forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction.yaml
132 lines (128 loc) · 4.56 KB
/
function.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
metadata:
name: tf-matterport-mask-rcnn
namespace: cvat
annotations:
name: Mask RCNN via Tensorflow
type: detector
framework: tensorflow
spec: |
[
{ "id": 0, "name": "BG" },
{ "id": 1, "name": "person" },
{ "id": 2, "name": "bicycle" },
{ "id": 3, "name": "car" },
{ "id": 4, "name": "motorcycle" },
{ "id": 5, "name": "airplane" },
{ "id": 6, "name": "bus" },
{ "id": 7, "name": "train" },
{ "id": 8, "name": "truck" },
{ "id": 9, "name": "boat" },
{ "id": 10, "name": "traffic_light" },
{ "id": 11, "name": "fire_hydrant" },
{ "id": 12, "name": "stop_sign" },
{ "id": 13, "name": "parking_meter" },
{ "id": 14, "name": "bench" },
{ "id": 15, "name": "bird" },
{ "id": 16, "name": "cat" },
{ "id": 17, "name": "dog" },
{ "id": 18, "name": "horse" },
{ "id": 19, "name": "sheep" },
{ "id": 20, "name": "cow" },
{ "id": 21, "name": "elephant" },
{ "id": 22, "name": "bear" },
{ "id": 23, "name": "zebra" },
{ "id": 24, "name": "giraffe" },
{ "id": 25, "name": "backpack" },
{ "id": 26, "name": "umbrella" },
{ "id": 27, "name": "handbag" },
{ "id": 28, "name": "tie" },
{ "id": 29, "name": "suitcase" },
{ "id": 30, "name": "frisbee" },
{ "id": 31, "name": "skis" },
{ "id": 32, "name": "snowboard" },
{ "id": 33, "name": "sports_ball" },
{ "id": 34, "name": "kite" },
{ "id": 35, "name": "baseball_bat" },
{ "id": 36, "name": "baseball_glove" },
{ "id": 37, "name": "skateboard" },
{ "id": 38, "name": "surfboard" },
{ "id": 39, "name": "tennis_racket" },
{ "id": 40, "name": "bottle" },
{ "id": 41, "name": "wine_glass" },
{ "id": 42, "name": "cup" },
{ "id": 43, "name": "fork" },
{ "id": 44, "name": "knife" },
{ "id": 45, "name": "spoon" },
{ "id": 46, "name": "bowl" },
{ "id": 47, "name": "banana" },
{ "id": 48, "name": "apple" },
{ "id": 49, "name": "sandwich" },
{ "id": 50, "name": "orange" },
{ "id": 51, "name": "broccoli" },
{ "id": 52, "name": "carrot" },
{ "id": 53, "name": "hot_dog" },
{ "id": 54, "name": "pizza" },
{ "id": 55, "name": "donut" },
{ "id": 56, "name": "cake" },
{ "id": 57, "name": "chair" },
{ "id": 58, "name": "couch" },
{ "id": 59, "name": "potted_plant" },
{ "id": 60, "name": "bed" },
{ "id": 61, "name": "dining_table" },
{ "id": 62, "name": "toilet" },
{ "id": 63, "name": "tv" },
{ "id": 64, "name": "laptop" },
{ "id": 65, "name": "mouse" },
{ "id": 66, "name": "remote" },
{ "id": 67, "name": "keyboard" },
{ "id": 68, "name": "cell_phone" },
{ "id": 69, "name": "microwave" },
{ "id": 70, "name": "oven" },
{ "id": 71, "name": "toaster" },
{ "id": 72, "name": "sink" },
{ "id": 73, "name": "refrigerator" },
{ "id": 74, "name": "book" },
{ "id": 75, "name": "clock" },
{ "id": 76, "name": "vase" },
{ "id": 77, "name": "scissors" },
{ "id": 78, "name": "teddy_bear" },
{ "id": 79, "name": "hair_drier" },
{ "id": 80, "name": "toothbrush" }
]
spec:
description: |
An implementation of Mask RCNN on Python 3, Keras, and TensorFlow.
runtime: 'python:3.6'
handler: main:handler
eventTimeout: 30s
env:
- name: MASK_RCNN_DIR
value: /opt/nuclio/Mask_RCNN
build:
image: cvat.tf.matterport.mask_rcnn
baseImage: tensorflow/tensorflow:1.13.1-py3
directives:
postCopy:
- kind: WORKDIR
value: /opt/nuclio
- kind: RUN
value: apt update && apt install --no-install-recommends -y git curl
- kind: RUN
value: git clone --depth 1 https://github.com/matterport/Mask_RCNN.git
- kind: RUN
value: curl -L https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5 -o Mask_RCNN/mask_rcnn_coco.h5
- kind: RUN
value: pip3 install numpy cython pyyaml keras==2.1.0 scikit-image 'imageio<=2.9.0' Pillow
triggers:
myHttpTrigger:
maxWorkers: 2
kind: 'http'
workerAvailabilityTimeoutMilliseconds: 10000
attributes:
maxRequestBodySize: 33554432 # 32MB
platform:
attributes:
restartPolicy:
name: always
maximumRetryCount: 3
mountMode: volume