-
Notifications
You must be signed in to change notification settings - Fork 0
/
pedigree_analysis.py
479 lines (413 loc) · 22.6 KB
/
pedigree_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import matplotlib as mpl
mpl.use('Agg')
import collections
import sys
import numpy
import matplotlib.pyplot as plt
import vcf
from matplotlib.backends.backend_pdf import PdfPages
from fractions import Fraction
class TRIO:
def __init__(self, child, mother, father):
self.child = child
self.mother = mother
self.father = father
def __str__(self):
return "%s\t%s\t%s"%(self.child, self.mother, self.father)
class FATHER_SON_PAIR:
def __init__(self, son, father):
self.son = son
self.father = father
def __str__(self):
return "%s\t%s"%(self.son, self.father)
def read_1kg_pedigree_file(input_file, header=True):
data = open(input_file, "r")
if header:
data.readline()
trios, father_son_pairs = [], []
for line in data:
tokens = line.strip().split()
if tokens[2] != "0" and tokens[3] != "0":
child, dad, mom = tokens[1:4]
trios.append(TRIO(child, dad, mom))
if tokens[2] != "0" and tokens[4] == "1":
father_son_pairs.append(FATHER_SON_PAIR(tokens[1], tokens[2]))
data.close()
print("There are %d trios and %d father-son-pairs in the pedigree file"%(len(trios), len(father_son_pairs)))
return trios, father_son_pairs
# Find the index for the highest bin which is less than
# or equal to the provided value
def find_index(bins, value):
low = 0
high = len(bins)-1
while high > low + 1:
midval = bins[(low+high)/2]
if value > midval:
low = (low+high)/2
elif value < midval:
high = (low+high)/2 - 1
else:
return (low+high)/2
if value < bins[low]:
exit("Unable to find index. Exiting...")
if value >= bins[high]:
return high
else:
return low
def is_discordant(a11, a12, a21, a22):
if (a11 == a21 and a12 == a22) or (a11 == a22 and a12 == a21):
return False
else:
return True
def is_mendelian(a11, a12, a21, a22, a31, a32):
if (a31 == a11 or a31 == a12) and (a32 == a21 or a32 == a22):
return True
elif (a31 == a21 or a31 == a22) and (a32 == a11 or a32 == a12):
return True
else:
return False
def draw_bp_histogram(discordant_counts, pdfpage):
# Create histogram of father-son differences
bp_diff_counts = [collections.defaultdict(int) for _ in xrange(6)]
repeat_diff_counts = [collections.defaultdict(int) for _ in xrange(6)]
out_frame_count = 0
in_frame_count = 0
for key,val in discordant_counts.items():
bp_diff_counts[key[2]-1][key[1]-key[0]] += val
repeat_diff_counts[key[2]-1][Fraction(key[1]-key[0], key[2])] += val
for xlabel,diff_counts,in_frame in zip(["bps", "repeats"],
[bp_diff_counts, repeat_diff_counts],
[lambda bp,period: bp%period == 0, lambda rep,period: int(rep)==float(rep) ]):
fig = plt.figure()
ax = fig.add_subplot(111)
diffs = sorted(list(set(reduce(lambda x,y:x+y, map(lambda z: z.keys(), diff_counts)))))
colors = ['c', 'r', 'g', 'y', 'b', 'm']
heights = numpy.zeros(len(diffs))
for i in xrange(6):
vals = [diff_counts[i][x] for x in diffs]
if sum(vals) == 0:
continue
in_frame_trips = filter(lambda x: in_frame(x[0], i+1), zip(diffs, vals, heights))
out_frame_trips = filter(lambda x: not in_frame(x[0], i+1), zip(diffs, vals, heights))
if len(in_frame_trips) != 0:
x,y,h = zip(*in_frame_trips)
in_frame_count += sum(y)
ax.bar(x, y, bottom=h, align='center', color=colors[i], width=0.25, label=str(i+1))
if len(out_frame_trips) != 0:
x,y,h = zip(*out_frame_trips)
out_frame_count += sum(y)
ax.bar(x, y, bottom=h, align='center', color=colors[i], width=0.25, label=str(i+1), hatch='//')
heights += vals
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.set_xlabel(r"$father-son ("+xlabel+")$")
ax.set_ylabel(r"$n_{calls}$")
ax.legend()
pdfpage.savefig(fig)
print("IN FRAME=%d, OUT FRAME=%d"%(in_frame_count/2, out_frame_count/2))
class CHRY_STATS:
def __init__(self, father_son_pairs, call_output):
self.pairs = father_son_pairs
self.output_calls = open(call_output, "w")
def initialize(self, vcf_reader):
sample_indices = dict(zip(vcf_reader.samples, range(len(vcf_reader.samples))))
self.pair_indices = []
for i in xrange(len(self.pairs)):
if self.pairs[i].son not in sample_indices:
exit("Unable to assess chrY inheritance because no data was found for " + self.pairs[i].son)
if self.pairs[i].father not in sample_indices:
exit("Unable to assess chrY inheritance because no data was found for " + self.pairs[i].father)
self.pair_indices.append([sample_indices[self.pairs[i].father], sample_indices[self.pairs[i].son]])
self.missing_data_skip_counts = numpy.zeros(len(self.pair_indices))
self.het_gt_skip_counts = numpy.zeros(len(self.pair_indices))
self.num_concordant = 0
self.num_discordant = 0
self.pair_info = {}
self.discordant_counts = collections.defaultdict(int)
self.call_count = 0
def process_record(self, record):
motif_len = len(record.INFO['MOTIF'])
for i in xrange(len(self.pair_indices)):
if any(map(lambda x: record.samples[x]['GT'] is None, self.pair_indices[i])):
self.missing_data_skip_counts[i] += 1
continue
self.call_count += 1
father = record.samples[self.pair_indices[i][0]]
son = record.samples[self.pair_indices[i][1]]
gb_1a, gb_1b = map(int, father['GB'].split("/"))
gb_2a, gb_2b = map(int, son['GB'].split("/"))
self.output_calls.write("%d\t%s\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%s\t%s\n"%(self.call_count, record.CHROM, record.POS, record.INFO['END'],
gb_1a + gb_1b, gb_2a + gb_2b,
gb_1a, gb_1b, gb_2a, gb_2b, father.sample, son.sample))
if gb_1a != gb_1b or gb_2a != gb_2b:
self.het_gt_skip_counts[i] += 1
if gb_1a != gb_1b:
print("chrY\t%d\t%d\t%s\t%s\t%s"%(record.POS, record.INFO["END"], father.sample, str(gb_1a) + "|" + str(gb_1b), "HET"))
if gb_2a != gb_2b:
print("chrY\t%d\t%d\t%s\t%s\t%s"%(record.POS, record.INFO["END"], father.sample, str(gb_2a) + "|" + str(gb_2b), "HET"))
continue
if gb_1a != gb_2a:
self.num_discordant += 1
self.discordant_counts[(gb_1a, gb_2a, motif_len)] +=1
print("chrY\t%d\t%d\t%s\t%s\t%s"%(record.POS, record.INFO["END"],
father.sample + "," + son.sample,
str(gb_1a) + "," + str(gb_2b), "DISCORDANT"))
else:
self.num_concordant += 1
if (gb_1a, gb_2a) not in self.pair_info:
self.pair_info[(gb_1a, gb_2a)] = []
self.pair_info[(gb_1a, gb_2a)].append((record.CHROM, record.POS, record.INFO['END'], father.sample+"-"+son.sample))
def finish(self, pdfpage, output_prefix):
print("WARNING: Skipped " + str(self.missing_data_skip_counts) + " comparisons due to missing data for one or more individuals")
print("WARNING: Skipped " + str(self.het_gt_skip_counts) + " comparisons due to heterozygous genotypes for one or more individuals")
if self.num_discordant + self.num_concordant != 0:
print("%d vs. %d = %f Percent"%(self.num_discordant, self.num_concordant, 100.0*self.num_discordant/(self.num_discordant+self.num_concordant)))
else:
print("WARNING: No chrY calls were applicable for comparison")
# Create bubble plot using all data
fig = plt.figure()
ax = fig.add_subplot(111)
x, y = zip(*self.pair_info.keys())
s = numpy.array(map(len, self.pair_info.values()))*10
ax.scatter(x, y, s=s, alpha=0.7)
ax.set_xlabel("Father's genotype (bp)")
ax.set_ylabel("Son's genotype (bp)")
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.plot(numpy.arange(min(x)-5, max(x)+5, 1.0), numpy.arange(min(y)-5, max(y)+5, 1.0), linestyle='--', color='k')
pdfpage.savefig(fig)
# Create histogram of father-son differences
draw_bp_histogram(self.discordant_counts, pdfpage)
viz_output = open(output_prefix+"_chrY.csv", "w")
viz_output.write(",".join(["X","Y", "CHROMS", "STARTS", "STOPS", "SAMPLES"]) + "\n")
for key,val in self.pair_info.items():
chroms, positions, ends, samples = map(list, zip(*val))
viz_output.write(",".join([str(key[0]), str(key[1]), "_".join(chroms), "_".join(map(str, positions)), "_".join(map(str, ends)), "_".join(map(str, samples))]) + "\n")
viz_output.close()
self.output_calls.close()
class MENDELIAN_STATS:
def __init__(self, trios, coverage_bins, quality_bins, max_coverage, quality_thresholds):
self.trios = trios
self.coverage_bins = coverage_bins
self.quality_bins = quality_bins
self.max_coverage = max_coverage
self.qual_thresh = quality_thresholds
def initialize(self, vcf_reader):
sample_indices = dict(zip(vcf_reader.samples, range(len(vcf_reader.samples))))
self.trio_indices = []
for i in xrange(len(self.trios)):
if self.trios[i].child not in sample_indices:
exit("Unable to calculate Mendelian inheritance because no data was found for " + self.trios[i].child)
if self.trios[i].father not in sample_indices:
exit("Unable to calculate Mendelian inheritance because no data was found for " + self.trios[i].father)
if self.trios[i].mother not in sample_indices:
exit("Unable to calculate Mendelian inheritance because no data was found for " + self.trios[i].mother)
# Father, Mother, Child
self.trio_indices.append(map(lambda x: sample_indices[x], [self.trios[i].father, self.trios[i].mother, self.trios[i].child]))
self.coverage_bins = numpy.concatenate(([-100000], self.coverage_bins))
self.quality_bins = numpy.concatenate(([-100000], self.quality_bins))
# Quality/Coverage x Trios x Period x Thresholds
self.all_loci_nstrs = [numpy.zeros((len(self.trios), 5, len(self.coverage_bins))), numpy.zeros((len(self.trios), 5, len(self.quality_bins)))]
self.all_loci_nmend = [numpy.zeros((len(self.trios), 5, len(self.coverage_bins))), numpy.zeros((len(self.trios), 5, len(self.quality_bins)))]
self.disc_loci_nstrs = [numpy.zeros((len(self.trios), 5, len(self.coverage_bins))), numpy.zeros((len(self.trios), 5, len(self.quality_bins)))]
self.disc_loci_nmend = [numpy.zeros((len(self.trios), 5, len(self.coverage_bins))), numpy.zeros((len(self.trios), 5, len(self.quality_bins)))]
self.missing_data_skip_counts = numpy.zeros(len(self.trios))
self.coverage_skip_counts = numpy.zeros(len(self.trios))
# Trios x Period x Thresholds
self.all_loci_nstrs_min_q = numpy.zeros((len(self.trios), 5, len(self.coverage_bins)))
self.all_loci_nmend_min_q = numpy.zeros((len(self.trios), 5, len(self.coverage_bins)))
self.disc_loci_nstrs_min_q = numpy.zeros((len(self.trios), 5, len(self.coverage_bins)))
self.disc_loci_nmend_min_q = numpy.zeros((len(self.trios), 5, len(self.coverage_bins)))
def process_record(self, record):
for i in xrange(len(self.trios)):
if any(map(lambda x: record.samples[x]['GT'] is None, self.trio_indices[i])):
self.missing_data_skip_counts[i] += 1
continue
if 'X' in record.CHROM or 'x' in record.CHROM or 'Y' in record.CHROM or 'y' in record.CHROM:
continue
q1, q2, q3 = map(lambda x: record.samples[x]["Q"], self.trio_indices[i])
c1, c2, c3 = map(lambda x: record.samples[x]["DP"], self.trio_indices[i])
a11, a21 = record.samples[self.trio_indices[i][0]]["GT"].split("/")
a21, a22 = record.samples[self.trio_indices[i][1]]["GT"].split("/")
a31, a32 = record.samples[self.trio_indices[i][2]]["GT"].split("/")
discordant = is_discordant(a11, a12, a21, a22)
mendelian = is_mendelian(a11, a12, a21, a22, a31, a32)
# Filter out loci with too high of coverage
if max(c1, c2, c3) > self.max_coverage:
self.coverage_skip_counts[i] += 1
continue
coverage = min(c1, c2, c3)
bin_idx = find_index(self.coverage_bins, coverage)
motif_len = len(record.INFO["MOTIF"])-2
self.all_loci_nstrs [0][i][motif_len][bin_idx] += 1
self.all_loci_nmend [0][i][motif_len][bin_idx] += mendelian*1
self.disc_loci_nstrs[0][i][motif_len][bin_idx] += discordant*1
self.disc_loci_nmend[0][i][motif_len][bin_idx] += discordant*mendelian*1
quality = min(q1, q2, q3)
bin_idx = find_index(self.quality_bins, quality)
self.all_loci_nstrs [1][i][motif_len][bin_idx] += 1
self.all_loci_nmend [1][i][motif_len][bin_idx] += mendelian*1
self.disc_loci_nstrs[1][i][motif_len][bin_idx] += discordant*1
self.disc_loci_nmend[1][i][motif_len][bin_idx] += discordant*mendelian*1
coverage = min(c1, c2, c3)
bin_idx = find_index(self.coverage_bins, coverage)
if quality > self.qual_thresh[motif_len]:
self.all_loci_nstrs_min_q [i][motif_len][bin_idx] += 1
self.all_loci_nmend_min_q [i][motif_len][bin_idx] += mendelian*1
self.disc_loci_nstrs_min_q [i][motif_len][bin_idx] += discordant*1
self.disc_loci_nmend_min_q [i][motif_len][bin_idx] += discordant*mendelian*1
def finish(self, pdfpage):
print("WARNING: Skipped " + str(self.missing_data_skip_counts) + " loci due to missing data for one or more individual")
print("WARNING: Skipped " + str(self.coverage_skip_counts) + " loci due to too high coverage")
# Iterate over coverage and quality stats
types = ['Coverage', 'Quality', 'Coverage']
bins = [self.coverage_bins, self.quality_bins, self.coverage_bins]
for n in xrange(3):
# Sum across all trios
if n == 0 or n == 1:
all_loci_nstrs = numpy.sum(self.all_loci_nstrs [n], axis=0)
all_loci_nmend = numpy.sum(self.all_loci_nmend [n], axis=0)
disc_loci_nstrs = numpy.sum(self.disc_loci_nstrs[n], axis=0)
disc_loci_nmend = numpy.sum(self.disc_loci_nmend[n], axis=0)
else:
all_loci_nstrs = numpy.sum(self.all_loci_nstrs_min_q, axis=0)
all_loci_nmend = numpy.sum(self.all_loci_nmend_min_q, axis=0)
disc_loci_nstrs = numpy.sum(self.disc_loci_nstrs_min_q, axis=0)
disc_loci_nmend = numpy.sum(self.disc_loci_nmend_min_q, axis=0)
# Create plots for individual periods
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax1.set_ylabel("Fraction Mendelian")
ax1.set_title("All sites")
ax2 = fig.add_subplot(222, sharey=ax1)
ax2.set_title("Discordant parental sites")
ax3 = fig.add_subplot(223, sharex=ax1)
ax3.set_xlabel(types[n] + " threshold")
ax3.set_ylabel("# genotypes")
ax3.set_yscale('log')
ax4 = fig.add_subplot(224, sharex=ax2, sharey=ax3)
ax4.set_xlabel(types[n] + " threshold")
ax4.set_yscale('log')
box1 = ax1.get_position()
ax1.set_position([box1.x0, box1.y0, box1.width*0.9, box1.height])
ax2.set_position([box1.x0 + box1.width*1.15, box1.y0, box1.width*0.9, box1.height])
box3 = ax3.get_position()
ax3.set_position([box3.x0, box3.y0, box3.width*0.9, box3.height])
ax4.set_position([box3.x0 + box3.width*1.15, box3.y0, box3.width*0.9, box3.height])
font_size = 9
for i in xrange(5):
nstrs_all = numpy.cumsum(all_loci_nstrs [i][::-1])[::-1]
nmend_all = numpy.cumsum(all_loci_nmend [i][::-1])[::-1]
nstrs_disc = numpy.cumsum(disc_loci_nstrs[i][::-1])[::-1]
nmend_disc = numpy.cumsum(disc_loci_nmend[i][::-1])[::-1]
all_fracs = (1.0*nmend_all/nstrs_all)[1:]
disc_fracs = (1.0*nmend_disc/nstrs_disc)[1:]
ax1.plot(bins[n][1:], all_fracs, '-o', label=str(i+1))
ax2.plot(bins[n][1:], disc_fracs, '-o', label=str(i+1))
ax3.plot(bins[n][1:], nstrs_all[1:], '-o', label=str(i+1))
ax4.plot(bins[n][1:], nstrs_disc[1:], '-o', label=str(i+1))
ax4.legend(bbox_to_anchor=(1.05, 0.9, 0.25, 0.2), loc='center left')
for ax in [ax1, ax2, ax3, ax4]:
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(font_size)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(font_size)
pdfpage.savefig(fig)
# Create plots using all periods
# Sum across all periods
all_loci_nstrs = numpy.sum(all_loci_nstrs, axis=0)
all_loci_nmend = numpy.sum(all_loci_nmend, axis=0)
disc_loci_nstrs = numpy.sum(disc_loci_nstrs, axis=0)
disc_loci_nmend = numpy.sum(disc_loci_nmend, axis=0)
# Transform into running sums
all_loci_nstrs = numpy.cumsum(all_loci_nstrs[::-1])[::-1]
all_loci_nmend = numpy.cumsum(all_loci_nmend[::-1])[::-1]
disc_loci_nstrs = numpy.cumsum(disc_loci_nstrs[::-1])[::-1]
disc_loci_nmend = numpy.cumsum(disc_loci_nmend[::-1])[::-1]
# Calculate the fraction of Mendelian inheritance for all loci and discordant loci
all_loci_fracs = (1.0*all_loci_nmend/all_loci_nstrs)[1:]
disc_loci_fracs = (1.0*disc_loci_nmend/disc_loci_nstrs)[1:]
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax1.set_ylabel("Fraction Mendelian")
ax1.set_title("All sites")
ax1.plot(bins[n][1:], all_loci_fracs, '-o')
ax2 = fig.add_subplot(222, sharey=ax1)
ax2.plot(bins[n][1:], disc_loci_fracs, '-o')
ax2.set_title("Discordant parental sites")
ax3 = fig.add_subplot(223, sharex=ax1)
ax3.set_xlabel(types[n] + " threshold")
ax3.set_ylabel("# genotypes")
ax3.set_yscale('log')
ax3.plot(bins[n][1:], all_loci_nstrs[1:], '-o')
ax4 = fig.add_subplot(224, sharex=ax2, sharey=ax3)
ax4.set_xlabel(types[n] + " threshold")
ax4.set_yscale('log')
ax4.plot(bins[n][1:], disc_loci_nstrs[1:], '-o')
for ax in [ax1, ax2, ax3, ax4]:
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(font_size)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(font_size)
pdfpage.savefig(fig)
mpl.rcParams['xtick.labelsize'] = 10
mpl.rcParams['ytick.labelsize'] = 10
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(bins[n][1:], all_loci_fracs, '-o', color='b')
ax1.set_ylabel("Fraction Mendelian")
ax1.set_xlabel(types[n] + " threshold")
ax2 = ax1.twinx()
ax2.set_yscale('log')
ax2.plot(bins[n][1:], all_loci_nstrs[1:], '-o', color='g')
pdfpage.savefig(fig)
ax1.axis('equal')
pdfpage.savefig(fig)
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.plot(bins[n][1:], all_loci_fracs, '-o', color='b')
ax1.set_ylabel("Fraction Mendelian")
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
ax2.set_xlabel(types[n] + " threshold")
ax2.plot(bins[n][1:], all_loci_nstrs[1:], '-o', color='g')
ax2.set_yscale('log')
ax2.set_ylabel("# Called loci across trios")
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
pdfpage.savefig(fig)
def main():
print("Invocation syntax: python pedigree_analysis.py 1kg_pedigree_file.txt vcf_file.vcf output_file.pdf")
trios, father_son_pairs = read_1kg_pedigree_file(sys.argv[1], header=True)
vcf_reader = vcf.Reader(filename=sys.argv[2])
call_stats = sys.argv[3]
samples = vcf_reader.samples
trios_with_data = []
pairs_with_data = []
for trio in trios:
if trio.child in samples and trio.mother in samples and trio.father in samples:
trios_with_data.append(trio)
print("There are %d trios with data"%len(trios_with_data))
for pair in father_son_pairs:
if pair.father in samples and pair.son in samples:
pairs_with_data.append(pair)
print("There are %d father-son pairs with data"%(len(pairs_with_data)))
coverage_bins = numpy.append(numpy.arange(1.001, 5.0011, 1.0), numpy.arange(6.001, 18.0011, 2.0))
quality_bins = numpy.arange(0.0, 1.0, 0.1)
quality_thresh = [0.9, 0.5, 0.5, 0.5, 0.5, 0.5]
max_coverage = 100
processors = [CHRY_STATS(pairs_with_data, call_stats)]
#mend_stats = MENDELIAN_STATS(trios_with_data, coverage_bins, quality_bins, max_coverage, quality_thresh)
for proc in processors:
proc.initialize(vcf_reader)
for record in vcf_reader:
for proc in processors:
proc.process_record(record)
pp = PdfPages(sys.argv[3]+".pdf")
for proc in processors:
proc.finish(pp, sys.argv[3])
pp.close()
return 0
if __name__ == "__main__":
main()