-
Notifications
You must be signed in to change notification settings - Fork 0
/
mean-shift-np.py
128 lines (98 loc) · 3.76 KB
/
mean-shift-np.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import random
STOP_THRESHOLD = 1e-4
CLUSTER_THRESHOLD = 1e-1
def distance(a, b):
return np.linalg.norm(np.array(a) - np.array(b))
def gaussian_kernel(distance, bandwidth):
return (1 / (bandwidth * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((distance / bandwidth)) ** 2)
class MeanShift(object):
def __init__(self, kernel=gaussian_kernel):
self.kernel = kernel
def fit(self, points, kernel_bandwidth):
shift_points = np.array(points)
shifting = [True] * points.shape[0]
while True:
max_dist = 0
for i in range(0, len(shift_points)):
if not shifting[i]:
continue
p_shift_init = shift_points[i].copy()
shift_points[i] = self._shift_point(shift_points[i], points, kernel_bandwidth)
dist = distance(shift_points[i], p_shift_init)
max_dist = max(max_dist, dist)
shifting[i] = dist > STOP_THRESHOLD
if(max_dist < STOP_THRESHOLD):
break
cluster_ids, centers = self._cluster_points(shift_points.tolist())
self.labels = np.array(cluster_ids)
self.centers = np.array(centers)
return shift_points, cluster_ids
def _shift_point(self, point, points, kernel_bandwidth):
shift_x = 0.0
shift_y = 0.0
shift_z = 0.0
scale = 0.0
for p in points:
dist = distance(point, p)
weight = self.kernel(dist, kernel_bandwidth)
shift_x += p[0] * weight
shift_y += p[1] * weight
shift_z += p[2] * weight
scale += weight
shift_x = shift_x / scale
shift_y = shift_y / scale
shift_z = shift_z / scale
return [shift_x, shift_y,shift_z]
def _cluster_points(self, points):
cluster_ids = []
cluster_idx = 0
cluster_centers = []
for i, point in enumerate(points):
if(len(cluster_ids) == 0):
cluster_ids.append(cluster_idx)
cluster_centers.append(point)
cluster_idx += 1
else:
for center in cluster_centers:
dist = distance(point, center)
if(dist < CLUSTER_THRESHOLD):
cluster_ids.append(cluster_centers.index(center))
if(len(cluster_ids) < i + 1):
cluster_ids.append(cluster_idx)
cluster_centers.append(point)
cluster_idx += 1
return cluster_ids, cluster_centers
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import style
import time
style.use("ggplot")
def colors(n):
ret = []
for i in range(n):
ret.append((random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
return ret
def main():
centers = [[1,1,1],[5,5,5],[3,10,10]]
X, y = make_blobs(n_samples = [100,100,100], centers = centers, cluster_std = 0.5)
ms = MeanShift()
begin_time = time.time()
ms.fit(X, kernel_bandwidth=0.5)
end_time = time.time()
print("Total time (s)", end_time- begin_time)
cluster_centers = ms.centers
labels = ms.labels
print(cluster_centers)
n_clusters_ = len(np.unique(labels))
print("Number of estimated cluster:", n_clusters_)
colors = 10*['r','g','b','c','k','y','m']
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
for i in range(len(X)):
ax.scatter(X[i][0],X[i][1],X[i][2], c=colors[labels[i]],marker='o')
ax.scatter(cluster_centers[:,0],cluster_centers[:,1],cluster_centers[:,2],marker="x",color='k',s=150, linewidths =5, zorder =10)
plt.show()
if __name__ == '__main__':
main()