-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict_event.py
102 lines (70 loc) · 3.47 KB
/
predict_event.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""Interface to perform predicting of TIMEX, EVENT and TLINK annotations.
"""
import sys
from code.config import env_paths
# this needs to be set. exit now so user doesn't wait to know.
if env_paths()["PY4J_DIR_PATH"] is None:
sys.exit("PY4J_DIR_PATH environment variable not specified")
import os
import cPickle
import argparse
import glob
from code.learning import model
from code.learning.model_event import EventWriter
from code.learning.model_event import tag_timex
from keras.models import load_model
from code.learning.word2vec import load_word2vec_binary
timenote_imported = False
def main():
global timenote_imported
parser = argparse.ArgumentParser()
parser.add_argument("timex_dir",
nargs=1,
help="Directory containing files with timex tags")
parser.add_argument("model_destination",
help="Where trained event model is located")
parser.add_argument("annotation_destination",
help="Where annotated files are written")
parser.add_argument("newsreader_annotations",
help="Where newsreader pipeline parsed file objects go")
args = parser.parse_args()
annotation_destination = args.annotation_destination
if os.path.isdir(args.newsreader_annotations) is False:
sys.exit("invalid path for time note dir")
if os.path.isdir(annotation_destination) is False:
sys.exit("\n\noutput destination does not exist")
newsreader_dir = args.newsreader_annotations
predict_dir = args.timex_dir[0]
if os.path.isdir(predict_dir) is False:
sys.exit("\n\nno output directory exists at set path")
model_path = args.model_destination
files_to_annotate = glob.glob(predict_dir + "/*")
pickled_timeml_notes = [os.path.basename(l) for l in glob.glob(newsreader_dir + "/*")]
# event model
NNet = load_model(os.path.join(model_path, 'model.h5'))
word_vectors = load_word2vec_binary(os.environ["TEA_PATH"] + '/GoogleNews-vectors-negative300.bin', verbose=0)
#read in files as notes
for i, tml in enumerate(files_to_annotate):
print '\nannotating file: {}/{} {}\n'.format(i+1, len(files_to_annotate), tml)
stashed_name = os.path.basename(tml)
stashed_name = stashed_name.split('.')
if 'tml' in stashed_name:
stashed_name = stashed_name[0:stashed_name.index('tml')]
stashed_name = '.'.join(stashed_name)
if stashed_name + ".parsed.predict.pickle" in pickled_timeml_notes:
print "loading stashed"
note = cPickle.load(open(newsreader_dir + "/" + stashed_name + ".parsed.predict.pickle", "rb"))
else:
if timenote_imported is False:
from code.notes.TimeNote import TimeNote
timenote_imported = True
note = TimeNote(tml, tml) # need the second argument to get timex tags
cPickle.dump(note, open(newsreader_dir + "/" + stashed_name + ".parsed.predict.pickle", "wb"))
entityLabels = [label for line in note.iob_labels for label in line]
tokens = [token for num in note.pre_processed_text for token in note.pre_processed_text[num]]
event_writer = EventWriter(note, word_vectors=word_vectors, NNet=NNet)
tml_root = event_writer.tag_text(entityLabels, tokens, note)
note_path = os.path.join(annotation_destination, stashed_name + ".tml")
EventWriter.write_tags(tml_root, note_path)
if __name__ == '__main__':
main()