forked from rstudio/bigdataclass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03-data-transformation.Rmd
221 lines (173 loc) · 4.23 KB
/
03-data-transformation.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
title: "Data transformation"
output: html_notebook
---
## Class catchup
```{r}
library(dplyr)
library(dbplyr)
library(DBI)
con <- dbConnect(odbc::odbc(), "Postgres Dev")
airports <- tbl(con, in_schema("datawarehouse", "airport"))
flights <- tbl(con, in_schema("datawarehouse", "vflight"))
carriers <- tbl(con, in_schema("datawarehouse", "carrier"))
```
## 3.1 - Group and sort records
1. How many flights are there per month?
```{r}
flights %>%
group_by(month) %>%
tally()
```
2. Order the results by the month number by using `arrange()`
```{r}
flights %>%
group_by(month) %>%
tally() %>%
```
3. Order the results by the number of flights, starting with the month with most flights by using `desc()` inside the `arrange()` command
```{r}
```
## 3.2 - Answering questions with `dplyr`
1. Which are the top 4 months with the most flight activity?
```{r}
flights %>%
group_by(month) %>%
tally() %>%
arrange(desc(n)) %>%
head(4)
```
2. What were the top 5 calendar days with most flight activity?
```{r}
```
3. Which are the top 5 carriers (airlines) with the most flights?
```{r}
```
4. Figure the percent ratio of flights per month
```{r}
flights %>%
group_by(month) %>%
tally() %>%
arrange(desc(n)) %>%
mutate(percent = n/sum(n, na.rm = TRUE))
```
5. Figure the percent ratio of flights per carrier
```{r}
```
## 3.3 - Aggregate mulitple columns
1. Use `summarise_all()` to send the same function to all fields
```{r}
flights %>%
select(depdelay, arrdelay) %>%
summarise_all(mean, na.rm = TRUE)
```
2. Use `summarise_at()` to pre-select the fields that will receive the function
```{r}
flights %>%
summarise_at(c("depdelay", "arrdelay"), mean, na.rm = TRUE)
```
3. Use `summarise_if()` to summarize only if the field meets a criterion
```{r}
flights %>%
summarise_if(is.numeric,mean, na.rm = TRUE)
```
4. Combine with `group_by()` to create more complex results
```{r}
flights %>%
select(month, depdelay, arrdelay) %>%
group_by(month) %>%
summarise_all(mean, na.rm = TRUE)
```
## 3.4 - View record level data
How many flights in July 18th were one or more hours late?
```{r}
flights %>%
filter(
depdelay >= 60,
month == 7,
dayofmonth == 18
) %>%
tally()
```
1. Use `filter()` to retrieve only the needed data, and `head()` to limit the preview even further.
```{r}
flights %>%
filter(
depdelay >= 60,
month == 7,
dayofmonth == 18
) %>%
head(100)
```
2. Use `collect()` and `View()` to preview the data in the IDE. Make sure to **always** limit the number of returned rows. https://github.com/tidyverse/tibble/issues/373
```{r, eval = FALSE}
flights %>%
filter(
depdelay >= 60,
month == 7,
dayofmonth == 18
) %>%
collect() %>%
head(100) %>%
View("my_preview")
```
## 3.5 - Case statements
1. Use `case_when()` to bucket each month one of four seasons
```{r}
flights %>%
mutate(
season = case_when(
month >= 3 && month <= 5 ~ "Spring",
month >= 6 && month <= 8 ~ "Summer",
month >= 9 && month <= 11 ~ "Fall",
TRUE ~ "Winter"
)
) %>%
group_by(season) %>%
tally()
```
2. Add a specific case for "Winter"
```{r}
```
3. Append an entry for Monday at the end of the case statement
```{r}
```
4. Move the "Monday" entry to the top of the case statement
```{r}
```
## 3.6 - Data enrichment
1. Load the `planes` data into memory
```{r}
planes <- nycflights13::planes
```
2. Using `DBI`, copy the `planes` data to the datawarehouse as a temporary table, and load it to a variable
```{r}
dbWriteTable(con, "planes", planes, temporary = TRUE)
tbl_planes <- tbl(con, "planes")
```
3. Create a "lazy" variable that joins the flights table to the new temp table
```{r}
combined <- flights %>%
left_join(tbl_planes, by = "tailnum")
```
4. View a sample of flights of planes with more than 100 seats
```{r}
combined %>%
filter(seats > 100) %>%
head()
```
5. How many flights are from McDonnel Douglas planes
```{r}
combined %>%
filter(manufacturer == "MCDONNELL DOUGLAS") %>%
```
6. See how many flights each plane (tailnum) McDonnel Douglas had
```{r}
```
7. Get the total number of planes, and the average, minimum & maximum number of flights for McDonnel Douglas
```{r}
```
8. Disconnect from the database
```{r}
dbDisconnect(con)
```