaf2mOpRErXJ3VQcSW00ZIdjBzAU6IMj7wYAmqaZgO7A5mAY1a1bt2BcNuxQOspDaSmH+q6jN7t1fA18Bd+cFk8DX00RJrb+YSu/Ff3GqfOnOHn+pMezJBG6CAZ9PIjmsc1pFtuM2y67jXXH1oVE9eCLCfSYbMgxHF2A3dSeh+MOIUStieb9FcORk5NDcnKy1D4bIkpHeSgt5dDQdfQ2jgR8y2kS6GJ+vsaRfHbjZ0Tqqzt0sorxgf+29qo8HLUghPhe07Q3gAc1TfsE+AxHptEpwCaCkIMDYMmSJR5tnVPUjNJRHkpLOTR0HWXW1vEkp0mgtwcbI4x8Pv5zThad5ETRCa9mSEYvHU2L2Ba0iGtB89jmDLxkIJ/89ImUWZJgLsk05KBRgKnA40An4A3gVuBfwMi60porFAqFIvA4g1/fyXrH7eBXX6sPexr8Gm2Ipnlsc3o36c3YtmM9rh5cVFrEkfwjfHniSz788UNe+eYVEiMTPcpHcvEuG5AfuOoNDXaGA0AIYQP+t/wREqSlpQXbhLBA6SgPpaUclI7y8FTLYBbz8yaB2uJRizlRdILjhcc5XnTc42J8ek3Paztfo2V8Sy6Ju4T0hHQAKYGrvtBgYzh8xV8xHAqFQqEIPepzHImsujauUHk46hnOrG0K31A6ykNpKQelozyCoaVJbyIpKon7ut3HZ+M+Y+cdO/ls3Gfc3+1+kkxJbu20qW1Zxt04EncYlT6K3JJcHuj+AKPSR9EttRsDLxnIysMr3Tq/tiUZGTToJZVQxJmWWOEbSkd5KC3loHSURzC1DMb2YE/zkSSZkpiceCEfiKd1bQw6g1ttPUU5HAqFQqFQ+JlgxpE4A1fdTYBWZi/zeCeRO6gYDi/xVwyHsxiPwjeUjvJQWspB6SiPhqqlt3EkMurauIOrGA7lcHiJvxyOzz//nOuvv15qnw0RpaM8lJZyUDrKo6Fr6U0SNV8DV91BBY3WM5wlvxW+oXSUh9JSDkpHeTR0Lb0pxudr4KoMVAyHQqFQKBRhjjNwde34tZzK/YWWiZcSaYrFUlLEL3lHaZrcyqNKwt6gllS8xF9LKidOnKB58+ZS+2yIKB3lobSUg9JRHkpL77CXlGA/f56cuXMpWLYMa04u+uQk4seMITkjA11MDDqT9w6HWlKpZ2Rnu44iVrhG6SgPpaUclI7yUFp6jr2kBPPevRwaPITct7OwnskGmw3rmWxy387i0OAhlOzdi73Ef6nNlcMRYmzfvj3YJoQFSkd5KC3loHSUR0PX0m42Y7dYEHY7dosFu7nuom4A9vPn+XXiJEQtbYXZzLGJk7CfPy/b3AqUw6FQKBQKRT3AXlKCNSeH7Fmz+HnIEH7s0pWfhwwhe9YsrDk5tc5O2M1mcubOrdXZcCLMZnLmznPLgfEG5XCEGD179gy2CWGB0lEeSks5KB3l0RC19HZJxFq+/FSwbJlb1ylYtgz8lONE7VIJMVq0aBFsE8ICpaM8lJZyUDrKoz5raTebQadDMxgQZWVgt6OLqnmrapXz3FwSabP6cwpWrqRww0ZK9u7Fevo0l+3bizXHvdTm1txcNIN/UpurGY4QY5mbXqiibpSO8lBaykHpKI/6qKW3yyHg2ZJI7rz3QNMoWr8e6+nT6GJisBcXo092L5mXPinJ4Qj5ATXDoVAoFAqFH3Euh1w8Q+FcDjk3fwEt356NqXPnmrel6nTuL4ksX076ZyvRDAZMnTpjbHUpwmIhfswYct/Ocnl+/JgxYLe7/do8Qc1whBjNmjULtglhgdJRHkpLOSgd5VHftPRkh4goK8P8/V7OffghJ5/+M4dHjUbT6z1aEtFFR5MwahSR6a3RdDp0UVEkZ2SguVi60aKjSb47w60lHm9Qib+8xF+JvxQKhUIRungag2E3m8meNcut2YWke+8lsm1bfnvqqSrH2//3vxwePcoRKOoCfVoabdauQRdZtdqrvaSEkr17OVaL46NFR9Ny9lu1z7K4gUr8Vc/IynI9KBWuUTrKQ2kpB6WjPIKhpdcxGB4uh8ReOxBj69bEjx5F46ef5tIPPwB9hGOpww1qWxLRmUyYOnem7bq1JE2ciD4tDfR69GlpJE2cSNt1a31yNtxBxXCEGHY/rZ01NJSO8lBaykHpKI9Aa+lNDIatqIiS778n+sorPVoOiYiPp82qz6o9l5yRwbn5C+oMHHW1JKIzmdCZTKQ+MJnUB/8Iej1YrW7vlPEVNcMRYuj8tP+5oaF0lIfSUg5KR3l4q6U3GTrB/RgMW34+2f9+g59HjORg7z4cu/se7AUFUnaI6GJiaPn27FrjMJxLIrpo19VedVFR6CIjmfPuu+giIwPibICK4fAaFcOhUCgU9QNfipZ5HIPRJp3fnv4zmsFA5OWX0/iJJyjcuIHcrHdcnz9xIqkPTK7VAbjwOuY5XkduLvqk8tdxdwa66Gi/Lom4wlUMh3I4vMRfDseKFSsYOXKk1D4bIkpHeSgt5aB0lIcnWta2HOJEi4qqc0uq3WLh5yFD3A7YTF/1GaWHDxPZoQM6oxEAa04OhwYPcbkc0nbdWvRJrmdDvE0edjGyx6QKGq1nnDx5MtgmhAVKR3koLeWgdJSHJ1p6tCXVZqPkwEHOffwxJ595hsOjRnm+JTUqiqguXSqcDZC7HAIXlkQ0nc6nJZFAj0kVNKpQKBSKeoHzl/3EzEzsFotbW1LdLlr27rtEtmvPb088UbWPoiL0yUnuzXCUx2BoF21JrbxDJFSXQwKBWlLxEn8tqZw+fZrGjRtL7bMhonSUh9JSDkpH7/E2BsPT5ZDWny7j6PibiOrWjahuXYnq1g1ju3acffNN92I4XMRggLzlEBnIHpOullTUDEeIcfz4cfWhJAGlozyUlnJQOnqHt2nBrefOEZGQ4PGW1Lbr11V7TsaWVCeVn794JiTQBHpMqhiOEGPnzp3BNiEsUDrKQ2kpB6Wjd7gdg1FURMG6dZx8+s/8PPwGfrqqb0huSQ0lAj0mlcOhUCgUCr/jTQ4Mz2Iw5mIvKCD/k08oPXIELTKS4l27iB812i376ipaFgpZOsMBtaQSYvTp0yfYJoQFSkd5KC3l0FB19CUHhsdVUleuwF5URNQVV2Dq0AHNaCSqSxfOffCBz8shF2fpDIUYDF8J9JhUMxwhRmpqarBNCAuUjvJQWsqhIerojL84NHgIuW9nOYI3bbaK+ItDg4dQsndvlTokwmaj5IcfyF2wwPMtqTExJN15J1FduqCVb0sN1S2poUCgx6RyOEKMlStXBtuEsEDpKA+lpRwaoo5ux18UFnLu4485dm8mB/tcyZEbx3F6+gzshYU+x2Co5ZDaCfSYVEsqCoVCoXCJN2XZ3Y6/mDuPyDbpnN+6FQBD8+ZE9exB2ekzxI8eQ64b1WFdxWCE23JIfUQ5HCFGy5Ytg21CWKB0lIfSUg71VUevYzA8jb/4bCW66GiiruiBoXFaxXP6lAzOLQi/LamhQKDHpEr85SX+Svxlt9tVVUkJKB3lobSUQ33U0dM6JMJux3LoEMXffEOjW27hx67dwGZzfSG9nsv27EarQR97SQkle/dyrDYbymMwGuqyiC/IHpOqlko9I8uNqUOFa5SO8lBayqE+6uhJWfbTL/+dn67qy5HRYzj9P9OlxF+AisHwJ4Eek2pJRaFQKMIcb9JpexKDkfve+0S2bYMtPx9948ZE9+4tLf4CqsdgoNeD1apiMOoZyuEIMYyVKgwqvEfpKA+lpRyCoWMgc2C0WfUZ0X36YGjevGJqXWb8BVyIwZg7dy4ZGRlu2aaonUCPSRXD4SX+iuFQKBQKGXgafwFgLy2lZPduzm/fTsr99/scg6HiLxoWKoajnrF06dJgmxAWKB3lobSUQ6B19DQHxi93ZXCwdx9+ueNOzv7r3yGdA0ONSTkEWke1pBJinDlzJtgmhAVKR3koLeXgi46ByIFR/PXXAES2b090nz5Y8/JCNgeGGpNyCLSOyuFQKBSKECVgOTBWrkQXG0t0797oGzWqeC75bpUDQyGPBhvDoWlac+BO4HqgPRAPHAU+A14SQuS4ON8vMRw5OTkkJydL7bMhonSUh9JSDp7q6E0MhrDbsfz0E5Ht2vFjl65hmwNDjUk5yNZRxXDUzijgOSAH+DswFdhW/vc7TdOaBMOoQ4cOBeOyYYfSUR5KSzl4qqPbMRhFRRSsWcvxRx7hp2v6cWTMWOwFBWGdA0ONSTkEWseG7HB8CVwqhBgnhHhVCPG2EGIiMBm4BHg8GEbt3r07GJcNO5SO8lBaysETHT2KwXh3LvaiQgpXfY4tNxd948aUHDhA/OjRbl3LnRwY+uRkUh+YTJu1a7hsz27arF1D6gOT0SclBWV3iRqTcgi0jg02hkMIsa+WpxYBbwOdA2iOQqEIU5wBnxMzM7FbLO4FS3ocg7ECUVpKzO9+h+HSS9E0jci2bTm34APpOTBAxWAovKMhz3DURovyv6eDcfG+ffsG47Jhh9JRHkpL77CXlGDNySF71ix+HjKEH7t05echQ8ieNQtrTg72kpIazxNlZWgGA9acXLeuY83NRRcTQ6Nbb8XYqlXFOrouJoaWb89Gq8WZcMZf6KKjvXuBQUSNSTkEWkflcFTn+fK/84Jx8bi4uGBcNuxQOspDaek5zoDPQ4OHkPt2FtYz2WCzYT2TTe7bWRwaPISSvXuxl5QghMBy+Ai58xfw6wN/5ODvrpISgxGq8RcyUGNSDoHWsd4vqWialogj0NNd/imEqPGng6ZpjwE3A7OFEBtqaTMJmOT8/+zZswHo06cPqamprFy5EnCU/R06dGhFcRyj0UhGRgZLly6t2Ps8fvx4Dh06VLGO1rdvXzZu3Ehk+XRleno6/fv3Z+7cuQBER0dz++23s3jxYnJzHS/hlltuYe/evezb51ghGjBgAHq9nvXr1wPQvn17evfuzYIFCwCIj4/n1ltvZeHChRQUFAAwYcIEduzYwcGDBwEYNGgQVquVTZs2AdCpUyc6d+7MokWLAEhKSuKmm25i/vz5FBcXA5CRkcHmzZs5fPgwAMOGDaOwsJBt27YB0K1bN9q2bcuSJUsASEtLY+zYscydO5fS0lIAMjMzWbNmDceOHQNgxIgRZGdns337dgB69uxJixYtWFY+1dysWTNGjhxJVlZWRdXDzMxMVqxYwZ49e0hJSWHMmDEcP36cnTt3Sr1PcXFxrF69ukHcpzNnzmA0Gv1yn06ePAkQVvfpjjvuQFdY6FbAZ+uVK/jlz89g++qrKs+f376d+FGjyX3nnRrPr0zc6NEc//VXWrZtW/399MUXmM1mulw/jPQ/PoDOYKDMbOaXo0fJPX2apKQklr33Xr27Tzabja5du9bL95M/P/c8vU8LFiwgJSVF2n1yRb3fFqtpWivgiAentBNCVAvN1TQtE5iNY1vsjUKImsO2L7T3y7bY2bNnM2nSJNcNFXWidJRHQ9fSm6Rb2bNmkfu264RZSffeS2SbdM78/RVirrqKmKv7EtO3L4amTbHm5HBo8BCXMRht161Fn+TebEi40NDHpCxk6+hqW2y9n+EQQhwFanxx7qJp2j04nI01wHhXzoY/SU9PD9alwwqlozwaqpaBSrrVZvXnJIwdWy0PhjMGw1UOjPoYg+ErDXVMyibQOtb7GQ5f0TTtbiALWA+MFkLUHMlV/Ty/zHCUlpaq6pwSUDrKoyFq6VXhs5ISind8Q8zVfaUk3XL26XB65jmcntxc9EnlTs/dGeiio+tlDIavNMQx6Q9k66gSf9WBpmkZOJyNjcAYd50Nf+JcD1P4htJRHg1RS0+SbuWv/IxjEydx8Mrf8evEidKSbkFo5sAIBRrimPQHgdax3i+peIumaaOBd4ACHLk3xju9s3KKhBBLg2CaQqEIIp4m3Ypsk875L78EwNSxI6W//CKl6FllVA4MRTjQYB0OoAeOGZ5EHPEbF/MLsDSA9gDuRfoqXKN0lEd91tLTgE/Aq6Rb6HTEXnMN+pQUAAwtWkgreqaoTn0ek6FEoHVs8DEc3uKvGA6FQuE7Xgd84iiA5msMRqgWPVMo/ImK4ahnLF68ONgmhAVKR3nUNy09SbrlpOzMGfIWL+b4Qw9hLyxUSbdCnPo2JkOVQOvYkJdUQhJnYhuFbygd5VHftHQ34LPtmtXkf/opeYs+omTfhdJKsdddR/zIUeTOmePyWnXFYOhMJnQmE6kPTCb1wT+CXg9Wq3vLOoo6qW9jMlQJtI5qhkOhUIQNHgV8zp2HptdTsm8fWmQksQMH0uS5Z4m95hqS772n1hokTtyNwdBFRaGLjCTrnXfQRUYqZ0PRYFExHF7irxiO/Px8EhISpPbZEFE6yiOYWnqc5dNi4echQxzLKC7Qp6WRvnIF5m+/JfrKK6ssb/gjBkONSXkoLeUgW0cVw1HP2Lt3b7BNCAuUjvIIhpbeVlr1pspq7IAB1ZwGf8RgqDEpD6WlHAKto3I4Qox9ldaSFd6jdJRHoLX0NOhTWK2c/+/XnHrhb1ICPp3ITrqlxqQ8lJZyCLSOKmhUoVCEFO4GfbZZ/Tk5b79N7vwF2PPzATB1vFxKwGdlVNIthUIOaoYjxBgwYECwTQgLlI7yCKSWngR95s57D0Pz5tjz8zGmp5M8MRNTp05SAz5losakPJSWcgi0jmqGI8TQ69UtkYHSUR4B1dLTLJ+ffUZU9yuITG9dcdxeUhKSVVbVmJSH0lIOgdZRzXCEGOvXrw+2CWGB0lEe3mppN5uxWywIux27xeLYceICj4M+o6OqOBsQukm31JiUh9JSDoHWUbmJCoVCKp6mFRdCYPnhBwrWrCH5nnvQJye5t621POizpriKi5NueVRLRaFQ+AXlcIQY7du3D7YJYYHSUR6eaOncYXJx0Kdzh8m5+Qto+fZsTJ06YTlwgII1aylcu5ayX38FwHjppVKDPkMp4FONSXkoLeUQaB1V4i8v8Vfir/PnzxMTEyO1z4aI0lEenmhpzcnh0OAhdVdJjYoifcVyTkx9hJLvvwcgIiWFuMGDSBw3DkPz5q77iI6m7bq16JPc2wIbCqgxKQ+lpRxk66gSf9UzFixYEGwTwgKlozzc1dKTHSbnPviQpLvvptGdd3Dp/Pdpt+kLmj73HFFdu6KLiaHl27Nr3WkSrKBPX1FjUh5KSzkEWke1pKJQKGrEmVZ8YmYmdovFdfyDhztMUqc8RMINw6t3UynoM2fuPEccSG4u+qTyOJC7M9BFR6tKqwpFPUM5HCFGfHx8sE0IC5SO3uNp0Cc4lhY93WGiGQy1Ph+OQZ9qTMpDaSmHQOuoYji8xF8xHApFMKkt6NOJFhXlCPrs3BktMpKS/fsp+OwzCld9TutPlnB49Gi3C6e1WbsGncrcqVCEDSqGo56xcOHCYJsQFigdvcPdtOK2vDxOPPwwR8ffRO47cyg7eZKir74iftRot67jblrxcEKNSXkoLeUQaB2VwxFiFBQUBNuEsEDp6DkepRV/fz6xAwcSkZxMowkTuHTBfOKHDSP5nrtDMq14KKDGpDyUlnIItI4qhkOhUDjwMOizzeerSBg9Gq1SemTnDpNQSyuuUCiCj4rh8BKVhyO0aeg6OneYeBJsKex2fuzSFWw21xfQ67lsz240XfVJ0gtBp2qHSWUa+piUidJSDioPRwNnx44dwTYhLGioOtpLSrDm5JA9axY/DxnCj1268vOQIWTPmoU1Jwd7SUm1c0RZGUWbNmE/fx59snuJtJxpxWtCZzKhT04m9YHJtFm7hsv27KbN2jWkPjAZfVJSg3Q2oOGOSX+gtJRDoHVUDkeIcfDgwWCbEBY0RB2dO0wODR5C7ttZjt0iNltFWvFDg4dQsncv9pIShBCY9+zh1IwX+GnAQH69734K160jfuQot67lblpxXWQkmk6HLjKywcVsXExDHJP+Qmkph0DrqBwOhSJMcH+HSb5jh8nvb+Hc/PnYcnMxpqeDQAV9KhQKv6GCRkOMQYMGBduEsKCh6ejZDpP3iR04kOJvvyNhxAjiR4/C1LEjmqZhLylRQZ9+oqGNSX+itJRDoHVUDkeIYbVag21CWNDgdJSwwwRUWnF/0uDGpB9RWsoh0DqqJZUQY9OmTcE2ISxoaDp6nFbcZKrmbDi5OOizw+5dKuhTAg1tTPoTpaUcAq2jcjgUihDEbjZjt1gQdjt2i8WxzbUWbPn5CLNZyg6TyjiDPrPeeUcFfSoUCp9RDkeI0alTp2CbEBbUVx3d3dYqbDaKtmzlxKOP8lO//hSsWSN1h0ll6quWoYbSUR5KSzkEWkeV+MtL/JX4Kz8/n4SEBKl9NkTqo45uFU6b/RYYIznx8MNYT50qf0Kj0YTbSJ40iZ+HXV9n4KgWHU3bdWvRJ7k3GwL1U8tQROkoD6WlHGTrqBJ/1TMWLVoUbBPCgvqoo1vbWifdhz45CX1qKoZLLiFlykO0Xb+OJs88Q0R8PC3fnl3rtlZvd5jURy1DEaWjPJSWcgi0jmqXikIRAniyrfXcwoU0f+0fGJo2rZJaXO0wUSgUoYxyOEKMJA+muhW1U+909GRb66fLSX3ooRrrmOhMJnQmE6kPTCb1wT96VEulNuqdliGK0lEeSks5BFpHFcPhJf6K4VDUfzwtnCaEACGkFE5TKBSKYKFiOOoZ8+fPD7YJYUEwdPS0cJqt6DznFi7kyLjx2AsKpG9rlYUak3JQOspDaSmHQOuollRCjOLi4mCbEBYEWsfadpg4C6edm7+Alm/PxtS5M5ZDP5O3aBH5K1ciyu0s2rKF+FGjyX3nHZfX8nRbq6+oMSkHpaM8lJZyCLSOaoZDoZCAu4XTrLm5nHr+efI+/hhRXEx0r140e+UV4oYNU4XTFApFWKNiOLzEXzEcpaWlGI1GqX02RAKpo91sJnvWLHLfznLZNunee4m8rAOWvXtJ/P3viWzT5kI/JSWU7N3rsnCaqXPngO40UWNSDkpHeSgt5SBbRxXDUc/YvHlzsE0ICwKqo4eF0+KHDKXxU09VcTag6rbWpIkT0aelgV6PPi2NpIkTabtubcCdDVBjUhZKR3koLeUQaB1VDEeIcfjw4WCbEBYEUkePC6cZDbU+749trb6ixqQclI7yUFrKIdA6qhkOheIiPCmcJoRAWCx+K5ym6XSqcJpCoQgLlMMRYgwbNizYJoQF3ujoybZWe2kp+cuWcfT3t1Dw+ed+K5wWCqgxKQelozyUlnIItI5qSSXEKCwsDLYJYYGnOrq7rdXYrh3n5r3HuUWLsOXkAFCwIo6mL7zAuQ8/dFk4rT7uMFFjUg5KR3koLeUQaB3VDEc5mqbpNE37StM0oWnaimDZsW3btmBdOqzwVEd3t7XaCwsp+vJLbDk5RF52GU1fmEGLN94gIjHRL4XTQgE1JuWgdJSH0lIOgdZRzXBc4AGgS7CNUAQejwqnfbiQ1EemojMYiOrVq2IbGKAKpykUCkUdKIcD0DStBfA34K/A/wbTlm7dugXz8mGDRzp6uK01dcpD6CIjq3cTgjtMZKDGpByUjvJQWsoh0DqqJRUH/wYOA68H25C2bdsG24SwwBMdPd7Waqh9WyuE3w4TNSbloHSUh9JSDoHWscE7HJqm3QSMBu4XQrhRqtO/LFmyJNgmhAXu6uivba3hhBqTclA6ykNpKYdA69igU5trmpYA/AAsE0JMLj8mgJVCiJG1nDMJmAT0BHjrrbcA6NOnD6mpqaxcuRKAli1bMnToULKyHOmujUYjGRkZLF26lDNnzgAwfvx4Dh06xO7duwHo27cvGzduJLJ8uj49PZ3+/fszd+5cAKKjo7n99ttZvHgxubmOX+S33HILe/fuZd++fQAMGDAAvV7P+vXrAWjfvj29e/dmwYIFAMTHx3PrrbeycOFCCgoKAJgwYQI7duzg4MGDAAwaNAir1cqmTZsA6NSpE507d2bRokUAJCUlcdNNNzF//vyK4j8ZGRls3ry5IpHMsGHDKCwsrAhK6tatG23btq0Y4GlpaYwdO5a5c+dSWloKQGZmJmvWrOHYsWMAjBgxguzsbLZv3w5Az549adGiBcvKlz+aNWvGyJEjycrKwm6307hxY0YNHYpNCPQmE2VmM9bSUn45dYovv/yy6n1avpzkQz/T5vvvaXX/fVh+OkTunDl1DxigUWYmkbdPoMBiYfXq1Q3iPp05cwaj0SjtPul0OjIzM1mxYgUnT54EYMyYMRw/fpydO3dWvU8+vp/i4uJC5j4tWbKElJSUevN+CuX7ZLPZ6Nq1a718P4XSfXrppZdISUmRdp/uuOMOoPbU5vXe4dA0LRGY6sEp/xRC5Jaf+xYwBrhMCJFXfqxOh6PSdf1SS2Xp0qWMHTtWap8NAXtJCfbz58mZO9cRsJmTiz65PGAzIwNdTAw6kwm72Uze//0fuXPnUVb+Bo/p25emf3uBn4ff4HJba9t1a9EnuTcbEi6oMSkHpaM8lJZykK2jq1oq4eBwtAKOeHBKOyHEIU3TrgE2A3cIIRZU6i+oDofCc2rLoeFEi4pybFk1Gvl10n3Y8vIAMFxyCUkZd5F4442g04Vk4TSFQqGoL4R98TYhxFEhhObB41D5qW8Au4GvNU1r63yUPxdd/v+UQL8e5/SUwn3czaERkZSE4ZJLMHXtSvPXXqPN56tImjChYrtqKBZOCwXUmJSD0lEeSks5BFrHhrwt9lIgAfiphueuLT/+BvBgII1yrusp3MOjHBoLF9L8tdcwNGtaJX+Gk3Dd1uorakzKQekoD6WlHAKtY0N2OO4EjDUc/xjYCbwEHKrheUUo4UkOjU+Xk/rQQzU6G1W6rORcaDXk21AoFAqF59T7GA7ZBDuGwxl1rHAPYbfzY5euYHNjR7Nez2V7dqMpfT1CjUk5KB3lobSUg2wdwz6GI9xYs2ZNsE2oNwibDVFSonJo+Bk1JuWgdJSH0lIOgdZRORwXUR5YWufshj9x7sVuqNjNZuwWC8Jux26xYK8hNkOUlZG35BMO3zCCgtWrw7o0fCjQ0MekLJSO8lBayiHQOjbkGA5FCOFOHg00jbwlS8jJysJ68jcACjdspMkzz4RtaXiFQqEIF1QMh5f4K4bjxIkTNG/eXGqfoY47eTQu+c9/sJ7N5uTj0wAwtmlDyn2TiL/hBoTVqnJo+JGGOCb9gdJRHkpLOcjWUcVw1DOys7ODbULAcSePxq+TJxPVvTvxo0fR/PXXSV/+KQmjR6Pp9SqHhp9piGPSHygd5aG0lEOgdVQOR4jhzJ/fUPAsj8Yimj7/PPHDhlbbaaIzmdAnJ5P6wGTarF1Dh927aLN2DakPTEaflKScDR9oaGPSXygd5aG0lEOgdVQOhyK4eJRH41NwsYXLWRo+6513wqI0vEKhUIQLyuEIMXr27BlsEwKKZjBgzcl1q601NxfNYHCrbUPT0Z8oLeWgdJSH0lIOgdZRORwhRosWLYJtQsCwl5RgN5v9kkejIenob5SWclA6ykNpKYdA66gcjhBjmZvLC6GIOzk0AOylpeR+8AE/DxlK4Zo1fsmjUZ91DDWUlnJQOspDaSmHQOuo8nAofMadHBo6kwlhtZK/bBln35hF2cmTABT/92tSH3tU5dFQKBSKMEfl4fASf+XhWLFiBSNHBi3Rqce4k0Oj5duziUhK4tfJkyn7xZHZLrJdW1Ieeoi4IUMQFov0PBru6lhSUkJ2djYlJSVYrVa3+m5omM1mopSj5zNKR3koLeXgjo56vR6TyURqaiomF5+/rvJwKIfDS/zlcNQ3rDk5HBo8pO7Ziago0pd/yolHHsVWkE/qgw8Rf8NwtIiIijYXZknmOWZJcnPRJ5XPktydgS46WvrW1vz8fE6fPk1qaiqxsbHo9XqXlWQVCoWioSCEwGq1UlRURHZ2No0bNyYhIaHW9srh8BP+cjiysrLIzMyU2qe/sJvNZM+aRe7bWS7bJt17LwljxxDZujWavvaVPLvZDDodmsHgCBC1271aRnFHx59//pmmTZsSHR3tcf8NiezsbFJTU4NtRr1H6SgPpaUcPNGxuLiYU6dOkZ6eXmsblWm0nmGvT8XFPMmhsXw5xpYt63Q24EIeDU2n8ymPhjs6lpaWqmlZhUKhcIOoqCgsFotPfSiHI8TQuUhsFUr4K4eGDNzVUS2hKBQKhWtkfFbWn2+3BkJ9WU4BR5l4f+TQkEF90jHUUVPXclA6ykNpKYdA66gcjhBjxYoVwTbBLexmM5affvJLDg0Z1Bcd6wN5eXnBNiEsUDrKQ2kph0DrqByOEONkeX6KUEXYbOR98n/8fP1wTv3PdBrd9gc0F3EQwcihEeo61ifKAjgzFc4oHeWhtJRDoHVUDoeiAleZQou2buXI+Jv47emnsZ4+jbCWgabR8u3ZtTodzhwaOrUTRKFQKBo0yuEIMcaMGRPwa9pLSrDm5JA9axY/DxnCj1268vOQIWTPmoU1J4eyM2c4dt/9/HpvJpYff0TfrCnNXp5J68WLMTZvjqlzZ9quW0vSxIno09JAr0eflkbSxIm0XbfWo4RdsgiGjuFKYmJisE0IC7zV0WKxMHHiRNLT04mNjaVdu3a89tprUm2rb7ijpdLNNYF+b6vU5iHG8ePHady4ccCuV1umUOuZbHLfzuLc/AW0+Nc/iR86BPPOnSTfN4mkO+6o4kDoTCZ0JhOpD0wm9cE/+pxDQwaB1jGcKS0txRDAHUbhirc6Wq1WmjRpwpo1a0hPT2fPnj0MGzaMpk2bcsstt9R57tGjRxk4cCBHjx710urQxB0tfdGtoRDo97aa4Qgxdu7cGdDr2c+frzUtOYAwmzn+0BRirr6aNhvWkzJxYq2zFbJyaMgg0DqGM8XFxS7bfPHFF2iaxty5cz3u35dz6xPu6FgTMTExTJ8+nbZt26LT6ejevTsjRoxg69atki2sP7ijpdLNNd6OSW9RDkcDxm42kzN3bp1pycHhdOQu+ACd+pUbFhQXF/Paa6/Rr18/kpKSMBgMNG7cmBtuuIG5c+eGRE2ZXbt28dxzz9XLX+a16fuHP/xBir5Wq5UtW7bQtWtXSRYHB2/GYUFBAdOnT2fQoEHExcURHR1Nx44dmTZtGqdPn67zeuGiW31GLamEGH369AncxTzJFLpsGakP/tHPBskjoDrWgLnUhk4HhggdZTY7djtEGSNcn+hnDh06xIgRIzh48CCDBw/mqaeeIiUlhTNnzrBu3Truvvtu9u/fz8svv1xxTkxMjF9t6t+/P2azucrU7q5du3j++ecZOHAgrVq18uv17Xa7tIR7dem7evXqGvX1lClTppCQkMCdd94pxeZg4M04PHjwIMOGDeOXX35hzJgx3HfffRgMBv773//y+uuv8+6777J8+XKuuuqqGq9Zl24Wi6XOHRtRUVFERAT//Ssbf7+3qyGEUA8vHoBwyCeX48ePS++zNuw2m9jfsZPY3+Ey149OnYXdZguYbb7ijo779++Xfl1zqVVkF5aIFz/bL3rPWCvSn1opes9YK178bL/ILiwR5lKr9Gu6S3FxsejQoYPQ6/ViyZIlNbbZvn27eOONN6ocs1gsLvveuHGjAMS7774rw1Tx7rvvCkBs3LhRSn+1sWLFCnHFFVeIU6dO+dyXK30tFkuN+nrCo48+Krp06SKys7NrbTN58mSRkJAgEhISRFxcnNA0reL/CQkJ4ssvv/T6+kJcuNfe3htvxuH58+dF+/bthcFgECtWrKg2Jnfs2CESEhJEampqjffSlW4TJkwQzs/0mh7+HofBwp33dmVcfWZW+l6s+XuztifUIzgOx1tvvSW9z5qwWSzCWlQkDvbr55bDcbBff2ErKQmIbTJwR0fZDoe51Cq+PnxWXPbMKnHpEyuqPS57ZpX4+nBO0JyOf/7znwIQTzzxhFvtCwoKxJ///GfRo0cPkZycLIxGo2jTpo144oknxPnz56u0rc3hsFgsYubMmaJbt24iKipKxMfHi549e4p//etftZ777LPP1vihf9ddd1WcU1JSIl544QXRsWNHERkZKRISEsTIkSPFt99+67YeK1asEJGRkeLKK68UeXl5bp9XG670PXPmTJX/O/Xt06ePS32FEOLhhx8WnTt3rtZPXRw5ckRceumlHr0OV/jqcHg6Diuf86c//UkIUV1LIYR44403BCAee+yxKse90a2h4KkmvjocKoajAVK0aRNHRo2mcM2akM0UWh8psli5a84OzGW2Gp83l9m4a852iizBiZFYvHgxAJMmTXKr/YkTJ8jKyqJbt2785S9/4dVXX6VHjx68/PLL3HjjjS7PLy0tZdiwYTzxxBM0btyY//mf/+GFF16gZ8+efPLJJ7WeN27cuAobn376ad5//33ef/997rvvPsCRrOj666/n+eef56qrruIf//gHTz75JPv37+fqq6/mm2++cWnbypUrGT9+PN26dWP16tV1ltx2F2/17dWrl0t9p0yZwrp169iwYUO9T+vtqU6Vz5k4cWKtbTIyMjAYDCxZsqTiWDjpFhbU5omoR3BmOFatWuXVebbiYmErKRF2m03YSkqErbi4WhvL0aPi2KT7KmYtfn3kEVF65oz4ofsVdc5u/HBFD1GWk+PrSwso7ugoc4aj2GIVL362v8aZjYsfL332gyi2lEm7trskJSWJuLg4t9tbLBZRWlpa7df/M888IwDx9ddfVxyraYZj5syZAhBPPfVUtb5tlZbnajq3riWVV199VQDi888/r3I8Pz9fXHLJJWLAgAF1vq7Tp0+LyMjIOqfQa3oUFhbW2a8rfS/W0anvxVys79GjRwUgIiMjRUxMTMXj+uuvr9MeIUJzhsPTcVjTObXNSHXu3LniXvmiW0PB05k9X2c4VNBoiDF06FCP2ttLSrCfP0/O3LkULFuGNScXfXIS8WPGkJyRgS4mBmw2zr41m9x330WUlaGLjSXlwT+SNGECwmaj5duzOVbL1tj6minUUx0r0+rJlR6fs+uvQ/jk2xNutf3ku+NM6p/O5X/17DpHXxrhsV2VKSgo8Cg3idFoBCA+Ph6r1UphYSE2m43BgwczY8YMvv766zqDcxcsWECjRo3461//Wu05X4I058+fz2WXXUbPnj05e/ZsleeGDBnCvHnzMJvNRNWyLdtoNPLkk096fF2nHrXhSt/4+Pha+6tL30svvdT5I8djWrVq5dNOH7vdTm5u1YrQ+fn5FX8v1j8pKcnlvfV0HDrPadKkScX/L9bSiXOmKj8/3yfdGgq16egvlMMRYmRlZbk91ehO0q5L3nwT69lscmbPBiDhxhtJe/QR9OXTi5rBUJEpNGfuPIfTkpuLPqncabk7A110dMAzhfqKJzrKIM5kIOd8qVttc4pKiTMF/q0XHx9PYWGhR+fMmjWLf//73xw4cAD7RUtq586dq/Pcn376ie7du2OSPHZ++OEHzGZznVPkZ8+e5ZJLLqnxucTERJ577jmpNoFrfc+ePVvN5lmzZvHmm2+yb98+j/UNBMeOHaN169Y1Pjd27Nhqx44cOeJyV5E34zA+Pp6CgoKK/9ekJVDRRsYSWUOgNh39hXI46jHuJO369f77SV/+KfE3jiXp1luJ6tatWrtQzBQaTLyZSbBYbSTHGDlTaHHZNjnWiM0ufJ6x8JTOnTuzefNmDh8+THp6usv2r776Ko899hgDBw7k0UcfpVmzZhiNRk6cOEFGRka1L8ia0DRNhulVEELQpUsXXn311VrbuPoQnTFjhsf5MCZNmkSzZs1qfd5bfYcOHcqUKVO80tffNGnShLVr11Y5tnv3bh5//HFeeeUVul30eVJ5FqI2PNWp8jmHDh2ibdu2NbYpLi7mwIEDtGrVitjYWLf6VQQW5XCEGK6mbZ14krTr3MJFNP3rX106D5Wf1yIj3bIjVHFXR1nY7TCuR3Pe3HTYZdtxV7TAHoSp3vHjx7N582aysrL429/+5rL9+++/T6tWrVi0aBFpaWkVxz///HO3rte+fXt++OEHLBYLkR6Op7oclXbt2pGdnc11113n9dLMjBkzsFhcO4dOIiIiuO222+ps40rfi1+TU99Vq1ZVeR3u6hsITCYTgwcPrnJMr3d8bfTs2ZOBAwd63Ken4xAcgcTOc1566aUax8d7771HaWkp48aNqzj2wAMPsHz5cvLz84mLi+Pmm2/m5ZdfDvjnQ6jijx8EdaF2qYQYGRkZ7jX0JGnXp5+CpMRG9QW3dZRElDGCzH7pRBnqTg4UbYwgs19rooyB9/UzMzPp0KEDr7zyCstqGTs7d+5k1qxZgONLVtM0kpOTK563Wq289NJLbl1vwoQJnDt3jhkzZlR7ztXauvMX6sXxAwB33nknp06dqnWGw1XGSYCSkhKXgeHFxcUMGTKEiIgI5s2bR/v27evs05W+KSkpNepbWQtP9K2veDoOnee0bduWf/zjH3z++eekpKRUaf/tt9/y1FNPkZqayrRp0yqOP/jgg/z4448UFBSwa9cudu/ezcyZM/3zwuohF+vob9QMR4ixdOnSGtdGL0YzGLDmVP8wrglrbi5aA0tL7q6OMomN1DPvnj7cNWd7jVtjo40RzL27DzGRwXnbRUdHs2LFCkaMGMHYsWMZOnQoQ4YMITk5mezsbDZu3Mjq1av505/+BMBNN93EU089xeDBg7nlllsoKCjggw8+cLvY08MPP8zy5cuZMWMGO3bsYOjQoZhMJvbt28eBAwdYt25dref27t0bnU7HCy+8wLlz54iJiaF169ZceeWVPPzww6xdu5Zp06axYcMGrrvuOuLj4zl27Bjr16/HZDKxceNGn7Qym82MGTOGDRs2MG/ePCZMmODyHFf6rlmzhg0bNlTTd/jw4YwbN85jfesrno5DcGTE/PTTT7n++usZMWIEo0aNYujQoej1erZv3877779PbGwsS5curbKs07FjxyrX1jSNQ4cOBey1hjrnzp2jUaNGgbugKy9fPQK7LdbdxF+2kpKwTdolg2Ak/hLiQqbRlz77QfR5Ya1o89RK0eeFteKlz34QZ4OcadTJ+fPnxauvviquvvpqkZiYKPR6vUhLSxM33HCDeO+994TV6rDRarWKv/3tb6JVq1bCaDSKli1bimnTpon9+/cLQDz77LMVfdaW+MtsNosZM2ZUSdDVq1evKlkkazt37ty54vLLLxcGg6Fa4q+ysjLx+uuvi169eono6GgRHR0t2rZtK2677TaxevVqnzXKy8sTv/vd78T8+fM9Prc2fQcPHlyjvm3atHGpbyjh67ZYJ+6Ow8rk5eWJ559/XnTq1EnExMQIk8kkOnToIB577DHx22+/1XidF198UcTGxgpAJCcnix07dvhkdzgR6MRfmlDbhrxC0zSH1yFZv9mzZ7u1u6L0+HHOffAhuXPmuGybNHEiqQ9MblABoO7o+MMPP3D55Zf75frmUhs6rVItFSGCsowig+zs7AaZNElmjRVouDr6A2+0/OGHH3j//fd54IEHaNGihZ8sq194qqOrz0xnTIgQosbgkIa1sF8PGD9+fJ3PW8+d4+STT3Hi0cdodNsf0Fw4EVp0tGNrawNyNsC1jv4myhhBpCECnU4j0hBRb50NILBTriGETGcDGq6O/sAbLS+//HK6d+8e8PiuUCbQY1I5HCFGbeuLQgjyli7l8PAbyF+6FMuPP2LLy6Pl27NrdTrqa9IuGah1WnmUlJQE24SwQOkoD2+1tNls/PTTT5Ktqb8EekwqhyNEsJvN2C0W+vTujd1iwV5pu2vp0aMcu/sefnvyKWx5eUT/7nekf7qMqM6dK5J2JU2ciD4tDfR69GlpJE2cSNt1azF17lzvknbJYPfu3cE2IWwwu9h6rXAPpaM83NGyqKiId999l7y8PIQQfP/990yfPp1hw4YFwML6QaDHZP2d5w0TXKUmL/vtN3658y5EcTERjRrR+MkniB89umKtTCXtUigUiupomsYHH3zAY489RmlpKWlpaYwfP57nn38+2KY1WFTQqJfICBqtLTV5xTWiomjxr39iPX2a4m92kvanaejVOrBb7N27l86dO9fZxp9Bo+FEXXVJFO6jdJSH0lIOnuroa9ComuEIIu6kJj/+0BTarllNYpCDIOsbcXFxwTYhbJAdPNlQUTrKQ2kph0DrqO5akPAkNXnOe+9XielQuGb16tXBNiFsqFw0S+E9Skd5KC3lEGgdG7zDoWlatKZpf9U0bZ+maWZN03I1TftK07Qb/XphT1KTL1vW4FKTKxQKhSK8aNBLKpqmNQLWA+2Ad4FXgRjgcuBSv15bpSb3K+5WoVS4xtPCa4qaUTrKQ2kph0Dr2KAdDuCfQFvgSiHE/kBeWJSVoU9Ownom22VbfVISoqys3ldwDST9+/cPtglhgyr1LQelozyUlnIItI5uzdNrmvYHTdP+qWnanf42KFBomtYKuA14WwixX9O0CE3TAqe+3U78mDFuNY0fM8ZR/1zhNnPnzg22CWFDTk5OsE0IC5SO8lBayiHQOrp0ODRN+x9gDPA5METTtOl+tyowXI/j9e/XNO19oBgo1DTtuKZpj/j74rqoKJIzMlRqcoVCoVA0CNyZ4bgRyBRCfAZMBkb716SA0aH874tAT+B+4HbgCPCqpml+zw6ji4lRqcn9RLTSTBpqC6IclI7yUFrKIdA6ukz8pWnaW0AO8B6OL+TGQoiJAbDNLTRNSwSmenDKP4UQuZqmZQH3AvlAGyFETnl/BmA/0AJoJoQ4d9H1JgGTcDgpvPXWWwD06dOH1NRUVq5cCUDLli0ZOnQoWVlZABiNRjIyMli6dClnzpwBHAXG7CUlxOn15L0/n8JPP8Wam4s+KYm40aNpdNedRMTE8O6CBQghiI6O5vbbb2fx4sXk5joCTm+55Rb27t3Lvn37ABgwYAB6vZ7169cD0L59e3r37s2CBQsAiI+P59Zbb2XhwoUVW6ImTJjAjh07OHjwIACDBg3CarWyadMmADp16kTnzp1ZtGgRAElJSdx0003Mnz+f4uJiADIyMti8eTOHDx8GYNiwYRQWFrJt2zYAunXrRtu2bVmyZAkAaWlpjB07lrlz51JaWgpAZmYma9as4dixYwCMGDGC7Oxstm/fDkDPnj1p0aIFy8p39zRr1oyRI0eSlZVVUdkzMzOTFStWcPLkSQDGjBnD8ePH2blzZ7X71L17dzp06EB8fDxnz5513l9SUlI4d+4cVqsVcBQ4KikpqUgDHBsbi06nq9AvMjKS2NjYiulJnU5HcnIyubm52Gy2Gvtw5gkpLCwEwGQyER0dXXFfIyIiSEpKqtJHUlISxcXFFfUPLu4jKioKk8nEuXPnqvSRk5ODvXxJLjk5maKiIiwWS8V4sNvtFBUV1diHXq+nUaNGnD17tiLJXUpKCgUFBRX3LSEhAavVyvnz5wGHs2c0GsnLywPAYDCQmJhIdvaFeKXU1FTy8vIoKysDIDExkdLS0orxFBMTg16vJz8/H3C8f9R9UvdJ3afg3qdDhw7x1VdfAY7A/P79+1csX0dHR3PHHXcAtSf+csfhiAKeAHoB3wEvCSHO13lSACmPxTjiwSnthBCHNE37F/AgsEAIcftFfT4P/BW4QQixqpbrSi1PbzebQadD0+sRVqtKTe4jixcv5qabbqqzjco06h65ubkkJSUF24x6j9JRHkpLOXiqo98zjQohzMBzblsUYIQQR4EaX5wLjpf/PVXDc7+V/w1YHnGnczF79mwmTZoUqMuGLc5fNgrfcf4iVPiG0lEeSks5BFpHd3epJPrZjmCwvfxvixqecx47EyBbFAqFQqEIa9wq3qZp2kohxIgA2BMwNE2LAH4GUoH2QogT5cdjgB+AOKBFbctHspdUnOTn55OQkCC1z4aIOzqqJRX3sFqt6PUNPWWP7ygd5aG0lIOnOvq6pOJuiOpwTdP+4rZV9QAhhA3HrptI4CtN057UNO1R4L/AJcBjwYhV2bt3b6AvGZYoHeXhDKpT+MaBAwdo1apVsM0IC9SYlEOgdXTX4fgC+KumaYPdaaxpmknTtI+9tipAlAeEDgIOAX8GZgAFwGghxJxg2OTcbaLwjaDrWFoM1hIQdsff0uLg2uMDZlU4UArqS1IeakzKIdA6uutw3ApkAws0TWteV0NN01KAjcA4H20LCEKITUKI64QQcUKIaCHE1UKI5cG2S1FPKTNDUTZsmgmvd4PpKY6/m2bC+WzH80Hiiy++QNM0XnnllVrbaJrGyJEjveq/oKCA6dOn06NHD+Li4oiOjqZjx45MmzaN06dPe2t20PC3XqGEp/euIWmjkIdbizdCiDOapt2Co9DZx5qm9RdCWC9up2lae+AzIB1QX9peMGDAgGCbEBYERccyM5z8FubfBGWVZjQKT8HW12D7bLh9CTS7Agz1Z8uzMz9BXRw8eJBhw4bxyy+/MG7cOO69914MBgP//e9/ef3113n33XdZvnw5V111VQAspiIvSygRqvU/gnHvLBZLRc6ImoiKiiIiIqLW590ZkwrXBFpHt9+RQogvgaeA3wGvXfy8pmnXANtwOBv/BMZKsbCBoQKh5BAUHUuLqjsblSkrhvnjHe3CiOLiYkaNGsWJEydYvnw5ixcv5o9//COTJk1izpw5bNu2DavVypgxYwIy07Fy5Up69eoVErMqDzzwAImJiSQmJtK7d2+OHTtW8f/ExES2bNniU//OmYYvvvjCq/ODde/uvfde4uLian18+eWX0q6lCB08+gkghPhfYCkwWdO0PziPl/97LZAAPCSEmCpkb99oIDgzhCp8I+A6lhbDtn/X7mw4KSuGr95w3S6EcGZerI133nmHgwcP8sgjjzBiRPXNbL169eJvf/sb2dnZ/P3vf/eXmYDD2Rg/fjxGoxGTyeTXa7nDrFmzyMvLIy8vj40bN9KyZcuK/+fl5XHNNdcE1b5g3bv58+cjhKj1MXDgwDrPdzUmFe4RaB29+Rl4F7ATmK1p2m4cMxnTgfPAuNoycyoU9YbnvNiW/MRR2LPQvba7F0LfKfBCU8+u8Vy+x2bVRHFxcUVKYxksXrwYgIkTa694kJGRwdSpU1myZEmd6/6+4HQ2unXrxurVq6VtL5etVyjh670LZ20U8nE38dcAZ+l2IUQhML783P/icDZOANcoZ8N32rdvH2wTwoKA6xgZ7wgKdYfz2WCK9689dfDss8+Smppa46MmXM0U7N27l7i4ONq2bVtrm+joaDp06MDRo0cr6kzI5MyZM4wfPx6LxcL27dtJTExE0zSXD3ds8VSv2oiMjPT25fkNX++dLG08JRRmr8KBQOvo7gzHRsCuadpPwA7gG2A+MBHHbMdIIUTwF0zDgN69ewfbhLDAJx29mUmwlkBMqiNA1BUxqWC3Spux8JRJkyZx88031/jckCFDqh1zVXm3oKCAJk2auLyuc8YhPz+/IoDy448/ZuHChRVF/QCuvPJKHn30Ud566y2efvppBg92vRvfaDTy5JNPumxX03mu8FSv2rj88ss5evSo2+0vxm63V0vZ7yzGlZ+fX22mISkpyWXgrC/3DuRp4ymqGrQcAq2juw7HeuAKHCXdOwATyo8LIBZ4UdO0b3A4IruFEBbZhjYUFixYoGqpSCDgOtrt0PVWx24UV3S71ZGfI0i0a9fOrS9xi8XCgw8+yJo1a8jJyaFp06b88Y9/ZOrUqVXaxcfHV1T6rAtnG+eXl91u56mnnuLjjy+k7LHb7ezdu5du3brxl7/8hccee4xvv/3WZd+JiYk899xzLtt5g7t6uSI3N9enX/7Hjh2jdevWNT43duzYaseOHDniMtGYt/fOiSxtPMVXLRUOAq2ju9tihwBompaOo2qs81HZCbmrvLlV07T9wA4hhPrmVDQMjNHQ90HH1te6AkKNMXDVg2AI/V9oVquVJk2a8NFHH9G7d2/27NnDsGHDaNq0KbfccktFu86dO7N582YOHTpU69R8cXFxRaZN5y/kVatWERsbyxVXXFHR7sCBAwghaN++PR06dODcuXNs3bqVq6++2qW9M2bMqCit7S6TJk2iWbNmHp0TLJo0acLatWurHNu9ezePP/44r7zyCt26davW3hXe3juFwhs8ChoVQhwGDgMfOY+V596o7IR0B7oBXQHlcHhIfHzw1vbDiaDoaIx15NmYP75mp8MYAxMWO/7WA2JiYpg+fTq5ubnodDq6d+/OiBEj2Lp1axWHY9y4cWzevJmsrCxeeumlGvt67733KC0tZdy4C/kAly1bVu3X8a5du+jSpUvFUsB1113Hp59+6rbDYbG4P7kaERHBbbfd5nZ7X6krr4Q7mEymano5t3/37NnT5c6OmvD23gUbX7VUOAi0jj5nxhFCHBRCfCCEeFQI0R/H1tjOQIavfTdEbr311mCbEBYERUdDlCOp19Q9cM0jENcUdHrH32segYf31LukX+CIBQDHjMeWLVvo2rVrleczMzNp27Yt//jHP/j888+rnf/tt9/y1FNPkZqayrRp0yqO79q1i44dO1Zpu2vXLrp3717x/44dO7Jr1y637CwpKalzq6UQguLiYoYMGUJERATz5s0LaHCxU8dQwtt7F2xCUcv6SKB1lJ4dqTz/xv7yh8JDFi5cqJwOCQRNR0OU49H/TzDwSYgwgq3UEbNRD5ZRaiI3N5ekpCSmTJlCQkICd955Z5XnY2Ji+PTTT7n++usZMWIE48ePZ+DAgej1erZv3877779PbGwsS5curTLNf+7cuWozUbt27aoSjxAfH8+5c+ekvA6z2cyYMWPYsGED8+bNY8KECa5PkohTx1DC23sXbEJRy/pIoHVUaS1DDHcCuBSuCbqOxkrOhb5+b+Gz2Ww89thjbNmyhQ0bNtS4s+Pyyy9nz549vP7663zyySd89tln2Gw2Lr30Uh566CEef/zxal9YjRo1qnafdu/ezbPPPlvx/4KCAho1aiTldZSWllJYWBgUZwMcOoYi3ty7YBOqWtY3Aq2jFIdD07QWOEq99wWa4Ni9chrYCrwlhPhVxnUUCoX3DBw4EFcJgGt6/plnnmHbtm1s2LCBlJSUWs9NSEjgr3/9K3/961/dsqd79+7s339hIvTUqVOcOXOmypLN/v37qyyx+EJCQgJbt251u8aKt3oFEndsdAdP71190EYRevgcw1FeQ+UH4GZgH/ABsLD83zcD+zRNcx3xpQAIyi+vcETpKIcpU6awdetWNmzYIH373OjRo1m3bl3F/7/77jvatGlTsRNCCMGGDRukVhwNZkE3tQQgD6WlHAKto4x332vAu0KI9kKIB4UQ04UQ/1P+7w7Au9RQ7E1RMzt27Ai2CWGB0tF3fvnlF/71r39x6NAhWrduTWxsLLGxsQwfPlxK/zfccANFRUV89913gGM5pfJsxhdffEFCQgL9+vWTcr1gU1xcf+rnhDpKSzkEWkcZDkcn4I06nv8Pjl0rCjc4ePBgsE0IC5SOvnPppZcihODXX3+lqKio4rFqlZwKBjqdjhdffJHp06cD8OSTT1ZJAjZ9+nS/F3sLJCUlJcE2IWxQWsoh0DrKiOH4DbgaOFDL81eXt1EoFIoq3HzzzbWmxt6wYUOArVEoFP5EhsPxCvCmpml9cJSoP40jaLQJMARHPo6pEq7TIBg0aFCwTQgLlI7yiIuLC7YJYYHSUR5KSzkEWkefHQ4hxCxN03KAR4B7AWfqMhuOwm53CiE+qu18RVU8Tc2sqBmlo0KhUIQWUkK2hRCLhBC/A6KB5uWPaCHE75Sz4RmbNm0KtglhgdJRHoWFhcE2ISxQOspDaSmHQOsoNfGXEKIMFa+hUCgUCoXiIvy+KV3TtEs0TZvj7+uEC506dQq2CWGB0lEeUVH1q/ZLqKJ0lIfSUg6B1jEQWXCSuFC6XuGCzp3VDmIZKB3lYTLV79TsoYLSUR5KSzkEWkcZmUbvrOsBjJJgZ4Nh0aJFwTYhLFA6ykNW8bSGjtJRHkpLOQRaRxkxHHOBYhxbYWsieLmEFQqFQqFQhAQynIGTOLa+xtX0wJH4S+EmqkaAHJSO8oiIiHDdSOESpaM8lJZyCLSOMhyOnUCPOp4XgCbhOg2Cm266KdgmhAVKR3ko500OSkd5KC3lUB+Lt72Cowx9bRwCrpVwnQbB/Pnzg21CWKB0lEdOTk6wTQgLlI7yUFrKIdA6+uxwCCG+FELUWs1JCHFeCKGyMLmJqoIoB6WjPOx2e7BNCAsCrePRo0dp1apVQK8ZKNSYlEOgdVQBnQqFImh88cUXaJrG3Llzg22KIkRRYyR8UA5HiJGRkRFsE8ICpWN1nB/cmqaRlZVVYxtN0xg5cmSVY8nJyR5dp7i4mNdee41+/fqRlJSEwWCgcePG3HDDDcydO7fB1blx6p6WluaR7uGMr2PE0zGpqJlA6+ixw6Fp2mE3Hoc0TftW07QFmqaN94fh4crmzZuDbUJYEGwdzVYzFpsFu7BjsVkwW81Btedinn32Wcxm92wqKipyu99Dhw5xxRVX8Mgjj2AymXjqqaeYPXs2jz76KGVlZdx99908/fTT3podcGRPOXuie7giY4xUHpMWi4WioqJaHzabzd8vqd7iyXtbBt7McOgAI9Cq/NECiCr/6zxmAtoCfwA+0jRtuaZpah+TGxw+fDjYJoQFwdKxxFpCjjmHN3e/yfAlw+nxfg+GLxnOm7vfJNecS4m1JCh2VaZXr16cPHmS1157za32FovFrXZms5mRI0dy+PBhlixZwtq1a5k2bRp33303TzzxBGvXrmX79u31Jq5g5cqV9OrVi9OnT0vpr3v37h7p7g0PPPAAiYmJJCYm0rVrV44dO1bx/8TERLZs2eLzNZwzNl988YXH58oaI5XH5L333ktcXFytjy+//NJjOxsK7r63ZeGNw9EVOAF8CVwDmIQQTXE4Gf3Kjx/HUTG2A/A5cAPwsAyDFYpQpcRawr6cfQz/ZDhz9s4h25yNTdjINmczZ+8crv/kevbl7Au60/H73/+enj17MnPmTJdR6oWFhbz44otceeWVpKSkEBkZSdu2bXnyySerBeZmZWVx4MABHnvsMcaNG1djf7179+aBBx6Q9lr8xcqVKxk/fjxGo1Fa+ufRo0e7rTs4tH/mmWfc0t7JrFmzyMvLIy8vjz179tCyZcuK/+fl5XHNNddIeS3e4o8xMn/+fIQQtT4GDhwoyXqFr3jjcLwAJACDhBDbhBB2ACGEXQixFRgCJAIvCCF+Am7G4aBMkGNyeDNs2LBgmxAWBEPH4rJiJq+bXOvyidlqZvK6yRSXBXcHjaZpzJw5k/z8fF544YU62544cYIPPviAXr168Ze//IVXX32VHj168PLLL3PjjTdWabt48WIAJk2a5DfbA4HT2ejWrRurV68mISFBSr9RUVFu6w4O7bOystzSvr4ga4zEx8fLMKfBE2gdvXE4bgQ+FULUGNUjhCgFlgPjyv9fDKwH2ntrZEOisLAw2CaEBYHW0Ww1M2//PJexGmarmff2vxf0WY5BgwYxZMgQZs2axS+//FJru/T0dA4ePMgbb7zBww8/zB//+Ec++ugj/vznP7NmzRq2b99e0Xbv3r3ExcWRnp4eiJfgF86cOcP48eOxWCxs376dxMTEikDbuh7urIULIdzWHRza//rrr25pX1+QNUbUtlg5BFpHb2qpJOOI4agLQ3k7J6e8vFaDY9u2barSqQR80bHLvC4en7Pl1i0s/3m5W22XH15ORqcMei/o7dE1vr/re4/tqouZM2fSs2dP/vKXv/Dee+/V2MZoNJKfnw+A1WqlsLAQm83G4MGDmTFjBl9//TV9+vQBoKCggMaNG0ux7eOPP2bhwoUsWbLE576uu+46nn76aQYPHuyyrdFo5Mknn/T4Gkajq4/EC+vl7uh+cZ+utK+JVq1acfToUfdfRA3Y7XZyc3OrHHOOh/z8fM6ePVvluaSkJHS62n/HyhojRUVFqkS9BAKtozdOwGFgvKZpfxFCVPsZqWlaPDAeOFLpcFMg9+K2CkW4EGuIJbfEvSGea84l1hjrZ4tcc8UVV/CHP/yBBQsW8Pjjj9O1a9ca282ZM4cFCxawb9++ar+IKlebjI+PlzKzZLfbeeqpp/j444997gvgL3/5C4899hjffvuty7aJiYk899xzUq5bG+7qDo6YjDfffNOl9v7i2LFjtG7dusbnxo4dW+3YkSNH6gz4lDVGFPUTbxyO2cA/gK81TXsBR1rz00BjHEGkfwaaAY8CaJqmAQOBXb6bG/5069Yt2CaEBb7o6M1MgsVmIcmURLY522XbpKgkbMImfcbCG2bMmMHixYt54oknWLWqesLgV199lSeffJKhQ4cyZcoUmjVrhtFo5MSJE2RkZFT5EuzcuTObN2/m8OHDPk2Zr1q1itjYWK644gqv+6jMwIEDOXfuHFu3buXqq13XkpwxY4bHuUImTZpEs2bN6mxjMBiqXKMu3cGh/WOPPeaW9v6iSZMmrF27tsqx3bt38/jjj/PKK69Ue581adKkzv5kjRE1uyGHQOvoscMhhHhd07QOwP1ATfOBGjBbCPF6+f/TgA+BtTW0VVxE27Ztg21CWBBoHe3Czqg2o5izd47LtqPSRyGECIBVrmndujWTJ0/m9ddfZ+PGjdWef//992nVqhWrVq2qMlX++eefV2s7fvx4Nm/eTFZWFn/729+8tmnZsmXVlj+Ki4u55557+PLLL8nPz6d9+/b85z//4corrwQcux/+/ve/c/LkSW6++Ways7MZNmwYDz74IJqmcd111/Hpp5+67XB4sl0wIiKC2267zWW7yg6HK93BM+39hclkqnYv9HrH10bPnj093gEia4zI2jnU0Am0jl5lGhVCPAD0B94FvsOxzLKr/P8DhRD3V2p7WgjxlBBig+/mhj8y1qwVgdcxSh/FXR3vIkpf9y+GKH0Ud3a6E5M+dD4wn3nmGeLj43niiSeqPRcREYHdbq/iIFmtVl566aVqbTMzM+nQoQOvvPIKy5Ytq/FaO3fuZNasWXXas2vXLjp27FjlWH5+PrfccgsHDhwgNzeXfv368fDDjp32//73v/nf//1fFi9ezLlz54iMjGTVqlVVfn137NiRXbt21XldJyUlJXVusxRCUFxczJAhQ4iIiGDevHm0b+86Jv7irax16Q4O7TVNc0v7+oKsMRKI5aSGQKB19Dq1uRBiixAiUwjRSwjRTgjRs/z/KlWmokESbYjmP4P/U6vTEaWP4j+D/0O0PjrAltVNSkoK06ZNY8eOHdWeu+mmmzh27BjDhw/nzTff5OWXX6ZXr16cP3++Wtvo6GhWrFhB69atGTt2LMOGDeOVV17h3Xff5eWXX2b48OH07t2bY8eO1WnPuXPnqm3Xa9q0KTfeeCOxsbEYjUZuuukmzp07R0FBAX/+85+ZN28eXbp0Qa/Xc8cdd2Cz2arERsTHx0v7cDWbzYwZM4YNGzYwb948Jkzwbsd/XbqDQ/sjR464pX19QdYYUdRPfN45Uh4kmgDkCyEKfDepYZOWlhZsE8KCYOho0pvolNyJz8d9znv732P54eXkmnNJikpiVPoo7ux0J9H66JCa3XDy6KOPMmvWLH777bcqx6dNm0ZxcTEffPABDz/8ME2aNOGWW27h7rvvrjYLAY6lrO+++4633nqLJUuW8MILL1BUVERSUhK9evVi3rx5LpcfGjVqREFB1Y+SFStW8I9//IMffviB8+fPU1ZWxrBhw9i4cSNJSUlVdmucPXuWVq1aVcmfUVBQQKNGjbyRphqlpaUUFhZ67GzUtHujNt3Bob0Qgnfeecct7esLMsaIc1lH4RuB1lHzZi25PE35NCATqBzCfATIAl6pLU9HKKFpmgGYCNwLtCk/fBiYB/ynPKdIbecKIGTW4hWe88MPP3D55Zf7pW+z1YxO02HQGSizlyGECElHIxSZNGkS8fHxvPLKKwBs3bqV8ePH8+GHH9K3b18iIyP5wx/+QMeOHWnatClvv/02X3/9dcX5t99+O0VFRSxdurTi2L333ktKSgozZ86UYqPdbq9z+6dCEY64+sx07BEBIYRW0/PeFG8z4ggAfQFH3ZRfge3lf1uVH19X3i7UmQu8gcNRegp4BsgGXgPeD4pBqgSzFIKtY5Q+isiISHSajsiIyHrtbFyca8HfjB49mnXr1lX8/7vvviM1NZWuXbtWxDB89NFH9OjRg44dO7J792527dpFcXExr776Kh9//HGV5RQhBBs2bJBajdUbZyPQOoYzSks5BFpHb1z0R3Fsc10JXC6EaCWEuEoI0QpH7ZTlOGqqPCrLSH+gaVoz4DZgqRDiJiHEf4QQ/wauB7YAN2uaJmcO1gNKS2udVFF4gNJRHoGexbvhhhsoKiriu+++A+C2224jNTWVSy65hF69epGcnIwQgh49etC3b1+mTJnCwIEDad++PaWlpTRv3rxKwOgXX3xBQkIC/fr1C+jruBg1GyoPpaUcAq2jNw7HbcBeYGx5rZQKhBA/40hpvo/Qr50SV/73ZOWDwnEHfgPsQPBLeyoUDQydTseLL77I9OnTAUf2yg0bNlBcXMwPP/zAxIkTsdvtNG3aFICXX36ZvLw8jh8/zpQpUzh69GgVh2P69On8/e9/D8prUSgUF/A4hkPTtGLgX0KImvdyOdrMBB4SQoRWOH4lNE3TAz/iqGr7ELAOiADGAC8DLwoh/lLH+X6J4VBrw3JwR0d/xnCEE0KIirXZUOebb77h2muvpaCgIORsrk86hjpKSzl4qqOvMRzehKiWAq7yMscAZV70HTCEEFZN00bjCBB9u9JTZTicpf/UdJ6maZOAilKHs2fPBqBPnz6kpqaycuVKAFq2bMnQoUPJysoCHHURMjIyWLp0KWfOnAEcSXAOHTrE7t27Aejbty/79+8nLy8PcBRv6t+/f0U8QnR0NLfffjuLFy+uqG9wyy23sHfvXvbt2wfAgAED0Ov1rF+/HoD27dvTu3dvFixYADi2B956660sXLiwYifAhAkT2LFjBwcPHgQchb2sViubNm0CoFOnTnTu3JlFixYBjl+cN910E/Pnz6/ILZCRkVGRQRAc1VoLCwvZtm0b4Mj82bZt24r8GGlpaYwdO5a5c+dWLH9kZmayZs2aii1xI0aMIDs7u6JIVc+ePWnRokXF/v1mzZoxcuRIsrKyKhyMzMxMVqxYwY8//kh8fDxjxozh+PHj7Ny5s9p96t69O/n5+cTHx1esZWqaRkpKCufOnavINtmoUSNKSkowmx2F2WJjY9HpdBX6RUZGEhsbW1FyXKfTkZycTG5uLjabrcY+4uIcE2zONM8mk4no6OiK+xoREUFSUlKVPpKSkiguLqakpKTGPqKiojCZTBXbP5195OTkVGSlTE5OpqioqCKxVXx8PHa7vaL42MV96PV6dDodZWVlFc51SkoKBQUFFfctISEBq9VasV0zOjoao9FYMY4NBgOJiYlkZ1/IwpqamkpeXh5lZY6PicTEREpLSyvGU0xMDHq9vqJuh9FodOs+7dy5kw4dOnD27NmQu095eXlERET47T41atSIs2fP1ov75Ov7yWAwoNfr6+X7KZTu0+nTpyvyvbhzn6xWa8V3Xk3fT67wZoZjM45Yjc5CiGp5nDVNS8Gx5HJQCNHfo869QNO0RGCqB6f8UwiRW35uaxxBrnnABiAauAtHjMrdQohaKyv5a4Zj9uzZ9b68dyjgjo5qhsM9srOzSU1NDbYZ9R6lozyUlnLwVMdgzHD8G1gIbNc0bQawEUfMQxMcX9TPAKnAFC/69oZE4FkP2s8HcjVNawLsALKEEBXlITVNm48jaPTfmqYtF0KolHYKhUKhUPiIN7VUPtI0rTvwJI5CbhejAS8LIT7y0TZ37Tlafk1PmQQkA1VKUgoh7JqmLQGuAnoA63210RNGjBgRyMuFLUpHeVROoKXwHqWjPJSWcgi0jt7WUnka6AvM4UItle/K/3915RmDEKZ5+d+IGp7TX/Q3YFRel1N4j9JRHp5WTlXUjNJRHkpLOQRaR19qqfxXCDGxUi2VXuX//0qmgX5kf/nfjMoHy7OP3gZYcThRAcUZIKnwDaWjPOpz7Y5QQukoD6WlHAKtY0NOSP8u8DAwWdO0FsBqHEGjtwNdgb8LIc4EyhhzqQ2dzrFTw2K1YbdDlLGmyZe6zzdE6Ciz2T0+X6FQKBQKf+LS4dA0bY6XfQshxL1enut3hBAFmqb9DvgrMAJHhtEyHEnLJuGoCeN3SspsFFmsZH15mE++PUHO+VKSY4yM69GczH7pxEbqMRlqdxx8Pb8y4eS09OzZM9gmhA3ubHdTuEbpKA+lpRwCraPLbbGaptm97FsIIernt5UbyNgWW1JmY8/xPO6aswNzma3a81GGCObd04euLRJqdBp8Pb9yP7KcllDh9OnTNG7cuM42aluse5SVlWEwGIJtRr1H6SgPpaUcPNUxEMXbWnv5SHfzNTRYiizWWp0FAHOZjbvmbKfIUnNgj6/nwwWnpd/Mjby56TBnCi3Y7IIzhRbe3HSYfjM3sud4PiW1XKPK9UptjuUgIbBYbZhLXZ/jL5zJwRS+40w4pPANpaM8lJZyCLSOLpdUhBC/BMKQhoa51EbWl4drdRYq2pXZeOfLI0z4XUtO5pWg0xxeZNMEE+99ddTt86cMakuUsfrtdtdp+fKJa2ud5QjHGRKFQqFQyKUhB40GFZ0OPvn2hFttP/nuOJP6p/P7ty5sANr11yEenX//wDY8NG8H8VEGEqIMJEYZGdIxjWW7TvrktNS2rOOcIZm37Re3lnUqriUpjqRZs2Yen6OoGTV1LQelozyUlnIItI7K4QgShggdOefdK6GeU1RKXJSe3q0aYRdgswviTAaPzo8xRrDuh6qbbu7qeyn/9537TsuD17Vlx9FcmsSbaBxvwqjXSZkhAfmzJCNHjnS7raJuEhMTg21CWKB0lIfSUg6B1lE5HEGizGYnOcbImUKLy7bJsUZsNsHH9/etOGax2jw6v9Rm5607epJvLqPAXEZecZnHTkukXsfNb16YZfnnrVew92S+z8s6smdJALKyssjMzHSrraJuVN0KOSgd5aG0lEOgdVR10IOE3Q7jejR33RAYd0UL7BfthvH0fA0Y1qkJv+91CZn90nl8WAesdofT4w7JsUaKS21c0TKRpgkmdBr0b5/CUg9mSOwCvvo5h9/yzdjtF16PjODXirblgav33HNP0ANXFQqFQnEB5XAEiShjBJn90oly8Ys92hhBZr/W1WYGfD0fPHdaDBEa//fA1Xz11CAOzhhOfJTnMyR/ePu/XPXiBjo++znD/rGZLw9m8/Zm94NnzaU1Ox0lZTbOFll4ff1B+s3cSLtnPqffzI28vv4gZ4ssbu2yUbjmgQce4JJLLiE+Pp7mzZszderUirLaCkWoYbFYmDhxIunp6cTGxtKuXTtee+21YJvVYFEORxCJjdQz754+tToN0cYI5t7dh5jImle+fD3fF6dFXx7U6dEMSZmNnpc2IjnGSEmZnQOnC+nSIsGjOBKdVn17t8ytvYrqVJ5yffDBB/nxxx8pKChg165d7N69m5kzZ9Z5/tGjR2nVqpWfrQx91BKAPNzV0mq10qRJE9asWUNBQQEff/wxL774IosWLarzvHAfs87XF+gxqRyOIGIyRNC1RQJfPnEtkwe0oXF8JHqdRuP4SCYPaMOXf7q2zrgFX88H35wWj2dIdBpLJvdl51+GsOe5oax46BriPYwjiYjQeHjhd7yx8RBr9p3iZJ5Z6pKM43UJ7EIghONv5eWfhsQXX3yBpmnMmjWr4ljHjh2JiYmp+L+maRw6dCgY5tU7GmLuCOcYmjt3rtR+3dUyJiaG6dOn07ZtW3Q6Hd27d2fEiBFs3bpVqj31lUCPSeVwBBmTIYKU2EimDGrH5mnXcmDG9Wyedi1TBrUlOTbSZZDkxecfnDHc4/O9dVp8mSGJNxno3DyBMg/jSArNVpbtOsnfVx9g0vs72fbzWWZLWJIBh6NRZrNzurCEA6cK2XuigAOnCjldWFK+Rdd9x8NuNmO3WBB2O3aLBbvZ7Pa5geDcuXOYTCY0TWP+/Pl1trXZqmr70ksvERcXR1paGnv27OGhhx7yp6l+wflF+Morr9TaRtM0n3Y7FRQUMH36dHr06EFcXBzNmjWjY8eOTJs2jdOnT3vdbyjgyfipjYv1iY6OrlOfyvesrKysxj5d3TOr1cqWLVvo2rWrVzYHE3+M2dp09BfK4QgRoowRRBoieCcri0hDRI0xF+6cr9NpHp/vi9Pi67KOp7Mk5jIbM8d34d5rWtOvXQpDOjbxKHBVq2FJxmGHwFxm48CpQrILLZTZ7AgcDkh2oYUDpwoxl9lcOh32khKsOTlkz5rFz0OG8GOXrvw8ZAjZs2ZhzcnBXlLilq3+ZsGCBZSWltK6dWveeecdj8598sknKSwsZP/+/UyaNIkmTZr4ycr6y8GDB+nWrRvPPvss6enpvPTSS0yfPp3f/e53vP7663Tq1ImvvgpcYW273dsKFTXjy/iBmvV57bXX/K7PlClTSEhI4M4775Tet8I1yuEIMcaMGRO0a3vjtPi6rOPpLEmzxChu6d2Sv4zsyPv3XkmcSe/RkoxepzH89S95/OPdFJVYKbJYsdkFNiE4cvZ8td1ATuzlz9vqqJ1jLynBvHcvhwYPIfftLKxnssFmw3omm9y3szg0eAgle/eGhNPxzjvvcO211zJ16lQ2bdrEzz//XGvb2go8XX755XTv3p2MjIxqzz3wwAMkJiaSmJhI165dOXbsWMX/ExMT2bJli8+vwfmL74svvvC5L5kUFxczatQoTpw4wfLly1m8eDF//OMfmTJlCnPmzGHbtm1YrVbGjBkTkJmOlStX0qtXL6nX8mT8XExt+kyaNMltfbzJH/HYY4+xZcsWVq1ahdFYfVbV32M22OO1ptfXrl07qe9JVyiHI8Q4fvx4sE3wGF+XdXyZJfE0cLWwxMoPvxWweOdx8sxlHM4uIt9cxtkiS63OhhO7EI52tcxy2M+f59eJkxC1LJ8Is5ljEydhP3/eLXv9xbfffsuuXbu46667mDBhAgaDgXfffbfW9lZr7ctQNpuNn376qdrxWbNmkZeXR15eHnv27KFly5YV/8/Ly+Oaa66R8lpCkXfeeYeDBw/yyCOPMGLEiIrjzt08vXr14m9/+xvZ2dn8/e9/96stK1euZPz48RiNRkwmk5Q+PR0/F1ObPk7c0cfTnVFTp05lzZo1rF+/npSUlBrbhPuYren1nThxIqCvTzkcIcbOnTuDbYLXeLus48ssiadLMvoIR+Dq9DGdiImMINoYQbxJT16xe2uZtbWzmc3kzJ1bq7PhRJjN5MydF9SYjnfeeYeYmBjGjx9PcnIyI0aMYN68ebVOuzs/3IuKinj33XfJy8tDCMH333/P9OnTGTZsWCDNl0pxcTFnz56t8eEtixcvBmDixInVruUkIyMDg8HAkiVLvL6OK5zORrdu3Vi9ejUJCQlS+vV0/FxMbfpUpi59iouL+fXXX92+Z1OmTGHdunVs2LAhLHYKyRyzlcdkIFCZRhUhgckQgckQwZRB7Zg6uN2FWipC1Om4OJdk5m37pc7AUeeSTJzJQM9LG9Hz0kb88MMPtE2LQwiB1XZh1sIw+Ko6bT1Qw7H2//2KAjcr1BYsW0byvfdw4IoebrV3cvmPP3jUviZKSkr48MMPuemmmyp2m9x111383//9H6tXr2b48OG1nqtpGh988AGPPfYYpaWlpKWlMX78eJ5//nmf7QoWzz77LM8++6zUPvfu3UtcXBxt27attU10dDQdOnRg7969FBUVERsbK9WGM2fOMH78eCwWC9u3b3d7CaKwsLBOW3wZP0581ceTe/bLL7/wr3/9i8jISFq3bl1xvF+/fqxatcqtPkINf4zZQKEcjhCjT58+wTYhqFQu1Bapcy+NuXNJ5q4522t0OlwFrgpAH6FRZvN++6suLg5rTq5bba25uURI/oJxl08++YRz585x1113VRwbMWIEaWlpzJkzp8YvDOd6d0xMDGvXrvX4mq1ateLo0aNe2wyOoMfc3Kr65ufnV/y9+NddUlISOp3rCdxJkyZx88031/jckCFDvLK1oKCgxkDaytuJgYoZh/z8/Iov1I8//piFCxdW+WV/5ZVX8uijj/LWW2/x9NNPM3jwYJc2GI1GnnzySY9trym2oTLejJ+LqU2fi6lJH3Dcs1GjRtW4RHTxPbv00ksRLpZKa8LXMeuv8Qpyxqzz9akZjgZOOEz5BZrKSzLvfHmET747Tk5RKcmxRsZd0YLMfq2Jqav4m4DEaAPZ5XVpytbVHh2fGhdJo2gjOedLMZfaMJfZuLxJHPayMvTJSY5AURfok5IQNluNMxb28gDWs0UW8orLsNoE+giNxGgDZTY7EZqGTlfzTht3eOedd0hNTaVFixZV8mcMGTKEjz/+mLNnz1Zb446I8Lxar2yOHTtW5RdqZcaOHVvt2JEjR9xK3NSuXTu3vsDBkbXywQcfZP369Zw5c4amTZvyxz/+kalTp1ZpFx8fT0FBQbXz9fqqH7fONs4vVrvdzlNPPcXHH39c0cZut7N37166devGX/7yFx577DG+/fZbl7YmJiby3HPPufW6PMGb8XMxtelzMRfr46Rdu3YMHTrUpXMUTPw1XsGzMeuKi8ekv1EOR4ixcuVKJk2aFGwz6h0XL8noIzSsNuFySQZAp9NIiY0kp6i0zsBRnaaRGhuJPkJH88QowBFIqgF5xRbiR48hNyvLpa3xY8Ygaljvdm7NvXi3TJlNkF1oIaeolNYpMUSVx8l4ypEjR9i4cSNCCNq3b19jm/nz51f7AjWHQA6RJk2aVJtd2b17N48//jivvPIK3bp1q9ZeNpWzVqanp7Nnzx6GDRtG06ZNueWWWyrade7cmc2bN3Po0KEqywb5+fkVPyiKi4s5cOAArVq1qvj1vmrVKmJjY7niiisqzjlw4EDF/erQoQPnzp1j69atXH311S7tnTFjRp0BvzUxadIkmjVrVuNz3o6fi6lNn8rUpE9lKmsZioTCeHWHQOuoHA5FWOFckpk9e7ZHjluEptE6JabWrbG68ucvTq2u0zTsQpBnj6B5xl2cW7CgzsBRLTqa5LszOFJgQxQUEh2pJ9oYQaxRDxpubc3t0CQOHZ47HO+++y5CCN5+++0a1/SfeeYZ3nnnHZdfGMHAZDJV+1Xn/HXWs2dPBg4c6HcbnFkrnVTOWlnZ4Rg3bhybN28mKyuLl156qca+3nvvPUpLSxk3blzFsWXLllV7jbt27aJLly4V0+3XXXcdn376qdsOh8Xiupq0k4iICG677bZan5c1frzVpz4RCuM1FFEOR4jRsmXLYJsQFniqo06nEWWIoEOTuBqXM1JjI9HVtpwhwGTQUWSLpMXs2RyfVPPWWC06mktmv4Ut0oS5uAyBY0YjB2jRKBqL1eb21tzGcaY6ZznsdgEaaA7zsNvszJ07ly5dupCZmVnjOfv27eO5555jx44d9O7du+J4KCyphCLOrJV/+tOfqhzPzMzk3//+N//4xz8YOHAg119/PXAhPuLbb7/lqaeeIjU1lWnTplWct2vXLu6///4qfe3atYvu3btX/L9jx46sWbPGLftK3Mj3YjabGTNmDBs2bGDevHm1zlzY7d6Pn4upTR8ntelTmVBeTqlPBFpHtS02xBg6dGiwTQgLvNFRp9MwROhoHGeiQ+M4OjePp0PjOBrHmdBH6Gr9gncuyZw02ylt04H0tWtImpiJPi0N9Hr0aWkkTcwkfe0aIjt1IjImmo7N4klPiaVJvIl4k0HK1lyoPT37R8tW8Ouvv9b5i3H8+PEA1TJHRkVFuWVXQ6O2rJUxMTF8+umnNGnShBEjRvD73/+eWbNmsXDhQjIzM7nqqqvQ6XQsXbq0ylT6uXPniI+Pr9LXxQ5HfHw8586dk2L/xc7GhAkTam27Zs0afv3114oxUhO1jZ+LqU2f2bNn16lPZS7WSeEdgdZRORwhRpYbMQAK1/iio07nmMnQymc03ImXcC7JnDTb+cUWieHuibRes5rL9uym9ZrVGO+eiC0uAV2kI7I+QqcRa9KTFm+iVUoMETqtytbcurDaBJoGpdaqO3LqSs8+tzwx0/BRY2pNXNa5c2fat2/PwoULq8RtFBUVuWVXQ8JV1srLL7+cPXv28Oyzz3Lw4EH+9Kc/MXXqVLZs2cJDDz3Evn376Nu3b5VzGjVqVC2Ycvfu3VXW+wsKCmjUqJGU11BaWkphYaFLZwMuOBF1Oay1jZ+aqEmfhx9+uE59KuNLnhTFBQKto+bNliEFaJomAK+2XNWFp7EHippxR8cffviByy+/XNo169phUueSDI6lkgOnCimzuU6eZIjQ0S4tlv2/FWCI0BFj1JMQrSfaqOfAqUKXga8dmsRhiHD/t0Z2dnZIB+gFmqlTp7J+/XqPE0m50nHSpEnEx8dXFOc6deoUzZo1o6CgoCJw8t577yUlJYWZM2f69iLKsdvtbm/HDCXUmJSDpzq6+sx01qoSQtT4QVf/RlqYo9Ym5RAMHb1dkgEqtua6Q2K0AXOZjQidRpnNTp65FJsdKenZq7S1O3b5pKSkYBfCo2q54YovWStrKxzoZPTo0axbt67i/9999x1t2rSpcDaEEGzYsMGnCrYXUx+dDXCtpcI9Aq1j/RxtYUxNhbAUnhNMHb1ZknHGgVy8C6Zau/KtuXEmAx2bxtO+cRzNE6NIiJITAwK1x4GcLixxZH9toI6HM2vloUOHaN26NbGxscTGxrqV7ApwmZ/ihhtuoKioiO+++w5wLKdUjt/44osvSEhIoF+/fl6/hnDBlZYK9wi0jsrhCDGWLl0abBPCgvqoY0QtW2+dXLw1V9M0TIYIkssdFU9jQM5brNVmROqKA8kutHDgVCHmMluDdDqcWStLSkooKiqqeLibIttVsKdOp+PFF1+s2Hr75JNPVkkCNn36dL8Xe6svyAqcbegEWke1LTbEOHPmTLBNCAvqo46+bM31JD27PkLDZhf8nF2ETtMceUAi9cRFGdDrNL/mAmnIuJOE6+abb641bfWGDRtkm1Rv8TShmaJmAq2jcjgUihBCp9PQodE4zkTjOBOaBs7vfndiQJzp2esiMdqAxWonUh+BxWqjyGKlyGJFH6Hzay4QhIvXoFAowhrlcIQYde1zV7hPfdex8hezO3Fd3qRn79AkjjKbnfPlDkd8lJ6fTrtOFgWOOJDGcdWLZ0Hdu3VSYiN9rgdTX5G1nVWhtJRFoHVUMRwhRuWCSArvaYg6ehoDAo4ttonRRlo0iibCiziQi1ExILXjTuZPhXsoLeUQaB2VwxFi7N69O9gmhAUNUcfKMSCpcZEYInRoOLbqpsZFclmTuDoLvznjQNzBGQfy46kCjp8rJq+4FKvNjq08xsNVDIitAeb/CYUieOGC0lIOgdZRLakoGjRCiLDa0+91DAh4HAdSaLFSarWTay0l93yp9HowCoUidJCR5FLNcIQYdaXzVbiPOzoajcaw/aUUiFwgiVEG2qbF0iTBRGykXlo9mMo4k48JIep98rGayqwrvENpKQdPdDSbzURGRvp0PTXDEWLExcUF24SwwB0dU1JSOH78OCkpKcTFxaHX68NqtsMbnHEgtS2LVI4D0TSNaKMjpXpanOMXkK8xIE7CMfC0vmb1DEWUlnJwpaMQAqvVSmFhIWfPnqVx48Y+XU85HCHG6tWrVS0VCbijY0JCApGRkWRnZ5OTk6P29pcjhAABxRYrxaWOAE+d7kK+jl/ya06JLIQgu8CCzY1ZiAidxv78SApKyog0RBCp11XMrAghKLXZy3fcVD3vOKDTIDk2EmOEVq8cxMLCQvWDQhJKSzm4o6Ner8dkMtGyZUtMppp3prmLcjgUDRqTycQll1wSbDNCEnOpDZ3mCBC12hxLGlHG2j8yzKU2Pl1/kDc3HXbZ933902mrj2Xa4j2AwwHp0TKRm3q24NrL0hjw8heYy2y1nh9liODLJ64lJda3Kd5AogozykNpKYdA66jmpUKM9PT0YJsQFigdfSfKGEGkIYKNGzYQaYio09lwts/sl06UIaLOdtHGCCb1T6fbJYk8OqQ9vVs5cgHsOHqOCJ1G1pdH6nQ2AMxlNt758gjm0vozK6XGpDyUlnIItI6qPL2X+Ks8fWlpqaoYKwGlozw80bKkzMae4/ncNWd7jU5DtDGCuXf3oWuLBEyVHJOCkjL++3MOfdskc93/buKMGztlGsdHsnnatUTW4eCYS23odI58I47Ccw7HKBioMSkPpaUcZOuoytPXM+bOnRtsE8ICpaM8PNHSZIiga4sEvnziWiYPaEPj+Ej0Oo3G8ZFMHtCGL/90bTVnAyDeZGBopyZER+rJOV/q1rVyikoxRNT8EVZSZuNskYXX1x+k38yNtPvzKvrN3Mjr6w9ytshCiYsZFH+gxqQ8lJZyCLSOKoZDoVBIxWSIwGSIYMqgdkwd3O7C7IKLGBCAMpud5BijWzMcybFG8s1ljP/PNgZ0SGVghzSubJ0EwJ7jedw1Z0eVWZYzhRbe3HSYedt+Yd491WdZFAqFf1EzHCFGdHR0sE0IC5SO8vBWS2cMiE6nuRUDAmC3w7gezd3q/8buzfni4BkOnz3Pu1uPctec7dw552tyz5dWczYqYy6zcdec7RRZAhv/ocakPJSWcgi0jiqGw0v8FcOhUDR0zhZZ6DdzY52Bo9HGCL7807UkRBn47tc8vjhwhi8OZHP31a04eLqI2Ztd75SZPKANUwa1dcsRUigUrmlQMRyapt2nadoCTdN+1DTN5nQK6mjfTNO09zRNy9Y0zaxp2jeapt0cKHtrYvHixcG8fNigdJRHoLWMjdQz754+te52cQaexkTq0Ufo6N0qiWnDLmPllH6M7NqMpd+dcOs6n3x33GVWVXAEnjpTtlusNsyl3sV/qDEpD6WlHAKtY7i59k8BycB3QAzQoraGmqYlAVuANOBVHDmFbgM+0jTtHiHEu/43tzq5ubnBuGzYoXSUR6C1rBx4+s6XR/jku+PkFJWSHGtk3BUtyOzXmphIfY3xF0a9zqOgU32Ejl2/5tG1eUK1zKUlZTaKLFayvjzMJ9+eIOd8KckxRsb1aE5mv3Ria7GhNtSYlIfSUg6B1jHcHI6BwDEhhF3TtBXU4XAATwKtgdFCiOUAmqa9A3wFvKJp2sdCiCJ/G6xQKKrjbeCpp0GnBeYyxr6xlZTYSK7tkMqgy9O4pl0qep2mAk8VCsmEbQxHucMxora1JE3TjgMlQoi2Fx2/A3gPuEUI8VEd/fslhiM/P5+EhASpfTZElI7yqE9amkttvO5mttPJA9pw3WWpTF20mxN5F4r49bo0kdf/0IPB/7tJarbT+qRjqKO0lINsHRtUDIe7aJrWFGgO/LeGp53HegfOogvs3bs3GJcNO5SO8qhPWnqS7TSzX2t6t05myxPXsnpqf/50fQd6XdqIW/u0ZN62o9KzndYnHUMdpaUcAq1jg3Q4gGblf2uKLnMec29vnmT27dsXjMuGHUpHedQ3LT0JOgXHr7IOTeJ4YGBbFk/uKz3w1Bl0etVVV/kUdKq4QH0bk6FKoHUMuRgOTdMSgakenPJPIYSnkS/Ozcc1LfSWXNSmCpqmTQIqqt3Mnj0bgD59+pCamsrKlSsBaNmyJUOHDiUrKwsAo9FIRkYGS5cu5cyZMwCMHz+eQ4cOsXv3bgD69u2LxWKp6DM9PZ3+/ftXZIOLjo7m9ttvZ/HixRXBPrfccgt79+6tGDgDBgxAr9ezfv16ANq3b0/v3r1ZsGABAPHx8dx6660sXLiQgoICACZMmMCOHTs4ePAgAIMGDcJqtbJp0yYAOnXqROfOnVm0aBEASUlJ3HTTTcyfP5/i4mIAMjIy2Lx5M4cPO6ayhw0bRmFhIdu2bQOgW7dutG3bliVLlgCQlpbG2LFjmTt3LqWljiC/zMxM1qxZw7FjxwAYMWIE2dnZbN++HYCePXvSokULli1bBkCzZs0YOXIkWVlZ2O12dDodmZmZrFixgrNnzzJ79mzGjBnD8ePH2blzp9T7FBcXx+rVqxvEfQL8dp9OnjwJIPU+7dmzh6uu6c/maQOYs/Uon3x3okrQacZVl5D923GWfLSKCRMmVLtPcXHxHgeevv3+IoQ5v+I+ffPNNySnNSGlSQvmfnXMYYMz6PSK5mT2a82p47/w1ZbNNGrUKOTfT/64T768n2w2G1u3bq2X76dQuk/Oz0lZ98kVIRfDoWlaK+CIB6e0E0IcqqGfWmM4NE3rCXwDvCyEeOKi56KB88CHQojb6rDTLzEcBw4coEOHDlL7bIgoHeVRn7V0Vrz1JNupxWqj38yNbtdz+fzh/vSYsZYrLklkSMcmDOnYmBaNomoMOnUSZYhQQac+UJ/HZCghW8d6F8MhhDgqhNA8eFRzNtzgZPnfmpZNnMfcm1OVjF4fcpNO9RKlozzqs5Z+z3Z6RXP2HM/DEKHj22N5zPz8Rx7/eDdniywhme00XKjPYzKUCLSOIedwBAIhxG84HIrf1fC089g3gbPoAs4pQYVvKB3l0dC09CTwdGK/dAZ0SOO7vwzhPxN6MO6K5tx9dSve++oX6UGnigs0tDHpLwKtY4N0OMr5EGijadoo5wFN0yKAh4A84LMg2aVQKIKMp4GnMZF6hndpyqu3dOf6Tk1CNtupQhFMwmpeqtx56Fb+37blx54p/3+eEOLflZq/BNwMfKBp2qs4Zjz+gGM7bKYQojAwVlelffv2wbhs2KF0lEdD1NKXbKcGL7KdniksIS3OVO152dlOw4WGOCb9QaB1DLmgUV/QNG0ucFctT/8ihGh1UfvmOByP4UAssB+YKYRY5Ma1/BI0ev78eWJiYqT22RBROsqjoWvpaeCpt0GnPVs2YlinJgzr1ISWydGUlNlU4GktNPQxKQvZOta7oFFfEEJk1BFc2qqG9ieEEHcIIVKEECYhRA93nA1/4tzGpfANpaM8GrqWngaeehx0eiIPg07HN7+c44XPfqD/3zfy8MLvOFdcqgJPa6Ghj0lZBFrHsHI4FAqFIth4HHTaPo1v/zqEf992BaO6NSM2Uk+/dim8u1V+tlOFIpgohyPEiI+PD7YJYYHSUR5KS8/xNOg0NlLPyK7N+NcfrmDnXwZzQ5emfsl2Gi5Bp2pMyiHQOoZVDEcg8VcMh0KhCA+cAZ+eBp0C2IWg3Z9XYbO7/nzR6zQOzhiOTlfd6VBBp4pA0qBiOMKBhQsXBtuEsEDpKA+lpXeYDBGkxEYyZVA7Nk+7lgMzrmfztGuZMqgtybGRdX7Rl9nsJMcY3bpOcqyRgpIynvpkD5sPZlNmswNUBJ32m7mRNzcd5kyhBZtdcKbQwpubDtNv5kb2HM+nxMWyTSiixqQcAq2jcjhCDGeef4VvKB3lobT0DWfQ6TtZWX7Jdjq2e3PW7j/Nh9t/5c452+n9wjr+teEnCsxlYRt0qsakHAKto3I4FAqFIsTwJPB0Uv90erduxJRB7WibFktecRlNE0xkbTmigk4VIYWK4fASlYcjtFE6ykNpKQdPdXQsieRz15ztNToOzsDTi/Nw/HS6kKaJUVz3yhdu5wLZPO1aIutRLIcak3JQeTgaODt27Ai2CWGB0lEeSks5eKpj5Wynkwe0oXF8JHqdRuP4SCYPaMOXf7q2xqRf7RrHEW2M8CjbqSHC9VdBKO10UWNSDoHWUTkcIcbBgweDbUJYoHSUh9JSDt7oeHHg6cEZw90KPPU06PR8qZVtP5+tcVdMSZmNs0UWXl9/kH4zN9Luz6voN3Mjr68/yNkiS1CCTtWYlEOgdQyrWioKhUIRjkQZLzgWkTrXSx/OoNM3Nx122XZs9+Z8vvcU0xbvITUukhFdmjKqW1OuuKQRpTZ7jenVnTtd5m37pcGmV1d4jprhCDEGDRoUbBPCAqWjPJSWcgikjp4EnWb2S8dcZqNlUjTZhRbmbjvK+P98xaT3vwnZ9OpqTMoh0DoqhyPEsFpVtLgMlI7yUFrKIdA6upvtNM6k586rWrFp2kCW/fFqJvZrTbMEE9d3bhKy6dXVmJRDoHVUDkeIsWnTpmCbEBYoHeWhtJRDoHX0NOhU0zS6XZLIn0d0ZMsT1zGiSzOp6dVlosakHAKto4rhUCgUijDFZIjAZIhgyqB2TB3cDkOEjjKbHbsQdSYgc1TG1Und6WIutaHTccEGe9XYFEX4oxyOEKNTp07BNiEsUDrKQ2kph2Dq6GnQKVzY6eJOLo/kWCNFFiur951iWOcmxJsMFc/5o56LGpNyCLSOKvGXl/gr8Vd+fj4JCQlS+2yIKB3lobSUQ33T0Vxq4/X1B93a6XJf/3TapsUybfEejHodgy5LY0z3ZvRrl8q+k/m1Bp5GGSK82uVS37QMVWTrqBJ/1TMWLVoUbBPCAqWjPJSWcqhvOnqy02Vi/3Tiowz8Lj2JMpudVXtP8eamw+Se988ul/qmZagSaB3VkopCoVAoasS508VVevXYSD3DOjVhWKcmnMovYfnuk1yaEs37//3F7V0uUwa1dauwnaL+omY4QoykpKRgmxAWKB3lobSUQ33U0Zv06k0STEzsn86A9ql+2+VSH7UMRQKto4rh8BJ/xXAoFApFKGIutaHTcHuni10I2v15VY3p0i9Gr9M4OGM4Ol3dTkdY7HQpLQadDiKMYCt1pIU1Rge2Dxk21ICK4ahnzJ8/P9gmhAVKR3koLeVQ33WMMkYQaYgo3zIb4XL5w9N6LvklZTz4wbds+PE0ZTZ7ledDqp5LaTFYS0DYHX9Li907r8wMRdmwaSa83g2mpzj+bpoJ57Mdz/u7Dxk2+IBaMAsxiovdHLyKOlE6ykNpKYeGpqMn9Vxu7N6cdftPs2LPb6zY8xspsUZGdWvG+B4taJMWw/fHq+908aqeiy+/7MvMYCmCr/4NexY6vqBjUqHrrdD3QTDGgiGq9nNPfgvzb4KySuOg8BRsfQ22z4bbl0CzK/zXhwwbfETNcCgUCoVCOp7uchnQIZVpwzrQJjWGs0WlvLv1KM8s3UtOkWOnS4cmcbxx82Xs/+tADv9tOPv/OpB/33wZ7RvHut7pImNm4OS38HpXx5dz4Smw2y58Wb/WFU5+V3s/pUXVv+ir9F8M88c72tWGr33IsMFHVAyHl/grhqO0tBSj0b1pSEXtKB3lobSUQ0PUsaTMxp7j+S53uVSenRBC8P2JfD759gQ9Wiay/7cCLk81MqRNDJE7/kPE9xdmF2xdbsXSezJrfz7PwbNlPHhdDTtdavtl78QQ7fqX/flsh1NR25e1s5+pexyzHpUpLXY4Nltfq0Opcq55BAb8ydGXL31c84hjyUcIx19dBGx5zTcb3MBVDIdyOLzEXw7HunXrGDx4sNQ+GyJKR3koLeXQUHUsKbNRUmbj1NlzXJoaR2SkCYulhKPZhTRLaURkefr1mrCU2fhi36/0izlG9Ee31OowFN/yEV+ev4SBHS8h8uK+fHEWwMMv+6nQeyLk/Oy4XlkxtL8e/tXDMRviirim8MB/4f2xYCtzLPvYSmHSJph1pft9TN4GL7e+cOyJozDrd+6f//Au0Jtct70IVw6HiuEIMQ4fdr3eqXCN0lEeSks51HsdvYx/MFGKyV5EwoFZaB87ZieiYlK5rOutaMkPArFAzTMLBr2OfpeaiJ5Vi7MBUFZM9KLf0++B76rXcykthm3/rtvZKO+Dbf+GbrfC4U1gKQRLgePvkP9xxGy4w+5F0PdheG/0hWN/zXU4Pe5wPhsiYx3LM5WJjPOsD1M8mBJA0zkekfGenR/hn5k45XAoFAqFonYkBUtqFwUqam4EKorSYiJ3/Mcth8H0zX+wd72NPVuW0amRHUNpPgx8yn1nYc8iuPph+PyJqsdH/K/nX/at+jlejyEaSs879HJndiEmFaylkLkBIgygj3T8tZV61ofdCk8eu3DMWuLZ+bZSr2Y4XKEcjhBj2LBhwTYhLFA6ykNpKYeg6ujt7gxfdza4G6g4dY/jC64k3/GlfT4bis6gazsY7Xv3HAbdnkXorn6Y7t+/cOHg0BmeOwt9JjlmFJwPT7+s7VbIWHHhWGmxwzlzZ0mm262gAS16Vj3uaR+i6rZi7HbfzpeEcjhCjMLCwmCbEBYoHeWhtJRDUHT0ZXYCPHMYLu7Ho+WMf0HKZbBscpWnNA+XI4Qpns9NN/BzkYE8EcsTlmIMnjoLN/y9+uvw5cvaGO3QevvsurUwxsBVD9YcrOlrHzJskIDaFhtibNu2LdgmhAVKR3koLeXgk47eJJvyeSunh/EPv+2BNc/AkkyYO9Ixk+L2csZH0OF6MMZBo9bQog9cNtLRd02BnDURk4pmtzL8yQ+5fsobRFzzEGeKyrB3vdWt0+1db8FqqyGBmPPL2tWXcJ0OQ6xjJqi2PowxMGGx42+t/fvYhwwbfETNcCgUCkWo4ssMhS+zE1YLaJrn8Q/b/nXhmMeBjonw9PGLXoN3swtt0+J4avjllFptWHpNJsqNX/aW3g8QEVFL3ILzy3r++Jr7cfVlbYhyLDtN3QNfvQG7K93Lbrc6HBVjTN2zTb72IcMGH1HbYr3EX9tiv/76a6688kqpfTZElI7yUFrKwWMdfckf4clWzqunQocb4L+zIP845P8KRacduytmpDpmRVyh08MzZ2Dr645tlXFNoOXv4J/dfd+K6c62VmMMPLwHYlKqHLYLwYqdRxiceILoRb+v1Vko/v0i1uU1Z2SP1rXXcykzQ2kR4qs30Cp9WYtut6J58mV9cTyNsHu+hOFrH+XnC50BzV7mnQ01oGqp1DPatm0bbBPCAqWjPJSWPlK+HNKnT2/Pam/4khlSp/NsdiKlHexfCie+cTgbWoRjS6gHyxnYy6Dfo9D9D9DmWkfSKTeXM+oMVPRhKaDMZufFtUdYm9eM4ge+w9Z3qsO50ekhrim2vlMpnvwta/Oa8dK6I5wvtfLN0dwaf0iWYCRPS+DH9vdjnrwT+5/PYJ68kx/a30+eFk8Jbm4lNUY7HCtN5/jrzRe9r32Un597Ls97G7xALamEGEuWLGHSpEnBNqPeo3SUh9LSSy5aDtE8Wg7xMH6i4xjY/jacOwrnjsAj+zxczkiAcVmQ0AISL4HYJo5fzsEOlgSflgLsdhjTvRkPL/6Rbi0SmHjVnVw3+U+YIk2UWEpYv/8Uby84xJ7j+dzXP53P955i2uI9tEmN4dbeLRnXoznJsZHlGVPzqtVzcRJliHC/nksIEej3tnI4FAqFQja+bif1dIbi6odh9wcXjlkKPNzKWQZdb656PEIvYXeFj7EPTgxRjkf/P8HAJ91eCnDWc5m37Rd2H8/nwY/zgR+rtYs2RjCxXzqf7f2N1LhIfs4+zwuf/cDLq39kUr907urbqlZnA8BcZuOuOdv58olr65XDEWjUkkqIkZaWFmwTwgKlozwavJbe7BDxZDnEWgbZB+CH5fDlq7D0AdAZPJ+hGPka3LkMHt7tWNsP8nIGUHV24ppHqixncM0jjrgLT6qTli8FLPt0udtLAbGReubd06fWInLOei6xJj13XtWKbU9ex+w7ejLosjRsdkHr1Biythyp1dlwYi6z8c6XRzCX1lFELsQI9HtbBY16ib+CRhUKRYjg7Q4RjwI2H4aUDrDsgarHZdS+8CHYsgrlwZI+72yQESzpJSVlNoosVt758giffHecnKJSkmONjLuiBZn9WhMTqa9xZuJUfglxJj3XvvIFZwotLq/TOD6SzdOurV7PpYGgirf5CX85HHPnziUjI0Nqnw0RpaM8GqSWvuwQKSuBf3bzrNDW29dCcjtH8GZyW2g7GL6Z41t1zzKzI8+Gq+UMd2cYgugwXIy3Y9JcakOngeH/27v3OKuq+v/jr88MM8BwjYsaICI3TRAUhZQUvH29pAWGBSom9iUrL6h9v9av0tSyi9U3xUslTjYa9IWExIKvgaECishFASGJEEYEEhCM2wBzW78/1h44DOfM2Wdm7cs55/N8PM7jyD777FnzPnucNXuv9VmFBVTV1FJrzLGry9ZTawx9vvciNbXp/1/frEBY9+AVqWe6xIzrn21dvC3LVFZWRt2EnKA5upPVWTa2pLffWyITVsB7r0D5a7D977D9Xfjm3zOvP3HHymNfa+r4Cdd1FxJzC2CdjUw09pxsWXzkykPzAn9XIapqaunYqtjXFY6OrYuprKmlRQPHPlBZQ0FBQqen9uh2hSnsn23tcCilck+TCmZlMENk8RPQqa99rpPxgM1KKEjyC9zFgMt6gy3jcHUi29TWwhcGdeU389Ov9jvyjK7Me3c7H3xcwRfP6kbH1s0Pv1Z3W6d04Qb+9NYWdu6vpGOrYr4wqCvjz+9J6xS3dXKJ3lJppKBuqdTW1lJQoGN5m0pzdCfrsmxSwaz9tsLmo2f6vyVy65uwtBSOOw06nwqtj4P5P2va7ZDE78XF+IkcE/Y5+dG+Q5z/0CsNDhwtKS7kpbuGc8uU5azcvJviwgKuOP0Exp5zEv27tuWdzbtjN63WdY46hiMgQXU4/vrXv3L55Zc7PWY+0hzdiTTLxtwS8TNYsqjE3sbY/QGUvw4frrJrgez8J9z7UWYVNu/dYQswZdoGPwM268Ro/EQchH1O2jocu7nx6SVJOwx1M11O79qWNzbsZPLiTbzyj+0YA2ec2J7HrzuT//jlggY7LC2LCln47QvplHBVJGiuc9QxHFlm06ZNUTchJ2iO7kSSZVNmiPi9HfLG4/Z2yEv3HtmeWGHT7y2RmspjxzS4qj9xeP/4jJ+Ig7DPyRZFhQzo1o6F374w7UyXi049notOPZ7NH1fwv0s2ccrxbXj2jfd9T6udcHHvtANZXQk7x5zqcIjI14BhwFlAH6Ag5aUdkc8DVwPnAicCu4G/A78wxvw1nBYrpY7RlKJZGRXM+iPcshi2vAWfHAAnDLC3RUxt0ypsQiwWylJutSgqpEVRIRMu7sOdl/RJO9Ol2ydKuPuyUzlUVcODs9/19TX+9PZm7rykj+umx0ZO3VIRkXKgI/A2cDLQrYEOx4fAHuAF4B9AB+Am4FTgHmPMj9J8rUBuqWzZsoWuXbs6PWY+0hzdCT1Lv7dE7lwFzdvDtndgy3LbcRjxeNNvh/htg99bIgEtlJXPsunnO87Tal3nmG+Lt10AtDPGDAOSzDM7ynXGmL7GmLuNMaXGmJ9hr4ysA+4TkU8E3NakduzwOZ1ONUhzdKfRWTaqQmcma4g8Bqun2xoW//fftrR33QwRP+puhyTT1AqbR+1rq2OuXPVOqAtl5bJs+vmum1brR8fWxRysrkn7h+yByhoOVddQawyHqms4UOmjg51E2DnmVIfDGFNuTKoavcfs+3KSbRXALKAIOMVx83xZsmRJFF8252iO7mScZdUB2LfDVtucOBB+2Mk+z3/IXjmoOpD6vZneEul7mS2UNWAMXPFz22FxUdLbdUlu9Jx0KZuyrJtW68fIM7oye9W/uOqx13hu2QccrDfu42BVDR/tO8TEees4/6FX6PO9Fzn/oVeYOG8dH+07dMz+6YSdY06N4XCkm/e8PdJWKJWNmjL+Yt92e3si06JZty8/eruLFUpBa1goJxIXkEs3rfamz5zM3dNXsmbrHu6evoqfvLiWMYNPZOw5J9GhVXHSFWu37z3Eb+Zv4JlF78d+xdqcGsORSERmAVemupeU4j0DgWXAG95tmWT73AzcjL39wpNPPgnAkCFD6Ny5M7Nnzwage/fuXHrppZSWlgJQXFzMuHHjmDlzJtu3277MqFGjWL9+PStX2rs/Q4cOZevWrZSXlwPQs2dPhg0bRllZGQAlJSWMHTuW6dOns2vXLgBGjx7N6tWrWbNmDQDDhw+nWbNmzJs3D4C+ffsyePBgpkyZAkDbtm0ZM2YMU6dOZc+ePQBcf/31LF26lHXr1gFw8cUXU11dzfz58wHo168f/fv3Z9q0aQB06NCBa665hsmTJ1NRYf+nPm7cOBYsWMCGDbY4zmWXXcbevXtZtGgRAAMHDqR3797MmDEDsIsGjRw5krKyssPV7saPH8/cuXMPj5y+8sor2bFjx+Fe+FlnnUW3bt144YUXAOjSpQtXXXUVpaWlh+eTjx8/nlmzZrF+/XpKSkoYMWIEmzdvZvny5U4/pzZt2jBnzpy8+JxOPPFE3nnnnbSf08aNG7nqwnMoemKQr/EXyxa/zv53ZnHCoXJ6Fe+g2e7yjNcQqb51OU8/O+Woz6lj21acVLyLoqmjU84QqRo9lc21nTm5z6dC+5xefPFFSkpKsvLnaevWrQCx+Xk67bTTEJGs+Xn61/aP2NPsE/zns2+lnFZbesMg2lZ/TElJCc8v38QfV2xnW6W9FTOoe3seHXMG//HwwrRTa1/55vkU1R6kvLw87ef06KOPUlJS4uxzuuGGG4AsqsMhIu2BOzN4y6PGmF1JjpNRh0NEOgOLgc7A2caYdWn2D2TQ6LZt2zj++OOdHjMfaY7u+M4y40XL+sILtx7ZVlQCX3wG3n8NXp+Y/hgNFc2KYcEsPSfdycYsM11AzhjD8vc/pmxRORee0pl/bNvHpAXpq51+Y3gv31NrXeeYdYW/RKQHsDGDt/QxxqxPchzfHQ4R6QC8jB23cWWy8R1J3hNIh2PSpEncfPPNTo+ZjzRHBw7PrihGan0U3ao+aMdq+F607A34y+3Q/Vz7OOF0KCwKZIZIHG6H6DnpTjZn2ZgF5A5W1TDsZ684X7HWdY5ZV/jLGFMOhLbUntfZ+Bt2OuxIP50NpXJavaJb4qfoVm2t/aWeyfiLlu1g9ORjX3NZNEsLZqmYacwCcsXNCti5399Cazv3VVJUGM/5IPFsVUi8qa8vAf2Aq+NQ8KtLly5RNyEnaI6NVDfoc+IAe2tk74e2pkXdoM9HBtglz6sOwI51sOQpmDYWft4TDu52MyU1gBkicaDnpDv5lmWmU2sra3xN1gw9x9jdUnEl3S0Vr7PxN6A/MMoYMyvD4wdyS0WpSPktunXrm/DcjbbYVp1rymxnZdGj6b9OukXL6sTolohSUTlQWcPEeet8rVj7tWE9OePE9vz7QBVXn9k16YyVA5U1FBQk3NapPfrKS2PlVeEvEfmciNwjIvcAvb1t93iP2+rt/hIwCJgBtBeRsfUePUNuPsDh0d2qafI+x6CLbi0thXNugf6j4HMTYcIK6DcSPjMhfYfAz5TUw/vaollIQdYXzcr7c9KhfMuybmptyzTjMkqKC/nyuSfxm/nv8Z0/vcNnfvoyD79ka3SA+zoemYrdGI4mGgXcWG/bD73n94HHE7af5T1f6z3quwlI3510rLbW36Uw1bC8zbGxi55B5kW3LvwunP7Fo7e7XrQsh+TtORmAfMyydfNmPPOVIWlXrP1Eq2K+ct7JPLVwA6u37GHivH/y6/nv8fuvDMEAN/0uujoeOdXhMMaMA8b53De0gamZKCjIqYtOkcnLHBtTdOvAx/Dey/DPv9l1SDIZ9FmY5J6yLlqWUl6ekwHJxywzWbF2xBld+fzALry5cRelCzfw0b5KurRvyaUPL0hZx+NAVQ03Pr2Ehd++MLAOR86O4QiajuFQseN3/MWEFbB+Lrw1GTYvOVLeO8OiW9yxouGZHzr+QqlAZDq1dsfeg5Qu3MiTjut41JdXYzhywaxZGY1dVSnkXY6ZjL9Y/AQg8MFiOzaix/lwyQNQfcjNOiR1cmj8hQt5d04GKN+zbFlcSPOiQgoKhOZFhWk7B21bFvH821t8HftPb2+mQIK5AZBTt1RyQV0JYdU0WZ9j/asD6YpuZTr+4tYl0Lwt9LwAWrQ98pqrdUjUMbL+nIwRzTIzRYXxqOOhVziUipPGrrSaadGt5q3htM8f3dkAt8uyK6ViIdM6HlU+63hkSjscMTNixIiom5ATsjLHTIpuAdRUwYZX4f/uhoN7tOhWzGXlORlTmmVmamvhC4O6+tr3C2d2ozagsYl6SyVmNm/enHWLEsVRVuZYue/YGSaJqirsdNMJb8Nrj8Cbv4GD/7avdTkDTv+Sv6Jb6cZf1FuW3RQUIbVVOuizibLynIwpzTIzdXU8nln0foOrzZYUFzL+/JMbNWDUD73CETN1ywmrpsm6HDMa9PkraH+i7Wx06gvnfRO6DIKhwRTdeqr0tzro04GsOydjTLPMXF0dj1TFw+rqeLRqHtx1CL3CoVQcZDro87al0G0IdO57ZHvVAS26pZRKKpM6HkHRDkfMDBkyJOom5IRIc8x0hglkPuizuNXRnQ0IrOiWnpNuaI7uaJaN06KokBZFhUy4uA93XtKHZoUFVPuo4+GKdjhipnNnnwP/VIMiybExZcUP7oG1s+HUz9p9/RTdqhv0mazoVr3xFy6Kbuk56Ybm6I5m2TR1C7Vt2bKFrl39DSZ1QcdwxMzs2bOjbkJOCD3HTGaYVFbAmue9Zd17w8yvw9pZdtCnHyEX3dJz0g3N0R3N0o2wc9QOh1Iu+J1hUrETplwDz42Dd/9irz6c9BkobgNDb3c76FMppWJEb6nETPfu3aNuQk4INcdMZpgsmQRnXGeXjO8/Ck4bCe28S5oxHfSp56QbmqM7mqUbYeeoi7c1UlCLt9XW1ublSoiuhZpj9UFbDdTvomcT3k49cLPqgL1aEqOVVvWcdENzdEezdMN1jrp4W5YpLS2Nugk5oUk5VlbYToSptc+Vaa5cZDrDpFnz1K8XtbQdjGHfsqux3rvDPg//FrTqFEmFTz0n3dAc3dEs3Qg7R72lolSdTGeZ1NbCxleh69luZpgkSpxGm25fpZTKAnqFI2aKi/0tsKMalnGOmcwy2bURXv4RPHI6/P5qWPsXtzNMYkbPSTc0R3c0SzfCzlHHcDRSUGM4VET277CdioYGfhaV2GXdn/sybHnLbmt/Epz/33DK5XYcR7pl3e9YZW+NKKVUjtExHFlm5syZUTchJ2SUYyazTJY+BYNvtrdZbvwLTFgBZ30ZmrfJ2WXd9Zx0Q3N0R7N0I+wcdQxHzGzfvj3qJuSEjHLMdB2TCW/DGdcevT2gsuJxoOekG5qjO5qlG2HnqB0OpVzNMgmgrLhSSuUKHcPRSEGN4di5cycdO3Z0esy84i2cZgqLET8Lp1UdsB2Cxwb5r6Nxx4q8mjmi56QbmqM7mqUbrnPUMRxZZv369VE3ITtVHYB9O2D+QzBxIPLDTnYQ5/yH7FWJqgNH779rA8y9B375Kfj7zJyeZdJUek66oTm6o1m6EXaO2uGImZUrV0bdhOzje0prBaybY9c8eXQQLHoMDnwMG1+Hc27RdUxS0HPSDc3RHc3SjbBz1A6Hyn5+F07b/xHM/ymsf8mOrxh4HXz1Zbj6V9Cyfc7OMlFKqTjQQaMxM3To0KibkF0ymtJaCudOgN2b4MwboKTDkddzeJZJU+k56Ybm6I5m6UbYOWqHI2batGkTdROyS6ZTWi/4LhSlGPCps0yS0nPSDc3RHc3SjbBz1FsqMTNnzpyom5BdMp7S6qOUb3GJnYUiBfY5jzsboOekK5qjO5qlG2HnqB0Old2qK+1tDz/qFk5TSikVOu1wxEzPnj2jbkK0/C4N/9F6+MsdsGamTmkNWN6fk45oju5olm6EnaMW/mqkoAp/VVZW5udKiH6Xhv9gqZ3qunY2YOzS8F96Bh4frAunBSRvz0nHNEd3NEs3XOeohb+yTFlZWdRNCJ+fOhqbl8E/XoTfXgJrZ0FhEQz6Moz8NZR01CmtAcrLczIAmqM7mqUbYeeos1RU9PzU0fjDl+CWxdBjGHQ7Gz79NWhzwpF9dEqrUkrFmnY4YqakJM9mRGRSR2PZ0zBmCrRoe+zr9aa0moIipLYq76e0upB352RANEd3NEs3ws5Rx3A0UlBjOPJO9UG75okunKaUUllNx3BkmenTp0fdhHBlWkej0N8Ap7zLMUCapRuaozuapRth56gdjpjZtWtX1E0IT+V+e0slgDoaeZVjwDRLNzRHdzRLN8LOUTscyh2/NTSqDtjBnRMHwrsvaB0NpZTKAzqGo5GCGsOxe/du2rVr5/SYgfNbQ6P6ECx/Bhb+D+zzxmwMvB4u+T48eqbTOhpZmWNMaZZuaI7uaJZuuM5Rx3BkmdWrV0fdhMz4qaGx9W3YtsZ2Kl6823Y2ThgA106DkU9Ai3bO62hkXY4xplm6oTm6o1m6EXaO2uGImTVr1kTdhMz4qaExeZS9ytHmeDiuH4yeDF9bAKdcDiJHLw1/3l12NkpBM/t83l32ykaXMzOqo5F1OcaYZumG5uiOZulG2DlqHQ7VeBnV0PgtjHwSOva2S8rXp0vDK6VUTtMrHDEzfPjwqJvgX0GBHbPhx6o/wie6J+9sJHK0NHxW5RhzmqUbmqM7mqUbYeeYUx0OEfmaiEwRkbUiUlM3sNPne68QEeM9zg6ynQ1p1iyLLjoFVEPDhazKMeY0Szc0R3c0SzfCzjGnOhzAd4DPA9uBrX7fJCKtgF8D+wJql2/z5s2Lugn+1VQGUkPDhazKMeY0Szc0R3c0SzfCzjHXOhwXAO2MMcOAlRm870HseJZJQTQqJx3aBx+u0RoaSimlfMmpDocxptyYzH6rebdPbgfuBPYG0a5M9O3bN+omNKy2Bt76PTw2yE5xHTw+/TiL4lZ2xdYQB3/GPscsolm6oTm6o1m6EXaOOdXhyJSINAOeAuYaY2JRnH/w4MHRffF0lUI3vApPDoc/3wb7ttltBYXOa2i4EGmOOUazdENzdEezdCPsHPN95M1/AacAX/D7BhG5Gbi57t+TJtm7MEOGDKFz587Mnj0bgO7du3PppZdSWloKQHFxMePGjWPmzJls374dgFGjRrF+/XpWrrR3f4YOHcorr7xC8+bNAejZsyfDhg2jrKwMsEsJjx07lunTpx+ugT969GhWr159eD718OHDadas2eF7c3379mXw4MFMmTIFgLZt2zJmzBimTp3Knj17EBHGjb2Wgqp9yOJfUfDOtMOVQmtPH03NkG+wd88e2sy/l6L35gBQUdSBks/9jMkrD3Dgjy9y4Xnn0uuOVZg3Hqdg1ZH3mwGjqR7ydd7fupNdb79Dr169mDFjBgDHHXccI0eOpKysjMpKO7Zj/PjxzJ07l02bNgFw5ZVXsmPHDpYsWQLAWWedRbdu3XjhhRcA6NKlC1dddRWlpaXU1tZSUFDA+PHjmTVrFqtWraJTp06MGDGCzZs3s3z5cqefU5s2bZgzZ05onxPA9ddfz9KlS1m3bh0AF198MdXV1cyfPx+Afv360b9/f6ZNmwZAhw4duOaaa5g8eTIVFbbzOG7cOBYsWMCGDRsAuOyyy9i7dy+LFi0CYODAgfTu3fuoz2n79u0UFxcH8jlt3WqHWuXD5zRjxgw6deoU2OcU5M9T3D6nmpoaBgwYkJU/T3H6nCZOnEinTp2cfU7pxK60uYi0x97e8OtRY8wxK9CIyCzgylQlVkWkJ7Aa+KEx5ifetvuB+4DBxphladoZSGnzSZMmcfPNN6ff0ZW6SqGpincVldhCXXu3wov/zxbiOvfW5EW4KivstNcY1NAIPcccplm6oTm6o1m64TrHdKXN43iFoz32l75fk4HGLHn3JLAR+EUj3huYtm3bhvsF/VQKnTYWblvmrWXSMfWxihM6F81auG1nhkLPMYdplm5oju5olm6EnWPsrnC40tAVDhG5GvgT8BVgYcJLE7ADSK/GXv3YkGoQalBXOEJVWQHzH7JrnqRz3l0w/Fta9VMppVRSunhbcid5z08D/0x43O5tf977d4ewGzZ1qs/KnS5kUil05VRb/TNLhJpjjtMs3dAc3dEs3Qg7xzjeUgnDLGBzku1fAr4IfBvYAOwJs1HA4QFNoYhxpdCmCjXHHKdZuqE5uqNZuhF2jjnV4RCRzwEDvX/29rbd4/3738aYxwGMMeuB9Une39/7z5fTDRrNCdUHbQXQvR+m37euUmjEYzOUUkplp5wawyEiZcCNKV5+3xjTI8377yfiWSr79++nVauAa1Yc2gsv/wg+OQC2vwuLHk3/niwbwxFKjnlCs3RDc3RHs3TDdY55NYbDGDPOGCMpHj18vP9+b9/Irm4sXbo02C+wdjY88Wl489ew7Hfw6a/HslJoUwWeYx7RLN3QHN3RLN0IO8ec6nDkgroiNBlLVyV0z1aYej1MvQ72bIEuZ8KVv4CSDrGsFNpUjc5RHUOzdENzdEezdCPsHHNqDEdeqjpgF1J743E748Sr8smAMTD0NttReHsK/O0BqNwLxa3honthyFdtWXKwnY87V8EbT9jZKHXHGDjGXtkobpW80JdSSinlU06N4QhTUGM43nvvPXr16uVvZz9VQsf8AfZshhdug1Ovgit+Bu26Jj9ejCqFNlVGOaoGaZZuaI7uaJZuuM4xGyuN5rXq6mr/O/upEjr1Orj1TbhxNpx8XsPHi1Gl0KbKKEfVIM3SDc3RHc3SjbBz1DEcMVO3cFBalRWw6PHUnY06VRWw7GnoNqjpjcsivnNUaWmWbmiO7miWboSdo3Y4slUOVwlVSimVe/S3UMz069fP3445XCXUBd85qrQ0Szc0R3c0SzfCzlE7HDHTv3//9DuBHdTZqrO/feuqhOYR3zmqtDRLNzRHdzRLN8LOUTscMTNt2jR/Ox7cA6d/yd++A8fYGSd5xHeOKi3N0g3N0R3N0o2wc9QOR7YxxlYIfW4cDB6fk1VClVJK5R7tcMRMhw4dUr+4bwf877Uw6054/3X49/s5WSXUhQZzVBnRLN3QHN3RLN0IO0ct/NVIQRX+SmndXHjhFjsAtHk7uOqXcPo1tvhX5T6tEqqUUipSebV4W1bz1kIxtfXWQqmsgNn/BX/4ou1M9DgfvvG67WyA7Uy06gzDvgV3rIB7d9jn4d+CVp3ytrMxefLkqJuQMzRLNzRHdzRLN8LOUSuNRq3eWiiSuBbKObfApjdgeRkUFMFF98DQ24+sgZIoh6qEulBRkaYgmvJNs3RDc3RHs3Qj7By1wxGlVGuh7P0QXn8ElkyC0ZNh1NPQoQd8cmBULVVKKaWaRMdwNJKTMRz7d8AjAxouT15UAnesgtY+a24oACorKykuzq9iZ0HRLN3QHN3RLN1wnaOO4YirTNZCWfxE+v3UURYsWBB1E3KGZumG5uiOZulG2DlqhyMquhZKoDZs2BB1E3KGZumG5uiOZulG2Dnqb7Go6FooSiml8oh2OKKia6EE6rLLLou6CTlDs3RDc3RHs3Qj7By1wxGV2lo79dWPPFwLpan27t0bdRNyhmbphubojmbpRtg5aocjKsUlMNTHGie6FkqjLFq0KOom5AzN0g3N0R3N0o2wc9QOR5SKW+taKEoppfKCdjiiVNQSupwJd66C8+6CNp+Egmb2+by7bP2NLmfmbXnyphg4UIukuaJZuqE5uqNZuhF2jlr4q5GcL95WWQEFBZiCYqS20o7Z0NsojbZz5046duwYdTNygmbphubojmbphusctfBXtigugWYteKq01K6Fop2NJpkxY0bUTcgZmqUbmqM7mqUbYeeoHQ6llFJKBU47HDFz3HHHRd2EnKA5uqNZuqE5uqNZuhF2jjqGo5Gcj+FQSimlspiO4cgyZWVlUTchJ2iO7miWbmiO7miWboSdo3Y4YqayUkuYu6A5uqNZuqE5uqNZuhF2jtrhUEoppVTgdAxHIwU1hqO2tpaCAu0HNpXm6I5m6Ybm6I5m6YbrHHUMR5aZO3du1E3ICZqjO5qlG5qjO5qlG2HnqB2OmNm0aVPUTcgJmqM7mqUbmqM7mqUbYeeoHQ6llFJKBU7HcDRSUGM4tmzZQteuXZ0eMx9pju5olm5oju5olm64zlHHcGSZHTt2RN2EnKA5uqNZuqE5uqNZuhF2jtrhiJklS5ZE3YScoDm6o1m6oTm6o1m6EXaOekulkepuqSillFLqCL2lopRSSqnI6BWOmBGRZcaYs6NuR7bTHN3RLN3QHN3RLN0IO0e9wqGUUkqpwGmHQymllFKB0w5H/EyKugE5QnN0R7N0Q3N0R7N0I9QcdQyHUkoppQKnVziUUkopFTjtcCillFIqcNrhiJiIFIjIXSKyVkQOisgHIvI/ItIq6rbFlYiYFI99SfY9RURmisjHIrJfRBaKyEVRtDtKIvIdEXlORDZ4WZWn2d93bvl0DmeSo4jc38C5+t9J9s+nHPuKyA9EZLGI7BCRvSKyQkS+l+z71fMxuUxyjMP52Kyxb1TOPAxMAJ4H/gf4lPfvM0XkEmNMbZSNi7GFHDvgqSrxHyLSC1gEVAM/A3YDXwXmiMgVxpi/hdHQmPgxsAt4C2jf0I6NyC2fzmHfOSa4C/io3rblSfbLpxy/AtwK/BmYgv3ZvRB4EPiSiJxjjDkAej6m4TvHBNGdj8YYfUT0APoBtcCMettvBwxwXdRtjOPDy6bMx35/BGqAMxK2tQbeB/6BN2g6Hx5Az4T/Xg2Uu8gt387hDHO838ugh4/j5luOZwPtkmx/0Pt+b0vYpuejmxwjPx/1lkq0rgUEeKTe9qeACmBs2A3KJiJSLCKtU7zWCvg88KoxZkXddmPMPqAU6AsMDqOdcWCM2eBnv0bkllfnsN8c6xORtiLS0BXlfMtxmTFmd5KXpnnP/UHPx3T85lhfVOejdjiiNRjbizxqyT5jzEFgBXn0C7ERrsGe+HtFZLuIPCYi7RJeHwA0B95I8t7F3rPme6xMc9NzOL1V2NsAB0VkkYhckWQfzdHq5j1v8571fGyc+jkmiux81A5HtLoAHxljDiV5bQvQSUSKQ25TNliCvTx4DXAj8DJwG7Aw4YpHF+95S5L3123rGmAbs1Wmuek5nNq/seOMbgdGAN8BTgJmi8i4evvmfY4iUgh8HztW4w/eZj0fM5QiR4jB+aiDRqNVAiT7QAEOJuxTGU5zsoMx5tP1Nj0rIquAHwF3eM8l3mvJ8k3MVh0t09z0HE7BGPNI/W0i8jR27MfDIjLduzUAmiPYy/fnAN81xvzD26bnY+Ye4dgcY3E+6hWOaFVgLxcm0yJhH5Xez7En/5Xev+tyS5avZptaprnpOZwBY8xO4DfYGS5DE17K6xxF5IfYq5STjDE/SXhJz8cMNJBjUmGfj9rhiNZW7KWpZB9sV+wlrVzuiTtjjKnCy9PbtNV7TnbbpG5bssu0+S7T3PQczly599wpYVve5igi9wP3AL8Dvl7vZT0ffUqTY0PKvefAz0ftcERrKfYzGJK4UURaAGcAyyJoU1byMuvGkUFS72AvCZ6bZPdzvGfN91iZ5qbncOb6eM+JA/ryMkcRuQ+4D3gWGG+8uZcJ9Hz0wUeODQnvfIx6HnE+P4DTaXiu89io2xi3B9Axxfafe5l9K2Hbc9j5+wMTttXN319HHtXhqJdVuvoRvnPL53O4oRyx4+PaJdl+IrATW3ipZT7niB3YaLC/JAsa2E/PxybmGJfzUVeLjZiIPIa95/Y88H8cqeb2OnCRya2qeE0mIg9j/7J5BdiE/R/PZ7HV9d4ELjRHKhT2xs5oqcJWzduDrVB4OnClMWZO6N9ARETkBuyIdLD/0yjGVg8EeN8Y8/uEfTPKLZ/OYb85ikh7YCMwE3gX+Bg4BRiPPWevNcY8V+/Y+ZTjrcDj2J/he7G/3BJtM8a85O2r52MKfnOMzfkYde8s3x9AIfBf2Ip5h7D3I38JtI66bXF8YKdzzfFyOgjsx84L/y7QIsn+nwJewE4JqwBeAy6J+vuIILdXsX+ZJHu82pTc8ukc9psjdsBdKfaWwMfYX5b/AqYDQzRHyhrI8ZhzUs/HpuUYl/NRr3AopZRSKnA6aFQppZRSgdMOh1JKKaUCpx0OpZRSSgVOOxxKKaWUCpx2OJRSSikVOO1wKKWUUipw2uFQSimlVOC0w6GUUkqpwGmHQymllFKB0w6HUkpFSEQuEBGT8FibZv8SEZkkImtE5EERkQDa1Klem7QktWoy7XAoFaD6/9P28RgXdZuzkYj08PIri7otTTAfeAC7GFdDvg3swi7Z3ge4zs/BReRUEXlMRFaLyG4RqRSRrSIyW0T+01t6vE6F15YHsKuyKtVkzaJugFI57oEk2+4E2gETsYtRJVoRbHNUjL1qjLnfx35nA3cbY/aIyLPAFcCUht4gIt8H7sP+kbkYeAbYBxwPXIBd2Osb3rExxlQA93vvvYAjK+Qq1Wja4VAqQMl+gXhXMdoBjxhjykNuksp+K4CxIvIT4Frgbw3tLCLfxXZ8PwC+aIx5M8k+V2FXBlUqMHpLRamYEpFPi8h0EfnQu/z9gYg8KSJd6u13+HaCiPTy3rNTRPaKyFwR6e/t19m79/8vETkoIktF5MIkXzfxeKeKyEwR2SUi+0XkNRG5tCntTfI1+orINBHZLiK13l/UiMg4EZkhIhtE5ICI7BGR10VkbL1j3Q9s9P55Y7JbVAnjJO5P0fZyESnPtI2Zft+O/AQ4DliEvd3xbKodRaQH9kpFFfDZZJ0NAGPMLOBy1w1VKpFe4VAqhkTkJuAp4BDwZ+xfp32A8cDnROQcY8ymem/rAbwJvAuUef++GnhVRM4F/grsAaYBHYAxwIsi0jfJsQBOBt4AVgNPAp8ERnvvuc4YM62J7QXo5bV5Hfa2QEuvjQC/Bv4OLAD+BXQEPgv8XkROMcbc6+33KtAeuANYCcxMOP6KJF8zUynb2ITvu9GMMfu84/txE1AETDXGrE5z3ENNbZtSDTLG6EMf+gjxAZQDBuiR4vW+QCWwHuha77WLgBrg+YRtPbzjGeB79fa/19u+C/gNUJDw2g3eaw/Xe0/i8X5e77WzsX8tfwy0bUx7k3yNH6fIoVeSbcXAPK8NXZMcryzFsS7wXr+/gc+kPJM2Nub7bkzbmniuzfOOPb4Jx3jV/qqI/mdHH9n90FsqSsXPN7B/ld5hjNmS+IIx5mXsX9KfE5E29d5XDvy03rZnvOfm2IGGtQmv/QGoBs5I0Y7dwA/qff1l2L/y22OvnjSlvQDbSD6wFmPMe0m2VQJPYK/OXpyi3a6lamNTvu+wfNJ73hxhG5QC9JaKUnF0rvc8XEQGJ3n9OKAQ+xf28oTtK4wxNfX23eo9rzPG7E18wRhTIyLbgG4p2vFW/fd4XgVuBM7Edmga216AlSbFpXwR6Y6dAnox0B17KyNR1xTtdi1VG5vyfYelrkaH1tFQkdMOh1Lx09F7vjvNfq3r/Xt3/R2MMdVi60Id85qnGvtXejLbUmz/0Htu5z03tr2JxzqKiPQElgCfABYCc7HfQw32VseN2Ks2YUjaRpr2fYdlK3AqqTuVSoVGOxxKxU9d56CdMWZPg3sG6/gU20/wnnfXe25Me1P95f1N7C/0m4wxZYkviMi12A5HJupuJaX6f147UnfKUrUxLp9TQ17Djie5GPhtxG1ReU7HcCgVP4u95/MjbQUMSjH+4ALv+W3vOYj29vaeZyR5bXiSbXW3kgpTHO9j7/nE+i+ISG/smJRMxeVzasjvsANsR4nIaQ3tKCJhXTFSeUo7HErFz+PYXxIPi0jf+i+KSLGIhPFLrh3w/Xpf+2zgeuxf9897m4Nob7n3fEG9Y11G8imhH2OvRHRPcby12KmsI0TkuITjtQQezbBtdeLyOaVkbGG5+7Gze2Z7n98xRORy4MXwWqbykd5SUSpmjDFrReQrwNPAGhH5K7YGRBH2F+r5wA7svfkgLQDGi8ingdc5UoejAPha3W2EgNr7K2wNiedEZAawBeiPLU71R68dhxlj9onIm8D5IjLF+/o1wJ+NMauMMVUiMhE7TfhtEXke+/+//8COc9hKhmL0OTXIGPNjEWmGLW2+VEQWAcs4Utp8GLZ2yLLoWqnygXY4lIohY8xkEVmJLTd9IXApsB/7i3E6tnhX0DYCX8dOtf06dpDmW8APjDFzgmyvMWaVVwX1QWyxr2bYol5fwK4/MzrJ224AHsZ2Sq7FztDYDKzyXr8PuyjZV4GbsYNBp2KvAPw9k/YltDMOn1NaxpgfiMhzwC3Ydt4EtAB2YoujPQRMjqyBKi+IMTpbSil1hFcOeyPwjDFmXLStyX1emfRXgAeMv8XbQiUirwLDjTGSbl+lGqJjOJRSKh7u89ZuWRt1Q0SkU916NCQfpKtUxvSWilJKRaucoyuZfhRROxJVkKICrFKNpbdUlFJH0VsqSqkgaIdDKaWUUoHTMRxKKaWUCpx2OJRSSikVOO1wKKWUUipw2uFQSimlVOC0w6GUUkqpwGmHQymllFKB0w6HUkoppQKnHQ6llFJKBe7/A5YqQTe2L2eVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from functions import plot_substances_properties_vs_temperature\n", + "plt = plot_substances_properties_vs_temperature('results_r.csv', reactions, lables, 0, 'log$_{10}K^{\\circ}$')\n", + "plt.savefig(fname='figure_logK.png', format='png')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "01a05af7-3544-41bf-8364-f317c6c00f94", + "metadata": {}, + "outputs": [], + "source": [ + "engine = fun.ThermoEngine('aq17-thermofun.json')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c70d6799-a5e7-424c-88c4-b7cef0c2d999", + "metadata": {}, + "outputs": [], + "source": [ + "T = np.arange(273.15, 1000+273.15, 5)\n", + "P = np.arange(50e5, 3000e5, 60e5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "71b33bb4", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "072a2a7c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "64de663f", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "Cordi1 = [[engine.propertiesSolvent(t, p ,\"H2O@\").density.val for t in T] for p in P]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "43329ed1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAIXCAYAAADJ8LcMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC0P0lEQVR4nO39ffQsSXkeCD7vvd23G+ixsAbpjGiNZS8aPoQNaFBjEP5AwGok9zngNeM5oEUWsqBXNqClx5YGBIuQ0AiWcdMMiLHcYGuFBnwQcoPFGq+AHcOwAxiwpkctGSQQtIRpC6vlFnT3vb/Piv0jM6syo+LjjYg3IiMr47nnd6oqMzIiqm5VxpPP+7xvklIKDQ0NDQ0NDQ0xuDD3BBoaGhoaGhqWi0YkGhoaGhoaGqLRiERDQ0NDQ0NDNBqRaGhoaGhoaIhGIxINDQ0NDQ0N0WhEoqGhoaGhoSEajUg0NDQ0NDQ0RINFJIjoUUT0TiL6LBF9jYguE9HniOiNRPQtlvbvI6J7iegBIvoYET3d0vcFIrq57++IiL5MRLcQ0UMcc2H13dDQ0NDQ0JAXxClIRUTPAPBKAJ8E8O8AnAH4CwB+GMDXATxBKfUf+raPAPCpvs2bAHwNwIsA/HkA36+U+rDW9/8I4McAvBfAvwTwGAAvBfAxAM9USm1GbYP6bmhoaGhoaMgLFpGwHkz0NwH8CoD/Tin1hn7brwB4DoAnKqXu6LddB+C3ARwBeLTqByWixwK4E8B7lVLPGfX7UgBvBvB/VUq9a7Sd3XdDQ0NDQ0NDfqR6JH6/f/zTANCHI54F4CPDQg8ASqn7AbwdwCMB3DA6/nkACJ26MMbbAFwG8PxhQ0TfDQ0NDQ0NDZkRRCSI6FoiehgRfSsRfS+Af9Tv+kD/+DgA1wD4hOHwT/aP48X+BgAbdOGKLZRSRwDu0NqG9t3Q0NDQ0NCQGVcFtn8hgLeMXt8F4PlKqY/1rx/eP37FcOyw7frRtocDuEcpdWxp/91EdEkpdRLR9x6IqIU9GhoaGhYCpRRJ91lqHcgx91oRSiTeB+BzAK4D8J3oQg3fNNr/4P7RRAyOtDbDc1Nbvf1JRN9bENFNAG6yjNPQ0NDQ0NAQiSAioZT6d+iyNgDgfUT0zwB8mogepJR6HTpfA9CFIHRc2z9eHm27DOCbLcPp7UP7Hs/7NgC3DUz03qM/t91HGy26oy6M9tHo+bjN9JDJvo15+5YDT/aPOlLj7eP+1PT4UR+mcU3tjH0b3s/2/Zreq7ZvOk6/T2nH669ZbYf9tvbaawDK2oe5T6Xv7x/3tmv96vuVor2xlD6WZU769u1ryxyVor0xWMc4xxpej463Hbs3Nix9OT4rw3G+Odveo7Wdc07wHmM71jw2rMc7+x6/75BjJs8NYxv6lHzOHUN/vXHs063xQ///l8+9DLnxJ1e+PUu/D33QF7L0WzOSzJZKqd8E8L8D+Lv9prv7R1OIYdg2Dk3cDeBhRGQiB9ejC3ucRPa9fGxmjsRID78hf5uF4NBUS3Ug/zcx/y9z/l+mjl1y7tzviGtOh/a7aeggUdnyQQC+sX9+J7rQw1MM7Z7cP35mtO3T/RyeNG5IRNcCeILWNrTvIpioAkvEwl0jqvTnP8OJMOfJ92CTpYU/M9ciKv3/4+vvYP/PCoM2lOVvjeBWtvzPLNu/B10xqE8CGFIx3w/gaUT0+FG769AZNT+PaYbGu9EtZS/Tun4ROr/DO4cNEX2Xh2VRO2iLZy0/HD2EINzvLFfsOUnLSq4MQxb5drXMB/ez0sMazj5rOZc0BIPrkfiHfSns/wVd7YhrATwRwHMB3Afg743avgLAMwB8kIhuRVf58kXowg83jgtGKaXuJKK3AngJEd2OLo30MegqXX4UwLswBbvvubF4pSInSpywpfwRMyDLCVX3RxREqD8iyxxC/j8jpXnTPuM2w/+vX4WII0SpnojQ8cKOizpMDo04ioFLJP4pgB8C8IPosjQUOkLxjwD8D0qpPxgaKqW+QERPBfB6AC8HcAnAbwD4PksJ65ehSyO9CcCNAO5Bl2L66nF57Mi+w6AO+x5mjdzUCd1QmKXvnPAYLYO78xgtUyD1eZRYBIPIQwbyaTOHco8J2dewbLCIhFLqV9CVwmZBKfVZAM9mtj0HcEv/J9r3EuFd7OcgA5yTSMxJYu3EJofykPHq3pqxURiuDInQPlLbcI9L2Tbdz2+bC4cS1lirnyEHDvsSfC0wLciBi/SsP6q1XKnkWOQFr9b3utbCP7UjZr4cMhJrtOSGNXyYI6zBHTO2nUvRacrF8hBakGo1aGw1Eikqw4F95ns1JCT6zOB1KOlVKAm9fgTvIDnSwB4ySpkIDzvEwlY7wjWn2P5LooV65dAUiRowt+mIi1I/vKV8Hhr0YlSynUuqGNMQRU5IFaKSnUtaWCP0ajpHWCMEc5gsN46+mxpxeFi1IrFX1dLaLvNEfOOLF4aK3BcCiRNCpQrFntKQ4+QnqQ7kzNgQNlpah2FUtAzuk0MoMoc1UrM1uJUmQ2BTO7jvt3ZvxBZNkRBDUyRCIbSoU6mqlRmGCSI2Ej/WDCGCoOFzEobtINpYKV1lCFHUYrS0QfdHRPkKZghrxPRXw2ffvBENY6xakUhFsFIhyIBNYx904asx9Nh3ItHw3WMjJ2SNlxlIyMJP7vr9NVjHVBLWmCoM9nH32wo9F0j5nLbTXs+sOK7mfFkATZEYkFpDwnezruD+SgSwI/cNCDkRlDxp7IUe+gdLMaqSEDVgCqgYRdSWYaxIf4SkwTTIJzFDWKMmk6V13EhvBLf/huWhKRINZbG2E4bgQi2yoGY0Wvru+Ck2TmmfhGDII7fJ8hDUiFKkYm7v2yGhKRIGtNTPQMT88A/1R5zDQyB4JS6BFD9CVuwZP+OPNTYpGN+PNVnmQFMjGnxoikRFyFnVMpp95yZVB3ISEZWZJa+0U+alhSJmvzdCJGKUi9rDGj6kqBExY7jbaa8rUCMAlAkfrwSrVSS4qZ/Vo6aqlmsqRpXBW5BERgTJR86Teao/orhPovKwhlTK56TPiJTSpkasG02R8CB7HG0ppHilxahyVn3UF82oPmozWlr8Ebmkf5EwC4tQ+OfCHi5CeZAwWTY1YoqWtSGHA7ksL4QZvnhFi1FJQeKEUDCbYDou8o+bsvhLkA+J79SeH6GuK8uUtM857q1hJg+sQ/eOTyEJOdUI/bNoasThoCkSAErfPrxYMapQSJMMyf50ZSC2b/0KtkixKYGwgwj5SOlD62thiPJJzBDWqMlkaZ1DpBoh0acoDtXwPQMakYhEbcWojJi7qmUJ6KbCvdf9wxxXzCK1IhL6EDRaiiLRHyGa9pkxrLE0k2UMScmhRpRL/6ztZLZctNCGBCooRlXdAj9GZbJ3NkhctScskikLbB4zo/Y61/dgL8wS0UVG42UM5jBZSo4VQr6WqnI17LBKRcKVsbGaGhIlq1pu+z2wz1ZwgZTI2Ch+7NDFXH4WD1LSPmsPa/hQsxrhQtn0z3JDHTqaItFQHkv/AYvWjIg/JoZ8qKRjNX9JZcTBhzifhL8/476EsMZ4zJCwR47/j6ZGNHCwSkWCi5IlVBdbjGrmq+EikFw4E8pcS4RMog7NUU5byh9RKIyUW6Hwjh9psmxqhB1Vh4MXhqZIrBxVhHJqmMMYGWL6xTM2Uu7LIfD+rf6ITIuF7o+oJazBHjvRhJlDmWhqRAMXTZHgpn7mYK+pfQpUtRSDxLjD51GIWFhvHy4BiYWzkGohYrSsPNyxxLBG6Ljc42xqBBcSakQVpGLpIdaK0BSJBj8ibn4kgu0Cn7Yol7x9+NwZGzHjxSB7JkZuVBTWSDVZSikTqf1IVf/czEEqGpLQFIkIpHgnQnKXi1a1XBA7V3r1SU8NiTKTSjg0xvgYQa4kjZYpkPZHpKR9bufE+ExK+iR8x8yl/ByMGoF2G3FJNEVihCi/AOfLeCBf2CBicyDv2QqJK/KEjI2wY+KJSorRspQ/wjpuVDjD/76lzIX7/ab1J5XyWVKN0Pc1NWKZaIqEIESKUQWM4UQtjuSlSt82SNSMKOx9CDtIINxRy3dPQ4yqMkdYY+6UTxtyqBGzotYv6gLRFInaMHdVy1aMagoBE+H22JQQRqZxUoyWJZSGFHWB3XcFYQ1Jk2VTIxpKoykSFhx0/GxOIr6Qz1XERChgvGQ1LaU8CJIqrj+CO5eUtM/9ufnbGPcFXonnMlnmwMGpETjwc3xhrFuRKHzXTxsW+4UutFAWgeTtwxMUm6CTbYqKwGkrcO+Quctn2wyaIcdK7osZM4QwSKkRXDQ1ogFoigQPc4fSaq1qKYHSGRYZDYBJ4YFcx0T4FlKyOpZyu3HpsIZ07Yi51Yhxn7nVCJ1EFPvuLPUCrkLUcUm+RlRQjEqsqmVthZyAPak8xxWxSiFBmY+JiqkXNmfudZWY9ikTcuG0CRsnh8kyZMza1YiG5aMpEoFYbBgiFnMVo9qOry0e3BoSOSEsXYsek/neBiFX8t4+NH+EFCQMmpxjQslADpNlDmViFWoE2r02JNEUiR7ZakhMxpixGFVDOlJISqmMDVbjMmqFrgbNfiUaMQ8WoWCGNdhjevqLViaaGtGQCU2REIK1hkQtCkbJqpa1vOdUCCyAuTMqghaVCKNlCJbijxjAzhAZtZFJ9ZQJddjaSn1fD1mN6CZQdrhDRlMkFoQ5wypRCslCi1HNlfqZT1UI6DbKyJn+eUn5I9LCGdO+3G0lCIXh2IpSPu1zcO2zz68pFYeL9SoSjtTP2RZsqWJUtYVFlnKSkJhnyFV/zP0yQrIMQhbETMqGbbxc/gjbeCXDGq7jc5gspVI+bWqEc2xLvz5Uke7ZFAkxNEVibXCduHNVtdweG39oFmwNmil99A9BakL8OE5k9lSkhGlqu+IsEdZIgWQGRyqmZCP8GNPr2LYNdaIRCR9qu7qvBSk/9u0CXviEIZBxsO0q5Q6awsdkN1oGQCKrwzoPT1gjbQx+XyXDGiGhjBxqBNcbEfKZuNSIslkblOWPPT7RK4joPUT0RSJSRHSXp/2jiOh9RHQvET1ARB8joqdb2l4gopuJ6HNEdEREXyaiW4joIal9m7De0EYl8IZR5riKL77AC4+bs4ZETF+ZMjZqMFrurtb5x+z14fFHhM/F7KtI6cvYJlNYY46UTw5i1YgxZjdYjjG/QvpzAP4jgN8A8FBXQyJ6BICPAzgD8AYAXwPwIgC/TkTfr5T6sHbIrQB+DMB7AdwC4DH96+8komcqtU2kj+l7D41IgJ/6ubQaEkXmm2MMXbHQrkBnqSFRSIFgLXpBqgJ/TBZ5SSBnpf0R1vEDwhr6sRL7Uk2WPtTkjZD2pBwYHqGU+iIAENFvAbjO0fZ16MjGE5VSd/THvAPAbwN4KxE9Wqnum0VEjwXwUgC3K6WeM3RARF8C8GYAzwXwrpi+bWihjVgIxNVFx56rquWBI3f6Zsg4MRkVqWPGtNXnUPsCkTOs4dqXy2QpBQlvxBhVqRFAd87M8cfEQCJ86MMRzwLwkWGh74+/H8DbATwSwA2jQ54HgAC8SevqbQAuA3h+Qt9GNCIhAM6Vf0gxqmowd1XLGZAUDsl1e3Xh0ti5PRUiHhRLeIKb9llbWCN0bNu2IHJRsRrRDJZBeByAawB8wrDvk/3jeLG/Ad3Z+1PjhkqpIwB3aG1D+zZinUQiY+qnRDEq8aqWJUMyCwv/bCF88vceI+yBYJGYTApElD/CctvwXAvK0sIataoRUsWnuGNnhcr014OIPjP6uylhpg/vH79i2Ddsu15rf49S6tjS/mFEdCmybyOaR2Lt4Kgph1yMqnSIinGMdGnsEO9DkKciRq2o7MqzprBGaqhj0jaTGsGdT1MjAKXUdwl19eD+0UQMjrQ2w3NTW739SUTfRjQiUQs8oQ+2UlJbBKWyk4REJke21E/hq7YQUsAac6aql/vzwKRvSZKSM6yRw2SZQ5koqUbMSSoW5BO73D9eY9h3rdZmeP7Nlr709qF9G7HO0AYXtS3KGkRDIIdajCohVm7tKwTSJyshQpLLaClZ9dLmj+D2s++ryHPVHaouxCgPsYShdjWigYW7+0dTiGHYNg5N3I0ufGEiB9ejC3ucRPZtxOqJxIJYaTpqIEbDiSTX567XkJBA5tRPsfCEEIEIMSpG3ajL4o8ohR0BmL5mHSNQO0LqWCtJECBz3fPR9gNTI7oBM/3J4050oYenGPY9uX/8zGjbp9Gt7U8aNySiawE8QWsb2rcRqycSXOSoybC0uhRbSP7g9WJUPqKh789ITKJObEELKkddYPQjZLSMKUQV0rb2q9GQedZgsvRhbjUiJN2z9u/GnOhTMd8P4GlE9PhhOxFdB+CFAD6PaYbGu9GdOV6mdfUidH6Hdyb0bUTzSJRGCGNNIBrRJCVkQS5BhLZXggXG0sYMQszNulxtpNSFkCJTnDaF3Pf28MR0PzccksvXkstkGRLKqEWNWJzBcmY1moh+EMC39S+/CcAlInpV//r3lVK/PGr+CgDPAPBBIroVwNfREYPrAdw4LhillLqTiN4K4CVEdDuAD2BX2fKjmBajCurbhkYkRmAvvnMqCa0YVTZkv3+GUMZGSaNllD8iQa3IvcCUDGvs9hm2FUz5LKVGjJGS7rlZqlIbjh8B8Fe1ba/tHz8KYEsklFJfIKKnAng9gJcDuISutPb3WUpYvwzAXQBuAnAjgHsAvAXAq8flsSP73kMjEokYkw9bDYlWjKpS6CW3QyAdBijYZo4Mkl3j/qEyMpszrJGCWDUidB61qBFFScTMhEUp9bTA9p8F8Gxm23N099i4RbpvE5pHojKIF6MqiaVcSaRI7kGhn3KLpbjRktGGo3pIKg2xYY2osSoJa8TOLQe4xKFqg2VDFjRFwoYlL+hjuBb3tRSjSoiT632wmgq3dc67pNEysz8iByEAsJcdEnV30xnCGkE+CaFbhXPVCNs8Q/bpKB7SOJRzfAVYtSKxFK9Ay+6YcXzhG2UFtU080YkbLTltEvwRpRHjz4hdNHOoESU/t6ZGNLjQFIkaEOGhMCoFORm2RDGq3CcOwfh7rpNciYyNkkbLQ/BH6OAQC1cb53EZUj6XqEZUYbCs/Hu4JKxakeBisYrAGK7FpbTEt716TT2epq8lEEMgWOEFRpNUklHQaFnKH7ELLZj79IVDUsIa2zlE/r+4xoohD4ekRnDHa1gGmiLRo3Tq52LJSY4fuY0YaItITkVjjjoDu0ZCbRLnUbKN7RidEORCSlhDIoQhfazetqkRDDTCIoamSJREoWJU0Vij1BdzMimo4JRRKRjjC5Oduf0RNsj5JQzbIkyWvnFzh4li1IgQL4ROImr7PjTw0BSJBHBUhTlqSBRRO5aqqAyImL906qebAKSNkWqiDLpCDwjt5LipV41hDde+VPLg2y+lRnDf11INlotVhSvEaomEdMaGrRiVKGqsalnRicGFpNuHS8d3M4Ypko2WQv6IXdv4z1v3R0ihZFhju08o5bOkGmEbN7adL6RRnGSsUYHNhBbaMGGm/OJqilHFnLhrZfcpJyfh1M8cV7chSO1basG1tZ37ajVnWMN13FrUCBfm/r9vSMNqFYlVYM0+i4QTU9BJrWDGhruDyCtlqUJUhReNkmENKVNh0Ng+8jCTGrF4g+UYtVy4HQCaIuHBwcbRclW1HFD6CkOiRsEcV1CJi3Sq0dI5rFCxqpj/Gz2sIaVapKggnIVS2mTJXcRdbSXViDFi1QhfSKOpE8tDUyQwM1nwmDHZc6uVXedK3Rz6kyg+lenqLnnRiyyNndNoGXPXTA50ZaE0SvglxIyXCTfnCkUONcK1ryiJqEU9PQA0RSIElagTol6KxOyAYOjFqEJrSMxdfEro84rN2Eg+0UYqGLn9ERIIyiLx9cUIa+jjuvrxtc/lk6hdjWg4DKxSkZj7HhvFFRAp4nEokmOm1M/UjI102d61L2N4hLPYBizMe8dawhE+FUMPN0iENXKbLL1ZG5WrESEKw+whjUM5n1WApkhEIpgM1F6Mag2IUiBkF9JYxC720QufsD+ChT3DZMCxCdgjGDNn16T0V1qNkDJYNl/EsrFKRcKJiKt3Ww2JRRWjCiq2FDnGTIhaxEu64l1jZVASpApRSbWpdRGJ9UJs9wmZLH3j5vj8OKES1zE6Zq8ZYcLCzmM1oykSS0ErRhWOBBmdhdQr8sjFfi5wpHtpE6atfz2soasJkmENzrxdJlSpbb7vhJQawf1schksqyAZDUFoioQDJb0MrRhVOmqqXpn1ZBibsZEhPJLLH6GnfeZCSljjUNUI21glDJZFSUQjLGJgKRJE9Egi+hki+iQR/RER3UdEdxDRK4noIVrb1xCRsvz9fUPfF4joZiL6HBEdEdGXiegWvd9R+0cR0fuI6F4ieoCIPkZET497+wdcJ2IOzHUVnUDCgq78K87YKG20zO2PmBthCou/n5htk/0rUSMalgmuIvG3AbwYwK8BeCeAUwDfA+BnAfw3RPRkpdQV7ZibAdyjbfs3hr5vBfBjAN4L4BYAj+lffycRPVOpneWKiB4B4OMAzgC8AcDXALwIwK8T0fcrpT7MfD+HDxdBWnoxqqH/CuV/J4ROvjJ9Oros6KFICjEkhjXkszbC9kVlbVSuRqQYLEuTihrDh0sFl0j8KoDXKaW+Ntr2C0T0eQCvBPAjAH5eO+Z9Sqm7XJ0S0WMBvBTA7Uqp54y2fwnAmwE8F8C7Roe8DsBDATxRKXVH3/YdAH4bwFuJ6NFKxRTDZSCHciFVjKpWJBajqqWGRLKLv/QJK3IuscSDd3z64p1roQkJa+jHGPcFfsZLViMWZ7BsyAJWaEMp9RmNRAx4d//4503HEdGfIiIXWXkeAALwJm372wBcBvD8UV8PAfAsAB8ZSEQ/t/sBvB3AIwHc4HwjFSCVHBiVgpz+ihmLUWVByOfPmUfiXLNkbAT2leqPkCJRuwWdfUgW5AxrhM4hR9+h47vUCNsxvn1zqxHdoJTnb4VIzdr41v7xq4Z9v4ku9HBERB8nou83tLkB3an9U+ONSqkjAHdgSgweB+AaAJ8w9PPJUX/xYC7Ii1IKnFkDxWYxP0J+4JzFb66MjcTS2JP2M/sj9BBFECoNa0ibLEPqPEipEVxCkMtgySUuDfUgmkgQ0UUAr0bnVxiHH/4EwG3oQhbPBvAKAN8G4F8Q0Qu0bh4O4B6l1LFhiK8AeBgRXRq1Hbab2gLA9Za53kREn3G9n1iwakgcQjGqpf24heXqoKEzfFY5jJbG9pXUmNDb5gpv2IgIb07+NlLbbPtzX8nHFp9y7asmxLHJ9LdCpKR/vgnAkwH8pFLqd4aNSqk36Q2J6J8A+C0AtxLRr/bhCAB4MAATiQCAo1Gbk/4RlvbjtntQSt0G4DaiaWBgUcpCThxSMaqCkq/48aEKUfSJPXAczlSE/BGl0j698wgKb4T9PyxVjfDNdzuXBINlUyOWiShFgoheC+AlAG5TSr3O114p9ccAfgGdUfK7R7suowtXmHDtqM340dReb5uMqkgGcy5F51zZDz777cNTUz+Frua8iAxJ5FA8eCGQeKWhRFhjbyzBz3eNaoRrX3ESIemLGP+tEMFEgoheA+BVAH4RwI8GHHpX//iw0ba70YUvTOTgenRhj5NR22G7qS1gDntUj6hUyxxVLZdYjCpzDYnZMjYKkYsshagSMzxsbZM8Fa5+YwpmCdbtSDVW5lAjJNI9qw1pNIgjiEgQ0U8B+CkA7wDwwsBUy/+ifxwbMz/dz+FJ2jjXAngCgLGv4U50YY2nGPp+cv+YxQcx+2K5BJRKcRxORrkViAIIJhmVGy3FwhuZ/BBchCgYOfYB5s+5pBoRM+7iDJYbyvO3QrCJBBG9GsBrAPwygB8eF4oatbmKiL7BsP0/B/B3APwxuoJSA96N7vrlZdohL0Lnd3jnsKH3VbwfwNOI6PGjvq8D8EIAn4eW/RGE0hkMOW/olSPFlIvtQp82h/3+BH6gJVM/C91jI9zw52ifSBJC9+ltYtI+Y8MaKeENzjy4x/na1aZGcOcWokbo42WqBLSPFtoQA8tsSUQvBvDTAP4AwIcB/ADR5AP7qlLqQwCuA/AlInofgM8CuBfAo9At9NcBeN64AqZS6k4ieiuAlxDR7QA+gF1ly49img0CdBkgzwDwQSK6FcDX0ZGO6wHcmK0Y1QilfAjZximtrnCJgFZDQrSWQMiPWyr1MxSSmReC7Uv4IzjQwxpSV+T7RIRDfLQ5GdvwSIHPZMntOxck1IgW4jh8cLM2hvoMfwbALxn2fxTAhwBcAfDPAPxFAH8dHXm4Bx35eINSyqQYvAydf+ImADf27d8C4NW66qGU+gIRPRXA6wG8HMAlAL8B4PuWUB571cWoBtiKUWWAdOpnDgd/9HimfaELe2F/xJLDG862mUyWIaGMmtUI177Z1AhgtWGIHGARCaXUCwC8gNHuGJ36wIZS6hzdPTZuYbb/LLr6FEmQuOK31ZCYoNaiT7XOSwJzxVttKEUuAscObZ8j9LHrm9/W1n+JsEZuk2VsOewcyKFGuMdjN22oDO024gYkKwex/gfpsIPUD3MpUmTMPDnH5Ki7EHu779C+TO0DF7AS/ggWdEKQeEVpC2vkVJ6WokZw34Prfhq+kMbsNSMacRFDaonshjWh0uyVmAWlxtTP0NLYkkZLcx9h/W/3cUjJgYQ3Yk2Wc6kRqSZTqdDdrCGNBnE0ReJAEK2ixFzVzX0lMSDm5CM190ifQLDaMEP7nP4IzlziFjtzH9bHGPKZaLKMycqQViNsx3LViDGkDJY6iShFHNttxOXQFAnAfeLPfBXuTbU0jZ+jGFUMas0AMUE69VMSEqWxQxUCwfCJlD+CNQ+NCKQuOin+idT7koQcG6tGcEIaMce72vn2zR7SaBBHUyQaOqSQgtzMvtSVQ2LqZ+6MDQmjZajakMUfEeNFKLz47BMMf1vuPm5YQ0KN4MBei8LeT6zB0hfSKBrGaoRGDKtUJGLDAGK1HXIWo5oTW8UgsZvheIkfutDJwnmCk8zYEFAKgkmLgP/C1VfIvGQyK3hhjVS/gG9833Ex26TViJh0zxSD5XSfvZ+GZaEpEpFIqv7o6ztJHYjcN4wt+b70UISthkSGmhJz3D6cPZ5gaWz2mIb/VwmFY7fPNbaLeITPxVbNMhYx4Q0OGVmCGmHvM5xg+PZVF9JoHgkxrFKRcCFqEecs0Dn8BEsrRlUCIScrTtuclR1T2jOJwUGkhiaoFCkIISoihMLz/mpUI2ztdFQV0mgQR1MkhDGpISG40OdUQA4CQia5kDbBEPBJZAv3SMyNsS8k7TNmPqFhjSAlROvD1Ya7L+bmXCXViJxE0da2GKlo5EUMTZGoBSWLUYWQksp/bLOkcEVK/Nz2IiGHBFnd2T6DPyIlpCBVfyAqvBHoiXDtm1ON4H7fcqkRDctHUyRmTP1cFGr7LHLVkHC1kbwSFVAAJIyW5rFMG+PIE8cf4Z7MPGGN7fCM2hG7tvb/j5rViJDxOe1SDJZF/5+XGr6tEE2ROACsohjVMG6uGhIVhDKM7QsaLWvwR8SEHGzHcsMaKUZP1zy4+1LVCKlS2E5VYfQbkjJYzkoiGkTRFAkmcpglWzEqzjgJ8xc6MTlPcJlNlcY+UoyWIopF5EIpHFMPUQvC+uWHTaR8ApxjbWpEDpQwWM6N2uazZDRFYoQsmRVLQEXFqCRqSIilfkaeaCQyNrIZLY0TYKoTgf6I2HCArc1cJY1DTJYpSo+pXQ1qhG+OvH3utk2NWDaaIhGBpAyKVoxqCskaEiF9JI4nY4hMmoKj35TFjDnGdp9hEyd0wbnKjVIp4sIacYpIeggjJtRRoxohGdIoVm+ikRcxNEUiFcI1JFZXjKowklM/MygYky6Er2hFClEZELwASqsTwmGNlP6DCUWEGuHrR0qNiDVY2ubdtbU2bTgQrFuREP6C56oh0eBBxVcWMVeccyBlwQvtV9/HUzDm/cxKmSznViPGiDVYTve5286mRgAta0MQ6yYSLlTklzAqBa2qZdjiwjlBudqEZi9IhD6YoYcko+UM/oiQtE8OpMIaUuEN576FqBFSBkvXcbOSCMP4DfFooY0aUJK0HEIxqpD3kDP1U8JUOZeBMPBGXeZODJsSr9h5oQR/fynQ+2eFwypTIzgkIqavsH3BQzUsFE2RYGBx2RzSP+Ba3v8Mi26wlC+S3hmvJgTfOtw7GYFFMHIh2rZJuFunJGJNltt9BdUIDlLVCJeiUHVIYztopRdKC0RTJHosjiykYgk/ohRjZqq5L7JaI3suwkWiUoyWSWNkKFgVUs1SOqwRe9Wfuq+0GsH9DscaLLl9mo5lhb4aqkJTJGZCVDEqUz9FwyL9Dz73mAlXJyxFIMfVzxJlXCHJPaQ9K+3T2XfcnEJhIyLOti6/RGVqhG0eJQyWY8xKImoN3S4Q61UkIk/8s9aQyFHVsoZiVNuTbXofyVOJTf00NecuyqZtJYyWKRDwR7BCBQJhDQlzpa0vVxvuvjnViBhlQkcrg93QFIkUNAmug65UbF9rJw09VCFBREIk1QzhnKpOjElhi4T+Av0RISELDnxhDf7x2usMJkvOPtv+HGrEGDFqREjNiNpCGlX9dheO9SoSLkR8oW01JIoVo0qEaDEqHRn6riX1k9sXN2MjyWgZgZL+iNRqlnsLfaGFIESFCP2cxjBd2fvUCKthMlCNiDVYuuZabUijQRxNkTgUJFa1XC0izYLG0MPM94KYbuO1KzOX+Ctzbpu9YwqYLCVCGDHm11L+EN9Yiw9ptPOiGJoigbozNloxKg3SNSRChw89IRrVBF6/KVe3/jkkhC24JCVR9g8JLUipFCEmS/0Y476Em3PNoUbUENKoknQ0OLFORSJgMcpOMloxKh6EQxnuuD5/qKj2EUgyWnr2S/sjohWIgP+30otNcnhjZjUixVjqO14ypFH0/7W2c9yC0RSJQ8MS0xBNiKghkTX1M/A4/tW9YZuQ6pASEvD1I1EWO2xxtjaxzi00rJFi8HTNw3TcGCXUCNuxXDVijMWHNBrEsU5FIhJShsSsxkZplA77zHjiCQ0bFDlJBoYMrN0IEY3c484Z1tj2ayEinLlw9+VWIzghjZjj99vx+gAqUyMQ/ntvsKMpEjpq8EvkLkaVcsWb6fPJXUMiuj7E3BkbvuEirmbn8kcsNawRMr6LCJVUIziwqRHc0MRiQxoN4miKRCxCF74ai1GlILX/lPLXA+Y6+RS4kpHyP0iVF0+7qnYMJRTWsJkkQ8MaMSbLGtQIyXRP27xyhTR8ykU2NPIihqZICECihsQskJifrlRsXw9EAdrr9B+vWA2J2NRPU3v2bbvTx4o+JuKOnyn+iFjTZUxYIxdyhjck1YgUxIRBllR4qiE/Vq9IuBb7kkSgetJRA5aW+unt0NBfzO29I/wPMYoHt5/Y9rEZEdwxS5ssl6BG5DBYuo7zhTRK3gW0hVPk0BSJQ0BiMapFmT8F4I7Vh3bG6z/qpMX0HkzH4c3Ht5/rjzB3GLiAOvZJhDW4SDFZLlWNiOl/PM+QkEZNJKJBFqtXJGpGK0bVQ7ocdiikiMFwbEaj5bRBOBEp4Y9YSljDNl7s/KXUCJtvIUWNiDVY2ualH1claj3fLRBNkWAiy1V7C2e4ESI5J9aQEEkFyxguiDJaeseRmUcK0QjZlxKCkDRZcubl2peqRnDnpT/PbbAco+aQRoM8miIxxtIXdtfJaAlVLYdxpatYSqZ+phCOQkbLLERkhrTPlLBGKkJUiO0xlagRHKQaLHOGNEKKjyWhkRcxrFqRiK/DkDDmkvwIhYjV0l3cYmmXQkbL6fHhYRQpchOa9skhA6XDGjHjh1ypd+15Y3L25zJY5gppzEYiGkTRFIlEEKc+REgNiTUVo0pZDDjHhqoNw2HCngjzIAn/D7bdpbI7UvwhkSGPGONjbFgjakxHyCe3GpECK/EoFNKYE420yKERCQuiFupcNSQOpRhVTOhC76Img1TpjI2QPmNIh0fiFvdHCIc1ciGGWJhQmxrB/V6GqBGTfbWGNLYTqOhcsnCsOrSxasxRjCpprIC2kZUUjWMIX0HFZGyk+htq80fMa7rUtgubLPU23H1zqBGc/l1lsENCGtWRiAZRNCJRAVoxKiEUkk3Zi2iGAk817uf6I9xXr3GLst4m1UPhC4sYj2EUoKpZjeArE/EhjRqhFGX544KIriOinySiO4noPiK6h4g+TkQvICLS2j6KiN5HRPcS0QNE9DEierql3wtEdDMRfY6Ijojoy0R0CxE9JPEjs6IRiQGuCpc1s+VDL0YlJT+GLmLSsmdUoShfnwshFQ7iZW7vH79UWMM6bqVqBIdEuBBrsJzsSwxp1OSjyAUiugDgXwJ4LYBPA/h7AH4WwEUAvwjg9aO2jwDwcQBPAfAGAD8O4DoAv05EzzR0fyuANwL4twBeCuA9AH4MwPv7ccWxWo/E7CqAZ/zVF6MKkZpdV7OxqZ8mMO/iKZWxEdJnKunw9h8xv7nCGnZVQdvPvMGXc6xIJcVXgdR0LKf4FAdW9YL5f5MzpFGURMxLWP4igL8E4E1KqZuHjUT0PwH4HID/G4D/rt/8OgAPBfBEpdQdfbt3APhtAG8lokcr1X2SRPRYdOThdqXUc0b9fgnAmwE8F8C7pN9MUyRCMTcBOXTMXMVS+kTGDYOE7PfOMYB0eD0bQrUvnPMRDmtII0SFcBEAnxrh6pezXzKk4aoZMUZISKMqEjE//lT/ePd4o1LqBMA9AB4AgD4c8SwAHxlIRN/ufgBvB/BIADeMungeAALwJm28twG4DOD5Um9gjNUqEnMgaxjhUIpRlegvUH0xkwFmu5i+x/sFjZS1+SPmCGvY1IiUPlxtzPvc7UPUCCmUCGnUhpkzwD4F4E8A/AQR3QXgXwN4EIAXAHgigB/t2z0OwDUAPmHo45P94w19f8Pzzeg1AEApdUREd2BKOsTQiIQB3LAHq4bEUpFbedmejOOPFYXwf6XxSl/w6tO3fwn+CO54kmGN8OPSFBGn7F+JGrG6kEYhENFnRi9vU0rdNrxQSt1LRM9Cpyr8yqjdfQCeo5R6X//64f3jVwxDDNuuH217OIB7lFLHlvbfTUSXeuVDDI1ISMFWQ6IVo0qfwzAVzrGxqZ/GA+IXRm/XAeEHcwPBEFCiKpJ0o6/Yq/rEO32GYo9gRBY0q1GNmM7FPC8dOUMaxa7Psn+W6rs8Te4H8FsAfg2dmfIbAbwYwLuI6NlKqQ8BeHDf1kQMjvrHB4+2PdjSVm/fiIQ4avY91Da3bY0I3+IS2J7TVwYUkTd985c0WiYSlFR/REpYI3WfrW0OkyVnPtJqBEtdSFAjSoQ0qiERM4OI/gI68nCzUuoXRtv/KTpy8bY+W+Nyv+saQzfX9o+XR9suA/hmy7Cm9iJYpdky5Iq++vRIDayqljmqbm6Vi5kkStfJP5TEMNNBozI2UtWBkEUus3/CdyUdGtZwXa2HhD6krtpD+nW1kVIjfMhVM8IVpljyXT2VmrWOxM3oFvb3TOekLgP4FwC+DcCfxc6MOQ5fQNs2DnvcDeBhRGQiHtejC3uIqhHASolETZg9DbVmMEhJtKJQ4ASX7EPIRASq8U8IhTVikEI6OOOHqhEhpCyGGJhgUyOi35eHRDQ1YoKBBFw07Ltq9HgnulDFUwztntw/jr0Yn0a3rj9p3JCIrgXwBK2tGBqRWDIOtRiV1BWlQHaG+aqad2zIXFIX79i2If6IGH9I6bDGvoqgbbf8P6SEOSTUCBMkik+VDGmMsQgSsaE8fzz82/7xBeONRPRQAM8GcC+A3+vTPN8P4GlE9PhRu+sAvBDA5zHN0Hg3ujPUy7TxXoTOG/FO7gRD0DwSGpwKgZjh0DOHtRajKlFDosB7TfVdhBgtJdv6/BHWtsM23+8jIHY+HiM2pCAJm7/ChFJqRA5IhTS4Y3T9BkzwcPAmAH8LwOt7v8T/hs5s+SIA3wLgxUqps77tKwA8A8AHiehWAF/v210P4MahGBUAKKXuJKK3AngJEd0O4AMAHoOusuVHkaEYFdCIRDQOOvWzNASvoIP7A9gkLeaKnN2PtXGetnPUl5A4NiSsEWuyjFkUJZQXm2Jg2p9DjSgV0vAhN1najVNkGMvY6veJ6EkAXo2OJDwXwBUAdwD4e0qp20dtv0BET0VXNvvlAC4B+A0A36eU+rCh+5cBuAvATQBuRFfg6i0AXq1UnrugNCJRyKMwWxih4mJU4l/pzKmfUUjN2Bh3lYkohIwxVS14iyfXH5Ea8pBWJ/b6ZfxfuW7OFXXn18j/Ow6JiB03Z0ijFImoAUqp3wPwQ8y2n0UX8uC0PQdwS/9XBI1ISKBgDQnf+CLIRa4SUkFzpGmm9Jk7Y0PSaDk5zkMEYseQqGZpapfqmfAdG2W2TJxbLjUiFDFqRM5Uz9IkYk2kJTea2dKBas2IMZizGFXKD5bzf+DqP3RsoTuBzmWeDCEK9uPS5sMNAeUIa/hMlrZjveEORoaJhBoRUnyqhMEyJaThbuve37AsNEWiZhgW8FnTRXVFQZ/Ldr/2ujYIn7T8V+typCLIaDkZgz+f6XH8udcQ1siN3GqE75gc75Pbf0pIo0rUen5aIJoiMULpRVp6vOLFqAbkOIkn1pAomfoZMq5/0Ri/iCQYkUQh1R9hbevcZj/W1QfPbGlWI0IfOWOUUCPmNFi6QhrSvoiai1g1mNEUCS5a4agy4JxEYk800lcgvnlkMlqKEIUAFSXGHzFtIBfWcA6jhTWkEHJfDwk1IpbczRXSmO5zt62JRLRwihzWTSTmIAeFalH4UJ3/Q2qRDz05GGt2hMvP/nF8pCO/osDpI8QfEbMIzh3WSFEfbH1JqxGusYA0g6WtT25II2Xhr84XMff4B4QW2ohAzhoSIsWolqSeRMr3QUNIeyJiMjbGTTO1nR5okbJLhD2Y+3OENUJNlr4xwupW5Fcj5g5p2Nrp/fvG4PTXsBysW5FwgH3FzmhX3dX/GDMZjkrWkDCPb3jfhTI2YttajZYCBCt6Hr60z8xhjTrNlv1jBjUiB9YW0rDNoSEeTZEQRHQNiVyosRhVjIS85BtzBSkA4xeR5MDibQgiN5F9xHwWsVfxLIUg0WQZUoBqqWpEjpBGKolYRMZHwwRNkagBaypGFYLUGhIJ7Y0nWMmMjQJGS3uHloUkKJ00NdRhPyZYsdgexxs7FCF+Cgk1QsJsOWdIY9p2+roGJWI3eFMkpLBeRUL7oRS5WddcmKMYVUIVSw5yp376D/IcU0ANsi44thCIRN8RbUP27+2LvNW4rS33kYNcaoRxLIc6EIsSIY3wOSUd3jATmiJRK5ZSjGr7etgvOJYkUsphp564BcIKEoSME7LwkjDmVave1rg7MHTBUwSmYYnY/ztfWMQ89vRY07zGiFEjagppSPsiSpOIRlrksF5FYmYcTDEqSXBO+q42wWEOgT4Cj4k2OE76MI8de/8N+ziCqsTGvgD5+g8Ja5RCbjViQgw8v1sOiXAhNqRhm0PX1rd/XhLRIAsWkSCiRxLRzxDRJ4noj4joPiK6g4heSUQPMbR/FBG9j4juJaIHiOhjRPR0S98XiOhmIvocER0R0ZeJ6BZTv6F950C7fXgGZIxVJi2opitLyXLXk+PGL2Q/D3vYY7w9rr90r0RYWIOlDAiZLIOMncJqxLYdw2DJAUe9cB2T0xcxF4lQirL8rRFcReJvA7gZwO8B+BkAPw7gdwD8LICPE9GDhoZE9AgAHwfwFABv6NteB+DXieiZhr5vBfBGAP8WwEsBvAfAjwF4PxFN5hfRdxQkUz8n8FxZsMc9lGJUIT86V9tcqZ++fnyLpIBCYAs7SCgbrDEDwiu+tlxSEeyjyGSytM2hpBrh67tUSGM6vn0+rrnqc+Qe01A/uB6JXwXwOqXU10bbfoGIPg/glQB+BMDP99tfB+ChAJ6olLoDAIjoHQB+G8BbiejRSnVfRSJ6LDrycLtS6jlDx0T0JQBvBvBcAO8ajcnu24kQoyUTtj6SF+0DLEYVUkMix+3Do5CYsTHBhr84B8O2mEj4I8bDBJj/fFfpsQsyTyk4PDVCCiVCGj5ImzXDBq/k3HIAYCkSSqnPaCRiwLv7xz8PAH044lkAPjIs9P3x9wN4O4BHArhhdPzzABCAN2n9vg3AZQDPHzZE9D0flhL+KL1IZ1w0WfuErghFMzbGh2U0WgbPxUY2Iq+Wd9t444bWnNi2STRZ+uY1hxrB+b8IVSMkbsgl7YtoSsRykWq2/Nb+8av94+MAXAPgE4a2n+wfx4v9DeiuoT81bqiUOgJwh9Y2tG8ZLOAK34iailHlqiFRAMknN+EQRKjRMtQfETLHVK9Eiiqx28cbf9yGq0ZwwL0J1gATEfGpEb6+U0Matn7399mPWyKJUBvK8rdGRBMJIroI4NUAzrALPzy8f/yK4ZBh2/WjbQ8HcI9S6tjS/mFEdCmy7/FcbyKiz5j2zY5DLkaV6eQQXEOC++OOmW8kUVCWk39NcquVhASkfc4R1rARhVDoxzslfgcJcR3vV3Bkiag+D6lUT9e+WsyVDfmQUkfiTQCeDOAnlVK/0297cP9oIgZHWpvhuamt3v4kou8tlFK3AbiNqBqboRtz15AYfvihYw6fbgorL8XoI74JYR4CCfUhRXEwz4Xjj5BQJUqGNVzH5cCOYMA6bqhxdKIweO5fkiukMUZOX4S3v0LnuhZKkUOUIkFErwXwEgC3KaVeN9p1uX+8xnDYtVqb4bmpral9aN9RcFENqdTPoqRA4uTKLUaVAs6P2tVG+qQgmOY5absw6ZNDFHKENTgLMSeskGqy5KgRrvcxILfBUjKkMacvohSJaJBFsCJBRK8B8CoAvwjgR7Xdd/ePphDDsG0cmrgbwHcQ0TWG8Mb16MIeJ5F9szBrtUghsIpR1YrCNSSiQh+SGRuTAxmKACMEksMfEX21FhDWMB4eWRI7l8nSNocQEmPa59tm2+9a8H3ghjSmY7v609sujEQ0RUIMQYoEEf0UgJ8C8A4ALzSkWt6JLvTwFMPhT+4fx16FT/dzeJI2zrUAnqC1De07L5aWljn3+DpCfsSutsLvy7sQefcHtF0KGAuQfzE0bUtRJXjjmvqRVCM4BEZKjSgd0sjpi5idRDSIgk0kiOjVAF4D4JcB/LBS+1/HPhXz/QCeRkSPHx17HYAXAvg8phka70Z36n2Z1tWL0Pkd3pnQdzqYX27b7cNDHBmrK0bFgOjtwyOuBKPGsTW1hgXSpmAea/Q8wR8Rq1CkGghDDZj6vlSTpb9/Tpt4NULic485RsoXUWOGhglKtcqWUmCFNojoxQB+GsAfAPgwgB8gmnxgX1VKfah//goAzwDwQSK6FcDX0RGD6wHcOFYxlFJ3EtFbAbyEiG4H8AEAj0FX2fKjmBajCur7ILA01YOBkGJU7o7y/2Bzn8T3O4lf6EuqH7FziAlrsLwSDMIZq0Zw5iutRhjHYqgRrPYFQhqh0N/7gZ3FVwGuR2Koz/BnAPySYf9HAXwIAJRSXyCipwJ4PYCXA7gE4DcAfJ9S6sOGY18G4C4ANwG4EcA9AN4C4NW66hHRd4MNNRejEijotIVpW8TNumIzNqq4QrEu/DBut3orIiuSpoQ1jH1HmCxjodd9mFuNmDukkdsXUZJEiF3UNPCIhFLqBQBewO1UKfVZAM9mtj0HcEv/J9q3D7rRsrjsn+uLvNRiVJwryxIEKNONuWylsbMbLTOAEwKRCms4F+ioIlJuNYLVR2Y1Ivf/ZWxIw7VvSSSiG7ACkn8gaLcRZ6K6u37WWoxKTxWVgqu/lLESiclSKtlJ+SNyxe9ja0e49sWqE0O7OdUI0zYpNYKr9uT0RTRz5WEhpSBVQwS86aZLK0a1JQ4CYwrCdfUa1lFkW4HFd697TvjBYrTMDis5MTRNUiXs/ZUKI6WqEZPF3qNGGMcvFNKYtuPPMYZEzOGLqCLseCBoikQMKhMnrChRjEqibxdc48yZ+inw/q3hCsuinD7eeP7m7Rx/RKxCkUIgjP1lNFlKqxG+kEaIGpECrmkzxRcRPqfpa6n32lAOTZGwISb1M7GvGCy6GFUOmE5CgQsUZ39sW0nUls0xRhDBYIY1XLUjpE2WNnB8Fa47hM5psFyCL6IkiWiKhByaIiGJyBoS2VFbPJLxA3ZebUqfACIWOk7byYkqg9EyBln8EYXCGiZwFoOcakTsHFMNlqkhjWlf5n67/uzHLZlENMhitYrE7BkbMWMvvBhVznSrpNTPkHEqPtlxClFF9Rt5/4dJH0IEQicDxn2ZVIncaoRpG9fD4ENMn66QxuIyNEyo+Le8NDRFgoFZMjYOqRhVyA/WFYuuIPVzjMl8clSozBW6CPRHWLsJVS5MfQSGNUztglSJBagR5n7MbXOFNHKaK02faVMjlo3VKhKzY86Fv5SvQriGhBEpJ6DEm3XZj+MssP72UUNbwyPh/aaENUL6C97GuLGXtCoxtxphnFMgidg/nttOD3fInj986kYuLCV1ewloisShoYZiVNL9BvYXuvjYjrHOYa6rJ6sXgTefUH9ECkJuay0S6giYN1eNCOkrtPiUhMEyFDEhjdLmyipCHg3BWKUiEVPLYYuEL7pYPYjailEN84mq0xB5YkyYs2TsnLM4Tw9gtE+Miyf7IxhXtyXCGq7wAucK2may5GKbJRJQAdNFdmIMljlCGiGpnmMcGomo2e+0NDRFAvEmRPFCUbUVo7KdeLftMoYVxuNwYWqfKulL1uIQQDLhCFAKJBGiSqSaLEPmk1uNqDGkYe/LP8/dPnfblqGxLqxSkcgCG5WfywshGf/TCcYhIWLhKAFRVSEm9MFRGazqir9P/n7efG37bCZLH1LUiBSDZcmQRqwvIgeJmCWk0cIoYmiKRAaUSrNcZDEqxgkxtIaEWOqnRMYGazH2t+eOzVUVgkMwruOFwxqhJkspr8SAmKtjlxqht4nZZtsvGdIYI8QXYZsbEJfmuUc0sMDz2srRFAkPcqd+ZicdlagIi7tlbwVXKzGFqFJJQuxtw7n9hyyanG0shcCT8rnfJ5zHOcfKoEaYkDPV0zYOZ14++PorSSKaR0IOTZFYCpZajCrkx1qyhkRIf5aFVgq2hdx9EH/R2TW0jOk6pLKwRuxiLoncakTIZ8hFTEijtLmyKRHLxeoVib0FNlPGRhAOqRgVB4I1JFySuLWbyBM0K1zAKI0dM567YUS4Q2jB4iAlrGFq53yPkQWopNUI0+frUw9yhDT2wxb2fdO52OcG1J+hYUJTJOTQFIk50IpR8SH8Y4+R1kuDG55I9Ue45+AfR+q5xDZ9X67/RxsBMbapIKRRgy+CQyKaGrFsrF6RiEXRtEwu5ixGpd9uPOccTJ+9qS9f/z5SIXi/il0/5vFjjJbucSLaxSgekWEN6xxMfSWaLHOqEa734NpXKqRhGzPWF1GCRLTKlstDUyQKIakI1hi1FqOSRgXKgA0pGRvsMZhGS9uNuvYbjo+ZL9wREtYIJQ57hEF4ocitRrjG1NumhjQ4Y+h96JCoFTEXiWiQRVMkHGBnbNhuH55qkKyhGJW+ffs64SQ9x301QlI/C57MUhUB1z7xsEihsEasydKFVDUiNpySqkYMKBXSsM3J15YDn7myOImo+GJlaWhE4hBRq2THOeGHljHm1pAI2T8ZIGKhN41jCQc4h45Y7J19MOtzcNM+pcMaEiZLXY2Q9kpwKmC61IhYg2UKbCENly+idIbGHEpEDX6oQ8GqQxtBGRslxg85tlayYEBqPYIUiXrWjI2YfgU8EDmViJSruJBCWqHbQhSD0mpEjMEyR0gjxBdhmwvQ0jwb9tEUCS6WGLur0RBqQ+jny1xogroseYXCvfJkKgpcf8TerogrYOmwxrRv93icfkqpEUaCYEj33M6rcEhDwhdRgkTsqx+GCWdAUyTksGpFokqYfkSHXIwqsBx2CkJOHNarZ9+NzPT2zLj1pCtXO2Z/0YoFI+1zv7/wYzhtTf8HqaqEpBrhmrtrn2RIg1veO9YXMenjgEhEgyyaIhGBJBNkgTuGzo6cYRd2dotnDhIkJfGkxw0ZsBcqxlW6eWd4/yleljDjZRhxiEnd5CC3GmFqF3pnT05II8UXYRtL78e4v0IS0UiLHFarSPiu0nPfY2MW5PZVhJy0mXK++LgmFPxc5vRAiJs3hUMcvlTW2DkPiFUjOP4BKYOlcYwCvogQc6VE1cq5SUSDLJoiMSD2yp5x+3CxNE6n5B3Sj/DCWbvxM+izGT+3XI1biMHk5BuTmRHpgcjhjxD1TgQYXiVMljHhCQ5SzZemhdv23n2EQ9oXYWsHmElSCHwZGnORiOaRkMNqFYkciPYizBWe0GtDsI/r28e83+gF0S5jc/tn7S8B7ucdGcuW8Ee45mJL++QgxD8STCoc/7el1Qj3fO3t9TFTMp5sIY05zZUcEhFzW/eGedEUCQ5mYMyzlODmFqOKwQwnh1ypn+zxPQul+RjXzrhwkP45uHwVMeEP8RBHoMnSNb9cakSoShJjsJQKadRiruT8BoqSiBouKg4ETZE4NCzxx+G6uja9n4g4s3cKjHBFaGls7ngiRkvPvhyeC9YxATU2JE2Wrv4l1IgBOQ2Wvv05fRElSERMSe2GOrFKRWK2dEihOaypGJUUaoiH5jBaOhfqLOEP/0LGgU2t4ZosQ5SB1AUqxHPhUiNia0akINYXMd03fX0oJKKGc8KhoCkSwJ5HwZWxUeVdP02Ye56cH2muGhK+Y8f7c5AyS2nsvWnY1A693V5owj500CLnWLhiFBPxEAd3W0ABqlA1wtUnR42oJaQR64s4VBLRIItVKhKzwbe4H0IxqtI1JLykIaB/qYwN5xiR7VzHMRUEIH+IgxUiCghxhG7T93EIAQd7RIOZ7rnbZ28/nidnv6QvwmeunOwLJBG+sU19AmE/2RQ0RUIOTZFIAaPWRFYFY27VYYyQH2XkopiMmUJCsZUq5/BHuBZ8qbDGdDxz/675hIY69LFC1Qie78IdqtDb29r5QhrSvohJO48vwrUvpuDUnCSiQRZNkRCC5O3DsyDXIlpicXbI2bFzyXE1EnPVnm1fQPiDm/bp6kf6Odt46SAfUmrEXr+R6Z4SIY2QeerHSpor/XMI7680iWiKhByaIuFD7m83u+Rz5L69tkI/npI1JCIQ0h9LjmdkbMTOR2pfrD/C1zZXWMOXDhga4qhRjZgzpFGLubJGEtEgi6ZIBBgtS6GIoTO0NsTQLmbBjyQvElkOnP3ZEHkiDypE5WrrIRrOMEZkjN1+jOf/yOM3cZksTcitRqQYLPU5AmZVaA5fxJpIRFMk5NAUiYYOvmJUuRB6Fkn98WcOacRmooQUokrxR8SqFi5Swnkeeqxrf7QqEalGxKoS7GqdjBtyhYJbQrtGElHBtVxDIJoiEQAppSBbJkVl9SVmqSERciLmhCtsix5bLXHtjFQsfG1DTJuutM+AOaWENbgmy8l+R8qnrRx2KlxqhD72GCayUSqkEWKunOwTJhEmzE4imiIhhqZILAyLKEbF+YGGXrnnTv0URAkzZYg/Yr+zFIUj/LhUBcI315rViNIhDa4vwmWuLHH/jNlJRIMomiIRi9BvfckaEjVmjcyNHASMIeMDbvVCqhCV/1j+ax9p4R4XghQCMUYpNSLFYLndFhDSkPRFSKZ5LplE1FJ19xCwbkUiZnE3wBaqmLuGRJXFqFwnTOZCJJn6yZLkbSEQ5yCRYQuHT8HXNtQfEZL2yTVmpoQ1fH6I7TbmTb30MWLVCE66Z4zB0tSOG5YwIe7W4rw+gHIkogkTy0NTJEYQydhYI8vNGWuM6Fs6lZSNHEbLvbaesITPHxEUxogjQ6FhDSk1Qt8npUbs9xsW0jCRjZwhDSlz5WTfAZIIKWNrQyMS86IU6aihGFWmGhIhkrAUuKWxpYyWov6IhLFcBY34xMLcN2dutmOcqoCQGsExWEqFNEqYK0MzNLj7rP0Z28DbJicakZDDukMbAZj1Zl21FKPapoamdcMB9/bhYZ2Ojk/I2HAOIXAVDySSqwR/RLchjuRE3XvE1A83xOFQKqTVCM7YepsxQkIaJkibK11zC72HhpeUGMeEt03DctAUicpQVTGq0KJVJriOlT57zHSFkcNouT+GviGNLPjSPrmeiP15yoQ1alQjXATBpUZIhDQ4iDFX5q4VUTOJaIqEHNarSAgZLUNRZQ0JWzGqBEQ7orlj+9rlPjtFfkYpRktpf0QYQbD3zSUhISZL37yk1AiOwmA7hlszYruvUEgjNtxWC4loaaDLw3qJhIYgo+VM3/RF1JDgIPR9pKo0gZK7Ta6XyNjYH8s+tum1t7/UsEZkXzEpoiEEwlSAyrWg621saoStvU2NcBEAqZDGHL6INZIIpSjLXwiI6BuJ6B8Q0ReI6IiI/oiI/hUR/WWt3aOI6H1EdC8RPUBEHyOip1v6vEBENxPR5/o+v0xEtxDRQxI+LidaaCMRLIWhpPoxd9bIHHJhJMHiLoSc44MyNhI+I0mjpXmAFNUijLDF9sNRI0Luw2ELabiQYrDU+7D1Y+szxhfRSER9IKJvA/ARANcB+McAfhfANwB4HIDrR+0eAeDjAM4AvAHA1wC8CMCvE9H3K6U+rHV9K4AfA/BeALcAeEz/+juJ6JlKyVfQaERCEqP/nmSvw9yEIBQ5akgYT8jucXKnfsaWxg4x53kLUQUu9in+CNP4JcIaXAIRo0ZwEXK8qc2WbAiENOzjWo4NMFdO9q2JRMxx0TPF/4xuDX6cUurfO9q9DsBDATxRKXUHABDROwD8NoC3EtGjler+Z4josQBeCuB2pdRzhg6I6EsA3gzguQDeJf1G1hnaCFykZ83YMKGmYlQz/hh9C8Nkf+g8I66ug+LsOiHxqBal/REpYY3QUIaXQDALUEmqEa7/S12NqCGk4SIRXHPlqkjEzCCivwLgLwF4g1Lq3xPR1UT0YEO7hwB4FoCPDCQCAJRS9wN4O4BHArhhdMjzABCAN2ldvQ3AZQDPF3wbW6yTSNSAVkMCQICCIElYOKmfTKR4DKQhnfYZG9bY32eeY5BHwrFYu0MdcWqErR9uWGG7LSKkkctcuRQSoTzpplKY2SPx1/rHPyCi9wO4AuABIvpdIhov9o8DcA2ATxj6+GT/OCYSN6BbXT41fa/qCMAdWlsxNCIBg9HyEBmy1CI2Vw0J70GZTz5cwhGiSgQaLWOISQ1hDdecvATCc2dQfZ6SagRngXYSHENII4QMcEjE3tgWX0RKwalDJBEV4FH949sAfCOAHwLwIwBOAPwyEf1wv//h/eNXDH0M264fbXs4gHuUUseW9g8jokspEzeheSRCkVGHM4ZQXMPFTCX6RmDCi3vKx+hbQMd9B87bt4gZkWC0zO2PME5p5rAGZ16m50b/QUY1Qu8vtGaEvm+6zbw/9PRiC2nEpnmuiUTkVgiJ6DOjl7cppW4bvf5P+sf7AHyPUuqkP+a9AL4I4OeI6JcADOEOEzE46h/HIZEHW9rq7U9Yb4KJRiQKovhNtFwYfkS2GhIJxahEa0gIhoCsC1VqxsbevuDu0sYO9Edw2qSENaaf82h7oMlSQo3YJwFhagTnfceENPQ+uv227X4VQypDYzo3ez82LIVElIBS6rscu6/0j/90IBH9MfcS0a8B+FvoVIvL/a5rDH1c2z9eHm27DOCbLWOa2ougEYkEiKR+SmBJ9SWk51rwvXNrJfj2pRotOXPjEIFcYQ3XOKHPTdtC1AgphBgsQ0Iau2P3j3EdZyMRtjmZxvX5Imz9bNvvtXHvN7Xp2pG3TQ7MfBvxf9c//qFh35DB8acB3N0/v97Qbtg2DnvcDeA7iOgaQ3jjenRhD1E1AmgeCS/YGRuSqZ/GeSyALMSevJnHhaR+Ji0kEbF+11xMbWvwRxiPyRDW0NvGEoi51AiOwTI1pGGCtLly0nfE3Twn+/X+IkiEAs1GIirAYIb8VsO+Ydt/AHAnulDFUwztntw/jkMon0a3rj9p3JCIrgXwBK2tGFZPJERuHZ4C4y8usq+5GHZqDQmJ9ty+UjM2XO0yx1yjwg8Rx/iVCp4y4Y7TewiChxSmqhE2EuE+xj+OZEiDgxhzpXSGRiyJ8LXJDaVmzdp4Hzp/xPOJ6LphIxF9C4C/DuDzSqkv9Gme7wfwNCJ6/KjddQBeCODzmGZovBvdf8HLtPFehM4b8U7+J8RHC23oWA8jXjRyG6Wmgzn2lTRaMuYWQwzMHgpPH46FPkRxcM3V9Nx0lR6jRvjG3z/e/h5qCGk0ErEs9F6Ivw/gHwH4JBH9EwCXAPyd/vElo+avAPAMAB8kolsBfB0dMbgewI1DMaq+3zuJ6K0AXkJEtwP4AHaVLT+KDMWogEYkwlDDt31pxagCa0hE3T48A6mIrZAZUtHS3EGEgsAIe4SmfXLb2Nua58fySGRSI0JDGi5IhzSkSIRr3EYipih6MWIcX91GRPcA+AkAr0V3dv8EgB9QSv1vo3ZfIKKnAng9gJejIxq/AeD7DOWxgU6NuAvATQBuBHAPgLcAeHWO8thAIxLzYE3FqKThJRWj55wFLMJXEbLA7h3rM1oyjold9EN9GL5jYkMgoc8HpKoRoeCoEdsxE0MapmOkMzSm83C/npNEVHC5VgxKqdsB3M5o91kAz2b2eY7uHhu3pM2Oj0YkKkFwDYkQSDHvkPm4xuT2M3Npchvh8B4nbLT0zc26LaINi4AwwxqufkKInddPkUGNCKkZwQ1phPgiQkyZuz7tJEKyVsShkIi5FYlDwqrNlj6jpSv7IjR8IB5uiOkvdGEefmglFIiYH3WOeUWqEtLhFV8hqm4bp58IZcKxeJpec8MaruNC1Ahb3+NjU9UIW78h4Z1u2347ji/CBo4vopGIhtJoisQYsd9kW+pnbTf7GrAlCP1rWzGqmK5dxyYs/NGpn7aTs3TGhq+tcFjBdhzHH8EZP5SAhOzzjePrx3S1zlEqYtUIrsFyb18hX0RImud0fK3tykhEUyTk0IjE0lFLfYnYH6XxSjvTe4oq883vL7iiZYSqIeWPMI1n6ieEcHBDILYTuK19rBrBgbTBsrQvIjZDY+0kAmhEQhKNSMwJ5i9oEcWoXBCX/fN+HrEVLH1tOT6LGKXCuI1JJlLDGvprbjXM2OfSaoQOmxrhUnpSQxqmY7jmStvxJUkEt+Q1996ItQq5DXaslkgEF6IqlaN0iMWoDBC7ffgkjBE/B7cjn08sUo2WpjZcf0SsMiGRFRIT5vCZLAFZNSLFYKnPJzSkEeuLiCl/vVQSUfoU1hQJOayWSMyGQ6HbnB9h6J03JZWXQFl9by4Jcf1QxCgVtuP2iU0cwYghHJImS+4Ve4gaEQob0TC14deTMJMITpYGx1yZcv+MHCSCG8o4lNPiWtGIxADt2y2ZsSGGGopR1VxDImf/Ifs8r2P8CiHbYtI+uzb7x4QoEfprtjLhUSNsbfVjnAt9pMEyNqRRyhcRWyuikQjU4y87ALDSP4noFUT0HiL6IhEpIrrL0fY1fRvT3983tL9ARDcT0eeI6IiIvkxEtxDRQyz9P4qI3kdE9xLRA0T0MSJ6Ovsdz4BZiIf0jyTkPTgXXWZ739ll415c2IglJ6lqC2PcaH8Ec5tSJB7WAOzEQH9dQo2QQmhIY7dvf25jSJIIbppn7SQi2LTcMDu4isTPAfiP6MpyPpR5zM3oSnOO8W8M7W5FVwf8vegqcQ11wb+TiJ45LulJRI8A8HEAZwDeAOBr6GqO/zoRfb+lXOgeRG/UZVvwAmh2cDEqqUWdgwpYe1AxqPH7HT+33azL2Rl7WJb3Yf+YcKXCNi/XlbO3nXBYQ9/P9Z/45jaXGpEzpGHcn5jm2UgED80jIQcukXiEUuqLAEBEvwXgOk97AHifUuouVwMieiyAlwK4XSn1nNH2LwF4M4DnYnqTkdehIzJPVErd0bd9B4DfBvBWInr0+AYmpZHj9uFiGObm+/Fw2xmQq4ZESQQZKx1X4ub2jPHZJEE69LF/XEpYQ38d6lPxSf+xagSXRBiPjQxpcHwR5rny9jUS0TA3WKGNgUSEgoj+FBG5yMrzABCAN2nb3wbgMoDnj/p6CIBnAfjIQCL6ud0P4O0AHgnghph5elHDzbqkYStGFYPYY7lX4OPdQlcREhkbUeN6yIdtPqL+iIRtKWQq6bmQGsHFHtFICGno7fVjbGoE59iQqpWTfXv9h+3v2iybRAxkWfpvjchZIvs30YUejojo40T0/YY2N6D7Xo3vpw6l1BGAOzAlBo8DcA26u6Pp+OSov3AEGC3FwPzhOGtILOEqPydBmYQxRttLZmyEvjZ2Kqs4sLdxxxC8d4iNHIRctYeqEaVDGqV8EbFVK+ciERvskwilmhJxCMhBJP4EwG3oQhbPRncv9W8D8C+I6AVa24cDuEcpdWzo5ysAHkZEl0Zth+2mtkB3f/Y9ENFNRPQZ7huYDTWHRkwQrCEhfeUfDNeCn3iVwTFaFvNHGBb53GEN/XWsGmHavzFs09WIVOghDd8NufT56McY9yeSCG6tiFQSoUDRJGKvjUm1sbTNgYHESP+tEeLpn0qpN+nbiOifAPgtALcS0a/24QgAeDAAE4kAgKNRm5P+EZb247amOd0G4Dai9PyJpB5y/UKKV3JhLKziWSMZiIaTPDiO85TG5igfvitVZ7sAtSJ3WEOvHeFSgKTVCNeNuaQMli7fT0pIY6kkQkdsoSkbiWhYJorc/VMp9ccAfgGdUfK7R7suowtXmHDtqM340dReb3t4qKGGRClIp37GZGxo8JGDGKNlDn9EibBGrPrg2hejRpj65YSlQmpG+I6d7rO3148xj7F7HlMropGIMDSPhBxK3kb8rv7xYaNtd6MLX5jIwfXowh4no7bDdlNbwBz2cMO3sLiMlmta3AGeyhB6lS/4w5v8iCP6jU4zTTkmUXEwjhOQ9hkT1jBtk7iZV241ggtdjeD4IvzbzPtDwy82c6Wv9PV0nzY37/7DIxENsihJJP6L/vGro22f7ufwpHFDIroWwBMAjH0Nd6ILazzF0PeT+8dkH0Ss0TL29uHBNSQ4mLMYlTByeyecV6G+Yk2hry3bpP0Rrj5Twho+lUVcmRBQI3KGNKbExrTNrl4AaSGN2NLXSyARpU43TZGQgyiRIKKriOgbDNv/cwB/B8AfoysoNeDd6L43L9MOeRE6v8M7hw29r+L9AJ5GRI8f9X0dgBcC+Dy07I+DRMivLPZLPRwXcoUeWkOCu3iOdyf8SE0LlPQYxv4SiFBQSCJIsZALf0iFOVLViC0RiEz3tMEV0tjNx7TN/dlJkghurYhGIhpygWW2JKIfRJd5AQDfBOASEb2qf/37Sqlf7p9fB+BLRPQ+AJ8FcC+AR6Fb6K8D8Dyl1JWhX6XUnUT0VgAvIaLbAXwAu8qWH8W0GBXQZYA8A8AHiehWAF9HRzquB3DjnMWoqoZeZMpWQ2JJGuMkjDHazqwPYe3Lty/CaBnTxt2Wr0LYrpK4bVPDGvprdp2JQDXCtC1VjeCENGJ8EWsiESGhjNIn77WqBznAzdr4EQB/Vdv22v7xowAGInEFwD8D8BcB/HV05OEeAB8G8AallEkxeBk6/8RNAG7s278FwKvH5bEBQCn1BSJ6KoDXA3g5gEvoynZ/H7c89gSB31wxvwOzn0XUkAhZhKX6lYBz3oldM+bOVQVs20P8Ed0OM3mRDGvEhDIAeTXChFwhDdMc9fac/am1InKSCOn0Tl9fDcsDi0gopZ7GbHeMTn1gQyl1ju4eG7cw238WXX2Kw8KS1AAgmshE1ZCQIhVCGRu+K3JOH93GgM/CssCGqhDSYQ2fwmBTI0KVD9PzEDUiFCEhjVhfhH6Mfhw3zbORiDg0RUIO7TbiI+wZHxMzNpLaz91vCnKqJZbUz8lJYfycOZe9BTH0PegnJS5xYLZzzilAybBtt4U1zNvc/XHVCI6Hw+aj0PebFuhSIQ3O/PQ5hgZh10IiajydNfjRiIQAbJkeB5X6OSCWxXNTPwueSUKuSPbaCoYvbHJ+qj9iu505pn1+PHXC+Tow5TNEjQhJ98wV0shZdKqRiDyYvZruAWG9RCLXIp/j11BDvYrUGhIRyPFDD8rY0F8LGC1tcxAxUG6k+mGqEwEmS/21z2Spbw+t4cAJTZgQG9LYHW9ov3ASEZuZEWKqnKsgVYMM1kskKkCrITEexz3v0B89R0LnjBsKtopgWcDNnfLHcm43EIShfYyB0NQmxHSZQ40YI2dII8QXsdu2P7e97cyCU5N+7buKkIhUP0QLZywfjUgwUUWYImQOqQtk6RoSIRgfP7kUY/brJBbaywDJntW/oy/XsS5/RAg56Pbx58MNazjVB8c9OELViBCjZSp0ApLqizAdE0MiuKWvaycRc6eBNkVCDiUrW1aNIKPlkhBK92v4ceWYQ87/Ts58AxZ1l9JgVxvs4+YKawT7JATUiDFMaoSUwTKXL6KRCHs7W9uG+rFORSI5fDDj2NHj9icOyWJUAiGDrKmfQhkbOY2Wtu1uRSGGaIT3tb/N3y7ERyGhRkgYLF0hjd089ue269/Q3pOhkVr6uiSJKGGqnOO02BQJOTRFogYYfllVF6MSrCEROy4r9dM1l8STiKTR0rXd6Y+IIhq27Twyo5S5doS+uLvUhBQ1YrvoB6R7hiIkpGG8CyjDXBkyD/3YRiIaasM6FQlBsG7ytSY3UQpZyPw5SWZssPqwbLOSnUA1wdr/sD1QuXCZMWO26WRPQo0wjecyPuYOabjnt3sulaFRG4nIEcoodbpsioQcGpGAnwywjZajfoqYM4snXkf+8EyfhacvqdRP58kiVZVIuBmZbNjCc5wjrMFXIgxEwaJYuF5LqxEhoQ0uiZjO19x23N7ki2gkIrydrW1D/WhEwoSajJY1/LJmqCEx6ZoTuuDerMu5zzGurd+EUIoreyKUaHCOC8nWsG1PNVnqr1PViDE4qgIHekgjxhehz0k/ZkkkolQoo/h1UVMkxNCIxEyQrCFRRWpqCiSVjtAuUkthB/RpM2BK+iO2+x37QsMaXJOlThB0NaGkGpEa0pDyRZi2NRLhb9ewLDQicUiYoRiVeA2JHFcJAYTDm7FhOiZAbYjxR7jDFvZxOHK/sU8bofCYLE39SqoRIemeY8SENGz9G/d5zJWpVSvHWAKJqNEPYUJTJOTQiEQo5kr9DDk2+gq/P27urJABoe9j3D7CoGiFpzS2rc8YH4QN0SENHxGJIBS+bf7S2eZ9Ic9d5I3jmzDBFtLw+SL0ffox222Cpa9rIBE5QhlLF1fXitUTCVbWxVIxvDffCbVADYmo24ePwUn9dCApY4Pbn+k460Jtn0vMwu8/1kFgnGTDrCp4Qxva640h9DFuO25n3M5I9xxvSw1pcIjKeF4cc6VpW24SIVFoqpQfojSJaIqEHFZPJPag/fJc/gOR1M+SNSRsxahqQAZCF226NBybQlhiFAj3DRTchMK1P5aosO9kWliNYIUnIlI9Of3Hmis5KEEi5sjMaBUtDxONSEihdOrnXChQKCsl9TP6KoPzfxahXGybugyYEUpBt9/9fjlhDasB1BLC4KoTY+xdaSeoESYy4asZwYUrpKGPL13+2mauPHQSMeepst1GXA6NSCwVB1xDYtJ03HbyfNQo8mZdwaWxffPbbuONzx0rJaQxzCfmeNtxVkLhKUAloUaM4b5LZ96Qhr7Ptm0JJELSVCkRytg0fWJxWDWRmMsfwR53Kf6NlBBJ7vCK8DlJwmgZ449w9TnZn4GQpFS8LK1GTMea7ktJ9eT6IkqTiNpNlaGhjJIkonkk5LBqIhGMChf27GGUWPkvx+3DU8YepuDzPuivuSZR03uLJQUMf4Qr7dYWspjsd7SxkZ2Q0IZLTXCpDmaysP+cY7AMhY1wjOEzV263NRLRVIgVoRGJMQKMluKo7XfEmI+zhkTUmJYwhq05s31qLDTVaBl8oy7YVYC9vr0KQ1xYY7uP6aEwzVf3DLjUCCNZMKgR435TakbYQhpcX4TtPQJyJGJ/rFFfwiRiTj/EXCQi9qZuDftoRCISwWGRlC8t51gp41AhA5JE6mf84LoKob3kEAfr4hvWnlM4KpVQcNp4CUVkaIOrRuivXcWnTMe49kn4IkLMlaZtMSTCrlKUJxF5bs5l/rFUKPw2eLBaIiHqj7D1NccvIjZ8EHKcU5ZnhgIyQzz+yVxIY7b79m33+96TJ2Qx9MMJa8SaLIdtqWrE+LlPjbAZLEPBuwPo/nEmX0QjEb6285OI2BBYwz5WSyRyISgcElpDIgR6MSpbDYka6L/QHNy+g30p3vmavYjYlQbzHB1TVORVnwZ/BE+B8JMXpxLhvP+GgVAEqhGSBkupkEaoL8JXK2JJJGLuUEa7addy0YgEF1UsuDN/8SVqSPgWQFvVyslz5ripMdAUoyXcykSqP2Lbj1C72NAGpwCVqxKpT40YP3cZLE19SvoiYjI0GonQ29VBIBrksUoiYQxr1HTr8EPBHB+pZMZGAGIMlVx/BDfswSUL7tCHnehwvRJ6uEJvE6pGDH0O89P3c0IaOokwt9HaesyV220Wc6XpmNwkIldmxqGoEGM0RUIOqyQSHOTK2BDxZtRUjCrlxyj1Q854QjCebELDFgzC4J8IU33YDOTD045BUpxKBCu0IadG2I7bbgu8s6dPtdDfx7jtZBsjQ2O7bfR8DhKR2w8RQiJaqezDQiMSEShSyKoGva9kDYlAMsC9mti7st5TIRj9Mhcz37xS/REAtv6IkJAGW6lwLLrmxduc8jmHGmHaFuqLMM0llURwDH0xJKI2U6VEKKM0iWiKhBwakSgB3y8k8heUrc4Fc0HLhvEPPCL1M/UEkctoORzD8UcEeR9CSIXv/h2ONmEKxX4b22ve8/1tMSENly9i26/BF6HPw7YtpeBUKRIRSw5yZWU0FWL5aEQCSPNH1JD6ecg1JLh9BoRffBkbYQOHKxOu4/Q+2MrLiABwCu0khzYMn5npVuFSasR4+3SM6T7O3UCn70U7PtBceYgkYi2hjKZIyKERCQ6YpCCLQhDSZ+wPI+S4gAUbYCzSKYSrhowN3/aIhXq/ob8stq1vvrJhP7Ha+rITjf3jba/150ay4AlpDEgNabjMlYdIImoNZdQQ1W0IQyMSBhQpjV2ihoRUu0IITv0M6duxmO2NYWtjade15Y9t3K8ZE11tQ0jC5BhO2W1PaMWkRuhKw7gfWxtdjTCRC2t7LaThCoGE+CL0PnwZGnr7vTmPj1shiaidQLTbiMuhEYmlIOZLP5zUbMWopMYXqiGRjBz31OASDMf2bh9PSg0hCMP8uCRBH4Mb2uD7IvbDKl7jZYTBErCHNGzvw9cm1lx5qCSiqRANIWhEItAfMdetxxcHr8FUiFS4FpDAjI2gYW3j+hZnT7hj3D/XSDk9LiysMTmGUVrbtD1GjUg1WI4RcntwYzuGubJGEjG3H0LCUNnqSBwGGpEoiFZDQqYf31V00lQYMf/djgASYxgnzEgZoVaMxuFmg/hIiDujY3+b67WUwbJ7Pt0W6ovwmSv1cSbvQ4hEhFSrrJFESKkQcxowG+LQiISGPX+Ea+HOtajXoHqUrCFhaytx10/D1bLrtT6ub/yUypUAgvwR42MGtcKnJLiONy3+tna2fbnViPF2V82IMWJ8Ebtj90mEy1xZgkQsNZRRO4FoioQcGpEQgtWg6ZX4hcerHMVTP1kdMH0Qtqt0j/8h1B8R834GUhDTB0excPkwuGqEbrA0teUaLCfbGATBBJsvopGIpkI0hGHdRCLX/TVqUBRiwfhIshaj4iIg9dMnsYfAeaxPfWD6I7bjbBWHkBlO+9BJggShsaoUHjVi2GZ7Pl7IS4c0XBkasaWvayMRJUIZSyIQTZGQw7qJRO3g/MpqKUZlWVjcY5rbTn7gk+euvuS9ETHFpkIW6hBMwxF8QuLuyz/fMRnRYSqHPRxj6mN73Ma+LyakIeGL0MfnpnkeEomoJZRhG7OhXjQiEQCxjI0cNSRiF5aQ41IYfGH2H5OxIWq0ZBKKUH+Efvy4mmVsaERXLHxKxD5RiFMjpEIapjFSik5xMzRqIBExBKFUKCNGhShJIjj3QWngYb1EwhDWCDJalkTIQjPMefiR2GpIhLy30BoSpc4FiScCCaOl36zInAtjIQ+BLazB7dvX3qVGOAmDpfhU9xzm7QEhDS5svoiQNM/dtlG/1u3pJKJGP0RTIRqANROJwmj1J0aIuGLePg8JK+hXxBnuqeGb07A/eOwtEYhXGpzzUbt5+fp2tTGpEcD+gquUv/gUZ7tkSIOT5umrFZGLRNQUyjgkFWKM5pGQQyMSsVgDMXD90Lg/Ql+78f7x80J3+pSqXMn6PAQIwdSEmR7W0PvmhDdi1Yjt/I3Pd68nxkvhkEZohoY+NiBDIlxEoHYS0VSIBh3rJBLC2RpkvazwHBhC6X37akCp2vXCGRuSRsugW50n+CN8fdvCGsHhFkfpbWWZ/95dQD1qhFRII1eGxpJJRIlQhiSBKEktmiIhh3USCQOWWpchCzIRgrTQgtw8uH3FGC2H/SEnqT0lQDCM4RwzwD8x7DepEXYTpluNkA5phEL3RayRRJQOZdhIRDv9LhuNSNig/UJq8jhkIz2Mfrk1DcRTP519ebwQjH6sV92RRsuuz7SrHt0f4QtrSGAyXiY1IsRgOfSpt5XyRbjSPG0Fp0zbcpKIJYUyalchJuNWdE5fOhqRKA3ul5fz66q4hkR2JI7JzdjwjcVZwId0UMkF3zYXTljDRxJs/ZpCAi41wuWXCFEjuuembXIkwmSu3O4bPd8SGMO2bvu8JGJJoYy5VYgW2pBDIxIVoNWQYHYTsqDrCxvzHiCxRsvQUMbgj5j7ZGYmG74QB0+NALBXt4FrsOSENKb9am2EMjSkSYRkemfOUMZcKkQTCZaJRiQQESqo9dvum9dwUhYrrGVanJlzYELSjMhetGPIBHbKQyjMoQteWCMXdEVDWo2QDmmMEWOuPDQSsUQVovRptRWkkkMjEongkJAkf0XMQqoThpTFOGcmxviHPH4em/qpPPs5fWy32w7wZ2aMQwi5YVQUmGENrgqx974C1IgUg2X33LTNHdKwz78fa8EkQsoPUVqFqIlANMijEQkTYo2WIamftUNiEcyxkCaHgQybbGTCMRY7hXLkj6gdNiLibOtRI0zbdDUiJqSR6otw1YqwEQbTtpwkYu5QRm4VYm4CsYTf5FLQiMRcCPnl+vaVhukH6LtKz5X6KZCxYeqHc/wQbuBiF6KYhg4k4VMjYrAZ9xGpRgzttvPUyUVgSGO8P4VE7LWdzHfUzrgtjETkNFWWCGWUUCHU4q/A1onVE4lWP0JDiaJSlrPIZOHJeLVgTel0XH07+2OEO7zHTzwQ+yELXzVLdnjCSjT21QjffG3Kgy/dUyqkMdkmlOa5m9eonXHbskjEElSI0iSiKRJyuDD3BBaHmZWBg6ghEdl2d9D+Aubcz8zYcG1nnXRGV+6HgCHs4HpPGw+pmLab7t8+N6gR4zYbhT0S4fqMQzI0uAWnlkIiNlCiJEJZ2+6P427vViGaEgEQ0YOJ6EtEpIjo5w37H0VE7yOie4noASL6GBE93dLXBSK6mYg+R0RHRPRlIrqFiB6SY+6rVySKosYaEqkoxOpTrx5Mx+cwWo77Lu2PiDVZxqoZe/s1NWLYZnu96dWX7bGOkMbQfrzfpkbosJkrS5OIFFOllB8iVYU4pDBGhYrEzwB4mGkHET0CwMcBnAF4A4CvAXgRgF8nou9XSn1YO+RWAD8G4L0AbgHwmP71dxLRM5WSLce1aiJhvLovXNEyuYZEKjjjp/zgEo51mx394YYU+IyWof3b/BElwxreORpSPnOpEZyQRg5fRI0korZQxtxhjJrsYKVARP8lgJcB+Al0C7+O1wF4KIAnKqXu6I95B4DfBvBWInq0Ut03jogeC+ClAG5XSj1nNMaXALwZwHMBvEty/i20kYDsqZ8cDCfE0MyS1IUntYaE7XksseJc3Bilbsd4vs+ooNowN2LViFCD5dBOf57ii+BUrVwqicgRythvVyaM4TouBzb991P6LxREdBHA2wD8fwDcbtj/EADPAvCRgUQAgFLqfgBvB/BIADeMDnkeAALwJq2rtwG4DOD5wZP0oBEJKeRI/ZSsIRGz4M2tlujQ5+Obn2nBCymNDZ7yMHeKpztswQtr2NQIG3xqRIjBckwAxr4Ivb3L8xBCIvQMjVIkQl94JUiE3t50jKlfTjvTGLa5jPs2t6+HQFSImwE8GsBLLPsfB+AaAJ8w7Ptk/zgmEjeg+0g/NW6olDoCcIfWVgSrJRItWyMzpBbVgP+n1MwJ5z7m+xkv3FK1OHxhjZwYUj45aoS+zxXSUFr72FTPYZxxm5BaESVJxGQe2mu9PxcB6dosS4UwYW4C0f2W5P8GENFnRn83meZARH8OwE8D+Bml1F2WqT68f/yKYd+w7Xqt/T1KqWNL+4cR0SXrBxOBVXsk9uD7Vkt967m/cOlxuQiV+6VrSCSGG7xj2/rw9B1DVKZeh/1F2euPSESsGuHCxjFH27bJa+GQhg+uWhHbNtv5jLflJxGpKgTnGFMbWzvbGO72ZsT6IA5FnVBKfRej2T8E8CUAb3S0eXD/aCIGR1qb4bmprd7+hDE/FhqRcKCmW4cXQeEaEtbbhweAFXqwXEWb2/r6ip9rDvjCGkn9MtQIAMFqhP6aE9KQMldOSMDQRnvdbXOTiL3Fm0EicoQydKSqECYcKoGQvI9PDIjo+QC+F8BfUUqdOppe7h+vMey7VmszPP9mS1+m9slYJZGYJawh8CuZMxxjTBYyLdAZfpyhCze3vZVMcMISo6v5EpAOa5jUCA44aoTPYMkJaRhTQTOSiMn7CCAR3BoRc5CIVBUilEB0x9jDGDas7XoNAIjoGnQqxAcA/CERfXu/awhRfEO/7R4Ad2v7xhi2jcMedwP4DiK6xhDeuB5d2ENMjQBW7JFIxZyFoRYzZspCF2KA5MzfelZMM1p2Daf+hVjYQx78PrkmS9uxejlsrhqxTyqmn8W4ZsTwejyu+bl9mzSJ2G3bJxFjX4ArlBFDInx+CE5Whsm3IOGFMCHUTOnyQczvkfCE/CL/mHgQgG8CcCOAz4/+PtLvf37/+oUA7kQXqniKoZ8n94+fGW37NLq1/UnjhkR0LYAnaG1FsEpFwoiUb7TlWF9oJLqGhNRVcO4aErZ+bM9d8xHwWYSWxt7uC1VERlkcIf6IUJiIQk7oaoQv3dO0zRXS4PgixvtDakXsju3bGLeZScR22+R9mbc7j9Hn4jiu2y8TysipQuQIYyhS81xQlcUDAP6mYfs3Afif0KWC/mMAv6mUup+I3g/gbxDR45VS/wcAENF16IjG5zHN0Hg3gJ9EV5fiY6PtL0LnjXin7FtpRIIP7om+5A8gduFIXXBiakhIw3ezLhts793zmXQLNm+IHIgNazivnhwFqLgGTNN8xnPdbmOENLrnfl/EGDG1InKRCBdRkCYRpbwQJcMYqnDsNqbmgxR6T8Sv6tuJ6M/2T39PKTXe/woAzwDwQSK6FcDX0RGD6wHcOBSj6vu+k4jeCuAlRHQ7uvDJUNnyoxAuRgU0ImHF7EbLkCvwYa6+RTLkPSXdrVNKxUg8PPjmXIw+RypCLuhhDc5YU5KwUyuk52VTI4B9g+V2myOk4Ur1BPy+CBtsaZ61kQgfgdDbm47htrH1L6VCLIVALBFKqS8Q0VMBvB7AywFcAvAbAL7PUB4b6NSIuwDchC58cg+AtwB4tXR5bKARifIo8ZsZviYVFJTKmfq575XgZ2dYhwio/zANYQQNsxfWiFIaAoySpdSI8XZOSGP7WWBKRCR9ESVJBDfMoe/r9oeHMlJUiBJhjJoJxJwKow19LQnjD04p9VkAz2b2c46u1Lap3LY4GpEAgv0R4t//mizNAQs5gDjlBFOC4fUoBMDY3iR3+0IZEYrDVgXQQxCGxTmqb+bxObwTuhqh9zmQgD1SERjSGMYC0nwRh0YipEMZNasQpU55uT1Fa0IjEiUwd5iEAwH1okQq5L4KkdCZJ2wQY7SUwpQMeNppYQ1+v/FqxHhsn8EScIc0uL6IpZCIED9ETCijEYiG2sBK/ySiVxDRe4joi/290u/ytM923/SQvmMR5I8o9O1fQg0JufES+zaFOFx9+q7wN+arbSnsqQ0BikNIv7HzN6kR++GM/e0mNcIU0hj2DTD5Ig6BRKi94/ZVCFd7vT/bmKa+7e1sfcqmcypSVhIxVxpoLTftOgRw60j8HICnA/g9APe6Go7um/4UdPdN/3EA16G7b/ozDYfciq4wx79Fd+vT96Bzl76fiCbzi+jbD843OCJjI8qsOQdZyDXm+Adl+3GNt4ekfjIyNoJKYyMgXjosqpFkZ0wWBn8E9xgXGdBNllyS4VMjfIoN12CphzRCfRFAOImYzqk/phCJMJGCyXwEQhlmorFfF8LUztTfrn2YCrE0AtEgD25o4xFKqS8CABH9FrrF24ac901n9107VlVDInefIcO7FsbQG22NF+GBXOypCwgyRY7nEhLW4LThkgxbH2M1ItRguXu9O8bmi3BlaISQiH11IpxExGRfSPshcqgQJsQQCBt8RsqYtFJpLGOlWAZYisRAInzIed/0iL4PG7ELcupCXqqGhN6nYeFy7Te28Wzn7s8BXalwtnOQgRCTJUeNcPURYrDUQxquEthD3+P9G4ORPeQmXFwSMb6DY4za4PNDjBf7mFBGDhUiNoxhgkuB8PXputV4Q92QLpH9OOS7b3po335E6GpJXgXusZGZECLtQsfXkbIIJy7gxkXP6i5jkImEEIYPQ1gjVFGw73cTJ5PJMmSuuhphM1hyQxrdMdP+x9vGzzlFp4b+gTQSoW+ztR228/eFqxC8cEe6F4Lb1rdvaQTC5CGS+FsjpIlEzvumh/a9BRHdRESs+uLFC1FJjTd8gYf+hgUw5xc75PbhOVI/meeemNLY03Y7YhGLabiDY+60hzV4fgneic2nRowXeeOxljCHL6Th80WkmitLkAiw96WFMlJUiBgzpQk5fBBNgTgcSKd/5rxvemjfWyilbgNwG1GEnhCb5ySB0qTGtehUwLRZC7+tjWN7SKx03wth2rbvj+D0yw1ruPZxQx4+I6Wx/8mx0/2DGsENaQyvAbMvAlgGifCFMjB5bW9r2m9qY+rXKroZ+yvjg0jxQJQ67a01wyIHpIlEzvumh/btRrFva6FxZoZUCCC0H3bGBjzqxwxVQDmqATes4TrO9759aoRP+YgNaQBuX8T4ee0kIocKoSOHmTLmOmnpBKJBHtJEIud900P7LovRb2T2+3SEwnUrbeNljS/kELgoJ6R+hsJ5FV4ixjks0o7viMvzwCMW7n1jkyV72poaIRHSGPsiTObKHCRCMr3TtL3bZycRnIW/VhUipZhU7F1Cc0L+jhPrhbRHIud900P7DkYpAmBM/XSc1LMVoyoRnhwvNrbne8ckjDFscvVf0GgZ5lfwhy72t5v3TcZ1EUWGGuGauyukYapeObwet9WfjzM0SpIIpbU1bd/rB1P4sjKmbff3c70QOszmzLBsDKufIqEWhMsH4Tu2YTkQJRJ9Kub7ATyNiB4/bPfcN12hu1PZGHv3TY/o247ITIfZb1JXUn7nXpmXJiOwX6nvb3R0yXx/Y6Pl2AsxaePwR/j7txswbYt46PbxPj3lMwS6GmEqg+1L9bT5ImzmymE/kJ9E6NtM2+379lM7YWnL2T/0qbfxkZFd23QCAdhViEMgEDrJl/pbI1ihDSL6QQDf1r/8JgCXiOhV/evfV0r98qh5zvums/tucGDuYlgmZPoBppTGdvbrCD/452QODez6doc19rZZTJaufeP+OGqEyWA5fi/7pMKuPISYK3ORiLlCGRxDZYoXYu4wRkoIowZy0RAHrkfiRwD8VW3ba/vHjwLYEomc902P6JuN4LBGaHsuxQmpOBmqrHAWPaEaElaJPjL1c6+t6fO09eccJ/zKPAZjVcO237To28ITNo+DS61IUSP0/jkhDcDuixj2Dce5akUshUTkUiH22+yjEYhwtKwNObCIhFLqaSGd5rxvekjfs6PUL0gnFhXUkJi25TWbK2OjayAvTXLkTl9Yg7PdSh4cpblj1AhbX76Qxva1w1w5fj4JeWzH6PftvZ6HREhnZUirEI1ANJREu424BEa/JTHDZulfmWsBnYu5R2ZsuK76eR0M6gCv+dA31x/h9jIY1BgLIbArFfttJdSISV8BIQ1biIOToTH0CeQnEa7Fn0si5lYhGoHgowXC5dCIhA21GS0rRtLClOGW4b7xQlSHcUjCVYiK25ct5cwV1jBtmy7IEuZLnhqh14zo+nKHNIB9X0RIhsb4ufvOnkOf07ntbTO1G/dn2d7tkwtlcFSIOcIYcxGIVuVyuWhEAmXrPkTf9TMXctaQ4DzfO949nm1R9Pazt7/M/8NOpbD7N0IIxGRbhKfCV2mTY7Ac2rlCGj5fBDD1RYTcErzbT5P9Ojnw1YjIGcpYqgqxNgLRPBJyaESiBjh+R4uuITEzfEpJLqMl57bhZrJgD2t42znIh+kGWzY1wjVXTkiD64uQSPMMIRG5/BBzqhCNQDTUgkYkYjBHkO+Qa0gwVAfvuI4rfs74qUbLsT/C2saS9hka1tBf723bmNrZ1QhuSGP/uF1II9QXMX4ek+Y5B4kICWXMoUI0AhGG5pGQw+qJhDGsIU0UavrC5qohEbgIB/sU9G2BGRsxRkuuP8JPfCxtLNtZBMJistRfc9QILsZqhEkVCfFF1EIiYvwQqSpEqTBGjJFyTgIx+UoXOGemXDg0TLF6IsGBM7xg2xdDRkJqSISCc1yOG29tLNtdx5iQmLER0ocUfEZH33absqC3dx3TtXOrHlyDZUxIo2tjJxHbY0b9mV/LkIi5Qxm1hjGqIRANi0QjEoIIMm2mqh7bM6NH0k8dx9R/iV9+CqlyhRcUP8siBpzaDebt9nY8grG/Tb9VuK5GRL9HT0jD5IsAdr6IYR+AoFoRpUlEiqFyKWGMXASCE76Ym0DYjLwN4Vg1kaj2Lp1RasbwGPHrnEviCy1AxQgDbLcXNFr6/BFKmdM+bSEK7msbwdhb3AXVCFdIQx/XZq6MqRXhIxHSmRm1qhBzEwgJ/8PcBKJBHqsmEkak6ngrw2Qh9KkjrjbA/hk3leBwjo/xCgwEwHOcTf0wbQ8Ja3gViwg1IiWkYfNFdP26SYTCckmEhAqRywdRG4FgCYyFzWTNbCmHRiQKIvT24dkhXUMitm0ITJ+XbzFn980zWnq7CQhtxIQ12G0D1AgO9JCGyRdhMlcOxw6Yg0TMHcqQViEkMzHWRiAa5LFaIsENa8xZ0XIV1TQDpHxnN56S1CXgu9Omqb2tjZEUbEMF7iyOEDUiNKShx5V1X8Ru/P65J0Nj/LwWElGLChESxmgEIhytIJUcVkskRMD5HUj8VqSDiq45cX9cCe8rdWGPujFXYGls9lyGxTnEH5GoOrj2cU2ZgxphgqkMtv6efL4IwE8iNiqdRJhUA6lQRgkVYg4fxJwEYm7y0JAHqyQSVjUiwf8w6TNX6mcqCtSQEEn95Nysy0YKfOcpZnjC2UWkP8Ic2rDvt6kOLsIwvjnXuK2tnoRJjRi30dUIo19ioxGFkS9i7z0Ox8xEIripne4wR1kVYi0EorT9rHkk5LBKIjE7Yn8xsVfUnOMWaKW2hhEY72XqezCbIvfb+dUUlz9C75ejNJg8FPZ2fDViQEhIwxRqCTFXzkEiSocyDolAlApfNP/68tGIhAN7v+NavvHbs6Ttqpym7WJh6l+KcARWygwOS0SQLpPRMuxYkw9Cm3tgWMPU/4RAMLI7JuEGLd0zFBNyYfFFdGPbSQS057EkQtoPkaJCSIYxlk4glkIemiIhh0YkBtTwzQYiwyLDY8Qin+AbCK7D4Bor1m/iCS/kNFo6/RHGMAYvrDF9Dst2cxgCcKsRevsQNcLlizCZKwEziVCom0TUpkI0AtFQOxqRKITqbh8uDe2q2/jcdYxpN5MEcMprixIKB0Ex+yD8YYeU56YwiE+N0OfHIRFj6L4IYEoi9vbNQCKkQxmlVYi1EQjTnVFzomVtyKERiVhIfOcdfWRP/cxZQyISnMU+KmNj2yjeaDm5UZdlfJY3IjCsYTNZ6tu5aoTJYMmFzxdhy9DIQSIk/BCSoYwSYYySBELC/8BVH0oTiAZ5NCJhQchCbs3YONTfR8L7ClYGJDM2hmYGo6WvEJW3P32bmqZQ6oZOblhjcryzrV2N2C3++2bJ0JCGyRehZ2gsjUSkqBCcMMYhEYilqg8mzD+Dw0EjEgD3mz8PaqwhEXhMUuqn7ThbaGFDce8jAi5/xF47y2vfc91kud0foEbor/dSQRkkYjp/t7kS2CcRu+12EsEpNMX1QyxNhQgJYzQC0VAbGpEoDePZpsDCl6uGxAi2GhKpiPE3ZDNZaqECfUxvKCMwfGFsa9w/nYNNjTAZLFlvexTSMJkrTRkawGjhV2EkwqU6xPohcqkQNfgg5iIQkuShdLGqdvdPOTQisRTELoyc40obQfXx9B+0ac6MK/+93YrE3luoP8KU9rlrDydZGNrofZtUim0BKocaofskhm2hIQ2buZJTK8JEIkqaKjkZHfo+/bhuv5tE1EIgUgyUJdWHVunyMNCIhOEX4fVHzPnd5zuY0mBapFMW5UwKAav41Nb3ENjvdgG2NTKP7wsvuJ5PCIBDpTB5KWxqxPb5iBiMxw3xRQzj+dI8c5IInx+iFhWiNgKxZvXBPIfCF1AHjEYkCoCd+hmy+A+LwXDMMEbIgp2wuFtvH2577hnbFRIwjulpax2WabT09mMJbUDtkwPT/G1hje5xX7EwkYmNY5vpuPFr3/009t/bLqRhMlfmIBGu8Ea3je+HiFUhJM2UEkbKJROIGshDQx6sm0gIXN1b79tRs6qxZNgWeYs6ID68hWg4iZCmHvg8EACMJstxCGPS3942sqoRAKJDGqby13qtiBIkQiqUMWcY4xAIhLT6UNrP3jwSclg3kZCG0C/hUGtIBBsgYxSIDCGUrWpgIRD7hsrpftdzG2HQ+w5RIwDsFZ8y3ZQrlETs5j4lEQp5SATXD5EayigZxpibQNSmPsyVDAe0azlJNCKhIfsivnQEfj6pqZ/B5AN21SCuH9tOw/wdqoQtrLG/bb+NyTMxtN3fZi4+NbweqxEDXCRiDN1c2X8MxvtnjJ+nkAjpUIa0CrEWAiGpPsxJHhryYL1EIvbbnEI0Qsecu4aEwO3Ds4FDFIarfS6pGPwFnloUvtAGx2DpVB0s5MBlujSpEcBUdej63icNLoxDGqYMDVvBqdpJRI4wxloJhLT6sCl0NddCG3JYL5HgIveiWHMNiRyQSv3ENCzgw/bqfbwgbz0HPOXDpHTskQY9rDFZ8Efb4VYpXORiSwIYasT4+aBMxPgiTBkaJUiEzw8hrULkDmPUQCAkwhc5QhelCESDPNZJJJamrcXK9ALy/hYFUz+NV/zus2ZWuPwRttfcsIbuY7C1cR1r80bYDJYDQsyVw/xMBadKkog5VYgaCERTH+TQaIsc1kkkLAj9TlszNiZtJBdz4XaA+czkWfhZ2RGuPhwLcGyfOTI2rEqFxx8REtYYHrd/owwM07axGmFSHVwGS1tIw1V0ard/SiIGc2UMiQgxVfpCGTEqRCMQ+v6y6kNTHg4PjUhIwWUXDz3eh+FEPxwTU0NCCuMxCyggTtJhCD2EwnejLm9ow/J52MIaKWoEgK0aMRCBYZ/JYDmMo4c0zO9z6otIJRFcFaLbZicRc6sQSyEQpdSHHOShFM1oHgk5NCIRAqkvXg1fYAEVIGg4Xz8hGRs+xUQREOSfcJOHoY0rlAHAmPbpS+/U27r2bxjt9kIVo5DGziOxr07YfBG2WhE5SETOUEYjEMP+dPUhh++hhlNiQzwakehh/L7P4KWoroZEAoJSPwX7njYcGRPH0v82ZMAYx0AwdOXBFcIwbQshF9OwhU4YaEQE7GZLPaTBJRHb+WNHInbbypOIVBVCIoyRSiBiDJQp4YumPtQ39qGhEYlSWJrB0wTOLy/lfZoUAceYqWEMHzj+CJ0sbF8nhjV0v4NJjdDJwtBON1gOY4xDGgNc5sptH5iSiKHglDSJkA5llFAh5iQQNakPSyEPDXnQiEQkOEZLL1xX1UutIeGCL/XTNlTJjI3Rlf/eLkdow1fNMlR5GLYNbUxqxLBvrEaM23BCGsaPYBTSCCURsZkZ3FBGCRUiJYwRQiCWHr7IRR64xa9ScQjXdrWgEQnkCyeIZmzEYu45BKoGMb4IXwEp7rhBtwk3kIW95x7Pgy0MMd42IQ0GNUJP9xz2m2pGhPoiBhIxQIJEmFQFyVCGSzE4ZAJRo/pQI3loyINGJGzYv8Thtc1whVz0OBNCyYhrbMeC7BvPF8rYLsjM+Y7v+GlvpBsqNVLhIRScsIaxsJTljqA6YTC1GRssxyGNSZsAErFTJcJIhE+FMO8bfbSG9hIqhKQPQoJAzKk+rJk8NOoih0YkagBLRxTsa9vW5AHwLNac24fnBHOcraFyWKjHYQOH+jA+fr9WhGEM7fmYmIQqESbfw9ZQaagvsV98aj+kMfZFbFUKBokYv+XxTbi227bvO45E5FIhUsMYSyAQtYUulkQeGvJg9USieG2U1PGGxWs4E8xZQ4KJvbBA4s26ct4uPMUfERrWGKsVbpKx275R+8RDT/cc2o37txWi4qR5ju/k6SIREn4IE4koEcZYA4FYCnloHonlYfVEYpXgko4EciKy2DvOJ74wR/BQIbcJtykRe9u01xsDSdgYVImNpjJYvBG7beMxpts2I+VBD2kYPweUJRGxoYzYMEaNBKKRh6ZULB2rJhLW34/n1xecscFsX3UNCc7cnGdEd5jARlp8GRvJhEUjBq452cpimzwTIeEM9/Pd60n4YrRtOGajtRuneob4IiRJBMcP4QtllFIhGoEwjcPH0siDr4ZMAx+rJhJs5PjCzZ1NkQKDhC/SLXNBN+0PUSh8d/z0+SOmisJ0+9D/5LWNIHAUCkMbU7rnYLC0hTSGMUuQiJhQRooKUSOByBG+qFF9WBp5aMiD1RIJsat/S8ZGUupn7TUk2OP6DY3srhhtlSJsS2MPi6zBaOnuwz2277krrBGiRJjTNvfVCN1g6QppcEnEgBASIR3KKBHGSCEQkv6H3OrDnOQhhjiUohrNIyGH1RIJK2r6dgUstEbUpnpw3o8zlJHx/RhUDZsfQp/Ldjs7nLHf/9gbMfZKjNvtwhPTsIctpKH7IgAeiRjSPE0kwhy+2D3v9rlJhCmUIalCxPggchGI2tWHtZGHhjxYJZFod7ENgGQNCWb/LvVBOmPDGMYA9t6Hqyz25JFRE2Jot2ey9KgRpnRPV0gDwJ4votu/TyK282KSCBs54JKIWBUiJIxxaATikMhDDafgGuZwKFglkQiC9m1LKo1t+uayzg7M/rdn68grf5/sH1FDYu8qn32zLccuRclnAVeYw+eP2LWbbrOFNfQ2pnDGnvpgqBsx7J8QDU9Iw+SLMGFccCqGRMSEMlJUiNQwRmkCkVN9aOShYW40IjFGTWENE4aFaZjnAmpIsMBd0E37Q977doG27FYG4mMJbejkISSs4brxlvkuneb7aXBCGiHmylASUYMKUZJA1KQ+HDJ5aHUklodGJFIgqCYUC7dwF94EcuItOCX8XreLsc9o6enDtc3kjwgNa+j9GZUJixphM1huiYJOLjYDMaqLREipEDUTiCWoD7nIQ83EYX/cBik0IpEBVdysS0eGGhITwpD4q7Qu9AwSkDSuSdXQF32DP4IT1rCrEhqJmBSgClMjTDfkGvsiSpGI2FBGahjjEAhEIw8NS0cjEgNS6WnI76JGosGFkKJhJAclMzYsBIXjj7ARG9P+KYnARG0Y7w9RI6YGS7cvIoVE+DIzpEIZMWGMmFTO0gQiRX04NPJQI3Gob0bLRSMSLmjftCSjJReHUkOCM5apmaOdRMaGrxCV7bXuhfBtG4c1tq9N4Q2mGmEzWHJ8EZIkQiKUUTqMkUIgalMfDp081Eg4GvxoRKJWpF6BSxCCGVI/vUOoyIwNbWHX+9QNmFZ/hLZtGp4Y96crDvp4hj+HGqGHNM5HbV2+CACzk4gQFWKpBGIp5KHGkEXzSCwfjUgAZb5Rpt/KXN/kmAW8ktTPSV+Gq3zu/l1DGX+EK6yheyF04uCrG7EjDxesIQ2XLyKFROjkwOSHyK1CHCKBKBm6aKpDQ240ImGD77teigRsz8SeRZjbzoZUBSQWtjBDKNnRMja8wxoUihB/BCesYSMVLjViowibzQWjGuEKaQyk4VxNSYSCnUTsql2aiMOUIMyhQqQSiFT/Q0z4ohb1oZEHP3welgY+GpGQgO37mINsDH1WWkMiJvXTqhj41IRYOEIVptc6aeCGNXav+WrE8Hd+bjBYOkIaLnNlThLhMlSaVIiYMEYuAlGL+lA7eShJHCo7nTUw0YgEc7HnGi1jUj8XX0NCgjAVyNiwGS05/ghXWGPcdt8bwfjb7BODbShjpEboIY3Npmt7vnGbK2NIhMkPUVqFqJ1ALIk85FYdlkgcmkdCDo1IlMYcqZ9SNSQs3oH9YyJSP33T0EIFYQe7jZa2167bgQ/9Dq/140wmSx02NWJ87GZzYVIzYqOwJRgmc6UpQ4NDImymytBQRqwK4Qpj5CQQJdWHmslDUx0aUnBh7gnMCtsZYa7Q2ZLrS7hgOnME3qxr18hDYgCW0dJWiGo8jmtOrrCGyWRqUiDG+2wGy40ibM6nIQ3dFzGQiPPNPolQIFES0YU6VK906Pt3x+okQpHakoiNdoxOPjaG58a2ZIqcTduY+sHofegwHT/uw0hGSG3/TBh/ViYMc3EtzJw247G4pIXTp6l9UBiFpn+1QGX644KIHklEP0NEnySiPyKi+4joDiJ6JRE9xND+UUT0PiK6l4geIKKPEdHTLX1fIKKbiehzRHRERF8moltM/UqgKRIxWIom5vpWMxd3/lhCZwjuL3G8aEcYLfXXxuyMCbEwhzImfRheu/42jHRPc5bGzhcxNleaSMRGhZEIkx+ihApRqwKRS31YivIQdUvwhFNBjabMjPjbAF4M4NcAvBPAKYDvAfCzAP4bInqyUuoKABDRIwB8HMAZgDcA+BqAFwH4dSL6fqXUh7W+bwXwYwDeC+AWAI/pX38nET1TKa8WHYT1EomAjzG5EJXpt+HqM3VRLlVDwjFP01U593jpW4Vv+zVcErn8Efq2iT+CGdZwmiwZaoQtpDH4Ijhpni4SMSYJMX4Ilxci1QcRQyBC/A9rIA+NOLjGnh2/CuB1Sqmvjbb9AhF9HsArAfwIgJ/vt78OwEMBPFEpdQcAENE7APw2gLcS0aOV6n7pRPRYAC8FcLtS6jlDx0T0JQBvBvBcAO+SfCPrDG1IfoNsvwMRA6JAH3t9xvkTdi9kF3lrOMMRlggew3LHzyR/BLCnYkj9bTad0XJzrt2kS6HP5sCeL+LcQiLOA0iEGu3D9vk0lLHZHrsLAeihCE4YQw8TOMMdjBCGK3yhL1a+8MXedkfowidpS4UtQuTzlJAFF7GhitjwyCFCKfUZjUQMeHf/+OcBoA9HPAvARwYS0R9/P4C3A3gkgBtGxz8PAAF4k9bv2wBcBvB8gelPsF5FwoaE73a2m3X5fq27S8A8/XO7yXHXz4S5mRQIa7+TMMbo+NG+MZnYPR+RCIvvw6RGbPT0zg2w2VzYeSH60EVHKsYeiU6N2GCU9gk7iTBnZOxIwnj7/nOeCmEKY+RQIFLCFyXVBynlIVfIoqTqUDNZ0G8GJ9dxcg/f2j9+tX98HIBrAHzC0PaT/eMNAD41er4Zve6mpdQREd2BKekQQSMSMyPou7w9c08XOBa4bcMvMYJgVBkY5skgdcKhZpgWfJc/whjWGPdlUDXGYY3pNpcKccEa0tjWkDjHxFw5kIhz5SYResjCRCJMoYycYYxaCcRSyMMhEoeaSUcMiOgzo5e3KaVuYxxzEcCr0XkhhvDDw/vHrxgOGbZdP9r2cAD3KKWOLe2/m4guKaVOfPPhohEJD/b8ESnhhsqyMkRuH76303Gl7xqK025YnEcLsG60DE1LNZkn94iGHtbQyAgrZOFQI4biUyaD5ZZQbLcBeoZGDImw+SFyqxAuI2UMgQgxT0qTB9f43P2cMUL6imkLrJM45PZIKKW+K+KwNwF4MoCfVEr9Tr/twf2jiRgcaW2G56a2evtGJLLgsAhxBynyIhT+AGCfU8bP36wcGPabtmFKJmxhDZvJcnyc/jeuYLnZXMD5ee+PGIU0xr6IbZYGOgJxrpGInYfBFtbYJxGuUIYrI8OkQuQgEKXVhyWSh1Kqw5KJQ+0gotcCeAk69eJ1o12X+8drDIddq7UZnn+zZRhT+2Q0IpEb7DPGzGpFxtTPOTM2jEZLhmqi+yMm2zAlBvpxe2GL8wtGNWJ8T43Nxh7SGPsiBjJhq1p5rqYEYd84uU8uAF4ogxvGqIFAlA5dSJGH2lSHQyYOFWRtbEFErwHwKgC/COBHtd1394/XYx/DtnHY424A30FE1xjCG9ejC3uIqRHAWrM2TIj5zsf+TnKmfm77yTyGo4/kbAuHx4HdhTIbLWP9EbawxtBOJxUsT0Tfr26wPN+MVImRL2IIb+xCGH4SobbP1WT7VKEIJxGubAxox+y10bIwQjIwJp+7dpzt2G7M8KwLX3aBb7+Cu39uP6Z2LOJC0z8OUrIqUjMyNrD//x0yiOinAPwUgHcAeOGQxjnCnehCFU8xHP7k/nHsx/g0urX9Sdo41wJ4gtZWBFmIBBEpy9/9hrbVVusKqR8xydiY85cgXENCLPXTcF7xkoWY8RwkxKQe6M9taZ/7z3lhjS1xMHgjOhKxUysG8qD7IoZwxjjNk0sidid2s0KB0fYhlKH69uM/PaUTo7bAdAGwkoxAAmFalNTon37cHvmwpG2WIg8uxJAHH5ZMHOY4ZapM/0JARK8G8BoAvwzgh02Fovo0z/cDeBoRPX507HUAXgjg85hmaLwb3VfwZVpXL0LnjXhn0CQZyBna+BgA3aV6On5Re7WuPZT8tucYKyDEEApv6qcN3IwNZQ57xBotXf4IPazB8Tr4TJYmNWLTF5gaakbsCk9R75XYN1cqAPr9M9wkYvfWUkMZIT6IlBBGrvBFbOjCt0jOGbII/fnOFaqoUWWYe05E9GIAPw3gDwB8GMAPEE3+Q7+qlPpQ//wVAJ4B4INEdCuAr6NbK68HcONYxVBK3UlEbwXwEiK6HcAHsFsrPwrhYlRAXiLxRaXU/+xpU0e1rhKhPMMix0r99J0pdmf74CklI/CXyFUK3J1MMzb8Y7qVCFPp60nbaXqC8+ZfHDViq0D06Z6bzQWoDXbGyq1vAls/xEAihjTPc0VsEjEmC7oKsdvOIxAwtLXtB9IJxFrIQ43EIdXfMPcivRAM9Rz+DIBfMuz/KIAPAYBS6gtE9FQArwfwcgCXAPwGgO8zXHADnRpxF4CbANwI4B4AbwHw6hwX3FnNlkR0CcClXprR91mrdRHR2wH8DKZFNlzVul6PrlqXONOqBtuz/L4J0AtuWwFvQ3R/Gcicz+RpVThgViF2bfbDGuN2431jQ+VepsZmF9IYmy7Pz3tiMRAKxJMIVyije74fmuBmY8xNIJZKHnISh9D+U47ZHSuD0LDA0sbbG1+pFwB4QUD7zwJ4NrPtOTrV/paYuYUip9nyv0aXYnIfEf0HInoLEX3DaP/jwKvWhdHzDQzVugDcgdhqXZbvktcfMe93MBlZbh/OgeN4qYwNk9FyWNgnbbTnuj/C9Dw4jKGpEefb50NGxy4r43wzMlSOMjRSSIQabVeT7fteCGCqQozbjbfFeCD041z+hzFc3gcdw/vT4Yrjp3oeuD6BWK8DBzFehTRvRLq3IdVb0FAXcikSnwLwHgBfAPCnAPw1dPmxf5WIvrtXKIpV6yKim9BJPPFw/GKspbG5v41cqZ8lUko9Z7uQ1M9hX3TGhu3YBH/EdpslrDE2WU5ea2rEueH54IM4H5SJ4bXqCMVgqEwhEaEqBDeMwVUgYvwPEupDTuVBOmRRIlwxp+JQK0lo4Rc5ZCESSqm/qG16BxH9JoD/HsD/vX8sVq2rL016G5HBvi0N37ezxm+vIOHgkgBOxgZLoRh5EzjjuPwRe48b0/FTsjC0H3wPk8eRGjEQh7HBcksottka2P4NaZ5DwSlJEsE1U4b6IEIIREr4olbycAjEQeL0VCtxaMiHknUk/gd0i/yN/euYal2mtrb20Ui+bXgsUj0K234SxmAu3kGwnvk5ZslRxsYoZLAtje08Vt/AD9EEhTT6+dlCHB1RuDAxWI5DGt1dPXe+iO5xRyKGktc6iTgHcA6FMyicY59E+EIZQ0qnLYyBUVvo+0dhDFsaKLCT0GHoY9x+cownbVNHibCFDdzwQEi4omSoIjVMIRWiSE0ljcH4/0Tyb40oVtlSKXVKRHcDeFi/ad5qXYdImjNUhdy9CPA2BMwjOozh7HRfzQjyR4yUCZffwkUutrcB36oUGJkpR+Wv+9dDvYiBRHQLnJlE7EjDvgoB7EhEigqRW4HIpT7kVh5yqA5LUhyk1IZSZKGhDIoRib6q1rdiZ6SMqdb1veiqdX1M6/cJAP5X9mRSv8Ohx4cu8KG/dtZlTqBXQRhOwiB4TjGNo2dc7G1Xhnba/4Hahh4MSsWIVAzlsCdmy16NGNI7xyENpWgvQ0NhZLIEn0TooQyOFyLGB8ElEJzwRYj3ITZ04fp6zRGyKEUcGmlwo9Z5LRHioQ0i+k8tu16Ljri8HwCWUK1riwyhjqAaErbx5/RbeLM+DGfVnBkbg3rgmAfXH2FN57SFNRxqxPRGXMP2IUOjT/VUO3NlF9KIIxF6KMOUkaGHMaaZFIYQByOEoUvSIeGLyX/V6G+M0NCFgr0v13GhbUIk7RKhipQwRa4QRVus14EcisSriOjJAP4Vuopd16HL2vgeAP8aXVGMAdVV6wr1RyRnbISgVA0Jy9xDb9Ed3M5GBlzdKfu8TMQB4LVXlrlwwhpjNeJ8SyhMIQ1sUz7HJGKjkYhzTAmDjUTEqhCxCkRo+CJn6KJEyCJXuGKOMIWE2iBJEuYgHDX63peKHETiIwC+A8APAfhP0Z0HPw/glQDe2Nd9AADUXq0rGDEzKJGiqSHok0oIf0SrDKPFem+XGhktLXPT7/jJ9UfsxjbNZV+1GJssO7Xhwp4asQ1d9CGNsS9im+qpkYhz2EmE/hrAhESYvBAhPog5CcSSyUNu4tBIQ0PNECcSSql/DuCfB7SvplpX9myNklRnhhoSYqmfk8aYZGxIzcnkjwjL1PCbLc9HhGIX0rgwIRGDuXJbLwJmEnE2UR2mKkT3NqZhirEKkYNA1EgeGnGoizTUThhamqocipktFwv9F53ru1fQ+DhBKOEInadVu5Z/v3ukYY9UTLfr/ojhuTWkoYc1RkWnTGrE1mA5Ljy12ScRW18E9knEeWAoIzSMUROBqJk8HCpxWAtpaMiLRiQODa7fs9cRZvEROI7jpH56VYFUGBZ/22tbWqgeKhlej8MkNpPluILlZghhjAyW05DG2FyZTiLGBIGjQpQiEDWTB2nVoRRxOGTS0DwSy0YjEj1iwhpWo+UYuVM/Y8epBcpARriHWo51FaLatbH4JjaOsIbNZLnZZWpMik9tCGdnF/ZCGnsZGpiSiI5I7EjE8NoWyjCpEBwjZSiBiFEfQkIXseShtOoQuujNoTbUShqacnGYaEQiBzy/FZHbh4e0k64hIZz6ORwT5LFwGC1tr/dCGaP/B1tIQ983qBGb8wuTEMZmo6d70kSJmIQ0mCRinO7pUiFCwxgmcuAyUM6lPqSQh6URh0MjDUsgDEuY41LQiAQcakSIPyKXTrY902upn5LjMc662VM/R222GRuD4jC6+ncSEkd4w+WPMHoknGENkxqxC2mcnV/EZnMBZ2cdkTg7v4DTM8LZZuyLsJMIPTNDJxGxYQwfgXCFLxp5cLUNR0qdhlQ0laFBGo1IzInc4YgY1WF8TkhQLbg30ZKCy2ip+yNcaZ+ssMY45VNTI/SQxtn5ha0v4nxDOFPjsMZOdTCRiJ1HYkcUTCqEJIEIVR9ykodSxKGRhvJ9TfqdKSo7l7/9ELF6IlHsBl2VOHvEqm14zI3dRsuxkmcOn9HSc7ZwhTTG+3WT5WZzYU+NODu7gLPznRJxen4BZ2eE080FnJ1Pq1aeaiRinN55HqhC5CYQHPWhFvIgrTgsiTjUGOKY9NsW7oPF6omEFZUs/FHI9YsVpPCpygTHaOnzR9jqRuhFqMYZGYM3YqdI6GpETyp6ErEzVwJnGokYiMRAInRTpU4ibCqEFIGQUh+4YQ/OvtqJQyMNhj4XQhhaSEYOqyYSKWqEaMZGCY0txgBpO27YlZD62e30eC8C52SvYDk9bi9jw5LVMQ6B7KV8butGjL0RgyrRPz/vfBGnG3KSCN1UeY794lLWypUWEhFLIA6FPNREHGogDWsmDDa0glRyWC2RCCYRru/ctFSge1xuPzFI+V3YakhIQCBjYzBaWttZwhn8ehKaKgGzX8KUqdGRh4u70EZvrjxXHYkY/BBjEjGQhV14Y0oWbCpECoEICV9wQhch5GGJxKE0aahVZchNGJoysHyskkh4ScTSwholLw1iUj9d27U2towN6yGu/cpCjtT0WE5YY1AhdDViyNA477cNvoizTZ+l0Yc0dBIxLjrlCmVwwxhcAuEKX9RCHtZAHGpUGXKeRmokC0s7zdeMVRKJ6sENdbBs68I1JBh9FcvYsIQkbNtsRahM7cfkYVAfxorEea9C7IU0enPl+YZwutn5Ilwk4txCIIB9M6WPQEiEL/ZrSuyjNHmQJg5rJg1rIwwN+dGIRARY/ggfWB4Lre1wJi5RQ8J2NZ8Kob64RkuOP2I/7dOgVvRhjPOziyMV4iJOz67qwhrnF7a+iM0GkzTPU0xJxDjV06VC5CQQMepDKHlYMnGYizQsgTAcClk4lPdRAxqR0GE6M6V+3+bQ0IxKge+YuL6DUj9t7blQ01uEbze7MjT07ZupF2LS96jWxNhkORCHQY04PbuqS/M8v4DT0y6kcXJ6YWuuPO1rRphIxNgPcQZeGCOEQHDVh5rIAy+cwUcIcVg6aVgyYWiL+WGgEYlcWLqlWQCiGRsWo+Ve1oUv1KKdt1gGyyG8sVUdOmPl6dlFnJx2asTp6TRDY0wiTqH2TJVbMmFQIUIIhIT6kEIecqoONakNVZgoM5xS1kwW6pzVMtGIRCoCMjaMkPYNcM82oWcl/eqekfrJ7deUgrlXGtt0qEsZ0VQJexlsd1hDrxNxfnaxD2lcxOnpRZydE05OL3RFp3oSMTZWDiTC5Ic4J2VUIcZhDCkCEUMeSqsOOYjDEknDEglDrWShoQwakRgjcwiCdbOuWLj69ubX2bIb0siG3rf38FHGRuhYXH+EVQWZhDJ2noixKjGoEaen3d/JoEqcX8DpOeFk05GIQY0Yk4jBD2EKZaQSCK76wDFNhpKHmohDSdJQI2FoZCEMprvXNsShEQkftO+aiNHShCXkIsXOUVh14dzhc+8YgyJhCmvo+4ewxvn5xc5o2ZOH4e/olEcixqGMvYJTPYmYZmqYCUQO9UGKPEgQh5xqw6GQhpwLekmycGjEZM1oRGJALQt56KKbGKJIQunUT5PR0kMcdH+EzWcxNlWOUz634YxNr0acXYWTXo04OaUJiThRwBm6apVnGEiE2oYxbCpELIGQJg/SqoMkcVgKaVgCYWhkoUPNc1saGpHIDdPZNCT107Y9toZEIKRTP2MJhas+xG7DNE3Wmb0x8kcAmIQ1hgJTm/NeiTi/2NWN2KoRXYbGyfkFnGwIJ5tOhTiDrkRMQxmT6pVaGMNHIDjqQwnyUCNxKO2DAOQIw9LJQluMG4BGJDrEqhElVAy9hoQk1PRq3bjddQwsSoPv3KJ4BGUbdmDcw8NW+lr3R1hNl0ojEmcXcXZ2VV83okv3HFI+T7bhDBhJxCnU1g8xNlTqKsTYBxFCIFzqQyx5yBWu4BCHmklDzYShkYU0HOa7mgeNSLgQ8k2bnM1nTv2MqSEhPQUO8ZlkT+yXxnYdNx3LNL59LuZ0T+zKX/dKxNlpTx5Or+oMloMaMSgRinAK4ASqT/UcqREWFSKUQHDUh5LkwfU1klYbiponKyUMh5yeeagEZY1oRCJggRU3WuZQGXIgNvUzA6HiGC1d/oi9sMaIxIxTPHck4mKvRlzE6ekFHJ/szJUnakcizrRQxqRehMEHwSUQ3NAFhzzMQRxykYY5VYalkYU5FuwlkIQlzHEpWDeRKHiVXiTTSLKGhETqZ0w/riFcRkuHP8KXyTFO+Tw/v4Czs6twcno1Tk+uwvFJRyhOTq7C8enFkRoxhDOmJOJ8RCJ0FcJGIHzhC44/Qv84bG382+2YizjMpTIsiTCUXhTbItwwxnqJhFS5aAmkEhrXXGNrSAgiNWPDWLBK7SsR+wdO35sp7XMS1hiqV55ehePjq3Fy0ikRA4k4PrmAk/OdufIYCmdQnTfCokKYCAQnfCFNHnIQh1pIQ02E4VDIwhqIwhreYymsk0hIKBGcPkLHyZ36mQL9vQSkfnbHh8+VY7R0FqIa2mrnC1O2xlB86vy8Jw7HV+PktEv1HEjE8fkFHG8IJ+hCGjqJOEO3+A7+iHEmhotAmNQHZ2GpBPKQmzjUTBqkFo6lZ1qUHqvG8RtksU4iEQGnPyLkNyGx+MemfgYSlSiFwvFZhFSt5KgMe31jShD0/WNlYy9bY6gZcX4RJ6dX48rR1TjuDZYnp4Tj8ws4OiccqU6JOB3+aForQlchOASCoz5w/A6hqkMqcchJGuYmDEsmC3Mv0nOPz0UtpYMOAY1ImJDyOxC5xbjW17CKFL59uG9fdE2I0X00jBkbruNMr22poCOSMN6nhzV299IgnJ9dxPHx1bh8fPXUWLnpSMQRFE76v4FEDKGMjlBo988YeSBsBEKaPMQQB0m1oRRpqJEwHDpRWApJaCiLRiQODTGLuzBxEqliudenvsGjuHhSPqGmd/UcsjVOz67C8elVODq+gCtnU2PlsYVE7FI9N3sEgqM+hJCHUsQhi/9hJsKwNLLQ0jHLIPSusQ12NCJRAMaMjYKpn0k1JHypnzYI+Te4RkuXP8KU9tkVnLq4vZvn2enu8ej4Ii6fXcCV884P0YUxsPVEnJJusJyGMVwEwmisFCIPscRB3PswA2FYimGyRP9zj+dDLfOpZR6HgEYkdBi+W3v+iBqDa5LGy1pSPwOMluN9zvCIIqi+BPbZ6VV9Cewu5fP05GqcnF6N45OLuHJOuAJsvRDD/TPOaLMlEWMVgksgbOqDjzyEEAcJtYGtSET8F9dAGFp2hTxqmktDWTQikQtcspGTlBjt/WR8njX1M7Bva+0HZZ6vUaEY+SN0X8SQ4nl6etVWkTg96dI9j0+uwvHZBRyh80MMROJ8FMo4pU6F6LwR+wQihjxwVIcY4jAnaYiu/1A5WVgbUahhDjnQbiMuh0Ykxoj5Xk2C3gXTMU3j50Jq6id4GRuu0tjW/rVCVLb5jcMamw3h9PRqnBxf2t4e/OSkK0J1cnIRV84IR1A4wmbPC3HWhzHOAggElzxwVYcU4sAiFgsiDDkWuVIL59wL9NzjNxwOGpEoCWcKaV01JFjEYG8js19LxoZ9LH2DOdXT6Y/A7vn5+UWcHF+N46NrcHa+M1keHV+No5OrcLwhHOMcJ5YwxnmvSIzDF1LkIYQ4lCYNUXUfKiQLLbNiXtSiBNQYoV4qGpEYYPluF/dHeCtulqkhEXu8eMZGYMqpfofP4Zix4fL87CJOji/h8pVrOoNlf3vw45OrcPnoIo4AHJPC8VaNCCcQNvKQizhIkoY5CEMzS9Y7rg+1EIOG+dCIRK0oVUNCWbZzkPNmXRZCsHs+3WYkD6M+hrDGoEgcHV3CA5evwdmWSHS3B798dmHkjdhsfRC77Ix+emNCkUgechCHXKShGSUPY0wf1kAOavzcl4pGJICsPoOiqZ+51YAQgpAwF7bRUvNHWFNFx+GNDeHs7CIuX7kG9z3QhTZOzwhnG8LJOeGB811YY+eL2LDUBxt54KoO0SEMjkgV8CWfmywcgklyjvF8WAM5aJgHjUg44L1tuO13WVHwLamGBGsAd6plkDphydaY3g7cYsa0+COG10Pa52ZDODu9Cg9cvgZ/8sDVOFPAuSKcKuBMAQ9A4Yg2OMUGp7TZqhCDAhFLHrjEwalCVEIYagpj5OyzhrFcWCIxqOWzA9x1VxrC0IiE1HcpLqG+7NgStw8XztjwlcbeIwja80ka6DjVc/J8RyY2m65mxOXjq/C1M8I50P+p/o6em84bMQpn6ASCQx5KEAd22ubCPQ85+ptrDO8cFkQOavi8GurAeolEzG8gZeHPkWXheg8+QsCtISGoaJgyNtwHuMmFzR+xazeoEBe6IlRnXf2Ik5Or8cDRRdzfeyEUsL175wltcIJznGLThTRoX30YPhKf6hAUvnD+F+QhDHOHMHL0NecY1rEXQA7WSArW+J5zYZ1EgvH98YY1JFGwXLYEYlM/U8bwZmuMvRDjsMYG2JyPSmGfXYWT46vxwNkF3Ifz7R07z9BlZZxig2PqSMQ57QiEiTz4iEMu0rAkv4NkP6X7do5bMTloC2RDaayTSNQKdjXMQOIRSFT2lIKCqZ9GX4XHaLlXZ2LU13BTrvOhXsRJVy/iigKu0Pm2SuVwr4yBTOxSPfu+jJ4IhgKRQBpyE4ZmjNTGrJAcHBIpOK/svRzSZzs3GpGIBUfViP2e2lI/Y2tIjGHro4LUT67RkuuPwNYTcbEviX01Tk+vxvHJ1bgChct0PqkNMZgqT2mzrWAJuNI6+cRBpHjUAXgdcvVpHasycrD0xas2MtBQBxqRMMAY1nCpBZP7V3g6rymMEeCxCE39DFEnbKWxbUbLaRuHP0IRNj2J6G7KdRWOjq7B5aOrcAUbHNE5zvr/sMELMagQ5/32GOKQXDiqeR3c41RCDpZKChoZ6LDU/78a0YjEocB4NV9+zAkMRaW2h/pKYzONltvnmj+iuzlXd1+NgUScnl7dFaK6chWOaINjOt8LX+wbK0dEQpg0LCFVU7ofa/8VkIOlLSyNEDTUgkYk5kJFtSa2yJD62TXaz9hwNrcYLbn+iHE2R3dnz45EHB931SzvP72AIzrDGdSe8hBDHKQIw6H5HID5CMJSSMFayECN73Mp35EloBEJDaywRuj3L2cGSEwNCenUT8nfI9Po6fJHDMcpRVtvxPHxJRwdXcL9ly/hvg3h+MIG532Kp23o4LoPlYUtJI439jkDOaj5pF/jIimFQ35vDXJoRGJuxHomUmpIJCDUq5DSt8toaRtzl6nR1ZA4P7+I4+NLODm+GleOLuG+K1fhPnRhjTNsNHsLM32zgpBF6rHG/goRhFpJwaEtmof2fqRRMsP/0NGIxAhRtSMsxwSfk3OlfgYiNvUTQPzcDOZMk9GS648YsjWGdM+T46u7lM+jq3Hf6QXcT6c4oY5EeM2UiQpESLvUY4z9FCAHNRGDQ1k8D+V9NKwDjUhIItctwFOO5RwnlfoZ2pcyEBetD6vSYfFrKEU4P7uAzflFnJ1d7AyWx1fjyvElXDm+Cvcr4PKFDU6w2WZpDIhVILhtUtrvHZ+ZIMxNDpa6kC513jkx93fJhlrntUQ0ItHDqkbMZYrUa0hI9gkE+Rp8i/3err6olDdjw3asaw4TkqH5I9QunNEpEZdwfHwJV44v4ej4Iq6cXMAD2OAyneEU53tEApBRIELb7h2bgSTMddJc0sK6pLnmQltcG2LQiEQoavydSXsiJPsLydiwhVUMhaj2CEf//7I5J5yfXoXTk6u7kMbRJVw5ugpXji/i8tkFXKazrn5Ef3tw4zRyFYcSJAilT/i1L7K1zy8H2qKfhvb5yaERCWS+r0ZocSshBNeQyJX6yR2eWQDL6o/Azmh5enoVjo8v4fjoGhwdXcLlo4u4cnYBD2yAKxfOcQVnndFSSH0AZEhCiRNbrQturfOSQlu06sOhf+dKYvVEwkkifIvx3LbfxNuH15L6GWK07F7s15kYVIrN+UWcnlyN46NrcPnytbj/8iVcPruAK+eEK1C4Quc4oV3aJ0t9SCAJOReQWk6EtcxDCm3Rl8M51Vgwp0EaqyQSWRSI0e+Fve7kSNNkVJuM7lo49dNYGttgtPT5I4a2qr9B18nx1bj8wLW474EH4b7LV+P+c8IRVFcWG+c4wblWP2K+rIoBcy3GSycBbdEPQ1vYd2jfHTmskkhEI9f3LjgMkWUW6amfgRkbe5sYx+v+CL0s9tnZRRwfXYP7H3gQvn7/Nfj6yUXcB4UTKNxP4/oR8RkaPpRcnJdGBNrJ24y2wDcsGY1I2CD9u5a4c2fm24ez4JmD8Tbgo/lYMzaYRsvJOJr5Um2A8/OLODq6hPseuAb3PnA1vrYB7qdzHEPhCp3h1JD26UPuxbpmMrD2hb8t8IeLtX+3JdGIRI3QUz8lSIgt9TOGbHCUg0EpGGdsuNqOX7uMlpb7cAzPz88u4uj4Gnz9gatx7xnhT3COB+gcx301y64QVfcBSC/gNRGCtZwk20JfN85W8j1cOxqRaJiCuahnG95ntITFH9H/nZ9fxNHxVbjv9CK+hg2+fuEM9/dKxGlvstxAsRf9ucjBIRKBtujPi7aoT9G+j3JoRCIWnAW2ROpnxvtqOIcVIhhso6a1wuVuf5f+STg6vhoPbID76Bz30xku93f6PO1NlucBRCIVSycE7WSbH22Bb1g6GpEwwXTuXNBvPbiGhLdDzyIu1a8rYwP75GWsSAyP52cXcXx6EQ9A4T46w/10iuO+iuVQhCqFRCyNGDQiIIe24B8WagpFLh2NSEggJvWzJsygasQqGkMIw+aV6DI3CFf6UtgP0K741Bk2OHMsrLWThEYK4tAIQENDXjQi0bCPgPVK4vbhKWPotxrfbC7g5PwCTugcV+gcR30VS6CrFzFchdRCGho58KMRgYYcaIqEHBqRmAupC3BiVctZ4ashEfjZ6Jkbmw1wCoVjnOGEzifmyvPA1M9UNKJgRiMHDQ2Hg0YkVorS2RhRiCBbShHOFeGUFE6oq2Q5Ri4S0QjDPhpZaKgZ54uMQ9cJUnpu3QGDqH1zGhoaGpYClSF2WmodyDH3WnFh7gk0NDQ0NDQ0LBerCm0opYiIPqOU+q6551Iz2mfkRvt8/GifkR/tM3KDiD6To981KQWl0BSJhoaGhoaGhmg0ItHQ0NDQ0NAQjTUSidvmnsAC0D4jN9rn40f7jPxon5Eb7fNZCFaVtdHQ0NDQ0NAgizUqEg0NDQ0NDQ1CaESioaGhoaGhIRqrIBJEdIGIbiaizxHRERF9mYhuIaKHzD23HCCiRxLRzxDRJ4noj4joPiK6g4heaXrPRPQoInofEd1LRA8Q0ceI6OmWvg/ysySiBxPRl4hIEdHPG/av8jMiom8kon9ARF/o38sfEdG/IqK/rLVb6+dzHRH9JBHd2f/O7iGijxPRC4iItLYH+xkR0SuI6D1E9MX+N3SXp322zyKk7wYhKKUO/g/A/4juDg+3A3gRgDcCOAXwvwC4MPf8Mrzf1wO4D8A7AbwUwI8CeHf/GfwfAB40avsIAH8M4KsAXgHg7wL43/vP55lr+SwB/IP+M1MAfl7bt8rPCMC3AfgSgD/qv1N/G8DNAH4RwHPb54MLAD4G4BzAPwFwE4CXAfjX/fv7f67lM+rn+scAPgTgPwK4y9E222cR2nf7E/r/n3sC2d8g8Fh097P8Z9r2l/Zfzh+Ye44Z3vN3AfgGw/af7d/zS0bbfqU/ET5htO06AL8P4HfQG3IP+bME8F8COAPw38JMJFb5GfWL5JcBfIun3Vo/n6f0c75V234JwBcB/MlaPiMA/6fR89+Cm0hk+yxC+m5/gv//c08g+xvcLZ5/Wdt+LYAHAHxg7jkW/Cz+Qv9Z/EL/+iEAjgD8fw1t/x992ycd8mcJ4CKAfwPg/w3gz0IjEmv9jAD8lf59vLR/fTWABxvarfLz6ef8X/Xv5ccN+z4F4Ctr/IxcRCLnZxHad/uT+1uDR+IGdIz2U+ONSqkjAHf0+9eCb+0fv9o/Pg7ANQA+YWj7yf5x/Pkc4md5M4BHA3iJZf9aP6O/1j/+ARG9H8AVAA8Q0e8S0fNH7db6+QDde/gTAD9BRH+TiP5MH59/HYAnAnhN327Nn5GOnJ9FaN8NQlgDkXg4gHuUUseGfV8B8DAiulR4TsVBRBcBvBqdhP+ufvPD+8evGA4Ztl0/2nZQnyUR/TkAPw3gZ5RSd1marfUzelT/+DYA3wjghwD8CIATAL9MRD/c71/r5wOl1L0AnoXOE/Ar6OTzzwF4MYDnKKXe1jdd7WdkQM7PIrTvBiGs4aZdDwZg+hICnQw2tDkpM53Z8CYATwbwk0qp3+m3Pbh/NH0+R1qb4fkhfZb/EJ2Z8I2ONmv9jP6T/vE+AN+jlDoBACJ6L7r4/88R0S9hvZ/PgPvRSfm/BuDj6EjXiwG8i4ierZT6ENpnNEbOzyK07wYhrEGRuIxO7jLh2lGbgwURvRaddH+bUup1o13D+zZ9PqbP5mA+y16e/14AP6qUOnU0XetndKV//KcDiQC2V+G/BuA/Q6darPXzARH9BXTk4UNKqR9XSr1XKfWPAfwlAH8I4G29Erjaz8iAnJ9FaN8NQlgDkbgbnfxl+nJdj042WyKzZ4GIXgPgVehS9n5U2313/2iS+4ZtY5nwID7Lfv5vBPABAH9IRN9ORN+OLt0RAL6h3/ZQrPQzAvDv+sc/NOz79/3jn8Z6Px+g89dcC+A9441KqcsA/gW679Ofxbo/Ix05P4vQvhuEsAYi8Wl07/NJ441EdC2AJwDIcs/7GkBEPwXgpwC8A8ALVW9fHuFOdDLgUwyHP7l/HH8+h/JZPgjANwG4EcDnR38f6fc/v3/9Qqz3MxrMbd9q2Dds+w9Y7+cD7Bani4Z9V40e1/wZ6cj5WYT23SCFudNGcv+hS3l05SE/f+45Znrfr+7f3zvgKGCD7mrqHMDjR9uGvOvfxTSn+yA+S3SpjP+14e/v9O/jX/avH7niz+hPA/g6OmXiutH2b0HnC/jdNX+H+jnf2s/5J7TtD0V3dfwfAVy1ts8I/joS2T6LkL7bn+D/+dwTKPImgbdgVxnthQBuQVfp7COosEqcwPt9cf9+fx/A30J3hT3++z+P2n57f8L7KoCXY1cJ7gzAf7WmzxKGOhJr/ozQVWpU/cLw3/bv/ffRGdu+t30++DZ0VRQ3AH4ZXejwJ9EZeBWAv7uWzwjAD6ILob6qf4/3jl7/oNY222cR2nf7E/r/n3sCRd5kJz3+PXSVzY7RxcneiNGV1iH9Afh/9T88299HtPaPAfDP0eXEXwbw/4OlnOwhf5awEIk1f0YA/ga6HPwH0GVwfBDAU9vns30vjwDwS+iUm1N0Ks7/CuBvrOkz6hd11vkm92cR0nf7k/mj/oNvaGhoaGhoaAjGGsyWDQ0NDQ0NDZnQiERDQ0NDQ0NDNBqRaGhoaGhoaIhGIxINDQ0NDQ0N0WhEoqGhoaGhoSEajUg0NDQ0NDQ0RKMRiYaGhoaGhoZoNCLR0NDQ0NDQEI1GJBoaGhoaGhqi0YhEQ0NDQ0NDQzT+/55sed0rpm44AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.imshow(Cordi1, interpolation='quadric', origin='lower', aspect='auto', cmap='plasma', extent=[0,1000,50,3000])\n", + "plt.colorbar()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d5b6b8fb", + "metadata": {}, + "outputs": [], + "source": [ + "eps = [[engine.electroPropertiesSolvent(t, p ,\"H2O@\").epsilon.val for t in T] for p in P]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "f9d2a475", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAIXCAYAAACb5fe2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB1Q0lEQVR4nO29f/h3VVnn+74fDBCeSWrwXBOPk82hALPQBjHIfih4Go3rgq6c5tKGihIYS/RAZSPqQdMmOBTCqEz2YHXEkS61kGSyo3ImOJwBBslhIkODBDUoEsMf8Pjw/Pis88fe+/vdn/1Ze+/1e91rr/v1XN/r8332Z+2112d/92e9132ve92LlFIQBEEQBGG57MjdAEEQBEEQ4iJiLwiCIAgLR8ReEARBEBaOiL0gCIIgLBwRe0EQBEFYOCL2giAIgrBwROwFQRAEYeEYiT0RHU9E7yeie4noq0S0h4g+Q0RvJ6JvGyl/AxE9RkRPENGtRHTaSN07iOiitr69RPRFIrqCiI6caItR3YIgCIIgAGSSVIeITgfwRgB3APhbAAcAfC+AnwPwNQDPVUr9Q1v2WAB3tmWuAvBVAOcB+B4AL1VK3TSo+z8CeC2ADwP4UwDPAvAaALcCeLFSatUra1W3IAiCIAiGYj96MtFPAvgggH+vlLq8PfZBAC8DcJJS6u722E4AnwawF8AJqr0oET0bwD0APqyUelmv3tcAeAeAf6uUuq533LhuQRAEQRAafOfsP9++fgsAtK73MwHc3IkxACilHgfwHgDHATi5d/4rABAaK73PNQD2ADi7O+BQtyAIgiAIsBR7IjqciI4momcQ0Y8C+J32rY+2rycCOAzA7ZrT72hf+4J8MoAVGtf8FkqpvQDuHpS1rVsQBEEQBABPsSx/LoB39v7/IICzlVK3tv8/pn19SHNud2xX79gxAB5VSj05Uv4HiOhQpdQ+h7o3ICJx8QuCIBSCUopC15lKB2K03Qdbsb8BwGcA7ATwfWjc6k/vvX9E+6oT772DMt3vurLD8vsc6t6CiM4HcP7IdQRBEARh0ViJvVLqb9FE4wPADUT0RwA+SURPVUpdimaeHWjc7UMOb1/39I7tAfC/jFxuWN627n67dwPY3Y3ovvLEd2HHfsKOfcCO/Qq0X2HHfoC2fgjYT6CDBBzYAexvfw4ScOAQqIME7G9e1YFDgPZVHdzR/BzYAbVqfz9IUAcPwar7vTu+2oFV9//ud7X9/mpFWB3cASjCarUDakVQq+b31ao93p6zWu3YPndFWK0Gx1VT19bvqx1QCu056+X6P2vnbB1H05Z+ueF5K2y83/wdsH7Oqvv7dHU0vwPASkF77mrrHKy9t0K/HNo62mNtfd3vW/Vj+1pr7209N73fh+8N/r9+TFmXHS+nNo6tvd8zUnTnTZ7bLzOwQcbOH7Z5rmxT97D8dH1jx3TmmOm5ADBmZ42VHzvevDeOmjhvrl6bMjblgM2/cci6Q5zX57P7X+tdxxxf+cZ3Rqn3qKfeH6VeX7wC9JRSfwHgfwD4xfbQw+2rzp3eHeu74R8GcDQR6QR8FxoX/z7HugUPlG3PwBTXbsd2TYfMD+kZCr0rvrXYCr0gLI0QGfSeCuBb29/vQeNmP1VT7pT29a7esU+2bXh+vyARHQ7guYOytnULBZBjWmsl/Xsw5qzYmIhQCz7QiqL8cMU0g94/Gzn+IjQJbe4AtpbB3QjghUT0nF65nWiC++7DeuT9B9AM2i8cVH0emvn393cHHOoWBEEIzpQLPyUxXfjC8jCds//tNi3uf0Wztv5wACcBeDmArwP45V7ZiwGcDuDjRHQlmgx756FxtZ/RT3qjlLqHiK4GcAERXY9mCd+z0GTUuwXAdVjHuO4i4RW8KSQk5IM7N4duc35oTGoWi11IQmX9ranY/wGAnwXw02ii7xUa0f8dAL+plPpCV1ApdT8RvQDAZQBeD+BQAJ8C8JKRdLYXolnCdz6AMwA8imZ53yX9VLmOdccl8cMy6fJm/uDaDMOGbvaUQzhfqy2kUNmIbiprk7sQh2pfzs/J4R7X/vmXiJHYK6U+iCYtrhFKqXsBnGVY9iCAK9qfoHUL8zBbCloFuboyLu7nJRMiEr9kSvp8nOfXYyBb3E4xGsI7ZWEHbsKMGJuI9VIi64V11AJyRJUkDoJQMrZJdQRbOLn6Dd43LSNMw92KzhlFL/iz1OC8lIM/4v4lDYxY9iEQccxGfz5/bm5/6u1SpC91/7SE/jDkGvvY94ODpyNnMh0hHmLZM8PU5V6i9T3W5lWBn2VJhLL8Ygmhaea8UMSqW8SQGUsYyVoglr1QHCUtsJxqqj7VaznMBqM5xBT4CGJuMeU4NSIufKFDLHsbCrJAS7T8Q2LqLZBseumQWx0Gjl6NEoV6AfGtVohlH5PKHqaQ1D5Y6ZPS2udondZCiYIplINY9nOU5Fe1RBcfICK7HEI/uqHFKIW4lRScVzM5BjoSjS8IEXEdTJQ+CEnVr4xZ5kvq1zi6sTkm0ylpS1shPmLZhySQIA2FrXShy02oefnh/vRcWJKQD+F2r3MjwhqQygJ2xLIvDC7CrxRBKcKqffWvL0CjbK4H8zaPNS2UyOrqj7sZjVnd6df0lxuJ70vp7feh5s+eErHsKyLUQEFXD5dBSEhMxS5HV8UtVe7wXrksu+NMad4TceHPs7BHdBax7DtK+zYbYiPCvnn2cwn+ysJKzw23/sV1Hbat5yHPgEh/PLRApZqvL1lYx1jiZ+KKWPbojfBsnru5siVls0gM94x5rlMKsTuuhY5H2SDCUxmVfaFE7E2+31MPBXPhComJCK4CfoGmBgVj75WUXa9manQbjxF8SWOiLqn0vwVJgF7lFPj379znspXtPCm+36UaDFPu6Bwdu+kVSxed3OS6f/J3S0vVlr1LgIYK1JPP7tAW2WNgW3/ouX+O5Bbp3NcX9Pj8XWS+njGVfeHEss/Alhh6imKpojrG3OexnSLg3D2adt6u/dFq5HeupBKz1MF5S0UGH+VRtWU/SsTneGkCPcbc5wzlIeFM6u7QRHhirLGfW3bHKRJ/jKW4slMtufOFw2BBlt4JThiJuMf6dJv5eJcBxdQ53KPnfSn5O1/BmEkQhABUa9nXtgmCIAxJtcZ+47qVROIvdb7etz1sPk9lGiCWfQwWbgmbUsuUxRyh+xRu2fNiwCUSf3LVLRfRainFhS/koUrLngy+FcH704n6rJfMBXbTxziPG1y7tdR58V1YiiiMfY6a561rpjbvrlj2ppQQZbRATJPkuCTTqSynxiQ5BxjBI+QX9LXhNiBYjAu/Qqq07IV0TAX36bwGNgKcI1terq6qMiOkeLiLGvf2JaGydJti2TMhhrt8rM7hM74UV31HjNUDG8vL2teQ2ymUCMdld6FY8ny9UB9i2Seg1DS2HAcB6fe9r4+YXoSQkfglW6cltn1pLnyZsxfMYSiGQhhs+wH/jtCPvqU5lj0vhDWawqKNcQVuwXkmxGob588sxEMs+ynGemAReStyTo3pYgAUyvj7VWZ4BIHDVzO1mJbgOGQ5wKjsCyaWfWB8XN8c3eaCHSb9R7hkKx7nMnnUWIpAZEr8zCW2WVhHLPuCSDkYSHUtbql4KwvQnaXWTj53cJ648ONTQW6qNcSyD8BUAF4q0VySV2D4WUr8bLH6kRjZ87hFlg8RgRonhYdmaYF5tSKWPXNmd48rRAhLaadgToxldzHS5KYMzhNhKwiZsxdG4TLROYHODT0ltCLCDVy+99ytbB9iC2EJj3LOwUCOa8vghw9i2c+RWuAj91hLE/dVL7J+br49R3rc6blffnAZ9ORkqfP1LnBqS3Aqe9jFsi8UFfFBLTUJ0FLh0ieFFrpFC0kC5Gsq2CCWfURENNcxTd87h0kEv2mVS5ObmAl1hGk4D17Ehb8JLczLOYeIvSAUjq2QlzQG9U2Tyylznsk1OQkkp7ZEgYvLLBHixg8IJ0t+aXPzpVNit2klqgkj8XPByTvCqKsRCkEsewBYNQkWatsYgTPcku0A22IU+jHR1Td3jVBtSCVgpUTiL7EL4OrFyM4S/9gTVG/ZcxT4VFncdNY/V4/AyuPv5Hs7R7dI8Ky3ZBh+bbJShLhZsLTPI4hl70xSl/2CvndcLPaQy/BCzCHXhqw3dysD8HfhF/OMF9LMUNRt2WvME9J9kxwEKpaFzMnyDincnD5Xh21fENvajZEqt0/u9eUm5BpYcfn8guCKWPa+VOrP7MRZKWIp1EL5JN8qNunV0uByD4uxzD3RGnYLpm7L3oWChS2UKHOb6w8d4+Db6bs2p2br0eeT5/5KhhBHceELsanXsp/q0bl/oyywiS0wEeypMqZBdCGy/40JPJeYgFDY3KqQCXVSL7tbMiKATKnszyKWvVAVCuODgZR72efqZ3KMYzkFxNUkvKld+DXd2xKp0rLPvtxOEdRqeq7bKto/kTVr0qaQ7vyU4huDFI9ZDte/7+fiKAolBCfWQrLnY0EeXBPEsg+F6YMT8QGzEVpO2f5ikWOXu5LgLGK+aXJTMdemkpbccby/QjiqtOyNiPDNCh3EljIozsbKdm3XnDiXbumHIrVjivOgYGEhGsFIv5IhzPWStju3hzcxYtmbEjjQbbtwnb0Vp+V60dfHW147Rx+Us9/jO5QQhOUgln0hWLnoGSQB4iTmQjo4CHfI4LzYXo0luPCLdf8X2mxXxLJPxNQcOXf39BKEu/T5+9jZ81wZLrvbeL+AHtXVqxFivj4GJdxzHaW2uxTEsheisbQ1776U0pnFbKdr3aXcO6EgKghS7iOW/RSZxWrMoubgpueGi3fE5pTh9rbcpMckoU6Ivi3F3L6psC/8kd6iBhe+DObiI5a9B0GXrzHtuXJb55MZ+yYS5IRifl/5MJ0U54j3JVDyfH3uOhcL0z43FmLZu2Ap8ku3ql3RDSRC3Ksc3V0Mi3euTh8xMj03tuCFrt1W7JY2X58SserLQiz7BRNyGsC9DckuFRT3zWzi1S3UB2cXfulkz6SaGBH70BQY9MFhUGBKiGmFkiPzc3gQTBneVrH8xhEXfkPWNhfYV/sgbvwQhNo6trKHLwW2XUllg30v5pbdbZQPmDo29jjUZ/qiFNHlEJgnpEMsextcehiG1nFqOHoIYuM+F5yXJXbi40l2wtaXE45tYk9lt0ws+zkYCdUSRbPUOf0Q5BZ2W7i3d2mCx9XRJ9MzZSKWvaBliQOLKWINOkJUa5M9b2yNPUd4ty4eHESOQxuyw3U0FQmx7JljKrpLmu8fBuGtuJuUBbCgxyM6pc3XlyjcJba5dMSyR7sEo1BBKcUC59BOlSAJTw5sH90Ya+xTRuLbPEqhRSWVSHEdnC1KpBn0SSkRy76/Diu04GdIa6s7f6pODiLsQ9/9njvb3xRcO0nnILWMkfghyDW25/Ac5G5D7uvXilj2ISngGa45IE4HB4eOzoKOmT1vidQqIGkHSAu7xxy+/Amp2rKngrOrxLTIU1v7ttczGbAU/KetAq5/Hg7z9TFd+LkFO/f1a0Ys+yG60R7XCbTC4OxmN2G4413qjiu2ITL1eSozgrSIUC2MwvsjW4wseyI6jojeSkR3ENGXiOjrRHQ3Eb2RiI4clH0LEamRn1/R1L2DiC4ios8Q0V4i+iIRXTGst1f+eCK6gYgeI6IniOhWIjrN7eN7wPxBKX0unhNzXbyNEIpcmBMrOG8p8/WlufBlsJQXU8v+5wG8GsBHALwfwH4ALwLw6wD+DRGdopT6xuCciwA8Ojj255q6rwTwWgAfBnAFgGe1//8+InqxUmrru0lExwK4DcABAJcD+CqA8wB8jIheqpS6yfDzhNsEQUQ1CiFjC1xd+vZR7gLg1qmXnrpVXPjlsaTlyiaYiv0fArhUKfXV3rF3E9F9AN4I4JUA3jU45wal1INTlRLRswG8BsD1SqmX9Y4/AOAdAF4O4LreKZcCOArASUqpu9uy1wL4NICriegEpQLIxFQvb/qAeLRCrPJNQgcWcuz2fMefYwl1XPo0n2V3Q0oRmanPXMpniEHNn31JGLnxlVJ3DYS+4wPt6/foziOibyaiqQHFKwAQgKsGx68BsAfA2b26jgRwJoCbO6Fv2/Y4gPcAOA7AyZMfZOsko1JsiDUC1S7TizzaVQVM/vo+HiE/ok32PKP6QrhjA7epBkp24YeAZXsVxflhim80/jPa10c07/0FGjf7XiK6jYheqilzMpq+8c7+QaXUXgB3Y128TwRwGIDbNfXc0atv2TB+mHyoLXo+1IDAp55c464Uf2pu8/UmiAtfiImz2BPRIQAuQTN/3ne1fwXAbjTu+bMAXAzgmQD+hIjOGVRzDIBHlVJPai7xEICjiejQXtnuuK4sAOwaaev5RHTX1OcR7FGKWEw5cM0dwLRZReAbnJeSJQvpogPzVpF+mOJj2V8F4BQAlyilPtsdVEpdpZT6d0qp9yqlPqKU+k00VvkjAK4kop29Oo4AoBN6ANjbK9N/1ZUfll1DKbVbKfW8uQ+0fhLTnsWDkMLcX0anFLHJX+/TrTD5CLPESKhT6rK7UEISc76+dhe+oIeIdhLRG4jonnaF26OtF/wcIqJBWe9VaE5iT0RvA3ABgN1KqUvnyiulvgzg3WiC636g99YeNK55HYf3yvRfdeWHZdNjIaRK2ZX3IYblzcGaXznmuS9huoCzuMZAxIunC3/RVj2Qdc6eiHYA+FMAbwPwSQC/jGZ12yEAfh/AZb2y3Sq0U9GsQnsdgJ1oVqG92PTjWifVIaK3AHhT26BXWZz6YPt6dO/YwwC+m4gO07jyd6Fx8e/rle2OD+mO6Vz8YQgkcGpgEce+ng0mIh4iz37ocqPne50djqkOr/S0t3Mb4LDu7AOw9M8nROP7AfwggKuUUhd1B4noPwH4DIB/B+Dft4eDrEKzsuyJ6M0A3gzgWgDnWi5z+672tR/M98m2Dc8fXOdwAM8F0J9nvweNC/9UTd2ntK885uVHhumxLOJUlrbvYIArXOf8+6S09mMOQCQ4zw/bwYVY9ROsKM6PGd/cvj7cP9gat48CeAIIuwrNWOyJ6BIAbwHwPgA/10920yvzFCJ6mub4PwfwCwC+jMYd0fEBNN//CwennIdm/v393YH2w90I4IVE9Jxe3TsBnAvgPgyi+ksg5FK3EkTLh9LT7abCd439FCmW3aUOzitpvl4ISN6ld3eiCWb/VSL6SSL69nZe/lIAJ6HRWiDgKjQjNz4RvRrArwH4AoCbAPzUIH7gEaXUJ9DMIzxARDcAuBfAYwCORyPGOwG8op9pTyl1DxFdDeACIroewEexnUHvFqxH+QNNZP/pAD5ORFcC+BqagcEuAGcESajTh7kp4GNFc9xIp0SvgA0xu32TR7X0KYMhSxHSJSZyW8rfxofBCrDdSqnd3X+UUo8R0ZlorPMP9sp9HcDLlFI3tP93XoU2xHTOvhs5fDuA92revwXAJwB8A8AfoZmP+HE0Av8omgHC5UopneV9IZr5/PMBnNGWfyeaKP+1PkwpdT8RvQBN8MLrARwK4FMAXmKTKjcLEfapT0noZDuprXTlGNCXitTjStPr5dx8hzvpN0Iqx4VfBLETiM2vAHscwF+iSUN/G4BvRZOW/joiOqs1oJ1XoQ0xEnul1DkAzjEo9yQaK94YpdRBNDnxrzAsfy+a9fv5iRC0x7E+F0pwudsI2diOdzHFcC57HnPHUxY4zddXI5oDav3cNhDR96IR+IuUUu/uHf8DNAOAa9oo/GCr0Krez96ZBT7L01H2CRvCDNOPXvItcu2clxCJnzsffizjUqx6A1SkHzMuQiPWH1prklJ7APwJmkR034GAq9BE7FPg+P3hYKGXQgmehA4fK7PkeXeTlpeUOS8lVYlwHXRCfYjmvaf0XoOtQhOxZ4KNsLtsJpNj4BDCIzCVmW+s/hCJc1wFuXTX+qSly2gDnNziN3f93O3LRUmfW60oyo8hf9W+ntM/SERHoZmmfgzA34RchWadVKdmxkR2TUgXZobEjdrfPFaShR6D0gcLNqQSBq73VFz4VXMVgJ8BcFk7f//f0ATonQfg2wC8Wil1oC0bZBWaiP0cXHsKwZkUXVrIazh7Gfpj0Ao6cluxyj1fbwqntkxRSju3yGhYKKU+T0TPR7OZ3OkAXo5mNdvdAH5ZKXV9r2yQVWgi9pGJvT+8y7VTtin8SgO78rYu/ZTdVQwBNqmTy7K7UilO1AxY4mfijlLqbwD8rGFZ71VoIvZA06txeNYzjTTHBLl2l3oIkkR0R7/CPCEi8U2D87gLk0n7uLnwS72uF0vMZjRB9QF6azFHBT6vguBDqGV3ocuHwmUgxEm40gwW+XxeIR51W/byjCehhCWEHKzjPpJQx46Q8/WlshSrPtnnKKBfCkn1ln1JlCCatizxM+mY6r64CHfKZXelWpMhltyZeo9LvUcCT+q27HUE/H4FETLD9iwp5e4wCC9UBr8Q6+9zskRrdIpKxoFZ4barX9IBjszZ14GVoZJQcK2FrZAeMVawX/9+uXQTNacCjkWo4Dzfukufr7eh1HYL6RDL3pVCRLZWYnR9XZ0+m+Ckctn7rrG32yRouv7YMpRqvn5pLvyqrXrUN9Cv0rKnmZ6MUVZQa3TehelNbsobtKwSb1c7J3yhHhffgUDINfbT1xEEoTTEsrdlII65kua4ijRHcS99Lr0jhtU+V6fPNZcSvV07Oe5n6VY9gOq8s1Va9sI0sQYELhv45MS1+zE5r6Rguxwb4ORIpuNTf20ufKE8xLKPRM40ucI6SuP2L2zcsUaMtpc0+DBh7B7Fmq/PBdd22ZDtM1TWR4vYj5FRDUIMFDi6620Ytj9l6t5Qf/oldMS2xIzED31urXALzMtF6X2kLeLGFwRmzGXP40TuSPxQRJ8iYOTC50RtnzcnYtkXQMoRaOxrcR5N5+h2TL0IKd3sU23ybUWJnXuIJXcxSO1FCXF+rLrcGsC3L4qBWPamzDwYqeboQ4olJ+H1aQv33flSd2lja+xLiVPwDc4LPV8vCEtALHthUcwt41tqd28rZNmtqgCU8hliuPBLX27H4m/H3EgIjVj2GVArYmVVu6AUbf2sMpiMtWW/ykXsZXccOv1aAgRLaqsQHrHsp3B0zU8Kef+9xIIfbkMZuyx9uTBN1pMsha3lezET6vQJ5d4eiskSpCWVQHIX4sVZ9eDZZ8VELPuUWAweQj2INvWYxB2ESL1rOseew2MgmGPbaadJFqMn13x9jFCeHIF5QvmIZZ+ZENY2pwQ+MUfLHFz3w01wkgffZaw/xWfNkTnPFa7tCs0SrXoA5USsBkIsewe2xNXiYUnhMip92VzMqHrf/Ptzp9v0GxIV3sBhrnyqHo4ufLHqBVfEsi8YH/GNKdzcl8J1mHgKbAf/nLpVGVTkhZHDzZnFWvWAROMLGTB46HIHk4S+PgeXPEd02fNsRHtMYFZrv5vVl2MDHB9SztezEy5BmEEs+zkCRM+nnlPPPTBo2pD4eszqM9oFzfMaHRws+FiR+DFFVVz48c6NWVcoOMU6pUAsewCkAPLaGHz7oeEgtC6U2O6xAQW/boUvqXaBMylv+ghyFI4hlenIJCX8vWpALHsmEZm6UeaYAKcW5pwj4BgeAtv17j7E6uZSP7ahP4cIQHy4WPVsKdDA8aFqy35ozZMMx4PiMiiRufyGHGNQJuNeJ0qcr+eeHjcEpbZ7iYhlHxku7nHXdsQUX5c2rWB3jrIsH4uU3gRhnpjz9RxsBrHq5+HSN6eiasteC4dv6oIo5QtVQveWclBgE4kfIjjPNJlOLULUp9TPXGq7l0q9lj1Dcyr88jYec/5Cesa2tg3RAXNMk6tjKS78lHVXJdCVGXZ1WvYMhT4nIv7piLlMrpS+K7SghPw6L8GFz4GqBg2FUK9lb0Ol3+BQgwAuGfW4rcXfqM8hoY7P4IHD+vwc5BYiroF5ue9Lcpj0S6mo07Kfw2T3N12Z4bHQD9MCH06TnPXGu+Q59FU2VuFwExyXOriSewOcIRzn63Nf3wQObeTQBmETseyZU1uWJ8DOo5DCa2Daddl0cUsYIOgIFZznSw6vReivqlj1caltma+IvS2RxZfLEjkurndXfHe587p25I6T00Bh7rNyuxe5U+RyDcxbUhuMqcyQEje+LwvboCYWKqBCpRqRcxLVlEwtu/MOYCtJDHqU2u6UyD3ijVj2YxQiokNKEf/cpBgwuF4ibHS5kILcLnxZbmdPbX2lWPaxiPwg2TyoU2U5PPCx22Dr0k/Z9ZmKsY1oj81X9zt1zpH4vsF5Lp+tdBd+bpb82ZaCWPaVkXdTm/wDixyksK5j/Vljd+E+j0TI+foY57kigXmJqKw/EsvelIoeDA6ivBr05LVFzpoQyjp3HYzMpcmtRUhyx3nlvs+5ry+YIZY9RxiIbY1wm9/m7Gp3gaso1OrC59imlNS2rFks+ylsRJfZ96a2B9mUnII+Jd667Hk5iBmJb3T9SPP1pQhbKfsOcLm+YI5Y9gXAwa0eihjr99XI70uEm/fBh5Tz9e7XmckjYPAZOAoixzYlZ0H9qgli2ccg5h7wQderbz7suQYWtoMAkzl8073sU3d76YRKKAmx6uPWWzti2SdGKQCKFmWt10QnoGrk/7kJuezO5jOVGpxXSjtDUuNn1lFbHyyWfUKGD1fp8+pK0UbU/FIx7SD9M8yZHVt7P4M7PIYVym2+nrMLP7dgL/VzLRmx7F3oRDviyJD7qLPfPmXpqTBdRsdhuR2DJggDlji+TCVyIa6zGKEv3NiyRSz7RIyJYWxRH4py6DpNjodiZTgHr0PXjcQUDZNuy+f6MZblpYzE5zCWFStSqInqLXtaoel1x3re/uhv4SNBE7GOuRseB0u+Y4nW45IJPfhJ6cJPFZgnVv06nPqbFNRt2Q+Tphfaw3cindJLMEbpW+OGxvWRKimhTqzgPM7iJIRD/kZpqN6yD8KcwM287yzSTIU1x4g55/71vpgm1EkVTAdMT0OkCs7TlwtDbIHhZgHLwGkT7nFRoanWsqdY6hDJ1R/6wbStL/f1dYx5Eeb+tFODkVjdWWpLfUwUS/IY5CKECz/UtZZO7Z8/JWLZDynUlc+N2kbNHLAVcvPtdXkH55WeIteUpVn12f8+C4/BGlKlZU8cBV3XAzp+F1yEluuaf98YAG7u/dCPXqg/21Qkfg6yC4EHqXIypKKUdgrTiGUfmwjfk9RWs+v1nAYds/ENTk2ZhcP4zyWhTm5CBOdxmq9P6cJPAVeh5tCu2ryPIvYmVPZQpIKb1V0KsefdQ9bOoVNfArnu4yLd9x2V9etVuvFnWeBDUNua0hjM5cW36cS4W+xj+HbUJc/X51xb7wIbURVYIJY9IzgKsu9cPqd19zqBZXjLg+KyAc6S8XHh50Ks+jjU5sYXy94VbUAdr41uanuYY2HbQfl2ZzpRtvEEmJTNFYlvUr/+GH/Eqhc4I5a9LQv4Dm3svsd8UGC8cU7o63qebyJQpgl1ZuvxaG2oSPyhwCzKIs30FVnUPeTWeZYWbemJWPZjlGBKRCbUtIKauJe6gYbNtrljTVQem+YIZuTuuu3zCpTnwneB42fh2KbaEMvekxJ3rROmx3Khx3mx5spjGCYh0+Ru1L3gxzeGC39JVj1HOMZIxUQse2bknucvAdsvaanf6RqdSxzn60v6SvoKdRXu+0oxEnsiOo6I3kpEdxDRl4jo60R0NxG9kYiO1JQ/nohuIKLHiOgJIrqViE4bqXsHEV1ERJ8hor1E9EUiukJXr23dNdANDjjmro9ZX4mE8CYsKaLeRwRCLrlLJUY1ih7nz6wURfnhiqll//MALgLwNwDeCuB1AD4L4NcB3EZET+0KEtGxAG4DcCqAy9uyOwF8jIherKn7SgBvB/BXAF4D4EMAXgvgRiJaa59D3cGYmnfWlmf8Rxf08O2W3BhbdhcjEp9LcN4YMdvDxRrmaNULfDCds/9DAJcqpb7aO/ZuIroPwBsBvBLAu9rjlwI4CsBJSqm7AYCIrgXwaQBXE9EJSjWOWCJ6NhqBv14p9bKuYiJ6AMA7ALwcwHW9axrXHYTc/kMHShxkcFqLXzqpHlnbL1mpf+Jgew9UKKTsP3OpD6UjRpa9UuqugdB3fKB9/R4AaF3vZwK4uRPj9vzHAbwHwHEATu6d/woABOCqQb3XANgD4OzugEPdSeGcr36qbMp224j6cMi2ChRdzyEoZ0qQXdbYc1h2FwLf+fqlWMNL+Bzshb5CfAP0ntG+PtK+ngjgMAC3a8re0b72BflkNN/nO/sFlVJ7Adw9KGtbt6DBRNzF0p7HJ1UuV2JG4oesL+SSO6Fe1Iqi/HDFWeyJ6BAAlwA4gG1X+zHt60OaU7pju3rHjgHwqFLqyZHyRxPRoY5199t6PhHdpXuPIyW64nPS31DHZXMdG+txrnqby/sk1GHcpyyGHC58seqFWPiss78KwCkA3qCU+mx77Ij2VSfeewdlut91ZYfl9znUvYVSajeA3USMfJaRkQFD2F31bOfCCwz3WGNJwXljcBPJJVDSPamtj3Sy7InobQAuALBbKXVp76097ethmtMOH5TpfteV1ZW3rducwNFGoV05S3oox+bMbefSU0015EtswpcYwXmx5utzi09tVr3AF2vLnojeAuBNAH4fwKsGbz/cvurc6d2xvhv+YQDfTUSHaVz5u9C4+Pc51j0LKWxOvlrgIupq1a7FdBSrJQl/blJ0cyHXxdvU5bvsLiYp5+tdqWGapHr3fWV9qZVlT0RvBvBmANcCOFezzO0eNG72UzWnn9K+9ufOP9m24fmD6xwO4LmDsrZ126N7VkM+vxsb0ASs2wHdwIHTYCKk9W4rcin/NKEE2HqqwXBWq7hOPAEchJLT34VTWwQ9xmJPRJcAeAuA9wH4OaU208y0y+BuBPBCInpO79ydAM4FcB/WI+8/gKZfvXBQ1Xlo5t/f71H3NC7PJiMhrJHcgyMfYlnUoSzdgm+tkwu/9m1mObctFbVl0DNy4xPRqwH8GoAvALgJwE8RrX2oR5RSn2h/vxjA6QA+TkRXAvgaGvHeBeCMvjdAKXUPEV0N4AIiuh7ARwE8C00GvVuwnlDHqm52jPkFRx4Ozg8N0LRvtYLTQ875s3Fwc/fh1p4hc8F5IefrubjwOQglhzZ0cGqLMI7pnH23fv3bAbxX8/4tAD4BAEqp+4noBQAuA/B6AIcC+BSAlyilbtKceyGABwGcD+AMAI8CeCeAS4beA4e6tUx5L5ccrx8qcHBMrH3d7pwHAaGwTaiTg6nOm0cL+cN5d7uQ1ytZ6G1ToJeOkdgrpc4BcI5ppUqpewGcZVj2IIAr2p+gdaeiL6LcBCv1hja5fCtq7ffpNpb+HS85eIyDOHBogw+lt58NzPrq2MgWtwmYFUjP3juUwHIbqMwhXd48vpH4OYQl55K71C58seqFVPgk1REyMxTn2GJt6qY3S8nr2xozTC/jFK/Zvrp0elPZ83w9DybtiZETP2ZEOZcpDhO47rAn4rxOacaNL2LZ6xj2thz8ppXuL88p5HJb3Kffj3Pt6dp9Bgiu7Z4TD46P2GSEfuL2liy+Jbe9VsSyj4ypi567+Nq2L9bn4ST+Y9i5oXkRMzgvlQs8lhAZeUwqsOqXIvTc+9zQiGXPGNe5fM47L82xiqh+uoGCyeVcmxTb9VySa9sUboOfWCxFMGPAadvlJSGWfYHEGJHG2PN+bo6f+8g6VIfsKmBLF77U8/U+Lnyx6sPXlR3m/U9oxLIfY/7bLwjBMBU0G6dNykh8l2Q6PnDd+MaEEtqoI0nWQbHqoyGWvSVTLvLU0fE25GpLysQVqSL8XUlxK2wj8WMF5/mWF7bhYtXHJrXQlzzd6YJY9ozgNDjo4NCm1USSnDGBnxP+qbfL6R7TkeKexEyRW7ILnwOxP59Y9PERy94XxqNDDkLtQgkR9ymJuexuvZ50Nz7GtUoQ3JQekXAxJ/zvqwul9o+uiGVfIakf8qnrueTTtz3HVAxTzTjETKiTAy7z9bmuxVEMObZpjJqteiL6ViL6LSK6n4j2EtGXiOjPiOiHBuWOJ6IbiOgxInqCiG4lotNsriWWvSkMRoGx5r/H5q5qm9MqidjL7kJuD5tbeLgk0intvqVoQ1ahz3x7ieiZAG4GsBPA7wL4awBPA3Aimp1cu3LHArgNwAEAlwP4KprdXj9GRC813QROxH4KH4EPNDiozdVUCsNUuS79Riorvn8drlZUzi1tl0Yp7nuuz2JC/jMaDT5RKfV3E+UuBXAUgJOUUncDABFdC+DTAK4mohNMtncXNz43FiruvtvfhsI/73zc+qfqcV12N17GtK6wxJiHzhUDYHrdEq36mHAQeqUoyo8JRPTDAH4QwOVKqb8jom8ioiM05Y4EcCaAmzuhb9quHgfwHgDHYXsL+klE7Aune7jCb2UbtDo219JeP1CZ9fLpPxSHYC5ucHHhp6IUq17Aj7WvXyCiGwF8A8ATRPTXRHR2r9yJAA4DcLumjjvaVyOxr96NTwqgEObYEnuOjAw9AaYDgrm97FNj8mj5DAxyB/TNBee5ikYJLvylWvW1uO8zT5Ee375eA+A+AD+LRtR/CcD7iOiblFK/D+CYttxDmjq6Y7s0721Qt9j3ekpaiFhznuOPZcGPVRvicrnFNAchg/PMrud7vn2bUu9bn4IS2sxF6FNARHf1/rtbKbW79/9/0r5+HcCLlFL72nM+DOBzAH6DiN4LoHPtP6m5xN72dcP9r6NusS8ZC1GfElnOg4MlwXUzndSknGrgkKs+VZtLcN9zE/rYq42UUs+bePsb7esfdELfnvMYEX0EwM+gsf73tG8dpqnj8PZ1j+a9Daqds9e67nV/fM2x2YfEU0BjCrBJ3SUMAGJb7bE6vRBr7G0GAL6R+Ly65zSUYCHHoNbPnYm/bV//XvNeF5n/LQAebn/Xueq7YzoX/wZ1in0o32wBosiNsYFE7AFG7iDAlISMxLe6rsOf0HfJXQwXfi5yW/Ux4WbVA2ge2Bg/ZtzZvj5D81537B8A3IPGhX+qptwp7etdmvc2qFPsXQnUS9gKm4sQlmCdc4Rhl2REjkj8ufNybq1aogs/JzW57ztyLr0DcAOa+fqziWhnd5CIvg3AjwO4Tyl1f7vE7kYALySi5/TK7QRwLprgvjthgMzZD4k47FcKWyM/yU43z9AaX5J1Pj2FoDmW6HGJGZxXgvjlamNOq75Goc9NOzf/KwB+B8AdRPR7AA4F8Avt6wW94hcDOB3Ax4noSgBfQ5NBbxeAM0wS6gAi9lkRiz0PobufXN1ZjSsF+uRw4S/Rqq+V3H2pUmo3ET0K4FcBvA3NV/p2AD+llPpvvXL3E9ELAFwG4PVoBgOfAvAS01S5gIh9MnI/WDp0bUqR6S7GvvP9Ol3qtxHOYarcYR02c86co+1jt8x0vr60iPZU1xWrvnyUUtcDuN6g3L0AzvK5loh9CDye6dFBAPPvyWq1PucVYpCwYm6q2jbP9+P4DgTGIvHDrGSIk0xnCaT47NzvbwlCv6RpQRMkQE+H1wY44ZrBlfGI+rTtMLHgQ4wfOP1J5wYAtgOEVKIR+jouOfJTufBz15n72iUIfY2IZW8C43XzNoRox1wdXD4rJ0wGHBycGqkz5w3JOaVRQlKakNcQoa+vrxLLngOZk+i4lPXF9FqrgLnu9XPEduV9mEqo4wN3l64O03sbTITFqhcqRyz7BRBr57ux64Qq5wKXrXJTkmOVpo0MpZ6vT7nNrQ1i1Rc2eKls+bNY9mOEEpVA9egElPNafVdRriFoxnaNvU+5GHBKcBOClMmBYtaZ87rFCX2FiGVvSydiBe8f31zPrv01WdTcxckEk0h8TmvGQyy5GyPFmLgUqz4GpQq9zNkL7gTuVUp/GNWM+Rl6ANHfy36u++EQEMd5jX1MYtz7ktbWOyUDYuy+F8pALPsFEjozH+dBR8jui1NXqBsIhF5218dVCLjM1y/lerEQ9/0mnPu1GIhl78vUAxPpe1DSQxpmuV/e83V0ned2Nr32WgsQo+kVCuHn62ty4eey6mNQstDXiFj2U/R7igS9BueAu5Rwjg8w7d5sXNUcphRSUZILn6vI2hIlwHABQl+S0RQCsewrwXUgwXGf+RzdjKtI+YpbyPGfy33jJHic2tLB3aoXoRc6xLIXosPJUtd1Uyksa5OEOqGW3Y1F4q+X8e+wuefDnxoo1WLVC+OIZV8RtELTMy7Ujzqew76uh9yH0F0+x0ctWvBWgvn6UnLLi1Uv5KZey364i0rgXjjG/HsskV7SoCDG9rklECowMGRw3ub5PudaBgaW9+iuIUKfgAL7Nx+qtOwphiJEypRXouDqmJqbN/mMU+eP/Tn9xCUuU+LssuxOMCeEC78U70MoFif0FVKvZa+Do4+1UlJkFCy9++K0pn1Yduku/JhwtOqXyFzSr6VRpWVvhc7qZGRtd6IY2gPAfRrC1jmTepc1U2L2N75pcqdI+RUI6cJfulW/BPe9DFbiIJa9IHgSK6GOTrRsIvGNrpEoP35lRhSAZSTQWbLQL2WK1BQR+yEWGfE4BrZJYp74DLPnbb6//loKuWUmt8Uc2qpPTei2LVnogfrEXtz4hWLzoE7mvWcyOFglVEbXS8Xsinw+fozgvRzz9b7tAPxc+CFJbdVzHoSYUHr7S0Ase4bEHHH6Rr77YjPXvsJ6W2Mm54nZ1Zgk1Jk8n1lHaPtnKM3DkQNuYpfSqs/12cWyF6KiFLEK8FsKNtvb2hJKrEzqiWHxhg7Oi0HuBDUhXfilB+XJMrtlIpa9jkimSN9lbmU9B96ytiZSLOGzJYWlbtJh5xKvHC58znAagC19nr5PbX2kWPYBcH5oKnvYOkJ9yUJ0E1PjOj5dsBl+8/6u17Sfr+eGWPV5KLntJSKWvQE2yRdGA94iZdgLTdaVBJG/+9y6lqnHymXZXSimOuHc8/VjbeMSmGcLp6C8Gubp16jM2BLLPjM5o+F9hF0p2vpZKWLpLnelpIAybsF7c5hmzUslBiVb9SGpTugrRCz7MUL2+A6CzmVJnI6xZXIxvAJLGkSMwcFiD3kOJzi3n4tVX6vQy5y9IHhg+gVyXUYXqqsIVc8we17ohDq++ePHE//oU+naMDdfz8GFH+uaruVcy4c6d6OuSoW+RsSydySk5R13XX3Y65jU4bMe3u/c3u8u51u4dE27Ld819i7E6sBjPKbcXfhCGDjea7HshWksH5AUD1Soa8wJbW1fjpCEXGPvWr9ZPfE65dTxBal2jxOrfuY6DIW+RsSyLwTdioCh+HISY5MVDCHm400y8oUQwnDTB2415Qga5NRJh3bhc/pspojQh0W2uBWc8Y1uT4nt9Vzax2nwURKmApYzEj/EfH1MF/4SrfpQiNDXSd2W/QrTJlv/vbEd7iJGB4lYNoSMyNeJ0FT1sQb/KYyKsTS5LsF5vo+i3xSFWPWltbmE9tbWv4plD0TLtpJr+VzohzjmBjQ65sTdZjOd2vCx2krooFPAzaovzX0vzxFP6rTsFbDxzJf0fEZZzx5H0EsN+kv1OEyn680XqW5DqPX7XFz4MeDQJhH6dbj2PbEQy54TlT18uVlKfE6MzzHVac/vIBe/HbFc+Nyy5QUbAMlOdtVTp2U/wpK/D66j2DBr872rML9WwuvOJdSxWWNfWtpbG1J+No6WJQf3fQpKa69Y9kIQanuQYjM1HdDfy368jOF1DMrYdmm+lq4+qHC6FZyC84bkSqSz5GmCKcR9LwBi2QeDo7iPtSlHW6euqcu1vzIQ8NIwsXBzbYkQyvrk7MJ3vV6OOkty35cq9Bz77JiI2A8Z9laMN6QJBadBgSk5uhfunVqojt1nvn4IFxd+DqtehJ43nPu3GIgb34WIkV1TWfFqezhjoeueJvdwD3x918en5I51CisBLciqXzpyz8pCLHsLNtbNV2D1h0TWx69ju+zOto7Nsjzn633KmZQXqz48SxD62ownsexjwGxOnEN9KQm3KUz52Ozk51v38H6VssKAi3CJ0AsxEcteR0EWe8mi3Ee3TG54bDKt7cibc4LNoduaEkXfSHxbUljIrnXm/FqmsOpDIEJvQUH9fAiMLHsiupiIPkREnyMiRUQPTpR9S1tG9/MrmvI7iOgiIvoMEe0loi8S0RVEdORI/ccT0Q1E9BgRPUFEtxLRacafeOFwF3/u7SuVEpKmcHThx/R82FCCiJbQRmEcU8v+NwD8I4BPATjK8JyLADw6OPbnmnJXAngtgA8DuALAs9r/fx8RvVip7Y0IiehYALcBOADgcgBfBXAegI8R0UuVUjcZto03Bt8pm7z7U2VLFl/bGABTt7xNtXMJdazm1Jn9KWwejSVMeYRgqVb9EoW+5L7PBVOxP1Yp9TkAIKK/BLDT4JwblFIPThUgomcDeA2A65VSL+sdfwDAOwC8HMB1vVMuRTPYOEkpdXdb9loAnwZwNRGdoFSEvGlzD4WN8CrKtkFOd/3ZMtxUhyG24uY7f61PRON2fogvyFznb5RTIIALn5NVnzMorwTPjpAXIzd+J/S2ENE3E9HUgOIVAAjAVYPj1wDYA+DsXl1HAjgTwM2d0LdtexzAewAcB+Bkl3YmQ5bRARjPhpd6dz0XfLtUswx96aLHx7LrudTl25YQ1ymNEoR+qX8TpSjKD1diRuP/BRo3+14iuo2IXqopczKa/u/O/kGl1F4Ad2NdvE8EcBiA2zX13NGrLwyuf7TRBDW6Y2bXcHmAOD90HNCJbkpXdKxrLbFbdnE0lWLVc2epn6tGYoj9VwDsRuOePwvAxQCeCeBPiOicQdljADyqlHpSU89DAI4mokN7ZbvjurIAsEvXICI6n4juMv0AnKlNxIeDJNN5+tCTOTk6PZdI/FBMPWYhltyFyI9fuhBxt+pLv79zKBXnhyvBl94ppa4aHiOi3wPwlwCuJKI/bF3vAHAEAJ3QA8DeXpl97StGyvfL6tq0G8BuojwTW5MCzUy8bR5WpQgrRe1Dbvc5Ynwpxqr0uVTsByaEeHOfr+UmGhysehF6ITVJkuoopb4M4N1ogut+oPfWHjSueR2H98r0X3Xlh2WjsRW8FlmkU1jwroF4Y3NTObbDNdnxbo6ld2xjwXklzKPHCMwLSa57I0Lvj8zZx+PB9vXo3rGH0bjqdQK+C42Lf1+vbHdcVxbQu/hHIQWQrBkKCvcgO67d2NS4yyUSP5VLPJcL3xUO6+o5iymHth1k0IYlklLsv6t9faR37JNtG57fL0hEhwN4LoD+PPs9aFz4p2rqPqV9NZqXpxXWeikaNR9CWKoGS90KerZ129EOUQsYQNkta1t/dVljH4JQj5HNfP0cPuKxRKues/u+NqEXy94DInoKET1Nc/yfA/gFAF9GkxSn4wNo+qgLB6ech2b+/f3dgXae/0YALySi5/Tq3gngXAD3YRDVb8WcsJsIf/7vygY2u+b5vm9b1rQ+rt4C0/l2m3l5bvnkOQhAKDhY9b6I0AuuGAXoEdFPo4moB4CnAziUiN7U/v/zSqn3tb/vBPAAEd0A4F4AjwE4Ho0Y7wTwCqXUN7p6lVL3ENHVAC4gousBfBTbGfRuwXpCHaCJ7D8dwMeJ6EoAX0MzMNgF4IwoCXXmYPB8ch5NxiCYBetYt/sWtX7oBgI2nb/LfH1oYrrwl27Vi9CHpbZ+0zQa/5UAfmRw7G3t6y0AOrH/BoA/AvD9AH4cjcA/CuAmAJcrpXSW94Vo5vPPB3BGW/6dAC7pp8oFAKXU/UT0AgCXAXg9gEPRpPB9SempcueC5fQBcXZ1+ODyxXC1yFceQXerkd85YdKucDv3xbNm5+brU7vwJ+vLbNVzEFQdHNolFn0ajMReKfVCw3JPorHijVFKHUSTE/8Kw/L3olm/H57QYsl45JhqVMslHiGEeIb+KK4u+9DBeX1CztenhLtV731N5ssrXcgt8rVZ9rKfPWO4PIwx22ES8DdbR+Q+I3p0dgCBjdHC0J/b14XPwaoX930Ycgt9jch+9gskpcs9FSG7htypcpdADhd+iYjQb8JF6Gvb8EvEfshQ9BKKYMxc+TmJ0d7Y1jyQPvZyyq0fKzgvZ2IdLoF5JSQXCokIfUNp/agv4saPBZ9n2osUFr9+k6Dol43CcI19zqV0tp16zD+1saBmCMyLBUerXoS+XsSyd0HXKzJ3CeUexaawxF3wtwrXX+fK2dTpQg5ruaQBjev5qTfpEaGPT+4+MTVi2dtQ2cNRKn2vgEsXE3PPed/YAA6xBSFWA3AJzOOICL0QA7HsdZiKOnPxH3OFD0e0YyPc0CNf3/qmvAMm3UmILieU2LrmkNfXZf5+jvl6Xxe+b72+55e+9a4IvZ7aLHsRe2ZsPIAW6W5LRhcbUOq8vQ2xZn9SzddzS+/bMff5uQp9aKs+l9BzFvlaEbGPQG1LOnLhs72triua6p5id10xI/Ftmd5oxv3cqTK2gXncrOcQLCVxTilCv2TjSYfM2ZtQoXjH+iJwX89fMhyXx2XJNlegVb+UefpShL5GxLIvnE6UaxulpiJ1hxkzAM9lvj4nJbSxg1tbRejnqa3PFMt+DBtrvrKHJhYh5+hzRK2PrbEPt6mN5ppzbTKo1/TxDZE1z8aFb1OHaRs4JtBZwjx9aUJfI2LZp0bRrKiZzPnbRNBPjWBzjG5tRH3o9p86dUxUXdbA23RdpmJut9bewyWc6Vyu7Yh9bU7uexF6c8SyF6Kx9nBletBMHvAlfwlCWvyudflGsKcK5EqyEQ5Dqz4VIvRCSuq07FcKtELTWwf2945a3JpeTaL2/cmRmS/UcjOTP7/ptVIkqekTcuMbTpS6pl6E3p4lGzU6xLIH7AQ/h9vbYUDC/UEea9/KYzmdLfotV6fKxyHWWvWxZDprZWi+TPOeHTFc+Nysei7uexF6wYQ6LXsd2onbQHPdIYWXkYiv2vgDpQhKkSyr88R2oBGzu+Xowo9NKtEsWeiXJPK1eVbFss9MTgtcG8xn+AUYn67wapK+zsH/U7vuS+reUnT+cy78Eq36VO77khPnLEnoa0Qse1NSCwxjK3mubaZtX8UYGPT+Tv0/Wepuysc1PylsGrFwna93XXJXOzXO0y9R6Dn3sTEQy76P5x9faxV7LKPjiLGQF/SZAP/BwHCNfcdwC1ybQUCwQMAIlq3v9bVflUKseldKdd8vUehrRCx7T5Yo1GPEsMR12CbXse2KTMubCYUbsacLfbrnqc8d04VfAhzc9yL0Yahho60+YtkvHJsglNAP/5K/TGm3utWdpysXI+Lc9/x4gXmprXoReqFkxLIfEtB6TWX1p7iO6zXm5/fN6okVlJc6yn2M1PPi3BxSoXe3W6KHQYQ+LKVNNfoiYj9DjOhy/YXsg96Gx0qaUvDFZ3tbv+tmTOPqEJxnsvmNqYhwcuGHuFZJVr0IfXhq6i8BceOzJubDaOfe95zrd+g7fKYAViO/+5BqzBcmu13e60/VFSowz/a6PnWL0AtLQCx7AUDeUW4Id5qJGLtsiJOLnB6EDk73o08JLvoS19PXJvRi2QuzvZw2z/3Qpe4QhWT68M3VzfEh5tYmc9e1TZ3dOevL8FyW3dm2yUYATVPkTuHiwrf5SpRu1Yci1fVrE/oaEcveBmaClQJOIs21O1KWVlwneq6R+MbXMZivHys/xHagEmvf+BLiAkpy39cs8pz6thSIZe9BSbmVS3yw59z7OXa8W7t+5nriJsLJBxer3qkNIvQCU0TshWRMiXfONfmp1qzPYZsmV0eKVs+58H0D80yva0ts970IfVl0G3iF/nGFiI4gogeISBHRuzTvH09ENxDRY0T0BBHdSkSnmdYvYr9gRjerGRwfE+GS16Gqkd9DwC1wLcR8fUgXvg8c1tXnnKcXoa+atwI4WvcGER0L4DYApwK4HMDrAOwE8DEierFJ5TJnP8aaWtiJnpfLfOJ7WKIrfkhMC96kbp/LpxK9qeuYtsB2vn793LCUZtU71R/AqhehT9s+TtOwRPQvAVwI4FcBXKEpcimAowCcpJS6uz3nWgCfBnA1EZ2g1HQPWLdlz/u5B7AMgTdlZZAoJ/Y8PadHgpsHAXBz4ccmt1UvQh8G7u2LBREdAuAaAP83gOs17x8J4EwAN3dCDwBKqccBvAfAcQBOnrtOlZY9KfTXQwkauAwy5v48fglkwpYD5pfd2UTiT7dp8/wYjzIHF34qqz7nPH1sOAtprrZx6eMAXATgBAAvG3n/RACHAbhd894d7evJAO6cukjdln2H57PG4aHh5JKag8P9Co17RL1BGQ9BGdu/3sfNb3NeCBe+Txtyr5M3IXYbRejzQER39X7OHynzLwD8GoC3KqUeHKnqmPb1Ic173bFdc+2p0rJfEksUzhy4irXtGvvx68/Xk2LVwNR9iCmsMfayD3H9yXMKcN9zFVMO7YrddyqlnmdQ7LcBPADg7RNljmhfn9S8t3dQZhQR+5Zg3rjJ5WUEtZpfnuHzENqea7LBTgxWI6oSMoDPN0f+VFNizaeHcJuHEhDvqYbIVv3s9Zm770Xo64aIzgbwowB+WCm1f6Lonvb1MM17hw/KjCJiP4W+twqCr6DaiGL/WiV6AoZBeVM73pnlyOff2dha2DafKIYLv2Sr3hYRenc4tStnX0hEh6Gx5j8K4O+J6Dvbtzp3/NPaY48CeHjwXp/umM7Fv4bM2fexEXLbOXLdg1Wg8OpQiopekz9kWmTKYWy+fry8WV1G116wVe9LjUJ/EIpluzLyVABPB3AGgPt6Pze375/d/v9cAPegceGfqqnnlPb1rrkLimVvSM4AOK7WuFIDr8HKrq2hXPY+Ahyz+xmLxLeqY8KKjCkaqaLwY1j1nN33tQo9RzIbKE8A+EnN8acD+E9oluH9LoC/UEo9TkQ3AvgJInqOUup/AgAR7UQzGLgPM5H4gIh9EqZELVaSGdd6TcV66ovi+yXKmTp3DBPxGy678y23fo4ZKSxVpx3vmHb4NojQ28GtPZxo5+j/cHiciL6j/fVvlFL99y8GcDqAjxPRlQC+BuA8NG78M+YS6gAi9sUR0sp3rcvkPC6CbdMM1yb7uvY7EXC1pmdzERgsuYvtwrepl6NVz309PTdh5dYeHVw9pjqUUvcT0QsAXAbg9QAOBfApAC9RSt1kUoeI/RBbX2u/fMDIdq4PYuh2mXoBhl3HVCa9sbdcuh9uc/Qp5qJTJtLJwdLm6bkJK7f2lES71l7bKSql7gVwlmvdIvYMKCUhTohlfVwIIeKh1tgP4TTAsE2PaxqYl9Oqt4Wr+56bqHJrzxyc+6cYSDT+HAt6IGbX90cYdLjmsred9085bZBKjG2D82zE0NSFXwpc3fci9AIXxLKPCIeRY6g2jCXBWQK6jxa66/IZR/m0xfbPP+XCDxWYl2tdvQh9eDi1xRa14D5Nh4i9jgwinTJrXmrmMwaa1RN7x7vZ6zuUHYrn5kY5fh9Kd3YokYkVmBe6HRwj/UXo+cO93wyNuPELwSStbayHl+uXwnw5mjn+O6y5YRIUx1HUprBpb/T95hNa9SL0AkfEsrdga05bmw0vxgXjiWxqAXdZe+9zS8dE16Ujtllj74trut8Q8/U+Lnzf5Xau5WOs8ee4zI6LuHJpRwiWlPXTBLHsY1HYg5R7XfxqIt+9eR12hPjIsab9QgiOzyPIMbVtqPMm62Q4T89FYLm0Q3CjTss+VA8d+Nk3tbZj7poXt65gVSVh6jGJtexu4zqW7+XIoGdaJrRVn6qOnNfiIrBc2hESrtOTsahT7NFsaUuTacNI/7uQleGOd0zHbSPXyDMPHNqFv/F+Bg8CN/f9UoWeQxuEMFQr9h1UiZBzGcVOtUNn+eeOwB9il8++jbwffORhJL7NIMDUYs7pwudi1VtdT4SeZRtiwqVPTIXM2QPhLfeFfEdK/zKokd/nN6pxYzV4dT2fM66BeSZ1hTzPaiWACD3LNghhqd6yXzJjGfGGx5NH5kdUtVhdVEohNhEfl/n6GC58k/IhrXpOO+wtUehzXz8lpRsztohl38HEnb8hxGu9Mo825iakaz9IjvxIHWSY1QLxhDaGVV+K+16EXigNsexDwGSgEJJca1B18/ZzXVCoKH/t3Pek+KXB1tIN9afLYdXb1u9zPU7r6XMLbe7r56C2dfYi9n2Gf/zKHoaUlLYMz5exNLm+wXku55q68GMRy6ovdZ4+p9DWKPK1ImJvS4ad4yav17antvknU1Zrv4fp2EzW2I9F4o+xNQgIOF+f24Wf2qpPgQj9cqjN4JA5e1NCWP2KmgeMkTDrXFmpBg5jbjRf95qJe33ue547oj53PxRrqVysHe9SWPUi9ELJiGWfiI1NayZMIxOxHStjsmFOSJQirBRBreJeZxiUF7KrMq1rMgdTiIZo6w07X+/iws9t1Ye8Vu1CLyK/TWovbG7Esh+S0OrO4XqPnUp31XkvElPCGnUffCzf2MvVclv1pojQi9DXjFj2CVjiCHJO0M3z/AdoTED08+FT5dN+AHMvRL4ANK5WPYf6Rej5UFuck4i9LwkeGJeH0vVBNjnPdE7dZz18LDd9KA+AU9rcrXOV/rjnUjBXF75PYF5Oq760ZXY5BFdEXugQsZ/DwipPIcohvQQpBxEhsNkEx6SLm0+b62nhOt4qs7b7iWyo8j7n1+S+F6HnR23r7GXOPjYRLezUxBochNjL3hfTjt1m2Z0vqy3L304UQ4lUbKveB+Nri9ALAgCx7PWknmNnKOwhcR1B204D5O7eYgcJ+nw+Fxe+/TXSWPUlzdOnFl0ReXO4xQvFRsQ+JoUF5k1vP1vWZ/FBJ9o5lt3ZoPvzBE2qw8iqN8XFqhehr4ea+jSgUjc+rdD00La9dIHZ6vptzTrfPhu9b1aPa9BfvxMP1SXapbpdb8dYcJ7vfH0sF75L+ZxBeSL05cIlW+LSMBJ7IrqYiD5ERJ8jIkVED86UP56IbiCix4joCSK6lYhOGym7g4guIqLPENFeIvoiEV1BREf61l0SJQ0gODE1SAiRSc8X1/n7kGvjTVz4HDpYEfoyrheLFVTaZZttQrDQP1wxtex/A8BpAP4GwGNTBYnoWAC3ATgVwOUAXgdgJ4CPEdGLNadcCeDtAP4KwGsAfAjAawHcSERr7XOoe55APtjYa+mnMuN117YZMNiUDbX/vFOAn2X50C51W5f+VpnAO89N3YcQLvypc+dc+KGs+iWQUngPQi1C6FOLfK2Yztkfq5T6HAAQ0V+iEdgxLgVwFICTlFJ3t+dcC+DTAK4mohOUauwxIno2GoG/Xin1sq4CInoAwDsAvBzAdS51W6Hrvfs96EiNsee4a7P2cwfMhLh87CQ7S+0Ul2DVpxb60sn9LOfub1JjZNl3Qj9H63o/E8DNnRi35z8O4D0AjgNwcu+UVwAgAFcNqroGwB4AZ3vULVgw5pkIPeAI5SWIjU60p5bdpf5Ypta0rwvfJTDP1qoXoed7rVjkFvoaCR2gdyKAwwDcrnnvjva1L8gno+mP7uwXVErtBXD3oKxt3XZwsKIDPf9LH7EOP56p0K5GfvfBph7T4LysEeyRkvBEXy5XgdAvwW3PyWWvFEX54UposT+mfX1I8153bNeg/KNKqSdHyh9NRIc61r0FEZ1PRHeNtrowShfzyaA67eY6HtcyKBN/3bbreXHm680tZfvzQg8WYv1tShT6kuEk8rUSep39Ee2rTrz3Dsp0v+vKDsvvc6h7C6XUbgC7idIkyOa48U1pqXF9CP1H1oZ0GFwl9Py9fSa9+bb4ROTHtupjue9F6NPBWeA5R87HILRlv6d9PUzz3uGDMt3vurK68rZ12zPo1VUh88u+ZNmSlukXLcSfPPZYL0cHmsOqN6pDhJ4lYsnzI7Rl/3D7qnOnd8f6bviHAXw3ER2mceXvQuPi3+dYdzK4WsBj7eLaXhuGohyjW7Fddudiydsk09m4nqcL3yYwz/Y6c+VCuO9z7WSXQoBLFvlSqMWY6wht2d+Dxs1+qua9U9rX/tz5J9s2PL9fkIgOB/DcQVnbuqOQej19rgx4Ka415lHQHR7ueGfDWPa8UN2Sz3a3m3WptdcQMQcmgxDfrHy5cuynrleEfpyShL5Ggop9uwzuRgAvJKLndMeJaCeAcwHch/XI+w+g6c8uHFR1Hpr59/d71B2WBVjDwjhz3ZTJbnc6hmlyXbF3kXtcK7NVb1R3Bve9CL2eUl32tUXjG7nxieinATyz/e/TARxKRG9q//95pdT7esUvBnA6gI8T0ZUAvoZGvHcBOKOf9EYpdQ8RXQ3gAiK6HsBHATwLTQa9W7CeUMeqbmcMe8lU69IFN3zEztQdH9qlb3ZNOwvcZG19DKuek/veV4hkfl5PiQJfM6Zz9q8E8CODY29rX28BsCX2Sqn7iegFAC4D8HoAhwL4FICXKKVu0tR9IYAHAZwP4AwAjwJ4J4BLlFqfVXGomx2hBwNbKXMd69WdZxM8t1IEtWrqWSmyDvYb28tet9xueIzjEsRUCzGm/kQcrHqna1cq9CLyeeAaJBwLI7FXSr3QplKl1L0AzjIsexDAFe1P0Lq5sZbDfgEP2lQAoM/aeFdixNu4LrszqXMsmU7I+fpQ59jUFWO3O0CEngNLEfoakf3s5wgkyqE3qbGJtF8L8gtkevq0MQdj2fNCdV4x190PBwFTZcauZyLALhvecEWEPiwl/e1N4egZjEmdYj9nAlo8BEaCNirM5tfhROh220TlW9VrWX7usXDeAS9wRxnLhW8LV6tehD4cSxT5WqlT7IE4C7MjWbKcltzZznOFnhcb/tliiVuQ5DoB6piu3z4q3jUwz8TK5yD0vsQWYRF5PtQ2Zx96nX1ZJHie56zgWOv2OaXsNfEEhPIWpOqiQkXiz83Xu0bD204ZMHpc1kg5Ty9C31CD0NdIvZZ9R2HPdUgr33Zk63Nt13NDBvopg9+15xkKjolgDoPzTNkaBHi48Eu06m0QofejNpEvdRrVFRF7G1JOiFbmYoqFbQc2ZxG7Btml3BTHtlwsq76Uefrahb42ke/gFECcAhF7ANZTgoa9o+nDxOWhm2pHiDauZgZLpp6GFHnxddcZY0rIY3ekIVz4U/X5WPU+LEHouYs8UK/Q14iI/RhcJzE94DKoiA2H/S1s2jA3X282bz9e7+TvDK16Efr4iMiHnSIsARH7jone2SjYjamQhhD4kIMEl3kyn01whriusTdddme06YzjTnfdnyHVRjExrHouG+bUKvQi8vUiYu/DxCDAViBTB7/ltPKn3PWmXZHNoMFsLbxdeRdC12vqwnex6n12uvMRlBTL7EToBUAC9ASuzGTG0/3fqvqRc+fm2bmQNpmM5tjErY+1Kc7WtbXHwlrcIQICObjvY4mxiLzAHRH7Pszm6VUhQuuC9YY5luVDdW+uW9sCdtbx3Hy9UaLGBIJtW5dpeRH68IjITyNJdYTiKT0QL2XgjM2ldGKqd5uHve563eZBe1Pl+uPa2Fa9CH16ROiFIWLZT+Eqmq7bzQZe0ucL90GDzRI8NfL7epn4HWToOekQLvypc02D8lKIiwj9PCLy5sicvbBIOAr32F72Y6T8brpsijO93n6e0C58k8C82NH0oax6EfppROSFOUTsh8z1rLr3C/uebQT2MYtVAMLc0lAd4KzwOwbnubrkY6WgNbHqba65RKHnJvKACL0rYtkLWjgK4hw5ctnbXyfJZSaxS4BjWm78g4X6yC5tCW3VuwqNCL0/IvKCDSL2rkT6nnF0t5uwUpRFuIeXnBJAk4Q6/TJzkfi2wXmx1pDPufBNcLXqTetLydKFXkQ+DBKNXwFR83YErrsv/hy9C2o1aKMirJTdoGVskKCLys+1GtEv37xJ/V1Z/Xy9qws/h1Wf030vQi8Ieqq17GnBa9h9MRXquZExh5Fzqj+z6bK8Dtv5+s3zx68R2qovxX0fWpRF5JdNbXe0Ssu+g8Ys5TUTKHBeeEVBLfSuLlf3v6vr3XxHP7P6fAYGIQTdxnL3uV6sDmbemjYvG6sdIvRuiNALIajWst8ilWs8YGrb3CTN+69Znjc3gJh6W4383scmT77u8dFawgZC5+PCn6rPpoyPVS9CHxYR+bjIrneCHREGCybiOFZGJ4TDOXUfXD0BpeTYn8Jl7b0JtrfU1oVvatWHXLaXqo4lCr2IvBADEXsgmGCPuefHhZmfdZ9znj1WFxejXlO3/1SGu3B5ANzm1F3S5Lq02carYYMIveBDyK2zS0DEvgC4DAp8BwLOXgGDqPzNJXj2Ymyz7G792nbBedPtmXbhTy8tDGfVp3Tf5xZ6EXmhBkTsx9BmynPYN37OaxBJyH2mAmIyH8GfoA2WHWtfuGMF57m2KZZVb4oIvR8i8vmQOftasRG+nK7uTA8oF++CKzFCBnyC87Ys+FBtcXDJj72Xa6MbE0Tol8/BROuia7v7IvYmRN79TiekOcSVc4pck1O4xQC67kg358I3Wb8PjIeihIrqT23VL0XoReQ3SSXwNSNiXxGu6/tTDzxMu8K5clPdx/oSPL2b3moJ3sz70+fGW1o3Vy705jcAb6EXa54XOUVe3Pg1YytqAZe0xYJru2y3t23O4cFc8J0+YE9XLgxzgXljZV3d9yL09ojIbyNWfB5E7GPBMI99H9PIeq6DBRdyLMGbmq/X1mfowncR5lieg63yIvRaROgbuIl8bX8VEfspUgq2x5PXCXIJW9quX3P8PVMX29wSPNPbOrbsziYSP2SQnCk2Vv3UeSHc96HPLV3oReT5CXzNiNgXApcgvtyEXI3gNc8+c+tD7HtvQwqr3sd9X5PQi8iXIfIyZ187jNzvucU8RYrbKfGOkeEqRke85hUIMF9v6sKPZdUvQejFmk9PCQJfM3WKfeRn0n0Hurhpe5fKsHt1d4nP/261O57hfP0wa54tPla9rziJ0DeIyJdHbX+xOsUesBf8iXnx1OLqMiiYOie7B8Hy+rZ/uukleO5feWUoqGPvm2W6W7/WtIU9W13QdpruZGeKCH05lCrwNVOv2AN81nIlJnQq3ZUiKNWcs1JhBw8x5tVid81zj5WNC9+l3JhVH9p9P4fNuSUKvYh82Sznk5hRt9h7kNsaNiFFG8eu0Q0AjOvxbMfwi+u83axBJP765jIz9Rlf17DgCLbOJU7uexF63ixJ4GtGxF73HPd73nq+09Yogz4gxIDDNsDNtI6OUF3Z2uDAcr5ed2wuMM/HqndtG8BL6EXk47F0ka/nL9kgYh8Y3/n7oTj2/58ud/38dWzm2U2j+lMuhUnZjYXITDdZv6dVL0JvRi1Cv3SRrxUReyDrLna5cRmcuAUIWp9if42Z/5tiEok/Fpzn4tafup2hrXqzoEAR+j41iHyNAl/bJxax98RG+JSiIub6p/Bpv4k3YKxb1e8gZ3n9ySVo4elfzdWFP8fcNrs+Wf3Wr1Of0IvIC0tCxD4Raxa0ZfDaZL0BUuWmJIWFb4rLsrux4Dyr9feWLnyTCH0Xiz3UVEIqoRdrPhwi8rz6ohSI2HcMnn2T4LMhY4JrLcSBc9zbzPtPr8d3bpYVPnP3m4Lmhk1O/I02kN6yNnXhz+1bvyX+HlZ9qHn6pQn9kkVeBL5uROwtCJ08x6e+Uix5HS7b2wL6wUbIqHwVOEnMFEED9Dzm4efeF6EvHxF5PbXdFRF7B6xEmrEo21jqtlnufK8dIy++DtMvvG1w3th8vanIzwXm2Vj1Ju57HaEy5HEXehF5oQZE7PuMfTciCraRhR44PW7JmHRfc9vehryWD1MufFNc5/9njwUKyBOhT4sIvDnL+svPsyN3AwQ7Yor4mPUe65qhYgBC5sqffM8gOM9kvl5ndU9H5ttZ9SbHTd/3OcdVrA9CRRf6FdSihP4grUToC4OIjiOitxLRHUT0JSL6OhHdTURvJKIjNeWPJ6IbiOgxInqCiG4lotNMryeWvQfzwW4edVfyvZ2aHkiVZMdV/MewceHrrmUa2W+z1t7k/1vHA8zT+wh9bJYm8oIbDO7czwN4NYCPAHg/gP0AXgTg1wH8GyI6RSn1DQAgomMB3AbgAIDLAXwVwHkAPkZEL1VK3TR3sTrF3vS7bmPRBo6gj8FSXPvaqPaZ/w87+ClBdRFbx00UN+oZHvOx6m3LNPX7CT1nt72IvNCHwR38QwCXKqW+2jv2biK6D8AbAbwSwLva45cCOArASUqpuwGAiK4F8GkAVxPRCUpNm5fixl84vgKfZDMdx/eCtmFC5MaC86awceGPXcuk/qC58EXoWdO56kXol4FS6q6B0Hd8oH39HgBoXfpnAri5E/r2/McBvAfAcQBOnrtevWI/9t0P1Cdwt6KncvCXQOxAPZcofZ/odX2GQL1VH8N9n0voY8/PL2FuXgQ+DirSTwCe0b4+0r6eCOAwALdryt7Rvs6KfZ1u/A5GfUCINfehk96kHABMzc8bp461/IO6dp9T55lY8WMu/OFyu/l22LvvuQl9TJYg8kJdENEhAC5BMzd/XXv4mPb1Ic0p3bFdc3XXLfYFoRsMhE7y48tKNQOE0GvyU2EaiW9znon4x7LqfcWuVKEXkRdMiH2Xieiu3n93K6V2G5x2FYBTALxBKfXZ9tgR7euTmvJ7B2VGqV7sjT2v3ZOh6/UjucRd60ntkldKNy1g3w7bLtqk/Gag3vT/zd/zj1j3OdclA5+NVS9Cnx4R+WWhlHqeTXkiehuAC9AMDC7tvbWnfT1Mc9rhgzKjVC/2WjJZzLnmzXXXNd+DfrrNq1WY6QXTOny7S5so/an5elcXvq6OoVVvYr37uO9jCb2I/CYi8Plw2QgrFkT0FgBvAvD7AF41ePvh9lXnqu+O6Vz8a4jYzzDqKs/oQnfaT77X3lBudpt2mF7Tdm29WaDeuEjPMSxr6rKfasOYC38qwY5dnfUIvYi8UDpE9GYAbwZwLYBzNUvo7kHjwj9Vc/op7etdmvfWqDcav49876xx2xXQsNxIXnzzCHk7hsvubD7a5rRA31ofXmesnJtVr6vL5D0R+nxIZD0fVpF+bCCiSwC8BcD7APycUps9a7vE7kYALySi5/TO3QngXAD3Abhz7lpi2YeGUXBarGkBH8+A6453ORk6cTYsZ8do9lBWven1gGUIfakiLwh9iOjVAH4NwBcA3ATgp4jWOptHlFKfaH+/GMDpAD5ORFcC+BqaDHq7AJwxl1AHELEXNMSOHTCx8Mfc+brDumNza+znAvU2zzcXmCk3us1yuTGr3tV975MHQITeDRF5vjB4krq18d8O4L2a928B8AkAUErdT0QvAHAZgNcDOBTApwC8xCRVLiBivw2TZWxTyW5Cr6PXXS90+fF6glSTjc1gveH7g/8buPB9XPSmee/n6tFhK9oi8iLywjxKqXMAnGNR/l4AZ7leT8R+DFNRK6sP8iL5kr6R41Pr0qewtd7ngvOm5uvn/q9z4fd/H5s6cM2D7+q+F6E3RwS+LGr7a4nY2+C12U1zvlpRFNE0rXN+p76UWfMiTxcEqMN2vt5G8E2tetv0uBtlCxV6EXlBCIeIfR9f8bHom2Il3tFm2gtwrVhu97lqx7pRk3l6/XkD690jEn+sLVMu/OE1TKz6jfcDzNOL0PsjIl82U5tf+VUcp1pfqhR72+/ohoDar+2yOm4izqVtXJMLF9Gwde/rrjP3/zGr3iQob7zd6YVeRF4QyqBKsRcauOTWn0ukY+NVMClqkzLX5hxbwXfJY28cie8g9GLNTyMivyxq+2tWK/aUSOg4pcB1PSfFxjYu3XzIJDsm1vvG9TWCqnPhDwPzXK36pQq9iLwgxKdasTdibkAQYMAgLnszfLLaOZeZCc4DxmIH7Nz82nl7w+A8U0IJfU3WvIj8sqntr1u32OvE2lHAU21Bm35HOx572o9hekqoAYDJfH13bCowb3je7Lhy5JOaWPUchZ6ryIvAC0slSm58IlIjP49ryh5PRDcQ0WNE9AQR3UpEp43Uu4OILiKizxDRXiL6IhFdQURHxvgcydD0ezmX5+VkLC9+855NPQZltMI4rGe+THNM7/jXBebZWvU+7ntuQr8afH4uSM76+lCR/nElpmV/K4Ddg2P7+/8homMB3AbgAIDLAXwVTb7fjxHRSzVpAK8E8FoAHwZwBYBntf//PiJ6sW4TgVmYBKnFYkzgh0FvIebllSKsFG3tZW+6Ta4vpuJhKtwmZWzmxRuBGy/XfwRd19aXIvTcEIGvl9r+8jHF/nNKqf88U+ZSAEcBOEkpdTcAENG1AD4N4GoiOqFL8E9EzwbwGgDXK6Ve1lVARA8AeAeAlwO4LvSHcKYAK3oOm0Q9o7nsFbYGAKZMufPt5u7dxN3UVa9Gr7Hpwu/qNbXSh8dzCL2IvCAsh6hb3BLRoe02fLr3jgRwJoCbO6EHtrbzew+A47C9UQAAvAIAAbhqUNU1APYAODtYw7U9NY2/F+KSXtn5yLsO92ubl7XZ8c5WHny6bq24j4i1/trjLvxZC33CqjcK9BOht0Lc9UJHbW78mGL/r9GI8NeJ6B+I6J1E9LTe+ycCOAzA7Zpz72hf+2J/Mpo+fW3fXqXUXgB3D8raUYAVrhPy3HPwLq7/EJn4xqrQHdeLsNmxMbf/lAt/zJugs+qHS+36vxtZ/YyFntvcvIi8UDux3Ph3AvgQgPsBfDOAHwNwAYAfIaIfaK33Y9qyD2nO747t6h07BsCjSqknR8r/ABEdqpTaN3yTiM4HcL7TJ3FZGhcoDsBVzEPsZBczh76p4HPomm3S9W69R2ZWff//JtH26x4B3kLPBRF4YYzanowoYq+U+v7BoWuJ6C8A/AcA/3v7ekT7nk6897avR/SOHTFSdlh+Q+yVUrsB7CYKmAy5AG9An5BeAIcwyA18AwLHmmBstRtE4m8fn7bkpx6qYRKdrfMM3PchhF5EXiiBA4yenaUSdc5+wG+iEeIz2v/vaV8P05Q9fFCm+11Xdqy8HQzEO9TOdbHPD4XR8riJQnZL8czEfUy6Gzf8OFvCP7GJzdDan3Pf68qN1a2jRqEXd30ZHIBa+8mBojg/XEkm9kqp/QAeBnB0e+jh9nWXpnh3rO/ifxjA0USkE/xdaFz8G1a9YM/UkrnQqXNNEunYdt3eg4CJjzg2X79WZkvY5+u3icLXXT+30HOZmxeR5w0Hca+dZGJPRIcDeAaAR9pD96Bxy5+qKX5K+3pX79gn0bT3+Zp6nzso649rJj1GQztObZnC56tvIzQ2UjBlyXdL7uZc+NvX1Vv1Ju77tXoCCv1BKC+h5yDyncCLyPOjBHHvfy9D/nAluNgT0T8deettaGIEbgS2ltjdCOCFRPSc3vk7AZwL4D6sR95/AE0/e+Gg3vPQzNW/37iR0jdsYTMgiDl4mN35zra+UYvZ7NhcPcMynQvfxKqfct+bztP7Cr0PuTs0EXh+lCDutRMjQO9NRHQKgD8D8AUAO9FE478IwH8H8M5e2YsBnA7g40R0JYCvoRHvXQDO6BLqAIBS6h4iuhrABUR0PYCPYjuD3i0IkVDHwZoPnv9+KKi9/6ew1Dl7A2yC8oCJJXojwXmu8/VTrI36R9z3pQg9B5EXeLAEQa/taYoh9jcD+G4APwvgnwI4iMZKfyOAt7fr4gEASqn7iegFAC4D8HoAhwL4FICXaFLlAo1V/yCaZXRnAHgUzeDhEutUuVY+3XxJa7iQZKBhkXRn81w9tl/oufn6oQtf55rXrasflgHGxTOG0JdszYvI52cJ4l47wcVeKfXHAP7Yovy9AM4yLHsQTU78K9xaF4bRfPMTSqEUNedZpo41bctk1HqvXSn2pvchtDt/9DqT17C7ilEUvqH7npvQi8jXSQ3izjnbXQwq3+I2zWVSbX8LxLHAQw5OjK7neN64O3/cPT9Vl4/QmSTV8RX6mG57Efm6qEHca6dusdfRF8vIz/+4h8Dg3ACDheH1S5mmmLbK7c5ZzdbXuOXHXPhzgXl9q74v6rGFvkRrXkQ+HSLuMmcvBCaXgOYU7m57227HOxfmvoguXVVI1/30dfRBed17ut+3jmUUehH55SLiLojYB9htbsmYinV/L/vN94AV7GMV5sqbBLht1DmRFGdF9qJvtNwOSmvND9tbm9CLyMdFBH6a3KtLUiNiHwit8LtsoqMrE2l+PxQmWfA6bAXfVQ6mLjNXZzdfb+LCX7+m2rDqdcl0tK+eQl+KyIvAx0PEXZhCxB4oavImxL73pu8ZDUQc2rNSZNUtuQp3Crd936o3Kdf93n/VlR0SWuhF5MtHxN2PChyza4jYawixq5vd9eLtVe+yTNC8br/zbTwCk+2YfG8u4t6N4XK7Kat+NoEObb7fEcNtn1LoReTDIeIu+CBib0gnjqYimXq5WmpCrdc3vU0mrnfXc5UmkG6zjqlEOoNyI+77kEIvIl8HIvDxkDl7YZ3afD0tKYMPTS38uWI+8/TN+Wp0vn6jbC9JTt+q37zuxLa2iYReRL4cRNzTIUl1asWnjwogjCHm4l1d87ZWepTEPYapcv3+TO457revP1wvv3586L7Xra0Hlif0IvJuiLgLqRCxd8Q22M3/emmuk5MQFr6JuLmkw131ztJZ9QAmhX6tPgehF5FfDiLwPKjtya1T7Av5rrmK+Vxk/Vw8weRAJvI3JMSfpplXn6YLzhsTfp0Lf86q19czvsSuVKEXgbdDxF3gQJ1ib0IGq5m7pZ5qEx0TKQlpwXfJdPrz9Zt1ta8WVr2p0Idy24vI80EEnj8SoFcL2qir5K1wwnRQwH3wMIXJagazQYEfY+vjV9CL++hSO9K79ENY8yLy+RFxF7hTr9hHojSB5TxwMIugN6tnKk2u9hyNC387Ne5gXb3m1qwNEiIJvYh8PkTcy6e2v2DVYm/Z/0Pbqxcm7nOsmPXvxmJuXG48Ir+/5G792LpVPxT6KeveRui5WPMi8npE4IWSqVrsjUnY95XmGZii2xhnZbisbrQe43I2YrmdTGdsADDrvs8g9LFEXgR+ExH3ZTPcj2LpiNgPMVmrnnBjmvUo+jzr+W3O6W9vu37cb8tb069liK9v34U/DMzbSIs7NlevEXoft72IfBpE4IWlImI/0ddZJ6mZETK1omiWu8u6/+Fxn7aNbW+rvS7M19SvXcOinGt2rKELv3s1seq3yhoKfU5rXkS+QcS9XiQaX4jD0EKPtNFN6MGEiYA75wOAvej358/nMN3oZrjkTm39fz0wTyUWehH5OIjACzUiYp+AJW+KE2LnOgWyrsdGsro0udtr6dfn69fqHYi11qqPLPQi8mERcRd01PZUiNgD7nPwJk9LAPe6S5kUgX7BvQiRy8/Rz4inABzAatKqR6+8idCntuZrFXgRd0HYRMReh4uIFd6/6IQ7Vca8tWs6lPe99ToX/nBd/VRQ3lDoc1vzNYq8CLxgi8zZC8EwsnwjzokPWQ3jBjyIOTXRLNezYwX7kLyNNfW0veHNwfb3AzNz9XNCLyIfBxF3QbBDxL5jTvyYrH/nsA4/lcXv0p3PJ87Znq8fHm9eFQ5gtSn0BnP0NkIfSuRF4AXBDbHsK4As5ug3lt9FeD7mdqnzqtsxHoHDoALwc9N3aXLnBgB9Fz7QjOs6oe+Ef2jVb19jU+hTWPM1iLyIuyCEo0qxT4GryObANmlODmJJWz/bXX+53cFO5KFwgPTz9LZCLyI/jYi7kJLlfpP01Cv2BYmx0GCzxn6+rv5+9Nt07nudyG9b+XZCLyI/jgi8IKShXrHX0R8AzA0Geu+HsOJ9LOYuWC6Y639sSSATvfFx7Q/n67VR+K3QH+hZ964WvY/QL1HgRdwFLrhm2SwVEfsYRHB128zrz5VNOcWwAq3lxQ/59epE30RQh9n0tpfTbUbhH8BqVOg7DmoEf/16IvKAiLvAFwnQqwnurnwmQXKAXQT+lrCPfJdWajtVrvLcEW/rmliPxB8G562XVe28vNra9Ea3fr4TfABai14n9CLyIvCCwJG6xZ4bOZLYBM6tv3LQq078U9CN71RP6A+0En2wHRysufBHlteFEvolCLyIu1AissWtMI6JECbwFpi64WPP4Ye+3gpuCXVM6Sz8zvI/iG33fSfua+vqDefnaxN5EXdBKA8R+6FA6QTLIb99bYTOqNe55UMxjLg/SGpL7Lv/H9BE3IcUeRF4QeBDud9GN0TsKyNGmtuYGfW25+Lt0SXTUdhOltPf6EaXLW/MZV+DyIu4C8KyELGfYkzEYopbBF0wjdrXzbdz2F2vo4uen7L6+8F5G+/RdpmDrTXf1dkl0TlA40K/ZJEXcRdqQ6LxayTx3LZVnf31/FPTCRlWFoTYy96HLoq+H4k/XrY3X0+N0O8fLq8jrEXguwh9KQIv4i4IdSFinwilCGiXo4UU5uEAIJWlXVKswlB+u4C8fTi4lfMewNp8/cGtwcEyRF7EXRDWkaQ6NTDXLwe2kmNudBOTmNvYpmAtJS5tr6/v3PTDdLjAumVvIvScRV4EXhCEjjrFXoeDwMdynZsMBELPpdtthmNVdRaGQXndMdUJfWvZN8e3xb1v1Y/BVeBF3AXBHJmzF5wYE/6pAUFq634tZW4BngUXhsF5zRx936rHViDegXZIoEuco+sIuIm8iLsgCKbUK/aW/baLOJYsqGPL6VyW2fXz4g9T5W79vyvn0lbo96vvjnfvdVnzuvz3/aQ5wHieey4iL+IuCOEQy15YJ3IAnMlUgI/bPOeAo9sEx5b+2vr+Zje6YybVby+tw1oinf294YEu8j63yIu4C4IQChH7woiyvC9wOtypTXBSsTVPT9sDhS5rXpcpb2ppXQ6hF3EXhHSIZV8TU6lyfZ8Dq4A3XtH6PtfOLvLUi8DHdkBef+vaLoHO2Jc9ldCLuAuCkIq6xd4DjsFuMdthktnPZce7kOgu31n0nSXfn68H0lrwIu6CwAex7IXiMBH5VeTBSVZPxERwXn9dfZc1byslbkShF2EXBIETIvZRctG7nBMu2t9uzfx8AOJcBH4u1/1Yjvz+fP1BjRt/OF8fAhF3QSiLDBnGsyJiXwhcpgqGxNzxbowuEl/Havi6Nle/vb7eV+xF3AVBKAkR+wG6uelueVzqzWZ8BT7H5jgxMNntDthOprMWmIdudztsW/YO7nsRd0FYFjJnXyMBXfl+kexhl8CFYHKnvUDt6CfU0a2xN60D2J6/315y1yy129rCdiYSv0PEXRCEJSFiP4WJmDF1r48RKn2v6/a2uux5vqwGv3fr6bd/Oou+y4m/2gjOE3EXhLoQy74GPP/GXOfPxxhrb8r59k7kQzLcw75v3R/EqhH9NvL+gCZFrgi8INRL6CBd7uzI3QCBL2Gi/eMMKoZf0/58/YGeuHcW/XArW0EQhJqo07LX0dcAR3EKYfFPLYWLOX8eOiGOa178OXSR+H2LvgvM24/V1s9wyd1BWolVLwiVU9vAv1rLnhL/ndWKoBSF30hHDf8fpv4xoTYR8HgiP8+KsJU8Zz9ti7zpXvWCIAhLRCx7H0yFdSoHfyRyxRWEdtl3y+7G399+7Xa1O9AKfT9b3gHajsIXq14QBLHsBT2B16x7r6F33Ffe5/yUmfRMlt3pNrhd9Vz4+2iFfTi4JfRi1QuCUCt1W/ZGfmHDukaD2abOGTlcWLR/SEzX1vf/LBvJdLaW2B3ccuFvJ9jJvFuPIAgsqK0vqFvsh5hY7wvJStdnOLhwccX7BvjZJNDRlVtfgqewj7az5e1rhwa1ue0EQRA6ROxjwsBCDxewF+ezdNnzzMvrI/H7/+/m7Q9QE30vIi8IwpDapvVE7EdIlVfeRES5u/Vd2xfjq7bqranf39vwpnPZSXCeIAg1ImIvZMElm55pwF4XfX8QCvvpoP2FBEFYPGLZC6xZyk52IdDvZb/t6pe0uIIgCA0i9oIXLsvtFOIPWFaSKU8QhAkOps6slhlSMdKdMYWosr+uIAhCwagIAUupdCBG232QpDqCIAiCsHCqcuMrpYiI7lJKPS93Wzgj92gauT/zyD2aR+7RNER0V4x6uVncqRDLXhAEQRAWjoi9IAiCICycGsV+d+4GFIDco2nk/swj92geuUfTyP0JSFXR+IIgCIJQIzVa9oIgCIJQFSL2giAIgrBwqhB7ItpBRBcR0WeIaC8RfZGIriCiI3O3LQZEdBwRvZWI7iCiLxHR14nobiJ6o+4zE9HxRHQDET1GRE8Q0a1EdNpI3Yu8l0R0BBE9QESKiN6leb/Ke0RE30pEv0VE97ef5UtE9GdE9EODcrXen51E9AYiuqf9nj1KRLcR0TlERIOyi71HRHQxEX2IiD7XfocenCkf7V7Y1F0VSqnF/wD4j2jSpl8P4DwAbwewH8B/BbAjd/sifN7LAHwdwPsBvAbAqwB8oL0H/xPAU3tljwXwZQCPALgYwC8C+B/t/XlxLfcSwG+190wBeNfgvSrvEYBnAngAwJfaZ+rnAVwE4PcBvFzuD3YAuBXAQQC/B+B8ABcC+O/t5/s/a7lHbVu/DOATAP4RwIMTZaPdC9u6a/rJ3oDoHxB4Npo9U/5ocPw17QP0U7nbGOEzPw/A0zTHf739zBf0jn2w7aye2zu2E8DnAXwWbRDnku8lgH8J4ACAX4Je7Ku8R62QfRHAt82Uq/X+nNq2+crB8UMBfA7AV2q5RwD+197vf4lpsY92L2zqru0newOif8BtgfuhwfHDATwB4KO525jwXnxvey/e3f7/SAB7Afw/mrL/R1v2+Uu+lwAOAfDnAP4LgO/AQOxrvUcAfrj9HK9p//9NAI7QlKvy/rRt/lftZ3md5r07ATxU4z2aEvuY98K27tp+apizPxnNyPDO/kGl1F4Ad7fv18Iz2tdH2tcTARwG4HZN2Tva1/79WeK9vAjACQAuGHm/1nv0Y+3rF4joRgDfAPAEEf01EZ3dK1fr/QGaz/AVAL9KRD9JRN/ezhdfCuAkAG9py9V8j4bEvBe2dVdFDWJ/DIBHlVJPat57CMDRRHRo4jYlh4gOAXAJGnf1de3hY9rXhzSndMd29Y4t6l4S0b8A8GsA3qqUenCkWK336Pj29RoA3wrgZwG8EsA+AO8jop9r36/1/kAp9RiAM9HMUX8Qjav4MwBeDeBlSqlr2qLV3iMNMe+Fbd1VUcNGOEcA0D0oQOPy6crsS9OcbFwF4BQAb1BKfbY9dkT7qrs/ewdlut+XdC9/G00A2tsnytR6j/5J+/p1AC9SSu0DACL6MJr56N8govei3vvT8Tgat/VHANyGZmD0agDXEdFZSqlPQO5Rn5j3wrbuqqjBst+DxrWj4/BemcVCRG9D46berZS6tPdW97l190d3bxZzL1tX9I8CeJVSav9E0Vrv0Tfa1z/ohB7YsmY/AuCfobH+a70/IKLvRSPwn1BKvU4p9WGl1O8C+EEAfw/gmtajVu090hDzXtjWXRU1iP3DaFw9ugdgFxoXUYkjZCOI6C0A3oRmudSrBm8/3L7qXFvdsb5LbBH3sm3/2wF8FMDfE9F3EtF3ollqBgBPa48dhUrvEYC/bV//XvPe37Wv34J67w/QxHscDuBD/YNKqT0A/gTN8/QdqPseDYl5L2zrrooaxP6TaD7n8/sHiehwAM8FEGXPZA4Q0ZsBvBnAtQDOVW1Yao970Li8TtWcfkr72r8/S7mXTwXwdABnALiv93Nz+/7Z7f/PRb33qAuIeobmve7YP6De+wNsC8ghmvee0nut+R4NiXkvbOuui9zLAWL/oFluNrVO8+zcbYz0uS9pP9+1mEjCgcYqOQjgOb1j3brUv8b6mtdF3Es0y8j+tebnF9rP8aft/4+r+B59C4CvobHwd/aOfxuaeeq/rvkZatt8ZdvmXx0cPwqNlfmPAJ5S2z3C/Dr7aPfCpu7afrI3IMmHBN6J7QxM5wK4Ak1GpZvBMBtVgM/76vbzfh7Az6CxVPs//1uv7He2ndIjAF6P7YxTBwD8q5ruJTTr7Gu+R2gywqm28/6l9rN/Hk0w1I/K/cEz0WRrWwF4H5ppsjegCfpUAH6xlnsE4KfRTBe+qf2Mj/X+/9ODstHuhW3dNf1kb0CSD9m42X4ZTQalJ9HM27wdPYtlST8A/q/2yzH2c/Og/LMA/DGaNcN7APx/GEktueR7iRGxr/keAfgJNGuUn0ATmf9xAC+Q+7P1WY4F8F40HpD9aLwh/y+An6jpHrXCa9TfxL4XNnXX9CP72QuCIAjCwqkhQE8QBEEQqkbEXhAEQRAWjoi9IAiCICwcEXtBEARBWDgi9oIgCIKwcETsBUEQBGHhiNgLgiAIwsIRsRcEQRCEhSNiLwiCIAgLR8ReEARBEBbO/w+ySTW3/w3+twAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.imshow(eps, interpolation='quadric', origin='lower', aspect='auto', cmap='plasma', extent=[0,1000,50,3000])\n", + "plt.colorbar()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6e709abb", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": false, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": false, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/paper/paper.md b/paper/paper.md new file mode 100644 index 0000000..ba07ba7 --- /dev/null +++ b/paper/paper.md @@ -0,0 +1,83 @@ +--- +title: 'ThermoFun: A C++/Python library for computing standard thermodynamic properties of substances and reactions across wide ranges of temperatures and pressures' +tags: + - C++ + - Python + - thermodynamics + - standard state thermodynamic properties + - equations of state + - materials +authors: + - name: George Dan Miron^[corresponding author] + affiliation: 1 + orcid: 0000-0002-6923-7300 + - name: Allan M. M. Leal + affiliation: 2 + - name: S.V. Dmytrieva + affiliation: 3 + - name: Dmitrii A. Kulik + affiliation: 1 +affiliations: + - index: 1 + name: Laboratory for Waste Management LES, Paul Scherrer Institut, 5232 Villigen, Switzerland + - index: 2 + name: Geothermal Energy and Geofluids Group, Institute of Geophysics, ETH Zurich, Switzerland + - index: 3 + name: Cosylab Switzerland GmbH, Badenerstrasse 13, CH–5200 Brugg, Switzerland +date: "26 June 2022" +bibliography: paper.bib +--- + +# Summary + +[ThermoFun](https://thermohub.org/thermofun) is an open source library that facilitates the calculation and retrieval of standard thermodynamic properties of chemical substances, compounds, and reactions among them at a range of temperatures and pressures. The library is developed in C++ for performance, but it also has a Python API for broader and more convenient usage. It employs a variety of thermodynamic models and equations of state for solid, aqueous, surface, gaseous, and molten substances, and their reactions with input properties and parameters from various thermodynamic datasets that are collected and curated in the in [ThermoHub](https://thermohub.org/thermohub) database. The library can be used as a standalone code for searching and tabulating thermodynamic properties or linked to other modeling codes that require standard thermodynamic data as input. It offers the flexibility to use different thermodynamic datasets, including custom datasets and datasets retrieved from the online ThermoHub database, and to choose the most suitable models for different classes of substances necessary in various modeling applications. It can serve as a common source of thermodynamic models for standard properties of substances and reactions that can be easily integrated and combined, significantly improving the modeling capabilities for diverse (geo)chemical systems and over wide ranges of conditions. + +# Statement of need + +Thermodynamic modeling is a powerful tool that allows for the investigation of equilibrium speciation in chemical systems under conditions and time scales that cannot be reached in laboratory settings. This type of calculation requires the standard thermodynamic properties of all involved substances (species) or reactions at a specific temperature (T) and pressure (P) as input. Equations of state are used to compute these properties, known as standard thermodynamic models. However, existing thermodynamic modeling codes and standalone codes may not be directly compatible, making it difficult to retrieve properties calculated with different methods and use them in different codes, or to compare and tabulate thermodynamic data from different sources. The ThermoFun library simplifies this process by facilitating the computation of standard thermodynamic properties of substances and reactions (see \autoref{fig:properties}), and providing fast and simple access to many thermodynamic datasets, methods, and equations of state. This allows for more efficient use of these tools in modeling codes, or for the optimization and fitting of model parameters, evaluation of the models' performance, range of applicability, and accuracy. Additionally, ThermoFun is extendable with new models and has remote access to a curated collection of thermodynamic datasets on ThermoHub, making it a useful tool for various studies on hydrothermal processes, cementitious materials, nuclear engineering, waste incineration, radioactive and chemical management and disposal, and other (geo)chemical environments. + +![Example of standard thermodynamic properties of substances and reactions calculated using ThermoFun as a function of temperature along the saturated water vapor pressure curve (input parameters from `aq17` thermodynamic dataset [@Miron2016;@Miron2017]).\label{fig:properties}](figure1.png) + +The ThermoFun library can be linked to any C++ or Python geochemical equilibrium speciation, parameter optimization, or reactive mass-transport code as a source of standard thermodynamic properties of substances and/or reactions. As a standalone code, ThermoFun can be used simply for searching and tabulating thermodynamic properties of substances and reactions. For example, it has been used to calculate the standard properties of reactants and reactions at elevated temperatures when evaluating the performance of isocoulombic reactions, in order to extrapolate the properties of aqueous complexation reactions involving lanthanides and actinides to elevated temperatures [@Miron2020]. The library was also applied to evaluate the effect of using different equations of state for water-solvent on the calculated properties of dissolved aqueous species [@Miron2019]. +ThermoFun has already been adopted as a source of thermodynamic data in the [GEMS](https://gems.web.psi.ch/) equilibrium speciation codes [@Kulik2013] and the [Reaktoro](https://reaktoro.org) chemical modeling framework [@Leal:2015]. + +# Benefits of using ThermoFun + +* It simplifies the calculation of standard thermodynamic properties of substances and reactions at a range of temperatures and pressures. +* It includes a variety of equations of state and other thermodynamic models that can be used to calculate standard properties under different conditions, eliminating the need for the user to implement and test these models separately in their own code or spreadsheets. +* It uses input properties and parameters from various thermodynamic datasets that are consistently kept in the online ThermoHub database, reducing the need to collect all necessary thermodynamic data from literature or to write complex scripts to import the data from different formats. +* It uses automatic differentiation to provide temperature and pressure derivatives of the calculated properties. `autodiff` C++ library [@Leal:2018] will be used in ThermoFun for even more capable autodiff capabilities, as it has been used in both Reaktoro [@Leal:2015] and TEQP [@Bell:Deiters:Leal:2022]. +* The thermodynamic models in ThermoFun are implemented and tested based on their original publications, and the thermodynamic data in ThermoHub is curated and documented by experts, saving time and effort and enabling more efficient use of geochemical code tools for scientific problems. +* It serves as a common source of thermodynamic models for standard properties of substances and reactions that can be easily integrated and combined, significantly improving modeling capabilities for a wide range of (geo)chemical systems and conditions. + +Jupyter notebooks with examples on how to use `ThermoFun` can be found in the [thermofun-jupyter](https://github.com/thermohub/thermofun-jupyter) repository. More complex Python or C++ routines that use `ThermoFun` can be coded. For example, `ThermoFun` can be coupled to a phase diagram plotter, a chemical equilibrium solver, or a parameter optimization routine for fitting the standard properties and model parameters of substances and reactions and their temperature and pressure dependence. + +# Codes with similar functionalities + +ThermoFun is an open source library with several [benefits](#benefits-of-using-thermofun) that serves as a common source of ever-expanding thermodynamic models for standard properties of substances and reactions. If ThermoFun does not meet your needs, there are other alternatives offering related functionality, potentially using different methods, and sometimes embedded in larger applications. Below the (not exhaustive) list of codes that share some functionality with ThermoFun: + +| Name | Language | Reference | Source | +|-------|-----------|------------|-------| +| Cantera | C++, Python, Matlab | [@cantera] | [Open](https://github.com/Cantera/cantera) | +| CHNOSZ | R, Python | [@Dick2019] | [Open](https://chnosz.net/) | +| coolprop | C++ | [@Bell2014] | [Open](https://github.com/CoolProp/CoolProp)| +| DEWPython | Python | [@Chan2021] | [Open](https://github.com/chandr3w/DEWPython) | +| GEM-Selektor | C++ | [@Kulik2013] | [Open](https://gems.web.psi.ch/GEMS3) | +| GeoTPD | R-Shiny | [@Bastrakov2019] | [Closed](https://geoscienceaustralia.shinyapps.io/GeoTPD/) | +| PyGCC | Python | [@AWOLAYO2022] | [Open](https://bitbucket.org/Tutolo-RTG/pygcc/src/master/) | +| pyromat | Python | [@Martin2022] | [Open](https://github.com/chmarti1/PYroMat)| +| Reaktoro | C++, Python | [@Leal2017] | [Open](https://github.com/reaktoro) | +| REFPPROP | FORTRAN | [@Huber2022] | [Closed](https://www.nist.gov/srd/refprop) | +| SteamTables | C++, Web | [@megawatsoft] | [Closed](https://www.steamtablesonline.com/steam97web.aspx) | +| SUPCRT92 | Fortran | [@JOHNSON1992] | [Open](https://github.com/justinnhli/supcrt92) | +| SUPCRTBL | Fortran | [@ZIMMER2016] | [Closed](https://models.earth.indiana.edu/supcrtbl.php) | +| TEQP | C++, Python | [@Bell:Deiters:Leal:2022] | [Open](https://github.com/usnistgov/teqp) | +| Thermo | Python | [@bell] | [Open](https://github.com/CalebBell/thermo)| +| ThermoEngine | C++, Python | [@thermoengine] | [Open](https://gitlab.com/ENKI-portal/ThermoEngine) | + + +# Acknowledgements + +Support to G. D. Miron by the German Federal Ministry for Education and Research (BMBF), ThermAc project (02NUK039A) is gratefully acknowledged. D. A. Kulik and G. D. Miron are grateful for the financial support provided by NAGRA. A.M.M. Leal is grateful for the financial support of the Swiss National Science Foundation (SNSF) through the Ambizione grant PZ00P2-179967. + +# References diff --git a/paper/suppl.md b/paper/suppl.md new file mode 100644 index 0000000..371f194 --- /dev/null +++ b/paper/suppl.md @@ -0,0 +1,92 @@ +--- +title: 'ThermoFun: A C++/Python library for computing standard thermodynamic properties of substances and reactions across wide ranges of temperatures and pressures' +tags: + - C++ + - Python + - thermodynamics + - standard state thermodynamic properties + - equations of state + - materials +authors: + - name: George Dan Miron^[corresponding author] + affiliation: 1 + orcid: 0000-0002-6923-7300 + - name: Allan M. M. Leal + affiliation: 2 + - name: S.V. Dmytrieva + affiliation: 3 + - name: Dmitrii A. Kulik + affiliation: 1 +affiliations: + - index: 1 + name: Laboratory for Waste Management LES, Paul Scherrer Institut, 5232 Villigen, Switzerland + - index: 2 + name: Geothermal Energy and Geofluids Group, Institute of Geophysics, ETH Zurich, Switzerland + - index: 3 + name: Cosylab Switzerland GmbH, Badenerstrasse 13, CH–5200 Brugg, Switzerland +date: "26 June 2022" +bibliography: paper.bib +--- + +The stability of a substance depends on its standard Gibbs energy function G$^{\circ}{T}$ (which represents the formation of the substance from chemical elements in their standard states), or on the equilibrium constant K$^{\circ}{T}$ of the reaction that forms it from other substances (master species reactants). In thermodynamic databases, standard Gibbs energy and equilibrium constant values are often only available at reference temperature 298.15 K (25 $^{\circ}$C). Other standard properties such as absolute entropy S$^{\circ}{298}$, enthalpy H$^{\circ}{298}$, heat capacity C${p,298}^{\circ}$, and the temperature-dependent function C${p,T}^{\circ}$ = f(T) are needed to evaluate G$^{\circ}{T}$ or K$^{\circ}{T}$. The standard molar volume V$^{\circ}{298}$ is the minimum data required to account for the effect of pressure on G$^{\circ}{T}$. In chemical equilibrium problems where other conditions are imposed (e.g., internal energy and volume instead of temperature and pressure), additional standard thermodynamic properties may be required (e.g., standard internal energies and standard volumes of the species). Therefore, modeling chemically reactive multiphase systems is only possible if standard thermodynamic properties of species or reactions can be computed [@Leal2017]. +These properties are computed using equations of state that relate standard thermodynamic properties to temperature and pressure. Different models have been developed to evaluate standard thermodynamic properties of substances or reactions over a wide range of temperature and pressure conditions. These models may have complex mathematical formulations, a large number of input parameters, and may require iterative numerical procedures, or a combination of several methods to calculate the properties of a particular type of substance.The quality of thermodynamic modeling results is strongly influenced by the predictive capability of the model and the availability, accuracy, precision, and consistency of the input parameters in the thermodynamic datasets. +ThermoFun facilitates calculation of standard thermodynamic properties of substances and reactions at a range of temperatures and pressures using a variety of equations of state and other thermodynamic models with input properties and parameters from various thermodynamic datasets that are consistently kept in the online ThermoHub database + +# Features + +ThermoFun is initialized with a thermodynamic dataset, which is a database consisting of collections of records for chemical elements, substances (species), and optionally reactions between substances, needed to calculate equilibria in chemical systems. These records contain various data such as symbol, atomic mass, name, chemical formula, standard thermodynamic properties, equation of state (EoS) parameters, etc. for species; and stoichiometry coefficients of involved species, standard thermodynamic effects, and optionally model parameters coefficients, etc. for reactions. Dedicated research and development efforts are devoted to compiling and critically selecting these properties and parameters from literature or fitting them to experimental data. Thermodynamic datasets used in ThermoFun can be read from local files or retrieved via remote access to the ThermoHub online database (and saved locally). The ThermoHub database contains a collection of widely used thermodynamic of [thermodynamic datasets](https://thermohub.org/thermohub/thermohub/#thermodatasets) that are used in various modeling applications. + +The online ThermoHub database is actively being extended with existing and newly updated and developed datasets prepared by thermodynamic database experts, which are automatically made available for calculations with ThermoFun. In general, calculations must be done using one internally consistent thermodynamic dataset, but it is also possible to use custom datasets, combine them, and append additional data from user-maintained files. Using the [ThermoHubClient](https://thermohub.org/thermohub/thermohubclient/) utility code, thermodynamic datasets can be retrieved into a simplified ThermoFun format and saved to text files that can be edited and extended. + +The ThermoFun `ThermoEngine` class contains functions that return the standard state thermodynamic properties of a substance or a reaction at a given temperature and pressure. For water solvent, additional properties such as water density and dielectric constant can also be retrieved. There is also the option for low-level fine-grained access up to individual methods. + +The `ThermoBatch` class can be used to run batch calculations for a list of substances, reactions, and temperature and pressure ranges. `ThermoBatch` can also be used to output the results in tabulated comma-separated values (CSV) or other data formats. + +Reaction properties can be calculated for any `reaction` record present in the thermodynamic dataset, with the extrapolation to the given temperature and pressure done using the model code and its input parameters available in the record. Alternatively, the user can provide strings of reaction equations written using symbols of substances available in the thermodynamic dataset (e.g., Calcite $\leftrightharpoons$ Ca$^{2+}$ + CO$_{3}^{2-}$). In this case, the standard properties of reactions are calculated from the properties of reactants, each of which is first computed for the T, P of interest using the models and parameters defined in their respective `substance` records. Another option is to set a reaction with known properties to define the properties of a given substance. In this case, the standard properties of the reaction-defined substance at T, P are retrieved from the standard properties of the reaction calculated at T, P, along with the standard properties of the other reactants (substances) that are involved in the reaction. Thus, one thermodynamic dataset can contain a combination of substances, reaction-dependent substances, and reactions, whose consistent standard properties at T, P of interest are computed recursively. + +ThermoFun takes advantage of automatic differentiation for efficient and convenient calculation of derivatives. This feature allows ThermoFun to produce not only the standard thermodynamic properties of species and reactions, but also their temperature and pressure derivatives. This is necessary, for example, when chemical equilibrium problems where temperature and/or pressure are unknown, and Newton method is used to calculate these variables together with the amounts of species in equilibrium, as is done in Reaktoro [@Leal:2015]. Without temperature and pressure derivatives of standard Gibbs energies, the algorithm would not be fast and robust for these specific calculations. We plan to use the `autodiff` C++ library [@Leal:2018] in ThermoFun for even more capable autodiff capabilities, as it has been used in both Reaktoro [@Leal:2015] and TEQP [@Bell:Deiters:Leal:2022]. + +# Basic examples + +Loading the `aq17` thermodynamic dataset [@Miron2016;@Miron2017] and calculating standard properties of a substance (calcium aqueous ion $Ca^{2+}$). Output values are rounded for two decimal places. + +```python + import thermofun as fun + database = fun.Database('aq17-thermofun.json') + engine = fun.ThermoEngine(database) + # T(K) P(Pa) symbol + Ca_ion = engine.thermoPropertiesSubstance(473, 2000e5, 'Ca+2') + print(f'G0 {Ca_ion.gibbs_energy.val} J/mol') +``` + + `G0 -545301.29 J/mol` + +Calculating the properties of a reaction given as a reaction equation (calcite dissolution): + +```python + # T(K) P(Pa) reaction equation + R = engine.thermoPropertiesReaction(348.15, 1e5, 'Calcite = Ca+2 + CO3-2') + print(f'drS0 of (Cal = Ca+2 + CO3-2) is {R.reaction_entropy.val}') + print(f'drG0 of (Cal = Ca+2 + CO3-2) is {R.reaction_gibbs_energy.val}') + print(f'logK0 of (Cal = Ca+2 + CO3-2) is {R.log_equilibrium_constant.val}') +``` + +``` +drS0 of (Cal = Ca+2 + CO3-2) is -259.12 +drG0 of (Cal = Ca+2 + CO3-2) is 59914.09 +logK0 of (Cal = Ca+2 + CO3-2) is -8.99 +``` + +Using the batch class to do sequential calculations and output the results to a CSV file: + +```python + batch = fun.ThermoBatch(database) + batch.setPropertiesUnits(['temperature', 'pressure'],['degC','bar']) + batch.setPressureIncrement(0,0,0) + batch.setTemperatureIncrement(0,300, 5) + substances = ['Na+', 'Mg+2', 'Ca+2', 'SiO2@'] + properties = ['heat_capacity_cp','entropy', 'volume'] + batch.thermoPropertiesSubstance(substances, properties).toCSV('results.csv') +``` + +# References