You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
thanks for taking your time digging through my requests:
Another important points (at least for clinicians, I will get to some more biology-focused features later) would be the implementation of multivariate CoxPH models that take into account multiple variables that might affect your time-to-event endpoint.
One of those (that is though limited in terms of the model fitting accuracy, and thus should not be employed with more than 5 variables at a time) is described in the SurvivalAnalysis (analyse_multivariate function, see https://cran.r-project.org/web/packages/survivalAnalysis/vignettes/multivariate.html) package in R or again in the survminer package in R (here its a coxph function if I recall correctly).
To fit more parameters into a multivariate model (which is rarely done), one usually employs regularized CoxPH models (for example LASSO regularized models, which is implmented in the glmnet package in R, see https://glmnet.stanford.edu/articles/glmnet.html). This is not a must-have - but given that the utility of ehrapy is particularly in the dissection of big heterogeneous datasets regularized models might be an idea worthwhile considering.
The text was updated successfully, but these errors were encountered:
lifeline's CoxPHFitter, which ep.tl.cox_ph uses, does support multivariate CoxPH models already if I understood the request correctly; also, CoxPHFitterdoes allow for regularization, for example lasso, via the penalizer argument and the l1_ratio.
However, p.tl.cox_ph right now does not pass these arguments through; Extending the arguments passed to CoxPH here would make a lot of sense, and address this issue.
Description of feature
Hi all,
thanks for taking your time digging through my requests:
Another important points (at least for clinicians, I will get to some more biology-focused features later) would be the implementation of multivariate CoxPH models that take into account multiple variables that might affect your time-to-event endpoint.
One of those (that is though limited in terms of the model fitting accuracy, and thus should not be employed with more than 5 variables at a time) is described in the SurvivalAnalysis (analyse_multivariate function, see https://cran.r-project.org/web/packages/survivalAnalysis/vignettes/multivariate.html) package in R or again in the survminer package in R (here its a coxph function if I recall correctly).
To fit more parameters into a multivariate model (which is rarely done), one usually employs regularized CoxPH models (for example LASSO regularized models, which is implmented in the glmnet package in R, see https://glmnet.stanford.edu/articles/glmnet.html). This is not a must-have - but given that the utility of ehrapy is particularly in the dissection of big heterogeneous datasets regularized models might be an idea worthwhile considering.
The text was updated successfully, but these errors were encountered: