diff --git a/.github/workflows/draft-pdf.yml b/.github/workflows/draft-pdf.yml index 971cce1..f59c745 100644 --- a/.github/workflows/draft-pdf.yml +++ b/.github/workflows/draft-pdf.yml @@ -1,3 +1,5 @@ +name: JOSS Paper Generation + on: [push] jobs: @@ -7,12 +9,14 @@ jobs: steps: - name: Checkout uses: actions/checkout@v3 + - name: Build draft PDF uses: openjournals/openjournals-draft-action@master with: journal: joss # This should be the path to the paper within your repo. paper-path: paper.md + - name: Upload uses: actions/upload-artifact@v1 with: diff --git a/paper.md b/paper.md index a495291..731c5d2 100644 --- a/paper.md +++ b/paper.md @@ -78,7 +78,10 @@ $$ \partial_t n = c_1 \left(\phi - n \right) - \left[\phi, n \right] - \kappa_n \partial_y \phi - - \nu \nabla^{2N} n \\ + - \nu \nabla^{2N} n +$$ + +$$ \partial_t \Omega = c_1 \left( \phi - n \right) - \left[ \phi, \Omega \right] - \nu \nabla^{2N} \Omega @@ -102,36 +105,34 @@ However, the use of the Arakawa Scheme for the Poisson brackets does allow the p The reason why the Hasegawa-Wakatani Model has been the de-facto testing bed for new methods are its verifiable statistically stationary properties for the complex turbulent system, such as the turbulent particle flux $\Gamma^n$, primary sink $\Gamma^c$, energy E, enstrophy U. -$$ - \Gamma^n = - \iint{ \mathrm{d}^2 x \space \left(n \partial_y \phi\right) } \\ - \Gamma^c = c_1 \iint{ \mathrm{d}^2 x \space \left(n - \phi\right)^2} \\ - E = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n^2 - \left|\nabla_\bot \phi \right|^2 \right)} \\ - U = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\nabla_\bot^2 \phi\right)^2} = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\Omega\right)^2} -$$ +$$ \Gamma^n = - \iint{ \mathrm{d}^2 x \space \left(n \partial_y \phi\right) } $$ +$$ \Gamma^c = c_1 \iint{ \mathrm{d}^2 x \space \left(n - \phi\right)^2} $$ +$$ E = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n^2 - \left|\nabla_\bot \phi \right|^2 \right)} $$ +$$ U = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\nabla_\bot^2 \phi\right)^2} = \small \frac{1}{2} \normalsize \iint{ \mathrm{d}^2 x \space \left(n-\Omega\right)^2} $$ These can be complemented with spectral definitions of these, or the characteristic phase shift $\delta(k_y)$ between the density $n$ and potential $\phi$: -$$ - \int{\mathrm{d} k_y \space \Gamma^n \small (k_y)} \normalsize \space = - \int{\mathrm{d} k_y \space \left( i k_y n\small (k_y) \normalsize \phi^* \small (k_y)\normalsize \right) } \\ - \delta \small (k_y) \normalsize \space = - \mathrm{Im}\left( \mathrm{log}\left( n^*\small (k_y) \normalsize \space \phi\small (k_y) \normalsize \right) \right) \\ - E^N \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| n \small (k_y) \normalsize \big|^2 \\ - E^V \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| k_y \phi \small (k_y) \normalsize \big|^2 -$$ + +$$ \int{\mathrm{d} k_y \space \Gamma^n \small (k_y)} \normalsize \space = - \int{\mathrm{d} k_y \space \left( i k_y n\small (k_y) \normalsize \phi^* \small (k_y)\normalsize \right) } $$ +$$ \delta \small (k_y) \normalsize \space = - \mathrm{Im}\left( \mathrm{log}\left( n^*\small (k_y) \normalsize \space \phi\small (k_y) \normalsize \right) \right) $$ +$$ E^N \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| n \small (k_y) \normalsize \big|^2 $$ +$$ E^V \small (k_y) \normalsize \space = \small \frac{1}{2}\normalsize \big| k_y \phi \small (k_y) \normalsize \big|^2 $$ + Beside the spectral verification, time-integration can be verified through the expected in- and out-flows in the turbulent phase: -$$ - \partial_t E = \Gamma^N - \Gamma ^c - \mathfrak{D}^E \\ - \partial_t U = \Gamma^N - \mathfrak{D}^U \\ -$$ + +$$ \partial_t E = \Gamma^N - \Gamma ^c - \mathfrak{D}^E $$ +$$ \partial_t U = \Gamma^N - \mathfrak{D}^U $$ + Where $\mathfrak{D}^E$ and $\mathfrak{D}^U$ are sinks derived from the diffusion terms of the HW equations, namely: -$$ - \mathfrak{D}^E = \quad \iint{ \mathrm{d}^2 x \space (n \mathfrak{D^n} - \phi \mathfrak{D}^\phi)} \\ - \mathfrak{D}^U = - \iint{ \mathrm{d}^2 x \space (n - \Omega)(\mathfrak{D}^n - \mathfrak{D}^\phi)} \\ - with \quad \mathfrak{D}^n \small (x,y) \normalsize = \nu \nabla^{2N} n \quad and \quad - \mathfrak{D}^\phi \small (x,y) \normalsize \space = \nu \nabla^{2N} \phi -$$ + +$$ \mathfrak{D}^E = \quad \iint{ \mathrm{d}^2 x \space (n \mathfrak{D^n} - \phi \mathfrak{D}^\phi)} $$ +$$ \mathfrak{D}^U = - \iint{ \mathrm{d}^2 x \space (n - \Omega)(\mathfrak{D}^n - \mathfrak{D}^\phi)} $$ +$$ with \quad \mathfrak{D}^n \small (x,y) \normalsize = \nu \nabla^{2N} n \quad and \quad + \mathfrak{D}^\phi \small (x,y) \normalsize \space = \nu \nabla^{2N} \phi $$ + Note that it is the common practice across all reference texts to calculate the integral $\int\cdot$ as the average over a unit square $\langle \cdot \rangle$ in order to get comparable values for all properties.