forked from NVlabs/GA3C
-
Notifications
You must be signed in to change notification settings - Fork 25
/
ProcessAgent.py
173 lines (142 loc) · 7.22 KB
/
ProcessAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from datetime import datetime
from multiprocessing import Process, Queue, Value
import numpy as np
import sys, time
from Config import Config
from Environment import Environment
from Experience import Experience
class ProcessAgent(Process):
def __init__(self, id, prediction_q, training_q, episode_log_q, dm):
super(ProcessAgent, self).__init__()
self.id = id
self.prediction_q = prediction_q
self.training_q = training_q
self.episode_log_q = episode_log_q
self.env = Environment()
self.num_actions = self.env.get_num_actions()
self.actions = np.arange(self.num_actions)
self.discount_factor = Config.DISCOUNT
# one frame at a time
self.wait_q = Queue(maxsize=1)
self.exit_flag = Value('i', 0)
self.display_manager = dm
@staticmethod
def _accumulate_rewards(experiences, discount_factor, value, is_running):
if is_running:
reward_sum = value # terminal reward
for t in reversed(range(0, len(experiences)-1)):
r = np.clip(experiences[t].reward, Config.REWARD_MIN, Config.REWARD_MAX) if Config.REWARD_CLIPPING else experiences[t].reward
reward_sum = discount_factor * reward_sum + r
experiences[t].reward = reward_sum
return experiences[:-1]
# if the episode has terminated, we take the full trajectory into
# account, including the very last experience
else:
reward_sum = 0
for t in reversed(range(0, len(experiences))):
r = np.clip(experiences[t].reward, Config.REWARD_MIN, Config.REWARD_MAX) if Config.REWARD_CLIPPING else experiences[t].reward
reward_sum = discount_factor * reward_sum + r
experiences[t].reward = reward_sum
return experiences
def convert_data(self, experiences):
x_ = np.array([exp.state for exp in experiences])
a_ = np.eye(self.num_actions)[np.array([exp.action for exp in experiences])].astype(np.float32)
r_ = np.array([exp.reward for exp in experiences])
return x_, r_, a_
def predict(self, state, lstm_inputs):
# put the state in the prediction q
# lstm_inputs: [dict{stacklayer1}, dict{stacklayer2}, ...]
c_state = np.array([lstm['c'] for lstm in lstm_inputs]) if len(lstm_inputs) else None
h_state = np.array([lstm['h'] for lstm in lstm_inputs]) if len(lstm_inputs) else None
self.prediction_q.put((self.id, state, c_state, h_state))
# wait for the prediction to come back
p, v, d, c_state, h_state = self.wait_q.get()
if not len(lstm_inputs):
return p, v, d, []
# convert return back to form: [dict{stack-layer1}, dict{stack-layer2}, ...]
l = [{'c':c_state[i], 'h':h_state[i]} for i in range(c_state.shape[0])]
return p, v, d, l
def select_action(self, prediction):
if Config.PLAY_MODE:
action = np.argmax(prediction)
else:
action = np.random.choice(self.actions, p=prediction)
return action
def run_episode(self):
self.env.reset()
is_running = True
experiences = []
time_count = 0
reward_sum = 0.0
# input states for prediction
lstm_input_p = [{'c':np.zeros(256, dtype=np.float32),
'h':np.zeros(256, dtype=np.float32)}]*Config.NUM_LSTMS
# input states for training
lstm_input_t = [{'c':np.zeros(256, dtype=np.float32),
'h':np.zeros(256, dtype=np.float32)}]*Config.NUM_LSTMS
while is_running:
# very first few frames
if self.env.current_state is None:
_ , is_running = self.env.step(-1) # NOOP
assert(is_running)
continue
prediction, value, depth, lstm_input_p = self.predict(self.env.current_state, lstm_input_p)
if Config.PLAY_MODE:
self.display_manager.update(self.env.current_state, prediction, value, depth)
action = self.select_action(prediction)
reward, is_running = self.env.step(action)
reward_sum += reward
exp = Experience(self.env.previous_state, action, prediction, reward)
experiences.append(exp)
if not is_running or time_count == int(Config.TIME_MAX):
updated_exps = ProcessAgent._accumulate_rewards(experiences, self.discount_factor, value, is_running)
x_, r_, a_ = self.convert_data(updated_exps)
yield x_, r_, a_, lstm_input_t, reward_sum, time_count
# lstm input state for next training step
lstm_input_t = lstm_input_p
# reset the tmax count
time_count = 0
# keep the last experience for the next batch
experiences = [experiences[-1]]
reward_sum = 0.0
time_count += 1
def run(self):
# randomly sleep up to 1 second. helps agents boot smoothly.
time.sleep(np.random.rand())
np.random.seed(np.int32(time.time() % 1 * 1000 + self.id * 10))
total_steps = 0
while total_steps == Config.MAX_STEPS or self.exit_flag.value == 0:
total_reward = 0
total_length = 0
for x_, r_, a_, lstm_, reward_sum, steps in self.run_episode():
total_steps += steps
total_reward += reward_sum
total_length += len(r_) + 1 # +1 for last frame that we drop
self.training_q.put((x_, r_, a_, lstm_))
self.episode_log_q.put((datetime.now(), total_reward, total_length,
total_steps))