-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathon_off_LS.m
88 lines (57 loc) · 2.02 KB
/
on_off_LS.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [ele_MSE, var_in_theory] = on_off_LS(N, num_tx_ant, num_rx_ant, K, T, corr_coef, no_var)
% %% configurations
% % tx_power = 1;
% N = 1000; % monte-carlo
%
% num_tx_ant = 1;
% num_rx_ant = 10;
% K = 20;
% T = K + 1;
%
% corr_coef = 1;
% no_var = 0.01;
%% main function
% generate pilot signals: use QPSK or QAM modulation
x = zeros([T,num_tx_ant,1]);
symbol_set = [1+1i, 1-1i, -1+1i, -1-1i];
ind = randi([1,4],T,1);
for i = 1:T
x(i,:,1)= 1/sqrt(2) * symbol_set(ind(i,1));
end
temp_X = zeros([num_rx_ant, T]);
for i = 1:T
temp_X(:,i) = x(i,:,:)*ones([num_rx_ant,1]);
end
X = diag(reshape(temp_X, [num_rx_ant*T,1])); % TM * TM
% RIS parameters
PHI = blkdiag(1, eye(K,K));
PHI(:,1) = 1;
% generate observation matrix for on-off method
H = X * (kron(PHI, eye(num_rx_ant, num_rx_ant)));
% compute covariance matrix
cov_mat = no_var * inv(H'*H);
% cov_mat_2 = no_var * kron(inv(PHI'*PHI),eye(num_rx_ant,num_rx_ant));
var_in_theory = diag(cov_mat);
% total_est_error = zeros([N,1]);
error_mat = zeros([(K+1)*num_rx_ant, N]);
for iter = 1:N
% generate correlated Rayleigh flat-fading channel
[theta, ~] = generate_channel(num_rx_ant*(K + 1),num_tx_ant,corr_coef); % equivalent SIMO channels
% apply channel on the observation matrix to get the received signal s
s = apply_channel(theta, H, no_var);
% standard way of computation
theta_est = inv(H'*H) * H' * s;
% theta_est_simple = inv(H) * s;
% compute element-wise squared error
error_vec = theta - theta_est;
error_mat(:,iter) = (abs(error_vec)).^2;
% compute total squared error
% total_est_error(iter) = sum((abs(error_vec)).^2);
% compute the received SNR
snr = abs(s).^2/no_var;
snr_db = 10*log10(mean(snr));
end
ele_MSE = mean(error_mat,2);
% compute the mean of squared error (total)
% MSE = mean(total_est_error,'all');
end